403 270 9200 tel 403 270 0399 fax

RECEIVED By clerk at 9:45 am, Apr 18, 2011

March 22, 2011

Phyllis Beaulieu Licensing Manager Nunavut Water Board P.O. Box 119 Gjoa Haven, NU X0B 1J0

Dear Phyllis:

Project No: Water Use License 1BR-DYE0914 2010 Annual Report

Regarding: DYE-M, Cape Dyer DEW Line Site

AECOM Canada Ltd. is providing the attached annual report form as per Section B.1 of the abovenoted water use license. The report is being submitted on behalf of Defence Construction Canada and the Department of National Defence.

In addition to the annual report form, we are providing a summary of the work completed to date at the site. The following is a summary of the work completed and of the samples collected as part of the wastewater monitoring and sewage effluent monitoring:

Work Completed

The contractor for the DYE-M site left at the end of 2009, and notified DCC they would not be returning to the site. As a result, a new tender package and a new contractor would be required for the completion of the work. Therefore, during the 2010 season, the work completed at the DYE-M site was comprised of care and maintenance work, which was carried out by the Canadian Military and a separate contractor. The following is a summary of the work items completed during the 2010 summer construction season:

- Snow clearing and road maintenance.
- Dewatering of existing facilities.
- Demolition of two billboards at the Upper Site
- Construction of a temporary storage area at the beach to be used for storage of materials to be shipped off-site.

Work planned for the 2011 construction season includes:

- Continuation of the contaminated soil excavation and disposal.
- Landfarming/treatment of hydrocarbon impacted areas.
- Excavation of two small buried debris areas.

- Wastewater treatment.
- Barrel processing.
- Surface debris removal.
- Demolition of remaining structures not required by NWSO.

It is anticipated that final closure and capping of the Non-Hazardous Waste Landfills and Tier II Soil Disposal Facilities, reshaping of the borrow areas and closure of the sewage lagoon will be completed in 2012.

Community Consultations: The results of the community meetings held by DCC were submitted with the Project Description. The contractor typically holds a project start up meeting prior to each season.

Spill Incidences: See attached spill report.

Monitoring Results: See attached monitoring reports.

We trust the information provided is sufficient. Please feel free to contact the undersigned if you require any additional information.

Sincerely,

AECOM Canada Ltd.

Eva Schulz, P.Ag.

Eva.Schulz@aecom.com

EMS

Encl. Annual Report Form, Updated Site Figures, Selected Site Photos, Spill Report, Monitoring Reports cc: Tamara Van Dyck, DCC

NWB Annua	I Report	Year being reported: 2010 ▼
License No:	1BR-DYE0914	Issued Date: June 9, 2009
		Expiry Date: May 31, 2014
	Project Name:	DYE-M, Cape Dyer DEW Line Site Clean Up
	Licensee: Defen	ce Construction Canada
	Mailing Address:	Defence Construction Canada DGME 101 Colonel By Drive, Ottawa, Ontario, Canada. K1A 0K2
		filing Annual Report (if different from Name of Licensee ship between the two entities, if applicable):
	AECOM Design Engineering	and Regulatory Support
General Bad	ckground Information	on on the Project (*optional):
Licence Rec accodance	with	ensee must provide the following information in
A		
methods of		and waste disposal activities, including, but not limited to: wage and greywater management; drill waste management; nagement.
	Water Source(s):	Water supply lakes
	Water Quantity:	150/day Quantity Allowable Domestic (cu.m)
		Actual Quantity Used Domestic (cu.m)
		n/a Quantity Allowable Drilling (cu.m) n/a Total Quantity Used Drilling (cu.m)
	Waste Management	and/or Disposal
	Solid Waste DisSewageDrill WasteGreywater	sposal 951 cu.m of sewage effluent and greywater deposited into sewage lagoon
	HazardousOther:	
	Additional Details:	
	Details regarding wa included with the ap	iste management were provided in the supporting documents plication.
A list of una		es and a summary of follow-up actions taken.
	Spill No.: 1 Date of Spill: June 1	(as reported to the Spill Hot-line)
	Date of Notification t	

	Additional Details: (impacts to water, mitigation measures, short/long term monitoring, etc)
	See attached spill report.
Revision	s to the Spill Contingency Plan
	SCP submitted and approved - no revision required or proposed ▼
	Additional Details:
Revision	s to the Abandonment and Restoration Plan
	AR plan submitted and approved - no revision required or proposed
	Additional Details:
	The project is an abandonment and restoration plan.
rogress	sive Reclamation Work Undertaken
	Additional Details (i.e., work completed and future works proposed)
Results (of the Monitoring Program including:
to carto t	
	The GPS Co-ordinates (in degrees, minutes and seconds of latitude and longitude) of each location where sources of water are utilized;
	Details attached ▼
	Additional Details:
	Additional Details.
	The GPS Co-ordinates (in degrees, minutes and seconds of latitude and longitude) of each location where wastes associated with the licence are deposited:
	of each location where wastes associated with the licence are deposited;
	of each location where wastes associated with the licence are deposited; Details attached
	of each location where wastes associated with the licence are deposited;
	of each location where wastes associated with the licence are deposited; Details attached
	of each location where wastes associated with the licence are deposited; Details attached
	of each location where wastes associated with the licence are deposited; Details attached
	of each location where wastes associated with the licence are deposited; Details attached Additional Details: Results of any additional sampling and/or analysis that was requested by an
	of each location where wastes associated with the licence are deposited; Details attached Additional Details:

Additional Details: (date of request, analysis of results, data attached, etc)

NWB2(insert)

year being reported. No additional sampling recommendation in the sampling recommendation in the sampling recommendation in the sampling reported.			
Any other details on water use or was year being reported. No additional sampling requested Additional Details: (Attached			
Any other details on wa	ter use o	or waste disposal requested by the Board	by November 1 of the
_	101 400 0	wasto anoposar roquestou by the beart	a by November 1 of the
	sampling ro	guested by an Inspector or the Roard	₩
No additional s	sampling re	quested by all hispector of the board	
Additional D	etails: (A	ttached or provided below)	
	<u> </u>		
		ons on inspection/compliance reports	
No inspection	and/or com	pliance report issued by INAC	▼
Additional D	etails: (D	ates of Report, Follow-up by the Licensee)	
Additional D	ctans. (D	ates of Report, I offew up by the Licensee)	
Any additional commen	ts or info	ormation for the Board to consider	
Date Submitted:		31, 2011	
Submitted/Prepared by:			
Contact Information:		403-270-9200	
		403-270-0399	
	email:	eva.schulz@aecom.com	

GPS Coordinates for water sources utilized

	UTM Zone 2	0N, NAD83
Source Description	Northing	Easting
Lower Site Water Supply Lake	7390039	559775
Summer Water Supply Lake	7389802	565916
Winter Water Supply Lake	7395600	570250
	`	_

GPS Locations of areas of waste disposal

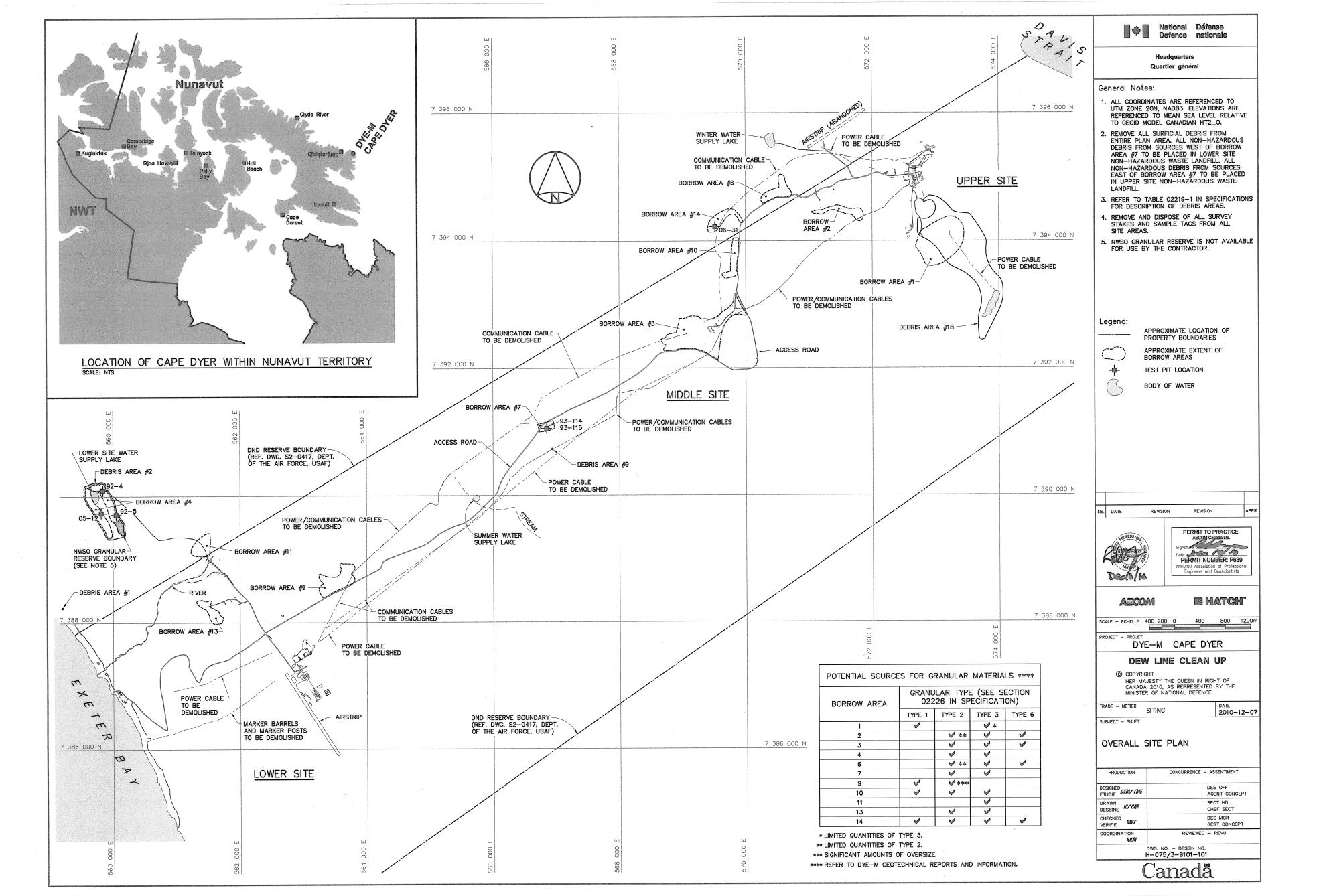
	UTM Zone 2	0N, NAD83
	Northing	Easting
Landfarm (E01)	7387924.9	562601.4
Landfarm (E01)	7387931.4	562624.8
Landfarm (E01)	7387004.7	562765
Landfarm (E01)	7387922	562808.3
Landfarm (E01)	7387725.6	562911.1
Landfarm (E01)	7387645.4	562757.8
Landfarm (E01)	7387718.1	562525.6
Landfarm (E01)	7387759.3	562496.2
Landfarm (E01)	7387843.9	562454.5
Lower Site Tier II (H01)	7388272.5	561782.6
Lower Site Tier II (H01)	7388345,3	561925.1
Lower Site Tier II (H01)	7388242.9	561977.4
Lower Site Tier II (H01)	7388170.1	561835
Lower Site Non-Haz (F01)	7387025.5	562989.6
Lower Site Non-Haz (F02)	7387070.4	563061.8
Lower Site Non-Haz (F03)	7387943.1	563141.1
Lower Site Non-Haz (F04)	7387953.3	563034.6
Upper Site Tier II (X01)	7394628.6	571043.9
Upper Site Tier II (X02)	7394676.6	571117.6
Upper Site Tier II (X03)	7394599.5	571167.8
Upper Site Tier II (X04)	7394551.5	571094
Upper Site Non-Haz (V01)	7395184.3	572155.5
Upper Site Non-Haz (V02)	7395144	572311.4
Upper Site Non-Haz (V03)	7395090.7	572297.6
Upper Site Non-Haz (V04)	7395105.9	572239.1
Upper Site Non-Haz (V05)	7395070	572178.1
Upper Site Non-Haz (V06)	7395075	572158.8
Upper Site Non-Haz (V07)	7395112.2	572136.9
Sewage Lagoon Cell #1	7386890	563376
Sewage Lagoon Cell #2	7386916	563362

Défense nationale_

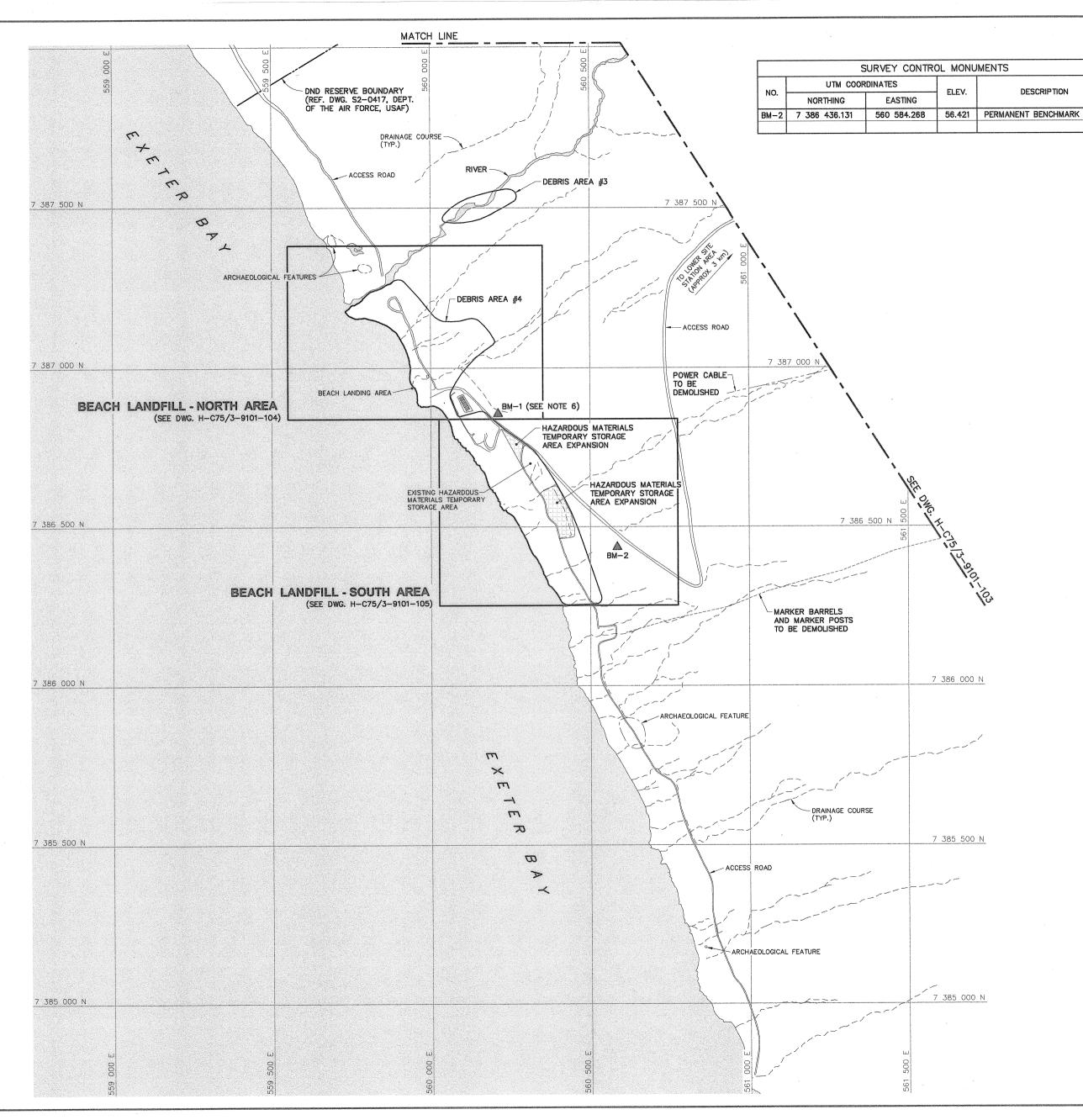
DEW LINE CLEAN UP PROJECT

DYE-M CAPE DYER TENDER DRAWINGS

AECOM


MATCH

DECEMBER, 2010


		RAWII	NG INDE	X	
DRAWING No.	TITLE	DRAWING No.	TITLE	DRAWING No.	TITLE
SITING	ş	SITING		STRUCTURAL	
H-C75/3-9101-101	OVERALL SITE PLAN	H-C75/3-9101-160	UPPER SITE PROJECT LAYOUT	H-C75/3-9101-202	UPPER SITE DEW DROP AREA DEMOLITION SITE PLAN
H-C75/3-9101-102	LOWER SITE BEACH AREA PROJECT LAYOUT	H-C75/3-9101-161	UPPER SITE DEW DROP AREA PLAN	H-C75/3-9101-203	UPPER SITE STATION AREA DEMOLITION SITE PLAN
H-C75/3-9101-103	LOWER SITE STATION AREA PROJECT LAYOUT	H-C75/3-9101-162	upper site Station area Plan sheet 1	H-C75/3-9101-204	GARAGE PLAN AND SECTION
H-C75/3-9101-104	LOWER SITE BEACH LANDFILL—NORTH AREA PLAN	H-C75/3-9101-163	UPPER SITE STATION AREA PLAN SHEET 2	H-C75/3-9101-205	HEATED VEHICLE STORAGE PLAN, SECTION AND ELEVATIONS
H-C75/3-9101-105	LOWER SITE BEACH LANDFILL—SOUTH AREA PLAN	H-C75/3-9101-164	UPPER SITE SOUTH LANDFILL AREA PLAN	H-C75/3-9101-206	AIR TERMINAL BUILDING PLAN, SECTION AND ELEVATION
H-C75/3-9101-106	LOWER SITE LANDFARM AREA PLAN	H-C75/3-9101-165	UPPER SITE WEST OF STATION AREA PLAN SHEET 1	H-C75/3-9101-207	ATWELL DORMITORY PLAN, SECTION AND ELEVATION
H-C75/3-9101-107	LOWER SITE STATION AREA—NORTH PLAN	H-C75/3-9101-166	UPPER SITE WEST OF STATION AREA PLAN SHEET 2	H-C75/3-9101-208	WAREHOUSE-B13A PLAN AND SECTION
H-C75/3-9101-108	LOWER SITE STATION AREA PLAN	H-C75/3-9101-167	UPPER SITE WEST OF STATION AREA PLAN SHEET 3	H-C75/3-9101-209	WAREHOUSE—B13B PLAN AND SECTION
H-C75/3-9101-109	LOWER SITE LOWER CAMP LANDFILL AREA PLAN	H-C75/3-9101-168	UPPER SITE NON-HAZARDOUS WASTE LANDFILL CROSS SECTION	H-C75/3-9101-210	WAREHOUSE-B13F PLAN AND SECTION
H-C75/3-9101-110	LOWER SITE TIER II DISPOSAL FACILITY AREA PLAN	H-C75/3-9101-169	UPPER SITE TIER II DISPOSAL FACILITY GRADING/INSTRUMENTATION PLAN	H-C75/3-9101-211	WAREHOUSE—B13E PLAN AND SECTION
H-C75/3-9101-111	LOWER SITE LANDFARM CROSS SECTION AND CLOSURE DETAIL	H-C75/3-9101-170	UPPER SITE TIER II DISPOSAL FACILITY CROSS SECTION	H-C75/3-9101-212	FUEL TANKS ELEVATIONS
H-C75/3-9101-112	LOWER SITE NON-HAZARDOUS WASTE LANDFILL CROSS SECTION			H-C75/3-9101-213	BUILDING LINK SECTION AND ELEVATION
H-C75/3-9101-113	LOWER SITE TIER II DISPOSAL FACILITY CROSS SECTION SHEET 1	H-C75/3-9101-190	MISCELLANEOUS DETAILS SHEET 1	H-C75/3-9101-214	SMALL COMMUNICATION BILLBOARD, FEEDHORN FOUNDATION PLAN, SECTION AND ELEVATIONS
H-C75/3-9101-114	LOWER SITE TIER II DISPOSAL FACILITY CROSS SECTION SHEET 2	H-C75/3-9101-191	MISCELLANEOUS DETAILS SHEET 2	H-C75/3-9101-215	LARGE COMMUNICATION BILLBOARD PLAN, SECTION AND ELEVATION
4				H-C75/3-9101-216	SWITCHING CENTRE AND COMMUNICATION BUILDING PLAN AND SECTION
H-C75/3-9101-150	MIDDLE SITE SITE PLAN	STRUCTURAL		H-C75/3-9101-217	POWER AND EQUIPMENT BUILDING PLAN AND SECTION
2		H-C75/3-9101-201	LOWER SITE STATION AREA DEMOLITION SITE PLAN	H-C75/3-9101-218	POWERHOUSE PLAN, SECTIONS AND ELEVATION

COPYRIGHT

HER MAJESTY THE QUEEN IN RIGHT OF CANADA 2010, AS REPRESENTED BY THE MINISTER OF NATIONAL DEFENCE.

National Défense Defence nationale

General Notes:

- ALL COORDINATES ARE REFERENCED TO UTM ZONE 20N, NADB3. ELEVATIONS ARE REFERENCED TO MEAN SEA LEVEL RELATIVE TO GEOID MODEL CANADIAN HT2_O.
- 2. ARCHAEOLOGICAL FEATURES LOCATED AS PER ENVIRONMENTAL CLEAN UP STUDY OF 21 DEW LINE SITES IN CANADA, VOL. 23,
- 3. ALL DIMENSIONS ARE IN METRES UNLESS NOTED OTHERWISE.
- 4. ALL NON-HAZARDOUS DEBRIS WITHIN PLAN AREA TO BE PLACED IN LOWER SITE
- 5. REFER TO TABLE 02219-1 IN SPECIFICATIONS FOR DESCRIPTION OF DEBRIS AREAS.
- 6. BM-1 TO BE TIED INTO SITE SURVEY COORDINATE SYSTEM.

Legend:

PERMANENT BENCHMARK LOCATION (2)

BODY OF WATER

No. DATE REVISION REVISION

PERMIT TO PRACTICE AECOM Canada Ltd.

aecom

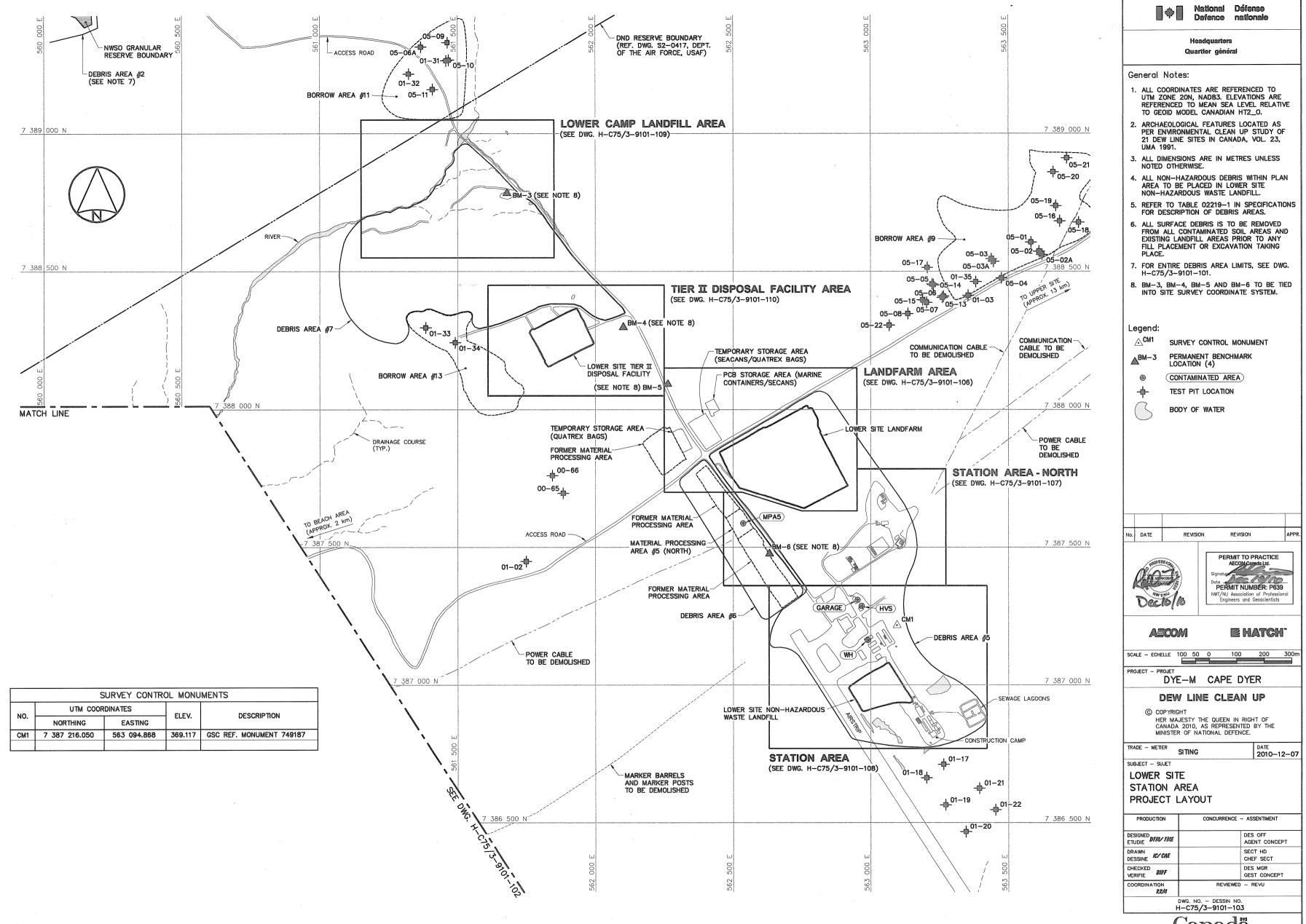
e hatch

PROJECT - PROJET

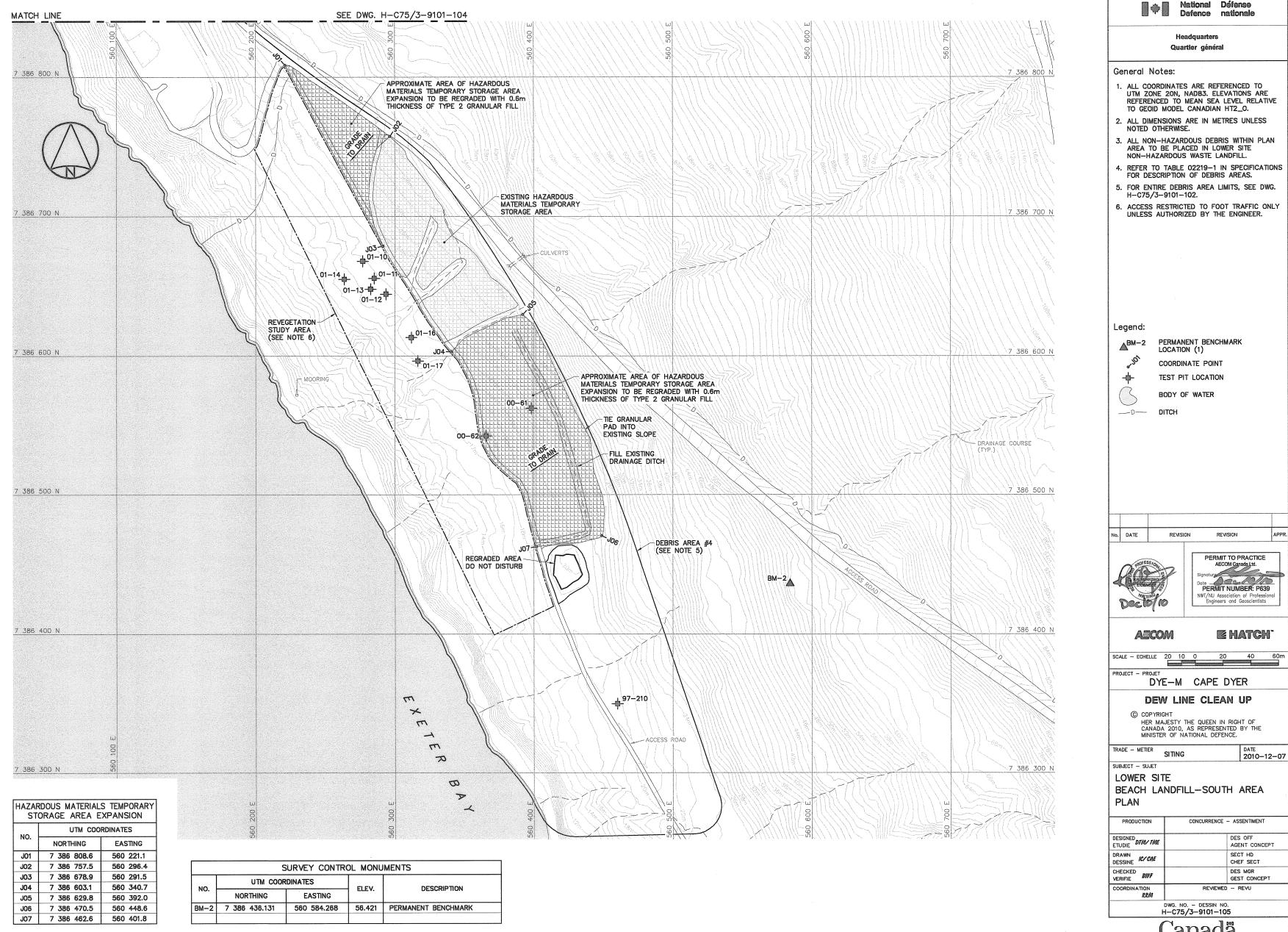
DYE-M CAPE DYER

DEW LINE CLEAN UP

© COPYRIGHT
HER MAJESTY THE QUEEN IN RIGHT OF
CANADA 2010, AS REPRESENTED BY THE
MINISTER OF NATIONAL DEFENCE.

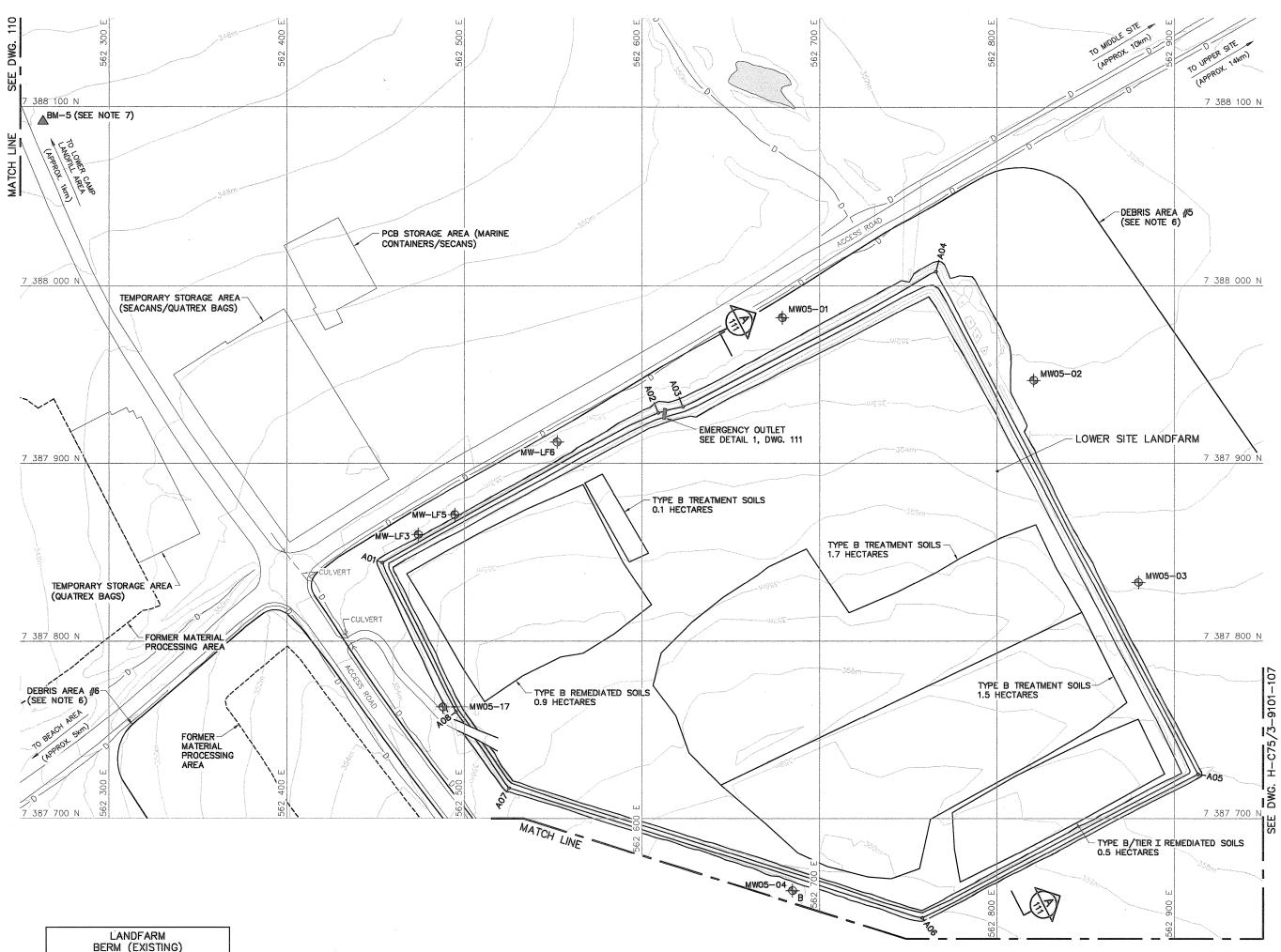

TRADE - METIER SITING


DATE 2010-12-07


SUBJECT - SUJET LOWER SITE BEACH AREA PROJECT LAYOUT

CONCURRENCE - ASSENTIMENT PRODUCTION DES OFF AGENT CONCEPT DESIGNED DTM/TME DRAWN DESSINE IC/CAE SECT HD CHEF SECT DES MGR GEST CONCEPT REVIEWED - REVU

DWG. NO. - DESSIN NO. H-C75/3-9101-102



PRODUCTION	CONCURRENCE - ASSENTIMENT
DESIGNED DTM/TME	DES OFF
ETUDIE	AGENT CONCEPT
DRAWN	SECT HD
DESSINE IC/CAE	CHEF SECT
CHECKED BWF	DES MGR
VERIFIE	GEST CONCEPT
COORDINATION RRM	REVIEWED — REVU
	110 DECCHI 110

BERM (EXISTING) UTM COORDINATES EASTING NORTHING A01 7 387 844.5 562 453.8 A02 7 387 928.5 562 609.1 A03 7 387 931.9 562 623.1 562 765.6 A04 7 388 008.1 A05 562 913.4 7 387 724.9 A06 7 387 644.4 562 757.9 A07 7 387 717.2 562 525.2 80A 7 387 760.1 562 495.3

National Défense Defence nationale

Quartler général

General Notes:

- . ALL COORDINATES ARE REFERENCED TO UTM ZONE 20N, NAD83. ELEVATIONS ARE REFERENCED TO MEAN SEA LEVEL RELATIVE TO GEOID MODEL CANADIAN HT2_0.
- 2. ALL DIMENSIONS ARE IN METRES UNLESS NOTED OTHERWISE.
- 3. ALL NON—HAZARDOUS DEBRIS WITHIN PLAN AREA TO BE PLACED IN LOWER SITE NON—HAZARDOUS WASTE LANDFILL.
- REFER TO TABLE 02219-1 IN SPECIFICATIONS FOR DESCRIPTION OF DEBRIS AREAS.
- 5. ALL SURFACE DEBRIS IS TO BE REMOVED FROM ALL CONTAMINATED SOIL AREAS AND EXISTING LANDFILL AREAS PRIOR TO ANY FILL PLACEMENT OR EXCAVATION TAKING PLACE.
- 6. FOR ENTIRE DEBRIS AREA LIMITS, SEE DWG. H-C75/3-9101-103.
- 7. BM-5 TO BE TIED INTO SITE SURVEY COORDINATE SYSTEM.

Legend:

△BM-5

PERMANENT BENCHMARK LOCATION (1)

COORDINATE POINT -

MONITORING WELL LOCATION (7)

BACKGROUND MONITORING WELL LOCATION (1) **⊕**_B

BODY OF WATER

No. DATE REVISION REVISION

PERMIT TO PRACTICE
AECOM Cenada Ltd.
Signatus
Date
PERMIT NUMBER: P639 T/NU Association of Profession Engineers and Geoscientists

AECOM E HATCH

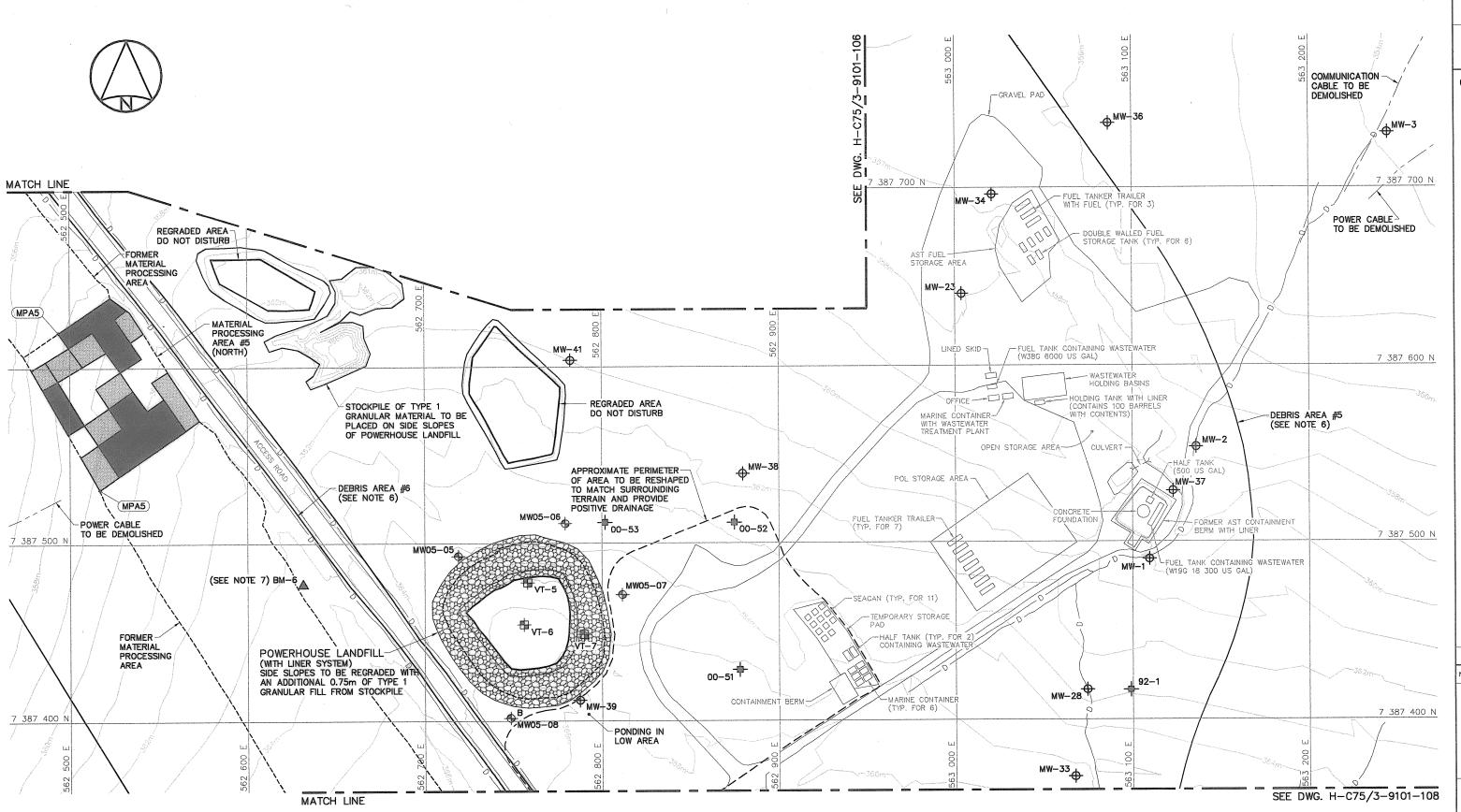
SCALE - ECHELLE 20 10 0 PROJECT - PROJE

DYE-M CAPE DYER

DEW LINE CLEAN UP

HER MAJESTY THE QUEEN IN RIGHT OF CANADA 2010, AS REPRESENTED BY THE MINISTER OF NATIONAL DEFENCE.

TRADE - METIER SITING SUBJECT - SUJET


DATE 2010-12-07

LOWER SITE LANDFARM AREA PLAN

CONCURRENCE - ASSENTIMENT
DES OFF AGENT CONCEPT
SECT HD CHEF SECT
DES MGR GEST CONCEPT
REVIEWED - REVU

DWG. NO. - DESSIN NO. H-C75/3-9101-106

	CONTAMINAT	ED SOIL TO BE	E EXCAVATED	
	APPROX.	ESTIMATED	REFERENCE	E POINT
AREA NO.	AREA (m²)	IN PLACE VOLUME (m ³)	NORTHING	EASTING
		DCC TIER I		
MPA5	1747	350	7 387 530.8	562 516.8
		DCC TIER II		
MPA5	2303	981	7 387 620.1	562 493.5

NOTE:

DETAILS OF CONTAMINATED SOIL AREAS, INCLUDING COORDINATE POINTS, WILL BE PROVIDED PRIOR TO CONSTRUCTION.

National Défense Defence nationale

Quartler général

General Notes:

- ALL COORDINATES ARE REFERENCED TO UTM ZONE 20N, NADB3. ELEVATIONS ARE REFERENCED TO MEAN SEA LEVEL RELATIVE TO GEOID MODEL CANADIAN HT2_O.
- 2. ALL DIMENSIONS ARE IN METRES UNLESS NOTED OTHERWISE.
- 3. ALL NON—HAZARDOUS DEBRIS WITHIN PLAN AREA TO BE PLACED IN LOWER SITE NON—HAZARDOUS WASTE LANDFILL.
- . REFER TO TABLE 02219-1 IN SPECIFICATIONS FOR DESCRIPTION OF DEBRIS AREAS.
- 5. ALL SURFACE DEBRIS IS TO BE REMOVED FROM ALL CONTAMINATED SOIL AREAS AND EXISTING LANDFILL AREAS PRIOR TO ANY FILL PLACEMENT OR EXCAVATION TAKING PLACE.
- 6. FOR ENTIRE DEBRIS AREA LIMITS, SEE DWG. H-C75/3-9101-103.
- BM-6 TO BE TIED INTO SITE SURVEY COORDINATE SYSTEM.

