Table CR-15-1. Old Crusher Area Remediation Confirmation Soil Samples - Metals

			Location						Old Crusher					
Gartner Lee	9		Sample 1D	CR-66-F-C	CR-67-F-C	CR-79-F-Q* (duplicate of CR-67-F-C)	CR-68-F-C	CR-69-F-C	CR-70-W-C	CR-71-W-C	CR-70-W-C CR-71-W-C CR-72-W-C CR-73-W-C CR-74-W-C CR-75-W-C	CR-73-W-C	CR-74-W-C	CR-75-W-C
)		D	Date Sampled	8/10/03	8/10/03	8/10/03	8/10/03	8/10/03	8/10/03	8/10/03	8/10/03	8/10/03	8/10/03	8/10/03
		Field Sc	Field Screen Pb (ppm)"	150.59	186.06	29.63	208.03	153.41	48.37	37.11	92.77	17.18	107.2	36.87
		Field Sc	Field Screen Zn (ppm)	341.99	416.65	283.37	430,14	395	271.84	212.81	256.59	207.59	409.4	268 28
		Federal CCME Guldelines	E Guldelines											
rarameter	Units	CEQG (PL)*	SQRO	Analytical Results	sults									
Physical Tests														
pH				8.81					,			,		
Total Metals														
Antimony T-Sb	mg/kg	204		<20	4.	7	,		9					
Arsenic T-As	mg/kg	12		11	-	-	,	,	29					
Barium T-Ba	mg/kg	200		798							1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
Beryllium T-Be	mg/kg	P T		7	E	25			×	2	*	**		
Cadmium T-Cd	mg/kg	10		<1	,			,	•					
Chromium T-Cr	mg/kg	64		12	,			2.0		£.				
Cobalt T-Co	mg/kg	504		4		1000	100						6	60
Copper T-Cu	mg/kg	63		8		2	8						ı	
Lead T-Pb	mg/kg		2000	<200	209	328	235	<200	<200	<200	<200	<200	<200	<200
Mercury T-Hg	mg/kg	9.9		0.07	,			9						
Molybdenum T-Mo	mg/kg	104		80								13		*
Nickel T-Ni	mg/kg	90		21	ř	×								
Selenium T-Se	mg/kg	1		€3,	•							2		
Silver T-Ag	mg/kg	204		45										
Tin T-Sn	mg/kg	50 ⁴		<10					10	100	20	*		÷
.=	mg/kg	130		19				ı						
Zinc T-Zn	mg/kg		10000	155	170	400	228	141	55	52	99	49	108	85

Associated ALS Analytics files: T2886

c) Field screening measurements are based on the Niton XL1 700 Series portable X-Ray Fluorescence (XRF) elemental analyser.

b) Canadian Council of Ministers of Environment (CCME) Tier 3 Risk based soil quality remedial objective (SQRO)

for the Polaris Mine Site.

d) Canadian Council of Ministers of Environment (CCME) Tier 1 parkland land use interim remediation criteria, where soil quality gudelines baxed on the CCME soil protocol have not been developed yet.

e) The analytical method detection limit (AIDL) exceeds the CCMF Tier I Soil Quality Remediation Guidelines for parkland land use (PL),

"Sample CR. 79-7-Q to recorded as CR. 79-F-C in ALS report 72886

1 of 2

			Location		Old Crusher	
Gartner Lee	r Lee		Sample ID	Sample ID CR-76-W-C	CR-77-F-D	CR-78-F-D
		D	Date Sampled	8/10/03	8/10/03	8/10/03
		Field Sc	Field Screen Pb (ppm) ^e Field Screen Zn (ppm) ^e	292.62 535.48	290.15	308.5
		Federal CCME Guldelines	E Guidelines			
Farameter	Onits	CEQG (PL)*	SQRO*	Analytical Results	sults	
Physical Tests						
рН						
Total Metals						
Antimony T-Sb	mg/kg	20 ^d				
Arsenic T-As	mg/kg	12				
Barium T-Ba	mg/kg	500				
Beryllium T-Be	mg/kg	44				
Cadmium T-Cd	mg/kg	10				,
Chromium T-Cr	mg/kg	64				,
Cobalt T-Co	mg/kg	50 ^d		,		
Copper T-Cu	mg/kg	63				,
Lead T-Pb	mg/kg		2000	227	<200	184
Mercury T-Hg	mg/kg	6.6				r
Molybdenum T-Mo	mg/kg	10 ^d				
Nickel T-Ni	mg/kg	50				4
Selenium T-Se	mg/kg	-				
Silver T-Ag	mg/kg	20 ⁴				
Tin T-Sn	mg/kg	50 ^d				
Vanadium T-V	mg/kg	130				
Zinc T-Zn	mg/kg		10000	202	331	201

Polaris Mine Site	Bold Exceeds the CCME	Boid Exceeds the CCME
	Tier 3 Risk-Based Soil Soil Quality Remedial Objectives	tier I son Quality Guidelines for Ediziana Lana Ose

<= Less than analytical method detection limit

"." = No analysis performed for given parameter, or no guideline

a) Canadian Council of Ministers of Environment (CCME) Canadian Environmental Quality Guidelines (CEQG) na = No field screening result available

Tier 1 soil qualty remediation guidelines for parkland land use (PL). The site specific factors used for determining the soil quality guideline include: soil ingestion, soil contact, and nutrient cycling.

b) Canadian Council of Ministers of Environment (CCME) Tier 3 Risk based soil quality remedial objective (SQRO)

for the Polaris Mine Site.

c) Field screening measurements are based on the Niton XLi 700 Series portable X-Ray Fluorescence (XRF) elemental atalyser.

d) Canadian Council of Ministers of Environment (CCME) Tier I parkland land use interim remediation criteria, where soil quality gudelines based on the CCME soil protocol have not been developed yet.

e) The analytical method detection limit (MDL) exceeds the CCME Tier 1 Soil Quality Remediation Guidelines for parkland land use (PL).

