

AECOM

Cape Dyer Camp Layout

Figure - 1

AECOM

2540 Kensington Road NW, Calgary, AB, Canada T2N 3S3 T 403.270.9200 F 403.270.0399 www.aecom.com

GENERAL INFORMATION

The water use license application is being submitted to the NWB on January 6, 2009 for the period of May 2009 to October 2012.

Douglas Craig, Environmental Officer Defence Construction Canada Ltd. Constitution Square, Suite 1720 350 Albert Street Ottawa, Ontario K1A 0K3

Phone: 613-998-9529 Fax: 613-998-0468

e-mail: Douglas.Craig@dcc-cdc.gc.ca

The contractor for this site is:

SNC-Lavalin

Contractor Site Manager: Dave Witty Telephone Number: 416-849-3931 Fax Number: 416-849-3929

Email: David.Witty@snclavalin.com

TECHNICAL INFORMATION

Site Assessment Considerations

- 1. Detailed topographic site survey diagrams, maps and aerial photos are provided in the drawing package included with the project description submission. Figure 1 included with the application provides a layout of the construction camp, including the fuel storage locations.
 - **a. Soil, fuel and chemical storage locations:** The locations of the soil, fuel and chemical storage locations are shown on the drawings.
 - **b.** Soil Landfarm active treatment location: Shown on the drawings.
 - **c.** Site drainage patterns: Shown on the drawings.
 - d. Adjacent surface water bodies that could be affected by the proposed undertaking, particularly fish-bearing waters: Shown on the drawings.
 - e. Facility site access routes: Shown on the drawings.
 - f. Surface and subsurface environmental monitoring sites: Locations of monitoring stations are shown on the drawings.

- g. Traditional land use areas used for recreation, camping, fishing, etc.: Traditional land use at the site may include Inuit families residing on the land in tents during the summer months. It is anticipated that the Inuit would engage in traditional activities such as hunting, fishing and gathering. During the site clean up activities, the contractor would be responsible for site security relative to his construction activities.
- **2. Slope of land underlying the Facility:** Measurements taken from the drawings indicate that the approximate slope of the natural ground in the landfarm area is approximately 2-3% to the north.
- 3. Hydrological / Climatic Assessment of the Site:
 - a. Precipitation and temperature profiles for the area: Cape Dyer is located within the Baffin Mountains ecoregion. The climate is humid and extremely cold, with short cold summers. Average monthly and annual weather data has been measured at the station (Cape Dyer, Nunavut, 66° 34.800' N, 61° 37.200' W, elevation 392.60 m, data from 1971 to 2000, Canadian Climate Normals, Environment Canada) and summarized in the following table.

Table 3: Meteorology: Precipitation and Temperature profiles at DYE-M, Cape Dyer

Month	Daily Maximum (°C)	Daily Minimum (°C)	Daily Mean (°C)	Extreme Maximum (°C)	Extreme Minimum (°C)	Rainfall (mm)	Snowfall (cm)	Snow at Month -end (cm)
January	-19.3	-29.1	-24.2	1.1	-44.9	0.3	59.2	93
February	-20.8	-30.2	-25.5	2.2	-46.9	0	38.1	94
March	-17.9	-27.9	-22.9	2.8	-47.2	0	35.8	94
April	-11.1	-21.4	-16.3	10	-39.7	0.1	49.8	103
May	-3.1	-10.5	-6.9	11.7	-28.3	1.2	56.2	98
June	3.8	-2.4	0.7	17.8	-13.9	8.6	20.9	39
July	8.7	1.9	5.3	19.4	-5.5	34.5	7.4	1
August	7.5	1.2	4.4	18.9	-9.8	34.2	11	1
September	1.7	-4	-1.2	16.6	-18.9	15.2	50.8	20
October	-4.2	-11.9	-8.1	9.3	-31.1	3.4	95.2	52
November	-10.7	-19.6	-15.2	6.2	-39.4	0.9	79.6	70
December	-16.8	-26.4	-21.6	5.6	-45	0.1	62.1	82

b. Details concerning the local drainage basin: The DYE-M, Cape Dyer DEW Line site is located on the eastern most point of Baffin Island in the Nunavut Territory. The station is about 15 km inland from the Sunneshine Fiord shore. The Upper Site facilities are located atop a summit, approximately 20 km east-northeast of the airstrip and Lower Camp area.

