2. METHODS

2.1 7-D TOPSMELT (ATHERINOPS AFFINIS) SURVIVAL AND GROWTH TOXICITY TEST

A static-renewal 7-d toxicity test and reference toxicant test using topsmelt (A. *affinis*) was conducted in accordance with EVS Environment Consultants Standard Operating Procedures (SOP) 1100-5 (EVS, 2004) with modifications based on U.S. Environmental Protection Agency (USEPA, 1995). Test conditions and methods are summarized in Table 1.

This 7-day test exposes topsmelt larvae to different concentrations of a given sample. Fish are fed on a daily basis and both survival and growth endpoints are measured at test termination. These observations are assessed in comparison to the pooled negative and brine controls.

2.2 ECHINODERM (*DENDRASTER EXCENTRICUS*) FERTILIZATION TOXICITY TEST

The echinoderm (*Dendraster excentricus*) fertilization toxicity test was conducted in accordance with Environment Canada (1992 with 1997 amendments). Test conditions and methods summarized in Table 2.

This fertilization test involves exposing echinoderm sperm to a series of test concentrations for ten minutes, echinoderm eggs are then added allowing fertilization to occur for ten minutes. Following the ten minutes exposure time the eggs are preserved and the number of fertilized and unfertilized eggs in each replicate are counted. These observations are assessed in comparison to the pooled negative and brine controls.

2.3 STATISTICAL ANALYSIS

Statistical analyses for all tests were conducted using the computer software program TOXCALC (version 5.0.23; Tidepool Scientific Software, 1994).

2.4 QUALITY ASSURANCE/QUALITY CONTROL (QA/QC)

This study followed a comprehensive QA/QC Program to ensure full documentation and minimize possible errors in computation and reporting of results. The following general

QA/QC guidelines were applied in this test: use of negative controls, use of positive controls, use of brine controls, replication, instrument calibration, water quality maintenance and record-keeping, and use of standard operating procedures (SOPs). To ensure the highest quality of data and reporting, all data and statistical analyses were reviewed by a member of our QA/QC Committee prior to reporting the results.

Table 1. 7-d Topsmelt (*Atherinops affinis*) survival and growth toxicity test methods

TEST PARAMETER	TEST CONDITION
Test type	Static-renewal
Test duration	7 d
Test chamber	600-mL beaker
Test solution volume	200 mL
Number of replicate chambers per treatment	5
Number of organisms per test chamber	5
Age of test organisms at test initiation	10 d
Food	Newly hatched Artemia nauplii (<24 hours old)
Feeding Regime	Fed 0.5 mL/ beaker twice daily of concentrated nauplii suspension (prepared to provide 200 nauplii in 0.5 mL); no feeding at test termination
Sample manipulations (e.g. pre-aeration, pH adjustment, filtration)	Salinity-adjusted
Control/dilution water	UV-sterilized and $0.5\mu m$ -filtered natural sea water from Vancouver Aquarium, BC
Dilutions	4.4, 9.0, 18.0, 36.0, 71.0% (v/v)
Renewal of dilutions	Daily
Aeration	None
Water quality parameters and frequency	Temperature, pH, dissolved oxygen, and salinity daily
Temperature	20 ± 1°C
Salinity	30 ± 2 (sample adjusted with hypersaline brine [HSB]. Preparation of HSB and salinity adjustment as per EC guidance document on salinity adjustment –July 1997)
Lighting	Overhead full-spectrum fluorescent lights; 538 – 1076 lux; 16:8 light:dark photoperiod
Reference toxicant	Initiated concurrently with sample using copper to generate LC50 and IC50 values; results compared to lab mean \pm 2 SD
Endpoints	Survival and growth (dry weight)
Test validity	\geq 80% mean control survival; \geq 0.85 mg/fish mean dry weight for surviving control fish
Reference protocol	US EPA (1995), EPA/600/R-95/136

 Table 2.
 Echinoderm (Dendraster excentricus) fertilization toxicity test methods

TEST PARAMETER	TEST CONDITION
Test type	Static
Test duration	10:10 min
Test chamber	16 X 125 mm test tubes
Test solution volume	10 mL
Number of replicate chambers per treatment	4
Number of eggs per test chamber	2000
Age of test organisms	< 4 hours after spawning
Sample manipulations (e.g. pre-aeration, pH adjustment, filtration)	Salinity adjusted
Control/dilution water	UV-sterilized and $0.5\mu m$ -filtered natural sea water from Vancouver Aquarium, BC
Dilutions	4.7, 9.4, 18.8, 37.5, 75.1% (v/v)
Renewal of dilutions	None
Aeration	None during testing
Water quality parameters and frequency	Temperature, pH, dissolved oxygen, and salinity
Temperature	15 ± 1°C
Salinity	30 ± 2 (sample adjusted with hypersaline brine [HSB]. Preparation of HSB and salinity adjustment as per EC guidance document on salinity adjustment –July 1997)
Lighting	Ambient laboratory illumination (moderate intensity)
Reference toxicant	Initiated concurrently with test; same test methods as above using SDS to generate an EC50 value; results compared to lab mean \pm 2 SD
Endpoint	Fertilization of eggs
Test validity	≥ 50% and ≤ 100% mean control fertilization
Reference protocols	Environment Canada (1992), (EPS/1/RM/27 with 1997 amendments)

3.1 7-D TOPSMELT (ATHERINOPS AFFINIS) SURVIVAL AND GROWTH TOXICITY TEST

The test results are summarized in Table 1 and the raw statistical analyses are provided in Appendix A.

The highest concentration tested was approximately 71.0% due to salinity adjustment. The mean survival in both the negative and brine controls was 100%. Mean dry weight in the pooled controls was 0.95mg. The negative and brine controls were not significantly different for the growth and survival endpoints (p = 1.00 and p = 0.72, respectively).

The A. affinis survival and growth toxicity test showed no adverse effects on survival or growth in all tested concentrations relative to the pooled controls ($p \le 0.05$). For the survival and growth endpoints the NOEC was 71.0, and the LOEC was >71.0% (v/v). The LC50 for survival was >71.0% (v/v). The IC50 and IC25 for growth were both >71.0% (v/v)

3.2 ECHINODERM (*DENDRASTER EXCENTRICUS*) FERTILIZATION TOXICITY TEST

The test results are summarized in Table 2 and the raw statistical analyses are provided in Appendix B.

The highest concentration tested was 75.1% due to salinity adjustment. Mean fertilization in the pooled controls was 76.6%. The negative and brine controls were not significantly different (p = 0.68).

The *D. excentricus* fertilization toxicity test exhibited adverse effects on egg fertilization in all except the lowest [4.7%(v/v)] test concentrations relative to the pooled controls ($p \le 0.05$). The NOEC was 4.7 and LOEC was 9.4 %(v/v). The IC50 and IC25 (95% confidence limits) values were 50.7 (48.1 – 53.6) and 17.5 (11.6 – 22.6) %(v/v), respectively.

3.2 QUALITY ASSURANCE/QUALITY CONTROL (QA/QC)

The tests met all passing criteria for test validity as outlined in the respective protocols. Water quality parameters during the test were all within the acceptable range of values. Point estimates for the reference toxicant tests were all within the laboratory mean \pm 2 standard deviations, indicating that the tests were within acceptable limits of variability.

Table 3. Summary of results for the 7-d Topsmelt (*Atherinops affinis*) survival and growth toxicity test

Test Concentration (% v/v)	SURVIVAL (%)(MEAN \pm SD)	GROWTH (DRY WEIGHT MG) (MEAN \pm SD)
D-Control	100.0 ± 0.0	0.93 ± 0.06
Brine Control	100.0 ± 0.0	0.96 ± 0.18
Pooled Controls	100.0 ± 0.0	0.95 ± 0.13
4.4	100.0 ± 0.0	1.06 ± 0.26
9.0	100.0 ± 0.0	0.87 ± 0.06
18.0	100.0 ± 0.0	0.97 ± 0.17
36.0	96.0 ± 8.9	0.92 ± 0.13
71.0	100.0 ± 0.0	0.87 ± 0.16
TEST ENDPOINT	SURVIVAL (% V/V)	GROWTH (% V/V)
NOEC	71.0	71.0
LOEC	>71.0	>71.0
LC50	>71.0	na
IC50	na	>71.0
IC25	na	>71.0

^{*}Indicates significant difference ($p \le 0.05$) relative to the pooled controls. SD – Standard Deviation; na – not applicable.

Table 4. Summary of results for the Echinoderm (*Dendraster excentricus*) fertilization toxicity test

TEST CONCENTRATION (% V/V)	PROPORTION FERTILIZED (%) (MEAN \pm SD)
Negative Control	77.0 ± 2.4
Brine Control	76.2 ± 2.5
Pooled Control	76.6 ± 2.3
4.7	75.0 ± 2.6
9.4	61.2 ± 1.0*
18.8	57.0 ± 1.8*
37.5	49.2 ± 1.0*
75.1	25.8 ± 1.5*
TEST ENDPOINT	PROPORTION FERTILIZED %(V/V)
NOEC	4.7
LOEC	9.4
IC50 (95% CL)	50.7 (48.1 – 53.6)
IC25 (95% CL)	17.5 (11.6 – 22.6)

^{*}Indicates significant difference ($p \le 0.05$) relative to the pooled controls. SD – Standard Deviation; CL – Confidence Limits.

4. REFERENCES

- Environment Canada. 1992. Biological test method: fertilization of echinoids (sea urchins and sand dollars). Environmental Protection Series, Report EPS 1/RM/27, December 1992. Environment Canada, Conservation and Protection, Ottawa, ON. 68 pp + appendices. Amended November 1997.
- EVS (EVS Environment Consultants). 2004. Topsmelt (*Atherinops affinis*) 7-d larval survival and growth test. EVS SOP 1100-5. In: EVS Consultants Laboratory Standard Operating Procedures (SOP) Manual. Volume II: Water Toxicity Tests. EVS Environment Consultants, North Vancouver, BC.
- US EPA (U.S. Environmental Protection Agency). 2002. Short-term methods for estimating the chronic toxicity of effluents and receiving waters to marine and estuarine organisms. 3rd edition. US Environmental Protection Agency, Office of Water (4303T). US Environmental Protection Agency, Washington, DC. EPA/821/R-02/014. 464 pp.
- US EPA. 1995. Short term methods for estimating the chronic toxicity of effluents and receiving waters to marine and estuarine organisms. 2nd edition. US Environmental Protection Agency, Environmental Monitoring Systems Laboratory, Office of Research and Development, Washington, DC. EPA/600/R-95/136. 563 pp.
- Tidepool Scientific Software. 1994. TOXCALC: Comprehensive Toxicity Data Analysis and Database Software, Version 5.0.23. Tidepool Scientific Software, McKinleyville, CA. 80 pp.

APPENDIX A

Raw Data and Statistical Analyses:

Atherinops affinis

EVS ENVIRONMENT CONSULTANTS 7-d Atherinops affinis SURVIVAL AND GROWTH TEST DATA SUMMARY

Client Azımulh EVS Project No.	(Polons)		EVS Analysts	AWD, JXS	
EVS Project No.	09 -=302-5	5.4			
EVS Work Order No.	040038	34	Test Initiation Date	Aug 27	7, 2004
	Initia	al Sample		Refresh Samples	
Sample]	Day 0	Day 2		Day 4
Identification	G-C1	reck 082404	<i>ι</i>	→	
Amount Received	1 × 20) L		→	
Date Collected	24-An	ŷ-0U	-	─	-
Date Received	27-An	3-04			1
Temperature (°C)		0320.0	20.00 20.0	20.	037.0
pН	7.4	· B 8.1	7.6 D > 8.2 10.0 > 7.5	7	5°>8.3
DO (mg/L)		P> 74	10.02 7.5	- 11.	0 D > 7/4 °
Conductivity (µmhos/cm)	923	,	-		_
Salinity (ppt)		7 25	5.1 D> 28	5	.2 ^D → 28
Ammonia (mg/L N)		<u> </u>			
Chlorine (mg/L Cl)					
Other	Q ,	Salinih rd'	1. 30 IZ ppt w/	90 art HSR	
TEST CONDITIONS Temperature Range (°C) pH Range 7.8-8 Dissolved Oxygen Range (n	20.0 - 21.0	-1.6 8	Reference Toxicant Current Reference T Reference Toxica	ABS Aug 2 Cop Coxicant Result (incl. ant Test Date $ \begin{array}{cccccccccccccccccccccccccccccccccc$	ug 26, 2004 13) 49/L
TEST RESULTS					
Endpoint Conc. Units	NOEC	LOEC	LC50 (95% CL)	IC50 (95% CL)	IC25 (95% CL)
Survival // ///	71	>71	771		
Growth	71	>71		771	>7/
Other					
Data Verified By	(hach	`	Date Verified	Oct-27/0	Ý
Forms\Lab\Datasheets\Larvalfish\Topsmelt\7D-SU	IMMARY.DOC Septem	nber 30, 1999		1	

EVS ENVIRONMENT CONSULTANTS 7-d Atherinops affinis SURVIVAL AND GROWTH TEST – WATER QUALITY DATA

Client	AZIA	ru th	(Pola	(معر			Sample ID 6- Creek @ 082404							
EVS Project No.					·	_	Test In	itiation	Date/Ti	me _		27 20		
EVS Work Order N	Vo		0400	384		_	Source/Date Received ABS Aug 15 2004							
			····											
G		,				Te	emperat	ure (°C))					
Concentration (プログロングラ (フ/ロ)	0	old 1	New	2	2		3	<u> </u>	4	4	5	6	ó	7
Control	20,0	22.5	70,0.	205	v,	25	20	20.5	21.0	ν, ²	20,5	20,0	70.0	P.5
Brine Control	20,0	20,5	20,0	v.5	Za, =	25	2.0	20.5	21.0	20.0	20.5	20.0	20.5	20.0
4.4	$\mathcal{V}_{\mathcal{P}}$	20.5	20,0	2.5	V,0	225	2.0	20.5	21.0	V.0	22/5	20.0	20.5	20.5
9,5		22.5				\		2015	21.0	20,0	25	20.0	20,5	20.5
18	20,0	20.5	1/2.0	25	vo?	v5	2.>	20.5	21.0	V ?	25	20.0	20.5	20.5
36	20.0		در. در.			20.5	200	20.5	21.0	2003	20/2	20.0	20.5	20.5
स	20.0	20.5	2°.°	2,5	re. >	10/5	20.3	70.S	21.0	הייט	20.6	20.0	22.0	20.5
Tech. Initials	~	_	~	~	~	^	m	12)	145	ا		725	14)	24)
	ı													
G		,					pŀ	I						
Concentration	0]	L		2		3		4	:	5	6	5	7
Contral	7,8	80	SD	8.1	249	8,5	7.9	8.0	182.9	7,9	29	79	7.9	7.9
Brine bottral	2.8	to	مع	8.1	79	80	29	8.0	3.9	ጉ ዓ	29	79	79	4.9
4,4	74	8-1	8.1	8.)	8-1		I	1			l .		۸ ا	الما
		<u> </u>	<i>v .</i> '	0 - 1	8	80	8.1	8.0	8.1	8,0	8.1	19	7.9	8.0
9,0	28	1.3	81	82	81	80 80	;s.1 8.2	8.0	8.1	8,0	81	19 80	79 29	8.0
18	78 78				9 1		 	8.0	8.1			8.0		
	l	7.3	81	82	8! 82 82	8.0 8.0	8.2	8.0	8.1	F-1	81	8.0	2.9	8.0
18	78	8.1	81 81 82	81 81	8! 82 82	8.0 8.0	8.2 82	8.0	8.1	51 +=1	81	8.0	7.9 8.0	8.0
18 34	78 79	3.3 8.2 8.3	81 81 82	81 81	<i>\$1</i> <i>\$2</i>	8.0 8.0	82 82	8.0	8.1	F-1	81 81	8.0	2.9 8.0 8.0	8.0
18 36 7/	78 79 SI n	\$1 \$1 \$3 \$.3	81 81 82 8.3	81 82 83	8! 82 82	\$0 8.0 8.0	82 82 82 83	8.0 8.0 8.1 8.2 12)	8.1 8.1 8.2 8.3	51 81 877	81 81	8.0 8.0 8.1 8.2	7.9 8.0 8.0	8.0

