Appendix D

- D-1 Acute Lethality and Sublethal Toxicity Reports
- D-2 EEM MMER Report
- D-3 2003 MMER Report

Stantec Consulting Ltd. 11B Nicholas Beaver Road RR3 Guelph ON N1H 6H9 Tel: (519) 763-4412 Fax: (519) 763-4419

stantec.com

Fathead minnow Test Report

Survival and Growth

1 of 6

Work Order: 204482 Sample Number: 7880

Sample Identification

Test Results

Company:

Nanisivik Mine (a Division of CanZinco Ltd.)

2003-08-09

Location:

Nanisivik NU

Date Collected: Time Collected :

Substance:

159-4 August 8, 2003

11:00 Date Received: 2003-08-13

Sampling Method:

grab

Time Received: 10:30

Sampled By:

M. Markle FirstAir/air & Purolator/RD Date Tested: 2003-08-13 Lab Storage: 4±2 °C

Shipped By: Temp. on arrival:

Effect

Buildings

Environment

Industrial

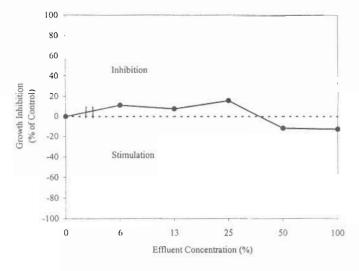
Transportation

Urban Land

8.0°C

Sample Description:

Clear, colourless, odourless.


Value

95% Confidence Limits	Statistical Method

IC25 (Growth) >100%

LC50 (Survival) >100%

Fathead Minnow Growth Inhibition

Test Conditions

Test Organism Pimephales promelas Test Volume Per Replicate : 500 mL Source ESG stock Test Vessel : 1 L polypropylene beaker Life Stage Larval (<24 h old) Depth of test solution : 7.5 cm pH Adjustment # Replicates None : 3 None # Organisms per Replicate : 10 Sample Filtration Renewal Method^d Hardness Adjustment None : Syphon Test Aeration None Renewal Period : 24 h intervals Photoperiod (h) light/dark 16/8 Feeding Rate : 1500-2250 nauplii

Control/Dilution Water^c · Undiluted well water Feeding Frequency : 3 times daily Static renewal Test Duration Test Type : 7 days

· Control/Dilution

Well water with trace NaCl (29.6 mg/L).

Water:

Renewal Method: Three subsamples were used for testing. Subsample 1 was used for day 0,1 and 2 renewals, subsample 2

was used for day 3 and 4 renewals, and subsample 3 was used for day 5 and 6 renewals. Approximately 85 - 90% of test solution removed by syphon. New solution added to achieve desired test volume.

Test Protocol: Biological Test Method: Test of Growth and Survival using fathead minnows. Environment Canada,

Conservation and Protection. Ottawa, Ontario. Report EPS 1/RM/22 (including November 1997

amendments).

No organisms exhibiting unusual appearance, behaviour, or undergoing unusual treatment were used in Test Organisms:

the test. All test organisms were from the same culture.

Comments

Test conducted using three subsamples from a single sampling. The holding time was extended to four days as the sample was collected on 2003-08-09, but was not received until 2003-08-13. A power failure occurred on 2003-08-14 which resulted in the organisms being exposed to an extra 5 hours of darkness that day. There were no other unusual conditions or deviations from the test protocol. The results reported relate only to the sample tested.

Reference Toxicant Data

Substance Potassium Chloride

Test Date : 2003-08-18

 IC25 Survival (g/L)
 1.07

 Lower 95% Confidence Limit
 0.96

 Upper 95% Confidence Limit
 1.21

 Test Duration
 7 days

 Historical Mean IC25 (g/L)
 1.07

 Upper Warning Limit (+2SD)
 1.28

 Lower Warning Limit (-2 SD)
 0.89

Statistical Method : Linear Interpolation (Toxstat 3.5)^b

Fathead minnow Batch Number : Fm03-08

Test Conducted By : D.Holtze/E.Williams

Reference toxicant test was conducted under conditions identical to the test.

References

Date: 2003-09-10

Approved By:

Keith Holtze, Director, Laboratory Operations

^a Stephan, C. E. 1977. Methods for calculating an LC50. P. 65-84 In: P.L. Mayer and J. L. Hamelink (eds.), Aquatic Toxicology and Hazard Evaluation. Amer. Soc. Testing and Materials, Philadelphia PA. ASTM STP 634.

^b West, Inc. and D. Gulley. 1996. Toxstat Release 3.5. Western Ecosystems Technology. Cheyenne, WY, U.S.A.

Larval Fathead Minnow Survival

Work Order Number : 204482 Sample Number : 7880

Industry : Nanisivik Mine (a Division of CanZinco Ltd.)

