

September 28, 2005

Prairie & Northern Region Environment Canada Room 200, 4999 98th Ave. Edmonton, AB T6B 2X3

Attention: Jenny Ferone, Regional EEM Coordinator

Peter Blackall, Regional Director of Environmental Protection

Dear Jenny Ferone and Peter Blackall;

Re: REVISED Polaris Mine 2004 Annual MMER and EEM Report

This revised report is being submitted in response to the August 9, 2005 letter from Jenny Ferone (Environment Canada) to Bruce Donald (Teck Cominco Metals Ltd.), regarding purported reporting deficiencies for the Polaris Mine 2004 Annual Report (provided in Appendix F). Azimuth staff prepared the initial 2004 Annual Report and have addressed the issues identified in the August 9th letter within this Revised 2004 Annual Report. In addition, Azimuth responded to each specific reporting issue in a letter sent to Environment Canada on behalf of Teck Cominco, dated September 14, 2005 (provided in Appendix G). Within this letter, Azimuth identified sections of the original report where some of the deficient data were presented and requested further guidance and clarification from Environment Canada on some of the reviewers' comments. Azimuth has not heard back to date, and has prepared this Revised 2004 Annual Report according to the assumptions and interpretations stated in the September 14th letter. Teck Cominco and Azimuth will ensure that all required information will be included in future reports.

Please find attached the REVISED 2004 Polaris Mine Annual Report. There was one non-compliant concentration related to Schedule 4 limits (TSS) as previously reported. There were no non-compliant results of the acute lethality tests during the year.

The following is included in our Revised 2004 Annual Report:

1. Requirements under Schedule 6

• Identification of Site, Owner, Location, etc.

• Non-Compliance information

• Table 1 – Monthly Mean Concentrations, pH Range and Volume of Effluent

• Table 2 – Results of Acute Lethality Tests and Daphnia Magna Monitoring Tests

2. Requirements under Part 1 Section 8

• Results of studies conducted under Part 1, Section 4 (Effluent Characterization) (Table 3, Table 5)

• Results of studies conducted under Part 1, Section 5 (Sublethal Toxicity Testing) (Table 6, Table 7, Appendix A, B, C and E) (Note that within Appendices A, B, and C, ** denotes the sections where reporting issues from the August 9th letter have been addressed)

• Results of studies conducted under Part 1, Section 7 (Water Quality Monitoring) (Table 4, Table 5)

3. Additional Appendices

• Appendix D – acute toxicity testing reports

• Appendix F – Letter from Environment Canada to Teck Cominco Metals Ltd., dated August 9, 2005

• Appendix G – Letter from Azimuth Consulting Group to Environment Canada, dated September 14, 2005.

 Appendix H – Polaris Mine – Revised 2004 3rd Quarter Metal Mining Effluent Regulations Report (dated March 22, 2005)

As in the initial 2004 Annual Report, the revised 3rd Quarter regulatory data set is included in this submission in Appendix H. This data was revised to ensure consistency between the hardcopy and online RISS system reports.

The MMER and EEM data required to be reported in electronic format were submitted electronically through the RISS online system in March 2005, and no additional information was requested for this report format. In addition to this hardcopy report, an electronic pdf version of this report is being emailed to you (e-mailed September 28, 2005).

If you have any questions regarding the annual report or aspects of the application of the MMER to the Polaris Mine, please feel free to contact me.

Yours truly,

Original signed by B. Donald

Bruce Donald

Attachments: 2004 MMER Annual Report; Revised 2004 3rd Quarter Regulatory Data Tables

cc: Randy Baker (Azimuth Consulting Group)

Ken Russell (Environment Canada)

INFORMATION TO BE INCLUDED IN ANNUAL REPORT SUMMARY

The following information is to be submitted for each final discharge point.

Mine Name : Polaris Mine

Mine Operator: Cominco Mining Partnership and Teck Cominco Metals Li

Address : Bag 2000

Kimberley, BC V1A 3E1

Telephone: (250) 427-8405 Bruce Donald

E-mail: bruce.donald@teckcominco.com

Location of Final Discharge point: Garrow Lake Former Dam at 75o22'32"N, 96o48'37"W.

Reporting Period: January 1, 2004 to December 31, 2004.

Date of Report: March 21, 2005.

Non-Compliance Information

There was one non-compliant effluent discharge during 2004 (I.e., TSS of 117 mg/L, July 7, 2004), with respect to Schedule 4 limits. Upon receiving the results from the lab, this exceedance was reported to Environment Canada regulatory authorites in a letter dated August 12, 2004. The exceedance was due to the initial ice melt unplugging Garrow Lake, resulting in a flushing of sediment. There were no other non-compliant concentrations of substances during this initial flow, and TSS dropped to values of approximately 3-15 mg/L in all subsequent sampling events. Upon review of the information, Environment Canada recommended no further action in a letter date January 11, 2005 from Sidney Bruinsma. There were no non-compliant acute lethality tests during 2004, including tests performed on the July 7, 2004 sample.

TABLE 1

MONTHLY MEAN CONCENTRATIONS, pH RANGE AND VOLUME OF EFFLUENT (1)(2)

	As	Cu	CN	Pb	Ni	Zn	TSS	Ra	nU rongo	Effluent
Month	(mg/L)	(Bq/L)	pH range	Volume (m3)						
Jan.	ND(1)	ND(1)	ND(1)	ND(1)						
Feb.	ND(1)	ND(1)	ND(1)	ND(1)						
Mar.	ND(1)	ND(1)	ND(1)	ND(1)						
Apr.	ND(1)	ND(1)	ND(1)	ND(1)						
May	ND(1)	ND(1)	ND(1)	ND(1)						
June	ND(1)	ND(1)	ND(1)	ND(1)						
July	0.0015	0.0011	0.0050	0.0014	0.0024	0.0980	32.0000	0.0090	7.90 - 8.05	4066913.00
Aug.	0.0004	0.0012	0.0051	0.0019	0.0081	0.0508	6.1000	0.0074	7.84 - 8.04	324551.00
Sept.	ND(1)	ND(1)	ND(1)	ND(1)						
Oct.	ND(1)	ND(1)	ND(1)	ND(1)						
Nov.	ND(1)	ND(1)	ND(1)	ND(1)						
Dec.	ND(1)	ND(1)	ND(1)	ND(1)						

⁽¹⁾ Any measurement not taken because there was no deposit from the final discharge point shall be identified by the letters "ND" - (No Deposit)

MMER 2004 Annual Report 3/18/2005

⁽²⁾ Any measurement not taken because no measurement was required in accordance with the conditions set out in section 13 of the Regulations shall be identified by the letters "NMR" - (No Measurement Required).

TABLE 2

RESULTS OF ACUTE LETHALITY TESTS AND DAPHNIA MAGNA MONITORING TESTS

	Effluent Acutely	Effluent Acutely
Date	Lethal to	Lethal to
Sample	Rainbow Trout	Daphnia magna
Collected	(yes or no)	(yes or no)
7/7/2004	No	No
7/27/2004	No	No
8/24/2004	No	No

REVISED Table 3. Effluent Characterization Results (Part 1, Section 4)

Effluent Characterization from Final Discharge Point - Garrow Lake Former Dam / Syphons

Northing: 75°22'32" Easting: 96°48'37"

-		Teck Com	inco Metals	Limited - P	olaris Mine		
Faci	ity Name:	(Little Cornv	vallis Island)		
_	DP Name:		Garrow Lal				
-	ling Date:				8/24/2004		
Sampl	e Method:	Grab	Grab	Grab	Grab		
						Detection	
Parameter	Units					Limit	Methods ¹
Hardness	mg/L	1400	483	973	1380	2.7	EPA Method 3005A, ICPOES (EPA Method 6010B) ⁴
Alkalinity	mg/L	138	62.4	111	128	1.0	APHA Method 2320 (potentiometric titration)
Aluminum	mg/L	0.34	0.021	<0.1	<0.1	0.1	SPR-IDA ² , Graphite Furnace Atomic Absorption Spectrophotometry
Cadmium	mg/L	0.000588	0.00014	0.00023	0.000335	0.0002	SPR-IDA ² , ICPMS ³
Iron	mg/L	0.487	0.084	0.042	0.014	0.01	SPR-IDA ² , Flame Atomic Absorption Spectrophotometry
Mercury	mg/L	<0.00001	<0.00001	<0.00001	<0.00001	0.00001	Cold Vapour Atomic Florescence Spectrophotometry
Molybdenum	mg/L	< 0.005	0.0013	<0.005	<0.005	0.005	ICPMS ³
Ammonia	mg/L	0.071	< 0.02	0.146	0.133	0.02	APHA Method 4500-NH3 (selective ion electrode)
Nitrate	mg/L	0.277	0.0644	0.525	0.531	0.01, 0.02	APHA Method 4110 (determination of inorganic ions by ion chromatography)
Arsenic	mg/L	<0.001	<0.001	<0.0002	<0.0002	0.001, 0.0002	Hydride-Vapour Atomic Absorption Spectrophotometry
Copper	mg/L	0.00265	0.000518	0.00121	0.00134	0.00005	SPR-IDA ² , ICPMS ³
Cyanide	mg/L	<0.005	<0.005	<0.005	<0.005	0.005	APHA Method 4500-CN (cynate hydrolosis using an ammonia selective electrode)
Lead	mg/L	0.00269	0.00157	0.00177	0.00119	0.00005	SPR-IDA ² , ICPMS ³
Nickel	mg/L	0.00442	0.00207	0.00644	0.00967	0.00005	SPR-IDA ² , ICPMS ³
Zinc	mg/L	0.198	0.0429	0.0418	0.0498	0.0005	SPR-IDA ² , ICPMS ³
TSS	mg/L	117	<3	5.3	4.4	3.0	APHA Method 2540 (filtration through glass fibre filter)
Radium 226	Bq/L	0.02	<0.005	0.01	0.008	0.005	Radio Chemistry ⁵
рН	pH units	8.05	7.87	7.95	7.84	0.01	APHA Method 4500-H (pH electrode)

Notes:

¹Original data reports are available upon request

²SPR-IDA = Suspended Particulate Resin consisting of immobilized iminodiacetate on a divinyl benzene polymer is used to chelate and preconcentrate metals in seawater (preparation technique).

³Instrumental analysis is by ICPMS = Inductively Coupled Mass Spectrometry.

⁴This analysis is carried out using procedures adapted from "StandardMethods for the Examination of Water and Wastewater" 20th Edition 1998, published by the American Public Health Association, and with procedures adapted from "Test Methods for Evaluating Solid Waste" SW-846 published by the USEPA. The procedures may involve preliminary sample treatment by acid digestion, using either hotplate or microwave oven, or filtration (EPA Method 3005A). Instrumental analysis is by inductively coupled plasma - optical emissionspectrophotometry ICPOES (EPA Method 6010B).

⁵All radium isotopes in the sample solution are separated by coprecipitation with lead sulfate. The precipitate is redissolved and the radium isotopes are separated by coprecipitation with barium sulfate. The precipitate is filtered and mounted on a stainless steel disk. It is then counted on an alpha spectrometer. The radium 226 alpha energy is distinct and the peak can be clearly identified.

REVISED Table 4. Water Quality Monitoring Results (Part 1, Section 7)

Station:		E	Exposure Area	a	Reference			
		O D	-4 1 1 2 -4 5 -5 6	O	Garrow Bay			
Description:		Garrow Bay	Confluence	Garrow Creek	exposure station with Garro			
Northing:			75°22'15"		75°22			
Easting:			96°48'30"			96°47'12"		
Lasting.			90 4 0 30		30 47	12		
					Teck Cominco N	/letals Limited -		
		Teck Comin	co Metals Lim	nited - Polaris	Polaris Mine (Li	ittle Cornwallis		
Facility Name:		Mine (L	ittle Cornwalli	s Island)	Islar			
FDP Name:		Gar	row Lake Syp	hons	Garrow Lak	e Syphons		
Area Name:			row Bay Expo		Garrow Bay		<u></u>	
Sampling Date:		7/27/2004	8/17/2004	8/24/2004	8/17/2004	8/24/2004		
Sample Method:		Grab	Grab	Grab	Grab	Grab		
							Detection	·· · · 1
Parameters	Units						Limit	Methods ¹
Hardness	mg/L	482	2270	1750	2960	1560	2.7	EPA Method 3005A, ICPOES (EPA Method 6010B) ⁴
Alkalinity	mg/L	37.5	45	38.8	46	36.1	1.0	APHA Method 2320 (potentiometric titration)
Aluminum	mg/L	0.033	<0.1	<0.1	<0.1	<0.1	0.1	SPR-IDA ² , Graphite Furnace Atomic Absorption Spectrophotometry
Cadmium	mg/L	0.00007	<0.00002	0.000028	<0.00002	<0.00002	0.0002	SPR-IDA ² , ICPMS ³
Iron	mg/L	0.046	<0.01	<0.01	<0.01	<0.01	0.01	SPR-IDA ² , Flame Atomic Absorption Spectrophotometry
Mercury	mg/L	<0.00005	<0.00001	<0.00001	<0.00001	<0.00001	0.00001	Cold Vapour Atomic Florescence Spectrophotometry
Molybdenum	mg/L	0.00156	<0.005	<0.005	0.0062	<0.005	0.005	ICPMS ³
Ammonia	mg/L	<0.02	<0.02	0.02	<0.02	<0.02	0.02	APHA Method 4500-NH3 (selective ion electrode)
Nitrate	mg/L	0.0372	<0.02	<0.02	<0.02	<0.02	0.02	APHA Method 4110 (determination of inorganic ions by ion chromatography)
Arsenic	mg/L	<0.001	<0.0002	0.00027	0.00044	<0.0002		Hydride-Vapour Atomic Absorption Spectrophotometry
Copper	mg/L	0.000405	0.000216	0.000209	0.000231	0.000205	0.00005	SPR-IDA ² , ICPMS ³
Cyanide 	mg/L	<0.005	<0.005	<0.005	<0.005	<0.005	0.005	APHA Method 4500-CN (cynate hydrolosis using an ammonia selective electrode)
Lead	mg/L	0.00026	<0.00005	0.000267	0.000052	<0.00005	0.00005	SPR-IDA ² , ICPMS ³
Nickel	mg/L	0.000979	0.000252	0.000267	0.000217	0.000186	0.00005	SPR-IDA ² , ICPMS ³
Zinc	mg/L	0.0242	0.00118	0.00092	0.0005	<0.0005	0.0005	SPR-IDA ² , ICPMS ³
TSS	mg/L	3.7	3.3	8.4	9.3	7	3.0	APHA Method 2540 (filtration through glass fibre filter)
Radium226	Bq/L	<0.005	< 0.005	0.006	<0.005	<0.005	0.005	Radio Chemistry ⁵
pH	pH units	7.91	7.79	7.64	7.92	7.62	0.01	APHA Method 4500-H (pH electrode)
Water Temperature	°C	0.2	0.2	0.9	0.1	1.2	-	Field - Campbell Scientific Hydrolab Model H20, or YSI Meter Model 85
Dissolved Oxygen	mg/L	13.23	13.78	15.2	14.04	15.13	-	Field - Campbell Scientific Hydrolab Model H20, or YSI Meter Model 85

Notes

The Garrow Bay exposure area (mouth of the creek) was frozen during the July 7, 2004 sampling event.

Note that the reference area was ice free only during August 17 and August 24, 2004 sampling events.

published by the American Public Health Association, and with procedures adapted from "Test Methods for Evaluating Solid Waste" SW-846 published by

the USEPA. The procedures may involve preliminary sample treatment by acid digestion, using either hotplate or microwave oven, or filtration (EPA Method 3005A).

Instrumental analysis is by inductively coupled plasma - optical emissionspectrophotometry ICPOES (EPA Method 6010B).

isotopes are separated by coprecipitation with barium sulfate. The precipitate is filtered and mounted on a stainless steel disk. It is then counted on an alpha spectrometer.

The radium 226 alpha energy is distinct and the peak can be clearly identified.

¹Original data reports are available upon request

²SPR-IDA = Suspended Particulate Resin consisting of immobilized iminodiacetate on a divinyl benzene polymer is used to chelate and preconcentrate metals in seawater (preparation technique).

³Instrumental analysis is by ICPMS = Inductively Coupled Mass Spectrometry.

⁴This analysis is carried out using procedures adapted from "StandardMethods for the Examination of Water and Wastewater" 20th Edition 1998,

⁵All radium isotopes in the sample solution are separated by coprecipitation with lead sulfate. The precipitate is redissolved and the radium

Table 5. QAQC Sample Results¹ Including Field Duplicates, Field Blanks, and Transport Blanks.

Sample Type: Location: Description: Sampling Date:		•	-	RPD ² (%)	Field Duplicate Garrow Bay Mouth of Garrow (7/27/2	Creek Confluence	RPD ² (%)	Field Duplicate Garrow Lak Final Disch 8/17/2	e Syphons arge Point	RPD ² (%)
	Parameter			•						
Parameters	Units									
Hardness	mg/L	1400	1400	0.00	532	482	10.37	997	973	2.47
Alkalinity	mg/L	132	138	4.35	38.6	37.5	2.93	113	111	1.80
Aluminum	mg/L	0.26	0.34	23.53	0.031	0.033	6.06	<0.10	<0.1	n/a
Cadmium	mg/L	0.000582	0.000588	1.02	0.000062	0.00007	11.43	0.000224	0.00023	2.61
Iron	mg/L	0.441	0.487	9.45	0.035	0.046	23.91	0.039	0.042	7.14
Mercury	mg/L	<0.000010	< 0.00001	n/a	<0.000050	<0.00005	n/a	< 0.000010	< 0.00001	n/a
Molybdenum	mg/L	< 0.0050	< 0.005	n/a	0.00129	0.00156	17.31	< 0.0050	<0.005	n/a
Ammonia	mg/L	0.069	0.071	2.82	<0.020	< 0.02	n/a	0.163	0.146	11.64
Nitrate	mg/L	0.284	0.277	2.53	0.0371	0.0372	0.27	0.54	0.525	2.86
Arsenic	mg/L	<0.0010	< 0.001	n/a	<0.0010	<0.001	n/a	< 0.00020	<0.0002	n/a
Copper	mg/L	0.00252	0.00265	4.91	0.000342	0.000405	15.56	0.00121	0.00121	0.00
Cyanide	mg/L	< 0.0050	< 0.005	n/a	<0.0050	< 0.005	n/a	< 0.0050	<0.005	n/a
Lead	mg/L	0.0024	0.00269	10.78	0.000205	0.00026	21.15	0.00187	0.00177	5.65
Nickel	mg/L	0.00438	0.00442	0.90	0.000772	0.000979	21.14	0.00676	0.00644	4.97
Zinc	mg/L	0.196	0.198	1.01	0.019	0.0242	21.49	0.0418	0.0418	0.00
TSS	mg/L	120	117	2.56	7	3.7	89.19	<3.0	5.3	n/a
Radium226	Bq/L	0.02	0.02	0.00	< 0.0050	<0.005	n/a	< 0.0050	0.01	n/a
рН	pH units	8.06	8.05	0.12	7.76	7.91	1.90	8.02	7.95	0.88

Notes

Cells in grey shading have RPD values >50% for co-located field duplicates

QAQC Results

A total of 4 duplicate samples and 3 blank samples were collected during the 2004 EEM program at Polaris mine. All RPD values were less than 50%, with the exception of one measurement of TSS on July 27, 2004. This data indicate good reproducibility between co-located field duplicates (i.e., low measurement and analytical variability).

Blank samples were typically less than, or slightly higher than detection limits, revealing no background contamination issues.

¹QAQC samples were collected during each EEM monitoring event. At least one field duplicate and/or one blank sample was collected during each event.

²RPD = Relative Percent Difference = [Absolute value (DUP-ORIG)/ORIG]*100%

³Distilled water from onsite distiller.

Table 5. QAQC Sample Results¹ Including Field Duplicates, Field Blanks, and Transport Blanks.

Sample Type:		Field Duplicate	Original Sample		Field Blank	Transport Blank	Field Blank
Location:		Garrow Lak	-		n/a	n/a	n/a
Description:		Final Disch	arge Point	RPD^2	Distilled Water ³	Distilled Water ³	Distilled Water ³
Sampling Date:		8/24/	-	(%)	7/7/2004	7/7/2004	8/17/2004
	Parameter			` ,			
Parameters	Units						
Hardness	mg/L	1380	1380	0.00	<0.54	<0.54	<0.54
Alkalinity	mg/L	128	128	0.00	-	-	<1.0
Aluminum	mg/L	<0.10	<0.1	n/a	<0.10	<0.10	< 0.0010
Cadmium	mg/L	0.000342	0.000335	2.09	<0.000020	<0.000020	<0.00020
Iron	mg/L	0.015	0.014	7.14	<0.010	< 0.010	< 0.030
Mercury	mg/L	<0.000010	<0.00001	n/a	<0.000010	<0.000010	<0.000010
Molybdenum	mg/L	<0.0050	< 0.005	n/a	< 0.0050	< 0.0050	< 0.0010
Ammonia	mg/L	0.114	0.133	14.29	-	-	0.028
Nitrate	mg/L	0.529	0.531	0.38	-	-	< 0.0050
Arsenic	mg/L	<0.00020	<0.0002	n/a	<0.0010	< 0.0010	<0.00020
Copper	mg/L	0.00140	0.00134	4.48	0.00012	0.00012	< 0.0010
Cyanide	mg/L	<0.0050	< 0.005	n/a	-	-	< 0.0050
Lead	mg/L	0.00116	0.00119	2.52	0.00017	0.00021	< 0.0010
Nickel	mg/L	0.00971	0.00967	0.41	<0.00050	<0.00050	< 0.0010
Zinc	mg/L	0.0514	0.0498	3.21	0.0012	< 0.0010	< 0.0050
TSS	mg/L	3.7	4.4	15.91	-	-	<3.0
Radium226	Bq/L	< 0.0050	0.008	n/a	< 0.0050	0.006	< 0.0050
рН	pH units	7.93	7.84	1.15	-	-	5.51

Notes

Cells in grey shading have RPD values >50% for co-located field duplicates

QAQC Results

A total of 4 duplicate samples and 3 blank samples were collected during the 2004 EEM program at Polaris mine. All RPD values were less than 50%, with the exception of one measurement of TSS on July 27, 2004. This data indicate good reproducibility between co-located field duplicates (i.e., low measurement and analytical variability).

Blank samples were typically less than, or slightly higher than detection limits, revealing no background contamination issues.

¹QAQC samples were collected during each EEM monitoring event. At least one field duplicate and/or one blank sample was collected during each event.

²RPD = Relative Percent Difference = [Absolute value (DUP-ORIG)/ORIG]*100%

³Distilled water from onsite distiller.

Table 6. Sublethal Toxicity Testing Results EC50 (Part 1, Section 5)

		EC25 Test				
Facility Name	FDP Name	Date	Species Test	Sublethal Test Type	Sample Method	Consultant Laboratory
Teck Cominco Metals Limited - Polaris						
Mine (Little Cornwallis Island)	Garrow Lake Syphons	7/7/2004	Atherinops affinis	Growth	Grab	EVS Consultants, North Vancouver, BC
Teck Cominco Metals Limited - Polaris						
Mine (Little Cornwallis Island)	Garrow Lake Syphons	7/27/2004	Atherinops affinis	Growth	Grab	EVS Consultants, North Vancouver, BC
Teck Cominco Metals Limited - Polaris						
Mine (Little Cornwallis Island)	Garrow Lake Syphons	7/27/2004	Dendraster excentricus	Reproduction	Grab	EVS Consultants North Vancouver, BC
Teck Cominco Metals Limited - Polaris						
Mine (Little Cornwallis Island)	Garrow Lake Syphons	7/27/2004	Champia parvula	Reproduction	Grab	Saskatchewan Research Council (SRC)
Teck Cominco Metals Limited - Polaris						
Mine (Little Cornwallis Island)	Garrow Lake Syphons	8/24/2004	Champia parvula	Reproduction	Grab	Saskatchewan Research Council (SRC)
Teck Cominco Metals Limited - Polaris						
Mine (Little Cornwallis Island)	Garrow Lake Syphons	8/24/2004	Dendraster excentricus	Reproduction	Grab	EVS Consultants North Vancouver, BC
Teck Cominco Metals Limited - Polaris						
Mine (Little Cornwallis Island)	Garrow Lake Syphons	8/24/2004	Atherinops affinis	Growth	Grab	EVS Consultants North Vancouver, BC

Table 6. Sublethal Toxicity Testing Results EC50 (Part 1, Section 5)

EC25 Test Date	Species Test	EC25 or IC25	EC25 or IC25 Lower Confidence Limit	EC25 or IC25 Upper Confidence Limit	Notes
7/7/2004	Atherinops affinis	> 72.6	72.6	72.6	IC25 (95%CL) was > 72.6%, the highest exposure concentration due to salinity adjustment.
7/27/2004	Atherinops affinis	> 69	69	69	IC25 (95% CL) was > 69%, the highest concentration tested due to salinity adjustment.
7/27/2004	Dendraster excentricus	8.7	7.6	9.9	July 7 sandollar test not initiated because sandollars did not spawn.
7/27/2004	Champia parvula	26.6	20.8	31.5	
8/24/2004	Champia parvula	45.3	36.3	58.1	
8/24/2004	Dendraster excentricus	17.5	11.6	22.6	
8/24/2004	Atherinops affinis	> 71	71	71	IC25 (95% CL) was > 71%, the highest concentration tested due to salinity adjustment.

Table 7. Sublethal Toxicity Testing Results LC50 (Part 1, Section 5)

		LC50 Test			Sample	
Facility Name	FDP Name	Date	Species Tested	Sublethal Test Type	Method	Consultant Laboratory
Teck Cominco Metals Limited - Polaris						_
Mine (Little Cornwallis Island)	Garrow Lake Syphons	7/7/2004	Atherinops affinis	Survival	Grab	EVS Consultants, North Vancouver, BC
Teck Cominco Metals Limited - Polaris						
Mine (Little Cornwallis Island)	Garrow Lake Syphons	7/27/2004	Atherinops affinis	Survival	Grab	EVS Consultants, North Vancouver, BC
Teck Cominco Metals Limited - Polaris						
Mine (Little Cornwallis Island)	Garrow Lake Syphons	8/24/2004	Atherinops affinis	Survival	Grab	EVS Consultants, North Vancouver, BC

Table 7. Sublethal Toxicity Testing Results LC50 (Part 1, Section 5)

LC50 Test			LC50 Lower	LC50 Upper	
Date	Species Tested	LC50	Limit	limit	Notes
7/7/2004	Atherinops affinis	> 72.6	72.6	72.6	LC50 (95% CL) was > 72.6%, the highest exposure concentration tested, due to salinity adjustment.
7/27/2004	Atherinops affinis	> 69	69	69	LC50 (95% CL) was > 69%, the highest concentration tested due to salinity adjustment.
8/24/2004	Atherinops affinis	> 71	71	71	LC50 (95% CL) was > 71%, the highest concentration tested due to salinity adjustment.

POLARIS MINE – MMER ANNUAL SUMMARY REPORT 2004

APPENDIX A

i. Information specified in Schedule 5 of the MMER (June 2002) for Reference Method EPAW 95-EPA West Coast: 7-day Topsmelt Survival and Growth Tests.

