APPENDIX 1

EXECUTIVE SUMMARY IN INUKTITUT

<u>L?~ዋ୮ ኦታየተኦአህር</u> <u>ΔJበ~~ የወ</u>ጋታልታ <u>ኦበበበ~~ አ~~ላና</u> <u>ላልነጋረL ጋበነ ኦታኔ - ለዲፈርርህ 2003୮</u>

P~」」」しゃして

2. Δ϶ϲϧͼϧͼϧͼϧϧͼ

- 1. ተ>ርክው 1 ላ 2 ላ $^$
- 2. PZ-1L%C
- 3. 6a
- 4. 4° CP/L $^{\circ}$ C 64/CP/L 4° 4L 2 2A-14/L 4° 4B-2A-PYL-L $^{\circ}$ C
- 5. A-L-Q-L-CMC D-6MC 6D24-D-4/49CD2L4 9-4L-2014
- - **6.1.** Δ^ι → σ ΔJ∩ ~ σ [%]
 - 6.1.1. \rangle \text{\chi'\nn\sh'\rangle \chi'\rangle \ch
 - 6.1.2. PZZ>>6\lambda \cdot \cd
 - 6.1.3. Pσ')ς>'δ\' Δ\'_
 - 6.1.4. Δυδη δίου Διο
 - 6.1.5. Þ?da」もいい
 - 6.1.6. סיים Δ^{c}
 - 6.1.7. $42^{\circ}\Gamma^{\circ}$ $\Delta^{\downarrow} \Delta^{\circ}/P = 6.1.7$

6.2. ⊅acar>≺°

- 6.2.1.)c'('M' 7"5%)
- 6.2.2. j~_1° / ["
- 6.2.4. Δ¬\-<\d\rL\d\ \d\r<\d\rangle\theta\rangle\ta\r
- 6.2.6. **⊴∀**\\(\dagger\)

6.3. ८२८८२ ﻣﻮ% ﻟﻰ ﻟﯩﺪﯨﺪﻩﻝ ﻟﯩﺪﯨﺪﻩﻝ ﻟﯩﺪﯨﺪﻩﻝ ﻟﯩﺪﯨﺪﻩﻝ ﻟﯩﺪﯨﺪﻩﻝ ﻟﯩﺪﯨﺪﻩﻝ ﻟﯩﺪﯨﺪﻩﻝ ﻟﯩﺪﯨﺪﻩﻝ ﻟﯩﺪﻩﻝ ﻛﯩﺪﻩﻝ ﻛﯩﺪﻩﻝ ﻟﯩﺪﻩﻝ ﻟﯩﺪﻩﻝ ﻛﯩﺪﻩﻝ ﻛﯩﺪﻩﻝ ﻛﯩﺪﻩﻝ ﻛﯩﺪﻩﻝ ﻛﯩﺪﻩﻝ ﻛﯩﺪﻩﻝ ﻛﯩﺪﻩﻝ ﻛﯩﺪﻩﻝ ﻛﯩ

- 6.3.1.)cいい いっしょ
- 6.3.2. > اذنى ۵ كاخ ٢٠١
- 6.3.4. ለህበቦታ ላፊ የ ረንጋላ ነልላ
- 6.3.6. Po) > \&\ d\ \d\ \b \<\ \C\ d\ \b
- 6.3.7. Δ₂5%δ⁶
- 6.3.8. Þላፈ<ፖሢር ላራልሢ ኣልና৮ኣቴልቴ

- 6.3.11. $\Delta \Gamma C P = \Upsilon^{C} \ A d \Delta D C \dot{C}^{C} / \Lambda D \Delta \Delta P \Upsilon D^{C} \ \Delta \Gamma C^{C} \Delta P d C$

- 7. 8ΔΔ-"L-L"LC ΔJNαχ" 8ΔΔ)σδσ"LDD PNNaZσαλ" "

- **11.** ΔLΥΓ¹ Φ)¹σ¹
- 12. ><<>\L>σ 6>>\σ=σ
 - 12.1. Φ (' Υ - Φ ' Δ J Π (Φ / Γ L Ψ - Φ) Φ L Φ Φ L Φ Φ L Φ Φ C Φ ' Φ L Φ Φ C Φ
 - 12.1.1. ФСУ-6 Δ JNCP/L-4- L'2-6-6 Δ PC) Δ 2-2-10.
 - 12.2. ኦፌታዣር 'ቴኦትኣኦበ'ፕ'

 - 12.2.3. Δኌኻ፫፭ኄፖሬቲ ላ▷<′ጋኈ ሦፐሪኌኄ
 - 12.3. Þታናኄር ቴቃልሮኄራኄር ቴኦትላርኦራኄ^c
 - 12.3.1. Desire beachere been as a single of the second second and the second second
 - **12.4.** Δበσኄር ቕኦትላርኦσኄ ΔΓʹርʹልኦ ΔLኄ
 - **12.5.** በረ**ኖ**፫ ላታ ህር ቕኦት ነርኦታህ
 - 12.5.1. ቦላን ርረውና በረペーላታ ህር ቕኦትኒርኦ ረበ ነና
- 13. rap (yp = _aul beague beaches
- 14. $\Delta \Delta \Gamma 4 \Gamma L + \Gamma + \Gamma L + \Gamma L$
- $16.\ a^4$ -rayly ray chil altrocally betabore bods as the bods of the bods of

᠘ᢏ᠘ᡧ᠘ᡧ

۵۱ کے ۱	᠘ᡷ᠆᠙ᠾᢇᢔᡳᡮ᠉᠂ᢐ᠋᠙᠆᠘ᠳ᠘᠆ᠺ᠘᠉ᢕ᠘
۵۱ کد ۱۹۶۲ ک	ᢧᡆ▷<᠂ᡃᢐᡫᠣ᠆ᡏ᠐<᠆ᡏᠯ᠉᠘᠘ᡀ᠂ᢐᡐ᠘᠘ᢕᠳᠳ᠂ᠳᢧ᠘᠘ᡶᢆᡃᡕ
Δሬ የ4የ Ċ 3	ᠲ᠘᠘᠘ᡶ᠅ᢆ᠂ᡏ᠘ᡴ᠘ᠵ᠂ᠳᠵ᠙᠙᠘ᠵ᠘᠘ᠵ᠘
∆∟ՐላʔĊ 4	ᡨᠴ᠘᠆ᠰᡄ᠋ᠮᡥᡕ᠙᠒᠋ᡣ᠘᠊ᢆᢋ᠘ᡨ᠘ᠫᡉᡧᠳᡥᠴᢇ᠈᠐᠐ᢕᠦ᠘ᢣᠳᠰ
∆ ∟ Ր⊲ʔĊ 5	ᠲᠴ᠘᠆ᡫ᠃ᡶ᠂᠖᠘ᡶ᠋᠘᠂᠔ᢣᠺᢗᠣᡧᠣᢂ᠘ᡣᢗ᠌᠌᠐ᠳᠾ᠈᠐᠐ᢗᡐᠳᡥ
	◁ Ľጔ 'ቴ▷፞፞፞፞፞፟፟፟፟፟፟፟፟፟፟፟፟፟፟፟፟ ፟፟፟፟፟፟፟፟፟፟፟፟፟፟፟፟
Δ _Γ4ʔĊ 6	ᡃᢐᠵᡪ᠋᠆ᡏ᠋᠆ᢤᡕ᠂ᡏᢆ᠘᠘ᡛ᠘᠘᠘᠘᠘᠘᠘᠘᠘᠘᠘᠘᠘᠘᠘᠘᠘
∆ ∟ Ր⊲ʔĊ 7	ቦኑ የሀዋና የኦታኒ ተር Δ 2003
∆د۲۹۲ 8	Δጔን'በґLൎፈ‹ ΔLۥሊር ، የኦትረርኦራۥ የላቆርራ، የኦትረርኦራ،
Δ፫ (4) ር	UU(CPAL4, L, P4(C, D, C, C, D, C,
۵۱ کد ۱۹۲ ک	UU(CPCPCPCPCPCPCPCP
۵۵۲۵۲۲ ک	ᡣ᠐᠙ᢗᠣ᠘ᠮᠲᠼᡕ᠂᠙ᠵᡒᢇᠳᠲᡘᡶ᠘᠙ᠺᡶᡯᠧ᠘ᠵᡕᠸ
	ዓንረΓ <i>ፋ</i> 。 ጋላ<∇。
۵۵۲۵۲۲ ک	Þፈ ^ՙ Ժ [ୃ] ሀር በበናርኦረLԺ୬ - ୮ላዖ ርላኦ [‹]
Δ ሬ Ր 	Þ&'&%\C NUłCb\F\&\ - 40,ረb ተ‹ F,¬٩,%Þ‹
Δ _ Ր⊲ʔĊ 14	
ACI 41 C 17	Þ৮ናኄር
<u>مد</u> ۲۹۲¢ 15	ዾ፟ትና፟፟፟፟ነር
Δ ـ Γ	>>ናሢር
Δ ـ Γ∢ʔĊ 15 Δ ـ Γ∢ʔĊ 16	ዾ፞፞፞፞፞፞፞፞፞፞፞፟፟፟፟፟፟፟፟፟፟፟፟፟፟፟፟፟፟፟፟፟፟፟፟፟፟
Δሬዮላየር 15 Δሬዮላየር 16 Δሬዮላየር 17	Þታናሢር ላየፖLታሢር ቴኦትኣርኦታሢ - ላጋ'ርኦᅻና L'ኌል'ልኦና Þታናሢር ላየፖLታሢር 'የΓንታኦታሢ ጋላረርልኦሷ' ዾዾሢ Δበታሢር 'ቴኦትኣርኦታሢ በላን ርፖኦ'
Δሬዮላየር 15 Δሬዮላየር 16 Δሬዮላየር 17	Þታናሢር ላየተLታሢር ቴኦትኒርኦታሢ - ላጋ'ርኦቲ' L'ኌቴ'ልኦ' Þታናሢር ላየተLታሢር የΓንታኦታሢ ጋላረርልኦሷ' ዾዹሢ Δበታሢር ቴኦትኒርኦታሢ ቦላን ርተኦ' በበናተLታሢ ቦላን ርተኦ' ዾዹሢር በታペーላታሢር የየላዣር
Δሬቦ	ÞታናჀር ላየፖLԺჀር ቴኦትኣርኦԺჀ - ላጋ'ርኦቲ' L'ኌቴ'ልኦ' ኦታናჀር ላየፖLԺჀር የፐንታኦԺჀ ጋላረርልኦጔ' ኌፌჀ ΔበԺჀር ቴኦትኣርኦԺჀ ቦላን ርፖኦ' በበናፖLԺჀ ቦላን ርፖኦ' ኌፌჀር በፖペーላԺჀር የየላጥር ቴኦትኣርኦԺጥ

