Table 10:	PCB Congener	Oral RfDs
-----------	--------------	-----------

Congener	TRV	TRV Type	Agency	Effects
Aroclor 1254	2 x 10 ⁻⁵ mg/kg-day	RfD	IRIS, US EPA	Ocular exudate, inflamed and prominent Meibomian glands, distorted growth of finger and toe nails; decreased IgG and IgM response to sheep erythrocytes.
Aroclor 1016	7 x 10 ⁻⁵ mg/kg-day	RfD	IRIS, US EPA	Reduced birth weights

The ATSDR (2000) provides oral minimal risk levels (MRLs) for intermediate and chronic exposure to PCBs. These MRLs, presented in Table 25 were derived to reflect exposure to PCB mixtures and are based on studies that involved Aroclor 1254.

Table 11: ATSDR (2000) MRLs for Oral Exposure to PCBs

Exposure	TRV	Basis	Effects
Intermediate (15-364 days)	0.03 μg/kg-day	LOAEL (0.0075 mg/kg-day)	Neurobehavioral alterations in infant monkeys that were exposed to a PCB congener mixture representing 80% of the congeners typically found in human breast milk
Chronic (365 days or more)	0.02 μg/kg-day	LOAEL (0.005 mg/kg-day)	Immunological effects in adult monkeys that were evaluated after 23 and 55 months of exposure to Aroclor 1254

The chronic MRL corresponds with the US EPA RfD for Aroclor 1254. However, Health Canada (2003) provides a TDI of 0.001 mg/kg-d, which was used in this assessment.

6.3.2 Cancer Oral Toxicity Reference Values

The US EPA (1997) established oral slope factors for PCB mixtures using a tiered approach that depends on the information available. Slope factors for high risk and persistence are considered appropriate for food chain exposure, sediment and soil ingestion, inhalation of dust or aerosol, dermal exposure (if an absorption factor has been applied) and all early life exposure. Slope factors for low risk and persistence are considered appropriate for inhalation of evaporated congeners. Central and upper bound-bound estimates are provided; central estimates describe a typical individual's risk, while upper bounds provide assurance that this risk is not likely to be underestimated. Based on the above, the upper-bound slope factor of 2.0 (mg/kg/day)⁻¹ for high risk and persistence was used to assess the potential for carcinogenic effects via oral exposure pathways.

Appendix A A-27

6.3.3 Non-Cancer Inhalation Toxicity Reference Values

Chronic inhalation exposure of workers to PCBs has been reported to result in respiratory tract symptoms (ATSDR, 2000). Despite these observed effects, non-cancer inhalation TRVs were not found.

6.3.4 Cancer Inhalation Toxicity Reference Values

The US EPA (1997) established inhalation slope factors for PCB mixtures using a tiered approach that depends on the information available. Slope factors for high risk and persistence are considered appropriate for food chain exposure, sediment and soil ingestion, inhalation of dust or aerosol, dermal exposure (if an absorption factor has been applied) and all early life exposure. Slope factors for low risk and persistence are considered appropriate for inhalation of evaporated congeners. Central and upper bound-bound estimates are provided; central estimates describe a typical individual's risk, while upper bounds provide assurance that this risk is not likely to be underestimated. Based on the above, the upper-bound slope factor of 0.4 (mg/kg/day)⁻¹ was used to assess the potential for carcinogenic effects via inhalation exposure.

6.4 Bioavailability

PCBs are well absorbed after oral, inhalation, or dermal exposure and transported similarly through circulation (US EPA, 1997; ATSDR, 2000). Initially absorbed PCBs are transported to the liver and muscle, subsequently PCBs are stored in fat and skin (US EPA, 1996c).

6.4.1 Oral Bioavailability

Animal studies have shown that PCBs are readily absorbed by the gastrointestinal tract with the degree of absorption ranging from 66 to 96% (ATSDR, 2000; WHO, 2000).

Specific information concerning absorption of Aroclor 1254 is limited. Pregnant ferrets administered a single oral dose of 0.06 mg/kg Aroclor 1254 absorbed 85% of the administered dose (Bleavins *et al.*, 1984). Rats, mice, and monkeys absorb between 75 to >90% of orally administered doses of PCBs (US EPA, 1996a). Oral exposure through consumption of contaminated food (including breast milk) is the major route of exposure to PCBs for the general population.

The oral relative bioavailability for PCBs used in this assessment was 1.0.

6.4.2 Inhalation Bioavailability

Inhalation is considered to be a major occupational route of exposure (ATSDR, 2000). However, quantitative data concerning inhalation exposure to PCBs is scarce (ATSDR, 2000). Following the inhalation of PCBs, absorption and distribution similar to orally administered PCBs is witnessed in rats (WHO, 2000), this evidence is supported by the US EPA (1997). Furthermore, a study reported by the International Programme on Chemical Safety (IPCS) (1993) administered a PCB mixture in an aerosol to rats that was readily absorbed, resulting in 50% of the maximum applied concentration in the liver, 2 hours following administration.