Sample CR-77-F-D is recorded as CR-77-D in ALS report T2886

**Sample CR-78-F-D is recorded incorrectly at CR-78-P-D in ALS report T2886

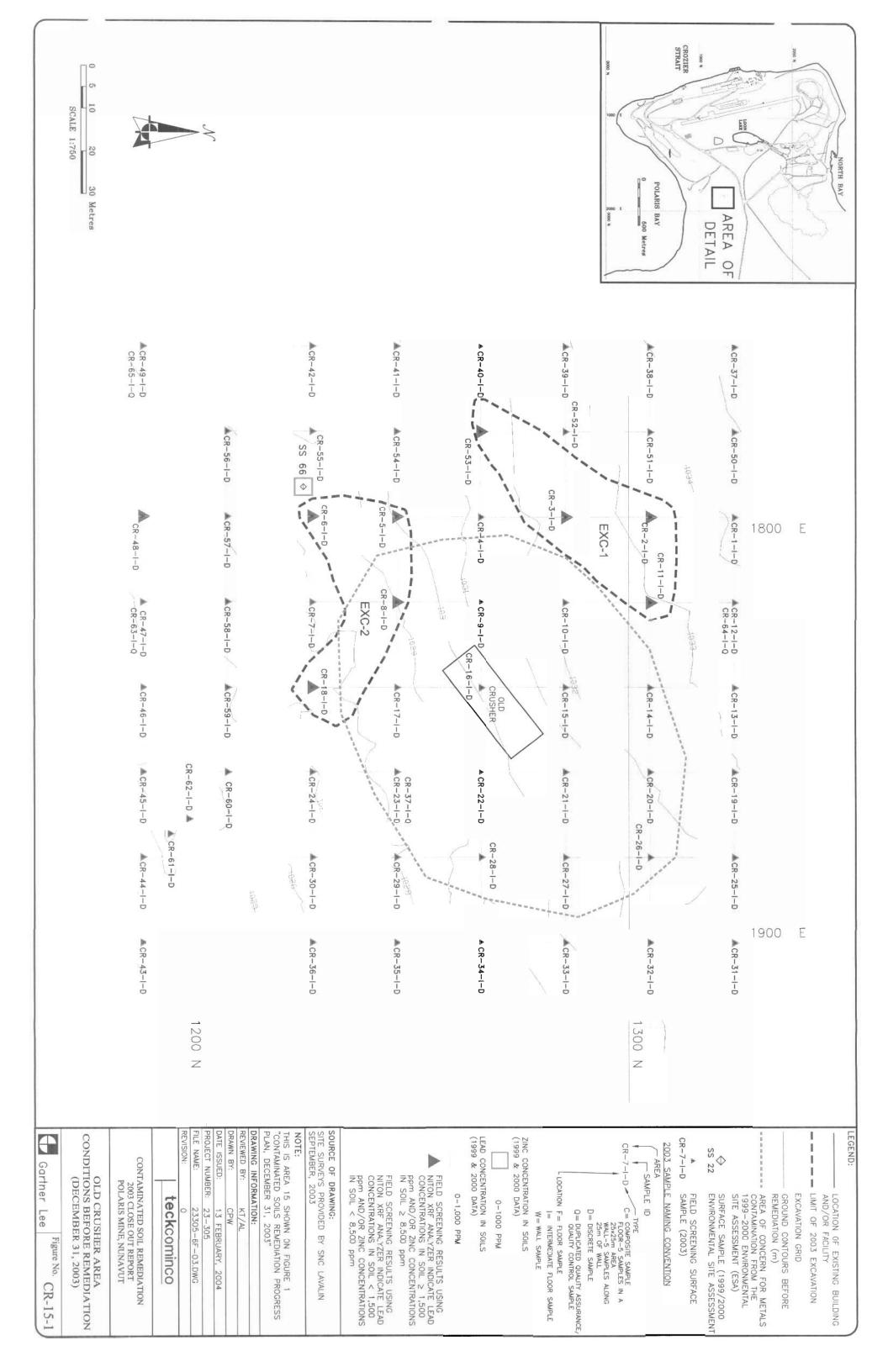
Old Crusher Area Quality Assurance and Quality Control Remediation Soil Samples Table CR-15-2.

