The Collection of Landfill Monitoring Data at the CAM-M Cambridge Bay Site – 2007 Report

Prepared for **Defence Construction Canada**

Submitted by Gartner Lee Limited

January, 2008

The Collection of Landfill Monitoring Data at the CAM-M Cambridge Bay Site – 2007 Report

Prepared for

Defence Construction Canada

January, 2008

Reference: GLL 70-517

Distribution:

- **8 Defence Construction Canada**
- 1 Kitnuna Corporation
- 2 Gartner Lee Limited

January 7, 2008

Mr. Thuc Nyugen Defence Construction Canada Constitution Square, Suite 1720 350 Albert Street Ottawa, ON K1A 0K3

Dear Mr. Nyugen:

Re: GLL 70-517 – Final Report for the 2007 Collection of Landfill Monitoring Data at the CAM-M Dew Line Site, Cambridge Bay, Nunavut

We are pleased to submit eight hard copies of the 2007 Draft Report on the Collection of Landfill Monitoring Data at the CAM-M Dew Line Site in Cambridge Bay, Nunavut. This report documents the data collected from our site visit to the CAM-M Site on August 15th, 16th, 17th, and 18th, 2007. In addition to the hard copy reports, we have also attached three digital data discs to the report which contain:

- all numeric data files including analytical results, thermistor data and associated graphs submitted in MS Excel 2000;
- b) all text files submitted in MS Word 2000;
- c) all drawings submitted in AutoCAD Version 2008;
- d) all photographic records of the geotechnical inspection submitted in digital format and in hardcopy in the location specific report;
- all photographic records of the soil samples collected at each location.
 These have been provided as an attachment to the main report and include an index of the photo numbers and the locations;
- all photographic records of the condition of the monitoring wells. These have been provided as attachments to the main report and include an index of the photo numbers and the locations; and
- g) all field notes have been attached to each specific landfill investigation report.

Based on the visual geotechnical inspection, there does not appear to be any indications of imminent cover instability or significant erosion of concern at the landfills. Several tension cracks have been observed at the Main Landfill South and the DCC Tier II Soil Disposal Area, some of which appear to have developed since the last visual inspection in 2005. Minor erosion rills on the landfill slopes appear to be self-armouring and unchanged from previous inspections. The observed conditions are documented in the attached appendices and photographs.

the landfill slopes appear to be self-armouring and unchanged from previous inspections. The observed conditions are documented in the attached appendices and photographs.

Detectable concentrations of hydrocarbons were noted in the soil samples submitted from designated location MW-6B at the Main Landfill North; MW-1 at the Main Landfill South; MW-10 and MW-11 at the DCC Tier II Landfill; CM-8, CM-10, CM-11, CM-12 and CM-13 at the Airstrip Landfill; CM-6 at the West Landfill; and CM-4 at the South Shore Landfill. With the exception of MW-6, the reported concentrations are not considered to be significant; however, Defence Construction Canada (DCC) should compare the laboratory results to their internal DEW Line Site Guidelines to confirm whether the analytical results have exceeded their guidelines. Detectable concentrations of PCBs were noted in the upper sample submitted at MW-6B located at the Main Landfill North, and the upper sample submitted at CM-4 located at the South Shore Landfill. The sample results should be compared to the internal DEW Line Site Guidelines to determine whether the analytical results have exceeded the DCC guidelines.

The water results and thermal monitoring results indicate that all wells, with the exception of MW-4, had a sufficient volume of water to be obtained for analysis. DCC should compare the laboratory results to their internal DEW Line Site Guidelines to confirm whether the analytical results are in compliance.

All of the thermistors were downloaded successfully. The batteries were also replaced, and data loggers reset in accordance with the instructions provided by other consultants representing DCC.

We trust this report meets your requirements and appreciate the opportunity to assist DCC with this interesting assignment. If you have any questions or comments concerning this report please do not hesitate to call.

D.C. JOHNSON

Yours very truly,

GARTNER LEE LIMITED

Darrin C. Johnson, M.Sc., P.Eng.

Sr. Geotechnical Engineer and Project Manager

KAB/DCJ:pc Attach.

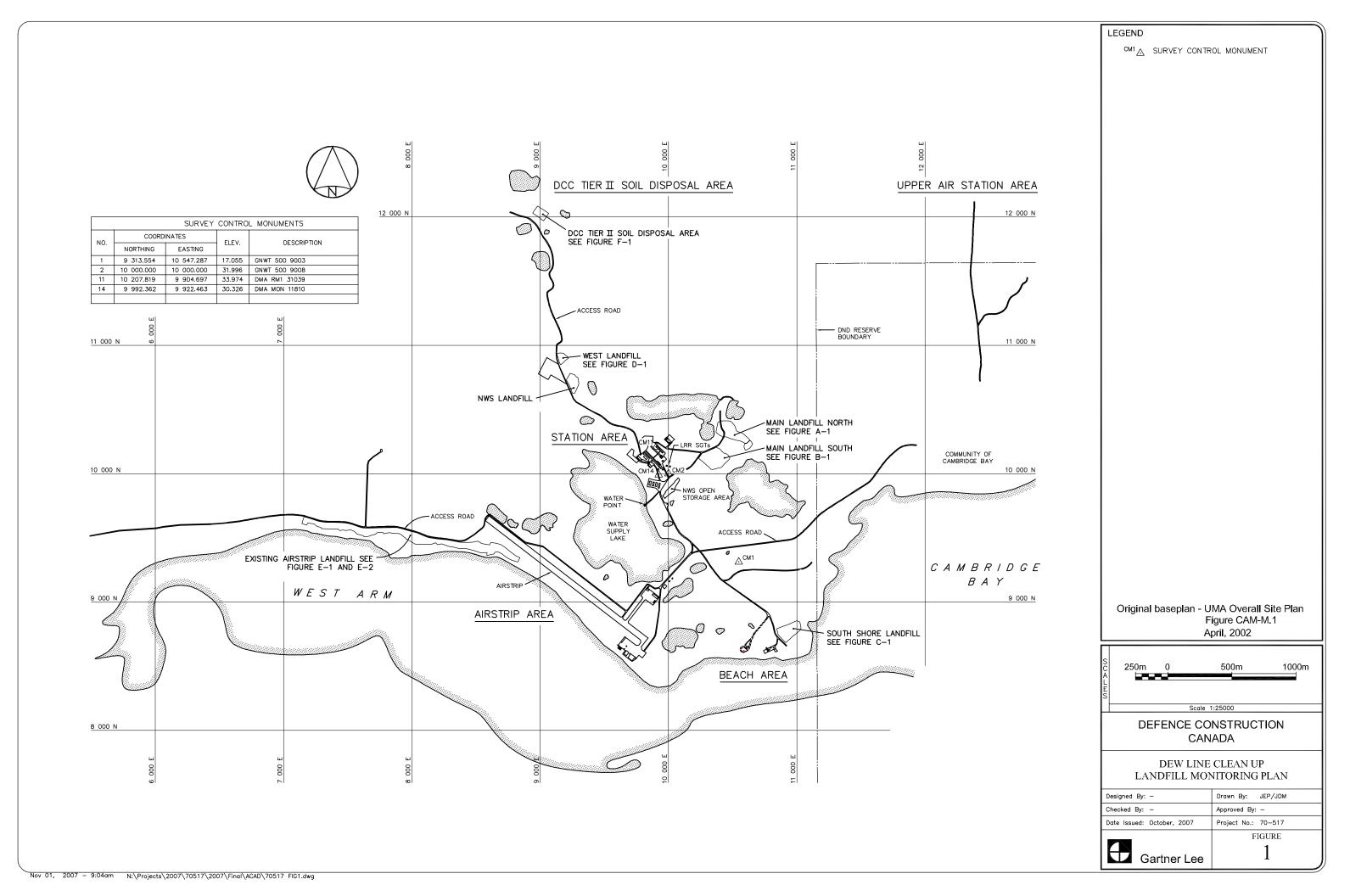
Table of Contents

Letter of Transmittal

	Pag	е
1.	Introduction	. 1
2.	Background	.1
	2.1 Project Objectives	
3.	Landfill Monitoring	
	•	
4.	Quality Assurance/Quality Control	. 5
5 .	Conclusions	.7
6.	Limitations	8
List	of Figures	
Figure	e 1. Dew Line Clean Up Monitoring Plan	. 2
List	of Tables	
Table Table	, ,	
Арр	endices	
Apper	ndix A. Landfill Monitoring Report – Main Landfill North	
Apper	ndix B. Landfill Monitoring Repoprt – Main Landfill South	
Apper	ndix C. Landfill Monitoring Report – South Shore Landfill	
Apper	ndix D. Landfill Monitoring Report – West Landfill	
Apper	ndix E. Landfill Monitoring Report – Airstrip Landfill	
Apper	ndix F. Landfill Monitoring Report – Tier II Disposal Facility	
Apper	ndix G. Laboratory Reports	
Apper	ndix H. QA /QC	

1. Introduction

The Department of National Defence (DND) in co-operation with Nunavut Tunngavik Incorporated (NTI) has developed a Landfill Monitoring Plan to address post closure monitoring requirements for the landfills at the DEW Line sites. Defence Construction Canada (DCC) is managing the clean-up monitoring programs on behalf of DND. Kitnuna Corporation and Gartner Lee Limited in a joint venture were awarded the contract for the purposes of providing services for the collection of landfill monitoring data at the CAM-M Cambridge Bay Site in the Nunavut Settlement Area for 2007. This report provides the procedures and the results for interpretation on the monitoring completed in 2007.


2. Background

The CAM-M Cambridge Bay site is located on the southern coast of Victoria Island at 69° 07' north latitude and 105° 07' west longitude. The community of Cambridge Bay is located approximately 3 km east of the site. Access to the site is gained from a gravel road connecting Cambridge Bay to the site. The CAM-M site was a former radar site on the DEW line.

The site was constructed and operated by a civilian contractor for the United States Air Force (U.S.A.F.) until 1991. As part of the North American Aerospace Defence Modernization Program, the CAM-M site was decommissioned in 2000. During the clean-up of the site, the existing landfills were remediated, an engineered extension was constructed at an existing landfill to contain non-hazardous demolition debris, and a new engineered landfill was constructed to contain contaminated soil. These landfills are identified as:

- a) Main Landfill North:
- b) Main Landfill South;
- c) South Shore Landfill;
- d) West Landfill;
- e) Airstrip Landfill; and
- f) Tier II Soil Disposal Facility.

The locations of the various landfills are shown on Figure 1. Access to the landfills was gained through on-site roads. The baseline monitoring of the landfills commenced in 1999/2000. Monitoring occurred annually until 2005, beyond which, the monitoring frequency at this site will decrease until 2025.

2.1 Project Objectives

The objective of the landfill monitoring program is to collect sufficient information to assess the performance of the landfills from a geotechnical and environmental perspective. The landfill monitoring plan specified the requirements for the visual inspection as well as the chemical and thermal monitoring of the landfills. The long term monitoring plan consists of visual monitoring for signs of settlement, collection of soil and groundwater samples to evaluate the effectiveness of the leachate containment system, and monitoring of the sub-surface ground temperatures along the toe and within the main body of the landfills.

2.2 2007 Monitoring Event

Between August 15 and 18, 2007 the field data collection event was conducted at the CAM-M DEW Line site. The monitoring event consisted of visual geotechnical inspections, soil sampling, groundwater sampling, and thermal monitoring of the landfills at designated locations (see Figure 1). The landfill monitoring requirements as outlined in the Terms of Reference (TOR) are displayed in Table 1 below.

Table 1. Summary of Landfill Monitoring Requirements for 2007

Landfill Designation	Visual Inspection	Soil Sampling	Groundwater Sampling	Thermal Monitoring
	YEAI	R 2007		
CAM-M Cambridge Bay				
Main Landfill - North	$\sqrt{}$	√	$\sqrt{}$	$\sqrt{}$
Main Landfill – South	$\sqrt{}$	\checkmark	$\sqrt{}$	$\sqrt{}$
South Shore Landfill	$\sqrt{}$	$\sqrt{}$		
West Landfill	$\sqrt{}$	√		
Airstrip Landfill	$\sqrt{}$	$\sqrt{}$		
DCC Tier II Disposal Facility	$\sqrt{}$		$\sqrt{}$	$\sqrt{}$

At each of the landfill locations mentioned above, a visual inspection was conducted to observe whether there were any obvious signs of impact (such as seepage or stressed vegetation caused by the landfill) or physical instability. Photographic records of the landfill were taken to show the condition of the landfill and any areas of concern that was observed. Observations and photographic records are documented for each landfill separately in Appendices A through F.

Soil sampling was conducted at all of the designated landfills for 2007. Groundwater sampling was conducted at the Main Landfill – North, Main Landfill – South and the DCC Tier II Soil Disposal Facility. Generally, soil samples were collected at depths of 0.10 m and approximately 0.40 - 0.50 m, although there were some variations in sample depths dependent on the ground conditions. The soil samples were analyzed for Polychlorinated Biphenyls (PCBs), analyzed for Total Aroclors, total petroleum hydrocarbons (TPHs) defined by the Canadian Council of Ministers of the Environment (CCME) Canada Wide Standards (CWS) Fraction 1 to Fraction 3 (F1 to F3), and inorganic elements analyzed for total metals using low level detection limits.

The analytical results for each sampled landfill are discussed individually in the Site reports presented in Appendices A through F.

Where possible, groundwater elevations were measured at each observation well for the landfills designated to be monitored in 2007. The monitoring conditions and field measurements were documented and collected at each monitoring well and are located in the Monitoring Well Records located in Appendices A, B, and F.

The field measurements included the following:

- a) presence and thickness of free product (if applicable);
- b) depth to bottom of well;
- c) height of well stick up; and,
- d) a visual inspection of the condition of the observation well.

Groundwater samples were collected from the 2007 designated observation wells that had sufficient water volumes to obtain samples. The water samples were obtained utilizing a peristaltic pump for low flow extraction. Disposable tubing was used in every well. The groundwater samples were analyzed for PCBs, TPHs, and inorganic elements.

The field methods for collecting the groundwater samples followed the QA/QC protocols and sampling requirements as requested in the Terms of Reference. The monitoring wells were purged at a rate equivalent or less than 100 ml/min with a peristaltic pump until at least one well volume of water had been purged and until field chemistry had stabilized. Field chemistry was measured by purging through a flow-through cell with a probe continuously measuring pH, conductivity, and temperature. Final values for field chemistry parameters were recorded on the well records located in Appendices A, B, and F.

Thermal Monitoring was conducted at the Main Landfill – North, Main Landfill – South, and the DCC Tier II Soil Disposal Facility in 2007. The data was downloaded from the system using the Lakewoods Systems Ltd. software. The results are discussed in the individual Site Reports presented in Appendices A, B and F.

3. Landfill Monitoring

As requested by DCC, Gartner Lee has presented the landfill monitoring reports as individual reports under the cover of this main report. The Landfill Monitoring Reports for each locality are presented in the appendices of this main report as follows:

Appendix A Main Landfill North;Appendix B Main Landfill South;Appendix C South Shore Landfill;

Appendix D West Landfill;

Appendix E Airstrip Landfill; and

Appendix F Tier II Soil Disposal Facility.

All information collected that is relevant to these individual areas is presented in these sections or as attachments at the end of the sections.

4. Quality Assurance/Quality Control

For quality assurance and quality control, a total of seven (7) blind duplicate soil samples were collected at soil sample locations MW-4 (0.1 m and 0.5 m), MW-10 (0.1 m and 0.5 m), MW-14 (0.1 m and 0.5 m), and CM-12 (0.1 m). All duplicate samples were submitted for analysis to both ALS Environmental in Vancouver, and Cantest Ltd. in Burnaby.

Each soil sample was analyzed for 11 parameters yielding a total of 77 sets of numbers to be calculated for relative standard deviation (RSD). Of the seventy-seven (77) RSDs calculated, fifty-one (51) sets returned a value of not applicable (n/a) due to one or more concentrations being below the detection limit. Thirty-six (36) sets returned an acceptable RSD of below 20% for inorganics and below 30% for organics, and seven (7) sets returned unacceptable RSDs over 20% for inorganics.

The duplicate soil samples collected at CM-12, returned RSD values of 27.3%, 23.6%, 62.0%, and 44.3% for chromium, cobalt, mercury, and zinc respectively. The soil in this location contained predominantly large rocks with small amounts of soil that was variable between organic silty sand and clayey silt. Due to the variable soil types, and the small amounts available for soil, the potential for variations in metal concentrations is high. Also, in the case of mercury, two of the three samples had results within three times the method detection limit (MDL) of 0.01mg/kg and so a higher RSD is expected. The concentrations for all four metals were compared to the Ontario site condition standards in a potable groundwater condition and it is the opinion of GLL that the reported concentrations are not of significance, and as such, the results are deemed acceptable.

The duplicate shallow soil samples collected at MW-14 returned RSD values of 21.6%, 20.4%, and 22.6% for cobalt, nickel and zinc respectively. The concentrations of the metals with RSD exceedances were compared to the Ontario site condition standards in a potable groundwater condition and it is the opinion of GLL that the reported concentrations are not of significance (an order of magnitude lower). Due to the low concentrations, more variability is expected in the laboratory results.

Blind duplicates were taken at groundwater sample locations MW-1 and MW-12. All duplicate samples were submitted to both ALS Environmental in Vancouver, and Cantest Ltd. in Burnaby for analysis. Each sample was analyzed for eleven (11) parameters yielding a total of twenty-two (22) sets of values to be calculated for RSD. Of the twenty-two (22) RSDs calculated, thirteen (13) sets returned a value of "n/a" due to one or more concentrations being below the detection limit, one (1) returned an acceptable RSD of below 20% for inorganics and below 30% for organics, and nine (9) sets returned unacceptable RSDs of over 20% for inorganics. The duplicate groundwater samples collected at MW-1 and MW-12 both had unacceptable RSDs for Chromium, Cobalt, Nickel and Zinc, and the duplicate groundwater samples collected at MW-12 also had an unacceptable RSD for Lead. Through discussions with the analytical laboratories, the likely cause for the error is heterogeneity in the sample, as the samples are not filtered and are being tested for total metals (suspended and dissolved) and so differences in both the amount of suspended solids collected in the sample container as well as the amount of suspended solids which are contained in the analytical sample portion will have an effect on the total metals concentration. Also, during sampling, both MW-1 and MW-12 were pumped dry despite employing a sampling rate of less than 100 mL/min. Recharge time was between 5-7 min in order to collect a full sample. It is possible that recharging could have an additional effect on the metals concentrations, particularly in the suspended solids within each sample container. The concentrations of the metals with RSD exceedances were compared to the Ontario site condition standards in a potable groundwater condition. All the results reported by the laboratories are considered to be insignificant by GLL with the exception of both Chromium and Nickel in MW-12, which are discussed further in Appendix F, however all results should be compared in the context of the DEW Line Monitoring Project.

For the soil and groundwater samples collected, a blind duplicate was obtained with a frequency of approximately 1 sample for every 10 collected. Tables used for the calculation of RSDs are located in Appendix H.

Duplicate soil samples were submitted for archival purposes to the Environmental Services Group Ops Centre within the Royal Military College in Kingston, Ontario. All the duplicate soil and groundwater samples collected during the 2007 monitoring event and their corresponding sample locations are documented in Table 2.

Table 2. Blind Duplicates

Sample Identification	Duplicate of Sample	Sample Location	Depth (m)	Matrix	Landfill
CM-14-1	CM-MW-4-1	MW-4	0.1	Soil	Main Landfill - North
CM-14-2	CM-MW-4-2	MW-4	0.5	Soil	Main Landfill - North
CM-15-1	CM-MW-10-1	MW-10	0.1	Soil	Tier II Soil Disposal
CM-15-2	CM-MW-10-2	MW-10	0.5	Soil	Tier II Soil Disposal
CM-16-1	CM-12-1	CM-12	0.1	Soil	Airstrip Landfill
CM-17-1	CM-MW-14-1	MW-14	0.1	Soil	Main Landfill - South
CM-17-2	CM-MW-14-2	MW-14	0.5	Soil	Main Landfill - South
CM-MW-15	CM-MW-12	MW-12	-	Water	Tier II Soil Disposal
CM-MW-16	CM-MW-1	MW-1	-	Water	Mail Landfill - South

5. Conclusions

Based on the visual geotechnical inspection, there does not appear to be any indications of imminent cover instability or significant erosion concern at the landfills. Minor erosion rills on the landfill slopes appear to be self-armouring and unchanged from previous inspections. A small settlement area at the north end of the West landfill appears to be related to ground ice thaw and does not appear to be a risk to landfill cover stability. Several tension cracks have been observed at the Main Landfill South and the DCC Tier II Soil Disposal Area, some of which appear to have developed since the last visual inspection in 2005. Tension cracks and adjacent slopes should be monitored during future inspections for increased size and movement, respectively.

Soil samples were collected at the designated locations in 2007. Two samples were collected at the majority of the locations. Minor concentrations of detectable hydrocarbons were noted in at least one test pit at the Main Landfill – South, South Shore Landfill, and the Airstrip Landfill. Inspections of the chromatograms reveal that the minor hydrocarbon concentrations are likely caused by naturally occurring organics in the peat found on site. The chromatograms and field observations agree with the correlation of naturally occurring organics in the peat layer. Significant concentrations of hydrocarbons were noted at MW 6 at the Main Landfill – North. Defense Construction Canada should compare the laboratory results to the their internal DEW Line Site guidelines to determine whether the analytical results exceed those guidelines.

In 2007, groundwater samples were collected from 13 of the 14 monitoring wells at the site. The timing of the sampling appears to have occurred during maximum thaw (mid-to-late-August) based on a review of the thermal data collected at the Main Landfill North, Main Landfill South, and the DCC Tier II Disposal Facility. Based on the analytical results at the monitoring wells sampled in 2007, there does not appear to be any significant impacts with respect to groundwater contamination.

6. Limitations

This report has been prepared as an assessment of the environmental condition of the subject site located in Cambridge Bay, Nunavut. The monitoring and investigation programs as described in this report, were conducted in a manner consistent with that level of care and skill normally exercised by other members of the engineering and science professions currently practising under similar conditions, subject to the time limits and financial and physical constraints applicable to the services.

The assessment of environmental conditions and possible hazards at this Site has been made using the results of chemical analysis of soil/sediment and pore water from a limited number of locations. The Site conditions between sampling locations have been inferred based on conditions observed at sampling locations. Subsurface conditions may vary from those encountered at the sample locations. Additional study, including further subsurface investigation, can reduce the inherent uncertainties associated with this type of study. However, it is never possible, even with exhaustive sampling and testing, to dismiss the possibility that part of a Site may be contaminated and remain undetected.

Any use which a third party makes of this report, or any reliance on, or decisions to be made based on it, are the responsibility of such third parties. GLL accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on the information contained in this report.

The content of this report is based on information collected during our investigation, our present understanding of the Site conditions, and our professional judgement in light of such information at the time of this report. This report provides a professional opinion and therefore no warranty is either expressed, implied, or made as to the conclusions, advice and recommendations offered in this report. This report does not provide a legal opinion regarding compliance with applicable laws. With respect to regulatory compliance issues, it should be noted that regulatory statutes and the interpretation of regulatory statutes are subject to change.

The findings and conclusions of this report are valid only as of the date of this report. If new information is discovered in future work, including excavations, borings, or other studies, GLL should be requested to re-evaluate the conclusions of this report, and to provide amendments as required.

Report Prepared By:

Kenneth Boldt, B.Sc. Environmental Engineering Darrin Johnson, M.Sc., P.Eng. Senior Geotechnical Engineer

Pari John

Report Reviewed By:

Jim Theriault, M.Sc.Eng., P.Eng. Senior Geological Engineer

Karl Reimer, M.Sc., P.Eng. Senior Remediation Engineer

Karl Reis

Appendix A

Landfill Monitoring Report - Main Landfill North

- A-1: Main Landfill North
 - A-1.1 Landfill Summary
 - A-1.2 Visual Inspection
 - A-1.3 Soil Sampling
 - A-1.4 Groundwater
 - A-1.5 Thermal Monitoring

Appendix A

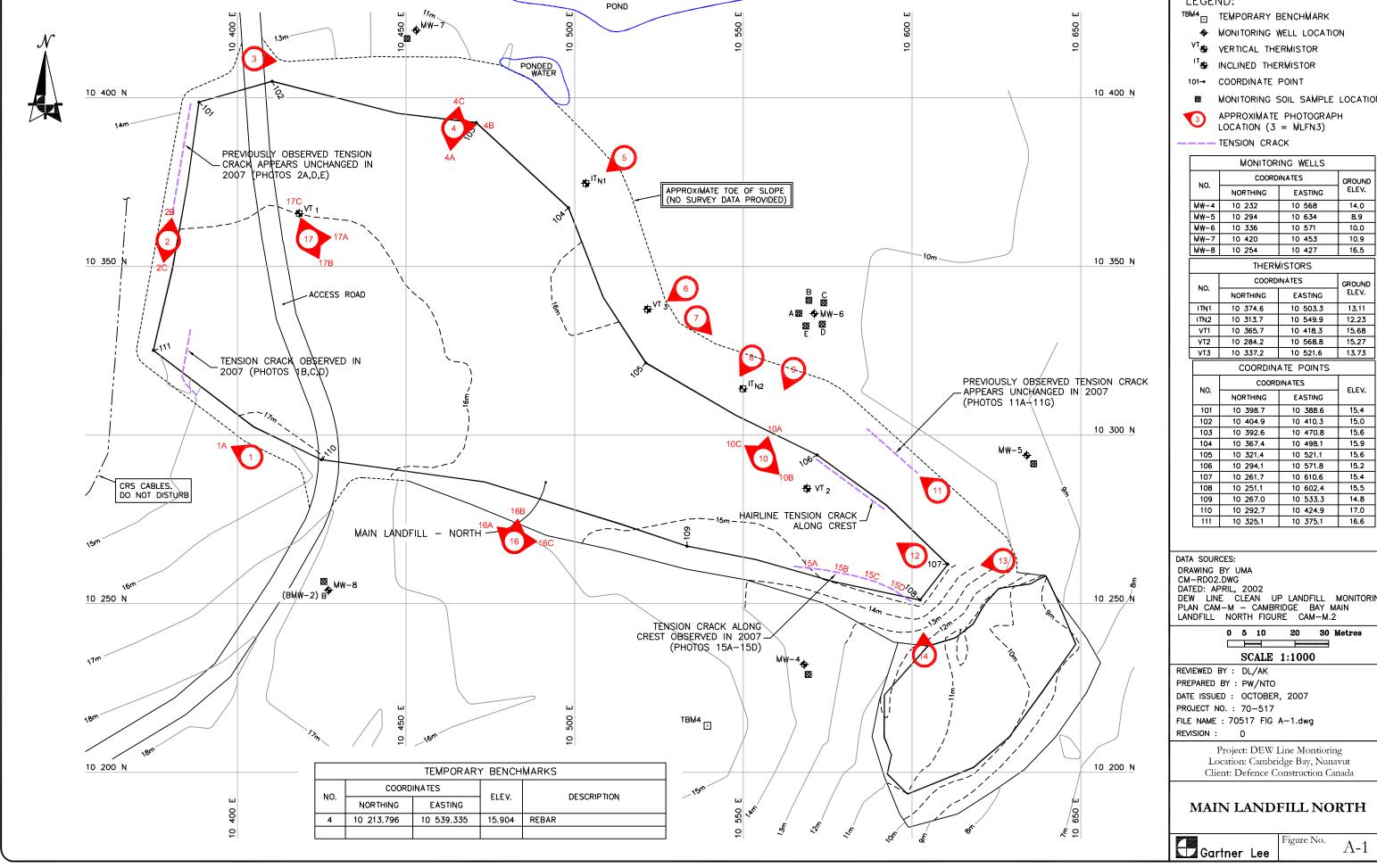
Landfill Monitoring Report - Main Landfill North

The Collection of Landfill Monitoring Data at the CAM-M Cambridge Bay Site - 2007 Report APPENDIX A Main Landfill North

A.1 Main Landfill North

A.1.1 Landfill Summary

The main landfill is located to the east of the main station and encompasses an area of approximately 10,000 m². The depth of landfilled waste materials is approximately 1.5 to 2.0 m. The landfill configuration along with photograph and sample locations are shown on Figure A-1. Prior to the remedial work in 1999, DCC had previously classified this as a moderate potential environmental risk. The remedial work for this landfill included the installation of a synthetic liner anchored into the permafrost along the toe of the landfill and re-grading with the placement of additional granular fill material sufficient to promote the permafrost aggradation through the landfilled waste materials and into the cover. The cover of the landfill has no vegetation. The surface consists of a veneer of pebbles and cobbles overlying the granular and silt cover.


For 2007, the monitoring requirements for the Main Landfill North include visual inspection, soil sampling, groundwater sampling, and thermal monitoring.

A.1.2 Visual Inspection

Based on the 2007 visual inspection, the Main Landfill North (MLFN) area appears to be in good condition and does not exhibit signs of imminent slope instability or final cover failure. However, overall landfill performance has been assessed as "marginal" as a result of significant tension crack development. Appendix A1 presents a summary of the 2007 visual inspection results.

There are minor erosion gullies and rills on the north slope (Photo locations 6, 7, 8 and 9 on Figure A-1) that appear to be self-armouring and unchanged from previous inspections. These areas should be monitored for increased deepening of erosion gullies. The maximum erosion gully depth observed in 2007 is approximately 0.2 m.

A total of five tension cracks were observed at the MLFN, including two previously observed cracks and three new cracks. A tension crack on the west slope (Photo location 2 on Figure A-1) appears to be unchanged since 2005 with no indications of recent movement or progressive instability. A new tension crack in the southwest corner of the landfill that extends 4 m along the south slope and 10 m onto the crest was observed in 2007 (Photos MLFN-1B, 1C and 1D in Appendix A2). A midslope tension crack (Photos MLFN-11A through 11G in Appendix A2) appears unchanged since the 2005 inspection with a maximum width of approximately 0.1 m, however a hairline tension crack was observed in 2007 along the crest above this midslope crack indicating potential slope instability. A 30 m long tension crack along the southeast crest (Photos MLFN-15A through 15D in Appendix A2) was also observed in 2007. The crack has a rounded scarp shape on the crest (Photo MLFN-15C) and it appears that the southeast crest of the landfill (near as-built Coordinate Point No. 108) may have slumped as much as 0.3 m (vertical) over several metres (horizontal) since completion of construction as a result of slope movement in this corner of the landfill (to be confirmed by survey). Tension cracks and adjacent slopes should be monitored during future inspections for increased size and movement, respectively.

LEGEND:

♦ MONITORING WELL LOCATION

MONITORING SOIL SAMPLE LOCATION

APPROXIMATE PHOTOGRAPH

	MONITORING WELLS										
7.5	COORDINATES										
NO.	NORTHING	EASTING	ELEV.								
M₩-4	10 232	10 568	14.0								
MW-5	10 294	10 634	8.9								
MW-6	10 336	10 571	10.0								
M₩-7	10 420	10 453	10,9								
8-WM	10 254	10 427	16.5								

	THERMISTORS									
NO.	COORD	GROUND								
140.	NORTHING	EASTING	ELEV.							
ITN1	10 374.6	10 503.3	13,11							
ITN2	10 313.7	10 549.9	12.23							
VT1	10 365.7	10 418.3	15.68							
VT2	10 284.2	10 568.8	15.27							
VT3	10 337.2	10 521.6	13,73							

	COORDINATE POINTS									
NO.	COORE	ELEV,								
NO.	NORTHING	EASTING	ELEV.							
101	10 398.7	10 388.6	15,4							
102	10 404.9	10 410.3	15.0							
103	10 392,6	10 470,8	15.6							
104	10 367,4	10 498,1	15.9							
105	10 321,4	10 521,1	15.6							
106	10 294,1	10 571.8	15.2							
107	10 261,7	10 610.6	15,4							
108	10 251,1	10 602,4	15.5							
109	10 267,0	10 533,3	14.8							
110	10 292,7	10 424,9	17.0							

DEW LINE CLEAN UP LANDFILL MONITORING PLAN CAM-M - CAMBRIDGE BAY MAIN

20 30 Metres

SCALE 1:1000

DATE ISSUED: OCTOBER, 2007

Project: DEW Line Montioring Location: Cambridge Bay, Nunavut Client: Defence Construction Canada

MAIN LANDFILL NORTH

Figure No.

A-1

The Collection of Landfill Monitoring Data at the CAM-M Cambridge Bay Site - 2007 Report APPENDIX A Main Landfill North

A.1.3 Soil Sampling

Soil samples were collected at the designated locations of MW-4, MW-5, MW-6A, MW-6B, MW-6C, MW-6D, MW-6E, MW7 and MW8. The sampling locations are shown on Figure A-1. At each location wherever possible two samples were collected at approximately 0.10 m below ground and between 0.40-0.50 m below ground. A photograph of each test pit for each location sampled is shown in Appendix A3.

Eight additional samples were collected around MW-6 in accordance with pre-season discussions due to the presence of hydrocarbons in the area in previous monitoring events.

Total Petroleum Hydrocarbons (TPH) (C6-34) were detected in both the shallow and depth samples from sample location MW-6B, which was located North of MW-6. Samples CM-MW-6B-1 and CM-MW-6B-2 represent the shallow and depth samples respectively for this test pit. The concentrations should be evaluated in the context of the Landfill Monitoring plan, and should be compared to Defence Construction Canada's (DCC) internal Dew Line Clean Up standards. The highest concentrations of hydrocarbons were found in the F3 fraction (C16-34). No other soil samples at the Main Landfill – North contained detectable levels of TPH (>40mg/kg).

Analytical results and depths of samples are provided in Table A-1 and the Laboratory certificate is provided in Appendix G.

Table A-1. CAM-M Cambridge Bay, Summary of 2007 Soil Analysis - Main Landfill - North

		Donth	Arconio	Cadmium	Chromium	Cobalt	Copper	Lead	Mercury	Nickel	Zinc	Petro	leum Hyd	drocarbon	s	PCB Total
Sample Ident.	Sample Location	Deptii	Arsenic	Caulillulli	Chronilum	Cobait	Copper	Leau	wercury	Nickei	ZIIIC	TPH (C6-34)	C6-C10	C10-C16	C16-C34	Aroclors
		(m)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
Upgradient Samples																
CM-MW-8-1	(BMW-2) MW-8	0.1	2.8	< 0.2	13	6	12	7.4	< 0.01	11	17	< 20				< 0.03
CM-MW-8-2	(BMW-2) MW-8	0.5	3.0	< 0.2	10	4	9	5.6	< 0.01	9	11	< 20				< 0.03
Downgradient Samples	3															
CM-MW-4-1	MW-4	0.1	2.8	< 0.2	19	8	12	6.2	< 0.01	16	26	< 20				< 0.03
CM-14-1*	MW-4	0.1	2.7	< 0.2	17	7	13	6	< 0.01	15	22	< 20				< 0.03
CM-MW-4-2	MW-4	0.5	3.0	< 0.2	17	7	11	5.3	< 0.01	15	20	< 20				< 0.03
CM-14-2*	MW-4	0.5	3.0	< 0.2	15	6	11	5.2	< 0.01	13	22	< 20				< 0.03
CM-MW-5-1	MW-5	0.1	4.5	< 0.2	10	5	12	6.9	< 0.01	11	9	< 20				< 0.03
CM-MW-5-2	MW-5	0.5	3.3	< 0.2	22	7	17	6.8	< 0.01	17	28	< 20				< 0.03
CM-MW-6A-1	MW-6	0.1	4.3	< 0.2	24	9	14	7.1	< 0.01	19	29	< 20				< 0.03
CM-MW-6A-2	MW-6	0.5	2.0	< 0.2	10	6	17	7	< 0.01	11	8	< 20				< 0.03
CM-MW-6B-1	MW-6	0.1	1.5	0.3	8	4	11	10.6	0.02	11	149	33000	260	2800	38000	0.07
CM-MW-6B-2	MW-6	0.5	2.5	< 0.2	15	4	10	4.9	< 0.01	12	20	1300	140	200	1000	< 0.03
CM-MW-6C-1	MW-6	0.1	3.8	< 0.2	23	9	15	6.7	< 0.01	19	29	< 20				< 0.03
CM-MW-6C-2	MW-6	0.5	3.7	< 0.2	25	8	17	7	< 0.01	19	32	< 20				< 0.03
CM-MW-6D-1	MW-6	0.1	3.8	< 0.2	12	5	12	5.5	< 0.01	11	13	< 20				< 0.03
CM-MW-6D-2	MW-6	0.5	3.9	< 0.2	27	10	18	7.4	< 0.01	21	34	< 20				< 0.03
CM-MW-6E-1	MW-6	0.1	2.8	0.2	20	7	18	5.7	0.08	22	40	< 20				< 0.03
CM-MW-6E-2	MW-6	0.5	2.8	< 0.2	23	8	14	6.7	< 0.01	18	28	< 20				< 0.03
CM-MW-7-1	MW-7	0.1	1.8	< 0.2	8	2	4	2.3	< 0.01	5	7	< 20				< 0.03
CM-MW-7-2	MW-7	0.5	7.9	< 0.2	17	5	9	5.4	< 0.01	13	19	< 20				< 0.03

^{*} Denotes duplicate sample. (Further information located in Table 1 of main report)

The Collection of Landfill Monitoring Data at the CAM-M Cambridge Bay Site - 2007 Report APPENDIX A Main Landfill North

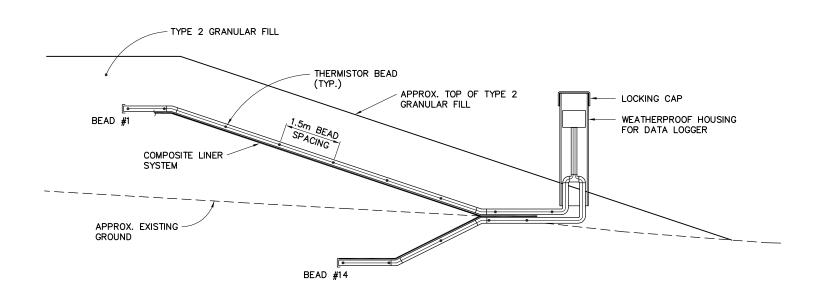
A.1.4 Groundwater

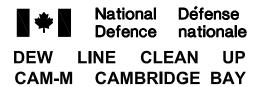
Groundwater depths and monitoring well condition were documented for observation wells MW-4, MW-5, MW-6, MW-7 and MW-8. The monitoring well development records are provided in Appendix A4. Generally the observation wells were in good condition. Neither MW-4, or MW-5 contained a j-plug cap, however a j-plug cap could not be installed on MW-4 due to the insufficient amount of clearance between the top of the pipe and the casing lid. It is recommended that a j-plug cap be installed in MW-5 and a slip-on cap be installed on MW-4 to help prevent surface water from entering the well. In each of the wells, the bentonite seal had heaved up inside of the protective casing to an elevation parallel to, or above, the top of the monitor pipe (TOP). Excess bentonite around the top of the pipe was removed to permit access to the well without contaminating the well. Standing water was observed in the casings of MW-6 and MW-7 at an elevation above the TOP and is noted in the Monitoring Well Development records.

Observation well MW-4 had an insufficient volume of water to sample. All other wells at the Main Landfill – North were purged and sampled. The groundwater samples were analyzed for total concentration of inorganics, total petroleum hydrocarbons and PCBs. The results are presented in Table A-2 and the laboratory certificate is provided in Appendix G.

Table A-2. CAM-M Cambridge Bay, Summary of 2007 Groundwater Analysis - Main Landfill - North

		Groundwater	Aroonio	Cadmium	Chromium	Cobalt	Cannar	Lood	Mercury	Nickel	Aliekel	umr Niekel	Nickel Zinc	Petroleum Hydrocarbons				PCB Total
Sample Ident.	Location	Elevation	Arsenic	Cadmium	Chromium	Cobait	Copper	Lead	Wercury	Nickei	ZINC	TPH (C6-34)	C6-C10	C10-C16	C16-C34	Aroclors		
		(masl)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)		
Upgradient Samples		_										_						
CM-MW-8	(BMW-2) MW-8	15.75	0.0008	< 0.00004	0.0009	0.01	0.0035	< 0.0002	< 0.00002	0.068	0.016	< 0.1				< 0.0004		
Downgradient Sample	es									•								
CM-MW-5	MW-5	7.82	0.001	0.00025	0.0054	0.042	0.0051	< 0.0002	< 0.00002	0.831	0.16	< 0.1				< 0.0004		
CM-MW-6	MW-6	9.37	0.0045	0.00022	0.0078	0.0093	0.0044	< 0.0002	< 0.00002	0.061	0.083	0.17	< 0.1	< 0.25	< 0.25	< 0.0004		
CM-MW-7	MW-7	10.72	0.0035	0.00014	0.0056	0.002	0.0053	0.0002	< 0.00002	0.06	0.39	< 0.1				< 0.0004		


^{*} Denotes duplicate sample. (Further information located in Table 1 of main report) Note: mg/L = 1000 ug/L


The Collection of Landfill Monitoring Data at the CAM-M Cambridge Bay Site - 2007 Report APPENDIX A Main Landfill North

A.1.5 Thermal Monitoring

The manual readings taken from each thermistor from the Main Landfill – North are provided in the maintenance records located in Appendix A5. The data downloaded from the data loggers spanned 2006 and 2007. The tabulated summary data from the thermistors for both 2006 and 2007 are contained in Appendix A5. The graphs for the 2007 data for these thermistors are provided in Graphs 1 through 5, located in Appendix A6. The graphs for the 2006 data for these thermistors are provided in Graphs 6 through 10 located in Appendix A7.

Data from all thermistors were downloaded, data loggers were reset and were provided with new batteries. A maintenance record was completed for each thermistor and is located in Appendix A5. A full download of the thermistor data loggers should be completed the summer of 2010.

MAIN LANDFILL - NORTH INCLINED THERMISTOR INSTALLATION FIGURE A-2

Appendix A Attachments

- **A1** Site Condition/Visual Inspection Records
- **A2** Geotechnical Inspection Photographic Records
- **A3** Monitoring Photographic Records
- **A4** Monitoring Well Development Records
- A5 Thermistor Data Tables 2007, 2006 & Maintenance Records
- A6 Thermistor Graphs 2007
- A7 Thermistor Graphs 2006
- A8 Field Notes

Appendix A1

Site Condition/Visual Inspection Records

DEW LINE CLEANUP: POST-CONSTRUCTION - LANDFILL MONITORING VISUAL INSPECTION REPORT – MAIN LANDFILL NORTH - PAGE 1 OF 2

SITE NAME:	Cambridge Bay CAM-M
LANDFILL DESIGNATION:	Main Landfill North
DATE OF INSPECTION:	August 2007
DATE OF PREVIOUS INSPECTION:	August 2005
INSPECTED BY:	Darrin Johnson, P.Eng.
REPORT PREPARED BY:	Darrin Johnson, P.Eng.

VISUAL INSPECTION REPORT- MAIN LANDFILL NORTH - PAGE 2 OF 2

Checklist Item	Present Yes/No	Location (Describe relative to landfill features)	Length	Width	Depth	Extent relative to Area of Landfill (%)	Description	Photographic Records (Photo number referenced in photo log and on figures)	Additional Comments/Preli minary Stability Assessment
Settlement	No								
Erosion	Yes	50 m of north slope in vicinity of VT3 and ITN2	20 m (length of slope)	50 m (width of affected area)	0.2 m max.	1,000m2/ 10,000m2 = 10%	Erosion gullies max. 0.3 m wide spaced about 2-3 m apart	MLFN 6, 7A, 7B, 8, 9	Self-armouring; acceptable
Frost Action	No								
Animal Burrows	No								
Vegetation	Sparse								
Staining	No								
Vegetation Stress	No								
Seepage Points	No								
Debris Exposed	No								
Presence/Condition – Monitoring Instruments	Good								
Features of Note	Yes	West, northeast, southeast, and southwest slopes	10 to 30 m	0.1 m max.	0.1 m max.	2,000m2/ 10,000m2 = 20%	Tension cracks on slopes and crests, scarp shaped crack on crest with deformation	MLFN 1A-1D, 2A-2E, 11A-11G, 15A-15D	Marginal
General							General	MLFN 3, 4A-4C, 5, 10A-10C, 12, 13, 14, 16A-16C, 17A-17C	

PRELIMINARY STABILITY ASSESSMENT - MAIN LANDFILL NORTH

Feature	Severity Rating	Extent		
Settlement	Not Observed	None		
Erosion	Acceptable	Occasional		
Frost Action	Not Observed	None		
Staining	Not Observed	None		
Vegetation Stress	Not Observed	None		
Seepage/Ponded Water	Not Observed	None		
Debris Exposed	Not Observed	None		
Tension Cracks	Marginal	Numerous		
Overall Landfill Performance	Marginal			

Appendix A2

Geotechnical Inspection Photographic Records

Photo MLFN-1A, Easting: 495755, Northing: 7667517, Direction: 300° Main Landfill North; south slope, west of road Scale: photo placard dimensions are 29.4 cm wide by 27.5 cm in height

Photo MLFN-1B, Easting: 495755, Northing: 7667517, Direction: 110° Main Landfill North; 2.5 cm wide by 2.5 cm deep by 4 meters long crack on south slope Scale: photo placard dimensions are 29.4 cm wide by 27.5 cm in height

Photo MLFN-1C, Easting: 495755, Northing: 7667517, Direction: 20° Main Landfill North; view of crack on crest that extends for 10 m Scale: photo placard dimensions are 29.4 cm wide by 27.5 cm in height

Photo MLFN-1D, Easting: 495755, Northing: 7667517, Direction: 20° Main Landfill North; max crack width approximately 5 cm, max crack depth approximately 7.5 cm

Scale: photo placard dimensions are 29.4 cm wide by 27.5 cm in height

Photo MLFN-2A, Easting: 495727, Northing: 7667665, Direction: 0° Main Landfill North; tension crack on slope Scale: photo placard dimensions are 29.4 cm wide by 27.5 cm in height

Photo MLFN-2B, Easting: 495755, Northing: 7667517, Direction: 0° Main Landfill North; view of slope facing north

Photo MLFN-2C, Easting: 495727, Northing: 7667665, Direction: 180° Main Landfill North; view of slope facing south Scale: photo placard dimensions are 29.4 cm wide by 27.5 cm in height

Photo MLFN-2D, Easting: 495755, Northing: 7667517, Direction: 45° Main Landfill North; close-up of crack Scale: photo placard dimensions are 29.4 cm wide by 27.5 cm in height

Photo MLFN-2E, Easting: 495727, Northing: 7667665, Direction: 45° Main Landfill North; end of crack at top of slope Scale: photo placard dimensions are 29.4 cm wide by 27.5 cm in height

Photo MLFN-3, Easting: 495757, Northing: 7667622, Direction: 90° Main Landfill North; north slope east of road Scale: photo placard dimensions are 29.4 cm wide by 27.5 cm in height

Photo MLFN-4A, Easting: 495814, Northing: 7667617, Direction: 180° Main Landfill North; Some undulations and ponded water at top of landfill Scale: photo placard dimensions are 29.4 cm wide by 27.5 cm in height

Photo MLFN-4B, Easting: 495814, Northing: 7667617, Direction: 90° Main Landfill North; north slope Scale: photo placard dimensions are 29.4 cm wide by 27.5 cm in height

Photo MLFN-4C, Easting: 495814, Northing: 7667617, Direction: 0° Main Landfill North; downslope towards ponded water at toe Scale: photo placard dimensions are 29.4 cm wide by 27.5 cm in height

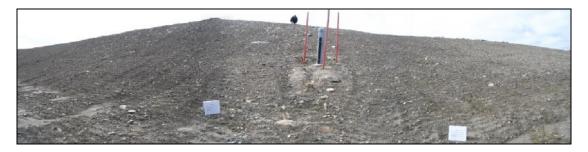


Photo MLFN-5, Easting: 495878, Northing: 7667562, Direction: 225° Main Landfill North; facing up slope at ITN1 Scale: photo placard dimensions are 29.4 cm wide by 27.5 cm in height

Photo MLFN-6, Easting: 495814, Northing: 7667617, Direction: 225°

Main Landfill North; Erosion gullies about 0.3 m wide and 0.2 m deep spaced approximately 2 – 3 m apart

Scale: photo placard dimensions are 29.4 cm wide by 27.5 cm in height

Photo MLFN-7A, Easting: 495874, Northing: 7667561, Direction: 110° Main Landfill North; looking across erosion gullies on slope Scale: photo placard dimensions are 29.4 cm wide by 27.5 cm in height

Photo MLFN-7B, Easting: 495874, Northing: 7667561, Direction: 110° Main Landfill North; view of fines covering vegetation at toe Scale: field book dimensions are 29.5 cm wide by 20.0 cm in height

Photo MLFN-8, Easting: 495874, Northing: 7667564; Direction: 200° Main Landfill North; looking up erosion channel West of ITN2 about 0.3 m wide and 0.1 m deep Scale: photo placard dimensions are 29.4 cm wide by 27.5 cm in height

Photo MLFN-9, Easting: 495898, Northing: 7667542, Direction: 200° Main Landfill North; view of erosion gullies Scale: photo placard dimensions are 29.4 cm wide by 27.5 cm in height

Photo MLFN-10A, Easting: 495895, Northing: 7667528, Direction: 20° Main Landfill North; looking down slope at erosion Scale: photo placard dimensions are 29.4 cm wide by 27.5 cm in height

Photo MLFN-10B, Easting: 495895, Northing: 7667528, Direction: 110° Main Landfill North; facing east along crest Scale: photo placard dimensions are 29.4 cm wide by 27.5 cm in height

Photo MLFN-10C, Easting: 495895, Northing: 7667528, Direction: 300° Main Landfill North; facing west along crest Scale: photo placard dimensions are 29.4 cm wide by 27.5 cm in height

Photo MLFN-11A, Easting: 495916, Northing: 7667534 Main Landfill North; west end of crack along toe of slope Scale: photo placard dimensions are 29.4 cm wide by 27.5 cm in height

Photo MLFN-11B, Easting: 495916, Northing: 7667534 Main Landfill North; crack max width 0.1 m, max depth 0.1 m Scale: photo placard dimensions are 29.4 cm wide by 27.5 cm in height

Photo MLFN-11C, Easting: 495916, Northing: 7667534 Main Landfill North; crack along toe of slope Scale: photo placard dimensions are 29.4 cm wide by 27.5 cm in height

Photo MLFN-11D, Easting: 495916, Northing: 7667534 Main Landfill North; crack along toe of slope Scale: photo placard dimensions are 29.4 cm wide by 27.5 cm in height

Photo MLFN-11E, Easting: 495916, Northing: 7667534 Main Landfill North; crack along toe of slope Scale: photo placard dimensions are 29.4 cm wide by 27.5 cm in height

Photo MLFN-11F, Easting: 495916, Northing: 7667534 Main Landfill North; crack along toe of slope Scale: photo placard dimensions are 29.4 cm wide by 27.5 cm in height

Photo MLFN-11G, Easting: 495916, Northing: 7667534 Main Landfill North; east end of crack along toe of slope Scale: photo placard dimensions are 29.4 cm wide by 27.5 cm in height

Photo MLFN-12, Easting: 495951, Northing: 7667491, Direction: 315°

Main Landfill North; along crest above crack below, hairline crack along crest not visible in photo Scale: photo placard dimensions are 29.4 cm wide by 27.5 cm in height

Photo MLFN-13, Easting: 495970, Northing: 7667473, Direction: 250° Main Landfill North; southeast corner slope Scale: photo placard dimensions are 29.4 cm wide by 27.5 cm in height

Photo MLFN-14, Easting: 495960, Northing: 7667457, Direction: 0° Main Landfill North; southeast corner slope Scale: photo placard dimensions are 29.4 cm wide by 27.5 cm in height

Photo MLFN-15A, Easting: 495927, Northing: 7667478, Direction: 110° Main Landfill North; tension crack along crest, west end Scale: photo placard dimensions are 29.4 cm wide by 27.5 cm in height

Photo MLFN-15B, Easting: 495927, Northing: 7667478, Direction: 110° Main Landfill North; tension crack along crest Scale: photo placard dimensions are 29.4 cm wide by 27.5 cm in height

Photo MLFN-15C, Easting: 495927, Northing: 7667478, Direction: 110° Main Landfill North; tension crack along crest Scale: photo placard dimensions are 29.4 cm wide by 27.5 cm in height

Photo MLFN-15D, Easting: 495927, Northing: 7667478, Direction: 110° Main Landfill North; tension crack along crest, east end Scale: photo placard dimensions are 29.4 cm wide by 27.5 cm in height

Photo MLFN-16A, Easting: 495866, Northing: 7667488, Direction: 290° Main Landfill North; south central facing west Scale: photo placard dimensions are 29.4 cm wide by 27.5 cm in height

Photo MLFN-16B, Easting: 495866, Northing: 7667488, Direction: 0° Main Landfill North; south central facing north Scale: photo placard dimensions are 29.4 cm wide by 27.5 cm in height

Photo MLFN-16C, Easting: 495866, Northing: 7667488, Direction: 90° Main Landfill North; south central facing east Scale: photo placard dimensions are 29.4 cm wide by 27.5 cm in height

Photo MLFN-17A, Easting: 495768, Northing: 7667581, Direction: 90° Main Landfill North; east of road facing east Scale: photo placard dimensions are 29.4 cm wide by 27.5 cm in height

Photo MLFN-17B, Easting: 495768, Northing: 7667581, Direction: 140° Main Landfill North; east of road facing southeast Scale: photo placard dimensions are 29.4 cm wide by 27.5 cm in height

Photo MLFN-17C, Easting: 495768, Northing: 7667581, Direction: 0° Main Landfill North; east of road facing north Scale: photo placard dimensions are 29.4 cm wide by 27.5 cm in height

Appendix A3

Monitoring Photographic Records

Test pit CM-MW-4. Samples CM-MW-4-1 and CM-MW-4-2 collected. Samples with identification numbers ending in "1" (ex. CM-MW-4-1) collected at 0-10cm and samples with identification numbers ending in "2" collected at 40-50cm.

Test Pit CM-MW-5. Samples CM-MW-5-1 and CM-MW-5-2 collected.

Test pit CM-MW-6A. Samples CM-MW-6A-1 and CM-MW-6A-2 collected.

Test Pit CM-MW-6B. Samples CM-MW-6B-1 and CM-MW-6B-2 collected.

Test pit CM-MW-6C. Samples CM-MW-6C-1 and CM-MW-6C-2 collected.

Test pit CM-MW-6D. Samples CM-MW-6D-1 and CM-MW-6D-2 collected.

Test pit CM-MW-6E. Samples CM-MW-6E-1 and CM-MW-6E-2 collected.

Test pit CM-MW-7. Samples CM-MW-7-1 and CM-MW-7-2 collected.


Test pit CM-MW-8 (Upgradient). Samples CM-MW-8-1 and CM-MW-8-2 collected.

Monitoring well MW-4. No sample collected as well MW-4 was dry

Monitoring well MW-5. Sample CM-MW-5 collected.

Monitoring well MW-6. Sample CM-MW-6 collected.

Monitoring well MW-7. Sample CM-MW-7 collected. Bentonite swollen to top of pipe (TOP) and standing water inside well casing over TOP.

Monitoring well MW-8 (Upgradient). Sample CM-MW-8 collected.

Vertical thermistor VT-1.

Vertical thermistor VT-2.

Vertical thermistor VT-3.

Inclined thermistor ITN-1.

Inclined thermistor ITN-2.

Appendix A4

Monitoring Well Development Records

Monitoring Well Observations (MW-04)

	Develop	ment of Monitoring Wells (2007)	
Site Name:	CAM-M		
Date of Sampling Event:	16-Aug-07	Time:	15:00
Names of Samplers:	Ken Boldt		1
Landfill Name:	Main Landfill	North	
Monitoring Well ID:	MW-4		_
Sample Number:	No Sample C	ollected	
Condition of Well:	Good, benton	ite swollen to top of well.	
Measured Data			
Well height above ground (cm)=	13		
Diameter of well (cm)=	5		
Depth of installation (cm)=	350	From ground surface	
Length screened section (cm)=	200	1 Tolli ground surface	
Depth to top of screen (cm)=	50	From ground surface	
Deput to top of screen (cm)=	30	1 Tom ground surface	
Depth to water surface (cm)=		Method:	Interface meter
Static water level (cm)=		From ground surface	
Depth to bottom (cm)=	122	Evidence of sludge or siltation:	no
Depth of water (cm)=			
Well volume of water (mL)=			
wen volume of water (mL)=			
Free product thickness (mm)=	N/A	Method:	Interface meter
Purging: (Y/N)	N	Procedure/Equipment:	N/A
Volume Purged Water (L)=	0		
Decontamination required: (Y/N)	N	Notes:	
Number washes:	0	Insufficient water to collect sampl	e
Number rinses:	0		
pH=	_		
Conductivity (uS/cm)=	_		
Temperature (degC)=	_		
n/a=not applicable			

Monitoring Well Observations (MW-05)

	Developr	nent of Monitoring Wells (2007)
Site Name:	CAM-M	
Date of Sampling Event:	18-Aug-07	Time: 15:20
Names of Samplers:	Ken Boldt	
Landfill Name:	Main Landfill	North
Monitoring Well ID:	MW-5	
Sample Number:	CM-MW-5	
Condition of Well:	Good, missing	j-plug
Measured Data	Tio	
Well height above ground (cm)=	10	
Diameter of well (cm)=	5	
Depth of installation (cm)=	350	From ground surface
Length screened section (cm)=	200	
Depth to top of screen (cm)=	50	From ground surface
	1	
Depth to water surface (cm)=	118	Method: Interface meter
Static water level (cm)=	108	From ground surface
Depth to bottom (cm)=	142	Evidence of sludge or siltation: no
Depth of water (cm)=	24	
Well volume of water (mL)=	471.24	
	NT/A	M d 1 T c C
Free product thickness (mm)=	N/A	Method: Interface meter
Duncing (V/N)	Y	Duo co duno /Equinmonts Douistoltic Dunon L DDE Tablica
Purging: (Y/N) Volume Purged Water (L)=	1.5	Procedure/Equipment: Peristaltic Pump, LDPE Tubing
Decontamination required: (Y/N)	Y Y	Notes:
Number washes:	1	ivoles:
Number wasnes: Number rinses:	1	
Number finses:	1	
pH=	6.92	_
1	8490	
Conductivity (uS/cm)= Temperature (degC)=	1.5	
Temperature (degC)=	1.3	

Monitoring Well Observations (MW-06)

	Develop	ment of Monitoring Wells (2007)
Site Name:	CAM-M	
Date of Sampling Event:	16-Aug-07	Time: 17:35
Names of Samplers:	Ken Boldt	
Landfill Name:	Main Landfill	North
Monitoring Well ID:	MW-6	
Sample Number:	CM-MW-6	
Condition of Well:	Good, water o	ver TOP, bentonite over TOP
M		
Measured Data	1.5	
Well height above ground (cm)=	15	_
Diameter of well (cm)=	5	
Depth of installation (cm)=	350	From ground surface
Length screened section (cm)=	200	
Depth to top of screen (cm)=	50	From ground surface
Depth to water surface (cm)=	78	Method: Interface meter
Static water level (cm)=	63	From ground surface
Depth to bottom (cm)=	106	Evidence of sludge or siltation: no
Depth of water (cm)=	28	
Well volume of water (mL)=	549.78	
Free product thickness (mm)=	N/A	Method: Interface meter
Purging: (Y/N)	Y	Procedure/Equipment: Peristaltic Pump, LDPE Tubing
Volume Purged Water (L)=	4	
Decontamination required: (Y/N)	Y	Notes:
Number washes:	1	
Number rinses:	1	
pH=	6.82	
Conductivity (uS/cm)=	8090	
Temperature (degC)=	2.4	
n/a=not applicable		

n/a=not applicable TOP = Top Of Pipe

Monitoring Well Observations (MW-07)

	Develop	ment of Monitoring Wells (2007)
Site Name:	CAM-M	
Date of Sampling Event:	16-Aug-07	Time: 16:50
Names of Samplers:	Ken Boldt	
Landfill Name:	Main Landfill	North
Monitoring Well ID:	MW-7	
Sample Number:	CM-MW-7	
Condition of Well:	Good, water o	over TOP
	1	
Measured Data		
Well height above ground (cm)=	15	
Diameter of well (cm)=	5	
Depth of installation (cm)=	350	From ground surface
Length screened section (cm)=	200	
Depth to top of screen (cm)=	50	From ground surface
	T	
Depth to water surface (cm)=	33	Method: Interface meter
Static water level (cm)=	18	From ground surface
Depth to bottom (cm)=	162	Evidence of sludge or siltation: no
Depth of water (cm)=	129	
Well volume of water (mL)=	2532.91	
wen volume of water (mL)=	2332.91	
Free product thickness (mm)=	N/A	Method: Interface meter
` '	1	
Purging: (Y/N)	Y	Procedure/Equipment: Peristaltic Pump, LDPE Tubing
Volume Purged Water (L)=	12 L	
Decontamination required: (Y/N)	Y	Notes:
Number washes:	1	Water entered well upon removal of j-plug. Purged 12L of water to
Number rinses:	1	ensure that sample was not impacted by water which entered the well
	•	from the surface.
pH=	6.79	
Conductivity (uS/cm)=	1510	
Temperature (degC)=	2.8	
n/a not annliaghla		

Monitoring Well Observations (MW-08)

	Develop	ment of Monitoring Wells (2007)
Site Name:	CAM-M	
Date of Sampling Event:	16-Aug-07	Time: 15:35
Names of Samplers:	Ken Boldt	
•		
Landfill Name:	Main Landfill	North
Monitoring Well ID:	MW-8	
Sample Number:	CM-MW-8	
Condition of Well:	Good, bentoni	ite swollen over j-plug
.		
Measured Data		
Well height above ground (cm)=	10	
Diameter of well (cm)=	5	
Depth of installation (cm)=	350	From ground surface
Length screened section (cm)=	200	
Depth to top of screen (cm)=	50	From ground surface
	To =	
Depth to water surface (cm)=	85	Method: Interface meter
Static water level (cm)=	75	From ground surface
Depth to bottom (cm)=	170	Evidence of sludge or siltation: no
D 4 6 ()	0.5	
Depth of water (cm)=	85	
Well volume of water (mL)=	1668.97	
Free product thickness (mm)=	N/A	Method: Interface meter
Tree product unexness (mm)=	IV/A	Wethod. Interface meter
Purging: (Y/N)	Y	Procedure/Equipment: Peristaltic Pump, LDPE Tubing
Volume Purged Water (L)=	3	11
Decontamination required: (Y/N)	Y	Notes:
Number washes:	1	
Number rinses:	1	
pH=	7.19	
Conductivity (uS/cm)=	4390	
Temperature (degC)=	2.7	
m/o mot omnlicoble	_	

Appendix A5

Thermistor Data Tables 2007, 2006 & Maintenance Records

Thermal Monitoring Ground Temperature Annual Maintenance Report

Thermistor Information	Contarctor Name:	Gartner Lee Limited			Inspection Date: 16-Aug-07					
Came	Prepared By:	Ken Boldt								
Came	Thormistor Informati	on								
Thermistor Number: VT1			Thermisto	or Location	Main Land	dfill - North	1			
Coordinates and Elevation										
Cable Cabl	nstall Date:							16-Aug-0		
Cable Serial # 1 - 807037 Cable Serial Number TS-7NC								13.		
Casing			Cable Lead Abo	ove Ground (m)			7	TO THOU		
Casing		1 - 80/03/			Cable Ser	iai Number		13-7NCV#		
Casing IV Cover IV Data Logger IV Cable IV Beads IV Battery Installation Date 28-Aug-07 Battery Levels Main 11.34 V Aux 12.90 V Manual Ground Temperature Readings Bead ohms Temp. (°C) 1 13040 4.5 2 13680 3.5 3 15150 1.5 4 16820 -0.5 5 17910 -1.7 6 18840 -2.7 7 19600 -3.4										
Casing Cover Data Logger Cable Beads Battery Installation Date Beat ohms Temp. (°C) 1 13040 4.5 2 13680 3.5 3 15150 1.5 4 16820 -0.5 5 17910 -1.7 6 18840 -2.7 7 19600 -3.4	Thermistor Inspect	<u>ion</u>	Good		Needs Mainten	ance				
Cover	Casing			_						
Data Logger Cable Beads Battery Installation Date Battery Levels Main 11.34 V Aux 12.90 V Manual Ground Temperature Readings Bead ohms Temp. (°C) 1 13040 4.5 2 13680 3.5 3 15150 1.5 4 16820 -0.5 5 17910 -1.7 6 18840 -2.7 7 19600 -3.4	_									
Cable Beads Battery Installation Date Battery Levels Main 11.34 V Aux 12.90 V Manual Ground Temperature Readings Bead ohms Temp. (°C) 1 13040 4.5 2 13680 3.5 3 15150 1.5 4 16820 -0.5 5 17910 -1.7 6 18840 -2.7 7 19600 -3.4					_					
Beads Battery Installation Date Battery Levels Main 11.34 V Aux 12.90 V Manual Ground Temperature Readings Bead ohms Temp. (°C) 1 13040 4.5 2 13680 3.5 3 15150 1.5 4 16820 -0.5 5 17910 -1.7 6 18840 -2.7 7 19600 -3.4		er								
Battery Installation Date Battery Levels Main 11.34 V Aux 12.90 V Manual Ground Temperature Readings Bead ohms Temp. (°C) 1 13040 4.5 2 13680 3.5 3 15150 1.5 4 16820 -0.5 5 17910 -1.7 6 18840 -2.7 7 19600 -3.4										
Manual Ground Temperature Readings Bead ohms Temp. (°C) 1	Beads		✓							
Bead Ohms Temp. (°C) Bead Ohms Temp. (°C) 1	Battery Ins	stallation Date	28-Aug-0	7						
Bead Ohms Temp. (°C) Bead Ohms Temp. (°C) 1	Battery Le	vels	Main	11.34 V		Aux	12.90 V			
2 13680 3.5 3 15150 1.5 4 16820 -0.5 5 17910 -1.7 6 18840 -2.7 7 19600 -3.4]	Bead	ohms	Ter	np. (ºC)		
3 15150 1.5 4 16820 -0.5 5 17910 -1.7 6 18840 -2.7 7 19600 -3.4	1	13040	4.5							
4 16820 -0.5 5 17910 -1.7 6 18840 -2.7 7 19600 -3.4	2	13680	3.5							
5 17910 -1.7 6 18840 -2.7 7 19600 -3.4	3	15150	1.5							
6 18840 -2.7 7 19600 -3.4	4	16820	-0.5							
7 19600 -3.4	5	17910	-1.7							
	6	18840	-2.7	_						
	7	19600	-3.4							
				_ '						
Observations and Proposed Maintenance]						
	O. Guillani	g oable haa oon	10 10000. 11000	Jillicotou It.						
Grounding cable had come loose. I reconnected it.										
Grounding cable had come loose. Treconnected it.										
Grounding cable had come loose. Treconnected it.										
Grounding cable had come loose. Treconnected it.										
Grounding cable had come loose. Treconnected it.										
Grounding cable had come loose. Treconnected it.										
Grounding cable had come loose. Treconnected it.										
Grounding cable had come loose. Treconnected it.										

Thermal Monitoring Ground Temperature Annual Maintenance Report

Gartner Lee Limited			Inspection Date: 16-Aug-07					
Ken Boldt								
on								
CAM-M	Thermisto	or Location	Main	Landfill	- North	1		
VT2			Verti	cal				
					ast Date		16-Aug-	
							15	
	Cable Lead Abo	ove Grouna (m)			lumher		TS-7NCV	
2 007025			Oabic	Ochari	V arriber		1071101	
ion								
<u>1011</u>	Good		Needs Ma	intenand	e			
	V	_						
			-					
	V		_					
er	✓							
	▽							
	V							
stallation Date	28-Aug-0	7						
						40.00.1/		
ohms	Temp. (°C)]	Ве	ead	ohms	Те	mp. (°C)	
12520	5.3							
12920	4.6							
13570	3.7							
14330	2.6							
15300	1.3							
16250	0.2							
17010	-0.7							
17010	•••	1						
	25-Sep-99 vation 6.1 2 - 807029 stallation Date vels nperature Read ohms 12520 12920 13570 14330 15300	25-Sep-99 First Date vation N 10284 6.1 Cable Lead Abo 2 - 807029 ion Good ✓ er stallation Date 28-Aug-0 wels Main mperature Readings ohms Temp. (°C) 12520 5.3 12920 4.6 13570 3.7 14330 2.6 15300 1.3	25-Sep-99 First Date Event vation N 10284 6.1 Cable Lead Above Ground (m) 2 - 807029 ion Good ✓ er Atallation Date vels Main 11.34 V nperature Readings ohms Temp. (°C) 12520 5.3 12920 4.6 13570 3.7 14330 2.6 15300 1.3	25-Sep-99 First Date Event 18-A vation	25-Sep-99 First Date Event 18-Aug-05 Lovation N 10284 E 10569	25-Sep-99	25-Sep-99 First Date Event 18-Aug-05 Last Date Event vation N 10284 E 10569 Elev	

Thermal Monitoring Ground Temperature Annual Maintenance Report

Thermistor Information Site Name: Thermistor Number: Install Date: Coordinates and Eleva Length of Cable (m)	CAM-M VT3 25-Sep-99 ation 6.1 3 - 807028	Inclination First Date N 10366	Event	Vertica 18-Au E 1 3.7 Nodal	ug-05 Last Da 0418 Points Serial Number	te Event Elev 7	16-Aug- 15 TS-7NCV
Site Name: Thermistor Number: Install Date: Coordinates and Elevatength of Cable (m) Datalogger Serial # Code CAM-MVT3 Thermistor Inspection Casing Cover Data Logge Cable Beads	CAM-M VT3 25-Sep-99 ation 6.1 3 - 807028	Inclination First Date N 10366 Cable Lead Abo Good	Event	Vertica 18-Au E 1 3.7 Nodal Cable	al ug-05 Last Da 0418 Points Serial Number	te Event Elev 7	15
Site Name: Thermistor Number: Install Date: Coordinates and Elevatength of Cable (m) Datalogger Serial # Code CAM-MVT3 Thermistor Inspection Casing Cover Data Logge Cable Beads	CAM-M VT3 25-Sep-99 ation 6.1 3 - 807028	Inclination First Date N 10366 Cable Lead Abo Good	Event	Vertica 18-Au E 1 3.7 Nodal Cable	al ug-05 Last Da 0418 Points Serial Number	te Event Elev 7	15
nstall Date: Coordinates and Eleva Length of Cable (m) Datalogger Serial # Code CAM-MVT3 Thermistor Inspection Casing Cover Data Logge Cable Beads	25-Sep-99 ation N 6.1 0 3 - 807028	First Date N 10366 Cable Lead Abo Good	Event	18-Au E 1 3.7 Nodal Cable	ug-05 Last Da 0418 Points Serial Number	Elev 7	15
Coordinates and Eleval Length of Cable (m) Datalogger Serial # Code CAM-MVT3 Thermistor Inspection Casing Cover Data Logge Cable Beads	ation N 6.1 0 3 - 807028	Sable Lead About the Cable Lea		E 1 3.7 Nodal Cable Needs Mair	0418 Points Serial Number	Elev 7	15
Length of Cable (m) Datalogger Serial # Code CAM-MVT3 Thermistor Inspection Casing Cover Data Logge Cable Beads	6.1 0 3 - 807028 on	Good V		3.7 Nodal Cable Needs Mair	Points Serial Number	7	
Datalogger Serial # Code CAM-MVT3 Thermistor Inspection Casing Cover Data Logge Cable Beads	3 - 807028 on	Good ✓ ✓	ove Ground (m)	Cable Needs Mair	Serial Number		TS-7NCV
Code CAM-MVT3 Thermistor Inspection Casing Cover Data Logge Cable Beads	<u>on</u>	D D	-	Needs Mair			TS-7NCV
Casing Cover Data Logge Cable Beads		D D	-		ntenance		
Casing Cover Data Logge Cable Beads		D D	-		ntenance		
Cover Data Logge Cable Beads	ır	D D	-		ntenance		
Cover Data Logge Cable Beads	ır	\rightarrow					
Data Logge Cable Beads	ır	~					
Data Logge Cable Beads	ır						
Cable Beads							
Beads							
		V					
Battery Inst.	allada a Data		-				
		28-Aug-0	<i>/</i>				
Battery Leve	els	Main	11.34 V		Aux	12.53 V	
Manual Ground Tem Bead	perature Readin ohms	rgs Temp. (°C)]	Bea	ad ohms	Те	mp. (°C)
1	12330	5.6					
2	12670	5.0					
3	13390	4.0					
4	14210	2.8					
5	15110	1.5					
6	16370	0.0					
7	17020	-0.8					
•			•	•			
Observations and Pr	oposed Mainten	<u>nance</u>					

Thermal Monitoring Ground Temperature Annual Maintenance Report

Contarctor Name:	Gartner Lee Limited	Inspection Date: 16-Aug-07
Prepared By:	Ken Boldt	

Thermistor Information

Site Name:	CAM-M	Thermistor Location		Main Landfill - North		
Thermistor Number:	ITN1	Inclination		Inclined		
Install Date:	25-Sep-99	First Date Event		18-Aug-05 Last Date	Event	16-Aug-07
Coordinates and Elev	ation /	N 10375	Е	10503	Elev	Varies
Length of Cable (m)	22.5	Cable Lead Above Ground (m)	Vari	Nodal Points	14	ļ
Datalogger Serial #	31 - 807036			Cable Serial Number	TS	5-7NCIAandB#4

Code CAM-MITN1

Thermistor Inspection

	Good	<u> </u>	Need	ls Maintenance
Casing	~			
Cover	~			
Data Logger	~			
Cable	~			
Beads	~			
Battery Installation Date	28-Aug-	07		
Battery Levels	Main	11.34 V		Aux <u>12.77 V</u>

Manual Ground Temperature Readings

Bead	ohms	Temp. (°C)
1	16550	-0.2
2	17140	-0.9
3	17330	-1.1
4	17180	-1.0
5	16780	-0.5
6	16220	0.2
7	15500	1.1
8	16250	0.1

Bead	ohms	Temp. (°C)
9	16600	-0.3
10	17830	-1.6
11	20270	-4.1
12	22630	-6.2
13	24350	-7.6
14	25360	-8.4

Observat	ions and	Proposed	Maintenance

Thermal Monitoring Ground Temperature Annual Maintenance Report

Contarctor Name:	Gartner Lee Limited	Inspection Date: 16-Aug-07
Prepared By:	Ken Boldt	

Thermistor Information

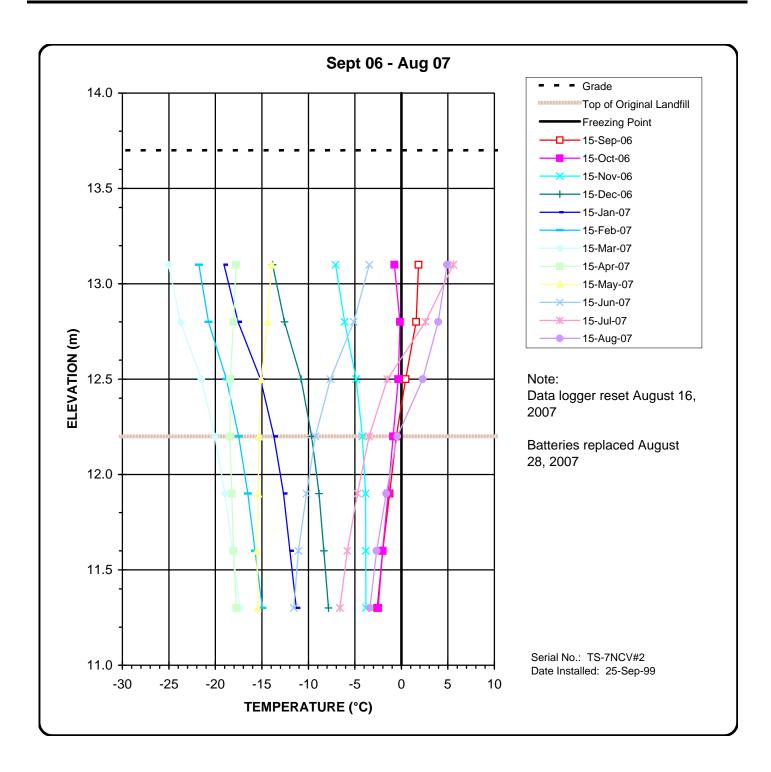
Site Name:	CAM-M	Thermistor Location	Main L	andfill - North	
Thermistor Number:	ITN2	Inclination	Incline	ed	
Install Date:	25-Sep-99	First Date Event	18-Aı	ig-05 Last Date Event	16-Aug-07
Coordinates and Elev	ation /	N 10314	E 1	0550 Elev	Varies
Length of Cable (m)	22.5	Cable Lead Above Ground (m)	Vari Nodal	Points 1	4
Datalogger Serial #	32 - 807035		Cable	Serial Number TS	S-7NCIAandB#3

Code CAM-MITN2

Thermistor Inspection

	Good		Needs M	aintenance		
Casing	~					
Cover	~					
Data Logger	~					
Cable	~					
Beads	~					
Battery Installation Date	28-Aug	-07				
Battery Levels	Main	11.34 V		Aux	12.65 V	

Manual Ground Temperature Readings


Bead	ohms	Temp. (°C)
1	15560	0.9
2	15160	1.4
3	14830	1.8
4	14790	1.8
5	14610	2.2
6	14610	2.1
7	15020	1.6
8	15390	1.3

Bead	ohms	Temp. (°C)
9	15390	1.1
10	16130	0.3
11	17780	-1.7
12	20470	-4.3
13	22470	-6.1
14	23600	-7.0

Observat	<u>ions</u>	and	Pro	posed	Maint	<u>enance</u>

Appendix A6

Thermistor Graphs 2007

Graph 1

5

10

15

Freezing Point -15-Sep-06 - 15-Oct-06 15-Nov-06 -15-Dec-06

15-Jan-07 15-Feb-07 15-Mar-07

15-Apr-07 15-May-07 15-Jun-07

15-Jul-07 15-Aug-07

Note:

Data logger reset August 16, 2007

Batteries replaced August 28, 2007

Serial No.: TS-7NCV#3 Date Installed: 25-Sep-99

14.0

13.5

13.0

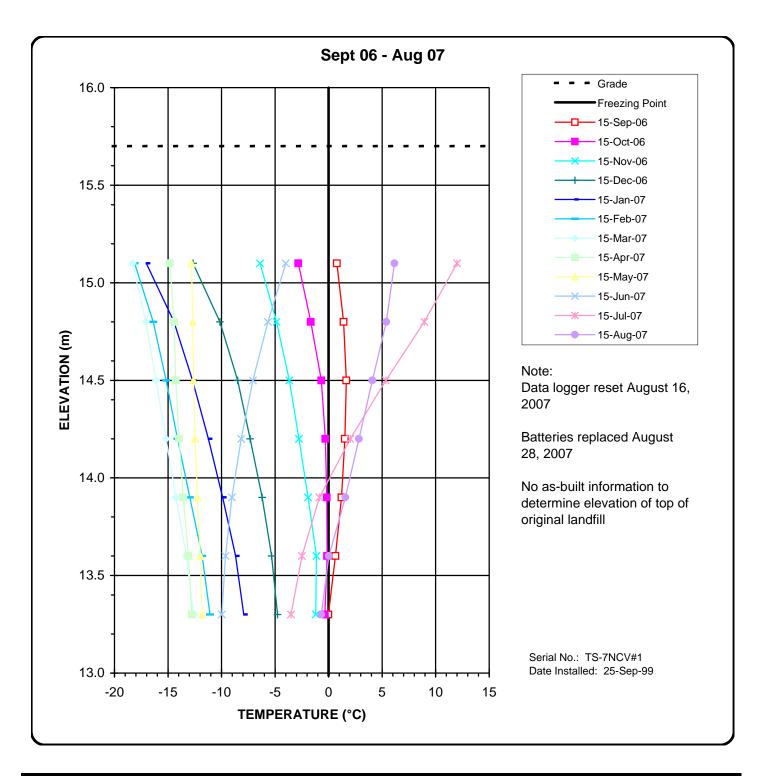
12.5

12.0

-30

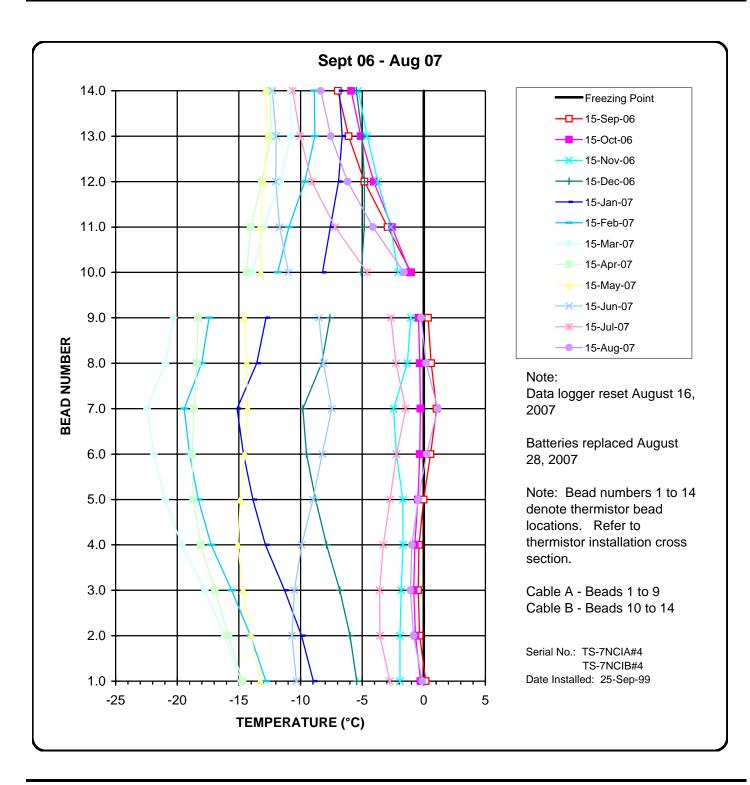
-25

-20


-15

-10

TEMPERATURE (°C)