APPENDIX B

i. Information specified in Schedule 5 of the MMER (June 2002) for Reference Method EPS 1/Rm/27-EC: 92 hr Echinoderm (sand dollar) Fertilization Test

APPENDIX C

i. Information specified in Schedule 5 of the MMER (June 2002) for Reference Method EPA/600/4-91-003, Method 1009.0: Algae (*Champia parvula*) 7-day Sublethal Growth Tests

APPENDIX D

i. Acute toxicity testing laboratory reports

APPENDIX E

i. Sublethal toxicity testing laboratory reports

APPENDIX F

i. Letter from Environment Canada to Teck Cominco Metals, Ltd. re: Polaris 2004 Annual Report (dated August 9, 2005)

APPENDIX G

i. Letter from Azimuth Consulting Group, Inc. to Environment Canada re: Clarification of reporting issues outlined in August 9, 2005 letter (dated September 14, 2005)

APPENDIX H

i. Polaris Mine – Revised 2004 3rd Quarter Metal Mining Effluent Regulations Report (dated March 22, 2005)

APPENDIX A

7-d Topsmelt Growth and Survival Toxicity Test

Effluent Sample

- i. Name & location of operation generating the effluent
 - Polaris Mine, Little Cornwallis Island, Nunavut
 - Final Discharge Point for Garrow Lake is geo referenced as 75° 22' 32" N, 97° 48' 37" W.
- ii. Date & time of sampling
 - Samples for sublethal toxicity testing were collected:
 - Test 1 Wednesday July 7, 2004 1100h
 - Test 2 Tuesday July 27, 2004 2130h
 - Test 3 Tuesday Aug 24, 2004 1500h
- iii. Type of sample
 - Final effluent water from final discharge point
- iv. Brief description of sampling point
 - 20m downstream of the siphon discharge point at Garrow Lake dam
- v. Sampling method
 - Water was collected from at least 15cm below the surface using a water pump with silicon tubing
 - Water was collected from the upstream direction
 - The pump was flushed with site water for at least one minute prior to sample collection
 - 3 x 20L sample bottles were filled
- vi. Name of person submitting samples
 - Dennis Lu (Gartner Lee) Tests 1 & 2
 - Patrick Allard (Azimuth) Test 3
- vii. **Labeling/coding of sample (Sample IDs)
 - Test 1 G-Creek sub 070704
 - Test 2 G-Creek Sublethal 270704
 - Test 3 G-Creek 081704
- viii.**Date & time of sample receipt
 - Samples for sublethal toxicity testing were collected:
 - Test 1 Saturday July 10, 2004 1425h
 - Test 2 Friday July 30, 2004 1200h
 - Test 3 Friday Aug 27, 2004 0945h
- ix. **Temperature upon sample receipt at laboratory
 - Test 1 − 11.6 °C
 - Test 2 − 13.0 °C
 - Test 3 − 15.4 °C

Test Organisms Imported from External Supplier

- i. Species of test organism
 - Topsmelt (*Atherinops affinis*)
- ii. Name and city of testing laboratory
 - EVS Environment Consultants, North Vancouver, BC
- iii. Source of test species
 - Aquatic Bio Systems (ABS), Fort Collins, Colorado
- iv. Date test species acquired on
 - Test 1 July 8, 2004
 - Test 2 July 29, 2004
 - Test 3 August 26, 2004
- v. Indications of deviations from EC guidance on the importation of test organisms
 - No deviations from EC requirements

- vi. Percent mortality of fish in 24-hour period preceding the test
 - Test 1 <10% mortality
 - Test 2 <10% mortality
 - Test 3 <10% mortality
- vii. Age at start of test
 - Test 1 11 days post-hatch
 - Test 2 10 days post-hatch
 - Test 3 10 days post-hatch
- viii. Unusual appearance, behaviour, or treatment of larvae before their use in the test
 - None noted for any test.
- ix. Confirmation that larvae are actively feeding and swimbladders are not inflated
 - All tests Larvae actively feeding and swimbladders not inflated
- x. Confirmation that temperature change was <3°C and dissolved oxygen was maintained at >6mg/L during transport
 - Temperature change was <2°C and dissolved oxygen supersaturated mg/L during transport
- xi. Test organism acclimation rate at the testing laboratory
 - Holding water conditions upon arrival were DO=supersaturated, pH = 7.9, T = 20°C
 - Organisms were acclimated slowly overnight
 - Addition of EVS lab seawater at intervals of 30 60min to reach acceptable conditions
 - Organisms were acclimated to DO = 7.4mg/L, salinity = 28ppt, T=20°C

Test Facilities and Conditions

- i. Test type & method
 - 7-day Topsmelt (Atherinops affinis) Survival and Growth Toxicity Test
 - Static renewal
 - Sample water was renewed daily
 - Reference Method EPA/600/R-95/136 (EPAW 95-EPA West Coast)
- ii. **Dates or test days during test when subsamples or multiple samples were renewed
 - Samples were renewed daily for all tests (Test Day 1,2,3,4,5,6)
 - Three subsamples were used on days i) 0-1; ii) 2-3; and iii) 4-5-6-7
- iii. Indications of deviations from requirements in Sections 11 of Method EPA/600/R-95/136 (EPAW 95-EPA West Coast)
 - No deviations from requirements
 - Salinity controls were run
 - Sample water salinity for
 - Test 1 was 7ppt
 - Test 2 was 2.6 ppt
 - Test 3 was 5.2ppt
- iv. Date and time for start of definitive test
 - Test 1 Saturday July 10, 2004 1730h (within 3 days)
 - Test 2 Friday July 30, 2004 1500h (within 3 days)
 - Test 3 Tuesday August 27, 2004 1230h (within 3 days)
- v. **Date for test completion
 - Test 1 July 17, 2004
 - Test 2 August 6, 2004
 - Test 3 September 3, 2004
- vi. Test vessel description
 - For all tests was a 600mL beaker
- vii. Person(s) performing the test and verifying the results

- Test 1: Testing by: Andy Diewald, Anja Fouche, Keven Goodearle, Ann-Marie Norris and Jenny Shao; Statistical analyses by Jenny Shao and QA/QC by Julianna Kalokai
- Test 2: Testing by: Andy Diewald, Ann-Marie Norris and Jenny Shao; Statistical analysis by Jenny Shao and Kathryn Sentance; QA/QC by Armando Tang
- Test 3: Testing by Andy Diewald, Anja Fouche and Jenny Shao; Statistics by Jenny Shao and Kathryn Sentance; QA/QC by Julianna Kalokai

viii.pH, temperature, dissolved oxygen, and conductivity of unadjusted, undiluted effluent

- Test 1: pH 8.1, T 19.5 °C, DO 9.3 mg/L, C 11660 μmhos/cm
- Test 2: pH 7.8, T 20.0 °C, DO 10.7 mg/L, C 4880 μmhos/cm
- Test 3: pH 7.6, T 20.0 °C, DO 10.1 mg/L, C 9230 μmhos/cm
- ix. Confirmation that no adjustment of sample or solution pH occurred
 - No pH adjustment
- x. Indication of aeration of test solutions before introduction of fish
 - Pre-aeration at 6.5mL/min/L for 30mins due to supersaturation of sample with O₂ when sample was heated to 19°C
- xi. **Indication that EC guidance document for salinity adjustment was followed
 - The following was done for all 3 tests:
 - No deviations from EC guidance document on preparation of hypersaline brine (HSB)
 - HSB prepared from natural seawater concentrated to 90ppt (by filtering to at least 10 µm before placing it into the freezer and then freezing/refreezing to remove frozen layer and concentrate salts in the hypersaline brine)
 - No deviations from EC guidance document for salinity adjustment of sample
 - HSB was added to samples to salinity adjust them to 30ppt
 - For a 200mL volume the concentrations were prepared by adding:
 - Test 1: 145mL of effluent + 55mL of HSB for the highest concentration. This solution was then diluted using natural seawater for the lower test concentrations (i.e., 50% of the highest concentration + 50% of the dilution water, repeated for subsequent dilutions).
 - Test 2: 138mL of effluent + 62mL of HSB for the highest concentration.
 This solution was then diluted using natural seawater for the lower test concentrations (i.e., 50% of the highest concentration + 50% of the dilution water, repeated for subsequent dilutions).
 - Test 3: 142mL of effluent + 58mL of HSB for the highest concentration. This solution was then diluted using natural seawater to make the lower test concentrations (i.e., 50% of the highest concentration + 50% of the dilution water, repeated for subsequent dilutions).
- xii. Type and source of control/dilution water
 - For all 3 tests, control/dilution water was UV-sterilized, 0.45µm-filtered natural seawater from the Vancouver Aquarium
- xiii.Concentrations and volumes tested:
 - Concentrations (% effluent volume / total volume) tested and total volumes used were:
 - For Test 1:
 - Control (0%) 200 mL
 - Salinity Control (0%) 200 mL
 - 4.5% 200mL
 - 9.1% 200mL
 - 18.2% 200mL

- 36.3% 200mL
- 72.6% 200mL
- For Test 2:
 - Control (0%) 200 mL
 - Salinity Control (0%) 200 mL
 - 4.3% 200mL
 - 8.6% 200mL
 - 17.3% 200mL
 - 34.5% 200mL
 - 69.0% 200mL
- For Test 3:
 - Control (0%) 200 mL
 - Salinity Control (0%) 200 mL
 - 4.4% 200mL
 - 9.0% 200mL
 - 18.0% 200mL
 - 36.0% 200mL
 - 71.0% 200mL
- xiv. Number of replicated per concentration
- For all 3 tests: 5 replicates per concentration
- xv. Number of organisms added to each test vessel
 - For all 3 tests: 5 fish per vessel
- xvi. Manner and rate of exchange of test solutions
 - For all 3 test: Daily renewal
- xvii. **Measurements of dissolved oxygen, pH and temperature, and salinity for each 24 hr period
 - Test 1: See attached photocopied pages 1.1 and 1.2 of original laboratory report
 - Test 2: See attached photocopied pages 2.1 and 2.2 of original laboratory report
 - Test 3: See attached photocopied pages 3.1 and 3.2 of original laboratory report

Results

i. **Number and % of mortalities of fish in each test solution. Note that this data is presented in units of number of SURVIVORS and % MORTLITY. (Data is entered from original handwritten tables in lab reports)

• Test 1: Totals from all 5 replicates are presented (see attached pages 1.3-1.4 for original lab data):

• Test 1. Totals from an 3 repricates are presented (see attached pages 1.3-1.4 for original lab data).																
Concentration		Nι	umber	of Su	rvivor	s - Da	y of Te	est	% Mortality on the Day of Test							
(% effluent v/v)	Replicate	1	2	3	4	5	6	7	1	2	3	4	5	6	7	
Control	Α	5	5	5	5	5	5	5	0	0	0	0	0	0	0	
	В	5	5	5	5	5	5	5	0	0	0	0	0	0	0	
	С	5	5	5	5	4	4	4	0	0	0	0	20	0	0	
	D	5	5	5	5	5	5	5	0	0	0	0	0	0	0	
	E	5	5	5	5	5	5	5	0	0	0	0	0	0	0	
Brine	Α	5	5	5	5	5	5	5	0	0	0	0	0	0	0	
Control	В	5	5	5	5	5	5	4	0	0	0	0	0	0	20	
	С	5	5	5	5	5	5	5	0	0	0	0	0	0	0	
	D	5	5	5	5	5	5	5	0	0	0	0	0	0	0	
	E	5	5	5	5	5	5	5	0	0	0	0	0	0	0	
4.5%	Α	5	5	5	5	5	5	5	0	0	0	0	0	0	0	

Concentration		Nι	ımber	of Su	rvivor	s - Da	y of Te	est	%	Mort	ality	n the	Day	of Te	st
(% effluent v/v)	Replicate	1	2	3	4	5	6	7	1	2	3	4	5	6	7
	В	5	5	5	5	5	5	5	0	0	0	0	0	0	0
	С	5	5	5	5	5	5	5	0	0	0	0	0	0	0
	D	5	5	5	5	5	5	5	0	0	0	0	0	0	0
	E	5	5	5	5	5	5	5	0	0	0	0	0	0	0
9.1%	Α	5	5	5	5	5	5	5	0	0	0	0	0	0	0
	В	5	5	5	5	5	5	5	0	0	0	0	0	0	0
	С	5	5	5	5	5	5	5	0	0	0	0	0	0	0
	D	5	5	5	5	5	5	5	0	0	0	0	0	0	0
	E	5	5	5	5	5	5	5	0	0	0	0	0	0	0
18.2%	Α	5	5	5	5	5	5	5	0	0	0	0	0	0	0
	В	5	5	5	5	5	5	5	0	0	0	0	0	0	0
	С	5	5	5	5	5	5	5	0	0	0	0	0	0	0
	D	5	5	5	5	5	5	5	0	0	0	0	0	0	0
	E	5	5	5	5	5	5	5	0	0	0	0	0	0	0
36.3%	Α	5	5	5	5	5	5	5	0	0	0	0	0	0	0
	В	5	5	5	5	5	5	5	0	0	0	0	0	0	0
	С	4	4	4	4	4	4	4	20	0	0	0	0	0	0
	D	5	5	5	5	5	5	5	0	0	0	0	0	0	0
	E	5	5	5	5	5	5	5	0	0	0	0	0	0	0
72.6%	Α	5	5	5	5	5	5	5	0	0	0	0	0	0	0
	В	5	5	5	5	5	5	5	0	0	0	0	0	0	0
	С	5	5	5	5	5	5	4	0	0	0	0	0	0	20
	D	5	5	5	5	5	5	5	0	0	0	0	0	0	0
	E	5	5	5	5	5	5	4	0	0	0	0	0	0	20

• Test 2: Totals from all 5 replicates are presented (see attached pages 2.3-2.4 for original lab data):

Concentration	Totals from		_		rvivor				1803 2.3-						
		INI			_			- -			ortali	-	-		_
(% effluent v/v)	Replicate	1	2	3	4	5	6		1	2	3	4	5	6	7
Control	Α	5	5	5	5	5	5	5	0	0	0	0	0	0	0
	В	5	5	5	5	5	5	5	0	0	0	0	0	0	0
	С	5	5	5	5	5	5	5	0	0	0	0	0	0	0
	D	5	5	5	5	5	5	5	0	0	0	0	0	0	0
	E	5	5	5	5	5	5	5	0	0	0	0	0	0	0
Brine	Α	5	5	5	5	5	5	5	0	0	0	0	0	0	0
Control	В	5	5	5	5	5	5	5	0	0	0	0	0	0	0
	С	5	5	5	5	5	5	5	0	0	0	0	0	0	0
	D	5	5	5	5	5	5	5	0	0	0	0	0	0	0
	E	5	5	5	5	5	5	5	0	0	0	0	0	0	0
4.3%	Α	5	5	5	5	5	5	4	0	0	0	0	0	0	20
	В	5	5	5	5	5	5	5	0	0	0	0	0	0	0
	С	5	5	5	5	5	5	5	0	0	0	0	0	0	0
	D	5	5	5	5	5	5	5	0	0	0	0	0	0	0
	E	5	5	5	5	5	5	5	0	0	0	0	0	0	0
8.6%	Α	5	5	5	5	5	5	5	0	0	0	0	0	0	0
	В	5	5	5	5	5	5	5	0	0	0	0	0	0	0
	С	5	5	5	5	5	5	4	0	0	0	0	0	0	20
	D	5	5	5	5	5	5	5	0	0	0	0	0	0	0
	E	5	5	5	5	5	5	5	0	0	0	0	0	0	0

Concentration		Νι	ımber	of Su	rvivor	s - Day	y of Te	est		% M	ortali	ty - D	ay of	Test	
(% effluent v/v)	Replicate	1	2	3	4	5	6	7	1	2	3	4	5	6	7
17.3%	Α	5	5	5	5	5	5	5	0	0	0	0	0	0	0
	В	5	5	5	5	5	5	5	0	0	0	0	0	0	0
	С	5	5	5	5	5	5	5	0	0	0	0	0	0	0
	D	5	5	5	5	5	5	5	0	0	0	0	0	0	0
	E	5	5	5	5	5	5	5	0	0	0	0	0	0	0
34.5%	Α	5	5	5	5	5	5	5	0	0	0	0	0	0	0
	В	5	5	5	5	5	5	5	0	0	0	0	0	0	0
	С	5	5	5	5	5	5	5	0	0	0	0	0	0	0
	D	5	5	5	5	5	5	5	0	0	0	0	0	0	0
	E	5	5	5	5	5	5	5	0	0	0	0	0	0	0
69.0%	Α	5	5	5	5	4	4	4	0	0	0	0	20	0	0
	В	5	5	5	5	5	5	5	0	0	0	0	0	0	0
	С	5	5	5	5	5	5	5	0	0	0	0	0	0	0
	D	5	5	5	5	5	5	5	0	0	0	0	0	0	0
	E	5	5	5	5	5	5	5	0	0	0	0	0	0	0

• Test 3: Totals from all 5 replicates are presented (see attached pages 3.3-3.4 for original lab data):

Concentration	. Totals Holli			of Su					-0-00		ortali				
(% effluent v/v)	Replicate	1	2	3	4	5	6	7	1	2	3	4	5	6	7
Control	Α	5	5	5	5	5	5	5	0	0	0	0	0	0	0
	В	5	5	5	5	5	5	5	0	0	0	0	0	0	0
	С	5	5	5	5	5	5	5	0	0	0	0	0	0	0
	D	5	5	5	5	5	5	5	0	0	0	0	0	0	0
	E	5	5	5	5	5	5	5	0	0	0	0	0	0	0
Brine	Α	5	5	5	5	5	5	5	0	0	0	0	0	0	0
Control	В	5	5	5	5	5	5	5	0	0	0	0	0	0	0
	С	5	5	5	5	5	5	5	0	0	0	0	0	0	0
	D	5	5	5	5	5	5	5	0	0	0	0	0	0	0
	E	5	5	5	5	5	5	5	0	0	0	0	0	0	0
4.4%	Α	5	5	5	5	5	5	5	0	0	0	0	0	0	0
	В	5	5	5	5	5	5	5	0	0	0	0	0	0	0
	С	5	5	5	5	5	5	5	0	0	0	0	0	0	0
	D	5	5	5	5	5	5	5	0	0	0	0	0	0	0
	E	5	5	5	5	5	5	5	0	0	0	0	0	0	0
9.0%	Α	5	5	5	5	5	5	5	0	0	0	0	0	0	0
	В	5	5	5	5	5	5	5	0	0	0	0	0	0	0
	С	5	5	5	5	5	5	5	0	0	0	0	0	0	0
	D	5	5	5	5	5	5	5	0	0	0	0	0	0	0
	E	5	5	5	5	5	5	5	0	0	0	0	0	0	0
18.0%	Α	5	5	5	5	5	5	5	0	0	0	0	0	0	0
	В	5	5	5	5	5	5	5	0	0	0	0	0	0	0
	С	5	5	5	5	5	5	5	0	0	0	0	0	0	0
	D	5	5	5	5	5	5	5	0	0	0	0	0	0	0
	E	5	5	5	5	5	5	5	0	0	0	0	0	0	0
36.0%	Α	5	5	5	5	5	5	5	0	0	0	0	0	0	0
	В	5	5	5	5	5	5	5	0	0	0	0	0	0	0
	С	5	5	5	5	5	5	4	0	0	0	0	0	0	20

Concentration		Nι	ımber	of Su	rvivor	s - Da	y of Te	est		% M	ortali	ty - D	ay of	Test	
(% effluent v/v)	Replicate	1	2	3	4	5	6	7	1	2	3	4	5	6	7
	D	5	5	5	5	5	5	5	0	0	0	0	0	0	0
	E	5	5	5	5	5	5	5	0	0	0	0	0	0	0
71.0%	Α	5	5	5	5	5	5	5	0	0	0	0	0	0	0
	В	5	5	5	5	5	5	5	0	0	0	0	0	0	0
	С	5	5	5	5	5	5	5	0	0	0	0	0	0	0
	D	5	5	5	5	5	5	5	0	0	0	0	0	0	0
	E	5	5	5	5	5	5	5	0	0	0	0	0	0	0

ii. **Average dry weight (mg) per original fish in test vessel. No preservation of fish was used. Fish were dried and then weighed.

• Test 1: Mean dry weight (mg) of each replicate and overall means are presented:

Concentration			Replicate			Overall Mean	Standard Deviation
(% effluent v/v)	1	2	3	4	5		
Neg Control (0%)	1.2120	1.0040	0.7980	0.7880	0.8460	0.9296	0.1800
Salinity Control	1.1300	0.8540	1.3000	1.1120	0.9940	1.0780	0.1661
4.5%	0.9500	0.9440	0.9500	1.1360	1.0260	1.0012	0.0826
9.1%	1.0520	1.0060	0.9040	1.0820	1.1360	1.0360	0.0876
18.2%	1.1100	0.9080	0.9340	0.9140	0.9160	0.9564	0.0864
36.3%	1.0560	1.2980	0.9260	1.0120	1.2220	1.1028	0.1533
72.6%	0.9560	1.3320	0.8120	0.8060	1.0460	0.9904	0.2161

• Test 2: Mean dry weight (mg) of each replicate are presented:

Concentration			Replicate				
(% effluent v/v)	1	2	3	4	5	Overall Mean	Standard Deviation
Neg Control (0%)	1.000	1.122	0.952	0.962	0.866	0.9804	0.0931
Salinity Control	1.170	0.812	1.042	0.880	1.030	0.9868	0.1418
4.3%	0.754	1.078	1.064	0.814	0.840	0.9100	0.1503
8.6%	1.098	0.866	0.884	0.726	0.778	0.8704	0.1426
17.3%	0.710	0.794	0.944	0.596	0.872	0.7832	0.1363
34.5%	0.912	0.874	0.918	0.854	0.924	0.8964	0.0307
69.0%	0.486	0.818	0.756	0.808	1.000	0.7736	0.1854

• Test 3: Mean dry weight (mg) of each replicate are presented:

Concentration			Replicate				
(% effluent v/v)	1	2	3	4	5	Overall Mean	Standard Deviation
Neg Control (0%)	0.9680	0.9700	0.9780	0.8460	0.8940	0.9312	0.0585
Salinity Control	0.9040	0.8600	1.2680	0.9720	0.8080	0.9624	0.1811
4.4%	0.9380	1.5180	1.0220	0.8620	0.9420	1.0564	0.2642
9.0%	0.8960	0.8600	0.9480	0.7900	0.8320	0.8652	0.0604
18.0%	0.9240	0.6960	1.1280	1.0860	0.9940	0.9656	0.1704
36.0%	1.0900	0.8140	0.7880	1.0300	0.8900	0.9224	0.1328
71.0%	0.6680	0.7620	1.0920	0.9280	0.9060	0.8712	0.1631

- iii. Estimate of 7-d LC₅₀ (95% CL)
 - Test 1: 7-d LC₅₀ concentration > 72.6% effluent (highest concentration tested due to dilution for salinity adjustment)
 - Test 2: 7-d LC₅₀ concentration > 69.0% effluent (highest concentration tested due to dilution for salinity adjustment)
 - Test 3: : 7-d LC₅₀ concentration > 71.0% effluent (highest concentration tested due to dilution for salinity adjustment)
 - Quantal statistic methods not applicable
- iv. Estimate of 7-d IC₂₅ (95% CL) for growth

- Test 1: 7-d IC₂₅ concentration > 72.6% effluent (highest concentration tested due to dilution for salinity adjustment)
- Test 2: 7-d IC₂₅ concentration > 69.0% effluent (highest concentration tested due to dilution for salinity adjustment)
- Test 3: 7-d IC₂₅ concentration > 71.0% effluent (highest concentration tested due to dilution for salinity adjustment)
- v. Current reference toxicity tests (95% CL) for 7-d LC₅₀ for survival and 7-d IC₅₀ for growth
 - Test 1 :Reference toxicity tests for Toxicant: Copper
 - Test conducted on July 10, 2004, same day as effluent test
 - Reference toxicant test was conducted on the same batch of externally supplied topsmelt used in the effluent test and under the same experimental conditions as the effluent test
 - 7-d LC₅₀ survival = 161mg/L Cu, 95% CL = 139-188mg/L
 - 7-d IC₅₀ growth = 147mg/L Cu, 95% CL = 119-169mg/L
 - Test 2 :Reference toxicity tests for Toxicant: Copper
 - Test conducted on July 30, 2004, same day as effluent test
 - Reference toxicant test was conducted on the same batch of externally supplied topsmelt used in the effluent test and under the same experimental conditions as the effluent test
 - 7-d LC₅₀ survival = 130 mg/L Cu, 95% CL = 115-147 mg/L
 - 7-d IC₅₀ growth = 124mg/L Cu, 95% CL = 87-144mg/L
 - Test 3 :Reference toxicity tests for Toxicant: Copper
 - Test conducted on August 27, 2004, same day as effluent test
 - Reference toxicant test was conducted on the same batch of externally supplied topsmelt used in the effluent test and under the same experimental conditions as the effluent test
 - 7-d LC₅₀ survival = 121 mg/L Cu, 95% CL = 107-137 mg/L
 - 7-d IC_{50} growth = 128mg/L Cu, 95% CL = 85-150mg/L
- vi. Reference toxicity warning limits (+/- SD) for 7-d LC₅₀ for survival and 7-d IC₅₀ for growth
 - Test 1: Reference toxicity tests for Toxicant: Copper
 - 7-d LC₅₀ survival = 137 ± 56 mg/L Cu
 - 7-d IC₅₀ growth = 135 ± 51 mg/L Cu
 - Test 2: Reference toxicity tests for Toxicant: Copper
 - 7-d LC₅₀ survival = 129 ± 48 mg/L Cu,
 - 7-d IC₅₀ growth = 130 ± 52 mg/L Cu
 - Test 3: Reference toxicity tests for Toxicant: Copper
 - 7-d LC₅₀ survival = 132 ± 48 mg/L Cu,
 - 7-d IC₅₀ growth = 131 ± 51 mg/L Cu

APPENDIX B

92-h Echinoderm Fertilization Test

Effluent Sample

- i. Name & location of operation generating the effluent
 - Polaris Mine, Little Cornwallis Island, Nunavut
 - Final Discharge Point for Garrow Lake is geo referenced as 75° 22' 32" N, 97° 48' 37" W.
- ii. Date & time of sampling
 - Samples for sublethal toxicity testing were collected:
 - Test 1 Wednesday July 7, 2004 1100h
 - Test 2 Tuesday July 27, 2004 2130h
 - Test 3 Tuesday Aug 24, 2004 1500h
- iii. Type of sample
 - Final effluent water
- iv. Brief description of sampling point
 - 20m downstream of the siphon discharge point at Garrow Lake dam
- v. Sampling method
 - Water was collected from at least 15cm below the surface using a water pump with silicon tubing
 - Water was collected from the upstream direction
 - The pump was flushed with site water for at least one minute prior to sample collection
 - 4 x 20L sample bottles were filled
- vi. Name of person submitting samples
 - Dennis Lu (Gartner Lee) Tests 1 & 2
 - Patrick Allard (Azimuth) Test 3
- x. **Labeling/coding of sample (Sample IDs)
 - Test 1 G-Creek sub 070704
 - Test 2 G-Creek Sublethal 270704
 - Test 3 G-Creek 081704
- xi. **Date & time of sample receipt
 - Samples for sublethal toxicity testing were collected:
 - Test 1 Saturday July 10, 2004 1425h
 - Test 2 Friday July 30, 2004 1200h
 - Test 3 Friday Aug 27, 2004 0945h
- xii. **Temperature upon sample receipt at laboratory
 - Test 1 n/a no test
 - Test 2 − 13.0 °C
 - Test 3 − 15.4 °C

Test Organisms

- i. Species of test organism
 - Sandollar Echinoid (*Dendraster excentricus*)
- ii. Name and city of testing laboratory
 - EVS Environment Consultants, North Vancouver, BC
- iii. Source of test species
 - M-REP, Escondido, California
 - All adults providing gametes are from the same population and source
 - Gametes are spawned in-house at EVS
- iv. Date test species acquired on
 - Test 1: Test was not initiated due to inability of the Sandollars to spawn.
 - Test 2: July 30, 2004
 - Test 3: August 27, 2004
- v. Holding time and conditions for adults
 - Test 1: N.A.