The Lower Site, including the landfarm area, is located within a broad valley bottom. The terrain is subdued, low-lying and undulating to very nearly level. Drainage patterns are poorly developed and surface runoff is comparatively slow. Although the surface materials are

generally highly to moderately pervious, the comparatively slow runoff and subdued terrain cause some ponding of water within the landscape.

- c. Information regarding direction, path of water flow and potential seepage in area of the undertaking; In general, all water flow eventually flows towards Sunneshine Fiord. The contours and major drainage courses are identified on drawings.
- **d.** Likelihood of flood events: The landfarm is located in an area that will not be affected by flood events. It is located out of the flood zone of watercourses.

4. A description of the soil underlying the site:

- a. The physical and chemical characteristics of the soil underlying the facility: Six test pits were excavated in the proposed landfarm area extension. The soils in the area are comprised of sand, with silt, gravel, cobbles and silt in varying proportions.
- **b. Depth of the permafrost active layer:** Frozen ground was encountered at approximately 1.8 m depth.
- c. Permafrost characteristics that may impact the construction and operation of the Facility: Excavation of active layer is to be minimized to reduce the risk of thaw settlement of the underlying ice rich permafrost. The landfarm is constructed primarily above existing grade with only the lowest portion of the collection ditch excavated slightly below existing grade (< 0.3 metres).</p>
- **5. Municipal Zoning or Land Use Planning Ordinances:** The proposed landfarm at DYE-M is on a DND Reserve on Crown Land.

Soil Storage and Landfarm Treatment Design Considerations

1. Details of Design and Construction of Soil Storage and Landfarm Treatment Facility:

UMA submitted the design for a hydrocarbon soils treatment facility (landfarm) as part of the 2003 Project Description for the clean up of the DYE-M site, which is currently in use. The landfarm is located more than 100 metres away from any water body, there is no ponded water, there is convenient access from existing site roads and is more than 300 metres from the construction camp, offices, and laboratory. Operation and closure of the landfarm will involve the following work:

- Ground preparation, such as removal of boulders and placement of granular bedding material, to facilitate treatment options, as required (completed);
- Construction and maintenance of roadways required to support treatment operations (completed):
- Construction of exterior berms and drainage ditches (completed);
- Placement of hydrocarbon-contaminated soils in the landfarm (on-going);
- Specific activities for landfarming operations, including nutrient application, tilling and moisture conditioning (on-going);
- Final grading to promote drainage away from the site and to match the surrounding terrain;
- Supply and installation of temporary groundwater monitoring wells at the perimeter of the landfarm, to be sampled and tested during landfarming operations (completed); and

- Closure of the landfarm following confirmation that treatment has remediated the contaminated soil.
- a. Retaining Structures; The containment for the landfarm consists perimeter berms.
- **b. Geo-synthetic liners**; No geosynthetic liner was used.
- c. Devices used to manage excess runoff water and/or leachate; The landfarm is graded to drain to a ditch and collect in a sump at the north side of the facility. Excess runoff in the sump is tested and if it meets the requirements of the wastewater discharge criteria, it will be pumped and discharged appropriately. Landfarm runoff that does not meet the Wastewater Discharge Criteria will be treated until it does.
- d. Existing and proposed drainage modifications: The landfarm included the construction of perimeter berms and a leveling course to facilitate a treatment area for the hydrocarbon contaminated soil. Ditches and berms are provided to re-direct drainage and minimize run-on from outside of the landfarm and control runoff from within the landfarm.
- e. Water quality and environmental monitoring stations: Temporary groundwater monitoring wells were installed to facilitate environmental monitoring during landfarming activities. The locations are shown on the drawings. Do we actually collect samples from these wells?
- **2.** Installation of barriers to prevent access to the site: Signage has been erected at access points to the Landfarm Area, and is visible from all sides of the landfarm area. The English version of the sign reads:

"CAUTION: CONTAMINTATED SOIL LANDFARM AREA AUTHORIZED PERSONNEL ONLY"

A similar sign in the language of the local dialect is also posted.

- **3. Placement of the Facility in relation to water bodies:** The site for this landfarm was recommended by EBA Engineering Consultants Ltd. in their geotechnical investigation report for DYE-M. The landfarm is located at the Lower Site area near and is a considerable distance from all waterbodies.
- **4.** Flood risks/maximum probably precipitation events in regards to the Facility placement and **design.** The landfarm facility is not in the floodplain of any watercourse or waterbody.
- 5. Alternative methods of soil storage or remediation, in the event that circumstances are not suitable, for example because of environmental constraints, available human resources, etc.:

 As the landfarm is currently in use, it is already considered suitable.

