

THE COLLECTION OF LANDFILL MONITORING DATA AT THE FORMER PIN-2 DEW LINE SITE

Cape Young, Nunavut

FINAL REPORT-2013 SEASON

(O/Ref.: CD3654) (Y/Ref.: DLC MON (Kitik 13)

DEFENCE CONSTRUCTION CANADA

January 2014

Tel.:

Fax:

418 653-4422 418 653-3583

THE COLLECTION OF LANDFILL MONITORING DATA AT THE FORMER PIN-2 DEW LINE SITE

FINAL REPORT - 2013 SEASON

Cape Young, Nunavut

(Y/Ref.: DLC MON (Kitik 13) (O/Ref.: CD3654)

DEFENCE CONSTRUCTION CANADA

January 2014

Presented to:

Nahed Farah

Defence Construction Canada

Written by:

For: Andrew Passalis, P. Eng.

Project Engineer

Verified by:

Antoine Vallieres, Microbio, M. Env.

Team Leader

Approved by:

Alexandre Leclair, P. Eng.

Project Manager

LICENSEE

TABLE OF CONTENTS

1	INTR	1	
	1.1	LOCATION AND SITE FEATURES	1
	1.2	OBJECTIVES AND SCOPE OF WORK	2
	1.3	REPORT FORMAT	3
	1.4	Project References	3
2	OUT	LINE AND METHODOLOGY	5
	2.1	FIELD PROGRAM STAFF	5
	2.2	2013 Weather Conditions	5
	2.3	VISUAL INSPECTION	5
	2.4	SOIL SAMPLING	6
	2.5	GROUNDWATER SAMPLING	7
	2.6	THERMAL MONITORING	7
	2.7	FIELD NOTES AND DATA	8
	2.8	QUALITY CONTROL	8
	2.9	QA/QC Procedures	8
3	AIRS	STRIP LANDFILL	10
	3.1	Background and Monitoring Program	10
	3.2	VISUAL INSPECTION REPORT	10
	3.3	PRELIMINARY STABILITY ASSESSMENT	14
	3.4	LOCATION PLAN	15
	3.5	PHOTOGRAPHIC RECORDS	17
4	USAI	F LANDFILL	18
	4.1	Background and Monitoring Program	18
	4.2	VISUAL INSPECTION REPORT	18
	4.3	PRELIMINARY STABILITY ASSESSMENT	22
	4.4	LOCATION PLAN	23
	4.5	PHOTOGRAPHIC RECORDS	25

TABLE OF CONTENTS (CON'T)

5	STAT	TON WEST LANDFILL	26
	5.1	BACKGROUND AND MONITORING PROGRAM	26
	5.2	VISUAL INSPECTION REPORT	26
	5.3	PRELIMINARY STABILITY ASSESSMENT	30
	5.4	LOCATION PLAN	31
	5.5	PHOTOGRAPHIC RECORDS	33
6	TIER	II SOIL DISPOSAL FACILITY	34
	6.1	BACKGROUND AND MONITORING PROGRAM	34
	6.2	VISUAL INSPECTION REPORT	34
	6.3	PRELIMINARY STABILITY ASSESSMENT	39
	6.4	LOCATION PLAN	40
	6.5	PHOTOGRAPHIC RECORDS	42
	6.6	THERMAL MONITORING DATA	44
	6.7	LANDFILL TEMPERATURE DATA FROM DATALOGGERS	44
	6.8	SOIL SAMPLE ANALYTICAL DATA	46
	6.9	GROUNDWATER SAMPLE ANALYTICAL DATA	47
	6.10	MONITORING WELL SAMPLING/INSPECTION LOGS (MW-1 TO MW-4)	54
7	AIRS	TRIP SOUTH LANDFILL	59
	7.1	BACKGROUND AND MONITORING PROGRAM	59
	7.2	VISUAL INSPECTION REPORT	59
	7.3	PRELIMINARY STABILITY ASSESSMENT	63
	7.4	LOCATION PLAN	64
	7.5	Photographic Records	66

TABLE OF CONTENTS (CON'T)

8	PALL	67	
	8.1	BACKGROUND AND MONITORING PROGRAM	67
	8.2	VISUAL INSPECTION REPORT	67
	8.3	PRELIMINARY STABILITY ASSESSMENT	71
	8.4	LOCATION PLAN	72
	8.5	PHOTOGRAPHIC RECORDS	74
9	NON-	-HAZARDOUS WASTE LANDFILL	75
	9.1	BACKGROUND AND MONITORING PROGRAM	75
	9.2	VISUAL INSPECTION REPORT	75
	9.3	PRELIMINARY STABILITY ASSESSMENT	80
	9.4	LOCATION PLAN	81
	9.5	PHOTOGRAPHIC RECORDS	83
10	SOUT	TH LANDFILL - EAST	84
	10.1	BACKGROUND AND MONITORING PROGRAM	84
	10.2	VISUAL INSPECTION REPORT	84
	10.3	PRELIMINARY STABILITY ASSESSMENT	89
	10.4	LOCATION PLAN	90
	10.5	PHOTOGRAPHIC RECORDS	92
11	SOUT	TH BORROW LANDFILL	93
	11.1	BACKGROUND AND MONITORING PROGRAM	93
	11.2	VISUAL INSPECTION REPORT	93
	11.3	PRELIMINARY STABILITY ASSESSMENT	98
	11.4	LOCATION PLAN	99
	11.5	PHOTOGRAPHIC RECORDS	101

LIST OF TABLES

Table I: 2013 Monitoring Requirements for PIN-2 Landfills	2
Table II: Summary of Soil Sampling at PIN-2 – August 2013	7
Table III: Summary of Groundwater Sampling at PIN-2 – August 2013	7
Table IV: Visual Inspection Checklist / Report – Airstrip Landfill	2
Table V: Preliminary Stability Assessment – Airstrip Landfill1	4
Table VI: Landfill Visual Inspection Photo Log – Airstrip Landfill1	7
Table VII: Visual Inspection Checklist / Report – USAF Landfill20	0
Table VIII: Preliminary Stability Assessment – USAF Landfill2	2
Table IX: Landfill Visual Inspection Photo Log – USAF Landfill2	5
Table X: Visual Inspection Checklist / Report – Station West Landfill2	8
Table XI: Preliminary Stability Assessment – Station West Landfill	0
Table XII: Landfill Visual Inspection Photo Log – Station West Landfill	3
Table XIII: Visual Inspection Checklist / Report – Tier II Soil Disposal Facility3	7
Table XIV: Preliminary Stability Assessment – Tier II Soil Disposal Facility3	9
Table XV: Landfill Visual Inspection Photo Log – Tier II Soil Disposal Facility4	2
Table XVI: Thermal monitoring data – Tier II Soil Disposal Facility4	5
Table XVII: Soil Chemical Analysis Results – Tier II Soil Disposal Facility4	6
Table XVIII: Evaluation of 2013 Soil Analytical Data – Tier II Soil Disposal Facility4	7
Table XIX: Groundwater Chemical Analysis Results – Tier II Soil Disposal Facility 4	8
Table XX: Evaluation of 2013 Groundwater Analytical Data – Tier II Soil Disposal Facility4	9
Table XXI: Thermistor Annual Maintenance Reports (VT-1 to VT-4)50	0

LIST OF TABLES (CON'T)

Table XXII: Visual Inspection Checklist / Report – Airstrip South Landfill	61
Table XXIII: Preliminary Stability Assessment – Airstrip South Landfill	63
Table XXIV: Landfill Visual Inspection Photo Log – Airstrip South Landfill	66
Table XXV: Visual Inspection Checklist / Report – Pallet Line West Landfill	69
Table XXVI: Preliminary Stability Assessment – Pallet Line West Landfill	71
Table XXVII: Landfill Visual Inspection Photo Log – Pallet Line West Landfill	74
Table XXVIII: Visual Inspection Checklist / Report – NHWLF	78
Table XXIX: Preliminary Stability Assessment – NHWLF	80
Table XXX: Landfill Visual Inspection Photo Log – NHWLF	83
Table XXXI: Visual Inspection Checklist / Report – South Landfill - East	87
Table XXXII: Preliminary Stability Assessment – South Landfill - East	89
Table XXXIII: Landfill Visual Inspection Photo Log – South Landfill - East	92
Table XXXIV: Visual Inspection Checklist / Report – South Borrow Landfill	96
Table XXXV: Preliminary Stability Assessment – South Borrow Landfill	98
Table XXXVI: Landfill Visual Inspection Photo Log – South Borrow Landfill	101

LIST OF FIGURES

Figure 1 : PIN-2.1	Overall Site Plan	4
Figure 2 : PIN-2.2	Location Plan of Airstrip Landfill	. 16
Figure 3 : PIN-2.3	Location Plan of USAF Landfill and Station West Landfill	. 24
Figure 4 : PIN-2.3	Location Plan of USAF Landfill and Station West Landfill	. 32
Figure 5 : PIN-2.4	Location Plan of Tier II Soil Disposal Facility	. 41
Figure 6 : PIN-2.5	Location Plan of Airstrip South Landfill	. 65
Figure 7 : PIN-2.6	Location Plan of Pallet Line West Landfill	. 73
Figure 8 : PIN-2.7	Location Plan of NHWLF	. 82
Figure 9 : PIN-2.8	Location Plan of South Landfill - East	. 91
Figure 10 : PIN-2.9	Description Plan of South Borrow Landfill	100

LIST OF APPENDICES

APPENDIX A Range of the Report and Limitation of Responsibilities

APPENDIX B Field Notes

APPENDIX C Quality insurance/Quality control

APPENDIX D Maxxam and Exova QA/QC Reports and Certificates of Analysis

1 INTRODUCTION

1.1 LOCATION AND SITE FEATURES

The PIN-2 Cape Young Distant Early Warning (DEW) Line site is located on the mainland of Nunavut along the coast of Dolphin and Union Strait at 68° 55' 58" north latitude and 116° 55' 45" west longitude. The site is approximately 150 km north of Kugluktuk (formerly Coppermine) and 465 km west of the community of Ikaluktutiak (Cambridge Bay).

PIN-2 was originally an auxiliary station within the original DEW Line system that was decommissioned in 1993. A remotely operated North Warning System (NWS) Short Range Radar (SRR) station has been constructed approximately 8 km to the southwest, along with two 88 m³ POL tanks located at the beach area. The environmental clean-up and demolition of facilities commenced in 2009 and was completed during the summer of 2011, with the exception of the airstrip hangar.

The clean-up included the closure and remediation of seven existing landfills, the construction of a landfill for the disposal of non-hazardous wastes generated from demolition and collection of site debris (NHWLF) as well as the construction of a second facility to contain Tier II soils. Monitoring activities were carried out at the following landfill areas, as shown on the overall site plan (Figure PIN-2.1) at the end of this section:

- Airstrip Landfill
- USAF Landfill
- Station West Landfill
- Tier II Soil Disposal Facility
- Airstrip South Landfill
- Pallet Line West Landfill
- Non-Hazardous Waste Landfill
- South Landfill East
- South Borrow Landfill

In accordance with the Nunavut Tunngavik Incorporated - Department of National Defence (NTI-DND) Cooperation Agreement, landfill monitoring is carried out following the site clean-up. Table I hereafter provides a synopsis of field activities performed during the 2013 Landfill Monitoring Program at PIN-2 – Cape Young.

Table I: 2013 Monitoring Requirements for PIN-2 Landfills

Landfill	Visual Inspection	Soil Sampling	Groundwater Sampling	Thermal Monitoring
Airstrip Landfill	√		- Camping	
USAF Landfill	✓			
Station West Landfill	✓			
Tier II Soil Disposal Facility	✓	✓	✓	✓
Airstrip South Landfill	✓			
Pallet Line West Landfill	✓			
Non-Hazardous Waste Landfill	✓			
South Landfill - East	✓			
South Borrow Landfill	√			

1.2 OBJECTIVES AND SCOPE OF WORK

The objective of the DCC Landfill Monitoring Program is to collect sufficient information to assess the landfill's performance from geotechnical and environmental perspectives. DCC has specified the requirements for the Landfill Monitoring Program in the document *Terms of Reference (TOR) – Consulting Services for the Collection of Landfill Monitoring Data – PIN-2 Cape Young, PIN-4 Byron Bay, CAM-1 Jenny Lind Island, DEW LINE SITES, NUNAVUT, KITIKMEOT REGION, DCC PROJECT #: DLC MON(KITIK13), April 18, 2013. (TOR, reference A).*

The scope of work for the Landfill Monitoring Program is defined in the TOR and in Biogenie's accepted proposal dated June 2013 (reference B) that was submitted to DCC. The scope of work generally includes the following activities:

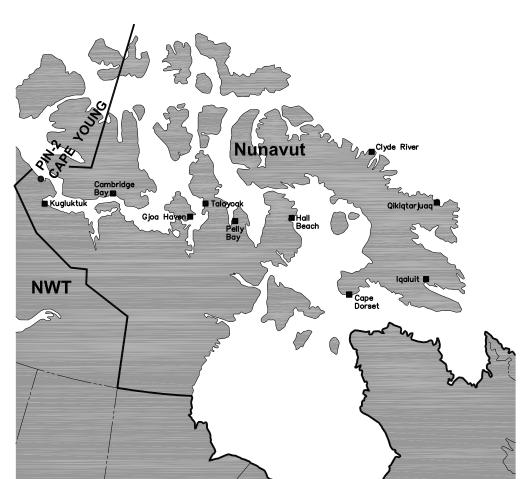
- Landfill Monitoring for each of the PIN-2 Landfills
- Visual inspection
- Soil and groundwater sampling (Tier II Soil Disposal Facility)
- Thermal monitoring (DCC Tier II Soil Disposal Facility)
- Creation of a photographic record
- Draft and Final reports

The range of the report, limitation of responsibilities as well as the detailed procedures for the use of this report are presented in Appendix A.

1.3 REPORT FORMAT

This report describes the work carried out in August 2013 at nine landfill sites at PIN-2 Cape Young. Results from soil and groundwater sampling, thermal monitoring, and visual inspection of the sites are also presented in the formats described in the TOR. An electronic version of the report and its component tables, figures and data files is included in an Addendum DVD-ROM, which is appended to the report.

The report is organized with a separate chapter for each of the landfill areas. Each chapter contains all relevant information gathered for that landfill during the 2013 Landfill Monitoring Program. The following information is provided for each landfill:

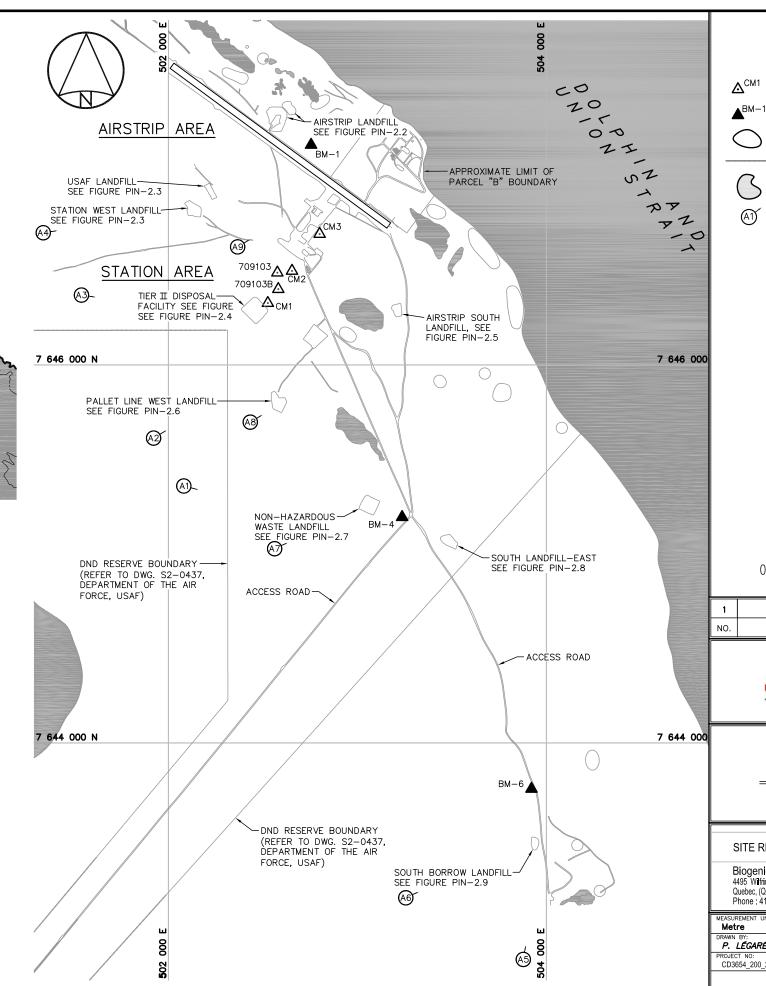

- Visual inspection check-list
- Visual inspection drawing mark-up
- A selection of visual inspection photos
- Thermal monitoring summary (where applicable)
- Summary of 2013 soil analytical data (where applicable)
- Summary of 2013 groundwater analytical data (where applicable)
- Monitoring well development/sampling reports (where applicable)

For the photographic record, the printed copy of the report only includes an index of photos for each of the landfill areas. The actual photos are included in electronic format in the Addendum DVD-ROM to the report. Certificates of Analysis, QA/QC analytical results and field notes are attached in appendices.

1.4 PROJECT REFERENCES

The following references are specifically relevant to the 2013 Landfill Monitoring activities:

- A. Terms of Reference Consulting Services for the Collection of Landfill Monitoring Data PIN-2 Cape Young, PIN-4 Byron Bay, CAM-1 Jenny Lind Island- DEW LINE SITES, NUNAVUT, KITIKMEOT REGION, DCC PROJECT #: DLC MON(KITIK13), April 18, 2013.
- B. Technical Proposal The Collection of Landfill Monitoring Data for the DEW Line Sites: PIN-2 Cape Young, PIN-4 Byron Bay, CAM-1 Jenny Lind Island, DEW LINE SITES, Nunavut, Kitikmeot Region. Project Ref 6121-150, June 2013.
- C. Post-Field Progress Report, PIN-2 Landfill Monitoring 2013, August 2013.



LOCATION OF CAPE YOUNG WITHIN NUNAVUT TERRITORY

SURVEY CONTROL MONUMENTS							
NO.	UTM COORDINATES		ELEV.	DESCRIPTION			
NO.	NORTHING	EASTING	ELEV.	DESCRIPTION			
CM1	7 646 327.029	502 525.754	13.804	PIN-2 BASELINE STA. 0+00			
CM2	7 646 497.473	502 653.662	13.993	PIN-2 BASELINE STA. 7+00			
СМЗ	7 646 692.507	502 799.974	14.534	PIN-2 BASELINE STA. 15+00			
709103 7 646 487.974		502 576.191	13.790	GEODETIC BENCHMARK			
709103B			13.954	GEODETIC BENCHMARK			

NOTE: BASELINE STATIONS SHOWN ARE IN IMPERIAL UNITS.

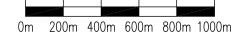
	PERMANENT BENCHMARK (AS-BUILT)				
NO.	UTM COORDINATES		ELEV.	DESCRIPTION	
NO.	NORTHING	EASTING	ELEV.	DESCRIPTION	
BM-1	7 647 164.203	502 754.676	14.398	25mm DIA. STEEL PIPE	
BM-4	7 645 194.471	503 236.108	17.189	25mm DIA. STEEL PIPE	
BM-6	7 643 756.513	503 920.587	13.296	25mm DIA. STEEL PIPE	

LEGEND

SURVEY CONTROL MONUMENT (5)

PERMANENT BENCHMARK LOCATION (3)

ARCHAEOLOGICAL FEATURES


APPROXIMATE LOCATION OF PROPERTY BOUNDARY

BODY OF WATER

AERIAL PHOTOGRAPH

Construction de Défense Canada **Defence Construction Canada**

COLLECTION OF LANDFILL MONITORING DATA

PIN-2, CAPE YOUNG, NUNAVUT

LOCATION PLAN

SITE REMEDIATION SOLUTIONS

Biogenie, a division of EnGlobe Corp. 4495 Wilfrid-Hamel blvd, Suite 200 Quebec, (Quebec) CANADA G1P 2J7

letre	1 : 20,000	JANUARY 2014
WN BY: P. LÉGARÉ	VERIFIED BY: A. PASSALIS	APPROVED BY: A. LECLAIR P. Eng.
DJECT NO: D3654_200_203	DRAWING NO: CD3654_200_203-PIN-2A-PL	PAGE PL

FIGURE PIN-2.1

2 OUTLINE AND METHODOLOGY

2.1 FIELD PROGRAM STAFF

The 2013 on-site field program at PIN-2 Cape Young took place on August 17, 2013. Biogenie sub-contracted Sila Remediation Inc. from Igloolik, Nunavut to perform the field work. The Sila field program was executed by Mr. Andrew Passalis and 5 local Inuit representatives.

The team was made up of the following individuals:

- Andrew Passalis, Project Engineer
- Kaylene Epilon, Field Technician
- John Henry Etegak, Field Technician
- Susie Koaha, Field Technician
- Benjamin Kaniak, Field Technician
- Joe Koaha, Wildlife Monitor

2.2 2013 WEATHER CONDITIONS

Seasonally warm weather conditions were observed during the PIN-2 Cape Young monitoring event with daytime temperatures ranging between 6-7°C. Skies were mixed with periods of sun and cloud throughout the monitoring period with light to moderate winds out of the northwest ranging between 5-15 km/h. Precipitation was not observed during the monitoring period.

2.3 VISUAL INSPECTION

Data and information collected during the visual inspection of the PIN-2 landfills are included in the visual inspection datasheets. These data sheets include such inspection data as the location of settlement, erosion, frost action, sloughing and cracking, animal burrows, vegetation cover and stress, staining, seepage points, exposed debris, and any other features of note.

Each feature was identified with an alphabetical tag to be used consistently each year in an effort to track changes in condition for each specific feature. New features are added to the checklist and are noted as new observations. This letter is shown on the figures for each landfill along with the symbol for the particular feature.

Digital photos with a measure of scale were taken to show the actual general state of the landfills as well as features of interest. Annotated sketches/diagrams are included in the present report for each landfill. Some photos are provided for supplemental purposes only and do not warrant placement on the Figures (i.e., they are not specifically referenced in the report or within the tables).

The photos were taken with a Sony DSC-TX5 10.2 megapixel (MP) digital camera. Full resolution digital jpg copies are furnished on a DVD-ROM appended with the final report. The photo log, including the local coordinates from where the photo was taken, orientation (relative to map north), feature of note and picture numbers are included with each landfill report.

2.4 SOIL SAMPLING

The soil sampling methodology conformed to guidance provided in the following Canadian Council of Ministers of the Environment (CCME) documents:

- CCME Guidance Document on the Management of Contaminated Sites in Canada, April 1997, CCME PN 1279. (CCME catalogue http://www.ccme.ca/pdfs/cat_eng.pdf)
- CCME EPC-NCS62E Guidance Manual on Sampling, Analysis, and Data Management for Contaminated Sites - Volume I: Main Report, Dec 93 (CCME catalogue - http://www.ccme.ca/pdfs/cat_eng.pdf)
- CCME EPC-NCS66E Guidance Manual on Sampling, Analysis, and Data Management for Contaminated Sites - Volume II: Analytical Method Summaries, Dec 93 (CCME catalogue - http://www.ccme.ca/pdfs/cat_eng.pdf)
- Reference method for the Determination of Petroleum Hydrocarbons in Soil Tier I Method, 2001
- CCME Subsurface Assessment Handbook for Contaminated Sites, March 1994, EPC-NCSRP-48E (http://www.ccme.ca/publications/ceqg_rcqe.html)

For the 2013 monitoring event, 4 soil-sampling stations were visited. One surface sample (0-10 cm depth below surface) and one subsurface sample (40-50 cm depth below surface) were taken at each sampling station. No frozen ground or frost was encountered at the soil stations during the August 2013 sampling.

As specified in the TOR, the following soil sampling procedures were adhered to:

- Where required, the soil samples were collected from locations between two to four meter radius of the monitoring wells
- Blind field duplicates (10 %) were collected for Quality Assurance and Quality Control purposes
- Duplicate samples (10 %) were also taken and sent to a second laboratory for quality control purposes
- An additional ten percent of soil samples taken were sent to the owner's representative (ESG OPS CENTRE) in Kingston for archiving as specified by DCC

The soil samples were analyzed for requested parameters (TPH (F1-F3), total metals and PCBs) as specified by DCC. Table II below summarizes the soil sampling at PIN-2 during the August, 2013 field program.

Table II: Summary of Soil Sampling at PIN-2 – August 2013

Landfill Site		Soil Sample	e Locations			
Tier II Disposal Facility	MW-1	MW-2	MW-3	MW-4		

Notes:

Soil samples annotated as "MW" were collected as per the TOR between 2-4 metres from monitoring wells. All soil samples were collected from two depths (0-15 cm and 40-50 cm). For 2013 sampling, total no. of soil samples = 11 samples (4 locations x 2 depths + 1 QA/QC + 1 (Inter-laboratory comparison) + 1 for Owner's Representative (ESG Archives)

2.5 GROUNDWATER SAMPLING

The 2013 field program included the monitoring of four locations at PIN-2. One of the four wells at the Tier II Soil Disposal Facility (MW-1) was found to contain insufficient water at the time of monitoring and consequently could not be sampled. A summary of the status of the monitoring wells and the attempts made are summarized in Table III.

In sampled wells, no sign of free phase hydrocarbon product was detected. Monitoring Well Development and Sampling Record forms are included in appropriate sections of this report.

Table III: Summary of Groundwater Sampling at PIN-2 – August 2013

Landfill Site		Groundwater San	nple Locations	
Tier II Soil Disposal Facility	MW-1 (dry)	MW-2	MW-3	MW-4

Notes:

For 2013 sampling, total no. of water samples = 7 samples (3 monitoring well samples + 1 blind duplicate + 1 interlaboratory duplicate + 1 field blank) + 1 travel blank.

All monitoring wells were inspected and found to be in good condition with no significant concerns identified.

2.6 THERMAL MONITORING

All thermistors at the Tier II Soil Disposal Facility were inspected and found to be in good condition with no significant concerns identified. Data from all thermistors was successfully retrieved with the exception of VT-1, where all communication failed due to extremely low battery levels. All analogues/thermocouples were observed to be functioning properly at the time of inspection. Batteries were replaced in all datalogger units as specified in the TOR and internal memories were reset and clocks were synchronized using the Prolog software.

Specific detailed information regarding temperature data is contained in the report section on the Tier II Soil Disposal Facility. Raw data retrieved directly from the dataloggers were provided to DCC with the field progress report in August 2013. The manual thermal monitoring data is presented in tabular form on the thermistor inspection sheets for each landfill.

2.7 FIELD NOTES AND DATA

Field notes from the 2013 landfill monitoring program, including soil and water sampling are included in Appendix B for reference. Notes were written on waterproof field sheet and in field books and scanned to an Adobe pdf document for future reference and back up. Locations of all observations and features for the visual inspection were recorded using a hand-held Garmin Oregon 300 GPS device, which included a combination of continuous tracks and discrete waypoints. Data packages collected from the individual vertical thermistors were downloaded directly to a field laptop computer.

2.8 QUALITY CONTROL

Sila implemented standard sample collection techniques to decrease the likelihood of compromising collected samples. The methods used for sample collection are summarized in Sections 2.4 and 2.5 of this report. The following measures were taken to minimize sample cross-contamination:

- All samples were placed directly into the appropriate laboratory supplied containers (for the particular analysis)
- Soil samples were collected with the use of decontaminated sampling equipment and/or nitrile gloves that were used only once
- All samples were stored in chilled coolers/refrigerators throughout the field program and chilled coolers during subsequent transfer to the respective laboratory

Chains of Custody (COC) forms were completed by the Project Engineer after sample collection. The samples were refrigerated prior to off-site shipment by First Air Cargo directly to Maxxam (via Yellowknife) and Exova in Edmonton and ESG, via Ottawa to Kingston, Ontario where they were checked in by laboratory representatives. All analysis was completed as specified on COC forms.

2.9 QA/QC PROCEDURES

Sila used standard QA/QC procedures as specified in the TOR and CCME Guidance Documents for this project. The following is a summary of the analytical QA/QC samples collected:

- 10% Blind Duplicate Samples of soil were sent to Maxxam
- 10% Interlab Duplicate Samples were sent to Exova (looking for variation in procedures causing significant difference in analytical result). Results for both the blind duplicates and the interlab duplicates can be found in Appendix C, as actual values and relative percent differences
- 10% Archival Samples to ESG (soils)

Maxxam has QA/QC measures for sample analysis. Maxxam QC samples will typically be introduced into the analytical stream on a batch basis, normally comprising 20% – 30% of the total sample throughput. A batch size of 15 – 20 typically includes one of each control standard, reference standard, surrogate spike, duplicate sample, and method blank. A **control sample** is a blank matrix fortified with analyte of interest and carried through all analytical steps to monitor lab performance (recovery & basis) on clean matrix. A **reference sample** is a sample with predetermined certified characteristics that undergoes the same processing as samples used to evaluate accuracy of procedure. A **surrogate spike** is an organic compound with similar chemical composition and behaviour in the analytical process used to monitor recovery in each sample. A **duplicate sample** occurs when client samples are analyzed in duplicate to monitor reproducibility in analysis and preparation. Finally, a **method blank** is a blank sample matrix carried through the same procedure as the samples, and is used to monitor for process contamination.

Exova follows similar in-house QA/QC procedures. Maxxam and Exova QA/QC reports can be found in Appendix D.

3 AIRSTRIP LANDFILL

3.1 BACKGROUND AND MONITORING PROGRAM

The Airstrip Landfill is located 600 m north of the station on the northwest side of the airstrip. The landfill has two regrade areas, including granular fill cover encompassing a footprint of approximately 8,800 m² with the final cover extending approximately 1.0 m to 2.5 m above the surrounding grade. Based on existing information regarding this landfill as a source of contamination, its potential migration pathways and receptors, the Airstrip Landfill was classified as low potential environmental risk. The remediation consisted of excavation of the Tier II soil contamination and the two remaining contaminated soil areas were included in the regraded areas. All visible debris was removed. The landfill was regraded with the placement of additional granular fill at all lobes.

The long term monitoring plan consists of visual inspection, and the periodic collection of soil samples. The 2013 monitoring of this landfill was limited to a visual inspection to assess overall landfill performance.

3.2 VISUAL INSPECTION REPORT

The visual inspection of the Airstrip Landfill was conducted on August 17, 2013. The Visual Inspection Checklist/Report has been completed as per the TOR and is included as Table IV of this report.

<u>Settlement</u>

Indications of settlement were not noted at the landfill.

<u>Erosion</u>

During the assessment, no existing erosion was noted at the landfill.

Frost Action

Evidence of frost action was not noted.

Evidence of Burrowing Animals

Indications of burrowing animals were not noted.

Re-establishment of Vegetation

Evidence of vegetation was not noted on the landfill.

Staining

Evidence of staining was not noted at the landfill.

Seepage Points

No areas of seepage were noted at the landfill.

Debris

Evidence of exposed debris was not noted at the landfill, however three small pieces of surface debris (Feature A) were noted between the two lobes (see below).

Presence/Condition of Monitoring Instruments

There is no monitoring instrumentation installed at this landfill.

Other Features of Note

As noted above, three small pieces of miscellaneous metal debris (strapping) were noted on the gravel surface between the lobes (Feature A). The debris did not appear to be related to the landfill regrades.

ALF-25: (left) Miscellaneous metal debris on surface between Lobe A and Lobes E & F
ALF-28: (right) View southeast at miscellaneous metal debris on surface between Lobe A and Lobes E & F

Discussion

The Airstrip Landfill performance with respect to containment of the debris within the landfill is rated as acceptable. A visual inspection report, including supporting photos and drawing, is presented in the following pages.

Table IV: Visual Inspection Checklist / Report - Airstrip Landfill

DEW LINE CLEANUP: POST-CONSTRUCTION – LANDFILL MONITORING VISUAL INSPECTION CHECKLIST INSPECTION REPORT – PAGE 1 of 2

SITE NAME: PIN-2 - Cape Young

LANDFILL DESIGNATION: Airstrip Landfill (Regrade Landfill)

DATE OF INSPECTION: August 17, 2013

DATE OF PREVIOUS INSPECTION: August 11 & 12, 2012

INSPECTED BY: A. Passalis

REPORT PREPARED BY: A. Passalis

The inspector/reporter represents to the best of his/her knowledge that the following statements and observations are true and correct and to the best of the preparer's actual knowledge, no material facts have been suppressed or misstated.

LANDFILL VISUAL INSPECTION

Site Name: PIN-2, CAPE YOUNG
Landfill: Airstrip Landfill
Designation: Existing Regrade Area
Date Inspected: August 17, 2013
Inspected by: Andrew Passalis, P.Eng.

Signature:

Additional Photos

TABLE IV: PIN-2, CAPE YOUNG - AIRSTRIP LANDFILL

See Figure PIN-2.2 and Photographic Record

N/A

N/A

N/A

Yes

	1		1	1			1			
Checklist Item	Present (Yes/No)	Location	Length	Width	Depth	Extent	Description	Photographic Record	Severity Rating	Additional Comments
Settlement	No	N/A	N/A	N/A	N/A	N/A	N/A	N/A	Not Observable	N/A
Erosion	No	N/A	N/A	N/A	N/A	N/A	N/A	N/A	Not Observable	N/A
Frost Action	No	N/A	N/A	N/A	N/A	N/A	N/A	N/A	Not Observable	N/A
Animal Burrows	No	N/A	N/A	N/A	N/A	N/A	N/A	N/A	Not Observable	N/A
Vegetation	No	N/A	N/A	N/A	N/A	N/A	N/A	N/A	Not Observable	N/A
Staining	No	N/A	N/A	N/A	N/A	N/A	N/A	N/A	Not Observable	N/A
Vegetation Stress	No	N/A	N/A	N/A	N/A	N/A	N/A	N/A	Not Observable	N/A
Seepage Points	No	N/A	N/A	N/A	N/A	N/A	N/A	N/A	Not Observable	N/A
Debris Exposed	No	N/A	N/A	N/A	N/A	N/A	N/A	N/A	Not Observable	N/A
Presence/Condition of Monitoring Instruments	No	N/A	N/A	N/A	N/A	N/A	N/A	N/A	Not Observable	N/A
Other Features of Note:	Yes	FEATURE A See Figure PIN-2.2 (Between Lobes A and E&F - New Obs.)	0.3 m	0.03 m	Surface	Isolated	Miscellaneous metal debris - surface	ALF-25 to 28	Acceptable	Three small pieces of metal debris located between lobes

N/A

General Photographic Record

N/A

Not Observable

General photos for documentation, no additional features of note.

3.3 PRELIMINARY STABILITY ASSESSMENT

The Preliminary Stability Assessment for Airstrip Landfill has been completed as per the TOR and is included as Table V below.

Table V: Preliminary Stability Assessment - Airstrip Landfill

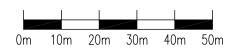
Feature	Severity Rating	Extent	
Settlement	Not observed	None	
Erosion	Not observed	None	
Frost Action	Not observed	None	
Staining	Not observed	None	
Vegetation Stress	Not observed	None	
Seepage/Ponded Water	Not observed	None	
Debris exposure	Acceptable Isolated		
Overall Landfill Performance	Acceptable		

Performance/ Severity Rating	Description
Acceptable	Noted features are of little consequence. The landfill is performing as designed. Minor deviations in environmental or physical performance may be observed, such as isolated areas of erosion, settlement.
Marginal	Physical/environmental performance appears to be deteriorating with time. Observations may include an increase in size or number of features of note, such as differential settlement, erosion or cracking. No significant impact on landfill stability to date, but potential for failure is assessed as low or moderate.
Significant	Significant or potentially significant changes affecting landfill stability, such as significant changes in slope geometry, significant erosion or differential settlement; scarp development. The potential for failure is assessed as imminent.
Unacceptable	Stability of landfill is compromised to the extent that ability to contain waste materials is compromised. Examples may include: Debris exposed in erosion channels or areas of differential settlement. Liner exposed. Slope failure.
Extent	Description
Isolated	Singular feature
Occasional	Features of note occurring at irregular intervals/locations
Numerous	Many features of note, impacted less than 50% of the surface area of the landfill
Extensive	Impacting greater than 50% of the surface area of the landfill

3.4 LOCATION PLAN

The Location Plan for the Airstrip Landfill has been completed as per the TOR and is presented in Figure PIN-2.2.

LEGEND


MONITORING SOIL SAMPLE LOCATION (6)

2 APPROX. PHOTOGRAPHIC VIEWPOINT

BODY OF WATER

DEBRIS (NTS)

1	FINAL	14-01-22	P.L.	A.P.	A.L.
NO.	VERSION	DATE	PAR	VERIF.	APPR.

COLLECTION OF LANDFILL MONITORING DATA

PIN-2, CAPE YOUNG, NUNAVUT

AIRSTRIP LANDFILL

SITE REMEDIATION SOLUTIONS

Biogenie, a division of EnGlobe Corp. 4495 Wilfrid-Hamel btvd, Suite 200 Quebec, (Quebec) CANADA G1P 2J7 Phone: 418-653-4422 www.biogenie-env.com

MEASUREMENT UNIT Metre	SCALE: 1 : 1,000	DATE (month-year): JANUARY 2014
drawn by: P. LÉGARÉ	VERIFIED BY: A. PASSALIS	APPROVED BY: A. LECLAIR P. Eng.
PROJECT NO: CD3654_200_203	DRAWING NO: CD3654_200_203-PIN-2B-PL	PAGE PL

FIGURE PIN-2.2

3.5 PHOTOGRAPHIC RECORDS

The Photographic Record for the Airstrip Landfill has been completed as per the TOR and is included as Table VI hereafter. The Photographic Record contains only an index of photographs. Full sized photographs are contained in the Addendum DVD-ROM.