- Test 2: Adults received at the testing laboratory the day of the test.
- Test 3: Adults received at the testing laboratory the day of the test.
- vi. Indications of deviations from EC guidance on the importation of test organisms
 - Test 1: na
 - Test 2: No deviations from EC requirements
 - Test 3: No deviations from EC requirements
- vii. Weekly percent mortality of adults being held over 7d preceding test
 - Test 1: na
 - Test 2: <2% per day over the 7 days preceding the test
 - Test 3: <2% per day over the 7 days preceding the test

viii. Age of test organisms

- Test 1: n.a.
- Test 2: < 4 hours after spawning
- Test 3: < 4 hours after spawning
- ix. **Unusual appearance, behaviour, or treatment of adults or gametes before test start, or anything unusual about the test
 - Test 1: Test was not initiated due to inability of the Sandollars to spawn
 - Test 2 Organisms appear healthy, in good condition, nothing unusual about test organisms or test
 - Test 3: Organisms appear healthy, in good condition, nothing unusual about test organisms or test

Test Facilities and Conditions

- i. Test type & method
 - Echinoderm (*Dendraster excentricus*) Fertilization Toxicity Test
 - Static
 - Reference Method EPS/1/RM/27 with 1997 amendments
- ii. Test duration
 - Test 1: na
 - Test 2: 10:10 min (10min sperm + 10min sperm & egg)
 - Test 3: 10:10 min (10min sperm + 10min sperm & egg)
- iii. Date and time for start of definitive test
 - Test 1: na
 - Test 2: Friday July 30, 2004 1620h
 - Test 3: Friday August 27, 2004 1334h
- iv. Test vessel description
 - Test 1: na
 - Test 2: 16 x 125mm test tubes
 - Test 3: 16 x 125mm test tubes
- v. Person(s) performing the test and verifying the results
 - Test 1: na
 - Test 2: Testing by Kathryn Sentance and Ann-Marie Norris. Statistical analyses by Jenny Shao and Kathryn Sentance. QA/QC reviewed by Julianna Kalokai.
 - Test 3: Testing by Kathryn Sentance and Ann-Marie Norris. Statistical analyses by Jenny Shao and Kathryn Sentance. QA/QC reviewed by Julianna Kalokai.
- vi. Indication of rate and duration of pre-aeration of test solutions before initiation of test
 - Test 1: na
 - Test 2: No pre-aeration noted.
 - Test 3: No pre-aeration noted.
- vii. Confirmation that no adjustment of sample or solution pH occurred
 - Test 1: na

- Test 2: No pH adjustment
- Test 3: No pH adjustment

viii. Procedure for sample filtration

- Test 1: na
- Test 2: No sample filtration
- Test 2: No sample filtration
- ix. **Procedure for preparation of hypersaline brine (HSB) as per EC guidance document on salinity adjustment July 1997
 - Test 1: na
 - Test 2: Hypersaline brine (HSB) was prepared from natural seawater concentrated to 90ppt (by filtering to at least 10 µm before placing it into the freezer and then freezing/refreezing to remove frozen layer and concentrate salts in the hypersaline brine). HSB was added to samples to salinity adjust them to 30ppt. For a 10mL volume the concentrations were prepared by adding 7.31mL of effluent + 2.69mL of HSB for the highest concentration. This solution was diluted using natural seawater for the lower test concentrations (i.e., 50% of the highest concentration + 50% of the dilution water, repeated for subsequent dilutions). No deviations from EC guidance document (July 1997) for salinity adjustment of sample.
 - Test 2: Hypersaline brine (HSB) was prepared from natural seawater concentrated to 90ppt (by filtering to at least 10 μm before placing it into the freezer and then freezing/refreezing to remove frozen layer and concentrate salts in the hypersaline brine). HSB was added to samples to salinity adjust them to 30ppt. For a 10mL volume the concentrations were prepared by adding 7.51mL of effluent + 2.49mL of HSB for the highest concentration. This solution was diluted using natural seawater for the lower test concentrations (i.e., 50% of the highest concentration + 50% of the dilution water, repeated for subsequent dilutions). No deviations from EC guidance document (July 1997) for salinity adjustment of sample.
- x. Procedure for salinity adjustment as per EC guidance document on salinity adjustment July 1997
 - No deviations from EC guidance for salinity adjustment
 - Test 1: na
 - Test 2: salinity adjusted from 2.8 to 28 ppt
 - Test 3: salinity adjusted from 5 to 28 ppt
- xi. Type and source of control/dilution water
 - Test 1: na
 - Test 2: UV-sterilized, 0.45µm-filtered natural seawater from the Vancouver Aquarium
 - Test 3: UV-sterilized, 0.45µm-filtered natural seawater from the Vancouver Aquarium
- xii. Concentrations and volumes tested
 - Test 1: na
 - Test 2: Concentrations (% effluent volume / total volume) tested and total volumes used were:
 - Control (0%) 10mL
 - Salinity Control (0%) 10mL
 - 4.6% 10mL
 - 9.1% 10mL
 - 18.3% 10mL
 - 36.6% 10mL
 - 73.1% 10mL
 - Test 3: Concentrations (% effluent volume / total volume) tested and total volumes used were:
 - Control (0%) 10mL
 - Salinity Control (0%) 10mL
 - 4.7% 10mL
 - 9.4% 10mL

- 18.8% 10mL
- 37.5% 10mL
- 75.1% 10mL

xiii. Number of replicated per concentration

- Test 1: na
- Test 2: 4 replicates per treatment concentration
- Test 3: 4 replicates per treatment concentration

xiv. **Number of organisms per container

- Test 1: na
- Test 2: 2000 eggs per vessel (100 counted)
- Test 3: 2000 eggs per vessel (100 counted)

xv. Measurements of pH and dissolved oxygen in sample water before use

- Test 1: na
- Test 2: pH 8.1, DO 8.5
- Test 3: pH 8.0, DO 8.5

xvi. Measurements of pH, temperature, dissolved oxygen, and salinity during test

- Test 1: na
- Test 2: pH 8.0 8.1, T 15.0-16.0°C, DO 8.2-8.5mg/L, salinity 28ppt
- Test 3: pH 8.2 8.5, T 15.0-16.0°C, DO 8.2-8.5mg/L, salinity 28ppt

Results

- i. Number and % of fertilized eggs in each test concentration
 - Test 1: na
 - Test 2: (Number is equal to percent since totals were 100)

•	Control (0%):	#F = 59, 62, 56, 65	#UF = 41, 38, 44, 35
•	Salinity Control:	#F = 60, 57, 59, 62	#UF = 40, 43, 41, 38
•	4.6%:	#F = 60, 66, 56, 58	#UF = 40, 34, 44, 42
•	9.1%:	#F = 46, 42, 45, 42	#UF = 54, 58, 55, 58
•	18.3%:	#F = 39, 39, 37, 36	#UF = 61, 64, 63, 64
•	36.6%:	#F = 31, 34, 25, 31	#UF = 69, 66, 75, 69
•	73.1%:	#F = 19, 20, 21, 20	#UF = 81, 80, 79, 80

• Test 3: (Number is equal to percent since totals were 100)

•	Control (0%):	#F = 77, 80, 74, 77	#UF = 23, 20, 26, 23
•	Salinity Control:	#F = 76, 73, 79, 77	#UF = 24, 27, 21, 23
•	4.7%:	#F = 78, 74, 76, 72	#UF = 22, 26, 24, 28
•	9.4%:	#F = 61, 62, 62, 60	#UF = 39, 38, 38, 40
•	18.8%:	#F = 56, 58, 59, 55	#UF = 44, 42, 41, 45
•	37.5%:	#F = 49, 50, 50, 48	#UF = 51, 50, 50, 52
•	75.1%:	#F = 25, 27, 24, 27	#UF = 75, 73, 76, 73

- ii. **Estimate of IC₂₅ (95% CL) for fertilization success
 - Test 1: na
 - Test 2: IC_{25} concentration = 8.7 (7.6 9.9)% v/v effluent
 - Test 3: IC_{25} concentration = 17.5 (11.6 22.6)% v/v effluent
 - Quantitative statistic used to generate IC₂₅ values was log-linear interpolation (200 resamples) calculated in ToxCalc v5.0.23 (Test 2) and log-logit interpolation (200 resamples) calculated in ToxCalc v5.0.23 (Test 3)
- iii. Current reference toxicity tests (95% CL) for IC₅₀ for fertilization
 - Test 1: na
 - Test 2: Reference toxicity tests for Toxicant: Sodium Dodecyl Sulfate

- Test conducted on July 30, 2004, same day as effluent test
- Reference test conducted under same conditions
- IC₅₀ for fertilization = 2.1 mg/L SDS, 95% CL = (1.9 2.4) mg/L
- Test 3: Reference toxicity tests for Toxicant: Sodium Dodecyl Sulfate
 - Test conducted on August 27, 2004, same day as effluent test
 - Reference test conducted under same conditions
 - IC₅₀ for fertilization = 2.3mg/L SDS, 95% CL = (2.1 2.4)mg/L
- iv. Reference toxicant warning limits (+/- 2SD) for IC₅₀ for fertilization
 - Test 1: na
 - Test 2: 4.2 +/- 4.8 mg/L SDS
 - Test 3: 3.9 +/- 4.6 mg/L SDS

APPENDIX C

7-d Sublethal *Champia* (Algae) Toxicity Test

Effluent Sample

- i. Name & location of operation generating the effluent
 - Polaris Mine, Little Cornwallis Island, Nunavut
 - Final Discharge Point for Garrow Lake is geo referenced as 75° 22' 32" N, 97° 48' 37" W.
- ii. Date & time of sampling
 - Samples for yearly sublethal toxicity testing were collected:
 - Test 1 Wednesday July 7, 2004 1100h
 - Test 2 Tuesday July 27, 2004 2130h
 - Test 3 Tuesday Aug 24, 2004 1500h
- iii. Type of sample
 - Final effluent water
- iv. Brief description of sampling point
 - 20m downstream of the siphon discharge point at Garrow Lake dam
- v. Sampling method
 - Water was collected from at least 15cm below the surface using a water pump with silicon tubing
 - Water was collected from the upstream direction
 - The pump was flushed with site water for at least one minute prior to sample collection
 - 1 x 4L sample bottles were filled
- vi. Name of person submitting samples
 - Dennis Lu (Gartner Lee) Tests 1 & 2
 - Patrick Allard (Azimuth) Test 3
- vii. Temperature of water upon receipt at lab
 - Test 1: Test was not conducted as sample was delayed by weather and person qualified to conduct the work at the lab left for vacation. This was discussed with Sandra Blenkinsopp at the time to provide direction.
 - Test 2: 8°C
 - Test 3: 17°C
- xiii.**Labeling/coding of sample (Sample IDs)
 - Test 1 G-Creek sub 070704
 - Test 2 G-Creek Sublethal 270704
 - Test 3 G-Creek_081704
- xiv. **Date & time of sample receipt
 - Samples for sublethal toxicity testing were collected:
 - Test 1 n/a test not conducted
 - Test 2 Friday July 30, 2004 0900h
 - Test 3 Friday Aug 27, 2004 0900h

Test Organisms

- i. Species of test organism
 - Algae (*Champia parvula*)
- ii. Name and city of testing laboratory
 - Saskatchewan Research Council [SRC], Saskatoon, SK
- iii. Source of test species and health of organisms
 - Test 1: na
 - Test 2 and Test 3
 - Sexually mature male and female branches
 - Obtained from USEPA, Hatfield Marine Science Center, Newport Oregon, 1995
 - Appear in excellent health, healthy red color
 - Females have trichogynes, males have sori with spermatia

- iv. **Any unusual appearance, behaviour, or treatment of test organisms, before their use in test
 - Test 1: na
 - Test 2 and Test 3
 - Nothing unusual about the appearance, behaviour, or treatment of test organisms, before their use in test; everything is normal
 - Nothing unusual about the tests

Test Facilities and Conditions

- i. Test type & method
 - Champia parvula sexual reproduction test
 - Static, non-renewal
 - 2-day exposure, followed by 5-7 day recovery period for cystocarp development
 - Reference Method EPA/600/4-91/003, Method 1009.0
- ii. Date and time for start of definitive test
 - Test 1: na
 - Test 2: Friday July 30, 2004 time not noted but lab notes state tests started within 72 hrs of collection
 - Test 3: Friday August 27, 2004 time not noted but lab notes state tests started within 72 hrs of collection
- xviii. **Date for test completion
 - Test 1 n/a
 - Test 2 August 6, 2004
 - Test 3 September 3, 2004
- iii. Test vessel description
 - Test 1: na
 - Test 2: 270mL transparent polystyrene cups with polystyrene lids
 - Test 2: 270mL transparent polystyrene cups with polystyrene lids
- iv. Person(s) performing the test and verifying the results
 - Test 1: na
 - Tests 2 & 3 Mary Moody
- v. Indication of pre-aeration of test solutions
 - Test 1: na
 - Tests 2 & 3 No pre-aeration
- vi. Confirmation that no pH adjustment of sample or solution occurred
 - Test 1: na
 - Tests 2 & 3: No pH adjustment
- vii. **Indication that EC guidance document for salinity adjustment was followed
 - Test 1: na
 - Test 2:
- No deviations from EC guidance document on preparation of hypersaline brine (May 2001)
- HSB prepared from natural seawater at 90ppt (by filtering to at least 10 μm before placing it into the freezer and then freezing/refreezing to remove frozen layer and concentrate salts in the hypersaline brine)
- No deviations from EC guidance document for salinity adjustment of sample
- Salinity adjustment: 600mL effluent + 250mL HSB + 8.5mL test nutrient solution
- Salinity of samples adjusted from 4ppt to 30ppt
- Test 3:

- No deviations from EC guidance document on preparation of hypersaline brine (May 2001)
- HSB prepared from natural seawater at 90ppt (by filtering to at least 10 μm before placing it into the freezer and then freezing/refreezing to remove frozen layer and concentrate salts in the hypersaline brine)
- No deviations from EC guidance document for salinity adjustment of sample
- Salinity adjustment: 600mL effluent + 230mL HSB + 10 ml test nutrient solution
- Salinity of samples adjusted from 5ppt to 30ppt

viii. Type and source of control/dilution water

- Test 1: na
- Tests 2 & 3
 - Natural seawater collected at the Pacific Environmental Center, Environment Canada, North Vancouver, BC
 - Filtered to 0.2µm and autoclaved prior to use
 - Salinity adjusted as per EC guidance document to 30ppt with HSB from the same source
- ix. **Type and quantity of any chemicals added to the control dilution water
 - Test 1: na
 - Test 2: Test nutrients as described in Test Method USEPA/600/4-91/003, Method 1009.0 were added at concentration of 10mL/L, analytical grade, 8.5mL added
 - Test 3: Test nutrients as described in Test Method USEPA/600/4-91/003, Method 1009.0 were added at concentration of 10mL/L, analytical grade, 10mL added
- x. Concentrations and volumes of test solutions
 - Concentrations (% effluent volume / total volume) tested and total volumes used were:
 - Test 1: na
 - Tests 2:
 - Control (Natural Seawater) (0%) 100mL, 4.5cm depth
 - Salinity Control Brine (0%) 100mL, 4.5cm depth
 - 4.38% 100mL, 4.5cm depth
 - 8.75% 100mL, 4.5cm depth
 - 17.5% 100mL, 4.5cm depth
 - 35.0% 100mL, 4.5cm depth
 - 70.0% 100mL, 4.5cm depth
 - Tests 3:
 - Control (Natural Seawater) (0%) 100mL, 4.5cm depth
 - Salinity Control Brine (0%) 100mL, 4.5cm depth
 - 4.5% 100mL, 4.5cm depth
 - 9.0% 100mL, 4.5cm depth
 - 18.0% 100mL, 4.5cm depth
 - 36.0% 100mL, 4.5cm depth
 - 72.0% 100mL, 4.5cm depth
- xi. Number of replicated per concentration
 - Test 1: na
 - Tests 2 & 3: 3 replicates per concentration
- xii. Number of organisms per test chamber
 - Test 1: na
 - Tests 2 & 3: 5 female branches + 2 male branches per chamber

xiii.Measurements of pH, temperature, dissolved oxygen, and salinity of sample before use

- Test 1: na
- Test 2: pH 7.78, T 22.0 °C, DO 7.9mg/L, salinity 4ppt
- Test 3: pH 7.58, T 23.0 °C, DO 8.0mg/L, salinity 5ppt

xiv.**Measurements of pH, temperature, dissolved oxygen, and salinity of test solution and controls at 0hr, 48hr, and the beginning and end of recovery period

- Test 1: na
- Test 2:

Concentration (% v/v)	7	Гетрега	ture (°C)	Disse	olved Ox	ygen (n	ng/L)		рН (рН	I units)			Salinit	y (ppt)	
	Expo	sure	Reco	very	Expo	osure	Reco	very	Expo	sure	Reco	very	Expo	sure	Reco	very
	0	48	0	end	0	48	0	end	0	48	0	end	0	48	0	end
Control-NSW ¹	22	23	22	23	7.9	7.9	8.0	7.9	8.20	8.35	8.33	8.22	30	30	30	30
Control-brine	22	23	22	23	7.9	7.9	8.0	7.9	7.93	8.20	8.34	8.21	30	30	30	30
A 70	22	23	22	23	7.9	7.9	8.0	7.9	7.80	8.40	8.34	8.26	30	30	30	30
C 17.5	22	23	22	23	7.9	7.9	8.0	7.9	8.15	8.31	8.34	8.36	30	30	30	30
E 4.38	22	23	22	23	7.9	7.9	8.0	7.9	8.19	8.36	8.34	8.21	30	30	30	30

¹NSW = natural seawater

• Test 3:

Concentration (% v/v)		Tempera	ture (°C	()	Diss	olved Ox	ygen (n	ıg/L)		рН (рН	I units)			Salinit	y (ppt)	
	Expo	osure	Reco	overy	Expo	sure	Reco	overy	Expo	osure	Reco	overy	Expo	osure	Reco	overy
	0	48	0	end	0	48	0	end	0	48	0	end	0	48	0	end
Control-NSW ¹	23	23	23	23	7.9	7.9	8.0	7.9	8.34	8.61	8.22	8.37	30	30	30	30
Control-brine	23	23	23	23	7.9	7.9	8.0	7.9	7.92	8.52	8.22	8.42	30	30	30	30
A 70	23	23	23	23	8.0	7.9	8.0	7.9	7.83	8.52	8.22	8.44	30	30	30	30
C 17.5	23	23	23	23	7.9	7.9	8.0	7.9	8.21	8.29	8.21	8.41	30	30	30	30
E 4.38	23	23	23	23	7.9	7.9	8.0	7.9	8.32	8.42	8.22	8.39	30	30	30	30

¹NSW = natural seawater

Results

- i. Number and % mortality of female plants after recovery in each test solution
 - Totals from all 3 replicates are presented:
 - Test 1: na
 - Test 2:

Control (0%): 0 (0%) mortality
Salinity Control (0%): 0 (0%) mortality
4.38%: 0 (0%) mortality
8.75%: 0 (0%) mortality

8.73%.
17.5%:
0 (0%) mortality
35.0%:
0 (0%) mortality

• 70.0%: 0 (0%) mortality

• Test 3:

• Control (0%): 0 (0%) mortality

• Salinity Control (0%): 0 (0%) mortality

• 4.5%: 0 (0%) mortality

9.0%: 0 (0%) mortality
18.0%: 0 (0%) mortality

18.0%: 0 (0%) mortality
36.0%: 0 (0%) mortality

• 72.0%: 0 (0%) mortality

- ii. **Mean number of cystocarps per plant in each replicate of each test concentration
 - Test 1: na
 - Test 2: (Replicates are A, B, and C)

• Control (0%): A) 89.6, B) 89.8, C) 96.8

• Salinity Control (0%): A) 86.2, B) 93.4, C) 98.0

(Champia)

•	4.38%:	A) 114.8, B) 101.0, C) 99.6
•	8.75%:	A) 108.4, B) 105.8, C) 101.0
•	17.5%:	A) 81.6, B) 90.2, C) 100.2
•	35.0%:	A) 54.4, B) 64.2, C) 67.0
•	70.0%:	A) 9.6, B) 9.0, C) 21.4

• Test 3: (Replicates are A, B, and C)

Control (0%): A) 55.2, B) 62.0, C) 57.6
Salinity Control (0%): A) 50.8, B) 70.4, C) 55.6
4.5%: A) 61.4, B) 50.8, C) 67.0
9.0%: A) 63.0, B) 56.0, C) 61.0
18.0%: A) 68.6, B) 53.2, C) 61.0
36.0%: A) 53.8, B) 48.6, C) 51.6
72.0%: A) 31.2, B) 36.4, C) 11.2

iii. **Estimate of IC₂₅ (95% CL) for cystocarp development

- Test 1: na
- Test 2: IC_{25} concentration = 26.6 (20.8 31.5)% effluent v/v
- Test 3: IC_{25} concentration = 45.3 (36.3 58.1)% effluent v/v
 - Quantal statistic method was linear interpolation (200 resamples) determined using ToxCalc v5.0.23
- iv. Current reference toxicity tests (95% CL) for IC₅₀ for cystocarp development
 - Reference toxicity tests for Toxicant: Sodium Dodecyl Sulfate
 - Test 1: na
 - Test 2: Test conducted on July 27, 2004, within 30 days of effluent test
 - Reference toxicant test was conducted under the same experimental conditions as the effluent test
 - IC₅₀ cystocarp development = 1.48mg/L SDS, 95% CL = (1.38 1.62) mg/L
 - Reference toxicity warning limits 1.40 (+/- 2SD) for IC₅₀ for cystocarp development
 - Test 3: Test conducted on July 27, 2004, within 30 days of effluent test
 - Reference toxicant test was conducted under the same experimental conditions as the effluent test
 - IC_{50} cystocarp development = 1.48mg/L SDS, 95% CL = (1.38 1.62) mg/L
 - Reference toxicity warning limits 1.40 (+/- 2SD) for IC₅₀ for cystocarp development
- v. Reference toxicant warning limits (+/- 2SD) for IC₅₀ for cystocarp development
 - Reference toxicity tests for Toxicant: Sodium Dodecyl Sulfate
 - Test 1: na
 - Test 2: 1.40 (1.6-1.70) mg/L SDS
 - Test 3: 1.40 (1.6-1.70) mg/L SDS

Note that Pages 1.1-1.4, 2.1-2.4, 3.1-3.4 are included in the hardcopy paper report only. This data can also be found in Appendix E. Note that the champia test lab reports are only included in the hardcopy paper report, not in this pdf.

APPENDIX D

Acute Toxicity Testing Laboratory Reports

Our File: Work Order: 09-0302-54.00 0400304/307

Cheryl Mackintosh Azimuth Consulting Group 218 – 2902 West Broadway Vancouver, BC V6K 2G8

Dear Ms. Mackintosh:

RE: Acute Toxicity Test Results for a sample collected July 7, 2004

We are pleased to provide you with the results of the toxicity tests performed on the sample identified as G-Creek acute 070704 (received July 10, 2004). The sample was tested with the 96-h rainbow trout LC50 test and the 48-h *Daphnia magna* LC50 test. Testing was performed according to the Environment Canada protocols for conducting acute toxicity tests using rainbow trout (EPS 1/RM/13, Second Edition, 2000) and *D. magna* (EPS 1/RM/14, Second Edition, 2000). An independent EVS QA/QC review confirmed that all acceptability criteria specified by the protocols were met. The results of these tests are summarized from the appended data and are presented in Table 1.

Table 1. Toxicity Test Results.

· · · · · ·		96-h Rainbow Trout	48-h Daphnia magna
Sample ID	Sample Date (Time h)	LC50 (95% CL) (% v/v)	LC50 (95% CL) (% v/v)
G-Creek acute 070704	7-July-04 (2200h)	>100	>100

Should you have any questions or comments regarding this report, please do not hesitate to contact the undersigned at 604-986-4331.

Sincerely,

Robert Harrison, B.Sc. Hons.

Assistant Bioassay Test Supervisor-Fish Team

rharrison@evsenvironment.com

Verified By:

QA/QC Committee:

Armando Tang, B.Sc. Cathy McPherson, B.Sc.

Julianna Kalocai, M.Sc.

John Wilcockson, M.Sc.

195 Pemberton Ave.

North Vancouver, BC

Canada V7P 2R4

Tel: 604.986.4331

Fax: 604.662.8548

www.evsenvironment.com

info@evsenvironment.com

EVS ENVIRONMENT CONSULTANTS RAINBOW TROUT ACUTE TOXICITY TEST DATA SUMMARY

Client (Polaris) Azimuth	EVS Analysts REH, AWD
EVS Project No. 09-0302-54	Test Type 964 LCS0
EVS Work Order No. 0400304	Test Initiation Date July 12/04 (a) 1445
SAMPLE	
	Creek acute 070704
Amount Received 2 × 10L	<u>.</u>
Date Collected July 7 /64	_
Date Received	· -
Other	-
DILUTION/CONTROL WATER (initial water quality)	TEST SPECIES INFORMATION
Fresh Water (dechlorinated)	Source Fraser Valley
Temperature (°C) 15.0	Collection Date/Batch OS 26 04
pH 7.4	Control Fish Size (mean, SD and range measured at end of test)
Dissolved Oxygen (mg/L)	Date Measured Suly 16 104
Conductivity (µS/cm) 37	Fork Length (mm) 34±2 (29-37)
Hardness (mg/L as CaCO ₃) 2	Wet Weight (g) 0.3910:09 (0.72-0.54)
Alkalinity (mg/L as CaCO ₃) 2	Reference Toxicant SDS
Other	Current Reference Toxicant Result
	Reference Toxicant Test Date
•	Duration of Acclimation (days) 26
•	96-h LC50 (and 95% CL) 23 (20 and 25) ug/LS
	Reference Toxicant Warning Limits (mean ± 2SD) and CV 29±12 ug LSDS CU = 21%
TEST CONDITIONS	$\mathcal{O}_{\mathbb{R}^n}$
Dissolved Oxygen Range (mg/L) 9.3 - (0.	
Temperature Range (°C) 4.0 - 15.0	
pH Range 7.0 - 8.3	
Conductivity Range (µS/cm) 37 - 11843	
Aeration Provided? (give rate) 6.5t/nL/n.h/L	
Photoperiod (L:D h)	•
No. Organisms/Volume 10/10L	
Loading Density (g/L)	
Acclimation Before Testing (days) 47	•
Mortality In Previous Week of Acclimation (%)	,
Other	
TEST RESULTS The 96h LC50	is estimated at > 100% (U/U)
Data Verified By	Date Verified Aprost 5, 2004

EVS ENVIRONMENT CONSULTANTS RAINBOW TROUT ACUTE TOXICITY TEST DATA

WHOLE SAMPLE WATER QUALITY

	Initial	pH Adjustment ¹	After 30-min Pre-aeration
Temp. (°C)	2		μl
Hq	8.1		2.
DO (mg/L)	10.0		1, 2)
Cond. (µS/cm)	11730	/	1(77,0
. Document pH adjustment procedure (if used) under "Comments"	ent procedure (if u	ised) under "Commen	ts".