The ATSDR summarized a study by Wolff (1985) where a maximum of 80% of the PCB levels in adipose tissue of exposed capacitor workers may have been absorbed by the inhalation route. A maximum of 20% would have been derived from dermal or oral exposure (ATSDR, 2000). The relative inhalation bioavailability factor used in this assessment was 1.0.

6.4.3 Dermal Bioavailability

Dermal absorption has been observed in animal species ranging from 20 to 60% (WHO, 2000). Given the previously mentioned study by Wolff (1985), where a maximum of 20% of PCB levels in adipose tissue may have been attributed to oral and dermal exposure. The US EPA Region III (1995) recommends a dermal bioavailability factor of 0.06 based on the dermal absorption of 3,3',4,4'-tetrachlorobiphenyl.

The US EPA (2001) recommends an absorption factor of 0.14 based on *in vitro* human and monkey testing. Based on findings in animal studies reported by the World Health Organization (WHO), a conservative 0.60 relative dermal bioavailability factor has been adopted.

6.5 Conclusion

The following tables summarize the selected TRVs and relative bioavailabilities of PCBs.

Table 12: Selected Toxicity Reference Values for PCBs

Route of Exposure	TRV	TRV Type	Source Agency
	Non-G	Cancer Effects	
Ingestion	0.01 mg/kg-day	TDI	Health Canada, 2003
Inhalation	NA	NA	NA
	Ca	ncer Effects	
Ingestion	2.0 (mg/kg/day) ⁻¹	Slope Factor	US EPA, 1997
Inhalation	0.4 (mg/kg/day) ⁻¹	Slope Factor	US EPA, 1997

Notes:

NA: Not Applicable

Table 13: Selected Bioav	ailabilities	tor	PCBs
--------------------------	--------------	-----	------

Route of Exposure	Relative Bioavailability	Reference	
Ingestion	1.0	Assumed	
Inhalation	1.0	Assumed	
Dermal	0.60	WHO (2000)	

6.6 References

- ATSDR (Agency for Toxic Substances and Disease Registry), 2000. Toxicological Profile for Polychlorinated Biphenyls (PCBs). November, 2000.
- Bleavins MR, Breslin WJ, Aulrich RJ, et al., 1984. Placental and Mammary Transfer of a Polychlorinated Biphenyl Mixture (Aroclor 1254) in the European Ferret (musteal putoris furo). Environ Toxicol Chem 3: 637-644. Cited In: ATSDR, 2000.
- IARC (International Agency on Cancer Research), 1978. Environmental Monographs Volume 18: Polychlorinated Biphenyls. Available: http://193.51.164.11/htdocs/monographs/vol18/polychlorinatedbiphenyls.html.
- Supplement 7: Polychlorinated Biphenyls. Available: http://193.51.164.11/htdocs/monographs/suppl17/polychlorinatedbiphenyls.html.
- IPCS (International Programme on Chemical Safety), 1993. Environmental Health Criteria 140: Polychlorinated Biphenyls and Terphenyls (Second Edition). Available at http://www.inchem.org/documents/ehc/ehc/ehc140.htm#p5.0.
- US EPA (United States Environmental Protection Agency), 1996a. Integrated Risk Information System (IRIS) Database Aroclor 1254. Confirmed current as of December 2004. Available on-line at: http://www.epa.gov/iris.
- US EPA (United States Environmental Protection Agency), 1996b. Integrated Risk Information System (IRIS) Database Aroclor 1016. Confirmed current as of December 2004. Available on-line at: http://www.epa.gov/iris.
- US EPA (United States Environmental Protection Agency), 1996c. PCBs: Cancer Dose-Response Assessment and Application to Environmental Mixtures. September 1996. Available at: http://www.epa.gov/opptintr/pcb/pcb.pdf.

Appendix A A-30

US EPA (United States Environmental Protection Agency), 1997. Integrated Risk Information System (IRIS) Database - Polychlorinated Biphenyls (PCBs). Confirmed current as of December 2004. Available on-line at: http://www.epa.gov/iris.

- US EPA (United States Environmental Protection Agency) Region III, 1995. Risk Assessment: Technical Guidance Manual. Assessing Dermal Contact with Soil. http://www.epa.gov/reg3hwmd/risk/solabsg2.htm.
- Wolff MS. 1985. Occupational exposure to polychlorinated biphenyls (PCBs). Environ Health Perspect 60:133-138. Cited in ATSDR, 2000.
- WHO (World Health Organization), 2000. Air Quality Guidelines for Europe: Second Edition. WHO Regional Publications, European Series, No. 91.
- WHO (World Health Organization), 2003. Concise International Chemical Assessment Document 55, Polychlorinated Biphenyls: Human Health Aspects.