Time Start : 15:25

Fathead Batch # : Previous 7d Stock Mort. : Fm03-08 0.0%

		Day 1	Day 2	Day 3	Day 4	Day 5	Day 6	Day 7 Completion Date		
Start Date	2003-08-13	2003-08-14	2003-08-15	2003-08-16	2003-08-17	2003-08-18	2003-08-19	2003-08-20	-	
Technician	DH(EW)	DH(EW)	TP	KO(LM)	KO(LM)	AM(EW)	TG	JG(EW)		
									Mean Mortality	Standard
Conc (%)	Rep				Mortality				(%)	Deviation
	A	0	0	0	0	0	0	0	6.7	1.15
0	В	0	0	0	0	0	0	0		
	C	0	0	2	2	2	2	2		
	A	0	0	0	0	0	0	0	6.7	1.15
6	В	0	0	0	0	0	0	0		
	C	0	0	2	2	2	2	2		
1117	Α	0	0	0	0	0	0	0	6.7	1.15
13	В	0	0	0	0	0	0	0		
	C	0	0	0	0	1	1	2		
	A	0	0	0	0	0	0	0	3.3	0.58
25	В	0	0	0	1	1	1	1		
	C	0	0	0	0	Ô	0	0		
	A	.0	0	0	0	0	0	0	0.0	0.00
50	В	0	0	0	0	0	0	0		
	С	0	0	0	0	0	0	0		
	A	0	0	0	0	1	1	1	3.3	0.58

Aberrant behaviour or swimming impairment noted during test: none

Stantec

100

Larval Fathead Minnow Weights

Work Order Number: 204482 Sample Number: 7880

Concentration (%)	Replicate	# of Larvae Weighed	Mean Dry Wt. Of Larvae (mg)	Mean Dry Wt. (mg)	Standard Deviation
Control	A	10	0.778	0.757	0.049
	В	10	0.701		
	C	8	0.791		
6	A	10	0.682	0.671	0.064
	В	10	0.603		
	C	8	0.729		
13	A	10	0.626	0.699	0.073
	В	10	0.698		
	C	8	0.773		
25	A	10	0.614	0.637	0.077
	В	9	0.722		
	C	10	0.574		
50	A	10	0.811	0.846	0.031
	В	10	0.863		
	C	10	0.865		
100	A	9	0.921	0.854	0.067
	В	10	0.853		
	C	10	0.787		

Larval Fathead Minnow Survival and Growth Water Chemistry Data

			water c	nemistry	Data			
Work Order Numb		204482						
Sample Number :		7880						
Initial Parameters:		Temp.	D.O.	pН	Cond.	Hardness		
		(°C)	(mg/L)		(us)	(mg/L as CaCO ₃)		
		25.0	9.9	7.6	2293	>1000		
		Day 1	Day 2	Day 3	Day 4	Day 5	Day 6	Day 7
Initial Temp. (°C):		25.0	25.0	24.0	25.0	25.0	25.5	25.0
Initial D.O. (mg/L		9.9	9.3	9.8	9.5	9.8	9.1	9.3
% Sat. of 100% Ef		123	115	120	120	122	114	115
Preaeration (min)(≤100 b	ubbles/min):	20 David	20 Day 2	20 Day 2	20	20 Day 5	20	20
Technician	Man	Day 1	Day 2	Day 3 EW	Day 4 LM	Day 5	Day 6 EW	Day 7
Technician	New	DH(EW)	DH(EW)	LM	JG(LM)	JG(LM) EW		DH(EW)
Control	Old 0%	AM(EW)	11	LIVI	JG(LIVI)	EW	DH(EW)	JG(EW)
		2.5	200	200	25.0	21.5	240	
Temp. (°C)	Initial:	25.0	25.0	25.0	25.0	24.5	24.0	24.5
D C (0) C +V	Final:	25.0	25.5	25.5	25.0	25.5	25.0	25.5
D.O. (% Sat.*)	Initial:	100	100	101	99	100	97	101
D.O. (mg/L)	Initial:	8.0	8.1	8.1	7.9	8.0	7.7	8.2
	Final:	7.5	7.1	7.2	7.3	7.0	7.4	6.7
pН	Initial:	8.3	8.4	8.4	8.5	8.3	8.3	8.4
6 1 11	Final:	8.4	8.3	8.3	8.4	8.4	8.4	8.3
Conductivity	Initial:	535	491	575	513	545	508	545
Low	6%							
Temp. (°C)	Initial:	25.0	25.0	25.0	25.0	24.5	24.0	24.5
	Final:	25.0	25.5	25.5	25.0	25.5	25.0	25.5
D.O. (mg/L)	Initial:	8.1	8.1	8.1	7.9	8.0	7.8	8.2
	Final:	7.5	7.0	6.9	6.8	6.2	6.1	6.1
pH	Initial:	8.3	8.4	8.4	8.4	8.3	8.3	8.3
	Final:	8.3	8.2	8.2	8.3	8.1	8.1	8.1
Conductivity	Initial:	663	623	696	640	663	637	673
Middle	25%							
Temp. (°C)	Initial:	25.0	25.0	25.0	25.0	24.5	24.0	24.5
1. 6.4%	Final:	25.0	25.5	25.5	25.0	25.5	25.0	25.5
D.O. (mg/L)	Initial:	8.2	8.3	8.3	7.9	8.1	7.9	8.3
100 March 100 Ma	Final:	7.5	7.2	6.6	6.2	5.1	5.0	4.7
рН	Initial:	8.2	8.3	8.2	8.3	8.1	8.1	8.2
	Final:	8.2	8.0	8.0	7.9	7.7	7.6	7.6
Conductivity	Initial:	1038	1013	1064	1007	1015	1020	1021
High	100%							
Temp. (°C)	Initial:	25.0	25.0	25.0	25.0	24.5	24.0	24.5
	Final:		25.5	25.5	25.0	25.5	25.0	25.5
D.O. (mg/L)	Initial:		8.9	9.4	8.6	8.6	8.5	9.2
	Final:		6.8	6.2	6.1	5.5	5.7	4.8
pH	Initial:		7.8	7.6	7.7	7.8	7.6	7.6
	Final		7.4	7.3	7.2	6.9	6.9	6.4
Conductivity	Initial		2300	2303	2291	2289	2307	2299