 Δ ሬ Γ ላ Γ ር 21 ኦላ৮ሀ ጋላርኦፖLላ $^{\circ}$ ላት $^{\circ}$ ህ የ \sim ጋ $^{\circ}$ ጉጋ $^{\circ}$ በበናፖL σ $^{\circ}$ ህ pdfd $^{\circ}$ በበናፖLላ $^{\circ}$

- 3. $6 \Delta C^{1} C^{2} C^{$
- 'በለ $_{\sim}$ 30, 2003ህበ $_{\sim}$ 1 (Δd4 (Lfb 4Υ($^{\circ}$ 4Η($^{\circ}$ 64 $^{\circ}$ 64 $^{\circ}$ L)σηυ($^{\circ}$ 4Ψ/Lσην, ΔLJ Λησρι 4L $_{\sim}$ ΔLΓρ($_{\sim}$ Ληδην 4Η $_{\sim}$ ΔΕΓρ($_{\sim}$ Ληδην 4Η $_{\sim}$ Λησην 4Η $_$
- 4. 4° ር $^{\circ}$ $^{\circ}$

 ΔC_{0} ΔC_{0}

- Λ) NN(P>(P) N % DAC "UF O'L "UC (PA) JUC YF "UC (DJN)(PF" U
- $(A)^{\dagger}$

 47° 602

6. $\Delta J \cap C \land \neg \Delta C \land$

ለ_{\(\righta\ri}

- 6.1. Δ^ι→σ ΔͿ∩ασ[%]
 - 6.1.1. \(\frac{1}{4} \cdot \frac{1}{1} \cdot \frac{1}{4} \cdot \fr
 - $\mbox{ } \mbox{ }$
 - 6.1.2. PZP¬>%>N>¬% Z¬¬¬%% Δ¬¬
 - 6.1.3. P♂℃~>`&\ ∆_
 - 6.1.4. Δ_C\%>∩⁶ Δ¹→
 - Δ J \cap L σ * Δ L σ \$ Δ L σ Δ L
 - 6.1.5. Þ℃ďФ⇒%Þ∩%ልʰ
 - **6.1.6.** Υσις (Νρικού) Δισικού Δισικ
 - ΔJ∩(▷≺ቴሊላ/Lፕ)* (ペσ (៤ /๓ Δ¹) Δ¹)
 4)(▷ፕሬታላጋታ) በየር▷ፕሮህታ ላ▷>ፕሬታላጋተ
 - 6.1.7. 4ל $^{\circ}$ ר $\Delta \dot{\Delta}^{\circ}$ /የ $\lambda \dot{\Delta}^{\circ}$

• 40% 40% 40% 40% 40% 40% 40% 40% 40% 40% 40% 40% 40% 40% 40% 40%

6.2. ഛ५८८৮ ₹%

6.2.1.) \(\bullet \text{Chab} \text{ } \bullet \bullet \bullet \text{L} \)

- Þ4a'</tu>

 Þ4a'
 >
 4PZ
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 ></td

6.2.2. rap cap< all are

- 4) 2 2 3 4 (1 4 5 5 5 6 7 7 7 7 7 8

6.2.6. ଏଧ∆

6.3. ∠?∠L⊀[®] ⊅a[®]LC \⊃L\C>σ[®]L

6.3.1.) \(\forall \text{ (\lambda \text{ } \te

6.3.2 > د فن ۵ کان ۲۰۱۸

- Λ'Γρση ΑλΥΕάς ΦΦΟς >ρ(ς)ς ΦΦης Επίσ Και βάλλη.

- - ለታ'ርኦσ¹ህ (ረL ለታሲረLσሲታ¹ህ ΔL¹ህ 90>\▷ር¹ን¹) (ኖσ ▷συ¹ά/٢৮σ.
- 6.3.4 ለሄበቦታ ላይ ላይልዩ
 - የህርጎሩት ኣጋርኣርኦσቴ ኣልናኦልታና ለንΔ/Lゼ ዾፈ୮ Δ¹ኌቴልኦቲና ቴσՐኦሩ ለኦሊ/Lቴኣበላርጎንት.
- 6.3.5 **%(**▷ᢣ▷ᡩ)ᡩ)
- 6.3.7 DC 5686
- 6.3.8 ▷ላ교<ረ∿ሀር ላራል∿ሀ ኣልና৮ካኣቴልካ
 - \L^{\L} \L^{\C} \L
- 6.3.10. <>C△→△△→△C%
- 6.4. $\Delta \Gamma \subset \Gamma$ $\Delta \Gamma \subset \Gamma$ $\Delta \Gamma \subset \Gamma$ $\Delta \Gamma \subset \Gamma$

 - 40° (>chonė, piha, piha

 Δ CLASC & UURLARCH PPQCMCFIC VIOLAGE FOR PARTIES AND THE PROPERTY OF THE PRO

 Δ ے የላዖር የ በበናረ ተናርት ቴሪና ልናታ ይኒና ኦንናሪል የ L) ታህር ልዮህ ልዩ የላሪ ተርጋት ረበለዋ 30, 2003 ነ በዮ ω .

9. $\Delta \triangle \Delta \triangle \Delta^{c}$ $\Delta \triangle \Delta^{c}$ $\Delta \triangle \Delta^{c}$ $\Delta \triangle \Delta^{c}$

<ጋሊነ (ነለላሊ, Þኑና/ÞልÞ ኣጔLኣ(Þቴኒቴ ላÞᡄ/ትÞኣჼ, ፴ፌፆ୮ ΔL፫ሊትኒና ቴበLትኒና (ΔbቴᡄÞ)ና ለበለሊÞበጔሀ ቴዎትኣ(Þበጔሀ ΔϲϷጔበነ. የህታላታ (ΔbቴፎϷበጔናና <ጋሊነ ናኣጔΓϲϷ)ን ላΓረኒናጋታ ኦጋታ ፴ፌሮΓÞቴ ጋኣበረትንጋታ ቴ፴Δሮኒሮፒኒር.</p>

ቴΓժժ' \σኖΔ/L\
 ΔጋΓ/▷በσት ላL」 ላ/ጐσ ላL」 ▷< 1 ህΔ/L\
 Δ/L\
 Δ/L\
 Λ/Γσ ላL)
 Δ/L\
 <t

ላሪΔ 2ህበጋЈ 3Γ 2 Δ 2 2 Δ 2 2 Δ 2 2

11. ΔL℉ ላጋራ^ቈ

(ሌኦ ህ ጉን ነጉ ልጊ ጉ ላጋታ ት $^{\circ}$ ት $^{\circ}$ ላ ለሌጊ ነ $^{\circ}$ 113,000 የ<ሌ ተረተ የርር ላጋሬ እን. $^{\circ}$ $^{\circ}$ ላህ ላ ላህ ላ ላጊ ለላፊ እንት እህ ተቀላንት ልታር (አላር ልጊ አላፊ እስኦ ነ

12. Þ<
 \$\rightarrow\$\rig

12.1. 4°C'7-6 AJNC>7L+6 L'2-d-6 4L2 27N7L+6 22-6

 $\Delta \text{CLAPC} \land \text{CDMCPM}$

12.2. ኦፌ ጐ ሦር ቴኦት ኣኦበ ሦር

12.2.1. ቦላ፣ ርረ⊳< '⊌∿ር ረ୮∿

 P^{-1}

12.2.3. ∆¬\⊂₫Ч८⊀° ₫▷<ጋ° ℉Ґ┛¬р

ኦፌኖቼር ቼኦኦጓ?በዥና ላምርኦ፫ዥጋና የተላ σ ር Δ ሀላ Δ ቦርኦላቴኒና Δ ےኣርላህተレላጎታ ለኦሒርኦሩር 2004ህሮናሩና.

12.3.1. Þ፟ነጎር ቕ፟ዾለ፝፝፝፟፟፟ዾኯር የእንተርኦታ ላይ የሚያል የተመሰው ነው።

12.3.3. እትናህር ቴውልলህলህር ቴኦትላርኦল

12.4. Δበσኄር ቕኦትኣርኦσኄ Γ∢ዖ Δևኄ

13. ΔΓʹርʹδρ΄ (૮/ρ΄ Δα ʹʹ)ር ʹ∀ϲλσʹϒϹ ʹϧρλζοσʹͿͺ

ΔLJና ለፈውቦት ኦትሬLና ΔLም ለክርነትጋቦት የኦኦተንበም Δበርሚ ብዛምና ΔLLና ቦላያ ርላናና ተፅክተር አተመደ የተመደመ ተመደመ የተመደመ የተመደ

 Δ ር የላያር ላ በበናለ L የነርርት ዕር የውን ነው የአንድ የነርር ላይ የአንድ የተመሰር ላይ የአንድ የተመሰር የ

15. Δ ራቦላሃL+[©] የኦኦላርኦራ+ ላኖበ+ የ Δ ራ+ የራይት የ

APPENDIX 2

SURFACE MELT WATER SAMPLE ANALYSIS

POLARIS MINE MELT WATER SAMPLE ANALYSIS RESULTS JULY 2, 2003

Project Polaris 23-305 Soil/Water Analysis

Report to Gartner Lee Ltd.

ALS File No. T1168
Date Received 05-07-03
Date: 14-07-03

RESULTS OF ANALYSIS

Sample ID	U/G Water #1	Melt Water #2 02-07-03
Date Sampled	02-07-03	02-07-03
Time Sampled	0	10
ALS Sample ID	9	10
Nature	Water	Water
Physical Tests		
Hardness CaCO3	459	289
Total Metals		
Aluminum T-Al	<0.02	0.01
Antimony T-Sb	<0.001	<0.0005
Arsenic T-As	<0.002	<0.001
Barium T-Ba	0.04	0.03
Beryllium T-Be	<0.005	<0.005
Boron T-B	0.3	0.3
Cadmium T-Cd	0.0007	0.00033
Calcium T-Ca	151	86.6
Chromium T-Cr	<0.001	<0.0005
Cobalt T-Co	0.003	0.0009
Copper T-Cu	0.007	0.014
Iron T-Fe	<0.03	<0.03
Lead T-Pb	0.044	0.027
Lithium T-Li	<0.05	<0.05
Magnesium T-Mg	20	17.8
Manganese T-Mn	0.11	0.02
Mercury T-Hg	<0.0002	<0.0002
Molybdenum T-Mo	0.003	0.003
Nickel T-Ni	0.01	0.005
Selenium T-Se	<0.004	<0.002
Silver T-Ag	<0.0001	<0.00005
Sodium T-Na	36	31
Thallium T-TI	<0.0004	0.0003
Titanium T-Ti	<0.05	<0.05
Uranium T-U	0.0014	0.0013
Vanadium T-V	<0.03	<0.03
Zinc T-Zn	1.65	1.07
Inorganic Parameters		
Sulphide S	<0.02	<0.02
Extractable Hydrocarbons		
EPH10-19	8.4	0.8
EPH19-32	<1	
— · · · · · · · · · · · · · · · · · · ·		

APPENDIX 3

ANALYSIS OF

FREEZE PIPE GLYCOL

AND

SOIL SAMPLES FOR GLYCOL CONTAMINATION

POLARIS MINE - ANALYSIS OF DOCK FREEZE PIPE COOLANT

Project Polaris Soil/Product Analysis

Report to Gartner Lee Ltd.