EVS ENVIRONMENT CONSULTANTS 7-d Atherinops affinis SURVIVAL AND GROWTH TEST – WATER QUALITY DATA

Client	Azimo	ith (Polori	(0		Sample ID					6. Crest 082404			
EVS Project No						_	Test Initiation Date/Time					Aug 20 1004@ 123-1		
EVS Work Order N	Ю		040	0384		Source/Date Received						488 / Aug 1/4, 2004		
							Salinity	(ppt)						
Concentration	0		1	-	2		3 4			5		6		7
Control	28	28 28 28					28 28		78		28 7		F	
Brine Control	28	-	28		28	2	8	ı,	8	28		28	2	<u>}</u>
4,4	28	?	28		28	2	8	2	8	18		28	28	}
9,0	28	,	2 f		28	1	8	2	8	19		28	1	P
18	28	?	28		28		8	2.8	8	18		28	13	}
36	28		28		28	1	2 g	۲,	8	18		28	us	2
71	28	;	28		28		28	2	8	rz		28	4	}
Tech. Initials	^		^		^		^	<i>y</i>	245	74	1	<u>~/\</u>	A	<u>, </u>
				<u></u>		Dissol	ved Ov	waan (n	ng/I)	 	.			
Concentration % (リリ)	0		1		2		Dissolved Oxygen (mg/ 3 4				 5	6		7
Control	7.4	1,5	75	69	75	7,5	7.5	7.0	1.5	6.4	74	7.6	6.5	6.6
Brine Control	24	6.6	25	6.8	7.5	6.9	4.5	6.9	1.5	6,6	24	7.5	6.4	b.P
4,4	24	67	75	67	7.5	4.9	7.5	6.9	7.5	6.7	25	7.6	6.6	65
9,0	7.0	66	75	68	75	63	7.5	7.0	7.5	68	25	7.6	6.6	65
18	η	64	35	68		69	7.₹	6.9	7.5	6.8	76	7.5	6.7	65
36	<u>ሕ</u> ሃ	65	1.0	65	<u> ۲</u> ۲	69	7.5	6.9	75	68	ネら	7.5	6.3	64
71	7ψ	6.5	7.6	68	25	69	4.5	69	4.5	62	24	7.5	6.7	65
Tech. Initials	~	~		^	^	^	1/12/	147	773~		~	J+>	プツ	_
WQ Instruments U Comments	sed:	Salini	ty <u>J</u>	- A - C	30304	<i>‡</i>		D	o		# -	A-3		
Test Set Up By		AWO		Data `	Verified	Ву	9	alh	5 •	ate Veri	fied	0	et-re	0/04

EVS ENVIRONMENT CONSULTANTS 7-d Atherinops affinis TOXICITY TEST – DAILY SURVIVAL DATA

Client	Azimo	ith (Polaris)		Sa	mple ID)		C. Creck 082404
EVS Project No.		09-0	302-5	54		Τe	est Speci	es/Batch	1 <u>A,</u>	affinis / Aug 1 - 04
EVS Work Orde	r No		0400	384		Te	est Initia	tion Date	Aug 23, 2004 @ 123	
						No	o. of Org	ganisms/	5/200mL	
90 (1)		Pan		Num	ber of S	urvivors	– Day o	f Test		
Concentration	Rep.	No.	1	2	3	4	5	6	7	Comments
	A	A 31	5	5	5	5	5	5	j-	
	В	32	5	5	5	5	5	5	5	
Control	С	33	5	5	5	5	7	5	J.	
	D	34	5	5	5	6	5	5	5	
	Е	35	5	5	5	1	5	5	5	
	A	36	5	5	5	5	ς ·	5	5	
Brine	В	37	5	5	5	5	5	5	5	
	С	38	5	5	5	5	5	5	5	
	D	39	5	5	5	5	5	5	5	
	E	40	5	5	5	5	5	5	5	
	A	41	5	5	5	5	$\hat{\mathcal{L}}$	5	5	
	В	42	5	5	5	5	5	5	5	
4.4	С	43	(5	2		5	5	5	
	D	44		5	5	5	Ŝ	5	5	
	Е	45	5	()	٢	5	5	5	5	
·	A	546	5	5	5	5		5	5	
9.0	В	547	5	5	5	5	, 5	5	5	
1.0	C	598	5	5	5	5	5	5	. 5	
	D	549	(۲	5	5	5	5	5	5	
	Е	630	ر ن	<u> </u>	5	15	\ \ -	5	5	
Technician Ini	tials	Tes	~	~	14>	~	~	なり	147	
Sample Description	on (cleer	colorl	ess						
Data Verified By				alh	4		Dat	e Verifie	ed	Oct 20/04

EVS ENVIRONMENT CONSULTANTS 7-d Atherinops affinis TOXICITY TEST – DAILY SURVIVAL DATA

Client	Azm	,H (6	olaris)			mple ID			6. Cresk 082404
EVS Project No.		09-0	302-5	54		Te	st Specie	es/Batch	<u>A.</u>	affinis / Aug 1 - of
EVS Work Order	: No		0400	384				ion Date		Aug 25, 2004 @ 1239
						No	o. of Org	anisms/\	Volume	5/200mL
9/3 (4)	D	Pan		Num	ber of Su	ırvivors	– Day o	f Test		G
Concentration	Rep.	No.	1	2	3	4	5	6	7	Comments
	A	A 57	5	5	5	5	5	5	5	
	В	5247	5	5	5	5	5	5	5	
10	С	53 48	5	5	5	5	5	5	5	
18	D	5449	5	5	5	5	ৰ্	5	5	
	Е	5550	5.	5	5	5	5	5	5	
	A	3651		5	5	5	5	5	5	
_ ,	В	新北	5	5	5	5	5	5	5	
3 <i>p</i>	С	5853	5	ŝ	5	5	5	5	4	
	D	3454 5454	5	5	5	5	5	5	5	
	Е	120 55	5	5	5	5	5	5	5	
	A	61	<u> </u>	5	5	5	5	455	2345	
01	В	62	5	5	5	5	5	5	5	
+1	C	63	5	5	5	5	5	5	5	
	D	64	5	5	5	5	5	5	5	
	Е	b S	\hat{a}	5	5	5	5	5	5	
	Α	6								
	В	7								
	С	g	<u>-</u>							
	D	9								
	Е	0								
Technician In	itials	14)	M		Jus	۲	~	Tas	145	
Sample Descripti Data Verified By		clear,	color	less Qal	hh		Dat	e Verifi	ed	Oct wloy

Client EVS Project No. EVS Work Order No.	Armath O	9-030			Start Date (Da Sample ID _ Balance Type	ay 0)	August 25, 2004 2- Creek 082404 Der Sontanin BP211)	
Sample ID % (リソ)	Rep.	Pan No.	Pan Weight (mg) 1	Final Weight (mg) (pan + biomass)	Number of Survivors	Number Weighed	Comments (e.g., confirmation weights, organisms lost in transfer)	Tech. Init.
Control	A	A 31	1228.40	1233.24	5	5	pre-HT: 1228.40 mg	K-Jan
	3	32	1229,96	1234.81	5	5		
	С	33	1231,09	1235.98	1	5		
	D	34	1226.23	1230.46	5	5	1230.49 mg L	
	E	35	1218,59	1223.06	5	5		
Brine Control	A	36_	1226.59	1231.11	5	5		
	В	37	1234.73	1239.03	5	5		
	<u> </u>	38	1220.42	1226.76	5	5		
	<u>D</u>	39	1232,69	1237-55	5	5		\top
	Ê	40	1236.53	1240.57	5	5		
4.4%	A	41	1227.94	123263	5	5		
	В	42	12-24.25	1231.84	5	5		
	C	43	1235.61	1240.72	5	5	reneighed 1240.68 mg/	
	D	44	1219.66	1223.97	5	5		7
	E		1225.29	1230.00	5	7	pre-wt; 1225.29 mg	1
1. Re-confirm weight	ghts for 10% o	of final wei	ghts and record und	ler "Comments"; relative pe	rcent difference (R	PD) between pa	airs of weights should be ≤10% of organism weights	ght.

Data Verified By ______ Date Verified _____ Oct - 20/04

Forms\Lab\Datasheets\Larvaifish\Topsmeit\7D-DRYWEIGHT.DOC

Client EVS Project No.	Azın	nuts.[Polesis) 2302-54	·	Start Date (Da	ny 0)	August 23, 200 φ - Creek 082404	
EVS Work Order No.			00384		Balance Type			(//)
Sample ID	Rep.	Pan No.	Pan Weight (mg) 1	Final Weight (mg) (pan + biomass) ¹	Number of Survivors	Number Weighed	Comments (e.g., confirmation weights, organisms lost in transfer)	Tech. Init.
18	A	A 46	1217,86	1222.49	5	5		17/100
	В	47	1225,29	1228.77	5	5		
	c	48	1236.54	1242.18	5	5		
	D	49	12,39,09	1244.52	5	5		
	E	50	1241.45	1246.42	5	5	remethed: 1246.43 mg V	
36	A	_ 51_	1225.42	128530.87	5	5		
	В		1224.43	1228.50	5	5		
		53	1239.89	1243.83	4	4		
	D	54	1231,71	123\$6.86	7	5		
	E	55	1236.12	1240.57	5	7		
8.8	A	56	1233.41	1237.89	5	5		
	3	57	1232.69	1236.99	5	5		
	C	58	1218.75	1223.49	5	5		
	D	59	1232,9	1237.03	5	5		
	Ē	ଜ	1222.96	1227.12	5	5	prewt: 1222.96 mg	
1. Re-confirm weigh	ts for 10% o	of final weig	,	_			airs of weights should be ≤10% of organism we	ight.
Data Verified By			galfi 1		Date V	erified	Oct roloy	

 $Forms \verb|\Lab| Datas heets \verb|\Larva| fish \verb|\Topsmelt| 7D-DRYWEIGHT. DOC$

Forms\Lab\Datasheets\Larvalfish\Topsmelt\7D-DRYWEIGHT.DOC

August 26, 2002

Client	Azmath	(Polar	<u>(a</u>		Start Date (Da	ıy 0)	August 23, 2007 Yerk 08 24 04 Jer Sontanus BP211.)	
EVS Project No.	<u></u>	9- 030,	2-54		Sample ID _	G- (1	reek 082404	
		040	0384		Balance Type	/Serial Numb	er Sontanais BP211.)	
Sample ID % (リリ)	Rep.	Pan No.	Pan Weight (mg) ¹	Final Weight (mg) (pan + biomass) ¹	Number of Survivors	Number Weighed	Comments (e.g., confirmation weights, organisms lost in transfer)	Tech. Init.
72 71	A	A bi	1236,40	1239.74	7	5		F2)
	3	62	1236,44	1240.25	5	5		
	C	63	1219.08	1224.54	5	5	remished 1224.57 mg	
	D	64	1228.47	1233.11	5	5		
	Ē	65	1243,42	1247.95	5	5	pre-wt: 1243.44 mg	~
	A	6						
	В	7						
	۷	8						
	D	9						
	Ê	0					,	
	A							
	В	2						
	C	3						
	D	4						
	ĨŁ.	:5						
1. Re-confirm weig	hts for 10% o	of final wei	ghts and record und	er "Comments"; relative pe	rcent difference (R	(PD) between pa	airs of weights should be ≤10% of organism we	ight.
Data Verified By			galin	5	Date V	erified	Oct 20/04	

Test: LF-Larval Fish Growth and Survival Test

Species: AA-Atherinops affinis

Sample ID: G_CREEK Start Date: 8/27/2004

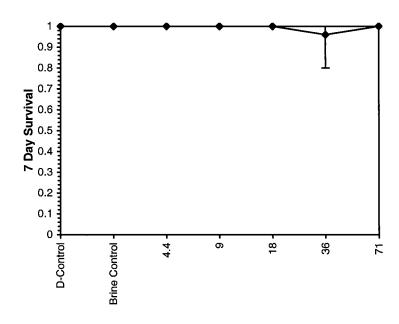
tart Date: 8/27/2004 End Date: 9/3/2004

Test ID: 0400384

Protocol: EPAW 95-EPA West Coast

Sample Type: EFF2-Industrial

Lab ID: BCEVS-EVS Environment Consultants

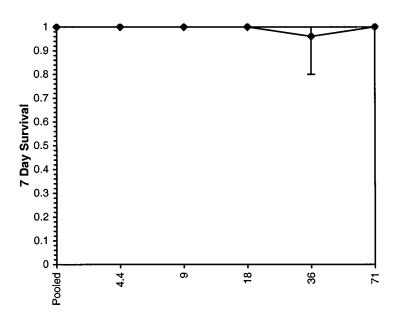

Start	Date:	8/27/2	2004 En	nd Date: 9/3/2004						Lab ID: BCEVS-EVS Environment Con				
												No. Fish	Total	Tare
Pos	ID	Rep	Group	Day 0	Day 1	Day 2	Day 3	Day 4	Day 5	Day 6	Day 7	Weighed	Wgt(mg)	Wgt(mg)
	1	1	D-Control								5	5	1233.24	1228.4
	2	2	D-Control								5	5	1234.81	1229.96
	3	3	D-Control	5							5	5	1235.98	1231.09
	4	4	D-Control	5							5	5	1230.46	1226.23
	5	5	D-Control								5	5	1223.06	1218.59
	6	1	Brine Control								5	5	1231.11	1226.59
	7	2	Brine Control	5		·					5	5	1239.03	1234.73
	8	3	Brine Control	5							5	5	1226.76	1220.42
	9	4	Brine Control	5							5	5	1237.55	1232.69
	10	5	Brine Control	5							5	5	1240.57	1236.53
	11	1	4.400	5							5	5	1232.63	1227.94
	12	2	4.400								5	5	1231.84	1224.25
	13	3	4.400	5							5	5	1240.72	1235.61
	14	4	4.400	5							5	5	1223.97	1219.66
	15	5	4.400	5							5	5	1230	1225.29
	16	1	9.000	5							5	5	1237.89	1233.41
	17	2	9.000	5							5	5	1236.99	1232.69
	18	3	9.000	5							5	5	1223.49	1218.75
	19	4	9.000	5				•			5	5	1237.03	1233.08
	20	5	9.000	5							5	5	1227.12	1222.96
	21	1	18.000	5							5	5	1222.48	1217.86
	22	2	18.000	5							5	5	1228.77	1225.29
	23	3	18.000	5							5	5	1242.18	1236.54
	24	4	18.000	5			•				5	5	1244.52	1239.09
	25	5	18.000	5							5	5	1246.42	1241.45
	26	1	36.000	5							5	5	1230.87	1225.42
	27	2	36.000	5							5	5	1228.5	1224.43
	28	3	36.000	5							4	4	1243.83	
	29	4	36.000	5							5	5	1236.86	1231.71
	30	5	36.000	5							5	5	1240.57	1236.12
	31	1	71.000								5	5	1239.74	1236.4
	32	2	71.000	5							5	5	1240.25	1236.44
	33	3	71.000	5							5	5	1224.54	1219.08
	34	4	71.000	5							5	5	1233.11	1228.47
	35	5	71.000	5							5	5	1247.95	1243.42
		Α '	the Date to Mile			20000			_					