^{* %} saturation adjusted for actual temperature and barometric pressure

Stantec Consulting Ltd. 11B Nicholas Beaver Road RR3 Guelph ON N1H 6H9 Tel: (519) 763-4412 Fax: (519) 763-4419 stantec.com

Ceriodaphnia dubia Test Report

Survival and Reproduction

1 of 6

Work Order: 204482 Sample Number: 7880

Sample Identification

Nanisivik Mine (a Division of CanZinco Ltd.) Company:

Location: Nanisivik NU

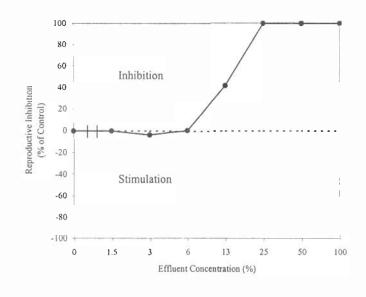
Substance: 159-4 August 8, 2003

Sampling Method: grab Sampled By: M. Markle

FirstAir/air & Purolator/RD Shipped By:

Temp. on arrival: 22.0°C

Sample Description: Clear, colourless, odourless. Date Collected: 2003-08-09 Time Collected: 11:00 Date Received: 2003-08-13 Time Received: 10:30 Date Tested: 2003-08-13 Lab Storage: 4±2 °C


		Test Results	
Effect	Value	95% Confidence Limits	Statistical Method
LC50 (Survival)	57.6%	40.5-94.6	Probit (Stephan) a
IC25 (Reproduction)	9.3%	7.4-11.5	Linear Interpolation (Toxstat 3.5) b

Ceriodaphnia dubia Reproductive Inhibition

Buildings Environment Industrial

Urban Land

Transportation

Survival and Reproduction

2 of 6

Work Order Number: 204482 Sample Number: 7880

eren .	-		
Pet	Conc	ditions	ė

Test Organism	: Ceriodaphnia dubia	Control/Dilution Water ^c	: Lake Erie and Well wate
Source	: ESG stock	Test Type	: Static renewal
Life Stage	: Neonate (<24 h)	Test Volume Per Replicate	: 15 mL
Mean Young Produced (previous 7 days)	: ≥15.0	Test Vessel	: 15 mL polystyrene vial
# Young in Previous Brood	: ≥6.0	Depth of test solution	: 4.5 cm
pH Adjustment	: None	# Replicates	: 10
Sample Filtration	: None	# Organisms per Replicate	: 1
Hardness Adjustment	None	Renewal Method ^d	: transfer
Test Aeration	None	Renewal Period	: 24 h intervals
Photoperiod (h) light/dark	: 16/8	Feeding Rate	: 0.2 mL YCT and algae
1 20 2		Feeding Frequency	: once daily
	g of 25% Lake Erie wate h 29.6 mg/L of NaCl.	er and 75% well water. The w	vell water was

1 Renewal Method:

Three subsamples were used for testing. Subsample 1 was used for day 0,1 and 2 renewals, subsample 2 was used for day 3 and 4 renewals, and subsample 3 was used for the day 5 and 6 renewals.

Organisms were transferred to new solution daily using a wide bore pipet.

Test Protocol:

Biological Test Method: Test of Reproduction and Survival using the Cladoceran Ceriodaphnia dubia. Environment Canada, Conservation and Protection. Ottawa, Ontario. Report EPS 1/RM/21

(including November 1997 amendements).

Test Organisms:

No organisms exhibiting unusual appearance, behaviour, or undergoing unusual treatment were used in the test. No ephippia were present in cultures. All organisms were within 12 hours of the same age. Test neonates were obtained from single broods from culture organisms. All test organisms were from

the same culture.

Comments

Test conducted using three subsamples from a single sampling. The holding time was extended to four days as the sample was collected on 2003-08-09, but was not received until 2003-08-13. A power failure occurred on 2003-08-14 which resulted in 5 hours of inconsistent lighting. There were no other unusual conditions or deviations from the test protocol. The results reported relate only to the sample tested.

