Nunavut Baffin Region 2014 DEW Line Landfill Monitoring Program FOX-4 Cape Hooper Final Monitoring Report

Prepared for:

Public Works and Government Services Canada

Prepared by:

121 Granton Drive, Suite 12 Richmond Hill, Ontario L4B 3N4

March 2015

350600-515-002

Printed on Recycled Paper Containing Post-Consumer Fibre

SENES Consultants

121 Granton Drive, Suite 12 Richmond Hill, Ontario Canada L4B 3N4

> Tel 905 764 9380 Fax 905 764 9386 Email senes@senes.ca www.senes.ca

350600-515-002

3 March 2015

Public Works and Government Services Canada Western Region – Environmental Services 5th Floor, 10025 Jasper Avenue ATB Financial Plaza North Tower Edmonton, AB, T5J 1S6

Attention: Ms. Liana Smith

Project Manager

RE: Final Monitoring Report

Baffin Region Nunavut DEW LINE Landfill Monitoring Program

Fox-4 Cape Hooper, NU

DND Project #: DLCLFMP2 (QIKIQ14)

Dear Ms. Smith:

Please find enclosed the Final Monitoring Report for the 2014 Landfill Monitoring Program at the former FOX-4 DEW Line site located at Cape Hooper in Nunavut.

Regards,

SENES Consultants

Stephen J. Borcsok, P.Eng.

Environmental Engineer

Charles F. Gravelle, M.Sc.E.,

Senior Geotechnical Engineer

EXECUTIVE SUMMARY

SENES Consultants (SENES) was retained by Public Works and Government Services Canada (PWGSC) on behalf of the Department of National Defence (DND) to complete the 2014 landfill monitoring at the former FOX-4 DEW Line Site. This site is located on the east coast of Baffin Island, approximately midway between the communities of Qikiqtarjuaq and Clyde River.

The former DEW Line site comprised facilities at the summit of Cape Hooper consisting of communications, accommodations, and maintenance facilities, and an airstrip, fuel storage and maintenance facilities near the coast. These areas are referred to as the Upper Site and Lower Site, respectively. A North Warning System (NWS) Short Range Radar station has been constructed and is operating in the vicinity of the Upper Site.

The initial environmental cleanup and demolition of old facilities at the FOX-4 site took place between 1996 and 1999, prior to finalization of the Cooperation Agreement between DND and Nunavut Tunngavik Inc. (NTI) that outlined general requirements for DEW Line site cleanup. A second round of environmental cleanup and maintenance was completed between 2011 and 2013 to address certain elements of the Cooperation Agreement that were not addressed during the initial FOX-4 cleanup.

Five landfills remain at the site as a result of these works:

- Non-Hazardous Waste Landfill and Tier II Disposal Facility;
- Helipad West Landfill;
- Station Area Landfill;
- Pallet Line Landfill; and
- Tanner Bay Landfill.

The DEW Line landfill monitoring program is divided into three phases: Phase I (yearly for five years following the completion of remediation activities at the site), Phase II (years 7, 10, 15, and 25 following completion of remediation activities), and Phase III (to be determined when Phase II is completed). As a second round of maintenance was completed at the FOX-4 site between 2011 and 2013, the site is temporarily following a modified landfill monitoring schedule, with additional monitoring scheduled for 2016, 2018, and 2023.

The scope of monitoring work at each landfill noted above included:

- A visual inspection of the landfill;
- Collection of soil samples from selected locations at each landfill;

- Collection of groundwater samples from each landfill where monitoring wells are present (Non-Hazardous Waste Landfill and Tier II Disposal Facility, Helipad West Landfill, Station Area Landfill); and
- Collection of thermal data from vertical thermistor installations at each landfill where vertical thermistors are present (Non-Hazardous Waste Landfill and Tier II Disposal Facility).

The performance of each landfill was assessed using the results of this inspection and comparison of these results to those of previous monitoring events. Trends in concentrations of selected parameters in soil and groundwater over time, where available, were analyzed to determine if each landfill is performing as designed and what, if any, remedial actions are required. Of note – since the most recent remediation work was completed last year no trends in visual observations at the site landfills are available for this monitoring event. The 2014 monitoring program will provide the baseline conditions for future monitoring events.

Performance of each landfill was assessed and rated as acceptable, marginal, significant, or unacceptable. These ratings indicate the potential for failure of the landfill, with acceptable representing no failure potential, marginal representing low to moderate failure potential, significant representing imminent failure potential, and unacceptable representing failure of the landfill has already occurred.

The results of this monitoring program indicate:

- 1. the performance of the Non-Hazardous Waste Landfill and Tier II Disposal Facility is acceptable. Regular scheduled monitoring of this landfill should be continued. Thermistor data collected during this monitoring event was inconclusive and could not be analyzed to determine the thermal profile of this landfill. This may have been caused by movement of dataloggers between thermistor installations during the 2011-2013 maintenance work. Maintenance of the thermistor installations at this landfill is required to ensure that thermistors are programmed properly and collecting usable temperature data.
- 2. the performance of the Helipad West Landfill is acceptable. Regular scheduled monitoring of this landfill should be continued. Erosion channels and sinkholes were observed at this landfill and while they are not currently of concern, these features should be monitored to ascertain whether they increase in number and/or size and threaten the future stability of the landfill. No remedial actions are required at this time.
- 3. the performance of the Station Area Landfill is acceptable. Regular scheduled monitoring of this landfill should be continued. Sinkholes were observed on the south

side of this landfill and while they are not currently of concern, these features should be monitored to ascertain whether they increase in number and/or size and threaten the future stability of the landfill. No remedial actions are required at this time.

- 4. the performance of the Pallet Line Landfill is acceptable. Regular scheduled monitoring of this landfill should be continued. No remedial actions are required at this time.
- 5. the performance of the Tanner Bay Landfill is acceptable. Regular scheduled monitoring of this landfill should be continued. No remedial actions are required at this time.

TABLE OF CONTENTS

			Page No.
EXE	CUTIV	E SUMMARY	I
TAB	LE OF	CONTENTS	IV
1.0	BAC	KGROUND	1-1
	1.1	Objective of Study	1-1
	1.2	Scope of Work	1-2
	1.3	Site Geology, Hydrogeology and Hydrology	
	1.4	Site Land-Use Description	
	1.5	Field Program Staff and Field Schedule	
	1.6	Weather Conditions	
	1.7	Project References	
	1.8	Report Structure	1-5
2.0	APPI	ROACH & METHODOLOGY (GENERAL)	2-1
	2.1	Summary of Work	
		2.1.1 Health and Safety	2-1
		2.1.2 Field Program.	
		2.1.3 Visual Inspection	
		2.1.4 Soil Sampling	
		2.1.5 Groundwater Sampling	
		2.1.6 Comparison of Soil and Groundwater Monitoring Data	
		2.1.7 Thermal Monitoring	
	2.2	Field Notes and Data	
	2.3	QA/QC	2-6
3.0		I-HAZARDOUS WASTE LANDFILL AND TIER II DISPOSAL FACILIT	
	3.1	Landfill Description	
	3.2	Summary of Work Conducted	
		3.2.1 Visual Inspection	
		3.2.2 Soil Sampling	
		3.2.3 Groundwater Sampling	
	3.3	3.2.4 Thermal Monitoring	
	3.3	Results of the Monitoring Program	
		3.3.1 Visual Inspection	
		3.3.1.2 Stability Assessment	
		3.3.1.3 Photographic Records	
		3.3.1.4 Trend Analysis	
		3.3.1.5 Discussion of Results/Trends	
		3.3.2 Soil Sampling	
		3.3.2.1 Laboratory Analytical Results	

			3.3.2.2 Discussion of Results – Comparison	to
			Baseline/Background	3-5
			3.3.2.3 Soil Trend Analysis by Parameter and Discussion of Tren	nds 3-7
		3.3.3	Groundwater Sampling	
			3.3.3.1 Monitoring Well Sampling/Inspection Logs	3-8
			3.3.3.2 Water Levels/Groundwater Flow	3-8
			3.3.3.3 Laboratory Analytical Results	3-8
			3.3.3.4 Discussion of Results by Parameter	
			3.3.3.5 Groundwater Trend Analysis by Parameter & Discussion	
			Trends	3-10
		3.3.4	Thermal Monitoring	3-10
			3.3.4.1 Thermistor Annual Maintenance Reports	3-11
			3.3.4.2 Summary of Findings from Annual DEW Line Therr	
			Reports	
	3.4	Concl	usions/Overall Performance of the Landfill	3-11
	3.5		nmendations/Next Steps	
4.0			EST LANDFILL	
	4.1		ill Description	
	4.2		nary of Work Conducted	
		4.2.1	Visual Inspection	
		4.2.2	Soil Sampling	
		4.2.3	Groundwater Sampling	
		4.2.4	Thermal Monitoring	
	4.3		ts of the Monitoring Program	
		4.3.1	Visual Inspection	
			4.3.1.1 Inspection Check List	
			4.3.1.2 Stability Assessment	
			4.3.1.3 Photographic Records	
			4.3.1.4 Trend Analysis	
			4.3.1.5 Discussion of Results/Trends	
		4.3.2	Soil Sampling	
			4.3.2.1 Laboratory Analytical Results	4-4
			4.3.2.2 Discussion of Results – Comparison	
			Baseline/Background	
			4.3.2.3 Soil Trend Analysis by Parameter and Discussion of Tren	nds 4-6
		4.3.3	Groundwater Sampling	4-7
			4.3.3.1 Monitoring Well Sampling/Inspection Logs	
			4.3.3.2 Water Levels/Groundwater Flow	4-7
			4.3.3.3 Laboratory Analytical Results	
			4.3.3.4 Discussion of Results by Parameter	4-8
			4.3.3.5 Groundwater Trend Analysis by Parameter & Discussion	
			Trends	
	4.4		usions/Overall Performance of the Landfill	
	4.5	Recon	nmendations/Next Steps	4-10

5.0	STA	ΓΙΟΝ AREA LANDFILL	5-1
	5.1	Landfill Description	5-1
	5.2	Summary of Work Conducted	
		5.2.1 Visual Inspection	
		5.2.2 Soil Sampling	
		5.2.3 Groundwater Sampling	
		5.2.4 Thermal Monitoring	
	5.3	Results of the Monitoring Program	
		5.3.1 Visual Inspection	
		5.3.1.1 Inspection Check List	
		5.3.1.2 Stability Assessment	
		5.3.1.3 Photographic Records	
		5.3.1.4 Trend Analysis	
		5.3.1.5 Discussion of Results/Trends	5-3
		5.3.2 Soil Sampling	
		5.3.2.1 Laboratory Analytical Results	5-4
		5.3.2.2 Discussion of Results – Comparison to	
		Baseline/Background	5-4
		5.3.2.3 Soil Trend Analysis by Parameter and Discussion of Trends	
		5.3.3 Groundwater Sampling	
		5.3.3.1 Monitoring Well Sampling/Inspection Logs	
		5.3.3.2 Water Levels/Groundwater Flow	
		5.3.3.3 Laboratory Analytical Results	
		5.3.3.4 Discussion of Results by Parameter	
		5.3.3.5 Groundwater Trend Analysis by Parameter & Discussion of	
		Trends	
	5.4	Conclusions/Overall Performance of the Landfill	
	5.5	Recommendations/Next Steps	5-9
6.0	PAII	LET LINE LANDFILL	6-1
0.0	6.1	Landfill Description	
	6.2	Summary of Work Conducted	
	0.2	6.2.1 Visual Inspection	
		6.2.2 Soil Sampling.	
		6.2.3 Groundwater Sampling	
		6.2.4 Thermal Monitoring	
	6.3	Results of the Monitoring Program.	
	0.5	6.3.1 Visual Inspection	
		6.3.1.1 Inspection Checklist.	
		6.3.1.2 Stability Assessment	
		6.3.1.3 Photographic Records	
		6.3.1.4 Trend Analysis	
		6.3.1.5 Discussion of Results/Trends.	6-3
		6.3.2 Soil Sampling.	
		6.3.2.1 Laboratory Analytical Results	

	6.3.2.2 Discussion of Results – Comparison to	6.3
6.4		
6.5		
TANN	ER BAY LANDFILL	7-1
7.1	Landfill Description	7-1
7.2	Summary of Work Conducted	7-1
	7.2.1 Visual Inspection	7-1
	7.2.2 Soil Sampling	7-1
	7.2.3 Groundwater Sampling	7-1
	7.2.4 Thermal Monitoring	7-1
7.3	Results of the Monitoring Program.	7-2
	7.3.1 Visual Inspection	7-2
	7.3.1.1 Inspection Checklist	7-2
	± •	
7.5	Recommendations/Next Steps	7-6
	TANN 7.1 7.2 7.3	Baseline/Background 6.3.2.3 Soil Trend Analysis by Parameter and Discussion of Trends 6.4 Conclusions/Overall Performance of the Landfill 6.5 Recommendations/Next Steps TANNER BAY LANDFILL 7.1 Landfill Description 7.2 Summary of Work Conducted 7.2.1 Visual Inspection 7.2.2 Soil Sampling 7.2.3 Groundwater Sampling 7.2.4 Thermal Monitoring 7.3 Results of the Monitoring Program. 7.3.1 Visual Inspection 7.3.1.1 Inspection Checklist 7.3.1.2 Stability Assessment 7.3.1.3 Photographic Records 7.3.1.4 Trend Analysis 7.3.1.5 Discussion of Results/Trends. 7.3.2 Soil Sampling. 7.3.2.1 Laboratory Analytical Results 7.3.2.2 Discussion of Results — Comparison to Baseline/Background 7.3.2.3 Soil Trend Analysis by Parameter and Discussion of Trends. 7.4 Conclusions/Overall Performance of the Landfill

LIST OF TABLES

	<u>Page No.</u>
Table 1.1: Summary of Multi-Year Monitoring Program	1-3
Table 1.2: Weather Conditions by Site	
Table 2.1: Summary of Monitoring Program/Requirements (by Landfill)	2-1
Table 3.1: Summary of Work Conducted by Soil Sampling Location (Non-Hazardous	
Waste Landfill and Tier II Disposal Facility)	3-2
Table 3.2: Summary of Work Conducted by Groundwater Sampling Location (Non-	
Hazardous Waste Landfill and Tier II Disposal Facility)	3-3
Table 3.3: Summary of Work Conducted by Thermistor Location (Non-Hazardous Was	
Landfill and Tier II Disposal Facility)	
Table 3.4: Visual Inspection Results (Non-Hazardous Waste Landfill and Tier II Dispo	sal
Facility)	
Table 3.5: Visual Inspection Checklist (Non-Hazardous Waste Landfill and Tier II	
Disposal Facility) for the property of the pro	ollows 3-4
Table 3.6: Preliminary Stability Assessment (Non-Hazardous Waste Landfill and Tier 1	
Disposal Facility) for the property of the pro	
Table 3.7: Landfill Visual Inspection Photo Log (Non-Hazardous Waste Landfill and T	
II Disposal Facility)fo	
Table 3.8: Soil Chemical Analysis Results (Non-Hazardous Waste Landfill and Tier II	
Disposal Facility)f	ollows 3-5
Table 3.9: Evaluation of 2014 Soil Analytical Data (Non-Hazardous Waste Landfill and	
Tier II Disposal Facility)	
Table 3.10: Groundwater Levels (Non-Hazardous Waste Landfill and Tier II Disposal	
Facility)	3-8
Table 3.11: Groundwater Chemical Analysis Results (Non-Hazardous Waste Landfill a	
Tier II Disposal Facility)fo	ollows 3-8
Table 3.12: Evaluation of Groundwater Analytical Results (Non-Hazardous Waste	
Landfill and Tier II Disposal Facility)	3-9
Table 4.1: Summary of Work Conducted by Soil Sampling Location (Helipad West	
Landfill)	4-1
Table 4.2: Summary of Work Conducted by Groundwater Sampling Location (Helipad	
West Landfill)	4-2
Table 4.3: Visual Inspection Results (Helipad West Landfill)	4-3
Table 4.4: Visual Inspection Checklist (Helipad West Landfill)fe	ollows 4-3
Table 4.5: Preliminary Stability Assessment (Helipad West Landfill)fe	ollows 4-3
Table 4.6: Landfill Visual Inspection Photo Log (Helipad West Landfill) for	ollows 4-3
Table 4.7: Soil Chemical Analysis Results (Helipad West Landfill)fe	
Table 4.8: Evaluation of 2014 Soil Analytical Data (Helipad West Landfill)	4-5
Table 4.9: Evaluation of Soil Result Trends (Helipad West Landfill)	4-6
Table 4.10: Groundwater Levels (Helipad West Landfill)	
Table 4.11: Groundwater Chemical Analysis Results (Helipad West Landfill)fo	ollows 4-8
Table 4.12: Evaluation of Groundwater Analytical Results (Helipad West Landfill)	4-8
Table 4.13: Evaluation of Groundwater Result Trends (Helipad West Landfill)	4-9

Table 5.1: Summary of Work Conducted by Soil Sampling Location (Station Area	
Landfill)	5-1
Table 5.2: Summary of Work Conducted by Groundwater Sampling Location (Station Area Landfill)	
Table 5.3: Visual Inspection Results (Station Area Landfill)	
Table 5.4: Visual Inspection Checklist (Station Area Landfill)	
Table 5.5: Preliminary Stability Assessment (Station Area Landfill)	
Table 5.6: Landfill Visual Inspection Photo Log (Station Area Landfill)	
Table 5.7: Soil Chemical Analysis Results (Station Area Landfill)	
Table 5.8: Evaluation of 2014 Soil Analytical Data (Station Area Landfill)	
Table 5.9: Evaluation of Soil Result Trends (Station Area Landfill)	
Table 5.10: Groundwater Levels (Station Area Landfill)	
Table 5.11: Groundwater Analytical Results (Station Area Landfill)	
Table 5.12: Evaluation of Groundwater Analytical Results (Station Area Landfill)	
Table 5.13: Evaluation of Groundwater Result Trends (Station Area Landfill)	
Table 6.1: Summary of Work Conducted by Soil Sampling Location (Pallet Line	
Landfill)	6-1
Table 6.2: Visual Inspection Results (Pallet Line Landfill)	
Table 6.3: Visual Inspection Checklist (Pallet Line Landfill)	
Table 6.4: Preliminary Stability Assessment (Pallet Line Landfill)	
Table 6.5: Landfill Visual Inspection Photo Log (Pallet Line Landfill)	
Table 6.6: Soil Chemical Analysis Results (Pallet Line Landfill)	
Table 6.7: Evaluation of 2014 Soil Analytical Data (Pallet Line Landfill)	
Table 7.1: Summary of Work Conducted by Soil Sampling Location (Tanner Bay	
Landfill)	7-1
Table 7.2: Visual Inspection Results (Tanner Bay Landfill)	7-2
Table 7.3: Visual Inspection Checklist (Tanner Bay Landfill)	follows 7-2
Table 7.4: Preliminary Stability Assessment (Tanner Bay Landfill)	follows 7-2
Table 7.5: Landfill Visual Inspection Photo Log (Tanner Bay Landfill)	follows 7-2
Table 7.6: Soil Chemical Analysis Results (Tanner Bay Landfill)	follows 7-3
Table 7.7: Evaluation of 2014 Soil Analytical Data (Tanner Bay Landfill)	7-4
Table 7.8: Evaluation of Soil Result Trends (Tanner Bay Landfill)	7-5
LIST OF FIGURES	
	Follows
	Page No.
Figure 1 – Site Overview	1-1
Figure 2 – Airstrip Area Non-Hazardous Waste Landfill and Tier II Disposal Facility	
Figure 2A – Airstrip Area Non-Hazardous Waste Landfill and Tier II Disposal	
Contaminant Distribution Plan	
Figure 2B – Airstrip Area Non-Hazardous Waste Landfill and Tier II Disp	
Groundwater Contaminant Distribution Plan	
Figure 3 – Station Area Helipad West Landfill	
Figure 3A – Station Area Helipad West Landfill Soil Contaminant Distribution Plan	
Figure 3B - Station Area Helipad West Landfill Groundwater Contaminant Distribu	tion Plan 4-1

Figure 4 – Station Area Non-Hazardous Waste Landfill	n 5-1 oution
Figure 5 – Airstrip Area Pallet Line Landfill	6-1 6-1 7-1
Figure 6A – Beach Area Tanner Bay Landfill Soil Contaminant Distribution Plan	7-1
LIST OF MONITORING WELL SAMPLING RECORDS Fo	ollows
	ge No.
Monitoring Well Sampling Record 1-8 – Non-Hazardous Waste Landfill and Tier II Disposal Facility Monitoring Wells	3-8
Monitoring Well Sampling Record 9-12 – Helipad West Landfill Monitoring Wells Monitoring Well Sampling Record 13-15 – Station Area Landfill Monitoring Wells	4-7
LIST OF THERMISTOR ANNUAL MAINTENANCE REPORTS	
	ollows ge No.
Thermistor Annual Maintenance Report 1-9 – Non-Hazardous Waste Landfill and Tier II Disposal Facility Thermistors	3-11
LIST OF APPENDICES	
Appendix A - Range of the Report and Limitation of Responsibilities Appendix B - Field Notes Appendix C - Laboratory QA/QC Reports and Certificates of Analysis Appendix D - Historical Chemistry Summary Tables (Soil) Appendix E - Chemical Concentration Trend Graphs (Soil) Appendix F - Historical Chemistry Summary Tables (Groundwater) Appendix G - Chemical Concentration Trend Graphs (Groundwater)	

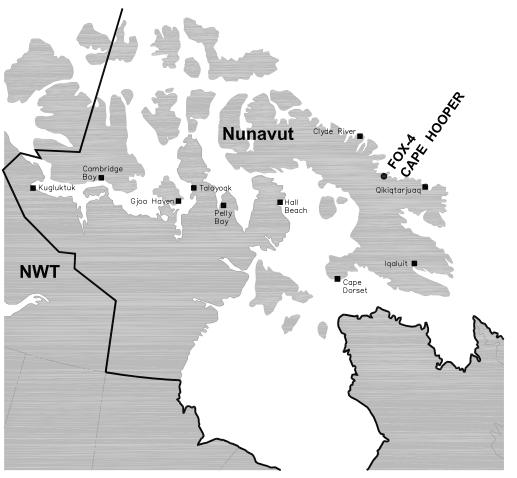
1.0 BACKGROUND

SENES Consultants (SENES) was retained by Public Works and Government Services Canada (PWGSC) on behalf of the Department of National Defence (DND) to complete landfill monitoring at the former FOX-4 DEW Line Site. This site is located on the east coast of Baffin Island, approximately midway between the communities of Qikiqtarjuaq and Clyde River, at 68°26' north latitude and 66°44' west longitude.

The former DEW Line site comprised facilities at the summit of Cape Hooper consisting of communications, accommodations, and maintenance facilities, and an airstrip, fuel storage and maintenance facilities near the coast. These areas are referred to as the Upper Site and Lower Site, respectively. A North Warning System (NWS) Short Range Radar station has been constructed and is operating in the vicinity of the Upper Site.

The initial environmental cleanup and demolition of old facilities at the FOX-4 site took place between 1996 and 1999, prior to finalization of the Cooperation Agreement between DND and Nunavut Tunngavik Inc. (NTI) that outlined general requirements for DEW Line site cleanup. A second round of environmental cleanup and maintenance was completed between 2011 and 2013 to address certain elements of the Cooperation Agreement that were not addressed during the initial FOX-4 cleanup.

Five landfills remain at the site as a result of these works:


- Non-Hazardous Waste Landfill and Tier II Disposal Facility;
- Helipad West Landfill;
- Station Area Landfill;
- Pallet Line Landfill; and
- Tanner Bay Landfill.

The location of the FOX-4 site and the landfills at the site is shown on Figure 1.

1.1 OBJECTIVE OF STUDY

The objective of this study was to collect and analyze post-closure landfill monitoring data for five landfills located at the FOX-4 DEW Line site located at Cape Hooper, Nunavut.

LOCATION OF CAPE HOOPER WITHIN NUNAVUT TERRITORY

SURVEY CONTROL MONUMENTS						
NO.	UTM COOR	DINATES	E1 E1	DECODIDATION		
	NORTHING EASTING		ELEV.	DESCRIPTION		
CM1	7 597 342.901	590 033.350	388.309	LEAD PLUG IN ROCK		
CLS50	7 596 163.812	588 267.720	12.131	19mm DIA. REBAR AND CAP		
CLS51	7 596 154.292	588 317.374	17.038	19mm DIA. REBAR AND CAP		
CLS52	7 596 134.413	588 421.327	19.969	19mm DIA. REBAR AND CAP		
CLS53	7 595 729.011	588 972.572	5.664	19mm DIA. REBAR AND CAP		
CLS54	7 595 705.706	589 183.429	2.043	19mm DIA. REBAR AND CAP		
CLS55	7 595 622.365	589 234.457	10.231	19mm DIA. REBAR AND CAP		
CLS56	7 597 305.287	590 093.442	379.717	19mm DIA. REBAR AND CAP		
CLS57	7 597 199.807	590 001.415	366.177	19mm DIA. REBAR AND CAP		
CLS58	7 597 176.541	589 966.724	361.512	19mm DIA. REBAR AND CAP		
CLS59	7 597 067.880	590 104.590	372.086	19mm DIA. REBAR AND CAP		

LEGEND:

SURVEY CONTROL MONUMENT

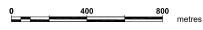
ARCHAEOLOGICAL FEATURES

APPROXIMATE LOCATION OF PROPERTY BOUNDARY

LIMIT OF LANDFILLS

BODY OF WATER

NOTES:


- ALL COORDINATES ARE REFERENCED TO NAD83 (CSRS), UTM ZONE 19N.
- 2. ALL ELEVATIONS REFER TO GEODETIC
- 3. ALL DIMENSIONS ARE IN METRES UNLESS NOTED OTHERWISE.

REVISIONS:

No.	Date:	Ву:	Revisions

REFERENCE:

AECOM, FILE No.: FOX-4.1 Year 1 LF MON.dwg, Mar. 2014

SCALE 1:20,000

AN ARCADIS COMPANY

PUBLIC WORKS AND GOVERNMENT SERVICES CANADA

2014 DEW LINE MONITORING PROGRAM

FOX-4 CAPE HOOPER, NUNAVUT

SITE OVERVIEW

Drawn By: I.S.Z.	Approved By	C.F.G.	Project No: 350600-515-2
Date: FEB. 2015	Scale:	1:20,000	Drawlng No: FIGURE 1

1.2 SCOPE OF WORK

The scope of work for this project has been detailed in the *Terms of Reference* for DND Project # DLCLFMP2 (QIKIQ14), dated June 2014. The scope of work completed at each landfill includes:

- A visual inspection of the landfill;
- Collection of soil samples from specified locations at each landfill (see Table 3);
- Collection of groundwater samples from five monitoring wells at the Non-Hazardous Waste Landfill and Tier II Disposal Facility, from four monitoring wells at the Helipad West Landfill, and from three monitoring wells at the Station Area Landfill; and
- Collection of thermal data from nine vertical thermistor installations at the Tier II Disposal Facility.

1.3 SITE GEOLOGY, HYDROGEOLOGY AND HYDROLOGY

Cape Hooper is located within the Canadian Shield, in the Rae Domain of the Churchill Province. Bedrock in the area is composed of Paleoproterozoic granulite-facies paragneiss. The edge of the Laurentide ice sheet was present in this area during the Pleistocene epoch It is in an area of continuous permafrost with low ground ice content. Local surficial geologic conditions were observed to generally consist of coarse weathered rock and deposits of marine origin.

Groundwater flow is seasonal, occurring mainly in the summer period of maximum active layer thaw. Groundwater is located at shallow depths and is highly affected by local permafrost conditions. Average annual precipitation at Cape Hooper is 278 mm, of which over 80% consists of snow. Surface water in the area drains to Baffin Bay located around Cape Hooper. Based on the local topography, the Non-Hazardous Waste Landfill and Tier II Disposal Facility and the Pallet Line Landfill generally drain to the west, the Helipad West and Station Area Landfills generally drain to the northwest, and the Tanner Bay Landfill generally drains to the south.

1.4 SITE LAND-USE DESCRIPTION

The unmanned FOX-4 North Warning System (NWS) Short Range Radar (SRR) station is located in the vicinity of the former DEW Line site at the Upper Site. Two landfills, the Helipad West Landfill and Station Area Landfill are located near this station at the high point of the area. The Lower Site consists of an airstrip and a fuel storage area for the SRR, and at the time of inspection the remnants of the camp from the 2013 cleanup and maintenance works remained at the site. Two landfills, the Non-Hazardous Waste Landfill and Tier II Disposal Facility, and the Pallet Line Landfill are located at the Lower Site. The Tanner Bay Landfill is located south of

the Lower Site on Tanner Bay at the original beach landing area for the DEW Line site. Aside from the SRR station and a seasonal hunting camp east of the airstrip, the Cape Hooper area consists of open tundra and is uninhabited.

1.5 FIELD PROGRAM STAFF AND FIELD SCHEDULE

The DEW Line landfill monitoring program is divided into three phases: Phase I (yearly for five years following the completion of remediation activities at the site), Phase II (years 7, 10, 15, and 25 following completion of remediation activities), and Phase III (to be determined when Phase II is completed). As a second round of maintenance was completed at the FOX-4 site between 2011 and 2013, the site is temporarily following a modified landfill monitoring schedule, with additional monitoring scheduled for 2016, 2018, and 2023. The monitoring program for this site is detailed in Table 1.1.

The 2014 monitoring program was completed by Messrs. Jason Mauchan and Stephen Borcsok of SENES Consultants from 24-26 August 2014. Due to poor weather conditions in the Eastern Arctic area, the field team remained at Cape Hooper until 28 August 2014.

No. of Years After **Monitoring Event Number** Year Construction Prior to and during Baseline 1996-1999 $200\overline{2}$

Table 1.1: Summary of Multi-Year Monitoring Program

2014*

^{* -} the FOX-4 site underwent rehabilitation and maintenance between 2011 and 2013 which changed the configuration of the landfills. The 2014 monitoring event is the first to occur after this work.

1.6 WEATHER CONDITIONS

Weather conditions during the site inspection are described below in Table 2.

Weather Conditions Date Landfills Monitored Non-Hazardous Waste Landfill and Sunny, 8°C, light winds from Tier II Disposal Facility, Tanner Bay 24 August 2014 west Landfill Non-Hazardous Waste Landfill and Partly cloudy, 10°C, strong Tier II Disposal Facility, Station Area 25 August 2014 winds gusting from northeast Landfill, Helipad West Landfill Non-Hazardous Waste Landfill and Foggy, 5 °C, light winds from Tier II Disposal Facility, Station Area 26 August 2014 north Landfill, Helipad West Landfill On standby at Cape Hooper due to 27 August 2014 Foggy, 5 °C, calm weather conditions Foggy to partly sunny, 6°C, On standby at Cape Hooper due to 28 August 2014 light winds from west weather conditions

Table 1.2: Weather Conditions by Site

1.7 PROJECT REFERENCES

"Terms of Reference. DEW Line Landfill Monitoring Program. DEW Line Sites Nunavut Baffin Region, DND Project #: DLCLFMP2 (QIKIQ14)." Prepared by Environmental Services, Public Works & Government Services Canada, Western Region, Edmonton, AB on behalf of The Department of National Defence of Canada, dated June 2014.

"Site Specific Health and Safety Plan for 2014 Nunavut Baffin Region DEW Line Landfill Monitoring Program, FOX-M Hall Beach, NU, FOX-4 Cape Hooper, NU, FOX-5 Broughton Island, NU. Prepared by SENES Consultants, dated July 2014.

"Logistics & Work Plan. Prepared for: 2014 Nunavut Baffin Region DEW Line Landfill Monitoring Program, FOX-M Hall Beach, NU, FOX-4 Cape Hooper, NU, FOX-5 Broughton Island, NU." Prepared by SENES Consultants, dated July 2014.

"FOX-4, Cape Hooper Nunavut. 2013 Geotechnical Quality Assurance Summary." Prepared by AECOM for Defence Construction Canada, dated November 2013.

"FOX-4, Cape Hooper Nunavut. Site Summary Report, 2013." Prepared by Environmental Sciences Group, Royal Military College, Kingston, Ontario, dated November 2013.

1.8 REPORT STRUCTURE

A general overview of the approach and methodology taken during the site inspection is provided in Section 2.0 while detailed results of the monitoring program for each of the five landfills at FOX-4 are presented in Sections 3.0 through 7.0.

2.0 APPROACH & METHODOLOGY (GENERAL)

2.1 SUMMARY OF WORK

2.1.1 Health and Safety

A Site Specific Health and Safety Plan was prepared for the 2014 site inspection by SENES Consultants and reviewed by PWGSC and DND prior to the commencement of field work. The field work component of this work was completed in accordance with this site specific health and safety plan. No health and safety incidents occurred during the site inspection.

