# Nanisivik Mine Waste Disposal Plan



March 2004

#### Executive Summary

The closure of Nanisivik Mine as with any mine creates a considerable amount of material that requires disposal. The purpose of the waste disposal plan is to identify and classify the waste, which may include derelict equipment, contaminated soil, waste rock, demolition debris, and regulated or hazardous material. The plan will also provide information on how and where the waste will be disposed of.

The objective of the plan is to dispose of all waste in such a manner as to eliminate the pathway by which exposure to humans or the environment is possible. This will be done in two ways:

- 1. Deposit the material underground, in locations where gravity will prohibit migration of contaminants to surface openings and permafrost aggradation will effectively seal the waste in place.
- 2. Deposit the material into pits, cover with rock fill and contour to allow for surface drainage and the prevention of pooling. The natural aggradation of permafrost will then effectively isolate the waste.

A simple classification system is used to differentiate the types of waste.

| Type of Waste                       | Classification                                                                                                       |          |
|-------------------------------------|----------------------------------------------------------------------------------------------------------------------|----------|
| Abandoned Equipment                 | 1 – Purged of regulated materials prior to storage (free phase liquids, batteries, etc.)                             | AE1      |
|                                     | 2 – Can be stored directly                                                                                           | AE2      |
| Demolition Debris<br>(inert solids) | 1 – Can be stored directly or burned (wood debris)                                                                   | DD1      |
| Soil                                | <ul> <li>1 – Contains Metals above the SQRO<sup>1</sup></li> <li>2 – Contains Hydrocarbons above the SQRO</li> </ul> | S1<br>S2 |
| Soil                                | 2 – Contains Hydrocarbons above the SQRO                                                                             | S2       |

<sup>1</sup>SQRO = Soil Quality Remediation Objective

After the material is classified, an action plan for that particular material is followed and a storage location is selected. The storage location depends on the associated risk with the particular material as well as the volume required to facilitate the disposal.

Waste handling procedures will be recorded and documentation will be kept on site for review during the reclamation and post-closure monitoring periods. Records will include a description of the waste, classification, any decontamination required, storage location and estimated storage volume.

Disposal plans and waste volume estimates for the major component areas of the site are included in the Plan. These include:

- Dock Area: Total volume of 3,750 m<sup>3</sup>.
- ° Warehouse Yard: Total volume of 1,500 m<sup>3</sup>.
- ° Industrial Complex Area: Total volume of 3,700 m<sup>3</sup>.
- ° Town Site: Total volume of 4,600 m<sup>3</sup>
- ° WTDA: Total volume of 1,000 m<sup>3</sup>
- Mobile Equipment: Total volume of 4,150 m<sup>3</sup>.

The grand total of all waste with a 25% contingency added is 23,500 m<sup>3</sup>.

Demolition debris and abandoned equipment volume will be reduced as much as possible prior to being placed in a storage location. This will minimize the number of trips and will better facilitate the loading of haulage trucks. The large amount of space available underground will make it possible to avoid handling the material more than once. In most cases trucks will dump directly into the allotted storage area and no further handling will be required. In areas where the height is limited, the material will be pushed up so that 60 to 75 percent of the space is utilized.

Several areas in the mine have been identified as potential storage areas. The areas selected for storage are in close proximity to the main haulage roads. A total of 345,000 m³ of space is available for the storage of waste underground. There is clearly far more capacity than is required for the identified solid waste (23,500 m³).

There are three areas available on surface, totaling 120,000 m<sup>3</sup>, for the deposition of waste material. The East Open Pit and East trench will be filled with waste rock and metal contaminated soil, and the West Open Pit will be filled with a combination of Waste Rock, metal contaminated soil and inert demolition debris.

Demolition debris or abandoned equipment that is scheduled to be deposited in the West Open pit will be cut into pieces of size and shape that will minimize void spaces as fill material is layered over top.

### Table of Contents

| 1 | Introduction                   | 2  |
|---|--------------------------------|----|
|   |                                |    |
| 2 | RISK ASSESSMENT                | 2  |
| 2 | Cr. course a group (vegggs)    | 2  |
| 3 | CLASSIFICATION SYSTEM          |    |
|   | Storage Locations              | 3  |
| 4 | OPERATING PROCEDURES           | 3  |
| _ |                                | _  |
| 5 | BOCOME THO T                   |    |
|   | Examples                       | 5  |
| 6 | Draneg ex Dr. 192              | 6  |
| o |                                |    |
|   | Dock area at Strathcona Sound  |    |
|   | Warehouse Yard                 |    |
|   | Industrial Complex Area        | 8  |
|   | Town Site                      | 9  |
|   | Other Areas                    | 10 |
|   | Mobile Equipment               |    |
| 7 | PLACEMENT METHODS              | 12 |
| / | FLACEMENT WETHODS              | 12 |
| 8 | S AVAILABLE STORAGE SPACE      | 13 |
|   | Underground Mine and Open Pits |    |
|   |                                |    |

