APPENDIX 2

2008 3rd Quarter

Garrow Lake Effluent Discharge Monitoring

by

Gartner Lee Ltd. (AECOM)

AECOM

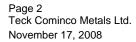
300 – 300 Town Centre Boulevard, Markham, ON, Canada L3R 5Z6 T 905.477.8400 F 905.477.1456 www.aecom.com

November 17, 2008 Project Number: 80325

Bruce Donald Reclamation Manager Teck Cominco Metals, Ltd. 601 Knighton Road Kimberley, BC, V1A 3E1 Canada

Dear Mr. Donald:

Re: Polaris Mine 2008 3rd Quarter Report


Please find attached the Polaris Mine report for the third quarter of 2008. Similar to previous years, the report format follows the Environment Canada Mining Effluent Regulation (MMER) report protocols.

Mining operations at Polaris ceased in 2002. Site decommissioning was completed in 2004. Effluent quality monitoring in Garrow Creek has been on-going since closure. In 2006 Teck Cominco completed a three-year MMER and Environmental Effects Monitoring (EEM) program in order to achieve "closed mine status". The closed mine status has no further reporting requirements to Environment Canada. Monitoring of Garrow Creek and reporting continued to be required to meet the terms and conditions of the site's Water License. These monitoring requirements are similar to MMER requirements and therefore follow similar reporting protocols.

In 2008, effluent samples were collected by local residents flown to the site on a weekly basis, and by a small field crew onsite from July 12 to July 19, 2008. The local residents were trained in sampling collection, handling techniques and protocols by a Gartner Lee Limited (now known as AECOM) technician before they commenced sampling on their own.

It was assumed that flow within Garrow Creek would initiate similar to previous years; the last week of June / first week of July,. The first effluent sample was collected from the creek on July 3, 2008. Flow continued throughout July, August and into September. The last sample was collected on September 6, 2008. Local residents flew to the site on September 13, 2008 to collect an effluent sample, but it was not possible because Garrow Creek was frozen.

Effluent was characterized on a weekly basis for a total of ten sampling events. Flow measurements were made during each sampling event, except for July 10 and July 31, 2008. Samples were analyzed on a weekly basis for general chemistry, total metals, radium 226 and cyanide. Field parameters (pH and

water temperature) were not collected on July 10 and 15, 2008. Once a month, samples were analyzed for ammonia, except for July 2008. A chronology of the 2008 sampling season is presented in Appendix A. Tables 1a, 1b, 1c and 1d summarize the effluent concentrations. The effluent quality results are presented in Table 2 and the laboratory reports are included in Appendix B. Analytical results for all parameters were less than the water licence discharge limits.

Standard acute LC_{50} tests, 96-h (rainbow trout) and 48-h (*Daphnia magna*), were conducted throughout the 3rd quarter. Three sets (i.e., rainbow trout and *Daphnia magna*) of acute toxicity tests were conducted on samples collected July 3, 2008, August 30, 2008 and September 6, 2008. The results are summarized in Table 3 and the acute toxicity testing reports are included in Appendix C. Results show that no toxicity was observed (0% mortality at 100% concentration) for either rainbow trout or *Daphnia magna* on all sampling dates. An attempt was made to conduct additional acute toxicity testing on samples collected August 15, 2008. Results are not available, as the samples arrived at the laboratory after the specified holding times due to delays incurred during shipping.

Please contact the undersigned if you have any questions regarding the Polaris Mine 2008 3rd Quarter Report.

Gartner Lee Limited doing business as AECOM,

Arlene Laudrum, P.Geol. Senior Environmental Geologist

Arlene.Laudrun@aecom.com

c.c. Kimberley Wolgemuth, AECOM

KAW:kw

ATTACHMENTS

Table 1a. - 2008 3rd Quarter Polaris Mine Report, Concentrations of Effluent Sampled Weekly

Table 1b. - 2008 3rd Quarter Polaris Mine Report, Monthly Mean Concentrations of Effluent

Table 1c. - 2008 3rd Quarter Polaris Mine Report, Mass Loading of Deleterious Substance for Each Day Sampled

Table 1d. - 2008 3rd Quarter Polaris Mine Report, Mass Loading per Calendar Month for Each Deleterious Substance



Table 2. - 2008 3rd Quarter Polaris Mine Effluent Characterization Results

Table 3. - 2008 3rd Quarter Polaris Mine Results of Acute Lethality Tests and *Daphnia magna* Monitoring Tests

Appendix A - 2008 Polaris Mine Sampling Event Chronology

Appendix B - Effluent Quality Analytical Test Reports

Appendix C - Acute Toxicity Test Reports

2008 3rd QUARTER MMER REPORT LOCATION - FINAL DISCHARGE POINT FROM GARROW LAKE (GARROW LAKE DAM SIPHONS)

Table 1a. CONCENTRATIONS OF EFFLUENT FOR MMER SCHEDULE 4 SAMPLED WEEKLY

Sample Taken During the	Date Sample		DELETERIOUS SUBSTANCE							рН	Collection Method
Week of	Taken	Arsenic	Copper	Cyanide	Lead	Nickel	Zinc	TSS	Radium 226		Wiethoa
30-Jun-08	03-Jul-08	0.00020	0.00215	0.0050	0.000215	0.00466	0.0242	4.4	0.005	8.42	Grab
07-Jul-08	10-Jul-08	0.00020	0.000865	0.0050	0.000774	0.00202	0.0798	3.0	0.006	7.95	Grab
14-Jul-08	19-Jul-08	0.00020	0.000554	0.0050	0.000189	0.00235	0.0121	3.0	0.020	7.94	Grab
21-Jul-08	24-Jul-08	0.00020	0.000837	0.0060	0.000316	0.00270	0.0169	3.0	0.005	7.95	Grab
28-Jul-08	31-Jul-08	0.00020	0.00110	0.0050	0.000643	0.00371	0.0304	3.0	0.005	7.90	Grab
04-Aug-08	07-Aug-08	0.00020	0.00104	0.0050	0.000679	0.00499	0.0360	3.0	0.010	7.87	Grab
11-Aug-08	15-Aug-08	0.00020	0.000924	0.0050	0.000263	0.00535	0.0365	4.2	0.005	7.98	Grab
11-Aug-08	15-Aug-08	0.00020	0.000866	0.0050	0.000269	0.00519	0.0368	3.0	0.005	8.00	Grab
18-Aug-08	22-Aug-08	0.00020	0.00117	0.0050	0.000302	0.00651	0.0520	3.0	0.005	7.86	Grab
25-Aug-08	29-Aug-08	0.00020	0.00106	0.0050	0.000213	0.00674	0.0522	3.0	0.005	8.10	Grab
01-Sep-08	06-Sep-08	0.00020	0.00112	0.0050	0.000247	0.00775	0.0502	3.3	0.005	8.08	Grab
01-Sep-08	06-Sep-08	0.00020	0.00108	0.0050	0.000173	0.00753	0.0485	3.0	0.01	8.06	Grab
08-Sep-08	13-Sep-08					Cree	k Frozen -	No Sample	ļ		

Notes:

All concentrations are in mg/L except Radium 226 which is Bg/L and pH which is in pH units

Concentrations in italicized font are less than the detection limit shown

The second sampling event on August 15 and September 6, 2008 represents the results from the QA/QC sample taken on the same day

Table 1b. MONTHLY MEAN CONCENTRATIONS OF EFFLUENT FOR MMER SCHEDULE 4

MONTH OF	MONTHLY MEAN CONCENTRATION OF DELETERIOUS SUBSTANCE								
	Arsenic	Copper	Cyanide	Lead	Nickel	Zinc	TSS	Radium 226	
July/08	0.0002	0.0011	0.0052	0.0004	0.0031	0.0327	3.3	0.0082	
August/08	0.0002	0.0010	0.0050	0.0003	0.0058	0.0427	3.2	0.0060	
September/08	0.0002	0.0011	0.0050	0.0002	0.0076	0.0494	3.2	0.0075	

Notes:

All concentrations are in mg/L except Radium 226 which is Bq/L

Monthly Mean Concentrations is the mean value of the concentrations measured in all water samples collected during each month

The month of September value is a mean of only two numbers

Table 1c. MASS LOADING OF DELETERIOUS SUBSTANCE FOR EACH DAY SAMPLED

Sample Taken During the	Date Sample		DAILY MASS LOADING OF DELETERIOUS SUBSTANCE							
Week of	Taken	Arsenic	Copper	Cyanide	Lead	Nickel	Zinc	TSS	Radium 226	(m³/day)
30-Jun-08	03-Jul-08	0.0002	0.002	0.0043	0.0002	0.004	0.021	3.8	0.004	868
07-Jul-08	10-Jul-08	-		-	-	-	-	-	-	-
14-Jul-08	19-Jul-08	0.001	0.002	0.020	0.001	0.009	0.049	12.1	0.080	4,017
21-Jul-08	24-Jul-08	0.0002	0.001	0.006	0.000	0.003	0.018	3.1	0.005	1,037
28-Jul-08	31-Jul-08	-		-	-	-	-	-	-	-
04-Aug-08	07-Aug-08	0.006	0.033	0.158	0.021	0.158	1.137	94.8	0.316	31,590
11-Aug-08	15-Aug-08	0.001	0.005	0.029	0.002	0.031	0.214	24.6	0.029	5,862
11-Aug-08	15-Aug-08	0.001	0.005	0.029	0.002	0.030	0.216	17.6	0.029	5,862
18-Aug-08	22-Aug-08	0.001	0.008	0.034	0.002	0.045	0.356	20.5	0.034	6,847
25-Aug-08	29-Aug-08	0.002	0.011	0.050	0.002	0.067	0.517	29.7	0.050	9,906
01-Sep-08	06-Sep-08	0.003	0.017	0.076	0.004	0.118	0.765	50.3	0.076	15,240
01-Sep-08	06-Sep-08	0.003	0.016	0.076	0.003	0.115	0.739	45.7	0.152	15,240
08-Sep-08	13-Sep-08					Creek	Frozen			

Notes:

Mass Loading is in kilograms/day of the deleterious substance deposited except Radium 226 which is in Bq/day

No discharge was measured on July 10 and July 31, 2008

07-Aug-08 represents a period of high rainfall and ice melting

The second sampling event on August 15 and September 6, 2008 represents the results from the QA/QC sample taken on the same day

Table 1d. MASS LOADING PER CALENDAR MONTH FOR EACH DELETERIOUS SUBSTANCE

CALENDAR MONTH OF MASS LOADING FOR DELETERIOUS SUBSTANCE							Discharge Rate	Total Monthly Volume		
	Arsenic	Copper	Cyanide	Lead	Nickel	Zinc	TSS	Radium 226	(m³/week)	(m³/month)
July/08	0.01	0.05	0.32	0.01	0.17	0.90	196.1	0.93	13,818	61,194
August/08	0.07	0.38	1.86	0.18	2.05	15.13	1160.9	2.84	84,094	372,415
September/08	0.09	0.50	2.29	0.10	3.49	22.56	1440.2	3.43	106,680	182,880

Notes:

Mass Loading Units are in kg/month except Radium 226, which is in Bq/month

Total Mass Loading for calendar month calculated by multiplying the Average Daily Mass Loading for the Month x # days in the month

Average Weekly Discharge Rate is calculated by multiplying the Average Daily Discharge Rate x 7 days

Total Monthly Volume is calculated by multiplying Average Daily Discharge Rate for the month x # days in the month

Average Daily Discharge Rate and Total Monthly Volume for September 2008 is based on only one measurement

On 13-Sep-08 the final discharge point in Garrow Creek was frozen, with no flow under ice.

Table 2. 2008 3rd Quarter Polaris Mine Effluent Characterization Results

Effluent Characterization from Final Discharge Point - Garrow Lake Former Dam / Syphons Northing: 75°22'32"
Easting: 96°48'37"

Easing. 90 40 37	F	1												
		Facility Name				Teck	Cominco Meta			tle Cornwallis Is	land)			
		FDP Name					ı	Garrow Lake	Dam Siphons	Г		T	1	
		Sample ID	G CREEK	G CREEK	G CREEK	G CREEK QA/QC	G CREEK	G CREEK	G CREEK	G CREEK QA/QC				
		Date Sampled	03-Jul-08	10-Jul-08	19-Jul-08	24-Jul-08	31-Jul-08	07-Aug-08	15-Aug-08	15-Aug-08	22-Aug-08	29-Aug-08	06-Sep-08	06-Sep-08
		ALS Sample ID	L652656	L655970	L661124-1	L663175-1	L664579	L670595-1	L670595-2	L670595-3	L675318-1	L676658-1	L680721	L680721
		Sample Method	Grab	Grab	Grab	Grab	Grab	Grab	Grab	Grab	Grab	Grab	Grab	Grab
Field Tests	units	Detection Limit					•	•	•	•		•	•	
Field pH	рН	-	7.55	-	8.10	7.58	-	8.04	8.1	-	8.05	8.14	8.96	-
Temperature	°C	-	11.3	-	2.2	6.1	-	5.3	4.5	-	4.5	4	2	-
Physical Tests														
Salinity (EC)	g/L	1	2.1	2.3	3.3	3.7	4.4	5.2	6.3	6.3	6.5	6.8	6.7	6.8
Hardness (as CaCO3)	mg/L	5	559	445	678	768	942	1110	1260	1210	1420	1480	1540	1520
рН	рН	0.01	8.42	7.95	7.94	7.95	7.90	7.87	7.98	8.00	7.86	8.10	8.08	8.06
Total Suspended Solids	mg/L	3	4.4	<3.0	<3.0	<3.0	<3.0	<3.0	4.2	<3.0	<3.0	<3.0	3.3	<3.0
Anions and Nutrients														
Ammonia as N	mg/L	0.005	-	-	-	-	-	-	0.0072	0.0070	-	-	0.0102	0.0087
Alkalinity, Total (as CaCO3)	mg/L	2	-	-	71.0	-	78.100	99.3	103	108	110	111	121	122
Cyanides														
Cyanide, Total	mg/L	0.005	<0.0050	<0.0050	< 0.0050	0.0060	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
Total Metals														,
Aluminum (Al)-Total	mg/L	0.02	0.048	<0.010	0.450	<0.020	<0.010	<0.040	<0.020	<0.020	<0.020	<0.020	< 0.050	<0.050
Arsenic (As)-Total	mg/L	0.0002	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020
Cadmium (Cd)-Total	mg/L	0.00002	0.000163	0.000068	0.000094	0.000141	<0.000199	0.000261	0.000279	0.000270	0.000359	0.000322	0.000312	0.000294
Calcium (Ca)-Total	mg/L	0.5	86.1	50.4	63.7	74.7	94.2	126	125	121	129	128	135	132
Copper (Cu)-Total	mg/L	0.00005	0.00215	0.000865	0.000554	0.000837	0.00110	0.00104	0.000924	0.000866	0.00117	0.00106	0.00112	0.00108
Iron (Fe)-Total	mg/L	0.01	0.082	0.022	<0.015	0.014	0.023	0.052	0.013	0.011	0.014	<0.010	0.013	<0.010
Lead (Pb)-Total	mg/L	0.00005	0.000215	0.000774	0.000189	0.000316	0.000643	0.000679	0.000263	0.000269	0.000302	0.000213	0.000247	0.000173
Magnesium (Mg)-Total	mg/L	0.2	83.5	77.4	126	141	172	193	229	221	267	281	293	289
Manganese (Mn)-Total	mg/L	0.00005	0.00986	0.00201	0.00208	0.00375	0.01030	0.0158	0.00560	0.00526	0.00463	0.00313	0.00243	0.00274
Mercury (Hg)-Total	mg/L	0.00001	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010
Molybdenum (Mo)-Total	mg/L	0.001	0.00297	0.00328	0.00211	0.0022	0.0023	0.0030	0.0030	0.0028	0.0035	0.0035	0.0032	0.0031
Nickel (Ni)-Total	mg/L	0.00005	0.00466	0.00202	0.00235	0.00270	0.00371	0.00499	0.00535	0.00519	0.00651	0.00674	0.00775	0.00753
Zinc (Zn)-Total	mg/L	0.0005	0.0242	0.0798	0.0121	0.0169	0.0304	0.0360	0.0365	0.0368	0.0520	0.0522	0.0502	0.0485
Radiological Parameters														
Radium-226	Bq/L	0.005	<0.005	0.006	0.020	<0.005	<0.005	0.010	<0.005	<0.005	<0.005	<0.005	<0.005	0.01

Table 3. 2008 3rd Quarter Polaris Mine Results of Acute Lethality Tests

Date Sample Collected	Effluent Acutely Lethal to Rainbow trout (YES or NO)	Effluent Acutely Lethal to <i>Daphnia magna</i> (YES or NO)
03-Jul-08	NO	NO
30-Aug-08	NO	NO
06-Sep-08	NO	NO

Appendix A

2008 Polaris Mine Sampling Event Chronology

appendix a) - A1 -

Date	Event Type	Observations/Comments
Sat. Jun-28-08	-	Approximate date flow initiated in Garrow Creek
	Monthly	Water chemistry sample collection from Garrow Creek. ALS File # 652656
Thur. Jul-03-08	Acute toxicity	Toxicity samples arrived at the lab on Tuesday July 8, 2008 within holding times for all tests. The rainbow trout test was started on Tuesday July 8, 2008. The test was completed without incident and the results were a pass. The <i>Daphnia</i> test was started on Tuesday July 8, 2008. The test was completed without incident and the results were a pass. Nautilus Environmental WO # 08129-30
TI 1 1 1 0 00	\A/	Martin all and a seriet and a sell and a series from Open ALO File # 055070
Thur. Jul-10-08	Weekly	Water chemistry sample collection from Garrow Creek. ALS File # 655970
0-1 1-1 10 07	Manatlali	Materials assists a comple collection from Company Creek, ALC File # CC4404
Sat. Jul-19-07	Monthly	Water chemistry sample collection from Garrow Creek. ALS File # 661124
Thur. Jul-24-08	Monthly	Water chemistry sample collection from Garrow Creek. ALS File # 663175
111u1. Jul-24-00	ivioritrity	Water Crieffishy Sample Collection from Garrow Creek. ALS Tile # 003173
Thur. Jul-31-08	Weekly	Water chemistry sample collection from Garrow Creek. ALS File # 664579
11101.001.01	VVCCRIY	Trace distributy sample solicons from Santon Stock. ALS The host of the
Thur. Aug-07-08 Weekly		Water chemistry sample collection from Garrow Creek. Error in shipping caused these samples to arrive at the same time as Aug. 15 samples. ALS File # 670595
	Weekly	Water chemistry sample collection from Garrow Creek. ALS File # 670595
Fri. Aug-15-08		Samples didn't arrive at the lab within the 5 day holding time. No tests were
I III Aug 10 00	Acute Toxicity	conducted.
Fri. Aug-22-08	Monthly	Water chemistry sample collection from Garrow Creek. ALS File # 675318
	Weekly	Water chemistry sample collection from Garrow Creek. ALS File # 676658
Fri. Aug-29-08	Acute Toxicity	holding times for all tests. The rainbow trout test was started on Wednesday September 3, 2008. The test was completed without incident and the results were a pass. The <i>Daphnia</i> test was started on Wednesday September 3, 2008. The test was completed without incident and the results were a pass. Nautilus Environmental WO # 08210 211.
	Weekly	Water chemistry sample collection from Garrow Creek. ALS File # 680721
Sat. Sep-06-08	Acute Toxicity	times for all tests. The rainbow trout test was started on Tuesday September 9, 2008. The test was completed without incident and the results were a pass. The Daphnia test was started on Tuesday September 9, 2008. The test was completed without incident and the results were a pass. Nautilus Environmental WO # 08218 219.
Sat. Sep-13-08		No Monthly samples taken. Garrow Creek frozen solid. No flow under ice.
		No Acute Toxicity samples taken. Garrow Creek frozen solid.

Appendix B

Effluent Quality Analytical Test Reports

(appendix b)

Environmental Division

Certificate of Analysis

TECK COMINCO METALS LTD.

ATTN: BRUCE DONALD

BAG 2000 Reported On: 22-SEP-08 04:12 PM

Revision: 2

KIMBERLEY BC V1A 3E1

Lab Work Order #: L652656 Date Received: 08-JUL-08

Project P.O. #: 7541 **Job Reference**: 80325

Legal Site Desc:

CofC Numbers: A071261

Other Information:

Comments: Please note that the raw bottle was received preserved with Nitric Acid. One of the Cyanide bottles was not preserved.

We used that bottle for pH, Salinity and TSS analyses.

Andri bl
Andre Langlais

Account Manager

THIS REPORT SHALL NOT BE REPRODUCED EXCEPT IN FULL WITHOUT THE WRITTEN AUTHORITY OF THE LABORATORY. ALL SAMPLES WILL BE DISPOSED OF AFTER 30 DAYS FOLLOWING ANALYSIS. PLEASE CONTACT THE LAB IF YOU REQUIRE ADDITIONAL SAMPLE STORAGE TIME.

