

AECOM 2540 Kensington Road NW Calgary, AB, Canada T2N 3S3 www.aecom.com

403 270 9200 tel 403 270 0399 fax

March 31, 2010

Phyllis Beaulieu Licensing Manager Nunavut Water Board P.O. Box 119 Gjoa Haven, NU X0B 1J0

Dear Phyllis:

Project No: Water Use License 1BR-DYE0914 Regarding: DYE-M, Cape Dyer DEW Line Site

AECOM Canada Ltd. is providing the attached annual report form as per Section B.1 of the abovenoted water use license. The report is being submitted on behalf of Defence Construction Canada and the Department of National Defence.

In addition to the annual report form, we are providing a summary of the work completed to date at the site. The following is a summary of the work completed and of the samples collected as part of the wastewater monitoring and sewage effluent monitoring:

Work Completed

The following is a summary of the work completed in 2009:

Lower Site Non-Hazardous Waste Landfill: Construction of the berms for the expansion were completed.

Lower Site Tier II Disposal Facility: Completed construction of the second cell. The first cell was closed at the end of the season, including placement of the geomembrane and final shaping.

Existing Landfill Remediation: Lower Camp Landfills East and West; Upper Site Landfills East and West; Pallet Line Landfill; Beach Landfill North; DEW Drop Landfill – excavated.

Demolition: Removal of power and communications cables was completed. No other demolition occurred in 2009.

Debris Removal: Completed.

Contaminated Soil Excavation: On-going.

Community Consultations: The results of the community meetings held by DCC were submitted with the Project Description. The contractor typically holds a project start up meeting prior to each season.

Spill Incidences: See attached spill report.

Monitoring Results: See attached.

We trust the information provided is sufficient. Please feel free to contact the undersigned if you require any additional information.

Sincerely,

AECOM Canada Ltd.

Eva Schulz, P.Ag.

Eva.Schulz@aecom.com

EMS

Encl. Annual Report Form, Updated Site Figures, Selected Site Photos, Spill Report, Monitoring Reports cc: Douglas Craig, DCC

NWB Annua	Annual Report Year being reported: 2009 ▼				
License No: 1BR-DYE0914		Issued Date: June 9, 2009			
	Expiry Date: May 31, 2014				
	Bullet Nove Bullet Bull				
	Project Name: DYE-M, Cape Dyer DEW Line Site Clean Up				
	Licensee: Defence Construction Canada				
	Mailing Address:	Constitution Square, Suite 1720 350 Albert Street			
	Ottawa, ON K1A 0K3				
	Name of Company filing Annual Report (if different from Name of Licensee				
	please clarify relationship between the two entities, if applicable):				
	AECOM				
	Design Engineering	and Regulatory Support			
General Bac	Background Information on the Project (*optional):				
Licence Red	guirements: the lice	ensee must provide the following information in			
accodance	-				
	Part B ▼ Item1 ▼				
A cummary	mmary report of water use and waste disposal activities, including, but not limited to:				
	summary report of water use and waste disposal activities, including, but not limited to: nethods of obtaining water; sewage and greywater management; drill waste management; solid				
	and hazardous waste management.				
	Water Source(s):	Water supply lakes			
	Water Quantity:	150/day Quantity Allowable Domestic (cu.m)			
		2106/124 days Actual Quantity Used Domestic (cu.m)			
		n/a Quantity Allowable Drilling (cu.m)			
		n/a Total Quantity Used Drilling (cu.m)			
	Waste Management and/or Disposal Solid Waste Disposal				
	Sewage Drill Waste	2,060 cu.m of sewage effluent deposited into sewage lagoons			
	Greywater				
	Hazardous				
	Other:				
	Additional Details:				
	Details regarding waincluded with the ap	aste management were provided in the supporting documents plication.			
A list of una	uthorized discharge	es and a summary of follow-up actions taken.			
	Spill No.:	(as reported to the Spill Hot-line)			
	Date of Spill: unkno	· · · · · · · · · · · · · · · · · · ·			
	Date of Notification t	to an Inspector: August 12, 2009			

	Additional Details: (impacts to water, mitigation measures, short/long term monitoring, etc)
	See attached spill report.
Revisio	ns to the Spill Contingency Plan
	SCP submitted and approved - no revision required or proposed
	Additional Details:
Povisio	ns to the Abandonment and Restoration Plan
Kevisio	AR plan submitted and approved - no revision required or proposed
	Additional Details:
	The project is an abandonment and restoration plan.
Progres	ssive Reclamation Work Undertaken
	Additional Details (i.e., work completed and future works proposed)
Results	of the Monitoring Program including:
	The GPS Co-ordinates (in degrees, minutes and seconds of latitude and longitude) of
	each location where sources of water are utilized;
	Details attached T
	Additional Details:
	The GPS Co-ordinates (in degrees, minutes and seconds of latitude and longitude) of
	each location where wastes associated with the licence are deposited;
	Details attached ▼
	Additional Details:
	Results of any additional sampling and/or analysis that was requested by an
	Inspector
	No additional sampling requested by an Inspector or the Board ▼

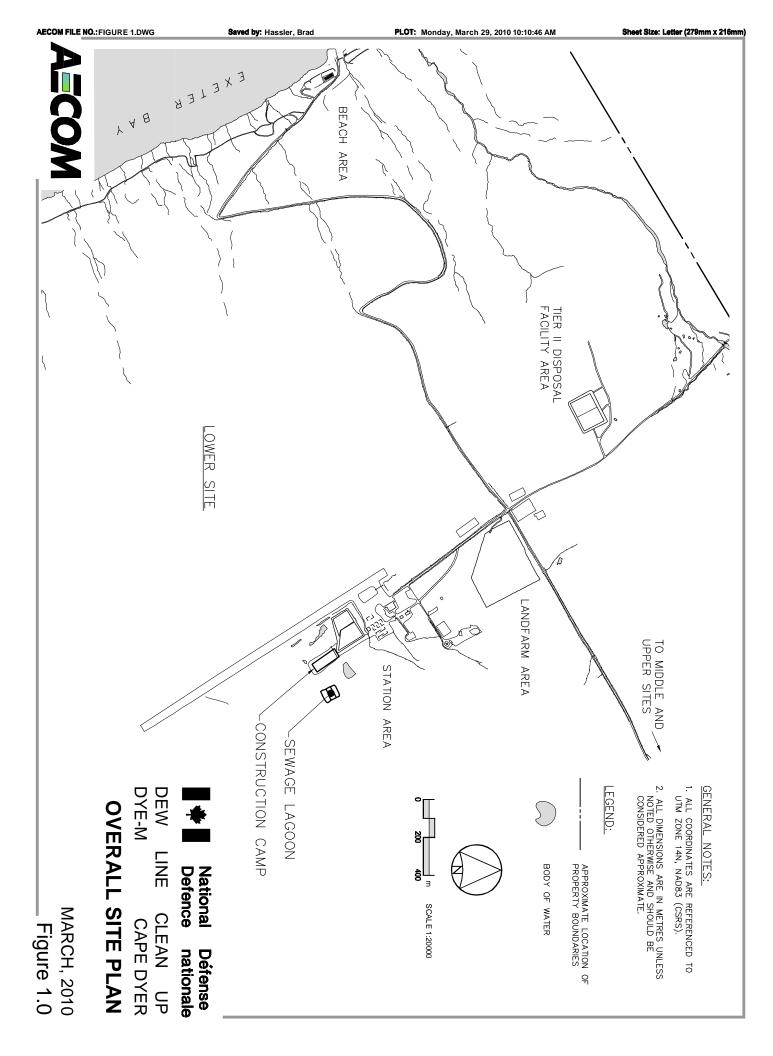
Additional Details: (date of request, analysis of results, data attached, etc)

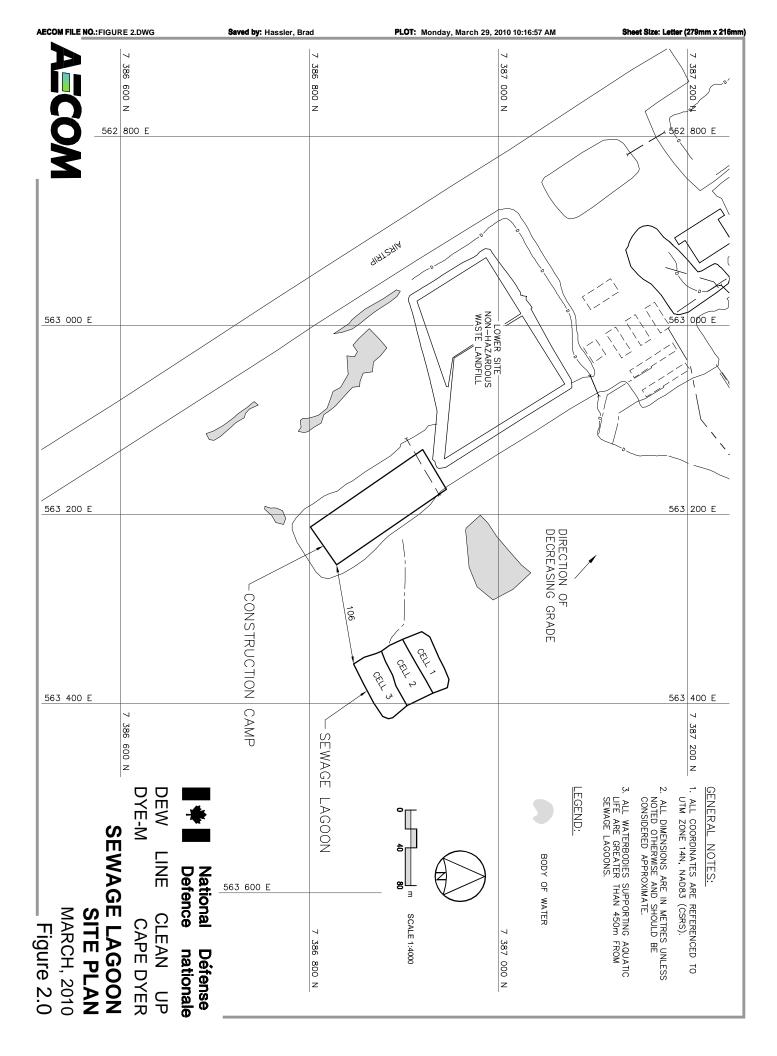
NWB2(insert)

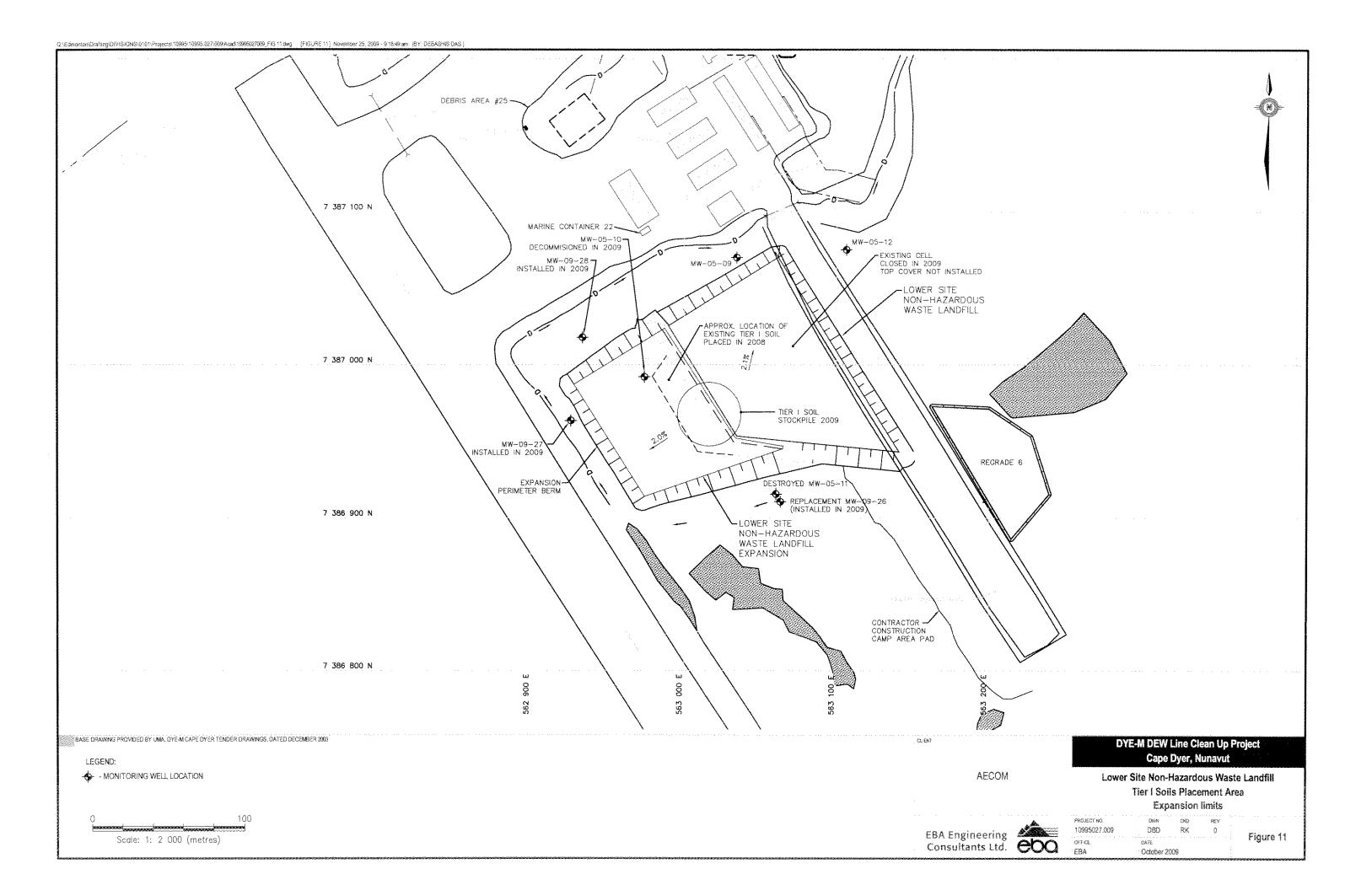
Additional Details: (Dates of Report, Follow-up by the Licensee) Additional Details: (Dates of Report, Follow-up by the Licensee) See attached.	he
Additional Details: (Attached or provided below) Inspection Report received by the Licensee (Date): Additional Details: (Dates of Report, Follow-up by the Licensee) See attached.	he
Additional Details: (Attached or provided below) Inspection Report received by the Licensee (Date): Additional Details: (Dates of Report, Follow-up by the Licensee) See attached.	he
Additional Details: (Attached or provided below) Inspection Report received by the Licensee (Date): Additional Details: (Dates of Report, Follow-up by the Licensee) See attached.	he
Additional Details: (Attached or provided below) Inspection Report received by the Licensee (Date): Additional Details: (Dates of Report, Follow-up by the Licensee) See attached.	
Additional Details: (Attached or provided below) Any responses or follow-up actions on inspection/compliance reports Inspection Report received by the Licensee (Date): Additional Details: (Dates of Report, Follow-up by the Licensee) See attached.	
Any responses or follow-up actions on inspection/compliance reports Inspection Report received by the Licensee (Date): Additional Details: (Dates of Report, Follow-up by the Licensee) See attached.	
Inspection Report received by the Licensee (Date): Additional Details: (Dates of Report, Follow-up by the Licensee) See attached.	
Inspection Report received by the Licensee (Date): Additional Details: (Dates of Report, Follow-up by the Licensee) See attached.	
Inspection Report received by the Licensee (Date): Additional Details: (Dates of Report, Follow-up by the Licensee) See attached.	
Additional Details: (Dates of Report, Follow-up by the Licensee) See attached.	
See attached.	
ny additional comments or information for the Board to consider	
ny additional comments or information for the Board to consider	
ny additional comments or information for the Board to consider	
ny additional comments or information for the Board to consider	
Pate Submitted: March 31, 2010	
Submitted/Prepared by: Eva Schulz	
Contact Information: Tel: 403-270-9200	
- 400 070 0000	
Fax: 403-270-0399 email: eva.schulz@aecom.com	

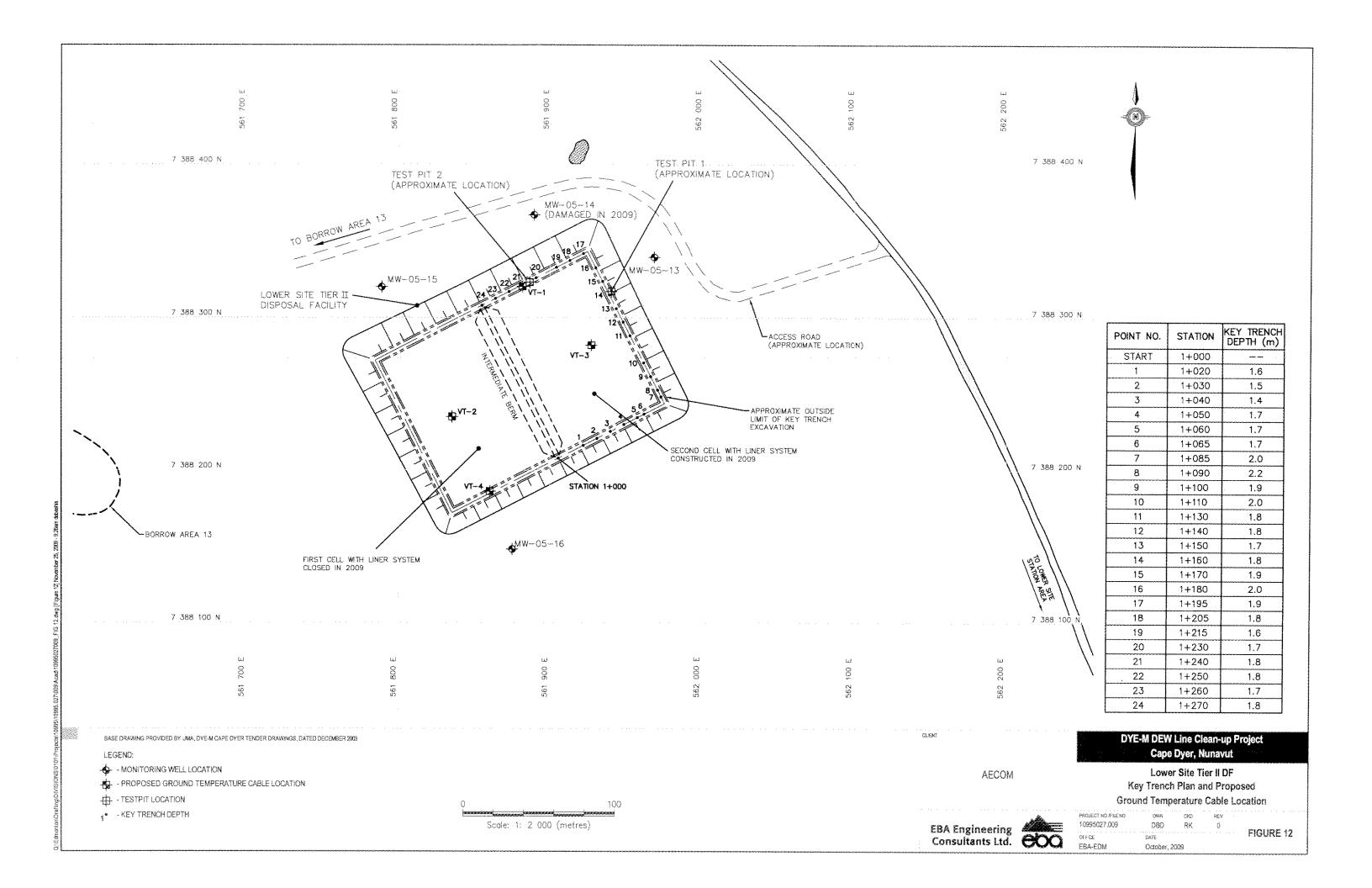
GPS Coordinates for water sources utilized

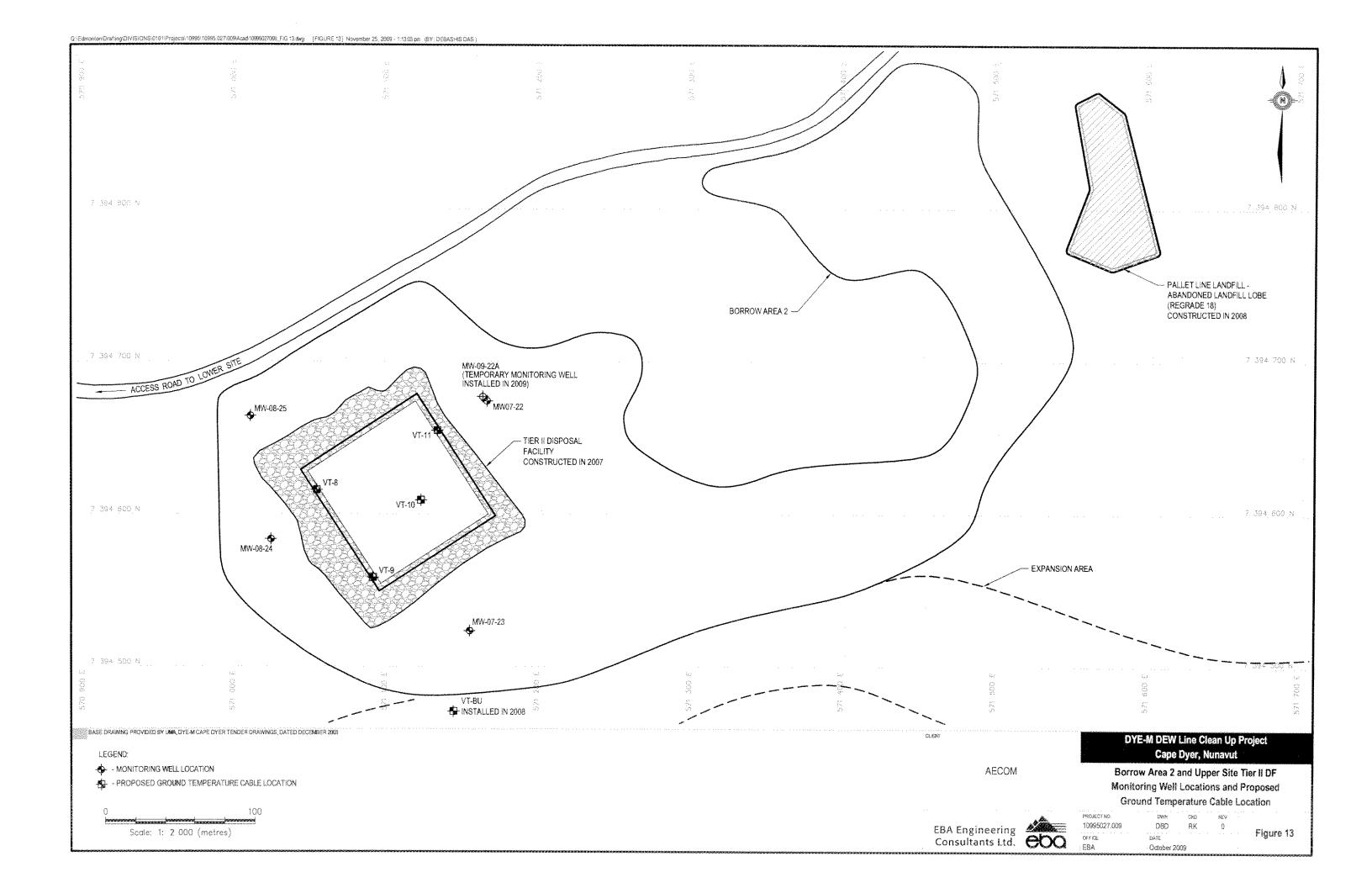
	UTM Zone 20N, NAD83	
Source Description	Northing	Easting
Lower Site Water Supply Lake	7390039	559775
Summer Water Supply Lake	7389802	565916
Winter Water Supply Lake	7395600	570250
	`	_

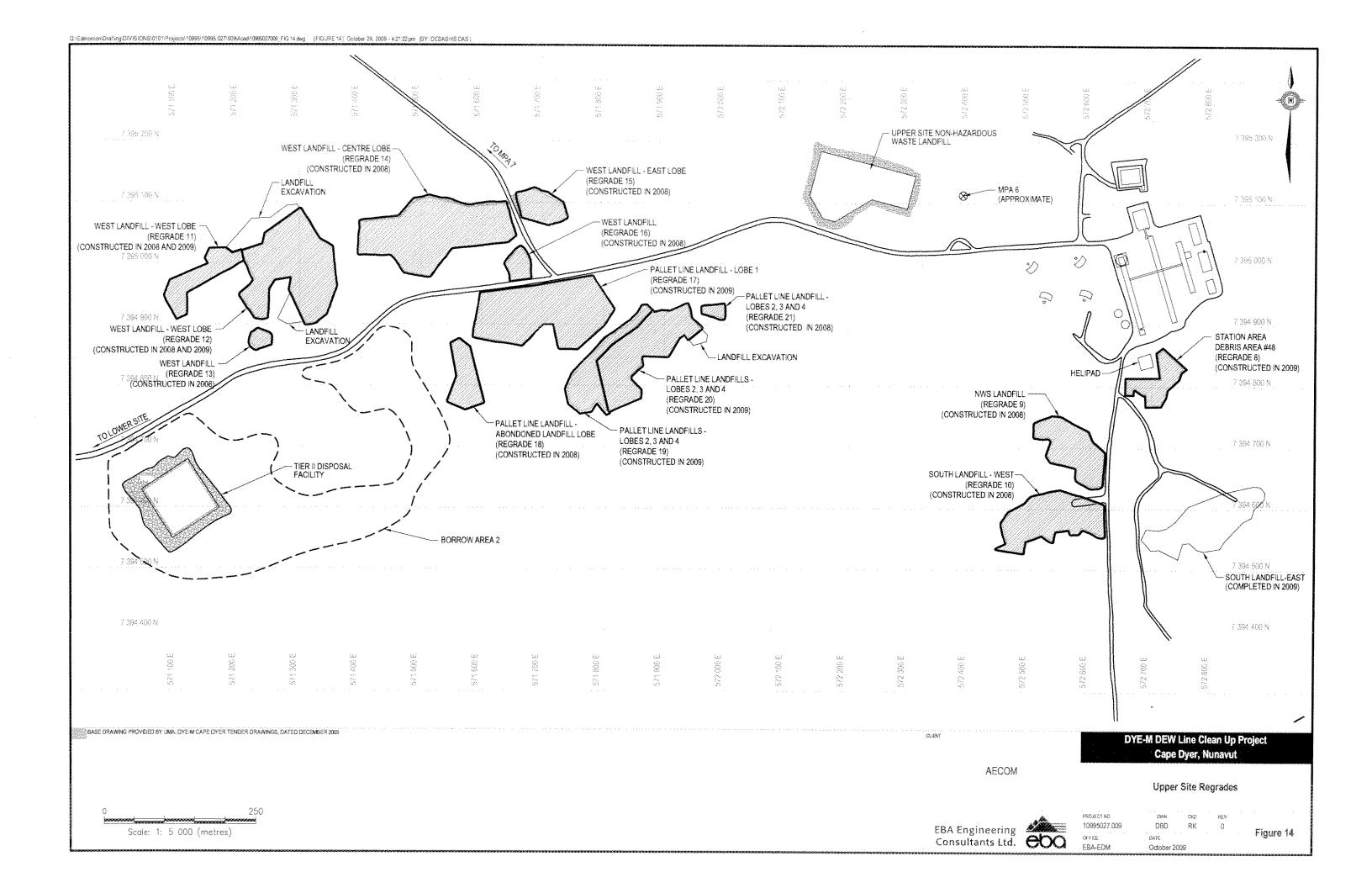

GPS Locations of areas of waste disposal

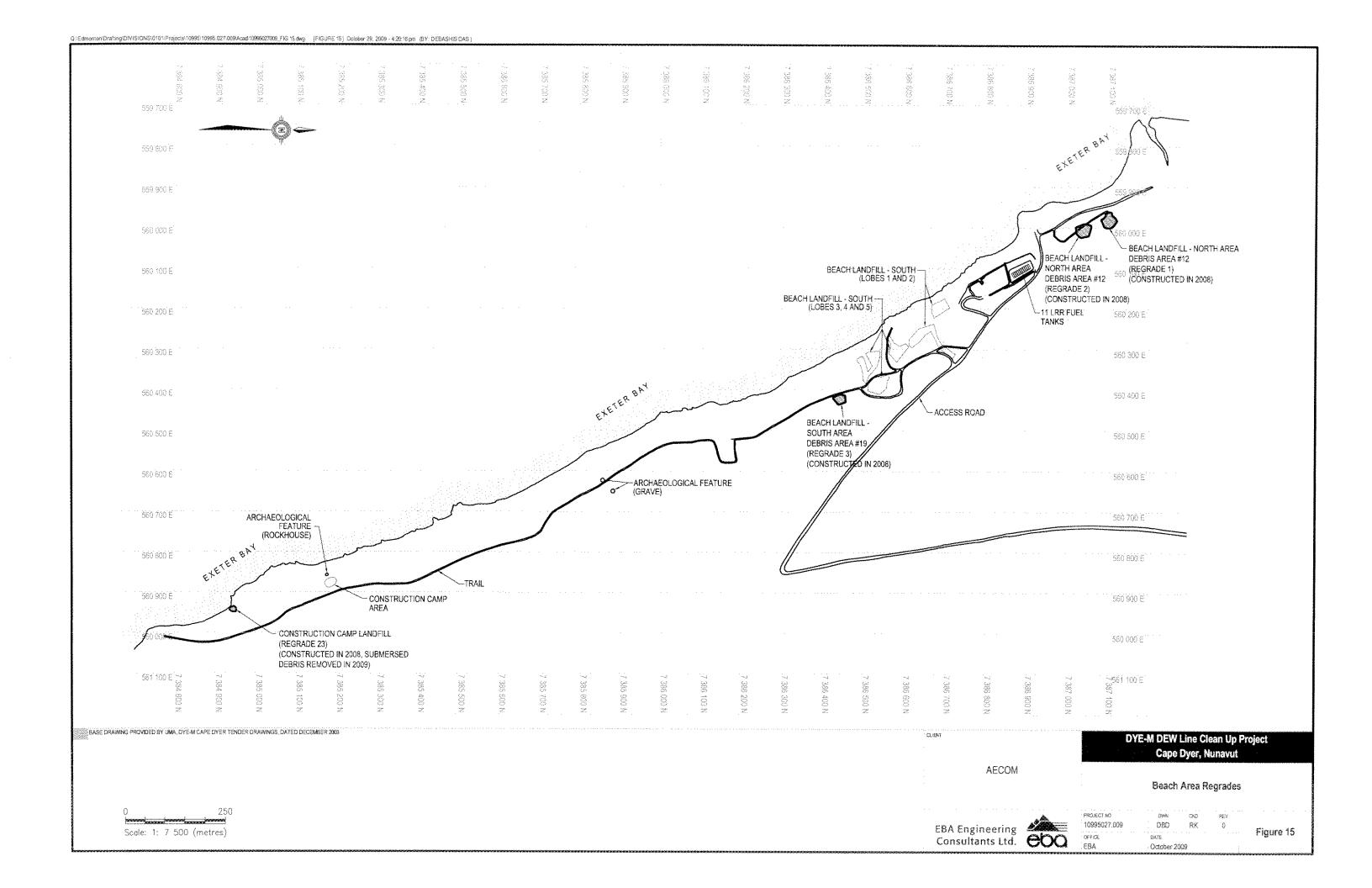

	UTM Zone 20N, NAD83	
	Northing	Easting
Landfarm (E01)	7387924.9	562601.4
Landfarm (E01)	7387931.4	562624.8
Landfarm (E01)	7387004.7	562765
Landfarm (E01)	7387922	562808.3
Landfarm (E01)	7387725.6	562911.1
Landfarm (E01)	7387645.4	562757.8
Landfarm (E01)	7387718.1	562525.6
Landfarm (E01)	7387759.3	562496.2
Landfarm (E01)	7387843.9	562454.5
Lower Site Tier II (H01)	7388272.5	561782.6
Lower Site Tier II (H01)	7388345,3	561925.1
Lower Site Tier II (H01)	7388242.9	561977.4
Lower Site Tier II (H01)	7388170.1	561835
Lower Site Non-Haz (F01)	7387025.5	562989.6
Lower Site Non-Haz (F02)	7387070.4	563061.8
Lower Site Non-Haz (F03)	7387943.1	563141.1
Lower Site Non-Haz (F04)	7387953.3	563034.6
Upper Site Tier II (X01)	7394628.6	571043.9
Upper Site Tier II (X02)	7394676.6	571117.6
Upper Site Tier II (X03)	7394599.5	571167.8
Upper Site Tier II (X04)	7394551.5	571094
Upper Site Non-Haz (V01)	7395184.3	572155.5
Upper Site Non-Haz (V02)	7395144	572311.4
Upper Site Non-Haz (V03)	7395090.7	572297.6
Upper Site Non-Haz (V04)	7395105.9	572239.1
Upper Site Non-Haz (V05)	7395070	572178.1
Upper Site Non-Haz (V06)	7395075	572158.8
Upper Site Non-Haz (V07)	7395112.2	572136.9
Sewage Lagoon Cell #1	7386890	563376
Sewage Lagoon Cell #2	7386916	563362






Updated Site Figures





Selected Site Photos

Photograph 1 ↑
Upper Site Non-Hazardous Waste Landfill

Photograph 2 ↑
Upper Site Tier II Facility

Photograph 3 ↑
Lower Site Non-Hazardous Waste Landfill

Photograph 4 ♠ Lower Site Tier II Facility

Inspection Report

WATER USE INSPECTION REPORT

Date: August 22, 2009 Licensee Rep. (Name/T		tle): Douglas Craig and Marc Fortier
Licensee: Defence Construction Canada		Licence No: 1BR-DYE0914

WATER SUPPLY

Source(s): Water Supply Lake	Quantity used: Records to be reviewed
Owner:/Operator: Defence Const. Canada	Water usage is estimate only

Indicate: A - Acceptable U - Unacceptable NA - Not Applicable NI - Not Inspected

Intake Facilities: A	Storage Structure: A	Treatment Systems: A	Chemical Storage: A
Flow Meas. Device: U	Conveyance Lines: A	Pumping Stations: A	Screen : A

Comments: Defence Construction Canada produced water usage records during the period of Inspection that were estimates only. Installation of a water meter to record accurately water usage has not been undertaken by the License. **A water meter is to be installed by the period of the next inspection**.