| LIST OF    | Tables                                                                                                                               | PAGE     |
|------------|--------------------------------------------------------------------------------------------------------------------------------------|----------|
| Table 1    | Classification System                                                                                                                | 3        |
| Table 2    | Summary of waste volumes for Dock Area                                                                                               | 7        |
| Table 3    | Summary of waste volumes for Warehouse Yard                                                                                          | 8        |
| Table 4    | Summary of Waste volumes for Industrial Complex                                                                                      | 9        |
| Table 5    | Summary of Waste volumes for the Nanisivik Town Site Area                                                                            | 10       |
| Table 6    | Summary of Waste volumes for Other Areas                                                                                             | 11       |
| Table 7    | Summary of Waste volumes for Mobile Equipment                                                                                        | 11       |
| Table 8    | Waste Disposal Summary                                                                                                               | 14       |
| LIST OF    | Figures                                                                                                                              | PAGE     |
| Figure 1   | Operating Procedures Flow Chart                                                                                                      | 4        |
| Figure 2   | Typical Layering of Solid Waste and Waste Rock/Soil in the Open Pit                                                                  | 12       |
| Figure 3   | Typical x section of waste deposited in a benched storage area                                                                       | 13       |
| Figure 4   | Typical x section of demolition debris deposited in a drift storage area                                                             | 13       |
| Figure 5   | Main Lens & Surface Storage Areas                                                                                                    | 15       |
| Figure 6   | Lower Lens Storage Areas                                                                                                             | 16       |
| LIST OF    | APPENDICES                                                                                                                           |          |
| Appendix 1 | A Case History on the Development of a Geotechnical Monitoring System Nanisivik Mine, Baffin Island                                  | at the   |
| Appendix 2 | Development of an On-line Geotechnical Instrumentation System for Monitoring Over the Internet                                       |          |
| Appendix 3 | Long-Term Stability Considerations and Engineering Applications for a Decommissioning Mine in Permafrost                             |          |
| Appendix 4 | Letter from Nunavut Water Board – January 6, 2004<br>Subject: Request for further information regarding CanZinco Ltd's Waste<br>Plan | Disposal |

#### 1 Introduction

The closure of Nanisivik Mine as with any mine creates a considerable amount of material that requires disposal. The purpose of the waste disposal plan ('the Plan') is to identify and classify the "waste" which may include derelict equipment, contaminated soil, waste rock, demolition debris, regulated or hazardous material and to provide information on how and where the waste will be disposed. Details of the reclamation of residual waste rock and open pits have been submitted separately as per item G8 in the Water License.

#### 2 Risk Assessment

The objective of risk assessment is to estimate the level of risk to human and environmental health. The presence of a contaminant does not automatically constitute a risk. The conditions that must be met in order for a risk to exist are as follows:

- > The presence of a contaminant
- The contaminant must be able to cause toxic or adverse biological effects.
- > Pathways must exist by which humans, animals or plants may be exposed to the contaminants.

For the purpose of the plan, all waste will be deposited in such a way as to eliminate the pathway by which exposure to humans or the environment is possible. There are two ways to achieve this.

- a) Deposit the material underground, in locations where gravity will prohibit migration of contaminants to surface openings and permafrost aggradation will effectively seal the waste in place. Surface openings will be subsequently sealed with rock fill.
- b) Deposit the material into pits, cover with an engineered thermal barrier cover of shale, sand and gravel. The natural aggradation of permafrost will then effectively seal the waste in place.

#### 3 Classification System

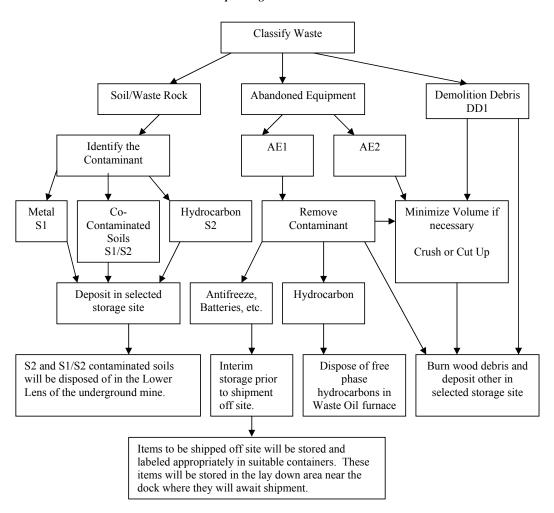
A simple classification system (see table 1) will be used to differentiate the types of waste that are to be disposed of.

### **Table 1**Classification System

| Type of Waste                       | Criteria                                                                                 | Classification |
|-------------------------------------|------------------------------------------------------------------------------------------|----------------|
| Abandoned Equipment                 | 1 – Purged of regulated materials prior to storage (free phase liquids, batteries, etc.) | AE1            |
|                                     | 2 – Can be stored directly                                                               | AE2            |
| Demolition Debris<br>(inert solids) | 1 – Can be stored directly or burned (wood debris)                                       | DD1            |
| Soil                                | 1 – Contains Metals above the SQRO <sup>1</sup> 2 – Contains Hydrocarbons above the SQRO | S1<br>S2       |

<sup>&</sup>lt;sup>1</sup>SQRO = Soil Quality Remediation Objectives

After the material is classified, an action plan for that particular material will be followed and a storage location selected. The storage location will depend on the associated risk with the particular material as well as the volume required to facilitate the disposal. Materials posing the greatest risk to humans and the environment (i.e. hydrocarbon contaminated soils) will be stored in the Lower Lens which is the deepest, most inaccessible underground area.


#### Storage Locations

- Underground Stopes
- > West Open Pit
- East Open Pit
- ➤ Landfill west of Nanisivik Town site. (The Nanisivik landfill will continue to be used for domestic garbage until the final reclamation on it is complete.)
- ➤ West Twin Lake Disposal Area (May be used for metal contaminated soil if necessary to aid in pre cover contouring.)