2.1.2 Field Program

The scope of the monitoring program is shown in Table 3 below. The number of locations where monitoring was to take place are shown in parentheses. The following deviations from the work plan took place:

- The Station Area Landfill had four monitoring locations for soil and groundwater listed in the project Terms of Reference, however one location (MW-8) was determined to not be present at this landfill.
- The Non-Hazardous Waste Landfill and Tier II Disposal Facility had ten vertical thermistor installations listed for thermal monitoring, however eight locations were identified on the provided site drawing. The site inspection identified nine locations at this landfill.

Table 2.1: Summary of Monitoring Program/Requirements (by Landfill)

Landfill	Visual	Soil	Groundwater	Temperature
	Inspection	Monitoring*	Monitoring	Monitoring
				Locations
Non-Hazardous Waste				
Landfill and Tier II	$\sqrt{}$	√(8)	$\sqrt{(8)}$	$\sqrt{(9)}$
Disposal Facility				
Helipad West Landfill	V	√ (4)	√(4)	NA
Station Area Landfill	V	√(3)	√(3)	NA
Pallet Line Landfill	V	√(5)	NA	NA
Tanner Bay Landfill	V	√(3)	NA	NA

^{* -} two soil samples were collected at each monitoring location: one surface sample from 0-15 cm, and one subsurface sample from 40-50 cm

NA – Not applicable as there are no thermistors/monitoring wells installed at this location.

2.1.3 Visual Inspection

As part of the monitoring program a visual inspection of each landfill was to be conducted and a visual inspection checklist completed for each landfill site. Inspection information including Landfill Designation, Landfill Type, Date, Monitoring Event Number, Weather Conditions, and the Name of the Inspector was recorded for each landfill. The following information was recorded for each of the respective landfill locations:

- Settlement;
- Erosion;
- Lateral movement;
- Sloughing of slopes;
- Cracks;
- Frost action;
- Animal burrows;
- Vegetation re-establishment on surface;
- Vegetation stress;
- Staining;
- Seepage points or ponded water;
- Debris or liner exposure;
- Condition of monitoring points; and
- Other relevant observations.

The presence of the above conditions was recorded along with their location, dimensions, extent, and description.

Photographic records were taken to document the general condition of the landfill. All photographs were referenced to existing monuments, and include a visual reference to indicate the scale of the photograph. A detailed figure of each landfill showing the results of the inspection has been created, as well as a photo log showing the condition of the landfill during the inspection.

Historical features and conditions have been noted during previous monitoring events. Existing features were compared to these features noted in the most recent monitoring report and comparative analysis is included in this monitoring report.

2.1.4 Soil Sampling

Two soil samples were collected at each sampling location: one sample from 0-15 cm depth, and one sample from 40-50 cm depth. Samples were collected from test pits manually excavated

with hand tools (pick/shovel). Each soil sample was collected in one single use zip-top plastic bag and one 60 mL glass jar, which was filled with soil such that no headspace remained in the jar. Hand tools were rinsed with water between sampling locations. During sample collection, soil that had come into contact with the hand tools was discarded and not collected as part of each sample.

All soil sampling locations were backfilled after each monitoring event. All locations were photographed during sampling and after backfilling was completed, with these photographs included in the applicable photograph record for each landfill.

Soil samples were analyzed for the following parameters:

- Petroleum Hydrocarbons (PHCs): F1-F4 fractions. (F1-F3 fractions were summed to obtain an analogous modified total petroleum hydrocarbons (TPH) concentration);
- Inorganic elements: arsenic, cadmium, chromium, cobalt, copper, lead, nickel, zinc, mercury; and
- Polychlorinated Biphenyls (PCBs Total Aroclors).

Analyses were carried out by Maxxam Analytics, an ISO 17025 certified laboratory in Nepean, Ontario, and Calgary, Alberta. Duplicate sample analyses were carried out by AGAT Laboratories of Mississauga, Ontario, an ISO 17025 certified laboratory.

2.1.5 Groundwater Sampling

Groundwater samples were collected from each well where enough water was present to collect a sample. Wells were monitored to determine the water level and depth to bottom, and purged prior to sampling, with pH, conductivity, and temperature being measured during purging until values for these parameters have stabilized.

Wells were purged and sampled using new dedicated sampling equipment consisting of high density polyethylene (HDPE) tubing with an HDPE foot valve. No significant issues with turbidity were encountered during sampling. All tubing and foot valves were only used at one monitoring well location, and were removed from the site following sampling to prevent damage due to freezing.

Groundwater samples were analyzed for the following parameters. In cases where insufficient water was present, sampling was prioritized in the order presented below. Metals were not filtered.

- Petroleum Hydrocarbons (PHCs): F1-F4 fractions. (F1-F3 fractions have been summed to obtain an analogous total petroleum hydrocarbons (TPH) concentration);
- Inorganic elements: arsenic, cadmium, chromium, cobalt, copper, lead, nickel, zinc, mercury; and
- Polychlorinated Biphenyls (PCBs Total Aroclors).

Groundwater samples were collected in the following sampling containers:

- Metals 120 mL plastic bottle preserved with nitric acid;
- Mercury 100 mL clear glass bottle preserved with hydrochloric acid;
- PHC F1 fraction and BTEX 3 x 40 mL clear glass vials;
- PHC F2-F4 fractions 2 x 500 mL glass bottle preserved with sodium bisulphate;
- Polychlorinated Biphenyls 500 mL glass bottle with no preservative;

Analyses were carried out by Maxxam Analytics, an ISO 17025 certified laboratory in Nepean, Ontario, and Calgary, Alberta. Duplicate sample analyses were carried out by AGAT Laboratories of Mississauga, Ontario, an ISO 17025 certified laboratory.

Soil and groundwater samples were kept cool and shipped in insulated coolers with ice or ice packs when possible. Samples were shipped under chain-of-custody protocols and coolers were sealed with custody seals by SENES staff prior to shipment. No issues with sample temperature were reported by the laboratories upon receipt of samples. Sample hold times were met for all samples.

2.1.6 Comparison of Soil and Groundwater Monitoring Data

Soil and groundwater monitoring data collected during the 2014 monitoring program has been compared to data collected during previous monitoring events, as well as background concentrations (soil only), baseline average concentrations (soil and groundwater), and DEW Line Cleanup Criteria (soil only).

Background chemical concentrations were determined from soil sampling conducted by Environmental Science Group (ESG) in 1984 and 1990, and represent soil chemical conditions in the area that have not been impacted by site activities.

Baseline average concentrations (BAC) represent existing soil and groundwater chemistry at the landfill areas prior to and during remediation.

The DEW Line Cleanup Criteria were developed as part of the DEW Line Cleanup Protocol to provide a consistent approach across all DEW Line sites that is generally protective of the Arctic ecosystem. The Cleanup Criteria differentiates between Tier I and Tier II soils. Soil containing parameters at concentrations above the Tier I Criteria but below the Tier II Criteria was acceptable for placement in a non-hazardous waste landfill, while soil containing parameters at concentrations above the Tier II Criteria are to be treated/disposed of in a manner that precludes contact with the Arctic ecosystem. Note that due to high naturally-occurring concentrations of arsenic in geologic units in the area of Cape Hooper, a site-specific criteria for arsenic of 130 ug/g was used during remediation activities for all landfills except the Tanner Bay Landfill.

Comparison to background, baseline, and Tier I/II DEW Line Cleanup Criteria have been included in the summary chemical tables in this report. Parameter concentrations in soil exceeding background levels are not discussed in this report as their presence does not necessarily indicate that contaminant migration from a landfill was or is occurring. Concentrations above background levels may be as a result of site activities conducted prior to the construction of the landfill. However baseline concentrations account for site activities that occurred prior to and during construction of the landfill, and parameter concentrations above these levels may indicate contaminant migration is occurring.

2.1.7 Thermal Monitoring

Thermal monitoring and thermal data downloading was completed at the Non-Hazardous Waste Landfill and Tier II Disposal Facility. No thermal monitoring was completed at the other landfills as they do not have thermistor installations. Monitoring consisted of the following steps:

- Inspection of the condition of thermistor installations, noting their condition, damage if applicable, and any specific repair requirements;
- Retrieval of ground temperature data from the thermistor installations using a personal computer equipped with the appropriate software (ProLog) to retrieve the data at each location (data was reviewed in the field to ensure completeness);
- Collection of manual readings of Thermistors using ProLog software;
- Measurement of the distance of each thermistor cable above the ground;
- Replacement of batteries (following retrieval of ground temperature data) in dataloggers. The following batteries are required for each datalogger:
 - o 1 Ultra-Logger Lithium Battery 5.2 amp 12 volt, Lakewood model identification ULB-15;
 - o 1 Ultra-Logger Lithium Battery 9 volt, Lakewood model identification ULB-1; and

 Resetting datalogger memory to zero and restarting readings. The system was monitored using the personal computer to ensure that the dataloggers were functioning and temperatures were being recorded.

Following the site inspection, the downloaded data was forwarded to DND to be analyzed by Tetra Tech EBA. The results of these analyses have been summarized in this report.

2.2 FIELD NOTES AND DATA

Field notes for each landfill monitored as part of this program are included in Appendix B. The checklist templates were included in the Terms of Reference for the program and copies were provided by DND staff prior to use during the monitoring program.

2.3 **QA/QC**

Intra-laboratory comparison of soil and groundwater analytical results has been completed by Maxxam Analytics as part of their standard internal QA/QC procedures, and are provided in the Certificates of Analysis in Appendix A. Blind duplicates were collected for approximately 10% of the soil and groundwater samples collected, and were submitted to a second laboratory, AGAT Laboratories of Mississauga, Ontario, an ISO 17025 certified laboratory, for interlaboratory comparison of results. Each duplicate sample was also sent to the ESG Ops Centre in Kingston, Ontario for archiving.

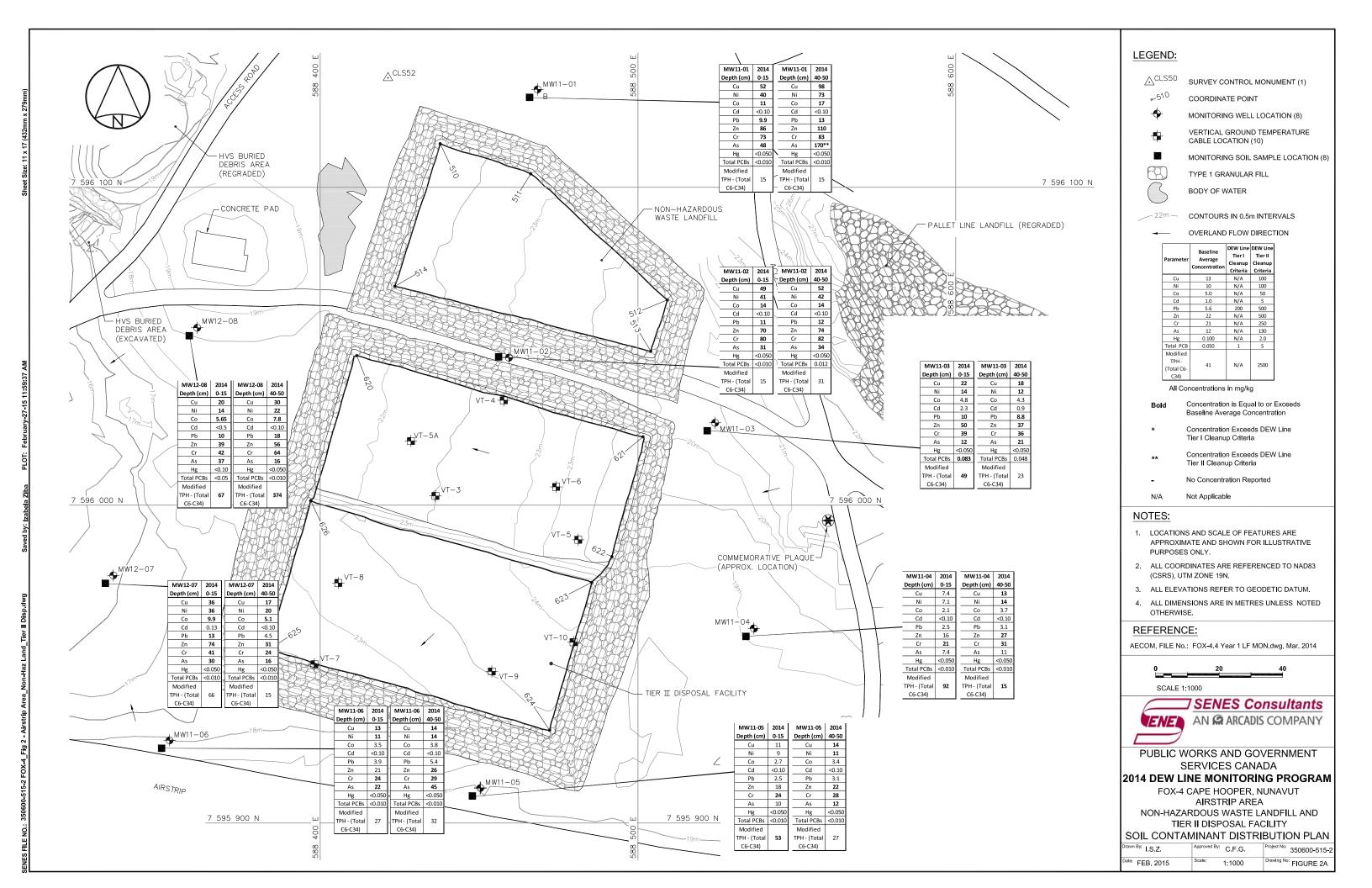
The relative percent difference (RPD) was calculated for the analytical results of duplicate samples submitted for inter-laboratory comparison. The RPD is calculated to assess the precision of duplicate measurements. RPD values under 30% are considered acceptable levels of precision for this program as specified in the Terms of Reference for the program. A discussion of the results for duplicate samples and RPD values are provided with the analytical results for each landfill.

3.0 NON-HAZARDOUS WASTE LANDFILL AND TIER II DISPOSAL FACILITY

3.1 LANDFILL DESCRIPTION

The Non-Hazardous Waste Landfill and Tier II Disposal Facility are located north of the west end of the Cape Hooper airstrip. The Non-Hazardous Waste Landfill and Tier II Disposal Facility have approximate areas of 4,000 m² and 10,000 m², respectively. The Non-Hazardous Waste Landfill was constructed for disposal of non-hazardous demolition and site wastes, while the Tier II Disposal Facility was constructed for disposal of Tier II soil excavated at the FOX-4 site. A detailed drawing of this landfill is provided in Figure 2. The historical chemical results for soil samples collected at this landfill are shown in plan on Figure 2A. The historical chemical results for groundwater samples collected at this landfill are shown in plan on Figure 2B.

3.2 SUMMARY OF WORK CONDUCTED


3.2.1 Visual Inspection

The visual inspection of the landfill was completed with no deviations from the visual inspection work plan.

3.2.2 Soil Sampling

Soil samples were collected at eight (8) locations as shown on Figure 2. Surface and subsurface samples were collected at each location. There were no deviations from the soil sampling work plan. One duplicate soil sample was collected from subsurface soil at sample location MW12-08. Soil sampling completed at the landfill is summarized in Table 3.1.

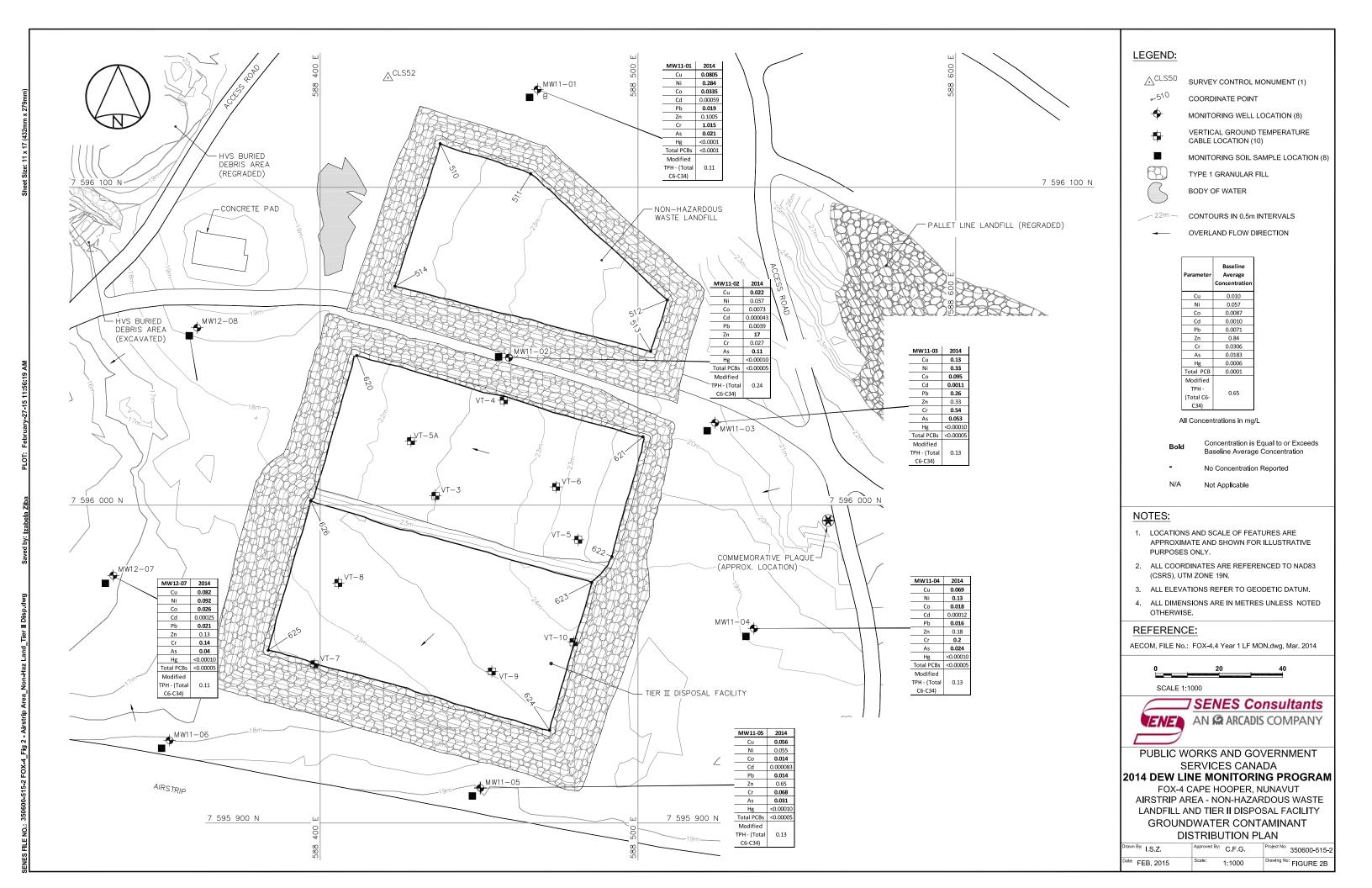


Table 3.1: Summary of Work Conducted by Soil Sampling Location (Non-Hazardous Waste Landfill and Tier II Disposal Facility)

Location	Surface Soil Sample Collected	Subsurface Soil Sample Collected
F4-NH-MW11-01	$\sqrt{}$	$\sqrt{}$
F4-NH-MW11-02	$\sqrt{}$	$\sqrt{}$
F4-NH-MW11-03	$\sqrt{}$	$\sqrt{}$
F4-NH-MW11-04	$\sqrt{}$	$\sqrt{}$
F4-NH-MW11-05	$\sqrt{}$	$\sqrt{}$
F4-NH-MW11-06	$\sqrt{}$	$\sqrt{}$
F4-NH-MW12-07	V	
F4-NH-MW12-08	$\sqrt{\mathrm{D}}$	V

D = duplicate sample collected $\sqrt{\ }$ - sample collected X - no sample collected

3.2.3 Groundwater Sampling

Groundwater monitoring was completed at eight monitoring wells as shown on Figure 2. Inspection of the groundwater monitoring wells and groundwater sampling at the Non-Hazardous Waste Landfill and Tier II Disposal Facility was generally completed as per the work plan. No samples were collected from monitoring wells MW11-06 and MW12-08 as these locations as these wells were dry during this monitoring event. One duplicate groundwater sample was collected from monitoring well MW11-01. Groundwater sampling completed at the landfill is summarized in Table 3.2

Table 3.2: Summary of Work Conducted by Groundwater Sampling Location (Non-Hazardous Waste Landfill and Tier II Disposal Facility)

Location	Visual Inspection/ Groundwater Monitoring	Sample collected for PCB analysis	Sample collected for metals analysis	Sample collected for PHCs F1-F4 analysis
F4-NH-MW11-01	$\sqrt{}$	$\sqrt{\mathrm{D}}$	$\sqrt{\mathrm{D}}$	$\sqrt{\mathrm{D}}$
F4-NH-MW11-02	V	V	V	V
F4-NH-MW11-03	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$
F4-NH-MW11-04	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$
F4-NH-MW11-05	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$
F4-NH-MW11-06	$\sqrt{}$	X^{N}	X^{N}	X^N
F4-NH-MW12-07	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$
F4-NH-MW12-08	V	X^{N}	X^{N}	X^N

D = duplicate sample collected $\sqrt{-\text{sample collected}}$

X – no sample collected

N – no water in well (well was dry)

I – insufficient water in well to collect sample

3.2.4 Thermal Monitoring

Thermal monitoring was completed at the nine vertical thermistor locations at the Non-Hazardous Waste Landfill and Tier II Disposal Facility. A summary of thermistor work completed at this landfill is provided in Table 3.3. Replacement of datalogger batteries at this landfill was not part of the scope of work.

Table 3.3: Summary of Work Conducted by Thermistor Location (Non-Hazardous Waste Landfill and Tier II Disposal Facility)

Location	Realtime Data	Data	Batteries
		Downloaded	Replaced
F4-VT-3		$\sqrt{}$	X
F4-VT-4			X
F4-VT-5			X
F4-VT-6			X
F4-VT-7			X
F4-VT-8	X	X	X
F4-VT-9	X	X	X
F4-VT-10	V	V	X
VT-5A	V	V	X

3.3 RESULTS OF THE MONITORING PROGRAM

3.3.1 Visual Inspection

The visual inspection at the Non-Hazardous Waste Landfill and Tier II Disposal Facility was completed on 26 August 2014. The results of the visual inspection are detailed in Table 3.4 and shown on Figure 2 and in the photo log Table 3.7.

Table 3.4: Visual Inspection Results (Non-Hazardous Waste Landfill and Tier II Disposal Facility)

Item	Description	
Settlement	Minor settlement in the form of a small depression was observed on the northeast	
	corner of the Non-Hazardous Waste Landfill (Feature I).	
Erosion	Small erosion channels were noted on the west and east sides of the Tier II	
	Disposal Facility, on the small slope between the north and south cells (Feature C,	
	D).	
Frost Action	None observed.	
Sloughing and Cracking	None observed.	
Animal Burrows	None observed.	
Vegetation	None observed.	
Staining	Natural red staining was observed on ponded water located between the Non-	
	Hazardous Waste Landfill and the Tier II Disposal Facility (Feature F).	
Vegetation Stress	None observed.	
Seepage Points	No active seepage points were observed.	
Debris Exposed	Two instances of small metal debris were noted on the south side of the Non-	
	Hazardous Waste Landfill. These pieces of debris did not originate within the	
	landfill (Feature G, H).	
Presence/Condition of	Nine vertical thermistor installations and eight monitoring well installations were	
Monitoring Instruments	observed at the landfill. These monitoring installations were found to be in good	
	condition.	
Other Features of Note	Vehicle tracks/ruts were observed on the west and east sides of the Tier II	
	Disposal Facility (Feature A). Ponded water was located around and in between	
	the landfill cells (Feature B, E, F, J).	

3.3.1.1 Inspection Checklist

The visual inspection checklist completed during the site inspection is provided in Table 3.5.

3.3.1.2 Stability Assessment

Details on the preliminary stability assessment completed during the inspection of the Non-Hazardous Waste Landfill and Tier II Disposal Facility are provided in Table 3.6.

TABLE 3.5 - VISUAL INSPECTION CHECKLIST

DEW LINE CLEANUP: POST-CONSTRUCTION - LANDFILL MONITORING **INSPECTION REPORT – PAGE 1 OF 2**

SITE NAME: FOX-4

LANDFILL DESIGNATION: Non-Hazardous Waste Landfill and Tier II Disposal Facility

DATE OF INSPECTION: 25-26 August 2014

DATE OF PREVIOUS INSPECTION: N/A

INSPECTED BY: J. Mauchan/S. Borcsok

REPORT PREPARED BY: S. Borcsok

The inspector/reporter represents to the best of their knowledge, the following statements and observations are true and correct and to the best of the preparer's actual knowledge, no material facts have been suppressed or misstated.

TABLE 3.5 - VISUAL INSPECTION CHECKLIST - INSPECTION REPORT – PAGE 2 OF 2

Checklist Item	Present Yes/No	Location (Describe relative to existing monuments/features and relative to landfill design i.e. surface, berms, toe)	Length	Width	Depth	Extent relative to Area of Landfill (%)	Description	Photographic Records Focal length, location, view point & direction (relative to magnetic north) Feature of note Scale	Additional Comments
Settlement	YES	NE Corner of NonHaz Landfill (Feature I)	0.3	0.3	0.2	<1%	Small depression	15.4, 15.5	
Erosion	YES	West and east sides of slope between north and south cells of Tier II Disp. Facility (Feature C, D)	3	2	0.2	<1%	Small erosion channels	22.1	
Frost Action	NO								
Sloughing and Cracking	NO								
Animal Burrows	NO								
Vegetation	YES								
Staining	YES	In ponded water in channel between NH Landfill and Tier II Disposal Facility (Feature F)							
Vegetation Stress	NO	-							
Seepage Points	NO								
Debris Exposed	YES	South berm of Non-Hazardous Waste Landfill (Feature G, H)				<1%	Small metal debris	18.1, 67.1	
Presence/Condition – Monitoring Instruments	YES	Nine thermistor installations and eight monitoring wells							One thermistor not on provided drawings
Features of Note.	YES	Vehicle tracks/ruts on east/west sides of Tier II Disposal Facility (Feature A), ponded water around landfill (Feature B, E, F, J)				<1%	Tire ruts	22.2, 22.3	

Table 3.6: Preliminary Stability Assessment - FOX-4 NonHaz Landfill/Tier II Disposal

Acceptable Acceptable	Isolated Occasional
Acceptable	Occasional
	000001011111
None	None
Acceptable	Isolated
None	None
Acceptable	Occasional
Acceptable	Occasional
	Acceptable None Acceptable Acceptable

Performance/ Severity Rating	Description
Acceptable	Noted features are of little consequence. The landfill is performing as designed. Minor deviations in environmental or physical performance may be observed, such as isolated areas of erosion, settlement.
Marginal	Physical/environmental performance appears to be deteriorating with time. Observations may include an increase in size or number of features of note, such as differential settlement, erosion or cracking. No significant impact on landfill stability to date, but potential for failure is assessed as low or moderate.
Significant	Significant or potentially significant changes affecting landfill stability, such as significant changes in slope geometry, significant erosion or differential settlement; scarp development. The potential for failure is assessed as imminent.
Unacceptable	Stability of landfill is compromised to the extent that ability to contain waste materials is compromised. Examples may include: - Debris exposed in erosion channels or areas of differential settlement. - Liner exposed. - Slope failure.

Extent	Description
Isolated	Singular feature
Occasional	Features of note occurring at irregular intervals/locations
Numerous	Many features of note, impacted less than 50% of the surface area of the landfill
Extensive	Impacting greater than 50% of the surface area of the landfill

3.3.1.3 Photographic Records

The photograph log for Non-Hazardous Waste Landfill and Tier II Disposal Facility provided in Table 3.7.

3.3.1.4 Trend Analysis

The Non-Hazardous Waste Landfill and Tier II Disposal Facility were newly constructed between 2011 and 2013. The 2014 monitoring event is the first monitoring event at this landfill, so no trends can be established until another monitoring event occurs.

3.3.1.5 Discussion of Results/Trends

The results of the visual inspection indicate that the performance of the landfill is acceptable. All identified issues were minor and of no consequence to the performance of the landfill.

3.3.2 Soil Sampling

Soil sampling at the Non-Hazardous Waste Landfill and Tier II Disposal Facility was completed on 24 August 2014. As previously reported a total of seventeen samples including one duplicate sample were procured from eight locations as shown in plan on Figure 2.

3.3.2.1 Laboratory Analytical Results

The analytical results for soil samples collected at the Non-Hazardous Waste Landfill and Tier II Disposal Facility are presented in Table 3.8.

A duplicate soil sample was collected from surficial soils at sample location MW12-08 and was submitted to AGAT, a secondary laboratory for QA/QC purposes. The RPDs for the duplicate sample results were above 30% for seven of eleven parameters. In these cases, parameter concentrations were very low and small differences in reported concentrations resulted in large RPD values. The duplicate sample results are believed to be consistent.

3.3.2.2 Discussion of Results - Comparison to Baseline/Background

A discussion of the results for each parameter analyzed in soil at the Non-Hazardous Waste Landfill and Tier II Disposal Facility is provided in Table 3.9. The discussion includes a comparison of results from upgradient (MW11-01) and downgradient (MW11-02, MW11-03, MW11-04, MW11-05, MW11-06, MW12-07, MW12-08) soil sampling locations to the baseline average concentrations (BAC) that have been determined for each landfill from soil chemistry at the landfill area prior to and during remediation. Upgradient locations are those near the landfill that are not influenced by migration of contaminants through the landfill, and downgradient locations are at the toe of the landfill or from areas of preferential drainage.