Comments: Azimuth - Polaris Mine; G-Creek, 09-0302-54;0400384

			Laı	rval Fish G	rowth and Su	rvival Test-7 Day Sເ	ırvival
Start Date:	8/27/2004		Test ID:	400384		Sample ID:	G_CREEK-082404
End Date:	9/3/2004		Lab ID:	BCEVS-E	VS Environmen	t Cc Sample Type:	EFF2-Industrial
Sample Date:	8/24/2004		Protocol:	EPAW 95	EPA West Coa	st Test Species:	AA-Atherinops affinis
Comments:	Azimuth -	Polaris N	/line; G-Cr	eek, 09-03	02-54 ;0400384	4	
Conc-%	1	2	3	4	5		
D-Control	1.0000	1.0000	1.0000	1.0000	1.0000		
Brine Control	1.0000	1.0000	1.0000	1.0000	1.0000		
4.4	1.0000	1.0000	1.0000	1.0000	1.0000		
9	1.0000	1.0000	1.0000	1.0000	1.0000		
18	1.0000	1.0000	1.0000	1.0000	1.0000		
36	1.0000	1.0000	0.8000	1.0000	1.0000		
71	1.0000	1.0000	1.0000	1.0000	1.0000		

		_	Tra	ansform:	Arcsin Sc	uare Root	Rank	1-Tailed		
Conc-%	Mean	SD	Mean	Min	Max	CV%	N	Sum	Critical	
D-Control	1.0000	0.0000	1.3453	1.3453	1.3453	0.000	5			
Brine Control	1.0000	0.0000	1.3453	1.3453	1.3453	0.000	5			
4.4	1.0000	0.0000	1.3453	1.3453	1.3453	0.000	5	27.50	16.00	
9	1.0000	0.0000	1.3453	1.3453	1.3453	0.000	5	27.50	16.00	
18	1.0000	0.0000	1.3453	1.3453	1.3453	0.000	5	27.50	16.00	
36	0.9600	0.0894	1.2977	1.1071	1.3453	8.207	5	25.00	16.00	
71	1.0000	0.0000	1.3453	1.3453	1.3453	0.000	5	27.50	16.00	

Auxiliary Tests					Statistic	Critical	Skew	Kurt
Shapiro-Wilk's Test indicates non	-normal dis	stribution (p <= 0.01	l)	0.41613	0.9	-3.8705	19.8512
Equality of variance cannot be co	nfirmed							
The control means are not signific	cantly differ	rent $(p = 1)$.00)		0	2.30601		
Hypothesis Test (1-tail, 0.05)	NOEC	LOEC	ChV	TU				
Steel's Many-One Rank Test	71	>71		1.40845				

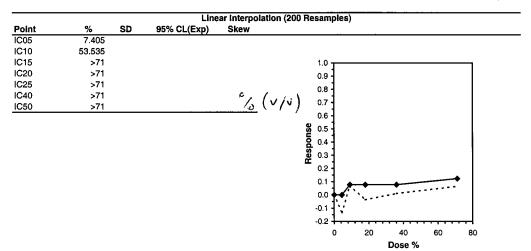

Statistical comparison were against the D-control.

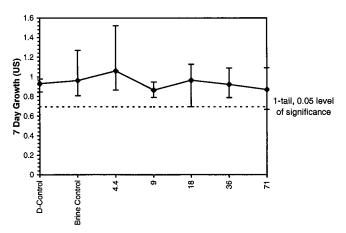
Reviewed by: Quel 15 6

			La	rval Fish C	rowth and Surv	ival Test-7 Day Sι	ırvival
Start Date:	8/27/2004		Test ID:	400384		Sample ID:	G_CREEK-082404
End Date:	9/3/2004		Lab ID:	BCEVS-E	VS Environment (Cc Sample Type:	EFF2-Industrial
Sample Date:	8/24/2004		Protocol:	EPAW 95	EPA West Coast	Test Species:	AA-Atherinops affinis
Comments:	Azimuth -	Polaris N	/line; G-Cr	eek, 09-03	02-54 ;0400384		
Conc-%	1	2	3	4	5		
D-Control	1.0000	1.0000	1.0000	1.0000	1.0000	••	
Brine Control	1.0000	1.0000	1.0000	1.0000	1.0000		
4.4	1.0000	1.0000	1.0000	1.0000	1.0000		
9	1.0000	1.0000	1.0000	1.0000	1.0000		
18	1.0000	1.0000	1.0000	1.0000	1.0000		
36	1.0000	1.0000	0.8000	1.0000	1.0000		
71	1.0000	1.0000	1.0000	1.0000	1.0000		

			Tra	ansform:	Arcsin Sc	uare Roo	Rank	1-Tailed		
Conc-%	Mean	SD	Mean	Min	Max	CV%	N	Sum	Critical	
Pooled	1.0000	0.0000	1.3453	1.3453	1.3453	0.000	10			
4.4	1.0000	0.0000	1.3453	1.3453	1.3453	0.000	5	40.00	21.00	
9	1.0000	0.0000	1.3453	1.3453	1.3453	0.000	5	40.00	21.00	
18	1.0000	0.0000	1.3453	1.3453	1.3453	0.000	5	40.00	21.00	
36	0.9600	0.0894	1.2977	1.1071	1.3453	8.207	5	35.00	21.00	
71	1.0000	0.0000	1.3453	1.3453	1.3453	0.000	5	40.00	21.00	

Auxiliary Tests					Statistic	Critical	Skew	Kurt
Shapiro-Wilk's Test indicates non-n	ormal dis	tribution (p <= 0.01)	0.38831	0.91	-4.1486	23.0852
Equality of variance cannot be confi	irmed							
The control means are not significal	ntly differ	ent $(p = 1)$.00)		0	2.30601		
Hypothesis Test (1-tail, 0.05)	NOEC	LOEC	ChV	TU				
Wilcoxon Rank Sum Test	71	>71		1.40845				


Statistical comparison were against the pooled control.


Reviewed by: Qulf 4

			Larva	Fish Gr	owth and S	Survival T	est-7 Day Gr	owth (US)
Start Date:	8/27/2004		Test ID:	400384			Sample ID:	G_CREEK-082404
End Date:	9/3/2004		Lab ID: I	BCEVS-E	V\$ Environ	ment Cc S	Sample Type:	EFF2-Industrial
Sample Date:	8/24/2004		Protocol: I	EPAW 95	-EPA West	Coast -	Test Species:	AA-Atherinops affinis
Comments:	Azimuth -	Polaris I	Vine; G-Cre	ek, 09-0	302-54 ;040	0384		
Conc-%	1	2	3	, 4	5			
D-Control	0.9680	0.9700	0.9780ນ	0.8460	0.8940			
Brine Control	0.9040	0.8600	1.2680	0.9720	0.8080			
4.4	0.9380	1.5180	1.0220	0.8620	0.9420			
9	0.8960	0.8600	0.9480	0.7900	0.8320			
18	0.9240	0.6960	1.1280	1.0860	0.9940			
36	1.0900	0.8140	0.7880	1.0300	0.8900			
71	0.6680 2	0.7620	1.0920	0.9280	0.9060			

				Transforn	n: Untran	sformed		_	1-Tailed	Isotonic		
Conc-%	Mean	SD	Mean	Min	Max	CV%	N	t-Stat	Critical	MSD	Mean	N-Mean
D-Control	0.9312	0.0585	0.9312	0.8460	0.9780	6.283	5				0.9938	1.0000
Brine Control	0.9624	0.1811	0.9624	0.8080	1.2680	18.820	5					
4.4	1.0564	0.2642	1.0564	0.8620	1.5180	25.007	5	-1.252	2.360	0.2361	0.9938	1.0000
9	0.8652	0.0604	0.8652	0.7900	0.9480	6.980	5	0.660	2.360	0.2361	0.9177	0.9235
18	0.9656	0.1704	0.9656	0.6960	1.1280	17.643	5	-0.344	2.360	0.2361	0.9177	0.9235
36	0.9224	0.1328	0.9224	0.7880	1.0900	14.396	5	0.088	2.360	0.2361	0.9177	0.9235
71	0.8712	0.1631	0.8712	0.6680	1.0920	18.721	5	0.600	2.360	0.2361	0.8712	0.8766

Auxillary Tests					Statistic		Critical		Skew	Kurt
Shapiro-Wilk's Test indicates norr	nal distribu	ition (p > 0	0.01)		0.94863		0.9		0.95961	2.51611
Bartlett's Test indicates equal vari	iances (p =	0.05)			11.0427		15.0863			
The control means are not signific	antly differ	ent (p = 0	.72)		0.36654		2.30601			
Hypothesis Test (1-tail, 0.05)	NOEC	LOEC	ChV	TU	MSDu	MSDp	MSB	MSE	F-Prob	df
Dunnett's Test	71	>71		1.40845	0.23609	0.25353	0.02479	0.02502	0.44403	5, 24

Statistical comparison were against the D-control.

Reviewed by Galfif

			Larva	il Fish Gro	wth and Surviv	al Test-7 Day Gro	wth (US)
Start Date:	8/27/2004		Test ID:	400384		Sample ID:	G_CREEK-082404
End Date:	9/3/2004		Lab ID:	BCEVS-E	/S Environment	Cc Sample Type:	EFF2-Industrial
Sample Date:	8/24/2004		Protocol:	EPAW 95-	EPA West Coas	t Test Species:	AA-Atherinops affinis
Comments:	Azimuth -	Polaris N	/line; G-Cı	eek, 09-03	02-54 ;0400384		
Conc-%	1	2	. 3	4	5		
D-Control	0.9680	0.9700	0.9780	0.8460	0.8940		
Brine Control	0.9040	0.8600	1.2680	0.9720	0.8080		
4.4	0.9380	1.5180	1.0220	0.8620	0.9420		
9	0.8960	0.8600	0.9480	0.7900	0.8320		
18	0.9240	0.6960	1.1280	1.0860	0.9940		
36	1.0900	0.8140	0.7880	1.0300	0.8900		
71	0.6680	0.7620	1.0920	0.9280	0.9060		

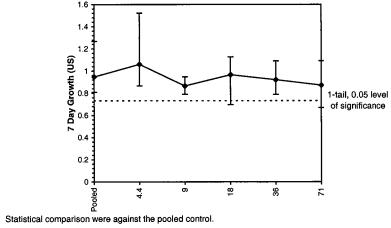
			•	Transforn	n: Untran	sformed		1-Tailed			Isotonic	
Conc-%	Mean	SD	Mean	Min	Max	CV%	N	t-Stat	Critical	MSD	Mean	N-Mean
Pooled	0.9468	0.1280	0.9468	0.8080	1.2680	13.514	10				1.0016	1.0000
4.4	1.0564	0.2642	1.0564	0.8620	1.5180	25.007	5	-1.258	2.462	0.2146	1.0016	1.0000
9	0.8652	0.0604	0.8652	0.7900	0.9480	6.980	5	0.936	2.462	0.2146	0.9177	0.9163
18	0.9656	0.1704	0.9656	0.6960	1.1280	17.643	5	-0.216	2.462	0.2146	0.9177	0.9163
36	0.9224	0.1328	0.9224	0.7880	1.0900	14.396	5	0.280	2.462	0.2146	0.9177	0.9163
71	0.8712	0.1631	0.8712	0.6680	1.0920	18.721	5	0.868	2.462	0.2146	0.8712	0.8698

Auxiliary Tests					Statistic		Critical		Skew	Kurt
Shapiro-Wilk's Test indicates nor	mal distribu	rtion (p > 0	0.01)		0.94174		0.91		1.04686	2.00659
Bartlett's Test indicates equal var	riances (p =	0.18)			7.64107		15.0863			
The control means are not significant	cantly differ	ent $(p = 0)$.72)		0.36654		2.30601			
Hypothesis Test (1-tail, 0.05)	NOEC	LOEC	ChV	TU	MSDu	MSDp	MSB	MSE	F-Prob	df
Bonferroni t Test	71	>71		1.40845	0.21455	0.22661	0.02493	0.02531	0.44385	5, 29

Linear interpolation (200 Resamples) kp) Skew Point IC05 IC10 IC15 IC20 IC25 % 7.147 48.255 >71 >71 >71 95% CL(Exp) SD 0.9 8.0 %(v/v) IC40 IC50 >71 0.2 0.1 0.0 -0.1

Dose-Response Plot

-0.2


20

40

Dose %

60

80

EVS ENVIRONMENT CONSULTANTS 7-d Atherinops affinis SURVIVAL AND GROWTH TEST DATA SUMMARY

Client Azi				EVS Analysts <u>Av</u>	VD. JXJ. AXF	
EVS Project N EVS Work Ord				Test Initiation Date	Aug 27, 2004	
		Initi	al Sample		Refresh Samples	
San	nple		Day 0	Day 2		Day 4
Identification		04-Cn	-001			10.0
Amount Rece	ived					
Date Collecte	d	15-Ma	rch-04			
Date Received	i		1			
Temperature ((°C)	•				
pH						
DO (mg/L)						
Conductivity	(µmhos/cm)					
Salinity (ppt)	,					
Ammonia (mg	z/L N)					
Chlorine (mg/						
Other	/		V			
Water Type 1 Temperature (° pH	gen (mg/L) TTIONS ange (°C) gen Range (m Dh) ded?	7.4 28 20.0 - 21.0 7.8 - 8.2		Date Received Age (on Day 0) Reference Toxicant Current Reference T Reference Toxica 7-d survival LC5 7-d growth IC50 Reference Toxicant 7-d survival LC5	10-d	95% CL) 327.2004 3) Mg/L Cn) Mg/L Cu an ± 2SD) and CV 4/L CV: 18/
Endpoint	Conc.	NOEC	LOEC	LC50 (95% CL)	IC50 (95% CL)	IC25 (95% CL)
Committee	Units	100	4 00	(3) (-3 (33)		
Survival	hylh	100	180	121 (107 -137)	120/04/1-2	
Other		56	(00		128(85-150)	93 (53-124)
Oniei						
Data Verified	Ву	gain	4	Date Verified	Oct - 27	(04
Forms\Lab\Datasheets\Lar	valfish\Topsmelt\7D-SUl	MMARY.DOC Septer	nbcr 30, 1999			

