APPENDIX 2

2005 3rd Quarter

Garrow Lake Effluent Discharge Monitoring

by

Azimuth Consulting Group Inc.

November 10, 2005

Prairie & Northern Region Environment Canada Room 200, 4999 98th Ave. Edmonton, AB, T6B 2X3

Attention: Peter Blackall, Regional Director of Environmental Protection

Dear Peter Blackall;

Re: Polaris Mine 2005 3rd Quarter MMER Report

Please find attached the Metal Mining Effluent Regulation (MMER) Report for Polaris Mine for the 3rd Quarter of 2005. As Polaris is a remote mine and operations on the site have ceased, collection of MMER and Environmental Effects Monitoring (EEM) data for this year was conducted by small field crews stationed onsite for the first part of the season, and then by flying scientists/ technicians to site on a weekly basis for the latter part of the season. Field crews were onsite when flow initiated in Garrow Creek on approximately June 25, 2005. Flow continued through July and August, and Garrow Creek was observed to be frozen on September 13, 2005.

The MMER effluent characterization monitoring, bioassay testing, and environmental effects monitoring were conducted throughout the quarter. Due to the short season of flow, two sets of acute and sublethal toxicity tests were conducted within the quarter on July 16 and August 9, 2005, corresponding to the dates of EEM quarterly water quality monitoring samples collected at effluent, exposure and reference stations. A quarterly effluent sample plus acute and sublethal toxicity samples were also collected on July 6, 2005, but due to fog conditions at the mine, the toxicity samples did not make it to the labs within holding times are were discarded. The effluent sample was analyzed for the MMER and EEM parameters. No exposure or reference samples were collected on July 6, 2005, since Garrow Bay was still ice-covered.

MMER water quality monitoring was conducted on a weekly basis throughout most of the season. Between August 20 – 23 and after August 27, 2005, access to the site was not possible due to weather conditions. Ken Russell and Jenny Ferone were informed of failed sampling attempts and were updated with weather and safety conditions at the site on a regular basis. On September 13, 2005, a quarterly event with acute toxicity testing was planned. However, upon arrival onsite, it was observed that Garrow Creek (final discharge point) was frozen. A chronology of the 2005 sampling season is presented in Appendix I.

There were no exceedances of MMER Schedule 4 Limits for the 2005 season, and there was no acute toxicity in Rainbow trout and *Daphnia* tests. Holding times for nitrate and alkalinity were exceeded in the July 6, 2005 sample due to an oversight by the ALS lab. This situation is explained in a letter from ALS provided in Appendix J, and is not likely to influence the results.

The following information is included in our 2005 3rd Quarter MMER Report:

- Table 1a Concentrations Of Effluent For MMER Schedule 4 Sampled Weekly
- Table 1b Monthly Mean Concentrations Of Effluent For MMER Schedule 4
- Table 1c Mass Loading Of Deleterious Substance For Each Day Sampled
- Table 1d Mass Loading Per Calendar Month For Each Deleterious Substance
- Table 2 Results of Acute Lethality Tests and Daphnia Magna Monitoring Tests
- Table 3 Effluent Characterization Water Quality Results (studies conducted under Part 1, Section 4) (Effluent Characterization) (Table 3, Table 5)
- Table 4 Water Quality Monitoring in Exposure and Reference Stations (Results of studies conducted under Part 1, Section 7)
- Table 5 QAQC of Effluent and Water Quality Data

Additional Appendices

- Appendix A Information specified by Section 8.1 of Reference Method EPS 1/Rm/13: 96 hr acute rainbow trout test
- Appendix B Information specified by Section 8.1 of Reference Method EPS 1/Rm/14: 72 hr acute *Daphnia magna* test
- Appendix C 7-d Topsmelt Growth and Survival Sublethal Toxicity Test
- Appendix D 92-h Echinoderm Fertilization Sublethal Toxicity Test
- Appendix E 7-d Sublethal Champia (Algae) Sublethal Toxicity Test
- Appendix F Results of Effluent Characterization, as per Paragraph 15(1)(a)
- Appendix G Acute Toxicity Testing Reports
- Appendix H Sublethal Toxicity Testing Reports
- Appendix I Polaris 2005 Sampling Event Chronology
- Appendix J Letter from ALS explaining missed holding times of alkalinity and nitrate for July 6,2005 sample

The MMER and EEM data required to be reported in electronic format were submitted electronically through the RISS online system on November 10 2005. In addition to this hardcopy report, an electronic pdf version of this report is being emailed to you (e-mailed November 10, 2005).

If you have any questions regarding the annual report or aspects of the application of the MMER to the Polaris Mine, please feel free to contact me.

Yours truly,

Original signed by B. Donald

Bruce Donald

Attachments: 2005 3rd Quarter Regulatory Data Tables

cc: Randy Baker (Azimuth Consulting Group)

Ken Russell (Environment Canada)

Jenny Ferone (Environment Canada)

Polaris Mine 2005 3rd Quarter MMER Report

Prepared for

Environment Canada, Prairie & Northern Region Room 200, 4999 98th Ave. Edmonton, AB, T6B 2X3

November 10, 2005

Teck Cominco

Bag 2000 Kimberley, BC, Canada V1A 3E1

2005 3rd QUARTER MMER REPORT

LOCATION - FINAL DISCHARGE POINT FROM GARROW LAKE (GARROW LAKE DAM SIPHONS)

Table 1a. CONCENTRATIONS OF EFFLUENT FOR MMER SCHEDULE 4 SAMPLED WEEKLY

Sample Taken											
During The	Date			DELET	TERIOUS S	SUBSTANC	CE (mg/L) ¹				Collection
Week of	Sample Taken	Arsenic	Copper	Cyanide	Lead	Nickel	Zinc	TSS	Radium 226 ¹	pH ¹	Method
3-Jul-05	6-Jul-05	0.00020	0.00024	0.0050	0.00017	0.00060	0.0127	4	0.0050	7.49	Grab
10-Jul-05	13-Jul-05	0.00020	0.00061	0.0050	0.00230	0.00088	0.0205	3.0	0.0050	7.48	Grab
10-Jul-05	16-Jul-05	0.00020	0.00042	0.0444	0.00042	0.00081	0.0179	3.0	0.0090	7.59	Grab
17-Jul-05	23-Jul-05	0.00020	0.00047	0.0050	0.00024	0.00105	0.0325	3.0	0.0050	7.56	Grab
24-Jul-05	30-Jul-05	0.00021	0.00050	0.0050	0.00020	0.00141	0.0405	3.0	0.0050	7.70	Grab
31-Jul-05	6-Aug-05	0.00020	0.00052	0.0050	0.00047	0.00166	0.0356	3.0	0.0050	7.65	Grab
7-Aug-05	13-Aug-05	0.00020	0.00052	0.0050	0.00111	0.00149	0.0310	3.0	0.0080	7.79	Grab
14-Aug-05	24-Aug-05 ³	0.00020	0.00101	0.0050	0.00093	0.00474	0.0905	4.8	0.0090	8.13	Grab
21-Aug-05	27-Aug-05	0.00020	0.00079	0.0050	0.00076	0.00356	0.0680	3.7	0.0100	7.92	Grab
28-Aug-05	nd ²	nd ²	nd ²	nd ²	nd ²	nd ²	nd ²	nd ²	nd ²	nd ²	nd ²
4-Sep-05	nd^2	nd ²	nd ²	nd ²	nd ²	nd ²					
11-Sep-05	nd^2	nd ²	nd ²	nd ²	nd ²	nd ²					
18-Sep-05	nd ²	nd ²	nd ²	nd ²	nd ²	nd ²	nd ²	nd ²	nd ²	nd ²	nd ²
25-Sep-05	nd ²	nd ²	nd ²	nd ²	nd ²	nd ²	nd ²	nd ²	nd ²	nd ²	nd ²

Note¹ - All concentrations are in mg/L except Radium 226 which is Bq/L and pH which is in pH units

Concentrations in italicized font are less than the detection limit shown.

Table 1b. MONTHLY MEAN CONCENTRATIONS OF EFFLUENT FOR MMER SCHEDULE 4

	MONTHLY MEAN CONCENTRATION OF DELETERIOUS SUBSTANCE3													
MONTH OF	Arsenic	Copper	Cyanide	Lead	Nickel	Zinc	TSS	Radium 226						
July/04	0.0002	0.00045	0.0129	0.00066	0.00095	0.0248	3	0.0058						
August/04	0.0002	0.00071	0.00500	0.00082	0.00286	0.0563	3.6	0.0080						
September/04	nd ²	nd ²	nd ²	nd ²	nd ²	nd ²	nd ²	nd ²						

Note¹ - All concentrations are in mg/L except Radium 226 which is Bg/L

Note ² - "nd" refers to no effluent discharge to sample

Note ³ - due to weather conditions samples could not be collected the week of August 14th, two sets were collected the following week.

Note ² - "nd" refers to no effluent discharge to sample

Note³ - Monthly Mean Concentrations - the MEAN value of the concentrations measured in all water samples collected during each month when a deleterious substance is deposited.

Table 1c. MASS LOADING OF DELETERIOUS SUBSTANCE FOR EACH DAY SAMPLED

Sample Taken										Average Daily	
During The	Date		DAILY MA	SS LOADIN	NG OF DE	LETERIOU	S SUBSTA	ANCE (kg/da	ıy)¹	Flow Rate	
Week of	Sample Taken	Arsenic	Copper	Cyanide	Lead	Nickel	Zinc	TSS	Radium 226 ¹	(m³/day)⁴	
3-Jul-05	6-Jul-05	0.002	0.002	0.042	0.001	0.005	0.108	34	42,353	8,471	
10-Jul-05	13-Jul-05	0.001	0.002	0.018	0.008	0.003	0.075	11	18,178	3,636	
10-Jul-05	16-Jul-05	0.001	0.001	0.148	0.001	0.003	0.060	10	30,086	3,343	
17-Jul-05	23-Jul-05	0.001	0.003	0.027	0.001	0.006	0.177	16	27,214	5,443	
24-Jul-05	30-Jul-05	0.000	0.001	0.011	0.000	0.003	0.092	7	11,299	2,260	
31-Jul-05	6-Aug-05	0.001	0.003	0.034	0.003	0.011	0.240	20	33,734	6,747	
7-Aug-05	13-Aug-05	0.002	0.006	0.056	0.012	0.017	0.348	34	89,872	11,234	
14-Aug-05	24-Aug-05 ³	0.004	0.018	0.089	0.017	0.084	1.604	85	159,501	17,722	
21-Aug-05	27-Aug-05	0.003	0.010	0.063	0.010	0.045	0.856	47	125,830	12,583	
28-Aug-05	nd ²	0	0	0	0	0	0	0	0	0	
4-Sep-05	nd ²	0	0	0	0	0	0	0	0	0	
11-Sep-05	nd ²	0	0	0	0	0	0	0	0	0	
18-Sep-05	nd ²	0	0	0	0	0	0	0	0	0	
25-Sep-05	nd ²	0	0	0	0	0	0	0	0	0	
								-			

Note¹ - Mass Loading is in kilograms per day of the deleterious substance deposited except Radium 226 which is in Bq per day

Table 1d. MASS LOADING PER CALENDAR MONTH FOR EACH DELETERIOUS SUBSTANCE

		Average Weekly	Total Monthly										
CALENDAR	CALENDAR MASS LOADING ¹ FOR DELETERIOUS SUBSTANCE (kg/month) ²												
MONTH OF	Arsenic	Copper	Cyanide	Lead	Nickel	Zinc	TSS	Radium 226 ²	(m³/week)	(m³/month)			
July/04	0.03	0.06	1.53	0.08	0.12	3.16	483.14	800,602	32,412	143,540			
August/04	0.07	0.29	1.87	0.32	1.21	23.62	1,438.14	3,169,267	84,501	374,218			
September/04	0	0	0	0	0	0	0	0	0	0			

Note¹ - Total Mass Loading for Calendar month calculated by multiplying the Average Daily Mass Loading for the Month x # days in the month

Note ² - "nd" refers to no effluent discharge to sample

Note ³ - August 24 data are presented in the week of the August 14th

Note ⁴ - Discharge for August 6 is an estimate pending verification by Teck Cominco.

Note² - Mass loading units are in kg per month except Radium 226, which is in Bg permonth

Note³ - Average Weekly Flow Rate calculated by multiplying Average Daily Flow Rate x 7 days per week

Note⁴ - Total Monthly Volume calculated by multiplying Average Daily Flow Rate for the month x days in month

Table 2

RESULTS OF ACUTE LETHALITY TESTS AND DAPHNIA MAGNA MONITORING TESTS

	Effluent Acutely	Effluent Acutely
Date	Lethal to	Lethal to Daphnia
Sample	Rainbow Trout	magna
Collected	(yes or no)	(yes or no)
16-Jul-05	No	No
6-Aug-05	No	No

Non-compliance Information

If effluent was non-compliant with the aurthorized limits set out in Schedule4, indicate the cause(s) of non-compliance and remedial measures planned or implemented. Also indicate remedial measures planned or implemented in response to the failure of acute lethality tests.

There were no non-compliant concentrations, and no failed acute lethality toxicity tests during 2005 3rd Quarter for Polaris Mine.

Table 3. 2005 3rd Quarter Polaris Mine Effluent Characterization Results (Part 1, Section 4)

Effluent Characterization from Final Discharge Point - Garrow Lake Former Dam / Syphons

Northing: 75°22'32" Easting: 96°48'37"

	Facility Name: FDP Name: Sample ID: Sampling Date:	Mine (L Gar G Creek	co Metals Limi ittle Cornwallis row Lake Syph G-Creek 16-Jul-05	Island)	-	
	Sample Method:	Grab	Grab	Grab		
		0.00	0.00	0.00	Detection	
Parameter	Units				Limit	Methods ¹
Hardness	mg/L	149	184	375	0.54 - 5.4	Calculation - EPA Method 3005A, ICPOES (EPA Method 6010B) ⁴
Alkalinity, Total	mg/L	28.1	29.2	52.5	2.0	Colourimetry - APHA Method 2320 (potentiometric titration)
Aluminum, Total	mg/L	<0.20	0.0085	<0.20	0.001 - 0.2	ICPMS ³
Cadmium, Total	mg/L	0.000034	0.000044	0.000097	0.000020	SPR-IDA ² , ICPMS ³
Iron, Total	mg/L	0.012	0.043	0.014	0.010	SPR-IDA ² , ICPMS ³
Mercury, Total	mg/L	<0.000010	<0.000010	<0.000010	0.000010	Cold Vapour Atomic Florescence Spectrophotometry
Molybdenum, Total	mg/L	< 0.0050	<0.0050	< 0.0050	0.0050	ICPMS ³
Ammonia Nitrogen	mg/L	0.036	0.037	<0.020	0.020	APHA Method 4500-NH3 (selective ion electrode)
Nitrate Nitrogen	mg/L	0.032	<0.050	0.072	0.025 - 0.050	APHA Method 4110 (determination of inorganic ions by ion chromatography)
Arsenic, Total	mg/L	<0.00020	<0.00020	<0.00020	0.00020	Hydride-Vapour Atomic Absorption Spectrophotometry
Copper, Total	mg/L	0.000240	0.000424	0.000516	0.000050	Chelation SPR-IDA ² , ICPMS ³
Cyanide, Total	mg/L	<0.0050	0.0444	<0.0050	0.0050	Colourimetry - APHA Method 4500-CN (cynate hydrolosis using an ammonia selective electrode
Lead, Total	mg/L	0.000166	0.000415	0.000467	0.000050	Chelation SPR-IDA ² , ICPMS ³
Nickel, Total	mg/L	0.000601	0.000807	0.00166	0.000050	Chelation SPR-IDA ² , ICPMS ³
Zinc, Total	mg/L	0.0127	0.0179	0.0356	0.00050	Chelation SPR-IDA ² , ICPMS ³
Total Suspended Soli	ds mg/L	4.0	<3.0	<3.0	3.0	Gravimetry - APHA Method 2540 (filtration through glass fibre filter)
Radium-226 (a)	Bq/L	0.0050	0.009	< 0.0050	0.0050	Radio Chemistry ⁵
pH	pH units	7.49	7.59	7.65	0.010	APHA Method 4500-H (pH electrode meter)

Notes:

published by the American Public Health Association, and with procedures adapted from "Test Methods for Evaluating Solid Waste" SW-846 published by

the USEPA. The procedures may involve preliminary sample treatment by acid digestion, using either hotplate or microwave oven, or filtration (EPA Method 3005A).

Instrumental analysis is by inductively coupled plasma - optical emissionspectrophotometry ICPOES (EPA Method 6010B).

< = Less than the detection limit indicated.

⁽a) Results are expressed as Becquerels per litre (Bg/L). This analysis is subcontracted to SRC, Saskatoon.

¹Original data reports are available upon request

²SPR-IDA = Suspended Particulate Resin consisting of immobilized iminodiacetate on a divinyl benzene polymer is used to chelate and preconcentrate metals in seawater (preparation technique).

³Instrumental analysis is by ICPMS = Inductively Coupled Mass Spectrometry.

⁴This analysis is carried out using procedures adapted from "StandardMethods for the Examination of Water and Wastewater" 20th Edition 1998,

⁵All radium isotopes in the sample solution are separated by coprecipitation with lead sulfate. The precipitate is redissolved and the radium isotopes are separated by coprecipitation with barium sulfate. The precipitate is filtered and mounted on a stainless steel disk. It is then counted on an alpha spectrometer. The radium 226 alpha energy is distinct and the peak can be clearly identified.

Table 4. 2005 3rd Quarter Polaris Mine Water Quality Monitoring Results (Part 1, Section 7)

-							
Station:		Exposu	re Area	Referen			
				,	~1km NE of		
B		Garrow Bay at I		exposure station			
Description:		Creek Co		with Garro	,		
Northing:		75°2 96°4		75°2: 96°4'			
Easting:		96°4	8.30	96°4	7.12.		
		Teck Cominco I	Metals Limited -	Teck Cominco I	Metals Limited -		
		Polaris Mine (L		Polaris Mine (L			
Facility Name:		Isla		`	ind)		
FDP Name:		Garrow Lal		Garrow Lak			
Area Name:		Garrow Ba	, i		/ Reference		
Sample ID:		G-BAY	G-Bay (b)	T-BAY REF	Ref		
Sampling Date:		16-Jul-05	6-Aug-05	16-Jul-05	6-Aug-05		
Sample Method:		Grab	Grab	Grab	Grab		
_							
Parameters	Units					Detection Lim	
Hardness	mg/L	215	385	271	840	0.54-5.4	Calculation - EPA Method 3005A, ICPOES (EPA Method 6010B) ⁴
Alkalinity, Total	mg/L	44.2	63.2	23.0	53.5	2.0	Colourimetry - APHA Method 2320 (potentiometric titration)
Aluminum, Total	mg/L	0.0519	<0.10	0.0619	<0.10	0.001-0.2	ICPMS ³
Cadmium, Total	mg/L	0.000051	0.000081	<0.000020	<0.000020	0.000020	SPR-IDA ² , ICPMS ³
Iron, Total	mg/L	0.207	0.015	0.217	0.011	0.010	SPR-IDA ² , ICPMS ³
Mercury, Total	mg/L	<0.000010	<0.000010	<0.000010	<0.000010	0.000010	Cold Vapour Atomic Florescence Spectrophotometry
Molybdenum, Total	mg/L	<0.0050	<0.0050	<0.0050	< 0.0050	0.0050	ICPMS ³
Ammonia Nitrogen	mg/L	0.048	<0.020	<0.020	<0.020	0.020	APHA Method 4500-NH3 (selective ion electrode)
Nitrate Nitrogen	mg/L	<0.050	0.092	<0.050	0.0261	0.025	APHA Method 4110 (determination of inorganic ions by ion chromatography)
Arsenic, Total	mg/L	<0.00020	<0.00020	0.00050	0.00024	0.00020	Hydride-Vapour Atomic Absorption Spectrophotometry
Copper, Total	mg/L	0.000748	0.000608	0.000563	0.000305	0.000050	Chelation SPR-IDA ² , ICPMS ³
Cyanide, Total	mg/L	<0.0050	<0.0050	<0.0050	<0.0050	0.0050	Colourimetry - APHA Method 4500-CN (cynate hydrolosis using an ammonia selective electrode
Lead, Total	mg/L	0.00147	0.000517	0.000690	0.000078	0.000050	Chelation SPR-IDA ² , ICPMS ³
Nickel, Total	mg/L	0.00126	0.00188	0.000554	0.000412	0.000050	Chelation SPR-IDA ² , ICPMS ³
Zinc, Total	mg/L	0.0154	0.0224	0.00323	0.00122	0.00050	Chelation SPR-IDA ² , ICPMS ³
Total Suspended Solids	mg/L	16.7	<3.0	<3.0	<3.0	3.0	Gravimetry - APHA Method 2540 (filtration through glass fibre filter)
Radium-226 (a,b)	Bq/L	0.010	n/a	<0.0050	<0.0050	0.0050	Radio Chemistry ⁵
pH	pH units	7.64	7.96	7.40	7.89	0.010	APHA Method 4500-H (pH electrode meter)
Water Temperature ⁶	°C	0.2	0.6	-0.1	0.2	n/a	Field - Campbell Scientific Hydrolab Model H20, or YSI Meter Model 85
Dissolved Oxygen ⁶	mg/L	13.2	11.6	15.2	13.9	n/a	Field - Campbell Scientific Hydrolab Model H20, or YSI Meter Model 85

Notes

The Garrow Bay exposure area (mouth of the creek), and Garrow Bay reference area were frozen during the July 6, 2005 sampling event.

published by the American Public Health Association, and with procedures adapted from "Test Methods for Evaluating Solid Waste" SW-846 published by

the USEPA. The procedures may involve preliminary sample treatment by acid digestion, using either hotplate or microwave oven, or filtration (EPA Method 3005A).

Instrumental analysis is by inductively coupled plasma - optical emissionspectrophotometry ICPOES (EPA Method 6010B).

< = Less than the detection limit indicated.

⁽a) Results are expressed as Becquerels per litre (Bq/L). This analysis is subcontracted to SRC, Saskatoon.

⁽b) n/a for August 6, 2005 sample = not available, the sample was lost during analysis by SRC with no additional sample remaining to repeat the analysis.

¹Original data reports are available upon request

²SPR-IDA = Suspended Particulate Resin consisting of immobilized iminodiacetate on a divinyl benzene polymer is used to chelate and preconcentrate metals in seawater (preparation technique).

³Instrumental analysis is by ICPMS = Inductively Coupled Mass Spectrometry.

⁴This analysis is carried out using procedures adapted from "StandardMethods for the Examination of Water and Wastewater" 20th Edition 1998,

⁵All radium isotopes in the sample solution are separated by coprecipitation with lead sulfate. The precipitate is redissolved and the radium isotopes are separated by coprecipitation with barium sulfate. The precipitate is filtered and mounted on a stainless steel disk. It is then counted on an alpha spectrometer. The radium 226 alpha energy is distinct and the peak can be clearly identified.

⁶Temperature and dissolved oxygen data are estimated pending verification by Teck Cominco.

Table 5. 2005 3rd Quarter Polaris Mine QAQC Sample Results¹ Including Field Duplicates, Field Blanks, and Transport Blanks.

Sample Type:		Field Duplicate	Original Sample		Field Duplicate	Original Sample		Field Duplicate	Original Sample	
Sample ID:		Dup	G Creek		DUP	G-Creek		Dup	Ref	
Location:		Garrow Lal	ke Syphons		Garrow La	ke Syphons		Garrow Ba	y Reference	
Description:		Final Disch	narge Point	RPD^2	Final Disch	narge Point	RPD^2	~1km NE of confluence with Garrow Creek		
Sampling Date:			ıl-05	(%)		ul-05	(%)	6-A	ug-05	(%)
	Parameter						- ` '	-		
Parameters	Units									
Hardness	mg/L	140	149	6.0	187	184	1.6	852	840	1.4
Alkalinity, Total	mg/L	28.0	28.1	0.4	29.0	29.2	0.7	53.8	53.5	0.6
Aluminum, Total	mg/L	<0.10	<0.20	n/a	0.0087	0.0085	2.4	<0.10	<0.10	n/a
Cadmium, Total	mg/L	0.000040	0.000034	17.6	0.000049	0.000044	11.4	<0.000020	<0.000020	n/a
Iron, Total	mg/L	0.013	0.012	8.3	0.043	0.043	0.0	0.011	0.011	0.0
Mercury, Total	mg/L	< 0.000010	<0.000010	n/a	<0.000010	<0.000010	n/a	< 0.000010	<0.000010	n/a
Molybdenum, Total	mg/L	< 0.0050	< 0.0050	n/a	< 0.0050	< 0.0050	n/a	< 0.0050	< 0.0050	n/a
Ammonia Nitrogen	mg/L	0.032	0.036	11.1	0.044	0.037	18.9	<0.020	< 0.020	n/a
Nitrate Nitrogen	mg/L	0.028	0.032	12.5	< 0.050	< 0.050	n/a	0.0348	0.0261	33.3
Arsenic, Total	mg/L	0.00021	<0.00020	n/a	<0.00020	<0.00020	n/a	<0.00020	0.00024	n/a
Copper, Total	mg/L	0.000295	0.000240	22.9	0.000376	0.000424	11.3	0.000321	0.000305	5.2
Cyanide, Total	mg/L	< 0.0050	< 0.0050	n/a	0.0058	0.0444	86.9	< 0.0050	< 0.0050	n/a
Lead, Total	mg/L	0.000241	0.000166	45.2	0.000409	0.000415	1.4	0.000062	0.000078	20.5
Nickel, Total	mg/L	0.000673	0.000601	12.0	0.000819	0.000807	1.5	0.000460	0.000412	11.7
Zinc, Total	mg/L	0.0136	0.0127	7.1	0.0185	0.0179	3.4	0.00165	0.00122	35.2
Total Suspended Solids	mg/L	<3.0	4.0	n/a	<3.0	<3.0	n/a	<3.0	<3.0	n/a
Radium-226 (a,b)	Bq/L	< 0.0050	0.0050	n/a	<0.0050	0.009	n/a	0.0060	< 0.0050	n/a
рН	pH units	7.62	7.49	1.7	7.58	7.59	0.1	7.80	7.89	1.1
Salinity	0/00	<1.0	<1.0	n/a	<1.0	<1.0	n/a	4.6	4.6	0.0
Calcium, Total	mg/L	16.5	19.1	13.6	21.4	21.1	1.4	58.1	57.6	0.9
Magnesium, Total	mg/L	24.0	24.6	2.4	32.3	31.9	1.3	172	169	1.8

Notes

Cells in grey shading have RPD values >50% for co-located field duplicates

QAQC Results

A total of 3 duplicate samples and 5 blank samples were collected during the 2005 EEM program at Polaris mine. All RPD values were less than 50%, with the exception of one measurement of cyanide on July 16, 2005. Cyanide is not used in the process and is typically measured at less than the detection limit. With the exception of the aforementioned cyanide measurement, which is questionable, the data generally indicate good reproducibility between co-located field duplicates (i.e., low measurement and analytical variability).

Blank samples from the on-site distilled water that had been stored indicated relatively high levels of zinc, copper, and lead. This contamination was considred to be a result of the storage procedure and metal leaching from the metal jerry cans that the water was stored in for the year. The transport blanks using commmercial distilled water indicated low concentrations of all paramters (i.e., typically less than, or slightly higher than detection limits), which reveals no background contamination issues with the analysis.

¹QAQC samples were collected during each EEM monitoring event. At least one field duplicate and/or one blank sample was collected during each event.

²RPD = Relative Percent Difference = [Absolute value (DUP-ORIG)/ORIG]*100%

³Distilled water from onsite distiller, stored for 1 year in jerry cans onsite.

⁴Commercial distilled water transported to mine site.

Table 5. 2005 3rd Quarter Polaris Mine QAQC Sample Results¹ Including Field Duplicates, Field Blanks, and Transport Blanks.

Sample Type:		Field Blank	Field Blank	Field Blank	ALS Travel Blank	ALS Travel Blank
Sample ID:						
Location:		n/a	n/a	n/a	n/a	n/a
Description:		Distilled Water ³	Distilled Water ³	Distilled Water ³	Distilled Water ⁴	Distilled Water ⁵
Sampling Date:		6-Jul-05	16-Jul-05	6-Aug-05	24-Aug-05	24-Aug-05
-	Parameter					
Parameters	Units					
Hardness	mg/L	3.07	<0.54	0.85	<0.50	<0.50
Alkalinity, Total	mg/L	3.2	<2.0	<2.0	<2.0	<2.0
Aluminum, Total	mg/L	< 0.0010	< 0.0050	<0.10	< 0.0010	<0.0010
Cadmium, Total	mg/L	< 0.000050	<0.000020	< 0.000050	<0.000020	<0.000050
Iron, Total	mg/L	<0.010	<0.010	<0.010	<0.010	<0.010
Mercury, Total	mg/L	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010
Molybdenum, Total	mg/L	<0.000050	< 0.0050	< 0.0050	<0.000050	<0.000050
Ammonia Nitrogen	mg/L	<0.020	<0.020	<0.020	-	-
Nitrate Nitrogen	mg/L	< 0.0050	< 0.0050	< 0.0050	-	-
Arsenic, Total	mg/L	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020
Copper, Total	mg/L	0.00484	0.00167	0.0244	<0.000050	<0.00010
Cyanide, Total	mg/L	<0.0050	<0.0050	<0.0050	-	-
Lead, Total	mg/L	0.00212	0.00607	0.0445	<0.000050	<0.000050
Nickel, Total	mg/L	<0.00010	<0.000050	< 0.00050	<0.000050	<0.00010
Zinc, Total	mg/L	0.0080	0.00440	0.0040	<0.00050	<0.0010
Total Suspended Solids	mg/L	<3.0	<3.0	<3.0	<3.0	<3.0
Radium-226 (a,b)	Bq/L	<0.0050	<0.0050	<0.0050	-	-
рН	pH units	6.27	5.59	6.17	5.51	5.53
Salinity	0/00	<1.0	<1.0	<1.0	<1.0	<1.0
Calcium, Total	mg/L	1.23	0.084	0.341	<0.050	<0.050
Magnesium, Total	mg/L	<0.10	<0.10	<0.10	<0.050	<0.050

POLARIS MINE – 2005 3rd QUARTER MMER REPORT

APPENDIX A

i. Information specified by Section 8.1 of Reference Method EPS 1/Rm/13: 96 hr acute rainbow trout test

APPENDIX B

i. Information specified by Section 8.1 of Reference Method EPS 1/Rm/14: 72 hr acute Daphnia magna test

APPENDIX C

i. Information specified in Schedule 5 of the MMER (June 2002) for Reference Method EPAW 95-EPA West Coast: 7-day Topsmelt Survival and Growth Tests.

APPENDIX D

Information specified in Schedule 5 of the MMER (June 2002) for Reference Method EPS 1/Rm/27-EC:
 92 hr Echinoderm (sand dollar) Fertilization Test

APPENDIX E

i. Information specified in Schedule 5 of the MMER (June 2002) for Reference Method EPA/600/4-91-003, Method 1009.0: Algae (*Champia parvula*) 7-day Sublethal Growth Tests

APPENDIX F

i. Results of Effluent Characterization, as per Paragraph 15(1)(a)

APPENDIX G

ii. Acute toxicity testing laboratory reports

APPENDIX H

i. Sublethal toxicity testing laboratory reports

APPENDIX I

i. Polaris 2005 Sampling Event Chronology

APPENDIX J

i. Letter from ALS explaining missed holding times for July 6, 2005 sample

APPENDIX A

96-h Acute Rainbow Trout Toxicity Test

Section 8.1.1 Effluent

- i. Name & location of operation generating the effluent
 - Polaris Mine, Little Cornwallis Island, Nunavut
 - Final Discharge Point for Garrow Lake is geo referenced as 75° 22' 32" N, 97° 48' 37" W.
- ii. Date & time of sampling
 - Samples for monthly acute toxicity testing were collected
 - Test 1: Saturday July 16, 2005 0900h
 - Test 2: Saturday August 6, 2005 1000h
- iii. Type of sample
 - Final effluent water
- iv. Brief description of sampling point
 - 20m downstream of the siphon discharge point at Garrow Lake dam
- v. Sampling method
- Water was collected from at least 15cm below the surface using a water pump with silicon tubing
- Water was collected from the upstream direction
- The pump was flushed with site water for at least one minute prior to sample collection
- 2 x 20L sample bottles were filled
- vi. Name of person submitting samples
 - Blake Hamer (Gartner Lee) Test 1
 - Brenda Bolton (Gartner Lee) Test 2
- vii. Labeling/coding of sample (Sample IDs)
 - Test 1 G-Creek Acute 071605
 - Test 2 Garrow Creek
- viii.Date & time of sample receipt
 - Samples for sublethal toxicity testing were received:
 - Test 1 Tuesday July 19, 2005 1045h
 - Test 2 Tuesday August 9, 2005 1015h
- ix. Temperature upon sample receipt at laboratory
 - Test 1 − 12.7 °C
 - Test 2 − 19.0 °C

Section 8.1.2 Test Facilities and Conditions

- i. Test type & method
 - 96-hour Rainbow Trout LC₅₀
- ii. Indications of deviations from requirements in Sections 2 to 7 of Method EPS 1/RM/13
 - No deviations from requirements
- iii. Name and city of testing laboratory
- EVS Environment Consultants, North Vancouver, BC
- iv. Source of test species
 - Sun Valley
- v. Percent mortality of fish in stock tank(s)
 - Test 1: 0.1%
 - Test 2: 0.1%
- vi. Species of test organism
 - Rainbow Trout (*Oncorhynchus mykiss*)
- vii. Date and time for start of definitive test
 - Test 1: July 21, 2005 1035h
 - Test 2: August 11, 2005 1500h
- viii. Person(s) performing the test and verifying the results

- Test 1: Marriah Grey, Robert Harrison, Julianna Kalocai
- Test 2: Anja Fouche, Robert Harrison, Julianna Kalocai
- ix. pH, temperature, dissolved oxygen, and conductivity of unadjusted, undiluted effluent
 - Test 1: pH 7.3, T 15.0 °C, DO 10.4 mg/L, C 1445 μmhos/cm
 - Test 2: pH 7.4, T 15.0 °C, DO 10.1 mg/L, C 2510 μmhos/cm
- x. Confirmation that no adjustment of sample or solution pH occurred
 - Test 1: No pH adjustment
 - Test 2: No pH adjustment
- xi. Indication of aeration of test solutions before introduction of fish
 - Test 1: 6.5 ± 1 mL/min/L for 30mins
 - Test 2: 6.5 ± 1 mL/min/L for 30mins
- xii. Concentrations and volumes tested
 - Concentrations (% effluent volume / total volume) tested and total volumes used were:
 - Control (0%) 10 L (test 1&2)
 - 6.25% 10 L (test 1&2)
 - 12.5% 10 L (test 1&2)
 - 25% 10 L (test 1&2)
 - 50% 10 L (test 1&2)
 - 100% 10 L (test 1&2)

xiii.Measurements of dissolved oxygen, pH and temperature

Sample Collection Date	Test Concentration	Temperature (0hr)	Temperture (48 hr)	Dissolved Oxygen (0hr)	Dissolved Oxygen (48hr)	pH (0hr) pH	pH (48hr) pH	Conductivity (0hr)
	(% v/v)	(°C)	(°C)	(mg/L)	(mg/L)	units	units	umhos/cm
Test 1	0 (Control)	15	15	10.1	9.7	7	6.7	37
16-Jul-05	6.25	15	15	10.1	9.5	7.1	6.8	194
	12.5	15	15	10.1	9.8	7.1	6.8	301
	25	15	15	10.1	9.8	7.1	6.8	418
	50	15	15	10.1	9.8	7.2	6.9	775
	100	15	15	10.2	9.8	7.3	7	1445
Test 2	0 (Control)	15	15	10.1	9.3	7	7	40
19-Aug-05	6.25	15	15	10.1	9.4	7	7	323
	12.5	15	15	10.1	9.4	7	7.1	535
	25	15	15	10.1	9.6	7	7.1	827
	50	15	15	10.1	9.6	7.2	7.2	1373
	100	15	15	10.1	9.7	7.4	7.3	2510

- xiv. Number of fish added to each test vessel
 - 10 fish/ 10 L vessel (Test 1 & 2)
- xv. Mean and range of fork length of control fish at end of test
 - Test 1: 30 mm (25 33)
 - Test 2: 31 mm (27 35)
- xvi. Mean wet weight of individual control fish at end of the test
 - Test 1: 0.29 g (0.20 0.37)
 - Test 2: 0.33 g (0.22 0.46)
- xvii. Estimated loading density of fish in test solutions
 - Test 1: 0.29 g/L
 - Test 2: 0.33 g/L

Section 8.1.3 Results

- i. Number of mortalities of fish in each test solution
 - Results were the same for Test 1, and Test 2, except where noted
 - Control (0%) 0
 - 6.25% 0
 - 12.5% 0
 - 25% 0
 - 50% 0
 - 100% 0
- ii. Number of control fish showing atypical/stressed behaviour
 - None in Test 1 or Test 2
- iii. Mean mortality rate in solutions of effluent and control water
 - Results were the same for Test 1 and Test 2
 - Control (0%) 0%
 - 6.25% 0%
 - 12.5% 0%
 - 25% 0%
 - 50% 0%
 - 100% 0%
- iv. Estimate of 96-h LC50 in multi-concentration tests
 - Results were the same for Test 1 and Test 2
 - 96hr LC₅₀ concentration > 100% effluent
- v. Most recent 96-h LC50 for reference toxicity test(s)
 - Reference toxicity tests for Toxicant: SDS
 - Test 1 & 2: (Jul-12-03) 96-h $LC_{50} = 24 \text{mg/L SDS}$, 95% CL = 18-32 mg/L
- vi. Reference toxicant warning limits (mean +/- 2SD)
 - Reference toxicity tests for Toxicant: SDS
 - Test 1 & 2: 96-h $LC_{50} = 29 + /- 12 \text{ mg/L SDS}$

APPENDIX B

72-h Acute *Daphnia magna* Toxicity Test

Section 8.1.1 Effluent

- i. Name & location of operation generating the effluent
 - Polaris Mine, Little Cornwallis Island, Nunavut
 - Final Discharge Point for Garrow Lake is geo referenced as 75° 22' 32" N, 97° 48' 37" W.
- ii. Date & time of sampling
 - Samples for monthly acute toxicity testing were collected
 - Test 1: Saturday July 16, 2005 0900h
 - Test 2: Saturday August 6, 2005 1000h
- iii. Type of sample
 - Final effluent water
- iv. Brief description of sampling point
 - 20m downstream of the siphon discharge point at Garrow Lake dam
- v. Sampling method
 - Water was collected from at least 15cm below the surface using a water pump with silicon tubing
 - Water was collected from the upstream direction
 - The pump was flushed with site water for at least one minute prior to sample collection
 - 2 x 20L sample bottles were filled
- vi. Name of person submitting samples
 - Blake Hamer (Gartner Lee) Test 1
 - Brenda Bolton (Gartner Lee) Test 2
- vii. Labeling/coding of sample (Sample IDs)
 - Test 1 G-Creek Acute 071605
 - Test 2 Garrow Creek
- viii.Date & time of sample receipt
 - Samples for sublethal toxicity testing were received:
 - Test 1 Tuesday July 19, 2005 1045h
 - Test 2 Tuesday August 9, 2005 1015h
- ix. Temperature upon sample receipt at laboratory
 - Test 1 − 12.7 °C
 - Test 2 − 19.0 °C

Section 8.1.2 Test Facilities and Conditions

- ii. Test type & method
 - 48-hour *Daphnia magna* LC₅₀
- iii. Indications of deviations from requirements in Sections 2 to 7 of Method EPS 1/RM/13
 - No deviations from requirements
- iv. Name and city of testing laboratory
 - EVS Environment Consultants, North Vancouver, BC
- v. Species of test organism
 - Daphnia magna
- vi. Date and time for start of definitive test
 - Test 1: July 19, 2005 1600h
 - Test 2: August 11, 2005 1030h
- vii. Person(s) performing the test and verifying the results
 - Test 1: Shiva Behnia, Julianna Kalocai
 - Test 2: Shiva Behnia, Julianna Kalocai
- viii.pH, temperature, dissolved oxygen, and conductivity of unadjusted, undiluted effluent
 - Test 1: pH 7.3, T 21.0 °C, DO 10.8 mg/L, C 1566 μ mhos/cm
 - Test 2: pH 7.5, T 21.0 °C, DO 10.8 mg/L, C 2850 μmhos/cm

- ix. Confirmation that no adjustment of sample or solution pH occurred
 - Test 1: No pH adjustment
 - Test 2: No pH adjustment
- x. Indication of any adjustment of hardness of effluent sample
 - Test 1: No hardness adjustment (initial hardness = 160 mg/L)
 - Test 2: No hardness adjustment (initial hardness = 300 mg/L)
- xi. Indication of any aeration of sample
 - Test 1: 25-50 mL/min/L for 12mins
 - Test 2: 25-50 mL/min/L for 15mins
- xii. Concentrations and volumes tested
 - Concentrations (% effluent volume / total volume) tested and total volumes used for both Test 1 and Test 2 were:
 - Control (0%) 200 mL
 - 6.25% 200 mL
 - 12.5% 200 mL
 - 25% 200 mL
 - 50% 200 mL
 - 100% 200 mL

xiii. Measurements of dissolved oxygen, pH and temperature

Sample Collection Date	Test Concentration	Temperature (0hr)	Temperture (48 hr)	Dissolved Oxygen (0hr)	Dissolved Oxygen (48hr)	pH (0hr) pH	pH (48hr) pH	Conductivity (0hr)	Hardness (0hr)
	(% v/v)	(°C)	(°C)	(mg/L)	(mg/L)	units	units	umhos/cm	(mg/L)
Test 1	0 (Control)	20	21	9.1	8.7	7.6	7.6	344	94
16-Jul-05	6.25	20	21	9.1	8.7	7.6	7.6	426	
	12.5	20	21.5	9	8.7	7.6	7.7	505	
	25	20.5	21.5	9	8.7	7.6	7.7	648	
	50	20.5	21	9	8.7	7.4	7.7	954	
	100	21	21.5	8.9	8.7	7.4	7.5	1566	160
Test 2	0 (Control)	20	21	9.1	8.6	7.4	7.6	354	94
19-Aug-05	6.25	20	21	9	8.5	7.4	7.7	505	
	12.5	20.5	21	9	8.5	7.5	7.7	654	
	25	20.5	21	8.9	8.5	7.5	7.7	990	
	50	21	21	8.9	8.5	7.5	7.6	1582	
	100	21	21	8.9	8.5	7.6	7.6	2850	300

- xiv. Estimates of time to first brood, average number of neonates per brood, and percent mortality during the seven-day period prior to the test
 - Test 1: 8 days to brood, >34 neonates/brood, 0% mortality in 7d prior to test
 - Test 2: 7 days to brood, >29 neonates/brood, 0% mortality in 7d prior to test
- xv. Number of neonates per test vessel and milliliters of solution per daphnid
 - Methods for all tests and dilution series were the same:
 - 10 neonates per vessel
 - 200 mL of solution per vessel
 - 20 mL of solution per daphnid

Section 8.1.3 Results

- i. Number of dead and/or immobile daphnids in each test solution including controls
 - Results were the same for Test 1 and Test 2
 - Control (0%) 0 dead / immobile
 - 6.25% 0 dead / immobile
 - 12.5% 0 dead / immobile
 - 25% 0 dead / immobile
 - 50% 0 dead / immobile
 - 100% 0 dead / immobile
- ii. For single-concentration test the number of daphnids dead in each of three replicate effluent solutions and in each of three replicate control solutions at end of test. Also report the mean value.
 - Single concentration test was not conducted, dilution series tests were conducted
- iii. Estimate of 48-h LC50 and 95% confidence limits in multi-concentration tests, 48-h EC50 for immobilization and 95% confidence limits, indication of statistical method on which results are based.
 - Test 1: 48-h $LC_{50} = > 100\%$ effluent
 - Test 2: 48-h $LC_{50} = > 100\%$ effluent
- iv. Most recent 48-h LC50 for reference toxicant test(s), reference chemical(s), date test initiated, historic geometric mean LC50 and warning limits.
 - Reference toxicity tests for Toxicant: Zinc
 - Test 1: (Jul-19-05) 96-h LC₅₀ = $426\mu g/L$ Zinc, 95% CL = $362 504 \mu g/L$
 - Test 2: (Aug-15-05) 96-h LC₅₀ = $481 \mu g/L$ Zinc, 95% CL = $388 597 \mu g/L$
- v. Reference toxicant warning limits (mean +/- 2 SD)
 - Reference toxicity tests for Toxicant: Zinc
 - Test 1: 96-h LC₅₀ = 445 (+/- 280) μ g/L Zinc
 - Test 2: 96-h LC₅₀ = 445 (+/- 280) μ g/L Zinc

APPENDIX C

7-d Topsmelt Growth and Survival Toxicity Test

Effluent Sample

- i. Name & location of operation generating the effluent
 - Polaris Mine, Little Cornwallis Island, Nunavut
 - Final Discharge Point for Garrow Lake is geo referenced as 75° 22' 32" N, 97° 48' 37" W.
- ii. Date & time of sampling
 - Samples for sublethal toxicity testing were collected:
 - Test 1 Saturday July 16, 2005 0900h
 - Test 2 Saturday August 6, 2005 1000h
- iii. Type of sample
 - Final effluent water from final discharge point
- iv. Brief description of sampling point
 - 20m downstream of the siphon discharge point at Garrow Lake dam
- v. Sampling method
 - Water was collected from at least 15cm below the surface using a water pump with silicon tubing
 - Water was collected from the upstream direction
 - The pump was flushed with site water for at least one minute prior to sample collection
 - 3 x 20L sample bottles were filled
- vi. Name of person submitting samples
 - Blake Hamer (Gartner Lee) Tests 1
 - Brenda Bolton (Gartner Lee) Test 2
- vii. Labeling/coding of sample (Sample IDs)
 - Test 1 G-Creek Sublethal 071605
 - Test 2 Garrow Creek
- viii.Date & time of sample receipt
 - Samples for sublethal toxicity testing were received:
 - Test 1 Tuesday July 19, 2005 1045h
 - Test 2 Tuesday August 9, 2005 1015h
- ix. Temperature upon sample receipt at laboratory
 - Test 1 − 12.7 °C
 - Test 2 − 19.0 °C

Test Organisms Imported from External Supplier

- i. Species of test organism
 - Topsmelt (*Atherinops affinis*)
- ii. Name and city of testing laboratory
 - EVS Environment Consultants, North Vancouver, BC
- iii. Source of test species
 - Aquatic Bio Systems (ABS), Fort Collins, Colorado
- iv. Date test species acquired on
 - Test 1 July 19, 2005
 - Test 2 August 9, 2005
- v. Indications of deviations from EC guidance on the importation of test organisms
 - No deviations from EC requirements
- vi. Percent mortality of fish in 24-hour period preceding the test
 - Test 1 <10% mortality in approximately 450 fish upon receipt
 - Test 2 <10% mortality in approximately 450 fish upon receipt
- vii. Age at start of test
 - Test 1 10 days post-hatch
 - Test 2 10 days post-hatch

viii. Unusual appearance, behaviour, or treatment of larvae before their use in the test

- Nothing unusual noted for any test
- ix. Confirmation that larvae are actively feeding and swimbladders are not inflated
 - All tests Larvae actively feeding and swimbladders not inflated
- x. Confirmation that temperature change was <3°C and dissolved oxygen was maintained at >6mg/L during transport
 - Temperature change was <2°C and dissolved oxygen supersaturated mg/L during transport
- xi. Test organism acclimation rate at the testing laboratory
 - For both tests: Organisms were received on the day of set-up
 - Organisms were received in holding water conditions of DO=supersaturated, pH = 7.3, T = 21°C, salinity = 33ppt
 - Organisms were acclimated to EVS water holding conditions of DO = 7.5 mg/L, pH = 7.8, T=20°C salinity = 28-29ppt,
 - Acclimation was conducted in the lab on the day of the test by adding lab seawater at approximately 30 min. intervals. The differences between the water quality upon receipt and EVS holding conditions were minor.