-5

Graph 2

Graph 3

Graph 4

Ground Temperature Profile
Main Landfill - North
Inclined GTC ITN1

Cable B - Beads 10 to 14

Serial No.: TS-7NCIA#3 TS-7NCIB#3 Date Installed: 25-Sep-99

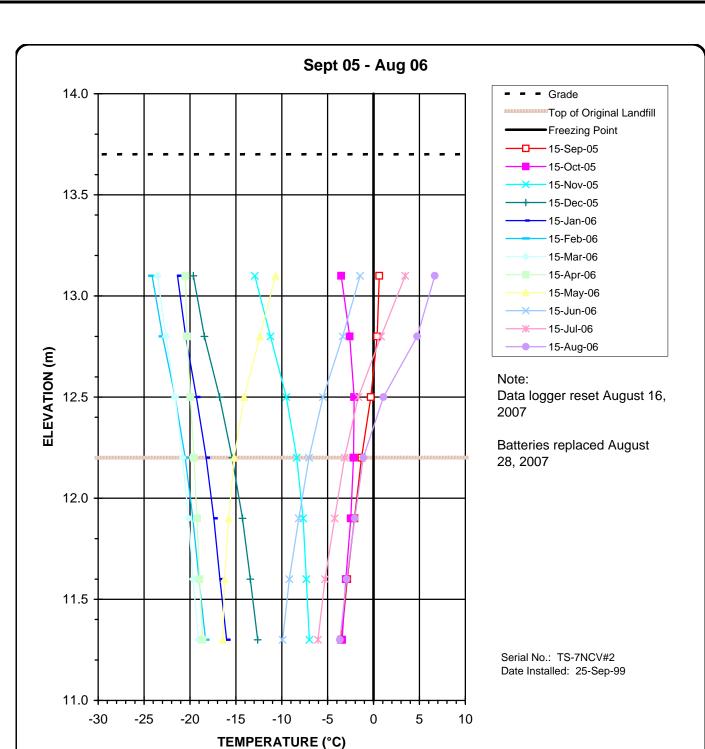
-20

2

-25

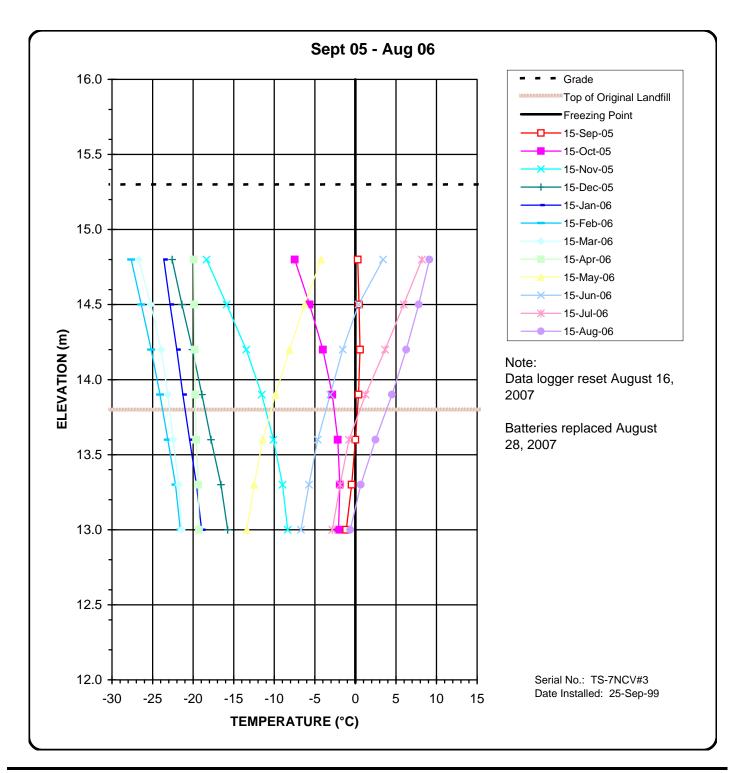
Graph 5

-10

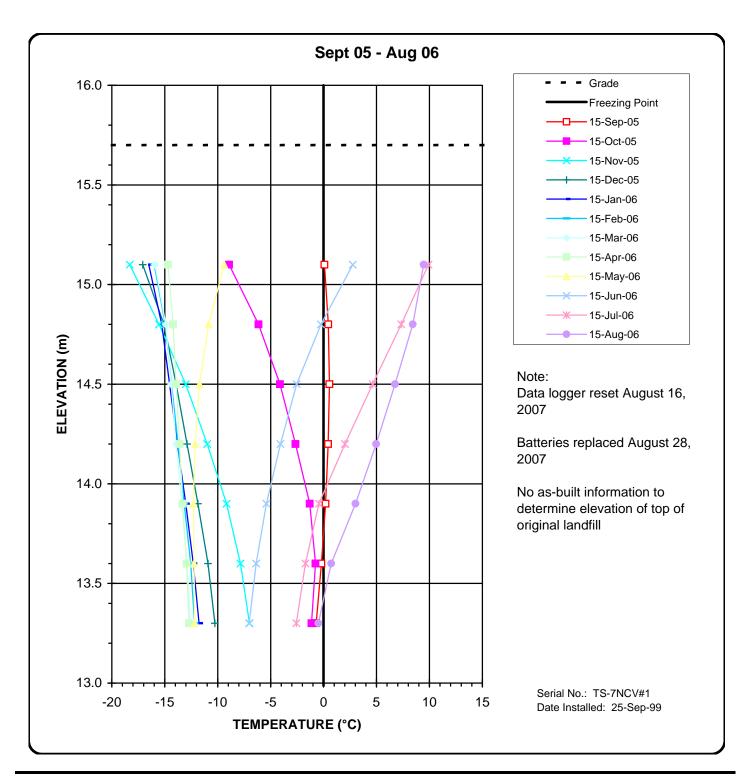

TEMPERATURE (°C)

0

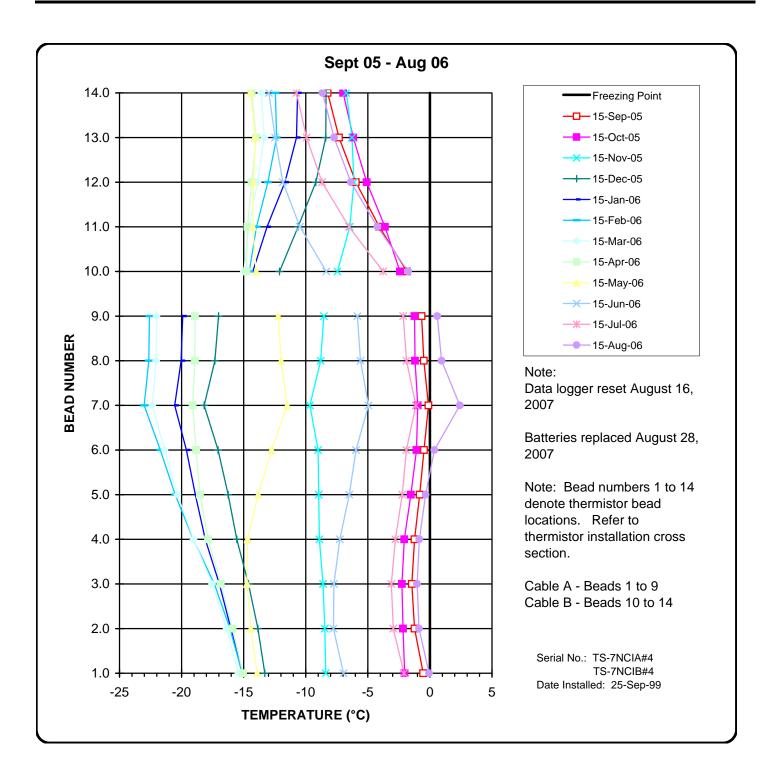
5


Appendix A7

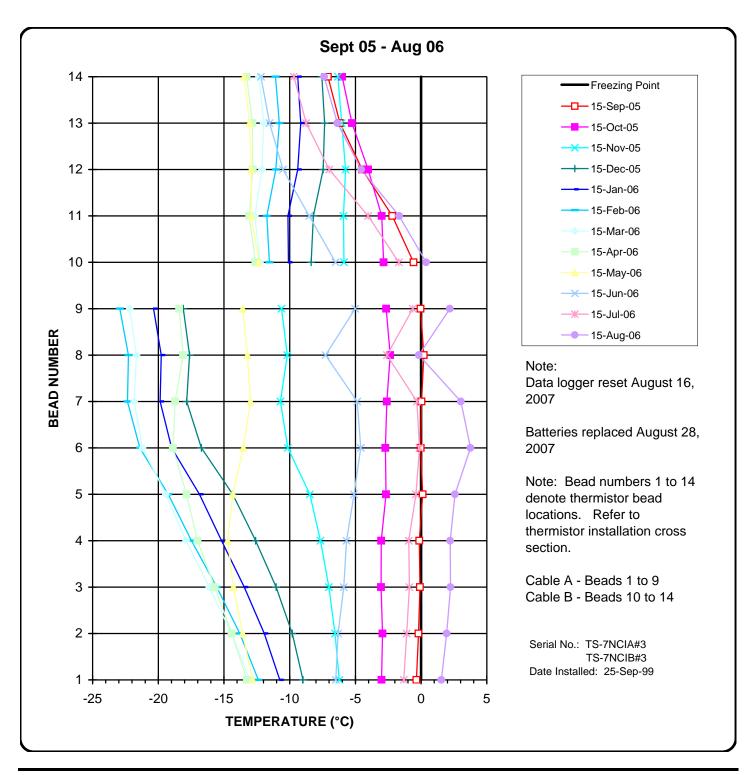
Thermistor Graphs 2006



Graph 6



Graph 7


Graph 8

Graph 9

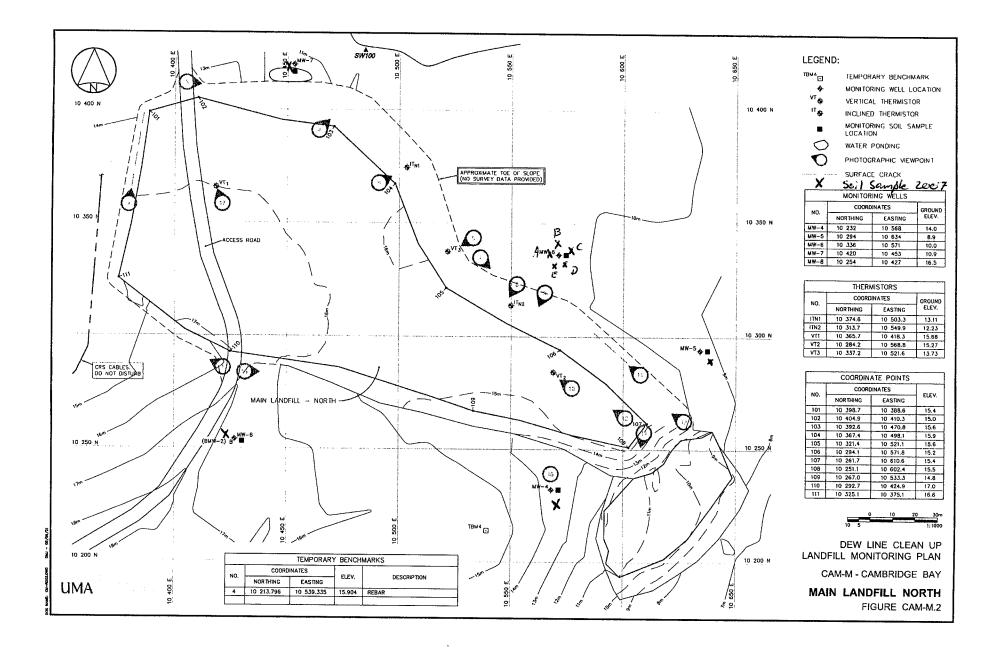
Ground Temperature Profile
Main Landfill - North
Inclined GTC ITN1

Graph 10

Ground Temperature Profile
Main Landfill - North
Inclined ITN2

Appendix A8

Field Notes


Main Land (11 North VTI Thermister (Vertical) Condition is good, the grounding cable had come loose. I recome ted it. VT2 Thermister (Vertical) Condition is good Picture 013 of VTZ ITN2 Thornistor (Inclined) Ploture 014 of ITNZ VT3 Thermistor (Vertical) Condition is good Protuse 015 of VT3 ITN1 Thermistor (Indined) Picture 016 of ITNI

Picture 022 of well Well in good condition, bentonite swollen to TOP and water over TOP bubbling as casing top removed from the pipe through the j-plug When the j-plug was removed, water powed into the well Durged 12 L of water, 10 L prior to using flow through well to try to remove water which entered well. Sample MW7 4x 1000 ml outer glass 1 × 350 mL plastic 1 x 250 ml ander glass Soil Sampling Water table hit @ 0.40 m Simple collected MW-71(cm)@ 0-10cm MW-7-2(cm)@40cm Picture 023 of test pit

Ay 16,07				
MW-6				
Wester	ever top of	pipe		
	e shelled ou			
Pidore 1	524 of well	-H-wite	ria :	<u> </u>
· · · · · · · · · · · · · · · · · · ·	collected	1	1	
	2x 1000 mL a			
	fresh rate, pl		nt arbei	- glass
tol L	×250,ml pla	stic	-	
Soil Su			1 01	MANAGAM TRANSPORTED TO THE TRANS
1446	difford sen		E .	
#1\$ · .	1-1 - west o 1-2 - west o		1	
401 I	sample locati		1	
58:	wise circle a			
	MW-GB			
	MW-G			
MW 6AX	Ö		או	
D . (L >41	, A	
Picture	025 of Test 026 of Test	PIT MU	6A 63	· · · · · · · · · · · · · · · · · · ·
···lue	UCO OF 1851	f 1 1 100	W.J.	-
- 1 · · · · · · · · · · · · · · · · · ·			i i	

Friday Aug 17,2007	
Tier II land fill	
Surplers : Ken Bolo	4
Chr stale	
Noe Jr.	
Tom (Bear Monitor)
· weather: Cold 4-1	5°C, windy, overcast
MW-10	
	bentonité suoilen
do transfer of one	
to top of pipe, n	, , , , , ,
Picture # 027 0	
Sample collected	
1×250 ml amber	
1x 250 ml plastic	
ZX 1000 in Camber	qlass
Soil surples	
CMMW-10-1 @	~ //
C 0404141010 10 10 10 10 10 10 10 10 10 10 10 10	OF TO COM
CMMV-10-2 @	
CM-15-1 Duplico	te @ 0-10cm
CM-15-2 Duplica	te @ 10-50cm
Picture 028 of +	
· · · · · · · · · · · · · · · · · · ·	<u> </u>

Hb	20				2	~ .
)	AU 19	07			-	
_	· · ·J	MW-S				
		Well in	n govel	conelify	mm	58 mg
		the i	-plug, sh	ould be	replace.	d
-			collectu			÷ .
		4 × 1	woul a	wher yla	es .	
:'! -			50 ml			
	***		50 ml			
	1		060 of			
		Soil Saw	pling		-	
		CM-M	W-5-1	@ 0-	10 cm	
		CMM	W-5-2	@ 40-9	o cm	
			056			
					-	
	M	W-6				
		Soil Sur	phina			
			W-6C-	100	D-10 cm	
		CM-M				
			W-6D-		-10cm	
			W-6D-		0-50cm	
		4	N-6E-		>-10cm	
		CM - MI	-		0-50 cm	
-		Picture				
		Picture	058 ac			, •
		· OFUIE	0 07	ع+ رو ب	st pit	

Site Name:	CAM-M		
Date of Sampling Event:	16-Aug-07	Time:	3:00 PM
Names of Samplers:	16-Aug-07 Ken Boldt		300 171
Landfill Name:	Main Landfill – 1	Vorth	T
Monitoring Well ID:	MW-4	102111	
Sample Number:		N.C. i.i.	
Condition of Well:	1/ 7 1/ 5	No sample taken atorite suclen to top.	
	I No 3-plug, 13e	intonite swallen to top	df well
Measured Data	<u> </u>		
Well pipe height above ground (cm)=	1.7		
	13		
Diameter of well (cm)=	_ 5		
Depth of well installation (cm)= (from ground surface)	350	-	
Length screened section (cm)=	2 >		
Depth to top of screen (cm)=	2ගව		
(from ground surface)	50		
(Moni ground surface)			
Depth to water surface (cm)=)/ ₁	r
(from top of pipe)	Na	Measurement method: (meter, tape, etc)	interface meter
Static water level (cm)=		(inleter, tape, etc)	Initioned meter
(below ground surface)	n/a		
Measured well refusal depth (cm)=	I	Evidence of sludge or siltation:	
(i.e. depth to frozen ground)	1 22		NO
Thickness of water column (cm)=	n/a		
Static volume of water in well (mL)=	n/a		,
Free product thickness (mm)=	. /	Measurement method:	
	n/a	(meter, paste, etc)	interfacemeter
Purging: (Y/N)	\sim	Purging/Sampling Equipment:	
Volume Purged Water=			
Decontamination required: (Y/N)	N		
Number washes:	·		
Number rinses:			
Final pH=			
Final Conductivity (uS/cm)=			
Final Temperature (degC)=			
- Temperature (dege)-			_

Site Name:	CAM-M		
Date of Sampling Event:	18-Aug-07	Time:	2 12 12 214
Names of Samplers:	Ken Boilt	Time.	3:20 PM
	nen boller		
Landfill Name:	Main Landfill - N	Jorth	
Monitoring Well ID:	MW-5	VOI III	
Sample Number:	CM-MW-5		
Condition of Well:			
John Marie Committee Commi	10000 , m. 55ing	I - pluy benton be over	TOP
Measured Data			1
Well pipe height above ground (cm)=	10		
Diameter of well (cm)=	10		
Depth of well installation (cm)=	5		
(from ground surface)	350		
Length screened section (cm)=	200		
Depth to top of screen (cm)=			
(from ground surface)	50		
Depth to water surface (cm)=	118	Measurement method:	
(from top of pipe)	110	(meter, tape, etc)	Interface Meter
Static water level (cm)=	108		
(below ground surface) Measured well refusal depth (cm)=		E-dJane Cala Jane Hari	
(i.e. depth to frozen ground)	142	Evidence of sludge or siltation:	no
2			
Thickness of water column (cm)=	24		
Static volume of water in well (mL)=	471		
		· · · · · · · · · · · · · · · · · · ·	<u> </u>
Free product thickness (mm)=	11/0	Measurement method:	
	N // ł	(meter, paste, etc)	Interface Meter
Purging: (Y/N)	Y	Purging/Sampling Equipment:	Pesistaltic Pump
Volume Purged Water=	1.5 L		LDPE toking
Decontamination required: (Y/N)	Ÿ		
Number washes:			
Number rinses:	l		
Final pH=	6.97		
Final Conductivity (uS/cm)=	8490		
Final Temperature (degC)=	1.5		
1(89)	1: /		

Site Name:	CAM-M		
Date of Sampling Event:	16-Aug -07	Time:	5:35 PM
Names of Samplers:	16-Aug-07 Ken Boldt		
	, , , , , , , , , , , , , , , , , , ,		
Landfill Name:	Main Landfill - N	Vorth	
Monitoring Well ID:	MW-6		
Sample Number:	MW-6		
Condition of Well:	Good water o	wer TOP Butonite over TO	7
			<u> </u>
Measured Data			
Well pipe height above ground (cm)=	15		
Diameter of well (cm)=	15		
Depth of well installation (cm)=	350		
(from ground surface)	75 0		
Length screened section (cm)=	700		
Depth to top of screen (cm)= (from ground surface)	50		
(Hom ground surface)	<u>l</u>	<u> </u>	1
Depth to water surface (cm)=	40	Measurement method:	
(from top of pipe)	7 8	(meter, tape, etc)	Interface Meter
Static water level (cm)=	NOTE 63		
(below ground surface) Measured well refusal depth (cm)=	7770	Evidence of shides or silection.	
(i.e. depth to frozen ground)	106	Evidence of sludge or siltation:	No
	·		
Thickness of water column (cm)=	28		
Static volume of water in well (mL)=	550		
			<u> </u>
Free product thickness (mm)=	x1/0	Measurement method:	Werface Meter
	10/17	(meter, paste, etc)	MACI FACE PLETER
D : 07/55		D /C 11 . T	h 11 5
Purging: (Y/N)	Y	Purging/Sampling Equipment:	Perishaltic Pump LOPETUBING
Volume Purged Water=	41		LOPE TUELLY
Decontamination required: (Y/N) Number washes:	Y		
Number rinses:	1		
T25 - 1 TT-			
Final pH=	6.87		
Final Conductivity (uS/cm)=	8090		
Final Temperature (degC)=	2.4		

Site Name:	CAM-M		
Date of Sampling Event:	 		
Names of Samplers:	16-Aug-07 Ken Boldt	Time:	450
rvanies of Samplers.	I hen Ysoldt		
I. JOHNI			
Landfill Name:	Main Landfill - N	orth	
Monitoring Well ID:	MW-7		
Sample Number:	MLFN-MW-7		
Condition of Well:	Good, water on	s too of Pine	
	()	- sp = rrpe	
Measured Data			
Well pipe height above ground (cm)=	15		
Diameter of well (cm)=	15 5		
Depth of well installation (cm)=	,		<u> </u>
(from ground surface)	350		
Length screened section (cm)=	200		
Depth to top of screen (cm)=			
(from ground surface)	570		
			<u> </u>
Depth to water surface (cm)=	-2	Measurement method:	
(from top of pipe)	33	(meter, tape, etc)	Interface Maker
Static water level (cm)=	162 18	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
(below ground surface)	162 18		
Measured well refusal depth (cm)=	162	Evidence of sludge or siltation:	No
(i.e. depth to frozen ground)			PO
Thickness of water column (cm)=			
	129		
Static volume of water in well (mL)=	2533		
Free product thickness (mm)=	NIA	Measurement method:	110 41
	/V//7	(meter, paste, etc)	Interface Meter
D., (X/AD)			
Purging: (Y/N)	Υ	Purging/Sampling Equipment:	Resistalliz Pup
Volume Purged Water=	13 L		LAPETULing
Decontamination required: (Y/N)	4		- 3
Number washes:			
Number rinses:	1		
Final pH=	6,79		
Final Conductivity (uS/cm)=	1510		
Final Temperature (degC)=			
-1(4080)	2.8		

Site Name:	CAM-M		
Date of Sampling Event:	16-Aug-07	Time:	3:35
Names of Samplers:	16-Aug-07 Ken Bokelt		
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
Landfill Name:	Main Landfill - N	Vorth	
Monitoring Well ID:	BMW-2 (MW-8)		
Sample Number:	MW-8		
Condition of Well:		te swellen over J-plug	
) ISLAND	(C 300)1010 0101 3 Ping	
Measured Data			
Well pipe height above ground (cm)=	10		
Diameter of well (cm)=	5		
Depth of well installation (cm)=			
(from ground surface)	356		
Length screened section (cm)=	205		
Depth to top of screen (cm)=	50		
(from ground surface)			
Depth to water surface (cm)=		Measurement method:	
(from top of pipe)	85	(meter, tape, etc)	Interface Meter
Static water level (cm)=	75		
(below ground surface)	75		
Measured well refusal depth (cm)= (i.e. depth to frozen ground)	170	Evidence of sludge or siltation:	No
(i.e. depth to frozen ground)			
Thickness of water column (cm)=	85		<u> </u>
Static volume of water in well (mL)=	1668		-
	/ / DO &		
Free product thickness (mm)=	I . ,	Measurement method:	
1	N/A	(meter, paste, etc)	Interface meter
	,		
Purging: (Y/N)	Ý	Purging/Sampling Equipment:	Peristatic Pump LDPE TURNY
Volume Purged Water=	3L		LDPE TURNE
Decontamination required: (Y/N)	Y		J
Number washes:	1		
Number rinses:	1		
Final pH=	7.19		
Final Conductivity (uS/cm)=	4390		
Final Temperature (degC)=	2.7		

Ground Temperature Annual Maintenance Report 16/08/07 Contractor Name: GLL Inspection Date: Ken Boldt Prepared By: Thermistor Information Site Name: CAM-M Thermistor Location: Main Landfill - North Thermistor Number: VT-1 Inclination: 18/08/05 Vertical 16/08/07 11-Aug-01 Last Date Event: 16-Aug-05 Install Date: 25-Sept-99 First Date Event: Coordinates and Elevation N: 10337 E: 10522 Elev: 13.7 Cable Lead Above Ground (m): Nodal Points: Length of Cable (m): 6.1 3.7 Cable Serial Number: TS-7NCV#2 Datalogger Serial #: 1-807037 **Thermistor Inspection** Needs Maintenance Good 図 Casing Cover Data Logger Cable Beads Battery Installation Date Main 166 % 12.90 V Battery Levels 11.34V Aux 90% Manual Ground Bead Temperature Readings Temp. (°C) Bead Ohms Bead Ohms Temp. (°C) 13.04 1 4.6151 2 3.5917 3.68 3 15.15 1.6309 4 16.82 -0,4735 5 17,91 -1,6816 18.89 6 -2.6665 19,60 7 -3,4335 Observations and Proposed Maintenance Grounding cubbe hard come loose. I reconnected it.

	Ground Tel	mpei	rature Annua	al Maintenan			
	all		In	spection Date	e: 16	108/07	
Prepared By: Ken	Boldt						
Thermistor Information	ı						
Site Name:	САМ-М		Thermistor	Location: N	/lain La	ndfill - North	
Thermistor Number:	VT-2		Inclination:	18/08/07V	/ertical		16/08/07
Install Date: 25-Sep	ot-99 F	irst [Date Event:	11-Aug-01		st Date Event:	
Coordinates and Eleva	ition N: 102	84		E: 10569		Elev:	
Length of Cable (m):	6.1 Ca	ble L	ead Above G	Fround (m):	3.8	Nodal Po	ints: 7
Datalogger Serial #:	2-807029			Cable Serial	Numbe	r: TS-7NC	V#3
Code CAM-MVT	2						
Thermistor Inspection							
	Good			Need	ds Main	tenance	
Casing						***	
Cover	豆						
Data Logger	\square			$\overline{\Box}$			
Cable	arrow						
Beads	Ø						
Battery Installation Dat	е						
Battery Levels	Main 100 9	k	11.34 V	Aux	96%	13.26V	8.
Manual Ground Bead	<u> remperature Re</u>	ading	<u>18</u>				
Bead Ohms	Temp. (°	C)		Bead	OI	nms .	Temp. (°C)
1 12.52	5,331	1		9			
2 17.92	4.650	00		10			
3 13,57	3.696	,6		11			W.A
4 14.33	2.614			12			
5 15,30	1.311	6		13			
6 16.25	0.12	18		14			
7 17,61	-0, 71	78		15			
8				16			7.0
Observations and Prop	osed Maintenar	<u>ice</u>					

	Ground Tempe	rature Annu	al Maintenand	e Report		,
Contractor Name:	LL	Ir	spection Date	: 16/	08/07	
Prepared By: Ken				-		
•						
Thermistor Information						
Site Name:	CAM-M	Thermistor	Location: N	lain Land	fill - North	
Thermistor Number:	VT-3	Inclination:	18/08/07 V	ertical		16/08/07
Install Date: 25-Sept	-99 First I	Date Event:	1 1 - Aug-0 1	Last	Date Event:	∠16-Aug-05
Coordinates and Elevat	on N: 10366		E: 10418		Elev:	15.7
Length of Cable (m):	6.1 Cable L	ead Above (Ground (m):	3.7	Nodal Poin	nts: 7
Datalogger Serial #:	3-807028		Cable Serial	Number:	TS-7NC\	/#1
Code CAM-MVT3						
Thermistor Inspection						
THO THIS COLUMN	Good		Need	ds Mainter	ance	
Casing	Ø		П			
Cover	ল				· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
Data Logger	$\overline{\square}$		$\overline{\Box}$			
Cable						
Beads	V					
Battery Installation Date			_			
Battery Levels	Main 100%	11.34 V	Aux	40%	12.53 V	
Manual Ground Bead Te	emperature Readin	<u>qs</u>				
Bead Ohms	Temp. (°C)		Bead	Ohm	s T	emp. (°C)
1 12.33	5,6330		9			
2 12.67	5.1016		10			
3 13,39	3,9687		11			
4 14,21	2.7742		12			
5 15.11	1.5505	_	13			
6 16.37	-6,0166		14			
7 17.02	-6,7000		15			
8			16			
Observations and Propo	sed Maintenance					

	Ground Temper	rature Annua	il Maintenance	-		
	5LL	In	spection Date:	16/08	3/18	
Prepared By: Ke	n Boldt					
Thermistor Informatio						
Site Name:	CAM-M	Thermistor		ain Landfil	I - North	
Thermistor Number:	ITN1	Inclination:	18/02/65 Inc	clined		16/08/07
Install Date: 25-Se	· · · · · · · · · · · · · · · · · · ·	Date Event:	11-Aug-0 1	Last Da	ate Event:	16-Aug-0 5
Coordinates and Elev			E: 10503		Elev:	
Length of Cable (m):	· · · · · · · · · · · · · · · · · · ·	_ead Above G	······································	•	Nodal Point	
Datalogger Serial #:			Cable Serial N	lumber:	TS-7NCIA	andB#4
Code CAM-M\	/T1					
Thermistor Inspection	1					
Thornistor mopocaer.	<u>.</u> Good		Need:	s Maintena	ince	
Casing	<u> </u>	***************************************		5 Iviantiona	1100	
Cover	H		H -			
Data Logger	Ħ		i i			
Cable	Ħ		H -			
Beads	√		$\overline{\Box}$			
Battery Installation Da	ate		–			
Battery Levels	Main 100%	11.34 √	Aux 4	90%	12.77	\overline{V}
•				1		
Manual Ground Bead	l Temperature Readin	<u>gs</u>				
Bead Ohms	Temp. (°C)		Bead	Ohms	Te	emp. (°C)
1 10.55	-0.2060		9	16.60	· · · · · ·	.2169
2 17,14	-0.8656		10	17.83		6380
3 17,33	-1.1055		11	20.27		, 1229
4 17,18	-0.9217		12	22.63		, 1919
5 16.78	-0.4939		13	24.3		2,5470
6 16.22			14	25.3		3.3253
7 15.50	~~~~~~~		15			
8 16.25		7	16			
			1		<u> </u>	
Observations and Pro	oposed Maintenance					
						<u> </u>

a al Manitarina

Inspection Date: 16 08 07	•	Ground T		nermai won ature Annua	itoring I <u>Maintenance</u>	Report	
Thermistor Information	Contractor Name: (-						
Thermistor Information Site Name: CAM-M Thermistor Location: Main Landfill - North 16/08/07 16							
Site Name: CAM-M Thermistor ITN2 Inclination:							
Thermistor Number: TN2 Inclination:	Thermistor Information	<u> </u>					
Install Date 25-Sept-99	Site Name:	CAM-M		Thermistor			
Coordinates and Elevation N: 10314 E: 10550 Elev:	Thermistor Number:	ITN2		Inclination:			-, ,
Length of Cable (m): 22.5 Cable Lead Above Ground (m): Nodal Points: 14	Install Date: 25-Sep	ot-99	First [Date Event:	<u> 11-∧ug</u> -01		
Datalogger Serial #: 32-807035 Cable Serial Number: TS-7NCIA and B#3	Coordinates and Eleva	ation N: 1	0314		E: 10550		
Code CAM-MV11 Code CAM-MV11 Code Casing Cover Cover Cover Casing Cover Cable Casing Cable Casing Cable Cabl	Length of Cable (m):	22.5	Cable L	ead Above C			
Casing					Cable Serial N	umber: TS-7N	CIAandB#3
Casing ☑ ☐ Cover ☑ ☐ Data Logger ☑ ☐ Cable ☑ ☐ Beads ☑ ☐ Battery Installation Date Battery Levels Main loc% II.34 V Aux 10 % I2.65 V Manual Ground Bead Temperature Readings Bead Ohms Temp. (°C) 9 15.39 I.2.65 V 1 15.56 0.4867 9 15.39 I.2.09 1.2.09 2 15.16 1.5304 1.5304 10 16.13 0.2747 0.2747 3 14.63 1.9147 11 17.78 -1.6380 -1.6380 1.16380 4 14.79 1.9924 12 20.47 -4.352 13 22.47 - 6.0902 14 23.60 -7.0054 5 14.61 2.2061 1.6711 15 15 8 15.39 1.1453 1.1453 16	Code CAM-MV	1					
Good Needs Maintenance	Thermistor Inspection						
Cover ☑ ☐ <td>THOMBOOK HOPOULON</td> <td>Good</td> <td></td> <td></td> <td>Needs</td> <td>Maintenance</td> <td></td>	THOMBOOK HOPOULON	Good			Needs	Maintenance	
Data Logger ☑ ☐ Cable ☑ ☐ Beads ☑ ☐ Battery Installation Date Main 100% 11.34 V Aux 90% 12.65 V Manual Ground Bead Temperature Readings Bead Ohms Temp. (°C) ☐ 1 15.56 0.4867 9 15.39 I.2109 2 15.16 1.5304 10 16.13 0.2797 3 14.83 1.9147 11 17.78 -1.6380 4 14.79 1.9924 12 20,47 -4.352 5 14.61 2.2182 13 22.47 -6.0892 6 14.61 2.2061 14 23.60 -7.0654 7 15.02 1.6711 15 8 15.39 1.1933 16	Casing	$\overline{\Box}$	4				
Cable ☑ Beads ☑ Battery Installation Date Battery Levels Main 100% II.34 V Aux 90 % 12.65 V Manual Ground Bead Temperature Readings Bead Ohms Temp. (°C) 9 K, 39 1.2109 2 15.16 1.5304 9 K, 39 1.2109 3 14.83 1.4177 1.9147 4 14.79 1.4924 11 17.78 -1.638C 5 14.61 2.2182 13 22.47 -6.0892 6 14.61 2.2061 14 23.60 -7.0054 7 15.02 1.6711 15 8 15.39 1.1433 1.1433	Cover	V					
Beads Battery Installation Date Battery Levels Main 100% II.34 V Aux 90% 12.65 V Manual Ground Bead Temperature Readings Bead Ohms Temp. (°C) 1 15.56 0.9867 2 15.16 1.5304 3 14.83 1.9147 4 14.79 1.9929 5 19.61 2.2182 5 19.61 2.2182 6 19.61 2.2182 7 15.02 1.67 II 8 15.39 1.1433 16	Data Logger	V					
Battery Installation Date Battery Levels Main 100% 11.34 V Aux 90% 12.65 V Manual Ground Bead Temperature Readings Bead Ohms Temp. (°C) 1 15.66 0.9867 2 15.16 1.5304 3 14.83 1.9147 11 17.78 -1.6380 4 14.79 1.9924 5 14.61 2.2182 6 14.61 2.2182 6 14.61 2.2061 7 15.02 1.6711 8 15.39 1.1433	Cable	\square					
Battery Levels Main 100% 11.34 V Aux 90% 12.65 V Manual Ground Bead Temperature Readings Bead Ohms Temp. (°C) 1 15.56 0.4867 9 15.16 1.2109 2 15.16 1.5304 1.5304 3 14.83 1.4174 1.9147 4 14.79 1.9924 1.9924 5 14.61 2.2182 13 22.472 -6.0892 6 14.61 2.2081 1.6711 8 15.34 1.1433 1.1433	Beads	v					
Manual Ground Bead Temperature Readings Bead Ohms Temp. (°C) 1 15.56 0.9867 9 15.39 1.2109 2 15.16 1.5304 10 16.13 0.2797 3 14.83 1.9147 11 17.78 -1.6380 4 14.79 1.9924 12 20.47 -4.352 5 14.61 2.2182 13 22.47 -6.0892 6 14.61 2.2081 14 23.60 -7.0054 7 15.02 1.6711 15 15 8 15.39 1.1933 16	Battery Installation Da	te			-1-74	-	· · · · · · · · · · · · · · · · · · ·
Bead Ohms Temp. (°C) 1 15.56 0.9867 9 K.39 1.2109 2 15.16 1.5304 10 16.13 0.2797 3 14.83 1.9147 11 17.78 -1.6380 4 14.79 1.9924 12 20,47 -4.352 5 14.61 2.2182 13 22.47 -6.0892 6 14.61 2.2061 14 23.60 -7.0054 7 15.02 1.6711 15 8 15.39 1.1433 16	Battery Levels	Main <u>10</u>	ం%	11.34 V	Aux _	10% 12.65 V	,
Bead Ohms Temp. (°C) 1 15.56 0.9867 9 K.391 1.2109 2 15.16 1.5304 10 16.13 0.2797 3 14.83 1.9147 11 17.78 -1.6380 4 14.79 1.9924 12 20,47 -4.352 5 14.61 2.2182 13 22.47 -6.0892 6 14.61 2.2061 14 23.60 -7.0054 7 15.02 1.6711 15 8 15.39 1.1433 16							
1 15.56 0.9867 9 15.39 1.2109 2 15.16 1.5304 10 16.13 0.2797 3 14.83 1.9147 11 17.78 -1.6380 4 14.79 1.9924 12 20.47 -4.3152 5 14.61 2.2182 13 22.47 -6.0892 6 14.61 2.2081 14 23.60 -7.0054 7 15.02 1.6711 15 8 15.39 1.1433 16	Manual Ground Bead	Temperature	Readin	gs			
2 15.16 1.5304 3 14.83 1.9147 4 14.79 1.9924 5 14.61 2.2182 6 14.61 2.2081 7 15.02 1.6711 8 15.39 1.1433				_			
3 14.83 1.9147 4 14.79 1.9924 5 14.61 2.2182 6 14.61 2.2061 7 15.02 1.6711 8 15.39 1.1933				_			
4 14.79 1.9924 12 20,47 -4.3152 5 14.61 2.2182 13 22.47 -6.0892 6 14.61 2.2081 14 23.60 -7.0054 7 15.02 1.6711 15 8 15.39 1.1433 16							
5 14.61 2.2182 13 22.47- -6.0892 6 14.61 2.2061 14 23.60 -7.0054 7 15.02 1.6711 15 8 15.39 1.1433 16							
6 14.61 2.20% i 7 15.02 1.6711 15 8 15.39 1.1433 16							
7 15.02 1.6711 15 8 15.39 1.1433 16							
8 15.39 1.1433 16	······					2560	-4,0054
Observations and Proposed Maintenance	8 15.39	. Is <i>l</i>	933		16		
Observations and Proposed Maintenance							
	Observations and Pro	posed Mainte	nance				

The second

,

MAIN JONGS & IT FAME - FIMILLO STARTED MAIN NORTH CHIZOM - SUN WAS ONT FRM 10: 50 - 11:30 FUG ROLLING IN AND Whas Picking - MOVED TO MAIN NORTH LANDAU PHOTO 1 9 13W14997755, 76675 19 SOUTHSLOPE DE HORTH LE MAIN - NO BROSING OR SLIMPING CRACK ON SLOPE ABOUT 1 INCH WIDT & I WELL DUNG × 4 m LONG CRACK BOTOMOS ONTO CAUST For I on May, WIOTH AND MAY PERTH 3 INCLYS PANTO 2-2/3WOY95727,7867665 WAYPOINT 066 -2A 7 TUNSTON CHALL ON AB -> SLOPE FAUNG NORTH 2 c & RODE FACING SAMPLE

Aubilbo] =) Chosen of Chick - APPEARS to BE STABLE, NO RECENT MOVEMENT AND CRACK HAS FILLED VITE Sminor END OF CRACK & TOPOF SLOPE = 15m FROM START (SOMIN) OF GRAVE PHON 3 -> 13-10495757 7667622 WAYPOINS 067 No consol - MPPUARS STABLE -Na SURPAGE @ 705 Luncy From 12:00pm To 12:30 - PIQUED UP. PHOTO 47 13W0495814, 7667617 WAYPANT 068 Some whom Atlans AND DONDED WATER AT TOP OF KE FACING SOUTH TOWARDS AIRPORT 7B- FACING LAST TOWARDS FOUND 4c - FACING NORTH TOWARDS PONDING ORANGE COUNTRID FOIL -NO PROSION IR CRACKS 0818P1190

(6)	(17) AUG 16/07
PHOTO 5 = 1700495856, 7667602	- APPEARS to BE JUST GRAMMENTS
WATCOINT OFF	
- FA-ING UPSLONE P ITNI	124519 3 3 3 13 mo 4 2 8 3 8 366 7542
- NO BROSLOP, NO SEADER & LPE	WAYDOLWI OF3
-3 PHOTOS FOR PANOZAMIL	PHOTO 8 - PMILAN TO
PHOTO 6 -> 1340415878 7667562	- APIERRY TO BE SOLF ARMONEUS
WAYPOINT OFF	- FINET HAVE WASHED TO TOE
- Looker b hr AT V73	
- Erosfor GWLUG AROW 0.3mW	PHOTO 10 + 13W0445875,7667528
an 0.2m per usupy	- WAYPOINT VZY
SPACED ABOUT 2-3m APACT	10A Dearling Down SISTE
TAM SEBAK	108 -) LOOKING CAST
PHOTO 7 7 13W049 5874, 766-7561	10 C = FACING WEST
WAUDOWF OFF	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
7A - LUKING ACROSS CONSION GULLIB	PHOTON 1 => 13W0495916, 7667534
and suppor	WAMPOINT DZS
7.B - SOME FINES HAVE WASHED DIVES	- NEST OND OF CHACK AVOID
GRANDO O TOE AND ARE	TOE OF SLOPE (5 m room) by
CONSTINU VERETATION - FIRED BOOK	- TOOK - 7 PHOTOS OF CHALL
5.25 SANGE - 1.5 S	L'MO OF CRACK => WAYPOINT 076
PLOTO B => 13W0495874, 7667564	13W0495946, 7667508
WAYPOINT OTZ	MAY WIDTH 24 MCHES
- cooking up anylow CHANNER	MAX DEDTH A EX INCHET
- Brant 0, am Wigh & o. In over	LEVEL

	35		·		I	•	•		
		2 = 13	204959	51, 7613	49	-		P	14010
	-FA	enb l	Jeit A	AUNG (arsi,) 1	U <u>—</u>	<u>م</u>	- 1
	;	Almi	- CNA	V PHO	Ties M	,			· - NO
:	H	AIRLIYE	CRAC	C OBJE	5050	, 1 - 1	J		2-2
<i>p t</i>	for 13	#13WO	1974 75 DINT O	7667	4 5 5	· · · · · · · · · · · · · · · · · · ·		PIN	Th 14
	- 2	PHOTO	FOR	PANO	ARMIC		<u> </u>	10 m	179
	โป	pJ. M	st sim	in fin	or train	inp inp	. 47 Level		17/3
-	-No	THO H	se AT	705			Supply Corp		Mid
PHOT	0 14 7			66745	7		North Pacific		ACUDO
	2 PH	JAYPOI VIOJ O	F SONTH	ensi N	a PE				VISHED AT ECEN
	NO E	RUSTON	/ b/Z C	racking	s of sch		**************************************	. N. Y	FREY
PHOTO) js	=>/3WOY	9592	7667	478 N		. \		AMP Cor
				on or				\ 	Colly
	Sev	emp Of Cu	of Ak	out A	3m D	20/		-	WOR
	CNU (1°	PW 149	5936,	76674	79)				
المنافعة الم				,		Ŷ			

	10-517
	10000
95951, 7617491	P1407: 15=1 (3L0495366 2663498
101M 1027	WANPOLKT (982
T AWNG CAUST,	- PHOTOS WOST WORTH & BAST
MACK (PHOTUS II)	- NO SETT - CARLLI OR
	DEPRESADON BACTERIO
CEACE & CRETE	- 2 INCHE OF POLICE WATER
RACK OBSERVED	ABOUT 50 SA
976 7667473	Nach and the second second
01x	- PINTO 12 = 13W049 5+68, 766 7581
TOR PANORAMIC	WAY PUNT OBS
Ruly on North	17A = FAGAGE PAST
	B PRAINC PATHONIC
SLANC IS NOT FRADUL	BINDOR UNION OTHER
AT TOE	ROCK NO SCHOOLD
	DAST CHEVY TO
0, 4667457	€
079	= FINISHED GYOTECHNICAL INSPECTION
ONTHERS SUPE	AT 3: corry
cracking obstancy	= NECEDO WITH WATER SAMPLING
1 .	Trank 31500m 6500 MM
927, 7657178, WP 30	- Samplies B MW AND COLLEGE
921, +66 1418, W	SOLL SAMPLET H MW LOCATIONS
ANSIDN CRACK	COME MIN WAS DRY) - COLLECTED POLL SAMPLES AT
EST AND WILBLE	2 OF 5 LOCATIONS & MWG
ABOUT of 3m Brok.	- WORKERD UNTIL GISPM
7WP 081	
3/ 7//7//	
16, 7667479)	

Appendix B

Landfill Monitoring Report - Main Landfill South

- B-1: Main Landfill South
 - B-1.1 Landfill Summary
 - B-1.2 Visual Monitoring
 - B-1.3 Soil Sampling
 - B-1.4 Groundwater
 - B-1.5 Thermal Monitoring

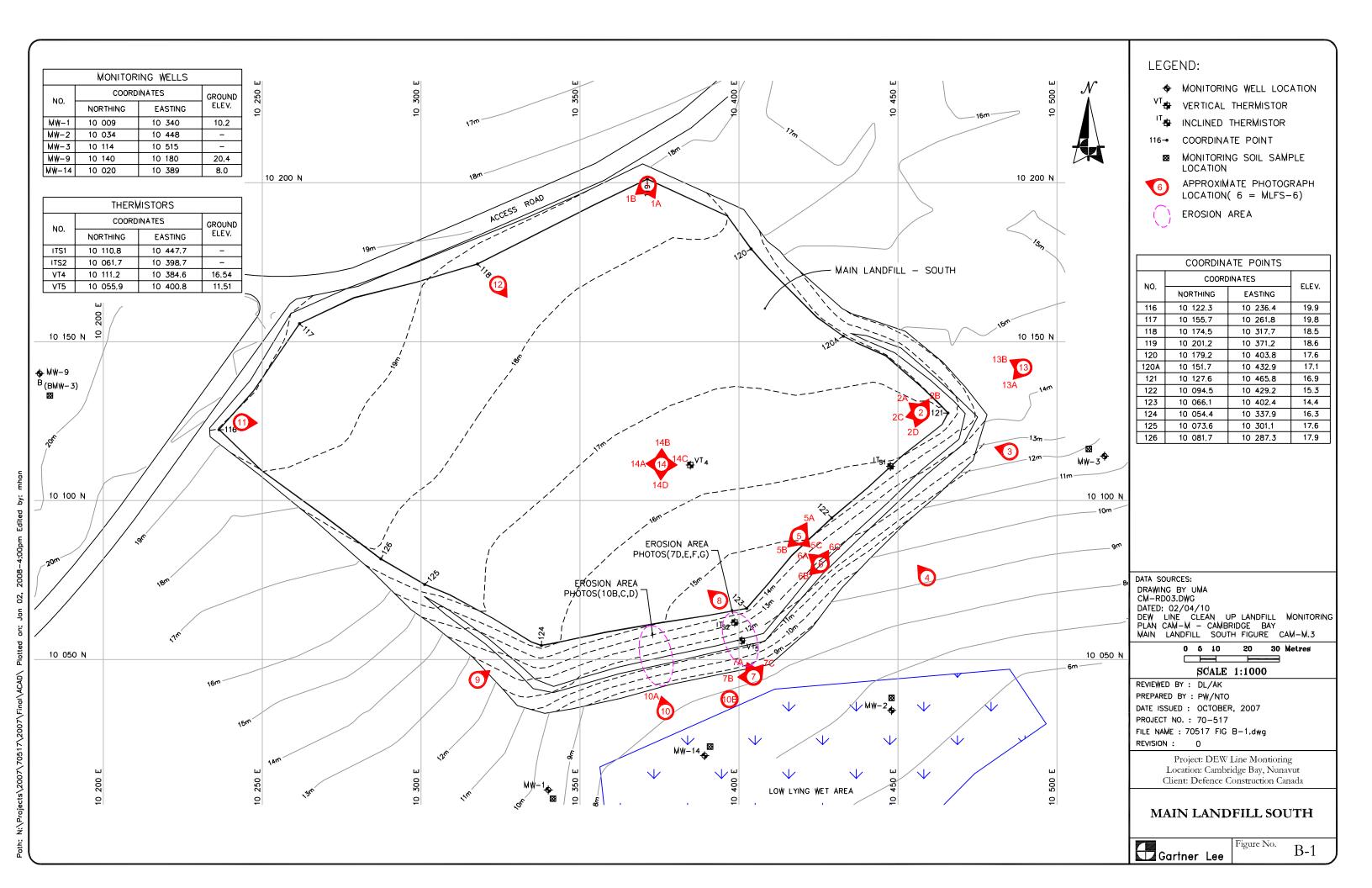
Appendix B

Landfill Monitoring Report - Main Landfill South

The Collection of Landfill Monitoring Data at the CAM-M Cambridge Bay Site - 2007 Report APPENDIX B Main Landfill South

B.1 Main Landfill South

B.1.1 Landfill Summary


The Main Landfill-South is located to the east of the main station buildings. The area of the landfill is approximately 15,000 m². The depth of the landfill is approximately 1.5 to 2.0 m below surface. The landfill configuration is provided on Figure B-1. Prior to the remedial work in 1999, DCC had classified the landfill as a moderate potential environmental risk. Remediation of the landfill included the installation of a double synthetic liner system anchored into the permafrost along the toe of the landfill and re-grading with the placement of additional granular fill sufficient for permafrost aggradation through the landfill contents.

For 2007, the monitoring requirements for the Main Landfill South include visual inspection, soil sampling, groundwater sampling, and thermal monitoring.

B.1.2 Visual Monitoring

No significant erosion, settlement or indications of slope instability were observed at the Main Landfill South (MLFS) area during the 2007 inspection. Overall landfill performance is assessed as "acceptable". Appendix B1 presents a summary of the 2007 visual inspection results.

Some minor erosion gullies on the southwest slope appear to be self-armouring (Photos MLFS-6A, 7A and 10D in Appendix B2) and the eroded fines appear to have been accumulating on the midslope bench (Photos MLFS-6B and 6C in Appendix B2) and at the toe of the landfill (Photo MLFS-10E in Appendix B2). Some orange stained rock was observed at the northeast toe of the landfill (Photo MLFS-3 in Appendix B2).

The Collection of Landfill Monitoring Data at the CAM-M Cambridge Bay Site - 2007 Report APPENDIX B Main Landfill South

B.1.3 Soil Sampling

Soil samples were collected at the designated locations of MW-1, MW-2, MW-3, MW-9 and MW-14. The sampling locations are shown on Figure B-1. At each location wherever possible, samples were collected at a depth of approximately 0.10 m below ground and between 0.40-0.50 m below ground. The photograph of each test pit sampled is shown in Appendix B2.

During the sampling there were no odours noted, no visible staining in the soil and no free product observed. The vegetation around the landfill did not appear to exhibit any stress.

Low concentrations of Total Petroleum Hydrocarbons (TPH) (200mg/kg) were detected in the shallow sample from soil sample location MW-1. The concentrations noted are not considered to be significant, however these should be evaluated in the context of the Landfill Monitoring Plan.

The analytical results are tabulated in Table B-1 and the laboratory certificates are provided in Appendix G.

Table B-1. CAM-M Cambridge Bay, Summary of 2007 Soil Analysis - Main Landfill - South

		Donth	Arconic	Cadmium	Chromium	Cobalt	Conner	Lead	Mercury	Nickel	Zinc	Petroleum Hydrocarbons				PCB Total
Sample Ident.	Sample Location	Deptii	Arsenic	Caumum	Cilioinium	Cobait	Copper	Leau	Wercury	Nickei	ZIIIC	TPH (C6-34)	C6-C10	C10-C16	C16-C34	Aroclors
		(m)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
Upgradient Samples	3															
CM-MW-9-1	(BMW-3) MW-9	0.1	8.0	0.2	5	2	14	3.1	0.05	10	37	< 20				< 0.03
CM-MW-9-2	(BMW-3) MW-9	0.5	1.8	< 0.2	11	4	9	5.2	< 0.01	9	12	< 20				< 0.03
Downgradient Samp	oles			•												
CM-MW-1-1	MW-1	0.1	1.4	< 0.2	7	2	12	3.8	0.05	8	35	200	< 5	< 80	< 250	< 0.03
CM-MW-1-2	MW-1	0.5	2.0	< 0.2	10	4	7	5	0.03	8	12	< 20				< 0.03
CM-MW-2-1	MW-2	0.1	1.0	< 0.2	9	1	14	2.7	< 0.01	8	16	< 80	< 5	< 80	< 250	< 0.03
CM-MW-2-2	MW-2	0.5	1.9	< 0.2	7	2	3	2.7	< 0.01	4	8	< 20				< 0.03
CM-MW-3-1	MW-3	0.1	0.8	< 0.2	3	< 1	7	1	0.03	4	13	< 80	< 5	< 80	< 250	< 0.03
CM-MW-3-2	MW-3	0.5	2.8	< 0.2	18	9	13	6.9	< 0.01	16	21	< 20				< 0.03
CM-MW-14-1	MW-14	0.1	3.6	< 0.2	16	7	13	6.1	< 0.01	15	19	< 20				< 0.03
CM-17-1*	MW-14	0.1	3.5	< 0.2	12	6	11	6	0.01	12	13	< 20				< 0.03
CM-MW-14-2	MW-14	0.5	3.0	< 0.2	13	5	12	7.4	< 0.01	12	15	< 20				< 0.03
CM-17-2*	MW-14	0.5	2.8	< 0.2	11	4	11	6.6	0.01	11	18	< 20				< 0.03

^{*} Denotes duplicate sample. (Further information located in Table 1 of main report)

Note: mg/kg = ug/g

The Collection of Landfill Monitoring Data at the CAM-M Cambridge Bay Site - 2007 Report APPENDIX B Main Landfill South

B.1.4 Groundwater

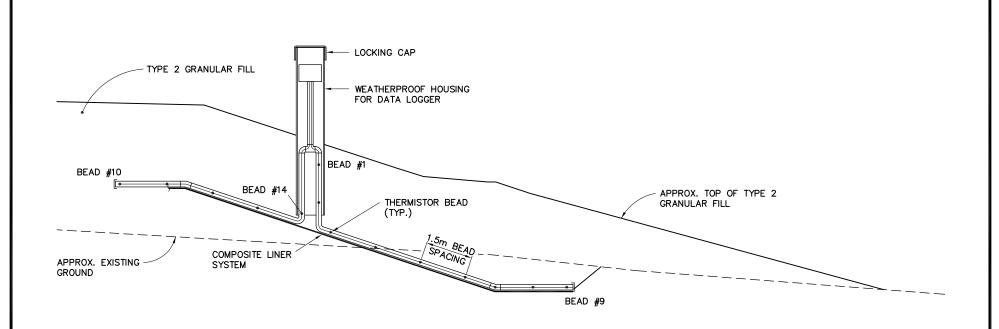
Groundwater elevations and monitor conditions records were documented for observation wells MW-1, MW-2, MW-3, MW-9 and MW-14. The well development records are located in Appendix B4. Generally the observation wells were in good condition. There was insufficient clearance between the top of the pipe and the protective casing lid to permit the proper installation of the cap on well MW-1. This may result in the future influx of surface or storm water into the well. GLL recommends that a slip-on cap be installed on MW-1 to prevent surface water from entering the well. In wells MW-1, MW-3, and MW-9, the bentonite grout seal had heaved up inside of the protective casing to an elevation parallel to or above the top of the monitor pipe (TOP). Some of the heaved grout around the pipe was removed to permit monitoring of the well and the re-installation of the cap. Ponded water was observed inside of the casing of MW-3 above the elevation of the TOP and there is potential for some of the ponded water to flow into the pipe through any holes in the j-plug cap.

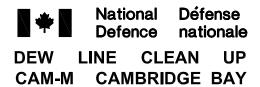
Samples were collected from all of the observation wells surrounding the Main Landfill – South and submitted to the laboratory for analysis. The water sample from MW 2 returned a moderate concentration of Zinc. These concentrations are elevated in comparison to other wells in the area and should be evaluated in the context of the Landfill Monitoring Plan. The analytical results for the observation monitors are tabulated in Table B-2 and the laboratory certificate are provided in Appendix G.

Table B-2. CAM-M Cambridge Bay, Summary of 2007 Groundwater Analysis - Main Landfill - South

		Groundwater	Arsenic	Cadmium	Chromiu	Cobalt	C	Lead	Maraumi	Nickel	Zinc		Petroleum H	ydrocarbons		PCB Total
Sample Ident.	Location	Elevation	Arsenic	Cadmium	m	Copait	Copper	Lead	Mercury	Nickei	Zinc	TPH (C6-34)	C6-C10	C10-C16	C16-C34	Aroclors
		(masl)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)
Upgradient Samples	S															
CM-MW-9	MW-9	19.9	0.0005	0.0009	0.0071	0.011	0.0083	< 0.0002	< 0.00002	0.233	0.86	< 0.1				< 0.0004
Downgradient Samp	oles															
CM-MW-1	MW-1	9.86	0.0012	0.00009	0.02	0.0039	0.0081	0.0005	< 0.00002	0.067	0.15	< 0.1				< 0.0004
CM-MW-16*	MW-1	9.86	0.0011	< 0.00004	0.0084	0.0027	0.0037	< 0.0002	< 0.00002	0.044	0.044	< 0.1				< 0.0004
CM-MW-2	MW-2	-	0.0011	0.00014	0.04	0.0023	0.007	0.0013	< 0.00002	0.06	2.91	< 0.1				< 0.0004
CM-MW-3	MW-3	-	0.0008	< 0.00004	0.024	0.032	0.0043	< 0.0002	< 0.00002	0.153	0.018	< 0.1				< 0.0004
CM-MW-14	MW-14	7.71	0.0041	0.00021	0.0066	0.0018	0.0049	0.0014	< 0.00002	0.029	0.007	0.12	< 0.1	< 0.25	< 0.25	< 0.0004

^{*} Denotes duplicate sample. (Further information located in Table 1 of main report)


Note: mg/L = 1000 ug/L


The Collection of Landfill Monitoring Data at the CAM-M Cambridge Bay Site - 2007 Report APPENDIX B Main Landfill South

B.1.5 Thermal Monitoring

The manual readings taken from each thermistor from the Main Landfill – South are provided in the maintenance records located in Appendix B5. The data downloaded from the data loggers spanned 2006 and 2007. The tabulated summary data from the thermistors for both 2006 and 2007 is located in Appendix B5. The graphs for the 2007 data for these thermistors are provided in Graphs 11 through 14, located in Appendix B6. The graphs for the 2006 data for these thermistors are provided in Graphs 15 through 18, located in Appendix B7.

GLL downloaded all thermistor data, reset the data logger and replaced the batteries at each location. A maintenance record was completed for each thermistor and is located in Appendix B5. A full download of the thermistor data loggers should be completed the summer of 2010.

MAIN LANDFILL - SOUTH INCLINED THERMISTOR INSTALLATION FIGURE B-2

Appendix B Attachments

- **B1** Site Condition/Visual Inspection Records
- **B2** Geotechnical Inspection Photographic Records
- **B3** Monitoring Photographic Records
- **B4** Monitoring Well Development Records
- B5 Thermistor Data Tables 2007, 2006 & Maintenance Records
- **B6** Thermistor Graphs 2007
- **B7** Thermistor Graphs 2006
- **B8** Field Notes

Appendix B1

Site Condition/Visual Inspection Records

DEW LINE CLEANUP: POST-CONSTRUCTION - LANDFILL MONITORING VISUAL INSPECTION REPORT - MAIN LANDFILL SOUTH - PAGE 1 OF 2

SITE NAME:	Cambridge Bay CAM-M
LANDFILL DESIGNATION:	Main Landfill South
DATE OF INSPECTION:	August 2007
DATE OF PREVIOUS INSPECTION:	August 2005
INSPECTED BY:	Darrin Johnson, P.Eng.
REPORT PREPARED BY:	Darrin Johnson, P.Eng.

VISUAL INSPECTION REPORT – MAIN LANDFILL SOUTH - PAGE 2 OF 2

Checklist Item	Present Yes/No	Location (Describe relative to landfill features)	Length	Width	Depth	Extent relative to Area of Landfill (%)	Description	Photographic Records (Photo number referenced in photo log and on figures)	Additional Comments/ Preliminary Stability Assessment
Settlement	No								
Erosion	Yes	Southwest slope in vicinity of ITS2	50 m	20 m	0.1 m max.	1000m2/ 10,000m2 = 10%	Erosion gullies with fines collecting on midslope bench	MLFS 6A, 7A, 7D- 7G, 9, 10B-10D	Self- armouring; acceptable
Frost Action	No								
Animal Burrows	No								
Vegetation	Sparse								
Staining	Yes	Northeast toe	10 m	10 m	N/A	100m2/ 10,000m2 =1%	Some orange staining of rock at toe	MLFS 3	Acceptable
Vegetation Stress	No								
Seepage Points	No								
Debris Exposed	No								
Presence/Condition – Monitoring Instruments	Good								
Features of Note	None								
Genaral							General	MLFS 1A,1B,2A- 2D,4,5A-5C,6B- 6C,7B,7C,8,10A, 10E,11,12,13A,13B, 14A-14D	

PRELIMINARY STABILITY ASSESSMENT - MAIN LANDFILL SOUTH

Feature	Severity Rating	Extent None		
Settlement	Not Observed			
Erosion	Acceptable	Occasional		
Frost Action	Not Observed	None		
Staining	Acceptable	Isolated		
Vegetation Stress	Not Observed	None		
Seepage/Ponded Water	Not Observed	None		
Debris Exposed	Not Observed	None		
Tension Cracks	Not Observed	None		
Overall Landfill Performance	Acceptable			

Appendix B2

Geotechnical Inspection Photographic Records

Photo MLFS-1A, Easting: 495734, Northing: 7667434, Direction: 150° Main Landfill South; north corner Scale: photo placard dimensions are 29.4 cm wide by 27.5 cm in height

PHOTO MLFS-1B, Easting: 495734, Northing: 7667434, Direction: 230° Main Landfill South; north corner Scale: photo placard dimensions are 29.4 cm wide by 27.5 cm in height

Photo MLFS-2A, Easting: 495807, Northing: 7667351, Direction: 330° Main Landfill South; facing northwest along crest Scale: photo placard dimensions are 29.4 cm wide by 27.5 cm in height

Photo MLFS-2B, Easting: 495807, Northing: 7667351, Direction: 45° Main Landfill South; close-up of north slope where self-armouring erosion has occurred

Scale: photo placard dimensions are 29.4 cm wide by 27.5 cm in height

Photo MLFS-2C, Easting: 495734, Northing: 7667434, Direction: 270° Main Landfill South

Photo MLFS-2D, Easting: 495734, Northing: 7667434, Direction: 225° Main Landfill South

Scale: photo placard dimensions are 29.4 cm wide by 27.5 cm in height

Photo MLFS-3, Easting: 495821, Northing: 7667332, Direction: 300° Main Landfill South; facing slope from toe, some orange stained rock at toe. Scale: photo placard dimensions are 29.4 cm wide by 27.5 cm in height

Photo MLFS-4, Easting: 495821, Northing: 7667332, Direction: 315°
Main Landfill South; facing slope towards ITS1
Scale: photo placard dimensions are 29.4 cm wide by 27.5 cm in height

Photo MLFS-5A, Easting: 495774, Northing: 7667314, Direction: 45° Main Landfill South; top of landfill facing northeast along crest Scale: photo placard dimensions are 29.4 cm wide by 27.5 cm in height

Photo MLFS-5B, Easting: 495774, Northing: 7667314, Direction: 225° Main Landfill South; top of landfill facing southwest along crest Scale: photo placard dimensions are 29.4 cm wide by 27.5 cm in height

Photo MLFS-5C, Easting: 495774, Northing: 7667314 Main Landfill South; top of landfill facing down-slope Scale: photo placard dimensions are 29.4 cm wide by 27.5 cm in height

Photo MLFS-6A, Easting: 495764, Northing: 7667296, Direction: 315°
Main Landfill South; view from bench looking up slope at fines that have washed onto bench Scale: photo placard dimensions are 29.4 cm wide by 27.5 cm in height

Photo MLFS-6B, Easting: 495764, Northing: 7667296, Direction: 225° Main Landfill South; view from bench facing south Scale: photo placard dimensions are 29.4 cm wide by 27.5 cm in height

Photo MLFS-6C, Easting: 495764, Northing: 7667296, Direction: 45° Main Landfill South; view from bench facing north

Scale: photo placard dimensions are 29.4 cm wide by 27.5 cm in height

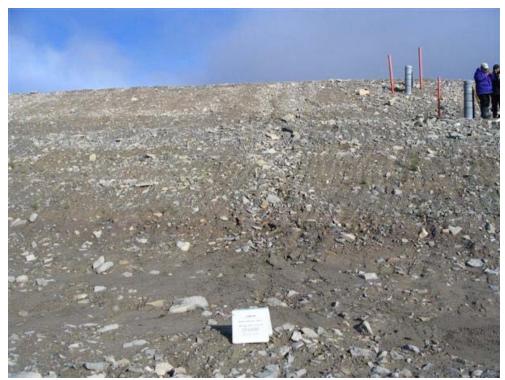


Photo MLFS-7A, Easting: 495751, Northing: 7667267, Direction: 340° Main Landfill South; facing upslope where erosion channel has formed Scale: photo placard dimensions are 29.4 cm wide by 27.5 cm in height

Photo MLFS-7B, Easting: 495751, Northing: 7667267, Direction: 270° Main Landfill South; facing southwest slope Scale: photo placard dimensions are 29.4 cm wide by 27.5 cm in height

Photo MLFS-7C, Easting: 495751, Northing: 7667267, Direction: 20° Main Landfill South; facing northeast to thermistors Scale: photo placard dimensions are 29.4 cm wide by 27.5 cm in height

Photo MLFS-7D, Easting: 495751, Northing: 7667267, Direction: 340° Main Landfill South; close-up of erosion Scale: field book dimensions are 29.5 cm wide by 20.0 cm in height



Photo MLFS-7E, Easting: 495751, Northing: 7667267, Direction: 340° Main Landfill South; close-up of erosion Scale: field book dimensions are 29.5 cm wide by 20.0 cm in height

Photo MLFS-7F, Easting: 495751, Northing: 7667267, Direction: 340° Main Landfill South; close-up of erosion

Scale: field book dimensions are 29.5 cm wide by 20.0 cm in height

Photo MLFS-7G, Easting: 495751, Northing: 7667267, Direction: 340° Main Landfill South; close-up of erosion Scale: field book dimensions are 29.5 cm wide by 20.0 cm in height

Photo MLFS-8, Easting: 495735, Northing: 7667295, Direction: 300° Main Landfill South; southwest crest Scale: photo placard dimensions are 29.4 cm wide by 27.5 cm in height

Photo MLFS-9, Easting: 495737, Northing: 7667296, Direction: 45° Main Landfill South; west slope with minor erosion Scale: photo placard dimensions are 29.4 cm wide by 27.5 cm in height

Photo MLFS-10A, Easting: 495657, Northing: 7667274, Direction: 340° Main Landfill South; minor erosion on south slope Scale: photo placard dimensions are 29.4 cm wide by 27.5 cm in height

Photo MLFS-10B, Easting: 495657, Northing: 7667274, Direction: 340° Main Landfill South; close-up of erosion Scale: field book dimensions are 29.5 cm wide by 20.0 cm in height

Photo MLFS-10C, Easting: 495657, Northing: 7667274, Direction: 340° Main Landfill South; close-up of erosion Scale: field book dimensions are 29.5 cm wide by 20.0 cm in height



Photo MLFS-10D, Easting: 495657, Northing: 7667274, Direction: 340° Main Landfill South; close-up of erosion Scale: field book dimensions are 29.5 cm wide by 20.0 cm in height

Photo MLFS-10E, Easting: 495657, Northing: 7667274, Direction: 90° Main Landfill South; eroded fines below ITS2 and VT5

Photo MLFS-11, Easting: 495586, Northing: 7667344, Direction: 90° Main Landfill South; west corner Scale: photo placard dimensions are 29.4 cm wide by 27.5 cm in height

Photo MLFS-12, Easting: 495667, Northing: 7667398, Direction: 135° Main Landfill South; north central Scale: photo placard dimensions are 29.4 cm wide by 27.5 cm in height

Photo MLFS-13A, Easting: 495665, Northing: 7667394, Direction: 225° Main Landfill South; north slope Scale: photo placard dimensions are 29.4 cm wide by 27.5 cm in height

Photo MLFS-13B, Easting: 495665, Northing: 7667394, Direction: 315° Main Landfill South; north slope Scale: photo placard dimensions are 29.4 cm wide by 27.5 cm in height

Photo MLFS-14A, Direction: 270° Main Landfill South; VT4 facing west

Photo MLFS-14B, Direction: 0° Main Landfill South; VT4 facing north

Photo MLFS-14C, Direction: 90° Main Landfill South; VT4 facing east

Photo MLFS-14D, Direction: 180° Main Landfill South; VT4 facing south

Appendix B3

Monitoring Photographic Records

Test pit CM-MW-1. Samples CM-MW-1-1 and CM-MW-1-2 collected. Samples with identification numbers ending in "1" (ex. CM-MW-1-1) collected at 0-10cm and samples with identification numbers ending in "2" collected at 40-50cm.

Test Pit CM-MW-2. Samples CM-MW-2-1 and CM-MW-2-2 collected.

Test pit CM-MW-3. Samples CM-MW-3-1 and CM-MW-3-2 collected.

Test Pit CM-MW-9 (Upgradient). Samples CM-MW-9-1 and CM-MW-9-2 collected.

Test pit CM-MW-14. Samples CM-MW-14-1, CM-MW-14-2, CM-17-1 (Duplicate of CM-MW-14-1), CM-17-2 (Duplicate of CM-MW-14-2) collected.

Monitoring well MW-1. Sample CM-MW-1 and CM-MW-16 (Duplicate) collected.

Monitoring well MW-2. Sample CM-MW-2 collected.

Monitoring well MW-3. Sample CM-MW-3 collected. Bentonite swollen to top of pipe (TOP) and standing water inside well casing over TOP.

Monitoring well MW-9 (Upgradient). Sample CM-MW-9 collected. Bentonite swollen over TOP.

Monitoring well MW-14. Sample CM-MW-14 collected.

Vertical thermistor VT-4.

Vertical thermistor VT-5.

Inclined thermistor ITS-1.

Inclined thermistor ITS-2.