TABLE 3.7: LANDFILL VISUAL INSPECTION PHOTO LOG (NON-HAZARDOUS WASTE LANDFILL AND TIER II DISPOSAL FACILITY)

FOX-4 Non-Hazardous Waste Landfill and Tier II Disposal Facility (see Figure 2)

Photo 1.1 (FOX-4 NHT2 P-1 east.jpg)	Photo 1.2 (FOX-4 NHT2 P-1 north.jpg)	
Description: View east looking down corridor between the Non-Hazardous Landfill on the left and the Tier II Disposal Facility on the right.	Description: View north along western slope of the Non-Hazardous Waste Facility.	
Date: August 26, 2014	Date: August 26, 2014	

TABLE 3.7: LANDFILL VISUAL INSPECTION PHOTO LOG (NON-HAZARDOUS WASTE LANDFILL AND TIER II DISPOSAL FACILITY)

Photo 1.3 (FOX-4 NHT2 P-1 south.jpg)	Photo 2.1 (FOX-4 NHT2 P-2 east.jpg)
Description: View south along western slope of Tier II Disposal Facility.	Description: View east along northern slope of the Non-Hazardous Waste Landfill.
Date: August 26, 2014	Date: August 26, 2014

TABLE 3.7: LANDFILL VISUAL INSPECTION PHOTO LOG (NON-HAZARDOUS WASTE LANDFILL AND TIER II DISPOSAL FACILITY)

Photo 2.2 (FOX-4 NHT2 P-2 south.jpg)	Photo 3.1 (FOX-4 NHT2 P-3 se.jpg)
Description: View south along western slope of the Non-Hazardous Waste Landfill.	Description: View southeast along the northeastern slope of the Non-Hazardous Waste Landfill.
Date: August 26, 2014	Date: August 26, 2014

TABLE 3.7: LANDFILL VISUAL INSPECTION PHOTO LOG (NON-HAZARDOUS WASTE LANDFILL AND TIER II DISPOSAL FACILITY)

Photo 3.2 (FOX-4 NHT2 P-3 south.jpg)	Photo 3.3 (FOX-4 NHT2 P-3 west.jpg)
Description: View of the northern slope of the Non-Hazardous Waste Landfill	Description: View west along the northern slope of the Non-Hazardous Waste Landfill.
Date: August 26, 2014	Date: August 26, 2014

TABLE 3.7: LANDFILL VISUAL INSPECTION PHOTO LOG (NON-HAZARDOUS WASTE LANDFILL AND TIER II DISPOSAL FACILITY)

Photo 4.1 (FOX-4 NHT2 P-4 south.jpg)	Photo 4.2 (FOX-4 NHT2 P-4 west.jpg)
Description: View south along eastern slope of the Non-Hazardous Waste Landfill.	Description: View west of the northeastern slope of the Non-Hazardous Waste Landfill.
Date: August 26, 2014	Date: August 26, 2014

TABLE 3.7: LANDFILL VISUAL INSPECTION PHOTO LOG (NON-HAZARDOUS WASTE LANDFILL AND TIER II DISPOSAL FACILITY)

Photo 5.1 (FOX-4 NHT2 P-5 north.jpg)	Photo 5.2 (FOX-4 NHT2 P-5 nw.jpg)
Description: View north of the eastern slope of the Non-Hazardous Waste Landfill.	Description: View of the southeastern corner of the Non-Hazardous Waste Landfill

Date: August 26, 2014 Date: August 26, 2014

TABLE 3.7: LANDFILL VISUAL INSPECTION PHOTO LOG (NON-HAZARDOUS WASTE LANDFILL AND TIER II DISPOSAL FACILITY)

Photo 5.3 (FOX-4 NHT2 P-5 south.jpg)	Photo 5.4 (FOX-4 NHT2 P-5 sw.jpg)
Description: View south of the eastern slope of the Tier II Disposal Facility.	Description: View of northern slope of Tier II Disposal Facility.
Date: August 26, 2014	Date: August 26, 2014

TABLE 3.7: LANDFILL VISUAL INSPECTION PHOTO LOG (NON-HAZARDOUS WASTE LANDFILL AND TIER II DISPOSAL FACILITY)

Photo 5.5 (FOX-4 NHT2 P-5 west.jpg)	Photo 6.1 (FOX-4 NHT2 P-6 north.jpg)
Description: View east along corridor between the Tier II Disposal Facility (left) and the Non-Hazardous Waste Landfill (right).	Description: View north of the eastern slope of the Tier II Disposal Facility.
Date: August 26, 2014	Date: August 26, 2014

TABLE 3.7: LANDFILL VISUAL INSPECTION PHOTO LOG (NON-HAZARDOUS WASTE LANDFILL AND TIER II DISPOSAL FACILITY)

Photo 6.2 (FOX-4 NHT2 P-6 south.jpg)	Photo 7.1 (FOX-4 NHT2 P-7 north.jpg)
Description: View south of the eastern slope of the Tier II Disposal Facility	Description: The eastern slope of the Tier II Disposal Facility. VT-10 seen at top of slope.
Date: August 26, 2014	Date: August 26, 2014

TABLE 3.7: LANDFILL VISUAL INSPECTION PHOTO LOG (NON-HAZARDOUS WASTE LANDFILL AND TIER II DISPOSAL FACILITY)

Photo 7.2 (FOX-4 NHT2 P-7 nw.jpg)	Photo 7.3 (FOX-4 NHT2 P-7 west.jpg)
Description: The southeastern corner of the Tier II Disposal Facility	Description: The southern slope of the Tier II Disposal Facility.
Date: August 26, 2014	Date: August 26, 2014

TABLE 3.7: LANDFILL VISUAL INSPECTION PHOTO LOG (NON-HAZARDOUS WASTE LANDFILL AND TIER II DISPOSAL FACILITY)

Photo 8.1 (FOX-4 NHT2 P-8 east.jpg)	Photo 8.2 (FOX-4 NHT2 P-8 north.jpg)
Description: View east along the southern slope of the Tier II Disposal Facility.	Description: The southern slope of the Tier II Disposal Facility.
Date: August 26, 2014	Date: August 26, 2014

TABLE 3.7: LANDFILL VISUAL INSPECTION PHOTO LOG (NON-HAZARDOUS WASTE LANDFILL AND TIER II DISPOSAL FACILITY)

Photo 8.3 (FOX-4 NHT2 P-8 west.jpg)	Photo 9.1 (FOX-4 NHT2 P-9 nw.jpg)
Description: View east over ponded water at the toe of the southern slope of the Tier II Disposal Facility. (FEATURE B)	Description: View of the western part of the southern slope of the Tier II Disposal Facility. Ponded water observed at toe. (FEATURE B)
Date: August 26, 2014	Date: August 26, 2014

TABLE 3.7: LANDFILL VISUAL INSPECTION PHOTO LOG (NON-HAZARDOUS WASTE LANDFILL AND TIER II DISPOSAL FACILITY)

Photo 9.2 (FOX-4 NHT2 P-9 west.jpg)	Photo 10.1 (FOX-4 NHT2 P-10 east.jpg)
Description: Ponded water at the toe of the southern slope of the Tier II Disposal Facility. (FEATURE B)	Description: View east from southwestern corner of the Tier II Disposal Facility.
Date: August 26, 2014	Date: August 26, 2014

TABLE 3.7: LANDFILL VISUAL INSPECTION PHOTO LOG (NON-HAZARDOUS WASTE LANDFILL AND TIER II DISPOSAL FACILITY)

Photo 10.2 (FOX-4 NHT2 P-10 ne.jpg)	Photo 10.3 (FOX-4 NHT2 P-10 north.jpg)
Description: The southwestern corner of the Tier II Disposal Facility.	Description: View north along the western slope of the Tier II Disposal Facility.
Date: August 26, 2014	Date: August 26, 2014

TABLE 3.7: LANDFILL VISUAL INSPECTION PHOTO LOG (NON-HAZARDOUS WASTE LANDFILL AND TIER II DISPOSAL FACILITY)

Photo 11.1 (FOX-4 NHT2 P-11 east.jpg)	Photo 11.2 (FOX-4 NHT2 P-11 north.jpg)
Photo 11.1 (FOX-4 NHT2 P-11 east.jpg) Description: The western slope of the Tier II Disposal Facility.	Photo 11.2 (FOX-4 NHT2 P-11 north.jpg) Description: View north along western slope of the Tier II Disposal Facility.
Date: August 26, 2014	Date: August 26, 2014

TABLE 3.7: LANDFILL VISUAL INSPECTION PHOTO LOG (NON-HAZARDOUS WASTE LANDFILL AND TIER II DISPOSAL FACILITY)

Photo 11.3 (FOX-4 NHT2 P-11 south.jpg)	Photo 12.1 (FOX-4 NHT2 P-12 east.jpg)
Description: View south of the western slope of the Tier II Disposal Facility.	Description: View east along Non-Hazardous Waste Landfill cap. Corridor adjacent to the Tier II Disposal Facility is seen on the left hand side. The stakes in the corridor demarcate the MW11-02 location.
Date: August 26, 2014	Date: August 26, 2014

TABLE 3.7: LANDFILL VISUAL INSPECTION PHOTO LOG (NON-HAZARDOUS WASTE LANDFILL AND TIER II DISPOSAL FACILITY)

Photo 12.2 (FOX-4 NHT2 P-12 ne.jpg)	Photo 12.3 (FOX-4 NHT2 P-12 north.jpg)
Description: View of the Non-Hazardous Waste Landfill cap from the southwest corner.	Description: The western part of the cap of the Non-Hazardous Waste Landfill.
Date: August 26, 2014	Date: August 26, 2014

TABLE 3.7: LANDFILL VISUAL INSPECTION PHOTO LOG (NON-HAZARDOUS WASTE LANDFILL AND TIER II DISPOSAL FACILITY)

Photo 13.1 (FOX-4 NHT2 P-13 east.jpg)	Photo 13.2 (FOX-4 NHT2 P-13 se.jpg)
Description: View east of the northern part of the Non-Hazardous Waste Landfill.	Description: View of the Non-Hazardous Waste Landfill cap from the northwest corner.
Date: August 26, 2014	Date: August 26, 2014
Date. August 20, 2014	Date. August 20, 2014

TABLE 3.7: LANDFILL VISUAL INSPECTION PHOTO LOG (NON-HAZARDOUS WASTE LANDFILL AND TIER II DISPOSAL FACILITY)

Photo 13.3 (FOX-4 NHT2 P-13 sw.jpg)	Photo 14.1 (FOX-4 NHT2 P-14 se.jpg)
Description: View of the western part of the Non-Hazardous Waste Landfill.	Description: View along top of northern slope of the Non-Hazardous Waste Landfill.
Date: August 26, 2014	Date: August 26, 2014

TABLE 3.7: LANDFILL VISUAL INSPECTION PHOTO LOG (NON-HAZARDOUS WASTE LANDFILL AND TIER II DISPOSAL FACILITY)

Photo 14.2 (FOX-4 NHT2 P-14 south.jpg)	Photo 14.3 (FOX-4 NHT2 P-14 west.jpg)
Description: View south across Non-Hazardous Waste Landfill cap.	Description: View west along top of northern slope.
Date: August 26, 2014	Date: August 26, 2014

TABLE 3.7: LANDFILL VISUAL INSPECTION PHOTO LOG (NON-HAZARDOUS WASTE LANDFILL AND TIER II DISPOSAL FACILITY)

Photo 15.1 (FOX-4 NHT2 P-15 nw.jpg)	Photo 15.2 (FOX-4 NHT2 P-15 south.jpg)
Description: View west along top of slope from the northeast corner of the Non-Hazardous Waste Landfill.	Description: The eastern top of slope of the Non-Hazardous Waste Landfill.
Date: August 26, 2014	Date: August 26, 2014

TABLE 3.7: LANDFILL VISUAL INSPECTION PHOTO LOG (NON-HAZARDOUS WASTE LANDFILL AND TIER II DISPOSAL FACILITY)

Photo 15.3 (FOX-4 NHT2 P-15 sw.jpg)	Photo 15.4 (FOX-4 NHT2 P-15 north.jpg)
Description: The Non-Hazardous Waste Landfill cap from the northeast corner.	Description: Small area of settlement at northeast corner of Non-Hazardous Waste Landfill. (FEATURE I)
Date: August 26, 2014	Date: August 26, 2014

TABLE 3.7: LANDFILL VISUAL INSPECTION PHOTO LOG (NON-HAZARDOUS WASTE LANDFILL AND TIER II DISPOSAL FACILITY)

Photo 15.5 (FOX-4 NHT2 P-15 closeup.jpg)	Photo 16.1 (FOX-4 NHT2 P-16 north.jpg)
Description: Minor settlement at northeast corner of Non-Hazardous Waste Landfill. (FEATURE I)	Description: The eastern top of slope of the Non-Hazardous Waste Landfill.
Date: August 26, 2014	

TABLE 3.7: LANDFILL VISUAL INSPECTION PHOTO LOG (NON-HAZARDOUS WASTE LANDFILL AND TIER II DISPOSAL FACILITY)

Photo 16.2 (FOX-4 NHT2 P-16 nw.jpg)	Photo 16.3 (FOX-4 NHT2 P-16 west.jpg)
Description: The Non-Hazardous Waste Landfill from the southeastern corner of the cap.	Description: The southern top of slope of the Non-Hazardous Waste Landfill. Northern slope of the Tier II Disposal Facility can be seen on the left.
Date: August 26, 2014	Date: August 26, 2014

TABLE 3.7: LANDFILL VISUAL INSPECTION PHOTO LOG (NON-HAZARDOUS WASTE LANDFILL AND TIER II DISPOSAL FACILITY)

Photo 17.1 (FOX-4 NHT2 P-17 east.jpg)	Photo 17.2 (FOX-4 NHT2 P-17 north.jpg)
Description: View of the Non-Hazardous Waste Landfill cap from the approximate centre.	Description: View of the Non-Hazardous Waste Landfill cap from the approximate centre.
Date: August 26, 2014	Date: August 26, 2014

TABLE 3.7: LANDFILL VISUAL INSPECTION PHOTO LOG (NON-HAZARDOUS WASTE LANDFILL AND TIER II DISPOSAL FACILITY)

Photo 17.3 (FOX-4 NHT2 P-17 south.jpg)	Photo 17.4 (FOX-4 NHT2 P-17 west.jpg)
Description: View of the Non-Hazardous Waste Landfill cap from the approximate centre.	Description: View of the Non-Hazardous Waste Landfill cap from the approximate centre.
Date: August 26, 2014	Date: August 26, 2014

TABLE 3.7: LANDFILL VISUAL INSPECTION PHOTO LOG (NON-HAZARDOUS WASTE LANDFILL AND TIER II DISPOSAL FACILITY)

Photo 18.1 (FOX-4 NHT2 P-18.jpg)	Photo 19.1 (FOX-4 NHT2 P-19 east.jpg)
Description: Minor debris (metal strapping) observed on the southern slope of the Non-Hazardous Waste Landfill. (FEATURE H)	Description: The top of the northern slope of the Tier II Disposal Facility.
Date: August 26, 2014	Date: August 26, 2014

TABLE 3.7: LANDFILL VISUAL INSPECTION PHOTO LOG (NON-HAZARDOUS WASTE LANDFILL AND TIER II DISPOSAL FACILITY)

Photo 19.2 (FOX-4 NHT2 P-19 se.jpg)	Photo 19.3 (FOX-4 NHT2 P-19 south.jpg)
Description: View southeast from the northwest corner of the Tier II Disposal Facility cap. VT-5A (foreground) and VT-3 (background) can be seen.	Description: The western top of slope of the Tier II Disposal Facility
Date: August 26, 2014	Date: August 26, 2014

TABLE 3.7: LANDFILL VISUAL INSPECTION PHOTO LOG (NON-HAZARDOUS WASTE LANDFILL AND TIER II DISPOSAL FACILITY)

Photo 20.1 (FOX-4 NHT2 P-20 east.jpg)	Photo 20.2 (FOX-4 NHT2 P-20 south.jpg)
Description: View east toward northeastern corner of the Tier II Disposal Facility.	Description: View south over the Tier II Disposal Facility cap.
Date: August 26, 2014	Date: August 26, 2014

TABLE 3.7: LANDFILL VISUAL INSPECTION PHOTO LOG (NON-HAZARDOUS WASTE LANDFILL AND TIER II DISPOSAL FACILITY)

Photo 20.3 (FOX-4 NHT2 P-20 sw.jpg)	Photo 20.4 (FOX-4 NHT2 P-20 west.jpg)
Description: View southwest across Tier II Disposal Facility cap.	Description: The northern slope of the Tier II Disposal Facility. View west, toward VT-4.
Date: Angust 26, 2014	Data: An anat 26, 2014
Date: August 26, 2014	Date: August 26, 2014

TABLE 3.7: LANDFILL VISUAL INSPECTION PHOTO LOG (NON-HAZARDOUS WASTE LANDFILL AND TIER II DISPOSAL FACILITY)

Photo 21.1 (FOX-4 NHT2 P-21 south.jpg)	Photo 21.2 (FOX-4 NHT2 P-21 sw.jpg)
Description: The eastern top of slope of the Tier II Disposal Facility.	Description: The Tier II Disposal Facility cap from the northeastern corner.
Date: August 26, 2014	Date: August 26, 2014

TABLE 3.7: LANDFILL VISUAL INSPECTION PHOTO LOG (NON-HAZARDOUS WASTE LANDFILL AND TIER II DISPOSAL FACILITY)

Photo 21.3 (FOX-4 NHT2 P-21 west.jpg)	Photo 22.1 (FOX-4 NHT2 P-22 north.jpg)
Photo 21.3 (FOX-4 NHT2 P-21 west.jpg) Description: The northern top of slope of the Tier II Disposal Facility.	Photo 22.1 (FOX-4 NHT2 P-22 north.jpg) Description: The eastern top of slope of the Tier II Disposal Facility.
Date: August 26, 2014	Date: August 26, 2014
Date: August 20, 2014	Date: August 20, 2014

TABLE 3.7: LANDFILL VISUAL INSPECTION PHOTO LOG (NON-HAZARDOUS WASTE LANDFILL AND TIER II DISPOSAL FACILITY)

Photo 22.2 (FOX-4 NHT2 P-22 nw.jpg)	Photo 22.3 (FOX-4 NHT2 P-22 west.jpg)
Description: Vehicle tracks/ruts near VT-5. (FEATURE A)	Description: Vehicle tracks/ruts near VT-5. View west along middle slope of the Tier II Disposal Facility. (FEATURE A)
Date: August 26, 2014	Date: August 26, 2014

TABLE 3.7: LANDFILL VISUAL INSPECTION PHOTO LOG (NON-HAZARDOUS WASTE LANDFILL AND TIER II DISPOSAL FACILITY)

Photo 23.1 (FOX-4 NHT2 P-23 east.jpg)	Photo 23.2 (FOX-4 NHT2 P-23 north.jpg)
Description: View east along the middle slope which divides the northern and southern caps of the Tier II Disposal Facility.	Description: The northern cap of the Tier II Disposal Facility.
Date: August 26, 2014	Date: August 26, 2014

TABLE 3.7: LANDFILL VISUAL INSPECTION PHOTO LOG (NON-HAZARDOUS WASTE LANDFILL AND TIER II DISPOSAL FACILITY)

Photo 23.3 (FOX-4 NHT2 P-23 south.jpg)	Photo 23.4 (FOX-4 NHT2 P-23 west.jpg)
Description: The southern cap of the Tier II Disposal Facility.	Description: View west along middle slope of the Tier II Disposal Facility.
Date: August 26, 2014	Date: August 26, 2014

TABLE 3.7: LANDFILL VISUAL INSPECTION PHOTO LOG (NON-HAZARDOUS WASTE LANDFILL AND TIER II DISPOSAL FACILITY)

Photo 24.1 (FOX-4 NHT2 P-24 east.jpg)	Photo 24.2 (FOX-4 NHT2 P-24 ne.jpg)
Description: View east along middle slope of the Tier II Disposal Facility.	Description: View northeast across the northern cap of the Tier II Disposal Facility.
Date: August 26, 2014	Date: August 26, 2014

TABLE 3.7: LANDFILL VISUAL INSPECTION PHOTO LOG (NON-HAZARDOUS WASTE LANDFILL AND TIER II DISPOSAL FACILITY)

Photo 24.3 (FOX-4 NHT2 P-24 north.jpg)	Photo 25.1 (FOX-4 NHT2 P-25 east.jpg)
Description: The western top of slope of the northern half of the Tier II Disposal Facilty.	Description: View east along top of middle slope of the Tier II Disposal Facility cap.
Date: August 26, 2014	Date: August 26, 2014

TABLE 3.7: LANDFILL VISUAL INSPECTION PHOTO LOG (NON-HAZARDOUS WASTE LANDFILL AND TIER II DISPOSAL FACILITY)

Photo 25.2 (FOX-4 NHT2 P-25 se.jpg)	Photo 25.3 (FOX-4 NHT2 P-25 south.jpg)
Photo 25.2 (FOX-4 NHT2 P-25 se.jpg) Description: View across the southern Tier II Disposal Facility cap.	Photo 25.3 (FOX-4 NHT2 P-25 south.jpg) Description: The top of the western slope of the Tier II Disposal Facility.
Date: August 26, 2014	Date: August 26, 2014
Date. August 20, 2014	Date. August 20, 2014

TABLE 3.7: LANDFILL VISUAL INSPECTION PHOTO LOG (NON-HAZARDOUS WASTE LANDFILL AND TIER II DISPOSAL FACILITY)

Photo 26.1 (FOX-4 NHT2 P-26 east.jpg)	Photo 26.2 (FOX-4 NHT2 P-26 south.jpg)
Description: View east along the top of the middle slope which divides the northern and southern halves of the Tier II Disposal Facility cap.	Description: View across the southern half of the Tier II Disposal Facility cap.
Date: August 26, 2014	Date: August 26, 2014

TABLE 3.7: LANDFILL VISUAL INSPECTION PHOTO LOG (NON-HAZARDOUS WASTE LANDFILL AND TIER II DISPOSAL FACILITY)

Photo 26.3 (FOX-4 NHT2 P-26 west.jpg)	Photo 27.1 (FOX-4 NHT2 P-27 south.jpg)
Description: View west along the middle slope of the Tier II Disposal Facility cap.	Description: The eastern top of slope of the Tier II Disposal Facility cap. VT-10 can be seen.
Date: August 26, 2014	Date: August 26, 2014

TABLE 3.7: LANDFILL VISUAL INSPECTION PHOTO LOG (NON-HAZARDOUS WASTE LANDFILL AND TIER II DISPOSAL FACILITY)

Photo 27.2 (FOX-4 NHT2 P-27 sw.jpg)	Photo 27.3 (FOX-4 NHT2 P-27 west.jpg)
Description: The southern half of the Tier II Disposal Facility cap.	Description: View west along middle slope of the Tier II Disposal Facility cap.
Date: August 26, 2014	Date: August 26, 2014

TABLE 3.7: LANDFILL VISUAL INSPECTION PHOTO LOG (NON-HAZARDOUS WASTE LANDFILL AND TIER II DISPOSAL FACILITY)

Photo 28.1 (FOX-4 NHT2 P-28 south.jpg)	Photo 28.2 (FOX-4 NHT2 P-28 west.jpg)
Description: View toward the southeastern corner of the Tier II Disposal Facility.	Description: The southern half of the Tier II Disposal Facility cap. Photo taken from adjacent to VT-10.
Date: August 26, 2014	Date: August 26, 2014

TABLE 3.7: LANDFILL VISUAL INSPECTION PHOTO LOG (NON-HAZARDOUS WASTE LANDFILL AND TIER II DISPOSAL FACILITY)

Photo 29.1 (FOX-4 NHT2 P-29 north.jpg)	Photo 29.2 (FOX-4 NHT2 P-29 nw.jpg)
Description: The eastern top of slope of the Tier II Disposal Facility.	Description: The southern half of the Tier II Disposal Facility cap. Photo taken from southeastern corner.
Date: August 26, 2014	Date: August 26, 2014

TABLE 3.7: LANDFILL VISUAL INSPECTION PHOTO LOG (NON-HAZARDOUS WASTE LANDFILL AND TIER II DISPOSAL FACILITY)

Photo 29.3 (FOX-4 NHT2 P-29 se.jpg)	Photo 29.4 (FOX-4 NHT2 P-29 west.jpg)
Description: View downslope of the southeastern corner of the Tier II Disposal Facility.	Description: The southern top of slope of the Tier II Disposal Facility.
Date: August 26, 2014	Date: August 26, 2014

TABLE 3.7: LANDFILL VISUAL INSPECTION PHOTO LOG (NON-HAZARDOUS WASTE LANDFILL AND TIER II DISPOSAL FACILITY)

Photo 30.1 (FOX-4 NHT2 P-30 east.jpg)	Photo 30.2 (FOX-4 NHT2 P-30 north.jpg)
Description: The southern top of slope of the Tier II Disposal Facility.	Description: The southern half of the Tier II Disposal Facility cap. Photo taken from the southern top of slope.
Date: August 26, 2014	Date: August 26, 2014

TABLE 3.7: LANDFILL VISUAL INSPECTION PHOTO LOG (NON-HAZARDOUS WASTE LANDFILL AND TIER II DISPOSAL FACILITY)

Photo 30.3 (FOX-4 NHT2 P-30 west.jpg)	Photo 31.1 (FOX-4 NHT2 P-31 east.jpg)
Description: The western top of slope of the Tier II Disposal Facility.	Description: View toward VT-7 along the southern top of slope of the Tier II Disposal Facility.
Date: August 26, 2014	Date: August 26, 2014

TABLE 3.7: LANDFILL VISUAL INSPECTION PHOTO LOG (NON-HAZARDOUS WASTE LANDFILL AND TIER II DISPOSAL FACILITY)

Photo 31.2 (FOX-4 NHT2 P-31 ne.jpg)	Photo 31.3 (FOX-4 NHT2 P-31 north.jpg)
Description: View across the southern half of the Tier II Disposal Facility from the southwestern corner.	Description: The western top of slope of the Tier II Disposal Facility.
Date: August 26, 2014	Date: August 26, 2014

TABLE 3.7: LANDFILL VISUAL INSPECTION PHOTO LOG (NON-HAZARDOUS WASTE LANDFILL AND TIER II DISPOSAL FACILITY)

Photo 32.1 (FOX-4 NHT2 P-32 south.jpg)	Photo 33.1 (FOX-4 NHT2 P-33.jpg)
Photo 32.1 (FOX-4 NHT2 P-32 south.jpg) Description: View south toward MW11-01 and the Non-Hazardous Waste Landfill.	Photo 33.1 (FOX-4 NHT2 P-33,jpg) Description: Soil sample collection of F4-NH-MW11-01.
Date: August 26, 2014	Date: August 26, 2014

TABLE 3.7: LANDFILL VISUAL INSPECTION PHOTO LOG (NON-HAZARDOUS WASTE LANDFILL AND TIER II DISPOSAL FACILITY)

Photo 34.1 (FOX-4 NHT2 P-34.jpg)	Photo 35.1 (FOX-4 NHT2 P-35.jpg)
Description: After sample collection and backfill of F4-NH-MW11-01.	Description: Ponded water at MW11-02. (FEATURE F)
25/087/2014:	25/03/2014
Date: August 26, 2014	Date: August 26, 2014

TABLE 3.7: LANDFILL VISUAL INSPECTION PHOTO LOG (NON-HAZARDOUS WASTE LANDFILL AND TIER II DISPOSAL FACILITY)

Description: Sample collection of F4-NH-MW11-02. Description: After collection and backfill of F4-NH-MW11-02 Description: After collection and backfill of F4-NH-MW11-02	Photo 36.1 (FOX-4 NHT2 P-36.jpg)	Photo 37.1 (FOX-4 NHT2 P-37.jpg)
Date: August 26, 2014 Date: August 26, 2014		
	Date: August 26, 2014	Date: August 26, 2014

TABLE 3.7: LANDFILL VISUAL INSPECTION PHOTO LOG (NON-HAZARDOUS WASTE LANDFILL AND TIER II DISPOSAL FACILITY)

Photo 38.1 (FOX-4 NHT2 P-38 sw.jpg)	Photo 39.1 (FOX-4 NHT2 P-39.jpg)
Photo 38.1 (FOX-4 NHT2 P-38 sw.jpg) Description: View toward MW11-03 and the Tier II Disposal Facility.	Photo 39.1 (FOX-4 NHT2 P-39.jpg) Description: Sample collection of F4-NH-MW11-03.
Date: August 26, 2014	Date: August 26, 2014

TABLE 3.7: LANDFILL VISUAL INSPECTION PHOTO LOG (NON-HAZARDOUS WASTE LANDFILL AND TIER II DISPOSAL FACILITY)

Photo 40.1 (FOX-4 NHT2 P-40.jpg)	Photo 41.1 (FOX-4 NHT2 P-41.jpg)
Description: After collection and backfill of F4-NH-MW11-03.	Description: View from MW11-04 toward the Tier II Disposal Facility.
Date: August 26, 2014	Date: August 26, 2014

TABLE 3.7: LANDFILL VISUAL INSPECTION PHOTO LOG (NON-HAZARDOUS WASTE LANDFILL AND TIER II DISPOSAL FACILITY)

Photo 42.1 (FOX-4 NHT2 P-42.jpg)	Photo 43.1 (FOX-4 NHT2 P-43.jpg)
Photo 42.1 (FOX-4 NHT2 P-42.jpg) Description: F4-NH-MW11-04 during soil sample collection.	Photo 43.1 (FOX-4 NHT2 P-43.jpg) Description: After collection and backfill of F4-NH-MW11-04.
25/08/2014	25/08/2014
Date: August 26, 2014	Date: August 26, 2014

TABLE 3.7: LANDFILL VISUAL INSPECTION PHOTO LOG (NON-HAZARDOUS WASTE LANDFILL AND TIER II DISPOSAL FACILITY)

Photo 44.1 (FOX-4 NHT2 P-44 north.jpg)	Photo 45.1 (FOX-4 NHT2 P-45.jpg)
Description: Ponded water at MW11-05. View looking toward southern slope of the Tier II Disposal Facility. (FEATURE B)	Description: F4-NH-MW11-05 during soil sample collection
	FOX-4 HOOPER 25/08/2014
Date: August 26, 2014	Date: August 26, 2014

TABLE 3.7: LANDFILL VISUAL INSPECTION PHOTO LOG (NON-HAZARDOUS WASTE LANDFILL AND TIER II DISPOSAL FACILITY)

Photo 46.1 (FOX-4 NHT2 P-46.jpg)	Photo 47.1 (FOX-4 NHT2 P-47 ne.jpg)
Photo 46.1 (FOX-4 NHT2 P-46.jpg) Description: After collection and backfill of F4-NH-MW11-05.	Photo 47.1 (FOX-4 NHT2 P-47 ne.jpg) Description: View toward the Tier II Disposal Facility from MW11-06.
HOOPER 25/08/2014	25/08/2014
Date: August 26, 2014	Date: August 26, 2014

TABLE 3.7: LANDFILL VISUAL INSPECTION PHOTO LOG (NON-HAZARDOUS WASTE LANDFILL AND TIER II DISPOSAL FACILITY)

Photo 48.1 (FOX-4 NHT2 P-48.jpg)	Photo 49.1 (FOX-4 NHT2 P-49.jpg)
Description: F4-NH-MW11-06 during soil sample collection.	Description: After collection and backfill of F4-NH-MW11-06.
Hooper 25/08/2014	Hooper 25/08/2014
Date: August 26, 2014	Date: August 26, 2014

TABLE 3.7: LANDFILL VISUAL INSPECTION PHOTO LOG (NON-HAZARDOUS WASTE LANDFILL AND TIER II DISPOSAL FACILITY)

Photo 50.1 (FOX-4 NHT2 P-50.jpg)	Photo 51.1 (FOX-4 NHT2 P-51.jpg)
Description: View toward the Tier II Disposal Facility from MW11-07.	Description: F4-NH-MW11-07 during soil sample collection.
25/08/2014	FOX-H HOOPER 25/08/226[24:
Date: August 26, 2014	Date: August 26, 2014

TABLE 3.7: LANDFILL VISUAL INSPECTION PHOTO LOG (NON-HAZARDOUS WASTE LANDFILL AND TIER II DISPOSAL FACILITY)

Photo 52.1 (FOX-4 NHT2 P-52.jpg)	Photo 53.1 (FOX-4 NHT2 P-53 east.jpg)
Description: After collection and backfill of F4-NH-MW12-07	Description: View of western slope of Tier II Disposal Facility (right hand side) and Non-Hazardous Waste Landfill (left hand side) from MW12-08.
25/08//2014	25//03//2014
Date: August 26, 2014	Date: August 26, 2014

TABLE 3.7: LANDFILL VISUAL INSPECTION PHOTO LOG (NON-HAZARDOUS WASTE LANDFILL AND TIER II DISPOSAL FACILITY)

Photo 54.1 (FOX-4 NHT2 P-54.jpg)	Photo 55.1 (FOX-4 NHT2 P-55.jpg)
Photo 54.1 (FOX-4 NHT2 P-54.jpg) Description: F4-NH-MW12-08 during soil sample collection.	Photo 55.1 (FOX-4 NHT2 P-55.jpg) Description: After collection and backfill of F4-NH-M12-08.
Date: August 26, 2014	Date: August 26, 2014
Date: August 20, 2014	Date: August 20, 2014

TABLE 3.7: LANDFILL VISUAL INSPECTION PHOTO LOG (NON-HAZARDOUS WASTE LANDFILL AND TIER II DISPOSAL FACILITY)

Photo 56.1 (FOX-4 NHT2 P-56 se.jpg)	Photo 57.1 (FOX-4 NHT2 P-57 north.jpg)
Photo 56.1 (FOX-4 NHT2 P-56 se.jpg) Description: Vertical thermistor VT-3.	Photo 57.1 (FOX-4 NHT2 P-57 north.jpg) Description: Vertical thermistor VT-4.
Date: August 26, 2014	Date: August 26, 2014

TABLE 3.7: LANDFILL VISUAL INSPECTION PHOTO LOG (NON-HAZARDOUS WASTE LANDFILL AND TIER II DISPOSAL FACILITY)

Photo 58.1 (FOX-4 NHT2 P-58 west.jpg)	Photo 59.1 (FOX-4 NHT2 P-59.jpg)
	Description: Vertical thermistor VT-6.
Date: August 26, 2014	Date: August 26, 2014

TABLE 3.7: LANDFILL VISUAL INSPECTION PHOTO LOG (NON-HAZARDOUS WASTE LANDFILL AND TIER II DISPOSAL FACILITY)

Photo 60.1 (FOX-4 NHT2 P-60 east.jpg)	Photo 61.1 (FOX-4 NHT2 P-61 north.jpg)
Description: Vertical thermistor VT-7.	Description: Vertical thermistor VT-8.
Date: August 26, 2014	Date: August 26, 2014

TABLE 3.7: LANDFILL VISUAL INSPECTION PHOTO LOG (NON-HAZARDOUS WASTE LANDFILL AND TIER II DISPOSAL FACILITY)

Photo 62.1 (FOX-4 NHT2 P-62 west.jpg)	Photo 63.1 (FOX-4 NHT2 P-63 east.jpg)
Description: Vertical thermistor VT-9.	Description: Vertical thermistor VT-10.
Date: August 26, 2014	Date: August 26, 2014

TABLE 3.7: LANDFILL VISUAL INSPECTION PHOTO LOG (NON-HAZARDOUS WASTE LANDFILL AND TIER II DISPOSAL FACILITY)

Photo 64.1 (FOX-4 NHT2 P-64 nw.jpg)	Photo 65.1 (FOX-4 NHT2 P-65 west.jpg)
Description: Vertical thermistor VT-5A.	Description: The Non-Hazardous Waste Landfill. View looking west from the Pallet Line Landfill.
Date: August 26, 2014	Date: August 28, 2014

TABLE 3.7: LANDFILL VISUAL INSPECTION PHOTO LOG (NON-HAZARDOUS WASTE LANDFILL AND TIER II DISPOSAL FACILITY)

Photo 66.1 (FOX-4 NHT2 P-66 south.jpg)	Photo 67.1 (FOX-4 NHT2 P-67 north.jpg)
Description: The Tier II Disposal Facility. View south from the Pallet Line Landfill.	Description: Metal debris at southeast corner of Non-Hazardous Waste Landfill. (FEATURE G)
Date: August 28, 2014	

TABLE 3.7: LANDFILL VISUAL INSPECTION PHOTO LOG (NON-HAZARDOUS WASTE LANDFILL AND TIER II DISPOSAL FACILITY)

Photo 68.1 (FOX-4 NHT2 P-68 north.jpg)	
Description: View of Non-Hazardous Waste Landfill and Tier II Disposal Facility from south.	