Test Facilities and Conditions

- i. Test type & method
 - 7-day Topsmelt (Atherinops affinis) Survival and Growth Toxicity Test
 - Static renewal
 - Sample water was renewed daily
 - Reference Method EPA/600/R-95/136 (EPAW 95-EPA West Coast)
- ii. Dates or test days during test when subsamples or multiple samples were renewed
 - Samples were renewed daily for all tests (Test Day 1,2,3,4,5,6)
 - Three subsamples were used on days i) 0-1; ii) 2-3; and iii) 4-5-6-7
- iii. Indications of deviations from requirements in Sections 11 of Method EPA/600/R-95/136 (EPAW 95-EPA West Coast)
 - No deviations from requirements
 - Salinity controls were run
 - Sample water salinity for
 - Test 1 was 6 ppt
 - Test 2 was 1.0 ppt
- iv. Date and time for start of definitive test
 - Test 1 Tuesday July 19, 2005 1430h
 - Test 2 Tuesday August 9, 2005 1500h
- v. Date for test completion
 - Test 1 July 26, 2005
 - Test 2 August 16, 2005
- vi. Test vessel description
 - For all tests was a 600mL beaker
- vii. Person(s) performing the test and verifying the results
 - Test 1: Testing and overall setup conducted by: Jenny Shao and QA/QC by: Julianna Kalokai
 - Test 2: Testing and overall setup conducted by: Jenny Shao and OA/OC by: Julianna Kalokai
- viii.pH, temperature, dissolved oxygen, and conductivity of unadjusted, undiluted effluent
 - Test 1: pH 7.7, T 20.0 °C, DO 11.1 mg/L, C 1520 μmhos/cm
 - Test 2: pH 7.7, T 20.0 °C, DO 9.8 mg/L, C 2700 μmhos/cm
- ix. Confirmation that no adjustment of sample or solution pH occurred
 - For both tests, no pH adjustment

- x. Indication of aeration of test solutions before introduction of fish
 - For both tests, no pre-aeration was conducted, none was required
- xi. Indication that EC guidance document for salinity adjustment was followed
 - The following was done for all 3 tests:
 - No deviations from EC guidance document on preparation of hypersaline brine (HSB)
 - HSB prepared from natural seawater concentrated to 90ppt (by filtering to at least 10 µm before placing it into the freezer and then freezing/refreezing to remove frozen layer and concentrate salts in the hypersaline brine)
 - No deviations from EC guidance document for salinity adjustment of sample
 - HSB was added to samples to salinity adjust them to ~30ppt
 - For a 200mL volume the concentrations were prepared by adding:
 - Test 1: 143mL of effluent + 57mL of HSB for the highest concentration. This solution was then diluted using natural seawater for the lower test concentrations (i.e., 50% of the highest concentration + 50% of the dilution water, repeated for subsequent dilutions).
 - Test 2: 135mL of effluent + 65mL of HSB for the highest concentration. This solution was then diluted using natural seawater for the lower test concentrations (i.e., 50% of the highest concentration + 50% of the dilution water, repeated for subsequent dilutions).
- xii. Type and source of control/dilution water
 - For all 3 tests, control/dilution water was UV-sterilized, 0.45μm-filtered natural seawater from the Vancouver Aquarium

xiii.Concentrations and volumes tested:

- Concentrations (% effluent volume / total volume) tested and total volumes used were:
- For Test 1:
- Control (0%) 200 mL
- Salinity Control (0%) 200 mL
- 4.5% 200mL
- 8.9% 200mL
- 17.9% 200mL
- 35.7% 200mL
- 71.4% 200mL
- For Test 2:
- Control (0%) 200 mL
- Salinity Control (0%) 200 mL
- 4.2% 200mL
- 8.4% 200mL
- 16.9% 200mL
- 33.7% 200mL
- 67.4% 200mL

xiv. Number of replicated per concentration

- For both tests: 5 replicates per concentration
- xv. Number of organisms added to each test vessel
 - For both tests: 5 fish per vessel

xvi. Manner and rate of exchange of test solutions

• For both tests: Daily renewal

xvii. Measurements of dissolved oxygen, pH and temperature, and salinity for each 24 hr period

- Test 1: See attached photocopied pages 1 and 2 of original laboratory report
- Test 2: See attached photocopied pages 3 and 4 of original laboratory report

Results

- i. Number and % of mortalities of fish in each test solution. Note that this data is presented in units of number of SURVIVORS and % MORTLITY. (Data is entered from original handwritten tables in lab reports)
 - Test 1: Totals from all 5 replicates are presented:

Concentration		Νι	umber	of Su	rvivor	s - Day	y of Te	est	%	Mort	ality o	on the	Day	of Te	st
(% effluent v/v)	Replicate	1	2	3	4	5	6	7	1	2	3	4	5	6	7
Control	Α	5	5	5	5	5	5	5	0	0	0	0	0	0	0
	В	5	5	5	5	5	5	5	0	0	0	0	0	0	0
	С	5	5	5	5	5	5	5	0	0	0	0	0	0	0
	D	5	5	5	5	5	5	5	0	0	0	0	0	0	0
	E	5	5	5	5	5	5	5	0	0	0	0	0	0	0
Brine	Α	5	5	5	5	5	5	5	0	0	0	0	0	0	0
Control	В	5	5	5	5	5	5	5	0	0	0	0	0	0	0
	С	5	5	5	5	5	5	5	0	0	0	0	0	0	0
	D	5	5	5	5	5	5	5	0	0	0	0	0	0	0
	E	5	5	5	5	5	5	5	0	0	0	0	0	0	0
4.5%	Α	5	5	5	5	5	5	5	0	0	0	0	0	0	0
	В	5	5	5	5	5	5	5	0	0	0	0	0	0	0
	С	5	5	5	5	5	5	5	0	0	0	0	0	0	0
	D	5	5	5	5	5	5	4	0	0	0	0	0	0	20
	E	5	5	5	5	5	5	5	0	0	0	0	0	0	0
8.9%	Α	5	5	5	5	5	5	5	0	0	0	0	0	0	0
	В	5	5	5	5	5	5	5	0	0	0	0	0	0	0
	С	5	5	5	5	5	5	5	0	0	0	0	0	0	0
	D	5	5	5	5	5	5	5	0	0	0	0	0	0	0
	E	5	5	5	5	5	5	4	0	0	0	0	0	0	20
17.9%	Α	5	5	5	5	5	5	5	0	0	0	0	0	0	0
	В	5	5	5	5	5	5	5	0	0	0	0	0	0	0
	С	5	5	5	5	5	5	5	0	0	0	0	0	0	0
	D	5	5	5	5	5	5	5	0	0	0	0	0	0	0
	E	5	5	5	5	5	5	5	0	0	0	0	0	0	0
35.7%	Α	5	5	5	5	5	5	5	0	0	0	0	0	0	0
	В	5	5	5	5	5	5	5	0	0	0	0	0	0	0
	С	5	5	5	5	5	5	5	0	0	0	0	0	0	0
	D	5	5	5	5	5	5	5	0	0	0	0	0	0	0
	E	5	5	5	5	5	5	5	0	0	0	0	0	0	0
71.4%	Α	5	5	5	5	5	5	5	0	0	0	0	0	0	0
	В	5	5	5	5	5	5	4	0	0	0	0	0	0	20
	С	5	5	5	5	5	5	5	0	0	0	0	0	0	0
	D	5	5	5	5	5	5	5	0	0	0	0	0	0	0
	E	5	5	5	5	5	5	5	0	0	0	0	0	0	0

• Test 2: Totals from all 5 replicates are presented:

Concentration		Number of Survivors - Day of Test % Mortality - Day of Test													
(% effluent v/v)	Replicate	1	2	3	4	5	6	7	1	2	3	4	5	6	7
Control	Α	5	5	5	5	5	5	5	0	0	0	0	0	0	0

Concentration								est		% Mortality - Day of Test					
(% effluent v/v)	Replicate	1	2	3	4	5	6	7	1	2	3	4	5	6	7
	В	5	5	5	5	5	5	4	0	0	0	0	0	0	20
	С	5	5	5	5	5	5	5	0	0	0	0	0	0	0
	D	5	5	5	5	5	5	5	0	0	0	0	0	0	0
	Е	5	5	5	5	5	5	4	0	0	0	0	0	0	20
Brine	Α	5	5	5	5	5	5	5	0	0	0	0	0	0	0
Control	В	5	5	5	5	5	5	5	0	0	0	0	0	0	0
	С	5	5	5	5	5	5	5	0	0	0	0	0	0	0
	D	5	5	5	5	5	5	4	0	0	0	0	0	0	20
	Е	5	5	4	4	4	4	3	0	0	20	0	0	0	20
4.2%	Α	5	5	4	4	4	4	4	0	0	20	0	0	0	20
	В	5	5	5	5	5	5	5	0	0	0	0	0	0	0
	С	5	5	5	5	5	5	5	0	0	0	0	0	0	0
	D	5	4	4	4	4	4	4	0	20	0	0	0	0	0
	Е	5	4	4	4	4	4	4	0	20	0	0	0	0	0
8.4%	Α	5	5	5	5	5	5	5	0	0	0	0	0	0	0
	В	5	5	5	5	5	5	5	0	0	0	0	0	0	0
	С	5	5	5	5	5	5	4	0	0	0	0	0	0	20
	D	5	5	5	5	5	5	5	0	0	0	0	0	0	0
	Е	5	5	5	5	5	5	5	0	0	0	0	0	0	0
16.9%	Α	5	5	5	5	5	5	5	0	0	0	0	0	0	0
	В	5	5	4	4	4	4	4	0	0	20	0	0	0	0
	С	5	5	5	5	5	5	5	0	0	0	0	0	0	0
	D	5	5	4	4	4	4	3	0	0	20	0	0	0	20
	Е	5	5	5	5	5	5	4	0	0	0	0	0	0	20
33.7%	Α	5	5	5	5	5	5	5	0	0	0	0	0	0	0
	В	5	5	5	5	5	5	5	0	0	0	0	0	0	0
	С	5	5	5	5	5	5	5	0	0	0	0	0	0	0
	D	5	5	4	4	4	4	4	0	0	20	0	0	0	0
	Е	5	5	5	5	5	5	5	0	0	0	0	0	0	0
67.4%	Α	5	5	5	5	5	5	5	0	0	0	0	0	0	0
	В	5	4	4	4	4	4	4	0	20	0	0	0	0	0
	С	5	5	5	5	5	5	3	0	0	0	0	0	0	40
	D	5	5	5	5	5	5	4	0	0	0	0	0	0	20
	E	5	5	5	5	5	5	4	0	0	0	0	0	0	20

ii. Average dry weight (mg) per original fish in test vessel. No preservation of fish was used. Fish were dried and then weighed.

• Test 1: Mean dry weight (mg) of each replicate and overall means are presented:

Concentration	-		Replicate		Overall Mean	Standard Deviation		
(% effluent v/v)	1	2	3	4	5			
D-Control	0.9600	1.0480	0.7560	1.0100	0.8060	0.9160	0.1284	
B-Control	1.0780	1.1300	1.0720	0.9420	0.6900	0.9824	0.1775	
4.5	0.7320	0.6840	0.9000	0.5200	1.0080	0.7688	0.1903	
8.9	1.0120	1.1320	0.9960	0.5400	0.3960	0.8152	0.3253	
17.9	0.9600	1.0280	0.9220	1.2440	0.9020	1.0112	0.1387	
35.7	0.8420	1.2900	1.2400	0.9640	0.9900	1.0652	0.1916	
71.4	1.2300	0.6620	0.9660	1.1000	0.5680	0.9052	0.2828	

• Test 2: Mean dry weight (mg) of each replicate are presented:

Concentration			Replicate				
(% effluent v/v)	1	2	3	4	5	Overall Mean	Standard Deviation
D-Control	0.8000	0.6080	1.0980	0.7760	0.5640	0.7692	0.2105
B-Control	0.8380	1.0760	0.9920	0.8020	0.8620	0.9140	0.1155
4.2	0.8120	0.9280	0.9700	1.0420	0.5720	0.8648	0.1837
8.4	0.8980	0.8560	0.7120	1.0200	1.0200	0.9012	0.1285
16.9	0.9820	0.8880	0.6860	0.5780	0.6420	0.7552	0.1718
33.7	0.7260	0.9700	0.7060	0.6300	0.7240	0.7512	0.1284
67.4	1.0340	0.8380	0.6120	0.8640	0.7040	0.8104	0.1615

- iii. Estimate of 7-d LC₅₀ (95% CL)
 - Test 1: 7-d LC₅₀ concentration > 71.4% effluent (highest concentration tested due to dilution for salinity adjustment)
 - Test 2: 7-d LC₅₀ concentration > 67.4% effluent (highest concentration tested due to dilution for salinity adjustment)
 - Quantal statistic methods not applicable
- iv. Estimate of 7-d IC₂₅ (95% CL) for growth
 - Test 1: 7-d IC₂₅ concentration > 71.4% effluent (highest concentration tested due to dilution for salinity adjustment)
 - Test 2: 7-d IC₂₅ concentration > 67.4% effluent (highest concentration tested due to dilution for salinity adjustment)
- v. Current reference toxicity tests (95% CL) for 7-d LC₅₀ for survival and 7-d IC₅₀ for growth
- Test 1 :Reference toxicity tests for Toxicant: Copper
 - Test conducted on July 19, 2005, same day as effluent test
 - Reference toxicant test was conducted on the same batch of externally supplied topsmelt
 used in the effluent test and under the same experimental conditions as the effluent test
 - 7-d LC₅₀ survival = 117 mg/L Cu, 95% CL = 100-136 mg/L
 - 7-d IC₅₀ growth = 116 mg/L Cu, 95% CL = 81-156 mg/L
- Test 2 :Reference toxicity tests for Toxicant: Copper
 - Test conducted on August 9, 2005, same day as effluent test
 - Reference toxicant test was conducted on the same batch of externally supplied topsmelt
 used in the effluent test and under the same experimental conditions as the effluent test
 - 7-d LC₅₀ survival = 103 mg/L Cu, 95% CL = 91-118 mg/L
 - 7-d IC_{50} growth = 95 mg/L Cu, 95% CL = 75-127 mg/L
- vi. Reference toxicity warning limits (+/- SD) for 7-d LC₅₀ for survival and 7-d IC₅₀ for growth
- Test 1: Reference toxicity tests for Toxicant: Copper
 - 7-d LC₅₀ survival = 133 ± 39 mg/L Cu
 - 7-d IC₅₀ growth = 132 ± 46 mg/L Cu
- Test 2: Reference toxicity tests for Toxicant: Copper
 - 7-d LC₅₀ survival = 132 ± 40 mg/L Cu,
 - 7-d IC₅₀ growth = 133 ± 40 mg/L Cu

APPENDIX D

92-h Echinoderm Fertilization Test

Effluent Sample

- i. Name & location of operation generating the effluent
 - Polaris Mine, Little Cornwallis Island, Nunavut
 - Final Discharge Point for Garrow Lake is geo referenced as 75° 22' 32" N, 97° 48' 37" W.
- ii. Date & time of sampling
 - Samples for sublethal toxicity testing were collected:
 - Test 1 Saturday July 16, 2005 0900h
 - Test 2 Saturday August 6, 2005 1000h
- iii. Type of sample
 - Final effluent water
- iv. Brief description of sampling point
 - 20m downstream of the siphon discharge point at Garrow Lake dam
- v. Sampling method
 - Water was collected from at least 15cm below the surface using a water pump with silicon tubing
 - Water was collected from the upstream direction
 - The pump was flushed with site water for at least one minute prior to sample collection
 - 4 x 20L sample bottles were filled
- vi. Name of person submitting samples
 - Blake Hamer (Gartner Lee) Tests 1
 - Brenda Bolton (Gartner Lee) Test 2
- x. Labeling/coding of sample (Sample IDs)
 - Test 1 G-Creek Sublethal 071605
 - Test 2 Garrow Creek
- xi. Date & time of sample receipt
 - Samples for sublethal toxicity testing were received:
 - Test 1 Tuesday July 19, 2005 1045h
 - Test 2 Tuesday August 9, 2005 1015h
- xii. Temperature upon sample receipt at laboratory
 - Test 1 − 12.7 °C
 - Test 2 − 19.0 °C

Test Organisms

- i. Species of test organism
 - Sandollar Echinoid (*Dendraster excentricus*)
- ii. Name and city of testing laboratory
 - EVS Environment Consultants, North Vancouver, BC
- iii. Source of test species
 - Westwind Sealab, Victoria BC
 - All adults providing gametes are from the same population and source
 - Gametes are spawned in-house at EVS
- iv. Date test species acquired on
 - Test 1: July 19, 2005
 - Test 2: August 9, 2005
- v. Holding time and conditions for adults
 - Test 1: Adults received at the testing laboratory the day of the test.
 - Test 2: Adults received at the testing laboratory the day of the test.
- vi. Indications of deviations from EC guidance on the importation of test organisms
 - Test 1: No deviations from EC requirements
 - Test 2: No deviations from EC requirements
- vii. Weekly percent mortality of adults being held over 7d preceding test

- Test 1: <2% per day over the 7 days preceding the test
- Test 2: <2% per day over the 7 days preceding the test

viii. Age of test organisms

- Test 1: < 4 hours after spawning
- Test 3: < 4 hours after spawning
- ix. Unusual appearance, behaviour, or treatment of adults or gametes before test start, or anything unusual about the test
 - Test 1: Organisms appear healthy, in good condition, nothing unusual about test organisms or test
 - Test 2: Organisms appear healthy, in good condition, nothing unusual about test organisms or test

Test Facilities and Conditions

- i. Test type & method
 - Echinoderm (Dendraster excentricus) Fertilization Toxicity Test
 - Static
 - Reference Method EPS/1/RM/27 with 1997 amendments
- ii. Test duration
 - Test 1: 10:10 min (10min sperm + 10min sperm & egg)
 - Test 2: 10:10 min (10min sperm + 10min sperm & egg)
- iii. Date and time for start of definitive test
 - Test 1: Tuesday July 19, 2005 1514h
 - Test 2: Tuesday August 9, 2005 1723h
- iv. Test vessel description
 - Test 1: 16 x 125mm test tubes
 - Test 2: 16 x 125mm test tubes
- v. Person(s) performing the test and verifying the results
 - Test 1: Testing by Shawn Seguin; QA/QC reviewed by Julianna Kalokai.
 - Test 2: Testing by Shawn Seguin: OA/OC reviewed by Julianna Kalokai.
- vi. Indication of rate and duration of pre-aeration of test solutions before initiation of test
 - Test 1: No pre-aeration
 - Test 2: No pre-aeration
- vii. Confirmation that no adjustment of sample or solution pH occurred
 - Test 1: No pH adjustment
 - Test 2: No pH adjustment

viii. Procedure for sample filtration

- Test 1: No sample filtration
- Test 2: No sample filtration
- ix. Procedure for preparation of hypersaline brine (HSB) as per EC guidance document on salinity adjustment July 1997
- Test 1: Hypersaline brine (HSB) was prepared from natural seawater concentrated to 90ppt (by filtering to at least 10 µm before placing it into the freezer and then freezing/refreezing to remove frozen layer and concentrate salts in the hypersaline brine). HSB was added to samples to salinity adjust them to 30ppt. For a 10mL volume the concentrations were prepared by adding 7.28mL of effluent + 2.72mL of HSB for the highest concentration. This solution was diluted using natural seawater for the lower test concentrations (i.e., 50% of the highest concentration + 50% of the dilution water, repeated for subsequent dilutions). No deviations from EC guidance document (July 1997) for salinity adjustment of sample.
- Test 2: Hypersaline brine (HSB) was prepared from natural seawater concentrated to 90ppt (by filtering to at least 10 µm before placing it into the freezer and then freezing/refreezing to remove frozen layer and concentrate salts in the hypersaline brine). HSB was added to samples to salinity adjust them to 30ppt. For a 10mL volume the concentrations were prepared by adding 7.13mL of effluent + 2.87mL of HSB for

the highest concentration. This solution was diluted using natural seawater for the lower test concentrations (i.e., 50% of the highest concentration + 50% of the dilution water, repeated for subsequent dilutions). No deviations from EC guidance document (July 1997) for salinity adjustment of sample.

- x. Procedure for salinity adjustment as per EC guidance document on salinity adjustment July 1997
 - No deviations from EC guidance for salinity adjustment
 - Test 1: salinity adjusted from 3.0 to 28 ppt
 - Test 2: salinity adjusted from 1.0 to 29 ppt
- xi. Type and source of control/dilution water
 - Test 1: UV-sterilized, 0.45µm-filtered natural seawater from the Vancouver Aquarium
 - Test 2: UV-sterilized, 0.45µm-filtered natural seawater from the Vancouver Aquarium
- xii. Concentrations and volumes tested
 - Test 1: Concentrations (% effluent volume / total volume) tested and total volumes used were:
 - Control (0%) 10mL
 - Salinity Control (0%) 10mL
 - 4.6% 10mL
 - 9.1% 10mL
 - 18.2% 10mL
 - 36.4% 10mL
 - 72.8% 10mL
 - Test 2: Concentrations (% effluent volume / total volume) tested and total volumes used were:
 - Control (0%) 10mL
 - Salinity Control (0%) 10mL
 - 4.5% 10mL
 - 8.9% 10mL
 - 17.8% 10mL
 - 35.6% 10mL
 - 71.3% 10mL
- xiii. Number of replicated per concentration
 - Test 1: 4 replicates per treatment concentration
 - Test 2: 4 replicates per treatment concentration
- xiv. Number of organisms per container
 - Test 1: 2000 eggs per vessel (100 counted)
 - Test 2: 2000 eggs per vessel (100 counted)
- xv. Measurements of pH and dissolved oxygen in sample water before use
 - Test 1: pH 8.2, DO 8.5
 - Test 3: pH 8.3, DO 8.5
- xvi. Measurements of pH, temperature, dissolved oxygen, and salinity during test
 - Test 1: pH 7.9 8.3, T 15.0°C, DO 8.5mg/L, salinity 28ppt
 - Test 2: pH 7.5 8.4, T 15.0°C, DO 7.8 8.5mg/L, salinity 29ppt

Results

- i. Number and % of fertilized eggs in each test concentration
 - Test 1: (Number is equal to percent since totals were 100)
 - Control (0%): # Fert = 64, 60, 66, 69
 4.6%: # Fert = 56, 51, 52, 53
 - 9.1%: # Fert = 39, 37, 37, 36
 - 18.2%: # Fert = 33, 28, 29, 30
 - 36.4%: # Fert = 39, 39, 37, 36

- 72.8%: # Fert = 20, 16, 21, 21
- Test 2: (Number is equal to percent since totals were 100)
 - Control (0%): # Fert = 88, 81, 85, 86
 Salinity Control: # Fert = 91, 86, 85, 87
 4.5%: # Fert = 82, 80, 79,78
 8.9%: # Fert = 76, 77, 77, 76
 17.8%: # Fert = 64, 59, 63, 61
 - 35.6%: # Fert = 50, 54, 54, 53
 - 71.3%: # Fert = 37, 40, 37,35
- ii. Estimate of IC₂₅ (95% CL) for fertilization success
 - Test 1: IC_{25} concentration = 5.2 (4.4 6.0)% v/v effluent
 - Test 2: IC_{25} concentration = 15.6 (13.6 18.3)% v/v effluent
 - Quantitative statistic used to generate IC₂₅ values was log-linear interpolation (200 resamples) calculated in ToxCalc v5.0.23 (for both Test 1 and Test 2)
- iii. Current reference toxicity tests (95% CL) for IC₅₀ for fertilization
- Test 1: Reference toxicity tests for Toxicant: Sodium Dodecyl Sulfate
 - Test conducted on July 19, 2005, same day as effluent test
 - Reference test conducted under same conditions
 - IC₅₀ for fertilization = 5.8 mg/L SDS, 95% CL = (5.2 6.5) mg/L
- Test 2: Reference toxicity tests for Toxicant: Sodium Dodecyl Sulfate
 - Test conducted on August 9, 2005, same day as effluent test
 - Reference test conducted under same conditions
 - IC₅₀ for fertilization = 3.9 mg/L SDS, 95% CL = (3.6 4.1) mg/L
- iv. Reference toxicant warning limits (+/- 2SD) for IC₅₀ for fertilization
 - Test 1: 3.6 +/- 4.4 mg/L SDS
 - Test 2: 3.9 +/- 4.3 mg/L SDS

APPENDIX E

7-d Sublethal *Champia* (Algae) Toxicity Test

Reporting Requirements for Reference Method EPA/600/4-91-003, Method 1009.0 (Champia)

Effluent Sample

- i. Name & location of operation generating the effluent
 - Polaris Mine, Little Cornwallis Island, Nunavut
 - Final Discharge Point for Garrow Lake is geo referenced as 75° 22' 32" N, 97° 48' 37" W.
- ii. Date & time of sampling
 - Samples for yearly sublethal toxicity testing were collected:
 - Test 1 Saturday July 16, 2005 0900h
 - Test 2 Saturday August 6, 2005 1000h
- iii. Type of sample
 - Final effluent water
- iv. Brief description of sampling point
 - 20m downstream of the siphon discharge point at Garrow Lake dam
- v. Sampling method
 - Water was collected from at least 15cm below the surface using a water pump with silicon tubing
 - Water was collected from the upstream direction
 - The pump was flushed with site water for at least one minute prior to sample collection
 - 1 x 4L sample bottles were filled
- vi. Name of person submitting samples
 - Blake Hamer (Gartner Lee) Tests 1
 - Brenda Bolton (Gartner Lee) Test 2
- vii. Temperature of water upon receipt at lab
 - Test 1: 18°C
 - Test 2: 22°C

xiii.Labeling/coding of sample (Sample IDs)

- Test 1 G-Creek Sublethal 071605
- Test 2 Garrow Creek

xiv. Date & time of sample receipt

• Samples for sublethal toxicity testing were received:

Test 1 – Tuesday July 19, 2005 – 1300h

Test 2 – Tuesday August 9, 2005 – 0900h

Test Organisms

- i. Species of test organism
 - Algae (Champia parvula)
- ii. Name and city of testing laboratory
 - Test 1: Stantec Consulting Ltd, Guelph Ontario
 - Saskatchewan Research Council [SRC], Saskatoon, SK
- iii. Source of test species and health of organisms
 - Test 1
- Source was Stantec in-house culture
- Batch number CH05-07
- Sexually mature male and female branches
- Females have trichogynes, males have sori with spermatia
- No organisms exhibiting unusual appearance, behaviour or undergoing unusual treatment were used in the test
- Test 2
- Sexually mature male and female branches
- Obtained from USEPA, Hatfield Marine Science Center, Newport Oregon, 1995
- Appear in excellent health, nothing unusual

Reporting Requirements for Reference Method EPA/600/4-91-003, Method 1009.0 (Champia)

- Females have trichogynes, males have sori with spermatia
- iv. Any unusual appearance, behaviour, or treatment of test organisms, before their use in test
 - Test 1 and Test 2
 - Nothing unusual about the appearance, behaviour, or treatment of test organisms, before their use in test; everything is normal
 - Nothing unusual about the tests

Test Facilities and Conditions

- i. Test type & method
 - Test 1:
 - Test of Sexual Reproduction using the Red Macroalga *Champia parvula*, EPA-821-R-02-014, October 2002 Method 1009.0, with Canadian adaptations (Environment Canada 1998, 1999)
 - Static, non-renewal
 - 48-hour exposure, followed by 7 day recovery period for cystocarp development
 - Test 2:
 - Test of Sexual Reproduction using the Red Macroalga Champia parvula, Reference Method -EPA/600/4-91/003, Method 1009.0
 - Static, non-renewal
 - 2 day exposure, followed by 5-7 day recovery period for cystocarp development
- ii. Date and time for start of definitive test
 - Test 1: Tuesday July 19, 2005 17:45h
 - Test 3: Tuesday August 9, 2005 time not noted but lab notes state tests started within 72 hrs of collection

xviii. Date for test completion

- Test 1 July 28, 2005
- Test 2 August 16, 2005
- iii. Test vessel description
 - Test 1: 270mL transparent polystyrene cups with polystyrene lids
 - Test 2: 270mL transparent polystyrene cups with polystyrene lids
- iv. Person(s) performing the test and verifying the results
 - Test 1: E. Jonczyk/ K. Johnson
 - Tests 2: Mary Moody
- v. Indication of pre-aeration of test solutions
 - Test 1: No pre-aeration
 - Test 2: No pre-aeration
- vi. Confirmation that no pH adjustment of sample or solution occurred
 - Test 1: No pH adjustment
 - Test 2: No pH adjustment
- vii. Indication that EC guidance document for salinity adjustment was followed
 - Test 1:
- No deviations from EC guidance document on preparation of hypersaline brine (Environment Canada Salinity Adjustment Guidance Document, revised Dec. 2001)
- HSB prepared from natural seawater at 90ppt (by filtering to at least 10 μm before placing it into the freezer and then freezing/refreezing to remove frozen layer and concentrate salts in the hypersaline brine)
- No deviations from EC guidance document for salinity adjustment of sample
- Salinity adjustment (for a 1000mL volume): 660mL effluent + 330mL HSB + 10mL test nutrient solution

Reporting Requirements for Reference Method EPA/600/4-91-003, Method 1009.0 (Champia)

- Salinity of samples adjusted from 0ppt to 32ppt
- Test 2:
- No deviations from EC guidance document on preparation of hypersaline brine (May 2001)
- HSB prepared from natural seawater at 90ppt (by filtering to at least 10 μm before placing it into the freezer and then freezing/refreezing to remove frozen layer and concentrate salts in the hypersaline brine)
- No deviations from EC guidance document for salinity adjustment of sample
- Salinity adjustment: 600mL effluent + 260mL HSB + 8.6 ml test nutrient solution Salinity of samples adjusted from 2ppt to 30ppt

viii. Type and source of control/dilution water

- Test 1:
- Natural seawater collected from Pointe-du-Chene in Shediac Bay, New Brunswick.
- No chemicals added.
- Filtered to 0.45µm prior to use
- Test 2
- Natural seawater collected at the Pacific Environmental Center, Environment Canada, North Vancouver, BC
- Filtered to 0.2μm and autoclaved prior to use
- Salinity adjusted as per EC guidance document to 30ppt with HSB from the same source
- ix. Type and quantity of any chemicals added to the control dilution water
 - Test 1: No chemicals added to dilution water. 10 mL of test nutrients.
 - Test 3: No chemicals added. Test nutrients as described in Test Method USEPA/600/4-91/003, Method 1009.0 were added at concentration of 10mL/L, analytical grade, 8.6 mL added
- x. Concentrations and volumes of test solutions
 - Concentrations (% effluent volume / total volume) tested and total volumes used were:
- Tests 1:
- Control (Natural Seawater) (0%) 100mL
- Salinity Control Brine (0%) 100mL
- 2.1% 100mL
- 4.4% 100mL
- 8.3% 100mL
- 16.5% 100mL
- 33% 100mL
- 66% 100mL
- Tests 2:
- Control (Natural Seawater) (0%) 100mL, 4.5cm depth
- Salinity Control Brine (0%) 100mL, 4.5cm depth
- 4.38% 100mL, 4.5cm depth
- 8.75% 100mL, 4.5cm depth
- 17.5% 100mL, 4.5cm depth
- 35% 100mL, 4.5cm depth
- 70% 100mL, 4.5cm depth
- xi. Number of replicates per concentration
 - Tests 1& 2: 3 replicates per concentration
- xii. Number of organisms per test chamber
 - Tests 1 & 2: 5 female branches + 2 male branches per chamber

Reporting Requirements for Reference Method EPA/600/4-91-003, Method 1009.0 (Champia)

xiii. Measurements of pH, temperature, dissolved oxygen, and salinity of sample before use

- Test 1 (unadjusted effluent): pH 8.0, T 22.0 °C, DO 10.2mg/L, salinity 0ppt
- Test 1 (before use): pH 8.0, T 22.5 °C, DO 7.0mg/L, salinity 32ppt
- Test 2 (unadjusted sample): pH 7.75, T 23.0 °C, DO 8.6mg/L, salinity 2ppt
- Test 2 (before use): pH 8.35, T 23.0 °C, DO 7.6mg/L, salinity 30ppt

xiv. Measurements of pH, temperature, dissolved oxygen, and salinity of test solution and controls at 0hr, 48hr, and the beginning and end of recovery period

- Test 1: See attached photocopied page 5 of original laboratory report
- Test 2: See attached photocopied pages 6 of original laboratory report

Results

- i. Number and % mortality of female plants after recovery in each test solution
 - Totals from all 3 replicates are presented:
 - Test 1:
- Control (0%): 0 (0%) mortality
 Salinity Control (0%): 0 (0%) mortality
 2.1%: 0 (0%) mortality
 4.4%: 0 (0%) mortality
 8.3%: 0 (0%) mortality
 16.5%: 0 (0%) mortality
 33%: 0 (0%) mortality
 - 66%: 0 (0%) mortality
- Test 2:
- Control (0%): 0 (0%) mortality
 Salinity Control (0%): 0 (0%) mortality
 4.38%: 0 (0%) mortality
- 8.75%: 0 (0%) mortality
- 17.5%: 0 (0%) mortality35%: 0 (0%) mortality
- 70%: 0 (0%) mortality
- ii. Mean number of cystocarps per plant in each replicate of each test concentration
 - Test 1: (Replicates are A, B, and C)
 - Control (0%): A) 26.8, B) 27.2, C) 26.4
 - Salinity Control (0%): A) 27.6, B) 27.4, C) 28.4
 - 2.1%:
 A) 29.4, B) 29.0, C) 30.0
 4.4%:
 A) 26.2, B) 26.8, C) 27.4
 - 8.3%: A) 27.6, B) 27.2, C) 28.0
 - 16.5%: A) 25.4, B) 26.4, C) 26.6
 - 33%: A) 18.4, B) 15.0, C) 18.4
 - 66%: A) 0.4, B) 0.2, C) 0.2
 - Test 2: (Replicates are A, B, and C)
 - Control (0%): A) 104.0, B) 74.2, C) 79.6
 - Salinity Control (0%): A) 103.8, B) 84.6, C) 99.0
 - 4.38%: A) 89.8, B) 70.0, C) 82.6
 - 8.75%: A) 86.6, B) 98.4, C) 93.6
 - 17.5%: A) 95.6, B) 94.0, C) 88.4
 - 35%: A) 91.8, B) 88.8, C) 67.2
 - 70%: A) 35.0, B) 36.6, C) 28.4

Reporting Requirements for Reference Method EPA/600/4-91-003, Method 1009.0 (Champia)

- iii. Estimate of IC₂₅ (95% CL) for cystocarp development
 - Test 1: IC_{25} concentration = 24.6 (22.2 27.2)% effluent v/v
- Quantal statistic method was linear interpolation determined using ToxStat 3.5
 - Test 2: IC_{25} concentration = 45.3 (27.5 52.4)% effluent v/v
- Quantal statistic method was linear interpolation (200 resamples) determined using ToxCalc v5.0.23
- iv. Current reference toxicity tests (95% CL) for IC₅₀ for cystocarp development
- Reference toxicity tests for Toxicant: Sodium Dodecyl Sulfate
 - Test 1: Test conducted on July 19, 2005, same day as effluent test
 - Reference toxicant test was conducted under the same experimental conditions as the effluent test
 - IC₅₀ cystocarp development = 0.134 mg/L SDS, 95% CL = (0.123 0.143) mg/L
 - Test 2: Test conducted on August 17, 2005, within 30 days of effluent test
 - Reference toxicant test was conducted under the same experimental conditions as the effluent test
 - IC₅₀ cystocarp development = 1.31mg/L SDS, 95% CL = (1.20 1.41) mg/L
- v. Reference toxicant warning limits (+/- 2SD) for IC₅₀ for cystocarp development
 - Reference toxicity tests for Toxicant: Sodium Dodecyl Sulfate
 - Test 1: 0.155 (0.112 0.216) mg/L SDS
 - Test 2: 1.41 (1.15 1.74) mg/L SDS

Pages 1 to 6 inclusive are included in the hardcopy sent in the mail. This data can also be found in the original lal reports in Appendix H.

APPENDIX F Results of Effluent Characterization as per Paragraph 15(1)(a)

RESULTS OF EFFLUENT CHARACTERIZATION

AS PER PARAGRAPH 15(1)(a)

Nine MMER effluent samples were collected during the 3nd Quarter of 2005 between July 6, 2005 and August 27, 2005. "Quarterly" EEM samples were collected from the effluent, exposure, and reference stations on July 16, 2005 and August 6, 2005 and analyzed for a wider suite of elements, as per the guidance document. Monthly loadings of metals to Garrow Bay were calculated based on average weekly discharge volumes from Garrow Lake to Garrow Bay via the creek outflow. The August 6, 2005 effluent volume discharge is estimated and will be finalized by Teck Cominco.

Holding times for nitrate and alkalinity were missed during the July 6, 2005 event due to an oversight by the laboratory. The oversight is explained in Appendix I and is not likely to influence results. A quarterly event with toxicity testing was planned for this event; however, due to a delay in shipment because of weather conditions at the mine site, toxicity samples missed holding times and were discarded at the labs. The parameters that missed holding times were "quarterly" parameters, and additional measurements were taken on July 16, 2005, corresponding to acute and sublethal toxicity testing.

Due to the high Arctic, remote location of the mine, travel into or out of the mine site can be hazardous due to weather conditions such as fog and snow. As the mine has ceased operations and little infrastructure exists onsite, sampling this season was conducted by small field crews stationed onsite, or by flying technicians in on a weekly basis to collect the MMER samples. In August and September, several planned MMER sampling attempts did not proceed due to hazardous weather conditions that prevented flights from getting into the mine site or from departing Resolute Bay. MMER samples were collected at the next possible time, and Ken Russell and Jenny Ferone were kept informed of this situation. The 2005 sampling chronology is presented in Appendix I. The last sample was collected on August 27, 2005. After this event, the mine was inaccessible due to weather until September 13, 2005, when Garrow Creek (final discharge point) was frozen with no discharge.

There were no exceedances of any Schedule 4 discharge limits during the quarter.

Water samples for acute and sublethal toxicity testing were collected using a pump system from about 20 m downstream of the historic dam location on Garrow Lake, within the main flow of the creek. Acute Lethality Testing was conducted on samples collected July 16, 2005 and August 6, 2005. There were no adverse effects observed for either the 96-hr Rainbow Trout toxicity test, or the 48-hr *Daphnia magna* toxicity test. LC_{50} values were >100% effluent for both species in all testing events.

Sublethal Toxicity Testing was conducted on samples collected July 16, 2005 and August 6, 2005. As this is considered a marine discharge, marine species were used for sublethal testing following brine adjustment of the brackish effluent (as per EC test protocols). Testing for fish (7-d Topsmelt growth and survival) and invertebrates (Sand dollar) was conducted at EVS Environment Consultants, Vancouver, BC, while algae (48-h *Champia*) testing was undertaken at Stantec Guelph, ON, for the July test, and at the Saskatchewan Research Council, Saskatoon SK, for the August test.

There were no effects observed in the Topsmelt Survival and Growth Test at the highest concentrations tested (>71.4%, and >67.4% effluent v/v).

Sublethal effects were observed for the echinoid and algal species in both tests. In the echinoid (Dendraster excentricus) fertilization test,

- the IC₂₅'s were 5.2, and 15.6% v/v, and
- the IC₅₀'s were 13.2, and 55% v/v

In the Champia parvula sexual reproduction test

- the IC₂₅'s were 24.6, and 45.3% v/v,
- the IC₅₀ was 61.4% v/v in the second test (not reported in the first test).

Zinc is the primary contaminant of potential concern (COPC) identified in mine effluent. Concentrations of zinc during 2005 averaged 39 $\mu g/L$ and ranged between 13 and 91 $\mu g/L$, which are well below the MMER effluent limit of 500 $\mu g/L$. These concentrations are also lower than those measured in 2003, 128 $\mu g/L$ (range 48 – 186 $\mu g/L$), and in 2004, 72 $\mu g/L$ (range 35 – 198 $\mu g/L$), and show a decreasing pattern over the last three years. Note the CCME guideline for zinc is 30 $\mu g/L$ and the BC AWQG guidelines are 7.5 and 33 $\mu g/L$, for the chronic and acute guidelines, respectively. Concentrations of zinc in Polaris mine effluent were not substantially higher than these guidelines in 2005.

On July 16, 2004 and August 6, 2005, the concentrations of zinc in the effluent were 17.9 and 35.6 μ g/L, respectively. The echinoid test endpoints converted into concentrations of zinc results in values of 0.93 and 5.5 μ g/L for the IC₂₅'s, and 2.4 and 19.6 μ g/L for the IC₅₀. Reference toxicity tests of zinc on *Dendraster* fertilization give mean EC₅₀ concentrations of 8.5 – 60 μ g/L (Dinnel et al. 1983). The reported range of *Dendraster* EC₅₀'s correspond to the August 6, 2005 IC₅₀ of 19.6 μ g/L. The IC₅₀ zinc concentration in the July 16, 2005 sample is lower than the literature EC₅₀'s and may indicate that other substances in the effluent were contributing to the sublethal effects in this sample. The echinoid test is quite sensitive to zinc, with IC25 (converted) zinc concentrations being less than the BC AWQG chronic guideline of 7.5 μ g/L.

Endpoints for the *Champia* test in terms of zinc concentrations were 4.4 and 16.1 μ g Zn/L (IC₂₅'s), and 21.9 μ g Zn/L (IC₅₀ in the August 6, 2005 sample). The reference IC₂₅ endpoint for zinc in the *Champia* test performed inhouse at SRC, reported in 2003, was 27 μ g Zn/L (95% confidence limits 16-42 μ g/L). This reference concentration is similar to the zinc concentrations corresponding to the IC25 an IC50 in the August 6, 2005 sample. Like the echinoid results, the IC25 converted zinc concentration in the July 16, 2005 sample was lower than reference endpoints and may indicate that other substances in this sample were contributing to toxicity. *Champia* also appears to be sensitive to zinc concentrations between the BC AWQG chronic guideline of 7.5 μ g/L and maximum guideline of 33 μ g/L.

Given the similarity between zinc concentrations in the effluent samples and the effects concentrations of zinc in reference tests, it is likely that zinc is responsible for the sublethal effects observed in both the *Dendraster* and *Champia* tests.

Reference: Dinnel, P.A., Q.J. Stober, J.M. Link, M.W. Letourneau, W.E. Roberts, S.P. Felton, and R.E. Nakatan. 1983. Methodology and Validation of a Sperm Cell Toxicity Test for Testing Toxic Substances in Marine Waters. Final Report, FRI-UW-8306, Fisheries Research Inst., School of Fisheries, University of Washington, Seattle, WA:208. Source: EPA EcoTox database.

APPENDIX G

Acute Toxicity Testing Laboratory Reports

Golder Associates Ltd.

195 Pemberton Avenue North Vancouver, British Columbia, Canada V7P 2R4 Telephone 604-986-4331 Fax 604-662-8548

August 17, 2005

E/05/0336 04-1424-044

Azimuth Consulting Group 218 – 2902 West Broadway Vancouver, BC V6K 2G8

Attention:

Ms. Cheryl Mackintosh

RE: WORK ORDERS: 0500296, 297

TOXICITY TEST RESULTS ON THE SAMPLES COLLECTED JULY 16, 2005

Dear Ms. Mackintosh

We are pleased to provide you with the results of the toxicity tests performed on the effluent sample identified as G-Creek-acute-071605 collected July 16, 2005. The sample was tested with the 48-h *Daphnia magna* and the 96-h rainbow trout LC50 toxicity tests. The tests were performed according to the Environment Canada protocol for conducting acute toxicity tests using *D. magna* (EPS 1/RM/14, Second Edition, 2000) and rainbow trout (EPS 1/RM/13, Second Edition, 2000). An independent EVS/Golder QA/QC review confirmed that all acceptability criteria specified by the protocol were met. The results of these tests are summarized from the appended data and are presented in Table 1.

Should you have any questions or comments regarding this report, please do not hesitate to contact the undersigned at 604-986-4331.

Yours very truly,

EVS ENVIRONMENT CONSULTANTSA Member of the Golder Group of Companies

Jennifer Young, B.Sc.

Bioassay Team Leader - Cladoceran Team

Attachment: Table 1

RH/clz

O:\Data\Final\2004\1424\04-1424-044\LET 0817 2005 Tox Test WO 0500296 297 1.doc

Verified By:

OA/OC Committee:

Cathy McPherson, B.Sc. Julianna Kalocai, M.Sc.

Table 1 Toxicity Test Results

		48h Daphnia magna	96-h Rainbow Trout -
SAMPLE ID	SAMPLE DATE	LC50 (95% CL) % (v/v)	LC50 (95% CL) % (v/v)
G-Creek-Acute-071605	July 16, 2005	>100	>100

CL - confidence limits.