80

Total Pre-Aeration Time

Polaris	09-0302-54	040030d	Trout Batch No. and 7-d Acclimation Mortality 052664 07.	10/101	CT - Creek acing 070704	July 7/04	July 12 104 @ 1445)
Client A. M.	roject	EVS Work Order No.	Trout Batch No. and 7-d Ac	No. Fish/Volume	Sample ID	Date/Time Collected	Test Initiation Date/Time	
							mim	

Concentration		Nun :	Number of Survivors (1 to 96 hours)	Survivor nours)	s			Dissolve	ed Oxyg	Dissolved Oxygen (mg/L)	(S)		Temp	Temperature (°C)	()			Ω,	Hd		Cond (µS	Conductivity (µS/cm)
(c/n) %	1 2	4	24	48	72	96	0	24	48	72	96	0	24	48	72	96	0	24 4	48 72	96 2	0	96
Contral			10	0/0	12	01), 6 J	9.5	98	26 0 45 7 47 71 21 0.21 0.21 0.21 8,8 8,9 2.9 1.01	600	150	(0.5	6.6	1 8	7	イナ	77	0 7,	77	7.27	43
6,23			ر ار	01 01 01	01	10	16,1	9,5	9	5, 5, 03, 03, 03, 18, 6, 2, 2, 9, 2, 9, 1,0)	8.8	(<i0< td=""><td>0.5</td><td>60</td><td>/ 0</td><td>1</td><td>1.6.7</td><td>76737-1</td><td>7</td><td>75</td><td>cto 058 94 1.4</td><td>540</td></i0<>	0.5	60	/ 0	1	1.6.7	76737-1	7	75	cto 058 94 1.4	540
12.5			10	0)	(0)	10	0,	10,1 9.6 9.3 9.7	6.3		8,8	14:5	2.2	10,2	, ,	7	87	24 145 150 150 15 15 15 15 15 15 15 15 15 15 15 15 15	3 7	12 7	24 2270 23c	52300
25			01	0)	01	cl	10,1	10,1 9.7 9.8 96	9.6		5,6	148	10.5	10,5	12	7	19 7	32 Sch 25 PS Sc 50 22 St 1841 1.8	37/	4.		3660 370U
80			10	01	6)	(1)	10.	10.1969797	97		99 145 150 150	14.5	105	,, 0,5	,	∞	.0	87	7 7	3	5 8.0 7.8 7.7 78 29 6070 case	6475
100			0	Ò	, 0/	(0)	10.	8.8	9.3	10.1 9.8 9.8 97 9.8 14.0 15.0 14.0	9.9	14.0	15,0	6.0	51	2	∞	\$ 8	7	3	15 8.1 8.3 8.2 A9 8.1 1170 11840	C#811 (
																				_		
Technician Initials			1/8/1	124 CON	Ł	۷	委	feet	PER	12cH feet 9ear pr 1		4534	芸	X	_ <u> </u>	R	以を	lest out pax ~ ~ Rat peak peak	2 \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	L	REST	۸
WQ Instruments Used: Sample Description Comments	Temperature Colibrated 49. Theoremeter PH cloudy whitelgrey	cloudy	Sreted t	49 Then	19 Theyrometer	_ Hq _	THE STATE OF THE S	I-A-030322	28036	7	DO		П-А-З	4.8			Condu	Conductivity	7	T - A	II - A- 030306	90

Date Verified

Data Verified By

ROA POR

Test Set Up By

August 26, 2002

Forms/Lab/Datashects/Trout/ACUTE.DOC

EVS ENVIRONMENT CONSULTANTS 48-h Daphnia magna TOXICITY TEST DATA SUMMARY

Client Azimuth (Pokas)	EVS Analysts AKN JRY
EVS Project No. 09 - 0302 - 54	Test Type 48hr - LC50
EVS Work Order No. 0400 307	Test Initiation Date July 11, 2004
	3 11 23
SAMPLE INFORMATION	
Identification G-Creek. 0 76 to	<i>t</i>
Amount Received 1 x 2L subsampled.	from axaola evs
Date Collected July 7, 2004	
Date Received 10 July 2004	
Temperature (°C) 22.0→200	
pH 79778	pH adjustment details: None.
Dissolved Oxygen (mg/L) 11.4 9.1	Pre-aeration rate and duration: Ocerated 8min
Conductivity (µmhos/cm) 11850	3:771
Hardness (mg/L as CaCO ₃)	
Alkalinity (mg/L as CaCO ₃)	
Ammonia (mg/L N)	
Chlorine (mg/L Cl)	
DILUTION/CONTROL WATER (initial water quality)	TEST SPECIES INFORMATION
Water Type Mode (ately Hard H20 (July 73)	Broodstock Culture ID (in-house culture) June 1519+13
Temperature (°C)	Age (on Day 0)
pH 9.0	Days to First Brood
Dissolved Oxygen (mg/L)	Avg. Young/Brood (after 1st brood) 27.5
Conductivity (μ S/cm) 357	
Hardness (mg/L as CaCO ₃) 9%	% Mortality in 7 d Before Test 4.84. 9.57. Reference Toxicant
Alkalinity (mg/L as CaCO ₃)	Current Reference Toxicant Result
Other	
Other	Reference Toxicant Test Date July 6 2004 48-h LC50 and 95% CLY 83 403 - 78V512
TEGE CONDITIONS	
TEST CONDITIONS Town protons Remark (9C)	Reference Toxicant Warning Limits (mean ± 2SD) and CV 462 ± 315 /3/C 7 /. (V=34)
Temperature Range (°C)	460-313 1-1C AV 1. Ch=24
pH Range	
Dissolved Oxygen Range (mg/L) 8.6 – 9.1	
Conductivity Range (μ S/cm) 357 - 11850)
Photoperiod (L:D h)	
No. Organisms/Volume 10/2000	
Other	
	0 for G-Creek 070704
15 > 100 % (V/V).	
0 1 -	1 1 - 5 - 511
Data Verified By Armedo Tox	Date Verified
X	~ '

EVS ENVIRONMENT CONSULTANTS 48-h Daphnia magna ACUTE TOXICITY TEST DATA

Client AZIM					21				ple ID						1070	>4	-
EVS Project No.								Date	Collec	ted <u></u>	<u>ru</u>	4	7,5	1 th (<u>t</u>	211	<u>700</u>
EVS Work Order No Daphnid Broodstock					<u>5 n</u>			Test No. (Initiati Organi	on Dat	e/Time	; <u>g</u>	16 ($\frac{1000}{200}$	040	<u>:. 14</u>	-
										••				<u> </u>	1		- 1
Concentration			er of S 1 to 48	urvivo h)	rs	Disso	olved O (mg/L)		Tem	perature	e (°C)		pН			ctivity os/cm)	
% (u/s)	1	2	4	24	48	0	24	48	0	24	48	0	24	48	0	48	
CONTROL				10	(0	9.1	8.8	8.6	<u>w</u> 0	21.0	21.5	8.0	7.7	7,7	357	357	
						11 (27 6) 15 (34 5)							e e e e e e e e e e e e e e e e e e e			55.20	
									and the								
Co.25				10	10	9.1	8.8	8.7	20.0	21.0	21.0	8.0	7.8	7.8	1231	1206	
															11000		
								Sec.		4 5 5 6		44.			100	ya je	
125		_		10	10	a (84	\$\alpha\cdots	200 N	つしつ		<u>ප</u> ()	70	50	2020	2~~	
12.5				110	10	- -	0.0	0.0	70.0			0.0	<i>T.</i> 1	7. [2020		
,,,-																	
)												
25				10	(0)	9.1	8.8	8,8	20.0	21.0	D1,0	7.9	7.9	N_0	3630	3600	þ
								1000					1.000				
50				10	10	9.1	8.8	8.8	200	21.0	N.0	7.9	8.0	8.1	6370	62	10
					<u> </u>	4 7	135.5								CIT S		
									V			7 17 M			W.		
100				10	7	91	00	88	<i>70</i> n	2LO	ည/ ၇	10	2.7	87	1185D	11/6	(1)
100					 		0.0	0,0		0110		1.0	3.0		11030	$\Gamma \varphi$	
						100		100		Q.							
				- 40	- 0				164			A		•			
Technician Initials				orre	517	AW	821	M	KW.	pm,	m	<u> </u> /~	Cro	m		M	
Sample Description		Cle	ear	. ((olou	мe	SS										
Sample Description WQ Instruments Use	ed: 7	Гетр.	Do	CMA	ed H	2 p	H II.	Acor	2502	DO	II-A	-011	201 C	ond. 2	1-A-	9909	01
Comments																	-
Test Set Up By	} \	10			Data V	Verific	ad Pv	1	رام م	1 -	r	ate V	orified		qust	E 11	~ ~~~
1001 Bet Op By 1	11	<u> </u>			Data	v CIIIIC	u Dy	(MIN	ned	10 (Q		aic v (, iiiicu	400	1001	5,20	<i>~~</i>
											/ \						

Shipping Date: Test(s) Requested CHAIN-OF-CUSTODY/TEST REQUEST FORM Ship to: Attn: Number of Sample Containers
Volume of Sample Container Client Contact: (Sruce 1) Sunce (1) 427-8405 547.734 Phone: 250 250 Sampled by: Fax: AZIMUTH (POLMEUS) Fech Committo B *000 K. X. Ler Tey M Z S S. Client Name: Address:

Tel: (604) 986-4331 Fax: (604) 662-8548 www.evsenvironment.com EVS environment North Vancouver, BC Consultants Canada V7P 2R4

(e.g. preserved, saltwater, freshwater, may contain sewage)

7796

0.577

Spoo

Sample Container Type by

(i.e., 1 x 20 L)

G = grab; C = composite Sample Collection Method

Material Safety Data Sheet Attached? (✔)

Type of Each Sample

Sample Identification

(24-h clock)

Collection Date (DD/MMM/YYYY)

Time

Sample Notes

OT July 100	00:22	07/4/20 6-60 - 070704	14						
1002/1m/18) (22:00)	87/ 1/1700 22:00 G- Ged -aute -070704	704 E	J	702 * 2	×	×		
Pool () 1004	2 99:22	07/11/1004 72:00 G. Creck_sub_ 070764	0764 E	Ŋ	702×5	×			
r	(rei ⁱ⁾								
PO/Reference No.:					Comments/Instructions:				
Project Title:									Constitution of the Consti
Results Needed By:									
1) Released by:		Date:	2) Released by:		Date:		Shar	ded area to be com	Shaded area to be completed by EVS Laboratory upon sample receipt
Company:		Time:	Company:		Time:		EVS	Project No.	09-0302-54
Courier name:			Courier name:				EVS S	Work Order (WO)	000302/303/304/304
1) Received: JGK	X	Date: 10 Jul Oy 2) Received by:	2) Received by:		Date:		Conc	lition Upon Receipt	Condition Upon Receipt GOOD FOH TOSM. RBT IMM.
company: EUS	72	Time: 1425	Company:		Time:		Rece	Receipt Sample Temp. (C) 11.6°	c) #-6
1 For composite efflu	lent or water sam	For composite effluent or water samples, the sample collection date/time is the end of the compositing period	o e is the end of the co	mpositing	eriod.			Distribut	Distribution of copies: White, vellow - accompany the shipment

For composite effluent or water samples, the sample collection date/time is the end of the compositing period.

Receiving Water (RW); Effluent (E); Elutriate (ELU); Sediment (SED); Chemical (CHEM); Stormwater (SW); Other (Please Specify)
Collapsible Carboy (CC); Glass Jar (GJ); Jerry Can (JC); Plastic HDPE (P); Other (Please Specify)
Please note any conditions the lab should be aware of for safety and storage concerns

Distribution of copies:

White, yellow - accompany the shipment Pink - kept by consignor (e.g., shipper) Yellow - kept by consignee (e.g., receiver) White - returned to consignor by consignee

Revision Date: March 6, 2004

Our File: Work Order: 09-0302-54.00 0400342,348

Cheryl Mackintosh Azimuth Consulting Group 218 – 2902 West Broadway Vancouver, BC V6K 2G8

Dear Ms. Mackintosh:

RE: Acute Toxicity Test Results for a sample collected July 27, 2004

We are pleased to provide you with the results of the toxicity tests performed on the sample identified as G-Creek acute 270704 (received July 27, 2004). The sample was tested with the 96-h rainbow trout LC50 test and the 48-h Daphnia magna LC50 test. Testing was performed according to the Environment Canada protocols for conducting acute toxicity tests using rainbow trout (EPS 1/RM/13, Second Edition, 2000) and D. magna (EPS 1/RM/14, Second Edition, 2000). An independent EVS QA/QC review confirmed that all acceptability criteria specified by the protocols were met. The results of these tests are summarized from the appended data and are presented in Table 1.

Table 1. Toxicity Test Results.

		96-h Rainbow Trout	48-h <i>Daphnia magna</i>
Sample ID	Sample Date (Time h)	LC50 (95% CL) (% v/v)	LC50 (95% CL) (% v/v)
G-Creek acute 270704	27-July-04 (2130h)	>100	>100

Should you have any questions or comments regarding this report, please do not hesitate to contact the undersigned at 604-986-4331.

Sincerely.

Rachel DeWynter, B.Sc. Algal Bioassay Supervisor

rdewynter@evsenvironment.com

Canada V7P 2R4

195 Pemberton Ave.

North Vancouver, BC

Verified By:

Armando Tang, B.Sc. Cathy McPherson, B.Sc. Julianna Kalocai, M.Sc. John Wilcockson, M.Sc.

Tel: 604.986.4331

Fax: 604.662.8548

www.evsenvironment.com

info@evsenvironment.com

EVS ENVIRONMENT CONSULTANTS 48-h Daphnia magna TOXICITY TEST DATA SUMMARY

Client Azimuth-(Pulacis)	EVS Analysts JZY AWD
EVS Project No. 09-0302-54.01	Test Type 480 LC50
EVS Work Order No. 0400 348	Test Initiation Date July 20,2004
	337
SAMPLE INFORMATION	
Identification G-Creek 276704	+
Amount Received 3 P × 20L	
Date Collected July 27, 2004	
Date Received July 30, 2004	
Temperature (°C)	
pH 7.858.0	pH adjustment details:
Dissolved Oxygen (mg/L) 12.1 98.8	OPre-aeration rate and duration: 10 Moutes
Conductivity (µmhos/cm) 5020	gentle aeration
Hardness (mg/L as CaCO ₃) 590	
Alkalinity (mg/L as CaCO ₃)	
Ammonia (mg/L N)	
Chlorine (mg/L Cl)	
DILUTION/CONTROL WATER (initial water quality)	TEST SPECIES INFORMATION
Water Type Moderaldy Hard Water (20	Broodstock Culture ID (in-house culture)
Temperature (°C)	Age (on Day 0) COHMIS
Hq Hq	Days to First Brood 7
Dissolved Oxygen (mg/L) 9.1	Avg. Young/Brood (after 1st brood)
Conductivity (μ S/cm)363	% Mortality in 7 d Before Test
Hardness (mg/L as CaCO ₃)	Reference Toxicant 200
Alkalinity (mg/L as CaCO ₃)	Current Reference Toxicant Result
Other	Reference Toxicant Test Date 27 - 511 -04
	48-h LC50 and 95% CL 633 (578-307) w/LZ
TEST CONDITIONS	Reference Toxicant Warning Limits (mean ± 2SD) and CV
Temperature Range (°C) $20.0 - 21.5$	463 * 315 mg/ 2n 7. (1=3.
pH Range $7.7 - 8.0$,
Dissolved Oxygen Range (mg/L) 86-91	
Conductivity Range (μ S/cm) 363 - 505	20
Photoperiod (L:D h)	
No. Organisms/Volume 10/2001	
Other —	
TEST RESULTS The 43h L	C50 Of G-Creek 270704
15 > 100%	(v/r)
Data Verified By	Date Verified $\int c_{11} f \cdot f \circ f = \int c_{12} f \cdot f \circ f = \int c_{13} f \cdot f \circ f \circ f = \int c_{13} f \cdot f \circ f \circ f \circ f = \int c_{13} f \cdot f \circ f \circ$

EVS ENVIRONMENT CONSULTANTS 48-h Daphnia magna ACUTE TOXICITY TEST DATA

Client A2m							_	Sam	ple ID	G.	-Ca	zek	_	70	704	<u> </u>
EVS Project No.						01	-	Date	Collec	cted _	Sul	4) 77	37	Y Y X	,
EVS Work Order No Daphnid Broodstock		, ,					-	Test No.	Initiat Organi	ion Dat	te/Time	ه <u>کار</u>	lly 130	2 0	<u>200</u>	421
	Date		ישני	7	<u> </u>	,	-	110.	T	.31113/ V	orunic	<u> </u>	/ <i>O</i> L		<u> </u>	
Concentration	N		r of Su to 48		ors	Disse	olved O (mg/L)		Tem	peratur	e (°C)		pН			os/cm)
7.(VIV)	1	2	4	24	48	0	24	48	0	24	48	0	24	48	0	48
Control				10	10	9.1	8.9	5.7	90,0	u o	21.3	7.8	847	7.9	363	374
										2.44						
							La et la	i i i i i i i i i i i i i i i i i i i		1 (4)(10)	g salah dari				e e e e e e	
6.25				10	(0	9.0	8.8	8.6	20.5	45	2/0	78	5736	78	88	680
							in the			g - pr. g		2471	3 <u>114</u>	<u>Carrier</u>		175 1860 1860 1860 1860 1860 1860 1860 1860
													23 E			
12.5				12	/2	89	<u>د</u> ک	J A	21.0	u_{\sim}	27.0	D 9	4 7	ጌታ	790	784
			-		1				7							- (
							2.12					APP I			in in the	ig gendenti
フー		\dashv				U Ол	2 5	· •		epen en	1	701	7	7.		
45				19	(s	0.4	<i>Y Y</i>	1.4	ن.اح	46	<i>61,2</i> 88888	7.1	<u> </u>	+1	<i>159</i> 2	1386
								فعندا والآلال				i en salati	146			الله الأفاد المالية
										24.5	a de la companya de					
50		+		(D	10	89	} /	F.F	21.0	4 0	21.0	7.9	H	78	275 0	269c
	+	+						illenii en	100				5.8	1,212		
										10000		100			12.3	2.2
100			(n	10	8.8	トナ	86	ə <i>1.</i> S	21,5	2/0	8.0	I	<u></u> አት		45%
		\perp				340	unionale) Vid. 45			1 1 1 2	<u></u>	45			- A 7	<u> </u>
		-			and the second							annimian Regarden	i i i i i i i i i i i i i i i i i i i	granija. Prancja		
Technician Initials				~	~ (רית	۲	~	\mathcal{D}	سم	^	m_1	~	, 4	27	~
Sample Description WQ Instruments Used Comments	<u>C</u> l	<u>CC</u>	Calck Hg T	CO)	Serve OU	rlo:	SS 12-1	A-03	X SQ3	DO <u>7</u>	⊋-A-	0112	OI Co	ond. <u>7</u>	?-A-9	79090(
Test Set Up By	4				ata V	erifie	i By _		-76.6	701	Da	ate Ver	ified		4pt	1/20

EVS ENVIRONMENT CONSULTANTS RAINBOW TROUT ACUTE TOXICITY TEST DATA SUMMARY

Client Azimuth EVS Project No. 09 - 0302 - 54 EVS Work Order No. 0400340 342 ESS	EVS Analysts Test Type 966 LC 50 Test Initiation Date Aug 1 104
Amount Received 3+70L Date Collected July 27 four Date Received July 30/04	acute 270704
Other DILUTION/CONTROL WATER (initial water quality) Fresh Water (dechlorinated) Temperature (°C) pH Dissolved Oxygen (mg/L) Conductivity (\(\mu\)S/cm) Hardness (mg/L as CaCO ₃) Alkalinity (mg/L as CaCO ₃) Other	TEST SPECIES INFORMATION Source Fraser Valley Collection Date/Batch 670504 Control Fish Size (mean, SD and range measured at end of test) Date Measured Aug 5/64 Fork Length (mm) 33 ± 2 (3(-35)) Wet Weight (g) 6.54 ± 0.04 (0.24-0.42) Reference Toxicant Current Reference Toxicant Result Reference Toxicant Test Date July 23/64 Duration of Acclimation (days)
Aeration Provided? (give rate) 6.5 ML M. N L Photoperiod (L:D h) 16.8 No. Organisms/Volume 10 / 10 L Loading Density (g/L) 0.34 Acclimation Before Testing (days) 27 Mortality In Previous Week of Acclimation (%) 0.725 Other	96-h LC50 (and 95% CL) 2 (17 and 26) Reference Toxicant Warning Limits (mean ± 2SD) and CV 29±12 mg/L SDS CU = 21% 870
Data Verified By	Date Verified Schit (0/04

EVS ENVIRONMENT CONSULTANTS RAINBOW TROUT ACUTE TOXICITY TEST DATA

WHOLE SAMPLE WATER QUALITY

2	Initial	pH Adjustment	After 30-min Pre-aeration
Temp. (°C).	7.		*1
pH	346		4
DO (mg/L)	10.1		1. c/
Cond. (µS/cm)	ASh.		4830
1. Document pH adjustment procedure (if used) under "Comments".	ent procedure (if n	ised) under "Commen	

Polario Azineth	15-2020-60	04002462342	Frout Batch No. and 7-d Acclimation Mortality $070504/0.25\%$	701/01	(5 - CALOR	AL 2704 EAST 2130	At 1-04/2 1030	
Client	EVS Project No.	EVS Work Order No.	Trout Batch No. and 7-d	No. Fish/Volume	Sample ID	Date/Time Collected	min Test Initiation Date/Time	

ი ი

Total Pre-Aeration Time

	Number of Survivors (1 to 96 hours)	rivors :s)			Dissolve	Dissolved Oxygen (mg/L)	n (mg/L	~		Temp	Temperature (°C)	(,0)				Hd		<u> </u>	Conductivity
1 (0/0) 1	2 4 24	48 72	96	0	24	48	72	96	0	24	48	72	96	0	24	48	72	96	96 0
Contral	۵/ ۵/	0/ 57	2	e `	50	۶٬۶	63	68	かし		Σ	*) - - -	*	66	¥	44	72 7	72 73 30	7
7.9	10 12	(3)	2	3	36	ھ ۔ ثن	4	6.1	7	/خ	Ź	<u>,</u>	۷.	٦.	74	25	ナガセ	25 2 2 t st	3,8 3,
125	(2)	ن ن	5	12.3	7'5	9.6	63	56	<u></u>	, Y	<u></u>		<u> </u>	工工		7	24 54	· · · · ·	oht cob
25	10 10	10 13	0	101	4	47 96		9,6			\$1 +7	1 1/2	· *	25/25	7.5	Q	7,7		301 061
50	6	10	0	16.1	4.4	3 %	83	4.5		14	19	1 51		25 84 84 0.2 st	5.0	- 67 C	4		1,000
, 00)	1 01 01	0 /0	ó	9)	*	er 4	2,8	43	2	7	11 11	, %	4/	3 44	i co	3.2. 8	8.3 5.1		4800 1560
		-· -		1			_		}				<u></u>						
Technician Initials		, Y	1	-	1			.	 ફ		بر			٠.	<u>۔</u> د	_ \	{	7	
WQ Instruments Used: Temper	Temperature Colibrated 49 Themsonder, pH	Themometer	. pH	17	A-0.	I-A-030332	7	000		II-A-3	5 - 5			Condu	Conductivity		W - 17	II - A- 030306	306

Forms/Lab/Datasheets/Trout/ACUTE.DOC

Test Set Up By

August 26, 2002

10/0) 1747

Date Verified

Data Verified By

CHAIN-UF-CUSTUDY/TEST HEQUEST FORM

Ship to: Mackintosh Please see instructions for completion on back. Shaded areas to be completed by EVS Laboratory upon sample receipt inaley chery 226 SOU! a Client Contact Name: 68 るの Sampled By: Address: 12 muth Consithing Group. Phone. Fax: Teck Cominico (Polaris) 218-2902 West Broadway B.C. Vancourer Client Name:

Sample Identification Sample Identification Sample Continue Sample Collection Sample	Parals froz Paral	Date: Date:
Sample Identification Sample Type of Each Subdiving and ending Sample Sample Sample Sample Sample Sample Sample Sample	1 486	C) Released By:
Sample Identification Sample Food date & Itme stanting and ending Sample Food date & Itme stanting and ending C CREK - Act C 220 CHA 2707 Stample Material Safety Data (V) Poole Identification Water Cooled	2 01 >	Date: 30 JUL OU
Time Sample Identification Site sample record date & time starting and ending 9:30 PM G-Ceek-Sublichal 2707 G-Ceek-Auth 27076	eM ends idma8	B) Received by: AWD
Time (24-h clock)	G-Creek-Sublekal 2707 G-Creek-Aute 22076	Date: (B)
Collection Date (dd/mmm/yy) Eor components For components PO/Reference No. Project Title: Results Needed By		A) Released By: Company:

Œ

www.evsenvironment.com

Shipping Date:

Attu

Tel: 604-986-4331 Fax: 604-662-8548

195 Pemberton Avenue North Vancouver, BC Canada V7P 2R4

Sconsultants

Custody seals used?

Revision Date: Sept. 25, 2000

White, yellow, pink - accompany the shipment Orange - retained by consignor (e.g., shipper) Yellow - retained by consignee (e.g., receiver) Pink - for use as needed White - returned to consignor by consignee Distribution of copies:

ŝ Yes

Shipping containers received secure?

Other. Lock one) Straps 1 (circle o

Tape 2

Yes

Shipping containers secured by:

Courier name. Company:

Ϋ́

ģ Yes

Custody seals intact?

Date: ime:

Сотрапу:

Se.

Š Yes

Custody seals intact?

Shipping containers received secure?

Other

Straps Lock (circle one)

Tape

ë

Custody seals used?

Shipping containers secured by:

Courier name:

Photoepy of engral

A member of the Golder group of companies

09-0302-54.00

0400382,383

Our File:

Work Order:

Golder Associates Ltd.