#### 4 Operating Procedures

The general operating procedure will be to classify the waste and then to follow an action plan based on the classification. For hydrocarbon and metal contaminated soils, the action plan will simply be to select a storage area and deposit the material. In the case of demolition debris, further reduction in volume may be necessary for material slated for disposal in the open pits and/or to facilitate handling and haulage. Abandoned equipment will require the removal of contaminants prior to deposition in a selected storage area. The operating procedures are outlined in the following flow chart:

### Figure 1 Operating Procedures Flow Chart



(Note: Co-contaminated Soils will be treated as hydrocarbon contaminated soil.)

Storage sites are selected based on the material classification. With regards to underground storage, demolition debris can be stored in areas closer to the portals, where gravity migration of contaminants is not a concern and haulage costs may be reduced. Material that is metal or hydrocarbon contaminated will be stored in locations where gravity migration of contaminants is not possible. The main factor with regards to the underground deposition of material, whether it is soil, demolition debris or abandoned equipment is that all storage areas will be in a constantly frozen environment (-13°C). Stope "x" will provide the same permafrost conditions as stope "y" and so on. As stated later in this document, there is much more space available for storage than is required. This will give us flexibility in case additional material is found that requires disposal during the reclamation process. All material deposited underground will be documented and storage locations will be selected based on the guidelines and criteria outlined in this plan.

#### 5 Documentation

The basic information required for the deposition of waste material will be recorded on a spreadsheet and will be kept on file for review by interested parties. This documentation will include a photographic record. Examples of the information that will be recorded for solid waste from various locations are shown below.

#### Examples:

Description: Derelict Vehicle – Chevrolet Pickup Truck

Classification: AE1

Action Required: Drain all free phase liquids for disposal in waste oil incinerator; drain all antifreeze for interim storage and shipment off site; remove battery to interim storage and

shipment off site.

Storage Location: UG – 64 Block Area

Required Volume – 20 m3

Description: Industrial Complex Demolition Debris – Interior Walls and Floors

Classification – DD1

Action Required: Place material so as to minimize the creation of voids and fill accordingly.

Storage Location: West Pit Required Volume: 3000 m3

Description: Industrial Clothes Dryer

Classification – AE2 Action Required: Crush

Storage Location: UG West Wing Zone 1

Required Volume: 2 m3

Description: Soil from Oil Storage Area (warehouse Yard)

Classification – S2

Action Required: Excavate contaminated soil for disposal underground and contour area

Storage Location: UG – NZ 9 Area Required Volume: 2000 m3

Description: Residual material from the mill thickener

Classification - S1

Action Required: Clean out material during mill dismantling operation

Storage Location: West Twin Lake Disposal Area

Required Volume: 100 m3

Description: Domar Duplex (House 309 & 310)

Classification – DD1

Action Required: Bulldoze to adjacent empty lot. Reduce volume via burning. Remove debris

to landfill.

Storage Location: 9 South Portal Area

Required Volume: 20 m3

Nanisivik Mine – Detailed Waste Disposal Plan – March 2004

Photographic records will accompany the documentation for all demolition debris and abandoned equipment.

#### 6 Disposal Plans

The following disposal plans deal with each area separately, starting at Strathcona Sound and working towards the Twin Lakes.

#### Dock area at Strathcona Sound

- i. Ship Loader The ship loader will be dismantled and shipped off site. There will be some demolition debris left over consisting of scrap steel and concrete. The space required to store this debris is estimated to be 500 m³. Some of the soil beneath the transfer points of the structure is contaminated with metals (1000 m³) and this will be deposited in the West Open Pit.
- ii. Concentrate Shed The concentrate shed will be dismantled and shipped off site. The space required to store the demolition debris from the concentrate shed is estimated to be 3000 m<sup>3</sup>. The concrete foundation will be swept clean and remain in place. It will then be covered with shale contoured to prevent pooling and to allow for drainage. The dust and dirt removed will be disposed of in the underground mine.
- iii. Propane enclosure All propane cylinders will be returned to the supplier via ship. The storage compound fencing will create a relatively small amount of solid waste (10m³) and will be disposed of underground.
- iv. Tank Farm and related structures The tank farm consists of 18 tanks of various sizes, a pump house, electrical shed and associated piping and ladder ways. If the tank farm is not sold to a third party then it will be decommissioned. The free phase liquids will be removed from the tanks for disposal or transfer. The tanks and related structure would then be cut into smaller pieces and hauled underground. The space required for this material is estimated to be 1000 m<sup>3</sup>. The pumps for the tank farm are housed in a trailer like structure and will generate approximately 20 m<sup>3</sup> of debris. The contaminated soil in the vicinity of the tank farm will be hauled underground. Any residual "slops" will be shipped south.
- v. Cook House and Spill Material Shed These wooden structures will be burned and the leftover debris (estimated 20 m³) will be hauled underground.
- vi. Fuel Pipe Line There is approximately 4 km of 2 inch pipe that will be gravity drained back into the feed tank. Any remaining free phase liquids collected during dismantling of the line, will be burned in the waste oil furnace and the pipe will be stored underground. The estimated storage space required will be 25 m<sup>3</sup>.

**Comment:** As previous, is we can be more specific that might be beneficial (is this to be with a pig or gravity draining?)