A Campbell Brothers Limited Company

	Sample ID Description Sampled Date Sampled Time Client ID	L652656-1 03-JUL-08 16:00 G CREEK		
rouping	Analyte			
SEAWATER				
Physical Tests	Hardness (as CaCO3) (mg/L)	559		
	pH (pH)	8.42		
	Salinity (EC) (g/L)	2.1		
	Total Suspended Solids (mg/L)	4.4		
Cyanides	Cyanide, Total (mg/L)	<0.0050		
otal Metals	Aluminum (Al)-Total (mg/L)	0.048		
	Arsenic (As)-Total (mg/L)	<0.00020		
	Cadmium (Cd)-Total (mg/L)	0.000163		
	Calcium (Ca)-Total (mg/L)	86.1		
	Copper (Cu)-Total (mg/L)	0.00215		
	Iron (Fe)-Total (mg/L)	0.082		
	Lead (Pb)-Total (mg/L)	0.00215		
	Magnesium (Mg)-Total (mg/L)	83.5		
	Manganese (Mn)-Total (mg/L)	0.00986		
	Mercury (Hg)-Total (mg/L)	<0.000010		
	Molybdenum (Mo)-Total (mg/L)	0.00297		
	Nickel (Ni)-Total (mg/L)	0.00466		
	Zinc (Zn)-Total (mg/L)	0.0242		

^{*} Please refer to the Reference Information section for an explanation of any qualifiers detected.

Grouping	Sample ID Description Sampled Date Sampled Time Client ID	L652656-1 03-JUL-08 16:00 G CREEK		
WATER				
Radiological Parameters	Radium-226 (Bq/L)	<0.005		

^{*} Please refer to the Reference Information section for an explanation of any qualifiers detected.

L652656 CONTD.... PAGE 4 of 5 22-SEP-08 16:12

Reference Information

Samplenum	Matrix	Report Remarks	Sample Comments
Qualifiers for Sample	Submission	Listed:	
Qualifier	Description		
ISCR:ST	Improper Sa	mple Container Received: Subsamples Taken - Sa	ample 1 - Total metals
SPL	Sample was	Preserved at the laboratory - Sample 1 - Total met	tals
Methods Listed (if app	olicable):		
ALS Test Code	Matrix	Test Description	Analytical Method Reference(Based On)
S-TOT-C-HVAAS-VA	Seawater	Total Arsenic in Seawater by HVAAS	PUGET SOUND PROTOCOLS, EPA 7000 SERIES
Sediment, and Tissue S	out using proc samples" prepa	edures adapted from "Recommended Guidelines for the United States Environmental Protection	PUGET SOUND PROTOCOLS, EPA 7000 SERI or Measuring Metals in Puget Sound Marine Water, in Agency and the Puget Sound Water Quality Authority, 1995. (EPA Method 3005A). Instrumental analysis of the seawater

CN-C-T-MID-HH-COL-VA Seawater

Total Cvanide by HH Distil. (seawater)

APHA 4500-CN "Cvanide"

This analysis is carried out using procedures adapted from APHA Method 4500-CN "Cyanide". Total or strong acid dissociable (SAD) cyanide are determined by sample distillation and analysis using the chloramine-T colourimetric method.

HARDNESS-CALC-VA

Seawater Hardness

is by atomic absorption/emission spectrophotometry (EPA Method 7000 series).

APHA 2340B

Hardness is calculated from Calcium and Magnesium concentrations, and is expressed as calcium carbonate equivalents.

HG-TOT-C-CVAFS-VA

Seawater

Total Mercury in Seawater by CVAFS

PUGET SOUND PROTOCOLS, EPA 245.7

This analysis is carried out using procedures adapted from "Recommended Guidelines for Measuring Metals in Puget Sound Marine Water, Sediment, and Tissue Samples" prepared for the United States Environmental Protection Agency and the Puget Sound Water Quality Authority, 1995. The procedure involves a cold-oxidation of the acidified seawater sample using bromine monochloride prior to reduction of the sample with stannous chloride. Instrumental analysis is by cold vapour atomic fluorescence spectrophotometry (EPA Method 245.7).

MET-TOT-C-ICP-VA

Seawater

Total Metals in Seawater by ICPOES

PUGET SOUND PROTOCOLS, EPA 6010B

This analysis is carried out using procedures adapted from "Recommended Guidelines for Measuring Metals in Puget Sound Marine Water, Sediment, and Tissue Samples" prepared for the United States Environmental Protection Agency and the Puget Sound Water Quality Authority, 1995. The procedures may involve preliminary sample treatment by acid digestion or filtration (EPA Method 3005A). Instrumental analysis is by inductively coupled plasma - optical emission spectrophotometry (EPA Method 6010B).

MET-TOT-C-LOW-MS-VA Seawater

Total Metals in Seawater by ICPMS

PUGET SOUND PROTOCOLS, EPA 6020A

This analysis is carried out using procedures adapted from "Recommended Guidelines for Measuring Metals in Puget Sound Marine Water, Sediment, and Tissue Samples" prepared for the United States Environmental Protection Agency and the Puget Sound Water Quality Authority, 1995. The procedures may involve preliminary sample treatment by acid digestion or filtration (EPA Method 3005A). Instrumental analysis is by atomic inductively coupled plasma - mass spectrometry (EPA Method 6020A).

MET-TOT-SPE-MS-VA

Seawater

Total Metals in Seawater by SPE ICPMS

PUGET SOUND PROTOCOLS, EPA 6020A

This analysis is carried out using procedures adapted from "Recommended Guidelines for Measuring Metals in Puget Sound Marine Water, Sediment, and Tissue Samples" prepared for the United States Environmental Protection Agency and the Puget Sound Water Quality Authority, 1995, and with procedures adapted from Cetac Technologies Incorporated. A suspended particulate resin (SPR), consisting of immobilized iminodiacetate (IDA) on a divinylbenzene polymer, is used to chelate and preconcentrate metals in seawater. Instrumental analysis is by inductively coupled plasma mass spectrometry (ICPMS).

PH-C-PCT-VA

Seawater

pH by Meter (Automated) (seawater)

APHA 4500-H "pH Value"

This analysis is carried out using procedures adapted from APHA Method 4500-H "pH Value". The pH is determined in the laboratory using a pH electrode

RADIO-RADIUM226-SR

Water

Radium 226

CANMET 1986

SALINITY-C-EC-VA

Seawater

Salinity by calc. using EC (seawater)

APHA 2520 B

Methods Listed (if applicable):

ALS Test Code Matrix Test Description Analytical Method Reference(Based On)

This analysis is carried out using procedures adapted from APHA Method 2520 "Salinity". Salinity is determined using a samples conductivity and the Practical Salinity Scale.

TSS-C-VA Seawater Solids by Gravimetric (seawater)

APHA 2540 Gravimetric

This analysis is carried out using procedures adapted from APHA Method 2540 "Solids". Solids are determined gravimetrically. Total Suspended Solids (TSS) are determined by filtering a sample through a glass fibre filter, TSS is determined by drying the filter at 104 degrees celsius.

** Laboratory Methods employed follow in-house procedures, which are generally based on nationally or internationally accepted methodologies.

The last two letters of the above ALS Test Code column indicate the laboratory that performed analytical analysis for that test. Refer to the list below:

Laboratory Definition Code	Laboratory Location	Laboratory Definition Code	Laboratory Location
SR	Saskatchewan Research Council - Saskatoon, Saskatchewan, Can	VA	ALS LABORATORY GROUP - VANCOUVER, BC, CANADA

GLOSSARY OF REPORT TERMS

Surr - A surrogate is an organic compound that is similar to the target analyte(s) in chemical composition and behavior but not normally detected in environmental samples. Prior to sample processing, samples are fortified with one or more surrogate compounds.

The reported surrogate recovery value provides a measure of method efficiency.

mg/kg (units) - unit of concentration based on mass, parts per million

mg/L (units) - unit of concentration based on volume, parts per million

N/A - Result not available. Refer to qualifier code and definition for explanation

Test results reported relate only to the samples as received by the laboratory. UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Although test results are generated under strict QA/QC protocols, any unsigned test reports, faxes, or emails are considered preliminary.

ALS Laboratory Group has an extensive QA/QC program where all analytical data reported is analyzed using approved referenced procedures followed by checks and reviews by senior managers and quality assurance personnel. However, since the results are obtained from chemical measurements and thus cannot be guaranteed, ALS Laboratory Group assumes no liability for the use or interpretation of the results.

SRC ANALYTICAL

Aug 07, 2008

422 Downey Road Saskatoon, Saskatchewan, Canada S7N 4N1 (306) 933-6932 or 1-800-240-8808

Fax: (306) 933-7922

ALS

Aurora Laboratory Services Ltd. 1988 Triumph Street Vancouver, British Columbia V5L 1K5

Attn: Andre Langlais

Page 1 of 1

Sample #

Description:

26514

Client PO #:

ALS21595

Date Sampled:

Jul 03, 2008 16:00

Date Received: Jul 10, 2008

Sample Matrix:

WATER

L652656-1 G CREEK

DL

Date Entered

Analyte

Units

Result

Radio Chemistry

Radium-226

Bq/L

< 0.005

0.005

Aug 05, 2008

"<": not detected at level stated above.

Environmental Division

Certificate of Analysis

TECK COMINCO METALS LTD.

ATTN: BRUCE DONALD

BAG 2000 Reported On: 22-SEP-08 04:11 PM

KIMBERLEY BC V1A 3E1

Lab Work Order #: L655970 Date Received: 15-JUL-08

Project P.O. #: 7541 **Job Reference**: 80325

Legal Site Desc:

CofC Numbers: C026639

Other Information:

Comments:

Andri bl

Andre Langlais Account Manager

THIS REPORT SHALL NOT BE REPRODUCED EXCEPT IN FULL WITHOUT THE WRITTEN AUTHORITY OF THE LABORATORY. ALL SAMPLES WILL BE DISPOSED OF AFTER 30 DAYS FOLLOWING ANALYSIS. PLEASE CONTACT THE LAB IF YOU REQUIRE ADDITIONAL SAMPLE STORAGE TIME.

Phone: +1 604 253 4188 Fax: +1 604 253 6700 www.alsglobal.com

A Campbell Brothers Limited Company

	Sample ID Description Sampled Date Sampled Time Client ID	L655970-1 10-JUL-08 15:25 G CREEK		
Grouping	Analyte			
SEAWATER				
Physical Tests	Hardness (as CaCO3) (mg/L)	445		
	pH (pH)	7.95		
	Salinity (EC) (g/L)	2.3		
	Total Suspended Solids (mg/L)	<3.0		
Cyanides	Cyanide, Total (mg/L)	<0.0050		
Total Metals	Aluminum (Al)-Total (mg/L)	<0.010		
	Arsenic (As)-Total (mg/L)	<0.00020		
	Cadmium (Cd)-Total (mg/L)	0.000068		
	Calcium (Ca)-Total (mg/L)	50.4		
	Copper (Cu)-Total (mg/L)	0.000865		
	Iron (Fe)-Total (mg/L)	0.022		
	Lead (Pb)-Total (mg/L)	0.000774		
	Magnesium (Mg)-Total (mg/L)	77.4		
	Manganese (Mn)-Total (mg/L)	0.00201		
	Mercury (Hg)-Total (mg/L)	<0.000010		
	Molybdenum (Mo)-Total (mg/L)	0.00328		
	Nickel (Ni)-Total (mg/L)	0.00202		
	Zinc (Zn)-Total (mg/L)	0.00798		

Γ	1		I	I	<u> </u>	I
	Sample ID Description	L655970-1				
	Sampled Date	10-JUL-08				
	Sampled Time Client ID	15:25 G CREEK				
Grouping	Analyte	GUNEEN				
WATER	•					
Radiological	Radium-226 (Bq/L)	0.006				
Parameters						

L655970 CONTD.... PAGE 4 of 5 22-SEP-08 16:11

Reference Information

Additional Comments for Sample Listed:

Samplenum	Matrix	Report Remarks	Sample Comments
Methods Listed (if	applicable):		
ALS Test Code	Matrix	Test Description	Analytical Method Reference(Based On)

AS-TOT-C-HVAAS-VA Seawater Total Arsenic in Seawater by HVAAS

PUGET SOUND PROTOCOLS, EPA 7000 SERIES

This analysis is carried out using procedures adapted from "Recommended Guidelines for Measuring Metals in Puget Sound Marine Water, Sediment, and Tissue Samples" prepared for the United States Environmental Protection Agency and the Puget Sound Water Quality Authority, 1995. The procedures may involve preliminary sample treatment by acid digestion or filtration (EPA Method 3005A). Instrumental analysis of the seawater is by atomic absorption/emission spectrophotometry (EPA Method 7000 series).

CN-C-T-MID-HH-COL-VA Seawater

Total Cyanide by HH Distil. (seawater)

APHA 4500-CN "Cyanide"

This analysis is carried out using procedures adapted from APHA Method 4500-CN "Cyanide". Total or strong acid dissociable (SAD) cyanide are determined by sample distillation and analysis using the chloramine-T colourimetric method.

HARDNESS-CALC-VA

Seawater Hardness

APHA 2340B

Hardness is calculated from Calcium and Magnesium concentrations, and is expressed as calcium carbonate equivalents.

HG-TOT-C-CVAFS-VA

Seawater

Total Mercury in Seawater by CVAFS

PUGET SOUND PROTOCOLS, EPA 245.7

This analysis is carried out using procedures adapted from "Recommended Guidelines for Measuring Metals in Puget Sound Marine Water, Sediment, and Tissue Samples" prepared for the United States Environmental Protection Agency and the Puget Sound Water Quality Authority, 1995. The procedure involves a cold-oxidation of the acidified seawater sample using bromine monochloride prior to reduction of the sample with stannous chloride. Instrumental analysis is by cold vapour atomic fluorescence spectrophotometry (EPA Method 245.7).

MET-TOT-C-ICP-VA

Seawater

Total Metals in Seawater by ICPOES

PUGET SOUND PROTOCOLS, EPA 6010B

This analysis is carried out using procedures adapted from "Recommended Guidelines for Measuring Metals in Puget Sound Marine Water, Sediment, and Tissue Samples" prepared for the United States Environmental Protection Agency and the Puget Sound Water Quality Authority, 1995. The procedures may involve preliminary sample treatment by acid digestion or filtration (EPA Method 3005A). Instrumental analysis is by inductively coupled plasma - optical emission spectrophotometry (EPA Method 6010B).

MET-TOT-C-LOW-MS-VA Seawater

Total Metals in Seawater by ICPMS

PUGET SOUND PROTOCOLS, EPA 6020A

This analysis is carried out using procedures adapted from "Recommended Guidelines for Measuring Metals in Puget Sound Marine Water, Sediment, and Tissue Samples" prepared for the United States Environmental Protection Agency and the Puget Sound Water Quality Authority, 1995. The procedures may involve preliminary sample treatment by acid digestion or filtration (EPA Method 3005A). Instrumental analysis is by atomic inductively coupled plasma - mass spectrometry (EPA Method 6020A).

MET-TOT-SPE-MS-VA

Seawater

Total Metals in Seawater by SPE ICPMS

PUGET SOUND PROTOCOLS, EPA 6020A

This analysis is carried out using procedures adapted from "Recommended Guidelines for Measuring Metals in Puget Sound Marine Water, Sediment, and Tissue Samples" prepared for the United States Environmental Protection Agency and the Puget Sound Water Quality Authority, 1995, and with procedures adapted from Cetac Technologies Incorporated. A suspended particulate resin (SPR), consisting of immobilized iminodiacetate (IDA) on a divinylbenzene polymer, is used to chelate and preconcentrate metals in seawater. Instrumental analysis is by inductively coupled plasma mass spectrometry (ICPMS).

PH-C-PCT-VA

Seawater

pH by Meter (Automated) (seawater)

APHA 4500-H "pH Value"

This analysis is carried out using procedures adapted from APHA Method 4500-H "pH Value". The pH is determined in the laboratory using a pH electrode

RADIO-RADIUM226-SR

Water

Radium 226

CANMET 1986

SALINITY-C-EC-VA

Seawater

Salinity by calc. using EC (seawater)

APHA 2520 B

This analysis is carried out using procedures adapted from APHA Method 2520 "Salinity". Salinity is determined using a samples conductivity and the Practical Salinity Scale.

TSS-C-VA

Seawater

Solids by Gravimetric (seawater)

APHA 2540 Gravimetric

This analysis is carried out using procedures adapted from APHA Method 2540 "Solids". Solids are determined gravimetrically. Total Suspended

Methods Listed (if applicable):

ALS Test Code Matrix Test Description Analytical Method Reference(Based On)

Solids (TSS) are determined by filtering a sample through a glass fibre filter, TSS is determined by drying the filter at 104 degrees celsius.

** Laboratory Methods employed follow in-house procedures, which are generally based on nationally or internationally accepted methodologies.

The last two letters of the above ALS Test Code column indicate the laboratory that performed analytical analysis for that test. Refer to the list below:

Laboratory Definition Code	Laboratory Location	Laboratory Definition Code	Laboratory Location
SR	Saskatchewan Research Council - Saskatoon, Saskatchewan, Can	VA	ALS LABORATORY GROUP - VANCOUVER, BC, CANADA

GLOSSARY OF REPORT TERMS

Surr - A surrogate is an organic compound that is similar to the target analyte(s) in chemical composition and behavior but not normally detected in environmental samples. Prior to sample processing, samples are fortified with one or more surrogate compounds.

The reported surrogate recovery value provides a measure of method efficiency.

mg/kg (units) - unit of concentration based on mass, parts per million

mg/L (units) - unit of concentration based on volume, parts per million

N/A - Result not available. Refer to qualifier code and definition for explanation

Test results reported relate only to the samples as received by the laboratory. UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Although test results are generated under strict QA/QC protocols, any unsigned test reports, faxes, or emails are considered preliminary.

ALS Laboratory Group has an extensive QA/QC program where all analytical data reported is analyzed using approved referenced procedures followed by checks and reviews by senior managers and quality assurance personnel. However, since the results are obtained from chemical measurements and thus cannot be guaranteed, ALS Laboratory Group assumes no liability for the use or interpretation of the results.

SRC ANALYTICAL

Aug 09, 2008

422 Downey Road Saskatoon, Saskatchewan, Canada S7N 4N1 (306) 933-6932 or 1-800-240-8808 Fax: (306) 933-7922

ALS

Aurora Laboratory Services Ltd. 1988 Triumph Street Vancouver, British Columbia V5L 1K5

Attn: Bryan Mark

Page 1 of 1

Sample #

27637

Client PO #:

ALS21913

Date Sampled:

Jul 10, 2008 15:25

Date Received: Jul 17, 2008

Sample Matrix: Description:

WATER

LOTTO

L655970-1 G CREEK

Analyte

Units

Result

DL

Date Entered

Radio Chemistry

Radium-226

Bq/L

0.006

0.005

Aug 06, 2008

Environmental Division

Certificate of Analysis

TECK COMINCO METALS LTD.

ATTN: BRUCE DONALD

BAG 2000 Reported On: 21-AUG-08 12:00 PM

KIMBERLEY BC V1A 3E1

Lab Work Order #: L661124 Date Received: 26-JUL-08

Project P.O. #: 7397 **Job Reference**: 80325

Legal Site Desc:

CofC Numbers: C048508

Other Information:

Comments:

Andri bl

Andre Langlais Account Manager

THIS REPORT SHALL NOT BE REPRODUCED EXCEPT IN FULL WITHOUT THE WRITTEN AUTHORITY OF THE LABORATORY. ALL SAMPLES WILL BE DISPOSED OF AFTER 30 DAYS FOLLOWING ANALYSIS. PLEASE CONTACT THE LAB IF YOU REQUIRE ADDITIONAL SAMPLE STORAGE TIME.

Phone: +1 604 253 4188 Fax: +1 604 253 6700 www.alsglobal.com

A Campbell Brothers Limited Company

	Sample ID Description Sampled Date Sampled Time Client ID	L661124-1 19-JUL-08 08:30 GARROW		
Grouping	Analyte	CREEK		
SEAWATER				
Physical Tests	Hardness (as CaCO3) (mg/L)	678		
	pH (pH)	7.94		
	Salinity (EC) (g/L)	3.3		
	Total Suspended Solids (mg/L)	<3.0		
Anions and Nutrients	Alkalinity, Total (as CaCO3) (mg/L)	71.0		
Cyanides	Cyanide, Total (mg/L)	<0.0050		
Total Metals	Aluminum (Al)-Total (mg/L)	0.450		
	Arsenic (As)-Total (mg/L)	<0.00020		
	Cadmium (Cd)-Total (mg/L)	0.000094		
	Calcium (Ca)-Total (mg/L)	63.7		
	Copper (Cu)-Total (mg/L)	0.000554		
	Iron (Fe)-Total (mg/L)	<0.015		
	Lead (Pb)-Total (mg/L)	0.000189		
	Magnesium (Mg)-Total (mg/L)	126		
	Manganese (Mn)-Total (mg/L)	0.00208		
	Mercury (Hg)-Total (mg/L)	<0.000010		
	Molybdenum (Mo)-Total (mg/L)	0.00211		
	Nickel (Ni)-Total (mg/L)	0.00235		
	Zinc (Zn)-Total (mg/L)	0.0121		

^{*} Please refer to the Reference Information section for an explanation of any qualifiers detected.