EVS ENVIRONMENT CONSULTANTS 48-h Daphnia magna TOXICITY TEST DATA SUMMARY

Client Azimuth	EVS Analysts Sxg
EVS Project No. 04-1424-044	Test Type 48h LC50
EVS Work Order No. 0500293	Test Initiation Date 19 July 05
SAMPLE INFORMATION	3 0 3
	11.6
<u> </u>	
Amount Received 1×21 Subsample	ed from 1×20L RBT
Date Collected 16 July 05	
Date Received 19,2005	
Temperature (°C) 21.0	
pH 3.3 → 7.4	pH adjustment details:
Dissolved Oxygen (mg/L) 10.8 4.9	(1) Pre-aeration rate and duration: 12 min @25-50 ml/min
Conductivity (µmhos/cm) 1566	
Hardness (mg/L as CaCO ₃)	
Alkalinity (mg/L as CaCO ₃)	
Ammonia (mg/L N)	
Chlorine (mg/L Cl)	
DILUTION/CONTROL WATER (initial water quality)	, TEST SPECIES INFORMATION
Water Type moderately flood water (July)	3B) Broodstock Culture ID (in-house culture) 05 July A/B
Temperature (°C)	Age (on Day 0) < OHhr
pH 7.6	Days to First Brood 8
Dissolved Oxygen (mg/L)	Avg. Young/Brood (after 1st brood)
Conductivity (µS/cm)	% Mortality in 7 d Before Test
Hardness (mg/L as CaCO ₃)	Reference Toxicant ZiOC
Alkalinity (mg/L as CaCO ₃)	Current Reference Toxicant Result
Other	Reference Toxicant Test Date July 19, 2005
	48-h LC50 and 95% CL 426 (362 - 504) 1911 2
TEST CONDITIONS	Reference Toxicant Warning Limits (mean ± 2SD) and CV
Temperature Range (°C)	445 = 280 Mg/1 30 /CV=31
pH Range 7.4 - 7.7	- 413 230) REGIT FICE ST
B' 1 10	
Conductivity Range (μS/cm) 344 1566 Photoperiod (L:D h)	
Other	
TEST RESULTS The 48hc 10	SD of G-OGRAV Asida ODILAS
	SD of G-Creek-Acute-071605
15 >100 × (V/V).	
Data Verified By	Date Verified Ave. 16 /os
your vermen by your your	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
(V · (V

EVS ENVIRONMENT CONSULTANTS 48-h Daphnia magna ACUTE TOXICITY TEST DATA

Client Sproject No.		•	•		 /2 /3											1605
EVS Project No							•	Test	Initiati	on Dat	e/Time	16 J	2 1	ام مرد	(A)	16.00
Daphnid Broodstock						B		No.	Organi	sms/Vo	olume	10	120	\sim	1	<i>6</i> ,00
Concentration			er of S 1 to 48	urvivo h)	ors	Disso	olved O (mg/L)		Tem	perature	(°C)		pН		u	os/cm)
V. (VIV)	1	2	4	24	48	0	24	48	0	24	48	0	24	48	0	48
Control				10	10	9.1	8.7	8.7	20.0	21.0	21.0	7.6	75	7.6	344	344
												111		al and		44.349
						W										
6.25				10	10	٩.١	8.8	8.7	20.0	21.0	210	न.6	7.5	7.6	426	425
						A second			36	d de			7 12			
	<u>-</u>								resident of the second							
12,5		-		10	10	機能 9-D	8.8	87	20.0	21.0	71.5	7.6	7.5	フィ	505	506
1213				10	12											3
															10 mg	
				10	100			0 1						2.5	G2	/107
25				10	10	9.0	8.4	8.4	20.5	21.0	1) S	7.6	イう	4.4	ब्र्स 8	647
												90.0	***			
50				10	ľΰ	88	8.7	8.7	20.5	21.0	21.0	7.4	7.5	7.7	958	944
															200	
100	-			10	10	8.9	8.7	87	21.0	21.0	21.5	7.4	74	75	1566	1532
															77.5	
										18 18 18 18 18 18 18 18 18 18 18 18 18 1						
T. 1					nı		0.0	1/		0	7		2	77/		771-
Technician Initials			:		110	245	SXS	1000	Sig	315	111/	SYP	315	1/5	SXR	110
Sample Description		clea	ur -	colo	orl	22>	-									
WQ Instruments Use	d: T	emp.	Dre	CONCY	neka	b ا	H <u>I</u> -	A-03	0501	DO ;	I-A-	01120	>(C	ond. <u>I</u>	BA-91	90901
Comments							~									 .
Test Set Up By					Data V	Verifie	d Bv		1)0	ch c	L D	ate Ve	rified		Ans	16/05
	>x_k								74	n	F) ~				100	

EVS ENVIRONMENT CONSULTANTS RAINBOW TROUT ACUTE TOXICITY TEST DATA SUMMARY

Client Az math	EVS Analysts MJG, Repl
2-EV8 Project No. 04-1424-044	Test Type 96-6 LC50
EVS Work Order No. OSOOOG	Test Initiation Date Suly 2 (105 (a 1035)
SAMPLE Identification G-Cree	C 071605 Acute
Amount Received 2×20/	- of thos Active
5/1/1/10	·
Date Received Saly (6/0)	
Other Sam (1705)	
DILUTION/CONTROL WATER (initial water quality)	TEST SPECIES INFORMATION
Fresh Water (dechlorinated)	Source San Valley
Temperature (°C)	Collection Date/Batch 062205
pH 7.0	Control Fish Size (mean, SD and range measured at end of test)
Dissolved Oxygen (mg/L)	Date Measured July 25/05
Conductivity (μ S/cm) 37	Fork Length (mm) 30+8 (25-33)
Hardness (mg/L as CaCO ₃)	Wet Weight (g) 0.29±0.07(0.20-0.37
Alkalinity (mg/L as CaCO ₃)	Reference Toxicant SDS
Other	Current Reference Toxicant Result
	Reference Toxicant Test Date July 12/05
	Duration of Acclimation (days)
	96-h LC50 (and 95% CL) 24 (18 and 32)
	Reference Toxicant Warning Limits (mean ± 2SD) and CV 29±12 mg/L SDS CU! 21%
TEST CONDITIONS	J
Dissolved Oxygen Range (mg/L) 9,5-10.2	
Temperature Range (°C)	
pH Range 6.7-7.3	
Conductivity Range (μ S/cm) 37-1463	
Aeration Provided? (give rate) 6.5±1 mL/min/L	
Photoperiod (L:D h)	
No. Organisms/Volume 10/10/	
Loading Density (g/L) 0.29	
Acclimation Before Testing (days)	
Mortality In Previous Week of Acclimation (%)	
Other	
TEST RESULTS The 96-4 Coo S	astimated to be > loof (U/c)
Data Verified By Galh	Date Verified Aug. 4/05
Sand Up at a sand a	. • • • • • • • • • • • • • • • • • • •
Forms/Lab/Datasheets/Trout/SUMMARY.DOC February 13, 2003	

EVS ENVIRONMENT CONSULTANTS RAINBOW TROUT ACUTE TOXICITY TEST DATA

WHOLE SAMPLE WATER OUALITY	ER OUALITY													Client		1	trin	2. math					
	,											T.	Crelder	鑫	FVS Project No.		Ð	2/-13	522	500-162hl-50	<u> </u>		
Initial	ial pH Adjustment ¹		After 30-min Pre-aeration	-min tion						,			•	EVS V Trout	EVS Work Order No.	ter No.	EVS Work Order No. CSOCO Trout Batch No. and 7-d Acclimation Mortality	ation Mo	SOCIA on Mortality	50 00 00 00 00 00 00 00 00 00 00 00 00 0	Son	5.19	
Temp. (°C) (\$	1 1	N	5											No. Fi	No. Fish/Volume	ne -		- 1	4	701	_ (, k	1
Hd (Dom) OO	22		500	\(\)						1				Sample ID Date/Time	Sample ID Date/Time Collected	lected	5	17 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	15	0 + 10 0	500	20	لو
Cond. (µS/cm) /4/4	12/5		144	Ņ	Т.	Total Pre-Aeration Time	-Aeratio	n Time		30			min	Test Ir	utiation	Test Initiation Date/Time	յը 	35	412	165	(a) (C	132	
Document pri adjustment procedure (ir used) under Comments	ure (ir used) under C	omments																	J				
Concentration		Numb (1	Number of Survivors (1 to 96 hours)	urvivors urs)				Dissolved Oxygen (mg/L)	Oxyge	n (mg/L)			Tempera	Temperature (°C)	(:			Hd			Conductivity (µS/cm)	vity	
(n/n) %	1 2	4	24	48	72	96	0	24	48	72	96	0	24 2	48 72	2 96	0	24	48	72	96	0	98	
Control			10	10	0	(o); <i>Q[</i>	9.682		اطاره	67	15	/ \)	<u>\</u>	7,0	899	6.9	69 90 67	20	S	1	
6.25			(0	0/	0/	10	10.1	0.01	10.09.8 9.6	9.6	ρ ^	\ \ \	15/1	7	<u>S</u>)72	6,9	6.6	69 69 6.8		144	5	
(2.5			9)	0/	<u>()</u>	(0	161	99	9.8	9.6	98	(>)		≪	$\overline{\mathcal{R}}$	7	2. 2.	6.9	696	3.6	3012	305	
25			<u> </u>	10	10	10)701	99	9.9	9.60	88	7	5 1		5)	7.	1,0	7	2	@ @	78	423	
\$			0)	10	[3]	(0)	10,1	97	19.8 9.6	9.6	3.8	2	15 //		<u>\</u>	5		0214069	力の	5.	73	86	
100			0)	10	19	10	100	2.6 9.6 0° 277	9.6		83	5	7	1	2	7.3	1,7	2.6	7.5	101	75	[463	
											,					_							
Technician Initials			AON.	111	177	Pert	9	R RUN TTC	The	Mr. Beld Bud But	Beld	24 K	•	71/1	11.00	18 B	The ROLD BOOK YOUR	M	1/1/2/	1-804	Jet De	\$	
WQ Instruments Used:	Temperature	1	calbrated	28	28	Hd	4	-4-030302	030	205	DO		4-	4-3		0	Conductivity	J —	サン	9	4-03036		
Sample Description	clea	3																					
Comments										(
Test Set Up By	KOTA						Data V	Verified By		3	363	4				Date	Date Verified		3	1	0)		
										_	_								>				

August 26, 2002

Forms/Lab/Dalasheets/Trout/ACUTE.DOC

CHAIN-OF-CUSTODY/TEST REQUEST FORM

EVS consultants Canada V7P 2R4

Please see instructions for	Please see instructions for completion on back. Shaded areas to be completed by EVS Laboratory upon sample receipt.	complete	d by EV	S Labor	atory upor	sample	eceipt.			Ġ		3		L V Consultants Canada VP-2R4
Client Name:	Jym 1/16 0 Clie	Client Contact Name:	ot Name	7	Sauce 1	Bocald	!		- Shi	iği Öğ	Ship to: 5116 10 42(19) 915	- ·		Fax: 604-662-8548
Address: Bug 20	00	Phone: (7	-124(c22)		>0 ナジ					Š	CONSULTINGERCRUM	ZJWP.	SASIL	www.evsenvironment.com
ين ا	7		- rrb(c25	- 42	1545						\		Z _{ij} i	Shipping Date: July 16/05
VIA 3EI	San	Sampled By:	ŭ	sk e	Liane				Attu:		Edward Carai	101	1.7	
						2	¥	Test(s) Requested	ted	h	3	¢	7	EVS Baceint Chack 1st 199 M
Collection Date Time (dd/mmm/yy) (24-h clock)	Sample Identification	Type of Each Sample	Material Safety Data Sheet Attached? (V)	sample Collection Method 3 = grab; C = composite	Number of Sample Containers x Volume of Sample Container (i.e., 1 x 20 L)	Sample Container Type by Code	P-HI LCGO TON TON TON TON TON TON TON TON TON TO	-Day Topsmelt Dxicity Test D mini Echinodern Ectitistion		2 ° =	Notes? (e.g. preserved, saltwater, freshwater, may contain sewage)	ecelpt Sample Temp, (°C	Condition/linegrity	EVS Project # 041-74217-727747 EVS Workorder # 05.00.296/2-874 Sample Storage Location: 4°C/X Chemical © Other
For composite sample	For composite sample record date & time starting and ending					36	118 118 14°	コレレン		-		ы	S	Supporting documentation/other information attached if applicable
16/07/05 0900	1 G. Cresk-Acute_071605	SE		6 2,	×20	P \	\times			لهد	Estiment Weder		*	Signatures & dates correct?
16/07/05 0900	1 G-Creek - Sublathai UT1605	es E		6 3	×20	P		$\times \times$		E 4	Ettlyed Water		Ŋ.,	Chain-of-custody fully completed?
													М	Containers arrived in good condition (unbroken)?
							1						, 4	Container labels completed (i.e., dates, IDS)?
					ė ·								νi,	Container labels agreed with custody papers?
-													Ø,	Sample receipt temperature, within acceptable range? YNN
													<u>,</u>	Za: Sediment testing going to be initiated within 14 days? X : IN
									/				e.	If no, are samples under Nitrogen? If not, why?
													80	8 Chain-oi-custody generated upon récelpti
, i													o	Sample containers originate from EVS.
PO/Reference No.:				Com	mments/In	ments/Instructions:	K.∄.↓		1/2 moth	Pr. 54 14.00	ca Grova.			Teng: 12.72
Project Title: Polaris	MmEA.			E/	lection c	- 1	Kaca 1+, 1	Jor (hery	1 Mark	12. Jush	Hammy th	CMark	180 as	CMULK a Josh Carimuth group co
Results Needed By: 💢 🖔	Routine Twin Alound.			\dashv				V Brue	1 350la	h	Tock from al 2	1	الــا	bruce. donald a tock common com.
A) Released By: Binke Hamer	Hamer Dale: I uly 16, 2005	B) Rec	B) Received by: 5/177	10/2	,	Date: /	Date: 19 5c. L. M.		C) Released By:	. ,	Date:			D) Received by: Date:
Company: 6.4.4	Time: / 0 3 J	Company:	ر خ	Golde	_	Time:	Time: 10: 4/18	٠	Company:		Time:			Company: Time:
Shipping containers secured by	Shipping containers secured by: Tape Straps Lock Other (circle one)	Shippin	Shipping containers received Custody seals intact?	act?	sived secure?	N/A	8	Shiring Si	Shipping containers secured by:	iners secu	red by: Tape Straps Lock (circle one)		Other	Shipping containers received secure? Yes No Custody seals intact? Yes No N/A
ı	- 1				ч]	Day sour	nace	-			

1 Receiving Water (RW); Effluent (E); Elutriate (ELU); Sediment (SED); Chemical (CHEM); Stogmwater (SW); Other (Please Specify) 2. Collapsible Carboy (CC); Glass at (C3), SHON Can (LQ); Plastic HDEP (P); Plastic Blocket (PB); Other (Please Specify) 3 Please note any conditions the lab should be aware of to rastley and storage concerns 4. Acceptable (A); Unacceptable (U). Please note specifics (e.g., broken, leaking, lid not on) under Comments/Instructions

Revision Date: Sept. 25, 2000

White, yellow, pink - accompany the shipment Orange - retained by consignor (e.g., shipper) Yellow, retained by consigne (e.g., receiver) Pink - for use as needed White - returned to consignor by consignee

Distribution of copies:

Golder Associates Ltd.

195 Pemberton Avenue North Vancouver, British Columbia, Canada V7P 2R4 Telephone 604-986-4331 Fax 604-662-8548

August 31, 2005

E/05/0341 04-1424-044

Azimuth Consulting Group 218 - 2902 West Broadway Vancouver, BC V6K 2G8

Attention:

Ms. Cheryl Mackintosh

RE:

WORK ORDERS: 0500334, 335

TOXICITY TEST RESULTS ON THE SAMPLES COLLECTED AUGUST 6, 2005

Dear Ms. Mackintosh

We are pleased to provide you with the results of the toxicity tests performed on the effluent sample identified as Garrow Creek collected August 6, 2005. The sample was tested with the 48-h Daphnia magna and the 96-h rainbow trout LC50 toxicity tests. The tests were performed according to the Environment Canada protocol for conducting acute toxicity tests using D. magna (EPS 1/RM/14, Second Edition, 2000) and rainbow trout (EPS 1/RM/13, Second Edition, 2000). An independent EVS/Golder QA/QC review confirmed that all acceptability criteria specified by the protocol were met. The results of these tests are summarized from the appended data and are presented in Table 1.

Should you have any questions or comments regarding this report, please do not hesitate to contact the undersigned at 604-986-4331.

Yours very truly,

EVS ENVIRONMENT CONSULTANTS A Member of the Golder Group of Companies

Jennifer Young, B.Sc.

Bioassay Team Leader - Cladoceran Team

Verified By:

QA/QC Committee:

Cathy McPherson, B.Sc.

Julianna Kalocai, M.Sc.

Attachment: Table 1

RH/clz

O:\Data\Final\2004\1424\04-1424-044\LET 0831 2005 Tox Test 0500334 335 .doc

Table 1 Toxicity Test Results

		48h Daphnia magna	96-h Rainbow Trout -
SAMPLE ID	SAMPLE DATE	LC50 (95% CL) % (v/v)	LC50 (95% CL) % (v/v)
Garrow Creek	August 6, 2005	>100	>100

CL - confidence limits.

Toxicity testing was carried out in accordance with applicable test methodologies and/or standards of practice. Our liability is limited solely to the cost of re-testing in the event of non-compliance with such test specifications or standards of practice. Golder/EVS accepts no responsibility or liability for the interpretation or use of these testing results by others, nor for any delay, loss, damage or interruptions of testing, collection, preparation, and delivery of samples or test results resulting from events or circumstances beyond our control.

EVS ENVIRONMENT CONSULTANTS 48-h Daphnia magna TOXICITY TEST DATA SUMMARY

Client Azimuth Counsulting Group	ρ EVS Analysts
EVS Project No. 04-1424-044	Test Type 48h LC50
EVS Work Order No. 0500335	Test Initiation Date 11 Aug 05
SAMPLE INFORMATION	
Identification Garrow Creek	
Amount Received 5 v 20 L	
Date Collected 06 Aug 05	
Date Received 09 Avg 05	
Temperature (°C) $21.0 \Rightarrow 21.0$	
pH 7.5 ⇒ 7.6	pH adjustment details:
Dissolved Oxygen (mg/L) 10.8 \rightarrow 8.9	Pre-aeration rate and duration: 15 Min @ 25 550 m//.
Conductivity (µmhos/cm) 2860	Ymin
Hardness (mg/L as CaCO ₃)	
Alkalinity (mg/L as CaCO ₃)	•
Ammonia (mg/L N)	
Chlorine (mg/L Cl)	
DILUTION/CONTROL WATER (initial water quality) Water Type My Clarify Flood 124 (10130) Temperature (°C) 20.0 pH 3.4 Dissolved Oxygen (mg/L) 9.1 Conductivity (\(\mu\)S/cm) 354 Hardness (mg/L as CaCO ₃) Alkalinity (mg/L as CaCO ₃) Other TEST CONDITIONS Temperature Range (°C) 20.0-21.0 pH Range 7.4-7.7 Dissolved Oxygen Range (mg/L) 8.5-9.1 Conductivity Range (\(\mu\)S/cm) 350-2850 Photoperiod (L:D h) 15.8 No. Organisms/Volume 10/2-cOrn/	TEST SPECIES INFORMATION Broodstock Culture ID (in house culture) Age (on Day 0)
TEST RESULTS The 48h LCS	50 of Garrow Creek is >100%(V
Data Verified By Qulfit	Date Verified Ay .31/05

EVS ENVIRONMENT CONSULTANTS 48-h Daphnia magna ACUTE TOXICITY TEST DATA

Client A2							OP	Sam	ple ID	6		ek	Gari	row 1	Gree	ζ
EVS Project No		04-	142	4-1	244			Date	Collec	cted	06	Avg	05			
EVS Work Order No								Test	Initiat	ion Dat	e/Time	-11	Avg	056	010	:30
Daphnid Broodstock	Bat	ch _	18 J	uly	A/B/	10_		No.	Organi	sms/V	olume	10	120	MO	<u> </u>	
Concentration]		er of S 1 to 48	Survivo 3 h)	ors	11	olved O (mg/L)		Tem	perature	(°C)		pН		u	os/cm)
~ (NN)	1	2	4	24	48	0	24	48	0	24	48	0	24	48	0	48
Control				10	10	9.1	8.9	86	20.0	21.0	210	7.4	7.7	7.6	354	350
								. 40			3 6-16			基灣	排音	14 5 E
			ļ <u> </u>	<u> </u>												
6.25				10	10	9.0	8.8	85	20 o	21.0	210	7.4	ィュ	7.7	505	508
						e per										
												14.	11/1			
				<u> </u>		376				901						
12.5				10	10	9.0	8.8	8.5	20.5	21.0	21-0	7.5	구 구	7.7	654	667
								1								
							10									
						0.0	0.0	0 (2 (
25				10	10	8.4	8.8	8.5	20.5	21.0	21.0	1.5	7.1	コイ	990	992
		-		ļ			347		100				100			
							100									25 - <u>後</u> 7500
				io	1 -	0	0.7	0 (7.		24		77	3. Z	X 700	1593
50				,0	10	7.8	7.8	8 · >	20.5	21.0	21.0	7.3	7.7	, 0	17)284	-10 IP
				ļ		4.66							4			
										and the second					100	4 Harris 18 1
100				10	10	8 9	0)	2 6	21.0	21	2	3 /	フソ	うん	286 4	2760
100				10	10	0.1	0.7	9.3	21.0	21.0	Z1·6	7.6		4.0	2000	2 100
						2200		ere de				A de la				
										Part I						Medical Company
Technician Initials				QYR	C 10	CAR	808	SIR	SXA	SxB	SXB	SX&	Sxf	SXB	SXR	Sxb
				, 200	-43	العامق	340	ر								
Sample Description	c	lear	_ (_	lour	less											
Sample Description WQ Instruments Use	ed: T	emp.	The	Diesto Coron	ret H	9 p	H II.	A-07	0501	DO;	I-A-	01120	>(C	ond. Z	GA-9	90901
Comments																
Test Set Up By	SX	<u></u>			Data \	Verifie	d By	4	hal	hif) D	ate Ve	rified		An	31/05
		_							(V '					0	1

EVS ENVIRONMENT CONSULTANTS RAINBOW TROUT ACUTE TOXICITY TEST DATA SUMMARY

Client Azimul Azimul Project No. 04 - 1424 - 044 EVS Work Order No. 0500334	EVS Analysts Test Type Us - 4 LCSO Test Initiation Date Augillos (2) LSOO
SAMPLE Identification Amount Received S+ZOL	ron Creek
Date Collected Date Received Other	
PILUTION/CONTROL WATER (initial water quality) Fresh Water (dechlorinated) Temperature (°C) pH Dissolved Oxygen (mg/L) Conductivity (µS/cm) Hardness (mg/L as CaCO ₃) Alkalinity (mg/L as CaCO ₃) Other	TEST SPECIES INFORMATION Source Collection Date/Batch Control Fish Size (mean, SD and range measured at end of test) Date Measured Fork Length (mm) Wet Weight (g) Q3+008 (0.22 and 55) Wet Weight (g) Reference Toxicant Current Reference Toxicant Result Reference Toxicant Test Date Duration of Acclimation (days) 96-h LC50 (and 95% CL) Reference Toxicant Warning Limits (mean ± 2SD) and CV 29+12 may LSDS CU:21/k
TEST CONDITIONS Dissolved Oxygen Range (mg/L) Temperature Range (°C) pH Range Conductivity Range (µS/cm) Aeration Provided? (give rate) Photoperiod (L:D h) No. Organisms/Volume Loading Density (g/L) Acclimation Before Testing (days) Mortality In Previous Week of Acclimation (%) Other	
TEST RESULTS The 96-4 LCSO	is esthated to be > 100/16/1
Data Verified By	Date Verified Aug. 30/0 ×

Forms\Lab\Datasheets\Trout\SUMMARY.DOC

February 13, 2003

EVS ENVIRONMENT CONSULTANTS RAINBOW TROUT ACUTE TOXICITY TEST DATA

Client We Project No. EVS Work Order No. Trout Batch No. and 7-d Acclimation Mortality No. Fish/Volume Sample ID Charron Charron Charron Charron Test Initiation Date/Time Charron C	e (°C) pH Conductivity (µS/cm)	15 15 7,07, 6.8 6.9 7,0 40 5(15 55 0,7 0 7 16 10 1,7 0,7 51 51 17 15 55 1,7 1.5 15 15 15 15 15 15 15 15 15 15 15 15 15	15 15 72071, 6.9 7.1 7.1 (827864) 15 15 15 15 15 15 15 15 15 15 15 15 15	15 15 14 75 70 71 7.3 2510 28S	EASIEND POLY PARS PARS POLY POLY PARS PARS PORT PARS PARS PARS POLY BOLD BUSH	S Conductivity 4-4-030304	Date Verified Ay 30/05
Coldus Branch Transport of the Pre-Aeration Time Total Pre-Aeration Time Time Time Time Time Time Time Time	Dissolved Oxygen (mg/L) Temperature (°C)	10, 9, 24 mart 12 96 0 24 48 10, 9, 2, 2, 2, 48	10,19,0 10.0 142,9,4, 15 15 15 15 15 15 15 15 15 15 15 15 15	10,1 94 10.0 429 20,0 15 15 15 15 15 15 15 15 15 15 15 15 15		WARD BUT ARE AND PORT OF ARE	4-4-030302 DO II-4-3	Data Verified By Cally
After 30-min Pre-aeration Secondary S	Number of Survivors (1 to 96 hours)		01 01 01 01 01	3) 0) 0) 0) 0) 3) 0) 0) 0) 0)	0) 0) 0) 0) 0)	1800 RT RT BAS	Temperature ALTMOARCHE PH Cled	X
WHOLE SAMPLE WATER QUALITY Initial pH Cond. (µS/cm) S Cond. (µS/cm) Co	Concentration	%(0/0) control	6.25	25	00)	Technician Initials	WQ Instruments Used: Sample Description Comments	, By

August 26, 2002

Forms/Lab/Datasbeets/Trout/ACUTE.DOC

	CHAIN-OF-CUSTOD	DF-CUSTODY / TEST REQUEST FORM		SP 10 61
Cok Cominco	Die	Ship to	Golder	195 Pemberton Avenue North Vancouver, B.C. Canada V7P 284
ACCED TO	Phone 250-427-5405			Tel: 604-986-4331 Fax: 604-662-8548
	Sampled by 13 Collow	Attn. Edwarmed Commerce	Shipping Date (0)	www.golder.com
1	te po	Test(s) Beauested		

Client Name Trek Common	S Client Contact 13 (1) (2) (2)	1 80 N	3	. Ship to	: .		Golder 195 Pemb	195 Pemberton Avenue North Vancouver, B.C.
Address The Rock	Phone 250-427 - 5406	2-175	√O.					/7P 2R4
Ming Body DO	Fax 250- 427-84	12-7C	-				Tel: 604-986-4331 Fax: 604-662-8548	386-4331 662-8548
VIA 365	Sampled by B. Balton	Pollon		Attn.	Edward C	الماد يادي الماد	Shipping Date 100 000	der.com
1			pou	of		Test(s) Requested		.4
Collection Date Time (DD/MIMM/YYYYY) (24-h clock)	Sample Identification	Type of Each Sample Material Safety Data St Attached? (V)	Sample Collection Meti	Number of Sample Containers x Volume Sample Containers (1 x 20L) Sample Container Typ by Code)=45/2012 Yt.oixet		Sample Notes (preserved, saltwater, freshwater, may contain sewage)	ain sewage)
06/Aug/65 10 00 00 00	Gorran Cverk	W	+	1×20k	×		(Nent is why	///
			· **.; }				Azimuth Consu	Ming
						-		2
-				_				
				-				
				-				
		-		-	:			
PO/Reference No.				Comments/Instructions	ons			
Results Needed By								
Company: Baytuor Lea Ltd. Time: 1400p.	Date: (4,000 (05) 2) H	2) Released by: Company:		Date:	ie:	Shaded area to be co Golder Project No.	Shaded area to be completed by Gölder Laboratory upon sample receipt Golder Project No.	3/334/
Courier Name:		Courier Name:	-			Golder Wark Order No.	04-424-044	-
1) Received by (SRS)	Date 9 Aug 05 111	1) Received by:		Date:	te:	Condition Upon Receipt	Cood	
Company: Golde	Time: 105/5	Company:		TIM	Тіте:	Receipt Sample Temp. (°C)	0×1	

1 For composite effluent or water samples, the sample collection date/time is the end of the compositing period.

2 Receiving Water (RW): Effluent (E); Elutriate (ELU); Sediment (SED); Chemical (CHEM); Stormwater (SW); Other (Please Specify)

3 Collapsible Carboy (CC); glass jar (GJ); Jerry Can (JC); Plastic HDPE (P); Other (Please Specify) 4 Please note any conditions the lab should be aware of for safety and storage concerns

Please see instructions for completion on back of form

Distribution of copies:

White - returned to consignor by consignee White, Yellow – accompany the shipment Yellow - kept by consignee (e.g. receiver) Pink - kept by consignor (e.g. shipper)

APPENDIX H

Sublethal Toxicity Testing Laboratory Reports

Reproductive Inhibition

1 of 4

Stantec Consulting Ltd. 11B Nicholas Beaver Road RR3 Guelph ON N1H 6H9 Tel: (519) 763-4412 Fax: (519) 763-4419

stantec.com

Work Order:

207782 Sample Number: 13103

Stantec

Sample Identification

Company:

Azimuth Consulting Group Inc.

Location:

Vancouver, BC

Substance:

G-Creek Sublethal 071605

Sampling Method:

Grab

Sampled By:

B. Hamer Fed Ex/Rd

Shipped By: Temp. on arrival:

18.0°C

Sample Description:

Clear, colourless, odourless.

Date Collected:

2005-07-16

Time Collected:

09:00

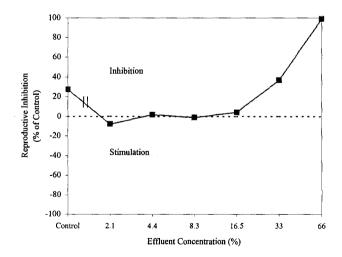
Date Received:

2005-07-19

Time Received:

13:00

Date Tested:


2005-07-19

Lab Storage:

4±2 °C

		Test Results	
Effect	Value	95% Confidence Limits	Statistical Method
IC25 (Reproduction)	24.6%	22.2-27.2	Linear Interpolation (Toxstat 3.5) b

Champia parvula Reproductive Inhibition

Note: Statistical analyses were performed using pooled control and salt control data.

Champia parvula Test Report

Reproductive Inhibition

2 of 4

Work Order Number: Sample Number: 207782 13103

Test Conditions

Test Organism ^a : Champia parvula Test Vessel : 240 mL polystyrene cup

Organism Batch Number : CH05-07 Number of Replicates : 3

Source : Stantec in-house culture Number of Organisms per Replicate : 5 females / 2 males

Life Stage c : Sexually mature Test Volume (per replicate) : 100 mL

Mean Organism Mortality : 0% (7 days prior to testing) Test Solution Depth : 5 cm

Salinity Adjustment : Yes Recovery Volume (per replicate) : 200 mL

pH Adjustment : None Recovery Solution Depth : 7 cm

Sample Filtration : None Recovery Water Filtered (prior to dilution) : Yes (60 µm)

Test Aeration (during exposure) : None Date of Test Initiation : 2005-07-19

Test Aeration (during recovery): Yes (continuous, gentle aeration) Time of Test Initiation : 17:45 Photoperiod (h) 16 light / 8 dark Date of Recovery Initiation : 2005-07-21 Light Intensity 1000 - 1600 lux Date of Test Completion : 2005-07-28 Test Temperature (°C) 23.0 - 26.0Test Duration : 48 hours Control/Dilution Water e Recovery Duration : 7 days Natural seawater

Test Type : Static non-renewal : Matural seawater Recovery Duration : / days : EJ/KJ

^a Test Organism: No organisms exhibiting unusual appearance, behaviour, or undergoing unusual treatment were used in the test.

All test organisms were from the same culture.

^c Life Stage: Test organisms were sexually mature males having sori with spermatia and sexually mature females having

trichogynes.

d Salinity Adjustment : Salinity adjustment was performed following the procedure for Hypersaline Brine Addition (Environment Canada

Salinity Adjustment Guidance Document, revised December 2001).

^e Control/Dilution Water: Filtered (0.45 µm) natural seawater from Pointe-du-Chene in Shediac Bay, New Brunswick. No chemicals added.

Test Method: Test of Sexual Reproduction using the Red Macroalga Champia parvula. EPA-821-R-02-014, October 2002,

Method 1009.0, with Canadian adaptations (Environment Canada 1998, 1999).

Comments

Nutrient addition of 10 mls to the 100% salinity adjusted sample, prior to test initiation, reduced the maximum concentration tested from 66.7% to 66%.

Noted Deviation(s): The maximum test temperature of 24.0 °C, as specified by the test method, was exceeded on Day 4 of the recovery period. There were no other unusual conditions or deviations from the test protocol. The results reported relate only to the sample tested.

Reference Toxicant Data

Substance: Sodium Dodecyl Sulphate (SDS) Historical Mean IC50: 0.155 mg/L

Test Date : 2005-07-19 Warning Limits (± 2 SD) : 0.112-0.216

Test Duration: 48 hrs exposure, 7 days recovery Statistical Method: Linear Interpolation (Toxstat 3.5)^b

IC50 Reproduction 0.134 mg/L Test Conducted By: E. Jonczyk/K. Johnson 95% Confidence Limits: 0.123-0.143 Organism Batch: CH05-07

The reference toxicant test was conducted under conditions identical to the test.

References

^b West, Inc. and D. Gulley. 1996. Toxstat Release 3.5. Western Ecosystems Technology. Cheyenne, WY, U.S.A.

ate: 2005-08-25

Approved By:

Project Manager

Stantec

Reproductive Inhibition 3 of 4

Work Order: Sample Number:

207782 13103

Cystocarp Counts

Concentration (%)	Replicate	Plant 1	Plant 2	Plant 3	Plant 4	Plant 5	Replicate Mean	Treatment Mean	Standard Deviation
	A	19	27	34	30	24	26.8		
Control	В	32	21	36	25	22	27.2	26.8	6.98
	C	23	42	29	21	17	26.4		
	Α	31	26	24	18	39	27.6		
Salt Control	В	24	29	32	37	15	27.4	27.8	7.94
	C	17	22	28	35	40	28.4		
	Α	27	24	37	25	34	29.4		
2.1	В	33	19	39	28	26	29.0	29.5	7.50
	C	24	31	42	16	37	30.0		
	Α	11	29	34	22	35	26.2		
4.4	В	27	24	38	15	30	26.8	26.8	8.13
	С	28	31	22	38	18	27.4		
8.3	Α	34	30	21	25	28	27.6		
	В	16	24	32	29	35	27.2	27.6	7.14
	C	39	34	25	13	29	28.0		
	Α	22	26	23	13	43	25.4		
16.5	В	29	19	31	29	24	26.4	26.1	8.41
	C	15	24	32	41	21	26.6		
	Α	13	17	12	23	27	18.4		
33	В	16	20	15	13	11	15.0	17.3	5.55
	C	10	18	26	24	14	18.4		
	Α	0	1	0	1	0	0.4		
66	В	0	0	1	0	0	0.2	0.3	0.46
	C	1	0	0	0	0	0.2		

Plant Mortality Data

Exposure Period

	♂ 0 1	Hours	♀ 0 1	Hours	♂ 48	Hours	♀ 48	Hours	♀ Test C	ompletion
Concentration (%)	Number Dead	Mortality (%)								
Control	0	0	0	0	0	0	0	0	0	0
Salt Control	0	0	0	0	0	0	0	0	0	0
2.1	0	0	0	0	0	0	0	0	0	0
4.4	0	0	0	0	0	0	0	0	0	0
8.3	0	0	0	0	0	0	0	0	0	0
16.5	0	0	0	0	0	0	0	0	0	0
33	0	0	0	0	0	0	0	0	0	0
66	0	0	0	0	0	0	0	0	0	0

Champia parvula Test Report

Reproductive Inhibition 4 of 4

Work Order: 207782 13103 Sample:

Water Chemistry Data

	Init	tial Water	r Chemistry (100%	Effluent)	
	Temperature (°C)	pН	Dissolved Oxygen (mg/L)	O2 Saturation (%)*	Salinity (‰)
Initial Parameters:	22.0	8.0	10.2	122	0
Parameters after Salinity Adjustment 1:	22.5	8.0	7.0	98	32
Chemistry after Pre-Aeration 1,2:	•	-	-	-	-

Exposure Period Water Chemistry 48 hours 0 hours Date & Time: 2005-07-19 17:45 Date & Time: 2005-07-21 16:00 Analyst(s): EJ/KJ Analyst(s): KJ O₂ Sat. (%)* Salinity (%0) Temperature (°C) Test Conc. (%) pН Dissolved Test Conc. (%) Dissolved O2 Sat. (%) Salinity (%) Temperature Oxygen Oxygen (mg/L) (°C) (mg/L) 7.7 66 7.8 7.8 106 32 22.5 66 8.8 31 23.0 31 23.0 33 7.7 7.3 102 32 22.5 33 8.9 7.0 98 16.5 7.7 7.2 100 32 22.5 16.5 8.7 6.9 98 31 23.0 97 22.0 8.3 7.7 7.1 100 8.3 9.1 6.9 31 32 22.5 7.7 30 22.5 4.4 7.3 103 32 22.5 4.4 8.7 6.8 96 2.1 7.7 7.0 99 32 23.0 2.1 8.9 6.6 94 30 22.0 Salt Control 7.7 5.9 83 30 24.0 Salt Control 9.0 6.2 91 30 22.0 95 30 22.0 Control 7.7 91 30 22.0 Control 9.1 6.7 6.4

Temperature pН Dissolved Oxygen O2 Saturation Salinity (%) (°C) 22.0 (%)* 93 (mg/L)

7.5

Initial Water Chemistry (Recovery Water)

6.6

30

					Recovery Period	Water Chemistry					
		0 ho	urs					Test Com	pletion		
Date & Time: 20	05-07-21	16:00				Date & Time :	2005-07-28	16:00			
Analyst(s): KJ						Analyst(s):	EJ				
Test Conc. (%)	pH	Dissolved Oxygen (mg/L)	O ₂ Sat. (%)	Salinity (‰)	Temperature (°C)	Test Conc. (%)	pН	Dissolved Oxygen (mg/L)	O ₂ Sat. (%)	Salinity (‰)	Temperature (°C)
66	7.5	6.6	93	30	22.0	66	8.0	7.4	92	30	22.0
33	7.5	6.6	93	30	22.0	33	8.0	7.5	93	30	22.0
16.5	7.5	6.6	93	30	22.0	16.5	8.0	7.3	91	30	22.0
8.3	7.5	6.6	93	30	22.0	8.3	8.1	7.4	92	30	22.0
4.4	7.5	6.6	93	30	22.0	4.4	8.0	7.5	93	30	22.0
2.1	7.5	6.6	93	30	22.0	2.1	8.0	7.5	93	30	22.0
Salt Control	7.5	6.6	93	30	22.0	Salt Control	8.1	7.5	93	30	22.0
Control	7.5	6.6	93	30	22.0	Control	7.8	7.6	95	30	22.0

					Daily Tem	perature Monite	oring				
Temp. (Oate: (°C):	2005-07-19 23.0	2005-07-20 24.0	2005-07-21 24.0	2005-07-22 24.0	2005-07-23 23.0	2005-07-24 24.0	2005-07-25 26.0	2005-07-26 24.0	2005-07-27 23.0	2005-07-28 23.0

Initial Parameters:

¹ if applicable

 $^{^2}$ @ <100 bubbles/min

^{*} adjusted for barometric pressure

Azimuth Consulting Group POLARIS MINE ENVIRONMENTAL EFFECTS MONITORING PROGRAM July 16, 2005 Sample

PREPARED FOR:

PREPARED BY:

Azimuth Consulting Group *Vancouver, BC*

A Member of the Golder Group of Companies

North Vancouver, BC

AZIMUTH CONSULTING GROUP

POLARIS MINE ENVIRONMENTAL EFFECTS MONITORING PROGRAM

JULY 16, 2005 SAMPLE

LABORATORY REPORT

Prepared for

Azimuth Consulting Group

218-2902 W. Broadway Vancouver, BC V6K 2G8

Prepared by

EVS Environment Consultants (A Member of the Golder Group of Companies)

195 Pemberton Avenue North Vancouver, BC Canada V7P 2R4

EVS Project No.

04-1424-044

August 2005

TABLE OF CONTENTS

TAB	LE OF CONT	ENTS	iii
LIST	OF TABLES		ii
1. II	NTRODUCTIO)N	1
2. N	IETHODS		2
2.1	•	(Atherinops affinis) survival and growth toxicity test	
2.2		(Dendraster excentricus) fertilization toxicity testalysis	
2.3		ance/Quality Control (QA/QC)	
3. R	ESULTS		6
3.1	7-d Topsmelt	(Atherinops affinis) Survival and Growth Toxicity Test	6
3.2	•	Dendraster excentricus) Fertilization Toxicity Test	
3.2	Quality Assur	ance/Quality Control (QA/QC)	6
4. R	EFERENCES		9
APPI	ENDIX A	Raw Data and Statistical Analyses: Atherinops affinis	
APPE	ENDIX B	Raw Data and Statistical Analyses: Dendraster excentricus	
APPE	ENDIX C	Chain-of-Custody Form	

LIST OF TABLES

Table 1:	7-d Topsmelt (Atherinops affinis) survival and growth toxicity test methods	4
Table 2:	Echinoderm (<i>Dendraster excentricus</i>) fertilization toxicity test methods	5
Table 3:	Summary of results for the 7-d Topsmelt (Atherinops affinis) survival and growth toxicity test	7
Table 4:	Summary of results for the Echinoderm (<i>Dendraster</i> excentricus) fertilization toxicity test	8

1. INTRODUCTION

EVS Environment Consultants (a member of the Golder Group of Companies) conducted sublethal Metal Mining Effluent Regulations (MMER) toxicity testing for Azimuth Consulting Group as part of the Environmental Effects Monitoring (EEM) program for Polaris Mine.

A sample, identified as G Creek-071605, was collected from the Polaris Mine Site on July 16, 2005 in 20-L collapsible polyethylene containers. It was received at the EVS laboratory on July 19, 2005 and was stored in the dark at 4°C prior to test initiation. The sample was evaluated for toxicity using the 7-d topsmelt (*Atherinops affinis*) survival and growth toxicity test and the echinoderm (*Dendraster excentricus*) fertilization toxicity test. Toxicity testing was initiated on the day of initial sample receipt.

This report describes the methods and results of the 7-d topsmelt (*Atherinops affinis*) toxicity test and the echinoderm (*Dendraster excentricus*) fertilization toxicity test. The raw data and statistical analyses are provided in Appendices I and II respectively, and the chain-of-custody form is provided in Appendix III.

2.1 7-D TOPSMELT (ATHERINOPS AFFINIS) SURVIVAL AND GROWTH TOXICITY TEST

A static-renewal 7-d survival and growth toxicity and reference toxicant tests using topsmelt (A. affinis) was conducted in accordance with U.S. Environmental Protection Agency (USEPA, 1995). Test conditions and methods are summarized in Table 1.

This 7-day test exposes topsmelt larvae to different concentrations of a given sample. Fish are fed on a daily basis and both survival and growth endpoints are measured at test termination. These observations are assessed in comparison to the pooled negative and brine controls.

2.2 ECHINODERM (DENDRASTER EXCENTRICUS) FERTILIZATION TOXICITY TEST

The echinoderm (*Dendraster excentricus*) fertilization toxicity test was conducted in accordance with Environment Canada (1992 with 1997 amendments). Test conditions and methods are summarized in Table 2.

This fertilization test involves exposing echinoderm sperm to a series of test concentrations for ten minutes, echinoderm eggs are then added allowing fertilization to occur for ten minutes. Following the ten minutes exposure time, the eggs are preserved and the number of fertilized and unfertilized eggs in each replicate are counted. These observations are assessed in comparison to the pooled negative and brine controls.

2.3 STATISTICAL ANALYSIS

Statistical analyses for all tests were conducted using the computer software program TOXCALC (version 5.0.23; Tidepool Scientific Software, 1994).

2.4 QUALITY ASSURANCE/QUALITY CONTROL (QA/QC)

This study followed a comprehensive QA/QC Program to ensure full documentation and minimize possible errors in computation and reporting of results. The following general QA/QC guidelines were applied in this test: use of negative controls, use of positive controls, use of brine controls, replication, instrument calibration, water quality maintenance and

record-keeping, and use of standard operating procedures (SOPs). To ensure data and reporting meet quality standards, all data and statistical analyses were reviewed by a member of our QA/QC Committee prior to reporting the results.

Toxicity testing was carried out in accordance with applicable test methodologies and/or standards of practice. Our liability is limited solely to the cost of re-testing in the event of non-compliance with such test specifications or standards of practice. Golder/EVS accepts no responsibility or liability for the interpretation or use of these testing results by others, or for any delay, loss, damage or interruptions of testing, collection, preparation, and delivery of samples or test results resulting from events or circumstances beyond our control.

Table 1. 7-d Topsmelt (*Atherinops affinis*) survival and growth toxicity test methods

TEST PARAMETER	TEST CONDITION
Test type	Static-renewal
Test duration	7 d
Test chamber	600-mL beaker
Test solution volume	200 mL
Number of replicate chambers per treatment	5
Number of organisms per test chamber	5
Age of test organisms at test initiation	10 d
Food	Newly hatched Artemia nauplii (<24 hours old)
Feeding Regime	Fed 0.5 mL/ beaker twice daily of concentrated nauplii suspension (prepared to provide 200 nauplii in 0.5 mL); no feeding at test termination
Sample manipulations (e.g. pre-aeration, pH adjustment, filtration)	Salinity-adjusted
Control/dilution water	UV-sterilized and $0.5\mu m$ -filtered natural sea water from Vancouver Aquarium, BC
Dilutions	4.5, 8.9, 17.9, 35.7, 71.4% (v/v)
Renewal of dilutions	Daily
Aeration	None
Water quality parameters and frequency	Temperature, pH, dissolved oxygen, and salinity daily
Temperature	20 ± 1°C
Salinity	30 ± 2 (sample adjusted with hypersaline brine [HSB]. Preparation of HSB and salinity adjustment as per EC guidance document on salinity adjustment –July 1997)
Lighting	Overhead full-spectrum fluorescent lights; 538 – 1076 lux; 16:8 light:dark photoperiod
Reference toxicant	Initiated concurrently with sample using copper to generate LC50 and IC50 values; results compared to lab mean \pm 2 SD
Endpoints	Survival and growth (dry weight)
Test validity	$\geq 80\%$ mean control survival; ≥ 0.85 mg/fish mean dry weight for surviving control fish
Reference protocol	US EPA (1995), EPA/600/R-95/136

 Table 2.
 Echinoderm (Dendraster excentricus) fertilization toxicity test methods

TEST PARAMETER	TEST CONDITION
Test type	Static
Test duration	10:10 min
Test chamber	16 X 125 mm test tubes
Test solution volume	10 mL
Number of replicate chambers per treatment	4
Number of eggs per test chamber	2000
Age of test organisms	< 4 hours after spawning
Sample manipulations (e.g. pre-aeration, pH adjustment, filtration)	Salinity-adjusted
Control/dilution water	UV-sterilized and $0.5\mu m$ -filtered natural sea water from Vancouver Aquarium, BC
Dilutions	4.6, 9.1, 18.3, 36.6, 72.8% (v/v)
Renewal of dilutions	None
Aeration	None during testing
Water quality parameters and frequency	Temperature, pH, dissolved oxygen, and salinity
Temperature	15 ± 1°C
Salinity	30 \pm 2 (sample adjusted with hypersaline brine [HSB]. Preparation of HSB and salinity adjustment as per EC guidance document on salinity adjustment –July 1997)
Lighting	Ambient laboratory illumination (moderate intensity)
Reference toxicant	Initiated concurrently with test; same test methods as above using SDS to generate an EC50 value; results compared to lab mean \pm 2 SD
Endpoint	Fertilization of eggs
Test validity	\geq 50% and \leq 100% mean control fertilization
Reference protocols	Environment Canada (1992), (EPS/1/RM/27 with 1997 amendments)

3.1 7-D TOPSMELT (ATHERINOPS AFFINIS) SURVIVAL AND GROWTH TOXICITY TEST

The test results are summarized in Table 1 and the raw statistical analyses are provided in Appendix I.