TABLE 3.8

RESULTS OF ANALYSIS FOR PARAMETERS IN SOIL AT NON-HAZARDOUS WASTE LANDFILL AND TIER II DISPOSAL FACILITY

	Background	Baseline	DEW Line	DEW Line	F4-NH-	F4-NH-	F4-NH-	F4-NH-	F4-NH-	F4-NH-	F4-NH-	F4-NH-	F4-NH-
	Concentration	Average	Cleanup	Cleanup	MW11-01-S	MW11-01-D	MW11-02-S	MW11-02-D	MW11-03-S	MW11-03-D	MW11-04-S	MW11-04-D	MW11-05-S
PARAMETERS		Concentration	Tier I	Tier II									
			Criteria	Criteria									
					24-Aug-14	24-Aug-14	24-Aug-14	24-Aug-14	24-Aug-14	24-Aug-14	24-Aug-14	24-Aug-14	24-Aug-14
	(_)	(+)	(*)	(**)	0-15cm	40-50cm	0-15cm	40-50cm	0-15cm	40-50cm	0-15cm	40-50cm	0-15cm
Copper	30	13	-	100	<u>52+</u>	<u>98+</u>	<u>49+</u>	<u>52+</u>	22+	18+	7.4	13	11
Nickel	24	10	-	100	<u>40+</u>	<u>73+</u>	<u>41+</u>	<u>42+</u>	14+	12+	7.1	14+	9
Cobalt	9	5.0	-	50	<u>11+</u>	<u>17+</u>	<u>14+</u>	<u>14+</u>	4.8	4.3	2.1	3.7	2.7
Cadmium	1.0	1.0	-	5	< 0.10	< 0.10	< 0.10	< 0.10	2.3+	0.9	< 0.10	< 0.10	< 0.10
Lead	10	5.6	200	500	9.9+	<u>13+</u>	<u>11+</u>	<u>12+</u>	10+	8.8+	2.5	3.1	2.5
Zinc	41	22	-	500	<u>86+</u>	<u>110+</u>	<u>70+</u>	<u>74+</u>	<u>50+</u>	37+	16	27	18
Chromium	41	21	-	250	<u>73+</u>	<u>83+</u>	<u>80+</u>	<u>82+</u>	39+	36+	21	31+	24+
Arsenic	29	12	-	30	48+	170+	31+	34+	12	21+	7.4	11	10
Mercury	-	0.100	-	2	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050
Total PCBs	-	0.050	1	5	< 0.010	< 0.010	< 0.010	0.012	0.083+	0.048	< 0.010	< 0.010	< 0.010
PHC F1 (C6-C10)	-	-	-	-	<10	<10	<10	<10	<10	<10	<10	<10	<10
PHC F2 (C10-C16)	-	-	-	-	<10	<10	<10	<10	<10	<10	<10	<10	<10
PHC F3 (C16-C34)	-	-	-	-	<10	<10	<10	21	39	13	82	<10	43
PHC F4 (C34-C50)	-	-	-	-	<10	<10	<10	<10	<10	<10	14	<10	<10
Modifed TPH (Total C6-C34)	-	41	-	2500	15	15	15	15	49+	23	92+	15	53+

NOTES:

All parameter values in $\mu g/g\ (ppm)$ unless otherwise indicated.

- Exceeds FOX-4 Non-Hazardous Waste Landfill and Tier II Disposal Facility Background Concentration.
- + Exceeds FOX-4 Non-Hazardous Waste Landfill and Tier II Disposal Facility Baseline Average Concentration.
- * Exceeds DEW Line Cleanup Tier I Criteria.
- ** Exceeds DEW Line Cleanup Tier II Criteria.
- (DUP) Duplicate sample analyzed by AGAT Laboratories for QA/QC purposes.
- (AVG) Average concentration of duplicate samples.
- < Not detected.
- No concentration reported.

TABLE 3.8

RESULTS OF ANALYSIS FOR PARAMETERS IN SOIL AT NON-HAZARDOUS WASTE LANDFILL AND TIER II DISPOSAL FACILITY

	Background	Baseline	DEW Line	DEW Line	F4-NH-	F4-NH-	F4-NH-	F4-NH-	F4-NH-	F4-NH-	F4-NH-	F4-NH-	F4-NH-
	Concentration	Average	Cleanup	Cleanup	MW11-05-D	MW11-06-S	MW11-06-D	MW12-07-S	MW12-07-D	MW12-08-S	MW12-08-S	MW12-08-S	MW12-08-D
PARAMETERS		Concentration	Tier I	Tier II							(DUP)	(AVG)	
			Criteria	Criteria									
					24-Aug-14	24-Aug-14	24-Aug-14	24-Aug-14	24-Aug-14	24-Aug-14	24-Aug-14	24-Aug-14	24-Aug-14
	(_)	(+)	(*)	(**)	40-50cm	0-15cm	40-50cm	0-15cm	40-50cm	0-15cm	0-15cm	0-15cm	40-50cm
Copper	30	13		100	14+	13	14+	<u>36+</u>	17+	24+	16+	20+	30+
Nickel	24	10	-	100	11+	11+	14+	36+	20+	19+	9	14+	22+
Cobalt	9	5.0	-	50	3.4	3.5	3.8	9.9+	5.1+	6.9+	4.4	5.65+	7.8 +
Cadmium	1.0	1.0	-	5	< 0.10	< 0.10	< 0.10	0.13	< 0.10	< 0.10	< 0.5	< 0.5	< 0.10
Lead	10	5.6	200	500	3.1	3.9	5.4	<u>13+</u>	4.5	<u>15+</u>	5	10+	<u>18+</u>
Zinc	41	22	-	500	22	21	26	<u>74+</u>	31+	<u>53+</u>	25+	39+	<u>56+</u>
Chromium	41	21	-	250	28+	24+	29+	41+	24+	<u>52+</u>	32+	<u>42+</u>	<u>64+</u>
Arsenic	29	12	-	30	12	22+	<u>45+</u>	<u>30+</u>	16+	<u>59+</u>	15+	<u>37+</u>	16+
Mercury	-	0.100	-	2	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.10	< 0.10	< 0.050
Total PCBs	-	0.050	1	5	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.05	< 0.05	< 0.010
PHC F1 (C6-C10)	-	-	-	-	<10	<10	<10	<10	<10	<10	<5	<10	<10
PHC F2 (C10-C16)	-	-	-	-	<10	<10	<10	<10	<10	34	48	41	320
PHC F3 (C16-C34)	-	-	-	-	17	17	22	56	<10	21	< 50	21	49
PHC F4 (C34-C50)	-	-	-	-	<10	<10	<10	<10	<10	<10			<10
Modifed TPH (Total C6-C34)	-	41		2500	27	27	32	66+	15	60+	75.5+	75.5+	374+

NOTES:

All parameter values in $\mu g/g\ (ppm)$ unless otherwise indicated.

- Exceeds FOX-4 Non-Hazardous Waste Landfill and Tier II Disposal Facility Background Concentration.
- + Exceeds FOX-4 Non-Hazardous Waste Landfill and Tier II Disposal Facility Baseline Average Concentration.
- * Exceeds DEW Line Cleanup Tier I Criteria.
- ** Exceeds DEW Line Cleanup Tier II Criteria.
- (DUP) Duplicate sample analyzed by AGAT Laboratories for QA/QC purposes.
- (AVG) Average concentration of duplicate samples.
- < Not detected.
- No concentration reported.

Table 3.9: Evaluation of 2014 Soil Analytical Data (Non-Hazardous Waste Landfill and Tier II Disposal Facility)

	Baseline	
	Average	
Parameter	Concentration	2014 Results
	(ug/g)	
Copper	13	Detectable concentrations ranged between 52 and 98 ug/g for upgradient samples and between 7.4 and 52 ug/g for downgradient samples, with the highest concentration reported in the subsurface sample collected from the MW11-01 sample location while the lowest concentration was reported within the surficial sample at the MW11-04 sample location. Twelve of seventeen samples reported concentrations above the BAC.
Nickel	10	Detectable concentrations ranged between 40 and 73 ug/g for upgradient samples and between 7.1 and 42 ug/g for downgradient samples, with the highest concentration reported in the subsurface sample collected from the MW11-01 sample location while the lowest concentration was reported within the surficial sample at the MW11-04 sample location. Fourteen of seventeen samples reported concentrations above the BAC.
Cobalt	5.0	Detectable concentrations ranged between 11 and 17 ug/g for upgradient samples and between 2.1 and 14 ug/g for downgradient samples, with the highest concentration reported in the subsurface sample collected from the MW11-01 sample location while the lowest concentration was reported within the surficial sample at the MW11-04 sample location. Eight of seventeen samples reported concentrations above the BAC.
Cadmium	1.0	No detectable concentrations were reported in upgradient samples. Detectable concentrations ranged between 0.13 and 2.3 ug/g, with the highest concentration reported in the surface sample collected from the MW11-03 sample location while the lowest concentration was reported within the surficial sample at the MW12-07 sample location. Fourteen of the seventeen samples reported values below the laboratory detection limit, and one sample reported a concentration above the BAC.
Lead	5.6	Detectable concentrations ranged between 9.9 and 13 ug/g for upgradient samples and between 2.5 and 18 ug/g for downgradient samples, with the highest concentration reported in the subsurface sample collected from the MW12-08 sample location while the lowest concentration was reported within the surficial samples at the MW11-04 and MW11-05 sample locations. Nine of seventeen samples reported concentrations above the BAC.
Zinc	22	Detectable concentrations ranged between 86 and 110 ug/g for upgradient samples and between 16 and 74 ug/g for downgradient samples, with the highest concentration reported in the subsurface sample collected from the MW11-01 sample location while the lowest concentration was reported within the surficial sample at the MW11-04 sample location. Twelve of seventeen samples reported concentrations above the BAC.

Parameter	Baseline Average Concentration (ug/g)	2014 Results
Chromium	21	Detectable concentrations ranged between 73 and 83 ug/g for upgradient samples and between 21 and 82 ug/g for downgradient samples, with the highest concentration reported in the subsurface sample collected from the MW11-01 sample location while the lowest concentration was reported within the surficial sample at the MW11-04 sample location. Sixteen of seventeen samples reported concentrations above the BAC.
Arsenic	12	Detectable concentrations ranged between 48 and 170 ug/g for upgradient samples and between 7.4 and 59 ug/g for downgradient samples, with the highest concentration reported in the subsurface sample collected from the MW11-01 sample location while the lowest concentration was reported within the surficial sample at the MW11-04 sample location. Seven of the seventeen samples reported concentrations above the DEW Line Cleanup Tier II Criteria (30 ug/g) however only one sample exceeds the site-specific arsenic criteria of 130 ug/g.
Mercury	0.100	All seventeen samples reported concentrations less than the laboratory detection limit (0.050 ug/g and 0.10 ug/g for the duplicate sample submitted to the secondary laboratory).
PCBs	0.050	Detectable concentrations of 0.012 and 0.083 ug/g were reported in the subsurface and surface samples collected from the downgradient MW11-03 sample location, respectively. Fifteen of the seventeen samples reported concentrations less than the laboratory detection limit.
ТРН	41	Modified TPH concentrations were 15 ug/g for upgradient samples and ranged between 15 and 374 ug/g, with the highest concentration reported in the subsurface sample at the MW12-08 sample location and the lowest concentration in six of seventeen samples. Seven of seventeen samples reported concentrations above the BAC.

3.3.2.3 Soil Trend Analysis by Parameter and Discussion of Trends

New soil monitoring locations were identified near newly installed monitoring wells at the Non-Hazardous Waste Landfill and Tier II Disposal Facility during the 2011-2013 cleanup and maintenance works. The 2014 monitoring event is the first monitoring event where soil samples have been collected from these monitoring locations, so no trends are available for soil chemistry results at these locations.

3.3.3 Groundwater Sampling

Groundwater sampling was completed at the Non-Hazardous Waste Landfill and Tier II Disposal Facility on 24 and 25 August 2014. As previously reported a total of seven samples including one duplicate sample were procured from six monitoring wells as shown in plan on Figure 2.

3.3.3.1 Monitoring Well Sampling/Inspection Logs

Monitoring well sampling/inspection logs are provided following this page on Monitoring Well Sampling Records 1 through 8.

3.3.3.2 Water Levels/Groundwater Flow

Water levels were measured at the Non-Hazardous Waste Landfill and Tier II Disposal Facility on 24 August 2014. The groundwater levels measured are shown below in Table 3.10. Based on the measured groundwater levels, groundwater flow is expected to be towards the southwest, however groundwater flow will be highly affected by freeze/thaw cycles and permafrost.

Table 3.10: Groundwater Levels (Non-Hazardous Waste Landfill and Tier II Disposal Facility)

Monitoring Well	Date	Ground Surface Elevation (m)	Water Level (m bgs)	Water Level Elevation (m)	Depth to Bottom (m bgs)	Bottom Elevation (m)
MW11-01	24-Aug-14	21.0	1.06	19.94	3.38	17.62
MW11-02	24-Aug-14	19.5	0.11	19.39	1.43	18.07
MW11-03	24-Aug-14	20.3	0.48	19.82	2.39	17.91
MW11-04	24-Aug-14	19.2	0.47	18.73	1.63	17.57
MW11-05	24-Aug-14	18.6	0.59	18.01	1.77	16.83
MW11-06	24-Aug-14	18.0	Dry	N/A	0.48	17.52
MW12-07	24-Aug-14	16.4	0.31	16.09	1.58	14.82
MW12-08	24-Aug-14	18.7	Dry	N/A	0.52	18.18

N/A – data not available due to lack of available groundwater.

Monitoring wells MW11-06 and MW12-08 were reported to contain water as of monitoring completed from August to September 2013. It is recommended that all monitoring wells be monitored during future monitoring events.

3.3.3.3 Laboratory Analytical Results

The analytical results for groundwater samples collected at the Non-Hazardous Waste Landfill and Tier II Disposal Facility are presented in Table 3.11. One duplicate groundwater sample was collected at the Non-Hazardous Waste Landfill and Tier II Disposal Facility from monitoring well MW11-01. The RPDs for the duplicate sample results were above 30% for two of eleven parameters. In these cases, parameter concentrations were very low and small differences in

Monitoring Well Sampling Record 1

Site Name:	FOX-4	NonHaz/Tier II Disposal	
Date of Sampling Event:		Time:	7nm
Names of Samplers:	Z i / kug i i	S.Borcsok	7 (2111
rtamos of campioro.		J.Mauchan	
Landfill Name:	NH/T2	Samples Collected:	VES
Monitoring Well ID:	MW11-01	PHC F1	
Sample Number:	1010011-01	Inorganic Elements	
Condition of Well:	OK	PHC F2-F4	
Condition of Well.	OK	PCBs	
Macaurad Data			
Measured Data	70	Duplicate Collected?	F4-NH-MW11-
Well pipe height above ground	70	Sample ID.	
(cm)=			01
Diameter of well (cm)=	5		
Depth of well installation (cm)=			
(from ground surface)			
Length screened section			
(cm)=			
Depth to top of screen (cm)=			
(from ground surface)			
,			
Depth to water surface (cm)=	176	Measurement method: (meter,	Interface
,		tape, etc)	meter
		13.7 2 , 2 3 2 ,	
(from top of pipe)			
Static water level (cm)=	106		
(below ground surface)			
Measured well refusal depth	408	Evidence of sludge or siltation:	NO
(cm)=		Evidence of cladge of citation.	
(i.e. depth to frozen ground)			
Measured well refusal depth	338		
from ground surface	000		
Thickness of water column	232		
Static volume of water in well			
Static volume of water in well	4.71		
Free product thickness (mm)=	0	Measurement method:	IM
, , , , , , , , , , , , , , , , , , , ,	-		
Purging: (Y/N)	Υ	Purging/Sampling Equipment:	Waterra
Volume Purged Water=	20L	gg/ camping Equipment	tubing/
Decontamination required:	N		footvalve
(Y/N)	14		100144146
Number washes:			
Number rinses:			
ivuilibei illises.			
Final pH=	7.77		
Final Conductivity (uS/cm)=	160.3		
	3.1		
Final Temperature (degC)=	ა. I		

Monitoring Well Sampling Record 2

Site Name:	FOX-4	NonHaz/Tier II Disposal	
Date of Sampling Event:			620pm
Names of Samplers:	217149 11	S.Borcsok	020pm
		J.Mauchan	
Landfill Name:	NH/T2	Samples Collected:	YES
Monitoring Well ID:	MW11-02	PHC F1	
Sample Number:		Inorganic Elements	
Condition of Well:	OK	PHC F2-F4	
ponded water at well loo		PCBs	
Measured Data		Duplicate Collected?	NO
Well pipe height above ground	55		F4-NH-MW11-
(cm)=		'	02
Diameter of well (cm)=	5		
Depth of well installation (cm)=		Monitored on 24-Aug-14	
		Sampled on 25-Aug-14	
(from ground surface)			
Length screened section			
(cm)=			
Depth to top of screen (cm)=			
(from ground surface)			
Depth to water surface (cm)=	46	Measurement method: (meter,	Interface
		tape, etc)	meter
(from top of pipe)			
Static water level (cm)=	-9		
(below ground surface)			
Measured well refusal depth	178	Evidence of sludge or siltation:	NO
(cm)=			
(i.e. depth to frozen ground)			
Measured well refusal depth	123		
from ground surface	400		
Thickness of water column	132		
Static volume of water in well	2.68		
Free product thickness (mm)=	0	Measurement method:	IM
Purging: (Y/N)	Y	Purging/Sampling Equipment:	Waterra
Volume Purged Water=	9L		tubing/
Decontamination required:	Ν		footvalve
(Y/N)			
Number washes:			
Number rinses:			
Final pH=	7.45		
Final Conductivity (uS/cm)=	170.2		
Final Temperature (degC)=	3		

Site Name:	FOX-4	NonHaz/Tier II Disposal	
Date of Sampling Event:		•	610pm
Names of Samplers:	Z i / kug i i	S.Borcsok	Отории
rtamos of campiors.		J.Mauchan	
Landfill Name:	NH/T2	Samples Collected:	VES
Monitoring Well ID:	MW11-03	PHC F1	
Sample Number:	1010011 03	Inorganic Elements	
Condition of Well:	OK	PHC F2-F4	
Condition of Well.	OR	PCBs	
Measured Data		Duplicate Collected?	
Well pipe height above ground	35		F4-NH-MW11-
(cm)=	33	Sample ID.	03
Diameter of well (cm)=	5		03
Depth of well installation (cm)=	<u> </u>	Monitored on 24-Aug-14	
Depth of Well Installation (CIII)=		Sampled on 25-Aug-14	
(from ground surface)		Sampled on 25-Aug-14	
Length screened section			
(cm)=			
Depth to top of screen (cm)=			
(from ground surface)			
(Horri ground surface)			
Depth to water surface (cm)=	83	Measurement method: (meter,	Interface
Deptir to water surface (ciri)=	03	tape, etc)	meter
		tape, etc)	meter
(from top of pipe)			
Static water level (cm)=	48		
(below ground surface)	40		
Measured well refusal depth	274	Evidence of sludge or siltation:	NO
(cm)=	214	Evidence of studge of sittation.	140
(i.e. depth to frozen ground)			
Measured well refusal depth	239		
from ground surface	233		
Thickness of water column	191		
Static volume of water in well	3.88		
Free product thickness (mm)=	0	Measurement method:	IM
	-		
Purging: (Y/N)	Υ	Purging/Sampling Equipment:	Waterra
Volume Purged Water=	12L		tubing/
Decontamination required:	N		footvalve
(Y/N)			
Number washes:			
Number rinses:			
Final pH=	7.81		
Final Conductivity (uS/cm)=	159		
Final Temperature (degC)=	2.9		

Site Name:	FOX-4	NonHaz/Tier II Disposal	
Date of Sampling Event:		•	600pm
Names of Samplers:	217(49 11	S.Borcsok	ооории
ramos of campions.		J.Mauchan	
Landfill Name:	NH/T2	Samples Collected:	VES
Monitoring Well ID:	MW11-04	PHC F1	
Sample Number:	1010011-04	Inorganic Elements	
Condition of Well:	OK	PHC F2-F4	
Condition of Well.	OK	PCBs	
Massured Date		Duplicate Collected?	
Measured Data	33		F4-NH-MW11-
Well pipe height above ground	33	Sample ID.	
(cm)=			04
Diameter of well (cm)=	5	NA CALL OF A A A	
Depth of well installation (cm)=		Monitored on 24-Aug-14	
		Sampled on 25-Aug-14	
(from ground surface)			
Length screened section			
(cm)=			
Depth to top of screen (cm)=			
(from ground surface)			
Depth to water surface (cm)=	80	Measurement method: (meter,	Interface
		tape, etc)	meter
(from top of pipe)			
Static water level (cm)=	47		
(below ground surface)			
Measured well refusal depth	196	Evidence of sludge or siltation:	NO
(cm)=			
(i.e. depth to frozen ground)			
Measured well refusal depth	163		
from ground surface			
Thickness of water column	116		
Static volume of water in well	2.35		
Free product thickness (mm)=	0	Measurement method:	IM
1.100 product triol(1633 (IIIII)=		weasarement method.	11VI
Purging: (Y/N)	Υ	Purging/Sampling Equipment:	\\/atarra
		Furging/Sampling Equipment:	Waterra
Volume Purged Water=	10L		tubing/
Decontamination required:	N		footvalve
(Y/N)			
Number washes:			
Number rinses:			
Final pH=	7.5		
Final Conductivity (uS/cm)=	163.6		
Final Temperature (degC)=	2.9		

Site Name:	FOX-4	NonHaz/Tier II Disposal	
Date of Sampling Event:		Time:	550
Names of Samplers:	Z i / kug i i	S.Borcsok	000
rtames of Samplero.		J.Mauchan	
Landfill Name:	NH/T2	Samples Collected:	VES
Monitoring Well ID:	MW11-05	PHC F1	
Sample Number:	1010011-03	Inorganic Elements	
Condition of Well:	OK	PHC F2-F4	
water ponded above v		PCBs	
Measured Data	veli	Duplicate Collected?	
	36		F4-NH-MW11-
Well pipe height above ground	36	Sample ID.	
(cm)=	5		05
Diameter of well (cm)=	ე		
Depth of well installation (cm)=			
(from ground surface)			
Length screened section			
(cm)=			
Depth to top of screen (cm)=			
(from ground surface)			
Depth to water surface (cm)=	95	Measurement method: (meter, tape, etc)	Interface meter
(from top of pine)			
(from top of pipe)	50		
Static water level (cm)=	59		
(below ground surface)	040	Friday as of alcohol as a ciliation.	NO
Measured well refusal depth	213	Evidence of sludge or siltation:	NO
(cm)=			
(i.e. depth to frozen ground)	477		
Measured well refusal depth	177		
from ground surface	440		
Thickness of water column	118		
Static volume of water in well	2.40		
Free product thickness (mm)=	0	Measurement method:	IM
-		D : /0 :: 5 :	384
Purging: (Y/N)	Y	Purging/Sampling Equipment:	Waterra
Volume Purged Water=	9L		tubing/
Decontamination required: (Y/N)	N		footvalve
Number washes:			
Number rinses:			
. 1320. 11000.			
Final pH=	7.71		
Final Conductivity (uS/cm)=	146.4		
Final Temperature (degC)=	2.7		
. mai romporataro (dogo)=			

Site Name:	FOX-4	NonHaz/Tier II Disposal	
Date of Sampling Event:			540pm
Names of Samplers:	217(49 11	S.Borcsok	Отории
rtames of campions.		J.Mauchan	
Landfill Name:	NH/T2	Samples Collected:	NO
Monitoring Well ID:	MW11-06	PHC F1	110
Sample Number:	1010011-00	Inorganic Elements	
Condition of Well:	OK	PHC F2-F4	
Condition of Well.	OK	PCBs	
Measured Data		Duplicate Collected?	
Well pipe height above ground	50	Sample ID:	
(cm)=	50	Sample ID.	
Diameter of well (cm)=	5		
Depth of well installation (cm)=	<u> </u>		
Depth of well installation (cm)=			
(from ground surface)			
Length screened section			
(cm)=			
Depth to top of screen (cm)=			
(from ground surface)			
Depth to water surface (cm)=	N/A (well	Measurement method: (meter,	Interface
	was dry or	tape, etc)	meter
	frozen)		
	ŕ		
(from top of pipe)			
Static water level (cm)=			
(below ground surface)			
Measured well refusal depth	98	Evidence of sludge or siltation:	Bottom felt
(cm)=			sandy
(i.e. depth to frozen ground)			
Measured well refusal depth	48		
from ground surface			
Thickness of water column	0		
Static volume of water in well	0		
Free product thickness (mm)=	0	Measurement method:	IM
Distriction (MAN)	N I	Duraina/Compilie - Facilia - C	N 1 / A
Purging: (Y/N)	N	Purging/Sampling Equipment:	N/A
Volume Purged Water=	N 1		
Decontamination required:	N		
(Y/N)			
Number washes:			
Number rinses:			
Fig. 21 - 11			
Final Conductivity (v.C/cm)			
Final Conductivity (uS/cm)=			
Final Temperature (degC)=			

Site Name:	FOX-4	NonHaz/Tier II Disposal	
Date of Sampling Event:		•	530pm
Names of Samplers:	217149 11	S.Borcsok	СССРП
Tames of Campions		J.Mauchan	
Landfill Name:	NH/T2	Samples Collected:	YES
Monitoring Well ID:	MW12-07	PHC F1	
Sample Number:	1010012 07	Inorganic Elements	
Condition of Well:		PHC F2-F4	
Condition of Well.		PCBs	
Measured Data		Duplicate Collected?	
Well pipe height above ground	44		F4-NH-MW12-
	44	Sample ID.	
(cm)=			07
Diameter of well (cm)=	5		
Depth of well installation (cm)=			
(from ground surface)			
Length screened section			
(cm)=			
Depth to top of screen (cm)=			
(from ground surface)			
, ,			
Depth to water surface (cm)=	75	Measurement method: (meter,	Interface
		tape, etc)	meter
		1470, 010)	1110101
(from top of pipe)			
Static water level (cm)=	31		
(below ground surface)	01		
Measured well refusal depth	202	Evidence of sludge or siltation:	NO
(cm)=	202	Evidence of studge of situation.	140
(i.e. depth to frozen ground)			
Measured well refusal depth	158		
from ground surface	130		
Thickness of water column	127		
Static volume of water in well	2.58		
Free product thickness (mm)=	0	Measurement method:	IM
Purging: (Y/N)	Υ	Purging/Sampling Equipment:	Waterra
Volume Purged Water=	9L		tubing/
Decontamination required:	N		footvalve
(Y/N)	.,		100144140
Number washes:			
Number rinses:			
ivumber mises.			
Final pH=	7.48		
	175.7		
Final Conductivity (uS/cm)=			
Final Temperature (degC)=	3.1		

Site Name: FOX-4 NonHaz/Tier II Disposal Date of Sampling Event: 24-Aug-14 Time: 640pm Names of Samplers: S.Borcsok J.Mauchan Landfill Name: NH/T2 Samples Collected: NO Monitoring Well ID: MW12-08 PHC F1 Sample Number: Inorganic Elements Condition of Well: PHC F2-F4 PCBs Measured Data Duplicate Collected? Well pipe height above ground (cm)= Diameter of well (cm)= 5 Depth of well installation (cm)= (from ground surface) Langth agreemed agreemed agreement.	
Names of Samplers: S.Borcsok J.Mauchan	
J.Mauchan Landfill Name: NH/T2 Samples Collected: NO Monitoring Well ID: MW12-08 PHC F1 Sample Number: Inorganic Elements Condition of Well: PHC F2-F4 PCBs Measured Data Duplicate Collected? Well pipe height above ground (cm)= Diameter of well (cm)= 5 Depth of well installation (cm)= (from ground surface)	
Landfill Name: NH/T2 Samples Collected: NO Monitoring Well ID: MW12-08 PHC F1 Sample Number: Inorganic Elements Condition of Well: PHC F2-F4 PCBs Measured Data Duplicate Collected? Well pipe height above ground (cm)= Diameter of well (cm)= 5 Depth of well installation (cm)= (from ground surface)	
Monitoring Well ID: MW12-08 PHC F1 Sample Number: Inorganic Elements Condition of Well: PHC F2-F4 PCBs Measured Data Duplicate Collected? Well pipe height above ground (cm)= Diameter of well (cm)= 5 Depth of well installation (cm)= (from ground surface)	
Sample Number: Condition of Well: PHC F2-F4 PCBs Measured Data Duplicate Collected? Well pipe height above ground (cm)= Diameter of well (cm)= Depth of well installation (cm)= (from ground surface)	
Condition of Well: PHC F2-F4 PCBs Measured Data Duplicate Collected? Well pipe height above ground (cm)= Diameter of well (cm)= Depth of well installation (cm)= (from ground surface)	
Measured Data Measured Data Duplicate Collected? Well pipe height above ground (cm)= Diameter of well (cm)= 5 Depth of well installation (cm)= (from ground surface)	
Measured Data Duplicate Collected? Well pipe height above ground (cm)= 58 Sample ID: Diameter of well (cm)= 5 Depth of well installation (cm)= (from ground surface)	
Well pipe height above ground (cm)= Diameter of well (cm)= 5 Depth of well installation (cm)= (from ground surface)	
(cm)= Diameter of well (cm)= 5 Depth of well installation (cm)= (from ground surface)	
Diameter of well (cm)= 5 Depth of well installation (cm)= (from ground surface)	
Depth of well installation (cm)= (from ground surface)	
(from ground surface)	
Length screened section	
(cm)=	
Depth to top of screen (cm)=	
(from ground surface)	
(- 9	
Depth to water surface (cm)= N/A (well Measurement method: (meter, Inte	rface
	meter
frozen)	
(from top of pipe)	
Static water level (cm)=	
(below ground surface)	
Measured well refusal depth 110 Evidence of sludge or siltation:	NO
(cm)=	
(i.e. depth to frozen ground)	
Measured well refusal depth 52	
from ground surface	
Thickness of water column 0	
Static volume of water in well 0	
Free product thickness (mm)= 0 Measurement method:	IM
Purging: (Y/N) N Purging/Sampling Equipment:	N/A
Volume Purged Water=	. 4// \
Decontamination required: N	
(Y/N)	
Number washes:	
Number vinses:	
INUITIDET TITISES.	
Final pH=	
Final Conductivity (uS/cm)=	
Final Temperature (degC)=	

TABLE 3.11

RESULTS OF ANALYSIS FOR PARAMETERS IN GROUNDWATER AT NON-HAZARDOUS WASTE LANDFILL AND TIER II DISPOSAL FACILITY

PARAMETERS	Baseline Average Concentration	F4-NH- MW11-01	F4-NH- MW11-01 (DUP)	F4-NH- MW11-01 (AVG)	F4-NH- MW11-02	F4-NH- MW11-03	F4-NH- MW11-04	F4-NH- MW11-05	F4-NH- MW12-07
	(+)	24-Aug-14	24-Aug-14	24-Aug-14	25-Aug-14	25-Aug-14	25-Aug-14	24-Aug-14	24-Aug-14
Copper	0.010	0.056+	0.105+	0.0805+	0.022+	0.13+	0.069+	0.056+	0.082+
Nickel	0.057	0.3+	0.268+	0.284+	0.037	0.33+	0.13+	0.055	0.092+
Cobalt	0.0087	0.031+	0.036+	0.0335+	0.0073	0.095+	0.018+	0.014+	0.026+
Cadmium	0.0010	0.00059	< 0.002	0.00059	0.000043	0.0011+	0.00012	0.000083	0.00025
Lead	0.0071	0.018+	0.02+	0.019+	0.0039	0.26+	0.016+	0.014+	0.021+
Zinc	0.84	0.094	0.107	0.1005	17+	0.33	0.18	0.65	0.13
Chromium	0.0306	0.96+	1.07+	1.015+	0.027	0.54+	0.2+	0.068+	0.14+
Arsenic	0.0183	0.033+	0.009	0.021+	0.11+	0.053+	0.024+	0.031+	0.04+
Mercury	0.0006	< 0.00010	< 0.0001	< 0.0001	< 0.00010	< 0.00010	< 0.00010	< 0.00010	< 0.00010
Total PCBs	0.0001	< 0.00005	< 0.0001	< 0.0001	< 0.00005	< 0.00005	< 0.00005	< 0.00005	< 0.00005
PHC F1 (C6-C10)	-	< 0.025	< 0.025	< 0.025	0.072	0.028	0.031	0.033	< 0.025
PHC F2 (C10-C16)	-	< 0.100	< 0.100	< 0.100	0.12	< 0.100	< 0.100	< 0.100	< 0.100
PHC F3 (C16-C34)	-	< 0.100	< 0.100	< 0.100	< 0.100	< 0.100	< 0.100	< 0.100	< 0.100
PHC F4 (C34-C50)	-	< 0.100	< 0.100	< 0.100	< 0.100	< 0.100	< 0.100	< 0.100	< 0.100
Modifed TPH (Total C6-C34)	0.65	0.113	0.113	0.113	0.242	0.128	0.131	0.133	0.113

NOTES:

All parameter values in mg/L (ppm) unless otherwise indicated.