WASTE DISPOSAL

Sewage: Sewage Treatment System (Prim./Sec/Ter.): Primary Two or three cell lagoon.

Natural Water Body: No	Continuous Discharge (land or wate	r): None
Seasonal Discharge: No	Wetlands Treatment: None	Trench: None

Indicate: A - Acceptable U - Unacceptable NA - Not Applicable NI - Not Inspected

Discharge Quality: ∪	Decant Structure: NA	Erosion: NA
Discharge Meas. Device: NI	Dyke Inspection: NI	Seepages: NA
Dams, Dykes: NI	Freeboard: NA	Spills: NI
Construction: NI	O&M Plan: NI	A&R Plan: NI
Discharge: seasonal	Effluent Discharge Rate: Unknown	

Comments: Effluent was noted outside the lagoon. The Licensee is required to take such measures as to prevent leakage or seepages from the current lagoon system.

Solid Waste: Non-hazardous land fill.

Owner/Operator: Defence Construction Canada

Landfill: A	Burn & Landfill: NA	Other: Hazardous Mat. Area: A

Comments: An inspection of the Incinerator was conducted during the Inspection. The unit was found to be in a poor state of repair. The front door does not seal the unit and Black smoke was noted exiting the stack during the Inspection (incomplete combustion). The unit is not serviceable. The Licensee is required have a proper incinerator on site by the period of the next inspection.

FUEL STORAGE:.

Berms & Liners: NI	Water within Berms: NI	Water within Berms: NI Evidence of Leaks: NI	
Drainage Pipes: NI	Pump Station & Catchments B	Pump Station & Catchments Berm: Ni	
Pipeline Condition: NI	Condition of Tanks: Metal tank	Condition of Tanks: Metal tanks: NI	

SURVEILLANCE NETWORK PROGRAM (SNP)

Samples Collected		Owner /Operator: No sampling results noted	
1		INAC: Potable source	
Signs Posted	Signs Posted SNP: none		Warning: A
Records & Reporting: Records were submitted for 2008.			
Geotechnical Inspection: N/A			

Non-Compliance of Act or Licence: Defence Construction Canada has worked very hard to come into overall compliance with the issued License. Reoccurring issues with the Incineration of garbage, the Lagoon system and installation of simple water meters are hindering their overall excellent efforts. It is highly recommended that the licensee address these areas of deficiency for the period of the next inspection.

A.Keim	Sent by E-mail
Inspector's Name	Inspector's Signature

Spill Report

NT-NU SPILL REPORT

OIL, GASOLINE, CHEMICALS AND OTHER HAZARDOUS MATERIALS

NT-NU 24-HOUR SPILL REPORT LINE

TEL: (867) 920-8130 FAX: (867) 873-6924 EMAIL: spills@gov.nt.ca

REPORT LINE USE ONLY

Α	REPORT DATE: MONTH – DAY	/ – YEA	AR		REPC			□ (ORIGINAL SPILL REPO	ORT,	REPORT NUMBER
В	OCCURRENCE DATE: MONTH	H – DA	Y-YEAR				JPDATE # THE ORIGINAL SPILL	REPORT	-		
С	LAND USE PERMIT NUMBER (IF APPLICABLE) WATER LICENCE NUM				TER LICENCE NUMBER	R (IF	APPLICABLE)				
D	GEOGRAPHIC PLACE NAME OR DISTANCE AND DIRECTION FROM NAMED LOCATION REGION NWT NUNAVUT DADJACENT JURISDICTION OR OCEAN										
_	LATITUDE					LOI	NGITUDE				
E	DEGREES MINUTES SECONDS DEGREES MINUTES SECONDS										
F	RESPONSIBLE PARTY OR VE	SSEL	NAME	RESPONSIBLE	PARTY	' ADDRE	ESS OR OFFICE LOCAT	ION			
G	ANY CONTRACTOR INVOLVED	D		CONTRACTOR	ADDRE	ESS OR	OFFICE LOCATION				
	PRODUCT SPILLED			QUANTITY IN LI	TRES,	KILOGF	RAMS OR CUBIC METR	RES	U.N. NUMBER		
H	SECOND PRODUCT SPILLED	(IF AF	PPLICABLE)	QUANTITY IN LI	TRES,	KILOGF	RAMS OR CUBIC METR	RES	U.N. NUMBER		
I	SPILL SOURCE SPILL CAUSE							AREA OF CONTAMI	NATION IN	SQUARE METRES	
J	FACTORS AFFECTING SPILL (OR RE	ECOVERY	DESCRIBE ANY	ASSIS	STANCE	REQUIRED		HAZARDS TO PERS	SONS, PRO	PERTY OR EQUIPMENT
K											
L	REPORTED TO SPILL LINE BY	Y	POSITION		EMPL	OYER		LO	CATION CALLING FRO	DM T	ELEPHONE
M	ANY ALTERNATE CONTACT		POSITION		EMPL	OYER			TERNATE CONTACT	, and a	ALTERNATE TELEPHONE
				REPORT LIN	E USE	ONLY		1			
	RECEIVED AT SPILL LINE BY		POSITION		EMPL	OYER		LO	CATION CALLED	F	REPORT LINE NUMBER
N			STATION OPERATOR					YE	LLOWKNIFE, NT	(867) 920-8130
_EAD	AGENCY EC CCG C	GNWT	GN □ ILA □ INAC	□ NEB □ TC	s	IGNIFIC	ANCE MINOR MA	AJOF	R 🗆 UNKNOWN	FILE STATU	JS □ OPEN □ CLOSED
AGEN	GENCY CONTACT NAME			С	ONTACT	ГТІМЕ		REMARKS			
EAD	AGENCY										
FIRS	SUPPORT AGENCY										
SECC	OND SUPPORT AGENCY										
ΓHIR	O SUPPORT AGENCY										

Monitoring Reports

Tricia Cammaart **Environmental Sciences Group** The Royal Military College of Canada PO Box 17000 Stn. Forces Kingston, ON K7K 7B4

Douglas Craig Environmental Officer Defence Construction Canada DEW Line Cleanup PMO 350 Albert Street, Suite 1720

Ottawa ON K1A 0K3

Tuesday, July 21, 2009

RE: Analytical Results for Wastewater Samples Collected at DYE-M in May, 2009

The following report summarizes results of the analysis of wastewater samples as per the DYE-M (Cape Dyer) DEW Line Cleanup Project (DLCU) Specifications.

The DYE-M specifications require that "wash water, meltwater collection, rinse water resulting from the cleaning of fuel tanks and pipelines, and/or any other liquid effluent stream" meet the following guidelines prior to their discharge to land (01560.4.1):

Parameter	Maximum Allowable Concentration	Units
pН	6-9	pH units
Total arsenic (As)	0.100	mg/L
Dissolved cadmium (Cd)	0.010	mg/L
Total chromium (Cr)	0.100	mg/L
Dissolved cobalt (Co)	0.050	mg/L
Dissolved copper (Cu)	0.200	mg/L
Dissolved lead (Pb)	0.050	mg/L
Total mercury (Hg)	0.6	μg/L
Dissolved nickel (Ni)	0.200	mg/L
Total zinc (Zn)	1.000	mg/L
Oil & grease	5 mg/L and None visible	mg/L
PCBs	0.050*	mg/L
	0.005**	
Phenols	0.020	mg/L

^{*}Discharge to barren land, **Discharge to vegetated land

Phenols

The wastewater samples collected by ESG at DYE-M in May, 2009 were not analyzed for phenols but they were analyzed for oil and grease. Research conducted by ESG¹ has determined that a) no federal, territorial or provincial criteria exist for the discharge of

¹ Environmental Sciences Group. DEW Line Clean Up Project – Phenols in Wastewater. June, 2007.

wastewater containing phenols to land at a minimum distance of 30-m from natural drainage courses b) the maximum concentration of phenols in DLCU wastewater to date (2.44 mg/L) is below the LC₅₀ for freshwater fish and crustaceans and below the oral and dermal LD₅₀s for rats and rodents and c) phenols in excess of the maximum allowable concentration (MAC) have historically co-occurred with a visible oil & grease sheen and/or with an exceedance of the MAC for oil & grease. This information, and a subsequent decision to not test for phenols, has been presented to the NWB. To date, verbal agreement from the NWB has been received, but the project is awaiting written confirmation of the decision to suspend testing for phenols.

WASTEWATER SAMPLES

Nine wastewater samples were collected at DYE-M and analyzed in May 2009. A summary of the details of these results follows.

Sample Number	Sample Location	GPS Coordinates	Sampling Date
09-50004	Northeast Corner of Landfarm	20W 0562725E 7387978 N	May 26, 2009
09-50005	Northeast Corner of Landfarm	20W 0562778E 7387979N	May 26, 2009
09-50006	LS Tank Farm bermed area	20W 0563040 E 7387528 N	May 26, 2009
*09-50012	Upper Site Non-Hazardous Waste Landfill	No Coordinates Recorded	May 28, 2009
*09-50013	Upper Site Non-Hazardous Waste Landfill	No Coordinates Recorded	May 28, 2009
*09-50014	Upper Site Non-Hazardous Waste Landfill	No Coordinates Recorded	May 28, 2009
*09-50015	Upper Site Non-Hazardous Waste Landfill Surface Composite	No Coordinates Recorded	May 28, 2009
09-50016	Upper Site Non-Hazardous Waste Landfill Depth Composite	No Coordinates Recorded	May 28, 2009
09-50018	LS Tier II Facility	20W 0561821E 7388289N	May 30, 2009

^{*} No coordinates recorded for ice core samples.

A summary of the results for the parameters tested is provided below. Laboratory results and photographs are provided in Appendices A and B, respectively.

LOCATION: NORTH EAST CORNER OF LANDFARM

GPS COORDINATES: 20W 0562725E 7387978N

Parameter	Maximum Allowable Concentration	Units	Sample # 09-50004
pН	6-9	pH units	7.15
Total Arsenic	0.100	mg/L	0.012
Dissolved Cadmium	0.010	mg/L	< 0.001
Total Chromium	0.100	mg/L	0.333
Dissolved Cobalt	0.050	mg/L	< 0.003
Dissolved Copper	0.200	mg/L	< 0.006
Dissolved Lead	0.050	mg/L	< 0.010
Total Mercury	0.6	μg/L	< 0.4
Dissolved Nickel	0.200	mg/L	< 0.005
Total Zinc	1.0	mg/L	0.282
Oil & Grease	None Visible and 5 mg/L	mg/L	None visible / 2.1 mg/L
PCBs	50* 5**	$\mu g/L$	< 3.0
Phenols	20	μg/L	N/A

^{*}Discharge to barren land, **Discharge to vegetated land

LOCATION: NORTHEAST CORNER OF LANDFARM

GPS COORDINATES: 20W 0562778E 7387979 N

Parameter	Maximum Allowable Concentration	Units	Sample # 09-50005
pН	6-9	pH units	6.75
Total Arsenic	0.100	mg/L	0.018
Dissolved Cadmium	0.010	mg/L	< 0.001
Total Chromium	0.100	mg/L	0.419
Dissolved Cobalt	0.050	mg/L	< 0.003
Dissolved Copper	0.200	mg/L	0.013
Dissolved Lead	0.050	mg/L	< 0.010
Total Mercury	0.6	μg/L	< 0.4
Dissolved Nickel	0.200	mg/L	< 0.005
Total Zinc	1.0	mg/L	0.324
Oil & Grease	None Visible and 5 mg/L	mg/L	None visible / 2.7 mg/L
PCBs	50* 5**	μg/L	< 3.0
Phenols	20	μg/L	N/A

^{*}Discharge to barren land, **Discharge to vegetated land

The wastewater at Northeast Corner of Landfarm exceeds the wastewater discharge criteria (WDC) for chromium. The water has not been discharged to land. Treatment and additional sampling are in progress.

LOCATION: LOWER SITE TANK FARM, BERMED AREA

GPS COORDINATES: 20W 0563040 E 7387528 N

Parameter	Maximum Allowable Concentration	Units	Sample # 09-50006
pН	6-9	pH units	6.64
Total Arsenic	0.100	mg/L	< 0.003
Dissolved Cadmium	0.010	mg/L	< 0.001
Total Chromium	0.100	mg/L	0.017
Dissolved Cobalt	0.050	mg/L	< 0.003
Dissolved Copper	0.200	mg/L	< 0.005
Dissolved Lead	0.050	mg/L	< 0.010
Total Mercury	0.6	μg/L	< 0.4
Dissolved Nickel	0.200	mg/L	< 0.005
Total Zinc	1.0	mg/L	0.023
Oil & Grease	None Visible and 5 mg/L	mg/L	None visible / <2.0 mg/L
PCBs	50* 5**	$\mu g/L$	<3.0
Phenols	20	μg/L	N/A

^{*}Discharge to barren land, **Discharge to vegetated land

LOCATION: UPPER SITE NON-HAZARDOUS WASTE LANDFILL

GPS COORDINATES: NO COORDINATES RECORDED, ICE CORE SAMPLE

Parameter	Maximum Allowable Concentration	Units	Sample # 09-50012
pН	6-9	pH units	6.99
Total Arsenic	0.100	mg/L	< 0.003
Dissolved Cadmium	0.010	mg/L	< 0.001
Total Chromium	0.100	mg/L	< 0.005
Dissolved Cobalt	0.050	mg/L	0.008
Dissolved Copper	0.200	mg/L	< 0.005
Dissolved Lead	0.050	mg/L	< 0.010
Total Mercury	0.6	μg/L	< 0.4
Dissolved Nickel	0.200	mg/L	< 0.005
Total Zinc	1.0	mg/L	0.163
Oil & Grease	None Visible and 5 mg/L	mg/L	None visible / <2.0 mg/L
PCBs	50* 5**	μg/L	<3.0
Phenols	20	μg/L	N/A

^{*}Discharge to barren land, **Discharge to vegetated land

LOCATION: UPPER SITE NON-HAZARDOUS WASTE LANDFILL

GPS COORDINATES: NO COORDINATES RECORDED, ICE CORE SAMPLE

Parameter	Maximum Allowable Concentration	Units	Sample # 09-50013
pН	6-9	pH units	8.05
Total Arsenic	0.100	mg/L	< 0.003
Dissolved Cadmium	0.010	mg/L	< 0.001
Total Chromium	0.100	mg/L	< 0.005
Dissolved Cobalt	0.050	mg/L	0.004
Dissolved Copper	0.200	mg/L	< 0.005
Dissolved Lead	0.050	mg/L	< 0.010
Total Mercury	0.6	μg/L	< 0.4
Dissolved Nickel	0.200	mg/L	< 0.005
Total Zinc	1.0	mg/L	0.115
Oil & Grease	None Visible and 5 mg/L	mg/L	None visible / 6.0 mg/L
PCBs	50* 5**	μg/L	<3.0
Phenols	20	μg/L	N/A

^{*}Discharge to barren land, **Discharge to vegetated land

The wastewater at the Upper Site Non-Hazardous Waste Landfill exceeds the wastewater discharge criteria (WDC) for oil and grease. The water has not been discharged to land. Treatment and additional sampling are in progress.

LOCATION: UPPER SITE NON-HAZARDOUS WASTE LANDFILL

GPS COORDINATES: NO COORDINATES RECORDED, ICE CORE SAMPLE

Parameter	Maximum Allowable Concentration	Units	Sample # 09-50014
pН	6-9	pH units	7.57
Total Arsenic	0.100	mg/L	< 0.003
Dissolved Cadmium	0.010	mg/L	< 0.001
Total Chromium	0.100	mg/L	< 0.005
Dissolved Cobalt	0.050	mg/L	< 0.003
Dissolved Copper	0.200	mg/L	< 0.005
Dissolved Lead	0.050	mg/L	< 0.010
Total Mercury	0.6	μg/L	< 0.4
Dissolved Nickel	0.200	mg/L	< 0.005
Total Zinc	1.0	mg/L	0.103
Oil & Grease	None Visible and 5 mg/L	mg/L	None visible / 2.3 mg/L
PCBs	50* 5**	$\mu g/L$	<3.0
Phenols	20	μg/L	N/A

^{*}Discharge to barren land, **Discharge to vegetated land

LOCATION: UPPER SITE NON-HAZARDOUS WASTE LANDFILL SURFACE COMPOSITE

GPS COORDINATES: NO COORDINATES RECORDED, ICE CORE SAMPLE

Parameter	Maximum Allowable Concentration	Units	Sample # 09-50015
pН	6-9	pH units	7.21
Total Arsenic	0.100	mg/L	< 0.003
Dissolved Cadmium	0.010	mg/L	< 0.001
Total Chromium	0.100	mg/L	< 0.005
Dissolved Cobalt	0.050	mg/L	0.003
Dissolved Copper	0.200	mg/L	< 0.005
Dissolved Lead	0.050	mg/L	< 0.010
Total Mercury	0.6	μg/L	< 0.4
Dissolved Nickel	0.200	mg/L	< 0.005
Total Zinc	1.0	mg/L	0.225
Oil & Grease	None Visible and 5 mg/L	mg/L	None visible / <2.0 mg/L
PCBs	50* 5**	$\mu g/L$	<3.0
Phenols	20	μg/L	N/A

^{*}Discharge to barren land, **Discharge to vegetated land

LOCATION: UPPER SITE NON-HAZARDOUS WASTE LANDFILL DEPTH COMPOSITE GPS COORDINATES: NO COORDINATES RECORDED, ICE CORE SAMPLE

Parameter Maximum Allowab Concentration		Units	Sample # 09-50015
pН	6-9	pH units	7.39
Total Arsenic	0.100	mg/L	< 0.003
Dissolved Cadmium	0.010	mg/L	< 0.001
Total Chromium	0.100	mg/L	< 0.005
Dissolved Cobalt	0.050	mg/L	0.004
Dissolved Copper	0.200	mg/L	< 0.005
Dissolved Lead	0.050	mg/L	< 0.010
Total Mercury	Total Mercury 0.6		< 0.4
Dissolved Nickel 0.200		mg/L	< 0.005
Total Zinc	1.0	mg/L	0.107
Oil & Grease	None Visible and 5 mg/L	mg/L	None visible / <2.0 mg/L
PCBs	50* 5**	$\mu g/L$	<3.0
Phenols	20	μg/L	N/A

^{*}Discharge to barren land, **Discharge to vegetated land

LOCATION: LOWER SITE TIER II FACILITY

GPS COORDINATES: 20W 0561821E 7388289N

Parameter	Parameter Maximum Allowable Concentration		Sample # 09-50018
pН	6-9	pH units	6.49
Total Arsenic	0.100	mg/L	< 0.003
Dissolved Cadmium	0.010	mg/L	< 0.001
Total Chromium	0.100	mg/L	0.027
Dissolved Cobalt	0.050	mg/L	< 0.003
Dissolved Copper	0.200	mg/L	0.006
Dissolved Lead	0.050	mg/L	< 0.010
Total Mercury	otal Mercury 0.6		< 0.4
Dissolved Nickel 0.200		mg/L	< 0.005
Total Zinc	1 Zinc 1.0		0.068
Oil & Grease	None Visible and 5 mg/L	mg/L	None visible / <2.0 mg/L
PCBs	50* 5**	$\mu g/L$	<3.0
Phenols	20	μg/L	N/A

^{*}Discharge to barren land, **Discharge to vegetated land

We trust that the information provided meets current requirements. Please contact the undersigned if you have any questions or concerns.

Sincerely,

Tricia Cammaart

Environmental Sciences Group

Tricia Cammaant

cc: Eva Schulz (UMA)

Daniela Loock, Kat White, Anna Charbonneau, Ryan Vettorazzo, Cam Ollson, Andrea Ellis, (ESG)

APPENDIX A LABORATORY RESULTS

ASU#	11943	Report ID:	Dye-M W4
Client:	ASG 19175	Date Submitted:	29-May-09
		Date tested:	29-May-09
Site:	DYE-M	Date:	1-Jun-09
	09-017	Matrix:	water
Preliminary Repor	rt of Analysis		
Sample	Oil & Grease		
	mg/L		
09-50004	2.1		
09-50005	2.7		
09-50006	<2.0		
Blank	<2.0		
Control	16.5		
Control Target	16.1		

ASU#	11943		Report ID:	Dye-M W3					
Client:	ASG 19175		Date Submitted:	29-May-09					
			Date tested:	2-Jun-09					
Site:	DYE-M		Date:	3-Jun-09					
	09-017		Matrix:	Water					
Preliminary Report of A	nalysis								
Total Metals	Results in mg/L								
SAMPLE	Cu	Ni	Co	Cd	Pb	Zn	Cr	As	
OI IIIII EE		- 1.1			- 10			110	
09-50004	-	-	-	-	-	0.282	0.333	0.012	
09-50005	-	-	-	-	-	0.324	0.419	0.018	
09-50006	-	-	-	-	-	0.023	0.017	< 0.003	*
Blank	_		_	_	_	< 0.010	< 0.005	< 0.003	
Diank						-0.010	-0.003	-0.003	
Control	-	-	-	-	-	3.2	0.90	0.85	
Control Target	-	-	-	-	-	3.0	0.80	0.80	
09-50006	_	_	_	-	-	0.023	0.017	< 0.003	
09-50006	-	-	-	-	-	0.023	0.017	< 0.003	
Dissolved Metals									
SAMPLE	Cu	Ni	Co	Cd	Pb	Zn	Cr	As	
00.50004	0.006	-0.005	-0.002	-0.001	-0.010				
09-50004 09-50005	0.006 0.013	<0.005 <0.005	<0.003 <0.003	<0.001 <0.001	<0.010 <0.010	-	-	-	+
09-50005	<0.005	<0.005	<0.003	<0.001	<0.010	-	-	-	*
0, 20000	0.005	0.005	0.003	0.001	0.010				
Blank	< 0.005	< 0.010	< 0.003	< 0.001	< 0.010	-	-	-	
Control	1.67	1.67	1.63	0.79	8.30				-
Control Target	1.60	1.60	1.60	0.79	8.00	-	-	-	
Control raiget	1.00	1.00	1.00	0.00	0.00	-	-	-	1
09-50006	< 0.005	< 0.005	< 0.003	< 0.001	< 0.010	-	-	-	
09-50006	< 0.005	< 0.005	< 0.003	< 0.001	< 0.010	-	-	-	

12 Verite Ave Dept. of Chem. / Chem. Eng., RMC P.O. Box 17000, Stn. Forces Kingston, Ontario K7K 7B4 (613) 541-6000 ext 6567 Fax: (613) 541-6596

ASG Login No: 19175 Site: Dye-M Client No: 09-017 Samples Received: 29-May-09 Date of analysis: 2-Jun-09

Method No: ASG 015 Date Reported: 3-Jun-09 Sheet No: 1 of 1

RESULTS OF PCB IN WATER ANALYSIS

Sample Type **	Sample I.D.	Unit	Aroclor 1248	Aroclor 1254	Aroclor 1260
W	50004	μg/L	< 3.0	< 3.0	< 3.0
W	50005*	μg/L	< 3.0	< 3.0	< 3.0
W	50006	μg/L	< 3.0	< 3.0	< 3.0

^{*} Average result of Duplicate

LABORATORY QA/QC

Blank	μg/L	< 3.0	< 3.0	< 3.0
Duplicate ; 50005*	μg/L	< 3.0 ; < 3.0	< 3.0 ; < 3.0	< 3.0 ; < 3.0
Control Sample	μg/L	< 3.0	< 3.0	13
Control Sample Target	ua/l	< 3.0	< 3.0	15

^{**} S = Soil , C = Concrete , PC = Paint Chip , SW = Swab , P = Plant , W = Water

All results corrected for the recovery of the surrogate decachlorobiphenyl

12 Verite Ave

Dept. of Chem. / Chem. Eng., RMC P.O. Box 17000, Stn. Forces Kingston, Ontario K7K 7B4 (613) 541-6000 ext 6567

Fax: (613) 541-6596

ASG Login No: 19175

Site: Dye-M Client No: 09-017 Samples Received: 29-May-09 Date of analysis: 2-Jun-09

Method No: ASG 037 Date Reported: 2-Jun-09 Page: 1 of 1

RESULTS OF pH ANALYSIS

Sample I.D.	рН
50004*	7.15
50005	6.75
50006	6.64
-	

^{*} Averaged result of duplicates

LABORATORY QA/QC

Sample I.D.	pН
50004*; Duplicate	7.15 ; 7.14
Control	7.02
Control Target	7.00

Client : ESG

12 Verite Ave

Dept. of Chem. / Chem. Eng., RMC P.O. Box 17000, Stn. Forces Kingston, Ontario K7K 7B4 (613) 541-6000 ext 6567 Fax: (613) 541-6596 ASG Login No: 19175

Site: Dye-M Client No: 09-017 Samples Received: 29-May-09 Date of analysis: 3-Jun-09 Method No: ASG 021 Date Reported: 3-Jun-09 Sheet: 1 of 1

RESULTS OF MERCURY IN WATER ANALYSIS

Sample I.D.	Unit	Mercury [^]
09-500004	μg/L	< 0.4
09-500005	μg/L	< 0.4
09-500006*	μg/L	< 0.4

^{*}Results of duplicate analysis.

Sample I.D.	Unit	Mercury [^]
Duplicate ; 09-500006	μg/L	< 0.4 ; < 0.4
Blank	μg/L	< 0.4
Control Target	μg/L	4.0
Control Sample	μg/L	3.8

[^] Acid digestion performed.

[#] Reported at 0.4 µg/L detection limit.

> 12 Verite Ave Dept. of Chem. / Chem. Eng., RMC P.O. Box 17000, Stn. Forces Kingston, Ontario K7K 7B4

(613) 541-6000 ext 6567 Fax: (613) 541-6596

ASG Login No: 19189

Site: Dye-M Client No: 09-021 Samples Received: 4-Jun-09 Date of analysis: 4-Jun-09 Method No: ASG 021 Date Reported: 4-Jun-09

Sheet: 1 of 1

RESULTS OF MERCURY IN WATER ANALYSIS

Sample I.D.	Unit	Mercury [^]
09-50018*	μg/L	< 0.4

^{*}Results of duplicate analysis.

Sample I.D.	Unit	Mercury [^]
Duplicate ; 09-50018	μg/L	< 0.4 ; < 0.4
Blank	μg/L	< 0.4
Control Target	μg/L	4.0
Control Sample	ua/L	4.0

		00111101			1.0			
ASU#	11952		Report ID:	Dye-M W8				
Client:	ASG 19189		Date Submitted:	4-Jun-09				
			Date tested:	4-Jun-09				
Site:	DYE-M		Date:	5-Jun-09				
	09-021		Matrix:	Water				
Preliminary Report of A	nalysis							
Total Metals	Results in mg/L							
SAMPLE	Cu	Ni	Со	Cd	Pb	Zn	Cr	As
09-50018	-	-	-	-	-	0.068	0.027	< 0.003
Blank	-	-	-	-	-	< 0.010	< 0.005	< 0.003
Control	-	-	-	-	-	3.2	0.88	0.89
Control Target	-	-	-	-	-	3.0	0.80	0.80
Dissolved Metals								
SAMPLE	Cu	Ni	Со	Cd	Pb	Zn	Cr	As
09-50018	0.006	< 0.005	< 0.003	< 0.001	< 0.010	-	-	-
Blank	<0.005	< 0.010	< 0.003	< 0.001	<0.010	-	-	-
Control	1.80	1.84	1.80	0.91	9.09	-	-	
Control Target	1.60	1.60	1.60	0.80	8.00	-	-	-

[^] Acid digestion performed.

[#] Reported at 0.4 µg/L detection limit.