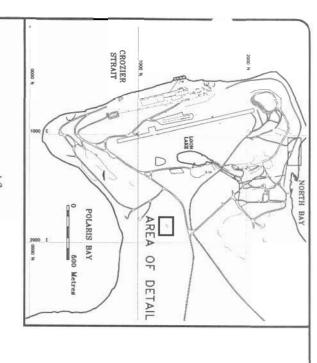
	Parameter	Pb	q	Z	Zn		Total Pb			Total Zn	
Gartner Lee Relative Percent	Relative Percent							DnD*			PnD*
	Difference (RpD)*	MDL	PQLb	MDL	MDL PQLb	Sample Pb	Duplicate Pb	Co)	Sample Zu	Duplicate Pb	(%)
Sample ID	Duplicate ID		8		8			(0/)			(0/)
On Site Field Screening Duplicates	uplicates							201-900-00-00-00-00-00-00-00-00-00-00-00-00			
CR-12-I-D	CR-64-I-Q	20	100	09	300	483		25.1	818		18.3
CR-23-I-D	CR-37-I-Q	20	100	09	300	182	395	74.1	659	1701	88.3
CR-47-I-D	CR-63-I-D	20	100	09	300	422		38.9	752		14.8
CR-49-I-D	CR-65-I-D	20	100	09	300	498		9.6	196		0.7
Analytical Laboratory Duplicate	olicate										
CR-67-F-C	CR-79-F-Q	200	1000	4	20	209	328	na	170	400	80.7
Analytical Laboratory Replicates	olicates										
CR-76-W-C	QC# 350293	200	1000	4	20	227	223	na	202	185	8.8

Notes:

| RpD value is greater than or equal to 50% and the concentrations of both samples are greater than the practical quantitation limit (PQL)

"na" = RpD value is not applicable because one or both results are less than the practical


quantitation limit (PQL).


"." = no result for given parameter

"<" = less than analytical method detection limit

a) Relative Percent Difference = RpD = (Difference/Average) * 100

b) Practical Quantitation Limit (PQL)=5 * Method Detection Limit (MDL)

LEGEND:

FORMER LOCATION OF BUILDINGS AND FACILITES (REMOVED)

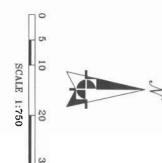
SAMPLE NAMING CONVENTION

AREA

2003 SAMPLES

AREA OF METAL CONCERN FROM 1999-2000 ENVIRONMENTAL SITE ASSESSMENT

LIMIT OF 2003 EXCAVATION


CONTOURS - BASE OF EXCAVATION

EXCAVATION GRID

ROADS

0

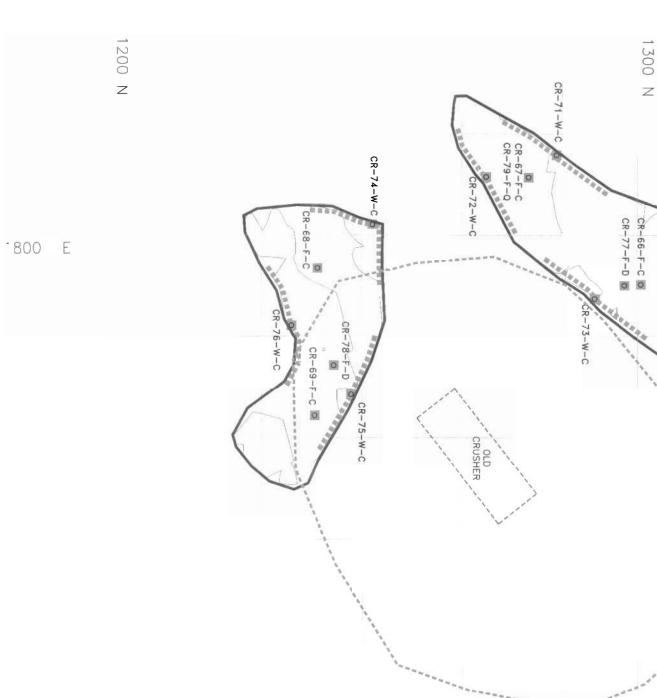
CONFIRMATORY FLOOR OR WALL SAMPLE

30 Metres

2003 CONFIRMATION SAMPLES

FLOOR SAMPLES

CR-78-F-D	CR-77-F-D	CR-69-F-C	CR-68-F-C	CR-79-F-Q Duplicate of CR-67-F-C	CR-67-F-C	CR-66-F-C	Sample ID	
184	<200	<200	235	328	209	<200	Pb (mg/kg)	
201	331	141	228	400	170	155	Zn (mg/kg)	


Sample ID	CR-66-F-C	CR-67-F-C	CR-79-F-Q Duplicate of CR-67-F-C	CR-68-F-C	CR-69-F-C	CR-77-F-D	CR-78-F-D
Pb (mg/kg)	<200	209	328	235	<200	<200	184
Zn (mg/kg)	155	170	400	228	141	331	201

WALL SAMPLES

Arnphe ID Fro (mg/kg) 4-70-W-C <200 2-71-W-C <200 2-72-W-C <200 2-73-W-C <200 2-74-W-C <200 2-75-W-C <200 2-76-W-C 227 Lead or Zinc concentrations obtain	5	Dr (mallia)	7-1-
2.70-W-C <200 2.71-W-C <200 2.72-W-C <200 2.73-W-C <200 2.75-W-C <200 2.76-W-C <200 2.76-W-C 227 2.76-W-C 227 2.76-W-C 227 2.76-W-C 227	Sample ID	ro (mg/kg)	zn (mg/kg)
2.71-W-C <200	CR-70-W-C	<200	55
2.72-W-C <200	CR-71-W-C	<200	52
273-W-C <200	CR-72-W-C	<200	65
R-74-W-C <200 R-75-W-C <200 R-76-W-C 227 Less than detection limit Lead or Zinc concentrations obtained	CR-73-W-C	<200	49
R-75-W-C <200 R-76-W-C 227 Less than detection limit Lead or Zinc concentrations obtained	CR-74-W-C	<200	108
2-76-W-C 227 Less than detection limit Lead or Zinc concentrations obtained	CR-75-W-C	<200	85
	CR-76-W-C	227	202
	ES:		
	Less than	detection limit	
from ALS analytical laboratory	Zn Lead or Zi from ALS	nc concentrations obta analytical laboratory	ained

Pb, Zn <200

NOTES:

1900 E

OLD CRUSHER AREA CONDITIONS AFTER REMEDIATION (DECEMBER 31, 2003)

Gartner Lee

Figure No.

