

global environmental solutions

FOX-C Ekalugad Fjord Long Term Monitoring Event Qikiqtaaluk Region, Nunavut

2018 Long Term Monitoring Report

CROWN-INDIGENOUS RELATIONS AND NORTHERN AFFAIRS CANADA NUNAVUT REGIONAL OFFICE

December 2018 SLR Project No. 209.40585.00000

2018 LONG TERM MONITORING REPORT FOX-C EKALUGAD FJORD LONG TERM MONITORING EVENT QIKIQTAALUK REGION, NUNAVUT

SLR Project No.: 209.40585.00000

Submitted by SLR Consulting (Canada) Ltd. Suite 203, 43 Auriga Drive Ottawa, ON K2E 7Y8

For Crown-Indigenous Relations and Northern Affairs Canada Nunavut Regional Office 969 Qimugjuk Building, 2nd Floor Igaluit, Nunavut X0A 0H0

December 18, 2018

Prepared by:

Reviewed by:

Kaitlyn Roberts, M.Sc.

Environmental Scientist

David Wilson, M.A.Sc., P.Eng. Senior Engineer, Project Manager

CONFIDENTIAL

NOTICE

ACCESS TO INFORMATION ACT

These documents and the information contained in them are confidential property of Crown-Indigenous Relations and Northern Affairs Canada, and any disclosure of same is governed by the provisions of each of the applicable provincial or territorial Freedom of Information legislation, the Privacy Act (Canada) 1998-81-82-83, c.111, Sch. II "1", and the Access to Information Act (Canada) 1980-81-82-83, c.111, Sch. I "1", as such legislation may be amended or replaced from time to time

Distribution:

1 PDF - Crown-Indigenous Relations and Northern Affairs Canada

1 copy - SLR Consulting (Canada) Ltd.

EXECUTIVE SUMMARY

SLR Project No.: 209.40585.00000

December 2018

SLR Consulting (Canada) Ltd. (SLR) was retained by Crown-Indigenous Relations and Northern Affairs Canada (CIRNAC) to complete the Year 10 Monitoring Program at FOX-C Ekalugad Fjord (herein referred to as "the site"), located in the Qikiqtaaluk Region of Nunavut. FOX-C is situated approximately 260 km to the south of the Hamlet of Clyde River.

The objective of the long term monitoring event was to complete Year 10 monitoring activities as described in the *FOX-C Ekalugad Fjord Long-Term Monitoring Plan*, INAC, 2008 (LTM Plan) which included the following:

- Monitor general site conditions (i.e., roads, buildings, etc.);
- Monitor the natural environment (i.e. wildlife);
- Perform a visual and geotechnical inspection of the Non-Hazardous Waste Landfill (NHWL) in accordance with the LTM Plan and the Abandoned Military Site Remediation Protocol (AMSRP);
- Conduct a groundwater sampling program at the five monitoring wells surrounding the NHWL at FOX-C:
- Collect soil samples at locations where new seepage or staining has been identified;
- Submit groundwater samples to a Canadian Association for Laboratory Accreditation (CALA) accredited laboratory for analysis; and
- Submit draft and final versions of the FOX-C Long Term Monitoring (Year 10) Report to CIRNAC which include results compared to baseline data and applicable federal criteria.

Results of the 2018 FOX-C Ekalugad Fjord site visit indicate that the NHWL is performing as designed and effectively containing the enclosed waste. Several areas of erosion, ponded water, and seepage were observed on and in the vicinity of the NHWL. However, these features appear to be of similar size, extent, and condition as observed in previous monitoring programs with the exception of erosional Features C and D on the eastern edge of the NHWL. A surface water sample was collected at this seepage point and results were compared to applicable criteria. A depression was previously noted on the landfill cap. This feature was not observed in 2018 and the cap appears to be flat and in good condition. No soil samples were collected during the 2018 monitoring event.

In addition to visual observations of the NHWL and surrounding environment, SLR collected groundwater samples from two of the five monitoring wells that surround the NHWL, MW-North and MW-Northwest. Concentrations of PHCs, BTEX, and PBCs were below reportable detection limits. Concentrations of several inorganic, total and dissolved metals parameters in each of the wells were greater than applicable criteria, and in a number of instances there are dissolved metal parameters with concentrations greater than total metals, which is anomalous. The groundwater analytical results may not be representative of true groundwater conditions at the site, and this may be attributable to the wells remaining unpurged since 2006, through multiple freeze/thaw cycles. Collection of more data is recommended to understand groundwater chemistry at this site. These exceedances should be closely monitored during the next site visit as the landfill will be considered in "marginal" condition with a "low risk of failure" should criteria be exceeded for two or more successive monitoring seasons as set out by the AMSRP guidelines.

MW-East to the east of the NHWL showed signs of frost jacking and should be monitored during future monitoring programs as repair may be required. No damage to the interior well casing

SLR i CONFIDENTIAL

was reported. The locks were replaced on all wells and the keys remain in the possession of the CIRNAC representative.

SLR Project No.: 209.40585.00000

December 2018

Based on the results of the Year 10 LTM event at FOX-C Ekalugad Fjord, SLR recommends continued monitoring of landfill features, especially the erosional features noted on the east side of the NHWL. Additionally, all parameters with reported exceedances should be closely monitored during future monitoring events to confirm whether or not the landfill remains in acceptable condition. It is recommended that monitoring continue at an increased frequency compared to what has been set out in the FOX-C LTM Plan. The next monitoring event, Year 15, was to be scheduled in 2023. It is recommended that an additional monitoring event take place in 2020 (Year 12) to expand the groundwater analytical data set at the site and to gain a better understanding of groundwater chemistry at this site. No further action is recommended at this time.

TABLE OF CONTENTS

SLR Project No.: 209.40585.00000

December 2018

EXE	CUTI	/E SUMMARY	l
ACR	ONY	IS AND ABBREVIATIONS	V
1.0	INTR	ODUCTION	1
	1.1	Project Objectives	
	1.2	Scope of Work	1
2.0	RΔC	KGROUND INFORMATION	
2.0	2.1	Site Description	
	2.2	Baseline Soil and Groundwater Data	
	2.2	2.2.1 Groundwater	
		2.2.2 Soil	
	2.3	Previous Monitoring Programs	3
3.0	REG	ULATORY GUIDELINES	
3.0	3.1	Groundwater	
	5. 1	3.1.1 Baseline samples	
		3.1.2 Federal Interim Groundwater Guidelines	
	3.2	Surface water	
	J.Z	3.2.1 Canadian Water Quality Guidelines for the Protection of Aquatic Life	
	3.3	SoilSoil	
	0.0	3.3.1 Baseline samples	
		3.3.2 CCME - Environmental Quality Guidelines	0 6
4.0	INIVE	STIGATIVE METHODOLOGY	
4.0			
	4.1 4.2	Health and Safety Plan	
		Non-Hazardous Waste Landfill Monitoring	<i>1</i>
	4.3	Natural Environment Monitoring	
	4.4	Groundwater Sample Collection	
	4.5	Soil Sample Collection	
	4.6	. •	
5.0		LITY ASSURANCE AND QUALITY CONTROL	
	5.1	Replicate Samples	
	5.2	Field Blanks	
	5.3	Travel Blanks	
	5.4	Laboratory	.12
	5.5	Relative Percent Difference	
6.0	RES	JLTS	
	6.1	Location	.12
	6.2	Photographic Record	
	6.3	Visual Monitoring	
		6.3.1 Non-Hazardous Waste Landfill	.13
		6.3.2 Natural Environment	.17
		6.3.3 Surrounding Areas	.17
	6.4	Results – Groundwater and Surface Water	.17
		6.4.1 General	.17
		6.4.2 Analytical	.18
		6.4.3 Comparison to Previous Monitoring Programs / Discussion	.20
	6.5	Results – Soil	
		6.5.1 General	.21
	6.6	Results – Surface water	.21

	6.7	QA/QC Results	22
		6.7.1 Duplicate Samples – Relative Percent Difference	
7.0	CON	6.7.2 Field Blank	
7.0		CLUSIONS AND RECOMMENDATIONS	
8.0		TATIONS	
9.0	KEFE	RENCES	25
		TABLES IN TEXT	
Table	3-1:	AMSRP Groundwater Monitoring Guidance	4
Table	4-1:	FOX-C Ekalugad Fjord Groundwater Sampling Plan	9
Table	4-2:	FOX-C Ekalugad Fjord Soil Sampling Plan	10
Table	4-3:	FOX-C Ekalugad Surface Water Sampling Plan	10
Table	6-1:	FOX-C Ekalugad Fjord Monitoring Wells	12
Table	6-2	FOX-C NHWL Feature Summary	13
Table	6-3:	Well Summary and Sample Details	18
Table	6-4:	2018 FIGQG Groundwater Exceedances at FOX-C	19
Table	6-5:	2018 Surface Water Exceedances at FOX-C	22
		TABLES AFTER TEXT	
Table	1:	Baseline Groundwater Data	
Table	2:	Baseline Soil Data	
Table	3:	Baseline Soil Data	
Table	4:	2018 Groundwater and Surface Water Data – PHCs	
Table	5:	2018 Groundwater Surface Water Data – Total Metals	
Table	6:	2018 Groundwater and Surface Water Data – Dissolved Metals	
Table	7:	2018 Groundwater and Surface Water Data – Inorganics	
Table	8:	2018 Groundwater and Surface Water Data – PCBs	
Table	9:	2018 QAQC Data – PHCs	
Table	10:	2018 QAQC Data – Total Metals	
Table	11:	2018 QAQC Data – Dissolved Metals	
Table	12:	2018 QAQC Data – Inorganics	
Table	13:	2018 QAQC Data – PCBs	
		DRAWINGS	
Draw	ing 1:	Site Location	
Draw	ing 2:	Site Plan	
		APPENDICES	
Appe	ndix A	s: Site Photographs	
Appe	ndix E	3: Field Sheets and Notes	
Appe	ndix C	C: Laboratory Certificates of Analysis	
Appe	ndix [Figures from 2008 and 2009 UMA Reports (from Arcadis, 2017)	

SLR Project No.: 209.40585.00000

December 2018

ACRONYMS AND ABBREVIATIONS

SLR Project No.: 209.40585.00000

December 2018

AMSRP Abandoned Military Site Remediation Protocol

AST Aboveground storage tank

ATV All-terrain vehicle

BTEX Benzene, Toluene, Ethylbenzene, and Xylenes

CALA Canadian Association for Laboratory Accreditation

CCME Canadian Council of Ministers of the Environment

CEQG Canadian Environmental Quality Guidelines

CIRNAC Crown-Indigenous Relations and Northern Affairs Canada

CSQG Canadian Soil Quality Guidelines

CWQG-PAL Canadian Water Quality Guidelines for the Protection of Aquatic Life

CWS Canada Wide Standard

ECCC Environment and Climate Change Canada

FCSAP Federal Contaminated Sites Action Plan

FIGQG Federal Interim Groundwater Quality Guidelines

GIS Geographic Information System

GPS Global Positioning System

GW Groundwater

HASP Health and Safety Plan

LORAN Long Range Navigation

LTM Long Term Monitoring

NHWL Non-Hazardous Waste Landfill

PCBs Polychlorinated Biphenyls

PHCs Petroleum Hydrocarbons

PPM Parts per million

QAQC Quality Assurance/Quality Control

SLR Project No.: 209.40585.00000

December 2018

RDL Reportable Detection Limit

RPD Relative Percent Difference

SLR SLR Consulting (Canada) Ltd.

ULA Upper Limit of Acceptability

UMA UMA Engineering Ltd./AECOM

1.0 INTRODUCTION

SLR Consulting (Canada) Ltd. (SLR) was retained by Crown-Indigenous Relations and Northern Affairs Canada (CIRNAC) to complete the Year 10 Monitoring Program at the former Distant Early Warning (DEW) Line site FOX-C (herein referred to as "the site"), located in the Qikiqtaaluk Region of Nunavut. Nunavut. FOX-C is located at approximately 68° 42' 0" N and -68° 33' 0" E and is approximately 240 km northwest of Qikiqtarjuaq, Nunavut and 260 km south of the Hamlet of Clyde River, Nunavut.

SLR Project No.: 209.40585.00000

December 2018

1.1 Project Objectives

The objective of the long term monitoring event was to complete Year 10 monitoring activities as described in the *FOX-C Ekalugad Fjord Long-Term Monitoring Plan*, INAC, 2008 (LTM Plan).

The program included visual monitoring of the non-hazardous waste landfill (NHWL), visual observation of general site conditions and the natural environment, and collection and analysis of groundwater and surface water samples. Analysis of field data and visual observations was conducted to satisfy the requirements of the Abandoned Military Site Remediation Protocol (AMSRP, 2009) and the site-specific Field Sampling and Quality Assurance/Quality Control Plan (SLR, 2018).

1.2 Scope of Work

The scope of work for the 2018 work program was carried out in accordance with SLR's standard field investigative procedures and is consistent with the previous year's monitoring. The final scope of work for the project included the following items:

- Prepare and submit a Logistics Plan detailing the work schedule;
- Prepare and submit a detailed Health and Safety Plan (HASP);
- Prepare and submit a Sampling and Quality Assurance/Quality Control Plan detailing the proposed scope of work to CIRNAC;
- Arrange for a wildlife monitor to be present during fieldwork and conduct interviews to understand land use and wildlife trends;
- Monitor general site conditions (i.e., roads, buildings, etc.);
- Monitor the natural environment (i.e. wildlife);
- Perform a visual and geotechnical inspection of the NHWL in accordance with the LTM Plan and AMSRP;
- Conduct a groundwater sampling program at the five monitoring wells surrounding the NHWL at FOX-C:
- Collect soil samples at locations where new seepage or staining has been identified;
- Collect and analyse duplicate samples from at least 20% of samples;
- Submit groundwater samples to a Canadian Association for Laboratory Accreditation (CALA) accredited laboratory for analysis of parameters outlined in Section 5.4.
- Prepare field reports summarizing LTM activities undertaken within two weeks of fieldwork completion; and
- Submit draft and final versions of the FOX-C Ekalugad Fjord Long Term Monitoring (Year 10) Report to CIRNAC.

Details regarding the specific methodology of each task are located in Section 4.0.

2.0 BACKGROUND INFORMATION

2.1 Site Description

The FOX-C DEW Line Site was constructed in 1957 and abandoned in 1963. The site is located on the northeast coast of Baffin Island in a mountainous area characterized by deep fjords and glaciers. The site is comprised of three areas, the Upper Station, Mid Station, and Lower Station. The Lower Station is divided into three sections: the Lake Area, the Beach Area, and the Landfill Area, which is there the NHWL is located.

SLR Project No.: 209.40585.00000

December 2018

The Upper Station is located 770 m above mean sea level. Before remediation, the main site facilities were located here and included a module train, warehouse, garage, Inuit house, bulk fuel storage tanks, and a radar tower.

The Mid Station is located at the base of the summit approximately 500 m east of the Upper Station. Before remediation, the Mid Station consisted of a dump, barrel storage pad, four Quonset buildings, and numerous debris areas. A glacier is located across from the former Mid Station and feeds a river that flows into an unnamed lake.

The lower station can be accessed via a roadway that connects to the upper station near the unnamed lake area. A river flows out of this lake northward and empties into Ekalugad Fjord near the beach area. The NHWL is located east of this river (see **Drawing 1**).

The NHWL was constructed at the site in 2006-2007 and was closed in 2008. It was designed to contain non-hazardous materials only. The NHWL consists of four perimeter berms constructed of granular material. The waste was placed in the landfill in layers consisting of 0.5 m lifts of waste covered by 0.15 m of granular fill. The waste layers were compacted and a final cover consisting of a minimum of 1.0 m of granular fill was used to cap the landfill. The NHWL contains the following:

- Tier I Contaminated soil (i.e. soil with lead concentration up to 500 parts per million (ppm) and polychlorinated-biphenyl (PCB) concentrations up to 5 ppm;
- Petroleum hydrocarbon (PHC) fractions F3 and F4 contaminated soil;
- Non-Hazardous demolition debris such as timbers, plywood, and sheet metal;
- Non-hazardous site debris such as scrap metal and wood;
- Non-hazardous debris/soil excavated from landfills;
- Creosote timbers: and
- Double-bagged asbestos.

The area is known to be used by hunters and fishermen according to Esa Qillaq, resident of Clyde River. Interviews with Esa indicate that residents of Clyde River and Qikiqtarjuaq may have cabins situated in nearby fjords that are utilized for hunting and fishing purposes. However, the presence of permafrost and shallow groundwater depth make it unlikely that groundwater would ever be used for drinking water in this area.

2.2 Baseline Soil and Groundwater Data

During remediation activities at FOX-C Ekalugad Fjord, UMA Engineering Ltd./AECOM (UMA) collected baseline soil and groundwater data for comparison during future monitoring programs.

2.2.1 Groundwater

In 2006, UMA installed four monitoring wells (MW-A through MW-D) around the NHWL, each to a depth of approximately 3.7 m. Groundwater samples were collected from MW-A, MW-B, and MW-C. MW-D was found to be dry. No samples were collected from any wells in 2007 as they were either dry or frozen.

SLR Project No.: 209.40585.00000

December 2018

During the 2008 construction, the NHWL was expanded to accommodate an additional 18,400 m³ of waste. As a result, two of the wells installed in 2006 were removed (MW-A and MW-D) and replaced with two new wells. A third new well was also installed in 2008 bringing the total well count surrounding the NHWL to five.

No groundwater samples were collected during the 2008 sampling event as the wells remained dry. Baseline groundwater analytical data for FOX-C is based on groundwater samples collected in 2006.

2.2.2 Soil

In 2007, UMA collected eight soil samples around the NHWL and submitted them for copper and lead analysis. Concentrations of lead in the soil were reported as non-detectable and average copper concentrations in soil were reported to be 16.4 mg/kg (**Table 2**).

During the installation of the three new wells in 2008, UMA collected soil samples from the base of all five wells around the NHWL; a total of 10 samples were collected. Lead was reported as non-detectable and average copper concentrations were reported to be 11.2 mg/kg (**Table 2**). Additional soil analytical results are available in **Table 3** at the end of this report. Baseline soil analytical data is based upon soil samples collected in both 2007 and 2008.

2.3 Previous Monitoring Programs

The post construction landfill monitoring frequency follows the schedule recommended in the INAC AMSRP (2009). The three phases recommended by the protocol are:

- Phase I: Years 1, 3 and 5.
- Phase II (if required): Years 7, 10, 15 and 25.
- Phase III (if required): beyond 25 years.

To become familiar with the site, SLR reviewed the following reports pertaining to the site:

- Long Term Monitoring, 2016, FOX-C Ekalugad Fjord, Nunavut, Final Report, dated February 3, 2017 by Arcadis Canada Inc.;
- FOX-C Ekalugad Fjord Long-Term Monitoring Plan, dated March 23, 2008 by INAC;
- Abandoned Military Site Remediation Protocol, dated March 2009 by INAC, Contaminated Sites Program.

The monitoring plan at FOX-C began in 2009. **Tables 1 to 3** at the end of this report show baseline groundwater data from 2006 and baseline soil data from 2007 and 2008. All wells were dry in Years 1, 3, and 5 of the monitoring program and as a result, no analytical data is available. Monitoring was attempted in 2015 to complete Year 7 of the program, however, due to weather conditions; the site visit could not be completed. All wells were frozen in 2016 when

Year 8 of the monitoring program was completed. SLR completed Year 10 of the program in 2018.

SLR Project No.: 209.40585.00000

December 2018

3.0 REGULATORY GUIDELINES

3.1 Groundwater

3.1.1 Baseline samples

In the absence of groundwater criteria in the FOX-C Ekalugad Fjord LTM Plan, analytical data for groundwater was compared to historical data according to the AMSRP (INAC, 2009) guidance for post-construction monitoring. The AMSRP (INAC, 2009) provides the following guidance for the assessment of groundwater:

Table 3-1: AMSRP Groundwater Monitoring Guidance

Geochemical Assessment	Acceptable	Marginal	Significant	Unacceptable
Groundwater concentrations within average +/- three standard deviations or within analytical variability	Performing as expected			
Increasing trend in contaminant data over two or more successive monitoring events (variation in excess of average +/- three standard deviations or analytical variability		Low risk of failure		
Groundwater concentrations in excess of three times average baseline concentrations in more than one monitoring event			Moderate risk of failure	
Where applicable, surface water concentrations in excess of surface water quality guidelines for the protection of aquatic life				Failure
Required Actions	Monitor as per schedule	Increase monitoring frequency. Monitor surface water quality, if acceptable, in downgradient water bodies within 300 m	Assess causes of increasing contaminant concentrations. Evaluate whether remediation is required.	Assess cause of contaminant concentrations. Develop and implement a remedial plan.

The means and standard deviation of all baseline data has been obtained for comparison with the results of the most recent monitoring event (2018). No historic data other than baseline data exists as wells have been frozen or dry during every prior monitoring event. SLR calculated acceptable values (upper limit of acceptability [ULA] criteria) for 2018 groundwater results as the

SLR 4 CONFIDENTIAL

mean +/- three times the standard deviation of each analytical parameter. However, baseline data is sparse and for many parameters, there was insufficient data to calculate means and standard deviations. This is due to the fact that these parameters were either not detected in the samples or were not analyzed for during baseline monitoring.

SLR Project No.: 209.40585.00000

December 2018

3.1.2 Federal Interim Groundwater Guidelines

In May 2010, Environment and Climate Change Canada (ECCC) under Federal Contaminated Sites Action Plan (FCSAP) released the *Federal Interim Groundwater Quality Guidelines* (FIGQG) for Federal Contaminated Sites. The guidelines were developed to assist federal custodians in assessing, remediating, and managing federally contaminated sites funded under the FCSAP. These guidelines are intended as an interim measure until Canadian Groundwater Quality Guidelines are available. The FIGQGs were most recently updated in June 2016.

The FIGQGs follow a tiered framework, consistent with the Canadian Soil Quality Guidelines (CSQGs) development through the CCME. The tiers are:

- **Tier 1:** direct application of the generic numerical guidelines; specifically, application of the lowest guideline for any pathway;
- Tier 2: allows for the development of site-specific remediation objectives through the consideration of site-specific conditions, by modifying (within limits) the numerical guidelines based on site specific conditions and focusing on exposure pathways and receptors that are applicable to the site; and
- **Tier 3:** use of site-specific risk assessment to develop Site-Specific Remediation Objectives.

With consideration to surrounding land use, Table 2 in the FIGQGs, Generic Guidelines for Residential/Parkland Land Uses, Tier 1 Lowest Guideline for coarse-grained soil (FIGQGs, Table 2, and Tier 1) were reference for comparison purposes in this study.

3.2 Surface water

No baseline surface water samples have been collected at the FOX-C Ekalugad Fjord site. As such, there is no baseline analytical data to compare the 2018 surface water analytical results to. The surface water sample was taken at the recommendation of the CIRNAC representative to assess the parameters of a surface water flow that appeared to be flowing from the NHWL on the eastern edge. Results of the analyses were compared to federal guidelines as described below.

3.2.1 Canadian Water Quality Guidelines for the Protection of Aquatic Life

Canadian Water Quality Guidelines for the Protection of Aquatic Life (CWQGs-PAL) are nationally approved limits of substances and other physical attributes (such as pH and temperature) in the water column where no adverse toxic effects are expected. The guidelines are a set of management tools developed to ensure that the introduction of toxic substances do not lead to the degradation of Canadian fresh and marine waters. The CWQG-PALs were developed to provide basic scientific information about the effects of water quality variables and natural and anthropogenic substances on aquatic life.

The original document was published in 1991 by the Canadian Council of Ministers of the Environment (CCME) and has since been revised. The guidelines have been produced for both

freshwater and marine aquatic life; freshwater defined as water with total dissolved salt content equal or lower to 1000 ppm and marine water defined as water with total dissolved salt concentrations greater than 5000 ppm.

SLR Project No.: 209.40585.00000

December 2018

Additionally, two further derivations are considered in the guidelines: short-term and long-term exposure. Short-term guidelines are meant to estimate severe effects, such as spills, on aquatic life whereas long-term guidelines are mean to protect against all negative effects during indefinite exposures.

As the NHWL at each site is a permanent structure, all surface water analytical results were compared to the long-term exposure guidelines.

3.3 Soil

3.3.1 Baseline samples

Similar to groundwater, analytical data for soil was compared to historical data according to the AMSRP (INAC, 2009) guidance for post-construction monitoring.

Baseline soil samples were collected in 2007 and 2008 at the site and ULA criteria have been derived from these analytical results. No soil samples have been collected since at FOX-C.

While no soil was sampled during the 2018 monitoring event and as a result no 2018 analytical data is available, this method of comparison should continue to be used for monitoring events.

3.3.2 CCME - Environmental Quality Guidelines

The following CCME guidelines have been referenced in previous monitoring reports with respect to soil analytical results:

- CSQGs for the Protection of Environmental and Human Health (CCME, 1999, with updates) for residential/parkland use, including fact sheets for BTEX, non-potable water, coarse-grained soil.
- Canada-Wide Standard (CWS) for Petroleum Hydrocarbons in Soil (CCME, 2008a) –
 Tier 1 Residential/Parkland, coarse-grained soil, non-potable groundwater.

The rationale for choosing these particular criteria is based on the fact that the groundwater at Cape Christian is not used for drinking purposes (non-potable) and coarse-grain material was assumed based on the results of a 2009 grain-size analysis, field observations, as well as for conservative reasons –criteria for coarse-grain soils are general more stringent than those applied to fine grain soils.

As described above, while no soil was sampled during the 2018 monitoring event, these guidelines should be used for the analysis of future analytical results.

4.0 INVESTIGATIVE METHODOLOGY

The visual inspection was carried out by Mathew Coady, MREM, R.P.Bio., and the groundwater sampling was carried out by Kaitlyn Roberts, M.Sc. CIRNAC representative Jean Allen was present during the sampling and inspection activities and the crew was accompanied by Esa Qillaq, resident of Clyde River, who acted as the wildlife monitor and provided knowledge on the

region. The site was accessed via helicopter provided by Summit Helicopters through Polar Continental Shelf Program (PCSP). On the scheduled flight day, August 10, 2018, weather conditions were not favourable for flying and the Cape Christian site visit was completed instead. Weather conditions were also not favourable on August 11, 2018 but crew was able to fuel the helicopter and have a safety briefing in case conditions improved. Crew visited FOX-C Ekalugad Fjord the morning of August 12, 2018; however, time on site was limited to a maximum of 2 hours due to potential incoming fog in Clyde River and the pilot's flight schedule for later that day. Conditions at the site were sunny and 8 degrees Celsius.

SLR Project No.: 209.40585.00000

December 2018

A copy of the field notes is available in **Appendix B.**

4.1 Health and Safety Plan

Before commencement of the field activities, a detailed Health and Safety Plan (HASP) was created for FOX-C Ekalugad Fjord that provided emergency contact information, emergency response plans, hazard identification, and hazard mitigation and prevention strategies.

The HASP was approved by SLR's internal Health and Safety Manager, Phil Folkersen, and by CIRNAC prior to field activities. The HASP was brought to site with field staff and its contents were discussed with wildlife monitor Esa Qillaq and Summit Helicopter's pilot before visiting the FOX-C site. A copy of the HASP has been retained on file at SLR and at the CIRNAC Nunavut Regional Office.

4.2 Non-Hazardous Waste Landfill Monitoring

A visual inspection of the NHWL was conducted at the FOX-C Ekalugad Fjord site. The objectives of the visual inspections of the NHWL included:

- Visual inspection of the landfill caps and observing for areas of settlement, erosion, frost action, sloughing and cracking, animal burrows, vegetation re-establishment and percentage of cover, vegetation stress, soil or water staining, odours, seepage points or ponded water, exposed debris, condition of monitoring instruments, the condition of the wells, and any other features that may affect the integrity of the landfills;
- Opportunistic observations of wildlife presence, signs and droppings;
- Photographic records noting the scale, and directional viewpoints to substantiate all recorded observations. Observations mapped and annotated to show the location and size with regards to the landfill; and
- Provide all AutoCAD / GIS files associated with the site.

4.3 Natural Environment Monitoring

Natural environment data was collected during the 2018 FOX-C Ekalugad Fjord site visit. The specific data collected included:

- Wildlife sightings (species, number, gender, etc.);
- Evidence of recent wildlife presence (droppings, tracks, feathers, etc.);
- Wildlife activity (nesting, denning, migrations);
- Qualitative assessment of relative number; and
- Revegetation of disturbed areas.

This information was collected with the assistance of the wildlife monitor Esa Qillaq who is familiar with the area.

SLR Project No.: 209.40585.00000

December 2018

4.4 Groundwater Sample Collection

Three of the five wells contained adequate water, and of those, two were sampled for groundwater analyses (MW-North and MW-Northwest). A lack of time on site did not allow MW-East to be sampled. A duplicate sample was collected at MW-North. Additionally, a field blank was also collected during the site visit to FOX-C. Historically, the wells have always been either dry or frozen. 2018 represents the first year of the monitoring program where groundwater analytical data has been collected.

Water level and depth of well was recorded to calculate approximate well volume. Monitoring wells were purged of three well volumes prior to sampling where available and water was retained in the event of limited volumes and low recharge rates. Water quality parameters such as temperature, dissolved oxygen, conductivity, pH, and turbidity were also recorded where available.

Following purging, samples were collected using a peristaltic pump and dedicated, disposable, polyethylene tubing. A low-flow sampling methodology was employed. Water was pumped out at an approximate rate of 100 mL per minute and water levels were closely monitored to ensure extraction rate did not exceed recovery rate. Water was pumped through a flow-through cell where water quality parameters were continually monitored. Once parameters have stabilized, sampling began. The following parameter stabilization guidelines were used:

- pH +/- 0.2 units
- Temperature +/- 0.1 degrees Celsius
- Conductivity +/- 3%
- Redox +/- 20 mV
- D/O +/- 0.2 mg/L
- Turbidity +/- 10%

In the event of very low recharge rates or low water levels, samples were collected immediately using the peristaltic pump. In addition to water quality parameters, flow rate, water levels, and total quantity of water removed from well both during purging and sampling will be recorded on the field sheet.

Sampling equipment was cleaned thoroughly using a distilled water and Alconox solution between each sample.

Samples were field filtered where applicable, using a 0.45 micron filter with the peristaltic pump.

Groundwater samples were submitted to Maxxam Analytics in Ottawa, ON for analyses of benzene, toluene, ethylbenzene and xylenes (BTEX), PHC Fractions F1 and F2 (C_6 - C_{16}), total metals, dissolved metals, polychlorinated biphenyls (PCBs), total suspended solids, total dissolved solids and routine parameters including major ions and hardness. Additional routine parameters including pH, conductivity, and turbidity were measured in-situ. Laboratory Certificates of Analysis are available in **Appendix C**.

As a result of Transportation of Dangerous Goods (TDG) limitations for air transport, the required acid preservative for the CCME-compliant analytical methods for metals could not be

shipped from Ottawa, ON to Clyde River, NU, and so metals analyses were completed using Ontario Regulation 153 compliant analytical methods. The CCME-compliant analytical methods require 35% nitric acid for the preservation of total and dissolved metals. However, nitric acid concentrations exceeding 20% are prohibited from transport on commercial aircrafts. As a result of this methodological change, some RDLs were above FIGQG criteria, however no contaminants of concern were affected.

SLR Project No.: 209.40585.00000

December 2018

Table 4-1 contains a summary of the groundwater analysis.

Table 4-1: FOX-C Ekalugad Fjord Groundwater Sampling Plan

	Sampling Location	PHC F1 and F2 (C ₆ -C ₁₆)	ВТЕХ	Total Metals	Dissolved Metals	PCBs	Total Suspended Solids	Major Ions ¹	Routine Parameters ²
	MW-North	Χ	Х	Х	Х	Χ	Х	Χ	Х
	MW- Northwest	Χ	Χ	X	Χ	X	X	X	Х
FOY C	MW-South	X	Χ	Χ	X	X	Χ	Χ	X
FOX-C	MW- Southwest	Χ	Χ	Χ	Χ	X	Χ	X	X
	MW-East	Χ	X	Χ	Χ	Χ	Χ	X	Χ
	Duplicate	Χ	Х	Χ	Χ	Χ	X	Χ	Χ

Major ions including Calcium (Ca²⁺), sodium (Na⁺), magnesium (Mg²⁺), potassium (K⁺), strontium (Sr²⁺), sulfate (SO₄²⁻), chloride(Cl⁻), bicarbonate (HCO₃⁻), and hydroxide (OH⁻).

In the absence of groundwater criteria in the FOX-C Ekalugad Fjord LTM Plan, analytical data for groundwater was compared to historical data, AMSRP (INAC, 2009) guidance, and the Federal Interim Groundwater Quality Guidelines (FIGQG, June 2016), Table 2 Generic Guidelines for Residential/Parkland Land Uses, Tier 1 Lowest Guideline Values for coarsegrained soil.

4.5 Soil Sample Collection

Soil samples were to be collected in areas that exhibit new staining, odours or stressed vegetation, along with GPS coordinates and pictures. Samples were to be collected with a shovel which will be decontaminated with a laboratory-grade biodegradable cleaner (Alconox®) and rinsed between sampling locations. Soil samples were to be collected to a maximum depth of 30 cm and packed into glass jars with minimal to no headspace. Soil samples were to be placed on ice until laboratory analysis.

Duplicate samples were to be taken for 20% of the total soil samples. All samples were to be analyzed for BTEX, PHC F1 to F4 (C_6 - C_{50}), PCBs, and CCME metals. Table 4-2 contains a summary of the soil analyses.

Routine Parameters including alkalinity, hardness, total dissolved solids, total suspended solids, pH, and conductivity.

Table 4-2: FOX-C Ekalugad Fjord Soil Sampling Plan

SLR Project No.: 209.40585.00000

December 2018

	ВТЕХ	PHC F1-F4	PCBs	CCME Metals ¹
Sample X	X	Х	Х	X
Duplicate	X	Χ	Χ	X

CCME Metals include arsenic, cadmium, chromium, cobalt, copper, lead, nickel, and zinc.

Due to no new areas of staining or settlement being observed at the site, no soil samples were taken during the 2018 monitoring event. However, should any future soil samples be taken at the site, results should be compared to previous soil sampling monitoring results, the AMSRP original DEW Line Clean-Up Criteria guidelines, CCME Environmental Quality Guidelines for the Protection of Environmental and Human Health for Parkland and Industrial Land Use sites, and the Canada Wide Standards for Petroleum Hydrocarbons.

4.6 Surface Water Sampling

One surface water sample (SW-East) was collected at FOX-C Ekalugad Fjord during the 2018 monitoring event. The sample was collected from a surface water flow running from the eastern edge of the NHWL downslope past MW-East, and continuing to the northeast. See **Drawing 2** for the surface water sampling location.

All samples were analyzed for BTEX, PHC F1 to F4 (C_6 - C_{50}), PCBs, and CCME metals. Table 4-3 contains a summary of the surface water analyses.

Table 4-3: FOX-C Ekalugad Surface Water Sampling Plan

	ВТЕХ	PHC F1-F4	PCBs	CCME Metals ¹
SW East	Х	Х	Х	X

¹ CCME Metals include arsenic, cadmium, chromium, cobalt, copper, lead, nickel, and zinc. ¹ CCME Metals include arsenic, cadmium, chromium, cobalt, copper, lead, nickel, and zinc.

Water quality parameters were recorded prior to filling all bottles and are available in **Appendix B**. Bottles were filled carefully to ensure no inclusion of sediment.

The sampling of this surface water feature was not planned prior to the commencement of the site visit, but should the feature still exist during future monitoring programs, the same location should be sampled for surface water for comparison.