12 Verite Ave

Dept. of Chem. / Chem. Eng., RMC P.O. Box 17000, Stn. Forces Kingston, Ontario K7K 7B4 (613) 541-6000 ext 6567

Fax: (613) 541-6596

ASG Login No: 19189

Site: DYE-M Client No: 09-021 Samples Received: 4-Jun-09 Date of analysis: 4-Jun-09

Method No: ASG 039 Date Reported: 5-Jun-09 Page: 1 of 1

RESULTS OF pH ANALYSIS

Sample I.D.	pН
50018	6.49

^{*} Averaged result of duplicates

Sample I.D.	рН
50018 ; Duplicate	6.49 ; 6.49
Control	7.00
Control Target	7.00

ASU#	11952	Report ID:	Dye-M W6
Client:	ASG 19189	Date Submitted:	4-Jun-09
		Date tested:	4-Jun-09
Site:	DYE-M	Date:	5-Jun-09
	09-021	Matrix:	water
Preliminary Repo	rt of Analysis		
Sample	Oil & Grease		
	mg/L		
09-50018	<2.0		
Blank	<2.0		
Control	15.9		
Control Target	16.1		_

12 Verite Ave Dept. of Chem. / Chem. Eng., RMC P.O. Box 17000, Stn. Forces Kingston, Ontario K7K 7B4 (613) 541-6000 ext 6567 Fax: (613) 541-6596 ASG Login No: 19189 Site: Dye-M Client No: 09-021 Samples Received: 4-Jun-09 Date of analysis: 4-Jun-09 Method No: ASG 015 Date Reported: 5-Jun-09 Sheet No: 1 of 1

RESULTS OF PCB IN WATER ANALYSIS

Sample Type **		Unit	Aroclor 1248	Aroclor 1254	Aroclor 1260
W	50018	μg/L	< 3.0	< 3.0	< 3.0

LABORATORY QA/QC

	Blank	μg/L	< 3.0	< 3.0	< 3.0
	Control Sample	μg/L	< 3.0	< 3.0	14
Cor	trol Sample Target	μg/L	< 3.0	< 3.0	15

^{**} S = Soil , C = Concrete , PC = Paint Chip , SW = Swab , P = Plant , W = Water

All results corrected for the recovery of the surrogate decachlorobiphenyl

Client : ESG

12 Verite Ave Dept. of Chem. / Chem. Eng., RMC P.O. Box 17000, Stn. Forces Kingston, Ontario K7K 7B4 (613) 541-6000 ext 6567 Fax: (613) 541-6596 ASG Login No: 19188

Site: Dye-M Client No: 09-020 Samples Received: 4-Jun-09 Date of analysis: 4-Jun-09 Method No: ASG 021 Date Reported: 4-Jun-09

Sheet: 1 of 1

RESULTS OF MERCURY IN WATER ANALYSIS

Sample I.D.	Unit	Mercury
09-50012	μg/L	< 0.5
09-50013	μg/L	< 0.5
09-50014	μg/L	< 0.5
09-50015	μg/L	< 0.5
09-50016*	μg/L	< 0.5

Sample I.D.	Unit	Mercury
Duplicate ; 09-50016*	μg/L	< 0.5 ; < 0.5
Blank	μg/L	< 0.5
Control Target	μg/L	2.0
Control Sample	μg/L	2.2

^{*} Averaged result of duplicates

ASU#	11951	Report ID:	Dye-M W5
Client:	ASG 19188	Date Submitted:	4-Jun-09
		Date tested:	4-Jun-09
Site:	DYE-M	Date:	5-Jun-09
	09-020	Matrix:	water
Preliminary Repo	rt of Analysis		
Sample	Oil & Grease		
	mg/L		
09-50012	<2.0		
09-50013	6.0		
09-50014	2.3		
09-50015	<2.0		
09-50016	<2.0		
Blank	<2.0		
Control	15.9		
Control Target	16.1		

Dept. of Chem. / Chem. Eng., RMC P.O. Box 17000, Stn. Forces Kingston, Ontario K7K 784 (613) 541-6000 ext 6567 Fax: (613) 541-6596 ASG Login No: 19188 Site: Dye-M Client No: 09-020 Samples Received: 4-Jun-09 Date of analysis: 4-Jun-09 Method No: ASG 015 Date Reported: 5-Jun-09 Sheet No: 1 of 1

RESULTS OF PCB IN WATER ANALYSIS

Sample Type **	Sample I.D.	Unit	Aroclor 1248	Aroclor 1254	Aroclor 1260
W	50012*	μg/L	< 3.0	< 3.0	< 3.0
W	50013	μg/L	< 3.0	< 3.0	< 3.0
W	50014	μg/L	< 3.0	< 3.0	< 3.0
W	50015	μg/L	< 3.0	< 3.0	< 3.0
W	50016	μg/L	< 3.0	< 3.0	< 3.0

^{*} Average result of Duplicate

LABORATORY QA/QC

Blank	μg/L	< 3.0	< 3.0	< 3.0
Duplicate; 50012*	μg/L	< 3.0 ; < 3.0	< 3.0 ; < 3.0	< 3.0 ; < 3.0
Control Sample	μg/L	< 3.0	< 3.0	14
Control Sample Target	μg/L	< 3.0	< 3.0	15

^{**} S = Soil , C = Concrete , PC = Paint Chip , SW = Swab , P = Plant , W = Water

All results corrected for the recovery of the surrogate decachlorobiphenyl

12 Verite Ave

Dept. of Chem. / Chem. Eng., RMC P.O. Box 17000, Stn. Forces Kingston, Ontario K7K 7B4 (613) 541-6000 ext 6567

Fax: (613) 541-6596

ASG Login No: 19188

Site: DYE-M Client No: 09-020

Samples Received: 4-Jun-09 Date of analysis: 4-Jun-09 Method No: ASG 039

Date Reported: 5-Jun-09 Page: 1 of 1

RESULTS OF pH ANALYSIS

Sample I.D.	pН
50012	6.99
50013	8.05
50014	7.57
50015	7.21
50016	7.39

^{*} Averaged result of duplicates

Sample I.D.	рН
50016 ; Duplicate	7.39 ; 7.39
Control	7.00
Control Target	7.00

Client: Site: Treliminary Report of Analy Total Metals Ro SAMPLE 09-50012 09-50013 09-50014 09-50015 09-50016	ASG 19188 DYE-M 09-020 ysis Lesults in mg/L Cu <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005	Ni <0.005 <0.005 <0.005 <0.005 <0.005	Date Submitted: Date tested: Date: Matrix: Co 0.012 0.005 <0.003	4-Jun-09 5-Jun-09 5-Jun-09 Water Cd	Pb	Zn	Cr	As	
Total Metals Re SAMPLE 09-50012 09-50013 09-50014 09-50015	09-020 ysis tesults in mg/L Cu <0.005 <0.005 <0.005 <0.005 <0.005 <0.005	<0.005 <0.005 <0.005 <0.005	Date: Matrix: Co 0.012 0.005	5-Jun-09 Water Cd	Pb	Zn	Cr	As	
Total Metals Re SAMPLE 09-50012 09-50013 09-50014 09-50015	09-020 ysis tesults in mg/L Cu <0.005 <0.005 <0.005 <0.005 <0.005 <0.005	<0.005 <0.005 <0.005 <0.005	Co 0.012 0.005	Water	Pb	Zn	Cr	As	
Total Metals Re SAMPLE 09-50012 09-50013 09-50014 09-50015	09-020 ysis tesults in mg/L Cu <0.005 <0.005 <0.005 <0.005 <0.005 <0.005	<0.005 <0.005 <0.005 <0.005	Co 0.012 0.005	Cd <0.001	Pb	Zn	Cr	As	
Total Metals Re SAMPLE 09-50012 09-50013 09-50014 09-50015	Cu	<0.005 <0.005 <0.005 <0.005	0.012 0.005	<0.001	Pb	Zn	Cr	As	
Total Metals Re SAMPLE 09-50012 09-50013 09-50014 09-50015	Cu	<0.005 <0.005 <0.005 <0.005	0.012 0.005	<0.001	Pb	Zn	Cr	As	
SAMPLE 09-50012 09-50013 09-50014 09-50015	Cu <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005	<0.005 <0.005 <0.005 <0.005	0.012 0.005	<0.001	Pb	Zn	Cr	As	
SAMPLE 09-50012 09-50013 09-50014 09-50015	Cu <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005	<0.005 <0.005 <0.005 <0.005	0.012 0.005	<0.001	Pb	Zn	Cr	As	╘
09-50012 09-50013 09-50014 09-50015	<0.005 <0.005 <0.005 <0.005 <0.005 <0.005	<0.005 <0.005 <0.005 <0.005	0.012 0.005	<0.001	Pb	Zn	Cr	As	+
09-50012 09-50013 09-50014 09-50015	<0.005 <0.005 <0.005 <0.005 <0.005 <0.005	<0.005 <0.005 <0.005 <0.005	0.012 0.005	<0.001	Pb	Zn	Cr	As	
09-50013 09-50014 09-50015	<0.005 <0.005 <0.005 <0.005	<0.005 <0.005 <0.005	0.005					$\overline{}$	+
09-50013 09-50014 09-50015	<0.005 <0.005 <0.005 <0.005	<0.005 <0.005 <0.005	0.005		.0.010	0.162	-0.005	-0.002	_
09-50014 09-50015	<0.005 <0.005 <0.005	<0.005 <0.005			<0.010	0.163	< 0.005	< 0.003	+
09-50015	<0.005 <0.005	< 0.005	< 0.003	< 0.001	< 0.010	0.115	< 0.005	< 0.003	+-
	<0.005			< 0.001	< 0.010	0.103	< 0.005	< 0.003	
09-50016		< 0.005	0.003	< 0.001	< 0.010	0.225	< 0.005	< 0.003	*
	<0.005		0.006	< 0.001	< 0.010	0.107	< 0.005	< 0.003	
	< 0.005								
Blank		< 0.010	< 0.003	< 0.001	< 0.010	< 0.010	< 0.005	< 0.003	
Control	1.80	1.84	1.80	0.91	9.09	3.18	0.88	0.89	
Control Target	1.60	1.60	1.60	0.80	8.00	3.00	0.80	0.80	
09-50015	< 0.005	< 0.005	0.004	< 0.001	< 0.010	0.230	< 0.005	< 0.003	
09-50015	< 0.005	< 0.005	0.003	< 0.001	< 0.010	0.220	< 0.005	< 0.003	
Dissolved Metals									
SAMPLE	Cu	Ni	Co	Cd	Pb	Zn **	Cr	As	
09-50012	< 0.005	< 0.005	0.008	< 0.001	< 0.010	0.110	< 0.005	< 0.003	
09-50013	< 0.005	< 0.005	0.004	< 0.001	< 0.010	0.084	< 0.005	< 0.003	
09-50014	< 0.005	< 0.005	< 0.003	< 0.001	< 0.010	0.091	< 0.005	< 0.003	
09-50015	< 0.005	< 0.005	0.003	< 0.001	< 0.010	0.182	< 0.005	< 0.003	*
09-50016	< 0.005	< 0.005	0.004	< 0.001	< 0.010	0.053	< 0.005	< 0.003	
Blank	< 0.005	< 0.010	< 0.003	< 0.001	< 0.010	< 0.030	< 0.005	< 0.003	
Control	1.80	1.84	1.80	0.91	9.09	3.18	0.88	0.89	\top
Control Target	1.60	1.60	1.60	0.80	8.00	3.00	0.80	0.80	
09-50015	< 0.005	< 0.005	0.003	< 0.001	< 0.010	0.182	< 0.005	< 0.003	
09-50015	< 0.005	< 0.005	0.003	< 0.001	< 0.010	0.182	< 0.005	< 0.003	
* Detection limit raised due									

APPENDIX B PHOTOGRAPHS

Photo 1 (DSCN1465): Sample 09-50004 collected from ponded water in the Northeast Corner of the Landfarm. Picture was taken facing east.

Photo 2 (DSCN1467): Sample 09-50005 second sample collected from ponded water in the Northeast Corner of the Landfarm. Picture was taken facing southeast.

Photo 3 (DSCN1472): Sample 09-50006 collected from ponded water in the Lower Site Tankfarm area. Picture was taken facing northeast.

Ice Coring Locations at Upper Site Non-Hazardous Waste Landfill

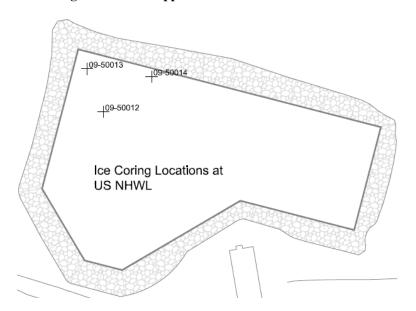


Photo 4: Sample 09-50012 ice core from 30-73cm.

Photo 5: Sample 09-50014 ice core.

Photo 6 (DSCN1525): Sample 09-50018 collected from ponded water in the Lower Site Tier II Facility. Picture was taken facing west.

Tricia Cammaart Environmental Sciences Group The Royal Military College of Canada PO Box 17000 Stn. Forces Kingston, ON K7K 7B4

Douglas Craig Environmental Officer Defence Construction Canada DEW Line Cleanup PMO 350 Albert Street, Suite 1720 Ottawa ON K1A 0K3

Thursday, July 23, 2009

RE: June 2009 Monthly Report for Water Use License Number: IBR-DYE0914

The following results of the Monitoring Program (MP) and/or Water Use License are provided by the Environmental Sciences Group to meet the requirements of the above-noted license for *DYE-M* (*Cape Dyer*).

1. SEWAGE EFFLUENT

A sewage lagoon was constructed at DYE-M in September of 2004. The Water Use License and MP require that samples from treated sewage lagoon effluent at the point of discharge to the receiving water be collected prior to each discharge event. Two sewage lagoon samples were collected in June, 2009.

Two sewage lagoon samples were collected and analyzed from DYE-M in June, 2009 (See table).

Sample Number	Sample Location	GPS Coordinates	Sampling Date
09-50069	South Cell of Sewage	20W 0563402E	June 23, 2009
	Lagoon	7386898N	
09-50084	South Cell of Sewage	20W 0563390E	June 27, 2009
	Lagoon	7386898N	

A summary of the results for the parameters tested is provided below. Laboratory results and photographs are provided in Appendices A and B, respectively.

LOCATION: SOUTH CELL OF SEWAGE LAGOON

GPS COORDINATES: 20W 0563402E 7386898N

Parameter	Allowable Maximum Average Concentration	Units	09-50069 (June 23, 2009)
pН	6.0 to 9.0	pH units	7.78
Oil & Grease	None Visible	-	None Visible
Total Suspended Solids (TSS)	180	mg/L	28
BOD	120	mg/L	<3.0
Faecal Coliforms	10,000	CFU/dL	N/A
Total Coliforms	-	CFU/ 100 mL	N/A

LOCATION: SOUTH CELL OF SEWAGE LAGOON

GPS COORDINATES: 20W 0563390E 7386898N

Parameter	Allowable Maximum Average Concentration	Units	09-50084 (June 27, 2009)
pН	6.0 to 9.0	pH units	N/A
Oil & Grease	None Visible	-	None Visible
Total Suspended Solids (TSS)	180	mg/L	N/A
BOD	120	mg/L	N/A
Faecal Coliforms	10,000	CFU/dL	0
Total Coliforms	1	CFU/ 100 mL	2

The water inside the sewage lagoon meets water discharge criteria. The water was discharged to land in accordance to the water use license, to the discharge location approved by the INAC Environmental Inspector.

We trust that the information provided meets current requirements. Please contact the undersigned if you have any questions or concerns.

Sincerely,

Tricia Cammaart

Environmental Sciences Group

Tricia Cammaant

cc: Eva Schulz (UMA)

Daniela Loock, Kat White, Anna Charbonneau, Ryan Vettorazzo, Cam Ollson, Andrea Ellis, (ESG)

APPENDIX A LABORATORY RESULTS

Client: ESG

12 Verite Ave

Dept. of Chem. / Chem. Eng., RMC P.O. Box 17000, Stn. Forces Kingston, Ontario K7K 7B4 (613) 541-6000 ext 6567 ASG Login No: 19332 Site: DYE-M

Client No: 09-049
Samples Received: 27-Jun-09
Date of analysis: 30-Jun-09
Method No: ASG 037

Date Reported: 1-Jul-09 Page: 1 of 1

RESULTS OF pH ANALYSIS

Sample I.D.	рН
09-50069*	7.78

^{*} Averaged result of duplicates

LABORATORY QA/QC

Sample I.D.	pН
09-50069*; Duplicate	7.78 ; 7.78
Control	7.01
Control Target	7.00

Client: ESG

12 Verite Ave

Dept. of Chem. / Chem. Eng., RMC P.O. Box 17000, Stn. Forces Kingston, Ontario K7K 7B4 (613) 541-6000 ext 6567

Fax: (613) 541-6596

ASG Login No: 19332

Site: DYE-M Client Login No: 09-049 Samples Received: 27-Jun-09 Date of analysis: 1-Jul-09 Method No: ASG 042 Date Reported: 6-Jul-09

Page: 1 of 1

RESULTS OF BOD ANALYSIS

Sample I.D.	Unit	BOD
09-50069*	mg/L	< 3

^{*}Averaged result of duplicates

Sample I.D.	Unit	BOD
Duplicate ; 09-50069	mg/L	< 3; < 3
Blank	mg/L	< 3
Control	mg/L	151
Control Target	mg/L	165

12 Verite Ave Dept. of Chem. / Chem. Eng., RMC P.O. Box 17000, Stn. Forces Kingston, Ontario K7K 7B4 (613) 541-6000 ext 6567 Fax: (613) 541-6596

ASG Login No: 19332 Site: DYE-M Client Login No: 09-049 Samples Received: 27-Jun-09
Date of analysis: 1-Jul-09
Method No: ASG 039 Date Reported: 2-Jul-09 Sheet: 1 of 1

RESULTS OF TOTAL SUSPENDED SOLIDS ANALYSIS

Sample I.D.	Sample Type [^]	Unit	Total Suspended Solids
09-50069*	SW	mg/L	28

*Insufficient sample volume for duplicate analysis.

LABORATORY QA/QC

Blank	Control	mg/L	<1
Control	Control	mg/L	180
Control Target	Control	ma/L	200

^SW =Surface Water, SI = Sewage Influent SE = Sewage Effluent

Client : **ESG**

12 Verite Ave

Dept. of Chem. / Chem. Eng., RMC P.O. Box 17000, Stn. Forces Kingston, Ontario K7K 7B4

(613) 541-6000 ext 6567 Fax: (613) 541-6596

ASG Login No: 19339 Site: Dye-M

Client No: 09-067 Samples Received: 29-Jun-09 Date of analysis: 29-Jun-09 Date Reported: 1-Jul-09 Sheet: 1 of 1

RESULTS OF MICROBIOLOGICAL ANALYSIS

	Method: ASG 036	Method: ASG 036	Method: ASG 036	Method: ASG 044
Sample Identification	Total			Fecal
	Coliforms	E. coli	Background	Coliforms
	(CFU/100 mL)	(CFU/100 mL)	(CFU/100 mL)	(CFU/100 mL)
50084	2	0	470	0

Sample Identification	Method: ASG 036 Total	Method: ASG 036	Method: ASG 036	Method: ASG 044 Fecal
	Coliforms (CFU/100 mL)	E. coli (CFU/100 mL)	Background (CFU/100 mL)	Coliforms (CFU/100 mL)
Blank	0	0	0	0
Control Sample	37	37	0	30
Control Sample Target	32	32	0	32

^{*} Duplicate analysis completed on dilution not required

APPENDIX B PHOTOGRAPHS

Photo 1 (DSCN1713): Sample 09-50069 collecting a wastewater sample from the Sewage Lagoon. Picture was taken facing west.

Tricia Cammaart Environmental Sciences Group The Royal Military College of Canada PO Box 17000 Stn. Forces Kingston, ON K7K 7B4

Douglas Craig Environmental Officer Defence Construction Canada DEW Line Cleanup PMO 350 Albert Street, Suite 1720 Ottawa ON K1A 0K3

Thursday, July 23, 2009

RE: Analytical Results for Wastewater Samples Collected at DYE-M in June, 2009

The following report summarizes results of the analysis of wastewater samples as per the DYE-M (Cape Dyer) DEW Line Cleanup Project (DLCU) Specifications.

The DYE-M specifications require that "wash water, meltwater collection, rinse water resulting from the cleaning of fuel tanks and pipelines, and/or any other liquid effluent stream" meet the following guidelines prior to their discharge to land (01560.4.1):

Parameter	Maximum Allowable Concentration	Units
pН	6-9	pH units
Total arsenic (As)	0.100	mg/L
Dissolved cadmium (Cd)	0.010	mg/L
Total chromium (Cr)	0.100	mg/L
Dissolved cobalt (Co)	0.050	mg/L
Dissolved copper (Cu)	0.200	mg/L
Dissolved lead (Pb)	0.050	mg/L
Total mercury (Hg)	0.6	μg/L
Dissolved nickel (Ni)	0.200	mg/L
Total zinc (Zn)	1.000	mg/L
Oil & grease	5 mg/L and None visible	mg/L
PCBs	0.050*	mg/L
	0.005**	-
Phenols	0.020	mg/L

^{*}Discharge to barren land, **Discharge to vegetated land

Phenols

The wastewater samples collected by ESG at DYE-M in June, 2009 were not analyzed for phenols but they were analyzed for oil and grease. Research conducted by ESG¹ has determined that a) no federal, territorial or provincial criteria exist for the discharge of

¹ Environmental Sciences Group. DEW Line Clean Up Project – Phenols in Wastewater. June, 2007.

wastewater containing phenols to land at a minimum distance of 30-m from natural drainage courses b) the maximum concentration of phenols in DLCU wastewater to date (2.44 mg/L) is below the LC₅₀ for freshwater fish and crustaceans and below the oral and dermal LD₅₀s for rats and rodents and c) phenols in excess of the maximum allowable concentration (MAC) have historically co-occurred with a visible oil & grease sheen and/or with an exceedance of the MAC for oil & grease. This information, and a subsequent decision to not test for phenols, has been presented to the NWB. To date, verbal agreement from the NWB has been received, but the project is awaiting written confirmation of the decision to suspend testing for phenols.

WASTEWATER SAMPLES

Twenty one wastewater samples were collected at DYE-M and analyzed in June 2009. A summary of the details of these results follows.

Sample Number	Sample Location	GPS Coordinates	Sampling Date
09-50020	Northeast corner of Landfarm	20W 0562693E 7387967N	June 3, 2009
09-50021	Northeast corner of Landfarm	20W 0562693E 7387967N	June 3, 2009
09-50029	Northeast corner of Landfarm	20W 0562737E 7387988N	June 3, 2009
09-50049	Northeast corner of Landfarm	20W 0562783E 7387968N	June 13, 2009
09-50050	Northeast corner of Landfarm	20W 0562739E 7387990N	June 13, 2009
09-50051	Northeast corner of Landfarm	20W 0562739E 7387990N	June 13, 2009
09-50032	Upper Site Tier II Facility	20W 0571054E 7394633N	June 9, 2009
09-50052	Southeast Corner of the Lower Site Tank Farm	20W 0563232E 7386840N	June 17, 2009
09-50053	Northwest corner of the Upper Site Non Hazardous Waste Landfill	20W 0572177E 7395181N	June 17, 2009
09-50054	Northwest corner of the Upper Site Non Hazardous Waste Landfill	20W 0572147E 7395157N	June 17, 2009
09-50055	Northeast Corner of the Lower Site Tank Farm	20W 0563038E 7387530N	June 18, 2009
09-50066	Upper Site Non Hazardous Waste Landfill	20W 0572187E 7395177N	June 22, 2009
09-50067	Upper Site Non Hazardous Waste Landfill	20W 0572151E 7395162N	June 22, 2009
09-50088	Upper Site Non Hazardous Waste Landfill	20W 0572192E 7395176N	June 30, 2009
09-50089	Upper Site Non Hazardous Waste Landfill	20 W 0572147E 7395152N	June 30, 2009

09-50090	Lower Site Holding Basin 6	20W 0563062E 7387587N	June 30, 2009
09-50091	Lower Site Holding Basin 6	20W 0563062E 7387587N	June 30, 2009
09-50092	Lower Site Holding Basin 5	20W 0563064E 7387596N	June 30, 2009
09-50093	Lower Site Holding Basin 4	20W 0563060E 7387602N	June 30, 2009
09-50094	Lower Site Holding Basin 3	20W 0563043E 7387632N	June 30, 2009
09-50095	Lower Site Holding Basin 2	20W 0563043E 7387627N	June 30, 2009

A summary of the results for the parameters tested is provided below. Laboratory results and photographs are provided in Appendices A and B, respectively.

LOCATION: NORTHEAST CORNER OF LANDFARM

GPS COORDINATES: 20W 0562693 7387967

Parameter	Maximum Allowable Concentration	Units	Sample # 09-50020
pН	6-9	pH units	N/A
Total Arsenic	0.100	mg/L	N/A
Dissolved Cadmium	0.010	mg/L	N/A
Total Chromium	0.100	mg/L	0.176
Dissolved Cobalt	0.050	mg/L	N/A
Dissolved Copper	0.200	mg/L	N/A
Dissolved Lead	0.050	mg/L	N/A
Total Mercury	0.6	μg/L	N/A
Dissolved Nickel	0.200	mg/L	N/A
Total Zinc	1.0	mg/L	N/A
Oil & Grease	None Visible and 5 mg/L	mg/L	None Visible
PCBs	50* 5**	μg/L	N/A
Phenols	20	μg/L	N/A

^{*}Discharge to barren land, **Discharge to vegetated land

LOCATION: NORTHEAST CORNER OF LANDFARM

GPS COORDINATES: 20W 0562693 7387967

Parameter	Maximum Allowable Concentration	Units	Sample # 09-50021
pН	6-9	pH units	N/A
Total Arsenic	0.100	mg/L	N/A
Dissolved Cadmium	0.010	mg/L	N/A
Total Chromium	0.100	mg/L	0.112
Dissolved Cobalt	0.050	mg/L	N/A
Dissolved Copper	0.200	mg/L	N/A
Dissolved Lead	0.050	mg/L	N/A
Total Mercury	0.6	μg/L	N/A
Dissolved Nickel	0.200	mg/L	N/A
Total Zinc	1.0	mg/L	N/A
Oil & Grease	None Visible and 5 mg/L	mg/L	None Visible
PCBs	50* 5**	μg/L	N/A
Phenols	20	μg/L	N/A

^{*}Discharge to barren land, **Discharge to vegetated land

LOCATION: NORTHEAST CORNER OF LANDFARM

GPS COORDINATES: 20W 0562737 7387988

Parameter	Maximum Allowable Concentration	Units	Sample # 09-50029
pН	6-9	pH units	N/A
Total Arsenic	0.100	mg/L	N/A
Dissolved Cadmium	0.010	mg/L	N/A
Total Chromium	0.100	mg/L	0.126
Dissolved Cobalt	0.050	mg/L	N/A
Dissolved Copper	0.200	mg/L	N/A
Dissolved Lead	0.050	mg/L	N/A
Total Mercury	0.6	μg/L	N/A
Dissolved Nickel	0.200	mg/L	N/A
Total Zinc	1.0	mg/L	N/A
Oil & Grease	None Visible and 5 mg/L	mg/L	None Visible
PCBs	50* 5**	μg/L	N/A
Phenols	20	μg/L	N/A

^{*}Discharge to barren land, **Discharge to vegetated land

LOCATION: NORTHEAST CORNER OF LANDFARM

GPS COORDINATES: 20W 0562783 7387968

Parameter	Maximum Allowable Concentration	Units	Sample # 09-50049
рН	6-9	pH units	N/A
Total Arsenic	0.100	mg/L	N/A
Dissolved Cadmium	0.010	mg/L	N/A
Total Chromium	0.100	mg/L	0.130
Dissolved Cobalt	0.050	mg/L	N/A
Dissolved Copper	0.200	mg/L	N/A
Dissolved Lead	0.050	mg/L	N/A
Total Mercury	0.6	μg/L	N/A
Dissolved Nickel	0.200	mg/L	N/A
Total Zinc	1.0	mg/L	N/A
Oil & Grease	None Visible and 5 mg/L	mg/L	None Visible
PCBs	50* 5**	μg/L	N/A
Phenols	20	μg/L	N/A

^{*}Discharge to barren land, **Discharge to vegetated land

LOCATION: NORTHEAST CORNER OF LANDFARM

GPS COORDINATES: 20W 0562739 7387990

Parameter	Maximum Allowable Concentration	Units	Sample # 09-50050
pН	6-9	pH units	N/A
Total Arsenic	0.100	mg/L	N/A
Dissolved Cadmium	0.010	mg/L	N/A
Total Chromium	0.100	mg/L	0.134
Dissolved Cobalt	0.050	mg/L	N/A
Dissolved Copper	0.200	mg/L	N/A
Dissolved Lead	0.050	mg/L	N/A
Total Mercury	0.6	μg/L	N/A
Dissolved Nickel	0.200	mg/L	N/A
Total Zinc	1.0	mg/L	N/A
Oil & Grease	None Visible and 5 mg/L	mg/L	None Visible
PCBs	50* 5**	μg/L	N/A
Phenols	20	μg/L	N/A

^{*}Discharge to barren land, **Discharge to vegetated land

LOCATION: NORTHEAST CORNER OF LANDFARM

GPS COORDINATES: 20W 0562739 7387990

Parameter	Maximum Allowable Concentration	Units	Sample # 09-50051
pН	6-9	pH units	N/A
Total Arsenic	0.100	mg/L	N/A
Dissolved Cadmium	0.010	mg/L	N/A
Total Chromium	0.100	mg/L	0.129
Dissolved Cobalt	0.050	mg/L	N/A
Dissolved Copper	0.200	mg/L	N/A
Dissolved Lead	0.050	mg/L	N/A
Total Mercury	0.6	μg/L	N/A
Dissolved Nickel	0.200	mg/L	N/A
Total Zinc	1.0	mg/L	N/A
Oil & Grease	None Visible and 5 mg/L	mg/L	None Visible
PCBs	50* 5**	μg/L	N/A
Phenols	20	μg/L	N/A

^{*}Discharge to barren land, **Discharge to vegetated land

The wastewater at the northeast corner of the landfarm exceeds the wastewater discharge criteria (WDC) for chromium. Please refer to ESG Memo DYE-M-460. Chromium was elevated due to natural sources. The water has been discharged.

LOCATION: UPPER SITE TIER II FACILITY GPS COORDINATES: 20W 0571054 7394633

Parameter	Maximum Allowable Concentration	Units	Sample # 09-50032
pН	6-9	pH units	7.09
Total Arsenic	0.100	mg/L	< 0.003
Dissolved Cadmium	0.010	mg/L	< 0.001
Total Chromium	0.100	mg/L	0.028
Dissolved Cobalt	0.050	mg/L	< 0.003
Dissolved Copper	0.200	mg/L	0.017
Dissolved Lead	0.050	mg/L	< 0.010
Total Mercury	0.6	μg/L	<0.4 & <0.5
Dissolved Nickel	0.200	mg/L	< 0.005
Total Zinc	1.0	mg/L	0.111
Oil & Grease	None Visible and 5 mg/L	mg/L	Visible, 3.0
PCBs	50* 5**	μg/L	<3.0
Phenols	20	μg/L	N/A

^{*}Discharge to barren land, **Discharge to vegetated land

The analytical results for the water contained in the Upper Site Tier II Facility met the wastewater discharge criteria except for the visible sheen of oil and grease. The sheen was removed at the time of discharge. The water has been discharged to land in accordance to the water use license.

LOCATION: SOUTHEAST CORNER LOWER SITE TANK FARM

GPS COORDINATES: 20W 0563232 7386840

Parameter	Maximum Allowable Concentration	Units	Sample # 09-50052
pН	6-9	pH units	N/A
Total Arsenic	0.100	mg/L	N/A
Dissolved Cadmium	0.010	mg/L	N/A
Total Chromium	0.100	mg/L	N/A
Dissolved Cobalt	0.050	mg/L	N/A
Dissolved Copper	0.200	mg/L	N/A
Dissolved Lead	0.050	mg/L	N/A
Total Mercury	0.6	μg/L	N/A
Dissolved Nickel	0.200	mg/L	N/A
Total Zinc	1.0	mg/L	N/A
Oil & Grease	None Visible and 5 mg/L	mg/L	None Visible <2.0
PCBs	50* 5**	μg/L	N/A
Phenols	20	μg/L	N/A

^{*}Discharge to barren land, **Discharge to vegetated land

LOCATION: NORTHWEST CORNER OF THE UPPER SITE NON HAZARDOUS WASTE LANDFILL

GPS COORDINATES: 20W 0572177 7395181

Parameter	Maximum Allowable Concentration	Units	Sample # 09-50053
pН	6-9	pH units	7.39
Total Arsenic	0.100	mg/L	< 0.003
Dissolved Cadmium	0.010	mg/L	0.001
Total Chromium	0.100	mg/L	< 0.005
Dissolved Cobalt	0.050	mg/L	0.003
Dissolved Copper	0.200	mg/L	0.006
Dissolved Lead	0.050	mg/L	< 0.010
Total Mercury	0.6	$\mu g/L$	< 0.4
Dissolved Nickel	0.200	mg/L	< 0.005
Total Zinc	1.0	mg/L	2.4
Oil & Grease	None Visible and 5 mg/L	mg/L	None Visible 2.0
PCBs	50* 5**	μg/L	<3.0
Phenols	20	μg/L	N/A

^{*}Discharge to barren land, **Discharge to vegetated land

LOCATION: NORTHWEST CORNER OF THE UPPER SITE NON HAZARDOUS WASTE LANDFILL

GPS COORDINATES: 20W 0572147 7395157

Parameter	Maximum Allowable Concentration	Units	Sample # 09-50054
pН	6-9	pH units	7.35
Total Arsenic	0.100	mg/L	< 0.003
Dissolved Cadmium	0.010	mg/L	0.001
Total Chromium	0.100	mg/L	< 0.005
Dissolved Cobalt	0.050	mg/L	0.004
Dissolved Copper	0.200	mg/L	0.011
Dissolved Lead	0.050	mg/L	< 0.010
Total Mercury	0.6	μg/L	< 0.4
Dissolved Nickel	0.200	mg/L	< 0.005
Total Zinc	1.0	mg/L	2.4
Oil & Grease	None Visible and 5 mg/L	mg/L	None Visible 4.8
PCBs	50* 5**	μg/L	<3.0
Phenols	20	μg/L	N/A

^{*}Discharge to barren land, **Discharge to vegetated land

The wastewater at the northwest corner of the upper site non hazardous waste landfill exceeds the wastewater discharge criteria (WDC) for zinc. The water has not been discharged to land. Treatment and additional sampling are in progress.