195 Pemberton Avenue North Vancouver, British Columbia Canada V7P 2R4 Telephone 604-986-4331 Fax 604-662-8548

September 2, 2004

Cheryl Mackintosh Azimuth Consulting Group 218 – 2902 West Broadway Vancouver, BC V6K 2G8

Dear Ms. Mackintosh:

RE: Acute Toxicity Test Results for a sample collected August 24, 2004

We are pleased to provide you with the results of the toxicity tests performed on the sample identified as G-Creek acute 081704 (received August 24, 2004). The sample was tested with the 96-h rainbow trout LC50 test and the 48-h *Daphnia magna* LC50 test. Testing was performed according to the Environment Canada protocols for conducting acute toxicity tests using rainbow trout (EPS 1/RM/13, Second Edition, 2000) and *D. magna* (EPS 1/RM/14, Second Edition, 2000). An independent EVS QA/QC review confirmed that all acceptability criteria specified by the protocols were met. The results of these tests are summarized from the appended data and are presented in Table 1.

Table 1. Toxicity Test Results.

		96-h Rainbow Trout	48-h Daphnia magna
Sample ID	Sample Date (Time h)	LC50 (95% CL) (% v/v)	LC50 (95% CL) (% v/v)
G-Creek acute 081704	24-Aug-04 (1500h)	>100	>100

Should you have any questions or comments regarding this report, please do not hesitate to contact the undersigned at 604-986-4331.

Robert Harrison, B.Sc. Hons.

Assistant Bioassay Test Supervisor-Fish Team

rharrison@evsenvironment.com

Verified By:

Armando Tang, B.Sc. Cathy McPherson, B.Sc. Julianna Kalocai, M.Sc. John Wilcockson, M.Sc.

EVS ENVIRONMENT CONSULTANTS 48-h Daphnia magna TOXICITY TEST DATA SUMMARY

Client Azimuth (Polaris)	EVS Analysts JRY, BLR AND
EVS Project No. 09-1108-01.01	Test Type 48 hr LC50
EVS Work Order No. 0400383	Test Initiation Date August 27,2004
SAMPLE INFORMATION	7
Identification G-CCPEK 0817	-~!
Amount Received 1×2L Subsamples	1 DEVS from 1x20L
Date Collected Prign 15+ 24,2004	a cos (10111 " ass
Date Received Prince 15t 27 2004	
Temperature (°C)	H 11 4 4 14 11 000 G
pH 7.8 98.1	pH adjustment details:
Dissolved Oxygen (mg/L) 10.20 8.7	Pre-aeration rate and duration: Do moutes
Conductivity (μ mhos/cm) 9320	
Hardness (mg/L as CaCO ₃) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
Alkalinity (mg/L as CaCO ₃)	
Ammonia (mg/L N)	
Chlorine (mg/L Cl)	
DILUTION/CONTROL WATER (initial water quality)	TEST SPECIES INFORMATION
Water Type Moderates Hard water (Aug.	Broodstock Culture ID (in-house culture) Pug (A)
Temperature (°C)	Age (on Day 0) < 2Hm
pH $g(Q)$	Days to First Brood
Dissolved Oxygen (mg/L)	Avg. Young/Brood (after 1st brood)
Conductivity (µS/cm)	% Mortality in 7 d Before Test
Hardness (mg/L as CaCO ₃) 84 87	Reference Toxicant 700
Alkalinity (mg/L as CaCO ₃)	Current Reference Toxicant Result
Other	
- Chief	Reference Toxicant Test Date Pugust 24. Zoou
TEGE CONDITIONS	48-h LC50 and 95% CL 536 (438 -656) 456
TEST CONDITIONS	Reference Toxicant Warning Limits (mean ± 2SD) and CV
Temperature Range (°C)	481 = 322 / S/C 2n /. (V=33
pH Range 7.6 - 8.1	
Dissolved Oxygen Range (mg/L) 8.5 -7'.0	
Conductivity Range (μ S/cm) 303 - 9320	
Photoperiod (L:D h)	
No. Organisms/Volume\o/2004_	
Other	
TEST RESULTS THE 48HC LCS	57) of G-Creek 081704
15 2100 / (1/14	1)
Data Verified By	Date Verified $\frac{16}{6}$

EVS ENVIRONMENT CONSULTANTS 48-h Daphnia magna ACUTE TOXICITY TEST DATA

Client AZIMI	<u>rH1</u>	<u> </u>	Pob	كأز	5)			Sam	ple ID	<u>G</u> -(Crea	ek_	08	1170) 4		
EVS Project No() · C	<u> </u>									4004		
EVS Work Order N	o. <u>O</u>	400	<u>3EC</u>	3				Test	Initiati	on Dat	e/Time	Au	21US	<u>計る</u>	7/04	<u>a</u>	11:0
Daphnid Broodstock	k Bat	ch —	Du	y k	A			No.	Organis	sms/Vo	olume	<u> 10</u>	4/5	200	ul		
Concentration			er of S 1 to 48	urvivo h)	rs		lved O: (mg/L)		Temp	perature	e (°C)		pН		Condu (µmho		
1.(V/V)	1	2	4	24	48	0	24	48	0	24	48	0	24	48	0	48	
Control				10	10	9,c	88	87	205	21.0	u5	8,0	7.6	みオ	319	355	K
						4							Para nu				
								grant has be	*								
		ļ				br.					,						
5.25				10	10	4,0	67	87.	20,5	4.5	4.5	8.0	7.6	<u> ጉ</u> ጉ	919	921	
					· .								e e e e e e e e e e e e e e e e e e e				
						Page 1	1794	g - series	4 (1 is					44			
12.5		ļ		10		$a \cap$	በъ		20 <	21/	4/	7 \(\)	つて	7_	154	1600	
(2.0				1 1	19	1.0	77	P A	ر براد د براد	なの	<u>U,></u>	$\rho \cdot \mathcal{O}$	<u>+7.7</u>	T, 8	1377	<u>////</u>	
								4.1									
											100	1.4					
25				10	10	9.0	8.7	86	205	45	4.5	X.D	16	7.f	2720	2680	
						- 1 - 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	K ME TO SE	44.7		V.	11.2						
								it is a second			4.1		(C)				
														100			
50				10	0	8.4	81	8.5	21.0	<i>V</i> 5	U.5	8.0	} }	78	4960	4920	
						40.00			E .			e var der					
	-			<u> </u>		i de la composición dela composición de la composición de la composición de la composición dela composición dela composición dela composición de la composición de la composición dela composición de la composición de la composición dela					a transition				3 (3)		
100)						80	- r . l	r<)) (100	^	Ø 1	<u>~ オ</u>	7 0	932		
100				(0	12	0.7	<u> </u>	019		uo	<i>U</i> , 1	0,1	171	78	7320	29/20	
						0.00	2 6 6 7 6 7	i de	107				# 0.00 m				
						1			914 - 37		240					(A)	
Technician Initials				^	~	M	^	<i>—</i>	\mathcal{M}	~	~ (m	~	љ (22		
	_	í	_	_ 1		1	_	L							<u> </u>	<u>r</u>	ı
Sample Description			771-1			05	2										
WQ Instruments Us	ed:]	Гетр.	Tha	May	note	<i>p</i>	н <i>Д-</i> 7	A-0	905O	DO7	<u> I-A -</u>	-01/2	<u>ој</u> с	ond. <u>Z</u>	I-A -	990	102
Comments								-	.		.						
Test Sat IIn D.	0 \	,			Do4- 3		4 D		\bigcap	PA.	1 -	\4_ T7				1 /0	1
Test Set Up By	<u>~7</u>			<u> </u>	Data '	Verifie	чву_		7	h	4	ate Ve	rified		100. (6/04	•

EVS ENVIRONMENT CONSULTANTS RAINBOW TROUT ACUTE TOXICITY TEST DATA SUMMARY

Reference Toxicant Warning Limits (mean \pm 2SD) and CV 29 \pm 13 my LSDS CO 220% TEST CONDITIONS Dissolved Oxygen Range (mg/L) 9(1-10) Temperature Range (°C) 5 earl pH Range 7(2-7) 9 Conductivity Range (μ S/cm) 46 7533 Aeration Provided? (give rate) 6.5 \pm 1 mL/m/n Photoperiod (L:D h) 6 8 No. Organisms/Volume 10 112L Loading Density (g/L) 0.338 Acclimation Before Testing (days) 30 Mortality In Previous Week of Acclimation (%) 0 Other 0	Client Azimuth (Polaris)	EVS Analysts AND RETA
SAMPLE Identification Amount Received Amount Received Act 27/04 Other DILUTION/CONTROL WATER (initial water quality) Fresh Water (dechlorinated) Temperature (°C) Dissolved Oxygen (mg/L) Conductivity (µS/cm) Alkalimity (mg/L as CaCO ₃) Other TEST CONDITIONS Dissolved Oxygen Range (mg/L) Other TEST CONDITIONS Dissolved Oxygen Range (mg/L) Conductivity (µS/cm) Alkalimity (mg/L as CaCO ₃) Conductivity (µS/cm) Conductivit	EVS Project No. 09-0307-54	Test Type 9/2-h LCSO
Identification		Test Initiation Date August 27/09 6/195
Amount Received Date Collected Date Collected Date Collected Date Collected Date Received Other DILUTION/CONTROL WATER (initial water quality) Fresh Water (dechlorinated) Source Collection Date/Batch Date Measured Collection Date/Batch Date Measured Date Date Measured Date Measur	SAMPLE	
Date Collected Date Received Other DILUTION/CONTROL WATER (initial water quality) Fresh Water (dechlorinated) Temperature (°C) Source Source Collection Date/Batch D 7.94 Control Fish Size (mean, SD and range measured at end of test) Date Measured Measured Aug 2 094 Fork Length (mm) D.40 + 2.02 (0.38 - 0.94) Wet Weight (g) 0.45 + 0.10 (0.31 - 0.6) Reference Toxicant Test Date Duration of Acclimation (days) 96-h LC50 (and 95% CL) Temperature Range (°C) Temperature Range (°C) Seat PH Range T.Z 7.8 9 Conductivity Range (µS/cm) 46 - 7 5 3 3 Aeration Provided? (give rate) Conductivity Range (µS/cm) 16 - 7 5 3 3 Aeration Provided? (give rate) Conductivity Range (µS/cm) 16 - 7 5 3 3 Aeration Provided? (give rate) Conductivity Range (µS/cm) 16 - 7 5 3 3 Aeration Provided? (give rate) Conductivity Range (µS/cm) Conducti	Identification G- CNEUK	-
Date Received Other DILUTION/CONTROL WATER (initial water quality) Fresh Water (dechlorinated) Temperature (°C)	Amount Received 5470L	
Other DILUTION/CONTROL WATER (initial water quality) Fresh Water (dechlorinated) Temperature (°C) SpH 7.94 Dissolved Oxygen (mg/L) Conductivity (uS/cm) Hardness (mg/L as CaCO ₃) Cother TEST SPECIES INFORMATION Source Collection Date/Batch O 7.204 Control Fish Size (mean, SD and range measured at end of test) Date Measured Fork Length (mm) O 40 \$\frac{1}{2} \to 0.0 \to 0.73 \to 0.94 Wet Weight (g) O 40 \$\frac{1}{2} \to 0.0 \to 0.73 \to 0.94 Wet Weight (g) O 40 \$\frac{1}{2} \to 0.0 \to 0.73 \to 0.94 Wet Weight (g) O 40 \$\frac{1}{2} \to 0.0 \to 0.73 \to 0.94 Wet Weight (g) O 40 \$\frac{1}{2} \to 0.0 \to 0.73 \to 0.94 Wet Weight (g) O 40 \$\frac{1}{2} \to 0.0 \to 0.73 \to 0.94 Wet Weight (g) O 40 \$\frac{1}{2} \to 0.0 \to 0.73 \to 0.94 Wet Weight (g) O 40 \$\frac{1}{2} \to 0.0 \to 0.73 \to 0.94 Wet Weight (g) O 40 \$\frac{1}{2} \to 0.0 \to 0.73 \to 0.94 Wet Weight (g) O 40 \$\frac{1}{2} \to 0.0 \to 0.73 \to 0.94 Wet Weight (g) O 40 \$\frac{1}{2} \to 0.0 \to 0.73 \to 0.94 Wet Weight (g) O 40 \$\frac{1}{2} \to 0.0 \to 0.73 \to 0.0 \to 0.0 Wet Weight (g) O 40 \$\frac{1}{2} \to 0.0 \to 0.73 \to 0.0 \to 0.0 Wet Weight (g) O 40 \$\frac{1}{2} \to 0.0 \to 0.0 Wet Weight (g) O 40 \$\frac{1}{2} \to 0.0 O 40 \$\frac{1}{2} \to 0.0 O 40 \$\frac{1}{2} \to 0.0 O 50 \$\frac{1}{2} \to 0.0 O 10 \$\frac{1}{2} \to	Date Collected Aug 74 /04	
DILUTION/CONTROL WATER (initial water quality) Fresh Water (dechlorinated) Temperature (°C) pH 7.4 Dissolved Oxygen (mg/L) Conductivity (µS/cm) Hardness (mg/L as CaCO ₃) Cother Cother TEST CONDITIONS Dissolved Oxygen Range (mg/L) Temperature Range (°C) pH Range 7.2—7.8 q Conductivity Range (µS/cm) 46 7.5 3 3 Aeration Provided? (give rate) Photoperiod (L:D h) No. Organisms/Volume 10 1/2 L Loading Density (g/L) Oxygen Restricts (days) Mortality In Previous Week of Acclimation (%) Other	Date Received Aug 27/04	
Source Temperature (°C) pH 7.4 Dissolved Oxygen (mg/L) Conductivity (µS/cm) Hardness (mg/L as CaCO ₃) Other Cother TEST CONDITIONS Dissolved Oxygen Range (mg/L) PH Range Conductivity Range (µS/cm) Pissolved Oxygen (mg/L) Cother Source Collection Date/Batch Control Fish Size (mean, SD and range measured at end of test) Date Measured Fork Length (mm) Pissolved Oxygen (mg/L) Reference Toxicant Current Reference Toxicant Result Reference Toxicant Test Date Duration of Acclimation (days) 96-h LC50 (and 95% CL) Reference Toxicant Warning Limits (mean ± 2SD) and CV 29±13 myll SDS COL 27/6 Conductivity Range (µS/cm) Fork Length (mm) Pissolved Oxygen Range (mg/L) Reference Toxicant Warning Limits (mean ± 2SD) and CV 29±13 myll SDS COL 27/6 Conductivity Range (µS/cm) Ference Toxicant Warning Limits (mean ± 2SD) and CV 29±13 myll SDS COL 27/6 Conductivity Range (µS/cm) Ference Toxicant Warning Limits (mean ± 2SD) and CV 29±13 myll SDS COL 27/6 Conductivity Range (µS/cm) Ference Toxicant Warning Limits (mean ± 2SD) and CV 29±13 myll SDS COL 27/6 Conductivity Range (µS/cm) Ference Toxicant Warning Limits (mean ± 2SD) and CV 29±13 myll SDS COL 27/6 Conductivity Range (µS/cm) Fork Length (mm) Pissolved Marging (µS/cm) Ference Toxicant Result Reference Toxicant Warning Limits (mean ± 2SD) and CV 29±13 myll SDS COL 27/6 Conductivity Marging (µS/cm) Ference Toxicant Varning Limits (mean ± 2SD) and CV 29±13 myll SDS COL 27/6 Conductivity Marging (µS/cm) Ference Toxicant Result Reference Toxicant Test Date Duration of Acclimation (days) Ference Toxicant Test Date Duration of Acclimation (µS/cm) Ference Toxicant Test Date Duration of Acclimation (µS/	Other	
Temperature (°C) S Collection Date/Batch D 20 Control Fish Size (mean, SD and range measured at end of test) Date Measured A A A A A A A A A	, , ,	TEST SPECIES INFORMATION
Dissolved Oxygen (mg/L) Dissolved Oxygen (mg/L) Conductivity (µS/cm) Hardness (mg/L as CaCO ₃) Other Current Reference Toxicant Result Reference Toxicant Test Date Duration of Acclimation (days) 96-h LC50 (and 95% CL) Temperature Range (mg/L) PH Range TOTO TO STATE OF ACTION (CO) Conductivity Range (µS/cm) Photoperiod (L:D h) No. Organisms/Volume Loading Density (g/L) Ochronical Fish Size (mean, SD and range measured at end of test) Date Measured Fork Length (mm) Ochro Wet Weight (g) Ochro Fork Length (mm) Ochro Ochro Reference Toxicant SDS Current Reference Toxicant Result Reference Toxicant Warning Limits (mean ± 2SD) and CV 20±13 myll SDS Coli 20/6 Conductivity Range (µS/cm) Go State Individual Individual State Individual State Individual State Individual Sta	Fresh Water (dechlorinated)	Source San Valley
Dissolved Oxygen (mg/L) Conductivity (µS/cm) Hardness (mg/L as CaCO ₃) Alkalinity (mg/L as CaCO ₃) Other Current Reference Toxicant Result Reference Toxicant Test Date Duration of Acclimation (days) 96-h LC50 (and 95% CL) Temperature Range (mg/L) PH Range TC-7.84 Conductivity Range (µS/cm) Photoperiod (L:D h) No. Organisms/Volume Loading Density (g/L) Acclimation Before Testing (days) Met Weight (g) O LO TO CO TO C		Collection Date/Batch 072804
Conductivity (µS/cm) Hardness (mg/L as CaCO ₃) Other Fork Length (mm) Wet Weight (g) Reference Toxicant SDS Current Reference Toxicant Test Date Duration of Acclimation (days) 96-h LC50 (and 95% CL) Temperature Range (mg/L) PH Range Conductivity Range (µS/cm) PH Range Conductivity Range (µS/cm) Photoperiod (L:D h) Reference Toxicant SDS Current Reference Toxicant Test Date Duration of Acclimation (days) 96-h LC50 (and 95% CL) SQL TEST CONDITIONS Dissolved Oxygen Range (mg/L) COLL COLL COLL COLL Temperature Range (°C) PH Range Toxicant GSSI not/min Photoperiod (L:D h) COLL	рН	Control Fish Size (mean, SD and range measured at end of test)
Hardness (mg/L as CaCO ₃) 6 Reference Toxicant Result Reference Toxicant Test Date Duration of Acclimation (days) 96-h LC50 (and 95% CL) 38 C32 caylett Mg/L TEST CONDITIONS Dissolved Oxygen Range (mg/L) 7,72-7,89 Conductivity Range (µS/cm) 96-7533 Aeration Provided? (give rate) 6,5-1 mL/m/n Photoperiod (L:D h) 6 8 No. Organisms/Volume 0 172 Loading Density (g/L) 0,38 Acclimation Before Testing (days) 50 Met Weight (g) 0 45-0 (0 0,31-0 c/6) Reference Toxicant Result Reference Toxicant Result Reference Toxicant Test Date Duration of Acclimation (days) 30 96-h LC50 (and 95% CL) 38 (C3) 276/6 Reference Toxicant Result Reference Toxicant Warning Limits (mean ± 2SD) and CV 20 + 13 mg/L SDS C0 276/6 No. Organisms/Volume 6,5-1 mL/m/n Photoperiod (L:D h) 6 8 No. Organisms/Volume 0 172 Loading Density (g/L) 0,38 Acclimation Before Testing (days) 50 Mortality In Previous Week of Acclimation (%) 0 Other	Dissolved Oxygen (mg/L)	Date Measured Aug 3 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
Alkalinity (mg/L as CaCO ₃) Other Reference Toxicant Current Reference Toxicant Result Reference Toxicant Test Date Duration of Acclimation (days) 96-h LC50 (and 95% CL) Reference Toxicant Warning Limits (mean ± 2SD) and CV 20±13 mg/LSDS CULTULO TEST CONDITIONS Dissolved Oxygen Range (mg/L) PH Range Total Conductivity Range (\(\mu\)S/m Conductivity Range (\(\mu\)S/m Acration Provided? (give rate) 6.5±1 m/m Photoperiod (L:D h) 6.58 No. Organisms/Volume Loading Density (g/L) O.338 Acclimation Before Testing (days) Mortality In Previous Week of Acclimation (%) Other	Conductivity (µS/cm) 46	
Current Reference Toxicant Result Reference Toxicant Test Date Duration of Acclimation (days) 96-h LC50 (and 95% CL) Reference Toxicant Warning Limits (mean ± 2SD) and CV 29±13 mjl SDS TEST CONDITIONS Dissolved Oxygen Range (mg/L) PH Range Conductivity Range (\(\mu\)S/cm) Conductivity Range (\(\mu\)S/cm) Conductivity Range (\(\mu\)S/cm) Photoperiod (L:D h) (6:8) No. Organisms/Volume Loading Density (g/L) Acclimation Before Testing (days) Mortality In Previous Week of Acclimation (%) Other	Hardness (mg/L as CaCO ₃)	Wet Weight (g) 0.45 ± 0.10 (0.31 -0.61)
Reference Toxicant Test Date Duration of Acclimation (days) 96-h LC50 (and 95% CL) 96-h LC50 (and 95% CL) Reference Toxicant Warning Limits (mean ± 2SD) and CV 29 ± 13 mj LSDS CO 1 22/6 Temperature Range (°C) PH Range Conductivity Range (µS/cm) Photoperiod (L:D h) 16 : 8 No. Organisms/Volume Loading Density (g/L) O.38 Acclimation Before Testing (days) Mortality In Previous Week of Acclimation (%) Other	Alkalinity (mg/L as CaCO ₃)	Reference Toxicant 5DS
Duration of Acclimation (days) 30 96 -h LC50 (and 95% CL) 38 (33 cm/M4) m_3 LC Reference Toxicant Warning Limits (mean \pm 2SD) and CV 29 ± 13 m_1 LSDS (33 cm/M4) m_3 LSDS (33 cm/M4) m_3 LSDS (33 cm/M4) m_4 LSDS	Other	Current Reference Toxicant Result
Dissolved Oxygen Range (mg/L) $\frac{Q_{c} - D_{c} }{Q_{c} - D_{c} }$ Temperature Range (°C) $\frac{1}{5}$ East pH Range $\frac{7.72 - 7.8}{4}$ Conductivity Range (μ S/cm) $\frac{46 - 7.533}{4}$ Aeration Provided? (give rate) $\frac{6.51}{6.8}$ No. Organisms/Volume $\frac{10.121}{10.12}$ Loading Density (g/L) $\frac{0.38}{10.38}$ Acclimation Before Testing (days) $\frac{30.12}{10.12}$ Mortality In Previous Week of Acclimation (%) $\frac{0.121}{10.12}$ Other		96-h LC50 (and 95% CL) 38 (33 and 149) mg LSD. Reference Toxicant Warning Limits (mean ± 2SD) and CV
Temperature Range (°C) pH Range $7.2-7.89$ Conductivity Range (μ S/cm) $46-7533$ Aeration Provided? (give rate) $6.5+1\mu$ I/ μ I/ μ I Photoperiod (L:D h) 6.8 No. Organisms/Volume $10/12L$ Loading Density (g/L) 0.38 Acclimation Before Testing (days) Mortality In Previous Week of Acclimation (%) Other		J
PH Range To To To Seq Conductivity Range (\(\mu \) S/cm) \(\frac{46}{6} - 7 \) \$\frac{3}{3} \\ Aeration Provided? (give rate) \(\frac{6}{5} \) \(\frac{5}{1} \) \(\mu \) \(\frac{16}{6} \) \(\frac{8}{8} \) No. Organisms/Volume \(\frac{10}{12} \) \(\frac{12}{12} \) Loading Density (g/L) \(\frac{0.38}{38} \) Acclimation Before Testing (days) \(\frac{3}{6} \) \(\frac{3}{8} \) Mortality In Previous Week of Acclimation (%) \(\frac{0}{6} \) Other \(\frac{1}{6} \) \(\frac{3}{8} \) Other \(\frac{1}{6} \) \	Dissolved Oxygen Range (mg/L) $\mathcal{L} = \mathcal{L} = \mathcal{L}$	
PH Range Transpare Transpare (µS/cm) 46 - 753 3 Aeration Provided? (give rate) 6.5 1 nL/m/n Photoperiod (L:D h) 6.8 No. Organisms/Volume 10/12L Loading Density (g/L) 0.38 Acclimation Before Testing (days) 30 Mortality In Previous Week of Acclimation (%) 0 Other	Temperature Range (°C)	
Aeration Provided? (give rate) 6.5 n / m Photoperiod (L:D h) 6 8 No. Organisms/Volume 10 17 Loading Density (g/L) 0.38 Acclimation Before Testing (days) 30 Mortality In Previous Week of Acclimation (%) 0 Other 0.5 1 n / m Other 0.5 1 n Other 0.5 1 n / m Other 0.5 1 n Other 0.5 1 Other 0.5 Other 0.5 1 Other 0.5 Other		
Aeration Provided? (give rate) 6.5 n / m Photoperiod (L:D h) 6 8 No. Organisms/Volume 10 17 Loading Density (g/L) 0.38 Acclimation Before Testing (days) 30 Mortality In Previous Week of Acclimation (%) 0 Other 0.5 1 n / m Other 0.5 1 n Other 0.5 1 n / m Other 0.5 1 n Other 0.5 1 Other 0.5 Other 0.5 1 Other 0.5 Other	Conductivity Range (μ S/cm) 46 - 7533	
Photoperiod (L:D h) No. Organisms/Volume Loading Density (g/L) Acclimation Before Testing (days) Mortality In Previous Week of Acclimation (%) Other		
No. Organisms/Volume Lo 17L Loading Density (g/L) Acclimation Before Testing (days) Mortality In Previous Week of Acclimation (%) Other Other	Photoperiod (L:D h)	
Acclimation Before Testing (days) Mortality In Previous Week of Acclimation (%) Other		
Mortality In Previous Week of Acclimation (%) Other	Loading Density (g/L)	
Other	Acclimation Before Testing (days)	
	Mortality In Previous Week of Acclimation (%)	
At the second of	Other	
TEST RESULTS The 96th LCSO was astimated to be > 100% (v/o)	TEST RESULTS The 96-4 LCS	0 was astimated to be > 100% (0/0)
Data Verified By Date Verified Nov 16/04	Data Verified By	Date Verified Nov 16/04