Appendix B4

Monitoring Well Development Records

Monitoring Well Observations (MW-01)

	Develop	ment of Monitoring Wells (2007)
Site Name:	CAM-M	
Date of Sampling Event:	18-Aug-07	Time: 8:50
Names of Samplers:	Ken Boldt	
Landfill Name:	Main Landfill	South
Monitoring Well ID:	MW-1	
Sample Number:		CM-MW-16 (Duplicate)
Condition of Well:	Good, benton	ite welled up, no j-plug, missing bolts in casing
Measured Data		
Well height above ground (cm)=	25	
Diameter of well (cm)=	5	
Depth of installation (cm)=	350	From ground surface
Length screened section (cm)=	200	
Depth to top of screen (cm)=	50	From ground surface
Depth to water surface (cm)=	59	Method: Interface meter
Static water level (cm)=	34	From ground surface
Depth to bottom (cm)=	130.5	Evidence of sludge or siltation: no
Depth of water (cm)=	71.5	
Well volume of water (mL)=	1403.90	
Free product thickness (mm)=	N/A	Method: Interface meter
Purging: (Y/N)	Y	Procedure/Equipment: Peristaltic Pump, LDPE tubing
Volume Purged Water (L)=	2	Trocedure Equipment.
Decontamination required: (Y/N)	Y	Notes:
Number washes:	1	
Number rinses:	1	
pH=	7.31	
Conductivity (uS/cm)=	4400	
Temperature (degC)=	2.6	
n/a=not applicable		

Monitoring Well Observations (MW-02)

	Develop	ment of Monitoring Wells (2007)
Site Name:	CAM-M	
Date of Sampling Event:	18-Aug-07	Time: 11:00
Names of Samplers:	Ken Boldt	
Landfill Name:	Main Landfill	South
Monitoring Well ID:	MW-2	
Sample Number:	CM-MW-2	
Condition of Well:	Good	
Measured Data		
Well height above ground (cm)=	38	
Diameter of well (cm)=	5	
Depth of installation (cm)=	350	From ground surface
Length screened section (cm)=	200	
Depth to top of screen (cm)=	50	From ground surface
Depth to water surface (cm)=	77	Method: Interface meter
Static water level (cm)=	39	From ground surface
Depth to bottom (cm)=	145.5	Evidence of sludge or siltation: no
Depth of water (cm)=	68.5	
Well volume of water (mL)=	1344.99	
Free product thickness (mm)=	N/A	Method: Interface meter
Purging: (Y/N)	Y	Procedure/Equipment: Peristaltic Pump, LDPE Tubing
Volume Purged Water (L)=	1.5	The state of the s
Decontamination required: (Y/N)	Y	Notes:
Number washes:	1	
Number rinses:	1	
pH=	7.18	
Conductivity (uS/cm)=	3620	
Temperature (degC)=	2.7	
n/a=not applicable	•	·

Monitoring Well Observations (MW-03)

	Develop	ment of Monitoring Wells (2007)
Site Name:	CAM-M	
Date of Sampling Event:	18-Aug-07	Time: 13:45
Names of Samplers:	Ken Boldt	
101127		
Landfill Name:	Main Landfill	South
Monitoring Well ID:	MW-3	
Sample Number:	CM-MW-3	
Condition of Well:	Good, benton	ite and water over j-plug
Measured Data	1	
Well height above ground (cm)=	18	
Diameter of well (cm)=	5	
Depth of installation (cm)=	350	From ground surface
Length screened section (cm)=	200	
Depth to top of screen (cm)=	50	From ground surface
Depth to water surface (cm)=	131	Method: Interface meter
Static water level (cm)=	113	From ground surface
Depth to bottom (cm)=	169	Evidence of sludge or siltation: no
Depth of water (cm)=	38	
Well volume of water (mL)=	746.13	
Free product thickness (mm)=	N/A	Method: Interface meter
Purging: (Y/N)	Y	Procedure/Equipment: Peristaltic Pump, LDPE Tubing
Volume Purged Water (L)=	1.5	
Decontamination required: (Y/N)	Y	Notes:
Number washes:	1	standing water inside casing removed prior to opening j-plug.
Number rinses:	1	
	T	
pH=	7.13	
Conductivity (uS/cm)=	5700	
Temperature (degC)=	2	
n/a=not applicable		

Monitoring Well Observations (MW-09)

	Develop	ment of Monitoring Wells (2007)
Site Name:	CAM-M	
Date of Sampling Event:	18-Aug-07	Time: 14:30
Names of Samplers:	Ken Boldt	
Landfill Name:	Main Landfill	South
Monitoring Well ID:	MW-9	
Sample Number:	CM-MW-9	
Condition of Well:	Good, bentoni	ite over TOP
Measured Data		
Well height above ground (cm)=	13	
Diameter of well (cm)=	5	
Depth of installation (cm)=	350	From ground surface
Length screened section (cm)=	200	
Depth to top of screen (cm)=	50	From ground surface
D	(2)	Made de Textosforo motor
Depth to water surface (cm)=	63	Method: Interface meter
Static water level (cm)=	50	From ground surface
Depth to bottom (cm)=	120.3	Evidence of sludge or siltation: no
Depth of water (cm)=	57.3	
Well volume of water (mL)=	1125.08	
Free product thickness (mm)=	N/A	Method: Interface meter
` '		
Purging: (Y/N)	Y	Procedure/Equipment: Peristaltic Pump, LDPE Tubing
Volume Purged Water (L)=	2	
Decontamination required: (Y/N)	Y	Notes:
Number washes:	1	
Number rinses:	1	
pH=	7.13	
Conductivity (uS/cm)=	3370	
Temperature (degC)=	2.3	
n/a-not applicable	2.3	

Monitoring Well Observations (MW-14)

	Developr	ment of Monitoring Wells (2007)
Site Name:	CAM-M	
Date of Sampling Event:	18-Aug-07	Time: 9:50
Names of Samplers:	Ken Boldt	
Landfill Name:	Main Landfill	South
Monitoring Well ID:	MW-14	
Sample Number:	CM-MW-14	
Condition of Well:	Good	
Measured Data		
Well height above ground (cm)=	28	
9 ,		
Diameter of well (cm)=	5 350	Enome amound grafe as
Depth of installation (cm)=		From ground surface
Length screened section (cm)=	200	
Depth to top of screen (cm)=	50	From ground surface
Depth to water surface (cm)=	57.5	Method: Interface meter
Static water level (cm)=	29.5	From ground surface
Depth to bottom (cm)=	199.5	Evidence of sludge or siltation: no
	1.40	
Depth of water (cm)=	142	
Well volume of water (mL)=	2788.16	
Free product thickness (mm)=	N/A	Method: Interface meter
Purging: (Y/N)	Y	Procedure/Equipment: Peristaltic Pump, LDPE Tubing
Volume Purged Water (L)=	3	
Decontamination required: (Y/N)	Y	Notes:
Number washes:	1	
Number rinses:	1	
**	604	
pH=	6.84	
Conductivity (uS/cm)=	4940	
Temperature (degC)=	3	

Appendix B5

Thermistor Data Tables 2007, 2006 & Maintenance Records

Contarctor Name:	Gartner Lee L	imited		Inspection Date	e: 16-Aug-07	7	
Prepared By:	Ken Boldt						
Thermistor Information	n .						
Site Name:	CAM-M	Thermisto	or Location	Main Lan	dfill - South		
Thermistor Number:		Inclination		Vertical			
nstall Date:	9-Aug-00)5 Last Date		16-Aug-0
Coordinates and Elev		N 10111		E 1038		Elev	16.
ength of Cable (m) Datalogger Serial #	6.1 4 - 807026	Cable Lead Abo	ove Ground (m)	3.7 Nodal Poi	nts ial Number	7	TS-7NCV#
Code CAM-MVT4	4 - 00/020			Cable Sei	iai ivuilibei		13-7NCV#
Thermistor Inspecti	<u>on</u>	Good		Needs Mainten	ance		
Casing		<u> </u>	_				
		_					
Cover		✓		_			
Data Logg	er	✓					
Cable		✓					
Beads		✓					
Battery Ins	tallation Date	28-Aug-0	7				
Battery Lev	vole	Main	11.34 V		Aux	12.41 V	
Manual Ground Ten Bead	ohms	ings Temp. (ºC)]	Bead	ohms	Ten	np. (°C)
1	12070	6.0					
2	12130	6.0					
3	12660	5.0	-				
	10100						
4	13400	3.8	-				
<u>4</u> 5	13400	2.8					
_							
5	14200	2.8					
5 6	14200 15190	2.8 1.4					
5 6 7	14200 15190 16260	2.8 1.4 0.1					
5 6	14200 15190 16260	2.8 1.4 0.1					
5 6 7	14200 15190 16260	2.8 1.4 0.1					
5 6 7	14200 15190 16260	2.8 1.4 0.1					
5 6 7	14200 15190 16260	2.8 1.4 0.1					
5 6 7	14200 15190 16260	2.8 1.4 0.1					
5 6 7	14200 15190 16260	2.8 1.4 0.1					
5 6 7	14200 15190 16260	2.8 1.4 0.1					

ontarctor Name	: Gar	e: Gartner Lee Limited			Inspection Dat	Inspection Date: 16-Aug-07		
repared By:	Ken	Boldt						
hermistor Inform	nation							
ite Name:	CAN	M-M	Thermis	tor Location	Main Lan	dfill - South	1	
hermistor Numb	er: VT5		Inclination		Vertical			
nstall Date:		9-Aug-00				05 Last Date		16-Aug
coordinates and			N 1005		E 104		Elev	1
ength of Cable (6.1 307034	Cable Lead At	pove Ground (m)	3.8 Nodal Poi	ints rial Number	7	TS-7NC
atalogger Seria		007034			Cable Se	nai Number		13-7110
hermistor Insp	<u>ection</u>		Good		Needs Mainter	nance		
Casing	1		<u> </u>					
Cover	,		<u>v</u>					
Data L	ogger		▽					
Cable	oggei		▽					
			_					
Beads			✓					
Ratton								
	/ Installati	ion Date	28-Aug-	07				
Battery	/ Levels		Main	07 11.34 V		Aux	12.65 V	,
Battery Ianual Ground Bea	Levels Tempera	ature Read ohms	Main ings Temp. (°C)		Bead	Aux ohms		emp. (°C)
Battery Ianual Ground Bea	Levels Tempera	ature Read ohms 12150	Main ings Temp. (°C) 5.8		Bead			
Battery Ianual Ground Bea	Levels Tempera	ohms 12150 12240	Main ings Temp. (°C) 5.8 5.7		Bead			
Battery Ianual Ground Bea	Levels Tempera	ature Read ohms 12150	Main ings Temp. (°C) 5.8		Bead			
Battery Bea 1 2 3	Levels Tempera	ohms 12150 12240 12720	Main ings Temp. (°C) 5.8 5.7 5.0		Bead			
Battery Ianual Ground Bea 1 2 3 4	Levels Tempera	ohms 12150 12240 12720 13470	Main ings Temp. (°C) 5.8 5.7 5.0 3.8		Bead			
Battery Ianual Ground Bea 1 2 3 4 5	Levels Tempera	ohms 12150 12240 12720 13470 14280	Main ings Temp. (°C) 5.8 5.7 5.0 3.8 2.6		Bead			
Battery Ianual Ground Bea 1 2 3 4 5 6	Levels Tempera	ohms 12150 12240 12720 13470 14280	Main ings Temp. (°C) 5.8 5.7 5.0 3.8 2.6 1.5		Bead			
Battery Ianual Ground Bea 1 2 3 4 5 6 7	Levels Tempera id	ohms 12150 12240 12720 13470 14280 15140	Main ings Temp. (°C) 5.8 5.7 5.0 3.8 2.6 1.5 0.5		Bead			
Battery Ianual Ground Bea 1 2 3 4 5 6	Levels Tempera id	ohms 12150 12240 12720 13470 14280 15140	Main ings Temp. (°C) 5.8 5.7 5.0 3.8 2.6 1.5 0.5		Bead			
Battery Ianual Ground Bea 1 2 3 4 5 6 7	Levels Tempera id	ohms 12150 12240 12720 13470 14280 15140	Main ings Temp. (°C) 5.8 5.7 5.0 3.8 2.6 1.5 0.5		Bead			
Battery Ianual Ground Bea 1 2 3 4 5 6 7	Levels Tempera id	ohms 12150 12240 12720 13470 14280 15140	Main ings Temp. (°C) 5.8 5.7 5.0 3.8 2.6 1.5 0.5		Bead			
Battery Ianual Ground Bea 1 2 3 4 5 6 7	Levels Tempera id	ohms 12150 12240 12720 13470 14280 15140	Main ings Temp. (°C) 5.8 5.7 5.0 3.8 2.6 1.5 0.5		Bead			
Battery Ianual Ground Bea 1 2 3 4 5 6 7	Levels Tempera id	ohms 12150 12240 12720 13470 14280 15140	Main ings Temp. (°C) 5.8 5.7 5.0 3.8 2.6 1.5 0.5		Bead			
Battery Ianual Ground Bea 1 2 3 4 5 6 7	Levels Tempera id	ohms 12150 12240 12720 13470 14280 15140	Main ings Temp. (°C) 5.8 5.7 5.0 3.8 2.6 1.5 0.5		Bead			
Battery Ianual Ground Bea 1 2 3 4 5 6 7	Levels Tempera id	ohms 12150 12240 12720 13470 14280 15140	Main ings Temp. (°C) 5.8 5.7 5.0 3.8 2.6 1.5 0.5		Bead			

Contarctor Name:	Gartner Lee Limited	Inspection Date: 16-Aug-07
Prepared By:	Ken Boldt	

Thermistor Information

Site Name:	CAM-M	Thermistor Location		Main Landfill - South	1	
Thermistor Number:	ITS1	Inclination		Inclined		
Install Date:	12-Jul-00	First Date Event		18-Aug-05 Last Date	Event	16-Aug-07
Coordinates and Elev	ation	N 10111	Е	10448	Elev	Varies
Length of Cable (m)	22.5	Cable Lead Above Ground (m)	Vari	Nodal Points	14	ļ
Datalogger Serial #	33 - 807033			Cable Serial Number	TS	5-7NCIAandB#1

Code CAM-MITS1

Thermistor Inspection

<u> </u>	Good	Needs Maintenance
Casing	~	
Cover	~	=
Data Logger	✓	
Cable	✓	
Beads	✓	
Battery Installation Date	28-Aug-07	
Battery Levels	Main 11.34 V	Aux 12.53 V

Manual Ground Temperature Readings

Bead	ohms	Temp. (°C)
1	10610	8.7
2	12350	5.6
3	15620	0.9
4	16860	-0.6
5	17100	-0.9
6	17550	-1.4
7	18130	-1.9
8	18330	-2.2

Bead	ohms	Temp. (°C)
9	18060	-1.9
10	16390	-0.1
11	15700	0.8
12	15000	1.7
13	14960	1.7
14	14310	2.6

(Jbser	vations	and	Pro	posed	Maintenance	

Contarctor Name:	Gartner Lee Limited	Inspection Date: 16-Aug-07
Prepared By:	Ken Boldt	

Thermistor Information

Site Name:	CAM-M	Thermistor Location		Main Landfill - South	1	
Thermistor Number:	ITS2	Inclination		Inclined		
Install Date:	14-Jul-00	First Date Event		18-Aug-05 Last Date	Event	16-Aug-07
Coordinates and Elev	ation	N 10062	Е	10399	Elev	Varies
Length of Cable (m)	22.5	Cable Lead Above Ground (m)	Vari	Nodal Points	14	ļ
Datalogger Serial #	34 - 807032			Cable Serial Number	TS	5-7NCIAandB#2

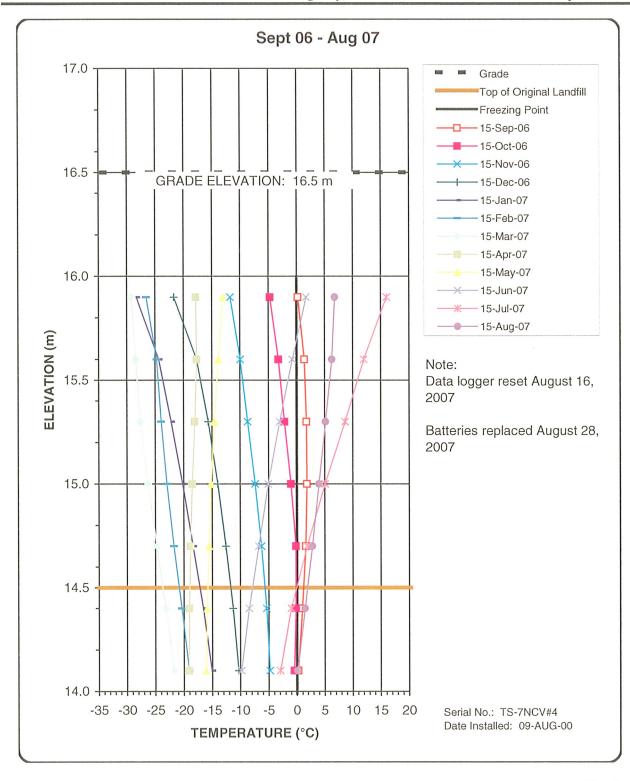
Code CAM-MITS2

Thermistor Inspection

	Good	Needs Maintenance
Casing	~	
Cover	⋉	
Data Logger	✓	
Cable	✓	
Beads	~	
Battery Installation Date	28-Aug-07	
Battery Levels	Main 11.34 V	Aux 12.53 V

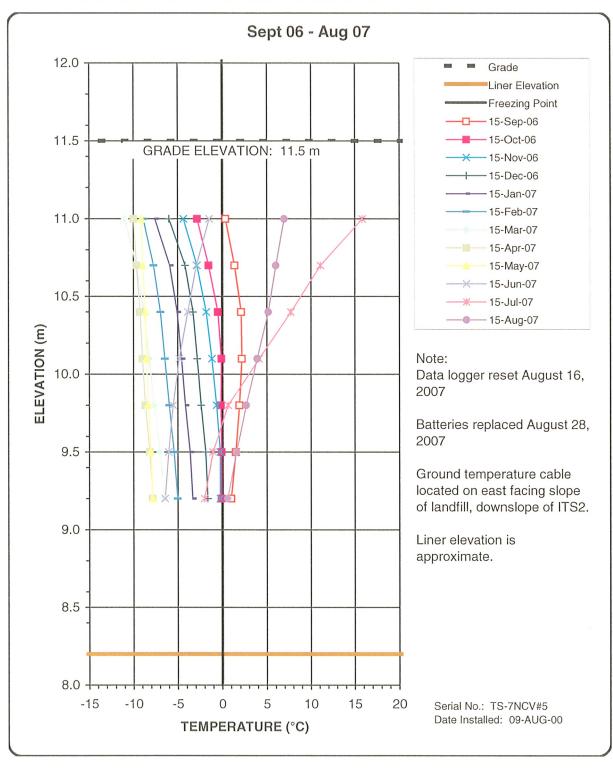
Manual Ground Temperature Readings

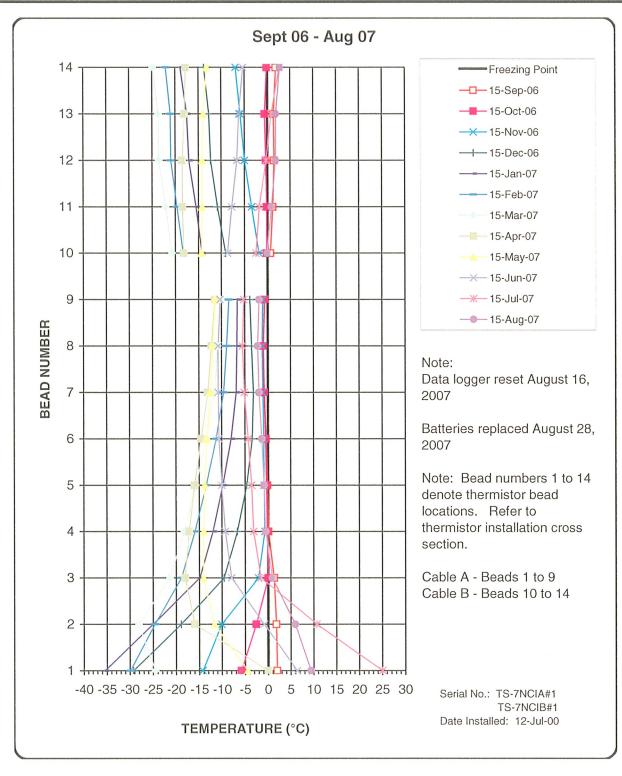
Bead	ohms	Temp. (°C)
1	9820	10.3
2	11170	7.6
3	14270	2.7
4	16500	-0.2
5	17020	-0.8
6	17480	-1.3
7	17930	-1.8
8	18080	-1.9


Bead	ohms	Temp. (°C)
9	17600	-1.4
10	15620	0.9
11	15240	1.4
12	14500	2.3
13	14020	3.0
14	14330	2.6

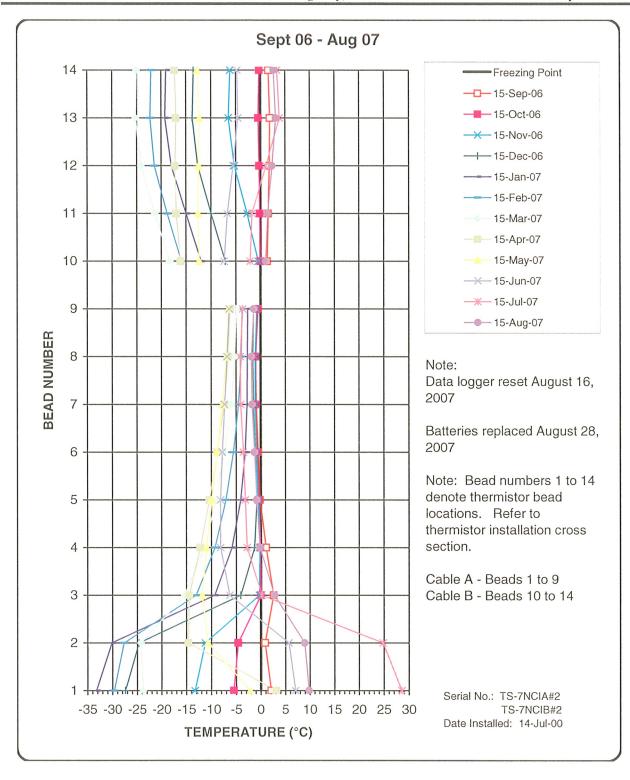
Observations	and	Proposed	Maintenance

Appendix B6


Thermistor Graphs 2007

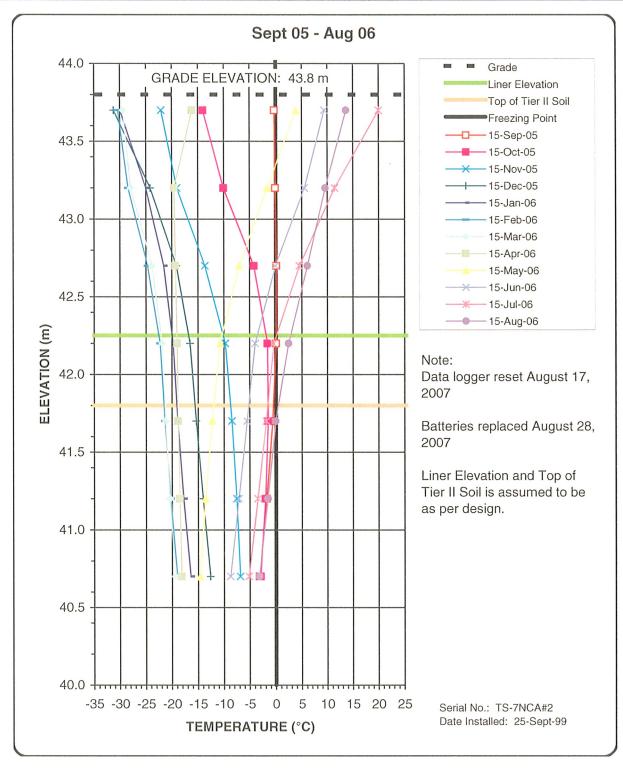


Graph 11 Ground Temperature Profile Main Landfill - North Vertical GTC VT-4



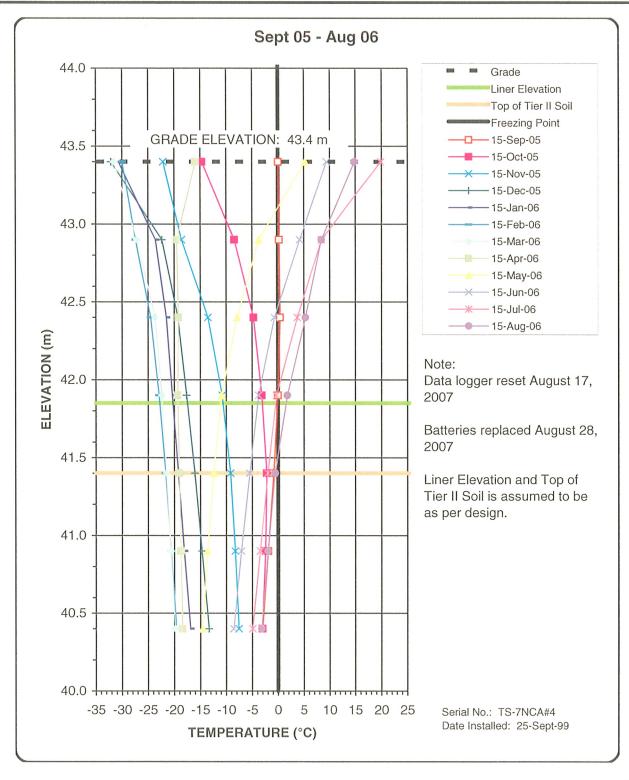
Graph 12 Ground Temperature Profile Main Landfill - North Vertical GTC VT-5

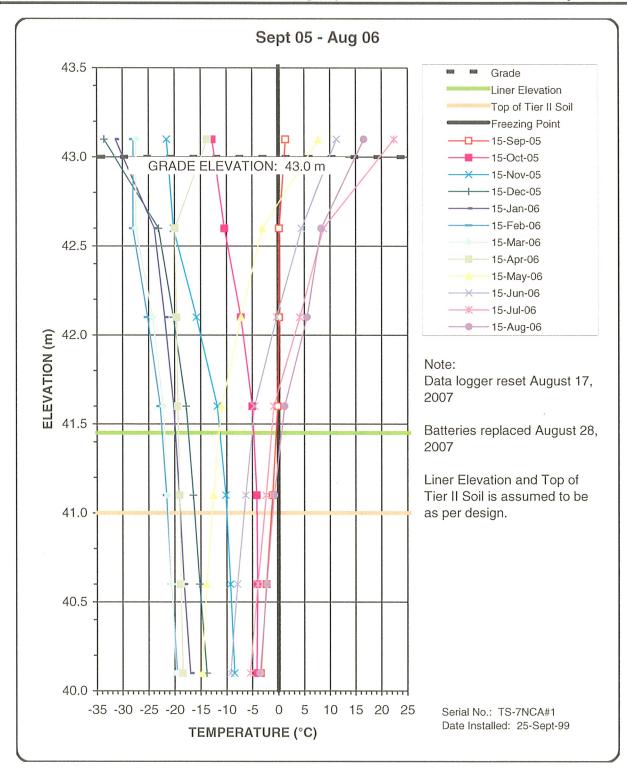
Graph 13 Ground Temperature Profile Main Landfill - South Inclined GTC ITS1



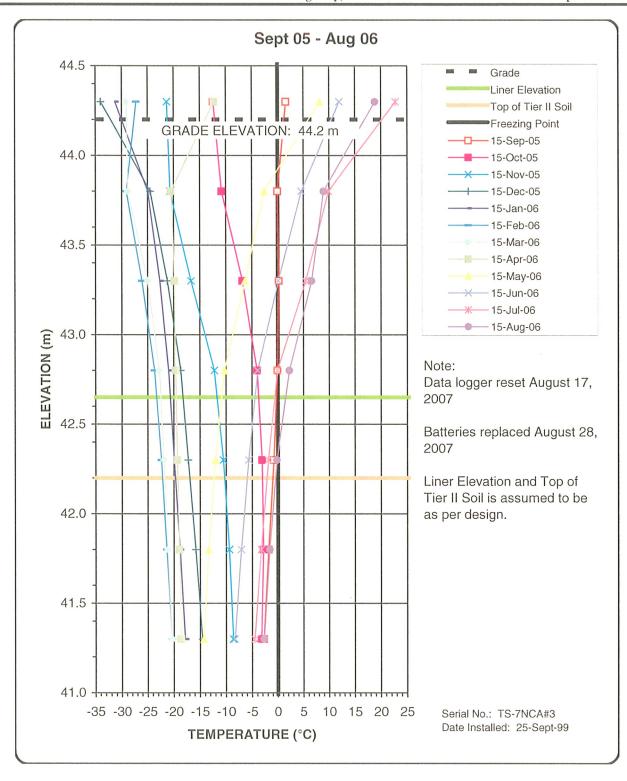
Graph 14 Ground Temperature Profile Main Landfill - South Inclined GTC ITS2

Appendix B7


Thermistor Graphs 2006



Graph 23 Ground Temperature Profile Tier II Soil Disposal Facility Vertical GTC TA-1



Graph 24 Ground Temperature Profile Tier II Soil Disposal Facility Vertical GTC TA-2

Graph 25 Ground Temperature Profile Tier II Soil Disposal Facility Vertical GTC TA-3

Graph 26 Ground Temperature Profile Tier II Soil Disposal Facility Vertical GTC TA-4

Appendix B8

Field Notes

Main Land (11 North VTI Thermister (Vertical) Condition is good, the grounding cable had come loose. I recome ted it. VT2 Thermister (Vertical) Condition is good Picture 013 of VTZ ITN2 Thornistor (Inclined) Ploture 014 of ITNZ VT3 Thermistor (Vertical) Condition is good Protuse 015 of VT3 ITN1 Thermistor (Indined) Picture 016 of ITNI

Aug 17,07 CM-11 So:1 Sample CM-11-1 @ 0-10 cm CM-11-2 @ 40-50 cm UTM W 6493205 13 7666758 Picture 044 of test pit CM-10-1 @ 0-10cm CM-10-2@ 40-50cm UTM W 0493629 13 7666642 Picture 045 of test pit Saturday Aug 18th, 2007 Samplers: Durrin Johnson Ken Boldt Joe Sr (BearMonitos) Wenther: Cold, 5-7°C, Windy, overcust Main Lond F. 11 South MW-1 Condition good, no j-plug, coising missing bolts, bentonte welled up

17

Sample collected 4x 1000ml onber glass 1x 250 nl plastie 1x 250 ml onber glass (M-MW-1 CM-MW-16 Duplicate (4x 500 ml mber glass ALS 3 2x VOC viels Duplicated 1 x 250 mL plastic Picture out of well MW-1 Soil somple CM-MW-1-1 @ 0-10cm CM-MW-1-2 @ 40-50cm Picture 047 of test pit MW-14 Well in good condition Picture 048 of well MW-14 Sangle collected, great production 4 x 1000 ml anter glass 1 × 250 mL playte 1 x 250 ml oncer glass

47	
18	
Aug 18/07	
	MW-14 Suil single
	GAA WAS 1 W. 4
EM	CM-MW-14-1 @ 0-10cm
	CM-MW-14-2 @ 40-50cm
	CM-17-1 deplicate @ 0-10
	CM-17-2 duplicate @ 40-50
	Picture ogo of test p.t
	TICTORE SECTION TEST PARTY
	A
	(W-Z
	Well in good condition
	Picture 050 of MW-Z
	Suple collected
H	ZX 1000 ml onber glass
	1× 250 mL phistic
	1×250ml arberglass
	Soil suple
	CM-MW-Z-1 @ 0-10 cm
	CM-MW-2-2 @ 40-50 cm
	Picture our of test pit
	1721018 0 11 0 1 1831 1901
- OM NA	
2.00PM MV	13
	Well in good condition, butonite and
8 th	water over j-plug
83	
	Picture osz of well

	Mu	13	Sı	mp	e	col	lect	ecl		,				
	1	1					1	les						
						oleis								
	: . 1	12	50	ml		enk	er	ylu	55					
													•	
•	Se	1	ju	div	4									
		CA	1-1	10	-3	-1	0	0	-16	Sen				
		CM	- }	1W	-3	-2	@	40	~-Ç	Oer	10 av			
		L	1	1	1		I	te	1	1	: :			
^	1W	- 0												
	Si	~ 3	لو	col	lec	ted	L							
								le	C3V	er	1-1	Slug		
								جاد						
			1	1	1		1	gl	1	\$				
			1	1	1	pl		. v			ļ			
	Pic	for	و	050	1	st.	wel	1						
		,					<u> </u>				ļ			
	Soil	5	mp	lin	4									
	C	M	M	W-	9-	1	@	@ -	10	س				
	5l C	M	-M	W-	9-	7_	0	40-	50	c~				
	P	cti	re	OS	5 6	t.	es	b	+					
	1							ļ. <u> </u>						
											-			
					•				*					

Site Name:	CAM-M		
Date of Sampling Event:		Time:	8:50 AM
Names of Samplers:	18-Aug-07 Ken Boldt		5 · 50 /4/ ·
1	I VEN DOINI		
Landfill Name:	Main Landfill - S	outh	
Monitoring Well ID:	MW-1		
Sample Number:	l .	CA4-A411 // (D x41 /-)	
Condition of Well:	C-1-1-1-1-1	CM-MW-16 (Duplicate) welled up, no J-pluy, missin	1 1/2 /
Solitation of Wolf	10001, bestonite	melled up, no J-pluy, missing	ng boots in cusing
Measured Data			
Well pipe height above ground (cm)=			
Diameter of well (cm)=	75		
Depth of well installation (cm)=			
(from ground surface)	350		
Length screened section (cm)=	200		
Depth to top of screen (cm)=	50		
(from ground surface)	50		
Depth to water surface (cm)=	59.0	Measurement method:	later Mar
(from top of pipe) Static water level (cm)=		(meter, tape, etc)	Interface Meter
(below ground surface)	34		
Measured well refusal depth (cm)=	128 5	Evidence of sludge or siltation:	
(i.e. depth to frozen ground)	130.5		No
Thickness of water column (cm)=	71.5		
Static volume of water in well (mL)=	1404		
Free product thickness (mm)=	2	Measurement method:	i c M
	No	(meter, paste, etc)	Interface Meter
D : 27/55	.,,	D : (6 :: 5	15
Purging: (Y/N)	Y	Purging/Sampling Equipment:	Peristaltic Pump
Volume Purged Water=	26		Peristaltic Pump LDPE tubing
Decontamination required: (Y/N)	Y		, , , , , , , , , , , , , , , , , , ,
Number washes:	1		
Number rinses:	1		
Final pH=	7.31		
Final Conductivity (uS/cm)=	4400		
Final Temperature (degC)=	2,6		

Site Name:	CAM-M		
Date of Sampling Event:		Time:	11:00 AM
Names of Samplers:	16-Aug-07 Ken Boldt		1
	THEN ISOUT		
Landfill Name:	Main Landfill - So	outh	
Monitoring Well ID:	MW-2		
Sample Number:	CM-MW-Z		
Condition of Well:	Grood		
Measured Data			
Well pipe height above ground (cm)=	38		
Diameter of well (cm)=	5		
Depth of well installation (cm)=			
(from ground surface)	350		
Length screened section (cm)=	200		
Depth to top of screen (cm)=	50		
(from ground surface)			
Depth to water surface (cm)=		Measurement method:	
(from top of pipe)	77	(meter, tape, etc)	Interface Meter
Static water level (cm)=	39		
(below ground surface)	31		
Measured well refusal depth (cm)= (i.e. depth to frozen ground)	145.5	Evidence of sludge or siltation:	No
(i.e. departe freezen ground)	<u> </u>		
Thickness of water column (cm)=	68.5		
Static volume of water in well (mL)=	1345		
Free product thickness (mm)=	. /^	Measurement method:	1.
	<u> </u>	(meter, paste, etc)	Interface Meter
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		Interface Meter
Purging: (Y/N)	Υ	Purging/Sampling Equipment:	Michelly Bun
Volume Purged Water=	1,5 L		LOPE tubing
Decontamination required: (Y/N)	Y		J
Number washes:)		
Number rinses:	1		
Final pH=	7.18		
Final Conductivity (uS/cm)=	3620		
Final Temperature (degC)=	3 8 2.7		

Site Name:	CAM-M		
Date of Sampling Event:	18-Aug-07 Time:		1:45 PM
Names of Samplers:	Ker Boldt		
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
Landfill Name:	Main Landfill - Se		
Monitoring Well ID:	MW-3		
Sample Number:	CM-MW-3		
Condition of Well:	Good benton	e and water over i-plu	er er
	- 1000	1)
Measured Data			
Well pipe height above ground (cm)=	18		
Diameter of well (cm)=	5		
Depth of well installation (cm)=	7.0-		
(from ground surface)	350		
Length screened section (cm)=	7లక		
Depth to top of screen (cm)=	50		
(from ground surface)			
D		Measurement method:	<u> </u>
Depth to water surface (cm)= (from top of pipe)	131	(meter, tape, etc)	Interface Meter
Static water level (cm)=		(11001)	,
(below ground surface)	464 113		
Measured well refusal depth (cm)=	169	Evidence of sludge or siltation:	
(i.e. depth to frozen ground)	101		l no
TT: 1 C	20		T
Thickness of water column (cm)=	38		
Static volume of water in well (mL)=	746		
		26	
Free product thickness (mm)=	N/A	Measurement method:	Interface Meter
	1 / 1	(motor, paete, oto)	process value
Purging: (Y/N)	T \	Purging/Sampling Equipment:	Bost Hi Page
Volume Purged Water=	1.5 L		Peristallic Pump LOPE Tubing
Decontamination required: (Y/N)	7		10000
Number washes:	,		
Number rinses:	1		
Final pH=	7,13		
Final Conductivity (uS/cm)=	5700		
Final Temperature (degC)=			
I mai Temperature (dege)—	1 2.0	L	

Site Name:	CAM-M					
Date of Sampling Event:	18-Aug-07	Time:	2:30 PM			
Names of Samplers:	KerBoldt					
	.,		<u></u>			
Landfill Name:	Main Landfill - South					
Monitoring Well ID:	BMW-3 (MW-9)					
Sample Number:	CM-MW-9					
Condition of Well:	Goad, batonite over TOP					
	, , , , , , , , , , , , , , , , , , , ,					
Measured Data						
Well pipe height above ground (cm)=	13					
Diameter of well (cm)=	5					
Depth of well installation (cm)=	2/50					
(from ground surface)	350					
Length screened section (cm)=	200					
Depth to top of screen (cm)= (from ground surface)	50					
(Hom ground surface)						
Depth to water surface (cm)=		Measurement method:	1 .			
(from top of pipe)	63	(meter, tape, etc)	Interface Meter			
Static water level (cm)=						
(below ground surface)	50					
Measured well refusal depth (cm)= (i.e. depth to frozen ground)	120.3	Evidence of sludge or siltation:	no			
(i.e. depth to Hozeli glottid)						
Thickness of water column (cm)=	57.3					
Static volume of water in well (mL)=	1125					
	7,00					
Free product thickness (mm)=		Measurement method:	11. 1			
	N/A	(meter, paste, etc)	Mertan Neter			
Purging: (Y/N)	Υ	Purging/Sampling Equipment:	Peristaltic Pump			
Volume Purged Water=	2 L		LDPE TOBIN			
Decontamination required: (Y/N)	Y		J			
Number washes:	t					
Number rinses:	1					
Final pH=	7.13					
Final Conductivity (uS/cm)=	3370					
Final Temperature (degC)=	2.3					

Site Name:	CAM-M			
Date of Sampling Event:	18-Aug -07 Time:		9:50	
Names of Samplers:	18-Aug-07 Ken Boldt	•		
	1 1 1 1 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3			
Landfill Name:	Main Landfill - South			
Monitoring Well ID:	MW-14			
Sample Number:	CM-MW-14			
Condition of Well:	Good			
	Cocce			
Measured Data				
Well pipe height above ground (cm)=	78		· · · · · · · · · · · · · · · · · · ·	
Diameter of well (cm)=	28 5			
Depth of well installation (cm)=			·	
(from ground surface)	350			
Length screened section (cm)=	200			
Depth to top of screen (cm)=	50			
(from ground surface)				
Depth to water surface (cm)=	57.5	Measurement method:	Interface Maker	
(from top of pipe) Static water level (cm)=		(meter, tape, etc)	INFERRICE I LEI CV	
(below ground surface)	29.5			
Measured well refusal depth (cm)=	100	Evidence of sludge or siltation:	he)	
(i.e. depth to frozen ground)	199.5		/4	
Thickness of water column (cm)=	142			
Static volume of water in well (mL)=	2788			
Free product thickness (mm)=		Measurement method:	Insterface Maker	
		(meter, paste, etc)	That a tacethere	
D (X/)D	1 1/	Duraina /Samalina Equipment	10 ~ 11. D	
Purging: (Y/N)	1	Purging/Sampling Equipment:	resistantle Mup	
Volume Purged Water=	34		Peristaltic Prop	
Decontamination required: (Y/N)	Y		<u> </u>	
Number washes:				
Number rinses:	1			
		Angelow .		
Final pH=	4940			
Final Conductivity (uS/cm)=				
Final Temperature (degC)=	3.0			

Great production

Thermal Monitoring

	Ground Temperature Annual Maintenance Report					
Contractor Name: Gart	Contractor Name: Gartner Lee Limited Inspection Date: 16/08/07					
Prepared By: Ken B	oldt					
Thermistor Information						
Site Name: CA	AM-M	Thermistor			ill - South	
Thermistor Number: V7	Γ -4	Inclination:	18/08/65-VE			08/16/07
Install Date: 09-Aug-00) First	Date Event:	11-Aug-01	Last D	Date Event:	
Coordinates and Elevation			E: 10385		Elev:	16.5
		Lead Above C		3.7	Nodal Poir	
	4-807026		Cable Serial N	Number:	TS-7NC	/#4
Code CAM-MVT4						
Thermistor Inspection						
THOMHOLOT HIODOGOTI	Good		Need	s Mainten	ance	
Casing	Ø					
Cover	Ī					
Data Logger						
Cable					4.4.	
Beads	I		. 🔲			
Battery Installation Date						
Battery Levels	Main Full	11.34 V	Aux	90%	12.41 V	
Manual Ground Bead Ter	mperature Readi	ngs				
Bead Ohms	Temp. (°C)		Bead	Ohm	ns	Temp. (°C)
1 12.07	6.0449		9			
2 [2.13	5,9500		10			
3 17.66	5,0542		11			
4 13,40	3,9687		12			
5 14,20	2.7567		13			
6 15.19	1,4348		14			
7 16.26	6.1177		15			
8			16			
Observations and Propos	sed Maintenance					

Thermal Monitoring

Thermal Monitoring

Contractor Name: Gartner Lee Linited Inspection Date: 16/08/2007

Prepared By: Ken Boldt

Thermistor Information					
Site Name: CA	M-M	Thermistor I	Location: Ma	ain Landfill - So	uth
Thermistor Number: ITS	31	Inclination:	101-021	clined	- 08/16/07
Install Date: 12-Jul-00	ı	First Date Event:	-14-Aûg-01	Last Date Ev	ent: 16-Aug-05
Coordinates and Elevation	n N: 10	111	E: 10448	E	lev:
		the Lead Above C	round (m):	Noda	Points: 14

Length of Cable (m): 22.5 Cable Lead Above Ground (m): Nodal Points: 14

Datalogger Serial #: 33-807033 Cable Serial Number: TS-7NCIAandB#1

Thermister Inspection

mermistor mspection	Good	Needs Maintenance
Casing	\square	
Cover	\square	
Data Logger		
Cable	I	
Beads	2	
Battery Installation Date		
Battery Levels	Main <u>Full 11,34 V</u>	(9Volt But) Aux 90% 12. J3V (12 voit but)

Manual Ground Bead Temperature Readings

Bead	Ohms	Temp. (°C)
1	10.61	6.5069
2	12.35	5,5956
3	15,62	6,9338
4	16,86	-0.5295
5	17,10	-0.8350
6	17.55	-1.3075
7	18.13	-1.9643
8	18,33	-2.1755

Bead	Ohms	Temp. (°C) - i . 4/54
9	18.06	-1.4154
10	16.39	-0.0318
11	15,70	0.8455
12	15.00	1. 7264
13	14.96	1,7741
14	14.3	2.6365
15		
16		

Obconvotione	and Proposed	Maintenance
Observations	and Proposed	Maintenance

Manual Temp using multimeter

Manual Temp using computor connection

Thermal Monitoring

	Ground Temper			- 1	107	
Contractor Name: (<u> Ir</u>	spection Date:	16/08	/ · · ·	
Prepared By: Ke	n Boidt					
Thermistor Informati		TI	1 4	in Landfill	South	
Site Name:	CAM-M	Thermistor		in Landfill -	South	
Thermistor Number:		Inclination:	18/08/05 Inc	Last Date	Event: (16/08/07
		Date Event:	E: 10399	Lasi Dale	Elev:	10-Aug-03
Coordinates and Ele		Land Abaya (N/	odal Points	: 14
Length of Cable (m)		Lead Above (Cable Serial N		TS-7NCIA	
Datalogger Serial #:			Cable Serial N	umber.	13-/NCIA	andb#2
Thermistor Inspection	<u>on</u>					
-	Good		Needs	Maintenand	e	
Casing	Ø					
Cover	(
Data Logger	☑					<u></u>
Cable	\square					
Beads	E					
Battery Installation [Date		1164			
Battery Levels	Main <u>Fuil</u>	11.34V	Aux _	90%	12.534	
Manual Ground Bea	ad Temperature Readir	ngs				(0.7)
Bead Ohms	Temp. (°C)		Bead	Ohms		emp. (°C)
1 4.87	9,7161		9	17.60		1.4483
2 11.17	7,2445		10	15.62		2.4237
3 14.27			11	15.24		1,4072
4 16,50			12	14,50		2,4186
5 17.02			13	14.02		3.6393
6 /7,48	-1.287		14	14.33		2.6140
7 17,93			15			
8 18,08	~1.925	7	16			
Observations and P	<u>Proposed Maintenance</u>					

PHOTO 8 => 13W0414491,7668172 -ARRIVED AT LANDFILL (MAIN WITH KRISTALE & JOE JR. WAYPOINT 051 - SOME TONSION CRACKS BUT NOT RYLATED TO - TOE JRI & RATION NOT AVAILABLE TO WORK (LOST LAR) WASTE OR LANDFILL - PHOTO & A KACING LANDFILL - WEATHER OVERCAST, TEMP = 600 TOWARDI DEW LINE PHOTO 2 => 13WOY9 5734 7667434 STATION - PHOTO 88 FACING AWAY 2 PHOTOS FOR DANORAMIC Frem LANDRILL -NO SIGNS OF EROSION - track WIDTH MAX 7 Welles or settiment AND APPENDED 6-8 MCHET מלצות PHOTO 2 -> 13~0-195889, 2667351 PHOTO 9 => 13 W 0494479, 7668169

DIN UNE STATION

- PHOTOS 9B FAUNG NONTH WAYPUNT 054 - PHOES ZA NW - PHOTO ZB CLOSEUP OF NOWTH SLOPE MEAN PHOTO LOCATION Z WHORE TELF ARMANDER KANDA EXPLINA HAT OCCURRED towards servenions -1400 2 C AND 20 THAW ARMA - LERT WEST CONORIU @5:30180 - TOOK 46 PHOTOS ON AUG-15/07

	(0)			
PHOTO	=) 13,4	40 <i>4</i> 428.	LI 7667	752
1	NAMPS	INT C	75 (2)	[[etat]
-FA	دامد ۽	LOPE	FLUIT]	Q.E.
-N.) 'Y'	1250M 6	r lyst	BENIN
1 5		APR .		<u> </u>
- NO	1 year	PA 6 E	e 70	
1,40101	ž.		1 5 3	36
			1	
	-			. 5%
1	_*	*	, -	-
	3 1/10	Tos Fo	R PANG	RAMI
21.			7.7(7011.
MOTO	5 = 1	5WD493	144,706-	13/4
	ANDAIN,	076		
	l .	1	11/ 2/6	
				ei (
-50M	U M/r	MAT KI	cime i	
13	1617	Mano	MNWb	. F. B. 12. F
TAY	00 JA 1	TAI.	NO ACOM	
- 1-11 87 V	36 1	-MINAP	UNWW ()	
			' '	
	-FA -NO -SO -NO -NO -NO -NO -NO -NO -NO -NO -NO -N	PHOTO 5=) 1. PH	PHOTOS =) PHOTOS ED PHOTOS ED PHOTOS = 13W0495 POR LANDE - 12W0495 POR LANDE - 12P UF LANDE - 12	PROTUS =) 1340495821, 7667 NAMPOINT 055 (20) -FACING SCOPE FROM TO -NO GENSION OR INST -SOME ORAMBE STAINS 1004 -) 1340495797, 766- 140704 -) 1340495797, 766- 140704 -) 1340495797, 766- 140705 FOR PANO - NO EXOSION OR SCEPAGE - NO EXOSION OR SCEPAGE - NO EXOSION OR SCEPAGE - NO TENSION CRACKS OF

PHOTO 6 71320495364 LAMPOINT 85= - LLY MOING ON BRING'N FOOKING EX DOWN SLOPE WHERE FINES HAVE WASHED ONTO BENCH (APPORIX TO BE Mr Armonely6) 68 & &C = FALING NORTH & SOUTH ALING BUNCH -NO SIBMS OF JUDG INTO BLUTH PLAD TO 7 = 13 WOY 95751 7667267 WAYPOLNT' - PHOTO ZA FACINO UPSLOPE WHERE EROSON CHANNOL HAT FORMER JULE ARMONAUD -PHOTO THE FACING SOUTWEST - PHOTO FC FACING NE TO THERAPTURES 4 PICTURES OF GROSGON NEWS PITOTO 7 CLARUN E FIELD BUDK PHOTO 8 -> 1344495735, 7667295 - 4 pHOTES FOR PANDRAMIC - WARROUNT DIG NO SETTLEMENT DR PONDUBLICA

(Rete and the		(B) AND 16/19
		No steel		
\$	PHOTO 9=) 13W 049 5737 7647296)		PHOTO 12 => 15-0495667,7667598
. Market and a state of the sta	WAYARAH DEO	_		Warpoint 063
	- 3 HADOR SE STOLE LOU BELLOUAN	South Control		-4 PHORUS FOR PRINCEPORE
and the superior of the superior of	-NO EROUGH OF JUHIERAHEE			- No servicinguis charks of
	+ NO JEEPAGE OR SETTLE TONE	an _e gam ^a		DEPRISIONS DESCRIPE
				- MINOR POPONI OF WATER
	PHOTO 10 7 13-0495657, 7667274			(IN PLACE ARC)
· · · · · · · · · · · · · · · · · · ·	WOTENINT 26+	-		- SPARSE VOTOTATION/ORASI
	-5 PHOTOU OF SWEET FOR PANYADA	MI (E		
~ 1. 2.5	- MINOR GRONON THAT APPENDE	RLING C	· .	PHOTO 13 => 12W0495665, 7667398
	TO BE JUL JAMOURING	ORP TA		Waypunt 064
	- Fook 3 P) Orun / 15 px (m b/10 m)	COMA.)		- 2 PHOTOS OF NORW SLOPE
	CLOW UP DOWN SLOPE FRAM	NA 9842 .com		-NO ERRISION OR INDICATIONS
	LAST PANDRAMIC PROTO	4-1017		or instablein
	W FIOLD BOOK FULL JEALE	10	i, ,	
	- TOOK I PHOTO COOKING ODLAN	-		PYOTO 14 = 2 VT4 -4 PHOTOS COOKING WUST (MA)
	TO EROPE FIND BELOW			- 4 PHOTOS COOKING WESTIMA
	ITS2 A V+5 \$ FICTO BLOK		4 · · · · · · · · · · · · · · · · · · ·	NORTH (14B) EAST/14C),
	FOR SCALE!			SON THO (14D)
			\	- 274 FIR SCALE
	PHOTO 11=> 13~ 475586,7667344	()	 	10.0644 5.85 5.5
	6 WAYPOINT 062	_	-	- WALLED LANDFILL FORFACE
	- 1 PHOTOS FUR PANORAMIC			No CRACKS OF DUROSTIONS
	No unistant or statement asserved	No. 3	} i	-5-164 TO NONLATIONS
1		12		- 2011 94 6 MANCALL

Landfill Monitoring Report – South Shore Landfill

C-1: South Shore Landfill

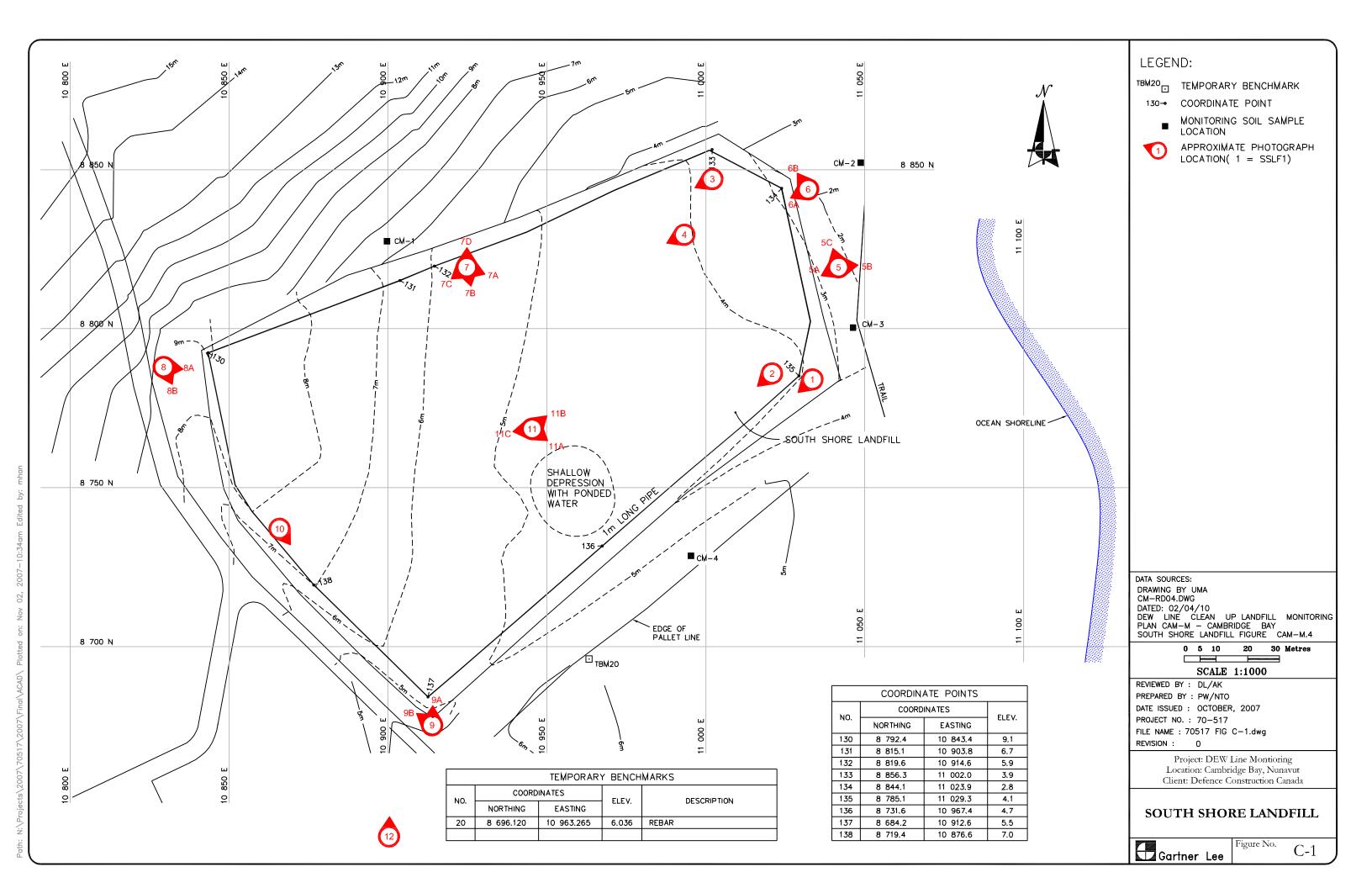
C-1.1 Landfill Summary
 C-1.2 Visual Monitoring
 C-1.3 Soil Sampling

Landfill Monitoring Report - South Shore Landfill

The Collection of Landfill Monitoring Data at the CAM-M Cambridge Bay Site - 2007 Report APPENDIX C South Shore Landfill

C.1 South Shore Landfill

C.1.1 Landfill Summary


The south shore landfill is located approximately 2 km east of the main facilities near the POL Beach Staging area. The south shore landfill has an area of approximately 20,000 m² with an estimated depth of 1.5 m. The location of the landfill is shown on Figure C-1. It was originally classified as a moderate potential environmental risk, however prior to the 2001 sampling event, the landfill was re-assessed and it was re-classified and is now a low potential environmental risk.

For 2007, the monitoring requirements for the South Shore Landfill include visual inspection, and soil sampling.

C.1.2 Visual Monitoring

No significant erosion, settlement or indications of slope instability were observed at the South Shore Landfill (SSLF) during the 2007 inspection. The landfill cover appears to be stable with little to no change in condition from previous inspections. Overall landfill performance is assessed as "acceptable". Appendix C1 presents a summary of the 2007 visual inspection results.

Shallow depressions with ponded water were observed on southcentral surface of the landfill cover (Photo SSLF-11A in Appendix C2). Minor seepage and orange staining were observed at the northeast toe near Photo Location 6 on Figure C-1 (Photos SSLF-5C and 6B). Previously observed exposed crushed metal drums and wire at the northeast toe are still present with no apparent change from previous inspection photographs.

The Collection of Landfill Monitoring Data at the CAM-M Cambridge Bay Site - 2007 Report APPENDIX C South Shore Landfill

C.1.3 Soil Sampling

Soil samples were collected at the designated locations of CM-1, CM-2, CM-3 and CM-4. The sampling locations are shown on Figure C-1. At each location, two samples were collected at approximately 0.10 m below ground and between 0.40-0.50 m below ground. A photograph of each test pit for each location sampled is shown in Appendix C3. The analytical results and sample depths are tabulated in Table C-1 and the laboratory reports are provided in Appendix G.

No staining or free product was observed during the sampling event. There were no odours documented during the sampling event at the South Shore Landfill.

Low concentrations of Total Petroleum Hydrocarbons (TPH) (43mg/kg and 57mg/kg) were detected in both the shallow and deep samples respectively from soil sample location CM-4. The samples were re-analyzed to characterize the TPH CCME fractions F1-F3. All fractions were returned as non-detectable levels. Also, low concentrations of PCBs (0.04mg/kg) were detected in the shallow sample from soil sample location CM-4. The concentrations noted are low however they should be evaluated in the context of the Landfill Monitoring Plan

Table C-1. CAM-M Cambridge Bay, Summary of 2007 Soil Analysis - South Shore Landfill

	Sample Location		Donth	Aroonio	Codmium	Chromium	Cobalt	Copper	Lead	Mercury	Nickel	Zinc	Petro	oleum Hy	drocarbon	s	PCB Total	
Sample Ident.		Sample Location		Depth	Arsenic	Caumum	Cilionilum	Cobait	Copper	Leau	wercury	Nickei	ZIIIC	TPH (C6-34)	C6-C10	C10-C16	C16-C34	Aroclors
	Location Id.	Northing	Easting	(m)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
Upgradient Samples																		1
CM-1-1	CM-1	7666051	496240	0.1	1.9	< 0.2	12	5	10	5.4	< 0.01	11	14	< 20				< 0.03
CM-1-2	CM-1	7666051	496240	0.5	1.9	< 0.2	9	4	8	5.5	< 0.01	8	8	< 20				< 0.03
Downgradient Samp	les																	
CM-2-1	CM-2	7666068	496388	0.1	2.4	< 0.2	10	4	11	6.5	< 0.01	10	11	< 20				< 0.03
CM-2-2	CM-2	7666068	496388	0.5	2.4	< 0.2	10	5	10	5.9	< 0.01	11	15	< 20				< 0.03
CM-3-1	CM-3	7666018	496388	0.1	2.3	< 0.2	10	5	17	6.5	< 0.01	11	12	< 20				< 0.03
CM-3-2	CM-3	7666018	496388	0.5	1.9	< 0.2	9	5	11	7.3	< 0.01	11	9	< 20				< 0.03
CM-4-1	CM-4	7665969	496330	0.1	2.1	< 0.2	9	7	22	8.5	0.01	12	13	43	< 5	< 80	< 250	0.04
CM-4-2	CM-4	7665969	496330	0.5	1.7	< 0.2	7	5	8	6.7	< 0.01	9	10	57	< 5	< 80	< 250	< 0.03

^{*} Denotes duplicate sample. (Further information located in Table 1 of main report)

Appendix C Attachments

- C1 Site Condition/Visual Inspection Records
- **C2** Geotechnical Inspection Photographic Records
- C3 Monitoring Photographic Record
- C4 Field Notes

Site Condition/Visual Inspection Records

DEW LINE CLEANUP: POST-CONSTRUCTION - LANDFILL MONITORING VISUAL INSPECTION REPORT – SOUTH SHORE LANDFILL – PAGE 1 OF 2

SITE NAME:	Cambridge Bay CAM-M
LANDFILL DESIGNATION:	South Shore Landfill
DATE OF INSPECTION:	August 2007
DATE OF PREVIOUS INSPECTION:	August 2005
INSPECTED BY:	Darrin Johnson, P.Eng.
REPORT PREPARED BY:	Darrin Johnson, P.Eng.

VISUAL INSPECTION REPORT – SOUTH SHORE LANDFILL – PAGE 2 OF 2

Checklist Item	Present Yes/No	Location (Describe relative to landfill features)	Length	Width	Depth	Extent relative to Area of Landfill (%)	Description	Photographic Records (Photo number referenced in photo log and on figures)	Additional Comments/ Preliminary Stability Assessment
Settlement	Minor	Southcentral south of photo location 11	30 m	20 m	0.05 m	600m2/ 20,000m2 = 3%	Shallow depression with ponded water	SSLF 11A	Acceptable
Erosion	No								
Frost Action	No								
Animal Burrows	No								
Vegetation	Sparse						Clusters of grass	SSLF 3, 8A	
Staining	Yes	Northeast toe near photo location 6	20 m	20 m	N/A	400/20,000 m2=2%	Some orange staining at seepage area	SSLF 6B, 5C	Acceptable
Vegetation Stress	No								
Seepage Points	Yes	Northeast toe near photo location 6	20 m	20 m	N/A	400/20,000 m2=2%	Ponded water and staining	SSLF 6B, 5C	Acceptable
Debris Exposed	Yes	Northeast toe near photo location 5	2 m	2 m	N/A	4/20,000 m2 = <1%	Previously observed metal drum and wire	No change from previous inspection photographs	Acceptable
Presence/Condition - Monitoring Instr.	N/A								
Features of Note	None								
General							General	SSLF 1,2,4,5A,5B,6A,7A- 7D,8B,9A,9B,10, 11B,11C,12	

PRELIMINARY STABILITY ASSESSMENT - SOUTH SHORE LANDFILL

Feature	Severity Rating	Extent	
Settlement	Acceptable	Isolated	
Erosion	Not Observed	None	
Frost Action	Not Observed	None	
Staining	Acceptable	Isolated	
Vegetation Stress	Not Observed	None	
Seepage/Ponded Water	Acceptable	Occasional	
Debris Exposed	Acceptable	Isolated	
Tension Cracks	Not Observed	None	
Overall Landfill Performance	Acceptable		

Geotechnical Inspection Photographic Records

Photo SSLF-1, Easting: 496382, Northing: 7666011, Direction: 225° South Shore Landfill; southeast corner Scale: photo placard dimensions are 29.4 cm wide by 27.5 cm in height

Photo SSLF-2, Easting: 496366, Northing: 7666015, Direction: 225° South Shore Landfill; minor depressions in landfill surface Scale: photo placard dimensions are 29.4 cm wide by 27.5 cm in height

Photo SSLF-3, Easting: 496339, Northing: 7666075, Direction: 240° South Shore Landfill; northeast corner, some sparse vegetation Scale: photo placard dimensions are 29.4 cm wide by 27.5 cm in height

Photo SSLF-4, Easting: 496341, Northing: 7666056, Direction: 240° South Shore Landfill; view near golf tee of shallow depression with ponded water Scale: photo placard dimensions are 29.4 cm wide by 27.5 cm in height

Photo SSLF-5A, Easting: 496386, Northing: 7666035, Direction: 240° South Shore Landfill; east central slope

Photo SSLF-5B, Easting: 496386, Northing: 7666035, Direction: 70° South Shore Landfill; east central slope Scale: photo placard dimensions are 29.4 cm wide by 27.5 cm in height

Photo SSLF-5C, Easting: 496386, Northing: 7666035, Direction: 340° South Shore Landfill; east central slope facing ponded water and seepage Scale: photo placard dimensions are 29.4 cm wide by 27.5 cm in height

Photo SSLF-6A, Easting: 496383, Northing: 7666067, Direction: 240° South Shore Landfill; northeast corner Scale: photo placard dimensions are 29.4 cm wide by 27.5 cm in height

Photo SSLF-6B, Easting: 496383, Northing: 7666067, Direction: 340° South Shore Landfill; northeast corner Scale: photo placard dimensions are 29.4 cm wide by 27.5 cm in height

Photo SSLF-7A, Easting: 496305, Northing: 7666064, Direction: 110° South Shore Landfill; facing east toe Scale: photo placard dimensions are 29.4 cm wide by 27.5 cm in height

Photo SSLF-7B, Easting: 496305, Northing: 7666064, Direction: 160° South Shore Landfill; facing south across landfill Scale: photo placard dimensions are 29.4 cm wide by 27.5 cm in height



Photo SSLF-7C, Easting: 496305, Northing: 7666064, Direction: 225° South Shore Landfill; facing southwest Scale: photo placard dimensions are 29.4 cm wide by 27.5 cm in height

Photo SSLF-7D, Easting: 496305, Northing: 7666064; Direction: 340° South Shore Landfill; facing north up slope Scale: photo placard dimensions are 29.4 cm wide by 27.5 cm in height

Photo SSLF-8A, Easting: 496192, Northing: 7666003, Direction: 110° South Shore Landfill; facing east over landfill surface Scale: photo placard dimensions are 29.4 cm wide by 27.5 cm in height

Photo SSLF-8B, Easting: 496192, Northing: 7666003, Direction: 160° South Shore Landfill; facing south along crest and ditch Scale: photo placard dimensions are 29.4 cm wide by 27.5 cm in height

Photo SSLF-9A, Easting: 496238, Northing: 7669927, Direction: 20° South Shore Landfill; facing north over landfill surface Scale: photo placard dimensions are 29.4 cm wide by 27.5 cm in height

Photo SSLF-9B, Easting: 496238, Northing: 7665927 South Shore Landfill; facing northwest along crest Scale: photo placard dimensions are 29.4 cm wide by 27.5 cm in height

Photo SSLF-10, Easting: 496204, Northing: 7665961, Direction 160° South Shore Landfill; facing south along crest Scale: photo placard dimensions are 29.4 cm wide by 27.5 cm in height

Photo SSLF-11A, Easting: 496274, Northing: 7665993, Direction: 160° South Shore Landfill; facing south to ponded water depressions Scale: photo placard dimensions are 29.4 cm wide by 27.5 cm in height

Photo SSLF-11B, Easting: 496274, Northing: 7665993, Direction: 70° South Shore Landfill; facing east Scale: photo placard dimensions are 29.4 cm wide by 27.5 cm in height

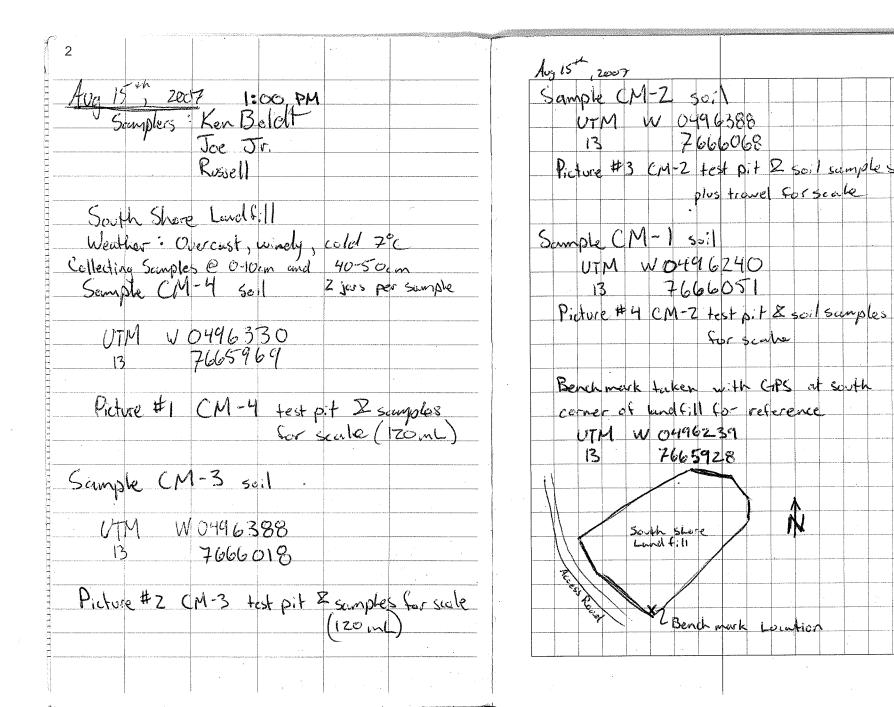
Photo SSLF-11C, Easting: 496274, Northing: 7665993, Direction: 250° South Shore Landfill; facing west towards well vegetated area Scale: photo placard dimensions are 29.4 cm wide by 27.5 cm in height

Photo SSLF-12, Easting: 496292, Northing: 7665877, Direction: 0° South Shore Landfill; southwest corner of landfill facing ditch with ponded water Scale: photo placard dimensions are 29.4 cm wide by 27.5 cm in height

Monitoring Photographic Records

Test pit CM-1 (Upgradient). Samples CM-1-1 and CM-1-2 collected. Samples with identification numbers ending in "1" (ex. CM-1-1) collected at 0-10cm and samples with identification numbers ending in "2" collected at 40-50cm.

Test pit CM-2. Samples CM-2-1 and CM-2-2 collected. Water table reached at 20cm.



Test pit CM-3. Samples CM-3-1 and CM-3-2 collected.

Test pit CM-4. Samples CM-4-1 and CM-4-2 collected.

Field Notes

Soil Sampling Record

	Previous Coordinates		2007 Coordinates אדני		Surface Sample	Depth Sample	Photograph
Monitoring Locations	North (m)	East (m)	North (m)		0 - 10 cm	40 - 50 cm	"
South Shore Landfill				· · · · · · · · · · · · · · · · · · ·		1	1
CM-1 (soil)	8820	10900	7666051	0496240			#4
CM-2 (soil)	8850		7666068	0496 388	1/	· /	3
CM-3 (soil)	8800		766018	0496388	<i>V</i>	/	2
CM-4 (soil)	8730		7665969	0496330	v	V	/

Comments: U.TM Area 13

Benchmark @ Southcorner N7665928 E0496239

(9)
70~517
CAM-M INSPECTION ALG. 15/07
D c 2
- DEEDNIZED YEUMMUNT AND SUPPLIT
ON Avo. 15/67 FRom 7-8,00Am
- MET EN POWEL & BOB W KITMUNA
- GPS EARMY ETREX LEGEVE
OFFICE LOCATION: 13 W 6497547
7 66 7220
Eror. +5m
Accuracy To 7m
N N AW
- WEATHER: COLD, WWOY OVERCAST
Temp @ 8:30 Am = 6°C
- SAMPLERS JOETR AND RONGY
BOTH ARRIVED B KANWA
DAFILE FOR 8:30-9:00
- JOE SR. POTENTIAL BOAR MONITOR
7 5 TOPPED BY € 10:00, PLUMB ME &
- WAITED FRAM 7:30 AM UNTIL
10:00AM FOR ED
- LUDILED THROUGH STURE STURGE RM SUPPLUT
- TOURED CAM-M ANOFILE
ARDAS WITH UD POWELL
. LEVEL

•

•

· · · · · · · · · · · · · · · · · · ·	•
- Cunch Fran (21/2300m)	الأنكاب
i i i i i i i i i i i i i i i i i i i	
- COADED VAN PILLED UP VATOR	· · · · · · · · · · · · · · · · · · ·
AND TOE JR & SA	PH
	-
- SOUTH SHORE LANDFILL & Lidopm	
- overall LANDFILL APPLIARS	(1.5)
STABLE WITH NO OBVIOU	Pilot
OX APPARANT I INVITABILITY, DROMON	CANADA TANADA TA
& P. PATELIN AND TAITE	POOF POOF
-SOME PONDED WATER /Y MORTH -	VATERP
WEST SMADRANT	TO, MAD
(VISIGUE W 104000 8)	MARIE PAID TO BE
	— 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6.
-PIOTO 17 1311-0496382, 7666011	
- JONTHUGGE CORNER	
- VEGETATION, NO BROYDY IN DITCH	1 1 . 1
-PHOTO: 2:13W0496366, 7666015	1130
- MINOR DEPRESTIONS. (N	MOTES BA
LANDFIN SOM FACE GONLY	PHOY
1. 1. O. ISm OBTUSS => NO CONCERN)	3
	7

Aug. 15/07 13.0 049 6339,7666075 FONTH MAST CORNER FALLY NORTH NO DISSION, GOODSTANDS OF GRASC => 13W0496341,7666856 NENAM GORA TEX SHALLON PERKUTION WITH PORTO WATER => 13WP49 6383; 7 (A(867 FORTH CAST CORNER - SOME DRALGE STAINING SELFAGE CLOSKUP PHOTO 7 134 949 6386 7660 035 - expring supply supply or Ruck PILE, NO STOSION DR. INDICATIONS OF INSTABLLIE - PHOTO SB. FACING FAITH TO WARD -PHOTO 5 C FACULG CAST TO PONDO WATER AND SLEVAGE CROSSING ARRYU & WIRE ROPE STILL PRESENT. 13wo49 6305,7666061 JOUTH WEST TA THACK 6~ TOP 500 A LONG LF, =>FOCIVE FAUNG NORTH SLOPE LEVEL - PACING

	(5) Am6 15/07 719-514
PHOTO 8 => 13110496192 7666003	The Control of
- PHOTO BA PAGING FORTH OVOR	PHOTO 12=)/3W049 6292, 7665877
LANDFUL MERACE NO YEUSION	SONTHWEST HOTELT CORNER OF LF
- PHOTO 88 FACING HATTONIH	- DITCH W. PUNDED WATER
ALONG CREST AND	
WEST AGENT MICH, NO CROSON	FILT FONTH THORES CANOFILL & 3:30PM
134000 10 => 13W0496204, 7665961	- WEST LAKORICE
- FACING TOUT ALONG CLET	ARRIVED AT 3:35PM
- Some 4-WHERER ATV TIRE	- Overall Appears FEABLE AND
TRICKS, NO BROSIAN	Bg NO OBVIOUS EXPOSED OR
	the see waste
PHOTO 9 7 13W0496238, 7669927	SBAKW
- PHOTO 9A FACING POST OVOR	-PHOTO 1 =) 13W 049 44 99
LANOFILL SURFACE	3668077
- PANTO 9B CACHE WAST NORTHWEST	1940TO IN RACING NOOTH
Avorib CNOST	13 FACING NOLTHWIST
- NO GROSING BR INSTABLLING	1 C FACING WEST NORTHWET
DHOTO [1=713W04962747665993	PHOTO Z = 13w0494559 7668121
- PHOTO HA RACING LEST TO	MATTERINE DYN
PONDO WATER DEPRESSIONS _	- FAST LANDTIN JUDE
-DHOTO 118 RACING FOUNT DAST	NO KNOSIDA
SWELLSHIPPOR 9 LICE ACHIE	ST - SOME GRAV & HURBS
TOWARDS WOW VELETATUR AKTA	LEVEL

•

Landfill Monitoring Report – West Landfill

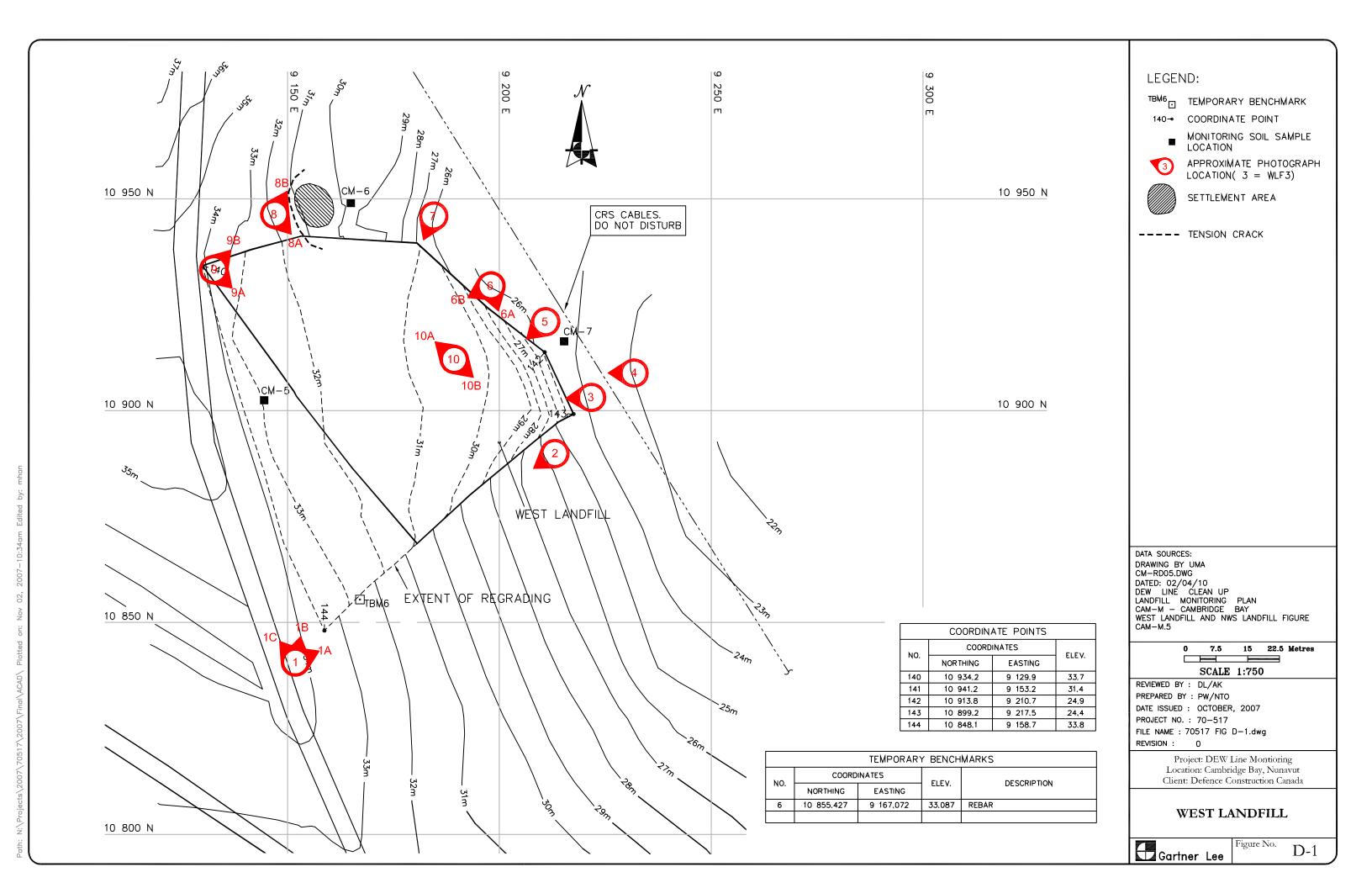
- D-1: West Landfill
 - D-1.1 Landfill Summary
 - D-1.2 Visual Monitoring
 - D-1.3 Soil Sampling

Landfill Monitoring Report - West Landfill

The Collection of Landfill Monitoring Data at the CAM-M Cambridge Bay Site - 2007 Report APPENDIX D West Landfill

D.1 West Landfill

D.1.1 Landfill Summary


The west landfill is located approximately 600 m northwest of the main facilities. The area of the landfill is approximately 4,500 m² with an estimated depth of greater than 1.5 m. The location of the landfill is shown on Figure D-1. The DCC has classified this landfill as a low potential environmental risk. Remediation of this landfill included re-grading with the placement of additional granular fill.

For 2007, the monitoring requirements for the West Landfill include visual inspection, and soil sampling.

D.1.2 Visual Monitoring

Based on the 2007 visual inspection, the West Landfill (WLF) appears to be in good condition with no signs of imminent slope instability or final cover failure. Overall landfill performance is assessed as "acceptable". Appendix D1 presents a summary of the 2007 visual inspection results.

There is some minor erosion on the east slope that appears to be self-armouring (Photos WLF-3, 5 and 6A in Appendix D2). There is an area of settlement at the north end of the landfill, east of Photo Location 8 on Figure D-1. The settlement area appears to be north of the constructed landfill cover indicating that the settlement may be related to thaw of ground ice north of the landfill. The settlement has resulted in the formation of tension cracks (Photos WLF-8A and 8B in Appendix D2) that encircle the north, west and south perimeter of the depression. The maximum width of the cracks is about 5 cm and maximum visible depth is about 20 cm. Photo WLF-9 (Appendix D2) illustrates the proximity of the depression relative to the landfill. Previously documented tension cracks up to 40 cm in width (Photos WLF-8 and 8A in 2005 Inspection Report) could not be located during the 2007 inspection and it is suspected that the area may have been repaired since 2005 (see light coloured gravel area at top of Photo WLF-10A in Appendix D2).

The Collection of Landfill Monitoring Data at the CAM-M Cambridge Bay Site - 2007 Report APPENDIX D West Landfill

D.1.3 Soil Sampling

Soil samples were collected at the designated locations of CM-5, CM-6, and CM-7. The sampling locations are shown on Figure D-1. At each location, two samples were collected at approximately 0.10 m below ground and between 0.40-0.50 m below ground. A photograph of each test pit for each location sampled is shown in Appendix D3. The analytical results and sample depths are tabulated in Table D-1 and the laboratory reports are provided in Appendix G.

No staining or free product was observed during the sampling event. There were no odours documented during the sampling event at the West Landfill.

Table D-1. CAM-M Cambridge Bay, Summary of 2007 Soil Analysis - West Landfill

		Sample Location Depth Arsenic Cadmium Chromium Cobalt Copper Lead Mercury		Mercury Nickel Zinc		7ino	Petroleum Hydrocarbons				PCB Total							
Sample Ident.	•	Sample Location	1	Deptii	Arsenic	Caumum	Chromium	Cobait	Copper	Leau	Wercury	Nickei	ZIIIC	TPH (C6-34)	C6-C10	C10-C16	C16-C34	Aroclors
	Location Id.	Northing	Easting	(m)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
Upgradient Samples																		
CM-5-1	CM-5	7668135	494486	0.1	1.7	< 0.2	6	3	6	3.7	< 0.01	5	7	< 20				< 0.03
CM-5-2	CM-5	7668135	494486	0.5	1.8	< 0.2	7	3	5	3.6	< 0.01	6	8	< 20				< 0.03
Downgradient	Samples																	
CM-6-1	CM-6	7668177	494517	0.1	1.1	< 0.2	13	3	16	6.5	0.04	11	26	35	< 5	< 80	< 250	< 0.03
CM-6-2	CM-6	7668177	494517	0.5	3.1	< 0.2	13	5	15	7.7	0.03	11	22	34	< 5	< 80	< 250	< 0.03
CM-7-1	CM-7	7668148	494563	0.1	0.8	0.4	6	2	7	2.1	< 0.01	6	7	< 20				< 0.03
CM-7-2	CM-7	7668148	494563	0.5	0.8	0.3	6	2	6	2.2	< 0.01	5	7	< 20				< 0.03

^{*} Denotes duplicate sample. (Further information located in Table 1 of main report)

Appendix D Attachments

- D1 Site Condition/Visual Inspection Records
- **D2** Geotechnical Inspection Photographic Records
- **D3** Monitoring Photographic Records
- **D4** Field Notes

Site Condition/Visual Inspection Records

DEW LINE CLEANUP: POST-CONSTRUCTION - LANDFILL MONITORING VISUAL INSPECTION REPORT – WEST LANDFILL – PAGE 1 OF 2

SITE NAME:	Cambridge Bay CAM-M
LANDFILL DESIGNATION:	West Landfill
DATE OF INSPECTION:	August 2007
DATE OF PREVIOUS INSPECTION:	August 2005
INSPECTED BY:	Darrin Johnson, P.Eng.
REPORT PREPARED BY:	Darrin Johnson, P.Eng.

VISUAL INSPECTION REPORT – WEST LANDFILL – PAGE 2 OF 2

Checklist Item	Present Yes/No	Location (Describe relative to landfill features)	Length	Width	Depth	Extent relative to Area of Landfill (%)	Description	Photographic Records (Photo number referenced in photo log and on figures)	Additional Comments/Pre liminary Stability Assessment
Settlement	Yes	Northern edge of landfill east of photo location 8	10 m	10 m	<0.5 m	100m2/ 4500m2 = 2%	Tension cracks around north and west sides of depressed area	WLF 8A, 8B and 9B	Acceptable
Erosion	Minor	East slope	10 m (slope length)	20 m (width of affected area)	0.1 m max.	200m2/ 4500m2 = 4.5%	Minor rills	WLF 3, 5, 6A	Self-armouring; acceptable
Frost Action	No								
Animal Burrows	No								
Vegetation	Sparse							WLF 8A, 9A, 10A	
Staining	No								
Vegetation Stress	No								
Seepage Points	No								
Debris Exposed	No								
Presence/Condition - Monitoring Instruments	N/A								
Features of Note	None								
General							General	WLF 1A-1C, 2, 4, 6B, 7, 9A, 10A, 10B	

PRELIMINARY STABILITY ASSESSMENT - WEST LANDFILL

Feature	Severity Rating	Extent			
Settlement	Acceptable	Isolated			
Erosion	Acceptable	Isolated			
Frost Action	Not Observed	None			
Staining	Not Observed	None			
Vegetation Stress	Not Observed	None			
Seepage/Ponded Water	Not Observed	None			
Debris Exposed	Not Observed	None			
Tension Cracks	Not Observed None				
Overall Landfill Performance	Acceptal	ble			

Geotechnical Inspection Photographic Records

Photo WLF-1A, Easting: 494499, Northing: 7668077, Direction: 340° West Landfill; facing north Scale: photo placard dimensions are 29.4 cm wide by 27.5 cm in height

Photo WLF-1B, Easting: 494499, Northing: 7668077, Direction: 290° West Landfill; facing northwest Scale: photo placard dimensions are 29.4 cm wide by 27.5 cm in height

Photo WLF-1C, Easting: 494499, Northing: 7668077, Direction: 250° West Landfill; facing west

Photo WLF-2, Easting: 494559, Northing: 7668121, Direction: 150° West Landfill; east landfill slope Scale: photo placard dimensions are 29.4 cm wide by 27.5 cm in height

Photo WLF-3, Easting: 494566, Northing: 7668131, Direction: 180° West Landfill; northeast slope Scale: photo placard dimensions are 29.4 cm wide by 27.5 cm in height

Photo WLF-4, Easting: 494559, Northing: 7668121, Direction: 180° West Landfill; north landfill slope facing south Scale: photo placard dimensions are 29.4 cm wide by 27.5 cm in height

Photo WLF-5, Easting: 494549, Northing: 7668155, Direction: 135° West Landfill; northwest slope facing southeast Scale: photo placard dimensions are 29.4 cm wide by 27.5 cm in height

Photo WLF-6A, Easting: 494519, Northing: 7668166, Direction: 90° West Landfill; view facing east towards dew line station Scale: photo placard dimensions are 29.4 cm wide by 27.5 cm in height

Photo WLF-6B, Easting: 494519, Northing: 7668166, Direction: 160° West Landfill; view facing south towards slope Scale: photo placard dimensions are 29.4 cm wide by 27.5 cm in height

Photo WLF-7, Easting: 494507, Northing: 7668176, Direction: 130° West Landfill; view facing east towards western slope Scale: photo placard dimensions are 29.4 cm wide by 27.5 cm in height

Photo WLF-8A, Easting: 494491, Northing: 7668172, Direction: 45° West Landfill; facing landfill from area of settlement west of landfill Scale: photo placard dimensions are 29.4 cm wide by 27.5 cm in height

Photo WLF-8B, Easting: 494491, Northing: 7668172, Direction: 270°
West Landfill; tension cracks above thaw settlement area, maximum width 5 cm, maximum observed depth about 20 cm.

Scale: photo placard dimensions are 29.4 cm wide by 27.5 cm in height.



Photo WLF-9A, Easting: 494479, Northing: 7668169, Direction: 50° West Landfill; facing southeast over sparsely vegetated landfill surface Scale: photo placard dimensions are 29.4 cm wide by 27.5 cm in height

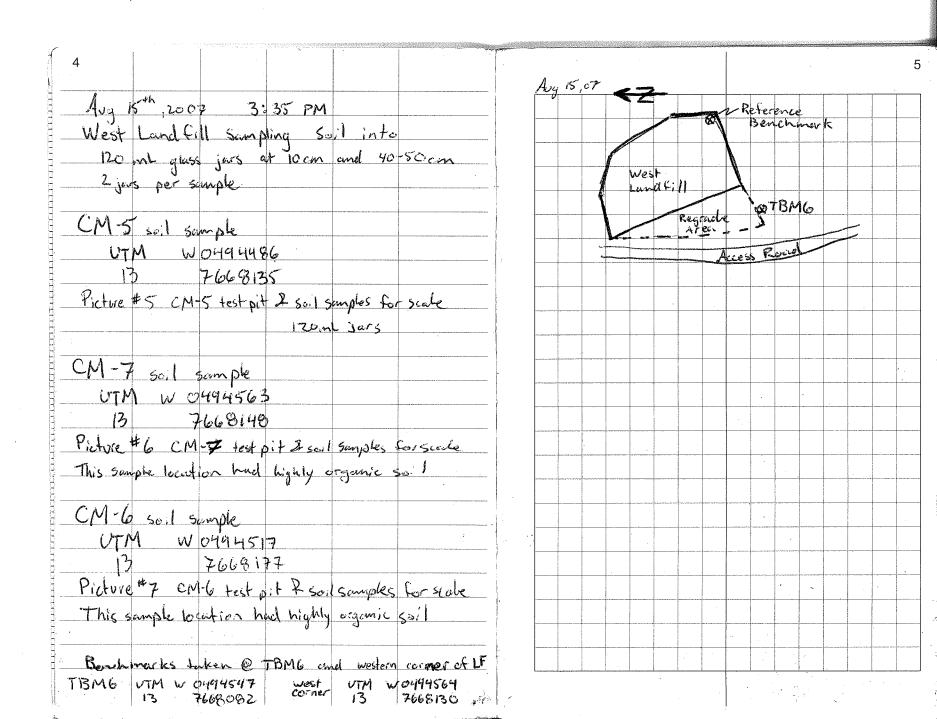
Photo WLF- 9B, Easting: 494479, Northing: 7668169 West Landfill; facing northeast towards thaw settlement area Scale: photo placard dimensions are 29.4 cm wide by 27.5 cm in height

Photo WLF-10A, Easting: 494520, Northing: 7668142, Direction: 250° West Landfill; view facing northwest towards suspected regraded area Scale: photo placard dimensions are 29.4 cm wide by 27.5 cm in height

Photo WLF-10B, Easting: 494520, Northing: 7668142, Direction: 70° West Landfill; view facing southeast Scale: photo placard dimensions are 29.4 cm wide by 27.5 cm in height

Monitoring Photographic Records

Test pit CM-5 (Upgradient). Samples CM-5-1 and CM-5-2 collected. Samples with identification numbers ending in "1" (ex. CM-5-1) collected at 0-10cm and samples with identification numbers ending in "2" collected at 40-50cm.



Test pit CM-6. Samples CM-6-1 and CM-6-2 collected.

Test pit CM-7. Samples CM-7-1 and CM-7-2 collected.