Legend:

PERMANENT BENCHMARK LOCATION (1)

DCC TIER I CONTAMINATED SOIL

DCC TIER II CONTAMINATED SOIL TEST PIT LOCATION

--SITE INVESTIGATION MONITORING Φ

WELL LOCATION MONITORING WELL LOCATION (3)

BACKGROUND MONITORING WELL LOCATION (1)

VERTICAL GROUND TEMPERATURE CABLE LOCATION (3)

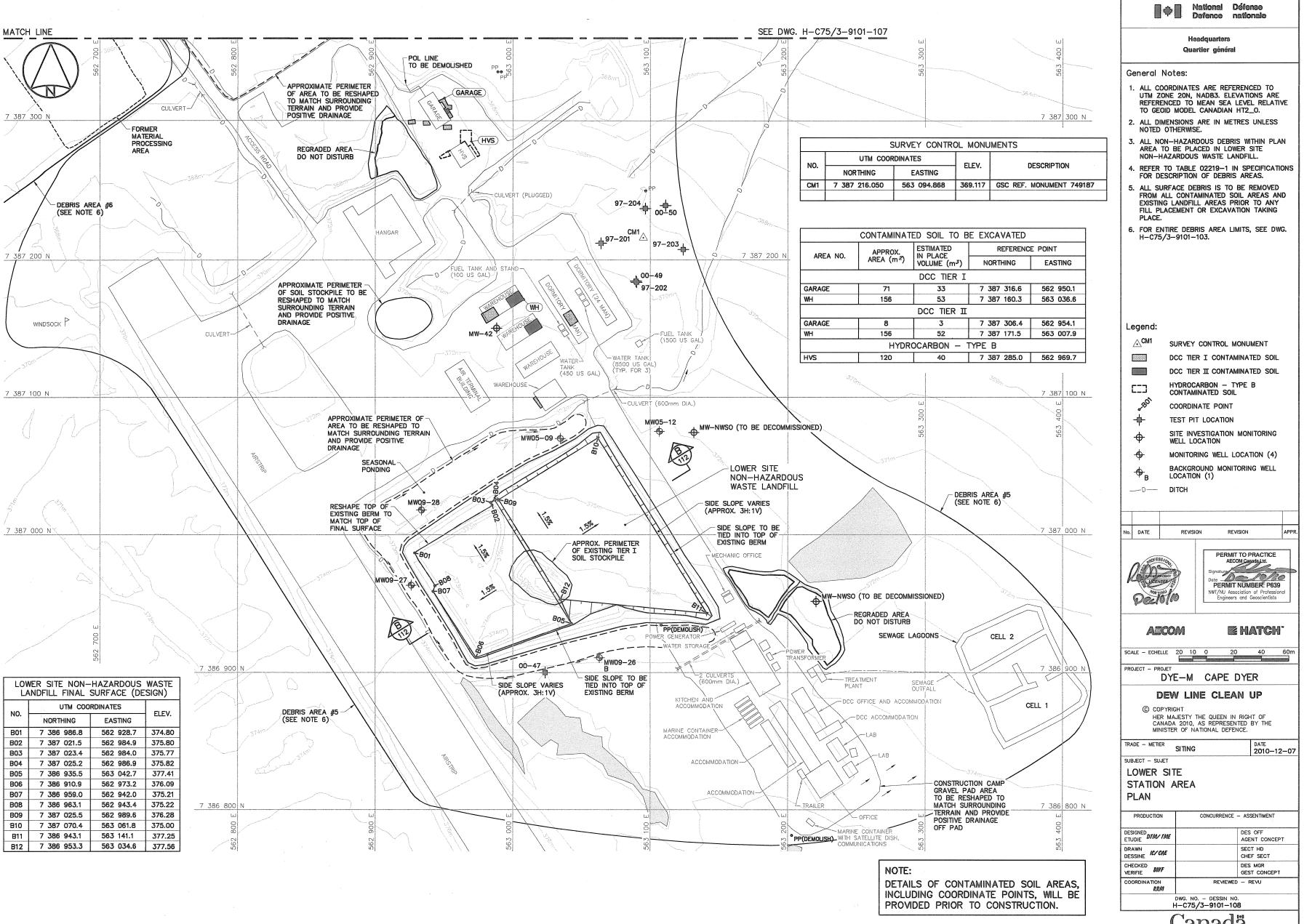
DITCH

No. DATE REVISION REVISION

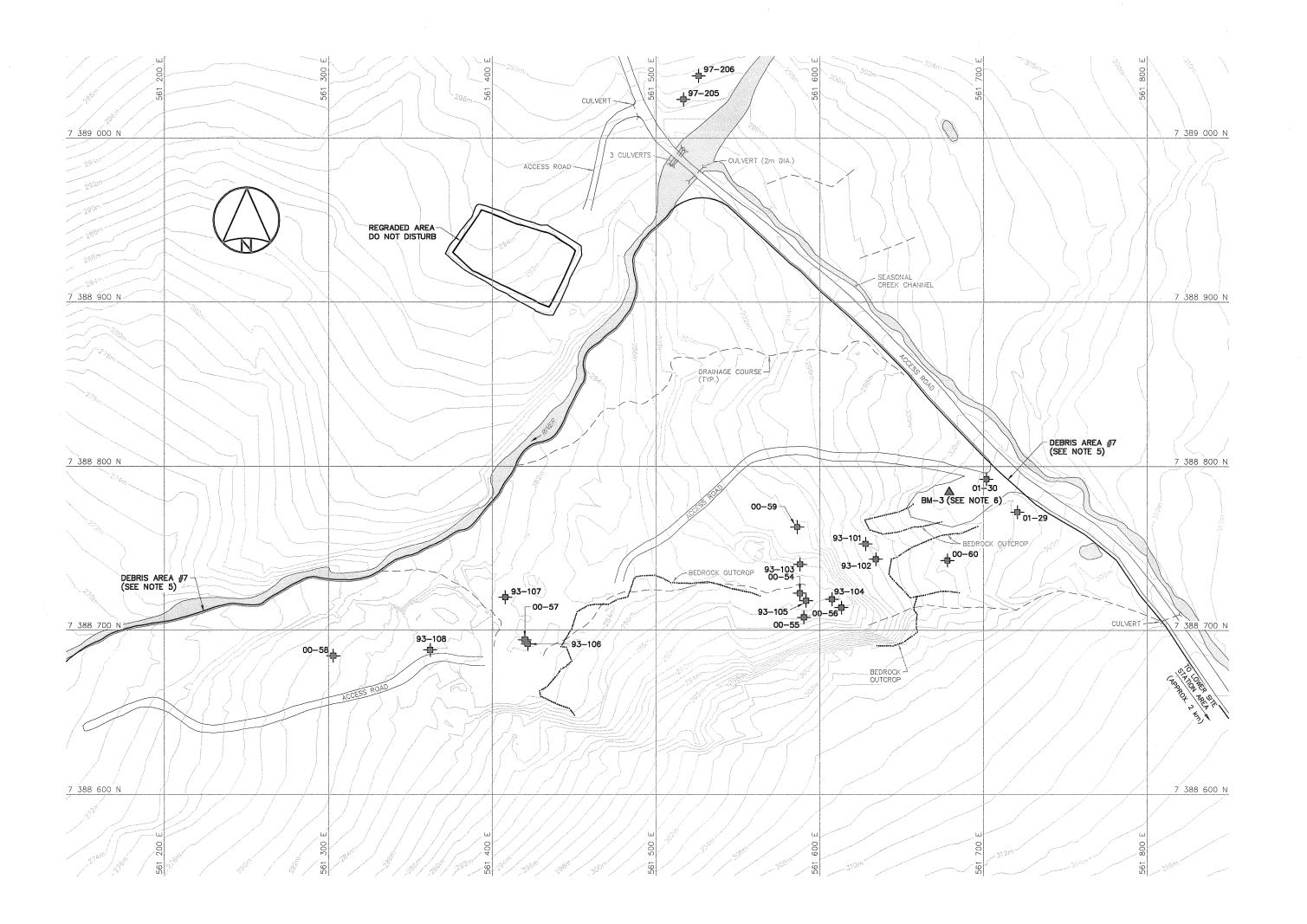
E HATCH AECOM

PROJECT - PROJET DYE-M CAPE DYER

DEW LINE CLEAN UP


© COPYRIGHT

HER MAJESTY THE QUEEN IN RIGHT OF CANADA 2010, AS REPRESENTED BY THE MINISTER OF NATIONAL DEFENCE.

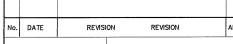

TRADE - METIER SITING DATE 2010-12-07 SUBJECT - SUJET

LOWER SITE STATION AREA-NORTH PLAN

CONCURRENCE - ASSENTIMENT PRODUCTION DES OFF AGENT CONCEPT DESIGNED DTM/ TME SECT HD CHEF SECT DRAWN DESSINE IC/CAE DES MGR GEST CONCEPT CHECKED BWF REVIEWED - REVU DWG. NO. - DESSIN NO. H-C75/3-9101-107

General Notes:

- ALL COORDINATES ARE REFERENCED TO UTM ZONE 20N, NADB3. ELEVATIONS ARE REFERENCED TO MEAN SEA LEVEL RELATIVE TO GEOID MODEL CANADIAN HT2_O.
- 2. ALL DIMENSIONS ARE IN METRES UNLESS NOTED OTHERWISE.
- 3. ALL NON—HAZARDOUS DEBRIS WITHIN PLAN AREA TO BE PLACED IN LOWER SITE NON—HAZARDOUS WASTE LANDFILL.
- 4. REFER TO TABLE 02219-1 IN SPECIFICATIONS FOR DESCRIPTION OF DEBRIS AREAS.
- 5. FOR ENTIRE DEBRIS AREA LIMITS, SEE DWG. H-C75/3-9101-103.
- 6. BM-3 TO BE TIED INTO SITE SURVEY COORDINATE SYSTEM.


Legend:

PERMANENT BENCHMARK LOCATION (1)

TEST PIT LOCATION

BODY OF WATER

PERMIT TO PRACTICE
AECOM Canada Ltd.
Signotum
Date
PERMIT NUMBER: P639 T/NU Association of Profession Engineers and Geoscientists

AECOM

e hatch

SCALE - ECHELLE 20 10 0 PROJECT - PROJET

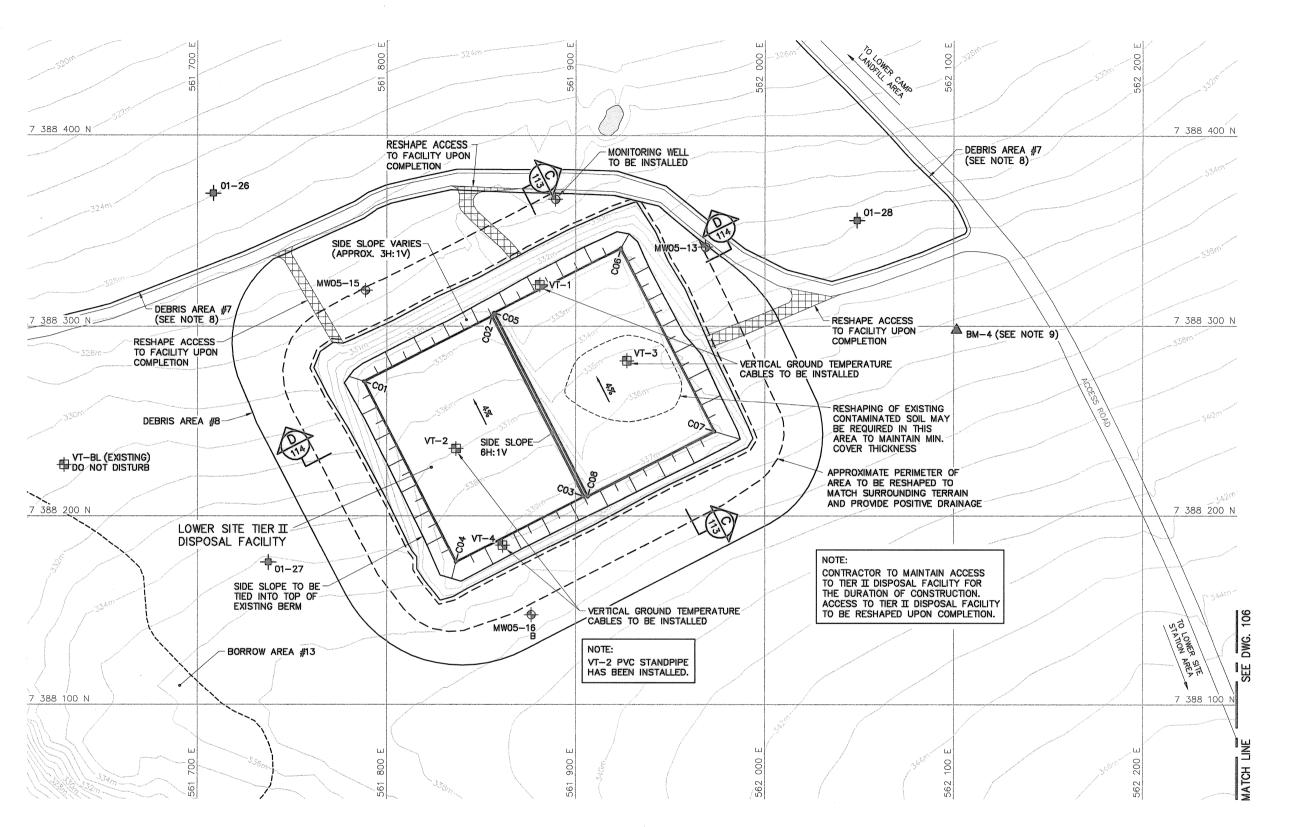
DYE-M CAPE DYER

DEW LINE CLEAN UP

© COPYRIGHT

HER MAJESTY THE QUEEN IN RIGHT OF
CANADA 2010, AS REPRESENTED BY THE
MINISTER OF NATIONAL DEFENCE.

TRADE - METIER SITING


DATE 2010-12-07

SUBJECT - SUJET LOWER SITE

LOWER CAMP LANDFILL AREA PLAN

DES OFF
AGENT CONCEPT
SECT HD CHEF SECT
DES MGR GEST CONCEPT
REVIEWED — REVU
_

DWG. NO. - DESSIN NO. H-C75/3-9101-109

LOWE	R SITE TIER II FINAL SURFA		
5	UTM COOF	RDINATES	F1.5V
NO.	NORTHING	EASTING	ELEV.
C01	7 388 270.8	561 788.0	337.16
C02	7 388 305.4	561 855.7	337.16
C03	7 388 210.1	561 904.4	341.44
C04	7 388 175.5	561 836.7	341.44
C05	7 388 307.1	561 856.8	336.82
C06	7 388 341.3	561 923.8	336.82
C07	7 388 244.2	561 973.4	341.18
C08	7 388 210.0	561 906.4	341.18

National Défense

Headquarters Quartier général

General Notes:

- ALL COORDINATES ARE REFERENCED TO UTM ZONE 20N, NADB3. ELEVATIONS ARE REFERENCED TO MEAN SEA LEVEL RELATIVE TO GEOID MODEL CANADIAN HT2_O.
- 2. ALL DIMENSIONS ARE IN METRES UNLESS NOTED OTHERWISE.
- ALL NON-HAZARDOUS DEBRIS WITHIN PLAN AREA TO BE PLACED IN LOWER SITE NON-HAZARDOUS WASTE LANDFILL.
- 4. REFER TO TABLE 02219-1 IN SPECIFICATIONS FOR DESCRIPTION OF DEBRIS AREAS.
- 5. ALL SURFACE DEBRIS IS TO BE REMOVED FROM ALL CONTAMINATED SOIL AREAS AND EXISTING LANDFILL AREAS PRIOR TO ANY FILL PLACEMENT OR EXCAVATION TAKING PLACE.
- 6. FOR MONITORING WELL INSTALLATION DETAILS, SEE DWG. H-C75/3-9101-191.
- 7. FOR VERTICAL GROUND TEMPERATURE CABLE INSTALLATION DETAILS, SEE DWG. H-C75/3-9101-190. EXACT LOCATIONS TO BE FIELD DETERMINED BY THE ENGINEER.
- 8. FOR ENTIRE DEBRIS AREA LIMITS, SEE DWG. H-C75/3-9101-103.
- 9. BM-4 TO BE TIED INTO SITE SURVEY COORDINATE SYSTEM.

Legend:

△BM-4

PERMANENT BENCHMARK LOCATION (1)

²CO1

-

 Φ

⊕_B

-

COORDINATE POINT

TEST PIT LOCATION

MONITORING WELL LOCATION (3)

BACKGROUND MONITORING WELL LOCATION (1)

VERTICAL GROUND TEMPERATURE CABLE LOCATION (5)

BODY OF WATER

No.	DATE	REVISION	REVISION	1.
-----	------	----------	----------	----

ascom e hatch

SCALE - ECHELLE 20 10 0 20 40 6

PROJECT - PROJET

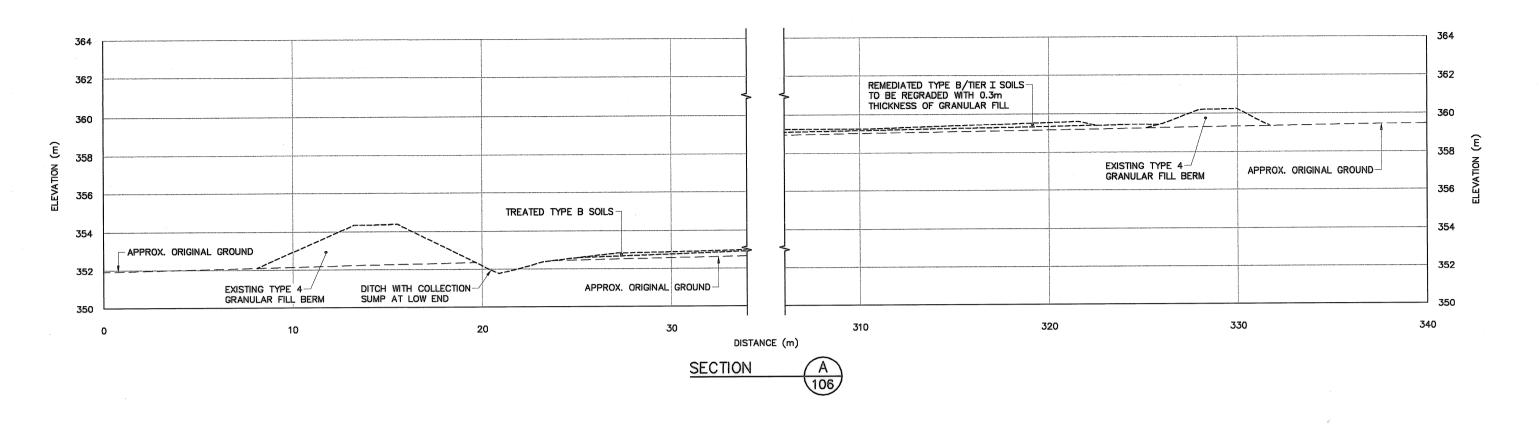
DYE-M CAPE DYER

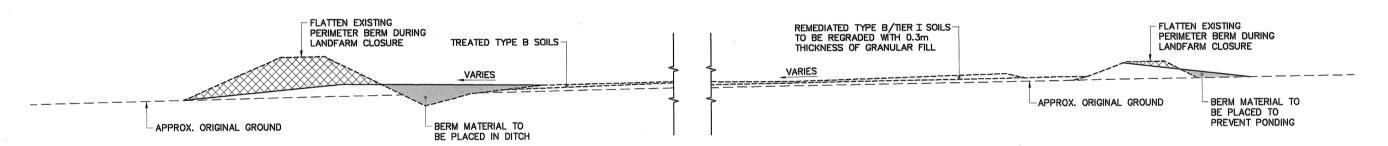
DEW LINE CLEAN UP

© COPYRIGHT

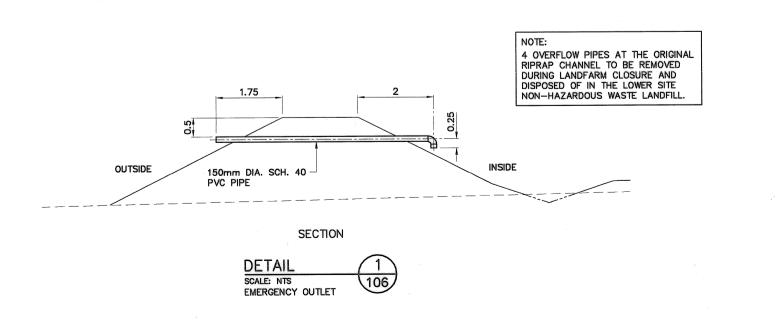
HER MAJESTY THE QUEEN IN RIGHT OF CANADA 2010, AS REPRESENTED BY THE MINISTER OF NATIONAL DEFENCE.

TRADE - METIER SITING DATE 2010-12-07
SUBJECT - SUJET


LOWER SITE
TIER II DISPOSAL FACILITY AREA
PLAN


PRODUCTION	CONCURRENCE - ASSENTIMENT	
DESIGNED DTM/TME	DES OFF AGENT CONCEPT	
DRAWN DESSINE IC/CAE	SECT HD CHEF SECT	
CHECKED VERIFIE BWF	DES MGR GEST CONCEPT	
COORDINATION RRM	REVIEWED - REVU	

DWG. NO. - DESSIN NO. H-C75/3-9101-110



TYPICAL LANDFARM CLOSURE DETAIL

National Défense Défense nationale

Quartler général

General Notes:

- ALL COORDINATES ARE REFERENCED TO UTM ZONE 20N, NADB3. ELEVATIONS ARE REFERENCED TO MEAN SEA LEVEL RELATIVE TO GEOID MODEL CANADIAN HT2_O.
- 2. ALL DIMENSIONS ARE IN METRES UNLESS NOTED OTHERWISE.

Legend:

DESIGN REQUIREMENTS TO BE CONSTRUCTED

GENERATED BASED ON EXISTING SURVEY INFORMATION

GENERATED BASED ON ORIGINAL SURVEY INFORMATION

No. DATE REVISION REVISION

aecom

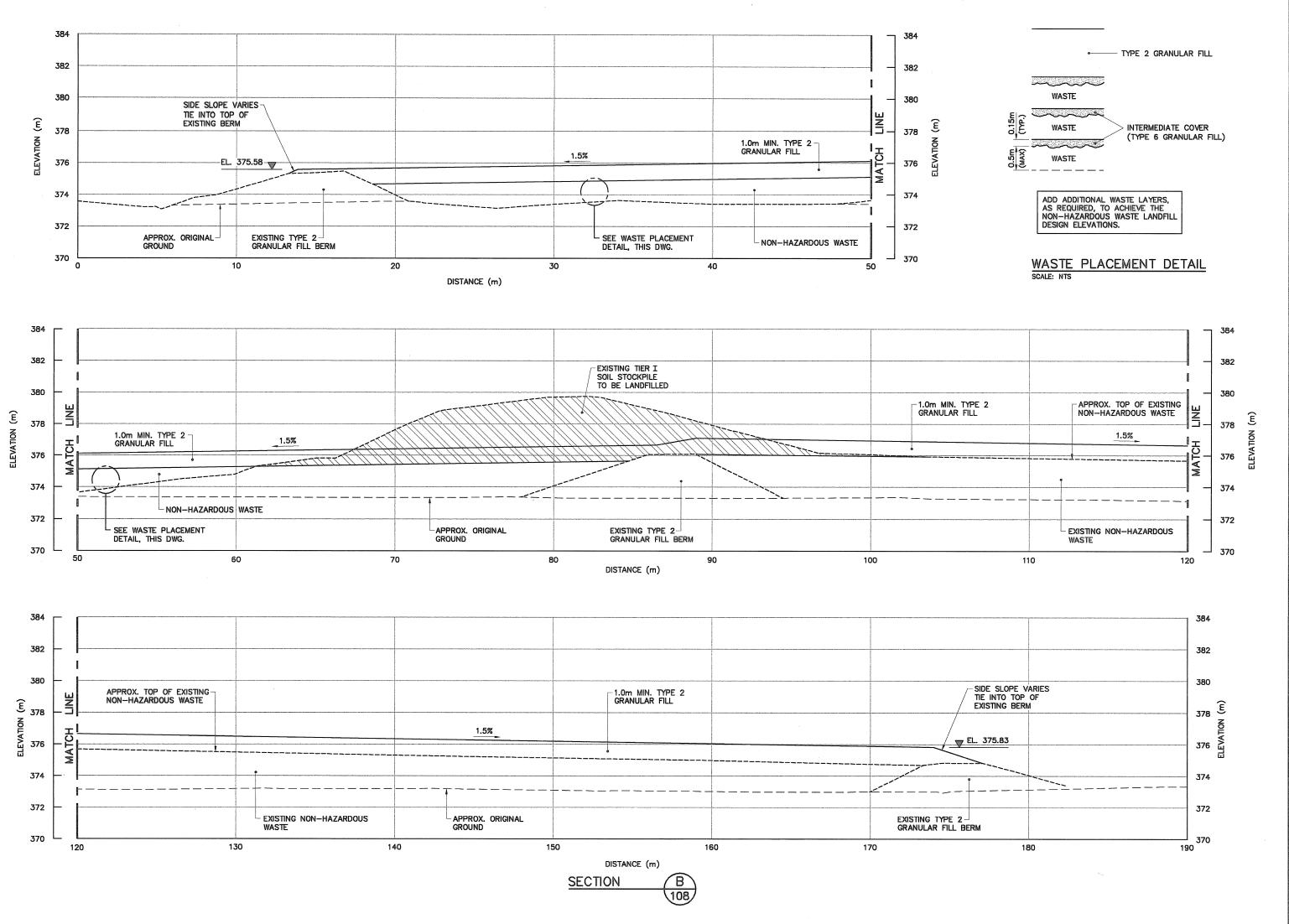
e hatch

DYE-M CAPE DYER

DEW LINE CLEAN UP

© COPYRIGHT

HER MAJESTY THE QUEEN IN RIGHT OF CANADA 2010, AS REPRESENTED BY THE MINISTER OF NATIONAL DEFENCE.


TRADE - METIER SITING

DATE 2010-12-07

SUBJECT - SUJET LOWER SITE LANDFARM CROSS SECTION

AND CLOSURE DETAIL

PRODUCTION	CONCURRENCE - ASSENTIMENT	
DESIGNED DTM/TME	DES OFF AGENT CONCEPT	
DRAWN DESSINE IC/CAE	SECT HD CHEF SECT	
CHECKED VERIFIE BWF	DES MGR GEST CONCEPT	
COORDINATION RRM	REVIEWED REVU	

National Défense Defence nationale

General Notes:

- . ALL COORDINATES ARE REFERENCED TO UTM ZONE 20N, NADB3. ELEVATIONS ARE REFERENCED TO MEAN SEA LEVEL RELATIVE TO GEOID MODEL CANADIAN HT2_O.
- 2. ALL DIMENSIONS ARE IN METRES UNLESS NOTED OTHERWISE.
- 3. USE STOCKPILED TIER I SOIL FOR INTERMEDIATE COVER AS REQUIRED.
- I. DURING THE COURSE OF WASTE PLACEMENT, UTILIZE ENTIRE FLOOR OF LANDFILL AND MAINTAIN A LEVEL WASTE LAYER. PLACE WASTE LAYERS IN PROGRESSIVE HORIZONTAL LIFTS THAT EXTEND ACROSS THE ENTIRE LANDFILL FLOOR.

Legend:

DESIGN REQUIREMENTS TO BE CONSTRUCTED

GENERATED BASED ON EXISTING SURVEY INFORMATION

GENERATED BASED ON ORIGINAL SURVEY INFORMATION

No. DATE REVISION REVISION

AECOM

SCALE - ECHELLE

E HATCH

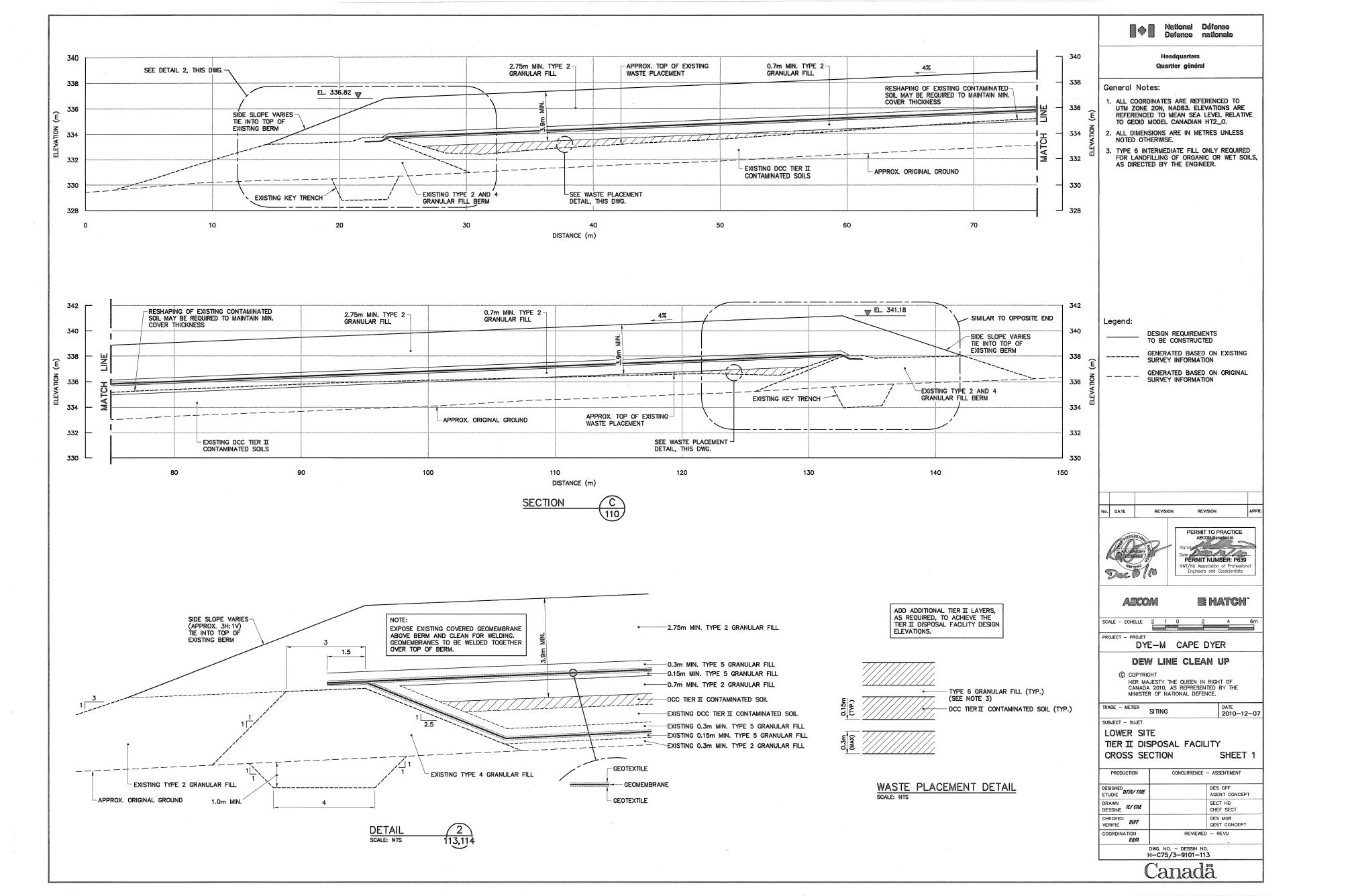
PROJECT - PROJET

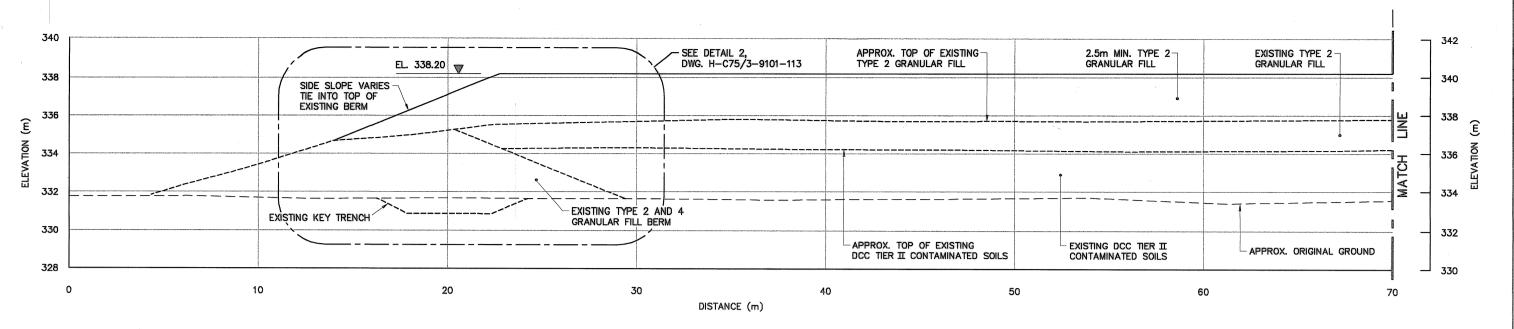
DYE-M CAPE DYER

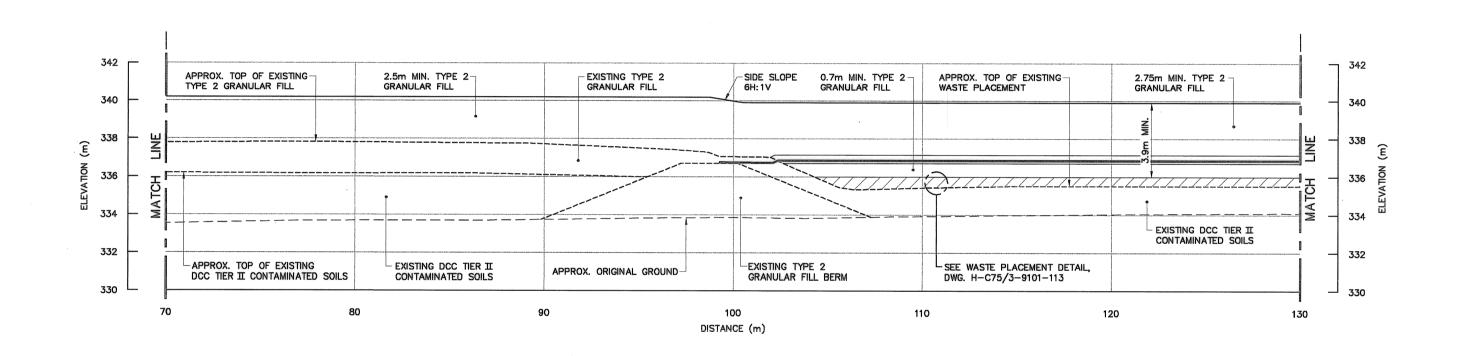
DEW LINE CLEAN UP

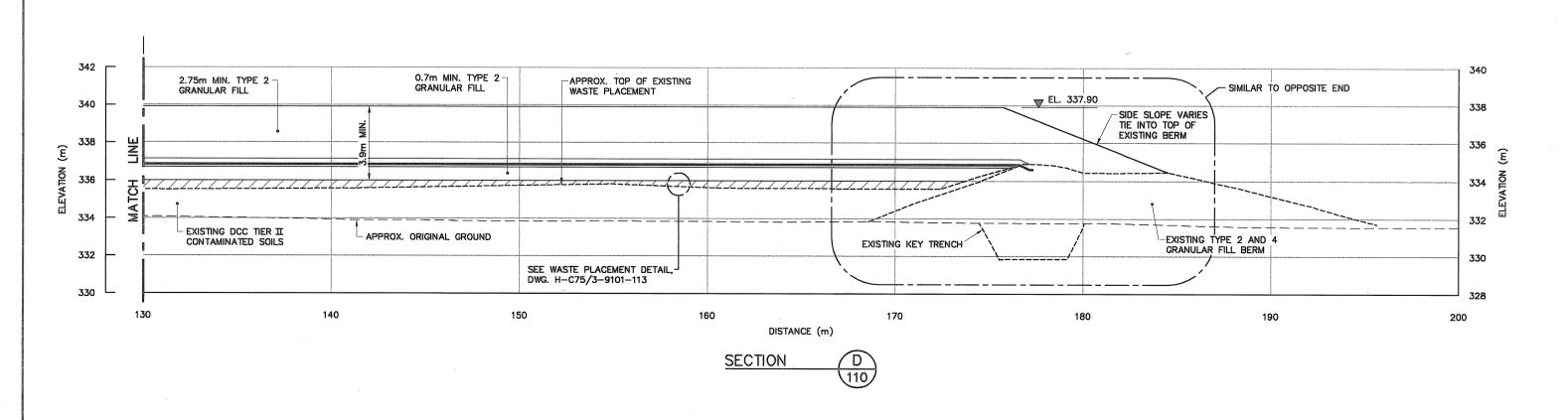
HER MAJESTY THE QUEEN IN RIGHT OF CANADA 2010, AS REPRESENTED BY THE MINISTER OF NATIONAL DEFENCE.

TRADE - METIER SITING


SUBJECT - SUJET


LOWER SITE


NON-HAZARDOUS WASTE LANDFILL CROSS SECTION


CONCURRENCE - ASSENTIMENT DES OFF AGENT CONCEPT DESIGNED DTM/TME DRAWN DESSINE IC/CAE SECT HD CHEF SECT CHECKED BWF DES MGR GEST CONCEPT

DWG. NO. - DESSIN NO. H-C75/3-9101-112

General Notes:

- . ALL COORDINATES ARE REFERENCED TO UTM ZONE 20N, NAD83. ELEVATIONS ARE REFERENCED TO MEAN SEA LEVEL RELATIVE TO GEOID MODEL CANADIAN HT2_O.
- 2. ALL DIMENSIONS ARE IN METRES UNLESS NOTED OTHERWISE.
- 3. PROTECT GEOMEMBRANE LINERS DURING CONSTRUCTION.

Legend:

DESIGN REQUIREMENTS TO BE CONSTRUCTED

GENERATED BASED ON EXISTING SURVEY INFORMATION

GENERATED BASED ON ORIGINAL SURVEY INFORMATION

No. DATE

REVISION

AECOM

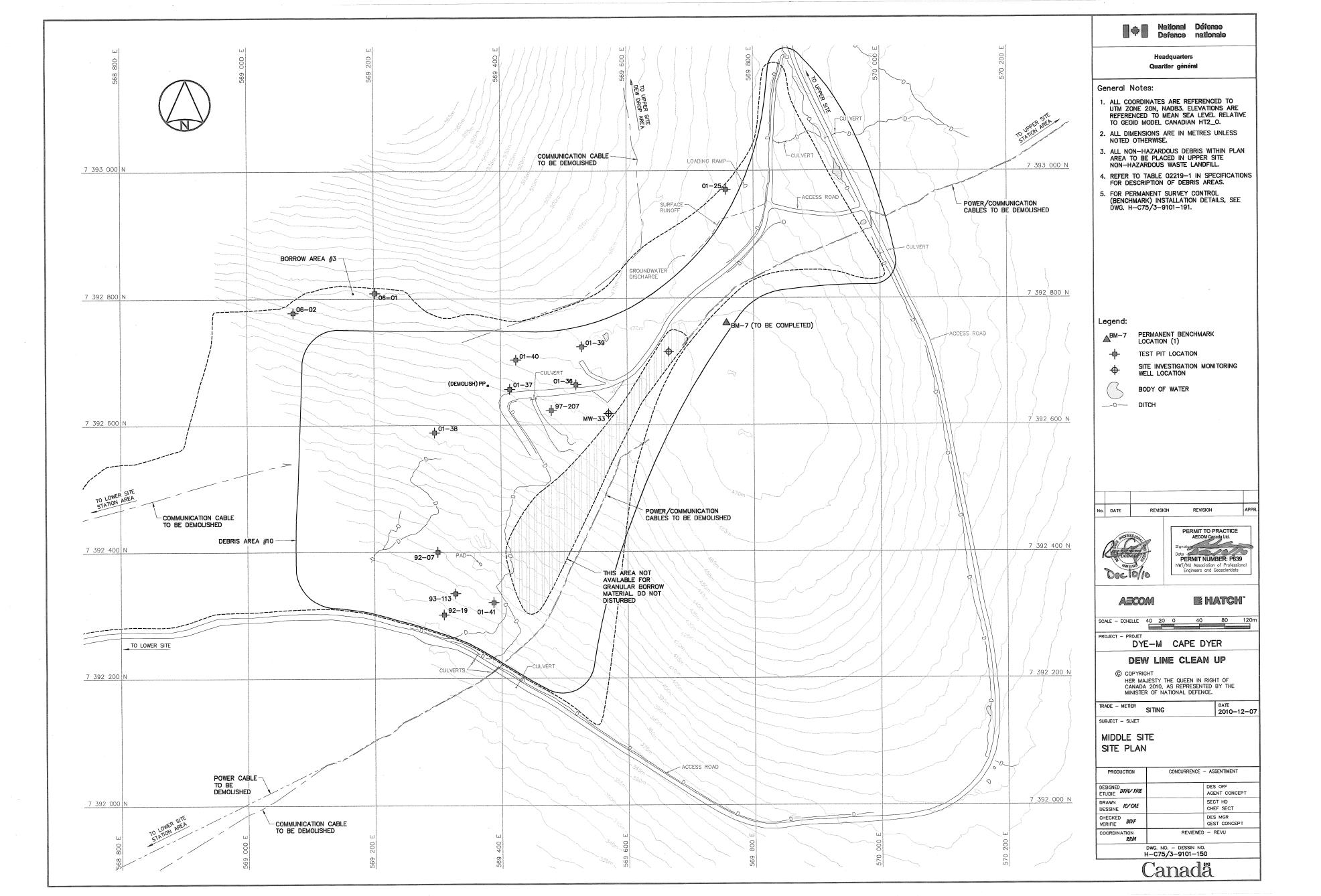
E HATCH"

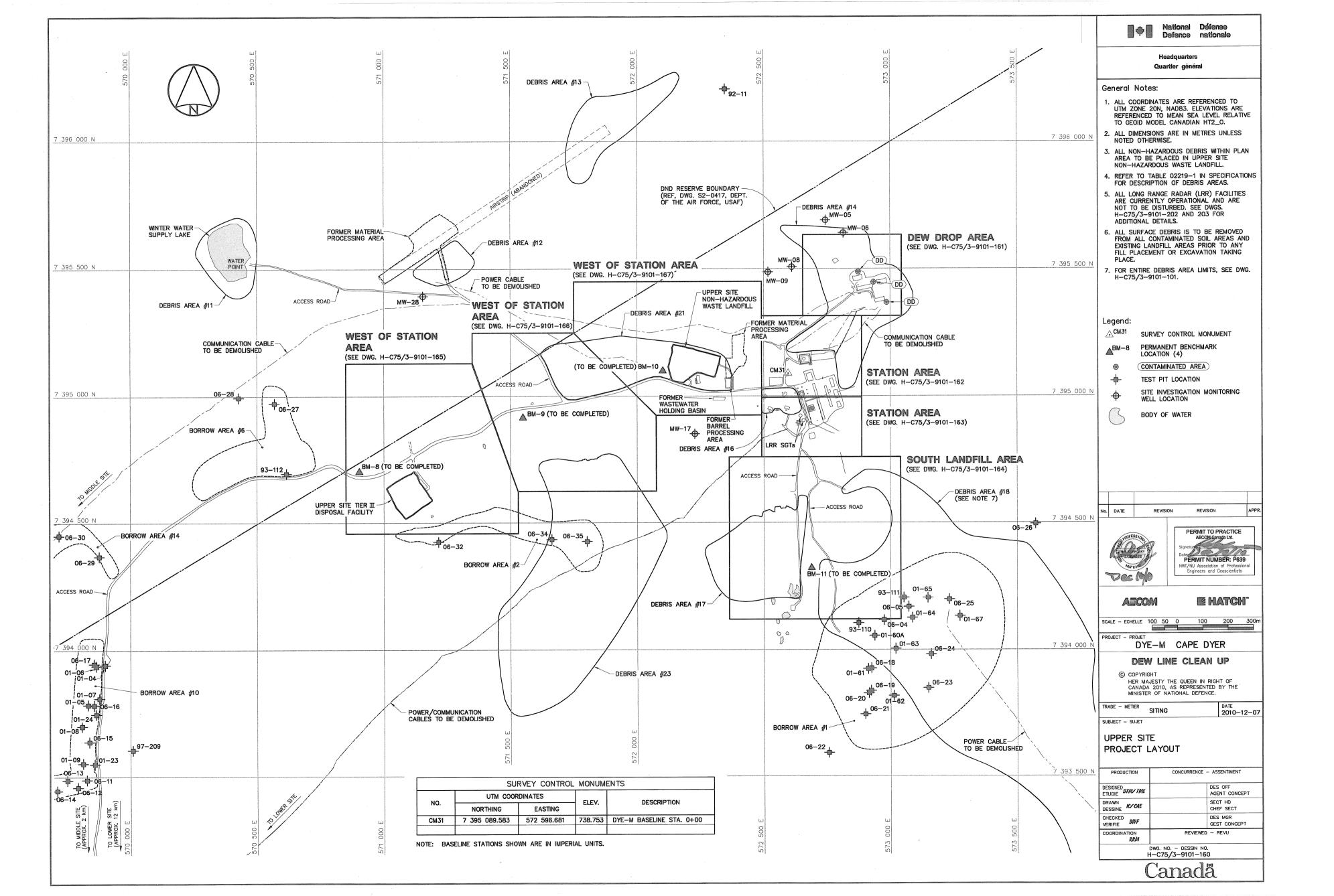
SHEET 2

SCALE - ECHELLE PROJECT - PROJET

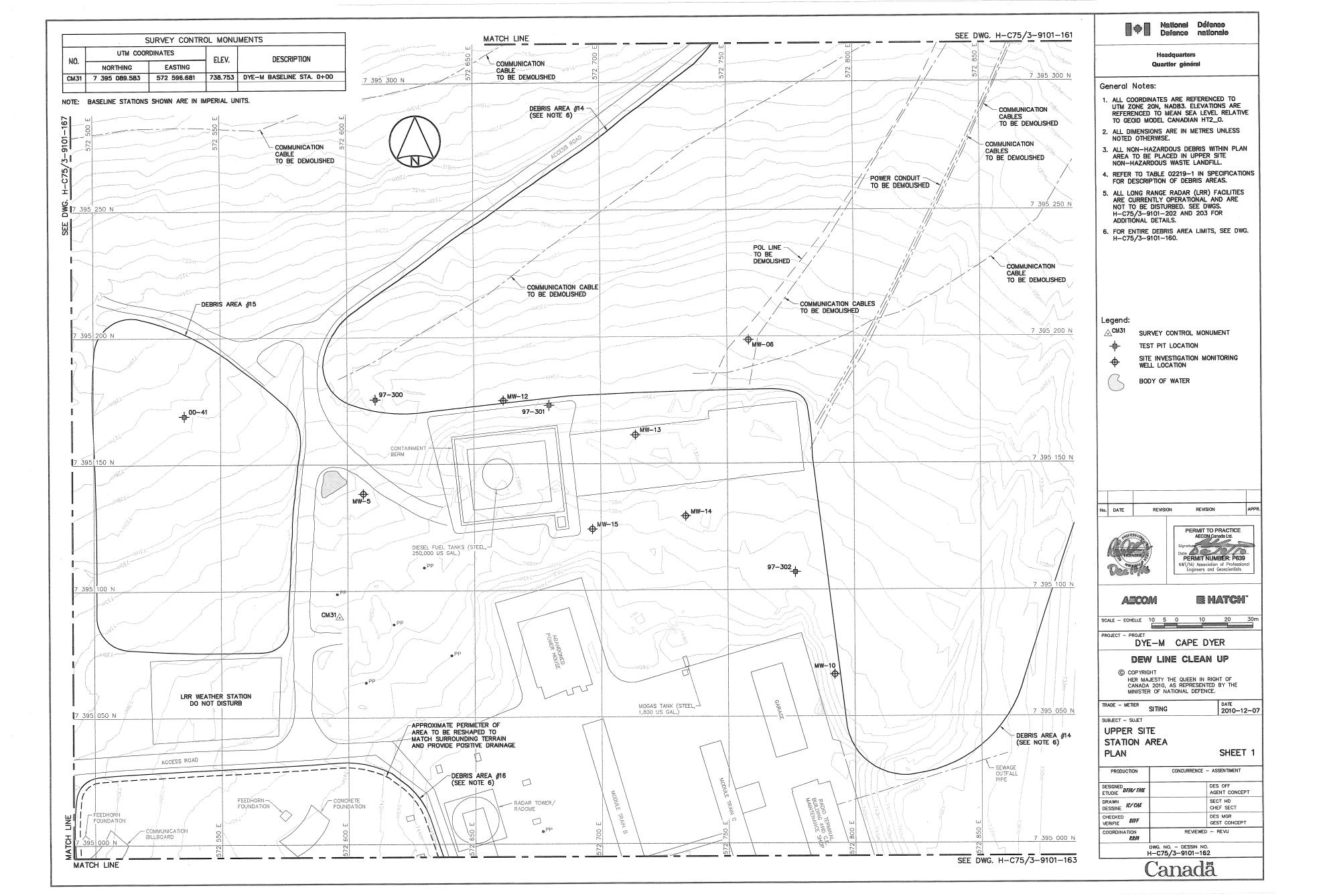
DYE-M CAPE DYER

DEW LINE CLEAN UP


CROSS SECTION


HER MAJESTY THE QUEEN IN RIGHT OF CANADA 2010, AS REPRESENTED BY THE MINISTER OF NATIONAL DEFENCE.