The highest concentration tested was approximately 71.4% due to salinity adjustment. The mean survival in both the negative and brine controls was 100%. Mean dry weight in the pooled controls was 0.95mg. The negative and brine controls were not significantly different for both the growth and survival endpoints (p = 0.52 and p = 1.00, respectively).

The *A. affinis* survival and growth toxicity test showed no adverse effects on survival or growth in all tested concentrations relative to the pooled controls ($p \le 0.05$). For the survival and growth endpoints the NOEC was 71.4, and the LOEC was >71.4% (v/v). The LC50 for survival was >71.4% (v/v). The IC50 and IC25 for growth were both >71.4% (v/v).

3.2 ECHINODERM (DENDRASTER EXCENTRICUS) FERTILIZATION TOXICITY TEST

The test results are summarized in Table 2 and the raw statistical analyses are provided in Appendix II.

The highest concentration tested was 72.8% due to salinity adjustment. Mean fertilization in the pooled controls was 66.9%. The negative and brine controls were not significantly different (p = 0.09).

The *D. excentricus* fertilization toxicity test exhibited adverse effects on egg fertilization in all test concentrations relative to the pooled controls ($p \le 0.05$). The NOEC was <4.6 and LOEC was 4.6 % (v/v). The IC50 and IC25 (95% confidence limits) values were 13.2 (10.6 – 17.1) and 5.2 (4.4 – 6.0) % (v/v), respectively.

3.2 QUALITY ASSURANCE/QUALITY CONTROL (QA/QC)

The tests met all passing criteria for test validity as outlined in the respective protocols. Water quality parameters during the test were all within the acceptable range of values. Point estimates for the reference toxicant tests were all within the laboratory mean \pm 2 standard deviations, indicating that the tests were within acceptable limits of variability.

Table 3. Summary of results for the 7-d Topsmelt (*Atherinops affinis*) survival and growth toxicity test

Test Concentration (% v/v)	SURVIVAL (%)(M EAN ± SD)	GROWTH (DRY WEIGHT MG) (MEAN ± SD)		
D-Control	100.0 ± 0.0	0.92 ± 0.13		
Brine Control	100.0 ± 0.0	0.98 ± 0.18		
Pooled Controls	100.0 ± 0.0	0.95 ± 0.15		
4.5	96.0 ± 8.9	0.77 ± 0.19		
8.9	96.0 ± 8.9	0.82 ± 0.33		
17.9	100.0 ± 0.0	1.01 ± 0.14		
35.9	100.0 ± 0.0	1.07 ± 0.19		
71.4	96.0 ± 8.9	0.91 ± 0.28		
TEST ENDPOINT	SURVIVAL (% V/V)	GROWTH (% V/V)		
NOEC	71.4	71.4		
LOEC	>71.4	>71.4		
LC50	>71.4	na		
IC50	na	>71.4		
IC25	na	>71.4		

SD – Standard Deviation; na – not applicable.

Table 4. Summary of results for the Echinoderm (*Dendraster excentricus*) fertilization toxicity test

TEST CONCENTRATION (% V/V)	Proportion Fertilized (%) $(Mean \pm SD)$
Negative Control	64.8 ± 3.8
Brine Control	69.0 ± 1.8
Pooled Control	66.9 ± 3.6
4.6	53.0 ± 2.2*
9.1	37.2 ± 1.3*
18.2	30.0 ± 2.2*
36.5	23.5 ± 2.9*
72.8	19.5 ± 2.4*
TEST ENDPOINT	PROPORTION FERTILIZED %(V/V)
NOEC	<4.6
LOEC	4.6
IC50 (95% CL)	13.2 (10.6 – 17.1)
IC25 (95% CL)	5.2 (4.4 – 6.0)

^{*}Indicates significant difference ($p \le 0.05$) relative to the pooled controls. SD – Standard Deviation; CL – Confidence Limits.

4. REFERENCES

- Environment Canada. 1992. Biological test method: fertilization of echinoids (sea urchins and sand dollars). Environmental Protection Series, Report EPS 1/RM/27, December 1992. Environment Canada, Conservation and Protection, Ottawa, ON. 68 pp + appendices. Amended November 1997.
- EVS (EVS Environment Consultants). 2004. Topsmelt (*Atherinops affinis*) 7-d larval survival and growth test. EVS SOP 1100-5. In: EVS Consultants Laboratory Standard Operating Procedures (SOP) Manual. Volume II: Water Toxicity Tests. EVS Environment Consultants, North Vancouver, BC.
- US EPA (U.S. Environmental Protection Agency). 2002. Short-term methods for estimating the chronic toxicity of effluents and receiving waters to marine and estuarine organisms. 3rd edition. US Environmental Protection Agency, Office of Water (4303T). US Environmental Protection Agency, Washington, DC. EPA/821/R-02/014. 464 pp.
- US EPA. 1995. Short term methods for estimating the chronic toxicity of effluents and receiving waters to marine and estuarine organisms. 2nd edition. US Environmental Protection Agency, Environmental Monitoring Systems Laboratory, Office of Research and Development, Washington, DC. EPA/600/R-95/136. 563 pp.
- Tidepool Scientific Software. 1994. TOXCALC: Comprehensive Toxicity Data Analysis and Database Software, Version 5.0.23. Tidepool Scientific Software, McKinleyville, CA. 80 pp.

APPENDIX I

Raw Data and Statistical Analyses:

Atherinops affinis

EVS ENVIRONMENT CONSULTANTS 7-d Atherinops affinis SURVIVAL AND GROWTH TEST DATA SUMMARY

	424-064		EVS Analysts JxS, SxB, MJG, AXF						
EVS Project No. <u>O4 -1</u> EVS Work Order No. <u>0</u>	20072 x 588	Test Initiation Date	Test Initiation Date 19-July - 05						
	Initial Sample	Re	efresh Samples						
Sample	Day 0	nal Day 2	Day 4						
Identification	G Greek 10716	005 G Great	G Creek						
Amount Received	18x201	1×20L	1x20L						
Date Collected	16,70105	1630105	1630105						
Date Received	19 Jul 05	1450105	1930105						
Temperature (°C)	20.0	20.C	20.0						
pН	7.70 8.2	7.8 0 8.2	7.7 0 83						
DO (mg/L)	11.1 077.6	11.0 9 7.6	10.8 - 7.6						
Conductivity (µmhos/cm)	1520	1520	1520						
Salinity (ppt)	60,29	6 -> 29	6-0729						
Ammonia (mg/L N)	_								
Chlorine (mg/L Cl)	-	-							
Other	OAfter Salinity Adjustm								
Dissolved Oxygen (mg/L)	28	Reference Toxicant Current Reference Toxicant Result (incl. 95% CL) Reference Toxicant Test Date 19 50 05 7-d survival LC50 7-d growth IC50 Reference Toxicant Warning Limits (mean ± 2SD) and CV 7-d survival LC50 132							
TEST CONDITIONS Temperature Range (°C) TH Range Dissolved Oxygen Range (mg, ralinity (ppt) 2 Thotoperiod (L:D h) 4 Thereation Provided?	20.0 - 21.0 7.7 - 8.3 (L) <u>6.2 - 7.7</u> 28 - 2430	Reference Toxicant T 7-d survival LC50 7-d growth IC50 Reference Toxicant Warn 7-d survival LC50	est Date 19 501 05 22 (106-140) 117 (100-136) 2 (30-149) 116 (31-156) aning Limits (mean ± 2SD) and CV 33 7 39 1161 (11 CO -						
TEST CONDITIONS Temperature Range (°C) TH Range Dissolved Oxygen Range (mg, falinity (ppt) 2 Thotoperiod (L:D h) 4 Therefore Provided? 7	7.7 - 8.3 (L) <u>6.2 - 7.7</u> 28 - 24.30	Reference Toxicant T 7-d survival LC50 7-d growth IC50 Reference Toxicant Warn 7-d survival LC50	est Date 19 501 05 22 (106-140) 117 (100-136) 2 (30-149) 116 (31-156) aning Limits (mean ± 2SD) and CV 33 7 39 1161 (11 CO -						
TEST CONDITIONS Temperature Range (°C) OH Range Dissolved Oxygen Range (mg/ calinity (ppt) Photoperiod (L:D h) Acration Provided? Other EST RESULTS	7.7 - 8.3 (L) <u>6.2 - 7.7</u> 28 - 24.30 (6.8	Reference Toxicant T 7-d survival LC50 7-d growth IC50 Reference Toxicant Warn 7-d survival LC50 7-d growth IC50 13	est Date 19 501 05 22 (106-140) 117 (100-136) 2 (80-149) 116 (81-156) aning Limits (mean ± 2SD) and CV 33 1 39 1161 Ca CU=						
TEST CONDITIONS Temperature Range (°C) OH Range Dissolved Oxygen Range (mg/ calinity (ppt) Photoperiod (L:D h) Acration Provided? Other EST RESULTS	7.7 - 8.3 (L) <u>6.2 - 7.7</u> 28 - 24.30	Reference Toxicant T 7-d survival LC50 7-d growth IC50 Reference Toxicant Warr 7-d survival LC50 7-d growth IC50 12 LC50 (95% CL) IC	est Date 19 501 05 22 (106-140) 117 (100-136) 2 (30-149) 116 (31-156) aning Limits (mean ± 2SD) and CV 33 7 39 1161 (11 CO -						
FEST CONDITIONS Femperature Range (°C) OH Range Dissolved Oxygen Range (mg/salinity (ppt)	7.7 - 8.3 (L) <u>6.2 - 7.7</u> 28 - 27 30 (6.8 Vo NOEC LOEC 74 > 7.4	Reference Toxicant T 7-d survival LC50 7-d growth IC50 Reference Toxicant Warn 7-d survival LC50 7-d growth IC50 15 LC50 (95% CL) IC	est Date 19 501 05 22 (106-140) 117 (100-136) 2 (80-140) 116 (81-156) 2 (80-140) 116 (81-156) 2 (80-140) 116 (81-156) 2 (80-140) 116 (81-156) 2 (80-140) 116 (81-156) 3 2 1 3 44 46 46 46 66 66 66 66 66 66 66 66 66						
FEST CONDITIONS Femperature Range (°C) OH Range Dissolved Oxygen Range (mg/salinity (ppt)	7.7 - 8.3 (L) <u>6.2 - 7.7</u> 28 - 24 30 (6.8 Vo	Reference Toxicant T 7-d survival LC50 7-d growth IC50 Reference Toxicant Warn 7-d survival LC50 7-d growth IC50 15 LC50 (95% CL) IC	est Date 19 501 05 22 (106-140) 117 (100-136). 2 (80-149) 116 (81-156). aning Limits (mean ± 2SD) and CV 33 1 39 1161 (1 Co. CU =						
FEST CONDITIONS Femperature Range (°C) H Range Dissolved Oxygen Range (mg, salinity (ppt)	7.7 - 8.3 (L) <u>6.2 - 7.7</u> 28 - 27 30 (6.8 Vo NOEC LOEC 74 > 7.4	Reference Toxicant T 7-d survival LC50 7-d growth IC50 Reference Toxicant Warn 7-d survival LC50 7-d growth IC50 15 LC50 (95% CL) IC	est Date 19 501 05 22 (106-140) 117 (100-136) 2 (30-140) 116 (31-156) 2 (30-140) 116 (31-156) 2 (30-140) 116 (31-156) 2 (30-140) 116 (31-156) 32 1 39 46 6 CC 50 (95% CL) IC25 (95% CL)						
TEST CONDITIONS Temperature Range (°C) TH Range Dissolved Oxygen Range (mg/ Palinity (ppt) Photoperiod (L:D h) Acration Provided? Other EST RESULTS Endpoint Conc. Units Survival Y. (J W) Trowth	7.7 - 8.3 (L) <u>6.2 - 7.7</u> 28 - 27 30 (6.8 Vo NOEC LOEC 74 > 7.4	Reference Toxicant T 7-d survival LC50 7-d growth IC50 Reference Toxicant Warn 7-d survival LC50 7-d growth IC50 15 LC50 (95% CL) IC	est Date 19 501 05 22 (106-140) 117 (100-136). 2 (30-140) 116 (31-156). aning Limits (mean ± 2SD) and CV 331 39 461 Ca CU= 50 (95% CL) IC25 (95% CL)						

EVS ENVIRONMENT CONSULTANTS 7-d *Atherinops affinis* SURVIVAL AND GROWTH TEST – WATER QUALITY DATA (EEM)

7-d Atherii	nops af	finis S	URVI	AL A	ND GI	ROWI	TH TES	ST – W	ATER	QUA)
Client	P	plaris					Sample ID G- Creek 07/605							
EVS Project No.	04	- 1424	4-044	1			Test Initiation Date/Time 19-July-05/1430							
EVS Work Order	No	0500	298				Source	e/Date 1	Receive	d _4	BS/1	9-Jn	14-05	
VV 27			· · · · · · · ·		· · · · · · · · · · · · · · · · · · ·							·····	/	
Concentration		Temperature (°							C)	1				1
,	0		1	1_	2		3		4		5	<u> </u>	6	7
D-control	20.0	-			204	210			20,0	+	+	+	20.0	200
B-control	20.5	20.5	20.5		50.3	21-0	200	21.0	200	21.0	20,00	11.0	200	WI
4.5	200	203	20.5			21.0	200	21,0	200	210	20,0	21.0	200	705
8.9	20.0	20.5	20.0	200	20.0	21-0	200	21.0	200	21.0	20.0	21.0	70.0	20,5
35.7 17.9	20.0	205	20.0	205%	20.0	21-6	<u>Σ</u> υ η	210	200	21.0	20,0	21.0	200	205
77-1-435.7	20.0	2,5	20.0	2000	200	210	500	21.0	20.0	21-0	20.0	4.0	200	20.5
71.4	20.0	20.5	200	2303	200	210	800	21.0	20.0	21.0	200	71.0	20,0	1205
Tech. Initials	12	SXS	SXB	SVB	SYB	SXR	Sxg	MV	MIL	MIL	MV	MV		
/ (1/4)							рŀ	Ŧ						
Concentration	0	old	l new	2	2		3		4	:	5	(67.9m	7
D-control	78	7.7	7.7	77	78	78	7 89	78	7-8	7.8	7.8	78	79	8 ៈ
B-control	7.9	77	8.0	निव	79	8 €	7.9	7.8	7.8	7.8	7.8	7.8	7.9	§. c
4.5	7-9	44	6.8	7.7	79	7.8	7.9	7.9	7.9	7.8	79	7.9	7.9	7.7
8.9	7.9	78	80	33	79	7.8	8.0	7.9	7.0	7.8	8.0	7.9	8.0	77
17.9	8-2	7-8	8-1	7.7	0.8	7.9	8.0	8.0	8.0	79			8.1	77
35.7	8-1	7.9	8.1	7-8	1.8	79	8 1	8.0		7.9		8.0		7.8
71.4	8.2		7.8.2		3.2	79	8.3	8.0	A		-			7.8
Tech. Initials	120	Sxg	SXR	Sil	SAR	Sys	SXR	1776	MV	1776-	-		1770	7,
VQ Instruments Us	ed:	Temn	(1'L	cotal	yo H.	(merin)	ter	T	1 I-1	1-010	ζ σ1			
	seu. D 113e.		. <u>(d(ib</u> /4-5)		iy in	<i>,,,,,,</i> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		рг	1 <u>47</u>		<i>) - 1</i>			
			, - !											
									-					
est Set Up By	est Set Up By Jus, Sals Data Verified By Qalf Date Verified My. 17/01													

EVS ENVIRONMENT CONSULTANTS 7-d Atherinops affinis SURVIVAL AND GROWTH TEST – WATER QUALITY DATA (EEM)

VS Work Order	r No4	State of	3 292	<u>'</u>			Sourc	e/Date I	Receive	d <u>A</u> ,	35/19	3-July	-35	
Concentration	,					-,	Salinit	ty (ppt)				,		
Concentration	0		1		2		3		4		5		6	7
D-control	28	28	28	28	28	28	28	28	28	28	28	28	28	23
13-control	30	క్రెం	30	ટુટ	30	30	30	30	30	30	30	30	30	3,
4.5	28	28	28	28	28	28	28	28	28	28	28	28	28	2.5
89	28	28	28	28	28	58	28	28	28	58	28	28	78	2,1
17.9	28	58	28	28	28	28	28	28	28	58	28	28	7.3	2.5
35.7	28	58	28	28	28	28	58	28	28	58	28	28	28	2,5
2×71.4	29	29	29	29	29	29	29	29	29	29	29	29	79	20
Tech. Initials	10	SXB	SXE	SNE	SXB	Sas	SIS	Sib	136	SKS	ML	SXB	1776	70
1. (1/1)						D: 1	. 10		77.					
Concentration	0		1		2		ved Ox	ygen (n	ng/L) 4		5		6	7
U-Control	7.5	6.6	7.5	<u> </u>	7.6	6.5	7.5	1 2 -	7.7	66	7.7	66	7.7	64
B-control	7.5	6.6	7.5	6-7	7.5	6.5	7.5	<u> </u>	2.7	67	7.7	6.6	7.6	b:
4.5	7.5	65	7.5	6.7	7.5	6.5	7.5	65	7.7		9.7	65	7.7	66
8.9	2.5	6.5	75	6.8	7.6	6.6	7.5			6.6	7.7	66	7.7	6.
17.9	7.6	6.5	75	6.7	7.6	F.3	J 2	6.4	7.6		79	66	7.2	ble
35.7	76	66	75	6-8		6.6				6.5		l .	7.6	6.2
71.4	7.6	65	7.5	67	7.6	66	7.6	- 2	7.6		7-6		7.6	6.4
ech. Initials	125	SXS	SxS		SXL	Sxb	SIB	176	11/2		The	177L		10 A
Instruments U	•	Salinity						DC) <u>I-1</u>		71-			

EVS ENVIRONMENT CONSULTANTS 7-d Atherinops affinis TOXICITY TEST – DAILY SURVIVAL DATA

Client Polaris	Sample ID G-Creek 07/605
EVS Project No. <u>04-1424-044</u>	Test Species/Batch A affinis /19-July-05
EVS Work Order No. 2500 258 398	Test Initiation Date/Time 19-July -05/1430 h
	No. of Organisms/Volume 5/200 ml

Concentration		Pan		Nur	nber of	Survivors	– Day	of Test		
Concentration	Rep.	No.	1	2	3	4	5	6	7	Comments
	Α	TI	5	5	5	5	5	5	>-	
	В	TZ	5	3	5	5	5	5	5	
D-control	С	73	5	5	5	5	<	5	7	
	D	T4	5	5	5	5	(5	5	
	Е	75	5	5	5	1	5	5	5	
	A	T6	5	5	5	5	5	5	5	
_ a	В	TA	5	5	5	5	5	5	5	
B-control	С	Tà	5	5	5	5	5	5	7-	
	D	Tig	5	5	5	5	5	5	5	
	Е	Tio	5	5	5	5	5	5	5	
	A	Tu	5	5	5	5	5	5	2_	
1	В	TIZ	5	5	5	5-	5	5	5-	
4.5	С	T13	5	5	5	5	5	5	5	
	D	T14	5	5	5	5	5	5	4	
	Е	Tis	5	5	5	5	5	5	5	
	Α	T16	5	5	5	5~	5	5	 ذ.	
	В	TIZ	5	5	5	5	5-	5).	
8.9	С	Tis	5	5	3	5	5	3	5	
	D	Ti	5	5	5	5	5	5	5	
	Е	Tro	5	5	5	5-	5	5	4	
Technician Ini	tials	100	SXS	SXL	Sx6	1776	1776	4	.72	

Sample Description	colorless clear.		
Data Verified By	agin 5	Date Verified	Aug 17/05
	• '		() /

EVS ENVIRONMENT CONSULTANTS 7-d Atherinops affinis TOXICITY TEST – DAILY SURVIVAL DATA

Client Polaris	Sample ID G-Crock 071605
EVS Project No. 04-1424-044	Test Species/Batch 4 Affinis /19-July-05
EVS Work Order No. 2700 458398	Test Initiation Date/Time 19-July-05/1430h
	No. of Organisms/Volume 5/200ml

Concentration		Pan		Nu	mber of	Survivo				
Concentration	Rep.	No.	1	2	3	4	5	6	7	Comments
	A	T21	5	5	3)	5	5	5	, , , , , , , , , , , , , , , , , , ,
	В	TLL	5	3	3	1	(-	5	5	
17.9	С	T23	5	5	5	5	5	5)~	
	D	Tzy	5	5	5	5	(5	5	
	Е	Tus	5	5	5	5	5	5	5	
	A	Tu	5	5	5	5	5	5	J	
	В	TZZ	5	5	5	5	15	5	>	
35.9 852	С	Tro	5	5	5	5	(5	5	
35.7	D	Trg	5	6	5	5	5	5	5	
	Е	T30	5	3	5	(5	5	7	
	A	T3L	5	5	5	5	5	5	5	
	В	T32	5	3	5	5	5	5	174	
71.4	С	T33	5	5	3	5	5	5	F	
	D	T34	5	5	5	ſ	5	5	5	
	Е	T35	5	5	3	5	5	5	5	
_	A									
	В									
	С			-						
	D									
	Е		·							
Technician Init	ials	725	SXB	SxB	SXS	1776-	Π7i-	MIL	177	

Technician Initials	72	SXB	Sxes	SXS	1776-	Π7ί-	MIL	177			
Sample Description Data Verified By	Colorle	ss. c,	lear.	4		Dat	e Verifie	ed	Auf.	18/05	

7-d Atherinops affinis SURVIVAL AND GROWTH TOXICITY TEST – DRY WEIGHT DATA مربية/ اوليم EVS ENVIRONMENT CONSULTANTS

	Sample 17	Sample ID (T-(resk	Balance Type/Serial Number Sortariws / RP-2111)	
Client Polon's	EVS Project No. OU-1424 - OUG	EVS Work Order No. 01707 18		

Sample ID $\chi(\mathcal{M})$ Rep.	Rep.	Pan No.	Pan Weight (mg)	Final Weight (mg) (pan + biomass)	Number of Survivors	Number Weighed	Comments (e.g., confirmation	Tech.
D-C7L	V.	 -	1237.86	1242.66	1	hourgroup.	weights, otganisms fost in transfer)	Init.
	В	7.5	1223.60	1228.84	7 1	- 1		HXF.
	C	73	1234.30			- -		
	٥	74	122 (57		2 7		Complicated to the contract of	
	ŋ	75	1215.08	1219.11		, ,	1210 50 mg	
B-CTL	A	76	1236.55	1241.94	\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	. 0		
	B	17	1230.84	1236.489	j	1		
	U	78	1223.70	1229.06	5			
	۵	79	1242.73	1247.44	15			
	iη	T.(0)	1228.47	1231.92	1	-		
45	А	<u>_</u>	11.1221	££' 422/	1	-		
	2	Tiz	1237.55	1240.97	\ _	, , , ,	Layinan 1224, 75 mg	
	ی	T13	45.1221	1226 04	-	1		
	۵	7/4	1229.99	1232.59	t &	4		
	M	7 (7	T15 1220.96	1226.00	1	7.		
1. Re-confirm weights for 10% of final weights and magnet	ts for 10%	of final main	This and room but					ー フ

Re-confirm weights for 10% of final weights and record under "Comments"; relative percent difference (RPD) between pairs of weights should be ≤10% of organism weight.

Data Verified By

Jaily &

Date Verified

Ang. 1765

Forms\Lab\Datasheets\Larvalfis\nTopsmet\nTDRYWEIGHT.DOC

August 26, 2002

EVS ENVIRONMENT CONSULTANTS 7-d Atherinops affinis SURVIVAL AND GROWTH TOXICITY TEST – DRY WEIGHT DATA

7 - 0	Start Date (Day 0) (7-244-05	Sample ID G. (yerk CT/605 Sublethal 07/605	Balance Type/Serial Number Sortorium / BP-2111)	
Client Dolan's	EVS Project No. ロリートログトーログロ	EVS Work Order No. 010018	C. C	

er Comments (e.g., confirmation Tech.	(District to the content of the co	(1)		Section ()	1 280.77 mg						(man gode) 133 to 1.1	2 Start trices			
Number Weighed	!_	1	, ·	\ \	6		\\ \\ _	15	- \ '-	, ,	,	<u></u>	1	-	\ \ \
Number of Survivors	•	4	-	<u></u>	7	15	1	1	<u></u>	1	,	1	\ \ \	1	\ \ \
Final Weight (mg) (pan + biomass)	1226.60	1241.14	1242.39	1238.99	1221.88	1231.84	1251.74	1243.68	1237.41	123423	1235.13	123487	1237.73	1240.45	_
Pan Weight (mg)	1221.54	1235. 48	1237.41	1236.28	Teo 1219.90	T21 1227.04	Tr 1246.60	TU 1239 07	Pl 1231 pst	Tr 12\$29.72	Tel 1230.92	T27 1228 42	T28 1231.53	729 1235.66	1228.20
Pan No.	7.6	T17 1235	(A)	719	73	Trl	777	133	427	72	72	727	728	129	T3- 1228.
Rep.	Y	8	7	٥	Ŋ	T	ß	ر	۵	t.	А	B	ر	0	'n
Sample ID	8-9					17.9					387 35.7				E T3-1228.20

Re-confirm weights for 10% of final weights and record under "Comments"; relative percent difference (RPD) between pairs of weights should be \$10% of organism weight.

Data Verified By

Date Verified

August 26, 2002

EVS ENVIRONMENT CONSULTANTS 7-d Atherinops affinis SURVIVAL AND GROWTH TOXICITY TEST – DRY WEIGHT DATA

Zecs			-1						···		T			 1]	
(O)	Tech.	Init.	77.,	-			->										101	Jen.
Start Date (Day 0) $(9-5\mu/y-0)$ Sample ID $(5-(ye)k \Theta 760) Sub(v+ka) O7/c cS$ Balance Type/Serial Number $Soutonim / BP-2010$	Comments (e.g., confirmation	weights, Organishis 10st in transfer)															Re-confirm weights for 10% of final weights and record under "Comments"; relative percent difference (RPD) between pairs of weights should be < 10% of organism unitary.	A
ay 0) [6]	Number	nau.Sin.	7	F -) ,											PD) between pa	700
Start Date (Da Sample ID	Number of Survivors		#		. h	,											ent difference (R	Date Verified
	Final Weight (mg) (pan + biomass)	1:34.14	1234.21	1239.77	1235.80	1234.5.02											r "Comments"; relative perc	
	Pan Weight (mg)	1227.99	1236.90	T33 1234.94	1230.30	1232.19											hts and record unde	Jack A
8 groaso	Pan No.	T31	T32	T33	734	735											f final v.eig	
	Rep.	A.	В	ζ	٥	'n	< <	8	J	۵	٦٦	A	13	ى	۵	n	s for 10% o	
Client Polon's EVS Project No. 64-1	Sample ID	4.4															I. Re-confirm weight.	Data Verified By

Forms/Lab/Datasheets/Larvalfish/Topsmell/7D-DRYWEJGHT.DOC

Test: LF-Larval Fish Growth and Survival Test

Species: AA-Atherinops affinis

Sample ID: G_CREEK_Sublethal_071605

Start Date: 7/19/2005 End Date: 7/26/2005

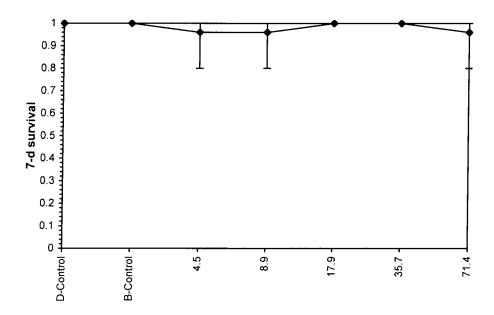
Test ID: 0500298

Protocol: EPAW 95-EPA West Coast

Sample Type: EFF2-Industrial

Lab ID: BCEVS-EVS Environment Consultants

Start	Date.	1/18/2	2005 En	u Date.	112012	005			Lab ID	BUEV	0-EVS	Environment Co	onsultants	
		1	ļ				ļ				 	No. Fish	Total	Tare
Pos	ĪD	Rep	Group		Day 1	Day 2	Day 3	Day 4	Day 5	Day 6	Day 7	Weighed	Wgt(mg)	Wgt(mg)
	1	1	D-Control	5							5	5		1242.66
	2	2	D-Control								5	5	1223.6	1228.84
	3	3	D-Control	5							5	5	1234.3	1238.08
	4	4	D-Control	5							5	5	1221.57	1226.62
	5	5	D-Control	5							5	5	1215.08	1219.11
	6	1	B-Control	5							5	5	1236.55	1241.94
	7	2	B-Control	5							5	5	1230.84	1236.49
	8	3	B-Control	5							5	5	1223.7	1229.06
	9	4	B-Control	5							5	5	1242.73	1247.44
	10	5	B-Control	5							5	5	1228.47	1231.92
	11	1	4.5	5							5	5	1221.11	1224.77
	12	2	4.5	5							5	5	1237.55	1240.97
	13	3	4.5	5							5	5	1221.54	1226.04
	14	4	4.5	5							4	4	1229.99	1232.59
	15	5	4.5	5							5	5	1220.96	1226
	16	1	8.9	5							5	5	1221.54	1226.6
	17	2	8.9	5		ł					5	5	1235.48	1241.14
	18	3	8.9	5					ľ		5	5	1237.41	1242.39
	19	4	8.9	5							5	5	1236.28	1238.98
	20	5	8.9	5							4	4	1219.9	1221.88
	21	1	17.9	5							5	5	1227.04	1231.84
	22	2	17.9	5							5	5	1246.6	1251.74
	23	3	17.9	5				<u>.</u>			5	5	1239.07	1243.68
	24	4	17.9	5		Ì					5	5	1231.19	1237.41
	25	5	17.9	5		1					5	5	1229.72	1234.23
	26	1	35.7	5					i		5	5	1230.92	1235.13
	27	2	35.7	5							5	5	1228.42	1234.87
	28	3	35.7	5							5	5	1231.53	1237.73
	29	4	35.7	5							5	5	1235.66	1240.48
	30	5	35.7	5							5	5	1228.2	1233.15
	31	1	71.4	5							5	5	1227.99	1234.14
	32	2	71.4	5							4	4	1230.9	1234.21
	33	3	71.4	5							5	5	1234.94	1239.77
	34	4	71.4	5							5	5	1230.3	1235.8
	35	5	71.4	5							5	5	1232.19	1235.03
,	/	٠ مصد	th/Polarie) 04-14	124 044										

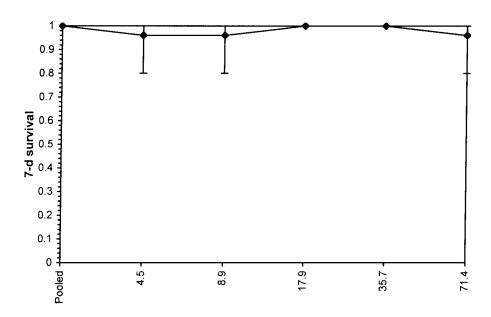

Comments: Azimuth(Polaris) 04-1424-044

Reviewed by Galf

			L	arval Fish	Growth and S	Survival Test-7-d sur	vival
Start Date:	7/19/2005		Test ID:	500298		Sample ID:	G_CREEK_Sublethal_071605
End Date:	7/26/2005		Lab ID:	BCEVS-E	VS Environme	nt Cc Sample Type:	EFF2-Industrial
Sample Date:			Protocol:	EPAW 95-	EPA West Co	ast Test Species:	AA-Atherinops affinis
Comments:	Azimuth(P	olaris) 04	4-1424-04	4			
Conc-%	1	2	3	4	5		
D-Control	1.0000	1.0000	1.0000	1.0000	1.0000		
B-Control	1.0000	1.0000	1.0000	1.0000	1.0000		
4.5	1.0000	1.0000	1.0000	0.8000	1.0000		
8.9	1.0000	1.0000	1.0000	1.0000	0.8000		
17.9	1.0000	1.0000	1.0000	1.0000	1.0000		
35.7	1.0000	1.0000	1.0000	1.0000	1.0000		
71.4	1.0000	0.8000	1.0000	1.0000	1.0000		

		_	Tr	ansform:	Arcsin So	quare Roo	t	Rank	1-Tailed	
Conc-%	Mean	SD	Mean	Min	Max	CV%	N	Sum	Critical	
D-Control	1.0000	0.0000	1.3453	1.3453	1.3453	0.000	5			
B-Control	1.0000	0.0000	1.3453	1.3453	1.3453	0.000	5			
4.5	0.9600	0.0894	1.2977	1.1071	1.3453	8.207	5	25.00	16.00	
8.9	0.9600	0.0894	1.2977	1.1071	1.3453	8.207	5	25.00	16.00	
17.9	1.0000	0.0000	1.3453	1.3453	1.3453	0.000	5	27.50	16.00	
35.7	1.0000	0.0000	1.3453	1.3453	1.3453	0.000	5	27.50	16.00	
71.4	0.9600	0.0894	1.2977	1.1071	1.3453	8.207	5	25.00	16.00	

Auxiliary Tests					Statistic	Critical	Skew	Kurt
Shapiro-Wilk's Test indicates non	-normal dis	tribution (p <= 0.0°	f)	0.59678	0.9	-2.2346	4.3922
Equality of variance cannot be co	nfirmed							
The control means are not signific	cantly differ	ent (p = 1	.00)		0	2.306		
Hypothesis Test (1-tail, 0.05)	NOEC	LOEC	ChV	TU		,	-	
Steel's Many-One Rank Test	71.4	>71.4		1.40056				

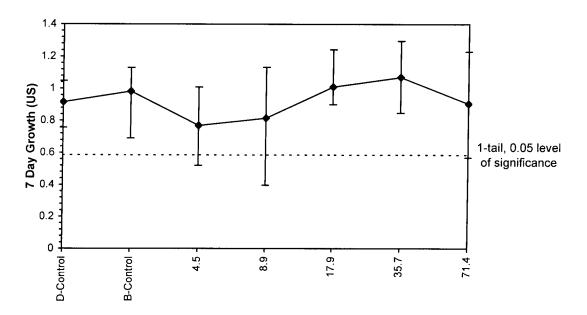

Statistical comparisons were against the negative control.

Reviewed by Charlis To

*******			L	arval Fish	Growth and Su	vival Test-7-d sur	vival
Start Date:	7/19/2005		Test ID:	500298		Sample ID:	G CREEK Sublethal 071605
End Date:	7/26/2005		Lab ID:	BCEVS-E	VS Environment	Cc Sample Type:	EFF2-Industrial
Sample Date:			Protocol:	EPAW 95-	-EPA West Coas	Test Species:	AA-Atherinops affinis
Comments:	Azimuth(F	Polaris) 0	4-1424-04	4			·
Conc-%	1	2	3	4	5		
D-Control	1.0000	1.0000	1.0000	1.0000	1.0000		
B-Control	1.0000	1.0000	1.0000	1.0000	1.0000		
4.5	1.0000	1.0000	1.0000	0.8000	1.0000		
8.9	1.0000	1.0000	1.0000	1.0000	0.8000		
17.9	1.0000	1.0000	1.0000	1.0000	1.0000		
35.7	1.0000	1.0000	1.0000	1.0000	1.0000		
71.4	1.0000	0.8000	1.0000	1.0000	1.0000		

			Tra	ansform:	Arcsin Sc	uare Roo	t	Rank	1-Tailed
Conc-%	Mean	SD	Mean	Min	Max	CV%	N	Sum	Critical
Pooled	1.0000	0.0000	1.3453	1.3453	1.3453	0.000	10		
4.5	0.9600	0.0894	1.2977	1.1071	1.3453	8.207	5	35.00	21.00
8.9	0.9600	0.0894	1.2977	1.1071	1.3453	8.207	5	35.00	21.00
17.9	1.0000	0.0000	1.3453	1.3453	1.3453	0.000	5	40.00	21.00
35.7	1.0000	0.0000	1.3453	1.3453	1.3453	0.000	5	40.00	21.00
71.4	0.9600	0.0894	1.2977	1.1071	1.3453	8.207	5	35.00	21.00

Auxiliary Tests					Statistic	Critical	Skew	Kurt
Shapiro-Wilk's Test indicates non	-normal dis	stribution ($(p \le 0.0^{\circ})$)	0.58129	0.91	-2.3952	5.50568
Equality of variance cannot be co	nfirmed							
The control means are not signific	cantly differ	rent $(p = 1)$.00)		0	2.306		
Hypothesis Test (1-tail, 0.05)	NOEC	LOEC	ChV	TU				
Wilcoxon Rank Sum Test	71.4	>71.4		1.40056			,	

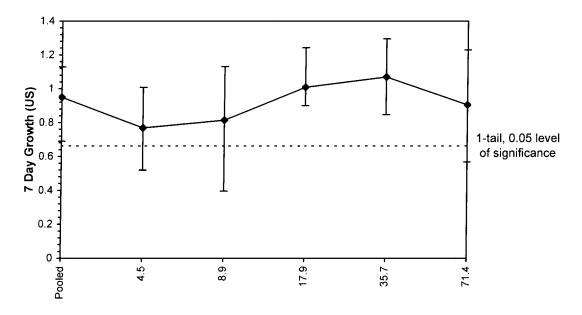

Statistical comparisons were agianst the pooled controls.

Reviewed by Quefit

			Larv	al Fish Gro	wth and Sur	vival Test-7 Day Gro	wth (US)
Start Date:	7/19/2005		Test ID:	500298		Sample ID:	G_CREEK_Sublethal_071605
End Date:	7/26/2005		Lab ID:	BCEVS-EV	/S Environme	ent Cc Sample Type:	EFF2-Industrial
Sample Date:			Protocol:	EPAW 95-	EPA West Co	past Test Species:	AA-Atherinops affinis
Comments:	Azimuth(F	Polaris) 04	4-1424-04	14			·
Conc-%	1	2	3	4	5		
D-Control	0.9600	1.0480	0.7560	1.0100	0.8060		
B-Control	1.0780	1.1300	1.0720	0.9420	0.6900		
4.5	0.7320	0.6840	0.9000	0.5200℃	1.0080		
8.9	1.0120	1.1320	0.9960	0.5400	0.3960 🗸		
17.9	0.9600	1.0280	0.9220	1.2440	0.9020		
35.7	0.8420	1.2900	1.2400	0.9640	0.9900		
71.4	1.2300	0.6620	0.9660	1.1000	0.5680		

				Transform	n: Untran		1-Tailed			
Conc-%	Mean	SD	Mean	Min	Max	CV%	N	t-Stat	Critical	MSD
D-Control	0.9160	0.1284	0.9160	0.7560	1.0480	14.012	5			
B-Control	0.9824	0.1775	0.9824	0.6900	1.1300	18.072	5			
4.5	0.7688	0.1903	0.7688	0.5200	1.0080	24.755	5	1.051	2.360	0.3307
8.9	0.8152	0.3253	0.8152	0.3960	1.1320	39.903	5	0.719	2.360	0.3307
17.9	1.0112	0.1387	1.0112	0.9020	1.2440	13.719	5	-0.679	2.360	0.3307
35.7	1.0652	0.1916	1.0652	0.8420	1.2900	17.985	5	-1.065	2.360	0.3307
71.4	0.9052	0.2828	0.9052	0.5680	1.2300	31.246	5	0.077	2.360	0.3307

Auxiliary Tests		Statistic		Critical		Skew	Kurt			
Shapiro-Wilk's Test indicates nor		0.96171		0.9		-0.2156	-0.8642			
Bartlett's Test indicates equal var		4.97608		15.0863						
The control means are not signific	cantly differ	ent(p = 0)).52)		0.67773		2.306			
Hypothesis Test (1-tail, 0.05)	NOEC	LOEC	ChV	TU	MSDu	MSDp	MSB	MSE	F-Prob	df
Dunnett's Test	71.4	>71.4		1.40056	0.33065	0.36097	0.06323	0.04907	0.30153	5, 24


Statistical comparisons were against the negative control.

Reviewed by: 94th

			Larva	al Fish Gro	owth and Surviv	al Test-7 Day Gro	wth (US)
Start Date:	7/19/2005		Test ID:	500298		Sample ID:	G_CREEK_Sublethal_071605
End Date:	7/26/2005		Lab ID:	BCEVS-E	VS Environment	Cc Sample Type:	EFF2-Industrial
Sample Date:			Protocol:	EPAW 95-	EPA West Coas	Test Species:	AA-Atherinops affinis
Comments:	Azimuth(P	olaris) 0	4-1424-04	4			
Conc-%	1	2	3	4	5		
D-Control	0.9600	1.0480	0.7560	1.0100	0.8060		
B-Control	1.0780	1.1300	1.0720	0.9420	0.6900		
4.5	0.7320	0.6840	0.9000	0.5200	1.0080		
8.9	1.0120	1.1320	0.9960	0.5400	0.3960		
17.9	0.9600	1.0280	0.9220	1.2440	0.9020		
35.7	0.8420	1.2900	1.2400	0.9640	0.9900		
71.4	1.2300	0.6620	0.9660	1.1000	0.5680		

				Transforr	n: Untran					
Conc-%	Mean	SD	Mean	Min	Max	CV%	N	t-Stat	Critical	MSD
Pooled	0.9492	0.1502	0.9492	0.6900	1.1300	15.822	10			
4.5	0.7688	0.1903	0.7688	0.5200	1.0080	24.755	5	1.547	2.462	0.2871
8.9	0.8152	0.3253	0.8152	0.3960	1.1320	39.903	5	1.149	2.462	0.2871
17.9	1.0112	0.1387	1.0112	0.9020	1.2440	13.719	5	-0.532	2.462	0.2871
35.7	1.0652	0.1916	1.0652	0.8420	1.2900	17.985	5	-0.995	2.462	0.2871
71.4	0.9052	0.2828	0.9052	0.5680	1.2300	31.246	5	0.377	2.462	0.2871

Auxiliary Tests		Statistic		Critical		Skew	Kurt			
Shapiro-Wilk's Test indicates norr		0.9613		0.91		-0.2544	-0.8676			
Bartlett's Test indicates equal vari		5.3243		15.0863						
The control means are not signific	antly differ	ent $(p = 0)$.52)		0.67773		2.306			
Hypothesis Test (1-tail, 0.05)	NOEC	LOEC	ChV	TU	MSDu	MSDp	MSB	MSE	F-Prob	df
Bonferroni t Test	71.4	>71.4		1.40056	0.28714	0.30251	0.06509	0.04534	0.24132	5, 29

Statistical comparisons were against the negative control.

