Table FH-21-3. Firehall Remediation Confirmation Soil Samples - Polycyclic Aromatic Hydrocarbons (PAHs)

		Location		Firehall	hall	
	Polaris Mine	Sample ID	FH-104-F-D	FH-11016-W-C	FH-11016-W-C FH-11126-F-C	FH-11347-F-C
	Soil Quality	Date Sampled	05-Aug-03	01-Jun-04	01-Jun-04	09-Jun-04
	Remediation	ALS File Number	T2589	U4137	U4137	U4484
	Objectives"	Field Screen (ppm) ^b	ř	55	09	50
Parameter	CEQG (PL)	Units		Analytic	Analytical Results	
Polycyclic Aromatic Hydrocarbons						
Acenaphthene		mg/kg	<0.04	<0.04	<0.04	<0.04
Acenaphthylene		mg/kg	<0.05	<0.05	<0.05	<0.05
Anthracene		mg/kg	<0.05	<0.05	<0.05	<0.05
Benz(a)anthracene	1^{d}	mg/kg	<0.05	<0.05	<0.05	<0.05
Benzo(a)pyrene	0.7	mg/kg	<0.05	<0.05	<0.05	<0.05
Benzo(b)fluoranthene	1^{d}	mg/kg	<0.05	<0.05	<0.05	<0.05
Benzo(g.h.l)pervlene		mg/kg	<0.05	<0.05	<0.05	<0.05
Benzo(k)fluoranthene	1^{d}	mg/kg	<0.05	<0.05	<0.05	<0.05
Chrysene	1	mg/kg	<0.05	<0.05	<0.05	<0.05
Dibenz(a,h)anthracene	1^{d}	mg/kg	<0.05	<0.05	<0.05	<0.05
Fluoranthene	,	mg/kg	<0.05	<0.05	<0.05	<0.05
Fluorene	1	mg/kg	<0.05	<0.05	<0.05	<0.05
Indeno(1,2,3,-c,d)pyrene	1^{d}	mg/kg	<0.05	<0.05	<0.05	<0.05
Napthalene	9.0	mg/kg	0.07	<0.05	<0.05	<0.2
Phenanthrene	Sd	mg/kg	<0.05	<0.05	<0.05	<0.05
Pyrene	10 ^d	mg/kg	<0.05	<0.05	<0.05	<0.05

Bold Concentration greater than or equal to the Soil Quality Remediation Objective (SQRO) for the Polaris Mine Site.

Notes

[&]quot;<" = Less than analytical method detection limit.

[&]quot;-" = Analysis not conducted, or no guideline.

a) The Soil Quality Remediation Objectives (SQROs) for the Polaris Mine Site are based on Canadian Council of Ministers of the Environment (CCME) standards and guidelines. The CCME provides criteria based on land use activities and applies the most strigent criteria based on site-specific receptors and exposure pathways.

b) Field screening results are measured based on a 'dry headspace' method using a combustible gas meter calibrated to a hexane standard.

c) Canadian Environmental Quality Guidelines (CEQG) for Parkland (PL) Land Use. The site-specific factors used for determining the soil quality guidelines were: soil ingestion, soil contact and nutrient cycling.

d) Interim Remediation Criterion. Soil Quality Guidelines based on the CCME soil protocol have not yet been developed for a given parameter

Table FH-21-4. Firehall Quality Assurance and Quality Control Remediation Soil Samples - Hydrocarbons

		T	Location				Fire	Firehall			
		San	Sample ID	FH-11017-W-C	FH-11123-F-C	017-W-C FH-11123-F-C FH-11126-F-C FH-11344-W-C FH-11349-F-C FH-11738-W-C FH-11764-F-C FH-11764-F-C	FH-11344-W-C	FH-11349-F-C	FH-11738-W-C	FH-11764-F-C	FH-11764-F-C
		Duph	Duplicate ID	QC# 389244	QC# 389245	FH-10472-W-Q FH-11370-W-Q QC# 390735	FH-11370-W-Q	QC# 390735	QC# 392657	QC# 392657 FH-11765-F-Q	QC# 395247
Parameter	Units	MDL	PQL				Analytic	Analytical Results			
Analytical Laboratory Duplicates	olicates										
EPH C ₁₀ -C ₁₉											
Sample Result	mg/kg	200	1000		1	<200	370	1	,	<200	<200
Duplicate Result	mg/kg	200	1000		1	<200	770	1		<200	250
RpD	%					na	na	を できる できる		na	na
EPH C ₁₉ -C ₃₂											
Sample Result	mg/kg	200	1000			<200	<200	1	3.	320	320
Duplicate Result	mg/kg	200	1000	í	·	<200	<200	1	•	390	450
RpD	%					na	na	行があると様とは		na	па
Analytical Laboratory Replicates	licates										
EPH C ₁₀ -C ₁₉											
Sample Result	mg/kg	200	1000	<200	1460		9	270	<200	,	ì
Duplicate Result	mg/kg	200	1000	<200	1890		1	270	<200		1
RpD	%		The second second	na	26%			na	na		
EPH C ₁₉ -C ₃₂											
Sample Result	mg/kg	200	1000	<200	520		r	<200	<200	ı	ì
Duplicate Result	mg/kg	200	1000	<200	460		1	<200	<200		
RpD	%			па	na			na	na		

Bold RpD Value is greater than or equal to 50% and the concentrations of both samples are greater than the PQL.

Notes:

na RpD value is not applicable because one or both results are less than the PQL.

RpD Relative Percent Difference = (Difference/Average)*100.

PQL Practical Quantitation Limit = 5 * Method Detection Limit (MDL).

MDL Method Detection Limit of analysis.