	D Sam	Sample ID L661124-2 escription upled Date 19-JUL-08 upled Time 10:00 CSHED NORTH	L661124-3 19-JUL-08 10:00	19-JUL-08 10:00	
Grouping	Analyte	Client ID CSHED NORTH	H CSHED MID	CSHED SOUTH	
SOIL	, <u>,</u>				
Physical Tests	pH (pH)	8.44	8.89	8.49	
Metals	Lead (Pb) (mg/kg)	282	121	84	
Metalo	Zinc (Zn) (mg/kg)	553	351	294	
	o () (g,n.g)			201	

^{*} Please refer to the Reference Information section for an explanation of any qualifiers detected.

	Sample ID Description Sampled Date Sampled Time Client ID	L661124-1 19-JUL-08 08:30 GARROW	L661124-5 19-JUL-08 11:00 FRUSTRATION	L661124-6 19-JUL-08 11:30 LRD	
Grouping	Analyte	CREEK	LAKE		
WATER					
Physical Tests	Hardness (as CaCO3) (mg/L)		84.8		
	Total Suspended Solids (mg/L)		3.5		
Total Metals	Aluminum (Al)-Total (mg/L)			<0.025	
	Antimony (Sb)-Total (mg/L)			<0.0025	
	Arsenic (As)-Total (mg/L)			<0.0025	
	Barium (Ba)-Total (mg/L)			<0.020	
	Beryllium (Be)-Total (mg/L)			<0.0050	
	Boron (B)-Total (mg/L)			0.56	
	Cadmium (Cd)-Total (mg/L)			0.000063	
	Calcium (Ca)-Total (mg/L)			107	
	Chromium (Cr)-Total (mg/L)			<0.0050	
	Cobalt (Co)-Total (mg/L)			<0.0015	
	Copper (Cu)-Total (mg/L)			<0.0050	
	Iron (Fe)-Total (mg/L)			<0.030	
	Lead (Pb)-Total (mg/L)			<0.0025	
	Lithium (Li)-Total (mg/L)			<0.025	
	Magnesium (Mg)-Total (mg/L)			46.6	
	Manganese (Mn)-Total (mg/L)			0.0022	
	Molybdenum (Mo)-Total (mg/L)			0.0087	
	Nickel (Ni)-Total (mg/L)			0.0094	
	Potassium (K)-Total (mg/L)			20.8	
	Selenium (Se)-Total (mg/L)			0.0116	
	Silver (Ag)-Total (mg/L)			<0.00010	
	Sodium (Na)-Total (mg/L)			220	
	Thallium (TI)-Total (mg/L)			<0.0010	
	Tin (Sn)-Total (mg/L)			<0.0025	
	Titanium (Ti)-Total (mg/L)			<0.010	
	Uranium (U)-Total (mg/L)			0.0064	
	Vanadium (V)-Total (mg/L)			<0.0050	
	Zinc (Zn)-Total (mg/L)			0.0269	
Dissolved Metals	Calcium (Ca)-Dissolved (mg/L)		25.3		
	Magnesium (Mg)-Dissolved (mg/L)		5.25		
Radiological Parameters	Radium-226 (Bq/L)	0.020			

^{*} Please refer to the Reference Information section for an explanation of any qualifiers detected.

Qualifiers for Sample Submission Listed:

Qualifier	Description					
ISCR:ST	Improper Sa	Improper Sample Container Received: Subsamples Taken - Sample 5 - Dissolved metals				
SFPL	Sample was	Sample was Filtered and Preserved at the laboratory - Sample 5 - Dissolved metals				
ISCR:ST	Improper Sa	Improper Sample Container Received: Subsamples Taken - Sample 6 - Total metals				
SPL	Sample was	Sample was Preserved at the laboratory - Sample 6 - Total metals				
Methods Listed (if	applicable):					
ALS Test Code	Matrix	Test Description	Analytical Method Reference(Based On)			
ALK-C-COL-VA	Seawater	Alkalinity by Colourimetric (seawater)	APHA 310.2			

This analysis is carried out using procedures adapted from EPA Method 310.2 "Alkalinity". Total Alkalinity is determined using the methyl orange colourimetric method.

AS-TOT-C-HVAAS-VA Seawater Total Arsenic in Seawater by HVAAS

PUGET SOUND PROTOCOLS, EPA 7000 SERIES

This analysis is carried out using procedures adapted from "Recommended Guidelines for Measuring Metals in Puget Sound Marine Water, Sediment, and Tissue Samples" prepared for the United States Environmental Protection Agency and the Puget Sound Water Quality Authority, 1995. The procedures may involve preliminary sample treatment by acid digestion or filtration (EPA Method 3005A). Instrumental analysis of the seawater is by atomic absorption/emission spectrophotometry (EPA Method 7000 series).

CN-C-T-MID-HH-COL-VA Seawater Total Cyanide by HH Distil. (seawater)

APHA 4500-CN "Cyanide"

This analysis is carried out using procedures adapted from APHA Method 4500-CN "Cyanide". Total or strong acid dissociable (SAD) cyanide are determined by sample distillation and analysis using the chloramine-T colourimetric method.

HARDNESS-CALC-VA Water Hardness APHA 2340B

Hardness is calculated from Calcium and Magnesium concentrations, and is expressed as calcium carbonate equivalents.

HARDNESS-CALC-VA Seawater Hardness APHA 2340B

Hardness is calculated from Calcium and Magnesium concentrations, and is expressed as calcium carbonate equivalents.

HG-TOT-C-CVAFS-VA Seawater Total Mercury in Seawater by CVAFS

PUGET SOUND PROTOCOLS, EPA 245.7

This analysis is carried out using procedures adapted from "Recommended Guidelines for Measuring Metals in Puget Sound Marine Water, Sediment, and Tissue Samples" prepared for the United States Environmental Protection Agency and the Puget Sound Water Quality Authority, 1995. The procedure involves a cold-oxidation of the acidified seawater sample using bromine monochloride prior to reduction of the sample with stannous chloride. Instrumental analysis is by cold vapour atomic fluorescence spectrophotometry (EPA Method 245.7).

MET-DIS-ICP-VA Water Dissolved Metals in Water by ICPOES EPA SW-846 3005A/6010B

This analysis is carried out using procedures adapted from "Standard Methods for the Examination of Water and Wastewater" published by the American Public Health Association, and with procedures adapted from "Test Methods for Evaluating Solid Waste" SW-846 published by the United States Environmental Protection Agency (EPA). The procedure involves filtration (EPA Method 3005A) and analysis by inductively coupled plasma optical emission spectrophotometry (EPA Method 6010B).

MET-TOT-C-ICP-VA Seawater Total Metals in Seawater by ICPOES PUGET SOUND PROTOCOLS, EPA 6010B

This analysis is carried out using procedures adapted from "Recommended Guidelines for Measuring Metals in Puget Sound Marine Water, Sediment, and Tissue Samples" prepared for the United States Environmental Protection Agency and the Puget Sound Water Quality Authority, 1995. The procedures may involve preliminary sample treatment by acid digestion or filtration (EPA Method 3005A). Instrumental analysis is by inductively coupled plasma - optical emission spectrophotometry (EPA Method 6010B).

MET-TOT-C-LOW-MS-VA Seawater Total Metals in Seawater by ICPMS

PUGET SOUND PROTOCOLS, EPA 6020A

This analysis is carried out using procedures adapted from "Recommended Guidelines for Measuring Metals in Puget Sound Marine Water, Sediment, and Tissue Samples" prepared for the United States Environmental Protection Agency and the Puget Sound Water Quality Authority, 1995. The procedures may involve preliminary sample treatment by acid digestion or filtration (EPA Method 3005A). Instrumental analysis is by atomic inductively coupled plasma - mass spectrometry (EPA Method 6020A).

Methods Listed (if applicable):

ALS Test Code Matrix Test Description Analytical Method Reference(Based On)

MET-TOT-CCME-ICP-VA Water
This analysis is carried out using procedures adapted from "Standard Methods for the Examination of Water and Wastewater" published by the American Public Health Association, and with procedures adapted from "Test Methods for Evaluating Solid Waste" SW-846 published by the United States Environmental Protection Agency (EPA). The procedures may involve preliminary sample treatment by acid digestion, using either hotblock or microwave oven, or filtration (EPA Method 3005A). Instrumental analysis is by inductively coupled plasma - optical emission spectrophotometry (EPA Method 6010B).

MET-TOT-CCME-MS-VA Water

Total Metals in Water by ICPMS (CCME)

EPA SW-846 3005A/6020A

This analysis is carried out using procedures adapted from "Standard Methods for the Examination of Water and Wastewater" published by the American Public Health Association, and with procedures adapted from "Test Methods for Evaluating Solid Waste" SW-846 published by the United States Environmental Protection Agency (EPA). The procedures may involve preliminary sample treatment by acid digestion, using either hotblock or microwave oven, or filtration (EPA Method 3005A). Instrumental analysis is by inductively coupled plasma - mass spectrometry (EPA Method 6020A).

MET-TOT-SPE-MS-VA

Seawater

Total Metals in Seawater by SPE ICPMS

PUGET SOUND PROTOCOLS, EPA 6020A

This analysis is carried out using procedures adapted from "Recommended Guidelines for Measuring Metals in Puget Sound Marine Water, Sediment, and Tissue Samples" prepared for the United States Environmental Protection Agency and the Puget Sound Water Quality Authority, 1995, and with procedures adapted from Cetac Technologies Incorporated. A suspended particulate resin (SPR), consisting of immobilized iminodiacetate (IDA) on a divinylbenzene polymer, is used to chelate and preconcentrate metals in seawater. Instrumental analysis is by inductively coupled plasma mass spectrometry (ICPMS).

PB-CSR-ICP-VA

Soil

Pb in Soils by ICPOES (CSR SALM)

BCMELP CSR SALM Method 8

This analysis is carried out using procedures from CSR Analytical Method 8 "Strong Acid Leachable Metals (SALM) in Soil", BC Ministry of Environment, Lands and Parks, 26 June 2001, and procedures adapted from "Test Methods for Evaluating Solid Waste", SW-846 Method 3050B United States Environmental Protection Agency (EPA). The sample is manually homogenized, dried at 60 degrees Celsius, sieved through a 2 mm (10 mesh) sieve, and a representative subsample of the dry material is weighed. The sample is then digested at 90 degrees Celsius for 2 hours by block digester using a 1:1 ratio of concentrated nitric and hydrochloric acids. Instrumental analysis is by inductively coupled plasma - optical emission spectrophotometry (EPA Method 6010B).

Method Limitation: This method is not a total digestion technique. It is a very strong acid digestion that is intended to dissolve those metals that may be environmentally available. By design, elements bound in silicate structures are not normally dissolved by this procedure as they are not usually mobile in the environment.

PH-1:2-VA

Soil

CSR pH by 1:2 Water Leach

BC WLAP METHOD: PH, ELECTROMETRIC, SOIL

This analysis is carried out in accordance with procedures described in the pH, Electrometric in Soil and Sediment method - Section B Physical/Inorganic and Misc. Constituents, BC Environmental Laboratory Manual 2007. The procedure involves mixing the dried (at <60°C) and sieved (10 mesh /2mm) sample with deionized/distilled water at a 1:2 ratio of sediment to water. The pH of the solution is then measured using a standard pH probe.

PH-C-PCT-VA

Seawater

pH by Meter (Automated) (seawater)

APHA 4500-H "pH Value"

This analysis is carried out using procedures adapted from APHA Method 4500-H "pH Value". The pH is determined in the laboratory using a pH electrode

RADIO-RADIUM226-SR

Water

Radium 226

CANMET 1986

SALINITY-C-EC-VA

Seawater

Salinity by calc. using EC (seawater)

APHA 2520 B

This analysis is carried out using procedures adapted from APHA Method 2520 "Salinity". Salinity is determined using a samples conductivity and the Practical Salinity Scale.

TSS-C-VA

Seawater

Solids by Gravimetric (seawater)

APHA 2540 Gravimetric

This analysis is carried out using procedures adapted from APHA Method 2540 "Solids". Solids are determined gravimetrically. Total Suspended Solids (TSS) are determined by filtering a sample through a glass fibre filter, TSS is determined by drying the filter at 104 degrees celsius.

TSS-VA

Water

Solids by Gravimetric

APHA 2540 D - GRAVIMETRIC

This analysis is carried out using procedures adapted from APHA Method 2540 "Solids". Solids are determined gravimetrically. Total Suspended Solids (TSS) are determined by filtering a sample through a glass fibre filter, TSS is determined by drying the filter at 104 degrees celsius.

Methods Listed (if applicable):

	· · · · · · · · · · · · · · · · · · ·		
ALS Test Code Matrix Test Description		Test Description	Analytical Method Reference(Based On)
	0 "		

ZN-CSR-ICP-VA Soil Zn in Soil by ICPOES (CSR SALM)

BCMELP CSR SALM METHOD 8

This applying is corried out uping procedures from CSR Applytical Method 8 "Strong Acid Leophship Metals (SALM) in Soil" PC Ministry

This analysis is carried out using procedures from CSR Analytical Method 8 "Strong Acid Leachable Metals (SALM) in Soil", BC Ministry of Environment, Lands and Parks, 26 June 2001, and procedures adapted from "Test Methods for Evaluating Solid Waste", SW-846 Method 3050B United States Environmental Protection Agency (EPA). The sample is manually homogenized, dried at 60 degrees Celsius, sieved through a 2 mm (10 mesh) sieve, and a representative subsample of the dry material is weighed. The sample is then digested at 90 degrees Celsius for 2 hours by block digester using a 1:1 ratio of concentrated nitric and hydrochloric acids. Instrumental analysis is by inductively coupled plasma - optical emission spectrophotometry (EPA Method 6010B).

Method Limitation: This method is not a total digestion technique. It is a very strong acid digestion that is intended to dissolve those metals that may be environmentally available. By design, elements bound in silicate structures are not normally dissolved by this procedure as they are not usually mobile in the environment.

** Laboratory Methods employed follow in-house procedures, which are generally based on nationally or internationally accepted methodologies.

The last two letters of the above ALS Test Code column indicate the laboratory that performed analytical analysis for that test. Refer to the list below:

Laboratory Definition Code	Laboratory Location	Laboratory Definition Code	Laboratory Location
SR	Saskatchewan Research Council - Saskatoon, Saskatchewan, Can	VA	ALS LABORATORY GROUP - VANCOUVER, BC, CANADA

GLOSSARY OF REPORT TERMS

Surr - A surrogate is an organic compound that is similar to the target analyte(s) in chemical composition and behavior but not normally detected in environmental samples. Prior to sample processing, samples are fortified with one or more surrogate compounds.

The reported surrogate recovery value provides a measure of method efficiency.

mg/kg (units) - unit of concentration based on mass, parts per million

mg/L (units) - unit of concentration based on volume, parts per million

N/A - Result not available. Refer to qualifier code and definition for explanation

Test results reported relate only to the samples as received by the laboratory. UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Although test results are generated under strict QA/QC protocols, any unsigned test reports, faxes, or emails are considered preliminary.

ALS Laboratory Group has an extensive QA/QC program where all analytical data reported is analyzed using approved referenced procedures followed by checks and reviews by senior managers and quality assurance personnel. However, since the results are obtained from chemical measurements and thus cannot be guaranteed, ALS Laboratory Group assumes no liability for the use or interpretation of the results.

SRC ANALYTICAL

Aug 21, 2008

422 Downey Road Saskatoon, Saskatchewan, Canada S7N 4N1 (306) 933-6932 or 1-800-240-8808 Fax: (306) 933-7922

ALS

Aurora Laboratory Services Ltd. 1988 Triumph Street Vancouver, British Columbia V5L 1K5

Attn: Andre Langlais

Page 1 of 1

Sample #

29612

Client PO #:

L661124

Date Sampled:

Jul 19, 2008 08:30

Date Received: Jul 29, 2008

Sample Matrix:

WATER

Description:

L661124-1 GARROW CREEK

Analyte

Units

Result

DL

Date Entered

Radio Chemistry

Radium-226

Bq/L

0.02

0.005

Aug 20, 2008

Environmental Division

Certificate of Analysis

TECK COMINCO METALS LTD.

ATTN: BRUCE DONALD

Reported On: 27-AUG-08 02:06 PM **BAG 2000**

KIMBERLEY BC V1A 3E1

Lab Work Order #: L663175 Date Received: 31-JUL-08

Project P.O. #: 7397 Job Reference: 80325

Legal Site Desc:

CofC Numbers: A039133

Other Information:

Comments:

Andri bl

Andre Langlais Account Manager

THIS REPORT SHALL NOT BE REPRODUCED EXCEPT IN FULL WITHOUT THE WRITTEN AUTHORITY OF THE LABORATORY. ALL SAMPLES WILL BE DISPOSED OF AFTER 30 DAYS FOLLOWING ANALYSIS. PLEASE CONTACT THE LAB IF YOU REQUIRE ADDITIONAL SAMPLE STORAGE TIME.

A Campbell Brothers Limited Company

	Sample ID Description Sampled Date Sampled Time Client ID	L663175-1 SEA WATER 24-JUL-08 12:30 G CREEK		
Grouping	Analyte			
SEAWATER				
Physical Tests	Conductivity (uS/cm)	6600		
	Hardness (as CaCO3) (mg/L)	768		
	pH (pH)	7.95		
	Salinity (EC) (g/L)	3.7		
	Total Suspended Solids (mg/L)	<3.0		
Cyanides	Cyanide, Total (mg/L)	0.0060		
Total Metals	Aluminum (Al)-Total (mg/L)	<0.020		
	Arsenic (As)-Total (mg/L)	<0.00020		
	Cadmium (Cd)-Total (mg/L)	0.000141		
	Calcium (Ca)-Total (mg/L)	74.7		
	Copper (Cu)-Total (mg/L)	0.000837		
	Iron (Fe)-Total (mg/L)	0.014		
	Lead (Pb)-Total (mg/L)	0.000316		
	Magnesium (Mg)-Total (mg/L)	141		
	Manganese (Mn)-Total (mg/L)	0.00375		
	Mercury (Hg)-Total (mg/L)	<0.000010		
	Molybdenum (Mo)-Total (mg/L)	0.0022		
	Nickel (Ni)-Total (mg/L)	0.00270		
	Zinc (Zn)-Total (mg/L)	0.0169		

^{*} Please refer to the Reference Information section for an explanation of any qualifiers detected.

Sample ID Description Sampled Date Sampled Time Client ID Grouping Analyte	L663175-1 SEA WATER 24-JUL-08 12:30 G CREEK		
WATER			
Radiological Radium-226 (Bq/L) Parameters	<0.005		

^{*} Please refer to the Reference Information section for an explanation of any qualifiers detected.

L663175 CONTD.... PAGE 4 of 5 27-AUG-08 14:00

Reference Information

Methods Listed (if applicable):

ALS Test Code Matrix Test Description Analytical Method Reference(Based On)

AS-TOT-C-HVAAS-VA Seawater Total Arsenic in Seawater by HVAAS

PUGET SOUND PROTOCOLS, EPA 7000 SERIES

This analysis is carried out using procedures adapted from "Recommended Guidelines for Measuring Metals in Puget Sound Marine Water, Sediment, and Tissue Samples" prepared for the United States Environmental Protection Agency and the Puget Sound Water Quality Authority, 1995. The procedures may involve preliminary sample treatment by acid digestion or filtration (EPA Method 3005A). Instrumental analysis of the seawater is by atomic absorption/emission spectrophotometry (EPA Method 7000 series).

CN-C-T-MID-HH-COL-VA Seawater

Total Cyanide by HH Distil. (seawater)

APHA 4500-CN "Cyanide"

This analysis is carried out using procedures adapted from APHA Method 4500-CN "Cyanide". Total or strong acid dissociable (SAD) cyanide are determined by sample distillation and analysis using the chloramine-T colourimetric method.

EC-C-PCT-VA

Seawater

Conductivity (Automated) (seawater)

APHA 2510 Auto. Conduc.

This analysis is carried out using procedures adapted from APHA Method 2510 "Conductivity". Conductivity is determined using a conductivity electrode.

HARDNESS-CALC-VA

Seawater

Hardness

APHA 2340B

Hardness is calculated from Calcium and Magnesium concentrations, and is expressed as calcium carbonate equivalents.