LOCATION: NORTHEAST CORNER OF THE LOWER SITE TANK FARM

GPS COORDINATES: 20W 0563038 7387530

Parameter	Maximum Allowable Concentration	Units	Sample # 09-50055
pН	6-9	pH units	6.62
Total Arsenic	0.100	mg/L	< 0.003
Dissolved Cadmium	0.010	mg/L	< 0.001
Total Chromium	0.100	mg/L	0.042
Dissolved Cobalt	0.050	mg/L	< 0.003
Dissolved Copper	0.200	mg/L	< 0.005
Dissolved Lead	0.050	mg/L	< 0.010
Total Mercury	0.6	$\mu g/L$	< 0.4
Dissolved Nickel	0.200	mg/L	< 0.005
Total Zinc	1.0	mg/L	0.087
Oil & Grease	None Visible and 5 mg/L	mg/L	None Visible < 2.0
PCBs	50* 5**	μg/L	<3.0
Phenols	20	μg/L	N/A

^{*}Discharge to barren land, **Discharge to vegetated land

LOCATION: NORTHWEST CORNER OF THE UPPER SITE NON HAZARDOUS WASTE LANDFILL

GPS COORDINATES: 20W 0572187 7395177

Parameter	Maximum Allowable Concentration	Units	Sample # 09-50066
pН	6-9	pH units	7.31
Total Arsenic	0.100	mg/L	< 0.003
Dissolved Cadmium	0.010	mg/L	0.002
Total Chromium	0.100	mg/L	< 0.005
Dissolved Cobalt	0.050	mg/L	< 0.003
Dissolved Copper	0.200	mg/L	0.007
Dissolved Lead	0.050	mg/L	< 0.010
Total Mercury	0.6	μg/L	N/A
Dissolved Nickel	0.200	mg/L	< 0.005
Total Zinc	1.0	mg/L	2.5
Oil & Grease	None Visible and 5 mg/L	mg/L	None Visible, 6.1
PCBs	50* 5**	μg/L	N/A
Phenols	20	μg/L	N/A

^{*}Discharge to barren land, **Discharge to vegetated land

LOCATION: NORTHWEST CORNER OF THE UPPER SITE NON HAZARDOUS WASTE LANDFILL

GPS COORDINATES: 20W 0572151 7395162

Parameter	Maximum Allowable Concentration	Units	Sample # 09-50067
pН	6-9	pH units	7.36
Total Arsenic	0.100	mg/L	< 0.003
Dissolved Cadmium	0.010	mg/L	0.002
Total Chromium	0.100	mg/L	< 0.005
Dissolved Cobalt	0.050	mg/L	< 0.003
Dissolved Copper	0.200	mg/L	< 0.005
Dissolved Lead	0.050	mg/L	< 0.010
Total Mercury	0.6	μg/L	< 0.4
Dissolved Nickel	0.200	mg/L	< 0.005
Total Zinc	1.0	mg/L	2.2
Oil & Grease	None Visible and 5 mg/L	mg/L	None Visible <2.0
PCBs	50* 5**	μg/L	<3.0
Phenols	20	μg/L	N/A

^{*}Discharge to barren land, **Discharge to vegetated land

The wastewater at the northwest corner of the upper site non hazardous waste landfill exceeds the wastewater discharge criteria (WDC) for zinc. The water has not been discharged to land. Treatment and additional sampling are in progress.

LOCATION: UPPER SITE NON HAZARDOUS LANDFILL

GPS COORDINATES: 20W 0572192 7395176

Parameter	Maximum Allowable Concentration	Units	Sample # 09-50088
pН	6-9	pH units	7.04
Total Arsenic	0.100	mg/L	N/A
Dissolved Cadmium	0.010	mg/L	N/A
Total Chromium	0.100	mg/L	N/A
Dissolved Cobalt	0.050	mg/L	N/A
Dissolved Copper	0.200	mg/L	N/A
Dissolved Lead	0.050	mg/L	N/A
Total Mercury	0.6	μg/L	N/A
Dissolved Nickel	0.200	mg/L	N/A
Total Zinc	1.0	mg/L	2.2
Oil & Grease	None Visible and 5 mg/L	mg/L	None Visible < 2.0
PCBs	50* 5**	$\mu g/L$	N/A
Phenols	20	μg/L	N/A

^{*}Discharge to barren land, **Discharge to vegetated land

LOCATION: UPPER SITE NON HAZARDOUS WASTE LANDFILL

GPS COORDINATES: 20W 0572147 7395152

Parameter	Maximum Allowable Concentration	Units	Sample # 09-50089
рН	6-9	pH units	7.28
Total Arsenic	0.100	mg/L	N/A
Dissolved Cadmium	0.010	mg/L	N/A
Total Chromium	0.100	mg/L	N/A
Dissolved Cobalt	0.050	mg/L	N/A
Dissolved Copper	0.200	mg/L	N/A
Dissolved Lead	0.050	mg/L	N/A
Total Mercury	0.6	μg/L	N/A
Dissolved Nickel	0.200	mg/L	N/A
Total Zinc	1.0	mg/L	2.1
Oil & Grease	None Visible and 5 mg/L	mg/L	None Visible < 2.0
PCBs	50* 5**	μg/L	N/A
Phenols	20	μg/L	N/A

^{*}Discharge to barren land, **Discharge to vegetated land

The wastewater at the upper site non hazardous waste landfill exceeds the wastewater discharge criteria (WDC) for zinc. The water has not been discharged to land. Treatment and additional sampling are in progress.

LOCATION: LOWER SITE HOLDING BASIN 6

GPS COORDINATES: 20W 0563062 7387587

Parameter	Maximum Allowable Concentration	Units	Sample # 09-50090
pН	6-9	pH units	5.42
Total Arsenic	0.100	mg/L	N/A
Dissolved Cadmium	0.010	mg/L	N/A
Total Chromium	0.100	mg/L	N/A
Dissolved Cobalt	0.050	mg/L	N/A
Dissolved Copper	0.200	mg/L	N/A
Dissolved Lead	0.050	mg/L	N/A
Total Mercury	0.6	μg/L	N/A
Dissolved Nickel	0.200	mg/L	N/A
Total Zinc	1.0	mg/L	N/A
Oil & Grease	None Visible and 5 mg/L	mg/L	Visible, <2.0
PCBs	50* 5**	μg/L	N/A
Phenols	20	μg/L	N/A

^{*}Discharge to barren land, **Discharge to vegetated land

LOCATION: LOWER SITE HOLDING BASIN 6

GPS COORDINATES: 20W 0563062 7387587

Parameter	Maximum Allowable Concentration	Units	Sample # 09-50091
pН	6-9	pH units	4.96
Total Arsenic	0.100	mg/L	N/A
Dissolved Cadmium	0.010	mg/L	N/A
Total Chromium	0.100	mg/L	N/A
Dissolved Cobalt	0.050	mg/L	N/A
Dissolved Copper	0.200	mg/L	N/A
Dissolved Lead	0.050	mg/L	N/A
Total Mercury	0.6	μg/L	N/A
Dissolved Nickel	0.200	mg/L	N/A
Total Zinc	1.0	mg/L	N/A
Oil & Grease	None Visible and 5 mg/L	mg/L	Visible, 5.9
PCBs	50* 5**	μg/L	N/A
Phenols	20	μg/L	N/A

^{*}Discharge to barren land, **Discharge to vegetated land

The wastewater at the lower site holding basin 6 exceeds the wastewater discharge criteria (WDC) for pH and oil and grease. The water has not been discharged to land. Treatment and additional sampling are in progress.

LOCATION: LOWER SITE HOLDING BASIN 5

GPS COORDINATES: 20W 0563064 7387596

Parameter	Maximum Allowable Concentration	Units	Sample # 09-50092
pН	6-9	pH units	6.15
Total Arsenic	0.100	mg/L	N/A
Dissolved Cadmium	0.010	mg/L	N/A
Total Chromium	0.100	mg/L	N/A
Dissolved Cobalt	0.050	mg/L	N/A
Dissolved Copper	0.200	mg/L	N/A
Dissolved Lead	0.050	mg/L	N/A
Total Mercury	0.6	μg/L	N/A
Dissolved Nickel	0.200	mg/L	N/A
Total Zinc	1.0	mg/L	N/A
Oil & Grease	None Visible and 5 mg/L	mg/L	Broken sample container
PCBs	50* 5**	$\mu g/L$	N/A
Phenols	20	μg/L	N/A

^{*}Discharge to barren land, **Discharge to vegetated land

LOCATION: LOWER SITE HOLDING BASIN 4

GPS COORDINATES: 20W 0563060 7387602

Parameter	Maximum Allowable Concentration	Units	Sample # 09-50093
pН	6-9	pH units	6.20
Total Arsenic	0.100	mg/L	N/A
Dissolved Cadmium	0.010	mg/L	N/A
Total Chromium	0.100	mg/L	N/A
Dissolved Cobalt	0.050	mg/L	N/A
Dissolved Copper	0.200	mg/L	N/A
Dissolved Lead	0.050	mg/L	N/A
Total Mercury	0.6	μg/L	N/A
Dissolved Nickel	0.200	mg/L	N/A
Total Zinc	1.0	mg/L	N/A
Oil & Grease	None Visible and 5 mg/L	mg/L	Visible, 10.1
PCBs	50* 5**	μg/L	N/A
Phenols	20	μg/L	N/A

^{*}Discharge to barren land, **Discharge to vegetated land

The wastewater at the lower site holding basin 4 exceeds the wastewater discharge criteria (WDC) for oil and grease. The water has not been discharged to land. Treatment and additional sampling are in progress.

LOCATION: LOWER SITE HOLDING BASIN 3

GPS COORDINATES: 20W 0563043 7387632

Parameter	Maximum Allowable Concentration	Units	Sample # 09-50094
pН	6-9	pH units	5.84
Total Arsenic	0.100	mg/L	N/A
Dissolved Cadmium	0.010	mg/L	N/A
Total Chromium	0.100	mg/L	N/A
Dissolved Cobalt	0.050	mg/L	N/A
Dissolved Copper	0.200	mg/L	N/A
Dissolved Lead	0.050	mg/L	N/A
Total Mercury	0.6	μg/L	N/A
Dissolved Nickel	0.200	mg/L	N/A
Total Zinc	1.0	mg/L	N/A
Oil & Grease	None Visible and 5 mg/L	mg/L	None Visible, 10.4
PCBs	50* 5**	μg/L	N/A
Phenols	20	μg/L	N/A

^{*}Discharge to barren land, **Discharge to vegetated land

The wastewater at the lower site holding basin 3 exceeds the wastewater discharge criteria (WDC) for pH and oil and grease. The water has not been discharged to land. Treatment and additional sampling are in progress.

LOCATION: LOWER SITE HOLDING BASIN 2

GPS COORDINATES: 20W 0563043 7387627

Parameter	Maximum Allowable Concentration	Units	Sample # 09-50095
pН	6-9	pH units	6.85
Total Arsenic	0.100	mg/L	N/A
Dissolved Cadmium	0.010	mg/L	N/A
Total Chromium	0.100	mg/L	N/A
Dissolved Cobalt	0.050	mg/L	N/A
Dissolved Copper	0.200	mg/L	N/A
Dissolved Lead	0.050	mg/L	N/A
Total Mercury	0.6	μg/L	N/A
Dissolved Nickel	0.200	mg/L	N/A
Total Zinc	1.0	mg/L	N/A
Oil & Grease	None Visible and 5 mg/L	mg/L	None Visible, <2.0
PCBs	CBs 50* 5**		N/A
Phenols	20	μg/L	N/A

^{*}Discharge to barren land, **Discharge to vegetated land

We trust that the information provided meets current requirements. Please contact the undersigned if you have any questions or concerns.

Sincerely,

Tricia Cammaart

Environmental Sciences Group

cc: Eva Schulz (UMA)

Daniela Loock, Kat White, Anna Charbonneau, Ryan Vettorazzo, Cam Ollson,

Andrea Ellis (ESG)

Tricia Cammaant

APPENDIX A LABORATORY RESULTS

ASU#	11953	Report ID:	Dye-M W9
Client:	ASG 19212	Date Submitted:	8-Jun-09
		Date tested:	8-Jun-09
Site:	DYE-M	Date:	9-Jun-09
	09-022	Matrix:	Water
Preliminary Report of Ar	nalysis		
Total Metals	Results in mg/L		
SAMPLE	Cr		
09-50020	0.176	*	
09-50021	0.112		
09-50029	0.126		
Blank	< 0.005		
Control	0.78		
Control Target	0.80		
09-50020	0.174		
09-50020	0.178		

12 Verite Ave Dept. of Chem. / Chem. Eng., RMC P.O. Box 17000, Stn. Forces Kingston, Ontario K7K 7B4

(613) 541-6000 ext 6567 Fax: (613) 541-6596

ASG Login No: 19249 Site: Dye-M Client No: 09-028

Samples Received: 12-Jun-09 Date of analysis: 13-Jun-09
Method No: ASG 015
Date Reported: 15-Jun-09
Sheet No: 1 of 1

RESULTS OF PCB IN WATER ANALYSIS

Sample Type **	Sample I.D.	Unit	Aroclor 1248	Aroclor 1254	Aroclor 1260
W	50032	μg/L	< 3.0	< 3.0	< 3.0

LABORATORY QA/QC

Blank	μg/L	< 3.0	< 3.0	< 3.0
Control Sample	μg/L	< 3.0	< 3.0	12
Control Sample Target	ua/L	< 3.0	< 3.0	15

^{**} S = Soil , C = Concrete , PC = Paint Chip , SW = Swab , P = Plant , W = Water

All results corrected for the recovery of the surrogate decachlorobiphenyl

Client: ESG

12 Verite Ave

Dept. of Chem. / Chem. Eng., RMC P.O. Box 17000, Stn. Forces Kingston, Ontario K7K 7B4 (613) 541-6000 ext 6567 Fax: (613) 541-6596

ASG Login No: 19249 Site: Dye-M

Client No: 09-028 Samples Received: 12-Jun-09 Date of analysis: 13-Jun-09 Method No: ASG 021 Date Reported: 13-Jun-09 Sheet: 1 of 1

RESULTS OF MERCURY IN WATER ANALYSIS

Sample I.D.	Unit	Mercury
09-50032*	μg/L	< 0.5

Sample I.D.	Unit	Mercury
Duplicate ; 09-50032*	μg/L	< 0.5 ; < 0.5
Blank	μg/L	< 0.5
Control Target	μg/L	2.0
Control Sample	μg/L	2.1

^{*} Averaged result of duplicates

ASU#	11963	Report ID:	Dye-M W11
Client:	ASG 19249	Date Submitted:	12-Jun-09
		Date tested:	13-Jun-09
Site:	DYE-M	Date:	14-Jun-09
	09-028	Matrix:	water
Preliminary Repo	rt of Analysis		
Sample	Oil & Grease		
	mg/L		
09-50032	3.0		
Blank	<2.0		
Control	16.1		
Control Target	16.1		

12 Verite Ave

Dept of Chem/Chem Eng RMC, PO Box 17000 Kingston, Ontario 613-541-6000 # 6567 ASG Login No:
Site:
Client No:
Samples Received:
Date of analysis:
Method No:
Date Reported:
Page:

RESULTS OF pH ANALYSIS

Sample I.D.	рН
09-50032	7.09

^{*} Averaged result of duplicates

	1
Sample I.D.	рН
Control	7.04
Control Target	7.00

12 Verite Ave

Dept. of Chem. / Chem. Eng., RMC P.O. Box 17000, Stn. Forces Kingston, Ontario K7K 7B4 (613) 541-6000 ext 6567 Fax: (613) 541-6596 ASG Login No: 19249

Site: Dye-M Client No: 09-028 Samples Received: 12-Jun-09 Date of analysis: 13-Jun-09 Method No: ASG 021 Date Reported: 13-Jun-09

Sheet: 1 of 1

RESULTS OF MERCURY IN WATER ANALYSIS

Sample I.D.	Unit	Mercury [^]
09-50032*	μg/L	< 0.4

^{*}Results of duplicate analysis.

Sample I.D.	Unit	Mercury [^]
Duplicate ; 09-50032*	μg/L	< 0.4 ; < 0.4
Blank	μg/L	< 0.4
Control Target	μg/L	4.0
Control Sample	μg/L	4.7

ASU#	11963		Report ID:	Dye-M W10				
Client:	ASG 19249		Date Submitted:	12-Jun-09				
			Date tested:	14-Jun-09				
Site:	DYE-M		Date:	14-Jun-09				
	09-028		Matrix:	Water				
Preliminary Report of A	nalysis							
Total Metals	Results in mg/L							
SAMPLE	Cu	Ni	Со	Cd	Pb	Zn	Cr	As
09-50032	-	-	-	-	-	0.111	0.028	< 0.003
Blank	-	-	-	-	-	< 0.010	< 0.005	< 0.003
Control	-	-	-	-	-	2.9	0.80	0.80
Control Target	-	-	-	-	-	3.0	0.80	0.80
Dissolved Metals								
SAMPLE	Cu	Ni	Со	Cd	Pb	Zn	Cr	As
09-50032	0.017	<0.005	<0.003	<0.001	< 0.010	-	-	-
Blank	<0.005	< 0.010	< 0.003	<0.001	< 0.010	-	-	-
Control	1.51	1.54	1.50	0.75	7.61	-	-	-
Control Target	1.60	1.60	1.60	0.80	8.00	-	-	-

[^] Acid digestion performed.

[#] Reported at 0.4 µg/L detection limit.

ASU#	11970		Report ID:	Dye-M W14
Client:	ASG 19265		Date Submitted:	15-Jun-09
			Date tested:	18-Jun-09
Site:	DYE-M		Date:	18-Jun-09
	09-033		Matrix:	Water
Preliminary Report of An	alysis			
Results in mg/L				
SAMPLE	Total Cr	Dissolved Cr		
09-50049	0.130	< 0.005	*	
09-50050	0.134	< 0.005		
09-50051	0.129	< 0.005		
Blank	< 0.005	< 0.005		
Control	0.83	0.83		
Control Target	0.80	0.80		
09-50049	0.135	< 0.005		
09-50049	0.125	< 0.005		

12 Verite Ave

Dept of Chem/Chem Eng RMC, PO Box 17000 Kingston, Ontario 613-541-6000 # 6567 ASG Login No: 19290 Site: DYE-M

Client No: 09-048
Samples Received: 22-Jun-09
Date of analysis: 24-Jun-09
Method No: ASG 037
Date Reported: 24-Jun-09
Page: 1 of 1

RESULTS OF pH ANALYSIS

Sample I.D.	pН
09-50055*	6.62

^{*} Averaged result of duplicates

Sample I.D.	pН
09-50055*; Duplicate	6.62 ; 6.62
Control	7.01
Control Target	7.00

ASU#	11991		Report ID:	Dye-M W16					
Client:	ASG 19290		Date Submitted:	22-Jun-09					
			Date tested:	25-Jun-09					
Site:	DYE-M		Date:	25-Jun-09					
	09-048		Matrix:	Water					
Preliminary Report of A	nalysis								
T-4-1M-4-1-	D 1: /r								
Total Metals	Results in mg/L								
SAMPLE	Cu	Ni	Co	Cd	Pb	Zn	Cr	As	
09-50055	-	-	-	-	-	0.087	0.042	< 0.003	*
Blank	-	-	-	-	-	< 0.010	< 0.005	< 0.003	
Control	-	_	-	-	_	3.2	0.91	0.83	
Control Target	-	-	-	-	-	3.0	0.80	0.80	
09-50055	-	-	-	-	-	0.086	0.041	< 0.003	
09-50055	-	-	-	-	-	0.088	0.043	< 0.003	
Dissolved Metals									
SAMPLE	Cu	Ni	Co	Cd	Pb	Zn	Cr	As	
09-50055	< 0.005	< 0.005	< 0.003	< 0.001	< 0.010	-	-	-	*
Blank	< 0.005	< 0.010	< 0.003	<0.001	< 0.010	-	-	-	
Control	1.71	1.70	1.68	0.83	8.47	-	-	-	
Control Target	1.60	1.60	1.60	0.80	8.00	-	-	-	
09-50055	<0.005	< 0.005	< 0.003	< 0.001	< 0.010	-	-	-	
09-50055	< 0.005	< 0.005	< 0.003	< 0.001	< 0.010	-	-	-	

12 Verite Ave

Dept. of Chem. / Chem. Eng., RMC P.O. Box 17000, Stn. Forces Kingston, Ontario K7K 7B4 (613) 541-6000 ext 6567 Fax: (613) 541-6596 ASG Login No: 19290

Site: Dye-M Client No: 09-048 Samples Received: 22-Jun-09 Date of analysis: 23-Jun-09 Method No: ASG 021 Date Reported: 24-Jun-09 Sheet: 1 of 1

RESULTS OF MERCURY IN WATER ANALYSIS

Sample I.D.	Unit	Mercury [^]
09-50055*	μg/L	< 0.4

^{*}Results of duplicate analysis.

Sample I.D.	Unit	Mercury [^]
Duplicate ; 09-50055*	μg/L	< 0.4 ; < 0.4
Blank	μg/L	< 0.4
Control Target	μg/L	4.0
Control Sample	ua/L	3.9

[^] Acid digestion performed.

[#] Reported at 0.4 µg/L detection limit.

12 Verite Ave
Dept. of Chem. / Chem. Eng., RMC
P.O. Box 17000, Stn. Forces
Kingston, Ontario K7K 7B4
(613) 541-6000 ext 6567
Fax: (613) 541-6596

ASG Login No: 19290 Site: Dye-M Client No: 09-048 Samples Received: 22-Jun-09 Date of analysis: 24-Jun-09 Method No: ASG 015 Date Reported: 25-Jun-09 Sheet No: 1 of 1

RESULTS OF PCB IN WATER ANALYSIS

Sample Type **	Sample I.D.	Unit	Aroclor 1248	Aroclor 1254	Aroclor 1260
W	50055*	μg/L	< 3.0	< 3.0	< 3.0

^{*} Average result of Duplicate

LABORATORY QA/QC

Blank	μg/L	< 3.0	< 3.0	< 3.0
Duplicate; 50055*	μg/L	< 3.0 ; < 3.0	< 3.0 ; < 3.0	< 3.0 ; < 3.0
Control Sample	μg/L	< 3.0	< 3.0	11
Control Sample Target	μg/L	< 3.0	< 3.0	15

^{**} S = Soil , C = Concrete , PC = Paint Chip , SW = Swab , P = Plant , W = Water

All results corrected for the recovery of the surrogate decachlorobiphenyl

ASU#	11991	Report ID:	Dye-M W15
Client:	ASG 19290	Date Submitted:	22-Jun-09
		Date tested:	22-Jun-09
Site:	DYE-M	Date:	23-Jun-09
	09-048	Matrix:	water
Preliminary Repor	rt of Analysis		
Sample	Oil & Grease		
	mg/L		
09-50052	<2.0		
09-50055	<2.0		
Blank	<2.0		
Control	14.9		
Control Target	16.1		_

> 12 Verite Ave Dept. of Chem. / Chem. Eng., RMC P.O. Box 17000, Stn. Forces Kingston, Ontario K7K 7B4

(613) 541-6000 ext 6567 Fax: (613) 541-6596

ASG Login No: 19303 Site: Dye-M

Client No: 09-058 Samples Received: 24-Jun-09 Date of analysis: 25-Jun-09

Method No: ASG 021
Date Reported: 25-Jun-09 Sheet: 1 of 1

RESULTS OF MERCURY IN WATER ANALYSIS

Sample I.D.	Unit	Mercury [^]
09-50053	μg/L	< 0.4
09-50054	μg/L	< 0.4
09-50067*	μg/L	< 0.4

^{*}Results of duplicate analysis.
^ Acid digestion performed.

Sample I.D.	Unit	Mercury [^]
Duplicate ; 09-50067*	μg/L	< 0.4 ; < 0.4
Blank	μg/L	< 0.4
Control Target	μg/L	4.0
Control Sample	μg/L	4.0

[#] Reported at 0.4 µg/L detection limit.

Client:

ESG

12 Verite Ave Dept. of Chem. / Chem. Eng., RMC P.O. Box 17000, Stn. Forces Kingston, Ontario K7K 7B4 (613) 541-6000 ext 6567 Fax: (613) 541-6596

ASG Login No: 19299

Site: DYE-M Client No: 09-058 Samples Received: 24-Jun-09 Date of analysis: 26-Jun-09 Method No: ASG 037
Date Reported: 26-Jun-09 Page: 1 of 1

RESULTS OF pH ANALYSIS

Sample I.D.	рН
09-50053	7.39
09-50054	7.35
09-50066*	7.31
09-50067	7.36

^{*} Averaged result of duplicates

Sample I.D.	рН		
09-50066*; Duplicate	7.31 ; 7.31		
Control	7.01		
Control Target	7.00		

ASU#	11999		Report ID:	Dye-M W17					
Client:	ASG 19299		Date Submitted:	24-Jun-09					
			Date tested:	25-Jun-09					
Site:	DYE-M		Date:	25-Jun-09					
	09-058		Matrix:	Water					
Preliminary Report of A	nalysis								
Total Metals	Results in mg/L								
SAMPLE	Cu	Ni	Со	Cd	Pb	Zn	Cr	As	
09-50053	-		_	_	_	2.4	< 0.005	< 0.003	
09-50054	-	-	-	-	-	2.4	< 0.005	< 0.003	
09-50066	-	-	-	-	-	2.5	< 0.005	< 0.003	
09-50067	-	-	-	-	-	2.2	< 0.005	< 0.003	*
Blank	-		-	-		< 0.010	< 0.005	< 0.003	
Diank	_			_		·0.010	×0.003	·0.003	
Control	-	-	-	-	-	3.2	0.91	0.83	
Control Target	-	-	=	-	-	3.0	0.80	0.80	
09-50067	_		_	_		2.2	< 0.005	< 0.003	
09-50067	-	-	-	-	-	2.2	< 0.005	< 0.003	
Dissolved Metals									
Dissolved Metals									
SAMPLE	Cu	Ni	Co	Cd	Pb	Zn	Cr	As	
00.50052	0.006	<0.005	0.002	0.001	<0.010				
09-50053 09-50054	0.006 0.011	<0.005 <0.005	0.003	0.001 0.001	<0.010 <0.010	-	-	-	
09-50066	0.011	<0.005	<0.003	0.001	<0.010	-	-	-	
09-50067	<0.005	<0.005	<0.003	0.002	<0.010	-	-	-	*
0, 30007	3.003	0.005	3.003	0.302	0.010				
Blank	< 0.005	< 0.010	< 0.003	< 0.001	< 0.010	-	-	-	
Control	1.71	1.70	1.68	0.83	8.47				
Control Target	1.60	1.70	1.60	0.83	8.47	-	-	-	
Control ranget	1.00	1.00	1.00	0.60	0.00	-	-	-	
09-50067	< 0.005	< 0.005	< 0.003	0.002	< 0.010	-	•	-	
09-50067	< 0.005	< 0.005	< 0.003	0.002	< 0.010	-	-	-	

A CITI //	11000	D / ID	D M W10
ASU#	11999	Report ID:	Dye-M W18
Client:	ASG 19299	Date Submitted:	24-Jun-09
		Date tested:	25-Jun-09
Site:	DYE-M	Date:	26-Jun-09
	09-058	Matrix:	water
Preliminary Repo	rt of Analysis		
Sample	Oil & Grease		
	mg/L		
09-50053	2.0		
09-50054	4.8		
09-50066	6.1		
09-50067	<2.0		
Blank	<2.0		
Control	16.8		
Control Target	16.1		

Client: ESG

12 Verite Ave
Dept. of Chem. / Chem. Eng., RMC
P.O. Box 17000, Stn. Forces
Kingston, Ontario K7K 7B4
(613) 541-6000 ext 6567
Fax: (613) 541-6596

ASG Login No: 19299
Site: Dye-M
Client No: 09-058
Samples Received: 24-Jun-09
Date of analysis: 24-Jun-09
Method No: ASG 015
Date Reported: 25-Jun-09
Sheet No: 1 of 1

RESULTS OF PCB IN WATER ANALYSIS

Sample Type **	Sample I.D.	Unit	Aroclor 1248	Aroclor 1254	Aroclor 1260
W	50053	μg/L	< 3.0	< 3.0	< 3.0
W	50054	μg/L	< 3.0	< 3.0	< 3.0
W	50067	μg/L	< 3.0	< 3.0	< 3.0

LABORATORY QA/QC

Blank	μg/L	< 3.0	< 3.0	< 3.0
Control Sampl	e μg/L	< 3.0	< 3.0	11
Control Sample Ta	arget µg/L	< 3.0	< 3.0	15

^{**} S = Soil , C = Concrete , PC = Paint Chip , SW = Swab , P = Plant , W = Water

All results corrected for the recovery of the surrogate decachlorobiphenyl

All le	suits corrected for the recovery	or the surrogate decachioropip	nenyi	
ASU#	12018		Report ID:	Dye-M W23
Client:	ASG 19368		Date Submitted:	2-Jul-09
			Date tested:	3-Jul-09
Site:	DYE-M		Date:	3-Jul-09
	09-071		Matrix:	Water
Preliminary Report of An	alysis			
Results in mg/L				
SAMPLE	Total Zn	Dissolved Zn		
09-50088	2.2	1.6		
09-50089	2.1	1.6	*	
Blank	<0.010	<0.010		
Control	2.8	2.8		
Control Target	3.0	3.0		
09-50089	2.1	1.6		
09-50089	2.1	1.6		

ASU#	12018	Report ID:	Dye-M W22
Client:	ASG 19368	Date Submitted:	2-Jul-09
		Date tested:	3-Jul-09
Site:	DYE-M	Date:	3-Jul-09
	09-071	Matrix:	water
Preliminary Repor	rt of Analysis		
Sample	Oil & Grease		
	mg/L		
09-50088	<2.0		
09-50089	<2.0		
09-50090	<2.0		
09-50091	5.9		
09-50092	broken sample		
09-50093	10.1		
09-50094	10.4		
09-50095	<2.0		
Blank	<2.0		
Control	17.2		
Control Target	16.1		

Client: ESG

12 Verite Ave

Dept. of Chem. / Chem. Eng., RMC P.O. Box 17000, Stn. Forces Kingston, Ontario K7K 7B4 (613) 541-6000 ext 6567

Fax: (613) 541-6596

ASG Login No: 19368

Site: DYE-M Client No: 09-071

Samples Received: 2-Jul-09 Date of analysis: 2-Jul-09 Method No: ASG 037

Date Reported: 3-Jul-09 Page: 1 of 1

RESULTS OF pH ANALYSIS

Sample I.D.	pН
09-50088	7.04
09-50089	7.28
09-50090*	5.42
09-50091	4.96
09-50092	6.15
09-50093	6.20
09-50094	5.84
09-50095	6.85

^{*} Averaged result of duplicates

Sample I.D.	pН
09-50090*; Duplicate	5.42 ; 5.41
Control	7.00
Control Target	7.00

APPENDIX B PHOTOGRAPHS

Photo 1 (DSCN1562): Samples 09-50020 and 09-50021 collected from ponded water in the Northeast Corner of the Landfarm. Picture was taken facing south.

Photo 2 (DSCN1592): Sample 09-50032 collecting a wastewater sample from the Upper Site Tier II Facility. Picture was taken facing southeast.

 $Photo\ 3\ (DSCN1640): Sample\ 09-50049\ collecting\ a\ was tewater\ sample\ from\ ponded\ water\ in\ the\ northeast\ corner\ of\ the\ landfarm.\ Photo\ was\ taken\ facing\ northwest.$

Photo 4 (DSCN1641): Samples 09-50050 and 09-50051 collecting a wastewater sample from ponded water in the northeast corner of the landfarm. Photo was taken facing west.

Photo 5 (DSC01133): Sample 09-50053 collecting a wastewater sample from ponded water in the northwest corner of the Upper Site . Photo taken facing east.

Photo 6 (DCS01155): Sample 09-50054 collecting a wastewater sample from ponded water in the northwest corner of the Upper Site. Photo taken facing south.

Photo 7 (DSC01124): Sample 09-50052 wastewater sampling at Lower Site W-22 Tankfarm.

Photo 8 (DSCN1657): Sample 09-50055 collecting a wastewater sample from ponded water in the north corner of the Lower Site Tank Farm. Photo was taken facing northeast.