Table 2 Summary of waste volumes for Dock Area

|                         | Demolition Debris | Soils          | Soils    |
|-------------------------|-------------------|----------------|----------|
| Area                    | and/or Abandoned  | (Hydrocarbons) | (metals) |
|                         | Equipment         |                |          |
| Ship Loader             | 500               | 1800           | 1000     |
| Concentrate Shed        | 3000              | 1000           | 8000     |
| Propane Enclosure       | 10                |                |          |
| Tank Farm & Chemical    | 1000              | 7500           |          |
| Storage (Lay down Area) |                   |                |          |
| Road to dock & pipeline | 25                |                | 15750    |
| Cook House & Spill Shed | 20                |                |          |
| Pump House              | 20                | Included with  |          |
|                         |                   | Tank Farm      |          |
| Total                   | 4575              | 10,300         | 24,750   |

#### Warehouse Yard

- i. Furniture Storage Building This building will be dismantled and hauled underground. Wood from the interior will be reduced via burning after the dismantling is complete. The space required to store the demolition debris (concrete, metal siding and structural steel) is estimated to be 150 m<sup>3</sup>. The concrete foundation will remain in place and be covered with shale and contoured to prevent pooling and to allow for drainage.
- ii. Oxygen Acetylene Storage Area This area is a concrete pad with a 4 foot high concrete dividing wall. The wall will be removed and hauled underground. The space required to store the demolition debris will be 10 m3. The remaining pad will remain in place and be covered with shale and contoured to prevent pooling and to allow for drainage.
- iii. Tire and hose shed This shed is a wooden structure. The volume will be reduced via burning and the remaining debris (ash, steel fasteners, hinges etc.) will be hauled underground and will require less than 10 m<sup>3</sup> of space.
- iv. Tires All tires that cannot be salvaged will be stored u/g in the west end of the mine. The estimated space required to store the tires is 1250 m<sup>3</sup>.
- v. Cable All cable that cannot be salvaged will be stored u/g in the West End of the mine. (Approximately 50 m<sup>3</sup>)
- vi. General Storage Levels –The material stored in the yard will be classified as demolition debris if not sold and no alternative use is found. The non-salvaged material will be stored u/g in the West end of the mine. (Approx. 1000 m³)
- vii. Oil Storage area The contaminated soil in this area of the warehouse yard will be hauled underground prior to the contouring. The volume of soil to be excavated has been determined to be approximately 2000 m3 through the phase III ESA.

Nanisivik Mine – Detailed Waste Disposal Plan – March 2004

viii. After all material from the warehouse yard has been relocated, the entire area will be contoured in order to allow for surface drainage and to prevent pooling.

Table 3
Summary of waste volumes for Warehouse Yard

|                            | Demolition Debris | Soils          | Soils    |
|----------------------------|-------------------|----------------|----------|
| Area                       | and/or Abandoned  | (Hydrocarbons) | (metals) |
|                            | Equipment         |                |          |
| Furniture Storage Building | 150               |                |          |
| Tire Shed                  | 10                |                |          |
| Oxygen /Acetylene Pad      | 10                |                |          |
| Tires                      | 1250              |                |          |
| Cable                      | 50                |                |          |
| Warehouse Yard             | 1000              | 2000           |          |
| Total                      | 2470              | 2000           |          |

#### Industrial Complex Area

- i. Industrial Complex The industrial complex has been sold to a third party. After the building is dismantled, the concrete and steel debris from the interior floors and walls will require approximately 7500 m³ of storage space. An additional 31,000 m³ will be required for contaminated soils from areas adjacent to the complex. The concrete foundation will remain in place and be covered with shale and contoured to prevent pooling and to allow for drainage.
- ii. DMS Building This building and its contents will be dismantled and shipped off site. A volume of 800 m<sup>3</sup> will be allotted for the metal and concrete demolition debris. The concrete foundation will remain in place and the area will be covered and contoured.
- iii. Compressor House The compressor units will likely be sold or transferred to another breakwater operation but if included with the demolition debris then a total of 800 m<sup>3</sup> of space will be required.
- iv. Cold and Warm Storage buildings These buildings will generate approximately 2500 m3 of demolition debris.
- v. ANFO Factory Demolition debris from this area will require approximately 300 m<sup>3</sup> of storage space. The contaminated soil from this area has been included with the estimates for "Day Tanks on Mine Roads"

Table 4
Summary of Waste volumes for Industrial Complex

|                              | Demolition Debris | Soils                     | Soils    |  |
|------------------------------|-------------------|---------------------------|----------|--|
| Area                         | and/or Abandoned  | (Hydrocarbons)            | (metals) |  |
|                              | Equipment         |                           |          |  |
| Interior Walls And Floors    | 7500              |                           |          |  |
| Compressor House             | 800               | 500                       | 750      |  |
| DMS Building                 | 800               |                           |          |  |
| Cold Storage                 | 1250              |                           |          |  |
| Warm Storage                 | 1250              |                           |          |  |
| Core Shack                   | 200               |                           |          |  |
| ANFO Factory                 | 300               |                           |          |  |
| Miscellaneous cable/pipe etc | 500               |                           |          |  |
| Day Tanks on Mine Roads      | 300               | 1800                      |          |  |
| Waste Oil Tank               | 10                | 450                       | 1400     |  |
| Lower Adit "Yard             |                   |                           | 1400     |  |
| North Yard                   |                   | 17000                     |          |  |
| West Side                    |                   |                           | 5000     |  |
| Adjacent Bone yard           |                   | 4200 (co-contaminated wit |          |  |
|                              |                   | metals)                   |          |  |
| Total                        | 12910             | 23950                     | 7150     |  |

#### Town Site

- i. Buildings Useful items such as furniture, appliances, furnaces and boilers within the houses, dome, recreation center and bunkhouses will be offered to the neighboring community of Arctic Bay in a manner yet to be determined. If it is determined that no future use for the houses and related infrastructure within the town site exists then structures will be bulldozed and subsequently burned. Remaining debris and any contaminated soil will be disposed of in the underground stopes of the mine. Most of the structures are made of wood and will create a modest amount of debris after burning. Approximately 6600 m³ of storage space is required. Home heating fuel tanks will be drained and crushed prior to disposal in the underground mine. Drained fluids from these tanks will be disposed of in the waste oil incinerator. Other miscellaneous debris such as buried service lines and pipes that are encountered during remediation will be disposed of in the underground mine.
- Stolport Demolition debris and abandoned equipment from this area will be hauled underground. There are two small structures and several satellite dishes that will require approximately 100 m³ of storage volume. 2250 m³ of Hydrocarbon contaminated soil will be removed to the underground mine. (North Zone)
- iii. Land Farm Contaminated Soil from the land farm cell will be relocated underground. Approximately 750 m<sup>3</sup> of space will be required in one of the North Zone storage areas for this material.