Reviewed by Chalf & Ang- 18105

EVS ENVIRONMENT CONSULTANTS 7-d Atherinops affinis SURVIVAL AND GROWTH TEST DATA SUMMARY

EVS Project No. 04-142		EVS Analysts IXS, SXB, MICT, AXF							
EVS Work Order No. 25		Test Initiation Date	e 19-July-05						
	Initial Sample		Refresh Samples						
Sample	Day 0	Day 2		Day 4					
Identification Amount Received	100 mg/L Cu Stock	k (05-(4-201)							
Amount Received (s) Date Collected	IXIL								
	7 Marcs			/					
Date Received	Ma		/						
Temperature (°C)									
рН									
DO(mg/L)									
Conductivity (µmhos/cm)									
Salinity (ppt)									
Ammonia (mg/L N)									
Chlorine (mg/L Cl)									
Other	1,								
Dissolved Oxygen (mg/L) Salinity PEST CONDITIONS Temperature Range (°C) DH Range Dissolved Oxygen Range (mg/Salinity (ppt) Photoperiod (L:D h) Acration Provided? Other	7 - 8.0 L) , 46.2 - 7.7	Reference Toxic 7-d survival LC5 7-d growth IC50 Reference Toxicant 7-d survival LC5	Toxicant Result (incleant Test Date 1936) 122 (106 122 (3 v 105 146 117 (100-126) A 2) 116 (31-156) A ean ± 2SD) and CV					
EST RESULTS									
	NOEC LOEC	LC50 (95% CL)	IC50 (95% CL)	IC25 (95% CL)					
Survival	00 (80	117 (100-134)							
Growth Mg/L Co	56 100	1,-2 (100-10)	116 (31-156)	83/58-114					
Other			·· 27 80° 1977)	TOO COS TITULES					
			 						
Data Verified By	Challin	Date Verified	An 2	2/05					
orms\Lab\Datasheets\Larvalfish\Topsmelt\7D-SUMMA	RY.DOC September 30, 1999		7,109	1					

EVS ENVIRONMENT CONSULTANTS 7-d Atherinops affinis SURVIVAL AND GROWTH TEST – WATER QUALITY DATA (EEM)

EVS Project No.	Client (Polwis) Azimuth EVS Project No. 04-1424-044 EVS Work Order No. 0500288 298								Test Initiation Date/Time 19- July -05/1440h							
EVS Work Order	No	2500	1250 RS0	298			Source/Date Received ABS/19-JWy-05									
Cu (ug/)						T	`empera	ture (°C	C)	 						
Concentration	0	रु।d	1 hew		2		3		4		5		6	7		
D-control	20.0	205	250	20.5	220	21-0	200	21.0	20.0	21.0	20.C	21.0	20.0	Zoc		
32	20.0	20.5	20.0	205	20.0	210	200	21.0	20,0	21.0	20,6	110	20,0	20.5		
5b	20.0	20.5	20 0	505	20.0	21.0	200	71.0	20.0	21.0	20.0	21.0	70,0	12.5		
100	20,0	205	20.5	20 5	22° 0	21-0	200	21.0	20.0	21.0	20.6	710	20.0	20.5		
180	20,0	20.5	20 -3	205	20.5				200	21.0	20.0	21.0	20.0	205		
310	20.0	265	200	20 5	20.0	21.0	200	21.0			-		_	_		
								MC								
Tech. Initials	12	Skb	SXE	SXB	SXB	SXB	SXQ	176-	ML	1176	ML	17/6-	1714	THY		
Cu (ng/l) pH																
Concentration	0	old	1 new	2	2		3		4		5	(5	7		
U-control	78	4.7	7.7	4.4	7.8	<i>E c</i>	7.9	7.8	7.9	7.8	7.8	7.9	7.9	7.9		
32	7.8	4-7	7-7	77	ને 8	J.7	79	7.8	7.9	7.8	7.8	7.9	79	7.9		
56	78	7.7	7-8	77	7.8	77	79	7.8		-		7.9	7.9	7.9		
100	78	7-7	7.7	77	3 F	3.F	79	7.8	7.9	7.8		80	24	7.9		
180	7-8	77	7-8	7.7	3€	7 8		78	7.9	7.8	7.8	80	79	7.9		
320	7-8	77	7.8	7.7	3.8	3 F	79	7.8	<i>'</i>				7.9	7.9		
	_															
Tech. Initials	157	26	SXB	Bx2	SXB	SAB	Sx&	ML	ML.	176	17/6-	1774	1774	725		
WQ Instruments Used: Temp. Calibrated Hg thermonter pH II-A-03030) Comments																
Test Set Up By Jas. Sal Date Verified By Date Verified My. 17/05																

EVS ENVIRONMENT CONSULTANTS 7-d Atherinops affinis SURVIVAL AND GROWTH TEST – WATER QUALITY DATA (EEM)

Client (Polur's EVS Project No. EVS Work Order		Sample ID Cu Reference Toxicant Test Initiation Date/Time 19-July-05/1440h Source/Date Received ABS/19-July-05												
E V S WOLK Older	No3	RS!	298				Source		Receive	u/	763/	17-11	14-01	
Cu (Mg/L)				· · · · · · · · · · · · · · · · · · ·			Salinit	y (ppt)		•				
Concentration	0		1		2		3		4	5			6	7
0-control	28	2.8	2.8	28	28	28	28	28	28	28	28	28	78	28
32	28	28	28	28	28	28	28	58	18	28	78	28	25	28
56	78	28	28	28	28	28	>8	28	28	汜	28	28	78	78
100	28	58	28	28	28	28	28	28	28	28	28	28	78	28
180	28	28	58	28	28	28	28	58	28	28	85	28	ζŷ	28
320	28	28	28	28	28	28	28	28		_	_			_
Tech. Initials	727	SXB	SXB	SXB	SXB	SK	SXA	Sig	ML	ક્ષા	174	SXS	Mil-	SLE
(u (ng/)						Dissol	ved Ox	vaan (r	na/L)	·			<i></i> ,	
Concentration	0	0 1			2	ļ	3		4	· 	 5		<u>м7ц</u> 6 У.7	7
b-control	7.5	6-3	7.5	6.7	76	6,6	7.5	6.6	77	65	72	66	29	62
37	7.5	6.5	7.5	6.7	75	6.5	7.5	6.6	77	6.5	77	6.6	77	6.3
56	7.5	6.6	75	6.8	75	6.6	7.5	6.5	77	6.5	77	67	7.7	66
(90	7.5	66	7.5	6.7	75	6.6	75	6.6	<u> </u>	6.4	7.7	67	7.7	64
180	7.5	66	75	6-7	7.5	6.6	75	6.6	27	6.5	7.7	6.6	7.7 MTL	66
312	7.5	66	7.5	6.7	75	6.7	7.5	6.5	77					
									1114					
Tech. Initials	70	Sx&	Sx6	Sib	SXR	>xB	Sag	1714	711-	1774	ПП	Mi	170	707
WQ Instruments Us	sed:	Salinity	y I-A	1-050	ξο ξ			Do) <u>I</u> -,	A-@/(<i>¥</i>			
Fest Set Up By	x), د⁄	B		Data V	erified l	ву <u>С</u>	Jaip	i 4	Da	te Verif	ied	Ay	17/0	<u> </u>

EVS ENVIRONMENT CONSULTANTS 7-d Atherinops affinis TOXICITY TEST – DAILY SURVIVAL DATA

Client (Polaris) Azinuth	Sample ID Con Reference Toxicant
EVS Project No. 04-1424-044	Test Species/Batch A affinis/19-July-os
EVS Work Order No. 0500 188 298	Test Initiation Date/Time 19-July -05/1440h
RSP	No. of Organisms/Volume J/20014

Ca (Myle)		Pan		Nun	nber of S	Survivor	s – Day	of Test		
Concentration'	Rep.	No.	1	2	3	4	5	6	7	Comments
	A	480	5	5	5	7-	5	1	5	
7.1.	В	A81	5	5	5	5	5	5	2	
D-control	С	Agz	5	5	5	5	5	5	5	
	D	A83	5	5	5	5	5	5	8.4	
	Е	A84	5	5	5	5	5	5	5	
	Α	A85	5	5	5	5	5	5	2	
	В	A36	5	5	5	5	5	5	5	
32	С	A37	5	5	5	5	5	5	5	
	D	A88	5	5	5	5	5	5	5	
	Е	A89	5	5	5	5	5	5	4	
	Α	A91	5	5	4	4	9	l)	4	
56	В	A92	5	5	5	5	5	5	5-	
96	С	A93	_5	5	5	1	5	5	1	
	D	A94	5	5	5	5	5	5	5	
	Е	A95	5	5	5	5	5	5	5	
	A	A66	5	3	2	2	2	2	7	
	В	467	4	1	Ì	Ì	١	1	(
100	С	A68	5	4	4	4	4	4	4	
	D	A69	5	4	4	4	9	J -	4	
	Ε,	A70	5	5	5	5	5	<i>}</i> ~	5	
Technician Init	ials	147	Sxb	SXB	SXB	74	1774	ML	-107	

Sample Description	clear colorless.	
Data Verified By	Qailix	Date Verified Aug. 17/0 x

EVS ENVIRONMENT CONSULTANTS 7-d Atherinops affinis TOXICITY TEST – DAILY SURVIVAL DATA

Client (Polo		h				ample II)	Cv	Reference Toxicant 4/11/3/19-July-05	
EVS Project No.						Т	est Spec	ies/Batch	1 4.09	4,113/19-JMY-01
EVS Work Order	r No. <u>e</u>	500 is 0	797	•		1	est Initia	ation Date	e/Time	19-July-05/1440h
		,				iN	10. 01 Or	ganisms/	volume	5/200 ml
Cu (mg/y)		Pan		Nur	nber of S	Survivor	s – Day	of Test		
Concentration	Rep.	No.	1	2	3	4	5	6	7	Comments
	A		4	:3	0	0	0	0,41		
	В	471	5	5	4	4	4	34	3	
(80	C		5	3	2		0	0		
	D		Ч	2	2	1	0	0		
	Е	472	5	3	2	2	ı	ì	į	
	A		3	2	f	S	0	0	-	
2 2	В		2	2	0	0	0	0	_	
320	C		2	2	1	0	0	0		
	D		2	2	0	0	0	0		
	Е		3	2	0	0	0	Q		
	Α									
	В									
	С									
,	D									
	Е									
	A									
	В		***************************************							
	С									
	D									
	Е									
Technician Init		15	Sx&	SYB	SAB	176	Mb	Mu	12	
Sample Descriptio Data Verified By	n	(lew	. Wor	iless Ofa	1/jk		Dat	e Verifie	d	Ary. 17/01

7-d Atherinops affinis SURVIVAL AND GROWTH TOXICITY TEST - DRY WEIGHT DATA **EVS ENVIRONMENT CONSULTANTS**

Start Date (Day 0) (9- 5-47-03	Sample ID () Patience Toxicant	Serial Number	
Client (Polaris)	EVS Project No. ラムールンターの44	EVS Work Order No. Orco298	

Tech. Init.					T							
Te	1/X		1		+>		_		1	-	<u> </u>	
Comments (e.g., confirmation weights, organisms lost in transfer)			(matical 1239 84 14 17	tish was when timesfory								
Number Weighed	<u></u>	5	5	4742	5							
Number of Survivors	h	<u>ا</u>	<u>ل</u> م	24	٨							
Final Weight (mg) (pan + biomass)	1231.08	1232.69	1239.66	1239.36	1234.00							
Pan Weight (mg) ¹	15.5221	1228.66	1235.20	F33.97	15.8221						i	
Pan No.	A.80	ABI	A82	AB3	ABG							
Rep.	V	B	J	٥	7)			!				
Sample ID	DC7C											

Re-confirm weights for 10% of final weights and record under "Comments"; relative percent difference (RPD) between pairs of weights should be ≤10% of organism weight.

Data Verified By

Date Verified

rified

Ang. 18/05

 $Forms \verb||Lab|| Data sheets \verb||Larva|| fish \verb||Topsmelh|| Top C \\$

August 26, 2002

EVS ENVIRONMENT CONSULTANTS 7-d Atherinops affinis SURVIVAL AND GROWTH TOXICITY TEST – DRY WEIGHT

DAT WEIGHT DATA	Sample ID (M. Jakkerse Toxicant	Sentaring / 817-211 D	Comments (e.g., confirmation	er)	AXE											-			Re-confirm weights for 10% of final weights and record under "Comments"; relative nerrent difference or many.	of weights should be ≤10% of organism weight.	, , ,
1)ay 0)	e/oerial Number	Number			١ ١			; t	, +	~\\	\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	5	`_				3	, can	Kr D) between pairs	Date Verified
Č	Start Date (Day 0) Sample ID	, Edianoc 1 yp	Number of	Survivors		<u></u>	. \		* *		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	- !	^	ل ما		-			Cent difference	מבינה מוזיכו כווכב (Date
		**************************************	Final Weight (mg)	1286 23	1329.211	1238.84	1231.43	1241.25	1249.99	1227.22	1546911	(739 %	12.75	1245.85					"Comments"; relative ner		
			Pan Weight (mg) '	1229.51	1233 16	1234.56	1225.13	1236.28	1245.68	1222.48	1240.76	1233.51	1239 (21	3000					hts and record under	J 2000	327
AZIMAK (POLACIS)	04-1424-044	F	Rep. Pan No.	4 485	3 486		ABB	189	491	3 A92	A93	494							0% of final weig		
*	EVS Work Order No.	Cample 17	7/2/	32 A	9	0	0	\(\z\)		\$	7	0		A	Z Z	٥	0		I. Re-confirm weights for I	Data Verified By	

Forms/Lab/Datasheets/Larvalfish/Topsmeth/7D-DRVWEIGHT.DOC

7-d Atherinops affinis SURVIVAL AND GROWTH TOXICITY TEST

Start Date (Day 9) 14-501-05 Sample ID CM 2aference Toxicut Balance Type/Serial Number Simponius Allocation		<u> </u>	wellus, of gamsms lost in transfer) Init.	AXT.		Continua 1228.25 mg			Contrad 1241.90mg					-		ı	-			erified By	19/t) m	
ay 0) [4] (Serial Number		Number Weighed	,	1 -	- -	7		× ^	^	-										.PD) between pa	Date Verified	
Start Date (Day 0) Sample ID Balance Type/Serie		Number of Survivors	,		73	٤ ا	1	7 ~												ent difference (R	Date V	
193	Einel WY : 177	r IIIal wetght (mg) (pan + biomass)	1229.94	1238.70	1228.47.24	1236.61	86.4721	1241.93	1215.67										"Comments" relative	יייייייי אינטוואפ אפור		_
nri>)	Pan Weight	(mg)	1227.36	1237.38	1224.68	1232.31	1244.03	1239.12	1214.89	1221-57m	1238 20 W	60.001							its and record unde	Paro	Sach	4 August 26, 2002
Azimuth (Polaris) 04-1424-044 0500248	p. Pan		ACE	AG7	AGB	A69	A70	45 A71	8E A72	473	444	7.4)% of final weigh			(YWEIGHT.DOC
Client A2, n EVS Project No. 04. EVS Work Order No. 04.	Sample ID Rep.	7,60	500	8	2	0		000		4	4				3	٥	0	, J	1. Re-confirm weights for 10	Data Verified By		Formstl-ab\Datasheets\Larvalfish\Topsmell\TD-DRVWEIGHT.DOC

Test: LF-Larval Fish Growth and Survival Test

Species: AA-Atherinops affinis

Sample ID: REF-Ref Toxicant

Start Date: 7/19/2005 End Date: 7/26/2005

Test ID: RTAACu45

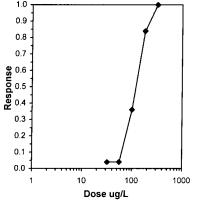
Protocol: EPAW 95-EPA West Coast

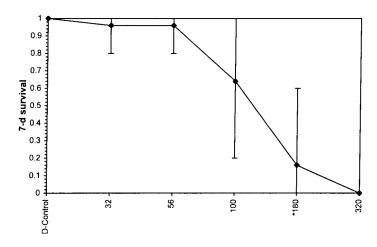
Sample Type: CU-Copper

Lab ID: BCEVS-EVS Environment Consultants

												No. Fish	Total	Tare
Pos	ID	Rep	Group	Day 0	Day 1	Day 2	Day 3	Day 4	Day 5	Day 6	Day 7	Weighed	Wgt(mg)	Wgt(mg)
	1	1	D-Control	5	İ						5	5	1225.71	1231.08
	2	2	D-Control	5							5	5	1228.66	1232.69
	3	3	D-Control	5							5	5	1235.2	1239.86
	4	4	D-Control	5							5	5	1233.97	1239.36
	5	5	D-Control	5							5	5	1228.91	1234
	6	1	32.0	5							5	5	1229.51	1236.23
	7	2	32.0	5							5	5	1233.16	1239.24
	8	3	32.0	5							5	5	1234.56	1238.84
	9	4	32.0	5							5	5	1225.13	1231.48
	10	5	32.0	5							4	4	1236.28	1241.25
	11	1	56.0	5							4	4	1245.68	1249.99
	12	2	56.0	5							5	5	1222.48	1227.32
	13	3	56.0	5							5	5	1240.76	1246.95
	14	4	56.0	5							5	5	1233.51	1239.05
	15	5	56.0	5	}						5	5	1239.61	1245.85
	16	1	100.0	5							2	2	1227.36	1229.94
	17	2	100.0	5							1	1	1237.38	1238.7
	18	3	100.0	5							4	4	1224.68	1228.24
	19	4	100.0	5							4	4	1232.31	1236.61
	20	5	100.0	5							5	5	1244.03	1247.98
	21	1	180.0	5							0	0	0	0
	22	2	180.0	5							3	3	1239.12	1241.93
	23	3	180.0	5							0	0	0	0
	24	4	180.0	5							0	0	0	0
	25	5	180.0	5							1	1	1214.89	1215.67
	26	1	320.0	5							0	0	0	0
	27	2	320.0	5							0	0	0	0
	28	3	320.0	5							0	0	0	0
	29	4	320.0	5							0	0	0	0
	30	5	320.0	5							0	0	0	0

Comments: Azimuth Polaris 04-1424-044 (0500298)

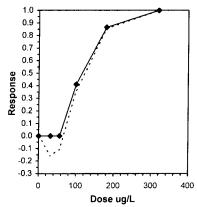

Reviewed by: Qalfit

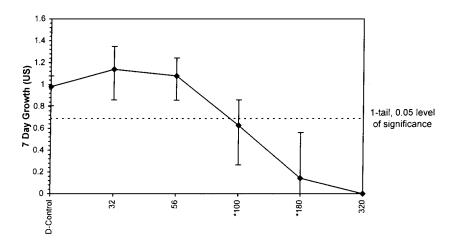

			L	arval Fish.	Growth and Su	rvival Test-7-d sur	vival
Start Date:	7/19/2005		Test ID:	RTAACu4	5	Sample ID:	REF-Ref Toxicant
End Date:	7/26/2005		Lab ID:	BCEVS-E	VS Environment	Cc Sample Type:	CU-Copper
Sample Date:			Protocol:	EPAW 95	-EPA West Coas	t Test Species:	AA-Atherinops affinis
Comments:	Azimuth P	olaris 04	-1424-044	4 (0500298)		
Conc-ug/L	1	2	3	4	_5		
D-Control	1.0000	1.0000	1.0000	1.0000	1.0000		
32	1.0000	1.0000	1.0000	1.0000	0.8000		
56	0.8000	1.0000	1.0000	1.0000	1.0000		
100	0.4000	0.2000	0.8000	0.8000	1.0000		
180	0.0000	0.6000	0.0000	0.0000	0.2000		
320	0.0000	0.0000	0.0000	0.0000	0.0000		

			Tr	ansform:	Arcsin S	quare Roof	t	Rank	1-Tailed	Number	Total
Conc-ug/L	Mean	SD	Mean	Min	Max	CV%	N	Sum	Critical	Resp	Number
D-Control	1.0000	0.0000	1.3453	1.3453	1.3453	0.000	5			0	25
32	0.9600	0.0894	1.2977	1.1071	1.3453	8.207	5	25.00	17.00	1	25
56	0.9600	0.0894	1.2977	1.1071	1.3453	8.207	5	25.00	17.00	1	25
100	0.6400	0.3286	0.9416	0.4636	1.3453	38.004	5	17.50	17.00	9	25
*180	0.1600	0.2608	0.4053	0.2255	0.8861	71.039	5	15.00	17.00	21	25
320	0.0000	0.0000	0.2255	0.2255	0.2255	0.000	5			25	25

Auxiliary Tests					Statistic	Critical	Skew	Kurt
Shapiro-Wilk's Test indicates nor	mal distribu	tion (p >	0.01)		0.90309	0.888	0.17519	1.66432
Equality of variance cannot be co	nfirmed							
Hypothesis Test (1-tail, 0.05)	NOEC	LOEC	ChV	TƯ				
Steel's Many-One Rank Test	100	180	134.164					

				Trimmed Spea	rman-Karber	
Trim Level	EC50	95%	CL	·		
0.0%						
5.0%	116.88	100.05	136.55			
10.0%	116.41	98.86	137.08		1.0	
20.0%	117.22	94.25	145.79		0.9	
Auto-4.0%	117.04	100.39	136.44	ug/L Cu	^{0.9} 1	
				-	0.8 -	


Reviewed by Galf


		•	Larv	al Fish Gre	owth and Surviv	al Test-7 Day Gro	wth (US)
Start Date:	7/19/2005		Test ID:	RTAACu4	5	Sample ID:	REF-Ref Toxicant
End Date:	7/26/2005		Lab ID:	BCEVS-E	VS Environment	Cc Sample Type:	CU-Copper
Sample Date:			Protocol:	EPAW 95	EPA West Coast	t Test Species:	AA-Atherinops affinis
Comments:	Azimuth P	olaris 04	-1424-044	(0500298)		
Conc-ug/L	1	2	3	4	5		
D-Control	1.0740	0.8060	0.9320	1.0780	1.0180		
32	1.3440	1.2160	0.8560	1.2700	0.9940		
56	0.8620	0.9680	1.2380	1.1080	1.2480		
100	0.5160	0.2640	√ 0.7120	0.8600	0.7900		
180	0.0000	0.5620	0.0000	0.0000	0.1560 🗸		
320	0.0000	0.0000	0.0000	0.0000	0.0000		

				Transfore	n: Untrar	sformed			1-Tailed		Isot	onic
Conc-ug/L	Mean	SD	Mean	Min	Max	CV%	N	_ t-Stat	Critical	MSD	Mean	N-Mean
D-Control	0.9816	0.1145	0.9816	0.8060	1.0780	11.666	5				1.0675	1.0000
32	1.1360	0.2038	1.1360	0.8560	1.3440	17.943	5	-1.219	2.300	0.2913	1.0675	1.0000
56	1.0848	0.1688	1.0848	0.8620	1.2480	15.557	5	-0.815	2.300	0.2913	1.0675	1.0000
*100	0.6284	0.2409	0.6284	0.2640	0.8600	38.338	5	2.789	2.300	0.2913	0.6284	0.5887
*180	0.1436	0.2435	0.1436	0.0000	0.5620	169.535	5	6.618	2.300	0.2913	0.1436	0.1345
320	0.0000	0.0000	0.0000	0.0000	0.0000	0.000	5				0.0000	0.0000

Auxiliary Tests					Statistic		Critical		Skew	Kurt
Shapiro-Wilk's Test indicates norr	nal distribu	tion (p > t	0.01)		0.9755		0.888		0.077	-0.1953
Bartlett's Test indicates equal vari	iances (p =	0.66)			2.41004		13.2767			
Hypothesis Test (1-tail, 0.05)	NOEC	LOEC	ChV	TU	MSDu	MSDp	MSB	MSE	F-Prob	df
Dunnett's Test	56	100	74.8331		0.29126	0.29672	0.85895	0.04009	5.4E-07	4, 20

				Line	ar Interpolation (200	Resamples)
Point	ug/L	SD	95% CI	_(Exp)	Skew	
IC05	61.35	6.16	30.65	67.13	-1.9529	
IC10	66.70	4.93	43.95	78.27	-0.6852	
IC15	72.05	5.63	55.64	91.09	0.5478	1.0
IC20	77.39	6.77	62.96	102.78	1.0777	0.9 -
IC25	82.74	7.81	67.65	114.17	0.9592	0.8
IC40	98.79	11.11	78.22	135.91	0.5373	0.7
IC50	115.62	14.64	80.73	156.41	0.6255 ug/L Cu	0.6

Reviewed by Galf & Aug. 12/01

ToxCalc v5.0.23

APPENDIX II

Raw Data and Statistical Analyses:

Dendraster excentricus

EVS ENVIRONMENT CONSULTANTS ECHINOID FERTILIZATION TOXICITY TEST DATA SUMMARY

Client Lzimuth Consulting (Polaus Mune) EVS Project No. 04-1424-044 EVS Work Order No. 0500299	EVS Analysts SRS Test Initiation Date 19 54, 05
SAMPLE	TEST SPECIES
Identification G-crek sublethed 071605 Amount Received 3x20L Date Collected 16-5ul-05 Date Received 19-5ul-05 Temperature (°C) 14.0 9 15-0 pH 7.5 98.2 Dissolved Oxygen (mg/L) 11.1 98.5 Conductivity (µmhos/cm) 1520 Salinity (ppt) 3.0 9 28 Ammonia (mg/L N) Chlorine (mg/L Cl) Other -	Organism Dendrasta excentricus Source Westward Sectate Date Received Sps 19 Jul 05 Reference Toxicant Sps Current Reference Toxicant Result Reference Toxicant Test Date 19 Jul 05 IC50 (and 95% CL) 5.8 (52-6.5)m/L Reference Toxicant Warning Limits (mean ± 2SD) and CV 3.6 ± 4.4 m/L S05; (v = 60%
DILUTION/CONTROL WATER (initial water quality)	TEST CONDITIONS
Water Type wsterlized; 0.45 m filled SW Temperature (°C) 15 pH 7.9 Dissolved Oxygen (mg/L) 8.5 Salinity (ppt) 28 Other	Temperature Range (°C)
I C50! 13.2 (10.1) IC75: 5.2 (4.4) NOEC: <4.6%	264 against pealed controls 3-16 10 % v/v v/v v/v
Data Verified By Qalh 4	Date Verified My. 7/05

EVS ENVIRONMENT CONSULTANTS ECHINOID FERTILIZATION TOXICITY TEST INITIAL WATER QUALITY

Client AZIMUM (Pa EVS Project No. 04-1420 EVS Work Order No. 050 Logbook Filmold #13	4-044 0299		Test Species Source/Date	n Date/Time 193 Denotraster Received western 10.10	excentricus A Sealah //95my 05
Sample ID Greek swelled 071605	Temperature (°C)	рН	Salinity (ppt)	Dissolved Oxygen (mg/L)	Comments
Control	15	7.9	28	8.5	
Brine Control	15	8.3	28	8.5	
4.6 %.010	15	8.0	28	8.5	
9.17.0/0	15	8.1	28	8.5	
18.2 18.3 1/10	15	8.1	28	8.5	
36.4 36.6% V/V		8.1	18	8.5	
Max (72.80	w) 15	8.2	28	8.5	140
Technician Initials	5RS	SRS	SRS	SUS	
WQ Instruments Used: Temp. Sample Description Data Verified By	le 15 clem i	with he	odom.	alinity <u>II-A-0303</u>	

EVS ENVIRONMENT CONSULTANTS ECHINOID FERTILIZATION TOXICITY TEST – EGG COUNT (SAMPLES)

Client Azimuth (Polani Mune)	Test Initiation Date/Time 19 July 05/1519
EVS Project No. <u>04-1424-044</u>	Test Species Dendrosta excentricus
EVS Work Order No. 0500299	Source/Date Received 19 July 05/ Westward Sealer
Logbook Echinoid #13 Pages 68-71	Test Duration 10:10
-	Sperm:Egg Ratio 2000

Sample ID	Replicate	Number of Fertilized Eggs	Number of Unfertilized Eggs	Comments	Tech. Initials
70(7)	A	64	36		SRS
	В	60	40		
Control	С	66	34		
	D	69	31		
G-hech Subwaldings	Α	56	44		505
l i	В	51	49		
4.6	С	52	48		
	D	53	47		J
G-Greek Sublethed	Α	39	let-		Ses
9.1	В	37	63		
(~,	С	37	63		
	D	36	64		1
(1-Creksuburld	A	33	67		SRS
18.32	В	33 28 28	72		
10.4	С	29	7(
	D	30	טר		1
Concrete Subjected	Α	20	80		585
36.84	В	27	73		
36.67	C	23	77		
	D	24	76		
6,-Cell S. Gefred	Α	20	80		SRS
Max	В	16	84		Ì
(72.8)	С	21	79		
	D	21	79		1

Data Verified By	Quelit 4	Date Verified	Aug. 17/05	

Test: SC-Sperm Cell Fertilization test

Species: DE-Dendraster excentricus

Sample ID: g_creek sublethal 071605

Test ID: 0500299

Protocol: EPS1/RM/27-EC 92 (Sperm Cell)

Sample Type: GW-groundwater

Start Date: 7/19/2004 10:10 End Date: 7/19/2004 Lab ID: BCEVS-EVS Environment Consultants

			T				*
				Total	Number	Number	
Pos	ID	Rep	Group	Counted	Fertilized	Unfertilized	Notes
	1	1	D-Control	100	64	36	
	2	2	D-Control	100	60	40	
	3	3	D-Control	100	66	34	
	4	4	D-Control	100	69	31	
	5	1	B-Control	100	70	30	
	6	2	B-Control	100	68	32	
	7	3	B-Control	100	71	29	
	8	4	B-Control	100	67	33	
	9	1	4.600	100	56	44	
	10	2	4.600	100	51	49	
	11	3	4.600	100	52	48	
	12	4	4.600	100	53	47	
	13	1	9.100	100	39	61	
	14	2	9.100	100	37	63	
	15	3	9.100	100	37	63	
	16	4	9.100	100	36	64	
	17	1	18.200	100	33	67	
	18	2	18.200	100	28	72	
	19	3	18.200	100	29	71	
	20	4	18.200	100	30	70	• **
	21	1	36.400	100	20	80	
	22	2	36.400	100	27	73	
	23	3	36.400	100	23	77	
	24	4	36.400	100	24	76	
	25	1	72.800	100	20	80	
	26	2	72.800	100	16	84	
	27	3	72.800	100	21	79	
	28	4	72.800	100	21	79	

Comments: Azimuth Consulting Group (Polaris) 04-1424-044 (0500299)

Reviewed by: Oalph

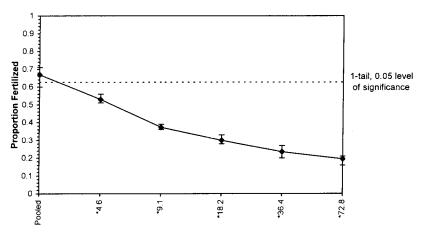
Page 1 ToxCalc 5.0

			5	Sperm Cell Ferti	lization test-Proportion Fertil	lized
Start Date:	7/19/2004	10:10	Test ID:	500299	Sample ID:	g_creek sublethal 071605
End Date:	7/19/2004		Lab ID:	BCEVS-EVS En	vironment Cc Sample Type:	GW-groundwater
Sample Date:	7/16/2004		Protocol:	EPS1/RM/27-E0	C 92 (Sperm (Test Species:	DE-Dendraster excentricus
Comments:	Azimuth (Consulting	g Group (F	Polaris) 04-1424-	044 (0500299)	
Conc-%	1	2	3	4	· · · · · · · · · · · · · · · · · · ·	
D-Control	0.6400	0.6000	0.6600	0.6900		
B-Control	0.7000	0.6800	0.7100	0.6700		
4.6	0.5600	0.5100	0.5200	0.5300		
9.1	0.3900	0.3700	0.3700	0.3600		
18.2	0.3300	0.2800	0.2900	0.3000		
36.4	0.2000	0.2700	0.2300	0.2400		
72.8	0.2000	0.1600	0.2100	0.2100		

				Transforr	Fransform: Untransformed				1-Tailed			onic
Conc-%	Mean	SD	Mean	Min	Max	CV%	N	t-Stat	Critical	MSD	Mean	N-Mean
Pooled	0.6688	0.0356	0.6688	0.6000	0.7100	5.328	8				0.6688	1.0000
*4.6	0.5300	0.0216	0.5300	0.5100	0.5600	4.076	4	8.308	2.508	0.0419	0.5300	0.7925
*9.1	0.3725	0.0126	0.3725	0.3600	0.3900	3.378	4	17.739	2.508	0.0419	0.3725	0.5570
*18.2	0.3000	0.0216	0.3000	0.2800	0.3300	7.201	4	22.080	2.508	0.0419	0.3000	0.4486
*36.4	0.2350	0.0289	0.2350	0.2000	0.2700	12.284	4	25.972	2.508	0.0419	0.2350	0.3514
*72.8	0.1950	0.0238	0.1950	0.1600	0.2100	12.208	4	28.367	2.508	0.0419	0.1950	0.2916

Auxiliary Tests					Statistic		Critical		Skew	Kurt
Shapiro-Wilk's Test indicates nor	mal distribu	tion (p > 0	.01)		0.96577		0.896		-0.6264	0.89125
Bartlett's Test indicates equal var	iances (p =	0.59)			3.72999		15.0863			
The control means are not significant	cantly differ	ent (p = 0.	.09)		2.02707		2.44691			
Hypothesis Test (1-tail, 0.05)	NOEC	LOEC	ChV	TU	MSDu	MSDp	MSB	MSE	F-Prob	df
Bonferroni t Test	<4.6	4.6			0.04189	0.06264	0.18978	0.00074	1.0E-18	5, 22

IC25 5.229 0.268 4.417 6.073 -0.2992 0.9 IC40 8.069 0.268 7.197 8.864 -0.1114 0.8 IC50 13.159 1.074 10.756 16.853 0.9349 %v/v 0.7	Log-Linear Interpolation (200 Resamples)								
C10*	Point	%	SD	95% CI	_(Exp)	Skew			
IC15* 2.475 0.454 1.574 4.227 1.0928 1.0 IC20* 4.263 0.546 2.495 5.437 -0.5325 0.9 IC25 5.229 0.268 4.417 6.073 -0.2992 0.8 IC40 8.069 0.268 7.197 8.864 -0.1114 0.8 IC50 13.159 1.074 10.756 16.853 0.9349 %v/v 0.7	IC05*	0.515	0.065	0.376	0.746	1.1707			
IC20* 4.263 0.546 2.495 5.437 -0.5325 0.9 IC25 5.229 0.268 4.417 6.073 -0.2992 IC40 8.069 0.268 7.197 8.864 -0.1114 0.8 IC50 13.159 1.074 10.756 16.853 0.9349 %v/v 0.7	IC10*	1.294	0.204	0.886	2.030	1.4723			
IC25 5.229 0.268 4.417 6.073 -0.2992 0.9 IC40 8.069 0.268 7.197 8.864 -0.1114 0.8 IC50 13.159 1.074 10.756 16.853 0.9349 %v/v 0.7	IC15*	2.475	0.454	1.574	4.227	1.0928	1.0		
IC25 5.229 0.268 4.417 6.073 -0.2992 IC40 8.069 0.268 7.197 8.864 -0.1114 0.8 IC50 1.2 IC50 IC50 1.2 I	IC20*	4.263	0.546	2.495	5.437	-0.5325			
IC50 13.159 1.074 10.756 16.853 0.9349 %v/v 0.7	IC25	5.229	0.268	4.417	6.073	-0.2992	0.9]		
V./ 7	IC40	8.069	0.268	7.197	8.864	-0.1114	0.8 -		
	IC50	13.159	1.074	10.756	16.853	0.9349 %	6v/v 0.7]		
	* indicates l	C estimate les	s than the	e lowest co	ncentration	on	•		
							90.6 d		


Dose-Response Plot

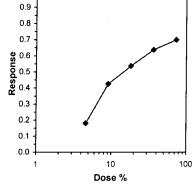
0.3 -0.2 -0.1 -

10

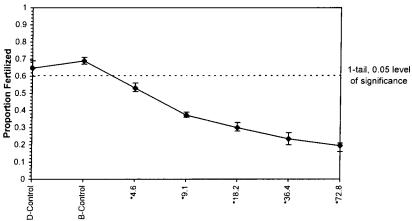
Dose %

100

Note: Statistical comparisons were against pooled controls


Reviewed by Galfit

			9	perm Cell	Fertilization test-Proportio	n Fertilized
Start Date:	7/19/2004	10:10	Test ID:	500299	Sample I	D: g_creek sublethal 071605
End Date:	7/19/2004		Lab ID:	BCEVS-EV	/S Environment Cc Sample 1	Type: GW-groundwater
Sample Date:	7/16/2004		Protocol:	EPS1/RM/	27-EC 92 (Sperm · Test Spe	cies: DE-Dendraster excentricus
Comments:	Azimuth C	consulting	g Group (F	olaris) 04-1	424-044 (0500299)	
Conc-%	1	2	3	4		
D-Control	0.6400	0.6000	0.6600	0.6900		
B-Control	0.7000	0.6800	0.7100	0.6700		
4.6	0.5600	0.5100	0.5200	0.5300		
9.1	0.3900	0.3700	0.3700	0.3600		
18.2	0.3300	0.2800	0.2900	0.3000		
36.4	0.2000	0.2700	0.2300	0.2400		
72.8	0.2000	0.1600	0.2100	0.2100		


Conc-%	Mean	SD	Transform: Untransformed					1-Tailed			Isotonic	
			Mean	Min	Max	CV%	N	t-Stat	Critical	MSD	Mean	N-Mean
D-Control	0.6475	0.0377	0.6475	0.6000	0.6900	5.830	4				0.6475	1.0000
B-Control	0.6900	0.0183	0.6900	0.6700	0.7100	2.646	4					
*4.6	0.5300	0.0216	0.5300	0.5100	0.5600	4.076	4	6.504	2.410	0.0435	0.5300	0.8185
*9.1	0.3725	0.0126	0.3725	0.3600	0.3900	3.378	4	15.222	2.410	0.0435	0.3725	0.5753
*18.2	0.3000	0.0216	0.3000	0.2800	0.3300	7.201	4	19.235	2.410	0.0435	0.3000	0.4633
*36.4	0.2350	0.0289	0.2350	0.2000	0.2700	12.284	4	22.833	2.410	0.0435	0.2350	0.3629
*72.8	0.1950	0.0238	0.1950	0.1600	0.2100	12.208	4	25.047	2.410	0.0435	0.1950	0.3012

Auxiliary Tests		Statistic		Critical			Kurt			
Shapiro-Wilk's Test indicates norr		0.98059		0.884		-0.1047	-0.1759			
Bartlett's Test indicates equal van		3.19845 2.02707		15.0863	_					
The control means are not signific			2.4469	2.44691						
Hypothesis Test (1-tail, 0.05)	NOEC	LOEC	ChV	TU	MSDu	MSDp	MSB	MSE	F-Prob	df
Dunnett's Test	<4.6	4.6			0.04354	0.06724	0.12461	0.00065	6.1E-15	5, 18

Log-Linear Interpolation (200 Resamples) 95% CL(Exp) Point Skew 2.3644 2.4779 IC05* 0.607 0.161 0.394 1.360 0.557 IC10* 1.584 0.927 4.356 IC15* 3.154 0.865 6.106 0.5417 1.634 1.0 IC20 4.857 0.524 3.042 6.173 -0.5720 0.9 IC25 5.612 0.375 4.664 6.952 0.2814 7.515 10.306 IC40 8.513 0.444 1.0512 8.0 IC50 14.556 1.689 10.887 21.343 0.9377 %v/v 0.7 * indicates IC estimate less than the lowest concentration

Dose-Response Plot

Note: Statistical comparisons were against the dilution control

Reviewed by All A

EVS ENVIRONMENT CONSULTANTS ECHINOID FERTILIZATION TOXICITY TEST DATA SUMMARY

Client Azimuth Consulting (Pelaco Mine) EVS Project No. 04-1424-044 EVS Work Order No. 0500299	Test Initiation Date 19 July 05
SAMPLE	TEST SPECIES
Identification Sos lector Shock Site #05-5-008 Amount Received x L Date Coffeeted 7-5u-05 Date Received M/A Temperature (°C) pH Dissolved Oxygen (mg/L) Conductivity (\mumbos/cm) Salinity (ppt) Ammonia (mg/L N) Chlorine (mg/L Cl) Other DILUTION/CONTROL WATER (initial water quality)	Organism Dendrota excertaces Source Westward Sectors Date Received 19 July 05 Reference Toxicant Substitute Sectors Current Reference Toxicant Result Reference Toxicant Test Date 14 July 05 IC50 (and 95% CL) 5.8 (5.2-6.5) my/L 505 Reference Toxicant Warning Limits (mean ± 2SD) and CV 3.6 ± 4.4 my/L 505, (U% = 60) TEST CONDITIONS
T(25: 3.01) NOFC: 1.0 m	Temperature Range (°C) 15 pH Range 7.8-7.9 Dissolved Oxygen Range (mg/L) 8.5 Salinity Range (ppt) 28 Sperm:Egg Ratio 20001 Test Duration 10:10 Other 5.2-6.5) mg/L 505 2.6-3-5) mg/L 505 3/L 505
Data Verified By Qalh	Date Verified

EVS ENVIRONMENT CONSULTANTS ECHINOID FERTILIZATION TOXICITY TEST INITIAL WATER QUALITY

Client Azmuth (PEVS Project No. 04-142 EVS Work Order No. 05 Logbook #13	7-044 500299		Test Initiation Date/Time 19 5005/1514 Test Species Dendraster excentricus Source/Date Received Westmind Sentes / 19 505 Test Duration 10:10					
Reftox								
Sample ID SDS (m/4)	Temperature (°C)	рН	Salinity (ppt)	Dissolved Oxygen (mg/L)	Comments			
Control	15	7.9	29	8.5				
1.0	15	7.8	28	8.5				
1.8	15	7.8	28	8.5				
3.2	15	78	28	8.5	7			
5.6	15	7.8	28	8.5 8.5 8.85				
10.0	15	フォ	28	8-85				
	ŧ							
					On the country of the second s			
Technician Initials	Ses	SUS	SES	SRS				
WQ Instruments Used: Tem Sample Description			S. 030301 S.	alinity <u>1</u> 1 - A - 28 030 9	, DO <u>I</u> J-A-20			
Data Verified By	Quelit		Date Verifie	d Ay.	17/05			
	1 11,	1		. 0	1			

EVS ENVIRONMENT CONSULTANTS ECHINOID FERTILIZATION TOXICITY TEST – EGG COUNTS (CONTROLS)

Client Azimuth (Polaris Mine)	Test Initiation Date/Time 19 54,05 (1514
EVS Project No. <u>04-1424-044</u>	Test Species <u>Denovaster</u> excentricus
EVS Work Order No. 0500299	Test Duration 10:10
Logbook +13 Pages 68-71	Sperm:Egg Ratio 2 coo'ı

Concentration SDS (mg/L)	Replicate	No. Fertilized Eggs	No. Unfertilized Eggs	Comments	Tech. Initials
Reference Toxi	cant				
	Α	7(29		SRS
10	В	69	31		
1.0	C	71	29		
	D	70	30		
	A	56	44		
1-8	В	40	40		T
1-0	С	62	38		
	D	60	40		
	A	60 4,51	4449		
3.2	В	47	53		
J. Z	С	51	49		
	D	50	50		
	A	34	66		
5.6	В	37	63	,	
5.6	С	32	G 8		
	D	36	64		
	A	20	80		
10	В	21	79		
	С	18	87 81		
	D	19	81	·	
Control Seawate	er				
2	A	70	30		5 <i>p</i> s
Brine	В	68	32		
Control	С	71	29		
	D	67	33		l

Data Verified By	Qaih L	Date Verified	Ay 17/05	

Test: SC-Sperm Cell Fertilization test

Species: DE-Dendraster excentricus

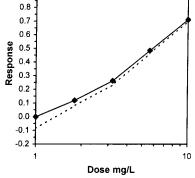
Sample ID: REF-Ref Toxicant

Test ID: rtdesds051

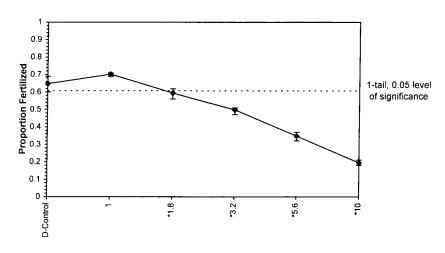
Protocol: EPS1/RM/27-EC 92 (Sperm Cell)

Sample Type: SDS-Sodium dodecyl sulfate

Start	Date:	7/19/2	2005 10:10	End Date	7/19/2005		VS-EVS Environment Consultants
Otalt	Date.	17.1072	1000 10:10	Total	Number	Number	VO E VO ETIVITORITIERE GORISURANES
Pos	ID	Rep	Group	Counted	Fertilized	Unfertilized	Notes
. 00	1	1	D-Control	100	64	36	110103
	2	2	D-Control	100	60	40	
	3	3	D-Control	100	66	34	
	4	4	D-Control	100	69	31	
	5	1	1.000	100	71	29	
	6	2	1.000	100	69	31	
	7	3	1.000	100	71	29	
	8	4	1.000	100	70	30	
	9	1	1.800	100	56	44	
	10	2	1.800	100	60	40	
	11	3	1.800	100	62	38	
一	12	4	1.800	100	60	40	
\neg	13	1	3.200	100	51	49	
	14	2	3.200	100	47	53	, = "
	15	3	3.200	100	51	49	
	16	4	3.200	100	50	50	
	17	1	5.600	100	34	66	
	18	2	5.600	100	37	63	
	19	3	5.600	100	32	68	
	20	4	5.600	100	36	64	
	21	1	10.000	100	20	80	
	22	2	10.000	100	21	79	
	23	3	10.000	100	18	82	
\neg	24	4	10.000	100	19	81	


Comments: Azimuth Consulting Group 04-1424-044 (0500299)

			S	perm Cell Fe	ertilization test-Proporti	ion Fertili	zed
Start Date:	7/19/2005	10:10	Test ID:	rtdesds051	Sample	e ID:	REF-Ref Toxicant
End Date:	7/19/2005		Lab ID:	BCEVS-EVS	Environment Cc Sample	е Туре:	SDS-Sodium dodecyl sulfate
Sample Date:			Protocol:	EPS1/RM/27	-EC 92 (Sperm (Test Sp	pecies:	DE-Dendraster excentricus
Comments:	Azimuth C	Consultin	g Group 0	4-1424-044 (0)500299)		
Conc-mg/L	1	2	3	4			
D-Control	0.6400	0.6000	0.6600	0.6900			
1	0.7100	0.6900	0.7100	0.7000			
1.8	0.5600	0.6000	0.6200	0.6000			
3.2	0.5100	0.4700	0.5100	0.5000			
5.6	0.3400	0.3700	0.3200	0.3600			
10	0.2000	0.2100	0.1800	0.1900			


				Transform	n: Untran	sformed			1-Tailed		Isot	onic
Conc-mg/L	Mean	SD	Mean	Min	Max	CV%	N	t-Stat	Critical	MSD	Mean	N-Mean
D-Control	0.6475	0.0377	0.6475	0.6000	0.6900	5.830	4				0.6750	1.0000
1	0.7025	0.0096	0.7025	0.6900	0.7100	1.363	4	-3.386	2.410	0.0391	0.6750	1.0000
*1.8	0.5950	0.0252	0.5950	0.5600	0.6200	4.230	4	3.232	2.410	0.0391	0.5950	0.8815
*3.2	0.4975	0.0189	0.4975	0.4700	0.5100	3.805	4	9.234	2.410	0.0391	0.4975	0.7370
*5.6	0.3475	0.0222	0.3475	0.3200	0.3700	6.381	4	18.468	2.410	0.0391	0.3475	0.5148
*10	0.1950	0.0129	0.1950	0.1800	0.2100	6.620	4	27.855	2.410	0.0391	0.1950	0.2889

Auxiliary Tests					Statistic		Critical		Skew	Kurt
Shapiro-Wilk's Test indicates norr	mal distribu	tion (p > 1	0.01)		0.96443		0.884		-0.4619	0.4979
Bartlett's Test indicates equal vari	iances (p =	0.33)			5.80467		15.0863			
Hypothesis Test (1-tail, 0.05)	NOEC	LOEC	ChV	TU	MSDu	MSDp	MSB	MSE	F-Prob	df
Dunnett's Test	1	1.8	1.34164		0.03915	0.06046	0.15043	0.00053	1.8E-16	5 18

Log-Linear Interpolation (200 Resamples) Point IC05 IC10 **Skew** 0.7327 0.1987 **mg/L** 1.3050 95% CL(Exp) 1.1588 1.567 SD 0.0620 1.5675 1.6566 0.1267 1.3262 2.1192 IC15 2.0587 0.1538 1.5036 2.4959 -0.3268 1.0 IC20 2.5196 0.1504 2.0886 3.0277 -0.0752 0.9 IC25 3.0499 2.5656 0.1581 3.5441 -0.1894 8.0 IC40 4.5501 0.1485 4.0503 5.0634 -0.0472 0.7 IC50 5.8248 0.2258 5.1944 6.4999 -0.1156 mg/L SDS 0.6

Dose-Response Plot

Reviewed by Galf

APPENDIX III

Chain-of-Custody Form

CHAIN-OF-CUSTODY/TEST REQUEST FORM

Please see instructions for commission on heavy shaded groups to the commission on heavy shaded groups in the commission of the commission	Chopola popular		i		0.500-10	TOOSTODI/TEST REGUEST FORM	FCOEST	-ORM			195 Pemberton Avenue
Olient Name: Tech Com 1/4.0	: Graueu areas 10 L	e completed	by EVS Labo	ratory upon	sample receipt.		c	j		Ly Oconsultants Nort	North Vancouver, BC Canada V7P 2R4
2		ilent Contact	Cilent Contact Name:	1	Breis a		Ship to: 5161	Ship to: 5166 10 AZINUTH	" THE		Tel: 604-986-4331
-		Phone: (2)	5-12h(052)	2012			CACA	CONJULTINGE CROWN	2. W.P.	Fax	Fax: 604-662-8548
Kimborley DO		Fax: (2)	250)427-8	1578						+	www.evsenvironment.com
VIA 3E1	S	Sampled By:	1310ke	Hamer			Atto: Edmind	1. J. P.	- T-	Shipping Date: July 16/05	05
		-			2 Te	Test(s) Requested	11	Ш	3		
			etho (🗸)	10 of 18	Į.	41. (4.5)		າ	(D°)	EVS Receipt Check List CA	H.
Collection Date Time (dd/mmm/vv) (24-h clock)	Superior State of Sta		ou W	rolun ntain (O L)	epo;	inu! 152 254		-		EVS Project #: 04/1424- XX 1044	phu. 6
	pre toenunicauon		rtach itaelic	rs x / e Coi	5 7 6 C	्राकृत्य भूट्रम् स्टिम्	saltw	saltwater, freshwater,			13/0/10
		be ot	sitetis A tee O eld grab;		709	4	may	may contain sewage)	rns2 ioitibr	EVS WORKOTGER#	0
For composite sample record date & time starring and ending	starting and pooling		us Samp	Cor	1-3	+10 2000		7,000		Sample Storage Location: 4°C 🗡 Chemical 🗋 , Other-	ther
/ /	film a nin film		+		ひかりも	1 2 1 1			9H	Supporting documentation/other information attached if applicable	od if applicable
16/27/04 8900 G-Creak	G-Creek-Acute_omes	<u>S</u> m	৬	2×10 1	\sim		1,11,2	/ /		, a	420000000000000000000000000000000000000
16 /04/08 0 000 Car 1 5 11 11			├			> >	יי ע	ntitude to start		. Signatures & dates correct?	z ≻
1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	Water that 071	65 E	٢	5×20 1		× ×	St.	14M +1042		2. Chain-of-custody fully completed?	z >-
										 Containers arrived in good condition (unbroken)? 	Z > .(
								<u></u>		4. Container labels completed (i.e., dates, IO's)?	<i>z</i>
										5. Container labels agreed with custody papers?	z >-
				-						6. Sample receipt temperature within accountable country	>
										7a. Sediment testing going to be initiated within 14 days?	days? Y N
										7b. If no, are samples under Nitrogen? If not, why?	z ≻
								1 1 1 1 1 1		8. Chain-of-custody generated upon receipt.	
			_	_]
PO/Reference No.:				1						Sample containers originate from EVS.	
Project Title: Policis Mm Ga.			5 1	mmemisymstr.	TILL DOMENTAL CONTRACTOR CONTRACTOR	Azimith.	2			Teng 12.78	
12	Acas 1		א	000000	RICHARD WENTE FOR Chery Marks forh	-Cherry Me	- 4	7 7 7 7	Mackin 105	CMackintoshida zinatho osture co	
11 4	1 11 123c		- ,			N. Weller	Danald Tack	(march)	1	Bruce. Prouded to tack coming Com	
		B) Received	B) Received by: SM	_	Date: 19 Sud OS	Ο	d By:	Date:		D) Received by:	
		Company:	Color		Time: 10:4K	Company:	×	Tme:			
ners secured by	O. Paris	Shipping cor	Shipping containers received secure?	_	(es) No	Courier name:	.e:			ime:	
Custody seals used? Yes No (circle one)		Custody seals intact?	Ils intact?			Shipping cor	Shipping containers secured by:	r. Tape Straps Lock	ock Other	ğ	o _N
			Į			Custody seals used?	ls used? Yes	No	ر ا	Custody seals intact? Yes No N/A	

1 Receiving Water (RW); Effluent (E); Elutrate (ELU); Sediment (SED); Chemical (CHEM); Stormwater (SW); Other (Please Specify) 2 Collapsible Carboy (CC); Glass Jar (GJ); Jerry Can (JC); Plastic HDPE (P); Plastic Bucket (PB); Other (Please Specify) 3 Please note any conditions the lab should be aware of for safety and storage concerns 4 Acceptable (A); Unacceptable (U). Please note specifics (e.g., broken, leaking, lid not on) under Comments/Instructions

Revision Date: Sept. 25, 2000

White, yellow, pink - accompany the shipment Orange - retained by consignor (e.g., shippen) Yellow - retained by consignee (e.g., receiver) Pink - for use as needed White - returned to consignor by consignee

Distribution of copies:

Champia parvula Sexual Reproduction Test Results

for Sample E452

for

Azimuth Consulting Group

by

Mary Moody Environment and Minerals Division Saskatchewan Research Council

15 Innovation Boulevard, Saskatoon, SK S7N 2X8 Phone: 306-933-5469

Champia parvula Sexual Reproduction Test Quality Assurance Summary

Client	Azimuth Consulting Group	SRC Sample #	E452
File#	MM478	Test Initiation Date	Aug 9/05
Analyst	M. Moody	Test Completion Date	Aug 16/05
Sample Identity/Name	Garrow Creek		

This report is based on the Report Assessment Checklist for EEM Cycle Two: Test of Sexual Reproduction using the Red Macroalga *Champia parvula*. (May 1999)

Test Organisms, Method and Conditions - Species: Champia parvula, sexually mature male and female branches, in good health, males having sori with spermatia, females having trichogynes. Method: EPA/600/4-91/003, Method 1009.0, static, non-renewal; 2-day effluent exposure followed by 5 to 7 day recovery period in control medium for cystocarp development. Exposure/Dilution Medium: natural seawater collected at Pacific Environmental Science Centre, Environment Canada, North Vancouver, B.C., filtered to 0.2μm and autoclaved before use, adjusted as necessary to salinity 30 ppt. with hypersaline brine made from the same source water. Test medium is natural seawater enriched with 10 ml/L Test Nutrient Solution. Recovery Medium is natural seawater as above, enriched with 10 ml/L Culture Nutrient Solution (method section 16.10.1.3).

