NANISIVIK MINE

A division of CanZinco Ltd.
P.O. Box 225
Nanisivik, NU
X0A 0X0

March 25, 2004

Mr. Phillipe diPizzo
Executive Director – Nunavut Water Board
P.O. Box 119
Gjoa Haven, NU
X0B 1J0

Re: Water Licence NWB1NAN0208

In accordance with Part H Item 31 please accept this submission as Nanisivik Mine's 2003 Effluent Monitoring Report

If further information is required please do not hesitate to contact me.

Regards,

Murray Markle Site Manager

Phone: 867-436-7376

email: mmarkle@nu.breakwater.ca

c.c. B. Heath R. Carreau

File

Nunavut Water Board

0 3 2004

Public Registry

INT	ERNAL.
PC	do
MA	NAME OF TAXABLE PARTY.
FO	4
LA	i
BS	
ST	
TAIL	
TA2	9
RO	
ED	
CH	The second secon
BRD	
EXT	

Phone: (867) 436 - 7376

Fax: (867) 436 -7435

During the period of July 8th to October 4th, effluent was released from the identified final deposition point 159-4. Monitoring of the effluent was conducted as per the guidelines set forth in the **MMER**. As per Schedule 6 pertaining to Section 22 of the MMER, the following information is submitted:

Name of Mine Nanisivik

Mine Operator <u>CanZinco Ltd.</u>

Address: PO Box 225, Nanisivik, NU X0A 0X0

Telephone: 867-436-7502

E-Mail: <u>mmarkle@nu.breakwater.ca</u>

Location of Final Discharge Point: Water flows from the West Twin Reservoir to a polishing pond prior

to being discharged to twin lakes creek. A Steel plate barrier that contains seven 6-inch valves holds the water back. Sampling station 159-4 is located at this decant structure. The coordinates and

elevation for this final discharge point are as follows:

Station Latitude Longitude Elevation (m) 159-4 73° 01' 29.4" N 84° 28' 32.8" W 368.196

Effluent characterization and water quality monitoring was also conducted on samples taken from the receiving environment exposure area surrounding the point of entry of effluent from final discharge point 159-4. This sampling location is known as 159-4A. It is located approximately 50 metres down stream from the decant structure (159-4). The coordinates and elevation for sampling station 159-4A are as follows:

Station Latitude Longitude Elevation (m) 159-4A 73° 01' 32.3" N 84° 28' 33.5" W 366.914

The reference area with respect to station 159-4A is located approximately 50 metres up stream from the decant structure (159-4). This sampling station is known as 159-4B and is actually located in the stream that flows out of East Twin Lake. Effluent characterization and water quality monitoring was conducted on samples taken from this station as well. The coordinates and elevation for sampling station 159-4B are as follows:

Station Latitude Longitude Elevation (m) 159-4B 73° 01' 33.2" N 84° 28' 20.9" W 366.742

Table 1 and 2 of schedule 6 is shown below.

Dec.

ND

ND

NMR

ND

	TABLE 1											
M	MONTHLY MEAN CONCENTRATIONS, pH RANGE AND VOLUME OF EFFLUENT (1)(2)											
										Effluent		
	As	Cu	CN	Pb	Ni	Zn	TSS	Ra	рН	Volume		
Month	VS (000) 20	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(Bq/L)	range	(m3)		
Jan.	ND	ND	NMR	ND	ND	ND	ND	ND	ND	ND		
Feb.	ND	ND	NMR	ND	ND	ND	ND	ND	ND	ND		
Mar.	ND	ND	NMR	ND	ND	ND	ND	ND	ND	ND		
Apr.	ND	ND	NMR	ND	ND	ND	ND	ND	ND	ND		
May	ND	ND	NMR	ND	ND	ND	ND	ND	ND	ND		
June	ND	ND	NMR	ND	ND	ND	ND	ND	ND	ND		
July	0.001	0.025	NMR	0.008	< 0.005	0.054	3.300	0.047	6.3 -8.0	154812		
Aug.	0.002	0.063	NMR	0.016	0.008	0.182	5.100	0.100	7.2-7.9	154656		
Sept.	0.002	0.085	NMR	0.019	0.013	0.258	2.500	0.090	6.4-7.7	63660		
Oct.	0.003	0.105	NMR	0.023	0.016	0.323	1.750	0.102	6.4-6.6	2678		
Nov.	ND	ND	NMR	ND	ND	ND	ND	ND	ND	ND		