ALS File No. \$8818

Date Received 02/06/2003

Date: 10/06/2003

RESULTS OF ANALYSIS

 Sample ID
 DOCK-1- 270503

 Date Sampled
 27/05/2003

Time Sampled

ALS Sample ID 13
Nature Product

Physical Tests

Moisture % -

Glycols

Diethylene Glycol Found
Ethylene Glycol Found
1,2-Propylene Glycol Not Found

Polycyclic Aromatic Hydrocarbons

Acenaphthene Acenaphthylene Anthracene Benz(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene Chrysene Dibenz(a,h)anthracene Fluoranthene -

Indeno(1,2,3-c,d)pyrene Naphthalene Phenanthrene Pyrene -

Extractable Hydrocarbons

EPH10-19 EPH19-32 LEPH HEPH -

Footnotes:

Fluorene

POLARIS MINE - ANALYSIS OF DOCK FREEZE PIPE COOLANT

Project Polaris Soil/Product Analysis

Report to Gartner Lee Ltd.

ALS File No. \$8818

Date Received 02/06/2003

Date: 10/06/2003

DETECTION LIMITS

 Sample ID
 DOCK-1- 270503

 Date Sampled
 27/05/2003

Time Sampled

ALS Sample ID 13
Nature Product

Physical Tests

Moisture %

Glycols

Diethylene Glycol 5
Ethylene Glycol 5
1,2-Propylene Glycol 5

Polycyclic Aromatic Hydrocarbons

Acenaphthene Acenaphthylene Anthracene Benz(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene Chrysene Dibenz(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-c,d)pyrene Naphthalene Phenanthrene Pyrene

Extractable Hydrocarbons

EPH10-19 EPH19-32 LEPH HEPH -

Project Polaris Soil Analysis 23-305

Report to Gartner Lee Ltd.

 ALS File No.
 \$8646

 Date Received
 28/05/2003

 Date:
 05/06/2003

RESULTS OF ANALYSIS

Sample ID Date Sampled Time Sampled	Dock-62-I 23/05/2003	Dock-63-I 23/05/2003	Dock-66-I 23/05/2003	Dock-67-I 23/05/2003	Dock-72-I 23/05/2003	Dock-73-I 23/05/2003	Dock-74-I 23/05/2003
ALS Sample ID	1	2	3	4	5	6	7
Nature	Sediment/Soil						
Physical Tests							
Moisture %	5.6	5	4.6	4.9	6.6	6.6	4.9
pH	-	7.54	7.96	-	-	-	7.29
Total Metals							
Antimony T-Sb	-	-	<20	-	-	-	-
Arsenic T-As	-	-	<10	-	-	-	-
Barium T-Ba	-	-	325	-	-	-	-
Beryllium T-Be	-	-	<1	-	-	-	-
Cadmium T-Cd	-	-	20	-	-	-	-
Chromium T-Cr	-	-	8	-	-	-	-
Cobalt T-Co	-	-	<4	-	-	-	-
Copper T-Cu	-	-	22	-	-	-	-
Lead T-Pb	-	11200	4510	-	-	-	8570
Mercury T-Hg	-	-	0.08	-	-	-	-
Molybdenum T-Mo	-	-	<8	-	-	-	-
Nickel T-Ni	-	-	16	-	-	-	-
Selenium T-Se	-	-	<4	-	-	-	-
Silver T-Ag	-	-	<4	-	-	-	-
Tin T-Sn	-	-	<10	-	-	-	-
Vanadium T-V	-	-	47	-	-	-	-
Zinc T-Zn	-	18700	8620	-	-	-	23900
Glycols							
Diethylene Glycol	<10	<10	<10	<10	<10	<10	<10
Ethylene Glycol	<10	<10	<10	<10	<10	<10	<10
1,2-Propylene Glycol	<10	<10	<10	<10	<10	<10	<10

Footnotes: Results are expressed as milligrams per dry kilogram except where noted.

< = Less than the detection limit indicated.

Project Polaris Soil Analysis 23-305

Report to Gartner Lee Ltd.

ALS File No. \$8646

Date Received 28/05/2003

Date: 05/06/2003

DETECTION LIMITS

Sample ID Date Sampled Time Sampled ALS Sample ID Nature	Dock-62-I 23/05/2003 1 Sediment/Soil	Dock-63-I 23/05/2003 2 Sediment/Soil	Dock-66-I 23/05/2003 3 Sediment/Soil	Dock-67-I 23/05/2003 4 Sediment/Soil	Dock-72-I 23/05/2003 5 Sediment/Soil	Dock-73-I 23/05/2003 6 Sediment/Soil	Dock-74-I 23/05/2003 7 Sediment/Soil
Physical Tests							
Moisture %	0.1	0.1	0.1	0.1	0.1	0.1	0.1
pH	-	0.01	0.01	-	-	-	0.01
Total Metals							
Antimony T-Sb	_	-	20	-	-	-	-
Arsenic T-As	_	-	10	-	-	-	-
Barium T-Ba	_	-	2	-	-	-	-
Beryllium T-Be	-	-	1	-	-	-	-
Cadmium T-Cd	-	-	1	-	-	-	-
Chromium T-Cr	-	-	4	-	-	-	-
Cobalt T-Co	-	-	4	-	-	-	-
Copper T-Cu	-	-	2	-	-	-	-
Lead T-Pb	-	100	100	-	-	-	50
Mercury T-Hg	-	-	0.05	-	-	-	-
Molybdenum T-Mo	-	-	8	-	-	-	-
Nickel T-Ni	-	-	10	-	-	-	-
Selenium T-Se	-	-	4	-	-	-	-
Silver T-Ag	-	-	4	-	-	-	-
Tin T-Sn	-	-	10	-	-	-	-
Vanadium T-V	-	-	4	-	-	-	-
Zinc T-Zn	=	2	2	-	-	-	1
Glycols							
Diethylene Glycol	10	10	10	10	10	10	10
Ethylene Glycol	10	10	10	10	10	10	10
1,2-Propylene Glycol	10	10	10	10	10	10	10

 Project
 Polaris Soil Analysis

 Report to
 Gartner Lee Ltd.

 ALS File No.
 75093

 Date Received
 10/10/2003

 Date:
 20/10/2003

RESULTS OF ANALYSIS

Sample ID Date Sampled Time Sampled	DOCK- 262-I 07/10/2003	DOCK- 264-F 07/10/2003	DOCK- 265-F 07/10/2003
ALS Sample ID	12	13	14
Nature	Sediment/Soil	Sediment/Soil	Sediment/Soil
Physical Tests			
Moisture %	_	12.6	8.4
pH	-	-	-
•			
Total Metals			
Antimony T-Sb	-	-	-
Arsenic T-As	-	-	-
Barium T-Ba	-	-	-
Beryllium T-Be	-	-	-
Cadmium T-Cd	-	-	-
Chromium T-Cr	-	-	-
Cobalt T-Co	-	-	-
Copper T-Cu	-	-	-
Lead T-Pb	977	-	-
Mercury T-Hg	-	-	-
Molybdenum T-Mo	-	-	-
Nickel T-Ni	-	-	-
Selenium T-Se	-	-	-
Silver T-Ag	-	-	-
Tin T-Sn Vanadium T-V	-	-	-
Vanadium 1-V Zinc T-Zn	24.40	-	-
ZINC I-ZN	3140	-	-
Glycols			
Diethylene Glycol	-	<10	<10
Ethylene Glycol	_	<10	<10
1,2-Propylene Glycol	-	<10	<10
Polycyclic Aromatic Hydrocarbons			
Acenaphthene	-	-	<0.04
Acenaphthylene	-	-	<0.05
Anthracene	-	-	<0.05
Benz(a)anthracene	-	-	<0.05
Benzo(a)pyrene	-	-	<0.05
Benzo(b)fluoranthene	-	-	<0.05
Benzo(g,h,i)perylene	-	-	<0.05
Benzo(k)fluoranthene	-	-	<0.05
Chrysene	-	-	<0.05
Dibenz(a,h)anthracene	-	-	<0.05
Fluoranthene Fluorene	-	-	<0.05
	-	-	<0.05
Indeno(1,2,3-c,d)pyrene	-	-	<0.05
Naphthalene Phenanthrene	-	_	<0.05
Pyrene	_	_	<0.05
i yielle	-	-	<0.05
Extractable Hydrocarbons			
EPH10-19	_	<200	<200
EPH19-32	-	<200	<200
LEPH	-	-	<200
НЕРН	-	-	<200

Footnotes:

 Project
 Polaris Soil Analysis

 Report to
 Gartner Lee Ltd.