Table VI: Landfill Visual Inspection Photo Log - Airstrip Landfill

Photo		Cina		Vantaç	ge Point	
(ALF-)	Filename	Size (KB)	Date	Easting	Northing	Caption
LOBE A						
1	P213_347	4,338	17/08/2013	502532	7647243	View looking north along west side of Airstrip Landfill - Lobe A
2	P213_348	4,384	17/08/2013	502534	7647238	View looking east along south side of Airstrip Landfill - Lobe A
3	P213_349	4,303	17/08/2013	502535	7647241	View looking northeast at southwest corner of Airstrip Landfill - Lobe A
4	P213_350	4,473	17/08/2013	502558	7647268	View looking east across south cover of Airstrip Landfill - Lobe A
5	P213_351	4,319	17/08/2013	502542	7647288	View north-northwest along northwest crest of Airstrip Landfill - Lobe A
6	P213_352	4,406	17/08/2013	502543	7647287	View looking south along west side of Airstrip Landfill - Lobe A
7	P213_353	1,409	11/09/2013	502546	7647288	Panoramic view looking north to south across Airstrip Landfill - Lobe A
8	P213_354	1,468	11/09/2013	502574	7647319	Panoramic view looking north to south across east cover of Airstrip Landfill - Lobe A
9	P213_357	1,221	09/10/2013	502526	7647340	Panoramic view looking north to south across north cover of Airstrip Landfill - Lobe A
10	P213_358	4,395	17/08/2013	502512	7647342	View looking south-southeast along west toe of Airstrip Landfill - Lobe A
11	P213_359	4,330	17/08/2013	502513	7647344	View looking east-northeast along northwest toe of Airstrip Landfill - Lobe A
12	P213_360	4,348	17/08/2013	502567	7647357	View looking west along north side slope of Airstrip Landfill - Lobe A
13	P213_361	4,250	17/08/2013	502595	7647364	View looking west along north toe of Airstrip Landfill - Lobe A
14	P213_362	4,409	17/08/2013	502600	7647363	View looking southwest at northeast corner of Airstrip Landfill - Lobe A
15	P213_363	4,305	17/08/2013	502600	7647365	View looking southeast between Lobes A and E&F of Airstrip Landfill
16	P213_364	1,050	11/09/2013	502631	7647317	Panoramic view looking south-southwest to north-northwest at east side of Airstrip Landfill - Lobe A
LOBES E	& F					
17	P213_365	4,432	17/08/2013	502637	7647324	View looking northwest along west side slope of Airstrip Landfill - Lobes E & F
18	P213_366	4,261	17/08/2013	502639	7647324	View looking east along south toe of Airstrip Landfill - Lobes E & F
19	P213_367	1,164	11/09/2013	502653	7647346	Panoramic view looking southwest to north across cover of Airstrip Landfill - Lobes E & F
20	P213_368	4,341	17/08/2013	502662	7647365	View looking northwest along east side of Airstrip Landfill - Lobes E & F
21	P213_369	4,450	17/08/2013	502642	7647394	View looking southeast along east side of Airstrip Landfill - Lobes E & F
22	P213_370	4,306	17/08/2013	502639	7647394	View looking west-southwest along north side of Airstrip Landfill - Lobes E & F
23	P213_371	4,444	17/08/2013	502612	7647376	View looking east-northeast along north crest of Airstrip Landfill - Lobes E & F
24	P213_372	4,438	17/08/2013	502613	7647375	View looking southeast across cover of Airstrip Landfill - Lobes E & F
25	P213_373	4,337	17/08/2013	502629	7647331	Miscellaneous metal debris on surface between Lobe A and Lobes E & F – FEATURE A
26	P213_374	4,228	17/08/2013	502626	7647335	Miscellaneous metal debris on surface between Lobe A and Lobes E & F – FEATURE A
27	P213_375	4,287	17/08/2013	502625	7647337	Miscellaneous metal debris on surface between Lobe A and Lobes E & F – FEATURE A
28	P213_376	4,328	17/08/2013	502622	7647340	View looking southeast at miscellaneous metal debris on surface between Lobe A and Lobes E & F – FEATURE A

4 USAF LANDFILL

4.1 BACKGROUND AND MONITORING PROGRAM

The USAF Landfill is located approximately 500 m northwest of the main Station Area with a connecting road to the Station Area. The landfill was constructed with a liner over the landfill surface during operation and closure in 1993. The landfill consists of two cells and was subsequently covered with additional granular fill encompassing a footprint of approximately 2,500 m² with the final cover extending approximately 1.0 m above the surrounding grade.

The surface of the landfill and the immediate surrounding area are relatively flat with surface runoff potential low with slight troughs to the northeast and southwest. Based on an assessment of the USAF Landfill as a contaminant source, the potential for migration, and downgradient receptors, the landfill was classified as a low potential environmental risk. Accordingly, surface and partially exposed debris was removed, and the landfill was regraded with additional granular fill.

The long term monitoring plan consists of visual inspection, and the periodic collection of soil samples. The 2013 monitoring of this landfill includes a visual inspection to assess overall landfill performance.

4.2 VISUAL INSPECTION REPORT

The visual inspection of the USAF Landfill was conducted on August 17, 2013. The Visual Inspection Checklist/Report has been completed as per the TOR and is included as Table VII of this report.

Settlement

Indications of settlement were not noted at the landfill.

Erosion

During the assessment, no existing erosion was noted at the landfill.

Frost Action

Evidence of frost action was not noted.

Evidence of Burrowing Animals

Indications of burrowing animals were not noted.

Re-establishment of Vegetation

Evidence of vegetation was not noted on the landfill.

Staining

Evidence of staining was not noted.

Seepage Points

No areas of seepage were noted at the landfill.

Debris

Evidence of debris was not noted at the landfill.

Presence/Condition of Monitoring Instruments

There is no monitoring instrumentation installed at this landfill.

Other Features of Note

There were no other features of note at the landfill.

Discussion

The USAF Landfill performance with respect to containment of the debris within the landfill is rated as acceptable. A visual inspection report, including supporting photos and drawing, is presented in the following pages.

Table VII: Visual Inspection Checklist / Report – USAF Landfill

DEW LINE CLEANUP: POST-CONSTRUCTION – LANDFILL MONITORING VISUAL INSPECTION CHECKLIST INSPECTION REPORT – PAGE 1 of 2

SITE NAME: PIN-2 - Cape Young

LANDFILL DESIGNATION: USAF Landfill (Regrade Landfill)

DATE OF INSPECTION: August 17, 2013

DATE OF PREVIOUS INSPECTION: August 11 & 12, 2012

INSPECTED BY: A. Passalis

REPORT PREPARED BY: A. Passalis

The inspector/reporter represents to the best of his/her knowledge that the following statements and observations are true and correct and to the best of the preparer's actual knowledge, no material facts have been suppressed or misstated.

LANDFILL VISUAL INSPECTION

Site Name: PIN-2, CAPE YOUNG
Landfill: USAF Landfill
Designation: Existing Regrade Area
Date Inspected: August 17, 2013
Inspected by: Andrew Passalis, P.Eng.

Signature:

TABLE VII: PIN-2, CAPE YOUNG - USAF LANDFILL

Checklist Item	Present (Yes/No)	Location	Length	Width	Depth	Extent	Description	Photographic Record	Severity Rating	Additional Comments
Settlement	No	N/A	N/A	N/A	N/A	N/A	Not Observable	N/A	Not Observable	N/A
Erosion	No	N/A	N/A	N/A	N/A	N/A	Not Observable	N/A	Not Observable	N/A
Frost Action	No	N/A	N/A	N/A	N/A	N/A	Not Observable	N/A	Not Observable	N/A
Animal Burrows	No	N/A	N/A	N/A	N/A	N/A	Not Observable	N/A	Not Observable	N/A
Vegetation	No	N/A	N/A	N/A	N/A	N/A	Not Observable	N/A	Not Observable	N/A
Staining	No	N/A	N/A	N/A	N/A	N/A	Not Observable	N/A	Not Observable	N/A
Vegetation Stress	No	N/A	N/A	N/A	N/A	N/A	Not Observable	N/A	Not Observable	N/A
Seepage Points	No	N/A	N/A	N/A	N/A	N/A	Not Observable	N/A	Not Observable	N/A
Debris Exposed	No	N/A	N/A	N/A	N/A	N/A	Not Observable	N/A	Not Observable	N/A
Presence/Condition of Monitoring Instruments	No	N/A	N/A	N/A	N/A	N/A	Not Observable	N/A	Not Observable	N/A
Other Features of Note:	No	N/A	N/A	N/A	N/A	N/A	Not Observable	N/A	Not Observable	N/A
Additional Photos	Yes	See Figure PIN-2.3 and Photographic Record	N/A	N/A	N/A	N/A	General Photographic Record	N/A	Not Observable	General photos for documentation, no additional features of note.
Overall Landfill Performance:	Acceptable	l.			L				1	

4.3 PRELIMINARY STABILITY ASSESSMENT

The Preliminary Stability Assessment for the USAF Landfill has been completed as per the TOR and is included as Table VIII below.

Table VIII: Preliminary Stability Assessment – USAF Landfill

Feature	Severity Rating	Extent		
Settlement	Not observed	None		
Erosion	Not observed	None		
Frost Action	Not observed	None		
Staining	Not observed	None		
Vegetation Stress	Not observed	None		
Seepage/Ponded Water	Not observed	None		
Debris exposure	Not observed	None		
Overall Landfill Performance	Accep	otable		

Performance/ Severity Rating	Description
Acceptable	Noted features are of little consequence. The landfill is performing as designed. Minor deviations in environmental or physical performance may be observed, such as isolated areas of erosion, settlement.
Marginal	Physical/environmental performance appears to be deteriorating with time. Observations may include an increase in size or number of features of note, such as differential settlement, erosion or cracking. No significant impact on landfill stability to date, but potential for failure is assessed as low or moderate.
Significant	Significant or potentially significant changes affecting landfill stability, such as significant changes in slope geometry, significant erosion or differential settlement; scarp development. The potential for failure is assessed as imminent.
Unacceptable	Stability of landfill is compromised to the extent that ability to contain waste materials is compromised. Examples may include: Debris exposed in erosion channels or areas of differential settlement. Liner exposed. Slope failure.
Extent	Description
Isolated	Singular feature
Occasional	Features of note occurring at irregular intervals/locations
Numerous	Many features of note, impacted less than 50% of the surface area of the landfill
Extensive	Impacting greater than 50% of the surface area of the landfill

4.4 LOCATION PLAN

The Location Plan for the USAF Landfill has been completed as per the TOR and is presented in Figure PIN-2.3.

4.5 PHOTOGRAPHIC RECORDS

The Photographic Record for the USAF Landfill has been completed as per the TOR and is included as Table IX hereafter. The Photographic Record contains only an index of photographs. Full sized photographs are contained in the Addendum DVD-ROM.

Table IX: Landfill Visual Inspection Photo Log - USAF Landfill

Photo		Size		Vantag	e Point	
(USAF-)	Filename	(KB)	Date	Easting	Northing	Caption
1	P213_326	4,274	17/08/2013	502287	7646906	View looking west-northwest at east side of USAF Landfill
2	P213_327	4,282	17/08/2013	502215	7646960	View looking southwest along north side of USAF Landfill
3	P213_328	4,359	17/08/2013	502217	7646960	View looking south-southeast along east side of USAF Landfill
4	P213_329	4,322	17/08/2013	502191	7646947	View looking south-southeast along west side of USAF Landfill
5	P213_330	4,310	17/08/2013	502193	7646949	View looking northeast along north side of USAF Landfill
6	P213_331	4,388	17/08/2013	502224	7646917	View looking southeast across south cover of USAF Landfill
7	P213_332	4,346	17/08/2013	502223	7646919	View looking northwest across north cover of USAF Landfill
8	P213_333	4,413	17/08/2013	502231	7646878	View looking north-northwest along west side of USAF Landfill
9	P213_334	4,434	17/08/2013	502233	7646875	View looking northeast along south side of USAF Landfill

5 STATION WEST LANDFILL

5.1 BACKGROUND AND MONITORING PROGRAM

The Station West Landfill is located approximately 100 m southwest of the USAF Landfill. There is a minor trail heading southeast from the landfill, but no road exists that connects the landfill to the Station Area. The landfill consists of four lobes of buried debris, complete with granular fill cover encompassing a footprint of 4,900 m² and extending approximately 1.0 m above the surrounding area.

Based on an assessment of the Station West Landfill as a contaminant source, the potential for migration, and down gradient receptors, the landfill was classified as a low potential environmental risk. Accordingly, surface and partially exposed debris was removed, and the landfill was regraded with additional granular fill.

The long term monitoring plan consists of visual monitoring and collection of soil samples. The 2013 monitoring of this landfill includes a visual inspection to assess overall landfill performance.

5.2 VISUAL INSPECTION REPORT

The visual inspection of the Station West Landfill was conducted on August 17, 2013. The Visual Inspection Checklist/Report has been completed as per the TOR and is included as Table X of this report.

Settlement

Indications of settlement were not noted at the landfill.

<u>Erosion</u>

During the assessment, no existing erosion was noted at the landfill.

Frost Action

Evidence of frost action was not noted.

Evidence of Burrowing Animals

Indications of burrowing animals were not noted.

Re-establishment of Vegetation

Evidence of vegetation was not noted on the landfill.

Staining

Evidence of staining was not noted at the landfill.

Seepage Points

No areas of seepage were noted at the landfill.

Debris

Evidence of debris was not noted at the landfill.

Presence/Condition of Monitoring Instruments

There is no monitoring instrumentation installed at this landfill.

Other Features of Note

One set of vehicle tracks (shallow ruts) was noted on the south central cover of the landfill; Feature A. The ruts measured 4-8 m L, 0.3 m W and 0.05 m D. There were no other features of note at the landfill.

SWLF-12: View of vehicle tracks on south cover (4-8 m L, 0.3 m W, 0.05 m D) - FEATURE A

Discussion

The Station West Landfill performance with respect to containment of the debris within the landfill is rated as acceptable. A visual inspection report, including supporting photos and drawing, is presented in the following pages.

Table X: Visual Inspection Checklist / Report - Station West Landfill

DEW LINE CLEANUP: POST-CONSTRUCTION – LANDFILL MONITORING VISUAL INSPECTION CHECKLIST INSPECTION REPORT – PAGE 1 of 2

SITE NAME: PIN-2 – Cape Young

LANDFILL DESIGNATION: Station West Landfill (Regrade Landfill)

DATE OF INSPECTION: August 17, 2013

DATE OF PREVIOUS INSPECTION: August 11 &12, 2012

INSPECTED BY: A. Passalis

REPORT PREPARED BY: A. Passalis

The inspector/reporter represents to the best of his/her knowledge that the following statements and observations are true and correct and to the best of the preparer's actual knowledge, no material facts have been suppressed or misstated.

LANDFILL VISUAL INSPECTION

Site Name: PIN-2, CAPE YOUNG
Landfill: Station West Landfill
Designation: Existing Regrade Area
Date Inspected: August 17, 2013
Inspected by: Andrew Passalis, P.Eng.

Signature:

TABLE X: PIN-2, CAPE YOUNG - STATION WEST LANDFILL

Checklist Item	Present (Yes/No)	Location	Length	Width	Depth	Extent	Description	Photographic Record	Severity Rating	Additional Comments	
Settlement	No	N/A	N/A	N/A	N/A	N/A	N/A	N/A	Not Observable	N/A	
Erosion	No	N/A	N/A	N/A	N/A	N/A	N/A	N/A	Not Observable	N/A	
Frost Action	No	N/A	N/A	N/A	N/A	N/A	N/A	N/A	Not Observable	N/A	
Animal Burrows	No	N/A	N/A	N/A	N/A	N/A	N/A	N/A	Not Observable	N/A	
Vegetation	No	N/A	N/A	N/A	N/A	N/A	N/A	N/A	Not Observable	N/A	
Staining	No	N/A	N/A	N/A	N/A	N/A	N/A	N/A	Not Observable	N/A	
Vegetation Stress	No	N/A	N/A	N/A	N/A	N/A	N/A	N/A	Not Observable	N/A	
Seepage Points	No	N/A	N/A	N/A	N/A	N/A	N/A	N/A	Not Observable	N/A	
Debris Exposed	No	N/A	N/A	N/A	N/A	N/A	N/A	N/A	Not Observable	N/A	
Presence/Condition of Monitoring Instruments	No	N/A	N/A	N/A	N/A	N/A	N/A	N/A	Not Observable	N/A	
Other Features of Note:	Yes	FEATURE A See Figure PIN-2.3 (S central crest - New Obs.)	4 - 8 m	0.3 m	0.05 m	Isolated	Vehicle tracks	SWLF-11, 12	Acceptable	N/A	
Additional Photos	Yes	See Figure PIN-2.3 and Photographic Record	N/A	N/A	N/A	N/A	General Photographic Record	N/A	Not Observable	General photos for documentation, no additional features of note.	
Overall Landfill Performance:	Acceptable	•									

5.3 PRELIMINARY STABILITY ASSESSMENT

The Preliminary Stability Assessment for Station West Landfill has been completed as per the TOR and is included as Table XI below.

Table XI: Preliminary Stability Assessment – Station West Landfill

Feature	Severity Rating	Extent			
Settlement	Not observed	None			
Erosion	Not observed	None			
Frost Action	Not observed	None			
Staining	Not observed	None			
Vegetation Stress	Not observed	None			
Seepage/Ponded Water	Not observed	None			
Debris exposure	Not observed	None			
Overall Landfill Performance	Acceptable				

Performance/ Severity Rating	Description
Acceptable	Noted features are of little consequence. The landfill is performing as designed. Minor deviations in environmental or physical performance may be observed, such as isolated areas of erosion, settlement.
Marginal	Physical/environmental performance appears to be deteriorating with time. Observations may include an increase in size or number of features of note, such as differential settlement, erosion or cracking. No significant impact on landfill stability to date, but potential for failure is assessed as low or moderate.
Significant	Significant or potentially significant changes affecting landfill stability, such as significant changes in slope geometry, significant erosion or differential settlement; scarp development. The potential for failure is assessed as imminent.
Unacceptable	Stability of landfill is compromised to the extent that ability to contain waste materials is compromised. Examples may include: Debris exposed in erosion channels or areas of differential settlement. Liner exposed. Slope failure.
Extent	Description
Isolated	Singular feature
Occasional	Features of note occurring at irregular intervals/locations
Numerous	Many features of note, impacted less than 50% of the surface area of the landfill
Extensive	Impacting greater than 50% of the surface area of the landfill

5.4 LOCATION PLAN

The Location Plan for the Station West Landfill has been completed as per the TOR and is presented in Figure PIN-2.3.

5.5 PHOTOGRAPHIC RECORDS

The Photographic Record for the Station West Landfill has been completed as per the TOR and is included as Table XII hereafter. The Photographic Record contains only an index of photographs. Full sized photographs are contained in the Addendum DVD-ROM.

Table XII: Landfill Visual Inspection Photo Log - Station West Landfill

Photo		Size		Vantag	je Point	
(SWLF-)	Filename	(KB)	Date	Easting	Northing	Caption
1	P213_335	4.329	17/08/2013	502187	7646854	View looking west-southwest at northeast side of Station West Landfill
2	P213_336	4.367	17/08/2013	502171	7646835	View looking northwest along northeast side of Station West Landfill
3	P213_337	4.434	17/08/2013	502172	7646834	View looking south along east side of Station West Landfill
4	P213_338	1.393	11/09/2013	502158	7646821	Panoramic view looking south to north-northwest across cover of Station West Landfill
5	P213_339	4.392	17/08/2013	502114	7646867	View looking southeast along northeast side of Station West Landfill
6	P213_340	4.437	17/08/2013	502111	7646868	View looking southwest along north side of Station West Landfill
7	P213_341	1.494	11/09/2013	502103	7646852	Panoramic view looking northeast to south across cover from northwest corner of Station West Landfill
8	P213_342	4.390	17/08/2013	502093	7646849	View looking southeast along northwest toe of Station West Landfill
9	P213_343	4.357	17/08/2013	502079	7646804	View looking east-northeast at west side of Station West Landfill\
10	P213_344	4.308	17/08/2013	502105	7646791	View looking north along west side of Station West Landfill
11	P213_345	1.121	11/09/2013	502131	7646797	Panoramic view looking northwest to east across south cover of Station West Landfill
12	P213_346	4.400	17/08/2013	502137	7646802	View of vehicle tracks on south cover area of Station West Landfill (4-8 m L, 0.3 m W, 0.05 m D) - FEATURE A

6 TIER II SOIL DISPOSAL FACILITY

6.1 BACKGROUND AND MONITORING PROGRAM

The facility is located 300 m southwest of the Station Area. The landfill was constructed with a double containment system consisting of a geomembrane liner system and the placement of sufficient surface fill to promote freezing of the landfill contents. The facility encompasses a footprint of approximately 11,000 m² with the final cover extending between 5.5-7.0 m above the surrounding grade.

Four groundwater monitoring wells are installed at the landfill perimeter, and four thermistors are installed within the landfill footprint to monitor freeze back conditions.

The long term monitoring plan consists of visual monitoring, collection of soil and groundwater samples and monitoring of subsurface ground temperatures.

The 2013 monitoring of this landfill includes visual inspection to verify for evidence of settlement or erosion, collection of soil and groundwater samples to monitor for the presence of leachate and retrieval of data from the thermistors. Locations of groundwater monitoring wells, soil samples and thermistor installations are identified on Figure PIN-2.4.

Soil at all stations was sampled as specified. Inspection and monitoring was carried out at each of the monitoring wells as per the TOR. Monitoring well MW-1 was dry at the time of sampling and consequently was not sampled.

6.2 VISUAL INSPECTION REPORT

The visual inspection of the Tier II Soil Disposal Facility was conducted on August 17, 2013. The Visual Inspection Checklist/Report has been completed as per the TOR and is included as Table XIII of this report.

Settlement

An indication of minor settlement was noted at two proximate locations along the southwest crest of the facility cover (Feature A), consisting of two isolated depression measuring 0.25-1.0 m long, 0.2-0.25 m wide and 0.1-0.15 m in depth. This feature has an acceptable severity rating. Indications of settlement in this area were not noted during the previous 2012 inspection.

Tier II-45 (left): View south at minor depression on southwest crest (0.25 m L, 0.25 m W, 0.15 m D) - FEATURE A Tier II-47: (right) View northwest at linear depression on southwest crest (1 m L, 0.2 m W, 0.1 m D) - FEATURE A

Erosion

Evidence of minor surface erosion was noted at two locations on the southwest and southeast facing slopes (Features B and C) of the facility. Both locations consisted of shallow surface erosion that extended from the crest down slope between 7 to 25 m (Feature B) and 6 m (Feature C) in length, ranged between 0.1-0.5m in width and ranged between 0.02 to 0.1 m deep. The areas affected appear to be self-armouring and have an acceptable severity rating. Overall, the facility cover appears stable. Both features were not noted during the previous 2012 inspection.

Tier II-42: (left) View south-southwest at minor erosion on southwest side slope (25 m L, 0.3-0.5 m W, 0.02-0.05 m D) - FEATURE B

Tier II-24: (right) View northwest at minor erosion on southeast side slope (6 m L, 0.1-0.25 m W, 0.05 m D) - FEATURE C

Frost Action

Indications of frost action were not noted.

Evidence of Burrowing Animals

Indications of burrowing animals were not noted.

Re-establishment of Vegetation

Indications of vegetation were not noted.

Staining

Areas of staining were not observed at the time of the inspection.

Seepage Points

Evidence of seepage was not noted.

Debris

Evidence of exposed debris was not noted.

Presence/Condition of Monitoring Instruments

All monitoring well and thermistor installations were found to be in good condition at the facility.

Other Features of Note

There were no other features of note.

Discussion

The Tier II Soil Disposal Facility performance with respect to containment of the debris within the landfill is rated as acceptable. Visual inspection report, including supporting photos and drawing, is presented in the following pages.

Table XIII: Visual Inspection Checklist / Report - Tier II Soil Disposal Facility

DEW LINE CLEANUP: POST-CONSTRUCTION - LANDFILL MONITORING VISUAL INSPECTION CHECKLIST INSPECTION REPORT - PAGE 1 of 2

SITE NAME: PIN-2 Cape Young

LANDFILL DESIGNATION: Tier II Soil Disposal Facility (New Landfill)

DATE OF INSPECTION: August 17, 2013

DATE OF PREVIOUS INSPECTION: August 11 & 12, 2012

INSPECTED BY: A. Passalis

REPORT PREPARED BY: A. Passalis

The inspector/reporter represents to the best of his/her knowledge that the following statements and observations are true and correct and to the best of the preparer's actual knowledge, no material facts have been suppressed or misstated.

LANDFILL VISUAL INSPECTION

PIN-2, CAPE YOUNG Tier II Disposal Facility New Landfill\ August 17, 2013 Andrew Passalis, P.Eng. Site Name: Landfill: Designation: Date Inspected:

Inspected by:

Signature:

TABLE XIII: PIN-2, CAPE YOUNG - TIER II DISPOSAL FACILITY

Checklist Item	Present (Yes/No)	Location	Length	Width	Depth	Extent	Description	Photographic Record	Severity Rating	Additional Comments	
Settlement	Yes	FEATURE A See Figure PIN-2.4 (SW crest - New Obs.)	0.25 - 1 m	0.2 - 0.25 m	0.1 - 0.15 m	Isolated	Minor depressions	Tier II-44 - 48	Acceptable	Linear and oval shaped depressions	
5	Yes	FEATURE B See Figure PIN-2.4 (SW side slope- New Obs.)	7 - 25 m	0.2 - 0.5 m	0.02 - 0.1 m	Isolated	Minor erosion	Tier II-41 - 43	Acceptable	Washing of fines, self armouring. Slope appears stable.	
Erosion	Yes	FEATURE C See Figure PIN-2.4 (SE side slope- New Obs.)	6 m	0.1 - 0.25 m	0.05 m	Isolated	Minor erosion	Tier II-23, 24	Acceptable	Washing of fines, self armouring. Slope appears stable.	
Frost Action	No	N/A	N/A	N/A	N/A	N/A	N/A	N/A	Not Observable	N/A	
Animal Burrows	No	N/A	N/A	N/A	N/A	N/A	N/A	N/A	Not Observable	N/A	
Vegetation	No	N/A	N/A	N/A	N/A	N/A	N/A	N/A	Not Observable	N/A	
Staining	No	N/A	N/A	N/A	N/A	N/A	N/A	N/A	Not Observable	N/A	
Vegetation Stress	No	N/A	N/A	N/A	N/A	N/A	N/A	N/A	Not Observable	N/A	
Seepage Points	No	N/A	N/A	N/A	N/A	N/A	N/A	N/A	Not Observable	N/A	
Debris Exposed	No	N/A	N/A	N/A	N/A	N/A	N/A	N/A	Not Observable	N/A	
Presence/Condition of Monitoring Instruments	Yes	N/A	N/A	N/A	N/A	N/A	N/A	N/A	Not Observable	N/A	
Other Features of Note:	No	N/A	N/A	N/A	N/A	N/A	N/A	N/A	Not Observable	N/A	
Additional Photos	Yes	See Figure PIN-2.4 and Photographic Record	N/A	N/A	N/A	N/A	General Photographic Record	N/A	Not Observable	General photos for documentation, no additional features of note.	

6.3 PRELIMINARY STABILITY ASSESSMENT

The Preliminary Stability Assessment for the Tier II Soil Disposal Facility has been completed as per the TOR and is included as Table XIV hereafter.

Table XIV: Preliminary Stability Assessment – Tier II Soil Disposal Facility

Feature	Severity Rating	Extent		
Settlement	Acceptable	Isolated		
Erosion	Acceptable	Isolated		
Frost Action	Not observed	None		
Staining	Not observed	None		
Vegetation Stress	Not observed	None		
Seepage/Ponded Water	Not observed	None		
Debris exposure	Not observed	None		
Overall Landfill Performance	Acce	eptable		

Performance/ Severity Rating	Description
Acceptable	Noted features are of little consequence. The landfill is performing as designed. Minor deviations in environmental or physical performance may be observed, such as isolated areas of erosion, settlement.
Marginal	Physical/environmental performance appears to be deteriorating with time. Observations may include an increase in size or number of features of note, such as differential settlement, erosion or cracking. No significant impact on landfill stability to date, but potential for failure is assessed as low or moderate.
Significant	Significant or potentially significant changes affecting landfill stability, such as significant changes in slope geometry, significant erosion or differential settlement; scarp development. The potential for failure is assessed as imminent.
Unacceptable	Stability of landfill is compromised to the extent that ability to contain waste materials is compromised. Examples may include: Debris exposed in erosion channels or areas of differential settlement. Liner exposed. Slope failure.
Extent	Description
Isolated	Singular feature
Occasional	Features of note occurring at irregular intervals/locations
Numerous	Many features of note, impacted less than 50% of the surface area of the landfill
Extensive	Impacting greater than 50% of the surface area of the landfill

6.4 LOCATION PLAN

The Location Plan for the Tier II Soil Disposal Facility has been completed as per the TOR and is included in the following page as Figure PIN-2.4.

G:\CD3654\2013\FINAL\PIN-2\CD3654 200 203-PIN-2D-PL.dwg. PL. 2014-01-22 2:51:52 PM

LEGEND

6.5 PHOTOGRAPHIC RECORDS

The Photographic Record for the Tier II Soil Disposal Facility has been completed as per the TOR and is included as Table XV hereafter. The Photographic Record contains only an index of photographs. Full-sized photographs are contained in the Addendum DVD-ROM.

Table XV: Landfill Visual Inspection Photo Log - Tier II Soil Disposal Facility

Photo		Size		Vantac	e Point	
(Tier II-)	Filename	(KB)	Date	Easting	Northing	Caption
1	P213_174	4,395	17/08/2013	502497	7646292	View looking southeast at VT-4
2	P213_176	4,384	17/08/2013	502496	7646283	Downloading data at VT-4
3	P213_183	4,360	17/08/2013	502461	7646270	View looking northeast at VT-2
4	P213_184	4,394	17/08/2013	502430	7646277	View looking northeast at VT-1
5	P213_187	4,401	17/08/2013	502458	7646316	View looking south-southeast at VT-3
6	P213_188	4,348	17/08/2013	502459	7646327	View looking southeast along northeast crest of Tier II DF
7	P213_189	4,297	17/08/2013	502456	7646327	View looking southwest along northwest crest of Tier II DF
8	P213_190	1,495	11/09/2013	502456	7646325	Panoramic view looking southeast to west from north corner of Tier II DF
9	P213_191	4,406	17/08/2013	502459	7646344	View looking southeast along northeast side slope of Tier II DF
10	P213_192	4,283	17/08/2013	502457	7646344	View looking southwest along northwest side slope of Tier II DF
11	P213_193	4,315	17/08/2013	502460	7646362	View looking southeast along northeast toe of Tier II DF
12	P213_194	4,299	17/08/2013	502458	7646362	View looking southwest along northwest toe of Tier II DF
13	P213_195	4,306	17/08/2013	502506	7646345	View looking southwest at northeast side of Tier II DF
14	P213_198	4,350	17/08/2013	502550	7646322	Water sampling at MW-04
15	P213_199	4,379	17/08/2013	502529	7646287	View looking northwest along northeast toe of Tier II DF
16	P213_200	4,443	17/08/2013	502529	7646288	View looking southwest along southeast toe of Tier II DF
17	P213_201	4,407	17/08/2013	502527	7646287	View west up east corner slope of Tier II DF
18	P213_202	4,270	17/08/2013	502513	7646288	View looking northwest along northeast side slope of Tier II DF
19	P213_203	4,430	17/08/2013	502513	7646290	View looking southwest along southeast side slope of Tier II DF
20	P213_204	4,368	17/08/2013	502495	7646287	View looking northwest along northeast crest of Tier II DF
21	P213_205	4,408	17/08/2013	502495	7646289	View looking southwest along southeast crest of Tier II DF
22	P213_206	1,437	11/09/2013	502493	7646288	Panoramic view looking southwest to north from east corner of Tier II DF
23	P213_207	4,305	17/08/2013	502470	7646263	View looking southeast at minor erosion on southeast side slope (6m L, 0.1-0.25m W, 0.05m D) - FEATURE C
24	P213_208	4,314	17/08/2013	502482	7646251	View looking northwest at minor erosion on southeast side slope (6m L, 0.1-0.25m W, 0.05m D) - FEATURE C
25	P213_209	4,371	17/08/2013	502465	7646256	View looking northeast along southeast crest of Tier II DF
26	P213_210	4,349	17/08/2013	502463	7646255	View looking northwest along southwest crest of Tier II DF
27	P213_211	1,471	11/09/2013	502464	7646258	Panoramic view looking northwest to east from south corner of Tier II DF
28	P213_212	4,422	17/08/2013	502466	7646241	View looking northeast along southeast side slope of Tier II DF
29	P213_213	4,348	17/08/2013	502464	7646241	View looking northwest along southwest side slope of Tier II DF
30	P213_214	4,409	17/08/2013	502466	7646222	View looking northeast along southeast toe of Tier II DF
31	P213_215	4,410	17/08/2013	502464	7646222	View looking northwest along southwest toe of Tier II DF
32	P213_216	4,309	17/08/2013	502520	7646222	View looking northwest at southeast side of Tier II DF. MW-03 in center
33	P213_217	4,451	17/08/2013	502396	7646223	View looking northeast at southwest side of Tier II DF. MW-02 in center

Photo		Size		Vantag	je Point	
(Tier II-)	Filename	(KB)	Date	Easting	Northing	Caption
34	P213_218	4,423	17/08/2013	502390	7646296	View looking southeast along southwest toe of Tier II DF
35	P213_219	4,342	17/08/2013	502390	7646297	View looking northeast along northwest toe of Tier II DF
36	P213_220	4,310	17/08/2013	502403	7646297	View looking southeast along southwest side slope of Tier II DF
37	P213_221	4,258	17/08/2013	502404	7646298	View looking northeast along northwest side slope of Tier II DF
38	P213_222	4,291	17/08/2013	502425	7646295	View looking southeast along southwest crest of Tier II DF
39	P213_223	4,401	17/08/2013	502426	7646297	View looking northeast along northwest crest of Tier II DF
40	P213_224	1,345	11/09/2013	502427	7646295	Panoramic view looking northeast to south from west corner of Tier II DF
41	P213_225	4,269	17/08/2013	502433	7646287	View looking southwest at minor erosion on southwest side slope (7m L, 0.2-0.5m W, 0.05-0.1m D) - FEATURE B
42	P213_226	4,262	17/08/2013	502441	7646281	View looking south-southwest at minor erosion on southwest side slope (25m L, 0.3-0.5m W, 0.02-0.05m D) - FEATURE B
43	P213_227	4,324	17/08/2013	502429	7646258	View looking north-northeast at minor erosion on southwest side slope (25m L, 0.3-0.5m W, 0.02-0.05m D) - FEATURE B
44	P213_228	4,277	17/08/2013	502450	7646269	View looking northwest at minor depression on southwest crest (0.25m L, 0.25m W, 0.15m D) - FEATURE A
45	P213_229	4,318	17/08/2013	502445	7646278	View looking south at minor depression on southwest crest (0.25m L, 0.25m W, 0.15m D) - FEATURE A
46	P213_231	4,327	17/08/2013	502448	7646276	View looking south at minor depression on southwest crest (0.25m L, 0.25m W, 0.10m D) - FEATURE A
47	P213_232	4,375	17/08/2013	502461	7646252	View looking northwest at linear depression on southwest crest (1m L, 0.2m W, 0.1m D) - FEATURE A
48	P213_233	4,451	17/08/2013	502460	7646262	View looking south at linear depression on southwest crest (1m L, 0.2m W, 0.1m D) - FEATURE A
Soil Sampli	J					
1W	P213_185	4,413	17/08/2013	502400	7646325	Sampling location P213-1W located upgradient of Tier II DF
MW1	P213_186	4,416	17/08/2013	502394	7646329	View looking southeast at MW-01 located upgradient of Tier II DF
2W	P213_181	4,409	17/08/2013	502419	7646235	Sampling location P213-2W located downgradient of Tier II DF
MW2	P213_182	4,372	17/08/2013	502420	7646230	View looking north MW-02 located downgradient of Tier II DF
3W	P213_179	4,405	17/08/2013	502502	7646235	Sampling location P213-3W located downgradient of Tier II DF
MW3	P213_180	4,441	17/08/2013	502508	7646232	View looking northwest at MW-03 located downgradient of Tier II DF
4W	P213_196	4,409	17/08/2013	502555	7646320	Sampling location P213-4W located downgradient of Tier II DF
MW4	P213_197	4,317	17/08/2013	502562	7646320	View looking west at MW-04 located downgradient of Tier II DF

6.6 THERMAL MONITORING DATA

All thermistors at the Tier II Soil Disposal Facility were inspected and found to be in good condition with no significant concerns identified. Data from all thermistors was successfully retrieved with the exception of VT-1, where all communication failed due to extremely low battery levels. All analogues/thermocouples were observed to be functioning properly at the time of inspection. Batteries were replaced in all datalogger units as specified in the TOR and internal memories were reset and clocks were synchronized using the Prolog software.

