THE COLLECTION OF LANDFILL MONITORING DATA AT THE FORMER FOX-3 DISTANT EARLY WARNING LINE SITE

Dewar Lakes, Nunavut

REVISED FINAL REPORT – 2014 (O/Ref.: CD2655) (Y/Ref.: DLCMON (QIKIQ12)

DEFENCE CONSTRUCTION CANADA

OCTOBER 2015

Tel.: 418 653-4422 Fax: 418 653-3583

THE COLLECTION OF LANDFILL MONITORING DATA AT THE FORMER FOX-3 DISTANT EARLY WARNING LINE SITE

Dewar Lakes, Nunavut

REVISED FINAL REPORT - 2014 (O/Ref.: CD2655) (Y/Ref.: DLCMON (QIKIQ12)

DEFENCE CONSTRUCTION CANADA

OCTOBER 2015

Presented to:

Nahed Farah

Defence Construction Canada

Written by:

Martin Fleury, P.Eng. Project Manager

Verified by:

Jean-Pierre Pelletier, B. Sc., Chemist

Project Leader

Approved by:

Philippe Gélinas, P.Eng., M. Sc., M.B.A.

Team Leader

TABLE OF CONTENTS

1	OUT	LINE	1
	1.1	OBJECTIVE AND SCOPE OF WORK	1
	1.2	FIELD PROGRAM STAFF AND TIMING	2
	1.3	2014 WEATHER CONDITIONS	2
	1.4	REPORT FORMAT	2
2	MET	HODOLOGY	5
	2.1	VISUAL INSPECTION	5
	2.2	SOIL SAMPLING	5
	2.3	GROUNDWATER SAMPLING	7
	2.4	THERMAL MONITORING	8
	2.5	FIELD NOTES AND DATA	8
	2.6	QUALITY CONTROL	8
	2.7	QA/QC Procedures	9
	2.8	PROJECT REFERENCES	9
3	STA	TION WEST LANDFILL	10
	3.1	SUMMARY	10
	3.2	Preliminary Stability Assessment	13
	3.3	LOCATION PLAN	14
	3.4	PHOTOGRAPHIC RECORDS	16
	3.5	SOIL SAMPLE ANALYTICAL DATA	19
4	WES	ST LANDFILL	20
	4.1	SUMMARY	20
	4.2	PRELIMINARY STABILITY ASSESSMENT	23
	4.3	LOCATION PLAN	24

	4.4	PHOTOGRAPHIC RECORDS	26
	4.5	SOIL SAMPLE ANALYTICAL DATA	28
5	NON	I-HAZARDOUS WASTE LANDFILL	29
	5.1	SUMMARY	29
	5.2	Preliminary Stability Assessment	32
	5.3	LOCATION PLAN	
	5.4	PHOTOGRAPHIC RECORDS	35
	5.5	SOIL SAMPLE ANALYTICAL DATA	37
	5.6	GROUNDWATER SAMPLE ANALYTICAL DATA	38
	5.7	MONITORING WELL SAMPLING / INSPECTION LOGS	39
6	TIEF	R II DISPOSAL FACILITY	44
	6.1	SUMMARY	44
	6.2	PRELIMINARY STABILITY ASSESSMENT	47
	6.3	LOCATION PLAN	48
	6.4	THERMISTOR ANNUAL MAINTENANCE REPORTS	50
	6.5	PHOTOGRAPHIC RECORDS	55
	6.6	SOIL SAMPLE ANALYTICAL DATA	57
	6.7	GROUNDWATER SAMPLE ANALYTICAL DATA	58
	6.8	MONITORING WELL SAMPLING / INSPECTION LOGS	59

LIST OF TABLES

Table I: 2014 Monitoring Requirements for FOX-3 Landfills	1
Table II: Summary of Soil Sampling at FOX-3 - August 2014	6
Table III: Summary of Groundwater Sampling at FOX-3 - August 2014	8
Table IV: Visual Inspection Checklist - Station West Landfill	11
Table V: Preliminary Stability Assessment - Station West Landfill	13
Table VI: Landfill Visual Inspection Photo Log - Station West Landfill (page 1 of 2)	17
Table VII: Station West Landfill Summary Table for Soil Analytical Data	19
Table VIII: Visual Inspection Checklist - West Landfill	21
Table IX: Preliminary Stability Assessment - West Landfill	23
Table X: Landfill Visual Inspection Photo Log - West Landfill	27
Table XI: West Landfill Summary Table for Soil Analytical Data	28
Table XII: Visual Inspection Checklist - Non-Hazardous Waste Landfill	30
Table XIII: Preliminary Stability Assessment - Non-Hazardous Waste Landfill	32
Table XIV: Landfill Visual Inspection Photo Log - Non-Hazardous Waste Landfill	36
Table XV: Non-Hazardous Waste Landfill Summary Table for Soil Analytical Data	37
Table XVI: Non-Hazardous Waste Landfill Summary Table for Groundwater Analytic	
Table XVII: Visual Inspection Checklist - Tier II Disposal Facility	45
Table XVIII: Preliminary Stability Assessment - Tier II Disposal Facility	47
Table XIX: Landfill Visual Inspection Photo Log - Tier II Disposal Facility	56
Table XX: Tier II Summary Table for Soil Analytical Data	57
Table XXI: Tier II Summary Table for Groundwater Analytical Data	58

LIST OF FIGURES

Figure FOX-3.1	Dewar Lakes - Overall Site Plan	4
Figure FOX-3.2	Dewar Lakes - Station West Landfill	. 15
Figure FOX-3.3	Dewar Lakes - West Landfill	. 25
Figure FOX-3.4	Dewar Lakes - Non-Hazardous Waste Landfill	. 34
Figure FOX-3.5	Dewar Lakes - Tier II Disposal Facility	.49
LIST OF ANNEX	ES	
ANNEX 1	Maxxam and Exova QA/QC Reports and Certificates of Analyses	
ANNEX 2	Discussion of the QA/QC	
ANNEX 3	Field Notes and COC forms	
ANNEX 4	Range of the Report and Limitation of Responsibilities	

1 OUTLINE

1.1 OBJECTIVE AND SCOPE OF WORK

The objective of the Defence Construction Canada (DCC) Landfill Monitoring Program is to collect sufficient information to assess the performance of landfills at former Distant Early Warning (DEW) line sites that have been remediated, from a geotechnical and environmental perspective. DCC has specified the requirements for the Landfill Monitoring Program in the document entitled "Terms of Reference (TOR) - Services for the Collection of Landfill Monitoring Data CAM-5 Mackar Inlet, FOX-M Hall Beach, FOX-2 Longstaff Bluff, FOX-3 Dewar Lakes DEW Line Sites, Nunavut Territory Qikiqtaaluk Region DCC Project #: DLCMON (QIKIQ12), March 20, 2012". This report contains the findings from the 2014 inspection of the FOX-3 Dewar Lakes site.

During the 2014 monitoring program, a visual inspection and soil sampling were completed at all site landfills. Groundwater sampling was performed at the Non-Hazardous Waste Landfill and the Tier II Disposal Facility, while thermal monitoring was only conducted at the Tier II Disposal Facility as it is the only landfill equipped with thermistors. Table I summarizes the monitoring requirements of the 2014 season. No deviations from the TOR were experienced while completing the 2014 monitoring.

Table I: 2014 Monitoring Requirements for FOX-3 Landfills

Landfill	Visual Inspection	Soil Sampling	Groundwater Sampling	Thermal Monitoring
Station West Landfill	✓	✓		
West Landfill	✓	✓		
Non-Hazardous Waste Landfill	✓	✓	✓	
Tier II Disposal Facility	✓	√	√	√ *

^{*} Thermistor batteries replaced

1.2 FIELD PROGRAM STAFF AND TIMING

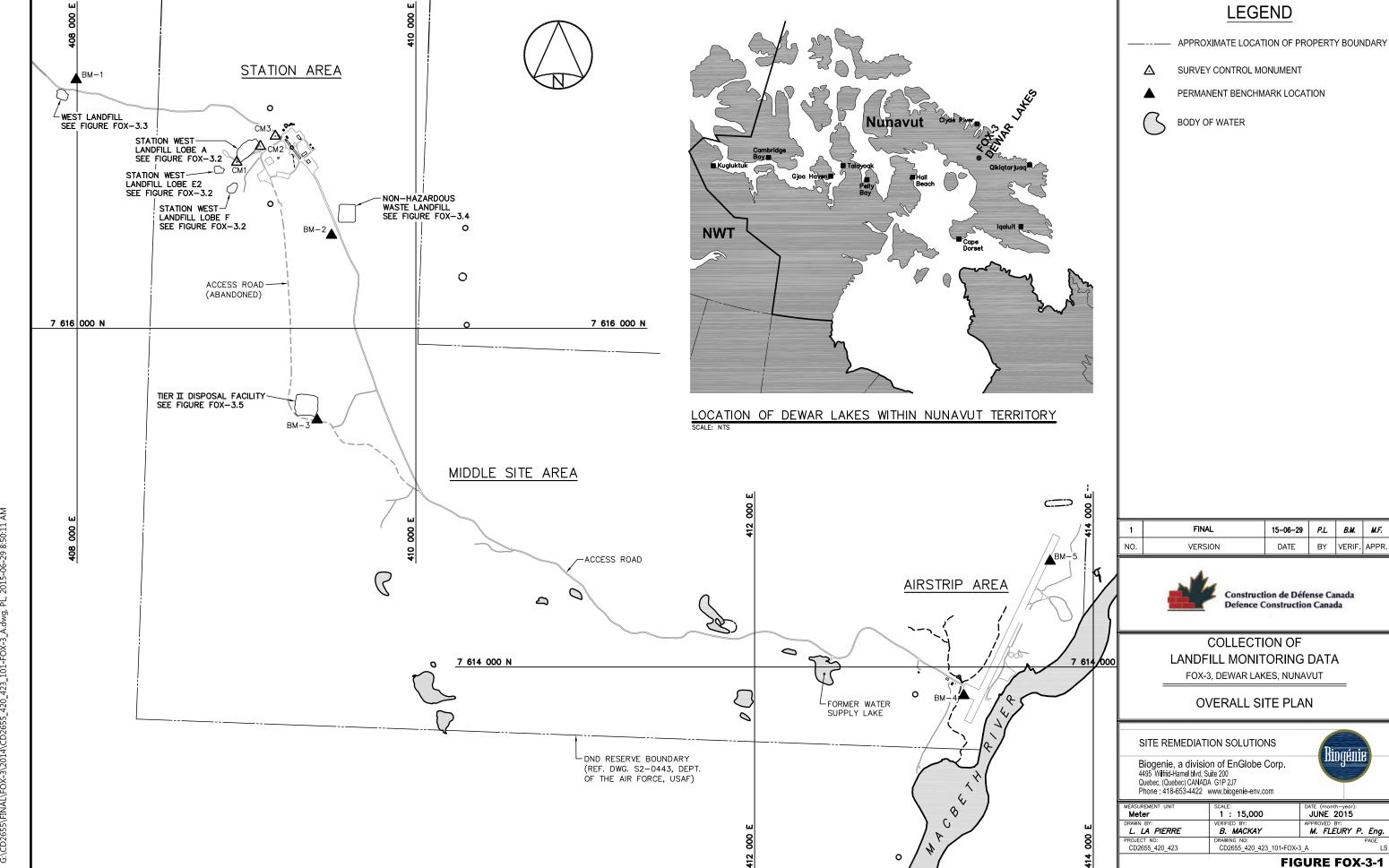
The 2014 on-site field program at FOX-3 Dewar Lakes took place from August 26 to August 29, 2014. Biogénie, a division of EnGlobe Corp. (Biogénie) subcontracted Sila Remediation Inc. (Sila), from Igloolik, Nunavut to perform the fieldwork. The Sila field program was to be executed by Mr. Martin Fleury with the assistance of four local representatives, whose names and responsibilities are detailed below:

- Mr. Martin Fleury, Project Engineer (Englobe)
- Mr. Caleb Qanatsiaq, Field Assistant (Sila)
- Mr. Philip Siakuluk, Field Assistant (Sila)
- Mr. George Inuksuk, Wildlife Monitor (Sila)
- Mr. David Qanatsiaq, Wildlife Monitor (Sila)

1.3 2014 WEATHER CONDITIONS

Weather conditions at FOX-3 Dewar Lakes were seasonably average, with temperatures ranging from 5 to 7° C, low winds and no precipitation.

1.4 REPORT FORMAT


This report describes the work carried out in August 2014, at the four landfill sites at FOX-3 Dewar Lakes. Results from soil and groundwater sampling, thermal monitoring, and visual inspection of the sites are also presented in the formats described in the TOR (Reference A). An electronic version of the report and its associated tables, figures, and data files are included in a DVD-ROM attached to this report.

The report is organized with a separate section for each of the landfill areas. Each section contains all relevant information for that landfill area, for the 2014 Landfill Monitoring Program. The following information is provided in each landfill section:

- · Visual inspection checklist;
- · Visual inspection drawing mark-up;
- A selection of visual inspection photos;
- Thermal monitoring inspection reports (where applicable);

- Summary of 2014 soil analytical data (where applicable)
- Summary of 2014 groundwater analytical data (where applicable)
- Monitoring well development/sampling reports (where applicable)

For the photographic record, the printed copy of the report includes an index image of photos for each of the landfill areas. The full resolution photos are included in electronic format in the DVD-ROM attached to this report. Certificates of Analyses, Quality Assurance/Quality Control (QA/QC) analytical results and field notes are attached in the Annexes.

2 METHODOLOGY

2.1 VISUAL INSPECTION

Data and information collected during the visual inspection of the FOX-3 landfills are included in the visual inspection data sheets. These data sheets include inspection data such as the location of settlement, erosion, frost action, sloughing and cracking, animal burrows, vegetation cover and stress, staining, seepage points, exposed debris, and any other features of note.

Each feature was identified with an alphabetical tag to be used consistently each year in an effort to track changes in conditions. New features are added to the checklist and are noted as new observation.

Digital photos, with a measure of scale, were taken to illustrate the current state of the landfills as well as features of interest. Annotated sketches/diagrams are included in the report for each landfill.

The photos were taken with an Apple Ipad Air. Full resolution digital jpg copies are available on the DVD-ROM appended to this report. The photo log, including the local coordinates from where the photo was taken, orientation (relative to map north), features of note, and picture numbers are included with each landfill report.

2.2 SOIL SAMPLING

The soil sampling methodology conformed to guidance provided in the following Canadian Council of Ministers of the Environment (CCME) documents:

- CCME Guidance Document on the Management of Contaminated Sites in Canada, April 1997, CCME PN 1279. (CCME catalogue http://www.ccme.ca/pdfs/cat_eng.pdf).
- CCME EPC-NCS62E Guidance Manual on Sampling, Analysis, and Data Management for Contaminated Sites - Volume I: Main Report, Dec 1993 (CCME catalogue - http://www.ccme.ca/pdfs/cat_eng.pdf).
- CCME EPC-NCS66E Guidance Manual on Sampling, Analysis, and Data Management for Contaminated Sites - Volume II: Analytical Method Summaries, Dec. 1993 (CCME catalogue - http://www.ccme.ca/pdfs/cat_eng.pdf).
- Reference method for the Determination of Petroleum Hydrocarbons in Soil Tier I Method, 2001.

• CCME Subsurface Assessment Handbook for Contaminated Sites, March 1994, EPC-NCSRP-48E (CCME catalogue -http://www.ccme.ca/pdfs/cat_eng.pdf).

Testpits were dug using a hand shovel down to refusal or permafrost. The shovel was cleaned between testpits. Soil samples were placed directly in the laboratory provided jars/bottles and were not mixed. Disposable nitrile gloves were worn and disposed after each sample collection. Jars/bottles were cleaned prior to placement into the cooler. For the 2014 monitoring event, 20 soil sampling stations were visited. A surface sample (0-15 cm in depth) and subsurface sample (40-50 cm in depth below surface) were taken at each sampling station, except few cases. When applicable, the presence of bedrock is indicated in the Soil Sampling Analytical Data Summary tables for the various landfills.

As specified in the TOR (Reference A), the following soil sampling procedures were adhered to:

- Where required, the soil samples were collected from locations between a two to four metre radius of the monitoring wells, making sure to stay away from soil disturbed during previous years sampling campaigns.
- 4 field duplicates were collected for quality assurance and quality control purposes.
- 4 duplicate samples were also taken and sent to a second laboratory for quality control purposes.
- An additional 10% of soil samples taken were sent to the owner's representative (ESG OPS CENTRE) in Kingston for archiving as specified by DCC.

The soil samples were analyzed for requested parameters (TPH [F1-F3], total metals and PCBs) as specified by DCC. Table II below summarizes the soil sampling at FOX-3 during the August 2014 field program:

Table II: Summary of Soil Sampling at FOX-3 - August 2014

Landfill Site	Soil Sample Locations					
Tier II Disposal Facility	MW-1	MW-2	MW-3	MW-4		
Non-Hazardous Waste Landfill	MW-5	MW-6	MW-7	MW-8		
	F3-4-2014	F3-5-2014	F3-6-2014	F3-7-2014		
Station West Landfill	F3-8-2014	F3-9-2014	F3-10-2014	F3-11-2014		
	F3-12-2014	1	1	ı		
West Landfill	F3-1-2014	F3-2-2014	F3-3-2014	-		

2.3 GROUNDWATER SAMPLING

The groundwater sampling methodology conformed to guidance provided in the following CCME documents:

- CCME EPC-NCS62E Guidance Manual on Sampling, Analysis and Data Management for Contaminated Sites - Volume I: Main Report, Dec 1993 (CCME catalogue - http://www.ccme.ca/pdfs/cat_eng.pdf).
- CCME EPC-NCS66E Guidance Manual on Sampling, Analysis and Data Management for Contaminated Sites - Volume II: Analytical Method Summaries, Dec. 1993 (CCME catalogue - http://www.ccme.ca/pdfs/cat_eng.pdf).

Wells were purged as specified and measurements of *in situ* temperature, conductivity, and pH were taken. Sampling took place when these parameters were stabilized. The samples were not acidified and were not filtered (as directed in the TOR).

The groundwater sampling was performed through the monitoring wells using a dedicated waterra tube and footvalve. The water table level and well bottom (refusal) were measured using an interface probe. Also, physico-chemical parameters (T (°C), pH and Conductivity) were measured, using a multiparameters probe, at the beginning and all over the purging process. Purging of wells was performed at a pumping rate of less than 100 ml per minute, as specified by the TOR. Once the purged volume reached a minimum of one volume of well and the physico-chemical parameters stabilized, the water sampling could be performed. The groundwater samples were collected directly in the laboratory supplied bottles.

The 2014 field program included sampling eight monitoring wells at FOX-3. Water was present in all wells but in sufficient quantity to collect samples for all required analyses in MW-1 and 4. All other wells lacked the necessary volume to collect samples for TPH analyses. It should be noted that, although requested in the COC, Exova did not perform PHC Fraction F1 analysis. Concentrations measured in the QA samples sent to Maxxam are presented where applicable.

A summary of the groundwater sampling undertaken at FOX-3 is provided in Table III. In sampled wells, no signs of free-phase hydrocarbon product were detected. Monitoring Well Development and Sampling Record forms are included in appropriate sections in this report.

Table III: Summary of Groundwater Sampling at FOX-3 - August 2014

Landfill Site		Groundwater S	ample Location	s
Tier II Disposal Facility	MW-1	MW-2	MW-3	MW-4
Non-Hazardous Waste Landfill	MW-5	MW-6	MW-7	MW-8

2.4 THERMAL MONITORING

The 2014 thermal monitoring program at FOX-3 consisted of the inspection of four thermistors and data loggers, the downloading of all datasets, the manual reading of thermistors and the data logger batteries replacement. Specific detailed information regarding temperature data is presented in the Tier II Disposal Facility section of this report.

2.5 FIELD NOTES AND DATA

Field notes from the 2014 Landfill Monitoring Program, including soil and water sampling, are included in Annex 3 for reference. Notes were written in field books, previously prepared logs, or entered directly into a field computer. The notes were saved to an Adobe pdf document for future reference and back up. Locations of all observations and features for the visual inspection were recorded using a Garmin GPS eTrex 30 hand-held GPS, which included a combination of continuous tracks and discrete waypoints. Datasets collected from the individual vertical thermistors were downloaded directly to a field laptop computer.

2.6 QUALITY CONTROL

Sila implemented standard sample collection techniques to decrease the likelihood of compromising collected samples. The methods used for sample collection are summarized in Sections 2.2 and 2.3 of this report. The following measures were taken to minimize sample cross-contamination:

- All samples were placed directly into the appropriate laboratory-supplied containers (for the particular analysis).
- Soil samples were collected with the use of decontaminated sampling equipment and/or nitrile gloves that were used only once.
- Water samples were collected through the use of dedicated Waterra foot valves and tubing.

Chain-of-Custody (COC) forms were prepared prior to mobilisation to the site and completed by the Project Engineer after sample collection. The samples were refrigerated prior to off-site shipment, in chilled coolers, by First Air Cargo directly to Maxxam Analytics Inc. (Maxxam) in Ottawa, Ontario (via Iqaluit), Exova in Ottawa, Ontario (via Iqaluit) and ESG in Kingston, Ontario (via Iqaluit), where they were checked in by laboratory representatives. All analyses were completed as specified on COC forms.

2.7 QA/QC PROCEDURES

Sila used standard QA/QC procedures as specified in the TOR and CCME Guidance Documents for this project. The following is a summary of the analytical QA/QC samples collected:

- 10% field duplicate samples of soil and 13% field duplicate samples of water sample were sent to Exova. Results can be found in Annexe 2.
- 10% inter-laboratory duplicate soil samples and 13% field duplicate water sample were sent to Maxxam (to determine if variation in procedures may cause significant difference in analytical results).
- 10% archival samples of soil and 10% archival water samples were sent to ESG.

2.8 PROJECT REFERENCES

The following references are specifically relevant to the 2014 Landfill Monitoring activities:

- A. Invitation to Tender Contractor Services for the Collection of Landfill Monitoring Data: CAM-5 Mackar Inlet, FOX-M Hall Beach, FOX-2 Longstaff Bluff and FOX-3 Dewar Lakes DEW Line Sites Nunavut Territory Qikiqtaaluk Region. DCC Project #: DLCMON(QIKIQ12), March 20, 2012.
- B. Terms of Reference Services for the Collection of Landfill Monitoring Data: CAM-5 Mackar Inlet, FOX-M Hall Beach, FOX-2 Longstaff Bluff and FOX-3 Dewar Lakes DEW Line Sites Nunavut Territory Qikiqtaaluk Region. DCC Project #: DLCMON(QIKIQ12), March 20, 2012.
- C. Contractor Services for the Collection of Landfill Monitoring Data: CAM-5 Mackar Inlet, FOX-M Hall Beach, FOX-2 Longstaff Bluff and FOX-3 Dewar Lakes DEW Line Sites Nunavut Territory Qikiqtaaluk Region. Technical Proposal May 2012.
- D. Post-Field Progress Report, QIQKITALUK DEW Line Sites 2014, September 2014.

3 STATION WEST LANDFILL

3.1 SUMMARY

On August 27, 2014 soil sampling and a visual inspection were completed at the Station West Landfill.

TPH fractions F2 and F3 was detected in the surface sample collected at SS7 with concentrations of 160 and 1,050 mg/kg, respectively, and in the depth sample collected at the same location with concentrations of 30 and 240 mg/kg, respectively. PCBs or relatively high metal concentrations were not detected in the collected soil samples.

As of 2014, no erosion features with "significant" or "unacceptable" severity ratings were identified in the Preliminary Stability Assessment of the Station West Landfill. Seventeen of the previously identified features were not observed during the 2014 investigation. Three new areas of ponding were noted at the toe and southwest portion of Lobe A. Debris identified in the 2014 investigation includes survey piping not removed during construction; no other exposed debris is present at the lobes.

At this time, the overall performance of the landfill is rated as acceptable.

The Visual Inspection Checklist is included in Table IV and has been completed as per the TOR.

Table IV: Visual Inspection Checklist - Station West Landfill

DEW Line Cleanup: Post-construction - Landfill Monitoring Visual Inspection Checklist

Inspection Report - Page 1 of 2

SITE NAME: FOX-3 Dewar Lakes

LANDFILL DESIGNATION: Station West Landfill (Regraded Landfill)

DATE OF INSPECTION: August 27, 2014

DATE OF PREVIOUS INSPECTION: August 23, 2013

INSPECTED BY: M. Fleury

REPORT PREPARED BY: M. Fleury

MONITORING EVENT NUMBER: 3

The inspector/reporter represents to the best of his/her knowledge that the following statements and observations are true and correct and to the best of the preparer's actual knowledge, no material facts have been suppressed or misstated.

Table IV: Visual Inspection Checklist - Station West Landfill (page 2 of 2)

Checklist Item	Present (Y/N)	Feature Label Location Length (m) Width (m) Depth (m) Extend relative to Area of Landfill (%) Description		Length (m)	Width (m)	Depth (m)	to Area of	Description	Photographic Reference	Severity Rating	Additional comments
	N	D	Outside of landfill, NorthWest side of lobe A	N/A	N/A	N/A	N/A	Previously identified area of settlement	26	N/A	Not observed during 2014 inspection
	N	E	Center portion of lobe A landfill	N/A	N/A	N/A	N/A	Previously identified area of settlement	7, 8, 9	N/A	Not observed during 2014 inspection
	N	F	Northeast portion of lobe A landfill	N/A	N/A	N/A	N/A	Previously identified area of settlement	10	N/A	Not observed during 2014 inspection
Settlement	N	Н	South portion of lobe A landfill	N/A	N/A	N/A	N/A	Previously identified area of settlement	N/A	N/A	Not observed during 2014 inspection
	N	J	West portion of lobe E2 landfill	N/A	N/A	N/A	N/A	Previously identified area of settlement	34	N/A	Not observed during 2014 inspection
	N	K	North portion of lobe F landfill	N/A	N/A	N/A	N/A	Previously identified area of settlement	N/A	N/A	Not observed during 2014 inspection
	N	L	Southwest portion of the lobe K landfill top surface	N/A	N/A	N/A	N/A	Previously identified area of settlement	47	N/A	Not observed during 2014 inspection
Erosion	N	М	South portion of lobe F landfill, slope	N/A	N/A	N/A	N/A	Previously identified area of erosion	53	N/A	Not observed during 2014 inspection
	N	0	South portion of lobe F landfill, slope	N/A	N/A	N/A	N/A	Previously identified area of erosion	55	N/A	Not observed during 2014 inspection
Elosion	N	Р	South portion of lobe F landfill, slope	N/A	N/A	N/A	N/A	Previously identified area of erosion	54	N/A	Not observed during 2014 inspection
	Y	U	Center portion of lobe A landfill	30	1.5	0.05	<1%	Zone of settlements identified in 2013	7, 8, 9	Marginal	No significant change from previous inspection
Frost Action	N	0	South portion of lobe F landfill, slope	N/A	N/A	N/A	N/A	Cracking observed in 2013	N/A	N/A	Not observed during 2014 inspection
Frost Action	N	Q	South portion of lobe F landfill, slope	N/A	N/A	N/A	N/A	Cracking observed in 2013	N/A	N/A	Not observed during 2014 inspection
Animal Burrows	N	N/A			N/A	N/A	N/A				
Vegetation	N	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Otalialas	N	Α	Southern surface of the landfill	N/A	N/A	N/A	N/A	2 hydrocarbons staining observerved previously	10	N/A	Not observed during 2014 inspection
Staining	Y	В	Northeast part of the landfill top surface	10	3	NA	<1%	Iron Stains identified previously	4	Marginal	No significant change from previous inspection
Vegetation Stress	N	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A N/A		N/A
	N	N	South portion of lobe F landfill, slope	N/A	N/A	N/A	N/A	Prevously identified area of seepage	55	N/A	Not observed during 2014 inspection
	Υ	Т	SouthWest portion of the lobe A - New Obs.	6	2	0.01	<1%	New water accumulation on the landfill surface	31	Acceptable	New area of ponding in southwest portion of Lobe A
Seepage Points	Υ	V	Toe of the northern slope of lobe A - New Obs.	8	5	0.05	<1%	Water accumulation at the landfill toe	6	Acceptable	New area of ponding at the toe of northern slop of Lobe A
	Y	W	Southwest portion of the loba A - New Obs.	9	2	0.05	<1%	Water accumulation on the landfill surface	22	Acceptable	New area of ponding in southwest portion of Lobe A
	Y	С	Middle of the Nothwest slope of the lobe A landfill	N/A	N/A	N/A	N/A	Orange plastic pipe debris identified previously	11	Acceptable	No significant change from previous inspection
Debris Exposed	Y	S	Southwest slope of the lobe A landfill	N/A	N/A	N/A	N/A	Orange plastic pipe debris identified previously	30 N/A	N/A	No significant change from previous inspection
	N N	G I	Outside of landfill, South side of lobe A Northeast limit of lobe E2 landfill	N/A N/A	N/A N/A	N/A N/A	N/A N/A	Scattered Wood Debris observed previously geotextile debris observed previously	N/A N/A	N/A N/A	Not observed during the 2014 inspection Not observed during the 2014 inspection
	N	R	Outside of landfill, North side of lobe F	N/A	N/A	N/A	N/A	metal debris observed previously	N/A	N/A	Not observed during 2014 inspection
Presence / Condition of Monitoring Instruments	N	N/A	N/A	N/A	N/A	N/A	N/A	metal debris observed previously N/A N/A Not observed during 201 N/A N/A N/A N/A N/A		<u> </u>	
Other Features of Note	Υ	Α	Northeast limit of lobe A landfill	3	2	N/A	<1%	Jet A1 fuel reservoir	10	Acceptable	No significant change from previous inspection

3.2 PRELIMINARY STABILITY ASSESSMENT

The Preliminary Stability Assessment for the Station West Landfill has been completed as per the TOR and is included as Table V hereafter.

Table V: Preliminary Stability Assessment - Station West Landfill

Feature	Severity Rating	Extent	
Settlement	Not observed	None	
Erosion	Marginal	Occasional	
Frost Action	Not observed	None	
Staining	Marginal	Isolated	
Vegetation Stress	Not observed	None	
Seepage/Ponded Water	Acceptable	Isolated	
Debris Exposure	Acceptable	Occasional	
Overall Landfill Performance	Accep	otable	

Performance/Severity Rating	Description
Acceptable	Noted features are of little consequence. The landfill is performing as designed. Minor deviations in environmental or physical performance may be observed, such as isolated areas of erosion or settlement.
Marginal	Physical/environmental performance appears to be deteriorating with time. Observations may include an increase in size or number of features of note, such as differential settlement, erosion or cracking. No significant impact on landfill stability to-date, but potential for failure is assessed as low or moderate.
Significant	Significant or potentially significant changes affecting landfill stability, such as significant changes in slope geometry, significant erosion or differential settlement; scarp development. The potential for failure is assessed as imminent.
Unacceptable	Stability of the landfill is compromised to the extent that its ability to contain waste materials is compromised. Examples may include: • Debris exposed in erosion channels or areas of differential settlement. • Liner exposed. • Slope failure.
Extent	Description
Isolated	Singular feature.
Occasional	Features of note occurring at irregular intervals/locations.
Numerous	Many features of note, impacting less than 50% of the surface area of the landfill.
Extensive	Impacting greater than 50% of the surface area of the landfill.

