

October 15, 2007

Nunavut Water Board Box 119 Gjoa Haven, NU X0B 0J0

Attention: Phyllis Beaulieu, Manager of Licensing

Indian and Northern Affairs Canada P.O. Box 100 Iqaluit, Nunavut X0A 0H0

Attention: Spencer Dewar, Manager, Lands Administration

Dear Ms. Beaulieu and Mr. Dewar;

Re: <u>Polaris Mine – 2007 1st and 2nd Decommissioning and Reclamation Monitoring Report</u>
(Water Licence #NWB1POL0311)

Please find attached the Polaris Mine 2007 1st and 2nd Quarter Decommissioning and Reclamation Monitoring Reports.

The attached reports are in paper format complete with a CD containing electronic copies of the reports in pdf format.

If there are any questions with regard to these reports, please contact the undersigned.

Yours truly,

Bruce J. Donald Reclamation Manager Environment and Corporate Affairs Teck Cominco Limited

Enclosures:

• 1st and 2nd Quarter 2007 Decommissioning and Reclamation Report – Paper and Electronic versions.

POLARIS MINE 2007 1ST AND 2ND QUARTER DECOMMISSIONING AND RECLAMATION REPORT

FOR THE NUNAVUT WATER BOARD AND INDIAN AND NORTHERN AFFAIRS CANADA

2007 POLARIS MINE 1ST AND 2ND QUARTER POST-RECLAMATION MONITORING REPORT

INTRODUCTION

During the 1st and 2nd Quarters of 2007 the Polaris Mine site remained un-occupied due to winter weather conditions. As there was no effluent discharge from Garrow Lake, the only monitoring undertaken was the spring sampling of Garrow Lake. An executive summary of information for the 1st and 2nd Quarter in Inuktitut is provided in Appendix 1.

1st Quarter, 2007

During the 1st Quarter of 2007, the Polaris Mine remained un-occupied by personnel. No monitoring events occurred during the quarter.

The Water Licence requires a mid-winter sampling of Garrow Lake stratigraphy for water quality parameters. At mid-winter the site was not safely accessible. Charter aircraft will not fly to the site due to the dark conditions without the site having runway lighting and visual confirmation from the ground of landing conditions.

There was no data collected of temperature conditions in the Little Red Dog Landfill or the Operational Landfill as there was no one at the site during the quarter. However, last summer data loggers were installed on the thermistors at both landfills so they are recording the data over the winter and the data will be retrieved and reported in the 2007 3rd quarter monitoring report.

As part of the DRP work, the dam at Garrow Lake was decommissioned in 2004 so there are no dam thermistors to monitor.

Due to winter conditions at the site throughout the 1st Quarter reporting period, there was no discharge from Garrow Lake and thus there was no effluent discharge to monitor.

2nd Quarter, 2007

During the majority of the 2nd Quarter the Polaris Mine site remained un-occupied by personnel. However, monitoring of the water column of Garrow Lake was completed in early June to capture the Maximum Ice Thickness conditions as required by the Water Licence (the ice was approximately 2m thick).

There was no effluent flow to monitor from the site in June so there is no effluent data to report for the quarter.

The Decommissioning and Reclamation Plan approvals have a number of parameters that must be monitored in addition to the monitoring requirements identified in the Water Licence. The majority of the monitoring required each year at the site will be undertaken during the 3rd Quarter.

1. Garrow Lake Water Quality and Stratigraphy Monitoring

Please find attached to this report the results of the June 3, 2007 sampling event of Garrow Lake (Appendix 2). This represents the Maximum Ice Thickness monitoring event required by the Water Licence.

The commercial laboratory continues to have difficulty analyzing TSS parameters for the waters of Garrow Lake due to the high salt content. As in the past, the lab is not having success in

2007 POLARIS MINE 1ST AND 2ND QUARTER POST-RECLAMATION MONITORING REPORT

eliminating salt in the water from leaving residues on the filter paper during the TSS analysis resulting in TSS concentrations that are incorrect.

The attached data continue to confirm that the stratigraphy of the lake is intact and stable and continues to indicate low zinc values in the water column consistent with the previous few years of data (Refer to Figures 1 and 2 in Appendix 2).

2. Notification of Intent to Initiate Planned Discharge of Effluent from the Tailings Impoundment Area (Part D, Section 1)

The date of initiation of effluent discharge is no longer under the control of Teck Cominco. As part of the approved site decommissioning plan, Garrow Dam was removed in 2004 and discharge from the lake has been restored to its natural annual discharge cycle.

3. Water Quality and Environmental Effects Monitoring Program

There was no effluent discharge from Garrow Lake in the 2nd Quarter.

4. Landfill Temperature Monitoring

Landfill temperature data was not collected during the Quarter as there was only one day where anyone was on site (and were fully occupied collecting Garrow Lake data). As there are data loggers on the landfill thermistors, the data will be collected during the 3rd Quarter and reported at along with the other 3rd Quarter data collected.

APPENDIX 1

EXECUTIVE SUMMARY OF 1ST AND 2ND QUARTER 2007 POLARIS MINE POST RECLAMATION MONITORING REPORT TRANSLATED INTO INUKTITUT

ϼͷͺϳϹͽͺʹϲ

ቴቃልጋታሌር በበናለLታዥታ ቴኦኦጓስዥታ ኦሄታሌር σረታታሌር ታና ለታኦሬኦዥን ላኦሩን ፑፐሪታ Lነጋፊ፟ል ኒታ ኦኖታሪ ላንነርኦላቸ Lነጋፊነል Γ ርልታንቴሬኦፕታሌ ለተበነጋኔ የተላቃር, በበናኔኦበዮኖር ላላታ ርልታ ላቸርኦፖኒቲነር ኦሬታሌር ቴኦኦጓስዥታ ርևልታ Lነጋፊነልታ. ርጳጳ በበናኔኦበዮኖር ላላ ለታኦሬንን ኦታኦኮስታ 2007ኦበጋኔ ለኒኒኒኒታ በአርልርቴኒኒላታ ኦታኔርኦር በበናለርርንን ቴኦኦጓስልታን

4Δ<α+4 Π5LΔ-64 +σ , 2007

ΔL'⅃ՙ ለፈዾቦᡥ ለኦሊላቴበለፈቱ ዾዺ፝፞፞ንΓ ΔL፟፟፟፟፟፟፟፟፟፟፟፟ፚዾዀ ቴስL፟፟ትኄና ቴኦኦቴርኦቴርሊላቴጋና ፅ፞፞ፚጚ፞፞፞ፘጜ ቴጚቦርኦሬኦፕሮኒው. ርΔL ፖՐኒ ፅ' ለ'ርኦፖLৈL', ፅጐኒ ላኦሬርኦፈድንን በነ ቴፐፅፊኔና.

L'3d Δ Pa'stl NNS/Ltr Abpatric (das P'3s NLLA-buts, (dd NNS/Ltr adcPa's) (dds Psi-dubade, Vithe NLLA-buts Psi-Deichella dith (Δ dd Psi-dubade, Vithe NLLA-buts NNS/Ltr adcP<0.

APPENDIX 2

JUNE 3, 2007 GARROW LAKE WATER QUALITY AND STRATIGRAPHY MONITORING RESULTS

FIGURE 1
GARROW LAKE - Station 262-3
Trend In Zinc Concentrations In The Water Column 2002 to 2006

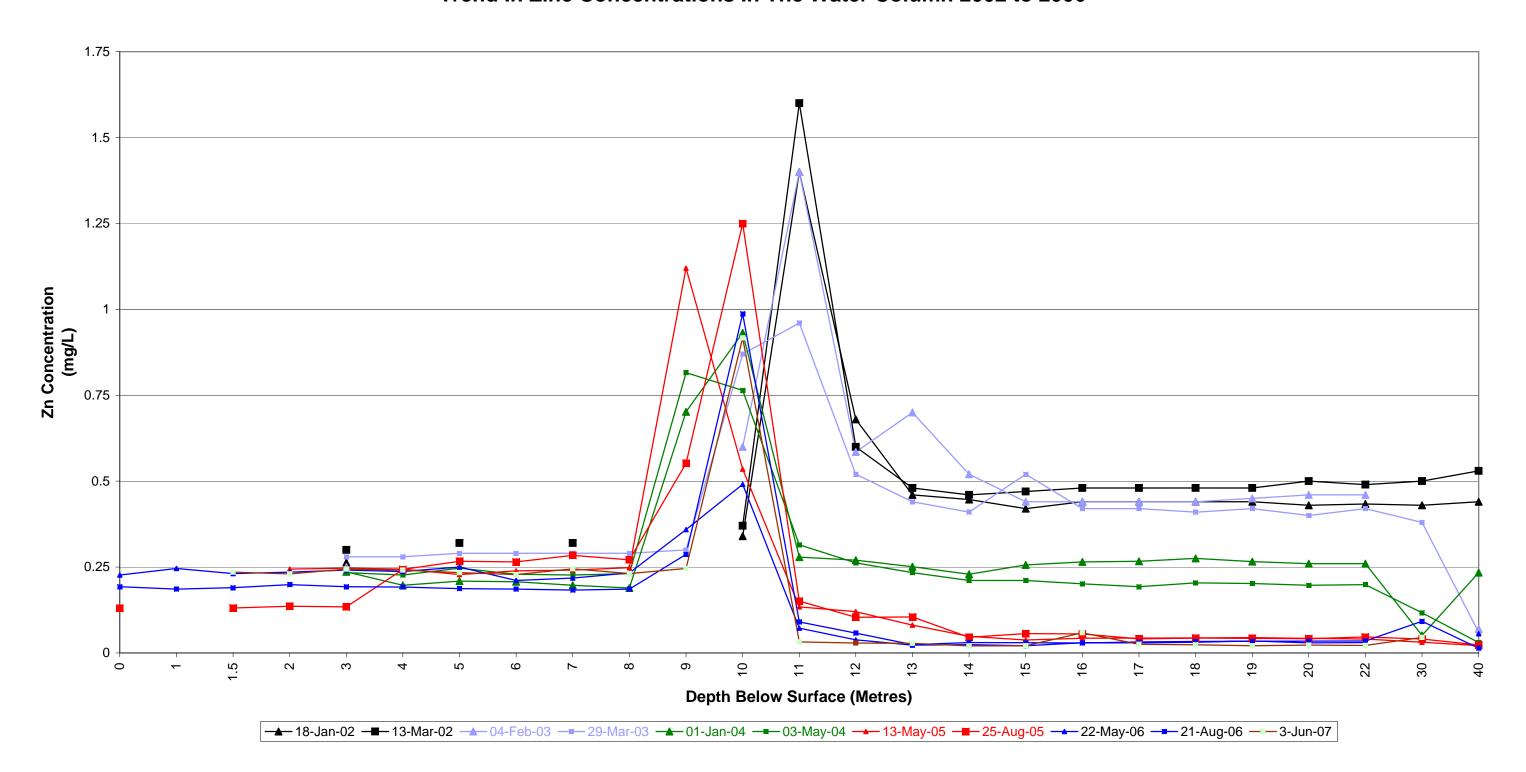
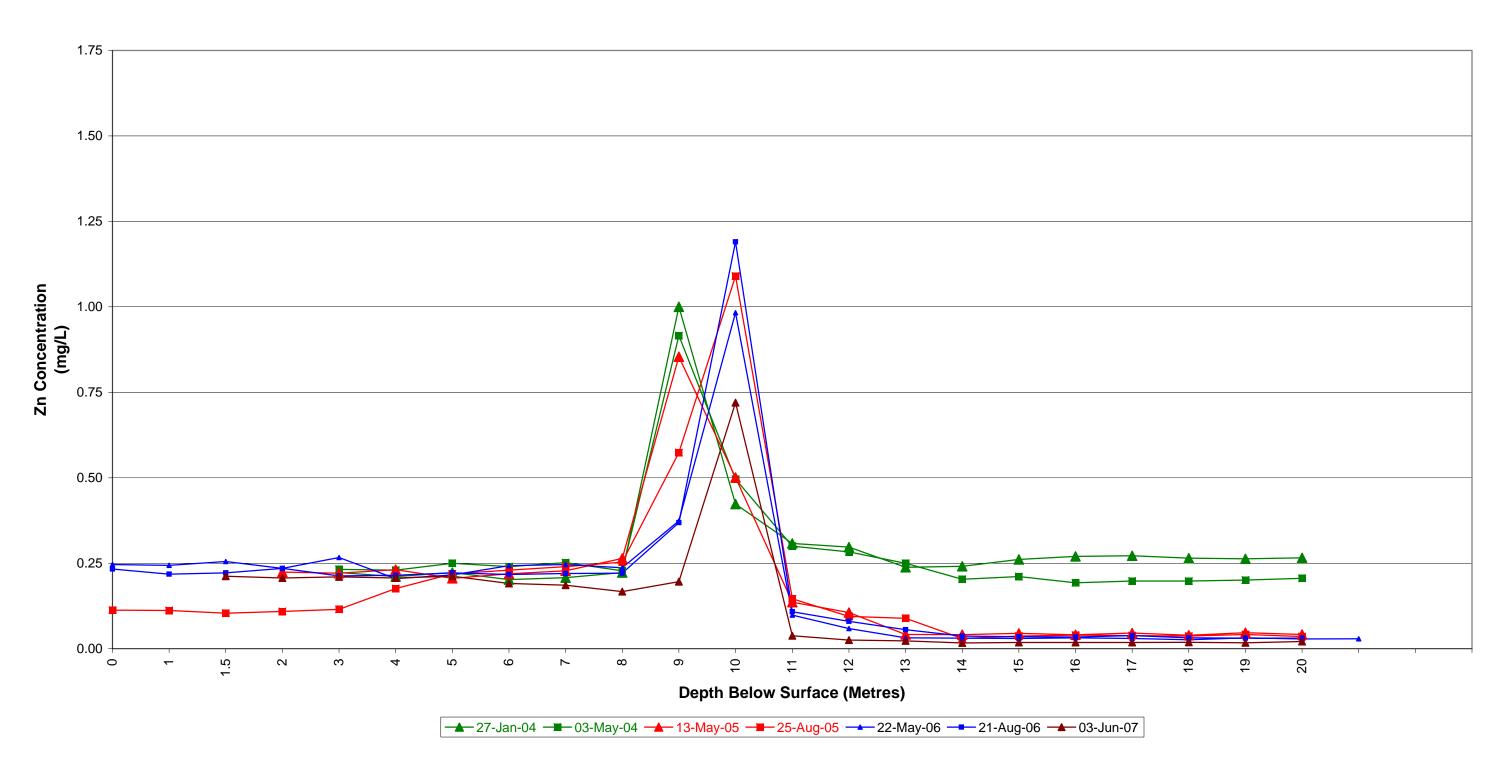