Table FH-21-5. Firehall Quality Assurance and Quality Control Remediation Soil Samples - Metals

			Location					Firehall				
		Sar	Sample ID Duplicate ID	FH-BH-2-4-C FH-BH-2-4-0	FH-BH-2-7-C FH-BH-2-9-Q	FH-BH-5-3-C FH-BH-5-10-Q	FH-BH-7-4-C FH-BH-7-10-Q	FH-BH-8-8-C FH-BH-8-11-Q	FH-BH-9-2-C FH-BH-9-8-Q	FH-BH-10-1-C FH-BH-10-9-Q	FH-BH-11-4-C FH-BH-12-2-C FH-BH-11-8-Q FH-BH-12-10-C	FH-BH-12-2-C FH-BH-12-10-Q
Parameter	Units	MDL	PQL					Analytical Results	S.			
On Site Field Screening Duplicates	ng Duplica	tes										
Lead (Pb)				na								
Sample Result	mg/kg	70	350	152	20	20	20	485	2419	1450	40	54
Duplicate Result	mg/kg	70	350	121	20	20	32	418	2109	1829	51	80
RpD	%	100 P		na	na	na	na	15%	14%	23%	na	na
Zinc (Zn) Sample Result	mg/kg	150	750	411	09	09	610	3120	13299	5459	431	287
Duplicate Result	mg/kg	150	750	418	225	09	865	3328	12800	6349	171	303
RpD				TIA .	na	na	na	%9	4%	15%	na	na
Analytical Laboratory Duplicates	y Duplicate	Si										
Lead (Pb)												
Sample Result	mg/kg	100	200	-	1	ı		1	1		1	6
Duplicate Result	mg/kg	100	500	1		1						
RpD	%			Property of the second								
Zinc (Zn)											1	
Sample Result	mg/kg	2	10	r	0	E		1.0	1	1		,
Duplicate Result	mg/kg	2	10	ı	1					1		
RpD	%			- Test							S SELECTION OF THE SECOND	
Analytical Laboratory Replicates	y Replicate	S										
Lead (Pb) Sample Result	mg/kg	100	500					,		ï		
Duplicate Result	mg/kg	100	200	r		t	1			-		1
RpD	%						Sec. 12. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.		から 日本の		いいというない	
Zinc (Zn)	t	ţ			3							
Sample Result	mg/kg	3	15	ı	1	1	1	,				
Duplicate Result	mg/kg	3	15	1			1			•		
RpD	%											のが非常動物に

Bold RpD Value is greater than or equal to 50% and the concentrations of both samples are greater than the PQL.

Notes:

na RpD value is not applicable because one or both results are less than the PQL.

RpD Relative Percent Difference (Difference/Average)*100.

PQL Practical Quantitation Limit = 5 * Method Detection Limit (MDL).

MDL Method Detection Limit of analysis.

Table FH-21-5. Firehall Quality Assurance and Quality Control Remediation Soil Samples - Metals

		-	Location					Firehall				
		San	Sample ID	FH-BH-13-2-C	FH-BH-14-6-C FH-BH-14-7-0	FH-BH-15-1-C FH-BH-15-7-O	FH-BH-15-3-C FH-BH-15-8-Q	FH-BH-18-3-C FH-BH-18-8-Q	FH-BH-15-3-C FH-BH-18-3-C FH-BH-18-7-C FH-BH-15-8-Q FH-BH-15-9-Q	FH-59-W-D FH-165-W-Q	FH-97-F-C FH-98-F-Q	FH-105-F-C FH-105-F-Q
Parameter	Units	MDL	POL				7	Analytical Results	ts			
On Site Field Screening Duplicates	ng Duplicat	tes										
Lead (Pb)			050	0711	1.7	37.4	2680	40	130	0989	285	270
Sample Kesuit	mg/kg mg/kg	70	350	994	53	287	2290	34	108	6264	318	272
RoD	% NEW P	2		15%	na	na	16%	na	na	%6	na	na
Zinc (Zn)	ma/ka	150	750	689	225	1550	27699	404	577	37016	1764	1467
Dunlicate Result	mg/kg	150	750	5978	214	1160	25498	347	465	37923	1102	1396
RpD	100			13%	an Sec	29%	8%	na	na	2%	46%	5%
Analytical Laboratory Duplicates	y Duplicate	95										
Lead (Pb)												
Sample Result	mg/kg	100	200		1	,	í	ı	1	. 7		
Duplicate Result	mg/kg	100	200	•	1				•	•		
Min ()												
Zinc (Zn) Sample Result	mg/kg	2	10		,	,				,		1
Duplicate Result	mg/kg	2	10	E	•	1						
RpD	%		A		The state of the s							
Analytical Laboratory Replicates	ry Replicate	S										
Lead (Pb) Sample Result	mg/kg	100	200	э	2		,	t	r	0	1	
Duplicate Result	mg/kg	100	200	1				•	1	•	-	1
RpD	%											
Zinc (Zn) Sample Result	mg/kg	33	15			,	1	į.	,		1	ĸ
Duplicate Result		3	15		•	•	•			•	•	1
Kpu	31						The state of the s					

Bold RpD Value is greater than or equal to 50% and the concentrations of both samples are greater than the PQL.

Notes:

na RpD value is not applicable because one or both results are less than the PQL.

RepD. Relative Percent Difference = (Difference/Average)* 100.
PQL. Practical Quantitation Limit = 5 * Method Detection Limit (MDL).
MDL. Method Detection Limit of analysis.