3.3 LOCATION PLAN

The annotated drawing for the Station West Landfill has been completed as per the TOR and is included on the following page as Figure FOX-3.2 Station West Landfill.

3.4 PHOTOGRAPHIC RECORDS

The Photographic Record for the Station West Landfill has been completed as per the TOR and is included as Table VI hereafter. Full-sized photographs are contained in the attached DVD-ROM.

Table VI: Landfill Visual Inspection Photo Log - Station West Landfill (page 1 of 2)

Site Name: FOX-3, Dewer Lakes
Landfill: Station West Landfill
Date Inspected: August 27, 2014
Inspected by: Martin Fleury

Photo		Size		Vantage Point		
reference	Filename	(KB)	Date	Easting	Northing	Caption
1	IMG_0596	1 825	2014-08-27	19 W 409074	7617064	West view of the F3-8-2014 sampling location
2	IMG_0597	2 844	2014-08-27	19 W 409074	7617064	View of the F3-8-2014 sampling location
3	IMG_0598	2 715	2014-08-27	19 W 409074	7617064	West view of the F3-8-2014 sampling location
4	IMG_0599	2 664	2014-08-27	19 W 409051	7617101	Southeast view of a staining spot on the surface of the landfill (Feature B)
5	IMG_0600	2 302	2014-08-27	19 W 409023	7617120	Southwest view of F3-4-2014 sampling location
6	IMG_0601	2 353	2014-08-27	19 W 409031	7617117	Southeast view of a ponding water location (Feature V)
7	IMG_0602	2 916	2014-08-27	19 W 409006	7617093	South-southwest view of a drainage channel (Feature U)
8	IMG_0603	2 898	2014-08-27	20 W 409006	7617094	South-southwest view of a drainage channel (Feature U)
9	IMG_0604	2 884	2014-08-27	19 W 409018	7617067	South-southwest view of a drainage channel (Feature U)
10	IMG_0605	2 005	2014-08-27	19 W 409061	7617082	Southeast view of a Jet Fuel reservoir on the landfill surface
11	IMG_0606	2 058	2014-08-27	19 W 408973	7617077	View of an exposed plastic pipe debris (Feature C)
12	IMG_0607	2 324	2014-08-27	19 W 408999	7617063	Panoramic view of the lobe A landfill top surface - East
13	IMG_0608	2 346	2014-08-27	19 W 408999	7617063	Panoramic view of the lobe A landfill top surface - East-southeast
14	IMG_0609	2 397	2014-08-27	19 W 408999	7617063	Panoramic view of the lobe A landfill top surface - Southeast
15	IMG_0610	2 199	2014-08-27	19 W 408999	7617063	Panoramic view of the lobe A landfill top surface - South-southeast
16	IMG_0611	1 890	2014-08-27	19 W 408999	7617063	Panoramic view of the lobe A landfill top surface - South-southwest
17	IMG_0612	1 827	2014-08-27	19 W 408999	7617063	Panoramic view of the lobe A landfill top surface - southwest
18	IMG_0613	2 109	2014-08-27	19 W 408999	7617063	Panoramic view of the lobe A landfill top surface - West
19	IMG_0614	2 522	2014-08-27	19 W 408999	7617063	Panoramic view of the lobe A landfill top surface - Northwest
20	IMG_0615	2 489	2014-08-27	19 W 408999	7617063	Panoramic view of the lobe A landfill top surface - North
21	IMG_0616	2 395	2014-08-27	19 W 408999	7617063	Panoramic view of the lobe A landfill top surface - Northeast
22	IMG_0617	2 805	2014-08-27	19 W 408986	7617033	East view of a ponding water point (Feature W)
23	IMG_0618	2 535	2014-08-27	19 W 408981	7617105	East-northeast view of the F3-5-2014 soil sampling location
24	IMG_0619	2 567	2014-08-27	19 W 408981	7617105	East-northeast view of the F3-5-2014 soil sampling location
25	IMG_0620	2 687	2014-08-27	19 W 408981	7617105	East-northeast view of the F3-5-2014 soil sampling location

Table VI: Landfill Visual Inspection Photo Log - Station West Landfill (page 2 of 2)

Photo		Size		Vantage Point		
reference	Filename	(KB)	Date	Easting	Northing	Caption
26	IMG_0621	2 279	2014-08-27	19 W 408954	7617068	East-northeast view of the F3-6-2014 soil sampling location
27	IMG_0622	2 937	2014-08-27	19 W 408954	7617068	View of the F3-6-2014 soil sampling location
28	IMG_0623	2 830	2014-08-27	19 W 408934	7617033	Northeast view of the F3-7-2014 soil sampling location
29	IMG_0624	2 608	2014-08-27	19 W 408934	7617033	Northeast view of the F3-7-2014 soil sampling location
30	IMG_0625	3 155	2014-08-27	19 W 408950	7617012	View of an exposed plastic pipe debris (Feature S)
31	IMG_0626	3 019	2014-08-27	19 W 408955	7617009	East view of a ponding water point (Feature T)
32	IMG_0628	2 784	2014-08-27	19 W 408801	7616936	Northeast view of the F3-9-2014 soil sampling location
33	IMG_0629	1 880	2014-08-27	19 W 408832	7616937	Panoramic view of the lobe E2 landfill top surface - West-southwest
34	IMG_0630	1 812	2014-08-27	19 W 408832	7616937	Panoramic view of the lobe E2 landfill top surface - West
35	IMG_0631	2 421	2014-08-27	19 W 408832	7616937	Panoramic view of the lobe E2 landfill top surface - Northwest
36	IMG_0632	2 518	2014-08-27	19 W 408832	7616937	Panoramic view of the lobe E2 landfill top surface - North
37	IMG_0633	2 470	2014-08-27	19 W 408832	7616937	Panoramic view of the lobe E2 landfill top surface - Northeast
38	IMG_0634	2 300	2014-08-27	19 W 408832	7616937	Panoramic view of the lobe E2 landfill top surface - East
39	IMG_0635	2 321	2014-08-27	19 W 408832	7616937	Panoramic view of the lobe E2 landfill top surface - Southeast
40	IMG_0636	2 261	2014-08-27	19 W 408832	7616937	Panoramic view of the lobe E2 landfill top surface - Southeast
41	IMG_0637	2 089	2014-08-27	19 W 408832	7616937	Panoramic view of the lobe E2 landfill top surface - SouthWest
42	IMG_0638	1 530	2014-08-27	19 W 408867	7616910	Panoramic view of the SouthEast side of lobe E2 landfill - West-northwest
43	IMG_0639	1 955	2014-08-27	19 W 408867	7616910	Panoramic view of the SouthEast side of lobe E2 landfill - North-northwest
44	IMG_0640	2 650	2014-08-27	19 W 408876	7616819	Northeast view of the F3-12-2014 soil sampling location
45	IMG_0641	2 323	2014-08-27	19 W 408899	7616835	Panoramic view of the Lobe F landfill top surface - West-southwest
46	IMG_0642	2 111	2014-08-27	19 W 408899	7616835	Panoramic view of the Lobe F landfill top surface - South-southwest
47	IMG_0643	2 258	2014-08-27	19 W 408899	7616835	Panoramic view of the Lobe F landfill top surface - South-southeast
48	IMG_0644	2 319	2014-08-27	19 W 408899	7616835	Panoramic view of the Lobe F landfill top surface - East
49	IMG_0645	2 418	2014-08-27	19 W 408899	7616835	Panoramic view of the Lobe F landfill top surface - Northeast
50	IMG_0646	2 617	2014-08-27	19 W 408899	7616835	Panoramic view of the Lobe F landfill top surface - North-northwest
51	IMG_0647	2 345	2014-08-27	19 W 408899	7616835	Panoramic view of the Lobe F landfill top surface - West-northwest
52	IMG_0648	2 106	2014-08-27	19 W 408899	7616835	Panoramic view of the Lobe F landfill top surface - West
53	IMG_0649	1 704	2014-08-27	19 W 408910	7616783	Panoramic view of the South side of Lobe F landfill - Northwest
54	IMG_0651	2 320	2014-08-27	19 W 408910	7616783	Panoramic view of the South side of Lobe F landfill - Northeast
55	IMG_0652	2 742	2014-08-27	19 W 408922	7616795	Northwest view of F3-11-2014 soil sampling location
56	IMG_0653	2 664	2014-08-27	19 W 408922	7616795	North view of F3-11-2014 soil sampling location
57	IMG_0654	1 959	2014-08-27	19 W 408943	7616890	Southwest view of F3-10-2014 soil sampling location
58	IMG_0655	1 882	2014-08-27	19 W 408943	7616890	Southwest view of F3-10-2014 soil sampling location
59	IMG_0656	2 587	2014-08-27	19 W 408943	7616890	Southwest view of F3-10-2014 soil sampling location

3.5 SOIL SAMPLE ANALYTICAL DATA

The soil chemical analysis results for the 2014 Station West Landfill Disposal Facility samples are presented in Table VII hereafter. Certificates of analyses and results of field duplicates collected as part of the QA/QC program are presented in Annexes 1 and 2 at the end of this report. It should be noted that sample numbers have been altered. Please refer to Annex 1 for the sample ID key.

Table VII: Station West Landfill Summary Table for Soil Analytical Data

								Р	aramete	ers					
	Location	Depth	_		_			_	_	_			F1	F2	F3
Sample #		[cm]	Cu	Ni	Со	Cd	Pb	Zn	Cr	As	Hg	PCBs	C ₆ -C ₁₀	C ₁₀ -C ₁₆	C ₁₆ -C ₃₄
		[]	[mg/kg]	[[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]		[mg/kg]
RDL - Exova	1	1	1	0.5	1	2	1	1	0.1	0.02	10	10	20		
Upgradient Soil Sa	mples		•				•		•			•	•	•	
F3-8-A-2014	F3-8-2014	0 -10	38	34	10	<0.5	7	78	87	14	<0.1	< 0.02	<10	<10	<20
F3-8-B-2014	F3-0-2014	40 - 50	42	33	10	<0.5	8	74	77	17	<0.1	<0.02	<10	<10	<20
F3-10-A-2014	F3-10-2014	0 -10	39	41	11	<0.5	8	82	97	13	< 0.1	<0.02	<10	<10	<20
F3-10-B-2014	13-10-2014	40 - 50	30	38	9	<0.5	5	67	95	12	<0.1	< 0.02	<10	<10	<20
Downgradient Soil															
F3-4-A-2014	F3-4-2014	0 -10	27	28	9	<0.5	6	63	74	23	<0.1	< 0.02	<10	<10	<20
F3-4-B-2014	1 3-4-2014	40 - 50	42	32	9	0.5	8	72	84	19	<0.1	< 0.02	<10	<10	<20
F3-5-A-2014	F3-5-2014	0 -10	45	38	12	<0.5	9	97	82	14	<0.1	< 0.02	<10	<10	<20
F3-5-B-2014	1002014	40 - 50	40	37	12	<0.5	7	82	83	14	<0.1	< 0.02	<10	<10	<20
F3-6-A-2014	F3-6-2014	0 -10	34	34	8	<0.5	6	72	81	13	< 0.1	< 0.02	<10	<10	<20
F3-6-B-2014	1 3-0-2014	40 - 50				N	lot sampl	led (Read	hed bed	rock at 0	.2 m dep	th)			
F3-7-A-2014	F3-8-2014	0 -10	40	40	9	<0.5	7	66	94	17	<0.1	< 0.02	<10	160	1050
F3-7-B-2014	1002014	40 - 50	33	28	8	<0.5	5	58	63	10	<0.1	< 0.02	<10	30	240
F3-9-A-2014	F3-9-2014	0 -10	48	39	11	<0.5	8	81	83	16	<0.1	< 0.02	<10	<10	<20
F3-9-B-2014	1 3-3-2014	40 - 50	45	41	11	<0.5	7	75	87	15	<0.1	< 0.02	<10	<10	<20
F3-11-A-2014	F3-11-2014	0 -10	50	51	16	<0.5	6	80	87	21	<0.1	< 0.02	<10	<10	<20
F3-11-B-2014		40 - 50	56	54	16	<0.5	7	87	85	24	<0.1	< 0.02	<10	<10	<20
F3-12-A-2014	F3-12-2014	0 -10	55	39	11	<0.5	8	80	87	24	<0.1	<0.02	<10	<10	<20
F3-12-B-2014	10 12 2014	40 - 50	50	39	11	<0.5	7	78	89	22	<0.1	< 0.02	<10	<10	<20

4 WEST LANDFILL

4.1 SUMMARY

On August 27, 2014 soil sampling and a visual inspection were completed at the West Landfill.

The depth sample at SS3 was not collected due to the presence of bedrock while the surface sample at the same location was lost during transportation (broken bottle). Neither TPH nor PCBs were detected in the collected soil samples. Elevated levels of chromium were detected in the remaining samples at concentrations varying from 86 to 163 mg/kg.

As of the 2014 monitoring event, no features were identified with "significant" or "unacceptable" severity ratings. Two new areas of minor settlement were observed on the landfill surface. Three of the previously identified features were not observed during the 2014 inspection. Neither an erosion feature nor exposed debris was noted.

Based on the results of the Preliminary Stability Assessment, the West Landfill has an acceptable severity rating.

The Visual Inspection Checklist has been completed as per the TOR and is included as Table VIII.

Table VIII: Visual Inspection Checklist - West Landfill

DEW Line Cleanup: Post-construction - Landfill Monitoring Visual Inspection Checklist

Inspection Report - Page 1 of 2

SITE NAME: FOX-3 Dewar Lakes

LANDFILL DESIGNATION: West Landfill (Regraded Landfill)

DATE OF INSPECTION: August 27, 2014

DATE OF PREVIOUS INSPECTION: August 23, 2013

INSPECTED BY: M. Fleury

REPORT PREPARED BY: M. Fleury

MONITORING EVENT: 3

The inspector/reporter represents to the best of his/her knowledge that the following statements and observations are true and correct and to the best of the preparer's actual knowledge, no material facts have been suppressed or misstated.

Table VIII: Visual Inspection Checklist -West Landfill (page 2 of 2)

Checklist Item	Present (Y/N)	Feature Label	Location	Length (m)	Width (m)	Depth (m)	Extend relative to Area of Landfill (%)	Description	Photographic Reference	Severity Rating	Additional comments		
	N	Α	Northeast part of the landfill top	N/A	N/A	N/A	N/A	Previously observed area of settlement	7	N/A	Not observed during 2014 inspection		
	N	В	Southeast part of the landfill top	N/A	N/A	N/A	N/A	Previously observed area of settlement	8	N/A	Not observed during 2014 inspection		
Settlement	Y	Е	Northwest slope of the West Landfill - New Obs.	3	1.5	0.4	<1%	New settlements in the gravel surface	12	Marginal	New settlement on the northwest slope not previously noted		
	Y	F	North slope of the West Landfill - New Obs.	3 2.5 0.3 <1%		<1%	New settlements in the gravel surface	15	Marginal	New settlement on the north slope not previously noted			
Erosion	N	D	North limit of the landfill, border of access road	N/A	N/A	N/A	N/A	Erosion channel observed previously	12, 16	N/A	Not observed during 2014 inspection		
Frost Action	N	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A		
Animal Burrows	N	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A		
Vegetation	N	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A		
Staining	N	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A		
Vegetation Stress	N	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A		
Seepage Points	N	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A		
Debris Exposed	N	С	Northern slope of the landfill	N/A	N/A	N/A	N/A	Cable debris observed previously	N/A	N/A	Not observed during 2014 inspection		
Presence / Condition of Monitoring Instruments	N	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A		
Other Features of Note	N	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A		

4.2 PRELIMINARY STABILITY ASSESSMENT

The Preliminary Stability Assessment for the West Landfill has been completed as per the TOR and is included as Table IX hereafter.

Table IX: Preliminary Stability Assessment - West Landfill

Feature	Severity Rating	Extent				
Settlement	Marginal	Occasional				
Erosion	Not Observed	None				
Frost Action	Not Observed	None				
Staining	Not Observed	None				
Vegetation Stress	Not Observed	None				
Seepage/Ponded Water	Not Observed	None				
Debris Exposure	Not Observed	None				
Overall Landfill Performance	Acceptable					

Performance/Severity Rating	Description
Acceptable	Noted features are of little consequence. The landfill is performing as designed. Minor deviations in environmental or physical performance may be observed, such as isolated areas of erosion or settlement.
Marginal	Physical/environmental performance appears to be deteriorating with time. Observations may include an increase in size or number of features of note, such as differential settlement, erosion or cracking. No significant impact on landfill stability to-date, but potential for failure is assessed as low or moderate.
Significant	Significant or potentially significant changes affecting landfill stability, such as significant changes in slope geometry, significant erosion or differential settlement; scarp development. The potential for failure is assessed as imminent.
Unacceptable	Stability of the landfill is compromised to the extent that its ability to contain waste materials is compromised. Examples may include: • Debris exposed in erosion channels or areas of differential settlement. • Liner exposed. • Slope failure.
Extent	Description
Isolated	Singular feature.
Occasional	Features of note occurring at irregular intervals/locations.
Numerous	Many features of note, impacting less than 50% of the surface area of the landfill.
Extensive	Impacting greater than 50% of the surface area of the landfill.

4.3 LOCATION PLAN

The annotated drawing for the West Landfill has been completed as per the TOR and is included in the following page as Figure FOX-3.3 Dewar Lakes - West Landfill.

G:\CD2655\FINAL\FOX-3\2014\CD2655_420_423_101-FOX-3_C.dwg, PL, 2015-07-02 2:19:30 PN

4.4 PHOTOGRAPHIC RECORDS

The Photographic Record for the West Landfill has been completed as per the TOR and is included in the following page as Table X. Full-sized photographs are contained in the attached DVD-ROM.

Table X: Landfill Visual Inspection Photo Log - West Landfill

Site Name: FOX-3, Dewer Lakes
Landfill: West Landfill
Date Inspected: August 27, 2014
Inspected by: Martin Fleury

Photo		Size		Vantage Point		
reference	Filename	(KB)	Date	Easting	Northing	Caption
1	IMG_0657	2 389	2014-08-27	19 W 407892	7617356	Northeast view of F3-1-2014 soil sampling location
2	IMG_0658	1 962	2014-08-27	19 W 407902	7617381	Panoramic view of the West Landfill top - Southwest
3	IMG_0659	1 639	2014-08-27	19 W 407902	7617381	Panoramic view of the West Landfill top - West
4	IMG_0660	1 299	2014-08-27	19 W 407902	7617381	Panoramic view of the West Landfill top - Northwest
5	IMG_0661	1 653	2014-08-27	19 W 407902	7617381	Panoramic view of the West Landfill top - North
6	IMG_0662	2 071	2014-08-27	19 W 407902	7617381	Panoramic view of the West Landfill top - Northeast
7	IMG_0663	2 063	2014-08-27	19 W 407902	7617381	Panoramic view of the West Landfill top - East
8	IMG_0664	2 254	2014-08-27	19 W 407902	7617381	Panoramic view of the West Landfill top - East-southeast
9	IMG_0665	2 220	2014-08-27	19 W 407902	7617381	Panoramic view of the West Landfill top - South-southeast
10	IMG_0666	2 299	2014-08-27	19 W 407892	7617356	Northeast view of F3-1-2014 soil sampling location
11	IMG_0667	2 508	2014-08-27	19 W 407899	7617416	Southwest view of F3-3-2014 soil sampling location
12	IMG_0668	2 509	2014-08-27	19 W 407887	7617395	Southwest view of settlements point (Feature E)
13	IMG_0669	2 810	2014-08-27	19 W 407899	7617416	Southwest view of F3-3-2014 soil sampling location
14	IMG_0670	2 135	2014-08-27	19 W 407942	7617406	Southeast view of F3-2-2014 soil sampling location
15	IMG_0671	2 145	2014-08-27	19 W 407926	7617393	North view of settlements point (Feature F)
16	IMG_0672	1 867	2014-08-27	19 W 407927	7617410	Southeast view of the nortern side of the West Landfill
17	IMG_0673	1 888	2014-08-27	19 W 407878	7617367	North-northeast view of the Western side of the West Landfill
18	IMG_0674	2 089	2014-08-27	19 W 407878	7617367	South view of the soutern side of the West Landfill

4.5 SOIL SAMPLE ANALYTICAL DATA

The soil chemical analysis results for the 2014 West Landfill Disposal Facility samples are presented in Table XI hereafter. Certificates of analyses and results of field duplicates collected as part of the QA/QC program are presented in Annexes 1 and 2 at the end of this report. It should be noted that sample numbers have been altered. Please refer to Annex 1 for the sample ID key.

Table XI: West Landfill Summary Table for Soil Analytical Data

								Р	aramete	rs					
Sample #		Depth [cm]	_	Ni [mg/kg]	Co [mg/kg]	Cd [mg/kg]	Pb [mg/kg]	Zn [mg/kg]	Cr [mg/kg]	As [mg/kg]	Hg [mg/kg]	PCBs [mg/kg]	F1	F2	F3
	Location		Cu [mg/kg]										C ₆ -C ₁₀	C ₁₀ -C ₁₆	C ₁₆ -C ₃₄
													[mg/kg]	[mg/kg]	[mg/kg]
RDL - Exova	1	1	1	0.5	1	2	1	1	0.1	0.02	10	10	20		
Upgradient Soil Sam	Upgradient Soil Samples														
F3-1-A-2014	F3-1-2014	0 -10	30	39	8	< 0.5	9	52	86	10	<0.1	<0.02	<10	<10	<20
F3-1-B-2014	1 3-1-2014	40 - 50	24	69	8	< 0.5	5	57	163	6	<0.1	< 0.02	<10	<10	<20
Downgradient Soil S	Downgradient Soil Samples														
F3-2-A-2014	F3-2-2014	0 -10	26	43	8	< 0.5	6	56	109	9	<0.1	< 0.02	<10	<10	<20
F3-2-B-2014	40 - 50					No	ot sample	ed (Reac	hed bedr	ock at 0.	18 m dep	th)			
F3-3-A-2014	F3-3-2014	0 -10		·				Los	t in trans	port					
F3-3-B-2014	1 3-3-2014	40 - 50	Not sampled (Reached bedrock at 0.22 m depth)												

5 NON-HAZARDOUS WASTE LANDFILL

5.1 SUMMARY

On August 27, 2014 soil sampling, groundwater sampling, and a visual inspection were completed at the Non-Hazardous Waste Landfill.

TPH, PCBs or relatively high metal concentrations were not detected in the collected soil samples. All monitoring wells contained sufficient water to collect metal and PCB samples; TPH samples were not collected at any of the wells due to lack of water. PCBs were not detected in any of the groundwater samples. Elevated level of zinc was detected at MW5 (5.28 mg/L).

As of the 2014 monitoring event, no features were identified with "significant" or "unacceptable" severity ratings. Three areas of seepage were the only features observed during the 2014 investigation. These areas are located along the northern and western toes, as well as the northwest surface of the landfill; the seepage has been deemed acceptable. Neither settlement nor exposed debris was noted.

Based on the results of the Preliminary Stability Assessment, the Non-Hazardous Waste Landfill has an acceptable severity rating.

The Visual Inspection Checklist has been completed as per the TOR and is included as Table XII.

Table XII: Visual Inspection Checklist - Non-Hazardous Waste Landfill

DEW Line Cleanup: Post-construction - Landfill Monitoring Visual Inspection Checklist

Inspection Report - Page 1 of 2

SITE NAME: FOX-3 Dewar Lakes

LANDFILL DESIGNATION: Non-Hazardous Waste Landfill (Non-Hazardous Landfill)

DATE OF INSPECTION: August 27, 2014

DATE OF PREVIOUS INSPECTION: August 23, 2013

INSPECTED BY: M. Fleury

REPORT PREPARED BY: M. Fleury

MONITORING EVENT: 3

The inspector/reporter represents to the best of his/her knowledge that the following statements and observations are true and correct and to the best of the preparer's actual knowledge, no material facts have been suppressed or misstated.

Table XII: Visual Inspection Checklist -Non-Hazardous Waste Landfill (page 2 of 2)

Checklist Item	Present (Y/N)	Feature Label	Location	Length (m)	Width (m)	Depth (m)	Extend relative to Area of Landfill (%)	Description	Photographic Reference	Severity Rating	Additional comments
Settlement	N	Α	Eastern surface of the landfill	N/A	N/A	N/A	N/A	Settlement identified in previous inspection	N/A	N/A	Not observed during 2014 inspection
Settlement	N	В	Top of the east landfill slope	N/A	N/A	N/A	N/A	Settlement identified in previous inspection	N/A	N/A	Not observed during 2014 inspection
Erosion	N	С	North slope of landfill	N/A	N/A	N/A	N/A	Erosion channel identified in previous inspection	N/A	N/A	Not observed during 2014 inspection
Frost Action	N	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Animal Burrows	N	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Vegetation	N	E	Southern portion of landfill cap	N/A	N/A	N/A	N/A	Vegetation identified in previous inspection	N/A	N/A	Not observed during 2014 inspection
Staining	N	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Vegetation Stress	N	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
	Y	G	Northeast part of the landfill top - New Obs.	4	1.5	0.02	<1%	Water accumulation on the surface of the landfill	36	Acceptable	Ponding at northeast portion not previously noticed
Seepage Points	Y	F	Toe of the northern slope of landfill - New Obs.	115	5	0.15	5%	Water accumulation at landfill toe	10, 12, 14	Acceptable	Ponding at toe of northern slope not previously noticed
	Y	Н	Toe of the western slope of landfill - New Obs.	75	4	0.01	3%	Water accumulation at landfill toe	37, 38, 41	Acceptable	Ponding at toe of western slope not previously noticed
Debris Exposed	N	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
		MW-05	~20 m North side of the LF	N/A	N/A	N/A	N/A	Groundwater Monitoring Well	9	N/A	Good condition
Presence / Condition of	Y	MW-06	~20 m West side of the LF	N/A	N/A	N/A	N/A	Groundwater Monitoring Well	18	N/A	casing lifted by frost action
Monitoring Instruments	' [MW-07	~25 m East side of the LF	N/A	N/A	N/A	N/A	Groundwater Monitoring Well	1	N/A	casing lifted by frost action
		MW-08	~20 m South side of the LF	N/A	N/A	N/A	N/A	Groundwater Monitoring Well	21	N/A	casing lifted by frost action
Other Features of Note	N	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A

5.2 PRELIMINARY STABILITY ASSESSMENT

The Preliminary Stability Assessment for the Non-Hazardous Waste Landfill has been completed as per the TOR and is included as Table XIII hereafter.

Table XIII: Preliminary Stability Assessment - Non-Hazardous Waste Landfill

Feature	Severity Rating	Extent		
Settlement	Not observed	None		
Erosion	Not observed	None		
Frost Action	Not observed	None		
Staining	Not observed	None		
Vegetation Stress	Not observed	None		
Seepage/Ponded Water	Acceptable	Occasional		
Debris Exposure	Not observed	None		
Overall Landfill Performance	Acce	ptable		

Performance/Severity Rating	Description
Acceptable	Noted features are of little consequence. The landfill is performing as designed. Minor deviations in environmental or physical performance may be observed, such as isolated areas of erosion or settlement.
Marginal	Physical/environmental performance appears to be deteriorating with time. Observations may include an increase in size or number of features of note, such as differential settlement, erosion or cracking. No significant impact on landfill stability to-date, but potential for failure is assessed as low or moderate.
Significant	Significant or potentially significant changes affecting landfill stability, such as significant changes in slope geometry, significant erosion or differential settlement; scarp development. The potential for failure is assessed as imminent.
Unacceptable	Stability of the landfill is compromised to the extent that its ability to contain waste materials is compromised. Examples may include: • Debris exposed in erosion channels or areas of differential settlement. • Liner exposed. • Slope failure.
Extent	Description
Isolated	Singular feature.
Occasional	Features of note occurring at irregular intervals/locations.
Numerous	Many features of note, impacting less than 50% of the surface area of the landfill.
Extensive	Impacting greater than 50% of the surface area of the landfill.

5.3 LOCATION PLAN

The annotated drawing for the Non-Hazardous Waste Landfill has been completed as per the TOR and is included on the following page as Figure FOX-3.4 Dewar Lakes - Non-Hazardous Waste Landfill.

3:\CD2655\FINAL\FOX-3\2014\CD2655_420_423_101-FOX-3_D.dwg, PL, 2015-06-29 8:57:20

5.4 PHOTOGRAPHIC RECORDS

The Photographic Record for the Non-Hazardous Waste Landfill has been completed as per the TOR and is included in the following pages as Table XIV. Full-sized photographs are contained in the attached DVD-ROM.