Table 5
Summary of Waste volumes for the Nanisivik Town Site Area

|                               | Demolition Debris | Soils          | Soils    |
|-------------------------------|-------------------|----------------|----------|
| Area                          | and/or Abandoned  | (Hydrocarbons) | (metals) |
|                               | Equipment         |                |          |
| Houses                        | 2500              | 1500           | 450      |
| Dome                          | 500               | 3000           |          |
| Recreation Center             | 1000              |                |          |
| Pamo building                 | 1000              |                |          |
| Bunk House                    | 500               |                |          |
| Carpenter Shop/Town Warehouse | 500               | 3000           |          |
| Stol port                     | 100               | 2250           | 450      |
| Land Farm Cell                |                   | 750            |          |
| Miscellaneous                 | 500               |                |          |
| Total                         | 6600              | 9750           | 900      |
|                               |                   |                | 1        |

#### Other Areas

- i. Twin Lakes Pipe Line and Pump houses The tailings line was flushed out with water into the tailings deposition area shortly after production ceased, so this line only needs to be dismantled and hauled underground. There is 6 km of polyethylene tailings pipe and 4 km of polyethylene water pipe. The space required to store the pipe is approximately 1000 m3 plus an additional 200 m³ for the pump houses and non-salvaged equipment.
- ii. Storage Shed The small wooden shed will be burned and will create very little demolition debris, which will be disposed of underground.
- iii. East Adit Treatment Facility The pipes, pumps and mixing plant will take up approximately 100 m3 of storage space in the East Lower Lens storage area and the metal contaminated soil will require 600 m³ of space within the East Open Pit.
- iv. K-Baseline Approximately 7,400 m<sup>3</sup> of Hydrocarbon contaminated soil has been identified in this area, which will be stored in one of the east lower lens storage areas.
- v. Area 14 Approximately 300 m³ of Hydrocarbon contaminated soil has been identified and it will be hauled to one of the North Zone storage areas.
- vi. Waste Rock Piles The waste rock, as described in the Rock Piles and Open Pits Reclamation Plan submitted per Part G Item 8 of the Water Licence will be used to fill the open pits prior to covering and contouring. It is expected that all of the identified waste rock will fit into the pits, but if there is any excess, then it will be hauled underground. Storage sites for any excess waste rock will be selected based on the proximity of the surface pile to the nearest mine entrance. 60,000 m³ of waste rock has been identified for deposition in the East and West Open Pits. This total includes approximately 36,000 m³ from the east adit area and 24,000 m³ from the 9 south and west adit areas.

Table 6
Summary of Waste volumes for Other Areas

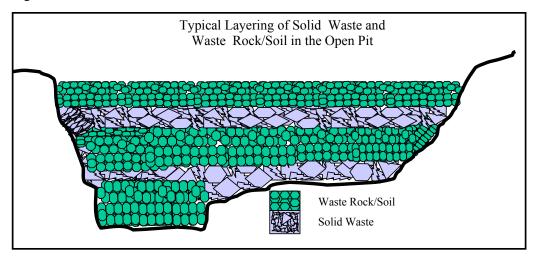
|                              | Demolition Debris | Soils          | Soils (metals) |
|------------------------------|-------------------|----------------|----------------|
| Area                         | and/or Abandoned  | (Hydrocarbons) |                |
|                              | Equipment         |                |                |
| Pipe Lines to Twin Lakes     | 1000              |                |                |
| Pump Houses                  | 200               |                |                |
| East Adit Treatment Facility | 100               |                | 600            |
| K-Baseline                   |                   | 7400           |                |
| Area 14                      |                   | 300            |                |
| East Adit Waste Rock pile    |                   |                | 36000          |
| 9 South Waste Rock Pile      |                   |                | 7600           |
| West Adit Waste Rock Pile    |                   |                | 16000          |
| Total                        | 1300              | 7700           | 59600          |

#### Mobile Equipment

The number of vehicles that will be abandoned has not yet been determined. If no alternate uses for the mine fleet are found, then the vehicles will be disposed of underground. The draining of hazardous fluids in abandoned equipment will take place on surface with the contents either burned or shipped off site in accordance with the NWT Hazardous waste management guidelines. The checklist for vehicle fluids will include antifreeze, engine oil, transmission oil, Hydraulic Oil (both tanks and cylinders), brake lines, power steering fluid grease and the removal of batteries. Batteries and Antifreeze will be stored in sea containers prior to shipment off site. The table below indicates the approximate volumes of the fleet of vehicles currently on site.