Operations and Maintenance Considerations

- 1. Procedures to determine if soils may be accepted at the Landfarm:
 - a. Chemical, physical and biological characterization of the soils and the associated hydrocarbon and metal contaminant concentrations: The DYE-M landfarm provides a treatment facility for the hydrocarbon contaminated soil, which was investigated and

delineated by the Environmental Sciences Group (ESG) in 1997-2001. The soil testing indicated total petroleum hydrocarbon concentrations ranging from <40 to 37,500 ppm.

b. Treatibility studies, to determine the viability of landfarm treatment: Landfarms have been successfully used to treat hydrocarbon contaminated soils at 7 other DND DEW Line sites in Nunavut.

In addition, in 2006, the Analytical Services Unit at Queen's University in Kingston, Ontario, prepared a report titled "The Potential for Landfarming of Diesel Contaminated Soil at Ekalugad Fjord", in preparation for the remediation of hydrocarbon contaminated soils at the FOX-C, Ekalugad Fjord site.

The experimental design attempted to simulate a landfarm and examined the contributions of aeration and bioremediation. The addition of fertilizer and the frequency of rotation were varied, as was expected temperature was an important factor with the reactors at 18 °C remediating more diesel that the 8 °C or the 5 °C. However, at colder temperatures the soils were successfully remediated with a rotation frequency of 4 days and the addition of fertilizer. At 5 °C, in particular, aeration improved results and clear evidence of bioremediation was observed. The data from the laboratory experiments indicate that landfarming at Ekalugad Fjord has the potential to successfully remediate the diesel contaminated soils.

- c. Sampling frequency and number of samples per volume of soil accepted: The frequency of testing will be determined by the Engineer. The typical testing program for the landfarm at DYE-M includes the following: The landfarm is divided into 10 meter squares for the purpose of sampling. One discrete sample is collected from a random location within each 10 meter square, which corresponds to about 4 cubic meters of hydrocarbon contaminated soil. The sample is collected from the bottom 10 centimeters of soil (approximately 30-40 cm depth).
- 2. Procedures to be utilized during active landfarming operations in the active treatment cells: The treatment of the hydrocarbon contaminated soils in the landfarm includes the application of nutrients along with tilling and moisture conditioning of the treatment soils, if deemed necessary based on the testing results. These activities are essential to ensure that adequate conditions for microbial growth are achieved. Granular nutrients are applied uniformly to the contaminated soils at a rate sufficient to achieve the optimum nitrogen loading, as determined by testing during treatment. Fresh water is sprayed over the soil to achieve the optimum moisture, if required. Tilling of the contaminated soil is specified to occur at 10 days intervals and at 5 day intervals should periods of warm or dry weather be encountered.
 - a. Treatment cell development and material placement therein; The treatment cell development consisted of the placement of specified granular materials for the perimeter berms and interior leveling course and the excavation of a perimeter ditch and sump in the north corner of the facility. Hydrocarbon contaminated soils are transported to the Landfarm Area such that no soil or liquid is spilled during transport.
 - b. Contaminated soil thickness in treatment cells: The Landfarm at DYE-M is designed to accommodate the hydrocarbon contaminated soil spread to a maximum loose thickness of 400 mm.
 - **c. Method of mechanical aeration in treatment cells;** The treatment soils are typically tilled with an earthworks disc unit or rake attachment pulled by a farm tractor or bulldozer.