+ Exceeds Non-Hazardous Waste Landfill and Tier II Disposal Facility Baseline Average Concentration.

(DUP) Duplicate sample analyzed by AGAT Laboratories for QA/QC purposes.

RDL Reportable Detection Limit.

< Not detected.

- No concentration reported.

reported concentrations resulted in large RPD values. The duplicate sample results are believed to be consistent.

3.3.3.4 Discussion of Results by Parameter

A discussion of the results for each parameter analyzed in groundwater at the Non-Hazardous Waste Landfill and Tier II Disposal Facility is provided in Table 3.12. The discussion includes a comparison of results from upgradient (MW11-01) and downgradient (MW11-02, MW11-03, MW11-04, MW11-05, MW11-06, MW12-07, MW12-08) locations to the baseline average concentrations that have been determined for each landfill from groundwater chemistry at the landfill area prior to and during remediation.

Table 3.12: Evaluation of Groundwater Analytical Results (Non-Hazardous Waste Landfill and Tier II Disposal Facility)

Parameter	Baseline Average Concentration (mg/L)	2014 Results				
Copper	0.010	Detectable concentrations were 0.0805 mg/L for the upgradient well and ranged between 0.022 and 0.13 mg/L for downgradient wells, with the highest concentration recorded at monitoring well MW11-03 and the lowest concentration recorded at monitoring well MW11-02. All seven samples reported concentrations above the BAC.				
Nickel	0.057	Detectable concentrations were 0.284 mg/L for the upgradient well and ranged between 0.037 and 0.33 mg/L for downgradient wells, with the highest concentration recorded at monitoring well MW11-03 and the lowest concentration recorded at monitoring well MW11-02. Five of seven samples reported concentrations above the BAC.				
Cobalt 0.0087		Detectable concentrations were 0.0335 mg/L for the upgradient well and ranged between 0.0073 and 0.095 mg/L for downgradient wells, with the highest concentration recorded at monitoring well MW11-03 and the lowest concentration recorded at monitoring well MW11-02. Six of seven samples reported concentrations above the BAC.				
Cadmium	0.0010	Detectable concentrations were 0.00059 mg/L for the upgradient well and ranged between 0.000043 and 0.0011 mg/L for downgradient wells, with the highest concentration recorded at monitoring well MW11-03 and the lowest concentration recorded at monitoring well MW11-02. One of seven samples reported concentrations above the BAC.				
Lead	0.0071	Detectable concentrations were 0.019 mg/L for the upgradient well and ranged between 0.0039 and 0.26 mg/L for downgradient wells, with the highest concentration recorded at monitoring well MW11-03 and the lowest concentration recorded at monitoring well MW11-02. Six of seven samples reported concentrations above the BAC.				

Parameter Baseline Average Concentration (mg/L)		2014 Results			
Zinc	0.84	Detectable concentrations were 0.1005 mg/L for the upgradient well and ranged between 0.13 and 17 mg/L for downgradient wells, with the highest concentration recorded at monitoring well MW11-02 and the lowest concentration recorded at monitoring well MW11-01. One of seven samples reported concentrations above the BAC.			
Chromium	0.0306	Detectable concentrations were 1.015 mg/L for the upgradient well and ranged between 0.027 and 1.015 mg/L for the downgradient wells, with the highest concentration recorded at monitoring well MW11-01 and the lowest concentration recorded at monitoring well MW11-02. Six of seven samples reported concentrations above the BAC.			
Arsenic 0.0183		Detectable concentrations were 0.021 mg/L for the upgradient well and ranged between 0.024 and 0.11 mg/L for the downgradient wells, with the highest concentration recorded at monitoring well MW11-02 and the lowest concentration recorded at monitoring well MW11-01. Six of seven samples reported concentrations above the BAC.			
Mercury	0.0006	All seven samples reported concentrations below the laboratory detection limit of 0.0001 mg/L.			
PCBs	0.0001	All seven samples reported concentrations below the laboratory detection limit of 0.00005 mg/L (0.0001 mg/L for the duplicate sample submitted to the secondary laboratory).			
ТРН	0.65	Detectable concentrations of PHC fractions F1, F2, and F3 were reported in four of seven samples, resulting in modified TPH concentrations for the seven samples ranging from 0.113 to 0.242 mg/L. No detectable concentrations were reported in upgradient samples.			

3.3.3.5 Groundwater Trend Analysis by Parameter & Discussion of Trends

New groundwater monitoring wells were installed at the Non-Hazardous Waste Landfill and Tier II Disposal Facility during the 2011-2013 cleanup and maintenance works. Previously existing monitoring wells in this area were decommissioned during this period. The 2014 monitoring event is the first monitoring event where samples have been collected from these monitoring wells, so no trends are available for groundwater results at these locations.

3.3.4 Thermal Monitoring

Thermal monitoring was completed at this landfill on 25 August 2014. A total of nine thermistors were inspected as part of the monitoring program at this landfill location.

3.3.4.1 Thermistor Annual Maintenance Reports

The thermistor annual maintenance reports completed during the site inspection are provided following this page in Thermistor Annual Maintenance Reports 1-9.

3.3.4.2 Summary of Findings from Annual DEW Line Thermal Reports

The results of the analysis of thermistor data collected during this monitoring program were inconclusive. No thermistor report was completed for the thermistors installed at this landfill.

3.4 CONCLUSIONS/OVERALL PERFORMANCE OF THE LANDFILL

Based on the findings of the 2014 landfill monitoring program, the performance of the landfill is considered to be acceptable.

3.5 RECOMMENDATIONS/NEXT STEPS

Regular monitoring of this landfill as per the monitoring schedule shown in Table 1.1 should be continued. No remedial work is necessary at this time.

Contractor Name:	SENES		Inspe	ection Date:	25-Aug-14
Prepared By:	S. Borcsok				
Thermistor Informati	ion				
Site Name:	FOX-4	Thermistor Lo	cation Non-I	Hazardous Waste	and Tier II Disposal
Thermistor Number:	VT-3	Inclination: Ve			·
Install Date:		First Date Eve		Last	Date Event
Coordinates and Ele		N	E		Elev
Length of Cable (m)		Cable Lead Above (Nodal Points	
Datalogger Serial # Thermistor Type: UL			(Cable Serial Numl	ber
Thermistor Type. Of	_10				
Thermistor Inspect	<u>tion</u>	Good	Nood	s Maintenance	
Casina		<u></u>		s Maintenance	
Casing					
Cover		□X			
Data Logo	ger	□X			
Cable		□X			
Beads			□ X _	1, 2, 6, 7 not work	ing
Battery In	stallation Date	Unknown			
Battery Le	evels	Main	11.34	Aux	13.38
·					
Manual Ground Te	mperature Read	<u>dings</u>	_		
Bead	Volts	Degrees C		Bead Vo	lts Degrees C
1	0.0000	381.0742			
2	0.0000	-101.4553			
3	1.3253	12.6434			
4	1.3241	13.1899			
5	1.3583	13.7501			
6	0.0000	-90.1096			
7	0.0000	381.0742			
8	1.2111	8.8153	L		
Observations and I	Proposed Main	tenance	_		
	needs to be rep	·			
	-	JIGOGG			
	ot working				
	nind 2:32:53				

Contractor Name:	SENES		Inspe	ection Date:	:	25-Aug-14
Prepared By:	S. Borcsok					-
Thermistor Informati		The americate of the	nation No.		\\/t	II DiI
Site Name: Thermistor Number:	FOX-4	Thermistor Lo		Hazardous	Waste and Ti	er II Disposai
Install Date:	V 1 -4	First Date Eve		Last Date		/ent
Coordinates and Ele	vation	N	E			ev
Length of Cable (m)		Cable Lead Above		Nodal Poin		
Datalogger Serial #	707255	•	(Cable Seria	al Number	
Thermistor Type: UL	_16					
Thermister Inchest	ian					
Thermistor Inspect	<u>iion</u>	Good	Need	ls Maintena	ance	
Casing		<u> </u>		io maintone		
· ·			-			
Cover		□X				
Data Logo	ger	□X				
Cable		□X				
Beads		$\Box X$				
Battery In:	stallation Date	Unknown				
Battery Le	evels	Main	11.34		Aux	12.17
Manual Ground Ter	mperature Read	dings				
Bead	Volts	Degrees C		Bead	Volts	Degrees C
1	1.4353	16.3765				
2	1.4121	15.6102				
3	1.3870	14.7373	<u> </u>			
4	1.3625	13.8939	<u> </u>			
5	1.3430	13.2291	Į			
6	0.0000	381.0742	Į			
7	0.0000	381.0742	Ļ			_
8	0.0000	381.0742	L			
Observations and I	Proposed Main	tenance				
	needs to be rep					
	ind 2:21:17					
	adings do not m	aka sansa				
iviariual re	aunys uu nut n	iant stiist				

Contractor Name:	SENES		Inspe	ction Date:		25-Aug-14
Prepared By:	S. Borcsok		,			<u> </u>
Thermistor Information Site Name:	FOX-4	Thermistor Location	on Non-F	Hazardous W	aste and Ti	er II Disposal
Thermistor Number:		Inclination: Vertica		102010000	asio ana	ei ii Dioposai
Install Date:		First Date Event		L	ast Date E	vent
Coordinates and Ele		N	E		El	ev
Length of Cable (m)		Cable Lead Above Grou	` '	Nodal Points		_
Datalogger Serial # 7 Thermistor Type: UL				Cable Serial N	Number	
1110111110101 1 1 1 1 1 1 1 1 1	.10					
Thermistor Inspect	<u>ion</u>	Good	Needs	s Maintenand	•	
Casing		<u></u>		5 Mairiteriano	, C	
Casing		□X	_			
Cover						_
Data Logg	jer	□X				
Cable		□X				
Beads		□X				
Battery Ins	stallation Date					
Battery Le	evels	Main	11.34		\ux	13.14
Manual Ground Ter	mperature Read	dings	_			
Bead	Volts	Degrees C	L	Bead	Volts	Degrees C
1	1.5004	18.7062	L			
2	1.4412	16.6138	L			_
3	1.4158	15.7596	L			
4	1.4002	15.1952	L			_
5	1.3784	14.4395	L			
6	1.3595	13.8102	L			
7	0.0000	381.0742	L			
8	0.0000	381.0742	L			
Observations and F	Proposed Main	tenance				
	needs to be rep	<u> </u>				
	•	measurement, memory v	vas wrapped			
	to 12 hour meas					
_		01, manual readings do n	ot make sense			

Datalogger identifed as VT-5 on drawing, datalogger box said VT-2

Contracto	r Name:	SENES			Inst	pection Date:		25-Aug-14
Prepared		S. Borcsok						
	or Information		I 		New Hearth was Wester and Tier II Diseased			
Site Name	e: or Number:	FOX-4	Thermistor Location	Thermistor Location Non-Hazardous Waste and Tier II Disp Inclination: Vertical				r II Disposai
Install Da		V I-5A	First Date Event	<u>al</u>			Last Data Eve	nnt .
	tes and Ele	N		E		Last Date Event Elev		
	Cable (m)	Cable Lead Above Grou	ınd (m)		Nodal Points		V	
	er Serial # 8	308003	Oable Lead Above Gloc	and (m)		Cable Serial		
	or Type: UL					Cable Corla	Tturibor	
Thermistor Inspection			Good		Noc	eds Maintenar	200	
						sus mannenar	100	
	Casing		□X					
	Cover		□X					
	Data Logg	er	□X					
	Cable		□X					
	Beads					Bead 4 fluct	uates wildly	
	Battery Installation Date		Unknown					
	Battery Le	vels	Main		Aux			
Manual G	Fround Ter	nperature Read	<u>lings</u>			_		
	Bead	Volts	Degrees C			Bead	Volts	Degrees C
	1	1.4596	17.2894					
	2	1.4230	15.9924					
	3	1.3990	15.1554					
	4	1.3101	12.1123					
	5	1.3735	14.2713					
	6	0.0000	381.0742					
	7	0.0000	381.0742					
	8	0.0000	381.0742					
<u>Observat</u>	ions and F	Proposed Maint	enance					
	Dessicant needs to be replaced							
	Clock behind 2:20:09							
	Thermisto	r was not identif	ied on drawing provided b	efore sta	art of	field program	l	
	Datalogge	r identified as V	T-5					
	Manual readings do not make sense							

Contractor Name:	: SENES		Inspection Da	ite:	25-Aug-14
Prepared By:	S. Borcsok				
Thermistor Inform		Thormistor Lo	Non Hozordo	··· \Masta and	Tier II Dienosol
Site Name: Thermistor Numb	FOX-4 er: VT-6	Thermistor Lo		us waste and	Tier II Disposal
Install Date:	<u> </u>	First Date Eve		Last Date I	Event
Coordinates and I		N	E	I	Elev
Length of Cable (Cable Lead Above	()		
Datalogger Serial Thermistor Type:			Cable Se	erial Number	
Theimistor Type.	OLIO				
Thermistor Inspe	<u>ection</u>				
		Good	Needs Mainte	nance	
Casing		$\Box X$			
Cover		$\Box X$			
Data Lo	ogger	$\Box X$			
Cable		$\Box X$			
Beads		$\Box X$			
Battery	Installation Date	Unknown			
Battery	Levels	Main	11.34	Aux	12.77
Manual Ground	Temperature Rea	adings			
Bea	d Volts	Degrees C	Bead	Volts	Degrees C
1	1.4602	17.3085			
2	1.4296	16.2259			
3	1.4053	15.3731			
4	1.3815	14.5474			
5	1.3566	13.6926			
6	1.3357	12.9799			
7	0.0000	381.0742			
8	0.0000	381.0742			
Observations an	nd Proposed Mair	ntenance			
	ant needs to be re				
		placed /T-6 on drawing, datal	oggor hav said \/T-1		
	gger identified as vonehind 2:20:45	/ 1-0 on Grawing, Galak	Jyger box said v 1-1		
	Denina 2:20:45 Lreadinas do not r				

Contractor Name:	SENES		Inspe	ection Date	·	25-Aug-14
Prepared By:	S. Borcsok					
Thermistor Informa	etion					
Site Name:	FOX-4	Thermistor Lo		Hazardous	Waste and	Tier II Disposal
Thermistor Numbe	r: VT-7	Inclination: Ve			5.4	
Install Date: Coordinates and E	lavation	First Date Eve	ent E		Last Date	Event Elev
Length of Cable (m		Cable Lead Above		Nodal Poin		Elev
Datalogger Serial #	# 07110044		\ /	Cable Seria		
Thermistor Type: U	JL16					
Thermistor Inspec	ctio <u>n</u>					
		Good	Need	ls Maintena	ance	
Casing		□X				
Cover		□X				
Data Log	gger	$\Box X$				
Cable		$\Box X$				
Beads		$\Box X$				
Battery I	nstallation Date	Unknown				
Battery L	_evels	Main	7.68		Aux	5.60
					_	
Manual Ground To	emperature Read	lings				
Bead	Volts	Degrees C	-	Bead	Volts	Degrees C
1	1.2141	8.9135		9	0.9095	-1.1055
2	1.1885	8.0689	Į.	10	0.8972	-1.5200
3	1.0889	4.8072]	11	0.8858	-1.9026
4	1.0489	3.4992		12	0.8786	-2.1446
5	1.0144	2.3660		13	0.0000	381.0742
6	0.9807	1.2587		14	0.0000	381.0742
7	0.9465	0.1278	[15	0.0000	381.0742
8	0.9268	-0.5295		16	0.0000	381.0742
Charmetions and	Dranged Maint		-			
Observations and						
	nt needs to be rep	laced				
CIOCK DE	ehind 2:11:42					

				l		
Contractor Name:	SENES			Inspection Date:	:	25-Aug-14
Prepared By:	S. Borcsok					
Thermistor Information	on					
Site Name:	FOX-4	Thermistor Loca		Non-Hazardous	Waste and Ti	er II Disposal
Thermistor Number: \	√T-8	Inclination Inclin	ation: Verti	ical		
Install Date:		First Date Event	t		Last Date Ev	rent
Coordinates and Elev		N		E	El	ev
Length of Cable (m)		Cable Lead Above Gr	ound (m)	Nodal Poin		
Datalogger Serial # 0				Cable Seria	al Number	
Thermistor Type: UL1	16					
Thermistor Inspection	on					
Thermistor mapeon	<u> </u>	Good		Needs Maintena	ance	
Casing		□X				
Cover				□X Gasket on	thermistor cov	er removed
Data Logge	er			□X		
Cable				□X		
Beads				□X		
Battery Ins	tallation Date	Unknown				
Battery Lev	/els	Main			Aux	
,						
- . -						
Manual Ground Tem	<u>iperature Readin</u>	<u>igs</u>				
Bead	Volts	Degrees C		Bead	Volts	Degrees C
						-
				-		
 						
				-		
<u> </u>				<u> </u>		
Observations and P	roposed Mainter	nance_				
Dessicant r	needs to be repla	ced				
	•	to read the configura	ation from t	bo datalogger C	ould not conne	vot.
		_		ile datalogger. C	odia not conne	;Cl
to the data	logger and downlo	oad data.				

Contractor Name: SENES		Inspection Date:	25-Aug-14
Prepared By: S. Borcsok			
Thermistor Information Site Name: FOX-4	Thermistor Location	Non-Hazardous Waste and T	Fior II Dienosal
Thermistor Number: VT-9	Inclination: Vertical	NUII-FIdZaiuous vvasie and i	IEI II Dispusai
Install Date:	First Date Event	Last Date E	vent
Coordinates and Elevation N			Elev
Length of Cable (m)	Cable Lead Above Ground (m)	Nodal Points	
Datalogger Serial # 0711082		Cable Serial Number	
Thermistor Type: UL16			
Thermistor Inspection			
Illerinistor mapection	Good	Needs Maintenance	
2	_ <u></u>		
Casing	 -		
Cover	□X		
Data Logger		□X	
Cable		□X	
Beads		□X	
Battery Installation Date			
Battery Levels	Main	Aux	
,			
Towns of December 1			
Manual Ground Temperature Reading			
Bead Volts	Degrees C	Bead Volts	Degrees C
<u></u>			
<u> </u>		 	
 			
Observations and Proposed Maintena	ance		
Dessicant needs to be replace			-
	eceived error message "Invalid	d argument to time encode"	
THEU to download data and is	3001000 enoi message mvana	1 argument to time encode	

1			Inspe	ection Date:	-	25-Aug-14
Prepared By:	S. Borcsok					
Thermistor Informati	on					
Site Name:	FOX-4	Thermistor Loca		Hazardous	Waste and	Tier II Disposal
Thermistor Number:	VT-10	Inclination: Vert			Last Data	F
Install Date: Coordinates and Ele	evation N	First Date Even	nt E		Last Date	Elev
Length of Cable (m)		able Lead Above Gr		Nodal Point		LIEV
Datalogger Serial #	07110049		\ /	Cable Seria		
Thermistor Type: UL	.16					
Thermistor Inspect	ion					
		Good	Need	ds Maintena	ince	
Casing		$\Box X$				
Cover			□X	Cover to tig	ght to get ba	ck on fully
Data Logo	jer	$\Box X$				
Cable		□X	_			
Beads		□X				
Battery In:	stallation Date		-			
Battery Le		Main	11.34		Aux	2.43
•						
Manual Ground Ter	mperature Readin	<u>gs</u>				
Bead	Volts	Degrees C		Bead	Volts	Degrees C
1	1.2214	9.1555		9	0.9073	-1.1796
2	1.1331	6.2521		10	0.8960	-1.5585
3	1.0755	4.3706		11	0.8863	-1.8846
4	1.0402	3.2144		12	0.8803	-2.0879
5	1.0030	1.9924		13	0.8748	-2.2735
6	0.9657	0.7623		14	0.8705	-2.4181
7	0.9391	-0.1205		15	0.0000	381.0742
8	0.9200	-0.7560		16	0.0000	381.0742
			•			
Observations and I						
	needs to be replac					
	ind CO days 00.50./	17				
Clock beh	ind 63 days 23:58:1					

4.0 HELIPAD WEST LANDFILL

4.1 LANDFILL DESCRIPTION

The Helipad West Landfill is located at the Upper Site to the west of the SRR facilities, and has an approximate area of 3,000 m². This landfill was built during the construction of the SRR site, before the cleanup of the FOX-4 site. It is understood to contain waste materials from the module train, garage, communication dishes, and other miscellaneous wastes. A detailed drawing of this landfill is provided in Figure 3. The historical chemical results for soil samples collected at this landfill are shown in plan on Figure 3A. The historical chemical results for groundwater samples collected at this landfill are shown in plan on Figure 3B.

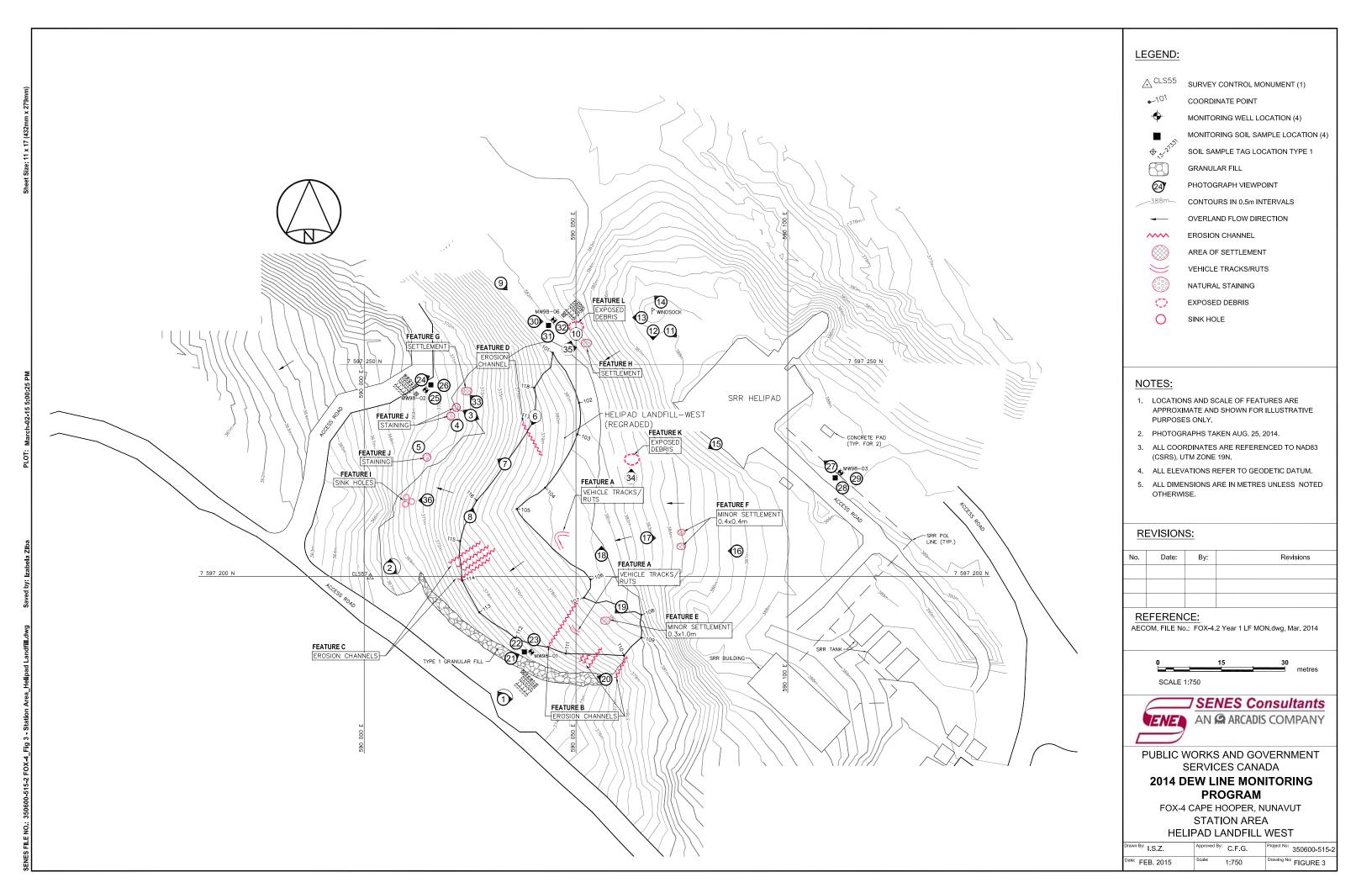
4.2 SUMMARY OF WORK CONDUCTED

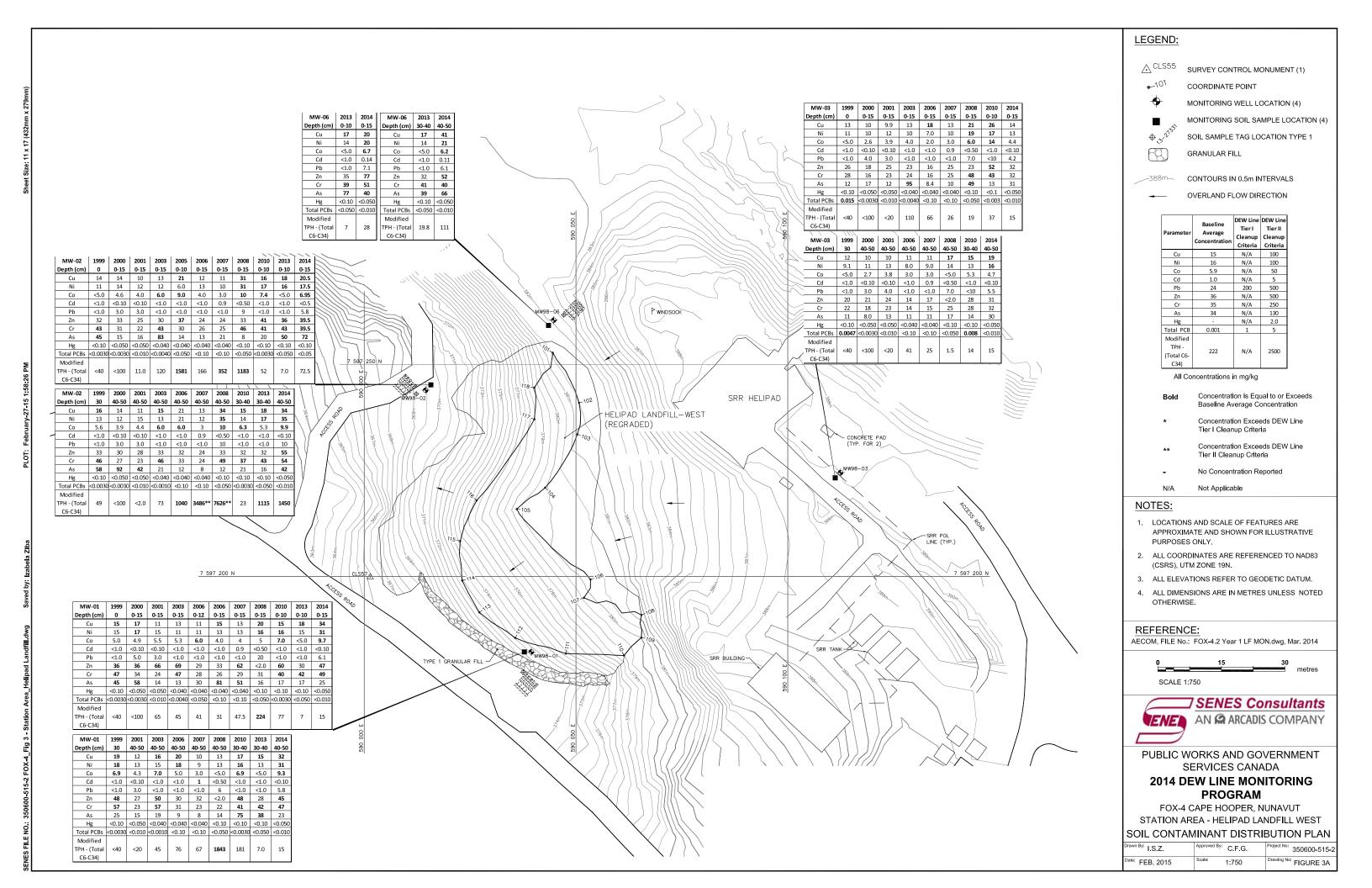
4.2.1 Visual Inspection

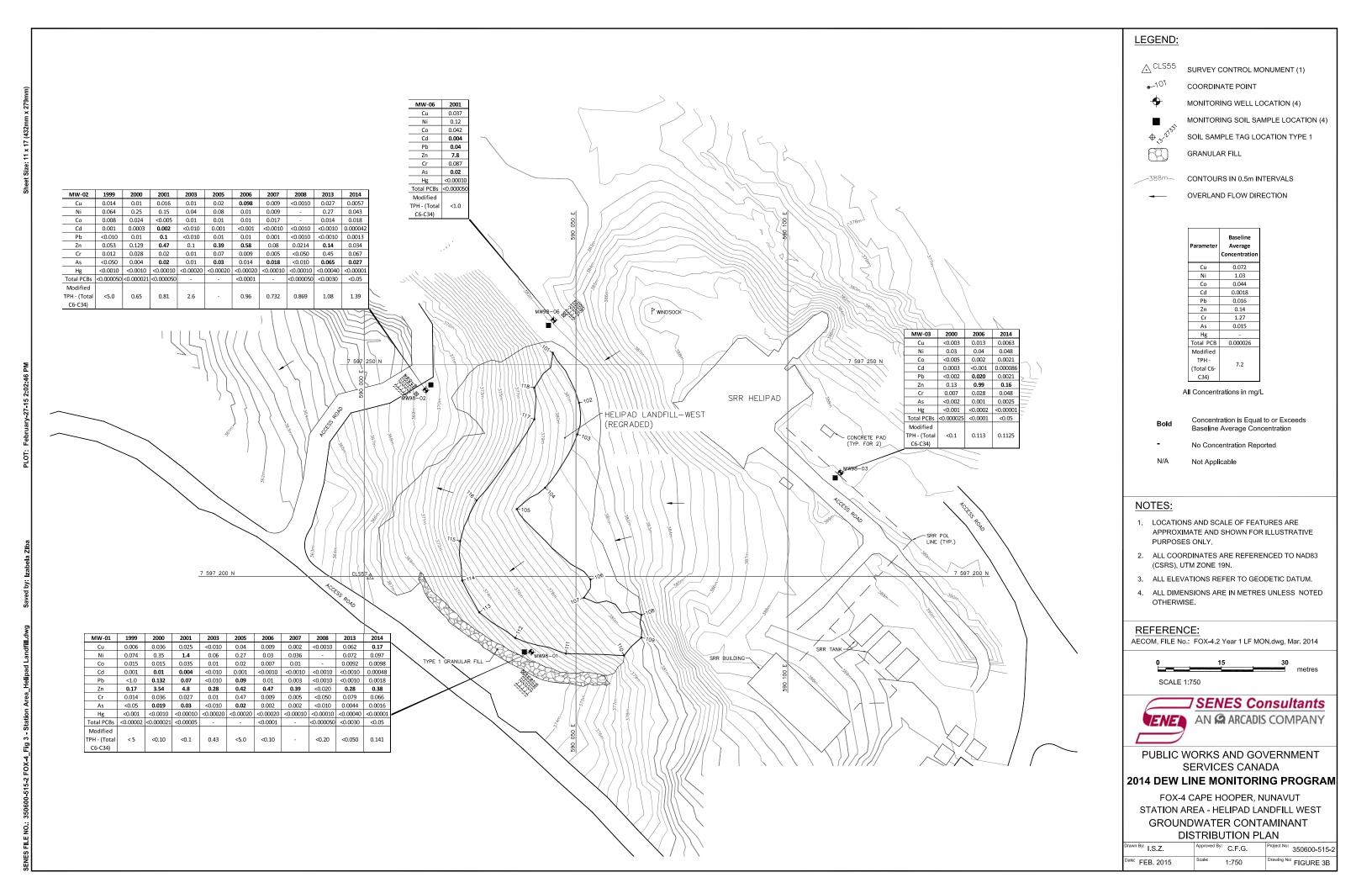
The visual inspection of the landfill was completed with no deviations from the visual inspection work plan.