Table XIV: Landfill Visual Inspection Photo Log - Non-Hazardous Waste Landfill

Site Name: FOX-3, Dewer Lakes
Landfill: Non-Hazardous Waste Landfill

Date Inspected: August 27, 2014
Inspected by: Martin Fleury

Photo				Vantage Point			
reference	Filename	Size (KB)	Date	Easting	Northing	Caption	
1	IMG_0554	2 625	2014-08-27	19 W 409667	7616678	West view of MW-7 casing	
2	IMG_0555	2 305	2014-08-27	19 W 409668	7616681	East view of F3-MW-7-S soil sampling location	
3	IMG_0556	2 779	2014-08-27	19 W 409668	7616681	East view of F3-MW-7-S soil sampling location	
4	IMG_0557	1 772	2014-08-27	19 W 409667	7616678	Panoramic view of the Eastern side side of the landfill - South-southwest	
5	IMG_0558	1 973	2014-08-27	19 W 409667	7616678	Panoramic view of the Eastern side side of the landfill - West-southwest	
6	IMG_0560	2 253	2014-08-27	19 W 409667	7616678	Panoramic view of the Eastern side side of the landfill - West-northwest	
7	IMG_0561	2 286	2014-08-27	19 W 409667	7616678	Panoramic view of the Eastern side side of the landfill - northwest	
8	IMG_0562	2 615	2014-08-27	19 W 409668	7616681	East view of F3-MW-7-S soil sampling location	
9	IMG_0563	2 540	2014-08-27	19 W 409591	7616755	Southeast view of the MW-5 casing	
10	IMG_0564	2 066	2014-08-27	19 W 409590	7616751	Panoramic view of the Northern side of the landfill - East-southeast	
11	IMG_0565	2 016	2014-08-27	19 W 409590	7616751	Panoramic view of the Northern side of the landfill - Southeast	
12	IMG_0566	1 756	2014-08-27	19 W 409590	7616751	Panoramic view of the Northern side of the landfill - South	
13	IMG_0567	1 563	2014-08-27	19 W 409590	7616751	Panoramic view of the Northern side of the landfill - Southwest	
14	IMG_0568	1 556	2014-08-27	19 W 409590	7616751	Panoramic view of the Northern side of the landfill - West-southwest	
15	IMG_0569	1 749	2014-08-27	19 W 409590	7616751	Panoramic view of the Northern side of the landfill - West	
16	IMG_0570	3 035	2014-08-27	19 W 409594	7616753	View of the F3-MW-5-S soil sampling location	
17	IMG_0571	3 041	2014-08-27	19 W 409594	7616753	Southeast view of the F3-MW-5-S soil sampling location	
18	IMG_0572	2 366	2014-08-27	19 W 409523	7616691	Ţ	
19	IMG_0573	2 095	2014-08-27	19 W 409520	7616689	View of the F3-MW-6-S soil sampling location	
20	IMG_0574	2 291	2014-08-27	19 W 409520	7616689	East view of the F3-MW-6-S soil sampling location	
21	IMG_0575	2 284	2014-08-27	19 W 409594	7616607	Northeast view of MW-8 casing	
22	IMG_0576	2 636	2014-08-27	19 W 409593	7616607	South view of F3-MW-8-S soil sampling location	
23	IMG_0577	1 758	2014-08-27	19 W 409596	7616611	Panoramic view of the Southern side of the landfill - West-northwest	
24	IMG_0578	2 133	2014-08-27	19 W 409596	7616611	Panoramic view of the Southern side of the landfill - Northwest	
25	IMG_0579	2 015	2014-08-27	19 W 409596	7616611	Panoramic view of the Southern side of the landfill - Northeast	
26	IMG_0580	1 919	2014-08-27	19 W 409596	7616611	Panoramic view of the Southern side of the landfill - East-northeast	
27	IMG_0581	2 261	2014-08-27	19 W 409595	7616670	Panoramic view of the landfill top - Northwest	
28	IMG_0582	2 036	2014-08-27	19 W 409595	7616670	Panoramic view of the landfill top - North	
29	IMG_0583	1 924	2014-08-27	19 W 409595	7616670	Panoramic view of the landfill top - Northeast	
30	IMG_0584	2 134	2014-08-27	19 W 409595	7616670	Panoramic view of the landfill top - East	
31	IMG_0585	2 215	2014-08-27	19 W 409595	7616670	Panoramic view of the landfill top - Southeast	
32	IMG_0586	2 188	2014-08-27	19 W 409595	7616670	Panoramic view of the landfill top - Southeast	
33	IMG_0587	2 057	2014-08-27	19 W 409595	7616670	Panoramic view of the landfill top - Southwest	
34	IMG_0588	2 052	2014-08-27	19 W 409595	7616670	Panoramic view of the landfill top - West-southwest	
35	IMG_0589	2 213	2014-08-27	19 W 409595	7616670	Panoramic view of the landfill top - West-northwest	
36	IMG_0590	3 037	2014-08-27	19 W 409615	7616707	East view of a ponding water point (Feature G)	
37	IMG_0591	2 198	2014-08-27	19 W 409538	7616698	Paroramic view of the Western side of the landfill - North-northeast	
38	IMG_0592	2 073	2014-08-27	19 W 409538	7616698	Paroramic view of the Western side of the landfill - Northeast	
39	IMG_0593	2 296	2014-08-27	19 W 409538	7616698	Paroramic view of the Western side of the landfill - East	
40	IMG_0594	2 402	2014-08-27	19 W 409538	7616698	Paroramic view of the Western side of the landfill - Southeast	
41	IMG_0595	2 298	2014-08-27	19 W 409538	7616698	Paroramic view of the Western side of the landfill - South-southeast	

5.5 SOIL SAMPLE ANALYTICAL DATA

The soil chemical analysis results for the 2014 Non-Hazardous Waste Landfill Disposal Facility samples are presented in Table XV hereafter. Certificates of analyses and results of field duplicates collected as part of the QA/QC program are presented in Annexes 1 and 2 at the end of this report.

Table XV: Non-Hazardous Waste Landfill Summary Table for Soil Analytical Data

				Parameters											
		Depth			_					_			F1	F2	F3
Sample #	Location	[cm]	Cu [ma/ka]	Ni [ma/ka]	Co [ma/ka]	Cd [ma/ka]	Pb [ma/ka]	Zn Cr [mg/kg] [mg/kg	Cr [ma/ka]	g] [mg/kg]	Hg [mg/kg]	PCBs [mg/kg]	C ₆ -C ₁₀	C ₁₀ -C ₁₆	C ₁₆ -C ₃₄
			[9/1.9]	9, (9)	[9,9]	[9,9]	[9,9]		[991				[mg/kg]	[mg/kg]	[mg/kg]
RDL - Exova			1	1	1	0.5	1	2	1	1	0.1	0.02	10	10	20
F3-MW-5-S-A-2014	MW5	0 -10	28	30	8	<0.5	5	62	75	10	<0.1	< 0.02	<10	<10	<20
F3-MW-5-S-B-2014	IVIVVS	40 - 50	31	38	10	<0.5	6	67	93	18	<0.1	<0.02	<10	<10	<20
F3-MW-6-S-A-2014	MW6	0 -10	40	33	10	<0.5	7	74	82	16	<0.1	< 0.02	<10	<10	<20
F3-MW-6-S-B-2014	IVIVVO	40 - 50	44	36	11	<0.5	8	76	91	18	<0.1	< 0.02	<10	<10	<20
F3-MW-7-S-A-2014	MW7	0 -10	36	38	10	<0.5	6	75	98	14	<0.1	< 0.02	<10	<10	<20
F3-MW-7-S-B-2014	IVI VV /	40 - 50	38	34	10	<0.5	6	73	85	16	<0.1	<0.02	<10	<10	<20
F3-MW-8-S-A-2014	MW8	0 -10	40	38	10	<0.5	7	80	85	14	<0.1	<0.02	<10	<10	<20
F3-MW-8-S-B-2014	IVIVVO	40 - 50	38	40	11	<0.5	7	85	96	18	<0.1	<0.02	<10	<10	<20

5.6 GROUNDWATER SAMPLE ANALYTICAL DATA

All monitoring wells contained sufficient water to collect metal and PCB samples only. Due to the presence of sediment in the water sample collected at MW5 for PCBs analysis, a digest was required and therefore the detection limit was raised. The groundwater chemical analysis results and evaluation for the analytical data for the 2014 Non-Hazardous Waste Landfill Disposal Facility samples are presented in Table XVI hereafter. Certificates of analyses and results for groundwater samples collected as part of the QA/QC program are presented in Annexes 1 and 2, at the end of this report.

Table XVI: Non-Hazardous Waste Landfill Summary Table for Groundwater Analytical Data

	Parameter													
	l						_		_			F1	F2	F3
Sample #	Location	Cu [mg/L]	Ni [mg/L]	Co [mg/L]	Cd [mg/L]	Pb [mg/L]	Zn [mg/L]	Cr [mg/L]	As [mg/L]	Hg [mg/L]	PCBs [ug/L]	C ₆ -C ₁₀ [ug/L]	C ₁₀ -C ₁₆ [ug/L]	C ₁₀ -C ₃₄ [ug/L]
RDL - Exova		0.01	0.01	0.01	0.008	0.01	0.04	0.05	0.02	0.0001	0.1	20	20	50
Upgradient Groundw	ater Sampl	е												
F3-MW-5-2014	MW5	0.18	0.27	0.07	<0.008	0.09	5.28	0.23	0.04	<0.0001	<0.5*	Insufficie	ent water to	sample
Downgradient Groun	Downgradient Groundwater Samples													
F3-MW-6-2014	MW6	0.14	0.09	<0.01	<0.008	0.03	0.68	0.09	< 0.02	<0.0001	<0.1	Insufficient water to sample		
F3-MW-7-2014	MW7	0.16	0.42	0.03	<0.008	0.03	1.14	0.03	0.54	<0.0001	<0.1	Insufficient water to sample		
F3-MW-8-2014	MW8	0.04	0.10	<0.01	<0.008	0.02	0.51	0.14	< 0.02	<0.0001	<0.1	Insufficie	ent water to	sample

^{*:} RDL raised to 0.5 mg/L due to the presence of sediment and associated digestion required

5.7 Monitoring Well Sampling / Inspection Logs

The monitoring well sampling logs for MW-5 to MW-8 are presented in this section. MW-6, 7 and 8 have all heaved due to frost action.

It should be noted that the final parameters (T, pH and Conductivity) measured for MW-5, MW-6 and MW-8 were incorrectly presented as initial parameters in the field notes. Corrections to the field notes were made afterwards and are initialed.

FOX-3 2014-08-27	Martin Fleury Caleb Qanatsiaq Philip Siakuluk -Hazardous Waste Landfill	14:50
Non MW-5 F3-MW-5-20 Good 66 5 440	Time: Martin Fleury Caleb Qanatsiaq Philip Siakuluk -Hazardous Waste Landfill	14:50
Non MW-5 F3-MW-5-20 Good 66 5 440	Martin Fleury Caleb Qanatsiaq Philip Siakuluk -Hazardous Waste Landfill	14:50
MW-5 F3-MW-5-20 Good 66 5 440	Caleb Qanatsiaq Philip Siakuluk -Hazardous Waste Landfill	
MW-5 F3-MW-5-20 Good 66 5 440	Caleb Qanatsiaq Philip Siakuluk -Hazardous Waste Landfill	
MW-5 F3-MW-5-20 Good 66 5 440	Philip Siakuluk -Hazardous Waste Landfill	
MW-5 F3-MW-5-20 Good 66 5 440	-Hazardous Waste Landfill	
66 5 440	14	
66 5 440	114	
66 5 440		
5 440		
5 440		
5 440		
440		
300		
300		
36		
86	Measurement method: (meter.	Interface meter
20	ταρο, στοι)	
20		
130	Evidence of sludge or siltation:	Freezing
.00	_ udones of staage of smallern	. 10029
110		
	not enough water for complete sampling	
2200	not chough water for complete sampling	
N	Measurement method: (meter,	Interface meter
	paste, etc.)	
Υ	Purging/Sampling Equipment:	Waterra tubing
	·	
7.26		
	36 86 20 130 110 2200	36 86 Measurement method: (meter, tape, etc.) 20 130 Evidence of sludge or siltation: 110 2200 not enough water for complete sampling N Measurement method: (meter, paste, etc.) Y Purging/Sampling Equipment: 2.5 very low recharge N Dedicated Waterra Tubing NA NA 7.26 642

^{*} data from previous reports

Develo	pment of	Monitoring Wells	
	-		
Site Name:	FOX-3	Dewar Lakes	
Date of Sampling Event:	2014-08-27	Time:	15:15
Names of Samplers:		Martin Fleury	
		Caleb Qanatsiaq	
		Philip Siakuluk	
Landfill Name:	Non	-Hazardous Waste Landfill	
Monitoring Well ID:	MW-6		
Sample Number:	F3-MW-6-20	14	
Condition of Well:	Lifted by fros	st action	
Measured Data			
Well pipe height above ground (cm)=	78		
Diameter of well (cm)=	5		
* Depth of well installation (cm)=	440		
(from ground surface)			
* Length screened section (cm)=	300		
* Depth to top of screen (cm)=	36		
(from ground surface)			
Depth to water surface (cm)=	107	Measurement method: (meter,	Interface meter
(from top of pipe)		tape, etc.)	
Static water level (cm)=	29	, , ,	
(below ground surface)			
Measured well refusal depth BGS	133	Evidence of sludge or siltation:	Freezing
(cm)=		, and the second	J
Thickness of water column (cm)=	104		
Static volume of water in well (mL)=	2080	not enough water for complete sampling	
Statio voidino di viatoi ili violi (IIIE)			
Free product thickness (mm)=	N	Measurement method: (meter,	Interface meter
rice product thickness (min)=	14	paste, etc.)	interiace meter
		paste, etc.)	
Discontinue (A/A)		Purging/Sampling Equipment:	\\/ a + a ww = + - ! :
Purging: (Y/N)			
Volume Purged Water (L)=	2.5	very low recharge	Foot valve
Decontamination required: (Y/N)	N	Dedicated Waterra Tubing	
Number washes:	NA		
Number rinses:	NA		
Fig. 1.11	7.40		
Final pH=	7.46		
Final Conductivity (uS/cm)=	417		
Final Temperature (degC)=	2.90		

^{*} data from previous reports

Develo	pment of	Monitoring Wells	
Site Name:	FOX-3	Dewar Lakes	
Date of Sampling Event:	2014-08-27	Time:	14:20
Names of Samplers:		Martin Fleury	
		Caleb Qanatsiaq	
		Philip Siakuluk	
Landfill Name:	Non	-Hazardous Waste Landfill	
Monitoring Well ID:	MW-7		
Sample Number:	F3-MW-7-20	14	
Condition of Well:	Lifted by fros	st action	
Measured Data			
Well pipe height above ground (cm)=	63		
Diameter of well (cm)=	5		
* Depth of well installation (cm)=	440		
(from ground surface)			
* Length screened section (cm)=	300		
* Depth to top of screen (cm)=	36		
(from ground surface)			
Depth to water surface (cm)=	83	Measurement method: (meter,	Interface meter
(from top of pipe)		tape, etc.)	
Static water level (cm)=	20	, , ,	
(below ground surface)			
Measured well refusal depth BGS	120	Evidence of sludge or siltation:	Freezing
(cm)=		, and the second	J
Thickness of water column (cm)=	100		
Static volume of water in well (mL)=	2000	not enough water for complete sampling	
otatio voidino oi water in wen (inz)-	2000		
Free product thickness (mm)=	N	Measurement method: (meter,	Interface meter
		paste, etc.)	
Purging: (Y/N)	Y	Purging/Sampling Equipment:	Waterra tubing
Volume Purged Water (L)=	2.0	very low recharge	Foot Valve
Decontamination required: (Y/N)	N	Dedicated Waterra Tubing	
Number washes:	NA		
Number rinses:	NA		
Final pH=	7.11		
Final Conductivity (uS/cm)=	403		
Final Temperature (degC)=	2.90		
. , , , ,			

^{*} data from previous reports

Develo	pment of	Monitoring Wells	
Cita Nama	FOVO	Davisaria	
Site Name:		Dewar Lakes	45.45
Date of Sampling Event:	2014-08-27	Time:	15:45
Names of Samplers:		Martin Fleury	
		Caleb Qanatsiaq	
I IOI N		Philip Siakuluk	
Landfill Name:		-Hazardous Waste Landfill	
Monitoring Well ID:		24.4	
Sample Number:			
Condition of Well:	Litted by fros	st action	
Measured Data			
Well pipe height above ground (cm)=	63		
Diameter of well (cm)=	5		
* Depth of well installation (cm)=	440		
(from ground surface)			
* Length screened section (cm)=	300		
* Depth to top of screen (cm)=			
(from ground surface)			
Depth to water surface (cm)=	108	Measurement method: (meter,	Interface mete
(from top of pipe)		tape, etc.)	
Static water level (cm)=	45		
(below ground surface)			
Measured well refusal depth BGS	130	Evidence of sludge or siltation:	Freezin
(cm)=			
Thickness of water column (cm)=	85		
Static volume of water in well (mL)=	1700	not enough w ater for complete sampling	
Free product thickness (mm)=	N	Measurement method: (meter, paste, etc.)	Interface mete
Puraina: (V/M)	V	Puraing/Sampling Equipments	Waterra tubing
Purging: (Y/N)		Purging/Sampling Equipment:	
Volume Purged Water (L)=	2.0	very low recharge Dedicated Waterra Tubing	root valve
Decontamination required: (Y/N) Number washes:	N NA	Dedicated waterra Tubing	
Number wasnes: Number rinses:	NA NA		
number finses:	IVA		
Final pH=	7.59		
Final Conductivity (uS/cm)=	513		
Final Temperature (degC)=	3.30		
i mai Temperature (dego)=	3.30		

^{*} data from previous reports

6 TIER II DISPOSAL FACILITY

6.1 SUMMARY

The 2014 monitoring of the Tier II Disposal Facility conducted on August 27, 2014 consisted of a visual inspection to identify areas of erosion conducted and as per the TOR, the collection of soil and groundwater samples, as well as thermal monitoring.

TPH was detected in the surface sample at MW-04 at a concentration of 30 mg/kg. Relatively elevated levels of chromium were detected in most samples (from 80 to 116 mg/kg). PCBs were not detected in any of the samples.

Water levels were sufficient to allow sampling for metals and PCBs analyses at all four of the Tier II Disposal Facility groundwater wells, but lacked water to collect samples for TPH analysis at MW-2 and MW-3. No PCBs or relatively high metal concentrations were detected at any of the wells. TPH fraction F3 was detected in the sample collected at MW-01 (340 ug/L).

Thermal monitoring was conducted at the Tier II Disposal Facility, all dataloggers and thermistors were observed to be functioning properly and datasets were successfully retrieved.

As of the 2014 monitoring event, no features were identified as "significant" or "unacceptable". The Tier II Disposal Facility is showing no signs of erosion or settlement with only one minor new seepage area identified in 2014. Seven of the previously observed features were not observed during the 2014 inspection.

At this time, the overall performance of the landfill is rated as acceptable.

The Visual Inspection Checklist has been completed as per the TOR and is included as Table XVII.

Table XVII: Visual Inspection Checklist - Tier II Disposal Facility

DEW Line Cleanup: Post-construction - Landfill Monitoring Visual Inspection Checklist

Inspection Report - Page 1 of 2

SITE NAME: FOX-3 Dewar Lakes

LANDFILL DESIGNATION: Tier II Disposal Facility (Tier II Landfill)

DATE OF INSPECTION: August 27, 2014

DATE OF PREVIOUS INSPECTION: August 24, 2013

INSPECTED BY: M. Fleury

REPORT PREPARED BY: M. Fleury

MONITORING EVENT NUMBER: 3

The inspector/reporter represents to the best of his/her knowledge that the following statements and observations are true and correct and to the best of the preparer's actual knowledge, no material facts have been suppressed or misstated.

ENGLOBE

Table XVII: Visual Inspection Checklist - Tier II Disposal Facility (page 2 of 2)

Checklist Item	Present (Y/N)	Feature Label	Location	Length (m)	Width (m)	Depth (m)	Extend relative to Area of Landfill (%)	Description	Photographic Reference	Severity Rating	Additional comments
0	N	Α	Northeast corner of landfill surface	N/A	N/A	N/A	N/A	Settlement identified in previous inspection	N/A	N/A	Not observed during 2014 inspection
Settlement	N	В	North surface of the landfill	N/A	N/A	N/A	N/A	Settlement identified in previous inspection	N/A	N/A	Not observed during 2014 inspection
Erosion	N	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Frost Action	N	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Animal Burrows	N	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Vegetation	N	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
	N	С	Southeast landfill slope	N/A	N/A	N/A	N/A	hydrocarbons stain identified in baseline investigation	N/A	N/A	Not observed during 2014 inspection
	N	D	South surface of the landfill	N/A	N/A	N/A	N/A	hydrocarbons stain identified in baseline investigation	N/A	N/A	Not observed during 2014 inspection
Staining	N	Е	South surface of the landfill	N/A	N/A	N/A	N/A	hydrocarbons stain identified in baseline investigation	N/A	N/A	Not observed during 2014 inspection
	N	F	South surface of the landfill	N/A	N/A	N/A	N/A	hydrocarbons stain identified in baseline investigation	N/A	N/A	Not observed during 2014 inspection
	N	G	Central landfill surface	N/A	N/A	N/A	N/A	hydrocarbons stain identified in baseline investigation	N/A	N/A	Not observed during 2014 inspection
Vegetation Stress	N	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Seepage Points	Υ	Н	Centre / West of the landfill top - New Obs.	0.75	1	N/A	<1%	Ponding observed on the surface of the Landfill	37	Acceptable	New ponding noted in the centre of the landfill
Debris Exposed	N	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
		F3-MW-1	Northeast corner of the landfill	N/A	N/A	N/A	N/A	Groundwater Monitoring Well	11	N/A	Casing lifted by frost action
		F3-MW-2	Northwest corner of the landfill	N/A	N/A	N/A	N/A	Groundwater Monitoring Well	21	N/A	Casing lifted by frost action
		F3-MW-3	Middle West side of the landfill	N/A	N/A	N/A	N/A	Groundwater Monitoring Well	22	N/A	Casing lifted by frost action
Presence / Condition	Y	F3-MW-4	East side of the landfill	N/A	N/A	N/A	N/A	Groundwater Monitoring Well	9	N/A	Casing lifted by frost action
of Monitoring Instruments	Y	F3-VT-1	Northwest limit of the landfill top	N/A	N/A	N/A	N/A	Thermistors - Data Logger	1, 2	N/A	Casing and data Logger in good condition
		F3-VT-2	Northwest portion of the landfill top	N/A	N/A	N/A	N/A	Thermistors - Data Logger	3, 4	N/A	Casing and data Logger in good condition
		F3-VT-3	Southeast portion of the landfill top	N/A	N/A	N/A	N/A	Thermistors - Data Logger	5, 6	N/A	Casing and data Logger in good condition
		F3-VT-4	Southeast limit of the landfill top	N/A	N/A	N/A	N/A	Thermistors - Data Logger	8	N/A	Casing and data Logger in good condition
Other Features of Note	N	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A

6.2 PRELIMINARY STABILITY ASSESSMENT

The Preliminary Stability Assessment for the Tier II Disposal Facility has been completed as per the TOR and is included as Table XVIII hereafter.

Table XVIII: Preliminary Stability Assessment - Tier II Disposal Facility

Feature	Severity Rating	Extent		
Settlement	Not observed	None		
Erosion	Not observed	None		
Frost Action	Not observed	None		
Staining	Not observed	None		
Vegetation Stress	Not observed	None		
Seepage/Ponded Water	Acceptable	Isolated		
Debris Exposure	Not observed	None		
Overall Landfill Performance	Accepta	able		

Performance/Severity Rating	Description
Acceptable	Noted features are of little consequence. The landfill is performing as designed. Minor deviations in environmental or physical performance may be observed, such as isolated areas of erosion or settlement.
Marginal	Physical/environmental performance appears to be deteriorating with time. Observations may include an increase in size or number of features of note, such as differential settlement, erosion or cracking. No significant impact on landfill stability to-date, but potential for failure is assessed as low or moderate.
Significant	Significant or potentially significant changes affecting landfill stability, such as significant changes in slope geometry, significant erosion or differential settlement; scarp development. The potential for failure is assessed as imminent.
Unacceptable	Stability of the landfill is compromised to the extent that its ability to contain waste materials is compromised. Examples may include: • Debris exposed in erosion channels or areas of differential settlement. • Liner exposed. • Slope failure.
Extent	Description
Isolated	Singular feature.
Occasional	Features of note occurring at irregular intervals/locations.
Numerous	Many features of note, impacting less than 50% of the surface area of the landfill.
Extensive	Impacting greater than 50% of the surface area of the landfill.

6.3 LOCATION PLAN

The Location Plan for the Tier II Disposal Facility has been completed as per the TOR and is included on the following page as Figure FOX-3.5 Dewar Lakes - Tier II Disposal Facility.

6.4 THERMISTOR ANNUAL MAINTENANCE REPORTS

The thermistor inspection reports for VT-1 to VT-4 are presented in this section. Batteries were changed and memories downloaded and reset in all dataloggers.

Contractor Name:	Sila Remediation Inc.	Inspection Date:	2014-08-27
Prepared By:	Martin Fleury		

Site Name: FOX-3 Dewer Lakes			Thermistor Location	n		Tier II Disposal I	Facility	
Thermistor Number: VT-1			Inclination			Vertical		
Install Date: 2011-09-07			First Date Event		Last Date Event			
Coordinates and Elev	ation	N	7615563		W	409318	Elev	423
Length of Cable (m)		Cable	e Lead Above Grou	nd (m)	4.4	Nodal Points		14
Datalogger Serial # 9100022					Cable Serial Nu	ımber	111164	

Thermistor Inspection

tor mopocatori		Good					
	Yes		No		Problem	/Mainten	ance
Casing	x						
Cover	x						
Data Logger	x		,				
Cable	x		,				
Beads	x						
Battery Installation Date	2014-08-2	7					
Battery Levels	Main	11.34	V (Bes	st)	Aux	13.5	V (Best)

Manual Ground Temperature Readings

ohms	Degrees C
11375	7.2456
13205	4.2302
14004	3.058
14400	2.5046
15564	0.9718
16722	-0.4305
17569	-1.3889
18411	-2.2917
	11375 13205 14004 14400 15564 16722 17569

Bead	ohms	Degrees C
9	19205	-3.1016
10	20060	-3.9329
11	20870	-4.6846
12	21500	-5.2471
13	22000	-5.6805
14	22530	-6.1281

Observations and Proposed Maintenance

Contractor Name:	Sila Remediation Inc.	Inspection Date:	2014-08-27
Prepared By:	Martin Fleury		

Site Name: FOX-3 Dewer Lakes	Thermistor Location		Tier II Disposal Faci	lity	
Thermistor Number: VT-2	Inclination		Vertical		
Install Date: 2011-09-07	First Date Event	Last Date Event			
Coordinates and Elevation	N 7615561	W	409334	Elev	419
Length of Cable (m)	Cable Lead Above Ground (m)	5	Nodal Points		10
Datalogger Serial # 9100028			Cable Serial Number	er	111165

Thermistor Inspection

		Good					
	Yes		No	Problem	/Mainten	ance	
Casing	x						
Cover	x						
Data Logger	x						
Cable	x						
Beads	x						
Battery Installation Date	2014-08-27						
Battery Levels	Main	11.34	V (Best)	Aux	13.5	V (Best)	

Manual Ground Temperature Readings

around romporaturo redudingo					
Bead	ohms	Degrees C			
1	11309	7.3644			
2	11382	7.233			
3	13272	4.1289			
4	14056	2.9843			
5	14750	2.0295			
6	15730	0.7637			
7	17084	-0.8466			
8	17806	-1.6478			

Bead	ohms	Degrees C
9	18860	-2.7544
10	19800	-3.6844

Observations and Proposed Maintenance

Contractor Name:	Sila Remediation Inc.	Inspection Date:	2014-08-27
Prepared By:	Martin Fleury		

Site Name: FOX-3 Dewer Lakes	Thermistor Location		Tier II Disposal Fa	cility	
Thermistor Number: VT-3	Inclination		Vertical		
Install Date: 2011-09-07	First Date Event		Last [Date Event	
Coordinates and Elevation	N 7615523	W	409366	Elev	420
Length of Cable (m)	Cable Lead Above Ground (m)	5	Nodal Points		11
Datalogger Serial # 9100048			Cable Serial Num	ber	111163

Thermistor Inspection

		Good								
	Yes		No	Problem/Mair	ntenance					
Casing	x									
Cover	x									
Data Logger	x									
Cable	x									
Beads	x									
Battery Installation Date	2014-08-27									
Battery Levels	Main	11.34	V (Best)	Aux13	.14 V (Best)					

Manual Ground Temperature Readings

Bead	ohms	Degrees C
1	10544	8.8008
2	10360	9.1639
3	11793	6.511
4	14216	2.7596
5	14502	2.3648
6	15381	1.2041
7	16896	-0.6318
8	16864	-0.5949

Bead	ohms	Degrees C
9	18713	-2.6043
10	19482	-3.3754
11	20470	-4.3176

Observations and Proposed Maintenance

Contractor Name:	Sila Remediation Inc.	Inspection Date:	2014-08-27
Prepared By:	Martin Fleury		

Site Name: FOX-3 Dewer Lakes	Thermistor Location		Tier II Disposal Fa	cility	
Thermistor Number: VT-4	Inclination		Vertical		
Install Date: 2011-09-07	First Date Event		Last	Date Event	
Coordinates and Elevation	N 7615521	W	409382	418	
Length of Cable (m)	Cable Lead Above Ground (r	m) 4.66	Nodal Points		15
Datalogger Serial # 9100049)		Cable Serial Num	ber	111167

Thermistor Inspection

tor mapection										
		Good								
	Yes		No	Problem/Maintenance						
Casing	x									
Cover	x									
Data Logger	x									
Cable	x									
Beads	x									
Battery Installation Date	2014-08-27									
Battery Levels	Main	11.34	V (Best)	Aux	13.5	V (Best)				

Manual Ground Temperature Readings

arouna roi	iiporataro ito	aumgo
Bead	ohms	Degrees C
1	9818	-31.6050
2	10897	8.1239
3	13860	3.2636
4	14257	2.0000
5	14705	2.7024
6	16240	0.1395
7	17262	-1.0476
8	18187	-2.0561

Bead	ohms	Degrees C
9	18958	-2.8537
10	19981	-3.8578
11	20750	-4.5753
12	21690	-5.4131
13	22290	-5.9269
14	22820	-6.3681
15	23380	-6.8220

Observations and Proposed Maintenance

6.5 PHOTOGRAPHIC RECORDS

The Photographic Record for the Tier II Disposal Facility has been completed as per the TOR and is included in the following pages as Table XIX. Full-sized photographs are contained in the attached DVD-ROM.