Reference Toxicant Data

Substance Sodium Chloride
Test Date 2003-08-22

 IC25 Reproduction (g/L)
 0.96

 Lower 95% Confidence Limit
 0.36

 Upper 95% Confidence Limit
 1.44

 Test Duration
 7 days

 Historical Mean IC25 (g/L)
 1.11

 Upper Warning Limit (+2SD)
 1.81

 Lower Warning Limit (-2 SD)
 0.70

Statistical Method : Linear Interpolation (Toxstat 3.5)^b

Ceriodaphnia Batch Number : Cd03-08
Test Conducted By : T.Gardiner

Reference toxicant test was conducted under conditions identical to the test.

References

Date: 2003-09-10

Approved By:

Keith Holtze, Director, aboratory Operations

^a Stephan, C. E. 1977. Methods for calculating an LC50. P. 65-84 In: P.L. Mayer and J. L. Hamelink (eds.), Aquatic Toxicology and Hazard Evaluation. Amer. Soc. Testing and Materials, Philadelphia PA. ASTM STP 634.

^b West, Inc. and D. Gulley. 1996. Toxstat Release 3.5. Western Ecosystems Technology. Cheyenne, WY, U.S.A.

Ceriodaphnia dubia Survival and Reproduction

Work Order Number : 204482 Sample Number:

Nanisivik Mine (a Division of CanZinco Ltd.) Industry:

Time Start : 14:20 C. dubia Batch Number: Cd03-08 2003-08-13 2003-08-20 Previous 7d culture mortality (%): 11.7% Start Date :

Completion Date :

Concentration	Day			4000		Repl	icate					%	Mean #	In'l JG(EW)
Control	Day	1	2	3	4	5	6	7	8	9	10	Mortality	Young	
2003-08-14	1	0	0	0	0	0	0	0	0	0	0	0	0	LM
2003-08-15	2	0	0	0	0	0	0	0	0	0	0	0	0	LT
2003-08-16	3	0	0	0	6	6	1	0	0	0	0	0	1.3	JG(LM)
2003-08-17	4	6	7	0	0	0	5	4	7	5	6	0	4	JG(LM)
2003-08-18	5	13	13	5	13	12	10	9	8	12	13	0	10.8	EW/LM
2003-08-19	6	3	0	0	19	18	0	0	0	0	0	0	4	JG(EW)
2003-08-20	7	19	19	13	0	0	15	15	17	16	19	0	13.3	EW
Tatal naonata	e e	41	30	10	30	36	21	20	22	22	20			

Mean # young: 33.4 Total adult mortality:

Concentration	Day		north Compa	/1/	000	Repl	icate					% Mortality	Mean #
	Day	1	2	3	4	5	6	7	8	9	10		Young
	1	0	0	0	0	0	0	0	0	0	0	0	0
	2	0	0	0	0	0	0	0	0	0	0	0	0
	3	2	0	0	0	1	0	0	0	0	0	0	0.3
1 50/	4	2	6	0	4	5	4	6	5	6	7	0	4.5
1.5%	5	12	12	0	9	14	12	8	13	11	11	0	10.2
	6	21	0	4	0	19	0	0	0	0	0	0	4.4
	7	0	20	9	17	0	19	18	22	16	19	0	14
Total neonate		37	39	12	30	30	35	32	40	33	37		

Mean # young: 33.4 Total adult mortality:

Concentration	Davis	Day Replicate											Mean #
	Day	1	2	3	4	5	6	7	8	9	10	Mortality	Young
	1	0	0	0	0	0	0	0	0	0	0	0	0
	2	0	0	0	0	0	0	0	0	0	0	0	0
	3	1	0	0	3	5	0	0	0	0	0	0	0.9
3%	4	6	6	4	0	0	6	4	3	7	7	0	4.3
370	5	17	14	3	12	12	12	11	7	10	13	0	11.1
	6	22	0	0	19	20	0	0	0	0	0	0	6.1
	7	0	20	16	0	0	21	14	14	19	18	0	12.2
otal neonate	S	46	40	23	34	37	39	29	24	36	38		

36 23 Mean # young: 34.6 Total adult mortality:

Concentration	Day					Repl	icate		19			%	Mean #
	Day	1	2	3	4	5	6	7	8	9	10	Mortality	Young
	1	0	0	0	0	0	0	0	0	0	0	0	0
	2	0	0	0	0	0	0	0	0	0	0	0	0
	3	5	0	0	5	5	0	0	0	0	0	0	1.5
60/	4	0	6	4	0	0	6	5	5	6	7	0	3.9
6%	5	14	13	7	15	11	11	9	10	10	13	0	11.3
	6	19	21	0	11	17	0	0	0	0	0	0	6.8
	7	0	0	11	0	0	19	15	17	15	20	0	9.7
					1	1	-	20		1	- 40		

Stantec

Mean # young: 33.2 Total adult mortality:

* = accidental death

Concentration	Day	ter and				Rep	licate					% Mortality	Mean #
	Day	1	2	3	4	5	6	7	8	9	10		Young
	1	0	0	0	0	0	0	0	0	0	0	0	0
13%	2	0	0	0	0	0	0	0	0	0	0	0	0
	3	0	0	0	0	5	0	0	0	0	0	0	0.5
	4	3	2	0	0	0	0	3	5	0	2	0	1.5
	5	2	3	0	0	12	7	3	2	8	3	0	4
	6	0	0	0	0	19	0	0	0	0	0	0	1.9
	7	5	20	12	9 x	0	15	8	17	10	19	10	11.5
Total neonate	2	10	25	12	9 x	36	22	14	24	18	24		

Mean # young: Total adult mortality: 19.4

Concentration	Dayr					Repl	icate					%	Mean #
	Day	1	2	3	4	5	6	7	8	9	10	Mortality	Young
	1	0	0	0	0	0	0	0	0	0	0	0	0
	2	0	0	0	0	0	0	0	0	0	0	0	0
	3	0	0	0	0	0	0	0	0	0	0	0	0
25%	4	0	0	0	0	0	0	0	0	0	0	0	0
2370	5	0	0	0	0	0	0	0	0	0	0	0	0
	6	0	0	0	0	0	0	0	0	0	0	0	0
	7	0	0	0	0	0	0	0	0	0	0	0	0
Total neonate	5	0	0	0	0	0	0	0	0	0	0		

Mean # young: Total adult mortality: 0

Concentration	Davis		-	0.00			Repl	icate					%	Mean #
	Day	1	2	3		4	5	6	7	8	9	10	Mortality	Young
	1	0	0	0		0	0	0	0	0	0	0	0	0
	2	0	0	x 0		0	0	0	0	0	0	0	10	0
	3	0	0	0		0	0	0	0	0	0	0	10	0
50%	4	0	0	0		0	0	0	0 x	0	0	0	20	0
30%	5	0	0	0	x	0	0	0	0	0	0	0	30	0
	6	0	0	0		0	0	0	0	0	0	0	30	0
	7	0	0	0		0	0	0	0	0	0	0	30	0
Cotal neonate		0	0	v 0		0	0	0	0 v	0	0	0		

Mean # young: Total adult mortality: 0

Concentration	D		00.00	65		-150	-		Re	plic	ate	- 69				2010	- 20			%	Mean #
	Day	I	2		3		4		5		6		7		8	9		10		Mortality	Young
	1	0	0		0		0		0		0		0	\neg	0	0		0		0	0
	2	0 x	0	x	0	- 1	0		0	х	0	- 1	0	- 1	0	0	ĺ	0	ĺ	30	0
	3	0	0		0		0		0		0		0	-	0	0		0	- 1	30	0
100%	4	0	0	1	0		0		0		0		0	x	0	0	- 1	0	x	50	0
100%	5	0	0		0	х	0	x	0		0	×	0		0	0	X	0	- 1	90	0
	6	0	0		0		0		0	- 1	0		0		0	0	- 1	0		90	0
	7	0	0	4	0		0		0		0		0	- 1	0	0	- 1	0		90	0

Mean # young: Total adult mortality:

Concentration	Day	200				5715-	Repl	icate					%	Mean #
	Day	1	2	3	4		5	6	7	8	9	10	Mortality	Young
	.1	0	0	0	0	T	0	0	0	0	0	0	0	0
	2	0	0	0	0	1	0	0	0	0	0	0	0	0
	3	0	0	0	0		5	0	0	0	0	0	0	0.5
13%	4	3	2	0	0		0	0	3	5	0	2	0	1.5
1370	5	2	3	0	0		12	7	3	2	8	3	0	4
	6	0	0	0	0		19	0	0	0	0	0	0	1.9
	7	5	20	12	9	x	0	15	8	17	10	19	10	11.5
Total neonate:	S	10	25	12	9	x	36	22	14	24	18	24		

Mean # young: 19.4 Total adult mortality:

Concentration	D					Repl	icate	Off Color				%	Mean A
	Day	1	2	3	4	5	6	7	8	9	10	Mortality	Young
	1	0	0	0	0	0	0	0	0	0	0	0	0
	2	0	0	0	0	0	0	0	0	0	0	0	0
	3	0	0	0	0	0	0	0	0	0	0	0	0
25%	4	0	0	0	0	0	0	0	0	0	0	0	0
25%	5	0	0	0	0	0	0	0	0	0	0	0	0
	6	0	0	0	0	0	0	0	0	0	0	0	0
	7	0	0	0	0	0	0	0	0	0	0	0	0
Total neonate	S	0	0	0	0	0	0	0	0	0	0	1	

Mean # young: Ŏ Total adult mortality: 0

Concentration	Deve					- 1-7	Repl	icate					%	Mean #
	Day	1	2	3		4	5	6	7	8	9	10	Mortality	Young
	1	0	0	0	7	0	0	0	0	0	0	0	0	0
	2	0	0 x	0		0	0	0	0	0	0	0	10	0
	3	0	0	0		0	0	0	0	0	0	0	10	0
50%	4	0	0	0		0	0	0	0 x	0	0	0	20	0
3070	5	0	0	0	x	0	0	0	0	0	0	0	30	0
	6	0	0	0		0	0	0	0	0	0	0	30	0
	7	0	0	0		0	0	0	0	0	0	0	30	0