⁽¹⁾ Any measurement not taken because there was no deposit from the final discharge point shall be identified by the letters "ND" - (No Deposit)

ND

ND

ND

ND

ND

ND

⁽²⁾ Any measurement not taken because no measurement was required in accordance with the conditions set out in section 13 of the Regulations shall be identified by the letters "NMR" - (No Measurement Required).

	TABLE 2	
	OF ACUTE LET PHNIA MAGNA TESTS	HALITY TESTS MONITORING
Date Sample Collected 09/08/2003	Effluent Acutely Lethal to Rainbow Trout (yes or no) No	Effluent Acutely Lethal to Daphnia magna (yes or no) Yes
13/09/2003	No	Yes

The Excel spreadsheets provided by Environment Canada and containing all the MMER information provided here have been submitted electronically.

There was a data entry error for the August TSS mass loading in the 3rd quarter effluent monitoring report. This error has been corrected and the summary for the year is tabled below.

				2003 M		ABLE 3 ADING S	SUMMARY	ď		
Month	TSS (kg)	Cd (kg)	Pb (kg)	As (kg)	Cu (kg)	Ni (kg)	R 226 (Mbq)	Zn (kg)	NH ₃ (kg)	Total Water (m3)
July	466.85	0.05	1.23	0.17	3.68	0.59	6.62	9.82	172.44	154812
August	932.94	0.10	2.46	0.24	9.37	1.39	15.46	26.78	394.82	154656
September	179.37	0.05	1.26	0.15	5.54	1.09	6.48	16.90	200.66	63660
October	4.29	0.02	0.06	0.01	0.28	0.04	0.10	0.87	10.08	2678
Total	1583.45	0.22	5.01	0.57	18.87	3.11	28.66	54.37	778.00	375806

Effluent Characterization and Water Quality Monitoring

During the period of July 8th to October 4th, effluent was released from the identified final deposition point 159-4. Monitoring of the effluent was conducted as per section 7 of the **MMER** in accordance with schedule 5. As per Section 8 of schedule 5 relating to the **EEM** (environmental effects monitoring studies), the following information is submitted:

The dates on which each sample was collected for effluent characterization, sub lethal toxicity testing and water quality monitoring are shown in the table below:

Sample Type		Dates								
Effluent Characterization	July 12	August 9	September 10							
Sub Lethal Toxicity		August 9	September 13							
Water Quality Monitoring	July 12	August 9	September 10							

Water flows from the West Twin Reservoir to a polishing pond prior to being discharged to twin lakes creek. A Steel plate barrier that contains seven 6-inch valves holds the water back. The water is released through the valves and flows along a cement spillway prior to being deposited into the Twin Lakes Creek. The sample is collected at the end of the spillway just before it enters the creek. This sampling station is known as 159-4. The coordinates and elevation for this final discharge point are as follows:

Station	Latitude	Longitude	Elevation (m)
159-4	73° 01' 29.4" N	84o 28' 32.8" W	368.196

Effluent characterization and water quality monitoring was also conducted on samples taken from the receiving environment exposure area surrounding the point of entry from final discharge point 159-4. This sampling location is known as 159-4A. It is located approximately 50 metres down stream from the decant structure (159-4). The coordinates and elevation for sampling station 159-4A are as follows:

Station	Latitude	Longitude	Elevation (m)
159-4A	73° 01' 32.3" N	84° 28' 33.5" W	366.914

The reference area with respect to station 159-4A is located approximately 50 metres up stream from the decant structure (159-4). This sampling station is known as 159-4B and is actually located in the stream that flows out of East Twin Lake. Effluent characterization and water quality monitoring was conducted on samples taken from this station as well. The coordinates and elevation for sampling station 159-4B are as follows:

Station	Latitude	Longitude	Elevation (m)
159-4B	73° 01' 33.2" N	84° 28' 20.9" W	366.742

The 159-4 discharge point was selected as the location where sub lethal toxicity testing would be conducted for two reasons, the first and foremost being that this was the only location where effluent was released during 2003. The second reason is that the twin lakes creek is an actual waterway for the entire season whereas water-flow through the valley at the East Adit discharge point is sporadic at best.