FIGURE 2
GARROW LAKE - Station 262-3A
Zinc Concentrations In The Water Column

Environmental Division

ANALYTICAL REPORT

TECK COMINCO METALS LTD.

ATTN: BRUCE DONALD Reported On: 17-JUL-07 02:30 PM

Revision: 1

BAG 2000

KIMBERLEY BC V1A 3E1

Lab Work Order #: L514329 Date Received: 06-JUN-07

Project P.O. #:

Job Reference: 2007 JUNE POLARIS GARROW LAKE

Legal Site Desc: **CofC Numbers:**

Other Information:

Comments:

Please note that the sample "GL-BLANK" had some results above detection limit. It is uncertain as to the source of the water used for this blank. If it was not lab grade water in certified cleaned bottles then there is a possibility that the elevated levels in this sample are due to the bottle or the water source.

> Timothy Guy Crowther General Manager, Vancouver

For any questions about this report please contact your Account Manager:

Heather Easton

THIS REPORT SHALL NOT BE REPRODUCED EXCEPT IN FULL WITHOUT THE WRITTEN AUTHORITY OF THE LABORATORY. ALL SAMPLES WILL BE DISPOSED OF AFTER 30 DAYS FOLLOWING ANALYSIS. PLEASE CONTACT THE LAB IF YOU REQUIRE ADDITIONAL SAMPLE STORAGE TIME.

	L514329-4	L514329-3	L514329-2	L514329-1	Sample ID Description	
03-JUN-07	03-JUN-07	03-JUN-07	03-JUN-07	03-JUN-07	Sampled Date	
12:27 GL-BLANK	12:38 GLC-20A M	11:58 GLC-9A M	15:08 GLS-20A M	14:30 GLS-6A M	Sampled Time Client ID	
					Analyte	rouping
						SEAWATER
53.5	13000	2030	12600	1980	Hardness (as CaCO3) (mg/L)	Physical Tests
<0.0010	<0.20	<0.050	<0.20	<0.050	Aluminum (Al)-Total (mg/L)	Total Metals
<0.00020	<0.00020	<0.00020	0.00027	<0.00020	Arsenic (As)-Total (mg/L)	
0.000114	<0.000020	0.000582	<0.000020	0.000603	Cadmium (Cd)-Total (mg/L)	
16.7	862	158	829	156	Calcium (Ca)-Total (mg/L)	
0.00635	0.000479	0.00107	0.000354	0.000990	Copper (Cu)-Total (mg/L)	
<0.010	0.273	0.010	0.255	<0.010	Iron (Fe)-Total (mg/L)	
<0.000050	0.000781	0.000142	0.000725	0.000165	Lead (Pb)-Total (mg/L)	
2.88	2640	396	2550	386	Magnesium (Mg)-Total (mg/L)	
0.0166	0.0758	0.00672	0.0777	0.00657	Manganese (Mn)-Total (mg/L)	
<0.000050	<0.010	0.0026	<0.010	0.0028	Molybdenum (Mo)-Total (mg/L)	
0.00327	0.00485	0.00464	0.00499	0.00419	Nickel (Ni)-Total (mg/L)	
0.129	0.0216	0.228	0.0214	0.219	Zinc (Zn)-Total (mg/L)	

	Sample ID Description	L514329-1	L514329-2	L514329-3	L514329-4	L514329-5
	Sampled Date	03-JUN-07	03-JUN-07	03-JUN-07	03-JUN-07	03-JUN-07
	Sampled Time Client ID	14:30 GLS-6A M	15:08 GLS-20A M	11:58 GLC-9A M	12:38 GLC-20A M	12:27 GL-BLANK
rouping	Analyte					
VATER						
Physical Tests	Salinity (EC) (g/L)	8.7	61.9	8.7	62.4	
	Conductivity (uS/cm)	14100	83000	14200	83600	
	pH (pH)	8.05	7.71	8.09	7.71	
	Total Suspended Solids (mg/L)	3.5	4.2	<3.0	10.2	
Anions and Nutrients	Alkalinity, Total (as CaCO3) (mg/L)	161	410	163	423	
	Sulphide as S (mg/L)	<0.020	0.126		0.150	
Total Metals	Mercury (Hg)-Total (mg/L)	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010

Reference Information

Qualifiers for Sample Submission Listed:

 Qualifier
 Description

 SPL
 Sample was Preserved at the laboratory - sample #5 - Total Metals

 Methods Listed (if applicable):
 Analytical Method Reference (Based On)

ALK-COL-VA Water Alkalinity by Colourimetric (Automated) APHA 310.2

This analysis is carried out using procedures adapted from EPA Method 310.2 "Alkalinity". Total Alkalinity is determined using the methyl orange colourimetric method.

AS-TOT-C-HVAAS-VA Se

Seawater

Total Arsenic in Seawater by HVAAS

PUGET SOUND PROTOCOLS, EPA 7000 SERIES

This analysis is carried out using procedures adapted from "Recommended Guidelines for Measuring Metals in Puget Sound Marine Water, Sediment, and Tissue Samples" prepared for the United States Environmental Protection Agency and the Puget Sound Water Quality Authority, 1995. The procedures may involve preliminary sample treatment by acid digestion or filtration (EPA Method 3005A). Instrumental analysis of the seawater is by atomic absorption/emission spectrophotometry (EPA Method 7000 series).

EC-PCT-VA

Water

Conductivity (Automated)

APHA 2510 Auto. Conduc.

This analysis is carried out using procedures adapted from APHA Method 2510 "Conductivity". Conductivity is determined using a conductivity electrode.

HARDNESS-CALC-VA Seav

Seawater Hardness

APHA 2340B

Hardness is calculated from Calcium and Magnesium concentrations, and is expressed as calcium carbonate equivalents.

HG-TOT-LOW-CVAFS-VA Water

Total Mercury in Water by CVAFS(Low)

EPA 245.7

This analysis is carried out using procedures adapted from "Standard Methods for the Examination of Water and Wastewater" published by the American Public Health Association, and with procedures adapted from "Test Methods for Evaluating Solid Waste" SW-846 published by the United States Environmental Protection Agency (EPA). The procedure involves a cold-oxidation of the acidified sample using bromine monochloride prior to reduction of the sample with stannous chloride. Instrumental analysis is by cold vapour atomic fluorescence spectrophotometry (EPA Method 245.7).

MET-TOT-C-ICP-VA

Seawater

Total Metals in Seawater by ICPOES

PUGET SOUND PROTOCOLS, EPA 6010B

This analysis is carried out using procedures adapted from "Recommended Guidelines for Measuring Metals in Puget Sound Marine Water, Sediment, and Tissue Samples" prepared for the United States Environmental Protection Agency and the Puget Sound Water Quality Authority, 1995. The procedures may involve preliminary sample treatment by acid digestion or filtration (EPA Method 3005A). Instrumental analysis is by inductively coupled plasma - optical emission spectrophotometry (EPA Method 6010B).

MET-TOT-C-LOW-MS-VA Seawater

Total Metals in Seawater by ICPMS

PUGET SOUND PROTOCOLS, EPA 6020A

This analysis is carried out using procedures adapted from "Recommended Guidelines for Measuring Metals in Puget Sound Marine Water, Sediment, and Tissue Samples" prepared for the United States Environmental Protection Agency and the Puget Sound Water Quality Authority, 1995. The procedures may involve preliminary sample treatment by acid digestion or filtration (EPA Method 3005A). Instrumental analysis is by atomic inductively coupled plasma - mass spectrometry (EPA Method 6020A).