APPENDIX B

HHRA MODELEQUATIONS, INPUTS AND OUTPUTS

TABLE OF CONTENTS

1.0	HUM	AN HEA	ALTH INTAKE EQUATIONS	1
	1.1	ORAL/	Dermal Exposure	1
		1.1.1	Soil Ingestion	1
		1.1.2	Soil Dermal	
		1.1.3		
	1.2	FOOD	INGESTION	3
		1.2.1	Caribou Ingestion	
		1.2.2		
		1.2.3		
		1.2.4	Water Ingestion	
	1.3	WATE	R EXPOSURE	
		1.3.1	Dermal Exposure	
	1.4	RISK (CHARACTERIZATION	5
		1.4.1		5
		1.4.2	Non-carcinogenic Chemicals	6

1.0 HUMAN HEALTH INTAKE EQUATIONS

1.1 Oral/Dermal Exposure

1.1.1 Soil Ingestion

$$Intake_{\,SING} \, = \frac{C_{\,soil} \times IR_{\,soil} \times RAF_{\,ing} \times ET_{\,ing} \times EF_{\,ing} \times ED \times CF_{\,I}}{BW \times AT}$$

Where:		Units
Intake _{SING} =	daily intake from ingestion of soil/dust	mg/kg-day
C _{soil} =	concentration of chemical in soil	mg/kg
IR _{soil} =	ingestion rate of soil	mg/hour
RAF _{ing} -	relative absorption factor - ingestion	unitless
ETing	exposure time - ingestion	hours/day
EF _{ing}	exposure frequency - ingestion	days/year
ED	exposure duration	years
CF ₁	conversion factor	1E-06 kg/mg
BW	body weight of receptor	kg
AT_c	averaging time carcinogen = (365 days/year) x (75 years)	27375 days
AT_{nc}	averaging time non-carcinogen = (365 days/year) x (exposure duration)	days

Appendix B – Part I B-2

1.1.2 Soil Dermal

$$Intake_{\,SDERM} \, = \frac{C_{\,soil} \, \times \left(\!\left(\!SA_{\,body} \, \times \,SAF_{body}\,\right) + \left(\!SA_{\,hand} \, \times \,SAF_{hand}\,\right)\!\right) \times RAF_{derm} \, \times ET_{derm} \, \times EF_{derm} \, \times ED \times CF_{1} \, \times CF_{2}}{BW \times AT}$$

Where:			Units
Intake _{SD}	ERM =	daily intake from dermal contact with soil	mg/kg-day
C_{soil}	-	concentration of chemical in soil	mg/kg
SA_{body}	=	exposed surface area - body	cm ²
SAF _{body}	=	soil adherence factor - body	mg/cm ² -day
SA_{hand}	==	exposed surface area - hand	cm ²
SAFhand	=	soil adherence factor - hand	mg/cm -day
RAF_{derm}	=	relative absorption factor - dermal	unitless
ET_{derm}	=	exposure time	hours/day
$\mathrm{EF}_{\mathrm{derm}}$	==	exposure frequency	days/year
ED	=	exposure duration	years
CF ₁	=	conversion factor	1E-06 kg/mg
CF ₂		conversion factor	0.042 days/hour
BW		body weight of receptor	kg
AT _c	=	averaging time carcinogen = (365 days/year) x (75 years)	27375 days
AT_{nc}	=	averaging time non-carcinogen = (365 days/year) x (exposure duration)	days

1.1.3 Soil/Dust Inhalation

$$Intake_{\, SDINHAL} \, = \frac{C_{\, soil} \, \times P_{\, air} \, \times IR_{\, \, air} \, \times RAF_{\, inh}}{BW} \frac{\times \, ET_{\, inh} \, \times EF_{\, inh} \, \times ED \times CF_{\, 2}}{ABW} \times AT$$

Where			<u>Units</u>
Intake	SDINHAI	=daily intake from inhalation of soil/dust	mg/kg-day
C_{soil}	<u>=</u>	concentration of chemical in soil	mg/kg
P_{air}	- Canada	particulate concentration in air	kg/m ³
RAFini	n =	relative absorption factor - inhalation	unitless
IR_{air}	=	inhalation rate of air	m ³ /hour
$\mathrm{ET}_{\mathrm{inh}}$	TO TANKE	exposure time - inhalation	hours/day
EF_{inh}	=	exposure frequency - inhalation	days/year
ED		exposure duration	years
CF_2		conversion factor	0.042 days/hour
BW	=	body weight of receptor	kg
AT_c		averaging time carcinogen = (365 days/year) x (75 years)	27375 days
$AT_{nc} \\$	=	averaging time non-carcinogen = (365 days/year) x (exposure duration)	days