Field Notes

Soil Sampling Record

	Previous (Coordinates	2007 C	oordinates	Surface Sample	Depth Sample	Photograph
Monitoring Locations	North (m)	East (m)	North (m)	East (m)	0 - 10 cm	40 - 50 cm	
West Landfill							
CM-5 (soil)	10900	9140	7668135	0494486	l v	V	5
CM-6 (soil)	10950	9160	7668177	0494517	V	ν	7
CM-7 (soil)	10920	9220	7668148	049 4563	V	~	6

Comments: Soil at CM-6 and CM-7 was nightly organic

Reference BMs taken at TBM6 UTM 13 N 7668082 E0494547 and West corner UTM 13 N 7668130 E0494564

	i •	(5)	An6 15/07 70-514
PHOTO 8 => 13W0496192 7666003	اً:	The wife was	
- PHOTO BA PAGNE FORTH OVER)	PHOTE 12=1/3W049 6	292,7665877
LAWOFILL SHEFACT, NO HEUSION		ONTHWEST NOTOH WEST	DENIER OF IF
- PHOTO 88 FACING WATFOUTH		- DUTCH W. POND	
ALONG CREST AND			
WEST About my CH, NO Brosila	<u> </u>	LEFT FONTH Shoed, CM	WOFILL & 3:30PN
124000 10 = 13W049.6204, 76.65961		WEST LAKOKILL	
- FACING SOUTH ALONG CLEST	ADA	- ARRIVED AT 3:3	1
- Some 4-WHERER ATV THE	ER, CAN	- Overall Appears 5	<u> </u>
TRACKS, NO brosign	NCOUVE	NO OBVIOUS EX	
	DE IN VA	the oses wa	STU
РИОТО 9 7 [3W0496238, 766992] - РИОТО 9A FACING 2002	TO MAI	100	4 d () 1 d 4
	NHALL O	-PHOTO 1 =) 13WF	X49 94 99
LANOFILL SURVACE	R. O. PE	766	8077
-PARTU 9B FACING HAST NORTHWEST	! - - ₋	194000 IN RACIN	
Avor 6 eng,			NOT AMPLI
- NO GROSINH GR (NETABILITY		1 C FACINI	WEST HORTHOUSE
PHOTO (1=) 13W0496274,7665993		PHOTO 7 = 13w0494559	7668121
- PHOTO ITA RACING 500 70		AN 100 LL	and
MILTERACIO SUTIANI ACIONALA		- MST LAND	FIM GODE
-DHOTO 118 VAGNI FOUTH SAST		-No krosion	
- MOTO 11C JACING ADATHERS IN		- Some GRAC	& Horss
TOWARDS WELL VERETATION AM	TH .	1	LEVEL

LEVEL

.

PHOTO 3 7 13W0414566, 7668131 WAYPOINT 045	· ·
- NONTHUALL FLORE	
- NO STUPPLE @ TOE - SOME SULP ARMOURING	
Evolin ou wale (6190.3)	
PHOTO 4 => 13W049 4577, 7668134	.J
- 2 PHOSOS FOR PANOPAMILANS - SLOPE IS STABUS, NO MENTOSION,	· <u> </u>
-NO SWPACE @ TOW	
- SPANIE VEGETATION	
PHOTO 5 => 13W04945497668155 WAMPOINT 647	
-3 PHOTOS FOR PANORAMIE	
- SOME FROSION RAMINOS THAT APPRANTO BY	\
-NO SOLLAGE DE SOUMONT ACONS TOU	1)
- NO STRONGE Q TOE	

	٠.	(F) 70-517 Aug 15/16
PHOTO 3 7 13W0474566, 7668131	•	
WAY DOINT O45	<u> </u>	MATERIATE 049 4519,7668166
- NONTHURST STOPE		-PHOTO GA FAUND CAST TOWARDS
- NO STYPAGE @ TOE - SOME SUIP ARMOMRING	ig	DOW LINE STATION
Evolut on vole (6Ad. 3)	\	SLOPE APPORAN STABLE
		- No SIGNIFICANT ENOSIAN
PHO50 4 => 13Way 4577, 7668134	! } _	-SPACE VEDOCATION
1 / 1 / 1 / 1 / 64b		-Plloto BB FAGNE CONSH
- 2 PHOSOS FOR PANOPAMIKANS - SLOPE 15 STABLE NON WYOSTON,		FOWARD SUPE
- SLOPE 15 STABLE NONEYZOTION,	-	D
-NO SERPAGE @ TOE	_	P4000 7 7 13W049 4507, 7668176
- No STAINING		WAYPOINT 049
_ SPANIE NABELALION	_	- 2 PAINTS FOR PANORAMIC
011,51 - 221/46117110 7// 0177		-ARDA ABPEARS TO HAVE
PHUTU 5 => 13 W049 4549 7668155	1 -	BEN RUPALED LITTH
-3 PHOTOS FOR PANDRAMIC	·	- 6000 VUCETATION AT TOP
-3 PHOTOS FOR PRIVATED		ABOVE PEDON PROD AROW
THAT APPRAIN TO BE	\	
SERF ARMONRING		PHOTO 10 7 13 NOY94500, 7668140
-NO SOLUAGE DE IDUMOS		WAYPRINT 050
-NO SAJUAGE OF SOMMONS		- ALONG CRUT FACING
- NO SUPPOSE & TOE	_	WEST (10A) & EAST (10B)
		-No Tousion Capills or
<u>-</u>	<i>.</i>	SUTTLEMENT

PHOTO 8 => 13W0414491,7668172 -ARRIVED AT LANDFILL (MAIN 10 NTH) @ 9:00AM WAYPOINT 051 WATH KRISTANS & TOE SA - some Towslow CACKS BUT NOT RELATED TO - TOE JR. & RATION. NOT ANDILABLE TO WORK (LOST IAR) WASTE OR LANDFILL - WENTHER OVERSAM, TEMP = 600 - PHOTO & A KACING LANDFILL TOWARDI DEW LINE PHOTO 2 => 13W049 5734 7667434 STATION 2 PHOTOS FOR DANDRAMIC - PHOTO 88 FACING AWAY - ERACK WIDTH MAXI 2 WUHES -NO SIUNS OF EROSION or settlement AND APPERAL 6-8 INCHES מליצום PHOTO 2 => 13~0~15889, 2667351 WAYFRINT OSY - PHOED 2A NW - PHOTO 2B CLOSEUP OF PHOTO 9 713W0494479, 3668169

WAYPOINT DS PANICABIL

FACING ENST TOWARDS

PHOTOS 9B FACING NONTH NOWTH SLOPE NEWS PHOTO LOCATION Z WHERE TELF GRAPURTS MANOR EXMIN HAS OCCURRED towards session and THAW ARDA - MHOUR ZCAND 20 - LERT WEST CAVARILL @5:30/80 - TOOK 46 PHOTOS ON AUG 15/03

Appendix E

Landfill Monitoring Report – Airstrip Landfill

■ E-1: Airstrip Landfill

■ E-1.1 Landfill Summary■ E-1.2 Visual Monitoring■ E-1.3 Soil Sampling

Appendix E

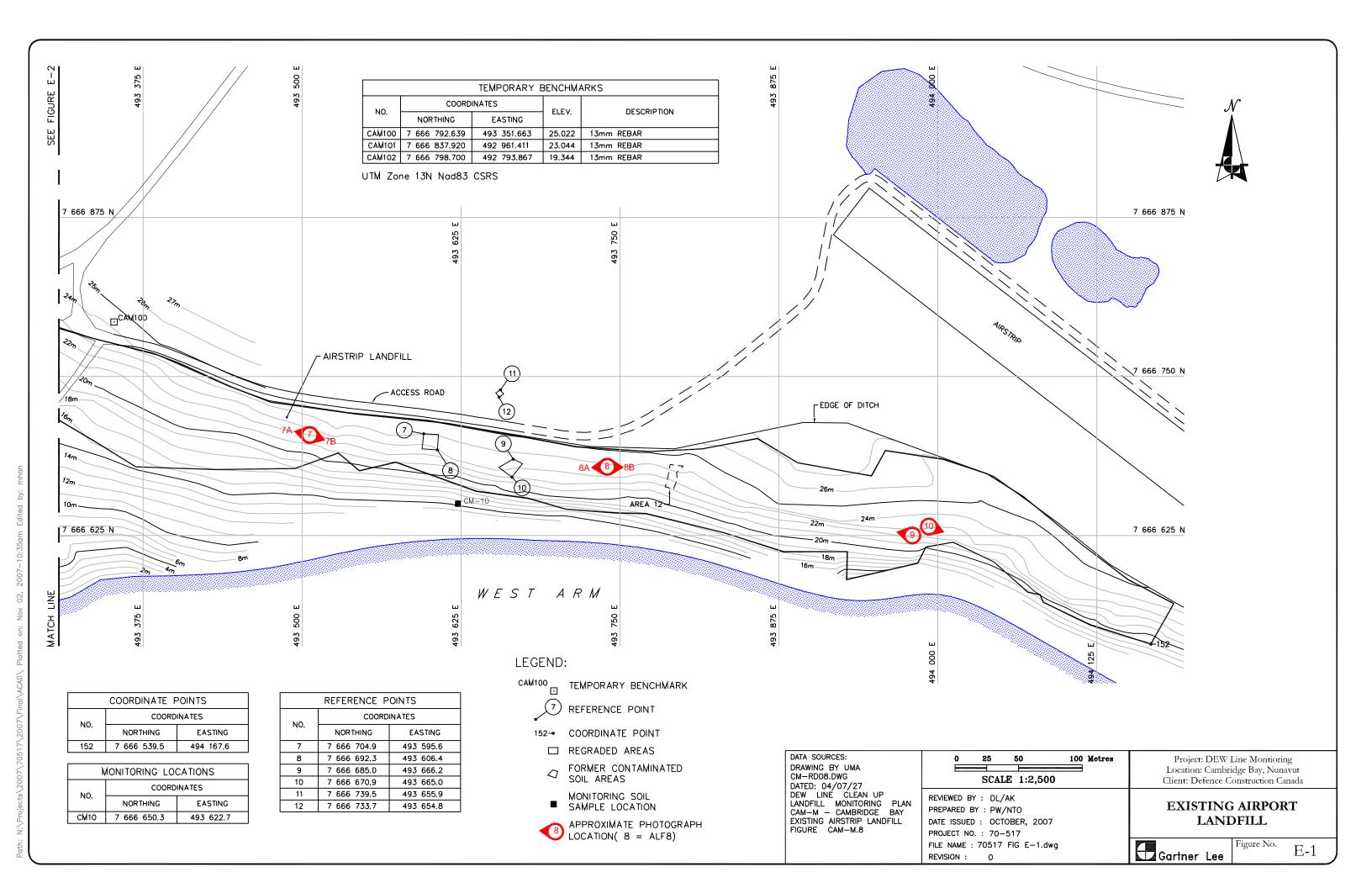
Landfill Monitoring Report - Airstrip Landfill

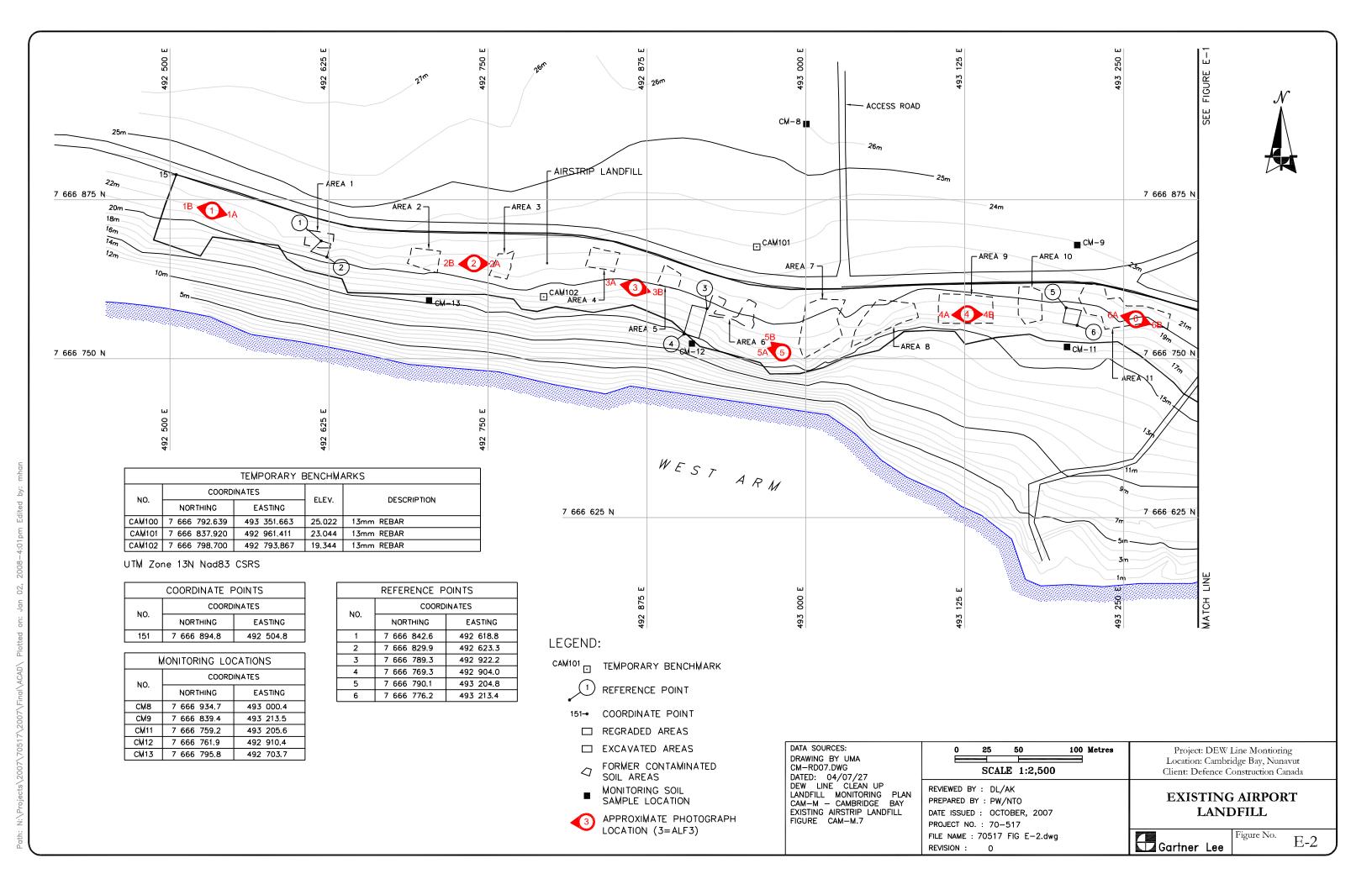
The Collection of Landfill Monitoring Data at the CAM-M Cambridge Bay Site - 2007 Report APPENDIX E Airstrip Landfill

E.1 Airstrip Landfill

E.1.1 Landfill Summary

The airstrip landfill is located southwest of the airstrip, along the edge of the west arm of Cambridge Bay. The disturbed area associated with the landfill extends along the road over 2 km. The landfill configuration is shown on Figures E-1 and E-2. The waste materials were placed in low-lying area along the road, therefore the depth of the waste varies accordingly. On average the thickness of the waste is between 1 and 2 m. The location of the landfill is shown on Figure E-1. The type of waste varies from domestic waste to industrial waste. Waste samples were collected in 1998 and identified localized areas of DCC Tier I and DCC Tier II contamination. Based on the available information, prior to the remedial work, the DCC has classified the landfill as a moderate potential environmental risk. Remediation of the landfill included the removal of debris pockets, removal of contaminated materials (material transported to the DCC Tier I and II Landfills) and re-grading with the placement of additional fill material.


It should be noted that Gartner Lee considers that the Figures that were provided in the original RFP (2004) do not accurately depict the dimensions and location of the Airstrip Landfill. The land features and the scale shown on the drawings vary from the features and distances observed in the field. In 2004, the site was re-surveyed and new drawings were issued to reflect this work. These drawings were provided to Gartner Lee via DCC and Figures E-1 and E-2 have been updated with this information.


For 2007, the monitoring requirements for the Airstrip Landfill include visual inspection, and soil sampling.

E.1.2 Visual Monitoring

No significant erosion or indications of instability were observed at the Airstrip Landfill (ALF) during the 2007 inspection. Overall the landfill performance is assessed as "acceptable". Appendix E1 presents a summary of the 2007 visual inspection results.

There is some minor erosion on the south slope of Area 8 that appears to be self-armouring (Photo WLF-4A in Appendix E2). Previously observed exposed crushed metal drums at the west end of Area 7 are still present (Photo ALF-5A) with no apparent change from previous inspection photographs.

The Collection of Landfill Monitoring Data at the CAM-M Cambridge Bay Site - 2007 Report APPENDIX E Airstrip Landfill

E.1.3 Soil Sampling

Soil samples were collected at the designated locations of CM-8, CM-9, CM-10, CM-11 CM-12 and CM-13. The sampling locations are shown on Figure E-1 and E-2. At each location, wherever possible, two samples were collected at approximately 0.10 m below ground and between 0.40-0.50 m below ground. The photograph of each test pit for each location sampled is shown in Appendix E3. The analytical results and sample depths are tabulated in Table E-1 and the laboratory reports are provided in Appendix G.

No staining or free product was observed during the sampling event. There were no odours documented during the sampling event at the Western Landfill.

Low concentrations of Petroleum Hydrocarbons (TPH) (150mg/kg and 110mg/kg) were detected in the shallow samples from soil sample locations CM-11 and CM-13 respectively. GLL does not consider that the concentrations detected to be significant, however the sample will need to be evaluated in the context of the Landfill Monitoring Plan. The samples were reanalyzed to characterize the TPH CCME hydrocarbon fractions F1-F3. All fractions were reported as non-detectable.

Table E-1. CAM-M Cambridge Bay, Summary of 2007 Soil Analysis - Airstrip Landfill

		ample Location		Donth	Aroonio	Cadmium	Chromium	Cobalt	Connor	Lood	Mercury	Nickel	Zinc	Petroleum Hydrocarbons			PCB Total	
Sample Ident.	3	ampie Location	1	Deptin	Arsenic	Caumum	Chromium	Cobait	Copper	Lead	Wercury	Nickei	ZIIIC	TPH (C6-34)	C6-C10	C10-C16	C16-C34	Aroclors
	Location Id.	Northing	Easting	(m)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
Upgradient Sar	nples																	
CM-8-1	CM-8	7666935	492995	0.1	1.5	< 0.2	6	2	6	2.7	0.03	5	14	26	< 5	< 80	< 250	< 0.03
CM-8-2	CM-8	7666935	492995	0.5	1.7	< 0.2	9	4	7	3.3	< 0.01	7	11	< 20				< 0.03
CM-9-1	CM-9	7666840	493213	0.1	1.2	< 0.2	5	2	11	3.5	0.01	6	6	< 20				< 0.03
CM-9-2	CM-9	7666840	493213	0.5	1.4	< 0.2	10	6	10	5.1	< 0.01	10	13	< 20				< 0.03
Downgradient :	Samples																	
CM-10-1	CM-10	7666642	493629	0.1	2.0	< 0.2	12	4	10	11.8	0.04	12	31	39	< 5	< 80	< 250	< 0.03
CM-10-2	CM-10	7666642	493629	0.5	2.4	< 0.2	18	14	48	13.1	0.01	25	22	< 20				< 0.03
CM-11-1	CM-11	7666758	493205	0.1	1.8	< 0.2	8	2	9	3.9	0.05	6	10	150	< 5	< 80	< 250	< 0.03
CM-11-2	CM-11	7666758	493205	0.5	1.6	< 0.2	12	7	10	4.8	< 0.01	11	14	< 20				< 0.03
CM-12-1	CM-12	7666761	492908	0.1	4.5	< 0.2	17	8	15	10.6	0.02	16	23	23	< 5	< 80	< 250	< 0.03
CM-16-1*	CM-12	7666761	492908	0.1	4.3	< 0.2	13	10	17	10.8	0.01	19	11	< 20				< 0.03
CM-12-2	CM-12	7666761	492908	0.5	5.5	< 0.2	13	11	15	10.8	0.01	17	11	< 20				< 0.03
CM-13-1	CM-13	7666796	492703	0.1	2.4	< 0.2	11	4	12	5.7	0.07	11	31	110	< 5	< 80	< 250	< 0.03
CM-13-2	CM-13	7666796	492703	0.5	1.8	< 0.2	5	2	5	3.3	< 0.01	6	5	< 20				< 0.03

^{*} Denotes duplicate sample. (Further information located in Table 1 of main report)

Appendix E Attachments

- **E1** Site Condition/Visual Inspection Records
- **E2** Geotechnical Inspection Photographic Records
- **E3** Monitoring Photographic Records
- **E4** Field Notes

Site Condition/Visual Inspection Records

DEW LINE CLEANUP: POST-CONSTRUCTION - LANDFILL MONITORING VISUAL INSPECTION REPORT – AIRSTRIP LANDFILL – PAGE 1 OF 2

SITE NAME:	Cambridge Bay CAM-M
LANDFILL DESIGNATION:	Airstrip Landfill
DATE OF INSPECTION:	August 2007
DATE OF PREVIOUS INSPECTION:	August 2005
INSPECTED BY:	Darrin Johnson, P.Eng.
REPORT PREPARED BY:	Darrin Johnson, P.Eng.

VISUAL INSPECTION REPORT – AIRSTRIP LANDFILL – PAGE 2 OF 2

Checklist Item	Present Yes/No	Location (Describe relative to landfill features)	Length	Width	Depth	Extent relative to Area of Landfill (%)	Description Description	Photographic Records (Photo number referenced in photo log and on figures)	Additional Comments/ Preliminary Stability Assessment
Settlement	No					(%)		ngures)	
Erosion	Minor	South slope of Area 8					Minor rills	ALF 4A	No gullies of concern; acceptable
Frost Action	No								
Animal Burrows	No								
Vegetation	Sparse								
Staining	No								
Vegetation Stress	No								
Seepage Points	No								
Debris Exposed	Yes	West of Area 7 (photo location 5)					Previously observed exposed metal drums	ALF 5A	Acceptable
Presence/Condition – Monitoring Instruments	N/A								
Features of Note	None								
General							General	ALF 1A, 1B, 2A, 2B, 3A, 3B, 4B, 5B, 6A, 6B, 7A, 7B, 8A, 8B, 9, 10	

PRELIMINARY STABILITY ASSESSMENT – AIRSTRIP LANDFILL

Feature	Severity Rating	Extent		
Settlement	Not Observed	None		
Erosion	Acceptable	Isolated		
Frost Action	Not Observed	None		
Staining	Not Observed	None		
Vegetation Stress	Not Observed	None		
Seepage/Ponded Water	Not Observed	None		
Debris Exposed	Acceptable	Isolated		
Tension Cracks	Not Observed	None		
Overall Landfill Performance	Acceptable			

Geotechnical Inspection Photographic Records

Photo ALF-1A, Easting: 492501, Northing: 7666876, Direction: 90° Airport Landfill; view facing east Scale: photo placard dimensions are 29.4 cm wide by 27.5 cm in height

Photo ALF-1B, Easting: 492501, Northing: 7666876, Direction: 270°
Airport Landfill; view facing west
Scale: photo placard dimensions are 29.4 cm wide by 27.5 cm in height

Photo ALF-2A, Easting: 492739, Northing: 7666825, Direction: 90°
Airport Landfill; view facing east
Scale: photo placard dimensions are 29.4 cm wide by 27.5 cm in height

Photo ALF-2B, Easting: 492739, Northing: 7666825, Direction: 270° Airport Landfill; view facing west Scale: photo placard dimensions are 29.4 cm wide by 27.5 cm in height

Photo ALF-3A, Easting: 492866, Northing: 7666809, Direction: 270° Airport Landfill; view facing west Scale: photo placard dimensions are 29.4 cm wide by 27.5 cm in height

Photo ALF-3B, Easting: 492806, Northing: 7666809, Direction: 90° Airport Landfill; view facing east Scale: photo placard dimensions are 29.4 cm wide by 27.5 cm in height

Photo ALF-4A, Easting: 493127, Northing: 7666785, Direction: 270° Airport Landfill; facing west to Area 8 slope Scale: photo placard dimensions are 29.4 cm wide by 27.5 cm in height

Photo ALF-4B, Easting: 493127, Northing: 7666785, Direction: 90° Airport Landfill; view facing east Scale: photo placard dimensions are 29.4 cm wide by 27.5 cm in height

Photo ALF-5A, Easting: 492972, Northing: 7666752, Direction: 315° Airport Landfill; close-up of exposed metal drums

Scale: photo placard dimensions are 29.4 cm wide by 27.5 cm in height

Photo ALF-5B, Easting: 492972, Northing: 7666752, Direction: 315° Airport Landfill; view facing northwest Scale: photo placard dimensions are 29.4 cm wide by 27.5 cm in height

Photo ALF-6A, Easting: 493259, Northing: 7666781, Direction: 270° Airport Landfill; view facing west Scale: photo placard dimensions are 29.4 cm wide by 27.5 cm in height

Photo ALF-6B, Easting: 493259, Northing: 7666781, Direction: 90° Airport Landfill; view facing east Scale: photo placard dimensions are 29.4 cm wide by 27.5 cm in height

Photo ALF-7A, Easting: 493494, Northing: 7666704, Direction: 270° Airport Landfill; view facing west Scale: photo placard dimensions are 29.4 cm wide by 27.5 cm in height

Photo ALF-7B, Easting: 493494, Northing: 7666704, Direction: 90° Airport Landfill; view facing east Scale: photo placard dimensions are 29.4 cm wide by 27.5 cm in height

Photo ALF-8A, Easting: 493740, Northing: 7666679, Direction: 270° Airport Landfill; view facing west Scale: photo placard dimensions are 29.4 cm wide by 27.5 cm in height

Photo ALF-8B, Easting: 493740, Northing: 7666679, Direction: 90° Airport Landfill; view facing east Scale: photo placard dimensions are 29.4 cm wide by 27.5 cm in height

Photo ALF-9, Easting: 493980, Northing: 7666625, Direction: 270°
Airport Landfill; view facing west
Scale: photo placard dimensions are 29.4 cm wide by 27.5 cm in height

Photo ALF-10, Easting: 493993, Northing: 7666632, Direction: 90° Airport Landfill; view facing east Scale: photo placard dimensions are 29.4 cm wide by 27.5 cm in height

Monitoring Photographic Records

Test pit CM-8 (Upgradient). Samples CM-8-1 and CM-8-2 collected. Samples with identification numbers ending in "1" (ex. CM-8-1) collected at 0-10cm and samples with identification numbers ending in "2" collected at 40-50cm.

Test Pit CM-9 (Upgradient). Samples CM-9-1 and CM-9-2 collected.

Test pit CM-10. Samples CM-10-1 and CM-10-2 collected.

Test Pit CM-11. Samples CM-11-1 and CM-11-2 collected.

Test pit CM-12. Samples CM-12-1, CM-12-2, and CM-16-1 (Duplicate of CM-12-1) collected.

Test pit CM-13-1. Samples CM-13-1 and CM-13-2 collected.

Field Notes

14	
Aug 17,07	
MW-11 Soil Sompling	
MW-11 Soil Surpling Reture 038 of test pit	
Simple collected	
CMMW-11-1 @ 0-10 cm	~
CMM W-11-2 @ 40-50 cm	~ .
TA3 Thermister (Vestic	al)
Conelition is good Pictore 036 of TA3	
Pictore 036 of TA3	
TAH Thermistor (Vertica	
Condition is good	
Picture 037 of TA4	
Air Strip Landfill	
Sumple So.l	
CM-13-1 @ 0-10 cm	
CM-13-2 @ 40-50cm	
highly organic soil wift	muny stones
Picture 040 of test pit	
UTM W0492703	
173 7666796	
SV I I I I I I I I I I I I I I I I I I I	· +

1x 250 ml onber glass

Aug 17,07 CM-11 So:1 Sample CM-11-1 @ 0-10 cm CM-11-2 @ 40-50 cm UTM W 6493205 13 7666758 Picture 044 of test pit CM-10-1 @ 0-10cm CM-10-2@ 40-50cm UTM W 0493629 13 7666642 Picture 045 of test pit Saturday Aug 18th, 2007 Samplers: Durrin Johnson Ken Boldt Joe Sr (BearMonitos) Wenther: Cold, 5-7°C, Windy, overcust Main Lond F. 11 South MW-1 Condition good, no j-plug, coising missing bolts, bentonte welled up

17

Soil Sampling Record

	Previous (Coordinates	2007 Cd	oordinates	Surface Sample	Depth Sample	Photograph
Monitoring Locations	North (m)	East (m)	n) North (m) East (m)		0 - 10 cm	40 - 50 cm	
Airstrip Landfill							,
CM-8 (soil)	7 666 935	493 000	7666935	0492995			042
CM-9 (soil)	7 666 839	493 214	7666840	049 3213		~	043
CM-10 (soil)	7 665 650	493 623	7666642	0493629			045
CM-11 (soil)	7 666 839	494 206	7666 758	049 3205	~		044
CM-12 (soil)	7 666 761	492 910	7666 761	049 2908	-		041
CM-13 (soil)	7 666 796	492 704	7666 796	0492703		~	040

Coordinates referenced to UTM Zone 13N, NAD83

Comments:	
•	

Appendix F

Landfill Monitoring Report – Tier II Disposal Facility

- F-1: Tier II Disposal Facility
 - F-1.1 Landfill Summary
 - F-1.2 Visual Monitoring
 - F-1.3 Soil Sampling
 - F-1.4 Groundwater
 - F-1.5 Termal Monitoring

Appendix F

Landfill Monitoring Report - Tier II Disposal Facility

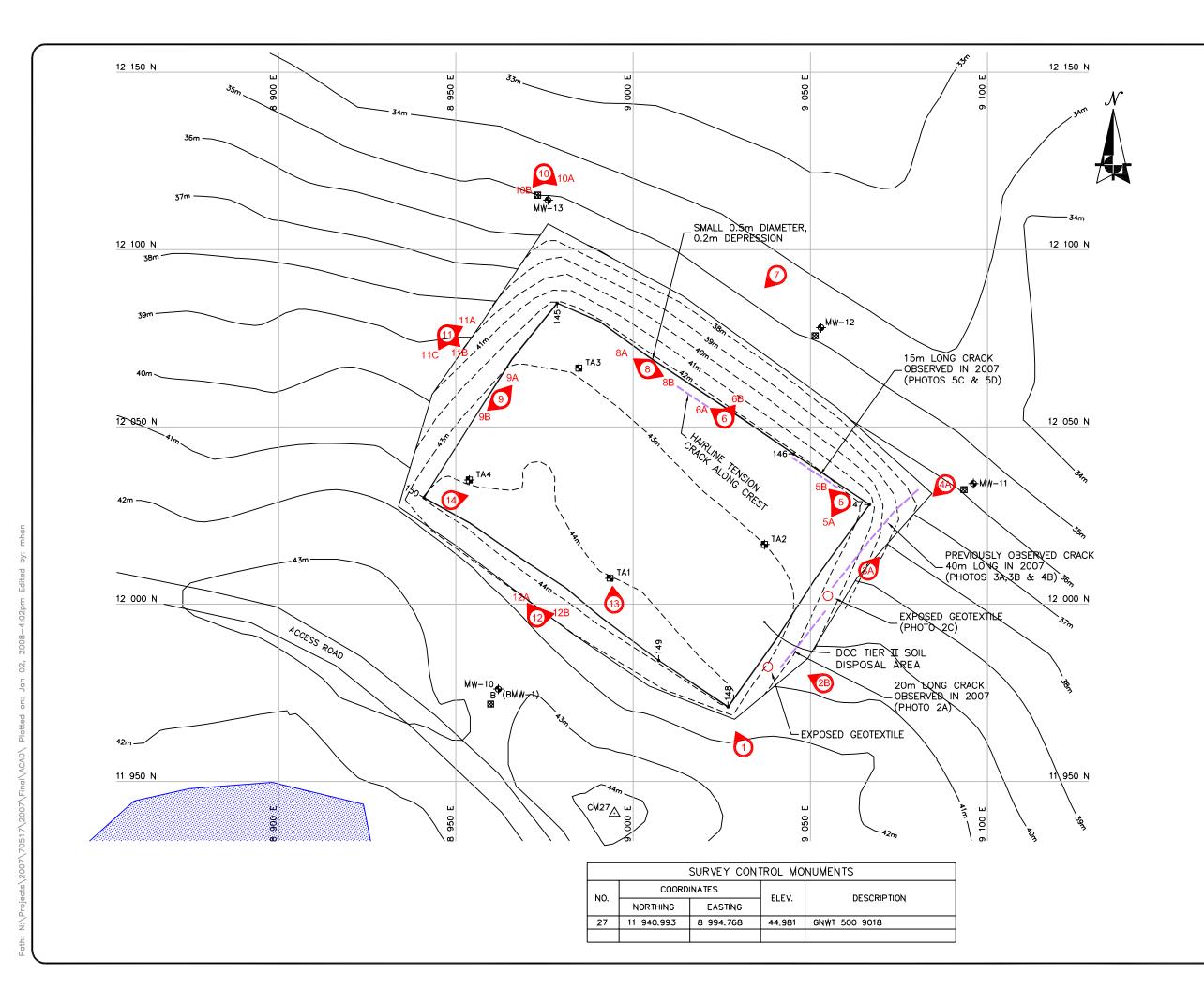
The Collection of Landfill Monitoring Data at the CAM-M Cambridge Bay Site - 2007 Report APPENDIX F Tier II Disposal Facility

F.1 Tier II Disposal Facility

F.1.1 Landfill Summary

The DCC Tier II Soil Disposal Facility was constructed at the Cambridge Bay site for the disposal of Tier II soil excavated during the cleanup. The Tier II Disposal Facility is located approximately 2 km northwest of the Station Area.

The design of this landfill included a double containment system consisting of a liner system and the placement of sufficient fill to promote freezing of the landfill contents. The liner was placed along the bottom of the landfill, along the berms, and over the top of the landfill contents.


Monitoring of the Tier II soil disposal facility consists of visual monitoring, collection of soil and groundwater, and monitoring of subsurface ground temperatures in the berms and in the main body of the disposal facility. The landfill configuration is shown on Figure F-1.

For 2007, the monitoring requirements for the DCC Tier II Disposal Facility include visual inspection, soil sampling, groundwater sampling, and thermal monitoring.

F.1.2 Visual Monitoring

Based on the 2007 visual inspection, the DCC Tier II Soil Disposal Area (SDA) appears to be in fairly good condition with no signs of imminent slope instability or final cover failure. However, overall landfill performance has been assessed as "marginal" as a result of significant tension crack development. Appendix F1 presents a summary of the 2007 visual inspection results.

Minor erosion rills on the northwest and northeast slopes appear to be self-armouring. A small 0.5 m diameter settlement depression was observed on the crest near Photo Location 8 on Figure F-1 (Photo SDA-8A in Appendix F2). A total of four tension cracks were observed at the SDA, including one previously observed crack and three new cracks. A previously observed tension crack on the northeast slope measures approximately 40 m in length from the northeast corner with a maximum width of about 2.5 cm (Photos SDA-3A, 3B and 4B in Appendix F2). A few parallel tension cracks have formed at the northeast end of this crack near the landfill toe (Photos SDA-4B in Appendix F2). A new tension crack on the southeast slope of the landfill measures approximately 20 m in length with a maximum width of about 1.5 cm (Photos SDA-2A and 2B in Appendix F2). A new 15 m long tension crack was observed in 2007 along the southeast crest with a maximum width of about 5 cm (Photos SDA-5C and 5D in Appendix F2). A hairline tension crack was observed in 2007 along the crest between Photo Locations 6 and 8. Tension cracks and adjacent slopes should be monitored during future inspections for increased size and movement, respectively.

LEGEND:

CM27 SURVEY CONTROL MONUMENT

- ♦ MONITORING WELL LOCATION
- ♣ THERMISTOR

145→ COORDINATE POINT

MONITORING SOIL SAMPLE LOCATION

APPROXIMATE PHOTOGRAPH LOCATION (2=SDA2)

--- TENSION CRACK

MONITORING WELLS									
NO.	COORD	FLEV							
NO.	NORTHING	ELEV. 8 962 43,6							
M₩-10	11 976	8 962	43,6						
M₩-11	12 034	9 096	35.1						
MW-12	12 078	9 053	34,9						
MW-13	12 114	8 976	35.3						

	THERMISTORS										
NO.	COORD	FLEV									
NO.	NORTHING	EASTING	ELEV.								
TA1	12 007.3	8 993.5	43.8								
TA2	12 016.8	9 037.1	43,4								
TA3	12 066.6	8 984.7	43.0								
TA4	12 035.0	8 953.8	44.2								

	COORDINATE POINTS										
NO.	COORD	ELEV.									
140.	NORTHING	ORTHING EASTING									
145	12 084.9	8 978.6	42.4								
146	12 042.4	9 045.3	42.2								
147	12 028.1	9 066.7	41.8								
148	11 971.0	9 026.8	44.1								
149	11 984.1	9 007.2	44,1								
150	12 030.0	8 941,0	44.1								

DATA SOURCES:

DRAWING BY UMA

CM-RD06.DWG

DATED: 02/04/10

DEW LINE CLEAN UP

LANDFILL MONITORING PLAN

CAM-M - CAMBRIDGE BAY

DCC TIER II SOIL DISPOSAL AREA
FIGURE CAM-M.6

0	5 10	10	20	30	Metre
	_				

SCALE 1:1000

REVIEWED BY: DL/AK
PREPARED BY: PW/NTO
DATE ISSUED: OCTOBER, 2007
PROJECT NO.: 70-517
FILE NAME: 70517 FIG F-1.dwg

REVISION:

Project: DEW Line Montioring Location: Cambridge Bay, Nunavut Client: Defence Construction Canada

D.C.C TIER II SOIL DISPOSAL AREA

Figure No.

F-1

The Collection of Landfill Monitoring Data at the CAM-M Cambridge Bay Site - 2007 Report APPENDIX F Tier II Disposal Facility

F.1.3 Soil Sampling

Soil samples were collected at the designated locations of MW-10, MW-11, MW-12 and MW-13. The sampling locations are shown on Figure F-1. At each location wherever possible two samples were collected at approximately 0.10 m below ground and between 0.40-0.50 m below ground. The photograph of each test pit for each location sampled is shown in Appendix F3.

No staining or free product was observed during the sampling event. There were no odours documented during the sampling event at the DCC Tier II Soil Disposal Facility.

Low concentrations of Total Petroleum Hydrocarbons (TPH) (88mg/kg) were detected in the shallow samples from soil sample MW-11. GLL does not consider the concentrations detected to be significant, however these will need to be evaluated in the context of the Landfill Monitoring Plan.

The analytical results and depths of samples are provided in Table F-1 and the laboratory certificate is provided in Appendix G.

Table F-1. CAM-M Cambridge Bay, Summary of 2007 Soil Analysis - Tier II Soil Disposal Facility

		Domáh	Arconio	Cadmium	Chromium	Cabalt	Campar	Land	Maraumi	Nickel	Zinc	Petro	oleum Hyd	rocarbon	S	PCB Total
Sample Ident.	Sample Location	Depth	Arsenic	Cadmium	Chromium	Cobait	Copper	Lead	Mercury	Nickei	Zinc	TPH (C6-34)	C6-C10	C10-C16	C16-C34	Aroclors
		(m)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
Upgradient Samples	3															
CM-MW-10-1	MW-10	0.1	1.6	< 0.2	7	3	7	3.3	< 0.01	6	9	< 20				< 0.03
CM-15-1*	MW-10	0.1	1.6	< 0.2	8	3	7	3.5	< 0.01	6	9	< 20				< 0.03
CM-MW-10-2	MW-10	0.5	1.6	< 0.2	8	3	6	3.4	< 0.01	7	9	< 20				< 0.03
CM-15-2*	MW-10	0.5	1.6	< 0.2	8	3	6	3.5	< 0.01	6	9	24	< 5	< 80	< 250	< 0.03
Downgradient Samp	oles						_									
CM-MW-11-1	MW-11	0.1	0.5	< 0.2	3	3	8	1.8	< 0.01	4	13	88	< 5	< 80	< 250	< 0.03
CM-MW-11-2	MW-11	0.5	1.0	< 0.2	7	2	3	2.9	< 0.01	4	5	< 20				< 0.03
CM-MW-12-1	MW-12	0.1	1.3	< 0.2	8	5	10	4.2	< 0.01	9	11	< 20				< 0.03
CM-MW-12-2	MW-12	0.5	1.8	< 0.2	9	3	12	4.5	< 0.01	10	10	< 20				< 0.03
CM-MW-13-1	MW-13	0.1	1.6	< 0.2	5	2	7	4.3	0.04	5	21	< 20				< 0.03
CM-MW-13-2	MW-13	0.5	1.8	< 0.2	6	2	4	3.9	0.02	4	9	< 20				< 0.03

^{*} Denotes duplicate sample. (Further information located in Table 1 of main report,

Note: mg/kg = ug/g

The Collection of Landfill Monitoring Data at the CAM-M Cambridge Bay Site - 2007 Report APPENDIX F Tier II Disposal Facility

F.1.4 Groundwater

Groundwater measurements and monitor condition records were documented for observation wells MW-10, MW-11, MW-12 and MW-13. These well development records are located in Appendix F4. Generally the observation wells were in good condition. All wells contained a j-plug with the exception of MW-10, as there is insufficient clearance between the top of the pipe and the casing lid. GLL recommends that a slip-on cap be installed on MW-10 to prevent the influx of surface water. In each well, the bentonite seal had heaved up inside of the protective casing to an elevation parallel to, or above the top of the monitor pipe. To some of the bentonite around the monitor pipe was removed in order to sample the well without contamination. Ponded water was observed inside of the casing to an elevation above the top of the monitor pipe. There is potential for this water to enter the well during the year through any holes in the j-plug.

All observation monitors MW-10, MW-11, MW-12 and MW-13, were purged and sampled. The groundwater samples were analyzed for total concentration of inorganics, TPHs and PCBs. The results are presented in Table F-2 and the laboratory certificate is provided in Appendix G.

The groundwater samples collected at MW-12 contained concentrations that exceed the site condition standards in a potable groundwater source in Ontario for both Chromium and Nickel, however these values should be evaluated in the context of the DEW Line Monitoring Project. The average concentrations for Chromium and Nickel in the MW-12 samples were 0.184 and 0.174mg/L respectively compared to Ontario standards of 0.05 and 0.1mg/L for Chromium and Nickel respectively.

Table F-2. CAM-M Cambridge Bay, Summary of 2007 Groundwater Analysis - Tier II Soil Disposal Facility

Sample Ident.	Location	Groundwater Elevation	Arsenic	Cadmium	Chromiu m	Cobalt	Copper	Lead	Mercury	Nickel	Zinc	Petroleum Hydrocarbons				PCB Total
												TPH (C6-34)	C6-C10	C10-C16	C16-C34	Aroclors
		(masl)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)
Upgradient Samples																
CM-MW-10	MW-10	42.154	0.0007	0.00005	0.036	0.022	0.0057	< 0.0002	< 0.00002	0.124	0.017	< 0.1				< 0.0004
Downgradient Samples																
CM-MW-11	MW-11	33.915	0.0009	< 0.00004	0.0061	0.0016	0.0052	< 0.0002	< 0.00002	0.028	0.003	< 0.1				< 0.0004
CM-MW-12	MW-12	33.960	0.0011	0.00015	0.19	0.0075	0.0062	0.0003	< 0.00002	0.269	0.1	< 0.1				< 0.0004
CM-MW-15*	MW-12	33.960	0.0013	0.00007	0.141	0.005	0.0049	0.0031	< 0.00002	0.079	0.063	< 0.1				< 0.0004
CM-MW-13	MW-13	34.190	0.0007	0.00011	0.019	0.0022	0.0052	0.0014	< 0.00002	0.106	0.22	< 0.1				< 0.0004

^{*} Denotes duplicate sample. (Further information located in Table 1 of main report)
Note: mg/L = 1000 ug/L

The Collection of Landfill Monitoring Data at the CAM-M Cambridge Bay Site - 2007 Report APPENDIX F Tier II Disposal Facility

F.1.5 Thermal Monitoring

The manual readings taken from each thermistor from the DCC Tier II Soil Disposal Facility are provided in the maintenance records located in Appendix F5. The data downloaded from the data loggers spanned 2006 and 2007. The tabulated summary data from the thermistors for both 2006 and 2007 is located in Appendix F5. The graphs for the 2007 data for these thermistors are provided in Graphs 19 through 22, located in Appendix F6. The graphs for the 2006 data for these thermistors are provided in Graphs 23 through 26, located in Appendix F7.

GLL downloaded all thermistor data, reset the data loggers and replaced their batteries. A maintenance record was completed for each thermistor and is located in Appendix F5. A full download of the thermistor data loggers should be completed the summer of 2010.

Appendix F Attachments

- F1 Site Condition/Visual Inspection Records
- **F2** Geotechnical Inspection Photographic Records
- **F3** Monitoring Photographic Records
- **F4** Monitoring Well Development Records
- F5 Thermistor Data Tables 2007, 2006 & Maintenance Records
- **F6** Thermistor Graphs 2007
- F7 Thermistor Graphs 2006
- F8 Field Notes

Appendix F1

Site Condition/Visual Inspection Records

DEW LINE CLEANUP: POST-CONSTRUCTION - LANDFILL MONITORING VISUAL INSPECTION REPORT – DCC TIER II SOIL DISPOSAL AREA – PAGE 1 OF 2

SITE NAME:	Cambridge Bay CAM-M
LANDFILL DESIGNATION:	DCC Tier II Soil Disposal Area
DATE OF INSPECTION:	August 2007
DATE OF PREVIOUS INSPECTION:	August 2005
INSPECTED BY:	Darrin Johnson, P.Eng.
REPORT PREPARED BY:	Darrin Johnson, P.Eng.

VISUAL INSPECTION REPORT – DCC TIER II SOIL DISPOSAL AREA – PAGE 2 OF 2

Checklist Item	Present Yes/No	Location (Describe relative to landfill features)	Length	Width	Depth	Extent relative to Area of Landfill (%)	Description	Photographic Records (Photo number referenced in photo log and on figures)	Additional Comments/ Preliminary Stability Assessment
Settlement	Yes	Along crest near photo location 8	0.5 m	0.5 m	0.2 m	<1%	Small settlement depression	SDA 8A	Acceptable
Erosion	Minor	Northwest and northeast slopes					Shallow rills that appear to be self- armouring	SDA 7, 11B	Acceptable
Frost Action	No								
Animal Burrows	No								
Vegetation	Sparse						Tuffs of grass	SDA 2B, 8A	
Staining	No								
Vegetation Stress	No								
Seepage Points	No								
Debris Exposed	Yes	Southeast slope in two locations	0.3 m	0.3 m	N/A	<1%	Geotextile	SDA 2C	Acceptable
Presence/Condition – Monitoring Instruments	Good								
Features of Note.	Yes	Southeast slope and northeast crest	15 m, 20 m and 40 m	5 cm max.	10 cm max.	2,000 m2/ 15,000 m2 =13%	Tension cracks midslope and along crest	SDA 2A, 3A, 3B, 4B, 5C, 5D	Marginal
General							General	SDA 1, 4A, 5A, 5B, 6A, 6B, 8B, 9A, 9B, 10A, 10B, 11A, 11C, 12A, 12B, 13, 14	

PRELIMINARY STABILITY ASSESSMENT – DCC TIER II SOIL DISPOSAL AREA

Feature	Severity Rating	Extent
Settlement	Acceptable	Isolated
Erosion	Acceptable	Occasional
Frost Action	Not Observed	None
Staining	Not Observed	None
Vegetation Stress	Not Observed	None
Seepage/Ponded Water	Not Observed	None
Debris Exposed	Acceptable	Occasional
Tension Cracks	Marginal	Numerous
Overall Landfill Performance	Margir	ıal

Geotechnical Inspection Photographic Records

Photo SDA-1, Easting: 494380, Northing: 7669187, Direction: 315° D.C.C. Tier II Soil Disposal Area; southeast corner facing northwest Scale: photo placard dimensions are 29.4 cm wide by 27.5 cm in height

Photo SDA-2A, Easting: 494390, Northing: 7669207, Direction: 315° D.C.C. Tier II Soil Disposal Area; close-up of crack, max. width 1.5 cm Scale: photo placard dimensions are 29.4 cm wide by 27.5 cm in height

Photo SDA-2B, Easting: 494390, Northing: 7669207, Direction: 315° D.C.C. Tier II Soil Disposal Area; slope, facing northwest, sparse vegetation Scale: photo placard dimensions are 29.4 cm wide by 27.5 cm in height

Photo SDA-2C, Easting: 494390, Northing: 7669207, Direction: 315° D.C.C. Tier II Soil Disposal Area; exposed geotextile

Scale: field book dimensions are 29.5 cm wide by 20.0 cm in height

Photo SDA-3A, Easting: 494417, Northing: 7669235, Direction: 45° D.C.C. Tier II Soil Disposal Area; 40 m long crack, max. width 2.5 cm, max. depth 10 cm Scale: photo placard dimensions are 29.4 cm wide by 27.5 cm in height

Photo SDA-3B, Easting: 494417, Northing: 7669235, Direction: 45° D.C.C. Tier II Soil Disposal Area; close-up of crack

Scale: photo placard dimensions are 29.4 cm wide by 27.5 cm in height

Photo SDA-4A, Easting: 494431, Northing: 7669256, Direction: 200° D.C.C. Tier II Soil Disposal Area; north east corner facing south Scale: photo placard dimensions are 29.4 cm wide by 27.5 cm in height

Photo SDA-4B, Easting: 494431, Northing: 7669256, Direction: 200°

D.C.C. Tier II Soil Disposal Area; close-up of cracking at toe Scale: photo placard dimensions are 29.4 cm wide by 27.5 cm in height

Photo SDA-5A, Easting: 494413, Northing: 7669256, Direction: 200° D.C.C. Tier II Soil Disposal Area; view facing south along east crest Scale: photo placard dimensions are 29.4 cm wide by 27.5 cm in height

Photo SDA-5B, Easting: 494413, Northing: 7669256, Direction: 315° D.C.C. Tier II Soil Disposal Area; view facing west along north crest Scale: photo placard dimensions are 29.4 cm wide by 27.5 cm in height

Photo SDA-5C, Easting: 494413, Northing: 7669256, Direction: 315° D.C.C. Tier II Soil Disposal Area; close up of tension crack along north crest Scale: photo placard dimensions are 29.4 cm wide by 27.5 cm in height

Photo SDA-5D, Easting: 494431, Northing: 7669256, Direction: 315° D.C.C. Tier II Soil Disposal Area; west end of crack, max. width 5 cm, max. depth 10 cm Scale: photo placard dimensions are 29.4 cm wide by 27.5 cm in height

Photo SDA-6A, Easting: 494388, Northing: 7669274, Direction: 315° D.C.C. Tier II Soil Disposal Area; view facing west along crest Scale: photo placard dimensions are 29.4 cm wide by 27.5 cm in height

Photo SDA-6B, Easting: 494388, Northing: 7669274, Direction: 45° D.C.C. Tier II Soil Disposal Area; view facing north down slope Scale: photo placard dimensions are 29.4 cm wide by 27.5 cm in height

Photo SDA-7, Easting: 494388, Northing: 7669325, Direction: 225° D.C.C. Tier II Soil Disposal Area; view of north slope Scale: photo placard dimensions are 29.4 cm wide by 27.5 cm in height

Photo SDA-8A, Easting: 494371, Northing: 7669282, Direction: 315° D.C.C. Tier II Soil Disposal Area; small settlement area at crest, 0.5 m diameter, 0.2 m deep Scale: photo placard dimensions are 29.4 cm wide by 27.5 cm in height

Photo SDA-8B, Easting: 494371, Northing: 7669282, Direction: 315° D.C.C. Tier II Soil Disposal Area; west of settlement area facing east Scale: photo placard dimensions are 29.4 cm wide by 27.5 cm in height

Photo SDA-9A, Easting: 494332, Northing: 7669312, Direction: 45° D.C.C. Tier II Soil Disposal Area; view facing northeast along west crest Scale: photo placard dimensions are 29.4 cm wide by 27.5 cm in height

Photo SDA-9B, Easting: 494332, Northing: 7669312, Direction: 225° D.C.C. Tier II Soil Disposal Area; view facing southwest along west crest

Scale: photo placard dimensions are 29.4 cm wide by 27.5 cm in height

Photo SDA-10A, Easting: 494327, Northing: 7669340, Direction: 135° D.C.C. Tier II Soil Disposal Area; view facing east along north slope Scale: photo placard dimensions are 29.4 cm wide by 27.5 cm in height

Photo SDA-10B, Easting: 494327, Northing: 7669340, Direction: 225°

D.C.C. Tier II Soil Disposal Area; view facing south along west slope Scale: photo placard dimensions are 29.4 cm wide by 27.5 cm in height

Photo SDA-11A, Easting: 494300, Northing: 7669297, Direction: 60° D.C.C. Tier II Soil Disposal Area; view facing northeast Scale: photo placard dimensions are 29.4 cm wide by 27.5 cm in height

Photo SDA-11B, Easting: 494300, Northing: 7669297, Direction: 110° D.C.C. Tier II Soil Disposal Area; view facing east, minor erosion rills Scale: photo placard dimensions are 29.4 cm wide by 27.5 cm in height

Photo SDA-11C, Easting: 494300, Northing: 7669297, Direction: 160° D.C.C. Tier II Soil Disposal Area; view facing southeast Scale: photo placard dimensions are 29.4 cm wide by 27.5 cm in height

Photo SDA-12A, Easting: 494294, Northing: 7669271, Direction: 315° D.C.C. Tier II Soil Disposal Area; view facing northwest along west slope Scale: photo placard dimensions are 29.4 cm wide by 27.5 cm in height

Photo SDA-12B, Easting: 494294, Northing: 7669271, Direction: 70° D.C.C. Tier II Soil Disposal Area; view facing northeast along south slope Scale: photo placard dimensions are 29.4 cm wide by 27.5 cm in height

Photo SDA-13, Easting: 494308, Northing: 7669250, Direction: 0° D.C.C. Tier II Soil Disposal Area; view facing north Scale: photo placard dimensions are 29.4 cm wide by 27.5 cm in height

Photo SDA-14, Easting: 494345, Northing: 7669257, Direction: 90° D.C.C. Tier II Soil Disposal Area; central facing east Scale: photo placard dimensions are 29.4 cm wide by 27.5 cm in height

Monitoring Photographic Records

Test pit CM-MW-10. Samples CM-MW-10-1, CM-MW-10-2, CM-15-1 (Duplicate of CM-MW-10-1) and CM-15-2 (Duplicate of CM-MW-10-2) collected. Samples with identification numbers ending in "1" (ex. CM-MW-10-1) collected at 0-10cm and samples with identification numbers ending in "2" collected at 40-50cm.

Test Pit CM-MW-11. Samples CM-MW-11-1 and CM-MW-11-2 collected.

Test pit CM-MW-12. Samples CM-MW-12-1 and CM-MW-12-2 collected.

Test Pit CM-MW-13. Samples CM-MW-13-1 and CM-MW-13-2 collected.

Monitoring well MW-10 (Upgradient). Sample CM-MW-10.

Monitoring well MW-11. Sample CM-MW-11 collected.

Monitoring well MW-12. Samples CM-MW-12 and CM-MW-15 (Duplicate) collected.

Monitoring well MW-13. Sample CM-MW-13 collected.

Vertical thermistor TA-1.

Vertical thermistor TA-2.

Vertical thermistor TA-3.

Vertical thermistor TA-4.

Monitoring Well Development Records

Monitoring Well Observations (MW-10)

Development of Monitoring Wells (2007)								
Site Name:	CAM-M							
Date of Sampling Event:	17-Aug-07	Time: 8:50						
Names of Samplers:	Ken Boldt							
Landfill Name:	Tier II Soil Di	sposal Facility						
Monitoring Well ID:	MW-10							
Sample Number:	CM-MW-10							
Condition of Well:	Good, no j-plu	g, bentonite swollen over TOP						
Measured Data								
Well height above ground=	6.4							
Diameter of well (cm)=	5							
Depth of installation (cm)=	350	From ground surface						
Length screened section (cm)=	200							
Depth to top of screen=	50	From ground surface						
Depth to water surface (cm)=	151	Method: Interface meter						
Static water level (cm)=	144.6	From ground surface						
Depth to bottom (cm)=	160	Evidence of sludge or siltation: no						
Depth of water (cm)=	9							
Well volume of water (mL)=	176.71							
Free product thickness (mm)=	N/A	Method: Interface meter						
Purging: (Y/N)	Y	Procedure/Equipment: Peristaltic Pump, LDPE tubing						
Volume Purged Water (L)=	1							
Decontamination required: (Y/N)	Y	Notes:						
Number washes:	1							
Number rinses:	1							
pH=	7.07							
Conductivity (uS/cm)=	5060							
Temperature (degC)=	2.2							
n/a=not applicable	1							

Monitoring Well Observations (MW-11)

	Development of Monitoring Wells (2007)								
Site Name:	CAM-M								
Date of Sampling Event:	17-Aug-07	Time: 13:20							
Names of Samplers:	Ken Boldt								
Landfill Name:	Tier II Soil D	isposal Facility							
Monitoring Well ID:	MW-11								
Sample Number:	CM-MW-11								
Condition of Well:	Good, benton	ite over TOP							
Measured Data									
Well height above ground (cm)=	14								
Diameter of well (cm)=	5								
Depth of installation (cm)=	350	From ground surface							
Length screened section (cm)=	200	Profit ground surface							
Depth to top of screen (cm)=	50	From ground surface							
Deput to top of screen (cm)=	30	Profit ground surface							
Depth to water surface (cm)=	132.5	Method: Interface meter							
Static water level (cm)=	118.5	From ground surface							
Depth to bottom (cm)=	142.5	Evidence of sludge or siltation: no							
Depth of water (cm)=	10								
Well volume of water (mL)=	196.35								
wen volume of water (mE)=	170.55								
Free product thickness (mm)=	N/A	Method: Interface meter							
	I								
Purging: (Y/N)	Y	Procedure/Equipment: Peristaltic Pump, LDPE Tubing							
Volume Purged Water (L)=	1								
Decontamination required: (Y/N)	Y	Notes:							
Number washes:	1								
Number rinses:	1								
pH=	7.25								
Conductivity (uS/cm)=	3950								
Temperature (degC)=	1.8								
n/a=not applicable									

Monitoring Well Observations (MW-12)

	Develop	ment of Monitoring Wells (2007)
Site Name:	CAM-M	
Date of Sampling Event:	17-Aug-07	Time: 10:50
Names of Samplers:	Ken Boldt	
Landfill Name:	Tier II Soil Di	isposal Facility
Monitoring Well ID:	MW-12	
Sample Number:	CM-MW-12,	CM-MW-15 (Duplicate)
Condition of Well:	Good, Benton	ite welled up to TOP
Measured Data		
Well height above ground=	12	
Diameter of well (cm)=	5	
Depth of installation (cm)=	350	From ground surface
Length screened section (cm)=	200	
Depth to top of screen=	50	From ground surface
Depth to water surface (cm)=	106	Method: Interface meter
Static water level (cm)=	94	From ground surface
Depth to bottom (cm)=	136	Evidence of sludge or siltation: no
Depth of water (cm)=	30	
Well volume of water (mL)=	589.05	
wen volume of water (IIIL)=	369.03	
Free product thickness (mm)=	N/A	Method: Interface meter
Purging: (Y/N)	Y	Procedure/Equipment: Peristaltic Pump, LDPE Tubing
Volume Purged Water (L)=	2	
Decontamination required: (Y/N)	Y	Notes:
Number washes:	1	
Number rinses:	1	
pH=	7.09	
Conductivity (uS/cm)=	3830	
Temperature (degC)=	2	
n/a-not applicable	•	

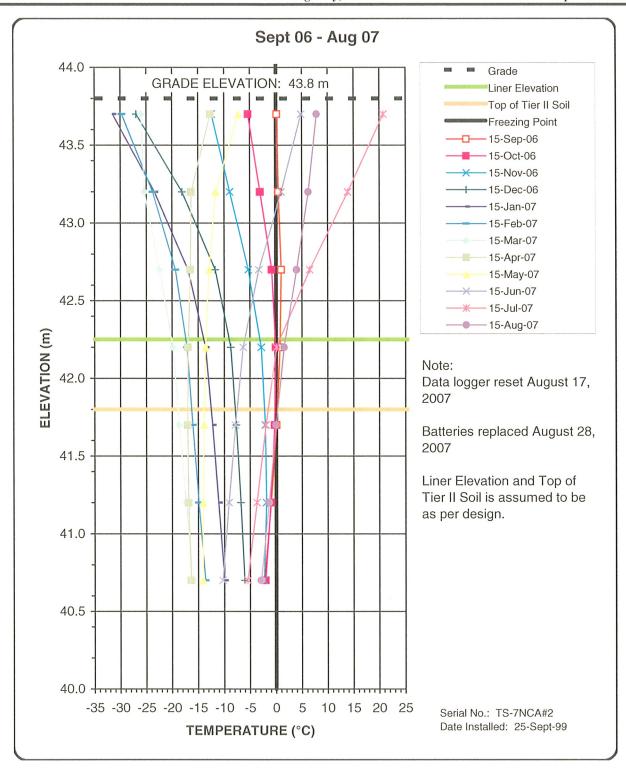
Monitoring Well Observations (MW-13)

	Develop	ment of Monitoring Wells (2007)
Site Name:	CAM-M	
Date of Sampling Event:	17-Aug-07	Time: 10:00
Names of Samplers:	Ken Boldt	
Landfill Name:	Tier II Soil D	isposal Facility
Monitoring Well ID:	MW-13	
Sample Number:	CM-MW-13	
Condition of Well:	Good, standin	ng water and bentonite over TOP
Measured Data		
Well height above ground=	5	
Diameter of well (cm)=	5	
Depth of installation (cm)=	350	From ground surface
Length screened section (cm)=	200	
Depth to top of screen=	50	From ground surface
Depth to water surface (cm)=	116	Method: Interface meter
Static water level (cm)=	111	From ground surface
Depth to bottom (cm)=	135	Evidence of sludge or siltation: no
Depth of water (cm)=	19	
Well volume of water (mL)=	373.06	
wen volume of water (IIIL)=	373.00	
Free product thickness (mm)=	N/A	Method: Interface meter
	1	
Purging: (Y/N)	Y	Procedure/Equipment: Peristaltic Pump, LDPE Tubing
Volume Purged Water (L)=	2	
Decontamination required: (Y/N)	Y	Notes:
Number washes:	1	
Number rinses:	1	
pH=	7.66	
Conductivity (uS/cm)=	2250	
Temperature (degC)=	1.5	

Thermistor Data Tables 2007, 2006 & Maintenance Records

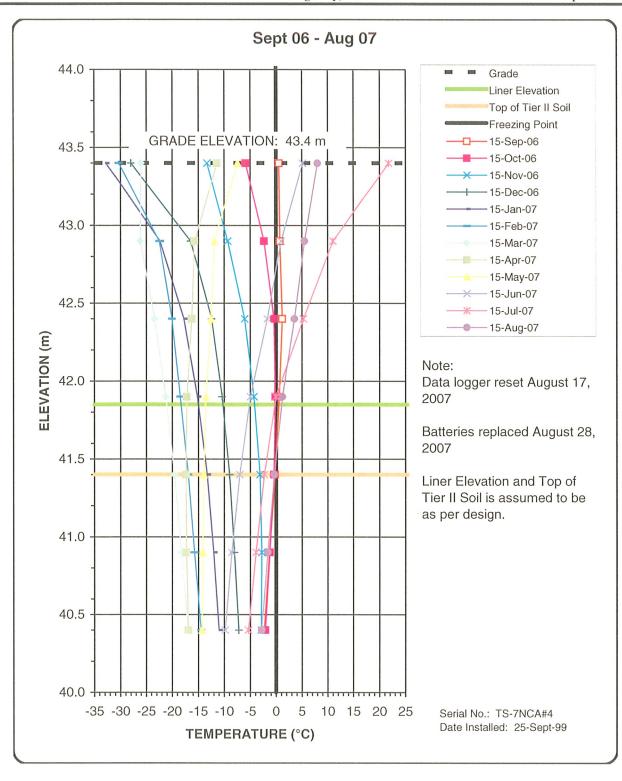
Contarcto	or Name:	Gartner Lee Li	imited		Insp	pection Date: 17-Aug-0	7	
Prepared		Ken Boldt						
	or Informatio	CAM-M	Thormist	ar Lagation		Tier II Disposal Facili	1,,	
Site Name	ne: or Number:		Inclination	or Location		Vertical	ity	
Install Da		25-Sep-99				18-Aug-05 Last Date	Event	17-Aug-07
	ates and Elev		N 12007		E	8994	Elev	43.8
Length of	f Cable (m)	7.5	Cable Lead Abo	ove Ground (m)	4.4	Nodal Points	7	
Datalogg	ger Serial #	21 - 807031				Cable Serial Number		TS-7CNA#2
Code	CAM-MTA1							
Thermist	tor Inspecti	<u>ion</u>						
_	_		Good	_	Nee	eds Maintenance		
	Casing		~					
	Cover		~					
	Data Logg	,er	~					
	Cable		V					
	Beads		V					
	Battery Ins	stallation Date	28-Aug-0)7				
	Battery Lev		Main	11.34 V		Aux	12.77 V	
	-							
Manual (G <u>round Ter</u>	nperature Read	ling <u>s</u>					
	Bead	ohms	Temp. (°C)]		Bead ohms	Ter	mp. (°C)
	1	11740	6.6]				
	2	12160	5.9]				
	3	13480	3.8					
	4	15170	1.5					
	5	16440	-0.1					
	6	17600	-1.4	_				
	7	19010	-2.9	_				
				_				
Obsania	tions and E	Year and Maint		_				
Opserva	tions and r	Proposed Mainte	<u>enance</u>					

Gartner Lee Li	mited		Inspection [Inspection Date: 17-Aug-07				
Ken Boldt								
n								
CAM-M	Thermisto	or Location	Tier II Disposal Facility					
TA2			Vertica	al				
						17-Aug-07		
						43.		
	Cable Lead Abo	ove Ground (III)				TS-7CNA#		
			Cable	ochai i tamboi		10 TOTAL		
-n								
<u>///</u>	Good		Needs Mair	itenance				
		_						
			-					
er	V							
	~							
	V							
Battery Installation Date		7						
Battery Levels								
ohms	Temp. (°C)		Bea	ad ohms	Те	mp. (ºC)		
11580	6.9							
12470	5.4							
13830	3.3]						
15390	1.1							
16770	-0.5							
17850	-1.7							
		1						
19010	-2.9							
	25-Sep-99 ation 7.5 22 - 807030 on allation Date els perature Read ohms 11580 12470 13830 15390 16770	CAM-M Thermistor TA2 Inclination 25-Sep-99 First Date ation N 12017 7.5 Cable Lead About 22 - 807030 Image: Comparison of the comparison of	CAM-M Thermistor Location TA2 Inclination 25-Sep-99 First Date Event ation N 12017 7.5 Cable Lead Above Ground (m) 22 - 807030 Good IV IV allation Date 28-Aug-07 els Main 11.34 V perature Readings Ohms Temp. (°C) 11580 6.9 12470 5.4 13830 3.3 15390 1.1 16770 -0.5 1.1	Thermistor Location Tier II TA2	CAM-M Thermistor Location Tier II Disposal Facility TA2 Inclination Vertical 25-Sep-99 First Date Event 18-Aug-05 Last Date at D	CAM-M TA2 Thermistor Location Inclination Tier II Disposal Facility Vertical 25-Sep-99 First Date Event 18-Aug-05 Last Date Event ation N 12017 E 9037 Elev 7.5 Cable Lead Above Ground (m) 4.4 Nodal Points 7 22 - 807030 Cable Serial Number On Needs Maintenance Image: Property of the property o		


Contarctor Name:	Gartner Lee Li	mited		Inspection Date	e: 17-Aug-0	7	
Prepared By:	Ken Boldt						
Thermistor Informati	on						
Site Name:	CAM-M	Thermisto	or Location	Tier II Dis	posal Facili	ity	
Thermistor Number:		Inclination		Vertical			
Install Date:	•				05 Last Date		17-Aug-07
Coordinates and Ele		N 12067 Cable Lead Abo		E 898 4.6 Nodal Poi		Elev 7	4:
Length of Cable (m) Datalogger Serial #	23 - 807025	Cable Lead Abo	ove Ground (III)		ial Number		TS-7CNA#
Code CAM-MTA3	20 00.020			Cable Co.	iai i tairiboi		10 101111
Thermistor Inspect	ion						
mennister mapeet	<u>1011</u>	Good	_	Needs Mainter	nance		
Casing		V					
Cover		V					
Data Logo	ier	V					
Cable	, - ·	<u></u>					
Beads		<u>v</u>					
	atallation Data		7				
Battery Installation Date		28-Aug-0	1				
Manual Ground Ter Bead	mperature Read ohms	ings Temp. (°C)]	Bead	ohms	Ter	np. (ºC)
1	10140	9.7					
2	12550	5.3	-				
3	13730	3.4	-				
4	15750	0.7					
5	16990	-0.7					
6	18140	-2.0					
7	19300	-3.1					
Observations and I	Proposed Mainte	enance					

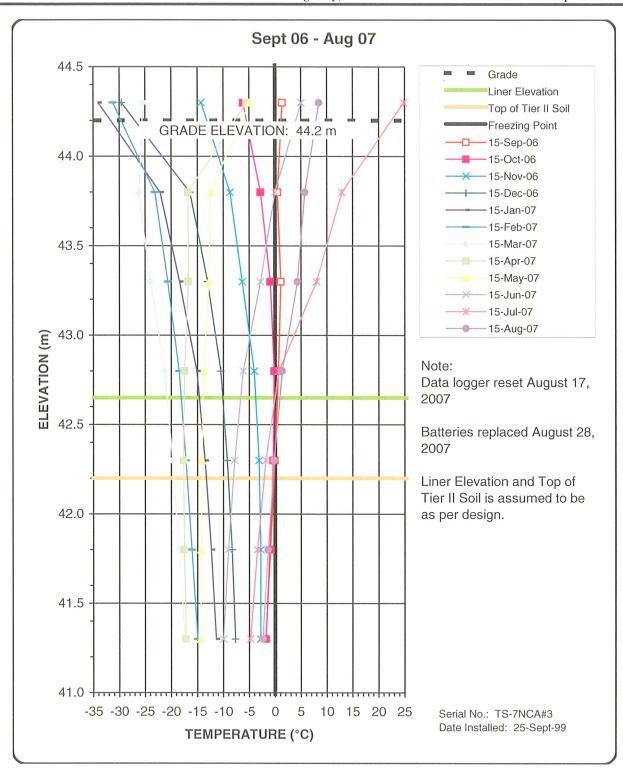
Contarctor Name:	Gartner Lee Li	imited		Inspection Date: 17-Aug-07					
Prepared By:	•								
Thermistor Informati	on								
Site Name:	CAM-M	Thermisto	or Location	Tier II D	isposal Faci	lity			
Thermistor Number:	TA4	Inclination	ı	Vertical					
nstall Date:	•						-05 Last Dat		17-Aug-0 44.
			<u> </u>			954			
Length of Cable (m) Datalogger Serial #		Cable Lead Abo	ove Grouna (m)	4.6 Nodal Po	oints erial Number	7	TS-7CNA#		
Code CAM-MTA4	24 - 007 027			Cable 3	enai Number		10-7014		
Thermister Incorpor	.i.a.m								
Thermistor Inspect	ion	Good		Needs Mainte	enance				
Casing		<u> </u>	=						
Cover		V							
Data Logo	ger	✓							
Cable		~							
Beads		~							
Battery In:	Battery Installation Date		7						
Battery Le	Battery Levels		11.34 V		Aux	13.02 V			
Manual Ground Ter Bead	ohms	remp. (°C)		Bead	l ohms	Те	mp. (ºC)		
1	10080	9.7							
2	12350	5.5							
3	13310	4.0							
4	15270	1.3							
5	16580	-0.3							
6	17580	-1.4							
7	18530	-2.4							
			J						
Observations and I	Proposed Mainte	<u>enance</u>							

Appendix F6


Thermistor Graphs 2007



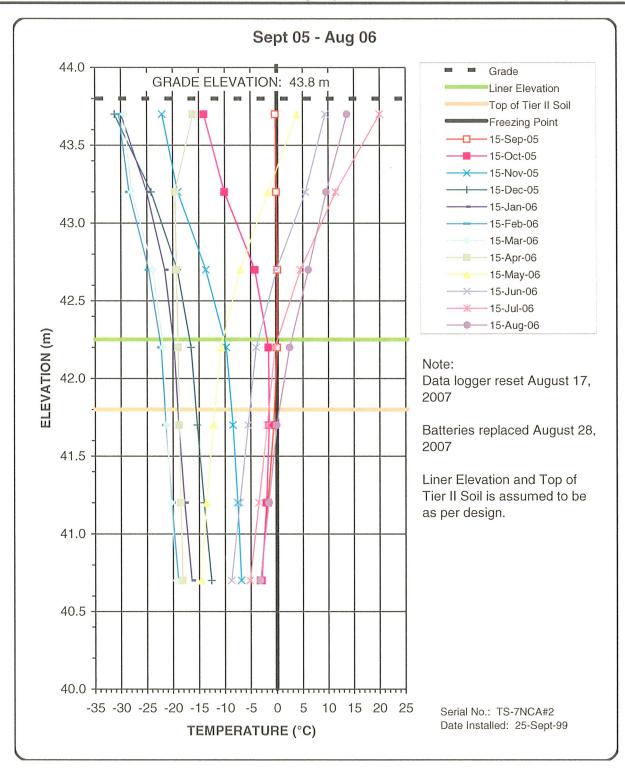
Graph 19 Ground Temperature Profile Tier II Soil Disposal Facility Vertical GTC TA-1


Gartner Lee Limited

Graph 20 Ground Temperature Profile Tier II Soil Disposal Facility Vertical GTC TA-2

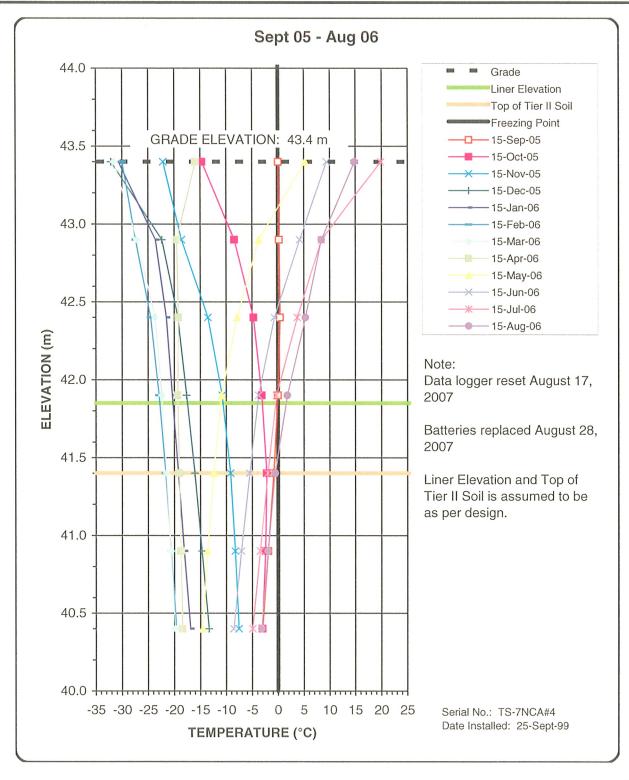
Gartner Lee Limited

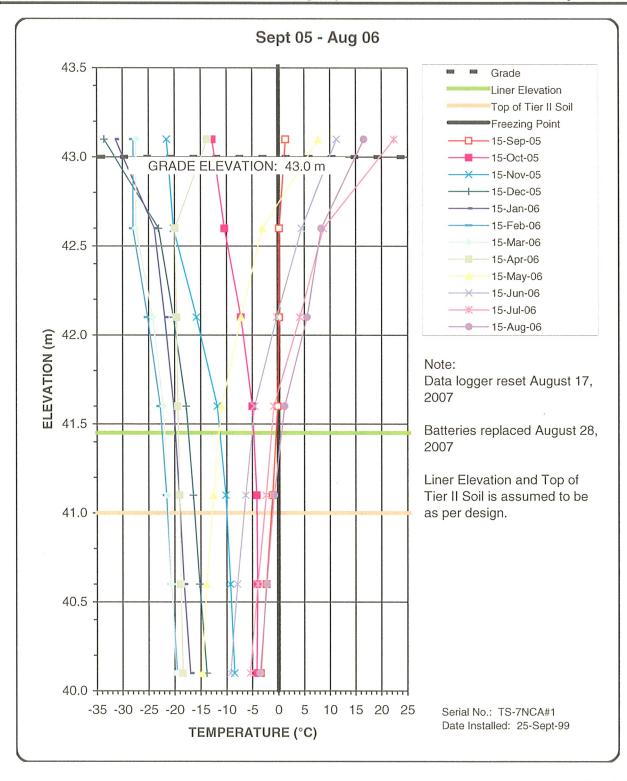
Graph 21 Ground Temperature Profile Tier II Soil Disposal Facility Vertical GTC TA-3



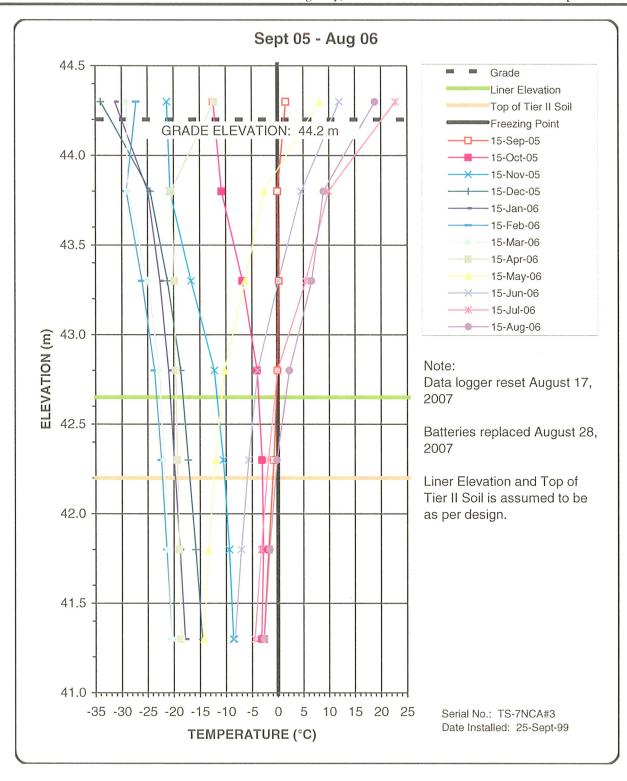
Graph 22 Ground Temperature Profile Tier II Soil Disposal Facility Vertical GTC TA-4

Appendix F7


Thermistor Graphs 2006



Graph 23 Ground Temperature Profile Tier II Soil Disposal Facility Vertical GTC TA-1



Graph 24 Ground Temperature Profile Tier II Soil Disposal Facility Vertical GTC TA-2

Graph 25 Ground Temperature Profile Tier II Soil Disposal Facility Vertical GTC TA-3

Graph 26 Ground Temperature Profile Tier II Soil Disposal Facility Vertical GTC TA-4

Appendix F8

Field Notes

	70 457
201	70
	al sine 17/03
	PLANTS IAD LOCATE FOR A OT
- MET GOD AND PERCY B	- PICKID UN KRISTALE JOS JR, & Tom - TOE JR. NOT AVAILABLE
	- ARTIVED AT DEC TUTE IL TOLL
AND WONT THROUGH	FRAGE AREA @ 8:30AM
	- TAILBATE JAFFIN MOTTING:
CAM-2 SIE VUIL	SRITURE BOARS AND GLOVE USE
-LOADUD SWPLET INTO BIN	
- TOOK INVENTION OF RYMNINING	22-4-10s
BOTTLUS & COULES CAIM	I lake - Untidee L
2006	50e Kooh a 577
- UMPTION GARBAGE FROM VAN	DCC TIED TI SOIL DISPOSAL AREA
PUT ICE PACK IN PRIVETOR	- WALLED LANDFILL CREST
- MANDE ORDURY UST FIRE TRIP	AND CRACKS OFSTRUCO
10 P1N/-2	dio
- WARRED UNITE 3 ID: DD PM	- PHOTO [=> 12W0494386, 264 9187
47 69	WAYPOINT 84 (SE CORNER)
Hours	-NO EROSION ON TWOFES
	ž
DD WED 7:00 - 6:00PM + 1 HR = 12HR	PNOTO 2 > 13W0494396,7669207
THINR 7:30-6:38 + 314RS = 14HR	WAYPOINT ORS (EAST STORE)
JOE JRY WOOD 9-12 & 1-6 = BHR'"	- CRACK ABOUT 200 LONG
THURS 12:30-6:30 = 6 HR	BOUT In From TOU
RUND WYD 9-6PM = 9HR	- only ABOUT 0.5 INCH WIDE
JUESR WED 1-6=5HR	- PHOTO 2n = CLOSENA OF GRACK
THAR 8-6:30 W OSAR WHICH = 1094R	- PHOTO 28 => FLOPE FACING NW
KRISTIALLE TAMP 9-6:30 JOSHR LUNCH = 9.5 HR	NO APPARENT SLOPE MSTABILITY
	OR EROSION, NO SISPINGE
	- COUPLE OF PLACET WITH
	EXPOSED GROTUNTINE CENTO 3