In the absence of surface water criteria in the FOX-C Ekalugad Fjord LTM Plan, analytical data for surface water was compared to Canadian Water Quality Guidelines for the Protection of Freshwater Aquatic Life, Long-Term Exposure.

5.0 QUALITY ASSURANCE AND QUALITY CONTROL

Field procedures were implemented to minimize the potential of cross contamination between sampling locations. Sample handling protocols were established to track and maintain the integrity of the samples. Field handling of samples was minimized by transferring samples directly into containers, when possible. Where handling is required, disposable nitrile gloves will be used at all times and changed between samples. All monitoring equipment was decontaminated prior to initial use and between each location. During groundwater sampling, disposable tubing was dedicated to the individual wells and during all sampling activities a new pair of disposable nitrile gloves was used between each sample.

SLR Project No.: 209.40585.00000

December 2018

Photographs were taken of all areas of interest and the scale, location, and directional view point was recorded.

5.1 Replicate Samples

A replicate sample is a sequential sample that is taken immediately following the collection of a regular sample. Replicate samples were collected for approximately 20 percent (%) of the samples collected as part of the QA/QC sampling program. This equates to one duplicate per five wells samples. Duplicates are a type of replicate sample (two of the same), and these samples provide a rough estimate of the overall variability of the field technique and laboratory analysis.

5.2 Field Blanks

Field blanks are used to evaluate for contamination resulting from the sampling technique and from exposure to the air environment of the sampling location.

For this water quality monitoring program, because there is little variability anticipated between sampling techniques used at the various sites or between their atmospheres, one field blank was collected for both the Cape Christian and FOX-C sites.

The field blank sample was collected at the FOX-C Ekalugad Fjord site on August 12, 2018 at 10:00 am.

Deionised water was included in the bottle order from Maxxam Analytics for preparation of field blanks.

5.3 Travel Blanks

A travel blank is a sample of distilled "clean" water that is prepared by the laboratory performing the analysis. The travel blank is shipped to the site and remains sealed before being shipped back to the lab for analysis. A travel blank helps to identify the presence of container or preservative contamination, and is often used when the integrity of samples is of paramount concern (e.g., in legal matters). Given the fact that the LTM programs at FOX-C and Cape Christian are mature programs that do not present such sensitivities, the added expense of trip blanks was not justified, and they were not included in this program.

SLR 11 CONFIDENTIAL

5.4 Laboratory

All surface water samples were analyzed by Maxxam Analytics. Maxxam is accredited by CALA for the parameters proposed for analysis, and uses recognized methods to conduct laboratory analyses. As conveyed by the laboratory, method blanks, certified reference materials, method spikes, duplicates, surrogates and laboratory control samples are routinely analysed as part of their QA/QC programs.

SLR Project No.: 209.40585.00000

December 2018

5.5 Relative Percent Difference

The relative percent difference (RPD – the absolute difference between the two values, divided by the mean) of duplicate analyses is used to evaluate the sample result variability. Where the concentration of a parameter is less than five times the laboratory reportable detection limit (RDL), the results are less precise and the RPD is not calculated.

The Guidance manual for Environmental Site Characterization in Support of Human Health Risk Assessment, Volume I (CCME, 2016) recommends that RPDs for parameters of duplicate groundwater samples not exceed 40%. The guide also recommends that RPDs for laboratory duplicates not exceed 20%. Should either of these guidelines be exceeded, a potential problem may be indicated.

6.0 RESULTS

6.1 Location

The NHWL is located in the Lower Site Landfill Area (general coordinates 68° 42'0" N, 68° 33'0"E), between the Beach and Lake Areas of the FOX-C Ekalugad Fjord Sire site. A map showing the location of the site is located on **Drawing 1.** The monitoring wells are located at the following coordinates:

Source Description	Latitude	Longitude
MW-South	68 43 46.9	-68 39 12.76
MW-East	68 43 50.02	-68 39 7.523
MW-North	68 43 50.71	-68 39 15.45
MW-Northwest	68 43 48.54	-68 39 17.39

Table 6-1: FOX-C Ekalugad Fjord Monitoring Wells

Monitoring of the landfill included visual observations to assess physical integrity including evidence of erosion, ponding, frost action, settlement, and lateral movement. Groundwater was thawed in some of the wells during the 2018 monitoring event and as a result, three (3) groundwater samples were collected (two monitoring wells plus one duplicate). Additionally, one (1) surface water sample was collected east of MW-East.

6.2 Photographic Record

The photographic record of the NHWL and surrounding areas has been completed as per the scope of work (Photos 1 to 40, Attached USB). Photographs referenced in the body of this

SLR 12 CONFIDENTIAL

document are included in **Appendix A.** The complete photographic record is provided in the attached USB drive.

SLR Project No.: 209.40585.00000

December 2018

6.3 Visual Monitoring

Visual monitoring of the NHWL, natural environment, and surrounding areas was undertaken at FOX-C Ekalugad Fjord during the 2018 monitoring event. Checklists were utilized for NHWL and natural environment monitoring and interviews were conducted with local wildlife monitor to understand trends and changes over time.

6.3.1 Non-Hazardous Waste Landfill

The physical integrity of the NHWL was assessed by collecting visual evidence staining, seepage, erosion, frost action, settlement, and lateral movement. Features identified in previous monitoring programs were assessed during the 2018 site visit for condition and stability. Additionally, any new features were noted for size and extent. The locations historic features referred to in the sections below are available on **Drawing 2** at the end of this report. The following table provides a summary of the NHWL features.

Table 6-2: FOX-C NHWL Feature Summary

Feature Letter	Feature Type	Location	Extent	Description / Change Comments	Viewpoint #
Α	Erosion	NW of SE Corner	<1%	Minor erosion channel. Similar size and extent as observed in 2016	N/A
В	Settlement	NW of SE Corner	<1%	Small pothole. Not observed in 2018	N/A
С	Erosion	NE of NHWL and to the SE of MW-East	<1%	Erosion channel running from SE corner of NHWL towards MW-East, grown in size and extent since 2016	8, 9
D	Erosion	NE of toe, edge of access road	<1%	Erosion channel, grown in size and extent since 2016	8, 9
E	Erosion	NE Berm	<1%	Erosion channel, Similar size and extent as 2016	N/A
F	Erosion	SE of NE Corner	<1%	Erosion channel, Similar size and extent as 2016	30
G	Erosion	SE of NE Corner	<1%	Erosion channel, Similar size and extent as 2016	31

Feature Letter	Feature Type	Location	Extent	Description / Change Comments	Viewpoint #
н	Settlement/ Erosion	North Corner	<1%	Area of settlement and erosion, ponded water, appears to have decreased in size since 2016	2, 3
1	Settlement/ Erosion	SW of NE Corner	<1%	Small pothole, not observed in 2018	N/A
J	Erosion	Toe of NW Corner	<1%	Erosion channel, Similar size and extent as observed in 2016	
K	Erosion	N of MS- Northwest	<1%	Erosion channel, Similar size and extent as observed in 2016	4
L	Erosion	SE of NW Corner	<1%	Exposed cobbles at top of berm, historically contained ponded water. Similar size and extent as observed in 2016, however no ponded water.	N/A
М	Erosion	SE of NW Corner	<1%	Two minor erosion channels stemming from L, Similar size and extent as observed in 2016	13
N	Erosion	SE of NW Corner	<1%	Erosion channels, Similar size and extent as observed in 2016	13
0	Erosion	NW of SW Corner	<1%	Erosion channels Similar size and extent as observed in 2016	14
Р	Erosion	NW of SW Corner	<1%	Erosion channels, Similar size and extent as observed in 2016	14
Q	Settlement/ Erosion	E of SW Corner	<1%	Exposed cobbles at the top of the berm, minor settlement, and minor erosion, not observed in 2018	5
R	Settlement/ Erosion	E of SW Corner	<1%	Small pothole, not observed in 2018	N/A
S	Erosion	E of SW Corner	<1%	Exposed cobbles, not observed in 2018	N/A
т	Settlement/ Erosion	E of SW Corner	<1%	Small depression/ potholes, not observed in 2018	N/A

SLR Project No.: 209.40585.00000

December 2018

Feature Letter	Feature Type	Location	Extent	Description / Change Comments	Viewpoint #
U	Erosion	SE of NW Corner	<1%	Exposed cobbles at toe of berm, Similar size and extent as observed in 2016	4, 13
٧	Erosion	SE Corner	<1%	Narrow drainage channel at base of berm, not observed in 2018	27
W	Settlement	NE of NHWL	Unkno wn	New in 2018, settlement, ponded water	12

SLR Project No.: 209.40585.00000

December 2018

Staining

No new areas of staining were observed during the 2018 site visit. Additionally, no historical staining features have ever been noted at the FOX-C NHWL.

Seepage Points

Feature D and Feature C have been historically observed as seepage points and have been growing in size and extent since 2011. The two channels begin at the toe of the eastern edge of the NHWL and converge to form a large ditch that runs to the northeast adjacent to MW-East (Photos 8 and 10, **Appendix A**). This was the site of the surface water sample that was collected in 2018 (see **Drawing 2** for surface water sampling location). Future programs should closely monitor this feature for growth and continue to collect surface water samples at this point. No other areas of seepage were observed during the 2018 site visit.

Settlement

Features Q, R, and T have been historically observed as areas of settlement along the southern edge of the NHWL. These features were not identified during the 2018 site visit. Features U and L, located along the western edge of the NHWL were identified as depressions in 2018, however no ponded water was present (Photo 4, **Appendix A**).

Feature H has been historically noted as a large depression where ponded water accumulates. This feature was observed to be present in 2018, however the size and extent of the ponded water accumulation has decreased (Photos 2 and 3, **Appendix A**). The new approximate size and extent of feature H has been noted on **Drawing 2**.

The large rectangular depression noted to be located on the landfill cap in 2016 (see **Drawing 2**, no reference letter), was not observed in 2018. The landfill cap appears to be in excellent condition with no signs of settlement, ponded water, or erosion.

A new area of settlement and ponded water was observed north of the northeast corner of the NHWL (Photo 12, **Appendix A**). Location is noted on **Drawing 2** and is referenced as Feature W.

Erosion

Erosion channels have been historically observed running down the eastern and western side of the Landfill (Features, A, E, F, G, K, M, N, O, and P, see Photos 4, 6, and 9 in **Appendix A**). All of these features were identified in 2018 but appear to be of similar size and extent to that observed previously. Channels along the southwest edge of the NHWL appear to be the largest, approximately 20 cm deep at the toe. There is an accumulation of fine grained sediment along the invert of each of these channels.

SLR Project No.: 209.40585.00000

December 2018

As described above, Features C and D are two large erosion channels that appear to have increased in size and extent since 2011 (Photo 8, **Appendix A**). Features C and D represent a seepage point from the eastern edge of the NHWL that runs adjacent to MW-East to the northeast.

Erosional Feature J was noted to be present along the northwestern edge of the NHWL. The size and extent of Feature J appears to be similar to what was observed during the 2016 monitoring program.

Feature S, a historic erosional feature consisting of exposed cobbles along the southern berm of the NHWL, was not observed in 2018 (Photo 5, **Appendix A**).

Frost Action

No evidence of frost action or cracking on or surrounding the landfill was observed at the time of the 2018 site visit.

Evidence of Burrows

No evidence of animal burrows was identified during the 2018 site visit.

Re-establishment of Vegetation

Re-establishment of vegetation is likely to take a significant amount of time due to the coarse materials used to construct the landfill (i.e. coarse gravel) and due to the fact that the growing season is short in northern regions. Very little vegetation was observed on the NHWL. Vegetation including grasses, lichen, Arctic poppy (*Papaver radicatum*), and Arctic cotton (*Eriophorum callitrix*) growth begins anywhere from 2 – 10 m from the toe of each side of the NHWL (Photo 14, **Appendix A**).

Debris

No exposed debris was observed in the area of the NHWL during the 2018 site visit.

Discussion

All 2018 physical observations indicate that the NHWL is performing as designed and is containing the enclosed waste. The features noted above to not appear to be affecting the physical integrity of the NHWL. Overall, the landfill appears to be in similar condition as noted in previous years. The cap of the landfill is flat, with no indication of settlement or erosion occurring.

SLR 16 CONFIDENTIAL

Soil samples were not collected during the 2018 site visit due to no new areas of staining or other anomalies being observed. A surface water sample was collected from the location where Features C and D (seepage points) converge on the eastern side of the NHWL. While this feature does not currently appear to affect the stability or integrity of the NHWL, it should be closely monitored during future site visits and surface water samples should be continued to be collected.

SLR Project No.: 209.40585.00000

December 2018

It is recommended that monitoring continue as per the schedule set out in the LTM Plan (INAC, 2008).

6.3.2 Natural Environment

Information regarding the natural environment was gathered directly through site observations and through interviews with Esa Qillaq, a resident of Clyde River and the wildlife monitor for this project. Esa Qillaq has lived on Baffin Island, near Clyde River for the duration of his life and is knowledgeable on the history of the region.

No wildlife or wildlife indicators were observed during the site visit with the exception of geese footprints on the west side of the NHWL. Esa indicated that char are located in the lake south of the NHWL. Residents of Clyde River and Qikiqtarjuaq have cabins in nearby fjords that they utilize for hunting and fishing.

Various grasses, lichens, and other plants such as Arctic poppy (*Papaver radicatum*) and Arctic cotton (*Eriophorum callitrix*) were located on the ground surface surrounding the NHWL. No stress to vegetation was observed anywhere on site.

6.3.3 Surrounding Areas

As proposed, a brief visual inspection of the areas surrounding the site was completed during the Year 10 monitoring event. The land directly surrounding the NHWL is mostly devoid of vegetation, with vegetation growth beginning within 10 m of the NHWL toe.

The access road to the east of the NHWL continues to erode as noted during previous monitoring programs. The beach area was observed aerially and appears to be devoid of vegetation. The unnamed lake to the south was ice-free and appeared murky. Esa Qillaq indicated that to his knowledge, the lake has always had high turbidity that does not appear to be the result of former DEW Line activities or remediation.

6.4 Results – Groundwater and Surface Water

6.4.1 General

Three of the five wells contained adequate water, and of those, two were sampled for groundwater analyses (MW North and MW Northwest). A lack of time on site did not allow MW East to be sampled. MW-North and MW-Northwest both had well volumes that allowed for parameter stabilization and low flow sampling. A peristaltic pump was used for both purging and sampling and a Horiba multi-meter was used to monitor in-situ parameters prior to sample collection. However, due to a lack of time at site, neither well fully stabilized prior to sampling. Additionally, a duplicate sample (Duplicate-2) was collected at MW-North and a field blank was collected shortly after. Approximately 3 L of water was purged using a peristaltic pump at both

SLR 17 CONFIDENTIAL

MW-North and MW-Northwest wells prior to sample collection. All bottles were filled at both MW-North and MW-Northwest.

SLR Project No.: 209.40585.00000

December 2018

MW-East, located to the east of the FOX-C NHWL is showed signs of potential frost jacking as the well monument appeared to have risen above the ground surface (Photo 9, **Appendix A**). This may be associated with the erosion occurring to the south and east of MW-East.

During the site visit, the lock on each of the monitoring wells was cut and replaced with a new lock. All five locks at FOX-C match the lock type on the wells at Cape Christian. The keys to all wells at both sites are in possession of CIRNAC personnel.

Table 6-2 below provides a summary of water levels and samples collected from each well and from surface water:

Table 6-3: Well Summary and Sample Details

Sample / Well ID	Start WL*	Well Depth*	Purged Amount	# Bottles Collected	Total Water removed from well	Notes
MW North	1.095 m	1.445 m	3 L	10	9 L	All bottles filled, limited purging time
Duplicate - 2				10		All bottles filled, MW-North
MW Northwest	0.805 m	1.275 m	3 L	10	6 L	All bottles filled, limited purging time
MW South	None	1.325 m		0		No water / frozen
MW Southwest	1.255 m	1.260 m		0		Low water level
MW East	1.385 m	1.790 m		0		Not enough time to sample
SW East				10		Surface water sample collected to east of NHWL, ~4 m from MW East
Field Blank				8		No PCBs collected

^{*} From top of casing

6.4.2 Analytical

All PCB, BTEX, and PHC concentrations were below laboratory detection limits.

Several ULA exceedances for dissolved metals and inorganics were reported in MW-North and its duplicate (Duplicate-2). The acceptable pH range was determined to be 6.2-8.6 from baseline data and MW-North reported a pH of 4.52. The ULAs for cobalt and nickel were determined to be $22 \mu g/L$ and $47.8 \mu g/L$ from baseline data, respectively. 2018 MW-North

results reported cobalt and nickel concentrations of 710 μ g/L and 2600 μ g/L respectively. The method in which the ULA was calculated is described in Section 3.1.1.

SLR Project No.: 209.40585.00000

December 2018

However, baseline data is relatively sparse and thus, it was not possible to calculate ULAs for all parameters analysed in the 2018 monitoring program. As a result, results were also compared to the Federal Interim Groundwater Quality Guidelines, Table 2 Residential/ Parkland Use, Tier 1, Coarse-grained soils.

Several inorganic, total metals, and dissolved metals parameters exceeded criteria set out by the FIGQG. The exceedances are as follows:

Table 6-4: 2018 FIGQG Groundwater Exceedances at FOX-C

Well ID	Parameter	FIGQG Criteria (µg/L)	Concentration (μg/L)
	рН	6.5-9.0	4.52
	Sulphate (mg/L)	100	540
	Total Aluminum	100 ¹	12000
	Dissolved Aluminum	100 ¹	9400
	Total Cadmium	0.017	6.7
	Dissolved Cadmium	0.017	10
	Total Chromium	8.9	11
MW-North	Total Copper	2.8 ²	120
WW-North	Dissolved Copper	2.8 ²	140
	Total Iron	300	2400
	Dissolved Iron	300	5000
	Total Nickel	110 ²	1600
	Dissolved Nickel	110 ²	2600
	Total Zinc	10	1100
	Dissolved Zinc	10	1700
	рН	6.5-9.0	4.46
	Sulphate (mg/L)	100	500
	Total Aluminum	100 ¹	11000
	Dissolved Aluminum	100 ¹	8900
Duplicate-2	Total Cadmium	0.017	6.1
	Dissolved Cadmium	0.017	7.6
	Total Chromium	8.9	12

Well ID		FIGOR O'MAI	
Well ID	Parameter	FIGQG Criteria (μg/L)	Concentration (µg/L)
-	Total Copper	2.8 ²	110
	Dissolved Copper	2.8 ²	110
	Total Iron	300	2300
	Dissolved Iron	300	2800
	Total Nickel	110 ²	1500
	Dissolved Nickel	110 ²	1900
	Total Zinc	10	1000
	Dissolved Zinc	10	1200
MW-Northwest	Total Zinc	10	20
	Dissolved Zinc	10	22

SLR Project No.: 209.40585.00000

December 2018

It was noted that concentrations of some dissolved metals parameters exceeded concentrations of total metals. In water samples where the metals concentrations present in the sample are 100% dissolved, results may report total and dissolved metals having slightly different concentrations due to normal variations in the analytical process. Slightly higher concentrations present in dissolved versus total analyses can occur even though all quality controls are acceptable. Similar to the duplicate process, RPDs were used to calculate if samples fall within normal analytical variability. However, several parameters, including iron and nickel, do not fall within acceptable variability of 40%.

This was noted by the lab during the analytical stage and samples were run twice to confirm this observation. SLR followed up with Maxxam and it was determined that no laboratory contamination occurred resulting in the discrepancy. Notes indicating that the samples were analyzed twice are available in the Certificates of Analysis in **Appendix C**. All 2018 groundwater analytical results are available in **Tables 4 to 8** at the end of this report.

6.4.3 Comparison to Previous Monitoring Programs / Discussion

Analytical data from previous monitoring programs is unavailable – 2018 represents the first year that the wells were neither dry nor frozen. Where available, 2018 results were compared to ULA criteria as determined by the 2006 baseline data. Baseline data is considerably sparse, and as a result, ULAs were not able to be calculated for all metals or inorganics parameters. Additionally, because the available ULA criteria were determined based on samples from three wells, one of which does not exist anymore, they may not accurately represent background conditions of the wells.

Parameters reporting FIGQG exceedances should be closely monitored in future sampling events to understand if there is an increasing contaminant trend at this site. Currently, not

Calculated standard based on CCME Water Quality for the Protection of Aquatic Life guidelines – calculated using water pH as recommended by the FIGQG (2010).

² Calculated standard based on CCME Water Quality for the Protection of Aquatic Life guidelines – calculated using water hardness (CaCO₃) as recommended by the FIGQG (2010).

enough data exists to correlate the FIGQG exceedances with the condition of the NHWL at the site.

SLR Project No.: 209.40585.00000

December 2018

Overall, the NHWL can still be considered to be performing as expected and in "acceptable" condition as defined by the AMSRP guidelines in **Table 3-1.** However, if the same ULA exceedances are reported during the next monitoring event, the landfill may be considered in "marginal condition" with a low risk of failure as defined in **Table 3-1**. Additional sampling events may be required.

As discussed above, concentrations of certain dissolved metals parameters exceed the concentrations of total metals. With laboratory contamination ruled out, it is determined that the water samples collected from these wells may not be representative of true groundwater/active layer conditions at FOX-C Ekalugad Fjord. These wells have remained unpurged since installation in 2006 and while water was purged during the 2018 monitoring event, it was not the recommended three well volumes, and parameter-stabilized flows were not achieved due to lack of time on site. Additionally, the low pH of the samples may have an impact on the solubility of metals in groundwater at this site. This data set must be utilized with caution. More data is required to determine if the values and exceedances noted above represent true site conditions or are the result of stagnant groundwater.

6.5 Results - Soil

6.5.1 General

Historically, soil samples were only collected during construction and remediation activities in 2007 and 2008. The soil analytical results from 2007 and 2008 are available in **Table 2** and **Table 3** at the end of this report.

A review of images from the 2017 report suggest that the NHWL is in comparable shape to previous years and does not show any evidence of present or historic staining.

As a result, no soil samples were collected at FOX-C during the 2018 sampling program.

6.6 Results - Surface water

As discussed in previous sections, a surface water sample was collected where two erosional features, Features C and D, converge. This seepage point runs from the toe of the eastern edge of the NHWL, northeast adjacent to MW-East (**Drawing 2**). No surface water samples have ever been collected at FOX-C and as a result, the 2018 surface water analytical data could not be compared to ULA criteria. Instead, surface water results have been compared to Canadian Water Quality Guidelines for the Protection of Aquatic Life (CWQG-PAL).

All PCB, BTEX, and PHC concentrations were reported below detection limits. Several inorganic, dissolved metal, and total metal parameter concentrations exceeded criteria set out by the CWQG-PAL. The exceedances are as follows:

SLR 21 CONFIDENTIAL

Table 6-5: 2018 Surface Water Exceedances at FOX-C

SLR Project No.: 209.40585.00000

December 2018

Parameter	CWQG-PAL Criteria (µg/L)	Concentration (μg/L)	
рН	6.5 – 9.0	4.69	
Total Aluminum	100 ¹	1700	
Dissolved Aluminum	100 ¹	1700	
Total Cadmium	0.37	0.48	
Dissolved Cadmium	0.37	0.51	
Total Copper	2.8 ²	41	
Dissolved Copper	2.8 ²	43	
Total Nickel	110 ²	160	
Dissolved Nickel	110 ²	160	
Total Zinc	7	65	
Dissolved Zinc	7	62	

Calculated standard based on CCME Water Quality for the Protection of Aquatic Life guidelines – calculated using water pH as recommended by the FIGQG (2010).

As noted above, some dissolved metals concentrations are either equal to or slightly higher than total metals concentrations. However, a water sample where the metals concentrations present in the sample are 100% dissolved, may result in total and dissolved metals having slightly different concentrations due to normal variations in the analytical process. Slightly higher concentrations present in dissolved versus total analyses can occur even though all quality controls are acceptable. Similarly to the duplicate process, RPDs for all total and dissolved metals parameters were calculated and all were found to fall within the acceptable duplicate range of 40%.

As this is the first monitoring program where a surface water sample has been collected, it is difficult to draw conclusions on whether the surface water exceedances noted above are representative of background conditions or if these exceedances represent an issue related to the erosional features or the NHWL itself. The similarity between metals parameters with high concentrations in both groundwater and surface water samples suggests that these results are driven by surface conditions. It is recommended that surface water sampling occur in the same location during future monitoring programs, and that a background surface water sample location be identified and taken. Should concentrations increase, additional sampling measures surrounding the NHWL may be required. All 2018 surface water analytical results are presented in **Tables 4 to 8** at the end of this report.

6.7 QA/QC Results

6.7.1 Duplicate Samples – Relative Percent Difference

One (1) field duplicate sample was collected from MW-North at FOX-C Ekalugad Fjord and was analysed for general parameters, total metals, dissolved metals, BTEX/PHCs, and PCBs. RPD values were calculated where analyte concentrations were greater than five times the reportable detection limit (RDL).

² Calculated standard based on CCME Water Quality for the Protection of Aquatic Life guidelines – calculated using water hardness (CaCO₃) as recommended by the FIGQG (2010).

All results for PCBs and BTEX/PHCs were below the RDL (non-detect) for all parameters, therefore no RPD values were calculated.

SLR Project No.: 209.40585.00000

December 2018

No field duplicate pair exceeded the 40% RPD criterion for individual total metal, dissolved metal, or inorganic parameters or batch averages. As a result, all analyses fall within RPD quality targets.

A complete list of detection limits and RPD values for all parameters are available in Tables 9 to 13 at the end of this report.

6.7.2 Field Blank

One (1) field blank was collected for both the Cape Christian and FOX-C Ekalugad Fjord sites. The field blank was filled on August 12, 2018 at 10:00 am at the FOX-C site using laboratory supplied deionized water. Not enough water was provided to fill the PCB bottles so PCB results are not available.

All field blank results were below the RDL (non-detect) for all parameters with the exception of conductivity, total suspended solids, and total/ dissolved sodium. However, none of these parameters reported concentrations above five times the reportable detection limit and are therefore not considered to be a QAQC concern.

Complete field blank results are available in **Tables 9 to 13** at the end of this report.

7.0 CONCLUSIONS AND RECOMMENDATIONS

Observations made during the 2018 FOX-C Ekalugad Fjord site visit indicate that the NHWL is performing as designed and effectively containing the enclosed waste. Several areas of erosion, ponded water, and seepage were observed on and in the vicinity of the NHWL. However, these features appear to be of similar size, extent, and condition as observed in previous monitoring programs with the exception of erosional Features C and D on the eastern edge of the NHWL. A surface water sample was collected at this seepage point and results were compared to CWQG-PAL criteria. A depression was previously noted on the landfill cap. This feature was not observed in 2018 and the cap appears to be flat and in good condition. No soil samples were collected during the 2018 monitoring event.

Access to site was via helicopter provided by Summit Helicopters. The access road to the NHWL was in overall good condition, with some signs of erosion. The areas immediately surrounding the NHWL are generally void of vegetation with some minor signs of erosion.

In addition to these physical observations, SLR collected groundwater samples from all two monitoring wells that surround the NHWL, MW-North and MW-Northwest. Concentrations of PHCs, BTEX, and PCBs were below RDLs.

Concentrations of several inorganic, total and dissolved metals parameters in each of the wells were greater than the FIGQG and ULA criteria. These exceedances should be closely monitored during the next site visit as the landfill will be considered in "marginal" condition with a "low risk of failure" should ULA criteria be exceeded for two or more successive monitoring seasons as set out by the AMSRP guidelines.

SLR 23 CONFIDENTIAL

Additionally, concentrations of some dissolved metals parameters (e.g. nickel, iron) exceed the concentrations of total metals. It is suspected that the water samples collected from these wells may not be representative of true groundwater/active layer conditions at FOX-C Ekalugad Fjord. More data is required to determine if the values and exceedances noted above represent true site conditions or are the result of stagnant groundwater.

SLR Project No.: 209.40585.00000

December 2018

MW-East to the east of the NHWL showed signs of frost jacking and should be monitored during future monitoring programs as repair may be required. The locks were replaced on all wells and the keys remain in the possession of the CIRNAC representative.

Based on the results of the Year 10 LTM event at FOX-C Ekalugad Fjord, SLR recommends continued monitoring of landfill features noted in above sections, especially the erosional features noted on the east side of the NHWL. Additionally, all parameters with reported FIGQG and ULA exceedances should be continually monitored during future monitoring events to confirm or eliminate the possibility of increasing trends. It is recommended that monitoring continue at an increased frequency compared to what has been set out in the FOX-C LTM Plan. The next monitoring event, Year 15, was to be scheduled in 2023. It is recommended that an additional monitoring event take place in 2020 (Year 12) to expand the groundwater and surface water analytical data set at the site and to gain a better understanding of groundwater chemistry at this site. No further action is recommended at this time.

8.0 LIMITATIONS

This report has been prepared and the work referred to in this report has been undertaken by SLR for Crown-Indigenous Relations and Northern Affairs Canada (CIRNAC) and completed in compliance with Contract Number 4500381248. Under the CIRNAC Standing Offer 4600000874, CIRNAC has the exclusive right to copy and redistribute this report.

This report has been prepared for specific application to this site and site conditions existing at the time work for the report was completed. Any conclusions or recommendations made in this report reflect SLR's professional opinion based on limited investigations including: visual observation of the site, surface and subsurface investigation at discrete locations and depths, and laboratory analysis of specific chemical parameters. The results cannot be extended to previous or future site conditions, portions of the site that were unavailable for direct investigation, subsurface locations which were not investigated directly, or chemical parameters and materials that were not addressed. Substances other than those addressed by the investigation may exist within the site; and substances addressed by the investigation may exist in areas of the site not investigated in concentrations that differ from those reported. SLR does not warranty information from third party sources used in the development of investigations and subsequent reporting.

Nothing in this report is intended to constitute or provide a legal opinion. SLR expresses no warranty to the accuracy of laboratory methodologies and analytical results. SLR makes no representation as to the requirements of compliance with environmental laws, rules, regulations or policies established by federal, provincial or local government bodies. Revisions to the regulatory standards referred to in this report may be expected over time. As a result, modifications to the findings, conclusions and recommendations in this report may be necessary.

CIRNAC may submit this report to the Nunavut Water Board and/or related Nunavut environmental regulatory authorities or persons for review and comment purposes.

SLR 24 CONFIDENTIAL

9.0 REFERENCES

Arcadis Canada Inc., 2017. Long Term Monitoring, 2016, FOX-C, Nunavut, Final Report, February 3, 2017.

SLR Project No.: 209.40585.00000

December 2018

Canadian Council of Ministers of the Environment. 2007. Canadian Soil Quality Guidelines for the Protection of Environmental and Human Health.

Canadian Council of Ministers of the Environment. 2008a. Canada-Wide Standards for Petroleum Hydrocarbons in Soil.

Canadian Council of Ministers of the Environment. 2008b. Canada-Wide Standard for Petroleum Hydrocarbons (PHC) in Soil: Scientific Rationale Supporting Technical Document.

Canadian Council of Ministers of the Environment. 2008c. Canada-Wide Standard for Petroleum Hydrocarbons (PHC) in Soil: User Guidance.

Canadian Council of Ministers of the Environment. 2016. Guidance Manual for Environmental Site Characterization in Support of Human and Health Risk Assessment, Volume I.

Federal Contaminated Sites Action Plan (FCSAP), May 2010. Guidance Document on Federal Interim Groundwater Quality Guidelines for Federal Contaminated Sites. Updated June 2016.

Indigenous and Northern Affairs Canada, February 10, 2009. Cape Christian Long-Term Monitoring Plan.

Indigenous and Northern Affairs Canada. December 2009. *Abandoned Military Site Remediation Protocol*, Contaminated Sites Program.