- d. Oversize material management; The intent for oversize material management is to separate the boulders from the contaminated soil during excavation, manually remove organic and contaminated soil and use the boulders as backfill for the excavations. Any boulders observed in the landfarm, which could hinder the tilling operation, are removed from the treatment area, cleaned and buried on site.
- e. Surface water management, leachate containment and/or treatment, and site grade planning; During periods of wet weather, tilling is usually delayed until the treatment soils have adequately dried out. The landfarm is graded to drain and collect excess runoff in a sump at the low end of the facility. The runoff that collects in the landfarm sump is considered contact water, and can only be discharged if there is no visible sheen and it is tested to have maximum concentration of 5 mg/L of oil and grease or less. The storage in the sump is limited and the contractor is required to make provisions for testing, treatment (as required), and controlled discharge of the contact water. If the contact water does not meet the criteria for oil and grease as indicated previously, the contractor must treat the water to meet the criteria.
- f. Process water management and treatment prior to discharge; All surface water and runoff that collects in the landfarm sump is considered contact water and can only be discharged if it is tested to meet the requirements of the oil and grease discharge criteria as noted above. The storage in the sump is limited and the contractor is required to make provisions for testing, treatment (as required) and controlled discharge of the contact water. If the contact water does not meet the discharge criteria, the Contractor must treat the water to meet the criteria.
- **g.** Site volume and operational monitoring programs: There is a groundwater monitoring program and a testing program for the treated soils. The approximate volume of soil being treated in the landfarm in 36,000 m³, with an anticipated final volume of 40,000 m³.
- **h. Dust control programs**; The suppression of dust generated during landfarm operations will be done with a water spray.
- i. Staff operational training programs: All activities involving the handling and treatment of hydrocarbon contaminated soil, shall be directly supervised by Construction Contractor's personnel who have successfully completed a 40 hour training course for Hazardous Waste Activities in compliance with OSHA 29 CFR 1910.120 or other approved equivalent training courses such as the Canadian Hazardous Waste Workers Program. It is the responsibility of the Contractor to provide suitable training for operational staff.

3. Soil Quality Remediation Objective:

The Soil Quality Remediation Objectives are provided in the DND-NTI Cooperation Agreement, Environmental Provisions, dated September 1998. The remediation objectives include the treatment of hydrocarbon contaminated soils by landfarming to meet the criteria of 2500 ppm for Total Petroleum Hydrocarbons (TPH). If these levels are met, the contaminated soils are considered remediated and can be left in place. It the criteria is not met, further tilling and confirmatory sampling is necessary.

4. Conceptual Decommissioning and Reclamation plan:

- a. Details regarding the ultimate deposition of any treated soils; When the hydrocarbon contaminated soils at the DYE-M landfarm have been tested to show that the remediation objectives have been met, the following tasks are specified to close the landfarm:
 - **1.)** All granular fill is to be compacted to 95% Maximum Dry Density;
 - 2.) Consolidate the treated contaminated soil within the Landfarm to a maximum depth of 1.0 metre. Grade this consolidation area allow a final slope of 2 to 4%.
 - 3.) Excavate granular material from the perimeter berms outside the consolidation area and place this material, as cover to a minimum depth of 30 centimetres, over the consolidated treated soil area.
 - **4.)** Decommission the groundwater monitoring wells, including backfilling with appropriate grout, removal of the protective casing, lockable cap and well pipe to within 300 mm from the ground surface, and backfill and compact all voids with granular fill material.
 - **5.)** The contractor is required to complete the cleanup and remediate all of the areas in which their activities took place, as described in the Project Description.
- b. Disposal plan for soils contaminated with bioremediation-unsuitable compounds, or for soils that do not respond well to the proposed landfarming treatment: All soils contaminated with bioremediation-unsuitable compounds, or soils that do not respond well to the proposed landfarming treatment will be landfilled in the Tier II Soil Disposal Facility.

Surface and Groundwater Monitoring Programs

- **1. Locations of all proposed Monitoring Stations**; The proposed locations of the monitoring stations are shown on the drawings, which are in UTM coordinates.
- **2.** Chemical, physical and biological parameters to be monitored; The groundwater monitoring program for a temporary landfarm includes accredited lab testing for Total Petroleum Hydrocarbons and field testing for pH, turbidity, temperature, conductivity and visual observations for a hydrocarbon sheen.
- **3. Sampling frequency**; The monitoring program includes annual sampling and testing of water from the temporary monitoring wells. The samples are collected at maximum thaw (Late August or September) during active soil treatment operations.
- **4. Baseline Monitoring Programs:** Geotechnical and environmental investigations of the proposed landfarm location were conducted in 2000 to determine if the site was suitable. The results of the environmental investigation found no elevated concentrations of inorganic elements, PCBs or total petroleum hydrocarbons in the area. Suitable landfarm areas from a geotechnical perspective should be located away from significant water bodies or other potential receptors and in an area that is level, has low overland flow and is free of ponded water. Both the environmental and geotechnical investigation found the proposed site to be suitable for development of a landfarm.
- **5. QA/QC Programs to be implemented as part of the Monitoring Program:** Construction monitoring and quality control is required to ensure satisfactory performance of the landfarm at DYE-M. DCC provides qualified engineering staff, with support from the Environmental Sciences Group for

environmental issues, to ensure that the design intent, including all requirements of the specification, is suitably met.