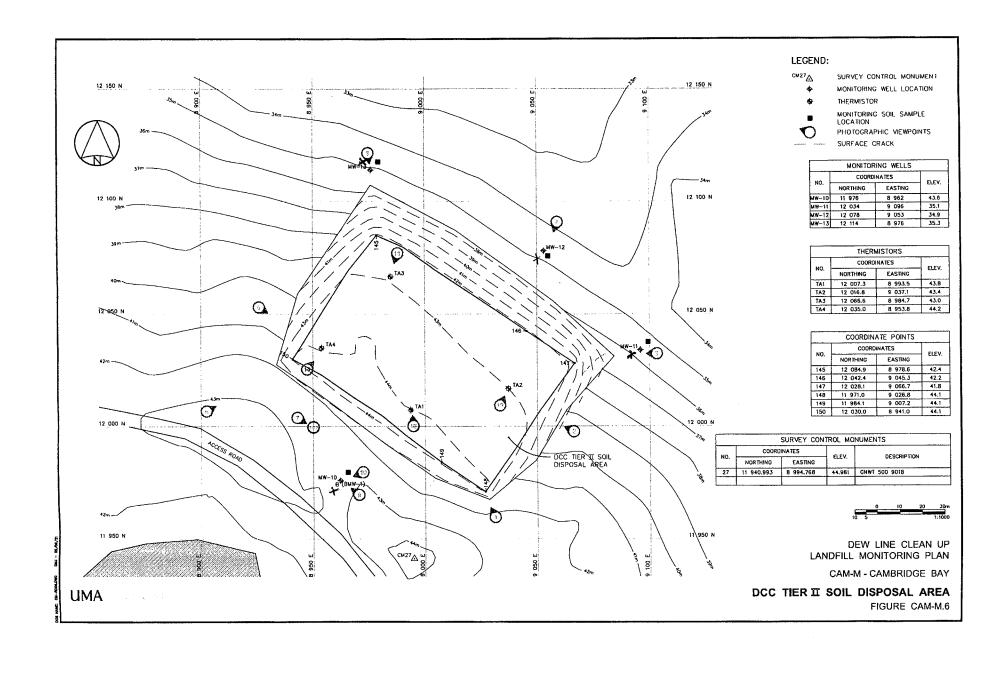
		(94)				•	•
15	400 5	=) [5U	049 4417	766	235		
V.	,	WATE	DINT .	196		-	-
	- []		CRACIL) NE		
		SLOPE	AGONT	1 INC	H W105	.)	
		ANO		INCHOI			
	- Ago	NT L	40m (DAG			
	- 19X7	1700	From		2 RNY/R		
٧ .	· All	246	MST J	1000	ro ·	·	
	ARO	IAT I	3m UP	SUPPE F	ran too	r. /	
	~ 2	PUPTOS	of co				
ſo	HOTO H) [3h	049-44	P31.7	669256		
	ľ	JAUPS	INT O	6 <u>7</u> ,		tune!	
	- Fran	n Na	CORN	N PA	ews Jour	b	
:-:·	-PUDIC				ornor	orth Pa	Ē.
	-PHOTO		=> C6	somp de	- CRACK	cific S	47 Lev
						upply (Corp.
P	1010 S=)	13000	14413	76692S	6	dio.	ylpply
+ + 1	: 7	WAYPE	1-V1 088	110 84		, ,	acific S
11,70	-PHON	JA =	> CACINE	: South	ALUNG BAST	a ry	Vorth Pacific Supply Corp
$i_{i_1} \in I$					NG NOPELL C		z
					Larellon		
	: c/	LACK O	aronc)	NURTH (LAST .		
	-1/21/31/3L	5, CRA	K EXTU	No 151	w Ran	Μ	
	NE	- Copen	en of	CRUTT			
~	MAX:	WW TH	2 Mc	H AND	f w. Obe	P	
	170FD	50 ⇒	END O	r crac	K (MAZL)		
			,				
le)	oto 6	=7[3W	049438	8,416	The state of the s		
	,	WAY	MINIT	189	W .	. ,	
			ONG TH			. —	<u></u>
4, 4					conficept		
*)	PHOTO	2 6B =)-FACING	NORTH	DONNOCOP	C	
				,			

					, 	nametralisment. School-section of
٠.			(23)	,	AUG.	17/0 7
				, [
	PHY	10 3 1 0	71300	49:438	8.76	6 9325
	(4	PHOTOS)	YAW	און וימס	090	-
, ,	1.	- PA	LANDEAN	nc os	NOR	TH Swot
-	<u>.</u>]	~~~	, cros	70 W 0	R SL	emp1~6
		-NO	SUPPA	GE DBS	זת ששעמם	TOE
	·	1 ,	,) .	1	,	
- / .	V°/3 D	TO 8-		·		1282
				Wr 09		· · · · · · · · · · · · · · · · · · ·
٠.	84	- JINK			an las	remont
			AT C	थ्टर १		
		WEST OF				THE PROPERTY OF THE PARTY OF TH
		PP KAR				
vei	. \	CRA	CK AL	one M	OST DF	NORTH
47 Le		/ 11 C	REST	, i - f		
Corp.				.17.		
torth Pacific Supply Corp.	1,118	to 9=	1/3W04	94532	766	7312
acrite					NW CO	
orth P						2 TOWN
~	1 951444	9B =	CACING	JOHTH A	LONG W	ST CREST
	10.1		12	(15	21112	1
	PH	10 10	=/15wa	49452	t, 1669	340
		4444	DWIT	2193 /N	W COZA	WONTH SLOPE
		10A =	MACH	R EUI	F. ALONG	WONTH SLOPE
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					WETT JUPE
					IDWNESS	
		A	re su	K ARI	POURING	
	10.1	<u> </u>	2 12	f-	844020	
	<u> </u>	TD /1 =	13009	94300	1669 4	7
·		WA	12012	094/1	JUZZ TV	OPTO TUE)
	- /3	PHO TO 1	IA =) [MCING.	NOPT	1 SAIL
		1,	18. F) F	ACING.	ENS DIC M	was certian)
		//	(2) H	9cmb 5	OUTH CAS	Γ

•

PHOTO 12=13/0194294, 7669271
PHOTO []=]3201971474, \$66927
120 FACING NIM ALONG WHITE INFE
12:30 FACING NE ALONG JONEH TYPE
17-13 Tracity 100 Health James 1-10
PHOTO13 => 13W0494308 7669250
WAYPOINT 96 (FACING WORTH)
LAWPFILL COURT SURFACE
15 FLAT WITH NO FLOW OF
157 FLUMONT, NO PONDING NO
EROSIA
हा स्वाप्त करा है । स्वाप्त करा है
PHOTO 14 313 WOY 94345, 7669257
- WAYPOINT NOT? / CENTRAL FACING DASTI
-NO SETTIMENT UR PONDE WARRE
~ FINISHODI. NICETTON: @ 10:15AM = \$
- 1con 4. Too In. @ MW-13
- DJ: GT KRISTALUTIC HER WITH GW MANTIOPING
- C
- SAMPLED MIN-ID UNTIL /2:15PM
- CUNCHI UNTIL 12:45PM
- BACK AT DCC TETR IT SOLL ANDA
TO SAMPLY MW-11 C 1:10AM
- CONNUTED DATA FROM 2 : THERMISTORY
BYTTORS LUNCH AND Z AFTER
LUNCH.
- MET TIM AT OFFICE & 3:00PM
- TOUSTR & KRISTALET @ OFFICE @ 3:30PM

-) .	(25) AUG. 16/07
	-	7,743,870,
1	-	- STARTISD ARPORT LANDAU
,	· ·	in prevenou AT 4'00PM
 <u>\</u>	-	11 - DROVE TO WED BYO!
	•	
	•	PHOTO 1 7 194501, 7666876
<u> </u>		RPO TAJOGANTI OPR
		(LA =) FAGNIG FAST
		IB => FAGNO LYEST
		- COSPE ROCK FUL
		-NO UXPOSED WASTE OBJURIED
No.		-MO GROSIAN GRICKUMO -> VERY CHARLY E
rth Pa	· ·	-NO SCUMPING OR CLACKS OBECOWOO
offic Su	47 Leve	-NO-NO-NEWICENT SELLEMENT
°acific Supply Corp.	Corp.	- SUME MINOR I LANGULATIONS
orp. 4	álddn.	
, 47 Leve	vorth Pacific Supply Corp.	MOTO 2 => 492/39, 7666825
<u>u</u> ,	orth P	Car. 16m, WAYPOINT 1999
	z ,	- Any MINON PROJECT SILE
		Anouru 6
:		- SPARCE VEGETATION CONSISTING
		DE GRASS AND HORAS
		JA = FACING UNIT
1 .	*******	ABOT FAGNETIME
	-	
ļ		PHOTO 3 = 492866, 7666809
		12 WAYARINT 1/00
,		- NO ENOSION OR INSTABILITY
		OBJERVED
		FACINO WST
		3n => FACING WAST
		-NO SKEPAGE OR STAINING OBSORVED


•

Ay 16,07				
MW-6				
Wester	ever top of	pipe		
	e shelled ou			
Pidore (524 of well	-H-wite	ria :	<u> </u>
· · · · · · · · · · · · · · · · · · ·	collected	1	1	
	2x 1000 mL a			
	fresh rate, pl		nt arbei	- glass
tol L	×250,ml pla	stic	-	
Soil Su			1 01	MANAGAM TRANSPORTED TO THE TRANS
1446	difford sen		E .	
#1\$ · .	1-1 - west o 1-2 - west o		1	
401 I	sample locati		1	
58:	wise circle a			
	MW-GB			
	MW-G			
MW 6AX	Ö		או	
D . (L >41	, A	
Picture	025 of Test 026 of Test	PIT MU	6A 63	· · · · · · · · · · · · · · · · · · ·
···lue	UCO OF 1851	f 1 1 100	W.J.	-
- 1 · · · · · · · · · · · · · · · · · ·			i i	

Friday Aug 17,2007	
Tier II land fill	
Surplers : Ken Bolo	4
Chr stale	
Noe Jr.	
Tom (Bear Monifor)
· weather: Cold 4-1	5°C, windy, overcast
MW-10	
	bentonité suoilen
Ja Lange of Open	
to top of pipe, n	, , , , , ,
Picture # 027 0	
Sample collected	
1×250 ml amber	
1x 250 ml plastic	
ZX 1000 in Camber	qlass
Soil surples	
CMMW-10-1 @	~ //
	OF TO COM
CMMV-10-2 @	
CM-15-1 Duplico	te @ 0-10cm
CM-15-2 Duplica	te @ 10-50cm
Picture 028 of +	
· · · · · · · · · · · · · · · · · · ·	<u> </u>

12 116 125 Aug 17,07 MW-13 13 Ay 17,07 Condition good standing water and Supple collected bentonite over TOP CMMW-12-1 CM MW-12-2 Simple collected 1 x 250 int onber glass Picture 031 of test pit 1x 250 ml plustic 1 x 1000 ml omber glass TAZ Thermistor (Vertical Condition good not enough water to collect any more sample for TPH analysis Picture 033 et TAZ Picture 030 of MW-13 TAI Thermistor (Vertical) Soil simple CMMW-13-1 @ 0-10cm Condition good CMMW-13-2 @40-50cm Picture 034 of TAI Picture ozer of test pit MW-11 MW-12 Condition is good Condition is good Boutonite over top of pipe Bentonite to the TOP Picture 035 of MW-11 Collected Sample CMMW-12, CMMW-15(DOp) Suple collected Picture 032 of MW-12 1 x 250 ml aber glass 1 x 250 ml plastic 2 x 250 ml comber glass Picture 039 of broken bottle, was oropped after completion by helper by accordent

14	
Aug 17,07	
MW-11 Soil Sompling	
MW-11 Soil Surpling Reture 038 of test pit	
Simple collected	
CMMW-11-1 @ 0-10 cm	~
CMM W-11-2 @ 40-50 cm	~ .
TA3 Thermister (Vestic	al)
Conelition is good Pictore 036 of TA3	
Pictore 036 of TA3	
TAH Thermistor (Vertica	
Condition is good	
Picture 037 of TA4	
Air Strip Landfill	
Sumple So.l	
CM-13-1 @ 0-10 cm	
CM-13-2 @ 40-50cm	
highly organic soil wift	muny stones
Picture 040 of test pit	
UTM W0492703	
173 7666796	
SV I I I I I I I I I I I I I I I I I I I	· +

C'. N.	CARENE		
Site Name:	CAM-M	Time	Direct 111
Date of Sampling Event:	17-Aug-07	Time:	8:50 AM
Names of Samplers:	17-Aug-07 Ken Boldt		
Landfill Name:	DCC Tier II Soil	Disposal Facility	
Monitoring Well ID:	BMW-1 (MW-10		
Sample Number:	CMMW-10		
Condition of Well:		y bentonite swellon to	DP
Condition of wear	Good, no j-plu	g, benjonge swellen ic	<u> </u>
Measured Data	r		
	,		
Well pipe height above ground (cm)=	6.4		
Diameter of well (cm)=	5		
Depth of well installation (cm)=	350		
(from ground surface)			
Length screened section (cm)=	200		
Depth to top of screen (cm)=	50		
(from ground surface)	J 00		
	1	26	T .
Depth to water surface (cm)=	151	Measurement method: (meter, tape, etc)	interface
(from top of pipe)		(meter, tape, etc)	/III or ruce
Static water level (cm)= (below ground surface)	144.6		
Measured well refusal depth (cm)=		Evidence of sludge or siltation:	
(i.e. depth to frozen ground)	160		Λο
Thickness of water column (cm)=	9		
Static volume of water in well (mL)=	176		1,000
State volume of water in weil (init)	170	1	<u> </u>
T		Measurement method:	1 , 2
Free product thickness (mm)=	I N/A	(meter, paste, etc)	interface
	1 / /		
Purging: (Y/N)		Purging/Sampling Equipment:	Peristallic Dom
Volume Purged Water=	1 1		LDPE to bing
	l L		LIVI C 40 Bing
Decontamination required: (Y/N)	1 1		
Number washes:	\	10.1	
Number rinses:	1		
Final pH=	7.07		
Final Conductivity (uS/cm)=			
Final Temperature (degC)=	7 - 0 0		
Time Temperature (dege)	<u> </u>	<u> </u>	

	043536		
Site Name:	CAM-M	Time:	120 PM
Date of Sampling Event:	17-Aug-07 Ken Boldt	Time.	1:20 97-1
Names of Samplers:	Ken Boldt		
Landfill Name:	DCC Tier II Soil	Disposal Facility	
Monitoring Well ID:	MW-11		
Sample Number:	CM-MW-11		
Condition of Well:	Good, bentonit	e to TOP	
) =====================================		
Measured Data			
Well pipe height above ground (cm)=	14		
Diameter of well (cm)=	5		
Depth of well installation (cm)=			
(from ground surface)	350		
Length screened section (cm)=	200		
Depth to top of screen (cm)=	80		
(from ground surface)			
			Γ
Depth to water surface (cm)=	122 5	Measurement method:	ا الله الله الله الله الله الله الله ال
(from top of pipe)	/32.5	(meter, tape, etc)	interface
Static water level (cm)=	118.5		
(below ground surface)		Evidence of sludge or siltation:	
Measured well refusal depth (cm)= (i.e. depth to frozen ground)	142.5	Direction of straight	No
(i.e. deput to frozen ground)			
Thickness of water column (cm)=	10		
Static volume of water in well (mL)=			
Stade volume of water in wei (in2)	1 /10		
Free product thickness (mm)=		Measurement method:	1.1.6
Free product truckness (mm)	n/a	(meter, paste, etc)	interface
	<i></i>		
Purging: (Y/N)	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Purging/Sampling Equipment:	Peristatic Pur
Volume Purged Water=			LOPE TUBIAS
Decontamination required: (Y/N)			
Number washes:			
Number rinses:	4		
Nulliper Hilses.	1 1		
T: 1 II-	172		
Final pH=			
Final Conductivity (uS/cm)=			
Final Temperature (degC)=	1.8		

Site Name:	CAM-M		
Date of Sampling Event:	17-Aug-07	Time:	10:50 AM
Names of Samplers:	17-Aug-07 Ken Boldt		
	11000 100 1001		
Landfill Name:	DCC Tier II Soil	Disposal Facility	
Monitoring Well ID:	MW-12	Disposit Fuerts	
Sample Number:	1/1/1/-12	1-15 (Dualicate)	
Condition of Well:	PW 12 7 PW	1-15 (Duplicate) life welled up to TOP	
Condition of well.	Good, Denton	1. te welled up to 101	
Measured Data			
Well pipe height above ground (cm)=	12		
Diameter of well (cm)=	5		
Depth of well installation (cm)=	350		
(from ground surface) Length screened section (cm)=	200		
Depth to top of screen (cm)=	200		
(from ground surface)	50		
8.00.00			
Depth to water surface (cm)=	_ ,	Measurement method:	
(from top of pipe)	106	(meter, tape, etc)	Into face Meter
Static water level (cm)=	G, I		
(below ground surface)	94		
Measured well refusal depth (cm)=	136	Evidence of sludge or siltation:	No
(i.e. depth to frozen ground)			L
Thickness of water column (cm)=			<u> </u>
	30		
Static volume of water in well (mL)=	589		
E	1 1/2	Measurement method:	<u> </u>
Free product thickness (mm)=	N/A	(meter, paste, etc)	Interface Meter
Purging: (Y/N)	T	Purging/Sampling Equipment:	D Porno
Volume Purged Water=	26	0 0 1 0 11	INPC TO La
Decontamination required: (Y/N)	Y		CALE TORE
Number washes:	<u> </u>		
Number rinses:	1		
Number finses:	,		
77. 1 77	1 .		
Final pH=	7,09		
Final Conductivity (uS/cm)=	3830		
Final Temperature (degC)=	2.6		

01 27			
Site Name:	CAM-M		
Date of Sampling Event:	17-Aug-07	Time:	10:200 AM
Names of Samplers:	17-Aug-07 Ken Boldt		•

Landfill Name:	DCC Tier II Soil	Disposal Facility	
Monitoring Well ID:	MW-13		
Sample Number:	CMMW-13		
Condition of Well:	C 1 (1)	water and bentonite ove	TOP
	107000 Standing	Thater and bentonite ove	IØ . I . O)
Measured Data			
Well pipe height above ground (cm)=	5		
Diameter of well (cm)=	5		
Depth of well installation (cm)=	350		
(from ground surface) Length screened section (cm)=			
Depth to top of screen (cm)=	200		
(from ground surface)	50		
(Hom ground ourlace)			
Depth to water surface (cm)=	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Measurement method:	
(from top of pipe)	116	(meter, tape, etc)	Interface
Static water level (cm)=	111		
(below ground surface)	111		
Measured well refusal depth (cm)=	135	Evidence of sludge or siltation:	l no
(i.e. depth to frozen ground)	(3)	<u> </u>	1.0
	1		1
Thickness of water column (cm)=	19		
Static volume of water in well (mL)=	373		
Free product thickness (mm)=	a 1/2	Measurement method:	1110
	19/7	(meter, paste, etc)	Interface
		I D : /6 1: D :	I
Purging: (Y/N)	- Y	Purging/Sampling Equipment:	P. Porp
Volume Purged Water=	2 L		LDPE Tube
Decontamination required: (Y/N)	Y		
Number washes:	١		
Number rinses:	1		
Final pH=	7,66		
Final Conductivity (uS/cm)=	2250		
Final Temperature (degC)=			
Thiat Temperature (dege)	1.5		L

Thermal Monitoring

Ground Temperature Annual Maintenance Report Inspection Date: 17- Aug - 07 Contractor Name: Ken Boldt Prepared By: Thermistor Information Tier II Disposal Facility Site Name: CAM-M Thermistor Location: Thermistor Number: TA-1 Inclination: 17/08/05 Vertical 17/08/07 16-Aug-05 Install Date: 25-Sept-99 First Date Event: 11-Aug-01 Last Date Event: Coordinates and Elevation N: 12007 E: 8994 43.8 Elev: Length of Cable (m): 7.5 Cable Lead Above Ground (m): 4.4 Nodal Points: Datalogger Serial #: 21-807031 Cable Serial Number: TS-7CNA#2 Thermistor Inspection Needs Maintenance Good Casing \square \square Cover \Box Data Logger Cable Beads Battery Installation Date 12.77 **Battery Levels** Main 11.34 Aux Manual Ground Bead Temperature Readings Ohms Temp. (°C) Bead Bead Ohms Temp. (°C) 11.74 1 6.6293 9 12.16 6.0074 2 10 13,48 3.8913 3 11 15.17 4 1.5128 12 0.0414 5 16.44 13 - 1.3689 17.60 6 14 -2.8298 19.01 7 15 8 16 Observations and Proposed Maintenance

Thermal Monitoring

	Ground Temperature Annual Maintenance Report						
	Name: GLL Inspection Date: 17-Aug - 67						
Prepared By: Ken Bold							
Thermistor Information							
Site Name: CAM-M		Thermistor Location: Tier II Disposal Facility					
Thermistor Number: TA	A-2	Inclination: 12/08/05				17/08/07	
Install Date: 25-Sept-9		Date Event:	41-Aug-01	Last [Date Event:		
Coordinates and Elevatio			E: 9037		Elev:	43.4	
		ead Above C		.4	Nodal Poin		
2 4.46 3 3 4 7 4 4 1 1 1	22-807030		Cable Serial N	umber:	TS-7CNA	\#4	
Code CAM-MVT1							
Thermistor Inspection							
,orranoto. mopositori	Good		Needs	Mainten	ance		
Casing	Ø						
Cover	□ ☑						
Data Logger							
Cable	[편 [편						
Beads	v						
Battery Installation Date							
Battery Levels	Main ioc%	11.34 V	Aux	90%	12.65V		
Manual Ground Bead Te	mperature Readin	gs					
Bead Ohms	Temp. (°C)		Bead	Ohm	s	Гетр. (°С)	
1 11.5%	6.8718		9				
2 12.47	5.4708		10				
3 13,83	3,4118		11				
4 15,39	1.2487	_	12				
5 16.77	-0.3337		13				
6 17.85	-1-6175		14				
7 19.01	-2.829B	_	15				
8			16				
Observations and Propos	sed Maintenance						

Thermal Monitoring

Ground Temperature Annual Maintenance Report						
Contractor Name: GLL Inspection Date: 17-Aug-07						
Prepared By: Ken	Boldt				· J	
Thermistor Information						
Site Name:	САМ-М	Thermistor Loc	ation: Tie	r II Disp	osal Facility	,
Thermistor Number:	TA-3		7/08/05 Ve		our comey	17/08/07
Install Date: 25-Sep	t-99 First D		// 0 5/0 / 1 - 5 1-Aug-01		Date Event:	16-Aug-05
Coordinates and Eleva		E			Elev:	43
Length of Cable (m):		ead Above Grou		.6	Nodal Poin	
Datalogger Serial #:	23-807025		ble Serial N		TS-7CNA	
Code CAM-MVT1					.0011	W 1
T						
Thermistor Inspection						
0	Good		Needs	Mainten	ance	
Casing			□ -			
Cover	널		_			
Data Logger			□ -			
Cable	ন ন				 -	
Beads	√					
Battery Installation Date	***************************************					
Battery Levels	Main <u>/∞% //.</u>	34 V	Aux 🧐	16 %	12.72	
Manual Ground Bead T		<u>18</u>		-	·	
Bead Ohms	Temp. (°C)		Bead	Ohm	<u> </u>	emp. (°C)
1 10.14	9.6781		9	···		
2 17.55	5, 3311		10			
3 /3.73	3,5/42	4	11			
4 15.75	0.7901		12	*		
5 (6.99	- o. 6898	_	13			
6 18. <u>1</u> 4	-1.9437	_	14			
7 19.30	-3,1416	_]	15			
8			16			
Observations and Propo	osed Maintenance					
4						
						E

Thermal Monitoring **Ground Temperature Annual Maintenance Report** Inspection Date: 17-Aug - 07 GLL Contractor Name: Ken Boldt Prepared By: Thermistor Information Tier II Disposal Facility Thermistor Location: CAM-M Site Name: Inclination: 17/08/05 Vertical 17/08/07 Thermistor Number: TA-4 16-Aug-05-First Date Event: 41-Aug-01 Last Date Event: Install Date: 25-Sept-99 Elev: 44.2 12035 8954 Coordinates and Elevation N: Cable Lead Above Ground (m): 4.6 Nodal Points: Length of Cable (m): Cable Serial Number: TS-7CNA#3 24-807027 Datalogger Serial #: Thermistor Inspection Good Needs Maintenance Casing Cover Data Logger Cable Beads Battery Installation Date 13,02 Aux 11.34 **Battery Levels** Main Manual Ground Bead Temperature Readings Temp. (°C) Bead Ohms Temp. (°C) Bead Ohms 10.08 9,7439 9 1 B.5756 10 12.35 2 11 13.31 4.1110 3 12 15.27 1,3896 4 16.58 13 5 -0.2668 14 6 17.58 -1,3510 15 7 -2, 3768 16 8 Observations and Proposed Maintenance

Appendix G

Laboratory Results

CHROMATOGRAM COVER SHEET

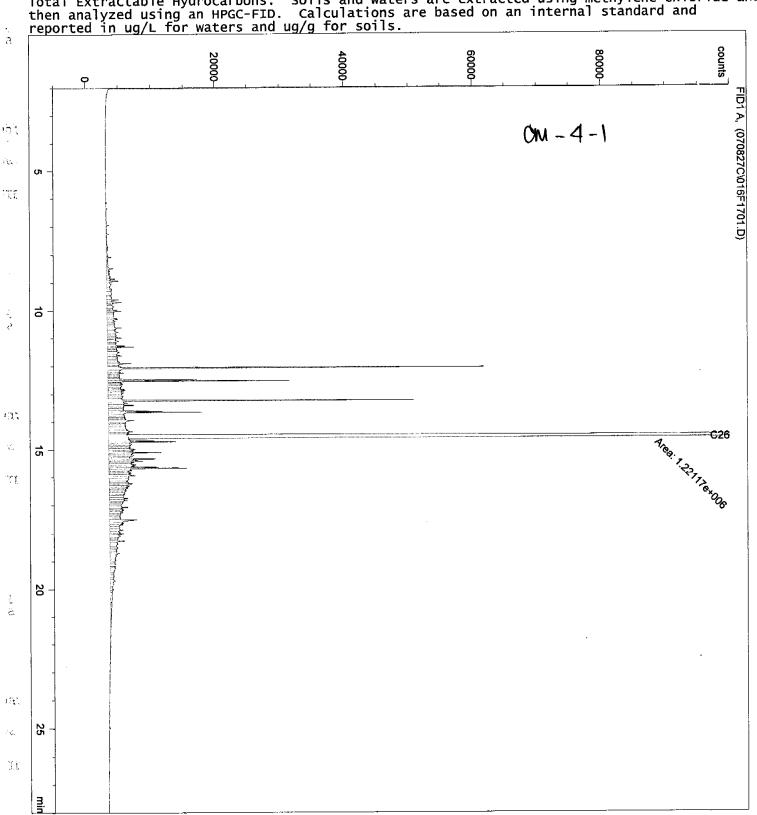
CONTACT	COMPANY	COMPANY NAME			
KEN BOLDT	GARTHER	LETE LTO.			
FAX NUMBER	DATE	PGS INCL. COVER			
1-905-477-1456	QUEULT 29	, 2007 10			
FROM	RETURN FAX	TELEPHONE			
CANTEST LTD	604 731 2386	604 734 7276			
SUBJ	ECT				
Chromato	gram(s).				

Please find the attached chromatograms associated with:

Your Project Number 70517

The originals will follow with the report.

Acq. Method : C:\HPCHEM\1\METHODS\!EPH.M

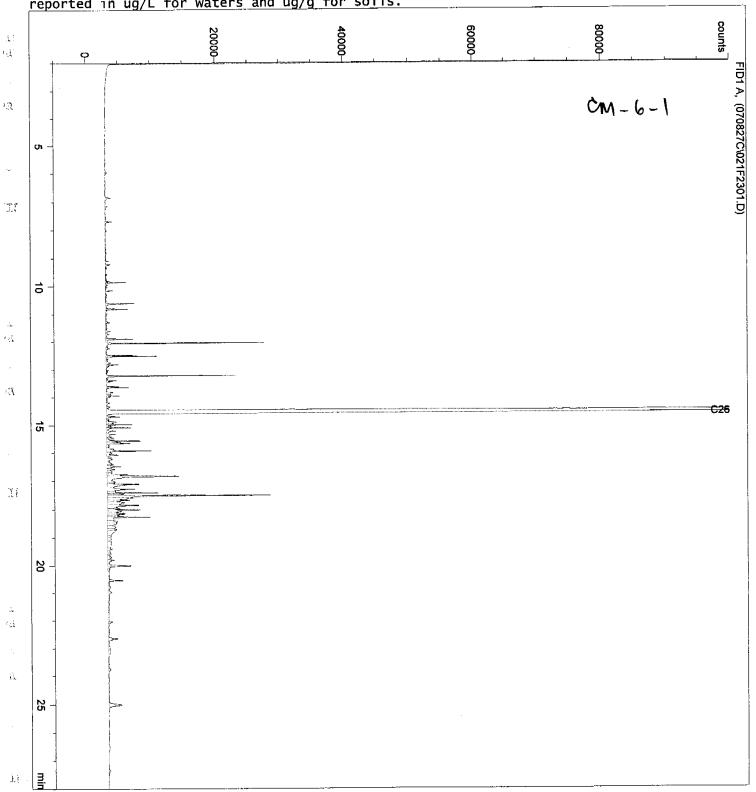

Last changed : 8/27/07 9:38:48 AM by pcn

Last changed : 8/27/07 9:38:48 AM by pcn
Analysis Method : C:\HPCHEM\1\METHODS\!TEH_BNP.M
Last changed : 8/29/07 7:34:09 AM by pcn

H_BNP.M GAR COS

(modified after loading)

Total Extractable Hydrocarbons. Soils and waters are extracted using methylene chloride and then analyzed using an HRCC-EID. Calculations are based on an internal standard and

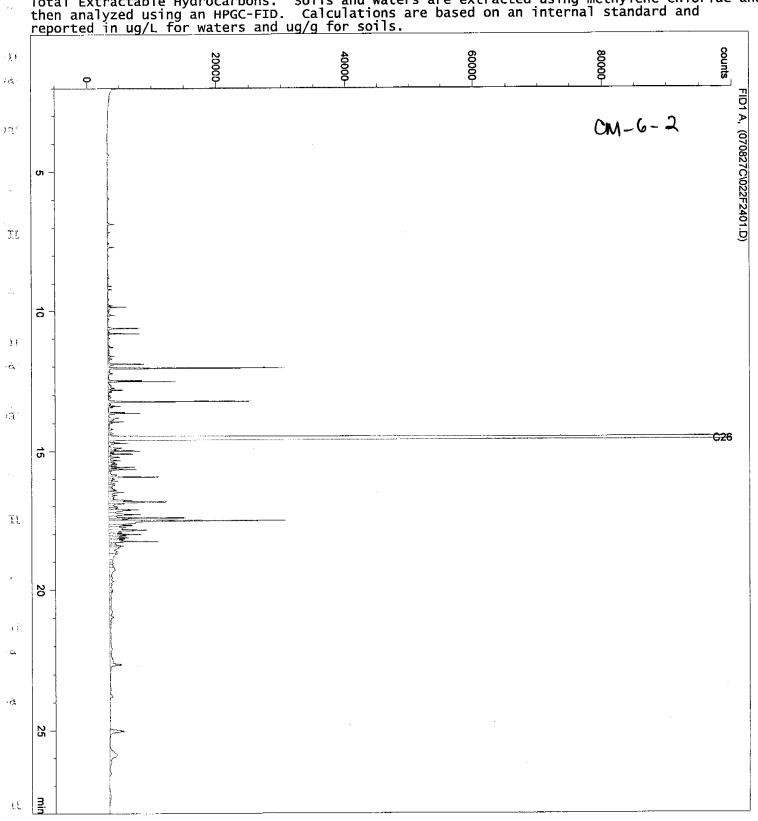

23 21 Seq. Line : 8/27/07 10:05:10 PM Injection Date vial 708220606 Sample Name 1 Inj Acq. Operator : pcn Inj Volume : 2 µl

: C:\HPCHEM\1\METHODS\!EPH.M : 8/27/07 7:30:43 PM by pcn Acq. Method Last changed C:\HPCHEM\1\METHODS\!TEH_BNP.M Analysis Method: 8/29/07 7:34:09 AM by pcn (modified after loading) Last changed

GAR OOS

Total Extractable Hydrocarbons. Soils and Waters are extracted using methylene chloride and then analyzed using an HPGC-FID. Calculations are based on an internal standard and

reported in ug/L for waters and ug/g for soils.

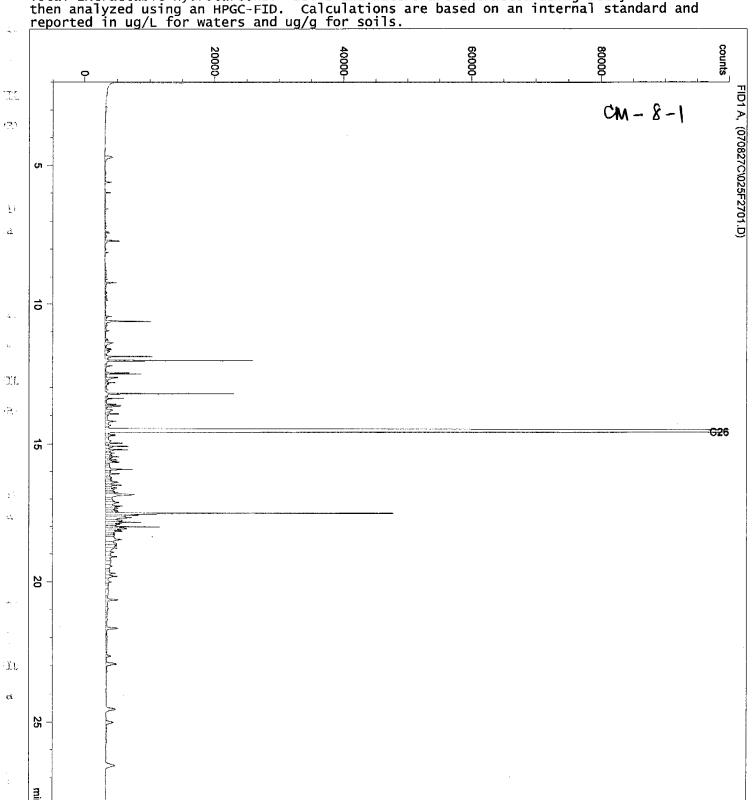


Seq. Line: 24 8/27/07 10:42:05 PM Injection Date 22 vial 708220607 Sample Name Inj: 1 Acq. Operator pcn Inj Volume : 2 µl

: C:\HPCHEM\1\METHODS\!EPH.M : 8/27/07 7:30:43 PM by pcn Acq. Method Last changed C:\HPCHEM\1\METHODS\!TEH_BNP.M Analysis Method : : 8/29/07 7:34:09 AM by pcn (modified after loading) Last changed

GAROUS

Total Extractable Hydrocarbons. Soils and Waters are extracted using methylene chloride and then analyzed using an HPGC-FID. Calculations are based on an internal standard and


27 Line: Injection Date 8/28/07 12:32:39 AM seq. 708220611 Vial 25 sample Name : 1 Acq. Operator : pcn Inj Inj Volume : 2 μl

C:\HPCHEM\1\METHODS\!EPH.M 8/27/07 7:30:43 PM by pcn C:\HPCHEM\1\METHODS\!TEH_BNP.M 8/29/07 7:34:09 AM by pcn (modified after loading) Acq. Method Last changed Analysis Method:

Last changed

GARROUS

Total Extractable Hydrocarbons. Soils and Waters are extracted using methylene chloride and then analyzed using an HPGC-FID. Calculations are based on an internal standard and

: 8/27/07 3:31:47 PM : 708220627 Injection Date Sample Name Acq. Operator

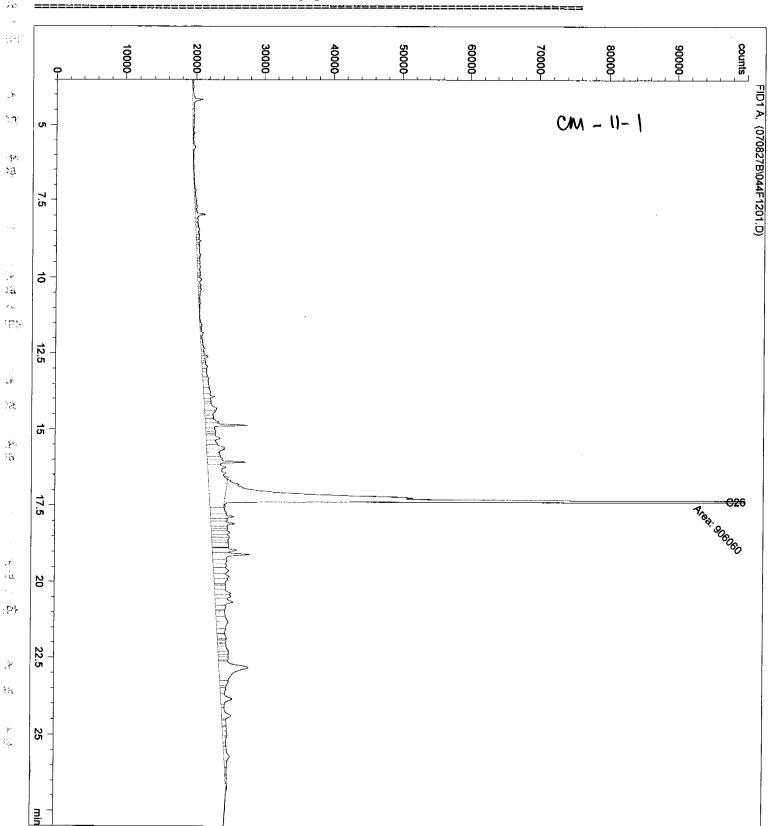
Seq. Line 12 44 Vial Inj

Inj Volume : 2 µl

: D:\HPCHEM~1\1\METHODS\!EPH.M : 8/27/07 9:57:39 AM by pcn Acq. Method Last changed

: pcn

1â


Analysis method : D:\HPCHEM~1\1\METHODS\!TEH_NAP.M

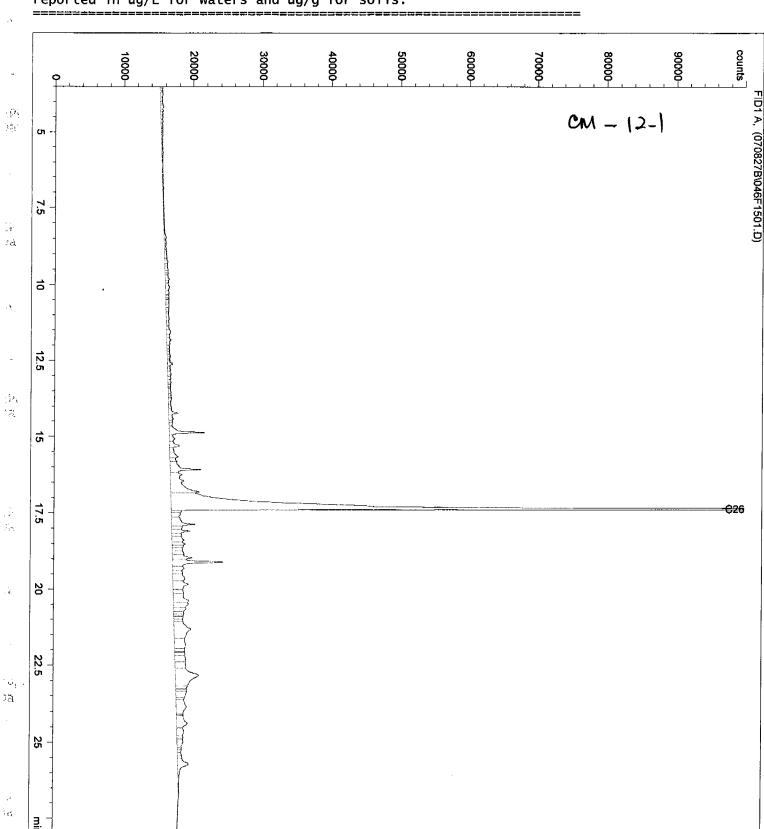
GAR 005

Last_changed : 8/29/07 6:24:53 AM by pcn

Total Extractable Hydrocarbons. Soils and Waters are extracted using methylene chloride and then analyzed using an HPGC-FID. Calculations are based on an internal standard and

reported in ug/L for waters and ug/g for soils.

8/27/07 5:20:55 PM Seq. Line Injection Date Sample Name 708220630 Vial : 46 Acq. Operator : pcn Inj


1 Inj Volume : 2 µl

D:\HPCHEM~1\1\METHOD\$\!EPH.M 8/27/07 5:14:51 PM by pcn Acq. Method Last changed

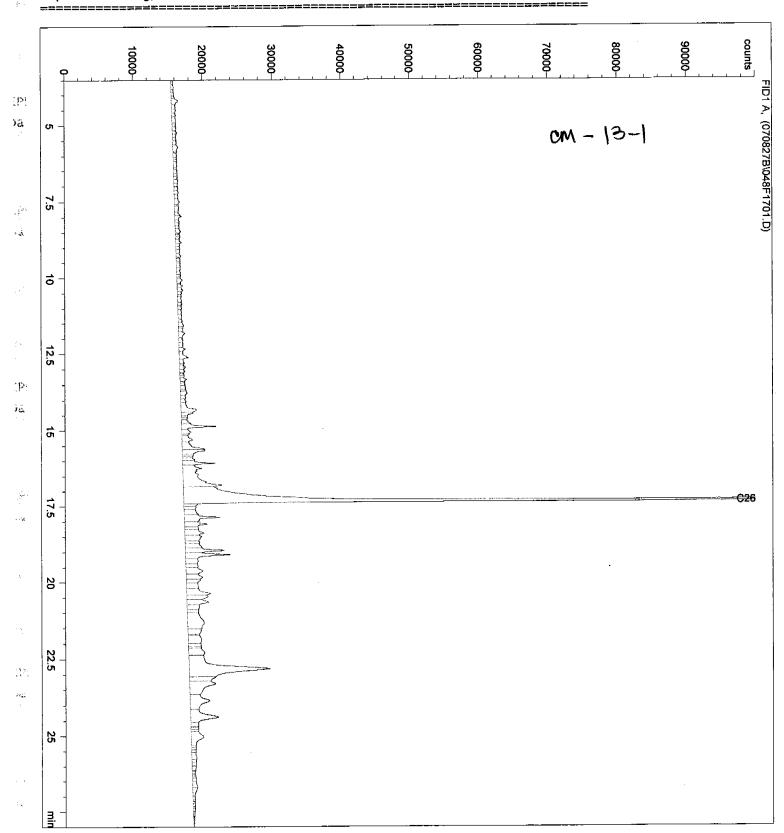
GAROUT Analysis Method: D:\HPCHEM~1\1\METHODS\!TEH_NAP.M Last changed 8/29/07 6:24:53 AM by pcn

Total Extractable Hydrocarbons. Soils and Waters are extracted using methylene chloride and then analyzed using an HPGC-FID. Calculations are based on an internal standard and

reported in ug/L for waters and ug/g for soils.

: 8/27/07 6:33:38 PM Injection Date 708220632 Sample Name

17 48 ∨ial


Acq. Operator : pcn Inj : 1 Inj Volume : 2 μl

Acq. Method

: D:\HPCHEM~1\1\METHODS\!EPH.M

GAROOJ

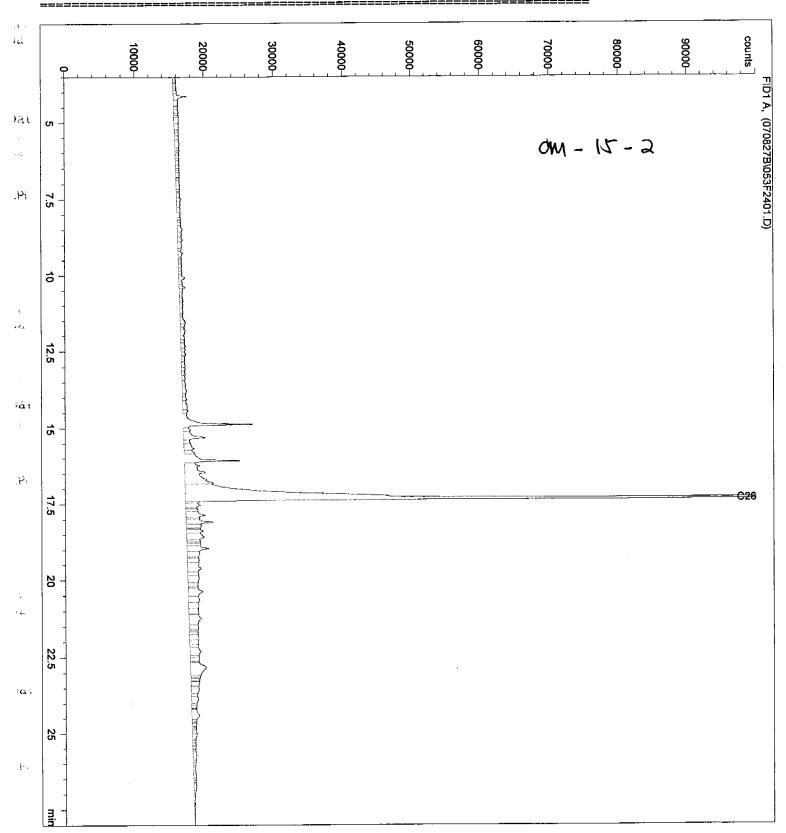
Last changed : 8/27/07 5:14:51 PM by pcn
Analysis Method : D:\HPCHEM~1\1\METHODS\!TEH_NAP.M
Last changed : 8/29/07 6:24:53 AM by pcn
Total Extractable Hydrocarbons. Soils and Waters are extracted using methylene chloride and then analyzed using an HPGC-FID. Calculations are based on an internal standard and reported in ug/L for waters and ug/g for soils.

8/27/07 10:48:21 PM Injection Date 708220638 Sample Name

Line 53 Vial

Acq. Operator : pcn

Last changed


Inj : Inj Volume : 2 μl

: D:\HPCHEM~1\1\METHODS\!EPH.M Acq. Method Last changed : 8/27/07 7:40:32 PM by pcn Analysis Method : D:\HPCHEM~1\1\METHOD\$\!TEH_NAP.M

: 8/29/07 6:24:53 AM_by pcn

GAROUT

Total Extractable Hydrocarbons. Soils and Waters are extracted using methylene chloride and then analyzed using an HPGC-FID. Calculations are based on an internal standard and reported in ug/L for waters and ug/g for soils.

Sample Name: 708220616

35 8/29/07 8:42:33 AM Seq. Line Injection Date 83 708220616 Vial Sample Name Inj Acq. Operator pcn

Acq. Method C:\HPCHEM\1\METHODS\!EPH.M Last changed 5/25/07 11:01:41 AM by ry

C:\HPCHEM\1\METHODS\!TEH_BNP.M Analysis Method:

GARROUT

: 8/29/07 7:34:09 AM by pcn (modified after loading) Last changed

Inj Volume : 2 μl

Total Extractable Hydrocarbons. Soils and Waters are extracted using methylene chloride and then analyzed using an HPGC-FID. Calculations are based on an internal standard and reported in ug/L for waters and ug/g for soils. counts 20000--0000 80000 FID1 A, (070828C\083F3501.D) Cm-10-1 Ç 1 5 중 1G 20 25

Analysis Report

REPORT ON:

Analysis of Soil Samples

REPORTED TO:

Gartner Lee Limited

Suite 300

300 Town Centre Boulevard

Markham, ON

L3R 5Z6

Att'n: Ken Boldt

CHAIN OF CUSTODY:

2090869, 2090870, 2090857, 2090858

PROJECT NAME:

CAM-M

PROJECT NUMBER:

70517

NUMBER OF SAMPLES: 33

REPORT DATE: September 5, 2007

DATE SUBMITTED: August 22, 2007

GROUP NUMBER: 80822128

SAMPLE TYPE: Soil

NOTE: Results contained in this report refer only to the testing of samples as submitted. Other information is available on request.

TEST METHODS:

Aromatic Volatile Organic Compounds in Water and Soil - analysis was performed using procedures based on U.S. EPA Methods 624/8240, involving sparging/collection with a Purge and Trap apparatus and analysis using GC/MS.

Volatile Hydrocarbons - analysis was performed by sparging/collection with a Purge and Trap apparatus, followed by analysis using GC/FID. The components present in the boiling range of C5 to C10 were quantified with m & p-xylenes.

CCME Petroleum Hydrocarbons in Soil - analysis was performed using Canadian Council of Ministers of the Environment (CCME) "Reference Method for the Canada-Wide Standard for Petroleum Hydrocarbons in Soil" approved December 2000. The method involves extraction of the different hydrocarbon fractions and analysis by gas chromatography with flame ionization detection (GC/FID).

Canada-Wide Standard for Petroleum Hydrocarbons in Soil (F1 Fraction) - The F1 Fraction (nC6 to nC10) was analyzed based on the CCME Reference Method for the Canada-Wide Standard for Petroleum Hydrocarbons in Soil-Tier 1 Method (2001). Analysis involves methanol extraction and quantitation using GasChromatography with Flame Ionization Detector (GC-FID). The F1 Fraction is reported with the BTEX compounds (benzene, toluene, ethylbenzene, and ortho, meta and para-xylenes) subtracted (e.g. corrected). These BTEX compounds analyzed by GCMS may be included in this report on request by the customer.

Moisture in Soil - analysis was performed gravimetrically by heating a separate sample portion at 105 C

(Continued)

CANTEST LTD.

Anna Becalska, PhD Coordinator, Trace Metals Page 1 of 50

Gartner Lee Limited

REPORT DATE:

September 5, 2007

GROUP NUMBER: 80822128

Moisture in Soil

and measuring the weight loss.

pH in Soil or Solid - analysis was performed based on procedures described in the Manual on Soil Sampling and Methods of Analysis, published by the Canadian Society of Soil Science, 1993. The test was performed using a deionized water leach with measurement by pH meter.

Polychlorinated Biphenyls - analysis was performed using procedures based upon U.S. EPA Methods 608/8080, involving extraction, clean-up steps, and analysis using GC/ECD. Arochlors 1242, 1248, 1254 and 1260 were included.

Silver in Soil - analysis was performed using Inductively Coupled Plasma Mass Spectrometry (ICP/MS).

Arsenic in Soil - analysis was performed using Inductively Coupled Plasma Mass Spectrometry (ICP/MS).

Cadmium in Soil - analysis was performed using Inductively Coupled Plasma Mass Spectrometry (ICP/MS).

Mercury in Soil - analysis was performed using Cold Vapour Atomic Fluorescence.

Molybdenum in Soil - analysis was performed using an acid digestion followed by determination using Inductively Coupled Plasma Mass Spectrometry (ICP/MS).

Strong Acid Leachable Metals in Soil - analysis was performed using B.C. MOELP Method "Strong Acid Leachable Metals in Soil, Version 1.0". The method involves drying the sample at 60 C, sieving using a 2 mm (10 mesh) sieve and digestion using a mixture of hydrochloric and nitric acids. Analysis was performed using Inductively Coupled Argon Plasma Spectroscopy (ICAP) or by specific techniques as described.

Selenium in Soil - analysis was using Inductively Coupled Plasma Mass Spectrometry (ICP/MS).

Thallium in Soil - analysis was performed using Inductively Coupled Plasma Mass Spectrometry (ICP/MS).

Semi-Volatile Hydrocarbons - analysis was performed using procedures based on U.S. EPA Method 8015, involving dichloromethane extraction and analysis using GC/FID. Components in the C10 to C30 range are included, using an alkane standard for quantitation.

Total Petroleum Hydrocarbons - analysis was performed using procedures based on Alberta Environment Site Investigation requirements, involving summation of the total volatile (purgeable) and semi-volatile (extractable) hydrocarbons.

TEST RESULTS:

(See following pages)

REPORTED TO: Gartner Lee Limited

REPORT DATE: September 5, 2007

GROUP NUMBER: 80822128

Conventional Parameters in Soil

CLIENT SAMPLE IDENTIFICATION:	SAMPLE DATE	CANTEST ID	Moisture	рН
CM-1-1		708220594		7.6
CM-1-2		708220595	5.8	7.9
CM-2-1		708220596		7.8
CM-2-2		708220597		7.7
CM-3-1		708220598		7.9
CM-4-1		708220600		8.0
CM-3-2		708220601	7.6	7.7
CM-4-2		708220602	7.6	7.8
CM-5-1		708220603	6.0	8.4
CM-5-2		708220604		8.4
CM-6-1		708220606	60.3	7.2
CM-6-2	Aug 15/07	708220607		7.5
CM-7-1	Aug 15/07	708220608	21.4	7.8
CM-7-2	Aug 15/07	708220609	20.8	7.9
CM-8-1		708220611	20.2	7.8
CM-8-2	Aug 17/07	708220612	7.0	8.1
CM-9-1	Aug 17/07	708220613	28.6	7.9
CM-9-2	Aug 17/07	708220614	11.0	8.2
CM-10-1	Aug 17/07	708220616	43.2	7.6
CM-10-2	Aug 17/07	708220617	9.7	8.0
CM-11-1		708220627		7.3
CM-11-2	Aug 17/07	708220628	7.2	8.0
CM-12-1	Aug 17/07	708220630	17.6	7.8
CM-12-2		708220631	10.1	7.8
CM-13-1		708220632	45,3	7.5
CM-13-2		708220633		7.4
CM-14-1		708220634		7.9
CM-14-2		708220635	8.6	8.1
CM-15-1		708220636	5.4	8.1
CM-15-2		708220638		8.0
CM-16-1		708220639		8.0
CM-17-1		708220640	11.9	8.0
CM-17-2		708220641	11.7	7.9
DETECTION LIMIT		t e a la distribu	0.1	0.1
UNITS			%	pH units

^{% =} percent

Gartner Lee Limited

REPORT DATE:

September 5, 2007

GROUP NUMBER: 80822128

Polychlorinated Biphenyls in Soil

CLIENT SAMPLE IDENTIFICATION:	CM-1-1	CM-1-2	CM-2-1	CM-2-2	
DATE SAMPLED:	Aug 15/07	Aug 15/07	Aug 15/07	Aug 15/07	DETECTION
CANTEST ID:	708220594	708220595	708220596	708220597	LIMIT
Arochlor 1242 Arochlor 1248	<	<		<	0.03 0.03
Arochlor 1254 Arochlor 1260 Total PCB	«	«	< <	< < < < < < < < < < < < < < < < < < <	0.03 0.03 0.03
Surrogate Recovery 2,2',4,4',6,6'-hexabromobiphenyl	95	101	88	89	

< = Less than detection limit

Gartner Lee Limited

REPORT DATE:

September 5, 2007

GROUP NUMBER: 80822128

Polychlorinated Biphenyls in Soil

CLIENT SAMPLE IDENTIFICATION:	CM-3-1	CM-4-1	CM-3-2	CM-4-2	
DATE SAMPLED:	Aug 15/07	Aug 15/07	Aug 15/07	Aug 15/07	DETECTION
CANTEST ID:	708220598	708220600	708220601	708220602	LIMIT
Arochlor 1242	<	<u> </u>	<	V	0.03
Arochlor 1248	<	<	<	<	0.03
Arochlor 1254	<	0.04	<	<	0.03
Arochlor 1260	<	<	<	<	0.03
Total PCB	 <	0.04	<	<	0.03
Surrogate Recovery					
2,2',4,4',6,6'-hexabromobiphenyl	97	97	90	93	~

< = Less than detection limit

Gartner Lee Limited

REPORT DATE:

September 5, 2007

GROUP NUMBER: 80822128

Polychlorinated Biphenyls in Soil

CLIENT SAMPLE IDENTIFICATION:	CM-5-1	CM-5-2	CM-6-1	CM-6-2	
DATE SAMPLED:	Aug 15/07	Aug 15/07	Aug 15/07	Aug 15/07	DETECTION
CANTEST ID:	708220603	708220604	708220606	708220607	LIMIT
Arochlor 1242 Arochlor 1248	S	<	<	<	0.03 0.03
Arochlor 1254	<	\$	<	<	0.03
Arochlor 1260 Total PCB	<	< <	< *	< <	0.03 0.03
Surrogate Recovery 2,2',4,4',6,6'-hexabromobiphenyl	87	103	72	58	

< = Less than detection limit

Gartner Lee Limited

REPORT DATE:

September 5, 2007

GROUP NUMBER: 80822128

Polychlorinated Biphenyls in Soil

CLIENT SAMPLE IDENTIFICATION:	CM-7-1	CM-7-2	CM-8-1	CM-8-2	
DATE SAMPLED:	Aug 15/07	Aug 15/07	Aug 17/07	Aug 17/07	DETECTION
CANTEST ID:	708220608	708220609	708220611	708220612	LIMIT
Arochlor 1242	<	<	<	<	0.03
Arochlor 1248	<	<	<	<	0.03
Arochlor 1254	Jau <	<	<	<	0.03
Arochlor 1260	<	<	<	<	0.03
Total PCB	1 <	<	·	<	0.03
Surrogate Recovery					
2,2',4,4',6,6'-hexabromobiphenyl	56	76	60	77	-

< = Less than detection limit

Gartner Lee Limited

REPORT DATE:

September 5, 2007

GROUP NUMBER: 80822128

Polychlorinated Biphenyls in Soil

CLIENT SAMPLE IDENTIFICATION:	CM-9-1	CM-9-2	CM-10-1	CM-10-2	
DATE SAMPLED:	Aug 17/07	Aug 17/07	Aug 17/07	Aug 17/07	DETECTION
CANTEST ID:	708220613	708220614	708220616	708220617	LIMIT
Arochlor 1242 Arochlor 1248 Arochlor 1254 Arochlor 1260 Total PCB		V V V V V	<	<	0.03 0.03 0.03 0.03 0.03
Surrogate Recovery 2,2',4,4',6,6'-hexabromobiphenyl	64	100	105	75	

< = Less than detection limit

Gartner Lee Limited

REPORT DATE:

September 5, 2007

GROUP NUMBER: 80822128

Polychlorinated Biphenyls in Soil

CLIENT SAMPLE IDENTIFICATION:	CM-11-1	CM-11-2	CM-12-1	CM-12-2	
DATE SAMPLED:	Aug 17/07	Aug 17/07	Aug 17/07	Aug 17/07	DETECTION
CANTEST ID:	708220627	708220628	708220630	708220631	LIMIT
Arochlor 1242 Arochlor 1248	< <	<u> </u>	< <	<u> </u>	0.03
Arochlor 1254 Arochlor 1260	< <	< <	< <	<	0.03 0.03
Total PCB Surrogate Recovery			<	<	0.03
2,2',4,4',6,6'-hexabromobipheny	1 60	90	91	93	

< = Less than detection limit

REPORTED TO: Gartner Lee Limited

REPORT DATE: September 5, 2007

GROUP NUMBER: 80822128

Polychlorinated Biphenyls in Soil

CLIENT SAMPLE IDENTIFICATION:	CM-13-1	CM-13-2	CM-14-1	CM-14-2	
DATE SAMPLED:	Aug 17/07	Aug 17/07	Aug 17/07	Aug 17/07	DETECTION
CANTEST ID:	708220632	708220633	708220634	708220635	LIMIT
Arochlor 1242 Arochlor 1248 Arochlor 1254	< <	< < < < < < < < < < < < < < < < < < <	< < <	<	0.03 0.03 0.03
Arochlor 1260 Total PCB	< <	<	*	<	0.03 0.03
Surrogate Recovery [2,2',4,4',6,6'-hexabromobiphenyl	56	98	102	83	¥ i i i i i i i i i i i i i i i i i i i

Results expressed as micrograms per gram, on a dry weight basis. (μ g/g) Surrogate recoveries expressed as percent (%) < = Less than detection limit

Gartner Lee Limited

REPORT DATE:

September 5, 2007

GROUP NUMBER: 80822128

Polychlorinated Biphenyls in Soil

CLIENT SAMPLE IDENTIFICATION:	CM-15-1	CM-15-2	CM-16-1	CM-17-1	
DATE SAMPLED:	Aug 17/07	Aug 17/07	Aug 17/07	Aug 18/07	DETECTION
CANTEST ID:	708220636	708220638	708220639	708220640	LIMIT
Arochlor 1242 Arochlor 1248 Arochlor 1254 Arochlor 1260 Total PCB	<	< <	<	< < < < < < < < < < < < < < < < < < <	0.03 0.03 0.03 0.03 0.03
Surrogate Recovery 2,2',4,4',6,6'-hexabromobiphenyl	100	102	92	91	

< = Less than detection limit

Gartner Lee Limited

REPORT DATE:

September 5, 2007

GROUP NUMBER: 80822128

Polychlorinated Biphenyls in Soil

CLIENT SAMPLE IDENTIFICATION:	CM-17-2	
DATE SAMPLED:	Aug 18/07	DETECTION
CANTEST ID:	708220641	LIMIT
Arochlor 1242	<	0.03
Arochlor 1248	<	0.03
Arochlor 1254		0.03
Arochlor 1260	<	0.03
Total PCB		0.03
Surrogate Recovery		
2,2',4,4',6,6'-hexabromot	piphenyl 72	-

< = Less than detection limit

Gartner Lee Limited

REPORT DATE:

September 5, 2007

GROUP NUMBER: 80822128

Semi-Volatile Hydrocarbons in Soil

CLIENT SAMPLE IDENTIFICATION:	SAMPLE DATE	CANTEST	Total Extractable Hydrocarbons
CM-1-1	Aug 15/07	708220594	<
CM-1-2	Aug 15/07	708220595	
CM-2-1	Aug 15/07	708220596	<
CM-2-2	Aug 15/07	708220597	<
CM-3-1		708220598	\$
CM-4-1		708220600	43
CM-3-2	Aug 15/07	708220601	<
CM-4-2	Aug 15/07	708220602	57
CM-5-1		708220603	<
CM-5-2		708220604	.
CM-6-1		708220606	35
CM-6-2		708220607	34
CM-7-1	Aug 15/07	708220608	<
CM-7-2	a legacionista de la compansión de la comp	708220609	<
CM-8-1		708220611	26
CM-8-2		708220612	<
CM-9-1		708220613	<
CM-9-2		708220614	<
CM-10-1		708220616	39
CM-10-2		708220617	.
CM-11-1		708220627	150
CM-11-2		708220628	. <
CM-12-1		708220630	23
CM-12-2	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	708220631	. <
CM-13-1		708220632	110
CM-13-2		708220633	<u> </u>
CM-14-1		708220634	<
CM-14-2		708220635	
CM-15-1	000000000000000000000000000000000000000	708220636	<
CM-15-2		708220638	24
CM-16-1		708220639	<
CM-17-1		708220640	<
CM-17-2	Aug 18/07	708220641	<
DETECTION LIMIT			20
UNITS			µg/g

 $\mu g/g = micrograms$ per gram, on a dry weight basis. < = Less than detection limit

REPORTED TO: Gartner Lee Limited

REPORT DATE: September 5, 2007

GROUP NUMBER: 80822128

Total Petroleum Hydrocarbons in Soil

CLIENT SAMPLE IDENTIFICATION:	SAMPLE DATE	CANTEST ID	Total Petroleum Hydrocarbons
CM-1-1		708220594	<
CM-1-2		708220595	<u> </u>
CM-2-1		708220596	<
CM-2-2		708220597	<
CM-3-1		708220598	<
CM-4-1		708220600	43
CM-3-2	Aug 15/07	708220601	<
CM-4-2		708220602	57
CM-5-1	Aug 15/07	708220603	<
CM-5-2		708220604	<
CM-6-1		708220606	35
CM-6-2	Aug 15/07	708220607	34
CM-7-1	Aug 15/07	708220608	<
CM-7-2	Aug 15/07	708220609	<
CM-8-1	Aug 17/07	708220611	26
CM-8-2	Aug 17/07	708220612	<
CM-9-1	Aug 17/07	708220613	<
CM-9-2	Aug 17/07	708220614	<
CM-10-1		708220616	39
CM-10-2	Aug 17/07	708220617	<
CM-11-1		708220627	150
CM-11-2		708220628	<u> </u>
CM-12-1		708220630	23
CM-12-2	Aug 17/07		<
CM-13-1		708220632	110
CM-13-2	Aug 17/07		<
CM-14-1		708220634	<
CM-14-2		708220635	
CM-15-1		708220636	<
CM-15-2	Aug 17/07		24
CM-16-1		708220639	
CM-17-1	Aug 18/07		<
CM-17-2	Aug 18/07		
DETECTION LIMIT UNITS			20 μg/g

 $\mu g/g = \text{micrograms per gram, on a dry weight basis.}$ < = Less than detection limit

REPORTED TO: Gartner Lee Limited

REPORT DATE: September 5, 2007

GROUP NUMBER: 80822128

CCME Petroleum Hydrocarbons in Soil

CLIENT SAMPLE IDENTIFICATION:	SAMPLE DATE	CANTEST ID	F2 uncorrected (C10-C16)	F3 uncorrected (C16-C34)
CM-4-1	Aug 15/07	708220600	<	<
CM-4-2	Aug 15/07	708220602	<	<
CM-6-1	Aug 15/07	708220606	<	<
CM-6-2	Aug 15/07	708220607	<	<
CM-8-1	Aug 17/07	708220611	<	<
CM-10-1	Aug 17/07	708220616	<	<
CM-11-1	Aug 17/07	708220627	<	<
CM-12-1	Aug 17/07	708220630	<	<
CM-13-1	Aug 17/07	708220632	<	<
CM-15-2	Aug 17/07	708220638	<	<
DETECTION LIMIT UNITS			80 μg/g	250 μg/g

 $\mu g/g = micrograms$ per gram, on a dry weight basis. < = Less than detection limit

Gartner Lee Limited

REPORT DATE:

September 5, 2007

GROUP NUMBER: 80822128

CCME Petroleum Hydrocarbons in Soil

CLIENT SAMPLE IDENTIFICATION:	SAMPLE DATE	CANTEST ID	F1 (C6-C10) uncorrected
CM-4-1	Aug 15/07	708220600	<
CM-4-2	Aug 15/07	708220602	<
CM-6-1		708220606	<
CM-6-2	Aug 15/07	708220607	<
CM-8-1	Aug 17/07	708220611	
CM-10-1	Aug 17/07	708220616	<
CM-11-1		708220627	<
CM-12-1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	708220630	<
CM-13-1		708220632	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
CM-15-2		708220638	<
DETECTION LIMIT UNITS			5 μg/g

 $\mu g/g = micrograms$ per gram, on a dry weight basis. < = Less than detection limit

Gartner Lee Limited

REPORT DATE:

September 5, 2007

GROUP NUMBER: 80822128

Strong Acid Soluble Metals in Soil

CLIENT SAMPLE IDENTIFICATION:		CM-1-1	CM-1-2	CM-2-1	CM-2-2	
DATE SAMPLED:		Aug 15/07	Aug 15/07	Aug 15/07	Aug 15/07	DETECTION
CANTEST ID:		708220594	708220595	708220596	708220597	LIMIT
Antimony	Sb	<	<	· <	<	0.1
Arsenic	As	1.9	1.9	2.4	2.4	0.1
Barium	Ba	33	23	17	21	1
Beryllium	Be	<	<	<	<	<u> </u> 1
Cadmium	Cd	<	<	<	<	0.2
Chromium	Cr	12	9	10	10	2
Cobalt	Со	5	4	4	5	1
Copper	Cu	10	8	11	10	1
Lead	Pb	5.4	5.5	6.5	5.9	0.2
Mercury	Hg	<	<	<	<	0.01
Molybdenum	Mo	0.3	0.3	0.3	0.3	0.1
Nickel	Ni	11	8	10	11	2
Selenium	Se	0.4	0.5	0.4	0.3	0.2
Silver	Ag	<	<	<	<	0.1
Thallium	П	<	<	0.1	0.1	0.1
Tin	Sn	<	<	<	<	5
Vanadium	V	15	12	10	10	1
Zinc	Zn	14	8	11	15	1
Aluminum	Al	3560	2210	3480	4420	10
Boron	В	18	13	25	28	1
Calcium	Ca	77500	109000	30700	27900	1
Iron	Fe	9770	9060	10400	10200	1
Magnesium	Mg	56800	75000	18800	18400	1
Manganese	Mn	320	388	292	261	1
Phosphorus	P	452	374	1240	727	20
Potassium	K	1790	1090	2230	2910	10
Sodium	Na	665	783	1070	1200	5
Strontium	Sr	24	27	24	20	1
Titanium	Ti	170	105	98	92	1
Zirconium	Zr	6	4	5	7	1

Gartner Lee Limited

REPORT DATE:

September 5, 2007

GROUP NUMBER: 80822128

Strong Acid Soluble Metals in Soil

CLIENT SAMPLE IDENTIFICATION:		CM-3-1	CM-4-1	CM-3-2	CM-4-2	
DATE SAMPLED:		Aug 15/07	Aug 15/07	Aug 15/07	Aug 15/07	DETECTION
CANTEST ID:		708220598	708220600	708220601	708220602	LIMIT
Antimony	Sb	<	<	<	<	0.1
Arsenic	As	2.3	2.1	1.9	1.7	0.1
Barium	Ва	25	23	22	19	1
Beryllium	Be	<	<	<	<	1
Cadmium	Cd	<	<	<	<	0.2
Chromium	Cr	10	9	9	7	2
Cobalt	Co	5	7	5	5	1
Copper	Cu	17	22	11	8	1
Lead	Pb	6.5	8.5	7.3	6.7	0.2
Mercury	Hg	<	0.01	<	<	0.01
Molybdenum	Мо	0.5	0.4	0.4	0.4	0.1
Nickel	Ni	11	12	11	9	2
Selenium	Se	0.4	0.3	0.3	0.2	0.2
Silver	Ag	<	<	<	0.1	0.1
Thallium	TI	0.1	0.2	0.1	0.1	0.1
Tin	Sn	<	<	<	<	5
Vanadium	Λ	12	10	10	* . * 7 ***********************************	1
Zinc	Zn	12	13	9	10	1
Aluminum	Al	3190	3050	2780	2690	10
Boron	В	24	24	22	23	1
Calcium	Ca	45900	37300	39700	24100	1
Iron	Fe	9880	10500	9450	7330	2
Magnesium	Mg	29100	23000	24200	16000	1
Manganese	Mn	314	304	318	209	1
Phosphorus	P	820	776	775	642	20
Potassium	K	1970	1960	1720	1760	10
Sodium	Na	360	173	227	154	5
Strontium	Sr	21	20	21	15	1
Titanium	Ti	109	99	79	85	1
Zirconium	Zr	6	6	6	7	1

Gartner Lee Limited

REPORT DATE:

September 5, 2007

GROUP NUMBER: 80822128

Strong Acid Soluble Metals in Soil

CLIENT SAMPLE IDENTIFICATION:		CM-5-1	CM-5-2	CM-6-1	CM-6-2	
DATE SAMPLED:		Aug 15/07	Aug 15/07	Aug 15/07	Aug 15/07	DETECTION
CANTEST ID:		708220603	708220604	708220606	708220607	LIMIT
Antimony	Sb		. <	4 2 3 5.5	<	0.1
Arsenic	As	1.7	1.8	1.1	3.1	0.1
Barium	Ba	33	41	122	127	1 1 1 1 1
Beryllium	Be	<	<	<	<	1
Cadmium	Cd	 <	<	<	<	0.2
Chromium	Cr	6	7	13	13	2
Cobalt	Co	3	3	3	5	1
Copper	Cu	6	5	16	15	1
Lead	Pb	3.7	3.6	6.5	7.7	0.2
Mercury	Hg	<	<	0.04	0.03	0.01
Molybdenum	Mo	0.3	0.2	0.4	0.6	0.1
Nickel	Ni	5	6	11	11	2
Selenium	Se	0.5	0.4	0.6	0.8	0.2
Silver	Ag	<	<	<	<	0.1
Thallium	П				<	0.1
Tin	Sn	<	<	<	<	5
Vanadium	V	10	1.11	17	21	i
Zinc	Zn	7	8	26	22	1
Aluminum	Al	1790	2340	5200	4900	10
Boron	В	10	11	32	30	1
Calcium	Ca	83600	81900	14900	31900	1
Iron	Fe	6450	6860	9500	15200	2
Magnesium	Mg	58000	55600	6160	16800	-
Manganese	Mn	237	248	92	512	1
Phosphorus	P	352	343	891	1240	20
Potassium	K	704	819	1040	1120	10
Sodium	Na	104	105	529	540	5
Strontium	Sr	27	27	21	27	1
Titanium	Τi	76	92	143	128	l i
Zirconium	Zr	2	2	4	1	1

Gartner Lee Limited

REPORT DATE:

September 5, 2007

GROUP NUMBER: 80822128

Strong Acid Soluble Metals in Soil

CLIENT SAMPLE IDENTIFICATION:		CM-7-1	CM-7-2	CM-8-1	CM-8-2	
DATE SAMPLED:		Aug 15/07	Aug 15/07	Aug 17/07	Aug 17/07	DETECTION
CANTEST ID:		708220608	708220609	708220611	708220612	LIMIT
Antimony	Sb	<	<		<	0.1
Arsenic	As	0.8	0.8	1.5	1.7	0.1
Barium	Ва	16	33	27	25	1
Beryllium	Be	<	<	<	<	1
Cadmium	Cd	0.4	0.3	<	<	0.2
Chromium	Cr	6	6	6	9	2
Cobalt	Co	2	2	2	4	1
Copper	Cu	7	6	6	7	1
Lead	Pb	2.1	2.2	2.7	3.3	0.2
Mercury	Hg	<	 	0.03	<	0.01
Molybdenum	Mo	3.2	2.1	0.5	0.2	0.1
Nickel	Ni	6	5	5	7	2
Selenium	Se	0.6	0.5	0.4	0.3	0.2
Silver	Āg	l <	<	<	<	0.1
Thallium	п		<	<	<	0.1
Tin	Sn	A STATE OF THE STA		<	<	5
Vanadium		11	10	9	12	i i
Zinc	Zn	7	7	14	11	1
Aluminum	Al	1440	1390	1530	3430	la io manana
Boron	В	7	8	21	12	1
Calcium	Ča	63000	69000	61100	44200	i i
Iron	Fe	5100	5460	6420	7880	2
Magnesium	Mg	41300	47800	34700	30400	1
Manganese	Mn	181	222	282	213	1
Phosphorus	P	469	498	630	484	20
Potassium	K	490	543	611	1360	10
	Na Na	105	116	204	136	5
Strontium	Sr	105	21	25	16	∥ 1
	Ji	73	58	 	108	
Titanium Zirconium	Zr	2	2	41 .	3	
ZII CONIUM	4 ۲	2	2	<	ა	II I

Gartner Lee Limited

REPORT DATE:

September 5, 2007

GROUP NUMBER: 80822128

Strong Acid Soluble Metals in Soil

CLIENT SAMPLE IDENTIFICATION:		CM-9-1	CM-9-2	CM-10-1	CM-10-2	
DATE SAMPLED:		Aug 17/07	Aug 17/07	Aug 17/07	Aug 17/07	DETECTION
CANTEST ID:		708220613	708220614	708220616	708220617	LIMIT
Antimony	Sb	<.			<	0.1
Arsenic	As	1.2	1.4	2.0	2.4	0.1
Barium	Ва	27	29	37	85	1
Beryllium	Be	<	<	<	<	1
Cadmium	Cd	<	<	<	<	0.2
Chromium	Cr	5	10	12	18	2
Cobalt	Co	2	6	4	14	1
Copper	Cu	11	10	10	48	1
Lead	Pb	3.5	5.1	11.8	13.1	0.2
Mercury	Hg	0.01	<	0.04	0.01	0.01
Molybdenum	Мо	0.1	0.2	0.5	0.6	0.1
Nickel	Ni	6	10	12	25	2
Selenium	Se	0.6	0.2	0.4	0.3	∥ 0.2
Silver	Ag	<	<	<	<	0.1
Thallium	TI.	<	0.1	<	0.3	0.1
Tin	Sn	<	<	<	<	5
Vanadium	V	9	13	15	13	1
Zinc	Zn	6	13	31	22	1
Aluminum	Al	1270	4400	4060	8110	10
Boron	В	16	18	22	29	1
Calcium	Ca	112000	39100	42200	33700	1
Iron	Fe	5620	9300	10000	16700	2
Magnesium	Mg	74000	26900	25200	23500	1
Manganese	Mn	269	227	271	261	1
Phosphorus	P	355	587	761	510	20
Potassium	K	468	1920	1100	4850	10
Sodium	Na	199	120	158	141	5
Strontium	Sr	23	17	20	22	1
Titanium	Ti	52	117	142	86	
Zirconium	Zr	<	7	3	12	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

REPORTED TO: Gartner Lee Limited

September 5, 2007 REPORT DATE:

GROUP NUMBER: 80822128

Strong Acid Soluble Metals in Soil

CLIENT SAMPLE IDENTIFICATION:	·	CM-11-1	CM-11-2	CM-12-1	CM-12-2	
DATE SAMPLED:		Aug 17/07	Aug 17/07	Aug 17/07	Aug 17/07	DETECTION
CANTEST ID:		708220627	708220628	708220630	708220631	LIMIT
Antimony	Sb	.	<	<	<	0.1
Arsenic	As	1.8	1.6	4.5	5.5	0.1
Barium	Ba	35	35	34	23	1
Beryllium	Be	<	<	<	<] 1
Cadmium	Cd	<	<	<	<	0.2
Chromium	Cr	8	12	17	13	2
Cobalt	Co	2	7	8	11	1.1.
Copper	Çu	9	10	15	15	1
Lead	Pb	3.9	4.8	10.6	10.8	0.2
Mercury	Hg	0.05	<	0.02	0.01	0.01
Molybdenum	Mo	0.5	0.2	0.8	1.2	0.1
Nickel	Ni	6	11	16	17	2
Selenium	Se	0.5	0.3	0.4	0.5	0.2
Silver	Ag	<	<	<	<	0.1
Thallium	ΤĬ	<	0.1	0.1	0.1	0.1
Tin	Sn	<	<	T <	<	5
Vanadium	V	11	12	23	20	
Zinc	Zn	10	14	23	11	1
Aluminum	Al	2180		5350	2880	10
Boron	В	19	23	23	18	1
Calcium	Ca	32600	32700	43200	73300	i
Iron	Fe	8610	10100	15800	14900	2
Magnesium	Mg	10900	21700	27400	46100	∥ -
Manganese	Mn	362	240	310	441	1
Phosphorus	P	840	523	806	709	20
Potassium	K	519	2480	1510	1290	10
Sodium	Na	88	92	128	99	5
Strontium	Sr	22	16	20	25	1
Titanium	TI	65	89	136	52	'1
Zirconium	Zr	2	7	2	2	1

Gartner Lee Limited

REPORT DATE:

September 5, 2007

GROUP NUMBER: 80822128

Strong Acid Soluble Metals in Soil

CLIENT SAMPLE IDENTIFICATION:		CM-13-1	CM-13-2	CM-14-1	CM-14-2	
DATE SAMPLED:		Aug 17/07	Aug 17/07	Aug 17/07	Aug 17/07	DETECTION
CANTEST ID:		708220632	708220633	708220634	708220635	LIMIT
Antimony	Sb	<u> </u>	* * * * * * * * * * * * * * * * * * *	<	<	0.1
Arsenic	As	2.4	1.8	2.7	3.0	0.1
Barium	Ba	69	15	42	36	1
Beryllium	Be	<	<	<	<	1
Cadmium	Cd	 	<	<	<	0.2
Chromium	Cr	11	5	17	15	2
Cobalt	Co	4	2	7	6	1
Copper	Cu	12	5	13	11	1
Lead	Pb	5.7	3.3	6.0	5.2	0.2
Mercury	Hg	0.07	<	<	<	0.01
Molybdenum	Mo	0.5	0.4	0.5	0.5	0.1
Nickel	Ni	11	6	15	13	2
Selenium	Se	0.6	0.5	0.3	0.4	0.2
Silver	Ag	<	<	<	<	0.1
Thallium	ΤĬ	0.1	<	0.2	0.1	0.1
Tin	Sn	<	<	<	<	5
Vanadium	V	16	9	22	19	1
Zinc	Zn	31	5	22	22	1
Aluminum	Al	4370	1150	6480	4650	10
Boron	В	31	14	14	12	1
Calcium	Ca	31300	109000	58700	64000	1.00
Iron	Fe	9740	8320	11600	11000	·2
Magnesium	Mg	12800	70500	44400	51400	1
Manganese	Mn	274	418	236	307	1
Phosphorus	р	1000	529	608	641	20
Potassium	K	1110	463	2140	1530	10
Sodium	Na	132	87	217	146	5
Strontium	Sr	21	23	21	22	1
Titanium	. Ti	122	29	281	173	∥ - i
Zirconium	Zr	4	2	6	4	1

Gartner Lee Limited

REPORT DATE:

September 5, 2007

GROUP NUMBER: 80822128

Strong Acid Soluble Metals in Soil

CLIENT SAMPLE IDENTIFICATION:		CM-15-1	CM-15-2	CM-16-1	CM-17-1	
DATE SAMPLED:		Aug 17/07	Aug 17/07	Aug 17/07	Aug 18/07	DETECTION
CANTEST ID:		708220636	708220638	708220639	708220640	LIMIT
Antimony	Sb	<	<	<	<	0.1
Arsenic	As	1.6	1.6	4.3	3.5	0.1
Barium	Ва	45	36	22	64	
Beryllium	Be	<	<	<	<	1
Cadmium	Cd	S			<	0.2
Chromium	Cr	8	8	13	12	2
Cobalt	Co	3	3	10	6	10.10
Copper	Cu	7	6	17	11	1
Lead	Pb	3.5	3.5	10.8	6.0	0.2
Mercury	Hg	<	<	0.01	0.01	0.01
Molybdenum	Mo	0.3	0.3	0.9	0.5	0.1
Nickel	Ni	6	6	19	12	2
Selenium	Se	0.4	0.4	0.4	0.4	0.2
Silver	Ag	<	<	<	<	0.1
Thallium	TI	<		<	<	0.1
Tin	Sn	<	<	<	<	5
Vanadium	V	11	12	16	17	
Zinc	Zn	9	9	11	13	1
Aluminum	Al	2590	2600	3160	3920	10
Boron	В	11	11	15	21	1
Calcium	Ca	77900	73100	50400	80200	
Iron	Fe	6970	7070	12900	11100	2
Magnesium	Mg	56100	53700	32000	60400	1 1
Manganese	Mn	256	246	276	331	1
Phosphorus	Р	372	412	600	445	20
Potassium	K	1010	996	1320	1820	10
Sodium	Na	198	184	80	878	5
Strontium	Sr	29	28	20	27	1
Titanium	Ti	107	113	26	161	
Zirconium	Zr	2	2	3	6	1

REPORTED TO: Gartner Lee Limited

REPORT DATE: September 5, 2007

GROUP NUMBER: 80822128

Strong Acid Soluble Metals in Soil

CLIENT SAMPLE IDENTIFICATION:		CM-17-2	
DATE SAMPLED:		Aug 18/07	DETECTION
CANTEST ID:		708220641	DETECTION
Antimony	Sb	<	0.1
Arsenic	As	2.8	0.1
Barium	Ba	53	
Beryllium	Be		1
Cadmium	Cd		0.2
Chromium	Cr	11	2
Cobalt	Ço	4	1
Copper	<u>C</u> u	11	1
Lead	Pb	6.6	0.2
Mercury	Hg	0.01	0.01
Molybdenum	Мо	0.7	0.1
Nickel	Ni	11	2
Selenium	Se	0.4	0.2
Silver	Ag	<	0.1
Thallium	Ţl	<	0.1
Tin	Sn	<	5
Vanadium	V	14	1
Zinc	Zn	18	1
Aluminum	Al	3030	10
Boron	В	16	1
Calcium	Ca _	72200	1
Iron	Fe	9820	2
Magnesium	Mg	54600	1
Manganese	Mn	299	1 1
Phosphorus	P	496	20
Potassium	K	1390	10
Sodium	Na	324	5
Strontium	Sr	25	:
Titanium	Ti	102	
Zirconium	Zr	5	

Gartner Lee Limited

REPORT DATE:

September 5, 2007

GROUP NUMBER: 80822128

Aromatic Volatile Organic Compounds in Soil

CLIENT SAMPLE IDENTIFICATION:	CM-1-1	CM-1-2	CM-2-1	CM-2-2	
DATE SAMPLED:	Aug 15/07	Aug 15/07	Aug 15/07	Aug 15/07	DETECTION
CANTEST ID:	708220594	708220595	708220596	708220597	LIMIT
Benzene	<		<	<	0.03
Ethylbenzene	<	<	<	<	0.03
Toluene	<			<	0.03
Yvlenes	_	<	<	<	0.03
Volatile Hydrocarbons	<		<	<	2
Surrogate Recovery					· · · · · · · · · · · · · · · · · · ·
Toluene-d8	108	99	102	101	28 <u>- 1</u>
Bromofluorobenzene	88	89	85	86	-

< = Less than detection limit

Gartner Lee Limited

REPORT DATE:

September 5, 2007

GROUP NUMBER: 80822128

Aromatic Volatile Organic Compounds in Soil

CLIENT SAMPLE IDENTIFICATION:	CM-3-1	CM-4-1	CM-3-2	CM-4-2	
DATE SAMPLED:	Aug 15/07	Aug 15/07	Aug 15/07	Aug 15/07	DETECTION
CANTEST ID:	708220598	708220600	708220601	708220602	LIMIT
Benzene	<	<	< 100 cm	<	0.03
Ethylhenzene	<	<	<	<	0.03
Toluene	1. 16	<	<	l. <	0.03
Xylenes	<	<	<	<	0.03
Volatile Hydrocarbons	<	<	<	<	2
Surrogate Recovery					
Toluene-d8	104	104	100	101	7.000
Bromofluorobenzene	89	85	82	85	

< = Less than detection limit

Gartner Lee Limited

REPORT DATE:

September 5, 2007

GROUP NUMBER: 80822128

Aromatic Volatile Organic Compounds in Soil

CLIENT SAMPLE IDENTIFICATION:	CM-5-1	CM-5-2	CM-6-1	CM-6-2	
DATE SAMPLED:	Aug 15/07	Aug 15/07	Aug 15/07	Aug 15/07	DETECTION
CANTEST ID:	708220603	708220604	708220606	708220607	LIMIT
Benzene	*	****	< 0.05	< 0.05	0.03
Ethylbenzene	<	<	< 0.05	< 0.05	0.03
Toluene	<	<	< 0.05	< 0.05	0.03
Xylenes	<	<	< 0.05	< 0.05	0.03
Volatile Hydrocarbons	<	 *	<	<	_2
Surrogate Recovery				·	
Toluene-d8	100	103	99	101	-
Bromofluorobenzene	85	88	90	92	-

< = Less than detection limit

Gartner Lee Limited

REPORT DATE:

September 5, 2007

GROUP NUMBER: 80822128

Aromatic Volatile Organic Compounds in Soil

CLIENT SAMPLE IDENTIFICATION:	CM-7-1	CM-7-2	CM-8-1	CM-8-2	
DATE SAMPLED:	Aug 15/07	Aug 15/07	Aug 17/07	Aug 17/07	DETECTION
CANTEST ID:	708220608	708220609	708220611	708220612	LIMIT
Benzene	<	<		<	0.03
Ethylbenzene Toluene	<	<	<	<	0.03
Toluene	<	<	<	<	0.03
Xylenes	<	<	<	<	0.03
Volatile Hydrocarbons	<	<	<	<	_2
Surrogate Recovery					
Toluene-d8	102	99	103	104	
Bromofluorobenzene	82	84	85	85	-

< = Less than detection limit

Gartner Lee Limited

REPORT DATE:

September 5, 2007

GROUP NUMBER: 80822128

Aromatic Volatile Organic Compounds in Soil

CLIENT SAMPLE IDENTIFICATION:	CM-9-1	CM-9-2	CM-10-1	CM-10-2	
DATE SAMPLED:	Aug 17/07	Aug 17/07	Aug 17/07	Aug 17/07	DETECTION
CANTEST ID:	708220613	708220614	708220616	708220617	LIMIT
Benzene		<	< 0.05	<	0.03
Ethylbenzene	<	<	< 0.05	<	0.03
Toluene	× × × × × × × × × × × × × × × × × × ×		< 0.05		0.03
Xylenes	<	<	< 0.05	<	0.03
Volatile Hydrocarbons	<	<	<	<	2
Surrogate Recovery					
Toluene-d8	101	101	100	102	- (19900197
Bromofluorobenzene	88	86	88	88	-

Results expressed as micrograms per gram, on a dry weight basis. ($\mu g/g$) Surrogate recoveries expressed as percent (%) < = Less than detection limit

Gartner Lee Limited

REPORT DATE:

September 5, 2007

GROUP NUMBER: 80822128

Aromatic Volatile Organic Compounds in Soil

CLIENT SAMPLE IDENTIFICATION:	CM-11-1	CM-11-2	CM-12-1	CM-12-2	
DATE SAMPLED:	Aug 17/07	Aug 17/07	Aug 17/07	Aug 17/07	DETECTION
CANTEST ID:	708220627	708220628	708220630	708220631	LIMIT
Benzene	< 0.05	<	<	<	0.03
Ethylbenzene	< 0.05	<	<	<	0.03
Toluene	< 0.05	<	<	<	0.03
Xylenes	< 0.05	<	<	<	0.03
Volatile Hydrocarbons	<	<		<	2
Surrogate Recovery					***************************************
Toluene-d8	100	101	102	100	-
Bromofluorobenzene	82	89	86	89	-

Results expressed as micrograms per gram, on a dry weight basis. ($\mu g/g$) Surrogate recoveries expressed as percent (%) < = Less than detection limit

Gartner Lee Limited

REPORT DATE:

September 5, 2007

GROUP NUMBER: 80822128

Aromatic Volatile Organic Compounds in Soil

CLIENT SAMPLE IDENTIFICATION:	CM-13-1	CM-13-2	CM-14-1	CM-14-2	
DATE SAMPLED:	Aug 17/07	Aug 17/07	Aug 17/07	Aug 17/07	DETECTION
CANTEST ID:	708220632	708220633	708220634	708220635	LIMIT
Benzene	< 0.05	<	<	<	0.03
Ethylbenzene	< 0.05	<	<	<	0.03
Toluene	< 0.05	<	<	<	0.03
Xylenes	< 0.05	<	<	<	0.03
Volatile Hydrocarbons	<	<	<	<	2
Surrogate Recovery					
Toluene-d8	102	98	101	104	-
Bromofluorobenzene	88	88	85	85	-

< = Less than detection limit

Gartner Lee Limited

REPORT DATE:

September 5, 2007

GROUP NUMBER: 80822128

Aromatic Volatile Organic Compounds in Soil

CLIENT SAMPLE IDENTIFICATION:	CM-15-1	CM-15-2	CM-16-1	CM-17-1	
DATE SAMPLED:	Aug 17/07	Aug 17/07	Aug 17/07	Aug 18/07	DETECTION
CANTEST ID:	708220636	708220638	708220639	708220640	LIMIT
Benzene	<	<	<	<	0.03
Ethylbenzene	<	<	<	<	0.03
Toluene	<	<		<	0.03
Xylenes	<	<	<	<	0.03
Volatile Hydrocarbons	_<		<	<	2
Surrogate Recovery					
Toluene-d8	102	101	103	100	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -
Bromofluorobenzene	86	86	86	88	_

< = Less than detection limit

Gartner Lee Limited

REPORT DATE:

September 5, 2007

GROUP NUMBER: 80822128

Aromatic Volatile Organic Compounds in Soil

CLIENT SAMPLE IDENTIFICATION:	CM-17-2	
DATE SAMPLED:	Aug 18/07	DETECTION
CANTEST ID:	708220641	LIMIT
Benzene	<	0.03
Ethylbenzene	<	0.03
Toluene		0.03
Xylenes	<	0.03
Volatile Hydrocarbons	<u> </u>	2
Surrogate Recovery		
Toluene-d8	102	
Bromofluorobenzene	88	-

Results expressed as micrograms per gram, on a dry weight basis. (μ g/g) Surrogate recoveries expressed as percent (%) < = Less than detection limit

Gartner Lee Limited

REPORT DATE:

September 5, 2007

GROUP NUMBER: 80822128

Batch Quality Control for CCME Petroleum Hydrocarbons in Soil (QC# 98352)

Parameter	Blank (ug/g)	Blank Limits	Diesel (/Oil) Spike (% Recovery)	Diesel (/Oil) Spike Limits	Duplicate (R.P.D.) 708220600	Duplicate Limits
F2 uncorrected (C10-C16)	< 80	80	95	75 - 125	NC	20
F3 uncorrected (C16-C34)	< 250	250	-	-	NC	20

ug/g = micrograms per gram

R.P.D. = Relative Percent Difference

NC = Not Calculated. Duplicate sample results were less than the detection limit. Relative Percent Difference calculation is not defined for analyte levels of less than detection limit.