 ALS File No.
 T5093

 Date Received
 10/10/2003

 Date:
 20/10/2003

DETECTION LIMITS

Sample ID Date Sampled Time Sampled	DOCK- 262-I 07/10/2003	DOCK- 264-F 07/10/2003	DOCK- 265-F 07/10/2003
ALS Sample ID			
Nature	Sediment/Soil	Sediment/Soil	Sediment/Soil
B			
Physical Tests Moisture %	_	0.1	0.1
pH	-	0.1	0.1
рп	-	-	-
Total Metals			
Antimony T-Sb	_	_	_
Arsenic T-As	-	_	_
Barium T-Ba		_	_
Beryllium T-Be		_	
Cadmium T-Cd	_	_	-
Chromium T-Cr	-	-	-
	-	-	-
Copper T-Cu	-	-	-
Lead T-Pb	100	-	-
Mercury T-Hg	-	-	-
Molybdenum T-Mo	-	-	-
Nickel T-Ni	-	-	-
Selenium T-Se	-	-	-
Silver T-Ag	-	-	-
Tin T-Sn	-	-	-
Vanadium T-V	-	-	-
Zinc T-Zn	2	-	-
Glycols			
Diethylene Glycol	-	10	10
Ethylene Glycol	-	10	10
1,2-Propylene Glycol	-	10	10
Polycyclic Aromatic Hydrocarbons			
Acenaphthene		_	0.04
·	-		
Acenaphthylene	-		0.05
Anthracene	-		0.05
Benz(a)anthracene	-	-	0.05
Benzo(a)pyrene	-	-	0.05
Benzo(b)fluoranthene	-	-	0.05
Benzo(g,h,i)perylene	-	-	0.05
Benzo(k)fluoranthene	-	-	0.05
Chrysene	-	-	0.05
Dibenz(a,h)anthracene	-	-	0.05
Fluoranthene	-	-	0.05
Fluorene	-	-	0.05
Indeno(1,2,3-c,d)pyrene	-	-	0.05
Naphthalene	-	-	0.05
Phenanthrene	-	-	0.05
Pyrene	-	-	0.05
Extractable Hydrocarbons		222	000
EPH10-19	-	200	200
EPH19-32	-	200	200
LEPH	-	-	200
HEPH	-	-	200

APPENDIX 4

UPDATE OF DECOMMISSIONING AND RECLAMATION SCHEDULE

	Prior	3rd	Qtr. 2	003	4th	Qtr. 2	003	1st	Qtr. 2	004	2nd Qtr. 2004				3rd Qtr. 2004		
ACTIVITY	Periods	Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	
CONTRACTOR MOBILIZATION																	
Pre-mobilization Planning / Order Materials/Equip																1	
Ship to Site with Contractor Equipment																	
Offload Ship																	
Setup Warehousing/Laydown Area																	
SETUP TEMPORARY FACILITIES																1	
DECOMMISSIONING UNDERGROUND																	
Remove / Salvage Mine Equipment & Crusher	Cancelled																
Remove Refrigeration Plant																1	
Remove Surface Ventilation Fans																	
Seal Mine Openings																	
MILL / BARGE DEMOLITION																	
Initial Cleanup of Barge by Teck Cominco																	
Removal of Barge Services																	
Transfer fuel to Tank Farm & Clean Hull																	
Remove hazardous Materials / Wastes																	
Remove / Salvage Process Equipment																	
Demolish Internal Equipment																	
Demolish Structure																	
Remove Hydrocarbon/Metals Contaminated Soils																	
Regrade Area Surounding Barge																	
PRODUCT STORAGE BUILDING DEMOLITION																	
Cleanup of Building / Remove Liquids from Equip.																	
Demolish Exterior Conveyors																	
Demolish Reclaim Conveyors																	
Remove Cladding from Building																	
Demolish Structure																	
Demolish Foundations																	
Remove Contaminated Soils																	
Regrading Area																	
SHIP LÖADER / RECLAIM CONVEYOR DEMOL.																	
Cleanup of Conveyor Areas/Remove Oils																	
Demolish Conveyors																	

	Prior	3rc	Qtr. 2	003	4th Qtr. 2	1st Qtr. 2004			2nd Qtr. 2004			3rd Qtr. 2004			
ACTIVITY	Periods	Jul	Aug	Sep	Oct Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
DOCK DECOMMISSIONING															
Inspect / Remove Glycols from Freeze Pipes															
Remove Metals Contaminated Soils															
Remove Cells 1 & 2															
Remove Cells 3 & 4															
Removal of Temporary Dock															
Shoreline Recontouring															
Berm Removal															
Grade New Beach to Final Profiles															
TAILINGS SYSTEM DEMOLITION															
Final Cleanup of Thickener															
Flush Tails Lines															
Salvage Equipment															
Remove hazardous Materials / Wastes															
Remove Tails Line / Return Line															
Demolish Equipment															
Demolish Structure															
Remove Foundations															
Remove Contaminated Soils															
Regrading															
GARROW LAKE / DAM DECOMMISSIONING															
Drawdown Lake															
Removal of Centre Section of Dam															
Creek Channel Construction															
Final Grading / Armouring of Dam Remnants															
CRF PLANT DEMOLITION															
Final Cleanup of Plant															
Remove hazardous Materials / Wastes															
Demolish Plant Equipment															
Demolish Buildings															
Site Grading (Plant & Surrounding Area)															

	Prior	3rc	d Qtr. 2	003		Qtr. 2		1st Qtr. 2004			2nd Qtr. 2004			3rd Qtr. 2004		
ACTIVITY	Periods	Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
ACCOMODATIONS COMPLEX DEMOLITION																
Establish Temporary Offices / Building Services																
Use Accomodations Complex																
Establish Temporary Camp Accomodations																
Use Temporary Camp																
Remove hazardous Materials / Wastes																
Demolish Buildings																
Regrade Area																
Remove Temporary Camp																
FUEL STORAGE (TANK FARM) DEMOLITION																
Use with Temporary Modifications																
Transfer Fuel to Temporary Storage																
Cleaning of Tanks / Piping																
Demolish Tanks / Piping																
Cleanup of Berm & Liner																
Site Grading																
BLADDER AREA CONTAMINATED SOILS																
Cleanup of Hydrocarbon Soils																
Area Grading																
MISC. BUILDING DEMOLITION																
Exploration Quonset Huts																
Core Shack (Atco Trailer)																
Emergency Shelter at North Portal																
Steam Wash Bay & Tire Shop (relocated in 3rd Qtr)																
Generator Building																
Bent Horn Building																
Dock Office Trailer (relocated in 3rd Qtr)																
Airstrip Storage Hut																
Fresh Water Pump House																
Frsh Water Tank & Shed																
Carpenter Shop (used as temp. warehouse)																
Shipping Containers (Sea Cans - more to move on-going)																
Foldaways by Temporary Dock (3)																
Firehall																

	Prior	3rc	Qtr. 2	003	4th Qtr. 2	2003	1st	Qtr. 2	004	2nd	d Qtr. 2	004	3rd Qtr. 2004		
ACTIVITY	Periods	Jul	Aug	Sep	Oct Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
OPERATIONAL LANDFILL CLOSURE															
Reclocate Construction Landfill															
Hauling Landfill Cover Cap Material															
LRD QUARRY Landfill															
Cut Notch into Quarry / Construct Haul Road															
Installation of Thermistor Pipe Stands															
Placing debris in Quarry															
Grading of Notch to Match Cap															
Placement of Cap and Final Grading															
Installation of Thermistors into Pipes															
MISC. SITE RECLAMATION & EARTHWORKS															
Reduction in spare parts/supplies by TCML															
Ship Mill Process Chemicals South for Sale/Recycle															
Site Cleanup of scrap material during operations															
Regrading North 40 Area															
Grading of Reclamation Landfill Area															
Road Closure / Culvert Removals/Runway															
DEMOBILIZE FROM SITE															
Prepare Equipment / Supplies for shipping from site															
Prepare Residual Chemicals / Wastes for shipping															
Last Ship from Polaris															

APPENDIX 5

UPDATE OF ESTIMATED MINE DECOMMISSIONING, RECLAMATION AND MONITORING COSTS

			SEPT	30, 2003	FORECA		
		OGET	CLAIME	TO DATE	PROJE	CT COST	NOTES
	By Code	Subtotals	By Code	Subtotals	By Code	Subtotals	
DEMOLITION & RECLAMATION (BARE COSTS)							
MINE EQUIPMENT REMOVAL Hazardous Materials Removal	35,845		853		30,845		
Mine Refrigeration Plant	145,525		14,281		92,044		
Mobile & Mine Equipment	2,919		2,524		22,919		
Remove Salvaged Mine Equipment	20,754		3,983		5,754		
Misc Sub Contract Costs	45,957		23,297		45,385		
Wilse Sub Contract Costs	45,957	\$ 251,000		\$ 44,938	45,365	\$ 196,947	
MINE ACCESS SEALING		Ψ 251,000		Ψ 44,930		Ψ 130,341	
Seal Mine Portals	60,000		464		73,509		
ocal Mille Foliais	00,000	\$ 60,000		\$ 464	70,000	\$ 73,509	
CONCENTRATOR BUILDING		ψ 00,000		Ψ 101		Ψ 70,000	
Miscellaneous Materials	22,092				_		
Mill Equipment Clean-Up - Fuels	16,398				_		
Mill Equipment Clean-Up	99,900		40,613		40,625		
Hazardous Materials Removal	151,117		94,476		147,099		
Barge Demolition	608,592		441,028		513,459		
Misc Process Equipment Demolition & Removal	197,432		183,317		183,346		
Misc Sub Contract Costs	88,469		83,898		87,013		
miss out out out	00,100	\$ 1,184,000		\$ 843,332	0.,0.0	\$ 971,542	
CONCENTRATE STORAGE STRUCTURE & EQUIPMENT	1	,,				. 5,512	
Concentrate Storage Equipment Clean-Up	26,117		1,905		1,900		
Conveyors	67,600		8,421		8,431		
Concentrate Storage Structure & Equipment	555,283		78,302		116,564		
consoniate eterage etractare a Equipment	000,200	\$ 649,000		\$ 88,628	,	\$ 126,895	
SHIP LOADER & CONVEYOR		ψ 0.0,000		ψ 00,020		Ψ .20,000	
Conveyors	50,000		24,592		24,593		
303,0.0	00,000	\$ 50,000		\$ 24,592	21,000	\$ 24,593	
DOCK & SHORELINE		Ψ 00,000		Ψ 21,002		Ψ 21,000	
Dock & Shoreline Reclamation	869,000		240,476		939,131		
Book a chorolino residination	000,000	\$ 869,000		\$ 240,476	303,101	\$ 939,131	
THICKENER & TAILINGS LINES		ψ 000,000		Ψ 210,170		φ 000,101	
Hazardous Materials Removal	22,577		16,452		16,456		
Tailings Thickener	377,423		91,269		113,259		
g- · · · · · · · · · · · · · · · ·	011,120	\$ 400,000		\$ 107,721	,200	\$ 129,715	
GARROW LAKE		ψ,		Ψ .σ.,. Ξ .		Ψ .20,	
Garrow Lake Siphons & Lake Drawdown	120,391		202,648		204,366		
Dam/Spillway Modifications	95,467		66,583		172,865		
Escalation Allowance	3,142		00,000				
200diation / the warloo	0,112	\$ 219,000		\$ 269,231		\$ 377,231	
CRF PLANT STRUCTURE & EQUIPMENT		Ψ 210,000		Ψ 200,201		Ψ 077,201	
CRF Plant Equipment Clean-Up	7,002		1,040		1,041		
CRF Plant Equipment Removal	17,533		9,406		9,404		
CRF Plant Buildings Demolition	130,455		23,497		23,517		
Misc Sub Contract Costs	11,010		46,766		46,764		
miss out out out	,	\$ 166,000		\$ 80,709	.0,7.0.1	\$ 80,726	
ACCOMMODATION COMPLEX STRUCTURE & EQUIPMENT		,		• 55,155		• ••••	
Accommodation Complex Building Demolition	249,000		10,211		171,125		
		\$ 249,000		\$ 10,211	,	\$ 171,125	
FUEL STORAGE & HANDLING EQUIPMENT		, ,,,,,,		,		, -	
Miscellaneous Materials	3,681		2,531		(1,319)		
Purge & Decommission Fuel Tanks	53,404		296,235		319,000		
Hazardous Materials Removal	50,645		125,575		164,272		
Fuel Pumping & Distribution Systems	87,270		-,-		90,133		
,		\$ 195,000		\$ 424,341		\$ 572,086	
BUILDINGS & CONTAINERS	1			,-		, , , , , , , , , , , , , , , , , , , ,	
Miscellaneous Materials	1,323				-		
Misc Warehouse / Shipping Equipment	1,221		3,292		3,292		
Misc Buildings Demolition	250,456		35,397		169,268		
		\$ 253,000		\$ 38,689	,	\$ 172,560	
MISC CONTRACTOR LABOUR	1					, , , , , , , , , , , , , , , , , , , ,	
Unallocated Labour	133,000		79,131		129,027		
		\$ 133,000		\$ 79,131	-,-	\$ 129,027	
GENERAL SITE GRADING	1			-, -		- , - =-	
Hazardous Materials Removal	44,719		20,938		46,870		
General Site Grading & Reclamation	7,129		207,612		201,505		
Escalation Allowance	4,152		1				
		\$ 56,000		\$ 228,550		\$ 248,375	
	-	,	-		-	, -	