CR-15-2

CONTAMINATED SOIL REMEDIATION 2003 CLOSE OUT REPORT POLARIS MINE, NUNAVUT

THIS IS AREA 15 SHOWN ON FIGURE 1 "CONTAMINATED SOILS REMEDIATION PROGRESS PLAN, DECEMBER 31, 2003" SOURCE OF DRAWING: SITE SURVEYS PROVIDED BY SNC LAVALIN SEPTEMBER, 2003 DRAWN BY: REVIEWED BY: PROJECT NUMBER: THE NAME: - SAMPLE ID SAMPLE CONTAINS LESS THAN 10,000 mg/kg ZINC SAMPLE CONTAINS LESS THAN 2,000 $\mathrm{mg/kg}$ LEAD ZTYPE C= COMPOSITE SAMPLE IN A FLOOR-5 SAMPLES IN A 25x25m AREA ALONG WALL-5 SAMPLES ALONG 25m OF WALL LOCATION AREA OF WALL COMPOSITE
WALL SAMPLE CONTAINS LESS
THAN 10,000 mg/kg ZINC OR
2,000 mg/kg LEAD teckcominco CPW 13 FEBRUARY, 2004 23-305 23305-6F-02.DWG KT/AL Q= DUPLICATED QUALITY ASSURANCE, QUALITY CONTROL SAMPLE D= DISCRETE SAMPLE F = FLOOR SAMPLE

| INTERMEDIATE FLOOR SAMPLE

W = WALL SAMPLE

Appendix G

Polaris Mine Operations Contaminated Soil Remediation Close Out Report: Main Snow Dump

December 31, 2003

Mr. Bruce Donald Teck Cominco Limited Bag 2000 Kimberley, BC V1A 3E1

Dear Mr. Donald:

Re: 23305 - Polaris Mine Operations Contaminated Soil Remediation

Close Out Report: Main Snow Dump

BACKGROUND

The main snow dump (shown as Area 17 shown Figure 1: Contaminated Soils Remediation Progress Plan) was one of four locations used for the storage of snow that had been collected from travel routes on the Polaris mine site. The snow dumps were identified as areas of environmental concern in the Environmental Site Assessment (ESA), due to the inclusion of particulates with elevated lead and zinc concentrations. Prior to the ESA, snow dumping at the main snow dump had ceased, and any remaining snow had been removed.

The main snow dump (MSD) was located at the southern tip of the mine site peninsula. Once the Snow Dump was removed, five test pits were excavated in the underlying soils during the Environmental Site Assessment (ESA) conducted in 1999 and 2000 as shown in Figure SD-17-1. Test pits MSD-1 through MSD-4 were excavated downslope between the former Snow Dump and the ocean. Test pit MSD-5 was excavated upslope of the former Snow Dump to provide background metal concentrations in soils for the area.

The ESA testpit results are as follows:

- the stratigraphy in the vicinity of the main snow dump consists of beach gravels, sands and stones, underlain by bedrock at depths ranging from 0.2 m to 0.55 m below ground surface;
- MSD-1 intersected lead and zinc concentrations greater than the soil quality remediation objective (SQRO) of 2,000 mg/kg for lead and 10,000 mg/kg for zinc from 0.1 m to 0.5 m;
- MSD-2 intersected lead and zinc concentrations greater than the SQROs from 0.1 m to 0.3 m;
- MSD-3 intersected lead and zinc concentrations greater than the SQROs from 0.1 m to 0.3 m;

- MSD-5 background concentrations of lead and zinc were: 652 mg/kg of lead and 788 of mg/kg zinc; and
- MSD-4 located to the west of the Snow Dump did not intersect elevated concentrations of lead or zinc indicating that the contamination did not extend outside the immediate area of the snow dump face.

Total metal analysis of the samples collected at the snow dump showed that cadmium concentrations were greater than the generic Canadian Council of Ministers of Environment (CCME) Canadian Environmental Quality Guidelines (CEQG) for Parkland land use in test pits MSD-1, 2, 3, located at the snow dump face.

METHODOLOGY

Excavation

The excavation of the main snow dump proceeded based on the results of the 1999/2000 ESA data.

Three 25 m x 25 m square blocks were excavated to a depth of 0.5 m using MSD-1, MSD-2 and MSD-3 as their respective center points. The initial excavation was completed on August 13, 2003, and 18 samples were collected the same day. Soil samples from the initial excavation were prepared and field screened with the Niton X-Ray Fluorescence (XRF) elemental analyzer.

The contaminated portions of the floors and walls were identified and an additional 0.3m of material was excavated from the floor. The excavation limits surrounding MSD-3 and MSD-1 were also expanded as follows:

- The 25 m x 25 m square block around MSD-3 was stepped out 10m to the north and 15 m to the south, creating a 50 m x 25 m block; and
- The 25 m x 25 m square block surrounding MSD-1 was stepped out 10m to the north and 10 m to the east, creating a 35 m x 35 m block.

The second sampling event occurred on August 19, 2003, and a total of fourteen (14) floor and wall samples were collected. Results of this sampling event indicated that, while the majority of the samples met the SQROs, some metal contamination remained in the floor.