TABLES

Crown-Indigenous Relations and Northern Affairs Canada Contaminants and Remediation Division

FOX-C Ekalugad Fjord Long Term Monitoring Event Qikiqtaaluk Region, Nunavut SLR Project No.: 209.40585.00000 Table 1 - 2006 Baseline Groundwater Analytical Data

Parameter (ug/L)	MW-A	MW-B now (MW- Northwest)	MW-C now MW- Southeast	Average Concentration	Standard Deviation
Year Installed	2006	2006	2006		
рН	7.8	7.4	7	7.4	0.4
Total Oil and Grease	1.4	1	1.4	1.3	0.2
Benzene	ND	ND	ND		
Toluene	ND	ND	ND		
Ethylbenzene	ND	ND	ND		
Total Xylenes	ND	ND	ND		
F1 (C60 - C10)	ND	ND	ND		
F2 (C10 - C16)	ND	ND	ND		
F3 (C16 - C34)	830	1100	480	803.3	310.9
F4 (C34 - C50)	ND	140	ND	140.0	
Total As	7	6	10	7.7	2.1
Dissolved Cd	ND	ND	0.3	0.3	
Total Cr	63	78	98	79.7	17.6
Dissolved Co	1.1	8	11	6.7	5.1
Dissolved Cu	ND	ND	5	5.0	
Dissolved Pb	ND	ND	ND		
Dissolved Ni	5	25	1	10.3	12.9
Total Zn	370	180	1	183.7	184.5
Total PCB	ND	ND	ND		

Notes:

ug/L - micrograms per litre

ND - Not Detected

< - less than analytical detection limit indicated

---' - not calculated

Table 2 - 2007 - 2008 Baseline Copper and Lead Soil Analytical Data

Sample ID	Year Collected	Copper (mg/kg)	Lead (mg/kg)
FC-459		18	ND
FC-460		13	ND
FC-461		14	ND
FC-462	2007	17	ND
FC-463	2007	22	ND
FC-464		17	ND
FC-465		15	ND
FC-466		15	ND
1178		10.2	ND
1179		10.4	ND
1180		13.7	ND
1181		13.7	ND
1182		7.3	ND
1183	2008	7.9	ND
1184		10.7	ND
1185		8.6	ND
1186		12.1	ND
1187		12	ND
1188		16.1	ND
Average	N/A	13.4	
Concentration	14//	10.1	
Standard Deviation	N/A	3.8	

Notes:

ug/L - micrograms per litre

mg/kg - miligrams per kilogram

ND - Not Detected

< - less than analytical detection limit indicated

---' - not calculated

N/A - Not applicable

Table 3 - Baseline Soil Analytical Data - Remaining Parameters

Parameter						Sample ID)					Average	Standard
(ug/L)	1178	1179	1180	1181	1182	1183	1184	1185	1186	1187	1188	Concentration	Deviation
Depth (cm)	0	30	0	0	30	0	30	0	30	0	30		
Cd	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
Cr	21	ND	28	26	ND	ND	21	ND	24	30	29	25.6	3.7
Co	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
Ni	7.6	5.8	9	9.1	ND	ND	7.5	6.1	7	8.9	8.9	7.8	1.3
Zn	20	18	24	23	ND	ND	19	17	21	25	26	21.4	3.2
As	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
Total PCBs	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
F1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
F2	20	235	28	18	11	ND	18	ND	20	ND	ND	50	81.7
F3	ND	ND	61	ND	ND	112	90	303	36	149	ND	125.2	95.6
F4	ND	ND	ND	ND	ND	ND	73	ND	ND	ND	ND	73	

ug/L - micrograms per litre mg/kg - miligrams per kilogram

ND - Not Detected

< - less than analytical detection limit indicated

---' - not calculated

Table 4 - Summary of 2018 Groundwater and Surface Water Analytical Results - BTEX and Hydrocarbons

Sample ID					ССМЕ	MW North	Duplicate-2	MW Northwest	SW East			
Туре	Units	RDL	Upper Limits of	FIGQG ²	Freshwater	Groundwater	Groundwater	Groundwater	Surface water			
Date	Ullits	KDL	Acceptability 1	FIGQG -	Aquatic life 4	12-Aug-18	12-Aug-18	12-Aug-18	12-Aug-18			
Time					Aquatic ille	9:50:00 AM	9:50:00 AM	11:00:00 AM	11:15:00 AM			
BTEX and F1 Hydrocarbons												
Benzene	μg/L	0.2	NC	690	370	<0.20	<0.20	<0.20	<0.20			
Toluene	μg/L	0.2	NC	83	2	<0.20	< 0.20	<0.20	<0.20			
Ethylbenzene	μg/L	0.2	NC	11000	90	<0.20	<0.20	<0.20	<0.20			
o-Xylene	μg/L	0.2	NC	ns	ns	<0.20	<0.20	<0.20	<0.20			
p+m-Xylene	μg/L	0.4	NC	ns	ns	< 0.40	< 0.40	<0.40	<0.40			
Total Xylenes	μg/L	0.4	NC	18000	ns	<0.40	< 0.40	<0.40	<0.40			
F1 (C6-C10)	μg/L	25	NC	ns	ns	<25	<25	<25	<25			
F1 (C6-C10) - BTEX	μg/L	25	NC	ns	ns	<25	<25	<25	<25			
F2-F4 Hydrocarbons												
F2 (C10-C16 Hydrocarbons)	μg/L	100	NC	1300	ns	<100	<100	<100	<100			
F3 (C16-C34 Hydrocarbons)	μg/L	200	1736	ns	ns	<200	<200	<200	<200			
F4 (C34-C50 Hydrocarbons)	μg/L	200	NC	ns	ns	<200	<200	<200	<200			

μg/L - micrograms per Litre

< - less than analytical detection limit indicated

'---' - sample not analyzed for parameter indicated

ns - no standard listed

NC - Not calculated

RDL - Reporting Detection Limit

- 1 Upper Limit of Acceptability is determined as described in Report Section 3.1.1. Upper limits of acceptability are calculated using mean of baseline data (2006) +3 standard deviations.
- 2 Federal Interim Groundwater Quality Guidelines, Table 2 Residential/Parkland Use, Tier 1, Coarse Grained Soils
- 3 Calculated standard based on CCME Water Quality for the Protection of Aquatic Life guidelines calculated using water hardness (CaCO3) or pH (aluminum only)
- 4 Canadian Water Quality Guidelines for the Protection of Aquatic Life

Bold & Red
Bold & Red and Outlined
Red & White
Highlighted

FIGQG Exceedence

ULA Exceedance. Note - ULA criteria were not applied to surface water samples

CCME Exceedance

DL > Criteria

Table 5 - Summary of 2018 Groundwater and Surface Water Analytical Results - Total Metals

Sample ID			Hanna Lindta		20115	MW North	Duplicate-2	MW Northwest	SW East
Type	1		Upper Limits	F10000	CCME	Groundwater	Groundwater	Groundwater	Surface water
Date	Units	RDL	of	FIGQG ²	Freshwater	12-Aug-18	12-Aug-18	12-Aug-18	12-Aug-18
Time			Acceptability 1		Aquatic life 4	9:50:00 AM	9:50:00 AM	11:00:00 AM	11:15:00 AM
Total Aluminum (Al)	μg/L	5	NC	100 ³	100 ³	12000	11000	83	1700
Total Antimony (Sb)	μg/L	0.5	NC	2000	ns	< 0.50	< 0.50	<0.50	< 0.50
Total Arsenic (As)	μg/L	1	13.9	5	5	<1.0	<1.0	<1.0	<1.0
Total Barium (Ba)	μg/L	2	NC	500	ns	16	15	5.6	8.8
Total Beryllium (Be)	μg/L	0.5	NC	5.3	ns	3	2.7	<0.50	0.9
Total Bismuth (Bi)	μg/L	1	NC	ns	ns	<1.0	<1.0	<1.0	<1.0
Total Boron (B)	μg/L	10	NC	5000	1500	15	14	<10	43
Total Cadmium (Cd)	μg/L	0.1	NC	0.017	0.37	6.7	6.1	<0.10	0.48
Total Calcium (Ca)	μg/L	200	NC	ns	ns	120000	110000	3300	27000
Total Chromium (Cr)	μg/L	5	132.5	8.9	8.9	11	12	<5.0	<5.0
Total Cobalt (Co)	μg/L	0.5	NC	ns	ns	420	380	6.1	49
Total Copper (Cu)	μg/L	1	NC	2.8 ³	2.8 ³	120	110	2.2	41
Total Iron (Fe)	μg/L	100	NC	300	300	2400	2300	<100	<100
Total Lead (Pb)	μg/L	0.5	NC	4 ³	4 ³	1.6	1.6	<0.50	< 0.50
Total Lithium (Li)	μg/L	5	NC	ns	ns	46	44	<5.0	7.9
Total Magnesium (Mg)	μg/L	50	NC	ns	ns	18000	17000	1500	7500
Total Manganese (Mn)	μg/L	2	NC	ns	ns	1100	1100	25	610
Total Molybdenum (Mo)	μg/L	0.5	NC	73	73	< 0.50	0.55	<0.50	< 0.50
Total Nickel (Ni)	μg/L	1	NC	110 ³	110 ³	1600	1500	23	160
Total Potassium (K)	μg/L	200	NC	ns	ns	16000	15000	1300	4800
Total Selenium (Se)	μg/L	2	NC	1	1	<2.0	<2.0	<2.0	<2.0
Total Silicon (Si)	μg/L	50	NC	ns	ns	14000	13000	3000	9200
Total Silver (Ag)	μg/L	0.1	NC	0.1	0.25	<0.10	<0.10	<0.10	<0.10
Total Sodium (Na)	μg/L	100	NC	ns	ns	17000	17000	17000	11000
Total Strontium (Sr)	μg/L	1	NC	ns	ns	330	310	20	64
Total Tellurium (Te)	μg/L	1	NC	ns	ns	<1.0	<1.0	<1.0	<1.0
Total Thallium (TI)	μg/L	0.05	NC	0.8	0.8	0.21	0.2	< 0.050	0.061
Total Tin (Sn)	μg/L	1	NC	ns	ns	<1.0	<1.0	<1.0	<1.0
Total Titanium (Ti)	μg/L	5	NC	100	ns	16	19	<5.0	5.9
Total Tungsten (W)	μg/L	1	NC	ns	ns	<1.0	<1.0	<1.0	<1.0
Total Uranium (U)	μg/L	0.1	NC	15	15	5.4	5.1	0.15	0.69
Total Vanadium (V)	μg/L	0.5	NC	ns	ns	0.75	0.82	<0.50	<0.50
Total Zinc (Zn)	μg/L	5	797.1	10	7	1100	1000	20	65
Total Zirconium (Zr)	μg/L	1	NC	ns	ns	<1.0	<1.0	<1.0	<1.0

μg/g - micrograms per gram

< - less than analytical detection limit indicated

'---' - sample not analyzed for parameter indicated

ns - no standard listed

NC - Not calculated

RDL - Reporting Detection Limit

- 1 Upper Limit of Acceptability is determined as described in Report Section 3.1.1. Upper limits of acceptability are calculated using mean of baseline data (2006) +3 standard deviations.
- 2 Federal Interim Groundwater Quality Guidelines, Table 2 Residential/Parkland Use, Tier 1, Coarse Grained Soils
- 3 Calculated standard based on CCME Water Quality for the Protection of Aquatic Life guidelines calculated using water hardness (CaCO3) or pH (aluminum only)
- 4 Canadian Water Quality Guidelines for the Protection of Aquatic Life

Bold & Red FIGQG Exceedence

Bold & Red and Outlined ULA Exceedance. Note - ULA criteria were not applied to surface water samples

Red & White CCME Exceedance

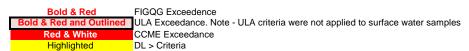
DL > Criteria

Highlighted

SLR Consulting (Canada) Ltd.

Table 6 - Summary of 2018 Groundwater and Surface Water Analytical Results - Dissolved Metals

Sample ID						MW North	Duplicate-2	MW Northwest	SW East
Type			Upper Limits of		CCME	Groundwater	Groundwater	Groundwater	Surface water
Date	Units	RDL	Acceptability 1	FIGQG ²	Freshwater	12-Aug-18	12-Aug-18	12-Aug-18	12-Aug-18
Time			. ,		Aquatic life 4	9:50:00 AM	9:50:00 AM	11:00:00 AM	11:15:00 AM
Dissolved Aluminum (AI)	μg/L	5	NC	100 ³	100 ³	9400	8900	N/A	1700
Dissolved Antimony (Sb)	μg/L	0.5	NC	2000	ns	< 0.50	< 0.50	<0.50	< 0.50
Dissolved Arsenic (As)	μg/L	1	NC	5	5	<1.0	<1.0	<1.0	<1.0
Dissolved Barium (Ba)	μg/L	2	NC	500	ns	20	17	13	10
Dissolved Beryllium (Be)	μg/L	0.5	NC	5.3	ns	3.2	2.5	<0.50	0.9
Dissolved Bismuth (Bi)	μg/L	1	NC	ns	ns	<1.0	<1.0	N/A	<1.0
Dissolved Boron (B)	μg/L	10	NC	5000	1500	20	14	<10	38
Dissolved Cadmium (Cd)	μg/L	0.1	NC	0.017	0.37	10	7.6	<0.10	0.51
Dissolved Calcium (Ca)	μg/L	200	NC	ns	ns	190000	140000	4900	27000
Dissolved Chromium (Cr)	μg/L	5	NC	8.9	8.9	<5.0	<5.0	<5.0	<5.0
Dissolved Cobalt (Co)	μg/L	0.5	22	ns	ns	710	480	10	49
Dissolved Copper (Cu)	μg/L	1	NC	2.8 ³	2.8 ³	140	110	2.2	43
Dissolved Iron (Fe)	μg/L	100	NC	300	300	5000	2800	N/A	<100
Dissolved Lead (Pb)	μq/L	0.5	NC	4 ³	4 ³	1.3	1.7	1.6	< 0.50
Dissolved Lithium (Li)	μg/L	5	NC	ns	ns	80	53	N/A	8
Dissolved Magnesium (Mg)	μg/L	50	NC	ns	ns	28000	21000	2100	7600
Dissolved Manganese (Mn)	μg/L	2	NC	ns	ns	1900	1300	N/A	620
Dissolved Molybdenum (Mo)	μg/L	0.5	NC	73	73	< 0.50	< 0.50	< 0.50	< 0.50
Dissolved Nickel (Ni)	μg/L	1	47.8	110 ³	110 ³	2600	1900	35	160
Dissolved Potassium (K)	μg/L	200	NC	ns	ns	22000	17000	1400	4900
Dissolved Selenium (Se)	μg/L	2	NC	1	1	<2.0	<2.0	<2.0	<2.0
Dissolved Silicon (Si)	μg/L	50	NC	ns	ns	14000	14000	N/A	9100
Dissolved Silver (Ag)	μg/L	0.1	NC	0.1	0.25	<0.10	<0.10	<0.10	<0.10
Dissolved Sodium (Na)	μg/L	100	NC	ns	ns	18000	17000	12000	11000
Dissolved Strontium (Sr)	μg/L	1	NC	ns	ns	470	370	25	61
Dissolved Tellurium (Te)	μg/L	1	NC	ns	ns	<1.0	<1.0	N/A	<1.0
Dissolved Thallium (TI)	μg/L	0.05	NC	0.8	0.8	0.22	0.21	< 0.050	0.05
Dissolved Tin (Sn)	μg/L	1	NC	ns	ns	<1.0	<1.0	N/A	<1.0
Dissolved Titanium (Ti)	μg/L	5	NC	100	ns	<5.0	<5.0	N/A	<5.0
Dissolved Tungsten (W)	μg/L	1	NC	ns	ns	<1.0	<1.0	N/A	<1.0
Dissolved Uranium (U)	μg/L	0.1	NC	15	15	9.2	5.4	0.65	0.72
Dissolved Vanadium (V)	μg/L	0.5	NC	ns	ns	< 0.50	<0.50	< 0.50	<0.50
Dissolved Zinc (Zn)	μg/L	5	NC	10	7	1700	1200	22	62
Dissolved Zirconium (Zr)	μg/L	1	NC	ns	ns	<1.0	<1.0	N/A	<1.0


μg/L - micrograms per Litre

- < less than analytical detection limit indicated
- '---' sample not analyzed for parameter indicated
- ns no standard listed

NC - Not calculated

RDL - Reporting Detection Limit

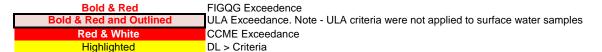
- 1 Upper Limit of Acceptability is determined as described in Report Section 3.1.1. Upper limits of acceptability are calculated using mean of baseline data (2006) +3 standard deviations.
- 2 Federal Interim Groundwater Quality Guidelines, Table 2 Residential/Parkland Use, Tier 1, Coarse Grained Soils
- 3 Calculated standard based on CCME Water Quality for the Protection of Aquatic Life guidelines calculated using water hardness (CaCO3) or pH (aluminum only)
- 4 Canadian Water Quality Guidelines for the Protection of Aquatic Life

Table 7 - Summary of 2018 Groundwa	ter and Su	rface Wa	ter Analytical Res	ults - Inorgar	nics and Other	Parameters			
Sample ID					CCME	MW North	Duplicate-2	MW Northwest	SW East
Type	Units	RDL	Upper Limits of Acceptability ¹	FIGQG ²		Groundwater	Groundwater	Groundwater	Surface water
Date	Ullits	KDL			Freshwater Aquatic life 4	12-Aug-18	12-Aug-18	12-Aug-18	12-Aug-18
Time					Aquatic ine	9:50:00 AM	9:50:00 AM	11:00:00 AM	11:15:00 AM
Bicarb. Alkalinity (calc. as CaCO3)	mg/L	1	NC	ns	ns	<1.0	<1.0	17	<1.0
Carb. Alkalinity (calc. as CaCO3)	mg/L	1	NC	ns	ns	<1.0	<1.0	<1.0	<1.0
Hardness (CaCO3)	mg/L	1	NC	ns	ns	590	430	21	99
Conductivity	mS/cm	0.001	NC	ns	ns	1.07	1.01	0.098	0.319
рН	рН	N/A	6.2-8.6	6.5 - 9.0	6.5 - 9.0	4.52	4.46	6.94	4.69
Dissolved Sulphate (SO4)	mg/L	1	NC	100	ns	540	500	19	130
Alkalinity (Total as CaCO3)	mg/L	1	NC	ns	ns	<1.0	<1.0	17	<1.0
Dissolved Chloride (CI-)	mg/L	1	NC	120	120	6.6	6.1	2.4	5.4
Total Dissolved Solids	mg/L	10	NC	ns	ns	775	785	75	205
Total Suspended Solids	ma/L	10	NC	ns	ns	<10	10	34	12

mS/cm - microsiemens per centimetre

mg/L - miligrams per litre

ns - no standard listed


< - less than analytical detection limit indicated

'---' - sample not analyzed for parameter indicated

NC - Not calculated

RDL - Reporting Detection Limit

- 1 Upper Limit of Acceptability is determined as described in Report Section 3.1.1. Upper limits of acceptability are calculated using mean of baseline data (2006) +3 standard deviations.
- 2 Federal Interim Groundwater Quality Guidelines, Table 2 Residential/Parkland Use, Tier 1, Coarse Grained Soils
- 3 Calculated standard based on CCME Water Quality for the Protection of Aquatic Life guidelines calculated using water hardness (CaCO3) or pH (aluminum only)
- 4 Canadian Water Quality Guidelines for the Protection of Aquatic Life

SLR Project #: 209.40585.00000

December 2018

Table 8 - Summary of 2018 Groundwater and Surface Water Analytical Results - PCBs

Sample ID					ССМЕ	MW North	Duplicate-2	MW Northwest	SW East
Туре	Units	BDI	Upper Limits of	FIGQG ²	Freshwater	Groundwater	Groundwater	Groundwater	Surface water
Date	Ullits	KUL	Acceptability 1	Aquatic		12-Aug-18	12-Aug-18	12-Aug-18	12-Aug-18
Time					Aquatic ille	9:50:00 AM	9:50:00 AM	11:00:00 AM	11:15:00 AM
Aroclor 1242	μg/L	0.05	NC	ns	ns	<0.05	< 0.05	< 0.05	< 0.05
Aroclor 1248	μg/L	0.05	NC	ns	ns	< 0.05	< 0.05	< 0.05	< 0.05
Aroclor 1254	μg/L	0.05	NC	ns	ns	< 0.05	< 0.05	< 0.05	< 0.05
Aroclor 1260	μg/L	0.05	NC	ns	ns	< 0.05	< 0.05	< 0.05	< 0.05
Total PCB	μg/L	0.05	NC	ns	ns	< 0.05	< 0.05	< 0.05	< 0.05

Notes:

μg/L - micrograms per litre

- < less than analytical detection limit indicated
- '---' sample not analyzed for parameter indicated
- ns no standard listed
- NC Not calculated. When there are only non-detect values, no standard deviation was calculated
- **RDL** Reporting Detection Limit
- 1 Upper Limit of Acceptability is determined as described in Report Section 3.1.1. Upper limits of acceptability are calculated using mean of baseline data (2006) +3 standard deviations.
- 2 Federal Interim Groundwater Quality Guidelines, Table 2 Residential/Parkland Use, Tier 1, Coarse Grained Soils
- 3 Calculated standard based on CCME Water Quality for the Protection of Aquatic Life guidelines calculated using water hardness (CaCO3) or pH (aluminum only)
- 4 Canadian Water Quality Guidelines for the Protection of Aquatic Life

Bold & Red	FIGQG Exceedence
Bold & Red and Outlined	ULA Exceedance. Note - ULA criteria were not applied to surface water samples
Red & White	CCME Exceedance
Highlighted	DL > Criteria

Table 9 - Summary of 2018 QAQC Results - BTEX and Hydrocarbons

Sample ID				MW North	Duplicate-2		Field Blank
Туре	Units	RDL	5x RDL	Groundwater	Groundwater	RPD	Groundwater
Date	Ullits	KDL	3X NDL	12-Aug-18	12-Aug-18	KFD	12-Aug-18
Time				9:50:00 AM	9:50:00 AM		10:00:00 AM
Benzene	μg/L	0.2	1	<0.20	<0.20	N/A	<0.20
Toluene	μg/L	0.2	1	<0.20	<0.20	N/A	<0.20
Ethylbenzene	μg/L	0.2	1	<0.20	<0.20	N/A	<0.20
o-Xylene	μg/L	0.2	1	<0.20	<0.20	N/A	<0.20
p+m-Xylene	μg/L	0.4	2	< 0.40	< 0.40	N/A	<0.40
Total Xylenes	μg/L	0.4	2	< 0.40	< 0.40	N/A	<0.40
F1 (C6-C10)	μg/L	25	125	<25	<25	N/A	<25
F1 (C6-C10) - BTEX	μg/L	25	125	<25	<25	N/A	<25
F2 (C10-C16 Hydrocarbons)	μg/L	100	500	<100	<100	N/A	<100
F3 (C16-C34 Hydrocarbons)	μg/L	200	1000	<200	<200	N/A	<200
F4 (C34-C50 Hydrocarbons)	μg/L	200	1000	<200	<200	N/A	<200
					Batch Average	N/A	

RPD = abs (X1 - X2)/((X1 + X2)/2) * 100

X1 = Sample Parameter Value

X2 = Duplicate Parameter Value

μg/L - micrograms per Litre

< - less than analytical detection limit indicated

'---' - sample not analyzed for parameter indicated

RDL - Reporting Detection Limit

N/A - Not Applicable

Table 10 - Summary of 2018 QAQC Results - Total Metals

Sample ID				MW North	Duplicate-2		Field Blank
Туре	1			Groundwater	Groundwater		Groundwater
Date	Units	RDL	5x RDL	12-Aug-18	12-Aug-18	RPD	12-Aug-18
Time				9:50:00 AM	9:50:00 AM		10:00:00 AM
Total Aluminum (AI)	μg/L	5	25	12000	11000	2.2	<5.0
Total Antimony (Sb)	μg/L	0.5	2.5	<0.50	<0.50	N/A	<0.50
Total Arsenic (As)	μg/L	1	5	<1.0	<1.0	N/A	<1.0
Total Barium (Ba)	μg/L	2	10	16	15	1.6	<2.0
Total Beryllium (Be)	μg/L	0.5	2.5	3	2.7	2.6	<0.50
Total Bismuth (Bi)	μg/L	1	5	<1.0	<1.0	N/A	<1.0
Total Boron (B)	μg/L	10	50	15	14	1.7	<10
Total Cadmium (Cd)	μg/L	0.1	0.5	6.7	6.1	2.3	<0.10
Total Calcium (Ca)	μg/L	200	1000	120000	110000	2.2	<200
Total Chromium (Cr)	μg/L	5	25	11	12	2.2	<5.0
Total Cobalt (Co)	μg/L	0.5	2.5	420	380	2.5	<0.50
Total Copper (Cu)	μg/L	1	5	120	110	2.2	<1.0
Total Iron (Fe)	μg/L	100	500	2400	2300	1.1	<100
Total Lead (Pb)	μg/L	0.5	2.5	1.6	1.6	0.0	<0.50
Total Lithium (Li)	μg/L	5	25	46	44	1.1	<5.0
Total Magnesium (Mg)	μg/L	50	250	18000	17000	1.4	<50
Total Manganese (Mn)	μg/L	2	10	1100	1100	0.0	<2.0
Total Molybdenum (Mo)	μg/L	0.5	2.5	<0.50	0.55	N/A	<0.50
Total Nickel (Ni)	μg/L	1	5	1600	1500	1.6	<1.0
Total Potassium (K)	μg/L	200	1000	16000	15000	1.6	<200
Total Selenium (Se)	μg/L	2	10	<2.0	<2.0	N/A	<2.0
Total Silicon (Si)	μg/L	50	250	14000	13000	1.9	<50
Total Silver (Ag)	μg/L	0.1	0.5	<0.10	<0.10	N/A	<0.10
Total Sodium (Na)	μg/L	100	500	17000	17000	0.0	210
Total Strontium (Sr)	μg/L	1	5	330	310	1.6	<1.0
Total Tellurium (Te)	μg/L	1	5	<1.0	<1.0	N/A	<1.0
Total Thallium (TI)	μg/L	0.05	0.25	0.21	0.2	1.2	<0.050
Total Tin (Sn)	μg/L	1	5	<1.0	<1.0	N/A	<1.0
Total Titanium (Ti)	μg/L	5	25	16	19	4.3	<5.0
Total Tungsten (W)	μg/L	1	5	<1.0	<1.0	N/A	<1.0
Total Uranium (U)	μg/L	0.1	0.5	5.4	5.1	1.4	<0.10
Total Vanadium (V)	μg/L	0.5	2.5	0.75	0.82	2.2	<0.50
Total Zinc (Zn)	μg/L	5	25	1100	1000	2.4	<5.0
Total Zirconium (Zr)	μg/L	1	5	<1.0	<1.0	N/A	<1.0
					Batch Average	1.7	

RPD = abs (X1 - X2)/((X1 + X2)/2) * 100

X1 = Sample Parameter Value

X2 = Duplicate Parameter Value

μg/L - micrograms per Litre

< - less than analytical detection limit indicated

'---' - sample not analyzed for parameter indicated

RDL - Reporting Detection Limit

N/A - Not Applicable

Table 11 - Summary of 2018 QAQC Results - Dissolved Metals

Sample ID				MW North	Duplicate-2		Field Blank
Type	11.24	201	5 001	Groundwater	Groundwater	222	DI Water
Date	Units	RDL	5x RDL	12-Aug-18	12-Aug-18	RPD	12-Aug-18
Time				9:50:00 AM	9:50:00 AM		10:00:00 AM
Dissolved Aluminum (AI)	ug/L	5	25	9400	8900	1.4	<5.0
Dissolved Antimony (Sb)	ug/L	0.5	2.5	<0.50	< 0.50	N/A	< 0.50
Dissolved Arsenic (As)	ug/L	1	5	<1.0	<1.0	N/A	<1.0
Dissolved Barium (Ba)	ug/L	2	10	20	17	4.1	<2.0
Dissolved Beryllium (Be)	ug/L	0.5	2.5	3.2	2.5	6.1	<0.50
Dissolved Bismuth (Bi)	ug/L	1	5	<1.0	<1.0	N/A	<1.0
Dissolved Boron (B)	ug/L	10	50	20	14	8.8	<10
Dissolved Cadmium (Cd)	ug/L	0.1	0.5	10	7.6	6.8	<0.10
Dissolved Calcium (Ca)	ug/L	200	1000	190000	140000	7.6	<200
Dissolved Chromium (Cr)	ug/L	5	25	<5.0	<5.0	N/A	<5.0
Dissolved Cobalt (Co)	ug/L	0.5	2.5	710	480	9.7	< 0.50
Dissolved Copper (Cu)	ug/L	1	5	140	110	6.0	<1.0
Dissolved Iron (Fe)	ug/L	100	500	5000	2800	14.1	<100
Dissolved Lead (Pb)	ug/L	0.5	2.5	1.3	1.7	6.7	< 0.50
Dissolved Lithium (Li)	ug/L	5	25	80	53	10.2	<5.0
Dissolved Magnesium (Mg)	ug/L	50	250	28000	21000	7.1	<50
Dissolved Manganese (Mn)	ug/L	2	10	1900	1300	9.4	<2.0
Dissolved Molybdenum (Mo)	ug/L	0.5	2.5	< 0.50	< 0.50	N/A	< 0.50
Dissolved Nickel (Ni)	ug/L	1	5	2600	1900	7.8	<1.0
Dissolved Potassium (K)	ug/L	200	1000	22000	17000	6.4	<200
Dissolved Selenium (Se)	ug/L	2	10	<2.0	<2.0	N/A	<2.0
Dissolved Silicon (Si)	ug/L	50	250	14000	14000	0.0	<50
Dissolved Silver (Ag)	ug/L	0.1	0.5	<0.10	<0.10	N/A	<0.10
Dissolved Sodium (Na)	ug/L	100	500	18000	17000	1.4	200
Dissolved Strontium (Sr)	ug/L	1	5	470	370	6.0	<1.0
Dissolved Tellurium (Te)	ug/L	1	5	<1.0	<1.0	N/A	<1.0
Dissolved Thallium (TI)	ug/L	0.05	0.25	0.22	0.21	1.2	< 0.050
Dissolved Tin (Sn)	ug/L	1	5	<1.0	<1.0	N/A	<1.0
Dissolved Titanium (Ti)	ug/L	5	25	<5.0	<5.0	N/A	<5.0
Dissolved Tungsten (W)	ug/L	1	5	<1.0	<1.0	N/A	<1.0
Dissolved Uranium (U)	ug/L	0.1	0.5	9.2	5.4	13.0	<0.10
Dissolved Vanadium (V)	ug/L	0.5	2.5	<0.50	< 0.50	N/A	<0.50
Dissolved Zinc (Zn)	ug/L	5	25	1700	1200	8.6	<5.0
Dissolved Zirconium (Zr)	ug/L	1	5	<1.0	<1.0	N/A	<1.0
					Batch Average	6.8	

RPD = abs (X1 - X2)/((X1 + X2)/2) * 100

X1 = Sample Parameter Value X2 = Duplicate Parameter Value

μg/L - micrograms per Litre

< - less than analytical detection limit indicated

'---' - sample not analyzed for parameter indicated

RDL - Reporting Detection Limit

N/A - Not Applicable

Table 12 - Summary of 2018 QAQC Results - Inorganics and Other Parameters

Sample ID Type Date Time	- Units	RDL	5x RDL	MW North Groundwater 12-Aug-18 9:50:00 AM	Duplicate-2 Groundwater 12-Aug-18 9:50:00 AM	RPD	Field Blank Groundwater 12-Aug-18 10:00:00 AM
Bicarb. Alkalinity (calc. as CaCO3)	mg/L	1	5	<1.0	<1.0	N/A	<1.0
Carb. Alkalinity (calc. as CaCO3)	mg/L	1	5	<1.0	<1.0	N/A	<1.0
Hardness (CaCO3)	mg/L	1	5	590	430	7.8	<1.0
Conductivity	mS/cm	0.001	0.005	1.07	1.01	1.4	0.001
рН	рН	N/A	N/A	4.52	4.46	0.3	5.97
Dissolved Sulphate (SO4)	mg/L	1	5	540	500	1.9	<1.0
Alkalinity (Total as CaCO3)	mg/L	1	5	<1.0	<1.0	N/A	<1.0
Dissolved Chloride (CI-)	mg/L	1	5	6.6	6.1	2.0	<1.0
Total Dissolved Solids	mg/L	10	50	775	785	0.3	25
Total Suspended Solids	mg/L	10	50	<10	10	N/A	<10
					Batch Average	2.3	

Notes:

RPD = abs (X1 - X2)/((X1 + X2)/2) * 100

X1 = Sample Parameter Value

X2 = Duplicate Parameter Value

μg/L - micrograms per Litre

< - less than analytical detection limit indicated

'---' - sample not analyzed for parameter indicated

RDL - Reporting Detection Limit

N/A - Not Applicable

Table 13 Summary of 2018 QAQC Results - PCBs

Sample ID				MW North	Duplicate-2		Field Blank
Type	Units	DDI.	5x	Groundwater	Groundwater	RPD	Groundwater
Date	Ullits	KDL	RDL	12-Aug-18	12-Aug-18	KPD	12-Aug-18
Time				9:50:00 AM	9:50:00 AM		10:00:00 AM
Aroclor 1242	ug/L	0.05	0.25	< 0.05	< 0.05	N/A	
Aroclor 1248	ug/L	0.05	0.25	< 0.05	< 0.05	N/A	
Aroclor 1254	ug/L	0.05	0.25	< 0.05	< 0.05	N/A	
Aroclor 1260	ug/L	0.05	0.25	< 0.05	< 0.05	N/A	
Total PCB	ug/L	0.05	0.25	< 0.05	< 0.05	N/A	
					Batch Average	N/A	

Notes:

RPD = abs (X1 - X2)/((X1 + X2)/2) * 100

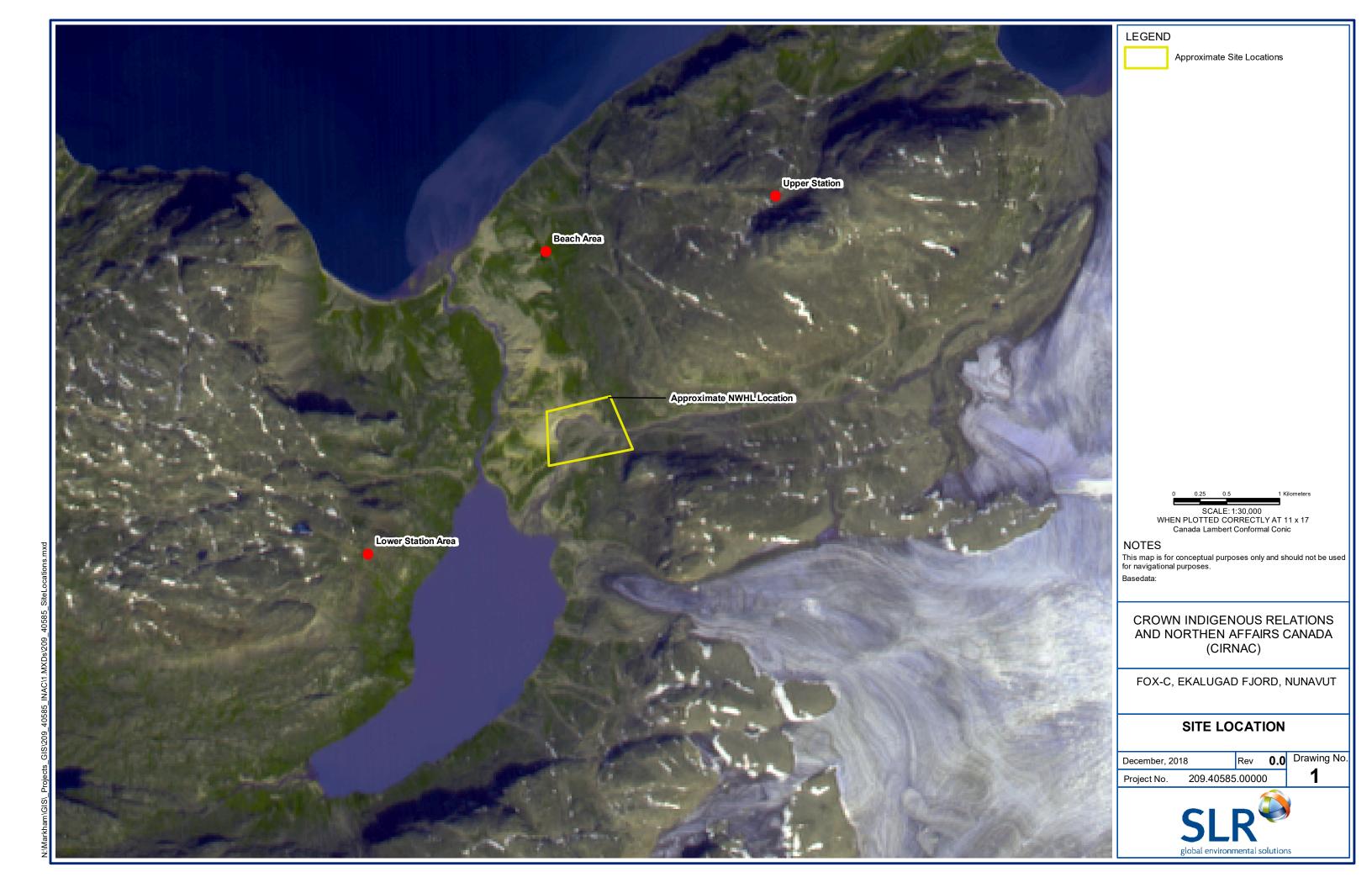
X1 = Sample Parameter Value

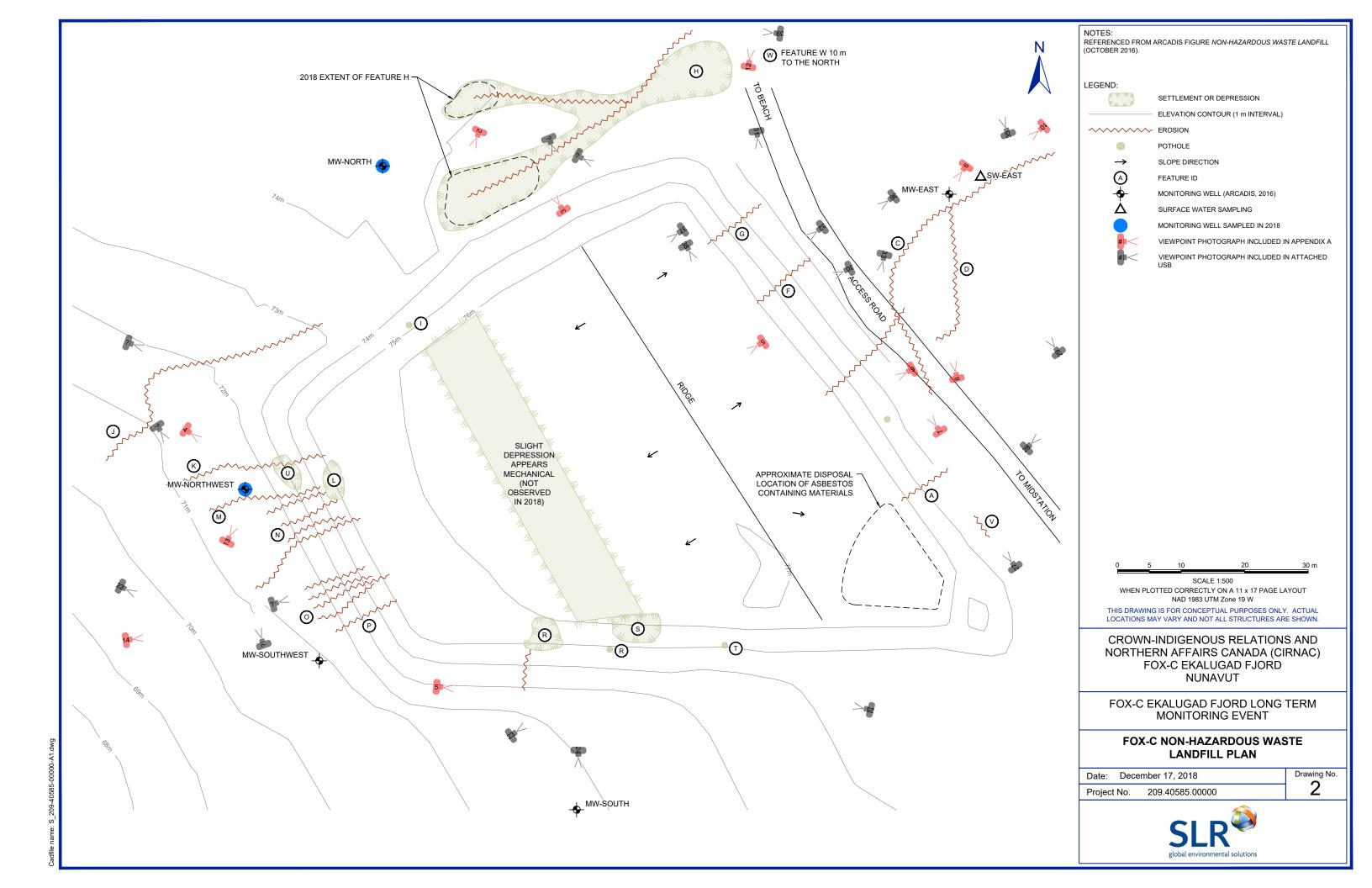
X2 = Duplicate Parameter Value

μg/L - micrograms per Litre

< - less than analytical detection limit indicated

'---' - sample not analyzed for parameter indicated

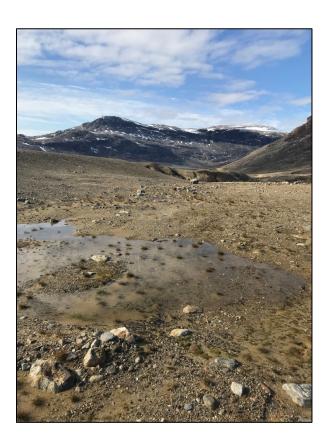

RDL - Reporting Detection Limit


N/A - Not Applicable

DRAWINGS

Crown-Indigenous Relations and Northern Affairs Canada Contaminants and Remediation Division

FOX-C Ekalugad Fjord Long Term Monitoring Event Qikiqtaaluk Region, Nunavut SLR Project No.: 209.40585.00000


APPENDIX ASite Photographs

Crown-Indigenous Relations and Northern Affairs Canada Contaminants and Remediation Division

FOX-C Ekalugad Fjord Long Term Monitoring Event Qikiqtaaluk Region, Nunavut SLR Project No.: 209.40585.00000

Photograph 1. FOX-C Ekalugad Fjord NHWL, Facing Northeast.