			SEPT	30, 2003	FORECA	ST FINAL	
	BUI	DGET		D TO DATE		CT COST	NOTES
	By Code	Subtotals	By Code	Subtotals	By Code	Subtotals	
LANDFILL RECLAMATION							
Landfill Reclamation	432,000	\$ 432.000	645,694	\$ 645.694	800,374	\$ 800.374	
CONTAMINATED SOILS - CLEANUP		\$ 432,000		\$ 645,694		\$ 800,374	
Metals & Hydrocarbon Contaminated Soils Cleanup &							
Disposal	366,623		900,231		1,445,291		
Hydrocarbon Contaminated Soils (By Polaris)	6,097		13,131		13,131		
Metals Contaminated Soils (By Polaris)	173,605		52,382		52,382		
U/G Handling & Disposal Of Contaminated Soils	48,675		244,463		440,925		
		\$ 595,000		\$ 1,210,207		\$ 1,951,729	
QUARRIES & MINE SURFACE RECLAMATION (EARTHWORK)							
Backfill & Re-Contouring	263,000	\$ 263,000	177,581	\$ 177.581	319,452	¢ 240.450	
MISC. DEMOLITION & CLEAN-UP		\$ 263,000		\$ 177,581		\$ 319,452	
Misc Unallocated Clean-Up / Demo	380,000		41,405		44,157		
mice divanesated disall op / Bonie	000,000	\$ 380,000	11,100	\$ 41,405	11,107	\$ 44,157	
EQUIPMENT PURCHASE/RENTAL		,		, , ,		, -	
Contractor Equipment Rental	5,274,900		2,761,061		5,144,900		
Contractor Misc Equipment Purchase	719,407		432,906		448,309		
Escalation Allowance	59,693				-		
MICC. CEDVICES & CURRUES		\$ 6,054,000		\$ 3,193,967		\$ 5,593,209	
MISC. SERVICES & SUPPLIES	225 222		450 772		222 404		
Misc Purchased Materials / Supplies Escalation Allowance	235,333 19,667		159,773		233,181		
Escalation Allowance	19,007	\$ 255,000		\$ 159,773	<u> </u>	\$ 233,181	
FUEL		Ψ 255,000		Ψ 100,770		Ψ 200,101	
Fuel Supply	3,294,536		4,216,186		4,216,186		
Fuel Taxes (Heating & Power Generation)	68,677				99,727		
Fuel Taxes (Equipment)	467,343		325,719		677,493		
Escalation Allowance	157,444				-		
		\$ 3,988,000		\$ 4,541,905		\$ 4,993,406	
MAINTENANCE OF EQUIPMENT & FACILITIES	4 000 750		0.705.047		5 400 074		
Mobile Equip Maintenance Building Maintenance	1,296,759 506,923		3,705,847 1,159,481		5,106,671 1,388,571		
Escalation Allowance	101,318		1,139,461		1,366,371		
Economic Villowarios	101,010	\$ 1,905,000		\$ 4,865,328		\$ 6,495,242	
PRE - PURCHASED EQUIPMENT (BY COMINCO)		, , , , , , , , , , , ,		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		, ,, ,,,	
Construction Equipment - Purchase (By Owner)	541,000		541,271		541,271		
		\$ 541,000		\$ 541,271		\$ 541,271	
CONTRACTOR'S FIELD SUPPORT & SUPPLIES							
TRANSPORTATION (SHIPPING)							
Packing & Preparation	85,326		60,035		92,804		
Shipping Costs Escalation Allowance	948,661		1,258,272		1,870,797		
Escalation Allowance	78,013	\$ 1,112,000		\$ 1,318,307	-	\$ 1,963,601	
CONTRACTOR MOB, DEMOB & SUPERVISION		Ψ 1,112,000		Ψ 1,010,307		Ψ 1,505,001	
Contractor Mob/Demob	61,883		87,810		251,831		
Contractor Supervisory/Admin Personnel	2,127,339		1,839,016		2,959,195		
Safety Services & Supplies	36,000		221,846		295,231		
Misc Temporary Services / Modifications	223,824		872,350		1,008,541		
Escalation Allowance	13,954	A 0 400 000			-		
MISC. SERVICES & SUPPLIES		\$ 2,463,000		\$ 3,021,022		\$ 4,514,798	
Communications & TV	374,000		91,235		217,679		
Escalation Allowance	31,000		31,200		-		
	3.,,200	\$ 405,000		\$ 91,235		\$ 217,679	
ACCOMODATIONS		•					
Catering	1,487,166		1,156,195		1,831,193		
Escalation Allowance	122,834	A 4 040 000					
TDAVEL & DEDCOMNE		\$ 1,610,000		\$ 1,156,195		\$ 1,831,193	
TRAVEL & PERSONNEL Travel (Airfares & Expenses)	1 550 004		2.052.202		2 425 600		
Travel (Alliares & Expenses) Travel Premium - Revised Rotation Schedule	1,552,881 1,072,773		2,052,383		3,435,600		
Misc Personnel Transport	72,274		121,525		172,274		
Escalation Allowance	575,072		121,020		-		
	,	\$ 3,273,000		\$ 2,173,908		\$ 3,607,874	
		. , -,		, ,,	<u> </u>	, , , , , , , , , , , , , , , , , , , ,	

	<u> </u>	SEPT 30, 2003	FORECAST FINAL	
	BUDGET	CLAIMED TO DATE	PROJECT COST	NOTES
	By Code Subtotals	By Code Subtotals	By Code Subtotals	
CONTRACTOR INDIRECTS				
HO MOB & DEMOB SUPPORT	4 040 000	4 500 000	4 040 070	
Mob & Demob	1,912,000 \$ 1,912,000	1,526,300 \$ 1,526,300	1,912,376 \$ 1,912,376	
CONTRACTOR MANAGEMENT SUPPORT	Ψ 1,912,000	Ψ 1,320,300	Ψ 1,912,370	
Personnel	3,928,932	2,391,496	3,928,932	
Safety & First Aid Personnel to Provide Overlap	184,068	111,792	183,644	
	\$ 4,113,000	\$ 2,503,288	\$ 4,112,576	
OTHER CONTRACTOR INDIRECTS Contractor's General Indirects	4.052.000	3,469,507	5,482,420	
Contractor's General Indirects	4,952,000 \$ 4,952,000	\$ 3,469,507		
ENGINEERING / PROJECT MANAGEMENT	Ψ 1,002,000	Ψ 0, 100,001	Ψ 0, 102, 120	
ENVIRONMENTAL SITE ASSESMENT				
Environmental Consultants - Site Assesment	275,787	272,949	314,609	
Site Assessment - Unallocated	207,874	105,263	191,524	
Escalation Allowance	2,339			
CLOSURE PLAN	\$ 486,000	\$ 378,212	\$ 506,133	
Environmental Consultants - Closure Plan	415,772	372,272	372,272	
Escalation Allowance	2,228	072,272	-	
	\$ 418,000	\$ 372,272	\$ 372,272	
ENGINEERING / SPECIAL CONSULTANTS				
Design Consultants - Dock / Loadout	1,316	1,413	1,413	
Design Consultants - Tailings / Garrow Lake	3,520	3,515	3,515	
Design Consultants - Dock / Loadout Design Consultants - Tailings / Garrow Lake	79,684 54,780	65,354 45,328	79,994 45,328	
Sitework & Demolition Procedures - Design Services	18,300	14,465	55,400	
Escalation Allowance	2,400		-	
	\$ 160,000	\$ 130,075	\$ 185,650	
PROJECT MANAGEMENT CONSULTANT (HO STAFF)	444.000	757.440	000 000	
Project Management - Salaries Project Management - Reimb Expenses	411,069 100,000	757,118 57,487	982,069 100,000	
Escalation Allowance	31,931	57,467	100,000	
200000000000000000000000000000000000000	\$ 543,000	\$ 814,605	\$ 1,082,069	
CONSTRUCTION MANAGEMENT (FIELD STAFF)				
Construction Management - Salaries	2,142,878	921,834	1,755,878	
Escalation Allowance	179,122 \$ 2,322,000	\$ 921,834	\$ 1,755,878	
ENVIRONMENTAL TESTING AND SAMPLING	\$ 2,322,000	\$ 921,034	\$ 1,755,676	
Environmental Reclamation Supervision - Staff	337,123	265,245	668,060	
Escalation Allowance	29,550		-	
Environmental Reclamation Supervision - Testing	330,000	94,680	239,060	
Additional Sampling and Consultant Services (MMER) Escalation Allowance	0	140,996	396,192	
Escalation Allowance	26,327 \$ 723,000	\$ 500,921	\$ 1,303,312	
OWNER'S COSTS	Ψ 723,000	Ψ 300,321	Ψ 1,000,012	
SALARIES & EXPENSES				
Teck Cominco HO Proj Mgmnt (Staff Lab)	374,631	314,923	563,132	
Teck Cominco HO Proj Mgmnt (Misc Material & Exp)	199,149	131,845	178,333	
Escalation Allowance	34,220	¢ 446.700	- ¢ 744 405	
OVERHEAD / HO SUPPORT	\$ 608,000	\$ 446,768	\$ 741,465	
Land Leases, Licences	175,000	96,398	237,525	
Miscellaneous Permits	45,000	9,118	10,222	
Insurance	445,900	106,692	174,310	
Property Taxes	495,000	37,181	495,000	
Home Office General Admin (Labour & Exp) Public Relations	722,384 74,292	14,313 58,718	30,000 74,292	
Legal	57,540	48,021	68,431	
Escalation Allowance	168,560		-	
Misc Owner's Overhead	6,324	13,882	13,882	
CENERAL ADMIN	\$ 2,190,000	\$ 384,323	\$ 1,103,662	
GENERAL ADMIN Closure Management - Polaris Personnel	54,000		11	
Escalation Allowance	2,880			
Closure Wrap Up	5,120	27,132	45,667	
	\$ 62,000	\$ 27,132	\$ 45,667	