EVS ENVIRONMENT CONSULTANTS 7-d Atherinops affinis SURVIVAL AND GROWTH TEST – WATER QUALITY DATA

Client	A21.	nuth	(Pola	(معر		_	Sample	e ID		L	u É	e/f0	/	
EVS Project No.		09-	030	2-54			Test In	itiation	Date/Ti	ime _	Aus	21/2	264	1245
EVS Work Order	No		040	384		_	Source	/Date F	Received	i	ABS	Au	18 20	104
	1									 		1 0		
Concentration	ļ	· · · · · ·				T	emperat	ture (°C	<u>') </u>	1				,
45/4	0		1		2	<u> </u>	3		4		5	(6	7
Control	200	20.5	200	20.5	20.0	20,0	20.5	ر در	v.5	10.0	25	70.0	21.0	20.5
32.0	20,0	10.1	1210	21	20	20,0	2015	د. حر	20.5	200	206	200	21.0	20.5
560	20,0	25	20,3	10.5	20,0	20.0	20,5	V.,	2.5	20,00	2015		1	20.5
1000	20,0	10.5	20,0	2.6	20,3	20.0	2.5	20.0	2.5	6,0	10.5	20.0	210	20.5
180,0	10 s	25	ري دي	20.5	γ ⊃. ၁	70.0	20.5	20.0	70.5	200	205	20.0	21.0	20.5
3200	v.o	20.5	10.0	20.5	70.0	20.0	20,5	<u>}</u>						
														.
Tech. Initials	^	,	~	~	~		n	7			^	F/22	17/25	725
	11							· · · · · · · · · · · · · · · · · · ·						
Gtt							pI	1						
Concentration 45	0		[2	2		3		4		5	(5	7
Control	28	fo	50	J.o	79	8.0	79	ትየ	79	719	79	7.9	7.95	7.9
320	78	مع	80	80.	7.9	8.0	29	80	79	79	78	7.9	7.8	8- F
56,0	28	8-1	80	79	79	0.8	ጉባ	ه	29	7,9	79	7.9	7.8	78
1000	28	8.1	80	<i>f.</i> /	79	8.0	29	80	79	50	79	7.9	7.8	7.9
186,0	28	8.1	80	30	78	8.0	29	8.0	79	79	7,9	7.9		7.9
320,0	28	sa	80	8.0	27	8.0	29						,	
					,					:	-			
Tech. Initials	~	~	~	,	~	25)	2	_	~	~	,	12/	~/L	אין
WQ Instruments U	sed.	Temr	Cal	1 ctal	Ha 71	4 4		pl	 -1	11-1	t-52			
Comments	sou.	Tomp	· <u>Calie</u>	Sf 6/ CPC	Try in	lymonee	<u> </u>	p.			. 3 2			
								,.						
Test Set Up By	A	どり		Data V	erified	Ву	()al	Chf	T Da	ite Verit	fied	Oct.	20/0	4
							-	V '					•	

EVS ENVIRONMENT CONSULTANTS 7-d Atherinops affinis SURVIVAL AND GROWTH TEST – WATER QUALITY DATA

Client	AZIM	uth (Polon	(مآ			Sample	e ID				4 Key	1fr+	
EVS Project No.							Test In	itiation	Date/T	ime _	Au	9 20	100¢	Q 129
EVS Work Order				-			Source	/Date R	Leceive	ı	ABS	19 21) Au	19/8	200 P
	1		· · · · · · · · · · · · · · · · · · ·					·			 	/ (7 /	, ————————————————————————————————————
Concentration		 		 			Salinit	y (ppt)						
Concentration 45/L	0		1		2		3	4	-	5		6		7
Control	2	ş	28		78		28	28	-	28		28	;	2-8
320	28	2	21		28		28	48	_	y		28	2	8
560	28		28		28		28	1	P	28		28	0	28
100,0	y	2	28		28		28	28	7	18		28		28
1800	28	<u>}</u>	28	· .	28		28	28	}	rs		28	7	28
320.0	2	F	rf		28		28	2 }	;	X				
Tech. Initials	_^		^		<u></u>		54>	~		^		JU2	<u>」</u>	2
	<u> </u>						 							
						Disso	lved Ox	ygen (n	ng/L)	,				
Concentration	0		1		2		3		4	;	5	(5	7
Control	74	67	75	66	7,5	6.9	みら	7.0	77	6.7	714	7.6	6.7	66
320	74	6¥	25	67	25	6.9	75	67	26		24	7.6	6.8	6.7
56,0	24	65	25	66	36	6.9	25	70	25	66	74	7.6	6.9	6.8
100,0	20	615	75	67	7.5	1	20	7.1	25	67	24	7.6	6.7	67
1800	24	6.6	75	L.F	25	7.0	25	20	25	6.4	24	7.7	6.7	6.7
3200	74	6.6		67	75	7.1	×	ひの	25					
Tech. Initials	~	^	~	~	~	125	~	^	`	^	^	フン	1/22	Jes
WQ Instruments U	sed:	Salini	ty _ <i></i>	A / C	og 03 m (D)		# -	A = 2		
Comments			<u> </u>	· // · ©	3 9309	<i>r</i>		~			47 -	71.: 5		
									1					
Test Set Up By		AWO		Data V	Verified	Ву	<u> </u>	alp	\$ D	ate Veri	fied	_Oc1	-20/	04_
							• [U,	Į					

EVS ENVIRONMENT CONSULTANTS 7-d Atherinops affinis TOXICITY TEST – DAILY SURVIVAL DATA

Client	Azimu	,H (Polaris)		Sa	mple ID)		Cu Reffor
EVS Project No.						Тє	st Speci	es/Batch	1 <u>A.</u>	affinis / Aug X-of
EVS Work Order	r No		0400	384		Τe	st Initia	tion Dat	e/Time	Aug 25, 200 / 0 124
				,		No	o. of Org	ganisms/	Volume	5/200mL
	_	Pan		Num	ber of Si	urvivors	– Day c	f Test		
Concentration 49	Rep.	No.	1	2	3	4	5	.6	7	Comments
//	A	A I	5	5	5	5	5	5	5	
	В	2	5	5	5	5	$\overline{5}$	5	5	
Control	С	3	5	5	5	5	5	5	5	
	D	4	5	5	5	5	5	5	5	
	E	5	5	5	5	5	5	5	5	
	Α	6	5	5	5	5	رہ	4	4	
	В	7	5	5	5	5	5	5	. 5	
32,0	С	8	5	5	5	5	5	5	5-	
	D	9	5	5	5	5	5	5	5	
	Е	0	5	5	5	5	5	5	5-	
	A	11	5	5	5	5	5	5	5	
	В	12	5	1	5	2	5	5	5	
56,0	С	13	\int_{Γ}	\r	5	5	5	5	5	
	D	14	5	()	5	5	5	5	5	
	Е	15	5	1	5	5	5-/4	5	5	
	A	9	4	4	4	4	4	4	4	
	В	17	3	3	5	5	S	5	5	
000	С	18	5	5	5	\(\)	5	5	5	
'	D	19	4	つ	2	2	2	2	2	
	Е	20	4	4	4	4	4	3	3	
Technician Ini	tials	JUS	~	الم	125	Λ	^	AXF	Jus	
Sample Description	on	cl	ear,	colorl	ess					
Data Verified By			$\overline{}$	alh	6		Dat	e Verifi	ed(Det-27/04
			(JI	`					•

EVS ENVIRONMENT CONSULTANTS 7-d Atherinops affinis TOXICITY TEST – DAILY SURVIVAL DATA

Client	Azimi	ith (Polario)		Sa	ımple I	D	Ci	n reflox
EVS Project No.		09-0	>302-5	5Ý		Te	est Spec	cies/Batcl	1 <u>A</u> ,	affinis Aug 9 - of
EVS Work Order						Te	est Initi	ation Dat	e/Time	Aug 24 20040 124
						No	o. of Oı	rganisms/	Volume	Affinis Aug # - 04 Aug 25, 2004@ 124 5/200ml
Concentration	Rep.	Pan No.	1	T	ber of S		T		7	Comments
49/6	•		1	2	3	4	5	6	7	
' '	A	A 21	12	2	2	2	2	2	2	
1000	В.	22	2	0	0-	_~	 			
1800	. C	23	5	3	3	3	3	2	0	1
	D	24				, .	1	0		
	·E	25	2		1	0	_			
	A	26	D	_	 					
	В	27	ာ				ļ		-	
320,0	С	28	ν	2						
	D	29	15	ě						
	Е	30	0							
	A	j								
	В	2								
	С	3								
	D	4								
	Е	5								
	A	6								
	В	7								
	С	£								
	D	9								
ĺ	Е	0								
Technician Ini	tials	Tes	۲	٨	123	٨	~	PAY 545	JUS	
Sample Description Data Verified By	on	elear,	Cal				Da	ate Verifi	ed	Oct. 27/04

	Primath				Start Date (Da	ny 0)	August 29, 2001	
EVS Project No.		9- 030			Sample ID _		Cu Reltox	
EVS Work Order No.		040	0384		Balance Type	/Serial Numb	per Sontanus BP211)	
		····						•
Sample ID	Rep.	Pan No.	Pan Weight (mg) 1	Final Weight (mg) (pan + biomass)	Number of Survivors	Number Weighed	Comments (e.g., confirmation weights, organisms lost in transfer)	Tech. Init.
Control	A	A i	1236,92	, 240.48	5	5		ANO/S
	3	<u>a</u>	1234.84	1239.67	5	_ 5		
	С	3	1233.83	1238.43	5	5		
	D	4	1234.81	1239.99	5	5	Pre-wt: 1234.82 reweyled: 1240.01 ms	
	Ē	5	1234.81	1241.27	5	5		
320	A	6	1236.55	1239.45	4	4		
	В	7	1223.58	1227.87	5	5		
	۲	8	1228.35	1233.01	5	5		
	<u>D</u>	9	1236,84	1240.60	5	5	reweighed: 1240.62 mg	
····	Ê	10	1230.58	1235.34	5	5		
56,0	A	17	1240.99	1244.89	5	5		
	В	12	1240.22	1243.80	5	5		
	C	13	1232.03	1236.09	5	5		
	D	14	1222.70	1228.06	5	5	remerghed 1228.01 mg	
	F	15	227 91	123258		5		

Forms\Lab\Datasheets\Larvalfish\Topsmelt\7D-DRYWEIGHT.DOC

Client EVS Project No. EVS Work Order No.	AZIN	09-6	Polesis) 0302-54		Start Date (Da Sample ID _ Balance Type,	. 1	August 29, 2004 Cy Reltox Der Sontonis BP 2.	// <u>)</u>
Sample ID 491	Rep.	Pan No.	Pan Weight (mg) 1	Final Weight (mg) (pan + biomass)	Number of Survivors	Number Weighed	Comments (e.g., confirmation weights, organisms lost in transfer)	Tech. Init.
100,0	.A	A 16	1231.06	1234.17	84	84		7/1
	В	17	1232,73	1336.19	5	5		
	c	18	122740	1232.10	5	5		
	D	19	122562	1227.27	2	2		
	E	20	1229,98	1233.36	3	3		
180,0	A	21	1233.34	1235.48	2	2	pre-wt: 1233,29	
	В	22	1226,36		0			
	_ C_	23	1228.36					
	D	24	1229.37				3	
	E	25	1226.55					
3200	A	26	1219.08					
	3	27	1224.60			·	,	
	C	28	1229.45			_		
	D	29	1236.52					
	Ē		1236.61		V			
Re-confirm weigh Data Verified By	ts for 10%		ghts and record und	ler "Comments"; relative pe			airs of weights should be ≤10% of organism we	pight.

Forms\Lab\Datasheets\Larvalfish\Topsmelt\7D-DRYWEIGHT.DOC

Test: LF-Larval Fish Growth and Survival Test

Species: AA-Atherinops affinis

Sample ID: REF-Ref Toxicant

Start Date: 8/27/2004 End Date: 9/3/2004

Test ID: RTAACu39

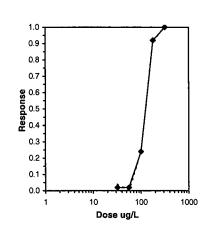
Protocol: EPAW 95-EPA West Coast

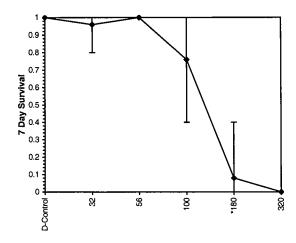
Sample Type: CU-Copper

Lab ID: BCEVS-EVS Environment Consultants

Start	Date:	8/2//2	004 En	d Date:	9/3/20)4			Lab ID	: RCEA	S-EVS	Environment Co	nsultants	
											ŀ	No. Fish	Total	Tare
Pos	ID	Rep	Group	Day 0	Day 1	Day 2	Day 3	Day 4	Day 5	Day 6	Day 7	Weighed	Wgt(mg)	Wgt(mg)
	1	1	D-Control	5							5	. 5	1240.48	1236.92
	2	2	D-Control	5							5	5	1239.67	1234.84
	3	3	D-Control	5							5	5	1238.43	1233.83
	4	4	D-Control	5							5	5	1239.99	1234.81
	5	5	D-Control	5					-		5	5	1241.27	1236.78
	6	1	32.000	5							4	4	1239.45	1236.55
	7	2	32.000	5							5	5	1227.87	1223.58
	8	3	32.000	5							5	5	1233.01	1228.35
	9	4	32.000	5							5	5	1240.6	1236.84
	10	5	32.000	5							5	5	1235.34	1230.58
	11	1	56.000	5							5	5	1244.89	1240.99
	12	2	56.000	5							5	. 5	1243.8	1240.22
	13	3	56.000	5							5	5	1236.09	1232.03
	14	4	56.000	5							5	5	1228.06	1222.7
	15	5	56.000	5							5	5	1232.58	1227.91
	16	1	100.000	5							4	4	1234.17	1231.06
	17	2	100.000	5							5	5	1236.19	1232.73
	18	3	100.000	5							5	5	1232.1	1227.4
	19	4	100.000	5							2	2	1227.27	1225.62
	20	5	100.000	5							3	3	1233.36	1229.98
	21	1	180.000	5							2	2	1235.48	1233.34
	22	2	180.000	5							0	0	0	0
	23	3	180.000	5							0	0	0	0
	24	4	180.000	5							0	0	0	0
	25	5	180.000	5							0	0	0	
	26	1	320.000	5							0	0	0	
	27	2	320.000								0	0	0	
	28	3	320.000	5							0	0	0	
	29	4	320.000	5							0	0	0	
	30	5	320.000	5							0	0	0	0