Analogues/thermocouples at the remaining thermistor locations were observed to be functioning properly at the time of the inspection. Further review of the downloaded data identified no apparent errors in temperature readings. All clocks exhibited slight drifts and were synchronized using the Prolog software.

No battery replacements or maintenance is anticipated for the 2014 monitoring period. Checklist/Report has been completed as per the TOR and is included as Table XXI of this report.

6.7 LANDFILL TEMPERATURE DATA FROM DATALOGGERS

Manual resistive and temperature data readings were collected from the thermistor strings as per the TOR, with the exception of VT-1 where low battery conditions were observed. Attempts to reprogram the datalogger were unsuccessful at the time of the inspection due to an invalid sample rate. Manual readings and inspection results for each thermistor are presented on the Thermistor Annual Maintenance Reports included in the report. A complete datalogger RAW data set for 2012-2013 periods has been forwarded to DCC as per the TOR. Table XVI presented below contains the manual thermistor readings.

Table XVI: Thermal monitoring data – Tier II Soil Disposal Facility

Thermistor	Bead	Ohms	Temperature	Thermistor	Bead	Ohms	Temperature
	1	9.555	10.8425		1	9.621	10.6990
	2	10.049	9.7944		2	10.411	9.0625
	3	10.758	8.3874		3	11.978	6.1951
	4	11.972	6.2053		4	14.272	2.6816
	5	14.104	2.9166		5	16.505	-0.1762
	6	16.098	0.3111		6	17.040	-0.7966
	7	16.60	-0.288		7	18.524	-2.4093
VT-1	8	17.783	-1.6229	VT-3	8	19.806	-3.6901
V 1-1	9	19.313	-3.2089	V 1-3	9	20.94	-4.7481
	10	20.27	-4.131		10	21.59	-5.3259
	11	20.91	-4.7209		11	22.26	-5.9016
	12	21.6	-5.3347		12	22.48	-6.0864
	13	22.05	-5.7233		-	-	-
	14	22.49	-6.0948		-	-	-
	15	22.73	-6.294		-	-	-
	16	22.91	-6.4419		-	-	-
	1	9.514	10.9322		1	9.9219	10.0603
	2	9.792	10.3322		2	10.502	8.8831
	3	9.904	10.0959		3	12.129	5.9414
	4	11.200	7.5622		4	14.440	2.4496
	5	12.899	4.7004		5	16.399	-0.0506
	6	15.971	0.4660		6	17.965	-1.8194
	7	16.369	-0.0149		7	18.776	-2.6688
VT-2	8	16.784	-0.5025	VT-4	8	20.05	-3.9234
V 1-2	9	17.906	-1.7559	V 1-4	9	20.690	-4.5204
	10	18.904	-2.7991		10	21.26	-5.0350
	11	19.869	-3.7507		11	21.47	-5.2207
	12	20.76	-4.5845		12	21.97	-5.6549
	13	21.32	-5.0883		13	22.18	-5.8339
	-	-	-		14	22.41	-6.0278
	-	-	-		15	22.65	-6.2279
	-	-	-		16	22.75	-6.3105

COLLECTION OF LANDFILL MONITORING DATA – FINAL REPORT, 2013 PIN-2 DISTANT EARLY WARNING (DEW) LINE SITE, NUNAVUT

6.8 SOIL SAMPLE ANALYTICAL DATA

The soil chemical analysis results and the evaluation of analytical data for the 2013 Tier II Soil Disposal Facility samples are presented in Tables XVII and XVIII below. Field and inter-laboratory duplicates collected as part of the QA/QC program are presented in Appendix C at the end of this report.

Table XVII: Soil Chemical Analysis Results - Tier II Soil Disposal Facility

		Depth							Pa	aramete	ers					
Sample Name	Sample Location	Below Grade (cm)	As [mg/kg]	Cd [mg/kg]	Cr [mg/kg]	Co [mg/kg]	Cu [mg/kg]	Pb [mg/kg]	Hg [mg/kg]	Ni [mg/kg]	Zn [mg/kg]	PCBs [mg/kg]	PHC(F1) [mg/kg]	PHC(F2) [mg/kg]	PHC(F3) [mg/kg]	TPH [mg/kg]
Downgradient Ground	dwater Samples		•	•				•		•	•		•			
P213-1WA	Tier II	0-10	2.5	0.25	3.9	1.9	6.2	2.8	<0.050	3.7	23	<0.01	<12	<10	<50	<50
P213-1WB	MW-01	40-50	4.5	0.21	3.9	1.4	6.2	2.8	<0.050	4.0	12	<0.01	<12	<10	<50	<50
P213-2WA	Tier II	0-10	1.9	0.20	4.9	1.2	7.0	1.9	<0.050	4.4	<10	<0.018	<24	<20	<100	<100
P213-2WB	MW-02	40-50	4.4	0.13	5.2	1.5	5.6	2.6	<0.050	4.5	11	<0.01	<12	<10	<50	<50
P213-3WA	Tier II	0-10	2.7	0.22	4.7	1.8	<5.0	3.3	<0.050	3.7	22	<0.01	<12	<10	<50	<50
P213-3WB	MW-03	40-50	2.7	0.11	5.6	1.9	<5.0	3.0	<0.050	4.0	14	<0.01	<12	<10	<50	<50
Upgradient Groundwa	ater Samples															
P213-4WA	Tier II	0-10	1.5	<0.10	3.9	1.1	<5.0	2.4	<0.050	2.6	<10	<0.01	<12	<10	<10	<50
P213-4WB	MW-04	40-50	4.1	0.13	5.2	2.2	<5.0	6.1	<0.050	3.8	13	<0.01	<12	<10	<50	<50

PHC (F1): Petroleum hydrocarbon C_6 to C_{10} , does not include BTEX fractions

PHC (F2): Petroleum hydrocarbon C_{>10} to C₁₆ PHC (F3): Petroleum hydrocarbon C_{>16} to C₃₄ TPH: Total Petroleum Hydrocarbons (C₆ to C₃₄) * - Detection limit raised due to high moisture content in sample.

BIOGENIE, A DIVISION OF ENGLOBE CORP. 1510-200-EN01

Table XVIII: Evaluation of 2013 Soil Analytical Data – Tier II Soil Disposal Facility

Parameter	2013
Copper	Detectable concentrations were noted at two monitoring locations, MW-01 situated upgradient and MW-02 situated downgradient on the southwest side of the facility. Concentrations ranged between 5.6-7.0 mg/kg with concentrations at the remaining two locations less than 5.0 mg/kg. The most elevated concentration was observed at downgradient location MW-02 at surface.
Nickel	Detectable concentrations were noted at all sample locations, ranging between 2.6-4.5 mg/kg with a mean of 3.8. The most elevated concentrations were observed at downgradient location MW- 02 (surface – 4.4 mg/kg, depth – 4.5 mg/kg). Concentrations at the upgradient location and remaining downgradient locations ranged between 2.6-4.0 mg/kg.
Cobalt	Concentrations in the samples ranged between 1.1-2.2 mg/kg with detectable concentrations noted at all sample locations. The highest concentration was noted at downgradient location MW-04 (depth – 2.2 mg/kg). Detectable concentrations at all other locations ranged between 1.1-1.9 mg/kg.
Lead	Concentrations ranged between 1.9-6.1 mg/kg with a mean of 3.1. Trace concentrations were observed at all locations with the highest concentrations noted at downgradient locations MW-03 (surface – 3.3 mg/kg, depth – 3.0 mg/kg) and MW-04 (depth – 6.1 mg/kg). Detectable concentrations at all other locations ranged between 1.9-2.8 mg/kg.
Zinc	Detectable concentrations were noted at all but two downgradient surface locations (MW-02 and MW-04). Detectable concentrations ranged between 11-23 mg/kg with the most elevated concentrations observed at upgradient location MW-01 (surface – 23 mg/kg) and downgradient location MW-03 (surface – 22 mg/kg). All other samples reported concentrations between 11-14 mg/kg.
Chromium	Concentrations ranged between 3.9-5.6 mg/kg with a mean of 4.7. The highest concentrations were generally noted at downgradient depth locations, MW-02 (depth – 5.2 mg/kg), MW-03 (depth – 5.6 mg/kg) and MW-04 (depth – 5.2 mg/kg). Concentrations at all other locations ranged between 3.9-4.9 mg/kg.
Arsenic	Detectable concentrations were noted at all sample locations, ranging between 1.5-4.5 mg/kg with a mean of 3.0. The most elevated concentrations were observed at upgradient location MW-01 (depth – 4.5 mg/kg), downgradient location MW-02 (depth – 4.4 mg/kg) and downgradient location MW-04 (depth – 4.1 mg/kg). Concentrations at the remaining downgradient locations ranged between 1.5-2.7 mg/kg.
Mercury	All reported concentrations were less than the method detection limit (0.05 mg/kg).
PCBs	All reported concentrations were less than the method detection limit (0.01 mg/kg). Detection limits were raised for P213-2WA due to high moisture content.
TPH	All reported concentrations were less than the method detection limit (10 mg/kg). Detection limits were raised for P213-2WA due to high moisture content.

6.9 GROUNDWATER SAMPLE ANALYTICAL DATA

The groundwater chemical analysis results and evaluation of analytical data for the 2013 Tier II Disposal Facility samples are presented in Tables XIX and XX. As noted above, MW-01 (upgradient location) contained insufficient sample volume at the time of monitoring and consequently no groundwater samples were collected at this location. Certificates of analysis and groundwater samples collected as part of the QA/QC program are presented in Appendix C.

COLLECTION OF LANDFILL MONITORING DATA – FINAL REPORT, 2013
PIN-2 DISTANT EARLY WARNING (DEW) LINE SITE, NUNAVUT

Table XIX: Groundwater Chemical Analysis Results – Tier II Soil Disposal Facility

	1	1													
			Parameters												
Sample Name	Sample Location	73	Cd	Cr	Со	Cu	Pb	Hg	Ni	Zn	PCBs	PHC(F1)	PHC(F2)	PHC(F3)	TPH
		[mg/L]	[mg/L]	[mg/L]	[mg/L)	[mg/L]	[mg/L]	[µg/L]	[mg/L]	[mg/L]	[mg/L]	[mg/L]	[mg/L]	[mg/L]	[mg/L]
Downgradient Ground	dwater Samples														
P213-1W	Tier II		Insufficiant sample volume												
P213-1VV	MW-01														
Upgradient Groundwa	ater Samples														
P213-2W	Tier II	0.0012	0.000057	0,027	0,00038	0.0024	0.00027	-0.00E0	0.015	0.012	-0.00005				
P213-2VV	MW-02	0,0012	0,000057	0,027	0,00036	0,0024	0,00037	<0.0050	0,015	0,013	<0.00005	<0.1	<0.1	<0.2	< 0.2
P213-3W	Tier II	0.00003	0.00015	0.0027	<0.00030	0.0020	<0.00020	-0.00E0	0.0071	0.0064	-0.00005				
P213-3VV	MW-03	0,00083	0,00015	0,0027	<0.00030	0,0039	<0.00020	<0.0050	0,0071	0,0061	<0.00005	<0.1	<0.1	<0.2	< 0.2
D040 4W/	Tier II	0.0040	0.00040	0.044	0.00050	0.0000	0.0044	.0.0050	0.014	0.057	.0.00005				
P213-4W	MW-04	0,0018	0,00012	0,011	0,00059	0,0032	0,0011	<0.0050	0,011	0,057	<0.00005				

Table XX: Evaluation of 2013 Groundwater Analytical Data – Tier II Soil Disposal Facility

Parameter	2010
Copper	Concentrations ranged between 0.0024-0.0039 mg/L, with the most elevated
	concentration noted at downgradient location MW-03.
Nickel	Concentrations ranged between 0.0071-0.0150 mg/L, with the highest concentration
	noted at downgradient location MW-02.
Cobalt	Concentrations ranged between <0.00030-0.00059 mg/L, with the most elevated
	concentration noted at downgradient location MW-04.
Cadmium	Concentrations ranged between 0.000057-0.000150 mg/L. The highest concentration
	was noted at MW-03.
Lead	Concentrations ranged between <0.0002-0.0011 mg/L, with the highest concentration
	noted at MW-04.
Zinc	Concentrations ranged between 0.0061-0.0570 mg/L, with the highest concentration
	noted at MW-04.
Chromium	Concentrations ranged between 0.0027-0.0270 mg/L, with the highest concentration
	observed at MW-02.
Arsenic	Concentrations ranged between 0.00083-0.00180 mg/L, with the highest concentration
	noted at MW-04.
Mercury	All reported concentrations were less than the method detection limit (0.005 μg/L).
PCBs	All reported concentrations were less than the method detection limit (0.00005 mg/L).
TPH	All reported concentrations were less than the method detection limit (0.2 mg/L).

Table XXI: Thermistor Annual Maintenance Report (VT-1)

DEFENCE CONSTRUCTION CANADA

Contractor Name: Sila Remediation Inc.			Inspe	Inspection Date:			2013-08-17	
Prepared By:	A.Passalis							
Thermistor Informati	on							
Site Name:	PIN-2		Thermistor Location		Tier II Dispo	sal Facility		
Thermistor Number:	VT-1		Inclination		Vertical	•		
Install Date:			First Date Event		2009-08-01	Last Date Event		2012-08-11
Coordinates and Ele	evation	N	7646281.0	Е	502434.2	Elev	19.1	
Length of Cable (m)		Cable	e Lead Above Ground (m)	3.25	Nodal Point	ts		16
Datalogger Serial #	704001	0			Cable Seria	al Number		VT-1

Thermistor Inspection

	Good		Needs Maintenance					
Casing	Yes		No					
Cover	Yes		No					
Data Logger	Yes		Yes	Unable to reprogram settings				
Cable	Yes		No					
Beads	Yes		No					
Battery Installation Date		2013-08-17						
Battery Levels	Main	11.34		Aux <u>13.38</u>				

Manual Ground Temperature Readings

Bead	ohms	Degrees C
1	9.555	10.8425
2	10.049	9.7944
3	10.758	8.3874
4	11.972	6.2053
5	14.104	2.9166
6	16.098	0.3111
7	16.604	-0.288
8	17.783	-1.6229

Observations and Proposed Maintenance

Batteries dead upon arrival - unable to communicate with computer (clock error). Replaced batteries and completed full memory dump - File: Site_096_i *_Aug_17_2013

Reset clock and memory however error indicating wrong time interval. Reset with standard programming. Unable to reinstall datalogger, unable to read sensors.

Table XXI: Thermistor Annual Maintenance Report (VT-2)

DEFENCE CONSTRUCTION CANADA

Contractor Name:	Sila Remedia	tion Inc	S	Inspe	ction Date:		2013-	08-17
Prepared By:	A.Passalis							
Thermistor Informati	on							
Site Name:	PIN-2		Thermistor Location		Tier II Dispo	sal Facility		
Thermistor Number:	VT-2		Inclination		Vertical	-		
Install Date:			First Date Event		2009-08-01	Last Date Event		2012-08-11
Coordinates and Ele	evation	N	7646274.2	Е	502465.0	Elev	19.2	2
Length of Cable (m)		Cable	e Lead Above Ground (m)	3.25	Nodal Point	ts		13
Datalogger Serial # 7050024		4	•		Cable Seria	al Number		VT-2

Thermistor Inspection

	Good		Need	s Maintenance
Casing	Yes		No	
Cover	Yes		No	Cover cracked, however still functional
Data Logger	Yes		No	
Cable	Yes		No	
Beads	Yes		No	
Battery Installation Date		2013-08-17		
Battery Levels	Main	11.34 (11.34-ol	d)	Aux <u>13.76 (13.63-old)</u>

Manual Ground Temperature Readings

ia roiii	poratare recau	iiigo
l	ohms	Degrees C
	9.514	10.9322
	9.792	10.3322
	9.904	10.0959
	11.2	7.5622
	12.899	4.7004
	15.971	0.466
	16.369	-0.0149
	16.784	-0.5025
_		

Observations and Proposed Maintenance

Downloaded thermistor data. File: Site_024_PIN-2_Aug_17_2013.

Reset clock and restart datalogger. Replaced batteries.

Table XXI: Thermistor Annual Maintenance Report (VT-3)

DEFENCE CONSTRUCTION CANADA

Contractor Name: Sila Remediation Inc.			Inspe	Inspection Date:			2013-08-17	
Prepared By:	A.Passalis							
Thermistor Informati	on							
Site Name:	PIN-2		Thermistor Location		Tier II Dispo	sal Facility		
Thermistor Number:	VT-3		Inclination		Vertical			
Install Date:			First Date Event		2009-08-01	Last Date Event		2012-08-11
Coordinates and Ele	evation	N	7646307.5	Е	502460.3	Elev	20.0	
Length of Cable (m)		Cable	e Lead Above Ground (m)	2.15	Nodal Point	ts		12
Datalogger Serial #	705002	9			Cable Seria	al Number		VT-3

Thermistor Inspection

	Good		Needs	s Maintenance
Casing	Yes		No	
Cover	Yes		No	
Data Logger	Yes		No	
Cable	Yes		No	
Beads	Yes		No	
Battery Installation Date		2013-08-17		
Battery Levels	Main	11.34 (11.34-old	d)	Aux <u>13.14 (13.26-old)</u>

Manual Ground Temperature Readings

Bead	ohms	Degrees C	Be	ad	ohms	Degree
1	9.621	10.699		9	20.94	-4.7481
2	10.411	9.0625	1	0	21.59	-5.3259
3	11.978	6.1951	1	1	22.26	-5.9016
4	14.272	2.6816	1	2	22.48	-6.0864
5	16.505	-0.1762	1	3	-	-
6	17.04	-0.7966	1	4	-	-
7	18.524	-2.4093	1	5	-	-
8	19.806	-3.6901	1	6	-	-

Observations and Proposed Maintenance

Downloaded thermistor data. File: Site_029_PIN-2_Aug_17_2013. Reset clock and restarted datalogger. Replaced batteries.

Table XXI: Thermistor Annual Maintenance Report (VT-4)

DEFENCE CONSTRUCTION CANADA

Contractor Name:	Sila Remediat	ion Inc.		Inspe	ction Date:		2013-08-17	
Prepared By:	A.Passalis							
-								
Thermistor Informatio		I						
Site Name:	PIN-2		or Location		Tier II Dispo	sal Facility		
Thermistor Number:	VT-4	Inclinatio			Vertical			
Install Date: Coordinates and Elev	.atia.a	First Date		_	2009-08-01	Last Date Even		
	ration	N 7646284.2		E	502497.4 Nodal Point	Elev	19.9	
Length of Cable (m)	7040044		ove Ground (m)	2.50			16 VT-4	
Datalogger Serial #	7010044				Cable Seria	ii Number	V1-4	
Thermistor Inspection	<u>on</u>							
		Good		Need	ls Maintenanc	е		
Casing		Yes		No				
Cover		Yes		No				
Data Logg	er	Yes		No				
Cable		Yes		No				
Beads		Yes		No	Intermittent h	and roadings from	Bead 1 and Bead 9	
Deaus		162		NO	intermittent t	dad readings from	beau i and beau s	
Battery Ins	tallation Date		2013-08-17					
Battery Lev	/els	Main	11.34 (11.34-old	d)		Aux <u>13.75</u>	(13.02-old)	
Manual Ground Tem	perature Rea	<u>dings</u>	_					
Bead	ohms	Degrees (<u>2</u>		Bead	ohms	Degrees C	
1	9.9219	10.0603	<u> </u>		9	20.69	-4.5204	
2	10.502	8.8831	_		10	21.26	-5.035	

12

13

14

15

16

21.97

22.18

22.41

22.65

22.75

-5.6549

-5.8339

-6.0278

-6.2279

-6.3105

8 20.05 -3.9234 Observations and Proposed Maintenance

14.44

16.399

17.965

18.776

4

6

7

Downloaded thermistor data. File: Site_044_PIN-2_Aug_17_2013.

2.4496

-0.0506

-1.8194

-2.6688

Reset clock and restarted datalogger. Replaced batteries.

6.10 MONITORING WELL SAMPLING/INSPECTION LOGS (MW-1 TO MW-4)

The monitoring well sampling and inspection logs for MW-1 to MW-4 are presented in this section.

2013 Monitoring Well Sampling Log (MW-1)

Site name: PIN-2								
Date of sampling event: 17-Aug-13								
Names of samplers: Andrew Passalis								
Names of samplers: Andrew Passalls								
	Monitoring well ID:							
	Facility:	Tier II Disposal Fa	cility					
			Known I	Data				
C	Depth of installation* (m):	3.40						
Length	of screened section (m):	3.00						
Dep	oth to top of screen* (m):	0.04						
			Measured	Data				
	Condition of well:	Good			Procedure/Equipment:	Interface Meter		
	Procedure/Equipment:	Measuring Tape		Dep	oth to water surface (m):	2.24		
Well h	eight above ground (m):	0.55			Depth to bottom (m):	2.30		
	Diameter of well (m):	0.04		Free p	product thickness (mm):	-		
	Calculations				Notes			
	Depth of water (m):	0.06 (dry)			Evidence of sludge:	no		
V	Well volume of water (L):	-		Evidence of freezing/siltation		no		
	Static water level* (m):	-			-	I		
Length of scr	een collecting water (m):	: -						
	-	Developm	ent/Purgi	ng Information				
	Equipment:	_						
Date & Time	Volume Removed (L)	Temperature (°C)	рН	Conductivity (µS/cm)	Turbidity (NTU)	Description of Water		
-	-	-	-	-	-	-		
	Water Samplin	g		Soil Sampling				
	Date & Time Collected:			Da	17-Aug-13			
5	Sample Number - Water:			Sample Number - Soil		_		
						P213-1WB		
						. 2.02		
	Sample Containers:				Sample Containers:	9x125mL glass/2xbag		
	Gample Containers.				Cample Containers.	2x125mL glass/1xbag		
						ZX125IIIL glass/1xbag		
Procedure/Equipment:				Procedure/Equipment		Steel & Plastic Trowels		
Water Description:					Soil Description:	Dark brown and broken		
						rock, platey, trace		
						organics, dry		
Sampling Equipment Decontamination (Y/N):		: N/A		Sampling Equipment Decontamination (Y/N)		Y		
	Number Washes:	-			Number Washes:	1		
Number Rinses:		-		Number Rinses:		1		

^{*}From ground surface. Unless this is stated, all measurments are assumed to be from the top of the casing. n/a=not applicable

2013 Monitoring Well Sampling Log (MW-2)

		T				
	Site name:	PIN-2				
Date of sampling event: 17-Aug-13						
	Names of samplers: Andrew Passalis					
Monitoring well ID: MW-2						
	Facility:	Tier II Disposal Fa	cility			
			Known I	Data		
D	epth of installation* (m):	3.40				
Length	of screened section (m):	3.00				
Dep	oth to top of screen* (m):	0.40				
		<u> </u>	Measured	Data		
	Condition of well:	Good			Procedure/Equipment:	Interface Meter
	Procedure/Equipment:	Measuring Tape		Dep	th to water surface (m):	1.47
Well h	eight above ground (m):	0.53			Depth to bottom (m):	2.93
	Diameter of well (m):	0.04		Free p	roduct thickness (mm):	-
	Calculations				Notes	
	Depth of water (m):	1.46			Evidence of sludge:	no
V	Vell volume of water (L):	1.66		Evidence of freezing/siltation:		
	Static water level* (m):	0.94				
Length of scre	een collecting water (m):	1.46				
		Developm	ent/Purgi	ng Information		
Equipment: Dedicated waterra tubing and foot valve						
Date & Time	Volume Removed (L)	Temperature (°C)	pН	Conductivity (µS/cm)	Turbidity (NTU)	Description of Water
17-Aug-13	2.0	2.4	6.9	345	69	Translucent, N/O
	Water Samplin	g			Soil Sampling	
	Date & Time Collected:	17-Aug-1	13	Date and Time Collected: 17-Aug-13		
S	Sample Number - Water:	P213-2W (BDW1)		Sample Number - Soil:		P213-2WA
						P213-2WB
	Sample Containers:	: 6x500mL, 6x250mL amber			Sample Containers:	2x125mL glass/1xbag
		3x200mL plastic, 3x100mL				2x125mL glass/1xbag
			amber, 9x40mL vials			
Procedure/Equipment: Waterra tubing & foot valve Oakton PCD650 Mulitmeter, Hach 2100P Turbidimeter		Procedure/Equipment: Steel & Plastic		Steel & Plastic Trowels		
		Translucent, light grey,		Soil Description:		Dark brown to brown/
			no odour		•	grey rock with med gr.
					sand, damp	
Sampling Equipment	Decontamination (Y/N)	N/A		Sampling Equipment	Decontamination (Y/N)	Y
	Sampling Equipment Decontamination (Y/N): N/A Number Washes: -			Sampling Equipment Decontamination (Y/N): Number Washes:		1
	Number Rinses:				Number Rinses:	1
	Number Rinses: -				inumber Kinses:	I

^{*}From ground surface. Unless this is stated, all measurments are assumed to be from the top of the casing. n/a=not applicable

2013 Monitoring Well Sampling Log (MW-3)

		T					
	Site name:	PIN-2					
Date of sampling event: 17-Aug-13							
	Names of samplers: Andrew Passalis						
	Monitoring well ID: MW-3						
	Facility:	Tier II Disposal Fa	cility				
			·				
			Known [Data			
	Depth of installation* (m):	3.40					
Length	of screened section (m):	3.00					
Dej	oth to top of screen* (m):	0.40					
		Ŋ	Measured	Data			
	Condition of well:	Good			Procedure/Equipment:	Interface Meter	
	Procedure/Equipment:	Measuring Tape		Dep	th to water surface (m):	2.04	
Well h	neight above ground (m):	0.46			Depth to bottom (m):	2.74	
	Diameter of well (m):	0.04		Free p	roduct thickness (mm):	-	
	· · ·			<u> </u>			
	Calculations Notes						
	Depth of water (m):	0.70			Evidence of sludge:	no	
\	Well volume of water (L):	0.79		Evidence of freezing/siltation: no			
	Static water level* (m):	1.58				0	
Length of scr		0.70					
3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4							
	Development/Purging Information Equipment: Dedicated waterra tubing and foot valve						
	Equipment.	Dedicated waterra	tubing and	100t valve			
Date & Time	Volume Removed (L)	Temperature (°C)	pН	Conductivity (µS/cm)	Turbidity (NTU)	Description of Water	
17-Aug-13	0.8	3.7	6.5	514	247	Translucent, N/O	
						,	
	Water Samplin	a			Soil Sampling		
	Date & Time Collected:	17-Aug-1	13	Da	ate and Time Collected:	17-Aug-13	
	Sample Number - Water:	-		Sample Number - Soil:		_	
Ì	sample Hamber Water.			Sample Number - Soil.		P213-3WB	
						1 2 10 0 W B	
	Sample Containers	2v500ml 2v250m	al ambor		Sample Containers	2v125ml_glass/1vhs2	
	Sample Containers:	2x500mL, 2x250mL amber			Sample Containers:	2x125mL glass/1xbag	
			200mL plastic, 100mL amber			2x125mL glass/1xbag	
Described (Face)		3x40mL vials Waterra tubing & foot valve			Draga duna / Francis	Otaal 9 Diactic Torrect	
Procedure/Equipment: Waterra tubing & foot valve Oakton PCD650 Mulitmeter, Hach 2100P Turbidimeter			Procedure/Equipment:	Steel & Plastic Trowels			
	Water Becomption:		Translucent, grey,		Soil Description:		
	·		no odour			f-med gr sand, with	
						organics, dry	
Sampling Equipmen	t Decontamination (Y/N):	N/A		Sampling Equipment Decontamination (Y/N)		Y	
. 5 11	Number Washes: -			Number Washes:		1	
	Number Rinses:	-			Number Rinses:	1	
rvuitibet Nillses.					Hamber Ringes.	'	

^{*}From ground surface. Unless this is stated, all measurments are assumed to be from the top of the casing. n/a=not applicable

2013 Monitoring Well Sampling Log (MW-4)

-						
	Site name:	PIN-2				
Date of sampling event: 17-Aug-13						
Names of samplers: Andrew Passalis						
Monitoring well ID: MW-4						
	Facility:	Tier II Disposal Fa	cility			
			Known [Data		
D	epth of installation* (m):	3.40				
Length	of screened section (m):	3.00				
Dep	oth to top of screen* (m):	0.40				
		N	Measured	Data		
	Condition of well:	Good			Procedure/Equipment:	Interface Meter
	Procedure/Equipment:	Measuring Tape		Dep	th to water surface (m):	1.66
Well h	eight above ground (m):	0.54			Depth to bottom (m):	2.98
	Diameter of well (m):	0.04		Free p	roduct thickness (mm):	-
	Calculations				Notes	
	Depth of water (m):	1.32			Evidence of sludge:	no
V	Vell volume of water (L):	1.50		Evidence of freezing/siltation:		
	Static water level* (m):	1.12				
Length of scre	een collecting water (m):	1.32				
		Developm	ent/Purgi	ng Information		
Equipment: Dedicated waterra tubing and foot valve						
Date & Time	Volume Removed (L)	Temperature (°C)	рН	Conductivity (µS/cm)	Turbidity (NTU)	Description of Water
17-Aug-13	2.0	3.0	6.9	778	105	Translucent, N/O
	Water Samplin	g			Soil Sampling	
	Date & Time Collected:	17-Aug-1	13	Date and Time Collected: 17-Aug-13		
S	Sample Number - Water:	P213-4W			Sample Number - Soil:	P213-4WA
						P213-4WB
	Sample Containers:	2x500mL, 2x250mL amber			Sample Containers:	2x125mL glass/1xbag
		200mL plastic, 100mL amber				2x125mL glass/1xbag
			3x40mL vials			· ·
Procedure/Equipment: Waterra tubing & foot valve Oakton PCD650 Mulitmeter, Hach 2100P Turbidimeter		Procedure/Equipment: Steel & P		Steel & Plastic Trowels		
		Translucent, light grey,		Soil Description		Brown to light brown
		no odour		'		sand, with gravel,
						trace organics, dry
Sampling Equipment	Decontamination (Y/N)	N/A		Sampling Equipment	Decontamination (Y/N):	Y
Jamping Equipment				Sampling Equipment Decontamination (Y/N): Number Washes:		1
	Number Washes.					
	Number Rinses: -				Number Rinses:	1

^{*}From ground surface. Unless this is stated, all measurments are assumed to be from the top of the casing. n/a=not applicable

7 AIRSTRIP SOUTH LANDFILL

7.1 BACKGROUND AND MONITORING PROGRAM

The Airstrip South Landfill is located within a former borrow area southwest of the station and south of the airstrip. A geophysical survey identified an anomaly of buried debris 1,420 m² in size. The landfill, including granular cover, encompasses a footprint of approximately 2,800 m² with the final cover extending between 0.5 to 0.75 m above the surrounding grade.

The Airstrip South Landfill is classified as a low potential environmental risk. Contaminant source and pathways components were low due to the restricted potential for contaminant migration and low quantity of debris exposure. The receptors component was also low, due to low receptor sensitivity proximal to the landfill area. Accordingly, the landfill was remediated by excavating the Tier II soils, removing the surface debris and regrading the landfill with additional granular fill.

The long term monitoring plan consists of visual monitoring and periodic collection of soil samples. The 2013 monitoring of this landfill was limited to a visual inspection to assess landfill performance. There is no instrumentation installed at this landfill.

7.2 VISUAL INSPECTION REPORT

The visual inspection of the Airstrip South Landfill was conducted on August 17, 2013. The Visual Inspection Checklist/Report has been completed as per the TOR and is included as Table XXII of this report.

Settlement

Indications of settlement were not noted at the landfill.

Erosion

During the assessment, no existing erosion was noted at the landfill.

Frost Action

Evidence of frost action was not noted.

Evidence of Burrowing Animals

Indications of burrowing animals were not noted.

Re-establishment of Vegetation

Evidence of vegetation was not noted on the landfill.

Staining

Evidence of staining was not noted.

Seepage Points

No areas of seepage were noted at the landfill.

Debris

Evidence of debris was not noted at the landfill.

Presence/Condition of Monitoring Instruments

There is no monitoring instrumentation installed at this landfill.

Other Features of Note

There were no other features of note at the landfill.

Discussion

The Airstrip South Landfill performance with respect to containment of the debris within the landfill is rated as acceptable. A visual inspection report, including supporting photos and drawing, is presented in the following pages.

Table XXII: Visual Inspection Checklist / Report – Airstrip South Landfill

DEW LINE CLEANUP: POST-CONSTRUCTION - LANDFILL MONITORING VISUAL INSPECTION CHECKLIST INSPECTION REPORT - PAGE 1 OF 2

SITE NAME: PIN-2 Cape Young

LANDFILL DESIGNATION: Airstrip South Landfill (Regrade Landfill)

DATE OF INSPECTION: August 17, 2013

DATE OF PREVIOUS INSPECTION: August 11 & 12, 2012

INSPECTED BY: A. Passalis

REPORT PREPARED BY: A. Passalis

The inspector/reporter represents to the best of his/her knowledge that the following statements and observations are true and correct and to the best of the preparer's actual knowledge, no material facts have been suppressed or misstated.

LANDFILL VISUAL INSPECTION

Site Name: PIN-2, CAPE YOUNG
Landfill: Airstrip South Landfill
Designation: Existing Regrade Area
Date Inspected: August 17, 2013
Inspected by: Andrew Passalis, P.Eng.

Signature:

TABLE XXII: PIN-2, CAPE YOUNG - AIRSTRIP SOUTH LANDFILL

Checklist Item	Present (Yes/No)	Location	Length	Width	Depth	Extent	Description	Photographic Record	Severity Rating	Additional Comments
Settlement	No	N/A	N/A	N/A	N/A	N/A	N/A	N/A	Not Observable	N/A
Erosion	No	N/A	N/A	N/A	N/A	N/A	N/A	N/A	Not Observable	N/A
Frost Action	No	N/A	N/A	N/A	N/A	N/A	N/A	N/A	Not Observable	N/A
Animal Burrows	No	N/A	N/A	N/A	N/A	N/A	N/A	N/A	Not Observable	N/A
Vegetation	No	N/A	N/A	N/A	N/A	N/A	N/A	N/A	Not Observable	N/A
Staining	No	N/A	N/A	N/A	N/A	N/A	N/A	N/A	Not Observable	N/A
Vegetation Stress	No	N/A	N/A	N/A	N/A	N/A	N/A	N/A	Not Observable	N/A
Seepage Points	No	N/A	N/A	N/A	N/A	N/A	N/A	N/A	Not Observable	N/A
Debris Exposed	No	N/A	N/A	N/A	N/A	N/A	N/A	N/A	Not Observable	N/A
Presence/Condition of Monitoring Instruments	No	N/A	N/A	N/A	N/A	N/A	N/A	N/A	Not Observable	N/A
Other Features of Note:	No	N/A	N/A	N/A	N/A	N/A	N/A	N/A	Not Observable	N/A
Additional Photos	Yes	See Figure PIN-2.5 and Photographic Record	N/A	N/A	N/A	N/A	General Photographic Record	N/A	Not Observable	General photos for documentation, no additional features of note.

7.3 PRELIMINARY STABILITY ASSESSMENT

The Preliminary Stability Assessment for the Airstrip South Landfill has been completed as per the TOR and is included as Table XXIII hereafter.

Table XXIII: Preliminary Stability Assessment – Airstrip South Landfill

Feature	Severity Rating	Extent		
Settlement	Not observed	None		
Erosion	Not observed	None		
Frost Action	Not observed	None		
Staining	Not observed	None		
Vegetation Stress	Not observed	None		
Seepage/Ponded Water	Not observed	None		
Debris exposure	Not observed None			
Overall Landfill Performance	Acce	ptable		

Performance/ Severity Rating	Description
Acceptable	Noted features are of little consequence. The landfill is performing as designed. Minor deviations in environmental or physical performance may be observed, such as isolated areas of erosion, settlement.
Marginal	Physical/environmental performance appears to be deteriorating with time. Observations may include an increase in size or number of features of note, such as differential settlement, erosion or cracking. No significant impact on landfill stability to date, but potential for failure is assessed as low or moderate.
Significant	Significant or potentially significant changes affecting landfill stability, such as significant changes in slope geometry, significant erosion or differential settlement; scarp development. The potential for failure is assessed as imminent.
Unacceptable	Stability of landfill is compromised to the extent that ability to contain waste materials is compromised. Examples may include: Debris exposed in erosion channels or areas of differential settlement. Liner exposed. Slope failure.
Fretons	Description
Extent Isolated	Description Singular facture
Occasional	Singular feature Features of note occurring at irregular intervals/locations
Numerous	Many features of note, impacted less than 50% of the surface area of the landfill
Extensive	Impacting greater than 50% of the surface area of the landfill

7.4 LOCATION PLAN

The Location Plan for the Airstrip South Landfill has been completed as per the TOR and is presented in Figure PIN-2.5.

G:\CD3654\2013\FINAL\PIN-2\CD3654_200_203-PIN-2E-PL.dwg, PL, 2014-01-22 2:53:05 PM

7.5 PHOTOGRAPHIC RECORDS

The Photographic Record for the Airstrip South Landfill has been completed as per the TOR and is included as Table XXIV hereafter. The Photographic Record contains only an index of photographs. Full-sized photographs are contained in the Addendum DVD-ROM.