TRADE - METIER SITING DATE 2010-12-07 SUBJECT - SUJET LOWER SITE TIER II DISPOSAL FACILITY


DESIGNED DTM/ TME DES OFF AGENT CONCEPT SECT HD DRAWN DESSINE IC/CAE CHEF SECT CHECKED BWF DES MGR GEST CONCEPT REVIEWED - REVU COORDINATION RRM

DWG. NO. - DESSIN NO. H-C75/3-9101-114 Canadä

DWG. H-C75/3-910

띯

MATCH LINE

National Défense Defence nationale

General Notes:

- ALL COORDINATES ARE REFERENCED TO UTM ZONE 20N, NADB3. ELEVATIONS ARE REFERENCED TO MEAN SEA LEVEL RELATIVE TO GEOID MODEL CANADIAN HT2_O.
- 2. ALL DIMENSIONS ARE IN METRES UNLESS NOTED OTHERWISE.
- ALL NON-HAZARDOUS DEBRIS WITHIN PLAN AREA TO BE PLACED IN UPPER SITE NON-HAZARDOUS WASTE LANDFILL.
- 4. REFER TO TABLE 02219-1 IN SPECIFICATIONS FOR DESCRIPTION OF DEBRIS AREAS.
- 5. ALL LONG RANGE RADAR (LRR) FACILITIES
 ARE CURRENTLY OPERATIONAL AND ARE
 NOT TO BE DISTURBED. SEE DWGS.
 H-C75/3-9101-202 AND 203 FOR
 ADDITIONAL DETAILS.
- 6. FOR ENTIRE DEBRIS AREA LIMITS, SEE DWG. H-C75/3-9101-160.

Legend:

SITE INVESTIGATION MONITORING WELL LOCATION

No. DATE REVISION REVISION

PERMIT TO PRACTICE
AECOM Canada Ltd.

Signature
PERMIT NUMBER: P639

AECOM

e hatch

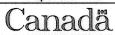
PROJECT – PROJET

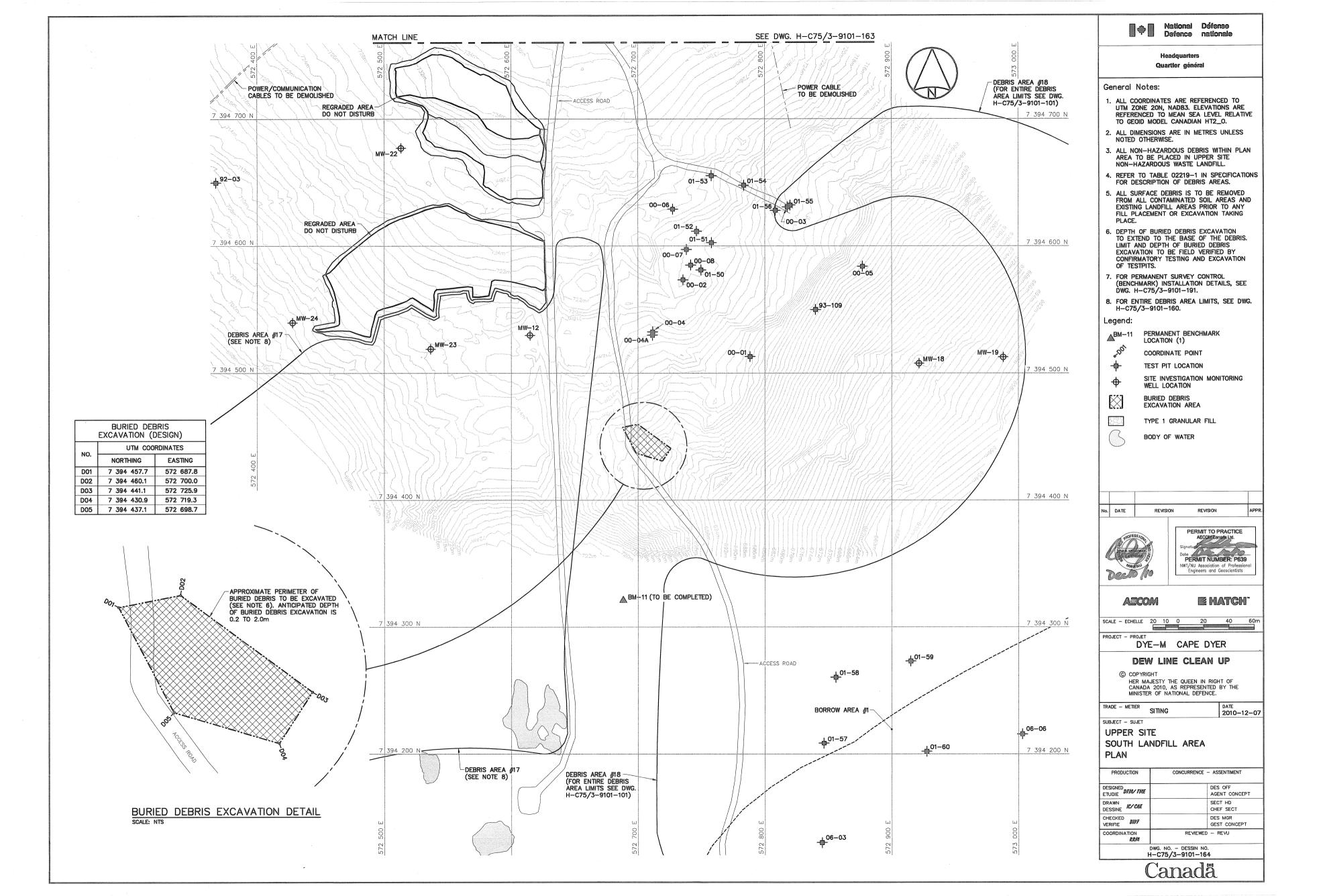
DYE—M CAPE DYER

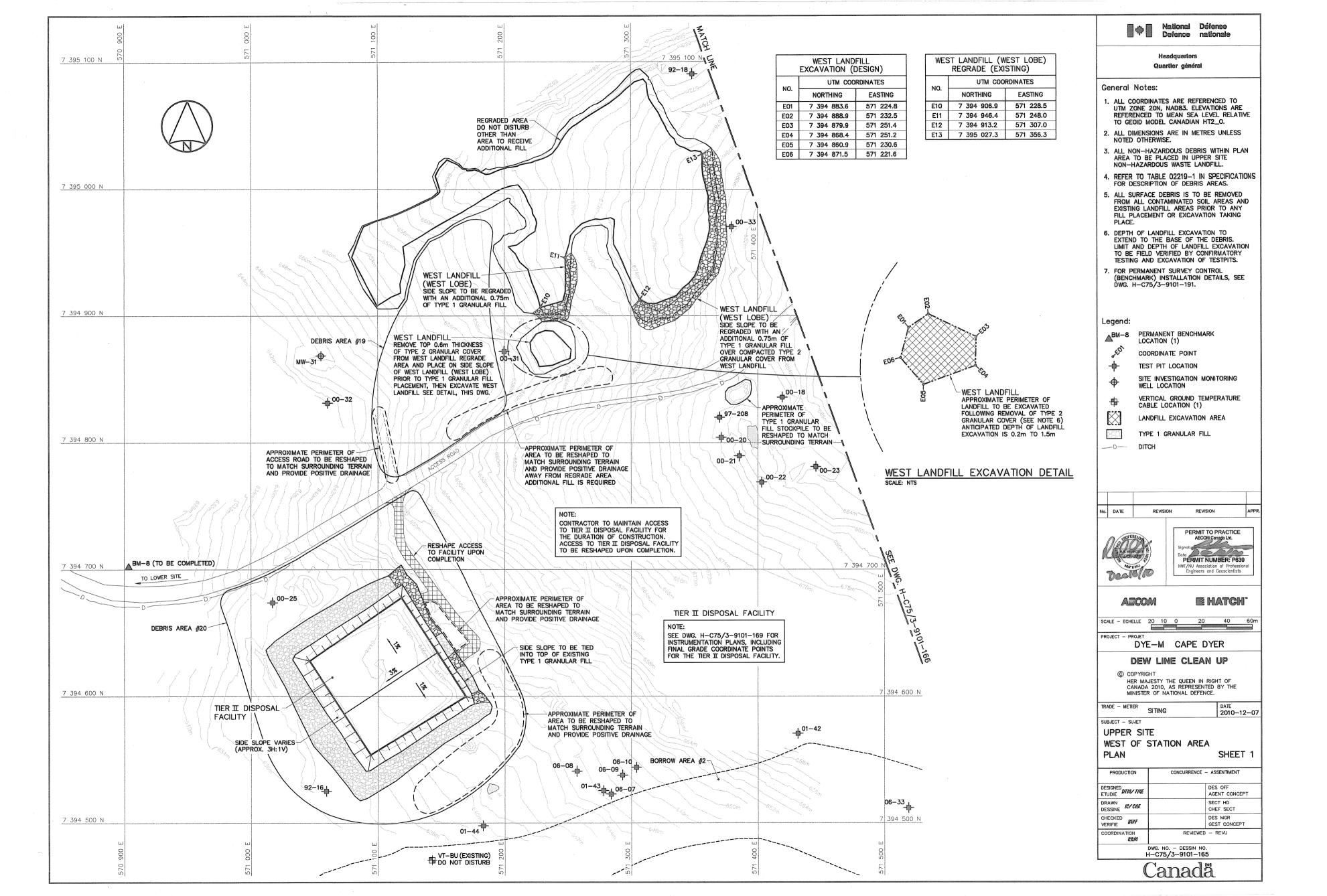
DEW LINE CLEAN UP

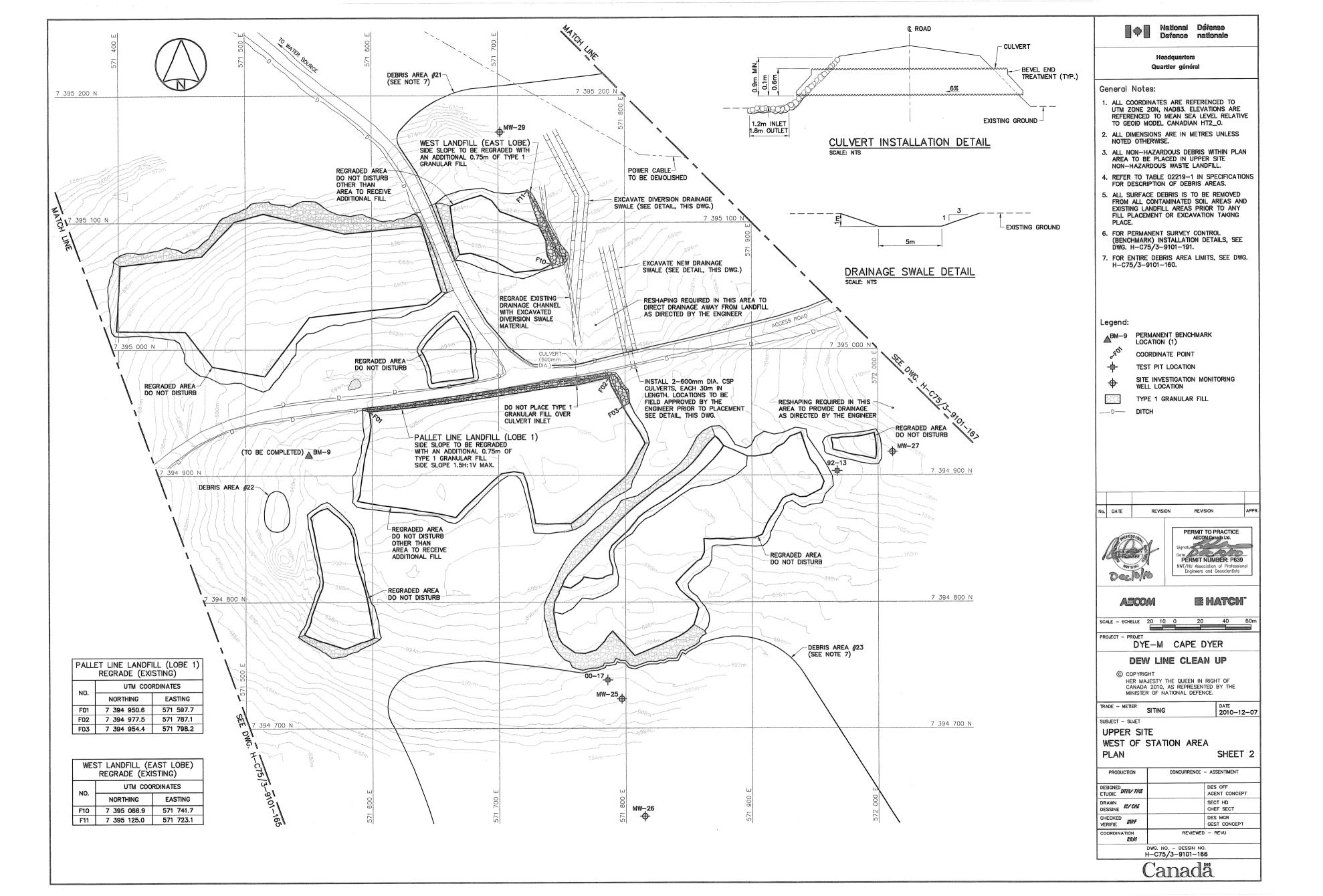
© COPYRIGHT

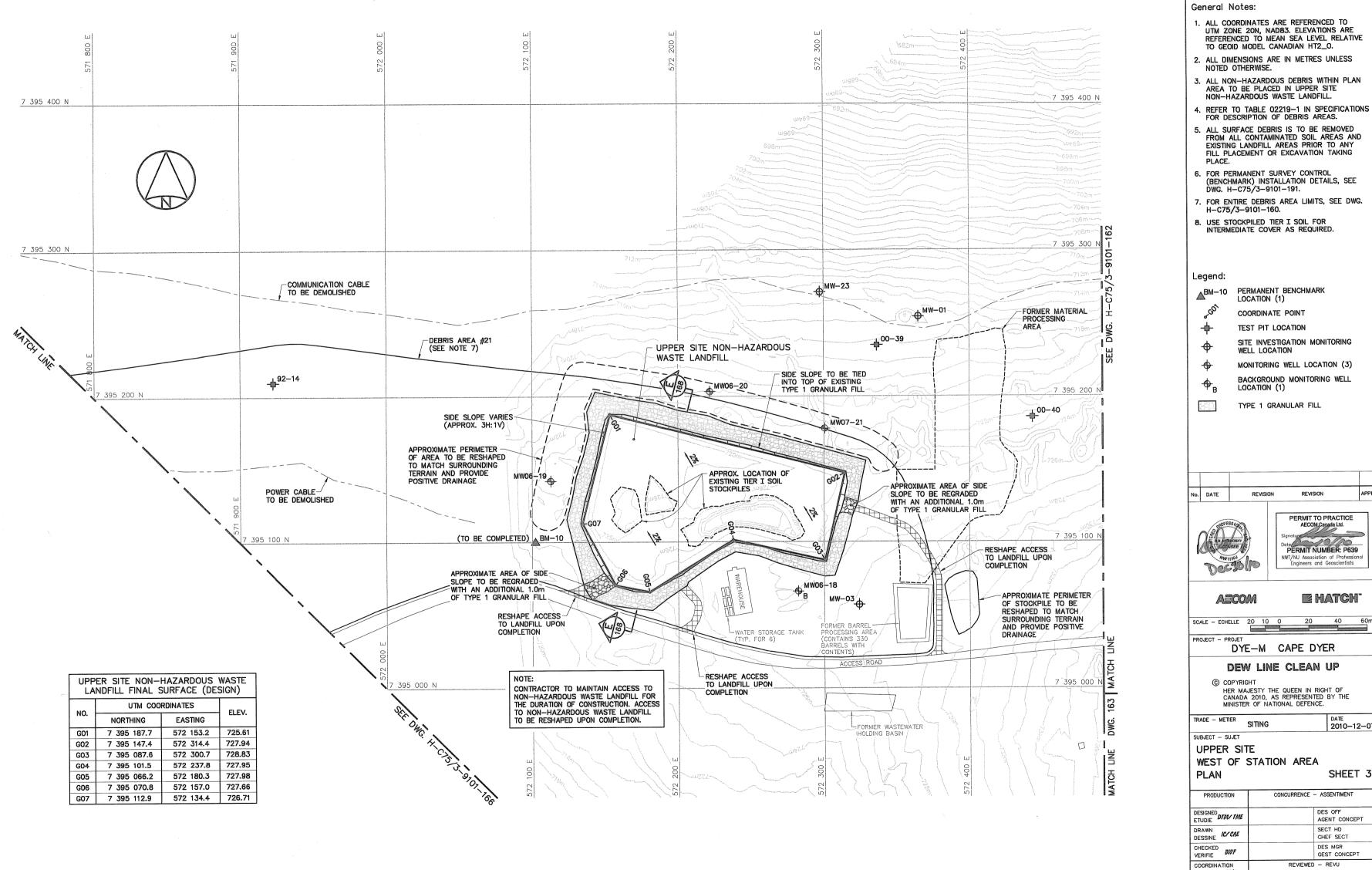
POWER CABLE TO BE DEMOLISHED


SEE DWG. H-C75/3-9101-164


HER MAJESTY THE QUEEN IN RIGHT OF CANADA 2010, AS REPRESENTED BY THE MINISTER OF NATIONAL DEFENCE.


TRADE - METIER SITING DATE 2010-12-07 SUBJECT - SUJET UPPER SITE STATION AREA PLAN SHEET 2


PRODUCTION	CONCURRENCE — ASSENTIMENT	
DESIGNED DTM/TME	DES OFF AGENT CONCEPT	
DRAWN DESSINE IC/CAE	SECT HD CHEF SECT	
CHECKED BWF	DES MGR GEST CONCEPT	
COORDINATION RRM	REVIEWED — REVU	
nw.	G NO - DESSIN NO	


H-C75/3-9101-163

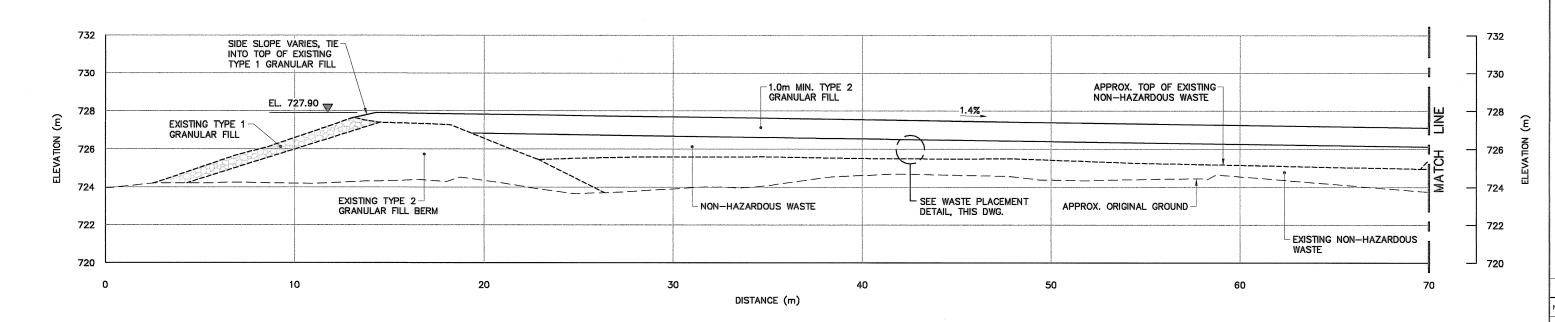
National Défense Defence nationale

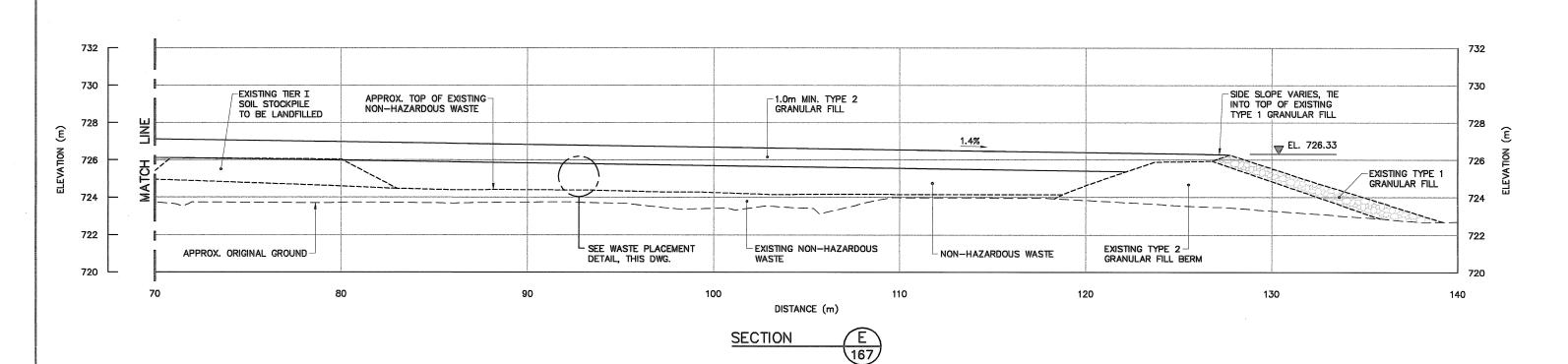
Quartler général

e hatch

SHEET 3

CONCURRENCE - ASSENTIMENT	
DES OFF AGENT CONCEPT	
SECT HD CHEF SECT	
DES MGR GEST CONCEPT	
REVIEWED - REVU	


H-C75/3-9101-167 Canadä ADD ADDITIONAL WASTE LAYERS, AS REQUIRED, TO ACHIEVE THE NON-HAZARDOUS WASTE LANDFILL DESIGN ELEVATIONS.


ىخىمىم WASTE INTERMEDIATE COVER (TYPE 6 GRANULAR FILL) WASTE WASTE

• TYPE 2 GRANULAR FILL

WASTE PLACEMENT DETAIL

N.T.S.

General Notes:

- ALL COORDINATES ARE REFERENCED TO UTM ZONE 20N, NADB3. ELEVATIONS ARE REFERENCED TO MEAN SEA LEVEL RELATIVE TO GEOID MODEL CANADIAN HT2_O.
- 2. ALL DIMENSIONS ARE IN METRES UNLESS NOTED OTHERWISE.
- 3. VARIABLE SLOPE ON LANDFILL SURFACE PERMITTED. MINIMUM 2% MAXIMUM 4%.

Legend:

DESIGN REQUIREMENTS TO BE CONSTRUCTED

GENERATED BASED ON EXISTING SURVEY INFORMATION

GENERATED BASED ON ORIGINAL SURVEY INFORMATION

No. DATE REVISION

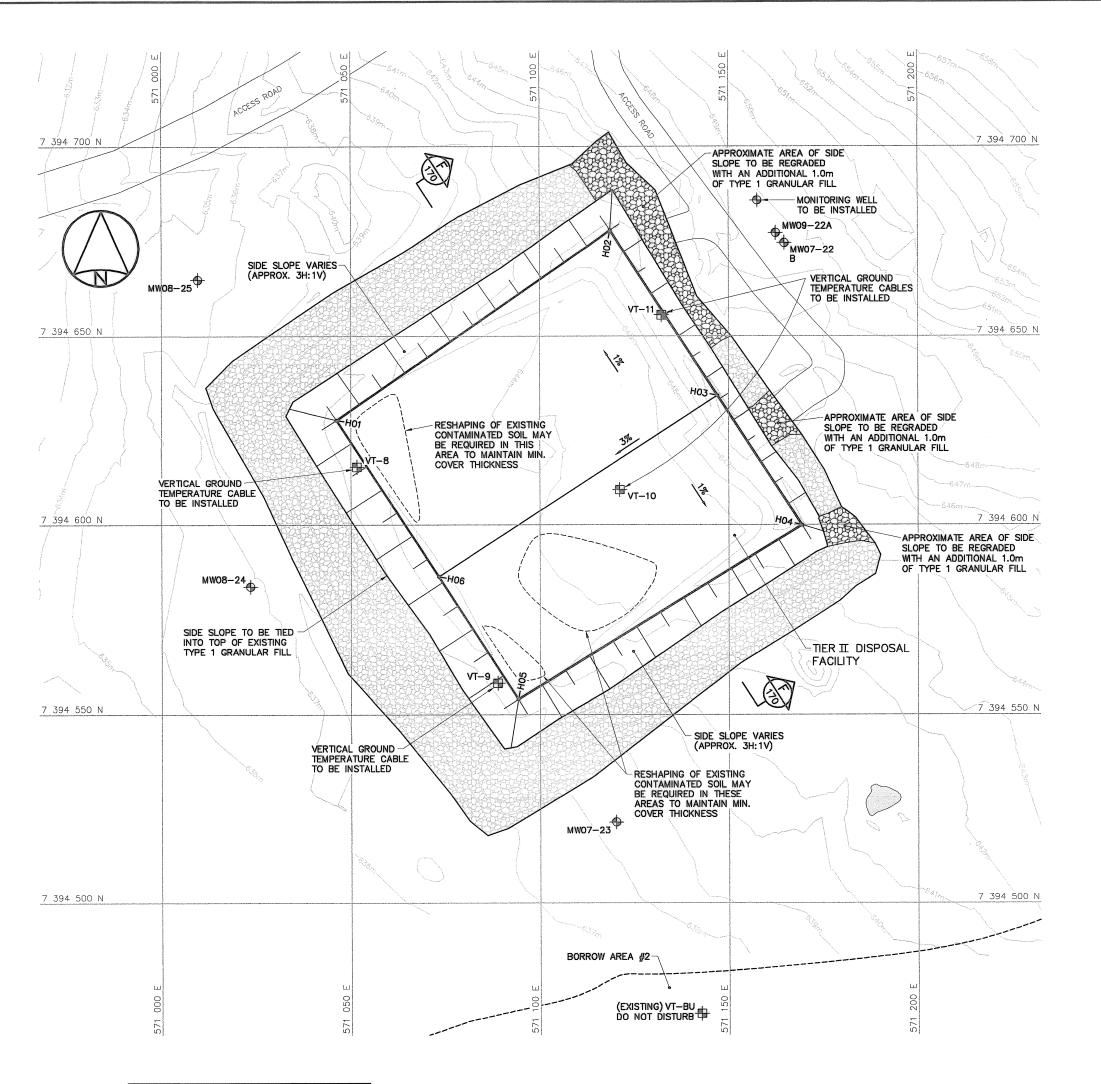
SCALE - ECHELLE

DATE 2010-12-07

AECOM e hatch

PROJECT - PROJE DYE-M CAPE DYER

DEW LINE CLEAN UP


© COPYRIGHT

HER MAJESTY THE QUEEN IN RIGHT OF
CANADA 2010, AS REPRESENTED BY THE
MINISTER OF NATIONAL DEFENCE.

TRADE - METIER SITING SUBJECT - SUJET

UPPER SITE NON-HAZARDOUS WASTE LANDFILL CROSS SECTION

PRODUCTION CONCURRENCE - ASSENTIMENT DES OFF AGENT CONCEPT SECT HD CHEF SECT DRAWN DESSINE IC/CAE CHECKED BWF DES MGR GEST CONCEPT DWG. NO. - DESSIN NO. H-C75/3-9101-168

UPP	UPPER SITE TIER II DISPOSAL FACILITY FINAL SURFACE (DESIGN)				
UTM COORDINATES		RDINATES	ELEV.		
NO. N	NORTHING	EASTING	ELEV.		
H01	7 394 627.8	571 046.2	645.94		
H02	7 394 677.9	571 118.6	648.55		
H03	7 394 634.3	571 147.0	649.07		
H04	7 394 599.9	571 169.3	648.66		
H05	7 394 554.0	571 094.2	646.05		
H06	7 394 586.3	571 073.2	646.43		

National Défense Defence nationale

Quartler général

General Notes:

- ALL COORDINATES ARE REFERENCED TO UTM ZONE 20N, NADB3. ELEVATIONS ARE REFERENCED TO MEAN SEA LEVEL RELATIVE TO GEOID MODEL CANADIAN HT2_O.
- 2. ALL DIMENSIONS ARE IN METRES UNLESS
- 3. FOR MONITORING WELL INSTALLATION DETAILS, SEE DWG. H-C75/3-9101-191.
- 4. FOR VERTICAL GROUND TEMPERATURE CABLE INSTALLATION DETAILS, SEE DWG. H-C75/3-9101-190. EXACT LOCATIONS TO BE FIELD DETERMINED BY THE ENGINEER.

Legend:

COORDINATE POINT

MONITORING WELL LOCATION (5) BACKGROUND MONITORING WELL LOCATION (1)

VERTICAL GROUND TEMPERATURE CABLE LOCATION (5)

TYPE 1 GRANULAR FILL

BODY OF WATER

No. DATE REVISION REVISION

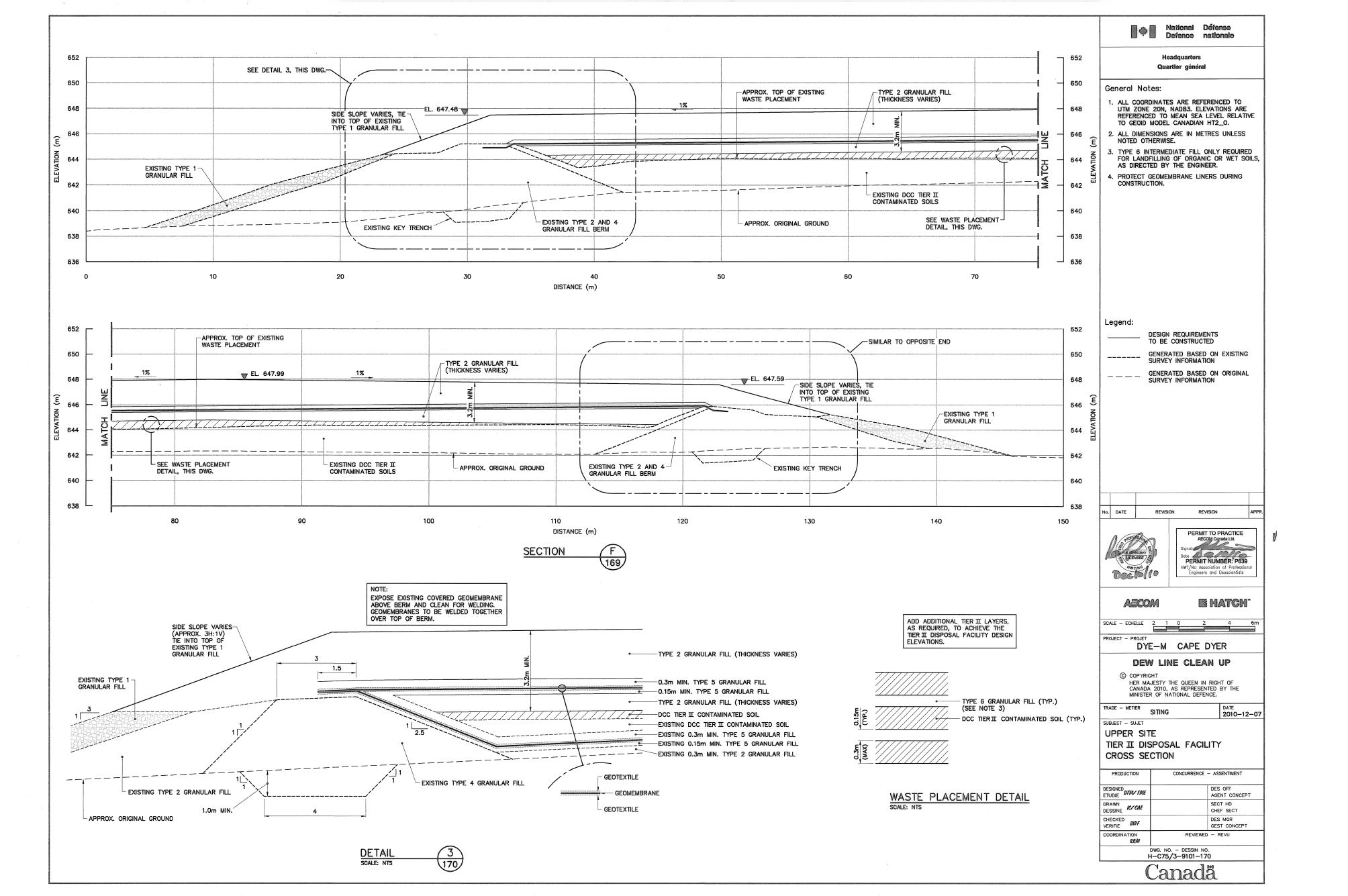
PERMIT TO PRACTICE
AECOM Banada Ltd.
Signatur
Date
PERMIT NUMBER: P639

AECOM

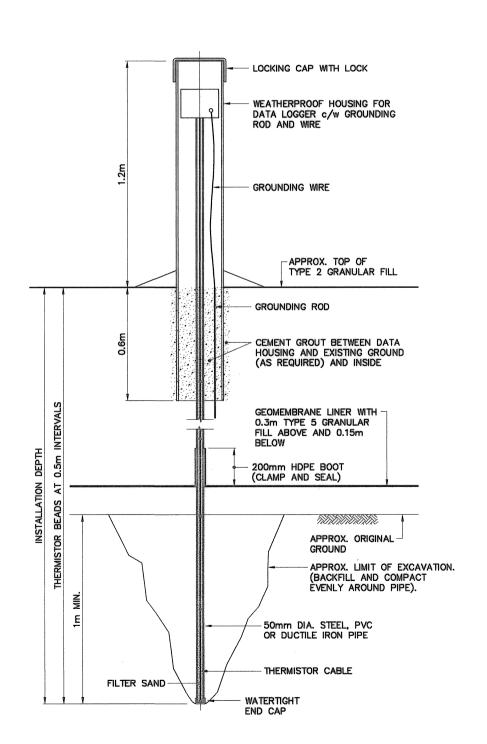
E HATCH"

SCALE - ECHELLE 10 5 0

DYE-M CAPE DYER DEW LINE CLEAN UP


© COPYRIGHT

HER MAJESTY THE QUEEN IN RIGHT OF CANADA 2010, AS REPRESENTED BY THE MINISTER OF NATIONAL DEFENCE.


TRADE - METIER SITING SUBJECT - SUJET

UPPER SITE TIER II DISPOSAL FACILITY GRADING/INSTRUMENTATION PLAN

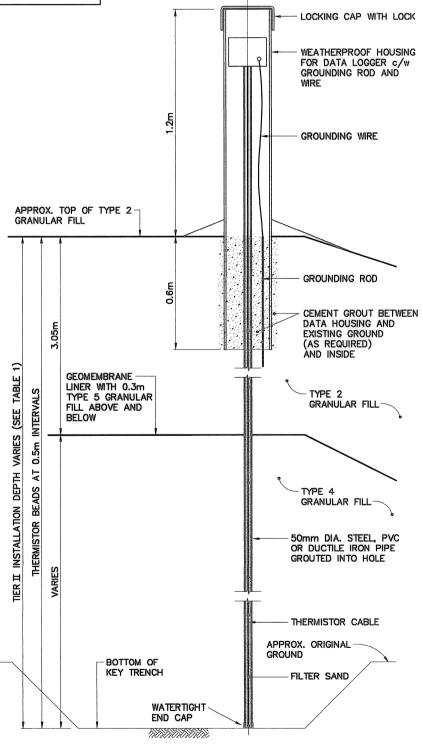

CONCURRENCE - ASSENTIMENT PRODUCTION DESIGNED DTM/TME DES OFF AGENT CONCEPT DRAWN DESSINE IC/CAE SECT HD CHEF SECT CHECKED BWF DES MGR GEST CONCEPT REVIEWED - REVU DWG. NO. - DESSIN NO. H-C75/3-9101-169

TABLE 1 VERTICAL GROUND TEMPERATURE CABLE INSTALLATION				
INSTRUMENT No.	APPROXIMATE DEPTH BELOW FINAL GRADE (m)	COMMENTS		
LOWER SITE - TIER II DISPOSAL FACILITY				
VT–1	7.5	INSTALL THROUGH CENTERLINE BERM TO INVERT OF KEY TRENCH		
VT-2	4.7	PVC STANDPIPE PREVIOUSLY INSTALLED TO 1m ABOVE ELEVATION OF BOTTOM LINER		
VT-3	4.5	INSTALL TO 1m ABOVE ELEVATION OF BOTTOM LINER		
VT-4	6.7	INSTALL THROUGH CENTERLINE BERM TO INVERT OF KEY TRENCH		
UPPER SITE - TIER II DISPOSAL FACILITY				
VT-8	7.6	INSTALL THROUGH CENTERLINE BERM TO INVERT OF KEY TRENCH		
VT-9	8.8	INSTALL THROUGH CENTERLINE BERM TO INVERT OF KEY TRENCH		
VT-10	5.3	INSTALL TO 1m ABOVE ELEVATION OF BOTTOM LINER		
VT-11	6.0	INSTALL THROUGH CENTERLINE BERM TO INVERT OF KEY TRENCH		

TYPICAL VERTICAL GROUND TEMPERATURE CABLE INSTALLATION - PLATEAU VT-2, VT-3 AND VT-10

TYPICAL VERTICAL GROUND TEMPERATURE CABLE INSTALLATION - TIER II SCALE: NTS LOWER AND UPPER SITE - TIER II DISPOSAL FACILITIES

National Défense Defence nationale

Quartier général

General Notes:

- ALL DIMENSIONS ARE IN MILLIMETRES UNLESS NOTED OTHERWISE.
- 2. APPROXIMATE LOCATIONS FOR INSTRUMENTATION TO BE INSTALLED ARE SHOWN ON THE DRAWINGS. INSTALLATION LOCATIONS TO BE FIELD CONFIRMED BY THE ENGINEER
- 3. PROVIDE THERMISTOR BEADS AT 0.5m MAXIMUM INTERVALS, INCLUDING ONE AT THE BOTTOM OF THE INSTALLATION.

Legend:

No. DATE REVISION

PERMIT TO PRACTICE
AECOM Canada Ltd.
Signature
Date
PERMIT NUMBER: P639

AECOM

E HATCH

AS SHOWN

DYE-M CAPE DYER

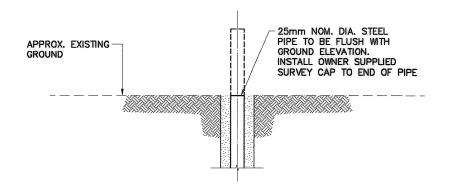
DEW LINE CLEAN UP

© COPYRIGHT

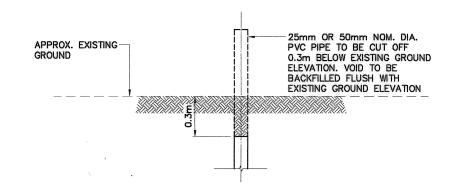
HER MAJESTY THE QUEEN IN RIGHT OF
CANADA 2010, AS REPRESENTED BY THE
MINISTER OF NATIONAL DEFENCE.