Photograph 2. Historic Feature H – Ponding observed to a lesser extent in 2018. Facing southwest

2018 Long Term Monitoring Report FOX-C Ekalugad Fjord, Nunavut, August 12, 2018

Photograph 3. Sampling at MW-North, Historic Feature H – Ponding observed to a lesser extent in 2018. Facing northwest

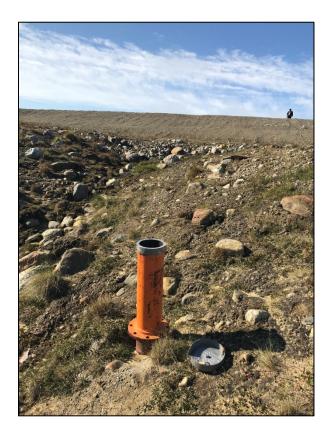
Photograph 4. Runnelling along western edge of NHWL, facing southeast. MW-Northwest in view.

2018 Long Term Monitoring Report FOX-C Ekalugad Fjord, Nunavut, August 12, 2018

Photograph 5. Southern edge of NHWL, facing east. Light runneling along slope.

Photograph 6. Erosion along eastern edge of NHWL. Noted during previous monitoring programs. Similar extent. Facing West.

2018 Long Term Monitoring Report FOX-C Ekalugad Fjord, Nunavut, August 12, 2018


Photograph 7. Ponded water at base of eastern slope of NHWL. Facing north

Photograph 8. Channelized water flowing from NHWL downslope to the east. MW-East in view. Facing northeast

2018 Long Term Monitoring Report FOX-C Ekalugad Fjord, Nunavut, August 12, 2018

Photograph 9. MW-East showing signs of jacking. Facing west.

Photograph 10. Location of surface water sampling, east of MW-East. Facing West.

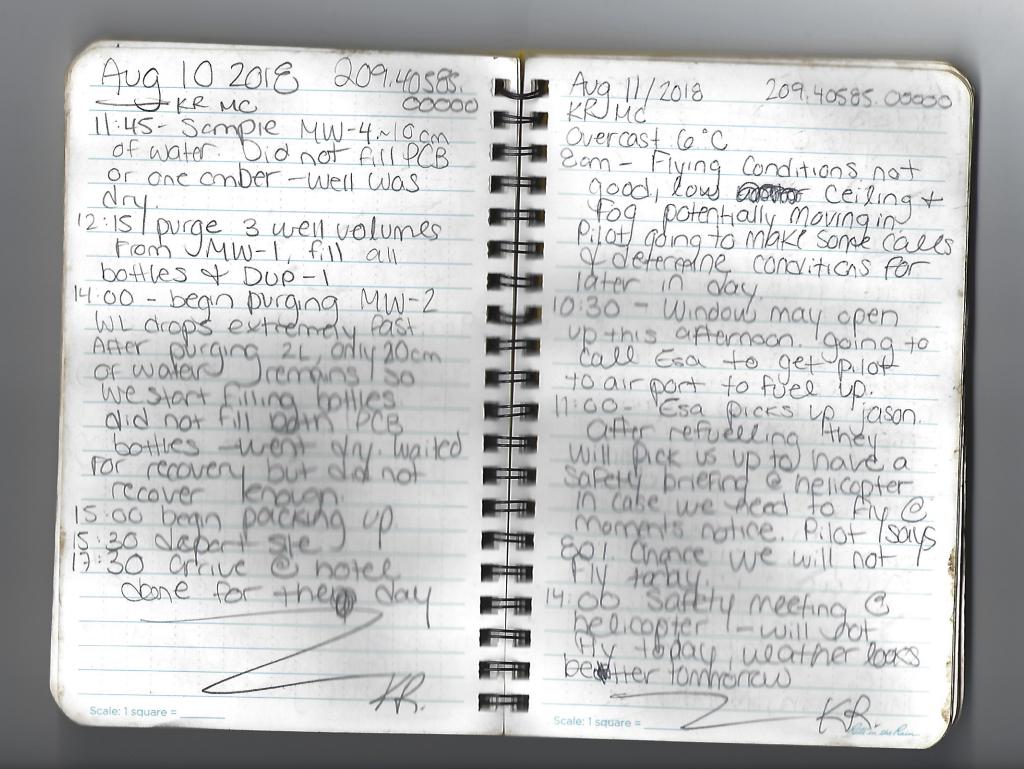
Photograph 11. Top of NHWL, facing west. Cap appears to be very flat with no obvious signs of settlement or depression. No ponded water present.

Photograph 12. New area of ponding observed to the north of the northeast corner of the NHWL. Facing north.

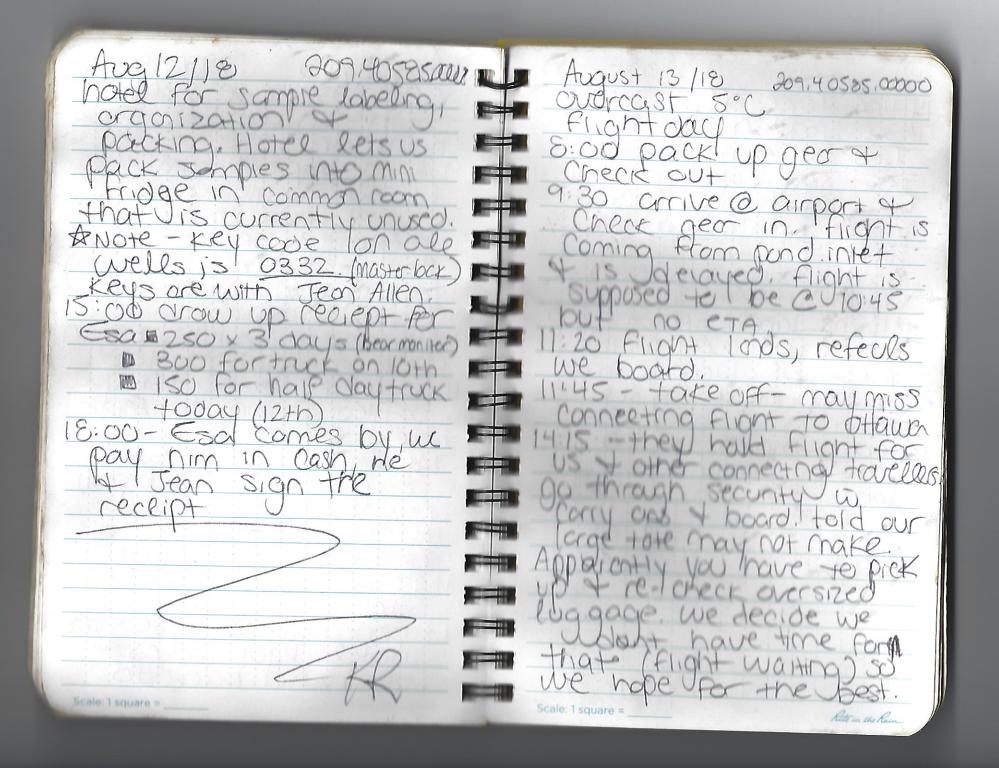
2018 Long Term Monitoring Report FOX-C Ekalugad Fjord, Nunavut, August 12, 2018

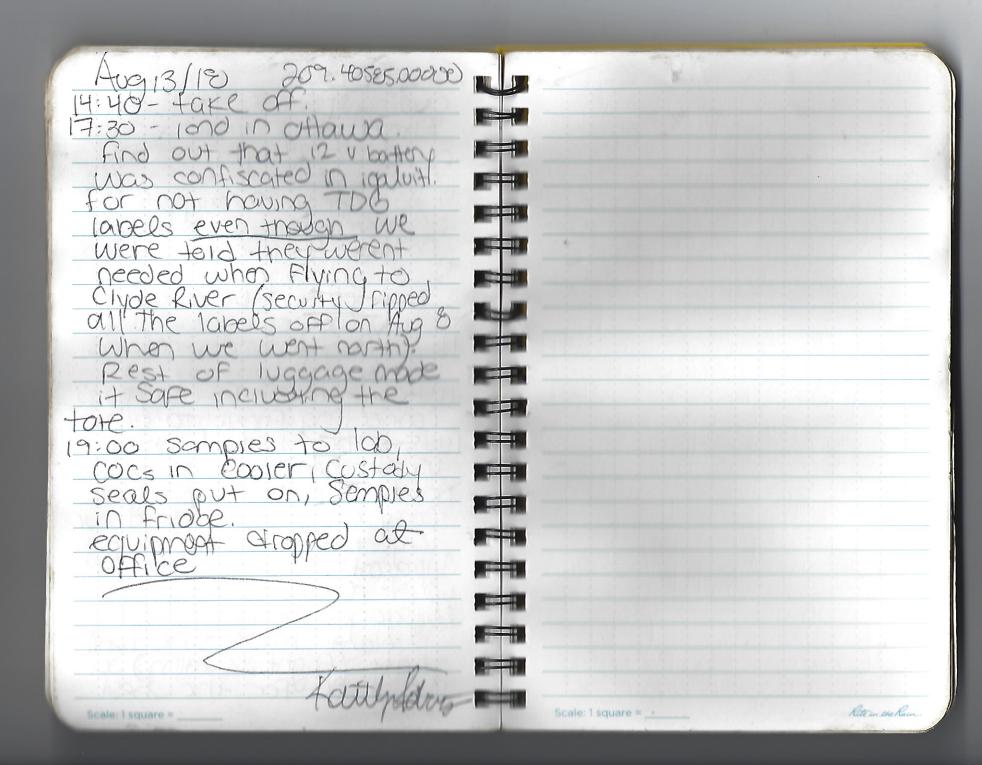
Photograph 13. Sampling at MW-Northwest, facing north.

Photograph 14. Vegetation south of the NHWL including grasses and arctic cotton. Vegetation was not present on the NHWL but began 2-10 m from the base of the NHWL slope on all sides.


APPENDIX B Field Sheets and Notes

Crown-Indigenous Relations and Northern Affairs Canada Contaminants and Remediation Division


FOX-C Ekalugad Fjord Long Term Monitoring Event Qikiqtaaluk Region, Nunavut SLR Project No.: 209.40585.00000


Aug 9 2018 209.40585 2000 KB MC SUNNY 6°C 209,40505,00000 AUG 8 2018 Uflight Day 8:00 - Wake up - Jean's Pright Kaitlyn Roberts of Mathew Coady may be delayed 6:00 arrive @ airport of go through 10:00 1 discuss 1 possibility of Using Esa's fruck in Dave Checked baggage & security uilluse if Esa is willing no issues. W 13:00 Esa arrives for meeting 8:15 - Called to desk to discuss he will bring his truck for battery as TDG - Might not go cape Christian of figure out rate sometone is investigating Port truck - we discuss scope 8:50 - no issues whatey Dia for tomorrow TDG labels tipped of 3:40 - Jean arrives! meet w Security 12:30 - orrive in Igaluit discuss pich 30 - organize bottles \$14.30 - Depart Per civile 110:30 - Arrive picks us up from birport + Pilot arrives Pilol Thinks weather may be oray for tomorrow, for Hying - Rainly but Winds not 7:30- meet Set up 13:00 medingtomorras Needs to call was CON End of day 19:30 - weather worse than anticipated - Freezing rain to the south according to nav can will do Scale: 1 square = Scale: 1 square =

Aug 10 2018 209, 40585 0000 Paidy 3'C, Over cast CRI JMC = linstin site tomorrow instral Cape Christian comes DIL & UR him the pon-som 7:30 wake up, gother Gear at noted in his 8:15 Esa arriver, need to tothinkwe Open @ gam so we have extra bear monitor Rabut we will assess who 900, Get gun from Esa's We get out there - reports of 3 beas in the orea 9:15 - Oet gas & begin heading End of day 10,00 arrive @ SHE - 3 polar area. (En scores than blanks. Wait a While + MW-4 have less than 10 cm of 0.000 Water low flow, fill all Did not purge ~ Som of water. (01005101) Reto in the Rain Scale: 1 square = Scale: 1 square =

August 12/18 209,40585,0000 Aug 12/18 209,40585,0000 and east have water South of Southwest have Sunny 6°C - Fox-C 6:30 - weather looks great no water. gave the go dead! 9:50 - Sample North first. FIT all bothes plus dup & field blank. purged ~ 31 of water but had to switch to sampling o get helicopter ready tood due to limited time Esa comes back to 4 Mr drobbin get us, we lood Mc doing land Kelicopter. have to leave as I am Palling Duckets behind-Northwest restrictions, may again, limited Surface water for Ipm to jeave for next ion in around that time FILL MW- East. 8:00 - head to site. 9:15-Arrive C FOX less than 2 hours on 13:00 - arrive C Clyde Kiver notel. Pilot leake MW North, Northwest we head pack Scale: 1 square =

Fex C Fleld Day. Aug 12/13 7.50 - Esz/Juson to Ap. 7.30-8:00 - SCR + INXC 9:11/935 - Travel to 542 3 Surply + Inspection > Mcanon ley 12. Brule 2 Votel for bottle July + Fortry gover LEVEL

209.40585,0000 FOX-C LANDFILL INSPECTION. Avy 12, 2018 TNORTH SIDE OF LEI - Slope of LF (NORTH) appears stable, showing mornel sans of Erosins/ Slupms - Some uster proms out toe of CF. catis NORTHEAST COUNER, (2x5) and NORTH SIDE (5 x 5 M) - No dehun or animal burows. - gesse tunes observed amy South Side , pool adjourne # MW-NORTH = - Substack is soft. - la / ummil plant growth - Some lyut chunding ozcum at rorTH wEST 5 do; low/10 concern - Then were coursed to west, into grass (shew and calley.

209.40585.0300 ALG 12/18 Veg. stren WEST SIDE OF CA runching and chanding stron. - Approximately 26x runes clong the Vuerteen slope. with average depth of annel (a bottom) beny sporese 10cm; though Marels in certain and south-111) W88- ~ 28 cm. Down pod ment toroson most promod m' Centre / Soft, west 110 being carried 10 m west before fully settling at veg/quess lus. Southwest comer, moderate trut likely accounte with dwy

104.40585,0000 Ay 12/13 Lictur pooling IN depressions/ pookets N 35m Sil of SW LOV NEN. May have South SIDE OF LFOOD LIGHTH RUNNEUM ALOND Soth porte; however appears to be associated with equipment tracks Very growth struts a 2 - 10 m from the of stope, foul in counding to g second style P (4x5-M) L (2x3M) TWO large + v sx panal pools g'uste accompleting. In to 84 from the of Plope. - Occassond (ie 1-3 preces of sull woody debus protostry)

164.40585.0000 0 - some englance of exosion at south- 2487 orde CF. . tig, poils/sed/news getting Corned 20 M south topono depositors. THE . ZAST SIDE OF CP TEN - Some fount /shellow working occumy in the Sothern but (low Concern) THE V. - spare veg. growth at the of HALL. - Courting - 1-2x lght to THE wood junnet (n Den) daplin HILL A foe TIV WATER SEEPING OUT AT TOE OF CF. NO STRINING B(1) Spen. Nost promoned E(3) M' NORTHERN Halt

204.40585.08000 OROND WATER thir has daylighted in corned (chinnely) to the out towards MW- 3A57 monney Crimostry Streets and round pad ~ 7 m West of MW-ZAST. TWO definer chimels that 10m at MW- 2855; Continue for gpprox 75 m (as evidenced by sediment deposition)

104.40585.05000 TOP OF LF SURPACE/TOP OF IF. holding is very well. clephe stons In SW Corner i associated with ographent tracks. - NORTHERN - Exceptionally JAL, - Sothern, some tiperny towards sorth- East correct * Ditches along onle of orcen round to North - Esty showing moderate wer. upen to photos.

SL	R														Sampling Stabilization				O.3 Drikground ()	
Project N	lumber.:	2	09.	40	583	5.00	500	9	Date:	AL	al	2/	18		Vapour Pi	obe & W	L Tape	(Type/ID):	packdiony (Mini Kaer)
			OX		_				ather:	CI	ehr	to	· C	Para	meter Stabiliz	ation Pro	be (Typ		24794 (hor	
	rea:		0 / 5					•	Staff:	KR	2 M	C		-	S	ampling E	Equipme	ent ID:	033239 (pun	np
											0.1"							Son	npling Data	Secretary Secretary
	N		ing Data Depth (m)						Purge Wa		eter Stabil	ization Da	T			-		San		Comments (odor, colour, sediment, etc., total water volume
BHID	Headspace (ppm/%)	to GW	to 1 m above EOH	ю ЕОН	Purge Method	Start Time	Flow Rate	Elapsed Purge Time	Water level (m bTOP)	Cumul. Purge Vol. (L)	T (°C)	Hd	Conductivity	Dissolved Oxygen	Turbidity	Sample ID	Sampling Method	Time	Analysis & Number of Bottles	removed)
MW-NORTH	Oiy (backgrondois)		1.44S)		Low Plow	35	Low Plow ~ 0,150	03 69 72 15	1.215	0.250 0.750 (.250 1.760 2.00	16.02	5.95 5.74 5.56 5.64 5.77	263	7.29 (6.57 (6.30 (6.22 (6.00 (5.97	3.7	MW- NOTH	low Flow	05:6	MW-North All (10) bottles Duplicate - 2 Field bianic	Dap MA (duplicate 2) water volume approx. no purging Prior to flow through cell - limited time on site. Clear, no odor total V = 5 L Jall bottles (10) 10.0000 PCBs
	OH - end		nents fron	top of	nine				Paramete	er Stabiliz	ation Guid	lelines:		,		Well vo	olume Ca	alculation:		r_i = radius of well inside of pipe (m)

Do not monitor EOH if free-product is present in well

pH: +/- 0.2 units

Redox: +/- 20mV

Temp: +/- 0.1°C

D/O: +/- 0.2mg/L

Conductivity: +/- 5%

Turbidity: +/- 10%

 $V_w = \pi r_i^2(H) \times 1000$

 $V_a = \pi R^2 (H) \times 300 - (\pi r_o^2 (H) \times 300)$

V_w = one well volume (L)

 V_a = one standing volume (annulus)(L)

R = radius of the borehole (m)

H = distance from static water level to bottom of well (m)

2" casing has 2.032 L/m; 1" casing has 0.509 L/m

8" sandpack has 9.271 L/m; $\,6\,5/8$ " sandpack has $\,6.35$ L/m

Limited time on Site

Limited time on Site

Limited time on Site

Durge of Groundwater Sampling field sheet. XIST

SL	R^{4}									Ž.					Samplin Stabilizati					
Projec	t Name:	To No	0×-<	nue		585	5.00	_ W	eather:	Cli	2012	Co c	terral mánico como societa que	- Para	ımeter Stabili		obe (Typ	e/ID):	MiniRae Horba pump:	24794
]		ing Data Depth (m				Γ	age of	Purge Wa	Т	neter Stabi	lization Da	I	Γ		-		Sam	pling Data	
BH ID	Headspace (ppm/%)	to GW	to 1 m above EOH	to ЕОН	Purge Method	Start Time	Flow Rate	Elapsed Purge Time	Water level (m bTOP)	Cumul. Purge Vol. (L)	T (°C)	Hd	Conductivity	Dissolved Oxygen	Turbidity	Sample ID	Sampling Method	Time	Analysis & Number of Bottles	Comments (odor, colour, sediment, etc., total water volume removed)
MW - NORTHWEST	Bom (bankham 3)	508.0	17		low flow	Qh:01	10W flow 0,150mm min	03691215	1.136	1.350 (2.00	12.86	6.189 (0.18) (0.05) (5.93) (5.86)	0.105	6.69	391 374 209	MW-Northwest	low Plavo	11:00		Clear, no odor Volume removed is approx. ~ 6L Limited time on Site 240 mins left, 15 mins into Stabilization With to Sampling

Temp: +/- 0.1°C

D/O: +/- 0.2mg/L

Conductivity: +/- 5%

Turbidity: +/- 10%

 $V_w = \pi r_i^2(H) \times 1000$

 $V_a = \pi R^2(H) \times 300 - (\pi r_o^2(H) \times 300)$

V_w= one well volume (L)

V_a= one standing volume (annulus)(L)

R = radius of the borehole (m)

H = distance from static water level to bottom of well (m)

2" casing has 2.032 L/m; 1" casing has 0.509 L/m

8" sandpack has 9.271 L/m; 6 5/8" sandpack has 6.35 L/m

					a.															
SL	R						25 - 42.	* *							Samplin Stabilizati					
11	Number. ct Name: Area:	FC Fo	209 0x-1	,40 C	282	.00)00		Date: eather: d Staff:		g. Tee		/18 0°C	-	ameter Stabili		obe (Typ		Mini Rae Heriba Pump	624794
			ring Data						Purge W	ater Param	eter Stabi	lization Da	ita					San	npling Data	
BHID	Headspace (ppm/%)		to 1 m above EOH (1)	to EOH	Purge Method	Start Time	Flow Rate	Elapsed Purge Time	Water level (m bTOP)	Cumul. Purge Vol. (L)	T (°C)	Hd	Conductivity	Dissolved Oxygen	Turbidity	Sample ID	Sampling Method	Time	Analysis & Number of Bottles	Comments (odor, colour, sediment, etc., total water volume removed)
	OH - end o	V X Y)6t'						Paramete	r Stabiliza	tion Guide	slines:								feels like there is a bit a sediment on the bottom did not Smple - no time
	l depth me			V5.01		in well			pH: +/- 0 Temp: +/-	.2 units		Redox: +/- (D/O: +/- (Turbidity:	0.2mg/L			$V_w = \pi r_i$ $V_a = \pi F_i$ $V_w = one$	ding voing $^{2}(H) \times 1$ $^{2}(H) \times 2$ well voing $^{2}(H) \times 2$	lume of wa 000 300 – (π r _c slume (L)	atter in well and annulus = $V_w + V_s$ v_s^2 (H) x 300) annulus)(L)	$\begin{split} r_i &= \text{radius of well inside of pipe (m)} \\ r_o &= \text{radius of well outside of pipe (m)} \\ R &= \text{radius of the borehole (m)} \\ H &= \text{distance from static water level to bottom of well (m)} \\ 2^\text{"} &= \text{casing has 2.032 L/m; } 1^\text{"} &= \text{casing has 0.599 L/m} \\ 8^\text{"} &= \text{sandpack has 9.271 L/m; } 6.5/8^\text{"} &= \text{sandpack has 6.35 L/m} \end{split}$

	SL	R									1		Gro (Fie	undw Id Para	vater S meter S	Sampling Stabilizatio	n Meth	ord nod)			
11		umber.: : Name: rea:	26	9, 6	10	589	5.0	500	00	Date:	AL	5 12	1201	8		Vapour Pro	obe & W	L Tape ((Type/ID): _	MiniRac	
	Project	Name:	FB	X-	1				We	ather:	Cled		(000	<u></u>	Para	meter Stabiliza	ation Pro	be (Type	e/ID):	Heriba:	24 794
	A	rea;	500	4h	L	AN	DF.	L'	Field	Staff:	M	CK	R		-		mpling E			pump:	0 3 3 2 3 9
L																			C	live Date	
		Mo	nitoring		\perp					Purge Wa		eter Stabil	ization Da	ta					Samp	oling Data	
	BHID	Headspace (ppm/%)	MS of m 1 o	НС	ю ЕОН	Purge Method	Start Time	Flow Rate	Elapsed Purge Time	Water level (m bTOP)	Cumul. Purge Vol. (L)	T (°C)	Hd	Conductivity	Dissolved Oxygen	Turbidity	Sample ID	Sampling Method	Time	Analysis & Number of Bottles	Comments (odor, colour, sediment, etc., total water volume removed)
	BI		2 2	ap	2	Z Z	St	ᅜ	T	8 9	0 >	Н	Ĉ.	0	ДО	E	8	S Z	E	V Z	
		(wood	x																		when dipping the well, it sounded like we were hitting ice
		(3																			well, it sounded
		no																			like we were
		3																			NATING
	+	212										1		ļ							
	SOUTH	0 4	3																		did not smple
	70	7	Moverte			18															0
	S	Z,	3	325																	
)	9	Y	3																	
	MM	2									2				1						
										+	-					1	i				

Note: EOH - end of hole

All depth measurements from top of pipe

Do not monitor EOH if free-product is present in well

Parameter Stabilization Guidelines:

pH: +/- 0.2 units

Redox: +/- 20mV

Temp: +/- 0.1°C

D/O: +/- 0.2mg/L

Conductivity: +/- 5%

Turbidity: +/- 10%

Well volume Calculation:

One standing volume of water in well and annulus = $V_w + V_a$ r_o = radius of well outside of pipe (m)

 $V_w = \pi r_i^2(H) \times 1000$

 $V_a = \pi R^2(H) \times 300 - (\pi r_0^2(H) \times 300)$

V_w= one well volume (L)

 V_a = one standing volume (annulus)(L)

 $r_i = radius of well inside of pipe (m)$

R = radius of the borehole (m)

H = distance from static water level to bottom of well (m)

2" casing has $2.032\ L/m;\ 1"$ casing has $0.509\ L/m$

8" sandpack has 9.271 L/m; $\,$ 6 5/8" sandpack has 6.35 L/m

Groundwater Sampling Record (Field Parameter Stabilization Method) Project Number.: 209, 40585,0000 Vapour Probe & WL Tape (Type/ID): MINI RAE: Horiba: 24794 Low From pump: 033239 Project Name: FOX-C Weather: Parameter Stabilization Probe (Type/ID): Sampling Equipment ID: Monitoring Data Purge Water Parameter Stabilization Data Sampling Data Depth (m) Elapsed Purge Time Cumul. Purge Vol. (L) to 1 m above EOH Comments (odor, colour, sediment, etc., total water volume Water level (m bTOP) Headspace (ppm/%) Flow Rate Sample ID Sampling Method removed) Oxygen Sample NScm of Sorth WEST Water EOH - end of hole Parameter Stabilization Guidelines: All depth measurements from top of pipe Well volume Calculation: r_i = radius of well inside of pipe (m) Do not monitor EOH if free-product is present in well pH: +/- 0.2 units Redox: +/- 20mV One standing volume of water in well and annulus = $V_w + V_a$ r_o = radius of well outside of pipe (m)

Temp: +/- 0.1°C

D/O: +/- 0.2mg/L Turbidity: +/- 10%

Conductivity: +/- 5%

 $V_w = \pi r_i^2(H) \times 1000$

 $V_a = \pi R^2(H) \times 300 - (\pi r_0^2(H) \times 300)$

 V_w = one well volume (L)

 V_a = one standing volume (annulus)(L)

R = radius of the borehole (m)

H = distance from static water level to bottom of well (m)

2" casing has 2.032 L/m; 1" casing has 0.509 L/m

8" sandpack has 9.271 L/m; 6 5/8" sandpack has 6.35 L/m

Surface Water Sample

5W [A5] 2 11:15 T pH Conductivity turb. Do 8.13 3.70 0.288 0 7.80

Comments:

Total restar botto (estually despolare); and

tested plt in ponded water -> 3.25 that to confirm low ptlabore.

APPENDIX C Laboratory Certificates of Analysis

Crown-Indigenous Relations and Northern Affairs Canada Contaminants and Remediation Division

FOX-C Ekalugad Fjord Long Term Monitoring Event Qikiqtaaluk Region, Nunavut SLR Project No.: 209.40585.00000

Attention: Kaitlyn Roberts

SLR Consulting (Canada) Ltd. Ottawa 43 Auriga Drive, Suite 203 Nepean, ON CANADA K2E 7Y8 Your P.O. #: MAR2516

Your Project #: 209.40585.00000 Site#: FOX-C Ekalugad Fjord

Site Location: FOX-C Ekalugad Fjord

Your C.O.C. #: 677100-01-01

Report Date: 2018/10/01

Report #: R5422884 Version: 3 - Revision

CERTIFICATE OF ANALYSIS – REVISED REPORT

MAXXAM JOB #: B8K8119 Received: 2018/08/14, 09:50

Sample Matrix: Water # Samples Received: 10

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Reference
Alkalinity (1)	10	N/A	2018/08/17	CAM SOP-00448	SM 23 2320 B m
Carbonate, Bicarbonate and Hydroxide (1)	10	N/A	2018/08/20	CAM SOP-00102	APHA 4500-CO2 D
Chloride by Automated Colourimetry (1)	10	N/A	2018/08/17	CAM SOP-00463	EPA 325.2 m
Conductivity (1)	10	N/A	2018/08/17	CAM SOP-00414	SM 23 2510 m
Petroleum Hydro. CCME F1 & BTEX in Water (1)	10	N/A	2018/08/16	CAM SOP-00315	CCME PHC-CWS m
Petroleum Hydrocarbons F2-F4 in Water (1, 2)	10	2018/08/16	2018/08/17	CAM SOP-00316	CCME PHC-CWS m
Hardness (calculated as CaCO3) (1)	8	N/A	2018/08/17	CAM SOP 00102/00408/00447	SM 2340 B
Hardness (calculated as CaCO3) (1)	2	N/A	2018/08/20	•	SM 2340 B
Dissolved Metals by ICPMS (1)	7	N/A	2018/08/17	CAM SOP-00447	EPA 6020B m
Dissolved Metals by ICPMS (1)	1	N/A	2018/08/20	CAM SOP-00447	EPA 6020B m
Dissolved Metals by ICPMS (1)	2	N/A	2018/08/21	CAM SOP-00447	EPA 6020B m
Total Metals Analysis by ICPMS (1)	8	N/A	2018/08/16	CAM SOP-00447	EPA 6020B m
Total Metals Analysis by ICPMS (1)	2	N/A	2018/08/21	CAM SOP-00447	EPA 6020B m
Polychlorinated Biphenyl in Water (1)	4	2018/08/17	2018/08/17	CAM SOP-00309	EPA 8082A m
Polychlorinated Biphenyl in Water (1)	3	2018/08/17	2018/08/18	CAM SOP-00309	EPA 8082A m
Polychlorinated Biphenyl in Water (1)	1	2018/08/17	2018/08/20	CAM SOP-00309	EPA 8082A m
pH (1)	10	N/A	2018/08/17	CAM SOP-00413	SM 4500H+ B m
Sulphate by Automated Colourimetry (1)	10	N/A	2018/08/17	CAM SOP-00464	EPA 375.4 m
Total Dissolved Solids (1)	10	2018/08/18	2018/08/18	CAM SOP-00428	SM 23 2540C m
Total Suspended Solids (1)	10	2018/08/16	2018/08/16	CAM SOP-00428	SM 23 2540D m

Remarks:

Maxxam Analytics' laboratories are accredited to ISO/IEC 17025:2005 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Maxxam are based upon recognized Provincial, Federal or US method compendia such as CCME, MDDELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Maxxam's profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Maxxam in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been

Attention: Kaitlyn Roberts

SLR Consulting (Canada) Ltd. Ottawa 43 Auriga Drive, Suite 203 Nepean, ON CANADA K2E 7Y8 Your P.O. #: MAR2516

Your Project #: 209.40585.00000 Site#: FOX-C Ekalugad Fjord

Site Location: FOX-C Ekalugad Fjord

Your C.O.C. #: 677100-01-01

Report Date: 2018/10/01

Report #: R5422884 Version: 3 - Revision

CERTIFICATE OF ANALYSIS – REVISED REPORT

MAXXAM JOB #: B8K8119 Received: 2018/08/14, 09:50

accounted for when stating conformity to the referenced standard.

Maxxam Analytics' liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Maxxam has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Maxxam, unless otherwise agreed in writing. Maxxam is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by Maxxam, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) This test was performed by Maxxam Analytics Mississauga

(2) All CCME PHC results met required criteria unless otherwise stated in the report. The CWS PHC methods employed by Maxxam conform to all prescribed elements of the reference method and performance based elements have been validated. All modifications have been validated and proven equivalent following "Alberta Environment's Interpretation of the Reference Method for the Canada-Wide Standard for Petroleum Hydrocarbons in Soil Validation of Performance-Based Alternative Methods September 2003". Documentation is available upon request. Modifications from Reference Method for the Canada-wide Standard for Petroleum Hydrocarbons in Soil-Tier 1 Method: F2/F3/F4 data reported using validated cold solvent extraction instead of Soxhlet extraction.

Encryption Key

Antonella Brasil Senior Project Manager 01 Oct 2018 17:09:08

Please direct all questions regarding this Certificate of Analysis to your Project Manager.