Appendix B - Part I B-3

1.2 Food Ingestion

1.2.1 Caribou Ingestion

Intake caribou	_	C_{caribou}	× IR game	\times $F_{caribou}$	\timesF_{site}	$\times RAF_{ing}$	\times EF $_{\rm game}$	\times ED
caribou				В	W×A	T		

Where:	DW AII	Units
Intake caribou	=daily intake from the ingestion of caribou	mg/kg-day
Ccaribou ::	concentration in caribou	mg/kg
IR _{game} ::	ingestion rate of wild game	kg/day
F _{site}	fraction of wild game consumed from site	unitless
F _{caribou}	fraction of wild game that is caribou	unitless
RAFing -	relative absorption factor - oral	unitless
$EF_{game} =$	exposure frequency - wild game ingestion	days/year
ED ::	exposure duration	years
BW :	body weight of receptor	kg
AT_c :	averaging time carcinogen = (365 days/year) x (75 years)	27375 days
AT _{nc} :	averaging time non-carcinogen = (365 days/year) x (exposure duration)	days

1.2.2 Arctic Hare Ingestion

$$Intake_{\text{ hare }} = \frac{C_{\text{ hare }} \times IR_{\text{ game }} \times F_{\text{hare }} \times F_{\text{site }} \times RAF_{\text{ing }} \times EF_{\text{game }} \times ED}{BW \times AT}$$

Where	:		<u>Units</u>
Intake	nare =da	ily intake from the ingestion of arctic hare	mg/kg-day
C_{hare}	=	concentration in arctic hare	mg/kg
IR_{game}	:=	ingestion rate of wild game	kg/day
F_{game}	. ==	fraction of wild game consumed from site	unitless
F_{hare}	:=:	fraction of wild game that is arctic hare	unitless
RAFing	g =	relative absorption factor - oral	unitless
EF_{game}	=	exposure frequency - wild game ingestion	days/year
ED	-=	exposure duration	years
$_{\mathrm{BW}}$	-=	body weight of receptor	kg
AT_c	=	averaging time carcinogen = (365 days/year) x (75 years)	27375 days
AT_{nc}		averaging time non-carcinogen = (365 days/year) x (exposure duration)	days

1.2.3 Fish Ingestion

$$Intake_{fish} = \frac{C_{fish} \times IR_{fish} \times F_{fish} \times F_{ef} \times RAF_{ing} \times EF_{fish} \times ED}{BW \times AT}$$

Appendix B – Part I B-4

Where	2:		Units
Intake	fish = da	ily intake from the ingestion of fish	mg/kg-day
C_{fish}	=	concentration in fish	mg/kg
IR_{fish}	=	ingestion rate of fish	kg/day
F_{fish}	-	fraction of fish caught from site	unitless
F_{cf}	=	fraction fish that are contaminated	unitless
RAF _{inj}	g ==	relative absorption factor - oral	unitless
EF_fish	8=	exposure frequency – fish ingestion	days/year
ED	==	exposure duration	years
BW	=	body weight of receptor	kg
AT_c	==	averaging time carcinogen = (365 days/year) x (75 years)	27375 days
AT_{nc}	==	averaging time non-carcinogen = (365 days/year) x (exposure duration)	days

1.2.4 Water Ingestion

$$Intake_{water} = \frac{C_{water} \times IR_{water} \times F_{water} \times RAF_{ing} \times EF_{water} \times ED}{BW \times AT}$$

Where	:		Units
Intake	WATER =	daily intake from the ingestion of water	mg/kg-day
C_{water}	=	concentration in water	mg/L
IR_{water}	==	ingestion rate of water	L/day
Fwater	==	fraction of water consumed from site	unitless
RAFing	=	relative absorption factor - oral	unitless
EF _{water}	=	exposure frequency – drinking water	days/year
ED	==	exposure duration	years
BW		body weight of receptor	kg
AT_c	==	averaging time carcinogen = (365 days/year) x (75 years)	27375 days
AT_{nc}	==	averaging time non-carcinogen = (365 days/year) x (exposure duration)	days

Appendix B - Part I

1.3 Water Exposure

1.3.1 Dermal Exposure

$$Intake_{\text{ demwater}} = \frac{DA_{\text{ event}} \times SA_{\text{ water}} \times ET_{\text{dwater}} \times EF_{\text{dwater}} \times ED}{BW \times AT}$$

Where:		<u>Units</u>
Intake dermwate	r =daily intake from the dermal contact with surface water	mg/kg-day
DA _{event} =	absorbed dose per event	mg/cm2-event
SA _{water} -	exposed surface area - dermal water	cm ²
ET _{dwater} =	exposure time – dermal water	hours/day
$EF_{dwater} =$	exposure frequency - dermal water	days/year
ED :	exposure duration	years
BW =	body weight of receptor	kg
AT _c :	averaging time carcinogen = (365 days/year) x (75 years)	27375 days
AT _{nc} =	averaging time non-carcinogen = (365 days/year) x (exposure duration)	days
110		77.77

$$DA_{event} = K_p \times C_{water} \times t_{event}$$

Where:		Units
$DA_{event} =$	absorbed dose per event	mg/cm ² -event
$K_p =$	dermal permeability coefficient of compound in water	cm/hr
Cwater =	concentration of chemical in water	mg/cm ³
t _{event} =	event duration	hour/event