TRADE - METIER SITING DATE 2010-12-07

SUBJECT - SUJET

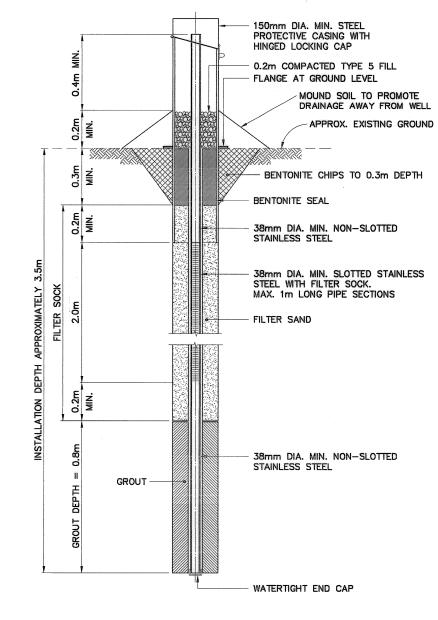

MISCELLANEOUS DETAILS SHEET 1

PRODUCTION CONCURRENCE - ASSENTIMENT DES OFF AGENT CONCEPT DESIGNED DTM/TME DRAWN DESSINE IC/CAE SECT HD CHEF SECT CHECKED BWF DES MGR GEST CONCEPT REVIEWED - REVU DWG. NO. - DESSIN NO. H-C75/3-9101-190


NOTE:

6 PERMANENT SURVEY CONTROL
MONUMENTS PREMOUSLY INSTALLED.
5 PERMANENT SURVEY CONTROL
MONUMENTS TO BE COMPLETED AT
MIDDLE AND LIPPER SITES

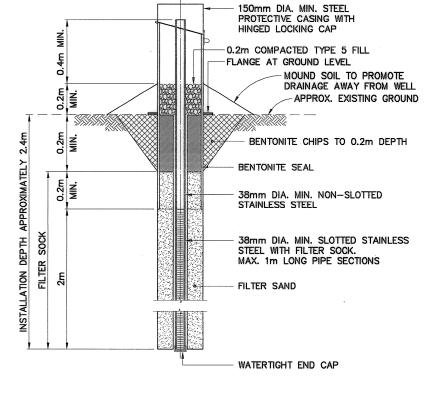
NOTE:
29 MONITORING WELLS PREVIOUSLY
INSTALLED.
2 MONITORING WELLS TO BE INSTALLED.
SEE NOTE 2.
2 MONITORING WELLS TO BE
DECOMMISSIONED.


TYPICAL PERMANENT SURVEY CONTROL MONUMENT (BENCHMARK) SCALE: NTS

TYPICAL SITE INVESTIGATION

MONITORING WELL

SCALE: NTS


TYPICAL MONITORING WELL/
BACKGROUND MONITORING WELL
SCALE: NTS
FOR BEDROCK DEPTH > 0.7m

NOTE:

- 1. MATERIAL TO BE REMOVED: DCC TIER I SOILS TO BE DISPOSED OF IN THE NON—HAZARDOUS WASTE LANDFILLS. DCC TIER II SOILS TO BE DISPOSED OF IN THE TIER II SOIL DISPOSAL FACILITIES. HYDROCARBON TYPE B SOILS PLACED IN THE LANDFARM AND TREATED.
- TYPE 3 GRANULAR MATERIAL TO BE PLACED IN EXCAVATION, COMPACTED AND MOUNDED TO 100mm ABOVE GROUND SURFACE TO PROMOTE DRAINAGE, UNLESS NOTED OTHERWISE.

TYPICAL CONTAMINATED SOIL EXCAVATION SECTION

TYPICAL MONITORING WELL/
BACKGROUND MONITORING WELL
SCALE: NTS
FOR BEDROCK DEPTH < 0.7m

National Défense

Handamadam

Quartler général

General Notes:

- 1. ALL DIMENSIONS ARE IN MILLIMETRES
- 2. APPROXIMATE LOCATIONS FOR INSTRUMENTATION TO BE INSTALLED ARE SHOWN ON THE DRAWINGS, INSTALLATION LOCATIONS TO BE FIELD CONFIRMED BY THE ENGINEER.

Legend:

No. DATE REMSION REVISION APP

e hatch

AECOM

SCALE - ECHELLE

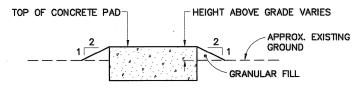
PROJECT - PROJET

DYE-M CAPE DYER

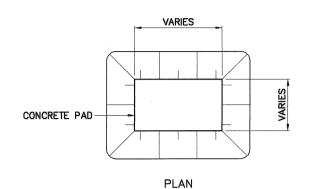
DEW LINE CLEAN UP

AS SHOWN

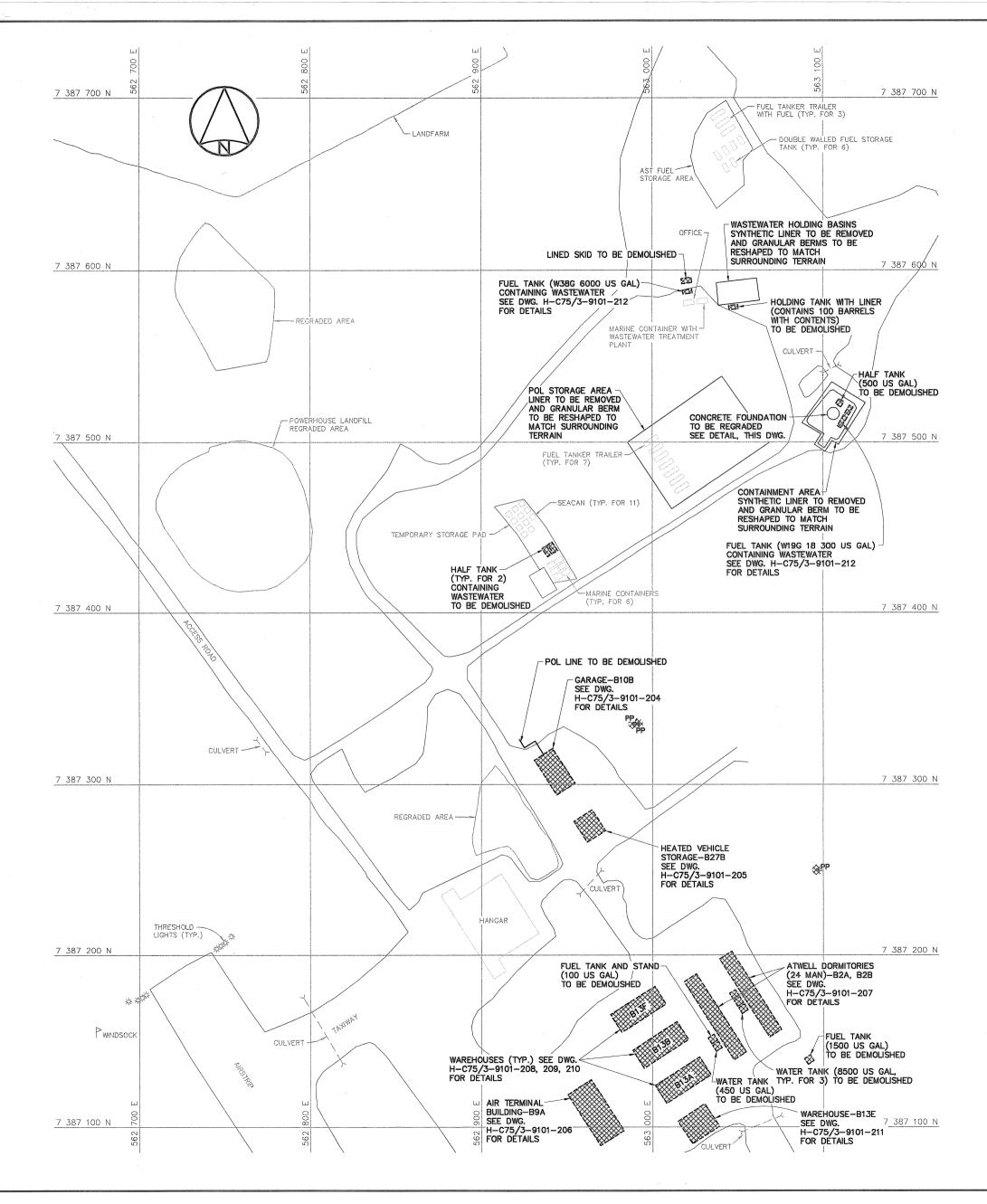
© COPYRIGHT


HER MAJESTY THE QUEEN IN RIGHT OF CANADA 2010, AS REPRESENTED BY THE MINISTER OF NATIONAL DEFENCE.

TRADE - METIER SITING


SUBJECT - SUJET

MISCELLANEOUS DETAILS SHEET 2


DWG. NO. - DESSIN NO. H-C75/3-9101-191

SECTION

TYPICAL CONCRETE PAD REGRADING DETAIL

General Notes:

- ALL STRUCTURES DESIGNATED FOR DEMOLITION TO BE DEMOLISHED TO TOP OF CONCRETE FOUNDATIONS UNLESS NOTED
- 2. ALL DIMENSIONS ARE IN METRES UNLESS NOTED OTHERWISE.
- 3. ALL LONG RANGE RADAR (LRR) FACILITIES ARE CURRENTLY OPERATIONAL AND ARE NOT TO BE DISTURBED. THESE INCLUDE ALL BUILDINGS, STRUCTURES, ELECTRICAL POWER CARLES FLIFL STORAGE TANKS AND
- . PIPELINES AND ANCILLARY EQUIPMENT TO BE REMOVED TO INCLUDE ALL ASSOCIATED PIPE SUPPORTS AND PIPELINE MARKERS.
- PROVIDE REGRADING AROUND ALL CONCRETE THAT IS DESIGNATED TO REMAIN, AS PER TYPICAL DETAIL ON THIS DRAWING, UNLESS NOTED OTHERWISE.

Legend:

TO BE DEMOLISHED

UTILITY POLE TO BE DEMOLISHED

POL LINE TO BE DEMOLISHED

REVISION No. DATE

PERMIT TO PRACTICE
AECOM Canada Ltd.
Signatur
Date
PERMIT NUMBER: P639 /T/NU Association of Professio Engineers and Geoscientists

DATE 2010-12-07

AECOM e hatch

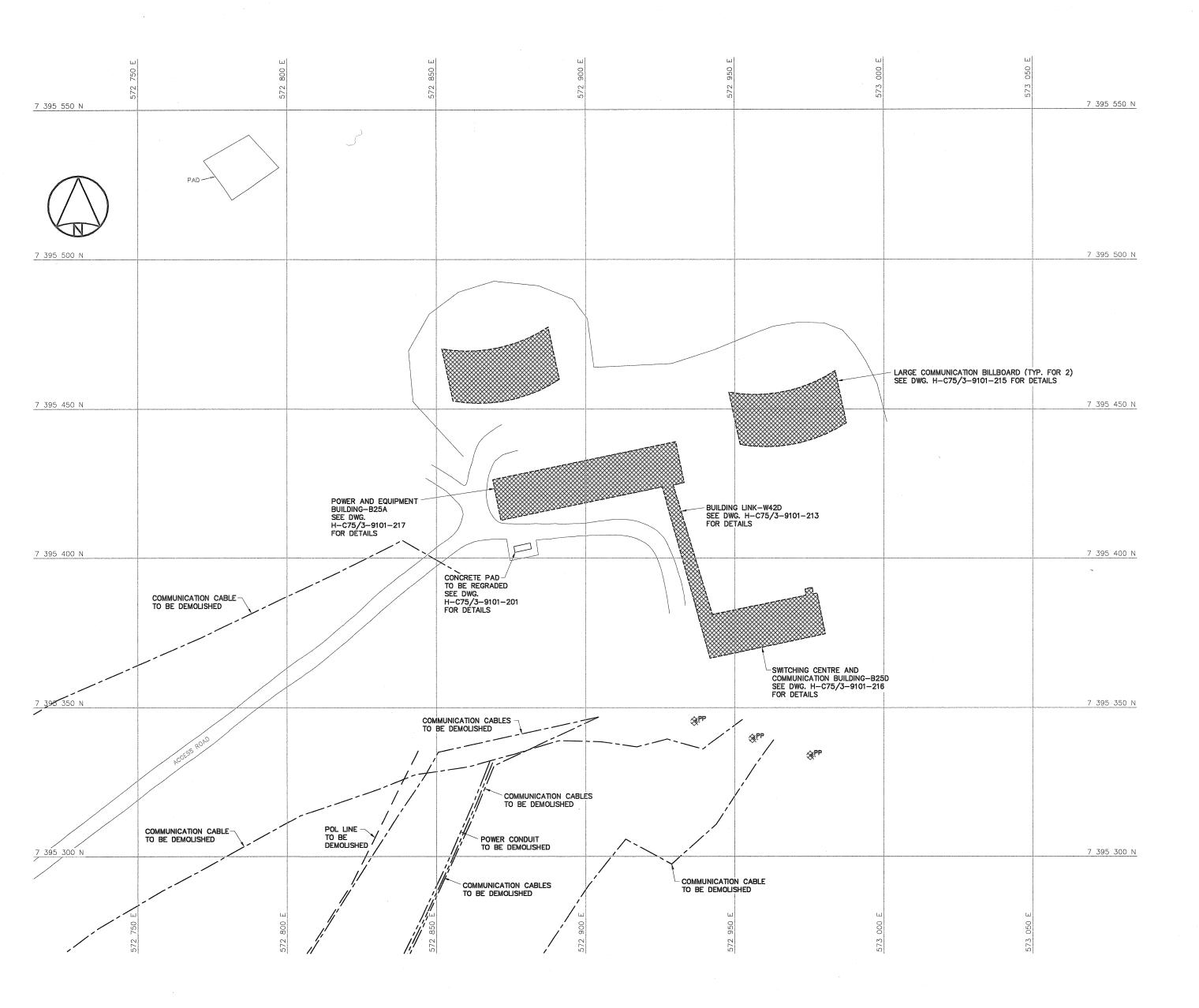
SCALE - ECHELLE 20 10 0 PROJECT - PROJE

DYE-M CAPE DYER DEW LINE CLEAN UP

© COPYRIGHT

HER MAJESTY THE QUEEN IN RIGHT OF

CANADA 2010, AS REPRESENTED BY THE


MINISTER OF NATIONAL DEFENCE.

TRADE - METIER STRUCTURAL SUBJECT - SUJET LOWER SITE

STATION AREA DEMOLITION SITE PLAN

PRODUCTION	CONCORRENCE - ASSENTIMENT
DESIGNED DTM/TME	DES OFF AGENT CONCEPT
DRAWN DESSINE IC/CAE	SECT HD CHEF SECT
CHECKED BWF VERIFIE	DES MGR GEST CONCEPT
COORDINATION RRM	REVIEWED — REVU
DWG	S. NO DESSIN NO.

H-C75/3-9101-201 Canadä

Quartler général

General Notes:

- ALL STRUCTURES DESIGNATED FOR DEMOLITION TO BE DEMOLISHED TO TOP OF CONCRETE FOUNDATIONS UNLESS NOTED
- 2. ALL DIMENSIONS ARE IN METRES UNLESS NOTED OTHERWISE.
- 3. ALL LONG RANGE RADAR (LRR) FACILITIES
 ARE CURRENTLY OPERATIONAL AND ARE
 NOT TO BE DISTURBED. THESE INCLUDE
 ALL BUILDINGS, STRUCTURES, ELECTRICAL
 POWER CABLES, FUEL STORAGE TANKS AND
 PIPELINES NOT SCHEDULED FOR DEMOLITION.
- I. PIPELINES AND ANCILLARY EQUIPMENT TO BE REMOVED TO INCLUDE ALL ASSOCIATED PIPE SUPPORTS AND PIPELINE MARKERS.

Legend:

TO BE DEMOLISHED

UTILITY POLE TO BE DEMOLISHED

----- POWER CABLE TO BE DEMOLISHED

--- POL LINE TO BE DEMOLISHED

No. DATE REVISION

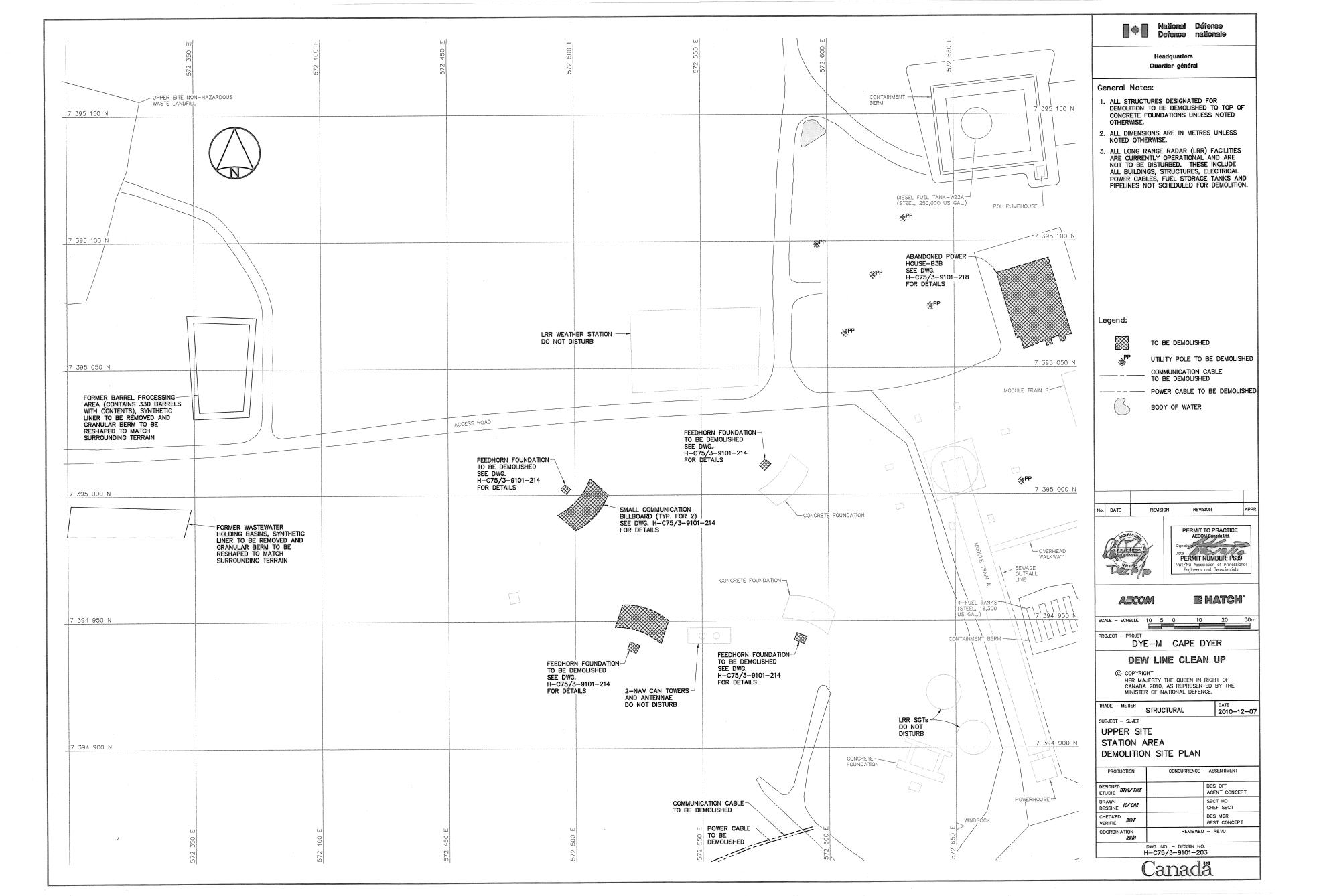
AECOM

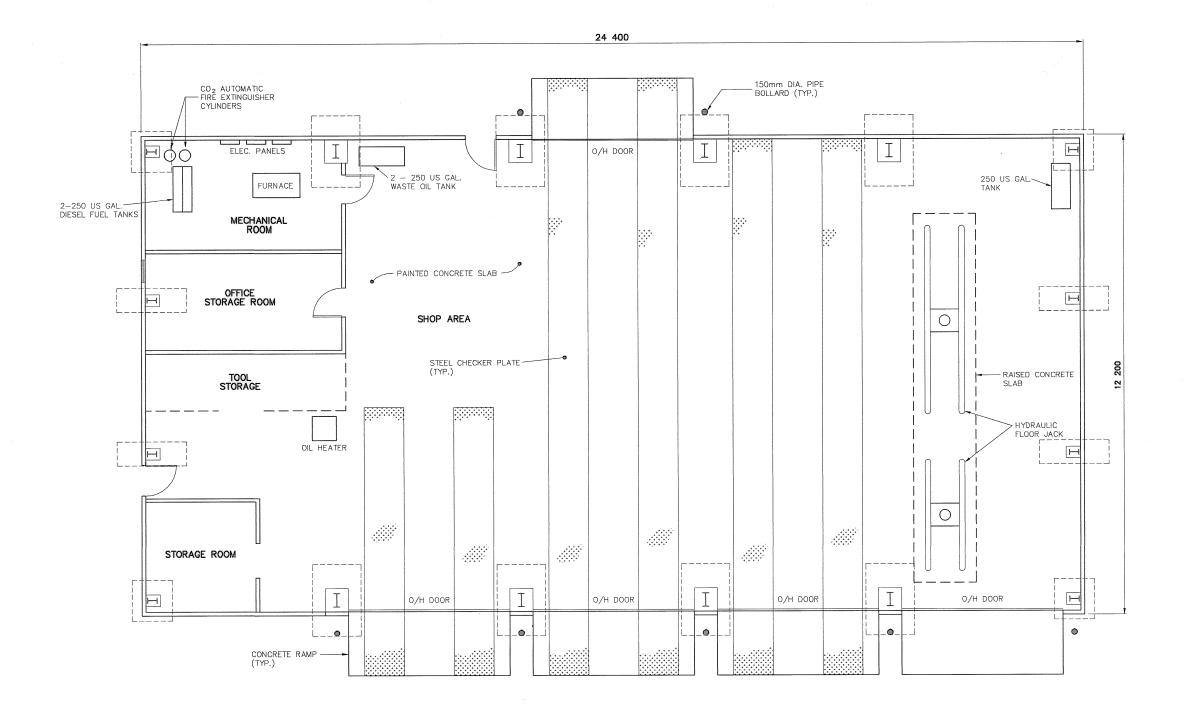
e hatch

SCALE - ECHELLE 10 5 0

DYE-M CAPE DYER

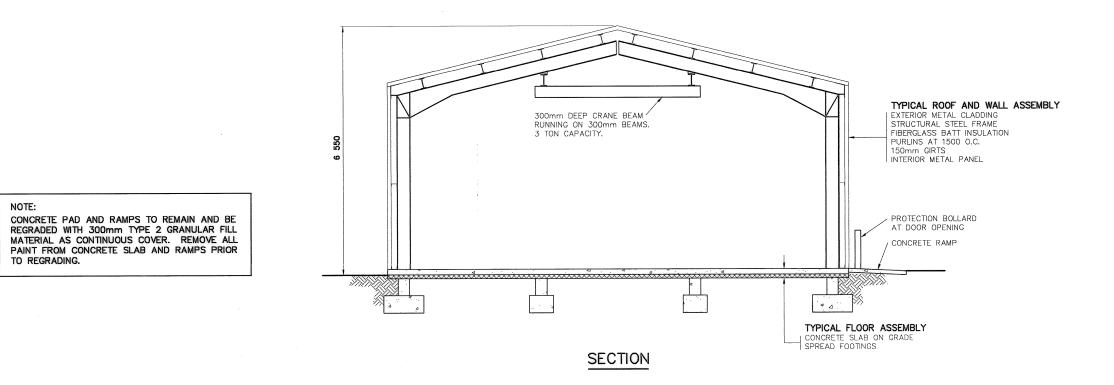
DEW LINE CLEAN UP


© COPYRIGHT


HER MAJESTY THE QUEEN IN RIGHT OF
CANADA 2010, AS REPRESENTED BY THE
MINISTER OF NATIONAL DEFENCE.

TRADE - METIER STRUCTURAL DATE 2010-12-07 SUBJECT - SUJET

UPPER SITE DEW DROP AREA DEMOLITION SITE PLAN


CONCURRENCE - ASSENTIMENT PRODUCTION DESIGNED DTM/TM DES OFF AGENT CONCEPT DRAWN DESSINE IC/CAE SECT HD CHEF SECT CHECKED BWF DES MGR GEST CONCEPT REVIEWED - REVU

FLOOR PLAN

NWSO NUMBER	COMMENTS
B10B	ASBESTOS REMOVAL REQUIRED.

NOTE:

National Défense Défense nationale

Quartler général

General Notes:

- 1. ALL DIMENSIONS ARE IN MILLIMETRES UNLESS NOTED OTHERWISE.
- FACILITIES TO BE DEMOLISHED MAY CONTAIN PCB AND LEAD CONTAMINATED PAINT. REFER TO SECTION 02060 OF THE SPECIFICATIONS.
- 3. REFER TO DEMOLITION TABLES IN SPECIFICATIONS FOR LIST OF MAJOR BUILDING CONTENTS.
- 4. MECHANICAL EQUIPMENT/DUCTING NOT SHOWN.

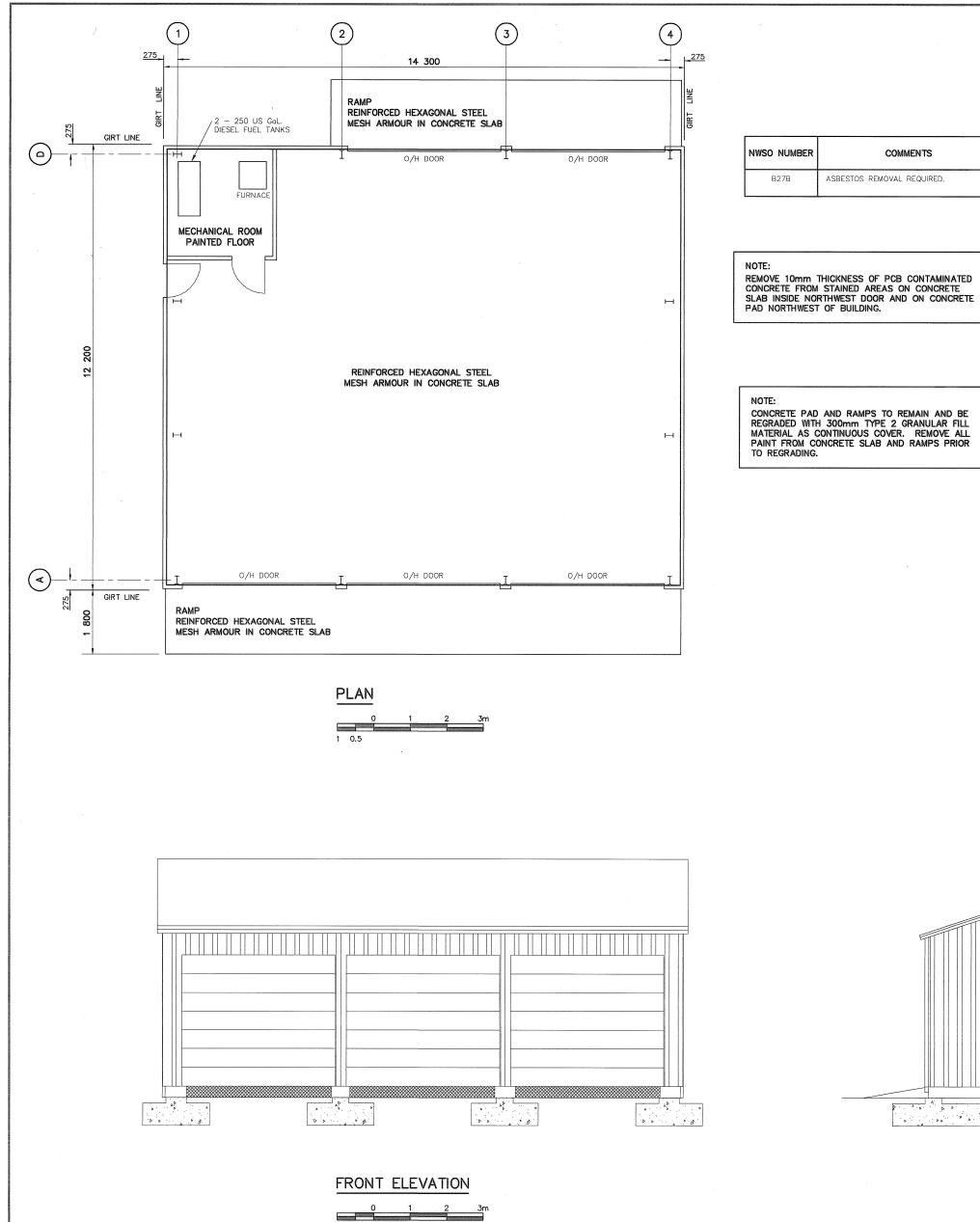
Legend:

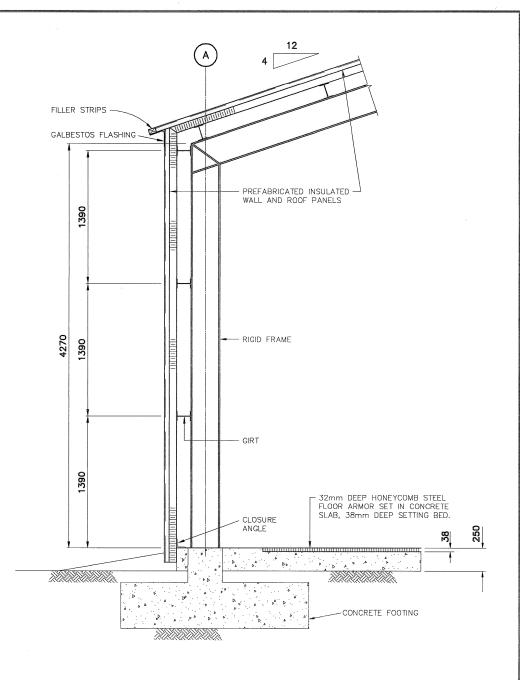
No. DATE REVISION

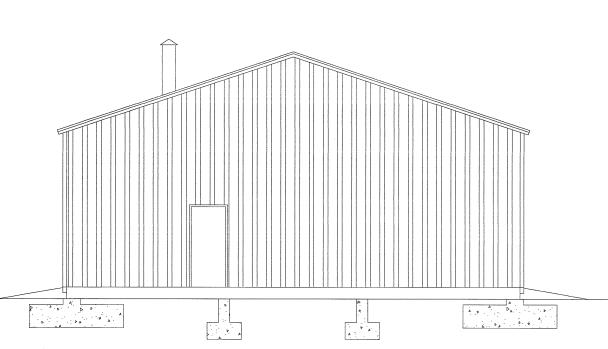
DATE 2010-12-07

AECOM E HATCH

SCALE - ECHELLE PROJECT - PROJE DYE-M CAPE DYER


DEW LINE CLEAN UP


TRADE - METIER STRUCTURAL


© COPYRIGHT
HER MAJESTY THE QUEEN IN RIGHT OF
CANADA 2010, AS REPRESENTED BY THE
MINISTER OF NATIONAL DEFENCE.

SUBJECT - SUJET GARAGE PLAN AND SECTION

PRODUCTION CONCURRENCE - ASSENTIMENT DES OFF AGENT CONCEPT DRAWN DESSINE IC/CAE SECT HD CHEF SECT DES MGR GEST CONCEPT CHECKED BWF

SECTION

National Défense Défense nationale

Quartler général

General Notes:

- 1. ALL DIMENSIONS ARE IN MILLIMETRES UNLESS NOTED OTHERWISE.
- FACILITIES TO BE DEMOLISHED MAY CONTAIN PCB AND LEAD CONTAMINATED PAINT. REFER TO SECTION 02060 OF THE SPECIFICATIONS.
- 3. REFER TO DEMOLITION TABLES IN SPECIFICATIONS FOR LIST OF MAJOR BUILDING CONTENTS.
- 4. MECHANICAL EQUIPMENT/DUCTING NOT SHOWN.

Legend:

No. DATE REVISION REVISION PERMIT TO PRACTICE
AECOM Ganada Ltd.
Signatur
Date
PERMIT NUMBER: P639
NWT/NU Association of Professional
Engineers and Geoscientists

aecom

e hatch

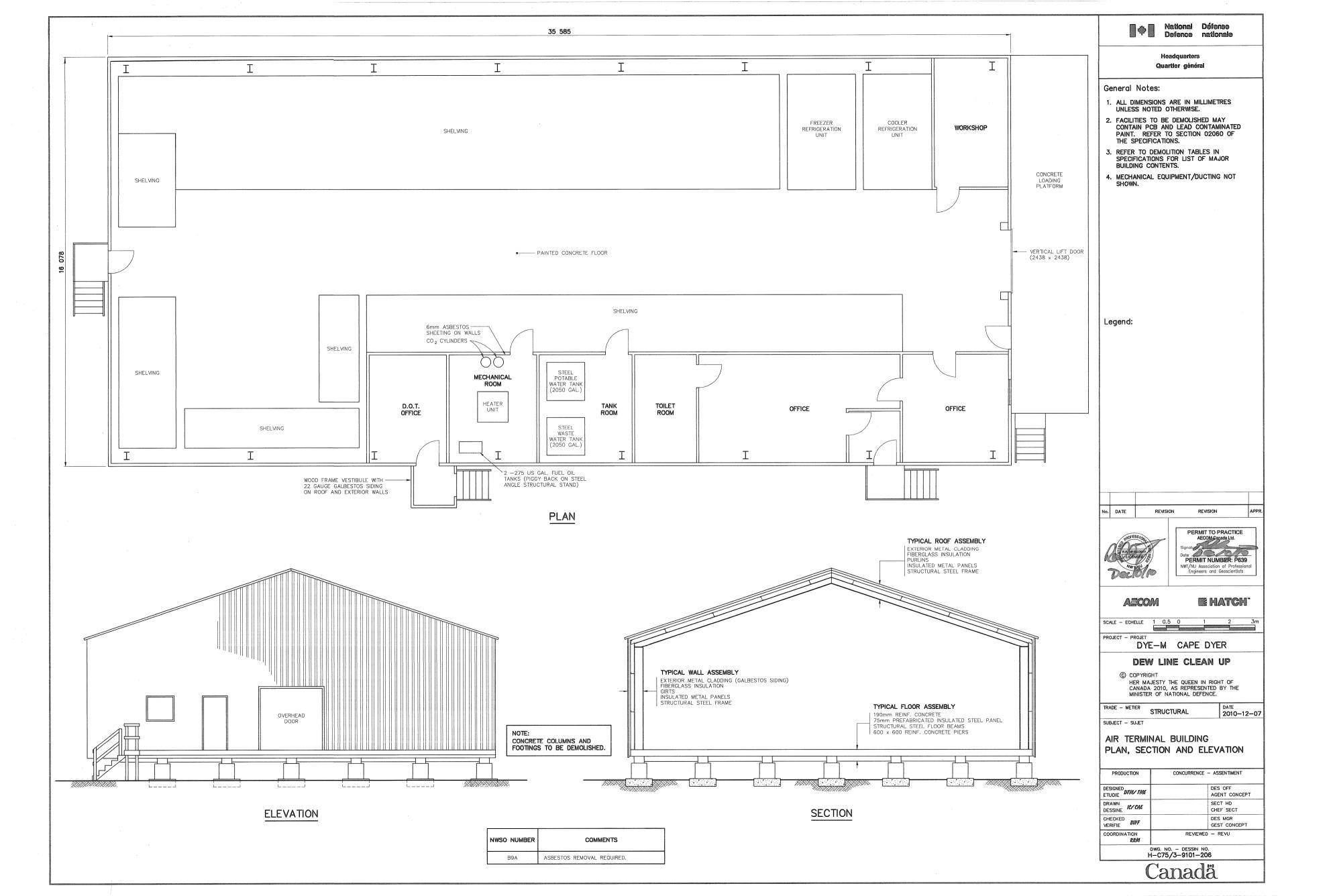
SCALE - ECHELLE

PROJECT - PROJET DYE-M CAPE DYER

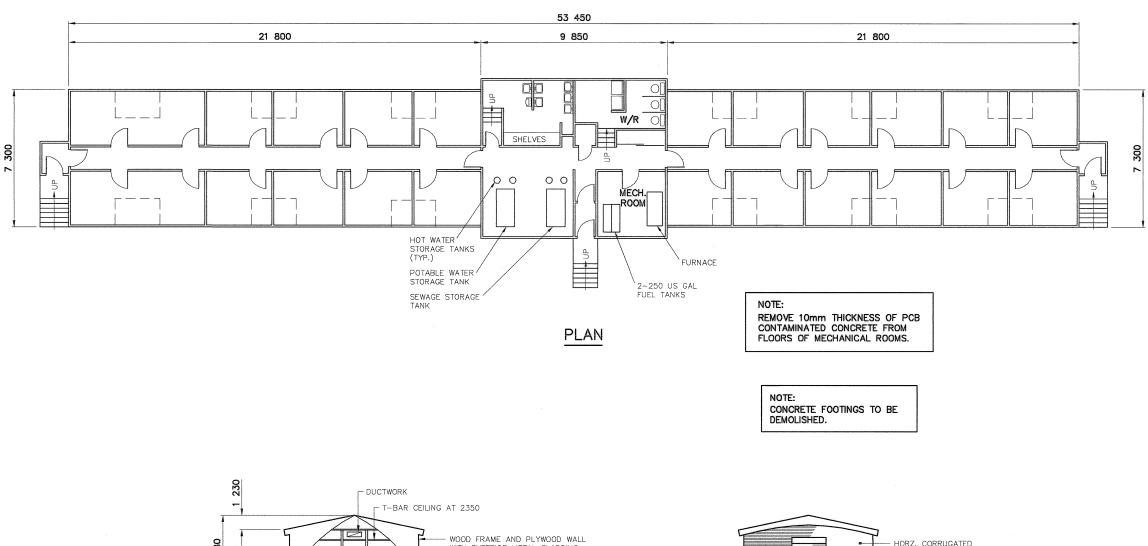
DEW LINE CLEAN UP

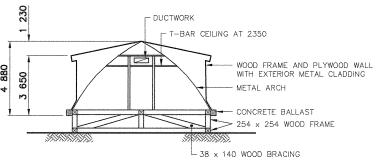
AS SHOWN

© COPYRIGHT


HER MAJESTY THE QUEEN IN RIGHT OF CANADA 2010, AS REPRESENTED BY THE MINISTER OF NATIONAL DEFENCE.

TRADE - METIER STRUCTURAL


DATE 2010-12-07 SUBJECT - SUJET


HEATED VEHICLE STORAGE PLAN, SECTION AND ELEVATIONS

PRODUCTION	CONCURRENCE - ASSENTIMENT
DESIGNED DTM/ TME	DES OFF
ETUDIE	AGENT CONCEPT
DRAWN	SECT HD
DESSINE IC/CAE	CHEF SECT
CHECKED BWF	DES MGR
VERIFIE	GEST CONCEPT
COORDINATION RRM	REVIEWED — REVU

NWSO NUMBER	COMMENTS
B2A	CONCRETE FOOTINGS/POSTS. METAL ARCH. BUILDING WITH EXTERIOR WALLS AND PITCHED ROOF ADDED.
B2B	ASBESTOS REMOVAL REQUIRED. PCB CONTAMINATED CONCRETE IN MECHANICAL ROOMS.

SECTION

WOOD STAIRS

National Défense Defence nationale

Quartier général

General Notes:

- 1. ALL DIMENSIONS ARE IN MILLIMETRES UNLESS NOTED OTHERWISE.
- 2. FACILITIES TO BE DEMOLISHED MAY CONTAIN PCB AND LEAD CONTAMINATED PAINT. REFER TO SECTION 02060 OF THE SPECIFICATIONS.
- REFER TO DEMOLITION TABLES IN SPECIFICATIONS FOR LIST OF MAJOR BUILDING CONTENTS.
- 4. MECHANICAL EQUIPMENT/DUCTING NOT SHOWN.

Legend:

No. DATE REVISION REVISION

PERMIT TO PRACTICE
AECOLA-Canada Ltd.
Signaturate
PERMIT NUMBER: P639
IWT/NU Association of Professional
Engineers and Geoscientists

AECOM

e hatch"

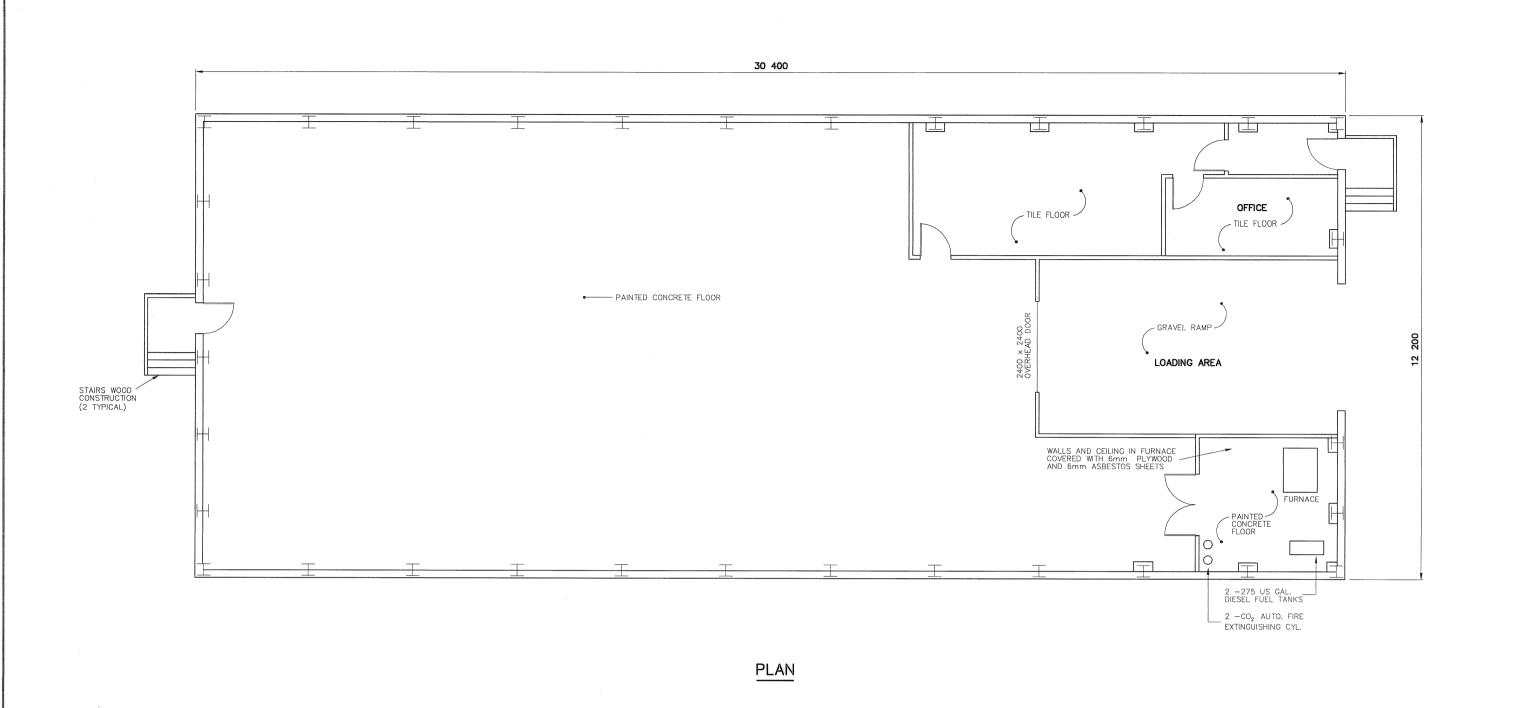
SCALE - ECHELLE PROJECT -- PROJET DYE-M CAPE DYER

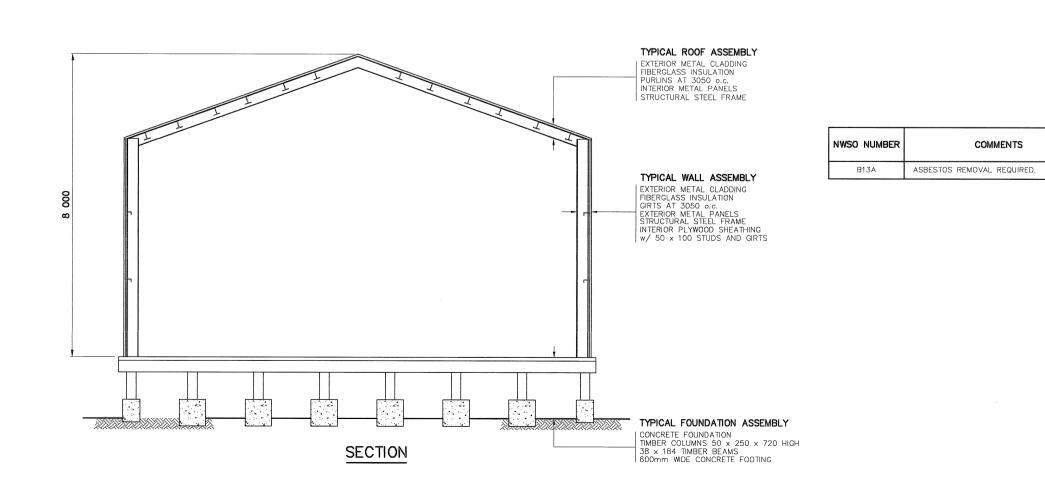
DEW LINE CLEAN UP

SUBJECT - SUJET

© COPYRIGHT

HER MAJESTY THE QUEEN IN RIGHT OF
CANADA 2010, AS REPRESENTED BY THE
MINISTER OF NATIONAL DEFENCE.