EVS ENVIRONMENT CONSULTANTS RAINBOW TROUT ACUTE TOXICITY TEST DATA

WHOLE SAMPLE	VATER (QUALII	Y					:	•			. •	•			Clie	nt	, <i>F</i>	tzin	mil	i (P	olars	<u>)</u>	
	- 190 190	¥:														EVS	Projec				302-S	-	:	
	Initiā		pН		After 30											EVS	Work	Order N	To. 💆	400	5 382			
-		,A.	djustme	ent' I	Pre-aera	tion						•			-	Trot	t Batch	No. an	d 7-d A				07280	24/0
Temp. (°C)	15			4	15	·				` '						No.	Fish/Vc	lume _		: 10	/12	<u>८. </u>	· · · · · · · · · · · · · · · · · · ·	
pH	7.7		_/_		77								:			Sam	ple ID			-Cre				
DO (mg/L)	9.9	1/	<u> </u>		10.0		•					,						Collecte	d	Au	gust	24/	104 (a)	<u>/soc</u>
Cond. (µS/cm) 1. Document pH adju	7416	edure (if)	nsed) un	ler "Com	7410	و ا	Total P	re-Aerat	ion Tim	ė, —		30.		_ <u>mi</u> br	ıtes	Test	Initiatio	n Date/	Time	_A	igus	+ 27	1040	1149
										<u> </u>				•				_						
Concentration		·		ber of S to 96 b		3			Dissolv	ed Oxy	gen (mg	/L)		Ten	nperatu	re (°C)				ΡĦ			Condu (µS/	ctivity (cm)
1% (V/U)	I	2	4	24	48	72	96	0	24	48	72	96	0	24	48	72	96	0	24	48	72	96	<u></u> 0-	9,6
Control		Ċ		10		10.	10	10.1	2,5	190	100	9.8	K	115	15	15	15	7.4	24	25	7.2	7.4	46	58
6.25	1			10	10	10	10	100	5.2	88	16.0	7	15	1.5	15	IS	15	7,5	25	74	7.4	7.4	556	601
12.5				1.12	10	10	10	100	98	98	9.3	96	15	15	2	15	15	7.6		30	7.5	7.6	1030	1054
25		. ,		10	19.	10	10	10.(50	4,9	a, 1	9,5	1<	15	16	(5	15	7.6	77	28	7,6		1825	1.
50				10	10.	10	10	10.	9,F		9,5		رخ	16		(S	15	7.7	28		7.6	7.7	3950	
100				10	.10	10	10	10.1	SA		9.6	9.5	15	15	6	ιŚ	15	7,7	28	75	7.8	7.8	7416	7433
~					,				- 727	7, 1			- 7		10									-
Technician Initials		İ		Ŋ	~.	REH	eezt	REH		~	fert	RU-1	pers		<u>.</u>	Reff	REH	REH	.4	~	REH	POST	ROH	PORT
VQ Instruments Used: ample Description comments	Temper	ature <u>c</u> sif	alibr	ated Hu	Hg Th slight	ermo meter Cloc	рН 		020					T - A	+-3	· · · ·		Con	ductivit	у <u>11-</u> 4	<u>-03</u>	, 030	>6	· · · · · · · · · · · · · · · · · · ·
ect Set I In Riv		. D 121	<u>.</u> L					ata Vari	fied Dyr			<u> </u>	. /	• ,	•		-	Dote 17			1.1	16 / 20	· · · · · · · · · · · · · · · · · · ·	·

CHAIN-OF-CUSTODY/TEST REQUEST FORM

Please see instru	ctions for co	mpletion on back. S	Shaded areas to	be comple	ted by E	VS La	aboratory upo	n samı	ple rec	eipt.									LVDconsult	ants (anada V7P 2R4	C
		CASCILLIANG.		Client Con	tact Nan	ne: <u>/</u>	1-011 F	and	فأجباع	13. 11	2 21 v Le	1)24	ال الم	ip to:	EVS 6 n	11/13	a word	5122.1H	G.		el: 604-986-4331 ax: 604-662-8548	
							13 ia j								Rembert					7 < v	ww.evsenvironme	:nt.com
818-10	الما تعالمها الل	Brondian	î				139-90				· 			Jo.	HM Vanio	الانتائج في ال	BC.V	1120	🖖 Shipping Date: 🕂	. W	1 CEM	
الإدار والمراز المراز و	r BC.	VUE Sty	8	Sampled B	v Bri	and the	<u> ئەندىگىلىسىيىن</u>	su C		lein	فيعينه				downed (J	,		
					1		T	2			est(s) R	egueste				3	G 4		EVS Receipt	Check List		
Collection Date (dd/mmm/yy)	Time (24-h clock)	Sample	Identification	Type of Each Sample	· 🖁 😤	Sample Collection Method G = grab; C = composite	Number of Sample Containers x Volume of Sample Container (i.e., 1 x 20 L)	Sample Container Type by Code	なるになってもので	1 4 0	15/20/ 1-10	in as deconfilling			Notes? (e.g. prese saltwater, freshw may contain sew	vater,	eceipt Sample Temp. (*)	EVS Sam	Project # : <u>0.1 - 110</u> \$: <u></u>	/ (of interpretation of the control	SECTION OF THE SECTIO	100
For compos	site sample re	ord date & time star	rting and ending					_	50	3 3	16.42	Ú.				. li		S 18 3	orling documentation/other info	1	a technological and a second control of	4
: 9 :d/Asalov	15400	Greek.	<i>30</i> 217 64	(£		No.	5,201	Č.(غررا	1.	1	<i>√</i> .			17220 2011 12 V	1		7.7.5	ignatures & dates correct? :::		(I) SY	N.
1						,												2. (Chain of custody. Jully completed	ngidi	in the Salar	Ŋ
		:			+	ļ .										9		3 (Containers arrived in good cond	ition (unbrol	(en)? Y	N o
					"		ļ		ļ		-					1						
7		et i	. 1								wi -					55702	ila jakit		Container Jabels completed (i.e.)	dates, ID's	/2 Y	1
																1		15 (Container labels agreed with cus	lody paper	9.45 jt. Y	N .
	-	:									s/							6.	sample receipt temperature with	In acceptab	le range? _ Y	N.
					-			ļ						•				13650	ediment festing going to be initi		CONTRACTOR OF THE PARTY OF THE	STATE OF THE
		···	··						ļ	1	41					4						副的特
		:																2.76; II	no are samples under Nitrogen	? If not, wh	yr A	V,
											-							8.1	Chain of custody generated upor	i-receipt:		
<u> </u>					 				<u> </u>		1							1 10 9 - S	iki: ing.	EVS		
						<u> </u>	C	-4		٠	1.0	• 1				je:		THE SECOND		and a second		# 1965 AV
PO/Reference No		<u>-05-03 _</u>					Comments/In	structio	ns:										 			\dashv
Project Title:	-	MIMER.			-				· · ·	· ·	1	·					· · · · · · · · · · · · · · · · · · ·	;				\exists
		deschi Date: 25.7	. Fara-1		ceived by	, y\.	V10	Date	e:)-[[11/4	<u></u>	C) R	eleased	Bv:		Date:			D) Received by:	1	Date:	亏
		Time:		l·I							,	'	ompany:	-		Time:			Company:		īme:	
Courier name:	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	/ Trace		11.	any: {				e: 🕥	111) 		ier name	•					11			
	s secured by:	Tape i Straps Lock	COTATION		ng contai dy seals i		celved secure?	Yes N/A	,				ing contr dy seals		secured by: Tape ? Yes No	Straps (circle	Lock Other _ one)		Shipping containers received Custody seals intact? Yes		′es No √A	
300.0 000		~7~142 475.	AM THE DESCRIPTION				<u>,</u>				-								4 I			

1 Receiving Water (RW); Effluent (E); Elutriate (ELU); Sediment (SED); Chemical (CHEM); Stormwater (SW); Other (Please Specify) 2 Collapsible Carboy (CC); Glass Jar (GJ); Jerry Can (JC); Plastic HDPE (P); Plastic Bucket (PB); Other (Please Specify)

3 Please note any conditions the lab should be aware of for safety and storage concerns

4 Acceptable (A); Unacceptable (U). Please note specifics (e.g., broken, leaking, lid not on) under Comments/Instructions

Distribution of copies:

Revision Date: Sept. 25, 2000

White, yellow, pink - accompany the shipment Orange - retained by consignor (e.g., shipper) Yellow - retained by consignee (e.g., receiver) Pink - for use as needed

White - returned to consignor by consignee

TOTAL environment 195 Pemberton Avenue

APPENDIX E

Sublethal Toxicity Testing Laboratory Reports

Azimuth Consulting Group

ENVIRONMENTAL EFFECTS MONITORING PROGRAM

July 10, 2004

PREPARED FOR:

PREPARED BY:

Azimuth Consulting Group *Vancouver, BC*

POLARIS MINE ENVIRONMENTAL EFFECTS MONITORING PROGRAM

July 10, 2004

LABORATORY REPORT

Prepared for

Azimuth Consulting Group

218-2902 W. Broadway Vancouver, BC V6K 2G8

Prepared by

EVS Environment Consultants

195 Pemberton Avenue North Vancouver, BC Canada V7P 2R4

EVS Project No.

09-0302-54

September 2004

TABLE OF CONTENTS

TABLE OF COI	NTENTS	i
LIST OF TABLE	ES	ii
ACKNOWLEDO	GEMENTS	iii
1. INTRODUCT	TION	1
2. METHODS -		2
2.1 7-d Topsm 2.2 Statistical	nelt (<i>Atherinops affinis)</i> survival and growth toxicity test Analysis	2
	surance/Quality Control (QA/QC)	
3. RESULTS		4
	nelt (<i>Atherinops affinis)</i> Survival and Growth Toxicity Testsurance/Quality Control (QA/QC)	
4. REFERENC	ES	6
APPENDIX A	Raw Data and Statistical Analyses: Atherinops affinis	
APPENDIX B	Chain-of-Custody Form	

LIST OF TABLES

Table 1:	7-d Topsmelt (Atherinops affinis) survival and growth toxicity test methods	3
	Summary of results for the 7-d Topsmelt (Atherinops affinis) surival and growth toxicity test.	

ACKNOWLEDGEMENTS

Toxicity testing was conducted by Andy Diewald, Anja Fouche, Keven Goodearle, Ann-Marie Norris and Jenny Shao. Statistical analyses were performed by Jenny Shao The report was written by Kathryn Sentance and reviewed by Edmund Canaria. Quality Assurance/Quality Control (QA/QC) review was conducted by Julianna Kalokai.

1. INTRODUCTION

EVS Environment Consultants conducted sublethal Metal Mining Effluent Regulations (MMER) toxicity testing for Azimuth Consulting Group as part of the Environmental Effects Monitoring (EEM) program for Polaris Mine.

A sample, identified as G Creek, was collected from the Polaris Mine Site on July 07, 2004 in 20-L collapsible polyethylene containers. It was received at the EVS laboratory on July 10, 2004 and was stored in the dark at 4°C prior to test initiation. The sample was evaluated for toxicity using the 7-d topsmelt (*Atherinops affinis*) survival and growth toxicity test. The 7-d topsmelt toxicity testing was initiated on the day of initial sample receipt.

This report describes the methods and results of the 7-d topsmelt (*Atherinops affinis*) toxicity test. The raw data and statistical analyses are provided in Appendix A and the chain-of-custody form is provided in Appendix B.

The sample was also intended for toxicity evaluation using the echinoderm (*Dendraster excentricus*) fertilization toxicity test as part of the EEM program requirements. The test was not initiated successfully due to inability of the sand dollars to spawn.

2. METHODS

2.1 7-D TOPSMELT (ATHERINOPS AFFINIS) SURVIVAL AND GROWTH TOXICITY TEST

A static-renewal 7-d toxicity test and reference toxicant test using topsmelt (A. affinis) was conducted in accordance with EVS Environment Consultants Standard Operating Procedures (SOP) 1100-4 (EVS, 2002) with modifications based on U.S. Environmental Protection Agency (USEPA, 1995). Test conditions and methods are summarized in Table 1.

This 7-day test exposes topsmelt larvae to different concentrations of a given sample. Fish are fed on a daily basis and both survival and growth endpoints are measured at test termination. These observations are assessed in comparison to the pooled negative and brine controls.

2.2 STATISTICAL ANALYSIS

Statistical analyses for all tests were conducted using the computer software program TOXCALC (version 5.0.23; Tidepool Scientific Software, 1994). The Power Standards were calculated as outlined by the Washington Department of Ecology (WDOE, 2001).

2.3 QUALITY ASSURANCE/QUALITY CONTROL (QA/QC)

This study followed a comprehensive QA/QC Program to ensure full documentation and minimize possible errors in computation and reporting of results. The following general QA/QC guidelines were applied in this test: use of negative controls, use of positive controls, use of brine controls, replication, instrument calibration, water quality maintenance and record-keeping, and use of standard operating procedures (SOPs). To ensure the highest quality of data and reporting, all data and statistical analyses were reviewed by a member of our QA/QC Committee prior to reporting the results.

Table 1. 7-d Topsmelt (*Atherinops affinis*) survival and growth toxicity test methods

TEST PARAMETER	TEST CONDITION
Test type	Static-renewal
Test duration	7 d
Test chamber	600-mL beaker
Test solution volume	200 mL
Number of replicate chambers per treatment	5
Number of organisms per test chamber	5
Age of test organisms at test initiation	11d
Food	Newly hatched Artemia nauplii (<24 hours old)
Feeding Regime	Fed 0.5 mL/ beaker twice daily of concentrated nauplii suspension (prepared to provide 200 nauplii in 0.5 mL); no feeding at test termination
Sample manipulations (e.g. pre-aeration, pH adjustment, filtration)	Salinity-adjusted
Control/dilution water	UV-sterilized and 0.45µm-filtered natural sea water from Vancouver Aquarium, BC
Dilutions	4.5, 9.1, 18.2, 36.3, 72.6% (v/v)
Renewal of dilutions	Daily
Aeration	None
Water quality parameters and frequency	Temperature, pH, dissolved oxygen, and salinity daily
Temperature	20 ± 1°C
Salinity	30 ± 2 (sample adjusted with hypersaline brine [HSB]. Preparation of HSB and salinity adjustment as per EC guidance document on salinity adjustment –July 1997)
Lighting	Overhead full-spectrum fluorescent lights; 538 – 1076 lux; 16:8 light:dark photoperiod
Reference toxicant	Initiated concurrently with sample using copper to generate LC50 and IC50 values; results compared to lab mean \pm 2 SD
Endpoints	Survival and growth (dry weight)
Test validity	≥ 80% mean control survival; ≥ 0.85 mg/fish mean dry weight for surviving control fish
Reference protocol	US EPA (1995), EPA/600/R-95/136

3.1 7-D TOPSMELT (ATHERINOPS AFFINIS) SURVIVAL AND GROWTH TOXICITY TEST

The highest concentration tested was 72.6% due to salinity adjustment. The test results are summarized in Table 2 and the raw statistical analyses are provided in Appendix A.

The A. affinis survival and growth toxicity test showed no adverse effects on survival or growth in all tested concentrations relative to the pooled controls ($p \le 0.05$). The mean survival in both the negative and brine controls was 96%.

3.2 QUALITY ASSURANCE/QUALITY CONTROL (QA/QC)

The tests met all passing criteria for test validity as outlined in the respective protocols. Water quality parameters during the test were all within the acceptable range of values. Point estimates for the reference toxicant tests were all within the laboratory mean \pm 2 standard deviations, indicating that the tests were within acceptable limits of variability.

An attempt was made to initiate the echinoderm (*Dendraster excentricus*) fertilization toxicity test as part of the sample evaluation requirements. The sand dollars purchased from Westwind Sealab Supplies, did not spawn, and consequently, the test was not initiated. The inability of the sand dollars to spawn may have resulted from various reasons such as handling of organisms during transport, seasonal conditions, holding and culturing conditions and poor quality of organisms.

Table 2. Summary of results for the 7-d Topsmelt (*Atherinops affinis*) survival and growth toxicity test

Test Concentration (% v/v)	SURVIVAL (%)(MEAN ± SD)	GROWTH (DRY WEIGHT MG) (MEAN ± SD)		
D-Control	96.0 ± 8.9	0.93 ± 0.18		
Brine Control	96.0 ± 8.9	1.08 ± 0.17		
Pooled Controls	96.0 ± 8.4	1.00 ± 0.18		
4.5	100 ± 0.0	1.00 ± 0.08		
9.1	100 ± 0.0	1.04 ± 0.09		
18.2	100 ± 0.0	0.96 ± 0.09 1.10 ± 0.15 0.99 ± 0.22		
36.3	96.0 ± 8.9			
72.6	92.0 ± 11.0			
TEST ENDPOINT	SURVIVAL (% V/V)	Growth (% v/v)		
NOEC	72.6	72.6		
LOEC	>72.6	>72.6		
LC50	>72.6	na		
IC50	na	>72.6		
IC25	na	>72.6		

^{*}Indicates significant difference ($p \le 0.05$) relative to the pooled controls. SD – Standard Deviation; na – not applicable.

4. REFERENCES

- EVS (EVS Environment Consultants). 2002. Topsmelt (*Atherinops affinis*) 7-d larval survival and growth test. EVS SOP 1100-4. In: EVS Consultants Laboratory Standard Operating Procedures (SOP) Manual. Volume II: Water Toxicity Tests. EVS Environment Consultants, North Vancouver, BC.
- US EPA (U.S. Environmental Protection Agency). 2002. Short-term methods for estimating the chronic toxicity of effluents and receiving waters to marine and estuarine organisms. 3rd edition. US Environmental Protection Agency, Office of Water (4303T). US Environmental Protection Agency, Washington, DC. EPA/821/R-02/014. 464 pp.
- US EPA. 1995. Short term methods for estimating the chronic toxicity of effluents and receiving waters to marine and estuarine organisms. 2nd edition. US Environmental Protection Agency, Environmental Monitoring Systems Laboratory, Office of Research and Development, Washington, DC. EPA/600/R-95/136. 563 pp.
- Tidepool Scientific Software. 1994. TOXCALC: Comprehensive Toxicity Data Analysis and Database Software, Version 5.0.23. Tidepool Scientific Software, McKinleyville, CA. 80 pp.

APPENDIX A

Raw Data and Statistical Analyses:

Atherinops affinis

EVS ENVIRONMENT CONSULTANTS 7-d Atherinops affinis SURVIVAL AND GROWTH TEST DATA SUMMARY

	12.10			Juc - 04				
	Initial Sample							
Sample	Day 0	Day 2		Day 4				
dentification G-C	REEK -07070	<u> </u>						
Amount Received								
Date Collected		-						
Date Received	70-04							
Semperature (°C)	<u> </u>	-						
	1 5 8.0							
OO (mg/L)	3 ⁽² > 7.9			-				
Conductivity (µmhos/cm)	11660							
F	و کی	_						
Ammonia (mg/L N)		-		-				
Chlorine (mg/L Cl)								
Other				-				
issolved Oxygen (mg/L) $\frac{7.6}{38}$ EST CONDITIONS emperature Range (°C) $\frac{19.6 - 2}{3.8 - 3}$ issolved Oxygen Range (mg/L) $\frac{6.8}{3}$ alinity (ppt) $\frac{23 - 31}{16 \cdot 8}$ hotoperiod (L:D h) $\frac{16 \cdot 8}{3}$ eration Provided? $\frac{Nc}{3}$	1.0 3 1- 7.9	7-d survival LC50 7-d growth IC50 Reference Toxicant 7-d survival LC50 7-d growth IC50	Coxicant Result (incl. int Test Date 10 5 10 10 10 10 10 10 10 10 10 10 10 10 10	95% CL) $(1-64)$ $(119-169)$ an ± 2SD) and CV $(119-169)$ $(119-169)$				
EST RESULTS Endpoint Conc. NOEC	LOEC	LC50 (95% CL)	IC50 (95% CL)	IC25 (95% CL)				
Endpoint Conc. NOEC Units	LOLC		(/					
Survival $\frac{1}{2}$ $\frac{12.6}{12.6}$	>72.6	7 42.6	18.4					
Growth 72.6	> 426	and the second	7 72.6	> 42.6				
Other								

EVS ENVIRONMENT CONSULTANTS 7-d Atherinops affinis SURVIVAL AND GROWTH TEST – WATER QUALITY DATA

Client Az	·MUTI	ı (k	المحا	نىلەر دىلەر	JE)	_	Sample	ID _		G- C	CEEK	,	70tc	<i>y</i> -
	69		۶-84	1		_	Test Initiation Date/Time 10-3u-CH / 173ch							
EVS Work Order 1	-							Source/Date Received ABS / 68- NL-64						
		Temperature (°C)												
Concentration	0		1	new '	2 eld	í	3	الدوادم	4 010	New	5 10	NEW	5 jid	7
Nebr. Con	20	20.0	T	20,0	22.5	20.0	21.0	70, J	21,0	1 0,0	20/5	20-	21.0	205
Beine CIL	1——		_	ත, ෙ	2215	20.0	210	70.0	ひしょ	100	20%	20.0	4.0	2,
4.5	20,0	70.0	19.5	10.3	2=5	20,0	21.0	W.J	11.0	10,	2015	20,0	21.0	u.
9.1	200	70.0	19.5	20,50	12.	200	21.0	10.0	21.0	lo, o	20.5	20.0	21.0	20.5
18.2	25.0	20.0	19.5	130	20/	22.	21.0	Wo	21.0	10,0	20.5	26.0	21.0	W.(
36.3	19.5	200	19.5	10.0	22/3	22,-	21.0	$\mathcal{V}^{,\circ}$	21.0	20,0	20.5	20.0	21.5	12.5°
72.6	19.0	200	19.5	20,=	126	20.5	21.0	Vi.0	21.0	ت. س	20%	20.€	21.0	225
Tech. Initials	unt	1	~	_	Λ		jes	7+>	50		n.	ブムン	ろんろ	^
	_			<u>'</u>							.			
Consentation				-			pΙ	ł				1		
Concentration	0_		1	:	2		3	مرونم	4		5	(5	7
Nebr. Cor	8.0	80	7.9	7,9	78	79	7.8	8.0	3.3	€.8	79	8.0	4.9	<u>ጊ</u> ኘ
Benicon	8.1	80	7.9	ሕ۹	7.8	79	7.3	80	7.8	६,०	74	8.0	29	33
4.5	8.0	80	7.9	7.7	7.8	31	78	8.0	29	3,6	ሕን	8.0	7.9	ሕ ^ዓ
9.1	8.0	80	7.9	7, 9	7.8	7,9	7.8	80	2.4	8.1	5,0	8.0	8.0	ትዓ
18.2	8.0	80	7.9	75	7.8	79	79	8.1	8:0	F2	8.1	3.1	3.0	گئ_
36.3	8.0	0.8	7.9	29	73	29	79	81	8.0	5.3	21	8.1	81	8.3
72.6	80	8.0	7.9	8.3	7.9	8-1	80	8-2	3.1	8.3	5.2	8.2	81	8-1
Tech. Initials	we	1	4	~ *	AXF		34)	54)	15)	^		Ju)	Jr)	<u></u>
WQ Instruments U	Jsed:	Tem	р. <u>С</u>	ı. Hg	TH	ecm.		pl	H <u>1</u>	A · 630	1301			
Test Set Up By _	·c···l	**************************************		Data ¹	Verified	Ву	Q	alj	D	ate Veri	ified	,dr	mit	17/00

EVS ENVIRONMENT CONSULTANTS 7-d Atherinops affinis SURVIVAL AND GROWTH TEST – WATER QUALITY DATA

Client Az.mort (POLARIS MINE)						_	Sample	e ID		G	CREE	K -	0701	of
EVS Project No.	69-	දෙන	· S4_			Test Initiation Date/Time 10-50-04 / 17-362								
EVS Work Order No. 6466363						Source/Date Received ABS / 08- Ju-04								
		Salinity (ppt)												
Concentration (% いん)	0		1	2			3	4		5		6		7
Nich. Cre	ي ع	8	30		21		28	2 Š		28		28		9
Bene GL	2	9	30		<u>3 </u>		29	29	}	7 0		34	3	<u>5</u>
4.5	<i>3</i>	3	30		2 F	2	8	28		28		28	24	<u>ì</u>
9.1	28	3	31		28 <u> </u>	2	. <i>§</i>	78		28		28	29	
18.2	Ş		30		28	-	<i>}</i>	73	,	28		28		}
363	3	8	31		28	2	8	لرحا	8	28		28		}
72.6	29	}	<u> 3</u>		28		28	า.	B	28		28		3
Tech. Initials	Vn		AL	<u>. </u>	<u> </u>			34	>	_~_		Ju)	^	
	<u> </u>													—
Concentration		т"		r		Disso	lved Ox	ygen (n	ng/L)	1		1		
Concentration	0		1		2		3	1/2~	4		5	'	6	7
NEG. GRL	7.6	7.6	7.4	35	6.1	7.4	6.2	7.6	<i>t.l</i>	7.5	69	7.6		4
Beine Cr	7.6	7.6	7.5	7,5	62	7.5	62	7.5	6.6	7,5	6.8	13.5		66
4.5	7.4	7.6	7.3	34	6.1	71.4	b. t-	7.6	t.U	7.4	6.8	3.6	 	68
9.1	74	7.6	7.3	 	61	7,4	6.2	7.6	t s	74	68	7.6	0.0	67
18.2	7.6		7.3	75	63	7.4	6.2	7.6	ا. ل	74	67	7.6		67
<u> </u>		7.6	7.4	75	6.3	7.5	6-2	:a-6	t·l	24	68	7.6	65	67
72.6	7.9	7.6	7.6	028	6.4	7.6	6,2	7 b	6.5	74	6.8	7.t	6.6	67
Tech. Initials	und	M	<u> </u>	A	AXF		J+j	14)	14)	~		JL)	J=>	1
WQ Instruments U Comments	sed:	Salini	ity <u>11-</u> 1	<u>(-036)</u>	306			De	O <u></u>	Z-A-	/II-	A-011	<u> </u>	
					_									
Test Set Up By	v	6		Data V	Verified	Ву	Opo	repa	5 D	ate Veri	fied	Av	gust	17/01

EVS ENVIRONMENT CONSULTANTS 7-d Atherinops affinis TOXICITY TEST – DAILY SURVIVAL DATA

Client Azimura (POLARIS MINE)	Sample ID G- CEEK -07070
EVS Project No. 09-0303-54	Test Species/Batch A. AFFINIS / 6.39-64
EVS Work Order No. 64 65 303	Test Initiation Date/Time 10 52-04 1730h
	No. of Organisms/Volume 5 / acc ~~

		Pan		Number of Survivors – Day of Test						
Concentration	Rep.	No.	1	2	3	4	5	6	7_	Comments
	A	TI	5	5	5	1.	5	5	2	
	В	T 2	5	5	5	ž	5	5	ń	
Net	С	T3	5	5		5	4	4	4	
Cr	D	T 4	5	5	ے	5)	7)	
	Е	T 5	5	5	\$	5	5	5	5	
	A	Τ6	5	5	>	\$)	5	5	:
0	В	77	5	5	5	Ś	5	5	7.84	
Reine CTL.	С	78	5	5	(5	5	5	5	
LTL.	D	T9	5	5	5	5	5	5	7	
	Е	T10	5	3	5	5	5	5	5	
	A	TII	5	5	\	.5	5	5	5	
	В	TIZ	5	S	5	S	5	5	5	
4.5	С	713	5	5	<u> </u>	5	7	5	5	
	D	T14	5	5	5	ζ	5	5	5	
	Е	T15	5	5	>	5	5	5	5	
:	A	TIL	5	5	5	Š	5	5		
	В	717	5	5	5	〈	5	5)	
9.1	С	TIB	5	5	5	5	5	5	イ	
	D	T19	5	7	5	Σ	5	5	5	
	Е	T20	5	<	5	Ś	5	5		
Technician In	itials	147	A	AL!	(4)	(سر	か	74)	آب ا	