HG-TOT-C-CVAFS-VA

Seawater

Total Mercury in Seawater by CVAFS

PUGET SOUND PROTOCOLS, EPA 245.7

This analysis is carried out using procedures adapted from "Recommended Guidelines for Measuring Metals in Puget Sound Marine Water, Sediment, and Tissue Samples" prepared for the United States Environmental Protection Agency and the Puget Sound Water Quality Authority, 1995. The procedure involves a cold-oxidation of the acidified seawater sample using bromine monochloride prior to reduction of the sample with stannous chloride. Instrumental analysis is by cold vapour atomic fluorescence spectrophotometry (EPA Method 245.7).

MET-TOT-C-ICP-VA

Seawater

Total Metals in Seawater by ICPOES

PUGET SOUND PROTOCOLS, EPA 6010B

This analysis is carried out using procedures adapted from "Recommended Guidelines for Measuring Metals in Puget Sound Marine Water, Sediment, and Tissue Samples" prepared for the United States Environmental Protection Agency and the Puget Sound Water Quality Authority, 1995. The procedures may involve preliminary sample treatment by acid digestion or filtration (EPA Method 3005A). Instrumental analysis is by inductively coupled plasma - optical emission spectrophotometry (EPA Method 6010B).

MET-TOT-C-LOW-MS-VA Seawater

Total Metals in Seawater by ICPMS

PUGET SOUND PROTOCOLS, EPA 6020A

This analysis is carried out using procedures adapted from "Recommended Guidelines for Measuring Metals in Puget Sound Marine Water, Sediment, and Tissue Samples" prepared for the United States Environmental Protection Agency and the Puget Sound Water Quality Authority, 1995. The procedures may involve preliminary sample treatment by acid digestion or filtration (EPA Method 3005A). Instrumental analysis is by atomic inductively coupled plasma - mass spectrometry (EPA Method 6020A).

MET-TOT-SPE-MS-VA

Seawater

Total Metals in Seawater by SPE ICPMS

PUGET SOUND PROTOCOLS, EPA 6020A

This analysis is carried out using procedures adapted from "Recommended Guidelines for Measuring Metals in Puget Sound Marine Water, Sediment, and Tissue Samples" prepared for the United States Environmental Protection Agency and the Puget Sound Water Quality Authority, 1995, and with procedures adapted from Cetac Technologies Incorporated. A suspended particulate resin (SPR), consisting of immobilized iminodiacetate (IDA) on a divinylbenzene polymer, is used to chelate and preconcentrate metals in seawater. Instrumental analysis is by inductively coupled plasma mass spectrometry (ICPMS).

PH-C-PCT-VA

Seawater

pH by Meter (Automated) (seawater)

APHA 4500-H "pH Value"

This analysis is carried out using procedures adapted from APHA Method 4500-H "pH Value". The pH is determined in the laboratory using a pH electrode

RADIO-RADIUM226-SR

Water

Radium 226

CANMET 1986

SALINITY-C-EC-VA

Seawater

Salinity by calc. using EC (seawater)

APHA 2520 B

This analysis is carried out using procedures adapted from APHA Method 2520 "Salinity". Salinity is determined using a samples conductivity and the Practical Salinity Scale.

TSS-C-VA

Seawater

Solids by Gravimetric (seawater)

APHA 2540 Gravimetric

Reference Information

Methods Listed (if applicable):

ALS Test Code Matrix Test Description Analytical Method Reference(Based On)

This analysis is carried out using procedures adapted from APHA Method 2540 "Solids". Solids are determined gravimetrically. Total Suspended Solids (TSS) are determined by filtering a sample through a glass fibre filter, TSS is determined by drying the filter at 104 degrees celsius.

** Laboratory Methods employed follow in-house procedures, which are generally based on nationally or internationally accepted methodologies.

The last two letters of the above ALS Test Code column indicate the laboratory that performed analytical analysis for that test. Refer to the list below:

Laboratory Definition Code	Laboratory Location	Laboratory Definition Code	Laboratory Location
SR	Saskatchewan Research Council - Saskatoon, Saskatchewan, Can	VA	ALS LABORATORY GROUP - VANCOUVER, BC, CANADA

GLOSSARY OF REPORT TERMS

Surr - A surrogate is an organic compound that is similar to the target analyte(s) in chemical composition and behavior but not normally detected in environmental samples. Prior to sample processing, samples are fortified with one or more surrogate compounds.

The reported surrogate recovery value provides a measure of method efficiency.

mg/kg (units) - unit of concentration based on mass, parts per million

mg/L (units) - unit of concentration based on volume, parts per million

N/A - Result not available. Refer to qualifier code and definition for explanation

Test results reported relate only to the samples as received by the laboratory. UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Although test results are generated under strict QA/QC protocols, any unsigned test reports, faxes, or emails are considered preliminary.

ALS Laboratory Group has an extensive QA/QC program where all analytical data reported is analyzed using approved referenced procedures followed by checks and reviews by senior managers and quality assurance personnel. However, since the results are obtained from chemical measurements and thus cannot be guaranteed, ALS Laboratory Group assumes no liability for the use or interpretation of the results.

Aug 27, 2008

422 Downey Road Saskatoon, Saskatchewan, Canada S7N 4N1 (306) 933-6932 or 1-800-240-8808

Fax: (306) 933-7922

ALS

Aurora Laboratory Services Ltd. 1988 Triumph Street Vancouver, British Columbia V5L 1K5

Attn: Andre Langlais

Page 1 of 1

Sample #

31738

Client PO#:

ALS22836

Date Sampled:

Jul 24, 2008 12:30

Sample Matrix:

WATER

Date Received: Aug 07, 2008

Description:

L663175-1 G CREEK

Date Entered

Analyte

Units

Result

DL

Radio Chemistry

Radium-226

Bq/L

< 0.005

0.005

Aug 26, 2008

"<": not detected at level stated above.

Environmental Division

Certificate of Analysis

TECK COMINCO METALS LTD.

ATTN: BRUCE DONALD

BAG 2000 Reported On: 27-AUG-08 02:49 PM

KIMBERLEY BC V1A 3E1

Lab Work Order #: L664579 Date Received: 05-AUG-08

Project P.O. #: 7397 **Job Reference**: 80325

Legal Site Desc:

CofC Numbers: C048719

Other Information:

Comments: See attached SRC report for Radium 226 result.

Andri bl

Andre Langlais Account Manager

THIS REPORT SHALL NOT BE REPRODUCED EXCEPT IN FULL WITHOUT THE WRITTEN AUTHORITY OF THE LABORATORY. ALL SAMPLES WILL BE DISPOSED OF AFTER 30 DAYS FOLLOWING ANALYSIS. PLEASE CONTACT THE LAB IF YOU REQUIRE ADDITIONAL SAMPLE STORAGE TIME.

ALS LABORATORY GROUP ANALYTICAL REPORT

	Sample ID Description Sampled Date Sampled Time Client ID	L664579-1 WATER 31-JUL-08 11:00 G CREEK		
Grouping	Analyte			
SEAWATER				
Physical Tests	Conductivity (uS/cm)	7750		
•	Hardness (as CaCO3) (mg/L)	942		
	pH (pH)	7.90		
	Salinity (EC) (g/L)	4.4		
	Total Suspended Solids (mg/L)	<3.0		
Anions and Nutrients	Alkalinity, Total (as CaCO3) (mg/L)	78.1		
Cyanides	Cyanide, Total (mg/L)	<0.0050		
Total Metals	Aluminum (Al)-Total (mg/L)	<0.010		
	Arsenic (As)-Total (mg/L)	<0.00020		
	Cadmium (Cd)-Total (mg/L)	0.000199		
	Calcium (Ca)-Total (mg/L)	94.2		
	Copper (Cu)-Total (mg/L)	0.00110		
	Iron (Fe)-Total (mg/L)	0.023		
	Lead (Pb)-Total (mg/L)	0.000643		
	Magnesium (Mg)-Total (mg/L)	172		
	Manganese (Mn)-Total (mg/L)	0.0103		
	Mercury (Hg)-Total (mg/L)	<0.000010		
	Molybdenum (Mo)-Total (mg/L)	0.00230		
	Nickel (Ni)-Total (mg/L)	0.00371		
	Zinc (Zn)-Total (mg/L)	0.0304		

^{*} Please refer to the Reference Information section for an explanation of any qualifiers detected.

L664579 CONTD.... PAGE 3 of 4 27-AUG-08 14:43

Reference Information

Methods Listed (if applicable):

ALS Test Code Matrix Test Description Analytical Method Reference(Based On)

ALK-C-COL-VA Seawater Alkalinity by Colourimetric (seawater) APHA 310.2

This analysis is carried out using procedures adapted from EPA Method 310.2 "Alkalinity". Total Alkalinity is determined using the methyl orange

colourimetric method.

AS-TOT-C-HVAAS-VA Seawater Total Arsenic in Seawater by HVAAS

PUGET SOUND PROTOCOLS, EPA 7000 SERIES

This analysis is carried out using procedures adapted from "Recommended Guidelines for Measuring Metals in Puget Sound Marine Water, Sediment, and Tissue Samples" prepared for the United States Environmental Protection Agency and the Puget Sound Water Quality Authority, 1995. The procedures may involve preliminary sample treatment by acid digestion or filtration (EPA Method 3005A). Instrumental analysis of the seawater is by atomic absorption/emission spectrophotometry (EPA Method 7000 series).

CN-C-T-MID-HH-COL-VA Seawater Total Cyanide by HH Distil. (seawater)

APHA 4500-CN "Cyanide"

This analysis is carried out using procedures adapted from APHA Method 4500-CN "Cyanide". Total or strong acid dissociable (SAD) cyanide are determined by sample distillation and analysis using the chloramine-T colourimetric method.

EC-C-PCT-VA Seawater Conductivity (Automated) (seawater)

APHA 2510 Auto. Conduc.

This analysis is carried out using procedures adapted from APHA Method 2510 "Conductivity". Conductivity is determined using a conductivity electrode.

HARDNESS-CALC-VA Seawater Hardness APHA 2340B

Hardness is calculated from Calcium and Magnesium concentrations, and is expressed as calcium carbonate equivalents.

HG-TOT-C-CVAFS-VA Seawater Total Mercury in Seawater by CVAFS

PUGET SOUND PROTOCOLS, EPA 245.7

This analysis is carried out using procedures adapted from "Recommended Guidelines for Measuring Metals in Puget Sound Marine Water, Sediment, and Tissue Samples" prepared for the United States Environmental Protection Agency and the Puget Sound Water Quality Authority, 1995. The procedure involves a cold-oxidation of the acidified seawater sample using bromine monochloride prior to reduction of the sample with stannous chloride. Instrumental analysis is by cold vapour atomic fluorescence spectrophotometry (EPA Method 245.7).

MET-TOT-C-ICP-VA

Seawater

Total Metals in Seawater by ICPOES

PUGET SOUND PROTOCOLS, EPA 6010B

This analysis is carried out using procedures adapted from "Recommended Guidelines for Measuring Metals in Puget Sound Marine Water, Sediment, and Tissue Samples" prepared for the United States Environmental Protection Agency and the Puget Sound Water Quality Authority, 1995. The procedures may involve preliminary sample treatment by acid digestion or filtration (EPA Method 3005A). Instrumental analysis is by inductively coupled plasma - optical emission spectrophotometry (EPA Method 6010B).

MET-TOT-C-LOW-MS-VA Seawater

Total Metals in Seawater by ICPMS

PUGET SOUND PROTOCOLS, EPA 6020A

This analysis is carried out using procedures adapted from "Recommended Guidelines for Measuring Metals in Puget Sound Marine Water, Sediment, and Tissue Samples" prepared for the United States Environmental Protection Agency and the Puget Sound Water Quality Authority, 1995. The procedures may involve preliminary sample treatment by acid digestion or filtration (EPA Method 3005A). Instrumental analysis is by atomic inductively coupled plasma - mass spectrometry (EPA Method 6020A).

MET-TOT-SPE-MS-VA

Seawater

Total Metals in Seawater by SPE ICPMS

PUGET SOUND PROTOCOLS, EPA 6020A

This analysis is carried out using procedures adapted from "Recommended Guidelines for Measuring Metals in Puget Sound Marine Water, Sediment, and Tissue Samples" prepared for the United States Environmental Protection Agency and the Puget Sound Water Quality Authority, 1995, and with procedures adapted from Cetac Technologies Incorporated. A suspended particulate resin (SPR), consisting of immobilized iminodiacetate (IDA) on a divinylbenzene polymer, is used to chelate and preconcentrate metals in seawater. Instrumental analysis is by inductively coupled plasma mass spectrometry (ICPMS).

PH-C-PCT-VA

Seawater

pH by Meter (Automated) (seawater)

APHA 4500-H "pH Value"

This analysis is carried out using procedures adapted from APHA Method 4500-H "pH Value". The pH is determined in the laboratory using a pH electrode

SALINITY-C-EC-VA

Seawater

Salinity by calc. using EC (seawater)

APHA 2520 B

This analysis is carried out using procedures adapted from APHA Method 2520 "Salinity". Salinity is determined using a samples conductivity and the Practical Salinity Scale.

Reference Information

Methods Listed (if applicable):

	<u>· · · · · · · · · · · · · · · · · · · </u>		
ALS Test Code	Matrix	Test Description	Analytical Method Reference(Based On)

TSS-C-VA Seawater Solids by Gravimetric (seawater) APHA 2540 Gravimetric

This analysis is carried out using procedures adapted from APHA Method 2540 "Solids". Solids are determined gravimetrically. Total Suspended Solids (TSS) are determined by filtering a sample through a glass fibre filter, TSS is determined by drying the filter at 104 degrees celsius.

** Laboratory Methods employed follow in-house procedures, which are generally based on nationally or internationally accepted methodologies.

The last two letters of the above ALS Test Code column indicate the laboratory that performed analytical analysis for that test. Refer to the list below:

Laboratory Definition Code	Laboratory Location	Laboratory Definition Code	Laboratory Location
VA	ALS LABORATORY GROUP - VANCOUVER, BC, CANADA		

GLOSSARY OF REPORT TERMS

Surr - A surrogate is an organic compound that is similar to the target analyte(s) in chemical composition and behavior but not normally detected in environmental samples. Prior to sample processing, samples are fortified with one or more surrogate compounds.

The reported surrogate recovery value provides a measure of method efficiency.

mg/kg (units) - unit of concentration based on mass, parts per million

mg/L (units) - unit of concentration based on volume, parts per million

N/A - Result not available. Refer to qualifier code and definition for explanation

Test results reported relate only to the samples as received by the laboratory. UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Although test results are generated under strict QA/QC protocols, any unsigned test reports, faxes, or emails are considered preliminary.

ALS Laboratory Group has an extensive QA/QC program where all analytical data reported is analyzed using approved referenced procedures followed by checks and reviews by senior managers and quality assurance personnel. However, since the results are obtained from chemical measurements and thus cannot be guaranteed, ALS Laboratory Group assumes no liability for the use or interpretation of the results.

Aug 26, 2008

422 Downey Road Saskatoon, Saskatchewan, Canada S7N 4N1 (306) 933-6932 or 1-800-240-8808

Fax: (306) 933-7922

ALS

Aurora Laboratory Services Ltd. 1988 Triumph Street Vancouver, British Columbia V5L 1K5

Attn: Andre Langlais

Page 1 of 1

Sample #

31751

Client PO #:

ALS22838

Date Sampled:

Jul 31, 2008 11:00

Date Received: Aug 08, 2008

Sample Matrix:

WATER

Description:

L664579 G CREEK

Analyte

Units Result DL

Date Entered

Radio Chemistry

Radium-226

Bq/L

< 0.005

0.005

Aug 25, 2008

[&]quot;<": not detected at level stated above.

Environmental Division

Certificate of Analysis

TECK COMINCO METALS LTD.

ATTN: BRUCE DONALD

BAG 2000 Reported On: 22-SEP-08 05:25 PM

KIMBERLEY BC V1A 3E1

Lab Work Order #: L670595 Date Received: 18-AUG-08

Project P.O. #: 7541

Job Reference: 80325 POLARIS

Legal Site Desc:

CofC Numbers: C039136, C048721

Other Information:

Comments: Some of the metals detection limits have been increased due to high levels of metals in these samples.

LINDSAY JONES Account Manager

THIS REPORT SHALL NOT BE REPRODUCED EXCEPT IN FULL WITHOUT THE WRITTEN AUTHORITY OF THE LABORATORY. ALL SAMPLES WILL BE DISPOSED OF AFTER 30 DAYS FOLLOWING ANALYSIS. PLEASE CONTACT THE LAB IF YOU REQUIRE ADDITIONAL SAMPLE STORAGE TIME.

Phone: +1 604 253 4188 Fax: +1 604 253 6700 www.alsglobal.com

ALS LABORATORY GROUP ANALYTICAL REPORT

1			1	1	1	1
	Sample ID Description Sampled Date Sampled Time Client ID	L670595-1 WATER 07-AUG-08 G CREEK	L670595-2 WATER 15-AUG-08 15:00 G CREEK	L670595-3 WATER 15-AUG-08 15:00 G CREEK		
Grouping	Analyte	0 011211	0 0.12_11	QA/QC		
SEAWATER	,					
Physical Tests	Conductivity (uS/cm)	8380	9940	9930		
Filysical Tests	Hardness (as CaCO3) (mg/L)	1110	1260	1210		
	pH (pH)	7.87	7.98	8.00		
	Salinity (EC) (g/L)	7.87 5.2	6.3	6.3		
	Total Suspended Solids (mg/L)	<3.0	4.2	<3.0		
Aniono and	· · · · · · · · · · · · · · · · · · ·					
Anions and Nutrients	Alkalinity, Total (as CaCO3) (mg/L)	99.3	103	108		
	Ammonia as N (mg/L)		0.0072	0.0070		
Cyanides	Cyanide, Total (mg/L)	<0.0050	<0.0050	<0.0050		
Total Metals	Aluminum (Al)-Total (mg/L)	<0.040	<0.020	<0.020		
	Arsenic (As)-Total (mg/L)	<0.00020	<0.00020	<0.00020		
	Cadmium (Cd)-Total (mg/L)	0.000261	0.000279	0.000270		
	Calcium (Ca)-Total (mg/L)	126	125	121		
	Copper (Cu)-Total (mg/L)	0.00104	0.000924	0.000866		
	Iron (Fe)-Total (mg/L)	0.052	0.013	0.011		
	Lead (Pb)-Total (mg/L)	0.000679	0.000263	0.000269		
	Magnesium (Mg)-Total (mg/L)	193	229	221		
	Manganese (Mn)-Total (mg/L)	0.0158	0.00560	0.00526		
	Mercury (Hg)-Total (mg/L)	<0.000010	<0.000010	<0.000010		
	Molybdenum (Mo)-Total (mg/L)	0.0030	0.0030	0.0028		
	Nickel (Ni)-Total (mg/L)	0.00499	0.00535	0.00519		
	Zinc (Zn)-Total (mg/L)	0.0360	0.0365	0.0368		
	, , , ,					

L670595 CONTD.... PAGE 3 of 4 22-SEP-08 17:25

PUGET SOUND PROTOCOLS, EPA 7000 SERIES

Reference Information

Additional Comments for Sample Listed:

Seawater

AS-TOT-C-HVAAS-VA

 Samplenum
 Matrix
 Report Remarks
 Sample Comments

 Methods Listed (if applicable):
 ALS Test Code
 Matrix
 Test Description
 Analytical Method Reference(Based On)

ALK-C-COL-VA Seawater Alkalinity by Colourimetric (seawater) APHA 310.2

Total Arsenic in Seawater by HVAAS

This analysis is carried out using procedures adapted from EPA Method 310.2 "Alkalinity". Total Alkalinity is determined using the methyl orange colourimetric method.

Colourniteuro metrica.

This analysis is carried out using procedures adapted from "Recommended Guidelines for Measuring Metals in Puget Sound Marine Water, Sediment, and Tissue Samples" prepared for the United States Environmental Protection Agency and the Puget Sound Water Quality Authority, 1995. The procedures may involve preliminary sample treatment by acid digestion or filtration (EPA Method 3005A). Instrumental analysis of the seawater is by atomic absorption/emission spectrophotometry (EPA Method 7000 series).

CN-C-T-MID-HH-COL-VA Seawater Total Cyanide by HH Distil. (seawater)

APHA 4500-CN "Cyanide"

This analysis is carried out using procedures adapted from APHA Method 4500-CN "Cyanide". Total or strong acid dissociable (SAD) cyanide are determined by sample distillation and analysis using the chloramine-T colourimetric method.

EC-C-PCT-VA Seawater Conductivity (Automated) (seawater) APHA 2510 Auto. Conduct.

This analysis is carried out using procedures adapted from APHA Method 2510 "Conductivity". Conductivity is determined using a conductivity electrode.

HARDNESS-CALC-VA Seawater Hardness APHA 2340B

Hardness is calculated from Calcium and Magnesium concentrations, and is expressed as calcium carbonate equivalents.