Table XIX: Landfill Visual Inspection Photo Log - Tier II Disposal Facility

Site Name: FOX-3, Dewer Lakes
Landfill: Tier II Disposal Facility
Date Inspected: August 27, 2014
Inspected by: Martin Fleury

Photo		Size		Vantage	Point	
reference	Filename	(KB)	Date	Easting	Northing	Caption
1	IMG_0513	2 654	2014-08-27	19 W 409318	7615563	North view of VT-1 thermistor casing. Tier II landfill
2	IMG_0514	1 729	2014-08-27	19 W 409318	7615563	View of VT-1 data logger box
3	IMG_0515	2 543	2014-08-27	19 W 409334	7615561	West view of VT-2 thermistor casing. Tier II landfill
4	IMG_0516	1 994	2014-08-27	19 W 409334	7615561	View of VT-2 data logger box
5	IMG_0517	2 135	2014-08-27	19 W 409366	7615523	Northeast view of VT-3 thermistor casing. Tier II landfill
6	IMG_0519	1 711	2014-08-27	19 W 409366	7615523	View of VT-3 data logger box
7	IMG_0520	1 281	2014-08-27	19 W 409382	7615521	North view of VT-4 thermistor casing. Tier II landfill
8	IMG_0521	1 737	2014-08-27	19 W 409382	7615521	View of VT-4 data logger box
9	IMG_0522	2 612	2014-08-27	19 W 409426	7615516	North view of MW-4 casing
10	IMG_0523	3 133	2014-08-27	19 W 409425	7615512	View of F3-MW-4-S soil sampling location
11	IMG_0524	2 858	2014-08-27	19 W 409425	7615620	South - southwest view of MW-4 casing
12	IMG_0525	2 246	2014-08-27	19 W 409428	7615619	View of F3-MW-1-S soil sampling location
13	IMG_0526	2 572	2014-08-27	19 W 409428	7615619	West view of F3-MW-1-S soil sampling location
14	IMG_0527	2 240	2014-08-27	19 W 409425	7615620	South - southwest view of the East slope of the Tier II disposal facility
15	IMG_0528	2 397	2014-08-27	19 W 409425	7615620	West - Southwest view of the North slope of the Tier II disposal facility
16	IMG_0529	2 617	2014-08-27	19 W 409305	7615601	East view of the North slope of the Tier II Disposal Facility landfill
17	IMG_0530	2 478	2014-08-27	19 W 409305	7615601	Southeast view of the North and West slopes of the Tier II Disposal Facility landfill
18	IMG_0531	2 394	2014-08-27	19 W 409305	7615601	South view of the West slope of the Tier II disposal facility
19	IMG_0532	2 776	2014-08-27	19 W 409286	7615609	West view of F3-MW-3-S soil sampling location
20	IMG_0533	2 461	2014-08-27	19 W 409286	7615609	West view of F3-MW-3-S soil sampling location
21	IMG_0534	2 222	2014-08-27	19 W 409290	7615611	North view of MW-2 casing
22	IMG_0535	2 371	2014-08-27	19 W 409278	7615541	West view of MW-3 casing
23	IMG_0536	2 516	2014-08-27	19 W 409280	7615537	South - southeast view of F3-MW-2-S soil sampling location
24	IMG_0537	3 219	2014-08-27	19 W 409280	7615537	South - southeast view of F3-MW-2-S soil sampling location
25	IMG_0538	2 134	2014-08-27	19 W 409285	7615548	Panoramic view of the West side of the Tier II Disposal Facility landfill - North
26	IMG_0539	2 237	2014-08-27	19 W 409285	7615548	Panoramic view of the West side of the Tier II Disposal Facility landfill - Northeast
27	IMG_0540	2 457	2014-08-27	19 W 409285	7615548	Panoramic view of the West side of the Tier II Disposal Facility landfill - east
28	IMG_0541	2 050	2014-08-27	19 W 409285	7615548	Panoramic view of the West side of the Tier II Disposal Facility landfill - Southeast
29	IMG_0542	1 676	2014-08-27	19 W 409285	7615548	Panoramic view of the West side of the Tier II Disposal Facility landfill - South
30	IMG_0543	2 568	2014-08-27	19 W 409314	7615536	Panoramic view of the Tier II Disposal Facility landfill top - North
31	IMG_0544	2 723	2014-08-27	19 W 409314	7615536	Panoramic view of the Tier II Disposal Facility landfill top - North-northeast
32	IMG_0545	2 702	2014-08-27	19 W 409314	7615536	Panoramic view of the Tier II Disposal Facility landfill top - East-northeast
33	IMG_0546	2 670	2014-08-27	19 W 409314	7615536	Panoramic view of the Tier II Disposal Facility landfill top - East
34	IMG_0547	2 584	2014-08-27	19 W 409314	7615536	Panoramic view of the Tier II Disposal Facility landfill top - Southeast
35	IMG_0548	2 472	2014-08-27	19 W 409314	7615536	Panoramic view of the Tier II Disposal Facility landfill top - South
36	IMG_0549	2 361	2014-08-27	19 W 409314	7615536	Panoramic view of the Tier II Disposal Facility landfill top - South-southwest
37	IMG_0550	2 305	2014-08-27	19 W 409341	7615537	Northwest view of ponding Water (Feature H)
38	IMG_0551	2 592	2014-08-27	19 W 409366	7615472	Panoramic view of th South side of the landfill - West-northwest
39	IMG_0552	2 541	2014-08-27	19 W 409366	7615472	Panoramic view of th South side of the landfill - North
40	IMG_0553	2 687	2014-08-27	19 W 409366	7615472	Panoramic view of th South side of the landfill - East-northeast

6.6 SOIL SAMPLE ANALYTICAL DATA

The soil chemical analysis results for the 2014 Tier II Disposal Facility samples are presented in Table XX hereafter. Certificates of analyses and results of field duplicates collected as part of the QA/QC program are presented in Annexes 1 and 2 at the end of this report.

Table XX: Tier II Summary Table for Soil Analytical Data

								P	aramete	ers					
Sample #	Location	Depth	0		0-	0.1	Di	7	0			DOD-	F1	F2	F3
Sample #	Location	[cm]	Cu [ma/ka]	Ni [ma/ka]	Co	Cd [mg/kg]	Pb	Zn [ma/ka]	Cr] [mg/kg]	As [ma/ka]	Hg [ma/ka]	PCBs	C ₆ -C ₁₀	C ₁₀ -C ₁₆	C ₁₆ -C ₃₄
			[ilig/kg]	[IIIg/Kg]	[IIIg/kg]	[ilig/kg]	[IIIg/Kg]	[mg/kg]		[IIIg/Kg]	[iiig/Kg]	[IIIg/Kg]	[mg/kg]	[mg/kg]	[mg/kg]
RDL - Exova			1	1	1	0.5	1	2	1	1	0.1	0.02	10	10	20
Upgradient Soil Samples										•					
F3-MW-1-S-A-2014	MW1	0 -10	36	36	9	<0.5	7	65	87	29	<0.1	< 0.02	<10	<10	<20
F3-MW-1-S-B-2014	IVIVVI	40 - 50	44	35	9	<0.5	8	70	89	23	<0.1	< 0.02	<10	<10	<20
Downgradient Soil Sam	ples														
F3-MW-4-S-A-2014	MW4	0 -10	43	50	12	<0.5	8	70	116	37	<0.1	< 0.02	<10	<10	30
F3-MW-4-S-B-2014	101004	40 - 50				N	ot sampl	ed (Reac	hed bedi	rock at 0	.2 m dept	:h)			
F3-MW-2-S-A-2014	MW2	0 -10	34	35	9	<0.5	7	65	80	18	<0.1	<0.02	<10	<10	<20
F3-MW-2-S-B-2014	IVIVV∠	40 - 50	35	45	11	<0.5	7	73	104	14	<0.1	< 0.02	<10	<10	<20
F3-MW-3-S-A-2014	MW3	0 -10	44	37	11	<0.5	6	70	83	15	<0.1	<0.02	<10	<10	<20
F3-MW-3-S-B-2014	IVIVVO	40 - 50				No	ot sample	ed (Reacl	ned bedr	ock at 0.	15 m dep	th)			

6.7 GROUNDWATER SAMPLE ANALYTICAL DATA

The groundwater chemical analysis results and evaluation for the analytical data for the 2014 Tier II Disposal Facility samples are presented in Table XXI hereafter. Certificates of analyses and results for groundwater samples collected as part of the QA/QC program are presented in Annexes 1 and 2, at the end of this report.

Table XXI: Tier II Summary Table for Groundwater Analytical Data

								Param	eter					
Sample #	l											F1	F2	F3
	Location	Cu [mg/L]	Ni [mg/L]	Co [mg/L]	Cd [mg/L]	Pb [mg/L]	Zn [mg/L]	Cr [mg/L]	As [mg/L]	Hg [mg/L]	PCBs [ug/L]	C ₆ -C ₁₀ [ug/L]	C ₁₀ -C ₁₆ [ug/L]	C ₁₀ -C ₃₄ [ug/L]
RDL - Exova	0.01	0.01	0.01	0.008	0.01	0.04	0.05	0.02	0.0001	0.1	20	20	50	
Upgradient Groundw	ater Samp	е												
F3-MW-1-2014	MW1	0.16	0.43	0.09	<0.008	0.03	0.35	0.24	0.05	<0.0001	<0.1	<20	<20	340
Downgradient Groun	ıdwater Saı	nple												
F3-MW-4-2014	MW4	0.04	0.28	0.08	<0.008	0.01	0.15	0.11	< 0.02	<0.0001	<0.1	<20	<20	<50
F3-MW-2-2014	MW2	0.19	0.14	0.02	<0.008	0.06	0.26	<0.05	< 0.02	< 0.0001	<0.1	Insufficient water to sample		
F3-MW-3-2014	MW3	0.04	0.3	0.02	<0.008	<0.01	2.36	0.26	< 0.02	<0.0001	<0.1	Insufficient water to sample		

6.8 MONITORING WELL SAMPLING / INSPECTION LOGS

The monitoring well sampling logs for MW-1 to MW-4 are presented in this section. It should be noted that all casings have heaved due to frost action.

Development of Monitoring Wells				
C: N	FOVO			
Site Name:		Dewar Lakes	44.45	
Date of Sampling Event:	2014-08-27		11:15	
Names of Samplers:		Martin Fleury		
		Caleb Qanatsiaq Philip Siakuluk		
Landfill Name:				
Monitoring Well ID:		Tier II Disposal Facility		
Sample Number:		11.4		
Condition of Well:	Lilled by Iros	st action		
Measured Data				
Well pipe height above ground (cm)=	56			
Diameter of well (cm)=	5			
* Depth of well installation (cm)=	440			
(from ground surface)				
* Length screened section (cm)=	300			
(,				
* Depth to top of screen (cm)=	36			
(from ground surface)				
Depth to water surface (cm)=	93	Measurement method: (meter,	Interface meter	
(from top of pipe)	l ' '			
Static water level (cm)=	37	,		
(below ground surface)				
Measured well refusal depth BGS	130	Evidence of sludge or siltation:	Freezing	
(cm)=		_	_	
Thickness of water column (cm)=	93			
Static volume of water in well (mL)=	1860			
Free product thickness (mm)=	N	Measurement method: (meter,	Interface meter	
		paste, etc.)		
Purging: (Y/N)		Purging/Sampling Equipment:	Waterra tubing	
Volume Purged Water (L)=	2.0		Foot Valve	
Decontamination required: (Y/N)		Dedicated Waterra Tubing		
Number washes:	NA			
Number rinses:	NA			
e	0.40			
Final PH=	6.40			
Final Conductivity (uS/cm)=	577			
Final Temperature (degC)=	2.65			

^{*} data from previous reports

Development of Monitoring Wells				
Bevelo		Vens		
Site Name:	FOX-3	Dewar Lakes		
Date of Sampling Event:	2014-08-27		11:45	
Names of Samplers:	2011 00 27	Martin Fleury		
rames of campions.		Caleb Qanatsiaq		
		Philip Siakuluk		
Landfill Name:		Tier II Disposal Facility		
Monitoring Well ID:		.,		
Sample Number:		114		
Condition of Well:				
Measured Data				
Well pipe height above ground (cm)=	65			
Diameter of well (cm)=	5			
* Depth of well installation (cm)=	440			
(from ground surface)				
* Length screened section (cm)=	300			
, ,				
* Depth to top of screen (cm)=	36			
(from ground surface)				
Depth to water surface (cm)=	112	Measurement method: (meter,	Interface meter	
(from top of pipe)		tape, etc.)		
Static water level (cm)=	47	, , ,		
(below ground surface)				
Measured well refusal depth BGS	153	Evidence of sludge or siltation:	Freezing	
(cm)=		, and the second		
Thickness of water column (cm)=	106			
Static volume of water in well (mL)=	2120	not enough water for complete sampling		
		3 1 1 3		
Free product thickness (mm)=	N	Measurement method: (meter,	Interface meter	
Tree product thickness (min)=		paste, etc.)	interiace meter	
		paoto, oto.,		
Duraina: (V/N)	V	Durging/Compling Equipment	Matarra tubica	
Purging: (Y/N) Volume Purged Water (L)=	Y	Purging/Sampling Equipment:	Waterra tubing	
volume Purged water (L)=	Dewar Lakes		Foot Valve	
Decontamination required: (Y/N)	2.5	Dedicated Waterra Tubing		
Number washes:	2.5 N	Dedicated wateria rubing		
Number wasnes: Number rinses:	NA NA			
Number inses:	NA NA			
Final pH=	INA			
Final Conductivity (uS/cm)=	7.12			
Final Conductivity (u5/cm)= Final Temperature (degC)=	494			
Final Temperature (degc)=	2.94			
	2.54			

^{*} data from previous reports

Development of Monitoring Wells				
	•	9		
Site Name:	FOX-3	Dewar Lakes		
Date of Sampling Event:	2014-08-27	Time:	12:15	
Names of Samplers:		Martin Fleury		
		Caleb Qanatsiaq		
		Philip Siakuluk		
Landfill Name:		Tier II Disposal Facility		
Monitoring Well ID:	MW-3			
Sample Number:	F3-MW-3-20	014		
Condition of Well:	Lifted by fros	st action		
Measured Data				
Well pipe height above ground (cm)=	81			
Diameter of well (cm)=	5			
* Depth of well installation (cm)=	440			
(from ground surface)				
* Length screened section (cm)=	300			
* Depth to top of screen (cm)=	36			
(from ground surface)				
Depth to water surface (cm)=	119	Measurement method: (meter,	Interface meter	
(from top of pipe)		tape, etc.)		
Static water level (cm)=	38	1 / /		
(below ground surface)				
Measured well refusal depth BGS	131	Evidence of sludge or siltation:	Freezing	
(cm)=	_		3	
Thickness of water column (cm)=	93			
Static volume of water in well (mL)=	1860	not enough w ater for complete sampling		
etatio totaliio oi water iii weii (iii2)=	1000			
Free product thickness (mm)=	N	Measurement method: (meter,	Interface meter	
		paste, etc.)		
Purging: (Y/N)	Y	Purging/Sampling Equipment:	Waterra tubing	
Volume Purged Water (L)=	2.0	5 	Foot Valve	
Decontamination required: (Y/N)	N	Dedicated Waterra Tubing		
Number washes:	NA			
Number rinses:	NA			
Final pH=	6.58			
Final Conductivity (uS/cm)=	487			
Final Temperature (degC)=	2.91			

^{*} data from previous reports

Development of Monitoring Wells			
Site Name:		Dewar Lakes	
Date of Sampling Event:	2014-08-27	Time:	10:30
Names of Samplers:		Martin Fleury	
		Caleb Qanatsiaq	
		Philip Siakuluk	
Landfill Name:		Tier II Disposal Facility	
Monitoring Well ID:	MW-4		
Sample Number:	F3-MW-4-20)14	
Condition of Well:	Lifted by fros	st action	
Measured Data			
Well pipe height above ground (cm)=			
Diameter of well (cm)=	5		
* Depth of well installation (cm)=	440		
(from ground surface)			
* Length screened section (cm)=	300		
* Depth to top of screen (cm)=	36		
(from ground surface)			
Depth to water surface (cm)=		Measurement method: (meter,	Interface mete
(from top of pipe)		tape, etc.)	
Static water level (cm)=	15		
(below ground surface)			
Measured well refusal depth BGS	140	Evidence of sludge or siltation:	Freezin
(cm)=			
Thickness of water column (cm)=	125		
Static volume of water in well (mL)=	2500		
Free product thickness (mm)=	N	Measurement method: (meter, paste, etc.)	Interface mete
		pasts, sto.)	
Purging: (Y/N)	Υ	Purging/Sampling Equipment:	Waterra tubing
Volume Purged Water (L)=	2.5		Foot Valve
Decontamination required: (Y/N)		Dedicated Waterra Tubing	1 Jul Valve
Number washes:	NA	Dedicated Waterra Tubing	
Number vinses:	NA NA		
number illises.	INA		
Final pH=	6.6		
Final Conductivity (uS/cm)=	401		
Final Conductivity (us/cm)= Final Temperature (degC)=	2.89		
rinai reiriperature (dego)=	2.09		
	<u> </u>		

^{*} data from previous reports

ANNEX 1 Maxxam and Exova QA/QC Reports and Certificates of Analyses

ADDENDUM TO CERTIFICATE OF ANALYSIS AND CHAIN OF COSTODY

It should be noted that the following certificate of analysis (COA) and related chain of custody (COC's) contains some sample names inversion. In consequence, the sampling station labels shown in the COA and COC's should be read as following:

Sample label shown in COA	Laboratory I.D.	Correct sample identification
F3-3-A-2014	1131133	F3-2-A-2014
F3-4-A-2014	1131134	F3-10-A-2014
F3-4-B-2014	1131135	F3-10-B-2014
F3-5-A-2014	1131136	F3-11-A-2014
F3-5-B-2014	1131137	F3-11-B-2014
F3-6-A-2014	1131138	F3-12-A-2014
F3-6-B-2014	1131139	F3-12-A-2014
F3-7-A-2014	1131140	F3-9-A-2014
F3-7-B-2014	1131141	F3-9-B-2014
F3-8-A-2014	1131142	F3-7-A-2014
F3-8-B-2014	1131143	F3-7-B-2014
F3-9-A-2014	1131144	F3-6-A-2014
F3-10-A-2014	1131145	F3-5-A-2014
F3-10-B-2014	1131146	F3-5-B-2014
F3-11-A-2014	1131147	F3-4-A-2014
F3-11-B-2014	1131148	F3-4-B-2014
F3-12-A-2014	1131149	F3-8-A-2014
F3-12-B-2014	1131150	F3-8-B-2014
F3-MW-1-S-A-2014	1131151	F3-MW-4-S-A-2014
F3-MW-4-S-A-2014	1131155	F3-MW-1-S-A-2014
F3-MW-4-S-B-2014	1131156	F3-MW-1-S-B-2014
F3-MW-1-2014	1137333	F3-MW-4-2014
F3-MW-4-2014	1137336	F3-MW-1-2014

EXOVA
146 COLONNADE ROAD #8
OTTAWA
ONTARIO
CANADA
K2E 7Y1

T: +1 (613) 727-5692 F: +1 (613) 727-5222 E: SALES@EXOVA.COM W: www.EXOVA.COM

Sample Integrity Scorecard

Summary				
	Total Reports	Total Pass	Total Failed	% Passed
Process	5	0	5	0
Data Quality	5	1	4	20

Ottawa Workorder: 1418941 (Fox-3)

Process

Were the sample containers packaged well? Yes If No, please explain:

Was the COC received? Yes

Was the COC filled in adequately and legibly? No please explain: No quotation included on COC

Was the COC received without damage? Yes If No, please explain:

Were the sample containers clearly labelled? Yes If No, please explain:

Data Quality

Were the samples received within recommended holding times? Yes

Were samples received in containers appropriate to the matrix and analysis required? No Most samples did have the correct containers but ideally we should have two jars per soil sample and for 3 of the samples we only received one jar.

Were the expected number of samples received? No * If No, please explain: 6 samples were not received.

Were all samples received intact (not damaged/broken)? Yes * If No, please explain:

For water samples only, were they received without a noticeable layer of sediment? N/A If No, please explain:

Was sufficient sample volume received? Yes If No, please explain:

Non-Conformances

Process: 1 Data Quality: 2 Total: 3

Ottawa Workorder: 1418943 (Fox-2)

Process

Were the sample containers packaged well? Yes If No, please explain:

Was the COC received? Yes

Was the COC filled in adequately and legibly? No please explain: No quotation included on COC

Was the COC received without damage? Yes If No, please explain:

Were the sample containers clearly labelled? Yes If No, please explain:

Data Quality

Were the samples received within recommended holding times? Yes

Were samples received in containers appropriate to the matrix and analysis required? Yes

Were the expected number of samples received? Yes If No, please explain:

Were all samples received intact (not damaged/broken)? No * If No, please explain: 2 soil jars were received broken

For water samples only, were they received without a noticeable layer of sediment? N/A If No, please explain:

Was sufficient sample volume received? Yes If No, please explain:

Non-Conformances

Process: 1 Data Quality: 1 Total: 2

Ottawa Workorder: 1418944 (Fox-2)

Process

Were the sample containers packaged well? Yes If No, please explain:

Was the COC received? Yes

Was the COC filled in adequately and legibly? No please explain: No quotation included on COC

Was the COC received without damage? Yes If No, please explain:

Were the sample containers clearly labelled? Yes If No, please explain:

Data Quality

Were the samples received within recommended holding times? Yes

Were samples received in containers appropriate to the matrix and analysis required? Yes

Were the expected number of samples received? Yes

Were all samples received intact (not damaged/broken)? Yes * If No, please explain:

For water samples only, were they received without a noticeable layer of sediment? N/A If No, please explain:

Was sufficient sample volume received? Yes If No, please explain:

Non-Conformances

Process: 1 Data Quality: 0 Total: 1

Ottawa Workorder: 1418982 (Fox-2)

Process

Were the sample containers packaged well? Yes If No, please explain:

Was the COC received? Yes

Was the COC filled in adequately and legibly? No please explain: No quotation included on COC

Was the COC received without damage? Yes If No, please explain:

Were the sample containers clearly labelled? Yes If No, please explain:

Data Quality

Were the samples received within recommended holding times? Yes

Were samples received in containers appropriate to the matrix and analysis required? Yes

Were the expected number of samples received? Yes * If No, please explain:

Were all samples received intact (not damaged/broken)? No * If No, please explain: One of the 1L amber bottles broke during shipping.

For water samples only, were they received without a noticeable layer of sediment? Yes If No, please explain:

Was sufficient sample volume received? No If No, please explain: While the appropriate bottles were received there were many bottles with insufficient sample volumes. The lab did the best with what they were given.

Non-Conformances

Process: 1 Data Quality: 2 Total: 3

Ottawa Workorder: 1421066 (Fox-3)

Process

Were the sample containers packaged well? Yes If No, please explain:

Was the COC received? Yes

Was the COC filled in adequately and legibly? No please explain: No quotation included on COC

Was the COC received without damage? Yes If No, please explain:

Were the sample containers clearly labelled? Yes If No, please explain:

Data Quality

Were the samples received within recommended holding times? Yes

Were samples received in containers appropriate to the matrix and analysis required? No Many of the samples only had two of the required 5 bottles. Out of 9 sample sets only 2 had the appropriate bottles.

Were the expected number of samples received? Yes * If No, please explain:

Were all samples received intact (not damaged/broken)? Yes * If No, please explain:

For water samples only, were they received without a noticeable layer of sediment? No If No, please explain: One of the metals bottles had sediment which required the MRL's to be raised.

Was sufficient sample volume received? No If No, please explain: There were many bottles with insufficient sample volumes. The lab did the best with what they were given.

Non-Conformances

Process: 1 Data Quality: 3 Total: 4

Certificate of Analysis

Client: Sila Remediation Inc.

200-4495 Boul. Wilfrid-Hamel

Québec, QC G1P 2J7

Attention: Mr. Jean-Pierre Pelletier

PO#:

APPROVAL:

Invoice to: Sila Remediation Inc. Page 1 of 14

 Report Number:
 1418941

 Date Submitted:
 2014-09-04

 Date Reported:
 2014-09-11

Project: Dew Line Monitoring

Charlie (Long) Qu

Laboratory Supervisor, Organics

COC #: 789380

APPROVAL:

Dear Jean-Pierre Pelletier:	
Please find attached the analytical results for your samples. If you have any questions regarding this report, please do not hesitate to call (613-727-5692).	
Report Comments:	

Exova (Ottawa) is certified and accredited for specific parameters by:

Laboratory Supervisor, Inorganics

CALA, Canadian Association for Laboratory Accreditation (to ISO 17025), OMAFRA, Ontario Ministry of Agriculture, Food and Rural Affairs (for farm soils), Licensed by Ontario MOE for specific tests in drinking water.

Exova (Mississauga) is accredited for specific parameters by: SCC, Standards Council of Canada (to ISO 17025)

Lorna Wilson

Please note: Field data, where presented on the report, has been provided by the client and is presented for informational purposes only.

Guideline values listed on this report are provided for ease of use (informational purposes) only. Exova recommends consulting the official provincial or federal guideline as required.

Certificate of Analysis

Client: Sila Remediation Inc.

200-4495 Boul. Wilfrid-Hamel

Québec, QC

G1P 2J7

Attention: Mr. Jean-Pierre Pelletier

PO#:

Invoice to: Sila Remediation Inc.

 Report Number:
 1418941

 Date Submitted:
 2014-09-04

 Date Reported:
 2014-09-11

Project: Dew Line Monitoring

COC #: 789380

				Lab I.D. Sample Matrix Sample Type Sampling Date Sample I.D.	1131131 Soil 2014-08-27 F3-1-A-2014	1131132 Soil 2014-08-27 F3-1-B-2014	1131133 Soil 2014-08-27 F3-3-A-2014	1131134 Soil 2014-08-27 F3-4-A-2014
Group	Analyte	MRL	Units	Guideline				
General Chemistry	Moisture	0.1	%		6.8	10.5	16.7	15.8
Hydrocarbons	F1 (C6-C10)	10	ug/g		<10	<10	<10	<10
	F2 (C10-C16)	10	ug/g		<10	<10	<10	<10
	F3 (C16-C34)	20	ug/g		<20	<20	<20	<20
Mercury	Hg	0.1	ug/g		<0.1	<0.1	<0.1	<0.1
Metals	As	1	ug/g		10	6	9	13
	Cd	0.5	ug/g		<0.5	<0.5	<0.5	<0.5
	Со	1	ug/g		8	8	8	11
	Cr	1	ug/g		86	163	109	97
	Cu	1	ug/g		30	24	26	39
	Ni	1	ug/g		39	69	43	41
	Pb	1	ug/g		9	5	6	8
	Zn	2	ug/g		52	57	56	82
PCBs	Polychlorinated Biphenyls (PCBs)	0.02	ug/g		<0.02	<0.02	<0.02	<0.02

Guideline = * = Guideline Exceedence

** = Analysis completed at Mississauga, Ontario.

Results relate only to the parameters tested on the samples submitted.

Methods references and/or additional QA/QC information available on request.

Certificate of Analysis

Client: Sila Remediation Inc.

200-4495 Boul. Wilfrid-Hamel

Québec, QC

G1P 2J7

Attention: Mr. Jean-Pierre Pelletier

PO#:

Invoice to: Sila Remediation Inc.

 Report Number:
 1418941

 Date Submitted:
 2014-09-04

 Date Reported:
 2014-09-11

Project: Dew Line Monitoring

COC #: 789380

				Lab I.D. Sample Matrix Sample Type Sampling Date Sample I.D.	1131135 Soil 2014-08-27 F3-4-B-2014	1131136 Soil 2014-08-27 F3-5-A-2014	1131137 Soil 2014-08-27 F3-5-B-2014	1131138 Soil 2014-08-27 F3-6-A-2014
Group	Analyte	MRL	Units	Guideline				
General Chemistry	Moisture	0.1	%		14.4	12.7	9.7	14.7
Hydrocarbons	F1 (C6-C10)	10	ug/g		<10	<10	<10	<10
	F2 (C10-C16)	10	ug/g		<10	<10	<10	<10
	F3 (C16-C34)	20	ug/g		<20	<20	<20	<20
Mercury	Hg	0.1	ug/g		<0.1	<0.1	<0.1	<0.1
Metals	As	1	ug/g		12	21	24	24
	Cd	0.5	ug/g		<0.5	<0.5	<0.5	<0.5
	Со	1	ug/g		9	16	16	11
	Cr	1	ug/g		95	87	85	87
	Cu	1	ug/g		30	50	56	55
	Ni	1	ug/g		38	51	54	39
	Pb	1	ug/g		5	6	7	8
	Zn	2	ug/g		67	80	87	80
PCBs	Polychlorinated Biphenyls (PCBs)	0.02	ug/g		<0.02	<0.02	<0.02	<0.02

Guideline = * = Guideline Exceedence

** = Analysis completed at Mississauga, Ontario.

Results relate only to the parameters tested on the samples submitted.

Methods references and/or additional QA/QC information available on request.

Certificate of Analysis

Client: Sila Remediation Inc.

200-4495 Boul. Wilfrid-Hamel

Québec, QC

G1P 2J7

Attention: Mr. Jean-Pierre Pelletier

PO#:

Invoice to: Sila Remediation Inc.

Report Number: 1418941 Date Submitted: 2014-09-04 Date Reported: 2014-09-11

Project: Dew Line Monitoring

COC #: 789380

				Lab I.D. Sample Matrix Sample Type Sampling Date Sample I.D.	1131139 Soil 2014-08-27 F3-6-B-2014	1131140 Soil 2014-08-27 F3-7-A-2014	1131141 Soil 2014-08-27 F3-7-B-2014	1131142 Soil 2014-08-27 F3-8-A-2014
Group	Analyte	MRL	Units	Guideline				
General Chemistry	Moisture	0.1	%		11.4	14.8	16.9	12.9
Hydrocarbons	F1 (C6-C10)	10	ug/g		<10	<10	<10	<10
	F2 (C10-C16)	10	ug/g		<10	<10	<10	160
	F3 (C16-C34)	20	ug/g		<20	<20	<20	1050
Mercury	Hg	0.1	ug/g		<0.1	<0.1	<0.1	<0.1
Metals	As	1	ug/g		22	16	15	17
	Cd	0.5	ug/g		<0.5	<0.5	<0.5	<0.5
	Со	1	ug/g		11	11	11	9
	Cr	1	ug/g		89	83	87	94
	Cu	1	ug/g		50	48	45	40
	Ni	1	ug/g		39	39	41	40
	Pb	1	ug/g		7	8	7	7
	Zn	2	ug/g		78	81	75	66
PCBs	Polychlorinated Biphenyls (PCBs)	0.02	ug/g		<0.02	<0.02	<0.02	<0.02

Guideline = * = Guideline Exceedence

** = Analysis completed at Mississauga, Ontario.

Results relate only to the parameters tested on the samples submitted.

Methods references and/or additional QA/QC information available on request.

Certificate of Analysis

Client: Sila Remediation Inc.

200-4495 Boul. Wilfrid-Hamel

Québec, QC

G1P 2J7

Attention: Mr. Jean-Pierre Pelletier

PO#:

Invoice to: Sila Remediation Inc.