Gartner Lee Limited

REPORT DATE:

September 5, 2007

GROUP NUMBER: 80822128

Batch Quality Control for Polychlorinated Biphenyls in Soil (QC# 97944)

Parameter	Blank (ug/g)	Blank Limits	Duplicate (R.P.D.) 708220594	Duplicate Limits	Spike (% Recovery)	Spike Limits
Arochior 1242	< 0.03	0.03	NC	25	104	75 - 125
Arochlor 1248	< 0.03	0.03	NC	25	_	-
Arochlor 1254	< 0.03	0.03	NC	25	#	:- :
Arochlor 1260	< 0.03	0.03	NC	25	_	-
Total PCB	< 0.03	0.03	NC	20	-	-

ug/g = micrograms per gram R.P.D. = Relative Percent Difference

Gartner Lee Limited

REPORT DATE:

September 5, 2007

GROUP NUMBER: 80822128

Batch Quality Control for Polychlorinated Biphenyls in Soil (QC# 97948)

Parameter	Blank (ug/g)	Blank Limits	Duplicate (R.P.D.) 708220614	Duplicate Limits	Spike (% Recovery)	Spike Limits
Arochlor 1242	< 0.03	0.03	NC	25	104	75 - 125
Arochlor 1248	< 0.03	0.03	NC	25	-	-
Arochlor 1254	< 0.03	0.03	NÇ	25	+	-
Arochlor 1260	< 0.03	0.03	NC	25	-	-
Total PCB	< 0.03	0.03	NC	20	÷	-

ug/g = micrograms per gram

R.P.D. = Relative Percent Difference

Gartner Lee Limited

REPORT DATE:

September 5, 2007

GROUP NUMBER: 80822128

Instrument Quality Control for the GC#HP5 w/ FID(TEH) or ECD(PCB) (QC# 191629)

QC Type: Calibration Verification

Parameter	% Recovery Lir	nits
Arochlor 1242	0 75	- 120
Arochlor 1248	1.7	- 120
Arochlor 1254	99 75	- 120
Arochlor 1260	99 75	- 120

Gartner Lee Limited

REPORT DATE:

September 5, 2007

GROUP NUMBER: 80822128

Instrument Quality Control for the GC#HP5 w/ FID(TEH) or ECD(PCB) (QC# 191630)

QC Type: Calibration Verification

Parameter	% Recovery	Limits
Arochlor 1242	99	75 - 120
Arochlor 1248	99	75 - 120
Arochlor 1254	99	75 - 120
Arochlor 1260	99	75 - 120

Gartner Lee Limited

REPORT DATE:

September 5, 2007

GROUP NUMBER: 80822128

Batch Quality Control for Strong Acid Soluble Metals in Soil (QC# 97897)

Parameter		Blank (ug/g)	Blank Limits	CAN MET Till-1 (% Recovery)	CAN MET Till-1 Limits	Duplicate (R.P.D.) 708220348	Duplicate Limits
Antimony	Sb	< 0.1	10	-	-		
Barium	Ва	< 1	1	88	74 - 120	-	-
Beryllium	Be	< 1	1	20	10.4 - 30.4	-	-
Cadmium	Cd	< 0.2	0.2	61	3 - 197	-	_
Chromium	Cr	< 2	0.2	80	73 - 113		
Cobalt	Co	< 1	1	100	70 - 142	-	_
Copper	Cu	< 1	0.2	92	75 - 113	-	-
Lead	Pb	< 0.2	5	116	65 - 171	_	_
Mercury	Hg	÷	: T icked and in the control of the	86	33 - 174	6.5	30
Molybdenum	Мо	< 0.1	4	25	5 - 90	_	-
Nickel	Ni	< 2	2	89	49 - 149	4	÷
Selenium	Se	< 0.2	0.2			-	-
Thallium	ΤΙ	< 0.1	0.001	-	-	-	+
iTin	Sn	< 5	5	_	_	-	<u> </u>
Vanadium	V	< 1	1	100	69 - 152	=	_
Zinc	Zn	< 1	1	87	79 - 114	_	-
Aluminum	ĀI	< 10	10			-	
Boron	<u>B</u>	< 1	1		- -1	= sansk, p. sp. n.e. 1700	
Calcium	Ca	< 1	1	63	51 - 106	+	-
Iron	Fe	< 2	2	_			-
Magnesium	Mg	< 1	1			- 11 11 11 11 11 11	-
Manganese	Mn	< 1	1	_ 808844.t		= BBG-Adede janaka ada ada ada a	-
Phosphorus	Р	< 20	20	-		÷	. -
Potassium	K	< 10	10			-	
Sodium	Na	< 5	5	+		+	-
Strontium	Sr	< 1	1		_	-	-
Titanium	Ti	< 1	1		*	+	-
Zirconium	Zr	< 1	1		-	-	-

ug/g = micrograms per gram R.P.D. = Relative Percent Difference

Gartner Lee Limited

REPORT DATE:

September 5, 2007

GROUP NUMBER: 80822128

Batch Quality Control for Strong Acid Soluble Metals in Soil (QC# 97897)

Parameter			Duplicate (R.P.D.) 708220358	Duplicate Limits	Duplicate (R.P.D.) 708220371	Duplicate Limits	Duplicate (R.P.D.) 708220382	Duplicate Limits
Mercury	11. 14.	Hg	0	30	0	30	0	30

ug/g = micrograms per gram R.P.D. = Relative Percent Difference

Gartner Lee Limited

REPORT DATE:

September 5, 2007

GROUP NUMBER: 80822128

Batch Quality Control for Strong Acid Soluble Metals in Soil (QC# 97897)

Parameter	Duplicate (R.P.D.) 708220437	Duplicate Limits	Duplicate (R.P.D.) 708220452	Duplicate Limits	Duplicate (R.P.D.) 708220460	Duplicate Limits
Arsenic As		-	-	<u> </u>	1.4	30
Barium Ba	-	-	-	-	4.7	30
Beryllium Be		÷ i	+		NC	30
Cadmium Cd	-	_	_	_	PASS	30
Chromium Cr		-	¥	+	4.9	30
Cobalt Co	. .	-	-	-	0	30
Copper Cu		* ,,	•	# · · · ·	8	30
Lead Pb	_	_	_	_	25	30
Mercury Hg	1	30	3	30	0	30
Nickel Ni				= or order in the sixth on, toulur horse	4.3	30
Selenium Se					PASS	30
Silver Ag	.	.			PASS	30
Thallium	-	÷ i	8 ÷ -		PASS	30
Tin Sn	-	-	_		NC	30
Vanadium V	4	<u> </u>	-	4	3.6	30
Zinc Zn	-	50, 510000000000000000000000000000000000	_	_ s:::::::::::::::::::::::::::::::::	0	30
Aluminum Al	+	-	-	-	6.5	30
Boron B			•- Vacata (1980)	*	NC	30
Calcium Ca	+	4	-	-	0.7	30
lron Fe	_	-		-	4	30
Magnesium Mg	+	+	i -	+	8.1	30
Manganese Mn	_ 			- nn-regesjer - Righte Prosess	19.2	30
Phosphorus P		esercial distinction of the contraction of the cont	<u>-</u> 1871 - 17		0	30
Potassium K			. -		4.7	30
Sodium Na	secution resumble (2014)		Ç = .	•	6.6	30
Strontium Sr Titanium Ti	- Brane	-			6.1	30
Zirconium Zr	H i ngton , p ,	·	*	•	3.1	30
Zirconium Zr		-	-	-	0	30

ug/g = micrograms per gram

R.P.D. = Relative Percent Difference

PASS = Duplicate sample results were in the range of one to five times the detection limit. R.P.D. calculation is not applicable in this range. Acceptance criteria is a maximum difference between the duplicates equivalent to the value of the detection limit.

Gartner Lee Limited

REPORT DATE:

September 5, 2007

GROUP NUMBER: 80822128

Batch Quality Control for Strong Acid Soluble Metals in Soil (QC# 97897)

Parameter	Duplicate (R.P.D.) 708220474	Duplicate Limits	Duplicate (R.P.D.) 708220484	Duplicate Limits	Duplicate (R.P.D.) 708220516	Duplicate Limits
Mercury Hg	5.4	30	0	30	0	30

ug/g = micrograms per gram R.P.D. = Relative Percent Difference

Gartner Lee Limited

REPORT DATE:

September 5, 2007

GROUP NUMBER: 80822128

Batch Quality Control for Strong Acid Soluble Metals in Soil (QC# 97897)

Parameter	Duplicate (R.P.D.) 708220528	Duplicate Limits	Duplicate (R.P.D.) 708220538	Duplicate Limits	Duplicate (R.P.D.) 708220594	Duplicate Limits
Arsenic As	<u> </u>		Sec.		0	30
Barium Ba	-	-	-	-	3.1	30
Beryllium Be			_	_	NC	30
Cadmium Cd	-	_	-	-	NC	30
Chromium Cr	-	_	-	<u> </u>	0	30
Cobalt Co	_	_	-	-	PASS	30
Copper Cu.	ga t a. Ta a sakaba in a j		+		20	30
Lead Pb	-	-	-	-	9.2	30
Mercury Hg	0	30	0	30	rās	-
Nickel Ni	_	-	-	-	9.5	30
Selenium Se		-	+		PASS	30
Silver Ag	-	-	_	-	NC	30
Thallium	-	-	po pourone E	·=:	NC	30
Tin Sn	-	-	-	-	NC	30
Vanadium V		-		· 🚅 🤲	6.9	30
Zinc Zn	-		-	-	7.4	30
Aluminum Al	-	-	-	a — en . Sa m an — en actual al alsos	6.7	30
Boron B	-	-	-	-	11.1	30
Calcium Ca	+		4		0.1	30
Iron Fe	-	-	-	-	3.2	30
Magnesium Mg	**************************************	4	_	-	5.5	30
Manganese Mn	-	-	-	-	3.1	30
Phosphorus P			÷		16.6	30
Potassium K		_	-	+	6.7	30
Sodium Na	÷	i A rt igus Japan	12	-	9.2	30
Strontium Sr	-	_	<u>,-</u>	-	4.1	30
Titanium Ti	-		+	# 1000	5.9	30
Zirconium Zr	-	-	- "	-	0	30

ug/g = micrograms per gram

R.P.D. = Relative Percent Difference

PASS = Duplicate sample results were in the range of one to five times the detection limit. R.P.D. calculation is not applicable in this range. Acceptance criteria is a maximum difference between the duplicates equivalent to the value of the detection limit.

Gartner Lee Limited

REPORT DATE:

September 5, 2007

GROUP NUMBER: 80822128

Batch Quality Control for Strong Acid Soluble Metals in Soil (QC# 97897)

Parameter		Duplicate (R.P.D.) 708220606	Duplicate Limits	Duplicate (R.P.D.) 708220627	Duplicate Limits	Duplicate (R.P.D.) 708220639	Duplicate Limits
Arsenic	As	0	30	5.7	30	0	30
Barium	Ва	0.8	30	14.1	30	9.1	30
Beryllium	Be	NC	30	NC	30	NC .	30
Cadmium	Cd	NC	30	NC	30	NC	30
Chromium	Cr	0	30	PASS	30	0	30
Cobalt	Co	PASS	30	PASS	30	10.5	30
Copper	Cu	0	30	10.5	30	6.1	30
Lead	Pb	0	30	15.4	30	6.5	30
Mercury	Hg	0	30	0	30	0	30
Nickel	Ni	0	30	PASS	30	5.4	30
Selenium	Se	PASS	30	PASS	30	PASS	30
Silver	Ag	NC	30	NC	30	NC	30
Thallium	TI	NC	30	NC	30	NC	30
Tin	Sn	NC	30	NC	30	NC	30
Vanadium	٧	0	30	8.7	30	6.5	30
Zinc	Zn	0	30	20	30	0	30
Aluminum	Al	0.8	30	16.5	30	1.6	30
Boron	B	3.1	30	16.2	30	6.5	30
Calcium	Ca	1.3	30	0.6	30	1.4	30
Iron	Fe	0.2	30	9.1	30	1.6	30
Magnesium	Mg	3.4	30	13.7	30	1.6	30
Manganese	Mn	5.4	30	11.6	30	6.5	30
Phosphorus	P	0	30	27.6	30	5.5	30
Potassium	,K	1	30	14.6	30	1.5	30
Sodium	Na	2.8	30	11.4	30	3.8	30
Strontium	Sr	0	30	13.3	30	0	30
Titanium	Ti	7	30	7.8	30	11.8	30
Zirconium	Zr	PASS	30	PASS	30	PASS	30

ug/g = micrograms per gram

R.P.D. = Relative Percent Difference

PASS = Duplicate sample results were in the range of one to five times the detection limit. R.P.D. calculation is not applicable in this range. Acceptance criteria is a maximum difference between the duplicates equivalent to the value of the detection limit.

Gartner Lee Limited

REPORT DATE:

September 5, 2007

GROUP NUMBER: 80822128

Batch Quality Control for Strong Acid Soluble Metals in Soil (QC# 97897)

Parameter		Duplicate (R.P.D.) 708220665	Duplicate Limits	Duplicate (R.P.D.) 708220680	Duplicate Limits	Duplicate (R.P.D.) 708220693	Duplicate Limits
Arsenic	As	3.4	30	0	30	6.5	30
Barium	Ва	5.1	30	1.6	30	5.1	30
Beryllium	Be	NC	30	NC	30	NC	30
Cadmium	Cd	NC	30	NC	30	NÇ	30
Chromium	Cr	17.1	30	0	30	PASS	30
Cobalt	Co	0	30	10.5	30	PASS	30
Copper	Cu	8.7	30	0	30	0	30
Lead	Pb	1.9	30	0	30	0	30
Mercury	Hg	NC	30	NC	30	NC	30
Nickel	Ni	6.5	30	4.7	30	PASS	30
Selenium	Se	PASS	30	PASS	30	PASS	30
Silver	Ag	NC	30	NC	30	NC	30
Thallium	TI	PASS	30	PASS	30	NC	30
Tin	Sn	NC	30	NC	30	NC	30
Vanadium	٧	4.9	30	2.9	30	0	30
Zinc	Zn	5.1	30	0	30	0	30
Aluminum	Al	3.9	30	1.8	30	1.2	30
Boron	B _.	14.3	30	6.9	30	0	30
Calcium	Ca 🗆	4.6	30	8.8	30	10.5	30
Iron	Fe	2.7	30	2.3	30	1.7	30
Magnesium	Mg	0.9	30	6.5	30	8.2	30
Manganese	Mn	9.4	30	3.9	30	6.5	30
Phosphorus	P	1.6	30	3.1	30	7.4	30
Potassium	K	0	30	2.5	30	1.9	30
Sodium	Na	7.7	30	1	30	1.5	30
Strontium	Sr	0	30	0	30	3.5	30
Titanium	Ti	10.2	30	.1.9	30	4.3	30
Zirconium	Zr	PASS	30	11.8	30	PASS	30

ug/g = micrograms per gram

R.P.D. = Relative Percent Difference

PASS = Duplicate sample results were in the range of one to five times the detection limit. R.P.D. calculation is not applicable in this range. Acceptance criteria is a maximum difference between the duplicates equivalent to the value of the detection limit.

Gartner Lee Limited

REPORT DATE:

September 5, 2007

GROUP NUMBER: 80822128

Batch Quality Control for Strong Acid Soluble Metals in Soil (QC# 97897)

Parameter	Duplicate (R.P.D.) 708220719	Duplicate Limits
Mercury Hg	0	30

ug/g = micrograms per gram R.P.D. = Relative Percent Difference

Gartner Lee Limited

REPORT DATE:

September 5, 2007

GROUP NUMBER: 80822128

Batch Quality Control Frequency Summary

SALM in Soil Digestion (Batch# 97897)

QC Туре	No. Sampl	es
CAN MET TIII-1	1	
Blank	3	
Duplicate	20	a dina

PCB Soil/Solid/Swab Prep (Batch# 97944)

QC Type	No. Samples
Blank	
ISnike	1

PCB Soil/Solid/Swab Prep (Batch# 97948)

QC Type	No. Samples
Blank	1
Blank Duplicate Spike	

Volatiles Analysis (Batch# 98026)

QC Type	No. Samples
Volatiles Soil Spike	1

CCME HCs - SOIL PREP (Batch# 98352)

QC Type	No. Samples
	1
Diesel (/Oil) Spike Duplicate	1

(Continued on next page)

Gartner Lee Limited

REPORT DATE:

September 5, 2007

GROUP NUMBER: 80822128

Batch Quality Control Frequency Summary

SALM Metals in Soil Sieve (Batch# 97894)

QC Type	No. Samples
Batch Size	216

SALM in Soil Digestion (Batch# 97897)

QC Type	No. Samples
Batch Size	216

PCB Soil/Solid/Swab Prep (Batch# 97944)

QC Type	No. Samples
Batch Size	17

PCB Soil/Solid/Swab Prep (Batch# 97948)

QC Type	No. Samples
Batch Size	16

TEH Soil/Solid Preparation (Batch# 97993)

QC Type		No. Samples
Batch Size	* * * * * * * * * * * * * * * * * * * *	18

TEH Soil/Solid Preparation (Batch# 97995)

QC Type	No. Samples
Batch Size	18

(Continued on next page)

Gartner Lee Limited

REPORT DATE:

September 5, 2007

GROUP NUMBER: 80822128

Batch Quality Control Frequency Summary

Volatiles Analysis (Batch# 98026)

QC Type	No. Samples
Batch Size	34

TEH Soil/Solid Preparation (Batch# 98093)

QC Type	No. Samples
Batch Size	18

CCME HCs - SOIL PREP (Batch# 98352)

QC Type	No. Samples
Batch Size	16

CHROMATOGRAM COVER SHEET

CONTACT	COMPA	ANY NAME
KEN BOLDT	GARTHER I	LEE LIMITED
FAX NUMBER	DATE	PGS INCL. COVER
1-905-477-1456	august 29,	2007 5
FROM	RETURN FAX	TELEPHONE
CANTEST LTD	604 731 2386	604 734 7276
SUBJE	CT	
Chromatog	ıram(s).	

Please find the attached chromatograms associated with:

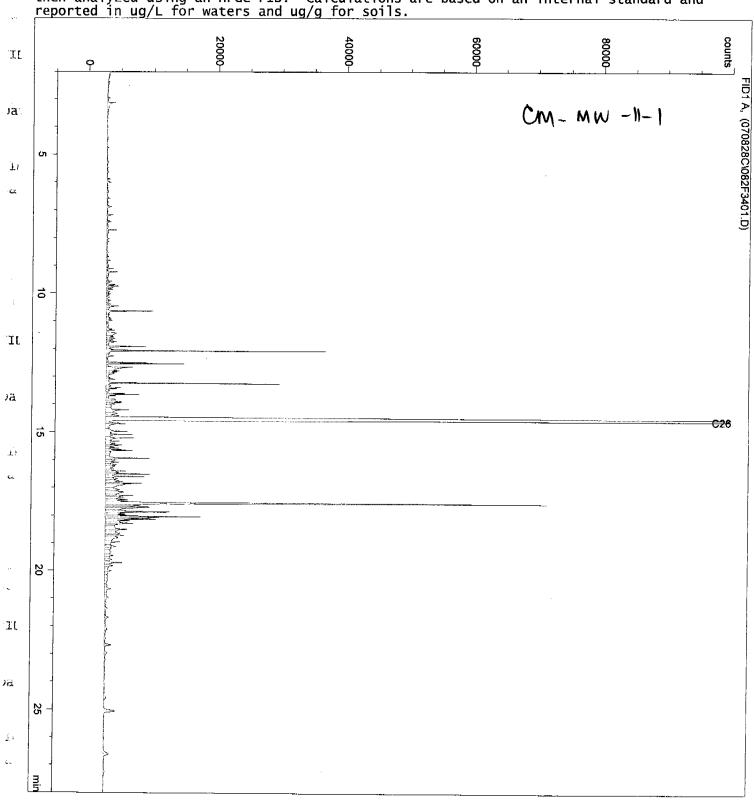
Your Project Number 70517

Sample Matrix SOIL

The originals will follow with the report.

Sample Name: 708220694

Injection Date : 8/29/07 8:05:36 AM Seq. Line : 34
Sample Name : 708220694 Vial : 82
Acq. Operator : pcn Inj : 1
Inj Volume : 2 µl


Acq. Method : C:\HPCHEM\1\METHODS\!EPH.M Last changed : 5/25/07 11:01:41 AM by ry

Analysis Method: C:\HPCHEM\1\METHODS\!TEH_BNP.M Last changed: 8/29/07 7:34:09 AM by pcn

GAROOT

(modified after loading)

Total Extractable Hydrocarbons. Soils and Waters are extracted using methylene chloride and then analyzed using an HPGC-FID. Calculations are based on an internal standard and

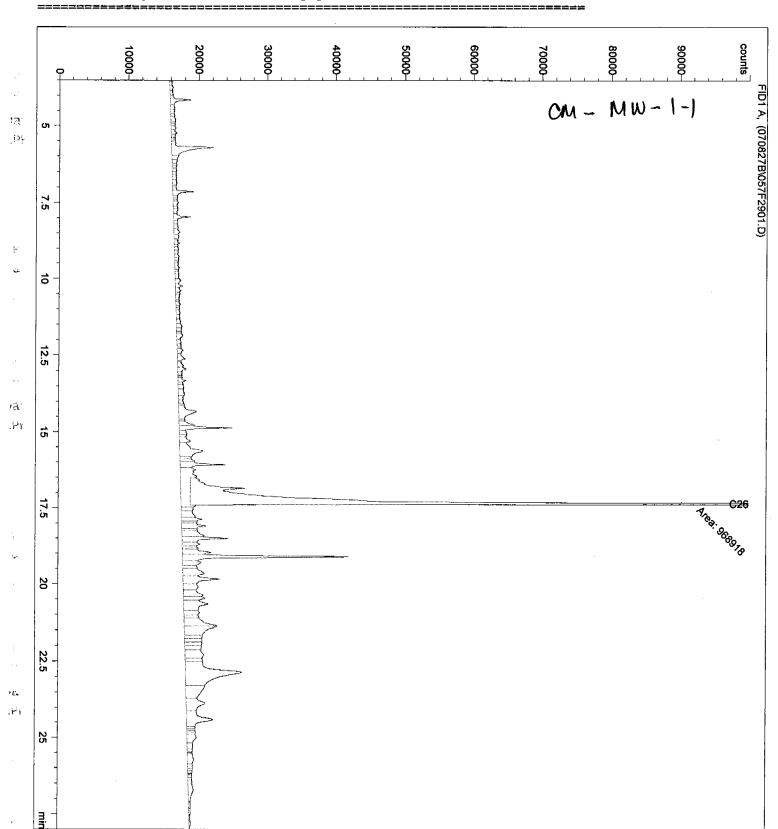
Last changed

Sample Name: 708220655

Injection Date : 8/28/07 1:49:44 AM Sample Name 708220655

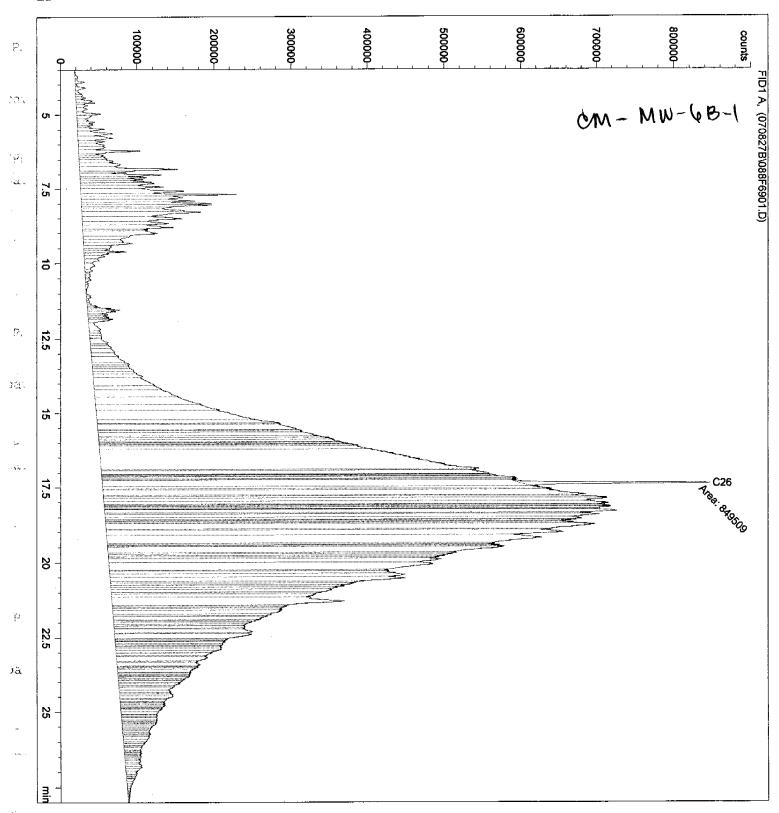
29 57 Seq. Line Vial Inj

Inj Volume : 2 μl


Acq. Operator pcn : D:\HPCHEM~1\1\METHODS\!EPH.M Acq. Method

: 8/28/07 1:43:44 AM by pcn

GAROUS-


Analysis Method : D:\HPCHEM~1\1\METHODS\!TEH_NAP.M : 8/29/07 6:24:53 AM by pcn Last changed

Total Extractable Hydrocarbons. Soils and Waters are extracted using methylene chloride and then analyzed using an HPGC-FID. Calculations are based on an internal standard and reported in ug/L for waters and ug/g for soils.

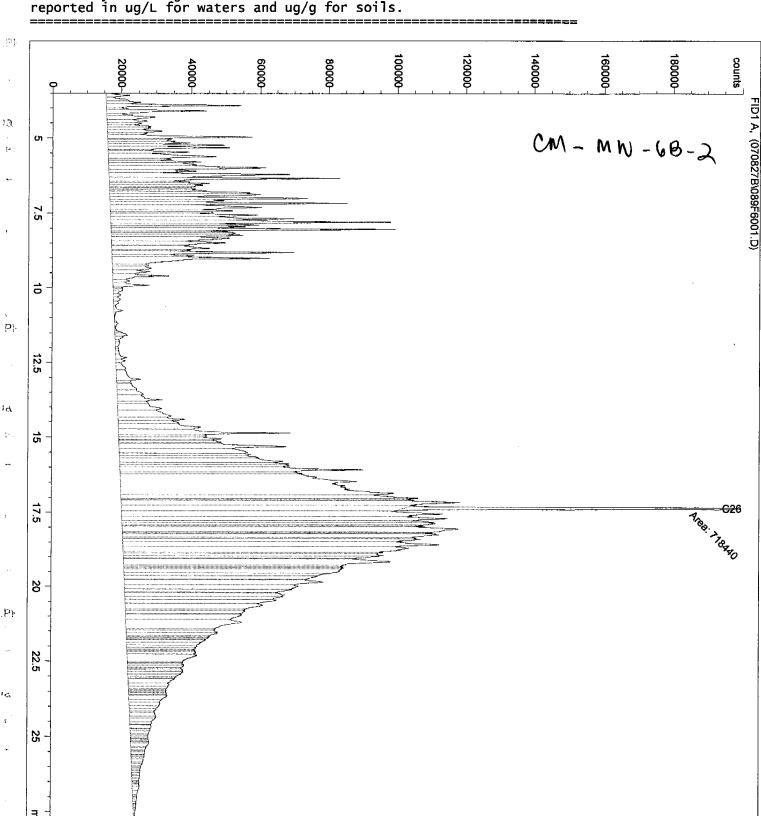
Last changed (modified after loading) Total Extractable Hydrocarbons. Soils and waters are extracted using methylene chloride and then analyzed using an HPGC-FID. Calculations are based on an internal standard and

reported in ug/L for waters and ug/g for soils.

Analysis Method:

8/28/07 8:38:13 PM Injection Date Sample Name : 708220673

60 Vial: 89


Inj : 1 Inj Volume : 2 μl Acq. Operator pcn

: D:\HPCHEM~1\1\METHODS\!EPH.M : 8/28/07 5:29:38 PM by pcn Acq. Method Last changed

Analysis Method : D:\HPCHEM~1\1\METHODS\!TEH_NAP.M Last changed : 8/29/07 6:42:48 AM by pcn

GARROUS (modified after loading)

Total Extractable Hydrocarbons. Soils and Waters are extracted using methylene chloride and then analyzed using an HPGC-FID. Calculations are based on an internal standard and reported in ug/L for waters and ug/g for soils.

CHROMATOGRAM COVER SHEET

CONTACT
COMPANY NAME

LET BOLDT

GARTNER LEE LTD.

FAX NUMBER

DATE PGS INCL. COVER

LET TEMPER L 107 3

FROM
RETURN FAX TELEPHONE
CANTEST LTD

SUBJECT

Chromatogram(s).

Please find the attached chromatograms associated with:

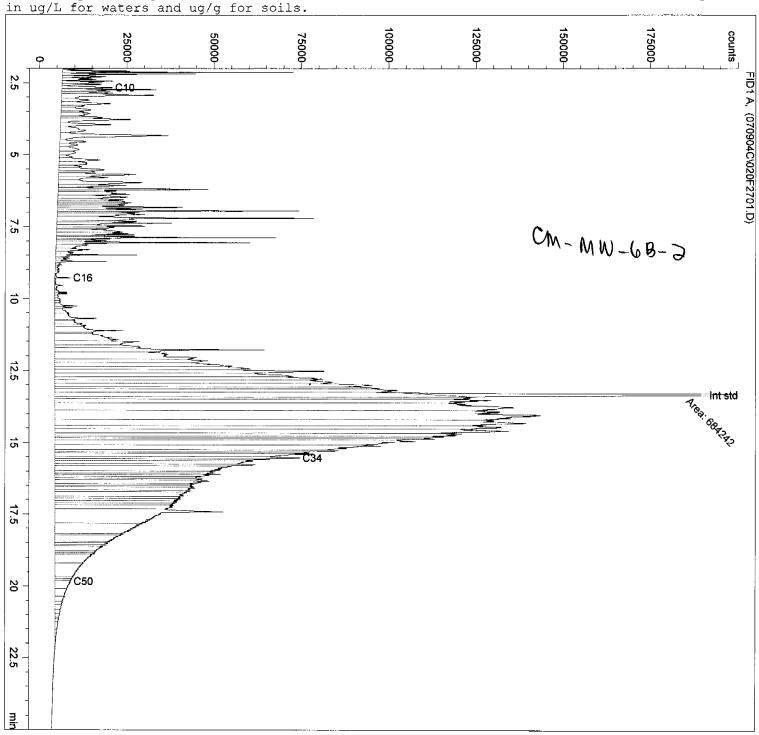
CANTEST Group # 808 みみ 134

Your Project Name CAM - M

Your Project Number 70517

The originals will follow with the report.

Sample Name: 708220673


Acq. Method : C:\HPCHEM\1\METHODS\CCMEHT.M Last changed : 5/11/07 3:22:08 PM by ry Analysis Method : C:\HPCHEM\1\METHODS\CCMEHTP.M Last changed : 9/5/07 9:31:17 AM by pcn

808 22134

GAROOT

(modified after loading)

Total Extractable Hydrocarbons. Soils and Waters are extracted using methylene chloride and then analyzed using an HPGC-FID. Calculations are based on an internal standard and reported in MG/L for coils.

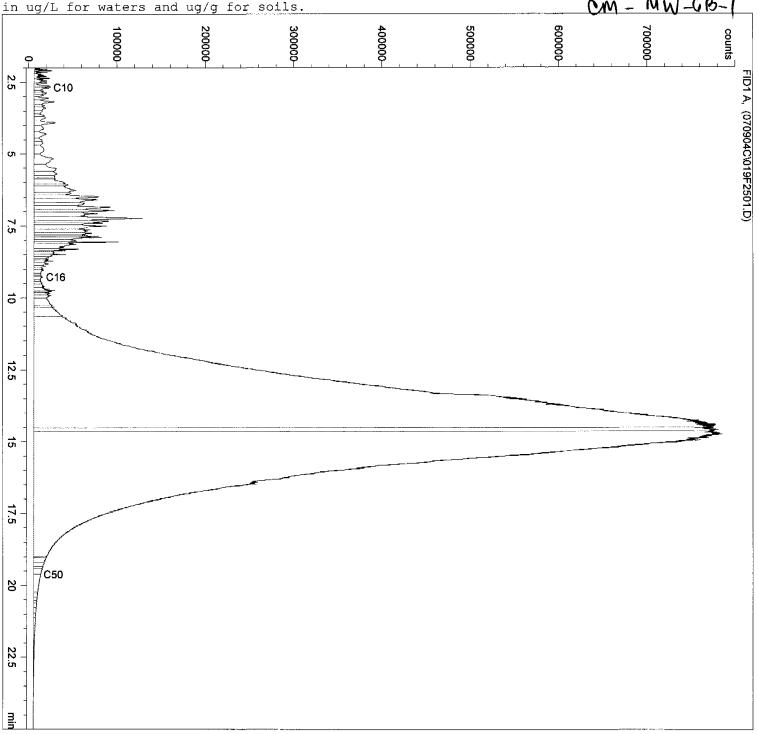
Sample Name: 708220671

Injection Date : 9/4/07 11:19:21 PM

Seq. Line : 25 Vial : 19

Sample Name : 708220671 Acq. Operator : pcn

Inj: 1


Acq. Method : C:\HPCHEM\1\METHODS\CCMEHT.M

Inj Volume : 2 μl

Last changed: 5/11/07 3:22:08 PM by ry
Analysis Method: C:\HPCHEM\1\METHODS\CCMEHTP.M
Last changed: 9/5/07 9:50:50 AM by pcn
(modified after loading)

GAROUT

Total Extractable Hydrocarbons. Soils and Waters are extracted using methylene chloride and then analyzed using an HPGC-FID. Calculations are based on an internal standard and reported in ug/L for waters and ug/g for soils.

Analysis Report

REPORT ON:

Analysis of Soil Samples

REPORTED TO:

Gartner Lee Limited

Suite 300

300 Town Centre Boulevard

Markham, ON

L3R 5Z6

Att'n: Ken Boldt

CHAIN OF CUSTODY:

2090859, 2090860, 2090861, 2090862

PROJECT NAME: PROJECT NUMBER:

CAM-M 70517

NUMBER OF SAMPLES: 36

REPORT DATE: September 5, 2007

DATE SUBMITTED: August 22, 2007

GROUP NUMBER: 80822134

SAMPLE TYPE: Soil

NOTE: Results contained in this report refer only to the testing of samples as submitted. Other information is available on request.

TEST METHODS:

Aromatic Volatile Organic Compounds in Water and Soil - analysis was performed using procedures based on U.S. EPA Methods 624/8240, involving sparging/collection with a Purge and Trap apparatus and analysis using GC/MS.

Volatile Hydrocarbons - analysis was performed by sparging/collection with a Purge and Trap apparatus, followed by analysis using GC/FID. The components present in the boiling range of C5 to C10 were quantified with m & p-xylenes.

CCME Petroleum Hydrocarbons in Soil - analysis was performed using Canadian Council of Ministers of the Environment (CCME) "Reference Method for the Canada-Wide Standard for Petroleum Hydrocarbons in Soil" approved December 2000. The method involves extraction of the different hydrocarbon fractions and analysis by gas chromatography with flame ionization detection (GC/FID).

Canada-Wide Standard for Petroleum Hydrocarbons in Soil (F1 Fraction) - The F1 Fraction (nC6 to nC10) was analyzed based on the CCME Reference Method for the Canada-Wide Standard for Petroleum Hydrocarbons in Soil-Tier 1 Method (2001). Analysis involves methanol extraction and quantitation using GasChromatography with Flame Ionization Detector (GC-FID). The F1 Fraction is reported with the BTEX compounds (benzene, toluene, ethylbenzene, and ortho, meta and para-xylenes) subtracted (e.g. corrected). These BTEX compounds analyzed by GCMS may be included in this report on request by the customer.

Moisture in Soil - analysis was performed gravimetrically by heating a separate sample portion at 105 C

(Continued)

CANTEST LTD.

Anna Becalska, PhD Coordinator, Trace Metals

Page 1 of 50

Gartner Lee Limited

REPORT DATE:

September 5, 2007

GROUP NUMBER: 80822134

Moisture in Soil

and measuring the weight loss.

pH in Soil or Solid - analysis was performed based on procedures described in the Manual on Soil Sampling and Methods of Analysis, published by the Canadian Society of Soil Science, 1993. The test was performed using a deionized water leach with measurement by pH meter.

Polychlorinated Biphenyls - analysis was performed using procedures based upon U.S. EPA Methods 608/8080, involving extraction, clean-up steps, and analysis using GC/ECD. Arochlors 1242, 1248, 1254 and 1260 were included.

Silver in Soil - analysis was performed using Inductively Coupled Plasma Mass Spectrometry (ICP/MS).

Arsenic in Soil - analysis was performed using Inductively Coupled Plasma Mass Spectrometry (ICP/MS).

Cadmium in Soil - analysis was performed using Inductively Coupled Plasma Mass Spectrometry (ICP/MS).

Mercury in Soil - analysis was performed using Cold Vapour Atomic Fluorescence.

Molybdenum in Soil - analysis was performed using an acid digestion followed by determination using Inductively Coupled Plasma Mass Spectrometry (ICP/MS).

Strong Acid Leachable Metals in Soil - analysis was performed using B.C. MOELP Method "Strong Acid Leachable Metals in Soil. Version 1.0". The method involves drying the sample at 60 C, sieving using a 2 mm (10 mesh) sieve and digestion using a mixture of hydrochloric and nitric acids. Analysis was performed using Inductively Coupled Argon Plasma Spectroscopy (ICAP) or by specific techniques as described.

Selenium in Soil - analysis was using Inductively Coupled Plasma Mass Spectrometry (ICP/MS).

Thallium in Soil - analysis was performed using Inductively Coupled Plasma Mass Spectrometry (ICP/MS).

Semi-Volatile Hydrocarbons - analysis was performed using procedures based on U.S. EPA Method 8015. involving dichloromethane extraction and analysis using GC/FID. Components in the C10 to C30 range are included, using an alkane standard for quantitation.

Total Petroleum Hydrocarbons - analysis was performed using procedures based on Alberta Environment Site Investigation requirements, involving summation of the total volatile (purgeable) and semi-volatile (extractable) hydrocarbons.

TEST RESULTS:

(See following pages)

REPORTED TO: Gartner Lee Limited

REPORT DATE:

September 5, 2007

GROUP NUMBER: 80822134

Conventional Parameters in Soil

CLIENT SAMPLE IDENTIFICATION:	SAMPLE DATE	CANTEST ID	Moisture	Η
CM-MW-1-1	Aug 18/07	708220655	62.5	6.8
CM-MW-1-2		708220659	5.8	7.6
CM-MW-2-1	Aug 18/07	708220660	71.9	7.3
CM-MW-2-2		708220661	11.4	7.8
CM-MW-3-1	Aug 18/07	708220662	70.6	7.5
CM-MW-3-2	Aug 18/07	708220663	10.2	8.3
CM-MW-4-1	Aug 18/07	708220664	10.1	8.3
CM-MW-4-2	Aug 18/07	708220665	8.7	8.3
CM-MW-5-1	Aug 18/07	708220666	11.4	8.9
CM-MW-5-2	Aug 18/07	708220667	8.4	8.1
CM-MW-6A-1	Aug 16/07	708220668	16.2	8.1
CM-MW-6A-2	Aug 16/07	708220669	13.8	8.4
CM-MW-6B-1	Aug 16/07	708220671	65.8	6.7
CM-MW-6B-2	Aug 16/07	708220673	11.5	7.8
CM-MW-6C-1	Aug 18/07	708220674	12.1	8.3
CM-MW-6C-2	Aug 18/07	708220676	13.2	8.2
CM-MW-6D-1	Aug 18/07	708220678	10.1	8.1
CM-MW-6D-2	Aug 18/07	708220680	14.1	8.0
CM-MW-6E-1	Aug 18/07	708220682	62.5	7.4
CM-MW-6E-2	Aug 18/07	708220683	13.3	8.0
CM-MW-7-1		708220684	44.4 aggazia	7.9
CM-MW-7-2	Aug 16/07	708220686	12.5	7.9
CM-MW-8-1	Aug 16/07	708220688	8.6	8.5
CM-MW-8-2	Aug 16/07	708220689	10.3	8.0
CM-MW-9-1	Aug 18/07	708220690	65.5	7.3
CM-MW-9-2	Aug 18/07	708220691	9.4	7.9
CM-MW-10-1	Aug 17/07	708220692	5.2	8.1
CM-MW-10-2	Aug 17/07	708220693	5.3	8.1
CM-MW-11-1	Aug 17/07	708220694	65.8	6.9
CM-MW-11-2	Aug 17/07	708220696	4.7	7.7
CM-MW-12-1	Aug 17/07	708220697	7.0	8.1
CM-MW-12-2	Aug 17/07	708220698	27.2	7.5
CM-MW-13-1		708220699	19.9	7.7
CM-MW-13-2		708220700	8.7	7.9
CM-MW-14-1		708220701	10.0	8.0
CM-MW-14-2	Aug 18/07	708220702	8.5	8.0
DETECTION LIMIT				
DETECTION LIMIT UNITS			0.1 %	0.1 pH units

^{% =} percent

REPORTED TO: Gartner Lee Limited

REPORT DATE: September 5, 2007

GROUP NUMBER: 80822134

Polychlorinated Biphenyls in Soil

CLIENT SAMPLE IDENTIFICATION:	CM-MW-1-1	CM-MW-1-2	CM-MW-2-1	CM-MW-2-2	
DATE SAMPLED:	Aug 18/07	Aug 18/07	Aug 18/07	Aug 18/07	DETECTION
CANTEST ID:	708220655	708220659	708220660	708220661	LIMIT
Arochlor 1242 Arochlor 1248	<	\ \ \ \	<		0.03 0.03
Arochlor 1254 Arochlor 1260	<	<	<	< <	0.03 0.03
Total PCB Surrogate Recovery	<	 	<	<	0.03
2,2',4,4',6,6'-hexabromobiphenyl	94	104	97	103	-

Results expressed as micrograms per gram, on a dry weight basis. ($\mu g/g$) Surrogate recoveries expressed as percent (%)

< = Less than detection limit

Gartner Lee Limited

REPORT DATE:

September 5, 2007

GROUP NUMBER: 80822134

Polychlorinated Biphenyls in Soil

CLIENT SAMPLE IDENTIFICATION:	CM-MW-3-1	CM-MW-3-2	CM-MW-4-1	CM-MW-4-2	
DATE SAMPLED:	Aug 18/07	Aug 18/07	Aug 18/07	Aug 18/07	DETECTION
CANTEST ID:	708220662	708220663	708220664	708220665	LIMIT
Arochlor 1242	<	<	<u> </u>	*	0.03
Arochlor 1248	<	<	<	<	0.03
Arochlor 1254	<	*		<	0.03
Arochlor 1260	<	<	<	<	0.03
Total PCB			1 <	-	0.03
Surrogate Recovery	•		•		
2,2',4,4',6,6'-hexabromobiphenyl	102	101	101	103	•

Results expressed as micrograms per gram, on a dry weight basis. ($\mu g/g$) Surrogate recoveries expressed as percent (%)

< = Less than detection limit

Gartner Lee Limited

REPORT DATE:

September 5, 2007

GROUP NUMBER: 80822134

Polychlorinated Biphenyls in Soil

CLIENT SAMPLE IDENTIFICATION:	CM-MW-5-1	CM-MW-5-2	CM-MW-6A-1	CM-MW-6A-2	
DATE SAMPLED:	Aug 18/07	Aug 18/07	Aug 16/07	Aug 16/07	DETECTION
CANTEST ID:	708220666	708220667	708220668		LIMIT
Arochlor 1242	<	<	<	<	0.03
Arochlor 1248	<	<	<	<	0.03
Arochlor 1254	ara ≲ araak ∧a	<	<		0.03
Arochlor 1260	<	<	<	<	0.03
Total PCB	<	<	<	<	0.03
Surrogate Recovery					
2,2',4,4',6,6'-hexabromobiphenyl	108	106	105	107	

Results expressed as micrograms per gram, on a dry weight basis. (µg/g) Surrogate recoveries expressed as percent (%)

< = Less than detection limit

Gartner Lee Limited

REPORT DATE:

September 5, 2007

GROUP NUMBER: 80822134

Polychlorinated Biphenyls in Soil

CLIENT SAMPLE IDENTIFICATION:	CM-MW-6B-1	CM-MW-6B-2	CM-MW-6C-1	CM-MW-6C-2	
DATE SAMPLED:	Aug 16/07	Aug 16/07	Aug 18/07	Aug 18/07	DETECTION
CANTEST ID:	708220671	708220673	708220674	708220676	LIMIT
Arochlor 1242 Arochlor 1248 Arochlor 1254 Arochlor 1260 Total PCB	<	< < < < < < < < < < < < < < < < < < <		< < <	0.03 0.03 0.03 0.03 0.03
Surrogate Recovery 2,2',4,4',6,6'-hexabromobiphenyl	95	102	103	96	

Results expressed as micrograms per gram, on a dry weight basis. (µg/g) Surrogate recoveries expressed as percent (%)

< = Less than detection limit

Gartner Lee Limited

REPORT DATE:

September 5, 2007

GROUP NUMBER: 80822134

Polychlorinated Biphenyls in Soil

CLIENT SAMPLE IDENTIFICATION:	CM-MW-6D-1	CM-MW-6D-2	CM-MW-6E-1	CM-MW-6E-2	
DATE SAMPLED:	Aug 18/07	Aug 18/07	Aug 18/07	Aug 18/07	DETECTION
CANTEST ID:	708220678	708220680	708220682		LIMIT
Arochlor 1242 Arochlor 1248 Arochlor 1254	< < <	< < < < < < < < < < < < < < < < < < <	* * *	«	0.03 0.03 0.03
Arochlor 1260 Total PCB Surrogate Recovery	<	<	<	<	0.03 0.03
2,2',4,4',6,6'-hexabromobiphenyl	91	96	58	108	-

Results expressed as micrograms per gram, on a dry weight basis. (μ g/g) Surrogate recoveries expressed as percent (%)

< = Less than detection limit

Gartner Lee Limited

REPORT DATE:

September 5, 2007

GROUP NUMBER: 80822134

Polychlorinated Biphenyls in Soil

CLIENT SAMPLE IDENTIFICATION:	CM-MW-7-1	CM-MW-7-2	CM-MW-8-1	CM-MW-8-2	
DATE SAMPLED:	Aug 16/07	Aug 16/07	Aug 16/07	Aug 16/07	DETECTION
CANTEST ID:	708220684	708220686	708220688	708220689	LIMIT
Arochlor 1242	<u> </u>	<	< -	<u> </u>	0.03
Arochlor 1248	<	<	<	<	0.03
Arochlor 1254	<	<	<	<	0.03
Arochlor 1260	<	<	<	<	0.03
Total PCB	 <	1 <	<	< 1. 10 0 8 A 1 4 0 0 0	0.03
Surrogate Recovery				• • • • • • • • • • • • • • • • • • • •	,
2,2',4,4',6,6'-hexabromobiphenyl	78	100	65	56	_

Results expressed as micrograms per gram, on a dry weight basis. (μ g/g) Surrogate recoveries expressed as percent (%)

< = Less than detection limit

Gartner Lee Limited

REPORT DATE:

September 5, 2007

GROUP NUMBER: 80822134

Polychlorinated Biphenyls in Soil

CLIENT SAMPLE IDENTIFICATION:	CM-MW-9-1	CM-MW-9-2	CM-MW-10-1	CM-MW-10-2	
DATE SAMPLED:	Aug 18/07	Aug 18/07	Aug 17/07	Aug 17/07	DETECTION
CANTEST ID:	708220690	708220691	708220692	708220693	LIMIT
Arochlor 1242	<	<	<	<	0.03
Arochlor 1248	<	<	<	<	0.03
Arochlor 1254	Jaio < Transition	<	≰	<	0.03
Arochlor 1260	<	<	<	<	0.03
Total PCB	<	<	<	<	0.03
Surrogate Recovery					
2,2',4,4',6,6'-hexabromobiphenyl	66	85	72	82	-

Results expressed as micrograms per gram, on a dry weight basis. ($\mu g/g$) Surrogate recoveries expressed as percent (%)

< = Less than detection limit

Gartner Lee Limited

REPORT DATE:

September 5, 2007

GROUP NUMBER: 80822134

Polychlorinated Biphenyls in Soil

CLIENT SAMPLE IDENTIFICATION:	CM-MW-11-1	CM-MW-11-2	CM-MW-12-1	CM-MW-12-2	
DATE SAMPLED:	Aug 17/07	Aug 17/07	Aug 17/07	Aug 17/07	DETECTION
CANTEST ID:	708220694	708220696	708220697	708220698	LIMIT
Arochlor 1242 Arochlor 1248 Arochlor 1254	< <	< <	< <	·	0.03 0.03 0.03
Arochlor 1260 Total PCB	<	<	<	< <	0.03 0.03
Surrogate Recovery 2,2',4,4',6,6'-hexabromobiphenyl	68	87	70	60	

Results expressed as micrograms per gram, on a dry weight basis. (μ g/g) Surrogate recoveries expressed as percent (%)

< = Less than detection limit

Gartner Lee Limited

REPORT DATE:

September 5, 2007

GROUP NUMBER: 80822134

Polychlorinated Biphenyls in Soil

CLIENT SAMPLE IDENTIFICATION:	CM-MW-13-1	CM-MW-13-2	CM-MW-14-1	CM-MW-14-2	
DATE SAMPLED:	Aug 17/07	Aug 17/07	Aug 18/07	Aug 18/07	DETECTION
CANTEST ID:	708220699	708220700	708220701	708220702	LIMIT
Arochlor 1242	<	<u> </u>	<	<	0.03
Arochlor 1248	<	<	<	<	0.03
Arochlor 1254	<	<	<	 <	0.03
Arochlor 1260	<	<	<	<	0.03
Total PCB	<	<	<	<	0.03
Surrogate Recovery				······································	
2,2',4,4',6,6'-hexabromobiphe	nyl 59	67	107	95	-

Results expressed as micrograms per gram, on a dry weight basis. ($\mu g/g$) Surrogate recoveries expressed as percent (%)

< = Less than detection limit

Gartner Lee Limited

REPORT DATE:

September 5, 2007

GROUP NUMBER: 80822134

Semi-Volatile Hydrocarbons in Soil

CLIENT SAMPLE IDENTIFICATION:	SAMPLE DATE	CANTEST ID	Total Extractable Hydrocarbons
CM-MW-1-1	Aug 18/07	708220655	200
CM-MW-1-2	Aug 18/07	708220659	<
CM-MW-2-1	Aug 18/07	708220660	< 80
CM-MW-2-2	Aug 18/07	708220661	<
CM-MW-3-1	Aug 18/07	708220662	< 80
CM-MW-3-2	Aug 18/07	708220663	<
CM-MW-4-1	Aug 18/07	708220664	<
CM-MW-4-2	Aug 18/07	708220665	<
CM-MW-5-1	Aug 18/07	708220666	<
CM-MW-5-2	Aug 18/07	708220667	<
CM-MW-6A-1	Aug 16/07	708220668	<
CM-MW-6A-2	Aug 16/07	708220669	<
CM-MW-6B-1	Aug 16/07	708220671	33000
CM-MW-6B-2	Aug 16/07	708220673	1100
CM-MW-6C-1	Aug 18/07	708220674	<
CM-MW-6C-2	Aug 18/07	708220676	<
CM-MW-6D-1		708220678	<
CM-MW-6D-2		708220680	<
CM-MW-6E-1		708220682	<
CM-MW-6E-2		708220683	<
CM-MW-7-1		708220684	<
CM-MW-7-2		708220686	
CM-MW-8-1		708220688	<
CM-MW-8-2		708220689	<
CM-MW-9-1		708220690	<
CM-MW-9-2	Aug 18/07		**
CM-MW-10-1	Aug 17/07		<
CM-MW-10-2	Aug 17/07	1	
CM-MW-11-1	Aug 17/07		88
CM-MW-11-2	Aug 17/07	4.	<
CM-MW-12-1	Aug 17/07		<
CM-MW-12-2	Aug 17/07		
CM-MW-13-1	Aug 17/07		<u> </u>
CM-MW-13-2	Aug 17/07		<
CM-MW-13-2 CM-MW-14-1	Aug 17/07		· · · · · · · · · · · · · · · · · · ·
CM-MW-14-2	Aug 18/07		<
DETECTION LIMIT UNITS			20 <i>μ</i> g/g

 μ g/g = micrograms per gram, on a dry weight basis. < = Less than detection limit

REPORTED TO: Gartner Lee Limited

REPORT DATE: September 5, 2007

GROUP NUMBER: 80822134

Total Petroleum Hydrocarbons in Soil

CLIENT SAMPLE IDENTIFICATION:	SAMPLE DATE	CANTEST ID	Total Petroleum Hydrocarbons
CM-MW-1-1	Aug 18/07	708220655	200
CM-MW-1-2	Aug 18/07	708220659	<
CM-MW-2-1	Aug 18/07	708220660	< 80
CM-MW-2-2	Aug 18/07	708220661	<
CM-MW-3-1	Aug 18/07	708220662	< 80
CM-MW-3-2	Aug 18/07	708220663	<
CM-MW-4-1	Aug 18/07	708220664	<
CM-MW-4-2	Aug 18/07	708220665	<
CM-MW-5-1	Aug 18/07	708220666	< + A.a
CM-MW-5-2	Aug 18/07	708220667	<
CM-MW-6A-1	Aug 16/07	708220668	<
CM-MW-6A-2	Aug 16/07	708220669	<
CM-MW-6B-1	Aug 16/07	708220671	33000
CM-MW-6B-2	Aug 16/07	708220673	1300
CM-MW-6C-1	Aug 18/07	708220674	<
CM-MW-6C-2	Aug 18/07	708220676	<
CM-MW-6D-1	Aug 18/07	708220678	<
CM-MW-6D-2	Aug 18/07	708220680	<
CM-MW-6E-1	Aug 18/07	708220682	<
CM-MW-6E-2		708220683	<
CM-MW-7-1		708220684	
CM-MW-7-2		708220686	<
CM-MW-8-1		708220688	
CM-MW-8-2		708220689	<
CM-MW-9-1		708220690	<
CM-MW-9-2	Aug 18/07		<
CM-MW-10-1	Aug 17/07		<
CM-MW-10-2	Aug 17/07		<
CM-MW-11-1		708220694	88
CM-MW-11-2		708220696	<
CM-MW-12-1	Aug 17/07		<
CM-MW-12-2	Aug 17/07		<
CM-MW-13-1		708220699	lia i
CM-MW-13-2	Aug 17/07		<
CM-MW-14-1	Aug 18/07		<u> </u>
CM-MW-14-2	Aug 18/07		<
DETECTION LIMIT			20 μg/g

 $\mu g/g$ = micrograms per gram, on a dry weight basis.

< = Less than detection limit

Gartner Lee Limited

REPORT DATE:

September 5, 2007

GROUP NUMBER: 80822134

CCME Petroleum Hydrocarbons in Soil

CLIENT SAMPLE IDENTIFICATION:	SAMPLE CANTEST ID		F2 uncorrected (C10-C16)	F3 uncorrected (C16-C34)	
CM-MW-1-1	Aug 18/07	708220655	<	<	
CM-MW-2-1	Aug 18/07	708220660	<	<	
CM-MW-3-1	Aug 18/07	708220662	<	<	
CM-MW-6B-1	Aug 16/07	708220671	2800	38000	
CM-MW-6B-2	Aug 16/07	708220673	200	1000	
CM-MW-11-1		708220694	<	<	
DETECTION LIMIT UNITS			80 μg/g	250 μg/g	

 $\mu g/g = micrograms$ per gram, on a dry weight basis. < = Less than detection limit

Gartner Lee Limited

REPORT DATE:

September 5, 2007

GROUP NUMBER: 80822134

CCME Petroleum Hydrocarbons in Soil

CLIENT SAMPLE IDENTIFICATION:	SAMPLE DATE		F1 (C6-C10) uncorrected	
CM-MW-1-1	Aug 18/07	708220655		
CM-MW-2-1		708220660	×	
CM-MW-3-1		708220662	*	
CM-MW-6B-1		708220671	260	
CM-MW-6B-2		708220673		
CM-MW-11-1		708220694	<	

 $\mu g/g = micrograms$ per gram, on a dry weight basis. < = Less than detection limit

Gartner Lee Limited

REPORT DATE:

September 5, 2007

GROUP NUMBER: 80822134

Strong Acid Soluble Metals in Soil

CLIENT SAMPLE IDENTIFICATION:	CM-MW-1-1	CM-MW-1-2	CM-MW-2-1	CM-MW-2-2	
DATE SAMPLED:	Aug 18/07	Aug 18/07	Aug 18/07	Aug 18/07	DETECTION
CANTEST ID:	708220655	708220659	708220660	708220661	LIMIT
Antimony Sb	P 1, 4 4 1 4 5 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	<	1.0	<	0.1
Arsenic As	1.4	2.0	1.0	1.9	0.1
Barium Ba	37	23	22	21	1
Beryllium Be	<	<	<	<	1
Cadmium Cd	 	<	<	<	0.2
Chromium Cr	7	10	9	7	2
Cobalt Co	2	4	1	2	1
Copper Cu	12	7	14	3	1
Lead Pb	3.8	5.0	2.7	2.7	0.2
Mercury Hg	0.05	0.03	<	<	0.01
Molybdenum Mo		0.3	0.4	0.2	0.1
Nickel Ni	8	8	8	4	2
Selenium Se	0.5	0.4	0.9	0.2	0.2
Silver Ag	<	T <	<	<	0.1
Thallium Ti	0.1			<	0.1
Tin Sn		<	<	<	5
Vanadium V	9	16	6	11	
Zinc Zn	35	12	16	8	1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2240	3270	2040	2150	10
Boron B	30	13	26	8	1
Calcium Ca	31800	59300	14800	50600	i i
Iron Fe	6410	10300	4220	6150	2
Magnesium Mg		44800	4420	34300	leforer -
Manganese Mn	255	307	44	219	1
Phosphorus P	1200	385	560	410	20
Potassium K	826	1310	536	878	10
Sodium Na	253	113	328	116	5
Strontium Sr	20	20	20	17	1
Titanium Ti	61	159	50	108	
Zirconium Zr	2	159	2	2	1

Gartner Lee Limited

REPORT DATE:

September 5, 2007

GROUP NUMBER: 80822134

Strong Acid Soluble Metals in Soil

CLIENT SAMPLE IDENTIFICATION:		CM-MW-3-1	CM-MW-3-2	CM-MW-4-1	CM-MW-4-2	
DATE SAMPLED:		Aug 18/07	Aug 18/07	Aug 18/07	Aug 18/07	DETECTION
CANTEST ID:		708220662	708220663	708220664	708220665	LIMIT
Antimony	Sb	<	<	<		0.1
Arsenic	As	0.8	2.8	2.8	3.0	0.1
Barium	Ba	31	47	44	39	1
Beryllium	Be	<	<	<	<	1
Cadmium	Cd	<	<	<	<	0.2
Chromium	Cr	3	18	19	17	2
Cobalt	Co	<	9	8	7	∥ • •
Copper	Cu	7	13	12	11	1
Lead	Pb	1.0	6.9	6.2	5.3	0.2
Mercury	Hg	0.03	<	<	<	0.01
Molybdenum	Mo	0.5	0.3	0.5	0.5	0.1
Nickel	Ni	4	16	16	15	2
Selenium	Se	0.4	0.4	0.4	0.4	0.2
Silver	Ag	<	<	l <	T <	0.1
Thallium	TI	<	0.2	0.2	d - 550,555,555,555,555,555,555,555,555,555	0.1
Tin	Sn	<	<		<	5
Vanadium	V	3	21	24	20	
Zinc	Zn	13	21	26	20	1
Aluminum	Al	662	6460	6980	5700	10
Boron	В	38	16	15	14	1
Calcium	Ca	25600	64500	58400	58500	i
Iron	Fe	1370	13300	12900	11200	2
Magnesium	Mg	7060	47000	44200	43800	1
Manganese	Mn	42	305	249	266	1
Phosphorus	P	569	590	620	000	20
Potassium	K	306	2310	2320	1770	10
Sodium	Na	138	207	213	170	5
Strontium	Sr	19	23	21	21	1
Titanium	Ti	25	239	315	245	
Zirconium	Zr	<	7	7	5	1

Gartner Lee Limited

REPORT DATE:

September 5, 2007

GROUP NUMBER: 80822134

Strong Acid Soluble Metals in Soil

CLIENT SAMPLE IDENTIFICATION		CM-MW-5-1	CM-MW-5-2	CM-MW-6A-1	CM-MW-6A-2	
DATE SAMPLED:		Aug 18/07	Aug 18/07	Aug 16/07	Aug 16/07	DETECTION
CANTEST ID:		708220666	708220667	708220668	708220669	LIMIT
Antimony	Sb	<	*	<	<	0.1
Arsenic	As	4.5	3.3	4.3	2.0	0.1
Barium	Ba	35	51	58	49	1
Beryllium	Be	<	<	<	<	1
Cadmium	Cd	<	<	<	<	0.2
Chromium	Cr	10	22	24	10	2
Cobalt	Co	5	7	9 - 4	6	1
Copper	Cu	12	17	14	17	1
Lead	Pb	6.9	6.8	7.1	7.0	0.2
Mercury	Hg	<	<	<	<	0.01
Molybdenum	Mo	0.4	1.0	0.6	0.4	0.1
Nickel	Ni	11	17	19	11	2
Selenium	Se	0.6	0.4	0.4	0.4	0.2
Silver	Ag	<	<	<	<	0.1
Thallium	TĪ		0.2	0.2	<	0.1
Tin	Sn	<	<	<	<	5
Vanadium	· • • • • • • • • • • • • • • • • • • •	16	28	31	13	1
Zinc	Zn	9	28	29	8	1
Aluminum	Al	2540	8210	8800	2800	10
Boron	В	20	15	16	17	1
Calcium	Ca	91900	45900	37600	84300	1
Iron	Fe	10900	14000	14100	10900	2
Magnesium	Mg	65000	36500	29400	57600	1
Manganese	Mn	385	228	250	332	1
Phosphorus	P	598	587	613	468	20
Potassium	K	1470	2690	2610	1660	10
Sodium	Na	263	530	411	134	5
Strontium	Sr	33	20	20	27	1
Titanium	Ti	62	376	430	73	1
Zirconium	Zr	1	8	8	5	1

Gartner Lee Limited

REPORT DATE:

September 5, 2007

GROUP NUMBER: 80822134

Strong Acid Soluble Metals in Soil

CLIENT SAMPLE IDENTIFICATION:		CM-MW-6B-1	CM-MW-6B-2	CM-MW-6C-1	CM-MW-6C-2	
DATE SAMPLED:		Aug 16/07	Aug 16/07	Aug 18/07	Aug 18/07	DETECTION
CANTEST ID:		708220671	708220673	708220674	708220676	LIMIT
Antimony	Sb	2.0	<	<	<	0.1
Arsenic	As	1.5	2.5	3.8	3.7	0.1
Barium	Ва	69	30	54	54	1
Beryllium	Be	<	<	<	<	1
Cadmium	Cd	0.3	<	<	<	0.2
Chromium	Cr	8	15	23	25	2
Cobalt	Co	4	4	9	8	1
Copper	Cu	11	10	15	17	1
Lead	Pb	10.6	4.9	6.7	7.0	0.2
Mercury	Hg	0.02	<	<	<	0.01
Molybdenum	Mo	2.8	0.7	0.6	1.0	0.1
Nickel	Ni	11	12	19	19	2
Selenium	Se	0.5	0.4	0.4	0.4	0.2
Silver	Ag	<	<	<	<	0.1
Thallium	Τĺ	*	0.1	0.2	0.2	0.1
Tin	Sn	<	<	<	<	5
Vanadium	V.	7	20	29	31	1
Zinc	Zn	149	20	29	32	1
Aluminum	Al	1560	4940	8410	8980	10
Boron	В	33	13	15	17	1
Calcium	Ca	11500	43700	46700	43200	1
Iron	Fe	4450	9150	14500	15200	2
Magnesium	Mg	3930	32200	34100	34400	1
Manganese	Mn	36	172	269	228	1
Phosphorus	P	463	575	613	616	20
Potassium	K	469	1720	2780	3030	10
Sodium	Na	569	266	572	600	5
Strontium	Sr	27	18	20	20	1
Titanium	i i ji i i i	55 55	254	433	435	i i
Zirconium	Zr	2	6	8	8	1

Gartner Lee Limited

REPORT DATE:

September 5, 2007

GROUP NUMBER: 80822134

Strong Acid Soluble Metals in Soil

CLIENT SAMPLE IDENTIFICATION:		CM-MW-6D-1	CM-MW-6D-2	CM-MW-6E-1	CM-MW-6E-2	
DATE SAMPLED:		Aug 18/07	Aug 18/07	Aug 18/07	Aug 18/07	DETECTION
CANTEST ID:	, a	708220678	708220680	708220682	708220683	LIMIT
Antimony	Sb	·	<	1.3	<	0.1
Arsenic	As	3.8	3.9	2.8	2.8	0.1
Barium	Ba	30	65	44	52	1
Beryllium	Be	<	<	<	<	1
Cadmium	Cd	<	<	0.2	<	0.2
Chromium	Cr	12	27	20	23	2
Cobalt	Co	5	10	7	8	1
Copper	Cu	12	18	18	14	1
Lead	Pb	5.5	7.4	5.7	6.7	0.2
Mercury	Hg	<	<	0.08	<	0.01
Molybdenum	Mo	0.5	0.7	0.8	0.7	0.1
Nickel	Ni	11	21	22	18	2
Selenium	Se	0.5	0.4	0.9	0.3	0.2
Silver	Ag	<	<	<	<	0.1
Thallium	TI	<	0.2	0.1	0.2	0.1
Tin	Sn	<	<	<	<	5
Vanadium	V	18	35	15	28	1
Zinc	Zn	13	34	40	28	1
Aluminum	Al	3780	9790	3040	8620	10
Boron	В	13	15	46	17	1
Calcium	Ca	68900	29700	22800	47500	1
Iron	Fe	9750	17200	9300	14900	2
Magnesium	Mg	47900	24700	10600	38500	1 7 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
Manganese	Mn	270	233	376	282	1
Phosphorus	P	501	685	780	639	20
Potassium	K	1580	3220	1160	2810	10
Sodium	.0.00	279	604	822	651	. 5.
Strontium	Sr	23	19	24	20	1
Titanium	ŤÌ	168	514	67	397	1
Zirconium	Zr	5	9	3	8	1

REPORTED TO: Gartner Lee Limited

September 5, 2007 **REPORT DATE:**

GROUP NUMBER: 80822134

Strong Acid Soluble Metals in Soil

CLIENT SAMPLE IDENTIFICATION:		CM-MW-7-1	CM-MW-7-2	CM-MW-8-1	CM-MW-8-2	
DATE SAMPLED:		Aug 16/07	Aug 16/07	Aug 16/07	Aug 16/07	DETECTION
CANTEST ID:		708220684	708220686	708220688	708220689	LIMIT
Antimony	Sb :	. · <	<	0.7	**************************************	0.1
Arsenic	As	1.8	7.9	2.8	3.0	0.1
Barium	Ba	17	43	55	38	1
Beryllium	Be	<	<	<	<	1
Cadmium	Cd	<	<	<		0.2
Chromium	Cr	8	17	13	10	2
Cobalt	Co	2	5	6	4	l i i
Copper	Cu	4	9	12	9	1
Lead	Pb	2.3	5.4	7.4	5.6	0.2
Mercury	Hg	<	<	<	<	0.01
Molybdenum	Mo	0.3	2.1	0.4	0.4	0.1
Nickel	Ni	5	13	11	9	2
Selenium	Se	0.5	0.4	0.4	0.5	0.2
Silver	Ag	<	<	<	<	0.1
Thallium	Tj	<	0.1	0.1	<	0.1
Tin	Sn	<	<	<	<	5
Vanadium	V	11	25	16	15	1
Zinc	Zn	7	19	17	11	1
Aluminum	Al	2310	5830	4240	2800	10
Boron	В	10	14	21	16	1
Calcium	Ca	69000	41300	66600	84100	
Iron	Fe	5030	11000	10500	9490	2
Magnesium	Mg	48900	30800	45700	57200	1
Manganese	Mn	184	195	300	334	1
Phosphorus	Р	489	580	584	530	20
Potassium	K	826	2100	1880	1150	10
Sodium	Na	791	981	682	351	5
Strontium	Sr	21	20	24	25	1
Titanium	Ťi	107	275	125	94	i
Zirconium	Zr	2	6	4	2	1

Gartner Lee Limited

REPORT DATE:

September 5, 2007

GROUP NUMBER: 80822134

Strong Acid Soluble Metals in Soil

CLIENT SAMPLE IDENTIFICATION:		CM-MW-9-1	CM-MW-9-2	CM-MW-10-1	CM-MW-10-2	
DATE SAMPLED:		Aug 18/07	Aug 18/07	Aug 17/07	Aug 17/07	DETECTION
CANTEST ID:		708220690	708220691	708220692	708220693	LIMIT
Antimony	Sb	<	<		<	0.1
Arsenic	As	0.8	1.8	1.6	1.6	0.1
Barium	Ва	32	29	33	39	1
Beryllium	Be	<	<	<	<	1
Cadmium	Cd	0.2	<	. < .ps	<	0.2
Chromium	Cr	5	11	7	8	2
Cobalt	Co	2	4	3	3	1
Copper	Cu	14	9	7	6	1
Lead	Pb	3.1	5.2	3.3	3.4	0.2
Mercury	Hg	0.05	<	<	<	0.01
Molybdenum	Mo	0.7	0.3	0.2	0.3	0.1
Nickel	Ni	10	9	6	7	2
Selenium	Se	0.7	0.3	0.4	0.4	0.2
Silver	Āg	<	<	<	<	0.1
Thallium	m i	Lung Harman	0.1		<	0.1
Tin	Sn	<	<		< <	5
Vanadium	v.	6	13	11	12	1 1
Zinc	Žn	37	12	9	9	1
Aluminum	Al	1480	4430	2360	2430	10
Boron	В	40	18	11	12	1
Calcium	Ča	30500	38000	79900	82600	1
Iron	Fe	3710	9080	6880	7590	2
Magnesium	Mg	11600	26600	54200	53400	1
Manganese	Mn	83	219	262	291	555555555555555555555555555555555555555
Phosphorus	P	884	584	437	421 421	1
Potassium	K	584	2050	896	950	20 10
Sodium	Na Na	1100	∠∪ວ∪ 196	203	950 201	
Strontium	Sr	24	180	203	201 29	5
Titanium	or Ti					1
1 (0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	Zr	36	120	91	92	
Zirconium	∠r	1	6	2	2	1

Gartner Lee Limited

REPORT DATE:

September 5, 2007

GROUP NUMBER: 80822134

Strong Acid Soluble Metals in Soil

CLIENT SAMPLE IDENTIFICATION:	1-18-11-1	CM-MW-11-1	CM-MW-11-2	CM-MW-12-1	CM-MW-12-2	
DATE SAMPLED:		Aug 17/07	Aug 17/07	Aug 17/07	Aug 17/07	DETECTION
CANTEST ID:		708220694	708220696	708220697	708220698	LIMIT
Antimony	Sb	<	<	<	<	0.1
Arsenic	As	0.5	1.0	1.3	1.8	0.1
Barium	Ba	51	23	43	58	1
Beryllium	Be	<	<	<	<	1
Cadmium	Cd	<		<	<	0.2
Chromium	Cr	3	7	8	9	2
Cobalt	Co	3	2	5	3	1
Copper	Cu	8	3	10	12	1
Lead	Pb	1.8	2.9	4.2	4.5	0.2
Mercury	Hg	<	<	<	<	0.01
Molybdenum	Мо	0.4	0.2	0.2	0.4	0.1
Nickel	Ni	4	4	9	10	2
Selenium	Se	0.3	0.2	0.3	0.5	0.2
Silver	Ag	<	<	<	<	0.1
Thallium	TI	<	<	0.1	in Samana p'schi	0.1
Tin	Sn	<	<	<	<	5
Vanadium	V	9	8	11	14	1
Zinc	Zn	13	5	11	10	1
Aluminum	Al	1810	1350	3430	2430	10
Boron	В	20	6	20	21	1
Calcium	Ca	20000	58400	49500	64200	1
Iron	Fe	5440	6260	8050	10300	2
Magnesium	Mg	5370	39500	33700	41300	
Manganese	Mn	128	278	254	462	1
Phosphorus	Р	665	267	493	641	20
Potassium	K	274	369	1700	729	10
Sodium	Na	185	76	171	437	5
Strontium	Sr	14	15	21	21	1
Titanium	Ti	141	46	76	76	1
Zirconium	Zr	<	<	4	1	1

REPORTED TO: Gartner Lee Limited

September 5, 2007 **REPORT DATE:**

GROUP NUMBER: 80822134

Strong Acid Soluble Metals in Soil

CLIENT SAMPLE IDENTIFICATION:		CM-MW-13-1	CM-MW-13-2	CM-MW-14-1	CM-MW-14-2	
DATE SAMPLED:	,	Aug 17/07	Aug 17/07	Aug 18/07	Aug 18/07	DETECTION
CANTEST ID:		708220699	708220700	708220701	708220702	DETECTION LIMIT
Antimony	Sb	*	<	<	<	0.1
Arsenic	As	1.6	1.8	3.6	3.0	0.1
Barium	Ba	86	42	57	59	1
Beryllium	Be		<	<	<	1
Cadmium	Cd	<		<	<	0.2
Chromium	Cr	5	6	16	13	2
Cobalt	Co	2	2	7	5	1 1
Copper	Cu	7	4	13	12	1
Lead	Pb	4.3	3.9	6.1	7.4	0.2
Mercury	Hg	0.04	0.02	<	<	0.01
Molybdenum	Mo	0.4	0.3	0.7	0.7	0.1
Nickel	Ni	5	4	15	12	2
Selenium	Se	0.6	0.4	0.4	0.5	0.2
Silver	Ag	<	<	<	<	0.1
Thallium	TI	0.1	<	0.1	<	0.1
Tin	Sn	<	<	<	<	5
Vanadium	V	10	10	20	16	5889 - 65
Zinc	Zn	21	9	19	15	1
Aluminum	Al	1870	1660	5200	3410	10
Boron	В	24	12	15	18	1
Calcium	Ca	95100	107000	61600	87200	1 1
Iron	Fe	6460	6910	11800	11400	2
Magnesium	Mg	57500	71600	45200	60600	landa.
Manganese	Mn	342	341	291	360	1
Phosphorus	Р	849	399	523	504	20
Potassium	K	424	401	2010	1580	10
Sodium	Na	123	174	705	245	5
Strontium	Sr	27	26	22	28	1
Titanium	ŤĹ	50	56	195	118	İ
Zirconium	Zr	1	<	7	6	1

Gartner Lee Limited

REPORT DATE:

September 5, 2007

GROUP NUMBER: 80822134

Aromatic Volatile Organic Compounds in Soil

CLIENT SAMPLE IDENTIFICATION:	CM-MW-1-1	CM-MW-1-2	CM-MW-2-1	CM-MW-2-2	
DATE SAMPLED:	Aug 18/07	Aug 18/07	Aug 18/07	Aug 18/07	DETECTION
CANTEST ID:	708220655	708220659	708220660	708220661	LIMIT
Benzene	< 0.05	<	< 0.05	< *************************************	0.03
Ethylbenzene	< 0.05	<	< 0.05	< "	0.03
Toluene	< 0.05		< 0.05		0.03
Xylenes	< 0.05	<	< 0.05	<	0.03
Volatile Hydrocarbons	<	<	<	<	2
Surrogate Recovery					
Toluene-d8	99	103	98	100	
Bromofluorobenzene	85	88	88	82	-

< = Less than detection limit

Gartner Lee Limited

REPORT DATE:

September 5, 2007

GROUP NUMBER: 80822134

Aromatic Volatile Organic Compounds in Soil

CLIENT SAMPLE IDENTIFICATION:	CM-MW-3-1	CM-MW-3-2	CM-MW-4-1	CM-MW-4-2	
DATE SAMPLED:	Aug 18/07	Aug 18/07	Aug 18/07	Aug 18/07	DETECTION
CANTEST ID:	708220662	708220663	708220664	708220665	LIMIT
Benzene	< 0.05	<	<	<	0.03
Ethylbenzene	< 0.05			<	0.03
Toluene	< 0.05	-		<	0.03
Xylenes	< 0.05	<	<	<	0.03
Volatile Hydrocarbons	<	*	<	<. #10.000	2
Surrogate Recovery					
Toluene-d8	103	103	104	103	
Bromofluorobenzene	88	82	88	85	-

< = Less than detection limit

Gartner Lee Limited

REPORT DATE:

September 5, 2007

GROUP NUMBER: 80822134

Aromatic Volatile Organic Compounds in Soil

CLIENT SAMPLE IDENTIFICATION:	CM-MW-5-1	CM-MW-5-2	CM-MW-6A-1	CM-MW-6A-2	
DATE SAMPLED:	Aug 18/07	Aug 18/07	Aug 16/07	Aug 16/07	DETECTION
CANTEST ID:	708220666	708220667	708220668	708220669	LIMIT
Benzene	<	<	<	<	0.03
Ethylbenzene	<	<	<	<	0.03
Toluene	<	<	<	<	0.03
Xylenes	· -	_	1 /	_	0.03
Volatile Hydrocarbons	<	<	i k	<	2
Surrogate Recovery					
Toluene-d8	104	101	103	102	- 1
Bromofluorobenzene	86	89	88	82	-

< = Less than detection limit

Gartner Lee Limited

REPORT DATE:

September 5, 2007

GROUP NUMBER: 80822134

Aromatic Volatile Organic Compounds in Soil

CLIENT SAMPLE IDENTIFICATION:	CM-MW-6B-1	CM-MW-6B-2	CM-MW-6C-1	CM-MW-6C-2	
DATE SAMPLED:	Aug 16/07	Aug 16/07	Aug 18/07	Aug 18/07	DETECTION
CANTEST ID:	708220671	708220673	708220674	708220676	LIMIT
Benzene	< 0.05	<	<	× ·	0.03
Ethylbenzene	< 0.05	<u> </u>			0.03
Toluene	< 0.05	<		<	0.03
Xylenes	< 0.05	<	<	<	0.03
Volatile Hydrocarbons	_280	150	<	<	2
Surrogate Recovery		•			
Toluene-d8	111	103	95	96	-
Bromofluorobenzene	85	91	83	86	-

Results expressed as micrograms per gram, on a dry weight basis. (µg/g) Surrogate recoveries expressed as percent (%) < = Less than detection limit

Gartner Lee Limited

REPORT DATE:

September 5, 2007

GROUP NUMBER: 80822134

Aromatic Volatile Organic Compounds in Soil

CLIENT SAMPLE IDENTIFICATION:	CM-MW-6D-1	CM-MW-6D-2	CM-MW-6E-1	CM-MW-6E-2	
DATE SAMPLED:	Aug 18/07	Aug 18/07	Aug 18/07	Aug 18/07	DETECTION]
CANTEST ID:	708220678	708220680	708220682	708220683	LIMIT
Benzene	< , , , , , , , , ,	. .	< 0.05	<	0.03
Ethylbenzene	<	<	< 0.05	<	0.03
Toluene	<	<	< 0.05	<	0.03
Xylenes	<	<	< 0.05	<	0.03
Volatile Hydrocarbons		· <	< * * * * * * * * * * * * * * * * * * *	<	2
Surrogate Recovery					······································
Toluene-d8	96	95	97	99	-
Bromofluorobenzene	85	88	88	88	-

< = Less than detection limit

REPORTED TO: Gartner Lee Limited

REPORT DATE: September 5, 2007

GROUP NUMBER: 80822134

Aromatic Volatile Organic Compounds in Soil

CLIENT SAMPLE IDENTIFICATION:	CM-MW-7-1	CM-MW-7-2	CM-MW-8-1	CM-MW-8-2	
DATE SAMPLED:	Aug 16/07	Aug 16/07	Aug 16/07	Aug 16/07	DETECTION
CANTEST ID:	708220684	708220686	708220688	708220689	LIMIT
Benzene	<	<	<	*	0.03
Ethylbenzene	<	<	<	<	0.03
Toluene	<	l <	<	<	0.03
Xylenes	<	<	<	<	0.03
Volatile Hydrocarbons	*	 		<	2
Surrogate Recovery					
Toluene-d8	96	100	100	101	_
Bromofluorobenzene	82	88	85	82	-

< = Less than detection limit

Gartner Lee Limited

REPORT DATE:

September 5, 2007

GROUP NUMBER: 80822134

Aromatic Volatile Organic Compounds in Soil

CLIENT SAMPLE IDENTIFICATION:	CM-MW-9-1	CM-MW-9-2	CM-MW-10-1	CM-MW-10-2	
DATE SAMPLED:	Aug 18/07	Aug 18/07	Aug 17/07	Aug 17/07	DETECTION
CANTEST ID:	708220690	708220691	708220692	708220693	LIMIT
Benzene	< 0.05	<	<		0.03
Ethylbenzene	< 0.05	<	<	<	0.03
Toluene	< 0.05	*		<	0.03
Xylenes	< 0.05	<	<	<	0.03
Volatile Hydrocarbons	<	<	<		2
Surrogate Recovery				**************************************	
Toluene-d8	97	98	96	104	——————————————————————————————————————
Bromofluorobenzene	86	82	84	86	-

< = Less than detection limit

Gartner Lee Limited

REPORT DATE:

September 5, 2007

GROUP NUMBER: 80822134

Aromatic Volatile Organic Compounds in Soil

CLIENT SAMPLE IDENTIFICATION:	CM-MW-11-1	CM-MW-11-2	CM-MW-12-1	CM-MW-12-2	
DATE SAMPLED:	Aug 17/07	Aug 17/07	Aug 17/07	Aug 17/07	DETECTION
CANTEST ID:	708220694	708220696	708220697	708220698	LIMIT
Benzene	<	2	<	* * * * * * * * * * * * * * * * * * *	0.03
Ethylbenzene	<	<	<	<	0.03
Toluene	<	<	<	<	0.03
Xylenes	<	<	<	<	0.03
Volatile Hydrocarbons	<	<	*	<	2
Surrogate Recovery					
Toluene-d8	99	104	102	104	
Bromofluorobenzene	85	86	86	86	_

< = Less than detection limit

Gartner Lee Limited

REPORT DATE:

September 5, 2007

GROUP NUMBER: 80822134

Aromatic Volatile Organic Compounds in Soil

CLIENT SAMPLE IDENTIFICATION:	CM-MW-13-1	CM-MW-13-2	CM-MW-14-1	CM-MW-14-2	
DATE SAMPLED:	Aug 17/07	Aug 17/07	Aug 18/07	Aug 18/07	DETECTION
CANTEST ID:	708220699	708220700	708220701	708220702	LIMIT
Benzene Ethylbenzene Toluene Xylenes Volatile Hydrocarbons	< < < < < < < < < < < < < < < < < < <	<		\(\times \)	0.03 0.03 0.03 0.03 2
Surrogate Recovery Toluene-d8 Bromofluorobenzene	103 88	108 86	110 86	106 88	-

Results expressed as micrograms per gram, on a dry weight basis. (μ g/g) Surrogate recoveries expressed as percent (%) < = Less than detection limit

Gartner Lee Limited

REPORT DATE:

September 5, 2007

GROUP NUMBER: 80822134

Batch Quality Control for CCME Petroleum Hydrocarbons in Soil (QC# 98352)

Parameter	Blank (ug/g)	Blank Limits	Diesel (/Oil) Spike (% Recovery)	Diesel (/Oil) Spike Limits	Duplicate (R.P.D.) 708220600	Duplicate Limits
F2 uncorrected (C10-C16)	< 80	80	95	75 - 125	NC	20
F3 uncorrected (C16-C34)	< 250	250	-	-	NC	20

ug/g = micrograms per gram

R.P.D. = Relative Percent Difference

NC = Not Calculated. Duplicate sample results were less than the detection limit. Relative Percent Difference calculation is not defined for analyte levels of less than detection limit.

REPORTED TO: Gartner Lee Limited

REPORT DATE: September 5, 2007

GROUP NUMBER: 80822134

Batch Quality Control for Polychlorinated Biphenyls in Soil (QC# 97967)

Parameter	Blank (ug/g)	Blank Limits	Duplicate (R.P.D.) 708220655	Duplicate Limits	Spike (% Recovery)	Spike Limits
Arochlor 1242	< 0.03	0.03	NC	25	¥	+
Arochlor 1248	< 0.03	0.03	NC	25	-	-
Arochlor 1254	< 0.03	0.03	NC	25	÷ 1100000000000000000000000000000000000	
Arochlor 1260	< 0.03	0.03	NC	25	105	75 - 125
Total PCB	< 0.03	0.03	NO	20	-	

ug/g = micrograms per gram

R.P.D. = Relative Percent Difference

NC = Not Calculated. Duplicate sample results were less than the detection limit. Relative Percent Difference calculation is not defined for analyte levels of less than detection limit.

Gartner Lee Limited

REPORT DATE:

September 5, 2007

GROUP NUMBER: 80822134

Batch Quality Control for Polychlorinated Biphenyls in Soil (QC# 97985)

Parameter	Blank (ug/g)	Blank Limits	Duplicate (R.P.D.) 708220684	Duplicate Limits	Spike (% Recovery)	Spike Limits
Arochlor 1242	< 0.03	0.03	NC	25		
Arochlor 1248	< 0.03	0.03	NC	25	-	-
	< 0.03	0.03	NC	25	93	75 - 125
Arochlor 1260	< 0.03	0.03	NC	25	-	[. .
Total PCB	< 0.03	0.03	NC	20	1	

ug/g = micrograms per gram

R.P.D. = Relative Percent Difference

NC = Not Calculated. Duplicate sample results were less than the detection limit. Relative Percent Difference calculation is not defined for analyte levels of less than detection limit.

Gartner Lee Limited

REPORT DATE:

September 5, 2007

GROUP NUMBER: 80822134

Instrument Quality Control for the GC#HP5 w/ FID(TEH) or ECD(PCB) (QC# 191650)

QC Type: Calibration Verification

Parameter	% Recovery	Limits
Arochlor 1242	0	75 - 120
Arochlor 1248	0	75 - 120
Arochlor 1254	0	75 - 120
Arochlor 1260	92	75 - 120

Gartner Lee Limited

REPORT DATE:

September 5, 2007

GROUP NUMBER: 80822134

Instrument Quality Control for the GC#HP5 w/ FID(TEH) or ECD(PCB) (QC# 191657)

QC Type: Calibration Verification

Parameter	% Recovery	Limits
Arochlor 1242	92	75 - 120
Arochlor 1248 Arochlor 1254	92 92	75 - 120 75 - 120
Arochlor 1260	92	75 - 120

REPORTED TO: Gartner Lee Limited

September 5, 2007 **REPORT DATE:**

GROUP NUMBER: 80822134

Batch Quality Control for Strong Acid Soluble Metals in Soil (QC# 97897)

Parameter	Blank (ug/g)	Blank Limits	CAN MET Till-1 (% Recovery)	CAN MET Till-1 Limits	Duplicate (R.P.D.) 708220348	Duplicate Limits
Antimony Sb	< 0.1	10				
Barium Ba	< 1	1	88	74 - 120	_	-
Beryllium Be	< 1	1	20	10.4 - 30.4		+
Cadmium Cd	< 0.2	0.2	61	3 - 197	-	-
Chromium Cr	< 2	0.2	80	73 - 113	. ·	. .
Cobalt Co	< 1 < 1	1	100	70 - 142	 -	-
Copper Cu		0.2	92	75 - 113	-	_
Lead Pb	< 0.2	5	116	65 - 171	-	_
Mercury Hg		-	86	33 - 174	6.5	30
Molybdenum Mo	< 0.1	4	25	5 - 90	_	
Nickel Ni	< 2	2	89	49 - 149	_	4
Selenium Se	< 0.2	0.2	- 4 (94, 5, 1) + 43 (88888888888888		-	- 22222222
Thallium TI	< 0.1	0.001	+	-	. -	
Tin Sn	< 5	5			-	
Vanadium V Zinc Zn	< 1		100	69 - 152	± 0000	•
The second contract of	< 1] 	87	79 - 114		<u>-</u>
Aluminum Al Boron B	< 10	10			+	
Calcium Ca	< 1 < 1		- 63	- 51 - 106	-	
Iron Fe	< 2	2	00	21 - 100	go ra ngan sani ana ani ana angas	SETO Y SANTY :
Magnesium Mg	< 1	1			_	
Manganese Mn	< 1	1	_	AgTionicoodiam noo . gudaga	_	877 - 14168 -
Phosphorus P	< 20	20		. 1940 (1968)	_	
Potassium K	< 10	10	-		-	economico con in the contract of the contract
Sodium Na	< 5	5			_	4
Strontium Sr	< 1	1	_		_	-
Titanium Ti	< 1	avelet. 1 - Susängrageri, (Säigi)	-	magantan inan T a	2	±
Zirconium Zr	< 1	1	_	-	-	_

ug/g = micrograms per gram R.P.D. = Relative Percent Difference

Gartner Lee Limited

REPORT DATE:

September 5, 2007

GROUP NUMBER: 80822134

Batch Quality Control for Strong Acid Soluble Metals in Soil (QC# 97897)

Parameter	Duplicate (R.P.D.) 708220358	Duplicate Limits	Duplicate (R.P.D.) 708220371	Duplicate Limits	Duplicate (R.P.D.) 708220382	Duplicate Limits
Mercury Hg	0	30	0	30	0	30

ug/g = micrograms per gram R.P.D. = Relative Percent Difference

Gartner Lee Limited

REPORT DATE:

September 5, 2007

GROUP NUMBER: 80822134

Batch Quality Control for Strong Acid Soluble Metals in Soil (QC# 97897)

Parameter	Duplicate (R.P.D.) 708220437	Duplicate Limits	Duplicate (R.P.D.) 708220452	Duplicate Limits	Duplicate (R.P.D.) 708220460	Duplicate Limits
Arsenic As			(1.4	30
Barium Ba	-		-		4.7	30
Beryllium Be		- Laine	-		NC	30
Cadmium Cd	-				PASS	30
Chromium Cr	,. .				4.9	30
Cobalt Co	# 8898080 1		 2011 - 1	-	0	30
Copper Cu Lead Pb		÷	-	# 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	8	30
Mercury Hg	Ī	30	3	30	25	30
Nickel Ni	888 M88888	- 30	ં	30	0 4.3	30 30
Selenium Se	i e		_	-	PASS	30
Silver Ag	-	_	-	-	PASS	30
Thallium	s. - 5, s		georgegeleek (*). • Lastasias (*)		PASS	30
Tin Sn	-	-	-	-	NC	30
Vanadium V	-	+	: + :::::::::::::::::::::::::::::::::::		3.6	30
Zinc Zn		-		_	0	30
Aluminum Al	+	+	-	+	6.5	30
Boron B	**	-		-	NC	30
Calcium Ca	+	-		i e	0.7	30
Iron Fe	-	-	- 90100-1000	_ 0000.00000000000000000000000000000000	4	30
Magnesium Mg Manganese Mn	+		·		8.1	30
Phosphorus P	-	-		-	19.2	30
Potassium K	(III.) MARIN		· · · · · · · · · · · · · · · · · · ·		0 4.7	30 30
Sodium Na	-			į.	6.6	30
Strontium Sr	_	-	-	· · · · · · · · · · · · · · · · · · ·	6.1	30
Titanium Ti	stes65.01 048.0+ 1 8 ≠ 9008.05.	verse .	_	<u>.</u> 1 1 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	3.1	30
Zirconium Zr	-	-	-	-	0	30

ug/g = micrograms per gram

R.P.D. = Relative Percent Difference

PASS = Duplicate sample results were in the range of one to five times the detection limit. R.P.D. calculation is not applicable in this range. Acceptance criteria is a maximum difference between the duplicates equivalent to the value of the detection limit.

NC = Not Calculated. Duplicate sample results were less than the detection limit. Relative Percent Difference calculation is not defined for analyte levels of less than detection limit.

Gartner Lee Limited

REPORT DATE:

September 5, 2007

GROUP NUMBER: 80822134

Batch Quality Control for Strong Acid Soluble Metals in Soil (QC# 97897)

Parameter		Duplicate (R.P.D.) 708220474	Duplicate Limits	Duplicate (R.P.D.) 708220484	Duplicate Limits	Duplicate (R.P.D.) 708220516	Duplicate Limits
Mercury	Hg	5.4	30	0	30	0	30

ug/g = micrograms per gram R.P.D. = Relative Percent Difference

Gartner Lee Limited

REPORT DATE:

September 5, 2007

GROUP NUMBER: 80822134

Batch Quality Control for Strong Acid Soluble Metals in Soil (QC# 97897)

Parameter	Duplicate (R.P.D.) 708220528	Duplicate Limits	Duplicate (R.P.D.) 708220538	Duplicate Limits	Duplicate (R.P.D.) 708220594	Duplicate Limits
Arsenic As	-		±	-	0	30
Barium Ba	_ 888888	_ bulararnen - Reeset ti-	_ pri - 200.000 1000 0000 0000 0000 0000 0000 0	-	3.1	30
Beryllium Be Cadmium Cd	***		÷	·	NC	30
Cadmium Cd Chromium Cr	-		- .acommona.* + + +	- 1 N (1.05) (1.05)	NC	30
Cobalt Co	::::::::::::::::::::::::::::::::::::::	P ress ent Consti		435.848888	PASS	30 30
Copper Cu	Turnegereum er in verti	10-10-10-10-10-10-10-10-10-10-10-10-10-1			20	30
Lead Pb	-	-	-		9.2	30
Mercury Hg	0	30	0	30	-	Ĭ
Nickel Ni	-			_	9.5	30
Selenium Se	-		•	÷ i i i i i i i i i i i i i i i i i i i	PASS	30
Silver Ag	- 11 produce displayees	_ \$5000		- 	NC	30
Thallium TI Tin Sn	-			######################################	NC	30
Tin Sn Vanadium V	_	-	- erro	- P1088-> 2088	NC	30
Zinc Zn	·	- :: ::::::::::::::::::::::::::::::::::	+		6.9	30
Aluminum Al					7.4 6.7	30 30
Boron B		-	Ta	. 7 0 20 20 20 20 20 20 2	11.1	30
Calcium Ca	\$ 1	•	<u>.</u>		0.1	30
Iron Fe	-	-	-	-	3.2	30
	-	-		-	5.5	30
Manganese Mn				-	3.1	30
Phosphorus P	7		* 1		16.6	30
Potassium K Sodium Na	<u>-</u>			- 7 Massassassassas	6.7	30
Strontium Sr	-	######################################	*		9.2	30
Titanium Ti			-		4.1 5.9	30 30
Zirconium Zr	=, excynopospor in tene =	###		- *:exelections	0	30

ug/g = micrograms per gram

R.P.D. = Relative Percent Difference

PASS = Duplicate sample results were in the range of one to five times the detection limit. R.P.D. calculation is not applicable in this range. Acceptance criteria is a maximum difference between the duplicates equivalent to the value of the detection limit.

NC = Not Calculated. Duplicate sample results were less than the detection limit. Relative Percent Difference calculation is not defined for analyte levels of less than detection limit.

Gartner Lee Limited

REPORT DATE:

September 5, 2007

GROUP NUMBER: 80822134

Batch Quality Control for Strong Acid Soluble Metals in Soil (QC# 97897)

Parameter		Duplicate (R.P.D.) 708220606	Duplicate Limits	Duplicate (R.P.D.) 708220627	Duplicate Limits	Duplicate (R.P.D.) 708220639	Duplicate Limits
Arsenic	As	0	30	5.7	30	0	30
Barium	Ва	0.8	30	14.1	30	9.1	30
Beryllium	Ве	NC	30	NC	30	NC	30
Cadmium	Cd	NC	30	NC	30	NC	30
Chromium	Cr	0	30	PASS	30	0	30
Cobalt	Co	PASS	30	PASS	30	10.5	30
Copper	Cu	0	30	10.5	30	6.1	30
Lead	Pb	0	30	15.4	30	6.5	30
Mercury	Hg	0	30	0	30	0	30
Nickel	Ni	0	30	PASS	30	5.4	30
Selenium	Se	PASS	30	PASS	30	PASS	30
Silver	Ag	NC	30	NC	30	NC	30
Thallium	ΤΪ	NC	30	NC	30	NC	30
Tin	Sn	NC	30	NC	30	NC	30
Vanadium	V	0	30	8.7	30	6.5	30
Zinc	Zn	0	30	20	30	0	30
Aluminum	Al	0.8	30	16.5	30	1.6	30
Boron	В	3.1	30	16.2	30	6.5	30
Calcium	Ca	1.3	30	0.6	30	1.4	30
Iron	Fe	0.2	30	9.1	30	1.6	30
Magnesium	Mg	3.4	30	13.7	30	1.6	30
Manganese	Mn	5.4	30	11.6	30	6.5	30
Phosphorus	P	0	30	27.6	30	5.5	30
Potassium	K	1	30	14.6	30	1.5	30
Sodium	Na	2.8	30	11.4	30	3.8	30
Strontium	Sr	0	30	13.3	30	0	30
Titanium	Ti	7	30	7.8	30	11.8	30
Zirconium	Zr	PASS	30	PASS	30	PASS	30

ug/g = micrograms per gram

R.P.D. = Relative Percent Difference

PASS = Duplicate sample results were in the range of one to five times the detection limit. R.P.D. calculation is not applicable in this range. Acceptance criteria is a maximum difference between the duplicates equivalent to the value of the detection limit.

NC = Not Calculated. Duplicate sample results were less than the detection limit. Relative Percent Difference calculation is not defined for analyte levels of less than detection limit.

Gartner Lee Limited

REPORT DATE:

September 5, 2007

GROUP NUMBER: 80822134

Batch Quality Control for Strong Acid Soluble Metals in Soil (QC# 97897)

Parameter		Duplicate (R.P.D.) 708220665	Duplicate Limits	Duplicate (R.P.D.) 708220680	Duplicate Limits	Duplicate (R.P.D.) 708220693	Duplicate Limits
Arsenic	As	3.4	30	0	30	6.5	30
Barium	Ва	5.1	30	1.6	30	5.1	30
Beryllium	Be	NC	30	NC	30	NC	30
Cadmium	Cd	NC	30	NC	30	NC	30
Chromium	Cr	17.1	30	0	30	PASS	30
Cobalt	Со	0	30	10.5	30	PASS	30
Copper	Cu	8.7	30	0	30	0	30
Lead	Pb	1.9	30	0	30	0	30
Mercury	Hg	NC	30	NC	30	NC	30
Nickel	Ni	6.5	30	4.7	30	PASS	30
Selenium	Se	PASS	30	PASS	30	PASS	30
Silver	Ag	NC	30	NC	30	NC	30
Thallium	ΤI	PASS	30	PASS	30	NC	30
Tin	Sn	NC	30	NC	30	NC	30
Vanadium	V	4.9	30	2.9	30	0	30
Zinc	Zn	5.1	30	0	30	0	30
Aluminum	Al	3.9	30	1.8	30	1.2	30
Boron	В	14.3	30	6.9	30	0	30
Calcium	Ca	4.6	30	8.8	30	10.5	30
Iron	Fe	2.7	30	2.3	30	1.7	30
Magnesium	Mg	0.9	30	6.5	30	8.2	30
Manganese	Mn	9.4	30	3.9	30	6.5	30
Phosphorus	Р	1.6	30	3.1	30	7.4	30
Potassium	K	0	30	2.5	30	1.9	30
Sodium	Na	7.7	30	1	30	1.5	30
Strontium	Sr	0	30	0	30	3.5	30
Titanium	Ti	10.2	30	1.9	30	4.3	30
Zirconium	Żr	PASS	30	11.8	30	PASS	30

ug/g = micrograms per gram

R.P.D. = Relative Percent Difference

PASS = Duplicate sample results were in the range of one to five times the detection limit. R.P.D. calculation is not applicable in this range. Acceptance criteria is a maximum difference between the duplicates equivalent to the value of the detection limit.

NC = Not Calculated. Duplicate sample results were less than the detection limit. Relative Percent Difference calculation is not defined for analyte levels of less than detection limit.

Gartner Lee Limited

REPORT DATE:

September 5, 2007

GROUP NUMBER: 80822134

Batch Quality Control for Strong Acid Soluble Metals in Soil (QC# 97897)

Parameter		Duplicate (R.P.D.) 708220719	Duplicate Limits
Mercury	Hg		12N

ug/g = micrograms per gram R.P.D. = Relative Percent Difference

Gartner Lee Limited

REPORT DATE:

September 5, 2007

GROUP NUMBER: 80822134

Batch Quality Control Frequency Summary

SALM in Soil Digestion (Batch# 97897)

QC Type	No. Samples		
CAN MET TIII-1	4		
Blank Duplicate	20		

PCB Soil/Solid/Swab Prep (Batch# 97967)

QC Type	No. Samples
Blank Duplicate	1
Spike Spike	1

PCB Soil/Solid/Swab Prep (Batch# 97985)

QC Type		 	No.	Sample	s
Dialik	p.(30,00		1		
Duplicate Spike	1.538.e.15 2000000000000000000000000000000000000	1.00000000	1		

CCME HCs - SOIL PREP (Batch# 98352)

QC Type						No. Samples	
Blank		nundikur"					
Diesel (/ Duplicat	/Oil) Sp e	ike 		-1,099889 -1,098889	1 1		

SALM Metals in Soil Sieve (Batch# 97894)

QC Type			 No. Sa	mples	
Batch Size	1000		216		

(Continued on next page)

Gartner Lee Limited

REPORT DATE:

September 5, 2007

GROUP NUMBER: 80822134

Batch Quality Control Frequency Summary

SALM in Soil Digestion (Batch# 97897)

QC Type	No. Samples
Batch Size	216

PCB Soil/Solid/Swab Prep (Batch# 97967)

QC Type	No. S	amples
Batch Size	18	

PCB Soil/Solid/Swab Prep (Batch# 97985)

QC Type		No. S	Sampl	es
Batch Size	- 68 4 444 848	20	. v.	

TEH Soil/Solid Preparation (Batch# 97993)

QC Type	No. Samples
Batch Size	18

TEH Soil/Solid Preparation (Batch# 98093)

QC Type	No. Sampl	es
Batch Size	18	5000000

Volatiles Analysis (Batch# 98096)

QC Type		No. Samples
Batch Size		36

(Continued on next page)

Gartner Lee Limited

REPORT DATE:

September 5, 2007

GROUP NUMBER: 80822134

Batch Quality Control Frequency Summary

TEH Soil/Solid Preparation (Batch# 98098)

QC Type		No. Samples
Batch Size	na et magetes	15

CCME HCs - SOIL PREP (Batch# 98352)

QC Type	No. Samples
Batch Size	16

Analysis Report

REPORT ON:

Analysis of Water Samples

REPORTED TO:

Gartner Lee Limited

Suite 300

300 Town Centre Boulevard

Markham, ON L3R 5Z6

Att'n: Ken Boldt

CHAIN OF CUSTODY: PROJECT NAME:

2090866 CAM-M

PROJECT NUMBER:

70517

NUMBER OF SAMPLES: 3

REPORT DATE: August 30, 2007

DATE SUBMITTED: August 22, 2007

GROUP NUMBER: 80822146

SAMPLE TYPE: Water

NOTE: Results contained in this report refer only to the testing of samples as submitted. Other information is available on request.

TEST METHODS:

Conventional Parameters - analyses were performed using procedures based on those described in the most current editions of "British Columbia Environmental Laboratory Manual for the Analysis of Water, Wastewater, Sediment and Biological Materials", (2005 edition) Province of British Columbia and "Standard Methods for the Examination of Water and Wastewater" (21st Edition), published by the American Public Health Association.

Mercury in Water - analysis was performed using procedures based on U. S. EPA Method 245.7, oxidative digestion using bromination, and analysis using Cold Vapour Atomic Fluorescence Spectroscopy.

Metals in Water - analysis was performed using Inductively Coupled Plasma Optical Emission Spectroscopy (ICP), Inductively Coupled Plasma-Mass Spectroscopy (ICP/MS).

Dissolved Metals in Water - Samples were filtered in the laboratory and quantitatively determined using Inductively Coupled Plasma Optical Emission Spectroscopy (ICP) and/or Inductively Coupled Plasma-Mass Spectroscopy (ICP/MS).

Polychlorinated Biphenyls - analysis was performed using procedures based upon U.S. EPA Methods 608/8080, involving extraction, clean-up steps, and analysis using GC/ECD. Arochlors 1242, 1248, 1254 and 1260 were included.

Semi-Volatile Hydrocarbons - analysis was performed using procedures based on U.S. EPA Method 8015, involving dichloromethane extraction and analysis using GC/FID. Components in the C10 to C30 range are included,

(Continued)

CANTEST LTD.

Fachard S. Jornitz

Supervisor, Inorganic Testing

Page 1 of 9

Gartner Lee Limited

REPORT DATE:

August 30, 2007

GROUP NUMBER: 80822146

Semi-Volatile Hydrocarbons

using an alkane standard for quantitation.

TEST RESULTS:

(See following pages)

REPORTED TO: Gartner Lee Limited

REPORT DATE: August 30, 2007

GROUP NUMBER: 80822146

Conventional Parameters in Water

CLIENT SAMPLE IDENTIFICATION:	SAMPLE DATE	CANTEST ID	Hardness CaCO3	Hardness (Total) CaCO3
CM-MW-1	Aug 18/07	708220733	1150	1280
CM-MW-2		708220738	1030	1038
CM-MW-3	Aug 18/07	708220745	2040	2100

mg/L = milligrams per liter

Gartner Lee Limited

REPORT DATE:

August 30, 2007

GROUP NUMBER: 80822146

Metals Analysis in Water

CLIENT SAMPLE IDENTIFICATION:		CM-MW-1	CM-MW-1	CM-MW-2	CM-MW-2		
SAMPLE PREPARAT	TON:	TOTAL	DISSOLVED	TOTAL	DISSOLVED		
DATE SAMPLED:		Aug 18/07	Aug 18/07	Aug 18/07	Aug 18/07	DETECTION	UNITS
CANTEST ID:		708220733	708220733	708220738	708220738	LIMIT	ONTO
Aluminum	Al	0.40	0.002	0.27	0.001	0.001	mg/L
Antimony	Sb	<	<	0.0008	0.0007	0.0002	mg/L
Arsenic	As	0.0012	0.0008	0.0011	0.0008	0.0002	mg/L
Barium	Ва	0.022	0.018	0.031	0.027	0.0002	mg/L
Beryllium	Be	<	<	<	<	0.0002	mg/L
Bismuth	Bi	<	<	<	<	0.0002	mg/L
Boron	В	0.24	0.23	0.16	0.16	0.01	mg/L
Cadmium	Cd	0.00009	0.00007	0.00014	0.00014	0.00004	mg/L
Calcium	Ca	224	200	150	150	0.01	mg/L
Chromium	Cr	0.020	0.0005	0.040	0.0008	0.0002	mg/L
Cobalt	Co	0.0039	0.0032	0.0023	0.0015	0.0002	mg/L
Copper	Cu	0.0081	0.0045	0.0070	0.0047	0.0002	mg/L
Iron	Fe	2.15	0.05	1.27	0.07	0.01	mg/L
Lead	Pb	0.0005	<	0.0013	<	0.0002	mg/L
Lithium	Li	0.035	0.033	0.047	0.045	0.001	mg/L
Magnesium	Mg	175	157	161	159	0.01	mg/L
Manganese	Mn	0.164	0.143	0.229	0.205	0.0002	mg/L
Mercury	Hg	<	<	<	<	0.02	μg/L
Molybdenum	Mo	0.010	0.0095	0.014	0.012	0.0001	mg/L
Nickel	Ni	0.067	0.046	0.060	0.030	0.0002	mg/L
Phosphorus	P	0.04	<	<	<	0.03	mg/L
Potassium	K	23.5	22.1	26.3	26.0	0.02	mg/L
Selenium	Se	0.0009	0.0008	0.0009	0.0008	0.0002	mg/L
Silicon	Si	7.85	6.48	4.23	3.67	0.05	mg/L
Silver	Ag	<	<	<	<	0.00005	mg/L
Sodium	Na	397	360	391	382	0.01	mg/L
Strontium	Sr	0.537	0.512	1.23	1.16	0.0002	mg/L
Tellurium	Te	<	<	<	<	0.0002	mg/L
Thallium	TI	0.00002	<	0.00016	0.00014	0.00002	mg/L
Thorium	Th	0.0004	<	0.0007	<	0.0001	mg/L
Tin	Sn	<	<	0.0002	<	0.0002	mg/L

(Continued on next page)

Gartner Lee Limited

REPORT DATE:

August 30, 2007

GROUP NUMBER: 80822146

Metals Analysis in Water

CLIENT SAMPLE IDENTIFICATION:		CM-MW-1	CM-MW-1	CM-MW-2	CM-MW-2			
SAMPLE PREPARA	TION:	TOTAL	DISSOLVED	TOTAL	DISSOLVED			
DATE SAMPLED:		Aug 18/07	Aug 18/07	Aug 18/07	Aug 18/07	DETECTION	UNITS	
CANTEST ID:		708220733	708220733	708220738	708220738	LIMIT	00	
Titanium Uranium	Ti U	0.029 0.010	0.0006 0.0095	0.018 0.025	0.0004 0.023	0.0002 0.0001	mg/L mg/L	
Vanadium Zinc Zirconium	V Zn Zr	0.0009 0.15 <	< 0.097 <	0.0005 2.91	0.0002 2.64 <	0.0002 0.001 0.002	mg/L mg/L mg/L	

mg/L = milligrams per liter < = Less than detection limit

 μ g/L = micrograms per liter

REPORTED TO: Gartner Lee Limited

REPORT DATE: August 30, 2007

GROUP NUMBER: 80822146

Metals Analysis in Water

CLIENT SAMPLE IDENTIFICATION:		CM-MW-3	CM-MW-3		
SAMPLE PREPARA	TION:	TOTAL	DISSOLVED		
DATE SAMPLED:		Aug 18/07	Aug 18/07	DETECTION	UNITS
CANTEST ID:		708220745	708220745	LIMIT	0.4
Aluminum	Al	0.008	0.001	0.001	mg/L
Antimony	Sb	<	<	0.0002	mg/L
Arsenic	As	0.0008	0.0008	0.0002	mg/L
Barium	Ba	0.0088	0.0084	0.0002	mg/L
Beryllium	Be	<	<	0.0002	mg/L
Bismuth	Bi	<	<	0.0002	mg/L
Boron	В	0.47	0.46	0.01	mg/L
Cadmium	Cd	<	<	0.00004	mg/L
Calcium	Ca	387	372	0.01	mg/L
Chromium	Cr	0.024	0.0008	0.0002	mg/L
Cobalt	Co	0.032	0.030	0.0002	mg/L
Copper	Cu	0.0043	0.0029	0.0002	mg/L
Iron	Fe	0.47	0.09	0.01	mg/L
Lead	Pb	<	<	0.0002	mg/L
Lithium	Li	0.061	0.059	0.001	mg/L
Magnesium	Mg	276	269	0.01	mg/L
Manganese	Mn	0.365	0.346	0.0002	mg/L
Mercury	Hg	<	<	0.02	μg/L
Molybdenum	Mo	0.0019	0.0014	0.0001	mg/L
Nickel	Ni	0.153	0.117	0.0002	mg/L
Phosphorus	Р	<	<	0.03	mg/L
Potassium	K	36.9	36.0	0.02	mg/L
Selenium	Se	0.0012	0.0011	0.0002	mg/L
Silicon	Si	1.56	1.54	0.05	mg/L
Silver	Ag	<	 <	0.00005	mg/L
Sodium	Na	511	490	0.01	mg/L
Strontium	Sr	0.677	0.647	0.0002	mg/L
Tellurium	Te	<	<	0.0002	mg/L
Thallium	ΤI	0.00011	0.00010	0.00002	mg/L
Thorium	Th	<	<	0.0001	mg/L
Tin	Sn	<	<	0.0002	mg/L

(Continued on next page)

Gartner Lee Limited

REPORT DATE:

August 30, 2007

GROUP NUMBER: 80822146

Metals Analysis in Water

CLIENT SAMPLE IDENTIFICATION:		CM-MW-3	CM-MW-3			
SAMPLE PREPARA	ATION:	TOTAL	DISSOLVED			
DATE SAMPLED: CANTEST ID:		Aug 18/07	Aug 18/07	DETECTION	UNITS	
		708220745	708220745	LIMIT	014110	
Titanium	Ţį	0.0009	0.0005	0.0002	mg/L	
Uranium Vanadium	U V	0.012	0.012	0.0001	mg/L mg/L	
Zinc Zirconium	Zn Zr	0.018 <	0.016 <	0.001 0.002	mg/L mg/L	

mg/L = milligrams per liter < = Less than detection limit

 μ g/L = micrograms per liter

Gartner Lee Limited

REPORT DATE:

August 30, 2007

GROUP NUMBER: 80822146

Polychlorinated Biphenyls in Water

CLIENT SAMPLE IDENTIFICATION:	CM-MW-1	CM-MW-2	CM-MW-3		
DATE SAMPLED:	Aug 18/07	Aug 18/07	Aug 18/07	DETECTION	
CANTEST ID:	708220733	708220738	708220745	LIMIT	
Arochlor 1242	<			0.1	
Arochlor 1248	<	<	 <	0.1	
Arochlor 1254	<	 <	<	0.1	
Arochlor 1260	<	<	<	0.1	
Total PCB	<	<	<	0.4	
Surrogate Recovery			*		
2,2',4,4',6,6'-hexabromobiphenyl	109	111	112		

Results expressed as micrograms per liter (μ g/L) Surrogate recoveries expressed as percent (%) < = Less than detection limit

Gartner Lee Limited

REPORT DATE:

August 30, 2007

GROUP NUMBER: 80822146

Semi-Volatile Hydrocarbons in Water

CLIENT SAMPLE IDENTIFICATION:	SAMPLE DATE	CANTEST ID	Total Extractable Hydrocarbons
CM-MW-1	Aug 18/07	708220733	
CM-MW-2		708220738	<
CM-MW-3	Aug 18/07	708220745	<
DETECTION LIMIT			100
UNITS	μg/L		

 μ g/L = micrograms per liter < = Less than detection limit

Analysis Report

REPORT ON:

Analysis of Water Samples

REPORTED TO:

Gartner Lee Limited

Suite 300

300 Town Centre Boulevard

Markham, ON L3R 5Z6

Att'n: Ken Boldt

CHAIN OF CUSTODY: PROJECT NAME:

2090863

PROJECT NUMBER:

CAM-M 70517

NUMBER OF SAMPLES: 4

REPORT DATE: August 30, 2007

DATE SUBMITTED: August 22, 2007

GROUP NUMBER: 80822147

SAMPLE TYPE: Water

NOTE: Results contained in this report refer only to the testing of samples as submitted. Other information is available on request.

information is available on requ

TEST METHODS:

Conventional Parameters - analyses were performed using procedures based on those described in the most current editions of "British Columbia Environmental Laboratory Manual for the Analysis of Water, Wastewater, Sediment and Biological Materials", (2005 edition) Province of British Columbia and "Standard Methods for the Examination of Water and Wastewater" (21st Edition), published by the American Public Health Association.

Mercury in Water - analysis was performed using procedures based on U. S. EPA Method 245.7, oxidative digestion using bromination, and analysis using Cold Vapour Atomic Fluorescence Spectroscopy.

Metals in Water - analysis was performed using Inductively Coupled Plasma Optical Emission Spectroscopy (ICP), Inductively Coupled Plasma-Mass Spectroscopy (ICP/MS).

Dissolved Metals in Water - Samples were filtered in the laboratory and quantitatively determined using Inductively Coupled Plasma Optical Emission Spectroscopy (ICP) and/or Inductively Coupled Plasma-Mass Spectroscopy (ICP/MS).

Polychlorinated Biphenyls - analysis was performed using procedures based upon U.S. EPA Methods 608/8080, involving extraction, clean-up steps, and analysis using GC/ECD. Arochlors 1242, 1248, 1254 and 1260 were included.

Semi-Volatile Hydrocarbons - analysis was performed using procedures based on U.S. EPA Method 8015, involving dichloromethane extraction and analysis using GC/FID. Components in the C10 to C30 range are included,

(Continued)

CANTEST LTD.

Righard S. Jornitz

8⁄upervisor, Inorganic Testing

Page 1 of 9

Gartner Lee Limited

REPORT DATE:

August 30, 2007

GROUP NUMBER: 80822147

Semi-Volatile Hydrocarbons

using an alkane standard for quantitation.

TEST RESULTS:

(See following pages)

REPORTED TO: Gartner Lee Limited

REPORT DATE:

August 30, 2007

GROUP NUMBER: 80822147

Conventional Parameters in Water

CLIENT SAMPLE IDENTIFICATION:	SAMPLE DATE	CANTEST ID	Hardness CaCO3	Hardness (Total) CaCO3	
CM-MW-8	Aug 16/07	708220736	1960	1990	
CM-MW-10		708220739	1400	1460	
CM-MW-11		708220748	1170	1360	
CM-MW-12		708220749	1380	1420	

mg/L = milligrams per liter

Gartner Lee Limited

REPORT DATE:

August 30, 2007

GROUP NUMBER: 80822147

Metals Analysis in Water

CLIENT SAMPLE IDENTIFICATION:		CM-MW-8	CM-MW-8	CM-MW-10	CM-MW-10		
SAMPLE PREPARA	TION:	TOTAL	DISSOLVED	TOTAL	DISSOLVED		
DATE SAMPLED:		Aug 16/07	Aug 16/07	Aug 17/07	Aug 17/07	DETECTION	UNITS
CANTEST ID:		708220736	708220736	708220739	708220739	LIMIT	ONTO
Aluminum	Al	0.005	0.001	0.037	<	0.001	mg/L
Antimony	Sb	<	<	<	<	0.0002	mg/L
Arsenic	As	0.0008	0.0008	0.0007	0.0007	0.0002	mg/L
Barium	Ba	0.017	0.016	0.021	0.019	0.0002	mg/L
Beryllium	Be	<	<	<	<	0.0002	mg/L
Bismuth	Bi	<	<	<	<	0.0002	mg/L
Boron	В	1.32	1.24	0.46	0.43	0.01	mg/L
Cadmium	Cd	<	\ <	0.00005	0.00005	0.00004	mg/L
Calcium	Ca	356	353	273	263	0.01	mg/L
Chromium	Cr	0.0009	0.0006	0.036	0.0006	0.0002	mg/L
Cobalt	Co	0.010	0.0097	0.022	0.020	0.0002	mg/L
Copper	Cu	0.0035	0.0033	0.0057	0.0040	0.0002	mg/L
Iron	Fe	0.11	0.09	0.63	0.08	0.01	mg/L
Lead	Pb	<	<	<	<	0.0002	mg/L
Lithium	Li	0.071	0.066	0.048	0.045	0.001	mg/L
Magnesium	Mg	266	263	188	179	0.01	mg/L
Manganese	Mn	0.113	0.107	0.271	0.252	0.0002	mg/L
Mercury	Hg	<	<	<	<	0.02	μg/L
Molybdenum	Mo	0.0031	0.0029	0.0047	0.0038	0.0001	mg/L
Nickel	Ni	0.068	0.066	0.124	0.090	0.0002	mg/L
Phosphorus	Р	<	<	<	<	0.03	mg/L
Potassium	K	57.4	57.2	39.4	38.0	0.02	mg/L
Selenium	Se	0.0012	0.0011	0.0016	0.0016	0.0002	mg/L
Silicon	Si	3.42	3.19	3.06	2.84	0.05	mg/L
Silver	Ag	<	<	<	 <	0.00005	mg/L
Sodium	Na	321	315	464	431	0.01	mg/L
Strontium	Sr	1.28	1.19	0.875	0.822	0.0002	mg/L
Tellurium	Te	<	<	<	<	0.0002	mg/L
Thallium	TI	0.00007	0.00007	0.00017	0.00015	0.00002	mg/L
Thorium	Th	<	<	<	<	0.0001	mg/L
Tin	Sn	<	<	<	<	0.0002	mg/L

(Continued on next page)

Gartner Lee Limited

REPORT DATE:

August 30, 2007

GROUP NUMBER: 80822147

Metals Analysis in Water

CLIENT SAMPLE IDENTIFICATION:		CM-MW-8	CM-MW-8	CM-MW-10	CM-MW-10		
SAMPLE PREPARA	TION:	TOTAL	DISSOLVED	TOTAL	DISSOLVED		
DATE SAMPLED:		Aug 16/07	Aug 16/07	Aug 17/07	Aug 17/07	DETECTION	UNITS
CANTEST ID:		708220736	708220736	708220739	708220739	LIMIT	
Titanium	Ti	0.0008	0.0005	0.0035	0.0004	0.0002	mg/L
Uranium	U	0.018	0.017	0.033	0.029	0.0001	mg/L
Vanadium	V	0.0003	0.0002	0.0003	<	0.0002	mg/L
Zinc	Zn	0.016	0.016	0.017	0.012	0.001	mg/L
Zirconium	Zr	<	<	<	<	0.002	mg/L

mg/L = milligrams per liter < = Less than detection limit

 μ g/L = micrograms per liter

Gartner Lee Limited

REPORT DATE:

August 30, 2007

GROUP NUMBER: 80822147

Metals Analysis in Water

CLIENT SAMPLE IDENTIFICATION:		CM-MW-11	CM-MW-11	CM-MW-12	CM-MW-12		
SAMPLE PREPARA	TION:	TOTAL	DISSOLVED	TOTAL	DISSOLVED		
DATE SAMPLED:		Aug 17/07	Aug 17/07	Aug 17/07	Aug 17/07	DETECTION	UNITS
CANTEST ID:		708220748	708220748	708220749	708220749	LIMIT	O TATE
Aluminum	Al	0.007	0.001	0.032	<	0.001	mg/L
Antimony	Sb	<	<	<	<	0.0002	mg/L
Arsenic	As	0.0009	0.0008	0.0011	0.0009	0.0002	mg/L
Barium	Ba	0.038	0.035	0.063	0.058	0.0002	mg/L
Beryllium	Be	<	<	<	<	0.0002	mg/L
Bismuth	Bi	<	<	<	<	0.0002	mg/L
Boron	В	0.10	0.09	0.22	0.20	0.01	mg/L
Cadmium	Cd	<	<	0.00015	0.00010	0.00004	mg/L
Calcium	Ca	246	209	260	254	0.01	mg/L
Chromium	Cr	0.0061	0.0007	0.190	0.0020	0.0002	mg/L
Cobalt	Co	0.0016	0.0014	0.0075	0.0068	0.0002	mg/L
Copper	Cu	0.0052	0.0042	0.0062	0.0039	0.0002	mg/L
Iron	Fe	0.64	0.10	1.39	0.10	0.01	mg/L
Lead	Pb	 	<	0.0003	<	0.0002	mg/L
Lithlum	LI	0.015	0.014	0.027	0.024	0.001	mg/L
Magnesium	Mg	180	157	186	181	0.01	mg/L
Manganese	Mn	0.117	0.113	0.215	0.207	0.0002	mg/L
Mercury	Hg	<	<	<	<	0.02	μg/L
Molybdenum	Мо	0.0010	0.0006	0.0033	0.0020	0.0001	mg/L
Nickel	Ni	0.028	0.017	0.269	0.238	0.0002	mg/L
Phosphorus	Р	<	<	<	<	0.03	mg/L
Potassium	K	11.5	11.2	22.0	21.3	0.02	mg/L
Selenium	Se	0.0008	0.0007	0.0009	0.0008	0.0002	mg/L
Silicon	Si	2.99	2.83	4.60	4.36	0.05	mg/L
Silver	Ag	<	<	<	<	0.00005	mg/L
Sodium	Na _	292	250	171	162	0.01	mg/L
Strontium	Sr -	0.258	0.245	0.569	0.528	0.0002	mg/L
Tellurium	Te	<		<	<	0.0002	mg/L
Thallium	<u>I</u> I	<	<	0.00006	0.00006	0.00002	mg/L
Thorium	Th	<	<	0.0001	<	0.0001	mg/L
Tin	Sn	<	<	<	<	0.0002	mg/L

(Continued on next page)

Gartner Lee Limited

REPORT DATE:

August 30, 2007

GROUP NUMBER: 80822147

Metals Analysis in Water

CLIENT SAMPLE IDENTIFICATION	=	CM-MW-11	CM-MW-11	CM-MW-12	CM-MW-12		
SAMPLE PREPAR	RATION:	TOTAL	DISSOLVED	TOTAL	DISSOLVED		
DATE SAMPLED:		Aug 17/07	Aug 17/07	Aug 17/07	Aug 17/07	DETECTION	UNITS
CANTEST ID:		708220748	708220748	708220749	708220749	LIMIT	J. T.
Titanium	1	0.0005	0.0003	0.0012	0.0004	0.0002	mg/L
Uranium	U	0.0067	0.0066	0.020	0.018	0.0001	mg/L
Vanadium	V	0.0002	<	0.0006	0.0005	0.0002	mg/L
Zinc	Zn	0.003	0.002	0.10	0.073	0.001	mg/L
Zirconium	Zr	<	<	<	<	0.002	mg/L

mg/L = milligrams per liter < = Less than detection limit

 μ g/L = micrograms per liter

Gartner Lee Limited

REPORT DATE:

August 30, 2007

GROUP NUMBER: 80822147

Polychlorinated Biphenyls in Water

CLIENT SAMPLE IDENTIFICATION:	CM-MW-8	CM-MW-10	CM-MW-11	CM-MW-12	
DATE SAMPLED:	Aug 16/07	Aug 17/07	Aug 17/07	Aug 17/07	DETECTION
CANTEST ID:	708220736	708220739	708220748	708220749	LIMIT
Arochlor 1242	<	<	<	<	0.1
Arochlor 1248	<	<	<	<	0.1
Arochlor 1254	<	<	<	<	0.1
Arochlor 1260	<	<	<	<	0.1
Total PCB	<	<	<	\ <	0.4
Surrogate Recovery					
2,2',4,4',6,6'-hexabromobiphenyl	108	85	NONE	96	-

Results expressed as micrograms per liter (μ g/L) Surrogate recoveries expressed as percent (%) < = Less than detection limit

Gartner Lee Limited

REPORT DATE:

August 30, 2007

GROUP NUMBER: 80822147

Semi-Volatile Hydrocarbons in Water

CLIENT SAMPLE IDENTIFICATION:	SAMPLE DATE	CANTEST ID	Total Extractable Hydrocarbons
CM-MW-8	Aug 16/07	708220736	<
CM-MW-10		708220739	<
CM-MW-11		708220748	<
CM-MW-12		708220749	<

 μ g/L = micrograms per liter < = Less than detection limit

Analysis Report

REPORT ON:

Analysis of Water Samples

REPORTED TO:

Gartner Lee Limited

Suite 300

300 Town Centre Boulevard

Markham, ON L3R 5Z6

Att'n: Ken Boldt

CHAIN OF CUSTODY: PROJECT NAME:

2090865 CAM-M

PROJECT NUMBER:

70517

NUMBER OF SAMPLES: 3

REPORT DATE: September 5, 2007

DATE SUBMITTED: August 22, 2007

GROUP NUMBER: 80822150

SAMPLE TYPE: Water

NOTE: Results contained in this report refer only to the testing of samples as submitted. Other

information is available on request.

TEST METHODS:

Conventional Parameters - analyses were performed using procedures based on those described in the most current editions of "British Columbia Environmental Laboratory Manual for the Analysis of Water, Wastewater, Sediment and Biological Materials", (2005 edition) Province of British Columbia and "Standard Methods for the Examination of Water and Wastewater" (21st Edition), published by the American Public Health Association.

Petroleum Hydrocarbons (C10-16 and C16-C34) in Water - analysis was performed by extraction, silica gel clean-up and analysis by Gas Chromatography with flame ionization detection (GC/FID).

Petroleum Hydrocarbons (C34-50) in Water - analysis was performed by extraction, silica gel clean-up and analysis by Gas Chromatography with flame ionization detection (GC/FID).

Mercury in Water - analysis was performed using procedures based on U. S. EPA Method 245.7, oxidative digestion using bromination, and analysis using Cold Vapour Atomic Fluorescence Spectroscopy.

Metals in Water - analysis was performed using Inductively Coupled Plasma Optical Emission Spectroscopy (ICP), Inductively Coupled Plasma-Mass Spectroscopy (ICP/MS).

Dissolved Metals in Water - Samples were filtered in the laboratory and quantitatively determined using Inductively Coupled Plasma Optical Emission Spectroscopy (ICP) and/or Inductively Coupled Plasma-Mass Spectroscopy (ICP/MS).

(Continued)

CANTEST LTD.

ha Becalska, PhD 6ordinator, Trace Metals

Page 1 of 22

Gartner Lee Limited

REPORT DATE:

September 5, 2007

GROUP NUMBER: 80822150

Polychlorinated Biphenyls - analysis was performed using procedures based upon U.S. EPA Methods 608/8080, involving extraction, clean-up steps, and analysis using GC/ECD. Arochlors 1242, 1248, 1254 and 1260 were included.

Semi-Volatile Hydrocarbons - analysis was performed using procedures based on U.S. EPA Method 8015, involving dichloromethane extraction and analysis using GC/FID. Components in the C10 to C30 range are included, using an alkane standard for quantitation.

TEST RESULTS:

(See following pages)

REPORTED TO: Gartner Lee Limited

REPORT DATE: September 5, 2007

GROUP NUMBER: 80822150

Conventional Parameters in Water

CLIENT SAMPLE IDENTIFICATION:	SAMPLE DATE	CANTEST ID	Hardness CaCO3	Hardness (Total) CaCO3
CM-MW-9 CM-MW-14 CM-MW-16	Aug 18/07	708220751 708220754 708220755	1060 1890 1150	1150 1900 1160
DETECTION LIMIT UNITS			0.2 mg/L	0.2 mg/L

mg/L = milligrams per liter

Gartner Lee Limited

REPORT DATE:

September 5, 2007

GROUP NUMBER: 80822150

Metals Analysis in Water

CLIENT SAMPLE IDENTIFICATION:		CM-MW-9	CM-MW-9	CM-MW-14	CM-MW-14		
SAMPLE PREPARATION:		TOTAL	DISSOLVED	TOTAL	DISSOLVED		
DATE SAMPLED:		Aug 18/07	Aug 18/07	Aug 18/07	Aug 18/07	DETECTION	UNITS
CANTEST ID:		708220751	708220751	708220754	708220754	LIMIT	
Aluminum Antimony Arsenic Barium Beryllium Bismuth Boron Cadmium Calcium Chromium Cobalt Copper Iron Lead Lithium Magnesium Manganese Mercury Molybdenum Nickel Phosphorus Potassium Selenium Silicon Silver	Al Sb As Ba Be Bi B Cd Ca Cr Co Cu Fe Pb Li Mg Mn Hg Mo Ni P K Se Si Ag	0.019 < 0.0005 0.048 < 0.09 0.00090 195 0.0071 0.011 0.0083 0.63 < 0.021 160 0.274 < 0.011 0.233 < 10.8 0.0010 4.04 <	<pre></pre>	0.58 0.0005 0.0041 0.029 < 0.65 0.00021 394 0.0066 0.0018 0.0049 0.79 0.0014 0.059 223 0.668 < 0.0077 0.029 2.29 28.6 0.0014 6.56 <	0.002 0.0005 0.0035 0.016 < 0.62 0.00016 393 0.0007 0.0013 0.0038 0.08 < 0.055 220 0.627 < 0.0072 0.026 2.06 28.0 0.0011 5.96 <	0.001 0.0002 0.0002 0.0002 0.0002 0.0002 0.01 0.00004 0.01 0.0002 0.0002 0.001 0.0002 0.001 0.0002 0.001 0.0002 0.001 0.0002 0.001 0.0002 0.0002 0.0002	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L
Sodium Strontium Tellurium Thallium Thorium Tin	Na Sr Te Ti Th Sn	214 0.309 < 0.00005 <	203 0.288 < 0.00004 <	340 1.70 < 0.00015 0.0007 0.0007	332 1.60 < 0.00013 <	0.01 0.0002 0.0002 0.00002 0.0001 0.0002	mg/L mg/L mg/L mg/L mg/L mg/L

(Continued on next page)

Gartner Lee Limited

REPORT DATE:

September 5, 2007

GROUP NUMBER: 80822150

Metals Analysis in Water

CLIENT SAMPLE IDENTIFICATION:		CM-MW-9	CM-MW-9	CM-MW-14	CM-MW-14		
SAMPLE PREPARATION		TOTAL	DISSOLVED	TOTAL	DISSOLVED		
DATE SAMPLED:		Aug 18/07	Aug 18/07	Aug 18/07	Aug 18/07	DETECTION	UNITS
CANTEST ID:		708220751	708220751	708220754	708220754	LIMIT	3
Titanium	Ті	0.0011	0.0004	0.032	0.0015	0.0002	mg/L
Uranium	U	0.026	0.025	0.022	0.019	0.0001	mg/L
Vanadium	٧	<	<	0.0026	0.0016	0.0002	mg/L
Zinc	Zn	0.86	0.71	0.007	0.006	0.001	mg/L
Zirconium	Zr	<	<	<	<	0.002	mg/L

mg/L = milligrams per liter < = Less than detection limit

 μ g/L = micrograms per liter

Gartner Lee Limited

REPORT DATE:

September 5, 2007

GROUP NUMBER: 80822150

Metals Analysis in Water

CLIENT SAMPLE IDENTIFICATION:		CM-MW-16	CM-MW-16		
SAMPLE PREPARAT	TON:	TOTAL	DISSOLVED]	
DATE SAMPLED:		Aug 18/07	Aug 18/07	DETECTION	UNITS
CANTEST ID:		708220755	708220755	LIMIT	
Aluminum	Al	0.078	0.001	0.001	mg/L
Antimony	Sb	<	<	0.0002	mg/L
Arsenic	As	0.0011	0.0008	0.0002	mg/L
Barium	Ва	0.021	0.019	0.0002	mg/L
Beryllium	Be	<	<	0.0002	mg/L
Bismuth	Bi	<	<	0.0002	mg/L
Boron	В	0.24	0.24	0.01	mg/L
Cadmium	Cd	<	<	0.00004	mg/L
Calcium	Ca	206	205	0.01	mg/L
Chromium	Cr	0.0084	0.0005	0.0002	mg/L
Cobalt	Co	0.0027	0.0025	0.0002	mg/L
Copper	Cu	0.0037	0.0028	0.0002	mg/L
Iron	Fe	0.90	0.07	0.01	mg/L
Lead	Pb	<	<	0.0002	mg/L
Lithium	Li	0.034	0.033	0.001	mg/L
Magnesium	Mg	158	155	0.01	mg/L
Manganese	Mn	0.138	0.131	0.0002	mg/L
Mercury	Hg	<	<	0.02	μg/L
Molybdenum	Mo	0.0093	0.0089	0.0001	mg/L
Nickel	Ni	0.044	0.035	0.0002	mg/L
Phosphorus	P	 <	<	0.03	mg/L
Potassium	K	21.9	21.8	0.02	mg/L
Selenium	Se	0.0007	0.0006	0.0002	mg/L
Silicon	Si	6.37	6.06	0.05	mg/L
Silver	Ag	<	<	0.00005	mg/L
Sodium	Na	375	370	0.01	mg/L
Strontium	Sr	0.585	0.569	0.0002	mg/L
Tellurium	Te	<	<	0.0002	mg/L
Thallium	Ti	0.00002	0.00002	0.00002	mg/L
Thorium	Th	0.0001	<	0.0001	mg/L
Tin	Sn			0.0002	mg/L

(Continued on next page)

Gartner Lee Limited

REPORT DATE:

September 5, 2007

GROUP NUMBER: 80822150

Metals Analysis in Water

CLIENT SAMPLE IDENTIFICATION:	CM-MW-16	CM-MW-16			
SAMPLE PREPARATION:	TOTAL	DISSOLVED			
DATE SAMPLED:	Aug 18/07	Aug 18/07	DETECTION	UNITS	
CANTEST ID:	708220755	708220755	LIMIT		
Titanium Ti	0.0065	0.0005	0.0002	mg/L	
Uranium U	0.010	0.0099	0.0001	mg/L	
Vanadium V	0.0003	1<	0.0002	mg/L	
Zinc Zn	0.044	0.029	0.001	mg/L	
Zirconium Zr	<	<	0.002	mg/L	

mg/L = milligrams per liter < = Less than detection limit

 μ g/L = micrograms per liter

Gartner Lee Limited

REPORT DATE:

September 5, 2007

GROUP NUMBER: 80822150

Polychlorinated Biphenyls in Water

CLIENT SAMPLE IDENTIFICATION:	CM-MW-9	CM-MW-14	CM-MW-16	
DATE SAMPLED:	Aug 18/07	Aug 18/07	Aug 18/07	DETECTION
CANTEST ID:	708220751	708220754	708220755	LIMIT
Arochlor 1242	<	<	<	0.1
Arochlor 1248	<	<	 	0.1
Arochlor 1254	<	<		0.1
Arochlor 1260	<	<	<	0.1
Total PCB	<	<	<	0.4
Surrogate Recovery				
2,2',4,4',6,6'-hexabromobiphenyl	96	104	95	-

Results expressed as micrograms per liter (μ g/L) Surrogate recoveries expressed as percent (%)

< = Less than detection limit

Gartner Lee Limited

REPORT DATE:

September 5, 2007

GROUP NUMBER: 80822150

Semi-Volatile Hydrocarbons in Water

CLIENT SAMPLE	SAMPLE	CANTEST	Total Extractable
IDENTIFICATION:	DATE	ID	Hydrocarbons
CM-MW-9		708220751	<
CM-MW-14		708220754	120
CM-MW-16		708220755	<
DETECTION LIMIT UNITS			100 μg/L

 μ g/L = micrograms per liter < = Less than detection limit

Gartner Lee Limited

REPORT DATE:

September 5, 2007

GROUP NUMBER: 80822150

Extractable Petroleum Hydrocarbons - Silica-gel Cleanup in Water

CLIENT SAMPLE IDENTIFICATION:	SAMPLE DATE	CANTEST ID	Petroleum Hydrocarbons C10-16	Petroleum Hydrocarbons C16-34	Petroleum Hydrocarbons C34-50
CM-MW-14	Aug 18/07	708220754	<	<	
DETECTION LIMIT UNITS	at dayak Hari		100 μg/L	250 μg/L	250 μg/L

 μ g/L = micrograms per liter < = Less than detection limit

Gartner Lee Limited

REPORT DATE:

September 5, 2007

GROUP NUMBER: 80822150

Batch Quality Control for Dissolved Metals Analysis in Water (QC# 97902)

Parameter	-	Dissolved Blank (mg/L)	Dissolved Blank Limits	Duplicate (R.P.D.) 708220271	Duplicate Limits	Duplicate (R.P.D.) 708220438	Duplicate Limits
Aluminum	Al	< 0.001	0.015		- 1000000000000000000000000000000000000	NC	20
Antimony	Sb	< 0.0002	0.001	<u>.</u>	-	NC	20
Arsenic	As	< 0.0002	0.001		-	NC	20
Barium	Ва	< 0.0002	0.001	#	- 1 1 10000000000000000000000000000		_
Beryllium	Be	< 0.0002	0.001	+	-	-	-
Cadmium	Cd	< 0.00004	0.001	-	-	NC	20
Calcium	Ca	4		0.3	20	0.6	20
Chromium	Cr	< 0.0002	0.001			NC	20
Cobalt	Co	< 0.0002	0.001	-	7	NC	20
Copper	Cu	< 0.0002	0.001	_	-	NC	20
Lead	Pb	< 0.0002	0.001	-	Harana a	NC	20
Magnesium	Mg	-	<u>-</u>	0.7	20	2.5	20
Manganese	Mn	< 0.0002	0.001	-	r s u.	-	
Mercury	Hg	< 0.02	0.05	_	- 1 000 0000	-	
Molybdenum	Mo	< 0.0001	0.001	-		PASS	20
Nickel	Ni	< 0.0002	0.001		_ ****	PASS	20
Potassium	K	< 0.02	0.05	0	20	0	20
Silver	Ag	< 0.00005	0.001	-		NC	20
Sodium	Na	•	-	0.3	20	3.3	20
Strontium	Sr	< 0.0002	0.001	-	- N. P. 100 . 100 1000 4000		_
Thallium	TI	< 0.00002	0.001			NC	20
Thorium	Ţh	< 0.0001	0.0005	-	-	NC	20
Tin	Sn	< 0.0002	0.005	-	-	NC	20
Titanium	.Ti	< 0.0002	0.001			_ ss	
Uranium	U	< 0.0001	0.0005	-	÷	PASS	20
Vanadium	٧	< 0.0002	0.001	-		-	
Zinc	Zn	< 0.001	0.01	-	-	NC	20
Zirconium	Zr	< 0.002	0.01	-	-	-	-

mg/L = milligrams per liter

Mercury Hg expressed as: ug/L (micrograms per liter)

R.P.D. = Relative Percent Difference

PASS = Duplicate sample results were in the range of one to five times the detection limit. R.P.D. calculation is not applicable in this range. Acceptance criteria is a maximum difference between the duplicates equivalent to the value of the detection limit.

NC = Not Calculated. Duplicate sample results were less than the detection limit. Relative Percent Difference calculation is not defined for analyte levels of less than detection limit.

Gartner Lee Limited

REPORT DATE:

September 5, 2007

GROUP NUMBER: 80822150

Batch Quality Control for Dissolved Metals Analysis in Water (QC# 97902)

Parameter	- 11	Duplicate (R.P.D.) 708220755	Duplicate Limits
Aluminum	Al	NC	20
Antimony	Sb	NC	20
Arsenic	As	PASS	20
Cadmium	Cd	NC	20
Calcium	Ca	0.5	20
Chromium	Cr	PASS	20
Cobalt	Co	0	20
Copper	Cu	7.1	20
Lead	Pb	NC	20
Magnesium	Mg	0.6	20
Mercury	Hg	NC	20
Molybdenum	Мо	2.2	20
Nickel	Ni	0	20
Potassium	K	4.1	20
Silver	Ag	NC	20
Sodium	Na 	0.3	20
Thallium	TI	NC	20
Thorium	Th	NC NC	20
Tin	Sn	NC	20
Uranium	<u>U</u>	2	20
Zinc	Zn	3.5	20

mg/L = milligrams per liter

Mercury Hg expressed as: ug/L (micrograms per liter)

R.P.D. = Relative Percent Difference

PASS = Duplicate sample results were in the range of one to five times the detection limit. R.P.D. calculation is not applicable in this range. Acceptance criteria is a maximum difference between the duplicates equivalent to the value of the detection limit.

NC = Not Calculated. Duplicate sample results were less than the detection limit. Relative Percent Difference calculation is not defined for analyte levels of less than detection limit.

Gartner Lee Limited

REPORT DATE:

September 5, 2007

GROUP NUMBER: 80822150

Batch Quality Control for Total Metals Analysis in Water (QC# 97898)

Parameter	Duplicate (R.P.D.) 708200302	Duplicate Limits	Duplicate (R.P.D.) 708220427	Duplicate Limits	Duplicate (R.P.D.) 708220755	Duplicate Limits
Mercury Hg	NC	20	NC	20	NC	20

ug/L = micrograms per liter

R.P.D. = Relative Percent Difference

NC = Not Calculated. Duplicate sample results were less than the detection limit. Relative Percent Difference calculation is not defined for analyte levels of less than detection limit.

Gartner Lee Limited

REPORT DATE:

September 5, 2007

GROUP NUMBER: 80822150

Batch Quality Control for Total Metals Analysis in Water (QC# 97898)

Parameter		Spike (% Recovery) 708200302	Spike Limits	Spike (% Recovery) 708220427	Spike Limits	Spike (% Recovery) 708220755	Spike Limits
Mercury	Hg	98	70 - 128	98	70 - 128	100	70 - 128

ug/L = micrograms per liter

Gartner Lee Limited

REPORT DATE:

September 5, 2007

GROUP NUMBER: 80822150

Batch Quality Control for Total Metals Analysis in Water (QC# 97901)

Parameter	Duplicate (R.P.D.) 708220736	Duplicate Limits	ICPMS Spike (% Recovery) 708220426	ICPMS Spike Limits	ICPMS Lab Fortified Blank (% Recovery)	ICPMS Lab Fortified Blank Limits
Aluminum Al	PASS	20	_		100	78 - 122
Antimony Sb	NC	20	100	78 - 118	90	75 - 117
Arsenic As	PASS	20	98	80 - 118	80	72 - 114
Barium Ba	-	-		-	100	81 - 119
Beryllium Be	- 1		87	79 - 123	80	73 - 115
Boron B	-	-	-	-	100	92 - 110
Cadmium Cd	NC	20	98	74 - 124	87	78 - 116
Calcium Ca	11.5	20	-	-	-	-
Chromium Cr	PASS	20	84	70 - 130	95	83 - 119
Cobalt Co	0	20	84	76 - 126	95	85 - 119
Copper Cu	2.9	20	84	77 - 125	95	85 - 120
Lead Pb	NC	20	110	77 - 124	95	80 - 116
Magnesium Mg	10.1	20		-		-
Manganese Mn	-	-	84	69 - 131	95	82 - 120
Molybdenum Mo	0	20	99	68 - 118	95	82 - 114
Nickel Ni	2.9	20	86	77 - 123	100	78 - 118
Potassium K	9.4	20	-	+	<u>.</u>	4
Selenium Se	-	-	-	-	65	58 - 120
Silver Ag	NC	20	¥0.6000000	j german, se	96	85 - 117
Sodium Na	7.2	20	-	- .	-	-
Strontium Sr		-	-	.	95	83 - 115
Thallium TI	PASS	20	105	73 - 123	95	86 - 118
Thorium Th	NC -	20	-		-	-
Tin Sn	NC	20	. <u>.</u>	-	-	_
Titanium Ti	-	÷	93	70 - 130	100	79 - 119
Uranium U	11.1	20	119	65 - 133	95	75 - 121
Vanadium V		+	87	75 - 123	90	76 - 118
Zinc Zn	0	20		-	75	64 - 126

mg/L = milligrams per liter

R.P.D. = Relative Percent Difference

PASS = Duplicate sample results were in the range of one to five times the detection limit. R.P.D. calculation is not applicable in this range. Acceptance criteria is a maximum difference between the duplicates equivalent to the value of the detection limit.

NC = Not Calculated. Duplicate sample results were less than the detection limit. Relative Percent Difference calculation is not defined for analyte levels of less than detection limit.

Gartner Lee Limited

REPORT DATE:

September 5, 2007

GROUP NUMBER: 80822150

Batch Quality Control for Total Metals Analysis in Water (QC# 97901)

Parameter		Total Blank (mg/L)	Total Blank Limits
		33 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	
Aluminum	Al	0.001	0.015
Antimony	Sb	< 0.0002	0.001
Arsenic	As	< 0.0002	0.001
Barium	Ba	< 0.0002	0.001
Beryllium	Be C-l	< 0.0002	0.001
Cadmium	Cd	< 0.00004	0.001
Chromium	Or Co	< 0.0002	0.001
Cobalt	Cu	< 0.0002	0.001
Copper	Pb	< 0.0002	0.001
Lead	го Mn	< 0.0002	0.001
Manganese	Mo	< 0.0001	0.001
Molybdenum Nickel	NI Ni	< 0.0001	0.001
Potassium	K	< 0.02	0.05
Silver	Ag	< 0.00005	0.03
Strontium	Sr	< 0.0002	0.001
Thallium	TI	< 0.0002	0.001
Thorium	Th	< 0.0001	0.0005
Tin	Sn	< 0.0002	0.005
Titanium	Ti	< 0.0002	0.001
Uranium	Ü	< 0.0001	0.0005
Vanadium	V	< 0.0002	0.001
Zinc	Zn	< 0.001	0.01
Zirconium	Zr	< 0.002	0.01
Ziiconium	<u> </u>	3 0.002	

mg/L = milligrams per liter

Gartner Lee Limited

REPORT DATE:

September 5, 2007

GROUP NUMBER: 80822150

Instrument Quality Control for the PSA Mercury Analyzer-AF (QC# 191269)

QC Type: Calibration Verification

Parameter	% Recovery	Limits
Mercury Hg	102	90 - 110

Gartner Lee Limited

REPORT DATE:

September 5, 2007

GROUP NUMBER: 80822150

Batch Quality Control for Polychlorinated Biphenyls in Water (QC# 98059)

Parameter	Blank (ug/L)	Blank Limits	Spike (% Recovery)	Spike Limits
	< 0.1	0.4	-	
Arochlor 1248	< 0.1	0.2	_	-
Arochlor 1254	< 0.1	0.4	90	75 - 125
Arochlor 1260	< 0.1	0.1	-	-

ug/L = micrograms per liter

Gartner Lee Limited

REPORT DATE:

September 5, 2007

GROUP NUMBER: 80822150

Instrument Quality Control for the GC#HP5 w/ FID(TEH) or ECD(PCB) (QC# 191661)

QC Type: Calibration Verification

Parameter	% Recovery	Limits
Arochlor 1242	0	75 - 120
Arochlor 1248	0	75 - 120
Arochlor 1254	99	75 - 120
Arochlor 1260	99	75 - 120

Gartner Lee Limited

REPORT DATE:

September 5, 2007

GROUP NUMBER: 80822150

Batch Quality Control Frequency Summary

Mercury Water Bromination Prep (Batch# 97898)

QC Type	No. Samples
Duplicate	3
Spike	3

Total Metals Preparation (Batch# 97901)

QC Type	No. Samples
ICPMS Spike	
ICP Spike Vista ICAP	1
Potassium/Silicon Spike Vista	1
ICPMS Lab Fortified Blank	1
Duplicate	2
Total Blank	2

Dissolved Metals Preparation (Batch# 97902)

QC Type	No. Samples
Dissolved Blank	1
Duplicate	3

TEH/EPH Water Preparation (Batch# 97942)

QC Type	No. Samples
Blank	1
Method Performance Check Spike	1

TEH/EPH Water Preparation (Batch# 97997)

QC Type		No.	Samples
Blank Method Performance Check Spike	K.	1	

(Continued on next page)

Gartner Lee Limited

REPORT DATE:

September 5, 2007

GROUP NUMBER: 80822150

Batch Quality Control Frequency Summary

PCB's in Water/Liquid Prep (Batch# 98059)

QC Type	No. Samples
Blank	
Spike	1

Mercury Water Bromination Prep (Batch# 97898)

QC Type	No. Samples
Batch Size	30

Total Metals Preparation (Batch# 97901)

QC Type	No. Samples
Batch Size	58

Dissolved Metals Preparation (Batch# 97902)

QC Type	No. Samples
Batch Size	31

TEH/EPH Water Preparation (Batch# 97942)

QC Type	No. Samples
Batch Size	18

TEH/EPH Water Preparation (Batch# 97997)

QC Type	No	. Sample:	3
Batch Size	16	4 2	

(Continued on next page)

Gartner Lee Limited

REPORT DATE:

September 5, 2007

GROUP NUMBER: 80822150

Batch Quality Control Frequency Summary

PCB's in Water/Liquid Prep (Batch# 98059)

QC Type	No. Samples
Batch Size	18

CHROMATOGRAM COVER SHEET

CONTACT	COMPANY	NAME
KEN BOLDT	GARTMER L	EE LTD.
FAX NUMBER	DATE	PGS INCL. COVER
1-905-477-1456	au 6457 29, =	2007 3
FROM	RETURN FAX	TELEPHONE
CANTEST LTD	604 731 2386	604 734 7276
SUB	JECT	The second second VM-25 to a second second VM-25 to a second seco
Chromato	ogram(s).	

Please find the attached chromatograms associated with:

Your Project Number

Your Project Number

Your Project Number

WATER

The originals will follow with the report.

pcn

Sample Name: 708220754

8/27/07 4:22:37 AM Injection Date 708220754 Sample Name

109 Line : vial: 99 Inj

2 µ1

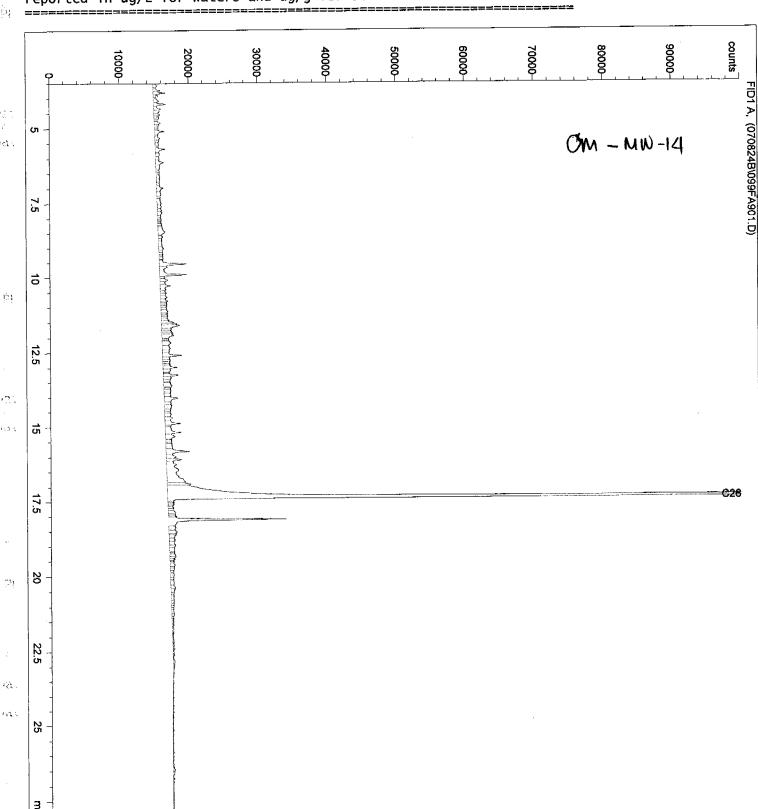
Inj Volume :

Acq. Method Last changed Analysis Method:

D:\HPCHEM~1\1\METHOD\$\!EPH.M

: 8/26/07 11:24:53 PM by pcn : D:\HPCHEM~1\1\METHODS\!TEH_NAP.M : 8/29/07 6:43:10 AM by pcn

80822150


Last changed

Acq. Operator

(modified after loading)

GAROUT

Total Extractable Hydrocarbons. Soils and waters are extracted using methylene chloride and then analyzed using an HPGC-FID. Calculations are based on an internal standard and reported in ug/L for waters and ug/g for soils.