Sample Description	46HT GREY -	TRANSPARENT NO	ODOUR,
Data Verified By	aulit	Date Verified	Manual 17/04
•			

EVS ENVIRONMENT CONSULTANTS 7-d Atherinops affinis TOXICITY TEST – DAILY SURVIVAL DATA

Client Azimon (Pares Wine)	Sample ID G. CREEK - 270704
EVS Project No. eq- c3c2- x4	Test Species/Batch A. AFFINIS / 6 39.04
EVS Work Order No. 6466363	Test Initiation Date/Time w-Ju-04/1730h
	No. of Organisms/Volume 5/200~~
	/

		Pan		Num	ber of S	urvivors	– Day c	of Test		
Concentration	Rep.	No.	1	2	3	4	5	6	7	Comments
	A	T21	5	5	5	5	3	5	5	
	В	TZZ	5	5	>	5	i	5	5	
,0)	С	T23	5	5	>	5	>	5	5	
18.5	D	T24	5	5	5	5	5	5	5	
	Е	725	5	>	3	N.	\$	5	7	
	A	726	<u>5</u>	5	7	5	5	5	5	
	В	7 27	5	5	3	5	5	5	5	
36.3	С	T28	4	4	4	¥.	Ų.	4	4	
	D	T29	5	3	٧-	Š	Σ	5	>	
	Е	T30	5	5	S.	5	5	5	5	
	A	T31	5	5	`	T	s"	5	5	
	В	T32	5	5	,	Ý	5	5	<	
72.6	С	733	5	5	5	5	5	5	4	
1000	D	T34	5	5	J	Ĩ	5	5	5	
	Е	735	5	5	5	Y	5	5	4	
	A									
	В									
	С									
	D									
	Е									
Technician In	itials	Tay	K	AT T	ふ り	1/4)	(m)	1,5	~	

Sample Description	46HT FREY	TRANSPARENT	No	CDOUR.	
Data Verified By	Quallit	Date	Verified	Angust	17/04
	9/10/19			71 100	

Client EVS Project No. EVS Work Order No. Balance Type/Serial N			(Polario Min - 0302-54 0400303 Sartonino	BP 2111)	Test Type Test Species Start Date (Da Sample ID	Ather inups	7. d Survey and Growth inffinis (Topsmell) July 10 - 04 Greak -0	<u></u>	· · · · · · · · · · · · · · · · · · ·
Sample ID	Rep.	Pan No.	Pan Weight (mg) 1	Final Weight (mg) (pan + biomass)	Number of Survivors	Number Weighed	Comments (e.g., confirmation weights, organisms lost in transfer)	Te	ch.
<u>cel</u>	A	Ţ	1265.92	1271.98	5	5		11	
	3	a	1267.67	1272.69	5	5		 	
	<u></u>	3"	71264.20 y	1269.67	4	4		H	-
	D		1265.68		5	5		++	
	E	V 5	1265.14	1269.37	5	5			
Bring Cll	A	T 6	1275.52	1281.17	<i>)</i>	,		-	
	В	17	1262.43	1266.70	5 84	_ 5		12)
	<u> </u>	8	1261.98	1268.48	5	<u> </u>		\vdash	_
	D	9	1264.82	1270.38	5	5-	confirmed: 1270,27,mg		
	E	110	1762.05	1267.02	5	5-	, , , , , ,		\overline{f}
. Re-confirm weight	s for 10% c	of final wei	ghts and record und	er "Comments"; relative pe	ercent difference (R	PD) between pa	airs of weights should be ≤10% of organism we	ight,	
Data Verified By		_	alpit		Date V		Angust 1/04		

Client EVS Project No EVS Work Order No. Balance Type/Serial N	· -		(Polario Min - 0302-54 0400303 Sactonias	BP 2111)	Test Type Test Species Start Date (Da Sample ID	Attarinops ay 0)	7. d Survey and Crouts suffinis (Topsmelt) Tuly 10 = 04 G Creek -0:	1070x
Sample ID 90 (J/J) 4.5	Rep.	Pan No.	Pan Weight (mg) 1	Final Weight (mg) (pan + biomass) ⁱ	Number of Survivors	Number Weighed	Comments (e.g., confirmation weights, organisms lost in transfer)	Tech. Init.
4.5	_ A	T 11	1266.53	1271,28	5	5		Jus I
ļ	3	12	1271,92	1276.64	5	5-		
	<u></u>	13	1270,40	1275.21	5-	5		
	D	14	1276.78	1282.46	5	5		
<i>y</i>	F	V15	1248.70	1253.83	5	5		
								
9,1	A	T 16	1273, 13	1278.39	5	5		Jus
	B	17	1259.26	1264.29	5	5		
		18	1270.13	1274.65	5	5		
	D_	19	1258.37	1263.78	7-	5		
J	E	1/20	1256.17	1261.85	5	5		
Re-confirm weight	n for 109/							- v -
ace commin weight	a 101 10% (oi iinai wei	gnts and record und	ler "Comments"; relative pe	rcent difference (R	PD) between pa	irs of weights should be ≤10% of organism we	ight.
Data Verified By		Q	alfit		Date V	erified	August 17/04	

Forms/Lab/Datasheets/Larvaifish/DRYWEIGHT.DOC

Client EVS Project No. EVS Work Order No. Balance Type/Serial N		·	(Polaris Min - 0302-54 0400303 Sartonias	BP2111)	Test Type Test Species Start Date (Date Sample ID	Atterinop ny 0)	7. d Summer and Croubs s affinis (Topsmelt) Truly 10 = 04 6 - Creek -0	<u>}</u>	
Sample ID	Rep.	Pan No.	Pan Weight (mg) i	Final Weight (mg) (pan + biomass) i	Number of Survivors	Number Weighed	Comments (e.g., confirmation weights, organisms lost in transfer)	Tec Ini	
18.2	A	T 21	1257.35	1262.90	5	j"		1	
	3	122	1273.94	1278.48	5	5	confirmed: 1278.26. 1	JU)	
	C	23	1277.53	128220	5	5		$\vdash \vdash$	
ļ	D	24	1274.93	1279.50	5	5		+	
<u> </u>	E	V25	1268.36	127294	5	5			
36.3	A	T 26	1269.83	1275.11	<u> </u>	5	confirmed 1274,99 mg	3.3	
	В	27	1269.98	1276.47	5	5	, , , , , , , , , , , ,	1	-
	c	28	1276.05	1280.68	4	4		$\vdash \vdash$	_
\\	D	29	1249,27	1254.33	5	5			
- V	E	1/30	1265.87	1271.96	5	5			,
. Re-confirm weights	s for 10% (of final weig	ghts and record und	er "Comments"; relative pe	rcent difference (R	PD) between pa	tirs of weights should be ≤10% of organism we		
Data Verified By	· · · · · · · · · · · · · · · · · · ·	Gai	1				August 17/04	gnt.	<u>.</u>

Client EVS Project No. EVS Work Order No. Balance Type/Serial N			Polario Min - 0302-54 0400303 Sactonias		Test Type Test Species Start Date (Da Sample ID	<u>Дизтир</u> з у 0)	7. d Summal and Croubs affinis (Topsmell) suly 10-04 Greak-0	70704
Sample ID ぐ。(より)	Rep.	Pan No.	Pan Weight (mg) ¹	Final Weight (mg) (pan + biomass)	Number of Survivors	Number Weighed	Comments (e.g., confirmation weights, organisms lost in transfer)	Tech. Init.
72.6	А	731	1251.66	1256.44	5	5	confirmed: 1256.42 mg ~	5-1
	3	32	1263.20	1269.86	5	5		
	۲_	33	1278,57	1282.63	4	¥		
	D	3 4	1281.19	1285.32	2	ケ		
y	E	V435	1253.46	1258.69	Ψ	¥		
	A B	T 6						
		8						
	D E	10						
. Re-confirm weight	s for 10%		ghts and record und	ler "Comments": relative p	ercent difference (F	PD) between n	airs of weights should be ≤10% of organism we	
Data Verified By			alfif	, vinitive p			August 17/04	eight.

Test: LF-Larval Fish Growth and Survival Test

Test ID: 0400303

Species: AA-Atherinops affinis

Protocol: EPAW 95-EPA West Coast

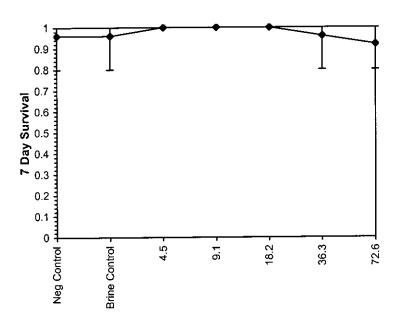
Sample ID: G-Creek-070704

Sample Type: EFF2-Industrial

Start Date: 7/10/2004 End Date: 7/17/2004

Lab ID: BCEVS-EVS Environment Consultants

Pos ID Rep Group Day 0 Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7 Weighed 1 1 Neg Control 5 5 5 5 2 2 Neg Control 5 5 5 3 3 Neg Control 5 4	1272.69 1269.67 1268.14 1269.37 1281.17 1266.7 1268.48 1270.38	1267.67 1265.68 1264.2 1265.14 1275.52 1262.43 1261.98
1 1 Neg Control 5 5 2 2 Neg Control 5 5 3 3 Neg Control 5 4 4 4 4 Neg Control 5 5 5 5 Neg Control 5 5 6 1 Brine Control 5 5 7 2 Brine Control 5 4 8 3 Brine Control 5 5	1271.98 1272.69 1269.67 1268.14 1269.37 1281.17 1266.7 1268.48 1270.38	1265.92 1267.67 1265.68 1264.2 1265.14 1275.52 1262.43 1261.98
2 2 Neg Control 5 5 3 3 Neg Control 5 4 4 4 4 Neg Control 5 5 5 5 Neg Control 5 5 6 1 Brine Control 5 5 7 2 Brine Control 5 4 4 8 3 Brine Control 5 5	1272.69 1269.67 1268.14 1269.37 1281.17 1266.7 1268.48 1270.38	1267.67 1265.68 1264.2 1265.14 1275.52 1262.43 1261.98
3 3 Neg Control 5 4 4 4 4 Neg Control 5 5 5 5 Neg Control 5 5 6 1 Brine Control 5 5 7 2 Brine Control 5 4 4 8 3 Brine Control 5 5	1269.67 1268.14 1269.37 1281.17 1266.7 1268.48 1270.38	1265.68 1264.2 1265.14 1275.52 1262.43 1261.98
4 4 Neg Control 5 5 5 5 Neg Control 5 5 6 1 Brine Control 5 5 7 2 Brine Control 5 4 4 8 3 Brine Control 5 5	1268.14 1269.37 1281.17 1266.7 1268.48 1270.38	1264.2 1265.14 1275.52 1262.43 1261.98
5 5 Neg Control 5 5 6 1 Brine Control 5 5 7 2 Brine Control 5 4 4 8 3 Brine Control 5 5	1269.37 1281.17 1266.7 1268.48 1270.38	1265.14 1275.52 1262.43 1261.98
6 1 Brine Control 5 5 7 2 Brine Control 5 4 4 8 3 Brine Control 5 5	1281.17 1266.7 1268.48 1270.38	1275.52 1262.43 1261.98
7 2 Brine Control 5 4 4 8 3 Brine Control 5 5 5	1266.7 1268.48 1270.38	1262.43 1261.98
8 3 Brine Control 5 5 5	1268.48 1270.38	1261.98
	1270.38	
9 4 Brine Control 5 5		1 4004 00
10 5 Brine Control 5 5 5		1262.05
11 1 4.500 5 5	1271.28	1266.53
12 2 4.500 5 5	1276.64	1271.92
13 3 4.500 5 5		1270.46
14 4 4.500 5 5	1282.46	1276.78
15 5 4.500 5 5	1253.83	1248.7
16 1 9.100 5 5	1278.39	
17 2 9.100 5 5	1264.29	
18 3 9.100 5 5	1274.65	1270.13
19 4 9.100 5 5	1263.78	1258.37
20 5 9.100 5 5	1261.85	1256.17
21 1 18.200 5 5	1262.9	1257.35
22 2 18.200 5 5	1278.48	1273.94
23 3 18.200 5 5	1282.2	1277.53
24 4 18.200 5 5	1279.5	1274.93
25 5 18.200 5 5	1272.94	1268.36
26 1 36.300 5 5	1275.11	1269.83
27 2 36.300 5 5	1276.47	1269.98
28 3 36.300 5 4 4	1280.68	1276.05
29 4 36.300 5 5	1254.33	1249.27
30 5 36.300 5 5	1271.98	1265.87
31 1 72.600 5 5	1256.44	1251.66
32 2 72.600 5 5	1269.86	1263.2
33 3 72.600 5 4 4	1282.63	1278.57
34 4 72.600 5 5	1285.32	1281.29
35 5 72.600 5 4 4	1258.69	1253.46


Comments: Azimuth(Polaris Mine)09-0302-54; 0400303

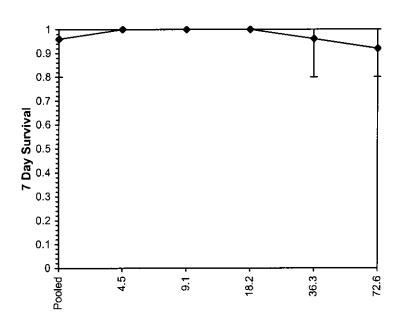
			Lar	val Fish G	rowth and S	urvival Test-7 Day Su	
Start Date:	7/10/2004		Test ID:	400303		Sample ID:	G-Creek-070704
End Date:	7/17/2004					ent Cc Sample Type:	EFF2-Industrial
Sample Date:						past Test Species:	AA-Atherinops affinis
Comments:	Azimuth(P	olaris <u>Mi</u>	ne)09 <u>-030</u>	2-54 ; 0400	303		
Conc-%	1	2	3	4	<u> </u>		· · · · · · · · · · · · · · · · · · ·
Neg Control	1.0000	1.0000	0.8000	1.0000	1.0000		
Brine Control	1.0000	0.8000	1.0000	1.0000	1.0000		
4.5	1.0000	1.0000	1.0000	1.0000	1.0000		
9.1	1.0000	1.0000	1.0000	1.0000	1.0000		
18.2	1.0000	1.0000	1.0000	1.0000	1.0000		
36.3	1.0000	1.0000	0.8000	1.0000	1.0000		
72.6	1.0000	1.0000	0.8000	1.0000	0.8000		

			Tra	ansform:	Arcsin Sc	uare Root	t	Rank	1-Tailed	
Conc-%	Mean	SD	Mean	Min	Max	CV%	N_	Sum	Critical	
Neg Control	0.9600	0.0894	1.2977	1.1071	1.3453	8.207	5			
Brine Control	0.9600	0.0894	1.2977	1.1071	1.3453	8.207	5			
4.5	1.0000	0.0000	1.3453	1.3453	1.3453	0.000	5	30.00	16.00	
9.1	1.0000	0.0000	1.3453	1.3453	1.3453	0.000	5	30.00	16.00	
18.2	1.0000	0.0000	1.3453	1.3453	1.3453	0.000	5	30.00	16.00	
36.3	0.9600	0.0894	1.2977	1.1071	1.3453	8.207	5	27.50	16.00	
72.6	0.9200	0.1095	1.2500	1.1071	1.3453	10.434	5	25.00	16.00	

Auxiliary Tests		·	··		Statistic	Critical	Skew	Kurt
Shapiro-Wilk's Test indicates non	-normal dis	stribution (p <= 0.0	1)	0.76012	0.9	-1.4778	1.97749
Equality of variance cannot be control means are not signific		rent (p = 1	.00)		0	2.30601		
Hypothesis Test (1-tail, 0.05)	NOEC	LOEC	ChV	TÜ		e		
Steel's Many-One Rank Test	72.6	>72.6		1.37741				

Dose-Response Plot

Statistical comparisons were aginst the Neg Control only


Reviewed by: Qalf 4
August 18/04

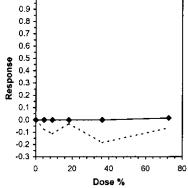
			La	rval Fish C	rowth and Sui	rvival Test-7 Day Su	ırvival
Start Date:	7/10/2004		Test ID:	400303		Sample ID:	G-Creek-070704
End Date:	7/17/2004		Lab ID:	BCEVS-E	VS Environmen	t Cc Sample Type:	EFF2-Industrial
Sample Date:			Protocol:	EPAW 95-	EPA West Coa	st Test Species:	AA-Atherinops affinis
Comments:	Azimuth(F	Polaris Mir	ne)09-030	02-54; 0400	303		
Conc-%	1	2	3	4	5		
Neg Control	1.0000	1.0000	0.8000	1.0000	1.0000		
Brine Control	1.0000	0.8000	1.0000	1.0000	1.0000		
4.5	1.0000	1.0000	1.0000	1.0000	1.0000		
9.1	1.0000	1.0000	1.0000	1.0000	1.0000		
18.2	1.0000	1.0000	1.0000	1.0000	1.0000		
36.3	1.0000	1.0000	0.8000	1.0000	1.0000		
72.6	1.0000	1.0000	0.8000	1.0000	0.8000		

			Tra	ansform:	Arcsin Sc	uare Roo	Rank	1-Tailed	
Conc-%	Mean	SD	Mean	Min	Max	CV%	N	Sum	Critical
Pooled	0.9600	0.0843	1.2977	1.1071	1.3453	7.738	10		
4.5	1.0000	0.0000	1.3453	1.3453	1.3453	0.000	5	45.00	21.00
9.1	1.0000	0.0000	1.3453	1.3453	1.3453	0.000	5	45.00	21.00
18.2	1.0000	0.0000	1.3453	1.3453	1.3453	0.000	5	45.00	21.00
36.3	0.9600	0.0894	1.2977	1.1071	1.3453	8.207	5	40.00	21.00
72.6	0.9200	0.1095	1.2500	1.1071	1.3453	10.434	5	35.00	21.00

Auxiliary Tests			****		Statistic	Critical	Skew	Kurt
Shapiro-Wilk's Test indicates nor	-normal dis	stribution (p <= 0.0°)	0.74527	0.91	-1.5211	1.67424
Equality of variance cannot be co	nfirmed							
The control means are not signific	cantly differ	rent(p = 1)	.00)		0	2.30601		
Hypothesis Test (1-tail, 0.05)	NOEC	LOEC	ChV	TU				
Wilcoxon Rank Sum Test	72.6	>72.6		1.37741				

Dose-Response Plot

Statistical comparisons were against the Pooled Controls


Reviewed by Jalh to the suit 18/04

			Larv	al Fish Gro	wth and S	urvival	Test-7 Day Grov	vth (US)
Start Date:	7/10/2004		Test ID:	400303			Sample ID:	G-Creek-070704
End Date:	7/17/2004		Lab ID:	BCEVS-E	VS Environ	ment Co	: Sample Type:	EFF2-Industrial
Sample Date:			Protocol:	EPAW 95-	EPA West	Coast	Test Species:	AA-Atherinops affinis
Comments:	Azimuth(P	olaris Mi	ne)09-030	2-54; 0400	303			
Conc-%	1	2	3	4	5		•	
Neg Control	1.2120	1.0040	0.7980	0.7880	0.8460			
Brine Control	1.1300	0.8540	1.3000	1.1120	0.9940			
4.5	0.9500	0.9440	0.9500	1.1360	1.0260			
9.1	1.0520	1.0060	0.9040	1.0820	1.1360			
18.2	1.1100	0.9080	0.9340	0.9140	0.9160			
36.3	1.0560	1.2980	0.9260	1.0120	1.2220	/		
72.6	0.9560	1.3320	0.8120	0.8060	1.0460 -			

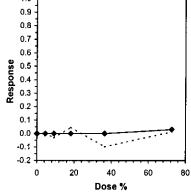

				Transforr	n: Untran	sformed			1-Tailed		Isotonic	
Conc-%	Mean	SD	Mean	Min	Max	CV%	N	t-Stat	Critical	MSD	Mean	N-Mean
Neg Control	0.9296	0.1800	0.9296	0.7880	1.2120	19.366	5				1.0052	1.0000
Brine Control	1.0780	0.1661	1.0780	0.8540	1.3000	15.410	5					
4.5	1.0012	0.0826	1.0012	0.9440	1.1360	8.252	5	-0.786	2.360	0.2151	1.0052	1.0000
9.1	1.0360	0.0876	1.0360	0.9040	1.1360	8.456	5	-1.168	2.360	0.2151	1.0052	1,0000
18.2	0.9564	0.0864	0.9564	0.9080	1.1100	9.035	5	-0.294	2.360	0.2151	1.0052	1.0000
36.3	1.1028	0.1533	1.1028	0.9260	1.2980	13.901	5	-1.901	2.360	0.2151	1.0052	1.0000
72.6	0.9904	0.2161	0.9904	0.8060	1.3320	21.819	5	-0.667	2.360	0.2151	0.9904	0.9853

Auxiliary Tests					Statistic		Critical		Skew	Kurt
Shapiro-Wilk's Test indicates norr	nal distribu	tion (p > 0	0.01)		0.93465		0.9		0.85573	0.53805
Bartlett's Test indicates equal vari	ances (p =	0.27)			6.38263		15.0863			
The control means are not signific	antly differ	ent $(p = 0)$	21)		1.35465		2.30601			
Hypothesis Test (1-tail, 0.05)	NOEC	LOEC	ChV	TU	MSDu	MSDp	MSB	MSE	F-Prob	df
Dunnett's Test	72.6	>72.6		1.37741	0.21507	0.23136	0.01877	0.02076	0.49467	5, 24

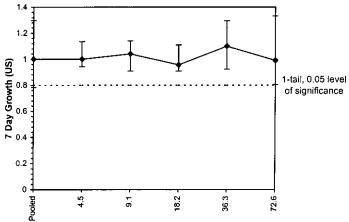
Linear Interpolation (200 Resamples) % >72.6 >72.6 Point IC05 \$D 95% CL(Exp) Skew IC10 >72.6 >72.6 >72.6 >72.6 IC15 1.0 IC20 IC25 0.9 0.8 IC40 >72.6 0.7 IC50 >72.6 %(v/v)

Dose-Response Plot

Statistical comparisons were against the Neg Control only


Reviewed by Galfity
Angust 18/04

			Larv	al Fish Gro	wth and Su	ırvival Test-7 Day	Growth (US)
Start Date:	7/10/2004		Test ID:	400303		Sample ID:	G-Creek-070704
End Date:	7/17/2004		Lab ID:	BCEVS-E	VS Environm	nent Ct Sample Typ	oe: EFF2-Industrial
Sample Date:			Protocol:	EPAW 95	EPA West C	Coast Test Specie	es: AA-Atherinops affinis
Comments:	Azimuth(P	olaris M	ine)09-03(02-54; 0400	303		
Conc-%	1	2	3	4	5		
Neg Control	1,2120	1.0040	0.7980	0.7880	0.8460		
Brine Control	1.1300	0.8540	1.3000	1.1120	0.9940		
4.5	0.9500	0.9440	0.9500	1.1360	1.0260		
9.1	1.0520	1.0060	0.9040	1.0820	1.1360		
18.2	1.1100	0.9080	0.9340	0.9140	0.9160		
36.3	1.0560	1.2980	0.9260	1.0120	1.2220		
72.6	0.9560	1.3320	0.8120	0.8060	1.0460		


				Transforr	n: Untran	sformed	•		1-Tailed		Isot	onic
Conc-%	Mean	SD	Mean	Min	Max	CV%	N	t-Stat	Critical	MSD	Mean	N-Mean
Pooled	1.0038	0.1811	1.0038	0.7880	1.3000	18.038	10				1.0200	1.0000
4.5	1.0012	0.0826	1.0012	0.9440	1.1360	8.252	5	0.031	2.462	0.2040	1.0200	1.0000
9.1	1.0360	0.0876	1.0360	0.9040	1.1360	8.456	5	-0.389	2.462	0.2040	1.0200	1.0000
18.2	0.9564	0.0864	0.9564	0.9080	1.1100	9.035	5	0.572	2.462	0.2040	1.0200	1.0000
36.3	1.1028	0.1533	1.1028	0.9260	1.2980	13.901	5	-1.195	2.462	0.2040	1.0200	1.0000
72.6	0.9904	0.2161	0.9904	0.8060	1.3320	21.819	5	0.162	2.462	0.2040	0.9904	0.9709

Auxiliary Tests					Statistic		Critical		Skew	Kurt
Shapiro-Wilk's Test indicates non	mal distribu	ıtion (p > (0.01)		0.95473		0.91		0.53946	-0.0716
Bartlett's Test indicates equal var	iances (p =	0.23)			6.8891		15.0863			
The control means are not signific	cantly differ	rent(p = 0)	.21)		1.35465		2.30601			
Hypothesis Test (1-tail, 0.05)	NOEC	LOEC	ChV	TU	MSDu	MŞDp	MSB	MSE	F-Prob	df
Bonferroni t Test	72.6	>72.6		1.37741	0.20401	0.20324	0.01261	0.02289	0.73615	5, 29

			Line	ear Interpolation	ı (200 Resamples)	
Point	%	SD	95% CL(Exp)	Skew		
IC05	>72.6					
IC10	>72.6					
IC15	>72.6				1.0	
IC20	>72.6				t e,o	
IC25	>72.6				0.8	l l
IC40	>72.6				- 4	
IC50	>72.6		%(v/v))	0.7	
					0.6 -	

Dose-Response Plot

Statistical comparisons were against the Pooled controls

Reviewed by Jaly 6

EVS ENVIRONMENT CONSULTANTS 7-d Atherinops affinis SURVIVAL AND GROWTH TEST DATA SUMMARY

Client AZINOTH (POI EVS Project No. 09.03		EVS Analysts KA	MG, AKN, AND,1	4xF, JxS
EVS Work Order No. 6		Test Initiation Date	10. Jul-05	1
	Initial Sample		Refresh Samples	
Sample	Day 0	Day 2		Day 4
Identification	Ch PEFTER (OH-Ch	- (100-		_
Amount Received Paragas	1 2 14	-		
Date Collected Publication	15. MAR. 04	_		
Date Received		_		
Temperature (°C)	-	-		1
pН	1	_		-
DO (mg/L)	•	-		-
Conductivity (µmhos/cm)	-	_		
Salinity (ppt)	-			
Ammonia (mg/L N)		-		_
Chlorine (mg/L Cl)	-	_		_
Other	-	_		_
Temperature (°C) 20.0 pH 3.0 Dissolved Oxygen (mg/L) Salinity TEST CONDITIONS Temperature Range (°C) 19 pH Range 7.8-3.0 Dissolved Oxygen Range (mg/Salinity (ppt) 23-3.0 Photoperiod (L:D h) 16.8 Aeration Provided? N	7.5-20.5 L) 64-7.6	Age (on Day 0) Reference Toxicant Current Reference Toxic Reference Toxic 7-d survival LC5 7-d growth IC50 Reference Toxicant	Toxicant Result (incl. ant Test Date 15-60, 144 while the 144 while the 144 while the 135 mail to 135 mail to 145 mail to 135 mail to 145	95% CL) - Till-04 73 - 243 f (139 (119 -169) an ± 2SD) and CV
Federate Cons	NOEC LOEC	LC50 (95% CL)	IC50 (95% CL)	IC25 (95% CL)
Endpoint Conc. Units	INOEC LUEC	LC30 (5370 CL)	1030 (3370 CL)	1023 (9370 CL)
Survival 19/2 Cu	160 180	161 (139-188)		
Growth	100 180		147(119-169)	101(63-133)
Other	_			
Data Verified By	Qulp't	Date Verified	Angris	L 17/04