Table FH-21-5. Firehall Quality Assurance and Quality Control Remediation Soil Samples - Metals

		T	Location					Firehall				
		San	Sample ID	FH-110-W-D	FH-111-W-C	FH-135-W-D	FH-145-W-D	FH-158-F-D	FH-11126-F-C	FH-11126-F-C FH-11344-W-C		FH-11764-F-C
		Dupli	Duplicate ID	FH-110-W-Q	QC# 350292	FH-139-W-Q	FH-148-W-Q	FH-158-F-Q	FH-10472-W-Q FH-11370-W-Q	FH-11370-W-Q	FH-11765-F-Q	QC# 395247
Parameter	Units	MDL	PQL				1	Analytical Results	ts		The second second	
On Site Field Screening Duplicates	ng Duplica	tes										
Lead (Pb) Sample Result	me/ke	70	350	204	199	12790	11203	55		ï	,	·
Duplicate Result	mg/kg	70	350	190	195	13627	7220	65	1	Е	1	,
RpD	%			na	na	6%	43%	na				
Zinc (Zn) Sample Result	mg/kg	150	750	593	513	72354	72692	304	·	31	17.0	,
Duplicate Result	mg/kg	150	750	603	455	61522	54744	684	•		·	
RpD	%			113	na na	16%	28%	na				
Analytical Laboratory Duplicates	y Duplicate	es										
Lead (Pb)												
Sample Result	mg/kg	100	200	10	1	1		1	150	250	140	
Duplicate Result	mg/kg	100	200						180	240	120	
RoD	%							100 STATE OF	18%	4%	15%	The State of the State of
Zinc (Zn)										3		
Sample Result	mg/kg	2	10		ï	ē	Ĉ	1	474	923	386	ı
Duplicate Result	mg/kg	2	10		1	-	1	1	1610	917	280	
RpD	%								109%	1%	32%	
Analytical Laboratory Replicates	y Replicate	Si										
Lead (Pb) Sample Result	mg/kg	100	500	31	<200		i				1	140
Duplicate Result	mg/kg	100	200		232	6					1	120
RpD	%				na							15%
Zinc (Zn) Sample Result	me/ke		15		791	э	,	,				386
Duplicate Result	mg/kg	20	15	1	1720	1	,	1		1		342
RoD	%				74%							12%

Bold RpD Value is greater than or equal to 50% and the concentrations of both samples are greater than the PQL

Notes:

na RpD value is not applicable because one or both results are less than the PQI... Relative Percent Difference = (Difference/Average)*100.

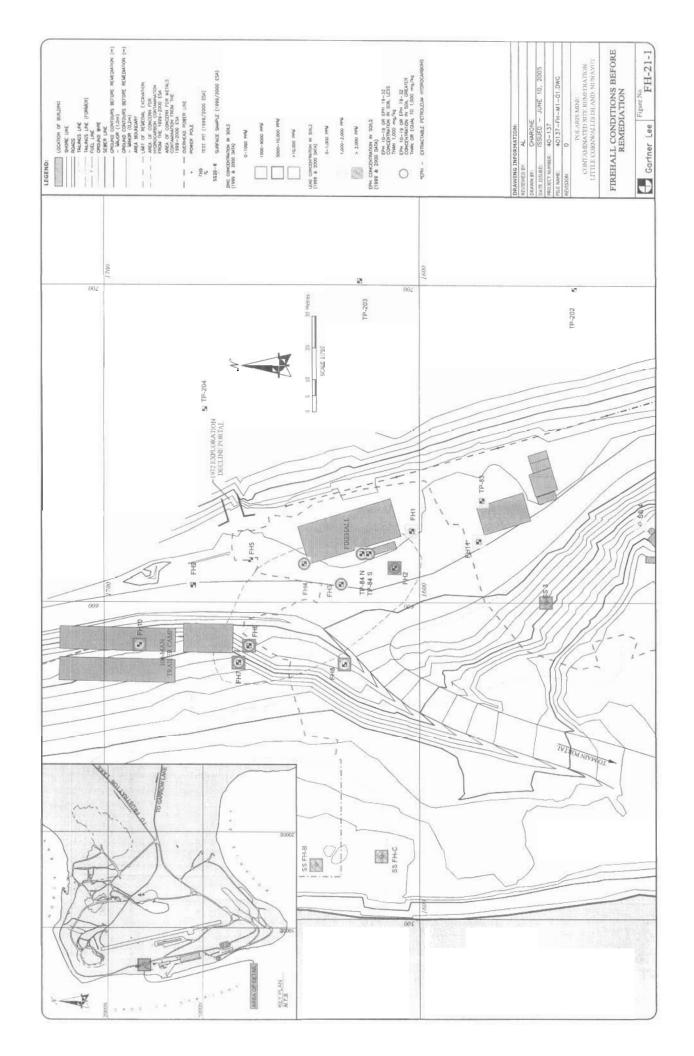
PQL Practical Quantitation Limit = 5 * Method Detection Limit (MDL).

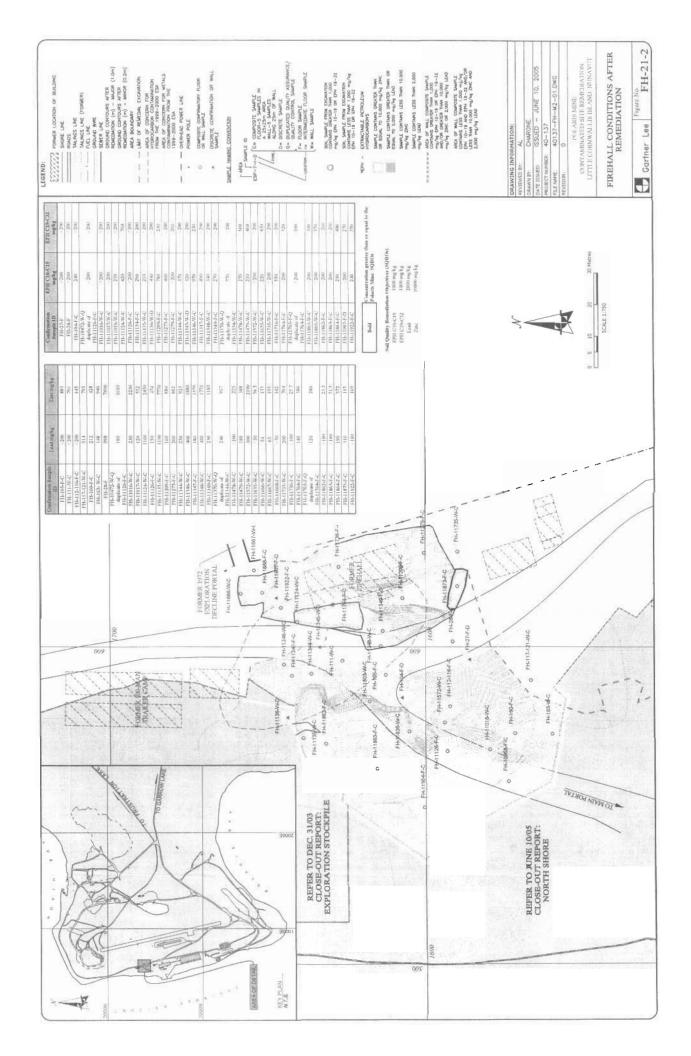
MDL. Method Detection Limit of analysis.