Comments: 09-0302-54, 0400384


Reviewed by: Oat a Cole


			La	rval Fish C	rowth and Survi	val Test-7 Day St	ırvival	
Start Date:	8/27/2004		Test ID:	RTAACu3	9	Sample ID:	REF-Ref Toxicant	_
End Date:	9/3/2004		Lab ID:	BCEVS-E	VS Environment C	c Sample Type:	CU-Copper	
Sample Date:			Protocol:	EPAW 95-	EPA West Coast	Test Species:	AA-Atherinops affinis	
Comments:	09-0302-5	4, 04003	384					
Conc-ug/L	1	2	3	4	5			
D-Control	1.0000	1.0000	1.0000	1.0000	1.0000			
32	0.8000	1.0000	1.0000	1.0000	1.0000			
56	1.0000	1.0000	1.0000	1.0000	1.0000			
100	0.8000	1.0000	1.0000	0.4000	0.6000			
180	0.4000	0.0000	0.0000	0.0000	0.0000			
320	0.0000	0.0000	0.0000	0.0000	0.0000			

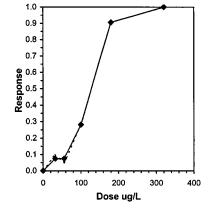
			Tra	ansform:	Arcsin Sc	uare Root	t	Rank	1-Tailed	Number	Total
Conc-ug/L	Mean	\$D	Mean	Min	Max	CV%	N	Sum	Critical	Resp	Number
D-Control	1.0000	0.0000	1.3453	1.3453	1.3453	0.000	5			0	25
32	0.9600	0.0894	1.2977	1.1071	1.3453	8.207	5	25.00	17.00	1	25
56	1.0000	0.0000	1.3453	1.3453	1.3453	0.000	5	27.50	17.00	0	25
100	0.7600	0.2608	1.0737	0.6847	1.3453	26.959	5	20.00	17.00	6	25
*180	0.0800	0.1789	0.3174	0.2255	0.6847	64.711	5	15.00	17.00	23	25
320	0.0000	0.0000	0.2255	0.2255	0.2255	0.000	5			25	25

Auxiliary Tests					Statistic	Critical	Skew	Kurt
Shapiro-Wilk's Test indicates non	normal dis	tribution (p <= 0.01)		0.87543	0.888	0.19148	2.19139
Equality of variance cannot be co	nfirmed							
Hypothesis Test (1-tail, 0.05)	NOEC	LOEC	ChV	ΤU				
Steel's Many-One Rank Test	100	180	134.164				-	

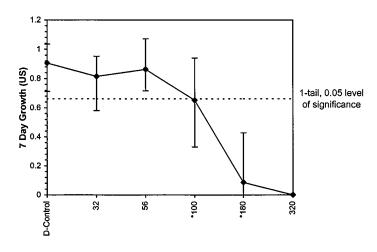
					Trimmed Spearman-Karber
Trim Level	EC50	95%	CL		
0.0%					
5.0%	121.21	107.05	137.25		
10.0%	122.51	106.69	140.68		1.0 —
20.0%	124.90	100.06	155.92		
Auto-2.0%	121.16	107.14	137.03	ua/L Cu	0.9

Reviewed by: Qalf

Larval Fish Growth and Survival Test-7 Day Growth (US)									
Start Date:	8/27/2004		Test ID:	RTAACu3	9	Sample ID:	REF-Ref Toxicant		
End Date:	9/3/2004		Lab ID:	BCEVS-E	VS Environmer	nt Cc Sample Type:	CU-Copper		
Sample Date:			Protocol:	EPAW 95	-EPA West Coa	ast Test Species:	AA-Atherinops affinis		
Comments:	09-0302-5	4, 04003	384						
Conc-ug/L	1	2	3	4	5				
D-Control	0.7120	0.9660	0.9200	1.0360	0.8980				
32	0.5800	^ 0.8580	0.9320	0.7520	0.9520				
56	0.7800	0.7160	0.8120	1.0720	0.9340				
100	0.6220 🗸	0.6920	0.9400	0.3300	0.6760				
180	0.4280	0.0000	0.0000	0.0000	0.0000				
320	0.0000	0.0000	0.0000	0.0000	0.0000				


				Transform: Untransformed				1-Tailed			Isotonic	
Conc-ug/L	Mean	SD	Mean	Min	Max	CV%	N	t-Stat	Critical	MSD	Mean	N-Mean
D-Control	0.9064	0.1208	0.9064	0.7120	1.0360	13.330	5				0.9064	1.0000
32	0.8148	0.1529	0.8148	0.5800	0.9520	18.764	5	0.859	2.300	0.2451	0.8388	0.9254
56	0.8628	0.1413	0.8628	0.7160	1.0720	16.373	5	0.409	2.300	0.2451	0.8388	0.9254
*100	0.6520	0.2178	0.6520	0.3300	0.9400	33.401	5	2.387	2.300	0.2451	0.6520	0.7193
*180	0.0856	0.1914	0.0856	0.0000	0.4280	223,607	5	7.701	2.300	0.2451	0.0856	0.0944
320	0.0000	0.0000	0.0000	0.0000	0.0000	0.000	5				0.0000	0.0000

Auxiliary Tests					Statistic		Critical		Skew	Kurt
Shapiro-Wilk's Test indicates normal distribution (p > 0.01)					0.97983		0.888		0.24836	0.34826
Bartlett's Test indicates equal variances (p = 0.81)					1.6194		13.2767			
Hypothesis Test (1-tail, 0.05)	NOEC	LOEC	ChV	TŲ	MSDu	MSDp	MSB	MSE	F-Prob	df
Dunnett's Test	56	100	74.8331		0.24513	0.27045	0.56964	0.0284	9.0E-07	4, 20


Linear Interpolation (200 Resamples)

p) Skew
01.64 0.6918 Point IC05* ug/L 21.45 SD 95% CL(Exp) 21.58 1.69 IC10 61.43 22.13 0.00 103.56 -0.1239 -0.5135 -0.0104 IC15 72.10 20.41 118.52 1.19 IC20 82.78 15.91 41.12 121.23 IC25 93.45 13.98 53.16 124.15 0.0254 139.88 150.27 -0.3487 -0.4718 ug/L Cu IC40 115.28 11.42 71.83 IC50 128.08 10.81 84.76 150.27 -C

* indicates IC estimate less than the lowest concentration

Dose-Response Plot

Reviewed by Oct - 20/04

APPENDIX B

Raw Data and Statistical Analyses:

Dendraster excentricus

EVS ENVIRONMENT CONSULTANTS ECHINOID FERTILIZATION TOXICITY TEST DATA SUMMARY

Client <u>Azimoth Consulting Croup</u> EVS Project No. <u>09-0302-54/04-1424-044</u> EVS Work Order No. <u>0400385</u>	EVS Analysts KES AKN Test Initiation Date 27 AUGUST 2004
SAMPLE	TEST SPECIES
Identification G-CREEK-082404 Amount Received 5×20L Date Collected 24 AUGUST 2004 Temperature (°C) 15:0 pH 8:0 Dissolved Oxygen (mg/L) 10:0.0 8:5 Conductivity (\mumbos/cm) 9240 Salinity (ppt) 5 0 28 Ammonia (mg/L N) - Chlorine (mg/L Cl) - Other (D) Salinity adjustment	Organism Dendraster excentricus Source Lestaid Sealab Supplie, 27 Aug. 20 Date Received 27 August 2004 Reference Toxicant SDS Current Reference Toxicant Result Reference Toxicant Test Date 27 August 2004 IC50 (and 95% CL) 2.3 (2.1-2.4), all SDS Reference Toxicant Warning Limits (mean ± 2SD) and CV 3.9 ± 4.6 all SDS; CV/. =60
DILUTION/CONTROL WATER (initial water quality)	TEST CONDITIONS
Water Type UV Steralized, 0.5 m filtered SW	Temperature Range (°C)
Temperature (°C)	pH Range 8.0 -8.1
pH % .0	Dissolved Oxygen Range (mg/L) $8 \cdot 2 - 8 \cdot 5$
Dissolved Oxygen (mg/L)	Salinity Range (ppt) 28
Salinity (ppt) 28	Sperm:Egg Ratio 2001
Other	Test Duration 10:10
	Other
ICZS! I	0.7 (48.1-53.6) / U/U 7.5 (11.6-22.6) / V/U -7 / U/U
Data Verified By	Date Verified Oct. 16/04

EVS ENVIRONMENT CONSULTANTS ECHINOID FERTILIZATION TOXICITY TEST INITIAL WATER QUALITY

		CTING GROUP		Test Initiation	n Date/Time 27 A	gyt 2004@13			
EVS Work Orde	er No	385	24-044	Test Initiation Date/Time 27 August 2004 @ 13:					
Logbook c i	- 1 4t 2	985 <u>53-53</u>	Test Duration Westword Sealab Supplies						
ech.	COL HIS		<u></u>	- 	- 10.10	<u>-</u>			
Sample ID G-CREEK O82404	Conc/Rep	Temperature (°C)	pН	Salinity (ppt)	Dissolved Oxygen (mg/L)	Comments			
CONTROL		16.0	8. O	28	% ⋅3				
BRINE CTL		16.0	8.1	28	8-3				
	4.7	16.0	8.0	28	8.42				
	9.4	16.0	8.0	28	8.3				
	18.8	16.0	%. ల	28	8.3				
	34.5	15.5 16-6	8.0	28	8.2				
	75.1	15.016-0	8.0	28	8.5				
·									
<u>·</u>									
						*			
Tech. Init.	1/2	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	W _I	1//	1/2/2				
——————————————————————————————————————	fof	Kof	fof	Kaf	Kol				

EVS ENVIRONMENT CONSULTANTS ECHINOID FERTILIZATION TOXICITY TEST – EGG COUNT (SAMPLES)

Client AZIMUTH CONSULTING GROUP	Test Initiation Date/Time 27 August 2004 @ 13:34
EVS Project No.	Toot Spacing > 1 1.
EVS Work Order No. o400385	Source/Date Received Westwich Sealab Supplies/27 Angust
Logbook Edincid #13 Pages 53-57	Test Duration
	Sperm:Egg Ratio 2000:

G CREEK OS240 Sample ID	Replicate	Number of	Number of	Comments	Tech.
1/. 0/1		Fertilized Eggs	Unfertilized Eggs	a de la companya de	Initials
	A	78	22		Kaf
). A	В	74	26		
4.7	С	76	24		
	D	72	28		
	A	61	39		44
	В	62	38		
9.4	С	62	38		
	D	60	40		
	A	56	44		Hel
	В	58	42		
18.8	С	41 59	41		
	D	55	45		
	A	49	51		Haf
	В	50	50		
37.5	C	50	50		
	D	48	52		
	A	25	75		
	В	27	73		fet
75.1	С	24	76		1
	D	27	73		
	A	77	4/29 23		Lef
CONTROL	В	80	20		
SEA	С	74	26		
WATER	D	भ क	23		1

Data Verified By	Queli &	Date Verified	Oct-26/04	

EVS ENVIRONMENT CONSULTANTS ECHINOID FERTILIZATION TOXICITY TEST – EGG COUNT (SAMPLES)

Client Azımu	TH CONSUCT	TING GROUP.		Test Init	tiation Date	Time 27 AUGUST 2	2004@13:36
EVS Project No	09-030	2-54/04-1424	r-octor	Test Spe	ecies <u>D</u>	endraster excent	ricus
		<u>,</u> 00385		Source/	Date Receiv	endraster excent	Lab Supplier
		Pages <u>53-57</u>		Test Du	ration	10:10	
				Sperm:	Egg Ratio	2000:1	
Sample ID	Replicate	Number of Fertilized Eggs	Numb Unfertiliz			Comments	Tech. Initials
BRING	A	76	24	-			Hap
BRINE	В	73	27				
CONTRUC	С	79	21				
	D	77	23				
	A						
	В						
	С						
I	D						
	A						
	В						
	С						
	D						
	A						
	В						
	С						
. <u></u>	D		<u> </u>				
	A						
	В						
	C						
<u></u>	D						
	A						
	В						
	С						
	D					***	

Data Verified By	Galfi K	Date Verified	Oct -21/04	

Test: SC-Sperm Cell Fertilization test

Species: DE-Dendraster excentricus

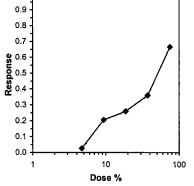
Sample ID: G CREEK-082404 Start Date: 8/27/2004 10:10

Test ID: 0400385

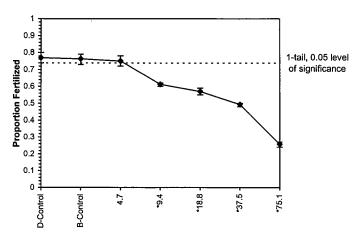
Protocol: EPS1/RM/27-EC 92 (Sperm Cell)

Sample Type: EFF2-Industrial

			LLN-002404				5. Li i Z-industriai
Start [Date:	8/27/2	004 10:10	End Date:	8/27/2004	Lab ID: BCE	VS-EVS Environment Consultants
				Total	Number	Number	
Pos	ID	Rep	Group	Counted	Fertilized	Unfertilized	Notes
	1	1	D-Control	100	77	23	
	2	2	D-Control	100	80	20	
	3	3	D-Control	100	74	26	
	4	4	D-Control	100	77	23	
	5	1	B-Control	100	76	24	
	6	2	B-Control	100	73	27	
	7	3	B-Control	100	79	21	
	8	4	B-Control	100	77	23	
	9	1	4.700	100	78	22	
	10	2	4.700	100	74	26	
	11	3	4.700	100	76	24	
	12	4	4.700	100	72	28	
	13	1	9.400	100	61	39	
	14	2	9.400	100	62	38	
	15	3	9.400	100	62	38	
	16	4	9.400	100	60	40	
	17	1	18.800	100	56	44	
	18	2	18.800	100	58	42	
	19	3	18.800	100	59	41	
	20	_ 4	18.800	100	55	45	
	21	1	37.500	100	49	51	
	22	2	37.500	100	50	50	
	23	3	37.500	100	50	50	
	24	4	37.500	100	48	52	
	25	1	75.100	100	25	75	
	26	2	75.100	100	27	73	
	27	3	75.100	100	24	76	
	28	4	75.100	100	27	73	


Comments: Azimuth Consulting Group (Polaris), 09-0302-54 (0400385)

			S	perm Cell F	ertilization test-Proportion Fe	ertilized
Start Date:	8/27/2004	10:10	Test ID:	400385	Sample ID:	G CREEK-082404
End Date:	8/27/2004		Lab ID:	BCEVS-EV	S Environment Cc Sample Type	: EFF2-Industrial
Sample Date:	8/24/2004		Protocol:	EPS1/RM/2	7-EC 92 (Sperm (Test Species	: DE-Dendraster excentricus
Comments:	Azimuth C	Consulting	g Group (F	olaris), 09-0	302-54 (0400385)	
Conc-%	1	2	3	4		
D-Control	0.7700	0.8000	0.7400	0.7700		
B-Control	0.7600	0.7300	0.7900	0.7700		
4.7	0.7800	0.7400	0.7600	0.7200		
9.4	0.6100	0.6200	0.6200	0.6000		
18.8	0.5600	0.5800	0.5900	0.5500		
37.5	0.4900	0.5000	0.5000	0.4800		
75.1	0.2500	0.2700	0.2400	0.2700		