4.2.2 Soil Sampling

Soil samples were collected at four (4) locations as shown on Figure 3. Surface and subsurface samples were collected at each location. There were no deviations from the soil sampling plan. One duplicate sample was collected from surficial soil at sample location MW98-02. Soil sampling completed at the landfill is summarized in Table 4.1.


Table 4.1: Summary of Work Conducted by Soil Sampling Location (Helipad West Landfill)


Location	Surface Soil Sample Collected	Subsurface Soil Sample Collected
F4-HEL-MW98-01	V	$\sqrt{}$
F4-HEL-MW98-02	\sqrt{D}	$\sqrt{}$
F4-HEL-MW98-03	V	V
F4-HEL-MW98-06	V	V


D = duplicate sample collected $\sqrt{\ }$ - sample collected X - no sample collected

4.2.3 Groundwater Sampling

Groundwater monitoring was completed at four monitoring wells as shown on Figure 3. Groundwater monitoring and sampling at this landfill was generally completed as per the work plan. As indicated in Table 4.2, groundwater samples were not collected from one of four

monitoring wells at this landfill as the well was dry during this monitoring program. No duplicate groundwater samples were collected during this monitoring program.

Table 4.2: Summary of Work Conducted by Groundwater Sampling Location (Helipad West Landfill)

Location	Visual Inspection/ Groundwater Monitoring	Sample collected for PCB analysis	Sample collected for metals analysis	Sample collected for PHCs F1-F4 analysis
F4-HEL-MW98-01	$\sqrt{}$		$\sqrt{}$	$\sqrt{}$
F4-HEL-MW98-02	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$
F4-HEL-MW98-03	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$
F4-HEL-MW98-06	$\sqrt{}$	X^{N}	X^{N}	X^{N}

D - duplicate sample collected

√- sample collected

X - no sample collected

N - no water in well (well was dry)

I - insufficient water in well to collect sample

4.2.4 Thermal Monitoring

No thermal monitoring was completed at this landfill as no vertical thermistors have been installed at this landfill.

4.3 RESULTS OF THE MONITORING PROGRAM

4.3.1 Visual Inspection

The visual inspection at the Helipad West Landfill was completed on 25 and 26 August 2014. The results of the visual inspection are detailed in Table 4.3 and shown on Figure 3 and in the photo log Table 4.6.

Table 4.3: Visual Inspection Results (Helipad West Landfill)

Item	Description
Settlement	Settlement was noted in the form of small sinkholes directly above boulders that
	had been placed at the bottom of landfill slopes (Feature E, F, G, H, I).
Erosion	Erosion channels were noted on multiple steep landfill slopes (Feature B, C, D).
Frost Action	None observed.
Sloughing and Cracking	None observed.
Animal Burrows	None observed.
Vegetation	No vegetation was observed at this landfill.
Staining	Red oxidation staining was observed east of MW98-02. (Feature J)
Vegetation Stress	None observed.
Seepage Points	No active seepage points were observed.
Debris Exposed	Occasional small pieces of metal debris were observed at the landfill. This debris
	is not believed to originate within the landfill. (Feature K)
Presence/Condition	Four monitoring well installations were observed at this landfill. During
Monitoring Instruments	monitoring of the wells it was observed that wet bentonite clay had heaved up and
	filled the space in the top of the well casing.
Other Features of Note	Vehicle tracks were observed in two locations at the landfill. (Feature A)

4.3.1.1 Inspection Check List

The visual inspection checklist completed during the site inspection is provided in Table 4.4.

4.3.1.2 Stability Assessment

The preliminary stability assessment completed during the site inspection of this landfill is provided in Table 4.5.

4.3.1.3 Photographic Records

The photographic records for the Helipad West Landfill are provided in Table 4.6.

4.3.1.4 Trend Analysis

No trends in visual observations at this landfill can be observed as 2014 is the first year of monitoring at this landfill following re-grading of the landfill area during the 2011-2013 maintenance.

4.3.1.5 Discussion of Results/Trends

Based on the results of the 2014 visual inspection, the performance of this landfill is acceptable. Two issues described below should be closely monitored in the future to ensure that landfill performance is not degrading.

A significant number of erosion channels have been noted at the Helipad West Landfill. Given the steep slopes present at this landfill, the presence of erosion channels should be expected. The

TABLE 4.4 - VISUAL INSPECTION CHECKLIST

DEW LINE CLEANUP: POST-CONSTRUCTION - LANDFILL MONITORING INSPECTION REPORT - PAGE 1 OF 2

SITE NAME: FOX-4

LANDFILL DESIGNATION: Helipad West Landfill

DATE OF INSPECTION: 25-26 August 2014

DATE OF PREVIOUS INSPECTION: N/A

INSPECTED BY: J. Mauchan/S. Borcsok

REPORT PREPARED BY: S. Borcsok

The inspector/reporter represents to the best of their knowledge, the following statements and observations are true and correct and to the best of the preparer's actual knowledge, no material facts have been suppressed or misstated.

TABLE 4.4 - VISUAL INSPECTION CHECKLIST - INSPECTION REPORT – PAGE 2 OF 2

Checklist Item	Present Yes/No	Location (Describe relative to existing monuments/features and relative to landfill design i.e. surface, berms, toe)	Length	Width	Depth	Extent relative to Area of Landfill (%)	Description	Photographic Records Focal length, location, view point & direction (relative to magnetic north) Feature of note Scale	Additional Comments
Settlement	YES	At bottom of slopes above large boulders (Feature E, F, G, H, I)	0.3	0.3	0.3	<1%	Sinkholes	19.1, 33.1, 35.1, 35.2, 36.1	Potentially caused by infilling of voids around boulders
Erosion	YES	Downhill on steep landfill slopes (Feature B, C, D)				1-2%	Erosion channels	1.1, 1.2, 2.1, 6.1	
Frost Action	NO								
Sloughing and Cracking	NO								
Animal Burrows	NO								
Vegetation	NO								
Staining	YES	East of MW98-02 (Feature J)				<1%	Ox. staining in erosion channel	4.1, 5.1	
Vegetation Stress	NO								
Seepage Points	NO								
Debris Exposed	YES	On northeast corner of landfill (Feature K)				<1%	Small metal debris	10.1, 34.1	
Presence/Condition – Monitoring Instruments	YES	4 monitoring wells							
Features of Note.	YES	Vehicle tracks/ruts on east side of landfill (Feature A)				<1%	Tire ruts	15.1	

Table 4.5: Preliminary Stability Assessment - FOX-4 Helipad West Landfill

Severity Rating	Extent	
Acceptable	Occasional	
Acceptable	Occasional	
None	None	
Acceptable	Occasional	
None	None	
None	None	
Acceptable	Occasional	
	Acceptable Acceptable None Acceptable None None None	

Performance/ Severity Rating	Description
Acceptable	Noted features are of little consequence. The landfill is performing as designed. Minor deviations in environmental or physical performance may be observed, such as isolated areas of erosion, settlement.
Marginal	Physical/environmental performance appears to be deteriorating with time. Observations may include an increase in size or number of features of note, such as differential settlement, erosion or cracking. No significant impact on landfill stability to date, but potential for failure is assessed as low or moderate.
Significant	Significant or potentially significant changes affecting landfill stability, such as significant changes in slope geometry, significant erosion or differential settlement; scarp development. The potential for failure is assessed as imminent.
Unacceptable	Stability of landfill is compromised to the extent that ability to contain waste materials is compromised. Examples may include: - Debris exposed in erosion channels or areas of differential settlement. - Liner exposed. - Slope failure.

Extent	Description
Isolated	Singular feature
Occasional	Features of note occurring at irregular intervals/locations
Numerous	Many features of note, impacted less than 50% of the surface area of the landfill
Extensive	Impacting greater than 50% of the surface area of the landfill

FOX-4 Station Area Helipad Landfill West (see Figure 3)

Photo 1.1 (FOX-4 HEL P-1 east.jpg)	Photo 1.2 (FOX-4 HEL P-1 ne.jpg)
Description: View looking east from access road near MW98-01. Erosion channel noted on landfill slope. (FEATURE B)	Description: View looking northeast toward MW98-01. Erosion channel observed on the slope to the right of the monitoring well. (FEATURE C)
25/108/2014	## ## ## ## ## ## ## ## ## ## ## ## ##
Date: August 25, 2014	Date: August 25, 2014

Photo 1.3 (FOX-4 HEL P-1 nw.jpg)	Photo 2.1 (FOX-4 HEL P-2 east.jpg)
Description: View northwest from access road near MW98-01.	Description: View east looking up slope toward erosion channels. (FEATURE C)
25/03/2014	25/08/2014
Date: August 25, 2014	Date: August 25, 2014

TABLE 4.6: LANDFILL VISUAL INSPECTION PHOTO LOG (HELIPAD WEST LANDFILL)

Photo 2.2 (FOX-4 HEL P-2 ne.jpg)	Photo 2.3 (FOX-4 HEL P-2 se.jpg)
Photo 2.2 (FOX-4 HEL P-2 ne.jpg) Description: View northeast toward the western portion of the helipad landfill.	Photo 2.3 (FOX-4 HEL P-2 se.jpg) Description: View southeast along toe of the landfill.
Date: August 25, 2014	Date: August 25, 2014
Date. August 25, 2014	Date. August 25, 2014

TABLE 4.6: LANDFILL VISUAL INSPECTION PHOTO LOG (HELIPAD WEST LANDFILL)

Photo 3.1 (FOX-4 HEL P-3 nw.jpg)	Photo 3.2 (FOX-4 HEL P-3 se.jpg)
Photo 3.1 (FOX-4 HEL P-3 nw.jpg) Description: View northwest toward MW98-02.	Photo 3.2 (FOX-4 HEL P-3 se.jpg) Description: View southeast looking up slope from east of MW98-02.
Date: August 25, 2014	Date: August 25, 2014
Date: August 25, 2014	Date: August 25, 2014

TABLE 4.6: LANDFILL VISUAL INSPECTION PHOTO LOG (HELIPAD WEST LANDFILL)

Photo 4.1 (FOX-4 HEL P-4.jpg)	Photo 5.1 (FOX-4 HEL P-5.jpg)
Photo 4.1 (FOX-4 HEL P-4.jpg) Description: View of stain southeast of MW98-02. (FEATURE J)	Photo 5.1 (FOX-4 HEL P-5.jpg) Description: Stain south of MW98-02. (FEATURE J)
Date: August 25, 2014	Date: August 25, 2014

TABLE 4.6: LANDFILL VISUAL INSPECTION PHOTO LOG (HELIPAD WEST LANDFILL)

Photo 6.1 (FOX-4 HEL P-6 south.jpg)	Photo 7.1 (FOX-4 HEL P-7 nw.jpg)
Description: Erosion channel east of MW98-02. (FEATURE D)	Description: View looking down slope toward MW98-02.
25/08/2014	25/09/2014
Date: August 25, 2014	Date: August 25, 2014

Photo 8.1 (FOX-4 HEL P-8 ne.jpg)	Photo 9.1 (FOX-4 HEL P-9 se.jpg)
Description: View north along top of landfill slope. Stakes marking MW98-06 can be seen in the background, left of the wildlife monitor.	Description: View southeast toward MW98-06 (stake in centre of photo). Wildlife monitor standing at the windsock.
25/08/2014	25/08/2014
Date: August 25, 2014	Date: August 25, 2014

Photo 10.1 (FOX-4 HEL P-10.jpg)	Photo 11.1 (FOX-4 HEL P-11 se.jpg)
Description: Exposed old pipe east of MW98-06. (FEATURE L)	Description: View southeast across helipad from windsock.
* 100 / 120 * 100 / 120	25/08/2014
Date: August 25, 2014	Date: August 25, 2014

Photo 12.1 (FOX-4 HEL P-12 south.jpg)	Photo 13.1 (FOX-4 HEL P-13 west.jpg)
Photo 12.1 (FOX-4 HEL P-12 south.jpg) Description: View south from windsock.	Photo 13.1 (FOX-4 HEL P-13 west,jpg) Description: View east from windsock looking downhill toward MW98-06.
25/08/2014	25/08/2014
Date: August 25, 2014	Date: August 25, 2014

TABLE 4.6: LANDFILL VISUAL INSPECTION PHOTO LOG (HELIPAD WEST LANDFILL)

Photo 14.1 (FOX-4 HEL P-14 nw.jpg)	Photo 15.1 (FOX-4 HEL P-15 west.jpg)
Description: View northwest from windsock.	Description: View downslope from helipad. Vehicle tracks/ruts can be seen on the flatter part of the slope (centre of photo). (FEATURE A)
2	5/08/2014 25/08/2014
Date: August 25, 2014	Date: August 25, 2014

TABLE 4.6: LANDFILL VISUAL INSPECTION PHOTO LOG (HELIPAD WEST LANDFILL)

Photo 16.1 (FOX-4 HEL P-16 west.jpg)	Photo 17.1 (FOX-4 HEL P-17 east.jpg)
Description: View west looking downslope.	Description: View east looking upslope toward helipad access road.
25/03/2014	25/08/2014
Date: August 25, 2014	Date: August 25, 2014

TABLE 4.6: LANDFILL VISUAL INSPECTION PHOTO LOG (HELIPAD WEST LANDFILL)

Photo 18.1 (FOX-4 HEL P-18 north.jpg)	Photo 19.1 (FOX-4 HEL P-19 sw.jpg)
Photo 18.1 (FOX-4 HEL P-18 north.jpg) Description: View north of flatter section of helipad landfill west.	Photo 19.1 (FOX-4 HEL P-19 sw.jpg) Description: View downhill towards MW98-01 location (not seen in photo). Minor settlement located at trowel. (FEATURE E)
Date: August 25, 2014	Date: August 25, 2014

Photo 20.1 (FOX-4 HEL P-20 west.jpg)	Photo 21.1 (FOX-4 HEL P-21 east.jpg)
Photo 20.1 (FOX-4 HEL P-20 west.jpg) Description: View west along toe of landfill. MW98-01 is visible.	Photo 21.1 (FOX-4 HEL P-21 east.jpg) Description: MW98-01.
Date: August 25, 2014	Date: August 25, 2014
Date: August 25, 2014	Date: August 25, 2014

TABLE 4.6: LANDFILL VISUAL INSPECTION PHOTO LOG (HELIPAD WEST LANDFILL)

Photo 22.1 (FOX-4 HEL P-22.jpg)	Photo 23.1 (FOX-4 HEL P-23.jpg)
Description: Soil sample collection of F4-HEL-MW98-01.	Description: After collection and backfill of F4-HEL-MW98-01.
25/03/2014	25/08/2014
Date: August 25, 2014	Date: August 25, 2014

TABLE 4.6: LANDFILL VISUAL INSPECTION PHOTO LOG (HELIPAD WEST LANDFILL)

Photo 24.1 (FOX-4 HEL P-24 ne.jpg)	Photo 25.1 (FOX-4 HEL P-25.jpg)
Description: View northeast from MW98-02.	Photo 25.1 (FOX-4 HEL P-25.jpg) Description: Soil sample collection of F4-HEL-MW98-02.
25/08/2014	25/08/2014
Date: August 25, 2014	Date: August 25, 2014

Photo 26.1 (FOX-4 HEL P-26.jpg)	Photo 27.1 (FOX-4 HEL P-27 nw.jpg)
Description: After collection and backfill of F4-HEL-MW98-02.	Description: View across helipad toward windsock from MW98-03.
2.5/08/2014	
Date: August 25, 2014	Date: August 25, 2014

Photo 28.1 (FOX-4 HEL P-28.jpg)	Photo 29.1 (FOX-4 HEL P-29.jpg)
Photo 28.1 (FOX-4 HEL P-28.jpg) Description: Soil sample collection of F4-HEL-MW98-03.	Photo 29.1 (FOX-4 HEL P-29.jpg) Description: After collection and backfill of F4-HEL-MW98-03.
Date: August 25, 2014	Date: August 25, 2014
Date. August 23, 2014	Date. August 25, 2014

TABLE 4.6: LANDFILL VISUAL INSPECTION PHOTO LOG (HELIPAD WEST LANDFILL)

Photo 30.1 (FOX-4 HEL P-30 east.jpg)	Photo 31.1 (FOX-4 HEL P-31.jpg)
Description: View east toward MW98-06. Windsock pole is seen at the top of the slope.	Description: Soil sample collection of F4-HEL-MW98-06.
	25//03//2014
Date: August 25, 2014	Date: August 25, 2014

TABLE 4.6: LANDFILL VISUAL INSPECTION PHOTO LOG (HELIPAD WEST LANDFILL)

Photo 32.1 (FOX-4 HEL P-32.jpg)	Photo 33.1 (FOX-4 HEL P-33.jpg)
Photo 32.1 (FOX-4 HEL P-32.jpg) Description: After collection and backfill of F4-HEL-MW98-06.	Photo 33.1 (FOX-4 HEL P-33.jpg) Description: Settlement on landfill slope. (FEATURE G)
Date: August 25, 2014	Date: August 26, 2014

TABLE 4.6: LANDFILL VISUAL INSPECTION PHOTO LOG (HELIPAD WEST LANDFILL)

Photo 34.1 (FOX-4 HEL P-34.jpg)	Photo 35.1 (FOX-4 HEL P-35.jpg)
Photo 34.1 (FOX-4 HEL P-34.jpg) Description: Debris (wires) within landfill slope. (FEATURE K)	Photo 35.1 (FOX-4 HEL P-35.jpg) Description: Sinkholes in landfill slope. (FEATURE H)
Date: August 26, 2014	Date: August 26, 2014

TABLE 4.6: LANDFILL VISUAL INSPECTION PHOTO LOG (HELIPAD WEST LANDFILL)

Photo 35.2 (FOX-4 HEL P-35 n.jpg)	Photo 36.1 (FOX-4 HEL P-36.jpg)
Description: Location of sinkholes east of MW98-06 near red mark on right side of picture. (FEATURE H)	Description: Sinkholes above boulders at base of slope. (FEATURE I)
Date: August 26, 2014	Date: August 26, 2014

steep slopes may result in the erosion channels becoming much larger with time, so it is important that these features be monitored.

Large boulders have been placed at the bottom of some of the slopes at this landfill. Some sinkholes have been noted above these large boulders. This is likely a result of infilling of void spaces around these large boulders with fine material from above, resulting in sinkholes due to loss of material. These areas should be closely monitored to ensure that large sinkholes are not developing that could result in failures of the slopes above these areas.

4.3.2 Soil Sampling

Soil sampling was completed at the Helipad West Landfill on 25 August 2014. As previously reported a total of nine samples including one duplicate sample were procured from four locations as shown in plan on Figure 3.

4.3.2.1 Laboratory Analytical Results

The analytical results for soil samples collected at the Helipad West Landfill are presented in Table 4.7.

A duplicate soil sample was collected from surficial soil at sample location MW98-02 and was submitted to AGAT, a secondary laboratory for QA/QC purposes. The RPDs for the duplicate sample results were below 30%, except for arsenic which was well above 30%. However previous investigations have determined that elevated arsenic concentrations exist in soil at this landfill. It is reasonable to assume that elevated arsenic concentrations may only be present in some areas of soil. The duplicate results are believed to be representative of the soil conditions at this site.

4.3.2.2 Discussion of Results - Comparison to Baseline/Background

A discussion of the results for each parameter analyzed in soil at the Helipad West Landfill is provided in Table 4.8. The discussion includes a comparison of results from upgradient (MW98-03, MW98-06) and downgradient (MW98-01, MW98-02) locations to the baseline average concentrations that have been determined for each landfill from soil chemistry at the landfill area prior to and during remediation. Upgradient locations are those near the landfill that are not influenced by migration of contaminants through the landfill, and downgradient locations are at the toe of the landfill or from areas of preferential drainage.

TABLE 4.7

RESULTS OF ANALYSIS FOR PARAMETERS IN SOIL AT HELIPAD WEST LANDFILL

	Background	Baseline	DEW Line	DEW Line	F4-HEL-	F4-HEL-	F4-HEL-	F4-HEL-	F4-HEL-	F4-HEL-	F4-HEL-	F4-HEL-	F4-HEL-	F4-HEL-
	Concentration	Average	Cleanup	Cleanup	MW98-01-S	MW98-01-D	MW98-02-S	MW98-02-S	MW98-02-S	MW98-02-D	MW98-03-S	MW98-03-D	MW98-06-S	MW98-06-D
PARAMETERS		Concentration	Tier I	Tier II				(DUP)	(AVG)					
			Criteria	Criteria										
					25-Aug-14	25-Aug-14	25-Aug-14	25-Aug-14	25-Aug-14	25-Aug-14	25-Aug-14	25-Aug-14	25-Aug-14	25-Aug-14
	(_)	(+)	(*)	(**)	0-15cm	40-50cm	0-15cm	0-15cm	0-15cm	40-50cm	0-15cm	40-50cm	0-15cm	40-50cm
Copper	30	15	-	100	<u>34+</u>	<u>32+</u>	19+	22+	20.5+	<u>34+</u>	14	19+	20+	<u>41+</u>
Nickel	24	16	-	100	<u>31+</u>	<u>31+</u>	19+	16	17.5+	<u>35+</u>	13	16	20+	21+
Cobalt	8.8	5.9	-	50	9.7+	9.3+	6.5+	7.4+	6.95+	9.9+	4.4	4.7	6.7+	6.2+
Cadmium	1.0	1.0	-	5	< 0.10	< 0.10	< 0.10	< 0.5	< 0.5	< 0.10	< 0.10	< 0.10	0.14	0.11
Lead	10	24	200	500	6.1	5.8	5.6	6	5.8	10	4.2	5.5	7.1	6.1
Zinc	41	36	-	500	<u>47+</u>	<u>45+</u>	38+	41+	39.5+	<u>55+</u>	32	31	<u>77+</u>	<u>52+</u>
Chromium	41	35	-	250	<u>49+</u>	<u>47+</u>	40+	39+	39.5+	<u>54+</u>	32	32	<u>51+</u>	40+
Arsenic	29	34	-	30	25	23	130+**	14	<u>72+</u>	<u>42+</u>	<u>31</u>	30	<u>40+</u>	<u>66+</u>
Mercury	-	-	-	2	< 0.050	< 0.050	< 0.050	< 0.10	< 0.10	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050
Total PCBs	-	0.001	1	5	< 0.010	< 0.010	< 0.010	< 0.05	< 0.05	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010
PHC F1 (C6-C10)	-	-	-	-	<10	<10	<10	<5	<10	100	<10	<10	<10	<10
PHC F2 (C10-C16)	-	-	-	-	<10	<10	26	20	23	1100	<10	<10	<10	<10
PHC F3 (C16-C34)	-	-	-	-	<10	<10	35	54	44.5	250	<10	<10	18	100
PHC F4 (C34-C50)	-	-	-	-	<10	<10	<10	< 50	< 50	<10	<10	<10	<10	23
Modifed TPH (Total C6-C34)	-	222	-	2500	15	15	66	76.5	71.25	1450+	15	15	28	110

NOTES:

All parameter values in $\mu g/g$ (ppm) unless otherwise indicated.

- Exceeds FOX-4 Helipad West Landfill Background Concentration.
- Exceeds FOX-4 Helipad West Landfill Baseline Average Concentration.
- Exceeds DEW Line Cleanup Tier I Criteria.
- ** Exceeds DEW Line Cleanup Tier II Criteria.
- (DUP) Duplicate sample analyzed by AGAT Laboratories for QA/QC purposes.
- (AVG) Average concentration of duplicate samples.
- < Not detected.
- No concentration reported.

Table 4.8: Evaluation of 2014 Soil Analytical Data (Helipad West Landfill)

Parameter	Baseline Average Concentration (ug/g)	2014 Results
Copper	15	Detectable concentrations ranged between 14 and 41 ug/g for upgradient samples and between 19 and 34 ug/g for downgradient samples, with the highest concentration reported in the subsurface sample collected from the MW98-06 sample location while the lowest concentration was reported within the surficial sample at the MW98-03 sample location. Eight of nine samples reported concentrations above the BAC.
Nickel	16	Detectable concentrations ranged between 20 and 21 ug/g for upgradient samples and between 13 and 35 ug/g for downgradient samples, with the highest concentration reported in the subsurface sample collected from the MW98-02 sample location while the lowest concentration was reported within the surficial sample at the MW98-03 sample location. Seven of nine samples reported concentrations above the BAC.
Cobalt	5.9	Detectable concentrations ranged between 4.4 and 6.7 ug/g for upgradient samples and between 6.95 and 9.9 ug/g for downgradient samples, with the highest concentration reported in the subsurface sample collected from the MW98-02 sample location while the lowest concentration was reported within the surficial sample at the MW98-03 sample location. Seven of nine samples reported concentrations above the BAC.
Cadmium	1.0	Detectable concentrations of 0.11 and 0.14 ug/g were reported in the subsurface and surface samples collected from the upgradient MW98-06 sample location, respectively. Seven of the nine samples reported concentrations less than the laboratory detection limit. All samples reported concentrations below the BAC.
Lead	24	Detectable concentrations ranged between 4.2 and 7.1 ug/g for upgradient samples and between 5.8 and 10 ug/g for downgradient samples, with the highest concentration reported in the subsurface sample collected from the MW98-02 sample location while the lowest concentration was reported within the surficial sample at the MW98-03 sample location. All samples reported concentrations below the BAC.
Zinc	36	Detectable concentrations ranged between 31 and 77 ug/g for upgradient samples and between 39.5 and 55 ug/g for downgradient locations, with the highest concentration reported in the surface sample collected from the MW98-06 sample location while the lowest concentration was reported within the subsurface sample at the MW98-03 sample location. Seven of nine samples reported concentrations above the BAC.
Chromium	35	Detectable concentrations ranged between 32 and 51 ug/g for upgradient samples and between 39.5 and 54 ug/g for downgradient samples, with the highest concentration reported in the subsurface sample collected from the MW98-02 sample location while the lowest concentration was reported within the surficial and subsurface samples at the MW98-03 sample location. Seven of nine samples reported concentrations above the BAC.

Parameter	Baseline Average Concentration (ug/g)	2014 Results
Arsenic	34	Detectable concentrations ranged between 30 and 66 ug/g for upgradient samples and between 23 and 72 ug/g for downgradient samples, with the highest concentration reported in the subsurface sample collected from the MW98-02 sample location while the lowest concentration was reported within the surficial sample at the MW98-03 sample location. Five of nine samples reported concentrations above the BAC and above the Tier II Cleanup Criteria (30 ug/g), however all samples reported concentrations below the site-specific criteria for arsenic of 130 ug/g.
Mercury	-	All nine samples reported concentrations less than the laboratory detection limit (0.050 ug/g and 0.10 ug/g for the duplicate sample submitted to the secondary laboratory).
PCBs	0.001	All nine samples reported concentrations less than the laboratory detection limit (0.010 ug/g and 0.05 ug/g for the duplicate sample submitted to the secondary laboratory).
ТРН	222	Modified TPH concentrations ranged between 15 and 110 ug/g for upgradient samples and between 15 and 1450 ug/g, with the highest concentration reported in the subsurface sample at the MW98-02 sample location and the lowest concentration in four of nine samples. One of nine samples reported concentrations above the BAC.

4.3.2.3 Soil Trend Analysis by Parameter and Discussion of Trends

A discussion of the trends observed for parameter concentrations in soil from 1999 to 2014 are presented in Table 4.9. Trends have been analyzed for upgradient and downgradient locations.

Table 4.9: Evaluation of Soil Result Trends (Helipad West Landfill)

Parameter	2014 Results
Common	Concentrations show a relatively stable trend for upgradient soil location and a slight upward trend
Copper	for downgradient soil locations.
Nickel	Concentrations show an upward trend for upgradient and downgradient soil locations.
Cobalt	Concentrations show a slight upward trend for upgradient and downgradient soil locations.
Cadmium	Concentrations show a relatively stable trend for upgradient and downgradient soil locations.
Lead	Concentrations show a slight upward trend for upgradient and downgradient soil locations.
Zinc	Concentrations show an upward trend for upgradient soil locations and a relatively stable trend for
Zilic	downgradient soil locations.
Chromium	Concentrations show a slight upward trend for upgradient soil locations and an upward trend for
Cilionnum	downgradient soil locations.
Arsenic	Concentrations show a slight upward trend for upgradient soil locations and a relatively stable trend
Aisellic	for downgradient soil locations.
Mercury	Concentrations show a stable trend for upgradient and downgradient soil locations as all results

Parameter	2014 Results
	have been below laboratory detection limits for all monitoring events.
PCBs	Concentrations show an upward trend for upgradient and downgradient soil locations.
ТРН	Concentrations show a relatively stable trend for upgradient soil locations and an upward trend for
1111	downgradient soil locations.

4.3.3 Groundwater Sampling

Groundwater sampling at the Helipad West Landfill was completed on 25 August 2014. As previously reported a total of three samples were collected from three monitoring wells as shown in plan on Figure 3.

4.3.3.1 Monitoring Well Sampling/Inspection Logs

Monitoring well sampling/inspection logs are provided following this page on Monitoring Well Sampling Records 9 through 12.

4.3.3.2 Water Levels/Groundwater Flow

Water levels were measured at the Helipad West Landfill on 15 August 2014. The groundwater levels measured are shown below in Table 4.10. Groundwater levels were measured in two of the four monitoring wells, with one of the four wells being dry at the time of monitoring, and one well containing water, but with the level not able to be measured due to the presence of bentonite clay in the standpipe of the well. Groundwater flow direction cannot be determined from the two measured groundwater levels. However given the topography of the landfill groundwater flow is generally expected to be towards the southwest.

Table 4.10: Groundwater Levels (Helipad West Landfill)

Monitoring Well	Date	Ground Surface Elevation (m)	Water Level (m bgs)	Water Level Elevation (m)	Depth to Bottom (m bgs)	Bottom Elevation (m)
MW98-01	25-Aug-14	372.6	1.21	371.39	1.87	370.73
MW98-02	25-Aug-14	369.5	0.62	368.88	1.35	368.15
MW98-03	25-Aug-14	*	NM	*	1.14	*
MW98-06	25-Aug-14	382.1	Dry	N/A	0.92	381.18

^{* -} the ground surface elevation for this monitoring well was identified as TBD in the project *Terms of Reference* N/A – Not analysed due to the lack of available groundwater.