The results of effluent characterization, sub lethal toxicity testing and water quality monitoring have been entered on a set of Excel spreadsheets provided by Environment Canada with the file name "EEM MMER Report". A formatted version of these spreadsheets are appended to this report as appendix A and the original spreadsheets accompany the electronic submission.

Reference

Methodologies used to conduct effluent characterization and water quality monitoring were as follows: Parameter Method

Metals (Al, As, Cd, Cu, Fe, Mo, Ni, Pb, Zn)	ICP-MS	EPA 200.8
Metals (Ca, Mg)	ICP-AES	SM 3120B
Hardness	Calculation	SM 2340B
Hg	Cold Vapour AA	SM 3112
N-NH3	Auto-Colour	SM 4500-NH3-G
NI NIO2	Ion Chaomata	CN 4110

N-NO3 Ion Chromatogram SM 4110 Alkalinity Auto-Titration SM 2320B

DRO GC/FID EPA 3510/MOE 3421

Note:

SM: Standard Method for the Examination of Water and Wastewater, 20th edition, 1998

EPA: Environmental Protection Agency (USA) MOE: Ministry of the Environment (ONT)

The method detection limits for each parameter are tabled below

Parameter	MDL	Units	Parameter	MDL	Units
Hardness as CaCO3	1	mg/l	Arsenic	.001	mg/l
Alkalinity	5	mg/l	Copper	.001	mg/l
Aluminum	.01	mg/l	Lead	.001	mg/l
Cadmium	.0001	mg/l	Nickel	.005	mg/l
Iron	.01	mg/l	Zinc	.01	mg/l
Mercury	.0001	mg/l	Radium 226	.01	bq/l
Molybdenum	.005	mg/l	TSS	.0001	mg/l
Ammonia	.02	mg/l	Temperature	0.1	mg/l
Nitrate	.10	mg/l	Dissolved Oxygen	.01	mg/l
PH	.01				

Quality assurance was achieved by following a standard operating procedure for sampling. Closed sample containers were taken to the field for collection. The containers were opened just prior to sampling and rinsed twice with the effluent prior to collection. The lids were also rinsed twice for each sample. The sample number and date are written on both the sample bottle and its lid. The PH is measured using a calibrated portable PH metre. A duplicate sample is collected on each sampling date. One sample is filtered on site to determine suspended solids and the other is preserved with nitric acid and shipped to an offsite lab for analysis. Personnel involved in the sampling were trained in the procedure.

Appendix A EEM MMER Report

2003-09-10 159-4B	2003-09-10	2003-09-10 159-4	2003-08-09 159-4B	2003-08-09 159-4A	2003-08-09 159-4	2003-07-12 159-4		Date (YYYY-MM-DD)
159-4B	159-4A	159-4	159-4B	159-4A	159-4	159-4		Final Dishcharge Point (Name)
73° 01° 33.2" N 84° 28° 20.9" W	2003-09-10 159-4A 73° 01° 32.3"° N 84° 28° 33.5" W	73° 01° 29.4" N	73° 01° 33.2" N	73° 01° 32.3" N	73° 01° 29.4" N	73° 01° 29.4" N		Latitude
		73° 01° 29.4" N 84° 28° 32.8" W	73° 01° 33.2" N 84° 28° 20.9" W	73° 01°, 32.3" N 84° 28°, 33.5" W	73° 01° 29.4" N 84° 28° 32.8" W	73° 01° 29.4" N 84° 28° 32.8" W		Longitude
G	С	G	G	С	G	G		Grab or Composite? (G or C)
38	727	1580	55	317	1210	363	mg/L	Hardness
30	32	46	*	*	*	22	mg/L	Alkalinity
0.11	0.38	0.12	0.16	0.3	0.03	0.02	mg/L	Aluminum
0.0001	0.0003	0.0007	0.0002	0.0003	0.0006	0.0002	mg/L	Cadmium
0.12 <	0.52 <	0.4	0.11	0.32 <	0.1 <	0.22	mg/L	Iron
0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	mg/L	Mercury
< 0.005 <	0.016	0.045	< 0.005 <	0.009	0.045	0.011	mg/L	Molybdenum
< 0.02	1.16	2.83	< 0.02	0.51	2.13	0.69	mg/L	Ammonia
0.11	2.45	6.55		0.3		1.16	mg/L	Nitrate
			* Akalinity Analyses not 0.16 available due to addition of preservative	* Akalinity Analyses not 0.3 available due to addition of preservative	* Akalinity Analyses not 0.03 available due to addition of preservative			Comments