Photo 9 (DSCN1658): Sample 09-50055 collecting a wastewater sample from ponded water in the north corner of the Lower Site Tank Farm. Photo was taken facing north.

Photo 10 (DSCN1713): Sample 09-50066 and 09-50067 collecting a wastewater sample from the Upper Site Non Hazardous Waste Landfill. Picture was taken facing east.

Photo 11 (IMG_0724): Sample 09-50088 collecting a wastewater sample from the Upper Site Non Hazardous Waste Landfill. Picture was taken facing south east.

Photo 12 (IMG_0731): Sample 09-50089 collecting a wastewater sample from the Upper Site Non Hazardous Waste Landfill. Picture was taken facing south east.

Photo 13 (DSC01360): Sample 09-50090 and 09-50091 collecting a wastewater sample at Lower Site Holding Basin 6. Picture was taken facing north.

Photo 14 (DSC01361): Sample 09-50092 collecting a wastewater sample at Lower Site Holding Basin 5. Picture was taken facing east.

Photo 15 (DSC03165): Sample 09-50093 collecting a wastewater sample at Lower Site Holding Basin 4. Picture was taken facing east.

Photo 16 (DSC01368): Sample 09-50094 collecting a wastewater sample at Lower Site Holding Basin 3. Picture was taken facing north.

Photo 16 (DSC01371): Sample 09-50095 collecting a wastewater sample at Lower Site Holding Basin 2. Picture was taken facing east.

Tricia Cammaart Environmental Sciences Group The Royal Military College of Canada PO Box 17000 Stn. Forces Kingston, ON K7K 7B4 TAL SCIENCES GROWNOWN CONTROL OF THE PROPERTY OF THE PROPERTY

Douglas Craig Environmental Officer Defence Construction Canada DEW Line Cleanup PMO 350 Albert Street, Suite 1720 Ottawa ON K1A 0K3

Friday, August 14, 2009

RE: July 2009 Monthly Report for Water Use License Number: IBR-DYE0914

The following results of the Monitoring Program (MP) and/or Water Use License are provided by the Environmental Sciences Group to meet the requirements of the above-noted license for *DYE-M* (Cape Dyer).

1. SEWAGE EFFLUENT

A sewage lagoon was constructed at DYE-M in September of 2004. The Water Use License and MP require that samples from treated sewage lagoon effluent at the point of discharge to the receiving water be collected prior to each discharge event.

Three sewage lagoon samples were collected and analyzed from DYE-M in July, 2009 (See table).

Sample Number	Sample Location	GPS Coordinates	Sampling Date
09-50127	South Cell of Sewage	0563390E	July 11, 2009
	Lagoon	7386898N	
09-50139	South Cell of Sewage	0563390E	July 15, 2009
	Lagoon	7386898N	
09-50182	Potential Spill Area East of	0563404E	July 29, 2009
	Northern most cell of Sewage	7386970N	
	Lagoon		

A summary of the results for the parameters tested is provided below. Laboratory results and photographs are provided in Appendices A and B, respectively.

LOCATION: SOUTH CELL OF SEWAGE LAGOON

GPS COORDINATES: 0563390E 7386898N

Parameter	Allowable Maximum Average Concentration	Units	09-50127 (July 11, 2009)
pН	6.0 to 9.0	pH units	9.47
Oil & Grease	None Visible	-	None Visible
Total Suspended Solids (TSS)	180	mg/L	80
BOD	120	mg/L	34
Faecal Coliforms	10,000	CFU/dL	N/A
Total Coliforms	-	CFU/ 100 mL	N/A

LOCATION: SOUTH CELL OF SEWAGE LAGOON

GPS COORDINATES: 0563390E 7386898N

Parameter	Allowable Maximum Average Concentration	Units	09-50139 (July 15, 2009)
рН	6.0 to 9.0	pH units	N/A
Oil & Grease	None Visible	-	None Visible
Total Suspended Solids (TSS)	180	mg/L	N/A
BOD	120	mg/L	N/A
Faecal Coliforms	10,000	CFU/dL	<10
Total Coliforms	-	CFU/ 100 mL	<10

The water inside the sewage lagoon is outside the normal range for pH. On August 4, 2009 acid was added to the water. A sample was collected, 09-50192, and analyzed for pH in the field. The result was 8.78. The water was discharged to land in accordance to the water use license, to the discharge location approved by the INAC Environmental Inspector.

LOCATION: POTENTIAL SPILL AREA EAST OF NORTHERN MOST CELL OF SEWAGE LAGOON

GPS COORDINATES: 0563404E 7386970N

Parameter	Allowable Maximum Average Concentration	Units	09-50139 (July 15, 2009)
рН	6.0 to 9.0	pH units	7.48
Oil & Grease	None Visible	-	None Visible
Total Suspended Solids (TSS)	180	mg/L	325
BOD	120	mg/L	119
Faecal Coliforms	10,000	CFU/dL	>200 000
Total Coliforms	-	CFU/ 100 mL	>200 000

The potential spill area east of northern most cell of the sewage lagoon exceeds water discharge criteria for TSS, Faecal Coliforms and Total Coliforms. The spill was attributed to leakage from the new northernmost cell of the sewage lagoon. The contents of this cell were pumped into the empty southernmost cell. The spill area was not cleaned as most of it had already evaporated.

We trust that the information provided meets current requirements. Please contact the undersigned if you have any questions or concerns.

Sincerely,

Tricia Cammaart

Environmental Sciences Group

cc: Eva Schulz (UMA)

Daniela Loock, Kat White, Anna Charbonneau, Ryan Vettorazzo, Cam Ollson,

Andrea Ellis, (ESG)

Tricia Cammaart

APPENDIX A LABORATORY RESULTS

DYE-M, Cape Dyer

DATE REPORTED: 20-Jul-09

Caduceon Environmental Laboratories

613-526-1244 2378 Holly Lane Ottawa, Ontario, K1V 7P1 Tel: 613-526-0123

Fax:

JOB/PROJECT NO.:

Final Report

REPORT No. B09-21031

Environmental Sciences Group P.O. Box 17000 Station Forces

Kingston, Ontario, K7K 7B4

Report To:

Attention: Cam Ollson DATE RECEIVED: 13-Jul-09 P.O. NUMBER: 09-095

SAMPLE MATRIX: Waste Water WATERWORKS NO.

C.O.C.: C17550

CERTIFICATE OF ANALYSIS

Parameter Units M.D.L.

Reference Method Date/Site Analyzed

Client I.D.: 50127 Sample I.D.: B09-21031-1 Date Collected: 11-Jul-09

BOD mg/L 3 SM 5210 15-Jul-09/O 34

Total Suspended Solids mg/L 3 SM 2540 15-Jul-09/O 80

pH pH Units EPA 150.1 14-Jul-09/O 9.47

Page 1 of 1.

M.D.L. = Method Detection Limit Lab Manager - Ottawa District Greg Clarkin , BSc., C. Chem

Site Analyzed=K-Kingston,W-Windsor,O-Ottawa,P-Peterborough,M-Moncton

Client: ESG

12 Verite Ave

Dept. of Chem. / Chem. Eng., RMC P.O. Box 17000, Stn. Forces Kingston, Ontario K7K 7B4 (613) 541-6000 ext 6567 Fax: (613) 541-6596 ASG Login No: 19454 Site: Dye-M

Client No: 09-110
Samples Received: 16-Jul-09
Date of analysis: 16-Jul-09
Date Reported: 17-Jul-09
Sheet: 1 of 1

RESULTS OF MICROBIOLOGICAL ANALYSIS

	Method: ASG 036	Method: ASG 036	Method: ASG 036	Method: ASG 044
Sample Identification	Total			Fecal
	Coliforms	E. coli	Background	Coliforms
	(CFU/100 mL)	(CFU/100 mL)	(CFU/100 mL)	(CFU/100 mL)
50139	< 10	< 10	< 10	< 10

LABORATORY QA/QC

Sample Identification	Method: ASG 036 Total	Method: ASG 036	Method: ASG 036	Method: ASG 044 Fecal
	Coliforms	E. coli	Background	Coliforms
	(CFU/100 mL)	(CFU/100 mL)	(CFU/100 mL)	(CFU/100 mL)
Blank	0	0	0	0
Control Sample	21	21	0	14
Control Sample Target	19	19	0	19

^{*} Duplicate analysis completed on dilution not required

Client: ESG

12 Verite Ave Dept. of Chem. / Chem. Eng., RMC P.O. Box 17000, Stn. Forces Kingston, Ontario K7K 7B4 (613) 541-6000 ext 6567

Fax: (613) 541-6596

ASG Login No: 19541

Site: Dye-M Client Login No: 09-169 Samples Received: 30-Jul-09 Date of analysis: 5-Aug-09 Method No: ASG 042

Date Reported: 6-Aug-09
Page: 1 of

RESULTS OF BOD ANALYSIS

Sample I.D.	Unit	BOD
09-50182*	mg/L	119

^{*}Averaged result of duplicates

Sample I.D.	Unit	BOD
Duplicate ; 09-50182*	mg/L	117 ; 120
Blank	mg/L	< 1
Control	mg/L	145
Control Target	mg/L	165

Client : ESG 12 Verite Ave

12 Verite AVE
Dept. of Chem. / Chem. Eng., RMC
P.O. Box 17000, Stn. Forces
Kingston, Ontario K7K 7B4
(613) 541-6000 ext 6567
Fax: (613) 541-6596

ASG Login No: 19541 Site: Dye-M Client Login No: 09-169 Samples Received: 30-Jul-09 Date of analysis: 4-Aug-09 Method No: ASG 039 Date Reported: 6-Aug-09 Sheet: 1 of 1

RESULTS OF TOTAL SUSPENDED SOLIDS ANALYSIS

Sample I.D.	Sample Type^	Unit	Total Suspended Solids
09-50182*	SE	mg/L	325

^{*}Averaged result of duplicates.

LABORATORY QA/QC

Blank	Control	mg/L	<1
Control	Control	mg/L	210
Control Target	Control	mg/L	200
09-50182* ; Duplicate	SE; SE	mg/L	320 ; 330

[^]SW =Surface Water, SI = Sewage Influent SE = Sewage Effluent

ESG Client:

12 Verite Ave

Dept of Chem/Chem Eng RMC, PO Box 17000 Kingston, Ontario 613-541-6000 # 6567

ASG Login No: 19541

Site: Dye-M Client No: 09-169

Samples Received: 30-Jul-09 Date of analysis: 4-Aug-09 Method No: ASG 037 Date Reported: 4-Aug-09

Page: 1 of 1

RESULTS OF pH ANALYSIS

Sample I.D.	pН
50182*	7.48

^{*} Averaged result of duplicates

Sample I.D.	рН
Control	7.01
Control Target	7.00
Duplicate ; 50182*	7.48 ; 7.48

Client : ESG

12 Verite Ave Dept. of Chem. / Chem. Eng., RMC P.O. Box 17000, Stn. Forces Kingston, Ontario K7K 7B4

(613) 541-6000 ext 6567 Fax: (613) 541-6596

ASG Login No: 19541 Site: DYE-M

Client No: 09-169 Samples Received: 30-Jul-09 Date of analysis: 30-Jul-09 Date Reported: 31-Jul-09 Sheet: 1 of 1

RESULTS OF MICROBIOLOGICAL ANALYSIS

	Method: ASG 036	Method: ASG 036	Method: ASG 036	Method: ASG 044
Sample Identification	Total			Fecal
	Coliforms	E. coli	Background	Coliforms
	(CFU/100 mL)	(CFU/100 mL)	(CFU/100 mL)	(CFU/100 mL)
50182*	> 200 000	46 000	6 000	> 200 000

Sample Identification	Method: ASG 036 Total	Method: ASG 036	Method: ASG 036	Method: ASG 044 Fecal
	Coliforms	E. coli	Background	Coliforms
	(CFU/100 mL)	(CFU/100 mL)	(CFU/100 mL)	(CFU/100 mL)
Blank	0	0	0	0
Control Sample	22	22	0	28
Control Sample Target	22	22	0	22

^{*} Duplicate analysis completed on dilution not required
**Significant background colonies (> 200 per dilution) could potentially inhibit the growth of target colonies.

APPENDIX B PHOTOGRAPHS

Photo 1 (DSC01532): Sample 09-50127 DYE-M lower site sewage lagoon southern cell. Photo was taken

facing north.

Photo 2 (DSC01612): Sample 09-50139 DYE-M lower site sewage lagoon southern cell. Photo was taken facing north.

Photo 3 (DSC01714): Sample 09-50182 sampling from west edge of pond, east of northern most cell of sewage lagoon.

Photo 4 (DSC01715): Sample 09-50182 sampling from west edge of pond, east of northern most cell of sewage lagoon.

Tricia Cammaart Environmental Sciences Group The Royal Military College of Canada PO Box 17000 Stn. Forces Kingston, ON K7K 7B4

SCIENCES GROOM SESG. dro

Douglas Craig Environmental Officer Defence Construction Canada DEW Line Cleanup PMO 350 Albert Street, Suite 1720 Ottawa ON K1A 0K3

Friday, August 14, 2009

RE: Analytical Results for Wastewater Samples Collected at DYE-M in July, 2009

The following report summarizes results of the analysis of wastewater samples as per the DYE-M (Cape Dyer) DEW Line Cleanup Project (DLCU) Specifications.

The DYE-M specifications require that "wash water, melt water collection, rinse water resulting from the cleaning of fuel tanks and pipelines, and/or any other liquid effluent stream" meet the following guidelines prior to their discharge to land (01560.4.1):

Parameter	Maximum Allowable Concentration	Units
pН	6-9	pH units
Total arsenic (As)	0.100	mg/L
Dissolved cadmium (Cd)	0.010	mg/L
Total chromium (Cr)	0.100	mg/L
Dissolved cobalt (Co)	0.050	mg/L
Dissolved copper (Cu)	0.200	mg/L
Dissolved lead (Pb)	0.050	mg/L
Total mercury (Hg)	0.6	μg/L
Dissolved nickel (Ni)	0.200	mg/L
Total zinc (Zn)	1.000	mg/L
Oil & grease	5 mg/L and None visible	mg/L
PCBs	0.050*	mg/L
	0.005**	
Phenols	0.020	mg/L

^{*}Discharge to barren land, **Discharge to vegetated land

Phenols

The wastewater samples collected by ESG at DYE-M in July, 2009 were not analyzed for phenols but they were analyzed for oil and grease. Research conducted by ESG¹ has determined that a) no federal, territorial or provincial criteria exist for the discharge of

¹ Environmental Sciences Group. DEW Line Clean Up Project – Phenols in Wastewater. June, 2007.

wastewater containing phenols to land at a minimum distance of 30-m from natural drainage courses b) the maximum concentration of phenols in DLCU wastewater to date (2.44 mg/L) is below the LC₅₀ for freshwater fish and crustaceans and below the oral and dermal LD₅₀s for rats and rodents and c) phenols in excess of the maximum allowable concentration (MAC) have historically co-occurred with a visible oil & grease sheen and/or with an exceedance of the MAC for oil & grease. This information, and a subsequent decision to not test for phenols, has been presented to the NWB. To date, verbal agreement from the NWB has been received, but the project is awaiting written confirmation of the decision to suspend testing for phenols.

WASTEWATER SAMPLES

Twenty seven wastewater samples were collected at DYE-M and analyzed in July 2009. A summary of the details of these results follows.

Sample Number	Sample Location	GPS Coordinates	Sampling Date
09-50112	Upper Site Non-Hazardous Waste Landfill – North Edge	0572147E 7395152N	July 7, 2009
09-50113	Upper Site Non-Hazardous Waste Landfill – Western Edge	0572165E 7395185N	July 7, 2009
09-50142	Upper Site Non-Hazardous Waste Landfill – Western Edge	0572145E 7395151N	July 17, 2009
09-50143	Upper Site Non-Hazardous Waste Landfill – Northern Edge	0572176E 7395182N	July 17, 2009
09-50168	Upper Site Non-Hazardous Waste Landfill – Northern Edge	0572176E 7395185N	July 28, 2009
09-50169	Upper Site Non-Hazardous Waste Landfill – Western Edge	0572145E 7395151N	July 28, 2009
09-50110	Lower Site Holding Basin 1 – Northeast Corner	0563035E 7387621N	July 7, 2009
09-50111	Lower Site Holding Basin 1 – Northeast Corner	0563035E 7387621N	July 7, 2009
09-50128	Lower Site Holding Basin 2 – Northeast Corner	0563043E 7387627N	July 12, 2009
09-50126	Lower Site Holding Basin 3 – Northeast Side	0563043E 7387632N	July 11, 2009
09-50155	Lower Site Holding Basin 3 – Northeast Side	0563043E 7387632N	July 22, 2009
09-50129	Lower Site Holding Basin 4 – Southside in Middle of Basin	0563043E 7387627N	July 15, 2009
09-50154	Lower Site Holding Basin 4 – Southside along middle of basin	0563043E 7387627N	July 21, 2009
09-50165	Lower Site Holding Basin 4 – Southside along middle of basin	0563043E 7387627N	July 24, 2009
09-50105	9-50105 Lower Site Holding Basin 5 – 0563064E Northeast Corner 7387596N		July 3, 2009
09-50140	Lower Site Holding Basin 5 – Southern Edge	0563039E 7387588N	July 18, 2009

09-50141	Lower Site Holding Basin 5 – Southern Edge	0563039E 7387588N	July 18, 2009
09-50166	Lower Site Holding Basin 5 – Southside along middle of basin	0563039E 7387588N	July 25, 2009
09-50183	Lower Site Holding Basin 5 – Southern Edge	0563039E 7387588N	July 30, 2009
09-50124	Lower Site Holding Basin 6 – Southwest Corner	0563062E 7387587N	July 11, 2009
09-50153	Lower Site Holding Basin 6 – Southwest side	0563062E 7387587N	July 21, 2009
09-50144	Lower Site Tote 1	No GPS coordinates Tote may be moved	July 18, 2009
09-50179	Lower Site Tote 1	No GPS coordinates Tote may be moved	July 29, 2009
09-50145	Lower Site Tote 2	No GPS coordinates Tote may be moved	July 18, 2009
09-50146	Lower Site Tote 3	No GPS coordinates Tote may be moved	July 18, 2009
09-50147	Lower Site Tote 4	No GPS coordinates Tote may be moved	July 18, 2009
09-50167	Mobile Lab Waste Water Tote	0563249E 7386820N	July 25, 2009

A summary of the results for the parameters tested is provided below. Laboratory results and photographs are provided in Appendices A and B, respectively.

LOCATION: UPPER SITE NON-HAZARDOUS WASTE LANDFILL GPS COORDINATES: 0572147E 7395149N

Parameter	Maximum Allowable Concentration	Units	Sample # 09-50112
pН	6-9	pH units	7.68
Total Arsenic	0.100	mg/L	N/A
Dissolved Cadmium	0.010	mg/L	N/A
Total Chromium	0.100	mg/L	N/A
Dissolved Cobalt	0.050	mg/L	N/A
Dissolved Copper	0.200	mg/L	N/A
Dissolved Lead	0.050	mg/L	N/A
Total Mercury	0.6	μg/L	N/A
Dissolved Nickel	0.200	mg/L	N/A
Total Zinc	1.0	mg/L	1.8
Oil & Grease	None Visible and 5 mg/L	mg/L	None Visible, N/A
PCBs	50* 5**	μg/L	N/A
Phenols	20	μg/L	N/A

^{*}Discharge to barren land, **Discharge to vegetated land

LOCATION: UPPER SITE NON-HAZARDOUS WASTE LANDFILL

GPS COORDINATES: 0572165E 7395185N

Parameter	Maximum Allowable Concentration	Units	Sample # 09-50113
рН	6-9	pH units	7.61
Total Arsenic	0.100	mg/L	N/A
Dissolved Cadmium	0.010	mg/L	N/A
Total Chromium	0.100	mg/L	N/A
Dissolved Cobalt	0.050	mg/L	N/A
Dissolved Copper	0.200	mg/L	N/A
Dissolved Lead	0.050	mg/L	N/A
Total Mercury	0.6	μg/L	N/A
Dissolved Nickel	0.200	mg/L	N/A
Total Zinc	1.0	mg/L	1.9
Oil & Grease	None Visible and 5 mg/L	mg/L	None Visible, N/A
PCBs	50* 5**	μg/L	N/A
Phenols	20	μg/L	N/A

^{*}Discharge to barren land, **Discharge to vegetated land

LOCATION: UPPER SITE NON-HAZARDOUS WASTE LANDFILL

GPS COORDINATES: 0572145E 7395151N

Parameter	Maximum Allowable Concentration	Units	Sample # 09-50142
pН	6-9	pH units	7.45
Total Arsenic	0.100	mg/L	N/A
Dissolved Cadmium	0.010	mg/L	N/A
Total Chromium	0.100	mg/L	N/A
Dissolved Cobalt	0.050	mg/L	N/A
Dissolved Copper	0.200	mg/L	N/A
Dissolved Lead	0.050	mg/L	N/A
Total Mercury	0.6	μg/L	N/A
Dissolved Nickel	0.200	mg/L	N/A
Total Zinc	1.0	mg/L	1.9
Oil & Grease	None Visible and 5 mg/L	mg/L	Visible, <2.0
PCBs	50* 5**	$\mu g/L$	N/A
Phenols	20	μg/L	N/A

^{*}Discharge to barren land, **Discharge to vegetated land

LOCATION: UPPER SITE NON-HAZARDOUS WASTE LANDFILL

GPS COORDINATES: 0572176E 7395182N

Parameter	Maximum Allowable Concentration	Units	Sample # 09-50143
pН	6-9	pH units	7.36
Total Arsenic	0.100	mg/L	N/A
Dissolved Cadmium	0.010	mg/L	N/A
Total Chromium	0.100	mg/L	N/A
Dissolved Cobalt	0.050	mg/L	N/A
Dissolved Copper	0.200	mg/L	N/A
Dissolved Lead	0.050	mg/L	N/A
Total Mercury	0.6	μg/L	N/A
Dissolved Nickel	0.200	mg/L	N/A
Total Zinc	1.0	mg/L	1.8
Oil & Grease	None Visible and 5 mg/L	mg/L	Visible, <2.0
PCBs	50* 5**	μg/L	N/A
Phenols	20	μg/L	N/A

^{*}Discharge to barren land, **Discharge to vegetated land

LOCATION: UPPER SITE NON-HAZARDOUS WASTE LANDFILL

GPS COORDINATES: 0572176E 7395185N

Parameter	Maximum Allowable Concentration	Units	Sample # 09-50168
pН	6-9	pH units	9.11
Total Arsenic	0.100	mg/L	N/A
Dissolved Cadmium	0.010	mg/L	N/A
Total Chromium	0.100	mg/L	N/A
Dissolved Cobalt	0.050	mg/L	N/A
Dissolved Copper	0.200	mg/L	N/A
Dissolved Lead	0.050	mg/L	N/A
Total Mercury	0.6	μg/L	N/A
Dissolved Nickel	0.200	mg/L	N/A
Total Zinc	1.0	mg/L	0.44
Oil & Grease	None Visible and 5 mg/L	mg/L	None Visible, N/A
PCBs	50* 5**	μg/L	N/A
Phenols	20	μg/L	N/A

^{*}Discharge to barren land, **Discharge to vegetated land

LOCATION: UPPER SITE NON-HAZARDOUS WASTE LANDFILL

GPS COORDINATES: 0572176E 7395182N

Parameter	Maximum Allowable Concentration	Units	Sample # 09-50169
pН	6-9	pH units	9.16
Total Arsenic	0.100	mg/L	N/A
Dissolved Cadmium	0.010	mg/L	N/A
Total Chromium	0.100	mg/L	N/A
Dissolved Cobalt	0.050	mg/L	N/A
Dissolved Copper	0.200	mg/L	N/A
Dissolved Lead	0.050	mg/L	N/A
Total Mercury	0.6	μg/L	N/A
Dissolved Nickel	0.200	mg/L	N/A
Total Zinc	1.0	mg/L	0.57
Oil & Grease	None Visible and 5 mg/L	mg/L	None Visible, N/A
PCBs	50* 5**	μg/L	N/A
Phenols	20	μg/L	N/A

^{*}Discharge to barren land, **Discharge to vegetated land

As of July 28, 2009 the wastewater at the upper site non hazardous waste landfill met the wastewater discharge criteria (WDC) for zinc but was out of range for pH. A sample was collected, 09-50185, on July 31, 2009 and analyzed in the field for pH. The result was 8.57; the water was discharged to land.

LOCATION: LOWER SITE HOLDING BASIN 1 GPS COORDINATES: 0563035E 7387621N

Parameter	Maximum Allowable Concentration	Units	Sample # 09-50110
pН	6-9	pH units	7.57
Total Arsenic	0.100	mg/L	N/A
Dissolved Cadmium	0.010	mg/L	N/A
Total Chromium	0.100	mg/L	N/A
Dissolved Cobalt	0.050	mg/L	N/A
Dissolved Copper	0.200	mg/L	N/A
Dissolved Lead	0.050	mg/L	N/A
Total Mercury	0.6	μg/L	N/A
Dissolved Nickel	0.200	mg/L	N/A
Total Zinc	1.0	mg/L	N/A
Oil & Grease	None Visible and 5 mg/L	mg/L	Visible, <2.0
PCBs	50* 5**	μg/L	N/A
Phenols	20	μg/L	N/A

^{*}Discharge to barren land, **Discharge to vegetated land

LOCATION: LOWER SITE HOLDING BASIN 1 GPS COORDINATES: 0563035E 7387621N

Parameter	Maximum Allowable Concentration	Units	Sample # 09-50111
pН	6-9	pH units	7.50
Total Arsenic	0.100	mg/L	N/A
Dissolved Cadmium	0.010	mg/L	N/A
Total Chromium	0.100	mg/L	N/A
Dissolved Cobalt	0.050	mg/L	N/A
Dissolved Copper	0.200	mg/L	N/A
Dissolved Lead	0.050	mg/L	N/A
Total Mercury	0.6	μg/L	N/A
Dissolved Nickel	0.200	mg/L	N/A
Total Zinc	1.0	mg/L	N/A
Oil & Grease	None Visible and 5 mg/L	mg/L	Visible, <2.0
PCBs	50* 5**	μg/L	N/A
Phenols	20	μg/L	N/A

^{*}Discharge to barren land, **Discharge to vegetated land

Wastewater at the lower site holding basin 1 was visible for oil and grease. The water was passed through an oil and grease separator to remove the visible sheen and was discharged to land.

LOCATION: LOWER SITE HOLDING BASIN 2 GPS COORDINATES: 0563043E 7387627N

Parameter	Maximum Allowable Concentration	Units	Sample # 09-50128
pН	6-9	pH units	6.97
Total Arsenic	0.100	mg/L	N/A
Dissolved Cadmium	0.010	mg/L	N/A
Total Chromium	0.100	mg/L	N/A
Dissolved Cobalt	0.050	mg/L	N/A
Dissolved Copper	0.200	mg/L	N/A
Dissolved Lead	0.050	mg/L	N/A
Total Mercury	0.6	μg/L	N/A
Dissolved Nickel	0.200	mg/L	N/A
Total Zinc	1.0	mg/L	N/A
Oil & Grease	None Visible and 5 mg/L	mg/L	Visible, 8.4
PCBs	50* 5**	μg/L	N/A
Phenols	20	μg/L	N/A

^{*}Discharge to barren land, **Discharge to vegetated land

Wastewater at the lower site holding basin 2 was visible for oil and grease and above criteria for oil and grease. The water has not been discharged to land. Treatment and additional sampling are in progress.

GPS COORDINATES: 0563043E 7387632N

Parameter	Maximum Allowable Concentration	Units	Sample # 09-50126
pН	6-9	pH units	7.85
Total Arsenic	0.100	mg/L	N/A
Dissolved Cadmium	0.010	mg/L	N/A
Total Chromium	0.100	mg/L	N/A
Dissolved Cobalt	0.050	mg/L	N/A
Dissolved Copper	0.200	mg/L	N/A
Dissolved Lead	0.050	mg/L	N/A
Total Mercury	0.6	μg/L	N/A
Dissolved Nickel	0.200	mg/L	N/A
Total Zinc	1.0	mg/L	N/A
Oil & Grease	None Visible and 5 mg/L	mg/L	None Visible, <1.0
PCBs	50* 5**	μg/L	N/A
Phenols	20	μg/L	N/A

^{*}Discharge to barren land, **Discharge to vegetated land

LOCATION: LOWER SITE HOLDING BASIN 3

GPS COORDINATES: 0563043E 7387632N

Parameter	Maximum Allowable Concentration	Units	Sample # 09-50155
pН	6-9	pH units	6.76
Total Arsenic	0.100	mg/L	< 0.003
Dissolved Cadmium	0.010	mg/L	< 0.001
Total Chromium	0.100	mg/L	< 0.005
Dissolved Cobalt	0.050	mg/L	< 0.003
Dissolved Copper	0.200	mg/L	< 0.005
Dissolved Lead	0.050	mg/L	< 0.010
Total Mercury	0.6	μg/L	< 0.4
Dissolved Nickel	0.200	mg/L	< 0.005
Total Zinc	1.0	mg/L	0.029
Oil & Grease	None Visible and 5 mg/L	mg/L	None Visible, 8.2
PCBs	50* 5**	μg/L	<3.0
Phenols	20	$\mu g/L$	N/A

^{*}Discharge to barren land, **Discharge to vegetated land

Wastewater at the lower site holding basin 3 was above criteria for oil and grease. The water has not been discharged to land. Treatment and additional sampling are in progress.

LOCATION: LOWER SITE HOLDING BASIN 4 GPS COORDINATES: 0563043E 7387627N

Parameter	Maximum Allowable Concentration	Units	Sample # 09-50129
pН	6-9	pH units	6.95
Total Arsenic	0.100	mg/L	N/A
Dissolved Cadmium	0.010	mg/L	N/A
Total Chromium	0.100	mg/L	N/A
Dissolved Cobalt	0.050	mg/L	N/A
Dissolved Copper	0.200	mg/L	N/A
Dissolved Lead	0.050	mg/L	N/A
Total Mercury	0.6	μg/L	N/A
Dissolved Nickel	0.200	mg/L	N/A
Total Zinc	1.0	mg/L	N/A
Oil & Grease	None Visible and 5 mg/L	mg/L	None Visible, 8.8
PCBs	50* 5**	μg/L	N/A
Phenols	20	μg/L	N/A

^{*}Discharge to barren land, **Discharge to vegetated land

LOCATION: LOWER SITE HOLDING BASIN 4 GPS COORDINATES: 0563043E 7387627N

GFS COORDINATES, 0303045E /38/02/IN				
Parameter	Maximum Allowable Concentration	Units	Sample # 09-50154	
pН	6-9	pH units	7.29	
Total Arsenic	0.100	mg/L	N/A	
Dissolved Cadmium	0.010	mg/L	N/A	
Total Chromium	0.100	mg/L	N/A	
Dissolved Cobalt	0.050	mg/L	N/A	
Dissolved Copper	0.200	mg/L	N/A	
Dissolved Lead	0.050	mg/L	N/A	
Total Mercury	0.6	μg/L	N/A	
Dissolved Nickel	0.200	mg/L	N/A	
Total Zinc	1.0	mg/L	N/A	
Oil & Grease	None Visible and 5 mg/L	mg/L	None Visible	
PCBs	50* 5**	μg/L	N/A	
Phenols	20	μg/L	N/A	

^{*}Discharge to barren land, **Discharge to vegetated land

LOCATION: LOWER SITE HOLDING BASIN 4 GPS COORDINATES: 0563043E 7387627N

Parameter	Maximum Allowable Concentration	Units	Sample # 09-50165
pН	6-9	pH units	N/A
Total Arsenic	0.100	mg/L	N/A
Dissolved Cadmium	0.010	mg/L	N/A
Total Chromium	0.100	mg/L	N/A
Dissolved Cobalt	0.050	mg/L	N/A
Dissolved Copper	0.200	mg/L	N/A
Dissolved Lead	0.050	mg/L	N/A
Total Mercury	0.6	μg/L	N/A
Dissolved Nickel	0.200	mg/L	N/A
Total Zinc	1.0	mg/L	N/A
Oil & Grease	None Visible and 5 mg/L	mg/L	None Visible, <2.0
PCBs	50* 5**	μg/L	N/A
Phenols	20	μg/L	N/A

^{*}Discharge to barren land, **Discharge to vegetated land

As of July 24, 2009 the analytical results for the water contained in the Lower Site Holding Basin 4 met wastewater discharge criteria. The water was discharged to land in accordance to the water use license on July 29, 2009.