Antonella Brasil, Senior Project Manager

Email: ABrasil@maxxam.ca Phone# (905)817-5817

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

SLR Consulting (Canada) Ltd.
Client Project #: 209.40585.0000

Site Location: FOX-C Ekalugad Fjord

Your P.O. #: MAR2516 Sampler Initials: KR

RESULTS OF ANALYSES OF WATER

Maxxam ID		HMB935	НМВ936	HMB937	HMB938	HMB939		
Sampling Date		2018/08/12 09:50	2018/08/12 11:00	2018/08/12 09:50	2018/08/12 11:15	2018/08/12 10:00		
COC Number		677100-01-01	677100-01-01	677100-01-01	677100-01-01	677100-01-01		
	UNITS	MW NORTH	MW NORTHWEST	DUPLICATE-2	SW EAST	FIELD BLANK	QC Batch	RDL
Calculated Parameters								
Bicarb. Alkalinity (calc. as CaCO3)	mg/L	<1.0	17	<1.0	<1.0	<1.0	5684770	1.0
Carb. Alkalinity (calc. as CaCO3)	mg/L	<1.0	<1.0	<1.0	<1.0	<1.0	5684770	1.0
Hardness (CaCO3)	mg/L	590	21	430	99	<1.0	5680667	1.0
Inorganics								
Conductivity	mS/cm	1.07	0.098	1.01	0.319	0.001	5683075	0.001
Total Dissolved Solids	mg/L	775	75	785	205	25	5687460	10
рН	рН	4.52	6.94	4.46	4.69	5.97	5683076	N/A
Total Suspended Solids	mg/L	<10	34	10	12	<10	5683093	10
Dissolved Sulphate (SO4)	mg/L	540	19	500	130	<1.0	5682189	1.0
Alkalinity (Total as CaCO3)	mg/L	<1.0	17	<1.0	<1.0	<1.0	5683073	1.0
Dissolved Chloride (CI-)	mg/L	6.6	2.4	6.1	5.4	<1.0	5682184	1.0
QC Batch = Quality Control Batch N/A = Not Applicable								

N/A = Not Applicable

Maxxam ID		HMB940	HMB941	HMB942	HMB943	HMB943	HMB944		
Sampling Date		2018/08/10	2018/08/10	2018/08/10	2018/08/10	2018/08/10	2018/08/10		
Sampling Date		13:00	14:30	11:00	11:45	11:45	13:00		
COC Number		677100-01-01	677100-01-01	677100-01-01	677100-01-01	677100-01-01	677100-01-01		
	UNITS	MW-1	MW-2	MW-3	MW-4	MW-4 Lab-Dup	DUPLICATE	QC Batch	RDL
Calculated Parameters									
Bicarb. Alkalinity (calc. as CaCO3)	mg/L	230	95	25	57	N/A	220	5684770	1.0
Carb. Alkalinity (calc. as CaCO3)	mg/L	2.7	<1.0	<1.0	<1.0	N/A	2.8	5684770	1.0
Hardness (CaCO3)	mg/L	200	100	33	76	N/A	200	5680667	1.0
Inorganics									
Conductivity	mS/cm	0.719	0.517	0.146	0.297	N/A	0.718	5683075	0.001
Total Dissolved Solids	mg/L	380	295	65	175	175	375	5687460	10
рН	рН	8.11	7.36	7.37	7.70	N/A	8.12	5683076	N/A
Total Suspended Solids	mg/L	21	210	<10	<10	N/A	10	5683093	10
Dissolved Sulphate (SO4)	mg/L	37	30	10	28	N/A	37	5682189	1.0
Alkalinity (Total as CaCO3)	mg/L	230	95	25	57	N/A	230	5683073	1.0
Dissolved Chloride (Cl-)	mg/L	73	81	16	34	N/A	73	5682184	1.0

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

N/A = Not Applicable

SLR Consulting (Canada) Ltd.
Client Project #: 209.40585.00000
Site Location: FOX-C Ekalugad Fjord

Your P.O. #: MAR2516 Sampler Initials: KR

RESULTS OF ANALYSES OF WATER

Maxxam ID		HMB944		
Sampling Date		2018/08/10 13:00		
COC Number		677100-01-01		
	UNITS	DUPLICATE Lab-Dup	QC Batch	RDL
Inorganics				
Conductivity	mS/cm	0.722	5683075	0.001
рН	рН	8.11	5683076	N/A
Alkalinity (Total as CaCO3)	mg/L	230	5683073	1.0
QC Batch = Quality Control Batch				
Lab-Dup = Laboratory Initiated D	uplicate			
N/A = Not Applicable				

SLR Consulting (Canada) Ltd.
Client Project #: 209.40585.00000
Site Location: FOX-C Ekalugad Fjord

Your P.O. #: MAR2516 Sampler Initials: KR

ELEMENTS BY ATOMIC SPECTROSCOPY (WATER)

Maxxam ID		HMB935		HMB936		HMB937		HMB938		
Sampling Date		2018/08/12		2018/08/12		2018/08/12		2018/08/12		
Sampling Date		09:50		11:00		09:50		11:15		
COC Number		677100-01-01		677100-01-01		677100-01-01		677100-01-01		
	UNITS	MW NORTH	QC Batch	MW NORTHWEST	QC Batch	DUPLICATE-2	QC Batch	SW EAST	QC Batch	RDL
Metals										-
Total Aluminum (Al)	ug/L	12000	5690128	83	5683846	11000	5690128	1700	5683846	5.0
Total Antimony (Sb)	ug/L	<0.50	5690128	<0.50	5683846	<0.50	5690128	<0.50	5683846	0.50
Total Arsenic (As)	ug/L	<1.0	5690128	<1.0	5683846	<1.0	5690128	<1.0	5683846	1.0
Total Barium (Ba)	ug/L	16	5690128	5.6	5683846	15	5690128	8.8	5683846	2.0
Total Beryllium (Be)	ug/L	3.0	5690128	<0.50	5683846	2.7	5690128	0.90	5683846	0.50
Total Bismuth (Bi)	ug/L	<1.0	5690128	<1.0	5683846	<1.0	5690128	<1.0	5683846	1.0
Total Boron (B)	ug/L	15	5690128	<10	5683846	14	5690128	43	5683846	10
Total Cadmium (Cd)	ug/L	6.7	5690128	<0.10	5683846	6.1	5690128	0.48	5683846	0.10
Total Calcium (Ca)	ug/L	120000	5690128	3300	5683846	110000	5690128	27000	5683846	200
Total Chromium (Cr)	ug/L	11	5690128	<5.0	5683846	12	5690128	<5.0	5683846	5.0
Total Cobalt (Co)	ug/L	420	5690128	6.1	5683846	380	5690128	49	5683846	0.50
Total Copper (Cu)	ug/L	120	5690128	2.2	5683846	110	5690128	41	5683846	1.0
Total Iron (Fe)	ug/L	2400	5690128	<100	5683846	2300	5690128	<100	5683846	100
Total Lead (Pb)	ug/L	1.6	5690128	<0.50	5683846	1.6	5690128	<0.50	5683846	0.50
Total Lithium (Li)	ug/L	46	5690128	<5.0	5683846	44	5690128	7.9	5683846	5.0
Total Magnesium (Mg)	ug/L	18000	5690128	1500	5683846	17000	5690128	7500	5683846	50
Total Manganese (Mn)	ug/L	1100	5690128	25	5683846	1100	5690128	610	5683846	2.0
Total Molybdenum (Mo)	ug/L	<0.50	5690128	<0.50	5683846	0.55	5690128	<0.50	5683846	0.50
Total Nickel (Ni)	ug/L	1600	5690128	23	5683846	1500	5690128	160	5683846	1.0
Total Potassium (K)	ug/L	16000	5690128	1300	5683846	15000	5690128	4800	5683846	200
Total Selenium (Se)	ug/L	<2.0	5690128	<2.0	5683846	<2.0	5690128	<2.0	5683846	2.0
Total Silicon (Si)	ug/L	14000	5690128	3000	5683846	13000	5690128	9200	5683846	50
Total Silver (Ag)	ug/L	<0.10	5690128	<0.10	5683846	<0.10	5690128	<0.10	5683846	0.10
Total Sodium (Na)	ug/L	17000	5690128	17000	5683846	17000	5690128	11000	5683846	100
Total Strontium (Sr)	ug/L	330	5690128	20	5683846	310	5690128	64	5683846	1.0
Total Tellurium (Te)	ug/L	<1.0	5690128	<1.0	5683846	<1.0	5690128	<1.0	5683846	1.0
Total Thallium (TI)	ug/L	0.21	5690128	<0.050	5683846	0.20	5690128	0.061	5683846	0.050
Total Tin (Sn)	ug/L	<1.0	5690128	<1.0	5683846	<1.0	5690128	<1.0	5683846	1.0
Total Titanium (Ti)	ug/L	16	5690128	<5.0	5683846	19	5690128	5.9	5683846	5.0
Total Tungsten (W)	ug/L	<1.0	5690128	<1.0	5683846	<1.0	5690128	<1.0	5683846	1.0
Total Uranium (U)	ug/L	5.4	5690128	0.15	5683846	5.1	5690128	0.69	5683846	0.10
Total Vanadium (V)	ug/L	0.75	5690128	<0.50	5683846	0.82	5690128	<0.50	5683846	0.50
Total Zinc (Zn)	ug/L	1100	5690128	20	5683846	1000	5690128	65	5683846	5.0
Total Zirconium (Zr)	ug/L	<1.0	5690128	<1.0	5683846	<1.0	5690128	<1.0	5683846	1.0
QC Batch = Quality Control Ba	atch									

SLR Consulting (Canada) Ltd. Client Project #: 209.40585.00000 Site Location: FOX-C Ekalugad Fjord

Your P.O. #: MAR2516 Sampler Initials: KR

ELEMENTS BY ATOMIC SPECTROSCOPY (WATER)

Maxxam ID		HMB939	HMB940	HMB941	HMB941	HMB942	HMB943		
Committee Date		2018/08/12	2018/08/10	2018/08/10	2018/08/10	2018/08/10	2018/08/10		
Sampling Date		10:00	13:00	14:30	14:30	11:00	11:45		
COC Number		677100-01-01	677100-01-01	677100-01-01	677100-01-01	677100-01-01	677100-01-01		
	UNITS	FIELD BLANK	MW-1	MW-2	MW-2 Lab-Dup	MW-3	MW-4	QC Batch	RDL
Metals									
Total Aluminum (AI)	ug/L	<5.0	4600	5300	4800	400	540	5683846	5.0
Total Antimony (Sb)	ug/L	<0.50	<0.50	<0.50	<0.50	<0.50	0.61	5683846	0.50
Total Arsenic (As)	ug/L	<1.0	1.0	<1.0	<1.0	<1.0	<1.0	5683846	1.0
Total Barium (Ba)	ug/L	<2.0	36	45	42	7.3	11	5683846	2.0
Total Beryllium (Be)	ug/L	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	5683846	0.50
Total Bismuth (Bi)	ug/L	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	5683846	1.0
Total Boron (B)	ug/L	<10	52	18	17	13	78	5683846	10
Total Cadmium (Cd)	ug/L	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	5683846	0.10
Total Calcium (Ca)	ug/L	<200	40000	23000	22000	6800	17000	5683846	200
Total Chromium (Cr)	ug/L	<5.0	<5.0	7.6	7.3	17	18	5683846	5.0
Total Cobalt (Co)	ug/L	<0.50	1.0	8.7	8.4	<0.50	<0.50	5683846	0.50
Total Copper (Cu)	ug/L	<1.0	5.3	12	11	7.0	4.8	5683846	1.0
Total Iron (Fe)	ug/L	<100	5100	9300	9000	390	590	5683846	100
Total Lead (Pb)	ug/L	<0.50	2.4	2.2	2.1	0.58	1.1	5683846	0.50
Total Lithium (Li)	ug/L	<5.0	16	8.4	7.8	<5.0	<5.0	5683846	5.0
Total Magnesium (Mg)	ug/L	<50	28000	13000	13000	3000	6500	5683846	50
Total Manganese (Mn)	ug/L	<2.0	110	1000	1000	10	12	5683846	2.0
Total Molybdenum (Mo)	ug/L	<0.50	4.1	1.8	1.6	0.66	2.4	5683846	0.50
Total Nickel (Ni)	ug/L	<1.0	5.6	12	11	12	16	5683846	1.0
Total Potassium (K)	ug/L	<200	8300	6100	5900	1600	3100	5683846	200
Total Selenium (Se)	ug/L	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	5683846	2.0
Total Silicon (Si)	ug/L	<50	16000	15000	14000	2700	3600	5683846	50
Total Silver (Ag)	ug/L	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	5683846	0.10
Total Sodium (Na)	ug/L	210	80000	50000	49000	13000	29000	5683846	100
Total Strontium (Sr)	ug/L	<1.0	170	120	110	33	69	5683846	1.0
Total Tellurium (Te)	ug/L	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	5683846	1.0
Total Thallium (TI)	ug/L	<0.050	0.062	0.12	0.083	<0.050	<0.050	5683846	0.050
Total Tin (Sn)	ug/L	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	5683846	1.0
Total Titanium (Ti)	ug/L	<5.0	180	450	440	29	26	5683846	5.0
Total Tungsten (W)	ug/L	<1.0	1.8	<1.0	<1.0	<1.0	<1.0	5683846	1.0
Total Uranium (U)	ug/L	<0.10	5.2	0.30	0.29	0.24	1.4	5683846	0.10
Total Vanadium (V)	ug/L	<0.50	3.8	9.0	9.3	0.62	0.93	5683846	0.50
Total Zinc (Zn)	ug/L	<5.0	13	31	29	<5.0	5.2	5683846	5.0
			1	1			1		

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

SLR Consulting (Canada) Ltd.
Client Project #: 209.40585.00000
Site Location: FOX-C Ekalugad Fjord

Your P.O. #: MAR2516 Sampler Initials: KR

ELEMENTS BY ATOMIC SPECTROSCOPY (WATER)

Maxxam ID		HMB939	HMB940	HMB941	HMB941	HMB942	HMB943		
Sampling Date		2018/08/12 10:00	2018/08/10 13:00	2018/08/10 14:30	2018/08/10 14:30	2018/08/10 11:00	2018/08/10 11:45		
COC Number		677100-01-01	677100-01-01	677100-01-01	677100-01-01	677100-01-01	677100-01-01		
	UNITS	FIELD BLANK	MW-1	MW-2	MW-2 Lab-Dup	MW-3	MW-4	QC Batch	RDL
Total Zirconium (Zr)	ug/L	<1.0	3.6	2.8	2.3	<1.0	<1.0	5683846	1.0

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

SLR Consulting (Canada) Ltd.
Client Project #: 209.40585.00000
Site Location: FOX-C Ekalugad Fjord

Your P.O. #: MAR2516 Sampler Initials: KR

ELEMENTS BY ATOMIC SPECTROSCOPY (WATER)

Maxxam ID		HMB944		
Sampling Date		2018/08/10 13:00		
COC Number		677100-01-01		
	UNITS	DUPLICATE	QC Batch	RDL
Metals				
Total Aluminum (Al)	ug/L	5200	5683846	5.0
Total Antimony (Sb)	ug/L	<0.50	5683846	0.50
Total Arsenic (As)	ug/L	1.0	5683846	1.0
Total Barium (Ba)	ug/L	39	5683846	2.0
Total Beryllium (Be)	ug/L	<0.50	5683846	0.50
Total Bismuth (Bi)	ug/L	<1.0	5683846	1.0
Total Boron (B)	ug/L	51	5683846	10
Total Cadmium (Cd)	ug/L	<0.10	5683846	0.10
Total Calcium (Ca)	ug/L	40000	5683846	200
Total Chromium (Cr)	ug/L	<5.0	5683846	5.0
Total Cobalt (Co)	ug/L	1.0	5683846	0.50
Total Copper (Cu)	ug/L	6.4	5683846	1.0
Total Iron (Fe)	ug/L	4800	5683846	100
Total Lead (Pb)	ug/L	2.2	5683846	0.50
Total Lithium (Li)	ug/L	16	5683846	5.0
Total Magnesium (Mg)	ug/L	28000	5683846	50
Total Manganese (Mn)	ug/L	96	5683846	2.0
Total Molybdenum (Mo)	ug/L	3.8	5683846	0.50
Total Nickel (Ni)	ug/L	4.6	5683846	1.0
Total Potassium (K)	ug/L	8400	5683846	200
Total Selenium (Se)	ug/L	<2.0	5683846	2.0
Total Silicon (Si)	ug/L	19000	5683846	50
Total Silver (Ag)	ug/L	<0.10	5683846	0.10
Total Sodium (Na)	ug/L	78000	5683846	100
Total Strontium (Sr)	ug/L	170	5683846	1.0
Total Tellurium (Te)	ug/L	<1.0	5683846	1.0
Total Thallium (TI)	ug/L	0.052	5683846	0.050
Total Tin (Sn)	ug/L	<1.0	5683846	1.0
Total Titanium (Ti)	ug/L	190	5683846	5.0
Total Tungsten (W)	ug/L	1.8	5683846	1.0
Total Uranium (U)	ug/L	5.0	5683846	0.10
Total Vanadium (V)	ug/L	3.7	5683846	0.50
Total Zinc (Zn)	ug/L	12	5683846	5.0
Total Zirconium (Zr)	ug/L	4.0	5683846	1.0
QC Batch = Quality Control I				•

SLR Consulting (Canada) Ltd.
Client Project #: 209.40585.00000
Site Location: FOX-C Ekalugad Fjord

Your P.O. #: MAR2516 Sampler Initials: KR

O.REG 153 DISSOLVED ICPMS METALS (WATER)

								$\overline{}$
Maxxam ID		HMB935		НМВ936		HMB937		
Sampling Date		2018/08/12 09:50		2018/08/12 11:00		2018/08/12 09:50		
COC Number		677100-01-01		677100-01-01		677100-01-01		
	UNITS	MW NORTH	QC Batch	MW NORTHWEST	QC Batch	DUPLICATE-2	QC Batch	RDL
Metals			l		l			
Dissolved Aluminum (Al)	ug/L	9400	5690047	N/A	5690047	8900	5690047	5.0
Dissolved Antimony (Sb)	ug/L	<0.50	5690047	<0.50	5683052	<0.50	5690047	0.50
Dissolved Arsenic (As)	ug/L	<1.0	5690047	<1.0	5683052	<1.0	5690047	1.0
Dissolved Barium (Ba)	ug/L	20	5690047	13	5683052	17	5690047	2.0
Dissolved Beryllium (Be)	ug/L	3.2	5690047	<0.50	5683052	2.5	5690047	0.50
Dissolved Bismuth (Bi)	ug/L	<1.0	5690047	N/A	N/A	<1.0	5690047	1.0
Dissolved Boron (B)	ug/L	20	5690047	<10	5683052	14	5690047	10
Dissolved Cadmium (Cd)	ug/L	10	5690047	<0.10	5683052	7.6	5690047	0.10
Dissolved Calcium (Ca)	ug/L	190000	5690047	4900	5683052	140000	5690047	200
Dissolved Chromium (Cr)	ug/L	<5.0	5690047	<5.0	5683052	<5.0	5690047	5.0
Dissolved Cobalt (Co)	ug/L	710	5690047	10	5683052	480	5690047	0.50
Dissolved Copper (Cu)	ug/L	140	5690047	2.2	5683052	110	5690047	1.0
Dissolved Iron (Fe)	ug/L	5000	5690047	N/A	N/A	2800	5690047	100
Dissolved Lead (Pb)	ug/L	1.3	5690047	1.6	5683052	1.7	5690047	0.50
Dissolved Lithium (Li)	ug/L	80	5690047	N/A	N/A	53	5690047	5.0
Dissolved Magnesium (Mg)	ug/L	28000	5690047	2100	5683052	21000	5690047	50
Dissolved Manganese (Mn)	ug/L	1900	5690047	N/A	N/A	1300	5690047	2.0
Dissolved Molybdenum (Mo)	ug/L	<0.50	5690047	<0.50	5683052	<0.50	5690047	0.50
Dissolved Nickel (Ni)	ug/L	2600	5690047	35	5683052	1900	5690047	1.0
Dissolved Potassium (K)	ug/L	22000	5690047	1400	5683052	17000	5690047	200
Dissolved Selenium (Se)	ug/L	<2.0	5690047	<2.0	5683052	<2.0	5690047	2.0
Dissolved Silicon (Si)	ug/L	14000	5690047	N/A	N/A	14000	5690047	50
Dissolved Silver (Ag)	ug/L	<0.10	5690047	<0.10	5683052	<0.10	5690047	0.10
Dissolved Sodium (Na)	ug/L	18000	5690047	12000	5683052	17000	5690047	100
Dissolved Strontium (Sr)	ug/L	470	5690047	25	5683052	370	5690047	1.0
Dissolved Tellurium (Te)	ug/L	<1.0	5690047	N/A	N/A	<1.0	5690047	1.0
Dissolved Thallium (TI)	ug/L	0.22	5690047	<0.050	5683052	0.21	5690047	0.050
Dissolved Tin (Sn)	ug/L	<1.0	5690047	N/A	N/A	<1.0	5690047	1.0
Dissolved Titanium (Ti)	ug/L	<5.0	5690047	N/A	N/A	<5.0	5690047	5.0
Dissolved Tungsten (W)	ug/L	<1.0	5690047	N/A	N/A	<1.0	5690047	1.0
Dissolved Uranium (U)	ug/L	9.2	5690047	0.65	5683052	5.4	5690047	0.10
Dissolved Vanadium (V)	ug/L	<0.50	5690047	<0.50	5683052	<0.50	5690047	0.50
Dissolved Zinc (Zn)	ug/L	1700	5690047	22	5683052	1200	5690047	5.0
QC Batch = Quality Control Ba	tch							

N/A = Not Applicable

SLR Consulting (Canada) Ltd.
Client Project #: 209.40585.00000
Site Location: FOX-C Ekalugad Fjord

Your P.O. #: MAR2516 Sampler Initials: KR

O.REG 153 DISSOLVED ICPMS METALS (WATER)

Maxxam ID		HMB935		HMB936		HMB937		
Sampling Date		2018/08/12 09:50		2018/08/12 11:00		2018/08/12 09:50		
COC Number		677100-01-01		677100-01-01		677100-01-01		
	UNITS	MW NORTH	QC Batch	MW NORTHWEST	QC Batch	DUPLICATE-2	QC Batch	RDL
Dissolved Zirconium (Zr)	ug/L	<1.0	5690047	N/A	N/A	<1.0	5690047	1.0

QC Batch = Quality Control Batch

N/A = Not Applicable

SLR Consulting (Canada) Ltd.
Client Project #: 209.40585.00000
Site Location: FOX-C Ekalugad Fjord

Your P.O. #: MAR2516 Sampler Initials: KR

O.REG 153 DISSOLVED ICPMS METALS (WATER)

Maxxam ID		HMB938		НМВ939	HMB940	HMB941	HMB942		
Campling Date		2018/08/12		2018/08/12	2018/08/10	2018/08/10	2018/08/10		
Sampling Date		11:15		10:00	13:00	14:30	11:00		
COC Number		677100-01-01		677100-01-01	677100-01-01	677100-01-01	677100-01-01		
	UNITS	SW EAST	QC Batch	FIELD BLANK	MW-1	MW-2	MW-3	QC Batch	RDL
Metals									
Dissolved Aluminum (AI)	ug/L	1700	5686273	<5.0	11	110	34	5683052	5.0
Dissolved Antimony (Sb)	ug/L	<0.50	5686273	<0.50	<0.50	<0.50	<0.50	5683052	0.50
Dissolved Arsenic (As)	ug/L	<1.0	5686273	<1.0	<1.0	<1.0	<1.0	5683052	1.0
Dissolved Barium (Ba)	ug/L	10	5686273	<2.0	9.6	11	5.0	5683052	2.0
Dissolved Beryllium (Be)	ug/L	0.90	5686273	<0.50	<0.50	<0.50	<0.50	5683052	0.50
Dissolved Bismuth (Bi)	ug/L	<1.0	5686273	<1.0	<1.0	<1.0	<1.0	5683052	1.0
Dissolved Boron (B)	ug/L	38	5686273	<10	39	12	11	5683052	10
Dissolved Cadmium (Cd)	ug/L	0.51	5686273	<0.10	<0.10	<0.10	<0.10	5683052	0.10
Dissolved Calcium (Ca)	ug/L	27000	5686273	<200	38000	22000	8100	5683052	200
Dissolved Chromium (Cr)	ug/L	<5.0	5686273	<5.0	<5.0	<5.0	<5.0	5683052	5.0
Dissolved Cobalt (Co)	ug/L	49	5686273	<0.50	<0.50	5.8	<0.50	5683052	0.50
Dissolved Copper (Cu)	ug/L	43	5686273	<1.0	2.5	6.7	5.5	5683052	1.0
Dissolved Iron (Fe)	ug/L	<100	5686273	<100	<100	2600	<100	5683052	100
Dissolved Lead (Pb)	ug/L	<0.50	5686273	<0.50	<0.50	<0.50	<0.50	5683052	0.50
Dissolved Lithium (Li)	ug/L	8.0	5686273	<5.0	15	<5.0	<5.0	5683052	5.0
Dissolved Magnesium (Mg)	ug/L	7600	5686273	<50	25000	12000	3100	5683052	50
Dissolved Manganese (Mn)	ug/L	620	5686273	<2.0	43	890	<2.0	5683052	2.0
Dissolved Molybdenum (Mo)	ug/L	<0.50	5686273	<0.50	3.4	1.5	<0.50	5683052	0.50
Dissolved Nickel (Ni)	ug/L	160	5686273	<1.0	1.5	6.9	<1.0	5683052	1.0
Dissolved Potassium (K)	ug/L	4900	5686273	<200	6700	4000	1500	5683052	200
Dissolved Selenium (Se)	ug/L	<2.0	5686273	<2.0	<2.0	<2.0	<2.0	5683052	2.0
Dissolved Silicon (Si)	ug/L	9100	5686273	<50	3200	4800	2100	5683052	50
Dissolved Silver (Ag)	ug/L	<0.10	5686273	<0.10	<0.10	<0.10	<0.10	5683052	0.10
Dissolved Sodium (Na)	ug/L	11000	5686273	200	75000	47000	14000	5683052	100
Dissolved Strontium (Sr)	ug/L	61	5686273	<1.0	150	110	36	5683052	1.0
Dissolved Tellurium (Te)	ug/L	<1.0	5686273	<1.0	<1.0	<1.0	<1.0	5683052	1.0
Dissolved Thallium (TI)	ug/L	0.050	5686273	<0.050	<0.050	<0.050	<0.050	5683052	0.050
Dissolved Tin (Sn)	ug/L	<1.0	5686273	<1.0	<1.0	<1.0	<1.0	5683052	1.0
Dissolved Titanium (Ti)	ug/L	<5.0	5686273	<5.0	<5.0	<5.0	<5.0	5683052	5.0
Dissolved Tungsten (W)	ug/L	<1.0	5686273	<1.0	1.4	<1.0	<1.0	5683052	1.0
Dissolved Uranium (U)	ug/L	0.72	5686273	<0.10	4.3	<0.10	0.23	5683052	0.10
Dissolved Vanadium (V)	ug/L	<0.50	5686273	<0.50	<0.50	<0.50	<0.50	5683052	0.50
Dissolved Zinc (Zn)	ug/L	62	5686273	<5.0	<5.0	17	<5.0	5683052	5.0
Dissolved Zirconium (Zr)	ug/L	<1.0	5686273	<1.0	<1.0	<1.0	<1.0	5683052	1.0
QC Batch = Quality Control Bat			1	ı		ı		1	

SLR Consulting (Canada) Ltd.
Client Project #: 209.40585.00000
Site Location: FOX-C Ekalugad Fjord

Your P.O. #: MAR2516 Sampler Initials: KR

O.REG 153 DISSOLVED ICPMS METALS (WATER)

Maxxam ID		HMB943	HMB944		
Sampling Date		2018/08/10 11:45	2018/08/10 13:00		
COC Number		677100-01-01	677100-01-01		
	UNITS	MW-4	DUPLICATE	QC Batch	RDL
Metals			•	•	•
Dissolved Aluminum (Al)	ug/L	17	10	5683052	5.0
Dissolved Antimony (Sb)	ug/L	<0.50	<0.50	5683052	0.50
Dissolved Arsenic (As)	ug/L	<1.0	<1.0	5683052	1.0
Dissolved Barium (Ba)	ug/L	8.2	9.3	5683052	2.0
Dissolved Beryllium (Be)	ug/L	<0.50	<0.50	5683052	0.50
Dissolved Bismuth (Bi)	ug/L	<1.0	<1.0	5683052	1.0
Dissolved Boron (B)	ug/L	68	40	5683052	10
Dissolved Cadmium (Cd)	ug/L	<0.10	<0.10	5683052	0.10
Dissolved Calcium (Ca)	ug/L	19000	37000	5683052	200
Dissolved Chromium (Cr)	ug/L	<5.0	<5.0	5683052	5.0
Dissolved Cobalt (Co)	ug/L	<0.50	<0.50	5683052	0.50
Dissolved Copper (Cu)	ug/L	3.6	2.3	5683052	1.0
Dissolved Iron (Fe)	ug/L	<100	<100	5683052	100
Dissolved Lead (Pb)	ug/L	<0.50	<0.50	5683052	0.50
Dissolved Lithium (Li)	ug/L	<5.0	14	5683052	5.0
Dissolved Magnesium (Mg)	ug/L	6800	25000	5683052	50
Dissolved Manganese (Mn)	ug/L	6.9	48	5683052	2.0
Dissolved Molybdenum (Mo)	ug/L	2.0	3.5	5683052	0.50
Dissolved Nickel (Ni)	ug/L	1.4	1.3	5683052	1.0
Dissolved Potassium (K)	ug/L	3100	6800	5683052	200
Dissolved Selenium (Se)	ug/L	<2.0	<2.0	5683052	2.0
Dissolved Silicon (Si)	ug/L	2300	3200	5683052	50
Dissolved Silver (Ag)	ug/L	<0.10	<0.10	5683052	0.10
Dissolved Sodium (Na)	ug/L	30000	75000	5683052	100
Dissolved Strontium (Sr)	ug/L	72	160	5683052	1.0
Dissolved Tellurium (Te)	ug/L	<1.0	<1.0	5683052	1.0
Dissolved Thallium (TI)	ug/L	<0.050	<0.050	5683052	0.050
Dissolved Tin (Sn)	ug/L	<1.0	<1.0	5683052	1.0
Dissolved Titanium (Ti)	ug/L	<5.0	<5.0	5683052	5.0
Dissolved Tungsten (W)	ug/L	<1.0	1.5	5683052	1.0
Dissolved Uranium (U)	ug/L	1.8	4.2	5683052	0.10
Dissolved Vanadium (V)	ug/L	<0.50	<0.50	5683052	0.50
Dissolved Zinc (Zn)	ug/L	9.7	<5.0	5683052	5.0
Dissolved Zirconium (Zr)	ug/L	<1.0	<1.0	5683052	1.0
QC Batch = Quality Control Ba	tch		<u> </u>		

SLR Consulting (Canada) Ltd.
Client Project #: 209.40585.00000
Site Location: FOX-C Ekalugad Fjord

Your P.O. #: MAR2516 Sampler Initials: KR

O.REG 153 PCBS (WATER)

Maxxam ID		HMB935	HMB936	HMB937	HMB938	HMB938	HMB940		
Sampling Date		2018/08/12 09:50	2018/08/12 11:00	2018/08/12 09:50	2018/08/12 11:15	2018/08/12 11:15	2018/08/10 13:00		
COC Number		677100-01-01	677100-01-01	677100-01-01	677100-01-01	677100-01-01	677100-01-01		
	UNITS	MW NORTH	MW NORTHWEST	DUPLICATE-2	SW EAST	SW EAST Lab-Dup	MW-1	QC Batch	RDL
PCBs									
Aroclor 1242	ug/L	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	5685612	0.05
Aroclor 1248	ug/L	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	5685612	0.05
Aroclor 1254	ug/L	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	5685612	0.05
Aroclor 1260	ug/L	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	5685612	0.05
Total PCB	ug/L	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	5685612	0.05
Surrogate Recovery (%)									
Decachlorobiphenyl	%	99	104	102	108	103	102	5685612	N/A

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

N/A = Not Applicable

Maxxam ID		HMB941	HMB942	HMB944					
Sampling Date		2018/08/10 14:30	2018/08/10 11:00	2018/08/10 13:00					
COC Number		677100-01-01	677100-01-01	677100-01-01					
	UNITS	MW-2	MW-3	DUPLICATE	QC Batch	RDL			
PCBs									
Aroclor 1242	ug/L	<0.05	<0.05	<0.05	5685612	0.05			
Aroclor 1248	ug/L	<0.05	<0.05	<0.05	5685612	0.05			
Aroclor 1254	ug/L	<0.05	<0.05	<0.05	5685612	0.05			
Aroclor 1260	ug/L	<0.05	<0.05	<0.05	5685612	0.05			
Total PCB	ug/L	<0.05	<0.05	<0.05	5685612	0.05			
Surrogate Recovery (%)									
Decachlorobiphenyl	%	86	92	83	5685612	N/A			
QC Batch = Quality Control Batch N/A = Not Applicable									

SLR Consulting (Canada) Ltd.
Client Project #: 209.40585.00000
Site Location: FOX-C Ekalugad Fjord

Your P.O. #: MAR2516 Sampler Initials: KR

O.REG 153 PETROLEUM HYDROCARBONS (WATER)

Maxxam ID		HMB935	HMB935	HMB936	HMB937	HMB938	HMB939		
Sampling Date		2018/08/12 09:50	2018/08/12 09:50	2018/08/12 11:00	2018/08/12 09:50	2018/08/12 11:15	2018/08/12 10:00		
COC Number		677100-01-01	677100-01-01	677100-01-01	677100-01-01	677100-01-01	677100-01-01		
	UNITS	MW NORTH	MW NORTH Lab-Dup	MW NORTHWEST	DUPLICATE-2	SW EAST	FIELD BLANK	QC Batch	RDL
BTEX & F1 Hydrocarbons									
Benzene	ug/L	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	5682316	0.20
Toluene	ug/L	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	5682316	0.20
Ethylbenzene	ug/L	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	5682316	0.20
o-Xylene	ug/L	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	5682316	0.20
p+m-Xylene	ug/L	<0.40	<0.40	<0.40	<0.40	<0.40	<0.40	5682316	0.40
Total Xylenes	ug/L	<0.40	<0.40	<0.40	<0.40	<0.40	<0.40	5682316	0.40
F1 (C6-C10)	ug/L	<25	<25	<25	<25	<25	<25	5682316	25
F1 (C6-C10) - BTEX	ug/L	<25	<25	<25	<25	<25	<25	5682316	25
F2-F4 Hydrocarbons									
F2 (C10-C16 Hydrocarbons)	ug/L	<100	N/A	<100	<100	<100	<100	5683334	100
F3 (C16-C34 Hydrocarbons)	ug/L	<200	N/A	<200	<200	<200	<200	5683334	200
F4 (C34-C50 Hydrocarbons)	ug/L	<200	N/A	<200	<200	<200	<200	5683334	200
Reached Baseline at C50	ug/L	Yes	N/A	Yes	Yes	Yes	Yes	5683334	N/A
Surrogate Recovery (%)									
1,4-Difluorobenzene	%	103	101	104	102	102	105	5682316	N/A
4-Bromofluorobenzene	%	97	98	98	97	98	97	5682316	N/A
D10-Ethylbenzene	%	85	85	89	84	84	86	5682316	N/A
D4-1,2-Dichloroethane	%	102	101	101	98	99	100	5682316	N/A
o-Terphenyl	%	90	N/A	90	92	91	90	5683334	N/A

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

N/A = Not Applicable

SLR Consulting (Canada) Ltd. Client Project #: 209.40585.00000 Site Location: FOX-C Ekalugad Fjord

Your P.O. #: MAR2516 Sampler Initials: KR

O.REG 153 PETROLEUM HYDROCARBONS (WATER)

Maxxam ID		HMB940	HMB941	HMB942	HMB943	HMB944		
Sampling Date		2018/08/10	2018/08/10	2018/08/10	2018/08/10	2018/08/10		
Jamping Date		13:00	14:30	11:00	11:45	13:00		
COC Number		677100-01-01	677100-01-01	677100-01-01	677100-01-01	677100-01-01		
	UNITS	MW-1	MW-2	MW-3	MW-4	DUPLICATE	QC Batch	RDI
BTEX & F1 Hydrocarbons								
Benzene	ug/L	<0.20	<0.20	<0.20	<0.20	<0.20	5682316	0.20
Toluene	ug/L	<0.20	<0.20	<0.20	<0.20	<0.20	5682316	0.20
Ethylbenzene	ug/L	<0.20	<0.20	<0.20	<0.20	<0.20	5682316	0.20
o-Xylene	ug/L	<0.20	<0.20	<0.20	<0.20	<0.20	5682316	0.20
p+m-Xylene	ug/L	<0.40	<0.40	<0.40	<0.40	<0.40	5682316	0.40
Total Xylenes	ug/L	<0.40	<0.40	<0.40	<0.40	<0.40	5682316	0.40
F1 (C6-C10)	ug/L	<25	<25	<25	<25	<25	5682316	25
F1 (C6-C10) - BTEX	ug/L	<25	<25	<25	<25	<25	5682316	25
F2-F4 Hydrocarbons								
F2 (C10-C16 Hydrocarbons)	ug/L	<100	<100	<100	<100	<100	5683334	100
F3 (C16-C34 Hydrocarbons)	ug/L	<200	<200	<200	<200	<200	5683334	200
F4 (C34-C50 Hydrocarbons)	ug/L	<200	<200	<200	<200	<200	5683334	200
Reached Baseline at C50	ug/L	Yes	Yes	Yes	Yes	Yes	5683334	N/A
Surrogate Recovery (%)							•	
1,4-Difluorobenzene	%	103	102	103	104	104	5682316	N/A
4-Bromofluorobenzene	%	98	98	98	98	97	5682316	N/A
D10-Ethylbenzene	%	84	86	86	85	85	5682316	N/A
D4-1,2-Dichloroethane	%	100	100	102	101	102	5682316	N/A
o-Terphenyl	%	90	93	91	92	91	5683334	N/A
QC Batch = Quality Control B	atch	•	•	•	•	•	•	
N/A = Not Applicable								

SLR Consulting (Canada) Ltd.
Client Project #: 209.40585.00000
Site Location: FOX-C Ekalugad Fjord

Your P.O. #: MAR2516 Sampler Initials: KR

GENERAL COMMENTS

Each temperature is the average of up to three cooler temperatures taken at receipt

Package 1	1.7°C
I dekage 1	1., 0

Revised Report (2018/10/01): Pertinent Total and Dissolved Metals included as per client request.