EVS ENVIRONMENT CONSULTANTS 7-d Atherinops affinis SURVIVAL AND GROWTH TEST – WATER QUALITY DATA

Client Az	·****	n (1	POLAR	s M.	~£\		Sample	D .		<u>Cu </u>	Lector			
EVS Project No.						_	Test In	itiation	Date/Ti		10. Jul-04 / 17151			
EVS Work Order I							Source	/Date R	teceive	i	LBS	108	- Z VL -	-८५
				<u>:</u>	.it.				<u> </u>	- -				
				,		Te	emperat	ure (°C)					
Concentration (MI)	0		1	New	2 old	أواسأ	3 51d	New	4 old		5		6	7
CTL	20,0	200	2010	2-1	70.0	20.0	205	w -	20.0	20.0	20:5	20, €	20.5	ಬ್ರಂ
32	30.0	20.D	195	2>2	20.0	200	23.5	200	20.0	20,5	205	LU	10,5	વિવ
S _o	20.0	20.O	195	20,0	10.0		n=5	ديدنا. د	100 E	12,0	20,5	10.0	20.3	ν_{i}
100	à0.0	20.0	14.5	25,00	20,0		1	20	W	20,00	205	10.0	100	Ç43
180	<i>3</i> 0.0	200	19.5	20,	20.0	20,0	£	200	20.3	2,0	105	₩ <	70	20,5
390	20.0	20.0	195	20.0	20.0	20 5	205	p . ϵ	20.3	20,0	20.5	105	20,0	20.5
Tech. Initials	Vonle	Arsi	1	~	Jus	313	A							
	<u>. </u>		<u>'</u>			-				*.:				
Componentian						1.	pI	I		ı		Ţ.		
Concentration Cycle Cu	0		1	New:	20101	Now:	3 sid	New	4		5	(6	7
CTL	8.0	80	7.9	<i>ሕ</i> ፡ን	7.8	7.9	78	79	74	0,3	39	B.0	1.9	73
	80	80	7.9	7,3	7.8	ゴリ	78	43	4.9	8,0	7.1	30	29	79
56	8.0	80	7.8	ጉ ኖ	7.8	7.9	<u>ሕ</u> ኝ	79	7.9	8,0	7.9	ô	19	ત્રેલ
100	78.0	8.0	7.8	79	7.8	7,1	7,9	7.9	3.9	8.0	 ሕና	8.0	4.9	7.9
136	8.0	80	78	7.3	78	77.7	71	79	79	7,0	29	8.0	7.9	79
390			7.9	79	7.8	7,9	37	79	7.9	F ,3	£.0	8.0	7.9	7.3
Tech. Initials	4.1	AL	<u> </u>	~	AXF/~	7	<u>1</u>	J4)	12/	~		70	142	^
WQ Instruments U	Ised:	Tem	n. C	ú	——————————————————————————————————————	. AA		p	Н 🕶 .	4-03	53e ì			
Comments	,500,	10111	· CA	-، Hو	\r_1E	- <u></u>				<u>,</u>				
								<u> </u>	٦,			<u>/</u>	<u>-</u>	
Test Set Up By _	V-6			Data V	/erified	Ву		alp	\mathcal{H}^{D}	ate Veri	fied	Ang	mt 1	7/04
							-	1						

EVS ENVIRONMENT CONSULTANTS 7-d Atherinops affinis SURVIVAL AND GROWTH TEST – WATER QUALITY DATA

Client Az.	mu Th	1 (POLAR	15_N	(NE)	L	Sample	ID _	<u>ر</u>	<u>~ (2</u>	4FTC	<u>-</u>		
EVS Project No.						_	Test In	itiation l	Date/Ti	me _	10.3	<u> </u>	1/13	fish
EVS Work Order N	lo	GYC	<u>0303</u>			-	Source	Date R	eceived		485	/ ୧୫-	Jul-	<u>୪५</u>
				<u></u>		_	Salinity	(ppt)				<u></u>	=	_
Concentration	0		1		2		3	4		5		6	7	7
cr	28	,	30		28	2	8	23		28		23	29	
32	3,8		<i>3</i> 0		28	7	18	28		28		2 <u>ž</u>	29	
56	98		<u>30</u>		18	ı	8	23		28		23	29	
100	38	<u> </u>	30		2 8	1 2	-8	28		28		28	29	
180	୬୪	}	30		28	2	<u> </u>	23		r\$		28	19	
350	<i>ე</i> 8	,	30		28	2	S	28		28		28	25	
												·		
Tech. Initials	4-	i	AW		An	^	·	1+1		<u>^</u>		Jus	ļ.	
	-			:	<u> </u>				/T \				<u> </u>	
Concentration								ygen (m			5		6	7
Chyl- Cu	0		1	<u> </u>	2		3 	7,00			1	 :	T	7 0
CTL	7.6	7.6	7.5	7.5				7.6	11	75	70	76	18	-
35	7.6	7.6	7.5	25	64		6.67	7.6	<i>ll</i>	75	7.0	7.6		67
56	7.6	7.6	+-	25		7,4	6.5	7.6	6.1	75	70	7.6	0.6	6,9
100	7.6	76	+	7,5	66		الم. ق	7 6	t.t	35	ار ا	7.6	6.7	6.7
180	7.6	76	17.4	75	6.8	7.4	64	7.6	$t \cdot \ell$	7-6	70	7.6	6.7	 ,
336	7.6	7.6	7.0	7,5	6.9	<u>₹</u>	67	7-6	1.6	みる	6.7	7.6	6.7	6.6
	<u> </u>		<u> </u>	<u></u>				<u> </u>	<u> </u>	,	<u> </u>	<u> </u>	<u> </u> 	
Tech. Initials	Konto	A~	· 1/	سر	AXF	_ ~	545	11)	34)	<u>_~</u>	<u></u>	14)	10	
WQ Instruments U	Jsed:	Salin	iity <u>u -</u>	A-030	306_			D:	O <u>II-</u>	A-3	/ II -	A-01	11202	
									<u>.</u>					
Test Set Up By _	*	-V_		Data `	Verified	Ву	Qu	chit	1 D	ate Ver	rified	Ang	just_	17/0

EVS ENVIRONMENT CONSULTANTS 7-d Atherinops affinis TOXICITY TEST – DAILY SURVIVAL DATA

Client Az.	morn (Pareis NINE)	Sample ID CuleFTGX	
EVS Project No.	42-6368-98	Test Species/Batch A. AFFIMS	16.29.04
EVS Work Order No.	<u>0400303</u>	Test Initiation Date/Time 10- Toc	-04/1745h
		No. of Organisms/Volume	acchi

		Pan		Numl	ber of Si	ırvivors	– Day o	f Test		
Concentration	Rep.	No.	1	2	3	4	5	6	7	Comments
J	A	T36	5	()	<u> </u>	j.,	ξ.	5	1	
	В	T57	5	1	5	Σ	5	5	ζ	
CTL	С	T38	5	3	î	5	5	5	\	
	D	T39	5	5	5	5	5) Î	5	
	Е	T40	5	5	5	5	5	4	4	
	A	T41	5	5	5	\ <u>`</u>	Š	٢	〈	
	В	T42	5_	5	5	Σ.	<i>y</i> -		5	
32	С	T43	5	5	5	Ś	5	5	,	
	D	T44	5	5	5	5	5	7	,	
	Е	T45	5	5	5	λ	3	5	ζ	
	A	T46	5	5	5	Σ	5	ز		
	В	T47	5	5	5	Σ	5	ý	5	
28	С	T48	5	ζ_	5),	5)	``	
	D	749	5	5	5	Ÿ	2	ز	(
	Е	T50	5	5	5	5	5	5	, í	
	A	T51	<u>></u>	5	-5_	4	4	My 23	¥3	
	В	T 52	5	ς .	7	7)	5	5	
loo	С	T53	5	5	ה ב	5	7	5	5	
	D	T54	5	ζ,	H	4	4	-34	84	
	Е	T55	5	5,	5	5	7	r	5	
Technician In	itials	7~)	AL	· 100/	J. 120	Ju>	J&)	120	^	

Sample Description	LIZAR COLOURIESS.	ODOUCLESS.		
Data Verified By	auch 4	Date Verified	Jugust	17/04
<u></u>		_		1 /

EVS ENVIRONMENT CONSULTANTS 7-d Atherinops affinis TOXICITY TEST – DAILY SURVIVAL DATA

Client EVS Project No. EVS Work Orde			<u>2.5</u> 2	1		To	est Initia	es/Batcl tion Dat		3
		Pan		Num	ber of S	urvivors	s – Day c	of Test		_
Concentration	Rep.	No.	1	2	3	4	5	6	7	Comments
.7	A	TSt	5	5	4	4	3	3	3	
	В	T57	5	3	r	,	1	America.	i	
186	С	T5ÿ	5	4	2	2	2	2	2	
	D	T59	5	3	2	1	1	ş	1	
•	E	760	4	3	3	2	1	2	2	
	A	T61	1	Ö	_				-	
	В	762	3	3	3	2	2	2	2	
320	C	763	2	2	1	0			neth & cream # told no comment	
30-0	D	T64	(1	0					
	Е	T65	3	3	.1	. 0		and the second s		
	A									
	В									
	С									
	D									
	Е									
	Α	· · · · · · · · · · · · · · · · · · ·								
-	В									
	С									
	D									
	Е									
Technician Ini	tials	745	AM	AVE	~	ومد 1	12/	つく)	~	
ample Description	on	YEAR.		′						Aug. 4 17/104

ClientEVS Project No	_ Az	inuth	(Polaris Min	(145	Test Type		7. d Survey and Court	ζ,
EVS Project No.		09	- 0302-54		Test Species	Arterinops	attinis (Topsmelt)	
EVS Work Order No.			0400303		Start Date (Da	ıy 0)	July 10 = 94	
Balance Type/Serial N				BP2111)	Sample ID		7. d Survey and Growth affinis (Topsmell) Tidy 10 - 04 C4 Refto	+
Sample ID	Rep.	Pan No.	Pan Weight (mg) 1	Final Weight (mg) (pan + biomass)	Number of Survivors	Number Weighed	Comments (e.g., confirmation weights, organisms lost in transfer)	Tech.
13,20	A	T61	1255.61		0	O		723
	ß	162	1256.09	1257.79	2	2		
	e	63	1268.85		O	0		
1 ,	P	64	1252.87		Ô	0		
<i>V</i>	E	165	1270,02	-	0	Ö		
		ļ		-				
180	A _	Táb	1252.98	1255.06	3	3		224)
	B	57	1247.43	1248.02	1	1		
		58	1270.37	1272.49	2	2	confirmed 1272.56 mg	+
	D	59	1280.94	1281.59	1	1		
<i>y</i>	Ē	160	1280.02	1287.095	2	2		
. Re-confirm weight	s for 10%	of final wei	ights and record und	er "Comments": relative ne	ercent difference (R	PD) haturaan m	airs of weights should be ≤10% of organism we	
			•	omments , relative po	siconi difference (N	a D) between pa	airs of weights should be ≤10% of organism we	eight.
Data Verified By		9	alfif		Date V	erified	Angust 17/04	

ClientEVS Project No	Az	muth 1	(Polaris Min	(معر	Test Type		7. d Sus	own and Growth	٨	
EVS Project No.		09	- 0302-54		Test Species	Athernops	attinis (To	a smelt !		
EVS Work Order No.			0400303		Start Date (Da	ıy 0)		Tuly 10 = 04		_
Balance Type/Serial N	umber	,	Sartonias	BP2111)	Sample ID			psmell: Tily 10 = 04 Cu Refto	<u>+</u>	
Sample ID 49/4 Cu	Rep.	Pan No.	Pan Weight (mg) ¹	Final Weight (mg) (pan + biomass)	Number of Survivors	Number Weighed	Comments weights, organ	(e.g., confirmation nisms lost in transfer)	1	ech.
100	A	Tsi	1272.54	1275.53	₹33				12	<u>-</u>
	<u>B</u>	152	1242,48	1247.54	5	5				
	e	53	1265.30	1269.6 TC	5	5				
 	P	54	1240,38	1243.48	4	4			П	
	E	155	1264.67	1269.25	5	5				,
56	<u>A</u>	T46	1286.39	1291.02	5		العدر والمجاوع	128 7095 mg	1/2	
	B	147	1271.46	1276.05	5	~				
		48	1238,91	1243.78	5	5			П	
	<u>D</u>	49	1262,66	1267.53	5	ک				
V	Ē	150	1256.18	1261.80	_5					,
Re-confirm weight	s for 109/	of final								
r. Re-commin weight	5 101 1070 (oi iinai weij	gnis and record und	ler "Comments"; relative pe	rcent difference (R	PD) between pa	airs of weights shou	ild be ≤10% of organism we	ight.	
Data Verified By	_	(Jal ju		Date V	erified	August	17/04		

Client EVS Project No. EVS Work Order No. Balance Type/Serial N		ଦ୍ୟ		BP 2111)	Test Type Test Species Start Date (Da Sample ID	Atherinops y 0)	7.d Summer and Crouth affinis (Topsmell) uly 10-04 La Refto	,
Sample ID 49/4 (4	Rep.	Pan No.	Pan Weight (mg) 1	Final Weight (mg) (pan + biomass) ¹	Number of Survivors	Number Weighed	Comments (e.g., confirmation weights, organisms lost in transfer)	Tech. Init.
32	A	T 71	1280.70	1283.6971	5	٦.		145
	ß	142	1256.85	1261.03	5	5		
	E	143	1272.55	127695	5	5		
	P	44	1278.22	1284.04	5-	.5		
y	E	145	1273.94	1280.26	5	٢		V
itl	A	T36	1272.84	1277.49	5	5		رندر
	B	137	1275.33	1280.65	7	7.	confirmed: 1230 57 mg V	
	<u></u>	138	1269,27	1274.85	5	5		
	D	39	1236.88	1241.99	2	5		
V	Ē	140	1264.45	1269.15	4	4		$ \downarrow \downarrow $
	2 100/				1100			
Data Verified By	is for 10%	7	al hit	er "Comments"; relative po		•	airs of weights should be ≤10% of organism we Angust 17/04	eight.

Test: LF-Larval Fish Growth and Survival Test

Species: AA-Atherinops affinis Sample ID: REF-Ref Toxicant

Start Date: 7/10/2004

End Date: 7/17/2004

Test ID: RTAACu36

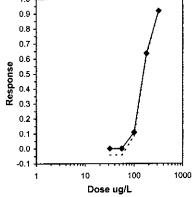
Protocol: EPAW 95-EPA West Coast

Sample Type: CU-Copper

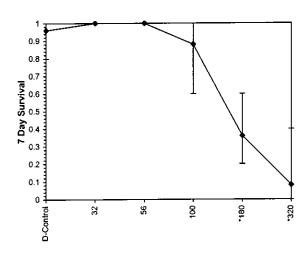
Lab ID: BCEVS-EVS Environment Consultants

Jolaiti	Date.	7/10/2	UU4	u Date.	1111112	70 T			<u> </u>		<u> </u>	Environment oc	-	
		Ĩ		_		·						No. Fish	Total	Tare
Pos	D	Rep	Group	Day 0	Day 1	Day 2	Day 3	Day 4	Day 5	Day 6	Day 7	Weighed	Wgt(mg)	Wgt(mg)
	1	1	D-Control	5							5	5	1277.49	1272.84
	2	2	D-Control	5							5	5	1280.65	1275.33
	3	3	D-Control	5							5	5	1274.85	1269.27
	4	4	D-Control	5							5	5	1241.99	1236.88
	5	5	D-Control	5							4	4	1269.15	1264.45
	6	1	32.000	5							5	5	1283.71	1280.7
	7	2	32.000	5							5	5	1261.03	1256.85
	8	3	32.000	5							5	5	1276.95	1272.95
	9	4	32.000	5							5	5	1284.04	1278.22
	10	5	32.000	5							5	5	1280.06	1273.94
	11	1	56.000	5							5	_5	1291.02	1286.39
	12	2	56.000	5					- ::		5	5	1276.05	1271.46
	13	3	56.000	5							5	5	1243.78	1238.91
	14	4	56.000	5							5	5	1267.58	1262.66
	15	5	56.000	5							5	5	1261.8	1256.18
	16	1	100.000	5							3	3	1275.53	1272.54
	17	2	100.000	5							5	5	1247.54	1242.48
	18	3	100.000	5							5	5	1269.68	1265.3
	19	4	100.000	5							4	4	1243.48	1240.38
	20	5	100.000	5						l	5	5	1269.25	1264.67
	21	1	180.000	5							3	3		1252.98
	22	2	180.000	5							1	1	1248.02	1247.43
	23	3	180.000	5							2	2	1272.49	1270.37
	24	4	180.000	5							1	1	1281.59	1280.94
	25	5	180.000	5							2	2	1282.05	1280.02
	26	1	320.000	5							0	0		1255.61
	27	2	320.000	5							2	2	1257.79	1256.09
	28	3	320.000	5							0	0	0	1268.85
	29	4	320.000	5							0	0		1252.87
	30	5	320.000	5							0	0	0	1270.02

Comments: 09-0302-54, 0400303


Reviewed by: Galfit

			Lar	val Fish G	rowth and Su	ırvival Test-7 Day Su	rvival
Start Date: End Date: Sample Date:	7/10/2004 7/17/2004		Test ID: Lab ID:	RTAACu3 BCEVS-E	6 VS Environmer	Sample ID: nt CcSample Type: ast Test Species:	REF-Ref Toxicant CU-Copper AA-Atherinops affinis
Comments:	09-0302-	54, 04 <u>00</u> 3	303				
Conc-ug/L	1	2	3	4	5		
D-Control	1.0000	1.0000	1.0000	1.0000	0.8000		
32	1.0000	1.0000	1.0000	1,0000	1.0000		
56	1.0000	1.0000	1.0000	1.0000	1.0000		
100	0.6000	1.0000	1.0000	0.8000	1.0000		
180	0.6000	0.2000	0.4000	0.2000	0.4000		
320	0.0000	0.4000	0.0000	0.0000	0.0000		

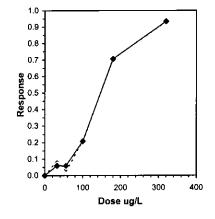

			Tra	ansform:	Arcsin Sc	quare Root	t .	Rank	1-Tailed	Number	Total
Conc-ug/L	Mean	SD	Mean	Min	Max	CV%	N_	Sum	Criti <u>cal</u>	Resp	Number
D-Control	0.9600	0.0894	1.2977	1.1071	1.3453	8.207	5			1	25
32	1.0000	0.0000	1.3453	1.3453	1.3453	0.000	5	30.00	16.00	0	25
56	1.0000	0.0000	1.3453	1.3453	1.3453	0.000	5	30.00	16.00	0	25
100	0.8800	0.1789	1.2058	0.8861	1.3453	17.113	5	24.50	16.00	3	25
*180	0.3600	0.1673	0.6366	0.4636	0.8861	27.958	5	15.00	16.00	16	25
*320	0.0800	0.1789	0.3174	0.2255	0.6847	64.711	5	15,00	16.00	23	25

Auxiliary Tests					Statistic	Critical	Skew	Kurt
Shapiro-Wilk's Test indicates nor	mal distribu	ition (p >	0.01)		0.93876	0.9	0.31435	1.7423
Equality of variance cannot be co	nfirmed				1.10			
Hypothesis Test (1-tail, 0.05)	NOEC	LOEC	ChV	TÙ				
Steel's Many-One Rank Test	100	180	134.164					

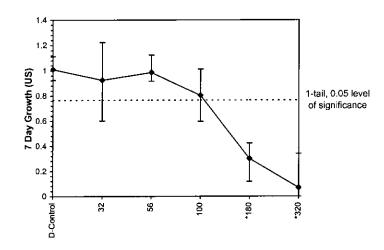
	•••		·	Trimmed Spearman-Karber	
Trim Level	EC50	95%	CL		
0.0%					
5.0%					
10.0%	161.11	138.26	187.73	1.0	
20.0%	158.05	132.14	189.04	0.9	,
Auto-8.1%	161.46	138.66	188.00 ug/L Cu	4	/
				- 0.8 -	/
				1	<i>f</i> 1

Dose-Response Plot

Reviewed by Jalf A Angust 17/09


			Larv	al Fish Gro	owth and Surviv	al Test-7 Day Grov	vth (US)
Start Date:	7/10/2004		Test ID:	RTAACu3	6	Sample (D:	REF-Ref Toxicant
End Date:	7/17/2004		Lab ID:	BCEVS-E	VS Environment	Cr Sample Type:	CU-Copper
Sample Date:			Protocol:	EPAW 95	-EPA West Coas	t Test Species:	AA-Atherinops affinis
Comments:	09-0302-5	54, 04003	303			· · · · · · · · · · · · · · · · · · ·	
Conc-ug/L	1	2	3	4	5		
D-Control	0.9300	1.0640	1.1160	1.0220	0.9400+		
32	0.6020	0.8360	0.8000	1.1640	1.2240		
56	0.9260	0.9180	0.9740	0.9840	1.1240		
100	0.5980	1.0120	0.8760	0.6200	0.9160		
180	0.4160	0.1180	0.4240	0.1300	0.4060		
320	0.0000	0.3400	0.0000	0.0000	0.0000		

				Transforn	n: Untrar	sformed		1-Tailed	Isotonic			
Conc-ug/L	Mean	SD	Mean	Min	Max	CV%	N	t-Stat	Critical	MSD	Mean	N-Mean
D-Control	1.0144	0.0798	1.0144	0.9300	1.1160	7.871	5				1.0144	1.0000
32	0.9252	0.2619	0.9252	0.6020	1.2240	28.309	5	0.851	2.360	0.2474	0.9552	0.9416
56	0.9852	0.0828	0.9852	0.9180	1.1240	8.403	5	0.279	2.360	0.2474	0.9552	0.9416
100	0.8044	0.1853	0.8044	0.5980	1.0120	23.031	5	2.004	2.360	0.2474	0.8044	0.7930
*180	0.2988	0.1598	0.2988	0.1180	0.4240	53,465	5	6.827	2.360	0.2474	0.2988	0.2946
*320	0.0680	0.1521	0.0680	0.0000	0.3400	223.607	5	9.029	2.360	0.2474	0,0680	0.0670


Auxiliary Tests	•			***	Statistic		Critical		Skew	Kurt
Shapiro-Wilk's Test indicates non		0.97039		0.9		0.15928	-0.3767			
Bartlett's Test indicates equal vari		7.13123		15.0863						
Hypothesis Test (1-tail, 0.05)	NOEC	LOEC	ChV	TU	MSDu	MSDp	MSB	MSE	F-Prob	df
Dunnett's Test	100	180	134,164		0.24736	0.24385	0.80038	0.02746	1.9E-09	5, 24

				ion (200 Resamples)		
Point	ug/L	SD	95% CL	.(Exp)	Skew	
IC05*	27.42	22.74	0.00	93,30	0.4541	
IC10	68.32	24.38	0.00	122.43	-0.2058	
IC15	83.12	21.17	0.00	125.48	-0.8306	1.0
IC20	97.92	15.93	48.64	127.61	-0.9650	0.9
IC25	106.90	12.35	63.02	133.27	-0.3411	v. s]
IC40	130.97	9.49	95.73	153.51	-0.4555	0.8 -
IC50	147.03	8.36	119.23	169.15	-0.1133	0.7

* indicates IC estimate less than the lowest concentration

Dose-Response Plot

Reviewed by july 4 August 17/04

APPENDIX B

Chain-of-Custody Form

Collection Date Collec	Client Name: 7 Address: 1	ZIMUTI Tech (a. Sag Zoco (milberte	H (POLARIS) MICICO Client C Phone: Y. B (Fax:	250	SHAI	N-OF -e 1 	-cus	5TODY/TE ~ cl 105	Ship to:	EQUE	ST F	ORM			EVS consultants 195 Pemberton Avenue North Vancouver, BC Canada V7P 2R4 Tel: (604) 986-4331 Fax: (604) 662-8548 www.evsenvironment.com	
### 17 17 17 17 17 17 17 1		UIA BER			Den	1715	(Shipping Date:	
1 1 1 1 1 1 1 1 1 1	Collection Date	Time	Sample Identification			Material Safety Data Sheet Attached? (✔)	Sample Collection Method G = grab; C = composite	Number of Sample Containers x Volume of Sample Container (i.e., 1 x 20 L)	<u>á</u>	cibbo Listo Rainbow Trait	elt /	magna. 3h LCSD			4 Sample Notes	
PO/Reference No.:			· · · - · · ·													
PO/Reference No.:	67/jul/70	~cq 72:00	Co-Geck -aute -07	0704	Ł		C	Z+70L		X		×				
Project Title:	07/jul/700	4 77:60	G-Creck_sits_0	70764	É		G	3×zoL			×			,		
Project Title:																
Project Title: Results Needed By: Date: 2) Released by: Date: Shaded area to be completed by EVS Laboratory upon sample receipt.																
Results Needed By: Date: 2) Released by: Date: Shaded area to be completed by EVS Laboratory upon sample receipt.	PO/Reference No	D.:						Comments/Inst	tructions:							
Company: Time: Company: Time: EVS Project No. 09-0302-54 Courier name: Courier name: EVS Work Order (WO) No. 0400302 303 304 307 1) Received: JGK Date: 16 JGK 2) Received by: Date: Condition Upon Receipt GOD EVS Mork Order (WO) No. FBH 105M- RB1 0APH	1 -	Зу:										·				
1) Received: TGK Date: 10 Jul. 04 2) Received by: Date: Condition Upon Receipt GOOD FOH TOPSIN - RBT DAPH.	Company:		Time: Company:									EVS F	EVS Project No. 09 - 0302 - 54			
Company: CCO Time: /在なり Company: Time: Receipt Sample Temp. (C) //より													•	•	GOOD GOH TOPSIN: RET DAPH.	

Distribution of copies:

White, yellow - accompany the shipment Pink - kept by consignor (e.g., shipper) Yellow - kept by consignee (e.g., receiver) White - returned to consignor by consignee

¹ For composite effluent or water samples, the sample collection date/time is the **end** of the compositing period.

² Receiving Water (RW); Effluent (E); Elutriate (ELU); Sediment (SED); Chemical (CHEM); Stormwater (SW); Other (Please Specify)

³ Collapsible Carboy (CC); Glass Jar (GJ); Jerry Can (JC); Plastic HDPE (P); Other (Please Specify)

⁴ Please note any conditions the lab should be aware of for safety and storage concerns

Azimuth Consulting Group

POLARIS MINE ENVIRONMENTAL EFFECTS MONITORING PROGRAM July 30, 2004

PREPARED FOR:

PREPARED BY:

Azimuth Consulting Group *Vancouver, BC*