Table XXIV: Landfill Visual Inspection Photo Log - Airstrip South Landfill

Photo		Size		Vantage Point		
(ASLF-)	Filename	(KB)	Date	Easting Northing		Caption
1	P213-377	3,705	17/08/2013	503229	7646268	View looking north along east side of Airstrip South Landfill
2	P213-378	3,586	17/08/2013	503210	7646249	View looking northeast at south side of Airstrip South Landfill
3	P213-379	1,063	17/08/2013	503206	7646261	Panoramic view looking northwest to northeast from southwest corner of Airstrip South Landfill
4	P213-380	3,576	17/08/2013	503184	7646313	View looking east-northeast along north side of Airstrip South Landfill
5	P213-381	3,703	17/08/2013	503202	7646327	View looking south at north side of Airstrip South Landfill
6	P213-382	3,596	17/08/2013	503223	7646299	View south along east side of Airstrip South Landfill

8 PALLET LINE WEST LANDFILL

8.1 BACKGROUND AND MONITORING PROGRAM

The Pallet Line West Landfill is located approximately 330 m southwest of the main pallet line for the Station. There is a trail from the southwest corner of the pallet line leading to the regrade area. The overall area is very cobbly, with shallow bedrock. The landfill has one regrade area, including a granular fill cover encompassing a footprint of approximately 5,500 m² with the final cover extending approximately 0.75 m to 1.0 m above the surrounding grade.

The Pallet Line West Landfill is classified as a low potential environmental risk. Contaminant source was a high potential environmental risk due to presence of contaminated soil and surface debris. The pathways and receptors were low because of low potential for contaminant migration and lack of sensitive receptors nearby. Accordingly, the landfill was remediated by excavating the Tier II soils, removing the surface debris and regrading the landfill with additional granular fill.

The long term monitoring plan consists of visual monitoring and periodic collection of soil samples. The 2013 monitoring of this landfill was limited to a visual inspection to assess landfill performance. There is no instrumentation installed at this landfill.

8.2 VISUAL INSPECTION REPORT

The visual inspection of the Pallet Line West Landfill was conducted on August 17, 2013. The Visual Inspection Checklist/Report has been completed as per the TOR and is included as Table XXV of this report.

Settlement

Indications of settlement were not noted at the landfill.

Erosion

During the assessment, no existing erosion was noted at the landfill.

Frost Action

Evidence of frost action was not noted.

Evidence of Burrowing Animals

Indications of burrowing animals were not noted.

Re-establishment of Vegetation

Evidence of vegetation was not noted on the landfill.

Staining

Evidence of staining was not noted.

Seepage Points

No areas of seepage were noted at the landfill.

Debris

Evidence of debris was not noted at the landfill.

Presence/Condition of Monitoring Instruments

There is no monitoring instrumentation installed at this landfill.

Other Features of Note

There were no other features of note at the landfill.

Discussion

The Pallet Line West Landfill performance with respect to containment of the debris within the landfill is rated as acceptable. A visual inspection report, including supporting photos and drawing, is presented in the following pages.

Table XXV: Visual Inspection Checklist / Report – Pallet Line West Landfill

DEW LINE CLEANUP: POST-CONSTRUCTION – LANDFILL MONITORING VISUAL INSPECTION CHECKLIST INSPECTION REPORT – PAGE 1 of 2

SITE NAME: PIN-2 - Cape Young

LANDFILL DESIGNATION: Pallet Line West Landfill (Regrade Landfill)

DATE OF INSPECTION: August 17, 2013

DATE OF PREVIOUS INSPECTION: August 11 & 12, 2012

INSPECTED BY: A. Passalis

REPORT PREPARED BY: A. Passalis

The inspector/reporter represents to the best of his/her knowledge that the following statements and observations are true and correct and to the best of the preparer's actual knowledge, no material facts have been suppressed or misstated.

LANDFILL VISUAL INSPECTION

Site Name: PIN-2, CAPE YOUNG
Landfill: Pallet Line West Landfill
Designation: Existing Regrade Area
Date Inspected: August 17, 2013
Inspected by: Andrew Passalis, P.Eng.

Signature:

TABLE XXV: PIN-2, CAPE YOUNG - PALLET LINE WEST LANDFILL

Checklist Item	Present (Yes/No)	Location	Length	Width	Depth	Extent	Description	Photographic Record	Severity Rating	Additional Comments
Settlement	No	N/A	N/A	N/A	N/A	N/A	N/A	N/A	Not Observable	N/A
Erosion	No	N/A	N/A	N/A	N/A	N/A	N/A	N/A	Not Observable	N/A
Frost Action	No	N/A	N/A	N/A	N/A	N/A	N/A	N/A	Not Observable	N/A
Animal Burrows	No	N/A	N/A	N/A	N/A	N/A	N/A	N/A	Not Observable	N/A
Vegetation	No	N/A	N/A	N/A	N/A	N/A	N/A	N/A	Not Observable	N/A
Staining	No	N/A	N/A	N/A	N/A	N/A	N/A	N/A	Not Observable	N/A
Vegetation Stress	No	N/A	N/A	N/A	N/A	N/A	N/A	N/A	Not Observable	N/A
Seepage Points	No	N/A	N/A	N/A	N/A	N/A	N/A	N/A	Not Observable	N/A
Debris Exposed	No	N/A	N/A	N/A	N/A	N/A	N/A	N/A	Not Observable	N/A
Presence/Condition of Monitoring Instruments	No	N/A	N/A	N/A	N/A	N/A	N/A	N/A	Not Observable	N/A
Other Features of Note:	No	N/A	N/A	N/A	N/A	N/A	N/A	N/A	Not Observable	N/A
Additional Photos	Yes	See Figure PIN-2.6 and Photographic Record	N/A	N/A	N/A	N/A	General Photographic Record	N/A	Not Observable	General photos for documentation, no additional features of note.
Overall Landfill Performance:	Acceptable									

8.3 PRELIMINARY STABILITY ASSESSMENT

The Preliminary Stability Assessment for Pallet Line West Landfill has been completed as per the TOR and is included as Table XXVI below.

Table XXVI: Preliminary Stability Assessment – Pallet Line West Landfill

Feature	Severity Rating	Extent		
Settlement	Not observed	None		
Erosion	Not observed	None		
Frost Action	Not observed	None		
Staining	Not observed	None		
Vegetation Stress	Not observed	None		
Seepage/Ponded Water	Not observed	None		
Debris exposure	Not observed	None		
Overall Landfill Performance	Acceptable			

Performance/ Severity Rating	Description
Acceptable	Noted features are of little consequence. The landfill is performing as designed. Minor deviations in environmental or physical performance may be observed, such as isolated areas of erosion, settlement.
Marginal	Physical/environmental performance appears to be deteriorating with time. Observations may include an increase in size or number of features of note, such as differential settlement, erosion or cracking. No significant impact on landfill stability to date, but potential for failure is assessed as low or moderate.
Significant	Significant or potentially significant changes affecting landfill stability, such as significant changes in slope geometry, significant erosion or differential settlement; scarp development. The potential for failure is assessed as imminent.
Unacceptable	Stability of landfill is compromised to the extent that ability to contain waste materials is compromised. Examples may include: Debris exposed in erosion channels or areas of differential settlement. Liner exposed. Slope failure.
Extent	Description
Isolated	Singular feature
Occasional	Features of note occurring at irregular intervals/locations
Numerous	Many features of note, impacted less than 50% of the surface area of the landfill
Extensive	Impacting greater than 50% of the surface area of the landfill

8.4 LOCATION PLAN

The Location Plan for the Pallet Line West Landfill has been completed as per the TOR and is presented in Figure PIN-2.6.

LEGEND

MONITORING SOIL SAMPLE LOCATION (6)

4) - APPROX. PHOTOGRAPHIC VIEWPOINT

1	FINAL	14-01-22	P.L.	A.P.	A.L.
NO.	VERSION	DATE	PAR	VERIF.	APPR.

COLLECTION OF LANDFILL MONITORING DATA

PIN-2, CAPE YOUNG, NUNAVUT

PALLET LINE WEST LANDFILL

SITE REMEDIATION SOLUTIONS

0.410-000-4422	www.blogerile-eriv.com	
NT UNIT	SCALE: 1 : 750	DATE (month-year): JANUARY 2014
GARÉ	VERIFIED BY: A. PASSALIS	APPROVED BY: A. LECLAIR P. Eng
0:	DRAWING NO:	PAGE

FIGURE PIN-2.6

8.5 PHOTOGRAPHIC RECORDS

The Photographic Record for the Pallet Line West Landfill has been completed as per the TOR and is included as Table XXVII hereafter. The Photographic Record contains only an index of photographs. Full sized photographs are contained in the Addendum DVD-ROM.

Table XXVII: Landfill Visual Inspection Photo Log - Pallet Line West Landfill

Photo		Size		Vantage Point		
(PLW-)	Filename	(KB)	Date	Easting	Northing	Caption
1	P213_310	4,373	17/08/2013	502562	7645860	View looking southwest along north side of Pallet Line West Landfill
2	P213_311	4,380	17/08/2013	502563	7645860	View looking southeast along northeast side of Pallet Line West Landfill
3	P213_312	1,204	11/09/2013	502560	7645854	Panoramic view looking southeast to west across north cover of Pallet Line West Landfill
4	P213_313	4,438	17/08/2013	502546	7645849	View looking south along west side of Pallet Line West Landfill
5	P213_314	4,459	17/08/2013	502554	7645811	View looking south along west crest of Pallet Line West Landfill
6	P213_316	4,409	17/08/2013	502559	7645775	View looking north along west crest of Pallet Line West Landfill
7	P213_317	4,383	17/08/2013	502559	7645775	View looking southeast along southwest crest of Pallet Line West Landfill
8	P213_318	1,220	11/09/2013	502560	7645776	Panoramic view looking north to southeast across cover from southwest corner of Pallet Line West Landfill
9	P213_319	4,371	17/08/2013	502553	7645771	View looking north along west toe of Pallet Line West Landfill
10	P213_320	4,277	17/08/2013	502554	7645769	View looking southeast along southwest toe of Pallet Line West Landfill
11	P213_321	4,347	17/08/2013	502599	7645750	View looking north-northeast along east toe of Pallet Line West Landfill
12	P213_322	4,384	17/08/2013	502583	7645764	View looking north-northeast across south cover of Pallet Line West Landfill
13	P213_323	4,348	17/08/2013	502622	7645805	View looking south-southwest along east side of Pallet Line West Landfill
14	P213_324	4,401	17/08/2013	502622	7645806	View looking north-northwest along northeast side of Pallet Line West Landfill
15	P213_325	4,377	17/08/2013	502616	7645821	View looking west along north side of Pallet Line West Landfill

9 NON-HAZARDOUS WASTE LANDFILL

9.1 BACKGROUND AND MONITORING PROGRAM

The Non-Hazardous Waste Landfill (NHWLF) is located near the intersection of the main station access road and the Harding River Road. The landfill, including granular cover, encompasses a footprint of approximately 6,900 m² with the final cover extending between 3.0 to 4.5 m above the surrounding grade. This landfill was constructed for the disposal of non-hazardous wastes, site debris and DCC Tier I and Type A hydrocarbon impacted soil. Landfill materials are contained by a granular perimeter berm and cover. Four groundwater monitoring wells are installed at the landfill perimeter.

The long term monitoring plan consists of visual monitoring, and periodic collection of soil and groundwater samples. The 2013 monitoring of this landfill includes visual inspection to assess overall landfill performance.

9.2 VISUAL INSPECTION REPORT

The visual inspection of the NHWLF was conducted on August 17, 2013. The Visual Inspection Checklist/Report has been completed as per the TOR and is included as Table XXVIII of this report.

Settlement

One area of minor settlement (Feature A) was noted on the southwest crest of the landfill, consisting of an isolated depression measuring 1.5 m long, 0.2-0.3 m wide and 0.05 m deep. This feature was not observed during the previous 2012 inspection.

NHWLF-19: View northwest at minor linear depression on southwest crest (1.5 m L, 0.2-0.3 m W, 0.05 m D) - FEATURE A

Erosion

Evidence of minor surface erosion was noted at three locations on the southeast corner slope (Feature B) of the NHWLF. All locations consisted of shallow surface erosion that extended between 7 to 17 m down slope from the crest, ranged between 0.1-0.15m in width and were 0.05-0.07m deep. The areas affected appear to be self-armouring and have an acceptable severity rating. Overall, the landfill cover appears stable. This feature was not noted during the previous 2012 inspection.

NHWLF-26: (left) View northwest at minor erosion on southeast corner – FEATURE B NHWLF-31 (right) View west-northwest at minor erosion on southeast corner (7-17 m L, 0.1-0.15 m W, 0.05-0.07 m D) - FEATURE B

Frost Action

Evidence of frost action was not noted.

Evidence of Burrowing Animals

Indications of burrowing animals were not noted.

Re-establishment of Vegetation

Evidence of vegetation was not noted.

Staining

Areas of staining were not observed at the time of the inspection.

Seepage Points

There was no seepage point observed at this landfill.

Debris

Evidence of partially exposed or surface debris was not noted.

Presence/Condition of Monitoring Instruments

All monitoring well installations were found to be in good condition at the landfill.

Other Features of Note

There was no other feature noted.

Discussion

The NHWLF performance with respect to containment of the debris within the landfill is rated as acceptable. A visual inspection report, including supporting photos and drawing, is presented in the following pages.

Table XXVIII: Visual Inspection Checklist / Report – NHWLF

DEW LINE CLEANUP: POST-CONSTRUCTION – LANDFILL MONITORING VISUAL INSPECTION CHECKLIST INSPECTION REPORT – PAGE 1 of 2

SITE NAME: PIN-2 Cape Young

LANDFILL DESIGNATION: NHWLF (New Landfill)

DATE OF INSPECTION: August 17, 2013

DATE OF PREVIOUS INSPECTION: August 11 & 12, 2012

INSPECTED BY: A. Passalis

REPORT PREPARED BY: A. Passalis

The inspector/reporter represents to the best of his/her knowledge that the following statements and observations are true and correct and to the best of the preparer's actual knowledge, no material facts have been suppressed or misstated.

LANDFILL VISUAL INSPECTION
Site Name: PIN-2, CAPE YOUNG
Landfill: Non-Hazardous Waste Landfill
Designation: Existing Regrade Area
Date Inspected: August 17, 2013
Inspected by: Andrew Passalis, P.Eng.

Signature:

TABLE XXVIII: PIN-2, CAPE YOUNG - NON-HAZARDOUS WASTE LANDFILL

Checklist Item	Present (Yes/No)	Location	Length	Width	Depth	Extent	Description	Photographic Record	Severity Rating	Additional Comments
Settlement	Yes	FEATURE A See Figure PIN-2.7 (SW crest - New Obs.)	1.5 m	0.2-0.3 m	0.05 m	Isolated	Minor depression	NHWLF-19, 20	Acceptable	Linear depression orientated perpendicular to crest.
Erosion	Yes	FEATURE B See Figure PIN-2.7 (SE side slope- New Obs.)	7 - 17 m	0.1 - 0.15 m	0.05 - 0.07 m	Isolated	Minor erosion	NHWLF-26-28, 31	Acceptable	Washing of fines, self armouring. Slope appears stable.
Frost Action	No	N/A	N/A	N/A	N/A	N/A	N/A	N/A	Not Observable	N/A
Animal Burrows	No	N/A	N/A	N/A	N/A	N/A	N/A	N/A	Not Observable	N/A
Vegetation	No	N/A	N/A	N/A	N/A	N/A	N/A	N/A	Not Observable	N/A
Staining	No	N/A	N/A	N/A	N/A	N/A	N/A	N/A	Not Observable	N/A
Vegetation Stress	No	N/A	N/A	N/A	N/A	N/A	N/A	N/A	Not Observable	N/A
Seepage Points	No	N/A	N/A	N/A	N/A	N/A	N/A	N/A	Not Observable	N/A
Debris Exposed	No	N/A	N/A	N/A	N/A	N/A	N/A	N/A	Not Observable	N/A
Presence/Condition of Monitoring Instruments	Yes	N/A	N/A	N/A	N/A	N/A	N/A	N/A	Not Observable	N/A
Other Features of Note:	No	N/A	N/A	N/A	N/A	N/A	N/A	N/A	Not Observable	N/A
Additional Photos	Yes	See Figure PIN-2.7 and Photographic Record	N/A	N/A	N/A	N/A	General Photographic Record	N/A	Not Observable	General photos for documentation, no additional features of note.
Overall Landfill Performance:	Acceptable									

9.3 PRELIMINARY STABILITY ASSESSMENT

The Preliminary Stability Assessment for NHWLF has been completed as per the TOR and is included as Table XXIX hereafter.

Table XXIX: Preliminary Stability Assessment - NHWLF

Feature	Severity Rating	Extent	
Settlement	Acceptable	Isolated	
Erosion	Acceptable	Isolated	
Frost Action	Not observed	None	
Staining	Not observed	None	
Vegetation Stress	Not observed	None	
Seepage/Ponded Water	Not observed	None	
Debris exposure	Not observed	None	
Overall Landfill Performance	Acce	eptable	

Performance/ Severity Rating	Description
Acceptable	Noted features are of little consequence. The landfill is performing as designed. Minor deviations in environmental or physical performance may be observed, such as isolated areas of erosion, settlement.
Marginal	Physical/environmental performance appears to be deteriorating with time. Observations may include an increase in size or number of features of note, such as differential settlement, erosion or cracking. No significant impact on landfill stability to date, but potential for failure is assessed as low or moderate.
Significant	Significant or potentially significant changes affecting landfill stability, such as significant changes in slope geometry, significant erosion or differential settlement; scarp development. The potential for failure is assessed as imminent.
Unacceptable	Stability of landfill is compromised to the extent that ability to contain waste materials is compromised. Examples may include: Debris exposed in erosion channels or areas of differential settlement. Liner exposed. Slope failure.
Extent	Description
Isolated	Singular feature
Occasional	Features of note occurring at irregular intervals/locations
Numerous	Many features of note, impacted less than 50% of the surface area of the landfill
Extensive	Impacting greater than 50% of the surface area of the landfill

9.4 LOCATION PLAN

The Location Plan for the NHWLF has been completed as per the TOR and is presented in Figure PIN-2.7.

9.5 PHOTOGRAPHIC RECORDS

The Photographic Record for the Non-Hazardous Waste Landfill has been completed as per the TOR and is included as Table XXX hereafter. The Photographic Record contains only an index of photographs. Full sized photographs are contained in the Addendum DVD-ROM.

Table XXX: Landfill Visual Inspection Photo Log - NHWLF

Photo		Size		Vantage Point		
(NHWLF-)	Filename	(KB)	Date	Easting	Northing	Caption
1	P213_279	4,395	17/08/2013	503185	7645288	View looking west-southwest at east side of NHWLF
2	P213_280	4,432	17/08/2013	503118	7645280	View looking west-northwest along north toe of NHWLF
3	P213_281	4,398	17/08/2013	503119	7645278	View looking south along east toe of NHWLF
4	P213_282	4,328	17/08/2013	503099	7645272	View looking west-northwest along north crest of NHWLF
5	P213_283	4,343	17/08/2013	503100	7645270	View looking south along east crest of NHWLF
6	P213_284	1,250	11/09/2013	503098	7645270	Panoramic view looking south to northwest across cover from northeast corner of NHWLF
7	P213_285	1,240	09/10/2013	503055	7645292	Panoramic view looking east to southwest across cover from northwest corner of NHWLF
8	P213_286	4,389	17/08/2013	503054	7645294	View looking south along west crest of NHWLF
9	P213_287	4,295	17/08/2013	503056	7645294	View looking east along north crest of NHWLF
10	P213_288	4,424	17/08/2013	503045	7645311	View looking south-southwest along west toe of NHWLF
11	P213_289	4,357	17/08/2013	503051	7645313	View looking east along north toe of NHWLF
12	P213_290	4,216	17/08/2013	503097	7645332	View looking south-southwest at north side of NHWLF
13	P213_291	4,285	17/08/2013	502990	7645292	View looking east-southeast at west side of NHWLF
14	P213_292	4,281	17/08/2013	503007	7645238	View looking east-southeast along south toe of NHWLF
15	P213_293	4,392	17/08/2013	503007	7645240	View looking north along west toe of NHWLF
16	P213_294	4,414	17/08/2013	503032	7645247	View looking east-southeast along south crest of NHWLF
17	P213_295	4,391	17/08/2013	503032	7645249	View looking north along west crest of NHWLF
18	P213_296	1,368	11/09/2013	503034	7645249	Panoramic view looking north to southeast across cover from southwest corner of NHWLF
19	P213_297	4,353	17/08/2013	503035	7645243	View looking northwest at minor linear depression on southwest crest of NHWLF (1.5m L, 0.2-0.3m W, 0.05m D) - FEATURE A
20	P213_298	4,391	17/08/2013	503033	7645252	View looking south-southwest at minor linear depression on southwest crest of NHWLF (1.5m L, 0.2-0.3m W, 0.05m D) - FEATURE A
21	P213_299	4,414	17/08/2013	503078	7645226	View looking north-northeast along east crest of NHWLF
22	P213_300	4,324	17/08/2013	503077	7645225	View looking northwest along south crest of NHWLF
23	P213_301	1,380	11/09/2013	503076	7645227	Panoramic view looking west to northeast across crest from southeast corner of NHWLF
24	P213_302	4,359	17/08/2013	503084	7645207	View looking north along east toe of NHWLF
25	P213_303	4,324	17/08/2013	503082	7645206	View looking northwest along south toe of NHWLF
26	P213_304	4,327	17/08/2013	503083	7645205	View looking northwest at minor erosion on southeast corner of NHWLF (7-17m L, 0.1-0.15m W, 0.05-0.07m D) - FEATURE B
27	P213_305	4,359	17/08/2013	503077	7645221	View looking southeast at minor erosion on southeast corner of NHWLF (7-17m L, 0.1-0.15m W, 0.05-0.07m D) - FEATURE B
28	P213_306	4,348	17/08/2013	503080	7645225	View looking east-southeast at minor erosion on southeast corner of NHWLF (7-17m L, 0.1-0.15m W, 0.05-0.07m D) - FEATURE B
29	P213_307	4,278	17/08/2013	503031	7645175	View looking northeast at south side of NHWLF
30	P213_308	4,337	17/08/2013	503138	7645222	View looking northwest at east side of NHWLF
31	P213_309	4,444	17/08/2013	503103	7645212	View looking west-northwest at minor erosion on southeast corner of NHWLF (7-17m L, 0.1-0.15m W, 0.05-0.07m D) - FEATURE B

10 SOUTH LANDFILL - EAST

10.1 BACKGROUND AND MONITORING PROGRAM

The South Landfill - East is located 1.7 km south-southeast of the main station, 50 m to the east of the Station Access Road, south of the intersection with the Harding River Road. Soil surrounding the landfill has been largely removed to bedrock. The overall size of the landfill is 1,690 m².

The landfill has a single regrade area encompassing a footprint of approximately 4,000 m² with the final cover extending approximately 1.0 to 2.5 m above the surrounding grade. Based on existing information regarding this landfill as a source of contamination, its potential migration pathways and receptors, the South Landfill - East was classified as low potential environmental risk. The remediation consisted of removal of surface debris and regrading with the placement of additional granular fill.

The long term monitoring plan consists of visual monitoring and periodic collection of soil samples. The 2013 monitoring of this landfill was limited to a visual inspection to assess landfill performance. There is no instrumentation installed at this landfill.

10.2 VISUAL INSPECTION REPORT

The visual inspection of the South Landfill - East was conducted on August 17, 2013. The Visual Inspection Checklist/Report has been completed as per the TOR and is included as Table XXXI of this report.

Settlement

An indication of minor settlement was noted at a single location (Feature A) on the northeast corner of the landfill. The feature consisted of a linear depression measuring 5 m long, 0.2-.3 m wide and 0.05 to 0.07 m deep. This feature has an acceptable severity rating. This depression was not noted during the previous 2012 inspection.

SLE-8: View east at minor depression on northeast corner (5 m L, 0.2-0.3 m W, 0.05-0.07 m D) - FEATURE A

Erosion

One area of minor erosion was noted on the central cover area of the landfill (Feature B). The erosion consisted of fines washing along approximately 7 linear meters across the cover, measuring 0.1 m wide and 0.02 to 0.07 m deep. This feature appears to be self-armouring with an acceptable severity rating. This feature was not noted during the previous 2012 inspection.

SLE-19: View southeast at minor erosion on central cover area (7m L, 0.1m W, 0.02-0.05m D) - FEATURE B

Frost Action

Evidence of frost action was not noted.

Evidence of Burrowing Animals

Indications of burrowing animals were not noted.

Re-establishment of Vegetation

Evidence of vegetation was not noted on the landfill.

Staining

No areas of staining were noted at the landfill.

Seepage Points

No areas of seepage were noted at the landfill.

Debris

Evidence of debris was not noted at the landfill.

Presence/Condition of Monitoring Instruments

There is no monitoring instrumentation installed at this landfill.

Other Features of Note

No other features were noted at the landfill.

Discussion

The South Landfill - East performance with respect to containment of the debris within the landfill is rated as acceptable. A visual inspection report, including supporting photos and drawing, is presented in the following pages.

Table XXXI: Visual Inspection Checklist / Report – South Landfill - East

DEW LINE CLEANUP: POST-CONSTRUCTION – LANDFILL MONITORING VISUAL INSPECTION CHECKLIST INSPECTION REPORT – PAGE 1 of 2

SITE NAME: PIN-2 - Cape Young

LANDFILL DESIGNATION: South Landfill - East (Regrade Landfill)

DATE OF INSPECTION: August 17, 2013

DATE OF PREVIOUS INSPECTION: August 11 & 12, 2012

INSPECTED BY: A. Passalis

REPORT PREPARED BY: A. Passalis

The inspector/reporter represents to the best of his/her knowledge that the following statements and observations are true and correct and to the best of the preparer's actual knowledge, no material facts have been suppressed or misstated.

LANDFILL VISUAL INSPECTION

Site Name: PIN-2, CAPE YOUNG
Landfill: South Landfill - East
Designation: Existing Regrade Area
Date Inspected: August 17, 2013
Inspected by: Andrew Passalis, P.Eng.

Signature:

TABLE XXXI: PIN-2, CAPE YOUNG - SOUTH LANDFILL - EAST

Checklist Item	Present (Yes/No)	Location	Length	Width	Depth	Extent	Description	Photographic Record	Severity Rating	Additional Comments
Settlement	Yes	FEATURE A See Figure PIN-2.8 (NE corner - New Obs.)	5 m	0.2-0.3 m	0.05-0.07 m	Isolated	Minor depression	SLE-8, 9	Acceptable	Linear depression.
Erosion	Yes	FEATURE B See Figure PIN-2.8 (Central cover - New Obs.)	7 m	0.1 m	0.02-0.07 m	Isolated	Minor erosion	SLE-19	Acceptable	Self armouring.
Frost Action	No	N/A	N/A	N/A	N/A	N/A	N/A	N/A	Not Observable	N/A
Animal Burrows	No	N/A	N/A	N/A	N/A	N/A	N/A	N/A	Not Observable	N/A
Vegetation	No	N/A	N/A	N/A	N/A	N/A	N/A	N/A	Not Observable	N/A
Staining	No	N/A	N/A	N/A	N/A	N/A	N/A	N/A	Not Observable	N/A
Vegetation Stress	No	N/A	N/A	N/A	N/A	N/A	N/A	N/A	Not Observable	N/A
Seepage Points	No	N/A	N/A	N/A	N/A	N/A	N/A	N/A	Not Observable	N/A
Debris Exposed	No	N/A	N/A	N/A	N/A	N/A	N/A	N/A	Not Observable	N/A
Presence/Condition of Monitoring Instruments	No	N/A	N/A	N/A	N/A	N/A	N/A	N/A	Not Observable	N/A
Other Features of Note:	No	N/A	N/A	N/A	N/A	N/A	N/A	N/A	Not Observable	N/A
Additional Photos	Yes	See Figure PIN-2.8 and Photographic Record	N/A	N/A	N/A	N/A	General Photographic Record	N/A	Not Observable	General photos for documentation, no additional features of note.
Overall Landfill Performance:	Acceptable								•	

10.3 PRELIMINARY STABILITY ASSESSMENT

The Preliminary Stability Assessment for South Landfill - East has been completed as per the TOR and is included as Table XXXII below.

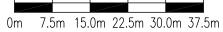
Table XXXII: Preliminary Stability Assessment – South Landfill - East

Feature	Severity Rating	Extent		
Settlement	Acceptable	Isolated		
Erosion	Acceptable Isolated			
Frost Action	Not observed	None		
Staining	Not observed	None		
Vegetation Stress	Not observed	None		
Seepage/Ponded Water	Not observed	None		
Debris exposure	Not observed None			
Overall Landfill Performance	Acceptable			

Performance/ Severity Rating	Description
Acceptable	Noted features are of little consequence. The landfill is performing as designed. Minor deviations in environmental or physical performance may be observed, such as isolated areas of erosion, settlement.
Marginal	Physical/environmental performance appears to be deteriorating with time. Observations may include an increase in size or number of features of note, such as differential settlement, erosion or cracking. No significant impact on landfill stability to date, but potential for failure is assessed as low or moderate.
Significant	Significant or potentially significant changes affecting landfill stability, such as significant changes in slope geometry, significant erosion or differential settlement; scarp development. The potential for failure is assessed as imminent.
Unacceptable	Stability of landfill is compromised to the extent that ability to contain waste materials is compromised. Examples may include: Debris exposed in erosion channels or areas of differential settlement. Liner exposed. Slope failure.
Extent	Description
Isolated	Singular feature
Occasional	Features of note occurring at irregular intervals/locations
Numerous	Many features of note, impacted less than 50% of the surface area of the landfill
Extensive	Impacting greater than 50% of the surface area of the landfill

10.4 LOCATION PLAN

The Location Plan for the South Landfill - East has been completed as per the TOR and is presented in Figure PIN-2.8.


LEGEND

MONITORING SOIL SAMPLE LOCATION (4)

APPROX. PHOTOGRAPHIC VIEWPOINT

MINOR SETTLEMENT (NTS)

MINOR EROSION (NTS)

1	FINAL	14-01-22	P.L.	A.P.	A.L.
NO.	VERSION	DATE	PAR	VERIF.	APPR.

Construction de Défense Canada Defence Construction Canada

COLLECTION OF LANDFILL MONITORING DATA

PIN-2, CAPE YOUNG, NUNAVUT

SOUTH LANDFILL - EAST

SITE REMEDIATION SOLUTIONS

Biogenie, a division of EnGlobe Corp. 4495 Wifrid-Hamel btvd, Suite 200 Quebec, (Quebec) CANADA G1P 2J7 Phone: 418-653-4422 www.biogenie-env.com

hone: 418-653-4422 www.biogenie-env.com

EASUREMENT UNIT Metre	SCALE: 1 : 750	DATE (month-year): JANUARY 2014
rawn by: P. LÉGARÉ	VERIFIED BY: A. PASSALIS	APPROVED BY: A. LECLAIR P. Eng.
ROJECT NO: CD3654_200_203	DRAWING NO: CD3654_200_203-PIN-2H-PL	PAGE PL

FIGURE PIN-2.8

10.5 PHOTOGRAPHIC RECORDS

The Photographic Record for the South Landfill - East has been completed as per the TOR and is included as Table XXXIII hereafter. The Photographic Record contains only an index of photographs. Full sized photographs are contained in the Addendum DVD-ROM.

Table XXXIII: Landfill Visual Inspection Photo Log – South Landfill - East

Photo		Size		Vantage Point		
(SLE-)	Filename	(KB)	Date	Easting	Northing	Caption
1	P213_258	737	11/09/2013	503471	7645014	Panoramic view looking northwest to east at south side of South Landfill – East
2	P213_259	4,390	17/08/2013	503518	7645029	View looking north-northeast along southeast side of South Landfill - East
3	P213_260	4,290	17/08/2013	503516	7645028	View looking northwest along south side of South Landfill - East
4	P213_261	1,105	11/09/2013	503512	7645035	Panoramic view looking west to northeast across cover from southeast corner of South Landfill - East
5	P213_262	1,370	11/09/2013	503519	7645053	Panoramic view looking south to northwest across cover from northeast corner of South Landfill - East
6	P213_263	4,396	17/08/2013	503528	7645056	View looking northwest along northeast side of South Landfill - East
7	P213_264	4,356	17/08/2013	503528	7645054	View looking south along east side of South Landfill - East
8	P213_265	4,284	17/08/2013	503521	7645054	View looking east at minor depression on northeast corner of South Landfill - East (5m L, 0.2-0.3m W, 0.05-0.07m D) - FEATURE A
9	P213_266	4,338	17/08/2013	503523	7645050	View looking northeast at minor depression on northeast corner of South Landfill - East (5m L, 0.2-0.3m W, 0.05-0.07m D) - FEATURE A
10	P213_267	4,356	17/08/2013	503484	7645100	View looking west along north side of South Landfill - East
11	P213_268	4,293	17/08/2013	503486	7645100	View looking southeast along northeast side of South Landfill - East
12	P213_269	4,366	17/08/2013	503481	7645083	View looking west along north crest of South Landfill - East
13	P213_270	4,331	17/08/2013	503483	7645083	View looking southeast along northeast crest of South Landfill - East
14	P213_272	1,108	11/09/2013	503455	7645076	Panoramic view looking northeast to southeast across cover from northwest corner of South Landfill – East
15	P213_273	4,376	17/08/2013	503439	7645084	View looking southeast along southwest side of South Landfill - East
16	P213_274	4,298	17/08/2013	503439	7645085	View looking east-northeast along north side of South Landfill - East
17	P213_275	4,405	17/08/2013	503480	7645070	View looking southeast across south cover of South Landfill - East
18	P213_277	4,416	17/08/2013	503479	7645071	View looking northwest across north cover of South Landfill - East
19	P213_278	4,311	17/08/2013	503487	7645064	View looking southeast at minor erosion on central cover area of South Landfill - East (7m L, 0.1m W, 0.02-0.07m D) - FEATURE B

11 SOUTH BORROW LANDFILL

11.1 BACKGROUND AND MONITORING PROGRAM

The South Borrow Landfill is located on the west side of the Station Access Road, at the northern tip of the South Borrow Area. Geophysical survey confirmed the presence of buried debris over an area of 1,060 m². The landfill has a single regrade area encompassing a footprint of approximately 2,000 m² with the final cover extending approximately 0.5 to 1.5 m above the surrounding grade. The tundra down gradient of the landfill is wet, with lush vegetation and a thick organic mat. There was standing water along the toe, particularly at the southwest and northwest corners.

Based on existing information regarding this landfill as a source of contamination, its potential migration pathways and receptors, the South Borrow Landfill was classified as low potential environmental risk. The remediation consisted of regrading with the placement of additional granular fill.

The long term monitoring plan consists of visual monitoring and periodic collection of soil samples. The 2013 monitoring of this landfill was limited to a visual inspection to assess landfill performance. There is no instrumentation installed at this landfill.

11.2 VISUAL INSPECTION REPORT

The visual inspection of the South Borrow Landfill was conducted on August 17, 2013. The Visual Inspection Checklist/Report has been completed as per the TOR and is included as Table XXXIV of this report.

Settlement

An indication of minor settlement was noted at two locations, consisting of pothole type depression on the north and east sides of the landfill (Feature A). The depressions ranged in size from 0.5 to 0.6 m long, 0.25 to 0.5 m wide and 0.1 m deep. This feature was not observed during the previous 2012 inspection.

SBLF-3: (left) View west at minor depression on north side slope (0.5m L, 0.5m W, 0.1m D) - FEATURE A SBLF-21: (right) View west at localized pothole on east crest (0.6 m L, 0.25 m W, 0.1 m D) - FEATURE A

Erosion

Indications of erosion were not noted.

Frost Action

Evidence of frost action was not noted.

Evidence of Burrowing Animals

Indications of burrowing animals were not noted.

Re-establishment of Vegetation

Evidence of vegetation was not noted.

Staining

Evidence of minor staining was noted within a wetted area along the southwest toe of the landfill (Feature B). The staining was limited to a 10 m long by 0.2 to 1.0 m wide area. A non-hydrocarbon sheen was also noted in an isolated area along the toe. The area of staining was consistent with observations made during the previous 2012 inspection.

SBLF-15: (left) View northwest at staining in ponded area on southwest corner (10 m L, 0.2-1 m W) - FEATURE B SBLF-16: (right) View of non-hydrocarbon sheen on water at southwest toe (10 m L, 0.2-1 m W) - FEATURE B

Seepage Points

There is no seepage point observed at this landfill.

Debris

There was no debris noted.

Presence/Condition of Monitoring Instruments

There is no monitoring instrument installed at this landfill.

Other Features of Note

As noted above, areas of ponding were noted along the northwest and southwest corners of the landfill. These ponded areas do not appear to be influencing the performance of the landfill regrade at this time.

Discussion

The South Borrow Landfill performance with respect to containment of the debris within the landfill is rated as acceptable. A visual inspection report, including supporting photos and drawing, is presented in the following pages.

Table XXXIV: Visual Inspection Checklist / Report – South Borrow Landfill

DEW LINE CLEANUP: POST-CONSTRUCTION - LANDFILL MONITORING VISUAL INSPECTION CHECKLIST INSPECTION REPORT - PAGE 1 of 2

SITE NAME: PIN-2 Cape Young

LANDFILL DESIGNATION: South Borrow Landfill (Regrade Landfill)

DATE OF INSPECTION: August 17, 2013

DATE OF PREVIOUS INSPECTION: August 11 & 12, 2012

INSPECTED BY: A. Passalis

REPORT PREPARED BY: A. Passalis

The inspector/reporter represents to the best of his/her knowledge that the following statements and observations are true and correct and to the best of the preparer's actual knowledge, no material facts have been suppressed or misstated.