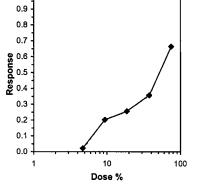

				Transforr	n: Untran:	sformed		_	1-Tailed		isot	onic
Conc-%	Mean	SD	Mean	Min	Max	CV%	N	t-Stat	Critical	MSD	Mean	N-Mean
D-Control	0.7700	0.0245	0.7700	0.7400	0.8000	3.181	4				0.7700	1.0000
B-Control	0.7625	0.0250	0.7625	0.7300	0.7900	3.279	4					
4.7	0.7500	0.0258	0.7500	0.7200	0.7800	3.443	4	1.546	2.410	0.0312	0.7500	0.9740
*9.4	0.6125	0.0096	0.6125	0.6000	0.6200	1.563	4	12.175	2.410	0.0312	0.6125	0.7955
*18.8	0.5700	0.0183	0.5700	0.5500	0.5900	3.203	4	15.460	2,410	0.0312	0.5700	0.7403
*37.5	0.4925	0.0096	0.4925	0.4800	0.5000	1.944	4	21.450	2.410	0.0312	0.4925	0.6396
*75.1	0.2575	0.0150	0.2575	0.2400	0.2700	5.825	4	39.616	2.410	0.0312	0.2575	0.3344

Auxiliary Tests					Statistic		Critical		Skew	Kurt
Shapiro-Wilk's Test indicates non	mal distribu	tion (p > 0).01)		0.96771		0.884		-0.0461	-0.3022
Bartlett's Test indicates equal var	iances (p =	0.47)			4.56528		15.0863			
The control means are not signific	cantly differen	ent (p = 0.	.68)		0.42857		2.44691			
Hypothesis Test (1-tail, 0.05)	NOEC	LOEC	ChV	TU	MSDu	MSDp	MSB	MSE	F-Prob	df
Dunnett's Test	4.7	9.4	6.6468	21.2766	0.03118	0.04049	0.14215	0.00033	5.1E-18	5, 18

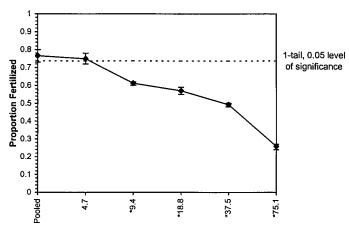
Log-Linear Interpolation (200 Resamples) Exp) Skew Point IC05 **%** 5.180 SD 95% CL(Exp) 6.056 -2.4799 0.661 1.565 IC10 6.314 0.363 5.072 7.317 -0.3761 IC15 7.655 0.380 6.468 8.804 -0.0227 1.0 IC20 9.242 0.946 8.159 13.672 1.6390 0.9 16.673 41.060 51.581 IC25 2.353 10.367 23.598 44.063 0.0429 IC40 8.0 0.897 38.450 IC50 0.976 49.063 54.697 0.0961 %v/v 0.7

Dose-Response Plot

Statistical comparisons were against the D-control


Reviewed by Qalfif

				perm Cell I	ertilization test-Proportion Fert	lized
Start Date:	8/27/2004	10:10	Test ID:	400385	Sample ID:	G CREEK-082404
End Date:	8/27/2004		Lab ID:	BCEVS-EV	S Environment Cc Sample Type:	EFF2-Industrial
Sample Date:	8/24/2004		Protocol:	EPS1/RM/2	27-EC 92 (Sperm (Test Species:	DE-Dendraster excentricus
Comments:	Azimuth (Consulting	g Group (F	Polaris), 09-0	302-54 (0400385)	
Conc-%	1	2	3	4		
D-Control	0.7700	0.8000	0.7400	0.7700		
B-Control	0.7600	0.7300	0.7900	0.7700		
4.7	0.7800	0.7400	0.7600	0.7200		
9.4	0.6100	0.6200	0.6200	0.6000		
18.8	0.5600	0.5800	0.5900	0.5500		
37.5	0.4900	0.5000	0.5000	0.4800		
75.1	0.2500	0.2700	0.2400	0.2700		


			Transform: Untransformed						1-Tailed			onic
Conc-%	Mean	SD	Mean	Min	Max	CV%	N	t-Stat	Critical	MSD	Mean	N-Mean
Pooled	0.7663	0.0233	0.7663	0.7300	0.8000	3.036	8				0.7663	1.0000
4.7	0.7500	0.0258	0.7500	0.7200	0.7800	3.443	4	1.390	2.508	0.0293	0.7500	0.9788
*9.4	0.6125	0.0096	0.6125	0.6000	0.6200	1.563	4	13.156	2.508	0.0293	0.6125	0.7993
*18.8	0.5700	0.0183	0.5700	0.5500	0.5900	3.203	4	16.793	2.508	0.0293	0.5700	0.7439
*37.5	0.4925	0.0096	0.4925	0.4800	0.5000	1.944	4	23.424	2.508	0.0293	0.4925	0.6427
*75.1	0.2575	0.0150	0.2575	0.2400	0.2700	5.825	4	43.533	2.508	0.0293	0.2575	0.3361

Auxiliary Tests					Statistic		Critical		Skew	Kurt
Shapiro-Wilk's Test indicates norr	nal distribu	tion (p > 0	0.01)		0.98075		0.896		-0.1412	-0.2089
Bartlett's Test indicates equal vari	ances (p =	0.44)			4.83474		15.0863			
The control means are not signific	antly differ	ent (p = 0	.68)		0.42857		2.44691			
Hypothesis Test (1-tail, 0.05)	NOEC	LOEC	ChV	TU	MSDu	MSDp	MSB	MSE	F-Prob	df
Bonferroni t Test	4.7	9.4	6.6468	21.2766	0.02931	0.03826	0.16613	0.00036	1.9E-21	5, 22

Log-Logit Interpolation (200 Resamples) Point IC05 IC10 % 5.346 6.555 Skew -1.8281 95% CL(Exp) SD 0.452 3.380 6.032 0.307 5.439 7.178 -0.4707 IC15 7.892 0.273 6,858 8.579 -0.3014 1.0 IC20 9.379 0.715 8.461 12.502 1.9342 0.9 IC25 17.460 2.031 11.554 22.636 0.0330 40.999 50.738 42.863 IC40 0.628 38.998 48.086 0.1265 0.1685 %v/v 0.8 IC50 53.622 0.809 0.7

Dose-Response Plot

Statistical comparisons were against the B-control Robot Could be

Reviewed by: Out of

EVS ENVIRONMENT CONSULTANTS ECHINOID FERTILIZATION TOXICITY TEST DATA SUMMARY

Client Azimuth Consulting Group	EVS Analysts KES, AKN
EVS Project No. 09-0302-54 04-1424-041	Test Initiation Date 27 August 2004
EVS Work Order No. 0400385	,
SAMPLE	TEST SPECIES
Identification SDS Ret Tox Stock Sola	Organism Dendraster excentricus
Amount Received	Source Westhard Sealah Supplier
Date Golfetted 26 April 2004	Date Received 27 August 2004
Date Received	Reference Toxicant SDS
Temperature (°C)	Current Reference Toxicant Result
рН	Reference Toxicant Test Date 27 August 2004
Dissolved Oxygen (mg/L)	IC50 (and 95% CL) 2.3 (2.1-2.4) mg/L SDS
Conductivity (µmhos/cm)	Reference Toxicant Warning Limits (mean ± 2SD) and CV
Salinity (ppt)	3.9 + 4.6 mg/L SDS, CV% = 60
Ammonia (mg/L N)	
Chlorine (mg/L Cl)	
Other	
DILUTION/CONTROL WATER (initial water quality)	TEST CONDITIONS
Water Type UV Steralized, o. Sun filtered Shi	Temperature Range (°C)
Temperature (°C)	pH Range $\mathbf{g} \cdot \mathbf{o}$
pH	Dissolved Oxygen Range (mg/L)
Dissolved Oxygen (mg/L) 8.3	Salinity Range (ppt) 28
Salinity (ppt) 2-8	Sperm:Egg Ratio 2000:
Other	Test Duration 10: 10
	Other
TEST RESULTS <u>TC 50:</u>	2.3 (2.1-2.4) mg/L SDS
IC 25:	1.3 (1.2-1.4) mg/L SDS
NOEC:	41 mg/L SDS
LOEC!	1 ~g/L SDS
1 12	
Data Verified By	Date Verified Oct 26/04

EVS ENVIRONMENT CONSULTANTS ECHINOID FERTILIZATION TOXICITY TEST INITIAL WATER QUALITY

		54 04-1424- 185	044	Test Species Source/Date	<u>Dendraster ex</u> Received <u>Westsink</u>	Scalab Supplier /2-			
		Pages _53 - 5	7	Test Initiation Date/Time 27 August 2004@ 13:34 Test Species Dendraster executions Source/Date Received Westerned Scalab Supplier 27 August 2004@ 13:34 Test Duration 10:10					
	1	· · · · · · · · · · · · · · · · · · ·							
Sample ID	Conc/Rep	Temperature (°C)	pН	Salinity (ppt)	Dissolved Oxygen (mg/L)	Comments			
DSmg/L	CONTROL	16.0	8.0	28	8.3				
	1.0	16.0	8.0	28	8.3				
	1.8	16.0	8.0	28	8.3				
	3.2	16.0	8.0	28	8.3				
	5.6	16.0	8.0	28	8.3				
	10.0	16.0	8.0	28	8.3				
<u></u>									
			<u> </u>						
Tech. Init.	Kel	def	bol	Hal	Hel				

EVS ENVIRONMENT CONSULTANTS ECHINOID FERTILIZATION TOXICITY TEST – EGG COUNTS (CONTROLS)

VS Work Order	r No. 040	0382	Test Initiation Date Lu-ouu Test Species D Test Duration	10110	
		Pages <u>\$3-</u> \$7		2000:1	
	<u> </u>				
Concentration	Replicate	No. Fertilized	No. Unfertilized	Comments	Tech.
ios mg/L		Eggs	Eggs	 	Initials
Reference Toxi	icant				
	A	70	30		Haf
1.0	В	72	28	<u>-</u>	
	C	69	31		
	D	68	32		V
	A	45	55		flat
	В	47	53		1
1.8	С	46	54		
	D	49	51		
	A	25	75		Hat
- 2	В	26	74	-100-	1
3.2	С	24	7-6		
	D	27	73		
	A	(0	90		Hef
_	В	14	86		- 4 /
5.6	C	વ	91		
	D	10	90		
	A	2	98	- Marie Administration of the Control of the Contro	fet
	В	2_	98		97
10.0	C		99		- -
	D	2	98		
ontrol Seawa		<u> </u>	. 0		
	A	Q1 77	23		flet
	В	84 77 74 60			1
		7480	20		
	C	74	26		
	D	77	23		V

Test: SC-Sperm Cell Fertilization test
Species: DE-Dendraster excentricus
Sample ID: REF-Ref Toxicant
Start Date: 8/27/2004 10:10

Test ID: rtscsds9
Protocol: EPS1/RM/27-EC 92 (Sperm Cell)
Sample Type: SDS-Sodium dodecyl sulfate
Lab ID: BCEVS-EVS Environment Consultants

			Total	Number	Number	
ID	Rep	Group	Counted	Fertilized	Unfertilized	Notes
1	1	D-Control	100	77	23	
2	2	D-Control	100	80	20	
3	3	D-Control	100	74	26	
4	4	D-Control	100	77	23	
5	1	1.0	100	70	30	
6	2	1.0	100	72	28	
7	3	1.0	100	69	31	
8	4	1.0	100	68	32	
9	1	1.8	100	45	55	
10	2	1.8	100	47	53	
11	3	1.8	100	46	54	
12	4	1.8	100	49	51	
13	1	3.2	100	25	75	
14	2	3.2	100	26	74	
15	3	3.2	100	24	76	
16	4	3.2	100	27	73	
17	1	5.6	100	10	90	
18	2	5.6	100	14	86	
19	3	5.6	100	9	91	
20	4	5.6	100	10	90	
21	1	10.0	100	2	98	
22	2	10.0	100	2	98	
23	3	10.0	100	1	99	
24	4	10.0	100	2	98	
	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24	1 1 2 2 3 3 4 4 5 1 6 2 7 3 8 4 9 1 10 2 11 3 12 4 13 1 14 2 15 3 16 4 17 1 18 2 19 3 20 4 21 1 22 2 23 3 24 4	1 1 D-Control 2 2 D-Control 3 3 D-Control 4 4 D-Control 5 1 1.0 6 2 1.0 7 3 1.0 8 4 1.0 9 1 1.8 10 2 1.8 11 3 1.8 12 4 1.8 13 1 3.2 14 2 3.2 15 3 3.2 16 4 3.2 17 1 5.6 19 3 5.6 20 4 5.6 21 1 10.0 22 2 10.0 23 3 10.0 24 4 10.0	ID Rep Group Counted 1 1 1 D-Control 100 2 2 D-Control 100 3 3 D-Control 100 4 4 D-Control 100 5 1 1.0 100 6 2 1.0 100 7 3 1.0 100 8 4 1.0 100 9 1 1.8 100 10 2 1.8 100 11 3 1.8 100 12 4 1.8 100 13 1 3.2 100 14 2 3.2 100 15 3 3.2 100 15 3 3.2 100 17 1 5.6 100 18 2 5.6 100 19 3 5.6 100	ID Rep Group Counted Fertilized 1 1 D-Control 100 77 2 2 D-Control 100 74 4 4 D-Control 100 77 5 1 1.0 100 70 6 2 1.0 100 72 7 3 1.0 100 69 8 4 1.0 100 68 9 1 1.8 100 45 10 2 1.8 100 47 11 3 1.8 100 47 11 3 1.8 100 49 13 1 3.2 100 25 14 2 3.2 100 25 14 2 3.2 100 27 17 1 5.6 100 10 18 2 5.6 100	ID Rep Group Counted Fertilized Unfertilized

Comments: Azimuth Consulting Group 09-0302-54 (0400385)

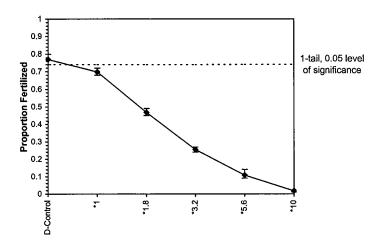
Reviewed by: Oat 1/101

Page 1

ToxCalc 5.0

			S	perm Cell F	Fertilization test-Pro	oportion Ferti	lized
Start Date:	8/27/2004	10:10	Test ID:	rtscsds9	S	ample ID:	REF-Ref Toxicant
End Date:	8/27/2004		Lab ID:	BCEVS-EV	S Environment Cr S	ample Type:	SDS-Sodium dodecyl sulfate
Sample Date:			Protocol:	EPS1/RM/2	27-EC 92 (Sperm (T	est Species:	DE-Dendraster excentricus
Comments:	Azimuth C	Consultin	g Group 09	9-0302-54 (0	0400385)		
Conc-mg/L	1	2	3	4			
D-Control	0.7700	0.8000	0.7400	0.7700		-	
1	0.7000	0.7200	0.6900	0.6800			
1.8	0.4500	0.4700	0.4600	0.4900			
3.2	0.2500	0.2600	0.2400	0.2700			
5.6	0.1000	0.1400	0.0900	0.1000			
10	0.0200	0.0200	0.0100	0.0200			