LOCATION: LOWER SITE HOLDING BASIN 5 GPS COORDINATES: 0563064E 7387596N

Parameter	Maximum Allowable Concentration	Units	Sample # 09-50105
pН	6-9	pH units	N/A
Total Arsenic	0.100	mg/L	N/A
Dissolved Cadmium	0.010	mg/L	N/A
Total Chromium	0.100	mg/L	N/A
Dissolved Cobalt	0.050	mg/L	N/A
Dissolved Copper	0.200	mg/L	N/A
Dissolved Lead	0.050	mg/L	N/A
Total Mercury	0.6	μg/L	N/A
Dissolved Nickel	0.200	mg/L	N/A
Total Zinc	1.0	mg/L	N/A
Oil & Grease	None Visible and 5 mg/L	mg/L	Visible, 5.4
PCBs	50* 5**	$\mu g/L$	N/A
Phenols	20	μg/L	N/A

^{*}Discharge to barren land, **Discharge to vegetated land

GPS COORDINATES: 0563039E 7387588N

Parameter	Maximum Allowable Concentration	Units	Sample # 09-50140
pН	6-9	pH units	7.31
Total Arsenic	0.100	mg/L	N/A
Dissolved Cadmium	0.010	mg/L	N/A
Total Chromium	0.100	mg/L	N/A
Dissolved Cobalt	0.050	mg/L	N/A
Dissolved Copper	0.200	mg/L	N/A
Dissolved Lead	0.050	mg/L	N/A
Total Mercury	0.6	μg/L	N/A
Dissolved Nickel	0.200	mg/L	N/A
Total Zinc	1.0	mg/L	N/A
Oil & Grease	None Visible and 5 mg/L	mg/L	None Visible, 6.0
PCBs	50* 5**	μg/L	N/A
Phenols	20	μg/L	N/A

^{*}Discharge to barren land, **Discharge to vegetated land

LOCATION: LOWER SITE HOLDING BASIN 5

GPS COORDINATES: 0563039E 7387588N

OI S COORDINATES. 0303037E 7307300N				
Parameter	Maximum Allowable Concentration	Units	Sample # 09-50141	
pН	6-9	pH units	7.53	
Total Arsenic	0.100	mg/L	N/A	
Dissolved Cadmium	0.010	mg/L	N/A	
Total Chromium	0.100	mg/L	N/A	
Dissolved Cobalt	0.050	mg/L	N/A	
Dissolved Copper	0.200	mg/L	N/A	
Dissolved Lead	0.050	mg/L	N/A	
Total Mercury	0.6	μg/L	N/A	
Dissolved Nickel	0.200	mg/L	N/A	
Total Zinc	1.0	mg/L	N/A	
Oil & Grease	None Visible and 5 mg/L	mg/L	None Visible, 5.0	
PCBs	50* 5**	μg/L	N/A	
Phenols	20	μg/L	N/A	

^{*}Discharge to barren land, **Discharge to vegetated land

GPS COORDINATES: 0563039E 7387588N

Parameter	Maximum Allowable Concentration	Units	Sample # 09-50166
pН	6-9	pH units	N/A
Total Arsenic	0.100	mg/L	N/A
Dissolved Cadmium	0.010	mg/L	N/A
Total Chromium	0.100	mg/L	N/A
Dissolved Cobalt	0.050	mg/L	N/A
Dissolved Copper	0.200	mg/L	N/A
Dissolved Lead	0.050	mg/L	N/A
Total Mercury	0.6	μg/L	N/A
Dissolved Nickel	0.200	mg/L	N/A
Total Zinc	1.0	mg/L	N/A
Oil & Grease	None Visible and 5 mg/L	mg/L	None Visible, 4.8
PCBs	50* 5**	μg/L	N/A
Phenols	20	μg/L	N/A

^{*}Discharge to barren land, **Discharge to vegetated land

LOCATION: LOWER SITE HOLDING BASIN 5

GPS COORDINATES: 0563039E 7387588N

Parameter	Maximum Allowable Concentration	Units	Sample # 09-50183
pН	6-9	pH units	7.22
Total Arsenic	0.100	mg/L	< 0.003
Dissolved Cadmium	0.010	mg/L	< 0.001
Total Chromium	0.100	mg/L	< 0.005
Dissolved Cobalt	0.050	mg/L	< 0.003
Dissolved Copper	0.200	mg/L	< 0.005
Dissolved Lead	0.050	mg/L	< 0.010
Total Mercury	0.6	μg/L	<0.4
Dissolved Nickel	0.200	mg/L	< 0.005
Total Zinc	1.0	mg/L	0.018
Oil & Grease	None Visible and 5 mg/L	mg/L	None Visible, 4.5
PCBs	50* 5**	μg/L	<3.0
Phenols	20	μg/L	N/A

^{*}Discharge to barren land, **Discharge to vegetated land

The analytical results for the water contained in the Lower Site Holding Basin 5 met wastewater discharge criteria. The water was discharged to land in accordance to the water use license on July 29,2009.

GPS COORDINATES: 0563062E 7387587N

Parameter	Maximum Allowable Concentration	Units	Sample # 09-50124
pН	6-9	pH units	8.20
Total Arsenic	0.100	mg/L	N/A
Dissolved Cadmium	0.010	mg/L	N/A
Total Chromium	0.100	mg/L	N/A
Dissolved Cobalt	0.050	mg/L	N/A
Dissolved Copper	0.200	mg/L	N/A
Dissolved Lead	0.050	mg/L	N/A
Total Mercury	0.6	μg/L	N/A
Dissolved Nickel	0.200	mg/L	N/A
Total Zinc	1.0	mg/L	N/A
Oil & Grease	None Visible and 5 mg/L	mg/L	None Visible, <1.0
PCBs	50* 5**	μg/L	N/A
Phenols	20	μg/L	N/A

^{*}Discharge to barren land, **Discharge to vegetated land

LOCATION: LOWER SITE HOLDING BASIN 6

GPS COORDINATES: 0563062E 7387587N

Parameter	Maximum Allowable Concentration	Units	Sample # 09-50153
pН	6-9	pH units	7.29
Total Arsenic	0.100	mg/L	N/A
Dissolved Cadmium	0.010	mg/L	N/A
Total Chromium	0.100	mg/L	N/A
Dissolved Cobalt	0.050	mg/L	N/A
Dissolved Copper	0.200	mg/L	N/A
Dissolved Lead	0.050	mg/L	N/A
Total Mercury	0.6	μg/L	N/A
Dissolved Nickel	0.200	mg/L	N/A
Total Zinc	1.0	mg/L	N/A
Oil & Grease	None Visible and 5 mg/L	mg/L	None Visible, 11.8
PCBs	50* 5**	μg/L	N/A
Phenols	20	μg/L	N/A

^{*}Discharge to barren land, **Discharge to vegetated land

The analytical results for the water contained in the Lower Site Holding Basin 6 did not meet the wastewater discharge criteria for the oil and grease. The water has not been discharged to land in accordance to the water use license.

LOCATION: LOWER SITE TOTE 1 GPS COORDINATES: NO GPS COORDINATES COLLECTED, TOTE MAY BE MOVED

Parameter	Maximum Allowable Concentration	Units	Sample # 09-50144
pН	6-9	pH units	7.74
Total Arsenic	0.100	mg/L	< 0.003
Dissolved Cadmium	0.010	mg/L	< 0.001
Total Chromium	0.100	mg/L	< 0.005
Dissolved Cobalt	0.050	mg/L	< 0.003
Dissolved Copper	0.200	mg/L	< 0.005
Dissolved Lead	0.050	mg/L	< 0.010
Total Mercury	0.6	μg/L	<0.4
Dissolved Nickel	0.200	mg/L	< 0.005
Total Zinc	1.0	mg/L	< 0.010
Oil & Grease	None Visible and 5 mg/L	mg/L	None Visible, <2.0
PCBs	50* 5**	μg/L	<3.0
Phenols	20	μg/L	N/A

^{*}Discharge to barren land, **Discharge to vegetated land

LOCATION: LOWER SITE TOTE 1
GPS COORDINATES: NO GPS COORDINATES COLLECTED, TOTE MAY BE MOVED

Parameter	Maximum Allowable Concentration	Units	Sample # 09-50179
pН	6-9	pH units	N/A
Total Arsenic	0.100	mg/L	N/A
Dissolved Cadmium	0.010	mg/L	N/A
Total Chromium	0.100	mg/L	N/A
Dissolved Cobalt	0.050	mg/L	N/A
Dissolved Copper	0.200	mg/L	N/A
Dissolved Lead	0.050	mg/L	N/A
Total Mercury	0.6	μg/L	N/A
Dissolved Nickel	0.200	mg/L	N/A
Total Zinc	1.0	mg/L	N/A
Oil & Grease	None Visible and 5 mg/L	mg/L	None Visible, 8.5
PCBs	50* 5**	μg/L	N/A
Phenols	20	μg/L	N/A

^{*}Discharge to barren land, **Discharge to vegetated land

The analytical results for the water contained in the Lower Site Tote 1 did not meet the wastewater discharge criteria for the oil and grease. The water has not been discharged to land in accordance to the water use license.

LOCATION: LOWER SITE TOTE 2
GPS COORDINATES: NO GPS COORDINATES COLLECTED, TOTE MAY BE MOVED

Parameter	Maximum Allowable Concentration	Units	Sample # 09-50145
рН	6-9	pH units	4.36
Total Arsenic	0.100	mg/L	< 0.003
Dissolved Cadmium	0.010	mg/L	0.002
Total Chromium	0.100	mg/L	< 0.005
Dissolved Cobalt	0.050	mg/L	0.030
Dissolved Copper	0.200	mg/L	0.050
Dissolved Lead	0.050	mg/L	< 0.010
Total Mercury	0.6	μg/L	< 0.4
Dissolved Nickel	0.200	mg/L	0.10
Total Zinc	1.0	mg/L	0.60
Oil & Grease	None Visible and 5 mg/L	mg/L	None Visible, 10.3
PCBs	50* 5**	μg/L	<3.0
Phenols	20	μg/L	N/A

^{*}Discharge to barren land, **Discharge to vegetated land

The analytical results for the water contained in the Lower Site Tote 2 did not meet the wastewater discharge criteria for the oil and grease and was outside the normal range for pH. The water has not been discharged to land in accordance to the water use license.

LOCATION: LOWER SITE TOTE 3GPS COORDINATES: NO GPS COORDINATES COLLECTED, TOTE MAY BE MOVED

Parameter	Maximum Allowable Concentration	Units	Sample # 09-50146
pН	6-9	pH units	6.82
Total Arsenic	0.100	mg/L	< 0.003
Dissolved Cadmium	0.010	mg/L	< 0.001
Total Chromium	0.100	mg/L	< 0.005
Dissolved Cobalt	0.050	mg/L	< 0.003
Dissolved Copper	0.200	mg/L	0.0068
Dissolved Lead	0.050	mg/L	< 0.010
Total Mercury	0.6	μg/L	<0.4
Dissolved Nickel	0.200	mg/L	< 0.005
Total Zinc	1.0	mg/L	0.058
Oil & Grease	None Visible and 5 mg/L	mg/L	None Visible, 3.2
PCBs	50* 5**	μg/L	<3.0
Phenols	20	μg/L	N/A

^{*}Discharge to barren land, **Discharge to vegetated land

The analytical results for the water contained in the Lower Site Tote 3 met the wastewater discharge criteria. The water has been discharged to land in accordance to the water use license.

LOCATION: LOWER SITE TOTE 4
GPS COORDINATES: NO GPS COORDINATES COLLECTED, TOTE MAY BE MOVED

Parameter	Maximum Allowable Concentration	Units	Sample # 09-50147
рН	6-9	pH units	6.83
Total Arsenic	0.100	mg/L	< 0.003
Dissolved Cadmium	0.010	mg/L	< 0.001
Total Chromium	0.100	mg/L	< 0.005
Dissolved Cobalt	0.050	mg/L	< 0.003
Dissolved Copper	0.200	mg/L	0.0057
Dissolved Lead	0.050	0 mg/L	
Total Mercury	0.6	μg/L <0.4	
Dissolved Nickel	0.200	mg/L <0.00	
Total Zinc	1.0	mg/L	0.058
Oil & Grease	None Visible and 5 mg/L	mg/L	None Visible, 6.2
PCBs	50* 5**	μg/L	<3.0
Phenols	20	μg/L N/A	

^{*}Discharge to barren land, **Discharge to vegetated land

The analytical results for the water contained in the Lower Site Tote 4 did not meet the wastewater discharge criteria for the oil and grease. The water has not been discharged to land in accordance to the water use license.

LOCATION: MOBILE LAB WASTE WATER TOTE GPS COORDINATES: 0563249E 7386820N

Parameter	Maximum Allowable Concentration Unit		Sample # 09-50167
pН	6-9	pH units	6.52
Total Arsenic	0.100	mg/L	< 0.003
Dissolved Cadmium	0.010	mg/L	< 0.001
Total Chromium	0.100	mg/L	0.010
Dissolved Cobalt	0.050	mg/L	< 0.003
Dissolved Copper	0.200	mg/L	0.0068
Dissolved Lead	0.050	mg/L	< 0.010
Total Mercury	0.6	μg/L	< 0.4
Dissolved Nickel	0.200	mg/L	0.031
Total Zinc	1.0	mg/L	1.1
Oil & Grease	None Visible and 5 mg/L	mg/L	None Visible, 16.9
PCBs	50* 5**	μg/L	<3.0
Phenols	20	μg/L	N/A

^{*}Discharge to barren land, **Discharge to vegetated land

The analytical results for the water contained in the Mobile Lab waste water tote did not meet the wastewater discharge criteria for zinc, oil and grease. The water has not been discharged to land in accordance to the water use license

We trust that the information provided meets current requirements. Please contact the undersigned if you have any questions or concerns.

Sincerely,

Tricia Cammaart

Environmental Sciences Group

cc: Eva Schulz (UMA)

Daniela Loock, Kat White, Anna Charbonneau, Ryan Vettorazzo, Cam Ollson,

Andrea Ellis (ESG)

Tricia Cammaant

APPENDIX A LABORATORY RESULTS

ASU#	12039		Report ID:	Dye-M W24
Client:	ASG 19408		Date Submitted:	9-Jul-09
			Date tested:	10-Jul-09
Site:	DYE-M		Date:	10-Jul-09
	09-086		Matrix:	Water
Preliminary Report of An	alysis			
Results in mg/L				
SAMPLE	Dissolved Zn	Total Zn		
09-50112	1.5	1.8		
09-50113	1.5	1.9	*	
Blank	< 0.010	< 0.010		
Control	2.8	2.8		
Control Target	3.0	3.0		
09-50113	1.5	1.9		
09-50113	1.6	1.9		

12 Verite Ave

Dept. of Chem. / Chem. Eng., RMC P.O. Box 17000, Stn. Forces Kingston, Ontario K7K 7B4 (613) 541-6000 ext 6567

Fax: (613) 541-6596

ASG Login No: 19488

Site: DYE-M Client No: 09-124 Samples Received: 21-Jul-09 Date of analysis: 23-Jul-09 Method No: ASG 037

Date Reported: 24-Jul-09 Page: 1 of 1

RESULTS OF pH ANALYSIS

Sample I.D.	Hq
50140	7.31
50141	7.53
50144	7.74
50145	4.36
50146	6.82
50147*	6.83

^{*} Averaged result of duplicates

Sample I.D.	pН
50147 ; Duplicate	6.83 ; 6.83
Control	7.01
Control Target	7.00

A CITE II	12072	D / ID	D MINO
ASU#	12073	Report ID:	Dye-M W29
Client:	ASG 19488	Date Submitted:	21-Jul-09
		Date tested:	21-Jul-09
Site:	DYE-M	Date:	22-Jul-09
	09-124	Matrix:	water
Preliminary Repo	rt of Analysis		
Sample	Oil & Grease		
	mg/L		
00.50140			
09-50140	6.0		
09-50141	5.0		
09-50144	<2.0		
09-50145	10.3		
09-50146	3.2		
09-50147	6.2		
Blank	<2.0		
Control	16.2		
Control Target	16.1		

ASU#	12072		Report ID:	Dye-M W30
Client:	ASG 19487		Date Submitted:	21-Jul-09
			Date tested:	23-Jul-09
Site:	DYE-M		Date:	23-Jul-09
	09-123		Matrix:	Water
Preliminary Report of An	alysis			
Results in mg/L				
SAMPLE	Total Zn	Dissolved Zn		
09-50142	1.9	1.2		
09-50143	1.8	1.3		
Blank	< 0.010	< 0.010		
Control	2.8	2.8		
Control Target	3.0	3.0		

ASU#	12072	Report ID:	Dye-M W28
Client:	ASG 19487	Date Submitted:	21-Jul-09
		Date tested:	21-Jul-09
Site:	DYE-M	Date:	22-Jul-09
	09-123	Matrix:	water
Preliminary Repo	rt of Analysis		
Sample	Oil & Grease		
	mg/L		
09-50142	<2.0		
09-50143	<2.0		
Blank	<2.0		
Control	16.2		
Control Target	16.1		

12 Verite Ave

Dept. of Chem. / Chem. Eng., RMC P.O. Box 17000, Stn. Forces Kingston, Ontario K7K 7B4 (613) 541-6000 ext 6567

Fax: (613) 541-6596

ASG Login No: 19487

Site: DYE-M Client No: 09-123 Samples Received: 21-Jul-09 Date of analysis: 21-Jul-09 Method No: ASG 037 Date Reported: 21-Jul-09

Page: 1 of 1

AMENDED RESULTS OF pH ANALYSIS

Sample I.D.	рН
50142*	7.45
50143	7.36

^{*} Averaged result of duplicates

Sample I.D.	pН
09-50142 ; Duplicate	7.44 ; 7.45
Control	7.00
Control Target	7.00

ASU#	12108		Report ID:	Dye-M W37
Client:	ASG 19542		Date Submitted:	30-Jul-09
			Date tested:	30-Jul-09
Site:	DYE-M		Date:	31-Jul-09
	09-168		Matrix:	Water
Preliminary Report of An	alysis			
Results in mg/L				
SAMPLE	Total Zn	Dissolved Zn		
09-50168	0.44	0.019		
09-50169	0.57*	0.028		
Blank	< 0.010	< 0.010		
Control	3.1	3.1		
Control Target	3.0	3.0		
09-50169	0.52	-		
09-50169	0.63	-		

12 Verite Ave

Dept of Chem/Chem Eng RMC, PO Box 17000 Kingston, Ontario 613-541-6000 # 6567 ASG Login No: 19542

Site: Dye-M Client No: 09-168

Samples Received: 30-Jul-09 Date of analysis: 31-Jul-09 Method No: ASG 037 Date Reported: 31-Jul-09

Page: 1 of 1

RESULTS OF pH ANALYSIS

Sample I.D.	pH
50168	9.11
50169*	9.16

^{*} Averaged result of duplicates

LABORATORY QA/QC

Sample I.D.	рН
Control	7.01
Control Target	7.00
Duplicate ; 50169	9.16 ; 9.16

Client: ESG

12 Verite Ave

Dept. of Chem. / Chem. Eng., RMC P.O. Box 17000, Stn. Forces Kingston, Ontario K7K 7B4 (613) 541-6000 ext 6567

Fax: (613) 541-6596

ASG Login No: 19408

Site: DYE-M Client No: 09-086 Samples Received: 9-Jul-09 Date of analysis: 14-Jul-09 Method No: ASG 037 Date Reported: 14-Jul-09

Page: 1 of 1

RESULTS OF pH ANALYSIS

Sample I.D.	рН
09-50110	7.57
09-50111	7.50
09-50112	7.68
09-50113*	7.61

^{*} Averaged result of duplicates

Sample I.D.	pН
09-50113**; Duplicate	7.61 ; 7.61
Control	7.00
Control Target	7.00

ASU#	12039	Report ID:	Dye-M W25
Client:	ASG 19408	Date Submitted:	9-Jul-09
		Date tested:	9-Jul-09
Site:	DYE-M	Date:	10-Jul-09
	09-086	Matrix:	water
Preliminary Repo	rt of Analysis		
Sample	Oil & Grease		
	mg/L		
09-50110	<2.0		
09-50111	<2.0		
Blank	< 2.0		
Control	16.1		
Control Target	16.1		

12 Verite Ave

Dept. of Chem. / Chem. Eng., RMC P.O. Box 17000, Stn. Forces Kingston, Ontario K7K 7B4 (613) 541-6000 ext 6567 Fax: (613) 541-6596

ASG Login No: 19497 Site: Dye-M Client No: 09-125 Samples Received: 23-Jul-09 Date of analysis: 23-Jul-09 Method No: ASG 021

Date Reported: 24-Jul-09 Sheet: 1 of 1

RESULTS OF MERCURY IN WATER ANALYSIS

Sample I.D.	Unit	Mercury [^]
50155	μg/L	< 0.4

^{*}Results of duplicate analysis.

Sample I.D.	Unit	Mercury [^]
Blank	μg/L	< 0.4
Control Target	μg/L	4.0
Control Sample	μg/L	3.9

[^] Acid digestion performed. # Reported at 0.4 μg/L detection limit.

ASU#	12083	Report ID:	Dye-M W33
Client:	ASG 19497	Date Submitted:	23-Jul-09
		Date tested:	24-Jul-09
Site:	DYE-M	Date:	27-Jul-09
	09-125	Matrix:	water
Preliminary Repo	rt of Analysis		
Sample	Oil & Grease		
	mg/L		
09-50153	11.8		
09-50154	broken sample		
09-50155	8.2		
Blank	<2.0		
Control	14.9		
Control Target	16.1		

12 Verite Ave

Dept. of Chem. / Chem. Eng., RMC P.O. Box 17000, Stn. Forces Kingston, Ontario K7K 7B4 (613) 541-6000 ext 6567 Fax: (613) 541-6596 ASG Login No: 19497

Site: DYE-M
Client No: 09-125
Samples Received: 23-Jul-09
Date of analysis: 23-Jul-09
Method No: ASG 037
Date Reported: 24-Jul-09
Page: 1 of 1

RESULTS OF pH ANALYSIS

Sample I.D.	рН
50153	7.29
50154	7.29
50155*	6.76

^{*} Averaged result of duplicates

Sample I.D.	рН
50155 ; Duplicate	6.76 ; 6.76
Control	7.01
Control Target	7.00

ASU#	12083		Report ID:	Dye-M W32					
Client:	ASG 19497		Date Submitted:	23-Jul-09					
			Date tested:	24-Jul-09					
Site:	DYE-M		Date:	27-Jul-09					
	09-125		Matrix:	Water					
Preliminary Report of A	nalysis								
Total Metals	Results in mg/L								
SAMPLE	Cu	Ni	Co	Cd	Pb	Zn	Cr	As	
09-50155	-	-	-	-	-	0.029	< 0.005	< 0.003	*
Blank	-	-	-	-	-	< 0.010	< 0.005	< 0.003	
Control	-	-	-	-	-	2.8	0.88	0.79	
Control Target	-	-	-	-	-	3.0	0.80	0.80	
09-50155	-	-	-	-	-	0.030	< 0.005	< 0.003	
09-50155	-	-	-	-	-	0.029	< 0.005	< 0.003	
Dissolved Metals									
CAMPLE	0	Ni	0.	6.1	DI.	7	C.		-
SAMPLE	Cu	N1	Со	Cd	Pb	Zn	Cr	As	
09-50155	<0.005	<0.005	<0.003	< 0.001	< 0.010	_		_	*
09-30133	<0.003	<0.003	<0.003	<0.001	<0.010	-	-	-	+
Blank	<0.005	< 0.010	<0.003	< 0.001	< 0.010				+
Diank	<0.005	<0.010	<0.003	<0.001	<0.010	-	-	-	+
Control	1.6	1.6	1.6	0.76	8.0	-	-	-	
Control Target	1.6	1.6	1.6	0.70	8.0	-	-	-	
Control Larget	1.0	1.0	1.0	0.00	0.0	-	-	-	+
09-50155	< 0.005	< 0.005	< 0.003	< 0.001	< 0.010	-	-	-	+
09-50155	<0.005	<0.005	<0.003	<0.001	< 0.010	-	_	-	
07-30133	₹0.005	~0.003	~0.003	~0.001	-0.010		_	_	

12 Verite Ave

12 Verite Ave
Dept. of Chem. / Chem. Eng., RMC
P.O. Box 17000, Stn. Forces
Kingston, Ontario K7K 7B4
(613) 541-6000 ext 6567
Fax: (613) 541-6596

ASG Login No: 19497 Site: Dye-M Client No: 09-125 Samples Received: 23-Jul-09 Date of analysis: 23-Jul-09 Method No: ASG 015 Date Reported: 24-Jul-09 Sheet No: 1 of 1

RESULTS OF PCB IN WATER ANALYSIS

Sample Type **	Sample I.D.	Unit	Aroclor 1248	Aroclor 1254	Aroclor 1260
W	50155	μg/L	< 3.0	< 3.0	< 3.0

^{*} Average result of Duplicate

LABORATORY QA/QC

Blank	μg/L	< 3.0	< 3.0	< 3.0
Control Sample	μg/L	< 3.0	< 3.0	12
Control Sample Target	ua/L	< 3.0	< 3.0	16

^{**} S = Soil , C = Concrete , PC = Paint Chip , SW = Swab , P = Plant , W = Water

All results corrected for the recovery of the surrogate decachlorobiphenyl

ASU#	12040	Report ID:	Dye-M W26
Client:	ASG 19407	Date Submitted:	9-Jul-09
		Date tested:	9-Jul-09
Site:	DYE-M	Date:	10-Jul-09
	09-084	Matrix:	water
Preliminary Repo	rt of Analysis		
Sample	Oil & Grease		
	mg/L		
09-50105	5.4		
Blank	<2.0		
Control	16.1		_
Control Target	16.1		

DYE-M, Cape Dyer DATE REPORTED: 20-Jul-09 Caduceon Environmental Laboratories 613-526-1244

> 2378 Holly Lane Ottawa, Ontario, K1V 7P1 Tel: 613-526-0123

> > Fax:

JOB/PROJECT NO.:

Final Report

REPORT No. B09-20834

Environmental Sciences Group

P.O. Box 17000 Station Forces

Kingston, Ontario, K7K 7B4

Report To:

Attention: Cam Ollson

DATE RECEIVED: 13-Jul-09

P.O. NUMBER: 09-102

SAMPLE MATRIX: Waste Water WATERWORKS NO.

C.O.C.: C17540

CERTIFICATE OF ANALYSIS

Parameter Units M.D.L.

Reference

Method

Date/Site

Analyzed

Client I.D.: 50124 50125 50126

Sample I.D.: B09-20834-1 B09-20834-2 B09-20834-3

Date Collected: 10-Jul-09 10-Jul-09 10-Jul-09

Oil & Grease-Total mg/L 1.0 SM 5520 16-Jul-09/K < 1.0 < 1.0 < 1.0 pH pH Units EPA 150.1 14-Jul-09/O 8.20 -- 7.85

12 Verite Ave Dept. of Chem. / Chem. Eng., RMC P.O. Box 17000, Stn. Forces Kingston, Ontario K7K 7B4 (613) 541-6000 ext 6567 Fax: (613) 541-6596

ASG Login No: 19488 Site: Dye-M Client No: 09-124 Samples Received: 21-Jul-09 Date of analysis: 23-Jul-09
Method No: ASG 015
Date Reported: 24-Jul-09
Sheet No: 1 of 1

RESULTS OF PCB IN WATER ANALYSIS

Sample Type **	Sample I.D.	Unit	Aroclor 1248	Aroclor 1254	Aroclor 1260
W	50144	μg/L	< 3.0	< 3.0	< 3.0
W	50145	μg/L	< 3.0	< 3.0	< 3.0
W	50146	μg/L	< 3.0	< 3.0	< 3.0
W	50147	μg/L	< 3.0	< 3.0	< 3.0

^{*} Average result of Duplicate

LABORATORY QA/QC

	Blank	μg/L	< 3.0	< 3.0	< 3.0
	Control Sample	μg/L	< 3.0	< 3.0	11
	Control Sample Target	μg/L	< 3.0	< 3.0	15

^{**} S = Soil , C = Concrete , PC = Paint Chip , SW = Swab , P = Plant , W = Water

All results corrected for the recovery of the surrogate decachlorobiphenyl

ASU#	12073		Report ID:	Dye-M W31					
Client:	ASG 19488		Date Submitted:	21-Jul-09					
			Date tested:	22-Jul-09					
Site:	DYE-M		Date:	23-Jul-09					
	09-124		Matrix:	Water					
Preliminary Report of A	nalysis								
Total Metals	Results in mg/L								
SAMPLE	Cu	Ni	Со	Cd	Pb	Zn	Cr	As	
09-50144	-	-	-	-	-	< 0.010	< 0.005	< 0.003	
09-50145	-	-	-	-	-	0.60	< 0.005	< 0.003	
09-50146	-	-	-	-	-	0.058	< 0.005	< 0.003	
09-50147	-	-	-	-	-	0.058	< 0.005	< 0.003	*
Blank	-	-	-	-	-	< 0.010	< 0.005	< 0.003	
Control	-	-	-	-	_	3.1	0.76	0.86	
Control Target	-	-	-	-	-	3.0	0.80	0.80	
09-50147	_	_	_	_		0.057	< 0.005	< 0.003	-
09-50147	-	-	-	-	-	0.059	< 0.005	< 0.003	Ļ
Dissolved Metals									
SAMPLE	Cu	Ni	Со	Cd	Pb	Zn	Cr	As	
09-50144	<0.005	< 0.005	< 0.003	< 0.001	< 0.010	-	-	-	-
09-50145	0.050	0.10	0.030	0.002	< 0.010	-	-	-	
09-50146	0.0068	< 0.005	< 0.003	< 0.001	< 0.010	-	-	-	
09-50147	0.0057	< 0.005	< 0.003	< 0.001	< 0.010	-	-	-	*
Blank	< 0.005	< 0.010	< 0.003	<0.001	< 0.010	-	-	-	
Control	1.6	1.7	1.7	0.83	8.3	-	-	-	
Control Target	1.6	1.6	1.6	0.80	8.0	-	-	-	
09-50147	0.0057	< 0.005	< 0.003	<0.001	< 0.010	_	-	-	-
09-50147	0.0057	< 0.005	< 0.003	<0.001	< 0.010	-	-	-	
									-
			1				L	1	

12 Verite Ave

Dept. of Chem. / Chem. Eng., RMC P.O. Box 17000, Stn. Forces Kingston, Ontario K7K 7B4 (613) 541-6000 ext 6567 Fax: (613) 541-6596 ASG Login No: 19488

Site: Dye-M Client No: 09-124 Samples Received: 21-Jul-09 Date of analysis: 23-Jul-09 Method No: ASG 021 Date Reported: 24-Jul-09

Sheet: 1 of 1

RESULTS OF MERCURY IN WATER ANALYSIS

Sample I.D.	Unit	Mercury [^]
50144	μg/L	< 0.4
50145	μg/L	< 0.4
50146	μg/L	< 0.4
50147*	μg/L	< 0.4

^{*}Results of duplicate analysis.

LABORATORY QA/QC

Sample I.D.	Unit	Mercury [^]
Duplicate ; 50147	μg/L	< 0.4 ; < 0.4
Blank	μg/L	< 0.4
Control Target	μg/L	4.0
Control Sample	μg/L	3.9

Client: ESG

12 Verite Ave

Dept. of Chem. / Chem. Eng., RMC P.O. Box 17000, Stn. Forces Kingston, Ontario K7K 7B4 (613) 541-6000 ext 6567 Fax: (613) 541-6596 ASG Login No: 19497

Site: DYE-M
Client No: 09-125
Samples Received: 23-Jul-09
Date of analysis: 23-Jul-09
Method No: ASG 037
Date Reported: 24-Jul-09

Page: 1 of 1

RESULTS OF pH ANALYSIS

Sample I.D.	рН
50153	7.29
50154	7.29
50155*	6.76

^{*} Averaged result of duplicates

Sample I.D.	рН
50155 ; Duplicate	6.76 ; 6.76
Control	7.01
Control Target	7.00

[^] Acid digestion performed.