Table 7
Summary of Waste volumes for Mobile Equipment

| Vehicle                 | Volume m <sup>3</sup> | Quantity | Total m <sup>3</sup> |
|-------------------------|-----------------------|----------|----------------------|
| Underground Dump Trucks | 95                    | 9        | 855                  |
| Ford 9000 Dump Trucks   | 60                    | 3        | 180                  |
| 966 Loaders             | 80                    | 5        | 400                  |
| 980 Loaders             | 100                   | 4        | 240                  |
| D-8 Bull Dozers         | 90                    | 2        | 180                  |
| Scoops                  | 75                    | 1        | 75                   |
| Excavator               | 100                   | 1        | 100                  |
| D-4 Bull Dozer          | 50                    | 1        | 50                   |
| Rock Bolters            | 100                   | 3        | 300                  |
| Jumbo Drills            | 90                    | 3        | 270                  |
| Utility vehicles        | 75                    | 6        | 300                  |
| Pick up Trucks          | 20                    | 20       | 400                  |
| Miscellaneous Vehicles  | 80                    | 10       | 800                  |
| Total                   |                       |          | 4150 m3              |


#### 7 Placement Methods

Demolition debris and abandoned equipment volume will be reduced as much as possible prior to being placed in a storage location. This will minimize the number of trips and will better facilitate the loading of haulage trucks. The large amount of space available underground (volumes are described in the following section) will make it possible to avoid handling the material more than once. In most cases trucks will dump directly into the allotted storage area and no further handling will be required. In areas where the height is limited, the material can be pushed up so that 60 to 75 percent of the space may be utilized.

Demolition debris or abandoned equipment that is scheduled to be deposited in the West Open pit will be cut into pieces of size and shape that will minimize void spaces as fill material is layered over top. Heavy Equipment may be used to crush debris where practical to achieve this and in some cases oxy-acetylene cutting will be required. Debris placed into the pit will be placed in lifts and covered with waste rock or metal contaminated soil prior to being covered by the next lift of debris. Settling will be minimized by moisture from precipitation and runoff during the summer and will aid in strengthening the fill as it freezes.

Supervision and personnel involved with the deposition of material into the pit will be given instruction on the protocols to be used for this phase of the operation, as well as the closure specifications for the pit. The field supervisor will be responsible to ensure that procedures are followed and that the pit meets the geotechnical specifications for the pit closure. Site personnel will be required to note the type, placement and depth of debris layers to ensure there is an adequate record of the protocol used to place material in the pit. Photographic documentation will be maintained.

Figure 2



#### Underground Mine and Open Pits

Several areas in the mine have been identified as potential storage areas. (figure 4 and figure 5) The areas selected for storage are in close proximity to the main haulage roads. Approximately  $465,000~\text{m}^3$  of space have been identified for the storage of waste. This includes  $120,000~\text{m}^3$  in the open pits and  $345,000~\text{m}^3$  underground. The identified solid waste  $(32,000~\text{m}^3)$ , waste rock  $(60,000~\text{m}^3)$ , and contaminated Soils  $(90,000~\text{m}^3)$  will occupy approximately 39 percent of the selected storage areas.

Figure 3

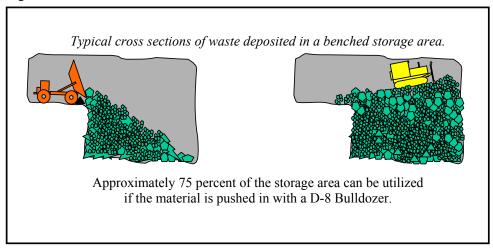
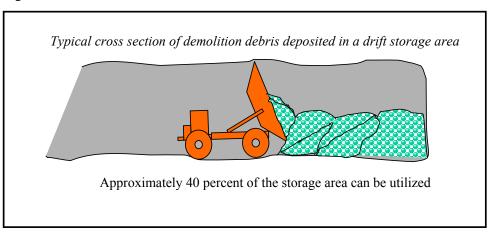