Sample HMB935 [MW NORTH]: Elevated ion balance was confirmed by re-analysis.

The results for some dissolved metals were greater than the results for total metals. This was confirmed by re-analysis.

Sample HMB936 [MW NORTHWEST]: The results for some dissolved metals were greater than the results for total metals. This was confirmed by reanalysis. The bottle labelled as dissolved metals was darker in appearance than the bottle labelled as total metals.

Sample HMB937 [DUPLICATE-2]: The results for some dissolved metals were greater than the results for total metals. This was confirmed by reanalysis.

Results relate only to the items tested.

SLR Consulting (Canada) Ltd.
Client Project #: 209.40585.00000
Site Location: FOX-C Ekalugad Fjord

Your P.O. #: MAR2516 Sampler Initials: KR

QUALITY ASSURANCE REPORT

5682184 DRI 5682184 DRI 5682189 DRI	RM Matrix Spike RM Spiked Blank RM Method Blank RM RPD RM Matrix Spike RM Spiked Blank RM Method Blank RM Method Blank RM RPD P5 Matrix Spike [HMB935-07]	Parameter Dissolved Chloride (Cl-) Dissolved Chloride (Cl-) Dissolved Chloride (Cl-) Dissolved Chloride (Cl-) Dissolved Sulphate (SO4) Dissolved Sulphate (SO4) Dissolved Sulphate (SO4) Dissolved Sulphate (SO4) 1,4-Difluorobenzene 4-Bromofluorobenzene D10-Ethylbenzene D4-1,2-Dichloroethane Benzene Toluene Ethylbenzene o-Xylene p+m-Xylene F1 (C6-C10) 1,4-Difluorobenzene	Date Analyzed 2018/08/17 2018/08/17 2018/08/17 2018/08/17 2018/08/17 2018/08/17 2018/08/17 2018/08/16 2018/08/16 2018/08/16 2018/08/16 2018/08/16 2018/08/16 2018/08/16 2018/08/16 2018/08/16 2018/08/16 2018/08/16 2018/08/16 2018/08/16 2018/08/16 2018/08/16 2018/08/16 2018/08/16	<1.0 3.6 <1.0 0.36	Recovery NC 104 NC 104 105 98 86 102 88 85 86 84 84	WNITS % % mg/L % % mg/L % % % % % % % % % % % % %	QC Limits 80 - 120 80 - 120 20 75 - 125 80 - 120 20 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130
5682184 DRI 5682184 DRI 5682184 DRI 5682189 DRI 5682189 DRI 5682189 DRI 5682189 DRI 5682316 JPS	RM Matrix Spike RM Spiked Blank RM Method Blank RM RPD RM Matrix Spike RM Spiked Blank RM Method Blank RM Method Blank RM RPD P5 Matrix Spike [HMB935-07]	Dissolved Chloride (Cl-) Dissolved Chloride (Cl-) Dissolved Chloride (Cl-) Dissolved Chloride (Cl-) Dissolved Sulphate (SO4) Dissolved Sulphate (SO4) Dissolved Sulphate (SO4) Dissolved Sulphate (SO4) 1,4-Difluorobenzene 4-Bromofluorobenzene D10-Ethylbenzene D4-1,2-Dichloroethane Benzene Toluene Ethylbenzene 0-Xylene p+m-Xylene F1 (C6-C10)	2018/08/17 2018/08/17 2018/08/17 2018/08/17 2018/08/17 2018/08/17 2018/08/17 2018/08/17 2018/08/16 2018/08/16 2018/08/16 2018/08/16 2018/08/16 2018/08/16 2018/08/16 2018/08/16 2018/08/16 2018/08/16 2018/08/16 2018/08/16	<1.0 3.6 <1.0	NC 104 NC 104 105 98 86 102 88 85 86 84	% mg/L % mg/L % mg/L % % % % %	80 - 120 80 - 120 20 75 - 125 80 - 120 20 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130
5682184 DRI 5682184 DRI 5682189 DRI 5682189 DRI 5682189 DRI 5682189 DRI 5682316 JPS	RM Spiked Blank RM Method Blank RM RPD RM Matrix Spike RM Spiked Blank RM Method Blank RM RPD P5 Matrix Spike [HMB935-07]	Dissolved Chloride (Cl-) Dissolved Chloride (Cl-) Dissolved Chloride (Cl-) Dissolved Sulphate (SO4) Dissolved Sulphate (SO4) Dissolved Sulphate (SO4) Dissolved Sulphate (SO4) 1,4-Difluorobenzene 4-Bromofluorobenzene D10-Ethylbenzene D4-1,2-Dichloroethane Benzene Toluene Ethylbenzene o-Xylene p+m-Xylene F1 (C6-C10)	2018/08/17 2018/08/17 2018/08/17 2018/08/17 2018/08/17 2018/08/17 2018/08/17 2018/08/16 2018/08/16 2018/08/16 2018/08/16 2018/08/16 2018/08/16 2018/08/16 2018/08/16 2018/08/16 2018/08/16	3.6	104 NC 104 105 98 86 102 88 85 86 84	% mg/L % % mg/L % % % % % %	20 75 - 125 80 - 120 20 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130
5682184 DRI 5682189 DRI 5682189 DRI 5682189 DRI 5682189 DRI 5682316 JP!	RM Method Blank RPD RM Matrix Spike RM Spiked Blank RM Method Blank RM RPD P5 Matrix Spike [HMB935-07]	Dissolved Chloride (Cl-) Dissolved Sulphate (SO4) 1,4-Difluorobenzene 4-Bromofluorobenzene D10-Ethylbenzene D4-1,2-Dichloroethane Benzene Toluene Ethylbenzene o-Xylene p+m-Xylene F1 (C6-C10)	2018/08/17 2018/08/17 2018/08/17 2018/08/17 2018/08/17 2018/08/17 2018/08/16 2018/08/16 2018/08/16 2018/08/16 2018/08/16 2018/08/16 2018/08/16 2018/08/16 2018/08/16	3.6	NC 104 105 98 86 102 88 85 86 84	mg/L % % mg/L % % % % % % %	20 75 - 125 80 - 120 20 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130
5682184 DRI 5682189 DRI 5682189 DRI 5682189 DRI 5682189 DRI 5682316 JPS	RM RPD RM Matrix Spike RM Spiked Blank RM Method Blank RM RPD P5 Matrix Spike [HMB935-07]	Dissolved Chloride (Cl-) Dissolved Sulphate (SO4) Dissolved Sulphate (SO4) Dissolved Sulphate (SO4) Dissolved Sulphate (SO4) 1,4-Difluorobenzene 4-Bromofluorobenzene D10-Ethylbenzene D4-1,2-Dichloroethane Benzene Toluene Ethylbenzene o-Xylene p+m-Xylene F1 (C6-C10)	2018/08/17 2018/08/17 2018/08/17 2018/08/17 2018/08/17 2018/08/16 2018/08/16 2018/08/16 2018/08/16 2018/08/16 2018/08/16 2018/08/16 2018/08/16	3.6	104 105 98 86 102 88 85 86 84	% % mg/L % % % % %	75 - 125 80 - 120 20 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130
5682189 DRI 5682189 DRI 5682189 DRI 5682189 DRI 5682316 JPS	RM Matrix Spike RM Spiked Blank RM Method Blank RM RPD P5 Matrix Spike [HMB935-07]	Dissolved Sulphate (SO4) Dissolved Sulphate (SO4) Dissolved Sulphate (SO4) Dissolved Sulphate (SO4) 1,4-Difluorobenzene 4-Bromofluorobenzene D10-Ethylbenzene D4-1,2-Dichloroethane Benzene Toluene Ethylbenzene o-Xylene p+m-Xylene F1 (C6-C10)	2018/08/17 2018/08/17 2018/08/17 2018/08/17 2018/08/16 2018/08/16 2018/08/16 2018/08/16 2018/08/16 2018/08/16 2018/08/16 2018/08/16	<1.0	104 105 98 86 102 88 85 86 84	% mg/L % % % % % %	75 - 125 80 - 120 20 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130
5682189 DRI 5682189 DRI 5682189 DRI 5682316 JPS	RM Spiked Blank RM Method Blank RM RPD P5 Matrix Spike [HMB935-07]	Dissolved Sulphate (SO4) Dissolved Sulphate (SO4) Dissolved Sulphate (SO4) 1,4-Difluorobenzene 4-Bromofluorobenzene D10-Ethylbenzene D4-1,2-Dichloroethane Benzene Toluene Ethylbenzene o-Xylene p+m-Xylene F1 (C6-C10)	2018/08/17 2018/08/17 2018/08/17 2018/08/16 2018/08/16 2018/08/16 2018/08/16 2018/08/16 2018/08/16 2018/08/16 2018/08/16 2018/08/16		104 105 98 86 102 88 85 86 84	% mg/L % % % % % %	20 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130
5682189 DRI 5682189 DRI 5682316 JP	RM Method Blank RM RPD P5 Matrix Spike [HMB935-07]	Dissolved Sulphate (SO4) Dissolved Sulphate (SO4) 1,4-Difluorobenzene 4-Bromofluorobenzene D10-Ethylbenzene D4-1,2-Dichloroethane Benzene Toluene Ethylbenzene o-Xylene p+m-Xylene F1 (C6-C10)	2018/08/17 2018/08/17 2018/08/16 2018/08/16 2018/08/16 2018/08/16 2018/08/16 2018/08/16 2018/08/16 2018/08/16 2018/08/16		98 86 102 88 85 86 84	mg/L % % % % % %	20 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130
5682189 DRI 5682316 JP	RM RPD P5 Matrix Spike [HMB935-07]	Dissolved Sulphate (SO4) 1,4-Difluorobenzene 4-Bromofluorobenzene D10-Ethylbenzene D4-1,2-Dichloroethane Benzene Toluene Ethylbenzene o-Xylene p+m-Xylene F1 (C6-C10)	2018/08/17 2018/08/16 2018/08/16 2018/08/16 2018/08/16 2018/08/16 2018/08/16 2018/08/16 2018/08/16		98 86 102 88 85 86	% % % % % %	70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130
5682316 JP:	P5 Matrix Spike [HMB935-07]	1,4-Difluorobenzene 4-Bromofluorobenzene D10-Ethylbenzene D4-1,2-Dichloroethane Benzene Toluene Ethylbenzene o-Xylene p+m-Xylene F1 (C6-C10)	2018/08/16 2018/08/16 2018/08/16 2018/08/16 2018/08/16 2018/08/16 2018/08/16 2018/08/16		98 86 102 88 85 86	% % % % % %	70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130
	[HMB935-07]	4-Bromofluorobenzene D10-Ethylbenzene D4-1,2-Dichloroethane Benzene Toluene Ethylbenzene o-Xylene p+m-Xylene F1 (C6-C10)	2018/08/16 2018/08/16 2018/08/16 2018/08/16 2018/08/16 2018/08/16 2018/08/16		98 86 102 88 85 86	% % % % %	70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130
5682316 JP:	P5 Spiked Blank	D10-Ethylbenzene D4-1,2-Dichloroethane Benzene Toluene Ethylbenzene o-Xylene p+m-Xylene F1 (C6-C10)	2018/08/16 2018/08/16 2018/08/16 2018/08/16 2018/08/16 2018/08/16 2018/08/16		86 102 88 85 86 84	% % % % %	70 - 130 70 - 130 70 - 130 70 - 130 70 - 130
5682316 JP:	P5 Spiked Blank	D4-1,2-Dichloroethane Benzene Toluene Ethylbenzene o-Xylene p+m-Xylene F1 (C6-C10)	2018/08/16 2018/08/16 2018/08/16 2018/08/16 2018/08/16 2018/08/16		102 88 85 86 84	% % % %	70 - 130 70 - 130 70 - 130 70 - 130
5682316 JP:	P5 Spiked Blank	Benzene Toluene Ethylbenzene o-Xylene p+m-Xylene F1 (C6-C10)	2018/08/16 2018/08/16 2018/08/16 2018/08/16 2018/08/16		88 85 86 84	% % %	70 - 130 70 - 130 70 - 130
5682316 JP!	P5 Spiked Blank	Toluene Ethylbenzene o-Xylene p+m-Xylene F1 (C6-C10)	2018/08/16 2018/08/16 2018/08/16 2018/08/16		85 86 84	% % %	70 - 130 70 - 130
5682316 JP	P5 Spiked Blank	Ethylbenzene o-Xylene p+m-Xylene F1 (C6-C10)	2018/08/16 2018/08/16 2018/08/16		86 84	% %	70 - 130
5682316 JP:	P5 Spiked Blank	o-Xylene p+m-Xylene F1 (C6-C10)	2018/08/16 2018/08/16		84	%	
5682316 JP	P5 Spiked Blank	o-Xylene p+m-Xylene F1 (C6-C10)	2018/08/16		84	%	
5682316 JP.	P5 Spiked Blank	p+m-Xylene F1 (C6-C10)	2018/08/16		84	0/	
5682316 JP:	P5 Spiked Blank	F1 (C6-C10)	2018/08/16			/0	70 - 130
5682316 JP:	P5 Spiked Blank	,			106	%	70 - 130
			2018/08/16		104	%	70 - 130
		4-Bromofluorobenzene	2018/08/16		98	%	70 - 130
		D10-Ethylbenzene	2018/08/16		110	%	70 - 130
		D4-1,2-Dichloroethane	2018/08/16		108	%	70 - 130
		Benzene	2018/08/16		107	%	70 - 130
		Toluene	2018/08/16		105	%	70 - 130
		Ethylbenzene	2018/08/16		102	%	70 - 130
		o-Xylene	2018/08/16		105	%	70 - 130
		p+m-Xylene	2018/08/16		102	%	70 - 130
		F1 (C6-C10)	2018/08/16		93	%	70 - 130
5682316 JP	P5 Method Blank	1,4-Difluorobenzene	2018/08/16		103	%	70 - 130
		4-Bromofluorobenzene	2018/08/16		98	%	70 - 130
		D10-Ethylbenzene	2018/08/16		87	%	70 - 130
		D4-1,2-Dichloroethane	2018/08/16		103	%	70 - 130
		Benzene	2018/08/16	<0.20		ug/L	
		Toluene	2018/08/16	<0.20		ug/L	
		Ethylbenzene	2018/08/16	<0.20		ug/L	
		o-Xylene	2018/08/16	<0.20		ug/L	
		p+m-Xylene	2018/08/16	<0.40		ug/L	
		Total Xylenes	2018/08/16	<0.40		ug/L	
		F1 (C6-C10)	2018/08/16	<25		ug/L	
		F1 (C6-C10) - BTEX	2018/08/16	<25		ug/L	
5682316 JP	P5 RPD [HMB935-07]	Benzene	2018/08/16	NC		%	30
3002010 0	5 2 (2555 67)	Toluene	2018/08/16	NC		%	30
		Ethylbenzene	2018/08/16	NC		%	30
		o-Xylene	2018/08/16	NC		%	30
		p+m-Xylene	2018/08/16	NC		%	30
		Total Xylenes	2018/08/16	NC		%	30
		F1 (C6-C10)	2018/08/16	NC		%	30
		F1 (C6-C10) - BTEX	2018/08/16	NC		%	30
5683052 PB	BA Matrix Spike	Dissolved Aluminum (Al)	2018/08/17		101	%	80 - 120
		Dissolved Antimony (Sb)	2018/08/17		107	%	80 - 120

SLR Consulting (Canada) Ltd.
Client Project #: 209.40585.00000
Site Location: FOX-C Ekalugad Fjord

Your P.O. #: MAR2516 Sampler Initials: KR

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
		··	Dissolved Arsenic (As)	2018/08/17		104	%	80 - 120
			Dissolved Barium (Ba)	2018/08/17		101	%	80 - 120
			Dissolved Beryllium (Be)	2018/08/17		104	%	80 - 120
			Dissolved Bismuth (Bi)	2018/08/17		101	%	80 - 120
			Dissolved Boron (B)	2018/08/17		98	%	80 - 120
			Dissolved Cadmium (Cd)	2018/08/17		103	%	80 - 120
			Dissolved Calcium (Ca)	2018/08/17		NC	%	80 - 120
			Dissolved Chromium (Cr)	2018/08/17		100	%	80 - 120
			Dissolved Cobalt (Co)	2018/08/17		107	%	80 - 120
			Dissolved Copper (Cu)	2018/08/17		98	%	80 - 120
			Dissolved Iron (Fe)	2018/08/17		106	%	80 - 120
			Dissolved Lead (Pb)	2018/08/17		97	%	80 - 120
			Dissolved Lithium (Li)	2018/08/17		101	%	80 - 120
			Dissolved Magnesium (Mg)	2018/08/17		NC	%	80 - 120
			Dissolved Manganese (Mn)	2018/08/17		NC	%	80 - 120
			Dissolved Molybdenum (Mo)	2018/08/17		100	%	80 - 120
			Dissolved Nickel (Ni)	2018/08/17		100	%	80 - 120
			Dissolved Potassium (K)	2018/08/17		109	%	80 - 120
			Dissolved Selenium (Se)	2018/08/17		102	%	80 - 120
			Dissolved Silicon (Si)	2018/08/17		109	%	80 - 120
			Dissolved Silver (Ag)	2018/08/17		81	%	80 - 120
			Dissolved Sodium (Na)	2018/08/17		97	%	80 - 120
			Dissolved Strontium (Sr)	2018/08/17		104	%	80 - 120
			Dissolved Tellurium (Te)	2018/08/17		102	%	80 - 120
			Dissolved Thallium (TI)	2018/08/17		100	%	80 - 120
			Dissolved Tin (Sn)	2018/08/17		103	%	80 - 120
			Dissolved Titanium (Ti)	2018/08/17		106	%	80 - 120
			Dissolved Tungsten (W)	2018/08/17		98	%	80 - 120
			Dissolved Uranium (U)	2018/08/17		103	%	80 - 120
			Dissolved Vanadium (V)	2018/08/17		103	%	80 - 120
			Dissolved Zinc (Zn)	2018/08/17		102	%	80 - 120
			Dissolved Zirconium (Zr)	2018/08/17		105	%	80 - 120
5683052	PBA	Spiked Blank	Dissolved Aluminum (AI)	2018/08/17		100	%	80 - 120
			Dissolved Antimony (Sb)	2018/08/17		104	%	80 - 120
			Dissolved Arsenic (As)	2018/08/17		100	%	80 - 120
			Dissolved Barium (Ba)	2018/08/17		97	%	80 - 120
			Dissolved Beryllium (Be)	2018/08/17		103	%	80 - 120
			Dissolved Bismuth (Bi)	2018/08/17		101	%	80 - 120
			Dissolved Boron (B)	2018/08/17		97	%	80 - 120
			Dissolved Cadmium (Cd)	2018/08/17		100	%	80 - 120
			Dissolved Calcium (Ca)	2018/08/17		102	%	80 - 120
			Dissolved Chromium (Cr)	2018/08/17		97	%	80 - 120
			Dissolved Cobalt (Co)	2018/08/17		102	%	80 - 120
			Dissolved Copper (Cu)	2018/08/17		97	%	80 - 120
			Dissolved Iron (Fe)	2018/08/17		104	%	80 - 120
			Dissolved Lead (Pb)	2018/08/17		99	%	80 - 120
			Dissolved Lithium (Li)	2018/08/17		102	%	80 - 120
			Dissolved Magnesium (Mg)	2018/08/17		104	%	80 - 120
			Dissolved Manganese (Mn)	2018/08/17		99	%	80 - 120
			Dissolved Molybdenum (Mo)	2018/08/17		97	%	80 - 120
			Dissolved Nickel (Ni)	2018/08/17		98	%	80 - 120
			Dissolved Mener (141)	2010/00/17			/0	00 120

SLR Consulting (Canada) Ltd.
Client Project #: 209.40585.00000
Site Location: FOX-C Ekalugad Fjord

Your P.O. #: MAR2516 Sampler Initials: KR

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
			Dissolved Potassium (K)	2018/08/17		102	%	80 - 120
			Dissolved Selenium (Se)	2018/08/17		98	%	80 - 120
			Dissolved Silicon (Si)	2018/08/17		104	%	80 - 120
			Dissolved Silver (Ag)	2018/08/17		97	%	80 - 120
			Dissolved Sodium (Na)	2018/08/17		101	%	80 - 120
			Dissolved Strontium (Sr)	2018/08/17		99	%	80 - 120
			Dissolved Tellurium (Te)	2018/08/17		100	%	80 - 120
			Dissolved Thallium (TI)	2018/08/17		99	%	80 - 120
			Dissolved Tin (Sn)	2018/08/17		101	%	80 - 120
			Dissolved Titanium (Ti)	2018/08/17		104	%	80 - 120
			Dissolved Tungsten (W)	2018/08/17		96	%	80 - 120
			Dissolved Uranium (U)	2018/08/17		103	%	80 - 120
			Dissolved Vanadium (V)	2018/08/17		99	%	80 - 120
			Dissolved Zinc (Zn)	2018/08/17		101	%	80 - 120
			Dissolved Zirconium (Zr)	2018/08/17		102	%	80 - 120
5683052	PBA	Method Blank	Dissolved Aluminum (Al)	2018/08/17	<5.0		ug/L	
			Dissolved Antimony (Sb)	2018/08/17	< 0.50		ug/L	
			Dissolved Arsenic (As)	2018/08/17	<1.0		ug/L	
			Dissolved Barium (Ba)	2018/08/17	<2.0		ug/L	
			Dissolved Beryllium (Be)	2018/08/17	< 0.50		ug/L	
			Dissolved Bismuth (Bi)	2018/08/17	<1.0		ug/L	
			Dissolved Boron (B)	2018/08/17	<10		ug/L	
			Dissolved Cadmium (Cd)	2018/08/17	< 0.10		ug/L	
			Dissolved Calcium (Ca)	2018/08/17	<200		ug/L	
			Dissolved Chromium (Cr)	2018/08/17	<5.0		ug/L	
			Dissolved Cobalt (Co)	2018/08/17	< 0.50		ug/L	
			Dissolved Copper (Cu)	2018/08/17	<1.0		ug/L	
			Dissolved Iron (Fe)	2018/08/17	<100		ug/L	
			Dissolved Lead (Pb)	2018/08/17	< 0.50		ug/L	
			Dissolved Lithium (Li)	2018/08/17	<5.0		ug/L	
			Dissolved Magnesium (Mg)	2018/08/17	<50		ug/L	
			Dissolved Manganese (Mn)	2018/08/17	<2.0		ug/L	
			Dissolved Molybdenum (Mo)	2018/08/17	< 0.50		ug/L	
			Dissolved Nickel (Ni)	2018/08/17	<1.0		ug/L	
			Dissolved Potassium (K)	2018/08/17	<200		ug/L	
			Dissolved Selenium (Se)	2018/08/17	<2.0		ug/L	
			Dissolved Silicon (Si)	2018/08/17	<50		ug/L	
			Dissolved Silver (Ag)	2018/08/17	< 0.10		ug/L	
			Dissolved Sodium (Na)	2018/08/17	<100		ug/L	
			Dissolved Strontium (Sr)	2018/08/17	<1.0		ug/L	
			Dissolved Tellurium (Te)	2018/08/17	<1.0		ug/L	
			Dissolved Thallium (TI)	2018/08/17	< 0.050		ug/L	
			Dissolved Tin (Sn)	2018/08/17	<1.0		ug/L	
			Dissolved Titanium (Ti)	2018/08/17	<5.0		ug/L	
			Dissolved Tungsten (W)	2018/08/17	<1.0		ug/L	
			Dissolved Uranium (U)	2018/08/17	<0.10		ug/L	
			Dissolved Vanadium (V)	2018/08/17	< 0.50		ug/L	
			Dissolved Zinc (Zn)	2018/08/17	<5.0		ug/L	
			Dissolved Zirconium (Zr)	2018/08/17	<1.0		ug/L	
5683052	PBA	RPD	Dissolved Lead (Pb)	2018/08/17	NC		%	20
5683073	SAU	Spiked Blank	Alkalinity (Total as CaCO3)	2018/08/17	-	96	%	85 - 115

SLR Consulting (Canada) Ltd.
Client Project #: 209.40585.00000
Site Location: FOX-C Ekalugad Fjord

Your P.O. #: MAR2516 Sampler Initials: KR

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
5683073	SAU	Method Blank	Alkalinity (Total as CaCO3)	2018/08/17	<1.0		mg/L	
5683073	SAU	RPD [HMB944-03]	Alkalinity (Total as CaCO3)	2018/08/17	1.1		%	20
5683075	SAU	Spiked Blank	Conductivity	2018/08/17		102	%	85 - 115
5683075	SAU	Method Blank	Conductivity	2018/08/17	< 0.001		mS/cm	
5683075	SAU	RPD [HMB944-03]	Conductivity	2018/08/17	0.54		%	25
5683076	SAU	Spiked Blank	рН	2018/08/17		101	%	98 - 103
5683076	SAU	RPD [HMB944-03]	рН	2018/08/17	0.18		%	N/A
5683093	MKX	QC Standard	Total Suspended Solids	2018/08/16		96	%	85 - 115
5683093	MKX	Method Blank	Total Suspended Solids	2018/08/16	<10		mg/L	
5683093	MKX	RPD	Total Suspended Solids	2018/08/16	NC		%	25
5683334	BWW	Matrix Spike	o-Terphenyl	2018/08/17		94	%	60 - 130
			F2 (C10-C16 Hydrocarbons)	2018/08/17		96	%	50 - 130
			F3 (C16-C34 Hydrocarbons)	2018/08/17		96	%	50 - 130
			F4 (C34-C50 Hydrocarbons)	2018/08/17		93	%	50 - 130
5683334	BWW	Spiked Blank	o-Terphenyl	2018/08/17		95	%	60 - 130
			F2 (C10-C16 Hydrocarbons)	2018/08/17		99	%	60 - 130
			F3 (C16-C34 Hydrocarbons)	2018/08/17		98	%	60 - 130
			F4 (C34-C50 Hydrocarbons)	2018/08/17		94	%	60 - 130
5683334	BWW	Method Blank	o-Terphenyl	2018/08/16		91	%	60 - 130
			F2 (C10-C16 Hydrocarbons)	2018/08/16	<100		ug/L	
			F3 (C16-C34 Hydrocarbons)	2018/08/16	<200		ug/L	
			F4 (C34-C50 Hydrocarbons)	2018/08/16	<200		ug/L	
5683334	BWW	RPD	F2 (C10-C16 Hydrocarbons)	2018/08/17	NC		%	30
			F3 (C16-C34 Hydrocarbons)	2018/08/17	NC		%	30
			F4 (C34-C50 Hydrocarbons)	2018/08/17	NC		%	30
5683846	TNG	Matrix Spike [HMB941-05]	Total Aluminum (Al)	2018/08/16		NC	%	80 - 120
			Total Antimony (Sb)	2018/08/16		105	%	80 - 120
			Total Arsenic (As)	2018/08/16		102	%	80 - 120
			Total Barium (Ba)	2018/08/16		102	%	80 - 120
			Total Beryllium (Be)	2018/08/16		100	%	80 - 120
			Total Bismuth (Bi)	2018/08/16		93	%	80 - 120
			Total Boron (B)	2018/08/16		99	%	80 - 120
			Total Cadmium (Cd)	2018/08/16		102	%	80 - 120
			Total Calcium (Ca)	2018/08/16		99	%	80 - 120
			Total Chromium (Cr)	2018/08/16		99	%	80 - 120
			Total Cobalt (Co)	2018/08/16		99	%	80 - 120
			Total Copper (Cu)	2018/08/16		101	%	80 - 120
			Total Iron (Fe)	2018/08/16		104	%	80 - 120
			Total Lead (Pb)	2018/08/16		97	%	80 - 120
			Total Lithium (Li)	2018/08/16		100	%	80 - 120
			Total Magnesium (Mg)	2018/08/16		100	%	80 - 120
			Total Manganese (Mn)	2018/08/16		NC	%	80 - 120
			Total Molybdenum (Mo)	2018/08/16		104	%	80 - 120
			Total Nickel (Ni)	2018/08/16		98	%	80 - 120
			Total Potassium (K)	2018/08/16		102	%	80 - 120
			Total Selenium (Se)	2018/08/16		106	%	80 - 120
			Total Silicon (Si)	2018/08/16		119	%	80 - 120
			Total Silver (Ag)	2018/08/16		100	%	80 - 120
			Total Sodium (Na)	2018/08/16		NC	%	80 - 120
			Total Strontium (Sr)	2018/08/16		98	%	80 - 120

SLR Consulting (Canada) Ltd.
Client Project #: 209.40585.00000
Site Location: FOX-C Ekalugad Fjord

Your P.O. #: MAR2516 Sampler Initials: KR

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
			Total Tellurium (Te)	2018/08/16		104	%	80 - 120
			Total Thallium (TI)	2018/08/16		96	%	80 - 120
			Total Tin (Sn)	2018/08/16		103	%	80 - 120
			Total Titanium (Ti)	2018/08/16		NC	%	80 - 120
			Total Tungsten (W)	2018/08/16		100	%	80 - 120
			Total Uranium (U)	2018/08/16		98	%	80 - 120
			Total Vanadium (V)	2018/08/16		100	%	80 - 120
			Total Zinc (Zn)	2018/08/16		102	%	80 - 120
			Total Zirconium (Zr)	2018/08/16		104	%	80 - 120
5683846	TNG	Spiked Blank	Total Aluminum (AI)	2018/08/16		102	%	80 - 120
			Total Antimony (Sb)	2018/08/16		103	%	80 - 120
			Total Arsenic (As)	2018/08/16		103	%	80 - 120
			Total Barium (Ba)	2018/08/16		95	%	80 - 120
			Total Beryllium (Be)	2018/08/16		98	%	80 - 120
			Total Bismuth (Bi)	2018/08/16		92	%	80 - 120
			Total Boron (B)	2018/08/16		100	%	80 - 120
			Total Cadmium (Cd)	2018/08/16		100	%	80 - 120
			Total Calcium (Ca)	2018/08/16		101	%	80 - 120
			Total Chromium (Cr)	2018/08/16		99	%	80 - 120
			Total Cobalt (Co)	2018/08/16		99	%	80 - 120
			Total Copper (Cu)	2018/08/16		98	%	80 - 120
			Total Iron (Fe)	2018/08/16		102	%	80 - 120
			Total Lead (Pb)	2018/08/16		95	%	80 - 120
			Total Lithium (Li)	2018/08/16		98	%	80 - 120
			Total Magnesium (Mg)	2018/08/16		101	%	80 - 120
			Total Manganese (Mn)	2018/08/16		96	%	80 - 120
			Total Molybdenum (Mo)	2018/08/16		101	%	80 - 120
			Total Nickel (Ni)	2018/08/16		99	%	80 - 120
			Total Potassium (K)	2018/08/16		100	%	80 - 120
			Total Selenium (Se)	2018/08/16		107	%	80 - 120
			Total Silicon (Si)	2018/08/16		101	%	80 - 120
			Total Silver (Ag)	2018/08/16		98	%	80 - 120
			Total Sodium (Na)	2018/08/16		101	%	80 - 120
			Total Strontium (Sr)	2018/08/16		96	%	80 - 120
			Total Tellurium (Te)	2018/08/16		103	%	80 - 120
			Total Thallium (TI)	2018/08/16		95	%	80 - 120
			Total Tin (Sn)	2018/08/16		100	%	80 - 120
			Total Titanium (Ti)	2018/08/16		106	%	80 - 120
			Total Tungsten (W)	2018/08/16		98	%	80 - 120
			Total Uranium (U)	2018/08/16		95	%	80 - 120
			Total Vanadium (V)	2018/08/16		100	%	80 - 120
			Total Zinc (Zn)	2018/08/16		105	%	80 - 120
			Total Zirconium (Zr)	2018/08/16		100	%	80 - 120
5683846	TNG	Method Blank	Total Aluminum (Al)	2018/08/16	<5.0		ug/L	
			Total Antimony (Sb)	2018/08/16	<0.50		ug/L	
			Total Arsenic (As)	2018/08/16	<1.0		ug/L	
			Total Barium (Ba)	2018/08/16	<2.0		ug/L	
			Total Beryllium (Be)	2018/08/16	<0.50		ug/L	
			Total Bismuth (Bi)	2018/08/16	<1.0		ug/L	
			Total Boron (B)	2018/08/16	<10		ug/L	
			Total Cadmium (Cd)	2018/08/16	<0.10		ug/L	

SLR Consulting (Canada) Ltd.
Client Project #: 209.40585.00000
Site Location: FOX-C Ekalugad Fjord