	BUDGET				PT 30, 2003 MED TO DATE			FORECAST FINAL PROJECT COST		NOTES	
	By Code	Subtotals		By Code	;	Subtotals		By Code	,	Subtotals	
POST RECLAMATION COSTS (2005 - 2011)											
SITE MONITORING AND HOLDING COSTS							ı				
Annual Post Closure Environmental Monitoring (2005 to							ı				
2011)	510,000						ı	510,000			
Final Sampling Program, Data Evaluation and Reporting in							ı				
2011	160,000						ı	160,000			
Land Lease/Licence costs from 2005 to 2011	126,000						ı	126,000			
Property Taxes - 2005 to 2011	70,000						ı	70,000			
Escalation Allowance	135,000						L	135,000			
		\$ 1,001,000			\$	-	ı		\$	1,001,000	Corrected typos
UNALLOCATED							ı				from 2nd Qtr Report
Uncoded Forecast Cost Adjustments (Net)	-			-			L				For Forecast Costs
		\$ -			\$	-	ſ		\$	-	
							ı				
			1	_			ı				
			I				ı				
TOTAL DECOMMISSIONING / RECLAMATION & MONITORING COSTS		\$ 47,500,000	I		\$	37,094,048	ı		\$	56,925,108	
			L								

APPENDIX 6

COST ESTIMATE

TO

RE-CONSTRUCT GARROW LAKE DAM

Polaris Mine Closure CASCADE PROJECT 2071

Garrow Lake Level Control Structure

Order Of Magnitude Cost Estimate

October 30, 2003

GARROW LAKE LEVEL CONTROL STRUCTURE COST ESTIMATE

TABLE OF CONTENTS

1.0 EXECTUTIVE SUMMARY

2.0 BASIS OF ESTIMATE

2.1 SCOPE OF ESTIMATE

- 1. Estimate Format
- 2. Purpose of Estimate
- 3. Work Included
- 4. Work Excluded

2.2 INFORMATION BASIS & ASSUMPTIONS

- 1. Project Schedule
- 2. Design
- 3. Procurement
- 4. Construction Philosophy
- 5. Construction Facilities

2.3 PRICES

- 1. Labour Rates
- 2. Material Prices
- 3. Equipment Prices
- 4. Currency & Escalation
- 5. Taxes & Duty

2.4 ACCURACY OF ESTIMATE

2.5 CONTINGENCIES

1. Project Contingency

2.6 ESTIMATE SUMMARY

3.0 APPENDICIES

3.1 Estimate Detail

1.0 EXECUTIVE SUMMARY

In April 2002 Teck Cominco received approval to re-establish original water levels in Garrow Lake and to remove the central portion of the existing Garrow Lake Dam and re-establish natural flow out of the lake via the existing creek bed. Teck Cominco has proposed a long term sampling program which will monitor concentration of metals in the discharge into Garrow Bay. Concern has been expressed by regulators with regard to the potential for higher than anticipated levels of heavy metals (lead and zinc) in the discharge from Garrow Lake once original lake levels have been established. While Teck Cominco considers this to be a highly unlikely occurrence, contingency plans have been established to re-instate a portion of the Garrow Lake dam to raise the lake level back to 2002 levels, where it has been demonstrated that metals concentrations in the discharge remain well within allowable limits.

In order to determine financial liability should such action be required, Teck Cominco requested Cascade Management Inc to prepare an order of magnitude cost estimate of the construction of such a level control structure.

This cost estimate has been prepared as requested and Cascade Management Inc are of the opinion that, subject to the assumptions outlined in this report, this structure could be completed for a total cost of \$1,270,000, plus or minus 25%. The following report is intended to outline the basis of this estimate and the assumptions made in arriving at the estimated cost.

2.0 BASIS OF ESTIMATE

2.1 SCOPE OF ESTIMATE

Estimate Format

Project cost codes have been established for the Polaris Mine Closure and Reclamation work currently underway. For simplicity, the same coding structure was used for this estimate.

The cost estimate is to be considered "Order of Magnitude" only and is based on certain assumptions with regard to Scope of Work, using historical (i.e. recent actual cost experience) pricing data for the Polaris Reclamation.

Purpose of Estimate

To provide a reasonable estimate of cost exposure (liability) to Teck Cominco should it become necessary to reinstate Garrow Lake water levels.

Work Included

- Carry out site investigation and prepare detail drawings and specifications for construction of level control structure.
- Procurement of necessary materials and construction services.
- Construct level control structure, including field supervision and quality control inspections.
- Cleanup and demobilize from site.

Work Excluded

- Environmental sampling and testing.
- Regulatory approvals and permits.
- Escalation

2.2 INFORMATION BASIS & ASSUMPTIONS

Project Schedule

It has been assumed that the work would be carried out in one construction season, most likely during the period of mid-July to mid-August. It is estimated that 30 working days would be required for work on site.

Design

For purposes of estimating it has been assumed that the level control structure would be of sufficient height to raise the water level of Garrow Lake back to 2002 levels (approximately 1.5M) and would be located across the creek bed in the

location of the existing dam. Allowance has been made for provision of a synthetic liner to provide an impermeable core. A rock lined spillway would be provided to effect natural discharge from Garrow Lake.

It should be noted that the impact of the design of the actual structure on the cost of construction is somewhat less significant than normal, due to the high cost of mobilizing and demobilizing personnel and equipment to and from the site. Once personnel and equipment have been mobilized to the site, actual construction costs should be adequately covered by the current estimate and contingency allowances.

Procurement

Materials would be purchased in advance by Teck Cominco and delivered to the island for use by the Contractor. Construction would be competitively bid.

Construction Philosophy

Local contractors, competitively bid on a Lump Sum basis.

Construction Facilities

Temporary camp will be required (tents) with regular air support from Resolute Bay. Supervisors of the work will be required to be fully trained in emergency first aid. Basic emergency supplies will be provided by the Contractor.

2.3 PRICES

Labour Rates

Crew size has been established based on the assumed Scope of Work. Labour rates are based on current labour rates for the Polaris project, with applicable additives for Contractor's overhead and overtime premiums. Labour costs have been estimated using the following crew requirements;

- 1 Foreman
- 3 Equipment Operators
- 1 Mechanic
- 1 Surveyor
- 1 Cook
- 1 Bull Cook

Material Prices

Cost allowance.

Equipment Prices

Based on historical data.

Equipment costs are based on the following requirements;

- 1 Excavator
- 1 Dozer
- 1 Loader
- 1 Truck
- 1 Temp Camp

Currency & Escalation

 All costs are estimated in 2003 Canadian Dollars. No allowance has been made for escalation since it is unknown when, or if, the work would be required.

.

Taxes & Duty

Included where applicable.

2.4 ACCURACY OF ESTIMATE

Given the level of detail available and the assumptions made, it would be reasonable to expect an accuracy of $\pm 25\%$ of estimated cost, including contingency.

2.5 CONTINGENCIES

Project Contingency

Given the expected accuracy of the estimate, for financial planning purposes Cascade Management would recommend, and have included, a contingency of 25 percent.

CASCADE MANAGEMENT INC.

2.6 ESTIMATE SUMMARY

Based on the above, the Order of Magnitude cost estimate for construction of a level control structure at Garrow Lake has been determined as per the following summary;

 Base Construction Cost 	369,000
Transportation (Shipping)	150,000
 Mobilization & Demobilization 	78,500
 Accommodations/Camp 	49,500
 Contractor Overhead 	162,000
Engineering	121,350
 Construction Supervision 	57,650
 Owner's Project Management 	_31,000
Sub Total	1,019,000
Contingency	<u>251,000</u>
TOTAL	\$1,270,000

A copy of the detailed cost estimate is included for reference in the Appendix of this report.

3.0 APPENDICIES

3.1 Detailed Cost Estimate

APPENDIX 1

DETAILED COST ESTIMATE

Garrow Lake - Reinstall Level Control Structure: Extended Costs, Item Details

Project: 2071: Polaris Estimate - Sept 30,

Client: Teck Cominco

				LABOUR AN	D EQUIPMEN	Т	MATERIAL /	LUMP SUM	Misc	
COST CENTER && PROJECT CODE	QTY	Units	Hrs	Lab Cost	Const Equip	Sub Con	Material	Lump Sum	Allowance	TOTAL
141 LEVEL CONTROL STRUCTURE										
1410-02.280-01 - Dam/Spillway Modifications										
0002 Mobilize to site and set up plant	8.0	Day	768	40,059	35,264	0	0	0	0	75,323
0003 Supply Equipment Consumables (Ground Engaging Tools)	1.0	Allow	0	0	0	0	25,000	0	0	25,000
0004 Spare parts and maintenance supplies for equipment	30.0	Day	0	0	0	0	26,460	0	0	26,460
0005 Fuel & Lube Allowance	30.0	Day	0	0	0	0	9,930	0	0	9,930
0006 Supply impermeable liner for dam core (if	1.0	Allow	0	0	0	0	25,000	0	0	25,000
0007 Re-establish dam core 40m long X 25m wide X 3m high (3000 cm @ 200 cm/day = 15 days)	15.0	Day	1,440	75,110	66,120	0	0	0	0	141,230
0008 Tear down and demobilize	7.0	Day	672	35,052	30,856	0	0	0	0	65,908
0099 Rounding Off Adjustment	1.0	Lot	0	0	0	0	0	0	149	149
Sub Total:			2,880	150,221	132,240	0	86,390	0	149	369,000
211 TRANSPORTATION (SHIPPING) 2110-01.100-02 - Shipping Costs										
0002 Shipping - Resolute to LCI.	3.0	Day	0	0	0	0	0	0	75,000	75,000
0003 Demobilization - Shipping from LCI to Resolute	3.0	Day	0	0	0	0	0	0	75,000	75,000
Sub Total:			0	0	0	0	0	0	150,000	150,000
212 CONTRACTOR MOB, DEMOB & S	SUPE	RVISI	ON							
0002 Mobilization - Preparation and loading/unloading of equipment	72.0	MT	0	0	0	0	0	0	25,200	25,200
0003 Mobilization - Load and unload fuel in 45 gallon drums; 8 per pallet = 5000 gal or 14 Tonnes	14.0	MT	0	0	0	0	0	0	4,900	4,900
0004 Mobilization - Load & Unload Two Containers (Tools and Mechanics shop)	2.0	Ea	0	0	0	0	0	0	6,000	6,000
0005 Mobilization - Load & Unload One container of misc gear (lube oil, filters, etc.)	1.0	Ea	0	0	0	0	0	0	3,000	3,000