Figure 4



### Nanisivik Mine – Detailed Waste Disposal Plan – March 2004

Table 8
Waste Disposal Summary

| Waste Disposal Summary                          |                     |           |               |               |               |                  |                     |                 |                       |                     |                    |                    |                        |                 |                      |                     |              |
|-------------------------------------------------|---------------------|-----------|---------------|---------------|---------------|------------------|---------------------|-----------------|-----------------------|---------------------|--------------------|--------------------|------------------------|-----------------|----------------------|---------------------|--------------|
| Origin of Waste                                 | Storage Loca        | ition     | West Open Pit | Vent Fan Area | 01 Block Area | West Wing Zone 1 | West Wing Zone 2    | Ore Pass Area   | 8 Block Area          | 9 South Portal Area | 10 & 11 Block Area | East Pit           | East Pit Trench Area   |                 |                      |                     |              |
|                                                 | Classification      | Block#    | 0             | 1             | 1             | 1                | 3 & 4               | - 5             | 8                     | 9                   | 10&11              | 39                 | 88                     |                 |                      |                     | Total        |
|                                                 |                     | Capacity  | 77000         | 4500          | 7000          | 5700             | 3100                | 10200           | 12000                 | 12000               | 28580              | 35000              | 8000                   |                 |                      |                     | 203080       |
| Ship Loader                                     | DD1                 |           |               |               | 500           |                  |                     |                 |                       |                     |                    |                    |                        |                 |                      |                     |              |
| Concentrate Shed                                | DD1                 |           |               |               | 3000          |                  |                     |                 |                       |                     |                    |                    |                        |                 |                      |                     |              |
| Below Conveyors in dock area                    | S1                  |           | 1000          |               |               |                  |                     |                 |                       |                     |                    |                    |                        |                 |                      |                     |              |
| Concentrate Shed Area                           | S1                  |           | 8000          |               |               |                  |                     |                 |                       |                     |                    |                    |                        |                 |                      |                     |              |
| Propane Enclosure                               | DD1                 |           |               | 10            |               |                  |                     |                 |                       |                     | 1000               |                    |                        |                 |                      |                     |              |
| Tank Farm                                       | AE1                 |           |               |               | _             | _                |                     |                 |                       |                     | 1000               |                    |                        |                 |                      |                     |              |
| Fuel Pipe Line mill to dock                     | AE1<br>S1           |           | 15750         |               |               |                  |                     |                 |                       |                     | 25                 |                    |                        |                 |                      |                     |              |
| Roadway to Dock<br>Cook House/Spill Shed        | DD1                 |           | 19790         | 20            | _             | _                |                     |                 |                       |                     |                    |                    |                        |                 |                      |                     | -            |
| Pump House                                      | AE1                 |           |               |               |               |                  |                     |                 |                       |                     | 20                 |                    |                        |                 |                      |                     |              |
| Furniture Storage Building                      | DD1                 |           |               | 150           |               |                  |                     |                 |                       |                     |                    |                    |                        |                 |                      |                     | 1            |
| Tire Shed                                       | DD1                 |           |               | 10            |               |                  |                     |                 |                       |                     |                    |                    |                        |                 |                      |                     |              |
| Oxy Acetylene Storage Area                      | DD1                 |           |               | 40            |               |                  |                     |                 |                       |                     |                    |                    |                        |                 |                      |                     |              |
| Warehouse Yard                                  | AE2                 |           |               |               |               | 1000             |                     |                 |                       |                     |                    |                    |                        |                 |                      |                     |              |
| Tires                                           | AE2                 |           |               | 1250          |               |                  |                     |                 |                       |                     |                    |                    |                        |                 |                      |                     |              |
| Cable                                           | AE2                 |           |               | 200           | _             | 50               | F00                 |                 |                       | _                   |                    | $\vdash$           | _                      |                 |                      |                     |              |
| DMS<br>Compressor House                         | DD1<br>DD1          |           |               | 300           |               | _                | 500<br>700          |                 |                       |                     |                    |                    |                        | -               |                      |                     |              |
| Compressors Compressors                         | AE1                 |           |               |               |               |                  | 700                 |                 |                       |                     | 100                |                    |                        |                 |                      |                     | <del> </del> |
| Cold and Warm Storage Bldgs                     | DD1                 |           |               |               |               |                  |                     |                 |                       |                     | 2500               |                    |                        |                 |                      |                     |              |
| Core Shack                                      | DD1                 |           |               |               |               |                  |                     |                 |                       | 200                 | 2000               |                    |                        |                 |                      |                     | <b></b>      |
| ANFO Factory                                    | DD1                 |           |               |               |               |                  |                     |                 |                       | 300                 |                    |                    |                        |                 |                      |                     |              |
| Industrial Complex                              | DD1                 |           | 7500          |               |               |                  |                     |                 |                       |                     |                    |                    |                        |                 |                      |                     |              |
| Lower Adit Yard                                 | S1                  |           | 1400          |               |               |                  |                     |                 |                       |                     |                    |                    |                        |                 |                      |                     |              |
| West Yard                                       | S1                  |           | 5000          |               |               |                  |                     |                 |                       |                     |                    |                    |                        |                 |                      |                     |              |
| Misc cable pipe etc.                            | DD1                 |           |               |               | 500           |                  |                     |                 |                       |                     | 2500               |                    |                        |                 |                      |                     |              |
| Houses<br>Dome                                  | DD1<br>DD1          |           |               |               |               | 500              |                     |                 |                       |                     | 2500               |                    |                        |                 |                      |                     |              |
| Rec Centre                                      | DD1                 |           |               |               |               | 1000             |                     |                 |                       |                     |                    |                    |                        |                 |                      |                     |              |
| Pamo Building                                   | DD1                 |           |               |               |               | 1000             |                     |                 |                       |                     |                    |                    |                        |                 |                      |                     |              |
| Bunk house                                      | DD1                 |           |               |               |               | 500              |                     |                 |                       |                     |                    |                    |                        |                 |                      |                     |              |
| Carpenter Shop/Town Warehouse                   | DD1                 |           |               |               |               |                  | 500                 |                 |                       |                     |                    |                    |                        |                 |                      |                     |              |