LANDFILL VISUAL INSPECTION
Site Name: PIN-2, CAPE YOUNG
Landfill: South Borrow Landfill
Designation: Existing Regrade Area
Date Inspected: August 17, 2013
Inspected by: Andrew Passalis, P.Eng.

Signature:

TABLE XXXIV: PIN-2, CAPE YOUNG - SOUTH BORROW LANDFILL

Checklist Item	Present (Yes/No)	Location	Length	Width	Depth	Extent	Description	Photographic Record	Severity Rating	Additional Comments
Settlement	Yes	FEATURE A See Figure PIN-2.9 (N and E sides - New Obs.)	0.5 - 0.6 m	0.25 - 0.5 m	0.1 m	Isolated	Minor depressions	SBLF-3, 4, 20, 21	Acceptable	Pothole type
Erosion	No	N/A	N/A	N/A	N/A	N/A	N/A	N/A	Not Observable	N/A
Frost Action	No	N/A	N/A	N/A	N/A	N/A	N/A	N/A	Not Observable	N/A
Animal Burrows	No	N/A	N/A	N/A	N/A	N/A	N/A	N/A	Not Observable	N/A
Vegetation	No	N/A	N/A	N/A	N/A	N/A	N/A	N/A	Not Observable	N/A
Staining	Yes	FEATURE B See Figure PIN-2.9 (SW toe - New Obs.)	10 m	0.2 - 1 m	Unknown	Isolated	Rust coloured staining in ponded area along toe	SBLF-15, 16	Acceptable	Non-hydrocarbon sheen noted on water
Vegetation Stress	No	N/A	N/A	N/A	N/A	N/A	N/A	N/A	Not Observable	N/A
Seepage Points	No	N/A	N/A	N/A	N/A	N/A	N/A	N/A	Not Observable	N/A
Debris Exposed	No	N/A	N/A	N/A	N/A	N/A	N/A	N/A	Not Observable	N/A
Presence/Condition of Monitoring Instruments	No	N/A	N/A	N/A	N/A	N/A	N/A	N/A	Not Observable	N/A
Other Features of Note:	Yes	See Figure PIN-2.9	7 - 20 m	5 m	Unknown	N/A	Ponded areas on north and southwest sides	SBLF-1, 5, 7, 15	Not Observable	Not influencing landfill regrade performance.
Additional Photos	Yes	See Figure PIN-2.9 and Photographic Record	N/A	N/A	N/A	N/A	General Photographic Record	N/A	Not Observable	General photos for documentation, no additional features of note.
Overall Landfill Performance:	Acceptable		l l						L. L.	

11.3 PRELIMINARY STABILITY ASSESSMENT

The Preliminary Stability Assessment for South Borrow Landfill has been completed as per the TOR and is included as Table XXXV hereafter.

Table XXXV: Preliminary Stability Assessment – South Borrow Landfill

Feature	Severity Rating	Extent		
Settlement	Acceptable	Isolated		
Erosion	Not observed	None		
Frost Action	Not observed	None		
Staining	Acceptable	Isolated		
Vegetation Stress	Not observed Non			
Seepage/Ponded Water	Acceptable	Isolated		
Debris exposure	Not observed None			
Overall Landfill Performance	Acceptable			

Performance/ Severity Rating	Description
Acceptable	Noted features are of little consequence. The landfill is performing as designed. Minor deviations in environmental or physical performance may be observed, such as isolated areas of erosion, settlement.
Marginal	Physical/environmental performance appears to be deteriorating with time. Observations may include an increase in size or number of features of note, such as differential settlement, erosion or cracking. No significant impact on landfill stability to date, but potential for failure is assessed as low or moderate.
Significant	Significant or potentially significant changes affecting landfill stability, such as significant changes in slope geometry, significant erosion or differential settlement; scarp development. The potential for failure is assessed as imminent.
Unacceptable	Stability of landfill is compromised to the extent that ability to contain waste materials is compromised. Examples may include: Debris exposed in erosion channels or areas of differential settlement. Liner exposed. Slope failure.
Extent	Description
Isolated	Description Singular feature
Occasional	Features of note occurring at irregular intervals/locations
Numerous	Many features of note, impacted less than 50% of the surface area of the landfill
Extensive	Impacting greater than 50% of the surface area of the landfill

11.4 LOCATION PLAN

The Location Plan for the South Borrow Landfill has been completed as per the TOR and is presented in Figure PIN-2.9.

LEGEND

MONITORING SOIL SAMPLE LOCATION (4)

APPROX. PHOTOGRAPHIC VIEWPOINT

MINOR SETTLEMENT (NTS)

STAINING (NTS)

PONDING (NTS)

0m 7.5m 15.0m 22.5m 30.0m 37.5m

1	FINAL	14-01-22	P.L.	A.P.	A.L.
NO.	VERSION	DATE	PAR	VERIF.	APPR

COLLECTION OF LANDFILL MONITORING DATA

PIN-2, CAPE YOUNG, NUNAVUT

SOUTH BORROW LANDFILL

SITE REMEDIATION SOLUTIONS

Biogenie, a division of EnGlobe Corp. 4495 Wifrid-Hamel btvd, Suite 200 Quebec, (Quebec) CANADA G1P 2J7 Phone: 418-653-4422 www.biogenie-env.com

MEASUREMENT UNIT	SCALE:	DATE (month-year):
MEASUREMENT UNIT Metre	1 : 750	JANUARY 2014
DRAWN BY:	VERIFIED BY:	APPROVED BY:
DRAWN BY: P. LÉGARÉ	A. PASSALIS	A. LECLAIR P. Eng.
PROJECT NO:	DRAWING NO:	PAGE
CD3654_200_203	CD3654_200_203-PIN-2I-PL	PL

FIGURE PIN-2.9

11.5 PHOTOGRAPHIC RECORDS

The Photographic Record for the South Borrow Landfill has been completed as per the TOR and is included as Table XXXVI hereafter. The Photographic Record contains only an index of photographs. Full-sized photographs are contained in the Addendum DVD-ROM.

Table XXXVI: Landfill Visual Inspection Photo Log - South Borrow Landfill

Photo		Size		Vantag	je Point	
(SBLF-)	Filename	(KB)	Date	Easting	Northing	Caption
1	P213_235	4,328	17/08/2013	503950	7643495	View looking west-northwest along north side of South Borrow Landfill
2	P213_236	4,325	17/08/2013	503952	7643494	View looking south along east side of South Borrow Landfill
3	P213_237	4,358	17/08/2013	503942	7643496	View looking west at minor depression on north side slope of South Borrow Landfill (0.5m L, 0.5m W, 0.1m D) - FEATURE A
4	P213_238	4,395	17/08/2013	503936	7643493	View looking north at minor depression on north side slope of South Borrow Landfill (0.5m L, 0.5m W, 0.1m D) - FEATURE A
5	P213_239	4,299	17/08/2013	503933	7643497.8	View looking northwest at ponded water on northwest corner of South Borrow Landfill
6	P213_240	4,340	17/08/2013	503921	7643502	View looking south along west toe of South Borrow Landfill
7	P213_241	4,311	17/08/2013	503923	7643501.8	View looking east along north toe of South Borrow Landfill
8	P213_242	4,447	17/08/2013	503927	7643491.8	View looking south along west crest of South Borrow Landfill
9	P213_243	4,392	17/08/2013	503928	7643492.1	View looking east along north crest of South Borrow Landfill
10	P213_244	1,446	11/09/2013	503928	7643490.2	Panormamic view looking east to south across cover from northwest corner of South Borrow Landfill
11	P213_245	1,574	11/09/2013	503934	7643442.9	Panormamic view looking north to east across cover from southwest corner of South Borrow Landfill
12	P213_246	4,343	17/08/2013	503935	7643440.4	View looking east along south crest of South Borrow Landfill
13	P213_247	4,272	17/08/2013	503933	7643441.6	View looking north along west crest of South Borrow Landfill
14	P213_248	4,390	17/08/2013	503930	7643433.1	View looking east along south toe of South Borrow Landfill
15	P213_249	4,405	17/08/2013	503926	7643434.9	View looking northwest at iron coloured staining in ponded area on southwest corner of South Borrow Landfill (10m L, 0.2-1m W) - FEATURE B
16	P213_250	4,272	17/08/2013	503927	7643437.9	View of non-hydrocarbon sheen on water at southwest toe of South Borrow Landfill (10m L, 0.2-1m W) - FEATURE B
17	P213_251	4,306	17/08/2013	503927	7643432	View looking northeast at southwest toe of South Borrow Landfill
18	P213_253	4,367	17/08/2013	503950.2	7643439.3	View looking north along east side of South Borrow Landfill
19	P213_254	4,408	17/08/2013	503946.9	7643437.6	View looking west along south side of South Borrown Landfill
20	P213_255	4,375	17/08/2013	503953.9	7643466.8	View looking north at localized pothole on east crest of South Borrow Landfill (0.6m L, 0.25m W, 0.1m D) - FEATURE A
21	P213_256	4,329	17/08/2013	503958.7	7643471.5	View looking west at localized pothole on east crest of South Borrow Landfill (0.6m L, 0.25m W, 0.1m D) - FEATURE A

APPENDIX A

Range of the Report and Limitation of Responsibilities

Biogénie

SCOPE OF THE REPORT AND LIMITATION OF LIABILITY

A – Recipient and Use

This report ("Report") was prepared by Biogenie, a division of EnGlobe Corp., ("Biogenie") at the request and for the sole benefit of the Client ("Client"), and is intended to be used exclusively by the Client.

B -Site Conditions

Any description of the target site ("Site"), soil and/or groundwater included in the Report is only provided as an indication to the Client, and unless otherwise specifically mentioned in the Report such description shall not at any time and under any circumstances be used for purposes other than to gain a better understanding of the Site and to fulfil the requirements of the mandate assigned to Biogenie by the Client ("Mandate").

All information, including but not limiting the comprehensiveness of the data, charts, descriptions, drawings, tables, analysis results, compilations, and any conclusion and recommendation included in the Report, shall arise from the direct observation of the Site during a specific period, namely the fulfilment of the Mandate, and from the interpretation of such information and data available during the same period.

The content of the Report shall not apply in any way or to any part of the Site or to any parameter, material or analysis excluded from the Mandate.

Biogenie shall not be held responsible for the presence of any substance or material of a different nature, or of a similar nature but with different concentrations, as those indicated in the Report, and this in any part or parts of the Site excluded from the Mandate.

The content of the Report, including its conclusions and recommendations, shall not apply to any period preceding or following the Mandate. The physiochemical conditions of the Site, and the type and degree of contamination identified on the Site, may vary within a given period depending on a number of factors, especially the current activities taking place on the Site and/or on lands adjacent to the Site.

A review of the Report and/or changes in the parameters, conclusions and/or recommendations may prove to be necessary in the event of a change in the Site conditions or the discovery of pertinent information subsequent to the production of the Report.

C - Legislation, Regulations, Guidelines and Policies

The interpretation of the data and observations concerning the Site, as well as the conclusions and recommendations resulting from these, shall take into account the laws, regulations, standards, policies and/or guidelines applicable to the Project and that are in effect at the time of the fulfilment of the Mandate. In the event no current law, regulation, policy, guideline or standard applies to the project, Biogenie shall take into account proven environmental and professional rules and practices when drawing up the Report.

Any change in the legislation, regulations, standards, policies and/or guidelines applicable to the project may result in the need to review the Report and/or modify its parameters, conclusions and/or recommendations.

D – Use of Report

The Report is intended for the exclusive use of the Client and shall only be used for the purpose it was meant for.

The content of the Report and its conclusions and recommendations only apply to the Site and may not, at any time and under any circumstances, apply to any land adjacent to the Site or to any other land located in the vicinity of the Site.

Any reproduction in any form whatsoever and any distribution or use of the Report, in whole or in part, by a person other that the Client, is strictly forbidden without the prior written consent of Biogenie. Biogenie makes no declaration and pledges no responsibility towards any person other than the Client with regard to the content of the Report and the conclusions and recommendations expressed therein.

Biogenie is in no way responsible for any loss, fine or penalty, or for any expense, damage or other prejudice of any type whatsoever, sustained by a person other than the Client as a result of the unauthorized use of the Report.

No provision of the Report shall be construed as or considered to be a legal opinion of Biogenie's.

S:\MO\Range&Limit.doc/2013-04-18

APPENDIX B

Field Notes

	Sa. = 10 - 100 - 1
	mw-04 w9.492
AUGUST 17,2013 6°C OVERCOST	31UP 0.68-0.34
BOO LOAD GEAR, PERGOUS	12 1.66 bott 2.98.
900-1100 CB-KUSLULIUM	
1115-1200 - TAUGO TO PINIZ.	Survey mon 193. NESSOF
	to am Swo Mu
INSTRUCE TO	BRHILT BOR SAND, WITHGROVEZ
DONAL DEDGEO	DAMA TRUNCO 0-10
TIER IL DI SOLINST HUTERFOCE 30M	4WA 0-10
	4WB 49-50
NO 189 VT-4 NEW LOCKS	
V-S.	T - 3.8/33/30 TURB-84-1/105
	(IVA-+/9-1-14-1-177-7-9-
MW-03 WP 190	1.10.0
5W2 1 0.93-047 =	51Up; 0.87-0.32
© 204 bott 2.74.	2 21+ bott 2.30
	INSUES CONTESS.
DKBROWN GRAVEZ (FRACT, BP)	TP 40m NNW 8 MW.
DK BLOWN (FICHARDIA)	TP 4 0 - NNW & MW. + BD1 + INT
Some F.G-MG SAND, DAY, COL	1WB 30-40 BLDR
Gea	DK BEN SAND+ BOKN RUCK, PLATEN, C
3WA 6-10	WIORCAMICS
B 40-50,	WIOCEPHO
T-3,52/3,7 3w PURGE	
0H - 6-00 /652 2x500AM 081	
6 101/06	
TURG: 247. 1x250pb	

					φ.				•	
mw.0	2	WP 199	7		TIER	L DF				
SI	Up 0.77-	0-24		,	201	N	CRNR	V-51	/Sw,	PAN
Z		1 00	#.29	3	202	<u></u>	5 560	E V-	SE/SW	,
					203	706	- 1	1- SE (S	fr	
TP- 4	tm 5w 0(1	\w			204		SW (
	6/39/24		AVT	186	205	Ē	TOE	V- NW	1500/1	<u>بد. بد</u>
	90/693/		UT	- Jan-	206	^	~ 30 SL	OPE V	NWISH	Slo
	407.6/36		1 21	2	207	ϵ	CRHIC	V-NW	/sw -	PAN
Ture	- 981/72.4	169.1			20817		V. SE/	1	4	1
				46 2,0L		6 m	8 swa	25-101	1,5 b	MASU
3001	, Z W	भगद्धार म	MRA				SELF	ARM-		
		1200	<u> </u>	•	210	S CRI	٠, ١	1- NE/	uw, Pa	,11
o-50	DEBRN.	BRH RX	K WI		211	mas	LOPE .	1-,UE\V	ω	
	MED 60	are, on a	wo,500	12 CSG	212		V- N			
	2.	A Ort			213		9 سر		1	<u> </u>
·	2	3 , 90	50		214		je e s			
					215	1-4	E/17E	e tde	(W)	
	0/96.				216	wit	560F	V-56	ノンド	
VT2	~0 /9b.	VT-4	~ BKG	D	217		CRNR		1 1	1
					218-2	ig M	N ERUSI	ate ne	513 mg 6) VT-
. VT-	1-Enf	WP 19	<i>f</i>			20	·50 m, 5	-104,	6-7mL.	
						SELF	ARM.	-		
VT-3	V-5	Wr 200	<u></u>		120	m.	N EROSI	sn: 30-	50w-1	3ch,
							10	OP - TOE.	, TURN !	SL. E.
					221	54. De	>P11. e C	REST 7	L5×25×	150.
							V-	12/15		7

	SOUTH LANDE WEAST
223 Um DEPR. In 1 × 20 w x 10 k	
Y- 1-1215	WP237 - PAN W-N, @ 55,0E
224 m~ ERUS. TOP-TOE 10-20LD,	238 V- NNE/NW @ SE CRATR-PAN.
54. v-sw.	239 PAN - NW/SW / V- NW/SW.
	SAN N- FE ELVE TINDELTON
	NE CRNR SML, 2030W, 574
South Bornow LANDELL	241 NE TOE, V-WSWISE
	242. V. WSW/SE TOP.
777 V.W/S CNECENE	243 DAN SE- ENE, V-SE/ENE
TOB PUD DECS. ZOXZOXIDA N-M/N.	244 V-SETNW 42004 CL.
229 V-HWE PONSED ARED @ TOU	245 MN FROS UN SURFACE AML, 10W, 5V
200 V-S/E @ NW TOF	V≤E.
23, V-S/E, PAD SWZNE, NWCPNR	
232 DAN-E/NW , V-E/N-	MKWCE
233 V-E/NNW, IRON STRINGE	246 Part V-W From Acres Ro
TOE, Swanz ~ 10m Alond,	247 V-NW/SW TOE(E)
WET. SHEEN (BACT) @ SW CRUPE	248 E CRNR, V-NWISW, PAN.
V- NE/N.	299 N CANR., PAN. 5U-SE V-SW/SE.
234 U-NE/W- @ SE CRUR	250 V. SWISE @ TOE
255 MIN. POTHOLE 60 x 25 x 104 , V-N/E	251 V-SWENSAE
236 V-SW ACROSS TOP.	252 V-5E 0 WS108
	· 253 V SE/NE W- TOE
	254 V- SEINE WORNE) PAN.
	255 DEPR.C(REST 1.SML, 20-30W, 5d
	V- NWISW.

·			•						
			,	U	SAF LAN	SFUL			
257.	V- NE/NW/	PAN FRON E	CRNR				-		
258	V. NELAM	, ,		1. 27-3.	V-\$1	POE	106		-
	> MIN ESOSION.	TO 8 - TOE WE 10	-12m-	43 274		WISE	e ne ca	NR	
	5-7+	V-N/S +ZND	e /2 MID	-415 275	V·5	EINER	NW CR	26	
259		EROSION TOP-		617276	V -	5E/NW	·AVONZ	Q.	•
	10-15w:-	1		8/0277	· V-	40100	From	SWCIL	r
760	V- NE C S		•			· · ·			
261	V-NW e E			ROUL	H GRAVI	D W/ R	IPRAP	UNEVE	7
262		N Erosion e 25a	· · · · · · · · · · · · · · · · · · ·	, 21	DES.				
,	•								
			,	5747	ION WE	MRJ T	SFILL		
PAL	LET UNE WE	ST LANDFILL	·	-					
	V-			1 278	- V-SN			•	
263	v- WISE	e tos		43 279	V- N	w15 \			
264	· ·	E ACROSS TOP.		.4 280	PAN.	N-SU	1. (263)).	
265	V-5 Nba	ng U 51 025		* 5/6 281	V-8	E/W .	, ‹		
266	· .	WISDE CRE	×T	7 282	PAN 1	DU NE 6	3.57		
767		, PAS SE/N-		8 283	1	MONG 1			
268	VNISE	e toe	15 *	9 284	1. PE	P. W SID	لار		
269	V- NNE.			19 582	V-N	ALUNG	W SLDE		
270	V-10 @ (3		11 28#	PAN E	-NW AC	10t 726ss	>	
271	V-SW/ NO	JW.		288	V- N.	vw e vi	MICLE TR	ACKS (T'	1P)
27-7	_ V-NW_			· ·		4	-8mlx	0.3mh) 02
				· -					
				* -					

	E - Harris					*
AIRSTRID LANDE LL - LOSE A	AIRS	RIP SOU	A Lang	-11.C.		
			:			
290 - V-WIE /NE. & SWICKNE	306	V-N	-F S 10	E		
29, - VE e (210)	307	5	-5.51	1		
797 1-NNW) 5, PAN 5-N	30 %		とそーと		JUSNIZ	
293 V FIXE/5	-309	ノーモ (ト	F - N	302		
294 PAN MIE-5 ON W CRNR	2"	V-S-	e ~ 5/E	É		
295 V- SSE/ E @ TOE	310	-				
296 V-W-	311.	V-5	- E SI	F		
297 V- W/5~/55E	,			NO PON	Shich	
298 PAN. NW-S					,))	
LOSE E+F	1					
	<u> </u>	ļ				
299 V-NW/E	-					
300 Pan N-SW @ Z47)						,
300 V-NW						
307 V-SE/SU @ NE TOE						·
305, V-NE /SE Avoish a - see tracks						
Snau metal debris etae,			•			
all Surface - strapping						
304(305 - 30x'7cm, V-5E						
LEAVE SITE @ 7.30pm						
azn anck						

APPENDIX C

Quality insurance/Quality control

The Quality Assurance/Quality Control (QA/QC) program was implemented to monitor the quality of the analytical results. The main objective of this QA/QC program is to insure that sampling data and analysis results are complete, precise, exact, representative and comparable. The review consisted of evaluating sample collection/handling methodology, general laboratory comments, field (blind) duplicate samples, and inter-laboratory duplicate samples. Samples collected during the monitoring program were submitted to laboratories accredited by the Canadian Association for Environmental Analytical Laboratories (CAEAL).

All samples were collected following strict Biogenie sampling procedures. Samples were uniquely labelled and control was maintained through use of chain of custody forms. All samples were collected in laboratory supplied containers and preserved in insulated coolers. Appropriate QA/QC procedures were adhered to at all times.

Blind duplicate samples were submitted to Maxxam for intra-laboratory analysis, with additional duplicate samples were sent to Exova for inter-laboratory comparison purposes. Both laboratories are situated in Edmonton, Alberta.

The relative percent difference (RPD) is used to evaluate the sample result variability. Average RPD values of less than 40% for soil samples and 30% for groundwater samples are considered an indication of acceptable duplicate sample variability. For groundwater samples, an RPD greater than 30% may reflect difference in sample turbidity or variance in the sample procedures. Individual RPD values greater than 50% are not considered to reflect acceptable variability. RPD values are not used to evaluate those compounds that are present at concentrations less than five times the method detection limit (MDL).

SOIL SAMPLES

In case of soil samples, one blind duplicate sample was submitted for intra- and inter-laboratory comparisons. Review of results indicated relatively minor differences in concentrations within the Maxxam and Exova metal results when duplicates were compared, and considered to be within acceptable limits. It should be noted that many of individual parameter concentrations were less than five times the MDL. Two RPD values (59.5%) for chromium and (45.8%) for nickel were noted to be outside the acceptable range when inter-laboratory duplicates were compared, however both reported results less than five times the MDL. The soil chemical analysis results and the evaluation of analytical data for the 2013 QA/QC samples are presented in Table XXXVII.

All of PHC and PCB concentrations were below the MDL in the intra- and inter laboratory samples.

Overall, the soil sample results are coherent and within the same range of results for intra- and inter-laboratory samples. In general, the reliability of soil analytical results is considered as good as values that were outside the acceptable RPD were detected at very low concentrations.

GROUNDWATER SAMPLES

In case of groundwater samples, one blind duplicate sample was submitted for intra- and interlaboratory comparisons. Review of results indicated a number of differences in concentrations within the Maxxam and Exova metals results when duplicates were compared, including several results that are outside the acceptable range, including intra-lab RPDs for Cadmium (45.2%), Chromium (157.6%), Copper (52.5%), Nickel (126.1%) and Zinc (47.6%) and inter-lab RPDs for Chromium (63.4%) and Nickel (62.0%).

The groundwater chemical analysis results and the evaluation of analytical data for the 2013 QA/QC samples are presented in Table XXXVIII below. All of PHC and PCB concentrations were below the MDL in the intra- and inter laboratory samples.

Overall, the groundwater sample results are coherent and within the same range of results for intra- and inter-laboratory samples. In general, the reliability of soil analytical results is considered as good.

S:\P\CD\3654\200\201\AN\Appendix D.docx

Table C-1: Relative Percent Difference - Duplicate Soil Sample

									Para	meters						
Sample Name	Sample Location	n Depth Below (cm)	As [mg/kg]	Cd [mg/kg]	Cr [mg/kg]	Co [mg/kg]	Cu [mg/kg]	Pb [mg/kg]	Hg [mg/kg]	Ni [mg/kg]	Zn [mg/kg]	PCBs [mg/kg]	PHC (F1) [mg/kg]	PHC (F2) [mg/kg]	PHC (F3) [mg/kg]	TPH [mg/kg]
P213-1WA (Maxxam)	Tier II MW-02	0-10	2.5	0.25	3.9	1.9	6.2	2.8	<0.050	3.7	23	<0.01	<12	<10	<10	<10
P213-BD1 (Maxxam)	Tier II MW-02	0-10	2.5	0.26	3.8	1.7	6.1	2.5	<0.050	3.9	20	<0.01	<12	<10	<10	<10
P213-1WA (Exova)	Tier II MW-02	0-10	2.6	0.26	7.2	2.4	8.1	<5.0	0.060	5.9	26,000	<0.01	<10	<50	<50	<50
Method Detection Lin	nit (Maxxam)		1.0	0.10	1.0	1.0	5.0	1.0	0.050	1.0	10	0.01	12	10	10	10
Method Detection Lin	nit (Exova)		0.2	0.010	0.5	0.1	1.0	5.0	0.010	0.5	1	0.10	10	50	50	50
Intra-Lab (% RPD)	Tier II	0-10	0.0	3.9	2.6	11.1	1.6	11.3	n/a	5.3	14	n/a	n/a	n/a	n/a	n/a
Inter-Lab (% RPD)	MW-02	0-10	3.9	3.9	59.5	23.3	26.6	n/a	n/a	45.8	12	n/a	n/a	n/a	n/a	n/a

The symbol n/a indicates RPD can not be calculated.

Table C-2: Relative Percent Difference - Duplicate Groundwater Sample

		7				Paran	neters				
Sample Name	Sample Location	As [mg/L]	Cd [mg/L]	Cr [mg/L]	Co [mg/L]	Cu [mg/L]	Pb [mg/L]	Hg [mg/L]	Ni [mg/L]	Zn [mg/L]	PCBs [mg/L]
P213-2W (Maxxam)	Tier II M ¹	v . 0.0012	0.000057	0.027	0.00038	0.0024	0.00037	<0.0050	0.015	0.013	<0.00005
P213-BDW1 (Maxxam)	Tier II M	v - 0.00084	0.000036	0.0032	<0.00030	0.0014	<0.00020	<0.0050	0.0034	0.008	<0.00005
P213-2W (Exova)	Tier II M	0.0009	0.00006	0.014	0.0003	0.003	0.0004	<0.0001	0.0079	0.015	<0.0001
Method Detection Lin	mit (Maxxam)	0.0002	0.000025	0.001	0.0003	0.0002	0.0002	0.000005	0.0005	0.003	0.00005
Method Detection Lin	mit (Exova)	0.0002	0.00001	0.0005	0.0001	0.001	0.0001	0.0001	0.0005	0.001	0.0001
Intra-Lab (% RPD)	Tier II M	y . 35.3	45.2	157.6	n/a	52.6	n/a	n/a	126.1	47.6	n/a
Inter-Lab (% RPD)	02	28.6	5.1	63.4	23.5	22.2	7.8	n/a	62.0	14.3	n/a

The symbol n/a indicates RPD can not be calculated.

APPENDIX D

Maxxam and Exova QA/QC Reports and Certificates of Analysis

Your Project #: 2013 KITIKMEDT LFM Site Location: PIN-2 CAPE YOUNG

Your C.O.C. #: A150036

Attention: ANTOINE VALLIERES
BIOGENIE INC.
4495, boul. Wilfrid-Hamel
bureau 200

QUEBEC, PQ

CANADA G1P 2J7

Report Date: 2013/08/27

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B373411 Received: 2013/08/19, 9:40

Sample Matrix: Soil # Samples Received: 9

		Date	Date		
Analyses	Quantity	Extracted	Analyzed Laborato	ry Method	Analytical Method
BTEX/F1 by HS GC/MS (MeOH extract)	3	2013/08/21	2013/08/22 AB SOP-	-00039	CCME, EPA 8260
BTEX/F1 by HS GC/MS (MeOH extract)	6	2013/08/21	2013/08/23 AB SOP-	-00039	CCME, EPA 8260
CCME Hydrocarbons (F2-F4 in soil)	9	2013/08/21	2013/08/23 AB SOP-	-00040	CCME PHC-CWS
			AB SOP-	-00036	
Elements by ICPMS - Soils	9	2013/08/22	2013/08/23 AB SOP-	-00043	EPA 200.8
Moisture	9	N/A	2013/08/22 AB SOP-	-00002	CCME PHC-CWS
Polychlorinated Biphenyls (1)	1	2013/08/23	2013/08/23 CAL SOF	P-00149	EPA 3550C, EPA 8082A
Polychlorinated Biphenyls (1)	8	2013/08/23	2013/08/24 CAL SOF	P-00149	EPA 3550C, EPA 8082A

Sample Matrix: Water # Samples Received: 6

	Date	Date	
Quantity	Extracted	Analyzed Laboratory Method	Analytical Method
1	N/A	2013/08/21 AB SOP-00039	CCME, EPA 8260C
5	N/A	2013/08/22 AB SOP-00039	CCME, EPA 8260C
5	2013/08/20	2013/08/26 AB SOP-00043	EPA 200.8
1	2013/08/20	2013/08/27 AB SOP-00043	EPA 200.8
2	2013/08/21	2013/08/21 AB SOP-00040	EPA3510C/CCME PHCCWS
		AB SOP-00037	
4	2013/08/22	2013/08/22 AB SOP-00040	EPA3510C/CCME PHCCWS
		AB SOP-00037	
6	2013/08/24	2013/08/24 EENVSOP-00031	EPA 245.1
6	2013/08/26	2013/08/26 AB SOP-00042	EPA 200.7
5	2013/08/26	2013/08/26 AB SOP-00043	EPA 200.8
1	2013/08/26	2013/08/27 AB SOP-00043	EPA 200.8
6	2013/08/23	2013/08/25 CAL SOP-00149	EPA 3510C, EPA 8082A
	1 5 5 1 2 4 6 6 5 1	Quantity Extracted 1 N/A 5 N/A 5 2013/08/20 1 2013/08/20 2 2013/08/21 4 2013/08/22 6 2013/08/24 6 2013/08/26 5 2013/08/26 1 2013/08/26	Quantity Extracted Analyzed Laboratory Method 1 N/A 2013/08/21 AB SOP-00039 5 N/A 2013/08/22 AB SOP-00039 5 2013/08/20 2013/08/26 AB SOP-00043 1 2013/08/21 2013/08/27 AB SOP-00043 2 2013/08/21 2013/08/21 AB SOP-00037 4 2013/08/22 2013/08/22 AB SOP-00037 6 2013/08/24 2013/08/24 EENVSOP-00031 6 2013/08/26 AB SOP-00042 5 2013/08/26 AB SOP-00043 1 2013/08/26 AB SOP-00043 1 2013/08/26 AB SOP-00043

^{*} RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) This test was performed by Maxxam Calgary Environmental

Your Project #: 2013 KITIKMEDT LFM Site Location: PIN-2 CAPE YOUNG

Your C.O.C. #: A150036

Attention: ANTOINE VALLIERES BIOGENIE INC. 4495, boul. Wilfrid-Hamel bureau 200 QUEBEC, PQ CANADA G1P 2J7

Report Date: 2013/08/27

CERTIFICATE OF ANALYSIS -2-

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager.

James Ehizojie, B.Sc. Hon, EPt., Senior Project Manager Email: JEhizojie@maxxam.ca Phone# (780) 577-7139

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Client Project #: 2013 KITIKMEDT LFM Site Location: PIN-2 CAPE YOUNG

Sampler Initials: AP

RESULTS OF CHEMICAL ANALYSES OF SOIL

Maxxam ID		HG3142	HG3162	HG3163	HG3164	HG3165	HG3166		
Sampling Date		2013/08/17	2013/08/17	2013/08/17	2013/08/17	2013/08/17	2013/08/17		
COC Number		A150036	A150036	A150036	A150036	A150036	A150036		
	UNITS	P213 - 1WA	P213 - 1WB	P213 - 2WA	P213 - 2WB	P213 - 3WA	P213 - 3WB	RDL	QC Batch

Physical Properties									
Moisture	%	17	36	51	16	17	9.1	0.30	7105705

RDL = Reportable Detection Limit

	UNITS	P213 - 4WA	P213 - 4WB	P213 - BD1	RDL	QC Batch
COC Number		A150036	A150036	A150036		
Sampling Date		2013/08/17	2013/08/17	2013/08/17		
Maxxam ID		HG3167	HG3173	HG3174		

Moisture % 20				
iviolsture /6 20	9.2	39	0.30	7105705

Client Project #: 2013 KITIKMEDT LFM Site Location: PIN-2 CAPE YOUNG

Sampler Initials: AP

PETROLEUM HYDROCARBONS (CCME)

Maxxam ID		HG3142	HG3162		HG3163	HG3163		HG3164		
Sampling Date		2013/08/17	2013/08/17		2013/08/17	2013/08/17		2013/08/17		
COC Number		A150036	A150036		A150036	A150036		A150036		
	UNITS	P213 - 1WA	P213 - 1WB	RDL	P213 - 2WA	P213 - 2WA	RDL	P213 - 2WB	RDL	QC Batch
						Lab-Dup				
Ext. Pet. Hydrocarbon										
F2 (C10-C16 Hydrocarbons)	mg/kg	<10	<10	10	<20 (1)	<20 (1)	20	<10	10	7102711
F3 (C16-C34 Hydrocarbons)	mg/kg	<50	<50	50	<100 (1)	<100 (1)	100	<50	50	7102711
F4 (C34-C50 Hydrocarbons)	mg/kg	<50	<50	50	<100 (1)	<100 (1)	100	<50	50	7102711
Reached Baseline at C50	mg/kg	Yes	Yes		Yes	Yes		Yes		7102711
Surrogate Recovery (%)										
O-TERPHENYL (sur.)	%	90	107		115	106		128		7102711

RDL = Reportable Detection Limit
(1) Detection limits raised due to high moisture content.

Maxxam ID		HG3165	HG3166	HG3167	HG3173	HG3174		
Sampling Date		2013/08/17	2013/08/17	2013/08/17	2013/08/17	2013/08/17		
COC Number		A150036	A150036	A150036	A150036	A150036		
	UNITS	P213 - 3WA	P213 - 3WB	P213 - 4WA	P213 - 4WB	P213 - BD1	RDL	QC Batch
Ext. Pet. Hydrocarbon								
F2 (C10-C16 Hydrocarbons)	mg/kg	<10	<10	<10	<10	<10	10	7102711
F3 (C16-C34 Hydrocarbons)	mg/kg	<50	<50	<50	<50	63	50	7102711
F4 (C34-C50 Hydrocarbons)	mg/kg	<50	<50	<50	<50	<50	50	7102711
Reached Baseline at C50	mg/kg	Yes	Yes	Yes	Yes	Yes		7102711
Surrogate Recovery (%)								
O-TERPHENYL (sur.)	%	106	113	111	105	98		7102711

Client Project #: 2013 KITIKMEDT LFM Site Location: PIN-2 CAPE YOUNG

Sampler Initials: AP

POLYCHLORINATED BIPHENYLS BY GC-ECD (SOIL)

Maxxam ID		HG3142	HG3162		HG3163		HG3164		
Sampling Date		2013/08/17	2013/08/17		2013/08/17		2013/08/17		
COC Number		A150036	A150036		A150036		A150036		
	UNITS	P213 - 1WA	P213 - 1WB	RDL	P213 - 2WA	RDL	P213 - 2WB	RDL	QC Batch

Polychlorinated Biphenyls									
Aroclor 1016	mg/kg	<0.010	<0.010	0.010	<0.018	0.018	<0.010	0.010	7108064
Aroclor 1221	mg/kg	<0.010	<0.010	0.010	<0.018	0.018	<0.010	0.010	7108064
Aroclor 1232	mg/kg	<0.010	<0.010	0.010	<0.018	0.018	<0.010	0.010	7108064
Aroclor 1242	mg/kg	<0.010	<0.010	0.010	<0.018	0.018	<0.010	0.010	7108064
Aroclor 1248	mg/kg	<0.010	<0.010	0.010	<0.018	0.018	<0.010	0.010	7108064
Aroclor 1254	mg/kg	<0.010	<0.010	0.010	<0.018	0.018	<0.010	0.010	7108064
Aroclor 1260	mg/kg	<0.010	<0.010	0.010	<0.018	0.018	<0.010	0.010	7108064
Aroclor 1262	mg/kg	<0.010	<0.010	0.010	<0.018	0.018	<0.010	0.010	7108064
Aroclor 1268	mg/kg	<0.010	<0.010	0.010	<0.018	0.018	<0.010	0.010	7108064
Total Aroclors	mg/kg	<0.010	<0.010	0.010	<0.018	0.018	<0.010	0.010	7108064
Surrogate Recovery (%)									
NONACHLOROBIPHENYL (sur.)	%	63	88		89		83		7108064

Report Date: 2013/08/27

BIOGENIE INC.