NM – groundwater was present in the monitoring well however saturated bentonite clay had heaved upward into the casing and into the standpipe and prevented the water level instrument from measuring the water level accurately

Site Name:	FOX-4	Helipad West Landfill	
Date of Sampling Event:			930am
Names of Samplers:	20 / tag 1 1	S.Borcsok	COCATT
rtamos of Samplero.		J.Mauchan	
Landfill Name:	Helipad	Samples Collected:	VES
Monitoring Well ID:	MW98-01	PHC F1	
Sample Number:	1010030-01	Inorganic Elements	
Condition of Well:	*	PHC F2-F4	
Condition of Well.		PCBs	
Measured Data			
	45	Duplicate Collected?	
Well pipe height above ground	45	Sample ID:	F4-HEL-MW98
(cm)=			01
Diameter of well (cm)=	5	*	
Depth of well installation (cm)=		* - no bolts or lock on casing, no	
		cap on standpipe in casing	
(from ground surface)			
Length screened section			
(cm)=			
Depth to top of screen (cm)=			
(from ground surface)			
Depth to water surface (cm)=	116	Measurement method: (meter,	Interface
		tape, etc)	meter
(from top of pipe)			
Static water level (cm)=			
(below ground surface)			
Measured well refusal depth	232	Evidence of sludge or siltation:	NO
(cm)=			
(i.e. depth to frozen ground)			
Measured well refusal depth	187		
from ground surface			
Thickness of water column	116		
Static volume of water in well	2.35		
Free product thickness (mm)=	0	Measurement method:	IM
- 1.05 product anomicos (mm)=		measurement metrod.	1101
Purging: (Y/N)	N	Purging/Sampling Equipment:	Waterra
	9L	r urging/sampling Equipment.	
Volume Purged Water= Decontamination required:	N 9L		tubing/
•	IN		footvalve
(Y/N)			
Number washes:			
Number rinses:			
Final pH=	6.9		
Final Conductivity (uS/cm)=	180.2		
Final Temperature (degC)=	2.2		

Site Name:	FOX-4	Helipad West Landfill	
Date of Sampling Event:		•	1130am
Names of Samplers:	20 / kg 1 1	S.Borcsok	rrooam
rtamos of Samplero.		J.Mauchan	
Landfill Name:	Helipad	Samples Collected:	VES
Monitoring Well ID:	MW98-02	PHC F1	
Sample Number:	1010030-02	Inorganic Elements	
Condition of Well:	*	PHC F2-F4	
Condition of Well.		PCBs	
Manager and Date			
Measured Data	25	Duplicate Collected?	
Well pipe height above ground	25	Sample ID:	F4-HEL-MW98
(cm)=	-		02
Diameter of well (cm)=	5	*	
Depth of well installation (cm)=		* - casing filled with wet bentonite clay	
(from ground surface)]	
Length screened section			
(cm)=			
Depth to top of screen (cm)=			
(from ground surface)			
(Hom ground durided)			
Depth to water surface (cm)=	87	Measurement method: (meter,	Interface
Dopar to water surface (om)=	O,	tape, etc)	
		tape, etc)	motor
(from top of pipe)			
Static water level (cm)=			
(below ground surface)			
Measured well refusal depth	160	Evidence of sludge or siltation:	NO
(cm)=	100	Evidence of studge of sittation.	110
(i.e. depth to frozen ground)			
Measured well refusal depth	135		
from ground surface	133		
Thickness of water column	73		
Static volume of water in well	1.48		
Free product thickness (mm)=	0	Measurement method:	IM
	<u> </u>	sasarsment motiloa.	
Purging: (Y/N)	N	Purging/Sampling Equipment:	Waterra
Volume Purged Water=	6L	r arging, camping Equipment.	tubing/
Decontamination required:	N		footvalve
(Y/N)	14		lootvaive
Number washes:			
Number wasnes. Number rinses:			
Number finses:			
Final pH=	6.6		
	320		
Final Conductivity (uS/cm)=			
Final Temperature (degC)=	2.5		

Site Name:	FOX-4	Helipad West Landfill	
Date of Sampling Event:			10am
Names of Samplers:	20 Aug 14	S.Borcsok	Toam
rtaines of campiers.		J.Mauchan	
Landfill Name:	Helipad	Samples Collected:	VEQ
Monitoring Well ID:	MW98-03	PHC F1	
Sample Number:	1010090-03	Inorganic Elements	
Condition of Well:	*	PHC F2-F4	
Condition of Well:			
Marana I Bata		PCBs	
Measured Data	00	Duplicate Collected?	
Well pipe height above ground	30	Sample ID:	F4-HEL-MW98
(cm)=			03
Diameter of well (cm)=	5		
Depth of well installation (cm)=		* - broken lock, casing full of wet	
		bentonite clay	
(from ground surface)			
Length screened section		** - water level could not be	
(cm)=		measured due to bentonite in	
Depth to top of screen (cm)=		standpipe	
(from ground surface)			
Depth to water surface (cm)=	**	Measurement method: (meter,	Interface
. ,		tape, etc)	meter
		,	
(from top of pipe)			
Static water level (cm)=			
(below ground surface)			
Measured well refusal depth	212	Evidence of sludge or siltation:	NO
(cm)=		aaaa a. a.aaga a. aaa.a	
(i.e. depth to frozen ground)			
Measured well refusal depth	182		
from ground surface	102		
Thickness of water column			
Static volume of water in well			
Free product thickness (mm)=	0	Measurement method:	IM
Purging: (Y/N)	N	Purging/Sampling Equipment:	Waterra
Volume Purged Water=	6L		tubing/
Decontamination required:	N		footvalve
(Y/N)			
Number washes:			
Number rinses:			
110.11001 111000.			
Final pH=	6.6		
Final Conductivity (uS/cm)=	120.1		
Final Temperature (degC)=	1.6		
i mai remperature (degC)=	1.0		

Site Name:	FOX-4	Helipad West Landfill	
Date of Sampling Event:			10am
Names of Samplers:	20 / (ag 1 1	S.Borcsok	Tourn
rtames of campions.		J.Mauchan	
Landfill Name:	Helipad	Samples Collected:	NO
Monitoring Well ID:	MW98-06	PHC F1	110
Sample Number:	1010090-00	Inorganic Elements	
Condition of Well:	*	PHC F2-F4	
Condition of Well.		PCBs	
Manager and Date		Duplicate Collected?	
Measured Data Well pipe height above ground	25	·	
	25	Sample ID:	
(cm)=	-		
Diameter of well (cm)=	5	*	
Depth of well installation (cm)=		 casing full of wet bentonite clay, no j-plug, bentonite in standpipe 	
(from ground surface)			
Length screened section			
(cm)=			
Depth to top of screen (cm)=			
(from ground surface)			
Depth to water surface (cm)=	N/A (well	Measurement method: (meter,	Interface
. ,	was dry or	tape, etc)	meter
	frozen)	,	
	,		
(from top of pipe)			
Static water level (cm)=			
(below ground surface)			
Measured well refusal depth	212	Evidence of sludge or siltation:	NO
(cm)=		_	
(i.e. depth to frozen ground)			
Measured well refusal depth	187		
from ground surface			
Thickness of water column	0		
Static volume of water in well	0.00		
Class Fording of Water in Well	0.00		
Free product thickness (mm)=	0	Measurement method:	IM
1 100 product trickiness (IIIII)=	<u> </u>	incasarement method.	IIVI
Purging: (Y/N)	N	Purging/Sampling Equipment:	N/A
	IN	r urging/sampling Equipment.	IN/A
Volume Purged Water=	N I		
Decontamination required:	N		
(Y/N)			
Number washes:			
Number rinses:			
<u> </u>			
Final pH=			
Final Conductivity (uS/cm)=			
Final Temperature (degC)=			

MW98-06 was reported to be dry as of August 8 to September 2, 2013. It is recommended that all monitoring wells be monitored during future monitoring events.

4.3.3.3 Laboratory Analytical Results

The analytical results for groundwater analyses at the Helipad West Landfill are presented in Table 4.11. No duplicate groundwater samples were collected at this landfill.

4.3.3.4 Discussion of Results by Parameter

A discussion of the results for each parameter analyzed in groundwater at the Helipad West Landfill is provided in Table 4.12. No baseline average or background concentrations have been determined for groundwater in this area. The discussion includes a comparison of results from upgradient (MW98-03) and downgradient (MW98-01, MW98-02) locations to the baseline average concentrations that have been determined for each landfill from groundwater chemistry at the landfill area prior to and during remediation. No groundwater sample was collected from upgradient well MW98-06 during this monitoring program.

Table 4.12: Evaluation of Groundwater Analytical Results (Helipad West Landfill)

	Baseline					
Parameter Avera	Average	2014 Results				
1 ai ailletei	Concentration	2014 Results				
	(mg/L)					
		Detectable concentrations were 0.0063 mg/L for the upgradient well and ranged				
		between 0.0057 and 0.17 mg/L for downgradient wells, with the highest				
Copper	0.072	concentration recorded at monitoring well MW98-01 and the lowest				
		concentration recorded at monitoring well MW98-02. One of three samples				
	reported a concentration above the BAC.					
		Detectable concentrations were 0.048 mg/L for the upgradient well and ranged				
		between 0.043 and 0.097 mg/L for downgradient wells, with the highest				
Nickel	1.03	concentration recorded at monitoring well MW98-01 and the lowest				
		concentration recorded at monitoring well MW98-02. All samples reported				
		concentrations below the BAC.				
		Detectable concentrations were 0.0021 mg/L for the upgradient well and ranged				
		between 0.0098 and 0.018 mg/L for downgradient wells, with the highest				
Cobalt	0.044	concentration recorded at monitoring well MW98-02 and the lowest				
		concentration recorded at monitoring well MW98-03. All samples reported				
		concentrations below the BAC.				
		Detectable concentrations were 0.000086 mg/L for upgradient wells and ranged				
		between 0.000042 and 0.00048 mg/L for downgradient wells, with the highest				
Cadmium	0.0018	concentration recorded at monitoring well MW98-01 and the lowest				
		concentration recorded at monitoring well MW98-02. All samples reported				
		concentrations below the BAC.				

TABLE 4.11

RESULTS OF ANALYSIS FOR PARAMETERS IN GROUNDWATER AT HELIPAD WEST LANDFILL

PARAMETERS	Baseline Average Concentration	F4-HEL- MW98-01	F4-HEL- MW98-02	F4-HEL- MW98-03
	(+)	25-Aug-14	25-Aug-14	25-Aug-14
Copper	0.072	0.17+	0.0057	0.0063
Nickel	1.03	0.097	0.043	0.048
Cobalt	0.044	0.0098	0.018	0.0021
Cadmium	0.0018	0.00048	0.000042	0.000086
Lead	0.016	0.0018	0.0013	0.0021
Zinc	0.14	0.38+	0.034	0.16+
Chromium	1.27	0.066	0.067	0.048
Arsenic	0.015	0.0016	0.027+	0.0025
Mercury	-	< 0.00001	< 0.00001	< 0.00001
Total PCBs	0.000026	< 0.05	< 0.05	< 0.05
PHC F1 (C6-C10)	-	0.041	0.4	< 0.025
PHC F2 (C10-C16)	-	< 0.100	0.94	< 0.100
PHC F3 (C16-C34)	-	< 0.100	< 0.100	< 0.100
PHC F4 (C34-C50)	-	< 0.100	< 0.100	< 0.100
Modifed TPH (Total C6-C34)	7.2	0.141	1.390	0.113

NOTES:

All parameter values in mg/L (ppm) unless otherwise indicated.

+ Exceeds Helipad West Landfill Baseline Average Concentration.

(DUP) Duplicate sample analyzed by AGAT Laboratories for QA/QC purposes.

RDL Reportable Detection Limit.

< Not detected.

- No concentration reported.

Parameter	Baseline Average Concentration (mg/L)	2014 Results
Lead	0.016	Detectable concentrations were 0.0021 mg/L for the upgradient well and ranged between 0.0013 and 0.0018 mg/L for downgradient wells, with the highest concentration recorded at monitoring well MW98-03 and the lowest concentration recorded at monitoring well MW98-02. All samples reported concentrations below the BAC.
Zinc	0.14	Detectable concentrations were 0.16 mg/L for the upgradient well and ranged between 0.034 and 0.38 mg/L for downgradient wells, with the highest concentration recorded at monitoring well MW98-01 and the lowest concentration recorded at monitoring well MW98-02. Two of three samples reported a concentration above the BAC.
Chromium	1.27	Detectable concentrations were 0.048 mg/L for the upgradient well and ranged between 0.034 and 0.38 mg/L for downgradient wells, with the highest concentration recorded at monitoring well MW98-01 and the lowest concentration recorded at monitoring well MW98-02. All samples reported concentrations below the BAC.
Arsenic	0.015	Detectable concentrations were 0.0025 mg/L for the upgradient well and ranged between 0.0016 and 0.027 mg/L for downgradient wells, with the highest concentration recorded at monitoring well MW98-01 and the lowest concentration recorded at monitoring well MW98-02. One of three samples reported a concentration above the BAC.
Mercury	-	Three samples reported concentrations below the laboratory DL of 0.00001 mg/L.
PCBs	0.000026	Three samples reported concentrations below the laboratory DL of 0.05 mg/L.
ТРН	7.2	Detectable concentrations of PHC fractions F1, F2, and F3 were reported in the two downgradient samples, resulting in modified TPH concentrations for the three samples ranging from 0.113 to 1.39 mg/L. All samples reported concentrations below the BAC.

4.3.3.5 Groundwater Trend Analysis by Parameter & Discussion of Trends

A discussion of the trends observed for parameter concentrations in groundwater from 1999 to 2014 are presented in Table 4.13. Trends have been analyzed for and downgradient locations.

Table 4.13: Evaluation of Groundwater Result Trends (Helipad West Landfill)

Parameter	2014 Results
Connor	Concentrations show a slight upward trend for upgradient wells and an upward trend for
Copper	downgradient wells.
Nickel	Concentrations show a slight downward trend for upgradient wells and a downard trend for
Nickei	downgradient wells.
Cobalt	Concentrations show a slight downward trend for upgradient and an upward trend for downgradient

Parameter	2014 Results
	wells.
Cadmium	Concentrations show a slight upward trend for upgradient and a downward trend for downgradient wells.
Lead	Concentrations show a slight upward trend for upgradient and a downward trend for downgradient wells.
Zinc	Concentrations show an upward trend for upgradient and a slight downward trend for downgradient wells.
Chromium	Concentrations show a slight upward trend for upgradient and downgradient wells.
Arsenic	Concentrations show a slight upward trend for upgradient and a slight downward trend for downgradient wells.
Mercury	Concentrations show a stable trend for upgradient and downgradient wells as all concentrations are below the laboratory detection limit for mercury for all sampling events.
PCBs	Concentrations show a stable trend for upgradient and downgradient wells as all concentrations are below the laboratory detection limit for mercury for all sampling events.
ТРН	Concentrations show a slight upward trend for upgradient and a slight downward trend for downgradient wells.

4.4 CONCLUSIONS/OVERALL PERFORMANCE OF THE LANDFILL

Based on the findings of the 2014 landfill monitoring program, the performance of the Helipad West Landfill is considered to be acceptable.

4.5 RECOMMENDATIONS/NEXT STEPS

Regular monitoring of this landfill as per the monitoring schedule shown in Table 1.1 should be continued. No remedial work is necessary at this time. Erosion channels and sinkhole features should be monitored to gauge whether they are worsening and represent an issue for the future stability of the landfill.

5.0 STATION AREA LANDFILL

5.1 LANDFILL DESCRIPTION

The Station Area Landfill is located east of the Short Range Radar (SRR) station facilities at the Upper Site, and has an approximate area of 2,000 m². This landfill was constructed for disposal of demolition and site wastes generated during cleanup activities. A detailed drawing of this landfill is provided in Figure 4. The historical chemical results for soil samples collected at this landfill are shown in plan on Figure 4A. The historical chemical results for groundwater samples collected at this landfill are shown in plan on Figure 4B.

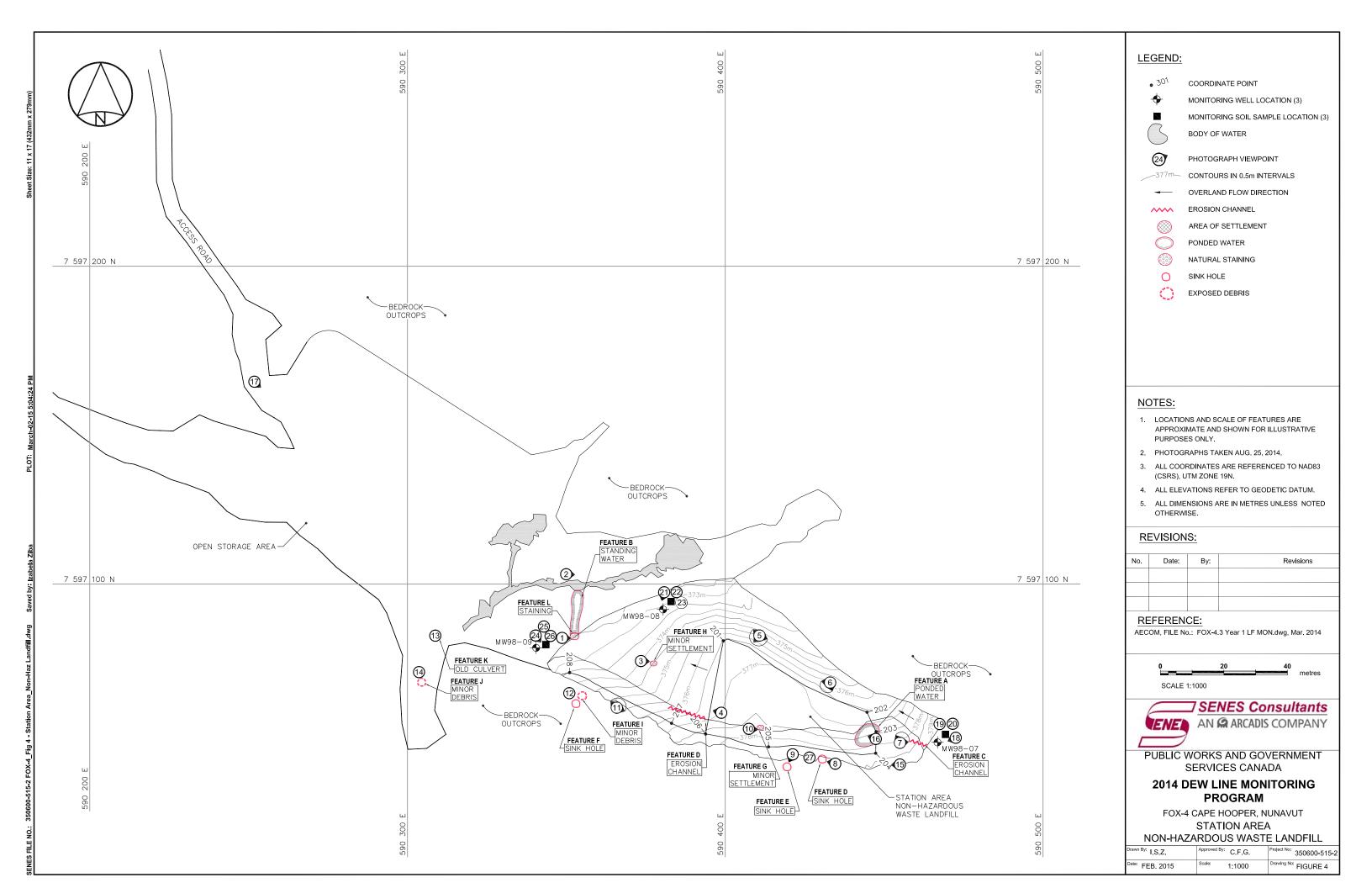
5.2 SUMMARY OF WORK CONDUCTED

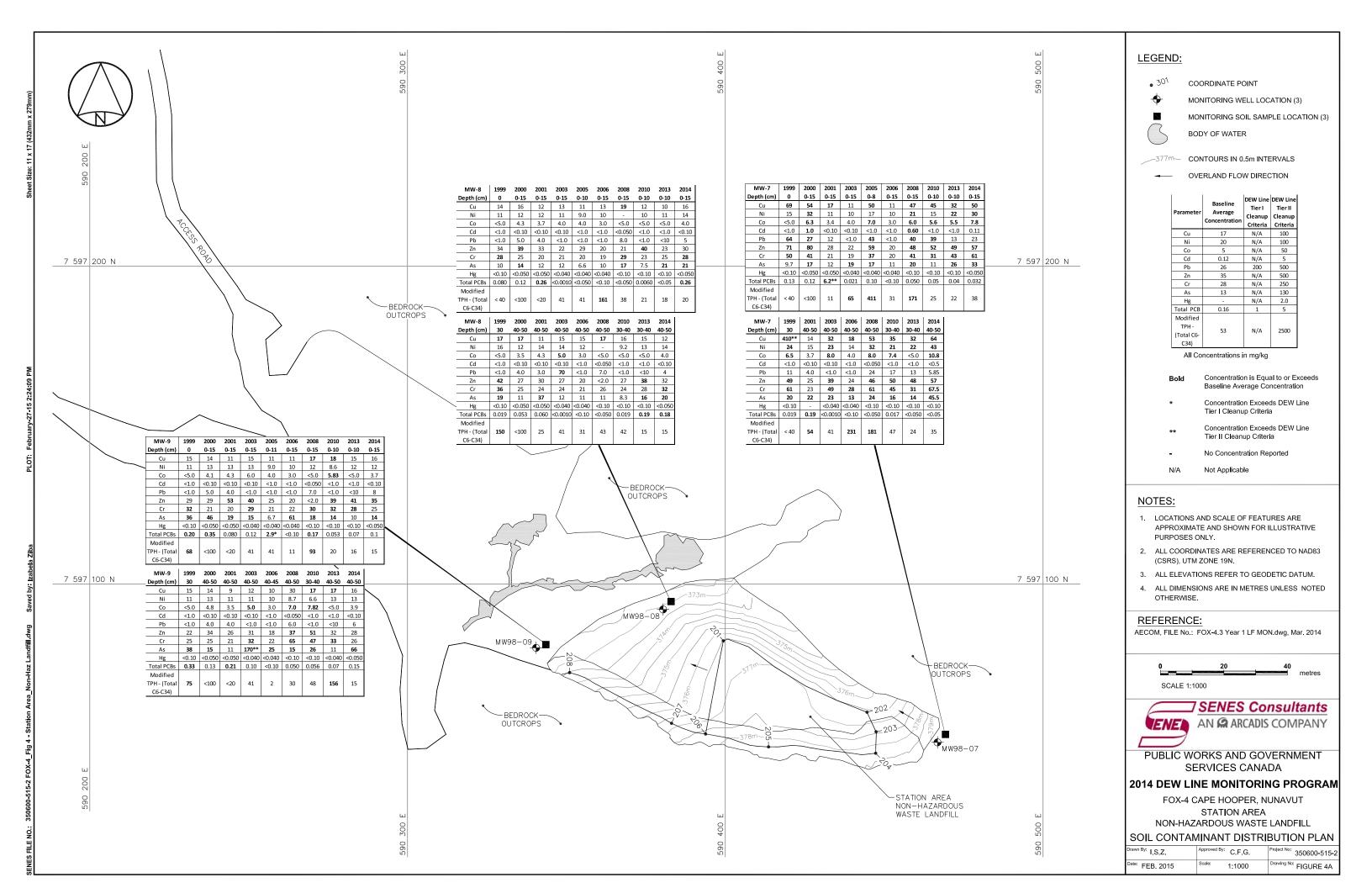
5.2.1 Visual Inspection

The visual inspection of the landfill was completed with no deviations from the visual inspection work plan.

5.2.2 Soil Sampling

Soil samples were collected at three (3) locations as shown on the site plan. Surface and subsurface samples were collected at each location. There were no deviations from the soil sampling work plan. Soil sampling completed at the landfill is summarized in Table 5.1.


Table 5.1: Summary of Work Conducted by Soil Sampling Location (Station Area Landfill)


	Surface Soil	Subsurface Soil
Location	Sample	Sample
	Collected	Collected
F4-STA-MW98-07	$\sqrt{}$	$\sqrt{\mathrm{D}}$
F4-STA-MW98-08		$\sqrt{}$
F4-STA-MW98-09		

D = duplicate sample collected $\sqrt{\ }$ - sample collected $\sqrt{\ }$ - no sample collected

5.2.3 Groundwater Sampling

Groundwater monitoring was completed at three monitoring wells as shown on Figure 4. Groundwater monitoring and sampling at the Station Area Landfill was generally completed as per the work plan. As indicated in Table 5.2, groundwater samples were not collected from two of three monitoring wells at this landfill as the wells had insufficient water. No duplicate groundwater samples were collected at this landfill.

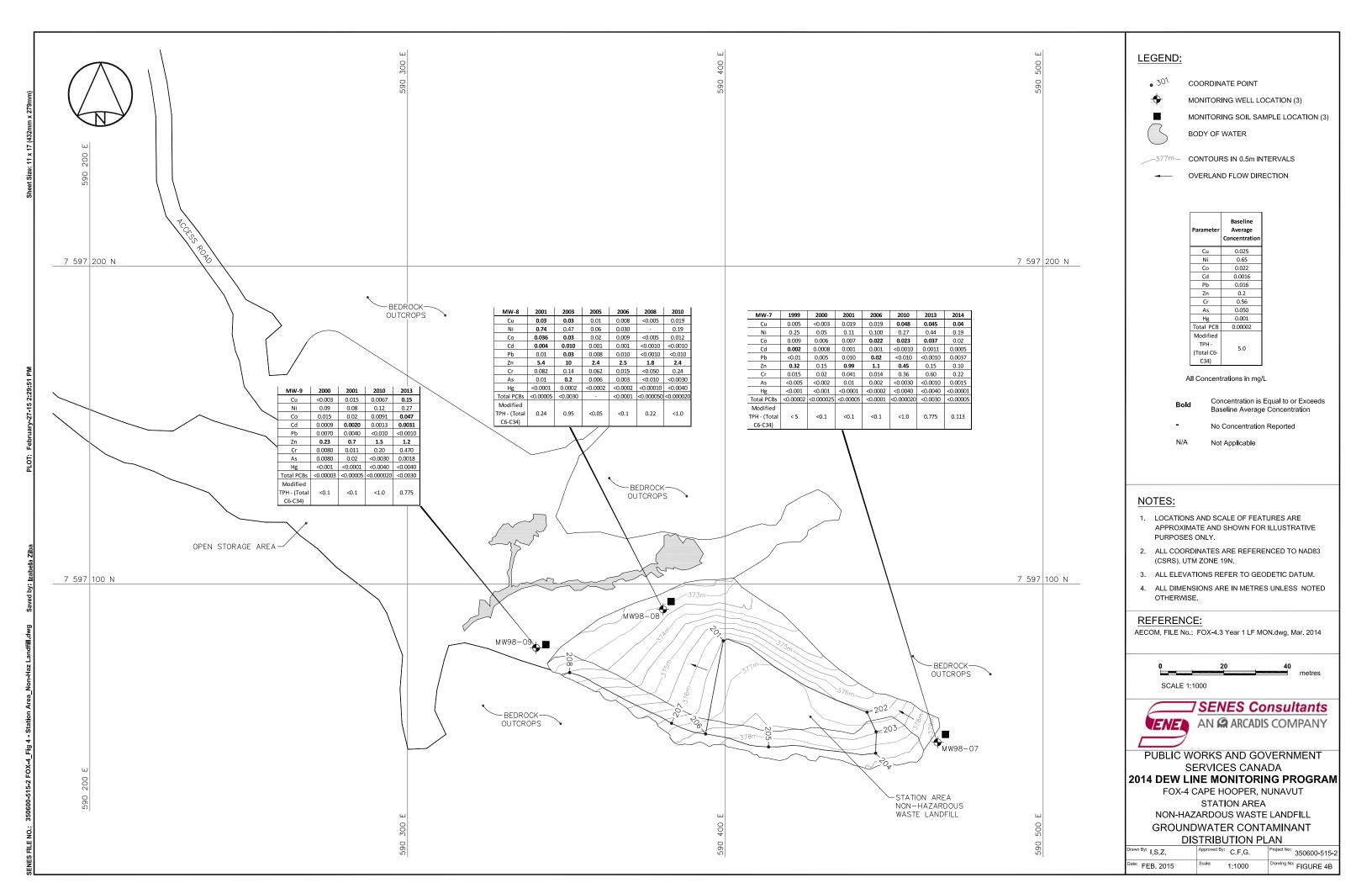


Table 5.2: Summary of Work Conducted by Groundwater Sampling Location (Station Area Landfill)

Location	Visual Inspection/ Groundwater Monitoring	Sample collected for PCB analysis	Sample collected for metals analysis	Sample collected for PHCs F1-F4 analysis
F4-STA-MW98-07	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$
F4-STA-MW98-08	$\sqrt{}$	X^{I}	X^{I}	X^{I}
F4-STA-MW98-09	V	X^{I}	X^{I}	X ^l

 $\begin{array}{c} D \text{ - duplicate sample collected} \\ \sqrt{\text{ - sample collected}} \\ X \text{ - no sample collected} \\ N \text{ - no water in well (well was dry)} \\ I \text{ - insufficient water in well to collect sample} \end{array}$

5.2.4 Thermal Monitoring

No thermal monitoring was completed at this landfill as no thermal monitoring installations have been installed at this landfill.

5.3 RESULTS OF THE MONITORING PROGRAM

5.3.1 Visual Inspection

The visual inspection at the Station Area Landfill was completed on 25 and 26 August 2014. The results of the visual inspection are detailed in Table 5.3 and shown on Figure 4 and in the photo log Table 5.6.

Table 5.3: Visual Inspection Results (Station Area Landfill)

Item	Description		
Settlement	Minor settlement was observed in two locations on the landfill (Feature H, G).		
	Three sinkholes were observed on the south side of the landfill. Two were small,		
	approximately 0.3m in diameter (Feature E, F), while one was large and		
	approximately 1 m in diameter (Feature D).		
Erosion	Two minor erosion channels were observed on the south and east sides of the landfill		
	(Feature C, D).		
Frost Action	None observed.		
Sloughing and Cracking	None observed.		
Animal Burrows	None observed.		
Vegetation	None observed.		
Staining	Red staining was observed around standing water on the west side of the landfill.		
	This staining is suspected to be due to iron-rich aggregate sources used in the		

Item	Description
	construction of the landfill (Feature L).
Vegetation Stress	None observed.
Seepage Points	None observed.
Debris Exposed	Small pieces of metal and plastic debris as well as a partially buried culvert were
	observed on the west side of the landfill (Feature I, J, K).
Presence/Condition of	Three monitoring wells were observed at the landfill. During monitoring of the wells
Monitoring Instruments	it was observed that wet bentonite clay had heaved up and filled the space in the top
	of the well casing.
Other Features of Note	Ponded water was observed on the east and west sides of the landfill (Feature A, B).

5.3.1.1 Inspection Check List

The visual inspection checklist completed during the site inspection at this landfill location is provided in Table 5.4.

5.3.1.2 Stability Assessment

The preliminary stability assessment completed for this landfill location during the recent site inspection is provided in Table 5.5.

5.3.1.3 Photographic Records

The photograph log for the site is provided in Table 5.6.

5.3.1.4 Trend Analysis

No trends in visual observations at this landfill can be observed as 2014 is the first year of monitoring at this landfill following re-grading of the landfill area during the 2011-2013 maintenance.

5.3.1.5 Discussion of Results/Trends

The results of the visual inspection indicate that the performance of the landfill is acceptable. All identified issues were minor and of no consequence to the performance of the landfill.

The presence of three sinkholes along the south side of the landfill is not currently a cause for concern, however this area should continue to be monitored for additional sinkholes or settlement.

TABLE 5.4 - VISUAL INSPECTION CHECKLIST

DEW LINE CLEANUP: POST-CONSTRUCTION - LANDFILL MONITORING INSPECTION REPORT - PAGE 1 OF 2

SITE NAME: FOX-4

LANDFILL DESIGNATION: Station Area Landfill

DATE OF INSPECTION: 25-26 August 2014

DATE OF PREVIOUS INSPECTION: N/A

INSPECTED BY: J. Mauchan/S. Borcsok

REPORT PREPARED BY: S. Borcsok

The inspector/reporter represents to the best of their knowledge, the following statements and observations are true and correct and to the best of the preparer's actual knowledge, no material facts have been suppressed or misstated.

TABLE 5.4 - VISUAL INSPECTION CHECKLIST - INSPECTION REPORT – PAGE 2 OF 2

Checklist Item	Present Yes/No	Location (Describe relative to existing monuments/features and relative to landfill design i.e. surface, berms, toe)	Length	Width	Depth	Extent relative to Area of Landfill (%)	Description	Photographic Records Focal length, location, view point & direction (relative to magnetic north) Feature of note Scale	Additional Comments
Settlement	YES	South edge of landfill (Feature E, D, G) West side of landfill (Feature F, H)	1.0m, 0.3m	1.0m, 0.3m	0.3m, 0.3m	<1%	Sinkholes Small depression	3.1, 8.1, 9.1, 9.2, 10.1	
Erosion	YES	West of MW98-07 (Feature C, D)	5	0.3m	0.05m	<1%	Small erosion channel	4.1, 7.1,	
Frost Action	NO								
Sloughing and Cracking	NO								
Animal Burrows	NO								
Vegetation	YES						Sparse grasses/moss		
Staining	YES	NE of MW98-09 (Feature L)					Red ox. Staining in ponded water	1.1, 2.1,	
Vegetation Stress	NO								
Seepage Points	NO								
Debris Exposed	YES	West side of landfill (Feature I, J, K)					Metal, plastic, partially buried culvert	12.1, 13.1, 14.1	
Presence/Condition – Monitoring Instruments	YES	3 Monitoring Wells, see Figure 4				<1%	Monitoring Wells	18.1, 21.1, 24.1	Well casings filled with wet bentonite clay
Features of Note.	YES	Ponded water east and northwest of landfill (Feature A, B)					Ponded water	16.1	

Table 5.5: Preliminary Stability Assessment - FOX-4 Station Area Landfill

Feature	Severity Rating	Extent		
Settlement	Acceptable	Occasional		
Erosion	Acceptable	Occasional		
Frost Action	None	None		
Staining	Acceptable	Occasional		
Vegetation Stress	None	None		
Seepage/Ponded Water	Acceptable	Occasional		
Debris exposure	Acceptable	Occasional		
Overall Landfill Performance: ACCEPTABLE				

Performance/ Severity Rating	Description
Acceptable	Noted features are of little consequence. The landfill is performing as designed. Minor deviations in environmental or physical performance may be observed, such as isolated areas of erosion, settlement.
Marginal	Physical/environmental performance appears to be deteriorating with time. Observations may include an increase in size or number of features of note, such as differential settlement, erosion or cracking. No significant impact on landfill stability to date, but potential for failure is assessed as low or moderate.
Significant	Significant or potentially significant changes affecting landfill stability, such as significant changes in slope geometry, significant erosion or differential settlement; scarp development. The potential for failure is assessed as imminent.
Unacceptable	Stability of landfill is compromised to the extent that ability to contain waste materials is compromised. Examples may include: - Debris exposed in erosion channels or areas of differential settlement. - Liner exposed. - Slope failure.