Mean # young: Total adult mortality: 0

Concentration	Davis									Re	plic	ate									%	Mean #
	Day	1		2		3		4		5		6		7		8	9		10		Mortality	Young
	1	0		0	\neg	0		0	\neg	0		0	\neg	0	П	0	0	\neg	0		0	0
100%	2	0	x	0	x	0	1	0		0	X	0	- 1	0		0	0		0		30	0
	3	0		0		0	- 1	0		0		0		0		0	0		0		30	0
	4	0		0		0	- 1	0		0	- 1	0		0	X	0	0		0	х	50	0
100%	5	0	- 1	0	- 1	0	X	0	×	0		0	X	0		0	0	X	0		90	0
	6	0		0	- 1	0		0		0		0		0		0	0		0		90	0
	7	0		0		0		0		0		0		0		0	0		0		90	0
Total neonate	es .	0	X	0	X	0	X	0	X	0	X	0	X	0	X	0	0	x	0	x		198

Mean # young: Total adult mortality: 0

Stantec Consulting Ltd.

11B Nicholas Beaver Road RR3 Guelph ON N1H 6H9

Tel: (519) 763-4412 Fax: (519) 763-4419

stantec.com

Lemna minor Test Report

Growth Inhibition

1 of 5

2003-08-09

2003-08-13

2003-08-13

11:00

10:30

4±2 °C

Work Order: 204482 Sample Number: 7880

Date Collected:

Time Collected:

Date Received:

Time Received:

Date Tested:

Lab Storage:

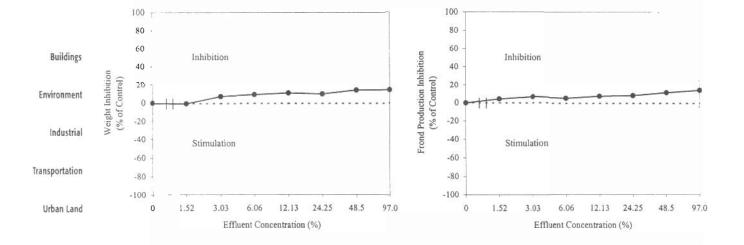
Sample Identification

Company: Nanisivik Mine (a Division of CanZinco Ltd.)

Location: Nanisivik NU

Substance: 159-4 August 8, 2003

Sampling Method: grab Sampled By: M. Markle


Shipped By: FirstAir/air & Purolator/RD

Temp. on arrival: 8.0°C

Sample Description: Clear, colourless, odourless.

		Test Results	
Effect	Value	95% Confidence Limits	Statistical Method
IC25 (Weight) Scoule	>97.0%	-	-
IC25 (Frond Production)	>97.0%	-	-

Lemna minor Growth Inhibition

	Test Co	onditions	
Test Organism	: Lemna minor L., Strain 7730	Media Preparation Water b	: Millipore Super Q TM
Organism Origin	: UTCC 492	Control/Dilution Water c	Modified APHA
Source	: In-house culture	Test Type	Static
Organism Age (days)	: 8	Test Volume Per Replicate	: 100 mL
Test Culture Frond # Increase	: >8	Test Vessel	: 250 mL Erlenmeyer flask
Initial Plant Inoculum	6 fronds (2 plants)	Depth of Test Solution	: 4.0 cm
Acclimation Time (h)	: 23:40	# Test Concentrations	: 6
Medium Sterilization	: No	# Control Replicates	: 3
Sample pH Adjustment	: None	# Test Replicates	: 3
Sample Hardness Adjustment	: None	Test Duration	7 days
Preaeration(≤100 bubbles/min)	: 20 min	Test Temperature	25 ± 2°C
Sample Filtration (µm)	: I (Whatman GF/C)	Lighting	24 hrs. 4200 – 4800 lux
Media Preparation Water:	Water used to prepare the liquid University of Guelph. No che		APHA). Obtained from the
Control/Dilution Water:	Millipore Super Q TM enriched described in EPS 1/RM/37.	with 10 mL/L nutrient stock s	solutions A, B, and C as
Test Protocol:	Environment Canada. 1999. I Growth using the Freshwater M Application Section. Environm ON. EPS 1/RM/37.	Macrophyte, Lemna minor. M	A CONTRACT OF THE PROPERTY OF
Test Organisms	No unusual appearance or trea		

Comments

Test sample was enriched with 10 mL/L nutrient stock solutions A, B, and C as described in EPS 1/RM/37. Test dilutions were prepared and then allowed to acclimate for one hour before plants were added.

Control plants showed the required minimum growth of >8 times.

The holding time was extended to four days as the sample was collected on 2003-08-09, but was not received until 2003-08-13. A power failure occurred on 2003-08-14 which resulted in insufficient or variable lighting for 17 hours. There were no other unusual conditions or deviations from the test protocol. The results reported relate only to the sample tested.