TRADE - METIER STRUCTURAL


DATE 2010-12-07

ATWELL DORMITORY PLAN, SECTION AND ELEVATION

PRODUCTION	CONCURRENCE - ASSENTIMENT
DESIGNED DTM/TME	DES OFF
ETUDIE	AGENT CONCEPT
DRAWN	SECT HD
DESSINE IC/CAE	CHEF SECT
CHECKED BWF	DES MGR
VERIFIE	GEST CONCEPT
COORDINATION RRM	REVIEWED — REVU

DWG. NO. - DESSIN NO. H-C75/3-9101-207

NOTE:

CONCRETE FOOTINGS TO BE DEMOLISHED.

National Défense Défense nationale

General Notes:

- 1. ALL DIMENSIONS ARE IN MILLIMETRES UNLESS NOTED OTHERWISE.
- FACILITIES TO BE DEMOLISHED MAY CONTAIN PCB AND LEAD CONTAMINATED PAINT. REFER TO SECTION 02060 OF THE SPECIFICATIONS.
- REFER TO DEMOLITION TABLES IN SPECIFICATIONS FOR LIST OF MAJOR BUILDING CONTENTS.
- 4. MECHANICAL EQUIPMENT/DUCTING NOT SHOWN.

Legend:

No. DATE REVISION REVISION

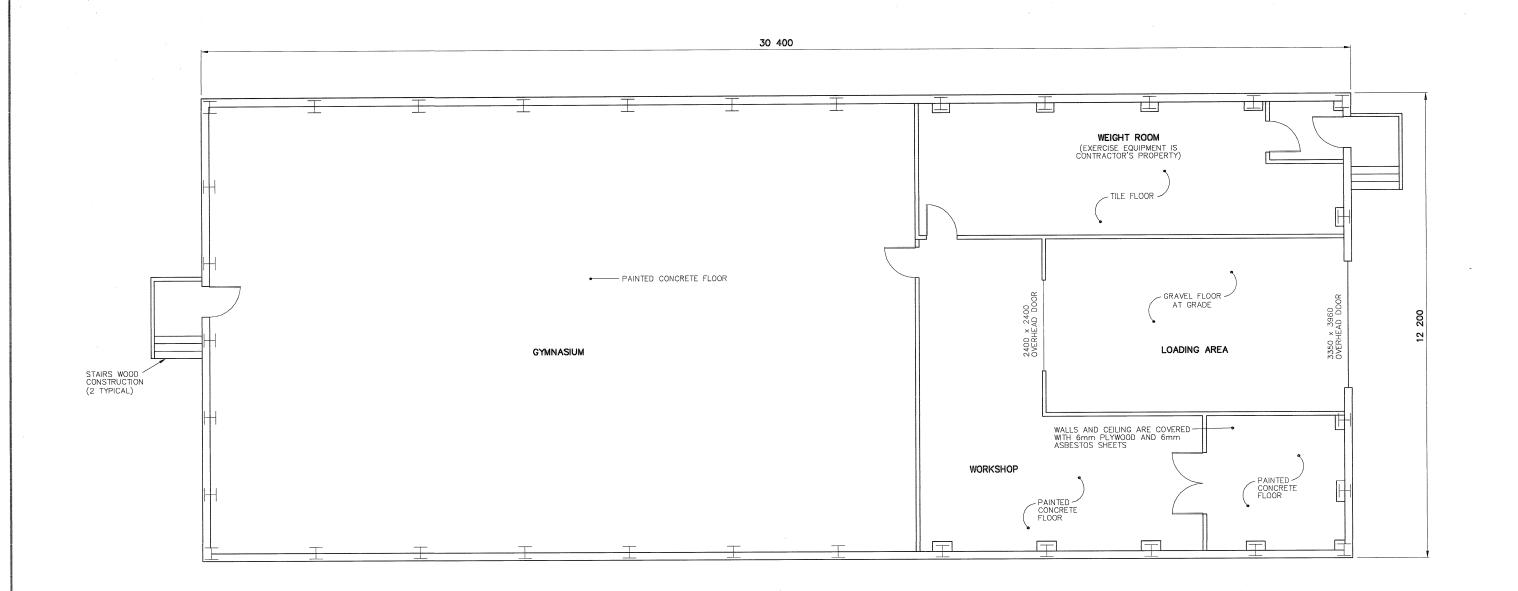
e hatch

AECOM

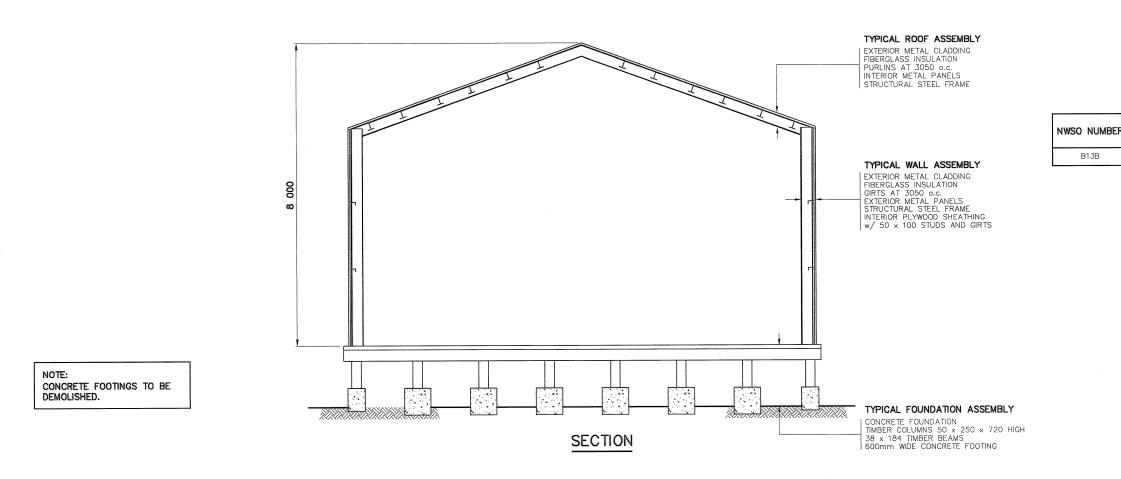
SCALE - ECHELLE 1 0.5 0 PROJECT - PROJET DYE-M CAPE DYER

DEW LINE CLEAN UP

© COPYRIGHT


HER MAJESTY THE QUEEN IN RIGHT OF
CANADA 2010, AS REPRESENTED BY THE
MINISTER OF NATIONAL DEFENCE.

DATE 2010-12-07 TRADE - METIER STRUCTURAL SUBJECT - SUJET


WAREHOUSE-B13A PLAN AND SECTION

PRODUCTION	CONCURRENCE - ASSENTIMENT
DESIGNED DTM/TME	DES OFF AGENT CONCEPT
DRAWN DESSINE IC/CAE	SECT HD CHEF SECT
CHECKED BWF	DES MGR GEST CONCEPT
COORDINATION RRM	REVIEWED - REVU

DWG. NO. - DESSIN NO. H-C75/3-9101-208

PLAN

National Défense Defence nationale

Quartler général

General Notes:

- 1. ALL DIMENSIONS ARE IN MILLIMETRES UNLESS NOTED OTHERWISE.
- 2. FACILITIES TO BE DEMOLISHED MAY CONTAIN PCB AND LEAD CONTAMINATED PAINT. REFER TO SECTION 02060 OF THE SPECIFICATIONS.
- 3. REFER TO DEMOLITION TABLES IN SPECIFICATIONS FOR LIST OF MAJOR BUILDING CONTENTS.
- 4. MECHANICAL EQUIPMENT/DUCTING NOT SHOWN.

Legend:

No. DATE REVISION REVISION

AECOM

COMMENTS

ASBESTOS REMOVAL REQUIRED.

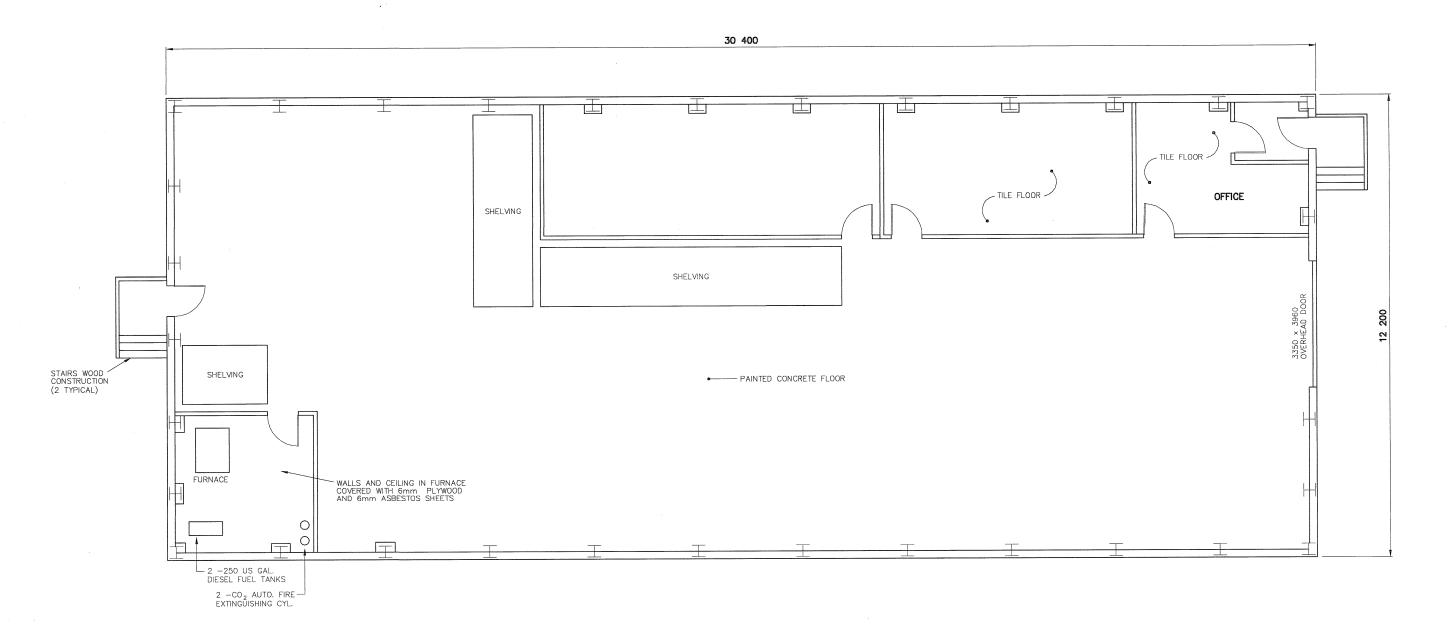
E HATCH

DYE-M CAPE DYER

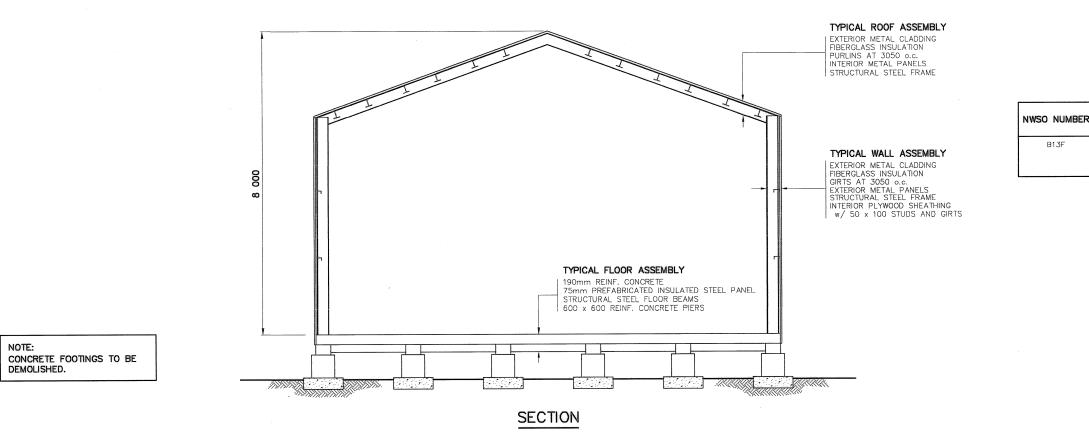
DEW LINE CLEAN UP

© COPYRIGHT

HER MAJESTY THE QUEEN IN RIGHT OF
CANADA 2010, AS REPRESENTED BY THE
MINISTER OF NATIONAL DEFENCE.


TRADE - METIER STRUCTURAL SUBJECT - SUJET

DATE 2010-12-07


WAREHOUSE-B13B PLAN AND SECTION

PRODUCTION	CONCURRENCE - ASSENTIMENT
DESIGNED DTM/ TME ETUDIE	DES OFF AGENT CONCEPT
DRAWN DESSINE IC/CAE	SECT HD CHEF SECT
CHECKED BWF	DES MGR GEST CONCEPT
COORDINATION RRM	REVIEWED — REVU
DV	G NO DESSIN NO.

DWG. NO. - DESSIN NO. H-C75/3-9101-209

PLAN

NOTE:

National Défense Defence nationale

Quartler général

General Notes:

- 1. ALL DIMENSIONS ARE IN MILLIMETRES UNLESS NOTED OTHERWISE.
- FACILITIES TO BE DEMOLISHED MAY
 CONTAIN PCB AND LEAD CONTAMINATED
 PAINT. REFER TO SECTION 02060 OF
 THE SPECIFICATIONS.
- 3. REFER TO DEMOLITION TABLES IN SPECIFICATIONS FOR LIST OF MAJOR BUILDING CONTENTS.
- 4. MECHANICAL EQUIPMENT/DUCTING NOT

Legend:

No. DATE REVISION REVISION

COMMENTS

ASBESTOS REMOVAL REQUIRED.

ADDITIONAL PORTIONS: 32.7m WOOD FRAME/PLYWOOD.

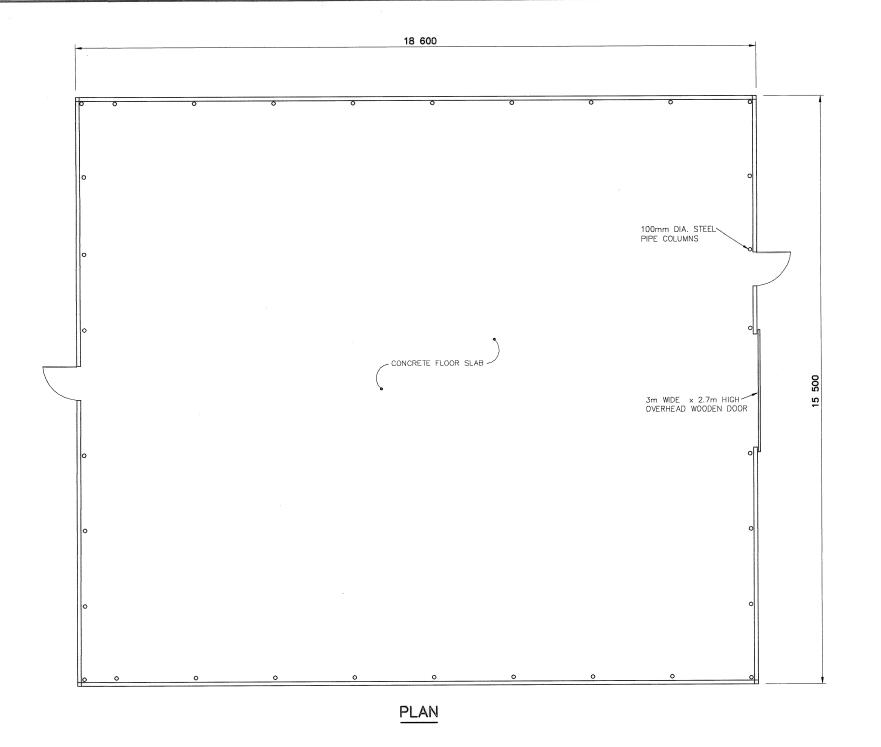
AECOM

e hatch

SCALE - ECHELLE DYE-M CAPE DYER

DEW LINE CLEAN UP

© COPYRIGHT


HER MAJESTY THE QUEEN IN RIGHT OF
CANADA 2010, AS REPRESENTED BY THE
MINISTER OF NATIONAL DEFENCE.

TRADE - METIER STRUCTURAL SUBJECT - SUJET

WAREHOUSE-B13F PLAN AND SECTION

PRODUCTION	CONCURRENCE - ASSENTIMENT
DESIGNED DTM/TME ETUDIE	DES OFF AGENT CONCEPT
DRAWN DESSINE IC/CAE	SECT HD CHEF SECT
CHECKED BWF	DES MGR GEST CONCEPT
COORDINATION RRM	REVIEWED - REVU
DWC	G. NO DESSIN NO.

H-C75/3-9101-210 Canadä

NWSO NUMBER COMMENTS AS SHOWN B13E

National Défense Defence nationale

General Notes:

- ALL DIMENSIONS ARE IN MILLIMETRES UNLESS NOTED OTHERWISE.
- FACILITIES TO BE DEMOLISHED MAY CONTAIN PCB AND LEAD CONTAMINATED PAINT. REFER TO SECTION 02060 OF THE SPECIFICATIONS.
- 3. REFER TO DEMOLITION TABLES IN SPECIFICATIONS FOR LIST OF MAJOR BUILDING CONTENTS.
- 4. MECHANICAL EQUIPMENT/DUCTING NOT SHOWN.

Legend:

No. DATE REVISION REVISION

e hatch A=COM

SCALE - ECHELLE

PROJECT - PROJET

DYE-M CAPE DYER

DEW LINE CLEAN UP

© COPYRIGHT

HER MAJESTY THE QUEEN IN RIGHT OF
CANADA 2010, AS REPRESENTED BY THE
MINISTER OF NATIONAL DEFENCE.

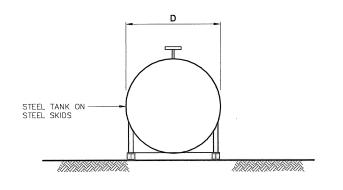
TRADE - METIER STRUCTURAL

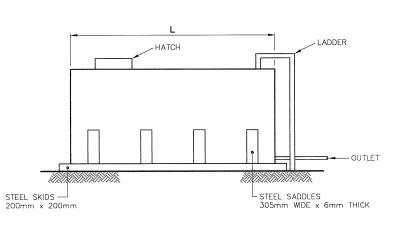
SUBJECT - SUJET

WAREHOUSE-B13E PLAN AND SECTION

CONCURRENCE - ASSENTIMENT
DES OFF AGENT CONCEPT
SECT HD CHEF SECT
DES MGR GEST CONCEPT
REVIEWED — REVU

H-C75/3-9101-211 Canadä


CORRUGATED ALUMINUM ROOFING 61 x 305 ROOF PURLINS
STRUCTURAL STEEL TRUSS METAL -


SECTION

FOUNDATION: CONCRETE SLAB ON GRADE

REMOVE BARRELS AND CONTAINERS IN STORAGE AND UNDERLYING GEOMEMBRANE LINER PRIOR TO DEMOLITION.

NOTE: DEMOLISH STRUCTURE TO TOP OF CONCRETE FLOOR SLAB.

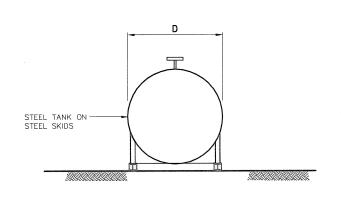
NWSO NUMBER

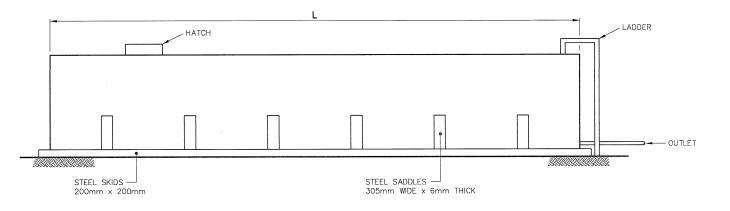
NWSO NUMBER

COMMENTS

COMMENTS

D = 2500mm; L = 14 000mm 6 - STEEL SADDLES AT 2200mm o.c.


18 300 US GALLON CAPACITY


6000 US GALLON CAPACITY (MOGAS) D = 2400mm; L = 5400mm 4 - STEEL SADDLES AT 1400mm O.C.

FRONT ELEVATION

SIDE ELEVATION

6000 GALLON FUEL TANK

FRONT ELEVATION

SIDE ELEVATION

18 300 GALLON FUEL TANK

National Défense Defence nationale

Quartier général

General Notes:

- 1. ALL DIMENSIONS ARE IN MILLIMETRES UNLESS NOTED OTHERWISE.
- REFER TO DEMOLITION TABLES IN SPECIFICATIONS FOR LIST OF MAJOR BUILDING CONTENTS.
- 3. FACILITIES TO BE DEMOLISHED MAY CONTAIN PCB AND LEAD CONTAMINATED PAINT. REFER TO SECTION 02060 OF THE SPECIFICATIONS.

Legend:

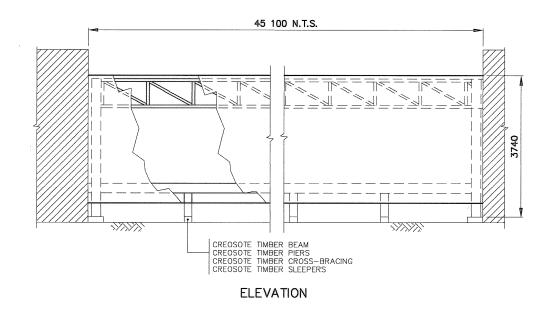
No. DATE REVISION REVISION

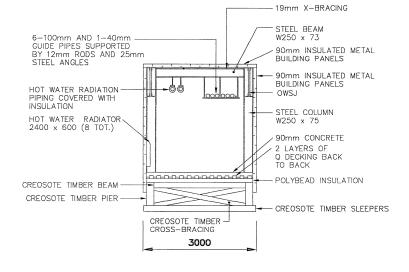
AECOM E HATCH"

PROJECT - PROJET DYE-M CAPE DYER

DEW LINE CLEAN UP

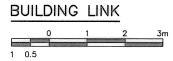
© COPYRIGHT


HER MAJESTY THE QUEEN IN RIGHT OF
CANADA 2010, AS REPRESENTED BY THE
MINISTER OF NATIONAL DEFENCE.


TRADE - METIER STRUCTURAL DATE 2010-12-07 SUBJECT - SUJET

FUEL TANKS ELEVATIONS

CONCURRENCE - ASSENTIMENT
DES OFF AGENT CONCEPT
SECT HD CHEF SECT
DES MGR GEST CONCEPT
REVIEWED - REVU


H-C75/3-9101-212

NWSO NUMBER COMMENTS 45m TOTAL LENGTH.

SECTION

National Défense Defence nationale

General Notes:

- 1. ALL DIMENSIONS ARE IN MILLIMETRES UNLESS NOTED OTHERWISE.
- REFER TO DEMOLITION TABLES IN SPECIFICATIONS FOR LIST OF MAJOR BUILDING CONTENTS.
- 3. FACILITIES TO BE DEMOLISHED MAY CONTAIN PCB AND LEAD CONTAMINATED PAINT. REFER TO SECTION 02060 OF THE SPECIFICATIONS.

Legend:

No. DATE REVISION REVISION

■ HATCH AECOM

SCALE - ECHELLE AS SHOWN

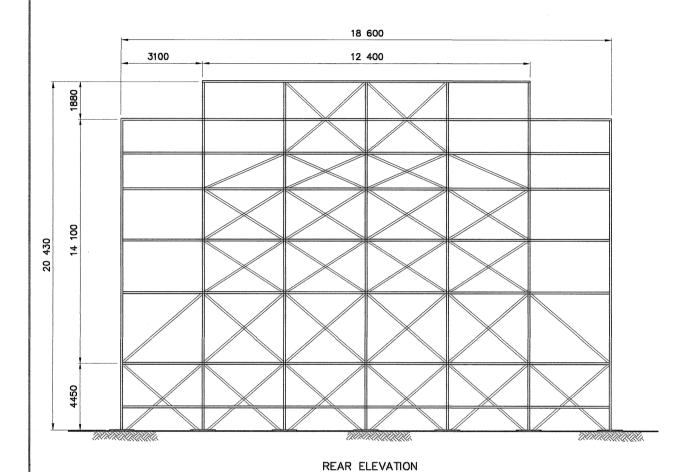
PROJECT - PROJET

DYE-M CAPE DYER

DEW LINE CLEAN UP

© COPYRIGHT

HER MAJESTY THE QUEEN IN RIGHT OF
CANADA 2010, AS REPRESENTED BY THE
MINISTER OF NATIONAL DEFENCE.


TRADE - METIER STRUCTURAL SUBJECT - SUJET

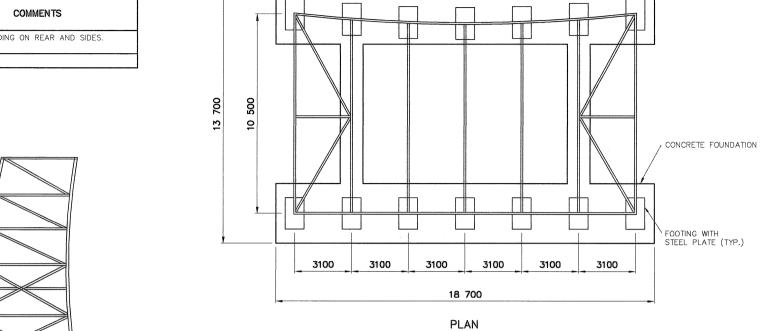
BUILDING LINK SECTION AND ELEVATION

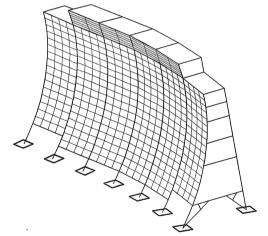
PRODUCTION	CONCURRENCE - ASSENTIMENT
DESIGNED DTM/ TME	DES OFF AGENT CONCEPT
DRAWN DESSINE IC/CAE	SECT HD CHEF SECT
CHECKED VERIFIE BWF	DES MGR GEST CONCEPT
COORDINATION RRM	REVIEWED — REVU

DWG. NO. - DESSIN NO. H-C75/3-9101-213

SMALL COMMUNICATION BILLBOARDS ARE OVERTURNED BESIDE CONCRETE FOUNDATIONS.

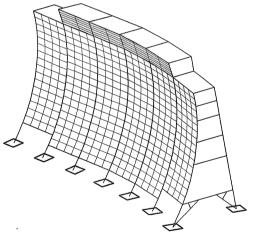
NWSO NUMBER	COMMENTS
W09C	RIBBED CLADDING ON REAR AND SIDES. (GALBESTOS)
WO9C	NO CLADDING.


SECTION


SMALL COMMUNICATION BILLBOARD

- 6mm STEEL PLATE GALVANIZED REFLECTOR PANELS

-STRUCTURAL STEEL GALVANIZED ANGLE (TYP.) 150 AND 125 x 10mm


DEMOLISH TO TOP OF CONCRETE
THIS INCLUDES CUTTING OFF
PROTRUDING BOLTS

ISOMETRIC VIEW

VISIBLE FOUNDATIONS ARE 1300 x 1700 CONCRETE FOOTINGS AT GRADE.

AECOM

No. DATE

e hatch

PERMIT TO PRACTICE
AECOM enada Ltd.
Signatural
Date
PERMIT NUMBER: P639
NWT/NU Association of Professional
Engineers and Geoscientists

REVISION

SCALE - ECHELLE

PROJECT - PROJET DYE-M CAPE DYER

REVISION

DEW LINE CLEAN UP

AS SHOWN

National Défense Défense Defence nationale

1. ALL DIMENSIONS ARE IN MILLIMETRES UNLESS NOTED OTHERWISE.

REFER TO DEMOLITION TABLES IN SPECIFICATIONS FOR LIST OF MAJOR BUILDING CONTENTS.

3. FACILITIES TO BE DEMOLISHED MAY CONTAIN PCB AND LEAD CONTAMINATED PAINT. REFER TO SECTION 02060 OF THE SPECIFICATIONS.

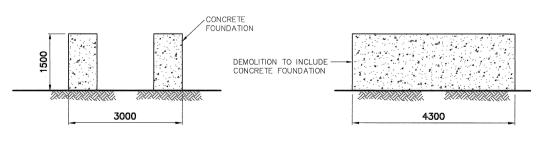
General Notes:

Legend:

© COPYRIGHT

HER MAJESTY THE QUEEN IN RIGHT OF
CANADA 2010, AS REPRESENTED BY THE
MINISTER OF NATIONAL DEFENCE.

TRADE - METIER STRUCTURAL DATE 2010-12-07

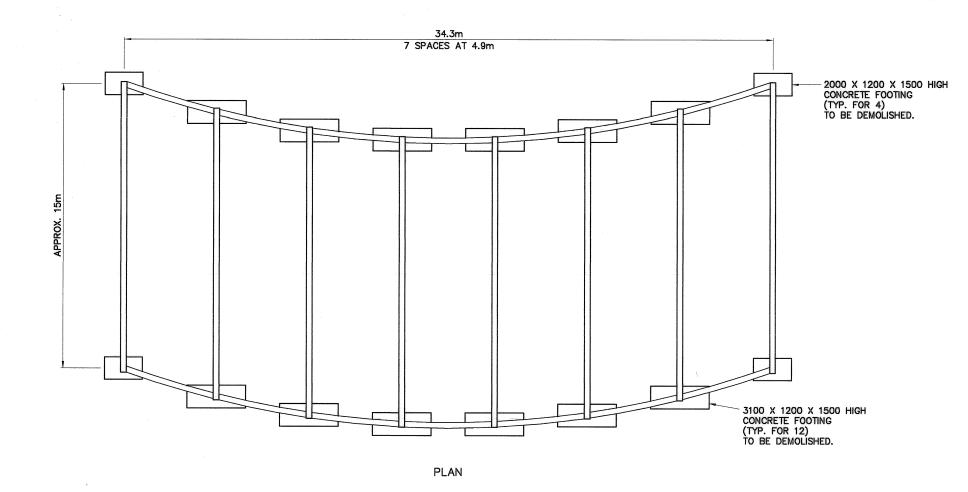

SUBJECT - SUJET

SMALL COMMUNICATION BILLBOARD, FEEDHORN FOUNDATION PLAN, SECTION AND ELEVATIONS

PRODUCTION	CONCURRENCE — ASSENTIMENT
DESIGNED DTM/TME	DES OFF AGENT CONCEPT
DRAWN DESSINE IC/CAE	SECT HD CHEF SECT
CHECKED BWF	DES MGR GEST CONCEPT
COORDINATION RRM	REVIEWED — REVU

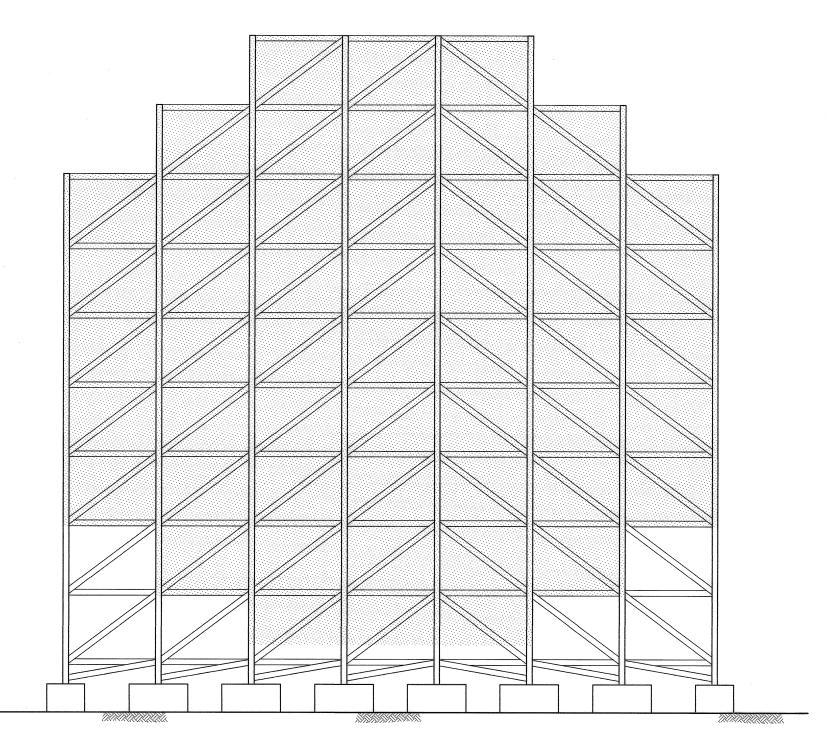
DWG. NO. - DESSIN NO. H-C75/3-9101-214

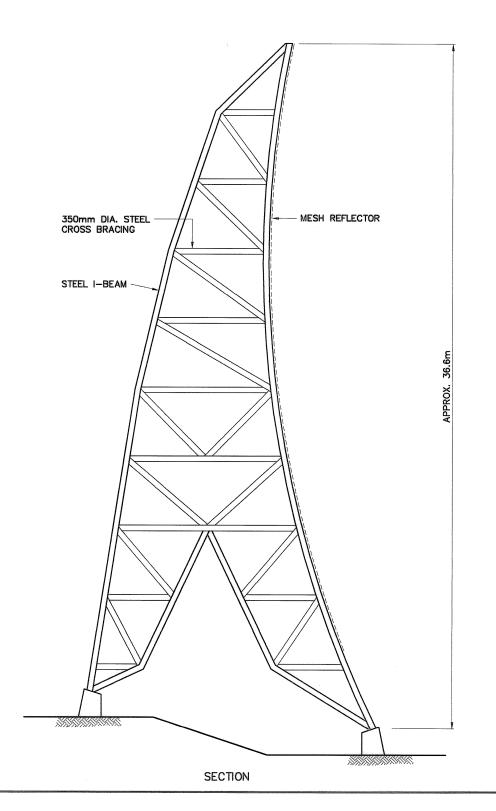
Canadä



SIDE ELEVATION

END ELEVATION


TYPICAL FEEDHORN FOUNDATION (SMALL BILLBOARDS)



NWSO NUMBER	COMMENTS
W09C	36.6m HIGH BILLBOARD (NOT ENCLOSED) WITH CONCRETE FOOTING FOUNDATIONS
W09-C	MESH REFLECTORS ON CURVED PORTION.

NOTE: CONCRETE FOOTINGS TO BE DEMOLISHED.

REAR ELEVATION

National Défense Défense nationale

General Notes:

- 1. ALL DIMENSIONS ARE IN MILLIMETRES UNLESS NOTED OTHERWISE.
- 2. REFER TO DEMOLITION TABLES IN SPECIFICATIONS FOR LIST OF MAJOR BUILDING CONTENTS.

Legend:

No. DATE REVISION REVISION

PERMIT TO PRACTICE
AECOM Canada Ltd.

ignaturate
permit NUMBER: P639
NT/NU Association of Professional
Engineers and Geoscientists

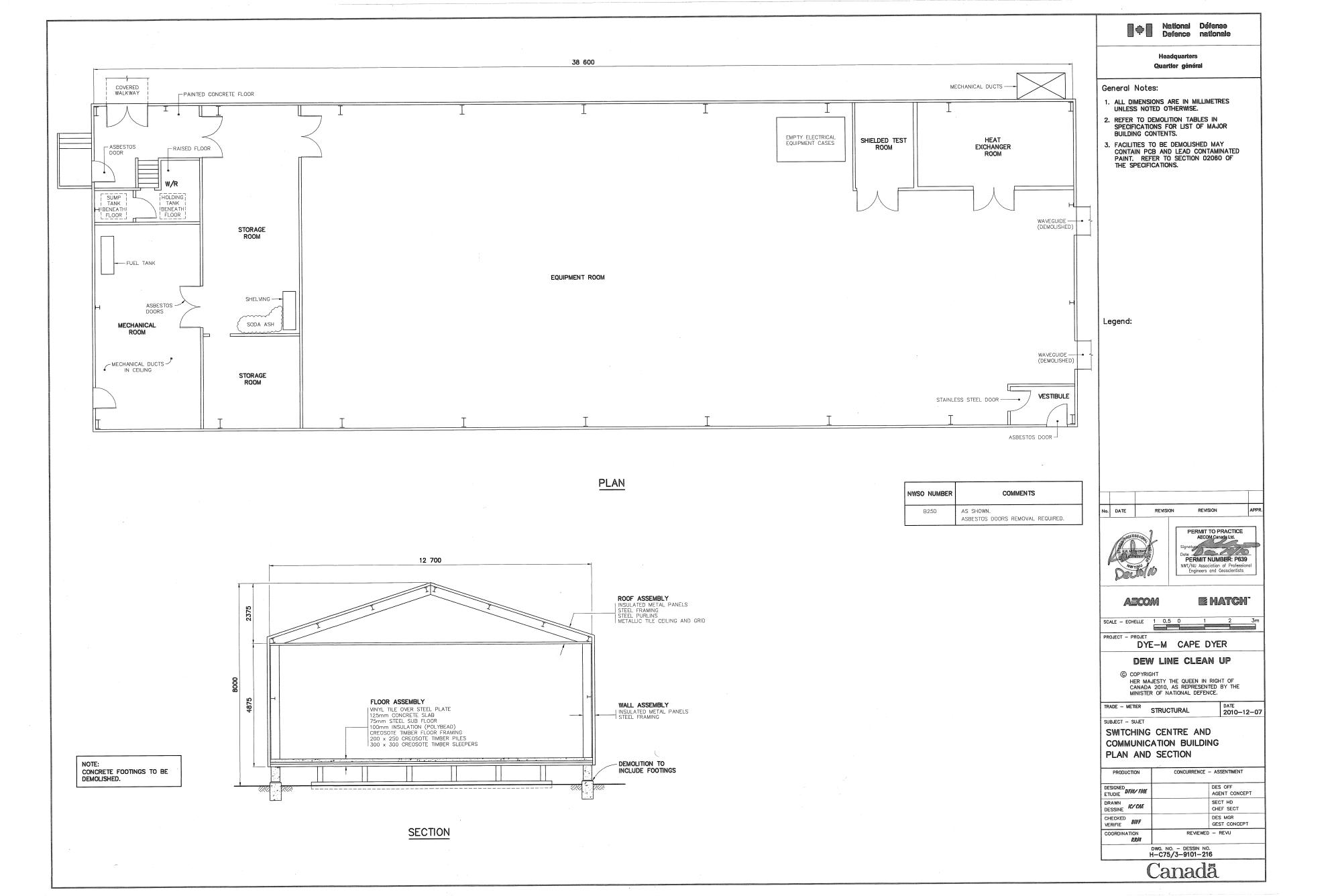
e hatch AECOM

PROJECT - PROJET

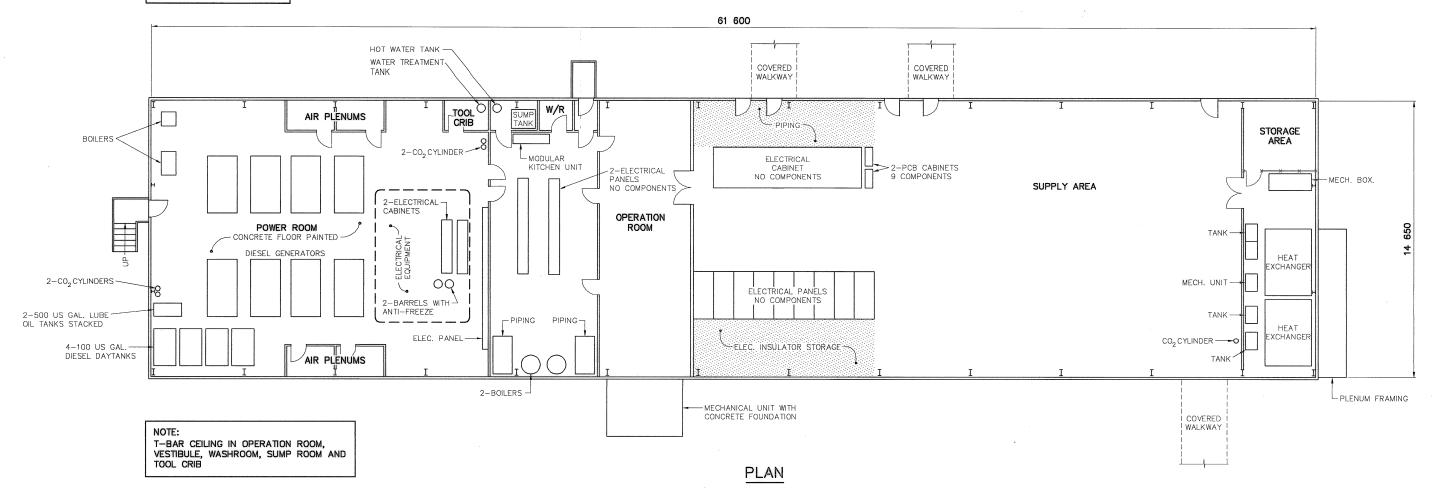
DYE-M CAPE DYER

DEW LINE CLEAN UP

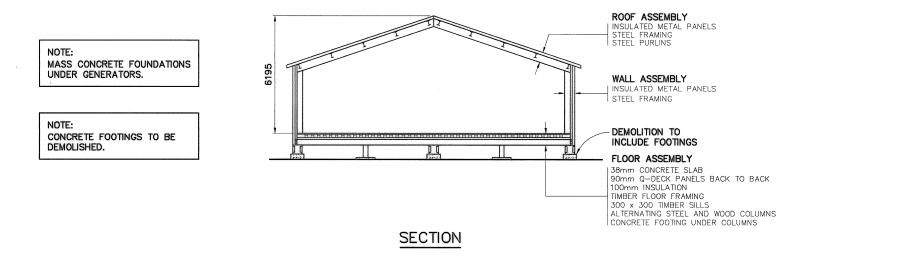
© COPYRIGHT


HER MAJESTY THE QUEEN IN RIGHT OF
CANADA 2010, AS REPRESENTED BY THE
MINISTER OF NATIONAL DEFENCE.

DATE 2010-12-07 TRADE - METIER STRUCTURAL SUBJECT - SUJET

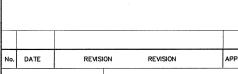

LARGE COMMUNICATION BILLBOARD PLAN, SECTION AND ELEVATION

CONCURRENCE - ASSENTIMENT
DES OFF AGENT CONCEPT
SECT HD CHEF SECT
DES MGR GEST CONCEPT
REVIEWED — REVU


DWG. NO. - DESSIN NO. H-C75/3-9101-215

NOTE: DOORS ARE METAL UNLESS NOTED OTHERWISE.

NWSO NUMBER	COMMENTS
B25A	AS SHOWN. ASBESTOS DOORS REMOVAL REQUIRED.