1.4 Risk Characterization

After the various intakes are derived, the final step is the calculation of the incremental excess lifetime cancer risks (IELCR) and non-carcinogenic hazard quotient (HQ) values for each of the pathways and receptors identified. IELCRs and HQs are then summed for individual receptors, across all applicable exposure pathways to obtain an estimate of the total individual IELCRs and HQs for specific receptors.

1.4.1 Carcinogenic Chemicals

For carcinogenic chemicals, risk estimates represent the incremental probability that an individual will develop cancer over a lifetime as a result of a specific exposure to that chemical (US EPA OW, 1998). Since carcinogenic risk estimates are over a lifetime of exposure, a composite receptor comprising five separate lifestages (infant, toddler, child, teen, adult) was used to evaluate carcinogenic intakes.

Appendix B – Part I B-6

An intake value was derived for each exposure and each pathway. These values were then summed to get a pathway specific cancer intake.

$$IELCR_{x} = Intake_{x} \times CSF_{x}$$

Where:		Units
$IELCR_x =$	incremental lifetime cancer risk for pathway	unitless
Intake _x =	chemical specific intake for pathway x	mg/kg-day
$CSF_x =$	chemical specific cancer slope factor for pathway x	(mg/kg-day) ⁻¹

$$IELCR_{O/D} = Intake_{O/D} \times CSF_{O/D}$$

Where:			Units
IELCR _{O/D}	=	incremental lifetime cancer risk for oral/dermal exposure	unitless
Intake _{O/D}	=	chemical specific intake for oral/dermal pathway	mg/kg-day
$CSF_{O/D}$	=	chemical specific oral cancer slope factor	(mg/kg-day)-1

$$IELCR_{FOOD} = Intake_{FOOD} \times CSF_{O/D}$$

Where:		Units
IELCR _{FOOD} =	incremental lifetime cancer risk for food ingestion exposure	unitless
Intake _{FOOD} =	chemical specific intake for food intake pathway	mg/kg-day
CSF _{O/D} =	chemical specific oral cancer slope factor	(mg/kg-day)-1

1.4.2 Non-carcinogenic Chemicals

The potential for non-carcinogenic health effects resulting from exposure to a chemical is generally assessed by comparing an exposure estimate to a reference dose (RfD). A RfD is a daily oral intake rate that is estimated to pose no appreciable risk of adverse health effects, even to sensitive populations (US EPA OW, 1998).

$$HQ_x = \frac{Intake_x}{RfD_x}$$

Where:		Units
$HQ_x =$	hazard quotient for pathway x	unitless
$Intake_x =$	chemical specific intake for pathway x	mg/kg-day
$RfD_x =$	chemical specific reference dose for pathway x	mg/kg-day

Appendix B - Part I B-7

The total non-carcinogenic hazard attributable to exposure to all chemicals through a single exposure pathway is known as a hazard index (HI) (US EPA OW, 1998). The HI is calculated as follows:

$$HI = \sum_{i} HQ_{x}$$

Where: **Units** hazard index for a specific exposure pathway HI unitless hazard quotient for chemical x

 HQ_x

unitless

A receptor's total hazard is considered to be the sum of all the HI values for each of the specific exposure pathways.