Client Project #: 2013 KITIKMEDT LFM Site Location: PIN-2 CAPE YOUNG

Sampler Initials: AP

POLYCHLORINATED BIPHENYLS BY GC-ECD (SOIL)

Maxxam ID		HG3165	HG3166	HG3166	HG3167	HG3173		
Sampling Date		2013/08/17	2013/08/17	2013/08/17	2013/08/17	2013/08/17		
COC Number		A150036	A150036	A150036	A150036	A150036		
	UNITS	P213 - 3WA	P213 - 3WB	P213 - 3WB	P213 - 4WA	P213 - 4WB	RDL	QC Batch
				Lab-Dup				
		ı	1	1	1	ı	ı	т
Polychlorinated Biphenyls								
Aroclor 1016	mg/kg	<0.010	<0.010	<0.010	<0.010	<0.010	0.010	7108064
Aroclor 1221	mg/kg	<0.010	<0.010	<0.010	<0.010	<0.010	0.010	7108064
Aroclor 1232	mg/kg	<0.010	<0.010	<0.010	<0.010	<0.010	0.010	7108064
Aroclor 1242	mg/kg	<0.010	<0.010	<0.010	<0.010	<0.010	0.010	7108064
Aroclor 1248	mg/kg	<0.010	<0.010	<0.010	<0.010	<0.010	0.010	7108064
Aroclor 1254	mg/kg	<0.010	<0.010	<0.010	<0.010	<0.010	0.010	7108064
Aroclor 1260	mg/kg	<0.010	<0.010	<0.010	<0.010	<0.010	0.010	7108064
Aroclor 1262	mg/kg	<0.010	<0.010	<0.010	<0.010	<0.010	0.010	7108064
Aroclor 1268	mg/kg	<0.010	<0.010	<0.010	<0.010	<0.010	0.010	7108064
Total Aroclors	mg/kg	<0.010	<0.010	<0.010	<0.010	<0.010	0.010	7108064
Surrogate Recovery (%)								
NONACHLOROBIPHENYL (sur.)	%	88	86	88	92	88		7108064

Client Project #: 2013 KITIKMEDT LFM Site Location: PIN-2 CAPE YOUNG

Sampler Initials: AP

POLYCHLORINATED BIPHENYLS BY GC-ECD (SOIL)

	UNITS	P213 - BD1	RDL	QC Batch
COC Number		A150036		
Sampling Date		2013/08/17		
Maxxam ID		HG3174		

Polychlorinated Biphenyls				
Aroclor 1016	mg/kg	<0.010	0.010	7108064
Aroclor 1221	mg/kg	<0.010	0.010	7108064
Aroclor 1232	mg/kg	<0.010	0.010	7108064
Aroclor 1242	mg/kg	<0.010	0.010	7108064
Aroclor 1248	mg/kg	<0.010	0.010	7108064
Aroclor 1254	mg/kg	<0.010	0.010	7108064
Aroclor 1260	mg/kg	<0.010	0.010	7108064
Aroclor 1262	mg/kg	<0.010	0.010	7108064
Aroclor 1268	mg/kg	<0.010	0.010	7108064
Total Aroclors	mg/kg	<0.010	0.010	7108064
Surrogate Recovery (%)				
NONACHLOROBIPHENYL (sur.)	%	83		7108064

Client Project #: 2013 KITIKMEDT LFM Site Location: PIN-2 CAPE YOUNG

Sampler Initials: AP

ELEMENTS BY ATOMIC SPECTROSCOPY (SOIL)

Maxxam ID		HG3142	HG3162	HG3163	HG3164	HG3165	HG3166		
Sampling Date		2013/08/17	2013/08/17	2013/08/17	2013/08/17	2013/08/17	2013/08/17		
COC Number		A150036	A150036	A150036	A150036	A150036	A150036		
	UNITS	P213 - 1WA	P213 - 1WB	P213 - 2WA	P213 - 2WB	P213 - 3WA	P213 - 3WB	RDL	QC Batch
						1	,		1
Elements									
Total Arsenic (As)	mg/kg	2.5	4.5	1.9	4.4	2.7	2.7	1.0	7106906
Total Cadmium (Cd)	mg/kg	0.25	0.21	0.20	0.13	0.22	0.11	0.10	7106906
Total Chromium (Cr)	mg/kg	3.9	3.9	4.9	5.2	4.7	5.6	1.0	7106906
Total Cobalt (Co)	mg/kg	1.9	1.4	1.2	1.5	1.8	1.9	1.0	7106906
Total Copper (Cu)	mg/kg	6.2	6.2	7.0	5.6	<5.0	<5.0	5.0	7106906
Total Lead (Pb)	mg/kg	2.8	2.8	1.9	2.6	3.3	3.0	1.0	7106906
Total Mercury (Hg)	mg/kg	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	0.050	7106906
Total Nickel (Ni)	mg/kg	3.7	4.0	4.4	4.5	3.7	4.0	1.0	7106906
Total Zinc (Zn)	mg/kg	23	12	<10	11	22	14	10	7106906

Maxxam ID		HG3166	HG3167	HG3173	HG3174		
Sampling Date		2013/08/17	2013/08/17	2013/08/17	2013/08/17		
COC Number		A150036	A150036	A150036	A150036		
	UNITS	P213 - 3WB	P213 - 4WA	P213 - 4WB	P213 - BD1	RDL	QC Batch
		Lab-Dup					
				,	1		
Elements							
Total Arsenic (As)	mg/kg	2.6	1.5	4.1	2.5	1.0	7106906
Total Cadmium (Cd)	mg/kg	<0.10	<0.10	0.13	0.26	0.10	7106906
Total Chromium (Cr)	mg/kg	5.1	3.9	5.2	3.8	1.0	7106906
Total Cobalt (Co)	mg/kg	1.7	1.1	2.2	1.7	1.0	7106906
Total Copper (Cu)	mg/kg	<5.0	<5.0	<5.0	6.1	5.0	7106906
Total Lead (Pb)	mg/kg	2.7	2.4	6.1	2.5	1.0	7106906
Total Mercury (Hg)	mg/kg	<0.050	<0.050	<0.050	<0.050	0.050	7106906
Total Nickel (Ni)	mg/kg	3.5	2.6	3.8	3.9	1.0	7106906
Total Zinc (Zn)	mg/kg	12	<10	13	20	10	7106906

Client Project #: 2013 KITIKMEDT LFM Site Location: PIN-2 CAPE YOUNG

Sampler Initials: AP

VOLATILE ORGANICS BY GC-MS (SOIL)

2013/08/17 A150036 P213 - 1WA	2013/08/17 A150036 P213 - 1WA	2013/08/17 A150036		2013/08/17 A150036	\vdash	
				A150036		
P213 - 1WA	D212 - 1WA					
	FZI3-IWA	P213 - 1WB	RDL	P213 - 2WA	RDL	QC Batch
	Lab-Dup					
<12	<12	<12	12	<24 (1)	24	7100533
108	109	117		126		7100533
93	93	93		94		7100533
86	88	103		94		7100533
98	102	96		105		7100533
	108 93 86	108 109 93 93 86 88	108 109 117 93 93 93 86 88 103	108 109 117 93 93 93 86 88 103	108 109 117 126 93 93 93 94 86 88 103 94	108 109 117 126 93 93 93 94 86 88 103 94

Maxxam ID		HG3164	HG3165	HG3166	HG3167	HG3173		
Sampling Date		2013/08/17	2013/08/17	2013/08/17	2013/08/17	2013/08/17		
COC Number		A150036	A150036	A150036	A150036	A150036		
	UNITS	P213 - 2WB	P213 - 3WA	P213 - 3WB	P213 - 4WA	P213 - 4WB	RDL	QC Batch

Volatiles								
(C6-C10)	mg/kg	<12	<12	<12	<12	<12	12	7100533
Surrogate Recovery (%)								
1,4-Difluorobenzene (sur.)	%	107	109	104	111	103		7100533
4-BROMOFLUOROBENZENE (sur.)	%	93	94	92	93	94		7100533
D10-ETHYLBENZENE (sur.)	%	100	98	98	99	96		7100533
D4-1,2-DICHLOROETHANE (sur.)	%	97	101	96	100	97		7100533

Client Project #: 2013 KITIKMEDT LFM Site Location: PIN-2 CAPE YOUNG

Sampler Initials: AP

VOLATILE ORGANICS BY GC-MS (SOIL)

Maxxam ID		HG3174		
Sampling Date		2013/08/17		
COC Number		A150036		
	UNITS	P213 - BD1	RDL	QC Batch

mg/kg	<12	12	7100533
%	120		7100533
%	93		7100533
%	102		7100533
%	99		7100533
	% % %	% 120 % 93 % 102	% 120 % 93 % 102

Client Project #: 2013 KITIKMEDT LFM Site Location: PIN-2 CAPE YOUNG

Sampler Initials: AP

RESULTS OF CHEMICAL ANALYSES OF WATER

Maxxam ID		HG3914	HG3966	HG3967	HG3968		HG3969		
Sampling Date		2013/08/17	2013/08/17	2013/08/17	2013/08/17		2013/08/17		
COC Number		A150036	A150036	A150036	A150036		A150036		
	UNITS	P213-2W	P213-3W	P213-4W	P213-BDW1	RDL	P213-TB	RDL	QC Batch

Low Level Elements									
Total Cadmium (Cd)	ug/L	0.057	0.15	0.12	0.036	0.025	<0.0050	0.0050	7094604

RDL = Reportable Detection Limit

Maxxam ID		HG3970		
Sampling Date		2013/08/17		
COC Number		A150036		
	UNITS	P213-FB	RDL	QC Batch

Low Level Elements				
Total Cadmium (Cd)	ug/L	<0.0050	0.0050	7094604
				•

Client Project #: 2013 KITIKMEDT LFM Site Location: PIN-2 CAPE YOUNG

Sampler Initials: AP

PETROLEUM HYDROCARBONS (CCME)

Maxxam ID		HG3914	HG3914	HG3966		HG3967	HG3967		
Sampling Date		2013/08/17	2013/08/17	2013/08/17		2013/08/17	2013/08/17		
COC Number		A150036	A150036	A150036		A150036	A150036		
	UNITS	P213-2W	P213-2W	P213-3W	QC Batch	P213-4W	P213-4W	RDL	QC Batch
			Lab-Dup				Lab-Dup		
Ext. Pet. Hydrocarbon									
F2 (C10-C16 Hydrocarbons)	mg/L	<0.10	<0.10	<0.10	7098278	<0.10	<0.10	0.10	7102955
F3 (C16-C34 Hydrocarbons)	mg/L	<0.20	<0.20	<0.20	7098278	<0.20	<0.20	0.20	7102955
F4 (C34-C50 Hydrocarbons)	mg/L	<0.20	<0.20	<0.20	7098278	<0.20	<0.20	0.20	7102955
Surrogate Recovery (%)									
O-TERPHENYL (sur.)	%	93	100	95	7098278	104	109		7102955
					<u> </u>			-!	
RDL = Reportable Detection	Limit								

Maxxam ID		HG3968	HG3969	HG3970		
Sampling Date		2013/08/17	2013/08/17	2013/08/17		
COC Number		A150036	A150036	A150036		
	UNITS	P213-BDW1	P213-TB	P213-FB	RDL	QC Batch

mg/L	<0.10	<0.10	<0.10	0.10	7102955
mg/L	<0.20	<0.20	<0.20	0.20	7102955
mg/L	<0.20	<0.20	<0.20	0.20	7102955
%	93	106	93		7102955
	mg/L	mg/L <0.20 mg/L <0.20	mg/L <0.20 <0.20 mg/L <0.20 <0.20	mg/L <0.20 <0.20 <0.20 mg/L <0.20 <0.20	mg/L <0.20 <0.20 <0.20 0.20 mg/L <0.20 <0.20 0.20

Report Date: 2013/08/27

BIOGENIE INC.

Client Project #: 2013 KITIKMEDT LFM Site Location: PIN-2 CAPE YOUNG

Sampler Initials: AP

POLYCHLORINATED BIPHENYLS BY GC-ECD (WATER)

Maxxam ID		HG3914	HG3966	HG3967	HG3968	HG3969		
Sampling Date		2013/08/17	2013/08/17	2013/08/17	2013/08/17	2013/08/17		
COC Number		A150036	A150036	A150036	A150036	A150036		
	UNITS	P213-2W	P213-3W	P213-4W	P213-BDW1	P213-TB	RDL	QC Batch

Polychlorinated Biphenyls								
Aroclor 1016	mg/L	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	0.000050	7102221
Aroclor 1221	mg/L	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	0.000050	7102221
Aroclor 1232	mg/L	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	0.000050	7102221
Aroclor 1242	mg/L	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	0.000050	7102221
Aroclor 1248	mg/L	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	0.000050	7102221
Aroclor 1254	mg/L	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	0.000050	7102221
Aroclor 1260	mg/L	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	0.000050	7102221
Aroclor 1262	mg/L	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	0.000050	7102221
Aroclor 1268	mg/L	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	0.000050	7102221
Total Aroclors	mg/L	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	0.000050	7102221
Surrogate Recovery (%)								
NONACHLOROBIPHENYL (sur.)	%	109	94	91	92	83		7102221

Client Project #: 2013 KITIKMEDT LFM Site Location: PIN-2 CAPE YOUNG

Sampler Initials: AP

POLYCHLORINATED BIPHENYLS BY GC-ECD (WATER)

			Lab-Dup		
	UNITS	P213-FB	P213-FB	RDL	QC Batch
COC Number		A150036	A150036		
Sampling Date		2013/08/17	2013/08/17		
Maxxam ID		HG3970	HG3970		

Polychlorinated Biphenyls					
Aroclor 1016	mg/L	<0.000050	<0.000050	0.000050	7102221
Aroclor 1221	mg/L	<0.000050	<0.000050	0.000050	7102221
Aroclor 1232	mg/L	<0.000050	<0.000050	0.000050	7102221
Aroclor 1242	mg/L	<0.000050	<0.000050	0.000050	7102221
Aroclor 1248	mg/L	<0.000050	<0.000050	0.000050	7102221
Aroclor 1254	mg/L	<0.000050	<0.000050	0.000050	7102221
Aroclor 1260	mg/L	<0.000050	<0.000050	0.000050	7102221
Aroclor 1262	mg/L	<0.000050	<0.000050	0.000050	7102221
Aroclor 1268	mg/L	<0.000050	<0.000050	0.000050	7102221
Total Aroclors	mg/L	<0.000050	<0.000050	0.000050	7102221
Surrogate Recovery (%)					
NONACHLOROBIPHENYL (sur.)	%	96	96		7102221

Client Project #: 2013 KITIKMEDT LFM Site Location: PIN-2 CAPE YOUNG

Sampler Initials: AP

ELEMENTS BY ATOMIC SPECTROSCOPY (WATER)

Maxxam ID		HG3914	HG3966	HG3967	HG3968		HG3969		
Sampling Date		2013/08/17	2013/08/17	2013/08/17	2013/08/17		2013/08/17		
COC Number		A150036	A150036	A150036	A150036		A150036		
	UNITS	P213-2W	P213-3W	P213-4W	P213-BDW1	RDL	P213-TB	RDL	QC Batch

						_			
Elements									
Total Arsenic (As)	mg/L	0.0012	0.00083	0.0018	0.00084	0.00020	0.00021	0.00020	7114973
Total Cadmium (Cd)	mg/L	0.000057	0.00015	0.00012	0.000036	0.000025	<0.0000050	0.0000050	7114973
Total Chromium (Cr)	mg/L	0.027	0.0027	0.011	0.0032	0.0010	<0.0010	0.0010	7114973
Total Cobalt (Co)	mg/L	0.00038	<0.00030	0.00059	<0.00030	0.00030	<0.00030	0.00030	7114973
Total Copper (Cu)	mg/L	0.0024	0.0039	0.0032	0.0014	0.00020	<0.00020	0.00020	7114973
Total Lead (Pb)	mg/L	0.00037	<0.00020	0.0011	<0.00020	0.00020	<0.00020	0.00020	7114973
Total Nickel (Ni)	mg/L	0.015	0.0071	0.011	0.0034	0.00050	<0.00050	0.00050	7114973
Total Zinc (Zn)	mg/L	0.013	0.0061	0.057	0.0080	0.0030	<0.0030	0.0030	7114973
Low Level Elements									
Total Mercury (Hg)	ug/L	<0.0050	<0.0050	<0.0050	<0.0050	0.0050	<0.0050	0.0050	7112091

RDL = Reportable Detection Limit

	00	. 2.0-1 5		ac Baton	Lab-Dup	N.D.L	S Daton
	UNITS	P213-FB	RDL	QC Batch	P213-FB	RDL	QC Batch
COC Number		A150036			A150036		
Sampling Date		2013/08/17			2013/08/17		
Maxxam ID		HG3970			HG3970		

Elements							
Total Arsenic (As)	mg/L	<0.00020	0.00020	7115088	0.00025	0.00020	7115088
Total Cadmium (Cd)	mg/L	<0.0000050	0.0000050	7115088	<0.0000050	0.0000050	7115088
Total Chromium (Cr)	mg/L	<0.0010	0.0010	7115088	<0.010	0.010	7116146
Total Cobalt (Co)	mg/L	<0.00030	0.00030	7115088	<0.00030	0.00030	7115088
Total Copper (Cu)	mg/L	0.0073	0.00020	7115088	0.0070	0.00020	7115088
Total Lead (Pb)	mg/L	0.00035	0.00020	7115088	0.00033	0.00020	7115088
Total Nickel (Ni)	mg/L	<0.00050	0.00050	7115088	<0.00050	0.00050	7115088
Total Zinc (Zn)	mg/L	0.0060	0.0030	7115088	0.0059	0.0030	7115088
Low Level Elements							
Total Mercury (Hg)	ug/L	<0.0050	0.0050	7112091			

Client Project #: 2013 KITIKMEDT LFM Site Location: PIN-2 CAPE YOUNG

Sampler Initials: AP

VOLATILE ORGANICS BY GC-MS (WATER)

	HG3914	HG3966		HG3967		HG3968		
	2013/08/17	2013/08/17		2013/08/17		2013/08/17		
	A150036	A150036		A150036		A150036		
UNITS	P213-2W	P213-3W	QC Batch	P213-4W	QC Batch	P213-BDW1	RDL	QC Batch
				ı	1			
ug/L	<100	<100	7098288	<100	7099742	<100	100	7099894
%	101	100	7098288	99	7099742	102		7099894
%	102	101	7098288	97	7099742	96		7099894
%	101	101	7098288	100	7099742	100		7099894
			•		•	•	•	
	ug/L %	2013/08/17 A150036 UNITS P213-2W ug/L <100 % 101 % 102	2013/08/17 2013/08/17 A150036	2013/08/17 2013/08/17 A150036 A150036 UNITS P213-2W P213-3W QC Batch Ug/L <100 <100 7098288 % 101 100 7098288 % 102 101 7098288 % 102 101 7098288 % 102 101 7098288 % 102 101 7098288 % 102 101 7098288 % 102 101 7098288 % 102 101 7098288 % 102 101 7098288 % 102 101 7098288 % 102 101 7098288 % 102 101 7098288 % 102 101 7098288 % 102 101 7098288 % 102 101 7098288 % 102 101 7098288 % 102 101 7098288 % 102 101 7098288 % 102 101 7098288 % 102 101 7098288 % 102 102 102 % 102	2013/08/17 2013/08/17 2013/08/17 A150036 A1500	2013/08/17 2013/08/17 2013/08/17 A150036 A1500	2013/08/17 201	2013/08/17 2013/08/17 2013/08/17 2013/08/17 A150036 A1

Maxxam ID		HG3969	HG3970		
Sampling Date		2013/08/17	2013/08/17		
COC Number		A150036	A150036		
	UNITS	P213-TB	P213-FB	RDL	QC Batch
Volatiles					
(C6-C10)	ug/L	<100	<100	100	7099894
Surrogate Recovery (%)					
1,4-Difluorobenzene (sur.)	%	102	101		7099894
4-BROMOFLUOROBENZENE (sur.)	%	98	96		7099894
D4-1,2-DICHLOROETHANE (sur.)	%	100	103		7099894

Client Project #: 2013 KITIKMEDT LFM Site Location: PIN-2 CAPE YOUNG

Sampler Initials: AP

General Comments

Sample HG3914-01: Detection limits raised for total Cd due to sample matrix.

Sample HG3966-01: Detection limits raised for total Cd due to sample matrix.

Sample HG3967-01: Detection limits raised for total Cd due to sample matrix.

Sample HG3968-01: Detection limits raised for total Cd due to sample matrix.

POLYCHLORINATED BIPHENYLS BY GC-ECD (SOIL) Comments

Sample HG3163-02 Polychlorinated Biphenyls: Detection limits raised due to high moisture content. Sample contained >50 wt% moisture.

Results relate only to the items tested.

Attention: ANTOINE VALLIERES Client Project #: 2013 KITIKMEDT LFM

P.O. #:

Site Location: PIN-2 CAPE YOUNG

Quality Assurance Report Maxxam Job Number: EYKB373411

QA/QC Batch			Date Analyzed				
Num Init	QC Type	Parameter	yyyy/mm/dd	Value	Recovery	UNITS	QC Limits
7098278 YP3	Matrix Spike	Farameter	yyyy/mm/du	value	Recovery	UNITS	QC LIIIIIS
7030270 11 3	[HG3966-02]	O-TERPHENYL (sur.)	2013/08/21		93	%	50 - 130
	[1103300-02]	F2 (C10-C16 Hydrocarbons)	2013/08/21		99	%	50 - 130
		F3 (C16-C34 Hydrocarbons)	2013/08/21		101	%	50 - 130
		` ,				% %	
	Called Dlank	F4 (C34-C50 Hydrocarbons)	2013/08/21		95		50 - 130
	Spiked Blank	O-TERPHENYL (sur.)	2013/08/21		94 95	% %	50 - 130
		F2 (C10-C16 Hydrocarbons)	2013/08/21				70 - 130
		F3 (C16-C34 Hydrocarbons)	2013/08/21		102	%	70 - 130
	Made 150 1	F4 (C34-C50 Hydrocarbons)	2013/08/21		94	%	70 - 130
	Method Blank	O-TERPHENYL (sur.)	2013/08/21	0.40	94	%	50 - 130
		F2 (C10-C16 Hydrocarbons)	2013/08/21	<0.10		mg/L	
		F3 (C16-C34 Hydrocarbons)	2013/08/21	<0.20		mg/L	
		F4 (C34-C50 Hydrocarbons)	2013/08/21	<0.20		mg/L	
	RPD [HG3914-02]	` ,	2013/08/21	NC		%	40
		F3 (C16-C34 Hydrocarbons)	2013/08/21	NC		%	40
		F4 (C34-C50 Hydrocarbons)	2013/08/21	NC		%	40
7098288 NM5	Matrix Spike	1,4-Difluorobenzene (sur.)	2013/08/21		97	%	70 - 130
		4-BROMOFLUOROBENZENE (sur.)	2013/08/21		103	%	70 - 130
		D4-1,2-DICHLOROETHANE (sur.)	2013/08/21		99	%	70 - 130
		(C6-C10)	2013/08/21		79	%	70 - 130
	Spiked Blank	1,4-Difluorobenzene (sur.)	2013/08/22		94	%	70 - 130
		4-BROMOFLUOROBENZENE (sur.)	2013/08/22		103	%	70 - 130
		D4-1,2-DICHLOROETHANE (sur.)	2013/08/22		102	%	70 - 130
		(C6-C10)	2013/08/22		81	%	70 - 130
	Method Blank	1,4-Difluorobenzene (sur.)	2013/08/22		97	%	70 - 130
		4-BROMOFLUOROBENZENE (sur.)	2013/08/22		100	%	70 - 130
		D4-1,2-DICHLOROETHANE (sur.)	2013/08/22		101	%	70 - 130
		(C6-C10)	2013/08/22	<100		ug/L	
	RPD	(C6-C10)	2013/08/22	NC		%	40
7099742 YS5	Matrix Spike	1,4-Difluorobenzene (sur.)	2013/08/21		97	%	70 - 130
		4-BROMOFLUOROBENZENE (sur.)	2013/08/21		99	%	70 - 130
		D4-1,2-DICHLOROETHANE (sur.)	2013/08/21		97	%	70 - 130
		(C6-C10)	2013/08/21		77	%	70 - 130
	Spiked Blank	1,4-Difluorobenzene (sur.)	2013/08/21		98	%	70 - 130
	opinou Diarin	4-BROMOFLUOROBENZENE (sur.)	2013/08/21		98	%	70 - 130
		D4-1,2-DICHLOROETHANE (sur.)	2013/08/21		96	%	70 - 130
		(C6-C10)	2013/08/21		103	%	70 - 130
	Method Blank	1,4-Difluorobenzene (sur.)	2013/08/21		100	%	70 - 130
	Method Diank	4-BROMOFLUOROBENZENE (sur.)	2013/08/21		99	%	70 - 130
		D4-1,2-DICHLOROETHANE (sur.)	2013/08/21		97	% %	70 - 130
		(C6-C10)	2013/08/21	<100	91	ug/L	70 - 130
	RPD	(C6-C10)	2013/08/21	NC		wg/L %	40
7000004 VCE				INC	07		40 70 430
7099894 YS5	Matrix Spike	1,4-Difluorobenzene (sur.)	2013/08/21		97	%	70 - 130
		4-BROMOFLUOROBENZENE (sur.)	2013/08/21		99	%	70 - 130
		D4-1,2-DICHLOROETHANE (sur.)	2013/08/21		96	%	70 - 130
	On the st Dissels	(C6-C10)	2013/08/21		86	%	70 - 130
	Spiked Blank	1,4-Difluorobenzene (sur.)	2013/08/22		102	%	70 - 130
		4-BROMOFLUOROBENZENE (sur.)	2013/08/22		102	%	70 - 130
		D4-1,2-DICHLOROETHANE (sur.)	2013/08/22		98	%	70 - 130
		(C6-C10)	2013/08/22		108	%	70 - 130
	Method Blank	1,4-Difluorobenzene (sur.)	2013/08/22		101	%	70 - 130
		4-BROMOFLUOROBENZENE (sur.)	2013/08/22		97	%	70 - 130
		D4-1,2-DICHLOROETHANE (sur.)	2013/08/22		99	%	70 - 130
		(C6-C10)	2013/08/22	<100		ug/L	
	RPD	(C6-C10)	2013/08/22	31.0		%	

Maxxam Analytics International Corporation o/a Maxxam Analytics Yellowknife: Unit 105 - 349 Old Airport Road X1A 3X6 Telephone (867) 445-2448

Attention: ANTOINE VALLIERES Client Project #: 2013 KITIKMEDT LFM

P.O. #:

Site Location: PIN-2 CAPE YOUNG

Quality Assurance Report (Continued)

Maxxam Job Number: EYKB373411

QA/QC Batch			Date Analyzed				
Num Init	QC Type	Parameter	yyyy/mm/dd	Value	Recovery	UNITS	QC Limits
7100533 KE4	Matrix Spike	Tarameter	уууулттаа	value	recovery	ONTO	QO LIIIIIC
7 100000 NE-4	[HG3162-01]	1,4-Difluorobenzene (sur.)	2013/08/22		116	%	60 - 140
	[1100102 01]	4-BROMOFLUOROBENZENE (sur.)	2013/08/22		93	%	60 - 140
		D10-ETHYLBENZENE (sur.)	2013/08/22		103	%	60 - 130
		D4-1,2-DICHLOROETHANE (sur.)	2013/08/22		95	%	60 - 140
		(C6-C10)	2013/08/22		129	%	60 - 140
	Spiked Blank	1,4-Difluorobenzene (sur.)	2013/08/23		98	%	60 - 140
	Spikeu biarik	4-BROMOFLUOROBENZENE (sur.)	2013/08/23		93	% %	60 - 140
		D10-ETHYLBENZENE (sur.)	2013/08/23		95 95	% %	60 - 130
		D4-1,2-DICHLOROETHANE (sur.)	2013/08/23		101	% %	60 - 140
		,	2013/08/23		98	% %	60 - 140
	Mathad Dlank	(C6-C10)					
	Method Blank	1,4-Difluorobenzene (sur.)	2013/08/22		100	%	60 - 140
		4-BROMOFLUOROBENZENE (sur.)	2013/08/22		93	%	60 - 140
		D10-ETHYLBENZENE (sur.)	2013/08/22		99	%	60 - 130
		D4-1,2-DICHLOROETHANE (sur.)	2013/08/22	40	99	%	60 - 140
	DDD !!! 00	(C6-C10)	2013/08/22	<12		mg/kg	
7400004 0 11	RPD [HG3142-01]	(C6-C10)	2013/08/22	NC		%	50
7102221 SJ1	Matrix Spike	NONACHLOROBIPHENYL (sur.)	2013/08/24		79	%	30 - 130
		Aroclor 1260	2013/08/24		81	%	30 - 130
	Spiked Blank	NONACHLOROBIPHENYL (sur.)	2013/08/24		102	%	30 - 130
		Aroclor 1260	2013/08/24		105	%	30 - 130
	Method Blank	NONACHLOROBIPHENYL (sur.)	2013/08/24		91	%	30 - 130
		Aroclor 1016	2013/08/24	< 0.000050		mg/L	
		Aroclor 1221	2013/08/24	< 0.000050		mg/L	
		Aroclor 1232	2013/08/24	< 0.000050		mg/L	
		Aroclor 1242	2013/08/24	< 0.000050		mg/L	
		Aroclor 1248	2013/08/24	< 0.000050		mg/L	
		Aroclor 1254	2013/08/24	< 0.000050		mg/L	
		Aroclor 1260	2013/08/24	< 0.000050		mg/L	
		Aroclor 1262	2013/08/24	< 0.000050		mg/L	
		Aroclor 1268	2013/08/24	< 0.000050		mg/L	
		Total Aroclors	2013/08/24	< 0.000050		mg/L	
	RPD [HG3970-03]	Aroclor 1016	2013/08/25	NC		%	40
		Aroclor 1221	2013/08/25	NC		%	40
		Aroclor 1232	2013/08/25	NC		%	40
		Aroclor 1242	2013/08/25	NC		%	40
		Aroclor 1248	2013/08/25	NC		%	40
		Aroclor 1254	2013/08/25	NC		%	40
		Aroclor 1260	2013/08/25	NC		%	40
		Aroclor 1262	2013/08/25	NC		%	40
		Aroclor 1268	2013/08/25	NC		%	40
		Total Aroclors	2013/08/25	NC		%	40
7102711 KN0	Matrix Spike	Total / Woolors	2010/00/20	110		70	-10
7102711 11110	[HG3164-01]	O-TERPHENYL (sur.)	2013/08/23		101	%	50 - 130
	[110010401]	F2 (C10-C16 Hydrocarbons)	2013/08/23		106	%	50 - 130
		F3 (C16-C34 Hydrocarbons)	2013/08/23		109	%	50 - 130
		F4 (C34-C50 Hydrocarbons)	2013/08/23		103	%	50 - 130
	Spiked Blank	O-TERPHENYL (sur.)	2013/08/23		99	%	50 - 130
	opikeu bialik	F2 (C10-C16 Hydrocarbons)				% %	70 - 130
		,	2013/08/23		120		
		F3 (C16-C34 Hydrocarbons)	2013/08/23		124	%	70 - 130
	Mathaal Discil	F4 (C34-C50 Hydrocarbons)	2013/08/23		119	%	70 - 130
	Method Blank	O-TERPHENYL (sur.)	2013/08/23		104	%	50 - 130
		F2 (C10-C16 Hydrocarbons)	2013/08/23	<10		mg/kg	
		F3 (C16-C34 Hydrocarbons)	2013/08/23	<50		mg/kg	
		F4 (C34-C50 Hydrocarbons)	2013/08/23	<50		mg/kg	

Maxxam Analytics International Corporation o/a Maxxam Analytics Yellowknife: Unit 105 - 349 Old Airport Road X1A 3X6 Telephone (867) 445-2448

Attention: ANTOINE VALLIERES Client Project #: 2013 KITIKMEDT LFM

P.O. #:

Site Location: PIN-2 CAPE YOUNG

Quality Assurance Report (Continued)

Maxxam Job Number: EYKB373411

QA/QC			Date				
Batch			Analyzed				
Num Init	QC Type	Parameter	yyyy/mm/dd	Value	Recovery	UNITS	QC Limits
7102711 KN0	RPD [HG3163-01]	F2 (C10-C16 Hydrocarbons)	2013/08/23	NC (1)		%	50
		F3 (C16-C34 Hydrocarbons)	2013/08/23	NC (1)		%	50
		F4 (C34-C50 Hydrocarbons)	2013/08/23	NC (1)		%	50
7102955 YP3	Matrix Spike						
	[HG3968-02]	O-TERPHENYL (sur.)	2013/08/22		96	%	50 - 130
		F2 (C10-C16 Hydrocarbons)	2013/08/22		95	%	50 - 130
		F3 (C16-C34 Hydrocarbons)	2013/08/22		98	%	50 - 130
		F4 (C34-C50 Hydrocarbons)	2013/08/22		94	%	50 - 130
	Spiked Blank	O-TERPHENYL (sur.)	2013/08/22		93	%	50 - 130
		F2 (C10-C16 Hydrocarbons)	2013/08/22		96	%	70 - 130
		F3 (C16-C34 Hydrocarbons)	2013/08/22		101	%	70 - 130
		F4 (C34-C50 Hydrocarbons)	2013/08/22		96	%	70 - 130
	Method Blank	O-TERPHENYL (sur.)	2013/08/22		95	%	50 - 130
		F2 (C10-C16 Hydrocarbons)	2013/08/22	< 0.10		mg/L	
		F3 (C16-C34 Hydrocarbons)	2013/08/22	< 0.20		mg/L	
		F4 (C34-C50 Hydrocarbons)	2013/08/22	< 0.20		mg/L	
	RPD [HG3967-02]	F2 (C10-C16 Hydrocarbons)	2013/08/22	NC		%	40
		F3 (C16-C34 Hydrocarbons)	2013/08/22	NC		%	40
		F4 (C34-C50 Hydrocarbons)	2013/08/22	NC		%	40
7105705 ABH	Method Blank	Moisture	2013/08/22	< 0.30		%	
	RPD	Moisture	2013/08/22	5.0		%	20
7106906 SF3	Matrix Spike						_
	[HG3166-01]	Total Arsenic (As)	2013/08/23		92	%	75 - 125
	[Total Cadmium (Cd)	2013/08/23		90	%	75 - 125
		Total Chromium (Cr)	2013/08/23		92	%	75 - 125
		Total Cobalt (Co)	2013/08/23		88	%	75 - 125
		Total Copper (Cu)	2013/08/23		88	%	75 - 125
		Total Lead (Pb)	2013/08/23		90	%	75 - 125
		Total Mercury (Hg)	2013/08/23		92	%	75 - 125
		Total Nickel (Ni)	2013/08/23		88	%	75 - 125
		Total Zinc (Zn)	2013/08/23		84	%	75 - 125
	QC Standard	Total Arsenic (As)	2013/08/23		124	%	50 - 150
	QO Otandard	Total Chromium (Cr)	2013/08/23		103	%	41 - 159
		Total Cobalt (Co)	2013/08/23		104	%	75 - 125
		Total Copper (Cu)	2013/08/23		102	%	73 - 127
		Total Lead (Pb)	2013/08/23		104	%	54 - 146
		Total Nickel (Ni)	2013/08/23		110	%	61 - 139
		Total Zinc (Zn)	2013/08/23		106	%	72 - 128
	Spiked Blank	Total Arsenic (As)	2013/08/23		95	% %	75 - 125
	Spikeu biarik	Total Cadmium (Cd)	2013/08/23		92	% %	75 - 125 75 - 125
		Total Chromium (Cr)	2013/08/23		91	%	75 - 125 75 - 125
		` ,			92		
		Total Copper (Cu)	2013/08/23 2013/08/23			%	75 - 125
		Total Copper (Cu) Total Lead (Pb)			94	%	75 - 125
		,	2013/08/23 2013/08/23		96	%	75 - 125
		Total Mercury (Hg)			93	%	75 - 125
		Total Nickel (Ni)	2013/08/23		93	%	75 - 125
	Mothod Disale	Total Argania (Ap)	2013/08/23	.4.0	92	% ~~//.a	75 - 125
	Method Blank	Total Arsenic (As)	2013/08/22	<1.0		mg/kg	
		Total Cadmium (Cd)	2013/08/22	<0.10		mg/kg	
		Total Chromium (Cr)	2013/08/22	<1.0		mg/kg	
		Total Cobalt (Co)	2013/08/22	<1.0		mg/kg	
		Total Copper (Cu)	2013/08/22	<5.0		mg/kg	
		Total Lead (Pb)	2013/08/22	<1.0		mg/kg	
		Total Mercury (Hg) Total Nickel (Ni)	2013/08/22	< 0.050		mg/kg	
			2013/08/22	<1.0		mg/kg	

Attention: ANTOINE VALLIERES Client Project #: 2013 KITIKMEDT LFM

P.O. #:

Site Location: PIN-2 CAPE YOUNG

Quality Assurance Report (Continued)