HG-TOT-C-CVAFS-VA Seawater Total Mercury in Seawater by CVAFS PUGET SOUND PROTOCOLS, EPA 245.7

This analysis is carried out using procedures adapted from "Recommended Guidelines for Measuring Metals in Puget Sound Marine Water, Sediment, and Tissue Samples" prepared for the United States Environmental Protection Agency and the Puget Sound Water Quality Authority, 1995. The procedure involves a cold-oxidation of the acidified seawater sample using bromine monochloride prior to reduction of the sample with stannous chloride. Instrumental analysis is by cold vapour atomic fluorescence spectrophotometry (EPA Method 245.7).

MET-TOT-C-ICP-VA Seawater Total Metals in Seawater by ICPOES PUGET SOUND PROTOCOLS, EPA 6010B

This analysis is carried out using procedures adapted from "Recommended Guidelines for Measuring Metals in Puget Sound Marine Water, Sediment, and Tissue Samples" prepared for the United States Environmental Protection Agency and the Puget Sound Water Quality Authority, 1995. The procedures may involve preliminary sample treatment by acid digestion or filtration (EPA Method 3005A). Instrumental analysis is by inductively coupled plasma - optical emission spectrophotometry (EPA Method 6010B).

MET-TOT-C-LOW-MS-VA Seawater Total Metals in Seawater by ICPMS PUGET SOUND PROTOCOLS, EPA 6020A

This analysis is carried out using procedures adapted from "Recommended Guidelines for Measuring Metals in Puget Sound Marine Water, Sediment, and Tissue Samples" prepared for the United States Environmental Protection Agency and the Puget Sound Water Quality Authority, 1995. The procedures may involve preliminary sample treatment by acid digestion or filtration (EPA Method 3005A). Instrumental analysis is by atomic inductively coupled plasma - mass spectrometry (EPA Method 6020A).

MET-TOT-SPE-MS-VA Seawater Total Metals in Seawater by SPE ICPMS PUGET SOUND PROTOCOLS, EPA 6020A

This analysis is carried out using procedures adapted from "Recommended Guidelines for Measuring Metals in Puget Sound Marine Water, Sediment, and Tissue Samples" prepared for the United States Environmental Protection Agency and the Puget Sound Water Quality Authority, 1995, and with procedures adapted from Cetac Technologies Incorporated. A suspended particulate resin (SPR), consisting of immobilized iminodiacetate (IDA) on a divinylbenzene polymer, is used to chelate and preconcentrate metals in seawater. Instrumental analysis is by inductively coupled plasma mass spectrometry (ICPMS).

NH3-C-COL-VA Seawater Ammonia by Color (seawater) APHA 4500-NH3 "Nitrogen (Ammonia)"

This analysis is carried out, on unpreserved samples, using procedures adapted from APHA Method 4500-NH3 "Nitrogen (Ammonia)". Ammonia is determined using the phenate colourimetric method.

APHA 2540 Gravimetric

Reference Information

Methods Listed (if applicable):

ALS Test Code	Matrix	Test Description	Analytical Method Reference(Based On)
PH-C-PCT-VA	Seawater	pH by Meter (Automated) (seawater)	APHA 4500-H "pH Value"
This analysis is carried electrode	out using proce	dures adapted from APHA Method 4500-H "pH Valu	ue". The pH is determined in the laboratory using a pH
SALINITY-C-EC-VA	Seawater	Salinity by calc. using EC (seawater)	APHA 2520 B
This analysis is carried	out using proce	dures adapted from APHA Method 2520 "Salinity".	Salinity is determined using a samples conductivity and the

This analysis is carried out using procedures adapted from APHA Method 2540 "Solids". Solids are determined gravimetrically. Total Suspended Solids (TSS) are determined by filtering a sample through a glass fibre filter, TSS is determined by drying the filter at 104 degrees celsius.

Solids by Gravimetric (seawater)

** Laboratory Methods employed follow in-house procedures, which are generally based on nationally or internationally accepted methodologies.

The last two letters of the above ALS Test Code column indicate the laboratory that performed analytical analysis for that test. Refer to the list below:

Laboratory Definition Code	Laboratory Location	Laboratory Definition Code	Laboratory Location
VA	ALS LABORATORY GROUP - VANCOUVER, BC, CANADA		

GLOSSARY OF REPORT TERMS

TSS-C-VA

Surr - A surrogate is an organic compound that is similar to the target analyte(s) in chemical composition and behavior but not normally detected in environmental samples. Prior to sample processing, samples are fortified with one or more surrogate compounds.

The reported surrogate recovery value provides a measure of method efficiency.

mg/kg (units) - unit of concentration based on mass, parts per million

Seawater

mg/L (units) - unit of concentration based on volume, parts per million

N/A - Result not available. Refer to qualifier code and definition for explanation

Test results reported relate only to the samples as received by the laboratory. UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Although test results are generated under strict QA/QC protocols, any unsigned test reports, faxes, or emails are considered preliminary.

ALS Laboratory Group has an extensive QA/QC program where all analytical data reported is analyzed using approved referenced procedures followed by checks and reviews by senior managers and quality assurance personnel. However, since the results are obtained from chemical measurements and thus cannot be guaranteed, ALS Laboratory Group assumes no liability for the use or interpretation of the results.

Sep 17, 2008

422 Downey Road Saskatoon, Saskatchewan, Canada S7N 4N1 (306) 933-6932 or 1-800-240-8808

Fax: (306) 933-7922

ALS

Aurora Laboratory Services Ltd. 1988 Triumph Street Vancouver, British Columbia V5L 1K5

Attn: Andre Langlais

Page 1 of 3

Sample #

34393

Client PO #:

ALS23316

Date Sampled:

Aug 15, 2008

Date Received: Aug 22, 2008

Sample Matrix: Description:

WATER

L670595-1 G CREEK

Analyte

Units

Result

DL

Date Entered

Radio Chemistry

Radium-226

Bq/L

0.01

0.005

Sep 17, 2008

Sep 17, 2008

ALS, Aurora Laboratory Services Ltd.

Page 2 of 3

Sample #

34394

Aug 15, 2008

Date Sampled: Sample Matrix:

WATER

Description:

L670595-2 G CREEK AUG 15

Units

Result

DL

Date Received: Aug 22, 2008

Client PO#:

Date Entered

Radio Chemistry

Analyte

Radium-226

Bq/L

< 0.005

0.005

ALS23316

Sep 15, 2008

"<": not detected at level stated above.

Sep 17, 2008

ALS, Aurora Laboratory Services Ltd.

Page 3 of 3

Sample #

34395

Aug 15, 2008

Date Sampled: Sample Matrix:

WATER

Description:

L670595-3 G CREEK QA/QC

Analyte

Units

Result

DL

Date Received: Aug 22, 2008

ALS23316

Client PO #:

Date Entered

Radio Chemistry

Radium-226

Bq/L

<0.005

0.005

Sep 15, 2008

[&]quot;<": not detected at level stated above.

Environmental Division

Certificate of Analysis

TECK COMINCO METALS LTD.

ATTN: BRUCE DONALD

BAG 2000 Reported On: 29-SEP-08 04:52 PM

KIMBERLEY BC V1A 3E1

Lab Work Order #: L675318 Date Received: 28-AUG-08

Project P.O. #: 7397 **Job Reference**: 80325

Legal Site Desc:

CofC Numbers: C048722

Other Information:

Comments: Some of the metals detection limits were increased due to high levels of metals in these samples.

LINDSAY JONES Account Manager

THIS REPORT SHALL NOT BE REPRODUCED EXCEPT IN FULL WITHOUT THE WRITTEN AUTHORITY OF THE LABORATORY. ALL SAMPLES WILL BE DISPOSED OF AFTER 30 DAYS FOLLOWING ANALYSIS. PLEASE CONTACT THE LAB IF YOU REQUIRE ADDITIONAL SAMPLE STORAGE TIME.

Phone: +1 604 253 4188 Fax: +1 604 253 6700 www.alsglobal.com

A Campbell Brothers Limited Company

ALS LABORATORY GROUP ANALYTICAL REPORT

	Sample ID Description Sampled Date Sampled Time Client ID	L675318-1 22-AUG-08 16:00 G CREEK		
Grouping	Analyte			
SEAWATER				
Physical Tests	Conductivity (uS/cm)	11300		
•	Hardness (as CaCO3) (mg/L)	1420		
	pH (pH)	7.86		
	Salinity (EC) (g/L)	6.5		
	Total Suspended Solids (mg/L)	<3.0		
Anions and Nutrients	Alkalinity, Total (as CaCO3) (mg/L)	110		
Cyanides	Cyanide, Total (mg/L)	<0.0050		
Total Metals	Aluminum (Al)-Total (mg/L)	<0.020		
	Arsenic (As)-Total (mg/L)	<0.00020		
	Cadmium (Cd)-Total (mg/L)	0.000359		
	Calcium (Ca)-Total (mg/L)	129		
	Copper (Cu)-Total (mg/L)	0.00117		
	Iron (Fe)-Total (mg/L)	0.014		
	Lead (Pb)-Total (mg/L)	0.000302		
	Magnesium (Mg)-Total (mg/L)	267		
	Manganese (Mn)-Total (mg/L)	0.00463		
	Mercury (Hg)-Total (mg/L)	<0.000010		
	Molybdenum (Mo)-Total (mg/L)	0.0035		
	Nickel (Ni)-Total (mg/L)	0.00651		
	Zinc (Zn)-Total (mg/L)	0.0520		

PUGET SOUND PROTOCOLS, EPA 7000 SERIES

Reference Information

Additional Comments for Sample Listed:

Seawater

AS-TOT-C-HVAAS-VA

 Samplenum
 Matrix
 Report Remarks
 Sample Comments

 Methods Listed (if applicable):
 ALS Test Code
 Matrix
 Test Description
 Analytical Method Reference(Based On)

ALK-C-COL-VA Seawater Alkalinity by Colourimetric (seawater) APHA 310.2

Total Arsenic in Seawater by HVAAS

This analysis is carried out using procedures adapted from EPA Method 310.2 "Alkalinity". Total Alkalinity is determined using the methyl orange colourimetric method.

This analysis is carried out using procedures adapted from "Recommended Guidelines for Measuring Metals in Puget Sound Marine Water, Sediment, and Tissue Samples" prepared for the United States Environmental Protection Agency and the Puget Sound Water Quality Authority, 1995. The procedures may involve preliminary sample treatment by acid digestion or filtration (EPA Method 3005A). Instrumental analysis of the seawater is by atomic absorption/emission spectrophotometry (EPA Method 7000 series).

CN-C-T-MID-HH-COL-VA Seawater Total Cyanide by HH Distil. (seawater)

APHA 4500-CN "Cyanide"

This analysis is carried out using procedures adapted from APHA Method 4500-CN "Cyanide". Total or strong acid dissociable (SAD) cyanide are determined by sample distillation and analysis using the chloramine-T colourimetric method.

EC-C-PCT-VA Seawater Conductivity (Automated) (seawater) APHA 2510 Auto. Conduct.

This analysis is carried out using procedures adapted from APHA Method 2510 "Conductivity". Conductivity is determined using a conductivity electrode.

HARDNESS-CALC-VA Seawater Hardness APHA 2340B

Hardness is calculated from Calcium and Magnesium concentrations, and is expressed as calcium carbonate equivalents.

HG-TOT-C-CVAFS-VA Seawater Total Mercury in Seawater by CVAFS PUGET SOUND PROTOCOLS, EPA 245.7

This analysis is carried out using procedures adapted from "Recommended Guidelines for Measuring Metals in Puget Sound Marine Water, Sediment, and Tissue Samples" prepared for the United States Environmental Protection Agency and the Puget Sound Water Quality Authority, 1995. The procedure involves a cold-oxidation of the acidified seawater sample using bromine monochloride prior to reduction of the sample with stannous chloride. Instrumental analysis is by cold vapour atomic fluorescence spectrophotometry (EPA Method 245.7).

MET-TOT-C-ICP-VA Seawater Total Metals in Seawater by ICPOES PUGET SOUND PROTOCOLS, EPA 6010B

This analysis is carried out using procedures adapted from "Recommended Guidelines for Measuring Metals in Puget Sound Marine Water, Sediment, and Tissue Samples" prepared for the United States Environmental Protection Agency and the Puget Sound Water Quality Authority, 1995. The procedures may involve preliminary sample treatment by acid digestion or filtration (EPA Method 3005A). Instrumental analysis is by inductively coupled plasma - optical emission spectrophotometry (EPA Method 6010B).

MET-TOT-C-LOW-MS-VA Seawater Total Metals in Seawater by ICPMS PUGET SOUND PROTOCOLS, EPA 6020A

This analysis is carried out using procedures adapted from "Recommended Guidelines for Measuring Metals in Puget Sound Marine Water, Sediment, and Tissue Samples" prepared for the United States Environmental Protection Agency and the Puget Sound Water Quality Authority, 1995. The procedures may involve preliminary sample treatment by acid digestion or filtration (EPA Method 3005A). Instrumental analysis is by atomic inductively coupled plasma - mass spectrometry (EPA Method 6020A).

MET-TOT-SPE-MS-VA Seawater Total Metals in Seawater by SPE ICPMS PUGET SOUND PROTOCOLS, EPA 6020A

This analysis is carried out using procedures adapted from "Recommended Guidelines for Measuring Metals in Puget Sound Marine Water, Sediment, and Tissue Samples" prepared for the United States Environmental Protection Agency and the Puget Sound Water Quality Authority, 1995, and with procedures adapted from Cetac Technologies Incorporated. A suspended particulate resin (SPR), consisting of immobilized iminodiacetate (IDA) on a divinylbenzene polymer, is used to chelate and preconcentrate metals in seawater. Instrumental analysis is by inductively coupled plasma mass spectrometry (ICPMS).

PH-C-PCT-VA Seawater pH by Meter (Automated) (seawater) APHA 4500-H "pH Value"

This analysis is carried out using procedures adapted from APHA Method 4500-H "pH Value". The pH is determined in the laboratory using a pH electrode

Reference Information

Methods Listed (if applicable):

ALS Test Code Matrix Test Description Analytical Method Reference (Based On)

SALINITY-C-EC-VA Seawater Salinity by calc. using EC (seawater) APHA 2520 B

This analysis is carried out using procedures adapted from APHA Method 2520 "Salinity". Salinity is determined using a samples conductivity and the Practical Salinity Scale.

TSS-C-VA Seawater Solids by Gravimetric (seawater) APHA 2540 Gravimetric

This analysis is carried out using procedures adapted from APHA Method 2540 "Solids". Solids are determined gravimetrically. Total Suspended Solids (TSS) are determined by filtering a sample through a glass fibre filter, TSS is determined by drying the filter at 104 degrees celsius.

** Laboratory Methods employed follow in-house procedures, which are generally based on nationally or internationally accepted methodologies.

The last two letters of the above ALS Test Code column indicate the laboratory that performed analytical analysis for that test. Refer to the list below:

Laboratory Definition Code	Laboratory Location	Laboratory Definition Code	Laboratory Location
VA	ALS LABORATORY GROUP - VANCOUVER, BC, CANADA		

GLOSSARY OF REPORT TERMS

Surr - A surrogate is an organic compound that is similar to the target analyte(s) in chemical composition and behavior but not normally detected in environmental samples. Prior to sample processing, samples are fortified with one or more surrogate compounds.

The reported surrogate recovery value provides a measure of method efficiency.

mg/kg (units) - unit of concentration based on mass, parts per million

mg/L (units) - unit of concentration based on volume, parts per million

N/A - Result not available. Refer to qualifier code and definition for explanation

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Although test results are generated under strict QA/QC protocols, any unsigned test reports, faxes, or emails are considered preliminary.

ALS Laboratory Group has an extensive QA/QC program where all analytical data reported is analyzed using approved referenced procedures followed by checks and reviews by senior managers and quality assurance personnel. However, since the results are obtained from chemical measurements and thus cannot be guaranteed, ALS Laboratory Group assumes no liability for the use or interpretation of the results.

Sep 26, 2008

422 Downey Road Saskatoon, Saskatchewan, Canada S7N 4N1 (306) 933-6932 or 1-800-240-8808 Fax: (306) 933-7922

ALS

Aurora Laboratory Services Ltd. 1988 Triumph Street Vancouver, British Columbia V5L 1K5 Attn: Andre Langlais

Page 1 of 1

Sample #

35636

Client PO #:

ALS23701

Date Sampled:

Aug 22, 2008 16:00

Sample Matrix:

Date Received: Sep 03, 2008

Description:

WATER

L675318-1 G CREEK Units

Result

DL

Date Entered

Radio Chemistry

Analyte

Radium-226

Bq/L

< 0.005

0.005

Sep 25, 2008

"<": not detected at level stated above.

ALS Canada Ltd.

Part of the ALS Laboratory Group

Toll Free: 1-800-668-9878 Manitoba: 1-800-607-7555

1988 Triumph Street, Vancouver, BC V5L 1K5

Phone: +1 604 253 4188 Fax: +1 604 253 6700 www.alsglobal.com

ALS LABORATORY GROUP SAMPLE RECEIPT CONFIRMATION

Company: TECK COMINCO METALS LTD.

BRUCE DONALD ATTN:

Fax Number:

Andre Langlais **Account Manager:**

80325 Job Reference: 7397 Project P.O. #:

22-AUG-08 **Date Sampled:**

28-AUG-08 Estimated Completion Date: 18-SEP-08 **Date Received:**

RG Sampled By:

L675318 Workorder #: C048722 Chain of Custody #:

Sample #/SampleID/DateSampled/DateDue: L675318-1/G CREEK/22-AUG-08/18-SEP-08

Matrix **Product Description Product Due***

Seawater Alkalinity by Colourimetric (seawater)

Seawater **Total Metals in Seawater**

Total Arsenic in Seawater by HVAAS

Hardness

Total Mercury in Seawater by CVAFS Total Metals in Seawater by ICPOES Total Metals in Seawater by ICPMS Total Metals in Seawater by SPE ICPMS

Seawater Total Cyanide by HH Distil. (seawater) Seawater Conductivity (Automated) (seawater) Seawater pH by Meter (Automated) (seawater)

Water Radium 226

Seawater Salinity by calc. using EC (seawater)

Misc. Handling/Disposal Fee

Seawater Solids by Gravimetric (seawater)

* INDICATES ESTIMATED COMPLETION DATE OF REQUESTED PRODUCT IF DIFFERENT THAN THE ESTIMATED COMPLETION DATE.

ALS Laboratory Group strives to deliver on-time results to our clients at all times. However, there are times when, due to capacity issues or other unforeseen circumstances, we are unable to meet our expected TATs. The information above is related to a recent workorder you have submitted to our laboratory. We have also included a summary on the parameters of interest for this workorder. In the event that you have an inquiry, please refer to the Work Order # (L+6 digits) when calling your Account Manager.

IMPORTANT: The accompanying message is intended only for the use of the individual or entity to which it is addressed and may represent an attorney-client communication or otherwise contain information privileged, confidential and exempt from disclosure under applicable law. If the reader of this message is not the intended recipient, you are hereby notified that any dissemination, distribution or copying or other use of the communication is strictly prohibited. If you receive the communication in error, please notify us immediately by telephone, and return the message to us at the above address via Canadian Postal Service postage due. Thank you.

Notice of Sub-contract Laboratory Service

Please be advised that the following tests will be subcontracted to the corresponding laboratory:

Radium 226 Subcontracted to: Saskatchewan Research Council - Saskatoon, Saskatchewan, Can

Please contact your Account Manager immediately should you have questions or concerns regarding this arrangement. Approval of this arrangement shall be implied unless otherwise notified by you.

ALS Laboratory Group strives to deliver on-time results to our clients at all times. However, there are times when, due to capacity issues or other unforeseen circumstances, we are unable to meet our expected TATs. The information above is related to a recent workorder you have submitted to our laboratory. We have also included a summary on the parameters of interest for this workorder. In the event that you have an inquiry, please refer to the Work Order # (L+6 digits) when calling your Account Manager.

IMPORTANT: The accompanying message is intended only for the use of the individual or entity to which it is addressed and may represent an attorney-client communication or otherwise contain information privileged, confidential and exempt from disclosure under applicable law. If the reader of this message is not the intended recipient, you are hereby notified that any dissemination, distribution or copying or other use of the communication is strictly prohibited. If you receive the communication in error, please notify us immediately by telephone, and return the message to us at the above address via Canadian Postal Service postage due. Thank you.

Environmental Division

Certificate of Analysis

TECK COMINCO METALS LTD.

ATTN: BRUCE DONALD

BAG 2000 Reported On: 29-SEP-08 04:58 PM

KIMBERLEY BC V1A 3E1

Lab Work Order #: L676658 Date Received: 02-SEP-08

Project P.O. #: 7397 **Job Reference**: 80325

Legal Site Desc:

CofC Numbers: C048720

Other Information:

Comments: Some of the metals detection limits were increased due to high levels of metals in these samples.