Appendix A-2
Water Quality Monitoring

10-Sep	10-Sep	10-Sep	09-Aug	09-Aug	09-Aug	12-Jul		Date (YYYY-MM-DD)	10-Sep	10-Sep	10-Sep	09-Aug	09-Aug	09-Aug	12-Jul		Date (YYYY-MM-DD)
159-4B	159-4A	159-4	159-4B	159-4A	159-4	159-4		Exposure/Referenc e Area (Name)	159-4B	159-4A	159-4	159-4B	159-4A	159-4	159-4		Exposure/Referenc e Area (Name)
Z	Е	Ш	Z	Ш	Ш	Ш		Exposure or Reference? (E or R)	R	Ш	ш	Z	Ш	т	Ш		Exposure or Reference? (E or R)
73° 01' 33.2" N	73° 01° 32.3" N	73° 01' 29.4" N	73° 01' 33.2" N 84° 28' 20.9"	73° 01' 32.3" N	73° 01' 29.4" N 84° 28' 32.8"	73° 01' 29.4" N 84°		Latitude	73° 01' 33.2" N	73° 01° 32.3" N	73° 01° 29.4" N	73° 01' 33.2" N	73° 01° 32.3" N	73° 01° 29.4" N	73° 01' 29.4" N 84°		Latitude
73° 01° 33.2" N 84° 28° 20.9" W	84° 28' 33.5" W	84° 28' 32.8" W	84° 28' 20.9" W	84° 28' 33.5" W	84° 28' 32.8" W	84° 28' 32.8" W		Longitude	84° 28' 20.9" W	84° 28° 33.5" W	84° 28' 32.8" W	84° 28' 20.9" W	84° 28' 33.5" W	84° 28' 32.8" W	84° 28' 32.8" W		Longitude
< 0.001	0.019	0.069	0.001	0.015	0.053		mg/L	Copper	38	727	1580	55	317	1210	363	mg/L	Hardness
							mg	Cyanide	30	32	46				22	mg/L	Alkalinity
0.003	0.007	0.021	0.001	0.005	0.014	0.004	mg, mg/L	Lead	0.110	0.380	0.120	0.160	0.300	0.030		L mg/L	Aluminum
< 0.005	< 0.005	0.009	< 0.001	0.002	0.008		mg/L	Nickel	0.0001	0.0003	0.0007	0.0002	0.0003	0.0006	0.0002	mg/L	Cadmium
0.010		0.210	0.011			0.007	mg/L	Zinc	0.12	0.52	0.40	0.11	0.32	0.10	0.22	mg/L	Iron
< 0.01	0.04	0.09	< 0.01	< 0.01	0.04		100	Radium 226 (Bq/L)	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	Λ	Λ		Mercury
8.8	20.2	6.4	15.2	30.0	2.4	2.0	mg/		< 0.005	0.016	0.045	< 0.005	0.009	0.045	0.011	mg/L	Molybdenum
4.1	4.1	3.6		5.9		14.1	റ്	Temperature	< 0.02	1.16	2.83	< 0.02	0.51	2.13			
9.06	9.81		9.32	9.05			mg/L	Dissolved Oxygen	0.11	2.45	6.55	0.16	0.30	0.03	1.16	mg/L	Nitrate
									6.90	7.30		7.95		7.58			рН
								Comments	< 0.001	0.001	0.002	٨	< 0.001	0.001		mg/L	Arsenic