Reference Toxicant Test - Method: EPA/600/4-91/003, Method 1009.0, static, non-renewal; 2-day toxicant exposure followed by 5 to 7 day recovery period in control medium for cystocarp development. Test conditions: performed under same experimental conditions as effluent sample. Compound: sodium dodecyl sulphate mg/L

Date of test: Aug 17/05	Historic value, warning limits ±2SD
IC ₅₀ (95 % CL) mg/L 1.31 (1.20 - 1.41)	1.41 (1.15 - 1.74)

Quality Control Data - There was no unusual appearance or treatment of test organisms before their use in the test. There was nothing unusual about the test, no deviation from the test method or problems encountered. No control mortality was observed in any control solution during observation periods. Sample was tested within 72 hours of collection. The mean number of cystocarps per plant counted in this test must be >10 to be acceptable. Data for this test is as follows.

natural seawater controls	85.9
brine controls	95.8
pooled control cystocarp count*	90.9

^{*} this number used in calculation of IC values as required in EC guidance document on salinity adjustment, July 1997

Toxicity Test Results

IC ₂₅ (95 % CL) %v/v	45.3 (27.5 - 52.4)
Signature	mr mordy
Date	aug 2x/os

15 Innovation Boulevard, Saskatoon, SK S7N 2X8 Phone: 306-933-5469

Test Data Summary

SAMPLE					SRC#	E452
Identification/Name	Garrow Creek		-		Analyst	Mary Moody
Date/Time Received	Aug 9/05@ 0900	Date Collected	Aug 6/05	Temperature U	pon Receipt (°C)	22 with ice packs
Test Initiation Date	Aug 9/05		Test Compl	letion Date	Aug 16/05	
ORGANISM INFORM	IATION					
Species		Champia parvula	Appe	earance/Health of (Champia excelle	ent
Source sexually m	ature male and female b	oranches, obtained fro	m USEPA, Hat	field Marine Science	e Center, Newport, (Oregon, 1995
Females, Presence of T	richogynes	yes	Males, Pre	sence of Sori with	Spermatia	yes
TEST CONDITIONS						
Test Method US	EPA/600/4-91/003, N	Method 1009.0	Dilution w Science Ce	rater Natural s entre, North Vanco	eawater from Pacifouver B.C.	ic Environmental
Test Type static, non-re	enewal; 2 day effluent ex	xposure followed by 5	-7 day recovery	y period in control m	nedium for cystocarp	development
Test Vessels (Exposure	e & Recovery)	270 ml transpa	rent polystyre	ne cups, transpare	nt polystyrene lids	
Exposure Volume / De	pth 100	ml / 4.5 cm	Recovery	Volume / Depth	200 ml / 7.3	3 cm
Replicates/Conc.	3		No. of orga	anisms (female/ma	le) <u>5/2</u>	
Number and Concentra Solutions (%v/v)		ntrols: (two) natura sts: 70, 35, 17.5, 8.7		rine		
Chemicals added to co	ntrol/dilution water	Test Nutrients	as described i	n method cited at	10 ml/L, analytical	grade
Sample Treatment						-
D.O. on unadjusted sar	nple salinity adjustme	ent (mg/L) 8.6	D.O. aft	er salinity adjustm	ent (mg/L)	7.7
Aeration (duration/rate		one	—— Filtratio		pH Adjustmen	
Salinity Adjustment*		00 mL effluent + 260			_	
Hypersaline Brine for S Adjustment*		repared from natura				
* as per EC guidance d	document on salinity of	adjustment, May 200	01			
Exposure Period (48 h)	and Recovery Perio	d (5-7 days)				
Temperature, pH, D.O	and Salinity of test s	olutions and control	s on following	g page		
Photoperiod (L:D h)	16:8	Agitation	of tests and co	ontrols during expe	osure gentl	e rotary shaking
Recovery Medium: nat (section 16.10.1.3 of c		ning 10 ml/L Culture	e Nutrients	Aeration during	recovery: gentle a	
FOXICITY TEST RES	SULTS					
IC ₂₅ (%v/v) (95% CL)	45.3 (27	'.5 - 52.4)	IC ₅₀ (%v	v/v), (95% CL)	61.4 (50.4 - 66	.6)
Mean control cystocary		ural sea water and b	rine controls)		90.9	

15 Innovation Boulevard, Saskatoon, SK S7N 2X8
Phone: 306-933-5469

Water Quality Data

Sample Identification/Name

Garrow Creek

SRC# E452

INITIAL WATER QUALITY	UNADJUSTED SAMPLE at test start, without salinity adjustment	TEST MEDIUM	RECOVERY MEDIUM
Temperature (°C)	23	23	23
Dissolved Oxygen (mg/L)	8.6	7.6	7.8
pH	7.75	8.35	8.10
Salinity (ppt):	2	30	30
Sample Description clear colourl	ess liquid	Length of Recovery Period (days)	5

Water Quality Data during Exposure Period (0, 48 hr) and Recovery Period (0 and end)

Concentration	T	Temperature (°C)			Dissolved Oxygen (mg/L)				pН				Salinity (ppt)			
Concentration % (v/v)	exposure		reco	overy	exposure		recovery		exposure		recovery		exposure		recovery	
	0	48	0	end	0	48	0	end	0	48	0	end	0	48	0	end
Control-NSW*	23	23	23	23	7.6	7.8	7.8	7.9	8.34	8.37	8.10	7.98	30	30	30	30
Control-brine	23	23	23	23	7.8	7.8	7.8	7.8	8.11	8.59	8.10	8.01	30	30	30	30
A 70	23	23	23	23	7.7	7.8	7.8	7.9	8.05	8.54	8.10	8.03	30	30	30	30
C 17.5	23	23	23	23	7.8	7.8	7.8	7.9	8.29	8.64	8.10	8.67	30	30	30	30
E 4.38	23	23	23	23	7.6	7.8	7.8	7.9	8.34	8.47	8.10	8.05	30	30	30	30

RECOVERY PERIOD - TEMPERATURE MONITORING (initial daily entries)

Day 0	Day 1	Day 2	Day 3	Day 4	Day 5	Day 6	Day 7
23	23	23	23	23	23		

Comments

pH before salt addition: 7.75, after salt addition 8.12	
*NSW natural sea water	

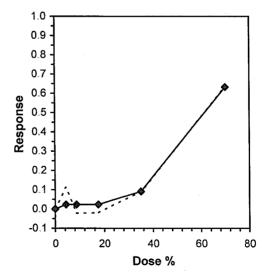
15 Innovation Boulevard, Saskatoon, SK S7N 2X8 Phone: 306-933-5469

Test Data

Sample Identification	Garrow Creek		E452
		1000	

C	oncentration % (v/v)	Rep	Mo	rtality	Indi	vidual Pl	ant Cys	tocarp C	ounts		SD*	
#		Пор	#	%	1	2	3	4	5	mean	รม	Comments
		A	0	0	130	80	119	96	95	104.0	20.1	Mean and SD
Co	ontrol, Natural Sea Water	В	0	0	63	86	60	60	102	74.2	19.0	85.9, 23.8
		С	0	0	95	106	54	54	89	79.6	24.2	Healthy red colour, normal growth
:	Control,	A	0 -	0	96	98	129	106	90	103.8	15.2	Mean and SD
	brine	В	0	0	75	74	103	91	80	84.6	12.3	95.8, 15.3
		С	0	0	97	96	104	118	80	99.0	13.8	Healthy red colour, normal growth
		A	0	0	105	60	81	103	100	89.8	19.2	Mean and SD
Е	4 38	В	.0	0	- 88	53	65	84	60	70.0	15.3	80.8, 17.4
		С	0	0	103	75	85	64	86	82.6	14.5	Healthy red colour, normal growth
		A	0	. 0	110	88	75	72	88	86.6	15.0	Mean and SD
D	8.75	В	0	0	109	127	75	71	110	98.4	24.3	92.9, 22.9 Healthy red colour,
	ļ	С	0	0	82	50	124	121	91	93.6	30.5	normal growth
		A	0	0	100	138	92	71	77	95.6	24.6	Mean and SD
С	17.5	В	0	0	107	107	65	100	91	94.0	17.5	92.7, 19.1 Healthy red colour,
		С	0	0	99	101	63	94	85	88.4	15.5	normal growth
		A	0	0	82	67	118	115	77	91.8	23.2	Mean and SD
В	35	В	0	0	67	88	76	138	75	88.8	28.5	82.6, 24.2 Healthy red colour,
		С	0	0	55	75	58	57	91	67.2	15.5	normal growth
		A	0	0	35	27	40	37	36	35.0	4.8	Mean and SD
Α	70	В	0	0	44	41	18	40	40	36.6	10.5	33.3, 8.3 Healthy red colour,
L		С	0	0	22	41	23	25	31	28.4	7.9	normal growth

Standard Deviation				
Submitted by:	Mondy	Date:	aug 25/05	<u>.</u>


				Algal Reprodu	uction Test-Reproduction	· · · · · · · · · · · · · · · · · · ·
Start Date:	8/9/2005	7	Test ID:	CP478IM	Sample ID:	E452
End Date:	8/16/2005	L	₋ab ID:	SRC-Saskatchewa	an Researc Sample Type:	effluent
Sample Date:	8/6/2005	F	Protocol:	EPA MARINE	Test Species:	CP-Champia parvula
Comments:	Azimuth, G	Sarrow Cr	eek			
Conc-%	1	2	3			
control NSW	104.0	74.2	79.6			
control salt	103.8	84.6	99.0			
4.38	89.8	70.0	82.6			
8.75	86.6	98.4	93.6			
17.5	95.6	94.0	88.4			
35	91.8	88.8	67.2			
70	35.0	36.6	28.4			

		_	•	Transform: Untransformed			_	1-Tailed		Isotonic		
Conc-%	Mean	N-Mean	Mean	Min	Max	CV%	N	t-Stat	Critical	MSD	Mean	N-Mean
Pooled	90.867	1.0000	90.867	74.200	104.000	14.348	6				90.867	1.0000
4.38	80.800	0.8892	80.800	70.000	89.800	12.403	3	1.401	2.602	18.693	88.778	0.9770
8.75	92.867	1.0220	92.867	86.600	98.400	6.390	3	-0.278	2.602	18.693	88.778	0.9770
17.5	92.667	1.0198	92,667	88.400	95.600	4.080	3	-0.251	2.602	18.693	88.778	0.9770
35	82.600	0.9090	82.600	67.200	91.800	16.248	3	1.151	2.602	18.693	82.600	0.9090
*70	33.333	0.3668	33.333	28.400	36.600	13.040	3	8.010	2.602	18.693	33.333	0.3668

Auxiliary Tests					Statistic		Critical		Skew	Kurt
Shapiro-Wilk's Test indicates nor	mal distribu	ition (p >	0.01)		0.95534		0.873		-0.382	-0.7392
Bartlett's Test indicates equal var		5.05585		15.0863						
The control means are not signific	cantly differ	ent (p = 0	0.41)		0.91096		2.77645			
Hypothesis Test (1-tail, 0.05)	NOEC	LOEC	ChV	TU	MSDu	MSDp	MSB	MSE	F-Prob	df
Bonferroni t Test	35	70	49.4975	2.85714	18.6933	0.20572	1647.03	103.188	1.5E-05	5, 15
Treatments vs Pooled Controls										

Linear Interpolation (200 Resamples)

Point	%	SD	95% CL	Skew	
IC05	24.453	14.175	0.000	46.034	-0.2407
IC10	35.583	10.745	0.000	44.063	-1.3971
IC15	38.810	6.323	10.646	46.832	-1.1329
IC20	42.038	5.167	19.403	49.607	-1.0896
IC25	45.266	4.472	27.509	52.378	-1.0088
IC40	54.949	3.252	41.542	60.787	-1.0203
IC50	61.404	2.558	50.439	66.550	-0.9526

Reviewed by: _____

Page \$

CHAIN-OF-CUSTODY / TEST REQUEST FORM

195 Pemberton Avenue North Vancouver, B.C. Canada V7P 2R4 Sample Notes (preserved, saltwater, freshwater, may contain sewage...) www.golder.com Tel: 604-986-4331 Fax: 604-662-8548 Golder Associates Shipping Date Couleward with Test(s) Requested 2 000 5 0 4 Cotos Ship to 1 Comments/Instructions by Code K Sample Container Type Number of Sample Containers x Volume of Sample Containers (1 x 20L) J 200 Client Contact Phone 250 42 4 8406 Sample Collection Method G=grab C=composite 250 - 424 - 24CA CD る。 Attached? (V) Material Safety Data Sheet Type of Each Sample an 9/05 Sampled by. Sample Identification Fax received 501105 Bono 0 DD/MMM/YYYY) (24-h clock) N. V. Co PO/Reference No. Collection Date Project Title Client Name_

Distribution of copies: 1 For composite effluent or water samples, the sample collection date/time is the end of the compositing period.

Receiving Water (RW): Effluent (E); Elutriate (ELU); Sediment (SED); Chemical (CHEM); Stormwater (SW); Other (Please Specify) 3 Collapsible Carboy (CC); glass jar (GJ); Jerry Can (JC); Plastic HDPE (P); Other (Please Specify)

4. Please note any conditions the lab should be aware of for safety and storage concerns

Please see Instructions for completion on back of form

Bevision Date: November White — returned to consignor by consist

White, Yellow – accompany the shipment

Receipt Sample Temp. ('C) Condition Upon Receipt Golder Work Order No.

Shaded area to be completed by Golder Laboratory upon sam

Golder Project No.

Time:

Date:

2) Released by: Company:

50 6 B

Date: Time:

Courier Name:

Shop

Time: 🎎 🤄 Date: 🦯

Company:

Courier Name:

1) Released by: School

Results Needed By

Aug 9/45T Received by:

Date:

1) Received by: Mr Branky

Company: SRC

Company:

Time: 0900

Yellow - kept by consignee (e.g. receiver)

Pink - kept by consignor (e.g. shipper)

Azimuth Consulting Group POLARIS MINE ENVIRONMENTAL EFFECTS MONITORING PROGRAM

August 6, 2005 Sample

PREPARED FOR:

PREPARED BY:

Azimuth Consulting Group *Vancouver, BC*

AZIMUTH CONSULTING GROUP

POLARIS MINE ENVIRONMENTAL EFFECTS MONITORING PROGRAM

AUGUST 6, 2005 SAMPLE

LABORATORY REPORT

Prepared for

Azimuth Consulting Group

218-2902 W. Broadway Vancouver, BC V6K 2G8

Prepared by

EVS Environment Consultants (A Member of the Golder Group of Companies)

195 Pemberton Avenue North Vancouver, BC Canada V7P 2R4

EVS Project No.

04-1424-044

September 2005

TABLE OF CONTENTS

TABLE OF CO	ONTENTS	i
LIST OF TABI	LES	ii
GLOSSARY		iii
1. INTRODUC	CTION	
2. METHODS		2
2.1 7-d Tops	melt (Atherinops affinis) survival and growth toxicity test	2
	erm (Dendraster excentricus) fertilization toxicity test	
2.3 Statistica	I Analysis	
2.4 Quality A	ssurance/Quality Control (QA/QC)	2
3. RESULTS-		6
3.1 7-d Topsi	melt (Atherinops affinis) Survival and Growth Toxicity Test	6
	rm (Dendraster excentricus) Fertilization Toxicity Test	
3.2 Quality A	ssurance/Quality Control (QA/QC)	6
4. REFERENC	CES	9
APPENDIX A	Raw Data and Statistical Analyses: Atherinops affinis	
APPENDIX B	Raw Data and Statistical Analyses: Dendraster excentrical	us
APPENDIX C	Chain-of-Custody Form	

LIST OF TABLES

Table 1:	7-d Topsmelt (<i>Atherinops affinis</i>) survival and growth toxicity test methods	4
Table 2:	Echinoderm (<i>Dendraster excentricus</i>) fertilization toxicity test methods.	5
Table 3:	Summary of results for the 7-d Topsmelt (Atherinops affinis) survival and growth toxicity test	7
Table 4:	Summary of results for the Echinoderm (<i>Dendraster</i> excentricus) fertilization toxicity test	8

GLOSSARY

Control

A treatment in an investigation or study that duplicates all the conditions and factors that might affect the results of the investigation, except the specific condition that is being studied. In an aquatic toxicity test, the control must duplicate all the conditions of the exposure treatment(s), but must contain no test substance. The control is used to determine the absence of measurable toxicity due to basic test conditions (e.g., quality of the dilution water, health of test organisms, or effects due to handling of test organisms). (Environment Canada, 1998)

Dilution water

Water used to dilute the test material in an aquatic toxicity test in order to prepare either different concentrations of a test chemical or different percentages of an effluent for the various test treatments. The water (negative) control in a test is prepared with dilution water only. (Rand, 1995)

Effluent

Any liquid waste (e.g., industrial, municipal) discharged to the aquatic environment. (Environment Canada, 1998)

Endpoint

The reaction of the organisms to show the effect which is intended to mark completion of the test, and also the measurement(s) or value(s) derived, that characterize the results of the test (e.g., ICp). (Environment Canada, 1998)

ICp

The inhibiting concentration for a (specified) percent effect. It represents a point estimate of the concentration of test substance that is estimated to cause a designated percent impairment in a quantitative biological function such as the size attained by fish during a growth period. This term should be used for any toxicological test which measures a quantitative effect or change in rate, such as growth, reproduction, or respiration. (Environment Canada, 1998)

LC50

The median lethal concentration, i.e., the concentration of substance in water estimated to be lethal to 50% of the test organisms. The LC50 and its 95% confidence limits are usually derived by statistical analysis of mortalities in several test concentrations, after a fixed period of exposure. The duration of exposure must be specified (e.g., 96-h LC50). (Environment Canada, 1998)

LOEC

The lowest-observed-effect-concentration. This is the lowest concentration of a test substance to which organisms are exposed, that causes adverse effects on the organism which are detected by the observer and are statistically significant. For example, the LOEC might be the lowest test concentration at which growth of fish was decreased significantly from that of the control groups. LOEC is generally reserved for adverse sublethal effects but can also be used for mortality, which might sometimes be the most sensitive effect observed. (Environment Canada, 1998)

NOEC

The no-observed-effect-concentration. This is the highest concentration of a test substance or material to which organisms are exposed, that does not cause any observed and statistically significant adverse effects on the organism. For example, the NOEC might be the highest test concentration at which growth was not decreased significantly from that of the control groups. NOEC customarily refers to adverse sublethal effects, and to the most sensitive effect unless otherwise specified. (Environment Canada, 1998)

Percentage (%)

A concentration expressed in parts per hundred parts. One percentage represents one unit or part of substance (e.g., effluent, elutriate, leachate or receiving water) diluted with water or medium to a total of 100 parts. Depending on the test substance, concentrations can be prepared on a weight-perweight, weight-per-volume, or volume-per-volume basis, and are expressed as the percentage of test substance in the final sediment mixture or solution. (Environment Canada, 1999b)

Quality assurance (QA)

A program organized and designed to provide accurate and precise results. Included are selection of proper technical methods; tests, or laboratory procedures; sample collection and preservation; selection of limits; evaluation of data; quality control; and qualifications and training of personnel. (Rand, 1995)

(QC)

Quality control Specific actions required to provide information for the quality assurance program. Included are standardization, calibration, replicates, and control and check samples suitable for statistical estimates of confidence of the data. (Rand, 1995)

Reference toxicant

A standard chemical used to measure the sensitivity of the test organisms to establish confidence in the toxicity data obtained for a test substance. In most instances, a toxicity test with a reference toxicant is performed to assess the sensitivity of the organisms at the time the test substance is evaluated, and to determine the precision of results obtained by the laboratory for that chemical. (Environment Canada, 1999b)

Significant difference

A quantitative determination of the probability that two measurements of the same parameter are different, given the variability of the measurements.

1. INTRODUCTION

EVS Environment Consultants (a member of the Golder Group of Companies) conducted sublethal Metal Mining Effluent Regulations (MMER) toxicity testing for Azimuth Consulting Group as part of the Environmental Effects Monitoring (EEM) program for Polaris Mine.

A sample, identified as Garrow Creek, was collected from the Polaris Mine Site on August 6, 2005 in 20-L collapsible polyethylene containers. It was received at the EVS laboratory on August 9, 2005 and was stored in the dark at 4°C prior to test initiation. The sample was evaluated for toxicity using the 7-d topsmelt (*Atherinops affinis*) survival and growth toxicity test and the echinoderm (*Dendraster excentricus*) fertilization toxicity test. Toxicity testing was initiated on the day of initial sample receipt.

This report describes the methods and results of the 7-d topsmelt (*Atherinops affinis*) toxicity test and the echinoderm (*Dendraster excentricus*) fertilization toxicity test. The raw data and statistical analyses are provided in Appendices I and II respectively, and the chain-of-custody form is provided in Appendix III.

2.1 7-D TOPSMELT (ATHERINOPS AFFINIS) SURVIVAL AND GROWTH TOXICITY TEST

A static-renewal 7-d survival and growth toxicity and reference toxicant tests using topsmelt (A. affinis) was conducted in accordance with U.S. Environmental Protection Agency (USEPA, 1995). Test conditions and methods are summarized in Table 1.

This 7-day test exposes topsmelt larvae to different concentrations of a given sample. Fish are fed on a daily basis and both survival and growth endpoints are measured at test termination. These observations are assessed in comparison to the pooled negative and brine controls.

2.2 ECHINODERM (DENDRASTER EXCENTRICUS) FERTILIZATION TOXICITY TEST

The echinoderm (*Dendraster excentricus*) fertilization toxicity test was conducted in accordance with Environment Canada (1992 with 1997 amendments). Test conditions and methods are summarized in Table 2.

This fertilization test involves exposing echinoderm sperm to a series of test concentrations for ten minutes, echinoderm eggs are then added allowing fertilization to occur for ten minutes. Following the ten minutes exposure time, the eggs are preserved and the number of fertilized and unfertilized eggs in each replicate are counted. These observations are assessed in comparison to the pooled negative and brine controls.

2.3 STATISTICAL ANALYSIS

Statistical analyses for all tests were conducted using the computer software program TOXCALC (version 5.0.23; Tidepool Scientific Software, 1994).

2.4 QUALITY ASSURANCE/QUALITY CONTROL (QA/QC)

This study followed a comprehensive QA/QC Program to ensure full documentation and minimize possible errors in computation and reporting of results. The following general QA/QC guidelines were applied in this test: use of negative controls, use of positive controls, use of brine controls, replication, instrument calibration, water quality maintenance and

record-keeping, and use of standard operating procedures (SOPs). To ensure data and reporting meet quality standards, all data and statistical analyses were reviewed by a member of our QA/QC Committee prior to reporting the results.

Toxicity testing was carried out in accordance with applicable test methodologies and/or standards of practice. Our liability is limited solely to the cost of re-testing in the event of non-compliance with such test specifications or standards of practice. Golder/EVS accepts no responsibility or liability for the interpretation or use of these testing results by others, or for any delay, loss, damage or interruptions of testing, collection, preparation, and delivery of samples or test results resulting from events or circumstances beyond our control.

Table 1. 7-d Topsmelt (*Atherinops affinis*) survival and growth toxicity test methods

TEST PARAMETER	TEST CONDITION
Test type	Static-renewal
Test duration	7 d
Test chamber	600-mL beaker
Test solution volume	200 mL
Number of replicate chambers per treatment	5
Number of organisms per test chamber	5
Age of test organisms at test initiation	10 d
Food	Newly hatched Artemia nauplii (<24 hours old)
Feeding Regime	Fed 0.5 mL/ beaker twice daily of concentrated nauplii suspension (prepared to provide 200 nauplii in 0.5 mL); no feeding at test termination
Sample manipulations (e.g. pre-aeration, pH adjustment, filtration)	Salinity-adjusted
Control/dilution water	UV-sterilized and $0.5\mu m$ -filtered natural sea water from Vancouver Aquarium, BC
Dilutions	4.2, 8.4, 16.9, 33.7, 67.4% (v/v)
Renewal of dilutions	Daily
Aeration	None
Water quality parameters and frequency	Temperature, pH, dissolved oxygen, and salinity daily
Temperature	20 ± 1°C
Salinity	30 ± 2 (sample adjusted with hypersaline brine [HSB]. Preparation of HSB and salinity adjustment as per EC guidance document on salinity adjustment –July 1997)
Lighting	Overhead full-spectrum fluorescent lights; 538 – 1076 lux; 16:8 light:dark photoperiod
Reference toxicant	Initiated concurrently with sample using copper to generate LC50 and IC50 values; results compared to lab mean \pm 2 SD
Endpoints	Survival and growth (dry weight)
Test validity	$\geq 80\%$ mean control survival; ≥ 0.85 mg/fish mean dry weight for surviving control fish
Reference protocol	US EPA (1995), EPA/600/R-95/136

 Table 2.
 Echinoderm (Dendraster excentricus) fertilization toxicity test methods

TEST PARAMETER	TEST CONDITION
Test type	Static
Test duration	10:10 min
Test chamber	16 X 125 mm test tubes
Test solution volume	10 mL
Number of replicate chambers per treatment	4
Number of eggs per test chamber	2000
Age of test organisms	< 4 hours after spawning
Sample manipulations (e.g. pre-aeration, pH adjustment, filtration)	Salinity-adjusted
Control/dilution water	UV-sterilized and $0.5\mu m$ -filtered natural sea water from Vancouver Aquarium, BC
Dilutions	4.5, 8.9, 17.8, 35.6, 71.3% (v/v)
Renewal of dilutions	None
Aeration	None during testing
Water quality parameters and frequency	Temperature, pH, dissolved oxygen, and salinity
Temperature	15 ± 1°C
Salinity	30 ± 2 (sample adjusted with hypersaline brine [HSB]. Preparation of HSB and salinity adjustment as per EC guidance document on salinity adjustment –July 1997)
Lighting	Ambient laboratory illumination (moderate intensity)
Reference toxicant	Initiated concurrently with test; same test methods as above using SDS to generate an EC50 value; results compared to lab mean \pm 2 SD
Endpoint	Fertilization of eggs
Test validity	≥ 50% and ≤ 100% mean control fertilization
Reference protocols	Environment Canada (1992), (EPS/1/RM/27 with 1997 amendments)

3.1 7-D TOPSMELT (ATHERINOPS AFFINIS) SURVIVAL AND GROWTH TOXICITY TEST

The test results are summarized in Table 3 and the raw statistical analyses are provided in Appendix I.

The highest concentration tested was approximately 67.4% due to salinity adjustment. The mean survival for the negative and brine controls was 92 and 88%, respectively. Mean dry weight in the pooled controls was 0.86mg. The negative and brine controls were not significantly different for both the growth and survival endpoints (p = 0.40 and p = 0.70, respectively).

The A. affinis survival and growth toxicity test showed no adverse effects on survival or growth in all tested concentrations relative to the pooled controls ($p \le 0.05$). For the survival and growth endpoints, the NOEC was 67.4, and the LOEC was >67.4% (v/v). The LC50 for survival was >67.4% (v/v). The IC50 and IC25 for growth were both >67.4% (v/v).

3.2 ECHINODERM (DENDRASTER EXCENTRICUS) FERTILIZATION TOXICITY TEST

The test results are summarized in Table 4 and the raw statistical analyses are provided in Appendix II.

The highest concentration tested was 71.3% due to salinity adjustment. Mean fertilization in the pooled controls was 86%. The negative and brine controls were not significantly different (p=0.30).

The *D. excentricus* fertilization toxicity test exhibited adverse effects on egg fertilization in all test concentrations relative to the pooled controls ($p \le 0.05$). The NOEC was <4.5 and LOEC was 4.5% (v/v). The IC50 and IC25 (95% confidence limits) values were 55.0 (49.2 – 61.1) and 15.6 (13.6 – 18.3) % (v/v), respectively.

3.2 QUALITY ASSURANCE/QUALITY CONTROL (QA/QC)

The tests met all passing criteria for test validity as outlined in the respective protocols. Water quality parameters during the test were all within the acceptable range of values. Point estimates for the reference toxicant tests were all within the laboratory mean \pm 2 standard deviations, indicating that the tests were within acceptable limits of variability.

Table 3. Summary of results for the 7-d Topsmelt (*Atherinops affinis*) survival and growth toxicity test

Test Concentration (% v/v)	SURVIVAL (%)(MEAN ± SD)	GROWTH (DRY WEIGHT MG) (MEAN \pm SD)		
Negative Control	92.0 ± 11.0	0.81 ± 0.24		
Brine Control	88.0 ± 17.9	0.91 ± 0.12		
Pooled Controls	90.0 ± 11.0	0.86 ± 0.18		
4.2	88.0 ± 11.0	0.86 ± 0.18		
8.4	96.0 ± 8.9	0.90 ± 0.13		
16.9	80.0 ± 14.1	0.76 ± 0.17		
33.7	92.0 ± 11.0	0.75 ± 0.13		
67.4	80.0 ± 14.1	0.81 ± 0.16		
TEST ENDPOINT	Survival (% v/v)	GROWTH (% V/V)		
NOEC	67.4	67.4		
LOEC	>67.4	>67.4		
LC50	>67.4	na		
IC50	na	>67.4		
IC25	na	>67.4		

SD - Standard Deviation; na - not applicable.

Table 4. Summary of results for the Echinoderm (*Dendraster excentricus*) fertilization toxicity test

TEST CONCENTRATION (% v/v)	PROPORTION FERTILIZED (%) $(\mathbf{Mean} \pm \mathbf{SD})$
Negative Control	85.0 ± 2.9
Brine Control	87.2 ± 2.6
Pooled Controls	86.1 ± 2.8
4.5	79.8 ± 1.7*
8.9	76.5 ± 0.6*
17.8	61.8 ± 2.2*
35.6	52.8 ± 1.9*
71.3	37.2 ± 2.1*
TEST ENDPOINT	PROPORTION FERTILIZED %(V/V)
NOEC	<4.5
LOEC	4.5
IC50 (95% CL)	55.0 (49.2 – 61.1)
IC25 (95% CL)	15.6 (13.6– 18.3)

^{*}Indicates significant difference ($p \le 0.05$) relative to the pooled controls. SD – Standard Deviation; CL – Confidence Limits.

4. REFERENCES

- Environment Canada. 1992. Biological test method: fertilization of echinoids (sea urchins and sand dollars). Environmental Protection Series, Report EPS 1/RM/27, December 1992. Environment Canada, Conservation and Protection, Ottawa, ON. 68 pp + appendices. Amended November 1997.
- US EPA. 1995. Short term methods for estimating the chronic toxicity of effluents and receiving waters to marine and estuarine organisms. 2nd edition. US Environmental Protection Agency, Environmental Monitoring Systems Laboratory, Office of Research and Development, Washington, DC. EPA/600/R-95/136. 563 pp.
- Tidepool Scientific Software. 1994. TOXCALC: Comprehensive Toxicity Data Analysis and Database Software, Version 5.0.23. Tidepool Scientific Software, McKinleyville, CA. 80 pp.

APPENDIX I

Raw Data and Statistical Analyses:

Atherinops affinis

EVS ENVIRONMENT CONSULTANTS 7-d Atherinops affinis SURVIVAL AND GROWTH TEST DATA SUMMARY

VS Project No. <u>04-14:</u>	24-044	EVS Analysts MJG SxB JxS RSO							
VS Work Order No. 050	00327	Test Initiation Date 9 Aug 05							
0 1	Initial Sample		es						
Sample	Day 0	Day 2		Day 4					
dentification	Garrow Creek	Garras	reek C	porrow Creek					
Amount Received	5x 20L	5 x 20 L	1	5×201					
Date Collected	6-Aug-05	6 Aug 00	5	6Aug 05					
Date Received	9-Aug-05	9 Aug 00		4 Aug 05					
Cemperature (°C)	20.0	20.0		20.0					
Н	7.70 78.3	7.80>	84	7.498.4					
OO (mg/L)	9.8077.6	10.00		5.5 = 7.6					
Conductivity (µmhos/cm)		_							
alinity (ppt)	10 30.0	1.0 3	0.0	0 30.0					
mmonia (mg/L N)	·-	_		0 / 000					
hlorine (mg/L Cl)		_		- 40					
,	Da o	(65							
ter Type <u>uvsterlized</u> nperature (°C) <u>20</u>	filtered Swi 0.0	TEST SPECIES IN Source ARS	FORMATION						
ater Type UVSTENLIZED mperature (°C) 20 7.9 ssolved Oxygen (mg/L) inity 29 ST CONDITIONS mperature Range (°C) 20 Range 7.7 solved Oxygen Range (mg/L) nity (ppt) 27 toperiod (L:D h) 16 ation Provided?	TER (initial water quality) - filtered Swi 0.0 7.7 - 8.4 - 6.4-7.7 3.31	TEST SPECIES IN	FORMATION Sinc. 7-Aug-05 O day S Oxicant Result (into Test Date 103 (91-118) 95 (75-125) Varning Limits (n	cl. 95% CL) 9 Auges- 16-127) nean ± 2SD) and C					
ater Type UVSTENLIS AND TROL WAY ater Type UVSTENLIS AND TROL WAY THE TYPE AND TROL WAY	TER (initial water quality) - filtered Swi 0.0 7.7 - 8.4 - 6.4-7.7 3.31	TEST SPECIES IN Source ABS Date Received Age (on Day 0) Reference Toxicant Current Reference Tox Reference Toxicar 7-d survival LC50 7-d growth IC50 Reference Toxicant V	FORMATION Sinc. 7-Aug-05 O day S Oxicant Result (into Test Date 103 (91-118) 95 (75-125) Varning Limits (n	cl. 95% CL) 9 Auges- 16-127) nean ± 2SD) and C					
ater Type UVSTENLIS AND ATTENLIS AND ATTENLI	TER (initial water quality) - f: fered Sui 0.0 7.7 - 8.4 - 8.4 - 6.4-7.7 3:31 - 8.4 OEC LOEC	TEST SPECIES IN Source Age Date Received Age (on Day 0) I Reference Toxicant Current Reference Tox Reference Toxicar 7-d survival LC50 7-d growth IC50 Reference Toxicant W 7-d survival LC50 7-d growth IC50 The survival LC50	FORMATION S Inc. 7-Aug-05 Oday S Cu exicant Result (inc.) It Test Date 103 (91-118) 95 (75-125) Varning Limits (no.) 132 # 40 1337 40	cl. 95% CL) (1.45 e.5- 16-127) nean ± 2SD) and Cr 115/2 Cu 115/2 Cu					
ter Type UVSTENLIS AM mperature (°C) 20 7.9 solved Oxygen (mg/L) inity 29 ST CONDITIONS superature Range (°C) 20 Range 7.7 solved Oxygen Range (mg/L) inity (ppt) 27 toperiod (L:D h) 16 ation Provided? 16 ation Provided? 16 TRESULTS dpoint Conc. Units	TER (initial water quality) - filtered Sw 0.0 7.7 - 8.4) 6.4-7.7 3.31	TEST SPECIES IN Source ABS Date Received Age (on Day 0) AR Reference Toxicant Current Reference Toxicar 7-d survival LC50 7-d growth IC50 Reference Toxicant W 7-d survival LC50 7-d growth IC50	FORMATION S Inc. 7-Aug-05 Oday S Cu exicant Result (inc.) It Test Date 103 (91-118) 95 (75-125) Varning Limits (no.) 132 # 40 1337 40	cl. 95% CL) (1.45 e.5- 16-127) nean ± 2SD) and Cr 115/2 Cu 115/2 Cu					

EVS ENVIRONMENT CONSULTANTS 7-d Atherinops affinis SURVIVAL AND GROWTH TEST – WATER QUALITY DATA

Client Azie	noth						Sample ID G. Creek (Garrow Creek)								
EVS Project No. <u>C4-1424-04</u> 4							Test Initiation Date/Time 9 Aug 05/1500h								
EVS Work Order	ork Order No. <u>0500327</u>						Source/Date Received ABS Inc / GAnger								
	· · · · · · · · · · · · · · · · · · ·														
Concentration						T	Temperature (°C)								
7.(3 (V)	0		1		2		3		4		5		6	7	
D-Control	50.0	205	200	25.0	<i>l</i> v. 0	205	200	20.5	20.0	20 j	200	70.5	70,0	115	
B-Gated	500	20.5	200	(V)	70.0	20.5	200	205	20.3	20.5	20 O	20,5	120	20.5	
402	200	20.5	200	70.0	20.0	200	200	205	50.0	20 5	200	21.0	20,0	21.0	
8.4	20.0	20.5	50.0	20.0	1			205	20.0	20.5	50.0	20.5	20,0	21.0	
16.9	250	20.5	200	70.0	700	20.0	200	205	500	205	20.5	21.0	790,0	21.0	
33-7	200	20 5	200	70.0	20.0	200	20.0	205	80 S	20 5	20 0	21.0	200	21.0	
67.4	Z2 13	20.5	50.0	20.0	200	200	20.0	20.5	500	20 5	2ე. ა	21.0	200	21.0	
Tech. Initials	SXB	Sxg	Sx©	4	VIL	2x2	325	Sxb	31K	SXLS	3X8 -	74	100	1-	
	1												· • · · · · · · · · · · · · · · · · · ·		
Concentration							pI	I							
y. (212)	0	oid :	l New		2	3	3		4		5	(5	7	
D-Control	7.9	नःन	8.0	79	79	7.3	29	7.7		7.8	7.9	8.0	7.9	8.0	
B-Control	8.0	7.9	8.1	S.U	8,0	77	7.9	コイ	87.9	7 S	79	8.0	7.9	19	
५०२	8.0	79	82	79	So	ナナ	8,0	3.3	8.1	78	80	8.0	79	79	
8.4	8.0	8 0	8.2	77	5:1	3 F	8.0	7.8	8-1	7.8	8.0	f. 0	8.0	8.0	
16.9	8.1	ફ ર	8-3	5.0	3.2.	7.9	8.1	7.8	8 2	3.4	8-1	8.1	8.0	8.0	
33-7	8.1	80	8.3	3.1	8.3	8.1	8.1	7.9	83	7.9	8.5	8.2	8-1	81	
67.4	8.3	8-1	84	8-1	84	8-1	8.2	8.0	8.4	8.0	8.3	84	81	8.1	
Tech. Initials	SXB	Sis	SXL	WL	MIL	SXB	582	SXG	SXB	528	S X S	727	7+7	70	
WQ Instruments Used: Temp. Calibrated 1ty Thermometer pH 030302. Comments															
													<u> </u>		
Test Set Up By	SKB			Data V	erified I	 Зу	Qu	Chi4	Dat	te Verif	ied	An	p 3i	105	
								11				,	d ·	′	

EVS ENVIRONMENT CONSULTANTS 7-d Atherinops affinis SURVIVAL AND GROWTH TEST – WATER QUALITY DATA

Client Azinoth								Sampl	e ID			C C	No	<u> </u>	C70	سيرزا	Creek
EVS Project No. <u>C4-(424-044</u>							_	Test I	nitiatio	n Date/							
EVS Work Order No. OSCO 327								Source	e/Date	Receiv	ed _	ABS	SI	10.	1500 191	Jej O	5
					<u></u>			Colinit	(nnt)								
Concentration				1		2		Salinit 3	1	4		5	_ 6 D		ע	7	
7.010					<u> </u>	29	13	me t		**************************************	<u> </u>	•	3/2]
D-Control	2		29	29	29	!	30	30	†	,	31	<u>30</u>	36			29	
5-Sintist	3	<u>0</u>	30	30	30	30	+	+	31	30	30	30	30			30	
4.2	3	0	31	30	<u>ვ</u>	20		30	30	30	<u>30</u>	<u> 3</u>	30	28		29	
8 4	3	c	30	30	30	30		30	30	<u> 3</u> 0	3º	30	30	28		29	
16.9	3	၁	30	30	30	20	1	30	30	30	30	30	30	28	2	.9	
33 7	3	O	31	30	30	30		30	30	30	30	30	313	28		29	
67.4	3	၁	30	30	30	90	31	3 D	3 i	30	31	კა	30	29	3	0	
Tech. Initials	Sx	B	SXB	Sx&	MĴĠ	17	SKE	3×5	Sib	SXS	SXX	SXB	27	72	1	}	
									İ								
Componentian							Dissol	ved Ox	ygen (mg/L)			· · · · · · · · · · · · · · · · · · ·				!
Concentration	0		1		2			3	4		5		6		5	7	
D-Control	7.7	6.7	٦٠	761	7	6	6.6	7.4	6.6	7.6	6 -	7 7	-6	6.4	7.5	64	
B-Control	7.6	6.6	7.	6 6	1 7	.6	6.6	26	66	7.6	6.) =	6	6.6	2.5	6.6	ı
4-2	7.6	6.7	7.6	5 6 "	17	6	6.4	26	6.5	7.6	6.4	5 7	6	مُ	7.5	6.6	
8.4	7.6	67	7.6	5 6	- 4	Ĵ.	6.7	7.6	66	7.6	6	6 7	6	64	7.5	6.4	
16-9	7.7	6.6	7.	6 k.	47	· E	3.5	7.6	65	7.6	6.	6 7	6	6.5	7.5	6.6	
33·7	7-6	6.6	7.6	6 6	3 7	- <i>t</i>	8 8	7.6	6.6	7.6	6	5 7	6	6.5	7.5	66	
67.4	7.6	6-7	7		-	.6	6.6		67	_	-	1 7		6.4	7.6	64	
Tech. Initials	SxB	SXB	Sx	B 117		70			Sxg	+	+				1 カ	راح	
Tech. Initials $\begin{bmatrix} SXB &$																	
												-					
								$\overline{}$						Λ	n ,		
Test Set Up By Sign Data Verified By Galf Date Verified Ay 31/01																	