[#] Reported at 0.4 μ g/L detection limit.

ASU#	12061	Report ID:	Dye-M W27
Client:	ASG 19455	Date Submitted:	16-Jul-09
		Date tested:	16-Jul-09
Site:	DYE-M	Date:	17-Jul-09
	09-103	Matrix:	water
Preliminary Repo	rt of Analysis		
Sample	Oil & Grease		
	mg/L		
09-50128	8.4		
09-50129	8.8		
Blank	<2.0		
Control	17.9		
Control Target	16.1		•

12 Verite Ave

Dept. of Chem. / Chem. Eng., RMC P.O. Box 17000, Stn. Forces Kingston, Ontario K7K 7B4 (613) 541-6000 ext 6567 Fax: (613) 541-6596 ASG Login No: 19455 Site: DYE-M

Client No: 09-103
Samples Received: 16-Jul-09
Date of analysis: 21-Jul-09
Method No: ASG 037
Date Reported: 21-Jul-09

Page: 1 of 1

AMENDED RESULTS OF pH ANALYSIS

Sample I.D.	pН
50128*	6.97
50129	6.95

^{*} Averaged result of duplicates

Sample I.D.	pН
50128*	6.96 ; 6.97
Control	7.00
Control Target	7.00

ASU#	12109	Report ID:	Dye-M W36
Client:	ASG 19545	Date Submitted:	30-Jul-09
		Date tested:	31-Jul-09
Site:	DYE-M	Date:	31-Jul-09
	09-170	Matrix:	water
Preliminary Repo	rt of Analysis		
Sample	Oil & Grease		
	mg/L		
09-50179	8.5		
Blank	<2.0		
Control	17.9		
Control Target	16.1		

ASU#	12095	Report ID:	Dye-M W34
Client:	ASG 19524	Date Submitted:	27-Jul-09
		Date tested:	28-Jul-09
Site:	DYE-M	Date:	29-Jul-09
	09-147	Matrix:	water
Preliminary Repo	rt of Analysis		
Sample	Oil & Grease		
	mg/L		
09-50165	<2.0		
09-50166	4.8		
09-50167	16.9		
Blank	<2.0		
Control	15.9		
Control Target	16.1		

12 Verite Ave

Dept of Chem/Chem Eng RMC, PO Box 17000 Kingston, Ontario 613-541-6000 # 6567 ASG Login No: 19524

Site: Dye-M Client No: 09-147 Samples Received: 27-Jul-09 Date of analysis: 4-Aug-09

Date of analysis: 4-Aug-09 Method No: ASG 037 Date Reported: 4-Aug-09 Page: 1 of 1

RESULTS OF pH ANALYSIS

Sample I.D.	рН
50167*	6.52

^{*} Averaged result of duplicates

Sample I.D.	рН
Control	7.01
Control Target	7.00
Duplicate ; 501677*	6.52 ; 6.52

ASU#	12095		Report ID:	Dye-M W35					
Client:	ASG 19524		Date Submitted:	27-Jul-09					
			Date tested:	28-Jul-09					
Site:	DYE-M		Date:	29-Jul-09					
	09-147		Matrix:	Water					
Preliminary Report of A	Analysis								
Total Metals	Results in mg/L								
SAMPLE	Cu	Ni	Co	Cd	Pb	Zn	Cr	As	
09-50167	-	-	-	-	-	1.1	0.010	< 0.003	*
Blank	-	-	-	-	-	< 0.010	< 0.005	< 0.003	
Control	-	-	-	-	-	3.1	0.85	0.83	
Control Target	-	-	-	-	-	3.0	0.80	0.80	
09-50167	-	-	-	-	-	1.1	0.011	< 0.003	
09-50167	-	-	-	-	-	1.1	0.010	< 0.003	
Dissolved Metals									
CANDIE		21.		6.1	DI.	-			
SAMPLE	Cu	Ni	Со	Cd	Pb	Zn	Cr	As	
00.501.67	0.060	0.021	-0.002	-0.001	-0.010				*
09-50167	0.068	0.031	< 0.003	< 0.001	< 0.010	-	-	-	+
D1 1	<0.005	<0.010	r0.002	<0.001	<0.010				+
Blank	< 0.005	< 0.010	< 0.003	< 0.001	< 0.010	-	-	-	
Control	1.6	1.7	1.7	0.81	8.3				+
Control Target	1.6	1.6	1.7	0.81	8.0	-	-	-	+
Control Target	1.6	1.0	1.6	0.80	8.0	-	-	-	+
09-50167	0.077	0.022	<0.002	<0.001	<0.010				+
09-50167	0.077 0.059	0.033 0.030	<0.003 <0.003	<0.001 <0.001	<0.010 <0.010	-	-	-	+
09-5016/	0.059	0.030	< 0.003	<0.001	<0.010	-	-	-	

12 Verite Ave Dept. of Chem. / Chem. Eng., RMC P.O. Box 17000, Stn. Forces Kingston, Ontario K7K 7B4 (613) 541-6000 ext 6567 Fax: (613) 541-6596 ASG Login No: 19524 Site: Dye-M Client No: 09-147

Client No: 09-147
Samples Received: 27-Jul-09
Date of analysis: 29-Jul-09
Method No: ASG 015
Date Reported: 30-Jul-09
Sheet No: 1 of 1

RESULTS OF PCB IN WATER ANALYSIS

Sample Type **	Sample I.D.	Unit	Aroclor 1254	Aroclor 1260
W	50167	μg/L	< 3.0	< 3.0

^{*} Average result of Duplicate

Client: ESG

12 Verite Ave Dept. of Chem. / Chem. Eng., RMC P.O. Box 17000, Stn. Forces Kingston, Ontario K7K 7B4 (613) 541-6000 ext 6567 Fax: (613) 541-6596 ASG Login No: 19524

Site: Dye-M Client No: 09-147 Samples Received: 27-Jul-09 Date of analysis: 30-Jul-09 Method No: ASG 021 Date Reported: 31-Jul-09

Sheet: 1 of 1

RESULTS OF MERCURY IN WATER ANALYSIS

Sample I.D.	Unit	Mercury [^]
09-50167*	μg/L	< 0.4

^{*}Results of duplicate analysis.

Sample I.D.	Unit	Mercury [^]
Blank	μg/L	< 0.4
Duplicate ; 09-50167*	ug/L	< 0.4 ; < 0.4
Control Target	μg/L	4.0
Control Sample	μg/L	4.1

[^] Acid digestion performed.

[#] Reported at 0.4 µg/L detection limit.

ASU#	12095	Report ID:	Dye-M W34
Client:	ASG 19524	Date Submitted:	27-Jul-09
		Date tested:	28-Jul-09
Site:	DYE-M	Date:	29-Jul-09
	09-147	Matrix:	water
Preliminary Repo	rt of Analysis		
Sample	Oil & Grease		
	mg/L		
09-50165	<2.0		
09-50166	4.8		
09-50167	16.9		
Blank	<2.0		
Control	15.9		
Control Target	16.1		

12 Verite Ave

Dept of Chem/Chem Eng RMC, PO Box 17000 Kingston, Ontario 613-541-6000 # 6567 ASG Login No: 19567 Site: Dye-M

Client No: 09-176
Samples Received: 4-Aug-09
Date of analysis: 6-Aug-09
Method No: ASG 037
Date Reported: 6-Aug-09

Page: 1 of 1

RESULTS OF pH ANALYSIS

Sample I.D.	рН
09-50183*	7.22

^{*} Averaged result of duplicates

Sample I.D.	рН
Control	7.01
Control Target	7.00
Duplicate ; 09-50183*	7.22 ; 7.23

12 Verite Ave Dept. of Chem. / Chem. Eng., RMC P.O. Box 17000, Stn. Forces Kingston, Ontario K7K 7B4 (613) 541-6000 ext 6567 Fax: (613) 541-6596

ASG Login No: 19567 Site: Dye-M Client No: 09-176 Samples Received: 4-Aug-09

Date of analysis: 5-Aug-09
Method No: ASG 015
Date Reported: 6-Aug-09
Sheet No: 1 of 1

RESULTS OF PCB IN WATER ANALYSIS

Sample Type **	Sample I.D.	Unit	Aroclor 1254	Aroclor 1260
W	50183*	μg/L	< 3.0	< 3.0

^{*} Average result of Duplicate

LABORATORY QA/QC

Blank	μg/L	< 3.0	< 3.0
Duplicate ; 50183*	μg/L	< 3.0 ; < 3.0	< 3.0 : < 3.0
Control Sample	μg/L	< 3.0	18
Control Sample Target	μg/L	< 3.0	15

^{**} S = Soil , C = Concrete , PC = Paint Chip , SW = Swab , P = Plant , W = Water

All results corrected for the recovery of the surrogate decachlorobiphenyl

Client: ESG

12 Verite Ave

Dept. of Chem. / Chem. Eng., RMC P.O. Box 17000, Stn. Forces Kingston, Ontario K7K 7B4 (613) 541-6000 ext 6567

Fax: (613) 541-6596

ASG Login No: 19567

Site: Dye-M Client No: 09-176 Samples Received: 4-Aug-09 Date of analysis: 6-Aug-09 Method No: ASG 021 Date Reported: 6-Aug-09

Sheet: 1 of 1

RESULTS OF MERCURY IN WATER ANALYSIS

Sample I.D.	Unit	Mercury [^]
09-50183*	μg/L	< 0.4

^{*}Results of duplicate analysis.

Sample I.D.	Unit	Mercury [^]
Blank	μg/L	< 0.4
Duplicate ; 09-50183*	ug/L	< 0.4 ; < 0.4
Control Target	μg/L	4.0
Control Sample	μg/L	4.0

[^] Acid digestion performed.

[#] Reported at 0.4 µg/L detection limit.

ASU#	12125		Report ID:	Dye-M W40				
Client:	ASG 19567		Date Submitted:	4-Aug-09				
			Date tested:	5-Aug-09				
Site:	DYE-M		Date:	6-Aug-09				
	09-176		Matrix:	Water				
Preliminary Report of A	nalysis							
Total Metals	Results in mg/L							
SAMPLE	Cu	Ni	Co	Cd	Pb	Zn	Cr	As
09-50183	-	-	-	-	-	0.018	< 0.005	< 0.003
Blank	-	-	-	-	-	< 0.010	< 0.005	< 0.003
Control	_	-	-	-		3.0	0.85	0.84
Control Target	-	-	-	-	-	3.0	0.80	0.80
Dissolved Metals								
SAMPLE	Cu	Ni	Co	Cd	Pb	Zn	Cr	As
09-50183	< 0.005	< 0.005	< 0.003	<0.001	< 0.010	-	-	-
Blank	< 0.005	< 0.005	< 0.003	<0.001	< 0.010	-	-	-
0 . 1	1.6	1.6	1.6	0.70	0.0			
Control Toront	1.6	1.6	1.6	0.79	8.0	-	-	-
Control Target	1.0	1.0	1.0	0.80	8.0	-	-	-
09-50183	< 0.005	< 0.005	< 0.003	< 0.001	< 0.010	-	-	-
09-50183	< 0.005	< 0.005	< 0.003	< 0.001	< 0.010	-	-	-

A CITE II	12125	D 4 ID .	D. MWO
ASU#	12125	Report ID:	Dye-M W39
Client:	ASG 19567	Date Submitted:	4-Aug-09
		Date tested:	6-Aug-09
Site:	DYE-M	Date:	7-Aug-09
	09-176	Matrix:	water
Preliminary Repo	rt of Analysis		
Sample	Oil & Grease		
	mg/L		
09-50183	4.5		
Blank	<2.0		
Control	13.6		
Control Target	16.1		

APPENDIX B PHOTOGRAPHS

Photo 1 (DSC01487): Sample 09-50112 DYE-M upper site non-hazardous waste landfill. Photo was taken facing east.

Photo 2 (DSC01488): Sample 09-50113 DYE-M upper site non-hazardous waste landfill. Photo was taken facing south.

Photo 3(IMG_1670): Sample 09-50142 DYE-M upper site non-hazardous waste landfill. Photo was taken facing north.

Photo 4 (IMG_1674): Sample 09-50143 DYE-M upper site non-hazardouse waste landfill. Photo was taken facing south.

Photo 5 (DSC01996): Sample 09-50168 upper site non-hazardous waste landfill.

Photo 6 (DCS01997): Sample 09-50169 upper site non-hazardous waste lanfill.

Photo 7 (DSC01489): Samples 09-50110 and 09-50111 DYE-M lower site holding basin 1. Photo was

taken facing north.

Photo 8 (DSC01558): Sample 09-50128 DYE-M lower site holding basin 2. Photo was taken facing south.

Photo 9 (P7100118): Sample 09-50126 DYE-M lower site holding basin 3. Photo was taken facing west.

Photo 10 (DSC01696): Sample 09-50155 DYE-M lower site holding basin 3. Photo was taken facing east.

Photo 11 (DSC01609): Sample 09-50129 DYE-M lower site holding basin 4. Photo was taken facing east.

Photo 12 (DSC01694): Sample 09-50154 DYE-M lower site holding basin 4. Photo was taken facing east.

Photo 13 (DSC01704): Sample 09-50165 DYE-M lower site holding basin 4. Photo was taken facing northwest.

Photo 14 (DSC01427): Samples 09-50105 DYE-M lower site holding basin 5. Photo was taken facing south.

Photo 15 (DSC05325): Sample 09-50140 and 09-50141 DYE-M lower site holding basin 5. Photo was taken facing east.

Photo 16 (DSC01706): Sample 09-50166 DYE-M lower site holding basin 5. Photo was taken facing east.

Photo 17 (DSC01727): Sample 09-50183 DYE-M lower site holding basin 5. Photo was taken facing east.

Photo 18 (DSC01529): Sample 09-50124 DYE-M lower site holding basin 6. Photo was taken facing northwest.

Photo 19 (DSC01693): Sample 09-50153 DYE-M lower site holding basin 6. Photo was taken facing southwest.

Photo 20 (DSC05326): Sample 09-50144 DYE-M lower site tote 1. Photo was taken facing north.

Photo 21 (DSC01712): Sample 09-50179 DYE-M lower site tote 1. Photo was taken facing north.

Photo 22 (DCS01713): Sample 09-50179 DYE-M lower site totel 1. Photo was taken facing north.

Photo 23 (DSC05328): Sample 09-50145 DYE-M lower site tote 2. Photo was taken facing north.

Photo 24(DSC05336): Sample 09-50146 DYE-M lower site tote 3. Photo was taken facing northwest.

Photo 25 (DSC05335): Sample 09-50147 DYE-M lower site tote 4. Photo was taken facing northwest.

Photo 26 (DSC01710): Sample 09-50167 sampling mobile lab wase water tote on the south side of lab.

Tricia Cammaart Environmental Sciences Group The Royal Military College of Canada PO Box 17000 Stn. Forces Kingston, ON K7K 7B4

Douglas Craig Environmental Officer Defence Construction Canada DEW Line Cleanup PMO 350 Albert Street, Suite 1720 Ottawa ON K1A 0K3

Tuesday, September 29, 2009

RE: August 2009 Monthly Report for Water Use License Number: IBR-DYE0914

The following results of the Monitoring Program (MP) and/or Water Use License are provided by the Environmental Sciences Group to meet the requirements of the above-noted license for *DYE-M* (*Cape Dyer*).

1. SEWAGE EFFLUENT

A sewage lagoon was constructed at DYE-M in September of 2004. The Water Use License and MP require that samples from treated sewage lagoon effluent at the point of discharge to the receiving water be collected prior to each discharge event.

Two sewage lagoon samples were collected and analyzed from DYE-M in August, 2009 (See table).

Sample Number	Sample Location	GPS Coordinates	Sampling Date
09-50192	South Cell of Sewage	0563390E	August 4, 2009
	Lagoon	7386898N	
09-50226	Middle Cell of Sewage	0563228E	August 19, 2009
	Lagoon	7386835N	

A summary of the results for the parameters tested is provided below. Laboratory results and photographs are provided in Appendices A and B, respectively.

LOCATION: SOUTH CELL OF SEWAGE LAGOON

GPS COORDINATES: 0563390E 7386898N

Parameter	Allowable Maximum Average Concentration	Units	09-50192 (August 4, 2009)
pН	6.0 to 9.0	pH units	8.78
Oil & Grease	None Visible	-	None Visible
Total Suspended Solids (TSS)	180	mg/L	N/A
BOD	120	mg/L	N/A
Faecal Coliforms	10,000	CFU/dL	N/A
Total Coliforms	-	CFU/ 100 mL	N/A

Sample 09-50192 was collected and analyzed for pH in the field. The result was 8.78. The water was discharged to land in accordance to the water use license, to the discharge location approved by the INAC Environmental Inspector.

LOCATION: MIDDLE CELL OF SEWAGE LAGOON

GPS COORDINATES: 0563390E 7386898N

Parameter	Allowable Maximum Average Concentration	Units	09-50226 (August 19, 2009)	
pН	6.0 to 9.0	pH units	9.62	
Oil & Grease	None Visible	-	None Visible	
Total Suspended Solids (TSS)	180	mg/L	116	
BOD	120	mg/L	25	
Faecal Coliforms	10,000	CFU/dL	<2	
Total Coliforms	-	CFU/ 100 mL	<20	

The water inside the sewage lagoon did not meet water discharge criteria. The water was not discharged to land in accordance to the water use license.

We trust that the information provided meets current requirements. Please contact the undersigned if you have any questions or concerns.

Sincerely,

Tricia Cammaart

Environmental Sciences Group

Tricia Cammaant

cc: Eva Schulz (UMA)

Daniela Loock, Kat White, Marc Ellmers, Ryan Vettorazzo, Cam Ollson, Andrea

Ellis, (ESG)

APPENDIX A LABORATORY RESULTS

09-236

DATE REPORTED: 28-Aug-09

Caduceon Environmental Laboratories

613-526-1244 2378 Holly Lane Ottawa, Ontario, K1V 7P1 Tel: 613-526-0123

Fax:

JOB/PROJECT NO.:

Final Report

REPORT No. B09-25906

Environmental Sciences Group

P.O. Box 17000 Station Forces Kingston, Ontario, K7K 7B4

Report To:

Attention: Suzanne Ronan DATE RECEIVED: 21-Aug-09

P.O. NUMBER:

SAMPLE MATRIX: Waste Water WATERWORKS NO.

C.O.C.: ---

CERTIFICATE OF ANALYSIS

Parameter Units M.D.L.

Reference Method Date/Site Analyzed

Client I.D.: 50226

Sample I.D.: B09-25906-1 Date Collected: 19-Aug-09

BOD mg/L 3 SM 5210 22-Aug-09/O 25

Total Suspended Solids mg/L 3 SM 2540 23-Aug-09/O 116

pH pH Units EPA 150.1 24-Aug-09/O 9.62

Total Coliform cfu/100ml 1 MOE E3371 21-Aug-09/O <20 / Fecal Coliform cfu/100ml 1 MOE E3371 21-Aug-09/O <2 /

1 . Elevated MDL due to sample matrix interference

2 . Passed holding time, run by request

Page 1 of 1. Gord Murphy Lab Supervisor

M.D.L. = Method Detection Limit

Site Analyzed=K-Kingston,W-Windsor,O-Ottawa,P-Peterborough,M-Moncton

APPENDIX B PHOTOGRAPHS

Photo 1 (DSC02160): Sample 09-50192 DYE-M lower site sewage lagoon. Photo was taken facing northeast.

Photo 2 (DSC02182): Sample 09-50226 DYE-M lower site sewage lagoon Sothern edge of middle cell.

Tricia Cammaart Environmental Sciences Group The Royal Military College of Canada PO Box 17000 Stn. Forces Kingston, ON K7K 7B4

Douglas Craig Environmental Officer Defence Construction Canada DEW Line Cleanup PMO 350 Albert Street, Suite 1720 Ottawa ON K1A 0K3

RE: Analytical Results for Wastewater Samples Collected at DYE-M in August, 2009

The following report summarizes results of the analysis of wastewater samples as per the DYE-M (Cape Dyer) DEW Line Cleanup Project (DLCU) Specifications.

The DYE-M specifications require that "wash water, melt water collection, rinse water resulting from the cleaning of fuel tanks and pipelines, and/or any other liquid effluent stream" meet the following guidelines prior to their discharge to land (01560.4.1):

Parameter	Maximum Allowable Concentration	Units
pН	6-9	pH units
Total arsenic (As)	0.100	mg/L
Dissolved cadmium (Cd)	0.010	mg/L
Total chromium (Cr)	0.100	mg/L
Dissolved cobalt (Co)	0.050	mg/L
Dissolved copper (Cu)	0.200	mg/L
Dissolved lead (Pb)	0.050	mg/L
Total mercury (Hg)	0.6	μg/L
Dissolved nickel (Ni)	0.200	mg/L
Total zinc (Zn)	1.000	mg/L
Oil & grease	5 mg/L and None visible	mg/L
PCBs	0.050*	mg/L
	0.005**	
Phenols	0.020	mg/L

^{*}Discharge to barren land, **Discharge to vegetated land

Phenols

The wastewater samples collected by ESG at DYE-M in August, 2009 were not analyzed for phenols but they were analyzed for oil and grease. Research conducted by ESG¹ has determined that a) no federal, territorial or provincial criteria exist for the discharge of

¹ Environmental Sciences Group. DEW Line Clean Up Project – Phenols in Wastewater. June, 2007.

wastewater containing phenols to land at a minimum distance of 30-m from natural drainage courses b) the maximum concentration of phenols in DLCU wastewater to date (2.44 mg/L) is below the LC₅₀ for freshwater fish and crustaceans and below the oral and dermal LD₅₀s for rats and rodents and c) phenols in excess of the maximum allowable concentration (MAC) have historically co-occurred with a visible oil & grease sheen and/or with an exceedance of the MAC for oil & grease. This information, and a subsequent decision to not test for phenols, has been presented to the NWB. To date, verbal agreement from the NWB has been received, but the project is awaiting written confirmation of the decision to suspend testing for phenols.

WASTEWATER SAMPLES

Four wastewater samples were collected at DYE-M and analyzed in August 2009. A summary of the details of these results follows.

Sample Number	Sample Location	GPS Coordinates	Sampling Date
09-50186	Holding Basin 4	0563042E 7387592N	August 1, 2009
09-50210	Holding Basin 4	0563042E 7387592N	August 12, 2009
09-50211	Holding Basin 4	0563042E 7387592N	August 12, 2009
09-50225	Holding Basin 4	0563032E 7387598N	August 19, 2009

A summary of the results for the parameters tested is provided below. Laboratory results and photographs are provided in Appendices A and B, respectively.

LOCATION: HOLDING BASIN 4

GPS COORDINATES: 0563042E 7387592N

Parameter	Maximum Allowable Concentration	Units	Sample # 09-50186
pН	6-9	pH units	N/A
Total Arsenic	0.100	mg/L	N/A
Dissolved Cadmium	0.010	mg/L	N/A
Total Chromium	0.100	mg/L	N/A
Dissolved Cobalt	0.050	mg/L	N/A
Dissolved Copper	0.200	mg/L	N/A
Dissolved Lead	0.050	mg/L	N/A
Total Mercury	0.6	μg/L	N/A
Dissolved Nickel	0.200	mg/L	N/A
Total Zinc	1.0	mg/L	N/A
Oil & Grease	None Visible and 5 mg/L	mg/L	None Visible, 10.9
PCBs	50* 5**	μg/L	N/A
Phenols	20	μg/L	N/A

^{*}Discharge to barren land, **Discharge to vegetated land

LOCATION: HOLDING BASIN 4

GPS COORDINATES: 0563042E 7387592N

Parameter	Maximum Allowable Concentration	Units	Sample # 09-50210
pН	6-9	pH units	N/A
Total Arsenic	0.100	mg/L	N/A
Dissolved Cadmium	0.010	mg/L	N/A
Total Chromium	0.100	mg/L	N/A
Dissolved Cobalt	0.050	mg/L	N/A
Dissolved Copper	0.200	mg/L	N/A
Dissolved Lead	0.050	mg/L	N/A
Total Mercury	0.6	μg/L	N/A
Dissolved Nickel	0.200	mg/L	N/A
Total Zinc	1.0	mg/L	N/A
Oil & Grease	None Visible and 5 mg/L	mg/L	None Visible, 9.9
PCBs	50* 5**	μg/L	N/A
Phenols	20	μg/L	N/A

^{*}Discharge to barren land, **Discharge to vegetated land

LOCATION: HOLDING BASIN 4

GPS COORDINATES: 0563042E 7387592N

Parameter	Maximum Allowable Concentration	Units	Sample # 09-50211
pН	6-9	pH units	N/A
Total Arsenic	0.100	mg/L	N/A
Dissolved Cadmium	0.010	mg/L	N/A
Total Chromium	0.100	mg/L	N/A
Dissolved Cobalt	0.050	mg/L	N/A
Dissolved Copper	0.200	mg/L	N/A
Dissolved Lead	0.050	mg/L	N/A
Total Mercury	0.6	μg/L	N/A
Dissolved Nickel	0.200	mg/L	N/A
Total Zinc	1.0	mg/L	N/A
Oil & Grease	None Visible and 5 mg/L	mg/L	None Visible, 11.5
PCBs	50* 5**	μg/L	N/A
Phenols	20	μg/L	N/A

^{*}Discharge to barren land, **Discharge to vegetated land

LOCATION: HOLDING BASIN 4

GPS COORDINATES: 0563042E 7387592N

Parameter	Maximum Allowable Concentration	Units	Sample # 09-50225
pН	6-9	pH units	N/A
Total Arsenic	0.100	mg/L	N/A
Dissolved Cadmium	0.010	mg/L	N/A
Total Chromium	0.100	mg/L	N/A
Dissolved Cobalt	0.050	mg/L	N/A
Dissolved Copper	0.200	mg/L	N/A
Dissolved Lead	0.050	mg/L	N/A
Total Mercury	0.6	μg/L	N/A
Dissolved Nickel	0.200	mg/L	N/A
Total Zinc	1.0	mg/L	N/A
Oil & Grease	None Visible and 5 mg/L	mg/L	None Visible, 27.8
PCBs	50* 5**	μg/L	N/A
Phenols	20	μg/L	N/A

^{*}Discharge to barren land, **Discharge to vegetated land

As of August 19th, 2009 the wastewater at the lower site Holding Basin 4 did not meet the wastewater discharge criteria (WDC) for oil and grease. The water was not discharged to land.

We trust that the information provided meets current requirements. Please contact the undersigned if you have any questions or concerns.

Sincerely,

Tricia Cammaart

Environmental Sciences Group

Tricia Cammaant

cc: Eva Schulz (UMA)

Daniela Loock, Kat White, Anna Charbonneau, Marc Ellesmers, Ryan Vettorazzo, Cam Ollson, Andrea Ellis (ESG)

APPENDIX A LABORATORY RESULTS

ASU#	12126	Report ID:	Dye-M W38
Client:	ASG 19579	Date Submitted:	4-Aug-09
		Date tested:	6-Aug-09
Site:	DYE-M	Date:	7-Aug-09
	09-188	Matrix:	water
Preliminary Repo	rt of Analysis		
Sample	Oil & Grease		
	mg/L		
09-50186	10.9		
Blank	<2.0		
Control	13.6		
Control Target	16.1		

ASU#	12164	Report ID:	Dye-M W42
Client:	ASG 19665	Date Submitted:	13-Aug-09
		Date tested:	13-Aug-09
Site:	DYE-M	Date:	14-Aug-09
	09-211	Matrix:	water
Preliminary Repo	rt of Analysis		
Sample	Oil & Grease		
	mg/L		
09-50210	9.9		
09-50211	11.5		
Blank	<2.0		
Control	14.6		
Control Target	16.1		

ASU#	12197	Report ID:	Dye-M W43
Client:	ASG 19719	Date Submitted:	22-Aug-09
		Date tested:	23-Aug-09
Site:	DYE-M	Date:	24-Aug-09
	09-235	Matrix:	water
Preliminary Repor	rt of Analysis		
Sample	Oil & Grease		
	mg/L		
09-50225	27.8		
Blank	<2.0		
Control	17.7		
Control Target	16.1		

APPENDIX B PHOTOGRAPHS

Photo 1 (DSC01734): Sample 09-50186 DYE-M lower site facing east Holding Basin 4.

Photo 2 (DSC01740): Sample 09-50186 DYE-M lower site facing east Holding Basin 4.

Photo 3 (DSC01862): Sample 09-50210 and 09-50211 DYE-M lower site Holding Basin 4.

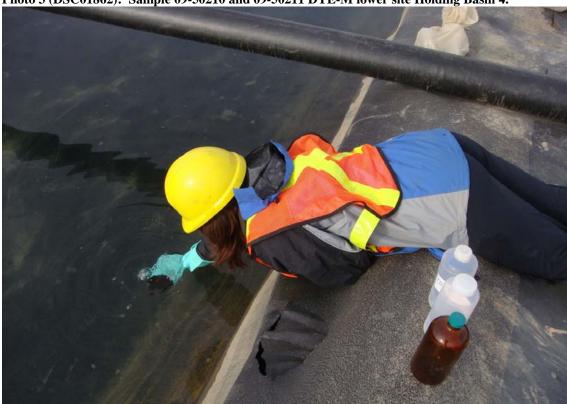


Photo 4(DSC02181): Sample 09-50225 DYE-M lower site Holding Basin 4.

Candice Casucci Environmental Sciences Group The Royal Military College of Canada PO Box 17000 Stn. Forces Kingston, ON K7K 7B4

Douglas Craig Environmental Officer Defence Construction Canada DEW Line Cleanup PMO 350 Albert Street, Suite 1720 Ottawa ON K1A 0K3

Friday, November 6, 2009

RE: September 2009 Monthly Report for Water Use License Number: IBR-DYE0914

The following results of the Monitoring Program (MP) and/or Water Use License are provided by the Environmental Sciences Group to meet the requirements of the above-noted license for *DYE-M* (Cape Dyer).

1. SEWAGE EFFLUENT

A sewage lagoon was constructed at DYE-M in September of 2004. The Water Use License and MP require that samples from treated sewage lagoon effluent at the point of discharge to the receiving water be collected prior to each discharge event.

Three sewage lagoon samples were collected and analyzed from DYE-M in September, 2009 (See table).

Sample Number	Sample Location	GPS Coordinates	Sampling Date
09-50255	Middle Cell of Sewage Lagoon	20W0563228 7386835	September 3, 2009
09-50265	Middle Cell of Sewage Lagoon	20W0563228 7386835	September 5, 2009
09-50267	Middle Cell of Sewage Lagoon	20W 0563228 7386835	September 12, 2009

A summary of the results for the parameters tested is provided below. Laboratory results and photographs are provided in Appendices A and B, respectively.

LOCATION: MIDDLE CELL OF SEWAGE LAGOON

GPS COORDINATES: 20W 0563228 7386835

Parameter	Allowable Maximum Average Concentration	Units	09-50255 (September 3, 2009)
pН	6.0 to 9.0	pH units	6.68
Oil & Grease	None Visible	-	N/A
Total Suspended Solids (TSS)	180	mg/L	N/A
BOD	120	mg/L	N/A
Faecal Coliforms	10,000	CFU/dL	N/A
Total Coliforms	-	CFU/ 100 mL	N/A

LOCATION: MIDDLE CELL OF SEWAGE LAGOON

GPS COORDINATES: 20W 0563228 7386835

Parameter	Allowable Maximum Average Concentration	Units	09-50265 (September 5, 2009)
рН	6.0 to 9.0	pH units	N/A
Oil & Grease	None Visible	-	None Visible
Total Suspended Solids (TSS)	180	mg/L	N/A
BOD	120	mg/L	N/A
Faecal Coliforms	10,000	CFU/dL	20,000
Total Coliforms	-	CFU/ 100 mL	>200,000

The water from sample #09-50255 expired before it could be sampled for faecal Coliforms and was analyzed for pH only. The same water was re-sampled 2 days later, #09-50265 for faecal Coliforms and was over criteria and therefore the water was not discharged to land.