Maxxam Job Number: EYKB373411

QA/QC			Date				
Batch			Analyzed				
Num Init	QC Type	Parameter	yyyy/mm/dd	Value	Recovery	UNITS	QC Limits
7106906 SF3	Method Blank	Total Zinc (Zn)	2013/08/22	<10	-	mg/kg	
	RPD [HG3166-01]	Total Arsenic (As)	2013/08/23	NC		%	35
	= [Total Cadmium (Cd)	2013/08/23	NC		%	35
		Total Chromium (Cr)	2013/08/23	10.1		%	35
		Total Cobalt (Co)	2013/08/23	NC		%	35
		Total Copper (Cu)	2013/08/23	NC		%	35
		Total Lead (Pb)	2013/08/23	NC		%	35
		Total Mercury (Hg)	2013/08/23	NC		%	35
		Total Nickel (Ni)	2013/08/23	NC		%	35
		Total Nicker (Ni) Total Zinc (Zn)	2013/08/23	NC		% %	35
7108064 SJ1	Matrix Caika	Total Zilic (ZII)	2013/00/23	NC		70	33
7108064 531	Matrix Spike	NONACHI ODODIDUENIVI. (a.m.)	0040/00/00		00	0/	20 420
	[HG3166-02]	NONACHLOROBIPHENYL (sur.)	2013/08/23		82	%	30 - 130
	0 "	Aroclor 1260	2013/08/23		85	%	30 - 130
	Spiked Blank	NONACHLOROBIPHENYL (sur.)	2013/08/23		74	%	30 - 130
		Aroclor 1260	2013/08/23		83	%	30 - 130
	Method Blank	NONACHLOROBIPHENYL (sur.)	2013/08/23		68	%	30 - 130
		Aroclor 1016	2013/08/23	< 0.010		mg/kg	
		Aroclor 1221	2013/08/23	< 0.010		mg/kg	
		Aroclor 1232	2013/08/23	< 0.010		mg/kg	
		Aroclor 1242	2013/08/23	< 0.010		mg/kg	
		Aroclor 1248	2013/08/23	< 0.010		mg/kg	
		Aroclor 1254	2013/08/23	< 0.010		mg/kg	
		Aroclor 1260	2013/08/23	< 0.010		mg/kg	
		Aroclor 1262	2013/08/23	< 0.010		mg/kg	
		Aroclor 1268	2013/08/23	<0.010		mg/kg	
		Total Aroclors	2013/08/23	<0.010		mg/kg	
	RPD [HG3166-02]	Aroclor 1016	2013/08/23	NC		%	50
	N D [1103100-02]	Aroclor 1221	2013/08/23	NC		%	50
		Aroclor 1232	2013/08/23	NC NC		% %	50
		Aroclor 1242	2013/08/23	NC		%	50
		Aroclor 1248	2013/08/23	NC		%	50
		Aroclor 1254	2013/08/23	NC		%	50
		Aroclor 1260	2013/08/23	NC		%	50
		Aroclor 1262	2013/08/23	NC		%	50
		Aroclor 1268	2013/08/23	NC		%	50
		Total Aroclors	2013/08/23	NC		%	50
7112091 KG6	Matrix Spike	Total Mercury (Hg)	2013/08/24		94	%	85 - 115
	QC Standard	Total Mercury (Hg)	2013/08/24		88	%	85 - 115
	Spiked Blank	Total Mercury (Hg)	2013/08/24		97	%	85 - 115
	Method Blank	Total Mercury (Hg)	2013/08/24	< 0.0050		ug/L	
	RPD	Total Mercury (Hg)	2013/08/24	NC		%	20
7114973 SF3	Matrix Spike	Total Arsenic (As)	2013/08/26		103	%	80 - 120
	mann opino	Total Cadmium (Cd)	2013/08/26		104	%	80 - 120
		Total Chromium (Cr)	2013/08/26		98	%	80 - 120
		Total Cobalt (Co)	2013/08/26		97	%	80 - 120
		Total Copper (Cu)	2013/08/26		100	%	80 - 120
		Total Lead (Pb)	2013/08/26		96	% %	80 - 120
		Total Nickel (Ni)	2013/08/26				80 - 120 80 - 120
		` '			98 100	%	
	Called Discol	Total America (An)	2013/08/26		100	%	80 - 120
	Spiked Blank	Total Arsenic (As)	2013/08/26		102	%	80 - 120
		Total Cadmium (Cd)	2013/08/26		99	%	80 - 120
		Total Chromium (Cr)	2013/08/26		101	%	80 - 120
		Total Cobalt (Co)	2013/08/26		99	%	80 - 120
		` ,					
		Total Copper (Cu) Total Lead (Pb)	2013/08/26 2013/08/26		102 98	% %	80 - 120 80 - 120

Attention: ANTOINE VALLIERES Client Project #: 2013 KITIKMEDT LFM

P.O. #:

Site Location: PIN-2 CAPE YOUNG

Quality Assurance Report (Continued)

Maxxam Job Number: EYKB373411

QA/QC			Date				
Batch			Analyzed				
Num Init	QC Type	Parameter	yyyy/mm/dd	Value	Recovery	UNITS	QC Limits
7114973 SF3	Spiked Blank	Total Nickel (Ni)	2013/08/26		102	%	80 - 120
		Total Zinc (Zn)	2013/08/26		100	%	80 - 120
	Method Blank	Total Arsenic (As)	2013/08/26	0.00026, F	RDL=0.00020	mg/L	
		Total Cadmium (Cd)	2013/08/26	< 0.0000050		mg/L	
		Total Chromium (Cr)	2013/08/26	< 0.0010		mg/L	
		Total Cobalt (Co)	2013/08/26	< 0.00030		mg/L	
		Total Copper (Cu)	2013/08/26	< 0.00020		mg/L	
		Total Lead (Pb)	2013/08/26	< 0.00020		mg/L	
		Total Nickel (Ni)	2013/08/26	< 0.00050		mg/L	
		Total Zinc (Zn)	2013/08/26	< 0.0030		mg/L	
	RPD	Total Arsenic (As)	2013/08/26	NC		%	20
		Total Chromium (Cr)	2013/08/26	NC		%	20
		Total Cobalt (Co)	2013/08/26	NC		%	20
		Total Copper (Cu)	2013/08/26	NC		%	20
		Total Lead (Pb)	2013/08/26	NC		%	20
		Total Nickel (Ni)	2013/08/26	NC		%	20
		Total Zinc (Zn)	2013/08/26	NC NC		%	20
7115088 SF3	Matrix Spike	rotal Zille (Zil)	2013/00/20	110		70	20
	[HG3970-01]	Total Arsenic (As)	2013/08/26		98	%	80 - 120
	[1100070 01]	Total Cadmium (Cd)	2013/08/26		98	%	80 - 120
		Total Chromium (Cr)	2013/08/26		94	%	80 - 120
		Total Cobalt (Co)	2013/08/26		97	%	80 - 120
		Total Copper (Cu)	2013/08/26		98	%	80 - 120
		Total Lead (Pb)	2013/08/26		94	%	80 - 120
		Total Nickel (Ni)	2013/08/26		96	%	80 - 120
		Total Zinc (Zn)	2013/08/26		95	%	80 - 120
	Spiked Blank	Total Arsenic (As)	2013/08/26		100	%	80 - 120
	Spikeu bialik	Total Cadmium (Cd)	2013/08/26		99	% %	80 - 120
		Total Chromium (Cr)	2013/08/26		99	%	80 - 120
		Total Cobalt (Co)			98	% %	80 - 120
		` ,	2013/08/26				
		Total Copper (Cu)	2013/08/26		100 96	%	80 - 120
		Total Lead (Pb)	2013/08/26			%	80 - 120
		Total Nickel (Ni)	2013/08/26		99	%	80 - 120
	Mathad Dlad.	Total Zinc (Zn)	2013/08/26	0.00000 [100	%	80 - 120
	Method Blank	Total Arsenic (As)	2013/08/26		RDL=0.00020	mg/L	
		Total Cadmium (Cd)	2013/08/26	<0.0000050		mg/L	
		Total Chromium (Cr)	2013/08/26	<0.0010		mg/L	
		Total Cobalt (Co)	2013/08/26	<0.00030	DI 0.00000	mg/L	
		Total Copper (Cu)	2013/08/26		RDL=0.00020	mg/L	
		Total Lead (Pb)	2013/08/26	<0.00020		mg/L	
		Total Nickel (Ni)	2013/08/26	<0.00050		mg/L	
		Total Zinc (Zn)	2013/08/26	<0.0030		mg/L	
	RPD [HG3970-01]		2013/08/26	NC		%	20
		Total Cadmium (Cd)	2013/08/26	NC		%	20
		Total Chromium (Cr)	2013/08/26	NC		%	20
		Total Cobalt (Co)	2013/08/26	NC		%	20
		Total Copper (Cu)	2013/08/26	4.1		%	20
		Total Lead (Pb)	2013/08/26	NC		%	20
		Total Nickel (Ni)	2013/08/26	NC		%	20
		Total Zinc (Zn)	2013/08/26	NC		%	20
7116146 NC3	Matrix Spike						
	[HG3970-01]	Total Chromium (Cr)	2013/08/26		97	%	80 - 120
	Spiked Blank	Total Chromium (Cr)	2013/08/26		98	%	80 - 120
	Method Blank	Total Chromium (Cr)	2013/08/26	< 0.010		mg/L	
	RPD [HG3970-01]	Total Chromium (Cr)	2013/08/26	NC		%	20

Attention: ANTOINE VALLIERES Client Project #: 2013 KITIKMEDT LFM

P.O. #:

Site Location: PIN-2 CAPE YOUNG

Quality Assurance Report (Continued)

Maxxam Job Number: EYKB373411

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

QC Standard: A sample of known concentration prepared by an external agency under stringent conditions. Used as an independent check of method accuracy.
Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method

accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (RPD): The RPD was not calculated. The level of analyte detected in the parent sample and its duplicate was not sufficiently significant to permit a reliable calculation.

(1) Detection limits raised due to high moisture content.

Maxxam Analytics International Corporation o/a Maxxam Analytics Yellowknife: Unit 105 - 349 Old Airport Road X1A 3X6 Telephone (867) 445-2448

Validation Signature Page

Maxxam Job #: B373411

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).	

Ama Koksharova, Senior Analyst

Allen Nagayi, Analyst II

Daniel Reslan, Volatiles Supervisor

Dina Tleugabulova, Ph.D., Scientific Specialist, Inorganics Department

Lisa Cummings, Organics Manager

Validation Signature Page

Maxxam Job #: B373411	
The analytical data and all QC contained in this report were rev	iewed and validated by the following individual(s).
184	_
Luba Shymushovska, Senior Analyst, Organic Department	
The same of the sa	
Neel Sivaloganathan, Emergency Spill Response Manager	
Stropanie Gilbert	
Stephanie Gilbert, Senior Analyst	

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

	1	
M	axxam	1

Calgary: 4000 19st St. NE, T2E 6P8. Ph: (403) 291-3077, Fax: (403) 735-2240, Toll free; (800) 386-7247

Edmonton: 9331 - 48 Street, T6B 2R4. Ph; (780) 577-7100, Fax: (780) 450-4187, Toll free: (877) 465-8889

Chain of Custody

56	890	(4)

Page:	1	of	2
			1

Add	Invoice To: CO Report Address BIDGENIE / SILA REMEDIATION Intact: ANTOINE VALIERES Idress: Prov. QC PC. GI? 2 T7 Intact #s: Ph. 4LB -653 - 4422 Cell: Samples are held for 60 calendar days after sample receipt, unless specified otherwise. Report To: Same as Invoice A VAILIERES AVAILIERES Com Apassalis anti-cet Prov. PC: Ph. Cell: Samples are held for 60 calendar days after sample receipt, unless specified otherwise. SOIL WATER Other														AT1 CCM Regu Othe	1E ulated	Drinking Water											
PO Pro Site Qui Sar		T LPM	eserve)		See reverse for package specifics	micron)	lated Metals (CCME / AT1)	4	Assessment ICP Metals Basic Class II Landfill	2.4	als (As Cd, Cr, Co, Cu, N.	(gH _c)	Maria Maria	ne Water □ Turb □ F	Doc	Regulated Metals	id (ccin	II TOTAL	- 3									HOLD - Do not Analyze # of Containers Submitted
	Sample ID	Depth (unit)	Matrix GW / SW Soil	Date/Time Samp YY/MM/DD 24:0		Sieve (75	Regulated	Salinity	Asse: Basic	000	metals	Pb, 7	OBTEX CIBTEX	□ Ro	□ TOC	Total	Dissolved	MIGIC										# of Cc
1	P213-1WA		Soil	13/08/17	X					X	X				34 W													3
2	P213-1WB		1		X					X	X										r							3
3	P213 - 2WA				X					X	X																	3
4	P213 - 2WB				X					X	X																	3
5	P213 - 3WA				X					X	X																	3
6	P213 - 3WB	1			X		70	FI		X	X								REC	EIV	ED	IN Y	ELI	OM	KN	FE		3
7	P213 - 4WA				V					X	X								3y: _		1	50	7	110	4		1	
8	P213 - 4WB				V					X	X							ı				(1	- N	09	7.10	15	3
9	P213 - BD1				V					X	X										2013	1 +0	9.	19			1	3
10	7215 351																					1				T		
11											H								94		1		0					-11
12	end to large car										H	_	7						rem,); 	9	1	3	1		-	1	T
1.7	Please indicate F	iltered P	reserve	ed or Both (F	P.F	(P)	33			1						81-311					2	-	+-	4		+	7	F/
Rel	linguished By (Signature/Print):	2	7000770	Date (YY/MM/DD)		.,	-	Time (24:00):		1 [GIEN				LAB	USE	ONLY			V			\dashv	
	linquished By (Signature/Print):	SSALIS	TRICK	13/08/19 Date (YY/MM/DD)		IF.	ш,		24:00):			Receive	ved By	11	Sa Det	He	Date:	a	Tim 1210	20		C	axxam Custody Seal	Job#		373 peratu		//
Spe	ecial Instructions:								Used & n 26 e o f		0	Lab C	ommer	its:	<i>y</i> ×								itac,	H 5,	4			ců

Calgary: 4000 19st St. NE, T2E 6P8. Ph; (403) 291-3077, Fax: (403) 735-2240, Toll free: (800) 386-7247 Edmonton: 9331 - 48 Street, T6B 2R4. Ph: (780) 577-7100, Fax: (780) 450-4187, Toll free: (877) 465-8889

Chain of Custody

A150035

Page:	2	of	2	
			-	_

	Invoice To: C/O	Report Address		R	eport To:	-	+	Same	e as Ir	voice		X	1	Rep	ort D	strib	ution	(E-M	ail):		-	-	-	-		1 1	REG	ULAT	ORY GI	UIDEL	INES:	
Com	Pany: BICHENIE SILA R	EMEDAT	LION																	010	000	ir-	-e	1V	0	☐ AT1						
Cont	act: ANTDINE VALLEN	5													4	V VC	llie		-	7.0	U	1.0	60	m		145		ССМЕ				
Addı	ess: 4495 BLVD WILF	FMPH-OW	تاء		and the										pin.	П		•	Т	31								Regul	ated Dr	inking	Water	
	Prov: QC	PO(112	2+	Pro	ov:		-			PC:					ap	Das	sal	150	m	ts	ne	<u>t</u>		16				Other	a			
	act #s: ph.4[8-653-4422 ples are held for 60 calendar days after sample receipt	Cell:		Ph	1					Cell:	_		1	L	0.5					_												
PO#	ples are held for 60 calendar days after sample receipt	, unless specified of	herwise.	-	7 7		T			SOIL		1				W	ATE			0	-	_		(Othe	er Ana	alysis	3				
Proje	ct # / Name: (DIRDO) 2013 V	CITIKMET	T LT	FM	specifics			Ê							F1-F4	L		etals		Dissolved						FIRE						
Site	ct#/Name: PIN-2 CAPE YO	UNG						/ A						(s)	XF	П		N	/AT	Diss				7	+							
Quo	e#: B30371 Died By: A-PASSALIS				package			CME		als	=			□Vocs	DBTEX	□ Turb	DOC	Ilate	CCME				3	Cu. Ph. N.							ze	
=	□ BUCU (Co.	ntact lab to r	acanya)		se for		=	S (C		Me	Landfill					100	D D	Regulated Metals		Total			X	0	-						ınalı	
	Date Required:		-		rever	11	micron)	Regulated Metals (CCME / AT1)		Assessment ICP Metals					25	☐ Routine Water					4		METAL	3		5					Do not Analyze	
n	REGULAR (5 to 7 Days)			See	F1-F4	5 mi	N pa	4	neu	Class			H	F1-F2	ine l			pe		P4-	3		ن	H],					Dor	
\neg	/ASSESSED V-2-0-2-0	Depth	Matrix	Date/	Time Sampled		Sieve (75	ulat	Salinity	essi	ic C			DBTEX F	□BTEX	Sout	□ TOC	=	Dissolved	Mercury	上上	PCB.	TOTAL	As, Cd.	K						3	
	Sample ID	(unit)	GW / SV	YY/N	MM/DD 24:00	BTEX	Sie	Reg	Sali	Ass	Basic			B I	B	ö		Total	Diss	Mer		4	10	As	(10					Ta	НОГР	
1	P213-2W		GW	13	1180															Na.	X	X	X									
2	P213-3W	K, Timber			1																X	X	X		16					-		
3	P213-4W																				X	X	X				П					
4	P213-BDW1	110																			X	X	X									
5	P213-TB																				X	X	$\frac{1}{}$									
6	P213-FB.	Car. U							A										E		X	V	V				\Box					
7	1 213 10.		1																		\wedge	X	^	100	1900	- II	1 34	20.0	OWI	16 D-16 C		
1													+					-							C	n	0		11	NOTE OF	News,	
8							12:					-	-									lia	y:			M	01	M	0	94	0	
9									- 1		751														9	013	-01	-	9	1 09	0	
10																									6a	AIA					1	
11																							tor			1			+1			
12	Med 4 THE LEGIT													-1							Ш	-	-	O UN		6	,	8	1		1	
	Please indicate	Filtered, P	reserve	ed or	Both (F, P	, F/	P)	-					>		-								Fer	ii)		5	4	7	4/			
Relin	quished By (Signature Print):	full h		Date (YY/MM/DD):				Time	(24:0	00):						100				L	AB L	USE	ONL	Y				-			
	CAM APA	SSAUS.			3/08/19.		Ital					-		eived		1	v. A		Date:		01	Time	15/	2	_	Maxx	tam Jr	ob#£	33	731	44	
Relin	quished By (Signature/Print):			Date (YY/MM/DD):				Time	(24:0	00):		18	201	noc	i	11	11	1	0	OI Je	21	0	20	1	Cust			Temper	rature	t	
Spec	ial Instructions:					-		#	of Jar	s Use	d & No	1 6	Lab	Comr	nents	V	400	V			1	-1		88		into	L	5	44	_		
1											of 27															int	at	5	45	-		
													33 33												1	P. Carlo	1	1	11			

T: +1 (780) 438-5522 F: +1 (780) 434-8586 E: Edmonton@exova.com W: www.exova.com

Report Transmission Cover Page

Bill To: Biogenie S.R.D.C. Inc. Project:

Report To: Biogenie S.R.D.C. Inc. 2013 Kitikmeot LFM ID: Name:

4495 Wilfrid Hamel Suite 200

Quebec, QC, Canada G1P 2J7

Location: LSD:

Acct code:

Cam-1/Pin-2 Jenny Lind ISL/Cape Young Control Number: B13191 Date Received: Aug 21, 2013 Aug 29, 2013 Date Reported:

Report Number:

Lot ID: 953697

1850232

Attn: Antoine Vallieres P.O.:

Sampled By: A. Passalis Company: Biogenie

Contact & Affiliation	Address	Delivery Commitments
Antoine Vallieres	4495 Wilfrid Hamel Suite 200	On [Lot Verification] send
Phone: (418) 653-4422	Quebec, Quebec G1P 2J7	(COA) by Email - Single Report
	Phone: (418) 653-4422 Fax: (418) 653-3583	On [Report Approval] send
	Email: avallieres@biogenie-env.com	(Test Report, COC) by Email - Merge Reports
		On [Lot Approval and Final Test Report Approval] send
		(COC, Invoice) by Email - Single Report

Notes To Clients:

T: +1 (780) 438-5522 F: +1 (780) 434-8586 E: Edmonton@exova.com W: www.exova.com

Sample Custody

Bill To: Biogenie S.R.D.C. Inc.

Report To: Biogenie S.R.D.C. Inc.

4495 Wilfrid Hamel Suite 200

Quebec, QC, Canada

G1P 2J7

Attn: Antoine Vallieres

Sampled By: A. Passalis Company: Biogenie

Project:

ID:

Cam-1/Pin-2 Name:

Location: LSD:

Acct code:

P.O.:

2013 Kitikmeot LFM

Jenny Lind ISL/Cape Young

Date Received: Date Reported:

Aug 21, 2013 Aug 29, 2013

Lot ID: 953697

Report Number:

Control Number: B13191

1850232

Sample	Disposal I	Date: Se	ptember	28,	201	3
--------	------------	----------	---------	-----	-----	---

All samples will be stored until this date unless other instructions are received. Please indicate other requirements below
and return this form to the address or fax number on the top of this page.

Extend Sample Storage Until	(MM/DD/YY)
The following charges apply to extende Storage for an additional 30 days Storage for an additional 60 days Storage for an additional 90 days	\$ 2.50 per sample \$ 5.00 per sample \$ 7.50 per sample
Return Sample, collect, to the address	below via:
Greyhound	
DHL	
Purolator	
Other (specify)	
	Name
	Company
	Address
	Phone
	Fax
	Signature

Analytical Report

Bill To: Biogenie S.R.D.C. Inc.

Report To: Biogenie S.R.D.C. Inc.

4495 Wilfrid Hamel Suite 200

Quebec, QC, Canada

G1P 2J7

Attn: Antoine Vallieres

Sampled By: A. Passalis Company: Biogenie

Project: ID:

2013 Kitikmeot LFM

Cam-1/Pin-2 Name:

Location:

LSD: P.O.:

Acct code:

Jenny Lind ISL/Cape Young

Date Reported: Aug 29, 2013 Report Number: 1850232

Control Number:

Date Received:

Lot ID: 953697

B13191

Aug 21, 2013

Reference Number Sample Date 953697-1

953697-2

Sample Time

Aug 16, 2013 NA

Aug 17, 2013 NA

Sample Location

Sample Description Cam-1 / C113-6WA

Pin-2 / P213-1WA Soil

Matrix Soil

Analyte		Units	Results	Results	Results	Nominal Detection Limit
Hot Water Soluble						-
Boron	Hot Water Soluble	mg/kg	1.42	7.08		0.2
Metals Strong Acid Dige	stion					
Mercury	Strong Acid Extractable	mg/kg	0.01	0.06		0.01
Antimony	Strong Acid Extractable	mg/kg	<0.2	<0.2		0.2
Arsenic	Strong Acid Extractable	mg/kg	1.6	2.6		0.2
Barium	Strong Acid Extractable	mg/kg	23	1350		1
Beryllium	Strong Acid Extractable	mg/kg	0.1	0.1		0.1
Cadmium	Strong Acid Extractable	mg/kg	0.04	0.26		0.01
Chromium	Strong Acid Extractable	mg/kg	3.3	7.2		0.5
Cobalt	Strong Acid Extractable	mg/kg	1.4	2.4		0.1
Copper	Strong Acid Extractable	mg/kg	2.7	8.1		1
Lead	Strong Acid Extractable	mg/kg	<4.9	<5.0		5
Molybdenum	Strong Acid Extractable	mg/kg	<1	<1		1
Nickel	Strong Acid Extractable	mg/kg	2.6	5.9		0.5
Selenium	Strong Acid Extractable	mg/kg	<0.3	0.3		0.3
Silver	Strong Acid Extractable	mg/kg	0.6	1.7		0.1
Thallium	Strong Acid Extractable	mg/kg	< 0.05	<0.05		0.05
Tin	Strong Acid Extractable	mg/kg	4.1	3.6		1
Uranium	Strong Acid Extractable	mg/kg	0.5	1.8		0.5
Vanadium	Strong Acid Extractable	mg/kg	8.1	10.5		0.1
Zinc	Strong Acid Extractable	mg/kg	8	26		1
Physical and Aggregate	Properties					
Moisture	Wet Weight @ 105°C	%	4.6	38.9		0.1
Mono-Aromatic Hydroca	rbons - Soil					
Extraction Date			21-AUG-13	21-AUG-13		
Benzene	Dry Weight	mg/kg	< 0.004	<0.004		0.004
Toluene	Dry Weight	mg/kg	< 0.005	< 0.005		0.005
Ethylbenzene	Dry Weight	mg/kg	<0.01	<0.01		0.01
Total Xylenes (m,p,o)	Dry Weight	mg/kg	<0.02	<0.02		0.02
Volatile Petroleum Hydro	ocarbons - Soil					
F1 C6-C10	Dry Weight	mg/kg	<10	<10		10
F1 -BTEX	Dry Weight	mg/kg	<10	<10		10
Extractable Petroleum H	ydrocarbons - Soil					
Extraction Date			21-Aug-13	21-Aug-13		
Silica Gel Cleanup			Done	Done		
F2c C10-C16	Dry Weight	mg/kg	<50	<50		50

T: +1 (780) 438-5522 F: +1 (780) 434-8586 E: Edmonton@exova.com W: www.exova.com

Analytical Report

Bill To: Biogenie S.R.D.C. Inc.

Project:

Lot ID: 953697

Report To: Biogenie S.R.D.C. Inc.

2013 Kitikmeot LFM ID:

Control Number: B13191

4495 Wilfrid Hamel Suite 200

Cam-1/Pin-2 Name:

Date Received: Aug 21, 2013

Quebec, QC, Canada G1P 2J7

Location: LSD:

Jenny Lind ISL/Cape Young

Date Reported: Aug 29, 2013

Attn: Antoine Vallieres

P.O.:

Acct code:

Report Number: 1850232

Sampled By: A. Passalis Company: Biogenie

Reference Number

953697-1

953697-2

Sample Date Sample Time Aug 16, 2013 Aug 17, 2013 NA

NA

Sample Location

Sample Description Cam-1 / C113-6WA

Pin-2 / P213-1WA

		Matrix	Soil	Soil		
Analyte		Units	Results	Results	Results	Nominal Detection Limit
Extractable Petroleum F	lydrocarbons - Soil - Conti	inued				
F3c C16-C34	Dry Weight	mg/kg	<50	74		50
F4c C34-C50	Dry Weight	mg/kg	<100	<100		100
F4HTGCc C34-C50+	Dry Weight	mg/kg	<100	<100		100
% C50+		%	<5	<5		
Polychlorinated Biphen	yls - Soil					
Aroclor 1016	Dry Weight	mg/kg	<0.1	<0.1		0.1
Aroclor 1221	Dry Weight	mg/kg	<0.1	<0.1		0.1
Aroclor 1232	Dry Weight	mg/kg	<0.1	<0.1		0.1
Aroclor 1242	Dry Weight	mg/kg	<0.1	<0.1		0.1
Aroclor 1248	Dry Weight	mg/kg	<0.1	<0.1		0.1
Aroclor 1254	Dry Weight	mg/kg	<0.1	<0.1		0.1
Aroclor 1260	Dry Weight	mg/kg	<0.1	<0.1		0.1
Aroclor 1262	Dry Weight	mg/kg	<0.1	<0.1		0.1
Aroclor 1268	Dry Weight	mg/kg	<0.1	<0.1		0.1
Total PCBs	Dry Weight	mg/kg	<0.1	<0.1		0.1
Polychlorinated Biphen	yls - Soil - Surrogate					
Decachlorobiphenyl	Surrogate	%	150	150		50-150

T: +1 (780) 438-5522 F: +1 (780) 434-8586 E: Edmonton@exova.com W: www.exova.com

Analytical Report

Bill To: Biogenie S.R.D.C. Inc.

Report To: Biogenie S.R.D.C. Inc.

4495 Wilfrid Hamel Suite 200

Quebec, QC, Canada

G1P 2J7

Attn: Antoine Vallieres Sampled By: A. Passalis

Company: Biogenie

Project: ID:

P.O.:

2013 Kitikmeot LFM

Cam-1/Pin-2 Name:

Location: LSD:

Acct code:

Jenny Lind ISL/Cape Young

Date Reported: Aug 29, 2013

Aug 21, 2013

Lot ID: 953697

Report Number: 1850232

Control Number: B13191

Date Received:

Reference Number 953697-3 Sample Date Aug 17, 2013 Sample Time NA

Sample Location

Sample Description Pin-2 / P213-2W

> Matrix Water

Analyte		Units	Results	Results	Results	Nominal Detection Limit
Metals Total						
Aluminum	Total	mg/L	0.48			0.02
Calcium	Total	mg/L	66.7			0.2
Iron	Total	mg/L	0.45			0.05
Magnesium	Total	mg/L	27.3			0.1
Manganese	Total	mg/L	0.014			0.005
Potassium	Total	mg/L	2.6			0.4
Silicon	Total	mg/L	2.10			0.05
Sodium	Total	mg/L	19.8			0.4
Sulfur	Total	mg/L	36.7			0.3
Mercury	Total	mg/L	<0.0001			0.0001
Antimony	Total	mg/L	< 0.0002			0.0002
Arsenic	Total	mg/L	0.0009			0.0002
Barium	Total	mg/L	0.017			0.001
Beryllium	Total	mg/L	< 0.0001			0.0001
Bismuth	Total	mg/L	< 0.0005			0.0005
Boron	Total	mg/L	0.047			0.002
Cadmium	Total	mg/L	0.00006			0.00001
Chromium	Total	mg/L	0.0140			0.0005
Cobalt	Total	mg/L	0.0003			0.0001
Copper	Total	mg/L	0.003			0.001
Lead	Total	mg/L	0.0004			0.0001
Lithium	Total	mg/L	0.003			0.001
Molybdenum	Total	mg/L	0.016			0.001
Nickel	Total	mg/L	0.0079			0.0005
Selenium	Total	mg/L	0.0008			0.0002
Silver	Total	mg/L	< 0.00001			0.00001
Strontium	Total	mg/L	0.110			0.001
Thallium	Total	mg/L	0.00006			0.00005
Tin	Total	mg/L	<0.001			0.001
Titanium	Total	mg/L	0.0128			0.0005
Uranium	Total	mg/L	0.0079			0.0005
Vanadium	Total	mg/L	0.0008			0.0001
Zinc	Total	mg/L	0.015			0.001
Zirconium	Total	mg/L	<0.001			0.001
Mono-Aromatic Hyd	rocarbons - Water					
Benzene		mg/L	< 0.001			0.001

Analytical Report

Bill To: Biogenie S.R.D.C. Inc. Project:

Report To: Biogenie S.R.D.C. Inc.

4495 Wilfrid Hamel Suite 200

Quebec, QC, Canada

G1P 2J7

Attn: Antoine Vallieres

Sampled By: A. Passalis

ID: Name:

Location:

Acct code:

LSD:

P.O.:

2013 Kitikmeot LFM

Cam-1/Pin-2

Jenny Lind ISL/Cape Young

Aug 21, 2013 Date Reported: Aug 29, 2013

Control Number:

Date Received:

Report Number: 1850232

Lot ID: 953697

B13191

Company: Biogenie

Reference Number

953697-3

Sample Date Sample Time Aug 17, 2013 NA

Sample Location Sample Description

Pin-2 / P213-2W

Matrix

Water

Analyte		Units	Results	Results	Results	Nominal Detection Limit
Mono-Aromatic Hydroca	arbons - Water - Continu	ed				
Toluene		mg/L	<0.001			0.001
Ethylbenzene		mg/L	<0.001			0.001
Total Xylenes (m,p,o)		mg/L	< 0.002			0.002
Volatile Petroleum Hydr	ocarbons - Water					
F1 C6-C10		mg/L	<0.2			0.2
F1 -BTEX		mg/L	<0.2			0.2
Extractable Petroleum F	lydrocarbons - Water					
F2 C10-C16		mg/L	<0.1			0.1
F3 C16-C34		mg/L	<0.1			0.1
F3+ C34+		mg/L	<0.1			0.1
Polychlorinated Biphen	yls - Water					
Aroclor 1016		ug/L	<0.1			0.1
Aroclor 1221		ug/L	<0.1			0.1
Aroclor 1232		ug/L	<0.1			0.1
Aroclor 1242		ug/L	<0.1			0.1
Aroclor 1248		ug/L	<0.1			0.1
Aroclor 1254		ug/L	<0.1			0.1
Aroclor 1260		ug/L	<0.1			0.1
Aroclor 1262		ug/L	<0.1			0.1
Aroclor 1268		ug/L	<0.1			0.1
Total PCBs		ug/L	<0.1			0.1
Polychlorinated Biphen	yls - Water - Surrogate					
Decachlorobiphenyl	Surrogate	%	91			50-150

Approved by:

Randy Neumann, BSc General Manager

RhDeunson

T: +1 (780) 438-5522 F: +1 (780) 434-8586 E: Edmonton@exova.com W: www.exova.com

Quality Control

Bill To: Biogenie S.R.D.C. Inc.

Report To: Biogenie S.R.D.C. Inc.

Quebec, QC, Canada

ID: 4495 Wilfrid Hamel Suite 200

Project:

Location:

2013 Kitikmeot LFM

Cam-1/Pin-2 Name:

Jenny Lind ISL/Cape Young

Date Received: Date Reported:

Control Number:

Aug 21, 2013 Aug 29, 2013

B13191

Lot ID: 953697

G1P 2J7 Attn: Antoine Vallieres LSD: P.O.: Acct code: Report Number: 1850232

Sampled By: A. Passalis

Company: Biogenie

Hot Water Solub	le					
Blanks	Units	Measured	Lower Limit	Upper Limit		Passed QC
Boron	mg/L	0.012	-0.01	0.02		yes
Date Acquired:	August 22, 2013					
Control Sample	Units	Measured	Lower Limit	Upper Limit		Passed QC
Boron	mg/kg	1.59	1.07	2.05		yes
Date Acquired:	August 22, 2013					-
Boron	mg/kg	0.10	0.09	0.11		yes
Date Acquired:	August 22, 2013					,
Metals Strong Ad	cid Digestion					
Blanks	Units	Measured	Lower Limit	Upper Limit		Passed QC
Mercury	ug/L	0	-0.07	0.13		yes
Antimony	ug/L	0.055	-0.1	0.2		yes
Arsenic	ug/L	0.021	-0.2	0.2		yes
Barium	ug/L	0.081	-1	1		yes
Beryllium	ug/L	-0.002	-0.1	0.1		yes
Cadmium	ug/L	-0.01	-0.01	0.01		yes
Chromium	ug/L	0.072	-0.5	0.5		yes
Cobalt	ug/L	0.055	-0.1	0.1		yes
Copper	ug/L	0.114	-0.6	1.2		yes
Lead	ug/L	0.007	-5.0	5.0		yes
Molybdenum	ug/L	0.051	-1.0	1.0		yes
Nickel	ug/L	0.214	-0.4	0.7		yes
Selenium	ug/L	-0.034	-0.3	0.3		yes
Silver	ug/L	0.029	-0.09	0.14		yes
Thallium	ug/L	-0.038	-0.04	0.04		yes
Tin	ug/L	4.548	0.0	7.2		yes
Uranium	ug/L	0.008	-0.5	0.5		yes
Vanadium	ug/L	0.038	-0.1	0.1		yes
Zinc	ug/L	0.013	-1	1		yes
Date Acquired:	August 22, 2013					
Client Sample Rep	licates Units	Replicate 1	Replicate 2	% RSD Criteria	Absolute Criteria	Passed QC
Mercury	mg/kg	0.05	0.04	10	0.03	yes
Antimony	mg/kg	<0.2	<0.2	20	0.4	yes
Arsenic	mg/kg	8.8	8.5	20	0.4	yes
Barium	mg/kg	343	336	20	2	yes
Beryllium	mg/kg	0.9	1.0	20	0.2	yes
Cadmium	mg/kg	0.42	0.39	20	0.02	yes
Chromium	mg/kg	26.4	24.4	20	1.1	yes
Cobalt	mg/kg	14.3	13.3	20	0.2	yes
Copper	mg/kg	32.9	31.9	20	2.2	yes
Lead	mg/kg	15.0	14.4	20	0.2	yes

T: +1 (780) 438-5522 F: +1 (780) 434-8586 E: Edmonton@exova.com W: www.exova.com

Quality Control

Bill To: Biogenie S.R.D.C. Inc. Project:

Report To: Biogenie S.R.D.C. Inc.