 Report Number:
 1418941

 Date Submitted:
 2014-09-04

 Date Reported:
 2014-09-11

Project: Dew Line Monitoring

COC #: 789380

				Lab I.D. Sample Matrix Sample Type Sampling Date Sample I.D.	1131143 Soil 2014-08-27 F3-8-B-2014	1131144 Soil 2014-08-27 F3-9-A-2014	1131145 Soil 2014-08-27 F3-10-A-2014	1131146 Soil 2014-08-27 F3-10-B-2014
Group	Analyte	MRL	Units	Guideline				
General Chemistry	Moisture	0.1	%		13.0	12.0	15.2	14.2
Hydrocarbons	F1 (C6-C10)	10	ug/g		<10	<10	<10	<10
	F2 (C10-C16)	10	ug/g		30	<10	<10	<10
	F3 (C16-C34)	20	ug/g		240	<20	<20	<20
Mercury	Hg	0.1	ug/g		<0.1	<0.1	<0.1	<0.1
Metals	As	1	ug/g		10	13	14	14
	Cd	0.5	ug/g		<0.5	<0.5	<0.5	<0.5
	Со	1	ug/g		8	8	12	12
	Cr	1	ug/g		63	81	82	83
	Cu	1	ug/g		33	34	45	40
	Ni	1	ug/g		28	34	38	37
	Pb	1	ug/g		5	6	9	7
	Zn	2	ug/g		58	72	97	82
PCBs	Polychlorinated Biphenyls (PCBs)	0.02	ug/g		<0.02	<0.02	<0.02	<0.02

Guideline = * = Guideline Exceedence

** = Analysis completed at Mississauga, Ontario.

Results relate only to the parameters tested on the samples submitted.

Methods references and/or additional QA/QC information available on request.

Certificate of Analysis

Client: Sila Remediation Inc.

200-4495 Boul. Wilfrid-Hamel

Québec, QC

G1P 2J7

Attention: Mr. Jean-Pierre Pelletier

PO#:

Invoice to: Sila Remediation Inc.

 Report Number:
 1418941

 Date Submitted:
 2014-09-04

 Date Reported:
 2014-09-11

Project: Dew Line Monitoring

COC #: 789380

				Lab I.D. Sample Matrix Sample Type Sampling Date Sample I.D.	1131147 Soil 2014-08-27 F3-11-A-2014	1131148 Soil 2014-08-27 F3-11-B-2014	1131149 Soil 2014-08-27 F3-12-A-2014	1131150 Soil 2014-08-27 F3-12-B-2014
Group	Analyte	MRL	Units	Guideline				
General Chemistry	Moisture	0.1	%		12.9	11.0	13.4	12.5
Hydrocarbons	F1 (C6-C10)	10	ug/g		<10	<10	<10	<10
	F2 (C10-C16)	10	ug/g		<10	<10	<10	<10
	F3 (C16-C34)	20	ug/g		<20	<20	<20	<20
Mercury	Hg	0.1	ug/g		<0.1	<0.1	<0.1	<0.1
Metals	As	1	ug/g		23	19	14	17
	Cd	0.5	ug/g		<0.5	0.5	<0.5	<0.5
	Со	1	ug/g		9	9	10	10
	Cr	1	ug/g		74	84	87	77
	Cu	1	ug/g		27	42	38	42
	Ni	1	ug/g		28	32	34	33
	Pb	1	ug/g		6	8	7	8
	Zn	2	ug/g		63	72	78	74
PCBs	Polychlorinated Biphenyls (PCBs)	0.02	ug/g		<0.02	<0.02	<0.02	<0.02

Guideline = * = Guideline Exceedence

** = Analysis completed at Mississauga, Ontario.
Results relate only to the parameters tested on the samples submitted.
Methods references and/or additional QA/QC information available on request.

Certificate of Analysis

Client: Sila Remediation Inc.

200-4495 Boul. Wilfrid-Hamel

Québec, QC

G1P 2J7

Attention: Mr. Jean-Pierre Pelletier

PO#:

Invoice to: Sila Remediation Inc.

Report Number: 1418941
Date Submitted: 2014-09-04
Date Reported: 2014-09-11

Project: Dew Line Monitoring

COC #: 789380

				Lab I.D. Sample Matrix Sample Type Sampling Date Sample I.D.	1131151 Soil 2014-08-27 F3-MW-1-S-A-2014	1131152 Soil 2014-08-27 F3-MW-2-S-A-2014	1131153 Soil 2014-08-27 F3-MW-2-S-B-2014	1131154 Soil 2014-08-27 F3-MW-3-S-A-2014
Group	Analyte	MRL	Units	Guideline				
General Chemistry	Moisture	0.1	%		25.1	19.1	12.3	17.8
Hydrocarbons	F1 (C6-C10)	10	ug/g		<10	<10	<10	<10
	F2 (C10-C16)	10	ug/g		<10	<10	<10	<10
	F3 (C16-C34)	20	ug/g		30	<20	<20	<20
Mercury	Hg	0.1	ug/g		<0.1	<0.1	<0.1	<0.1
Metals	As	1	ug/g		37	18	14	15
	Cd	0.5	ug/g		<0.5	<0.5	<0.5	<0.5
	Co	1	ug/g		12	9	11	11
	Cr	1	ug/g		116	80	104	83
	Cu	1	ug/g		43	34	35	44
	Ni	1	ug/g		50	35	45	37
	Pb	1	ug/g		8	7	7	6
	Zn	2	ug/g		70	65	73	70
PCBs	Polychlorinated Biphenyls (PCBs)	0.02	ug/g		<0.02	<0.02	<0.02	<0.02

Guideline = * = Guideline Exceedence

** = Analysis completed at Mississauga, Ontario.

Results relate only to the parameters tested on the samples submitted.

Methods references and/or additional QA/QC information available on request.

Certificate of Analysis

Client: Sila Remediation Inc.

200-4495 Boul. Wilfrid-Hamel

Québec, QC

G1P 2J7

Attention: Mr. Jean-Pierre Pelletier

PO#:

Invoice to: Sila Remediation Inc.

Report Number: 1418941
Date Submitted: 2014-09-04
Date Reported: 2014-09-11

Project: Dew Line Monitoring

COC #: 789380

				Lab I.D. Sample Matrix Sample Type Sampling Date Sample I.D.	1131155 Soil 2014-08-27 F3-MW-4-S-A-2014	1131156 Soil 2014-08-27 F3-MW-4-S-B-2014	1131157 Soil 2014-08-27 F3-MW-5-S-A-2014	1131158 Soil 2014-08-27 F3-MW-5-S-B-2014
Group	Analyte	MRL	Units	Guideline				
General Chemistry	Moisture	0.1	%		19.5	20.2	11.7	13.4
Hydrocarbons	F1 (C6-C10)	10	ug/g		<10	<10	<10	<10
	F2 (C10-C16)	10	ug/g		<10	<10	<10	<10
	F3 (C16-C34)	20	ug/g		<20	<20	<20	<20
Mercury	Hg	0.1	ug/g		<0.1	<0.1	<0.1	<0.1
Metals	As	1	ug/g		29	23	10	18
	Cd	0.5	ug/g		<0.5	<0.5	<0.5	<0.5
	Со	1	ug/g		9	9	8	10
	Cr	1	ug/g		87	89	75	93
	Cu	1	ug/g		36	44	28	31
	Ni	1	ug/g		36	35	30	38
	Pb	1	ug/g		7	8	5	6
	Zn	2	ug/g		65	70	62	67
PCBs	Polychlorinated Biphenyls (PCBs)	0.02	ug/g		<0.02	<0.02	<0.02	<0.02

Guideline = * = Guideline Exceedence

** = Analysis completed at Mississauga, Ontario.

Results relate only to the parameters tested on the samples submitted.

Methods references and/or additional QA/QC information available on request.

Certificate of Analysis

Client: Sila Remediation Inc.

200-4495 Boul. Wilfrid-Hamel

Québec, QC

G1P 2J7

Attention: Mr. Jean-Pierre Pelletier

PO#:

Invoice to: Sila Remediation Inc.

 Report Number:
 1418941

 Date Submitted:
 2014-09-04

 Date Reported:
 2014-09-11

Project: Dew Line Monitoring

COC #: 789380

				Lab I.D. Sample Matrix Sample Type Sampling Date Sample I.D.	1131159 Soil 2014-08-27 F3-MW-6-S-A-2014	1131160 Soil 2014-08-27 F3-MW-6-S-B-2014	1131161 Soil 2014-08-27 F3-MW-7-S-A-2014	1131162 Soil 2014-08-27 F3-MW-7-S-B-2014
Group	Analyte	MRL	Units	Guideline				
General Chemistry	Moisture	0.1	%		15.2	14.6	15.4	13.3
Hydrocarbons	F1 (C6-C10)	10	ug/g		<10	<10	<10	<10
	F2 (C10-C16)	10	ug/g		<10	<10	<10	<10
	F3 (C16-C34)	20	ug/g		<20	<20	<20	<20
Mercury	Hg	0.1	ug/g		<0.1	<0.1	<0.1	<0.1
Metals	As	1	ug/g		16	18	14	16
	Cd	0.5	ug/g		<0.5	<0.5	<0.5	<0.5
	Со	1	ug/g		10	11	10	10
	Cr	1	ug/g		82	91	98	85
	Cu	1	ug/g		40	44	36	38
	Ni	1	ug/g		33	36	38	34
	Pb	1	ug/g		7	8	6	6
	Zn	2	ug/g		74	76	75	73
PCBs	Polychlorinated Biphenyls (PCBs)	0.02	ug/g		<0.02	<0.02	<0.02	<0.02

Guideline = * = Guideline Exceedence

** = Analysis completed at Mississauga, Ontario.

Results relate only to the parameters tested on the samples submitted.

Methods references and/or additional QA/QC information available on request.

Certificate of Analysis

Client: Sila Remediation Inc.

200-4495 Boul. Wilfrid-Hamel

Québec, QC

G1P 2J7

Attention: Mr. Jean-Pierre Pelletier

PO#:

Invoice to: Sila Remediation Inc.

 Report Number:
 1418941

 Date Submitted:
 2014-09-04

 Date Reported:
 2014-09-11

Project: Dew Line Monitoring

COC #: 789380

				Lab I.D. Sample Matrix Sample Type Sampling Date Sample I.D.	1131163 Soil 2014-08-27 F3-MW-8-S-A-2014	1131164 Soil 2014-08-27 F3-MW-8-S-B-2014	1131165 Soil 2014-08-27 F3-DUP-1-2014	1131166 Soil 2014-08-27 F3-DUP-4-2014
Group	Analyte	MRL	Units	Guideline				
General Chemistry	Moisture	0.1	%		15.2	18.4	17.1	11.3
Hydrocarbons	F1 (C6-C10)	10	ug/g		<10	<10	<10	<10
	F2 (C10-C16)	10	ug/g		<10	<10	<10	<10
	F3 (C16-C34)	20	ug/g		<20	<20	<20	<20
Mercury	Hg	0.1	ug/g		<0.1	<0.1	<0.1	<0.1
Metals	As	1	ug/g		14	18	28	15
	Cd	0.5	ug/g		<0.5	<0.5	<0.5	<0.5
	Со	1	ug/g		10	11	10	8
	Cr	1	ug/g		85	96	89	78
	Cu	1	ug/g		40	38	39	36
	Ni	1	ug/g		38	40	38	33
	Pb	1	ug/g		7	7	7	6
	Zn	2	ug/g		80	85	71	59
PCBs	Polychlorinated Biphenyls (PCBs)	0.02	ug/g		<0.02	<0.02	<0.02	<0.02

Guideline = * = Guideline Exceedence

** = Analysis completed at Mississauga, Ontario.

Results relate only to the parameters tested on the samples submitted.

Methods references and/or additional QA/QC information available on request.

Certificate of Analysis

Client: Sila Remediation Inc.

200-4495 Boul. Wilfrid-Hamel

Québec, QC

G1P 2J7

Attention: Mr. Jean-Pierre Pelletier

PO#:

Invoice to: Sila Remediation Inc.

 Report Number:
 1418941

 Date Submitted:
 2014-09-04

 Date Reported:
 2014-09-11

Project: Dew Line Monitoring

COC #: 789380

				Lab I.D. Sample Matrix Sample Type Sampling Date Sample I.D.	1131167 Soil 2014-08-27 F3-DUP-7-2014	1131168 Soil 2014-08-27 F3-DUP-10-2014
Group	Analyte	MRL	Units	Guideline		
General Chemistry	Moisture	0.1	%		13.8	14.0
Hydrocarbons	F1 (C6-C10)	10	ug/g		<10	<10
	F2 (C10-C16)	10	ug/g		<10	<10
	F3 (C16-C34)	20	ug/g		<20	<20
Mercury	Hg	0.1	ug/g		<0.1	<0.1
Metals	As	1	ug/g		20	12
	Cd	0.5	ug/g		<0.5	<0.5
	Со	1	ug/g		10	10
	Cr	1	ug/g		97	81
	Cu	1	ug/g		40	38
	Ni	1	ug/g		40	38
	Pb	1	ug/g		7	7
	Zn	2	ug/g		75	82
PCBs	Polychlorinated Biphenyls (PCBs)	0.02	ug/g		<0.02	<0.02

Guideline = * = Guideline Exceedence

** = Analysis completed at Mississauga, Ontario.

Results relate only to the parameters tested on the samples submitted.

Methods references and/or additional QA/QC information available on request.

Certificate of Analysis

Client: Sila Remediation Inc.

200-4495 Boul. Wilfrid-Hamel

Québec, QC

G1P 2J7

Attention: Mr. Jean-Pierre Pelletier

PO#:

Invoice to: Sila Remediation Inc.

Report Number: 1418941 Date Submitted: 2014-09-04 Date Reported: 2014-09-11

Project: Dew Line Monitoring

COC #: 789380

QC Summary

	Analyt	е			Blank		QC % Rec	QC Limits
Run No	208523	Analysis Date	2014-0	09-06	Method	SV	V846 8081A/8082A	
Polychlo	rinated Bipher	nyls (PCBs)			<0.02 ug/g		102	50-120
Run No	249261	Analysis Date	2014-0	09-05	Method	SV	V846 8081A/8082A	
Polychlo	rinated Bipher	nyls (PCBs)			<0.02 ug/g		102	50-120
Run No	275801	Analysis Date	2014-0	09-08	Method	EF	A 200.8	
As					<1 ug/g		98	70-130
Cd					<0.5 ug/g		82	70-130
Co					<1 ug/g		89	70-130
Cr					<1 ug/g		90	70-130
Cu					<1 ug/g		91	70-130
Ni					<1 ug/g		91	70-130
Pb					<1 ug/g		85	70-130
Zn					<2 ug/g		94	70-130
Run No	275861	Analysis Date	2014-0	09-09	Method	EF	A 200.8	
As					<1 ug/g		100	70-130

Guideline = * = Guideline Exceedence

^{** =} Analysis completed at Mississauga, Ontario.

Results relate only to the parameters tested on the samples submitted.

Methods references and/or additional QA/QC information available on request.

Certificate of Analysis

Client: Sila Remediation Inc.

200-4495 Boul, Wilfrid-Hamel

Québec, QC

G1P 2J7

Attention: Mr. Jean-Pierre Pelletier

PO#:

Invoice to: Sila Remediation Inc. Report Number: Date Submitted: Date Reported:

1418941 2014-09-04 2014-09-11

Project: COC #:

Dew Line Monitoring 789380

QC Summary

	Analyte				Blank		QC % Rec	QC Limits
Cd					<0.5 ug/g		93	70-130
Со					<1 ug/g		94	70-130
Cr					<1 ug/g		95	70-130
Cu					<1 ug/g		95	70-130
Ni					<1 ug/g		93	70-130
Pb					<1 ug/g		96	70-130
Zn					<2 ug/g		98	70-130
Run No 27	75875	Analysis Date	2014-0	09-09	Method	М	SM3112B-3500B	
Hg					<0.1 ug/g		92	70-130
Run No 27	76008	Analysis Date	2014-0	09-11	Method	CC	CME	
F1 (C6-C10))				<10 ug/g		95	80-120
Run No 27	76009	Analysis Date	2014-0	09-11	Method	C:	SM2540B	
Moisture					<0.1 %		100	80-120
Run No 27	76011	Analysis Date	2014-0	09-11	Method	CC	CME	
F2 (C10-C16	6)				<10 ug/g		83	50-120
F3 (C16-C34	4)				<20 ug/g		83	50-120
Run No 27	76013	Analysis Date	2014-0	09-11	Method	C:	SM2540B	

Guideline =

* = Guideline Exceedence

** = Analysis completed at Mississauga, Ontario. Results relate only to the parameters tested on the samples submitted. Methods references and/or additional QA/QC information available on request.

Certificate of Analysis

Client: Sila Remediation Inc.

200-4495 Boul. Wilfrid-Hamel

Québec, QC

G1P 2J7

Attention: Mr. Jean-Pierre Pelletier

PO#:

Invoice to: Sila Remediation Inc.

 Report Number:
 1418941

 Date Submitted:
 2014-09-04

 Date Reported:
 2014-09-11

Project: Dew Line Monitoring

COC #: 789380

QC Summary

Analyte	Blank	QC % Rec	QC Limits
Moisture	<0.1 %	100	80-120
Run No 276027 Analysis Date 2014-	09-11 Method CC	CME	
F2 (C10-C16)	<10 ug/g	87	50-120
F3 (C16-C34)	<20 ug/g	87	50-120

Guideline = * = Guideline Exceedence

** = Analysis completed at Mississauga, Ontario.

Results relate only to the parameters tested on the samples submitted.

Methods references and/or additional QA/QC information available on request.

Certificate of Analysis

Client: Sila Remediation Inc.

200-4495 Boul. Wilfrid-Hamel

Québec, QC G1P 2J7

Attention: Mr. Jean-Pierre Pelletier

PO#:

Invoice to: Sila Remediation Inc. Page 1 of 6

 Report Number:
 1421066

 Date Submitted:
 2014-09-15

 Date Reported:
 2014-10-03

 Project:
 Fox-3

 COC #:
 790299

Charlie (Long) Qu

Laboratory Supervisor, Organics

Dear Jean-Pierre Pelletier: Please find attached the analytical results for your samples. If you have any questions regarding this report, please do not hesitate to call (613-727-5692).

Report Comments:	
APPROVAL:	APPROVAL:

All analysis is completed in Ottawa, Ontario (unless otherwise indicated).

Nadine Pinsonneault

Team Leader, Inorganics

Exova Ottawa is accredited by CALA, Canadian Association for Laboratory Accreditation to ISO/IEC 17025 for tests which appear on our CALA scope of accreditation. It can be found at http://www.cala.ca/scopes/2602.pdf.

Exova (Ottawa) is certified and accredited for specific parameters by OMAFRA, Ontario Ministry of Agriculture, Food and Rural Affairs (for farm soils). Licensed by Ontario MOE for specific tests in drinking water.

Exova (Mississauga) is accredited for specific parameters by SCC, Standards Council of Canada (to ISO 17025)

Please note: Field data, where presented on the report, has been provided by the client and is presented for informational purposes only. Guideline values listed on this report are provided for ease of use (informational purposes) only. Exova recommends consulting the official provincial or federal guideline as required.

Certificate of Analysis

Client: Sila Remediation Inc.

200-4495 Boul. Wilfrid-Hamel

Québec, QC

G1P 2J7

Attention: Mr. Jean-Pierre Pelletier

PO#:

Invoice to: Sila Remediation Inc.

 Report Number:
 1421066

 Date Submitted:
 2014-09-15

 Date Reported:
 2014-10-03

 Project:
 Fox-3

 COC #:
 790299

				Lab I.D. Sample Matrix Sample Type Sampling Date Sample I.D.	1137333 Water 2014-08-27 F3-MW-1-2014	1137334 Water 2014-08-27 F3-MW-2-2014	1137335 Water 2014-08-27 F3-MW-3-2014	1137336 Water 2014-08-27 F3-MW-4-2014
Group	Analyte	MRL	Units	Guideline				
Hydrocarbons	F1 (C6-C10)	20	ug/L		<20			<20
	F2 (C10-C16)	20	ug/L		<20			<20
	F3 (C16-C34)	50	ug/L		<50			340
Mercury	Hg Total	0.0001	mg/L		<0.0001	<0.0001	<0.0001	<0.0001
Metals	As	0.02	mg/L		<0.02	<0.02	<0.02	0.05
	Cd	0.008	mg/L		<0.008	<0.008	<0.008	<0.008
	Со	0.01	mg/L		0.08	0.02	0.02	0.09
	Cr	0.05	mg/L		0.11	<0.05	0.26	0.24
	Cu	0.01	mg/L		0.04	0.19	0.04	0.16
	Ni	0.01	mg/L		0.28	0.14	0.30	0.43
	Pb	0.01	mg/L		0.01	0.06	<0.01	0.03
	Zn	0.04	mg/L		0.15	0.26	2.36	0.35
PCBs	Polychlorinated Biphenyls (PCBs)	0.1	ug/L		<0.1	<0.1	<0.1	<0.1
				Lab I.D. Sample Matrix Sample Type Sampling Date Sample I.D.	1137337 Water 2014-08-27 F3-MW-5-2014	1137338 Water 2014-08-27 F3-MW-6-2014	1137339 Water 2014-08-27 F3-MW-7-2014	1137340 Water 2014-08-27 F3-MW-8-2014
Group	Analyte	MRL	Units	Guideline				
Mercury	Hg Total	0.0001	mg/L		<0.0001	<0.0001	<0.0001	<0.0001
Metals	As	0.02	mg/L		0.04	<0.02	0.02	<0.02
	Cd	0.008	mg/L		<0.008	<0.008	<0.008	<0.008
	Со	0.01	mg/L		0.07	<0.01	0.03	<0.01
	Cr	0.05	mg/L		0.23	0.09	0.54	0.14
	Cu	0.01	mg/L		0.18	0.14	0.16	0.04

Guideline = * = Guideline Exceedence

All analysis completed in Ottawa, Ontario (unless otherwise indicated by ** which indicates analysis was completed in Mississauga, Ontario).

Results relate only to the parameters tested on the samples submitted.

Methods references and/or additional QA/QC information available on request.

Certificate of Analysis

Client: Sila Remediation Inc.

200-4495 Boul. Wilfrid-Hamel

Québec, QC

G1P 2J7

Attention: Mr. Jean-Pierre Pelletier

PO#:

Invoice to: Sila Remediation Inc.

 Report Number:
 1421066

 Date Submitted:
 2014-09-15

 Date Reported:
 2014-10-03

 Project:
 Fox-3

 COC #:
 790299

				Lab I.D. Sample Matrix Sample Type Sampling Date Sample I.D.	1137337 Water 2014-08-27 F3-MW-5-2014	1137338 Water 2014-08-27 F3-MW-6-2014	1137339 Water 2014-08-27 F3-MW-7-2014	1137340 Water 2014-08-27 F3-MW-8-2014
Group	Analyte	MRL	Units	Guideline				
Metals	Ni	0.01	mg/L		0.27	0.09	0.42	0.10
	Pb	0.01	mg/L		0.09	0.03	0.03	0.02
	Zn	0.04	mg/L		5.28	0.68	1.14	0.51
PCBs	Polychlorinated Biphenyls (PCBs)	0.1	ug/L			<0.1	<0.1	<0.1
		0.5	ug/L		<0.5			

Lab I.D.

Sample Matrix

1137341 Water

				Sample Type Sampling Date Sample I.D.	2014-08-27 F3-DUP-A-2014
Group	Analyte	MRL	Units	Guideline	
Mercury	Hg Total	0.0001	mg/L		<0.0001
Metals	As	0.02	mg/L		<0.02
	Cd	0.008	mg/L		<0.008
	Со	0.01	mg/L		<0.01
	Cr	0.05	mg/L		0.13
	Cu	0.01	mg/L		0.13
	Ni	0.01	mg/L		0.10
	Pb	0.01	mg/L		0.03
	Zn	0.04	mg/L		0.68

Guideline = * = Guideline Exceedence

All analysis completed in Ottawa, Ontario (unless otherwise indicated by ** which indicates analysis was completed in Mississauga, Ontario).

Results relate only to the parameters tested on the samples submitted.

Methods references and/or additional QA/QC information available on request.

Certificate of Analysis

Client: Sila Remediation Inc.

200-4495 Boul. Wilfrid-Hamel

Québec, QC

G1P 2J7

Attention: Mr. Jean-Pierre Pelletier

PO#:

Invoice to: Sila Remediation Inc.

 Report Number:
 1421066

 Date Submitted:
 2014-09-15

 Date Reported:
 2014-10-03

 Project:
 Fox-3

 COC #:
 790299

QC Summary

	Analyte	e			Blank		QC % Rec	QC Limits
Run No	249261	Analysis Date	2014-	10-02	Method	Р	3081A	
Polychlo	rinated Biphen	yls (PCBs)			<0.1 ug/L		89	50-120
Run No	277293	Analysis Date	2014-	10-02	Method	М	SM3112B-3500B	
Hg Total				<(0.0001 mg/L			
Run No	277328	Analysis Date	2014-	10-03	Method	0	CCME Reg 153	
F1 (C6-C	(10)				<20 ug/L		100	80-120
Run No	277338	Analysis Date	2014-	10-03	Method	0	CCME Reg 153	
F1 (C6-C	(10)				<20 ug/L		100	80-120
Run No	277362	Analysis Date	2014-	10-03	Method	EF	PA 200.8	
As				<	<0.02 mg/L		103	70-130
Cd				<	0.008 mg/L		95	70-130
Со					<0.01 mg/L		95	70-130
Cr				<	<0.05 mg/L		98	70-130
Cu				<	<0.01 mg/L		100	70-130
Ni				<	<0.01 mg/L		97	70-130

Guideline = * = Guideline Exceedence

All analysis completed in Ottawa, Ontario (unless otherwise indicated by ** which indicates analysis was completed in Mississauga, Ontario).

Results relate only to the parameters tested on the samples submitted.

Methods references and/or additional QA/QC information available on request.

Certificate of Analysis

Client: Sila Remediation Inc.

200-4495 Boul. Wilfrid-Hamel

Québec, QC

G1P 2J7

Attention: Mr. Jean-Pierre Pelletier

PO#:

Invoice to: Sila Remediation Inc.

 Report Number:
 1421066

 Date Submitted:
 2014-09-15

 Date Reported:
 2014-10-03

 Project:
 Fox-3

 COC #:
 790299

QC Summary

Analyte	Blank	QC % Rec	QC Limits
Pb	<0.01 mg/L	94	70-130
Zn	<0.04 mg/L	99	70-130
Run No 277370 Analysis Date 2014-	10-03 Method O	CCME Reg 153	
F2 (C10-C16)	<20 ug/L	100	50-120
F3 (C16-C34)	<50 ug/L	100	50-120

Certificate of Analysis

Client: Sila Remediation Inc.

200-4495 Boul. Wilfrid-Hamel

Québec, QC

G1P 2J7

Attention: Mr. Jean-Pierre Pelletier

PO#:

Invoice to: Sila Remediation Inc.

 Report Number:
 1421066

 Date Submitted:
 2014-09-15

 Date Reported:
 2014-10-03

 Project:
 Fox-3

 COC #:
 790299

Sample Comment Summary

Sample ID: 1137333 F3-MW-1-2014 Metals analysis for this report performed on aqua-regia digest of sample material.

Sample ID: 1137337 F3-MW-5-2014 PCB MRL elevated due to insufficient sample volume. Less than 200 mL provided.

Sample ID: 1137339 F3-MW-7-2014 PCB MRL elevated due to insufficient sample volume. Less than 200 mL provided.

All analysis completed in Ottawa, Ontario (unless otherwise indicated by ** which indicates analysis was completed in Mississauga, Ontario).

Results relate only to the parameters tested on the samples submitted.

Methods references and/or additional QA/QC information available on request.

Your Project #: MB4G1500 Your C.O.C. #: 1 OF 1

Attention: SUB CONTRACTOR
MAXXAM ANALYTICS
CAMPOBELLO
6740 CAMPOBELLO ROAD
MISSISSAUGA, ON
CANADA L5N 2L8

Report Date: 2014/09/11 Report #: R1640161

Version: 1

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B478301 Received: 2014/09/05, 08:55

Sample Matrix: Water # Samples Received: 1

		Date	Date	
Analyses	Quantity	Extracted	Analyzed Laboratory Method	Analytical Method
Cadmium - low level CCME (Total)	1	2014/09/05	2014/09/11 AB SOP-00014 / AB	EPA 200.8 R5.4 m
			SOP-00043	
Elements by ICP - Total	1	2014/09/08	2014/09/09 AB SOP-00014 / AB	EPA 200.7 CFR 2012 m
			SOP-00042	
Elements by ICPMS - Total	1	2014/09/08	2014/09/11 AB SOP-00014 / AB	EPA 200.8 R5.4 m
			SOP-00043	

^{*} RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager.

Cynny Hagen, Project Manager Assistant Email: CHagen@maxxam.ca Phone# (403) 735-2273

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

REGULATED METALS (CCME/AT1) - TOTAL

	UNITS	F3-DUP-B-2014 (XK4850-01R)	RDL	QC Batch
COC Number		1 OF 1		
Sampling Date		2014/08/27		
Maxxam ID		KN2441		

Low Level Elements				
Total Cadmium (Cd)	ug/L	0.99	0.020	7626950
Elements				
Total Aluminum (Al)	mg/L	17	0.0030	7629630
Total Antimony (Sb)	mg/L	<0.00060	0.00060	7629630
Total Arsenic (As)	mg/L	0.015	0.00020	7629630
Total Barium (Ba)	mg/L	0.11	0.010	7629638
Total Beryllium (Be)	mg/L	0.0035	0.0010	7629630
Total Boron (B)	mg/L	0.033	0.020	7629638
Total Calcium (Ca)	mg/L	31	0.30	7629638
Total Chromium (Cr)	mg/L	0.060	0.0010	7629630
Total Cobalt (Co)	mg/L	0.010	0.00030	7629630
Total Copper (Cu)	mg/L	0.12	0.00020	7629630
Total Iron (Fe)	mg/L	15	0.060	7629638
Total Lead (Pb)	mg/L	0.025	0.00020	7629630
Total Lithium (Li)	mg/L	0.021	0.020	7629638
Total Magnesium (Mg)	mg/L	10	0.20	7629638
Total Manganese (Mn)	mg/L	0.34	0.0040	7629638
Total Molybdenum (Mo)	mg/L	0.0097	0.00020	7629630
Total Nickel (Ni)	mg/L	0.069	0.00050	7629630
Total Phosphorus (P)	mg/L	0.31	0.10	7629638
Total Potassium (K)	mg/L	5.2	0.30	7629638
Total Selenium (Se)	mg/L	0.00073	0.00020	7629630
Total Silicon (Si)	mg/L	33	0.10	7629638
Total Silver (Ag)	mg/L	0.0017	0.00010	7629630
Total Sodium (Na)	mg/L	32	0.50	7629638
Total Strontium (Sr)	mg/L	0.14	0.020	7629638
Total Sulphur (S)	mg/L	5.7	0.20	7629638
Total Thallium (TI)	mg/L	<0.00020	0.00020	7629630
Total Tin (Sn)	mg/L	0.0034	0.0010	7629630
Total Titanium (Ti)	mg/L	0.13	0.0010	7629630
Total Uranium (U)	mg/L	0.0080	0.00010	7629630
Total Vanadium (V)	mg/L	0.018	0.0010	7629630

RDL = Reportable Detection Limit

MAXXAM ANALYTICS Client Project #: MB4G1500

REGULATED METALS (CCME/AT1) - TOTAL

Maxxam ID		KN2441		
Sampling Date		2014/08/27		
COC Number		1 OF 1		
	UNITS	F3-DUP-B-2014	RDL	QC Batch
		(XK4850-01R)		

Total Zinc (Zn)	mg/L	0.73	0.0030	7629630
RDL = Reportable Detect	ion I imit			

MAXXAM ANALYTICS Client Project #: MB4G1500

Package 1 4.3°C

Each temperature is the average of up to three cooler temperatures taken at receipt

General Comments

Results relate only to the items tested.