| Stol Port                                       | DD1                 |           |               |               |               |                  | 100                 |                 |                       |                     |                    |                    |                        |                 |                      |                     |              |
| Miscellaneous                                   | DD1<br>AE2          |           |               |               | _             | _                |                     |                 |                       |                     | 500<br>1000        |                    |                        |                 |                      |                     |              |
| Pipe Line<br>9 South Waste Rock                 | S1                  |           | 7600          |               |               |                  |                     |                 |                       |                     | 1000               |                    |                        |                 |                      |                     |              |
| West Adit Waste Rock                            | S1                  |           | 16000         |               |               |                  |                     |                 |                       |                     |                    |                    |                        |                 |                      |                     |              |
| East Adit Waste Rock                            | S1                  |           |               |               |               |                  |                     |                 |                       |                     |                    | 30000              | 6000                   |                 |                      |                     |              |
|                                                 | •                   | Total     | 62250         | 1780          |               | 4050             | 1800                | 0               | 0                     | 500                 | 7645               | 30000              | 6000                   |                 |                      |                     | 118025       |
| F                                               | ecentage of storage | area used | 81%           | 40%           | 57%           | 71%              | 58%                 | 0%              | 0%                    | 4%                  | 27%                | 86%                | 75%                    |                 |                      |                     | 58%          |
| Origin of Waste                                 | Storage Loca        | ntion     | LY NZ9 Area   | S NZ7 Area    | NZ6 Area      | NZ 54 Block Area | Sh NZ 55 Block Area | % 58 Block Area | 9 61 North Block Area | 863-13 Block Area   | 64 Block Area      | S North Block Area | 99 66 North Block Area | ELL Area        | 68-69 Block Area     | 73 North Block Area | Total        |
|                                                 | Classification      | Capacity  |               |               | 8000          | 2000             | 15000               | 25000           |                       |                     | 16100              | 26000              | 15000                  | 15000           | 20000                | 7000                | 262100       |
| Mobile Equipment                                | AE1                 | Cupacity  | 02000         | 24000         | 0000          | 2000             | 2000                | 20000           | 42000                 | 10000               | 2150               | 20000              | 10000                  | 10000           | 20000                | 1000                | EUL 100      |
| Dock Cell                                       | S2                  |           | 1800          |               |               |                  |                     |                 |                       |                     |                    |                    |                        |                 |                      |                     |              |
| Tank Farm/lay down area                         | S2                  |           | 7500          |               |               | _                |                     |                 |                       |                     |                    |                    |                        |                 |                      |                     |              |
| Oil Storage Area W/H Yard                       | S2                  |           | 2000          |               | _             | 200              |                     |                 |                       |                     |                    |                    |                        |                 |                      |                     |              |
| Day Tanks on Mine Roads Day Tanks on Mine Roads | AE1<br>S2           |           | 1800          |               | _             | 300              |                     |                 |                       |                     | -                  | -                  | -                      |                 |                      |                     |              |
| Waste Oil Tank                                  | AE1                 |           | 1000          |               |               | 10               |                     |                 |                       |                     |                    |                    |                        |                 |                      |                     |              |
| Waste Oil Tank Area                             | S1                  |           | 1400          |               |               | 10               |                     |                 |                       |                     |                    |                    |                        |                 |                      |                     |              |
| Waste Oil Tank Area                             | S2                  |           | 450           |               |               |                  |                     |                 |                       |                     |                    |                    |                        |                 |                      |                     |              |
| North Yard                                      | S2                  |           |               | 17000         |               |                  |                     |                 |                       |                     |                    |                    |                        |                 |                      |                     |              |
| Adjacent Boneyard                               | S1/S2               |           | 4200          |               |               |                  |                     |                 |                       |                     |                    |                    |                        |                 |                      |                     |              |
| Compressor House                                | S1/S2               |           |               |               |               |                  | 1250                |                 |                       |                     |                    |                    |                        |                 |                      |                     |              |
| Houses                                          | S1/S2               |           | 1950          |               |               |                  |                     |                 |                       |                     |                    |                    |                        |                 |                      |                     |              |
| Dome                                            | S2<br>S2            |           | 3000          | 2000          | -             | -                |                     |                 |                       |                     |                    |                    | -                      | _               |                      |                     |              |
| Carpenter Shop/Town Warehouse<br>Stol Port      | S2<br>S1            | -         |               | 3000          | -             | -                |                     | 450             |                       |                     |                    |                    |                        |                 |                      |                     | -            |
| Stol Port                                       | S2                  |           |               |               |               |                  |                     | 2250            |                       |                     |                    |                    |                        |                 |                      |                     |              |
| Land Farm                                       | S2                  |           |               |               |               |                  |                     | 750             |                       |                     |                    |                    |                        |                 |                      |                     |              |
| East Adit Treatment Facility                    | AE2                 |           |               |               |               |                  |                     |                 |                       |                     |                    |                    |                        | 100             |                      |                     |              |
| East Adit Treatment Facility                    | S1                  |           |               |               |               |                  |                     |                 |                       |                     |                    |                    |                        | 600             |                      |                     |              |
| K-Baseline                                      | S2                  |           |               |               |               |                  |                     |                 |                       |                     |                    |                    |                        | 7400            |                      |                     |              |
| Area 14                                         | S2                  | T-1       | 24100         | 20000         | 0             | 310              | 3250                | 300<br>3750     | 0                     | 0                   | 2150               | 0                  | 0                      | 8100            | 0                    | 0                   | 61660        |
|                                                 |                     | TOTAL     | 24100         |               |               |                  |                     | UC10            |                       |                     | 2100               |                    |                        |                 |                      | 0%                  | 24%          |
| F                                               | ecentage of storage | area used | 75%           | 83%           | l n%          | 16%              | 22%                 | 15%             | 1.0%                  | l n%                | 13%                | I N% I             | 1 11%                  | 54%             | N%                   |                     |              |
| F                                               | ecentage of storage | area used | 75%           | 83%           | 0%            | 16%              | 22%                 | 15%             | 0%                    | 0%                  | 13%                | 0%                 | 0%                     | 54%<br>Grand To | 0%<br>Ital Used      | U%                  | 179685       |
| F                                               | ecentage of storage | area used | 75%           | 83%           | 0%            | 16%              | 22%                 | 15%             | 0%                    | 0%                  | 13%                | 0%                 | U%                     |                 | ital Used<br>iilable | 0%                  |              |

## Figure 5

Nanisivik Mine Main Lens Storage Areas

## Figure 6

Nanisivik Mine Lower Lenses Storage Areas

A Case History on the Development of a Geotechnical Monitoring System at the Nanisivik Mine, Baffin Island

Development of an On-line Geotechnical Instrumentation System for Monitoring Over the Internet

Long-Term Stability Considerations and Engineering Applications for a Decommissioning Mine in Permafrost

Letter from Nunavut Water Board – January 6, 2004 Subject: Request for further information regarding CanZinco's Waste Disposal Plan