				Transforn	n: Untran	sformed		1-Tailed			Isotonic	
Conc-mg/L	Mean	SD	Mean	Min	Max	CV%	N	t-Stat	Critical	MSD	Mean	N-Mean
D-Control	0.7700	0.0245	0.7700	0.7400	0.8000	3.181	4					
*1	0.6975	0.0171	0.6975	0.6800	0.7200	2.448	4	5.813	2.410	0.0301		
*1.8	0.4675	0.0171	0.4675	0.4500	0.4900	3.653	4	24.254	2.410	0.0301		
*3.2	0.2550	0.0129	0.2550	0.2400	0.2700	5.063	4	41.292	2.410	0.0301		
*5.6	0.1075	0.0222	0.1075	0.0900	0.1400	20.627	4	53.118	2.410	0.0301		
*10	0.0175	0.0050	0.0175	0.0100	0.0200	28,571	4	60.334	2.410	0.0301		


Auxiliary Tests					Statistic		Critical		Skew	Kurt
Shapiro-Wilk's Test indicates nor	mal distribu	ition (p > 0	.01)		0.94353		0.884		0.48689	0.03974
Bartlett's Test indicates equal var			5.73659		15.0863					
Hypothesis Test (1-tail, 0.05)	NOEC	LOEC	ChV	TU	MSDu	MSDp	MSB	MSE	F-Prob	df
Dunnett's Test	<1	1			0.03006	0.03904	0.38532	0.00031	3.5E-22	5, 18

Log-Linear Interpolation (200 Resamples) mg/L 0.2818 Point SD 95% CL(Exp) Skew IC05* IC10* 0.1777 0.4398 0.0398 0.4281 0.6429 0.1027 0.3830 1.0315 0.5219 IC15 IC20 1.0278 0.0806 0.6655 -1.2547 1.1534 1.0 1.1671 0.0441 1.0139 1.2853 -0.3348 0,9 IC25 IC40 0.0419 1.4292 -0.2285 1.3159 1.1718 8.0 1.8295 0.0507 1.6670 1.9678 -0.0985 IC50 2.2774 0.0469 2.1219 2.4035 -0

* indicates IC estimate less than the lowest concentration -0.2200 mg/L SDS 0.7

0.9 0.8 0.7 90.6 90.0.5 0.3 0.2 0.1 0.0 Dose mg/L

Dose-Response Plot

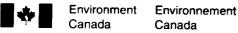
Reviewed by Qalf K

APPENDIX C

Chain-of-Custody Form

Please see instru	uctions for co	empletion on back. Shaded areas to	be complet	ed by E	VS La	boratory upoi	n samp	le rec	eipt.					EST FORM		EVS co	vironment nsultants	195 Pemberton Avenue North Vancouver, BC Canada V7P 2R4
Client Name: A	ZIMUTH	CONSULTING FOR	Client Conta	ıçt Nam	e: <u>C</u>	hen n	lack	inh	sh/i	3114	Do	naldsi	nip to:	EVS Environma	t (onl	and		Tel: 604-986-4331 Fax: 604-662-8548
Address:	3 1 1 1 1 1	F 12 (2	hone: 🕼	04-	731) - 133	<u> </u>			-			195	Remberton Aw.			25	www.ovcom/ronmont.com
210-290	الا المريدة	Broadwa - F	ax: <u>L</u>	04-	- 7	39-90	70						No	oth Vancouver, B	(V1P 218	y Shinning Date:	An B	7/224
AWACOOAS	7 13C	Var 268 5				y Books	e√ C .	Mac	Kin	اكتا		At	tn: <u>[</u> -	downed Canavia	<u> </u>	7 Shipping Date.	11401.025	, 1555
Collection Date (dd/mmm/yy)	Time (24-h clock)	Sample Identification	Type of Each Sample	Material Safety Data Sheet Attached? (✓)	ample Collection Method 3 = grab; C = composite	Number of Sample Containers x Volume of Sample Container (i.e., 1 x 20 L)	Sample Container Type by Code &	ain bow trout	Duphnia magna	-chay togsmoth (s) sa	Echinoderin 48/10 in			Notes? (e.g. preserved, saltwater, freshwater, may contain sewage)		9 168 940 940 940	Alecept Check Charles 382 (383 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	384 385
For compose	site sample re	cord date & time starting and ending	1n					50	a ~	£4.	W_	<u> </u>				neniami di milita iting documentationa	other information:	macried if applicable 4.5
母/Aug/oy	15:00	G-Creek - 1817-04	E		on Price	5 x 20L	cc	1	✓.	1	√ de			Freshouter 1511		gratures & dates con		
		82404	ا (الر							:							ompleteor	
			22					-		."	_					na ners ac ved	ood condition fur	ioken 2 - Ve N
		7,								37 Tr						and except emper		
<u></u> \$	-		- 							₹							led (re dates in	
-			_			_				if.		1				ontainen labels agreed	(With custody par	ers?4 Y N.H.
											_					ample receipt lemper	ture withintaccep	able range?YYNN
		·]						39					124 A 125 A	dinentitesing going:	o be initiated with	in 14 days? Y £N.
	_			1 1			-			1							Nitropen II not	
			-							.4.	_	·						why are the years
				-			_			F			_			rain of custody general	ited upon receipt	
	- 3			<u> </u>								<u> </u>				implercontainers origin		
PO/Reference No.		-03-03	· · · · ·			Comments/Ins	truction	s:(/)	The	Sa	mpls	2 20	W	as changed from a	i-Creek o	81704 to	a-Creek	282404
Project Title:		MMER							by	ithe	<u> </u>	ent	3)	regnest.	. . <u>-</u>	·		
	<u> </u>	nhosh Date: Aug. F8/04	B) Rece	inad bu		, E	Date) 7 N	10.0	141	C) D	eleased I	D	Data				
Company: A	eimuth	Time: 9:00am							46.0			ompany:		Date: Time:		D) Received by:		Date:
Courier name:	rist ais	1 FEDEX	Compan						45	1		rier name		nne.		Company:		Time:
		, ,	. 1 7			eived secure?	(Yes)	No		.				secured by: Tape Straps Lock C	Other	Shipping containers	received secure?	Yes No
Custody seals used	d? Yes	Tape Straps Lock Other No METAL STRIPS	Gustody	seals int	act? /	Yes) No	N/A			:				(circle one)	Zuiti	Custody seals intact	? Yes No	N/A

1 Receiving Water (RW); Effluent (E); Elutriate (ELU); Sediment (SED); Chemical (CHEM); Stormwater (SW); Other (Please Specify) 2 Collapsible Carboy (CC); Glass Jar (GJ); Jerry Can (JC); Plastic HDPE (P); Plastic Bucket (PB); Other (Please Specify) 3 Please note any conditions the lab should be aware of for safety and storage concerns 4 Acceptable (A); Unacceptable (U). Please note specifics (e.g., broken, leaking, lid not on) under Comments/Instructions


(circle one) Custody seals used? Yes · No

Custody seals intact? Distribution of copies:

White, yellow, pink - accompany the shipment Orange - retained by consignor (e.g., shipper) Yellow - retained by consignee (e.g., receiver) Pink - for use as needed White - returned to consignor by consignee

Revision Date: Sept. 25, 2000

	APPENDIX F	
Letter from Environment Canad	la to Teck Cominco Metals, Ltd. re: Polar	is 2004
	port (dated August 9, 2005)	

Prairie & Northern Region Environment Canada Rm 200, 4999 98th Ave. Edmonton, AB T6B 2X3

Bruce Donald Cominco Mining Partnership & Teck Cominco Metals Ltd. Bag 2000 Kimberley, BC V1A3E1

August 9, 2005

Dear Bruce Donald,

RE: Polaris 2004 Annual Report

In our review of the Polaris 2004 Annual Effluent and Water Quality Report, due March 31, 2005, it was noted that some Environmental Effects Monitoring (EEM) information does not appear to have been provided as required under Metal Mining Effluent Regulations (Schedule 5, Part 1). Please see the appended list of deficiencies relating to effluent characterization, water quality monitoring and sublethal toxicity testing for your facility.

If missing information was collected but not included in the above report, please submit this information to Environment Canada by September 30, 2005. Please ensure that all deficiencies are addressed in future reports. Failure to provide all information required under the Environmental Effects Monitoring Program will result in non-compliance.

Please be reminded that guidance is provided on the National EEM Website to assist you, at http://www.ec.gc.ca/eem/English/Publications/web_publication/ec_water/. If you have any questions, please do not hesitate to contact me [Phone (780) 951-8754, jenny.ferone@ec.gc.ca].

Sincerely.

Jenny Ferone, Regional EEM Coordinator

cc Peter Blackall Chuck Brumwell Ken Russell

Polaris (7834-3-37/C263-9) 2004 Annual Effluent and Water Quality Review

General:

- Methods, detection limits, and QA/QC need to be included in the future.
- Latitude/longitude and description of reference and exposure areas need to be included in hard copy.
- No units given in the hard copy for measured parameters in the Effluent or Water Quality tables.

Effluent Characterization:

- Collected and analyzed four effluent samples, but due to short discharge period (July and August only) only two were more than one month apart. Remaining two were only three days short of being one month apart.
- No methods described or detection limits, no QA/QC data or description.

Water Quality:

- Only two water sampling dates were more than one month apart due to short sampling period (July and August). Three samples were analyzed.
- No latitude or longitude of reference or exposure sampling areas in hard copy; No description of the ref or exp area – both described as Garrow Bay.
- No methods described or detection limits, no QA/QC data or description.

Sublethal Toxicity:

Please note that laboratories performing sublethal tests should provide all information required on the Environment Canada checklists (Annex C of the Metal Mining Guidance Document).

- A subset of the sublethal reports submitted by mines in the Prairie and Northern Region were sent for independent verification by Environment Canada toxicologists. This subset includes the test results submitted by your facility. We will inform you of any additional sublethal deficiencies identified by our reviewers once they have finished their review.
- For first sampling LC50 reported twice for fish species.
- First and second sampling: No LC50 done for sand dollar.
- All comments below are for both sampling dates (July 27 and August 24) unless otherwise stated

Atherinops affinis

- Information on labeling/coding of sample was not reported.
- Temperature of sample upon arrival at lab was not reported.
- The date that the sample was received at the lab was not reported.
- Dates or days during test when sub-samples or multiple samples were used, was not reported.
- The date for test completion was not reported.
- Temperature, DO, pH, and salinity of test solution and controls were not reported for each 24hr exposure period. They were only reported for the start of the test.
- Only give the final average mortality for each test concentration instead of the mortality as noted during each 24hr observation period

- Only give the average dry weight of each concentration instead of for each replicate of each concentration – also no indication if preserved in formalin/ethanol or not. If not preserved then 2 test concentration have weights <0.85mg (17.3% & 69%).
- No preparation procedure of salinity adjustment was reported.

Champia parvula

- Information on labeling and coding of sample was not reported.
- The date for sample receipt at the lab was not reported.
- The date for test completion was not reported.
- Procedure and preparation of the hypersaline brine was not reported.
- The type and quantity of chemicals (if any) added to the control/dilution water was not reported.
- Temperature, DO, pH and salinity of test solutions and controls were not reported for the start and 48hr of the exposure period or for the beginning and end of the recovery period.
- No note if there was anything unusual about the test organism prior to the test or if there was anything unusual about the test itself.
- Only the mean # of cystocarps per plant for each test concentration was reported.
 Needed to report the mean # of cystocarps per plant in each test vessel (in each replicate of each conc. and controls).
- No indication of quantitative statistic used to determine IC25 value.

Dendraster excentricus

- Information on labeling/coding of sample, the date it was received and its temperature upon arrival at lab were all not reported.
- There was no mention of the condition of the adult organisms prior to use.
- No note if there was anything unusual about the test organisms prior to use or anything unusual about the test itself.
- No procedure for salinity adjustment was reported only statement that they followed EC guidance document.
- Only 100eggs/ vessel were used should have been 2000 for the 10mL test volume.
- No indication of quantitative statistic used to determine the IC25 value.

APPENDIX G

Letter from Azimuth Consulting Group, Inc. to Environment Canada re: Clarification of reporting issues outlined in August 9, 2005 letter (dated September 14, 2005)

Azimuth Consulting Group Inc. 218-2902 West Broadway Vancouver. BC

Phone: 604-730-1220 Fax: 604-739-8511 www.azimuthgroup.ca

Canada V6K 2G8

Jenny Ferone Regional EEM Coordinator Prairie & Northern Region Environment Canada Rm 200, 4999 98th Ave. Edmonton, AB, T6B 2X3

September 14, 2005

Dear Ms. Ferone,

Re: Clarification of reporting issues outlined in Environment Canada's letter to Teck Cominco regarding the Polaris 2004 EEM Annual Report

This letter is being written on behalf of Teck Cominco Metals Ltd. in response to Environment Canada's letter to Teck Cominco, dated August 9, 2005, regarding purported deficiencies in the Polaris 2004 Annual Effluent and Water Quality Report. Azimuth staff prepared the report and will be addressing the issues outlined in your letter by providing a revised 2004 EEM Annual Report. However, there are a few questions and clarifications that we would like to draw to your attention, to ensure that we include all required information in the revised report and that there are no misunderstandings or further deficiencies. Our specific responses to each of the points raised in the review letter are as follows:

General:

- Methods, detection limits and QA/QC will be included in all future reports
- Latitude and longitude and a description of the reference and exposure areas will be provided in the hard copy
- Units for water quality will be provided

Effluent Characterization:

- Effluent was collected and tested within allowable time periods, given the short duration of effluent discharge at Polaris.
- Methods, detection limits and QA/QC will be provided in the hard copy

Page 2 September 28, 2005

Water Quality:

 Sampling of water quality was optimized to collect as many samples as possible, given short duration of discharge

- Latitude and longitude of exposure and reference areas were provided in the electronic copy; these will also be provided in the hard copy
- Methods, detection limits and QA/QC will be provided in the hard copy

Sublethal Toxicity:

- "The first sampling LC50 reported twice for fish species." We presume the reviewers referring to the topsmelt tests. If so, we conducted 3 acute lethality tests on topsmelt in 2004. Results of all three tests are reported in the EEM under point iii of the Results. These values are listed as >72.6%, >69.0% and >71.0%.
- "First and second sampling: No LC50 done for sand dollar." The sand dollar test is strictly a sublethal fertilization test, and no LC50 is measured.