LINDSAY JONES Account Manager

THIS REPORT SHALL NOT BE REPRODUCED EXCEPT IN FULL WITHOUT THE WRITTEN AUTHORITY OF THE LABORATORY. ALL SAMPLES WILL BE DISPOSED OF AFTER 30 DAYS FOLLOWING ANALYSIS. PLEASE CONTACT THE LAB IF YOU REQUIRE ADDITIONAL SAMPLE STORAGE TIME.

ALS LABORATORY GROUP ANALYTICAL REPORT

	Sample ID Description Sampled Date Sampled Time Client ID	L676658-1 29-AUG-08 17:00 G CREEK		
Grouping	Analyte	0 011211		
SEAWATER	•			
Physical Tests	Conductivity (uS/cm)	11700		
Tilyoloui Toolo	Hardness (as CaCO3) (mg/L)	1480		
	pH (pH)	8.10		
	Salinity (EC) (g/L)	6.8		
	Total Suspended Solids (mg/L)	<3.0		
Anions and Nutrients	Alkalinity, Total (as CaCO3) (mg/L)	111		
Cyanides	Cyanide, Total (mg/L)	<0.0050		
Total Metals	Aluminum (Al)-Total (mg/L)	<0.020		
	Arsenic (As)-Total (mg/L)	<0.00020		
	Cadmium (Cd)-Total (mg/L)	0.000322		
	Calcium (Ca)-Total (mg/L)	128		
	Copper (Cu)-Total (mg/L)	0.00106		
	Iron (Fe)-Total (mg/L)	<0.010		
	Lead (Pb)-Total (mg/L)	0.000213		
	Magnesium (Mg)-Total (mg/L)	281		
	Manganese (Mn)-Total (mg/L)	0.00313		
	Mercury (Hg)-Total (mg/L)	<0.000010		
	Molybdenum (Mo)-Total (mg/L)	0.0035		
	Nickel (Ni)-Total (mg/L)	0.00674		
	Zinc (Zn)-Total (mg/L)	0.0522		

L676658 CONTD.... PAGE 3 of 4 29-SEP-08 16:58

PUGET SOUND PROTOCOLS, EPA 7000 SERIES

Reference Information

Additional Comments for Sample Listed:

Seawater

AS-TOT-C-HVAAS-VA

 Samplenum
 Matrix
 Report Remarks
 Sample Comments

 Methods Listed (if applicable):
 Analytical Method Reference(Based On)

ALK-C-COL-VA Seawater Alkalinity by Colourimetric (seawater) APHA 310.2

Total Arsenic in Seawater by HVAAS

This analysis is carried out using procedures adapted from EPA Method 310.2 "Alkalinity". Total Alkalinity is determined using the methyl orange colourimetric method.

colournite trictinou.

This analysis is carried out using procedures adapted from "Recommended Guidelines for Measuring Metals in Puget Sound Marine Water, Sediment, and Tissue Samples" prepared for the United States Environmental Protection Agency and the Puget Sound Water Quality Authority, 1995. The procedures may involve preliminary sample treatment by acid digestion or filtration (EPA Method 3005A). Instrumental analysis of the seawater is by atomic absorption/emission spectrophotometry (EPA Method 7000 series).

CN-C-T-MID-HH-COL-VA Seawater Total Cyanide by HH Distil. (seawater)

APHA 4500-CN "Cyanide"

This analysis is carried out using procedures adapted from APHA Method 4500-CN "Cyanide". Total or strong acid dissociable (SAD) cyanide are determined by sample distillation and analysis using the chloramine-T colourimetric method.

EC-C-PCT-VA Seawater Conductivity (Automated) (seawater) APHA 2510 Auto. Conduc.

This analysis is carried out using procedures adapted from APHA Method 2510 "Conductivity". Conductivity is determined using a conductivity electrode.

HARDNESS-CALC-VA Seawater Hardness APHA 2340B

Hardness is calculated from Calcium and Magnesium concentrations, and is expressed as calcium carbonate equivalents.

HG-TOT-C-CVAFS-VA Seawater Total Mercury in Seawater by CVAFS PUGET SOUND PROTOCOLS, EPA 245.7

This analysis is carried out using procedures adapted from "Recommended Guidelines for Measuring Metals in Puget Sound Marine Water, Sediment, and Tissue Samples" prepared for the United States Environmental Protection Agency and the Puget Sound Water Quality Authority, 1995. The procedure involves a cold-oxidation of the acidified seawater sample using bromine monochloride prior to reduction of the sample with stannous chloride. Instrumental analysis is by cold vapour atomic fluorescence spectrophotometry (EPA Method 245.7).

MET-TOT-C-ICP-VA Seawater Total Metals in Seawater by ICPOES PUGET SOUND PROTOCOLS, EPA 6010B

This analysis is carried out using procedures adapted from "Recommended Guidelines for Measuring Metals in Puget Sound Marine Water, Sediment, and Tissue Samples" prepared for the United States Environmental Protection Agency and the Puget Sound Water Quality Authority, 1995. The procedures may involve preliminary sample treatment by acid digestion or filtration (EPA Method 3005A). Instrumental analysis is by inductively coupled plasma - optical emission spectrophotometry (EPA Method 6010B).

MET-TOT-C-LOW-MS-VA Seawater Total Metals in Seawater by ICPMS PUGET SOUND PROTOCOLS, EPA 6020A

This analysis is carried out using procedures adapted from "Recommended Guidelines for Measuring Metals in Puget Sound Marine Water, Sediment, and Tissue Samples" prepared for the United States Environmental Protection Agency and the Puget Sound Water Quality Authority, 1995. The procedures may involve preliminary sample treatment by acid digestion or filtration (EPA Method 3005A). Instrumental analysis is by atomic inductively coupled plasma - mass spectrometry (EPA Method 6020A).

MET-TOT-SPE-MS-VA Seawater Total Metals in Seawater by SPE ICPMS PUGET SOUND PROTOCOLS, EPA 6020A

This analysis is carried out using procedures adapted from "Recommended Guidelines for Measuring Metals in Puget Sound Marine Water, Sediment, and Tissue Samples" prepared for the United States Environmental Protection Agency and the Puget Sound Water Quality Authority, 1995, and with procedures adapted from Cetac Technologies Incorporated. A suspended particulate resin (SPR), consisting of immobilized iminodiacetate (IDA) on a divinylbenzene polymer, is used to chelate and preconcentrate metals in seawater. Instrumental analysis is by inductively coupled plasma mass spectrometry (ICPMS).

PH-C-PCT-VA Seawater pH by Meter (Automated) (seawater) APHA 4500-H "pH Value"

This analysis is carried out using procedures adapted from APHA Method 4500-H "pH Value". The pH is determined in the laboratory using a pH electrode

Reference Information

Methods Listed (if applicable):

ALS Test Code Matrix Test Description Analytical Method Reference (Based On)

SALINITY-C-EC-VA Seawater Salinity by calc. using EC (seawater) APHA 2520 B

This analysis is carried out using procedures adapted from APHA Method 2520 "Salinity". Salinity is determined using a samples conductivity and the Practical Salinity Scale.

TSS-C-VA Seawater Solids by Gravimetric (seawater) APHA 2540 Gravimetric

This analysis is carried out using procedures adapted from APHA Method 2540 "Solids". Solids are determined gravimetrically. Total Suspended Solids (TSS) are determined by filtering a sample through a glass fibre filter, TSS is determined by drying the filter at 104 degrees celsius.

** Laboratory Methods employed follow in-house procedures, which are generally based on nationally or internationally accepted methodologies.

The last two letters of the above ALS Test Code column indicate the laboratory that performed analytical analysis for that test. Refer to the list below:

Laboratory Definition Code	Laboratory Location	Laboratory Definition Code	Laboratory Location
VA	ALS LABORATORY GROUP - VANCOUVER, BC, CANADA		

GLOSSARY OF REPORT TERMS

Surr - A surrogate is an organic compound that is similar to the target analyte(s) in chemical composition and behavior but not normally detected in environmental samples. Prior to sample processing, samples are fortified with one or more surrogate compounds.

The reported surrogate recovery value provides a measure of method efficiency.

mg/kg (units) - unit of concentration based on mass, parts per million

mg/L (units) - unit of concentration based on volume, parts per million N/A - Result not available. Refer to qualifier code and definition for explanation

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Although test results are generated under strict QA/QC protocols, any unsigned test reports, faxes, or emails are considered preliminary.

ALS Laboratory Group has an extensive QA/QC program where all analytical data reported is analyzed using approved referenced procedures followed by checks and reviews by senior managers and quality assurance personnel. However, since the results are obtained from chemical measurements and thus cannot be guaranteed, ALS Laboratory Group assumes no liability for the use or interpretation of the results.

Sep 26, 2008

422 Downey Road Saskatoon, Saskatchewan, Canada S7N 4N1 (306) 933-6932 or 1-800-240-8808 Fax: (306) 933-7922

ALS

Aurora Laboratory Services Ltd. 1988 Triumph Street Vancouver, British Columbia V5L 1K5 Attn: Andre Langlais

Page 1 of 1

Sample #

35754

Client PO #:

ALS23694

Date Sampled:

Aug 29, 2008 17:00

Date Received: Sep 03, 2008

Sample Matrix:

WATER

жина. Сор

Description:

L676658-1 G CREEK

Analyte

Units

Result

DL

Date Entered

Radio Chemistry

Radium-226

Bq/L

0.009

0.005

Sep 25, 2008

Environmental Division

Certificate of Analysis

TECK COMINCO METALS LTD.

ATTN: BRUCE DONALD

BAG 2000 Reported On: 15-OCT-08 04:42 PM

KIMBERLEY BC V1A 3E1

Lab Work Order #: L680721 Date Received: 12-SEP-08

Project P.O. #: 7397

Job Reference: 80325 POLARIS

Legal Site Desc:

CofC Numbers: A039137

Other Information:

Comments:

LINDSAY JONES Account Manager

THIS REPORT SHALL NOT BE REPRODUCED EXCEPT IN FULL WITHOUT THE WRITTEN AUTHORITY OF THE LABORATORY. ALL SAMPLES WILL BE DISPOSED OF AFTER 30 DAYS FOLLOWING ANALYSIS. PLEASE CONTACT THE LAB IF YOU REQUIRE ADDITIONAL SAMPLE STORAGE TIME.

Phone: +1 604 253 4188 Fax: +1 604 253 6700 www.alsglobal.com

A Campbell Brothers Limited Company

ALS LABORATORY GROUP ANALYTICAL REPORT

	Sample ID Description Sampled Date Sampled Time Client ID	L680721-1 WATER 06-SEP-08 16:00 G CREEK	L680721-2 WATER 06-SEP-08 16:00 G CREEK
Grouping	Analyte		QA/QC
SEAWATER			
Physical Tests	Conductivity (uS/cm)	11400	11600
•	Hardness (as CaCO3) (mg/L)	1540	1520
	pH (pH)	8.08	8.06
	Salinity (EC) (g/L)	6.7	6.8
	Total Suspended Solids (mg/L)	3.3	<3.0
Anions and Nutrients	Alkalinity, Total (as CaCO3) (mg/L)	121	122
	Ammonia as N (mg/L)	0.0102	0.0087
Cyanides	Cyanide, Total (mg/L)	<0.0050	<0.0050
Total Metals	Aluminum (Al)-Total (mg/L)	<0.050	<0.050
	Arsenic (As)-Total (mg/L)	<0.00020	<0.00020
	Cadmium (Cd)-Total (mg/L)	0.000312	0.000294
	Calcium (Ca)-Total (mg/L)	135	132
	Copper (Cu)-Total (mg/L)	0.00112	0.00108
	Iron (Fe)-Total (mg/L)	0.013	<0.010
	Lead (Pb)-Total (mg/L)	0.000247	0.000173
	Magnesium (Mg)-Total (mg/L)	293	289
	Manganese (Mn)-Total (mg/L)	0.00243	0.00274
	Mercury (Hg)-Total (mg/L)	<0.000010	<0.000010
	Molybdenum (Mo)-Total (mg/L)	0.0032	0.0031
	Nickel (Ni)-Total (mg/L)	0.00775	0.00753
	Zinc (Zn)-Total (mg/L)	0.0502	0.0485
	Zine (Zin-Total (mg/L)	0.0302	0.0483

PUGET SOUND PROTOCOLS, EPA 7000 SERIES

Reference Information

Additional Comments for Sample Listed:

Seawater

AS-TOT-C-HVAAS-VA

 Samplenum
 Matrix
 Report Remarks
 Sample Comments

 Methods Listed (if applicable):
 ALS Test Code
 Matrix
 Test Description
 Analytical Method Reference (Based On)

ALK-C-COL-VA Seawater Alkalinity by Colourimetric (seawater) APHA 310.2

Total Arsenic in Seawater by HVAAS

This analysis is carried out using procedures adapted from EPA Method 310.2 "Alkalinity". Total Alkalinity is determined using the methyl orange colourimetric method.

This analysis is carried out using procedures adapted from "Recommended Guidelines for Measuring Metals in Puget Sound Marine Water, Sediment, and Tissue Samples" prepared for the United States Environmental Protection Agency and the Puget Sound Water Quality Authority, 1995. The procedures may involve preliminary sample treatment by acid digestion or filtration (EPA Method 3005A). Instrumental analysis of the seawater is by atomic absorption/emission spectrophotometry (EPA Method 7000 series).

CN-C-T-MID-HH-COL-VA Seawater Total Cyanide by HH Distil. (seawater) APHA 4500-CN "Cyanide"

This analysis is carried out using procedures adapted from APHA Method 4500-CN "Cyanide". Total or strong acid dissociable (SAD) cyanide are determined by sample distillation and analysis using the chloramine-T colourimetric method.

EC-C-PCT-VA Seawater Conductivity (Automated) (seawater) APHA 2510 Auto. Conduct.

This analysis is carried out using procedures adapted from APHA Method 2510 "Conductivity". Conductivity is determined using a conductivity electrode.

HARDNESS-CALC-VA Seawater Hardness APHA 2340B

Hardness is calculated from Calcium and Magnesium concentrations, and is expressed as calcium carbonate equivalents.

HG-TOT-C-CVAFS-VA Seawater Total Mercury in Seawater by CVAFS PUGET SOUND PROTOCOLS, EPA 245.7

This analysis is carried out using procedures adapted from "Recommended Guidelines for Measuring Metals in Puget Sound Marine Water, Sediment, and Tissue Samples" prepared for the United States Environmental Protection Agency and the Puget Sound Water Quality Authority, 1995. The procedure involves a cold-oxidation of the acidified seawater sample using bromine monochloride prior to reduction of the sample with stannous chloride. Instrumental analysis is by cold vapour atomic fluorescence spectrophotometry (EPA Method 245.7).

MET-TOT-C-ICP-VA Seawater Total Metals in Seawater by ICPOES PUGET SOUND PROTOCOLS, EPA 6010B

This analysis is carried out using procedures adapted from "Recommended Guidelines for Measuring Metals in Puget Sound Marine Water, Sediment, and Tissue Samples" prepared for the United States Environmental Protection Agency and the Puget Sound Water Quality Authority, 1995. The procedures may involve preliminary sample treatment by acid digestion or filtration (EPA Method 3005A). Instrumental analysis is by inductively coupled plasma - optical emission spectrophotometry (EPA Method 6010B).

MET-TOT-C-LOW-MS-VA Seawater Total Metals in Seawater by ICPMS PUGET SOUND PROTOCOLS, EPA 6020A

This analysis is carried out using procedures adapted from "Recommended Guidelines for Measuring Metals in Puget Sound Marine Water, Sediment, and Tissue Samples" prepared for the United States Environmental Protection Agency and the Puget Sound Water Quality Authority, 1995. The procedures may involve preliminary sample treatment by acid digestion or filtration (EPA Method 3005A). Instrumental analysis is by atomic inductively coupled plasma - mass spectrometry (EPA Method 6020A).

MET-TOT-SPE-MS-VA Seawater Total Metals in Seawater by SPE ICPMS PUGET SOUND PROTOCOLS, EPA 6020A

This analysis is carried out using procedures adapted from "Recommended Guidelines for Measuring Metals in Puget Sound Marine Water, Sediment, and Tissue Samples" prepared for the United States Environmental Protection Agency and the Puget Sound Water Quality Authority, 1995, and with procedures adapted from Cetac Technologies Incorporated. A suspended particulate resin (SPR), consisting of immobilized iminodiacetate (IDA) on a divinylbenzene polymer, is used to chelate and preconcentrate metals in seawater. Instrumental analysis is by inductively coupled plasma mass spectrometry (ICPMS).

NH3-C-COL-VA Seawater Ammonia by Color (seawater) APHA 4500-NH3 "Nitrogen (Ammonia)"

This analysis is carried out, on unpreserved samples, using procedures adapted from APHA Method 4500-NH3 "Nitrogen (Ammonia)". Ammonia is determined using the phenate colourimetric method.

Reference Information

Methods Listed (if applicable):

ALS Test Code Matrix		Test Description	Analytical Method Reference(Based On)					
PH-C-PCT-VA	Seawater	pH by Meter (Automated) (seawater)	APHA 4500-H "pH Value"					
This analysis is carried electrode	out using proce	dures adapted from APHA Method 4500-H "pH Valu	ue". The pH is determined in the laboratory using a pH					
SALINITY-C-EC-VA	Seawater	Salinity by calc. using EC (seawater)	APHA 2520 B					
This analysis is carried	out using proce	dures adapted from APHA Method 2520 "Salinity".	Salinity is determined using a samples conductivity and the					

TSS-C-VA Seawater Solids by Gravimetric (seawater) APHA 2540 Gravimetric

This analysis is carried out using procedures adapted from APHA Method 2540 "Solids". Solids are determined gravimetrically. Total Suspended Solids (TSS) are determined by filtering a sample through a glass fibre filter, TSS is determined by drying the filter at 104 degrees celsius.

** Laboratory Methods employed follow in-house procedures, which are generally based on nationally or internationally accepted methodologies.

The last two letters of the above ALS Test Code column indicate the laboratory that performed analytical analysis for that test. Refer to the list below:

Laboratory Definition Code	Laboratory Location	Laboratory Definition Code	Laboratory Location
VA	ALS LABORATORY GROUP - VANCOUVER, BC, CANADA		

GLOSSARY OF REPORT TERMS

Surr - A surrogate is an organic compound that is similar to the target analyte(s) in chemical composition and behavior but not normally detected in environmental samples. Prior to sample processing, samples are fortified with one or more surrogate compounds.

The reported surrogate recovery value provides a measure of method efficiency.

mg/kg (units) - unit of concentration based on mass, parts per million

mg/L (units) - unit of concentration based on volume, parts per million

N/A - Result not available. Refer to qualifier code and definition for explanation

Test results reported relate only to the samples as received by the laboratory. UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Although test results are generated under strict QA/QC protocols, any unsigned test reports, faxes, or emails are considered preliminary.

ALS Laboratory Group has an extensive QA/QC program where all analytical data reported is analyzed using approved referenced procedures followed by checks and reviews by senior managers and quality assurance personnel. However, since the results are obtained from chemical measurements and thus cannot be guaranteed, ALS Laboratory Group assumes no liability for the use or interpretation of the results.

Oct 14, 2008

422 Downey Road Saskatoon, Saskatchewan, Canada S7N 4N1 (306) 933-6932 or 1-800-240-8808 Fax: (306) 933-7922

ALS

Aurora Laboratory Services Ltd. 1988 Triumph Street Vancouver, British Columbia V5L 1K5

Attn: Selam Worku

Page 1 of 2

Sample #

37736

Client PO#:

L680721

Date Sampled:

Sep 06, 2008 16:00

Date Received: Sep 16, 2008

Sample Matrix: Description:

WATER

L680721-1 G CREEK

Result

DL

Date Entered

Radio Chemistry

Analyte

Radium-226

Bq/L

Units

< 0.005

0.005

Oct 14, 2008

"<": not detected at level stated above.

Oct 14, 2008

ALS, Aurora Laboratory Services Ltd.

Page 2 of 2

Sample # Date Sampled:

37737

Sep 06, 2008 16:00

Sample Matrix:

WATER

Description:

L680721-2 G CREEK QA/QC

Analyte

Units

Result

DL

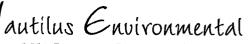
Date Received: Sep 16, 2008

L680721

Client PO#:

Date Entered

Radio Chemistry


Radium-226

Bq/L

0.01

0.005

Oct 14, 2008

8664 Commerce Court, Burnaby, BC V5A 4N7

WO#: 08129-30

Mr. Bruce Donald Teck Cominco Metal Ltd. Bag 2000 Kimberley, BC V1A 3E1

August 11, 2008

Dear Mr. Donald:

Re: Toxicity testing on the sample identified as G Creek (Collected July 3, 2008)

Nautilus Environmental is pleased to provide you the results of the 96-h LC50 Rainbow Trout toxicity test and 48-h LC50 *Daphnia magna* on the above sample, received on July 8, 2008. Testing was conducted according to Environment Canada 1/RM/13, (Second Edition, 2000, including May 2007 amendments) and 1/RM/14, (Second Edition, 2000). The results of these tests are provided in the tables below and are based on the appended data. All acceptability criteria outlined in the Environment Canada protocol were met.