Acct code:

4495 Wilfrid Hamel Suite 200 Name:

Quebec, QC, Canada Location:

G1P 2J7 LSD: Attn: Antoine Vallieres P.O.:

Sampled By: A. Passalis Company: Biogenie

Lot ID: 953697 2013 Kitikmeot LFM ID: Control Number: B13191 Cam-1/Pin-2

Jenny Lind ISL/Cape Young

Date Received: Aug 21, 2013 Date Reported: Aug 29, 2013 Report Number: 1850232

Metals Strong Ac	id Digestion - Continu	ied				
Client Sample Repl	icates Units	Replicate 1	Replicate 2	% RSD Criteria	Absolute Criteria	Passed QC
Molybdenum	mg/kg	1.4	1.4	20	2.2	yes
Nickel	mg/kg	42.4	39.2	20	1.1	yes
Selenium	mg/kg	0.6	0.6	20	0.7	yes
Silver	mg/kg	0.3	0.3	20	0.22	yes
Thallium	mg/kg	0.25	0.24	20	0.11	yes
Tin	mg/kg	<1	<1	20	2.2	yes
Uranium	mg/kg	1.8	1.8	20	1.1	yes
Vanadium	mg/kg	51.9	48.6	20	0.2	yes
Zinc	mg/kg	85	83	20	2	yes
Date Acquired:	August 22, 2013					
Control Sample	Units	Measured	Lower Limit	Upper Limit		Passed QC
Antimony	mg/kg	40.6	36.1	43.9		yes
Arsenic	mg/kg	39.4	36.7	44.3		yes
Barium	mg/kg	196	185	215		yes
Beryllium	mg/kg	19.1	17.4	22.2		yes
Cadmium	mg/kg	2.19	1.80	2.20		yes
Chromium	mg/kg	97.9	92.2	105.8		yes
Cobalt	mg/kg	21.4	18.5	22.5		yes
Copper	mg/kg	193	176.3	207.3		yes
Lead	mg/kg	19.9	18.6	21.8		yes
Molybdenum	mg/kg	188	172.6	215.4		yes
Nickel	mg/kg	97.6	90.6	107.4		yes
Selenium	mg/kg	38.5	36.1	42.9		yes
Silver	mg/kg	20.3	16.69	21.97		yes
Thallium	mg/kg	10.3	9.57	11.23		yes
Tin	mg/kg	191	171.9	201.9		yes
Uranium	mg/kg	94.7	90.3	108.0		yes
Vanadium	mg/kg	17.5	16.3	20.3		yes
Zinc	mg/kg	199	180	220		yes
Date Acquired:	August 22, 2013					
Mercury	mg/kg	0.40	0.15	0.42		yes
Antimony	mg/kg	0.8	0.3	1.1		yes
Arsenic	mg/kg	81.6	65.9	97.9		yes
Barium	mg/kg	236	213	270		yes
Beryllium	mg/kg	0.7	0.5	0.9		yes
Cadmium	mg/kg	1.83	1.50	2.64		yes
Chromium	mg/kg	33.0	27.4	39.2		yes
Cobalt	mg/kg	14.7	11.3	16.0		yes
Copper	mg/kg	191	147.1	207.1		yes
Lead	mg/kg	121	99.6	135.6		yes
Molybdenum	mg/kg	3.0	2.0	3.8		yes
Nickel	mg/kg	61.8	47.1	73.5		yes

T: +1 (780) 438-5522 F: +1 (780) 434-8586 E: Edmonton@exova.com W: www.exova.com

Quality Control

Bill To: Biogenie S.R.D.C. Inc. Project:

Report To: Biogenie S.R.D.C. Inc. 2013 Kitikmeot LFM ID:

Name:

4495 Wilfrid Hamel Suite 200

Quebec, QC, Canada Location:

G1P 2J7 LSD:

Attn: Antoine Vallieres P.O.: Sampled By: A. Passalis Acct code:

Company: Biogenie

Date Acquired: August 22, 2013

Ο.	biogenie S.N.D.C. Inc.	i iojeci.		Lot ID:	953697
Го:	Biogenie S.R.D.C. Inc.	ID:	2013 Kitikmeot LFM	Control Number:	B13191
	4495 Wilfrid Hamel Suite 200	Name:	Cam-1/Pin-2	Data Pagaiyad:	

Jenny Lind ISL/Cape Young

Date Received: Aug 21, 2013 Date Reported: Aug 29, 2013 Report Number: 1850232

Metals Strong Acid	d Digestion - Continu	ued			
Control Sample	Units	Measured	Lower Limit	Upper Limit	Passed QC
Selenium	mg/kg	0.8	0.3	1.3	yes
Silver	mg/kg	0.9	0.25	1.15	yes
Thallium	mg/kg	0.31	0.26	0.40	yes
Tin	mg/kg	4.0	1.0	5.4	yes
Uranium	mg/kg	1.2	0.9	1.5	yes
Vanadium	mg/kg	40.0	33.6	44.8	yes
Zinc	mg/kg	451	317	485	yes

ПЛ	eta	le '	Tat	al
IVI	ета	ıs	ΙOτ	aı

Metals Total					
Blanks	Units	Measured	Lower Limit	Upper Limit	Passed QC
Aluminum	mg/L	0.0018	-0.01	0.02	yes
Calcium	mg/L	-0.0048	-0.1	0.1	yes
Iron	mg/L	-0.0029	-0.01	0.02	yes
Magnesium	mg/L	-0.0097	-0.04	0.04	yes
Manganese	mg/L	-0.0011	-0.003	0.003	yes
Potassium	mg/L	-0.0953	-0.1	0.2	yes
Silicon	mg/L	0.0064	-0.03	0.04	yes
Sodium	mg/L	-0.0437	-0.1	0.2	yes
Sulfur	mg/L	-0.0303	-0.1	0.2	yes
Mercury	ug/L	0	-0.0380	0.0700	yes
Antimony	ug/L	0.0230976	-0.2	0.2	yes
Arsenic	ug/L	0.00994919	-0.2	0.2	yes
Barium	ug/L	0.0169143	-1	1	yes
Beryllium	ug/L	-0.00251547	-0.1	0.1	yes
Bismuth	ug/L	-0.0152473	-0.5	0.5	yes
Boron	ug/L	0.311167	-1	3	yes
Cadmium	ug/L	-5.77796e-005	-0.007	0.012	yes
Chromium	ug/L	0.0458267	-0.7	0.3	yes
Cobalt	ug/L	0.0017216	-0.1	0.1	yes
Copper	ug/L	0.0403309	-1	1	yes
Lead	ug/L	0.00747421	-0.1	0.1	yes
Lithium	ug/L	-0.00996145	-1	1	yes
Molybdenum	ug/L	0.0431713	-1	1	yes
Nickel	ug/L	-0.0971796	-0.5	0.5	yes
Selenium	ug/L	0.0295302	-0.2	0.2	yes
Silver	ug/L	0.0038103	-0.02	0.10	yes
Strontium	ug/L	0.0138145	-1	1	yes
Thallium	ug/L	-0.000331018	-0.05	0.05	yes
Tin	ug/L	-0.00094355	-1	1	yes
Titanium	ug/L	0.00187539	-0.5	0.5	yes
Uranium	ug/L	-0.0016126	-0.5	0.5	yes

T: +1 (780) 438-5522 F: +1 (780) 434-8586 E: Edmonton@exova.com W: www.exova.com

Quality Control

Bill To: Biogenie S.R.D.C. Inc.

Report To: Biogenie S.R.D.C. Inc.

4495 Wilfrid Hamel Suite 200

Quebec, QC, Canada

G1P 2J7

Attn: Antoine Vallieres Sampled By: A. Passalis

Company: Biogenie

Project: ID:

P.O.:

Acct code:

2013 Kitikmeot LFM

Cam-1/Pin-2 Name: Location:

Jenny Lind ISL/Cape Young

LSD:

Date Reported: Aug 29, 2013 Report Number: 1850232

Control Number: B13191

Date Received:

Lot ID: 953697

Aug 21, 2013

Metals Total - Co	ontinued					
Blanks	Units	Measured	Lower Limit	Upper Limit		Passed QC
Vanadium	ug/L	0.00100184	-0.1	0.1		yes
Zinc	ug/L	0.835163	-0	1		yes
Zirconium	ug/L	0.0774549	-1	1		yes
Date Acquired:	August 21, 2013					-
Client Sample Rep	olicates Units	Replicate 1	Replicate 2	% RSD Criteria	Absolute Criteria	Passed QC
Aluminum	mg/L	<0.5	<0.5	15	0.03	yes
Calcium	mg/L	306	313	15	0.6	yes
Iron	mg/L	124	126	15	0.20	yes
Magnesium	mg/L	60.8	60.9	15	0.40	yes
Manganese	mg/L	1.0	1.1	15	0.010	yes
Potassium	mg/L	65	68	15	1.2	yes
Silicon	mg/L	10	11	15	0.10	yes
Sodium	mg/L	8430	8500	15	1.2	yes
Sulfur	mg/L	<8	<8	15	0.1	yes
Mercury	mg/L	<0.0001	<0.0001	10	0.0003	yes
Antimony	ug/L	<0.2	<0.2	15	0.4	yes
Arsenic	ug/L	1.9	1.7	15	0.4	yes
Barium	ug/L	44	39	15	2	yes
Beryllium	ug/L	<0.1	<0.1	15	0.2	yes
Bismuth	ug/L	<0.5	<0.5	15	1.1	yes
Boron	ug/L	82	74	15	4	yes
Cadmium	ug/L	0.009	0.007	15	0.022	yes
Chromium	ug/L	<0.5	<0.5	15	1.1	yes
Cobalt	ug/L	0.2	0.2	15	0.2	yes
Copper	ug/L	600	620	15	2	yes
Lead	ug/L	3.0	2.6	15	0.2	yes
Lithium	ug/L	29	25	15	2	yes
Molybdenum	ug/L	<1	<1	15	2	yes
Nickel	ug/L	1.7	1.6	15	1.1	yes
Selenium	ug/L	<0.2	<0.2	15	0.4	yes
Silver	ug/L	0.01	<0.01	15	0.22	yes
Strontium	ug/L	257	232	15	2	yes
Thallium	ug/L	<0.05	<0.05	15	0.11	yes
Tin	ug/L	2	<1	15	2	yes
Titanium	ug/L	<0.5	<0.5	15	1.1	yes
Uranium	ug/L	<0.5	<0.5	15	1.1	yes
Vanadium	ug/L	0.2	0.2	15	0.2	yes
Zinc	ug/L	14	13	15	2	yes
Date Acquired:	August 21, 2013					
Control Sample	Units	Measured	Lower Limit	Upper Limit		Passed QC
Aluminum	mg/L	3.76	3.46	4.30		yes
Calcium	mg/L	47.5	45.5	52.7		yes

T: +1 (780) 438-5522 F: +1 (780) 434-8586 E: Edmonton@exova.com W: www.exova.com

Quality Control

Bill To: Biogenie S.R.D.C. Inc.

Report To: Biogenie S.R.D.C. Inc.

4495 Wilfrid Hamel Suite 200

Quebec, QC, Canada G1P 2J7

Attn: Antoine Vallieres Sampled By: A. Passalis

Company: Biogenie

Project: ID:

2013 Kitikmeot LFM

Name: Cam-1/Pin-2 Location: Jenny Lind IS

Jenny Lind ISL/Cape Y

LSD:

P.O.: Acct code:

Jenny Lind ISL/Cape Young

Date Received: Aug 21, 2013
Date Reported: Aug 29, 2013
Report Number: 1850232

Control Number: B13191

Lot ID: 953697

Metals Total - Co	ontinued				
Control Sample	Units	Measured	Lower Limit	Upper Limit	Passed QC
Iron	mg/L	1.87	1.83	2.19	yes
Magnesium	mg/L	18.2	18.14	22.14	yes
Manganese	mg/L	0.479	0.442	0.538	yes
Potassium	mg/L	47.8	45.8	55.8	yes
Silicon	mg/L	1.95	1.81	2.21	yes
Sodium	mg/L	48.1	45.9	56.0	yes
Sulfur	mg/L	9.2	8.9	10.9	yes
Mercury	mg/L	0.0007	0.0006	0.0010	yes
Antimony	ug/L	11.0	9.7	12.7	yes
Arsenic	ug/L	10.6	9.6	12.6	yes
Barium	ug/L	61	54	68	yes
Beryllium	ug/L	5.2	4.7	6.6	yes
Bismuth	ug/L	29.3	24.8	34.4	yes
Boron	ug/L	112	102	139	yes
Cadmium	ug/L	0.577	0.473	0.781	yes
Chromium	ug/L	29.8	27.3	35.1	yes
Cobalt	ug/L	5.9	5.2	7.6	yes
Copper	ug/L	58	53	67	yes
Lead	ug/L	6.1	5.2	7.1	yes
Lithium	ug/L	60	53	77	yes
Molybdenum	ug/L	60	53	66	yes
Nickel	ug/L	29.1	26.2	35.2	yes
Selenium	ug/L	10	8.5	12.1	yes
Silver	ug/L	5.70	5.39	7.13	yes
Strontium	ug/L	61	54	69	yes
Thallium	ug/L	3.04	2.67	3.69	yes
Tin	ug/L	59	52	64	yes
Titanium	ug/L	30.5	26.6	35.7	yes
Uranium	ug/L	30.2	25.7	36.3	yes
Vanadium	ug/L	5.8	5.1	7.2	yes
Zinc	ug/L	54	49	67	yes
Zirconium	ug/L	61	53	67	yes
Date Acquired:	August 21, 2013				
Mercury	mg/L	0.0028	0.0026	0.0032	yes
Antimony	ug/L	39.5	36.8	42.6	yes
Arsenic	ug/L	39.3	37.7	44.7	yes
Barium	ug/L	198	184	212	yes
Beryllium	ug/L	19.0	17.4	22.2	yes
Bismuth	ug/L	102	92.2	109.8	yes
Boron	ug/L	382	343	436	yes
Cadmium	ug/L	2.06	1.915	2.205	yes
Chromium	ug/L	97.5	90.0	110.0	yes

T: +1 (780) 438-5522 F: +1 (780) 434-8586 E: Edmonton@exova.com W: www.exova.com

Quality Control

Bill To: Biogenie S.R.D.C. Inc.

Report To: Biogenie S.R.D.C. Inc.

4495 Wilfrid Hamel Suite 200

Quebec, QC, Canada

G1P 2J7

Attn: Antoine Vallieres Sampled By: A. Passalis

Company: Biogenie

Project:

ID:

P.O.:

Acct code:

2013 Kitikmeot LFM

Cam-1/Pin-2 Name:

Location:

LSD:

Jenny Lind ISL/Cape Young

Date Received:

Aug 21, 2013 Aug 29, 2013

Date Reported: Report Number: 1850232

Control Number: B13191

Lot ID: 953697

letals Total - Continu					
Control Sample	Units	Measured	Lower Limit	Upper Limit	Passed QC
Cobalt	ug/L	19.4	18.7	22.3	yes
Copper	ug/L	197	185	208	yes
Lead	ug/L	19.8	18.6	21.8	yes
Lithium	ug/L	194	173	222	yes
Molybdenum	ug/L	196	180	220	yes
Nickel	ug/L	96.8	90.0	110.0	yes
Selenium	ug/L	38.3	36.1	42.9	yes
Silver	ug/L	19.6	18.00	22.00	yes
Strontium	ug/L	198	182	212	yes
Thallium	ug/L	9.83	9.16	10.96	yes
Tin	ug/L	204	197	213	yes
Titanium	ug/L	98.6	91.5	106.3	yes
Uranium	ug/L	100	90.2	109.0	yes
Vanadium	ug/L	19.2	16.9	22.1	yes
Zinc	ug/L	196	186	219	yes
Date Acquired: Augu	ust 21, 2013				
Mercury	mg/L	0.0008	0.0007	0.0009	ye
Antimony	ug/L	11.8	10.8	13.2	yes
Arsenic	ug/L	12.0	10.8	13.2	yes
Barium	ug/L	62	54	66	yes
Beryllium	ug/L	6.1	5.2	6.5	yes
Bismuth	ug/L	30.8	27.0	33.0	yes
Boron	ug/L	122	108	132	yes
Cadmium	ug/L	0.631	0.501	0.699	yes
Chromium	ug/L	30.0	27.0	33.0	yes
Cobalt	ug/L	6.0	5.4	6.6	yes
Copper	ug/L	61	54	66	yes
Lead	ug/L	6.2	5.4	6.6	yes
Lithium	ug/L	60	53	66	yes
Molybdenum	ug/L	61	54	66	yes
Nickel	ug/L	29.9	27.0	33.0	yes
Selenium	ug/L	11.8	10.8	13.2	yes
Silver	ug/L	6.00	5.40	6.60	yes
Strontium	ug/L	60	54	66	yes
Thallium	ug/L	3.07	0.00	6.00	yes
Tin	ug/L	61	54	66	yes
Titanium	ug/L	29.5	27.0	33.0	yes
Uranium	ug/L	31.0	27.0	33.0	yes
Vanadium	ug/L	6.0	5.1	6.3	yes
Zinc	ug/L	61	54	66	yes
Zirconium	ug/L	62	54	66	yes
Date Acquired: Augu	ust 21, 2013				

T: +1 (780) 438-5522 F: +1 (780) 434-8586 E: Edmonton@exova.com W: www.exova.com

Quality Control

Bill To: Biogenie S.R.D.C. Inc.

Report To: Biogenie S.R.D.C. Inc.

4495 Wilfrid Hamel Suite 200

Quebec, QC, Canada

G1P 2J7

Attn: Antoine Vallieres Sampled By: A. Passalis

Company: Biogenie Project:

2013 Kitikmeot LFM

Cam-1/Pin-2 Name:

Location:

LSD: P.O.:

Acct code:

ID:

Jenny Lind ISL/Cape Young

Aug 29, 2013 Date Reported: Report Number: 1850232

Control Number:

Date Received:

Lot ID: 953697

B13191

Aug 21, 2013

Metals Total - Continued Control Sample Units Measured **Lower Limit Upper Limit Passed QC** Antimony ug/L 2.1 1.8 2.2 yes Arsenic ug/L 2.1 1.8 2.3 yes Barium 11 9 11 ug/L yes Beryllium ug/L 1.0 8.0 1.1 yes **Bismuth** ug/L 5.3 4.6 5.7 yes Boron ug/L 22 17 23 yes 0.108 0.083 0.114 Cadmium ug/L yes Chromium ug/L 5.2 4.6 5.4 yes Cobalt ug/L 0.9 1.0 1.1 yes Copper ug/L 10 9 11 yes 0.9 Lead ug/L 1.1 1.1 yes ug/L Lithium 9 11 11 yes Molybdenum ug/L 10 9 11 yes Nickel 5.3 4.5 5.5 ug/L yes Selenium ug/L 2.0 1.6 2.2 yes Silver ug/L 1.06 0.90 1.10 yes Strontium ug/L 11 10 11 ves Thallium 0.55 0.48 0.57 ug/L yes Tin ug/L 10 9 11 ves Titanium ug/L 5.1 4.5 5.4 yes Uranium ug/L 5.2 4.7 5.7 yes 8.0 Vanadium ug/L 1.1 1.1 yes Zinc ug/L 9 11 11 yes Zirconium ug/L 11 9 11 yes August 21, 2013 Date Acquired: Aluminum mg/L 19.4 18.80 20.60 yes 230.0 257.6 Calcium mg/L 243 yes Iron mg/L 9.36 9.07 10.15 yes Magnesium mg/L 97.5 92.78 104.72 yes Manganese mg/L 2.44 2.260 2.560 yes Potassium mg/L 249 232.2 259.9 yes Silicon mg/L 10.3 9.48 10.74 yes Sodium mg/L 245 226.8 267.4 yes Sulfur 147 136.5 166.3 mg/L yes Date Acquired: August 21, 2013 Aluminum mg/L 3.88 3.46 4.44 yes Calcium mg/L 49.9 45.0 55.0 yes Iron mg/L 1.95 1.80 2.20 yes Magnesium mg/L 19.3 17.99 22.01 yes

0.498

51.0

2.08

0.449

45.0

1.92

0.551

55.0

2.22

yes

yes

yes

mg/L

mg/L

mg/L

Manganese

Potassium

Silicon

Exova T: +1 (780) 438-5522
7217 Roper Road NW F: +1 (780) 434-8586
Edmonton, Alberta E: Edmonton@exova.com
T6B 3J4, Canada W: www.exova.com

Quality Control

Bill To: Biogenie S.R.D.C. Inc. Project.

Sampled By: A. Passalis Acct code:

Company: Biogenie

Metals Total - Continued

	Biogenie S.R.D.C. Inc. Biogenie S.R.D.C. Inc. 4495 Wilfrid Hamel Suite 200	Project: ID: Name:	2013 Kitikmeot LFM Cam-1/Pin-2	Lot ID: Control Number: Date Received:	
Attn:	Quebec, QC, Canada G1P 2J7 Antoine Vallieres	Location: LSD: P.O.:	Jenny Lind ISL/Cape Young	Date Reported: Report Number:	Aug 29, 2013

Control Sample	Units	Measured	Lower Limit	Upper Limit		Passed QC
Sodium	mg/L	51.1	45.0	55.0		yes
Sulfur	mg/L	9.7	9.0	11.0		yes
Date Acquired:	August 21, 2013					
Aluminum	mg/L	0.39	0.36	0.44		yes
Calcium	mg/L	4.8	4.6	5.6		yes
Iron	mg/L	0.19	0.18	0.22		yes
Magnesium	mg/L	1.88	1.84	2.18		yes
Manganese	mg/L	0.046	0.046	0.056		yes
Potassium	mg/L	5.1	4.5	5.5		yes
Silicon	mg/L	0.20	0.18	0.22		yes
Sodium	mg/L	5.1	4.7	5.5		yes
Sulfur	mg/L	2.8	2.8	3.2		yes
Date Acquired:	August 21, 2013					
Physical and Ag	gregate Properties					
Client Sample Rep		Replicate 1	Replicate 2	% RSD Criteria	Absolute Criteria	Passed QC
Moisture	%	15.4	14.8	10	0.3	yes
Date Acquired:	August 22, 2013					,
Mono-Aromatic I	Hydrocarbons - Soil					
Blanks	Units	Measured	Lower Limit	Upper Limit		Passed QC
Benzene	ng	o lineasureu	-1.650	1.650		
Toluene	ng	0	-2.010	2.010		yes yes
Ethylbenzene	ng	0	-3.99	3.99		yes
m,p-Xylene	ng	0	-3.99	3.99		yes
o-Xylene	ng	0	-3.99	3.99		yes
Date Acquired:	August 21, 2013	· ·	0.00	0.00		yes
•	_	Danlianto 4	Denlinata 2	% RSD Criteria	Abaaluta Critaria	Deced OC
Replicates Benzene	Units	Replicate 1 0.870	Replicate 2 0.877		Absolute Criteria 0.004	Passed QC
Toluene	mg/kg	0.893	0.877	20 20	0.004	yes
Ethylbenzene	mg/kg	0.893	0.900	20	0.005	yes
m,p-Xylene	mg/kg	1.81	1.82	20	0.01	yes
o-Xylene	mg/kg	0.90	0.91	20	0.01	yes
•	mg/kg	0.90	0.91	20	0.01	yes
Date Acquired:	August 21, 2013					
Control Sample	Units	Measured	Lower Limit	Upper Limit		Passed QC
Benzene	mg/kg	1.31	1.063	1.438		yes
Toluene	mg/kg	1.30	1.063	1.438		yes
Ethylbenzene	mg/kg	1.29	1.06	1.44		yes
m,p-Xylene	mg/kg	2.61	2.12	2.88		yes
o-Xylene	mg/kg	1.30	1.06	1.44		yes
Date Acquired:	August 21, 2013					

T: +1 (780) 438-5522 F: +1 (780) 434-8586 E: Edmonton@exova.com W: www.exova.com

Quality Control

Report To: Biogenie S.R.D.C. Inc. ID: 2013 Kitikmeot LFM

Name:

Acct code:

4495 Wilfrid Hamel Suite 200

Quebec, QC, Canada Location:

LSD: G1P 2J7

Attn: Antoine Vallieres P.O.:

Sampled By: A. Passalis Company: Biogenie

Bill To:	Biogenie S.R.D.C. Inc.	Project:	Lot ID: 953697

Cam-1/Pin-2

Jenny Lind ISL/Cape Young

Control Number: B13191

% RSD Criteria

Upper Limit

30

30

30

30

121

158

Absolute Criteria

20

20

30

20

Passed QC

Passed QC

yes

yes

yes

yes

yes

yes

Replicate 2

Lower Limit

232

978

248

<100

79

122

Date Received: Aug 21, 2013 Date Reported: Aug 29, 2013 Report Number: 1850232

Replicates	Units	Replicate 1	Replicate 2	% RSD Criteria	Absolute Criteria	Passed Q0
Benzene	mg/L	0.025	0.026	20	0.002	ye
Toluene	mg/L	0.023	0.024	20	0.002	yes
Ethylbenzene	mg/L	0.024	0.025	20	0.002	yes
m,p-Xylene	mg/L	0.053	0.052	20	0.002	yes
o-Xylene	mg/L	0.027	0.026	20	0.002	yes
Date Acquired:	August 27, 2013					
Control Sample	Units	Measured	Lower Limit	Upper Limit		Passed QC
Benzene	mg/L	0.046	0.042	0.058		yes
Toluene	mg/L	0.047	0.042	0.058		yes
Ethylbenzene	mg/L	0.047	0.042	0.058		yes
m,p-Xylene	mg/L	0.094	0.085	0.115		yes
o-Xylene	mg/L	0.047	0.042	0.058		yes
Date Acquired:	August 27, 2013					
/olatile Petroleu	ım Hydrocarbons - So	il .				
Blanks	Units	Measured	Lower Limit	Upper Limit		Passed QC
F1 C6-C10	ng	292.28	-1599	1599		yes
Date Acquired:	August 21, 2013					•
Replicates	Units	Replicate 1	Replicate 2	% RSD Criteria	Absolute Criteria	Passed QC
F1 C6-C10	mg/kg	20	20	20	4	yes
Date Acquired:	August 21, 2013					,
	Units	Measured	Lower Limit	Upper Limit		Passed QC
Control Sample			4.4	21		yes
Control Sample F1 C6-C10	mg/kg	18	14			
-	mg/kg August 21, 2013	18	14			you
F1 C6-C10 Date Acquired:	August 21, 2013		14	Σ.		you
F1 C6-C10 Date Acquired: /olatile Petroleu	0 0		Lower Limit			·
F1 C6-C10 Date Acquired:	August 21, 2013	ter		Upper Limit		Passed QC
F1 C6-C10 Date Acquired: /olatile Petroleu Control Sample	August 21, 2013 Im Hydrocarbons - Wa Units	ter Measured	Lower Limit	Upper Limit		Passed QC

Replicate 1

249

1040

259

<100

93

132

Measured

Replicates

F2c C10-C16

F3c C16-C34

F4c C34-C50

Date Acquired:

F4c+ C50+

Control Sample

F2c C10-C16

F3c C16-C34

Units

mg/kg

mg/kg

mg/kg

mg/kg

Units

mg/kg

mg/kg

August 21, 2013

T: +1 (780) 438-5522 F: +1 (780) 434-8586 E: Edmonton@exova.com W: www.exova.com

Absolute Criteria Passed QC

Quality Control

Bill To: Biogenie S.R.D.C. Inc. Project:

Report To: Biogenie S.R.D.C. Inc. 2013 Kitikmeot LFM ID:

Name:

4495 Wilfrid Hamel Suite 200

Quebec, QC, Canada Location: LSD:

G1P 2J7

Attn: Antoine Vallieres P.O.: Sampled By: A. Passalis Acct code:

Company: Biogenie

Lot ID: 953697

Control Number: B13191 Date Received:

Aug 21, 2013 Aug 29, 2013 Date Reported:

Report Number: 1850232

% RSD Criteria

Extractable Petroleum Hydrocari	ons -
Soil - Continued	

Soil - Continued					
Control Sample	Units	Measured	Lower Limit	Upper Limit	Passed QC
F4c C34-C50	mg/kg	193	170	230	yes
Date Acquired:	August 21, 2013				
Matrix Spike	Units	% Recovery	Lower Limit	Upper Limit	Passed QC
F2c C10-C16	mg/kg	86	70	130	yes
F3c C16-C34	mg/kg	108	70	130	yes
F4c C34-C50	mg/kg	85	70	130	yes
Date Acquired:	August 21, 2013				

Replicate 1

Cam-1/Pin-2

Jenny Lind ISL/Cape Young

Extractable Petroleum Hydrocarbons -

Units

Water
Replicates

F2 C10-C16	mg/L	2.9	3.0	30	0.2	yes
F3 C16-C34	mg/L	10.4	10.2	30	0.2	yes
F3+ C34+	mg/L	2.8	3.1	30	0.2	yes
Date Acquired:	August 21, 2013					
Control Sample	Units	Measured	Lower Limit	Upper Limit	Pas	ssed QC
F2 C10-C16	mg/L	91.3	80.0	120.0		yes
F3 C16-C34	mg/L	135	120.0	160.0		yes
F3+ C34+	mg/L	317	310.0	350.0		yes
Date Acquired:	August 21, 2013					
Matrix Spike	Units	% Recovery	Lower Limit	Upper Limit	Pas	ssed QC
F2 C10-C16	mg/L	92	75	125		yes
F3 C16-C34	mg/L	99	75	125		yes
F3+ C34+	mg/L	85	75	125		yes

Replicate 2

Polychlorinated Biphenyls - Soil

Date Acquired:

August 21, 2013

Polychiorinated	Diprienyis - Soli				
Blanks	Units	Measured	Lower Limit	Upper Limit	Passed QC
Aroclor 1016	ug/mL	0	-0.3	0.3	yes
Aroclor 1221	ug/mL	0	-0.3	0.3	yes
Aroclor 1232	ug/mL	0	-0.3	0.3	yes
Aroclor 1242	ug/mL	0	-0.3	0.3	yes
Aroclor 1248	ug/mL	0	-0.3	0.3	yes
Aroclor 1254	ug/mL	0	-0.3	0.3	yes
Aroclor 1260	ug/mL	0	-0.3	0.3	yes
Aroclor 1262	ug/mL	0	-0.3	0.3	yes
Aroclor 1268	ug/mL	0	-0.3	0.3	yes
Date Acquired:	August 23, 2013				
Calibration Check	Units	% Recovery	Lower Limit	Upper Limit	Passed QC
Aroclor 1248	ug/mL	90.00	80	120	yes

T: +1 (780) 438-5522 F: +1 (780) 434-8586 E: Edmonton@exova.com W: www.exova.com

Quality Control

Bill To: Biogenie S.R.D.C. Inc. Project:

Report To: Biogenie S.R.D.C. Inc. ID: 2013 Kitikmeot LFM Cam-1/Pin-2

Name:

P.O.:

Location:

Acct code:

4495 Wilfrid Hamel Suite 200

Quebec, QC, Canada LSD:

G1P 2J7

Attn: Antoine Vallieres Sampled By: A. Passalis

Company: Biogenie

Lot ID: 953697

Control Number: B13191 Date Received: Aug 21, 2013

Date Reported: Aug 29, 2013 Report Number: 1850232

Pol	ychl	lorinate	d Biphenyls - Soi	il -
_				

Continued

Lower Limit Calibration Check Upper Limit Passed QC Units % Recovery

Jenny Lind ISL/Cape Young

Date Acquired: August 23, 2013

Polychlorinated Biphenyls - Soil -

Surrogate

Blanks **Lower Limit Upper Limit** Passed QC Units Measured Decachlorobiphenyl % 143.89 50 150 yes

Date Acquired: August 23, 2013

Polychlorinated Biphenyls - Water

Blanks	Units	Measured	Lower Limit	Upper Limit	Passed QC
Aroclor 1016	ug/mL	0	-0.3	0.3	yes
Aroclor 1221	ug/mL	0	-0.3	0.3	yes
Aroclor 1232	ug/mL	0	-0.3	0.3	yes
Aroclor 1242	ug/mL	0	-0.3	0.3	yes
Aroclor 1248	ug/mL	0	-0.3	0.3	yes
Aroclor 1254	ug/mL	0	-0.3	0.3	yes
Aroclor 1260	ug/mL	0	-0.3	0.3	yes
Aroclor 1262	ug/mL	0	-0.3	0.3	yes
Aroclor 1268	ug/mL	0	-0.3	0.3	yes

Date Acquired: August 22, 2013

Lower Limit Upper Limit Passed QC **Calibration Check** Units % Recovery 120.00 80 120 Aroclor 1016 ug/mL yes

Date Acquired: August 22, 2013

Polychlorinated Biphenyls - Water -

Surrogate

Blanks Units Measured **Lower Limit Upper Limit Passed QC** Decachlorobiphenyl 78.5519 50 150 % yes

Date Acquired: August 22, 2013

T: +1 (780) 438-5522 F: +1 (780) 434-8586 E: Edmonton@exova.com W: www.exova.com

Methodology and Notes

Bill To: Biogenie S.R.D.C. Inc.

Report To: Biogenie S.R.D.C. Inc.

Project: ID: Name:

2013 Kitikmeot LFM Cam-1/Pin-2

Lot ID: 953697 Control Number: B13191

4495 Wilfrid Hamel Suite 200 Quebec, QC, Canada

Location: LSD:

P.O.:

Jenny Lind ISL/Cape Young

Date Received: Aug 21, 2013 Date Reported: Aug 29, 2013 Report Number: 1850232

G1P 2J7 Attn: Antoine Vallieres

Sampled By: A. Passalis

Acct code:

Company: Biogenie

Method of Analysis			
Method Name	Reference	Method Date Analy Started	sis Location
Boron in general soil	McKeague	* Hot Water Soluble Boron - Azomethine 22-Aug-13 -H Method, 4.61	Exova Edmonton
BTEX-CCME in Soil EDM	CCME	 * Reference Method for Canada-Wide 21-Aug-13 Standard for PHC in Soil, CWS PHCS TIER 1 	Exova Edmonton
BTEX-CCME in Soil EDM	US EPA	* US EPA method, 8260B/5035 21-Aug-13	Exova Edmonton
STEX-CCME in Water EDM	US EPA	* US EPA method, 8260B/5035 22-Aug-13	Exova Edmonton
BTEX-CCME in Water EDM	US EPA	 Volatile Organic Compounds by GCMS 22-Aug-13 / Purge and Trap for Aqueous Samples, 8260B/5030B 	Exova Edmonton
Mercury (Hot Block) in Soil	US EPA	 Determination of Hg in Sediment by Cold Vapor Atomic Absorption Spec, 245.5 	Exova Edmonton
Mercury (Total) in water	US EPA	 Determination of Hg in Sediment by Cold Vapor Atomic Absorption Spec, 245.5 	Exova Edmonton
Metals ICP-MS (Hot Block) in soil	SW-846	 * Acid Digestion of Sediments, Sludges, 22-Aug-13 and Soils, EPA 3050B 	Exova Edmonton
Metals ICP-MS (Total) in water	APHA/USEPA	 Metals By Inductively Coupled 21-Aug-13 Plasma/Mass Spectrometry, APHA 3125 B / USEPA 200.8 	Exova Edmonton
Metals Trace (Total) in water	APHA	 * Inductively Coupled Plasma (ICP) Method, 3120 B 	Exova Edmonton
Moisture	Carter	 * Gravimetric Method with Oven Drying, 22-Aug-13 51.2 	Exova Edmonton
PCB - Soil	US EPA	 Polychlorinated Biphenyls (PCBs) by 23-Aug-13 Gas Chromatography, 8082A 	Exova Calgary
PCB - Water	US EPA	 Polychlorinated Biphenyls (PCBs) by 22-Aug-13 Gas Chromatography, 8082A 	Exova Calgary
TEH-CCME in Soil (Shake) EDM	CCME	 * Reference Method for Canada-Wide 21-Aug-13 Standard for PHC in Soil, CWS PHCS TIER 1 	Exova Edmonton
TEH-CCME in Water EDM	MMCA	 Petroleum Hydrocarbons in Water, 21-Aug-13 A108.0 	Exova Edmonton

* Reference Method Modified

References

APHA Standard Methods for the Examination of Water and Wastewater

Soil Sampling and Methods of Analysis. Carter

McKeague Manual on Soil Sampling and Methods of Analysis

SW-846 Test Methods for Evaluating Solid Waste

US EPA US Environmental Protection Agency Test Methods

T: +1 (780) 438-5522 7217 Roper Road NW F: +1 (780) 434-8586 Edmonton, Alberta E: Edmonton@exova.com T6B 3J4, Canada W: www.exova.com

Methodology and Notes

Bill To: Biogenie S.R.D.C. Inc. Project:

Report To: Biogenie S.R.D.C. Inc.

4495 Wilfrid Hamel Suite 200

Quebec, QC, Canada

G1P 2J7

Attn: Antoine Vallieres

Sampled By: A. Passalis Company: Biogenie

LSD:

P.O.:

Acct code:

ID: 2013 Kitikmeot LFM

Cam-1/Pin-2 Name: Location:

Jenny Lind ISL/Cape Young

Lot ID: 953697 Control Number: B13191

Date Received: Aug 21, 2013 Date Reported: Aug 29, 2013 Report Number: 1850232

Comments:

Please direct any inquiries regarding this report to our Client Services group. Results relate only to samples as submitted.

The test report shall not be reproduced except in full, without the written approval of the laboratory.

Analytical Report

Bill To: Biogenie S.R.D.C. Inc.

Report To: Biogenie S.R.D.C. Inc.

4495 Wilfrid Hamel Suite 200

Quebec, QC, Canada

G1P 2J7

Attn: Antoine Vallieres

Sampled By: A. Passalis

Company: Biogenie

Project: ID:

Location:

Acct code:

LSD:

P.O.:

2013 Kitikmeot LFM

Cam-1/Pin-2 Name:

Jenny Lind ISL/Cape Young

Date Received: Aug 21, 2013 Date Reported: Aug 29, 2013

Control Number:

Report Number: 1850232

Lot ID: 953697

B13191

Petroleum Hydrocarbons in Soil

Batch Notes

- The method used complies with the Reference Method for the Canada Wide Standards for Petroleum Hydrocarbons in Soil - Tier 1, April 2001, including Addendum 1, and is accredited for use in Exova.
- 2. Modifications of the method: See Notes and Methodology for nonconformances (if applicable).
- 3. Qualifications on results: See Notes and Methodology for nonconformances (if applicable).
- Silica gel treatment is performed for fractions F2, F3, F4. 4.
- F1-BTEX: BTEX has been subtracted from the F1 fraction. 5.
- If analyzed, naphthalene has been subtracted from fraction F2 and selected PAHs have been subtracted from fraction 6. F3.
- 7. F4HTGC is reported when more than 5% of the total carbon envelope elutes past C₅₀.
- Exova does not routinely report Gravimetric Heavy Hydrocarbons (F4G or F4G-sg), F4HTGC through extended range high temperature GC is reported instead.
- When both F4(C₃₄-C₅₀) and F4HTGC are reported, F4HTGC is the final F4 that is to be used for interpreting the CWS.
- Quality criteria met for the batch: Data is reported in Quality Control Section of report (if requested).
 - -nC6 and nC10 response factors (RF) are within 30% of RF for toluene
 - -nC₁₀, nC₁₆ and nC₃₄ RFs are within 10% of each other
 - -nC50 RF is within 30% of the average RF for nC10+nC16+nC34
 - -linearity is within 15% for each of the calibrated carbon ranges
- 11. Batch data for analytical quality control are available on request.
- 12. Extraction and analysis holding times were met: See Notes and Methodology for nonconformances (if applicable).

Approved by:

Randy Neumann, BSc General Manager

RLDeunes