Table 1 Parameter Definitions and Receptor Exposure Assumptions

Parameter Definitions		Exposure Assumptions		
Parameter D	ennitions	Lower Site	Upper Site	
TDI =	reference dose (mg/kg bw-day)	chemical specific		
EDI =	estimated daily intake (multimedia exposure assessment) (mg/kg bw-day)	chemical specific	chemical specific	
SAF =	soil allocation factor (unitless)	chemical specific	chemical specific	
BW =	body weight (kg)	16.5	16.5	
BSC =	background soil concentration (mg/kg)	chemical specific	chemical specific	
RAF _{ing} =	relative absorption factor for gut (unitless)	chemical specific	chemical specific	
RAF _{derm} =	relative absorption factor skin (unitless)	chemical specific	chemical specific	
C _{soil} =	concentration of chemical in soil (mg/kg)	site specific	site specific	
C _{caribou} =	concentration of chemical in caribou (mg/kg)	site specific	site specific	
C _{hare} =	concentration of chemical in hare (mg/kg)	site specific	site specific	
C _{fish} =	concentration of chemical in fish (mg/kg)	site specific	site specific	
C _{water} =	concentration of chemical in water (mg/L)	site specific	site specific	
DA _{event} =	absorbed dose per event (mg/cm ² -event)	chemical specific	chemical specific	
IR _{soil} =	soil ingestion rate (mg/hr)	3.33	3.33	
IR _{air} =	air inhalation rate (m³/hr)	0.39	0.3875	
IR _{game} =	wild game ingestion rate (mg/day)	85000.00	85000	
IR _{fish} =	fish ingestion rate (mg/day)	95000.00	95000	
IR _{water} =	water ingestion rate (L/day)	0.60	0.6	
P _{air} =	particulate concentration in air (kg/m³)	7.60E-10	7.6E-10	
	exposed receptor surface area - body (cm²)	2580	2580	
SA _{body} =	exposed receptor surface area - body (cm ²)	430	430	
SA _{hand} =				
SA _{water} =	exposed receptor surface area - dermal water (cm ²)	430	430	
SAF _{body} =	soil adherance factor - body (mg/cm²-day)	0.01	0.01	
SAF _{hand} =	soil adherance factor - hand (mg/cm ² -day)	0.10	0.1	
ETerm _{ing} =	exposure term for soil ingestion pathway (unitless - event driven)	0.247	0.0384	
$ETerm_{derm} =$	exposure term for soil dermal contact pathway (unitless - event driven)	0.247	0.0384	
ETerm _{inh} =	exposure term for soil dust inhalation pathway (unitless - event driven)	0.247	0.0384	
ET _{ing} =	exposure time for soil ingestion pathway (hour/day)	24	24	
$ET_{derm} =$	exposure time for soil dermal contact pathway (hour/day)	24	24	
ET _{inh} =	exposure time for soil dust inhalation pathway (hour/day)	24	24	
ET _{dwater} =	exposure frequency for surface water dermal contact pathway (event/day)	3	3	
$\mathbf{EF_{ing}} =$	exposure frequency for soil ingestion pathway (days/year)	90	14	
EF _{derm} =	exposure frequency for soil dermal contact pathway (days/year)	90	14	
EF _{inh} =	exposure frequency for soil dust inhalation pathway (days/year)	90	14	
EF _{game} =	exposure frequency for wild game ingestion pathway (days/year)	90	14	
$EF_{fish}=$	exposure frequency for fish ingestion pathway (days/year)	90	14	
EF _{water} =	exposure frequency for water ingestion pathway (days/year)	90	14	
EF _{dwater} =	exposure frequency for water dermal contact pathway (days/year)	90	14	
ED=	exposure duration (years)	4.5	4.5	
$\mathbf{F}_{site} =$	fraction of wild game caught from the site (unitless)	1.00	1	
F _{caribou} =	fraction of wild game that is caribou (unitless)	0.90	0.9	
F _{hare} =	fraction of wild game that is hare (unitless)	0.10	0.1	
F _{fish} =	fraction of fish caught from site (unitless)	1.00	1	
$\mathbf{F}_{cf} =$	fraction of fish contaminated (unitless)	1.00	1	
F _{water} =	fraction of drinking water from site (unitless)	1.00	1	
$CF_1=$	conversion factor (kg/mg)	1.00E-06	0.000001	
CF ₂ =	conversion factor (days/hour)	4.20E-02	0.042	
AT=	averaging time (non-cancer/cancer days)	1642.5/27375	1642.5/27375	

Table 2 Summary Toxicological Reference Values and Relative Absorption Factors

	Non-carcinogenic		Carcinogenic					
Compound	TDI (oral) mg/kg-d	TDI (inhal.) mg/kg-d	SFo (oral) (mg/kg-d) -1	SFi (oral) (mg/kg-d) -1	SAF	RAFing	RAFinh	RAF _{derm}
			Inorganio	es				
Beryllium	0.002	4.75E-6		10.1	0.2	1	1	0.03
Copper	1.0E-2				0.2	1	1	0.1
Lead	0.00357			100	0.2	1	1	0.006
		7	ГРН - ССМЕ	CWS				
Aliph>C06-C08 - F1	5				0.2	1	1	0.2
Aliph>C08-C10 -F1	0.1			100	0.2	1	1	0.2
Arom>C08-C10 -F1	0.04			1940	0.2	1	1	0.2
F1 - Total								
Aliph>C10-C12 -F2	0.1				0.2	1	1	0.2
Aliph>C12-C16-F2	0.1			1221	0.2	I	1	0.2
Arom>C10-C12 -F2	0.04				0.2	1	1	0.2
Arom>C12-C16 -F2	0.04			1221	0.2	1	1	0.2
F2 - Total								
Aliph>C16-C21-F3	2				0.2	1	1	0.2
Aliph>C21-C34 -F3	2	22			0.2	1	1	0.2
Arom>C16-C21 -F3	0.03				0.2	1	1	0.2
Arom>C21-C34 -F3	0.03				0.2	1	1	0.2
F3 - Total								
Aliph>C34-C50 -F4	20			113	0.2	1	1	0.2
Arom>C34-C50 -F4	0.03				0.2	1	1	0.2
F4 - Total								
			Organic	S				
Total PCBs	0.001	0.001		U.S.S.	naª	I	naª	naª

a- PCBs were only assessed for risk from ingestion of fish

⁻⁻ not available: where separate inhalation TRVs are not available, the inhalation dose is summed with the dermal/ingestion dose and then compared to the oral TRV.