LOCATION: MIDDLE CELL OF SEWAGE LAGOON

GPS COORDINATES: 20W 0563228 7386835

Parameter	Allowable Maximum Average Concentration	Units	09-50267 (September 12, 2009)
pН	6.0 to 9.0	pH units	N/A
Oil & Grease	None Visible	-	N/A
Total Suspended Solids (TSS)	180	mg/L	N/A
BOD	120	mg/L	N/A
Faecal Coliforms	10,000	CFU/dL	3,600
Total Coliforms	-	CFU/ 100 mL	44,000

The water from sample #09-0267 (same water as #09-0266) was sampled on September 12th and found to be below Faecal Coliforms and therefore was discharged to land.

We trust that the information provided meets current requirements. Please contact the undersigned if you have any questions or concerns.

Sincerely,

Candice Casucci

Masuri.

Environmental Sciences Group

cc: Eva Schulz (UMA)

Daniela Loock, Kat White, Marc Ellmers, Cam Ollson, Andrea Ellis, (ESG)

APPENDIX A LABORATORY RESULTS

ESG Client:

12 Verite Ave

Dept. of Chem. / Chem. Eng., RMC P.O. Box 17000, Stn. Forces Kingston, Ontario K7K 7B4 (613) 541-6000 ext 6567 Fax: (613) 541-6596

ASG Login No: 19850

Site: Dye-M Client No: 09-323 Samples Received: 9-Sep-09

Date of analysis: 10-Sep-09 Method No: ASG 037 Date Reported: 10-Sep-09

Page: 1 of 1

RESULTS OF pH ANALYSIS

Sample I.D.	pН
50255*	6.68

^{*} Averaged result of duplicates

LABORATORY QA/QC

Sample I.D.	рН
50255*; Duplicate	6.68 ; 6.68
Control	7.00
Control Target	7.00

Client :

12 Verite Ave Dept. of Chem. / Chem. Eng., RMC P.O. Box 17000, Stn. Forces Kingston, Ontario K7K 7B4 (613) 541-6000 ext 6567 Fax: (613) 541-6596

ASG Login No: 19834

Site: Dye-M Client No: 09-329 Samples Received: 6-Sep-09
Date of analysis: 6-Sep-09
Date Reported: 8-Sep-09
Sheet: 1 of 1

RESULTS OF MICROBIOLOGICAL ANALYSIS

	Method: ASG 036	Method: ASG 036	Method: ASG 036	Method: ASG 044
Sample Identification	Total			Fecal
	Coliforms	E. coli	Background	Coliforms
	(CFU/100 mL)	(CFU/100 mL)	(CFU/100 mL)	(CFU/100 mL)
50265~	> 200 000	5000	> 200 000	20 000

LABORATORY QA/QC

Sample Identification	Method: ASG 036 Total	Method: ASG 036	Method: ASG 036	Method: ASG 044 Fecal
	Coliforms (CFU/100 mL)	E. coli (CFU/100 mL)	Background (CFU/100 mL)	Coliforms (CFU/100 mL)
Blank	0	0	0	0
Control Sample	37	37	0	36
Control Sample Target	38	38	0	38

[~]Significant background colonies (> 200 per dilution) could potentially inhibit the growth of target colonies.

12 Verite Ave Dept. of Chem. / Chem. Eng., P.O. Box 17000, Stn. Forces Kingston, Ontario K7K 7B4 (613) 541-6000 ext 6567	RMC			Site: Client No:	Dye-M
P.O. Box 17000, Stn. Forces Kingston, Ontario K7K 7B4 (613) 541-6000 ext 6567	RMC			Client No:	00.040
Kingston, Ontario K7K 7B4 (613) 541-6000 ext 6567				Chefit No.	09-342
(613) 541-6000 ext 6567				Samples Received:	14-Sep-09
				Date of analysis:	14-Sep-09
E (0.10) E.11 0E00				Date Reported:	16-Sep-09
Fax: (613) 541-6596				Sheet:	1 of 1
RES	ULTS OF MICE	ROBIOLOGICA	AL ANALYSIS		
		Method: ASG 036	Method: ASG 036		
Sample Identification					
	, ,			,	
50267*	44 000	1000	44 000	3600	
	LA	BORATORY (QA/QC		
			44-		
	Method: ASG 036	Method: ASG 036	Method: ASG 036	Method: ASG 044	
Sample Identification	Total			Fecal	
	Coliforms	E. coli	Background	Coliforms	
	(CFU/100 mL)	(CFU/100 mL)	(CFU/100 mL)	(CFU/100 mL)	
Blank	0	0	0	0	
Duplicate ; 50267*	42 000 ; 45 000	1000 ; 1000	43 000 ; 44 000	3700 ; 3400	
CHESTON CONTRACTOR CON	36	36	0	40	
Control Sample Target	38	38	0	38	
* Average result of duplic	ate				
	Sample Identification 50267* Sample Identification Blank Duplicate : 50267* Control Sample Control Sample Target	Method: ASG 036 Total Coliforms (CFU/100 mL)	Method: ASG 036 Method: ASG 036 Total Coliforms E. coli (CFU/100 mL) (CFU/100 mL)	Sample Identification	Method: ASG 036 Method: ASG 036 Method: ASG 036 Method: ASG 036 Method: ASG 044 Fecal Coliforms E. coli Background CFU/100 mL (CFU/100 mL) (CFU/100

APPENDIX B PHOTOGRAPHS

Photo 1 (DSC02163): Sample 09-50255 DYE-M Lower site sewage lagoon. Western edge of middle cell.

Photo 2 (DSC02164): Sample 09-50255 DYE-M Lower site sewage lagoon. Western edge of middle cell.

Photo 3 (DSC02165): Sample 09-502565 DYE-M Lower site sewage lagoon. Western edge of middle cell.

Photo 4 (DSC02166): Sample 09-502567 DYE-M Lower site sewage lagoon. Western edge of middle cell.

Candice Casucci Environmental Sciences Group The Royal Military College of Canada PO Box 17000 Stn. Forces Kingston, ON K7K 7B4

Douglas Craig Environmental Officer Defence Construction Canada DEW Line Cleanup PMO 350 Albert Street, Suite 1720 Ottawa ON K1A 0K3

Friday, November 6, 2009

RE: Analytical Results for Wastewater Samples Collected at DYE-M in September, 2009

The following report summarizes results of the analysis of wastewater samples as per the DYE-M (Cape Dyer) DEW Line Cleanup Project (DLCU) Specifications.

The DYE-M specifications require that "wash water, melt water collection, rinse water resulting from the cleaning of fuel tanks and pipelines, and/or any other liquid effluent stream" meet the following guidelines prior to their discharge to land (01560.4.1):

Parameter	Maximum Allowable Concentration	Units
pН	6-9	pH units
Total arsenic (As)	0.100	mg/L
Dissolved cadmium (Cd)	0.010	mg/L
Total chromium (Cr)	0.100	mg/L
Dissolved cobalt (Co)	0.050	mg/L
Dissolved copper (Cu)	0.200	mg/L
Dissolved lead (Pb)	0.050	mg/L
Total mercury (Hg)	0.6	μg/L
Dissolved nickel (Ni)	0.200	mg/L
Total zinc (Zn)	1.000	mg/L
Oil & grease	5 mg/L and None visible	mg/L
PCBs	0.050*	mg/L
	0.005**	
Phenols	0.020	mg/L

^{*}Discharge to barren land, **Discharge to vegetated land

Phenols

The wastewater samples collected by ESG at DYE-M in September, 2009 were not analyzed for phenols but they were analyzed for oil and grease. Research conducted by

ESG¹ has determined that a) no federal, territorial or provincial criteria exist for the discharge of wastewater containing phenols to land at a minimum distance of 30-m from natural drainage courses b) the maximum concentration of phenols in DLCU wastewater to date (2.44 mg/L) is below the LC₅₀ for freshwater fish and crustaceans and below the oral and dermal LD₅₀s for rats and rodents and c) phenols in excess of the maximum allowable concentration (MAC) have historically co-occurred with a visible oil & grease sheen and/or with an exceedance of the MAC for oil & grease. This information, and a subsequent decision to not test for phenols, has been presented to the NWB. To date, verbal agreement from the NWB has been received, but the project is awaiting written confirmation of the decision to suspend testing for phenols.

WASTEWATER SAMPLES

Six wastewater samples were collected at DYE-M and analyzed in September 2009. A summary of the details of these results follows.

Sample Number	Sample Location	GPS Coordinates	Sampling Date
09-50266	Mobile Lab Tote Tank	20W 0563249 7386820	September 7th, 2009
09-50268	Mogas W19G	20W 0563091 7387503	September 16 th , 2009
09-50269	Mogas W38G	20W 0563030 7387592	September 13 th , 2009
09-50270	Holding Basin 4	20W 0563042 7387592	September 16 th , 2009
09-50271	Holding Basin 4	20W 0563042 7387592	September 16 th , 2009
09-50282	Landfarm	20W 0562718 7387976	September 17 th , 2009
09-50283	Holding Basin 4	20W 0563042 7387592	September 19 th , 2009

A summary of the results for the parameters tested is provided below. Laboratory results and photographs are provided in Appendices A and B, respectively.

¹ Environmental Sciences Group. DEW Line Clean Up Project – Phenols in Wastewater. June, 2007.

LOCATION: MOBILE LAB TOTE TANKGPS COORDINATES: 20W0563249 7386820

Parameter	Maximum Allowable Concentration	Units	Sample # 09-50266
pН	6-9	pH units	2.62
Total Arsenic	0.100	mg/L	N/A
Dissolved Cadmium	0.010	mg/L	< 0.003
Total Chromium	0.100	mg/L	0.019
Dissolved Cobalt	0.050	mg/L	< 0.003
Dissolved Copper	0.200	mg/L	0.173
Dissolved Lead	0.050	mg/L	0.051
Total Mercury	0.6	$\mu g/L$	< 0.4
Dissolved Nickel	0.200	mg/L	0.092
Total Zinc	1.0	mg/L	2.08
Oil & Grease	None Visible and 5 mg/L	mg/L	None Visible / 5.6
PCBs	50* 5**	μg/L	<3.0
Phenols	20	$\mu g/L$	N/A

^{*}Discharge to barren land, **Discharge to vegetated land

As of September 7th, 2009 the wastewater in Mobile Lab Tote Tank, did not meet the wastewater discharge criteria (WDC) for oil and grease, dissolved lead and total zinc. The water was not discharged to land.

LOCATION: MOGAS W19G

GPS COORDINATES: 20W0563091 7387503

Parameter	Maximum Allowable Concentration	Units	Sample # 09-50268
pН	6-9	pH units	6.28
Total Arsenic	0.100	mg/L	0.040
Dissolved Cadmium	0.010	mg/L	< 0.001
Total Chromium	0.100	mg/L	0.796
Dissolved Cobalt	0.050	mg/L	< 0.003
Dissolved Copper	0.200	mg/L	0.008
Dissolved Lead	0.050	mg/L	< 0.010
Total Mercury	0.6	μg/L	< 0.4
Dissolved Nickel	0.200	mg/L	0.005
Total Zinc	1.0	mg/L	0.937
Oil & Grease	None Visible and 5 mg/L	mg/L	None Visible / 6.8
PCBs	50* 5**	$\mu g/L$	<3.0
Phenols	20	μg/L	N/A

^{*}Discharge to barren land, **Discharge to vegetated land

As of September 16th, 2009 the wastewater in MOGAS W19G, did not meet the wastewater discharge criteria (WDC) for oil and grease. The water was not discharged to land.

LOCATION: MOGAS W38G

GPS COORDINATES: 20W 0563030 7387592

Parameter	Maximum Allowable Concentration	Units	Sample # 09-50269
рН	6-9	pH units	5.75
Total Arsenic	0.100	mg/L	0.009
Dissolved Cadmium	0.010	mg/L	< 0.001
Total Chromium	0.100	mg/L	0.102
Dissolved Cobalt	0.050	mg/L	< 0.003
Dissolved Copper	0.200	mg/L	0.007
Dissolved Lead	0.050	mg/L	< 0.010
Total Mercury	0.6	μg/L	<0.4
Dissolved Nickel	0.200	mg/L	0.005
Total Zinc	1.0	mg/L	5.01
Oil & Grease	None Visible and 5 mg/L	mg/L	None Visible/ 14.0
PCBs	50* 5**	$\mu g/L$	<3.0
Phenols	20	$\mu g/L$	N/A

*Discharge to barren land, **Discharge to vegetated land
As of September 13th, 2009, the water from MOGAS W38G, did not meet the wastewater discharge criteria (WDC) for oil and grease. The water was not discharged to land.

LOCATION: HOLDING BASIN 4

GPS COORDINATES: 20W 0563030 7387592

Parameter	Maximum Allowable Concentration	Units	Sample # 09-50270
pН	6-9	pH units	N/A
Total Arsenic	0.100	mg/L	N/A
Dissolved Cadmium	0.010	mg/L	N/A
Total Chromium	0.100	mg/L	N/A
Dissolved Cobalt	0.050	mg/L	N/A
Dissolved Copper	0.200	mg/L	N/A
Dissolved Lead	0.050	mg/L	N/A
Total Mercury	0.6	μg/L	N/A
Dissolved Nickel	0.200	mg/L	N/A
Total Zinc	1.0	mg/L	N/A
Oil & Grease	None Visible and 5 mg/L	mg/L	Non Visible 6.5
PCBs	50* 5**	μg/L	N/A
Phenols	20	μg/L	N/A

^{*}Discharge to barren land, **Discharge to vegetated land

LOCATION: HOLDING BASIN 4

GPS COORDINATES: 20W 0563030 7387592

Parameter	Maximum Allowable Concentration	Units	Sample # 09-50271
pН	6-9	pH units	N/A
Total Arsenic	0.100	mg/L	N/A
Dissolved Cadmium	0.010	mg/L	N/A
Total Chromium	0.100	mg/L	N/A
Dissolved Cobalt	0.050	mg/L	N/A
Dissolved Copper	0.200	mg/L	N/A
Dissolved Lead	0.050	mg/L	N/A
Total Mercury	0.6	μg/L	N/A
Dissolved Nickel	0.200	mg/L	N/A
Total Zinc	1.0	mg/L	N/A
Oil & Grease	None Visible and 5 mg/L	mg/L	Non Visible 3.8
PCBs	50* 5**	$\mu g/L$	N/A
Phenols	20	μg/L	N/A

^{*}Discharge to barren land, **Discharge to vegetated land

As of September 16th, 2009 the wastewater samples at Holding Basin 4 did not meet the wastewater discharge criteria (WDC) for oil and grease. The water was not discharged to land.

LOCATION: LANDFARM

GPS COORDINATES: 20W 0562718 7387976

Parameter	Maximum Allowable Concentration	Units	Sample # 09-50282	
pН	6-9	pH units	6.60	
Total Arsenic	0.100	mg/L	N/A	
Dissolved Cadmium	0.010	mg/L	N/A	
Total Chromium	0.100	mg/L	N/A	
Dissolved Cobalt	0.050	mg/L	N/A	
Dissolved Copper	0.200	mg/L	N/A	
Dissolved Lead	0.050	mg/L	< 0.010	
Total Mercury	0.6	μg/L	N/A	
Dissolved Nickel	0.200	mg/L	N/A	
Total Zinc	1.0	mg/L	N/A	
Oil & Grease	None Visible and 5 mg/L	mg/L	None Visible 3.5	
PCBs	50* 5**	μg/L	<3.0	
Phenols	20	μg/L	N/A	

^{*}Discharge to barren land, **Discharge to vegetated land

As of August 19th, 2009 the wastewater at the LANDFARM did meet the wastewater discharge criteria (WDC). The water was discharged to land in accordance to the water use license.

LOCATION: HOLDING BASIN 4

GPS COORDINATES: 20W 0563042 7387592

Parameter	Maximum Allowable Concentration	Units	Sample # 09-50283
рН	6-9	pH units	N/A
Total Arsenic	0.100	mg/L	N/A
Dissolved Cadmium	0.010	mg/L	N/A
Total Chromium	0.100	mg/L	N/A
Dissolved Cobalt	0.050	mg/L	N/A
Dissolved Copper	0.200	mg/L	N/A
Dissolved Lead	0.050	mg/L	N/A
Total Mercury	0.6	μg/L	N/A
Dissolved Nickel	0.200	mg/L	N/A
Total Zinc	1.0	mg/L	N/A
Oil & Grease	None Visible and 5 mg/L	mg/L	None Visible, <2.0
PCBs	50* 5**	μg/L	N/A
Phenols	20	μg/L	N/A

^{*}Discharge to barren land, **Discharge to vegetated land

As of August 19th, 2009 the wastewater at Holding Basin 4 did meet the wastewater discharge criteria (WDC) for oil and grease. The water was discharged to land in accordance to the water use license.

We trust that the information provided meets current requirements. Please contact the undersigned if you have any questions or concerns.

Sincerely,

Candice Casucci

Masuri.

Environmental Sciences Group

cc: Eva Schulz (UMA)

Daniela Loock, Kat White, Marc Ellesmers, Cam Ollson, Andrea Ellis (ESG)

APPENDIX A LABORATORY RESULTS

	Client:	ESG					ASG	Login No:	19868
		12 Verite	e Ave						Dye-M
		Dept. of	Chem. / Ch	nem. Eng., RMC				Client No:	•
			x 17000, St				Samples	Received:	14-Sep-09
		Kingston	n, Ontario K	7K 7B4				f analysis:	
			1-6000 ext					lethod No:	
		. ,	3) 541-6596					Reported:	
		(Page:	
								. ago.	
				DEOLU TO C	\ F 1.4	NIAL WOLO			
				RESULTS C)F PH A	ANALYSIS			
				Sample I.D.		рН			
				50266*		2.62			
				* Averaged result of	duplicates				
				7 Horagou rocalt of	aup.iioutoo				
					ATOR	(01/02			
				LABOR	A I URY	/ QA/QC			
				Sample I.D.		pH			
				50266* ; Duplicate	_	2.62 ; 2.62			
				Control		7.00			
				Control Target		7.00			
				Control ranger					
Client :	ESG			<u> </u>			ASC	S Login No:	19868
	12 Verite	Ave							Dye-M
	Dept. of C	hem. / Ch	nem. Eng.,	RMC				Client No:	
	P.O. Box						Samples	Received:	
	Kingston,							of analysis:	
	(613) 541-							Method No:	
	Fax: (613)							Reported:	
	, ,								1 of 1
			RESU	JLTS OF MERC	URY IN	WATER AN	ALYSIS		
				Sample I.D.	Unit	Mercury^			
				50266*	μg/L	< 0.4			
						< 0.4	<u> </u>		
				*Results of duplicate a	nalysis.	< 0.4			
				*Results of duplicate a	nalysis. med.				
				*Results of duplicate a	nalysis. med.		×		
				*Results of duplicate a ^Acid digestion perfor # Reported at 0.4 µg/L	nalysis. med. detection				
				*Results of duplicate a ^ Acid digestion perform # Reported at 0.4 µg/L	nalysis. med. detection	limit.			
				*Results of duplicate a ^ Acid digestion perfor # Reported at 0.4 µg/L LABOR Sample I.D.	nalysis. med. detection	limit. ' QA/QC Mercury^			
				*Results of duplicate a ^ Acid digestion perform # Reported at 0.4 µg/L	nalysis. med. detection	limit.			
				Results of duplicate a ^ Acid digestion perfor # Reported at 0.4 µg/L LABOR Sample I.D. Duplicate ; 50266 Blank	nalysis. med. detection ATORY Unit µg/L µg/L	limit.			
				Results of duplicate a ^ Acid digestion perfor # Reported at 0.4 µg/L LABOR Sample I.D. Duplicate; 50266	nalysis. med. detection ATORY	limit.			

	Site:		YE-M 0-349	Da	ate tested: ate: latrix:	18-Sep-09 18-Sep-09 Water					
Prelimina	ry Report of Ar	nalysis									
Tot	al Metals	Results i	n mg/L								
SA	AMPLE		Cu	Ni	Co	Cd	Pb	Zn	Cr	As	
09	0-50268		-	-	-	-	-	0.937	0.796	0.040	
09) -50269		-	-	-	-	-	5.01	0.102	0.009	*
	Blank		-	-	-	-	-	< 0.010	< 0.005	< 0.003	
	Control		-	-	-	-	-	2.8	0.80	0.79	
Cont	trol Target		-	-	-	-	-	3.0	0.80	0.80	
09	-50269		-	-	-	-	-	6.37	0.136	0.011	
09	0-50269		-	-	-	-		3.65	0.102	0.009	
Dissol	ved Metals										
SA	AMPLE		Cu	Ni	Co	Cd	Pb	Zn	Cr	As	t
Uc	0-50268	0	.008	<0.005	< 0.003	< 0.001	<0.010	-		-	
	D-50269		.007	<0.005	< 0.003	<0.001	<0.010	-	-	-	*
	Blank	<(0.005	<0.005	< 0.003	< 0.001	< 0.010	-	-	-	
	Control		1.5	1.5	1.5	0.74	7.5				
	rol Target		1.5 1.6	1.5 1.6	1.5	0.74 0.80	7.5 8.0	-	-	-	
	. 502.00		007	.0.005	-0.002	-0.001	.0.010				
	0-50269 0-50269		.007	<0.005 <0.005	<0.003 <0.003	<0.001 <0.001	<0.010 <0.010	-	-	-	
Client:	ESG							ASG Login N	o: 19868		
	12 Verite Av		F D	140					e: Dye-M		
	Dept. of Che P.O. Box 17			MC			S	amples Receive	o: 09-341 d: 14-Sep	-09	
	Kingston, Or	ntario K7k	(7B4					Date of analysi	s: 15-Sep	-09	
	(613) 541-60		67					Method N			
	Fax: (613) 54	+1-0590						Date Reporte Sheet N	o: 18-Sep	-09	
			F	RESULTS OF F	PCB IN V	VATER ANA	ALYSIS				
			Sample Type **	Sample I.D.	Unit	Aroclor 1254	Aroclor 1260				
			W	50266*	μg/L	< 3.0	< 3.0	*			
				* Average result of Du	plicate						
				LABO	RATOR	Y QA/QC					
				Blank	μg/L	< 3.0	< 3.0	1			
			 	Duplicate ; 50266* Control Sample	* µg/L µg/L	< 3.0 ; < 3.0 < 3.0	< 3.0 : < 3.0				
				Control Sample Targ		< 3.0	15	1			
			** S = So	il , C = Concrete , PC	= Paint Chip	o , SW = Swab ,	P = Plant , W =	- Water			
			All results	s corrected for the reco	overy of the s	urrogate decach	lorobiphenyl				

ASU#		12	2288			Report 1	D :	Dye-	M W45
Client:		ASG	19868			Date Su	bmitted:	14-5	Sep-09
						Date tes	sted:		Sep-09
Site:		DY	Æ-M			Date:			Sep-09
		09	-341			Matrix:			ater
Preliminary Re	epoi	t of Anal	/Sis						
J		_							
Sample		Oil &	Grease						
_		n	ng/L						
09-50266			5.6						
Blank		<	2.0						
Control		1	4.2						
Control Targ	æt		6.1						
Control rule	500	1	0.1						
ASU#		12288		Report ID:	Dye-M W46				
Client:		ASG 19868		Date Submitted: Date tested:	14-Sep-09 16-Sep-09				
Site:		DYE-M 09-341		Date: Matrix:	18-Sep-09 Water				
D.F.: D. (CA									
Preliminary Report of A									
Total Metals	Res	ults in mg/L							
SAMPLE		Cu	Ni	Co	Cd	Pb	Zn	Cr	As
09-50266		-	-	-	-	-	2.08	0.019	< 0.003
Blank		-	-	-	-	-	<0.010	< 0.005	< 0.003
Control	+	-	-	-	-	_	2.8	0.79	0.81
Control Target		-	-	-	-	-	3.0	0.80	0.80
Dissolved Metals									
SAMPLE		Cu	Ni	Со	Cd	Pb	Zn	Cr	As
09-50266		0.173	0.092	< 0.003	< 0.001	0.051	-	-	-
Blank		< 0.005	<0.005	<0.003	<0.001	<0.010	-	-	-
Control	+	1.6	1.6	1.6	0.78	7.8	-	-	-
Control Target		1.6	1.6	1.6	0.80	8.0	-	-	-

Client: ESG

12 Verite Ave Dept. of Chem. / Chem. Eng., RMC P.O. Box 17000, Stn. Forces Kingston, Ontario K7K 7B4 (613) 541-6000 ext 6567 Fax: (613) 541-6596 ASG Login No: 19882 Site: Dye-M Client No: 09-349 Samples Received: 17-Sep-09 Date of analysis: 22-Sep-09 Method No: ASG 015 Date Reported: 23-Sep-09 Sheet No: 1 of 1

RESULTS OF PCB IN WATER ANALYSIS

Sample Type **	Sample I.D.	Unit	Aroclor 1254	Aroclor 1260
W	50268*	μg/L	< 3.0	< 3.0
W	50269	μg/L	< 3.0	< 3.0

^{*} Average result of Duplicate

LABORATORY QA/QC

Blank	μg/L	< 3.0	< 3.0
Duplicate ; 50268*	μg/L	< 3.0 ; < 3.0	< 3.0 : < 3.0
Control Sample	μg/L	< 3.0	12
Control Sample Target	μg/L	< 3.0	15

^{**} S = Soil , C = Concrete , PC = Paint Chip , SW = Swab , P = Plant , W = Water

All results corrected for the recovery of the surrogate decachlorobiphenyl

ASU#	12300	Report ID:	Dye-M W48
		-	-
Client:	ASG 19882	Date Submitted:	17-Sep-09
		Date tested:	21-Sep-09
Site:	DYE-M	Date:	22-Sep-09
	09-349	Matrix:	water
Preliminary Repor	rt of Analysis		
Sample	Oil & Grease		
	mg/L		
09-50268	6.8		
09-50269	14.0		
Blank	<2.0		
Control	15.6		
Control Target	16.1		

Client: ESG

12 Verite Ave

Dept. of Chem. / Chem. Eng., RMC P.O. Box 17000, Stn. Forces Kingston, Ontario K7K 7B4 (613) 541-6000 ext 6567

Fax: (613) 541-6596

ASG Login No: 19882

Site: Dye-M Client No: 09-349 Samples Received: 17-Sep-09

Date of analysis: 22-Sep-09 Method No: ASG 037 Date Reported: 22-Sep-09

Page: 1 of 1

RESULTS OF pH ANALYSIS

Sample I.D.	рН
09-50268*	6.28
09-50269	5.75

^{*} Averaged result of duplicates

LABORATORY QA/QC

Sample I.D.	pН
09-50268*; Duplicate	6.28 ; 6.28
Control	7.00
Control Target	7.00

Client : ASU

School of Environmental Studies Queen's University Kingston, Ontario K7L 3N6 (613) 533-2656 Fax: (613) 533-2897 ASG Login No: 19882 Site: Dye-M

Client No: 09-349
Samples Received: 17-Sep-09
Date of analysis: 21-Sep-09
Method No: ASG 021
Date Reported: 21-Sep-09
Sheet: 1 of 1

RESULTS OF MERCURY IN WATER ANALYSIS

Sample I.D.	Unit	Mercury [^]
09-50268*	ug/L	< 0.4
09-50269	ug/L	< 0.4

[^] Acid digestion performed.

LABORATORY QA/QC

Sample I.D.	Unit	Mercury^
Blank	μg/L	< 0.4
09-50268* ; Duplicate	μg/L	< 0.4 ; < 0.4
Control Target	μg/L	4.0
Control Sample	μg/L	4.4

[#] Reported at 0.4 µg/L detection limit.

^{*}Average results of duplicates.

ASU#	12299	Report ID:	Dye-M W47
Client:	ASG 19881	Date Submitted:	17-Sep-09
		Date tested:	17-Sep-09
Site:	DYE-M	Date:	18-Sep-09
	09-348	Matrix:	water
Preliminary Repo	rt of Analysis		
Sample	Oil & Grease		
	mg/L		
09-50270	6.5		
09-50271	3.8		
Blank	<2.0		
Control	14.2		
Control Target	16.1		

Client:	ESG						ASG Login No:	19892
	12 Verite Ave						Site:	Dye-M
	Dept. of Chem. / Chem. Eng., RMC						Client No:	09-352
	P.O. Box 17000, Stn.	Forces				Sa	mples Received:	21-Sep-09
	Kingston, Ontario K7K 7B4					Date of analysis:		22-Sep-09
	(613) 541-6000 ext 6567						Method No:	ASG 015
	Fax: (613) 541-6596						Date Reported:	23-Sep-09
	, ,						Sheet No:	1 of 1
		F	RESULTS OF PC					
		Sample Type **	Sample I.D.	Unit	Aroclor 1254	Aroclor 1260		
		W	50282	µg/L	< 3.0	< 3.0		
			LABORATORY QA/QC					
			LABOR					
			Blank	μg/L	< 3.0	< 3.0		
			Control Sample	μg/L	< 3.0	12		
			Control Sample Target	μg/L	< 3.0	15		
		** S = So						
		All results	corrected for the recovery	of the s	urrogate decach	lorobiphenyl		

AS	U#		12307			Repo	rt ID:	Dye	-M W51
Cli	ent:	AS	G 19892			Date	Submitted:	21-Sep-09	
						Date	tested:	21-	-Sep-09
Si	ite:	Γ	YE-M			Date:		22-Sep-09	
51			9-352				Matrix:		
		U	19-352			Matr	IX:		water
relimin	ary Report	of Ana	ılysis						
Sai	mple	Oil	Oil & Grease						
			mg/L						
00.5	0282		3.5						
09-2	00282		3.3						
Bl	ank		<2.0						
~	. 1		15.6						
	ntrol		15.6						
Contro	ol Target		16.1						
II4-	500						4001-	nin Na	40000
lient:	ESG 12 Verite Ave	<u> </u>					ASG Lo		Dye-M
			n. Eng., RMC				Clie		09-352
	P.O. Box 170						Samples Re		
	Kingston, On								22-Sep-09
	(613) 541-600								ASG 037
	Fax: (613) 54								22-Sep-09
	1 ax. (015) 5-	1-0330							1 of 1
			DECIII T	S OE n		10			
			KESULI	3 ОГ Р	H ANALYS	713			
			Sample I.		рН				
			09-50282	*	6.60				
			* Averaged resu	It of duplic	ates				
			LAB	ORATO	RY QA/QC	;			
			Sample I.D.		рН				
			09-50282* ; Du	plicate	6.60 ; 6.60				
			Control		7.00				
			Control Tar	get	7.00				

ASU#	12307	Report ID:	Dye-M W50
Client:	ASG 19892	Date Submitted:	21-Sep-09
		Date tested:	24-Sep-09
Site:	DYE-M	Date:	24-Sep-09
	09-352	Matrix:	Water
Preliminary Report	of Analysis		
Dissolved Meta	als		
SAMPLE	Pb		
	mg/L		
09-50282	< 0.010		
Blank	< 0.010		
Control	ontrol 8.0		
Control Targe	t 8.0		
ACTI #	12206	Domost ID.	D-12 M W/52
ASU#	12306	Report ID: Date Submitted:	Dye-M W52
Client:	ASG 19896		21-Sep-09
Site:	DYE-M	Date tested: Date:	21-Sep-09 21-Sep-09
Site:	09-353	Matrix:	water
	09-333	Iviati ix.	water
Preliminary Repor	rt of Analysis		
Sample	Oil & Grease		
Sumpre	mg/L		
00 50292	<2.0		
09-50283	<2.0		
Blank	<2.0		
Control	15.6	l l	<u> </u>
Control Target	15.6 16.1		

APPENDIX B PHOTOGRAPHS

Photo 1 (DSC02164): Sample 09-50255 Dye-M Sept $3^{\rm rd}$, Lower site sewage lagoon. Western edge of middle cell.

Photo 2 (DSC02655): Sample 09-50268 Dye-M 2009 Sep 16th Waste water sampling at W19G

Photo 3(DSC02656): Sample 09-50269 DYE-M Sept 13th Waste water sampling at W38G

Photo 4 (DSC02426): Sample 09-50270/71 DYE-M Sept 16th Waste water sampling at HB-4, 09-50270/71

Photo 5 (DSC02465) Sample 09-50282 DYE-M Sept $17^{\rm th}$ Sampling was tewater pooled in the northwest corner of the Landfarm

Photo 6 (DSC02475) Sample 09-50283 DYE-M Sept 19th Waste water sampling at HB-4

^{**}No photo available for Sample 09-50266.