The third excavation of 0.3 m was completed on August 24, 2003, and samples were taken on the same day. A total of six (6) confirmation samples were collected, and all of them passed the field screening.

The limits of the excavation are outlined in Figure SD-17-2 and soils were removed to a maximum depth of 0.9 m in some areas. This material was disposed of in the underground workings in accordance with regulatory approvals. Sample locations are also shown in Figure SD-17-2.

ANALYTICAL RESULTS

Laboratory results for the main snow dump are located in Table SD-17-1. A total of 17 confirmatory samples were submitted for this area: two (2) discrete wall; one (1) discrete floor; seven (7) composite floors; and seven (7) composite walls. All samples submitted returned lead and zinc concentrations below the Polaris Mine SQRO's.

Total metal analyses were performed on four (4) composite confirmatory samples. The approved site specific remedial objectives allow for minor exceedances in a small percentage (less than 5%) of the confirmatory samples, so long as the concentration is less than twice the remedial target. One floor sample, located in the southernmost excavation grid cell, returned a nickel concentration of 63 mg/kg, which is greater than the generic CCME, CEQG for Parkland land use, 50 mg/kg. The total metal analyses and leachate analyses conducted during the ESA did not identify nickel as a contaminate of concern.

Given the immobile nature of nickel encountered on site, demonstrated by the leachate results and relatively low level of concentrations, no further remedial excavation work is considered necessary to meet the approved closure plan objectives.

Quality Assurance and Quality Control (QA/QC)

Relative percent differences (RpD) have been calculated and compiled in table SD-17-2 for five (5) on site field screening duplicates and two (2) analytical laboratory duplicates of confirmatory samples.

The analytical laboratory replicate QA/QC results provide confidence that the SQROs have been met despite the RpD value above 50% for two QA/QC sets. All sample results and replicate results were well below the SQRO. The variance between the sample and its replicate may be a result of sample inhomogeneity as the material sampled was very coarse.

Three of the RpDs generated from the field screening duplicates are above the site specific protocol of 50%. These include the field screening sample and duplicate results from:

- SD-25-W-C and SD-36-W-Q for lead;
- SD-25-W-C and SD-36-W-Q for zinc; and
- SD-43-F-C and SD-44-F-Q for zinc.

In each instance, the field screening sample and its duplicate both returned Niton XRF results well below the SQRO suggesting that these sample results are acceptable in meeting the remedial objectives. However, it indicates the variability. The variance between the sample and its duplicate is likely a result of sample heterogeneity.

CONCLUSION

Based on confirmatory sampling consistent with good practice and the approved site specific sampling procedures and protocols, the remediation of the main snow dump area has been completed to meet the Polaris Mine remedial targets, as documented in the approved Polaris Mine Decommissioning and Remediation Plan, March 2001.

LIMITATIONS

This report has been prepared by Gartner Lee Limited and the information in this report is intended for the use of Teck Cominco Metals Limited during the decommissioning and reclamation program currently underway at the Polaris Mine Site. Any use which a third party makes of this report, or any reliance on or decisions made on the basis of the information in this report is the responsibility of such third parties. Gartner Lee Limited accepts no responsibility for damages, if any, suffered by the third party, based on the use of or reliance on any information contained in this report.

The scope of Gartner Lee Limited's work was limited to that described in this report. The confirmation of environmental conditions at the site of the remedial work is based on sampling at specific wall and floor locations within the excavation limits. Gartner Lee Limited has used judgement in the interpretation of the available information but subsurface physical and/or chemical characteristics may vary between or beyond sampling locations. Gartner Lee Limited is not a guarantor of the environmental condition of the site but warrants only that its work was undertaken and its report prepared in a manner consistent with the level of skill and diligence normally exercised by competent environmental professionals practicing in the Nunavut Territory.

Yours very truly,

GARTNER LEE LIMITED

Arlene Laudrum, P.Geol.

Remediation Supervisor, Polaris Mine Project

Karlette Tunaley, EIT

P 324 Feb/7/0

Field Scientist

THE ASSOCIATION OF

PROFESSIONAL ENGINEERS, GEOLOGISTS and GEOPHYSICISTS OF THE NORTHWEST TERRITORIES PERMIT NUMBER

H. Lunaley

AL:KT

ATTACHMENTS

Tables

Table SD-17-1: Main Snow Dump Remediation Confirmation Soil Samples - Metals Table SD-17-2: Main Snow Dump Quality Assurance and Quality Control Remediation

Soil Samples

Figures

Figure SD-17-1: Main Snow Dump Area Conditions, Before Remediation (December 31, 2003) Figure SD-17-2: Main Snow Dump Area Conditions, After Remediation (December 31, 2003)