Garrow Lake - Reinstall Level Control Structure: Full Details, Extended Costs

COST CENTER && PROJECT CODE	ОТУ	Units	Hrs	LABOUR AN	D EQUIPMEN' Const Equip	T Sub Con	MATERIAL / I	LUMP SUM Lump Sum	Misc Allowance	TOTAL
					• •			•		_
0008 Demobilization - Load & Unload Fuel drums and pallets	1.0	Lot	0	0	0	0	0	0	4,900	4,900
0009 Demobilization - Load & Unload Containers	3.0	Ea	0	0	0	0	0	0	9,000	9,000
0010 Demobilization - Load and unload equipment	72.0	MT	0	0	0	0	0	0	25,200	25,200
0099 Rounding Off Adjustment	1.0	Lot	0	0	0	0	0	0	300	300
Sub Total:			0	0	0	0	0	0	78,500	78,500
215 ACCOMODATIONS 2150-01.810-01 - Site Accommodations / Camp Costs										
0001 Camp Costs - Assume \$50.00 / Manday X 8 men	30.0	Day	0	0	0	12,000	0	0	0	12,000
= \$400 per day)	30.0	Day	O	O	O	12,000	O .	O .	Ü	12,000
0002 Airfares based on 8 men on site for 30 days (\$3,000 per man)	8.0	Ea	0	0	0	24,000	0	0	0	24,000
0003 Sustaining air freight assuming two flights per week @ \$1500/Trip (9 Trips)	9.0	Trips	0	0	0	13,500	0	0	0	13,500
Sub Total:			0	0	0	49,500	0	0	0	49,500
319 GENERAL CONTRACTOR OH 3190-01.000-00 - Contractor's Overhead - Summary Acco	unt (Lump	Sum)								
0000 General Contractor Overhead	15.0	%	0	0	0	0	0	0	97,050	97,050
0001 Contractor's Fee	10.0	%	0	0	0	0	0	0	64,700	64,700
0099 Rounding Off Adjustment	1.0	Lot	0	0	0	0	0	0	250	250
Sub Total:			0	0	0	0	0	0	162,000	162,000
721 ENGINEERING / SPECIAL CON 721B-17.110-05 - Design Consultants - Tailings / Garrow		NTS								
0000 Design Of Replacement Level Control Structure	15.0	%	0	0	0	0	0	0	121,350	121,350
Sub Total:			0	0	0	0	0	0	121,350	121,350
732 CONSTRUCTION MANAGEMEN 7320-01.010-01 - Construction Management - Salaries 0000 Teck Cominco Field Supervision and	IT (FIE	LD ST	400	48,000	0	0	0	0	0	48,000
Construction Management										

COST CENTER && PROJECT COD	E QTY	Units	Hrs	LABOUR AN Lab Cost	D EQUIPMEN' Const Equip	T Sub Con	MATERIAL / L Material	UMP SUM Lump Sum	Misc Allowance	TOTAL
Si	ıb Total:		400	48,000	0	0	0	0	0	48,000
7320-01.010-02 - Construction Management - R				10,000						,
0000 Teck Cominco Field Supervision and Construction Management - Expenses	1.0	Allow	0	0	0	0	0	0	9,650	9,650
Si	ıb Total:		0	0	0	0	0	0	9,650	9,650
811 OWNER'S PROJECT MAN 8110-17.020-01 - Cominco HO Proj Mgmnt (Star										
0001 Teck Cominco HO Administration and Pro Management - Salaries	ject 1.0	Mhrs	160	19,200	0	0	0	0	0	19,200
Si	ıb Total:		160	19,200	0	0	0	0	0	19,200
8110-17.030-01 - Cominco HO Proj Mgmnt (Mis	c Material & Exp)									
0002 Teck Cominco HO Administration and Pro Management - Expenses (based on two ro trips to site plus misc office expenses)		Allow	0	0	0	0	0	0	11,800	11,800
Si	ıb Total:		0	0	0	0	0	0	11,800	11,800
981 CONTINGENCY 9810-19.900-01 - Project Contingency - Genera	•									
0001 Project Contingency	25.0	%	0	0	0	0	0	0	254,500	254,500
0002 Rounding Off Adjustment	-1.0	Lot	0	0	0	0	0	0	-3,500	-3,500
Si	ıb Total:		0	0	0	0	0	0	251,000	251,000
Project Total:			3,440	217,421	132,240	49,500	86,390	0	784,449	1,270,000

APPENDIX 7

TECK COMINCO RESPONSE TO JULY 2003 INAC SITE INSPECTION

Site Manager

September 8, 2003

Indian and Northern Affairs Canada Land Administration Box 100 Iqaluit, NU X0A 0H0

Attention: Carl McLean, Manager, Land Administration

Dear Mr. McLean,

Re: Polaris Mine Closure DIAND Inspection July 2 – 3, 2003

This letter has been written in response to your letter of July 22, 2003, regarding DIAND's comments respecting observations made during a site visit July $2^{nd} - 3^{rd}$. Firstly, I wish to apologize for the delayed response to the concerns raised in your letter. Please be assured that your comments and concerns received immediate attention. The preparation of this response was delayed by a combination of personnel scheduling issues, coupled with the high workloads associated with the compressed summer construction season. I am confident that you will note significant progress, in compliance with approved procedures and protocols, during your next site visit, scheduled for the near future. For clarity, the concerns and questions raised in your letter of July 22^{nd} have been copied to this letter and I will deal with each as they are presented.

Operational Landfill:

1) It was not clear who was responsible for inspecting construction of the cover material, since the GLL site staff are only involved with confirmation testing of the contaminated site reclamation aspects of the work. TC must ensure that the landfill cover is inspected to insure it meets the guidelines in the reclamation plan.

Teck Cominco representatives ensure that construction standards pertaining to the entire project are met. Compaction tests have been performed, and material sizing has been initiated. Recording of thermistor readings was initiated in March 1999 and continued throughout the course of the project until summer 2003. Thermistor data for this year has been reported in the 1st and 2nd quarter project reports to you and the NWB. The placement of the covercap during summer 2003 resulted in the destruction of these

instruments, but they will be reinstated upon completion of the construction work. Readings will be obtained, recorded, and reported as required by the terms of the Polaris Water License and Reclamation and Closure Plan approval.

As-builts will be prepared once construction is complete. Surveying is an ongoing process to maintain adequate construction controls and to ensure placement of sufficient cover materials. In August, 2003, following the placement of the underlying portion of the covercap, a Nunavut registered professional geotechnical engineer from EBA Engineering was engaged to conduct a site examination of the work undertaken to date and to ensure compliance with the design criteria. No significant issues were raised. This inspection was done as part of the annual geotechnical inspection of the landfill and other surface structures as required by our Water Licence, with the formal inspection report to be submitted by the middle of October.

Please forward information pertaining to the construction of the Operational Landfill to DIAND including thermistor readings, material testing results (moisture contents, grain size, density) and as-built drawings. The thermal analysis for the cover design assumed certain properties for the cover material(s). TC should verify that these assumptions are valid for the actual materials being placed. The final thickness of the cover should be based on the actual cover material properties.

Please see above. Material sizing and moisture results will be reported in the upcoming Quarterly report. All indications to date are that the covercap will exceed the design criteria, resulting in an increased factor of safety.

2) Tailing Thickener

A considerable amount of loose Styrofoam and fiberglass insulation was noted in the debris around the tailings thickener pad. This material is easily blown around and distributed over the site and must be cleaned up before the elements carry this material offsite. Once all of the contaminated fill is removed from the thickener pad and area TC must conduct confirmatory soil testing.

The loose Styrofoam and fibreglass that was noted in the area of the thickener has been contained and removed. Although the material spread to a greater than anticipated extent, it should be noted that the reason that it had not been cleaned up prior to the date of the inspection was that the tundra was still water logged and any effort to even walk in the area would have produced significant environmental degradation. Greater efforts to contain demolition debris are now being expended. Further, work schedules in areas involving foam insulation products are being reviewed for opportunities to further reduce the risks of spreading materials by wind.

No mention was made in the closure plan about retaining the lagoon and dikes, and filling with excavated spoil. If the lagoon remains, it will be a prominent embankment structure on the surface of the land, and hence will not satisfy the overall reclamation philosophy of returning the site to as natural a condition as possible. TC should clarify their position in writing for approval by DIAND and the other regulators.

Numerous approaches, suggestions, and opportunities are considered during any project. This holds true of the Polaris Reclamation and Closure Project as well. Teck Cominco confirms that there were discussions regarding the merits of utilising the overflow lagoon at the tailings thickener as a depository for some of the frozen core from the Garrow Lake dam. However, this idea has since been abandoned, and at no point did Teck Cominco Limited consider implementing this approach without the knowledge and agreement of the Regulatory parties concerned. We are cognisant of the attention this project is receiving, and of the need to follow the procedures and protocols established in conjunction with the Regulators. Any work plan that deviates from what is established in the Plan will be discussed with, and approved by, the appropriate regulators prior to implementation.

3) Frustration Lake Jetty

Concern was noted by the inspection team about the erosion of the road due the meltwater runoff. TC plans to flatten out the shoulders and generally contour the road to the surrounding terrain. We remind TC to ensure that natural drainage courses are not blocked and that excessive erosion will not be initiated due to improper contouring.

Teck Cominco acknowledges that the access road to the Frustration Lake jetty was partially washed out on the date of the inspection. This has been an ongoing difficulty even during the operational period. Teck Cominco confirms their intent to restore natural drainage courses and to remove improvements that impede the natural flows. During 2004, the Frustration Lake access road, the pipeline, culverts, and cribbing will be removed, and the roadway and pipebed recontoured to blend smoothly with the existing topography so as to not impede natural drainage.

4) Little Red Quarry

The preferred method of tire disposal is to shred the tires. However, if shredding is not possible, TC should ensure that all tires be placed into the bottom of the pit so that there is no chance that they could work their way to the surface. The tires should be dispersed so that there isn't a concentration of tires in any one area. Tires should be placed flat to minimize void space and subsequent settlement. If a lot of tires remain to be disposed of, another option may be to place them into an underground drift, where the landfilling protocols would not be an issue.

Teck Cominco Limited will ensure the tires are placed flat within areas of demolition debris. Where possible, the preferred location will be underwater, prior to covering with infill material, thereby eliminating the potential for void space. Tires will be dispersed to avoid concentrations of such debris in any given area.

Although there is photo documentation and surveying being done of the material placed into the quarry, a lot of the material does not appear to be placed in a manner that

minimizes voids. This issue must be corrected immediately and placement practices must conform to the protocols given in the joint authorization.