Atherinops affinis

- Information on labeling and coding of samples will be reported
- Temperature on sample receipt at the lab will be reported.
- Date of sample receipt at the lab will be reported
- Dates or days when sub- or multiple samples were used will be reported
- Date for test completion will be reported
- "Temperature, DO, pH, and salinity of test solution and controls were not reported for each 24hr exposure period..." The laboratory (EVS) hand writes temperature, DO and pH on hard copy forms and does not enter these electronically. PDF copies of these forms will be provided with our hard copy report.
- "Only give the final average mortality for each test concentration instead of the mortality as noted during each 24hr observation period." As above, these are written by hand in hard copy by the lab. PDF copies will be provided with the final report.
- Comment regarding the dry weights of each replicate for each test concentration... "If not preserved then 2 test concentration have weights <0.85mg (17.3%, and 69%)." Dry weights will be reported for each replicate of each concentration. Note that the 0.85mg test validity benchmark only refers to the controls. If there is a sublethal effect, such as slower growth, exposed animals will necessarily weigh less than the control and may weigh less than 0.85 mg.
- "No preparation procedure of salinity adjustment was reported." Information regarding salinity adjustment was presented under point ix under <u>Test Facilities</u> and <u>Conditions</u>. The following text was included:
 - ix. Indication that EC guidance document for salinity adjustment was followed
 - The following was done for all 3 tests:
 - No deviations from EC guidance document on preparation of hypersaline brine (HSB)

Page 3
 September 28, 2005

- HSB prepared from natural seawater concentrated to 90ppt (by freezing/refreezing to remove frozen layer and concentrate salts)
- No deviations from EC guidance document for salinity adjustment of sample
- HSB was added to samples to salinity adjust them to 30ppt

We presume that this level of information is sufficient. If not, please let us know what additional information is required. Note that for the topsmelt and echinoderm tests, the lab reports state: "Salinity: 30±2 (sample adjusted with hypersaline brine [HSB]. Preparation of HSB and salinity adjustment as per EC guidance document on salinity adjustment – July 1997)"

Champia parvula

- Information on labeling and coding will be provided in the revised final report
- Date for sample receipt at the lab will be reported
- Date for test completion will be reported
- "Procedure and preparation of the hypersaline brine was not reported." Under point vii. of <u>Test Conditions and Facilities</u> we indicate:
 - No deviations from EC guidance document on preparation of hypersaline brine
 - HSB prepared from natural seawater at 90ppt
 - No deviations from EC guidance document for salinity adjustment of sample
 - Salinity adjustment: 600mL effluent + 250mL HSB + 8.5mL test nutrient solution
 - Salinity of samples adjusted from 4ppt to 30ppt

The lab report indicated for hypersaline brine that it was "Prepared from natural seawater, at 90 ppt salinity." As per EC guidance document on salinity adjustment". We presume that this is a sufficient level of detail. If not, please advise us what additional information the laboratory can provide to satisfy this comment.

- "No note if there was anything unusual about the test organism prior to the test or if there was anything unusual about the test itself". We will include appropriate observations about the test in future reports. With regards to the organisms, under point iii of <u>Test Organisms</u> we indicated that "[test species]...
 - Sexually mature male and female branches
 - Obtained from USEPA, Hatfield Marine Science Center, Newport Oregon, 1995
 - Appear in good health
 - Females have trichogynes, males have sori with spermatia

We presume this is a sufficient level of detail. If not, please advise us on what additional information the laboratory can provide to satisfy this comment.

 "No indication of quantitative statistic used to determine the IC25 value." Under point iii. of <u>Results</u>, we stated "Quantal statistic method was linear interpolation" We presumed this was sufficient. Please advise if the reviewer wishes us to elaborate on this method. Page 4
 September 28, 2005

Dendraster excentricus

 Information on labeling/coding, date of receipt, temperature at arrival at laboratory will be provided

- "There was no mention of the condition of the adult organisms prior to use."
 Under point xi (<u>Test Organisms</u>) it is stated that "organisms appear healthy". We presumed this was sufficient information. If not, please elaborate on what additional level of detail is required.
- Future reports will note if there is anything unusual observed about the organisms or the test.
- "No procedure for salinity adjustment was reported only statement that they
 followed EC guidance document" Under point ix (<u>Test Facilities and Conditions</u>)
 we make the following comments on hypersaline brine and salinity adjustment.
 - x. Procedure for preparation of hypersaline brine (HSB) as per EC guidance document on salinity adjustment July 1997
 - Test 1: na
 - Test 2: 30 ppt adjusted with hypersaline brine (HSB).
 Preparation of HSB and salinity adjustment as per EC guidance document on Salinity adjustment July 1997
 - Test 2: 30 ppt adjusted with hypersaline brine (HSB).
 Preparation of HSB and salinity adjustment as per EC guidance document on Salinity adjustment July 1997
 - xi. Procedure for salinity adjustment as per EC guidance document on salinity adjustment July 1997
 - No deviations from EC guidance for salinity adjustment
 - Test 1: na
 - Test 2: salinity adjusted from 2.8 to 28 ppt
 - Test 3: salinity adjusted from 5 to 28 ppt

We presume that this is a sufficient level of detail and was according to EC guidance. For both topsmelt and echinoderm tests the original lab report methods for salinity state "30±2 (sample adjusted with hypersaline brine [HSB]. Preparation of HSB and salinity adjustment as per EC guidance document on salinity adjustment – July 1997)" Please advise if your reviewers would like us to obtain more information from the laboratory.

- The laboratory does use 2000 eggs/10 mL, although a subset of 100 eggs are evaluated to determine the overall fertilization rate. We will clarify this.
- Quantitative statistic for determining IC25 will be provided.

We have raised a few issues where further guidance from your office is required. These are stated above as assumptions where clarification is requested from your office. We have incorporated all other appropriate additional information requested by the reviewers into a revised 2004 Polaris Annual Report. Once we have received a response from your office we will finalize this revised report. If we do not have a response from your office by Monday September 26, 2005, we will finalize the report

Page 5
 September 28, 2005

following our assumptions as stated in this letter, and submit the revised report by the September 30, 2005 deadline.

We would also like to communicate to Environment Canada that the electronic and hardcopy versions of the EEM report are not harmonized, as different information is requested for the two reports. As it is currently, the addition of the electronic report results in a duplication of effort and confuses the reporting requirements, rather than resulting in a more streamlined reporting process.

Sincerely,

Cheryl Mackintosh, M.R.M., R.P.Bio.

Azimuth Consulting Group Inc.

218-2902 Broadway West Vancouver, BC, V6K 2G8

P: 604-730-1220 F: 604-739-8511

e-mail: cmackintosh@azimuthgroup.ca

APPENDIX H Polaris Mine – Revised 2004 3rd Quarter Metal Mining Effluent Regulations Report (dated March 22, 2005)

March 22, 2005

Prairie & Northern Region Environment Canada Room 200, 4999 98th Ave. Edmonton, AB T6B 2X3

Attention: Peter Blackall, Regional Director of Environmental Protection

Dear Sir;

Re: Polaris Mine – Revised 2004 3rd Quarter Metal Mining Effluent Regulations Report

Please find attached a **revised** Polaris Mine 3rd Quarter MMER regulatory data tables. The reason for the revision is to ensure consistency between the data entered electronically online through the RISS system, and the hard copy Annual and 3rd Quarter reports provided. As explained in the original 3rd Quarter report cover letter, effluent from Garrow Lake ceased flowing by mid-August but surface run off from adjacent slopes maintained minimal water flow at the designated final discharge point into August. By August 17, there was water at the final discharge point in a pool, but flow was too low to be measured. As a result, regulatory concentration data in the 3rd Quarter had originally been submitted with average daily flows of 0 m³ per day for the weeks of Aug. 17, Aug. 24, and Aug. 31, 2004. However, we continued to collect effluent, water quality and acute and sublethal toxicity samples on these latter three dates. Upon submitting the regulatory data into the online RISS system for the annual report, these August concentration data were not accepted with a flow rate of zero. Thus a nominal flow rate of 1 m³ per day was entered. As a result the loadings data set is slightly different from the data submitted in the original 3rd Quarter report. Note that these low flow conditions during August, as well as their implications for effluent sampling, were discussed with Environment Canada representatives early in August.

	have any questions regarding the annual report or aspects of the application of the MMER to the Polaris
Mine,	please feel free to contact me at any time.
Yours	truly,
Origin	al signed by B. Donald
Bruce	Donald
Attach	ments: Revised 2003 3 rd Quarter Regulatory Data
cc:	Walter Kuit (Teck Cominco Limited)
	Randy Baker (Azimuth Consulting Group)

2004 3rd QUARTER MMER REPORT - REVISED

LOCATION - FINAL DISCHARGE POINT FROM GARROW LAKE (GARROW LAKE DAM SIPHONS)

CONCENTRATIONS OF EFFLUENT FOR MMER SCHEDULE 4 SAMPLED WEEKLY

Sample Taken											
During The	Date			DELE	TERIOUS :	SUBSTAN	CE (mg/L)	1			Collection
Week of	Sample Taken	Arsenic	Copper	Cyanide	Lead	Nickel	Zinc	TSS	Radium 226 ¹	pH ¹	Method
5-Jul-04	7-Jul-04	0.00100	0.00265	0.0050	0.00269	0.00442	0.1980	117	0.0200	8.05	Grab
12-Jul-04	13-Jul-04	0.00200	0.00070	0.0050	0.00032	0.00204	0.1060	5.7	0.0070	7.90	Grab
19-Jul-04	20-Jul-04	0.00200	0.00043	0.0050	0.00084	0.00088	0.0435	3.0	0.0050	7.86	Grab
26-Jul-04	27-Jul-04	0.00100	0.00052	0.0050	0.00157	0.00207	0.0429	3.0	0.0050	7.87	Grab
2-Aug-04	3-Aug-04	0.00020	0.00082	0.0050	0.00280	0.00338	0.0349	3.3	0.0060	8.00	Grab
9-Aug-04	10-Aug-04	0.00100	0.00100	0.0055	0.00120	0.00748	0.0482	3.0	0.0050	8.04	Grab
16-Aug-04	17-Aug-08	0.00020	0.00121	0.0050	0.00177	0.00644	0.0418	5.3	0.0100	7.95	Grab
23-Aug-04	24-Aug-04	0.00020	0.00134	0.0050	0.00119	0.00967	0.0498	4.4	0.0080	7.84	Grab
30-Aug-04	31-Aug-04	0.00020	0.00137	0.0050	0.00261	0.01340	0.0794	14.5	0.0080	7.90	Grab
6-Sep-04	nd ²	nd ²	nd ²								
13-Sep-04	nd ²	nd ²	nd ²								
20-Sep-04	nd ²	nd ²	nd ²								
27-Sep-04	nd ²	nd ²	nd ²								
·										·	

Note¹ - All concentrations are in mg/L except Radium 226 which is Bq/L and pH which is in pH units

Note ² - "nd" refers to no effluent discharge to sample

MONTHLY MEAN CONCENTRATIONS OF EFFLUENT FOR MMER SCHEDULE 4

	MONTHLY MEAN CONCENTRATION OF DELETERIOUS SUBSTANCE3											
MONTH OF	Arsenic	Copper	Cyanide	Lead	Nickel	Zinc	TSS	Radium 226				
July/04	0.0015	0.00107	0.0050	0.00135	0.00235	0.0976	32	0.0093				
August/04	0.0004	0.00115	0.00510	0.00191	0.00807	0.0508	6.1	0.0074				
September/04	nd ²	nd ²	nd ²	nd ²	nd ²	nd ²	nd ²	nd ²				

Note¹ - All concentrations are in mg/L except Radium 226 which is Bq/L

Note ² - "nd" refers to no effluent discharge to sample

Note³ - Monthly Mean Concentrations - the MEAN value of the concentrations measured in all water samples collected during each month when a deleterious substance is deposited.

MASS LOADING OF DELETERIOUS SUBSTANCE FOR EACH DAY SAMPLED

Sample Taken	<u> </u>			_						Average Daily
During The	Date	I	DAILY MA	SS LOADII	NG OF DE	LETERIO	JS SUBST.	ANCE (kg/d	day) ¹	Flow Rate
Week of	Sample Taken	Arsenic	Copper	Cyanide	Lead	Nickel	Zinc	TSS	Radium 226 ¹	(m³/day)
5-Jul-04	7-Jul-04	0.018	0.048	0.091	0.049	0.080	3.588	2120	362,440	18,122
12-Jul-04	13-Jul-04	0.752	0.264	1.880	0.120	0.767	39.850	2143	2,631,608	375,944
19-Jul-04	20-Jul-04	0.205	0.044	0.512	0.086	0.090	4.458	307	512,395	102,479
26-Jul-04	27-Jul-04	0.028	0.015	0.141	0.044	0.058	1.211	85	141,090	28,218
2-Aug-04	3-Aug-04	0.005	0.022	0.132	0.074	0.089	0.923	87	158,700	26,450
9-Aug-04	10-Aug-04	0.026	0.026	0.142	0.031	0.194	1.248	78	129,470	25,894
16-Aug-04	17-Aug-08	0.000	0.000	0.000	0.000	0.000	0.000	0	0	1
23-Aug-04	24-Aug-04	0.000	0.000	0.000	0.000	0.000	0.000	0	0	1
30-Aug-04	31-Aug-04	0.000	0.000	0.000	0.000	0.000	0.000	0	0	1
6-Sep-04	nd ²	0	0	0	0	0	0	0	0	0
13-Sep-04	nd ²	0	0	0	0	0	0	0	0	0
20-Sep-04	nd ²	0	0	0	0	0	0	0	0	0
27-Sep-04	nd ²	0	0	0	0	0	0	0	0	0

Note¹ - Mass Loading is in kilograms per day of the deleterious substance deposited except Radium 226 which is in Bq per day

MASS LOADING PER CALENDAR MONTH FOR EACH DELETERIOUS SUBSTANCE

CALENDAR		MASS LO	ADING ¹ FC	R DELET	ERIOUS S	UBSTANC	E (kg/month) ²	Average Weekly Flow Rate ³	Total Monthly Volume⁴
MONTH OF	Arsenic	Copper	Cyanide	Lead	Nickel	Zinc	TSS	Radium 226 ²	(m³/week)	(m³/month)
July/04	7.77	2.87	20.33	2.31	7.71	380.58	36,078.15	28,268,381	131,191	4,066,913
August/04	0.19	0.29	1.70	0.65	1.76	13.46	1,022.95	1,786,654	10,469	324,551
September/04	0	0	0	0	0	0	0	0	0	0

Note¹ - Total Mass Loading for Calendar month calculated by multiplying the Average Daily Mass Loading for the Month x # days in the month

Note ² - "nd" refers to no effluent discharge to sample

Note² - Mass loading units are in kg per month except Radium 226, which is in Bq permonth

Note³ - Average Weekly Flow Rate calculated by multiplying Average Daily Flow Rate x 7 days per week

Note⁴ - Total Monthly Volume calculated by multiplying Average Daily Flow Rate for the month x days in month