MET-TOT-SPE-MS-VA

Seawater

Total Metals in Seawater by SPE ICPMS

PUGET SOUND PROTOCOLS, EPA 6020A

This analysis is carried out using procedures adapted from "Recommended Guidelines for Measuring Metals in Puget Sound Marine Water, Sediment, and Tissue Samples" prepared for the United States Environmental Protection Agency and the Puget Sound Water Quality Authority, 1995, and with procedures adapted from Cetac Technologies Incorporated. A suspended particulate resin (SPR), consisting of immobilized iminodiacetate (IDA) on a divinylbenzene polymer, is used to chelate and preconcentrate metals in seawater. Instrumental analysis is by inductively coupled plasma mass spectrometry (ICPMS).

PH-PCT-VA

Water

pH by Meter (Automated)

APHA 4500-H "pH Value"

This analysis is carried out using procedures adapted from APHA Method 4500-H "pH Value". The pH is determined in the laboratory using a pH electrode

S2-T-COL-VA

Water

Total Sulphide by Colorimetric

APHA 4500-S2 "Sulphide"

This analysis is carried out using procedures adapted from APHA Method 4500-S2 "Sulphide". Sulphide is determined using the methlyene blue colourimetric method.

Reference Information

Methods Listed (if applicable):

ALS Test Code Matrix Test Description Analytical Method Reference(Based On)

SALINITY-EC-VA Water Salinity by calculation using EC APHA 2520 B

This analysis is carried out using procedures adapted from APHA Method 2520 "Salinity". Salinity is determined using a samples conductivity and the

Practical Salinity Scale.

TSS-VA Water Solids by Gravimetric APHA 2540 Gravimetric

This analysis is carried out using procedures adapted from APHA Method 2540 "Solids". Solids are determined gravimetrically. Total suspended solids (TSS) are determined by filtering a sample through a glass fibre filter, TSS is determined by drying the filter at 104 degrees celsius.

** Laboratory Methods employed follow in-house procedures, which are generally based on nationally or internationally accepted methodologies.

The last two letters of the above ALS Test Code column indicate the laboratory that performed analytical analysis for that test. Refer to the list below:

Laboratory Definition Code	Laboratory Location	Laboratory Definition Code	Laboratory Location
VA	ALS LABORATORY GROUP - VANCOUVER, BC, CANADA		

GLOSSARY OF REPORT TERMS

Surr - A surrogate is an organic compound that is similar to the target analyte(s) in chemical composition and behavior but not normally detected in environmental samples. Prior to sample processing, samples are fortified with one or more surrogate compounds.

The reported surrogate recovery value provides a measure of method efficiency.

mg/kg (units) - unit of concentration based on mass, parts per million

mg/L (units) - unit of concentration based on volume, parts per million

N/A - Result not available. Refer to qualifier code and definition for explanation

Test results reported relate only to the samples as received by the laboratory. UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Although test results are generated under strict QA/QC protocols, any unsigned test reports, faxes, or emails are considered preliminary.

ALS Laboratory Group has an extensive QA/QC program where all analytical data reported is analyzed using approved referenced procedures followed by checks and reviews by senior managers and quality assurance personnel. However, since the results are obtained from chemical measurements and thus cannot be guaranteed, ALS Laboratory Group assumes no liability for the use or interpretation of the results.

#2 - 8820 100th Street, Fort St. John, BC Canada V1J 3W9 Tel: 250-785-8281 Fax: 250-785-8286 1988 Triumph Street, Vancouver, BC Canada V5L 1K5 Tel: 604-253-4188 Toll Free: 1-800-665-0243 Fax: 604-253-6700 #2 -21 Highfield Circle SE, Calgary, AB Canada T2G 5N6 Tel: 403-214-5431 Toll Free: 1-866-722-6231 Fax: 403-214-5430

www.alsenviro.com

	COMPANY: Teck Cominco Metals Ltd.					ANALYSIS RE	- SIS	REQUESTED:					
ADDRESS: Bag 2000	2000					linit	SAL IIV						
CITY: Kimberley		PROV: BC		POSTAL CODE:	V1A 3E1	l, sa							
TEL: 250-4	250-427-8405	FAX: 250	FAX: 250-427-8451	CONTACT:	CONTACT: Bruce Donald	, pH	O TIDE						ţ.
PROJECT NAME AND NO.:		7 June Pol	2007 June Polaris Garrow Lake	SAMPLER:	SAMPLER: Arlene Laudrum	iess	CP)						
QUOTE NO.:		PO NO.:		ALS CONTACT:		ardr	1S-10						
LVWGCJ LGCGJG	□ HARDCOP		✓ EMAIL - ADDRESS:	bn e.donald@	bruse.donald@teckcominco.co	ity, h	is (N		99				
XET CX T CX NA ::	FAY	√ EXCEI	√ PDF	OTHER			_	de	-				
			DATE / TIME	COLLECTED			-	ohio					
	SAMPLE IDENTIFICATION	CATION	YYYY-MM-DD	TIME	MATRIX		-	Sul					
GLS	GLS-6A m		2007-06- 63	2:30 pm	seawater	×	×	×					
GLS	GLS-20A m		2007-06- 03	3:08pm	seawater	×	×	×					
	GLC-9A m		2007-06- 03	11:58 am	seawater	×	×						
	GLC-20A m		2007-06- 03	12:28 pm	seawater	×	×	×					
	GL-BLANK		2007-06- 03	12:27 pm	water		×						
_AB (
ORL													
F													
Z S													
											-		-
TURN AROUND REQUIRED:	ROUTINE	0	ORUSH SPECIFY DATE:		(surcharge may apply)	ply)	R	RELINQUISHED BY:		DATE: June 05/07	5/07		RECEIVED BY:
REQUIRED:							0	JURTIS KIDD	1421	TIME			
SEND INVOICE TO:	SAME AS REPORT		DIFFERENT FROM REPORT (provide details below)	Γ (provide details be	elow)		REL	RELINQUISHED BY:		DATE		-	RECEIVED BY:
INVOICE FORMAT:			PDF FAX							TIME:			3
SPECIAL INSTRUCTIONS		er is hyper	Water is hypersaline, for TSS measurement run 1-2L distilled through filters!!!	ement run 1-2L d	listilled through filt	ers				FOR LAB USE ONLY	USE C	12	NLY
C: alaudrum@g arameters; Sulfice	CC: alaudrum@gartnerlee.com; Total metals have been preserved w parameters; Sulfide has been preserved with NaOH and zinc acetate	metals haved with National	CC: alaudrum@gartnerlee.com; Total metals have been preserved with HNO3; No preservative for general parameters: Sulfide has been preserved with NaOH and zinc acetate	HNO3; No prese	rvative for general	_	Cooler:	lor Cool Intacto	Sami	Sample Temperature: C. Hoc	4.3	0	C Cooling Method?

Environmental Division

ANALYTICAL REPORT

AZIMUTH CONSULTING GROUP INC.

ATTN: CHERYL MACKINTOSH Reported On: 09-JUL-07 02:57 PM

Revision: 1

218 - 2902 WEST BROADWAY VANCOUVER BC V6K 2G8

Lab Work Order #: L513940 Date Received: 05-JUN-07

Project P.O. #: NOT SUBMITTED

Job Reference: 2007 JUNE POLARIS GARROW LAKE

Legal Site Desc: CofC Numbers:

Other Information:

Comments:

The detection limits for some of the metals have been increased for the samples reported in the following data tables due to sample matrix interferences.

Timothy Guy Crowther General Manager, Vancouver

For any questions about this report please contact your Account Manager:

Heather Easton

THIS REPORT SHALL NOT BE REPRODUCED EXCEPT IN FULL WITHOUT THE WRITTEN AUTHORITY OF THE LABORATORY. ALL SAMPLES WILL BE DISPOSED OF AFTER 30 DAYS FOLLOWING ANALYSIS. PLEASE CONTACT THE LAB IF YOU REQUIRE ADDITIONAL SAMPLE STORAGE TIME.

A Campbell Brothers Limited Company

	Sample ID Description Sampled Date	L513940-1 03-JUN-07	L513940-2 03-JUN-07	L513940-3 03-JUN-07	L513940-4 03-JUN-07	L513940-5 03-JUN-07
	Sampled Time	11:40	11:43	11:46	11:48	11:50
rouping	Client ID Analyte	GLC-1.5M	GLC-2M	GLC-3M	GLC-4M	GLC-5M
SEAWATER	,					
Physical Tests	Hardness (as CaCO3) (mg/L)	2030	2020	2070	2060	2030
Total Metals	Aluminum (Al)-Total (mg/L)	<0.050	<0.050	<0.050	<0.050	<0.050
	Arsenic (As)-Total (mg/L)	0.00021	<0.00020	<0.00020	0.00021	<0.00020
	Cadmium (Cd)-Total (mg/L)	0.000605	0.000614	0.000620	0.000633	0.000638
	Calcium (Ca)-Total (mg/L)	157	160	163	162	160
	Copper (Cu)-Total (mg/L)	0.00122	0.00125	0.00119	0.00119	0.00116
	Iron (Fe)-Total (mg/L)	<0.010	<0.010	<0.010	0.012	<0.010
	Lead (Pb)-Total (mg/L)	0.000208	0.000235	0.000275	0.000320	0.000473
	Magnesium (Mg)-Total (mg/L)	398	394	404	402	396
	Manganese (Mn)-Total (mg/L)	0.00691	0.00677	0.00701	0.00748	0.00705
	Molybdenum (Mo)-Total (mg/L)	0.0027	0.0025	0.0026	<0.0025	<0.0025
	Nickel (Ni)-Total (mg/L)	0.00443	0.00452	0.00469	0.00464	0.00454
	Zinc (Zn)-Total (mg/L)	0.235	0.230	0.244	0.241	0.234

	Sample ID Description Sampled Date	L513940-6 03-JUN-07	L513940-7 03-JUN-07	L513940-8 03-JUN-07	L513940-9 03-JUN-07	L513940-10 03-JUN-07
	Sampled Time Client ID	11:52 GLC-6M	11:54 GLC-7M	11:56 GLC-8M	11:58 GLC-9M	12:00 GLC-10M
Frouping	Analyte					
SEAWATER						
Physical Tests	Hardness (as CaCO3) (mg/L)	2070	2070	2050	2060	9180
Total Metals	Aluminum (AI)-Total (mg/L)	<0.050	<0.090	<0.050	<0.050	<0.20
	Arsenic (As)-Total (mg/L)	<0.00020	0.00020	<0.00020	0.00020	0.00033
	Cadmium (Cd)-Total (mg/L)	0.000592	0.000610	0.000596	0.000638	0.00219
	Calcium (Ca)-Total (mg/L)	165	166	163	162	615
	Copper (Cu)-Total (mg/L)	0.00113	0.00117	0.00158	0.00116	0.00271
	Iron (Fe)-Total (mg/L)	<0.010	<0.010	<0.010	<0.010	0.017
	Lead (Pb)-Total (mg/L)	0.000127	0.000147	0.000189	0.000154	0.00102
	Magnesium (Mg)-Total (mg/L)	403	403	398	401	1860
	Manganese (Mn)-Total (mg/L)	0.00695	0.00694	0.00680	0.00693	0.0675
	Molybdenum (Mo)-Total (mg/L)	0.0028	0.0025	0.0030	0.0026	<0.010
	Nickel (Ni)-Total (mg/L)	0.00470	0.00482	0.00455	0.00487	0.00887
	Zinc (Zn)-Total (mg/L)	0.228	0.245	0.231	0.246	0.917