204482 7880

Reference Toxicant Data

Substance Potassium Chloride

Test Date : 2003-08-22

IC25 Frond Production (g/L) : 2.64
Lower 95% Confidence Limit : 0.43
Upper 95% Confidence Limit : 3.43
Test Duration : 7 days
Historical Mean IC25 (g/L) : 2.25
Upper Warning Limit (+2SD) : 3.58
Lower Warning Limit (-2 SD) : 1.43

Statistical Method : Linear Interpolation (Toxstat 3.5)^a

Lemna minor Batch Number : Lm03-08

Test Conducted By : T.Patey/H.Roshon/K.Olaveson

Reference toxicant test was conducted under conditions identical to the test.

The first 5 reference toxicant tests were conducted using strain #8434, afterwhich they were conducted using strain #7730.

References

^a West, Inc. and D. Gulley. 1996. Toxstat Release 3.5. Western Ecosystems Technology. Cheyenne, WY, U.S.A.

Date: 2003-09-10

4200-4800 lux

7 Day Lemna minor Growth Inhibition Test

Work Order Number: 204482 7880 Sample Number:

Lemna Batch #:

Start Date:

Completion Date:

Lm03-08 Culture Age (days): 8

Culture Health Increase Factor (in APHA media):

Acclimation of plants to APHA medium: 2003-08-13

2003-08-20

Date: Time:

2003-08-12 15:30

Time: 15:50 Technician:

T. Patey

Initial sample temperature:

25.0

	Daily Temper	ature	
Day	Date	Temp (°C)	Initials
0	2003-08-13	25.5	TP
1	2003-08-14	25.5	TP
2	2003-08-15	24.5	TP
3	2003-08-16	25.5	KO
4	2003-08-17	26.0	KO
5	2003-08-18	25.5	TP
6	2003-08-19	25.5	TP
7	2003-08-20	25.5	TP

Initial sample pH: 7.6

Sample Pre-aeration Time (min 20

Light Intensity:

Sample Filtration (µm):

	pH	
Conc. (%)	Day 0	Day 7
Control	8.2	8.3
1.52	8.3	8.4
3.03	8.3	8.4
6.06	8.2	8.4
12.13	8.2	8.3
24.25	8.2	8.1
48.5	8.1	7.5
97.0	8.0	5.7

Frond Counts at Day 7

Technician:

K. Olaveson/ T. Patey/ H. Roshon

		Re	Α			Re	рВ	100-100	- 257	Re	o C	
Conc. (%)	Pl	ant	Fre	ond	Pl	ant	Fre	ond	Pl	ant	Fre	ond
	# Live	# Dead	# Live	# Dead	# Live	# Dead						
Control	20	0	113	0	19	0	114	0	16	0	87	0
1.52	21	0	99	0	19	0	105	0	15	0	97	0
3.03	22	0	102	0	21	0	98	0	18	0	94	0
6.06	19	0	93	0	20	0	94	0	20	0	111	0
12.13	18	0	95	0	22	0	118	0	13	0	78	0
24.25	16	0	109	0	14	0	93	0	8	0	86	1
48.5	7	0	91	0	3	0	81	0	7	0	108	0
97.0	5	0	73	1	6	0	88	0	10	0	110	0

Summary (includes initial plant and frond numbers)

	Average			Standard Deviation			Observations			
Conc. (%)	Plant		Fre	Frond		Plant		ond	Front/soat amagazana	
	# Live	# Dead	# Live	# Dead	# Live	# Dead	# Live	# Dead	Frond/root appearance	
Control	18.3	0.0	104.7	0.0	2.1	0.0	15.3	0.0	fronds healthy, appearance normal	
1.52	18.3	0.0	100.3	0.0	3.1	0.0	4.2	0.0		
3.03	20.3	0.0	98.0	0.0	2.1	0.0	4.0	0.0		
6.06	19.7	0.0	99.3	0.0	0.6	0.0	10.1	0.0	1	
12.13	17.7	0.0	97.0	0.0	4.5	0.0	20.1	0.0		
24.25	12.7	0.0	96.0	0.3	4.2	0.0	11.8	0.6		
48.5	5.7	0.0	93.3	0.0	2.3	0.0	13.7	0.0		
97.0	7.0	0.0	90.3	0.3	2.6	0.0	18.6	0.6		

Stantec

Large colonies in the 48.5% and 97.0% concentrations. Settled debris in the 97.0% concentration.