Table A. Results for the 96-h Rainbow Trout test.

Sample ID	Collection Date and Time	96-h LC50 (% vol/vol)				
G Creek	July 3, 2008 (1500hrs)	>100				

Table B. Results for the 48-h *D. magna* test.

Sample ID	Collection Date and Time	96-h LC50 (% vol/vol)
G Creek	July 3, 2008 (1500hrs)	>100

Please feel free to contact the undersigned at 604-420-8773 should you have any questions or require any additional information.

Yours truly,

Nautilus Environmental

Andy Diewald, B.Sc.

Lab Supervisor

Rainbow Trout Summary Sheet

Client:	Teck Common	Start Date/Time: July 8/08@, 1250
Work Order No.:	08129	Test Species: Oncorhynchus mykiss
Sample Informatio	n:	
Sample ID:	G Creek	
Sample Date:	July 3/08	
Date Received:	July8/08	
Sample Volume:	2×20L	
Other:		
Dilution Water:		
Туре:	Dichlorinated Minice	pal Tap Water
Hardness (mg/L CaC	CO ₃): 14	<u>'</u>
Alkalinity (mg/L CaC	03): 12	
	•	
Test Organism Info	rmation:	
Batch No.:	061208	
Source:	SunValley	<u> </u>
Test Volume/No. Fish	n: 10/15/	
Loading Density:	0,35 g/L	
Mean Length ± SD (n	nm): 41±3 am	Range: 38 - 45 nm
Mean Weight ± SD (g		Range: 0,38-0.73
SDS Reference Toxi	icant Results:	•
Reference Toxicant II	D: <u>RT33</u>	
Stock Solution ID:	08503	
Date Initiated:	June 30, 2008	
96-h LC50 (95% CL):	5.3(4.3-6.6) n	g/L
		'
Reference Toxicant M	lean ± 2 SD: <u>5 . ⁴ ≐ a</u>	2.1 mg/L
Reference Toxicant C	V (%): 19 %	0
	•	
,		
Test Results:	The 96hr LC50;	5 > 100 % (v/v)
	1	1
Reviewed by:	A. Tere	Date reviewed: AUQUST 11/08

96-Hour Rainbow Trout Toxicity Test Data Sheet

Client/Project# Sample I.D. W.O. # RBT Batch #: Date Received Date Setup/Tir Sample Setup D.O. meter: pH meter: Cond. Meter:	D.					<a> @	105	20				Number Fish/Volume: 7-d % Mortality: Total Pre-aeration Time (mins) Aeration rate adjusted to 6.5 ± Undiluted Sample WQ Parameters Initial WQ Temp °C 14.3 pH 7.9 D.O. (mg/L) 10.6 Cond. (µS/cm) 3910						1 ml						
Concentration % (v/v)	_		# 5	Survive	ors			7	empe	eratui	re (°C	;)	Diss	olved	Oxyg	jen (r	ng/L)	-		рН		-		uctivity /cm)
10 (V/V)	1	2	4	24	48	72	96	0	24	48	72	96	0	24	48	72	96	0	24	48	72	96	0	96
ct (_	-	10	9	1	9	-	-		_	156					\vdash	73	_	4.9		7.1	32	35
6.25				10	10	10	10					5.5			•••	8,9	9,0	73				7.0	309	314
12.5	_			10	10	10	10		15.2		15.1	5.5	10.4	0.3			912				7.2		554	56a
25				(0	10	10	10					15.5					9.4			71	7. 3	7.2	93 C	936
56				10	10	(0	10	15.0	15.2	14.1	5.1	15,5	10,3	10.7	9.6							7,4	1940	1949
100				10	10	10	10	150	15.2	.149	15.1	15,5	10.6	16.14	9.1	9,5	9.6	7.9	7,6	7,6	7.7	7.6	3700	29 20
												<u> </u>							L					
Initials				77	河	-	SKL	त्मा	A 1	-	F	DILL	إسم	F	(F)	وسير	ori	[وملاً	7 4 1	-¥~1,	3	OKL	AT	DLL
Sample Description/Comments: Clear & transparent Fish Description at 96?																								
Fish Description	on at !	96?			h sh	<u>a</u>	ppe	<u>e</u>	<u>~0.</u>	<u>~~e</u>	<u>(·</u>		.			· <u>-</u>		<u>.</u>						
Other Observa	ations	i																						
Reviewed by:																								

Issued October 9, 2007; Ver. 1.1

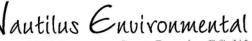
Nautilus Environmental

Daphnia magna Summary Sheet

Work Order No.:	fus
Sample ID: G- (GPK Sample Date: JUIU 3 CB o Date Received: JUIU 8 OB Sample Volume: Q XQO L Test Organism Information: Broodstock No.: 063008	
Sample ID: G- (GPK Sample Date: JUIU 3 CB o Date Received: JUIU 8 OB Sample Volume: Q XQO L Test Organism Information: Broodstock No.: 063008	
Sample ID: G- (GPK Sample Date: JUIU 3 CB o Date Received: JUIU 8 OB Sample Volume: Q XQOL Test Organism Information: Broodstock No.: 063008	•
Sample ID: G- (GPK Sample Date: JUIU 3 CB o Date Received: JUIU 8 OB Sample Volume: Q XQO L Test Organism Information: Broodstock No.: 063008	
Sample Date: JUIU 3 08 ° Date Received: JUIU 8 08 Sample Volume: Q XQO L Test Organism Information: Broodstock No.: 063008	
Sample Date: JUIU 3 08 ° Date Received: JUIU 8 08 Sample Volume: Q XQO L Test Organism Information: Broodstock No.: 063008	
Date Received: JUIU 8108 Sample Volume: Q XQO L Test Organism Information: Broodstock No.: 062008	
Sample Volume: QXQOL Test Organism Information: Broodstock No.: 06008	•
Test Organism Information: Broodstock No.: OGGOOS	
Broodstock No.:O69008	
Broodstock No.:O69008	
Broodstock No.:O69008	
	•
AND DEVOUDD TO SELECT TO THE SECOND S	•
Avg No. young per brood in previous 7 d:	
Mortality (%) in previous 7 d:	
Days to first brood:	
	, .
NaCl Reference Toxicant Results:	
Reference Toxicant ID: 0m35	
Stock Solution ID: OF Na 32	
Date Initiated:	
48-h LC50 (95% CL): 0 1/4,5 (3.8-5.4) g/L Nach	
	4
Reference Toxicant Mean ± 2 SD: 4.2 ± 1.0 g/L Na CL	
Reference Toxicant CV (%): 12 U	
Test Results: The 48th Less > 100 % (V/J)	
	
	
Reviewed by: A. Tork Date reviewed: Actes	ust 11,200}

Freshwater Acute 48 Hour Toxicity Test Data Sheet

Client: Sample ID:	T6	CK (XO L	leta Lta.		- -	No.	Sta Organi	rt Date	e/Time olume	: :10/	4 200	یار mL)	8/0	SFQ1	150ok
Work Order No.:			<u>ر</u>	त३०			_		ıe	St Org	anism up by	: <u>D.me</u>	agna	<u>a</u> 14			
										OCI	. цр Бу	·		?0	. **		
DO meter:		DO-1		_		pН	meter:		pH-1		_	Condu	ctiv	ity	meter	<u>C-1</u>	
Concentration		i .	lumbe		No.	Те	mpera	ture	Disso	olved o	oxyger		þ	Н	<u>. </u>	Condi	uctivity
3/2 (11)	l Ban	Live	Orga	nisms	Immobilized		(°C)			(mg/L	.)					(µS	/cm)
7-617	Rep	0	24	40	40	-	1 24	1.40	 _		140	_	Τ,		10		
Lontrol			10	48	48	0	24	48	0	24	48	0	1	24	48	0 0	48
CSWIG	, A	10	10	10		21.4	18,3	1913	77 (3.9	78	7		78	2132	مريز ا
	В			-									$\vdash \vdash$				1
	C D		<u> </u>		<u> </u>									-			
600			10	10		21.1	193	19,0	9.1		P 3	79		-	2		
,6 121	<u>А</u> В	10	10	1,-	2	201.1	112	11,0	[7]		8-7	1 /		+	77	514	538
	С													+			1
	D													+			
126	A	10	10	10	0	208	167	19.0	7/		90	7-3			24	769	790
123	B	/ -	10	13		hu.a	11,5	117	1/1		7 9	1			ME)	+67	770
	С					2.								+			
	D							-						1			
25	A	10	1.0	10	0	105	193	19.0	20		90	78			76	1247	1319
<u> </u>	В	/ ~	10	-		V	119	11,0	4			70			10	1-27	131-
	С						3.6%				-						
	D		<u> </u>														
50	A	10	10	10	5	2214	117	G D	9.0		8.7	78			2/3	2240	2340
30	<u>Б</u>	1~	10	1			117	170	• /		0.	,			17		-2-6-
-	С	· ·								,				+			
	D	<u> </u>			-									-			
170	A	10	10	دا	0	19,7	193	19,3	91		& B	76			2.7	3910	3960
173	В	1.2	† .	Ė			1 , ,				-	, ,			-		
	С		 												Section 1		age of the contract
-	D																
Technician Init		Α.	٨	~	r -	~	_	A	7	1	~	A			Ù.	M	M
		/	1(3			I	<u> </u>			•		<i>Try</i> • •					
	– Hardr	ness*			Alkalinity*				Initial	wq	А	djustme	nt			Adjusted V	VQ
Conc.			 *(mg/L :	as CaCo			Temp (°C)	19.	7							
Control (MHW)	1	<u>00</u>			60		DO (mg]/L)	9								
Highest conc.		890			188		рН		7	6							
		•					Cond (µ	ıS/cm)	३९।	9	_/						
Sample Description	on:				clear	ــــــــــــــــــــــــــــــــــــــ				-							
Comments:		ine	1	0620)°68				_			_					
Reviewed by:		1. Tore, Date reviewed: August 11,2008															


Version 1.1 Issued October 9, 2007

Client: Teck Comines

Hardness and Alkalinity Datasheet

			Alkalinity		_			Hardnes	<u> </u>] _
ample ID	Sample Date	Sample Volume (mL)	to pH 4.5	(mL) of 0.02N HCL/H ₂ SO ₄ used to pH 4.2	(mg/LCaCO ₃)	•	Sample Volume (mL)	Volume of 0.01M EDTA Used (mL)	Total Hardness (mg/L CaCO ₃)	Techniciar
G Creek	py21/28	53.3	9.6	9.8	188 104 0		12 O	29	890	_
	V 0 /									
		_								
										
			·				,			
										-
					-		.,	-,		
· · · · · · · · · · · · · · · · · · ·										_
	† .	1.1				.				<u> </u>
		 						1.		
				-	-				-	
· · ·	-	•								
· · · · · ·								 	·	-
		·	_	1	 		 			
	+								-	
		1		 	1	1		†	 	
_	1	Notes:		11 6. 1 1. 1	1 7	<u>ー</u>) マ	H - >			1
			(1)	deluted to 1	some of t	<u> </u>	<u>" "~"</u>			
						,				
Reviewed by:		1 -	The same		Data Povi	OWO	4.	1,000	1 11,200	X
Teviewed by.		74.			- Date Nevi	CAAC	··	4000	· it zee	· U

autilus Enviro	onmen	tal								Chai	n of	Cust	ody (electr	onic)
California: 5550 Morehous Washington: 5009 Pacific British Columbia: 8664 Col	Highway East,	Suite 2, Tac	oma, WA 9842	4			i					Date	e <u>076</u>	<u>∕C2</u> ́Page_	<u> 1 _{Of} </u>
Sample Collection By:	River C	Pew 140	~ / M).4	irrey	Balson				·	ΔΝΔΙ Υ	SES RI	EQUIRE	:D	-	<u> </u>
Jampie Gondonon By:	Report to:		77 [77 74			Same as report to.		((A)						၂ ့
			_				0	_ `	70						
Company	Teck Com	ninco Meta	al Ltd.				\V	Θ	527					1 1	Ė
Address	Bag 2000						27		121						la l
City/Prov/Postal Code	Kimberle	y, BC V1A	3E1] 7	ΙŎ	l . l						l be
Contact	Bruce Do	nald] <u>₹</u>	<i>i</i>	2		İ	1 1	l		l E
Phone	250-427-8	3405 Fax:	250-427-84	1 51] ∺	7	agn	Į			1	1 1	F
Email	bruce.dona	ald@teckco	minco.com;	alaudrum@g	gartnerlee.com	1	₽	1	اَحَ						jë.
SAMPLE ID	DATE	TIME	MATRIX	CONTAINER TYPE	# OF CONTAINERS	COMMENTS	Acute Toxicity	K81	(A)						Receipt Temperature
1 G Creek	543/00	3PM	Seawater	20 L Jug	2		Х	√							12.8
2	100	•					 	<u> </u>							112
								2	12				_		-
3						O Constituend (Cit	\leftarrow	ॐ			-				-
4						Capitalione	1—	70				-	_		
5			•			tests with		0							
6						Curtis Kidd		.3							
7						July 8/08									
8						1 717									
9															
	-						 							+ +	
PROJECT INFOR	MATION	SA	MPLE REC	EIPT	RELIQUINSH	I HED_B(Y (CLIENT)			RELI	L QUINSHI	L ED BY (COUR	ER)		
Client: Polaris 80325		Total # Co	ontainers:	2	Signature:	Lund F-			Signa	ature:					
P.O. No.:		Good Cor	ndition?		Print:	& Gow Hen			Print	_				_	
Shipped Via:		Matches !	Schedule?		Company: 5	HTCO Frontec			+	pany:	Fre	les		1	
omprou viai					Time/Date: 1	JULY 3/08 3/	7			/Date:	1000	シムゴ	، برار	3/°B	
SPECIAL INSTRUCTION	NS/COMMEN	ITS: Water	is hypersal	line.		BY (COURIER)			RECI	EIVED B	Y (LAB	RATO	RY)		
Send rego	it and	! juvoi	ice to		Signature:				Signa	ature:	XX				
Teck C	Send report and invoice to Teck Comince. Send electronic report to Teck and G.L. (ckiddal galtnerlee.com and above)				Print:	Print: J. Ciclen									
report to	Teck.	and G	L. Cck	idd D	Company:					Company: Nauti (x Environmental					
adtheile	e.com	and a	bove)	_	Time/Date:	Time/Date: 1000 July 96									

8664 Commerce Court, Burnaby, BC V5A 4N7

WO#: 08210-211

Mr. Bruce Donald Teck Cominco Metal Ltd. Bag 2000 Kimberley, BC V1A 3E1

September 26, 2008

Dear Mr. Donald:

Re: Toxicity testing on the sample identified as G Creek (Collected August 30, 2008)

Nautilus Environmental is pleased to provide you the results of the 96-h LC50 Rainbow Trout toxicity test and 48-h LC50 *Daphnia magna* on the above sample, received on September 2, 2008. Testing was conducted according to Environment Canada 1/RM/13, (Second Edition, 2000, including May 2007 amendments) and 1/RM/14, (Second Edition, 2000). The results of these tests are provided in the tables below and are based on the appended data. All acceptability criteria outlined in the Environment Canada protocol were met.

Table A. Results for the 96-h Rainbow Trout test.

Sample ID	Collection Date and Time	96-h LC50 (% vol/vol)
G Creek	August 30, 2008 @ 0800h	>100

Table B. Results for the 48-h D. magna test.

Sample ID	Collection Date and Time	48-h LC50 (% vol/vol)
G Creek	August 30, 2008 @ 0800h	>100

Please feel free to contact the undersigned at 604-420-8773 should you have any questions or require any additional information.

Yours truly,

Nautilus Environmental

Donna Leung

for, Andy Diewald, B.Sc.

Lab Supervisor

Rainbow Trout Summary Sheet

Client:	Teck Cominão	Start Date/Time: Sept 3 / Of Q 1245L
Work Order No.:	08210	Test Species: Oncorhynchus mykiss
Sample Information:		
· ·	(Carlo	
Sample ID:	6 Creek	
Sample Date:	Avg. 30/30 @800	
Date Received:	300t. 2/08 @ 1600	()
Sample Volume:	1 x 201	
Other:		
Diladan Watan		
Dilution Water:	· · · · · · · · · · · · · · · · · · ·	
Times	OU LOM.	and To Make
Type: Hardness (mg/L CaCO ₃):	DecHonnated Muni	Espai Tap Vaca.
Alkalinity (mg/L CaCO ₃):	a	The state of the s
7 incaming (mg/ = 000 0 3).		
Test Organism Informati	on:	
root organion mornia	,	
Batch No.:	082608	
Source:	Sun Valley Trout	Form
Test Volume/No. Fish:	10/102	
Loading Density:	0,14	A
Mean Length ± SD (mm):	0190.05	. 3522 Range: 0,000 3 2 -3
Mean Weight ± SD (g):	P.29 = 010	S Range: 0,22 - 0,3 L
	, , , ,	
SDS Reference Toxicant	Results:	
Reference Toxicant ID:	RT36	And the second s
Stock Solution ID:	08503	
Date Initiated:	Dept 2/08	
96-h LC50 (95% CL):	4.6 (3.9 - 5.5	<u>) </u>
	.000	0.1
Reference Toxicant Mean		d: [
Reference Toxicant CV (%): 19.6	<u>/</u>
Tost Posulto:	The 96-4 C	CSS 7 100 0/5 W/J)
Test Results:	, , , , , ,	7-1
	_	1
Reviewed by:	1 Tone	Date reviewed: September 5,2008
Noviewed by.	X	0

Issued July 12, 2006; Ver. 1.0

96-Hour Rainbow Trout Toxicity Test Data Sheet

Date Reviewed: September 25,200

Issued October 9, 2007; Ver. 1.1

Reviewed by:

Daphnia magna Summary Sheet

,		Start Date/Time: _	3/08€
Client:	Teck cominco	Test Species:	D. mapra
Work Order No.:	08211	Set up by: _	AND
	* ,	CO. up 5)	
Sample Information	n:		
	2 0-02k	* , '	
Sample ID:	er mer		
Sample Date:	AUG. 30/08 @ 0800h	• • • • • • • • • • • • • • • • • • • •	* •
Date Received:	370 2108 @ 1600h	•	
Sample Volume:	INACL	• , ,	
Test Organism Info	ormation:		
,		081608	
Broodstock No.:		224-h	
Age of young (Day (0):		
Avg No. young per b	prood in previous 7 d:	<u>16</u> 0	
Mortality (%) in prev	vious 7 d:	9	
Days to first brood:			
NaCl Reference To	xicant Results:		
	Om 27		
Reference Toxicant	ID: Dm 37		
Stock Solution ID:	08 N40	1 -	
Date Initiated:	Sept 3	2-49) 5/6 Nach	•
48-h LC50 (95% CL): 3,9'(3	2-4.9/3/01000	
		10 + 10 11 11 15 -	
Reference Toxicant	MIOG.: 2	12 11.0 g/L Nacc	
Reference Toxicant	CV (%):	122	-
		•	,
	4		
. ·			
		and all	
Test Results:	The 48h LC50 7	1007. (V/V)	
,		and the second	
• .			
			- 1 1 1 200 - 00
Reviewed by:	A. Tone	Date revie	wed: <u>September 25, 200</u>
Neviewed by.		_	0
C 3 .			