National Défense Defence nationale

General Notes:

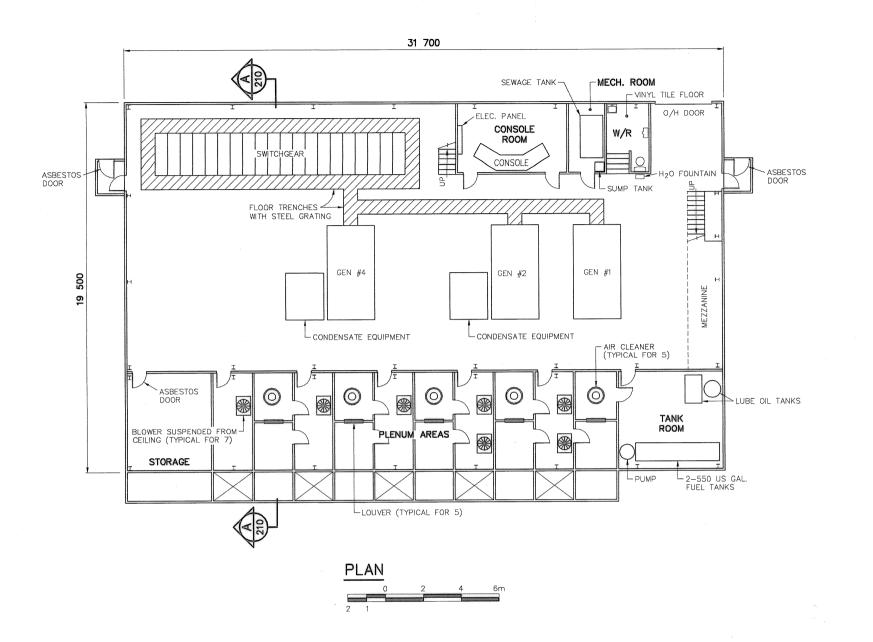
- 1. ALL DIMENSIONS ARE IN MILLIMETRES UNLESS NOTED OTHERWISE.
- 2. REFER TO DEMOLITION TABLES IN SPECIFICATIONS FOR LIST OF MAJOR BUILDING CONTENTS.
- 3. FACILITIES TO BE DEMOLISHED MAY CONTAIN PCB AND LEAD CONTAMINATED PAINT. REFER TO SECTION 02060 OF THE SPECIFICATIONS.

Legend:

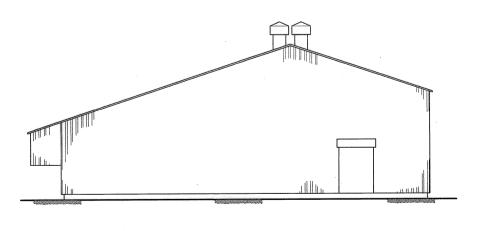
E HATCH **AECOM**

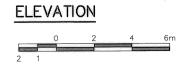
SCALE - ECHELLE PROJECT - PROJET DYE-M CAPE DYER

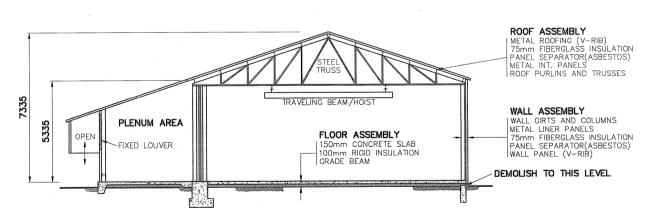
DEW LINE CLEAN UP

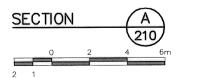

HER MAJESTY THE QUEEN IN RIGHT OF CANADA 2010, AS REPRESENTED BY THE MINISTER OF NATIONAL DEFENCE.

TRADE - METIER STRUCTURAL DATE 2010-12-07 SUBJECT - SUJET


POWER AND EQUIPMENT BUILDING PLAN AND SECTION


PRODUCTION.	CONCURRENCE - ASSENTIMENT			
DESIGNED DTM/TME	DES OFF AGENT CONCEPT			
DRAWN DESSINE IC/CAE	SECT HD CHEF SECT			
CHECKED BWF VERIFIE	DES MGR GEST CONCEPT			
COORDINATION RRM	REVIEWED — REVU			
	c. no. – dessin no. C75/3—9101—217			





NWSO NUMBER	COMMENTS
B3B	ASBESTOS DOORS REMOVAL REQUIRED.

National Défense Defence nationale

Quartler général

General Notes:

- 1. ALL DIMENSIONS ARE IN MILLIMETRES UNLESS NOTED OTHERWISE.
- 2. REFER TO DEMOLITION TABLES IN SPECIFICATIONS FOR LIST OF MAJOR BUILDING CONTENTS.
- 3. FACILITIES TO BE DEMOLISHED MAY CONTAIN PCB AND LEAD CONTAMINATED PAINT. REFER TO SECTION 02060 OF THE SPECIFICATIONS.

Legend:

No. DATE REVISION REVISION

e hatch

AECOM

SCALE - ECHELLE AS SHOWN

PROJECT - PROJET

DYE-M CAPE DYER

DEW LINE CLEAN UP

© COPYRIGHT

HER MAJESTY THE QUEEN IN RIGHT OF
CANADA 2010, AS REPRESENTED BY THE
MINISTER OF NATIONAL DEFENCE.

TRADE - METIER STRUCTURAL DATE 2010-12-07

SUBJECT - SUJET

POWERHOUSE PLAN, SECTIONS AND ELEVATION

PRODUCTION	CONCURRENCE - ASSENTIMENT	
DESIGNED DTM/TME ETUDIE	DES OFF AGENT CONCEPT	
DRAWN DESSINE IC/CAE	SECT HD CHEF SECT	
CHECKED BWF	DES MGR GEST CONCEPT	
COORDINATION RRM	REVIEWED - REVU	
	S. NO DESSIN NO.	

DWG. NO. - DESSIN NO. H-C75/3-9101-218

NT-NU SPILL REPORT

OIL, GASOLINE, CHEMICALS AND OTHER HAZARDOUS MATERIALS

NT-NU 24-HOUR SPILL REPORT LINE

TEL: (867) 920-8130 FAX: (867) 873-6924 EMAIL: spills@gov.nt.ca

REPORT LINE USE ONLY

^	REPORT DATE: MONTH – DAY – YEAR REPORT T		EPORT TIM					
A	06-14-2010		1	6h00		▼ORIGINAL SPILL REPO OR	JRI,	REPORT NUMBER
П	OCCURRENCE DATE: MONTH - D	AY – YEAR	00	CCURREN	ICE TIME	□ UPDATE #		
В	observed 06-11-201	0	0	bserv	/ed 06-11-10	TO THE ORIGINAL SPILL	REPORT	
С	LAND USE PERMIT NUMBER (IF A N2008X0003	PPLICABLE)			ATER LICENCE NUMBER BR-DYE0914	(IF APPLICABLE)		
ח	GEOGRAPHIC PLACE NAME OR D		ROM NAMED LOC	ATION	REGION			
D	(DYE-M), Cape Dyei	r, Nunavut			□ NWT X NUNAVU	JT ADJACENT JURI	SDICTION (OR OCEAN
Ε	LATITUDE DEGREES 66 MI	NUTES 39 SE	ECONDS		ongitude EGREES 61	MINUTES 21	SE	CONDS
F	RESPONSIBLE PARTY OR VESSE				RESS OR OFFICE LOCAT			
'	Defence Constructi				<u> </u>	Ontario, K1A 0	K3	
G	None	C	ONTRACTOR ADI	DRESS OF	R OFFICE LOCATION			
	PRODUCT SPILLED			ES, KILOG	S, KILOGRAMS OR CUBIC METRES U.N. NUMBER			
Н	Contact water		60,000			None		
٠.,	SECOND PRODUCT SPILLED (IF A	,	NUANTITY IN LITRI None	ES, KILOG	GRAMS OR CUBIC METR	ES U.N. NUMBER None		
	SPILL SOURCE				110110	NATION IN C	COLLA DE METDEC	
	Land-farm		SPILL CAUSE Snow melt AREA OF CONTAMINATION IN S 4500			N SQUARE METRES		
J	FACTORS AFFECTING SPILL OR F Weather: continued		escribe any as None	SSISTANCI	E REQUIRED	None None	ONS, PROP	ERTY OR ENVIRONMENT
	ADDITIONAL INFORMATION, COM	MENTS, ACTIONS PROPOSE	D OR TAKEN TO C	CONTAIN,	RECOVER OR DISPOSE	OF SPILLED PRODUCT A	ND CONTAI	MINATED MATERIALS
K	As the initial mitigation outside the berm in through the INAC in Analysis of contact	a pre-approved o	lischarge l	ocatio	on, following a	ppropriate appr	ovals (• • •
ī	REPORTED TO SPILL LINE BY	POSITION		MPLOYER		LOCATION CALLING FRO		ELEPHONE
ᆫ	Robert Bellizzi	DLCU Env. Offi	-	СС		Ottawa		513-998-7288
M	Nahed Farah	Assoc. Proj. Mr	I	MPLOYER OCC		Ottawa LOCATION	1	
			REPORT LINE U					13-998-7917
N			HEFORT LINE	JSE ONLY	<i>(</i>			
1 /	RECEIVED AT SPILL LINE BY	POSITION		MPLOYER		LOCATION CALLED	RI	
	RECEIVED AT SPILL LINE BY	POSITION STATION OPERATOR				LOCATION CALLED YELLOWKNIFE, NT		613-998-7917
	DAGENCY DEC DCCG DGNW	STATION OPERATOR	EN	SIGNIFI	CANCE MINOR MA	YELLOWKNIFE, NT JOR □ UNKNOWN	(8	613-998-7917 EPORT LINE NUMBER
AGE	DAGENCY DEC DCCG DGNW	STATION OPERATOR	EN	MPLOYER	CANCE MINOR MA	YELLOWKNIFE, NT	(8	613-998-7917 EPORT LINE NUMBER 67) 920-8130
AGEI	DAGENCY DEC DCCG DGNW	STATION OPERATOR	EN	SIGNIFI	CANCE MINOR MA	YELLOWKNIFE, NT JOR □ UNKNOWN	(8	613-998-7917 EPORT LINE NUMBER 67) 920-8130
AGEI	DAGENCY DEC DCCG DGNW	STATION OPERATOR	EN	SIGNIFI	CANCE MINOR MA	YELLOWKNIFE, NT JOR □ UNKNOWN	(8	613-998-7917 EPORT LINE NUMBER 67) 920-8130
AGEI LEAE FIRS	D AGENCY DEC DCCG DGNW	STATION OPERATOR	EN	SIGNIFI	CANCE MINOR MA	YELLOWKNIFE, NT JOR □ UNKNOWN	(8	613-998-7917 EPORT LINE NUMBER 67) 920-8130

Candice Casucci Environmental Sciences Group The Royal Military College of Canada PO Box 17000 Stn. Forces Kingston, ON K7K 7B4 WWO BEG - HILL - WILLIAM -

Tamara Van Dyck Environmental Officer Defence Construction Canada DEW Line Cleanup PMO 101 Colonel By Drive Ottawa ON K1A 0K2

Monday March 21, 2011

June 2010 Monthly Report for Water Use License Number: IBR-DYE0914

The following results of the Monitoring Program (MP) and/or Water Use License are provided by the Environmental Sciences Group to meet the requirements of the above-noted license for *DYE-M* (*Cape Dyer*).

1. SEWAGE EFFLUENT

A sewage lagoon was constructed at DYE-M in September of 2004. The Water Use License and MP require that samples from treated sewage lagoon effluent at the point of discharge to the receiving water be collected prior to each discharge event.

Two sewage lagoon samples were collected and analyzed from DYE-M in June, 2010. A summary of the results for the parameters tested is provided below. Laboratory results are provided in Appendix A.

LOCATION: SEWAGE LAGOON - OLD CELL EAST SIDE

GPS COORDINATES: 563352 / 7386908

SAMPLE: 10-21252 **DATE:** June 15, 2010

Parameter	Allowable Maximum Average Concentration	Units	10-21252 (June 15, 2010)	
pН	6.0 to 9.0	pH units	6.65	
Oil & Grease	None Visible	-	None Visible	
Total Suspended Solids (TSS)	180	mg/L	<10	
BOD	120	mg/L	42	
Faecal Coliforms	100,000	CFU/100mL	N/A	
Total Coliforms	-	CFU/ 100 mL	>200	

Photo 1 (DSC01109): Sample 10-21252 Dye-M Collecting a sample of wastewater from the sewage lagoon.

LOCATION: SEWAGE LAGOON - OLD CELL NORTH SIDE

GPS COORDINATES: 563352 / 7386908

SAMPLE: 10-21264 **DATE**: June 16, 2010

Parameter	Allowable Maximum Average Concentration	Units	10-21264 (June 26, 2010)
pН	6.0 to 9.0	pH units	6.39
Oil & Grease	None Visible	-	None Visible
Total Suspended Solids (TSS)	180	mg/L	20
BOD	120	mg/L	<3
Faecal Coliforms	100,000	CFU/100 mL	600
Total Coliforms	-	CFU/ 100 mL	19000

Photo 2 (DSC01287): Sample 10-21264 Dye-M Sampling Sewage Lagoon - Old cell North Side

Waste water from the Old Cell of the sewage lagoon was discharged to the ground on July 11 and 12, 2010. The water was discharged on the east side of the lagoon away from the main camp. (0563407, 7386908)

We trust that the information provided meets current requirements. Please contact the undersigned if you have any questions or concerns.

Sincerely,

Candice Casucci

Masuri.

Environmental Sciences Group

cc: Eva Schulz (UMA)

Daniela Looke, Kat White, Marc Ellemers, Andrea Ellis, Megan Lord (ESG)

APPENDIX A LABORATORY RESULTS

ESG					ASG	Login No:	20628
12 Verite	Ave					Site:	DYE-M
Dept. of	Chem. / Cl	hem. Eng., RMC			Client	t Login No:	10-024
P.O. Box	(17000, St	tn. Forces			Samples	Received:	16-Jun-10
	, Ontario k				Date o	of analysis:	17-Jun-10
						/lethod No:	
						Reported:	
						Page:	1 of 1
		RESULTS OF	BOD A	NALYSIS			
		Sample I.D.	Unit	BOD			
		21252	mg/L	42			
		*Averaged result of duplic	cates				
		~Readings conducted 10		t expected reading	time.		
		LABORAT	CORY C	A/QC			
		Sample I.D.	Unit	BOD			
		Blank	mg/L	< 3			
		Control	mg/L	122			
		Control Target	mg/L	165			

				ASG Login No:	20628
rite Ave					DYE-M
of Chem. / Chem. Eng.,	RMC			Client No:	10-024
Box 17000, Stn. Forces				Samples Received:	16-Jun-10
ton, Ontario K7K 7B4				Date of analysis:	
541-6000 ext 6567	Date Reported: 1				
(613) 541-6596				Sheet:	1 of 1
RESU	JLTS OF MIC	ROBIOLOGI	CAL ANALY	SIS	
	Method: ASG 036	Method: ASG 036	Method: ASG 036	Method: ASG 041	1
Sample Identification				Heterotrophic	
	Coliforms	E. coli	Background	Plate Count	
	(CFU/100 mL)	(CFU/100 mL)	(CFU/100 mL)	(CFU/mL)	
21252*	> 200	99	> 200	> 500	1
ZIZOZ	> 200	33	> 200	2 000	
*Averaged results of dup	olicates				
	LABORATO	ORY QA/QC			
	Method: ASG 036	Method: ASG 036	Method: ASG 036	Method: ASG 041	1
Sample Identification		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 , , , , , , , , , , , , , , , , , , ,	Heterotrophic	
- по	Coliforms	E. coli	Background	Plate Count	
	(CFU/100 mL)	(CFU/100 mL)	(CFU/100 mL)	(CFU/mL)	
Blank	0	0	0	0	
21252; Duplicate	> 200 ; > 200	88 ; 110	> 200	> 500 ; > 500	
Control Sample	33	33	0	26	
Control Target	34	34	0	34	
ESG				ASG Login No: 2	20628
12 Verite Ave				Site: D	
Dept. of Chem. / Cher	n Eng DMC			Client No: 1	•
P.O. Box 17000, Stn.				Samples Received: 1	
				Date of analysis: 1	
Kingston, Ontario K7h				,	
(613) 541-6000 ext 65	67			Method No: A	
Fax: (613) 541-6596				Date Reported: 1 Page: 1	
				Page: 1	OI I
	RESULTS	OF pH ANA	I YSIS		
	Sample I.D.		Н		
	21252	6.0	65		
	21232				
	* Averaged result	of duplicates			
	* Averaged result	of duplicates	VQC		
	* Averaged result	RATORY QA			
	* Averaged result LABO Sample I.D.	RATORY QA	Н		
	* Averaged result	RATORY QA	Н		

SG							ASG Login	No: 20628
Verite Ave								ite: Dye-M
	Chem. Eng., RMC						Client Login	No: 10-024
O. Box 17000, S	Stn. Forces					5	Samples Receive	ed: 16-Jun-
ngston, Ontario							Date of analy	sis: 17-Jun-
13) 541-6000 ex								No: ASG 03
ax: (613) 541-659	96							ted: 18-Jun-
							Sh	eet: 1 of 1
	RE	SULTS OF TOT	AL SUS	PEND	ED SOLIDS ANA	LYSIS		
		Sample I.D.	Sample	Unit	Total			
		Cumpic iii.	Type^	U	Suspended Solids			
		21252*	SE	mg/L	< 10			
		1.4	BORAT	OBV () A /OC			
		LA	BURAI	OKI	AAQC			
		Duplicate ; 21252	SE; SE	mg/L	< 10 ; < 10			
		Control	Control	mg/L	220			
		Control Target	Control	mg/L	200			
		Blank	Control	mg/L	< 1			
		^SW =Surface Water,		e Influent	SE = Sewage Effluent			
ESG		* Averaged result of du	iplicates			ASC	G Login No:	20679
	ite Ave							Dye-M
		em. Eng., RMC				Clien	t Login No:	
	30x 17000, Str						Received:	
	on, Ontario K						of analysis:	
	541-6000 ext 6					ı	Method No:	ASG 042
	13) 541-6596					Date	e Reported:	5-Jul-10
(0	,					24.	Page:	
							Ü	
		RESULTS	OF B	OD A	ANALYSIS			
		REGOLIC	, O. B		WAL TOIO			
		Sample I.D.		Unit	BOD			
		21264*		m a/I	< 3			
		21204		mg/L	\ \			
		*Averaged result of						
					7.0			
		*Averaged result of	duplicate	es	QA/QC			
		*Averaged result of	RATO	es				
		*Averaged result of	RATO	es PRY C	QA/QC BOD			
		*Averaged result of LABO Sample I.D.	RATO	es PRY (QA/QC			
		*Averaged result of LABO Sample I.D. Duplicate; 2126	RATO	es ORY (Unit mg/L	QA/QC BOD <3;<3			

ESG			ASC	Login No:	20679
12 Verite Ave				Site:	Dye-M
Dept. of Chem. / Ch	nem. Eng., RMC			Client No:	10-046
P.O. Box 17000, S	tn. Forces		Samples	Received:	28-Jun-10
Kingston, Ontario k	(7K 7B4		Date of	of analysis:	28-Jun-10
(613) 541-6000 ext	6567		N	Method No:	ASG 037
Fax: (613) 541-659	3		Date	e Reported:	
				Page:	1 of 1
	RESULTS OF	pH ANALYSIS			
	Sample I.D.	рН			
	21264	6.39			
	* Averaged result of dup	licates			
	3.1				
	LABORAT	ORY QA/QC			
	Sample I.D.	рН			
	21264 ; 21264	6.38 ; 6.40			
	Control	7.01			
	Control Target	7.00			

ESG					ASG Login No:	20679
12 Verite Ave					Site:	Dye-M
Dept. of Chem. / Chem. Eng., RMC					Client Login No:	10-046
P.O. Box 17000, Stn. Forces					Samples Received:	28-Jun-10
Kingston, Ontario K7K 7B4					Date of analysis:	29-Jun-10
613) 541-6000 ext 6567					Method No:	ASG 039
Fax: (613) 541-6596					Date Reported:	29-Jun-10
					Sheet:	1 of 1
RE	SULTS OF TOT	AL SUS	PEND	ED SOLIDS AN	ALYSIS	
	Sample I.D.	Sample	Unit	Total		
		Type^		Suspended Solids		
	21264*	SE	mg/L	20		
	LAI	BORAT	ORY (QA/QC		
	Duplicate; 21264*	SE; SE	mg/L	19 ; 20		
	Control	Control	mg/L	180		
	Control Target	Control	mg/L	200		
	Blank	Control	mg/L	< 1		
	^SW =Surface Water, S		e Influent	SE = Sewage Effluent		
	* Averaged result of du	plicates				

			ASG Login No:	20679
				DYE-M
RMC			Client No:	10-046
			Samples Received:	28-Jun-10
			Date Reported:	30-Jun-10
			Sheet:	1 of 1
III TO OF MIC	SPORIOL OC	ICAL ANALY	CIC	
UL I S OF MIC	KOBIOLOG	ICAL ANALY	515	
Method: ASG 036	Method: ASG 036	Method: ASG 036	Method: ASG 044	
Total			Fecal	
Coliforms	E. coli	Background	Coliforms	
(CFU/100 mL)	(CFU/100 mL)	(CFU/100 mL)	(CFU/100 mL)	
19 000	410	> 200 000	600	
LABC	RATORY QA	VQC		
Method: ASG 036	Method: ASG 036	Method: ASG 036	Method: ASG 044	
Total			Fecal	
Coliforms	E. coli	Background	Coliforms	
(CFU/100 mL)	(CFU/100 mL)	(CFU/100 mL)	(CFU/100 mL)	
0	0	0	0	
42	42	0	42	
	33	0	33	li e
	Method: ASG 036 Total Coliforms (CFU/100 mL) 19 000 LABC Method: ASG 036 Total Coliforms (CFU/100 mL)	Method: ASG 036 Method: ASG 036 Total Coliforms E. coli (CFU/100 mL) (2FU/100 mL)	Method: ASG 036 Method: ASG 036 Method: ASG 036 Total Coliforms E. coli Background (CFU/100 mL) (CFU/100 mL) (CFU/100 mL) 200 000	Client No: Samples Received: Date of analysis: Date Reported: Sheet:

Candice Casucci Environmental Sciences Group The Royal Military College of Canada PO Box 17000 Stn. Forces Kingston, ON K7K 7B4

Tamara Van Dvck **Environmental Officer DEW Line Cleanup PMO** 101 Colonel By Drive Ottawa ON K1A 0K2

Defence Construction Canada

Monday, March 21, 2011

RE: Analytical Results for Wastewater Samples Collected at DYE-M in June 2010

The following report summarizes results of the analysis of wastewater samples as per the DYE-M (Cape Dyer) DEW Line Cleanup Project (DLCU) Specifications.

The DYE-M specifications require that "wash water, melt water collection, rinse water resulting from the cleaning of fuel tanks and pipelines, and/or any other liquid effluent stream" meet the following guidelines prior to their discharge to land

Parameter	Maximum Allowable Concentration	Units
pН	6-9	pH units
Total arsenic (As)	0.100	mg/L
Dissolved cadmium (Cd)	0.010	mg/L
Dissolved chromium (Cr)	0.100	mg/L
Dissolved cobalt (Co)	0.050	mg/L
Dissolved copper (Cu)	0.200	mg/L
Dissolved lead (Pb)	0.050	mg/L
Total mercury (Hg)	0.0006	mg/L
Dissolved nickel (Ni)	0.200	mg/L
Total zinc (Zn)	0.500	mg/L
Oil & grease	5	mg/L
PCBs	1.0	mg/L
Phenols	-	-

Phenols

The wastewater samples collected by ESG at DYE-M in June, 2010 were not analyzed for phenols but they were analyzed for oil and grease. Research conducted by ESG¹ has determined that a) no federal, territorial or provincial criteria exist for the discharge of wastewater containing phenols to land at a minimum distance of 30-m from natural

¹ Environmental Sciences Group. DEW Line Clean Up Project – Phenols in Wastewater. June, 2007.

drainage courses b) the maximum concentration of phenols in DLCU wastewater to date (2.44 mg/L) is below the LC₅₀ for freshwater fish and crustaceans and below the oral and dermal LD₅₀s for rats and rodents and c) phenols in excess of the maximum allowable concentration (MAC) have historically co-occurred with a visible oil & grease sheen and/or with an exceedance of the MAC for oil & grease. This information, and a subsequent decision to not test for phenols, has been presented to the NWB. To date, verbal agreement from the NWB has been received, but the project is awaiting written confirmation of the decision to suspend testing for phenols.

WASTEWATER SAMPLES

Twelve wastewater samples were collected at DYE-M and analyzed in June 2010. A summary of the details of these results follows. Laboratory results are provided in Appendix A.

LOCATION: UPPER SITE NON HAZARDOUS WASTE LANDFILL - WATER POOLED

AT NORTHWEST SIDE OF FACILITY

GPS coordinates: 572148 / 7395163

SAMPLE: 10-21242 **DATE:** June 11, 2010

Parameter	Maximum Allowable Concentration	Units	Sample # 10-21242
pН	6-9	pH units	7.88
Total arsenic (As)	0.100	mg/L	< 0.003
Dissolved cadmium	0.010	mg/L	< 0.001
(Cd)			
Dissolved chromium	0.100	mg/L	< 0.005
(Cr)			
Dissolved cobalt (Co)	0.050	mg/L	< 0.003
Dissolved copper (Cu)	0.200	mg/L	< 0.005
Dissolved lead (Pb)	0.050	mg/L	< 0.010
Total mercury (Hg)	0.0006	mg/L	< 0.4
Dissolved nickel (Ni)	0.200	mg/L	< 0.005
Total zinc (Zn)	0.500	mg/L	0.026
Oil & grease	5	mg/L	<2.0
PCBs	1.0	mg/L	< 0.003
Phenols	-	-	N/A

Photo 1 (DSC00987): Sample 10-21242 Dye-M June 11th, 2010 Collecting a sample from the US NHWL

Waste water from the US -NHWL was discharged to the ground on June 16, 2010. The water was discharged to an INAC approved location, greater than 30m from natural drainage courses (571059 / 7394555)

LOCATION: UPPER SITE TIER II - WATER POOLED ALONG WESTSIDE OF

FACILITY

GPS COORDINATES: 571054 / 7394618

SAMPLE: 10-21243 **DATE:** June 11, 2010

Parameter Parameter	Maximum Allowable Concentration	Units	Sample # 10-21243
pН	6-9	pH units	8.08
Total arsenic (As)	0.100	mg/L	< 0.003
Dissolved cadmium	0.010	mg/L	< 0.001
(Cd)			
Dissolved chromium	0.100	mg/L	< 0.005
(Cr)			
Dissolved cobalt (Co)	0.050	mg/L	< 0.003
Dissolved copper (Cu)	0.200	mg/L	< 0.005
Dissolved lead (Pb)	0.050	mg/L	< 0.010
Total mercury (Hg)	0.0006	mg/L	< 0.4
Dissolved nickel (Ni)	0.200	mg/L	< 0.005
Total zinc (Zn)	0.500	mg/L	<0.10
Oil & grease	5	mg/L	<2.0
PCBs	1.0	mg/L	< 0.003
Phenols	-	-	N/A

Photo 2 (DSC00996): Sample 10-21243 Collecting a sample from the US Tier II

Waste water from the US Tier II was discharged to the ground on June 16, 2010. The water was discharged to an INAC approved location, greater than 30m from natural drainage courses (571059 / 7394555)

LOCATION: LANDFARM – WATER POOLED AT THE NORTH SIDE

GPS coordinates: 562952 / 7387007

SAMPLE: 10-21241 **DATE:** June 10, 2010

Parameter	Maximum Allowable Concentration	Units	Sample # 10-21241
pН	6-9	pH units	8.20
Total arsenic (As)	0.100	mg/L	N/A
Dissolved cadmium	0.010	mg/L	N/A
(Cd)			
Dissolved chromium	0.100	mg/L	N/A
(Cr)			
Dissolved cobalt (Co)	0.050	mg/L	N/A
Dissolved copper (Cu)	0.200	mg/L	N/A
Dissolved lead (Pb)	0.050	mg/L	< 0.010
Total mercury (Hg)	0.0006	mg/L	N/A
Dissolved nickel (Ni)	0.200	mg/L	N/A
Total zinc (Zn)	0.500	mg/L	N/A
Oil & grease	5	mg/L	<2.0
PCBs	1.0	mg/L	< 0.003
Phenols	-	-	N/A

Photo 3 (DSC00979): Sample 10-21241 Dye-M June 10th, 2010 Collecting a sample from the landfarm

LOCATION: LANDFARM – OUTFLOW PIPE DISCHARGE

GPS coordinates: 562613 / 7387929

SAMPLE: 10-21244 **DATE:** June 11, 2010

Parameter	Maximum Allowable Concentration	Units	Sample # 10-21244
pН	6-9	pH units	6.67
Total arsenic (As)	0.100	mg/L	N/A
Dissolved cadmium	0.010	mg/L	N/A
(Cd)			
Dissolved chromium	0.100	mg/L	N/A
(Cr)			
Dissolved cobalt (Co)	0.050	mg/L	N/A
Dissolved copper (Cu)	0.200	mg/L	N/A
Dissolved lead (Pb)	0.050	mg/L	< 0.010
Total mercury (Hg)	0.0006	mg/L	N/A
Dissolved nickel (Ni)	0.200	mg/L	N/A
Total zinc (Zn)	0.500	mg/L	N/A
Oil & grease	5	mg/L	<2.0
PCBs	1.0	mg/L	< 0.003
Phenols	-	-	N/A

Photo 4 (DSC01014): Sample 10-21244 Dye-M Collecting a wastewater sample from the outflow pipes at the landfarm

LOCATION: LANDFARM – PUMP DISCHARGE GPS COORDINATES: 562469 / 7387855

SAMPLE: 10-21245 **DATE:** June 11, 2010

Parameter	Maximum Allowable Concentration	Units	Sample # 10-24245
pН	6-9	pH units	6.66
Total arsenic (As)	0.100	mg/L	N/A
Dissolved cadmium	0.010	mg/L	N/A
(Cd)			
Dissolved chromium	0.100	mg/L	N/A
(Cr)			
Dissolved cobalt (Co)	0.050	mg/L	N/A
Dissolved copper (Cu)	0.200	mg/L	N/A
Dissolved lead (Pb)	0.050	mg/L	< 0.010
Total mercury (Hg)	0.0006	mg/L	N/A
Dissolved nickel (Ni)	0.200	mg/L	N/A
Total zinc (Zn)	0.500	mg/L	N/A
Oil & grease	5	mg/L	<2.0
PCBs	1.0	mg/L	< 0.003
Phenols	-	-	N/A

Photo 5 (DSC01027): Sample 10-21245 Dye-M Collecting a wastewater sample from the pump discharging water from the landfill

LOCATION: DITCH BY LANDFARM – LANDFARM DISCHARGE WATER

DOWNSTREAM OF DISCHARGE LOCATION GPS COORDINATES: 562405 / 7387850

SAMPLE: 10-21246 **DATE:** June 11, 2010

Parameter	Maximum Allowable Concentration	Units	Sample # 10-21246
pН	6-9	pH units	6.65
Total arsenic (As)	0.100	mg/L	N/A
Dissolved cadmium	0.010	mg/L	N/A
(Cd)			
Dissolved chromium	0.100	mg/L	N/A
(Cr)			
Dissolved cobalt (Co)	0.050	mg/L	N/A
Dissolved copper (Cu)	0.200	mg/L	N/A
Dissolved lead (Pb)	0.050	mg/L	< 0.010
Total mercury (Hg)	0.0006	mg/L	N/A
Dissolved nickel (Ni)	0.200	mg/L	N/A
Total zinc (Zn)	0.500	mg/L	N/A
Oil & grease	5	mg/L	<2.0
PCBs	1.0	mg/L	< 0.003
Phenols	-	-	N/A

Photo 6 (DCS01028): Sample 10-21246 Dye-M Collecting a sample from culvert downstream of landfarm discharge - Northeast culvert at crossroads (MPA 4)

Waste water from the Landfarm area (10-21241, 44, 45, 46) began on June 11, prior to receiving analytical results. Samples were collected downgradient along the drainage course to ensure there were no impacts to the receiving environment. All results were below criteria, and discharge continued on June 16th, 2010.

LOCATION: LOWER SITE - BPA - POOLED WATER IN THE NORTHEAST CORNER.

GPS COORDINATES: 563026 / 7387524

SAMPLE: 10-21247 **DATE:** June 12, 2010

Parameter	Maximum Allowable Concentration	Units	Sample # 10-21247
pН	6-9	pH units	6.39
Total arsenic (As)	0.100	mg/L	< 0.003
Dissolved cadmium	0.010	mg/L	< 0.001
(Cd)			
Dissolved chromium	0.100	mg/L	< 0.005
(Cr)			
Dissolved cobalt (Co)	0.050	mg/L	< 0.003
Dissolved copper (Cu)	0.200	mg/L	< 0.005
Dissolved lead (Pb)	0.050	mg/L	< 0.010
Total mercury (Hg)	0.0006	mg/L	< 0.4
Dissolved nickel (Ni)	0.200	mg/L	< 0.005
Total zinc (Zn)	0.500	mg/L	0.134
Oil & grease	5	mg/L	11.5
PCBs	1.0	mg/L	< 0.003
Phenols	-	-	N/A

Photo 7 (DSC01040): Sample 10-21247 Dye-M Sample bottles collected from the BPA

Water from the Lower Site BPA was over the criteria for Oil and Grease and therefore was not discharged to land. The wastewater was placed in a tote tanks for further treatment/sampling, and was later placed back into the BPA.

LOCATION: LOWER SITE - TIER II - POOLED WATER ON THE NORTH SIDE OF THE

NEW CELL

GPS COORDINATES: 561898 / 7388331

SAMPLE: 10-21248 **DATE:** June 11, 2010

Parameter	Maximum Allowable Concentration	Units	Sample # 10-21248
pН	6-9	pH units	6.56
Total arsenic (As)	0.100	mg/L	< 0.003
Dissolved cadmium	0.010	mg/L	< 0.001
(Cd) Dissolved chromium (Cr)	0.100	mg/L	<0.005
Dissolved cobalt (Co)	0.050	mg/L	< 0.003
Dissolved copper (Cu)	0.200	mg/L	< 0.005
Dissolved lead (Pb)	0.050	mg/L	< 0.010
Total mercury (Hg)	0.0006	mg/L	< 0.4
Dissolved nickel (Ni)	0.200	mg/L	< 0.005
Total zinc (Zn)	0.500	mg/L	0.016
Oil & grease	5	mg/L	2.0
PCBs	1.0	mg/L	< 0.003
Phenols	-	-	N/A

Photo 8 (DSC01049): Sample 10-21248 Dye-M Collecting a sample from the LS Tier

Waste water from the Lower Site - Tier II was discharged to the ground on June 16, 2010. The water was discharged to an area greater than 30m from natural drainage courses (561898 / 7388338).

LOCATION: LS NHWL - WASTEWATER SAMPLE COLLECTED FROM THE

NORTHEAST CORNER

GPS coordinates: 562952 / 7387007

SAMPLE: 10-21249 **DATE:** June 14, 2010

Parameter	Maximum Allowable Concentration	Units	Sample # 10-21249
pН	6-9	pH units	7.23
Total arsenic (As)	0.100	mg/L	< 0.003
Dissolved cadmium	0.010	mg/L	< 0.001
(Cd)			
Dissolved chromium	0.100	mg/L	0.006
(Cr)			
Dissolved cobalt (Co)	0.050	mg/L	< 0.003
Dissolved copper (Cu)	0.200	mg/L	< 0.005
Dissolved lead (Pb)	0.050	mg/L	< 0.010
Total mercury (Hg)	0.0006	mg/L	< 0.4
Dissolved nickel (Ni)	0.200	mg/L	< 0.005
Total zinc (Zn)	0.500	mg/L	0.013
Oil & grease	5	mg/L	<2.0
PCBs	1.0	mg/L	< 0.003
Phenols	-	-	N/A

Photo 9 (DSC01086): Sample 10-21249 Dye-M Collecting a sample of wastewater from the LS NHWL

Waste water from the LS NHWL was discharged to the ground on June 21, 2010. (562931 / 7387009)

LOCATION: LS FORMER BPA – WASTEWATER SAMPLE COLLECTED FROM THE

NORTH SIDE

GPS COORDINATES: 5631011 / 7387530 **SAMPLE:** 10-21250 (Duplicate sample 10-21251) **DATE:** June 14, 2010

Parameter	Maximum Allowable Concentration	Units	Sample # 10-21250
pН	6-9	pH units	7.08
Total arsenic (As)	0.100	mg/L	< 0.003
Dissolved cadmium	0.010	mg/L	< 0.001
(Cd)			
Dissolved chromium	0.100	mg/L	< 0.005
(Cr)			
Dissolved cobalt (Co)	0.050	mg/L	< 0.003
Dissolved copper (Cu)	0.200	mg/L	< 0.005
Dissolved lead (Pb)	0.050	mg/L	< 0.010
Total mercury (Hg)	0.0006	mg/L	< 0.4
Dissolved nickel (Ni)	0.200	mg/L	< 0.005
Total zinc (Zn)	0.500	mg/L	0.014
Oil & grease	5	mg/L	<2.0
PCBs	1.0	mg/L	< 0.003
Phenols	-	-	N/A

SAMPLE: 10-21251 (Duplicate sample 10-21250)

DATE: June 14, 2010

Parameter	Maximum Allowable Concentration	Units	Sample # 10-21251
pН	6-9	pH units	7.18
Total arsenic (As)	0.100	mg/L	< 0.003
Dissolved cadmium	0.010	mg/L	< 0.001
(Cd)			
Dissolved chromium	0.100	mg/L	< 0.005
(Cr)			
Dissolved cobalt (Co)	0.050	mg/L	< 0.003
Dissolved copper (Cu)	0.200	mg/L	< 0.005
Dissolved lead (Pb)	0.050	mg/L	< 0.010
Total mercury (Hg)	0.0006	mg/L	< 0.4
Dissolved nickel (Ni)	0.200	mg/L	< 0.005
Total zinc (Zn)	0.500	mg/L	0.013
Oil & grease	5	mg/L	<2.0
PCBs	1.0	mg/L	< 0.003
Phenols	-	-	N/A

Photo 10 (DSC01089): Sample 10-21250/51 Dye-M Bottles of water collected from the former BPA (LS)

Waste water from the LS Former BPA was discharged to the ground on June 21, 2010. (563129 / 7387533)

LOCATION: UPPER SITE BPA - SAMPLE WAS COLLECTED FROM THE NORTH SIDE

GPS COORDINATES: 563352 / 7386908

SAMPLE: 10-21254 **DATE:** June 22, 2010

Parameter	Maximum Allowable Concentration	Units	Sample # 10-21254
pН	6-9	pH units	6.31
Total arsenic (As)	0.100	mg/L	< 0.003
Dissolved cadmium	0.010	mg/L	< 0.001
(Cd)			
Dissolved chromium	0.100	mg/L	< 0.005
(Cr)			
Dissolved cobalt (Co)	0.050	mg/L	< 0.001
Dissolved copper (Cu)	0.200	mg/L	< 0.005
Dissolved lead (Pb)	0.050	mg/L	< 0.010
Total mercury (Hg)	0.0006	mg/L	< 0.0004
Dissolved nickel (Ni)	0.200	mg/L	< 0.005
Total zinc (Zn)	0.500	mg/L	0.028
Oil & grease	5	mg/L	5.3
PCBs	1.0	mg/L	< 0.003
Phenols	-	-	N/A

Photo 11 (DSC01244): Sample 10-21254 Dye-M Collecting a sample from the US BPA

Water from the Upper Site BPA was over the criterion for Oil and Grease and therefore was not discharged to land. The level of water in the Upper Site BPA decreased over the summer and no discharge events were required.

We trust that the information provided meets current requirements. Please contact the undersigned if you have any questions or concerns.

Sincerely,

Candice Casucci

Masuri.