Test Data Reviewed By: ##C Date: 2003-09-03

7 Day Lemna minor Growth Inhibition Test

Work Order Number: 204482 Sample Number: 7880

Increase in Frond Numbers

Conc. (%)	Rep A	Rep B	Rep C	Average	Standard Deviation	%CV	% Inhibition
Control	107	108	81	98.7	15.3	15.5	0.0
1.52	93	99	91	94.3	4.2	4.4	4.4
3.03	96	92	88	92.0	4.0	4.3	6.8
6.06	87	88	105	93.3	10.1	10.8	5.4
12.13	89	112	72	91.0	20.1	22.1	7.8
24.25	103	87	81	90.3	11.4	12.6	8.4
48.5	85	75	102	87.3	13.7	15.6	11.5
97.0	68	82	104	84.7	18.1	21.4	14.2

Increase in control frond count: 17.4

Lemna minor Weights

fold

Concentration	Replicate	Total Replicate Biomass (mg)	Mean Treatment Biomass (mg)	Standard Deviation	%CV	% Inhibition
Control	Α	10.10	9.14	1.45	15.9	0.0
	В	9.86				
	C	7.47				
1.52	Α	9.57	9.17	0.49	5.4	-0.3
	В	9.31				
	C	8.62				
3.03	A	9.10	8.45	0.74	8.8	7.5
	В	8.62				
	C	7.64				
6.06	Α	8.29	8.28	0.14	1.6	9.4
	В	8.41				
	C	8.14				
12.13	A	8.13	8.12	1.59	19.6	11.2
	В	9.71				
	C	6.53				
24.25	A	9.58	8.22	1.23	15.0	10.1
	В	7.90				
	C	7.18				
48.5	A	8.02	7.84	0.54	6.9	14.3
	В	7.23				
	C	8.26				
97.0	A	6.71	7.80	1.05	13.4	14.7
	В	7.88				
	C	8.80				

Stantec

Test Data Reviewed By: ##L
Date: 2003-09-03

Stantec Consulting Ltd.

11B Nicholas Beaver Road RR3 Guelph ON N1H 6H9

Tel: (519) 763-4412 Fax: (519) 763-4419

stantec.com

Selenastrum capricornutum

Growth Inhibition

1 of 4

2003-08-09

2003-08-13

2003-08-13

11:00

10:30

4±2 °C

Work Order: 204482 Sample Number: 7880

Date Collected:

Time Collected:

Date Received:

Time Received:

Date Tested:

Lab Storage:

Sample Identification

Company

Nanisivik Mine (a Division of CanZinco Ltd.)

Location:

Nanisivik NU

Substance

Buildings

Environment

Industrial

Transportation

Urban Land

159-4 August 8, 2003

Sampling Method:

grab

Sampled By:

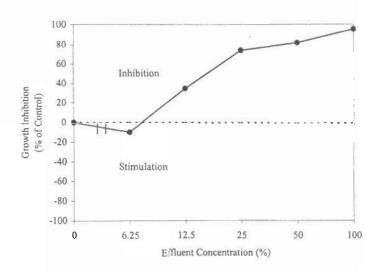
M. Markle

Shipped By:

FirstAir/air & Purolator/RD

Temp. on arrival:

8.0°C


Sample Description:

Clear, colourless, odourless.

Tost	D.	1130	Ite	*

Effect	Value	95% Confidence Limits	Statistical Method	
IC25 (Growth)	10.4%	9.4-10.8	Linear Interpolation (Toxstat 3.5) a	

Selenastrum capricornutum Growth Inhibition

*Note: The test results have not been adjusted for the 0.9091 dilution factor (see 'Concentrations' section on page 2).

Certified by the Canadian Association of Environmental Analytical Laboratories (CAEAL)

Accredited by Standards Council of Canada (SCC)

ews .	~ .		
Test	('one	litions	3

Test Organism : Selenastrum capricornutum Control/Dilution Water^c : Millipore Milli O™

Batch Number : Sel03-08 Test Type : Static
Organism Origin : UTCC37 Test Volume Per Replicate : 220 μL

Source : In-house culture Test Vessel : U-shaped polystyrene microplate

Organism Age (days): 5 (in exponential growth) # Test Concentrations^d: 10 + control

Initial Algal Inoculum: 9448 cells/mL # Control Replicates : 10 pH Adjustment : None # Test Replicates : 3

Sample Filtration : 0.45 μm Test Duration : 72 hours

Hardness Adjustment: None Lighting : 24 hrs. 4000±10% lux

Sample Aeration : None

^b Sample Filtration: 5-10 ml sub-sample was filtered through a preconditioned 0.45 μm filter prior to dilution.

^c Control/Dilution

No chemicals added.

Water:

d Number of A total of ten concentrations were prepared and inoculated with algae. A minimum of five

Concentrations: concentrations were enumerated at test completion.

Concentrations: Concentrations are prepared by making up a series of dilutions such as: 0.195, 0.39, 0.78,

1.56, 3.13, 6.25, 12.5, 25, 50, and 100%. The actual concentrations are slightly diluted by the addition of $10~\mu L$ of enrichment medium and $10~\mu L$ of algal inoculum. Therefore, the concentrations for the above series are actually 0.18, 0.35, 0.71, 1.42, 2.85, 5.68, 11.36, 22.73, 45.45, and <math>90.91% (a multiplication factor of 0.9091%). This multiplication factor

has not been applied to the results.

Test Organisms: No unusual appearance or treatment of culture prior to testing.

Test Protocol: Biological Test Method. Growth Inhibition Test Using the Freshwater Alga Selenastrum

capricornutum. Environment Canada, Conservation and Protection. Ottawa, Ontario.

Report EPS1/RM/25 (including November 1997 amendments).