The placement and subsequent covering of demolition debris is a several-step process. If the material is observed in the early stages, it would be concluded that demolition protocols were not being followed. However, Teck Cominco is confident that the contractor is following the protocols, and doing a good job of placing material so as to minimize void spaces. Initially, material is discharged from the haul truck into large temporary stockpiles with significant void space. These piles are then rehandled with bulldozers or wheeled loaders to reduce the thickness of the material and to reduce the likelihood of void space when fill material is placed. Large pieces such as piping and structural steel columns that would create voids are processed with the hydraulic shears and siding is compacted in the bailer prior to burial. In many cases, an excavator fitted with the hydraulic shears is used to place large pieces underwater prior to covering with fill, which eliminates the possibility of void spaces remaining.

TC must ensure that they immediately implement a plan to cleanup any future spills or fluid releases within the LRD Quarry.It is important that TC ensure that wastes are clean of fluids before placing them into the LRD Quarry and that measures are in place to remove and deal with any contaminating fluids in the pit. We request that TC periodically conduct and record the results of confirmatory sampling of water quality, particularly for the presence of hydrocarbons and salts in the pit wastewater. These results must be provided to DIAND with the along with quarterly reports.

Steps have been taken to ensure compliance with this issue. Teck Cominco have conducted tests to verify that freezing point depression has not occurred. The test report is appended to this letter, and will be submitted with the next Quarterly Report. The need for immediate resolution of the issue precluded submission of the samples to an outside laboratory. Since the underlying question concerned the freezing point of the water, the water was sampled, cooled, and its freezing point noted. No significant difference from fresh water properties was noted.

TC must also provide DIAND with a quarterly report that includes an inventory of the material, locations of the material, and photo documentation of the debris disposed of in LRD.

This material has been submitted in the Quarterly reports as required under the terms of the joint Plan approval.

5) Mill Barge Complex

During demolition work, the north end of the barge rose a total of 1.4 m. TC should ensure that these conditions do not pose a threat to the safety of the demolition works underway.

The fact that the mill/barge complex would float during demolition was anticipated during the planning stages of the project and the resulting demolition plan was developed

to exploit this situation. In no case were employees or equipment placed at risk. The barge was free-floating from the outset, consistent with observations made by staff during the operating phase of the mine. As a result, there were no sudden movements or shifts in the barge while it rose in the excavation as its weight decreased during the course of demolition. Ultimately, before the hull integrity was compromised, the excavation was dewatered of accumulated meltwater that was disposed of underground as previously approved by DIAND, EC, and NWB. The final hull demolition is being done in the dry, and is progressing well.

As noted at the tailings thickener, TC must collect all loose insulation and materials that can blow around. Regular policing of the grounds around areas of demolition would ensure that debris is not carried off site by the wind.

Demolition is an ongoing process and loose insulation etc. is being exposed daily. Such material is collected on a daily basis in order to prevent dispersal by the wind. Other aspects of the project where this remains an issue, such as at the Tailings dam, are being evaluated for alternatives and opportunities that would diminish the risk of materials being spread by the elements.

6) Meltwater Runoff Disposal Area

TC was required to take at least one meltwater sample for analysis for potential hydrocarbon and mineral sulphide contamination. Please forward this information, as well as a revised description of the actual meltwater storage plan to DIAND.

Samples were taken and submitted to an outside laboratory for analysis. The results will be included in the next Quarterly Report, but they have been appended to this letter for your review during the upcoming site visit. Additionally, the meltwater, which ultimately accumulated in the barge area excavation, was tested several times to determine its salt content and to verify that the water would freeze as expected. All determinations indicated that although the water was contaminated, its physical properties, specifically its S.G. and freezing point, remained very similar to those of fresh water.

The meltwater disposal took place as described in the March 20th letter to DIAND, EC, and NWB. Non-contaminated meltwater was contained and directed through uncontaminated ditching to the ocean. Water that entered the industrial areas of the facility was automatically deemed to be contaminated. Initial meltwaters mobilized some hydrocarbons within the area, as expected, and were passed through an oil-water separator before being pumped into the underground receiving environment. Later, as the melt progressed, and hydrocarbons diminished, the water flows exceeded the capacity of the oil-water separator. This water, while contaminated, did not bear free hydrocarbons and was discharged directly into the underground workings. The receiving environment was checked routinely by the Underground Supervisor and his observations logged. At no time was water discharged without his knowledge and agreement. The remaining capacity of the receiving environment was monitored, and at not time was it exceeded. Ventilation checks with respect to volumes and air quality were conducted on

an ongoing basis to ensure environmental and safety issues were dealt with. Further, the discharged water was monitored to ensure there were no free hydrocarbons, and that it was freezing in place as expected.

7) Contaminated Soils Storage Area(s)

An updated estimate of the breakdown of contaminated soils placed underground must be provided to DIAND, as well as the locations being used for disposal.

The quantities and location maps are available in the quarterly report. The updated estimates for final quantities are not yet available due to difficulties in determining the contaminant boundaries in certain specific areas. This information will be provided in the Polaris Quarterly report as soon as it is available, as required by the terms of the joint approval of the Closure and Reclamation Plan. Teck Cominco Metals Limited would welcome the opportunity to discuss this further during your scheduled site visit.

8) Ammonium Nitrate Storage Area

DIAND's preferred method of disposing any unused amounts of ammonium nitrate is to mix it with diesel fuel into ANFO and detonate it on site at a safe location, rather than landfilling. This will also get rid of some of the leftover diesel fuel. This would also be subject to approval of the other regulators

The majority of this material will be consumed during the decommissioning period as stated in the Inspection Report. Significant quantities are required to produce the necessary rock and infill material for the Polaris landfill covercaps. It will not be used at Garrow Lake dam. Remaining quantities will be disposed of utilising methods that are acceptable to all the regulatory agencies concerned. There are, however, significant environmental and safety concerns relating to the destruction of Ammonium Nitrate by detonation. Since Ammonium Nitrate is not classified as a hazardous material Teck Cominco Limited recommends that this material be disposed of in the underground workings where it will be inaccessible and encapsulated due to the portal plugs. Additionally, the presence of permafrost throughout the underground workings will prevent any dispersal by water. Teck Cominco Metals Limited views this approach as consistent with the approvals already received under the closure plan.

9) Reclamation Costs and Schedule

TC must submit monthly and quarterly statements of the cost tracking for the decommissioning and reclamation activities, including the percentage of work completed and estimated cost to complete, as required by their Water License. This is required for ongoing assessment of their closure bond and security requirements.

The approval under the Water Licence that contains the bonding requirements specifies that schedule and cost forecasts are to be provided on a quarterly basis. We understand

the need for this information to be submitted so that DIAND and the NWB are aware of any significant changes to schedules or costs. The 1st and 2nd Quarterly reports for 2003 have been submitted and contain this information. The next formal report will be submitted by November 15, 2003 and contain both current costs and forecast costs to complete the decommissioning and reclamation work. If more frequent updates on progress and costs are desired, we suggest a monthly conference call where any significant issues can be discussed in a timely manner and provide an opportunity for other areas of interest to also be discussed.

We request TC to submit an updated list of activities and timelines for all aspects of the reclamation.

This has been recently submitted in the 2^{nd} Quarter project report submitted to DIAND and the NWB.

We appreciate that DIAND feels that Teck Cominco is progressing very well towards our reclamation objectives and remain confident that all applicable standards and commitments are at the least being met, and in many cases exceeded.

Please feel free to contact me if the above leads to any concerns or further questions.

Yours truly,

Cominco Mining Partnership

John Knapp Site Manager Polaris Reclamation Project

Enclosures (2)

cc: Mr. Philippe DiPizzo, Nunavut Water Board

Mr. Bruce Donald, Reclamation Manager, TCL

Mr. Bob Hutchinson, General Manager, Projects, TCL

Mr. Walter Kuit, Director, Environmental Affairs, TCL

Ms. Colette Meloche, Environmental Assessment Specialist, EC

APPENDIX 8

LITTLE RED DOG QUARRY LANDFILL WATER SAMPLE ANALYSIS AND FREEZE TEST RESULTS

Project 23305 Polaris Water Analysis

Report to Gartner Lee Ltd.

ALS File No. T2135

Date Received 31/07/2003

Date: 08/08/2003

RESULTS OF ANALYSIS	Detection Limits	Results			
Sample ID Date Sampled Time Sampled ALS Sample ID Nature		LRD-1 25 07 03 25/07/2003 11:20 1 Water			
Physical Tests					
Conductivity (uS/cm)	2	3280			
рН	-	-			
Dissolved Anions					
Alkalinity-Total CaCO3	1	64			
Alkalinity-Bicarbonate CaCO3	1	64			
Chloride Cl	5	577			
Total Metals					
Antimony T-Sb	-	-			
Arsenic T-As	-	-			
Barium T-Ba	-	-			
Beryllium T-Be	-	-			
Cadmium T-Cd	-	-			
Chromium T-Cr	-	-			
Cobalt T-Co	-	-			
Copper T-Cu	-	-			
Lead T-Pb	-	-			
Mercury T-Hg	-	-			
Molybdenum T-Mo	-	-			
Nickel T-Ni	-	-			
Selenium T-Se	-	-			
Silver T-Ag	-	-			
Tin T-Sn	-	-			
Vanadium T-V	-	-			
Zinc T-Zn	-	-			
Extractable Hydrocarbons					
EPH10-19	0.3	1			
EPH19-32	1	1			

Footnotes: < = Less than the detection limit indicated.

EPH = Extractable Petroleum Hydrocarbons.

Water samples only - Results are expressed as milligrams per litre except where noted.

Water samples only - EPH10-19 is equivalent to EHw10-19.

MEMORANDUM

To: Bruce Donald, Teck Cominco Ltd.

CC: John Knapp Date: August 15, 2003

From: Dennis Lu Ref: 23305

Subject: Freezing point of LRD Water

The purpose of this exercise was to determine the freezing point of water contained at the Little Red Dog Quarry (LRD). A sample was taken from the LRD on August 15, 2003 to characterize the freezing point. An electronic multimeter (YSI 85D) was used to determine the temperature and salinity. For the purposes of comparing the freezing point of LRD pit water to distilled water, a control sample of distilled water was run.

The samples were stored in 300mL beakers in the freezer until the samples were approximately 40% frozen. At this point the ice in the beaker was broken up and the instrument inserted in the ice/water mixture. The mixture was then stirred in order to maintain a constant temperature. When the readings became stable, temperature and salinity parameters were taken. The results from the experiment are as follows:

Parameter	LRD Water	Distilled Water (control)
Temperature	0.1°C	0.3°C
Salinity	1.1ppt	0.0ppt

A photo to illustrate the process is located below.