Environmental Sciences Group

cc: Eva Schulz (UMA)

Daniela Loock, Kat White, Marc Ellemers, Megan Lord, Andrea Ellis (ESG)

APPENDIX A LABORATORY RESULTS

ASU#	12752	Report ID:	Dye-M W7
Client:	ESG	Date Submitted:	14-Jun-10
		Date tested:	14-Jun-10
Site:	Dye-M	Date:	15-Jun-10
	10-010	Matrix:	water
Report of Analysis	S		
Sample	Oil & Grease		
	mg/L		
10-21241	<2.0		
Blank	<2.0		
Control	13.9		
Control Target	15.7		

ASU#	12752	Report ID:	Dye-M W8
Client:	ESG	Date Submitted:	14-Jun-10
		Date tested:	14-Jun-10
Site:	Dye-M	Date:	15-Jun-10
	10-010	Matrix:	water
Report of Analysis	S		
Sample	Dissolved Lead		
	mg/L		
10-21241	< 0.010		
Blank	< 0.010		
Control	8.10		
Control Target	8.00		

F	RESULTS OF PC	B IN V	VATER ANALY	'SIS	
Sample Type **	Sample I.D.	Unit	Aroclor 1254	Aroclor 1260	
W	21241*	mg/L	< 0.003	< 0.003	
* Average	result of duplicate				
	Values in PPM**				
	LABORA	ATOR'	Y QA/QC		
	Blank	mg/L	< 0.003	< 0.003	
	Duplicate; 21241*	mg/L	< 0.003 ; < 0.003	< 0.003 ; < 0.003	
	Control Sample	mg/L	< 0.003	0.014	
	Control Sample Target	mg/L	< 0.003	0.015	

ESG			ASG	Login No:	20609
12 Verite Ave				Site:	Dye-M
Dept. of Chem. / Chem. Eng.	, RMC			Client No:	10-011
P.O. Box 17000, Stn. Forces			Samples	Received:	13-Jun-10
Kingston, Ontario K7K 7B4			Date o	of analysis:	14-Jun-10
(613) 541-6000 ext 6567			N	Nethod No:	ASG 014
Fax: (613) 541-6596			Date	Reported:	14-Jun-10
				Sheet:	1 of 1
R	ESULTS OF MER	CURY ANALY	'SIS		
	Sample	Mercury			
	ID	ug/L			
	10-21242*	< 0.4			
	*Average result of duplication	ates.			
	LABORATO	RY QA/QC			
	Sample	Mercury			
	ID	ug/L			
	Duplicate; 10-21242*	< 0.4 ; < 0.4			
	Blank	< 0.4			
	Control Target	4.00			
	Control Sample	4.10			

ASU#	12750	Report ID:	Dye-M W4
Client:	ESG	Date Submitted:	14-Jun-10
		Date tested:	14-Jun-10
Site:	Dye-M	Date:	15-Jun-10
	10-011	Matrix:	water
Report of Analysis	S		
Sample	Oil & Grease		
	mg/L		
10-21242	<2.0		
Blank	<2.0		
Control	13.8		
Control Target	15.7		

Ī	RESULTS OF PC			
Sample Type **	Sample I.D.	Unit	Aroclor 1254	Aroclor 1260
W	21242	mg/L	< 0.003	< 0.003
	result of duplicate /alues in PPM** LABORA	ATOR'	Y QA/QC	
	Blank	mg/L	< 0.003	< 0.003
	Control Sample Control Sample Target	mg/L mg/L	< 0.003 < 0.003	0.014 0.015

ASU#	12750		Report ID:	Dye-M W3				
Client:	ESG		Date Submitted:	14-Jun-10				
			Date tested:	14-Jun-10				
Site:	Dye-M		Date:	15-Jun-10				
	10-011		Matrix:	Water				
Report of Analysis								
Total Metals	Results in mg/L							
SAMPLE	Cu	Ni	Co	Cd	Pb	Zn	Cr	As
10-21242	-	-	-	-	-	0.026	< 0.005	< 0.003
Blank	-	-	-	-	-	< 0.010	< 0.005	< 0.003
Control	-	-	-	-	-	3.05	0.82	0.78
Control Target	-	-	-	-	-	3.00	0.80	0.80
Dissolved Metals	Results in mg/L							
SAMPLE	Cu	Ni	Co	Cd	Pb	Zn	Cr	As
10-21242	<0.005	< 0.005	<0.003	< 0.001	< 0.010	-	-	-
Blank	<0.005	< 0.005	<0.003	< 0.001	< 0.010	-	-	-
Control	1.61	1.62	1.61	0.79	8.10	-	-	-
Control Target	1.60	1.60	1.60	0.80	8.00	-	-	-

ESG			ASG	Login No:	20610
12 Verite Ave				Site:	Dye-M
Dept. of Chem. / Chem. Eng.,	RMC			Client No:	10-012
P.O. Box 17000, Stn. Forces			Samples	Received:	13-Jun-10
Kingston, Ontario K7K 7B4			Date o	f analysis:	14-Jun-10
(613) 541-6000 ext 6567				Nethod No:	
Fax: (613) 541-6596			Date	Reported:	
				Sheet:	1 of 1
RE	SULTS OF MER	RCURY ANALY	SIS		
	Sample	Mercury			
	ID	ug/L			
	10-21243*	< 0.4			
	*Average result of duplic	cates.			
	1 450545				
	LABORAT	ORY QA/QC			
	Sample	Mercury			
	ID	ug/L			
	Duplicate; 10-21243*	< 0.4 ; < 0.4			
	Blank	< 0.4			
	Control Target	4.00			
	Control Sample	4.10			

ASU#		12751			Report ID:	Dye-M W5
Client:		ESG			Date Submitte	ed: 14-Jun-10
					Date tested:	14-Jun-10
Site:		Dye-M			Date:	15-Jun-10
2227		10-012			Matrix:	water
		10 012			With the second	water
Report of Ana	alysis					
•						
Sample		Oil & Grease				
<u>+</u>		mg/L				
		mg L				
10-21243		<2.0				
10-21243		<2.0				
D11		-2.0				
Blank		<2.0				
Control		13.9				
Control Targ	get	15.7				
ESG					ASG Login No:	
12 Verite Ave Dept. of Chem. / Cher	n Eng R	MC:			Client No:	Dye-M 10-012
P.O. Box 17000, Stn.		IVIO			Samples Received:	
Kingston, Ontario K7k					Date of analysis:	
(613) 541-6000 ext 65	67				Method No:	
Fax: (613) 541-6596					Date Reported:	
					Sheet No:	1 of 1
	F	RESULTS OF PC	B IN W	ATER ANAL	YSIS	
	Sample Type **	Sample I.D.	Unit	Aroclor 1254	Aroclor 1260	
	W	21243	mg/L	< 0.003	< 0.003	
		e result of duplicate				
	Report	Values in PPM				
		LABORA	ATORY	QA/QC		
		Blank	mg/L	< 0.003	< 0.003	
		Control Sample	mg/L	< 0.003	0.014	
		Control Sample Target	mg/L	< 0.003	0.015	
	** \$ - \$0	il, C = Concrete, PC = P	aint Chin	CM - Curch D	- Plant W - Water	

ASU#	12751		Report ID:	Dye-M W6				
Client:	ESG		Date Submitted:	14-Jun-10				
			Date tested:	14-Jun-10				
Site:	Dye-M		Date:	15-Jun-10				
	10-012		Matrix:	Water				
Report of Analysis								
Total Metals	Results in mg/L							
SAMPLE	Cu	Ni	Co	Cd	Pb	Zn	Cr	As
10-21243	-	-	-	-	-	< 0.010	<0.005	<0.003
Blank	-	-	-	-	-	< 0.010	< 0.005	< 0.003
Control	-	-	-	-	-	3.05	0.82	0.78
Control Target	-	-	-	-	-	3.00	0.80	0.80
Dissolved Metals	Results in mg/L							
SAMPLE	Cu	Ni	Co	Cd	Pb	Zn	Cr	As
10-21243	<0.005	< 0.005	<0.003	<0.001	< 0.010	-	-	-
Blank	<0.005	< 0.005	<0.003	< 0.001	< 0.010	-	-	-
Control	1.61	1.62	1.61	0.79	8.10	-	-	-
Control Target	1.60	1.60	1.60	0.80	8.00	-	-	-

ASU#	12758		Report ID:	Dye-M W9
Client:	ESG		Date Submitted:	14-Jun-10
			Date tested:	14-Jun-10
Site:	Dye-M		Date:	15-Jun-10
	10-018		Matrix:	water
Report of Analysis	S			
G 1	D: 1 11 1			
Sample	Dissolved Lead			
	mg/L			
10-21244	< 0.010	*		
10-21245	< 0.010			
10-21246	< 0.010			
Blank	< 0.010			
10-21244	< 0.010			
10-21244	< 0.010			
Control	8.10			
Control Target	8.00			

ESG					ASG Login No:	20613
12 Verite Ave					Site:	Dye-M
Dept. of Chem. / Cher	m. Eng., R	MC			Client No:	10-018
P.O. Box 17000, Stn.	Forces				Samples Received:	14-Jun-10
Kingston, Ontario K7l	< 7B4				Date of analysis:	14-Jun-10
(613) 541-6000 ext 65	67				Method No:	
Fax: (613) 541-6596					Date Reported:	
					Sheet No:	1 of 1
	F	RESULTS OF PC	B IN W	ATER ANAL	YSIS	
	Sample Type **	Sample I.D.	Unit	Aroclor 1254	Aroclor 1260	
	W	21244	mg/L	< 0.003	< 0.003	i
	W	21245	mg/L	< 0.003	< 0.003	
	W	21246	mg/L	< 0.003	< 0.003	
	* Average	e result of duplicate				
	Report	Values in PPM				
		LABORA	ATORY	QA/QC		
		Blank	mg/L	< 0.003	< 0.003	
	1	Control Sample	mg/L	< 0.003	0.014	
		Control Sample Target	mg/L	< 0.003	0.015	

ESG				ASG	Login No:	20613
12 Verite A	\ve				Site:	Dye-M
Dept. of Ch	nem. / Cher	m. Eng., RMC			Client No:	10-018
P.O. Box 1	17000, Stn.	Forces		Samples	Received:	14-Jun-10
Kingston, (Ontario K7	(7B4			of analysis:	
(613) 541-6		67			Method No:	
Fax: (613)	541-6596			Date	Reported:	
					Page:	1 of 1
		RESULTS OF	pH ANALYSIS			
		Sample I.D.	рН			
		21244*	6.67			
		21245	6.66			
		21246	6.65			
		* Averaged result of dupl	icates			
		LABORAT	ORY QA/QC			
		Sample I.D.	рН			
		21244 ; 21244	6.67 ; 6.66			
		Control	6.98			
		Control Target	7.00			

ASU#	12758	Rej	ort ID:	Dye-	-M W10
Client:	ESG	Dat	e Submitted:	14-	Jun-10
		Dat	e tested:	16-	Jun-10
Site:	Dye-M	Dat	æ:	17-	Jun-10
	10-018		trix:		vater
	10 010	1714			vacci
Report of Analysis					
Sample C	Oil & Grease				
_	mg/L				
10-21244	<2.0				
10-21245	<2.0				
10-21246	<2.0				
10 21210	12.0			+	
Blank	<2.0				
Dittint	2.0				
Control	13.6				
Control Target	15.7				
ESG	13.7		ASGL	ogin No:	20616
12 Verite Ave			7.00 2.		Dye-M
Dept. of Chem. / Chem. En				lient No:	
P.O. Box 17000, Stn. Force			Samples R		
Kingston, Ontario K7K 7B4 (613) 541-6000 ext 6567	•				14-Jun-10 ASG 014
Fax: (613) 541-6596					15-Jun-10
				Sheet:	1 of 1
	RESULTS OF ME	RCURY ANAL	YSIS		
	Sample	Mercury	1		
	ID	ug/L			
	10-21247	< 0.4			
	10-21248*	< 0.4			
	**	L'actes			
	*Average result of dup	olicates.			
	LABORA	FORY QA/QC			
	Sample	Mercury	1		
	ID	ug/L			
	Duplicate ; 10-21248				
	Blank Central Target	< 0.4			
	Control Target Control Sample	4.00			
	Control Cample	1.20			

ESG			ASG Login No:	20616
12 Verite Ave				Dye-M
Dept. of Chem. / Che	m. Eng., RMC		Client No:	10-019
P.O. Box 17000, Stn.	Forces		Samples Received:	14-Jun-10
Kingston, Ontario K7	K 7B4		Date of analysis:	14-Jun-10
(613) 541-6000 ext 65	567		Method No:	ASG 037
Fax: (613) 541-6596			Date Reported:	15-Jun-10
			Page:	1 of 1
	RESULTS OF	PH ANALYSIS		
	Sample I.D.	рН		
	21247	6.39		
	21248	6.56		
	LABORA	TORY QA/QC		
	Sample I.D.	рН		
	Control	6.98		
	Control Target	7.00		

ASU#	12747	Report ID:	Dye-M W1
Client:	ESG	Date Submitted:	14-Jun-10
		Date tested:	14-Jun-10
Site:	Dye-M	Date:	15-Jun-10
	10-019	Matrix:	water
Report of Analysis	S		
Sample	Oil & Grease		
	mg/L		
10-21247	11.5		
10-21248	<2.0		
Blank	<2.0		
Control	13.9		
Control Target	15.7		

ESG					ASG Login No:	20616
12 Verite Ave					Site:	Dye-M
Dept. of Chem. / Cher	m. Eng., R	MC			Client No:	10-019
P.O. Box 17000, Stn.	Forces				Samples Received:	14-Jun-10
Kingston, Ontario K7l	< 7B4				Date of analysis:	14-Jun-10
(613) 541-6000 ext 65	67				Method No:	ASG 015
Fax: (613) 541-6596					Date Reported:	15-Jun-10
					Sheet No:	1 of 1
	I	RESULTS OF PC	BINW	ATER ANAL	YSIS	
					<u> </u>	Ī
	Sample Type **	Sample I.D.	Unit	Aroclor 1254	Aroclor 1260	
	W	21247	mg/L	< 0.003	< 0.003	i
	W	21248	mg/L	< 0.003	< 0.003	
		result of duplicate				
	кероп	Values in PPM**				
		LABORA	ATORY	/ OA/OC		
		LABORA		- CARGO		
		Blank	mg/L	< 0.003	< 0.003	
		Control Sample	mg/L	< 0.003	0.014	
		Control Sample Target	mg/L	< 0.003	0.015	

ASU#	12747		Report ID:	Dye-M W2				
Client:	ESG		Date Submitted:	14-Jun-10				
			Date tested:	14-Jun-10				
Site:	Dye-M		Date:	15-Jun-10				
	10-019		Matrix:	Water				
Report of Analysis								
Total Metals	Results in mg/L							
SAMPLE	Cu	Ni	Co	Cd	Pb	Zn	Cr	As
10-21247	-	-	-	-	-	0.134	< 0.005	< 0.003
10-21248	-	-	-	-	-	0.016	< 0.005	< 0.003
Blank	-	-	-	-	-	< 0.010	< 0.005	< 0.003
10-21248	-	-	-	-	-	0.016	< 0.005	< 0.003
10-21248	-	-	-	-	-	0.015	< 0.005	< 0.003
Control	-	-	-	-	-	3.05	0.82	0.78
Control Target	-	-	-	-	-	3.00	0.80	0.80
Dissolved Metals	Results in mg/L							
SAMPLE	Cu	Ni	Co	Cd	Pb	Zn	Cr	As
10-21247	< 0.005	< 0.005	<0.003	<0.001	< 0.010	-	-	_
10-21248	<0.005	< 0.005	<0.003	<0.001	< 0.010	-	-	-
Blank	<0.005	< 0.005	<0.003	< 0.001	< 0.010	-	-	-
10-21248	< 0.005	< 0.005	< 0.003	< 0.001	< 0.010	-	-	-
10-21248	< 0.005	< 0.005	< 0.003	< 0.001	< 0.010	-	-	-
Control	1.61	1.62	1.61	0.79	8.10	-	-	-
Control Target	1.60	1.60	1.60	0.80	8.00	-	-	-

ESG			ASG Login No	: 20627
12 Verite Ave			Site	: Dye-M
Dept. of Chem. / Chem. E	Eng., RMC		Client No	: 10-023
P.O. Box 17000, Stn. Fo	rces		Samples Received	: 16-Jun-10
Kingston, Ontario K7K 7E	34		Date of analysis	: 17-Jun-10
(613) 541-6000 ext 6567			Method No	: ASG 021
Fax: (613) 541-6596			Date Reported	: 18-Jun-10
			Sheet	: 1 of 1
	RESULTS OF MER	RCURY ANALY	'SIS	
	Sample	Mercury		
	ID	ug/L		
	21249	< 0.4		
	21250	< 0.4		
	21251*	< 0.4		
	*Average result of duplic	cates.		
	LABORAT	ORY QA/QC		
	Sample	Mercury		
		•		
	l Diam			
	Control Target	4.00		
	21249 21250 21251* *Average result of duplic	ug/L < 0.4 < 0.4 < 0.4 < 0.4 Cates. ORY QA/QC Mercury ug/L < 0.4; < 0.4 < 0.4		

ESG					ASG Login No:	20627
12 Verite Ave					Site:	Dye-M
Dept. of Chem. / Chem.	em. Eng., Ri	MC			Client No:	10-023
P.O. Box 17000, Str	n. Forces				Samples Received:	16-Jun-10
Kingston, Ontario Ki	7K 7B4				Date of analysis:	17-Jun-10
(613) 541-6000 ext 6					Method No:	
Fax: (613) 541-6596					Date Reported:	18-Jun-10
					Sheet No:	1 of 1
	F	RESULTS OF PC	B IN V	VATER ANALY	/SIS	
	Sample Type **	Sample I.D.	Unit	Aroclor 1254	Aroclor 1260	
	W	21249*	mg/L	< 0.003	< 0.003	
	VV	21249	mg/L	< 0.003	< 0.003	
	W	21249	mg/L	< 0.003	< 0.003	
		-				
	W W * Average	21250 21251 result of duplicate	mg/L	< 0.003	< 0.003	
	W W * Average	21250 21251	mg/L	< 0.003	< 0.003	
	W W * Average	21250 21251 result of duplicate /alues in PPM**	mg/L mg/L	< 0.003	< 0.003	
	W W * Average	21250 21251 result of duplicate /alues in PPM**	mg/L mg/L	< 0.003 < 0.003	< 0.003	
	W W * Average	21250 21251 result of duplicate /alues in PPM**	mg/L mg/L	< 0.003 < 0.003	< 0.003 < 0.003	
	W W * Average	21250 21251 result of duplicate /alues in PPM** LABORA	mg/L mg/L ATOR	< 0.003 < 0.003 Y QA/QC	< 0.003 < 0.003	

ESG					ASG	Login No:	20627
12 Verite A	ve					Site:	Dye-M
Dept. of Cl	nem. / Chem	. Eng., RMC				Client No:	10-023
P.O. Box	17000, Stn. I	orces			Samples	Received:	16-Jun-10
Kingston,	Ontario K7K	7B4			Date of	of analysis:	16-Jun-10
(613) 541-6	6000 ext 656	7			N	Nethod No:	ASG 037
Fax: (613)	541-6596				Date	Reported:	16-Jun-10
						Page:	1 of 1
		RESULTS OF	pH ANAL	YSIS			
		Sample I.D.	pH				
		21249	7.2				
		21250	7.0	_			
		21251*	7.1	8			
	*	Averaged result of du	plicates				
		LABORA	TORY QA	/QC			
		Sample I.D.	pH				
	_	21252* ; Duplicate	7.18;				
	_	Control Torque	7.0				
1 GY7 //	107	Control Target					
ASU#	1276		Report ID:	Dye-M W15			

ASU#	12768		Report ID:	Dye-M W15				
Client:	ESG		Date Submitted:	16-Jun-10				
			Date tested:	17-Jun-10				
Site:	Dye-M		Date:	18-Jun-10				
	10-023		Matrix:	Water				
Report of Analysis								
Total Metals	Results in mg/L							
SAMPLE	Cu	Ni	Co	Cd	Pb	Zn	Cr	As
10-21249	_	_	-	-	_	0.013	0.006	< 0.003
10-21250	-	-	-	-	-	0.014	< 0.005	< 0.003
10-21251	-	-	-	-	-	0.013	< 0.005	<0.003
Blank	-	-	-	-	-	< 0.010	< 0.005	< 0.003
Control	-	-	-	-	-	3.04	0.83	0.77
Control Target	-	-	-	-	-	3.00	0.80	0.80
10-21251						0.013	< 0.005	< 0.003
10-21251						0.013	< 0.005	< 0.003
Dissolved Metals	Results in mg/L							
SAMPLE	Cu	Ni	Co	Cd	Pb	Zn	Cr	As
10-21249	<0.005	< 0.005	< 0.003	< 0.001	< 0.010	-	-	-
10-21250	< 0.005	< 0.005	< 0.003	< 0.001	< 0.010	-	-	-
10-21251	< 0.005	< 0.005	< 0.003	< 0.001	< 0.010	-	-	-
Blank	< 0.005	< 0.005	<0.003	< 0.001	< 0.010	-	-	-
Control	1.63	1.63	1.61	0.81	8.12	-	-	-
Control Target	1.60	1.60	1.60	0.80	8.00	-	-	-
10-21251	<0.005	< 0.005	< 0.003	< 0.001	< 0.010			
10-21251	< 0.005	< 0.005	< 0.003	< 0.001	< 0.010			

ASU#	12768	Report ID:	Dye-M W14
Client:	ESG	Date Submitted:	16-Jun-10
		Date tested:	16-Jun-10
Site:	Dye-M	Date:	17-Jun-10
	10-023	Matrix:	water
Report of Analysis	S		
Sample	Oil & Grease		
	mg/L		
10-21249	<2.0		
10-21250	<2.0		
10-21251	<2.0		
Blank	<2.0		
Control	13.6		
Control Target	15.7		

ASU#	12811	Report ID:	Dye-M W17
Client:	ESG	Date Submitted:	25-Jun-10
		Date tested:	26-Jun-10
Site:	Dye-M	Date:	28-Jun-10
	10-054	Matrix:	water
Report of Analysis	8		
Sample	Oil & Grease		
	mg/L		
10-21254	5.3		
Blank	<2.0		
Control	14.3		
Control Target	15.7		
Results relate only	to the items tested		

ESG							ASO	G Login No:	20668	
12 Verite Ave							,		Dye-M	
Dept. of Chem. / Che	m. Eng., Ri	МС						Client No:		
P.O. Box 17000, Str							Sample	s Received:		
Kingston, Ontario K7								of analysis:		
(613) 541-6000 ext 6								Method No:		
Fax: (613) 541-6596								e Reported:		
,								Sheet No:		
	F	RESU	JLTS OF PC	BINW	ATE	R ANAL	YSIS			
									1	
	Sample Type **	:	Sample I.D.	Unit	Aro	clor 1254	Aroclo	or 1260		
	W		21254	mg/L	<	< 0.003	< 0.	.003		
	* Average **Report \		of duplicate in PPM**							
			LABOR	ATORY	QA	/QC				
			Blank	mg/L		< 0.003	< 0.	.003		
			ontrol Sample	mg/L		< 0.003		011		
		Contr	ol Sample Target	mg/L	•	< 0.003	0.0)15		
	** 0 0		0	Daily Oliv	0147	0 1 0	District MA	14/		
			Concrete , PC = I		SW:		Plant, W =	· water		
ASU#	1281			Report ID:		Dye-M W16				
Client:	ESG	ì		Date Submi		25-Jun-10				
				Date tested	:	28-Jun-10				
Site:	Dye-1			Date:		28-Jun-10				
	10-05	54		Matrix:		Water				
D . CA 1 :										
Report of Analysis										
Total Metals	Results in m	g/L								
SAMPLE	C		Ni	Co		Cd	Pb	Zn	Cr	As
SAMPLE	Cu		IN1	Co		Ca	PD	Zn	Cr	As
10-21254	-		-	-		-	-	0.028	< 0.005	< 0.003
Blank	-		-	-		-	-	< 0.010	< 0.005	< 0.003
Control	-		-	-		-	-	3.08	0.83	0.79
Control Target	-		-	-		-	-	3.00	0.80	0.80
Dissolved Metals	Results in m	g/L								
SAMPLE	Cu		Ni	Co		Cd	Pb	Zn	Cr	As
Di Mill LAL	Cu		111			Cu	10	241	Cı	7 13
10-21254	< 0.00)5	< 0.005	< 0.003		< 0.001	< 0.010	-	-	-
Blank	<0.00)5	<0.005	< 0.003		< 0.001	< 0.010	-	-	-
Blank Control			<0.005	<0.003		<0.001	<0.010	-	-	-

ESG			ASG Login No:	20668
12 Verite Ave			Site:	Dye-M
Dept. of Chem. / Chem. Eng.	, RMC		Client No:	10-054
P.O. Box 17000, Stn. Forces			Samples Received:	25-Jun-10
Kingston, Ontario K7K 7B4			Date of analysis:	28-Jun-10
(613) 541-6000 ext 6567			Method No:	ASG 014
Fax: (613) 541-6596			Date Reported:	28-Jun-10
			Sheet:	1 of 1
R	ESULTS OF MER	RCURY ANALY	'SIS	
	Sample	Mercury		
	ID	mg/L		
	21254	< 0.0004		
	LABORAT	ORY QA/QC		
	Comple	Manarimi	1	
	Sample	Mercury		
	ID	mg/L		
	Blank	< 0.0004		
	Control Target	0.0040		
	Control Sample	0.0042		

ESG				ASG	Login No:	20668
12 Verite Av	<i>v</i> e				Site:	Dye-M
Dept. of Che	em. / Cher	n. Eng., RMC			Client No:	10-054
P.O. Box 17	7000, Stn.	Forces		Samples	Received:	25-Jun-10
Kingston, O	ntario K7k	(7B4		Date o	of analysis:	25-Jun-10
(613) 541-60	000 ext 65	67		N	/lethod No:	ASG 037
Fax: (613) 5	541-6596			Date	Reported:	28-Jun-10
					Page:	1 of 1
		RESULTS OF	pH ANALYSIS			
		Sample I.D.	рН			
		21254	6.31			
		* Averaged result of dupl	icates			
		LABORAT	ORY QA/QC			
		Sample I.D.	рН			
		21254 ; 21254	6.30 ; 6.32			
		Control	7.01			
		Control Target	7.00			

Candice Casucci Environmental Sciences Group The Royal Military College of Canada PO Box 17000 Stn. Forces Kingston, ON K7K 7B4 ON THE SCIENCES GROWN ON THE SCIENCES GROWN

Tamara Van Dyck Environmental Officer Defence Construction Canada DEW Line Cleanup PMO 350 Albert Street, Suite 1720 Ottawa ON K1A 0K3

Monday, March 21, 2011

August 2010 Monthly Report for Water Use License Number: IBR-DYE0914

The following results of the Monitoring Program (MP) and/or Water Use License are provided by the Environmental Sciences Group to meet the requirements of the above-noted license for *DYE-M* (*Cape Dyer*).

1. SEWAGE EFFLUENT

A sewage lagoon was constructed at DYE-M in September of 2004. The Water Use License and MP require that samples from treated sewage lagoon effluent at the point of discharge to the receiving water be collected prior to each discharge event.

No samples were collected from the DYE-M sewage lagoons in July.

We trust that the information provided meets current requirements. Please contact the undersigned if you have any questions or concerns.

Sincerely,

Candice Casucci

Vasuri.

Environmental Sciences Group

cc: Eva Schulz (UMA)

Daniela Looke, Kat White, Marc Ellemers, Andrea Ellis, Megan Lord (ESG)

Candice Casucci Environmental Sciences Group The Royal Military College of Canada PO Box 17000 Stn. Forces Kingston, ON K7K 7B4

Kingston, ON K7K 7B4

Tamara Van Dyck
Environmental Officer
Defence Construction Canada
DEW Line Cleanup PMO
101 Colonel By Drive

Monday, March 21, 2011

Ottawa ON K1A 0K2

RE: Analytical Results for Wastewater Samples Collected at DYE-M in July 2010

The following report summarizes results of the analysis of wastewater samples as per the DYE-M (Cape Dyer) DEW Line Cleanup Project (DLCU) Specifications.

The DYE-M specifications require that "wash water, melt water collection, rinse water resulting from the cleaning of fuel tanks and pipelines, and/or any other liquid effluent stream" meet the following guidelines prior to their discharge to land (01560.4.1):

Parameter	Maximum Allowable Concentration	Units
pН	6-9	pH units
Total arsenic (As)	0.100	mg/L
Dissolved cadmium (Cd)	0.010	mg/L
Dissolved chromium (Cr)	0.100	mg/L
Dissolved cobalt (Co)	0.050	mg/L
Dissolved copper (Cu)	0.200	mg/L
Dissolved lead (Pb)	0.050	mg/L
Total mercury (Hg)	0.0006	mg/L
Dissolved nickel (Ni)	0.200	mg/L
Total zinc (Zn)	0.500	mg/L
Oil & grease	5	mg/L
PCBs	1.0	mg/L
Phenols	-	-

Phenols

The wastewater samples collected by ESG at DYE-M in July, 2010 were not analyzed for phenols but they were analyzed for oil and grease. Research conducted by ESG¹ has determined that a) no federal, territorial or provincial criteria exist for the discharge of wastewater containing phenols to land at a minimum distance of 30-m from natural

¹ Environmental Sciences Group. DEW Line Clean Up Project – Phenols in Wastewater. June, 2007.

drainage courses b) the maximum concentration of phenols in DLCU wastewater to date (2.44 mg/L) is below the LC₅₀ for freshwater fish and crustaceans and below the oral and dermal LD₅₀s for rats and rodents and c) phenols in excess of the maximum allowable concentration (MAC) have historically co-occurred with a visible oil & grease sheen and/or with an exceedance of the MAC for oil & grease. This information, and a subsequent decision to not test for phenols, has been presented to the NWB. To date, verbal agreement from the NWB has been received, but the project is awaiting written confirmation of the decision to suspend testing for phenols.

WASTEWATER SAMPLES

Fourteen wastewater samples were collected at DYE-M and analyzed in July 2010. A summary of the details of these results follows. Laboratory results are provided in Appendix A.

LOCATION: TREATMENT CELL/HOLDING BASIN #1

GPS coordinates: 0563052 7387584

SAMPLE: 10-21286 **DATE:** JULY 9, 2010

Parameter	Maximum Allowable Concentration	Units	Sample # 10-21286
pН	6-9	Units	6.98
Total Arsenic	0.100	pH units	< 0.003
Dissolved Cadmium	0.010	mg/L	< 0.001
Total Chromium	0.100	mg/L	0.006
Dissolved Cobalt	0.050	mg/L	< 0.003
Dissolved Copper	0.200	mg/L	< 0.005
Dissolved Lead	0.050	mg/L	< 0.010
Total Mercury	0.0006	mg/L	< 0.0004
Dissolved Nickel	0.200	mg/L	< 0.005
Total Zinc	0.500	mg/L	< 0.010
Oil & Grease	5	mg/L	3.7
PCBs	1.0	mg/L	< 0.003
Phenols	-	mg/L	N/A

LOCATION: TREATMENT CELL/HOLDING BASIN #2

GPS coordinates: 0563039 7387593

SAMPLE: 10-21287 **DATE:** JULY 9, 2010

Parameter	Maximum Allowable Concentration	Units	Sample # 10-21287
pН	6-9	pH units	6.60
Total arsenic (As)	0.100	mg/L	< 0.003
Dissolved cadmium (Cd)	0.010	mg/L	< 0.001
Dissolved chromium (Cr)	0.100	mg/L	< 0.005
Dissolved cobalt (Co)	0.050	mg/L	< 0.003
Dissolved copper (Cu)	0.200	mg/L	< 0.005
Dissolved lead (Pb)	0.050	mg/L	< 0.010
Total mercury (Hg)	0.0006	mg/L	< 0.0004
Dissolved nickel (Ni)	0.200	mg/L	< 0.005
Total zinc (Zn)	0.500	mg/L	< 0.010
Oil & grease	5	mg/L	<2.0
PCBs	1.0	mg/L	< 0.003
Phenols	-	-	N/A

LOCATION: TREATMENT CELL/HOLDING BASIN #3

GPS coordinates: 0563055 7387596

SAMPLE: 10-21288 **DATE:** JULY 9, 2010

Parameter	Maximum Allowable Concentration	Units	Sample # 10-21288
pН	6-9	pH units	6.57
Total arsenic (As)	0.100	mg/L	< 0.003
Dissolved cadmium (Cd)	0.010	mg/L	< 0.001
Dissolved chromium (Cr)	0.100	mg/L	< 0.005
Dissolved cobalt (Co)	0.050	mg/L	< 0.003
Dissolved copper (Cu)	0.200	mg/L	< 0.005
Dissolved lead (Pb)	0.050	mg/L	< 0.010
Total mercury (Hg)	0.0006	mg/L	< 0.0004
Dissolved nickel (Ni)	0.200	mg/L	< 0.005
Total zinc (Zn)	0.500	mg/L	0.011
Oil & grease	5	mg/L	<2.0
PCBs	1.0	mg/L	< 0.003
Phenols	-	-	N/A

Photo 1 (DSCN5709) Sample 10-21286/87/88 Dye-M Sampling treatment cells

Wastewater from the Holding Basins was below criteria for all parameters in 2010. Water from the holding basins can be discharged to land in 2011.

LOCATION: TANKER W19G

GPS coordinates: 563112 7387514

SAMPLE: 10-21297 **DATE**: JULY 9, 2010

Parameter	Maximum Allowable Concentration	Units	Sample # 10-21297
pН	6-9	pH units	6.77
Total arsenic (As)	0.100	mg/L	< 0.003
Dissolved cadmium (Cd)	0.010	mg/L	< 0.001
Dissolved chromium (Cr)	0.100	mg/L	< 0.005
Dissolved cobalt (Co)	0.050	mg/L	< 0.003
Dissolved copper (Cu)	0.200	mg/L	< 0.005
Dissolved lead (Pb)	0.050	mg/L	< 0.010
Total mercury (Hg)	0.0006	mg/L	0.0004
Dissolved nickel (Ni)	0.200	mg/L	< 0.005
Total zinc (Zn)	0.500	mg/L	< 0.010
Oil & grease	5	mg/L	5.2
PCBs	1.0	mg/L	< 0.003
Phenols	-	-	N/A

Photo 2 (DSCN5706) Sample 10-21297 Dye-M Collecting a wastewater sample from W19G (in former LS BPA)

Wastewater from tanks W19G was above criteria for oil and grease and was not discharged to the ground in 2010.

LOCATION: LS BPA - SAMPLE CAME FROM A TOTE WHICH WAS FILLED WITH

WATER FROM THE LS PBA.

GPS COORDINATES: 563030 7387479

SAMPLE: 10-21298 **DATE:** JULY 14, 2010

Parameter	Maximum Allowable Concentration	Units	Sample # 10-21298
pН	6-9	pH units	5.77
Total arsenic (As)	0.100	mg/L	< 0.003
Dissolved cadmium (Cd)	0.010	mg/L	< 0.001
Dissolved chromium (Cr)	0.100	mg/L	0.018
Dissolved cobalt (Co)	0.050	mg/L	< 0.003
Dissolved copper (Cu)	0.200	mg/L	< 0.005
Dissolved lead (Pb)	0.050	mg/L	< 0.010
Total mercury (Hg)	0.0006	mg/L	< 0.0004
Dissolved nickel (Ni)	0.200	mg/L	< 0.005
Total zinc (Zn)	0.500	mg/L	0.140
Oil & grease	5	mg/L	114
PCBs	1.0	mg/L	< 0.003
Phenols	-	-	N/A

Photo 3 (DSC01464) Sample 10-21298 Dye-M Collecting a sample from a tote in \overline{LS} BPA (full of ponded water from LS BPA

Wastewater from the tote tank in the LS BPA was above criteria for oil and grease and was below the pH range. The wastewater was not discharged to the ground in 2010. Water from the tote tank was placed back in the LS BPA before winter.

LOCATION: LS BPA - RE-SAMPLED / COMPOSITE SAMPLE FROM THREE

DIFFERENT AREAS IN THE BPA

GPS COORDINATES: 1) 563044 7387485

2) 536060 7387506 3) 563035 7387528

SAMPLE: 10-21299 **DATE:** JULY 14, 2010

Parameter	Maximum Allowable Concentration	Units	Sample # 10-21299
pН	6-9	pH units	6.19
Total arsenic (As)	0.100	mg/L	< 0.003
Dissolved cadmium	0.010	mg/L	< 0.001
(Cd)			
Dissolved chromium	0.100	mg/L	0.010
(Cr)			
Dissolved cobalt (Co)	0.050	mg/L	< 0.003
Dissolved copper (Cu)	0.200	mg/L	< 0.005
Dissolved lead (Pb)	0.050	mg/L	< 0.010
Total mercury (Hg)	0.0006	mg/L	< 0.0004
Dissolved nickel (Ni)	0.200	mg/L	< 0.005
Total zinc (Zn)	0.500	mg/L	0.347
Oil & grease	5	mg/L	29.7
PCBs	1.0	mg/L	< 0.003
Phenols	-	-	N/A

Photo 4 (DSC01466) Sample 10-21299 Dye-M Collecting a composite sample of ponded water from LS BPA - South side

Wastewater in the LS-BPA was above criteria for oil and grease and was not discharged to the ground in 2010

LOCATION: LS BPA – TANKER 6451 NORTH CHAMBER

GPS COORDINATES: N/A

SAMPLE: 10-21309 **DATE:** JULY 16, 2010

Parameter	Maximum Allowable Concentration	Units	Sample # 10-21309
pН	6-9	pH units	5.93
Total arsenic (As)	0.100	mg/L	< 0.003
Dissolved cadmium (Cd)	0.010	mg/L	< 0.001
Dissolved chromium (Cr)	0.100	mg/L	0.006
Dissolved cobalt (Co)	0.050	mg/L	< 0.003
Dissolved copper (Cu)	0.200	mg/L	< 0.005
Dissolved lead (Pb)	0.050	mg/L	< 0.010
Total mercury (Hg)	0.0006	mg/L	< 0.0004
Dissolved nickel (Ni)	0.200	mg/L	< 0.005
Total zinc (Zn)	0.500	mg/L	0.125
Oil & grease	5	mg/L	63200
PCBs	1.0	mg/L	< 0.003
Phenols	-	-	N/A

Photo 5 (DSC01497) Sample 10-21309 Dye-M Collecting a sample from Tanker 6451 - north side.

LOCATION: LS BPA – TANKER 6451 SOUTH CHAMBER

GPS COORDINATES: 563008 7387491

SAMPLE: 10-21310 **DATE:** JULY 16, 2010

Parameter	Maximum Allowable Concentration	Units	Sample # 10-21310
pН	6-9	pH units	5.85
Total arsenic (As)	0.100	mg/L	< 0.003
Dissolved cadmium	0.010	mg/L	< 0.001
(Cd)			
Dissolved chromium	0.100	mg/L	0.006
(Cr)			
Dissolved cobalt (Co)	0.050	mg/L	< 0.003
Dissolved copper (Cu)	0.200	mg/L	< 0.005
Dissolved lead (Pb)	0.050	mg/L	< 0.010
Total mercury (Hg)	0.0006	mg/L	< 0.0004
Dissolved nickel (Ni)	0.200	mg/L	< 0.005
Total zinc (Zn)	0.500	mg/L	0.126
Oil & grease	5	mg/L	42300
PCBs	1.0	mg/L	< 0.003
Phenols	-	-	N/A

SAMPLE: 10-21311 **DATE:** JULY 16, 2010

Parameter	Maximum Allowable Concentration	Units	Sample # 10-21311
pН	6-9	pH units	5.84
Total arsenic (As)	0.100	mg/L	< 0.003
Dissolved cadmium (Cd)	0.010	mg/L	<0.001
Dissolved chromium (Cr)	0.100	mg/L	0.006
Dissolved cobalt (Co)	0.050	mg/L	< 0.00
Dissolved copper (Cu)	0.200	mg/L	< 0.005
Dissolved lead (Pb)	0.050	mg/L	< 0.010
Total mercury (Hg)	0.0006	mg/L	< 0.0004
Dissolved nickel (Ni)	0.200	mg/L	< 0.005
Total zinc (Zn)	0.500	mg/L	0.126
Oil & grease	5	mg/L	69000
PCBs	1.0	mg/L	< 0.003
Phenols	-	-	N/A

Photo 6 (DSC01499) Sample 10-21310/11 Dye-M Collecting a sample from Tanker 6451 - south side

LOCATION: LS BPA - TANKER 6451 MIDDLE CHAMBER

GPS COORDINATES: N/A

SAMPLE: 10-21312 **DATE:** JULY 16, 2010

Parameter	Maximum Allowable Concentration	Units	Sample # 10-21312
pН	6-9	pH units	5.96
Total arsenic (As)	0.100	mg/L	< 0.003
Dissolved cadmium	0.010	mg/L	0.004
(Cd)			
Dissolved chromium	0.100	mg/L	0.006
(Cr)			
Dissolved cobalt (Co)	0.050	mg/L	< 0.003
Dissolved copper (Cu)	0.200	mg/L	< 0.005
Dissolved lead (Pb)	0.050	mg/L	< 0.010
Total mercury (Hg)	0.0006	mg/L	< 0.0004
Dissolved nickel (Ni)	0.200	mg/L	< 0.005
Total zinc (Zn)	0.500	mg/L	0.126
Oil & grease	5	mg/L	25200
PCBs	1.0	mg/L	< 0.003
Phenols	-	-	N/A

Wastewater from Tanker 6451 (LS-BPA) was above criteria for oil and grease and was below the pH range. The wastewater was not discharged to the ground in 2010.

LOCATION: US NHWL - WASTEWATER POOLED IN FACILITY

GPS COORDINATES: 572150 7395171

SAMPLE: 10-21324 **DATE:** JULY 31, 2010

Parameter	Maximum Allowable Concentration	Units	Sample # 10-21324
pН	6-9	pH units	7.30
Total arsenic (As)	0.100	mg/L	< 0.003
Dissolved cadmium (Cd)	0.010	mg/L	0.037
Dissolved chromium (Cr)	0.100	mg/L	0.011
Dissolved cobalt (Co)	0.050	mg/L	< 0.003
Dissolved copper (Cu)	0.200	mg/L	< 0.005
Dissolved lead (Pb)	0.050	mg/L	< 0.010
Total mercury (Hg)	0.0006	mg/L	< 0.0004
Dissolved nickel (Ni)	0.200	mg/L	< 0.005
Total zinc (Zn)	0.500	mg/L	0.706
Oil & grease	5	mg/L	<2.0
PCBs	1.0	mg/L	< 0.003
Phenols	-	-	N/A

Photo 7 (DSC01626) Sample 10-21324 Dye-M US NHWL - Collecting a sample from the pooled water in the northwest corner.

Waste water from the US NHWL was discharged to the ground on August 5, 2010, before results were received with permission from the Water Board. The water was discharged to an INAC approved location (572140 7395185). All results were below criteria.

LOCATION: US TIER II - WASTEWATER POOLED IN FACILITY

GPS coordinates: 571057 7394617

SAMPLE: 10-21325 **DATE:** JULY 31, 2010

Parameter	Maximum Allowable Concentration	Units	Sample # 10-21325
pН	6-9	pH units	7.15
Total arsenic (As)	0.100	mg/L	< 0.003
Dissolved cadmium (Cd)	0.010	mg/L	0.002
Dissolved chromium (Cr)	0.100	mg/L	0.011
Dissolved cobalt (Co)	0.050	mg/L	< 0.003
Dissolved copper (Cu)	0.200	mg/L	< 0.005
Dissolved lead (Pb)	0.050	mg/L	< 0.010
Total mercury (Hg)	0.0006	mg/L	< 0.0004
Dissolved nickel (Ni)	0.200	mg/L	< 0.005
Total zinc (Zn)	0.500	mg/L	0.035
Oil & grease	5	mg/L	<2.0
PCBs	1.0	mg/L	< 0.003
Phenols	-	-	N/A

Photo 8 (DSC01637) Sample 10-21325 Dye-M US Tier II - Collecting a sample from the pooled water on the west side of the facility

Waste water from the US Tier II was discharged to the ground on August 5, 2010, before results were received with permission from the Water Board. The water was discharged to an INAC approved location (571047 7394637). All results were below criteria.

LOCATION: LS TIER II - WASTEWATER POOLED IN FACILITY

GPS COORDINATES: 561864 7388309

SAMPLE: 10-21326 **DATE**: JULY 31, 2010

Parameter	Maximum Allowable Concentration	Units	Sample # 10-21326
pН	6-9	pH units	7.10
Total arsenic (As)	0.100	mg/L	0.004
Dissolved cadmium (Cd)	0.010	mg/L	0.002
Dissolved chromium (Cr)	0.100	mg/L	0.085
Dissolved cobalt (Co)	0.050	mg/L	< 0.003
Dissolved copper (Cu)	0.200	mg/L	< 0.005
Dissolved lead (Pb)	0.050	mg/L	< 0.010
Total mercury (Hg)	0.0006	mg/L	< 0.0004
Dissolved nickel (Ni)	0.200	mg/L	< 0.005
Total zinc (Zn)	0.500	mg/L	0.075
Oil & grease	5	mg/L	<2.0
PCBs	1.0	mg/L	< 0.003
Phenols	-	-	N/A

Photo 9 (DSC01646) Sample 10-21326 Dye-M Collecting a sample from pooled water in the LS Tier II - Water pooled all along the north berm

Waste water from the LS Tier II was discharged to the ground on August4, 2010, before results were received with permission from the Water Board. The water was discharged to an INAC approved location (561902 7388362). All results were below criteria.

LOCATION: LS NHWL - WASTEWATER POOLED IN FACILITY

GPS coordinates: 562990 7387010

SAMPLE: 10-21327 **DATE:** JULY 31, 2010

Parameter	Maximum Allowable Concentration	Units	Sample # 10-21327
pН	6-9	pH units	6.82
Total arsenic (As)	0.100	mg/L	< 0.03
Dissolved cadmium (Cd)	0.010	mg/L	< 0.001
Dissolved chromium (Cr)	0.100	mg/L	0.042
Dissolved cobalt (Co)	0.050	mg/L	< 0.003
Dissolved copper (Cu)	0.200	mg/L	< 0.005
Dissolved lead (Pb)	0.050	mg/L	< 0.010
Total mercury (Hg)	0.0006	mg/L	< 0.0004
Dissolved nickel (Ni)	0.200	mg/L	< 0.005
Total zinc (Zn)	0.500	mg/L	0.082
Oil & grease	5	mg/L	<2.0
PCBs	1.0	mg/L	< 0.003
Phenols	-	-	N/A

Photo 10 (DSC01670) Sample 10-21327 Dye-M Collecting a sample from the LS NHWL - water pooled in the North east side of the new cell.

Waste water from the LS NHWL was discharged to the ground on August4, 2010, before results were received with permission from the Water Board. All results were below criteria.

We trust that the information provided meets current requirements. Please contact the undersigned if you have any questions or concerns.

Sincerely,

Candice Casucci

Masuri.