Table SD-17-1. Main Snow Dump Remediation Confirmation Soil Samples - Metals

THE LANGE			Location					Snow	Snow Dump				
Gartner Lee	l ee		Sample ID	SD-7-F-C	SD-8-F-D.	SD-10-W-C	SD-12-W-C	SD-13-F-C	SD-22-F-C	SI	SD-28-W-C	SD-33-F-C	SD-34-W-C
)	Q	Date Sampled	8/18/03	8/18/03	8/18/03	8/18/03	8/18/03	8/19/03	8/19/03	8/19/03	8/19/03	8/19/03
		Field Sc	Field Screen Pb (ppm)	159.32	205.84	256.07	363.77	136.37	290.05	224.46	256.96	301.51	287.42
		Field Sc	Field Screen Zn ' (ppm)	934.42	1058.66	1141.67	386.82	573.55	369.9	354.53	299.97	444.73	336.33
£		Federal CCM	Federal CCME Guidelines	Analytical Results	esults								
rarameter	CHIES	CEQG (PL)*	SQRO										
Physical Tests													
Hd								8.25	9.4	9.22			
Total Metals		por.						904-	4				
\sim	mg/kg	20.						<30.	<20	<20			
Arsenic T-As	mg/kg	12						<20.	<10	<10			
Barium T-Ba	mg/kg	200		c	r		E	469	318	274	,	,	,
Beryllium T-Be	mg/kg	44	1.0					8	~	⊽	6		-
Cadmium T-Cd	mg/kg	10		×	£1		1	4	⊽	<u></u>		,	
Chromium T-Cr	mg/kg	64		,		,		9>	5	4	8	T)	-
Cobalt T-Co	mg/kg	504	į.	e		100		9>	<4	4>	,		
Copper T-Cu	mg/kg	63						₽	6	7			63
Lead T-Pb	mg/kg		2000	<200	<200	<200	250	<200	194	200	181	239	189
Mercury T-Hg	mg/kg	9.9	1				,	<0.05	<0.05	<0.05	10		
Molybdenum T-Mo	mg/kg	104		E)				<20°	80 V	89		1	
Nickel T-Ni	mg/kg	80					Ŷ	<20	<10	<10	8		
Selenium T-Se	mg/kg	-		6				<2°	<3°	4,			
Silver T-Ag	mg/kg	20 ^d						9>	4>	4>	6		60
Tin T-Sn	mg/kg	50 _d						<20	<10	<10			
Vanadium T-V	mg/kg	130	,					Ξ	34	31			
Zinc T-Zn	mg/kg		10000	316	433	215	2480	101	011	101	95	129	110
				中國大學 中國大學 一次一個 一次一次 一次 一次 一次 一次			oscen total massi						

Associated ALS Analytics files: T4634, T4671, T3279, T3191, T3069

Exceeds the CCME Tier 3 Risk-Based Soil Soil Quality Remedial Objectives for the Exceeds the CCME Tier 1 Soll Quality Guidelines for Parkland Land Use Bold Bold

<= Less than analytical method detection limit Polaris Mine Site

"." = No analysis performed for given parameter, or no guideline

na = No field screening result available

a) Canadian Council of Ministers of Environment (CCME) Canadian Environmental Quality Guidelines (CEQG) -

Tier I soil quality remediation guidelines for parkland land use (PL). The site specific factors used for determining the soil quality guideline include: soil ingestion, soil contact, and nutrient cycling.

b) Canadian Council of Ministers of Environment (CCME) Tier 3 Risk based soil quality remedial objective (SQRO)

for the Polaris Mine Site.

d) Canadian Council of Ministers of Environment (CCME) Tier 1 parkland land use interim remediation criteria, where soil quality c) Field screening measurements are based on the Niton XLi 700 Series portable X-Ray Fluorescence (XRF) elemental analyser.

e) The analytical method detection limit (MDL) exceeds the CCME Tier 1 Soil Quality Remediation Guidelines for parkland land use (PL).

gudelines based on the CCME soil protocol have not been developed yet.

*Sample SD-7-F. C is recorded as SD-07-F-C in ALS report 73191

**Sample SD-3-F-D is recorded as SD-08-F-D in ALS support T3191

Table SD-17-1. Main Snow Dump Remediation Confirmation Soil Samples - Metals

			Location			Snow Dump	Dump		
Gartner Lee	DD		Sample ID	SD-37-W-C	Sample ID SD-37-W-C SD-38-W-D*	SD-39-W-C	SD-40-W-D	SD-41-F-C	SD-47-F-C
0 21 11 01	0	1	Date Sampled	8/24/03	8/24/03	8/24/03	8/24/03	8/24/03	9/27/03
		Field Sc	Field Screen Pb (ppm)	58.5	91.03	73.12	269.84	269.38	па
		Field Sc	Fleld Screen Zn (ppm)	295.15	1048.22	573.7	1306.18	827.22	na
Downwater	T 1 * 60	Federal CCA		Analytical Results	esults				
rarameter	CIIIIS	CEQG (PL)	SQRO ^b						
Physical Tests									
pH			i					8.48	
Total Metals									
Antimony T-Sb	mg/kg	20 ⁴		•	i.			<10	
Arsenic T-As	mg/kg	12						10	·
Barium T-Ba	mg/kg	500				ı.		83	
Beryllium T-Be	mg/kg	4 d	1			•		0.7	
Cadmium T-Cd	mg/kg	10	-			•		3.5	
Chromium T-Cr	mg/kg	64	14.0		,			46	
Cobalt T-Co	mg/kg	50 ^d						18	
Copper T-Cu	mg/kg	63	-	2				16	4
Lead T-Pb	mg/kg		2000	<50	93	265	859	231	1120
Mercury T-Hg	mg/kg	6.6	4		0			<0.05	
Molybdenum T-Mo	mg/kg	10 ^d						4	
Nickel T-Ni	mg/kg	50	•	ı	a	1		63	
Selenium T-Se	mg/kg	1	í		,			<2"	
Silver T-Ag	mg/kg	20 ^d					,	22	
Tin T-Sn	mg/kg	50 ^d				7		<5	1
Vanadium T-V	mg/kg	130			•		•	46	
Zine T-Zn	mg/kg	ř.	10000	200	638	1020	1040	1090	2920

Associated ALS Analytics files: T4634, T4071, T3279, T3191, T3069

Notes:

 Bold
 Exceeds the CCME Tier 1 Soil Quality Guidelines for Parkland Land Use

 Bold
 Exceeds the CCME Tier 3 Risk-Based Soil Soil Quality Remedial Objectives for the

Polaris Mine Site

<= Less than analytical method detection limit

na = No field screening result available

a) Canadian Council of Ministers of Environment (CCME) Canadian Environmental Quality Guidelines (CEQG) -

Tier I soil quality remediation guidelines for parkland land use (PL). The site specific factors used for determining the soil quality guideline include: soil ingestion, soil contact, and nutrient cycling.

b) Canadian Council of Ministers of Environment (CCME) Tier 3 Risk based soil quality remedial objective (SQRO)

for the Polaris Mine Site.

c) Field screening measurements are based on the Niton XLi 700 Series portable X-Ray Fluorescence (XRF) elemental analyses.

 d) Canadian Council of Ministers of Environment (CCME) Tier 1 parkland land use interim remediation criteria, where soil quality gudelines based on the CCME soil protocol have not been developed yet.

e) The analytical method detection limit (MDL) exceeds the CCME Tier 1 Soil Quality Remediation Guidelines
for parkland land use (PL).

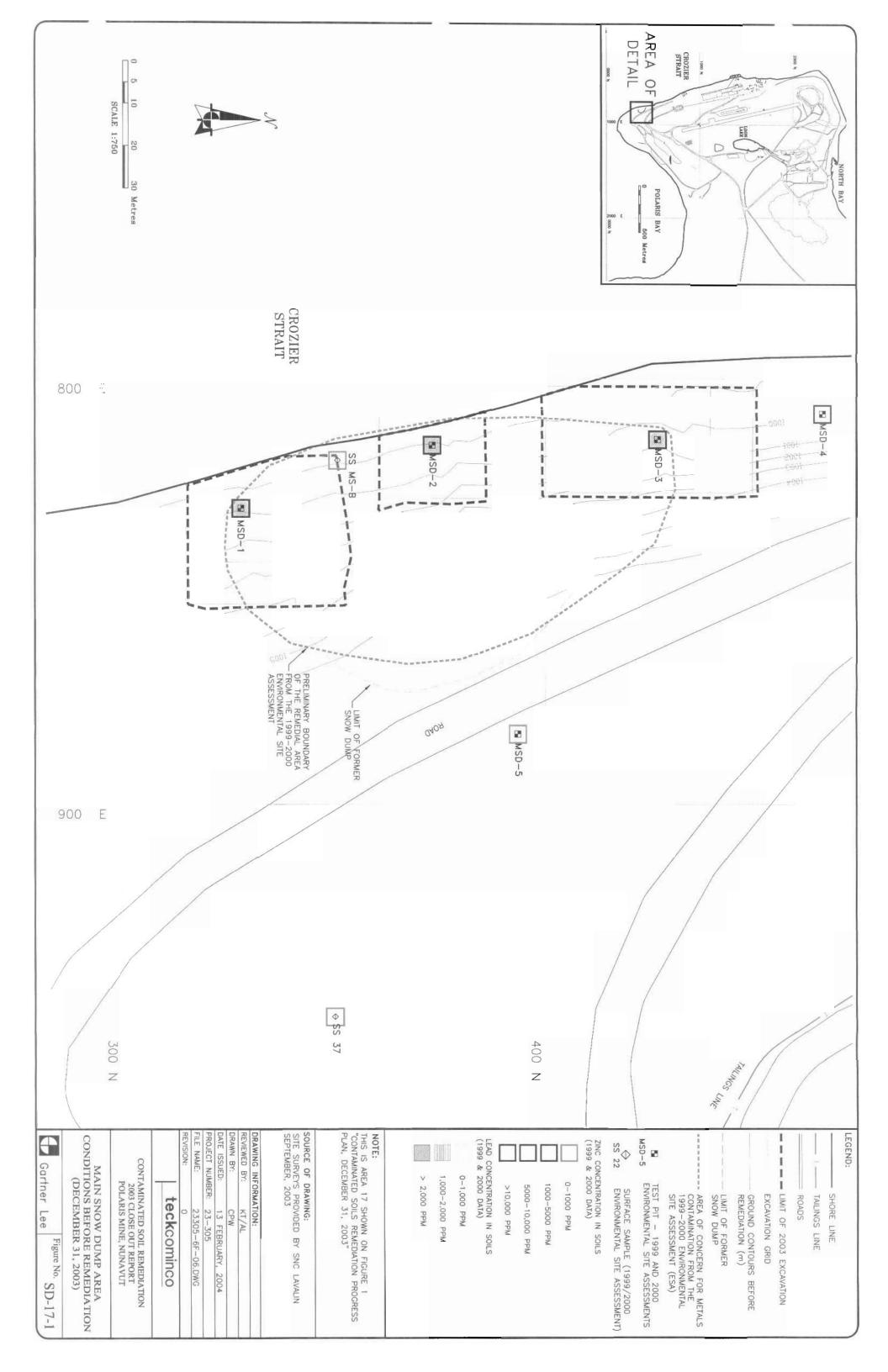
[&]quot;-" = No analysis performed for given parameter, or no guideline