	Sample ID Description	L513940-11	L513940-12	L513940-13	L513940-14	L513940-15
	Sampled Date	03-JUN-07	03-JUN-07	03-JUN-07	03-JUN-07	03-JUN-07
	Sampled Time Client ID	12:02 GLC-11M	12:04 GLC-12M	12:08 GLC-13M	12:10 GLC-14M	12:14 GLC-15M
rouping	Analyte	010	020 12	020 10	020 1	020 10
SEAWATER						
Physical Tests	Hardness (as CaCO3) (mg/L)	12900	13200	13100	12300	13000
Total Metals	Aluminum (Al)-Total (mg/L)	<0.50	<0.50	<0.50	<0.50	<0.50
	Arsenic (As)-Total (mg/L)	0.00049	0.00021	0.00040	0.00029	0.00026
	Cadmium (Cd)-Total (mg/L)	0.000029	0.000024	0.000020	<0.000020	<0.000020
	Calcium (Ca)-Total (mg/L)	834	850	837	798	833
	Copper (Cu)-Total (mg/L)	0.000972	0.00150	0.000704	0.000577	0.000556
	Iron (Fe)-Total (mg/L)	0.154	0.156	0.288	0.257	0.274
	Lead (Pb)-Total (mg/L)	0.000954	0.00101	0.000806	0.000775	0.000803
	Magnesium (Mg)-Total (mg/L)	2640	2690	2680	2510	2640
	Manganese (Mn)-Total (mg/L)	0.119	0.106	0.0880	0.0851	0.0843
	Molybdenum (Mo)-Total (mg/L)	<0.025	<0.025	<0.025	<0.025	<0.025
	Nickel (Ni)-Total (mg/L)	0.00826	0.00754	0.00573	0.00508	0.00518
	Zinc (Zn)-Total (mg/L)	0.0319	0.0288	0.0279	0.0204	0.0208

	Sample ID Description Sampled Date	L513940-16 03-JUN-07	L513940-17 03-JUN-07	L513940-18 03-JUN-07	L513940-19 03-JUN-07	L513940-20 03-JUN-07
	Sampled Time	12:16	12:20	12:22	12:26	12:28
rouping	Client ID Analyte	GLC-16M	GLC-17M	GLC-18M	GLC-19M	GLC-20M
SEAWATER						
Physical Tests	Hardness (as CaCO3) (mg/L)	13400	12900	13100	13300	13200
Total Metals	Aluminum (Al)-Total (mg/L)	<0.50	<0.50	<0.50	<0.20	<0.20
	Arsenic (As)-Total (mg/L)	<0.00020	0.00023	0.00034	0.00024	0.00028
	Cadmium (Cd)-Total (mg/L)	0.000020	<0.000020	0.000021	0.000022	<0.000020
	Calcium (Ca)-Total (mg/L)	875	844	851	857	864
	Copper (Cu)-Total (mg/L)	0.000523	0.000746	0.000472	0.000461	0.000637
	Iron (Fe)-Total (mg/L)	0.299	0.303	0.300	0.277	0.289
	Lead (Pb)-Total (mg/L)	0.000789	0.000850	0.000871	0.000811	0.000775
	Magnesium (Mg)-Total (mg/L)	2730	2630	2670	2710	2680
	Manganese (Mn)-Total (mg/L)	0.0878	0.0879	0.0945	0.0850	0.0871
	Molybdenum (Mo)-Total (mg/L)	<0.025	<0.025	<0.025	<0.010	<0.010
	Nickel (Ni)-Total (mg/L)	0.00564	0.00569	0.00620	0.00540	0.00588
	Zinc (Zn)-Total (mg/L)	0.0589	0.0252	0.0238	0.0208	0.0228

	Sample ID	I 513040 21	1513040 22	1513040 22	
	Description	L513940-21	L513940-22	L513940-23	
	Sampled Date	03-JUN-07	03-JUN-07	03-JUN-07	
	Sampled Time	12:32	12:43	12:52	
Grouping	Client ID Analyte	GLC-22M	GLC-30M	GLC-35M	
SEAWATER	Allalyte				
	Handana (as 0.000) (as #1)	40400	40400	40000	
Physical Tests	Hardness (as CaCO3) (mg/L)	13100	13100	13300	
Total Metals	Aluminum (Al)-Total (mg/L)	<0.20	<0.20	1.09	
	Arsenic (As)-Total (mg/L)	0.00035	0.00022	0.00063	
	Cadmium (Cd)-Total (mg/L)	<0.000020	0.000040	0.00286	
	Calcium (Ca)-Total (mg/L)	847	854	897	
	Copper (Cu)-Total (mg/L)	0.000430	0.000860	0.0149	
	Iron (Fe)-Total (mg/L)	0.281	0.295	0.648	
	Lead (Pb)-Total (mg/L)	0.000780	0.0171	0.495	
	Magnesium (Mg)-Total (mg/L)	2660	2670	2680	
	Manganese (Mn)-Total (mg/L)	0.0842	0.0780	0.143	
	Molybdenum (Mo)-Total (mg/L)	<0.010	<0.010	<0.010	
	Nickel (Ni)-Total (mg/L)	0.00544	0.00283	0.00281	
	Zinc (Zn)-Total (mg/L)	0.0218	0.0453	0.529	
		0.02.0	0.0.00	0.020	

	Sample ID Description	L513940-1	L513940-2	L513940-3	L513940-4	L513940-5
	Sampled Date	03-JUN-07	03-JUN-07	03-JUN-07	03-JUN-07	03-JUN-07
	Sampled Time Client ID	11:40 GLC-1.5M	11:43 GLC-2M	11:46 GLC-3M	11:48 GLC-4M	11:50 GLC-5M
rouping	Analyte	GLO-1.5W	OLO-ZIVI	GEO-SIVI	OLO-4IVI	GLO-JIVI
VATER						
Physical Tests	Salinity (EC) (g/L)	6.2	6.5	6.6	6.6	6.6
•	Conductivity (uS/cm)	10200	10600	10800	10900	10700
	pH (pH)	8.04	8.06	8.08	8.08	8.08
	Total Suspended Solids (mg/L)	5.4	5.5	4.8	<3.0	<3.0
Anions and Nutrients	Alkalinity, Total (as CaCO3) (mg/L)	150	153	158	156	3.6
	Sulphide as S (mg/L)					
Total Metals	Mercury (Hg)-Total (mg/L)	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010

WATER Physical Tests	Sampled Date Sampled Time Client ID	03-JUN-07 11:52		00 11111 0-	00 1111 0-	00 "" " 0=
WATER		GLC-6M	03-JUN-07 11:54 GLC-7M	03-JUN-07 11:56 GLC-8M	03-JUN-07 11:58 GLC-9M	03-JUN-07 12:00 GLC-10M
	Analyte					
Physical Tests						
	Salinity (EC) (g/L)	7.2	7.1	7.1	7.0	27.1
	Conductivity (uS/cm)	11700	11600	11600	11500	39400
	pH (pH)	8.04	8.08	8.08	8.08	7.68
	Total Suspended Solids (mg/L)	<3.0	5.5	4.2	3.5	8.2
Anions and Nutrients	Alkalinity, Total (as CaCO3) (mg/L)	161	121	170	167	248
	Sulphide as S (mg/L)	<0.020				<0.020
Total Metals	Mercury (Hg)-Total (mg/L)	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010

ALS LABORATORY GROUP ANALYTICAL REPORT 09-JUL-07 14:55

	Sample ID Description	L513940-11	L513940-12	L513940-13	L513940-14	L513940-15
	Sampled Date	03-JUN-07	03-JUN-07	03-JUN-07	03-JUN-07	03-JUN-07
	Sampled Time	12:02	12:04	12:08	12:10	12:14
Grouping	Client ID Analyte	GLC-11M	GLC-12M	GLC-13M	GLC-14M	GLC-15M
NATER	, and yes					
Physical Tests	Salinity (EC) (g/L)	44.3	43.9	44.4	44.4	44.6
,	Conductivity (uS/cm)	61000	60500	61100	61100	61300
	pH (pH)	7.70	7.70	7.69	7.68	7.69
	Total Suspended Solids (mg/L)	16.2	16.8	9.5	17.5	15.5
Anions and	Alkalinity, Total (as CaCO3) (mg/L)	430	433	454	438	443
Nutrients	Outstands on O (cont)		2 202		0.400	
T-1-1-84-1-1-	Sulphide as S (mg/L)	0.000040	<0.020	0.000040	0.130	0.000040
Total Metals	Mercury (Hg)-Total (mg/L)	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010
			I			1

	Sample ID Description	L513940-16	L513940-17	L513940-18	L513940-19	L513940-20
	Sampled Date	03-JUN-07	03-JUN-07	03-JUN-07	03-JUN-07	03-JUN-07
	Sampled Time Client ID	12:16	12:20	12:22	12:26	12:28 GLC-20M
rouping	Analyte	GLC-16M	GLC-17M	GLC-18M	GLC-19M	GLC-20M
WATER						
Physical Tests	Salinity (EC) (g/L)	44.7	45.1	45.7	45.3	45.1
,	Conductivity (uS/cm)	61500	62000	62700	62200	62000
	pH (pH)	7.69	7.70	7.69	7.69	7.68
	Total Suspended Solids (mg/L)	16.8	8.2	38.2	7.5	16.2
Anions and	Alkalinity, Total (as CaCO3) (mg/L)	432	424	425	410	420
Nutrients	Sulphide as S (mg/L)	0.153		0.164		0.146
Total Metals	Mercury (Hg)-Total (mg/L)		~0.000010		<0.000010	
otal Metals	Mercury (Hg)-Total (mg/L)	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010

	Sample ID Description	L513940-21	L513940-22	L513940-23	
	Sampled Date	03-JUN-07	03-JUN-07	03-JUN-07	
	Sampled Time	12:32	12:43	12:52	
Grouping	Client ID Analyte	GLC-22M	GLC-30M	GLC-35M	
	Analyte				
WATER					
Physical Tests	Salinity (EC) (g/L)	45.1	45.5	46.1	
	Conductivity (uS/cm)	61900	62400	63100	
	pH (pH)	7.69	7.67	7.65	
	Total Suspended Solids (mg/L)	8.8	7.5	1020	
Anions and Nutrients	Alkalinity, Total (as CaCO3) (mg/L)	425	442	425	
	Sulphide as S (mg/L)	0.104	1.04	0.054	
Total Metals	Mercury (Hg)-Total (mg/L)	<0.000010	0.000041	<0.000010	

L513940 CONTD.... PAGE 12 of 13 09-JUL-07 14:55

Reference Information

Methods Listed (if applicable):

ALS Test Code Matrix **Test Description** Analytical Method Reference(Based On)

ALK-COL-VA Water Alkalinity by Colourimetric (Automated)

This analysis is carried out using procedures adapted from EPA Method 310.2 "Alkalinity". Total Alkalinity is determined using the methyl orange

colourimetric method.

AS-TOT-C-HVAAS-VA Seawater Total Arsenic in Seawater by HVAAS PUGET SOUND PROTOCOLS, EPA 7000 SERIES

This analysis is carried out using procedures adapted from "Recommended Guidelines for Measuring Metals in Puget Sound Marine Water, Sediment, and Tissue Samples prepared for the United States Environmental Protection Agency and the Puget Sound Water Quality Authority, 1995. The procedures may involve preliminary sample treatment by acid digestion or filtration (EPA Method 3005A). Instrumental analysis of the seawater is by atomic absorption/emission spectrophotometry (EPA Method 7000 series).