MAXXAM ANALYTICS Attention: SUB CONTRACTOR Client Project #: MB4G1500

P.O. #: Site Location:

Quality Assurance Report Maxxam Job Number: CB478301

QA/QC			Date			
Batch			Analyzed			
Num Init	QC Type	Parameter	yyyy/mm/dd	Value Recovery	UNITS	QC Limits
7629630 KA3	Matrix Spike	Total Aluminum (Al)	2014/09/11	NC	%	80 - 120
		Total Antimony (Sb)	2014/09/11	96	%	80 - 120
		Total Arsenic (As)	2014/09/11	96	%	80 - 120
		Total Beryllium (Be)	2014/09/11	100	%	80 - 120
		Total Chromium (Cr)	2014/09/11	98	%	80 - 120
		Total Cobalt (Co)	2014/09/11	94	%	80 - 120
		Total Copper (Cu)	2014/09/11	96	%	80 - 120
		Total Lead (Pb)	2014/09/11	94	%	80 - 120
		Total Molybdenum (Mo)	2014/09/11	103	%	80 - 120
		Total Nickel (Ni)	2014/09/11	96	%	80 - 120
		Total Selenium (Se)	2014/09/11	100	%	80 - 120
		Total Silver (Ag)	2014/09/11	89	%	80 - 120
		Total Thallium (TI)	2014/09/11	95	%	80 - 120
		Total Tin (Sn)	2014/09/11	100	%	80 - 120
		Total Titanium (Ti)	2014/09/11	100	%	80 - 120
		Total Uranium (U)	2014/09/11	98	%	80 - 120
		Total Vanadium (V)	2014/09/11	104	%	80 - 120
		Total Zinc (Zn)	2014/09/11	94	%	80 - 120
	Spiked Blank	Total Aluminum (AI)	2014/09/10	98	%	80 - 120
	Spikeu bialik	Total Antimony (Sb)	2014/09/10	98	% %	80 - 120
		, ,				
		Total Arsenic (As)	2014/09/10	96	%	80 - 120
		Total Beryllium (Be) Total Chromium (Cr)	2014/09/10	95	%	80 - 120
		` ,	2014/09/10	96	%	80 - 120
		Total Cobalt (Co)	2014/09/10	92	%	80 - 120
		Total Copper (Cu)	2014/09/10	96	%	80 - 120
		Total Lead (Pb)	2014/09/10	100	%	80 - 120
		Total Molybdenum (Mo)	2014/09/10	102	%	80 - 120
		Total Nickel (Ni)	2014/09/10	96	%	80 - 120
		Total Selenium (Se)	2014/09/10	98	%	80 - 120
		Total Silver (Ag)	2014/09/10	93	%	80 - 120
		Total Thallium (TI)	2014/09/10	102	%	80 - 120
		Total Tin (Sn)	2014/09/10	103	%	80 - 120
		Total Titanium (Ti)	2014/09/10	96	%	80 - 120
		Total Uranium (U)	2014/09/10	93	%	80 - 120
		Total Vanadium (V)	2014/09/10	101	%	80 - 120
		Total Zinc (Zn)	2014/09/10	91	%	80 - 120
	Method Blank	Total Aluminum (AI)	2014/09/11	<0.0030	mg/L	
		Total Antimony (Sb)	2014/09/11	<0.00060	mg/L	
		Total Arsenic (As)	2014/09/11	0.00023, RDL=0.00020	mg/L	
		Total Beryllium (Be)	2014/09/11	<0.0010	mg/L	
		Total Chromium (Cr)	2014/09/11	<0.0010	mg/L	
		Total Cobalt (Co)	2014/09/11	< 0.00030	mg/L	
		Total Copper (Cu)	2014/09/11	<0.00020	mg/L	
		Total Lead (Pb)	2014/09/11	<0.00020	mg/L	
		Total Molybdenum (Mo)	2014/09/11	<0.00020	mg/L	
		Total Nickel (Ni)	2014/09/11	< 0.00050	mg/L	
		Total Selenium (Se)	2014/09/11	0.00022, RDL=0.00020	mg/L	
		Total Silver (Ag)	2014/09/11	<0.00010	mg/L	
		Total Thallium (TI)	2014/09/11	<0.00020	mg/L	
		Total Tin (Sn)	2014/09/11	<0.0010	mg/L	
		Total Titanium (Ti)	2014/09/11	<0.0010	mg/L	
		Total Uranium (U)	2014/09/11	<0.0010	mg/L	
		Total Vanadium (V)	2014/09/11	<0.0010	mg/L	
		Total Zinc (Zn)	2014/09/11	<0.0010	mg/L	
	RPD	Total Aluminum (AI)	2014/09/11	8.0	™y/∟	20
		Total / Halling (Fil)	2017/00/11	0.0	70	20

Maxxam Analytics International Corporation o/a Maxxam Analytics Calgary: 2021 - 41st Avenue N.E. T2E 6P2 Telephone(403) 291-3077 Fax(403) 291-9468

MAXXAM ANALYTICS Attention: SUB CONTRACTOR Client Project #: MB4G1500

P.O. #: Site Location:

Quality Assurance Report (Continued)

Maxxam Job Number: CB478301

QA/QC			Date				
Batch			Analyzed				
Num Init	QC Type	Parameter	yyyy/mm/dd	Value	Recovery	UNITS	QC Limits
7629630 KA3	RPD	Total Antimony (Sb)	2014/09/11	NC		%	20
		Total Arsenic (As)	2014/09/11	1.3		%	20
		Total Beryllium (Be)	2014/09/11	NC		%	20
		Total Chromium (Cr)	2014/09/11	NC		%	20
		Total Cobalt (Co)	2014/09/11	NC		%	20
		Total Copper (Cu)	2014/09/11	NC		%	20
		Total Lead (Pb)	2014/09/11	NC		%	20
		Total Molybdenum (Mo)	2014/09/11	NC		%	20
		Total Nickel (Ni)	2014/09/11	NC		%	20
		Total Selenium (Se)	2014/09/11	NC		%	20
		Total Silver (Ag)	2014/09/11	NC		%	20
		Total Thallium (TI)	2014/09/11	NC		%	20
		Total Tin (Sn)	2014/09/11	NC		%	20
		Total Titanium (Ti)	2014/09/11	NC		%	20
		Total Uranium (U)	2014/09/11	NC		%	20
		Total Vanadium (V)	2014/09/11	NC		%	20
		Total Zinc (Zn)	2014/09/11	NC		%	20
7629638 STI	Matrix Spike	Total Barium (Ba)	2014/09/09		93	%	80 - 120
		Total Boron (B)	2014/09/09		98	%	80 - 120
		Total Calcium (Ca)	2014/09/09		NC	%	80 - 120
		Total Iron (Fe)	2014/09/09		98	%	80 - 120
		Total Lithium (Li)	2014/09/09		97	%	80 - 120
		Total Magnesium (Mg)	2014/09/09		NC	%	80 - 120
		Total Manganese (Mn)	2014/09/09		105	%	80 - 120
		Total Phosphorus (P)	2014/09/09		96	%	80 - 120
		Total Potassium (K)	2014/09/09		98	%	80 - 120
		Total Silicon (Si)	2014/09/09		100	%	80 - 120
		Total Sodium (Na)	2014/09/09		101	%	80 - 120
		Total Strontium (Sr)	2014/09/09		95	%	80 - 120
	Spiked Blank	Total Barium (Ba)	2014/09/09		93	%	80 - 120
		Total Boron (B)	2014/09/09		97	%	80 - 120
		Total Calcium (Ca)	2014/09/09		98	%	80 - 120
		Total Iron (Fe)	2014/09/09		98	%	80 - 120
		Total Lithium (Li)	2014/09/09		96	%	80 - 120
		Total Magnesium (Mg)	2014/09/09		101	%	80 - 120
		Total Manganese (Mn)	2014/09/09		105	%	80 - 120
		Total Phosphorus (P)	2014/09/09		95	%	80 - 120
		Total Potassium (K)	2014/09/09		96	%	80 - 120
		Total Silicon (Si)	2014/09/09		98	%	80 - 120
		Total Sodium (Na)	2014/09/09		100	%	80 - 120
		Total Strontium (Sr)	2014/09/09		96	%	80 - 120
	Method Blank	Total Barium (Ba)	2014/09/09	<0.010		mg/L	
		Total Boron (B)	2014/09/09	< 0.020		mg/L	
		Total Calcium (Ca)	2014/09/09	< 0.30		mg/L	
		Total Iron (Fe)	2014/09/09	< 0.060		mg/L	
		Total Lithium (Li)	2014/09/09	<0.020		mg/L	
		Total Magnesium (Mg)	2014/09/09	<0.20		mg/L	
		Total Manganese (Mn)	2014/09/09	<0.0040		mg/L	
		Total Phosphorus (P)	2014/09/09	<0.10		mg/L	
		Total Potassium (K)	2014/09/09	< 0.30		mg/L	
		Total Silicon (Si)	2014/09/09	<0.10		mg/L	
		Total Sodium (Na)	2014/09/09	< 0.50		mg/L	
		Total Strontium (Sr)	2014/09/09	< 0.020		mg/L	
		Total Sulphur (S)	2014/09/09	< 0.20		mg/L	
	RPD	Total Barium (Ba)	2014/09/09	0.9		%	20

Maxxam Analytics International Corporation o/a Maxxam Analytics Calgary: 2021 - 41st Avenue N.E. T2E 6P2 Telephone(403) 291-3077 Fax(403) 291-9468

MAXXAM ANALYTICS Attention: SUB CONTRACTOR Client Project #: MB4G1500

P.O. #: Site Location:

Quality Assurance Report (Continued)

Maxxam Job Number: CB478301

QA/QC			Date				
Batch			Analyzed				
Num Init	QC Type	Parameter	yyyy/mm/dd	Value	Recovery	UNITS	QC Limits
7629638 STI	RPD	Total Boron (B)	2014/09/09	NC		%	20
		Total Calcium (Ca)	2014/09/09	0.8		%	20
		Total Iron (Fe)	2014/09/09	NC		%	20
		Total Lithium (Li)	2014/09/09	NC		%	20
		Total Magnesium (Mg)	2014/09/09	0.8		%	20
		Total Manganese (Mn)	2014/09/09	0.2		%	20
		Total Phosphorus (P)	2014/09/09	NC		%	20
		Total Potassium (K)	2014/09/09	2.1		%	20
		Total Silicon (Si)	2014/09/09	1.8		%	20
		Total Sodium (Na)	2014/09/09	1		%	20
		Total Strontium (Śr)	2014/09/09	1.2		%	20
		Total Sulphur (S)	2014/09/09	2.1		%	20

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spiked amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than 2x that of the native sample concentration).

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (one or both samples < 5x RDL).

Maxxam Analytics International Corporation o/a Maxxam Analytics Calgary: 2021 - 41st Avenue N.E. T2E 6P2 Telephone(403) 291-3077 Fax(403) 291-9468

Validation Signature Page

Maxxam Job #: B478301

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

Peng Liang, Analyst II

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Your Project #: FOX-3

Site Location: DEWER LAKE

Your C.O.C. #: 23244

Attention:Jean-Pierre Pelletier

Biogenie Inc Quebec 1170, rue Levis Terrebonne, QC CANADA J6W 5S6

Report Date: 2014/09/12

Report #: R3154333

Version: 1

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B4G1500 Received: 2014/09/03, 13:10

Sample Matrix: Soil # Samples Received: 4

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Reference
Petroleum Hydro. CCME F1 & BTEX in Soil	4	2014/09/05	2014/09/08	OTT SOP-00002	CCME CWS
Petroleum Hydrocarbons F2-F4 in Soil	4	2014/09/05	2014/09/06	OTT SOP-00001	CCME CWS
Strong Acid Leachable Metals by ICPMS (1)	4	2014/09/09	2014/09/10	CAM SOP-00447	EPA 6020 m
MOISTURE	4	N/A	2014/09/08	CAM SOP-00445	McKeague 2nd ed 1978
Polychlorinated Biphenyl in Soil (1)	3	2014/09/06	2014/09/07	CAM SOP-00309	EPA 8082 m
Polychlorinated Biphenyl in Soil (1)	1	2014/09/09	2014/09/09	CAM SOP-00309	EPA 8082 m

^{*} RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager. Parnian Baber, Project Manager

Email: pbaber@maxxam.ca Phone# (613) 274-0573

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

⁽¹⁾ This test was performed by Maxxam Analytics Mississauga

Biogenie Inc

Client Project #: FOX-3

Site Location: DEWER LAKE

Sampler Initials: MF

RESULTS OF ANALYSES OF SOIL

Maxxam ID		XK4846	XK4847	XK4848	XK4849		
Sampling Date		2014/08/27	2014/08/27	2014/08/27	2014/08/27		
COC Number		23244	23244	23244	23244		
	Units	F3-DUP-2-2014	F3-DUP-5-2014	F3-DUP-8-2014	F3-DUP-11-2014	RDL	QC Batch
Inorganics							
Moisture	%	23	13	15	14	0.2	3734887

Biogenie Inc

Client Project #: FOX-3 Site Location: DEWER LAKE

Sampler Initials: MF

ELEMENTS BY ATOMIC SPECTROSCOPY (SOIL)

Maxxam ID		XK4846	XK4847	XK4848	XK4849		
Sampling Date		2014/08/27	2014/08/27	2014/08/27	2014/08/27		
COC Number		23244	23244	23244	23244		
	Units	F3-DUP-2-2014	F3-DUP-5-2014	F3-DUP-8-2014	F3-DUP-11-2014	RDL	QC Batch
Metals							
Acid Extractable Antimony (Sb)	ug/g	ND	ND	ND	0.29	0.20	3741284
Acid Extractable Arsenic (As)	ug/g	28	18	14	14	1.0	3741284
Acid Extractable Barium (Ba)	ug/g	160	120	170	190	0.50	3741284
Acid Extractable Beryllium (Be)	ug/g	0.65	0.46	0.63	0.74	0.20	3741284
Acid Extractable Boron (B)	ug/g	ND	ND	ND	ND	5.0	3741284
Acid Extractable Cadmium (Cd)	ug/g	ND	ND	ND	0.15	0.10	3741284
Acid Extractable Chromium (Cr)	ug/g	91	63	78	81	1.0	3741284
Acid Extractable Cobalt (Co)	ug/g	10	8.2	10	12	0.10	3741284
Acid Extractable Copper (Cu)	ug/g	39	35	34	43	0.50	3741284
Acid Extractable Lead (Pb)	ug/g	7.9	7.1	6.7	8.9	1.0	3741284
Acid Extractable Molybdenum (Mo)	ug/g	1.5	1.5	1.2	1.6	0.50	3741284
Acid Extractable Nickel (Ni)	ug/g	38	26	30	37	0.50	3741284
Acid Extractable Selenium (Se)	ug/g	ND	0.52	ND	ND	0.50	3741284
Acid Extractable Silver (Ag)	ug/g	0.22	ND	ND	ND	0.20	3741284
Acid Extractable Thallium (Tl)	ug/g	0.49	0.40	0.55	0.56	0.050	3741284
Acid Extractable Uranium (U)	ug/g	3.6	2.5	2.7	3.3	0.050	3741284
Acid Extractable Vanadium (V)	ug/g	58	47	61	64	5.0	3741284
Acid Extractable Zinc (Zn)	ug/g	69	55	69	91	5.0	3741284
Acid Extractable Mercury (Hg)	ug/g	ND	ND	ND	ND	0.050	3741284

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

ND = Not detected

Biogenie Inc

Client Project #: FOX-3 Site Location: DEWER LAKE

Sampler Initials: MF

PETROLEUM HYDROCARBONS (CCME)

Maxxam ID		XK4846	XK4847	XK4848	XK4849		
Sampling Date		2014/08/27	2014/08/27	2014/08/27	2014/08/27		
COC Number		23244	23244	23244	23244		
	Units	F3-DUP-2-2014	F3-DUP-5-2014	F3-DUP-8-2014	F3-DUP-11-2014	RDL	QC Batch
BTEX & F1 Hydrocarbons							
Benzene	ug/g	ND	ND	ND	ND	0.005	3737266
Toluene	ug/g	ND	ND	ND	ND	0.02	3737266
Ethylbenzene	ug/g	ND	ND	ND	ND	0.01	3737266
o-Xylene	ug/g	ND	ND	ND	ND	0.02	3737266
p+m-Xylene	ug/g	ND	ND	ND	ND	0.04	3737266
Total Xylenes	ug/g	ND	ND	ND	ND	0.04	3737266
F1 (C6-C10)	ug/g	ND	ND	ND	ND	10	3737266
F1 (C6-C10) - BTEX	ug/g	ND	ND	ND	ND	10	3737266
F2-F4 Hydrocarbons							
F2 (C10-C16 Hydrocarbons)	ug/g	ND	ND	ND	ND	10	3734927
F3 (C16-C34 Hydrocarbons)	ug/g	ND	ND	ND	ND	10	3734927
F4 (C34-C50 Hydrocarbons)	ug/g	ND	ND	ND	ND	10	3734927
Reached Baseline at C50	ug/g	Yes	Yes	Yes	Yes		3734927
Surrogate Recovery (%)							
1,4-Difluorobenzene	%	121	122	124	126		3737266
4-Bromofluorobenzene	%	87	86	73	80		3737266
D10-Ethylbenzene	%	83	84	86	87		3737266
D4-1,2-Dichloroethane	%	122	125	119	121		3737266
o-Terphenyl	%	79	77	78	81		3734927
RDL = Reportable Detection L	imit						
QC Batch = Quality Control B	atch						

ND = Not detected

Biogenie Inc

Client Project #: FOX-3 Site Location: DEWER LAKE

Sampler Initials: MF

POLYCHLORINATED BIPHENYLS BY GC-ECD (SOIL)

Maxxam ID		XK4846	XK4847	XK4848		XK4849		
Sampling Date		2014/08/27	2014/08/27	2014/08/27		2014/08/27		
COC Number		23244	23244	23244		23244		
	Units	F3-DUP-2-2014	F3-DUP-5-2014	F3-DUP-8-2014	QC Batch	F3-DUP-11-2014	RDL	QC Batch
PCBs								
Aroclor 1242	ug/g	ND	ND	ND	3738673	ND	0.010	3740733
Aroclor 1248	ug/g	ND	ND	ND	3738673	ND	0.010	3740733
Aroclor 1254	ug/g	ND	ND	ND	3738673	ND	0.010	3740733
Aroclor 1260	ug/g	ND	ND	ND	3738673	ND	0.010	3740733
Total PCB	ug/g	ND	ND	ND	3738673	ND	0.010	3740733
Surrogate Recovery (%)	•							
Decachlorobiphenyl	%	71	72	68	3738673	100		3740733

QC Batch = Quality Control Batch

ND = Not detected

Biogenie Inc

Client Project #: FOX-3

Site Location: DEWER LAKE

Sampler Initials: MF

GENERAL COMMENTS

	Cooler custody	y seal was	present and	intact o	n the cooler.
--	----------------	------------	-------------	----------	---------------

Results relate only to the items tested.

Biogenie Inc

Client Project #: FOX-3 Site Location: DEWER LAKE

Sampler Initials: MF

QUALITY ASSURANCE REPORT

QA/QC				Date				
Batch	Init	QC Type	Parameter	Analyzed	Value	Recovery	Units	QC Limits
3734887	LHR	RPD	Moisture	2014/09/08	12		%	50
3734927	AH1	Matrix Spike	o-Terphenyl	2014/09/08		90	%	30 - 130
		·	F2 (C10-C16 Hydrocarbons)	2014/09/08		97	%	50 - 130
			F3 (C16-C34 Hydrocarbons)	2014/09/08		97	%	50 - 130
			F4 (C34-C50 Hydrocarbons)	2014/09/08		97	%	50 - 130
3734927	AH1	Spiked Blank	o-Terphenyl	2014/09/06		82	%	30 - 130
			F2 (C10-C16 Hydrocarbons)	2014/09/06		85	%	80 - 120
			F3 (C16-C34 Hydrocarbons)	2014/09/06		85	%	80 - 120
			F4 (C34-C50 Hydrocarbons)	2014/09/06		85	%	80 - 120
3734927	AH1	Method Blank	o-Terphenyl	2014/09/06		77	%	30 - 130
3731327	,	Wethod Blank	F2 (C10-C16 Hydrocarbons)	2014/09/06	ND,	.,	ug/g	30 130
			12 (C10 C10 Hydrocarbons)	2014/05/00	RDL=10		чь/ ь	
			F2 (C16 C24 Hydrocarbons)	2014/00/06				
			F3 (C16-C34 Hydrocarbons)	2014/09/06	ND , RDL=10		ug/g	
							,	
			F4 (C34-C50 Hydrocarbons)	2014/09/06	ND,		ug/g	
					RDL=10			
3734927	AH1	RPD	F2 (C10-C16 Hydrocarbons)	2014/09/06	NC		%	50
			F3 (C16-C34 Hydrocarbons)	2014/09/06	NC		%	50
			F4 (C34-C50 Hydrocarbons)	2014/09/06	NC		%	50
3737266	LGA	Matrix Spike [XK4847-02]	1,4-Difluorobenzene	2014/09/08		126	%	60 - 140
			4-Bromofluorobenzene	2014/09/08		86	%	60 - 140
			D10-Ethylbenzene	2014/09/08		95	%	30 - 130
			D4-1,2-Dichloroethane	2014/09/08		129	%	60 - 140
			Benzene	2014/09/08		78	%	60 - 140
			Toluene	2014/09/08		75	%	60 - 140
			Ethylbenzene	2014/09/08		78	%	60 - 140
			o-Xylene	2014/09/08		81	%	60 - 140
			p+m-Xylene	2014/09/08		70	%	60 - 140
			F1 (C6-C10)	2014/09/08		91	%	60 - 140
3737266	IGA	Spiked Blank	1,4-Difluorobenzene	2014/09/06		130	%	60 - 140
3737200	20,1	Spined Blank	4-Bromofluorobenzene	2014/09/06		77	%	60 - 140
			D10-Ethylbenzene	2014/09/06		99	%	30 - 130
			D4-1,2-Dichloroethane	2014/09/06		123	%	60 - 140
			Benzene	2014/09/06		88	%	60 - 140
			Toluene	2014/09/06		79	% %	60 - 140
				2014/09/06		79 75		60 - 140
			Ethylbenzene				%	
			o-Xylene	2014/09/06		78	%	60 - 140
			p+m-Xylene	2014/09/06		71	%	60 - 140
			F1 (C6-C10)	2014/09/06		93	%	80 - 120
3737266	LGA	Method Blank	1,4-Difluorobenzene	2014/09/06		126	%	60 - 140
			4-Bromofluorobenzene	2014/09/06		70	%	60 - 140
		D10-Ethylbenzene	2014/09/06		104	%	30 - 130	
			D4-1,2-Dichloroethane	2014/09/06		127	%	60 - 140
			Benzene	2014/09/06	ND , RDL=0.005		ug/g	
			Toluene	2014/09/06	ND , RDL=0.02		ug/g	
			Ethylbenzene	2014/09/06	ND , RDL=0.01		ug/g	
			o-Xylene	2014/09/06	ND , RDL=0.02		ug/g	

Biogenie Inc

Client Project #: FOX-3 Site Location: DEWER LAKE

Sampler Initials: MF

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC				Date				
Batch	Init	QC Type	Parameter	Analyzed	Value	Recovery	Units	QC Limits
			p+m-Xylene	2014/09/06	ND,		ug/g	
					RDL=0.04			
			Total Xylenes	2014/09/06	ND,		ug/g	
					RDL=0.04			
			F1 (C6-C10)	2014/09/06	ND,		ug/g	
					RDL=10		-	
			F1 (C6-C10) - BTEX	2014/09/06	ND,		ug/g	
			. = (00 000)		RDL=10		0/0	
3737266	IGA	RPD [XK4846-02]	Benzene	2014/09/08	NC		%	50
3737200	20/1	III D [/III 10 10 02]	Toluene	2014/09/08	NC		%	50
			Ethylbenzene	2014/09/08	NC		%	50
			o-Xylene	2014/09/08	NC		%	50
			p+m-Xylene	2014/09/08	NC		%	50
			Total Xylenes	2014/09/08	NC		%	50
			F1 (C6-C10)	2014/09/08	NC		%	50
			F1 (C6-C10) - BTEX	2014/09/08	NC		%	50
3738673	RRΔ	Matrix Spike	Decachlorobiphenyl	2014/09/07	IVC	76	%	60 - 130
3730073	NDA	Width Spike	Aroclor 1260	2014/09/07		81	%	60 - 130
			Total PCB	2014/09/07		81	%	60 - 130
3738673	RRΛ	Spiked Blank	Decachlorobiphenyl	2014/09/07		81	%	60 - 130
3730073	NDA	Spiked blatik	Aroclor 1260	2014/09/07		90	%	60 - 130
			Total PCB	2014/09/07		90	% %	60 - 130
3738673	RBA	Method Blank	Decachlorobiphenyl	2014/09/07		73	% %	60 - 130
3/380/3	KBA	Method Blank	Aroclor 1242	2014/09/07	ND	/3		60 - 130
			Alociol 1242	2014/09/07	ND , RDL=0.010		ug/g	
			A al a 4.2.40	2014/00/07				
			Aroclor 1248	2014/09/07	ND,		ug/g	
					RDL=0.010		,	
			Aroclor 1254	2014/09/07	ND,		ug/g	
					RDL=0.010			
			Aroclor 1260	2014/09/07	ND,		ug/g	
					RDL=0.010			
			Total PCB	2014/09/07	ND,		ug/g	
					RDL=0.010			
3738673	RBA	RPD	Aroclor 1242	2014/09/07	NC		%	50
			Aroclor 1248	2014/09/07	NC		%	50
			Aroclor 1254	2014/09/07	NC		%	50
			Aroclor 1260	2014/09/07	NC		%	50
			Total PCB	2014/09/07	NC		%	50
3740733	LPG	Matrix Spike	Decachlorobiphenyl	2014/09/09		95	%	60 - 130
			Aroclor 1260	2014/09/09		114	%	60 - 130
			Total PCB	2014/09/09		114	%	60 - 130
3740733	LPG	Spiked Blank	Decachlorobiphenyl	2014/09/09		94	%	60 - 130
			Aroclor 1260	2014/09/09		115	%	60 - 130
			Total PCB	2014/09/09		115	%	60 - 130
3740733	LPG	Method Blank	Decachlorobiphenyl	2014/09/09		88	%	60 - 130
			Aroclor 1242	2014/09/09	ND,		ug/g	
					RDL=0.010		-	
			Aroclor 1248	2014/09/09	ND,		ug/g	
				2017/03/03	RDL=0.010		~6/ b	
			Aroclor 1254	2014/09/09	ND,		ua/a	
			AIUCIUI 1234	2014/09/09	RDL=0.010		ug/g	
					UDF-0'010			

Biogenie Inc

Client Project #: FOX-3
Site Location: DEWER LAKE

Sampler Initials: MF

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC				Date				
Batch	Init	QC Type	Parameter	Analyzed	Value	Recovery	Units	QC Limits
			Aroclor 1260	2014/09/09	ND , RDL=0.010		ug/g	
			Total PCB	2014/09/09	ND , RDL=0.010		ug/g	
3740733	LPG	RPD	Aroclor 1242	2014/09/09	NC		%	50
			Aroclor 1248	2014/09/09	NC		%	50
			Aroclor 1254	2014/09/09	NC		%	50
			Aroclor 1260	2014/09/09	NC			50
			Total PCB	2014/09/09	NC			50
3741284	GBU	Matrix Spike	Acid Extractable Antimony (Sb)	2014/09/10		95		75 - 125
			Acid Extractable Arsenic (As)	2014/09/10		96	% 7 % 7 % 7 % 7 % 7 % 7 % 7 % 7 % 7 % 7	75 - 125
			Acid Extractable Barium (Ba)	2014/09/10		NC		75 - 125
			Acid Extractable Beryllium (Be)	2014/09/10		106		75 - 125
			Acid Extractable Boron (B)	2014/09/10		99		75 - 125
			Acid Extractable Cadmium (Cd)	2014/09/10		102		75 - 125
			Acid Extractable Cadmidin (Cd) Acid Extractable Chromium (Cr)	2014/09/10		NC		75 - 125 75 - 125
			Acid Extractable Circumstiff (Cr) Acid Extractable Cobalt (Co)	2014/09/10		99		75 - 125 75 - 125
			Acid Extractable Copper (Cu)	2014/09/10		NC		75 - 125 75 - 125
			Acid Extractable Copper (Cd) Acid Extractable Lead (Pb)			96		
			• •	2014/09/10				75 - 125
			Acid Extractable Molybdenum (Mo)	2014/09/10		102		75 - 125
			Acid Extractable Nickel (Ni)	2014/09/10		NC		75 - 125
			Acid Extractable Selenium (Se)	2014/09/10		97		75 - 125 75 - 125 75 - 125
			Acid Extractable Silver (Ag)	2014/09/10		102		
			Acid Extractable Thallium (TI)	2014/09/10		91		
			Acid Extractable Uranium (U)	2014/09/10		92		75 - 125
			Acid Extractable Vanadium (V)	2014/09/10		NC		75 - 125
			Acid Extractable Zinc (Zn)	2014/09/10		NC		75 - 125
			Acid Extractable Mercury (Hg)	2014/09/10		97		75 - 125
3741284	GBU	Spiked Blank	Acid Extractable Antimony (Sb)	2014/09/10		109	%	80 - 120
			Acid Extractable Arsenic (As)	2014/09/10		101	%	80 - 120
			Acid Extractable Barium (Ba)	2014/09/10		103	%	80 - 120
			Acid Extractable Beryllium (Be)	2014/09/10		103	%	80 - 120
			Acid Extractable Boron (B)	2014/09/10		102	%	80 - 120
			Acid Extractable Cadmium (Cd)	2014/09/10		103	%	80 - 120
			Acid Extractable Chromium (Cr)	2014/09/10		102	%	80 - 120
			Acid Extractable Cobalt (Co)	2014/09/10		105	%	80 - 120
			Acid Extractable Copper (Cu)	2014/09/10		104	%	80 - 120
			Acid Extractable Lead (Pb)	2014/09/10		101	%	80 - 120
			Acid Extractable Molybdenum (Mo)	2014/09/10		105	%	80 - 120
			Acid Extractable Nickel (Ni)	2014/09/10		101	%	80 - 120
			Acid Extractable Selenium (Se)	2014/09/10		100	%	80 - 120
			Acid Extractable Silver (Ag)	2014/09/10		103	%	80 - 120
			Acid Extractable Thallium (TI)	2014/09/10		96	%	80 - 120
			Acid Extractable Uranium (U)	2014/09/10		95	%	80 - 120
			Acid Extractable Vanadium (V)	2014/09/10		103	%	80 - 120
			Acid Extractable Zinc (Zn)	2014/09/10		103	%	80 - 120
			Acid Extractable Mercury (Hg)	2014/09/10		104	%	80 - 120
3741284	GBU	Method Blank	Acid Extractable Antimony (Sb)	2014/09/10	ND,	20.	ug/g	00 120
J. 11207	550	caroa biarik			RDL=0.20			
			Acid Extractable Arsenic (As)	2014/09/10	ND,		ug/g	