Table FH-21-5. Firehall Quality Assurance and Quality Control Remediation Soil Samples - Metals

		T	Location		200		Firehall				
		San Dupli	Sample ID Duplicate ID	FH-11017-W-C QC# 389244	FH-11123-F-C QC# 389245	FH-11349-F-C QC# 390735	FH-11726-F-D FH-11711-F-Q	FH-11668-F-C FH-11716-F-Q	FH-11726-F-D FH-11668-F-C FH-11691-W-D FH-11580-F-D FH-11711-F-Q FH-11718-W-Q FH-11720-F-Q	FH-11580-F-D FH-11720-F-Q	FH-11738-W-C QC# 392657
Parameter	Units	MDL	PQL			A	Analytical Results	95			
On Site Field Screening Duplicates	ng Duplica	tes									
Lead (Pb)	mø/kg		350	,		o	45	57	37	24	
Duplicate Result	mg/kg	70	350	1			25	77	55	30	
RpD	%					P. Confederation of the Confed	na	па	na	na	
Zinc (Zn) Sample Result	mg/kg	150	750		1	E	147	208	220	205	1
Duplicate Result	mg/kg	150	750	·	1		187	219	375	179	
RpD	%		The State of			distribution of the second	na	na	na	na	
Analytical Laboratory Duplicates	y Duplicate	es									
Lead (Pb)	ma/ka	100	200	-			,			í	1
Duplicate Result	mg/kg	100	200	,	ı		1	1	1		1
RpD	%							4			
Zinc (Zn)	and draw	٢	10						1	1	
Duplicate Result	mg/kg mp/kg	7 7	10	15 31				1	r		
RpD	%								The second services	THE STREET	
Analytical Laboratory Replicates	y Replicate	SS									
Lead (Pb) Sample Result	mg/kg	100	200	120	1390	230		ı	00	1	200
Duplicate Result	mg/kg	100	200	<100	1500	240			1	•	180
RpD	%	100 PM		na	8%	0			Ship and the Control of the Control		11%
Zinc (Zn) Sample Result	mg/kg	33	15	552	4270	1180	1	ï	1.	ı	704
Duplicate Result	mg/kg	3	15	376	4140	266				•	533
RpD	%			38%	3%	17%					28%

Bold RpD Value is greater than or equal to 50% and the concentrations of both samples are greater than the PQL


Notes


na RpD value is not applicable because one or both results are less than the PQL.

RpD Relative Percent Difference = (Difference/Average)*100,

PQL Practical Quantitation Limit = 5* Method Detection Limit (MDL).

MDL Method Detection Limit of analysis.

Appendix I

South Shore

June 10, 2005

Mr. Bruce Donald Teck Cominco Limited Bag 2000 Kimberley, BC V1A 3E1

Dear Mr. Donald:

Re: 40137 – Polaris Mine Operations Contaminated Soil Remediation Close Out Report: South Shore

BACKGROUND

The South Shore area surrounded the former concentrate storage shed and extended west to Crozier Strait (shown as Area 25 on Figure 1: Contaminated Soils Remediation Progress Plan, December 31, 2003 and on Figure 2: Contaminated Soils Remediation Progress Plan, December 31, 2004). Rock fill was used to level and expand the shoreline an additional 15 m (approximately) into Crozier Strait during construction. During the operation of the mine, the South Shore area was used as a storage yard for shipping containers. Several roads and a fuel line, that extended from the dock to the tank farm, crossed the area.

The Environmental Site Assessment (ESA) conducted in 1999 and 2000 identified metal contamination in the soil surrounding the concentrate shed on the South Shore. Two surface samples were collected, thirty one (31) test pits excavated and two (2) boreholes drilled during the ESA. The sample results indicated that elevated metal concentrations in the soil was limited to the upper 0.3 m between the south end of the concentrate storage shed and the shore. Between the north end of the concentrate storage shed and the shore elevated metal concentrations were encountered from surface to a depth of at least 1.5 m. No indication of hydrocarbon contamination was encountered during the ESA. The sample locations and an indication of results are shown on Figure SS-25-1: South Shore Conditions Before Remediation.

The sources of contaminate were attributed to lead and zinc concentrates being dispersed by wind and vehicle tracking from the concentrate storage shed and the conveyor to the shiploader at the dock. In addition, fill brought in to expand the shoreline during the construction and to repair eroded areas during the operation of the mine occasionally contained mineralized rock from near the ore zone and it was determined that it was to be excavated as part of the remedial work.

METHODOLOGY

Delineation

The preliminary boundaries of the remediation area, as identified in the ESA as "Areas of Concern" were not further delineated prior to excavation commencing along the shoreline in 2004. In 2004, further delineation of the remedial area was undertaken at the north end of the former concentrate storage shed by drilling eight boreholes and collecting field screening samples. The drill results determined that the metal contamination was bound vertically by bedrock at depths ranging from 0.3 m to 1.0 m below pre-excavation grades. Lead and zinc field screening measurements were obtained using a Niton portable X-Ray Fluorescence (XRF) elemental analyzer in accordance with standard Gartner Lee Limited (GLL) and Teck Cominco Limited (TCL) sampling procedures and protocols.