EC-PCT-VA Water Conductivity (Automated) APHA 2510 Auto, Conduc.

This analysis is carried out using procedures adapted from APHA Method 2510 "Conductivity". Conductivity is determined using a conductivity electrode.

HARDNESS-CALC-VA Seawater Hardness **APHA 2340B**

Hardness is calculated from Calcium and Magnesium concentrations, and is expressed as calcium carbonate equivalents.

HG-TOT-LOW-CVAFS-VA Water Total Mercury in Water by CVAFS(Low) EPA 245.7

This analysis is carried out using procedures adapted from "Standard Methods for the Examination of Water and Wastewater" published by the American Public Health Association, and with procedures adapted from "Test Methods for Evaluating Solid Waste" SW-846 published by the United States Environmental Protection Agency (EPA). The procedure involves a cold-oxidation of the acidified sample using bromine monochloride prior to reduction of the sample with stannous chloride. Instrumental analysis is by cold vapour atomic fluorescence spectrophotometry (EPA Method 245.7).

MET-TOT-C-ICP-VA Seawater Total Metals in Seawater by ICPOES PUGET SOUND PROTOCOLS, EPA 6010B

This analysis is carried out using procedures adapted from "Recommended Guidelines for Measuring Metals in Puget Sound Marine Water, Sediment, and Tissue Samples" prepared for the United States Environmental Protection Agency and the Puget Sound Water Quality Authority, 1995. The procedures may involve preliminary sample treatment by acid digestion or filtration (EPA Method 3005A). Instrumental analysis is by inductively coupled plasma - optical emission spectrophotometry (EPA Method 6010B).

MET-TOT-C-LOW-MS-VA Seawater Total Metals in Seawater by ICPMS PUGET SOUND PROTOCOLS, EPA 6020A

This analysis is carried out using procedures adapted from "Recommended Guidelines for Measuring Metals in Puget Sound Marine Water, Sediment, and Tissue Samples prepared for the United States Environmental Protection Agency and the Puget Sound Water Quality Authority, 1995. The procedures may involve preliminary sample treatment by acid digestion or filtration (EPA Method 3005A). Instrumental analysis is by atomic inductively coupled plasma - mass spectrometry (EPA Method 6020A).

MET-TOT-SPE-MS-VA Seawater Total Metals in Seawater by SPE ICPMS PUGET SOUND PROTOCOLS, EPA 6020A

This analysis is carried out using procedures adapted from "Recommended Guidelines for Measuring Metals in Puget Sound Marine Water, Sediment, and Tissue Samples" prepared for the United States Environmental Protection Agency and the Puget Sound Water Quality Authority, 1995, and with procedures adapted from Cetac Technologies Incorporated. A suspended particulate resin (SPR), consisting of immobilized iminodiacetate (IDA) on a divinylbenzene polymer, is used to chelate and preconcentrate metals in seawater. Instrumental analysis is by inductively coupled plasma mass spectrometry (ICPMS).

PH-PCT-VA Water pH by Meter (Automated) APHA 4500-H "pH Value"

This analysis is carried out using procedures adapted from APHA Method 4500-H "pH Value". The pH is determined in the laboratory using a pH electrode

S2-T-COL-VA Water Total Sulphide by Colorimetric APHA 4500-S2 "Sulphide"

This analysis is carried out using procedures adapted from APHA Method 4500-S2 "Sulphide". Sulphide is determined using the methlyene blue colourimetric method.

SALINITY-EC-VA Water Salinity by calculation using EC APHA 2520 B

This analysis is carried out using procedures adapted from APHA Method 2520 "Salinity". Salinity is determined using a samples conductivity and the Practical Salinity Scale.

Reference Information

Methods Listed (if applicable):

ALS Test Code	Matrix	Test Description	Analytical Method Reference(Based On)

TSS-VA Water Solids by Gravimetric APHA 2540 Gravimetric APHA 2540 Gravimetric

This analysis is carried out using procedures adapted from APHA Method 2540 "Solids". Solids are determined gravimetrically. Total suspended solids (TSS) are determined by filtering a sample through a glass fibre filter, TSS is determined by drying the filter at 104 degrees celsius.

** Laboratory Methods employed follow in-house procedures, which are generally based on nationally or internationally accepted methodologies.

The last two letters of the above ALS Test Code column indicate the laboratory that performed analytical analysis for that test. Refer to the list below:

Laboratory Definition Code	Laboratory Location	Laboratory Definition Code	Laboratory Location
VA	ALS LABORATORY GROUP - VANCOUVER, BC, CANADA		

GLOSSARY OF REPORT TERMS

Surr - A surrogate is an organic compound that is similar to the target analyte(s) in chemical composition and behavior but not normally detected in environmental samples. Prior to sample processing, samples are fortified with one or more surrogate compounds.

The reported surrogate recovery value provides a measure of method efficiency.

mg/kg (units) - unit of concentration based on mass, parts per million

mg/L (units) - unit of concentration based on volume, parts per million

N/A - Result not available. Refer to qualifier code and definition for explanation

Test results reported relate only to the samples as received by the laboratory. UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Although test results are generated under strict QA/QC protocols, any unsigned test reports, faxes, or emails are considered preliminary.

ALS Laboratory Group has an extensive QA/QC program where all analytical data reported is analyzed using approved referenced procedures followed by checks and reviews by senior managers and quality assurance personnel. However, since the results are obtained from chemical measurements and thus cannot be guaranteed, ALS Laboratory Group assumes no liability for the use or interpretation of the results.

#2 - 8820 100th Street, Fort St. John, BC Canada V1J 3W9 Tel: 250-785-8281 Fax: 250-785-8286 #2 -21 Highfield Circle SE, Calgary, AB Canada T2G 5N6 Tel: 403-214-5431 Toll Free: 1-866-722-6231 Fax: 403-214-5430 1988 Triumph Street, Vancouver, BC Canada V5L 1K5 Tel: 604-253-4188 Toll Free: 1-800-665-0243 Fax: 604-253-6700

www.alsenviro.com

CHAIN OF CUSTODY FORM

L513940

PAGE 1 OF

	2.00			ř																			
COMPANY:	Teck Cominco Metals Ltd	s Ltd.					ANA	SYL	SRE	ANALYSIS REQUESTED:	STED												
ADDRESS:	Bag 2000						linity								90.3		17						
CITY	Kimberley	PROV: BC	C		POSTAL CODE: V1A 3E1	V1A 3E1	l, sa					-3		0									
TEL:	250-427-8405	FAX: 250-427-8451	0-427-8	3451	CONTACT:	CONTACT: Bruce Donald	s, p⊦					-0			-								
PROJECT N/	PROJECT NAME AND NO.:	2007 June Polaris Garrow Lake	laris Ga	arrow Lake	SAMPLER:	Arlene Laudrum	ness		CP)	_		78											
QUOTE NO.:		PO NO::			ALS CONTACT:		ardı		IS-I	100		8			_								
REPORT FORMAT	RMAT: ARDCOPY		✓ EMAIL	✓ EMAIL - ADDRESS:	bruce.donaid@	bruce.donald@teckcominco.cc	ity, h	linity	ıls (N			816						-					
	FAX	√ EXCEL	円	PDF	OTHER:		uctiv	Alka		ide													
	SAMPLE IDENTIFICATION	NTIFICATION		DATE / TIME	DATE / TIME COLLECTED	MATRIX	ond	SS,		ılph					- 2		311		z	OTES	(sample	NOTES (sample specific	
	0, 2011			DD-MM-YYYY	TIME	- NO.	Co	TS		Su					P30				8	mments	, due da	comments, due dates, etc.)	
	GLC-1.5m		2	2007-06- 03	11:40 am	seawater	×	×	×														
	GLC-2m		2	2007-06- 03	11:43 am	seawater	×	×	×			50	97	21/2									
	GLC-3m		2	2007-06- 03	11:46 am	seawater	×	×	×														
	GLC-4m		2	2007-06- 03	11:48 am	seawater	×	×	×	pries				/IS-						0			l.
	GLC-5m		2	2007-06- 03	11:50 am	seawater	×	×	×														
LAB	GLC-6m		2	2007-06- 03	11:52 am	seawater	×	×	×	×													
	GLC-7m		2	2007-06- 03	11:54 am	water	×	×	×											H			
	GLC-8m		2	2007-06- ර3	11:56 am	seawater	×	×	×														
	GLC-9m		2	2007-06- 43	11:58 am	seawater	×	×	×					74									
	GLC-10m		2	2007-06-03	12:00 pm	seawater	×	×	×	×												1	
TURN AROUND REQUIRED:	ND ® ROUTINE		RUSH	SPECIFY DATE:		(surcharge may apply)	pply)		RELIN	VQUISHED BY	KIDD ED BY:	Q		DATE:	June	05/07	7	RECEIVED BY		DATE		1	
SEND INVOICE TO:	SAME AS REPORT		DIFFER	INT FROM REPOR	☐ DIFFERENT FROM REPORT (provide details below)	pelow)			RELIN	RELINQUISHED BY:	ED BY			DATE:			RE	RECEIVED BY:) BY:	DATE:	iú	710	L
INVOICE FORMAT:	RMAT: HARDCOPY		PDF	□FAX										TIME:			+	1		TIME	Ē		
SPECIAL INSTRUCTIONS	TRUCTIONS:	Water is hype	rsaline,	for TSS measu	rement run 1-2L	Water is hypersaline, for TSS measurement run 1-2L distilled through filters!!!	ters!!!							FOI	RLAE	CO	ON						
parameters;	parameters; Sulfide has been preserved with NaOH and zinc acetate	served with Na	OH and	zinc acetate	HINOS, NO prese	Bryative for general	1		Cooler	Cooler Seal Intact?	Intact?	N/A	Sample T	Sample Temperature: Frozen? Yes	peratu Yes	N	0 00	78	Cooling Method?		<u>e</u>	None	100

Environmental excellence in analytical testing

SEND REPORT TO:

#2 - 8820 100th Street, Fort St. John, BC Canada VI, J3W9 Tel: 250-785-8281 Fax: 250-785-8286 #2 -21 Highfield Circle SE, Calgary, AB Canada T2G 5N6 Tel: 403-214-5431 Toll Free: 1-866-722-6231 Fax: 403-214-5430 1988 Triumph Street, Vancouver, BC Canada V5L 1K5 Tel: 604-253-4188 Toll Free: 1-800-665-0243 Fax: 604-253-6700

www.alsenviro.com

PAGE

유

CHAIN OF CUSTODY FORM

							i,	1	-								
ADDRESS:	Bag 2000						lini		-						1		
CITY:	Kimberley		PROV: BC		POSTAL CODE: \	V1A 3E1	l, sa						_	igi -			
TEL:	250-427-8405	405	FAX: 250-427-8451	427-8451	CONTACT:	Bruce Donald	, pŀ						_		Ţ		
PROJECT NAME AND NO.	IAME AND		7 June Polar	2007 June Polaris Garrow Lake	SAMPLER:	Arlene Laudrum	ness	000	GP)						or.		No.
QUOTE NO.:	· ·	٩	PO NO.:		ALS CONTACT:		ardı		15-1	Ä							
	1	✓ HARDCOPY		TEMAIL - ADDRESS:	bruce.donald@	bruce.donald@teckcominco.co	ty, h	-	is (iv				-6				
スカインス・インスがみに	ZWA	FAX	√ EXCEL	✓ PDF	OTHER:		uctivi	Alkal	Meta			no-v			-		
- CON	'n	SAMPI E IDENTIFICATION	NOITA	DATE / TIME	COLLECTED	MATRIX	ond		ulph	N		- 55		7	-	OTES (san	NOTES (sample specific
	٥	10 E	1	DD-WW-YYYY	TIME	1000	Co		-			0.15			Q	omments, du	comments, due dates, etc.)
	GLC-11m	1		2007-06- 03	12:02 pm	seawater	×	×	×								
	GLC-12m	n		2007-06- 63	12:04 pm	seawater	×	×	×								
Y	GLC-13m	n		2007-06- 63	12:08 pm	seawater	×	×	×								
ONL	GLC-14m	ח		2007-06- 03	12:10 pm	seawater	×	×	×								
JSE	GLC-15m	•		2007-06- 03	12:14 pm	seawater	×	×	×								
AB	GLC-16m	2		2007-06- 03	12:16 pm	seawater	×	×	×						101		
OR	GLC-17m	•		2007-06- 63	12:20 pm	seawater	×	×	×			100					
F	GLC-18m	ר		2007-06- O'S	12:22pm	seawater	×	×	×								
	GLC-19m	•		2007-06- 03	12:26 pm	seawater	×	×	×								
	GLC-20m	2		2007-06- 03	12:28pm	seawater	×	×	×								
TURN AROUND REQUIRED:	ND NO	ROUTINE	○ RUSH	ISH SPECIFY DATE:		(surcharge may apply)	ply)	○ R	RELINO	NQUISHED BY:	DATE:	000	05/	7 RE	167 RECEIVED BY:	DATE	
SEND INVOICE TO:	ICE TO:	SAME AS REPORT		DIFFERENT FROM REPORT (provide details below)	(provide details be	elow)		اخدًا	RELINO	QUISHED BY:	DATE			ᇛ	RECEIVED BY:	DATE 07	20/40
INVOICE FORMAT:	RMAT:	HARDCOPY	PDF	oF ☐ FAX							TIME:			-	CHIL	TIME	15:4
SPECIAL INSTRUCTIONS	STRUCTION	NS: Wat	Water is hypersaline,	aline, for TSS measu	ement run 1-2L d	TSS measurement run 1-2L distilled through filters!!!	ersiii	100			FOR	RLAE	LAB USE	ONLY	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		Name and American
CC: alaudr	um@gartne	C: alaudrum@gartnerlee.com; Total metals have been preserved v	netals have	CC: alaudrum@gartnerlee.com; Total metals have been preserved with HNO3; No preservative for general	HNO3; No preser	rvative for general		Ω	poler S	Cooler Seal Intact?	Sample Temperature X . T C	peratu	K.	100	Cooling Method?	striod?	

ALS Enuironmental excellence in analytical testing

SEND REPORT TO:

#2 - 8820 100th Street, Fort St. John, BC Canada V1J 3W9 Tel: 250-785-8281 Fax: 250-785-8286 #2 -21 Highfield Circle SE, Calgary, AB Canada T2G 5N6 Tel: 403-214-5431 Toll Free: 1-866-722-6231 Fax: 403-214-5430 1988 Triumph Street, Vancouver, BC Canada V5L 1K5 Tel: 604-253-4188 Toll Free: 1-800-665-0243 Fax: 604-253-6700

www.alsenviro.com

PAGE

Q

CHAIN OF CUSTODY FORM

TURN AROUND REQUIRED: SEND INVOICE TO: V SAME AS REPORT NVOICE FORMAT: V HARDCOPY	IND IND		N AROUND DUIRED:	ani	FOR	FOR	FOR	FOR	AB	USE	ONL	GLC, ABM 35 m	GLC-30m	GLC-22m		SAMPLE IDENTIFICATION	□FAX	REPORT FORMAT:	DUOTE NO.: PC	PROJECT NAME AND NO.: 2007	TEL: 250-427-8405	CITY: Kimberley F	ADDRESS: Bag 2000	COMPANY: Teck Cominco Metals Ltd.
ORUSH SPECIFY DATE: (sur T □ DIFFERENT FROM REPORT (provide details below) PDF □ FAX	ПО	1 0										2007-06-	2007-06-	2007-06-	YYYY-MM-DD		✓ EXCEL ✓ PDF	✓ EMAIL - ADDRESS:	PO NO.:	2007 June Polaris Garrow Lake	FAX 250-427-8451	PROV: BC		
		RT (provide details be										12:52pm	12543pm	12:32 pm	TIME	DATE / TIME COLLECTED	OTHER:	bruce.donald(a	ALS CONTACT:	SAMPLER:	CONTACT:	POSTAL CODE: V1A 3E1		
		elow)			(surcharge may apply)							seawater	seawater	seawater		MATRIX		bruce.donald@teckcominco.co		SAMPLER: Arlene Laudrum	CONTACT: Bruce Donald			
Water is hypersaline for TSS measurement run 1-21 distilled through filters!!!					oply)							×	×	×	Co	ond	uctiv	vity, I	nard	ness	s, pł	l, sa	alinit	ANA
		<u> </u>		^	-							×	×	×	TS	SS,	Alka	alinity	_					LYSI
		ELINC	ľ	Sitan	ELING.				-			×	×	×	To	tal	Met	als (I	MS-	ICP)				REC
		RELINQUISHED BY:		SKIDD ST	RELINQUISHED BY:							×	×	*	50	iipri	lide	vity, I						QUESTED:
	TIME	DATE		TIME	DATE:																			Cu
	Ē.	ΙÚ	+		-	_		-							-									2 (6
2					S DAVE																			2
ı					5/06																			513940
TOP I AP LISE ONLY		RECE			RECE																			0
	Sec.	RECEIVED BY:		19	Nine 05/06 RECEIVED BY			-						2			1			_				18
	TIME	Y: DATE:		TIME	Y: DATE:										comments, due dates, etc.)	NOTES (sample specific							The second	
	7			Ψį	ΪÜ										, due da	(sample								
	12.4	13460	1												tes, etc.)	specific								LL.

Environmental Division

ANALYTICAL REPORT

TECK COMINCO METALS LTD.

ATTN: BRUCE DONALD Reported On: 10-JUL-07 11:51 AM

BAG 2000

KIMBERLEY BC V1A 3E1

Lab Work Order #: L514095 Date Received: 05-JUN-07

Project P.O. #:

Job Reference: 2007 JUNE POLARIS GARROW LAKE

Legal Site Desc: **CofC Numbers:**

Other Information:

Comments:

The detection limits for some of the metals have been increased for the samples reported in the following data tables due to sample matrix interferences.

> Timothy Guy Crowther General Manager, Vancouver

For any questions about this report please contact your Account Manager:

Heather Easton

THIS REPORT SHALL NOT BE REPRODUCED EXCEPT IN FULL WITHOUT THE WRITTEN AUTHORITY OF THE LABORATORY. ALL SAMPLES WILL BE DISPOSED OF AFTER 30 DAYS FOLLOWING ANALYSIS. PLEASE CONTACT THE LAB IF YOU REQUIRE ADDITIONAL SAMPLE STORAGE TIME.

A Campbell Brothers Limited Company

Description		L514095-2	L514095-3	L514095-4	L514095-5
Sampled Date	03-JUN-07	03-JUN-07	03-JUN-07	03-JUN-07	03-JUN-07
					14:28 GLS-5M
Analyte	020	010 1	020 0	020	020 0
Hardness (as CaCO3) (mg/L)	2020	2030	2020	2040	2050
Aluminum (Al)-Total (mg/L)	<0.050	<0.050	<0.050	<0.050	<0.050
Arsenic (As)-Total (mg/L)	<0.00020	0.00020	<0.00020	<0.00020	<0.00020
Cadmium (Cd)-Total (mg/L)	0.000702	0.000636	0.000608	0.000603	0.000634
Calcium (Ca)-Total (mg/L)	173	170	169	173	173
Copper (Cu)-Total (mg/L)	0.00154	0.00108	0.000985	0.000970	0.000988
	0.251	0.046	<0.010	<0.010	<0.010
` , · , · , · , · , · , · , · , · , · ,					0.000155
Magnesium (Mg)-Total (mg/L)	387	390	389	390	393
	0.00988	0.00724			0.00707
				0.0030	<0.0025
					0.00417
					0.212
	Hardness (as CaCO3) (mg/L) Aluminum (Al)-Total (mg/L) Arsenic (As)-Total (mg/L) Cadmium (Cd)-Total (mg/L) Calcium (Ca)-Total (mg/L) Copper (Cu)-Total (mg/L) Iron (Fe)-Total (mg/L) Lead (Pb)-Total (mg/L)	Analyte	Sampled Time Client ID	Client ID	Sampled Time Client ID

	Sample ID Description	L514095-6	L514095-7	L514095-8	L514095-9	L514095-10
	Sampled Date	03-JUN-07	03-JUN-07	03-JUN-07	03-JUN-07	03-JUN-07
	Sampled Time Client ID	14:30 GLS-6M	14:34 GLS-7M	14:36 GLS-8M	14:38 GLS-9M	14:40 GLS-10M
rouping	Analyte	GL3-0IVI	GL3-7W	GL3-6W	GEO-9IVI	GL3-10W
SEAWATER						
Physical Tests	Hardness (as CaCO3) (mg/L)	1980	1970	2010	2000	7420
Total Metals	Aluminum (Al)-Total (mg/L)	<0.050	<0.050	<0.050	<0.050	<0.10
	Arsenic (As)-Total (mg/L)	<0.00020	<0.00020	<0.00020	<0.00020	0.00026
	Cadmium (Cd)-Total (mg/L)	0.000582	0.000569	0.000587	0.000592	0.00203
	Calcium (Ca)-Total (mg/L)	168	167	168	168	485
	Copper (Cu)-Total (mg/L)	0.000946	0.000919	0.000967	0.000976	0.00221
	Iron (Fe)-Total (mg/L)	<0.010	<0.010	<0.010	<0.010	<0.010
	Lead (Pb)-Total (mg/L)	0.000134	0.000100	0.000120	0.000109	0.000557
	Magnesium (Mg)-Total (mg/L)	379	377	385	383	1510
	Manganese (Mn)-Total (mg/L)	0.00654	0.00647	0.00658	0.00655	0.0459
	Molybdenum (Mo)-Total (mg/L)	<0.0025	<0.0025	0.0047	0.0028	<0.0050
	Nickel (Ni)-Total (mg/L)	0.00385	0.00377	0.00399	0.00422	0.00693
	Zinc (Zn)-Total (mg/L)	0.191	0.186	0.197	0.196	0.720