13-Sep-03 159-4	13-Sep-	13-Sep-	13-Sep-03	13-Sep-03	13-Sep-03	13-Sep-03	09-Aug	09-Aug-04	09-Aug-04	09-Aug-04	09-Aug-04	09-Aug-04	09-Aug-04	Date (YYYY-MM-DD)
03 159-	13-Sep-03 159-4	13-Sep-03 159-4	-03 159-4	03 159-4	.03 159-4	-03 159-4	09-Aug-04 159-4	-04 159-4	-04 159-4	-04 159-4	-04 159-4	-04 159-4	-04 159-4	Final Dishcharge
			73-01-29	73-01-29		4 73-01-29 N		4 73-01-29				4 73-01-29 N		Point (Name) Latitude
73-01-29 N 84-28-33 W	73-01-29 N 84-28-33 W	73-01-29 N 84-28-33 W	N 84-28-33 W	N 84-28-33 W	73-01-29 N 84-28-33 W	84-28-33	73-01-29 N 84-28-33 W	73-01-29 N 84-28-33 W	73-01-29 N 84-28-33 W	73-01-29 N 84-28-33 W	73-01-29 N 84-28-33 W	N 84-28-33 W	73-01-29 N 84-28-33 W	Longitude
< റ	ر م	G	G	G	o G	w G	<u>×</u> ۵	w G	G	W G	w G	S G	₩ G	Grab or Composite? (G or
Selenstrum Capricornutum	Lemna Minor	Lemna Minor	Ceriodaphnia dubia	Ceriodaphnia dubia	Pimephales promelas	Pimephales promelas	Selenstrum Capricornutum	Lemna Minor	Lemna Minor	Ceriodaphnia dubia	Ceriodaphnia dubia	Pimephales promelas	Pimephales promelas	Species Tested (Latin name)
Growth	Growth (Frond Production)	Growth (Weight)	Reproduction	Survival	Survival	Growth	Growth	Growth (Frond Production)	Growth (Weight)	Reproduction	Survival	Survival	Growth	Test Type (Growth, Reproduction, Survival)
				30.8	> 100						57.6	> 100		LC50
	1			20.2							40.5			LC50 Lower
				50.3							94.6			LC50 Upper
œ	ω	9	00			> 100	10.	v 9	v 9	9			> 100	EC25 or IC25
.6 7.8	87 20.4	37	.7 6.7			ŏ	9.4	97	97	.3 7.4			8	EC25 or IC25 Lowe
8	4 54.3		7 10.5				4 10.8			4 11.5				EC25 or IC25 Uppe
No inhibitory gradient detected in control grp using MK trend test. Negative cell yield indicates no growth. Prior to statistical analyses, neg # for cell yield were replaced with zeros		Test sample enriched with 10 ml/l nutrient stock solutions A, B and C as described in EPS 1/RM/37. Test dilutions were prepared and then allowed to acclimate for one hour before plants were added. Control plants showed the required minimum growth of >8 times.	Test conducted using three subsamples from a single sampling.	Test conducted using three subsamples from a single sampling.	Test conducted using three subsamples from a single sampling.	Test conducted using three subsamples from a single sampling.	4 day holding time. Power Failure on Aug 14th adding 5 hours of darkness. No inhibitory gradient detected in control grp using MK trend test. Negative cell yield indicates no growth. Prior to statistical analyses, neg # for cell yield were replaced with zeros	4 day holding time. Power Failure on Aug 14th adding 5 hours of darkness	4 day holding time. Power Failure on Aug 14th adding 5 hours of darkness	4 day holding time. Power Failure on Aug 14th adding 5 hours of darkness	4 day holding time. Power Failure on Aug 14th adding 5 hours of darkness	4 day holding time. Power Failure on Aug 14th adding 5 hours of darkness	4 day holding time. Power Failure on Aug 14th adding 5 hours of darkness	