Your P.O. #: MAR2516 Sampler Initials: KR

2.122				E REPORT (CONT'D)				
QA/QC Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
Buton		ασ.,γρο	Total Calcium (Ca)	2018/08/16	<200	y	ug/L	
			Total Chromium (Cr)	2018/08/16	<5.0		ug/L	
			Total Cobalt (Co)	2018/08/16	<0.50		ug/L	
			Total Copper (Cu)	2018/08/16	<1.0		ug/L	
			Total Iron (Fe)	2018/08/16	<100		ug/L	
			Total Lead (Pb)	2018/08/16	<0.50		ug/L	
			Total Lithium (Li)	2018/08/16	<5.0		ug/L	
			Total Magnesium (Mg)	2018/08/16	<50		ug/L	
			Total Manganese (Mn)	2018/08/16	<2.0		ug/L	
			Total Molybdenum (Mo)	2018/08/16	<0.50		ug/L	
			Total Nickel (Ni)	2018/08/16	<1.0		ug/L	
			Total Potassium (K)	2018/08/16	<200		ug/L	
			Total Selenium (Se)	2018/08/16	<2.0		ug/L	
			Total Silicon (Si)	2018/08/16	<50		ug/L	
			Total Silver (Ag)	2018/08/16	<0.10		ug/L	
			Total Sodium (Na)	2018/08/16	<100		ug/L	
			Total Strontium (Sr)	2018/08/16	<1.0		ug/L	
			Total Tellurium (Te)	2018/08/16	<1.0		ug/L	
			Total Thallium (TI)	2018/08/16	<0.050		ug/L	
			Total Trialium (11)	2018/08/16	<1.0		ug/L	
			Total Titanium (Ti)	2018/08/16	<5.0		ug/L	
			Total Tungsten (W)	2018/08/16	<1.0		ug/L	
			Total Uranium (U)	2018/08/16	<0.10		ug/L ug/L	
			Total Vanadium (V)	2018/08/16	<0.50			
			Total Zinc (Zn)	2018/08/16	<5.0		ug/L ug/L	
			Total Zirc (Zir) Total Zirconium (Zr)	2018/08/16	<1.0		ug/L ug/L	
5683846	TNG	RPD [HMB941-05]	Total Aluminum (Al)	2018/08/16	10		ug/L %	20
3003040	ING	KPD [HIVID941-05]	Total Antimony (Sb)	2018/08/16	NC		%	20
			Total Artimony (35) Total Arsenic (As)	2018/08/16				
					NC		% %	20 20
			Total Barillium (Ba)	2018/08/16	7.0 NC		%	
			Total Beryllium (Be)	2018/08/16				20
			Total Bayes (B)	2018/08/16	NC		%	20
			Total Boron (B)	2018/08/16	2.2		%	20
			Total Calairms (Cd)	2018/08/16	NC		%	20
			Total Calcium (Ca)	2018/08/16	3.7		%	20
			Total Chromium (Cr)	2018/08/16	3.6		%	20
			Total Cobalt (Co)	2018/08/16	3.1		%	20
			Total Copper (Cu)	2018/08/16	4.2		%	20
			Total Iron (Fe)	2018/08/16	2.4		%	20
			Total Lead (Pb)	2018/08/16	3.8		%	20
			Total Lithium (Li)	2018/08/16	7.0		%	20
			Total Magnesium (Mg)	2018/08/16	1.8		%	20
			Total Manganese (Mn)	2018/08/16	2.1		%	20
			Total Molybdenum (Mo)	2018/08/16	9.0		%	20
			Total Nickel (Ni)	2018/08/16	6.5		%	20
			Total Potassium (K)	2018/08/16	3.6		%	20
			Total Selenium (Se)	2018/08/16	NC		%	20
			Total Silicon (Si)	2018/08/16	9.2		%	20
			Total Silver (Ag)	2018/08/16	NC		%	20
			Total Sodium (Na)	2018/08/16	2.4		%	20
			Total Strontium (Sr)	2018/08/16	2.8		%	20

SLR Consulting (Canada) Ltd.
Client Project #: 209.40585.00000
Site Location: FOX-C Ekalugad Fjord

Your P.O. #: MAR2516 Sampler Initials: KR

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
			Total Tellurium (Te)	2018/08/16	NC		%	20
			Total Thallium (TI)	2018/08/16	NC		%	20
			Total Tin (Sn)	2018/08/16	NC		%	20
			Total Titanium (Ti)	2018/08/16	3.5		%	20
			Total Tungsten (W)	2018/08/16	NC		%	20
			Total Uranium (U)	2018/08/16	3.4		%	20
			Total Vanadium (V)	2018/08/16	3.4		%	20
			Total Zinc (Zn)	2018/08/16	8.6		%	20
			Total Zirconium (Zr)	2018/08/16	19		%	20
5685612	SHG	Matrix Spike [HMB935-01]	Decachlorobiphenyl	2018/08/17		109	%	60 - 130
			Aroclor 1260	2018/08/17		95	%	60 - 130
			Total PCB	2018/08/17		95	%	60 - 130
5685612	SHG	Spiked Blank	Decachlorobiphenyl	2018/08/17		88	%	60 - 130
			Aroclor 1260	2018/08/17		83	%	60 - 130
			Total PCB	2018/08/17		83	%	60 - 130
5685612	SHG	Method Blank	Decachlorobiphenyl	2018/08/17		99	%	60 - 130
			Aroclor 1242	2018/08/17	< 0.05		ug/L	
			Aroclor 1248	2018/08/17	< 0.05		ug/L	
			Aroclor 1254	2018/08/17	< 0.05		ug/L	
			Aroclor 1260	2018/08/17	< 0.05		ug/L	
			Total PCB	2018/08/17	< 0.05		ug/L	
5685612	SHG	RPD [HMB938-01]	Aroclor 1242	2018/08/17	NC		%	30
			Aroclor 1248	2018/08/17	NC		%	30
			Aroclor 1254	2018/08/17	NC		%	30
			Aroclor 1260	2018/08/17	NC		%	30
			Total PCB	2018/08/17	NC		%	40
5686273	TNG	Matrix Spike	Dissolved Aluminum (AI)	2018/08/20		107	%	80 - 120
		·	Dissolved Antimony (Sb)	2018/08/20		110	%	80 - 120
			Dissolved Arsenic (As)	2018/08/20		106	%	80 - 120
			Dissolved Barium (Ba)	2018/08/20		105	%	80 - 120
			Dissolved Beryllium (Be)	2018/08/20		106	%	80 - 120
			Dissolved Bismuth (Bi)	2018/08/20		98	%	80 - 120
			Dissolved Boron (B)	2018/08/20		104	%	80 - 120
			Dissolved Cadmium (Cd)	2018/08/20		106	%	80 - 120
			Dissolved Calcium (Ca)	2018/08/20		107	%	80 - 120
			Dissolved Chromium (Cr)	2018/08/20		103	%	80 - 120
			Dissolved Cobalt (Co)	2018/08/20		103	%	80 - 120
			Dissolved Copper (Cu)	2018/08/20		108	%	80 - 120
			Dissolved Iron (Fe)	2018/08/20		107	%	80 - 120
			Dissolved Lead (Pb)	2018/08/20		100	%	80 - 120
			Dissolved Lithium (Li)	2018/08/20		108	%	80 - 120
			Dissolved Magnesium (Mg)	2018/08/20		106	%	80 - 120
			Dissolved Manganese (Mn)	2018/08/20		104	%	80 - 120
			Dissolved Molybdenum (Mo)	2018/08/20		108	%	80 - 120
			Dissolved Nickel (Ni)	2018/08/20		103	%	80 - 120
			Dissolved Potassium (K)	2018/08/20		106	%	80 - 120
			Dissolved Selenium (Se)	2018/08/20		106	%	80 - 120
			Dissolved Silicon (Si)	2018/08/20		107	%	80 - 120
			Dissolved Silver (Ag)	2018/08/20		103	%	80 - 120
			Dissolved Sodium (Na)	2018/08/20		103	%	80 - 120

SLR Consulting (Canada) Ltd.
Client Project #: 209.40585.00000
Site Location: FOX-C Ekalugad Fjord

Your P.O. #: MAR2516 Sampler Initials: KR

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
			Dissolved Strontium (Sr)	2018/08/20		105	%	80 - 120
			Dissolved Tellurium (Te)	2018/08/20		110	%	80 - 120
			Dissolved Thallium (TI)	2018/08/20		99	%	80 - 120
			Dissolved Tin (Sn)	2018/08/20		109	%	80 - 120
			Dissolved Titanium (Ti)	2018/08/20		105	%	80 - 120
			Dissolved Tungsten (W)	2018/08/20		103	%	80 - 120
			Dissolved Uranium (U)	2018/08/20		106	%	80 - 120
			Dissolved Vanadium (V)	2018/08/20		105	%	80 - 120
			Dissolved Zinc (Zn)	2018/08/20		104	%	80 - 120
			Dissolved Zirconium (Zr)	2018/08/20		110	%	80 - 120
5686273	TNG	Spiked Blank	Dissolved Aluminum (Al)	2018/08/20		103	%	80 - 120
			Dissolved Antimony (Sb)	2018/08/20		103	%	80 - 120
			Dissolved Arsenic (As)	2018/08/20		98	%	80 - 120
			Dissolved Barium (Ba)	2018/08/20		103	%	80 - 120
			Dissolved Beryllium (Be)	2018/08/20		100	%	80 - 120
			Dissolved Bismuth (Bi)	2018/08/20		93	%	80 - 120
			Dissolved Boron (B)	2018/08/20		101	%	80 - 120
			Dissolved Cadmium (Cd)	2018/08/20		99	%	80 - 120
			Dissolved Calcium (Ca)	2018/08/20		103	%	80 - 120
			Dissolved Chromium (Cr)	2018/08/20		98	%	80 - 120
			Dissolved Cobalt (Co)	2018/08/20		96	%	80 - 120
			Dissolved Copper (Cu)	2018/08/20		101	%	80 - 120
			Dissolved Iron (Fe)	2018/08/20		101	%	80 - 120
			Dissolved Lead (Pb)	2018/08/20		95	%	80 - 120
			Dissolved Lithium (Li)	2018/08/20		101	%	80 - 120
			Dissolved Magnesium (Mg)	2018/08/20		100	%	80 - 120
			Dissolved Manganese (Mn)	2018/08/20		98	%	80 - 120
			Dissolved Molybdenum (Mo)	2018/08/20		102	%	80 - 120
			Dissolved Nickel (Ni)	2018/08/20		96	%	80 - 120
			Dissolved Potassium (K)	2018/08/20		101	%	80 - 120
			Dissolved Selenium (Se)	2018/08/20		99	%	80 - 120
			Dissolved Silicon (Si)	2018/08/20		103	%	80 - 120
			Dissolved Silver (Ag)	2018/08/20		98	%	80 - 120
			Dissolved Sodium (Na)	2018/08/20		99	%	80 - 120
			Dissolved Strontium (Sr)	2018/08/20		97	%	80 - 120
			Dissolved Tellurium (Te)	2018/08/20		102	%	80 - 120
			Dissolved Thallium (TI)	2018/08/20		94	%	80 - 120
			Dissolved Tin (Sn)	2018/08/20		102	%	80 - 120
			Dissolved Titanium (Ti)	2018/08/20		102	%	80 - 120
			Dissolved Tungsten (W)	2018/08/20		98	%	80 - 120
			Dissolved Uranium (U)	2018/08/20		99	%	80 - 120
			Dissolved Vanadium (V)	2018/08/20		99	%	80 - 120
			Dissolved Zinc (Zn)	2018/08/20		97	%	80 - 120
			Dissolved Zirconium (Zr)	2018/08/20		105	%	80 - 120
5686273	TNG	Method Blank	Dissolved Aluminum (Al)	2018/08/20	<5.0	200	ug/L	
			Dissolved Antimony (Sb)	2018/08/20	<0.50		ug/L	
			Dissolved Arsenic (As)	2018/08/20	<1.0		ug/L	
			Dissolved Barium (Ba)	2018/08/20	<2.0		ug/L	
			Dissolved Beryllium (Be)	2018/08/20	<0.50		ug/L	
			Dissolved Berymuth (Be)	2018/08/20	<1.0		ug/L	
			Dissolved Bismuth (Bi) Dissolved Boron (B)	2018/08/20	\I.U		ug/L	

SLR Consulting (Canada) Ltd.
Client Project #: 209.40585.00000
Site Location: FOX-C Ekalugad Fjord

Your P.O. #: MAR2516 Sampler Initials: KR

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
			Dissolved Cadmium (Cd)	2018/08/20	<0.10		ug/L	
			Dissolved Calcium (Ca)	2018/08/20	<200		ug/L	
			Dissolved Chromium (Cr)	2018/08/20	<5.0		ug/L	
			Dissolved Cobalt (Co)	2018/08/20	< 0.50		ug/L	
			Dissolved Copper (Cu)	2018/08/20	<1.0		ug/L	
			Dissolved Iron (Fe)	2018/08/20	<100		ug/L	
			Dissolved Lead (Pb)	2018/08/20	< 0.50		ug/L	
			Dissolved Lithium (Li)	2018/08/20	<5.0		ug/L	
			Dissolved Magnesium (Mg)	2018/08/20	<50		ug/L	
			Dissolved Manganese (Mn)	2018/08/20	<2.0		ug/L	
			Dissolved Molybdenum (Mo)	2018/08/20	< 0.50		ug/L	
			Dissolved Nickel (Ni)	2018/08/20	<1.0		ug/L	
			Dissolved Potassium (K)	2018/08/20	<200		ug/L	
			Dissolved Selenium (Se)	2018/08/20	<2.0		ug/L	
			Dissolved Silicon (Si)	2018/08/20	<50		ug/L	
			Dissolved Silver (Ag)	2018/08/20	<0.10		ug/L	
			Dissolved Sodium (Na)	2018/08/20	<100		ug/L	
			Dissolved Strontium (Sr)	2018/08/20	<1.0		ug/L	
			Dissolved Tellurium (Te)	2018/08/20	<1.0		ug/L	
			Dissolved Thallium (TI)	2018/08/20	< 0.050		ug/L	
			Dissolved Tin (Sn)	2018/08/20	<1.0		ug/L	
			Dissolved Titanium (Ti)	2018/08/20	<5.0		ug/L	
			Dissolved Tungsten (W)	2018/08/20	<1.0		ug/L	
			Dissolved Uranium (U)	2018/08/20	<0.10		ug/L	
			Dissolved Vanadium (V)	2018/08/20	< 0.50		ug/L	
			Dissolved Zinc (Zn)	2018/08/20	<5.0		ug/L	
			Dissolved Zirconium (Zr)	2018/08/20	<1.0		ug/L	
5686273	TNG	RPD	Dissolved Antimony (Sb)	2018/08/20	NC		wg/L %	20
0000273	1110	III D	Dissolved Artimony (35)	2018/08/20	NC		%	20
			Dissolved Arsenic (As) Dissolved Cadmium (Cd)	2018/08/20	NC		%	20
			Dissolved Calcium (Ca)	2018/08/20	1.3		%	20
			Dissolved Calcium (Ca) Dissolved Cobalt (Co)	2018/08/20	NC		%	20
			Dissolved Copper (Cu)	2018/08/20	5.2		%	20
			Dissolved Copper (Cu) Dissolved Lead (Pb)	2018/08/20	NC		% %	20
			` ,					
			Dissolved Magnesium (Mg) Dissolved Nickel (Ni)	2018/08/20	1.2 NC		% %	20
			, ,	2018/08/20 2018/08/20	NC 5.6			20
			Dissolved Potassium (K)				%	20
			Dissolved Selenium (Se)	2018/08/20	NC		%	20
			Dissolved Silver (Ag)	2018/08/20	NC		%	20
			Dissolved Sodium (Na)	2018/08/20	1.7		%	20
C074C0	167	OC Standard	Dissolved Zinc (Zn)	2018/08/20	9.3	07	%	20
687460	JS7	QC Standard	Total Dissolved Solids	2018/08/18	-10	97	%	90 - 110
5687460	JS7	Method Blank	Total Dissolved Solids	2018/08/18	<10		mg/L	25
5687460	JS7	RPD [HMB943-03]	Total Dissolved Solids	2018/08/18	0	400	%	25
5690047	ADA	Matrix Spike	Dissolved Autimorny (Sh)	2018/08/21		108	%	80 - 120
			Dissolved Antimony (Sb)	2018/08/21		107	%	80 - 120
			Dissolved Arsenic (As)	2018/08/21		103	%	80 - 120
			Dissolved Barium (Ba)	2018/08/21		NC	%	80 - 120
			Dissolved Beryllium (Be)	2018/08/21		106	%	80 - 120
			Dissolved Bismuth (Bi)	2018/08/21		94	%	80 - 120
			Dissolved Boron (B)	2018/08/21		107	%	80 - 120

SLR Consulting (Canada) Ltd.
Client Project #: 209.40585.00000
Site Location: FOX-C Ekalugad Fjord

Your P.O. #: MAR2516 Sampler Initials: KR

QA/QC							
Batch	Init	QC Type	Parameter	Date Analyzed Value	Recovery	UNITS	QC Limits
			Dissolved Cadmium (Cd)	2018/08/21	102	%	80 - 120
			Dissolved Calcium (Ca)	2018/08/21	NC	%	80 - 120
			Dissolved Chromium (Cr)	2018/08/21	98	%	80 - 120
			Dissolved Cobalt (Co)	2018/08/21	102	%	80 - 120
			Dissolved Copper (Cu)	2018/08/21	102	%	80 - 120
			Dissolved Iron (Fe)	2018/08/21	NC	%	80 - 120
			Dissolved Lead (Pb)	2018/08/21	97	%	80 - 120
			Dissolved Lithium (Li)	2018/08/21	108	%	80 - 120
			Dissolved Magnesium (Mg)	2018/08/21	NC	%	80 - 120
			Dissolved Manganese (Mn)	2018/08/21	NC	%	80 - 120
			Dissolved Molybdenum (Mo)	2018/08/21	107	%	80 - 120
			Dissolved Nickel (Ni)	2018/08/21	98	%	80 - 120
			Dissolved Potassium (K)	2018/08/21	110	%	80 - 120
			Dissolved Selenium (Se)	2018/08/21	97	%	80 - 120
			Dissolved Silicon (Si)	2018/08/21	108	%	80 - 120
			Dissolved Silver (Ag)	2018/08/21	64 (1)	%	80 - 120
			Dissolved Sodium (Na)	2018/08/21	NC	%	80 - 120
			Dissolved Strontium (Sr)	2018/08/21	NC	%	80 - 120
			Dissolved Tellurium (Te)	2018/08/21	98	%	80 - 120
			Dissolved Thallium (TI)	2018/08/21	100	%	80 - 120
			Dissolved Tin (Sn)	2018/08/21	105	%	80 - 120
			Dissolved Titanium (Ti)	2018/08/21	108	%	80 - 120
			Dissolved Tungsten (W)	2018/08/21	103	%	80 - 120
			Dissolved Uranium (U)	2018/08/21	99	%	80 - 120
			Dissolved Vanadium (V)	2018/08/21	106	%	80 - 120
			Dissolved Zinc (Zn)	2018/08/21	97	%	80 - 120
			Dissolved Zirconium (Zr)	2018/08/21	112	%	80 - 120
5690047	ADA	Spiked Blank	Dissolved Aluminum (AI)	2018/08/21	103	%	80 - 120
			Dissolved Antimony (Sb)	2018/08/21	100	%	80 - 120
			Dissolved Arsenic (As)	2018/08/21	100	%	80 - 120
			Dissolved Barium (Ba)	2018/08/21	97	%	80 - 120
			Dissolved Beryllium (Be)	2018/08/21	101	%	80 - 120
			Dissolved Bismuth (Bi)	2018/08/21	100	%	80 - 120
			Dissolved Boron (B)	2018/08/21	103	%	80 - 120
			Dissolved Cadmium (Cd)	2018/08/21	99	%	80 - 120
			Dissolved Calcium (Ca)	2018/08/21	100	%	80 - 120
			Dissolved Chromium (Cr)	2018/08/21	97	%	80 - 120
			Dissolved Cobalt (Co)	2018/08/21	101	%	80 - 120
			Dissolved Copper (Cu)	2018/08/21	98	%	80 - 120
			Dissolved Iron (Fe)	2018/08/21	105	%	80 - 120
			Dissolved Iron (1e) Dissolved Lead (Pb)	2018/08/21	103	%	80 - 120
			Dissolved Lead (Fb) Dissolved Lithium (Li)	2018/08/21	102	%	80 - 120
			Dissolved Elimini (El) Dissolved Magnesium (Mg)	2018/08/21	108	%	80 - 120
			Dissolved Malyhdanum (Ma)	2018/08/21	99	%	80 - 120 80 - 120
			Dissolved Molybdenum (Mo)	2018/08/21	98 100	%	80 - 120 80 - 120
			Dissolved Nickel (Ni)	2018/08/21	100	%	80 - 120
			Dissolved Potassium (K)	2018/08/21	103	%	80 - 120
			Dissolved Selenium (Se)	2018/08/21	99	%	80 - 120
			Dissolved Silicon (Si)	2018/08/21	103	%	80 - 120
			Dissolved Silver (Ag)	2018/08/21	99	%	80 - 120
			Dissolved Sodium (Na)	2018/08/21	104	%	80 - 120

SLR Consulting (Canada) Ltd.
Client Project #: 209.40585.00000
Site Location: FOX-C Ekalugad Fjord

Your P.O. #: MAR2516 Sampler Initials: KR

QA/QC		007						
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
			Dissolved Strontium (Sr)	2018/08/21		98	%	80 - 120
			Dissolved Tellurium (Te)	2018/08/21		99	%	80 - 120
			Dissolved Thallium (TI)	2018/08/21		102	%	80 - 120
			Dissolved Tin (Sn)	2018/08/21		100	%	80 - 120
			Dissolved Titanium (Ti)	2018/08/21		99	%	80 - 120
			Dissolved Tungsten (W)	2018/08/21		101	%	80 - 120
			Dissolved Uranium (U)	2018/08/21		99	%	80 - 120
			Dissolved Vanadium (V)	2018/08/21		100	%	80 - 120
			Dissolved Zinc (Zn)	2018/08/21		99	%	80 - 120
F.CO.O.47	454		Dissolved Zirconium (Zr)	2018/08/21	.5.0	103	%	80 - 120
5690047	ADA	Method Blank	Dissolved Aluminum (Al)	2018/08/21	<5.0		ug/L	
			Dissolved Antimony (Sb)	2018/08/21	<0.50		ug/L	
			Dissolved Arsenic (As)	2018/08/21	<1.0		ug/L	
			Dissolved Barium (Ba)	2018/08/21	<2.0		ug/L	
			Dissolved Beryllium (Be)	2018/08/21	<0.50		ug/L	
			Dissolved Bismuth (Bi)	2018/08/21	<1.0		ug/L	
			Dissolved Boron (B)	2018/08/21	<10		ug/L	
			Dissolved Cadmium (Cd)	2018/08/21	<0.10		ug/L	
			Dissolved Calcium (Ca)	2018/08/21	<200		ug/L	
			Dissolved Chromium (Cr)	2018/08/21	<5.0		ug/L	
			Dissolved Cobalt (Co)	2018/08/21	<0.50		ug/L	
			Dissolved Copper (Cu)	2018/08/21	<1.0		ug/L	
			Dissolved Iron (Fe)	2018/08/21	<100		ug/L	
			Dissolved Lead (Pb)	2018/08/21	<0.50		ug/L	
			Dissolved Lithium (Li)	2018/08/21	<5.0		ug/L	
			Dissolved Magnesium (Mg)	2018/08/21	<50		ug/L	
			Dissolved Manganese (Mn)	2018/08/21	<2.0		ug/L	
			Dissolved Molybdenum (Mo)	2018/08/21	<0.50		ug/L	
			Dissolved Nickel (Ni)	2018/08/21	<1.0		ug/L	
			Dissolved Potassium (K)	2018/08/21	<200		ug/L	
			Dissolved Selenium (Se)	2018/08/21	<2.0		ug/L	
			Dissolved Silicon (Si)	2018/08/21	<50		ug/L	
			Dissolved Silver (Ag)	2018/08/21	<0.10		ug/L	
			Dissolved Sodium (Na)	2018/08/21	<100		ug/L	
			Dissolved Strontium (Sr)	2018/08/21	<1.0		ug/L	
			Dissolved Tellurium (Te)	2018/08/21	<1.0		ug/L	
			Dissolved Thallium (TI)	2018/08/21	<0.050		ug/L	
			Dissolved Tin (Sn)	2018/08/21	<1.0		ug/L	
			Dissolved Titanium (Ti)	2018/08/21	<5.0		ug/L	
			Dissolved Tungsten (W)	2018/08/21	<1.0		ug/L	
			Dissolved Uranium (U)	2018/08/21	<0.10		ug/L	
			Dissolved Vanadium (V)	2018/08/21	<0.50		ug/L	
			Dissolved Zinc (Zn)	2018/08/21	<5.0		ug/L	
F.COCO 4=	454	000	Dissolved Zirconium (Zr)	2018/08/21	<1.0		ug/L	20
5690047	ADA	RPD	Dissolved Antimony (Sb)	2018/08/21	NC		%	20
			Dissolved Arsenic (As)	2018/08/21	NC		%	20
			Dissolved Barium (Ba)	2018/08/21	1.1		%	20
			Dissolved Beryllium (Be)	2018/08/21	NC		%	20
			Dissolved Boron (B)	2018/08/21	1.1		%	20
			Dissolved Cadmium (Cd)	2018/08/21	NC		%	20
			Dissolved Chromium (Cr)	2018/08/21	NC		%	20

SLR Consulting (Canada) Ltd.
Client Project #: 209.40585.00000
Site Location: FOX-C Ekalugad Fjord

Your P.O. #: MAR2516 Sampler Initials: KR

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
			Dissolved Cobalt (Co)	2018/08/21	NC		%	20
			Dissolved Copper (Cu)	2018/08/21	NC		%	20
			Dissolved Lead (Pb)	2018/08/21	NC		%	20
			Dissolved Molybdenum (Mo)	2018/08/21	NC		%	20
			Dissolved Nickel (Ni)	2018/08/21	NC		%	20
			Dissolved Selenium (Se)	2018/08/21	NC		%	20
			Dissolved Silver (Ag)	2018/08/21	NC		%	20
			Dissolved Sodium (Na)	2018/08/21	0.63		%	20
			Dissolved Thallium (TI)	2018/08/21	NC		%	20
			Dissolved Uranium (U)	2018/08/21	NC		%	20
			Dissolved Vanadium (V)	2018/08/21	NC		%	20
			Dissolved Zinc (Zn)	2018/08/21	NC		%	20
5690128	ADA	Matrix Spike	Total Aluminum (AI)	2018/08/21		119	%	80 - 120
		·	Total Antimony (Sb)	2018/08/21		99	%	80 - 120
			Total Arsenic (As)	2018/08/21		101	%	80 - 120
			Total Barium (Ba)	2018/08/21		96	%	80 - 120
			Total Beryllium (Be)	2018/08/21		97	%	80 - 120
			Total Bismuth (Bi)	2018/08/21		94	%	80 - 120
			Total Boron (B)	2018/08/21		99	%	80 - 120
			Total Cadmium (Cd)	2018/08/21		98	%	80 - 120
			Total Calcium (Ca)	2018/08/21		NC	%	80 - 120
			Total Chromium (Cr)	2018/08/21		96	%	80 - 120
			Total Cobalt (Co)	2018/08/21		98	%	80 - 120
			Total Copper (Cu)	2018/08/21		95	%	80 - 120
			Total Iron (Fe)	2018/08/21		100	%	80 - 120
			Total Lead (Pb)	2018/08/21		99	%	80 - 120
			Total Lithium (Li)	2018/08/21		100	%	80 - 120
			Total Magnesium (Mg)	2018/08/21		100	%	80 - 120
			Total Manganese (Mn)	2018/08/21		96	%	80 - 120
			Total Molybdenum (Mo)	2018/08/21		97	%	80 - 120
			Total Nickel (Ni)	2018/08/21		97	%	80 - 120
			Total Potassium (K)	2018/08/21		101	%	80 - 120
			Total Selenium (Se)	2018/08/21		101	%	80 - 120
			Total Silicon (Si)	2018/08/21		100	%	80 - 120
			Total Silver (Ag)	2018/08/21		94	%	80 - 120
			Total Sodium (Na)	2018/08/21		NC	%	80 - 120
			Total Strontium (Sr)	2018/08/21		NC	%	80 - 120
			Total Strontium (31) Total Tellurium (Te)	2018/08/21		101	%	80 - 120 80 - 120
			Total Tellulium (TE)	2018/08/21		98	%	80 - 120
			Total Triallum (11) Total Tin (Sn)	2018/08/21		99	%	80 - 120 80 - 120
			* *			99		
			Total Transition (Ti)	2018/08/21			%	80 - 120
			Total Lungsten (W)	2018/08/21		101	%	80 - 120
			Total Vanadium (V)	2018/08/21		99	%	80 - 120
			Total Vanadium (V)	2018/08/21		100	%	80 - 120
			Total Zinc (Zn)	2018/08/21		100	%	80 - 120
EC00430	A D A	Codinad Die ob	Total Zirconium (Zr)	2018/08/21		101	%	80 - 120
5690128	ADA	Spiked Blank	Total Aluminum (Al)	2018/08/21		96	%	80 - 120
			Total Antimony (Sb)	2018/08/21		95	%	80 - 120
			Total Arsenic (As)	2018/08/21		100	%	80 - 120
			Total Barium (Ba)	2018/08/21		94	%	80 - 120
			Total Beryllium (Be)	2018/08/21		95	%	80 - 120

SLR Consulting (Canada) Ltd.
Client Project #: 209.40585.00000
Site Location: FOX-C Ekalugad Fjord

Your P.O. #: MAR2516 Sampler Initials: KR

			QUALITY ASSURANCE					
QA/QC Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
			Total Bismuth (Bi)	2018/08/21		95	%	80 - 120
			Total Boron (B)	2018/08/21		95	%	80 - 120
			Total Cadmium (Cd)	2018/08/21		97	%	80 - 120
			Total Calcium (Ca)	2018/08/21		96	%	80 - 120
			Total Chromium (Cr)	2018/08/21		94	%	80 - 120
			Total Cobalt (Co)	2018/08/21		98	%	80 - 120
			Total Copper (Cu)	2018/08/21		94	%	80 - 120
			Total Iron (Fe)	2018/08/21		99	%	80 - 120
			Total Lead (Pb)	2018/08/21		98	%	80 - 120
			Total Lithium (Li)	2018/08/21		104	%	80 - 120
			Total Magnesium (Mg)	2018/08/21		103	%	80 - 120
			Total Manganese (Mn)	2018/08/21		96	%	80 - 120
			Total Molybdenum (Mo)	2018/08/21		93	%	80 - 120
			Total Nickel (Ni)	2018/08/21		97	%	80 - 120
			Total Potassium (K)	2018/08/21		99	%	80 - 120
			Total Selenium (Se)	2018/08/21		104	%	80 - 120
			Total Silicon (Si)	2018/08/21		97	%	80 - 120
			Total Silver (Ag)	2018/08/21		94	%	80 - 120
			Total Sodium (Na)	2018/08/21		99	%	80 - 120
			Total Strontium (Sr)	2018/08/21		95	%	80 - 120
			Total Tellurium (Te)	2018/08/21		100	%	80 - 120
			Total Thallium (TI)	2018/08/21		100	%	80 - 120
			Total Tin (Sn)	2018/08/21		94	%	80 - 120
			Total Titanium (Ti)	2018/08/21		94	%	80 - 120
			Total Tungsten (W)	2018/08/21		98	%	80 - 120
			Total Uranium (U)	2018/08/21		97	%	80 - 120
			Total Vanadium (V)	2018/08/21		97	%	80 - 120
			Total Zinc (Zn)	2018/08/21		101	%	80 - 120
			Total Zirconium (Zr)	2018/08/21		96	%	80 - 120
5690128	ADA	Method Blank	Total Aluminum (AI)	2018/08/21	<5.0		ug/L	
			Total Antimony (Sb)	2018/08/21	< 0.50		ug/L	
			Total Arsenic (As)	2018/08/21	<1.0		ug/L	
			Total Barium (Ba)	2018/08/21	<2.0		ug/L	
			Total Beryllium (Be)	2018/08/21	<0.50		ug/L	
			Total Bismuth (Bi)	2018/08/21	<1.0		ug/L	
			Total Boron (B)	2018/08/21	<10		ug/L	
			Total Cadmium (Cd)	2018/08/21	<0.10		ug/L	
			Total Calcium (Ca)	2018/08/21	<200		ug/L	
			Total Chromium (Cr)	2018/08/21	<5.0		ug/L	
			Total Cobalt (Co)	2018/08/21	<0.50		ug/L	
			Total Copper (Cu)	2018/08/21	<1.0		ug/L	
			Total Iron (Fe)	2018/08/21	<100		ug/L	
			Total Lead (Pb)	2018/08/21	<0.50		ug/L	
			Total Lithium (Li)	2018/08/21	<5.0		ug/L	
			Total Magnesium (Mg)	2018/08/21	<50		ug/L	
			Total Manganese (Mn)	2018/08/21	<2.0		ug/L	
			Total Molybdenum (Mo)	2018/08/21	<0.50		ug/L	
			Total Nickel (Ni)	2018/08/21	<1.0		ug/L ug/L	
			Total Potassium (K)	2018/08/21	<200		ug/L ug/L	
			Total Selenium (Se)	2018/08/21	<2.0		ug/L ug/L	
			Total Selemum (Se) Total Silicon (Si)	• •	<50			
			rotai silicon (SI)	2018/08/21	\ 30		ug/L	

Maxxam Job #: B8K8119 Report Date: 2018/10/01 SLR Consulting (Canada) Ltd.
Client Project #: 209.40585.00000
Site Location: FOX-C Ekalugad Fjord

Your P.O. #: MAR2516 Sampler Initials: KR

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC		007						001: ::
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
			Total Silver (Ag)	2018/08/21	<0.10		ug/L	
			Total Sodium (Na)	2018/08/21	<100		ug/L	
			Total Strontium (Sr)	2018/08/21	<1.0		ug/L	
			Total Tellurium (Te)	2018/08/21	<1.0		ug/L	
			Total Thallium (TI)	2018/08/21	<0.050		ug/L	
			Total Tin (Sn)	2018/08/21	<1.0		ug/L	
			Total Titanium (Ti)	2018/08/21	<5.0		ug/L	
			Total Tungsten (W)	2018/08/21	<1.0		ug/L	
			Total Uranium (U)	2018/08/21	<0.10		ug/L	
			Total Vanadium (V)	2018/08/21	<0.50		ug/L	
			Total Zinc (Zn)	2018/08/21	<5.0		ug/L	
			Total Zirconium (Zr)	2018/08/21	<1.0		ug/L	
5690128	ADA	RPD	Total Aluminum (Al)	2018/08/21	18		%	20
			Total Antimony (Sb)	2018/08/21	NC		%	20
			Total Arsenic (As)	2018/08/21	NC		%	20
			Total Beryllium (Be)	2018/08/21	NC		%	20
			Total Boron (B)	2018/08/21	1.9		%	20
			Total Cadmium (Cd)	2018/08/21	NC		%	20
			Total Chromium (Cr)	2018/08/21	NC		%	20
			Total Cobalt (Co)	2018/08/21	NC		%	20
			Total Copper (Cu)	2018/08/21	6.4		%	20
			Total Iron (Fe)	2018/08/21	3.7		%	20
			Total Lead (Pb)	2018/08/21	0.52		%	20
			Total Manganese (Mn)	2018/08/21	2.5		%	20
		Total Molybdenum (Mo)	2018/08/21	4.0		%	20	
			Total Nickel (Ni)	2018/08/21	NC		%	20
			Total Selenium (Se)	2018/08/21	NC		%	20
			Total Silver (Ag)	2018/08/21	NC		%	20
			Total Thallium (TI)	2018/08/21	NC		%	20
			Total Tungsten (W)	2018/08/21	NC		%	20
			Total Uranium (U)	2018/08/21	3.2		%	20
			Total Vanadium (V)	2018/08/21	7.3		%	20
			Total Zinc (Zn)	2018/08/21	NC		%	20
			Total Zirconium (Zr)	2018/08/21	NC		%	20

N/A = Not Applicable

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

QC Standard: A sample of known concentration prepared by an external agency under stringent conditions. Used as an independent check of method accuracy.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spike amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than the native sample concentration)

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

(1) Recovery or RPD for this parameter is outside control limits. The overall quality control for this analysis meets acceptability criteria.