	Sample ID Description Sampled Date	L514095-11 03-JUN-07	L514095-12 03-JUN-07	L514095-13 03-JUN-07	L514095-14 03-JUN-07	L514095-15 03-JUN-07
	Sampled Time Client ID	14:42 GLS-11M	14:44 GLS-12M	14:48 GLS-13M	14:50 GLS-14M	14:54 GLS-15M
rouping	Analyte	GLS-11M	GLS-12IVI	GLS-13IVI	GLS-14W	GLS-15IVI
SEAWATER						
Physical Tests	Hardness (as CaCO3) (mg/L)	12800	12700	12800	12700	12600
Total Metals	Aluminum (Al)-Total (mg/L)	<0.20	<0.20	<0.20	<0.20	<0.20
	Arsenic (As)-Total (mg/L)	0.00029	0.00029	<0.00020	0.00028	<0.00020
	Cadmium (Cd)-Total (mg/L)	0.000045	<0.000020	<0.000020	<0.000020	<0.000020
	Calcium (Ca)-Total (mg/L)	799	794	810	802	801
	Copper (Cu)-Total (mg/L)	0.000606	0.000522	0.000491	0.000399	0.000406
	Iron (Fe)-Total (mg/L)	0.146	0.174	0.279	0.253	0.276
	Lead (Pb)-Total (mg/L)	0.000732	0.000699	0.000725	0.000691	0.000720
	Magnesium (Mg)-Total (mg/L)	2610	2590	2620	2590	2570
	Manganese (Mn)-Total (mg/L)	0.117	0.121	0.0902	0.0835	0.0888
	Molybdenum (Mo)-Total (mg/L)	<0.010	<0.010	<0.010	<0.010	<0.010
	Nickel (Ni)-Total (mg/L)	0.00745	0.00778	0.00521	0.00455	0.00483
	Zinc (Zn)-Total (mg/L)	0.0380	0.0251	0.0228	0.0168	0.0183

	Sample ID Description	L514095-16	L514095-17	L514095-18	L514095-19	L514095-20
	Sampled Date Sampled Time	03-JUN-07 14:56	03-JUN-07 15:00	03-JUN-07	03-JUN-07 15:06	03-JUN-07
	Client ID	GLS-16M	GLS-17M	15:02 GLS-18M	GLS-19M	15:08 GLS-20M
rouping	Analyte					
SEAWATER						
Physical Tests	Hardness (as CaCO3) (mg/L)	12800	13000	12800	12700	12700
Total Metals	Aluminum (AI)-Total (mg/L)	<0.20	<0.20	<0.20	<0.20	<0.20
	Arsenic (As)-Total (mg/L)	0.00034	0.00025	<0.00020	<0.00020	0.00025
	Cadmium (Cd)-Total (mg/L)	<0.000020	<0.000020	<0.000020	<0.000020	0.000022
	Calcium (Ca)-Total (mg/L)	812	816	801	801	802
	Copper (Cu)-Total (mg/L)	0.000432	0.000383	0.000400	0.000407	0.000485
	Iron (Fe)-Total (mg/L)	0.279	0.244	0.272	0.266	0.307
	Lead (Pb)-Total (mg/L)	0.000734	0.000703	0.000721	0.000680	0.000900
	Magnesium (Mg)-Total (mg/L)	2610	2660	2620	2600	2590
	Manganese (Mn)-Total (mg/L)	0.0852	0.0860	0.0859	0.0816	0.0879
	Molybdenum (Mo)-Total (mg/L)	<0.010	<0.010	<0.010	<0.010	<0.010
	Nickel (Ni)-Total (mg/L)	0.00489	0.00503	0.00532	0.00472	0.00538
	Zinc (Zn)-Total (mg/L)	0.0181	0.0183	0.0186	0.0175	0.0209

	Sample ID Description	L514095-1	L514095-2	L514095-3	L514095-4	L514095-5
	Sampled Date	03-JUN-07	03-JUN-07	03-JUN-07	03-JUN-07	03-JUN-07
	Sampled Time Client ID	14:20 GLS-1.5M	14:22 GLS-2M	14:24 GLS-3M	14:26 GLS-4M	14:28 GLS-5M
rouping	Analyte	GLO-1.5W	OLO-ZIVI	GLO-SIVI	OLO-4IVI	OLO-SIVI
VATER						
Physical Tests	Salinity (EC) (g/L)	8.9	8.9	8.8	8.8	8.8
•	Conductivity (uS/cm)	14200	14200	14100	14100	14100
	pH (pH)	8.01	8.06	8.07	8.08	8.08
	Total Suspended Solids (mg/L)	8.0	6.0	8.0	7.3	8.0
Anions and Nutrients	Alkalinity, Total (as CaCO3) (mg/L)	140	144	143	138	144
	Sulphide as S (mg/L)					
Total Metals	Mercury (Hg)-Total (mg/L)	0.000012	<0.000010	<0.000010	<0.000010	0.000012

	Sample ID Description	L514095-6	L514095-7	L514095-8	L514095-9	L514095-10
	Sampled Date	03-JUN-07	03-JUN-07	03-JUN-07	03-JUN-07	03-JUN-07
	Sampled Time Client ID	14:30 GLS-6M	14:34 GLS-7M	14:36 GLS-8M	14:38 GLS-9M	14:40 GLS-10M
rouping	Analyte				0.00	
VATER						
Physical Tests	Salinity (EC) (g/L)	8.8	8.8	8.9	8.9	22.8
•	Conductivity (uS/cm)	14100	14100	14200	14200	33700
	pH (pH)	8.08	8.08	8.09	8.09	7.77
	Total Suspended Solids (mg/L)	4.7	6.0	5.3	6.7	14.0
Anions and Nutrients	Alkalinity, Total (as CaCO3) (mg/L)	140	142	138	141	181
	Sulphide as S (mg/L) Mercury (Hg)-Total (mg/L)	<0.020	0.000013			<0.020

	Sample ID Description	L514095-11	L514095-12	L514095-13	L514095-14	L514095-15
	Sampled Date	03-JUN-07	03-JUN-07	03-JUN-07	03-JUN-07	03-JUN-07
	Sampled Time Client ID	14:42 GLS-11M	14:44 GLS-12M	14:48 GLS-13M	14:50 GLS-14M	14:54 GLS-15M
rouping	Analyte	020 11111	020 12111	020 10111	020 1 1111	OLO TOW
VATER						
Physical Tests	Salinity (EC) (g/L)	57.6	62.1	62.6	62.8	62.8
•	Conductivity (uS/cm)	76700	81800	82300	82600	82600
	pH (pH)	7.72	7.72	7.71	7.70	7.71
	Total Suspended Solids (mg/L)	52.0	28.7	44.0	50.0	48.0
Anions and Nutrients	Alkalinity, Total (as CaCO3) (mg/L)	400	429	407	421	407
	Sulphide as S (mg/L)		0.042		0.141	
Total Metals	Mercury (Hg)-Total (mg/L)	<0.000010	<0.000010	<0.000010	0.000015	0.000013

	Sample ID Description	L514095-16	L514095-17	L514095-18	L514095-19	L514095-20
	Sampled Date	03-JUN-07	03-JUN-07	03-JUN-07	03-JUN-07	03-JUN-07
	Sampled Time Client ID	14:56 GLS-16M	15:00 GLS-17M	15:02 GLS-18M	15:06 GLS-19M	15:08 GLS-20M
rouping	Analyte					
VATER						
Physical Tests	Salinity (EC) (g/L)	63.0	62.9	63.2	62.9	62.9
	Conductivity (uS/cm)	82800	82700	83000	82700	82600
	pH (pH)	7.71	7.72	7.73	7.71	7.72
	Total Suspended Solids (mg/L)	57.3	31.3	60.0	57.3	37.3
Anions and Nutrients	Alkalinity, Total (as CaCO3) (mg/L)	424	427	435	417	432
	Sulphide as S (mg/L)	0.023		0.086		0.053
Total Metals	Mercury (Hg)-Total (mg/L)	0.000010	<0.000010	<0.000010	<0.000010	<0.000010

Reference Information

Qualifiers for Sample Submission Listed:

 Qualifier
 Description

 NR:NR
 No Result: Sample Not Received At Laboratory - SR:COC - GLS-10M is an extra sample not on COC.

 Methods Listed (if applicable):

 ALS Test Code
 Matrix
 Test Description
 Analytical Method Reference(Based On)

ALK-COL-VA Water Alkalinity by Colourimetric (Automated) APHA 310.2

This analysis is carried out using procedures adapted from EPA Method 310.2 "Alkalinity". Total Alkalinity is determined using the methyl orange colourimetric method.

AS-TOT-C-HVAAS-VA Seawater Total Arsenic in Seawater by HVAAS

PUGET SOUND PROTOCOLS, EPA 7000 SERIES

This analysis is carried out using procedures adapted from "Recommended Guidelines for Measuring Metals in Puget Sound Marine Water, Sediment, and Tissue Samples" prepared for the United States Environmental Protection Agency and the Puget Sound Water Quality Authority, 1995. The procedures may involve preliminary sample treatment by acid digestion or filtration (EPA Method 3005A). Instrumental analysis of the seawater is by atomic absorption/emission spectrophotometry (EPA Method 7000 series).

EC-PCT-VA Water Conductivity (Automated) APHA 2510 Auto. Conduc.

This analysis is carried out using procedures adapted from APHA Method 2510 "Conductivity". Conductivity is determined using a conductivity electrode.

HARDNESS-CALC-VA Seawater Hardness APHA 2340B

Hardness is calculated from Calcium and Magnesium concentrations, and is expressed as calcium carbonate equivalents.

HG-TOT-LOW-CVAFS-VA Water Total Mercury in Water by CVAFS(Low) EPA 245.7

This analysis is carried out using procedures adapted from "Standard Methods for the Examination of Water and Wastewater" published by the American Public Health Association, and with procedures adapted from "Test Methods for Evaluating Solid Waste" SW-846 published by the United States Environmental Protection Agency (EPA). The procedure involves a cold-oxidation of the acidified sample using bromine monochloride prior to reduction of the sample with stannous chloride. Instrumental analysis is by cold vapour atomic fluorescence spectrophotometry (EPA Method 245.7).

MET-TOT-C-ICP-VA Seawater Total Metals in Seawater by ICPOES PUGET SOUND PROTOCOLS, EPA 6010B

This analysis is carried out using procedures adapted from "Recommended Guidelines for Measuring Metals in Puget Sound Marine Water, Sediment, and Tissue Samples" prepared for the United States Environmental Protection Agency and the Puget Sound Water Quality Authority, 1995. The procedures may involve preliminary sample treatment by acid digestion or filtration (EPA Method 3005A). Instrumental analysis is by inductively coupled plasma - optical emission spectrophotometry (EPA Method 6010B).

MET-TOT-C-LOW-MS-VA Seawater Total Metals in Seawater by ICPMS PUGET SOUND PROTOCOLS, EPA 6020A

This analysis is carried out using procedures adapted from "Recommended Guidelines for Measuring Metals in Puget Sound Marine Water, Sediment, and Tissue Samples" prepared for the United States Environmental Protection Agency and the Puget Sound Water Quality Authority, 1995. The procedures may involve preliminary sample treatment by acid digestion or filtration (EPA Method 3005A). Instrumental analysis is by atomic inductively coupled plasma - mass spectrometry (EPA Method 6020A).

MET-TOT-SPE-MS-VA Seawater Total Metals in Seawater by SPE ICPMS PUGET SOUND PROTOCOLS, EPA 6020A

This analysis is carried out using procedures adapted from "Recommended Guidelines for Measuring Metals in Puget Sound Marine Water, Sediment, and Tissue Samples" prepared for the United States Environmental Protection Agency and the Puget Sound Water Quality Authority, 1995, and with procedures adapted from Cetac Technologies Incorporated. A suspended particulate resin (SPR), consisting of immobilized iminodiacetate (IDA) on a divinylbenzene polymer, is used to chelate and preconcentrate metals in seawater. Instrumental analysis is by inductively coupled plasma mass spectrometry (ICPMS).