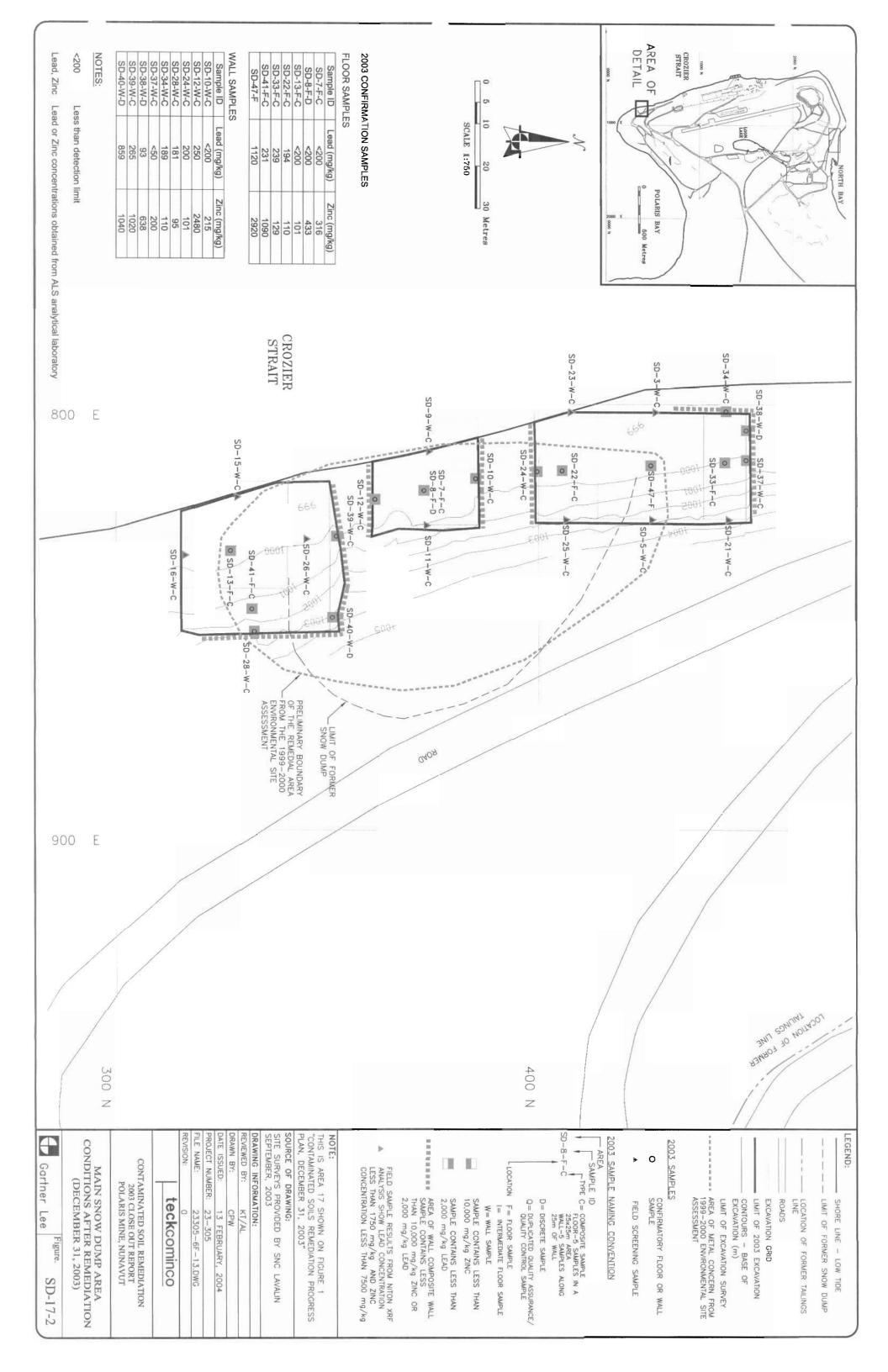
^{*}Sample SD-38-W-D to recorded incorrectly as SD-38-W-C in ALS report T3279

Main Snow Dump Quality Assurance Quality Control Remediation Soil Samples Table SD-17-2.

	Parameter	Pb	p	7	Zn		Total Pb			Total Zn	
Gartner Lee	Relative Percent							DnD			RnD*
	Difference (RpD) ^a	MDL	PQLb	MDL	PQL	Sample Pb	Duplicate Pb	(%)	Sample Zn	Duplicate Zn	(%)
Sample ID	Duplicate ID							(0/)			(0/)
On Site Field Screening Duplicates	plicates										
SD-3-W-C	SD-19-W-Q	70	350	150	750	523	682	26.4	1806	1808	0.1
SD-12-W-C	SD-35-W-Q	70	350	150	750	364	330	na	387	352	па
SD-25-W-C	SD-36-W-Q	70	350	150	750	476	1166	84.1	1704	4401	88.4
SD-41-F-C	SD-45-F-Q	70	350	150	750	269	135	na	827	409	na
SD-43-F-C	SD-44-F-Q	70	350	150	750	2779	2653	4.7	4224	1901	75.8
Analytical Laboratory Replicates	licates										
SD-34-W-C	QC# 351553	100	500	2	10	189	194	na	110	138	22.6
SD-12-W-C	QC# 351520	100	500	2	10	250	226	na	2480	255	162.7

of both samples are greater than the practical quantitation limit (PQL)


"na" = RpD value is not applicable because one or both results are less than the practical


quantitation limit (PQL).

 $n_{-n} = no$ result for given parameter n < n = less than analytical method detection limit

a) Relative Percent Difference = RpD = (Difference/Average) * 100

b) Practical Quantitation Limit (PQL)=5 * Method Detection Limit (MDL)