Sample Name: 708220756

8/26/07 8:28:41 PM Injection Date 708220756 Sample Name

96 Seq. Line vial: 76

pcn Acq. Operator

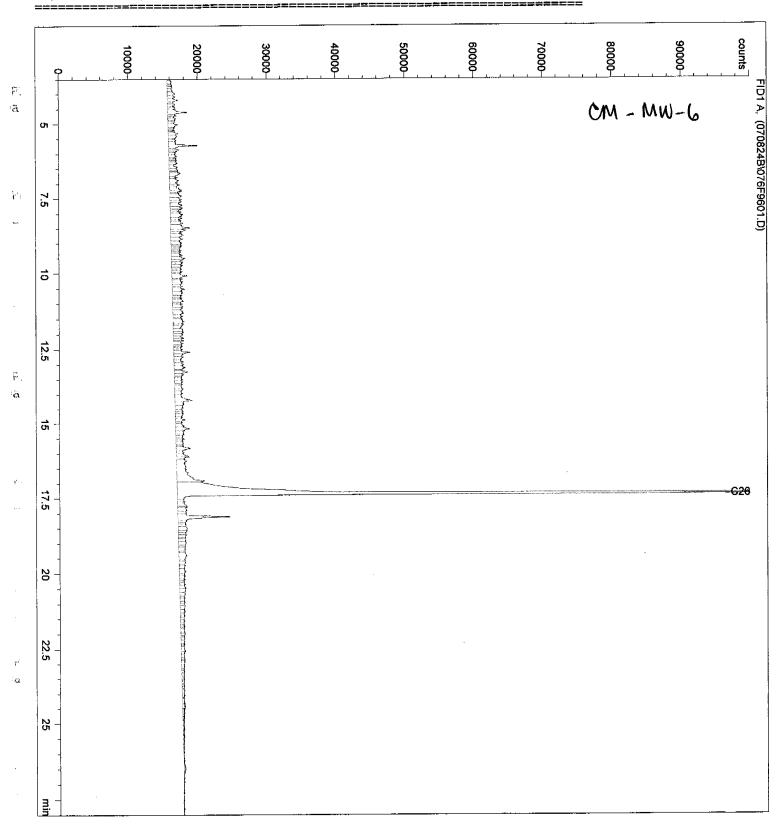
Inj : Inj Volume : 2 μl

Acq. Method

D:\HPCHEM~1\1\METHODS\!EPH.M

Last changed Analysis Method:

: 8/26/07 5:19:38 PM by pcn : D:\HPCHEM~1\1\METHODS\!TEH_NAP.M : 8/29/07 6:43:10 AM by pcn


Last changed

(modified after loading)

GAROUS

Total Extractable Hydrocarbons. Soils and Waters are extracted using methylene chloride and then analyzed using an HPGC-FID. Calculations are based on an internal standard and

reported in ug/L for waters and ug/g for soils.

Analysis Report

REPORT ON:

Amended Report - Analysis of Water Samples

ANTEST

REPORTED TO:

Y

Gartner Lee Limited

Suite 300

300 Town Centre Boulevard

Markham, ON L3R 5Z6

Att'n: Ken Boldt

CHAIN OF CUSTODY:

2090864

PROJECT NAME: PROJECT NUMBER:

CAM-M 70517

NUMBER OF SAMPLES: 5

REPORT DATE: September 26, 2007

DATE SUBMITTED: August 22, 2007

GROUP NUMBER: 80822151

SAMPLE TYPE: Water

NOTE: Results contained in this report refer only to the testing of samples as submitted. Other information is available on request.

TEST METHODS:

Conventional Parameters - analyses were performed using procedures based on those described in the most current editions of "British Columbia Environmental Laboratory Manual for the Analysis of Water, Wastewater, Sediment and Biological Materials", (2005 edition) Province of British Columbia and "Standard Methods for the Examination of Water and Wastewater" (21st Edition), published by the American Public Health Association.

Petroleum Hydrocarbons (C10-16 and C16-C34) in Water - analysis was performed by extraction, silica gel clean-up and analysis by Gas Chromatography with flame ionization detection (GC/FID).

Petroleum Hydrocarbons (C34-50) in Water - analysis was performed by extraction, silica gel clean-up and analysis by Gas Chromatography with flame ionization detection (GC/FID).

Mercury in Water - analysis was performed using procedures based on U. S. EPA Method 245.7, oxidative digestion using bromination, and analysis using Cold Vapour Atomic Fluorescence Spectroscopy.

Metals in Water - analysis was performed using Inductively Coupled Plasma Optical Emission Spectroscopy (ICP), Inductively Coupled Plasma-Mass Spectroscopy (ICP/MS).

Dissolved Metals in Water - Samples were filtered in the laboratory and quantitatively determined using Inductively Coupled Plasma Optical Emission Spectroscopy (ICP) and/or Inductively Coupled Plasma-Mass Spectroscopy (ICP/MS).

(Continued)

CANTEST LTD.

yna Becalska, PhD oordinator, Trace Metals

Page 1 of 25

Gartner Lee Limited

REPORT DATE:

September 26, 2007

GROUP NUMBER: 80822151

Polychlorinated Biphenyls - analysis was performed using procedures based upon U.S. EPA Methods 608/8080, involving extraction, clean-up steps, and analysis using GC/ECD. Arochlors 1242, 1248, 1254 and 1260 were included.

Semi-Volatile Hydrocarbons - analysis was performed using procedures based on U.S. EPA Method 8015, involving dichloromethane extraction and analysis using GC/FID. Components in the C10 to C30 range are included, using an alkane standard for quantitation.

COMMENTS:

Amended Report - Result for sample 708220753 have had some corrections for elements Na and Mg.

TEST RESULTS:

(See following pages)

REPORT DATE: September 26, 2007

GROUP NUMBER: 80822151

Conventional Parameters in Water

CLIENT SAMPLE IDENTIFICATION:	SAMPLE DATE	CANTEST ID	Hardness CaCO3	Hardness (Total) CaCO3
CM-MW-5	Aug 18/07	708220753	974	3330
CM-MW-6		708220756	2560	2610
CM-MW-7		708220757	3350	3720
CM-MW-13	Aug 17/07	708220759	681	736
CM-MW-15	Aug 17/07	708220760	1230	1320

mg/L = milligrams per liter

Gartner Lee Limited

REPORT DATE:

September 26, 2007

GROUP NUMBER: 80822151

Metals Analysis in Water

CLIENT SAMPLE IDENTIFICATION:		CM-MW-5	CM-MW-5	CM-MW-6	CM-MW-6		
SAMPLE PREPARA	TION:	TOTAL	DISSOLVED	TOTAL	DISSOLVED		
DATE SAMPLED:		Aug 18/07	Aug 18/07	Aug 16/07	Aug 16/07	DETECTION	UNITS
CANTEST ID:		708220753	708220753	708220756	708220756	LIMIT	
Aluminum	Al	0.021	<	0.017	<	0.001	mg/L
Antimony	Sb	<	<	0.0003	0.0003	0.0002	mg/L
Arsenic	As	0.0010	0.0009	0.0045	0.0022	0.0002	mg/L
Barium	Ва	0.014	0.014	0.018	0.016	0.0002	mg/L
Beryllium	Be	<	<	<	<	0.0002	mg/L
Bismuth	Bi	<	<	<	<	0.0002	mg/L
Boron	В	0.97	0.92	0.29	0.28	0.01	mg/L
Cadmium	Cd	0.00025	0.00021	0.00022	0.00022	0.00004	mg/L
Calcium	Ca	492	389	436	428	0.01	mg/L
Chromium	Cr	0.0054	0.0005	0.0078	0.0009	0.0002	mg/L
Cobalt	Co	0.042	0.040	0.0093	0.0090	0.0002	mg/L
Copper	Cu	0.0051	0.0040	0.0044	0.0042	0.0002	mg/L
Iron	Fe	0.34	0.08	2.47	0.08	0.01	mg/L
Lead	Pb	<	<	<	<	0.0002	mg/L
Lithium	LI	0.13	0.12	0.11	0.10	0.001	mg/L
Magnesium	Mg	509	405	369	361	0.01	mg/L
Manganese	Mn	0.733	0.690	0.332	0.319	0.0002	mg/L
Mercury	Hg	<	<	<	<	0.02	μg/L
Molybdenum	Мо	0.0088	0.0079	0.012	0.011	0.0001	mg/L
Nickel	Ni	0.831	0.789	0.061	0.059	0.0002	mg/L
Phosphorus	Р	<	<	<	<	0.03	mg/L
Potassium	K	89.4	72.1	40.3	38.2	0.02	mg/L
Selenium	Se	0.0016	0.0016	0.0014	0.0007	0.0002	mg/L
Silicon	Si	3.21	3.01	8.58	8.00	0.05	mg/L
Silver	Ag	<	<	<	<	0.00005	mg/L
Sodium	Na	846	685	778	761	0.01	mg/L
Strontium	Sr	1.57	1.46	1.31	1,25	0.0002	mg/L
Tellurium	Te	<	<	<	<	0.0002	mg/L
Thallium	TI	0.00031	0.00028	0.00011	0.00009	0.00002	mg/L
Thorium	Th	<	<	<	<	0.0001	mg/L
Tin	Sn	<	<	<	<	0.0002	mg/L

(Continued on next page)

Gartner Lee Limited

REPORT DATE:

September 26, 2007

GROUP NUMBER: 80822151

Metals Analysis in Water

CLIENT SAMPLE IDENTIFICATION:	CM-MW-5	CM-MW-5	CM-MW-6	CM-MW-6		
SAMPLE PREPARATION:	TOTAL	DISSOLVED	TOTAL	DISSOLVED		
DATE SAMPLED:	Aug 18/07	Aug 18/07	Aug 16/07	Aug 16/07	DETECTION	UNITS
CANTEST ID:	708220753	708220753	708220756	708220756	LIMIT	
Titanium Ti	0.0014	0.0006	0.0017	0.0008	0.0002	mg/L
Uranium U	0.037	0.033	0.057	0.053	0.0001	mg/L
Vanadium V	<	<	0.0003	0.0003	0.0002	mg/L
Zinc Zn	0.16	0.15	0.083	0.071	0.001	mg/L
Zirconium Zr	<	<	0.003	<	0.002	mg/L

mg/L = milligrams per liter < - Less than detection limit μ g/L = micrograms per liter

REPORT DATE: September 26, 2007

GROUP NUMBER: 80822151

Metals Analysis in Water

CLIENT SAMPLE IDENTIFICATION:		CM-MW-7	CM-MW-7	CM-MW-13	CM-MW-13		
SAMPLE PREPARA	TION:	TOTAL	DISSOLVED	TOTAL	DISSOLVED		
DATE SAMPLED:		Aug 16/07	Aug 16/07	Aug 17/07	Aug 17/07	DETECTION	UNITS
CANTEST ID:		708220757	708220757	708220759	708220759	LIMIT	Sitting
Aluminum	Al	0.018	0.005	0.18	0.002	0.001	mg/L
Antimony	Sb	0.0003	0.0003	<	<	0.0002	mg/L
Arsenic	As	0.0035	0.0034	0.0007	0.0004	0.0002	mg/L
Barium	Ba	0.012	0.012	0.039	0.033	0.0002	mg/L
Beryllium	Be	<	<	<	<	0.0002	mg/L
Bismuth	Bi	<	<	<	<	0.0002	mg/L
Boron	В	1.39	1.38	0.24	0.24	0.01	mg/L
Cadmium	Cd	0.00014	0.00013	0.00011	<	0.00004	mg/L
Calcium	Ca	524	481	138	125	0.01	mg/L
Chromium	Cr	0.0056	0.0009	0.019	0.0003	0.0002	mg/L
Cobalt	Co	0.0020	0.0019	0.0022	0.0016	0.0002	mg/L
Copper	Cu	0.0053	0.0053	0.0052	0.0021	0.0002	mg/L
Iron	Fe	0.13	0.09	3.17	0.08	0.01	mg/L
Lead	Pb	0.0002	<	0.0014	<	0.0002	mg/L
Lithium	Li	0.14	0.13	0.023	0.022	0.001	mg/L
Magnesium	Mg	584	521	95.0	89.5	0.01	mg/L
Manganese	Mn	0.121	0.117	0.061	0.045	0.0002	mg/L
Mercury	Hg	<	<	<	<	0.02	μg/L
Molybdenum	Mo	0.0052	0.0050	0.0051	0.0041	0.0001	mg/L
Nickel	Ni	0.060	0.055	0.106	0.070	0.0002	mg/L
Phosphorus	Р	<	<	<	<	0.03	mg/L
Potassium	K	113	101	22.4	21.0	0.02	mg/L
Selenium	Se	0.0014	0.0008	0.0008	0.0008	0.0002	mg/L
Silicon	Si	3.53	3.42	3.00	2.69	0.05	mg/L
Silver	Ag	<	<	<	<	0.00005	mg/L
Sodium	Na	1490	1420	138	125	0.01	mg/L
Strontium	Sr	2.25	2.17	0.386	0.366	0.0002	mg/L
Tellurium	Te	<	<	<	<	0.0002	mg/L
Thallium	TI	0.00027	0.00024	0.00009	0.00007	0.00002	mg/L
Thorium	Th	<	<	0.0012	<	0.0001	mg/L
Tin	Sn	<	<	<	(0.0002	mg/L

(Continued on next page)

Gartner Lee Limited

REPORT DATE:

September 26, 2007

GROUP NUMBER: 80822151

Metals Analysis in Water

CLIENT SAMPLE IDENTIFICATION:	CM-MW-7	CM-MW-7	CM-MW-13	CM-MW-13		
SAMPLE PREPARATION:	TOTAL	DISSOLVED	TOTAL	DISSOLVED		
DATE SAMPLED:	Aug 16/07	Aug 16/07	Aug 17/07	Aug 17/07	DETECTION	UNITS
CANTEST ID:	708220757	708220757	708220759	708220759	LIMIT	0141.0
Titanium Ti	0.0012	0.0008	0.0088	0.0003	0.0002	mg/L
Uranium U	0.031	0.029	0.012	0.012	0.0001	mg/L
Vanadium V	0.0002	<	<	<	0.0002	mg/L
Zinc Zn	0.39	0.36	0.22	0.065	0.001	mg/L
Zirconium Zr	<	<	<	<	0.002	mg/L

mg/L = milligrams per liter < = Less than detection limit

 μ g/L = micrograms per liter

REPORT DATE: September 26, 2007

GROUP NUMBER: 80822151

Metals Analysis in Water

CLIENT SAMPLE IDENTIFICATION:		CM-MW-15	CM-MW-15		
SAMPLE PREPARA	TION:	TOTAL	DISSOLVED		
DATE SAMPLED:		Aug 17/07	Aug 17/07	DETECTION	UNITS
CANTEST ID:		708220760	708220760	LIMIT	Orano
Aluminum	Al	0.23	0.002	0.001	mg/L
Antimony	Sb	<	<	0.0002	mg/L
Arsenic	As	0.0013	0.0009	0.0002	mg/L
Barium	Ba	0.044	0.038	0.0002	mg/L
Beryllium	Be	<	<	0.0002	mg/L
Bismuth	Bi	<	<	0.0002	mg/L
Boron	В	0.22	0.20	0.01	mg/L
Cadmium	Cd	0.00007	<	0.00004	mg/L
Calcium	Ca	228	216	0.01	mg/L
Chromium	Cr	0.141	0.0008	0.0002	mg/L
Cobalt	Co	0.0050	0.0041	0.0002	mg/L
Copper	Cu	0.0049	0.0026	0.0002	mg/L
Iron	Fe	1.07	0.07	0.01	mg/L
Lead	Pb	0.0031	<	0.0002	mg/L
Lithium	Li	0.028	0.025	0.001	mg/L
Magnesium	Mg	182	168	0.01	mg/L
Manganese	Mn	0.195	0.164	0.0002	mg/L
Mercury	Hg	<	<	0.02	μg/L
Molybdenum	Мо	0.0023	0.0011	0.0001	mg/L
Nickel	Ni	0.079	0.047	0.0002	mg/L
Phosphorus	P	<	<	0.03	mg/L
Potassium	K	23.1	21.6	0.02	mg/L
Selenium	Se	0.0009	0.0009	0.0002	mg/L
Silicon	Si	5.07	4.22	0.05	mg/L
Silver	Ag	<	<	0.00005	mg/L
Sodium	Na	193	181	0.01	mg/L
Strontium	Sr	0.576	0.537	0.0002	mg/L
Tellurium	Te	<	<	0.0002	mg/L
Thallium	Tl	0.00008	0.00004	0.00002	mg/L
Thorium	Th	0.0028	<	0.0001	mg/L
Tin	Sn	0.0003	<	0.0002	mg/L

(Continued on next page)

REPORT DATE: September 26, 2007

GROUP NUMBER: 80822151

Metals Analysis in Water

CLIENT SAMPLE IDENTIFICATION:		CM-MW-15	CM-MW-15		
SAMPLE PREPARAT	ΓΙΟΝ:	TOTAL	DISSOLVED		
DATE SAMPLED:		Aug 17/07	Aug 17/07	DETECTION	UNITS
CANTEST ID:		708220760	708220760	LIMIT	ONTO
Titanium	Ti	0.0050	0.0004	0.0002	mg/L
Uranium	U	0.024	0.021	0.0001	mg/L
Vanadium	V	0.0006	0.0005	0.0002	mg/L
Zinc	Zn	0.063	0.030	0.001	mg/L
Zirconium	Zr	0.002	<	0.002	mg/L

mg/L = milligrams per liter < = Less than detection limit

 μ g/L = micrograms per liter

Gartner Lee Limited

REPORT DATE:

September 26, 2007

GROUP NUMBER: 80822151

Polychlorinated Biphenyls in Water

CLIENT SAMPLE IDENTIFICATION:	CM-MW-5	CM-MW-6	CM-MW-7	CM-MW-13	
DATE SAMPLED:	Aug 18/07	Aug 16/07	Aug 16/07	Aug 17/07	DETECTION
CANTEST ID:	708220753	708220756	708220757	708220759	LIMIT
Arochlor 1242	<	<	<	<	0.1
Arochlor 1248	<	<	<	<	0.1
Arochlor 1254	<	<	<	<	0.1
Arochlor 1260	<	<	<	<	0.1
Total PCB	<	<	<	<	0.4
Surrogate Recovery					7 t
2,2',4,4',6,6'-hexabromobiphenyl	97	NONE	93	NONE	-

Results expressed as micrograms per liter (μ g/L) Surrogate recoveries expressed as percent (%)

< = Less than detection limit

Gartner Lee Limited

REPORT DATE:

September 26, 2007

GROUP NUMBER: 80822151

Polychlorinated Biphenyls in Water

CLIENT SAMPLE IDENTIFICATION:	CM-MW-15	
DATE SAMPLED:	Aug 17/07	DETECTION
CANTEST ID:	708220760	LIMIT
Arochlor 1242	<	0.1
Arochlor 1248	<	0.1
Arochlor 1254	<	0.1
Arochlor 1260	<	0.1
Total PCB	<	0.4
Surrogate Recovery		
2,2',4,4',6,6'-hexabromobiphenyl	106	-

Results expressed as micrograms per liter (μ g/L) Surrogate recoveries expressed as percent (%) < = Less than detection limit

Gartner Lee Limited

REPORT DATE:

September 26, 2007

GROUP NUMBER: 80822151

Semi-Volatile Hydrocarbons in Water

CLIENT SAMPLE IDENTIFICATION:	SAMPLE DATE	CANTEST ID	Total Extractable Hydrocarbons
CM-MW-5	Aug 18/07	708220753	<
CM-MW-6	Aug 16/07		170
CM-MW-7	Aug 16/07	708220757	<
CM-MW-13		708220759	<
CM-MW-15	Aug 17/07	+950n0n000556565555555555555555	<

 μ g/L = micrograms per liter < = Less than detection limit

REPORT DATE: September 26, 2007

GROUP NUMBER: 80822151

Extractable Petroleum Hydrocarbons - Silica-gel Cleanup in Water

CLIENT SAMPLE IDENTIFICATION:	SAMPLE DATE	CANTEST ID	Petroleum Hydrocarbons C10-16	Petroleum Hydrocarbons C16-34	Petroleum Hydrocarbons C34-50
CM-MW-6	Aug 16/07	708220756	<	<	<
DETECTION LIMIT UNITS			100 <i>µ</i> g/L	250 µg/L	250 μg/L

 μ g/L = micrograms per liter < = Less than detection limit

Gartner Lee Limited

REPORT DATE:

September 26, 2007

GROUP NUMBER: 80822151

Batch Quality Control for Dissolved Metals Analysis in Water (QC# 97902)

Parameter		Dissolved Blank (mg/L)	Dissolved Blank Limits	Duplicate (R.P.D.) 708220271	Duplicate Limits	Duplicate (R.P.D.) 708220438	Duplicate Limits
Aluminum	Al	< 0.001	0.015	-	-	NC	20
Antimony	Sb	< 0.0002	0.001	-	-	NC	20
Arsenic	As	< 0.0002	0.001	-	-	NC	20
Barium	Ва	< 0.0002	0.001	-	ļ -	_	<u> </u>
Beryllium	Be	< 0.0002	0.001	-	-	-	-
Cadmium	Cd	< 0.00004	0.001	-	-	NC	20
Calcium	Ca	-	-	0.3	20	0.6	20
Chromium	Cr	< 0.0002	0.001	_	-	NC	20
Cobalt	Co	< 0.0002	0.001	-	-	NC	20
Copper	Cu	< 0.0002	0.001	-	_	NC	20
Lead	Pb	< 0.0002	0.001	-	-	NC	20
Magnesium	Mg	_	_	0.7	20	2.5	20
Manganese	Mn	< 0.0002	0.001	-	-	-	-
Mercury	Hg	< 0.02	0.05	_	_	_	_
Molybdenum	Мо	< 0.0001	0.001	-	-	PASS	20
Nickel	Ni	< 0.0002	0.001	_	-	PASS	20
Potassium	K	< 0.02	0.05	0	20	0	20
Silver	Ag	< 0.00005	0.001	_	_	NC	20
Sodium	Na	-	-	0.3	20	3.3	20
Sodium	Na	< 0.1	0.2		_	-	-
Strontium	Sr	< 0.0002	0.001	-	-	r	-
Thallium	TI	< 0.00002	0.001	_	_	NC	20
Thorium	Th	< 0.0001	0.0005	-	-	NC	20
Tin	Sn	< 0.0002	0.005	_		NC	20
Titanium	Ti	< 0.0002	0.001	7	-	-	-
Uranium	U	< 0.0001	0.0005	_	_	PASS	20
Vanadium	V	< 0.0002	0.001	_	_	-	-
Zinc	Zn	< 0.001	0.01	_	_	NC	20
Zirconium	Zr	< 0.002	0.01	-	-	-	-

mg/L = milligrams per liter

Mercury Hg expressed as: ug/L (micrograms per liter)

R.P.D. = Relative Percent Difference

PASS = Duplicate sample results were in the range of one to five times the detection limit. R.P.D. calculation is not applicable in this range. Acceptance criteria is a maximum difference between the duplicates equivalent to the value of the detection limit.

NC = Not Calculated. Duplicate sample results were less than the detection limit. Relative Percent Difference calculation is not defined for analyte levels of less than detection limit.

REPORT DATE: September 26, 2007

GROUP NUMBER: 80822151

Batch Quality Control for Dissolved Metals Analysis in Water (QC# 97902)

Parameter		Duplicate (R.P.D.) 708220755	Duplicate Limits
Aluminum	Al	NC NC	20
Antimony	Sb	NC	20
Arsenic	As	PASS	20
Cadmium	Cd	NC	20
Calcium	Ca	0.5	20
Chromium	Cr	PASS	20
Cobalt	Co	0	20
Copper	Cu	7.1	20
Lead	Pb	NC	20
Magnesium	Mg	0.6	20
Mercury	Hg	NC	20
Molybdenum	Mo	2.2	20
Nickel	Ni	0	20
Potassium	K	4.1	20
Silver	Ag	NC	20
Sodium	Na	0.3	20
Thallium	TI	NC	20
Thorium	Th	NC	20
Tin	Sn	NC	20
Uranium	U	2	20
Zinc	Zn	3.5	20

mg/L = milligrams per liter

Mercury Hg expressed as: ug/L (micrograms per liter)

R.P.D. = Relative Percent Difference

PASS = Duplicate sample results were in the range of one to five times the detection limit. R.P.D. calculation is not applicable in this range. Acceptance criteria is a maximum difference between the duplicates equivalent to the value of the detection limit.

NC = Not Calculated. Duplicate sample results were less than the detection limit. Relative Percent Difference calculation is not defined for analyte levels of less than detection limit.

Gartner Lee Limited

REPORT DATE:

September 26, 2007

GROUP NUMBER: 80822151

Batch Quality Control for Total Metals Analysis in Water (QC# 97901)

Parameter		Duplicate (R.P.D.) 708220672	Duplicate Limits	Duplicate (R.P.D.) 708220736	Duplicate Limits	ICPMS Spike (% Recovery) 708220426	ICPMS Spike Limits
Aluminum	Al	-	-	PASS	20	-	-
Antimony	Sb	-	-	NC	20	100	78 - 118
Arsenic	As	-	-	PASS	20	98	80 - 118
Beryllium	Be		_	-	-	87	79 - 123
Cadmium	Cd	2.00	-	NC .	20	98	74 - 124
Calcium	Ca	-	-	11.5	20	-	_
Chromium	Cr	-	-	PASS	20	84	70 - 130
Cobalt	Co	_	-	0	20	84	76 - 126
Copper	Cu	-	-	2.9	20	84	77 - 125
Lead	Pb	_	-	NC	20	110	77 - 124
Magnesium	Mg	-	-	10.1	20	-	-
Manganese	Mn	_	-	_	_	84	69 - 131
Molybdenum	Mo	-	-	0	20	99	68 - 118
Nickel	Ni	_	_	2.9	20	86	77 - 123
Potassium	K	-	-	9.4	20	-	-
Silver	Ag	_		NC	20	-	-
Sodium	Na	-	_	7.2	20	-	-
Sodium	Na	0	15	_	-	_	-
Thallium	TI	-	-	PASS	20	105	73 - 123
Thorium	Th	_	_	NC	20	_	_
Tin	Sn	-	-	NC	20	-	-
Titanium	Ti		-	_	_	93	70 - 130
Uranium	U	-	-	11.1	20	119	65 - 133
Vanadium	V		-	_	_	87	75 - 123
Zinc	Zn	-	-	0	20	-	+

mg/L = milligrams per liter

R.P.D. = Relative Percent Difference

PASS = Duplicate sample results were in the range of one to five times the detection limit. R.P.D. calculation is not applicable in this range. Acceptance criteria is a maximum difference between the duplicates equivalent to the value of the detection limit.

NC = Not Calculated. Duplicate sample results were less than the detection limit. Relative Percent Difference calculation is not defined for analyte levels of less than detection limit.

REPORT DATE: September 26, 2007

GROUP NUMBER: 80822151

Batch Quality Control for Total Metals Analysis in Water (QC# 97901)

Parameter		ICPMS Lab Fortified Blank (% Recovery)	ICPMS Lab Fortified Blank Limits	Total Blank (mg/L)	Total Blank Limits
Aluminum	Al	100	78 - 122	0.001	0.015
Antimony	Sb	90	75 - 117	< 0.0002	0.001
Arsenic	As	80	72 - 114	< 0.0002	0.001
Barium	Ba	100	81 - 119	< 0.0002	0.001
Beryllium	Be	80	73 - 115	< 0.0002	0.001
Boron	В	100	92 - 110	-	_
Cadmium	Cd	87	78 - 116	< 0.00004	0.001
Chromium	Cr	95	83 - 119	< 0.0002	0.001
Cobalt	Co	95	85 - 119	< 0.0002	0.001
Copper	Cu	95	85 - 120	< 0.0002	0.001
Lead	Pb	95	80 - 116	< 0.0002	0.001
Manganese	Mn	95	82 - 120	< 0.0002	0.001
Molybdenum	Мо	95	82 - 114	< 0.0001	0.001
Nickel	Ni	100	78 - 118	< 0.0002	0.001
Potassium	K	-	-	< 0.02	0.05
Selenium	Se	65	58 - 120	_	-
Silver	Ag	96	85 - 117	< 0.00005	0.001
Sodium	Na	-	_	< 0.1	0.2
Strontium	Sr	95	83 - 115	< 0.0002	0.001
Thallium	TI	95	86 - 118	< 0.00002	0.001
Thorium	Th	-	-	< 0.0001	0.0005
Γin	Sn	_	-	< 0.0002	0.005
Titanium	Ti	100	79 - 119	< 0.0002	0.001
Uranium	U	95	75 - 121	< 0.0001	0.0005
Vanadium	V	90	76 - 118	< 0.0002	0.001
Zinc	Zn	75	64 - 126	< 0.001	0.01
Zirconium	Zr	-	-	< 0.002	0.01

mg/L = milligrams per liter

Gartner Lee Limited

REPORT DATE:

September 26, 2007

GROUP NUMBER: 80822151

Batch Quality Control for Total Metals Analysis in Water (QC# 97917)

Parameter	Duplicate (R.P.D.) 708210488	Duplicate Limits	Duplicate (R.P.D.) 708220036	Duplicate Limits	Duplicate (R.P.D.) 708220756	Duplicate Limits
Mercury Hg	NC	20	NC	20	NC	20

ug/L = micrograms per liter

R.P.D. = Relative Percent Difference

NC = Not Calculated. Duplicate sample results were less than the detection limit. Relative Percent Difference calculation is not defined for analyte levels of less than detection limit.

Gartner Lee Limited

REPORT DATE:

September 26, 2007

GROUP NUMBER: 80822151

Batch Quality Control for Total Metals Analysis in Water (QC# 97917)

Parameter	Spike (% Recovery) 708210488	Spike Limits	Spike (% Recovery) 708220036	Spike Limits	Spike (% Recovery) 708220756	Spike Limits
Mercury Hg	(*)	70 - 128	100	70 - 128	85	70 - 128

ug/L = micrograms per liter

^{(*) =} Quality Control results exceeded internally set limits; after review by Quality Assurance Unit, non-conformance overridden and batch sample analysis results released for reporting

Gartner Lee Limited

REPORT DATE:

September 26, 2007

GROUP NUMBER: 80822151

CANTEST

Instrument Quality Control for the PSA Mercury Analyzer-AF (QC# 191344)

QC Type: Calibration Verification

Parameter	% Recovery	Limits
Mercury Hg	104	90 - 110

REPORT DATE: September 26, 2007

GROUP NUMBER: 80822151

Batch Quality Control for Polychlorinated Biphenyls in Water (QC# 98059)

Parameter	Blank (ug/L)	Blank Limits	Spike (% Recovery)	Spike Limits
Arochlor 1242	< 0.1	0.4	-	-
Arochlor 1248	< 0.1	0.2	-	-
Arochlor 1254	< 0.1	0.4	90	75 - 125
Arochlor 1260	< 0.1	0.1	-	-

ug/L = micrograms per liter

Gartner Lee Limited

REPORT DATE:

September 26, 2007

GROUP NUMBER: 80822151

Instrument Quality Control for the GC#HP5 w/ FID(TEH) or ECD(PCB) (QC# 191661)

QC Type: Calibration Verification

Parameter	% Recovery	Limits
Arochlor 1242	0	75 - 120
Arochlor 1248	0	75 - 120
Arochlor 1254	99	75 - 120
Arochlor 1260	99	75 - 120

Gartner Lee Limited

REPORT DATE:

September 26, 2007

GROUP NUMBER: 80822151

Batch Quality Control Frequency Summary

Total Metals Preparation (Batch# 97901)

QC Type	No. Samples				
ICPMS Spike	1				
ICP Spike Vista ICAP	1				
Potassium/Silicon Spike Vista	1				
ICPMS Lab Fortified Blank	1				
Duplicate	2				
Total Blank	2				

Dissolved Metals Preparation (Batch# 97902)

QC Type	No. Samples
Dissolved Blank	1
Duplicate	3

Mercury Water Bromination Prep (Batch# 97917)

QC Type	No. Samples
Duplicate	3
Spike	3

TEH/EPH Water Preparation (Batch# 97942)

QC Type	No. Samples
Blank	1
Method Performance Check Spike	1

TEH/EPH Water Preparation (Batch# 97997)

QC Type	No. Samples
Blank	1
Method Performance Check Spike	1

(Continued on next page)

Gartner Lee Limited

REPORT DATE:

September 26, 2007

GROUP NUMBER: 80822151

Batch Quality Control Frequency Summary

PCB's in Water/Liquid Prep (Batch# 98059)

QC Type	No. Samples
Blank Spike	1

Total Metals Preparation (Batch# 97901)

QC Type	No. Samples
Batch Size	58

Dissolved Metals Preparation (Batch# 97902)

QC Type	No. Samples
Batch Size	31

Mercury Water Bromination Prep (Batch# 97917)

QC Type	No. Samples
Batch Size	31

TEH/EPH Water Preparation (Batch# 97942)

QC Type	No. Samples
Batch Size	18

TEH/EPH Water Preparation (Batch# 97997)

QC Type	No. Samples
Batch Size	16

(Continued on next page)

Gartner Lee Limited

REPORT DATE:

September 26, 2007

GROUP NUMBER: 80822151

Batch Quality Control Frequency Summary

PCB's in Water/Liquid Prep (Batch# 98059)

QC Type	No. Samples
Batch Size	18

Environmental Division

ANALYTICAL REPORT

GARTNER LEE LTD.

ATTN: KEN BOLDT Reported On: 24-SEP-07 10:26 AM

Revision: 2

300 TOWN CENTRE BOULVARD

SUITE 300

MARKHAM ON L3R 5Z6

Lab Work Order #: L545880 Date Received: 22-AUG-07

Project P.O. #: ALSEQ07-487

Job Reference: 70517 Legal Site Desc: CAM-M **CofC Numbers:** A018186

Other Information:

Comments: ADDITIONAL 17-SEP-07 17:56

ADDITIONAL 13-SEP-07 10:51 ADDITIONAL 13-SEP-07 00:03

Please note that certain metals detection limits have been increased for some of the samples due to the interferences encountered

during the analysis.

Timothy Guy Crowther General Manager, Vancouver

For any questions about this report please contact your Account Manager:

NATASHA MARKOVIC-MIROVIC

THIS REPORT SHALL NOT BE REPRODUCED EXCEPT IN FULL WITHOUT THE WRITTEN AUTHORITY OF THE LABORATORY. ALL SAMPLES WILL BE DISPOSED OF AFTER 30 DAYS FOLLOWING ANALYSIS. PLEASE CONTACT THE LAB IF YOU REQUIRE ADDITIONAL SAMPLE STORAGE TIME.

Phone: +1 604 253 4188 Fax: +1 604 253 6700 www.alsglobal.com

A Campbell Brothers Limited Company

ALS LABORATORY GROUP ANALYTICAL REPORT

	Sample ID Description	L545880-3	L545880-4	L545880-5	L545880-6	L545880-7
	Sampled Date Sampled Time	16-AUG-07	16-AUG-07	17-AUG-07	17-AUG-07	17-AUG-07
	Client ID	CM-14-1	CM-14-2	CM-15-1	CM-15-2	CM-16-1
Grouping	Analyte					
SOIL						
Physical Tests	% Moisture (%)	11	8.1	6.1	6.0	31
	pH (pH)	8.66	8.70	8.60	8.44	7.93
Metals	Antimony (Sb) (mg/kg)	<10	<10	<10	<10	<10
	Arsenic (As) (mg/kg)	2.61	3.47	1.53	1.59	3.57
		<5.0	<5.0	<5.0	<5.0	<5.0
	Barium (Ba) (mg/kg)	52.8	43.5	40.2	46.4	53.3
	Beryllium (Be) (mg/kg)	<0.50	<0.50	<0.50	<0.50	0.60
	Cadmium (Cd) (mg/kg)	<0.50	<0.50	<0.50	<0.50	<0.50
	Chromium (Cr) (mg/kg)	21.9	18.3	8.5	9.3	22.5
	Cobalt (Co) (mg/kg)	6.4	5.9	2.5	2.7	6.2
	Copper (Cu) (mg/kg)	12.5	11.0	5.7	6.0	13.9
	Lead (Pb) (mg/kg)	<30	<30	<30	<30	<30
	Mercury (Hg) (mg/kg)	0.0717	0.0130	0.0072	0.0106	0.0376
	Molybdenum (Mo) (mg/kg)	<4.0	<4.0	<4.0	<4.0	<4.0
	Nickel (Ni) (mg/kg)	13.9	12.2	5.1	5.4	13.8
	Selenium (Se) (mg/kg)	<4.0	<2.0	<2.0	<2.0	<2.0
	Silver (Ag) (mg/kg)	<2.0	<2.0	<2.0	<2.0	<2.0
	Thallium (TI) (mg/kg)	<1.0	<1.0	<1.0	<1.0	<1.0
	Tin (Sn) (mg/kg)	<5.0	<5.0	<5.0	<5.0	<5.0
	Vanadium (V) (mg/kg)	28.8	25.1	13.9	14.8	29.4
	Zinc (Zn) (mg/kg)	22.6	18.2	9.4	9.3	29.5
Non-Halogenated Volatiles	Benzene (mg/kg)	<0.040	<0.040	<0.040	<0.040	<0.040
	Ethylbenzene (mg/kg)	<0.050	<0.050	<0.050	<0.050	<0.050
	Methyl t-butyl ether (MTBE) (mg/kg)	<0.20	<0.20	<0.20	<0.20	<0.20
	Styrene (mg/kg)	<0.050	<0.050	<0.050	<0.050	<0.050
	Toluene (mg/kg)	<0.050	<0.050	<0.050	<0.050	<0.050
	meta- & para-Xylene (mg/kg)	<0.050	<0.050	<0.050	<0.050	<0.050
	ortho-Xylene (mg/kg)	<0.050	<0.050	<0.050	<0.050	<0.050
	Xylenes (mg/kg)	<0.10	<0.10	<0.10	<0.10	<0.10
	Volatile Hydrocarbons (VH6-10) (mg/kg)	<100	<100	<100	<100	<100
	VPH (C6-C10) (mg/kg)	<100	<100	<100	<100	<100
	F1-BTEX (mg/kg)	<10	<10	<10	<10	<10
	Surrogate: 4-Bromofluorobenzene (SS) (%)	97	98	97	101	96
	Surrogate: 2,4-Dichlorotoluene (SS) (%)	95	90	96	98	79
	Surrogate: Fluorobenzene (SS) (%)	99	98	92	100	92
Extractable Hydrocarbons	F1 (C6-C10) (mg/kg)	<10	<10	<10	<10	<10
	F2 (C10-C16) (mg/kg)	<5	<5	6	6	<5
	F3 (C16-C34) (mg/kg)	11	27	38	34	28

ALS LABORATORY GROUP ANALYTICAL REPORT

	Sample ID Description	L545880-8	L545880-9		
	Sampled Date Sampled Time	18-AUG-07	18-AUG-07		
	Client ID	CM-17-1	CM-17-2		
Grouping	Analyte				
SOIL					
Physical Tests	% Moisture (%)	10	8.7		
	pH (pH)	8.42	8.35		
Metals	Antimony (Sb) (mg/kg)	<10	<10		
	Arsenic (As) (mg/kg)	3.39	3.06		
	, , , , , ,	<5.0	<5.0		
	Barium (Ba) (mg/kg)	60.4	76.9		
	Beryllium (Be) (mg/kg)	<0.50	<0.50		
	Cadmium (Cd) (mg/kg)	<0.50	<0.50		
	Chromium (Cr) (mg/kg)	16.5	16.2		
	Cobalt (Co) (mg/kg)	4.5	4.4		
	Copper (Cu) (mg/kg)	11.9	12.7		
	Lead (Pb) (mg/kg)	<30	<30		
	Mercury (Hg) (mg/kg)	0.0144	0.0155		
	Molybdenum (Mo) (mg/kg)	<4.0	<4.0		
	Nickel (Ni) (mg/kg)	10.0	9.9		
	Selenium (Se) (mg/kg)	<2.0	<2.0		
	Silver (Ag) (mg/kg)	<2.0	<2.0		
	Thallium (TI) (mg/kg)	<1.0	<1.0		
	Tin (Sn) (mg/kg)	<5.0	<5.0		
	Vanadium (V) (mg/kg)	21.6	20.7		
	Zinc (Zn) (mg/kg)	13.2	12.5		
Non-Halogenated Volatiles	Benzene (mg/kg)	<0.040	<0.040		
	Ethylbenzene (mg/kg)	<0.050	<0.050		
	Methyl t-butyl ether (MTBE) (mg/kg)	<0.20	<0.20		
	Styrene (mg/kg)	<0.050	<0.050		
	Toluene (mg/kg)	<0.050	<0.050		
	meta- & para-Xylene (mg/kg)	<0.050	<0.050		
	ortho-Xylene (mg/kg)	<0.050	<0.050		
	Xylenes (mg/kg)	<0.10	<0.10		
	Volatile Hydrocarbons (VH6-10) (mg/kg)	<100	<100		
	VPH (C6-C10) (mg/kg)	<100	<100		
	F1-BTEX (mg/kg)	<10	<10		
	Surrogate: 4-Bromofluorobenzene (SS) (%)	99	100		
	Surrogate: 2,4-Dichlorotoluene (SS) (%)	96	87		
	Surrogate: Fluorobenzene (SS) (%)	97	96		
Extractable Hydrocarbons	F1 (C6-C10) (mg/kg)	<10	<10		
	F2 (C10-C16) (mg/kg)	<5	<5		
	F3 (C16-C34) (mg/kg)	45	47		

	Sample ID Description	L545880-3	L545880-4	L545880-5	L545880-6	L545880-7
	Sampled Date Sampled Time	16-AUG-07	16-AUG-07	17-AUG-07	17-AUG-07	17-AUG-07
	Client ID	CM-14-1	CM-14-2	CM-15-1	CM-15-2	CM-16-1
rouping	Analyte					
SOIL						
Extractable Hydrocarbons	F4 (C34-C50) (mg/kg)	<5	9	18	15	72
	Surrogate: 2-Bromobenzotrifluoride (%)	79	100	107	115	109
	Surrogate: Hexatriacontane (%)	103	89	103	101	108
	Chromatogram to baseline at nC50	YES	NO	NO	NO	NO
Polychlorinated Biphenyls	PCB-1016 (mg/kg)	<0.050	<0.050	<0.050	<0.050	<0.050
	PCB-1221 (mg/kg)	<0.050	<0.050	<0.050	<0.050	<0.050
	PCB-1232 (mg/kg)	<0.050	<0.050	<0.050	<0.050	<0.050
	PCB-1242 (mg/kg)	<0.050	<0.050	<0.050	<0.050	<0.050
	PCB-1248 (mg/kg)	<0.050	<0.050	<0.050	<0.050	<0.050
	PCB-1254 (mg/kg)	<0.050	<0.050	<0.050	<0.050	<0.050
	PCB-1260 (mg/kg)	<0.050	<0.050	<0.050	<0.050	<0.050
	PCB-1262 (mg/kg)	<0.050	<0.050	<0.050	<0.050	<0.050
	PCB-1268 (mg/kg)	<0.050	<0.050	<0.050	<0.050	<0.050
	Total Polychlorinated Biphenyls (mg/kg)	<0.050	<0.050	<0.050	<0.050	<0.050

	Sample ID Description	L545880-8	L545880-9	
	Sampled Date Sampled Time	18-AUG-07	18-AUG-07	
	Client ID	CM-17-1	CM-17-2	
Grouping	Analyte			
SOIL				
Extractable Hydrocarbons	F4 (C34-C50) (mg/kg)	17	20	
	Surrogate: 2-Bromobenzotrifluoride (%)	102	99	
	Surrogate: Hexatriacontane (%)	98	95	
	Chromatogram to baseline at nC50	NO	NO	
Polychlorinated Biphenyls	PCB-1016 (mg/kg)	<0.050	<0.050	
	PCB-1221 (mg/kg)	<0.050	<0.050	
	PCB-1232 (mg/kg)	<0.050	<0.050	
	PCB-1242 (mg/kg)	<0.050	<0.050	
	PCB-1248 (mg/kg)	<0.050	<0.050	
	PCB-1254 (mg/kg)	<0.050	<0.050	
	PCB-1260 (mg/kg)	<0.050	<0.050	
	PCB-1262 (mg/kg)	<0.050	<0.050	
	PCB-1268 (mg/kg)	<0.050	<0.050	
	Total Polychlorinated Biphenyls (mg/kg)	<0.050	<0.050	

	Sample ID Description	L545880-1	L545880-2		
	Sampled Date Sampled Time Client ID	18-AUG-07 08:50 CM-MW-1	17-AUG-07 10:50 CM-MW-15		
Grouping	Analyte	-			
WATER					
Physical Tests	Hardness (as CaCO3) (mg/L)	1120	1300		
Total Metals	Aluminum (Al)-Total (mg/L)	0.259	0.840		
	Antimony (Sb)-Total (mg/L)	<0.0025	<0.0025		
	Arsenic (As)-Total (mg/L)	<0.0025	<0.0030		
	Barium (Ba)-Total (mg/L)	0.021	0.041		
	Beryllium (Be)-Total (mg/L)	<0.0050	<0.0050		
	Boron (B)-Total (mg/L)	0.26	0.23		
	Cadmium (Cd)-Total (mg/L)	<0.00085	<0.00085		
	Calcium (Ca)-Total (mg/L)	190	226		
	Chromium (Cr)-Total (mg/L)	0.0272	0.220		
	Cobalt (Co)-Total (mg/L)	0.0029	0.0074		
	Copper (Cu)-Total (mg/L)	<0.0050	0.0070		
	Iron (Fe)-Total (mg/L)	1.57	1.62		
	Lead (Pb)-Total (mg/L)	<0.0025	0.0036		
	Lithium (Li)-Total (mg/L)	0.038	0.030		
	Magnesium (Mg)-Total (mg/L)	158	179		
	Manganese (Mn)-Total (mg/L)	0.135	0.252		
	Mercury (Hg)-Total (mg/L)	<0.000020	<0.000020		
	Molybdenum (Mo)-Total (mg/L)	0.0084	<0.0050		
	Nickel (Ni)-Total (mg/L)	0.0615	0.175		
	Potassium (K)-Total (mg/L)	24.4	24.5		
	Selenium (Se)-Total (mg/L)	<0.010	<0.0050		
	Silver (Ag)-Total (mg/L)	<0.00010	<0.00010		
	Sodium (Na)-Total (mg/L)	367	175		
	Thallium (TI)-Total (mg/L)	<0.0010	<0.0010		
	Tin (Sn)-Total (mg/L)	<0.0025	<0.0025		
	Titanium (Ti)-Total (mg/L)	0.012	<0.010		
	Uranium (U)-Total (mg/L)	0.0091	0.0231		
	Vanadium (V)-Total (mg/L)	<0.030	<0.030		
	Zinc (Zn)-Total (mg/L)	0.082	0.088		
Non-Halogenated Volatiles	Benzene (mg/L)	<0.00050	<0.00050		
	Ethylbenzene (mg/L)	<0.00050	<0.00050		
	Methyl t-butyl ether (MTBE) (mg/L)	<0.0010	<0.0010		
	Styrene (mg/L)	<0.00050	<0.00050		
	Toluene (mg/L)	<0.0010	<0.0010		
	meta- & para-Xylene (mg/L)	<0.00050	<0.00050		
	ortho-Xylene (mg/L)	<0.00050	<0.00050		
	Xylenes (mg/L)	<0.0010	<0.0010		
	Volatile Hydrocarbons (VH6-10) (mg/L)	<0.10	<0.10		

	Sample ID	L545880-1	L545880-2		
	Description	L04000U-1	LJ4500U-Z		
	Sampled Date	18-AUG-07	17-AUG-07		
	Sampled Time Client ID	08:50 CM-MW-1	10:50 CM-MW-15		
Grouping	Analyte	OW WVV	OW WWV 10		
WATER	•				
Non-Halogenated Volatiles	VPH (C6-C10) (mg/L)	<0.10	<0.10		
Volatiles	Surrogate: 4-Bromofluorobenzene (SS) (%)	98	96		
	Surrogate: 2,4-Dichlorotoluene (SS) (%)	106	107		
	Surrogate: Fluorobenzene (SS) (%)	93	97		
Extractable	TEH10-30 (mg/L)	<0.25	<0.25		
Hydrocarbons		0.0040	0.0040		
Polychlorinated Biphenyls	Total Polychlorinated Biphenyls (mg/L)	<0.0010	<0.0010		

Qualifiers for Individual Parameters Listed:

Qualifier	Description	
RAMB	Result Adjusted For Method Blank	
Samples with C	ualifiers for Individual Parameters as listed above:	
Sample Number	Client Sample ID	Qualifier
L545880-4	CM-14-2	RAMB
L545880-5	CM-15-1	RAMB
L545880-6	CM-15-2	RAMB
L545880-7	CM-16-1	RAMB
L545880-8	CM-17-1	RAMB
L545880-9	CM-17-2	RAMB
Methods Listed	(if applicable):	
ALS Test Code	Matrix Test Description	Analytical Method Reference(Based On)

AS-CSR-HVAAS-VA

Soil

As in Soil by HVAAS (CSR SALM)

BCMELP CSR SALM Method 8

This analysis is carried out using procedures from CSR Analytical Method 8 "Strong Acid Leachable Metals (SALM) in Soil", BC Ministry of Environment, Lands and Parks, 26 June 2001, and procedures adapted from "Test Methods for Evaluating Solid Waste", SW-846 Method 3050B United States Environmental Protection Agency (EPA). The sample is manually homogenized, dried at 60 degrees Celsius, sieved through a 2 mm (10 mesh) sieve, and a representative subsample of the dry material is weighed. The sample is then digested at 90 degrees Celsius for 2 hours by block digester using a 1:1 ratio of concentrated nitric and hydrochloric acids. Instrumental analysis is by atomic absorption spectrophotometry (EPA Method 7000 series).

Method Limitation: This method is not a total digestion technique. It is a very strong acid digestion that is intended to dissolve those metals that may be environmentally available. By design, elements bound in silicate structures are not normally dissolved by this procedure as they are not usually mobile in the environment.

EPH-SF-FID-VA

Water

EPH in Water by GCFID

BCMOE EPH GCFID

This analysis is carried out in accordance with the British Columbia Ministry of Environment, Lands and Parks (BCMELP) Analytical Method for Contaminated Sites "Extractable Petroleum Hydrocarbons in Water by GC/FID" (Version 2.1, July 1999). The procedure involves extraction of the entire water sample with dichloromethane. The extract is then solvent exchanged to toluene and analysed by capillary column gas chromatography with flame ionization detection (GC/FID). EPH results include Polycyclic Aromatic Hydrocarbons (PAH) and are therefore not equivalent to Light and Heavy Extractable Petroleum Hydrocarbons (LEPH/HEPH).

ETL-TEH-CCME-ED

Soil

CCME Total Extractable Hydrocarbons

CCME CWS-PHC Dec-2000 - Pub# 1310

ETL-TVH,TEH-CCME-ED Soil

CCME Total Hydrocarbons

CCME CWS-PHC Dec-2000 - Pub# 1310

Analytical methods used for analysis of CCME Petroleum Hydrocarbons have been validated and comply with the Reference Method for the CWS PHC.

Hydrocarbon results are expressed on a dry weight basis.

In cases where results for both F4 and F4G are reported, the greater of the two results must be used in any application of the CWS PHC guidelines and the gravimetric heavy hydrocarbons cannot be added to the C6 to C50 hydrocarbons.

In samples where BTEX and F1 were analyzed, F1-BTEX represents a value where the sum of Benzene, Toluene, Ethylbenzene and total Xylenes has been subtracted from F1.

In samples where PAHs, F2 and F3 were analyzed, F2-Naphth represents the result where Naphthalene has been subtracted from F2. F3-PAH represents a result where the sum of Benzo(a)anthracene, Benzo(a)pyrene, Benzo(b)fluoranthene, Benzo(k)fluoranthene, Dibenzo(a,h)anthracene, Fluoranthene, Indeno(1,2,3-cd)pyrene, Phenanthrene, and Pyrene has been subtracted from F3.

Unless otherwise qualified, the following quality control criteria have been met for the F1 hydrocarbon range:

- 1. All extraction and analysis holding times were met.
- 2. Instrument performance showing response factors for C6 and C10 within 30% of the response factor for toluene.
- 3. Linearity of gasoline response within 15% throughout the calibration range.

Unless otherwise qualified, the following quality control criteria have been met for the F2-F4 hydrocarbon ranges:

- 1. All extraction and analysis holding times were met.
- 2. Instrument performance showing C10, C16 and C34 response factors within 10% of their average.

Methods Listed (if applicable):

ALS Test Code Matrix Test Description Analytical Method Reference(Based On)

3. Instrument performance showing the C50 response factor within 30% of the average of the C10, C16 and C34 response factors.

4. Linearity of diesel or motor oil response within 15% throughout the calibration range.

F1-BTX-CALC-VA Soil F1-Total BTX

CCME CWS PHC TIER 1 (2001)

Petroleum Hydrocarbons in Sediment/Soil (Canada-Wide Standard) This analysis is carried out in accordance with the "Reference Method for the Canada-Wide Standard for Petroleum Hydrocarbons in Soil - Tier 1 Method, Canadian Council of Ministers of the Environment, December 2000." The various extraction fractions are analysed as follows:

CWS Fractions 1 and 1-BTEX:

This procedure involves the extraction of a subsample of the sediment/soil with methanol. Aliquots of the methanol extract are then analysed by capillary column gas chromatography with flame-ionization detection (GC/FID) for CWS Fraction 1, and by capillary column gas chromatography with mass spectrometric detection (GC/MS) for the BTEX compounds.

Reported results may include any or all of the following:

CWS Fraction 1 (C6-10): sum of all petroleum hydrocarbon compounds that elute between nC6 and nC10 obtained by GC/FID analysis CWS Fraction 1-BTEX:CWS Fraction 1 (C6-10), minus BTEX compounds

F1-MET-PT-FID-VA

Soil

CCME by Purge and Trap with GCMS

EPA 8260B & 524.2

Volatile Organic Compounds (VOC) are extracted from sediment or soil with methanol, following a procedure from the British Columbia Ministry of Water Land and Air Protection (BCWLAP) Analytical Method for Contaminated Sites "Volatile Hydrocarbons in Solids by GC/FID" (Version 2.1 July 1999). Aliquots of the extract are analyzed by direct injection capillary column gas chromatography with mass spectrometric detection (GC/MS), using procedures adapted from "Test Methods for Evaluating Solid Waste" SW-846, Method 8260B, published by the United States Environmental Protection Agency (EPA).

HARDNESS-CALC-VA

Water

Hardness

APHA 2340B

Hardness is calculated from Calcium and Magnesium concentrations, and is expressed as calcium carbonate equivalents.

HG-CCME-CVAFS-VA

Soil

CVAFS Hg in Soil (CCME)

CCME

This analysis is carried out using procedures from CSR Analytical Method 8 "Strong Acid Leachable Metals (SALM) in Soil", BC Ministry of Environment, Lands and Parks, 26 June 2001, and procedures adapted from "Test Methods for Evaluating Solid Waste", SW-846 Method 3050B United States Environmental Protection Agency (EPA). The sample is manually homogenized, dried at 60 degrees Celsius, sieved through a 2 mm (10 mesh) sieve, and a representative subsample of the dry material is weighed. The sample is then digested at 90 degrees Celsius for 2 hours by block digester using a 1:1 ratio of concentrated nitric and hydrochloric acids. Instrumental analysis is by atomic fluorescence spectrophotometry (EPA Method 7000 series).

Method Limitation: This method is not a total digestion technique. It is a very strong acid digestion that is intended to dissolve those metals that may be environmentally available. By design, elements bound in silicate structures are not normally dissolved by this procedure as they are not usually mobile in the environment.

HG-TOT-CCME-CVAFS- Water

Total Mercury in Water by CVAFS (CCME)

EPA 245.7

VA
This analysis is carried out using procedures adapted from "Standard Methods for the Examination of Water and Wastewater" published by the American Public Health Association, and with procedures adapted from "Test Methods for Evaluating Solid Waste" SW-846 published by the United States Environmental Protection Agency (EPA). The procedure involves a cold-oxidation of the acidified sample using bromine monochloride prior to reduction of the sample with stannous chloride. Instrumental analysis is by cold vapour atomic fluorescence spectrophotometry (EPA Method 245.7).

MET-CSR-FULL-ICP-VA Soil

Metals in Soil by ICPOES (CSR SALM)

BCMELP CSR SALM METHOD 8

This analysis is carried out using procedures from CSR Analytical Method 8 "Strong Acid Leachable Metals (SALM) in Soil", BC Ministry of Environment, Lands and Parks, 26 June 2001, and procedures adapted from "Test Methods for Evaluating Solid Waste", SW-846 Method 3050B United States Environmental Protection Agency (EPA). The sample is manually homogenized, dried at 60 degrees Celsius, sieved through a 2 mm (10 mesh) sieve, and a representative subsample of the dry material is weighed. The sample is then digested at 90 degrees Celsius for 2 hours by block digester using a 1:1 ratio of concentrated nitric and hydrochloric acids. Instrumental analysis is by inductively coupled plasma - optical emission spectrophotometry (EPA Method 6010B).

Method Limitation: This method is not a total digestion technique. It is a very strong acid digestion that is intended to dissolve those metals that may be environmentally available. By design, elements bound in silicate structures are not normally dissolved by this procedure as they are not usually mobile in the environment.

MET-TOT-CCME-ICP-VA Water

Total Metals in Water by ICPOES (CCME)

EPA SW-846 3005A/6010B

This analysis is carried out using procedures adapted from "Standard Methods for the Examination of Water and Wastewater" published by the American Public Health Association, and with procedures adapted from "Test Methods for Evaluating Solid Waste" SW-846 published by the United States Environmental Protection Agency (EPA). The procedures may involve preliminary sample treatment by acid digestion, using either hotblock or

Methods Listed (if applicable):

ALS Test Code Matrix Test Description Analytical Method Reference(Based On)

microwave oven, or filtration (EPA Method 3005A). Instrumental analysis is by inductively coupled plasma - optical emission spectrophotometry (EPA Method 6010B).

MET-TOT-CCME-MS-VA Water

Total Metals in Water by ICPMS (CCME)

EPA SW-846 3005A/6020A

This analysis is carried out using procedures adapted from "Standard Methods for the Examination of Water and Wastewater" published by the American Public Health Association, and with procedures adapted from "Test Methods for Evaluating Solid Waste" SW-846 published by the United States Environmental Protection Agency (EPA). The procedures may involve preliminary sample treatment by acid digestion, using either hotblock or microwave oven, or filtration (EPA Method 3005A). Instrumental analysis is by inductively coupled plasma - mass spectrometry (EPA Method 6020A).

PCB-SE-ECD-VA

Soil

PCB by Extraction with GCECD

EPA 3630/8082 GCECD

This analysis is carried out using procedures adapted from "Test Methods for Evaluating Solid Waste" SW-846, Methods 3500, 3620, 3630, 3660, 3665 & 8082, published by the United States Environmental Protection Agency (EPA). The procedure involves a solid-liquid extraction of a subsample of the sediment/soil using a mixture of hexane and acetone. Water is added to the extract and the resulting hexane extract undergoes one or more of the following clean-up procedures (if required): florisil clean-up, silica gel clean-up, sulphur clean-up and/or sulphuric acid clean-up. The final extract is analysed by capillary column gas chromatography with electron capture detection (GC/ECD).

PCB-SF-ECD-VA

Water

PCB by Extraction with GCECD

EPA 3510/8082 Liq-Liq GCECD

This analysis is carried out using procedures adapted from "Test Methods for Evaluating Solid Waste" SW-846, Methods 3510, 3620, 3660, 3665 & 8082, published by the United States Environmental Protection Agency (EPA). The procedure involves a liquid-liquid extraction of the entire water sample using dichloromethane. The extract is then solvent exchanged to hexane followed by one or more of the following clean-up procedures (if required): florisil clean-up, sulphur clean-up and/or sulphuric acid clean-up. The final extract is analysed by capillary column gas chromatography with electron capture detection (GC/ECD).

PH-1:2-VA

Soil

CSR pH by 1:2 Water Leach

BC WLAP METHOD: PH, ELECTROMETRIC, SOIL

This analysis is carried out in accordance with procedures described in the BC WLAP method: pH, Electrometric, Soil and Sediment. The procedure involves mixing the dried (at <60°C) and seived (10 mesh/2mm) sample with deionized/distilled water at a 1:2 ratio of sediment to water. The pH of the solution is then measured using a standard pH probe.

PREP-MOISTURE-ED

Soil

% Moisture

Oven dry 105C-Gravimetric

TL-CSR-MS-VA

Soil

ICPMS TI in Soil by CSR SALM

BCMELP CSR SALM Method 8

This analysis is carried out using procedures from CSR Analytical Method 8 "Strong Acid Leachable Metals (SALM) in Soil", BC Ministry of Environment, Lands and Parks, 26 June 2001, and procedures adapted from "Test Methods for Evaluating Solid Waste", SW-846 Method 3050B United States Environmental Protection Agency (EPA). The sample is manually homogenized, dried at 60 degrees Celsius, sieved through a 2 mm (10 mesh) sieve, and a representative subsample of the dry material is weighed. The sample is then digested at 90 degrees Celsius for 2 hours by either hotplate or block digester using a 1:1 ratio of concentrated nitric and hydrochloric acids. Instrumental analysis is by inductively coupled plasma mass spectrometry (EPA Method 6020A).

Method Limitation: This method is not a total digestion technique. It is a very strong acid digestion that is intended to dissolve those metals that may be environmentally available. By design, elements bound in silicate structures are not normally dissolved by this procedure as they are not usually mobile in the environment.

VH-MET-DI-FID-VA

Soil

CSR VH by MeOH with DI GCFID

BCMELP CSR Analytical Method 2

This analysis involves the extraction of a subsample of the sediment/soil with methanol. Aliquots of the methanol extract are then analyzed for Volatile Hydrocarbons (VH) by capillary column gas chromatography with flame-ionization detection (GC/FID). The methanol extraction and VH analysis are carried out in accordance with the British Columbia Ministry of Environment, Lands and Parks (BCMELP) Analytical Method for Contaminated Sites "Volatile Hydrocarbons in Solids by GC/FID" (Version 2.1 July 1999).

VH-PT-FID-VA

Wate

VH by Purge Trap GCFID

EPA 8260b. BCMELP CSR Method

This procedure involves the purge and trap extraction of the sample prior to analysis for Volatile Hydrocarbons (VH) by capillary column gas chromatography with flame-ionization detection (GC/FID). The VH analysis is carried out in accordance with the British Columbia Ministry of Environment, Lands and Parks (BCMELP) Analytical Method for Contaminated Sites "Volatile Hydrocarbons in Water by GC/FID" (Version 2.1, July 1999).

VOC7-MET-PT-MS-VA

Soil

BTEX by MeOH with Purge and Trap GCMS

EPA 8260B & 524.2

Volatile Organic Compounds (VOC) are extracted from sediment or soil with methanol, following a procedure from the British Columbia Ministry of Water Land and Air Protection (BCWLAP) Analytical Method for Contaminated Sites "Volatile Hydrocarbons in Solids by GC/FID" (Version 2.1 July 1999). Aliquots of the extract are analyzed by direct injection capillary column gas chromatography with mass spectrometric detection (GC/MS), using

Methods Listed (if applicable):

ALS Test Code Matrix Test Description Analytical Method Reference(Based On)

procedures adapted from "Test Methods for Evaluating Solid Waste" SW-846, Method 8260B, published by the United States Environmental Protection Agency (EPA). Surrogate recoveries may not be reported in cases where interferences from the sample matrix prevent accurate quantitation.

VOC7-PT-MS-VA

Water

BTEX by Purge Trap GCMS

EPA 8260b, BCMELP CSR Method

This procedure involves the purge and trap extraction of the sample prior to analysis for specific Volatile Organic Compounds (VOC) by capillary column gas chromatography with mass spectrometric detection (GC/MS). The VOC analysis is carried out using procedures adapted from "Test Methods for Evaluating Solid Waste" SW-846, Method 8260, published by the United States Environmental Protection Agency (EPA). Note: For chlorinated waters certain conditions may cause the formation of trihalomethanes after sample collection. Appropriate chemical treatment of chlorinated waters will prevent trihalomethane formation in the samples. Surrogate recoveries may not be reported in cases where interferences from the sample matrix prevent accurate quantitation.

VPH-CALC-VA

Water

BC MOE Laboratory Manual (2005)

BC MOE LABORATORY MANUAL (2005)

These results are determined according to the British Columbia Ministry of Environment, Lands, and Parks Analytical Method for Contaminated Sites "Calculation of Volatile Petroleum Hydrocarbons in Solids or Water" (Version 2.1, July 20, 1999). According to this method, the concentrations of specific Monocyclic Aromatic Hydrocarbons (Benzene, Toluene, Ethylbenzene, Xylenes and Styrene) are subtracted from the collective concentration of Volatile Hydrocarbons (VH) that elute between n-hexane (nC6) and n-decane (nC10). Analysis of Volatile Hydrocarbons adheres to all prescribed elements of BCMELP method "Volatile Hydrocarbons in Solids by GC/FID" (Version 2.1, July 20, 1999).

VPH-CALC-VA

Soil

BC MOE Laboratory Manual (2005)

BC MOE LABORATORY MANUAL (2005)

These results are determined according to the British Columbia Ministry of Environment, Lands, and Parks Analytical Method for Contaminated Sites "Calculation of Volatile Petroleum Hydrocarbons in Solids or Water" (Version 2.1, July 20, 1999). According to this method, the concentrations of specific Monocyclic Aromatic Hydrocarbons (Benzene, Toluene, Ethylbenzene, Xylenes and Styrene) are subtracted from the collective concentration of Volatile Hydrocarbons (VH) that elute between n-hexane (nC6) and n-decane (nC10). Analysis of Volatile Hydrocarbons adheres to all prescribed elements of BCMELP method "Volatile Hydrocarbons in Solids by GC/FID" (Version 2.1, July 20, 1999).

XYLENES-CALC-VA

Water

CSR VOC7 by MeOH with DI GCMS

CALCULATION

Calculation of Total Xylenes

Total Xylenes is the sum of the concentrations of the ortho, meta, and para Xylene isomers. Results below detection limit (DL) are treated as zero. The DL for Total Xylenes is set to a value no less than the square root of the sum of the squares of the DLs of the individual Xylenes.

XYLENES-CALC-VA

Soil

CSR VOC7 by MeOH with DI GCMS

EPA 8260B & 524.2

Calculation of Total Xylenes

Total Xylenes is the sum of the concentrations of the ortho, meta, and para Xylene isomers. Results below detection limit (DL) are treated as zero. The DL for Total Xylenes is set to a value no less than the square root of the sum of the squares of the DLs of the individual Xylenes.

** Laboratory Methods employed follow in-house procedures, which are generally based on nationally or internationally accepted methodologies.

The last two letters of the above ALS Test Code column indicate the laboratory that performed analytical analysis for that test. Refer to the list below:

Laboratory Definition Code	Laboratory Location	Laboratory Definition Code	Laboratory Location
ED	ALS LABORATORY GROUP - EDMONTON, ALBERTA, CANADA	VA	ALS LABORATORY GROUP - VANCOUVER, BC, CANADA

Methods Listed (if applicable):

ALS Test Code Matrix Test Description Analytical Method Reference(Based On)

GLOSSARY OF REPORT TERMS

Surr - A surrogate is an organic compound that is similar to the target analyte(s) in chemical composition and behavior but not normally detected in environmental samples. Prior to sample processing, samples are fortified with one or more surrogate compounds.

The reported surrogate recovery value provides a measure of method efficiency.

mg/kg (units) - unit of concentration based on mass, parts per million

mg/L (units) - unit of concentration based on volume, parts per million

N/A - Result not available. Refer to qualifier code and definition for explanation

Test results reported relate only to the samples as received by the laboratory. UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Although test results are generated under strict QA/QC protocols, any unsigned test reports, faxes, or emails are considered preliminary.

ALS Laboratory Group has an extensive QA/QC program where all analytical data reported is analyzed using approved referenced procedures followed by checks and reviews by senior managers and quality assurance personnel. However, since the results are obtained from chemical measurements and thus cannot be guaranteed, ALS Laboratory Group assumes no liability for the use or interpretation of the results.

Client ID: CM-14-1

Sample ID: L545880-3 4

Injection Date: 9/5/07 2:12:53 PM

Instrument: 6890

400

200

C10

10

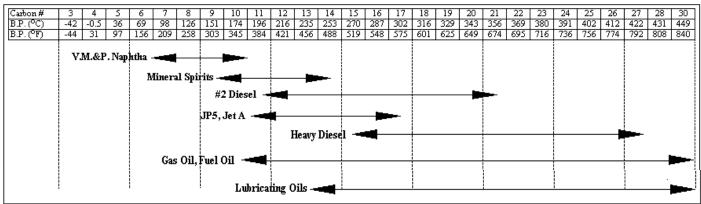
C34

12

C50

min

Total Extractable Hydrocarbons


FID1 A, (I:ALSED.GCFID3/0904\0904FT38.D)

pA

1800
1400
1200
800
600 -

Boiling Point Distribution Range of Petroleum Based Fuel Products

C16

Adapted from: Drews, A.W., ED. Manual on Hydrocarbon Analysis, 4th ed.; American Society for Testing and Materials: Philadelphia, PA., 1989: p XVIII

ALS Laboratory Group ANALYTICAL CHEMISTRY & TESTING SERVICES

Environmental Division

ALS

CHAIN OF CUSTODY / ANALYTICAL REQUEST FORM

CANADA TOLL FREE 1-800-668-9878

coc# A018186

088 5451

Page of

PHONE: 905-477-8400年秋 REPORT TO: Ken PHONE: 867 - 183-7500 FAX: 867- 983-7501 ADDRESS: Box 92 Cambridge Bay COMPANY: Kithung Projects Inc INVOICE TO: SAME AS REPORT? YES / NO ADDRESS: 300 Town Centre COMPANY: Gartner Lee Sample Markham, ON CONTACT CONTACT: November Lab Work Order # (lab use only By the use of this form the user acknowledges and agrees with the Terms and Conditions as specified on the reverse page of the white report copy. 755 This description will appear on the report CM-MW-15 CM-15-1 **GUIDELINES / REGULATIONS** CM-14-2 CM-16-1 CM-15-2 CM-14-1 CM-MW-CM-17-7 CM-17-1 KOB OCO Powel SAMPLE IDENTIFICATION L3R52R Boldt 35-477-4456 Blud Svile 300 Limited Failure to complete all portions of this form may delay analysis. Please fill in this form LEGIBLY. EMAIL 1: Kboldt@ gartner lee.com QUOTE #: CLIENT / PROJECT INFORMATION INDICATE BOTTLES: FILTERED / PRESERVED (F/P) EMAIL 2: mherrell @ gartnerlee, com STANDARD REPORT FORMAT / DISTRIBUTION JOB #: egal Site Description: Aug 18.07 Aug 17. Aug 17. Avy 16. 40517 Aug 16. Aug 18,07 Aug 18. Aug 17, 07 Aug 17, 07 EXCE ALSEGOT DATE 107 07 07 07 40 CANT CUSTOM -487 08:50 SAMPLER 0:50 (Initials): TIME SPECIAL INSTRUCTIONS / HAZARDOUS DETAILS SAMPLE TYPE 500 Water Sol Wester 501 Soi 501 Soi 200 Metals-CCME SERVICE REQUESTED EMERGENCY SERVICE (<1 DAY / WEEKEND) - CONTACT ALS REGULAR SERVICE (DEFAULT) RUSH SERVICE (2-3 DAYS) PRIORITY SERVICE (1 DAY or ASAP Total PCF ANALYSIS REQUEST HAZARDOUS? HIGHLY CONTAMINATED ? N N N 2 N NUMBER OF CONTAINERS

DATE & TIME

RELINQUISHED B'

RELINQUISHED

DATE & TIME: 11:16

EMPERATURE

(If no provide details)

SAMPLE CONDITION (lab use only)

SAMPLES RECEIVED IN GOOD CONDITION? YES /

NO

Appendix H

QA/QC

Table H1. Soil QA/QC

	Sample Ident.	Sample Location	Depth	Laboratory	Arsenic	Cadmium	Chromium	Cobalt	Copper	Lead	Mercury	Nickel	Zinc	Petroleum Hydrocarbons		PCB Total		
	Sample Ident.	Sample Location	Бери	Laboratory	Aisenic	Caumium	Cironnum	Coban	Соррег	Leau	Mercury	Nickei	Zinc	TPH C6-C34	C6-C10	C10-C16	C16-C34	Aroclors
			(m)		(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
	CM-MW-4-1	MW-4	0.1	Cantest	2.8	< 0.2	19	8	12	6.2	< 0.01	16	26	< 20				< 0.03
	CM-14-1*	MW-4	0.1	Cantest	2.7	< 0.2	17	7	13	6	< 0.01	15	22	< 20	-	-	-	< 0.03
	CM-14-1*	MW-4	0.1	ALS	2.61	< 0.50	21.9	6.4	12.5	< 30	0.0717	13.9	22.6	11	<10	<5	11	< 0.050
Average					2.70	-	19.30	7.13	12.50	-	-	14.97	23.53	-	-	-	-	-
RSD					3.5%	-	12.8%	11.3%	4.0%	-	-	7.0%	9.2%	-	-	-	-	-
	CM-MW-4-2	MW-4	0.5	Cantest	3	< 0.2	17	7	11	5.3	< 0.01	15	20	< 20				< 0.03
	CM-14-2*	MW-4	0.5	Cantest	3	< 0.2	15	6	11	5.2	< 0.01	13	22	< 20	-	-	-	< 0.03
	CM-14-2*	MW-4	0.5	ALS	3.47	< 0.50	18.3	5.9	11	< 30	0.013	12.2	18.2	27	<10	<5	27	< 0.050
Average					3.16	-	16.77	6.30	11.00	-	-	13.40	20.07	-	-	-	-	-
RSD					8.6%	-	9.9%	9.7%	0.0%	-	-	10.8%	9.5%	-	-	-	-	-
	CM-MW-10-1	MW-10	0.1	Cantest	1.6	< 0.2	7	3	7	3.3	< 0.01	6	9	< 20				< 0.03
	CM-15-1*	MW-10	0.1	Cantest	1.6	< 0.2	8	3	7	3.5	< 0.01	6	9	< 20	-	-	-	< 0.03
	CM-15-1*	MW-10	0.1	ALS	1.53	< 0.50	8.5	2.5	5.7	< 30	0.0072	5.1	9.4	44	<10	6	38	< 0.050
Average					1.58	-	7.83	2.83	6.57	-	-	5.70	9.13	-	-	-	-	-
RSD					2.6%	-	9.8%	10.2%	11.4%	-	-	9.1%	2.5%	-	-	-	-	-
	CM-MW-10-2	MW-10	0.5	Cantest	1.6	< 0.2	8	3	6	3.4	< 0.01	7	9	< 20				< 0.03
	CM-15-2*	MW-10	0.5	Cantest	1.6	< 0.2	8	3	6	3.5	< 0.01	6	9	24	< 5	< 80	< 250	< 0.03
	CM-15-2*	MW-10	0.5	ALS	1.59	< 0.50	9.3	2.7	6	< 30	0.0106	5.4	9.3	40	<10	6	34	< 0.050
Average					1.60	-	8.43	2.90	6.00	-	-	6.13	9.10	-	-	-	-	-
RSD					0.4%	-	8.9%	6.0%	0.0%	-	-	13.2%	1.9%	-	-	-	-	-
	CM-12-1	CM-12	0.1	Cantest	4.5	< 0.2	17	8	15	10.6	0.02	16	23	23	< 5	< 80	< 250	< 0.03
	CM-16-1*	CM-12	0.1	Cantest	4.3	< 0.2	13	10	17	10.8	0.01	19	11	< 20	-	-	-	< 0.03
	CM-16-1*	CM-12	0.1	ALS	3.57	< 0.50	22.5	6.2	13.9	< 30	0.0376	13.8	29.5	28	<10	<5	28	< 0.050
Average					4.12	-	17.50	8.07	15.30	-	0.02	16.27	21.17	-	-	-	-	-
RSD					11.9%	-	27.3%	23.6%	10.3%	-	62.0%	16.0%	44.3%	-	-	-	-	-
	CM-MW-14-1	MW-14	0.1	Cantest	3.6	< 0.2	16	7	13	6.1	< 0.01	15	19	< 20				< 0.03
	CM-17-1*	MW-14	0.1	Cantest	3.5	< 0.2	12	6	11	6	0.01	12	13	< 20	-	-	-	< 0.03
	CM-17-1*	MW-14	0.1	ALS	3.39	< 0.50	16.5	4.5	11.9	< 30	0.0144	10	13.2	45	<10	<5	45	< 0.050
Average					3.50	-	14.83	5.83	11.97	-	-	12.33	15.07	-	-	-	-	-
RSD					3.0%	-	16.6%	21.6%	8.4%	-	-	20.4%	22.6%	-	-	-	-	-
	CM-MW-14-2	MW-14	0.5	Cantest	3	< 0.2	13	5	12	7.4	< 0.01	12	15	< 20				< 0.03
	CM-17-2*	MW-14	0.5	Cantest	2.8	< 0.2	11	4	11	6.6	0.01	11	18	< 20	-	-	-	< 0.03
	CM-17-2*	MW-14	0.5	ALS	3.06	< 0.50	16.2	4.4	12.7	< 30	0.0155	9.9	12.5	47	<10	<5	47	< 0.050
Average					2.95	-	13.40	4.47	11.90	-	-	10.97	15.17	-	-	-	-	-
RSD					4.6%	-	19.6%	11.3%	7.2%	-	-	9.6%	18.2%	-	-	-	-	
	•																	

Notes: Relative Standard Deviation (RSDs) calculated by dividing the standard deviation of the comparitive set by the average.

XX% Exceeds QA/QC goal of 20% for inorganics or 30% for organics.

^{*} Denotes duplicate sample. (Further information located in Table 1 of main report)

⁻ Denotes "not calcuable"

Table H2. Water QA/QC

ſ	Sample Ident.	Sample Location	Laboratory	Arsenic	Cadmium	Chromium	Cobalt	Copper	Lead	Mercury	Nickel	Nickel Zinc	Petroleum Hydrocarbons				PCB Total
	Sample Ident.	Sample Location	Laboratory	Aiscilic	Caumum	Cironnum	Cobait	Соррег	Leau	Mercury	MICKEI		TPH C6-C34	C6-C10	C10-C16	C16-C34	Aroclors
				(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)
	CM-MW-12	MW-12	Cantest	0.0011	0.00015	0.190	0.0075	0.0062	0.0003	< 0.00002	0.269	0.100	< 0.1				< 0.0004
	CM-MW-15*	MW-12	Cantest	0.0013	0.00007	0.141	0.0050	0.0049	0.0031	< 0.00002	0.079	0.063	< 0.1				< 0.0004
	CM-MW-15*	MW-12	ALS	< 0.0030	< 0.000085	0.220	0.0074	0.0070	0.0036	< 0.00002	0.175	0.088	< 0.25				< 0.0010
				-	-	0.18367	0.0066	0.006033	0.002333	-	0.1743	0.0837	-	-	-	-	-
				-	-	22%	21%	18%	76%	-	54%	23%	-	-	-	-	-
ĺ	CM-MW-1	MW-1	Cantest	0.0012	0.00009	0.02	0.0039	0.0081	0.0005	< 0.00002	0.067	0.15	< 0.1				< 0.0004
	CM-MW-16*	MW-1	Cantest	0.0011	< 0.00004	0.0084	0.0027	0.0037	< 0.0002	< 0.00002	0.044	0.044	< 0.1				< 0.0004
	CM-MW-1*	MW-1	ALS	< 0.0025	< 0.000085	0.0272	0.0029	< 0.0050	< 0.0025	< 0.00002	0.0615	0.082	< 0.25				< 0.0010
				-	-	0.01853	0.003167	-	-	-	0.0575	0.092	-	-	-	-	-
				-	-	51%	20%	-	-	-	21%	58%	1	-	-	-	-

Average RSD

Average RSD

Notes: Relative Standard Deviation (RSDs) calculated by dividing the standard deviation of the comparitive set by the average.

xx%

Exceeds QA/QC goal of 20% for inorganics or 30% for organics.

 $^{* \,} Denotes \, duplicate \, sample. \, (Further \, information \, located \, in \, Table \, 1 \, \, of \, main \, report)$

⁻ Denotes "not calcuable"