EVS ENVIRONMENT CONSULTANTS 7-d Atherinops affinis TOXICITY TEST – DAILY SURVIVAL DATA

Client Azinuth	Sample ID G-Creck yorran Creek
EVS Project No. <u>64-14.24-644</u>	Test Species/Batch Atherines affinis artoges
EVS Work Order No. OSOO327	Test Initiation Date/Time 9 Aug 0 5 1500
·	No. of Organisms/Volume 5/200mc

		Pan	Number of Survivors – Day of Test							
Concentration	Rep.	No.	1	2	3	4	5	6	7	Comments
	A	17	5	5	5	5	5	<u>۲</u>	,-	
	В	27	5	5	5	5	5	5	4	
Detl	С	3 T	5	5	3	5	5	2	5-	
	D	47	5	5	5	5	5	5	7	
	Е	ST	5	5	5	5	5	5	4	
	A	67	5	5	3	5	5	r	5	
B-CTL	В	77	5	5	5	5	5	5	5	
	C	87	5	5	5	5	5	2	5	
	D	97	5	5	5	5	5	+	4	
	Е	107	5	5	40	Ч	Ч	4	3	
	A	11 T	5	4	×3×4	4	4	4	4	
	В	12T	5	5	5	5	5	<u>y-</u>	5	
4.2	C	13T	3	5	5	5	5	5	5	
	D	14 T	5		sr3-4	4	4	4	4	
	Е	15T	5	40	4513	4	4	4	4	D wo sidy
8.4	A	167	5	5	5	5	5	5	5	,
	В	リラア	5	5	5	5	5	5	5	
	С	18 7	5	5	5	5	5	Σ	4	
	D	19 T	5	5	65	5	5	>	5	
	Е	20 T	5	5	5	5	5	5	5	
Technician Init	tials	SXB	SXB	ML	SIB	516	SYK	72	BKZ	

Sample Description	light brown , no small		
Data Verified By	Gailet	Date Verified	Any 31/05
			0

EVS ENVIRONMENT CONSULTANTS 7-d Atherinops affinis TOXICITY TEST – DAILY SURVIVAL DATA

Client Azinuth	Sample ID Garrow Creek
EVS Project No. 04-1424-099	Test Species/Batch Atherings offines
EVS Work Order No. 0500327	Test Initiation Date/Time 9 Auges /1500
•	No. of Organisms/Volume 5/200m
Pan	Number of Survivors – Day of Test

		Pan		Number of Survivors – Day of Test						
Concentration	Rep.	No.	1	2	3	4	5	6	7	Comments
	A	21 T	5	5	5	5	5	t	5	Ono dead body - Tocher
	В	22	5	5	4	4	4	4	4	
16.9	С	23	5	5	5	5	5	5-	4	
	D	24	5	5	O _{Li}	4	4	4	3	
	Е	25	5	5	5	5	5	5	4	
	A	26	5	5	5	5	5	5	5	
	В	27	5	5	5 5	4	4	4	4	
33-7	С	28	5	5	5	5	5	5	5	
	D	29	5	5	4	ય	L	¥	4	
	Е	30	5	5	5	5	5	5	5	
	A	31	5	5	5	5	5	5	5	
67.4	В	32	5	4	4	4	4	4	ч	
01.1	С	33	5	5	5	5	5	5	श्रु ^ड ४,3	
	D	34	5	5	5	5	5	5	4	
	Е	ر کد	1845	5	5	5	5	5	4	
	A									
	В									
	С									
	D									
	Е									
Technician Initi	als	SXA	SXB	176-	Sab	SNA	Syg	15	8x2	

Sample Description	clear · Colourless		
Data Verified By	Oach &	Date Verified	Aug 31/05
			0 7

EVS ENVIRONMENT CONSULTANTS

Larval Fish Toxicity Tests - Dry Weight Data

CLIENT. PROJECT # WORK ORDER # BALANCE TYPE

Azımuth 04-1424-044 0500327 Sartorius BP211D TEST TYPE:

7-d Survival and Growth

TEST SPECIES: Atherinops affinis TEST INITIATION DATE: 9-Aug-05

Pan No.	Rep	Sample ID:	Survival	Number of		Pan weight	Final Weight (mg)	Tech'n	Comments
		Garrow Creek % (v/v)	At Start	Survivors	Weighed	(mg)	Pan + Biomass	Initials	
T-1	A	Control	5	5	4	1218.92	1222.92	RSD	Fish lost in transfer
T-2	В		5	4	4	1231.52	1234.56	RSD	
T-3	C		5	5	5	1229.15	1234.64	RSD	
T-4	D		5	5	5	1235.47	1239.35	RSD	
T-5	E		5	4	4	1241.65	1244.47	RSD	
T-6	Α	Brine Control	5	5	5	1217.25	1221.44	RSD	
T-7	В		5	5	5	1229.47	1234.85	RSD	
T-8	C		5	5	5	1233	1237.96	RSD	
T-9	D		5	4	4	1236.48	1240.49	RSD	
T-10	Е		5	3	3	1237.67	1241.98	RSD	
T-11	Α	4.2	5	4	4	1236.79	1240.85	RSD	
T-12	В		5	5	5	1221.62	1226.26	RSD	
T-13	С		5	5	5	1236.85	1241.7	RSD	
T-14	D		5	4	4	1231.67	1236.88	RSD	
T-15	E		5	4	4	1227.6	1230.46	RSD	
T-16	Α	8.4	5	5	5	1232.12	1236.61	RSD	
T-17	В		5	5	5	1221.55	1225.83	RSD	
T-18	C		5	4	4	1226.4	1229.96	RSD	
T-19	D		5	5	5	1224.88	1229.98	RSD	
T-20	E		5	5	5	1228.72	1233.82	RSD	
T-21	Α	16.9	5	5	5	1226.33	1231.24	RSD	
T-22	В		5	4	4	1227.45	1231.89	RSD	
T-23	C		5	4	4	1223.67	1227.1	RSD	
T-24	D		5	3	3	1228.16	1231.05	RSD	
T-25	E		5	4	4	1218.71	1221.92	RSD	
T-26	Α	33.7	5	5	5	1229.33	1232.96	RSD	
T-27	В		5	4	4	1223.13	1227.98	RSD	
T-28	С		5	5	5	1222.55	1226.08	RSD	
T-29	D		5	4	4	1231.12	1234.27	RSD	
T-30	Е		5	5	5	1230.86	1234.48	RSD	
T-31	Α	67.4	5	5	5	1234.04	1239.21	RSD	
T-32	В		5	4	4	1236.02	1240.21	RSD	
T-33	С		5	3	3	1229.02	1232.08	RSD	
T-34	D		5	4	4	1231.66	1235.98	RSD	
T-35	Е		5	4	4	1231.22	1234.74	RSD	
T-16	(d)						1236.52	RSD	
T-21	(d)						1231.16	RSD	
T-35	(d)						1234.81	RSD	

⁽d) - duplicate; pan reweighed after being placed in the oven and desiccated a second time.

Galfit

Test: LF-Larval Fish Growth and Survival Test

Species: AA-Atherinops affinis

Sample ID: Garrow_Creek
Start Date: 8/9/2005 E

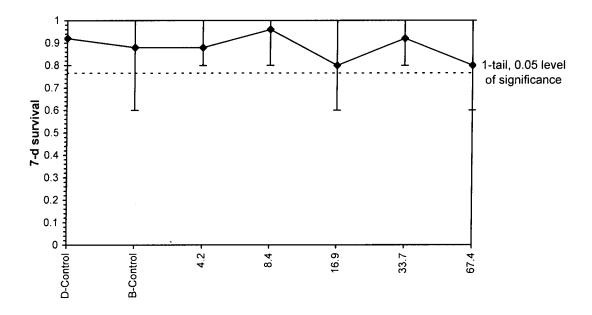
End Date: 8/16/2005

Test ID: 0500327

Protocol: EPAW 95-EPA West Coast

Sample Type: EFF2-Industrial

Lab ID: BCEVS-EVS Environment Consultants

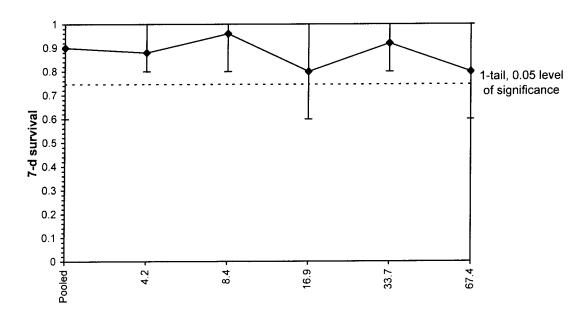

Start	Date:	8/9/20	05 Ena	Date: 8	0/10/200	05			Lau ID	. DOLV	3-L V 3	Environment Co	nisultants	
												No. Fish	Total	Tare
Pos	ID	Rep	Group	Day 0	Day 1	Day 2	Day 3	Day 4	Day 5	Day 6	Day 7	Weighed	Wgt(mg)	Wgt(mg)
	1	1	D-Control	5	_						5	4	1218.92	1222.92
	2	2	D-Control	5							4	4	1231.52	1234.56
	3	3	D-Control	5							5	5	1229.15	1234.64
	4	4	D-Control	5		<u> </u>					5	5	1235.47	1239.35
	5	5	D-Control	5							4	4	1241.65	1244.47
	6	1	B-Control	5							5	5	1217.25	1221.44
	7	2	B-Control	5							5	5	1229.47	1234.85
	8	3	B-Control	5							5	5	1233	1237.96
	9	4	B-Control	5							4	4	1236.48	1240.49
	10	5	B-Control	5							3	3	1237.67	1241.98
	11	1	4.2	5							4	4	1236.79	1240.85
	12	2	4.2	5							5	5	1221.62	1226.26
	13	3	4.2	5							5	5	1236.85	1241.7
	14	4	4.2	5							4	4	1231.67	1236.88
	15	5	4.2	5							4	4	1227.6	1230.46
	16	1	8.4	5							5	5	1232.12	1236.61
	17	2	8.4	5							5	5	1221.55	1225.83
	18	3	8.4	5							4	4	1226.4	1229.96
	19	4	8.4	5							5	5	1224.88	1229.98
	20	5	8.4	5							5	5	1228.72	1233.82
	21	1	16.9	5							5	5	1226.33	1231.24
	22	2	16.9	5							4	4	1227.45	1231.89
	23	3	16.9	5							4	4	1223.67	1227.1
	24	4	16.9	5							3	3	1228.16	1231.05
	25	5	16.9	5							4	4	1218.71	1221.92
	26	1	33.7	5							5	5	1229.33	1232.96
	27	2	33.7	5							4	4	1223.13	1227.98
	28	3	33.7	5							5	5	1222.55	1226.08
	29	4	33.7	5							4	4	1231.12	1234.27
	30	5	33.7	5							5	5	1230.86	1234.48
	31	1	67.4	5							5	5	1234.04	1239.21
	32	2	67.4	5							4	4	1236.02	1240.21
	33	3	67.4	5]					3	3	1229.02	1232.08
	34	4	67.4	5							4	4	1231.66	1235.98
	35	5	67.4	5							4	4	1231.22	1234.74

Comments: Azimuth - Polaris 04-1424-044

			L	arval Fish	Growth and	Survival Test-7-d sur	vival
Start Date:	8/9/2005		Test ID:	500327		Sample ID:	Garrow_Creek
End Date:	8/16/2005		Lab ID:	BCEVS-E	VS Environme	ent Cc Sample Type:	EFF2-Industrial
Sample Date:			Protocol:	EPAW 95-	EPA West Co	ast Test Species:	AA-Atherinops affinis
Comments:	Azimuth -	Polaris 0	4-1424-04	14			
Conc-%	1	2	3	4	5		
D-Control	1.0000	0.8000	1.0000	1.0000	0.8000		
B-Control	1.0000	1.0000	1.0000	0.8000	0.6000		
4.2	0.8000	1.0000	1.0000	0.8000	0.8000		
8.4	1.0000	1.0000	0.8000	1.0000	1.0000		
16.9	1.0000	0.8000	0.8000	0.6000	0.8000		
33.7	1.0000	0.8000	1.0000	0.8000	1.0000		
67.4	1.0000	0.8000	0.6000	0.8000	0.8000		

		_	Tra	ansform:	Arcsin So	quare Roo	t		1-Tailed	
Conc-%	Mean	SD	Mean	Min	Max	CV%	N	_ t-Stat	Critical	MSD
D-Control	0.9200	0.1095	1.2500	1.1071	1.3453	10.434	5			
B-Control	0.8800	0.1789	1.2058	0.8861	1.3453	17.113	5			
4.2	0.8800	0.1095	1.2024	1.1071	1.3453	10.848	5	0.544	2.360	0.2068
8.4	0.9600	0.0894	1.2977	1.1071	1.3453	8.207	5	-0.544	2.360	0.2068
16.9	0.8000	0.1414	1.1106	0.8861	1.3453	14.625	5	1.592	2.360	0.2068
33.7	0.9200	0.1095	1.2500	1.1071	1.3453	10.434	5	0.000	2.360	0.2068
67.4	0.8000	0.1414	1.1106	0.8861	1.3453	14.625	5	1.592	2.360	0.2068

Auxiliary Tests					Statistic		Critical		Skew	Kurt
Shapiro-Wilk's Test indicates non	mal distribu	ition (p > 0	0.01)		0.94769		0.9		-0.1197	-0.6919
Bartlett's Test indicates equal var	iances (p =	0.97)			0.91421		15.0863			
The control means are not signific	cantly differ	rent $(p = 0)$.70)		0.405		2.306			
Hypothesis Test (1-tail, 0.05)	NOEC	LOEC	ChV	TU	MSDu	MSDp	MSB	MSE	F-Prob	df
Dunnett's Test	67.4	>67.4		1.48368	0.154	0.171	0.03047	0.01919	0.20149	5, 24

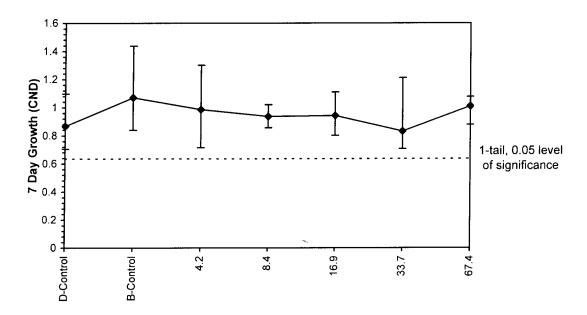

Statistical analysis performed with the negative control.

Reviewed by Only

			La	arval Fish	Growth and	Survival Test-7-d su	rvival
Start Date:	8/9/2005		Test ID:	500327		Sample ID:	Garrow_Creek
End Date:	8/16/2005		Lab ID:	BCEVS-E'	VS Environm	nent Cc Sample Type:	EFF2-Industrial
Sample Date:			Protocol:	EPAW 95-	EPA West C	Coast Test Species:	AA-Atherinops affinis
Comments:	Azimuth -	Polaris 0)4-1424 - 04	14			
Conc-%	1	2	3	4	5		
D-Control	1.0000	0.8000	1.0000	1.0000	0.8000		
B-Control	1.0000	1.0000	1.0000	0.8000	0.6000		
4.2	0.8000	1.0000	1.0000	0.8000	0.8000		
8.4	1.0000	1.0000	0.8000	1.0000	1.0000		
16.9	1.0000	0.8000	0.8000	0.6000	0.8000		
33.7	1.0000	0.8000	1.0000	0.8000	1.0000		
67.4	1.0000	0.8000	0.6000	0.8000	0.8000		

····		_	Tra	ansform:	Arcsin Sc		1-Tailed			
Conc-%	Mean	SD	Mean	Min	Max	CV%	N	t-Stat	Critical	MSD
Pooled	0.9000	0.1414	1.2279	0.8861	1.3453	13.389	10			
4.2	0.8800	0.1095	1.2024	1.1071	1.3453	10.848	5	0.315	2.462	0.1997
8.4	0.9600	0.0894	1.2977	1.1071	1.3453	8.207	5	-0.860	2.462	0.1997
16.9	0.8000	0.1414	1.1106	0.8861	1.3453	14.625	5	1.447	2.462	0.1997
33.7	0.9200	0.1095	1.2500	1.1071	1.3453	10.434	5	-0.273	2.462	0.1997
67.4	0.8000	0.1414	1.1106	0.8861	1.3453	14.625	5	1.447	2.462	0.1997

Auxiliary Tests					Statistic		Critical		Skew	Kurt
Shapiro-Wilk's Test indicates nor	mal distribu	ution (p > 0	0.01)		0.95136		0.91		-0.4731	-0.265
Bartlett's Test indicates equal var					1.19442		15.0863			
The control means are not signific			.70)		0.405		2.306			
Hypothesis Test (1-tail, 0.05)	NOEC	LOEC	ChV	ΤU	MSDu	MSDp	MSB	MSE	F-Prob	df
Bonferroni t Test	67.4	>67.4		1.48368	0.15355	0.17312	0.0295	0.02192	0.27347	5, 29

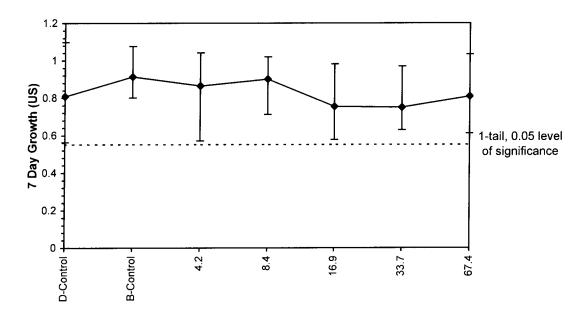

Statistical analysis performed with pooled controls.

Reviewed by Salf

			Larva	I Fish Gro	wth and Surviv	al Test-7 Day Grow	vth (CND)
Start Date:	8/9/2005		Test ID:	500327		Sample ID:	GARROW_CREEK
End Date:	8/16/2005		Lab ID:	BCEVS-E	VS Environment	t Cc Sample Type:	EFF2-Industrial
Sample Date:			Protocol:	EPAW 95-	EPA West Coa	st Test Species:	AA-Atherinops affinis
Comments:	Azimuth -	Polaris 0	4-1424-04	14			
Conc-%	1	2	3	4	5		
D-Control	1.0000 -	0.7600	- 1.0980	0.7760	0.7050		
B-Control	0.8380	1.0760	0.9920	1.0025	1.4367		
4.2	1.0150	0.9280	0.9700	1.3025	0.7150		
8.4	0.8980	0.8560	0.8900	1.0200	1.0200		
16.9	0.9820	1.1100	0.8575	0.9633	0.8025		
33.7	0.7260	1.2125	0.7060	0.7875	0.7240		
67.4	1.0340	1.0475	1.0200	1.0800	0.8800		

		_		Transforr	n: Untran	sformed		_	1-Tailed		
Conc-%	Mean	SD	Mean	Min	Max	CV%	N	t-Stat	Critical	MSD	
D-Control	0.8678×	0.1710	0.8678	0.7050	1.0980	19.710	5				
B-Control	1.0690	0.2230	1.0690	0.8380	1.4367	20.861	5				
4.2	0.9861	0.2110	0.9861	0.7150	1.3025	21.397	5	-1.198	2.360	0.2331	
8.4	0.9368	0.0776	0.9368	0.8560	1.0200	8.280	5	-0.699	2.360	0.2331	
16.9	0.9431	0.1192	0.9431	0.8025	1.1100	12.644	5	-0.762	2.360	0.2331	
33.7	0.8312	0.2154	0.8312	0.7060	1.2125	25.910	5	0.371	2.360	0.2331	
67.4	1.0123	0.0772	1.0123	0.8800	1.0800	7.629	5	-1.463	2.360	0.2331	

Auxiliary Tests					Statistic		Critical		Skew	Kurt
Shapiro-Wilk's Test indicates nor	mal distribu	ution (p > 0	0.01)		0.94085		0.9		0.90895	1.11753
Bartlett's Test indicates equal var	iances (p =	0.22)			7.00651		15.0863			
The control means are not significant	cantly differ	rent(p = 0)	.15)		1.60103		2.306			
Hypothesis Test (1-tail, 0.05)	NOEC	LOEC	ChV	TU	MSDu	MSDp	MSB	MSE	F-Prob	df
Dunnett's Test	67.4	>67.4		1.48368	0.23312	0.26863	0.02377	0.02439	0.45333	5, 24

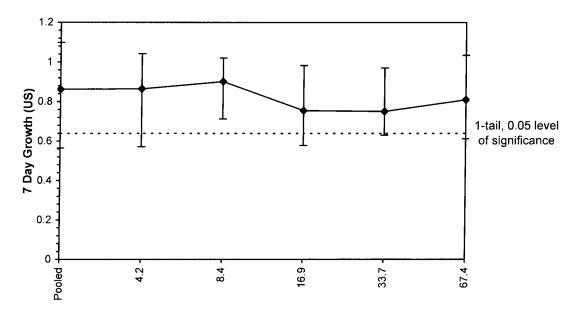

Statistical analysis performed to nightire control using canadian method to assess test validity criteria.

Reviewed by Galf

		-	Larva	al Fish Gro	owth and Su	rvival Test-7 Day Gro	owth (US)
Start Date:	8/9/2005		Test ID:	500327		Sample ID:	GARROW_CRE
End Date:	8/16/2005		Lab ID:	BCEVS-E	VS Environm	ent Cc Sample Type:	EFF2-Industrial
Sample Date:			Protocol:	EPAW 95-	EPA West C	oast Test Species:	AA-Atherinops affinis
Comments:	Azimuth -	Polaris 0	4-1424-04	14			
Conc-%	1	2	3	4	5		
D-Control	1.0000	0.6080	1.0980	0.7760	0.5640		
B-Control	0.8380	1.0760	0.9920	0.8020	0.8620		
4.2	0.8120	0.9280	0.9700	1.0420	0.5720		
8.4	0.8980	0.8560	0.7120	1.0200	1.0200		
16.9	0.9820	0.8880	0.6860	0.5780	0.6420		
33.7	0.7260	0.9700	0.7060	0.6300	0.7240		
67.4	1.0340	0.8380	0.6120	0.8640	0.7040		

				Transforr	n: Untran	sformed			1-Tailed		
Conc-%	Mean	SD	Mean	Min	Max	CV%	N	t-Stat	Critical	MSD	
D-Control	0.8092	0.2353	0.8092	0.5640	1.0980	29.082	5				
B-Control	0.9140	0.1155	0.9140	0.8020	1.0760	12.636	5				
4.2	0.8648	0.1837	0.8648	0.5720	1.0420	21.242	5	-0.511	2.360	0.2569	
8.4	0.9012	0.1285	0.9012	0.7120	1.0200	14.262	5	-0.845	2.360	0.2569	
16.9	0.7552	0.1718	0.7552	0.5780	0.9820	22.750	5	0.496	2.360	0.2569	
33.7	0.7512	0.1284	0.7512	0.6300	0.9700	17.097	5	0.533	2.360	0.2569	
67.4	0.8104	0.1615	0.8104	0.6120	1.0340	19.927	5	-0.011	2.360	0.2569	

Auxiliary Tests					Statistic		Critical		Skew	Kurt
Shapiro-Wilk's Test indicates non	mal distribu	ition (p > 0	0.01)		0.96877		0.9		0.03752	-0.9001
Bartlett's Test indicates equal var	iances (p =	0.85)			1.98489		15.0863			
The control means are not signific	cantly differ	rent(p = 0)	.40)		0.89395		2.306			
Hypothesis Test (1-tail, 0.05)	NOEC	LOEC	ChV	TU	MSDu	MSDp	MSB	MSE	F-Prob	df
Dunnett's Test	67.4	>67.4		1.48368	0.25689	0.31747	0.01761	0.02962	0.70433	5, 24


Statistical analysis performed with D-control

Reviewed by: Sent 1/0

			Larv	al Fish Gro	owth and Sui	vival Test-7 Day Grov	wth (US)
Start Date:	8/9/2005		Test ID:	500327		Sample ID:	GARROW_CRE
End Date:	8/16/2005		Lab ID:	BCEVS-E	VS Environme	ent Cc Sample Type:	EFF2-Industrial
Sample Date:			Protocol:	EPAW 95	-EPA West Co	past Test Species:	AA-Atherinops affinis
Comments:	Azimuth -	Polaris 0	4-1424-0	14			
Conc-%	1	2	3	4	5		
D-Control	1.0000	0.6080	1.0980	0.7760	0.5640		
B-Control	0.8380	1.0760	0.9920	0.8020	0.8620		
4.2	0.8120	0.9280	0.9700	1.0420	0.5720		
8.4	0.8980	0.8560	0.7120	1.0200	1.0200		
16.9	0.9820	0.8880	0.6860	0.5780	0.6420		
33.7	0.7260	0.9700	0.7060	0.6300	0.7240		
67.4	1.0340	0.8380	0.6120	0.8640	0.7040		

				Transforr	n: Untran					
Conc-%	Mean	SD	Mean	Min	Max	CV%	N	t-Stat	Critical	MSD
Pooled	0.8616	0.1833	0.8616	0.5640	1.0980	21.272	10			
4.2	0.8648	0.1837	0.8648	0.5720	1.0420	21.242	5	-0.035	2.462	0.2228
8.4	0.9012	0.1285	0.9012	0.7120	1.0200	14.262	5	-0.438	2.462	0.2228
16.9	0.7552	0.1718	0.7552	0.5780	0.9820	22.750	5	1.176	2.462	0.2228
33.7	0.7512	0.1284	0.7512	0.6300	0.9700	17.097	5	1.220	2.462	0.2228
67.4	0.8104	0.1615	0.8104	0.6120	1.0340	19.927	5	0.566	2.462	0.2228

Auxiliary Tests					Statistic		Critical		Skew	Kurt
Shapiro-Wilk's Test indicates nor	mal distribu	ıtion (p > (0.01)		0.95378		0.91		-0.1738	-0.7645
Bartlett's Test indicates equal var	iances (p =	: 0.96)			1.08676		15.0863			
The control means are not signific	cantly differ	rent(p = 0)	.40)		0.89395		2.306			
Hypothesis Test (1-tail, 0.05)	NOEC	LOEC	ChV	TU	MSDu	MSDp	MSB	MSE	F-Prob	df
Bonferroni t Test	67.4	>67.4		1.48368	0.22282	0.25861	0.02046	0.0273	0.59313	5, 29

Statistical analysis performed with pooled controls.

Reviewed by: Orally 4

EVS ENVIRONMENT CONSULTANTS 7-d Atherinops affinis SURVIVAL AND GROWTH TEST DATA SUMMARY

Client Azimuth		EVS Analysts	XB MG JXS	Rs.j
EVS Project No. 04-142	4-044			
EVS Work Order No	00327	Test Initiation Date	9.44 05	
	Initial Sample		Refresh Samples	
Sample	Day 0	Day 2		Day 4
Identification	100mg/L CH Stock	(400)		
Amount Received Prepried	IXIL			
Date Collected Prepried	1-Mer-05			
Date Received	N-2			
Temperature (°C)			A Same	
рН				
DO (mg/L)				
Conductivity (µmhos/cm)				
Salinity (ppt)				
Ammonia (mg/L N)				
Chlorine (mg/L Cl)				
Other	u			
Water Type USERICZE Temperature (°C)	7.7 7.7 - 20.5 - 8.0 L) <u>6.4-7.7</u> -31	Date Received Age (on Day 0) Reference Toxicant Current Reference Toxica 7-d survival LC5 7-d growth IC50 Reference Toxicant 7-d survival LC5	Since 9 Aug os Coxicant Result (incl. ant Test Date 9 Aug os $103 (91 \text{ Aug})$ Warning Limits (means) 132 40 Aug os 133 40 Aug os	95% CL) Aug 05 an ± 2SD) and CV Cu CU=15%
Endpoint Conc.	NOEC LOEC	LC50 (95% CL)	IC50 (95% CL)	IC25 (95% CL)
Units	6, 12	/e3(91-1/8)		
Survival M5/L Growth Cu	56 100	167 (88-124) 253	76-127	71/11-91)
0.01.01	3256 M3216C		45 (15 - 125)	16-11-11-12m
Other				
	0-01	D . 37 'C 1	(24) :1	05
Data Verified By	yalk 4	Date Verified	- sept. 1	w1

Cu.

EVS ENVIRONMENT CONSULTANTS 7-d Atherinops affinis SURVIVAL AND GROWTH TEST – WATER QUALITY DATA (EEM)

Client Azio	noth					_	Sample	e ID	cn	Ref	tox			· · · ·
EVS Project No.		1424	-044				Test In	itiation	Date/Ti	me _	9 100	05	150	ت
EVS Work Order		•					Source	/Date R	.eceived	AB	5 1	<u>. / </u>	14y	05-
						Те	emperat	ure (°C)					
Concentration My/L (a	0	old	1 Necs		2		3		4		5		6	7
cπ L	200	26.0	20.0	Zv.v	1900		230	1	1	200	20.5	20.5	50°0	25
32	200	200	20.5	71.6	70 5	200	200	200	20.0	20.0	2n - o	20.5	20.0	2.5
56	200	20.0	50 r	Ü. 5	20.0	200	20.0	500	200	2ი. ი	20.0	20.5	20.0	20.5
100	200	50.0	50.0	8	74.0		20.0	·		200	76.0	20°0	500	20.5
180	20.0	200	20.0	200	20.0	200	200	200	200	25·0	500			
320	200	20.,	2ი ა	205	200	-								
Tech. Initials	Sag	Sag	2x2	1776	1176	SRS	SRS	Sxg	SUB	SIB	5x8	100	7+7	1+
	γ						. ,							<u></u>
						1	pŀ	1						1
Concentration Mg/2 (u	0		1		2		3	4	4		5		6	7
CTL	79	4.9	8.0	79	7.9	~8	79	78	8.0	7.9	7.9	7.9	80	7.9
32	7.9	8.0	8.0	79	7.9	7.4	7.4	376	7.9	79	7.9	7-9	8.0	80
56	7.9	79	8.0	5.0	7.9	7.8	79	3 A8	8.0	7.9	7.9	80	8.0	8.3
100	79	79	8.0	5.0	7.9	7.8	79	7.8	80	7.9	7.9	8.0	8.0	80
180	79	7.8	8.0	7.40	7.9	7.8	7.9	7-3	80	7.9	79			
320	79	79	8.0	74	7.9									-
320				M7L										
Tech. Initials	SIL	SxB	SIB	,4174	474	SRS	58	SXS	SXS	SYP	Sid	72	717	700
WQ Instruments U	sed:	Temp	cali	brited	Ay 7	Thermo	mete-	pl	Н	<u>030</u>	302			
Comments		[
												·		
		· -						0.1	 			1	. 2.	100
Test Set Up By	SXB				Verified	n-	(3)	e 1/ 1 " .	/ n.	ate Veri	fied		J 51/	(a)

EVS ENVIRONMENT CONSULTANTS 7-d Atherinops affinis SURVIVAL AND GROWTH TEST – WATER QUALITY DATA (EEM)

Client Azim EVS Project No. EVS Work Order	04-	1424-					Samp Test In Source	nitiation	Date/T	ime	Reft 9 Aug 25 In	5ن- ر ر	1505	<u>ي</u>
							Salinit	y (ppt)						
Concentration Mall Ca	0		1		2		3		4		5		6 ^D	7
CTL	29	29	29	14	14	30	30	31	30	30	30	30	28	29
32	29	29	29	29	12	30	30	30	30	30	30	29	28	29
56	29	29	29	29	29	30	30	30	30	30	30	29	28	29
100	2.9	29	29	79	29	30	30	30	30	30	30	29	28	29
180	29	29	29	19	19	30	36	30	30	39	30			
320	29	29	29	29	29									
Tech. Initials	SXB	E XR	SXA	17/1-	Mir	SRS	SRS	SXB	SXO	SXR	SXR	75	72	1+
			·			D' 1	1.0		/T. \					
Concentration		· ·						ygen (n						7
Mg/L Ca	0	6.8	7.7	66	7.6		3	6.6	7.6	67	5		6 22+13	7
CTL	7.7	69		, ,	7.6	28	7.6	6.7	7.6	6.9	7.6	66	f	†
32			77	67	7.6	6.4	7.6	6.3		69	7.6	6.4	7.5	66
56	7.7 7.7	6.8	4. 7	66	7.6	70	7.6	69	7.6	70	76	6.6	7.5	64
100	77	68	33	65	7.6	7.0	7.6	6.9	76	70	7.6	6.6	45	64
180	77	6.8	43	65	76	71	7.6				atheres at the second second second			
320	77	0.0	7.7	€-3	7	Λ								
Tech. Initials	SIB	SX&	SXV	/1/(11/4	500	SRS	Sxs	SXC	SIB	BXE	m	727	72
WQ Instruments Us Comments _ 少ぃ∽		Salinity A - 0)0						·)	T_A				
Test Set Up By	Sx	B		Data V	erified	Ву	Qa	ch4	Da	te Verif	ied	try	अ/0	2

EVS ENVIRONMENT CONSULTANTS 7-d Atherinops affinis TOXICITY TEST – DAILY SURVIVAL DATA

Client Azimoth	Sample ID (4 Leftox
EVS Project No. <u>64-1424-044</u>	Test Species/Batch Atherinops affinis
EVS Work Order No. 0500327	Test Initiation Date/Time 9 Aug 05 1500
	No. of Organisms/Volume 5/200mc
	·

		Pan		Nu	mber of	Survivo	ors – Da	y of Test		
Concentration Mg/L Cu	Rep.	No.	1	2	3	4	5	6	7	Comments
	A	36 7	5	5	5	5	5	7	5	
	В	37	5	5	5	5	5	7	5	
CIL	С	38	5	5	5	5	5),	5	
	D	39	5	1	4	4	4	4	4	
	Е	40	5	5	5	5	5	5	5	
	A	41	5	Ç	5	5	5	5	5	
32	В	42	5	5	5	5	5	5	4	Done fish died on wall
32	С	43	5	S	4	4	4	4	۷	D one fish clied on wall while feeling - technicism
	D	44	5	5	_પ	4	4	4	4	
	E	45	5	5	4	4	4	30	3	
	A	46	ک	ς	5	5	5	5	5	
56	В	47	5	5	5	5	5	5	5	
	С	48	5	5	5	5	5	ν,	5	
	D	49	5	5	5	5	5	5	5	
	Е	50	5	5	5	5	5	7	5	
	A	51	5	3	3	3	3	3	3	
	В	52	5	Bi	_2	2	2	2	2	
106	С	53	5	4	3	3	3	3	3	
	D	54	5	4	Ч	Ц	3	3	3	
	Е	55	5	3	2	2	2	2	2	
Technician Initia	als	SXB	SXI	MIL	SXK	SXI	& KZ	15	sxs	

- 32			
Sample Description	clear colourless		
Data Verified By	Salk K	Date Verified	Ary 31/05
	-		

EVS ENVIRONMENT CONSULTANTS 7-d Atherinops affinis TOXICITY TEST – DAILY SURVIVAL DATA

EVS Project No EVS Work Ord	er No	0500	0327	1			Test Ini No. of (tiation E Organisn	Date/Time ns/Volume	tox erinops affinis 9Aycs /1500 5/200ml
		Pan		Nu	mber of	Survivo	rs – Dag	y of Test		ACTION AND ADMINISTRATION OF THE PROPERTY OF T
Concentration <i>Ug/L</i> Co	Rep.	No.	1	2	3	4	5	6	7	Comments
·	A	56	3	2	2	2	2	2	1	
180	В		니	0	O		and the same of th			
100	С		5	0	0	WINDS		19 mm - 19 mm		
	D		4	1	0					
	Е		2	C	0					
	A		STO	0	0	-			the table of the table of the table of the table of the table of the table of the table of the table of the table of the table of the table of the table of the table of table	
320	В		2	O	0					
	С		smg o	0	O	-		See at the water of the way		
	D		XB O	0	0					
	Е		ŧ	0	0			No. 11 . April 1990 - 1894 April 1990		
	A									
	В									
	С									
	D									
	Е									
	A									
	В									
	С									
	D				1					
	Е									
echnician Initi	als	SKB	SXA	MIL	SAB	SXR	SXB	15	SXS	

EVS ENVIRONMENT CONSULTANTS

Larval Fish Toxicity Tests - Dry Weight Data

CLIENT: PROJECT #: WORK ORDER #

BALANCE TYPE:

Azimuth 04-1424-044 0500327 Sartorius BP211D TEST TYPE: TEST SPECIES: 7-d Survival and Growth Atherinops affinis

TEST INITIATION DATE 9-Aug-05

Pan No.	Rep	Sample ID: Cu	Survival	Number of		Pan weight	Final Weight (mg)	Tech'n	Comments
		ug/L	At Start	Survivors	Weighed	(mg)	Pan + Biomass	Initials	
T-36	A	Control	5	5	5	1227.73	1231.65	RSD	
T-37	В		5	5	5	1237.69	1243.76	RSD	
T-38	C		5	5	5	1233.73	1238.72	RSD	
T-39	D		5	4	4	1228.92	1231.78	RSD	
T-40	E		5	5	5	1227.75	1233.44	RSD	
T-41	A	32	5	5	5	1231.67	1236.17	RSD	
T-42	В		5	4	4	1224.44	1228.26	RSD	
T-43	C		5	4	4	1238.77	1241.92	RSD	
T-44	D		4	4	4	1227	1230.34	RSD	Tech error -fish killed during testing
T-45	Е		4	3	3	1236.71	1239.86	RSD	Tech error - fish killed during testing
T-46	A	56	5	5	5	1230.75	1234.97	RSD	
T-47	В		5	5	5	1220.44	1224.77	RSD	
T-48	C		5	5	5	1226.91	1231.88	RSD	
T-49	D		5	5	5	1227.66	1232.44	RSD	
T-50	Е		5	5	5	1233.65	1238.33	RSD	
T-51	A	100	5	3	3	1063.07	1065.92	RSD	
T-52	В		5	2	2	1070.3	1071.8	RSD	
T-53	C		5	3	3	1061.53	1063.78	RSD	
T-54	D		5	3	3	1059.1	1061.99	RSD	
T-55	E		5	2	2	1037.82	1038.91	RSD	
T-56	Α	180	5	1	1	1044.2	1044.67	RSD	
T-57	В		5	0	0	1036.78	0	RSD	
T-58	C		5	0	0	1044.68	0	RSD	
T-59	D		5	0	0	1044.41	0	RSD	
T-60	Е		5	0	0	1045.27	0	RSD	
T-61	A	320	5	0	0	0	0	RSD	
T-62	В		5	0	0	0	0	RSD	
T-63	С		5	0	0	0	0	RSD	
T-64	D		5	0	0	0	0	RSD	
T-65	Е		5	0	0	0	0	RSD	
T-36	(d)						1231.53	RSD	
T-50	(d)						1238.37	RSD	
T-51	(d)						1065.88	RSD	

⁽d) - duplicate; pan reweighed after being placed in the oven and desiccated a second time.

anacreview. Galfity Sept. 1/at

Test: LF-Larval Fish Growth and Survival Test

Species: AA-Atherinops affinis

Sample ID: REF-Ref Toxicant

Start Date: 8/9/2005 End Date: 8/16/2005

Test ID: rtaacu46

Protocol: EPAW 95-EPA West Coast

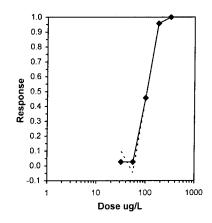
Sample Type: CU-Copper

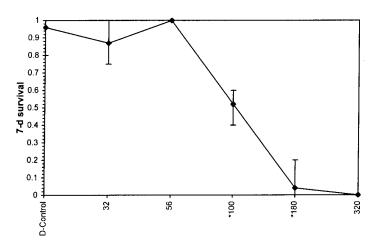
Lab ID: BCEVS-EVS Environment Consultants

		l			i	ĺ			! :]	ļ	No. Fish	Total	Tare
Pos	ID	Rep	Group	Day 0	Day 1	Day 2	Day 3	Day 4	Day 5	Day 6	Day 7	Weighed	Wgt(mg)	Wgt(mg)
	1	1	D-Control	5							5	5	1227.73	1231.65
	2	2	D-Control	5							5	5	1237.69	1243.76
	3	3	D-Control	5							5	5	1233.73	1238.72
	4	4	D-Control	5							4	4	1228.92	1231.78
	5	5	D-Control	5							5	5	1227.75	1233.44
	6	1	32.0	5							5	5	1231.67	1236.17
	7	2	32.0	5							4	4	1224.44	1228.26
	8	3	32.0	5							4	4	1238.77	1241.92
	9	4	32.0	4							4	4	1227	1230.34
	10	5	32.0	4							3	3	1236.71	1239.86
	11	1	56.0	5							5	5	1230.75	1234.97
	12	2	56.0	5							5	5	1220.44	1224.77
	13	3	56.0	5							5	5	1226.91	1231.88
	14	4	56.0	5							5	5	1227.66	1232.44
	15	5	56.0	5							5	5	1233.65	1238.33
	16	1	100.0	5							3	3	1063.07	1065.92
	17	2	100.0	5							2	2	1070.3	1071.8
	18	3	100.0	5							3	3	1061.53	1063.78
	19	4	100.0	5							3	3	1059.1	1061.99
ļ	20	5	100.0	5			<u> </u>				2	2	1037.82	1038.91
	21	1	180.0	5			ļ	Į			1	1	1044.2	1044.67
	22	2	180.0	5					ł		0	0	1036.78	0
	23	3	180.0	5							0	0	1044.68	0
	24	4	180.0	5					1		0	0	1044.41	0
	25	5	180.0	5							0	0	1045.27	0
	26	1	320.0	5							이	0	0	0
	27	2	320.0	5							0	0	0	0
	28	3	320.0	5							0	0	0	0
	29	4	320.0	5							0	0	0	0
T	30	5	320.0	5							0	0	0	0

Comments: Azimuth - Polaris 04-1424-044

Reviewed by Auch A

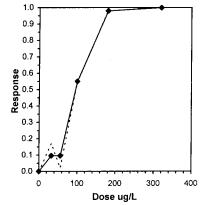

Page 1 ToxCalc 5.0


			L	arval Fish.	Growth and Sur	vival Test-7-d sur	vival
Start Date:	8/9/2005		Test ID:	rtaacu46		Sample ID:	REF-Ref Toxicant
End Date:	8/16/2005		Lab ID:	BCEVS-E	VS Environment	Cc Sample Type:	CU-Copper
Sample Date:			Protocol:	EPAW 95	EPA West Coast	Test Species:	AA-Atherinops affinis
Comments:	Azimuth -	Polaris 0	4-1424-04	14			
Conc-ug/L	1	2	3	4	5	•	
D-Control	1.0000	1.0000	1.0000	0.8000	1.0000		
32	1.0000	0.8000	0.8000	1.0000	0.7500		
56	1.0000	1.0000	1.0000	1.0000	1.0000		
100	0.6000	0.4000	0.6000	0.6000	0.4000		
180	0.2000	0.0000	0.0000	0.0000	0.0000		
320	0.0000	0.0000	0.0000	0.0000	0.0000		

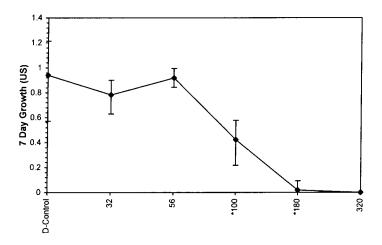
		_	Tra	ansform:	Arcsin So	quare Roo	t	Rank	1-Tailed	Number	Total
Conc-ug/L	Mean	SD	Mean	Min	Max	CV%	N	Sum	Critical	Resp	Number
D-Control	0.9600	0.0894	1.2977	1.1071	1.3453	8.207	5			1	25
32	0.8700	0.1204	1.1850	1.0472	1.3453	11.519	5	20.00	17.00	3	23
56	1.0000	0.0000	1.3453	1.3453	1.3453	0.000	5	30.00	17.00	0	25
*100	0.5200	0.1095	0.8055	0.6847	0.8861	13.691	5	15.00	17.00	12	25
*180	0.0400	0.0894	0.2731	0.2255	0.4636	38.990	5	15.00	17.00	24	25
320	0.0000	0.0000	0.2255	0.2255	0.2255	0.000	5			25	25

Auxiliary Tests					Statistic	Critical	Skew	Kurt
Shapiro-Wilk's Test indicates nor	mal distribu	ition (p >		0.98032	0.888	0.05175	-0.2912	
Equality of variance cannot be co	nfirmed							
Hypothesis Test (1-tail, 0.05)	NOEC	LOEC	ChV	TU				
Steel's Many-One Rank Test	56	100	74.8331					

-			-		Trimmed Spear	man-Karber
	Trim Level	EC50	95%	CL		
	0.0%					
	5.0%	103.41	90.52	118.14		
	10.0%	103.63	89.27	120.30		1.0 —
	20.0%	104.05	85.12	127.20		0.9
	Auto-2.6%	103.48	90.82	117.90	ug/L Cu	0.0


Reviewed by Auf F

			Larv	al Fish Gro	wth and Surviv	val Test-7 Day Gro	wth (US)	
Start Date:	8/9/2005		Test ID:	rtaacu46		Sample ID:	REF-Ref Toxicant	_
End Date:	8/16/2005		Lab ID:	BCEVS-EV	VS Environment	Cc Sample Type:	CU-Copper	
Sample Date:			Protocol:	EPAW 95-	EPA West Coas	t Test Species:	AA-Atherinops affinis	
Comments:	Azimuth -	Polaris 0	4-1424-04	44				
Conc-ug/L	1	2	3	4	5			
D-Control	0.7840	1.2140	0.9980	0.5720	1.1380			
32	0.9000	0.7640	√0.6300	0.8350 -	0.7875			
56	0.8440	0.8660	0.9940	0.9560	0.9360			
100	0.5700	0.3000	0.4500	0.5780	0.2180			
180	0.0940	0.0000	0.0000	0.0000	0.0000			
320	0.0000	0.0000	0.0000	0.0000	0.0000			