Table 3 Lower Site CoPC Concentrations Used in HHRA

Compound	C _{soil}	Ccaribou (mg/kg)	Chare (mg/kg)	C _{fish}	C _{water} (mgL)
		Inorganics			
Beryllium	5.80E-01	9.40E-05	9.40E-05		5.00E-05
Copper		6.60E-01	3.79E+00	4.60E-01	-
Lead		7.44E-03	1.02E+00	2.80E-02	92
		ТРН - ССМЕ С	cws		
Aliph>C16-C21-F3	1.01E+04	2.88E-01	2.88E-01		
Aliph>C21-C34 -F3	4.32E+03	1.23E-01	1.23E-01		
Arom>C16-C21 -F3	2.52E+03	7.20E-02	7.20E-02		122
Arom>C21-C34 -F3	1.08E+03	3.08E-02	3.08E-02		
F3 - Total	1.80E+04	5.14E-01	5.14E-01		
7/2 10 10 10 10 10 10 10 10 10 10 10 10 10		Organics			
Total PCBs	1221	1.46E-1	1.46E-1	2.60E-03	

^{-- =} Parameter not evaluated for this pathway

Table 4 Upper Site CoPC Concentrations Used in HHRA

Compound	C _{soil}	Ccaribou (mg/kg)	C _{hare} (mg/kg)	C _{fish}	Cwater (mgL)
		Inorganics			
Beryllium	7.80E-01	9.40E-05	9.40E-05		
Copper	3.81E+02	6.60E-01	3.79E+00	4.60E-01	2.00E-03
Lead	1.06E+03	7.44E-03	1.02E+00	2.80E-02	
	7	TPH - CCME C	WS		
Aliph>C10-C12 -F2	3.17E+03	4.24E-02	4.14E-02	1221	122
Aliph>C12-C16 -F2	3.87E+03	5.18E-02	5.06E-02	()	
Arom>C10-C12 -F2	7.92E+02	1.06E-02	1.04E-02	(ww)	(==
Arom>C12-C16 -F2	9.68E+02	1.29E-02	1.27E-02		
F2 - Total	8.80E+03	1.18E-01	1.15E-01		(
Aliph>C16-C21-F3	1.79E+04	2.88E-01	2.88E-01	1221	722
Aliph>C21-C34 -F3	7.66E+03	1.23E-01	1.23E-01		
Arom>C16-C21 -F3	4.47E+03	7.20E-02	7.20E-02		
Arom>C21-C34 -F3	1.91E+03	3.09E-02	3.09E-02		
F3 - Total	3.19E+04	5.14E-01	5.14E-01		
Aliph>C34-C50 -F4	4.58E+04	3.73E-02	3.73E-02		
Arom>C34-C50 -F4	1.15E+04	9.33E-03	9.33E-03		
F4 - Total	5.73E+04	4.66E-02	4.66E-02		
		Organics			
Total PCBs	2.20E+00	5.84E-3	5.84E-3	2.60E-03	

^{-- =} Parameter not evaluated for this pathway

Appendix B - Part II

B-II

Table 5 Exposure Pathway Specific Hazard Quotients for Lower Site Exposure

Compound	HQ Soil Ingestion	HQ Soil Dermal	HQ Soil Dust Inhalation	HQ Site Soil	HQ Caribou Ingestion	HQ Hare Ingestion	HQ Fish Ingestion	HQ Water Ingestion	HQ Food Intake	HQ Water Dermal
				Inor	Inorganics					
Beryllium	3.5E-04	9.0E-06	1.3E-05	3.7E-04	5.4E-05	6.0E-06	1	2.2E-04	2.8E-04	2.4E-05
				TPH - CO	TPH - CCME CWS					
Aliph>C16-C21-F3	6.0E-03	1.0E-03	5.3E-07	7.1E-03	1.6E-04	1.8E-05		:	1.8E-04	1
Aliph>C21-C34 -F3	2.6E-03	4.5E-04	2.3E-07	3.0E-03	7.1E-05	7.8E-06	4	4	7.8E-05	-
Arom>C16-C21-F3	1.0E-01	1.7E-02	8.9E-06	1.2E-01	2.7E-03	3.0E-04	2.4		3.0E-03	1
Arom>C21-C34 -F3	4.3E-02	7.5E-03	3.8E-06	5.1E-02	1.2E-03	1.3E-04		1	1.3E-03	1
F3 - Total	1.5E-01	2.6E-02	1.3E-05	1.8E-01	4.2E-03	4.6E-04	1	1	4.6E-03	1
				Org	Organics					
Total PCBs	2000			1	1.7E-01	1 05-02	3.7E-03	-	1.9E-01	:

^{-- =} Parameter not evaluated for this pathway

Table 6 Exposure Pathway Incremental Lifetime Cancer Risks for Lower Site Exposure

Beryllium		Compound Soil Soil Soil Ingestion Dermal
2.68E-10		ILCR Soil Dust Inhalation
1 4	Inor	ILCR Site Soil
1	ganics	ILCR Caribou Ingestion
1		ILCR Hare Ingestion
1		ILCR Fish Ingestion
-		ILCR Water Ingestion
		ILCR Food Intake
		ILCR Water Dermal

^{-- =} Parameter not evaluated for this pathway

Table 7 Exposure Pathway Specific Hazard Quotients for Upper Site Exposure

	Soil Ingestion	HQ Soil Dermal	HQ Soil Dust Inhalation	HQ Site Soil	HQ Caribou Ingestion	HQ Hare Ingestion	HQ Fish Ingestion	HQ Water Ingestion	HQ Food Intake	HQ Water Dermal
				Inorg	Inorganics					
Beryllium	7.25E-05	1.89E-06	2.70E-06	7.71E-05	8.35E-06	9.28E-07	3	1	9.28E-06	1
Copper	7.09E-03	6.14E-04	6.26E-07	7.70E-03	1.17E-02	7.50E-03	1.02E-02	2.79E-04	2.87E-02	3.00E-05
Lead	5.52E-02	2.87E-04	4.88E-06	5.55E-02	3.71E-04	5.62E-03	1.73E-03	1	7.73E-03	1
				TPH - CC	TPH - CCME CWS					
Aliph>C10-C12 -F2	5.89E-03	1.02E-03	5.21E-07	6.91E-03	7.54E-05	8.39E-06	3	3	8.37E-05	3
Aliph>C12-C16-F2	7.20E-03	1.25E-03	6.36E-07	8.45E-03	9.21E-05	1.02E-05	i	1:	1.02E-04	1
Arom>C10-C12 -F2	3.68E-03	6.38E-04	3.25E-07	4.32E-03	4.71E-05	5.23E-06	1	1	5.23E-05	2 1
Arom>C12-C16-F2	4.50E-03	7.80E-04	3.98E-07	5.28E-03	5.76E-05	6.40E-06		3	6.40E-05	3
F2 - Total	2.13E-02	3.69E-03	1.88E-06	2.50E-02	2.72E-04	3.02E-05	-	1	3.02E-04	8
Aliph>C16-C21-F3	1.66E-03	2.88E-04	1.47E-07	1.95E-03	2.56E-05	2.85E-06	1	-	2.85E-05	;
Aliph>C21-C34 -F3	7.12E-04	1.23E-04	6.29E-08	8.35E-04	1.10E-05	1.22E-06		22	1.22E-05	1
Arom>C16-C21 -F3	2.77E-02	4.80E-03	2.45E-06	3.25E-02	4.29E-04	4.74E-05	1	-	4.74E-04	1
Arom>C21-C34 -F3	1.19E-02	2.06E-03	1.05E-06	1.39E-02	1.83E-04	2.03E-05		1	2.03E-04	1
F3 - Total	4.19E-02	7.27E-03	3.70E-06	4.92E-02	6.46E-04	7.18E-05	1	-	7.18E-04	1
Aliph>C34-C50 -F4	4.26E-04	7.39E-05	3.77E-08	5.00E-04	3.32E-07	3.69E-08	}	1	3.69E-07	1
Arom>C34-C50 -F4	7.10E-02	1.23E-02	6.28E-06	8.34E-02	5.53E-05	6.14E-06	1	}	6.14E-05	-
F4 - Total	7.15E-02	1.24E-02	6.31E-06	8.39E-02	5.56E-05	6.18E-06		-	6.18E-05	1
				Orga	Organics					
Total PCBs	4.09E-04	3.55E-05	3.61E-08	4.45E-04	1.04E-03	1.15E-04	5.74E-04	1	1.73E-03	1

Table 8 Exposure Pathway Incremental Lifetime Cancer Risks for Upper Site Exposure

,	1	1	1	1	anics	Inorganics	5.60E-11		ī.	Beryllium
ILCR Water Dermal	ILCR Food Intake	Water Ingestion	ILCR Fish Ingestion	Hare Ingestion	ILCR Caribou Ingestion	ILCR Site Soil	ILCR Soil Dust Inhalation	ILCR Soil Dermal	ILCR Soil Ingestion	Compound

^{-- =} Parameter not evaluated for this pathway