Excavation

The excavation of the South Shore area occurred from June 11, 2003 to October 23, 2003 and then again from April 19, 2004 to July 23, 2004. Material from the South Shore area was initial broken up for excavation utilising a ripper tooth attached to an excavator or onto the back of the D8 and D10 bulldozers. An excavator bucket was used to pick up the loosed material within the excavation, stockpile it and then load it onto trucks.

In 2003, a strip approximately 45 m wide from the dock cells to within 60 m of the foldaway buildings following the shoreline was removed. A berm was maintained between the ocean and the excavated area. The berm provided protection from the ocean flooding the area being excavated, as well as minimizing erosion in the marine foreshore area. Removal of the berm took place in May 2004 during periods of low tide. At this time ice still bound the foreshore and interaction with the marine foreshore was therefore reduced. Daily turbidity and Total Suspended Solids (TSS) levels were monitored prior to, during and immediately following periods of work in the foreshore in accordance with approved site procedures and protocols. Excavation activities were halted and mitigation measures implemented as required to address potential sediment releases into the marine environment.

In 2004, excavation occurred north and south of the former concentrate storage shed. During excavation at the north end of the concentrate storage shed, hydrocarbon contaminated soil was encountered. One source of hydrocarbon contamination originated at the fuel coupling located down slope of the road east of the barge (1313N, 680E). The contamination was found to have migrated downhill towards the gully that contained the conveyor-way from the barge to the concentrate shed. At this point the hydrocarbon contamination continued down gradient into the barge area. A second source of hydrocarbon contamination was located at a bend in the fuel line near the concentrate conveyor to the shiploader (1298N, 622E). Hydrocarbon contamination from this point source was found to have migrated down gradient towards the barge.

To direct the excavation activities, soil samples were collected across the floor excavation limits in accordance with standard GLL and TCL sampling procedures and protocols. Samples were field screened for metals using the XRF analyzer and for hydrocarbons using the portable photoionization detector (PID) to measure the concentrations of organic vapours in the headspace of the sample bags. Additional excavation was undertaken where sample results indicated the lead and zinc or hydrocarbon concentrations were greater than the Polaris Mine Soil Quality Remediation Objectives (SQRO's).

The final limits of the excavation areas are shown on Figure SS-25-2: *South Shore Conditions After Remediation*. The material excavated was disposed in the mine workings in accordance with regulatory approvals

Confirmation Sampling

Upon receipt of field screening results that indicated that the soil remaining in the excavation would meet the SQRO's, confirmation soil samples were collected. The excavation area was subdivided into individual composite sampling areas approximately 25 m by 25 m or less as required to cover the area to be sampled. Wall samples were composited over a length of 25 m on the wall of the excavation.

Soil samples were collected at the excavation limits and submitted to ALS Environmental for analysis of Extractable Petroleum Hydrocarbons (EPH), metals and Polycyclic Aromatic Hydrocarbons (PAH). Additional excavation was undertaken in areas that did not meet the SQRO's and additional confirmatory samples taken upon completion of excavation. Upon receipt of the analytical results that met the SQRO's the final excavation limits were surveyed.

ANALYTICAL RESULTS

Analytical laboratory results for EPH, metals and PAH are summarized in Tables SS-25-1, SS-25-2 and SS-25-3 along with the approved Polaris Mine SQRO's for petroleum hydrocarbons and metals. A total of four (4) hydrocarbon and one hundred fifty seven (157) metals remediation confirmation samples were submitted from the South Shore area. All of the hydrocarbon remediation confirmation samples were composite floor samples. Of the metals remediation confirmation samples there were one hundred sixteen (116) composite floors, nineteen (19) discrete floors, four (4) composite walls, one (1) discrete wall, and seventeen (17) quality assurance quality control (QA/QC) samples. The soil quality results and lateral limits of the excavation are shown on Figure SS-25-2.

Quality Assurance and Quality Control (QA/QC)

Relative percent differences (RpDs) have been calculated and compiled in Table SS-25-4 for thirty-one (31) field screening duplicates, seventeen (17) analytical laboratory duplicates and seventeen (17) analytical laboratory replicates for a total of sixty-five (65) QA/QC samples.

Sixty (60) of the sample results and their duplicate/replicate results returned RpDs below the practical quantitation limit (PQL), in which case the RpD value has been identified as "na" (not applicable), or returned acceptable RpDs, below the site specific remediation protocol of 50%. One on-site field screened duplicate and four of the analytical laboratory duplicates returned RpDs greater than the objective. The variance between these samples and their duplicates is considered indicative of sample heterogeneity, especially at low concentration levels of lead and zinc as compared to the SQRO's. The metal QA/QC samples from the South Shore area serve to document the variable nature of the metal concentrations in the soil at the Polaris Mine.

Polaris Mine Soil Quality Remediation Objectives

All of the hydrocarbon remediation confirmation samples returned results below the Polaris Mines SQRO's for EPH and PAH. All of the metal remediation confirmation composite samples returned results below the Polaris Mine SQRO's for lead and zinc. One of the twenty discrete samples, (sample Shore-11987-F-D), returned a lead concentration of 2,600 mg/kg which is greater than the SQRO of 2,000 mg/kg. The lead exceedance is less than two times the SQRO and is therefore in accordance with the approved site remedial protocol that stipulates "that contaminant concentrations in any residual soils will not exceed twice the SQRO's".

Discrete samples were collected to discern the homogeneity of the sample area for lead and zinc. The table below shows a comparison of discrete samples versus the composite areas they represented.