Biogenie Inc

Client Project #: FOX-3 Site Location: DEWER LAKE

Sampler Initials: MF

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC				Date			
Batch	Init	QC Type	Parameter	Analyzed	Value		QC Limits
			Acid Extractable Barium (Ba)	2014/09/10	ND <i>,</i> RDL=0.50	ug/g	
			Acid Extractable Beryllium (Be)	2014/09/10	ND , RDL=0.20	ug/g	
			Acid Extractable Boron (B)	2014/09/10	ND , RDL=5.0	ug/g	
			Acid Extractable Cadmium (Cd)	2014/09/10	ND,	ug/g	
			Acid Extractable Chromium (Cr)	2014/09/10	RDL=0.10 ND , RDL=1.0	ug/g	
			Acid Extractable Cobalt (Co)	2014/09/10	ND , RDL=0.10	ug/g	
			Acid Extractable Copper (Cu)	2014/09/10	ND , RDL=0.50	ug/g	
			Acid Extractable Lead (Pb)	2014/09/10	ND , RDL=1.0	ug/g	
			Acid Extractable Molybdenum (Mo)	2014/09/10	ND , RDL=0.50	ug/g	
			Acid Extractable Nickel (Ni)	2014/09/10	ND , RDL=0.50	ug/g	
			Acid Extractable Selenium (Se)	2014/09/10	ND , RDL=0.50	ug/g	
			Acid Extractable Silver (Ag)	2014/09/10	ND , RDL=0.20	ug/g	
			Acid Extractable Thallium (TI)	2014/09/10	ND , RDL=0.050	ug/g	
			Acid Extractable Uranium (U)	2014/09/10	ND , RDL=0.050	ug/g	
			Acid Extractable Vanadium (V)	2014/09/10	ND , RDL=5.0	ug/g	
			Acid Extractable Zinc (Zn)	2014/09/10	ND , RDL=5.0	ug/g	
			Acid Extractable Mercury (Hg)	2014/09/10	ND , RDL=0.050	ug/g	
3741284	GBU	RPD	Acid Extractable Antimony (Sb)	2014/09/10	NC	%	30
			Acid Extractable Arsenic (As)	2014/09/10	NC	%	30
			Acid Extractable Barium (Ba)	2014/09/10	0.51	%	30
			Acid Extractable Beryllium (Be)	2014/09/10	NC	%	30
			Acid Extractable Boron (B)	2014/09/10	NC	%	30
			Acid Extractable Cadmium (Cd)	2014/09/10	NC	%	30
			Acid Extractable Chromium (Cr)	2014/09/10	2.1	%	30
			Acid Extractable Cobalt (Co)	2014/09/10	2.0	%	30
			Acid Extractable Copper (Cu)	2014/09/10	3.4	%	30
			Acid Extractable Lead (Pb)	2014/09/10	1.4	%	30
			Acid Extractable Molybdenum (Mo)	2014/09/10	NC	%	30
			Acid Extractable Nickel (Ni)	2014/09/10	0.62	%	30
			Acid Extractable Selenium (Se)	2014/09/10	NC	%	30
			Acid Extractable Silver (Ag)	2014/09/10	NC	%	30
			Acid Extractable Thallium (TI)	2014/09/10	NC	%	30
			Acid Extractable Uranium (U)	2014/09/10	1.5	%	30

Biogenie Inc

Client Project #: FOX-3
Site Location: DEWER LAKE

Sampler Initials: MF

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC				Date			
Batch	Init	QC Type	Parameter	Analyzed	Value	Recovery Ur	its QC Limits
			Acid Extractable Vanadium (V)	2014/09/10	1.0	•	6 30
			Acid Extractable Zinc (Zn)	2014/09/10	0.41	9	6 30

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spiked amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than 2x that of the native sample concentration).

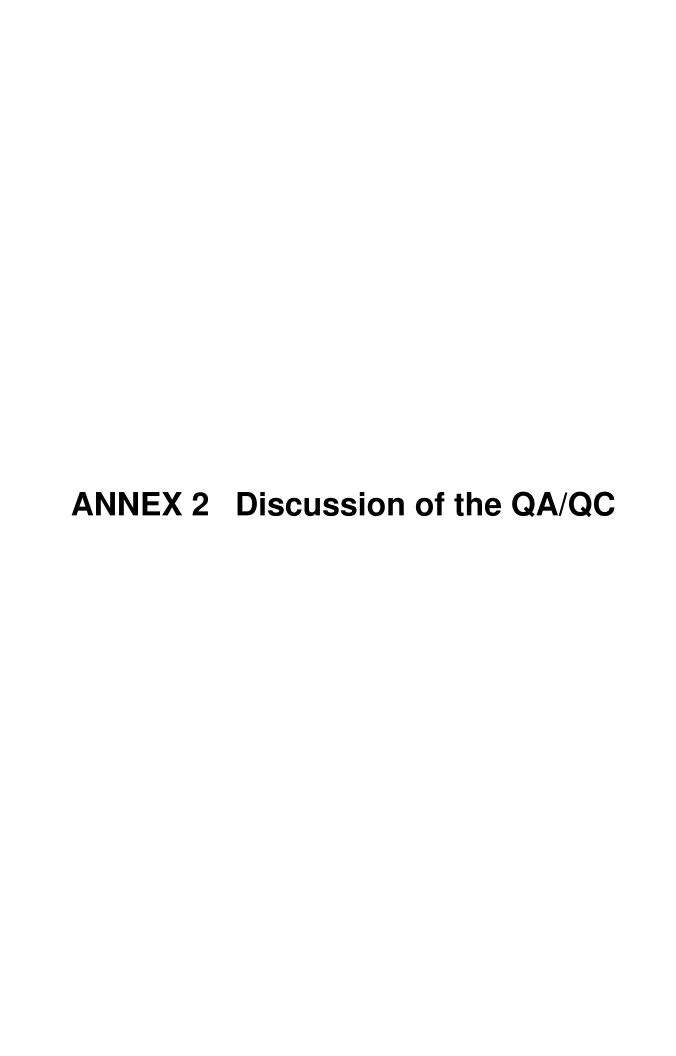
NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (one or both samples < 5x RDL).

Biogenie Inc

Client Project #: FOX-3

Site Location: DEWER LAKE

Sampler Initials: MF


VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

Brad Newman, Scientific Specialist

Steve Roberts, Lab Supervisor, Ottawa

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

QUALITY ASSURANCE / QUALITY CONTROL

Quality Assurance/Quality Control (QA/QC) program was implemented to monitor the quality of the analytical results. The main objective of this QA/QC program is to insure that sampling data and analysis results are complete, precise, exact, representative and comparable. The review consisted of evaluating sample collection/handling methodology, general laboratory comments, field (blind) duplicate samples, and inter-laboratory duplicate samples.

1. LABORATORIES

Samples collected during the monitoring program were submitted to laboratories accredited by the Canadian Association for Laboratory Accreditation (CALA):

Main Laboratory

Exova 146 Colonnade Road #8 Ottawa, Ontario K2E 7Y1

CALA Registration number: 2602

Quality Assurance Laboratory

Maxxam Analytics International Corporation o/a Maxxam Analytics Campobello 6740 Campobello Road L5N 2L8

CALA Registration number: 2996

2. FIELD QA/QC

Standard sample collection techniques were implemented to decrease the likelihood of compromising collected samples, such as:

- Pre-cleaned sample containers were provided by the laboratory.
- Monitoring equipment was decontaminated between sampling stations and dedicated sampling systems were utilized.
- Soil samples were placed directly in the laboratory provided jars/bottles and were not mixed.
- Disposable nitrile glove were worn and disposed of after each sample collection.
- Jars/bottles were cleaned prior to placement into the cooler.
- Water samples were collected through the use of dedicated Waterra foot valves and tubing.

- Ice Packs or bagged ice (Ziplock bags) were used to ensure that sample temperature would be kept below 10 °C during transportation.
- Samples were kept at the laboratory at temperatures below 4°C.

A sample integrity form from Exova is provided in Annex 1. This document indicates that all samples received were acceptable for analysis.

The following is a summary of the analytical QA/QC procedure implemented in the field:

- 10% field Blind Duplicate Samples of soil and water were sent to Exova: four blind duplicate soil samples (F3-DUP-1, 4, 7, 10-2014) and one blind duplicate groundwater sample (F3-DUP-A-2014) were submitted, as an independent check on data reproducibility, and to assess the field QA/QC protocols.
- 10% Inter-laboratory Duplicate Samples were sent to Maxxam: four blind duplicate soil sample (F3-DUP-2, 5, 8, 11-2014) and one blind duplicate groundwater sample (F3-DUP-B, E-2014) were submitted (to determine if variation in procedures may cause significant difference in analytical results).
- 10% Archival Samples of soil were sent to ESG.

3. LABORATORIES QA/QC

Quality assurance documents from Exova only provide a summary of the QA/QC results. The quantity of samples per batch per analysis is not provided.

Quality assurance documents from Maxxam indicate that:

- The soil samples analyzed for metals, PCBs and PHCs were done in 1 single batch per parameter group:
 - Batch 3741284 for metals
 - Batch 3740733 for PCBs
 - Batch 3737266 for PHC fraction F1
 - Batch 3734927 for PHC fraction F2-F3
- As there was not enough water in the wells, only metal analysis (excluding mercury) was performed. The water samples analyzed was done in the following batches:
 - Batch 7629630 for most metals
 - Batch 7626950 for cadmium
 - Batch 3739875 for mercury

4. DATA MANAGEMENT AND INTERPRETATION

4.1. FIELD WORK

The relative percent difference (RPD) is used to evaluate the sample result variability. Average RPD values of 30% for each parameter analyzed from the same laboratory are considered an indication of acceptable duplicate sample variability. For groundwater samples, an RPD of greater than 30% may reflect difference in sample turbidity or variance in the sample procedures. These performance criteria are applicable when the concentrations of the original and duplicate sample are five times or greater than the laboratory method detection limit, since the uncertainty increases dramatically as the concentration approaches the detection limit. Table I provides the detection limit for each parameter and the associated minimum concentration to be reached in order to be eligible for RPD calculation.

Table I: Minimum Concentration for QA/QC RPD Calculation

			Soil			Water	
Parameter	Laboratory	Units	MDL	RPD Minimum*	Units	MDL	RPD Minimum*
As	Exova	mg/kg	1.0	5.0	mg/L	0.02000	0.10000
	Maxxam	mg/kg	1.0	5.0	mg/L	0.00020	0.00100
Cd	Exova	mg/kg	0.50	2.5	mg/L	0.008000	0.04000
	Maxxam	mg/kg	0.10	0.5	mg/L	0.000020	0.00010
Cr	Exova	mg/kg	1.0	5.0	mg/L	0.050	0.250
	Maxxam	mg/kg	1.0	5.0	mg/L	0.001	0.005
Co	Exova	mg/kg	1.0	5.0	mg/L	0.0100	0.0500
Co	Maxxam	mg/kg	0.1	0.5	mg/L	0.0003	0.0015
Cu	Exova	mg/kg	1.0	5.0	mg/L	0.0100	0.0500
Cu	Maxxam	mg/kg	0.5	2.5	mg/L	0.0002	0.0010
Pb	Exova	mg/kg	1.0	5.0	mg/L	0.0100	0.0500
PU	Maxxam	mg/kg	1.0	5.0	mg/L	0.0002	0.0010
Ni	Exova	mg/kg	1.0	5.0	mg/L	0.0100	0.0500
INI	Maxxam	mg/kg	0.5	2.5	mg/L	0.0005	0.0025
Zn	Exova	mg/kg	2	10	mg/L	0.040	0.200
ZII	Maxxam	mg/kg	5	25	mg/L	0.003	0.015
Hg	Exova	mg/kg	0.10	0.50	mg/L	0.0001	0.0005
пв	Maxxam	mg/kg	0.05	0.25	mg/L	NA	NA
Total PCBs	Exova	mg/kg	0.02	0.10	ug/L	0.10	0.50
TOTAL PCDS	Maxxam	mg/kg	0.01	0.05	ug/L	NA	NA
PHC F1	Exova	mg/kg	10	50	mg/L	0.02	0.10
PHCFI	Maxxam	mg/kg	10	50	mg/L	NA	NA
PHC F2	Exova	mg/kg	10	50	mg/L	0.02	0.1
FIICFZ	Maxxam	mg/kg	10	50	mg/L	NA	NA
PHC F3	Exova	mg/kg	20	100	mg/L	0.05	0.25
FIICF3	Maxxam	mg/kg	10	50	mg/L	NA	NA

^{*:} The RPD Minimum is the minimum concentration to be reached for QA/QC Relative Percent Difference Calculation NA: Not Available

4.1.1. SOIL SAMPLES

Four blind duplicate soil samples were submitted for intra- and inter-laboratory comparisons. The original and duplicate intra- and inter-laboratory metal, PCB and PHC soil sample results are summarized in Tables II along with the calculated RPD for each parameter. As noted in the tables, several of the results from the original and/or duplicate samples were below or within five times the laboratory method detection limits, and therefore RPD values were not calculated for these parameters.

Review of results indicated relatively minor differences in metal concentrations within the intralaboratory duplicate samples, with only two samples with arsenic concentrations RPD values slightly above the acceptable range (35%).

Results from the inter-laboratory duplicate samples indicated minor concentration differences. In sample F3-DUP-5-2014, the calculated RPD for nickel and zinc was at 37 and 37.5%. For interlaboratory comparisons, these results do not raise any concern.

4.1.2. WATER SAMPLES

One blind duplicate groundwater sample (F3-DUP-A-2014) was submitted for intra-laboratory and one duplicate was also sent for inter-laboratory comparisons (F2-DUP-B-2014). The original and duplicate intra- and inter-laboratory metal, PCB and PHC sample results are summarized in Table III, along with the calculated RPD for each parameter. As noted in the table, all calculated RPD values were within acceptable parameters.

4.2. LABORATORIES

QA/QC results from both laboratories do not raise any concern. QA/QC results from both laboratories are included with the certificates of analysis provided in Annexe 1.

4.2.1. BLANKS

All blanks from both laboratories, for both matrices and for all parameters were below the detection limits.

4.2.2. ANALYTICAL DUPLICATES

All analytical duplicates from both laboratories, for both matrices and for all parameters had RSD's at or below 20%.

4.2.3. CONTROL SAMPLES

All control samples from both laboratories, for both matrices and for all parameters had concentrations between the upper and lower concentration established for each parameter.

Table II: FOX-3 Soil Chemical Analysis Results - Quality Assurance Samples

		Parameters												
	l										DOD	F1	F2	F3
Sample #	Laboratory	Cu	Ni [maga/lear]	Co	Cd	Pb	Zn	Cr	As [max/kar]	Hg	PCBs	C ₆ -C ₁₀	C ₁₀ -C ₁₆	C ₁₆ -C ₃₄
		[mg/kg]	[mg/kg]	[[mg/kg]	[mg/kg]	[[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]
RDL - Exova		1.0	1.0	1.0	0.50	1.0	2	1	1	0.1	0.02	10	10	20
RPD Minimum - Exova		5.0	5.0	5.0	2.50	5.0	10	5	5	0.5	0.1	50	50	100
RDL - Maxxam		0.5	0.5	0.1	0.10	1.0	5	1	1	0.05	0.01	10	10	10
RPD Minimum - Maxxam		2.5	2.5	0.5	0.50	5.0	25	5	5	0.25	0.05	50	50	50
				Intra	a-Lab Du	plicate	Sample	s						•
F3-MW-4-S-A-2014	Exova	36.0	36.0	9.0	<0.5	7.0	65	87	29	<0.1	<0.02	<10	<10	<20
F3-DUP-1-2014	Extiva	39.0	38.0	10.0	<0.1	7.0	71	89	28	<0.05	<0.01	<10	<10	<10
Relative % Difference		8.0	5.4	10.5	N/A	0.0	9	2.3	4	N/A	N/A	N/A	N/A	N/A
F3-5-A-2014	- Fyran in	45.0	38.0	12.0	< 0.5	9.0	97	82	14	<0.1	< 0.02	<10	<10	<20
F3-DUP-10-2014	Exova	40.0	40.0	10.0	<0.1	7.0	75	97	20	< 0.05	< 0.01	<10	<10	<10
Relative % Difference	•	11.8	5.1	18.2	N/A	25.0	26	17	35	N/A	N/A	N/A	N/A	N/A
							•	•			•	•		
F3-8-A-2014	Exova	38.0	34.0	10.0	<0.5	7.0	78	87	14	<0.1	<0.02	<10	<10	<20
F3-DUP-7-2014	Exova	40.0	40.0	10.0	<0.1	7.0	75	97	20	<0.05	< 0.01	<10	<10	<10
Relative % Difference		5.1	16.2	0.0	N/A	0.0	4	11	35	N/A	N/A	N/A	N/A	N/A
F3-MW-8-S-A-2014	Exova	40.0	38.0	10.0	<0.5	7.0	80	85	14	<0.1	< 0.02	<10	<10	<20
F3-DUP-4-2014	LXUVA	36.0	33.0	8.0	<0.1	6.0	59	78	15	<0.05	< 0.01	<10	<10	<10
Relative % Difference		10.5	14.1	22.2	N/A	15.4	30	9	7	N/A	N/A	N/A	N/A	N/A
							Sample							
F3-MW-4-S-A-2014	Exova	36.0	36.0	9.0	<0.5	7.0	65	87	29	<0.1	<0.02	<10	<10	<20
F3-DUP-2-2014	Maxxam	39.0	38.0	10.0	<0.1	8.0	69	91	28	< 0.05	<0.01	<10	<10	<10
Relative % Difference		8.0	5.4	10.5	N/A	13.3	6	4	4	N/A	N/A	N/A	N/A	N/A
F3-MW-8-S-A-2014	Exova	40.0	38.0	10.0	<0.5	7.0	80	85	14	<0.1	< 0.02	<10	<10	<20
F3-DUP-5-2014	Maxxam	35.0	26.0	8.2	<0.1	7.0	55	63	18	< 0.05	<0.01	<10	<10	<10
Relative % Difference		13.3	37.5	19.8	N/A	0.0	37	30	25	N/A	N/A	N/A	N/A	N/A
F3-8-A-2014	Exova	38.0	34.0	10.0	<0.5	7.0	78	87	14	<0.1	<0.02	<10	<10	<20
F3-DUP-8-2014	Maxxam	34.0	30.0	10.0	<0.1	7.0	69	78	14	< 0.05	<0.01	<10	<10	<10
Relative % Difference		11.1	12.5	0.0	N/A	0.0	12	11	0	N/A	N/A	N/A	N/A	N/A
							•				-			
F3-5-A-2014	Exova	45.0	38.0	12.0	<0.5	9.0	97	82	14	<0.1	<0.02	<10	<10	<20
F3-DUP-11-2014	Maxxam	43.0	37.0	12.0	0.15	9.0	91	81	14	< 0.05	<0.01	<10	<10	<10
Relative % Difference	•	4.5	2.7	0.0	N/A	0.0	6	1	0	N/A	N/A	N/A	N/A	N/A

Table III: FOX-3 Groundwater Chemical Analysis Results - Quality Control Samples

		Parameters												
Commis #		_					_		As			F1	F2	F3
Sample #	Laboratory	Cu	Ni [/1.]	Co	Cd	Pb	Zn	Cr		Hg [mg/L]	PCBs	C ₆ -C ₁₀	C ₁₀ -C ₁₆	C ₁₀ -C ₃₄
		[mg/L]	[mg/L]	[mg/L]	[mg/L]	[mg/L]	[mg/L]	[mg/L]	[mg/L]		[ug/L]	[mg/L]	[mg/L]	[mg/L]
		0.0100	0.0100	0.0100	0.00800	0.0100	0.040	0.050	0.0200	0.0001	0.10	0.02	0.02	0.05
RPD Minimum - Exova		0.0500	0.0500	0.0500	0.04000	0.0500	0.200	0.250	0.1000	0.0005	0.50	NA	0.1	0.3
RDL - Maxxam		0.0002	0.0005	0.0030	0.02000	0.0002	0.003	0.001	0.0002	0.0100	0.01	0.025	0.1	0.2
RPD Minimum - Maxxam		0.0010	0.0025	0.0150	0.10000	0.0010	0.015	0.005	0.0010	0.0500	0.05	0.125	0.5	1.0
				Intr	a-Lab Dupl	icate Sam	ples							
F3-MW-6-2014	Exova	0.1400	0.0900	<0.01	<0.008	0.0300	0.680	0.090	< 0.02	<0.0001				
F3-DUP-A-2014	LXOVA	0.1300	0.1000	<0.01	<0.008	0.0300	0.680	0.130	<0.02	<0.0001				
Relative % Difference		7.4	10.5	N/A	N/A	N/A	0.0	N/A	N/A	N/A	N/A	N/A	N/A	N/A
				Inte	r-Lab Dupl	icate Sam	ples							
F3-MW-6-2014	Exova	0.1400	0.0900	<0.01	<0.008	0.0300	0.680	0.090	< 0.02	<0.0001		Not enou	igh water	
F3-DUP-B-2014	Maxxam	0.1200	0.0690	0.01	0.00099	0.0250	0.730	0.060	0.0150		Not enough water			
Relative % Difference		15.4	26.4	N/A	N/A	N/A	7.1	N/A	N/A	N/A	N/A	N/A	N/A	N/A

Number exceeding the 30% RPD reference

ANNEX 3 Field Notes and COC forms

fox-3/ Dewer Lake 2014-08-27 tipe II disposal -VJ-1: height of protector Con 2: line = 1.05 m (vertical) · GPS PT 793 Pics 3134 - Serial # 111164 oduta download = OK r readmas: Channel Volt Manual 1 2 to 0 - 2 5479 1.1657 0,8473 .0476 34 8,6218 1,0360 (p 3000 1.1154 07817 6 0,7606 0,9309 7,756 0,911)5

mombry = 40%. battlerice = 11.34 v (main) best 13.50 v (Aux) best unge batteries -own ks good Nestout memy 4 manual readmits. MSTST(KIZ) Mosist 0 11,375 18,411 13,205 9.205 14 004 20.06 14.470 20,87 5,564 21,50 17-00 Le 16,727 17,569 -/enghtsfablo

-2: OPS Pt. 294 PICS P5157-516 - Serial # 1.1165 - Presenter height=1,70 m & 65 - Orble length AGS = 3,8m data down rad = OK - Reachings V8ts 7,9633 7 / 1.1607 09170 -1,9916 1.0677 0,9592 ,664 40-1. wemony = 11.34 V (nam) bost battered = 13,56 V (AVY) hest - replaced batteries (working good)

munua/ readr ch/resist(k2) MSIST 15,730 11.3159 17,034 11/302 17,806 113,277 14.186 18,36 14,750 9.80 71-3. Cospt 295 pics 517-519 · condition = plood - Serial #=1/163 - Prosector height AGS= 1.10 m - Cable bright AGS= 3,90 m - duta downtrad = Ox - memor y = 40%. -boateies = 11.34 / (Aux) best

-NERGNE Vols ch. Pusts 0,9241 1,1940 -1,4999 0,8635 1.1354 1.0268 0,8396 0,6132 FP10,1 batterics (unkigod) ch ange 2 restanted momery menuial readings resist NESST (KD) 10,344 16,896 16,864 1,743 14.216 15,713 19.482 14,502 OJ15,381 20,47

- Seial # 111(07) - Protector height AGS= 0,98m - Cable lenght AGS= 3,600 m - condition good (unlocked) - data down road = ok - memory = 40 %. - butteries = 11.34 V (manh) best 13,50 V (Aux) best 0,8533 1,2149 a 0.3249 1 Ke 22 (0) 3 0.8013 1.1373 0,7776 1,0243 0,7626 0,9959 13 0,9462 0,7479 5,910 6,7375 -23179

- An langual batteries (good) - rostanted momory namual readings Resist/K() 23056 [P8,0| 19,93 13,360 20,75 14257 21.09 14.765 22,29 16.240 72.82 17.262 18,187 MW-04 (mf. 2015-06-29) · Ops pt 297 · pic 522 (N95°) Protector top=0.85m height of such top AGS = 0.75m

- Istal (Nell depth BG=1, 40 m - Water table depth BG5= 0,15m - Welle column = 1,25m - mitial parameters 6, CS to C= 12.87 ph= 6, CS (modulity: 451 MS/cm - Signs of shalfe / host - punge I volume of well -+mal prumetus tic= 2,89 pH=0.00 conduct = 401 pus/cm me 2015-06-29) Sampled F3-MW 4-70/4 - reached 0,20m (Bodward) Sampled F3-1-5-A-9H F3-HW-4-5-A-2014 (MF 2015-06-29)

MM-01 (MF 2015-06-29) MHH GIS Dt 299

- Protector topheint A65 = 0,75m

- Supp to reignt A65 = 0,56m

- total well depth B65 = 1,30m

- Water Column = 0,93m

Water Column = 0,93m - Signs of Studgethost - mittal rouametas: to C= 355 pH= 60.60 conduct = 795 µ5/am Punge I well volume - And Prametas: toc=2.65 pH=6,40 - Sampled f3- Hun -1-704/06-2015 - general well and ition = 9002 but un Locked + weeter Into protector

Sen Sampling: Gps ot 300 N. N. S°) 20 Pic 525 - 526 - Mached 0,43 m depth Samplad f3-MW-4-5-764 F3-DUD-2 F3-DUD-2 F3-DUD-3 N-2: Gos pt 302 prc 534 (N45°) - Mater top height AGI = 1.00 - Soven top height AGS = 0,65 - total well depth BGS = 1,53h - Wata table depth BGS = 0,47m - Reserved iller his best 141m - Protector lifted by post (*/1.4m)
- Tinitial parameters
+0C = 3.11 PH= 7,29 Conductivity = 50%

very 10,00 rector ge - Pungle volume - D pmal parameta +00 = 2.94 pH = 7.12 conductivity = 494 y 5/m To - Sam plad F3-4W 2-7014 (nombre 80/15mphy 5565=363-537 -5ampled F3-MW-4-5 (3 2014 - general layout! PCS 527-528 -app pt 357 P/CS 529 - 530 - 531 - MW-3! Gps pt 304 - Protector top beight Abs = 0,35m - Sucentop horish Abs = 0,35m

- total well Lapth 365= 1,3/m - water table 1855 = 0.38m - initial parametus PH- (e) 76 Toc = 2,00 Fr final parameter 91 PH-6,58 14+1=6,58 Sampled F3-MU (not-enourh water ton ca complete Sample) sampled F3-4W-3-5-A-21 FS YW-3-5-A-114

- general layout: Cox PF 3 Dics 538 to 542 Ops pt 387 Pics 543 to 549 - Feat A: Feature 11 (MF 1015-01-06) Cips pt 308 Pic-550 (N 125°) $(0.75 \text{m} \times \text{lm} + 1)$ - Ups pt 309 Pics 551 to 553 general layout

Fation West Land HI 3-12-7014 (MF 2015-04-29) 5,cs 59Ce to 598 (MF-2015-06-29) { [f3-8-8-2014] 3-17-18-284 Freature B (MF 2015-01-06) 5 + CG MMG F3-4-2014 (MF 2015-02-29) Jps pt 325 pic 600 (10270) -Sampled F F3-4-2014 (MF 2015-06-29)

feat Z': feature v (mrnos-or-ole) GPS pt 377 (5xum)
Dic GO) (N 180°)

Ceature v (mr nois-oi-ole)

Leat Z', drainage channol Gps pt 37,8 \$331 DICS 601 (N200°) (1.5m × 30m) - Feat & Seature A (mf rois-or-ole) (Gps pt 329-320) PTC (665 (N 136°) Feature CAME 2015-01-06) - Feat 4 / 9xpo Sod de Inis GPJ Pt 3332 Pr. C. 606 (N/90)

f3-5-2014 (HF 2015-06-29) - F3-10; GPSPT 333 (MF. 2015-06-29)
PICS (618 +0 (620 (N 1106)) F3-5-2014 - Sampled F3-10-2014 < B + Dups 10-11-12 & -general ayout oichne - Sprot 534 Feat Seature W (MF 2015-01-01e)

Feat Si- pm cing water

(902 m/2)

F3-6-20H (NF 2015-04-29)

F3-6-20H (NF 2015-04-29)

Sample ci f3-9-A-20H

(NF 2015-04-24) reached 0,2m (rocks)

,53-7-2014 (HF 2015-06-29) 7105613-614/N60°) 25 - Sampled F3-B-2014 (uf 2015-06-29)
3-7-53/9-2014 (uf 2015-06-29)
-Sampled F3-7-2014 feature S (MF 2015-01-06) GPS PT 338 pic 625 - feat 2. Feature T (MP 2015-01-010)
- feat 2. Pond ms water

(6x2mtz) Dic (626 (N160°) - general layout (Lobe F?)
-GPS pt 341
-Pics (29 to (37)

neral layout GPS pt 1342 PICS 638+0639 3-60-1 Gps pt 343 - 5ample 2 F3-60-2014(Sonoral amount GPS PT 344 PICS (641 to 648 F3-11-2014 (HF 2015-04-29) FICS (652-653 (N 25°)) Jampled F3-5-7014 (A B) F3-11-2014 CMF 2015-06-29) - F3-10-204 (HF 2015-020-29)
- F3-10-2014 (HF 2015-020-29)
- Sampled F3-4-704 (B
- F3-10-2014 (HF 2015-020-29)
- Cops pt 34(6- Pic (649
(NO))
Pic (65)