Environmental Sciences Group

cc: Eva Schulz (UMA)

Daniela Loock, Kat White, Marc Ellemers, Megan Lord, Andrea Ellis (ESG)

APPENDIX A LABORATORY RESULTS

ESG				ASG	Login No:	20751
12 Verite Ave					Site:	Dye-M
Dept. of Chem	n. / Cher	n. Eng., RMC			Client No:	10-106
P.O. Box 170	000, Stn.	Forces		Samples	Received:	12-Jul-10
Kingston, Ont	tario K7k	(7B4		Date o	of analysis:	12-Jul-10
(613) 541-600	00 ext 65	67		N	/lethod No:	ASG 037
Fax: (613) 54	1-6596			Date	Reported:	
					Page:	1 of 1
		RESULTS OF	pH ANALYSIS			
		Sample I.D.	рН			
		21286*	5.52			
		21287	5.70			
		21288	5.78			
		21297	5.55			
		* Averaged result of dupl	icates			
		LABORAT	ORY QA/QC			
		Sample I.D.	рН			
		21286*; Duplicate	5.52 ; 5.52			
		Control	7.00			
		Control Target	7.00			

ASU#	12886	Report ID:	Dye-M W18
Client:	ESG	Date Submitted:	12-Jul-10
		Date tested:	12-Jul-10
Site:	Dye-M	Date:	13-Jul-10
	10-106	Matrix:	water
Report of Analysis	3		
Sample	Oil & Grease		
	mg/L		
10-21286	3.7		
10-21287	<2.0		
10-21288	<2.0		
10-21297	5.2		
Blank	<2.0		
Control	14.0		
Control Target	15.9		

ESG					ASG	Login No:	20751
12 Verite	Ave					Site:	Dye-M
Dept. of 0	Chem. / Ch	nem. Eng.,	RMC			Client No:	10-106
P.O. Box	17000, S	tn. Forces			Samples	Received:	12-Jul-10
Kingston	Ontario K	7K 7B4			Date of	of analysis:	13-Jul-10
(613) 541	-6000 ext	6567			N	Nethod No:	ASG 021
Fax: (613	3) 541-659	6			Date	Reported:	13-Jul-10
						Sheet:	
					010		
		RI	ESULTS OF ME	RCURY ANALY	SIS		
			Sample	Mercury [^]			
			ID	mg/L			
			21286*	< 0.0004			
			21287	< 0.0004			
			21288	< 0.0004			
			21297	0.0004			
			*Average result of duplic				
			^ Acid digestion perform				
			# Reported at 0.0004 m	g/L detection limit.			
			LABORAT	ORY QA/QC			
			Sample	Mercury^			
			ID	mg/L			
			Duplicate; 21286*	< 0.0004 ; < 0.0004			
			Blank	< 0.0004			
			Control Target	0.0040			
	_		Control Sample	0.0040			

ASU#	12886		Report ID:	Dye-M W19				
Client:	ESG		Date Submitted:	12-Jul-10				
			Date tested:	13-Jul-10				
Site:	Dye-M		Date:	14-Jul-10				
	10-106		Matrix:	Water				
Report of Analysis								
Total Metals	Results in mg/L							
SAMPLE	Cu	Ni	Co	Cd	Pb	Zn	Cr	As
10-21286	-	-	-	-	-	< 0.010	0.006	< 0.003
10-21287	-	-	-	-	-	< 0.010	< 0.005	< 0.003
10-21288	-	-	-	-	-	0.011	< 0.005	< 0.003
10-21297	-	-	-	-	-	< 0.010	< 0.005	< 0.003
Blank	-	-	-	-	-	< 0.010	< 0.005	< 0.003
Control	-	-	_	-	-	3.07	0.81	0.78
Control Target	-	-	-	-	-	3.00	0.80	0.80
10-21297	_	_	_	_		< 0.010	< 0.005	< 0.003
10-21297	-	-	-	-	-	< 0.010	< 0.005	< 0.003
Dissolved Metals	Results in mg/L							
SAMPLE	Cu	Ni	Co	Cd	Pb	Zn	Cr	As
10-21286	< 0.005	< 0.005	<0.003	< 0.001	< 0.010	_	_	_
10-21287	< 0.005	< 0.005	<0.003	< 0.001	< 0.010	_	-	_
10-21288	<0.005	< 0.005	< 0.003	< 0.001	< 0.010	-	-	-
10-21288	< 0.005	< 0.005	<0.003	<0.001	< 0.010	-	-	-
Blank	< 0.005	< 0.005	<0.003	< 0.001	< 0.010	-	-	-
Control	1.58	1.62	1.61	0.80	7.96		-	-
Control Target	1.60	1.60	1.60	0.80	8.00	-	-	-
10-21297	< 0.005	< 0.005	< 0.003	< 0.001	< 0.010	-	-	-
10-21297	< 0.005	< 0.005	< 0.003	< 0.001	< 0.010	-	-	-

ESG					ASG Login No:	20751			
12 Verite Ave					Site:	Dye-M			
Dept. of Chem. / Che	m. Eng., R	MC			Client No:	10-106			
P.O. Box 17000, Stn	. Forces				Samples Received:	12-Jul-10			
Kingston, Ontario K7	K 7B4				Date of analysis:	13-Jul-10			
(613) 541-6000 ext 6	567				Method No:	ASG 006			
Fax: (613) 541-6596					Date Reported:	14-Jul-10			
					Sheet No:	1 of 1			
	F	RESULTS OF PC	B IN W	ATER ANAL	YSIS				
	Sample	Sample I.D.	Unit	Aroclor 1254	Aroclor 1260				
	Type **								
	W	21286	mg/L	< 0.003	< 0.003				
	W	21287	mg/L	< 0.003	< 0.003				
	W	21288	mg/L	< 0.003	< 0.003				
	W	21297	mg/L	< 0.003	< 0.003				
	* Average	result of duplicate							
		Values in PPM**							
		LADOD	1 T O D \	LABORATORY QA/QC					
		LABORA	ATORY	QAVQC					
		LABORA Blank	ATORY	< 0.003	< 0.003				
					< 0.003 0.018				

Total Metals Results in mg/L	ASU#	12914		Report ID:	Dye-M W20				
Site: Dye-M Date: 20-Jul-10 Matrix: Water Leport of Analysis Interpret of Analysis Image: Matrix: Water Water Image: Matrix: Water	Client:	ESG		Date Submitted:	19-Jul-10				
10-131 Matrix: Water				Date tested:	20-Jul-10				
Total Metals Results in mg/L	Site:	Dye-M		Date:	20-Jul-10				
Total Metals Results in mg/L Co Cd Pb Zn Cr As 10-21298 - - - - - 0.140 0.018 <0.003		10-131		Matrix:	Water				
SAMPLE Cu Ni Co Cd Pb Zn Cr As 10-21298 0.140 0.018 0.003 10-21299 0.347 0.010 0.003 Blank 0.347 0.010 0.003 Control 0.349 0.83 0.78 Control Target 0.349 0.011 0.003 10-21299 0.344 0.010 0.003 Dissolved Metals Results in mg/L SAMPLE Cu Ni Co Cd Pb Zn Cr As 10-21298 0.005 0.005 0.003 0.001 0.010 Blank 0.005 0.005 0.005 0.003 0.001 0.010 Control 1.55 1.65 1.64 0.83 8.24 Control Target 1.60 1.60 1.60 0.80 8.00	Report of Analysis								
10-21298	Total Metals	Results in mg/L							
Blank	SAMPLE	Cu	Ni	Co	Cd	Pb	Zn	Cr	As
Blank	10-21298	-	-	-	-	-	0.140	0.018	< 0.003
Control 3.09 0.83 0.78 Control Target 3.00 0.80 0.80 10-21299 0.349 0.011 <0.003 10-21299 0.344 0.010 <0.003 Dissolved Metals Results in mg/L SAMPLE Cu Ni Co Cd Pb Zn Cr As 10-21298 <0.005 <0.005 <0.003 <0.001 <0.010 10-21299 <0.005 <0.005 <0.003 <0.001 <0.010 Control 1.55 1.65 1.64 0.83 8.24 Control Target 1.60 1.60 1.60 0.80 8.00 10-21299 <0.005 <0.005 <0.005 <0.003 <0.001 <0.010		-	-	-	-	-			< 0.003
Control Target	Blank	-	-	-	-	-	< 0.010	< 0.005	< 0.003
10-21299	Control	-	-	-	-	-	3.09	0.83	0.78
Dissolved Metals Results in mg/L SAMPLE Cu Ni Co Cd Pb Zn Cr As	Control Target	-	-	-	-	-	3.00	0.80	0.80
Dissolved Metals Results in mg/L	10-21299	-	-	-	-	-	0.349	0.011	< 0.003
SAMPLE Cu Ni Co Cd Pb Zn Cr As 10-21298	10-21299	-	-	-	-	-	0.344	0.010	< 0.003
10-21298	Dissolved Metals	Results in mg/L							
10-21299	SAMPLE	Cu	Ni	Co	Cd	Pb	Zn	Cr	As
Blank <0.005 <0.005 <0.003 <0.001 <0.010 Control 1.55 1.65 1.64 0.83 8.24 Control Target 1.60 1.60 1.60 0.80 8.00 10-21299 <0.005 <0.005 <0.003 <0.001 <0.010	10-21298	< 0.005	< 0.005	<0.003	< 0.001	< 0.010	-	-	-
Control 1.55 1.65 1.64 0.83 8.24 - - - Control Target 1.60 1.60 1.60 0.80 8.00 - - - - 10-21299 <0.005	10-21299	< 0.005	< 0.005	< 0.003	< 0.001	< 0.010	-	-	-
Control Target 1.60 1.60 1.60 0.80 8.00	Blank	< 0.005	< 0.005	< 0.003	< 0.001	< 0.010	-	-	-
10-21299 <0.005 <0.005 <0.003 <0.001 <0.010	Control	1.55	1.65	1.64	0.83	8.24	-	-	-
	Control Target	1.60	1.60	1.60	0.80	8.00	-	-	-
10-21299 <0.005 <0.005 <0.003 <0.001 <0.010	10-21299	< 0.005	< 0.005	< 0.003	< 0.001	< 0.010	-	-	-
	10-21299	< 0.005	< 0.005	< 0.003	< 0.001	< 0.010	-	-	-

ESG			ASG	Login No:	20781
2 Verite Ave				Site:	Dye-M
Dept. of Chem. / Chem. Eng.,	RMC			Client No:	10-131
P.O. Box 17000, Stn. Forces				Received:	
Kingston, Ontario K7K 7B4			Date of	analysis:	20-Jul-1
613) 541-6000 ext 6567			Method No:		ASG 02
Fax: (613) 541-6596			Date	Reported:	20-Jul-1
				Sheet:	1 of 1
RESUL	TS OF MERCUR	Y IN WATER A	NALYSIS	3	
	Sample	Mercury [^]			
	ID	mg/L			
	21298*	< 0.0004			
	21299	< 0.0004			
	21309	< 0.0004			
	21310	< 0.0004			
	21311	< 0.0004			
	21312	< 0.0004			
	*Average result of duplic	cates			
	^ Acid digestion perform				
	# Reported at 0.0004 m				
	·				
	LABORAT	ORY QA/QC			
		1			
	Sample	Mercury [^]			
	ID	mg/L			
	Duplicate; 21298*	< 0.0004 ; < 0.0004			
		< 0.0004			
	Blank				
	Blank Control Target Control Sample	0.0040 0.0040			

ESG				ASG	Login No:	20781
12 Verite A	Ave				Site:	Dye-M
Dept. of Cl	hem. / Chen	n. Eng., RMC		(Client No:	10-131
P.O. Box	17000, Stn.	Forces		Samples	Received:	19-Jul-10
Kingston,	Ontario K7K	7B4		Date of	analysis:	20-Jul-10
(613) 541-0	6000 ext 65	67		M	ethod No:	ASG 037
Fax: (613)	541-6596			Date	Reported:	
					Page:	1 of 1
		RESULTS OF p	H ANALYSIS			
		Sample I.D.	рН			
		21298*	5.77			
		21299	6.19			
		21309	5.93			
		21310	5.85			
		21311	5.84			
		21312	5.96			
		* Averaged result of duplic	cates			
		LABORATO	ORY QA/QC			
		Sample I.D.	рН			
		21298*; Duplicate	5.76 ; 5.78			
		Control	7.01			
		Control Target	7.00			

ASU#	12914	Report ID:	Dye-M W21
Client:	ESG	Date Submitted:	19-Jul-10
		Date tested:	19-Jul-10
Site:	Dye-M	Date:	21-Jul-10
	10-131	Matrix:	water
Report of Analysis			
Sample	Oil & Grease		
	mg/L		
10-21298	114		
10-21299	29.7		
10-21309**	63200		
10-21310**	42300		
10-21311**	69000		
10-21312**	25200		
Blank	<2.0		
Control	14.4		
Control Target	15.9		
Results relate only t	to the items tested		
	nificant layer of free was not extracted f	product on top, sample was treated as a	whole

ESC						C Lowin M	20704		-
ESG					AS	G Login No:			4
12 Verite Ave	Ob	10					Dye-M		4
Dept. of Chem. /		/IC				Client No:			4
P.O. Box 17000,						es Received:			
Kingston, Ontario) K7K 7B4				Date	of analysis:	19-Jul-10		
(613) 541-6000 e	xt 6567					Method No:	ASG 015		
Fax: (613) 541-65	596				Da	te Reported:			
						Sheet No:	1 of 1		-
				TED ANIAL	VOIO				=
	R	RESULTS OF P	CB IN WA	ATER ANAL	1515				
	Sample Type **	Sample I.D.	Unit	Aroclor 1254	Arocl	or 1260			
	W	21298*	mg/L	< 0.003	< (0.003			٦
	W	21299	mg/L	< 0.003	< (0.003			
	W	^ 21309	mg/L	< 0.003	< (0.003			
	W	^21310	mg/L	< 0.003	< (0.003			
	W	^21311	mg/L	< 0.003		0.003			
	W	^21312	mg/L	< 0.003		0.003			
		result of duplicate							
		alues in PPM** recived with both aque	eus and organic	phases. Analysi	is performed	on aqueus p	hase.		
		LABO	RATORY	QA/QC					-
		Blank	mg/L	< 0.003	< (0.003			7
		Duplicate ; 21298*		< 0.003 ; < 0.003		; < 0.003	i		۲
		Control Sample	mg/L	< 0.003		015			Н
		Control Sample Targ		< 0.003		015			-
									٦
	** S = Soil	I, C = Concrete, PC	= Paint Chip ,	SW = Swab , P =	= Plant , W	= Water			1
ASU#	12914		Report ID:	Dye-M W22					
Client:	ESG		Date Submitte	d: 19-Jul-10					
			Date tested:	23-Jul-10					\forall
Site:	Dye-M		Date tested:	23-Jul-10 23-Jul-10					+
site:	10-131		Matrix:	Water					+
port of Analysis									7
Total Metals	Results in mg/L								1
		NI:	G.	CI	DI.	7.	0	Α	
SAMPLE**	Cu	Ni	Co	Cd	Pb	Zn	Cr	As	
						_			
10-21309	-	-	-	-	-	0.125	0.006	< 0.003	-
10-21309 10-21310	-	-	-	-	- -	0.125 0.126	0.006	< 0.003	J
	_								
10-21310	-	-	-	-	-	0.126	0.006	< 0.003	
10-21310 10-21311	-	-	-	-	-	0.126 0.126	0.006 0.006	<0.003 <0.003	
10-21310 10-21311 10-21312 Blank	-	-		-	- - -	0.126 0.126 0.126 <0.010	0.006 0.006 0.006 <0.005	<0.003 <0.003 <0.003 <0.003	
10-21310 10-21311 10-21312	-	-		-	- - -	0.126 0.126 0.126	0.006 0.006 0.006	<0.003 <0.003 <0.003	
10-21310 10-21311 10-21312 Blank Control Control Target	-	-	- - - -	-	-	0.126 0.126 0.126 <0.010 2.97 3.00	0.006 0.006 0.006 <0.005 0.84 0.80	<0.003 <0.003 <0.003 <0.003 0.76 0.80	
10-21310 10-21311 10-21312 Blank Control Control Target	-	-	- - - -	-	- - - -	0.126 0.126 0.126 0.126 <0.010 2.97 3.00	0.006 0.006 0.006 0.005 <0.005 0.84 0.80	<0.003 <0.003 <0.003 <0.003 <0.003 0.76 0.80	
10-21310 10-21311 10-21312 Blank Control Control Target	-	-	- - - -	-	-	0.126 0.126 0.126 <0.010 2.97 3.00	0.006 0.006 0.006 <0.005 0.84 0.80	<0.003 <0.003 <0.003 <0.003 0.76 0.80	
10-21310 10-21311 10-21312 Blank Control Control Target 10-21312 10-21312	-	-	- - - -	-	- - - -	0.126 0.126 0.126 0.126 <0.010 2.97 3.00	0.006 0.006 0.006 0.005 <0.005 0.84 0.80	<0.003 <0.003 <0.003 <0.003 <0.003 0.76 0.80	
10-21310 10-21311 10-21312 Blank Control Control Target 10-21312 10-21312		-	- - - -	-	- - - -	0.126 0.126 0.126 0.126 <0.010 2.97 3.00	0.006 0.006 0.006 0.005 <0.005 0.84 0.80	<0.003 <0.003 <0.003 <0.003 <0.003 0.76 0.80	
10-21310 10-21311 10-21312 Blank Control Control Target 10-21312 10-21312 bissolved Metals SAMPLE**		- - - - - - - - Ni			- - - - - - -	0.126 0.126 0.126 <0.010 2.97 3.00 0.126 0.126	0.006 0.006 0.006 0.006 <0.005 0.84 0.80 0.006	<0.003 <0.003 <0.003 <0.003 <0.003 0.76 0.80 <0.003 <0.003	
10-21310 10-21311 10-21312 Blank Control Control Target 10-21312 10-21312 issolved Metals SAMPLE**		- - - - - - - Ni			- - - - - - - - - -	0.126 0.126 0.126 0.126 <0.010 2.97 3.00 0.126 0.126	0.006 0.006 0.006 0.006 <0.005 0.84 0.80 0.006 Cr	<003 <0.003 <0.003 <0.003 <0.003 003 <0.003 <0.003 <as< td=""><td></td></as<>	
10-21310 10-21311 10-21312 Blank Control Control Target 10-21312 10-21312 issolved Metals SAMPLE** 10-21309 10-21310		- - - - - - - - Ni 80.005			- - - - - - - - Pb	0.126 0.126 0.126 0.126 <0.010 2.97 3.00 0.126 0.126	0.006 0.006 0.006 0.006 <0.005 0.84 0.80 0.006 Cr	<	
10-21310 10-21311 10-21312 Blank Control Control Target 10-21312 10-21312 vissolved Metals SAMPLE** 10-21309 10-21310 10-21311						0.126 0.126 0.126 0.126 <0.010 2.97 3.00 0.126 0.126 Zn	0.006 0.006 0.006 0.006 <0.005 0.84 0.80 0.006 Cr	 <0.003 	
10-21310 10-21311 10-21312 Blank Control Control Target 10-21312 10-21312 issolved Metals SAMPLE** 10-21309 10-21310		- - - - - - - - Ni 80.005			- - - - - - - - Pb	0.126 0.126 0.126 0.126 <0.010 2.97 3.00 0.126 0.126	0.006 0.006 0.006 0.006 <0.005 0.84 0.80 0.006 Cr	<	
10-21310 10-21311 10-21312 Blank Control Control Target 10-21312 10-21312 Dissolved Metals SAMPLE** 10-21309 10-21310 10-21311						0.126 0.126 0.126 0.126 <0.010 2.97 3.00 0.126 0.126 Zn	0.006 0.006 0.006 0.006 <0.005 0.84 0.80 0.006 Cr	 <0.003 	
10-21310 10-21311 10-21312 Blank Control Control Target 10-21312 10-21312 Dissolved Metals SAMPLE** 10-21309 10-21310 10-21311 10-21312 Blank						0.126 0.126 0.126 0.126 <0.010 2.97 3.00 0.126 0.126 Zn	0.006 0.006 0.006 0.006 0.006 0.84 0.80 0.006 0.006	 <0.003 <0.003	
10-21310 10-21311 10-21312 Blank Control Control Target 10-21312 10-21312 issolved Metals SAMPLE** 10-21309 10-21310 10-21311 10-21312 Blank Control						0.126 0.126 0.126 0.126 <0.010 2.97 3.00 0.126 0.126 Zn	0.006 0.006 0.006 0.006 0.006 0.84 0.80 Cr	 <0.003 <0.003	
10-21310 10-21311 10-21312 Blank Control Control Target 10-21312 10-21312 Dissolved Metals SAMPLE** 10-21309 10-21310 10-21311 10-21312 Blank						0.126 0.126 0.126 0.126 <0.010 2.97 3.00 0.126 0.126 Zn	0.006 0.006 0.006 0.006 0.006 0.84 0.80 0.006 0.006	 <0.003 <0.003	
10-21310 10-21311 10-21312 Blank Control Control Target 10-21312 10-21312 Dissolved Metals SAMPLE** 10-21309 10-21310 10-21311 10-21312 Blank Control Control Target			- Co - Co - (0.003 -			0.126 0.126 0.126 0.126 <0.010 2.97 3.00 0.126 0.126 Zn	0.006 0.006 0.006 0.006 0.006 0.84 0.80 Cr	 <0.003 <0.003	
10-21310 10-21311 10-21312 Blank Control Control Target 10-21312 10-21312 Dissolved Metals SAMPLE** 10-21309 10-21310 10-21311 10-21312 Blank Control						0.126 0.126 0.126 0.126 <0.010 2.97 3.00 0.126 0.126 Zn	0.006 0.006 0.006 0.006 0.006 0.84 0.80 Cr	 <0.003 <0.003	
10-21310 10-21311 10-21312 Blank Control Control Target 10-21312 10-21312 Dissolved Metals SAMPLE** 10-21309 10-21310 10-21311 10-21312 Blank Control Control Target			- Co - Co - (0.003 -			0.126 0.126 0.126 0.126 <0.010 2.97 3.00 0.126 0.126 Zn	0.006 0.006 0.006 0.006 -0.005 -0.84 0.80 0.006	 <0.003 <0.003	

ESG			ASC	Login No:	20863
12 Verite Ave				Site:	Dye-M
Dept. of Chem. / Che	em. Eng., RMC			Client No:	10-218
P.O. Box 17000, Stn	. Forces		Samples	Received:	4-Aug-10
Kingston, Ontario K7	K 7B4		Date of	of analysis:	5-Aug-10
(613) 541-6000 ext 6	567		N	Method No:	ASG 037
Fax: (613) 541-6596			Date	Reported:	5-Aug-10
				Page:	1 of 1
	RESULTS OF p	H ANALYSIS			
	Sample I.D.	рН			
	21324*	7.30			
	21325	7.15			
	21326	7.10			
	21327	6.82			
	* Averaged result of duplic	cates			
	LABORATO	DRY QA/QC			
	Sample I.D.	рН			
	21324*; Duplicate	7.29 ;7.31			
	Control	7.01			
	Control Target	7.00			

ASU#	12997	Report ID:	Dye-M W25
Client:	ESG	Date Submitted:	4-Aug-10
		Date tested:	4-Aug-10
Site:	Dye-M	Date:	5-Aug-10
	10-218	Matrix:	water
Report of Analysis	S		
Sample	Oil & Grease		
	mg/L		
10-21324	<2.0		
10-21325	< 2.0		
10-21326	<2.0		
10-21327	<2.0		
Blank	<2.0		
Control	14.9		
Control Target	15.9		

						* ^ ^	Lastin M	20000
ESG 12 Verite Ave						ASG	Login No:	
	n. / Chem. Eng	PMC					Client No:	Dye-M
	n. / Chem. Eng 100, Stn. Forces							
		i						4-Aug-10
	tario K7K 7B4							5-Aug-10
613) 541-600								ASG 021
Fax: (613) 54	1-6596					Date		5-Aug-10
							Sheet:	1 of 1
	RESUL	TS OF	MERCUR	Y IN WA	TER A	NALYSIS	3	
			Sample	Merc	ury^			
			ID	mg	/L			
			21234*	< 0.0	004			
			21325	< 0.0	004			
			21326	< 0.0	004			
			21327	< 0.0	004			
			ge result of dupli- digestion perforn					
			rted at 0.0004 m		n limit.			
			LABORAT	ORY OA	/OC			
			LADONAI					
			Sample	Merc	•			
		Dupli	ID cate; 21234*	mg < 0.0004 ;				
		Dupii	Blank	< 0.0004 ,				
		Co	ntrol Target	0.00	40			
		Cor	ntrol Sample	0.00	39			
SG							А	SG Login No:
2 Verite Ave)							Site:
ept. of Cher	m. / Chem. En	J., RMC						Client No:
	000, Stn. Force						Samp	les Received:
	tario K7K 7B4							e of analysis:
613) 541-600							-	Method No:
ax: (613) 54							D	ate Reported:
ax. (010) 0-	F1 0000							Sheet No:
								Officer 140.
		RES	ULTS OF	PCB IN	WATE	R ANAL	YSIS	
							1	
	Sam		Sample I.D.	Uni	t Aro	clor 1254	Aroc	olor 1260
	Тур	**						
	Type V	**	21324	mg/	_ <	0.003	<	0.003
	Туре \ \ \	**	21324 21325	mg/	L <	0.003	< <	0.003 0.003
	Type W W	**	21324 21325 21326	mg/	L <	0.003	< <	0.003 0.003 0.003
	Туре \ \ \	**	21324 21325	mg/	L <	0.003	< <	0.003 0.003
	Type W W W	**	21324 21325 21326 21327*	mg/ mg/	L <	0.003	< <	0.003 0.003 0.003
	Type W W W W * Ave	**	21324 21325 21326	mg/ mg/	L <	0.003	< <	0.003 0.003 0.003
	Type W W W W * Ave	**	21324 21325 21326 21327* It of duplicate is in PPM**	mg/	_ <	0.003 0.003 0.003 0.003	< <	0.003 0.003 0.003
	Type W W W W * Ave	**	21324 21325 21326 21327* It of duplicate is in PPM**	mg/ mg/	_ <	0.003 0.003 0.003 0.003	< <	0.003 0.003 0.003
	Type W W W W * Ave	**	21324 21325 21326 21327* It of duplicate is in PPM**	mg/	RY QA	0.003 0.003 0.003 0.003	< < < < < < < < < < < < < < < < < < < <	0.003 0.003 0.003 0.003
	Type W W W W * Ave	rage resu	21324 21325 21326 21327* It of duplicate is in PPM**	mg/ mg/ mg/	RY QA	0.003 0.003 0.003 0.003	< < < < < < < < < < < < < < < < < < < <	0.003 0.003 0.003 0.003
	Type W W W W * Ave	a ** rage resu value	21324 21325 21326 21327* It of duplicate is in PPM**	mg/ mg/ mg/ mg/ mg/ mg/ mg/ mg/ mg/	RY QA	0.003 0.003 0.003 0.003	< 0.000	0.003 0.003 0.003 0.003

ASU#	12997		Report ID:	Dye-M W23				
Client:	ESG		Date Submitted:	4-Aug-10				
			Date tested:	6-Aug-10				
Site:	Dye-M		Date:	6-Aug-10				
	10-218		Matrix:	Water				
Report of Analysis								
Total Metals	Results in mg/L							
SAMPLE	Cu	Ni	Co	Cd	Pb	Zn	Cr	As
10-21324	-	_	-	-	_	0.706	0.011	< 0.003
10-21325	-	-	-	-	-	0.035	0.017	< 0.003
10-21326	-	-	-	-	-	0.075	0.085	0.004
10-21327	-	-	-	-	-	0.082	0.042	< 0.003
Blank	-	-	-	-	-	< 0.010	<0.005	< 0.003
Control	-	-	-	-	-	2.89	0.78	0.74
Control Target	-	-	-	-	-	3.00	0.80	0.80
Dissolved Metals	Results in mg/L							
SAMPLE	Cu	Ni	Co	Cd	Pb	Zn	Cr	As
10-21324	<0.005	< 0.005	<0.003	0.037	< 0.010	_	_	_
10-21325	< 0.005	< 0.005	< 0.003	0.002	< 0.010	_	_	-
10-21326	< 0.005	< 0.005	< 0.003	0.002	< 0.010	-	-	-
10-21327	< 0.005	< 0.005	<0.003	< 0.001	< 0.010	-	-	-
Blank	<0.005	< 0.005	<0.003	<0.001	< 0.010	-	-	-
Control	1.42	1.56	1.54	0.77	7.76	-	-	-
Control Target	1.60	1.60	1.60	0.80	8.00	-	-	-

Candice Casucci Environmental Sciences Group The Royal Military College of Canada PO Box 17000 Stn. Forces Kingston, ON K7K 7B4 TAL SCIENCES GROWNOWN CONTROL OF THE PROPERTY OF THE PROPERTY

Tamara Van Dyck Environmental Officer Defence Construction Canada DEW Line Cleanup PMO 350 Albert Street, Suite 1720 Ottawa ON K1A 0K3

Monday, March 21, 2011

August 2010 Monthly Report for Water Use License Number: IBR-DYE0914

The following results of the Monitoring Program (MP) and/or Water Use License are provided by the Environmental Sciences Group to meet the requirements of the above-noted license for *DYE-M* (*Cape Dyer*).

1. SEWAGE EFFLUENT

A sewage lagoon was constructed at DYE-M in September of 2004. The Water Use License and MP require that samples from treated sewage lagoon effluent at the point of discharge to the receiving water be collected prior to each discharge event.

One sewage lagoon sample was collected and analyzed from DYE-M in August, 2010 (See table). Laboratory results are provided in Appendix A.

LOCATION: SEWAGE LAGOON - NEW CELL GPS COORDINATES: 563352 7386915

SAMPLE: 10-21328 **DATE:** AUGUST 3, 2010

Parameter	Allowable Maximum Average Concentration	Units	Sample# 10-21328
pН	6.0 to 9.0	pH units	9.76
Oil & Grease	None Visible	-	None Visible
Total Suspended Solids (TSS)	180	mg/L	60
BOD	120	mg/L	35
Faecal Coliforms	100,000	CFU/100 mL	500
Total Coliforms	-	CFU/ 100 mL	13,000

Photo 1 (DSC17525) Sample 10-21328 Dye-M Collecting a sample from the new cell of the sewage lagoon.

Sample 10-21328 was above the pH range and was not discharged to land in 2010. Additional sampling will be required in 2011.

We trust that the information provided meets current requirements. Please contact the undersigned if you have any questions or concerns.

Sincerely,

Candice Casucci

Masuri.

Environmental Sciences Group

cc: Eva Schulz (UMA)

Daniela Looke, Kat White, Marc Ellemers, Andrea Ellis, Megan Lord (ESG)

APPENDIX A LABORATORY RESULTS

3				ASG Login No:	20862
/erite Ave				Site:	DYE-M
t. of Chem. / Chem. Eng.,	RMC			Client No:	10-219
. Box 17000, Stn. Forces				Samples Received:	4-Aug-
ston, Ontario K7K 7B4				Date of analysis:	4-Aug-
3) 541-6000 ext 6567				Date Reported:	5-Aug-
: (613) 541-6596				Sheet:	1 of 1
RESI	ULTS OF MIC	CROBIOLOG	ICAL ANALY	SIS	
	Method: ASG 036	Method: ASG 036	Method: ASG 036	Method: ASG 044	1
Sample Identification	Total			Fecal	
·	Coliforms	E. coli	Background	Coliforms	
	(CFU/100 mL)	(CFU/100 mL)	(CFU/100 mL)	(CFU/100 mL)	
21328*	13 000	100	9 000	500	
	LABC	RATORY QA	VQC:		
	2,130				
	Method: ASG 036	Method: ASG 036	Method: ASG 036	Method: ASG 044	
Sample Identification	Total			Fecal	
	Coliforms	E. coli	Background	Coliforms	
	(CFU/100 mL)	(CFU/100 mL)	(CFU/100 mL)	(CFU/100 mL)	
Blank	(CFU/100 mL)	(CFU/100 mL) 0	(CFU/100 mL)	(CFU/100 mL)	
Blank Control Sample	,		, ,	· ,	

ESG			ASC	Login No:	20862
12 Verite Ave				Site:	Dye-M
Dept. of Chem. / Che	em. Eng., RMC			Client No:	10-219
P.O. Box 17000, Str	n. Forces		Samples	Received:	4-Aug-10
Kingston, Ontario K7	7K 7B4		Date of	of analysis:	5-Aug-10
(613) 541-6000 ext 6			N	/lethod No:	ASG 037
Fax: (613) 541-6596			Date	Reported:	
				Page:	1 of 1
	RESULTS OF p	H ANALYSIS			
	Sample I.D.	рН			
	21328*	9.76			
	* Averaged result of duplic	ates			
	* Averaged result of duplic	cates			
	* Averaged result of duplic	cates			
	* Averaged result of duplic				
	LABORATO	DRY QA/QC			

ESG						ASG Login No:	20862
12 Verite Ave						Site:	Dye-M
Dept. of Chem. / Chem. Eng., RMC						Client Login No:	10-219
P.O. Box 17000, Stn. Forces					S	amples Received:	4-Aug-10
Kingston, Ontario K7K 7B4						Date of analysis:	6-Aug-10
(613) 541-6000 ext 6567						Method No:	ASG 039
Fax: (613) 541-6596						Date Reported:	6-Aug-10
						Sheet:	1 of 1
RE	SULTS OF TOTA	AL SUS	PEND	ED SOLIDS AN	ALYSIS		
	Sample I.D.	Sample	Unit	Total			
		Type^		Suspended Solids			
	21328*	SE	mg/L	60			
	LAE	BORAT	ORY C	QA/QC			
	Duplicate ; 21328*	SE; SE	mg/L	59 ; 61			
	Control	Control	mg/L	190			
	Control Target	Control	mg/L	200			
	Blank	Control	mg/L	< 1			
	^SW =Surface Water, S	I – Sewan	e Influent	SE - Sewage Effluent			
	* Averaged result of dur		o irmuont	CE - Ocwago Emucin			
	Averaged result of dup	Jiicales					

ESG				ASG	Login No:	20862
12 Verite Ave					Site:	Dye-M
Dept. of Cher	m. / Chem. Eng., RMC			Client	Login No:	10-219
	00, Stn. Forces				Received:	
	tario K7K 7B4			Date o	of analysis:	9-Aug-10
(613) 541-600					Nethod No:	
Fax: (613) 541-				Date	Reported:	9-Aug-10
					Page:	1 of 1
	RESULTS O	F BOD	ANALYSIS			
	Sample I.D.	Unit	BOD			
	21328*	mg/L	35			
	*Averaged result of du	plicates				
	LABORA	ATORY	QA/QC			
			4,140			
			BOD			
	Sample I.D.	Unit	ВОД			
	Sample I.D. Duplicate ; 21328*	Unit mg/L	34 ; 36			
	Duplicate ; 21328*	mg/L	34 ; 36			

Candice Casucci Environmental Sciences Group The Royal Military College of Canada PO Box 17000 Stn. Forces Kingston, ON K7K 7B4

Tamara Van Dyck Environmental Officer Defence Construction Canada DEW Line Cleanup PMO 101 Colonel By Drive Ottawa ON K1A 0K2

Monday, March 21, 2011

RE: Analytical Results for Wastewater Samples Collected at DYE-M in August 2010

The following report summarizes results of the analysis of wastewater samples as per the DYE-M (Cape Dyer) DEW Line Cleanup Project (DLCU) Specifications.

The DYE-M specifications require that "wash water, melt water collection, rinse water resulting from the cleaning of fuel tanks and pipelines, and/or any other liquid effluent stream" meet the following guidelines prior to their discharge to land (01560.4.1):

Parameter	Maximum Allowable Concentration	Units
pН	6-9	pH units
Total arsenic (As)	0.100	mg/L
Dissolved cadmium (Cd)	0.010	mg/L
Dissolved chromium (Cr)	0.100	mg/L
Dissolved cobalt (Co)	0.050	mg/L
Dissolved copper (Cu)	0.200	mg/L
Dissolved lead (Pb)	0.050	mg/L
Total mercury (Hg)	0.0006	mg/L
Dissolved nickel (Ni)	0.200	mg/L
Total zinc (Zn)	0.500	mg/L
Oil & grease	5	mg/L
PCBs	1.0	mg/L
Phenols	-	-

Phenols

The wastewater samples collected by ESG at DYE-M in August, 2010 were not analyzed for phenols but they were analyzed for oil and grease. Research conducted by ESG¹ has determined that a) no federal, territorial or provincial criteria exist for the discharge of wastewater containing phenols to land at a minimum distance of 30-m from natural drainage courses b) the maximum concentration of phenols in DLCU wastewater to date

¹ Environmental Sciences Group. DEW Line Clean Up Project – Phenols in Wastewater. June, 2007.

(2.44 mg/L) is below the LC_{50} for freshwater fish and crustaceans and below the oral and dermal LD_{50} s for rats and rodents and c) phenols in excess of the maximum allowable concentration (MAC) have historically co-occurred with a visible oil & grease sheen and/or with an exceedance of the MAC for oil & grease. This information, and a subsequent decision to not test for phenols, has been presented to the NWB. To date, verbal agreement from the NWB has been received, but the project is awaiting written confirmation of the decision to suspend testing for phenols.

WASTEWATER SAMPLES

One wastewater sample was collected at DYE-M and analyzed in August 2010. A summary of the details of the results follows. Laboratory results provided in Appendix A.

LOCATION: LS TANK FARM AREA – METAL CONTAINER FULL OF WASTEWATER

GPS coordinates: 562937 7387449

SAMPLE: 10-21336 **DATE:** AUGUST 3, 2010

Parameter	Maximum Allowable Concentration	Units	Sample # 10-21336
pН	6-9	pH units	6.86
Total arsenic (As)	0.100	mg/L	< 0.003
Dissolved cadmium (Cd)	0.010	mg/L	0.002
Dissolved chromium (Cr)	0.100	mg/L	< 0.005
Dissolved cobalt (Co)	0.050	mg/L	< 0.003
Dissolved copper (Cu)	0.200	mg/L	< 0.005
Dissolved lead (Pb)	0.050	mg/L	< 0.010
Total mercury (Hg)	0.0006	mg/L	< 0.0004
Dissolved nickel (Ni)	0.200	mg/L	< 0.005
Total zinc (Zn)	0.500	mg/L	0.176
Oil & grease	5	mg/L	29.4
PCBs	1.0	mg/L	< 0.003
Phenols	-	-	N/A

Photo 1 (DSC01722) Sample 10-21336 Dye –M Collecting a sample from a metal container containing wastewater at the tank-farm.

Sample 10-21336 was over criteria for Oil and Grease and was not discharged to ground in 2010.

We trust that the information provided meets current requirements. Please contact the undersigned if you have any questions or concerns.

Sincerely,

Candice Casucci

Masuri.

Environmental Sciences Group

cc: Eva Schulz (UMA)

Daniela Loock, Kat White, Marc Ellemers, Megan Lord, Andrea Ellis (ESG)

APPENDIX A LABORATORY RESULTS

ASU#	12999	Report ID:	Dye-M W26
Client:	ESG	Date Submitted:	4-Aug-10
		Date tested:	4-Aug-10
Site:	Dye-M	Date:	5-Aug-10
	10-221	Matrix:	water
Report of Analysis	3		
Sample	Oil & Grease		
	mg/L		
10-21336**	29.4		
Blank	<2.0		
Control	14.9		
Control Target	15.9		
Results relate only	to the items tested		
** some sample lo	ost due to bottle crac	ing and leaking during analysis	

ESG					ASG	Login No:	20864
12 Verite	Ave						Dye-M
Dept. of C	hem. / Cł	nem. Eng.,	RMC			Client No:	10-221
P.O. Box	17000, S	tn. Forces			Samples	Received:	4-Aug-10
Kingston,	Ontario K	7K 7B4			Date o	of analysis:	5-Aug-10
(613) 541-	-6000 ext	6567			N	Method No:	ASG 021
Fax: (613)	541-6596	3			Date	Reported:	5-Aug-10
						Sheet:	1 of 1
	F	RESUL [*]	TS OF MERCU	RY IN WATER A	NALYSI	S	
	F	RESUL	TS OF MERCU	RY IN WATER A	NALYSI	S	
	F	RESUL	TS OF MERCUI	RY IN WATER A	ANALYSI:	S	
	F	RESUL			ANALYSI	S	
	F	RESUL	Sample	Mercury^	ANALYSI	S	
	F	RESUL	Sample ID	Mercury^ mg/L	ANALYSIS	S	
	F	RESUL	Sample ID 21336*	Mercury^ mg/L < 0.0004	ANALYSI	S	
	F	RESUL	Sample ID 21336* *Average result of dup	Mercury^ mg/L < 0.0004	ANALYSI	S	
	F	RESUL	Sample ID 21336*	Mercury^ mg/L < 0.0004 licates. med.	ANALYSI	S	

ESG					ASG Login No:	20864		
12 Verite Ave					Site:	Dye-M		
Dept. of Chem. / Cher	m. Eng., R	MC			Client No:	10-221		
P.O. Box 17000, Stn.	Forces				Samples Received:	4-Aug-10		
Kingston, Ontario K7l	< 7B4				Date of analysis:	4-Aug-10		
(613) 541-6000 ext 65	67				Method No:	ASG 015		
Fax: (613) 541-6596					Date Reported:	5-Aug-10		
					Sheet No:	1 of 1		
	F	RESULTS OF PCB IN WATER ANALYSIS						
	Sample Type **	Sample I.D.	Unit	Aroclor 1254	Aroclor 1260			
	W	21336	mg/L	< 0.003	< 0.003			
		result of duplicate						
	Report	Values in PPM						
		LABORATORY QA/QC						
		Blank	mg/L	< 0.003	< 0.003			
		Control Sample	mg/L	< 0.003	0.012			
		Control Sample Target	mg/L	< 0.003	0.015			
		Coioi Campio Talgot	/!!g/ L	1 0.000	0.010	<u> </u>		
	** S - So	il , C = Concrete , PC = P	aint Chin	SW - Swah P -	Plant W - Water			

M Pl	I	Date Submitted: Date tested: Date: Matrix:	4-Aug-10 6-Aug-10 6-Aug-10 Water			
21 g/L	I	Date:	6-Aug-10			
21 g/L	N					
g/L		Matrix:	Water			
N						
	Vi .	Co	Cd	Pb	Zn	Cr
	-	-	-	-	0.176	< 0.005
	-	-	-	-	< 0.010	< 0.005
	-	-	-	-	2.89	0.78
	-	-	-	-	3.00	0.80
g/L						
N	li .	Co	Cd	Pb	Zn	Cr
05 <0.	005	< 0.003	0.002	< 0.010	-	-
05 <0.	005	< 0.003	< 0.001	< 0.010	-	-
1.	56	1.54	0.77	7.76	-	-
	60	1.60	0.80	8.00	-	-
	1.	5 <0.005 1.56 1.60	1.56 1.54	1.56 1.54 0.77	1.56 1.54 0.77 7.76	1.56 1.54 0.77 7.76 -

					_
ESG			ASG	Login No:	20864
12 Verite Ave				Site:	Dye-M
Dept. of Chem. / Chem. Eng., RMC				Client No:	10-221
P.O. Box 17000, Stn. Forces			Samples	Received:	4-Aug-10
Kingston, Ontario K	7K 7B4		Date o	Date of analysis:	
(613) 541-6000 ext 6		N	Method No:		
Fax: (613) 541-6596			Date	Date Reported:	
				Page:	1 of 1
	RESULTS OF				
	Sample I.D.	рН			
	21336	6.86			
	* Averaged result of duplicates				
	LABORAT				
	Sample I.D.	pН			
	Control	7.01			
	Control Target	7.00			

AECOM

Site Name:

DYE-M, Cape Dyer

Site Location: Nunavut

Project No. 60153669

Photo No.

Date: 2010

Direction Photo Taken:

Description: View of Beach Area including Temporary Storage Area and Debris Area 4.

Photo No. 2

Date: 2010

Direction Photo Taken:

Description:

View of Lower Site Station Area and Debris Area 5.

AECOM

Site Name:

DYE-M, Cape Dyer

Site Location: Nunavut Project No. 60153669

Photo No.

Date: 2010

Direction Photo Taken:

Description:

Garage and Heated Vehicle Storage Area Contaminated Soil Areas

Photo No.

Date: 2010

Direction Photo Taken:

Description:

Contaminated Soil Area near Garage

AECOM

Site Name:

DYE-M, Cape Dyer

Site Location: Nunavut

Project No. 60153669

Photo No.

Date: 2010

Direction Photo Taken:

Description:Overview of DEW Drop Area Containing Several Contaminated Soil Areas

Photo No. 6

Date: 2010

Direction Photo Taken:

Description:

Lower Site Non-Hazardous Waste Landfill Looking North from West Berm

AECOM

Site Name:

DYE-M, Cape Dyer

Site Location: Nunavut Project No. 60153669

Photo No.

Date: 2010

Direction Photo Taken:

Description:

Lower Site Tier II Disposal Facility

Photo No.

Date: 2010

Direction Photo

Taken:

Description:

Looking South over Landfarm.

AECOM

Site Name: DYE-M, Cape Dyer Site Location: Nunavut Project No. 60153669

Photo No.

Date: 2010

Direction Photo Taken:

Description:
Upper Site NonHazardous Waste
Landfill Looking
Southwest from
Northeast Corner.

Photo No.

Date: 2010

Direction Photo Taken:

Description:

Upper Site Tier II Disposal Facility View of Access Ramp

AECOM

Site Name:

DYE-M, Cape Dyer

Site Location: Nunavut

Project No. 60153669

Photo No. 11

Date: 2010

Direction Photo Taken:

Description:Temporary Storage
Area, Beach Site

Photo No. 12

Date: 2010

Direction Photo Taken:

Description:

Lower Site, PCB Storage Area