Summary of Discrete Sample Results Compared to Corresponding Composite Sample Results

Composite Sample ID	Lead (mg/kg)	Zinc (mg/kg)	Discrete Sample ID	Lead (mg/kg)	Zinc (mg/kg)
Shore-52-F-C	135	645	Shore-59-F-D	<100	273
Shore-77-F-C	166	527	Shore-79-F-D	279	1220
Shore-76-F-C	121	365	Shore-78-F-D	202	967
Shore-56-F-C	225	991	Shore-466-F-D	1790	7800
Shore-54-F-C	208	1100	Shore-462-F-D	300	1530
Shore-146-F-C	553	1330	Shore-144-F-D	256	1360
Shore-11303-F-C	1170	3130	Shore-10775-F-D	220	526
Shore-10821-F-C	560	861	Shore-10779-F-D	680	1190
Shore-11368-F-C	310	1630	Shore-10947-F-D	310	1740
Shore-11308-F-C	270	1380	Shore-10956-F-D	210	1510
Shore-11747-F-C	290	822	Shore-11317-F-D	<100	241
Shore-11366-F-C	310	1380	Shore-11338-F-D	270	1290
Shore-11744-F-C	< 50	101	Shore-11565-F-D	< 50	69
Shore-11669-F-C	180	467	Shore-11649-F-D	319	1220
Shore-11364-F-C	110	747	Shore-11722-F-D	232	1340
Shore-11747-F-C	290	822	Shore-11854-F-D	<100	114
Shore-11998-F-C	<100	51	Shore-11964-F-D	320	934
Shore-11485-F-C	610	3020	Shore-11987-F-D	2600	4400
Shore-11821-F-C	228	616	Shore-11988-F-D	210	424
Shore-12074-W-C	93	361	Shore-12071-W-D	295	473

Generic Federal Soil Quality Guidelines for Parkland Land Use

A total of twenty (20) randomly selected samples were analysed for total metals as follows: fourteen (14) composite samples, five (5) discrete samples and one Quality Assurance and Quality Control sample.

Barium concentrations ranged from 192 mg/kg to 1,100 mg/kg. Sixteen (16) of the samples exceeded the generic Canadian Council of Ministers of Environment (CCME) Canadian Environmental Quality Guideline (CEQG) for parkland land use of 500 mg/kg Barium in soil. One sample with a Barium concentration of 608 mg/kg returned an Arsenic concentration of 15 mg/kg, which exceeds generic CCME CEQG for parkland land use of 12 mg/kg Arsenic in soil. Cadmium concentrations ranged from 1.4 mg/kg to 17.8 mg/kg. The CCME recognizes that local geological conditions may result in elevated background levels of metals above the guidelines.

Barium is a common mineral associated with lead sulphides, and it is found in cavities in limestone and dolostone. Soil samples collected during the 2004 vegetation sampling program at Polaris, as documented in the November 24, 2004 Memorandum 2004 Vegetation Sampling

Results, are considered to be representative of background conditions. Samples were collected at the following intervals surface to 0.01 m, 0.01 m to 0.05 m, and 0.05 m to 0.1 m. Concentrations of arsenic and barium greater than generic CCME CEQG Parkland land use were detected in each interval. The variability of arsenic and barium concentrations in those samples in listed in the following table.

Summary of 2004 Background Area Soil Concentrations of Arsenic and Barium

Parameter	n	Minimum Concentration (mg/kg)	Maximum Concentration (mg/kg)	Median Concentration (mg/kg)	Mean Concentration (mg/kg +/-SD)	90th Percentile (mg/kg)	75th Percentile (mg/kg)
Arsenic	12	<5	15.1	12	11 +/- 2.7	13	12.25
Barium	12	228	2140	1185	1249 +/-518	1986	1560

n = number of samples.

SD = standard deviation

The concentrations of arsenic and barium remaining within the footprint of the South Shore area after remediation are within the range of the background concentrations. In addition, the immobile nature of the Arsenic and Barium encountered on site was demonstrated in the ESA leachate test results that returned Arsenic and Barium concentrations at levels less than the detection limit and they were therefore not identified as a contaminants of concern in the ESA.

Two (2) of the discrete samples (Shore-466-F-D and Shore-11987-F-D) exceeded the CCME CEQG parkland land use of 10 mg/kg Cadmium in soil (Sample Shore-11987-F-D also returned lead concentrations greater than the SQRO). Cadmium was not identified as a contaminant of concern based on the total metal analyses and leachate test results conducted during the ESA. Given the immobile nature of the Cadmium encountered on site, as demonstrated by the leachate results, the relatively low level of concentrations (less than twice the generic CCME guidelines for Parkland land use) and the lack of elevated concentrations being detected in the composite samples, no further remedial excavation work is considered necessary

The confirmatory samples supported by the QA/QC samples from the South Shore area provide confidence that the remediation of the area complies with the SQRO's.

CONCLUSIONS

Based on confirmatory sampling consistent with good practice and the approved site specific sampling procedures and protocols, the remediation of the South Shore area has been completed to meet the Polaris Mine remedial targets, as documented in the approved Polaris Mine Decommissioning and Remediation Plan, March 2001.

LIMITATIONS

This report has been prepared by Gartner Lee Ltd. and the information in this report is intended for the use of Teck Cominco Metals Ltd. during the decommissioning and reclamation program at the Polaris Mine Site. Any use which a third party makes of this report, or any reliance on or decisions made on the basis of the information in this report is the responsibility of such third parties. Gartner Lee Limited accepts no responsibility for damages, if any, suffered by the third party, based on the use of or reliance on any information contained in this report.

The scope of Gartner Lee Limited's work was limited to that described in this report. The confirmation of environmental conditions at the site of the remedial work is based on sampling at specific wall and floor locations within the excavation limits. Gartner Lee Limited has used judgement in the interpretation of the available information but subsurface physical and/or chemical characteristics may vary between or beyond sampling locations. Gartner Lee Limited is not a guarantor of the environmental condition of the site but warrants only that its work was undertaken and its report prepared in a manner consistent with the level of skill and diligence normally exercised by competent environmental professionals practicing in the Nunavut Territory.