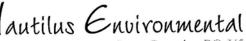
Freshwater Acute 48 Hour Toxicity Test Data Sheet

Oliant		7	- b	Come	460				Start	Date	Time:		Sup	13/0	8Q ()	20
Client: Sample ID: Work Order No.:			(7	- Car	ek.			No. C	Organis	ms/vo	lume:	10/2	00mL			
Work Order No:		28	2.11						Tes	t Orga	anism:	D.IIIag	ııa			
Work Order 140										Set	up by:		A	مر		
DO meter:		DO-1	,	_		pH i	neter:		pH-1		,	Conduc	tivity	meter	C-1	
						T T0	mpera	turo	Disso	lved o	xvgen		рН		Condi	uctivity
Concentration			umber Orgar		No.	1 1 61	(°C).			(mg/L)			, ,			/cm)
.0/2 (3/2)	Rep	Live	Olyai	lioi iio	Immobilized		(- /-								<u> </u>	
1.(1)	1.04	. 0	24	48	48	0	24		8.0	24	48	0	24	48	0	48
Control	Α	10	10	10	٠,٥	20.8	19.2	108	938	1	87	21	99.00 396.5	78	33.1	382
BINTER	В			1		1940 (C.) 1970 (C.) 1970 (C.)						199	2964	dece Table 19		
	С	14.						4			2012	and the		ART AL		
	D					West Control					6 9	20		100	11.00	~
6,26	Α	10	12	10	0	20.6	14,7	200	9.0		8-8	7.5		77	1625	ms
	В						A					100	-			1,300
	С						1	100		1	1.00	200			1000	100
	Ď							ACTION OF	- (6 7	9.5		78	2210	22/ 0
12.5	Α	10	12	10	0	205	127	208	8.8	- Cos	27	+0	38	10	221	2360
·	В	·	<u> </u>	L'.			1770			1 2 2		55 7			Section 19	
	С			ļ		440	1 4 mg								34.00	
	D	<u> </u>				2000年	.00	a r	3.9		87	78	1	28	3380	3690
25	A	10	10	12	0	20.5	19.7	10.9	0.1			7.0		() (0)		
	В														1200	
	С	-		 						70c			A		100	
	D	1.0	12	10	0	20 1	. 0.7	20.8	89		F ()	77		27	53/0	5670
. 50	A	10	17	11/	 	100	447								e 4460	#
	В		-	-	 	(6)	e data		1.36		70					1 Table 1
	D	\vdash		+			J. (4)	看							1	23236
		10	10	10	0.	21.2	19 7	Za.	888		F-7	77		五	11500	uzz.
105	В	1	12				37.		100	1						
	c	1	+						1000		1 2				100	
	D					F100%	3							R May	96	
Technician In	itials	m	1	1	•	M		1-	12		m	12		<u></u>		1
100.11.						_					_			· -	1 P - 1 - 1	1410
	Hard	iness*			Alkalinity*				1017	IWQ		Adjustm	ent	+	Adjusted	wQ
Conc.		v.	*(mg/L	as CaC		4 .	Temp			8	-		-	+		
Control (MHW)	,	100			98	4	DO (n	ng/L)	7		 					
Highest conc.	1	64	<u> </u>		98		pH	(µS/cm	110			٠ -				
							Cond	(ро/сп	<u> </u>							
Sample Descrip	tion:				Oko	~										
Comments:		wed	boke	h o	81508 AHB				1		<u> </u>	,	,		<i></i>	- b
Reviewed by:		7	4	tere	X		_ D	ate rev	viewed:		Dep	tem	ben	(2)	5,20	٥٥
			000=	. ()								Na	utilus E	nvironmer	ital

Client: Tele Commune

1480

W.O.#:


Hardness and Alkalinity Datasheet

						4						 -								
	Technician	BRL							c s										20	8002
	Total Hardness (mg/L CaCO ₃) Technician	640		2																September 25,2008
Hardness	Volume of O.01M Total EDTA Used Hardness (mL) (mg/L CaCC	6,4					2.2							,						gterulo
		0,00																		' '
										,		,								iewed
	Fotal Alkalinity	86																		Date Reviewed:
	mL) of 0.02N HCL/H ₂ SO ₄ used- to pH 4.2	5.1									N.		,							
Alkalinity	(mL) 0.02N (mL) of 0.02N HCL/H ₂ SO ₄ used Total Alkalinity to pH 4.5 to pH 4.2 (mg/LCaCO ₃)	5.0			ř	2		K		,					8 15	T .			Sept 3	9
A	Sample Volume (mL)																	Notes:	1 1	13
	Sample Date																			7
	Sample ID	7																		Reviewed by:

Version 1.0 Issued June 26, 2006

- sample diluted to loom

Chain of Custody (electronic) Receipt Temperature (°C) Date Aug 32/02Page (of) Time/Date: Sept 2/0801600 RELIQUINSHED BY (COURIER) RECEIVED BY (LABORATORY) ANALYSES REQUIRED Company: Time/Date: Signature: Signature: Company: Print: Print: 7 30 αh H X 8 Z anh 01 Acute Toxicity H 188) 03 CTO COMMENTS GARINGE LEG Additional costs may be required for sample disposal or storage. Net 30 unless otherwise contracted Same as report to. Corris KIDIO Avs 30108 RELIQUINSHED BY (CLIENT) RECEIVED BY (COURIER) 3 bruce.donald@teckcominco.com; alaudrum@gartnerlee.com CONTAINERS Signature: Time/Date: Company: Time/Date: Signature: Company: Invoice to: # OF Print: Print: CONTAINER 20 L Jug SAMPLE RECEIPT SPECIAL INSTRUCTIONS/COMMENTS: Water is hypersaline. Fax: 250-427-8451 Washington: 5009 Pacific Highway East, Suite 2, Tacoma, WA 98424 Seawater MATRIX California: 5550 Morehouse Drive, Suite 150, San Diego, CA 92121 Matches Schedule? Fotal # Containers: X British Columbia: 8664 Commerce Court, Burnaby, BC, V5A 4N7 **Good Condition?** Teck Cominco Metal Ltd. Kimberley, BC V1A 3E1 Sem TIME B AM 250-427-8405 **Bruce Donald** Nautilus Environmenta Bag 2000 Report to: Arg 353 DATE A PROJECT INFORMATION City/Prov/Postal Code Client: Polaris 80325 Sample Collection By: SAMPLE ID G Creek Shipped Via: Company P.O. No.: Address Contact Phone Email

8664 Commerce Court, Burnaby, BC V5A 4N7

WO#: 08218-219

Mr. Bruce Donald Teck Cominco Metal Ltd. Bag 2000 Kimberley, BC V1A 3E1

September 26, 2008

Dear Mr. Donald:

Re: Toxicity testing on the sample identified as G Creek (Collected September 6, 2008)

Nautilus Environmental is pleased to provide you the results of the 96-h LC50 Rainbow Trout toxicity test and 48-h LC50 *Daphnia magna* on the above sample, received on September 9, 2008. Testing was conducted according to Environment Canada 1/RM/13, (Second Edition, 2000, including May 2007 amendments) and 1/RM/14, (Second Edition, 2000). The results of these tests are provided in the tables below and are based on the appended data. All acceptability criteria outlined in the Environment Canada protocol were met.

Table A. Results for the 96-h Rainbow Trout test.

Sample ID	Collection Date and Time	96-h LC50 (% vol/vol)
G Creek	September 6, 2008 @ 1600h	>100

Table B. Results for the 48-h D. magna test.

Sample ID	Collection Date and Time	48-h LC50 (% vol/vol)
G Creek	September 6, 2008 @ 1600h	>100

Please feel free to contact the undersigned at 604-420-8773 should you have any questions or require any additional information.

Yours truly,

Nautilus Environmental

conna word

Andy Diewald, B.Sc.

Lab Supervisor

Rainbow Trout Summary Sheet

Client:	Teck cominco uetai utd	Start Date/Time: _	sept. 9/08 @ 1730h
Work Order No.:	08318	Test Species: C	Oncorhynchus mykiss
Sample Information			
			•
Sample ID:	4 creek		•
Sample Date:	300t. 6/08 @ 1600h	, . · · ,	• • • • •
Date Received:	<u>eapt.</u> 9108	* *.	
Sample Volume:	1×30F		
Other:			
	*.		
Dilution Water:			
*.			
Type:	nechlarinated wonscip	al tap water	
Hardness (mg/L CaC	O ₃): 10		
Alkalinity (mg/L CaCC	O ₃): 4		
× 2			
Test Organism Infor	rmation:		
			•
Batch No.:	8 9.79.8 0		
Source:	sun valley Trout Form	<u>n</u>	
Test Volume/No. Fish			
Loading Density:	0,3,78		
Mean Length ± SD (n			nge: 33 - 38
Mean Weight ± SD (g	-0 + 0	Rai	nge: 0.31-0.42
Wedit Worght 2 02 (S		9	
SDS Reference Toxi	icant Results:		
de la company			
Reference Toxicant II	D: RT 36		
Stock Solution ID:	08.503		
Date Initiated:	50t. 2 108		
96-h LC50 (95% CL):			
90-11 2000 (0070 02).	400		
Reference Toxicant M	Mean ± 2 SD: 5.4 ± 2.1		
Reference Toxicant C		ງ ໃຈ	
Reference Toxicant c			
Test Results:	The 96-h LC50 is est	imated to be :	>1001/2 (A/A)
rest nesults.	112 10 17 2000 0 001		
Reviewed by:	1. Tere	Date reviev	ved: <u>Soptember 25,</u> 200
	/\		()

Issued July 12, 2006; Ver. 1.0

96-Hour Rainbow Trout Toxicity Test Data Sheet

Client/Project#:			٣	TECK COMMINE	3	Z	3		5		, 2	dumb	Number Fish/Volume:	h/Vo	lume				2	701/01	1			
Sample I.D.		1		Ġ	5	K				1		% p-,	7-d % Mortality:	ality:				O	25					
W.O.#		'		00	212	32780					_	Cotal	Pre-a	eratic	on Tir	Total Pre-aeration Time (mins):	ins):			100				
RBT Batch #:		Ι.		082608	60,	CO				<u> </u>	1	Aerat	on ra	te ad	juste	Aeration rate adjusted to 6.5 ± 1 mL/min/L? (Y/N):	5±1	m	nin/L'	N/A)	<u></u>	3		
Date Received/Time:	Time	ا پر		3	6	80							41									0		
Date Setup/Time:	.:			3	epr 9	80/	(1)	1301	3		لت	Jndilt	Undiluted Sample WQ	ample	≥ WQ									
Sample Setup By:	3y:			B	\							Par	Parameters	LS	Initi	Initial WQ		Adjus	Adjustment		30 min WQ	NQ		
												Te	Temp °C	:	12.	1		٠		_	(2.			
D.O. meter:			ă	DO-1						,			Hd		ř	8					7.8			
pH meter:			id .	pH-1								D.0	D.O. (mg/L)	(L)	11.2	7					10.9			
Cond. Meter:		. '	C-1	-							لك	Cond	Cond. (µS/cm)	cm)	5	akorc)				4	exoc.	e	_	
							,																	
Concentration			# Sul	# Survivors				ĭ	Temperature (°C)	rature	(၁)		Disso	lved (Oxyge	Dissolved Oxygen (mg/L)	/L)			చ	,	Con (h	Conductivity (µS/cm)	>
	-	2	4	24 4	48 7	72	96	0	24	48	72	96	0	24	48	72	96	0	24 4	48 72	2 96	0	96	
Contract			_	10	101	0)	0	(53	14.8	147 14.7		25	e-01 0-01 7551		Loy!	10.1 4,9		43 4		7.07.1	1 7	30	_	`
k-3				3	101	01	101	65	14.8	14.7	14.7	25	0.01 a-01	0.0	10.01 10.0		6 001	484	1 /	60	・」、	873	893	3
521				<u>-</u> ع	101	101	01	K-51	t 4 4 4 4 8 16 51	4.7		15,2	100	0.0	10.1	e-1/0.01/0.01/1-01		C 194	727.1	-	13 34	1353	5 15-73	3
×				9	101	10	0'	15.5	8371	14.7 (4.7		15.4 (0-		10.01	10.1	10.0	ું કે ઇ	757	734.4	43	375	2310		3
૬			_	9	101	101	CA	15:51	14.8	14.7	14.7	1.01 pis.		10:01	100 10.010.0		9,9	44	421	7.63	597	45B	6510	2
601)	1 0)	10	0)	101	ابحا	148	441	14.7		15,210-1100 10.110.6	00	(0.)	0.0	9.9	684	787.779	11	9 79	7027	06121 2	00
																								el e
										a .			,	, ,										
Initials				M	347	117	A	AN VAU		J.C.	F	۶	en en		357	50	٤	S. C.	3	3950	3	Ž	٤	
Sample Description/Comments:	tion/	Com	nents:			2	clear		Sample	Z	6			v										
Fish Description at 96?	n at 9	96?		-1	Fish		app	30	1	(7)	١	,					*		,			. ,		
Other Observations:	ions						-																	
		-	1																\	-	\	,	TX C	٨
Reviewed by:	C	Z,	B	8											_	Date Reviewed:	eview	Ved:	Õ	8	32	Septembal 25,200	2002	

Nautilus Environmental

Issued October 9, 2007; Ver. 1.1

Daphnia magna Summary Sheet

Client:	اصلا ، ، المسلاء ، ، المسلاء ، ، ، المسلاء ، ، ، المسلاء ، ، ، المسلاء ، الم	Start Date/Time:	sept9/08@1630h
	Teck cominco Hetal Ltd.	Test Species:	D. maprie
Work Order No.:	08919	Set up by:	HWD HWD
		Get up by	173.00
Sample Information	1:		
Sample ID:	<u>G Crack</u>		
Sample Date:	sept. 6/08 @ 1600h		
Date Received:	crpt. 9108		
Sample Volume:	1x30/		
Test Organism Info	rmation:		
3			
Broodstock No.:	<u> </u>	200BB	
Age of young (Day 0	۸۰	< zifih	
Ava No vound ner h	prood in previous 7 d:	11	
Mortality (%) in previ			
	9		
Days to first brood:			
NaCl Reference To	vicant Results:		
Naci Keterence 10	Alcant Nesules		
	Dm 37		
Reference Toxicant	08 N402		
Stock Solution ID:	2. X3 kg		
Date Initiated:	3.9 (3.2-	4.9) 3/6 Nacl	, ·
48-h LC50 (95% CL)): 3/7 (5.6-	/)	
* .	na d	10-11 11-4	
D. Common Toylogat	Mean ± 2 SD: 4,73	2 20 100	
	CV (%):	0.0	
Reference Toxicant	CV (%):		
	CV (%):	100	
	CV (%):		
Reference Toxicant		mated to be >	1007. (UIV)
	The 48-h LC50 is est	mated to be >	1007. (UIV)
Reference Toxicant		mated to be >	1007. (VIV)
Reference Toxicant			
Reference Toxicant			
Reference Toxicant			1007. (VIV) ed: September + 25

Freshwater Acute 48 Hour Toxicity Test Data Sheet

Client: Sample ID:			1 cul	Cree	g .		-	No. (Star Organis	Date	/Time: olume: anism:	10/2	200	mL	Sypt	9/206	5 (630
Work Order No.:			0	821	9 .		-		res		up by:						
DO meter:		DO-1	l	-		рΗ	meter:		pH-1			Condu		_			
Concentration			lumber Organ		No. Immobilized	Те	mpera (°C)	ture		lved ((mg/L	oxygen)		р	H			uctivity (/cm)
(15 3/3)	Rep	0	24	48	48	0	24		0	24	18	0	2	24	48	0	48
Gortral	Α	10	10	-	0	188	21.5	215	9.1	1	47	F2		i šedvje	3.0	37~	354
	В					3.50	750	100			30.00	STATE OF			W. W.		
	С					1000		Sec.					H				
	D							1000	1000 m		4	82		o la Tilla	29	11:22	1245
6.25	Α	12	10	10	0	W.	315	w	40	m. 44.2	6~/		14.			11/0	1243
	В		ļ			200									200 ag		
	С	ļ	<u> </u>						in the second								
	D	<u> </u>	-		0	23-(21.5	45	91		86	81			79	2043	2230
125	Α	12	01	10			3 (13	и. т						Messey earlies			Maria de la companya
	В		-				0.524					110				rate de	
	C D							a de				and T		数を数			
25	A	12	10	10	D	198	a15	21,5	9.1	I	55	¥.0			7F	3750	3942
	В	1-	<u> </u>	-		- 4		94			Sit.				1	See 16 8	
	С								4.00				4			TO THE	S. 154
	D					10			20 A		100	30	1	1	2 A	<00°	
50	Α	10	10	12	<u>م</u>	190	21.5	201	9,2	PROFESSION	8.5	49		OR CHOSE	4)	5980	6530
	В									4-		4.0					
	С							2									
Marat (23)	D		10			160	0.0	01/2	62		84	79	遊遊	ik o k	가 구	11870	12684
100	Α	10	10	10	0	'A.	au.5	μ	7.5		8.1			No.			
	В		-						70.5	1							
	C						- 	4									
Toolugiaise leit	D	4	ore	A		~	Dri	~	A		7	~	П		A	r	(h
Technician Init	lais	"r	000	المرا	_ ~		Di C				(
ľ	Hardn	*			Alkalinity*				Initial	WQ	Ac	djustme	ent		,	Adjusted \	NQ
Conc.	Haidi		*(mg/L a	s CaCo			Temp (°C)	15	خ					/		
Control (MHW)		100					DO (mg	g/L)	٩,	3							
Highest conc.		660	>	9	7		pН		7								
						l	Cond (uS/cm)	W	75							
Sample Description							en										
Comments:		wc	1	082	208 B	09	oto	lest b	$\overline{\omega}q_i$	9_	nout;	φ	FM	g.*	* yno	2008 2008	
Reviewed by:		1	10	Q,	4		Dat	e revie	ewed: _	_	5001	em	be	1	25,	2008	

Version 1.1 Issued October 9, 2007

Client: Teck Contract

W.O.# (Sp. 08219

Hardness and Alkalinity Datasheet

	v *											3					-			
	Technician	BPL						,							/-				-	
3	Volume of Total EDTA Used Hardness (mL) (mg/L CaCO ₃) Technician	099							2	Б										
Hardness	Volume of 0.01M EDTA Used (mL)	0-9			,										-					
	Sample Volume (mL)	10.0								2			,							
Г		ଚ							v					٠,	v	- 1				
	Total Alkalinity (mg/LCaCO ₃)	36	,												×					
	mL) of 0.02N HCL/H ₂ SO ₄ used o pH 4.2	2.0		,		4		, .									14			el el
Alkalinity	(mL) 0.02N (mL) of 0.02N HCL/H ₂ SO ₄ used Total Alkalinity to pH 4.5 (mg/LCaCO ₃)	4.9			,		28										1	B		56.35
,	Sample Volume (mL)	Seo																		Notes:
	Sample Date	Sept. (6/08									,									
	Sample ID	٦																* .		

Reviewed by:

Date Reviewed:

Jampa 25, 200}

Sample to 100.0 ml wing D. I water. O Diluted (6-0 ml of

Nautilus Environmenta	ment	a						0	Chain of Custody (electronic)	ustody (e	lectronic)
California: 5550 Morehouse Drive, Suite 150, San Diego, CA 92121 Washington: 5009 Pacific Highway East, Suite 2, Tacoma, WA 98424 British Columbia: 8664 Commerce Court, Burnaby, BC, V5A 4N7	Drive, Suite Jhway East, nerce Court	150, San Dieg Suite 2, Tacol , Burnaby, BC	io, CA 92121 ma, WA 9842. ;, V5A 4N7	4			٥Ş			Date Supply Age 1 of 1	Age I of
Sample Collection By:	Kick	1m2	Lot				27	Ā	ANALYSES REQUIRED	JIRED	(
	Report to:				Invoice to:	Same as report to.	15)。) ə
Company	Teck Com	Teck Cominco Metal Ltd	Ltd.				1 3 1 3				una
	Bag 2000						7				EJE
City/Prov/Postal Code	Kimberley, BC	V, BC V1A 3E1	3E1				9b				ėdi
Т	Bruce Donald	nald					ity ity		-		шə
	250-427-8405		Fax: 250-427-8451	51			Y XIC				TJ
Email	bruce.dona	ald@teckcon	ninco.com;	alaudrum@g	bruce.donald@teckcominco.com; alaudrum@gartnerlee.com	Ī	01 (djə
				THE PERSON	10,7	_	,				908
SAMPLEID	DATE	TIME	MATRIX	CONTAINER	# OF	COMMENTS	no∀ T	1		,	В
1 G Creek	9thes	HPM	Seawater	20 L Jug	2		×				7.9
						0-1	8	_			
2						10 pl 0	12				
4					1	00/670	20		,		39.46
LC.						R X	A S				Sw
9						50	~				77%
2											15.00
8		,									
6											\$ 1.11 \$ 1.11
10											\$3
PROJECT INFORMATION	ATION	SA	SAMPLE RECEIPT	EIPT	RELIQUINS	RELIQUINSHED BY (CLIENT)		RELIQUI	RELIQUINSHED BY (COURIER)	URIER)	
Client: Polaris 80325		Total # Containers:	ntainers:	7	Signature:	Kind for	,	Signature	ë		
P.O. No.:		Good Condition?	dition?	>	Print:	I'm d Gowllew		Print:			
Shipped Via:		Matches Schedule?	chedule?	7	Company: /	Narwha Sept6	20 5	Company: Time/Date:	000 is:	X	00
SPECIAL INSTRUCTIONS/COMMENTS: Water is hypersaline.	/COMMEN	TS: Water is	s hypersali		RECEIVED	RECEIVED BY (COURIER)		RECEIVE	RECEIVED BY (LABORATORY)	тову)	
					Signature:			Signature:	7		-
					Print:			Print: "	John L	· •	-
					Company:			Company:	New til	US Phy	Panentel
					Time/Date:			Time/Date:	60 (600	Sept 9	1.5
Additional costs may be required for sample disposal or storage. Net 30 unless otherwise contracted.	e required	for sample	disposal o	r storage. N	et 30 unless	otherwise contracted.			,	 - 	