PH-PCT-VA Water pH by Meter (Automated) APHA 4500-H "pH Value"

This analysis is carried out using procedures adapted from APHA Method 4500-H "pH Value". The pH is determined in the laboratory using a pH electrode

S2-T-COL-VA Water Total Sulphide by Colorimetric APHA 4500-S2 "Sulphide"

This analysis is carried out using procedures adapted from APHA Method 4500-S2 "Sulphide". Sulphide is determined using the methlyene blue colourimetric method.

Reference Information

Methods Listed (if applicable):

ALS Test Code Matrix Test Description Analytical Method Reference(Based On)

SALINITY-EC-VA Water Salinity by calculation using EC APHA 2520 B

This analysis is carried out using procedures adapted from APHA Method 2520 "Salinity". Salinity is determined using a samples conductivity and the

Practical Salinity Scale.

TSS-VA Water Solids by Gravimetric APHA 2540 Gravimetric

This analysis is carried out using procedures adapted from APHA Method 2540 "Solids". Solids are determined gravimetrically. Total suspended solids (TSS) are determined by filtering a sample through a glass fibre filter, TSS is determined by drying the filter at 104 degrees celsius.

** Laboratory Methods employed follow in-house procedures, which are generally based on nationally or internationally accepted methodologies.

The last two letters of the above ALS Test Code column indicate the laboratory that performed analytical analysis for that test. Refer to the list below:

Laboratory Definition Code	Laboratory Location	Laboratory Definition Code	Laboratory Location
VA	ALS LABORATORY GROUP - VANCOUVER, BC, CANADA		

GLOSSARY OF REPORT TERMS

Surr - A surrogate is an organic compound that is similar to the target analyte(s) in chemical composition and behavior but not normally detected in environmental samples. Prior to sample processing, samples are fortified with one or more surrogate compounds.

The reported surrogate recovery value provides a measure of method efficiency.

mg/kg (units) - unit of concentration based on mass, parts per million

mg/L (units) - unit of concentration based on volume, parts per million

N/A - Result not available. Refer to qualifier code and definition for explanation

Test results reported relate only to the samples as received by the laboratory. UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Although test results are generated under strict QA/QC protocols, any unsigned test reports, faxes, or emails are considered preliminary.

ALS Laboratory Group has an extensive QA/QC program where all analytical data reported is analyzed using approved referenced procedures followed by checks and reviews by senior managers and quality assurance personnel. However, since the results are obtained from chemical measurements and thus cannot be guaranteed, ALS Laboratory Group assumes no liability for the use or interpretation of the results.

Environmental excellence in analytical testing

#2 - 8820 100th Street, Fort St. John, BC Canada V1J 3W9 Tel: 250-785-8281 Fax: 250-785-8286 #2 -21 Highfield Circle SE, Calgary, AB Canada T2G 5N6 Tel: 403-214-5431 Toll Free: 1-866-722-6231 Fax: 403-214-5430 1988 Triumph Street, Vancouver, BC Canada V5L 1K5 Tel: 604-253-4188 Toll Free: 1-800-665-0243 Fax: 604-253-6700

www.alsenviro.com

CHAIN OF CUSTODY FORM

PAGE 유

COMPANY: T	Teck Cominco Metals Ltd	Metals Ltd.					P	ANALYSIS	IS REQ	QUE	UESTED:	ñ								
DDRESS: E	Bag 2000				i de la composição de l		linity		Ŧ											
SITY: K	Kimberley	PRO	PROV: BC		POSTAL CODE:	V1A 3E1	l, sa										- 14			
TEL:	250-427-8405	Fρ	FAX: 250-427-8451	51	CONTACT:	Bruce Donald	, pH											_		
ROJECT NA	PROJECT NAME AND NO.:	2007 Ju	2007 June Polaris Garrow Lake	ow Lake	SAMPLER:	: Arlene Laudrum	ness		CP)				_							
QUOTE NO.:		PO NO.:	0.		ALS CONTACT:		ardr		1S-I					ij						
		HARDCOPY	✓ EMAIL - ADDRESS:	ADDRESS:	bruce donald	cominco.co	ty, h	inity	ls (N			N.								
	П	FAX	✓ EXCEL	PDF	OTHER:		uctivi	Alka	Meta	ide										
	CAMBI	E DENITIEIO ATIO		DATE / TIME	COL	MATRIX	ndı	S,	tal	lph						9		Z	NOTES (sample specific	specific
	OAMPL	SAMPLE IDENTIFICATION		YYYY-MM-DD	TIME	MAIRIX	Co	TS	To	Su								con	comments, due dates, etc.)	ates, etc.)
0	GLS-1.5m		200	2007-06- 53	2:20	seawater	×	×	×											
	GLS-2m		200	2007-06- 63	2:22	seawater	×	×	×					in.						
	411 STE		200	2007-06-7	224	Seawater	1	*	*											
ONL	GLS-3m		200	2007-06- 03	2:24	seawater	×	×	×											
	GLS-4m		200	2007-06- 03	35.5	seawater	×	×	×											
	GLS-5m		200	2007-06- 03	2:28	seawater	×	×	×	on s			V							
	GLS-6m		200	2007-06- 03	2:30	seawater	×	×	×	×										
	GLS-7m		200	2007-06- 03	2:34	seawater	×	×	×											
	GLS-8m		200	2007-06- 03	2:36	seawater	×	×	×			1016		14						
	GLS-9m		200	2007-06- 03	2:38	seawater	×	×	×											
URN AROUND		ROUTINE	O RUSH SP	SPECIFY DATE:		(surcharge may apply)	apply)		RELINO	INQUISH	ISHED BY:	8		DATE	Jone	06/07	7 REC	RECEIVED BY:	DATE:	るた
END INVOICE TO:		SAME AS REPORT	DIFFEREN	FROM REPOR	DIFFERENT FROM REPORT (provide details below)	below)			RELINQ	QUISH	UISHED BY:			DATE:			REC	RECEIVED BY:	DATE:	100
NVOICE FORMAT:		HARDCOPY	PPF	Fax				1						TIME:				12.00	TIME:	
SPECIAL INSTRUCTIONS	TRUCTIONS:	Water is	hypersaline, fo	r TSS measur	rement run 1-2L	Water is hypersaline, for TSS measurement run 1-2L distilled through filters!!!	ters							FO	RLA	FOR LAB USE ONLY	ONL	,	1	
C: alaudrur arameters;	C: alaudrum@gartnerlee.com; Total metals have been preserved warameters; Sulfide has been preserved with NaOH and zinc acetate	com; Total meta en preserved wi	th NaOH and z	reserved with inc acetate	HNO3; No pres	CC: alaudrum@gartnerlee.com; Total metals have been preserved with HNO3; No preservative for general	<u>a</u>		Cooler Seal Intact?	3	5		Cam	nle Ter	Sample Temperature/	re/	J°C	Cooling Method?	hod?	

CITY

#2 - 8820 100th Street, Fort St. John, BC Canada V1J 3W9 Tel: 250-785-8281 Fax: 250-785-8286 #2 -21 Highfield Circle SE, Calgary, AB Canada T2G 5N6 Tel: 403-214-5431 Toll Free: 1-866-722-6231 Fax: 403-214-5430 1988 Triumph Street, Vancouver, BC Canada V5L 1K5 Tel: 604-253-4188 Toll Free: 1-800-665-0243 Fax: 604-253-6700

www.alsenviro.com

parameters; Sulfide has been preserved with NaOH and zinc acetate CC: alaudrum@gartnerlee.com; Total metals have been preserved with HNO3; No preservative for general SPECIAL INSTRUCTIONS INVOICE FORMAT: SEND INVOICE TO: TURN AROUND REPORT FORMAT: QUOTE NO. PROJECT NAME AND NO ADDRESS: Bag 2000 COMPANY: Teck Cominco Metals Ltd SEND REPORT TO GLS-19rr GLS-18m GLS-16m GLS-10m 250-427-8405 GLS-17m GLS-15m GLS-14m GLS-13m GLS-12m GLS-11m Kimberley SAMPLE IDENTIFICATION ✓ HARDCOPY SAME AS REPORT ROUTINE FAX ✓ HARDCOPY Water is hypersaline, for TSS measurement run 1-2L distilled through filters!!! 2007 June Polaris Garrow Lake PO NO PROV: ✓ EXCEL FAX: 250-427-8451 PDF ☐ DIFFERENT FROM REPORT (provide details below) O RUSH SPECIFY DATE BC EMAIL - ADDRESS 2007-06- 63 2007-06- 03 2007-06-03 2007-06-03 2007-06- 03 2007-06-03 2007-06-03 2007-06- 03 2007-06- 03 2007-06-03 YYYY-MM-DD √ PDF DATE / TIME COLLECTED FAX ALS CONTACT POSTAL CODE: bruce.donald@teckcominco OTHER: 3:06 PM 2:56 pm 3: 02 pm 3:00 pm 2: So Proseawater J:44 pm 2:48 pm |seawater 2:42 pm 2:40 pm wehs: SAMPLER: Arlene Laudrum CONTACT: Bruce Donald TIME V1A 3E1 seawater seawater seawater seawater seawater seawater seawater seawater (surcharge may apply) CHAIN OF CUSTODY FORM MATRIX ANALYSIS REQUESTED: X Conductivity, hardness, pH, salinity × × × × × × × × × X TSS, Alkalinity × × × × × × × × × RELINQUISHED BY RELINQUISHED BY: Cooler Seal Intact? Total Metals (MS-ICP) X × Yes × × × × × × × × SUZA 9 Sulphide × × × × × No KIDD NA Sample Temperature: //
Frozen? ___Yes X__No DATE DATE: TIME TIME FOR LAB USE ONL Line 05/07 RECEIVED BY: 7.0°C RECEIVED BY: Cooling Method? PAGE NOTES (sample specific comments, due dates, etc.) DATE: DATE: D TIME TIME: ce 유 7640 5:40 None

REQUIRED:

FOR LAB USE ONLY

ALS Environmental excellence in analytical testing

SEND REPORT TO:

#2 -21 Highfield Circle SE, Calgary, AB Canada T2G 5N6 Tel: 403-214-5431 Toll Free: 1-866-722-6231 Fax: 403-214-5430 1988 Triumph Street, Vancouver, BC Canada V5L 1K5 Tel: 604-253-4188 Toll Free: 1-800-665-0243 Fax: 604-253-6700

#2 - 8820 100th Street, Fort St. John, BC Canada V1J 3W9 Tel: 250-785-8281 Fax: 250-785-8286

CHAIN OF CUSTODY FORM

785-8281 Fax: 250-785-8286 157 140 95

PAGE

유

www.alsenviro.com

VA 1.2. 1.2. 1.2. 1.2. 1.2. 1.2. 1.2. 1.2
ALS CONTACT: bruce.donald@teckcominco.co OTHER: OLLECTED MATRIX Conductivity, hard TSS, Alkalinity Total Metals (MS) Sulphide
* × Conductivity, * × TSS, Alkalinity * × Total Metals (* × Sulphide
X X Total Metals (MS-ICXX X Sulphide
X X Sulpride