Maxxam Job #: B8K8119 Report Date: 2018/10/01 SLR Consulting (Canada) Ltd.
Client Project #: 209.40585.00000
Site Location: FOX-C Ekalugad Fjord

Your P.O. #: MAR2516 Sampler Initials: KR

VALIDATION SIGNATURE PAGE

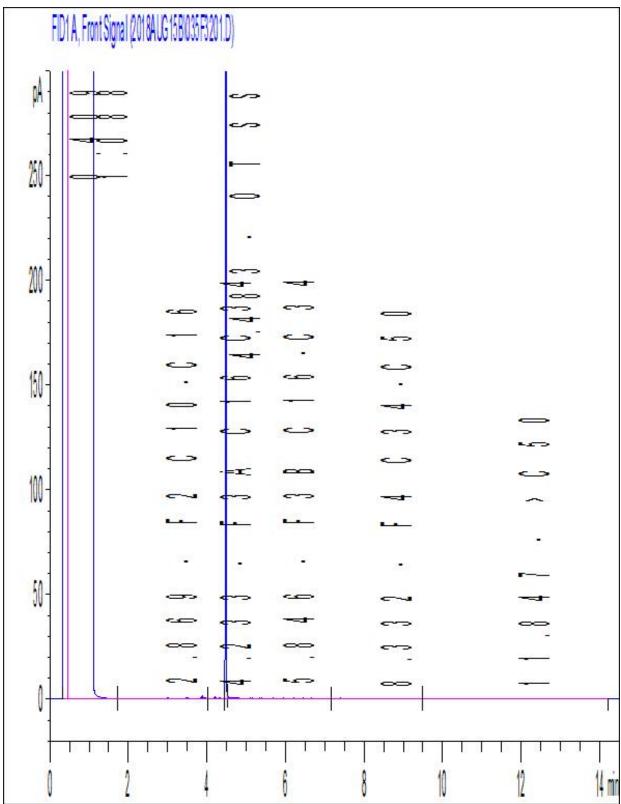
The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

Cristina Carrière
Cristina Carriere, Scientific Service Specialist
EVO PROMITERON S EVA PROMITE S CHEMIST
Ewa Pranjic, M.Sc., C.Chem, Scientific Specialist

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

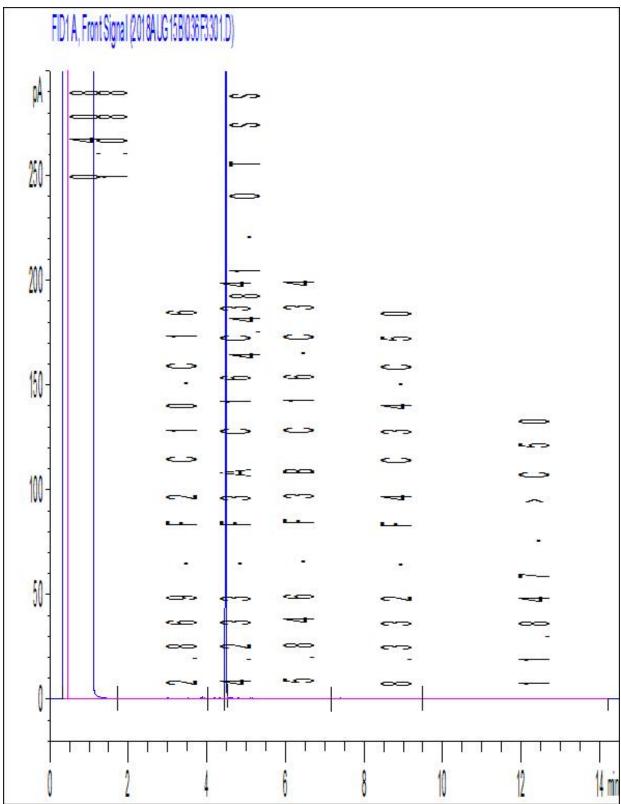
INVOICE TO: REPORT TO:								PROJECT INFORMATION:									B B B B B B B B			e 1 of 2
	nsulting (Canada) Ltd.	Company	Company Name: SLR Consulting Ltd.								B811	32		STY		B8K	8119	()	Bottle Orde	er#:
tion: Kaitlyn Roberts	Attention:	Veille Debade							Quotation #: B61132 P.O. #: MAR2516								\cup		01111	
ss: 43 Auriga Drive, S	Address:	Allerant							Project: 209.40585.00000						J_L ENV-1164					
Nepean ON K2E	7Y8		Tel: (613) 805-1065 Fax:							Project Name: Site #: FOX-C Ekalugad Fjord					-	i		Project Manager:		
(613) 805-1065	Fax:	Tel:																		Antonella Brasil
kroberts@strcons	Email:	Email: kroberts@slrconsulting.com						Sampled By:						C#677100-01-01						
MOE REGULATED DRINKING SUBMITTED (WATER OR WATER INTENDED ON THE MAXXAM DRINKING WAT	FOR HUMAN CO TER CHAIN OF C	ONSUMPTION USTODY	MUST BE	ë			ANA	LYSIS RE	QUESTED	(PLEASE	BE SPECIF	FIC)			Decides (6	Turnaround Please provide ad standard) TAT:	Time (TAT) Req evance notice for r		
Regulation 153 (2011)	Other Regulatio	ns	Special In	circle):		so l				rimet	imetr	Hydro		33)	-	d if Rush TAT is not spe	ecified):			
Table 1			Metals of		Filtered (please cl	Hydrocarbons	s Analysis by ICPMS	CPMS Metals		ended Solids	y Automated Colou	y Automated Colou	, Bicarbonate and F		calculated as CaC	Standard TAT = 5-7 Working days for most tests Please note: Standard TAT for certain tests such as BOD and Dioxins/Furans days - contact your Project Manager for details. Job Specific Rush TAT (if applies to entire submission) Date Required: Time Required:			s are	
Include Criteri	on Certificate of Analysis (Y/N)?	v	- reg		Field	E-F	Meta	Ned		Susp	ate b	ide by	onate,	žį.	ess (Rush Confirm	nation Number:	(call	lab for #)	
Sample Barcode Label	Sample (Location) Identification	Date Sampled	Time Sampled	Matrix	i i	etrol	otal	issol	CBs	otal	hdins	Plo l	Sarbo	Alkali	lardr	# of Bottles		Comment		
	MW South *F	Date Samples				ш.			u		-						on	ice		
	MW East													_			March 1			
	MW North	2018/08/12	9:50	Water			/	/		/	/	/	/	/	/	10	RECE	EIVED IN	OTTAMA	
	MW Northwest	2018/08/12	11:00	Water.	/			J						/ /		10	4			
	MW Southwest KR										_	/		_						
	Duplicate - 2	2018/08/12	9:50	Water	1	/	/		/			/		/		10				
	SW East	2018/08/12	11:15	Water		/	\checkmark	/	~	/	/	\sim		/	/	10				
	Field Blank	2018/08/12	10:00	water		/	1	✓		V	/	/		/	/	8	no Pc	Bs		_
1111										1										
1111					W. 14															
*RELINQUISHED BY			me	RECEIVED	3Y: (Signature/P	rint)		Date: (YY/N	MM/DD)		ime		used and ubmitted			Labora	tory Use Only			
Ditty	Note 18/08	1/13 19	30 12	-e In	Campbell			18/08/1			0			Time S	ensitive	100000000000000000000000000000000000000	ure (°C) on Recei	Custody Seal Present	Yes	Ŧ
	RITING, WORK SUBMITTED ON THIS CHAIR	,	n	2	Shurs	Mora	1	W SV	8/15		w		1			1,	2,2	Intact	: Maxxa Yelic	I

Maxxam Analytics International Corporation o/a Maxxam Analytics


INVOICE TO:						REPORT TO:							PROJEC	T INFORM	MATION:		Page 1 o				
Company Name: #34676 SLR Consulting (Canada) Ltd.					Company Name: SLR CONSUHING.								B811	32				Maxxam Job #: Bottle			
ntion: Kaitlyn Roberts Attention				Attention:	Veitter Deborte							#:	MAR	-							
				Address:					O.C.		Project:		209.4	0585.00	0000				676889		
Nepean ON K2E 7Y8 (613) 805-1065 Fax:			Tel: (613) 805-1065 Fax:							Project Na	me:							Project Manage			
										Site #:		Cape Christian							Antonella Brasil		
il:	kroberts@slrconsu			Email:	200000000	rts@slrconsu	ilting.com				Sampled I								C#676889-01-01		
MOE	REGULATED DRINKING	WATER OR WATER INTEN	DED FOR H	UMAN CO	ONSUMPTIO	MUST BE		-		ANA	LYSIS RE	QUESTED	(PLEASE	BE SPECIF	FIC)			100	Tumaround Time (TAT) I Please provide advance notice		
SUBMITTED ON THE MAXXAM DRINKING WATER CHA			AIN OF C		A MANUAL PROPERTY.	(e)						atry	ţ	oxide			Regular (S	tandard) TAT:	ior rasii projecta		
R	egulation 153 (2011)	Other Regu	ulations	Special Instructions			vi circle):						nin.	rime			CaCO3)		d if Rush TAT is not specified):		
Table 1			Metals > Req			ase Co			sis	ts.		d Color	1 Colou	d Color		as CaC					
			_	only	153	ed (ple			S Metals		Solids	omate	mated	rbona		iated	days - contact your Project Manager for details. Job Specific Rush TAT (if applies to entire submission)				
				l de la		Metals)	Hydro	10	CPMS		Suspended	ate by Auto	Auto	22		3	Date Required: Time Required:				
Other								E S	Veta	l pevio				de by	nate,	λ	988	Rush Confirm	ation Number:	call lab for #)	
_	Sample Barcode Label	on Certificate of Analysis (Y/I Sample (Location) Identification		Sampled	Time Sample	i Matrix	iž	etrol	Total Meta	issol	CBs	Total	hdlm	Thlori	arbo	Ukalir	fardn	# of Bottles	Comm		
\vdash	Sample barcode Label	MW-1					- /	1	1/	1/			. /	/ /		/	//	(0)	S	VMV20041	
		MVV-1	3018	106/10	13:00	board	V							~				(0)			
		MW-2			14:30		/		/	1	/	/					//	10	one PCB A less	then half	
		MW-3			11:00				/		1	/	1	/	/			10			
T		MW-4			11:45		1		/	/	- apply	~			1	/	1	7	no PCBs and	only one	
-	ů,	Duplicate			13:00		/	1		1	/	/	/	/	~	V	V	10	THH		
		FIELD BLANK	KR	_																	
_							10 4	-											On ice		
							100												RECEIVED	N OTTAWA	
+		v																			
	* RELINQUISHED BY: (Sig	enture (Print) Dat	te: (YY/MM/DD) T	ime	RECEIVE	D BY: (Signature	(Print)		Date: (YY/	MM/DD)	Ti	ime		used and	T -		Labora	tory Use Only		
	C 1 + D A a	many and throng	108 /13			line]			_	01810	-	9.4		not s	ubmitted	Time S	ensitive	_	re (9C) on Recei Custody S	ieal Yes	
-	market	1011/12 10	100/10	7 1 1	1	1	Sur	ID Me	not.	108V		a	SW					1,2		Ž	
ESS	OTHERWISE AGREED TO IN WRI	TING, WORK SUBMITTED ON THIS	CHAIN OF CUS	STODY IS SU	BJECT TO MAX	CAM'S STANDAR	TERMS AND COM	DITIONS. S	IGNING OF	THIS CHA	N OF CUS	TODY DOC	UMENT IS	,	19	E LE	1000	CALLED .		hite: Maxxa Yellow;	
NOW	LEDGMENT AND ACCEPTANCE O	F OUR TERMS WHICH ARE AVAILA	BLE FOR VIEW	VING AT WW	W.MAXXAM.CA/	ERMS.							716	110	SAMP	LES MUST	BE KEPT	COOL (< 10° C) FROM TIME OF SAMPLING		
MPLE		QUISHER TO ENSURE THE ACCUR	OACT OF THE	MAIN OF C	JOI OUT RECOR	o. An incomple	or our or ods						618	196	\$PEXOE		UNTIL	DELIVERY TO	MAXXAM		

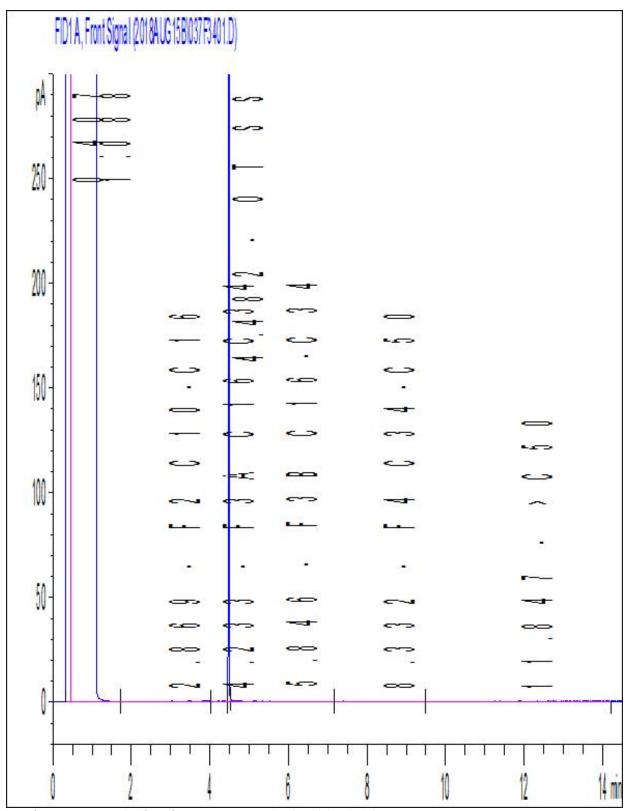
Maxxam Analytics International Corporation o/a Maxxam Analytics

SLR Consulting (Canada) Ltd. Client Project #: 209.40585.00000 Project name: FOX-C Ekalugad Fjord


Client ID: MW NORTH

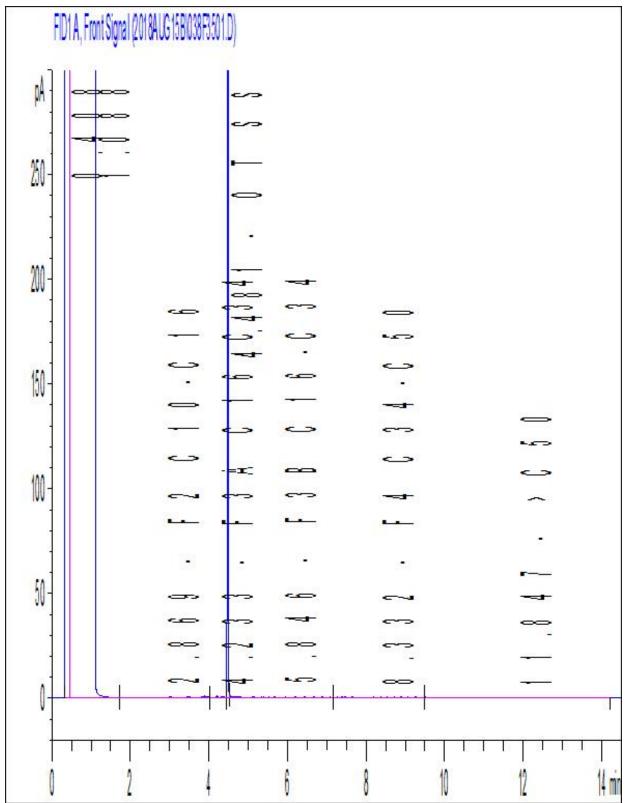
Petroleum Hydrocarbons F2-F4 in Water Chromatogram

SLR Consulting (Canada) Ltd. Client Project #: 209.40585.00000 Project name: FOX-C Ekalugad Fjord Client ID: MW NORTHWEST


Petroleum Hydrocarbons F2-F4 in Water Chromatogram

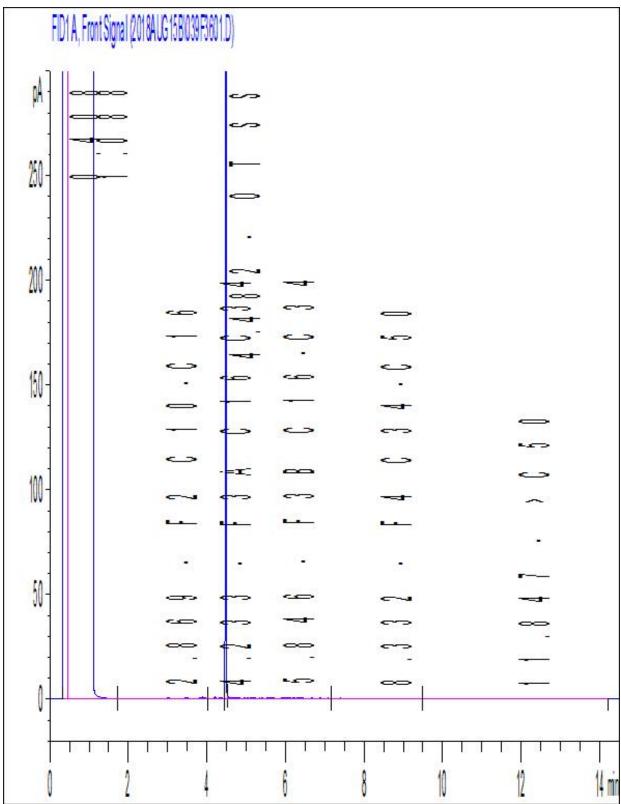
SLR Consulting (Canada) Ltd. Client Project #: 209.40585.00000 Project name: FOX-C Ekalugad Fjord

Client ID: DUPLICATE-2


Petroleum Hydrocarbons F2-F4 in Water Chromatogram

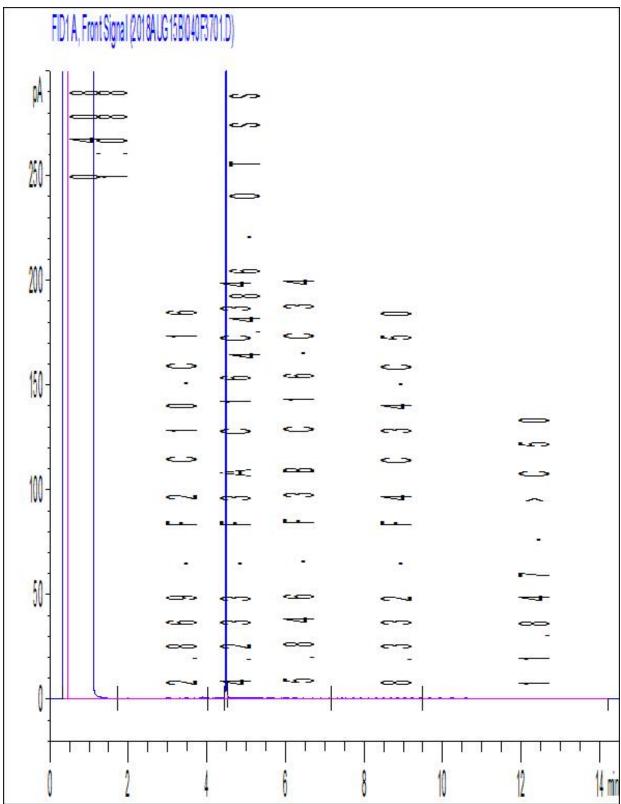
SLR Consulting (Canada) Ltd. Client Project #: 209.40585.00000 Project name: FOX-C Ekalugad Fjord

Client ID: SW EAST


Petroleum Hydrocarbons F2-F4 in Water Chromatogram

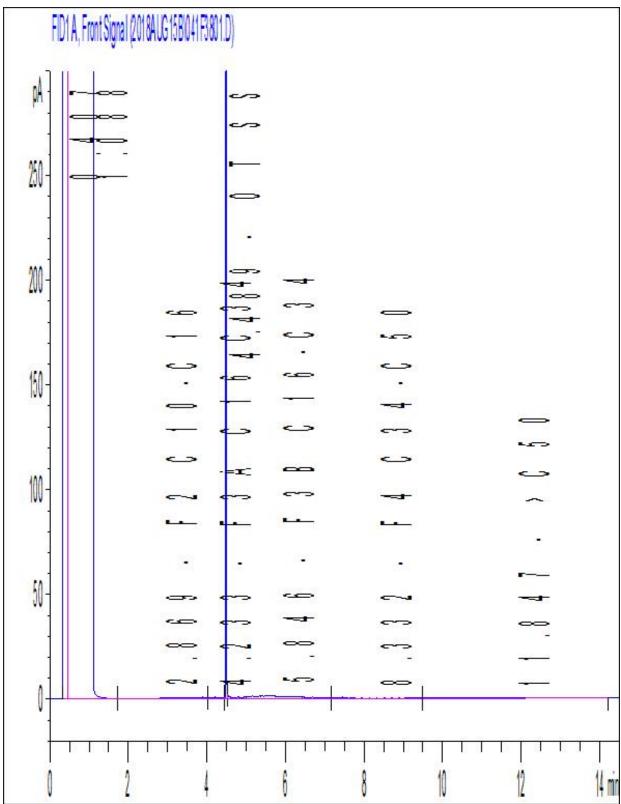
SLR Consulting (Canada) Ltd. Client Project #: 209.40585.00000 Project name: FOX-C Ekalugad Fjord

Client ID: FIELD BLANK


Petroleum Hydrocarbons F2-F4 in Water Chromatogram

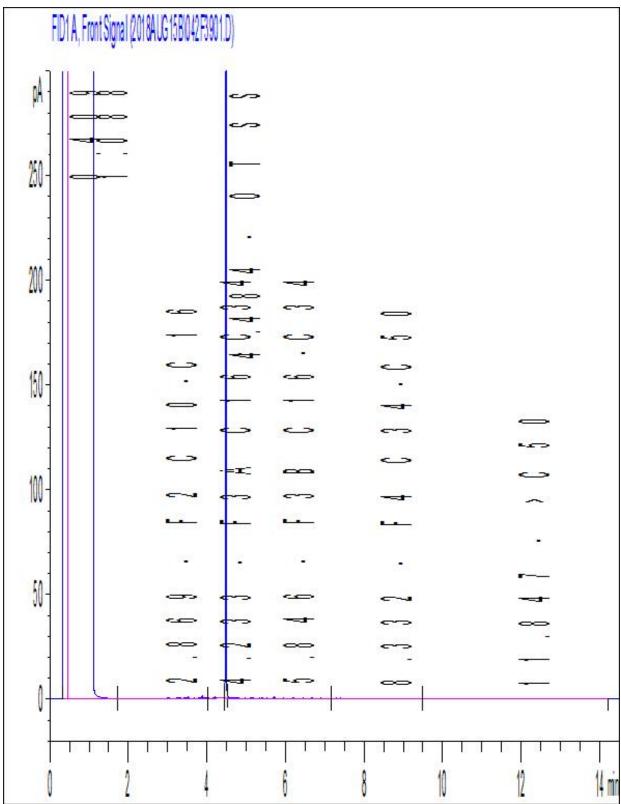
SLR Consulting (Canada) Ltd. Client Project #: 209.40585.00000 Project name: FOX-C Ekalugad Fjord

Client ID: MW-1


Petroleum Hydrocarbons F2-F4 in Water Chromatogram

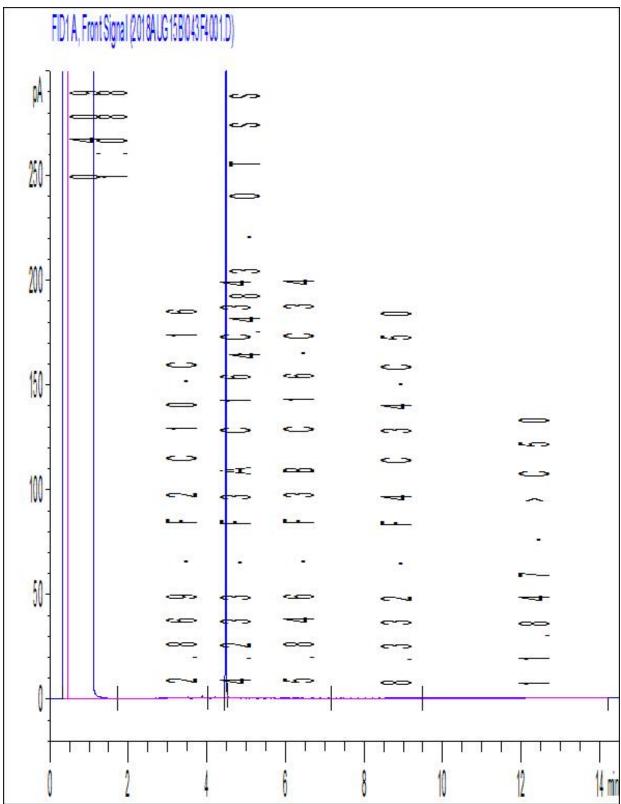
SLR Consulting (Canada) Ltd. Client Project #: 209.40585.00000 Project name: FOX-C Ekalugad Fjord

Client ID: MW-2


Petroleum Hydrocarbons F2-F4 in Water Chromatogram

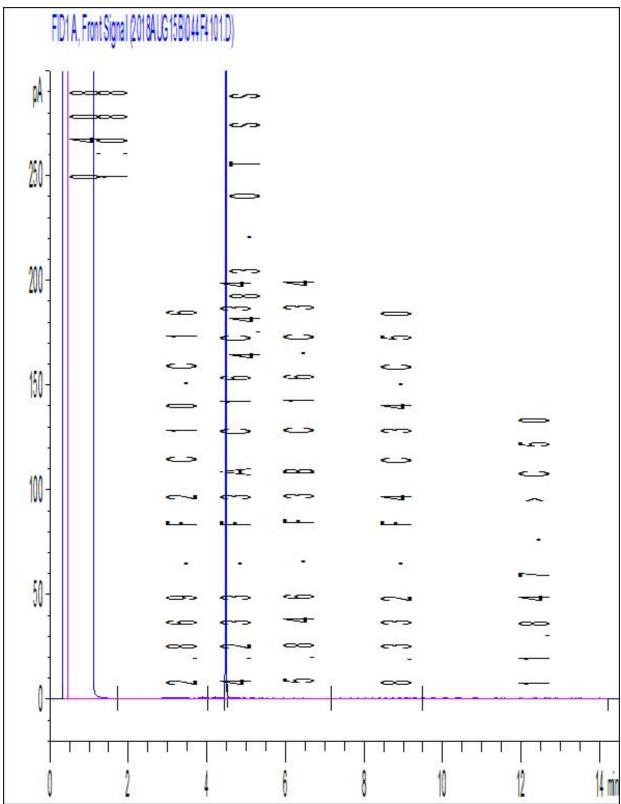
SLR Consulting (Canada) Ltd. Client Project #: 209.40585.00000 Project name: FOX-C Ekalugad Fjord

Client ID: MW-3


Petroleum Hydrocarbons F2-F4 in Water Chromatogram

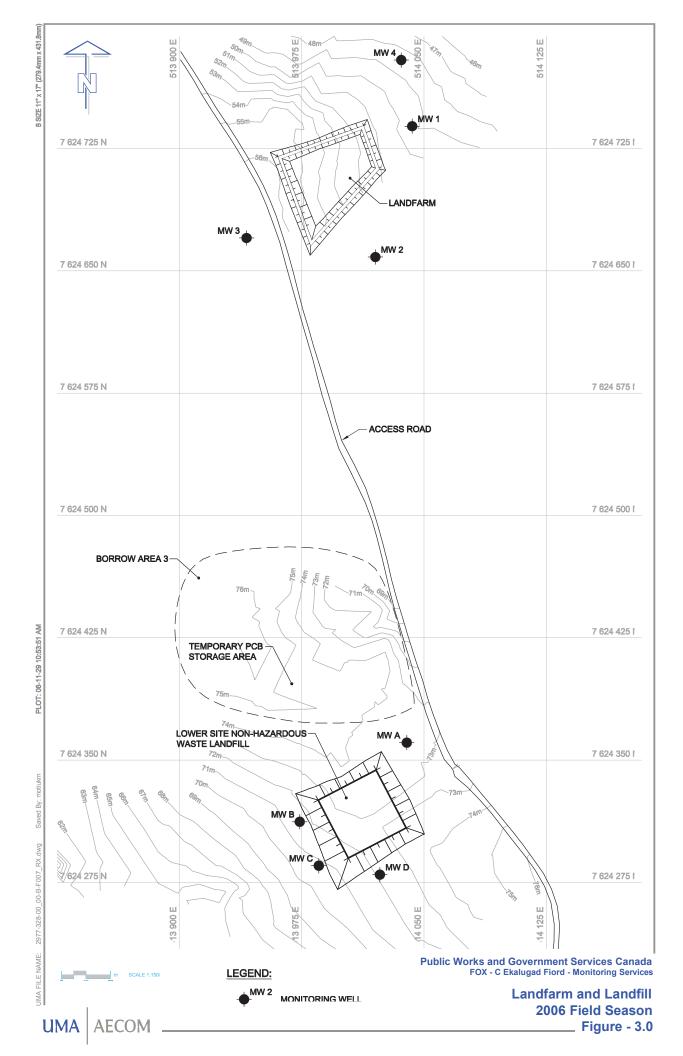
SLR Consulting (Canada) Ltd. Client Project #: 209.40585.00000 Project name: FOX-C Ekalugad Fjord

Client ID: MW-4


Petroleum Hydrocarbons F2-F4 in Water Chromatogram

SLR Consulting (Canada) Ltd. Client Project #: 209.40585.00000 Project name: FOX-C Ekalugad Fjord

Client ID: DUPLICATE


Petroleum Hydrocarbons F2-F4 in Water Chromatogram

APPENDIX D Figures from 2008 and 2009 UMA Reports (from Arcadis, 2017)

Crown-Indigenous Relations and Northern Affairs Canada Contaminants and Remediation Division

FOX-C Ekalugad Fjord Long Term Monitoring Event Qikiqtaaluk Region, Nunavut SLR Project No.: 209.40585.00000

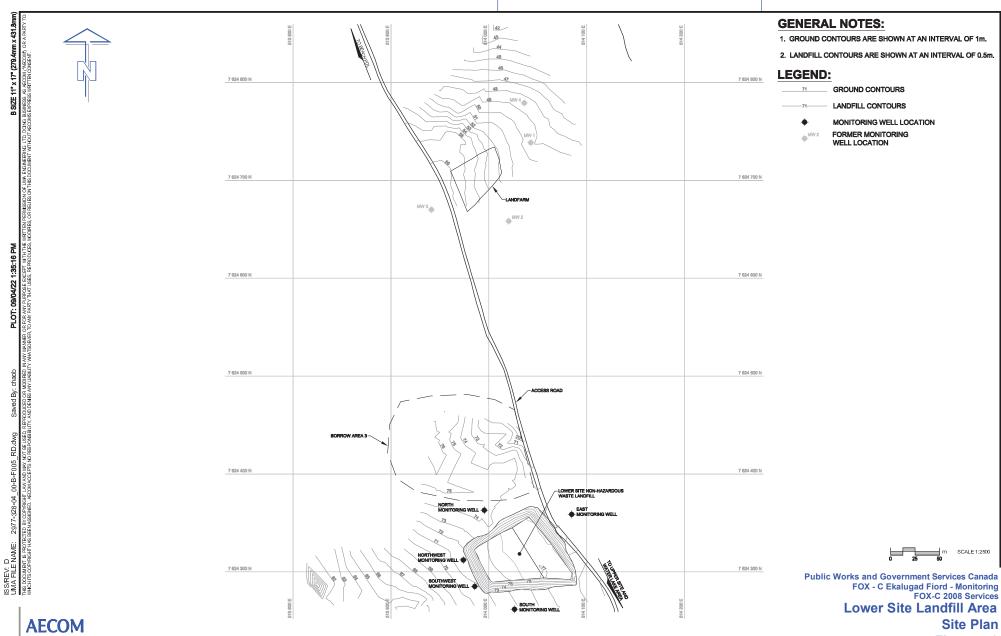


Figure 5.0

global environmental solutions

Calgary, AB

1185-10201 Southport Rd SW Calgary, AB T2W 4X9 Canada

Tel: (403) 266-2030 Fax: (403) 263-7906

Kelowna, BC

200-1475 Ellis Street Kelowna, BC V1Y 2A3 Canada

Tel: (250) 762-7202 Fax: (250) 763-7303

Prince George, BC

1586 Ogilvie Street Prince George, BC V2N 1W9 Canada

Tel: (250) 562-4452 Fax: (250) 562-4458

Vancouver, BC (Head Office)

200-1620 West 8th Avenue Vancouver, BC V6J 1V4 Canada

Tel: (604) 738-2500 Fax: (604) 738-2508

Yellowknife, NT

Unit 44, 5022 49 Street Yellowknife, NT X1A 3R8 Canada

Tel: (867) 765-5695

Edmonton, AB

6940 Roper Road Edmonton, AB T6B 3H9 Canada

Tel: (780) 490-7893 Fax: (780) 490-7819

Markham, ON

200 - 300 Town Centre Blvd Markham, ON L3R 5Z6 Canada

Tel: (905) 415-7248 Fax: (905) 415-1019

Regina, SK

1048 Winnipeg Street Regina, SK S4R 8P8 Canada

Tel: (306) 525-4690 Fax (306) 525-4691

Victoria, BC

Unit 303 - 3960 Quadra Street Victoria, BC V8X 4A3 Canada

Tel: (250) 475-9595 Fax: (250) 475-9596 **Grande Prairie, AB**

10015 102 Street Grande Prairie, AB T8V 2V5 Canada

Tel: (780) 513-6819 Fax: (780) 513-6821

Nanaimo, BC

9-6421 Applecross Road Nanaimo, BC V9V 1N1 Canada

Tel: (250) 390-5050 Fax: (250) 390-5042

Saskatoon, SK

620-3530 Millar Avenue Saskatoon, SK S7P 0B6 Canada

Tel: (306) 374-6800 Fax: (306) 374-6077

Winnipeg, MB

1353 Kenaston Boulevard Winnipeg, MB R3P 2P2 Canada

Tel: (204) 477-1848 Fax: (204) 475-1649 Kamloops, BC

8 West St. Paul Street Kamloops, BC V2C 1G1 Canada

Tel: (250) 374-8749 Fax: (250) 374-8656

Ottawa, ON

43 Auriga Drive, Suite 203 Ottawa, ON K2E 7Y8 Canada

Tel: (613) 725-1777 Fax: (905) 415-1019

Toronto, ON

36 King Street East, 4th Floor Toronto, ON M5C 3B2 Canada

Tel: (905) 415-7248 Fax: (905) 415-1019

Whitehorse, YT

6131 6th Avenue Whitehorse, YT Y1A 1N2 Canada

Tel: (867) 688-2847

Waste Planning & Development

Mining & Minerals