				Transforr	n: Untrar	nsformed		Rank	1-Tailed	Isot	onic
Conc-ug/L	Mean	SD	Mean	Min	Max	CV%	N	Sum	Critical	Mean	N-Mean
D-Control	0.9412	0.2633	0.9412	0.5720	1.2140	27.979	5			0.9412	1.0000
32	0.7833	0.1002	0.7833	0.6300	0.9000	12.796	5	23.00	17.00	0.8512	0.9044
56	0.9192	0.0627	0.9192	0.8440	0.9940	6.819	5	25.00	17.00	0.8512	0.9044
*100	0.4232	0.1609	0.4232	0.2180	0.5780	38.013	5	16.00	17.00	0.4232	0.4496
*180	0.0188	0.0420	0.0188	0.0000	0.0940	223.607	5	15.00	17.00	0.0188	0.0200
320	0.0000	0.0000	0.0000	0.0000	0.0000	0.000	5			0.0000	0.0000

Auxiliary Tests					Statistic	Critical	Skew	Kurt
Shapiro-Wilk's Test indicates nor	mal distribu	tion (p >	0.01)		0.96904	0.888	-0.5637	1.29994
Bartlett's Test indicates unequal v	Bartlett's Test indicates unequal variances (p = 8.40E-03)							
Hypothesis Test (1-tail, 0.05)	NOEC	LOEC	ChV	TU				
Steel's Many-One Rank Test	56	100	74.8331					

Linear Interpolation (200 Resamples) Point IC05* IC10 95% CL(Exp) **ug/L** 16.742 SD Skew 0.6591 0.0540 0.966 22.428 84.151 56.429 21.864 0.000 72.829 IC15 61.266 19.804 0.000 78.932 -0.6284 IC20 66.103 16.425 4.297 85.035 -1.1939 IC25 -1.6164 70.941 10.605 11.216 91.139 IC40 85.453 7.896 65.694 112.047 0.4556 IC50 95.128 8.949 75.508 127.164 0
* indicates IC estimate less than the lowest concentration 0.6374 ug/L Cu

Dose-Response Plot

Reviewed by

APPENDIX II

Raw Data and Statistical Analyses:

Dendraster excentricus

EVS ENVIRONMENT CONSULTANTS ECHINOID FERTILIZATION TOXICITY TEST DATA SUMMARY

Client Azimuth Consulting (Polaris Mine) EVS Project No. 04-1424-644 EVS Work Order No. 0500328	EVS Analysts SRS, JAP Test Initiation Date OG Aug OS
SAMPLE	TEST SPECIES
Identification Garrow Creek Amount Received 5×20L Date Collected O6 Any 05 Date Received 09 Any 05 Temperature (°C) 16 915 pH 7.3 9.8.3 Dissolved Oxygen (mg/L) 10.0 9.8.5 Conductivity (µmhos/cm) 2700 Salinity (ppt) 1.0 9.29.0 Ammonia (mg/L N) Chlorine (mg/L Cl) Other	Organism Dentasta Extendricus Source Westwind Scalab Date Received OG Aug OS Reference Toxicant So S Current Reference Toxicant Result Reference Toxicant Test Date Og Aug OS IC50 (and 95% CL) 3.9 (3.6-9.1) myll Sos Reference Toxicant Warning Limits (mean ± 2SD) and CV 3.92 9.3 mg/l SOS, (V = 555%
DILUTION/CONTROL WATER (initial water quality)	TEST CONDITIONS
Water Type UN skriliged, 0-5m filkred SW Temperature (°C) 15 pH 8.0 Dissolved Oxygen (mg/L) 8.5 Salinity (ppt) 29 Other	Temperature Range (°C) 15 pH Range 7.8 7.4 Dissolved Oxygen Range (mg/L) 7.8 Salinity Range (ppt) 29 7.8 Sperm:Egg Ratio 2000:1 Test Duration 10:10 Other —
IC25: 15.61	
Data Verified By Qalhit	Date Verified

EVS ENVIRONMENT CONSULTANTS ECHINOID FERTILIZATION TOXICITY TEST INITIAL WATER QUALITY

Client Azimuth Cons	ultry (Polanis	Mine)	Test Species	on Date/Time 9A	405/1723
EVS Project No. <u>04-142</u> 6 EVS Work Order No. <u>050</u>			Source/Date	Received (1)	1 Sectors 19 Ang 05
Logbook Echnold #13) 4	Test Duratio	on 10:10	X Secret / 1 mag 0 3
Sample ID % (V/V)	Temperature (°C)	рН	Salinity (ppt)	Dissolved Oxygen (mg/L)	Comments
Garos Creek - Max	15	8.3	29	8.5	
Garan Crek - 36	15	8.1	29	8.4	
Garrow Geck - 18	15	7.9	29	8.4	
Garan Creek - 9	15	7.9	29	8.4	
Garris Crede - 45	15	78	29	8.4	
Cntl	15	8.0	29	8.5	
Brim Conti	15	84	29	7.8	
Technician Initials	SROITAD	505/JAP	58315AP	5R51 5AP	
WQ Instruments Used: Temp	Coliberal Ly Humante	_ pH <u>11-</u>	8 <u>IS-A</u>	Salinity <u>Tr. A 03030</u>	3 DO <u>II-A-20</u>
	n with no c	xlour			
Data Verified By	galfit		Date Verifi	ed Ans	- 31/05

EVS ENVIRONMENT CONSULTANTS ECHINOID FERTILIZATION TOXICITY TEST – EGG COUNT (SAMPLES)

Client A	и /.	. 16 (01)	. dl \ Tec	t Initiation Date	Time MAA	~1.712			
EVS Work Orde	er No		Sou	Test Initiation Date/Time 67 Aug 05/1723 Test Species Dendrate excent ovus Source/Date Received Western Soulab/09 A					
Logbook <u>Ech</u>	inoid	Pages <u>71-74</u>		t Duration rm:Egg Ratio	200011				
Sample ID Replicate Number of Num Fertilized Eggs Unferti				1	Comments	Tech. Initials			
		04	10			205			

Sample ID	Replicate	Number of Fertilized Eggs	Number of Unfertilized Eggs	Comments	Tech. Initials
	A	88	12		SRS
Control	В	81	19		İ
Corner	С	85	15		
	D	86	14		
	A	91	9		
Brine	В	86	14		
Brine Control	С	85	15		
	D	87	13		
	A				
	В				
	С				
	D				
	A				
	В				
	С				
	D				
	A				
	В				
	С				
	D				
	Α				
	В				
	С				
	D				

Data Verified By	galfit	Date Verified	Ang 31/05	
Ť				

EVS ENVIRONMENT CONSULTANTS ECHINOID FERTILIZATION TOXICITY TEST – EGG COUNT (SAMPLES)

Client Azimuth Consilling (Polais Kha)	Test Initiation Date/Time (7 Am 05/1723
EVS Project No. 64-1424, 344	Test Species Dendarde excent rous
EVS Work Order No. <u>0500328</u>	Source/Date Received Western Soulary 109 Amor
Logbook Echinaid Pages 71-74	Test Duration 10:10
	Sperm:Egg Ratio 2001)

Sample ID , y.(v/o) Sygrow (reek	Replicate	Number of Fertilized Eggs	Number of Unfertilized Eggs	Comments	Tech. Initials
	A	37	63		SRS
Max	В	40	60		
71.3%	С	37	63 63		
71 · 376	D	37 35	63		
	А	50	50		
35.6 36%	В	54	46		
36%	С	54	46		
	D	53	47		
	A	64	36		
17.2	В	59	41		
189.	С	63	41 37 39		
(20)	D	61	39	<i>f</i>	
	A	76	24		
- 04	В	77	23		
8.9%	С	77	23		
	D	76	24		
	A	82)8		
4.5%	В	80	20		
, -,-	,C	79	21		
	D	78	22		1
	A				
	В				
	С				
	D				

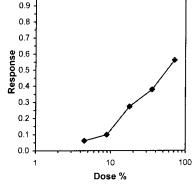
Data Verified By	galf 4	Date Verified	Any 31/05	
	1 1		V	

Test: SC-Sperm Cell Fertilization test Species: DE-Dendraster excentricus

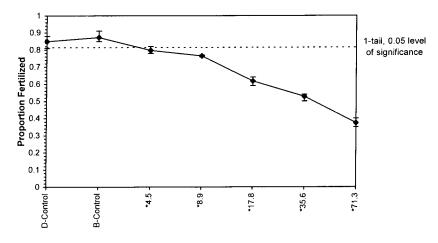
Sample ID: Garrow Creek Start Date: 8/9/2004 10:10 Test ID: 0500328

Protocol: EPS1/RM/27-EC 92 (Sperm Cell)
Sample Type: GW-groundwater Eff / Leen +
Lab ID: BCEVS-EVS Environment Consultants

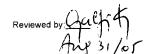
•			W CIECK				s. ett groundwater e // 1 - et /
Start	Date:	8/9/20	04 10:10	End Date: 8	3/9/2004	Lab ID: BCE	VS-EVS Environment Consultants
				Total	Number	Number	
Pos	ID	Rep	Group	Counted	Fertilized	Unfertilized	Notes
	1	1	D-Control	100	88	12	
	2	2	D-Control	100	81	19	
	3	3	D-Control	100	85	15	
	4	4	D-Control	100	86	14	
	5	1	B-Control	100	91	9	
	6	2	B-Control	100	86	14	
	7	3	B-Control	100	85	15	
	8	4	B-Control	100	87	13	
	9	1	4.500	100	78	22	
	10	2	4.500	100	79	21	
	11	3	4.500	100	80	20	
	12	4	4.500	100	82	18	
	13	1	8.900	100	76	24	
	14	2	8.900	100	77	23	
	15	3	8.900	100	77	23	
	16	4	8.900	100	76	24	
	17	1	17.800	100	61	39	
	18	2	17.800	100	63	37	
	19	3	17.800	100	59	41	
	20	4	17.800	100	64	36	
	21	1	35.600	100	53	47	
	22	2	35.600	100	54	46	
	23	3	35.600	100	54	46	
	24	4	35.600	100	50	50	
	25	1	71.300	100	35	65	and the second s
	26	2	71.300	100	37	63	
	27	3	71.300	100	40	60	
	28	4	71.300	100	37	63	


Comments: Azimuth Consulting Group (Polaris Mine) 04-1424-044 (0500328)

			S	perm Cell	ertilization test-Proportion Fertili	zed
Start Date:	8/9/2004	10:10	Test ID:	500328	Sample ID:	Garrow Creek
End Date:	8/9/2004		Lab ID:	BCEVS-EV	/S Environment Cc Sample Type:	GW-groundwater Effluent
Sample Date:	8/6/2004		Protocol:	EPS1/RM/	27-EC 92 (Sperm + Test Species:	DE-Dendraster excentricus
Comments:	Azimuth	Consulting	g Group (P	olaris Mine)	04-1424-044 (0500328)	
Conc-%	1	2	3	4		
D-Control	0.8800	0.8100	0.8500	0.8600		
B-Control	0.9100	0.8600	0.8500	0.8700		
4.5	0.7800	0.7900	0.8000	0.8200		
8.9	0.7600	0.7700	0.7700	0.7600		
17.8	0.6100	0.6300	0.5900	0.6400		
35.6	0.5300	0.5400	0.5400	0.5000		
71.3	0.3500	0.3700	0.4000	0.3700		

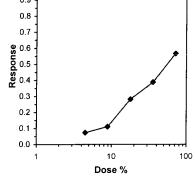

				Transform	n: Untrans	formed		1-Tailed			onic	
Conc-%	Mean	SD	Mean	Min	Max	CV%	N	t-Stat	Critical	MSD	Mean	N-Mean
D-Control	0.8500	0.0294	0.8500	0.8100	0.8800	3.463	4				0.8500	1.0000
B-Control	0.8725	0.0263	0.8725	0.8500	0.9100	3.014	4					
*4.5	0.7975	0.0171	0.7975	0.7800	0.8200	2.141	4	3.662	2.410	0.0346	0.7975	0.9382
*8.9	0.7650	0.0058	0.7650	0.7600	0.7700	0.755	4	5.929	2.410	0.0346	0.7650	0.9000
*17.8	0.6175	0.0222	0.6175	0.5900	0.6400	3.591	4	16.217	2.410	0.0346	0.6175	0.7265
*35.6	0.5275	0.0189	0.5275	0.5000	0.5400	3.589	4	22.494	2.410	0.0346	0.5275	0.6206
*71.3	0.3725	0.0206	0.3725	0.3500	0.4000	5.534	4	33.305	2.410	0.0346	0.3725	0.4382

Auxiliary Tests					Statistic		Critical		Skew	Kurt
Shapiro-Wilk's Test indicates norr	nal distribut	ion (p > 0.	01)		0.96944		0.884		-0.376	-0.1401
Bartlett's Test indicates equal var	iances (p =	0.37)			5.40444		15.0863			
The control means are not signific	antly differe	nt (p = 0.3	30)		1.13994		2.44691			
Hypothesis Test (1-tail, 0.05)	NOEC	LOEC	ChV	TU	MSDu	MSDp	MSB	MSE	F-Prob	df
Dunnett's Test	<4.5	4.5			0.03455	0.04065	0.13432	0.00041	5.3E-17	5, 18

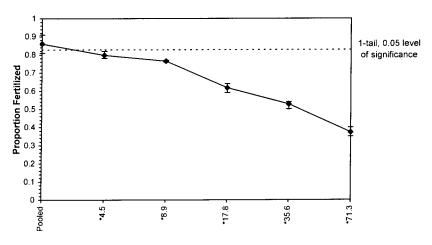

Log-Linear Interpolation (200 Resamples) 95% CL(Exp) Point SD Skew IC05* 2.975 8.900 0.565 0.6911 1.400 7.600 10.418 -0.8297 1.288 3.027 IC15 10.909 12.929 0.4646 0.614 9.311 1.0 IC20 13.326 0.777 11.427 15.949 0.5340 0.9 IC25 16.234 1.070 13.604 20.191 0.7205 -0.4616 0.5505 43.489 IC40 38.524 1.817 32.550 8.0 IC50 56.411 49.614 64.710 2.378 0.7 * indicates IC estimate less than the lowest concentration

Dose-Response Plot

Whice statistical corporisons are cyclist delation control


			5	perm Cell Fe	rtilization test-Proportion Fertili	zed	
Start Date:	8/9/2004	10:10	Test ID:	500328	Sample ID:	Garrow Creek GW-groundwater	_,,,
End Date:	8/9/2004		Lab ID:	BCEVS-EVS	Environment Cc Sample Type:	GW-groundwater	Effluent
Sample Date:	8/6/2004		Protocol:	EPS1/RM/27	-EC 92 (Sperm + Test Species:	DE-Dendraster exc	centricus
Comments:	Azimuth	Consulting	Group (F	olaris Mine) 0	4-1424-044 (0500328)		
Conc-%	1	2	3	4			-
D-Control	0.8800	0.8100	0.8500	0.8600			
B-Control	0.9100	0.8600	0.8500	0.8700			
4.5	0.7800	0.7900	0.8000	0.8200			
8.9	0.7600	0.7700	0.7700	0.7600			
17.8	0.6100	0.6300	0.5900	0.6400			
35.6	0.5300	0.5400	0.5400	0.5000			
71.3	0.3500	0.3700	0.4000	0.3700			

				Transform	n: Untrans	sformed			1-Tailed			Isotonic	
Conc-%	Mean	SD	Mean	Min	Max	CV%	N	t-Stat	Critical	MSD	Mean	N-Mean	
Pooled	0.8613	0.0285	0.8613	0.8100	0.9100	3.310	8				0.8613	1.0000	
*4.5	0.7975	0.0171	0.7975	0.7800	0.8200	2.141	4	4.768	2.508	0.0335	0.7975	0.9260	
*8.9	0.7650	0.0058	0.7650	0.7600	0.7700	0.755	4	7.199	2.508	0.0335	0.7650	0.8882	
*17.8	0.6175	0.0222	0.6175	0.5900	0.6400	3.591	4	18.231	2.508	0.0335	0.6175	0.7170	
*35.6	0.5275	0.0189	0.5275	0.5000	0.5400	3.589	4	24.962	2.508	0.0335	0.5275	0.6125	
*71.3	0.3725	0.0206	0.3725	0.3500	0.4000	5.534	4	36.555	2.508	0.0335	0.3725	0.4325	


Auxiliary Tests					Statistic		Critical		Skew	Kurt
Shapiro-Wilk's Test indicates norr	nal distribut	ion (p > 0.		0.97972		0.896		-0.1255	1.3485	
Bartlett's Test indicates equal var	iances (p =	0.30)			6.1116		15.0863			
The control means are not signific	antly differe	ent (p = 0.	30)		1.13994		2.44691			
Hypothesis Test (1-tail, 0.05)	NOEC	LOEC	ChV	TU	MSDu	MSDp	MSB	MSE	F-Prob	df
Bonferroni t Test	<4.5	4.5			0.03354	0.03894	0.16656	0.00048	3.5E-20	5, 22

Log-Linear Interpolation (200 Resamples) 95% CL(Exp) Point SD Skew IC05* 2.163 0.950 0.835 1.2352 IC10 7.243 1.368 2.765 10.506 -0.2796 0.1462 0.1484 0.1477 IC15 IC20 10.424 9.200 11.908 0.446 1.0 14.753 12.777 0.574 11.163 0.9 18.305 IC25 15.613 0.797 13.605 8.0 IC40 37.370 1.848 30.582 42.085 -0.6715 IC50 55.010 2.043 49.176 61.090

* indicates IC estimate less than the lowest concentration 0.1372 %v/v 0.7

Dose-Response Plot

Note: statistical comparisons are against gerted combrels

Reviewed by: Galfal

EVS ENVIRONMENT CONSULTANTS ECHINOID FERTILIZATION TOXICITY TEST DATA SUMMARY

Client Azimuth Consulting (Policis Mine)	EVS Analysts SRS, JAP
EVS Project No. 04-1424 - 644	Test Initiation Date Og Aug 05
EVS Work Order No. <u>0500328</u>	σ
SAMPLE	TEST SPECIES
Identification 5DS Reflex Soi'= =05-5-009	Organism Vendrasta lacentricus
Amount Received	Source Westwind Sealab
Date Coffected O5 Aug 05	Date Received 09 Aug 05
Date Received	Reference Toxicant 505
Temperature (°C)	Current Reference Toxicant Result
pH	Reference Toxicant Test Date 09 Aug 05 IC50 (and 95% CL) 3.9 (3.6 - 4.1) mg/L 5D5
Dissolved Oxygen (mg/L)	IC50 (and 95% CL) 3,9 (3.6 - 4.1) mg/4 5Ds
Conductivity (µmhos/cm)	Reference Toxicant Warning Limits (mean \pm 2SD) and CV
Salinity (ppt)	39=43 mg/L SDS; CV=53%
Ammonia (mg/L N)	
Chlorine (mg/L Cl)	
Other —	
DILUTION/CONTROL WATER (initial water quality)	TEST CONDITIONS
Water Type UN steritized, O-5m filtered Sw	Temperature Range (°C)15
Temperature (°C) 15	pH Range 7.8 - 8.0
pH 8.0	Dissolved Oxygen Range (mg/L) 8.4-8.5
Dissolved Oxygen (mg/L) 8.5	Salinity Range (ppt) 29
Salinity (ppt) 29	Sperm:Egg Ratio 2000:)
Other —	Test Duration 10:10
	Other
TEST RESULTS $IC 50: 3.9(3)$	6-4.1) mg/6 5DS
IC25 2.3(2	2.2-2.4) mg/4 SDS
NOEC: 1.0 m	205
LOEC: 1.8 m	WIL 202
	·
O. altot	Data Varified A 21/2
Data Verified By	Date Verified
' V 1	i i

EVS ENVIRONMENT CONSULTANTS ECHINOID FERTILIZATION TOXICITY TEST INITIAL WATER QUALITY

Client Azant Consultar EVS Project No. 04-142	4-8044	۷)	Test Initiation Date/Time 9Ay 05/1723 Test Species Dendresta excentrus Source/Data Rassivad (1) 05					
EVS Work Order No		1//	Source/Date Received Westwind Scholand 05					
Logbook Eline 1 + 13	Pages 71-7		Test Duration	n <u>10116</u>				
Restox								
Sample ID ろう(mgル)	Temperature (°C)	рН	Salinity (ppt)	Dissolved Oxygen (mg/L)	Comments			
Cntl	15	8.0	29	8.5				
1.0	15	7.8	29	8.4				
1.8	/5	7.8	29	8.4				
3.1	15	7.8	29	8.4				
5.6	15	7.9	29	8.4				
10.0	15	7.9	29	8.4				
		·						
Technician Initials	SRS/5AP	5 RS/JAP	SRS/JAP	SKS/JAP				
WQ Instruments Used: Ten Sample Description	1p. H Hirment	_ pH <u>I</u> I-	-A-57 S	Salinity A-020203	DO <u>II-A-20</u>			
Data Verified By	Qalli t	١	Date Verific	ed Au	4 31/05			

EVS ENVIRONMENT CONSULTANTS ECHINOID FERTILIZATION TOXICITY TEST – EGG COUNTS (CONTROLS)

Client Azi	mull G	moulting (Pole	Test Speci	tion Date/Time	1/Ay/05 /	1723
EVS Project No.	04.142	24-044			excentions	
EVS Work Orde			Test Durat			
Logbook Ethi	roid	Pages 71-74	Sperm:Egg	g Ratio 2000 :	1	
Concentration	Replicate	No. Fertilized	No. Unfertilized	Comm	nents	Tech.
5 DS (my/L)		Eggs	Eggs			Initials
Reference Tox						
	A	88	12			SRS
1.0	В	64	16			
	С	89	11			
	D	67	13			
	A	75	25			
1.8	В	54 73	27			
1.0	С	22 74	26			
	D	73	27			
	A	49	51			
32	В	52	48			
	С	53	47			
	D	49	51			
	A	26	74			
5.6	В	28	72			
.). b	С	26	74			
	D	2 つ	73			
	A	16	84			
	В	11	89			
10.0	С	14	86			
	D	15	85			↓
Control Seawat	er					
	A	88	12			SRS
	В	81	19			
Cntl	С	85	15			
	D	86	14			+
Data Verified By		Galfi K	Date Ve	rified	Ary 31/05	

Test: SC-Sperm Cell Fertilization test

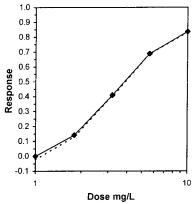
Species: DE-Dendraster excentricus

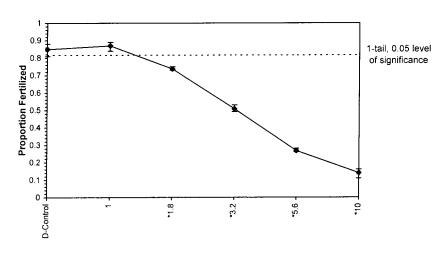
Sample ID: REF-Ref Toxicant Start Date: 8/9/2005 10:10

Test ID: rtdesds052

Protocol: EPS1/RM/27-EC 92 (Sperm Cell) Sample Type: SDS-Sodium dodecyl sulfate

			005.40.40	C D 0	VO IOOOE	Lab ID: DOM	VC EVC Environment Consultants
Start					· · · · · · · · · · · · · · · · · · ·		VS-EVS Environment Consultants
			:	Total	Number	Number	
Pos	DI	Rep	Group	Counted	Fertilized	Unfertilized	Notes
	1	1	D-Control	100	88	12	
	2	2	D-Control	100	81	19	
	3	3	D-Control	100	85	15	,
	4	4	D-Control	100	86	14	
	5	1	1.000	100	88	12	
	6	2	1.000	100	84	16	
	7	3	1.000	100	89	11	
	8	4	1.000	100	87	13	
	9	1	1.800	100	75	25	
	10	2	1.800	100	73	27	
	11	3	1.800	100	74	26	
	12	4	1.800	100	73	27	
	13	1	3.200	100	49	51	
	14	2	3.200	100	52	48	
	15	3	3.200	100	53	47	
	16	4	3.200	100	49	51	
	17	1	5.600	100	26	74	
	18	2	5.600	100	28	72	
	19	3	5.600	100	26	74	
	20	4	5.600	100	27	73	
	21	1	10.000	100	16	84	
	22	2	10.000	100	11	89	
$\overline{}$	23	3	10.000	100	14	86	
	24	4	10.000	100	15	85	
					0.4.4./0.50000		****


Comments: Azimuth Consulting Group 04-1424-044 (0500328)


				Sperm Cell F	ertilization test-Proportio	n Fertilized
Start Date:	8/9/2005	10:10	Test ID:	rtdesds052	Sample I	D: REF-Ref Toxicant
End Date:	8/9/2005		Lab ID:	BCEVS-EVS	S Environment Cc Sample 1	ype: SDS-Sodium dodecyl sulfate
Sample Date:			Protocol:	EPS1/RM/2	7-EC 92 (Sperm (Test Spe	cies: DE-Dendraster excentricus
Comments:	Azimuth	Consultin	g Group 0	4-1424-044 (0500328)	
Conc-mg/L	1	2	3	4		
D-Control	0.8800	0.8100	0.8500	0.8600		
1	0.8800	0.8400	0.8900	0.8700		
1.8	0.7500	0.7300	0.7400	0.7300		
3.2	0.4900	0.5200	0.5300	0.4900		
5.6	0.2600	0.2800	0.2600	0.2700		
10	0.1600	0.1100	0.1400	0.1500		

				Transform: Untransformed					1-Tailed			Isotonic	
Conc-mg/L	Mean	SD	Mean	Min	Max	CV%	N	t-Stat	Critical	MSD	Mean	N-Mean	
D-Control	0.8500	0.0294	0.8500	0.8100	0.8800	3.463	4				0.8600	1.0000	
1	0.8700	0.0216	0.8700	0.8400	0.8900	2.483	4	-1.412	2.410	0.0341	0.8600	1.0000	
*1.8	0.7375	0.0096	0.7375	0.7300	0.7500	1.298	4	7.941	2.410	0.0341	0.7375	0.8576	
*3.2	0.5075	0.0206	0.5075	0.4900	0.5300	4.062	4	24.176	2.410	0.0341	0.5075	0.5901	
*5.6	0.2675	0.0096	0.2675	0.2600	0.2800	3.579	4	41.118	2.410	0.0341	0.2675	0.3110	
*10	0.1400	0.0216	0.1400	0.1100	0.1600	15.430	4	50.118	2.410	0.0341	0.1400	0.1628	

Auxiliary Tests					Statistic		Critical		Skew	Kurt
Shapiro-Wilk's Test indicates nor	mal distribu	ition (p >	0.01)		0.95791		0.884		-0.5718	-0.0762
Bartlett's Test indicates equal var	iances (p =	0.43)			4.8475		15.0863			
Hypothesis Test (1-tail, 0.05)	NOEC	LOEC	ChV	TU	MSDu	MSDp	MSB	MSE	F-Prob	df
Dunnett's Test	1	1.8	1.34164		0.03414	0.04017	0.38111	0.0004	3.8E-21	5, 18

			Log-Linear Interpolation (200 Resamples)					
Point	mg/L	ŞD	95% CI	_(Exp)	Skew			
IC05	1.2507	0.0219	1.1728	1.3194	0.2839			
IC10	1.5329	0.0430	1.4377	1.6889	1.2146			
IC15	1.8323	0.0408	1.7124	1.9570	0.2306	1.0 T		
IC20	2.0553	0.0391	1.9513	2.1828	0.4191	0.9 1		
IC25	2.2959	0.0426	2.1872	2.4359	0.3093	4		
IC40	3.1375	0.0735	2.9274	3.3760	0.1213	0.8		
IC50	3.8600	0.0706	3.6272	4.0719	-0.0638 mg/L 5DS	0.7 -		

Reviewed by: Qalf 4

APPENDIX III

Chain-of-Custody Form

Ship to

Client Contact 3 400 Dona b Phone 250-427-540K Fax 250- 427-8451

Client Name Teck Common Co

Address Bac 2000 K. D. Deri

٩	,	
4	Ť	
	•	
C	•	

0

mberton Avenue Jancouver, B.C.

1 (A)				9.01	04-986-4331
		Fax 250- 42 F - 8451		Fax:	Fax: 604-662-8548
V14 3E	Sampled by	Sampled by CColton	Attn. Edmound	Shipping Date 100 600	.golder.com
-		Sheet	et e e e e e e e e e e e e e e e e e e	Test(s) Requested	4
Collection Date Time (DD/MIMM/YYYYY) (24-h clock)	Sample Identification	Type of Each Samp Naterial Safety Data 3 Attached? (🗸)	G=grab C=compos Number of Sampl Containers × Volume Sample Container (1 × 20L) by Code Dy Code	Sample Notes (preserved, saltwater, freshwater, may contain sewage)	ontain sewage)
06/2400/05 10 00 on	Gorran Crak		1 x20/.	Client is ach	
>			-	Azirath Consu	Juline
					0
PO/Reference No.			Commontalination		
Project Title			- comments/mstructions		
Results Needed By					
1) Released by: B Bolton	Date: A 15 6 05	2) Released by:	Date:	Shaded area to be completed by Golder I ahoratory unon earning reco	roccint
Company: Gastuer Lee	re Ltd. Time: 14.00/NA	Company:	Tme:	Golder Project No. 050 327 / 3	178818
Courier Name:		Courier Name:		Golder Work Order No. 04-1424 -044	
1) Received by (SRS)	Date: 9 Aug 05	1) Received by:	Date:		
Company: Golde	Time: 10%	Company:	Time:	Receipt Sample Temp. (°C) /90	

1 For composite effluent or water samples, the sample collection date/time is the end of the compositing period.

2 Receiving Water (RW): Effluent (E); Elutriate (ELU); Sediment (SED); Chemical (CHEM); Stormwater (SW); Other (Please Specify)

3 Collapsible Carboy (CC); glass jar (GJ); Jerry Can (JC); Plastic HDPE (P); Other (Please Specify) 4 Please note any conditions the lab should be aware of for safety and storage concerns

Distribution of copies:

Yellow – kept by consignee (e.g. receiver) White – returned to consignor by consignee White, Yellow – accompany the shipment Pink -- kept by consignor (e.g. shipper)

	Ą	
V,	۲	
•	-	
-	>	
Э		

195 Pemberton Avenue North Vancouver, B.C.

56)	Receipt Sample Temp. ('C)	∏ Be:		Company:	Time: /0:/5	<i>-</i>	Company:
1,000	Colder Work Clude in	Date.		1) Received by	Date: 9 4,005	(SKS)	1) Received by:
14-1424 JUG	Goldon Work Ordon No.	:	.e:	Courier Name:			Courier Name:
\cdot	Golder Project No.	Тіте:		Company:		Company: Bortner Lee Hd	Company: 🚫
Shaded area to be completed by Golder Lahoratory unon samula razaint	Shaded area to be co	Date:		2) Released by	Date: 10 605	S Too to	1) Released by: B Bolton
						Ву	Results Needed By
							Project Title
		Comments/Instructions	Сош	*,2		0.	PO/Reference No.
				2.6			
				*			
*							
Asimuth consulting			-				
Client is actually		2×20L P X	Ø 78	(H)	Garrow Creek		ċ.
Sample Notes (preserved, saltwater, freshwater, may contain sewage)		Containers x Volti Sample Contain (1 x 20L) Sample Containe by Code	Attached? (was Cample Collection Gample Collection Gegrab Cecom	Type of Each Sa Material Safety Da	Sample Identification	Time (24-h clock)	Collection Date (DD/MMM/YYYY)
4	Test(s) Requested	Type w	Vethod osite	~		-	4- -
Shipping Date 10 0	y Consoid	Attn. Eduarina	76	Sampled by K Son How	Sampled by	361	V14 3
Tel: 604-986-4331 Fax: 604-662-8548			8451	250-427	Fax 2	DEN) BC	8
ASSOCIATES Canada V7P 2R4		on due	-8405	250-427		a 2000	Address Baca
		Ship to	30	Client Contact		cka) x	Client Name 2 6 6 000

1 For composite effluent or water samples, the sample collection date/time is the end of the compositing period.

2 Receiving Water (RW): Effluent (E); Elutriate (ELU); Sediment (SED); Chemical (CHEM); Stormwater (SW); Other (Please Specify)

3 Collapsible Carboy (CC); glass jar (GJ); Jerry Can (JC); Plastic HDPE (P); Other (Please Specify) 4 Please note any conditions the lab should be aware of for safety and storage concerns

Distribution of copies:

Yellow — kept by consignee (e.g. receiver) White — returned to consignor by consignee White, Yellow – accompany the shipment Pink — kept by consignor (e.g. shipper)

ı	4	r	•	
١	١	•	١	
-)	i	
3	,	ł	ŀ	

erton Avenue couver, B.C.

ASSOCIATES Canada V7P 2R4	Tel: 604-986-4331 Fax: 604-662-8548	Shipping Date 1 6 105		Sample Notes (preserved, saltwater, freshwater, may contain sewage)	Client is activelly.	mth							Shaded area to be completed by Golder Coratory upon sample receipt. OSO 327 329
		d Carporto	Test(s) Requested	1						-			Shaded area to be Golder Project No.
Ship to		Attn. Famurd		Containers × Volume of Sample Containers (1 × 20L) Sample Container Type	ZXZOL P X	7.					Comments/Instructions		gate: Time:
014 - 840K	1	30 ton	199 bo	Type of Each Sample Naterial Safety Data Sh Sample Collection Meth G=grab C=composite Wumber of Sample	5 C					-#- 'A'	Cor		sed by:
Phone 250-40-4	Fax / Sold	Sampled by: [5] [30]							**	4.			Time: (4 Corp. C. Company:
Soon	xly, BC	41	1	Time (24-h clock)	1								Released by: Brendo Colton Company: Garlan Lee
Address Floa	Kindhaly	V.L.	-	Collection Date Time (DD/MMMM/YYYY) (24-h clos	j						PO/Reference No.	Project Title Results Needed By	1) Released by: Syendo Company: Carliner 2

1 For composite effluent or water samples, the sample collection date/time is the end of the compositing period.

2 Receiving Water (RW): Effluent (E); Elutriate (ELU); Sediment (SED); Chemical (CHEM); Stormwater (SW); Other (Please Specify)

3 Collapsible Carboy (CC); glass jar (GJ); Jerry Can (JC); Plastic HDPE (P); Other (Please Specify)

4 Please note any conditions the lab should be aware of for safety and storage concerns

Distribution of copies:

Receipt Sample Temp. (°C) Condition Upon Receipt Golder Work Order No. Golder Project No.__

> Time: Date:

> > Company:

Time: 10:

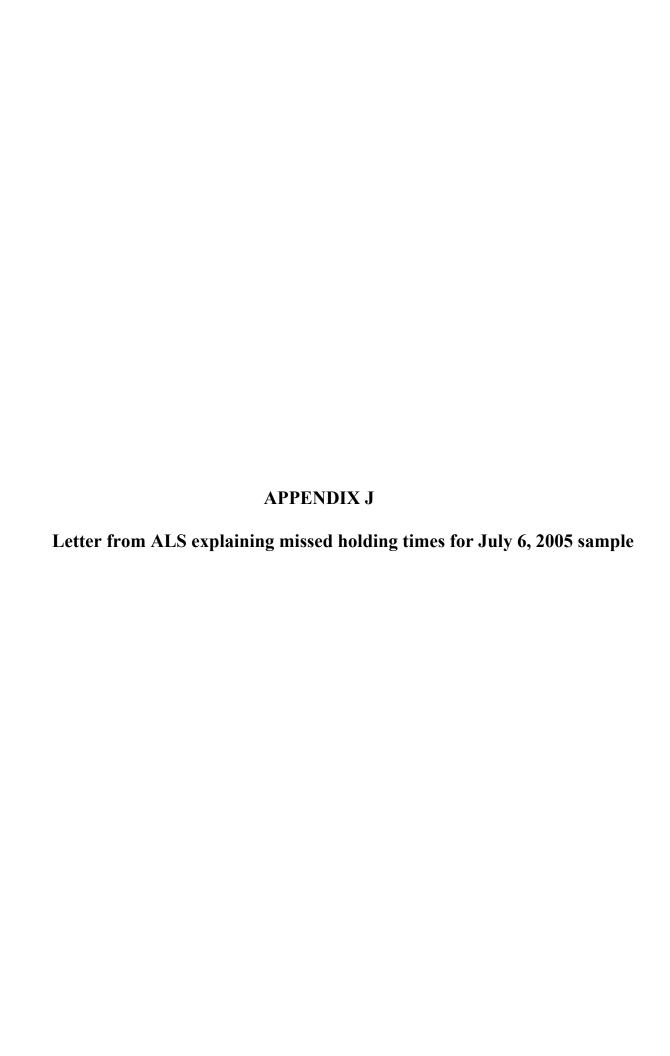
Company: O_D

1) Received by: S Courier Name:

Courier Name: 1) Received by:

White – returned to consignor by consignee White, Yellow – accompany the shipment Yellow - kept by consignee (e.g. receiver) Pink - kept by consignor (e.g. shipper)

APPENDIX I


Polaris 2005 Sampling Event Chronology

Appendix I - Polaris 2005 Sampling and Event Chronology

Becasue mine activities at the Polaris Mine Site ceased during the 2005 season, collection of the MMER and EEM data was conducted by small field crews stationed on-site for limited time periods (early season) and then by flying technicians into the site on a weekly basis in the latter part of the season. Because of the remote location of the high Arctic mine site and the unpredictable weather conditions, sample shipping and transport issues typically arise throughout the season. This season there were several flight attempts into the mine site during the latter part of the season that were unsuccessful due to hazardous weather conditions. The following is a chronology of the 2005 MMER/EEM sampling program, including sample attempts that were prevented due to weather conditions and/or shipping difficulties.

Date	Event Type	Observation/ Comments
Sat. Jun-25-05	-	Flow initiated in Garrow Creek
Wed. Jun-29-05	Monthly/Quarterly	FDP accessible; exposure (Garrow Bay) and reference (Garrow Bay) stations were ice covered precluding sample collection; no exceedances of MMER Schedule 4 limits; T-Hg, alkalinity and nitrate were analyzed after holding times due to an oversight by the ALS lab; a letter explaining this oversight was included in the 2nd quarter report. The EVS and Stantech labs were not able to accommodate a toxicity testing program for this event, as samples would have arrived during a statutory holiday (i.e., Friday July 1, 2005)
Wed. Jul-06-05	Monthly/Quarterly Failed attempt for collecting toxicity samples	FDP accessible; exposure (Garrow Bay) and reference (Garrow Bay) stations were ice covered precluding sample collection; no exceedances of MMER Schedule 4 limits; alkalinity and nitrate were analyzed after holding time due to an oversight by the ALS lab; a letter explaining this oversight is included in the 3nd quarter report Samples for toxicity testing were collected. However, due to fog conditions at the mine site, the flight into and out of the mine site was delayed and missed the connecting flight out of Resolute Bay. Toxicity samples missed holding times and were discarded by the labs, or stopped en-route.
Wed. Jul-13-05	Weekly	A weekly sample was collected as the program schedule was adjusted to Saturday collections to enable sample delivery to the labs earlier in the week (i.e., Tuesday). Although this shipping schedule adds an extra day in transit, if there are no weather delays, then samples should arrive at the labs within the holding time for all toxicity tests.
Sat. Jul-16-05	Monthly/Quarterly Acute Toxicity Sublethal Toxicity	All effluent and water quality monitoring stations were accessible for sample collection. Samples arrived at the labs on Tuesday July 19, 2005 within holding times for all tests. No exceedances of Schedule 4 limits. No acute toxicity.
Sat. Jul-23-05	Weekly	No exceedances of Schedule 4 limits.
Sat. Jul-23-05	Weekly	No exceedances of Schedule 4 limits.
Sat. Jul-23-05	Weekly	No exceedances of Schedule 4 limits.
Sat. Aug-06-05	Monthly/Quarterly Acute Toxicity Sublethal Toxicity	All effluent and water quality monitoring stations were accessible for sample collection. Samples arrived at the labs on Tuesday August 9, 2005 within holding times for all tests. No exceedances of Schedule 4 limits. No acute toxicity.
Sat. Aug-13-05	Weekly	No exceedances of Schedule 4 limits.
Sat. Aug-20-05	Failed attempt for Weekly sample	Flight to Polaris Mine site from Resolute was attempted but did not land due to thick fog and therefore unsafe landing conditions. Jenny Ferone and Ken Russell were notified of this and the following failed attempts on August 29, 2005.
Sun. Aug-21-05	Failed attempt for Weekly sample	Flight to Polaris Mine site from Resolute was attempted but did not land due to thick fog and therefore unsafe landing conditions. Jenny Ferone and Ken Russell were notified of this and the following failed attempts on August 29, 2005.
Mon. Aug-22-05	Failed attempt for Weekly sample	Fog conditions from satellite photos indicated weather was the same or worse than the previous 2 days. No flight attempted over to site due to unsafe landing conditions. Jenny Ferone and Ken Russell were notified of this and the following failed attempts on August 29, 2005.
Tue. Aug-23-05	Failed attempt for Weekly sample	Fog conditions from satellite photos indicated weather was the same or worse than the previous 3 days. No flight attempted over to site due to unsafe landing conditions. Jenny Ferone and Ken Russell were notified of this and the following failed attempts on August 29, 2005.
Wed. Aug-24-05	Weekly	The sample attempt made on Wed August 24, 2005, was successful, following the failed attempts since the previous Saturday. No exceedances of Schedule 4 limits.
Sat. Aug-27-05	Weekly	No exceedances of Schedule 4 limits.

Date	Event Type	Observation/ Comments
Wed. Aug-31-05	Failed attempt for Weekly sample	An attempt to fly into Polaris was made. However, due to fog conditions at the mine site, and the plane was unable to land. Ken Russell and Jenny Ferone were notified of this failed attempt on September 1, 2005.
Sat. Sep-03-05	Failed attempt for Weekly sample	Thick fog and poor visibility prevented the plane from leaving Resolute. Ken Russell and Jenny Ferone were notified of this failed attempt on September 6, 2005.
Wed. Sep-07-05	Failed attempt for Weekly sample	The planned flight into Polaris was cancelled by the pilot due to snow conditions (5-10cm) in Resolute and potentially unsafe conditions for landing at the mine site. Ken Russell and Jenny Ferone were notified of this failed attempt on September 7, 2005.
Sat. Sep-10-05	Failed attempt for Weekly sample	A monthly chemistry plus acute toxicity testing event was planned. However, due to blowing snow conditions, it was deemed by the pilot too hazardous to land an aircraft at the mine site. Ken Russell (Environment Canada) was informed on September 13, 2005.
Tue. Sep-13-05	-	A monthly chemistry plus acute toxicity testing event was planned. However, upon arrival at the mine site, the creek was found to be frozen. Ken Russell was informed on September 13, 2005

ALS

ALS Environmental

August 5, 2005

Mr. Bruce Donald Teck Cominco Bag 2000 Kimberley, BC V1A 3E1

Dear Mr. Donald,

RE: Concerns Regarding Analytical Service

This is in response to email correspondence dated July 29, 2005 through August 3, 2005 expressing concerns over the services provided by ALS Environmental on some Teck Cominco / Azimuth Consulting Group submissions from late June and early July. The examples noted in the emails and the overall concerns over the service provided are taken <u>very seriously</u> by ALS Environmental, and this response letter will hopefully help to address the concerns that were expressed.

In order to provide some clarity and to help resolve the various items of concerns, the following are some of the details that relate to the individual concerns expressed in the emails.

- 1) missed analyses for samples submitted,
- 2) missed holding times for Nitrate, Mercury, Alkalinity.

Details of Expressed Concerns

Missed Analysis / Missed Holding Times for Samples Submitted for 2 Submissions:

Polaris MMER (ALS W1416) analysed for pH, Salinity, Total Cyanide, Ammonia, Total Suspended Solids, Radium 226 and total metals

Date / Time Received:

Monday, July 11, 2005 @ 10:10 am.

Date / Time Reported:

Monday, July 25, 2005 @ 2:23 pm for all but the Radium 226 via email

Wednesday, July 27, 2005 @ 2:42 pm for all analysis via email

Polaris MMER (ALS W1458) analysed for pH, Salinity, Total Cyanide, Ammonia, Total Suspended Solids, Radium 226 and total metals including Mercury

Date / Time Received:

Tuesday, July 12, 2005 @ 9:30 am.

Date / Reported:

Monday, July 25, 2005 @ 2:23 pm for all but the Radium 226 via email

Wednesday, July 27, 2005 @ 2:42 pm for all analysis via email.

On July 28, 2005, Cheryl Mackintosh of Azimuth Consulting Group called Leanne Harris and expressed concern over the fact that the Mercury analysis for W1416 was missing. Upon investigation, it was

ALS CANADA LTD.

1988 Triumph Street, Vancouver, BC Canada V5L 1K5

Phone: 604-253-4188 Toll Free: 1-800-665-0243 Fax: 604-253-6700 Website: www.alsenviro.com

Teck Cominco August 5, 2005 Page 2

discovered that the Mercury was missed at the time of receipt; although it was indicated on the chain of custody. The Mercury analysis for this sample was completed at Ms. Mackintosh's request, but it should be noted that it was one day past the recommended holding time of 28 days for Mercury analysis in water.

On July 29, 2005, Ms. Mackintosh emailed Ms. Harris to inquire about the missing analysis of Nitrate and Alkalinity on the two above referenced submissions. The 48 hour recommended holding time for Nitrate had been exceeded prior to receipt of the samples, but the analysis was carried out as per request. The 14 day holding time for Alkalinity had been exceeded by the time the analysis was completed.

Ms. Mackintosh indicated in subsequent email correspondence that these samples had been identified in an email as MMER monthly samples; which meant that they should have been analysed for a fuller suite of analyses. ALS missed the analysis requests and in future will work toward improved communication internally to prevent a similar situation from occurring again.

The results for the Mercury and Alkalinity analysis with holding time exceedences were compared to other routine monitoring results. Historically, the samples compare well with previous submissions analysed within the holding times. Future submissions will be analysed within the appropriate holding times for Mercury and Alkalinity as long as the samples are received with sufficient time to do the analysis. For the Nitrate analysis, with the very short holding time of 48 hours, these samples will not be able to reach a lab within the holding time due to the remote nature of the site. The recommended holding time for these analyses is usually based on studies done with chemically active samples (such as waste waters or discharge samples), which chemically change over short periods of time. While there is no way to tell exactly how these samples are changing over time (without doing a detailed study that incorporates time studies), in general clean water samples from groundwater or surface water sources usually don't have a large amount of chemical activity.

Hopefully, this letter has summarized and addressed the concerns that have been raised. Most of the issue relates to communication. Increased effort in ensuring that there is excellent communication between our staff and the client, as well as thorough communication internally, helps to yield a successful project.

Thank you for bringing this matter to our attention as it helps us to assess our operation and continuously adjust and improve. Please feel free to contact either of the undersigned if you would like to discuss the matter further.

Sincerely.

Joyce Chow, B. Sc. Branch Manager

Heather Ross-Easton, B.Sc. Client Services Representative

De 7 - East

cc: Cheryl Mackintosh, Azimuth Consulting Group Inc. Patrick Allard, Azimuth Consulting Group Inc.

Randy Baker, Azimuth Consulting Group Inc.