Yours very truly, GARTNER LEE LIMITED

Dennis Lu, B.Sc. Field Scientist Arlene Laudrum, P.Geol. Remediation Supervisor, Polaris Mine Project

AL:DL:gc

ATTACHMENTS

Tables

Table SS-25-1:	South Shore Remediation Confirmation Soil Samples - Hydrocarbons
Table SS-25-2:	South Shore Remediation Confirmation Soil Samples - Metals
Table SS-25-3:	South Shore Remediation Confirmation Soil Samples - Polycyclic Aromatic
	Hydrocarbons (PAHs)
Table SS 25-4:	South Shore Quality Assurance and Quality Control Remediation Soil
	Samples – Metals

Figures

Figure SS-25-1: South Shore Conditions Before Remediation Figure SS-25-2: South Shore Conditions After Remediation

Table SS-25-1. South Shore Remediation Confirmation Soil Samples - Hydrocarbons

		Location		South Shore	Shore	
	Polaris Mine Soil Quality Remediation Objectives	Sample ID Date Sampled ALS File Number Field Screen (ppm) ^b	Shore-7-F-C 23-Jun-03 S9893	Shore-11860-F-C 29-Jun-04 U5353R	Shore-11861-F-C 29-Jun-04 U5353R	Shore-12037-F-C 23-Jul-04 U6364 5
Parameter	Site Specific	Units		Analytics	Analytical Results	
Extractable Hydrocarbons EPH C ₁₀ -C ₁₅ EPH C ₁₅ -C ₃₂ LEPH ^c HEPH ^c	1000 1000 1000 1000	mg/kg mg/kg mg/kg mg/kg	<200	<200	310 <200	590 <200 590 <200

Bold Concentration greater than or equal to the Soil Quality Remediation Objective (SQRO) for the Polaris Mine Site.

Note

"<" = Less than analytical method detection limit

"-" = Analysis not conducted, or no guideline.

a) The aaproved Soil Quality Remediation Objectives (SQRO3) for the Polaris Mine Site are based on the Yukon Territorial Contaminated

Sites Regulation for Parkland (PL) Land Use. b) Field screening results are measured based on a 'dry headspace' method using a combustible gas meter calibrated to a hexane standard.

c) Light Extractable Petroleum Hydrocarbons (LEPH) and Heavy Extractable Petroleum Hydrocarbons (HEPH) are determined by subtracting Polycyclic Aromatic Hydrocarbons (EPH), therefore use of

the EPH remediation objective is conservative.

Table SS-25-2. South Shore Area Remediation Confirmation Soil Samples - Metals

			Location				South Shore			
			Sample ID	Shore-4-F-C	Shore-5-F-C	Shore-6-F-C	Shore-8-F-C	Shore-10-F-C	Shore-50-F-C	Shore-51-F-C
			Date Sampled	24-Jun-03	24-Jun-03	24-Jun-03	24-Jun-03	24-Jun-03	19-Jul-03	19-Jul-03
			ALS File Number	S9893	89893	S9893	89893	S9893	T1801	T1801
	Polaris Mir	Polaris Mine Soil Quality	Field Screen Pb (ppm) ^b	563	209	353	403	298	627	586
	Remediation	Remediation Objectives	Field Screen Zn (ppm)	3347	3379	2440	1979	1610	2370	2418
Parameter	Site Specific	Site Specific CEQG (PL)	Units			1	Analytical Results	15s		
Hq				ı			1	Tr.	ï	E
Total Metals		18								
	r-Sb	20 _d	mg/kg	•		1			,	,
Arsenic T.	T-As	12	mg/kg		E	1		4	,	
	I-Ba	200	mg/kg			1	•	,	'	
m	r-Be	44	mg/kg	•	10	1		-	1	•
	L-Cd	10	mg/kg		d	1	1	1		
Chromium T.	T-Cr	64	mg/kg		E	1	1	,		,
	T-C0	50 _d	mg/kg			1	•	1	ı	•
	TCu -	63	mg/kg		ı	r	ř.	1	•	
	T-Pb 2000		mg/kg	487	643	496	1970	1050	200	267
Mercury T.	T-Hg	7	mg/kg	100	,	1	,	e	1	
Molybdenum T.	T-Mo	109	mg/kg	1	•		•	c	ı	
Nickel T.	I-N.	90	mg/kg	1		1	•	,	2	•
Selenium T.	T-Se	-	mg/kg	9			•	1	,	
Silver T.	T-Ag	20 _d	mg/kg	,	1	,		(1)	2	
Tin T.	T-Sn	50 _q	mg/kg	1			'	,		
Vanadium T.	T-V	130	mg/kg	,	ı		•	1	ı	
	T-Zn 10000	,	mg/kg	2690	3170	3760	4670	2660	2470	1420

Bold Concentration greater than or equal to the Soil Quality Remediation Objective (SQRO) for the Polaris Mine Site.

Notes:

"<" = Less than analytical method detection limit.

[&]quot;." = Analysis not conducted, or no guideline.

a) The Soil Quality Remediation Objectives (SQROs) for the Polaris Mine Site are based on Canadian Council of Ministers of
the Environment (CCME) standards and guidelines. The CCME provides criteria based on land use activities and applies
the most strigent criteria based on site-specific receptors and exposure pathways.

b) Field screening results are measured using a Niton Xti 700 Series portable X-Ray Fluorescence (XRE) elemental analyser.

c) Canadian Environmental Quality Guidelines (CEQG) for Parkland (PL) Land Use. The site-specific factors used for determining the soil quality guidelines were: soil ingestion, soil contact and nutrient cycling.

d) Interim Remediation Criterion. Soil Quality Guidelines based on the CCME soil protocol have not yet been developed for a given parameter.