Von-Hazardous waste L.F. MW-7: GPS PT 3/0 Dic 554 (N310°) - Noight St prostor top = 0,75m/fs - Screen top hight AGS= 6.63m - Condition = good Cap ron standard - Total well Joph BGS=1.70m - Worder table BGS = 0.20m - initiat paravoretus: +°C = 3.03 pH=7.21 anduct = 407 - fmal parameters Toc = 2.90 pH= 7,11 andret = 403 y15/am, - Sampled F3- 4W-7-2014 Velly low recharge (not mough

Sail-D Gor Pt 3/1 Sampled f3-4W-7-5 CB General Myout: DICS 557+8 561 -MW-05: Gps pt 3/2

PIC 563 (N/60°)

-Protector top height Ass=6,75

- Sheen top height Ass=0,66

- Total well depth BSF=1,3m

- wata table BSS=0,20m

ofinal (MF-2015-06-29) - mitral parameters:

t = 2.95 9H= 7.26

conductinty = (e42 prs/om

- purge I volume of well

very low recharge, lot of the - Sampled f3-MW-5-2014 (not enough wata for a complete Sample) Sál Samphing! Gps pt 313 Pics 570+571 Sumpled F3-4W-5-5-7014 & - DMW-06! GDS of 315 pie 572 (N185) -Productor height ABS=0,88m - Sween top height AGS=0,78m - Hotal well depth BES=1,33m

- General Munt - Ops pt 3/H +0 569 - pon 2mg water on the Noad all owned band fill MW-(0 (m1) -Wafa table depth BGS=0,29/2 Final (mr 2015-06-29) Conductivity = 417 ps/m - Pryce (Vlm/10W u Mange) - Sampled F3-MW-(0-2019) + Dup-R metals + Dup-C Son/y not enough water for complete samples

Soil Samphy: GSSP 1816 Sompled F3-MW-6-5-A 7014 1W-B: GPS Pt 317

- Protector top reight AGS-b, 74m

- Screen top AGS = 0,63m

- total well depth = 1,30m water table = 0, 45m - mitial parametas +° C= 3.30 PH= 7.59 conductivity: 513 MS/cm - Purge (Ulury 10W recharge) - Sampled #3-4W-8-2014 (not enough water for complete ple)

- general, Condition: no sand and for bentomite in protector (Succen is feel a terally) -Soil Sampling: Gos pt 3/8 -reached 0,40m (rocks) A -Sampled F3-MW-B-S-2014/ +Dups 4-5-67n "Ahorizon Jeneral Lay Out: 577 to 580 - Gps pot 320 - Feat Preature G. (mf zois-oi-oles)

- Feat Preature G. (mf zois-oi-oles)

Ops pt 321

Pic 590 (N 170°) - Jenoud Layout Grapt 3/12 P15/591 75 595

WOST Landfill 704-08-27 3-1-70M: GPP 1 348
Pic 657 +6666
- Sampled F3-1-A-7014
Neadher only of 20m (noclus) - F3-1-70M! general overview SPS PT 349
PICS 658 TO 665
P3-3-2014 (MF 2015-06-29) Gps pt 350 Sampled P; CS (007 + 669)

Sampled P; CS (007 + 669)

Alauhed on 11 0 22 m (nucle)

- feat t: De Hlements (3x 1, 5m) GPS PT 351 RC 668 (N778)

\$ F3-2-2014 (MF 2015-06-29) F3-3-2014 (GDS PT 352 Sample & MY 2015 (NF 2015-01-06) Feature & (MF 2015-01-06) Feature & (MF 2015-01-06) Set 1 Chan (3x2,5m²) Gpsqt 353 pic 67/(N) - general overview - Gps pt 354 pic 672 (N 1954) - Gps pt 355 pic 673 (N40°) pic 674 (NB0°)

Exova 237 rue de Liverpool St-Angustin-de-Dasmaures Canada G3A 2C8

Numéro Demande : (Interne)

DEMAND D'ANALYSE

Sans Frais; +1 (866) 365-2310 T: +1 (418) 878-4927 F: +1 (418) 878-7185 C: venles@exova.com www.exova.ca

EXOVO

3.83	ud-temo	Code postal GIP 2077	Telecopie 11 18 - 1647 - 7540	era luma		Releasor	Control of the Contro	ell ru	s		(e)	Mature ooir coor	JqN	S					1	SE NATIONAL SERVICES	-9 A	
60	Agresse (Facturation, fighter boul, WIR	violec (COC)	535	Countilean - Dierre, Dellati	- -	Charge de projet: Jaan - Prenre	Numero de soumission :	Echantillonneur: Martin EL	Certificat d'analyse: ☐ Français Anglais	Paramètres demandés (v)						3	*					Inda / EM: Pou mino
Nom du Client Olice Care Care Care Care Care Care Care Car	S0x37	WITH I TOO IT (NU) COOP DOSES XOR-CO	Telephone 4118-63-4422 Telecopieur 4118-653-3583	course martin ofleury a liverieca)	Lot ou Description du projet: Deux Line MONIFfor Ma	Bon de commande:	Lieu d'échantillonnage: +ON -> (may septemble	Spécifications requises (au besoin) :	A	(E. 100)	Votre Référence Échantillon d'échantillonnage	PCS/S	12-1-12-2014 \$ 12-12-23 XXX	2 3-1-B 2014 0 -1-B 2	3 43-2-4-2014-63-34 -2014 XXX	1 12 -2 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3	5. F3-3-A-2014 - F3-2-A-2014 XXX	6.53-3-3-2014 VXX	7. #3-4-D-2014 PF3-10-A-2014 1	8 F3-4-B-2014-F3-10-B-2014 XXX	Autoritano C. En J. Ed. Letter analytic J. Ed. En incrementary (Ed. En indose J. Ed. Pali de bajonada J. El Fail Indas J. Edi. Fail minis

Code de natures :

E: Eau / EP: Eau potable / ES: Eau souterraine / EA: Eau de surface / EB: Eau de bagnade / EU: Eau usee/ EM: Eau mine A: Air / AL: Aliment / LX: Lixiviat / S: Sol / SE: Sédiment / B: Boue / H: Huile / F: Frottis / EC: Écouvillon / PH: Produit pharmaceutique / Z: Autre (définit)

Date à laquelle les résultats sont requis Signature du client Vatiories le laboratoire à effectire les analyses spécifiées sur cette Domande dunalyse

DOC-0027, rév.04 (Québec A.Français) 90

[Cocher si d'autres pages sont jointes pour la présente Demande d'analyse

PAGE 1 DE 2

Exova 237 rue de Liv St-Augustin-de Québec Canada G3A 2C8

Numéro Demande : (Interne)

DEMAND D'ANALYSE

9	3
Sans Frais: +1 (866) 365-2310 T: +1 (418) 878-4927 F: +1 (418) 878-7185	C: ventes@exova.com www.exova.ca
iverpoo! de-Desmaures	

Nom du Client S. La KOMBOND	NO TIEN			760
Adresse (Certificat)		Adresse (Facturation, si différente)		
Villie	Code postal	Ville,	Code postal	40
Téléphane	Télécopieur	Téléphone	Télécopieur	ă.
Courriel		Courriel		1
Lot ou Description du projet :		Charge de projet :		į.
Bon de commande :		Numéro de soumission :		
Lieu d'échantilionnage: Cax 3	Devot lake	Échantillonneur :		
Spécifications requises (au besoin) :	**	Certificat d'analyse : ☐ Français ☐ Al	☐ Anglais ☐ Fax ☐ Courriel (pdf)	
		Paramètres demandés (v)	The state of the s	Γ
Votre Référence Échantillon	chantillon d'échantillonnage		Nature (voir code) Nbr Contenants	ennetini - [0°] F
127 C N. 261U. F3-11-1-1	1014 CT CO 1000			
PF2-11-8	X X X	194		
	-2014 XXX			
13-6-8-28HPF3-R-8-2014	-8-26M XXX			
= F3-4-4-2014 P3-9-4-704	-A-704 KXX			
6. 53-3-8-20140 F3-9-8-2014	-8-204 XXX			*
1 52-6-0-2074 B3-7-4-201	-4-204 X XX		- Domain	
123-8-13-4BL 63-4B-024	Broy XXX		5	· ·
Code de natures : Eau / EP: Eau potable / ES: Eau sou	E. Eau / EP: Eau potable / ES: Eau soulerraine / EA: Eau de surface / EB: Eau de baignade / EU: Eau usée / EM: Eau mine 🕃	ս usée / EM: Eau mine ՝չ		(e)

A: Air / AL: Aliment / LX: Lixiviat / S: Sol / SE: Sédiment / B: Boue / H: Huile / F: Frottis / EC: Écouvillon / PH: Produit pharmaceutique / Z: Autre (définir)

	2
(Z	,
5	
P P	9 /1
3	
Ó	
S	
2	
Wardues:	

Date à laquelle les résultats sont requis

[Crocher si d'autres pages sont jointes pour la présente Demande d'analyse pour la présente Demande d'analyse

DOC-0027, rév.04 (Québec / Français)

2013-03-05

Signature du client Javorice le latoratoire à effecture les analyses spécifiées sur cette Demande d'analyse

PAGE 1 DE 2. ***

Exova 237 rue de Liverpool St-Augustin-de-Desmaures Oubbec Canada G3A 2C8

Numéro Demande : (Interne)

DEMAND D'ANALYSE

Sans Frais: +1 (866) 365-23 T: +1 (418) 878-4927 F: +1 (418) 878-7185 C: ventes @ exova.com www.exova.ca

SALES OF THE PERSON NAMED IN COLUMN 1	
DAG	EXC
2310	

Nom du Client VIC OS	30 110			
Adresse (Certificat)		Adresse (Facturation, si différente)		
Ville	Code postal	Ville	Code postal	
Téléphone	Télécopieur	Téléphone	Télécopieur	
Courriel		Courriel	and seems	
Lol ou Description du projet :		Chargé de projet	Bar	
Bon de commande :	1.49	Numéro de soumission :	1	
Lieu d'échantillonnage :		Échanillonneur :		18/
Spécifications requises (au besoin)	Ž.	Certificat d'analyse : □ Français □ Anglais	jlais Fax Courriel (pdf)	,
		Paramètres demandés (V)		
			e) suts	
Votre Référence Échantillon	Date & Heure		ature ir code	
á	S - Ceciaininage		N (voi	
3	Mos Mos Mos			9
1.43-9-4-20Ju	2614-08-27-XXX		2 5	
2 2 9 4 2004	×××		2	7.
\$ 63-10 A-2014 53-5-	-4-20H			1
153-10-B-2014-13-5-	S-B-20H XXX	A. 1-		
5 43-4 A-2014 F3-4	-A-2014	. 2	ACCUPATION AND ADDRESS OF THE PARTY OF THE P	
-8-2014.	F3-4-8-2041 XXX		Administra	
-A-2001	P3-8-14-2014		Shaparini M	200
8 K3-12-43-2074-F3-8-8	-8-204 XXX		4	
Code de natures : E. Eau / EP: Eau potable / ES: Eau A: Air / AL: Aliment / LX: Lixiviat /	E: Eau / EP: Eau potable / ES: Eau souternaine / EA; Eau de surface / EB: Eau de baignade / EU: Eau usée / EM: Eau mine A: Air / AL: Aliment / LX: Lixiviat / S: SoI / SE: Sédiment / B: Boue / H: Huile / F: Frottis / EC: Écouvillon / PH: Produit pharmaceutique / Z: Autre (définit)	de baignade / EU; Eau usée / EM; Eau mine / P: Frottis / EC; Écouvillon / PH; Produit pharmaceutique / Z: Autre (définit)		
Remarques:		*		2
	1		[4-Cocher si d'autres pages sont jointes	
Signature du client Jaulorise le labotatoire à effecture les analyses spécifiées sur cette Demande d'analyse	**	Date à laquelle les résultats sont requis	pour la présente Demande d'analyse	
٠			1000	

DOC-0027, rév.04 (Québec / Français)

PAGE 1 DE 2

	237-rue de Liverpool S. St-Augustin-de-Desmaures T. Québec F. Canada	Sans Frais+7. (866) 385-2310 VC 1-1 (416) 879-4927 Fr.+1 (416) 878-7185 C. ventes'@exova.com	
Numéro Demande : (Interne)			
Nom du Client Your Composition			
Adresse (Certificat)	Adresse (Facturation, si différente)		
Villie Code postal	Ville Code postal	[EI]	
Téléphone Télécopieur	Téléphone	ın	
Courries	Courriel		
Lot ou Description du projet :	Charge de projet :		
Bon de commande:	Numéro de soumission :		100 100
Lieu d'écnantillonnage:	Echantillonneur:		1
Spécifications requises (au besoin):	Certificat d'analyse : ☐ Français ☐ Anglais	☐ Fax ☐ Courriel (pdf)	
	Paramètres demandés (v)		
102 X S		-	
から		ode)	
Votre Référence Échantillon		Natic Volr c	
4011		idN	
000			
3		J -	
-C3-783-1-5-6-301-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1			
XXX - 102-4-5-4-1114-57:			
153-MW-2-8-7014 XXX		~ .	
100-3-5-4-2014 XX			
6.52-MU1-3 5-2 2014 - 7 x/24		770	
A-S-4-			- 3
8 63- HUL-4-5-8-2014 F3-HW-148-8-2011 XX		2	1 9 %
Code de natures ; E. Eau / E.P. Eau potable / ES: Eau soulerraine / EA. Eau de surface / EB: Eau de baignade / EU; Eau usée / EM: Eau mine A: Air / AL: Aliment / LX: Lixiviat / S: Sol / SE: Sédiment / B: Boue / H: Huile / F: Frottis / EC: Écouvillon / PH: Produit pharmaceutique / Z. Autre (définir)	u usée / EM: Eau mine villon / PH: Produit pharmaceutique / Z. Autre (définir)		

	_	į
T	5	
(3	
?	9	
(Š	
(D	
/k	X	1
Remarques ; /	*	

Signature du client

Jindorice le laboratore à effecture les analyses spécifiées sur cette Demands d'analyse .

1

Cocher si d'autres pages sont jointes

PAGE 1 DE 2.

31

Date à laquelle les résultats sont requis

DOC-0027, rév.04 (Québec / Français)

Exova 237 rue de Liverpool St-Augustin-de-Desmaures Guébec Ganada G3A 2C8

Numéro Demande : (Interne)

DEMAND D'ANALYSE

Εχολα Sans Frais: +1 (886) 365-2310 T: +1 (418) 878-4927 F: +1 (418) 878-7185 C: ventes @exova.com www.exova.ca

Nom du Client	るける	
Adresse (Certificat)		Adresse (Facturation, si différente)
Ville	Code posial	Viile Code postal
Téléphone	Télécopleur	Téléphone Télécopieur
Courriel		Courriel
		9
Lot ou Description du projet :	€ de la companya de	Chargé de projet:
Bon de commande :		Numero de soumission ;
Lieu d'échantisonnage :		Echanillomeur:
Spécifications requises (au besoin) :		Certificat d'analyse : ☐ Français ☐ Anglais ☐ Fax ☐ Courriel (pdf)
		Paramètres demandés (√)
	** (%	(el
Votre Référence Échantillon	Date & Heure d'échantillonnage	Mature Voir coor
	LOW HEI FIZZ	t. IAN
163-4-5-S-M-51	メメメガーのかかの	2 5
2. 43-HW-S-S-R-2014	XXX	
+102-4-5-0-m-63	XXX	
48-14W-6-5-8-2014	XXX	
8-63-MW-25-A-2014	XXX	
" 53- HW-7-5-8-2014	×××	
1 53 LUB-8-5-4-2014		
18 53-HU-8-5-B-2014	\$ X X &	
Code de natures : E: Eau / EP: Eau potable / ES: Eau sol A: Air / AL: Aliment / LX: Lixiviat / S: 6	E. Eau / EP. Eau potable / ES. Fau sourerraine / EA. Eau de surface / EB. Eau de balgnade / EU. Eau usée / EM. Eau mine A. Air / AL. Aliment / LX. Lixiviat / S. Sol / SE. Sédiment / B. Boue / H. Hulle / F. Frottis / EC. Écouvillon / PH. Produit pharmaceutique / Z. Autre (définir)	au usée / EM: Eau mine uvilion / PH: Produit pharmaceutique / Z: Autre (définir)
Remarques: // / /	クシーククノ	

Signature du client J'autorise le laboratoira à effecture les analyses spécifiéss sur cette Demande d'analyse

Date à laquelle les résultats sont requis

PAGE 1 DE 2

Cocher si d'autres pages sont jointes pour la présente Demande d'analyse DOC-0027, rév.04 (Québec / Français)

		237 wad e Liverpool Sans Frais: +1 (866) 365-2310 C St-Augustin-de-Desmaures T: +1 (418) 878-4927 Cuébec E: +1 (418) 878-7185 C Ganada C: ventes@exova.com
Numéro Demande : (Interne)	2.	www.exova.ca
DEMAND D'ANALYSE		
Nom du Client Sy C	Va tran	
Adresse (Certifical)		Adresse (Facturation, si différente)
Упре	Code postal	Ville Code postal
Téléphone	Télécopieur	Télécopieur Télécopieur
Courriel		Courriel
Lot ou Description du projet :		Chargé de projet :
Bon de commande :		Numéro de soumission:
Lieu d'échantillonnage:		Echantillonneur:
Spécifications requises (au besoin) :		Certificat d'analyse :
		Paramètres demandés (\lambda)
	₩ ₹3	(:
Votre Référence Échantillon	Date & Heure d'échantillonnage	Nature voir code
	179 497	ndN
13-1-cma-81	2614-68-77-XXX	7 8
2-43-Dup-4-2014	N N N N N N N N N N N N N N N N N N N	
162-t-ong-87.8	XXX	
4 F3-Duo-10-2014	XXX A	7 9
, ió	12 12 12 12 12 12 12 12 12 12 12 12 12 1	
©.		
2, 2		
Ó		
	Authoriting (EA: Ear) do surface (EB: Ear) de balacede (EI) Fou	index (Ebb Entroine

Code de natur

E: Eau / EP: Fau potable / ES: Fau soutterrains / EA: Fau de surface / EB: Eau de baignade / EU: Eau usee / EM: Eau mine

200	B.	1
Company of the Compan	9	,
	S	
	B	
	Asi	
	Remarques:	

Date à laquelle les résultats sont requis

[Chocher si d'autres pages sont jointes pour la présente Demande d'analyse

2013-03-05

Signature du client Jouoriso le loboratoire à effecture les analyses spécifièes sur cette Demande d'analyse

PAGE 1 DE 2

DOC-0027, rév.04 (Québec / Français)

														11	Sec.	18500				=		
Embergerali Boston (No.										ا ا		эшэ	ini - [O) T	0	2	~	2	()	Q	R	1
XOVC		3 2								Courriel (pdf)	is.	มซบเล	Conte		K	W	N	N	N	M	D C	PO
) 365-2310 ?7 IS	<u></u>												Mature voir coo)	23	023			-	201200-20	National States	-B3
Sans Frais: +1 (866) 365-2310 T: +1 (418) 878-4927 F: +1 (418) 878-7185 C: ventes@excoa.com	WWW.exova.ca									□ Fax				(ii								
	www.e			Code postal	Télécopieur					lais												
verpool e-Desmaure	÷			Ō	12			œ.		s 🗆 Anglais	1	8.		Village		50	22					
Exova 237 rue de Liverpool St-Augustin-de-Desmaures Québec	G3A 2C8			ŧ						☐ Français	s (v)							-				
	4		ente)						"g		demandé			11				F				
2			ation, si différ				***	mission	ā.	l'analyse	Paramètres demandés (V)											
			Adresse (Facturation, si différente)	<u>o</u>	Téléphone	Courriel	Chargé de projet	Numéro de soumission	Échantillonneur :	Certificat d'analyse	Ä	-		5 -3	3.							
			Ad	Ville	Té	రి	5	Ž	Éç	0	0.00				9							
						1				(h)	8.80		(C.	olow Hat	X	X	Z	X	X	スメ	X	X
												23	Š	<i>Dd</i>	X	*	X	X	X	ਲੱ	R	ズ
						i				TES		ā	Date & Heure d'échantillonnage		ST.			12014				_
		No.		Code postal	Télécopieur					-			Date 8 d'échant	HOZ-HMH-80	Sel-Selly		430m	F3-4m-1-		SVENOS.	Married Street	Ą
	emande :	2		8	Tei								8	7 334	Sep.			F3-1	10			
	Numéro Demande : (Interne)	Som die							(V)				antillon	(HE 2015-01)	K	2	2	4	2	અત	HIS	SON
	YSE	2							To the	sain):			ance Écha	son t	100	- 201	3-30	R-A	199	-6-20N	4-2014	0
4 2	D'ANAI	N			-		n du projet :	: ap	nage	quises (au be			Votre Référence Échantillon	3	-1-M	5 m	F3-44W-3-2014	F3-4W-4-8814	13-4W-5-201	五四-	1	7
, i	DEMAND D'ANALYSE	Nom du Client	Adresse (Çertificat)		Téléphone	Courriel	Lot ou Description du projet ;	Bon de commande :	Lieu d'échantillonnage	Spécifications requises (au besoin)			N _O		C2-1-00-1-20	2 F3-HW 7-2014	52-2	63		43-HW	52-41A	8 53-4W
	出	Non	Adr	VIIII	ie i	So	Lot	Bor	Ē	g				1.4	-	. cvi.	∽ છું,	.4.	ຸທຸ	ဖ	7	ωi

E: Eau / EP: Eau potable / ES: Eau souterraine / EA: Eau de surface / EB: Eau de baignade / EU: Eau usée / EM: Eau mine Code de natures :

1

A: Air / AL: Aliment / 🗠 Lixiviat / S. Sol / SE: Sédiment / B: Boue / H: Hutle / F: Frottis / EQ: Écouvillon / PH: Produit pharmaceutique / Z.: Autre (définir)

10.0	7	7
-	S	
n,		
+400	2	
land.	3	
•	ġ	•
3	5	
•	3	
V	X	
/ Sommittee	- Continued	47

Signature du client Jautense le laboratoire à offecture les analyses apécifies sur celte Demande d'analyse

Date à laquelle les résultats sont requis

Cocher si d'autres pages sont jointes pour la présente Demande d'analyse DOC-0027, rév.04 (Québec / Fránçais)

2013-03-05

PAGE 1 DE 2

Exova 237 rue de Liverpool St-Augustin-de-Desmaures Québer Canada G3A 2C8

Numéro Demande : (Interne)

DEMAND D'ANALYSE

\$ Sans Frais: +1 (866) 365-2310 T-+1 (418) 878-4927 F:+1 (418) 878-7185 C: ventes@exox.com www.exova.com

EXONG

Nom du Cilent	Sa the	
Adresse (Certificat)		Adresse (Facturation, si différente)
VIIIe	Code postal	Ville Code postal
Táléphone	Télécopieur	Téléphone
Courriel	United to the state of the stat	Courriel
2	(4) (4) (4) (4) (4) (4) (4) (4) (4) (4)	2
Lot ou Description du projet :		Charge de projet :
Bon de commande :		Numéro de soumission:
Lieu d'échantillonnage: 40%-5		Échantillonneur :
Spécifications requises (au besoin) :		Certificat d'analyse : ☐ Françals ☐ Anglais ☐ Fax ☐ Courriel (pdf)
		Paramètres demandés (√)
Votre Référence Échantillon	Date & Heure d'échantillonnage 2899	Mature (voir code) Mbr Contenants T [°C] - Interne
1. C2-Dung- A-2014	1614-08-23 XXX	3
3,	. 4	
4,		
2010		
(i)		7607
7.		
S.		

E: Eau / EP: Eau potable / ES: Eau souterraine / EA; Eau de surfece / EB: Eau de baignade / EU: Eau usée / EM: Eau mine Code de natures :

A: Alr / AL. Aliment / LX: Lixiviat / S: Sol / SE: Sédiment / B: Boue / H: Huile / F: Frottis / EC: Écouvillon / PH: Produit pharmaceutque / Z: Autre (définir)

8	
 ð	
9	
S	
B	
N. K.	
Rema	

Date à laquelle les résultats sont requis

[Cocher si d'autres pages sont jointes pour la présente Demande d'analyse

2013-03-05

Signature du client Jauonse le laboratoire à effecture les analyses spécifiées sur cette Demande d'analyse

PAGE 1 DE 2

DOC-0027, Yev.04 (Québec / Français)

OF CUSTOBY RECO. 23244

3-Sep-14 13:10

B4G1500

KP2

Location: Double lake

Proj. Name:

100-4495 WILLIA +A

Address:

NU XOAO

lean-Merre

boul, austa

PO #: Project #: Submitted By: HARTIN FLEW

year-piere pelletrend

Email:

Ph: 418-6026-2054Fax:418-647-

Phi:418-653-447 East 418-653-3583

Email:

Quotation#:

Parnian Baber

OTT-002

49-55 Elizabeth Avenue, Suite 101A, St. John's, NL A1A tW9 Tei: 709-754-0203 Fax: 709-754-8812 Toll Free: 1-888-492-7227

www.maxxamanalytics.com

REPORT INFORMATION (if differs from invoice):

Gred

Company Name: Contact Name:

INVOICE INFORMATION: SIA COMPOSIDATION

Contact Name: Address:

Maxxam

2 For extra cost rush, specify Due Date. Rush analysis must be scheduled prior to sample submission. Client will be contacted if Rush date cannot be met. Other Analysis or Comments/Hazards Mapake CALL Staff DAGANT TEMP & MAKKAIN ROCKIDE 91/19 REC'D IN OTTAWA DUE DATE: No 븯 RUSH Due Date: 5,5,5 STANDARD: INTEGRITY S VOC's EPA 624,8260 53 bCB,8 S.HVc PURPOSE OF CHANGE / REMARKS Soil (Polablo), TPH MUST, NS Fuel Oil Sp Policy Low Level BTEX & C.-C. & NB Polable Water BTEX, VPH, Low Level TEH TPH Fractionation (f., -f. Z Scientim (low level) fact of lox CCME Residential Parkiends, Apricultural Hot Water soluble Boron (required for CCME Apricultural)

TPH MUST (BTEX, C-@T) C-&T) Metals Soil Tin (required for CCME soils) Nercury is not included in Total Default Method (HNO-VH-O.)
Total Digest - for sediments
(HNO-VHF-NCO.) Mercury 3014109/k3 13:10 X Total Digest (Default Method) DATE / TIME ACAp-MS Choose Total or Dies Metals RCAp-30 Choose Total or Diss Metals beniupeA notestiff de. Kelsey Vilan Field Filtered & Preserved RECEIVED BY: (Signature/Print) # 8. type of bottles NN 40-100 Specify Matrix: Surface/Salt/Ground/Tapwater/Sewage/Effluent/Seawater Potable/NonPotable/Tissue/Solf/Sludge/Metal क्रमान्य Date/Time Sampled Collegy Pilon P3-DWO-B-2014 6, wake Matrix* SO M 4 RELINQUISHED BY: (Signature/Print) 12014 1001 Specify Guideline Requirements: Sample Identification P3-DW0-B 3-000 KLINYROCOC SLJorm's DS/05

8

ANNEX 4 Range of the Report and Limitation of Responsibilities

Biogénie

SCOPE OF THE REPORT AND LIMITATION OF LIABILITY

A – Recipient and Use

This report ("Report") was prepared by Biogenie, a division of EnGlobe Corp., ("Biogenie") at the request and for the sole benefit of the Client ("Client"), and is intended to be used exclusively by the Client.

B -Site Conditions

Any description of the target site ("Site"), soil and/or groundwater included in the Report is only provided as an indication to the Client, and unless otherwise specifically mentioned in the Report such description shall not at any time and under any circumstances be used for purposes other than to gain a better understanding of the Site and to fulfil the requirements of the mandate assigned to Biogenie by the Client ("Mandate").

All information, including but not limiting the comprehensiveness of the data, charts, descriptions, drawings, tables, analysis results, compilations, and any conclusion and recommendation included in the Report, shall arise from the direct observation of the Site during a specific period, namely the fulfilment of the Mandate, and from the interpretation of such information and data available during the same period.

The content of the Report shall not apply in any way or to any part of the Site or to any parameter, material or analysis excluded from the Mandate.

Biogenie shall not be held responsible for the presence of any substance or material of a different nature, or of a similar nature but with different concentrations, as those indicated in the Report, and this in any part or parts of the Site excluded from the Mandate.

The content of the Report, including its conclusions and recommendations, shall not apply to any period preceding or following the Mandate. The physiochemical conditions of the Site, and the type and degree of contamination identified on the Site, may vary within a given period depending on a number of factors, especially the current activities taking place on the Site and/or on lands adjacent to the Site.

A review of the Report and/or changes in the parameters, conclusions and/or recommendations may prove to be necessary in the event of a change in the Site conditions or the discovery of pertinent information subsequent to the production of the Report.

C - Legislation, Regulations, Guidelines and Policies

The interpretation of the data and observations concerning the Site, as well as the conclusions and recommendations resulting from these, shall take into account the laws, regulations, standards, policies and/or guidelines applicable to the Project and that are in effect at the time of the fulfilment of the Mandate. In the event no current law, regulation, policy, guideline or standard applies to the project, Biogenie shall take into account proven environmental and professional rules and practices when drawing up the Report.

Any change in the legislation, regulations, standards, policies and/or guidelines applicable to the project may result in the need to review the Report and/or modify its parameters, conclusions and/or recommendations.

D – Use of Report

The Report is intended for the exclusive use of the Client and shall only be used for the purpose it was meant for.

The content of the Report and its conclusions and recommendations only apply to the Site and may not, at any time and under any circumstances, apply to any land adjacent to the Site or to any other land located in the vicinity of the Site.

Any reproduction in any form whatsoever and any distribution or use of the Report, in whole or in part, by a person other that the Client, is strictly forbidden without the prior written consent of Biogenie. Biogenie makes no declaration and pledges no responsibility towards any person other than the Client with regard to the content of the Report and the conclusions and recommendations expressed therein.

Biogenie is in no way responsible for any loss, fine or penalty, or for any expense, damage or other prejudice of any type whatsoever, sustained by a person other than the Client as a result of the unauthorized use of the Report.

No provision of the Report shall be construed as or considered to be a legal opinion of Biogenie's.

S:\MO\Range&Limit.doc/2015-10-30