Table SS-25-2. South Shore Area Remediation Confirmation Soil Samples - Metals

			Location				South Shore			
			Sample ID	Shore-52-F-C	Shore-54-F-C	Shore-56-F-C	Shore-57-F-C	Shore-58-F-C	Shore-59-F-D	Shore-60-F-C
			Date Sampled	19-Jul-03	19-Jul-03	19-Jul-03	19-Jul-03	19-Jul-03	19-Jul-03	19-Jul-03
			ALS File Number	T1801	T1801	T1801	T1801	T1801	T1801	T1801
	Polaris Min	Polaris Mine Soil Quality	Field Screen Pb (ppm)	287	353	280	203	234	174	282
	Remediatio	Remediation Objectives ^a	Field Screen Zn (ppm) ^b	874	1294	985	288	516	620	1465
Parameter	Site Specific	Site Specific CEQG (PL)	Units			1	Analytical Results	32		
Hd						ı	•	1	ı	
Total Metals										
Antimony T-Sb	Sb	20 ^d	mg/kg	,		t				
Arsenic T-As	As	12	mg/kg			œ		ş	•	
Barium T-Ba	Ba -	200	mg/kg			1	1	ı	•	1
ш	T-Be	44	mg/kg			3	•		,	ı
	L-Cd	10	mg/kg	,			•			
Chromium T-Cr	Ç	64	mg/kg		,				ı	
Cobalt T-4	T-Co -	50 _d	mg/kg			90	•	ı		
Copper TCu	- n	63	mg/kg			ı		A.S.	r	
	Pb 2000	ı	mg/kg	135	208	225	137	154	<100	484
Mercury T-1	T-Hg	7	mg/kg	æ			1		e	1
Molybdenum T-1	T-Mo	10 ^d	mg/kg	1.						1
Nickel T-Ni	ïZ	50	mg/kg	1			•		r	1
Selenium T-Se	Se -	1	mg/kg						3	
Silver T-	T-Ag	20 ^d	mg/kg				•	,	31	¥
Tin T-Sn	- us	₂₀ q	mg/kg	ï		•			9	ï
Vanadium T-V	>	130	mg/kg	,			1	,	1	
	T-Zn 10000	1	mg/kg	645	1100	991	448	265	273	3150

Concentration greater than or equal to the Soil Quality Remediation Objective (SQRO) for the Polaris Mine Site. Bold

"< " = Less than analytical method detection limit.

[&]quot;." = Analysis not conducted, or no guideline.

a) The Soil Quality Remediation Objectives (SQROs) for the Polaris Mine Site are based on Canadian Council of Ministers of the Environment (CCME) standards and guidelines. The CCME provides criteria based on land use activities and applies the most strigent criteria based on site-specific receptors and exposure pathways.

b) Field screening results are measured using a Niton XI: 700 Series portable X-Ray Fluorescence (XRF) elemental analyser.

c) Canadian Environmental Quality Guidelines (CEQG) for Parkland (PL) Land Use. The site-specific factors used for determining the soil quality guidelines were: soil ingestion, soil contact and nurrient cycling.

d) Interim Remediation Criterion. Soil Quality Guidelines based on the CCME soil protocol have not yet been developed for a

given parameter.

Table SS-25-2. South Shore Area Remediation Confirmation Soil Samples - Metals

			Location				South Shore			
			Sample ID	Shore-61-F-C	Shore-53-F-Q	Shore-74-F-C	Shore-75-F-C	Shore-76-F-C	Shore-77-F-C	Shore-78-F-D
			Date Sampled	19-Jul-03	19-Jul-03	22-Jul-03	22-Jul-03	23-Jul-03	22-Jul-03	22-Jul-03
			ALS File Number	T1801	T1801	T1888	T1888	T1888	T1888	T1888
	Polaris M	Polaris Mine Soil Quality	Field Screen Pb (ppm)	212	duplicate of	485	675	271	259	309
	Remediat	Remediation Objectives	Field Screen Zn (ppm)	816	Shore-61-F-C	1826	4195	826	805	1114
Parameter	Site Specifi	Site Specific CEQG (PL)	Units			7	Analytical Results	is.		
Hd	,					a			1	ī
Total Metals										
-	L-Sb	20 _d	mg/kg	•		T				
Arsenic T	T-As	12	mg/kg		í	30	b		,	
Barium T	T-Ba	200	mg/kg	,	1	q	•			
ш	T-Be	44	mg/kg	r	1	1	•		1	
	T-Cd	10	mg/kg	1	1	1	,	1		•
Chromium	T-Cr	64	mg/kg	r		т	1		,	
Cobalt	T-Co	20 _q	mg/kg	,	•	T	•			1
Copper	TCu -	63	mg/kg		,	r	i.		,	•
	T-Pb 2000	ï	mg/kg	<100	<100	453	437	121	116	202
Mercury T	T-Hg	7	mg/kg	æ	,	1	1		E	,
Molybdenum	T-Mo	10 ^d	mg/kg	×		ı	•	E.	ı	
Nickel T	I-Ni	50	mg/kg	,			•	1	10	
Selenium T	T-Se	-	mg/kg	1	,	1	•	•		
Silver T	T-Ag	20 ^d	mg/kg	,		1	100	•	a	
T Tin T	T-Sn	20 _q	mg/kg		,	r	1	1	ï	•
Vanadium	T-V	130	mg/kg	,		ı	1	ī	1	r
Zinc T	T-Zn 10000	,	mg/kg	431	495	5590	4300	365	527	296

Bold Concentration greater than or equal to the Soil Quality Remediation Objective (SQRO) for the Polaris Mine Site

Notes:

"<" = Less than analytical method detection limit.

[&]quot;." = Analysis not conducted, or no guideline.

a) The Soil Quality Remediation Objectives (SQROs) for the Polaris Mine Site are based on Canadian Council of Ministers of the Environment (CCME) standards and guidelines. The CCME provides criteria based on land use activities and applies the most strigent criteria based on site-specific receptors and exposure pathways.

b) Field screening results are measured using a Niton X1: 700 Series portable X-Ray Fluorescence (XRF) elemental analyser.

c) Canadian Environmental Quality Guidelines (CEQG) for Parkland (PL) Land Use. The site-specific factors used for determining the soil quality guidelines were: soil ingestion, soil contact and nutrient cycling.

d) Interim Remediation Criterion. Soil Quality Guidelines based on the CCME soil protocol have not yet been developed for a
given parameter.