Extent	Description
Isolated	Singular feature
Occasional	Features of note occurring at irregular intervals/locations
Numerous	Many features of note, impacted less than 50% of the surface area of the landfill
Extensive	Impacting greater than 50% of the surface area of the landfill

TABLE 5.6: LANDFILL VISUAL INSPECTION PHOTO LOG (STATION AREA LANDFILL)

FOX-4 Station Area Landfill (see Figure 4)

Photo 1.1 (FOX-4 STA P-1 east.jpg)	Photo 2.1 (FOX-4 STA P-2 east.jpg)
Description: View looking east from east of MW98-09. Staining observed at tanding water near trowel. (FEATURE B, L)	Description: View looking east toward MW98-08 over standing water, oxidation stainin visible in water. (FEATURE B, L)
Date: August 25, 2014	Date: August 25, 2014

TABLE 5.6: LANDFILL VISUAL INSPECTION PHOTO LOG (STATION AREA LANDFILL)

Photo 3.1 (FOX-4 STA P-3 east.jpg)	Photo 4.1 (FOX-4 STA P-4 east.jpg)
Description: View east looking up the slope of the Station Area Non-hazardous landfill. Minor settlement observed at trowel location. (FEATURE H)	Description: View west looking downslope along erosion channel. (FEATURE D)
Date: August 25, 2014	Date: August 25, 2014

TABLE 5.6: LANDFILL VISUAL INSPECTION PHOTO LOG (STATION AREA LANDFILL)

Photo 5.1 (FOX-4 STA P-5 nw.jpg)	Photo 5.2 (FOX-4 STA P-5 se.jpg)
	Description: View southeast along slope.
Date: August 25, 2014	Date: August 25, 2014

TABLE 5.6: LANDFILL VISUAL INSPECTION PHOTO LOG (STATION AREA LANDFILL)

Photo 5.3 (FOX-4 STA P-5 sw.jpg)	Photo 6.1 (FOX-4 STA P-6 south.jpg)
Description: View southwest over landfill cap.	Description: View south over landfill cap.
Date: August 25, 2014	Date: August 25, 2014

Photo 6.2 (FOX-4 STA P-6 west.jpg)	Photo 7.1 (FOX-4 STA P-7 east.jpg)
Description: View west from northeastern slope of landfill towards station.	Description: View east, looking upslope toward MW98-07 (located between wooden stakes). Erosion channel visible left of trowel. (FEATURE C)
Date: August 25, 2014	Date: August 25, 2014

Photo 7.2 (FOX-4 STA P-7 north.jpg)	Photo 8.1 (FOX-4 STA P-8 nw.jpg)
escription: View looking north, upslope, in the vicinity of MW98-07.	Description: View looking west, toward station, of sink hole. The sink hole measured approximately 1 m in diameter. (FEATURE D)
Date: August 25, 2014	Date: August 25, 2014

TABLE 5.6: LANDFILL VISUAL INSPECTION PHOTO LOG (STATION AREA LANDFILL)

Photo 9.1 (FOX-4 STA P-9 west.jpg)	Photo 10.1 (FOX-4 STA P-10 east.jpg)
Description: View of small sinkhole, measuring approximately 0.3 m diameter, on southern edge of landfill. (FEATURE E)	Description: View of minor settlement, measuring 0.3 m x 0.2 m, at trowel. MW98-07 is in the distance. (FEATURE G)
Date: August 25, 2014	Date: August 25, 2014

Photo 11.1 (FOX-4 STA P-11 east.jpg)	Photo 11.2 (FOX-4 STA P-11 ne.jpg)
Description: View of landfill from southwestern edge, looking east.	Description: View of landfill from southwestern edge, looking northeast.
Date: August 25, 2014	Date: August 25, 2014

Photo 11.3 (FOX-4 STA P-11 north.jpg)	Photo 12.1 (FOX-4 STA P-12.jpg)
Description: View of landfill from southwestern edge, looking north.	Description: Minor debris (metal strapping) adjacent to small sinkhole. (FEATURE I)
Date: August 25, 2014	Date: August 25, 2014

Photo 13.1 (FOX-4 STA P-13.jpg)	Photo 14.1 (FOX-4 STA P-14.jpg)
Photo 13.1 (FOX-4 STA P-13.jpg) Description: Old culvert west of the landfill. (FEATURE K)	Photo 14.1 (FOX-4 STA P-14.jpg) Description: Minor debris such as plastic and scrap wood observed west of landfill. (FEATURE J)
Date: August 25, 2014	Date: August 25, 2014

Photo 15.1 (FOX-4 STA P-15 west.jpg)	Photo 16.1 (FOX-4 STA P-16 west.jpg)
Description: View of southern edge of landfill, looking west toward station.	Description: View of ponded water at eastern end of landfill, west of MW98-07. (FEATURE A)

Date: August 25, 2014

Date: August 25, 2014

Photo 17.1 (FOX-4 STA P-17.jpg)	Photo 18.1 (FOX-4 STA P-18 west.jpg)
Description: View of Station Area Non-Hazardous Landfill from the station access road. View looking southeast.	Description: View of landfill from MW98-07.
Date: August 25, 2014	Date: August 25, 2014

Photo 19.1 (FOX-4 STA P-19.jpg)	Photo 20.1 (FOX-4 STA P-20.jpg)
Description: F4-STA-MW98-07 sample collection.	Description: F4-STA-Mw98-07 after sample collection and backfill.
	FALSE PROPERTY AND
Date: August 25, 2014	Date: August 25, 2014

Photo 21.1 (FOX-4 STA P-21 south.jpg)	Photo 22.1 (FOX-4 STA P-22.jpg)
Photo 21.1 (FOX-4 STA P-21 south.jpg) Description: View south of landfill from MW98-08.	Photo 22.1 (FOX-4 STA P-22.jpg) Description: F4-STA-MW98-08 soil sample collection.
Date: August 25, 2014	Date: August 25, 2014

TABLE 5.6: LANDFILL VISUAL INSPECTION PHOTO LOG (STATION AREA LANDFILL)

Photo 23.1 (FOX-4 STA P-23.jpg)	Photo 24.1 (FOX-4 STA P-24 se.jpg)		
Description: After collection and backfill of F4-STA-MW98-08.	Description: View of landfill from MW98-09.		
Date: August 25, 2014	Date: August 25, 2014		

Photo 25.1 (FOX-4 STA P-25.jpg)	Photo 26.1 (FOX-4 STA P-26.jpg)
Description: F4-STA-MW98-09 during soil sample collection.	Description: After collection and backfill of F4-STA-MW98-09.
Date: August 25, 2014	Date: August 25, 2014

Photo 27.1 (FOX-4 STA P-27.jpg)	
Description: Closeup of sinkhole. (FEATURE D)	
Date: August 26, 2014	

5.3.2 Soil Sampling

Soil sampling at the Station Area Landfill was completed on 25 August 2014. As previously reported a total of seven samples including one duplicate sample were procured from three locations as shown in plan on Figure 2.

5.3.2.1 Laboratory Analytical Results

The laboratory analytical results for soil samples collected at the Station Area Landfill during the 2014 monitoring event are provided in Table 5.7. A duplicate soil sample was collected from subsurface soil at sample location MW98-07 and was submitted to AGAT, a secondary laboratory for QA/QC purposes. The RPDs for the duplicate sample results were below 30%, indicating good consistency between duplicate results.

5.3.2.2 Discussion of Results - Comparison to Baseline/Background

A discussion of the analytical results for soil samples collected at the Station Area Landfill during the 2014 monitoring event are provided in Table 5.8. The discussion includes a comparison of results from upgradient (MW98-07) and downgradient (MW98-08, MW98-09) soil sampling locations to the baseline average concentrations (BAC) that have been determined for each landfill from soil chemistry at the landfill area prior to and during remediation. Upgradient locations are those near the landfill that are not influenced by migration of contaminants through the landfill, and downgradient locations are at the toe of the landfill or from areas of preferential drainage.

Table 5.8: Evaluation of 2014 Soil Analytical Data (Station Area Landfill)

Parameter	Baseline Average Concentration (ug/g)	2014 Results
Copper	17	Detectable concentrations ranged between 50 and 64 ug/g for upgradient samples and between 12 and 16 ug/g for downgradient samples, with the highest concentration recorded in the subsurface sample at the MW98-07 sample location and the lowest concentration recorded in the subsurface sample at the MW98-08 sample location. Three of seven samples reported concentrations above the BAC.
Nickel	20	Detectable concentrations ranged between 30 and 43 ug/g for upgradient samples and between 12 and 14 ug/g for downgradient samples, with the highest concentration recorded in the subsurface sample at the MW98-07 sample location and the lowest concentration recorded in the surface sample at the MW98-09 sample location. Three of seven samples reported concentrations above the BAC.

TABLE 5.7

RESULTS OF ANALYSIS FOR PARAMETERS IN SOIL AT STATION AREA NON-HAZARDOUS LANDFILL

	Background Concentration	Baseline Average	DEW Line Cleanup	DEW Line Cleanup	F4-STA- MW98-07-S	F4-STA- MW98-07-D	F4-STA- MW98-07-D	F4-STA- MW98-07-D	F4-STA- MW98-08-S	F4-STA- MW98-08-D	F4-STA- MW98-09-S	F4-STA- MW98-09-D
PARAMETERS	Concentration	Concentration	Tier I	Tier II	14144 36-07-3	WW 90-07-D	(DUP)	(AVG)	11111798-08-3	MW 96-06-D	141 44 36-03-3	WI W 98-09-D
		Concentration	Criteria	Criteria			(201)	(11,0)				
					25-Aug-14							
	(_)	(+)	(*)	(**)	0-15cm	40-50cm	40-50cm	40-50cm	0-15cm	40-50cm	0-15cm	40-50cm
Copper	30	17	-	100	<u>50+</u>	<u>63+</u>	<u>65+</u>	<u>64+</u>	16	12	16	16
Nickel	24	20	-	100	<u>30+</u>	<u>47+</u>	<u>39+</u>	<u>43+</u>	14	14	12	13
Cobalt	8.8	5	-	50	7.8+	<u>11+</u>	<u>10.5+</u>	<u>10.75+</u>	4	4	3.7	3.9
Cadmium	1.00	0.12	-	5	0.11	< 0.10	< 0.5	< 0.5	< 0.10	< 0.10	< 0.10	< 0.10
Lead	10	26	200	500	<u>23</u>	5.7	6	5.85	5.4	3.7	7.5	5.7
Zinc	41	35	-	500	<u>57+</u>	<u>56+</u>	<u>58+</u>	<u>57+</u>	30	32	35	28
Chromium	41	28	-	250	<u>61+</u>	<u>67+</u>	<u>68+</u>	<u>67.5+</u>	28	32+	25	26
Arsenic	28.6	13	-	30	<u>33+</u>	<u>48+</u>	<u>43+</u>	45.5+	21+	20+	14+	<u>66+</u>
Mercury	-	-	-	2	< 0.050	< 0.050	< 0.10	< 0.10	< 0.050	< 0.050	< 0.050	< 0.050
Total PCBs	-	0.16	1	5	0.032	< 0.010	< 0.05	< 0.05	0.26+	0.18+	0.1	0.15
PHC F1 (C6-C10)	-	-	-	-	<10	<10	<5	<10	<10	<10	<10	<10
PHC F2 (C10-C16)	-	-	-	-	<10	<10	<10	<10	10	<10	<10	<10
PHC F3 (C16-C34)	-	-	-	-	28	< 50	< 50	< 50	<10	<10	<10	<10
PHC F4 (C34-C50)	-	-	-	-	<10	< 50	< 50	< 50	<10	<10	<10	<10
Modifed TPH (Total C6-C34)	-	53	-	2500	38	35	32.5	33.75	20	15	15	15

NOTES:

All parameter values in $\mu g/g\ (ppm)$ unless otherwise indicated.

- Exceeds FOX-4 Station Area Non-Hazardous Landfill Background Concentration.
- Exceeds FOX-4 Station Area Non-Hazardous Landfill Baseline Average Concentration.
- * Exceeds DEW Line Cleanup Tier I Criteria.
- ** Exceeds DEW Line Cleanup Tier II Criteria.

(DUP) Duplicate sample analyzed by AGAT Laboratories for QA/QC purposes.

(AVG) Average concentration of duplicate samples.

< Not detected.

No concentration reported.

Parameter	Baseline Average Concentration (ug/g)	2014 Results
Cobalt	5	Detectable concentrations ranged between 7.8 and 10.75 ug/g for upgradient samples and between 3.7 and 4 ug/g for downgradient samples, with the highest concentration recorded in the subsurface sample at the MW98-07 sample location and the lowest concentration recorded in the surface sample at the MW98-09 sample location. Three of seven samples reported concentrations above the BAC.
Cadmium	0.12	A detectable concentration of 0.11 ug/g was reported in the surface sample at the upgradient MW98-07 sample location (below the BAC). The remaining six of seven samples reported concentrations below the laboratory detection limit.
Lead	26	Detectable concentrations ranged between 5.7 and 23 ug/g for upgradient samples and between 3.7 and 7.5 ug/g for downgradient samples, with the highest concentration recorded in the surface sample at the MW98-07 sample location and the lowest concentration recorded in the subsurface sample at the MW98-08 sample location. All samples reported concentrations below the BAC.
Zinc	35	Detectable concentrations were 57 ug/g for upgradient samples and ranged between 28 and 35 ug/g for downgradient samples, with the highest concentration recorded in the surface and subsurface samples at the MW98-07 sample location and the lowest concentration recorded in the subsurface sample at the MW98-09 sample location. Three of seven samples reported concentrations above the BAC.
Chromium	28	Detectable concentrations ranged between 61 and 67.5 ug/g for upgradient samples and between 25 and 32 ug/g for downgradient samples, with the highest concentration recorded in the subsurface sample at the MW98-07 sample location and the lowest concentration recorded in the surface sample at the MW98-09 sample location. Four of seven samples reported concentrations above the BAC.
Arsenic	13	Detectable concentrations ranged between 33 and 45.5 ug/g for upgradient samples and between 14 and 66 ug/g for downgradient samples, with the highest concentration recorded in the subsurface sample at the MW98-09 sample location and the lowest concentration recorded in the surface sample at the MW98-09 sample location. All seven samples reported concentrations above the BAC.
Mercury	-	All results were below the laboratory detection limit of 0.050 ug/g (and 0.10 ug/g for the duplicate sample submitted to the secondary laboratory)
PCBs	0.16	A detectable concentration of 0.032 ug/g was reported for one upgradient sample. Detectable concentrations ranged between 0.1 and 0.26 ug/g for downgradient samples, with the highest concentration recorded in the subsurface sample at the MW98-08 sample location and the lowest concentration recorded in the surface sample at the MW98-07 sample location. Two of seven samples reported concentrations above the BAC.

Parameter	Baseline Average Concentration (ug/g)	2014 Results
ТРН	53	Modified TPH concentrations ranged between 33.75 and 38 ug/g for upgradient samples and between 15 and 20 ug/g for downgradient samples, with the highest concentration reported in the subsurface sample at the MW98-07 sample location and the lowest concentration in the surface and subsurface samples at the MW98-09 sample location and the subsurface sample at the MW98-08 sample location. All samples reported concentrations below the BAC.

5.3.2.3 Soil Trend Analysis by Parameter and Discussion of Trends

A discussion of the trends observed for parameter concentrations in soil from 1999 to 2014 are presented in Table 5.9. Trends have been analyzed for upgradient and downgradient locations.

Table 5.9: Evaluation of Soil Result Trends (Station Area Landfill)

Parameter	2014 Results
Copper	Concentrations show a downward trend for the upgradient soil location and a relatively stable trend for downgradient soil locations.
Nickel	Concentrations show an upward trend for the upgradient soil location and a slight downward trend for downgradient soil locations.
Cobalt	Concentrations show an upward trend for the upgradient soil location and a relatively stable trend for downgradient soil locations.
Cadmium	Concentrations show a downward trend for the upgradient soil location and a relatively stable trend for downgradient soil locations.
Lead	Concentrations show a relatively stable trend for upgradient and downgradient soil locations.
Zinc	Concentrations show a slight upward trend for the upgradient soil location and a slight downward trend for downgradient soil locations.
Chromium	Concentrations show an upward trend for the upgradient soil location and a slight upward trend for downgradient soil locations.
Arsenic	Concentrations show a slight upward trend for the upgradient soil location and a slight downard trend for downgradient soil locations.
Mercury	Concentrations show a stable trend for upgradient and downgradient soil locations as concentrations are below laboratory detection limits for all sample locations during all sampling events.
PCBs	Concentrations show a downward trend for the upgradient soil location and a relatively stable trend for downgradient soil locations.
ТРН	Concentrations show an upward trend for the upgradient soil location and a slight downward trend for downgradient soil locations.

5.3.3 Groundwater Sampling

Groundwater sampling at the Station Area Landfill was completed on 25 August 2014. As previously reported, one groundwater sample was procured from one monitoring well (MW98-07) as shown in plan on Figure 4.

5.3.3.1 Monitoring Well Sampling/Inspection Logs

Monitoring well sampling/inspection logs are provided following this page on Monitoring Well Sampling Records 13 through 15.

5.3.3.2 Water Levels/Groundwater Flow

Water levels were measured at the Station Area Landfill on 25 August 2014. The groundwater levels measured are shown below in Table 5.10. Based on the measured groundwater levels, groundwater flow is expected to be towards the northwest.

Monitoring Well	Date	Ground Surface Elevation (m)	Water Level (m bgs)	Water Level Elevation (m)	Depth to Bottom (m bgs)	Bottom Elevation (m)
MW98-07	25-Aug-14	379.4	0.9	378.5	1.9	377.5
MW98-08	25-Aug-14	373.2	0.75	372.45	0.95	372.25
MW98-09	25-Aug-14	372.4	0.98	371.42	1.19	371.21

Table 5.10: Groundwater Levels (Station Area Landfill)

5.3.3.3 Laboratory Analytical Results

Laboratory analytical results for groundwater at the Station Area Landfill are presented in Table 5.11. No duplicate groundwater samples were collected at the Station Area Landfill.

5.3.3.4 Discussion of Results by Parameter

An evaluation of the groundwater analytical results at the Station Area Landfill is presented in Table 5.12. The discussion includes a comparison of results from the upgradient location MW98-07 to the baseline average concentrations (BAC) that have been determined for each landfill from groundwater chemistry at the landfill area prior to and during remediation. No groundwater samples were collected from downgradient wells during this monitoring event.

TABLE 5.11

RESULTS OF ANALYSIS FOR PARAMETERS IN GROUNDWATER AT STATION AREA LANDFILL

PARAMETERS	Baseline Average Concentration	F4-STA- MW98-07
	(+)	25-Aug-14
Copper	0.025	0.035+
Nickel	0.65	0.19
Cobalt	0.022	0.02
Cadmium	0.0016	0.00052
Lead	0.016	0.0037
Zinc	0.2	0.1
Chromium	0.56	0.22
Arsenic	0.050	0.0015
Mercury	0.001	< 0.00001
Total PCBs	0.00002	< 0.00005
PHC F1 (C6-C10)	-	< 0.025
PHC F2 (C10-C16)	-	< 0.100
PHC F3 (C16-C34)	-	< 0.100
PHC F4 (C34-C50)	-	< 0.100
Modifed TPH (Total C6-C34)	5.0	0.113

NOTES:

All parameter values in mg/L (ppm) unless otherwise indicated.

+ Exceeds Station Area Landfill Baseline Average Concentration.

(DUP) Duplicate sample analyzed by AGAT Laboratories for QA/QC purposes.

RDL Reportable Detection Limit.

< Not detected.

No concentration reported.

Table 5.12: Evaluation of Groundwater Analytical Results (Station Area Landfill)

Parameter	Baseline Average Concentration (mg/L)	2014 Results
Copper	0.025	A detectable concentration of 0.035 mg/L was reported at monitoring well MW98-07, above the BAC.
Nickel	0.65	A detectable concentration of 0.19 mg/L was reported at monitoring well MW98-07, below the BAC.
Cobalt	0.022	A detectable concentration of 0.02 mg/L was reported at monitoring well MW98-07, below the BAC.
Cadmium	0.0016	A detectable concentration of 0.00052 mg/L was reported at monitoring well MW98-07, below the BAC.
Lead	0.016	A detectable concentration of 0.0037 mg/L was reported at monitoring well MW98-07, below the BAC.
Zinc	0.2	A detectable concentration of 0.1 mg/L was reported at monitoring well MW98-07, below the BAC.
Chromium	0.56	A detectable concentration of 0.22 mg/L was reported at monitoring well MW98-07, below the BAC.
Arsenic	0.050	A detectable concentration of 0.0015 mg/L was reported at monitoring well MW98-07, below the BAC.
Mercury	0.001	No detectable concentration was reported at monitoring well MW98-07. The concentration reported was below the laboratory detection limit of 0.00001 mg/L.
PCBs	0.00002	No detectable concentration was reported at monitoring well MW98-07. The concentration reported was below the laboratory detection limit of 0.00005 mg/L.
ТРН	5.0	No detectable concentrations for PHC fractions F1, F2 or F3 were reported at monitoring well MW98-07. The modified TPH concentration at this location was calculated to be 0.113 mg/L, below the BAC.

5.3.3.5 Groundwater Trend Analysis by Parameter & Discussion of Trends

A discussion of the trends observed for parameter concentrations in groundwater from 1999 to 2014 are presented in Table 5.13. Trends have been analyzed for upgradient (MW98-07) and downgradient (MW98-08/09) locations, where upgradient locations are those near the landfill that are not influenced by migration of contaminants through the landfill, and downgradient locations are at the toe of the landfill or from areas of preferential drainage.

Table 5.13: Evaluation of Groundwater Result Trends (Station Area Landfill)

Parameter	2014 Results
Copper	Concentrations show a relatively stable trend for upgradient & downgradient wells.
Nickel	Concentrations show a relatively stable trend for upgradient & downgradient wells.

Parameter	2014 Results
Cobalt	Concentrations show an upward trend for upgradient & downgradient wells.
Cadmium	Concentrations show a relatively stable trend for upgradient & downgradient wells.
Lead	Concentrations show a relatively stable trend for upgradient & downgradient wells.
Zinc	Concentrations show a downward trend for upgradient wells & an upward trend for downgradient wells.
Chromium	Concentrations show a slight upward trend for upgradient & downgradient wells.
Arsenic	Concentrations show a relatively stable trend for upgradient & downgradient wells.
Mercury	Concentrations show a relatively stable trend for upgradient & downgradient wells as all results have been below laboratory detection limits for all sampling events.
PCBs	Concentrations show a relatively stable trend for upgradient & downgradient wells as all results have been below laboratory detection limits for all sampling events.
TPH	Concentrations show a relatively stable trend for upgradient & downgradient wells.

5.4 CONCLUSIONS/OVERALL PERFORMANCE OF THE LANDFILL

Based on the results of the 2014 monitoring program, the performance of the Station Area Landfill is acceptable.

5.5 RECOMMENDATIONS/NEXT STEPS

Three sinkholes were noted along the southern edge of the Station Area Landfill. These features are not a cause for immediate concern, however future monitoring events should monitor these sinkholes to assess if they increase in size and/or number. If sinkholes do increase it may ibe indicative of a condition that can worsen and threaten the future performance of the landfill. Regular monitoring of this landfill as per the monitoring schedule shown in Table 1.1 should be continued. No remedial work is necessary at this time.

6.0 PALLET LINE LANDFILL

6.1 LANDFILL DESCRIPTION

The Pallet Line Landfill is located at the Lower Site, north of the airstrip and east of the Non-Hazardous Waste Landfill, and has an approximate area of 2,000 m². This landfill was an existing landfill at the site. A detailed drawing of this landfill is provided in Figure 5. The historical chemical results for soil samples collected at this landfill are shown in plan on Figure 5A.

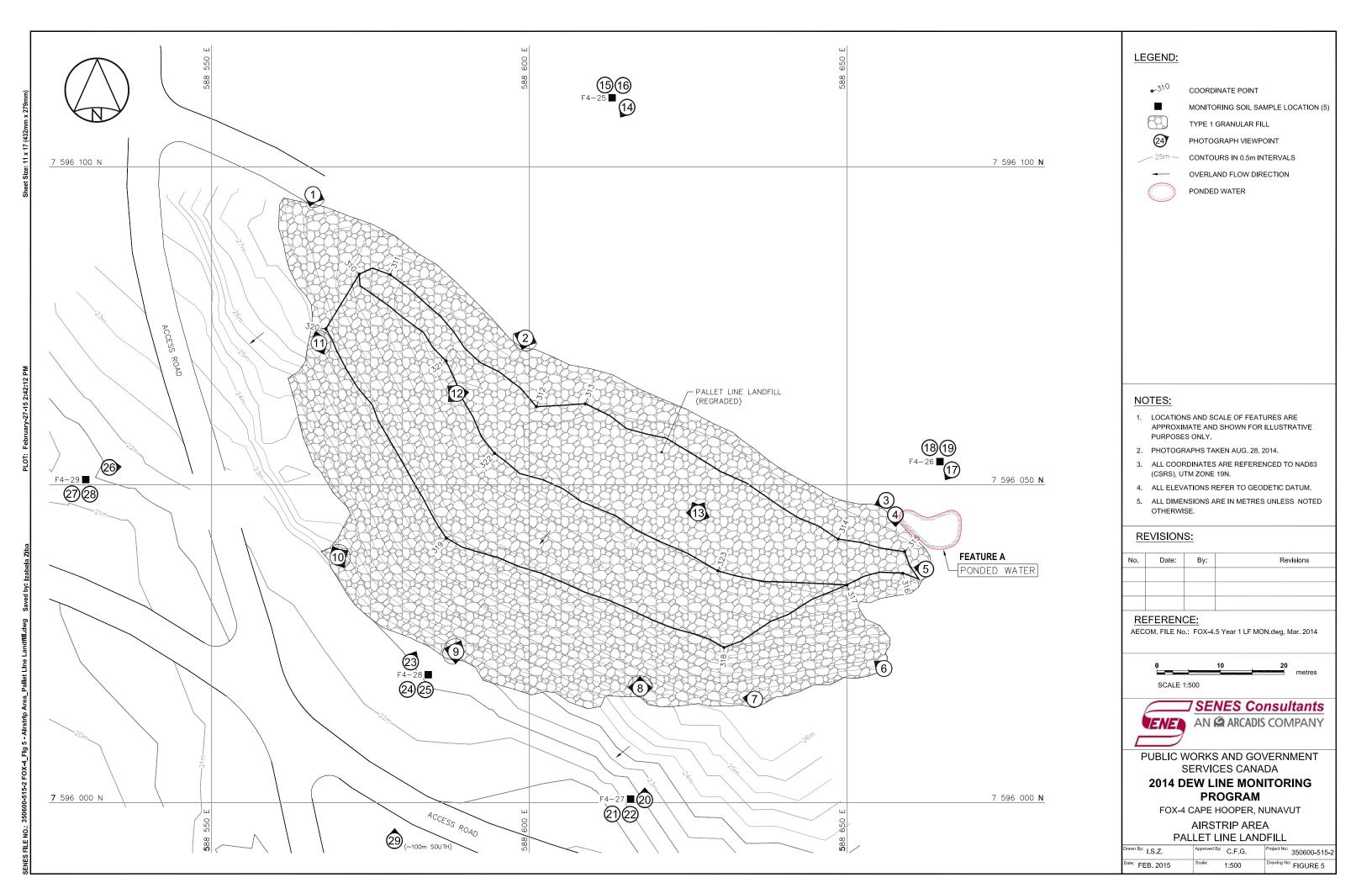
6.2 SUMMARY OF WORK CONDUCTED

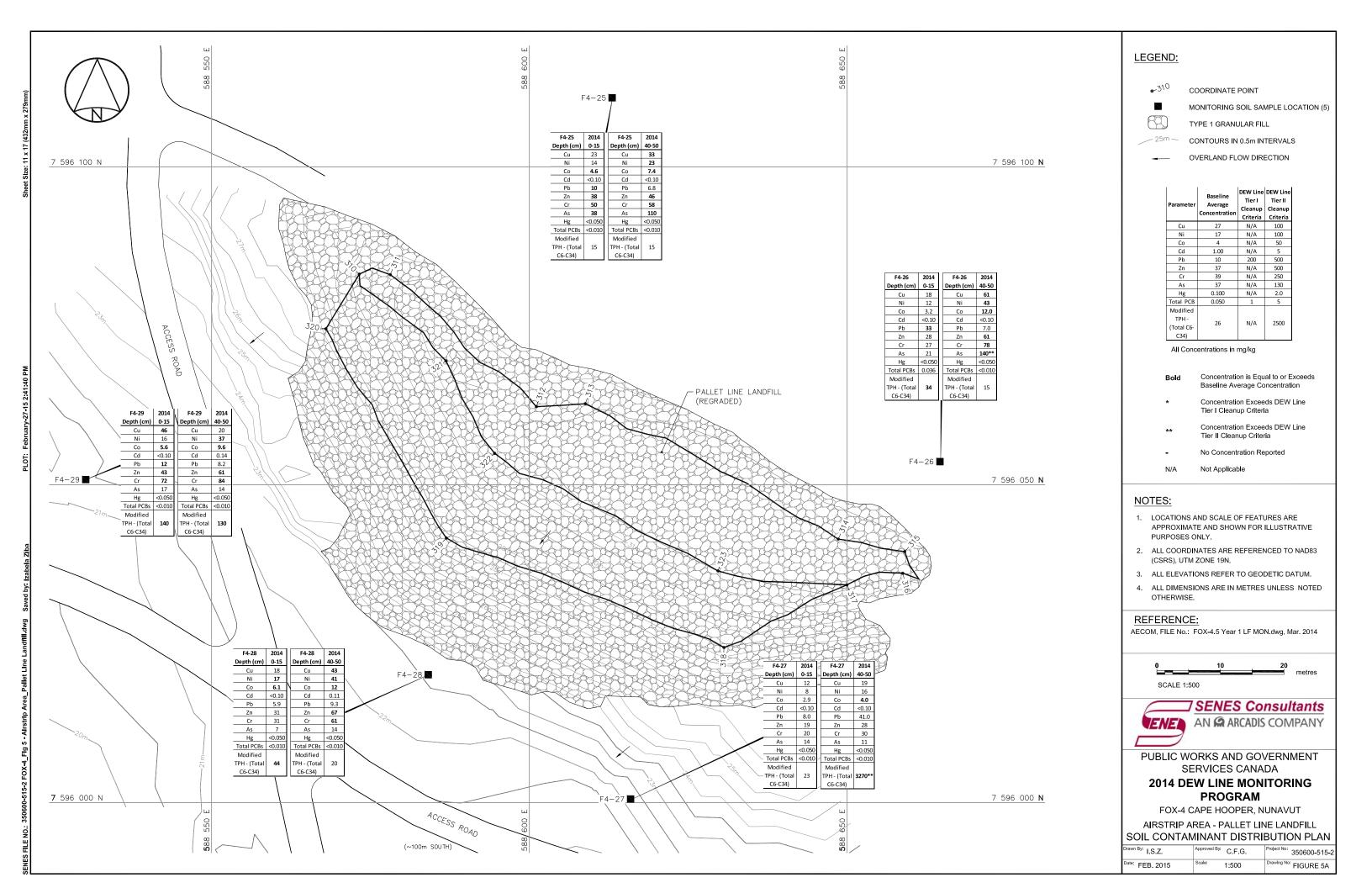
6.2.1 Visual Inspection

The visual inspection of the landfill was completed with no deviations from the visual inspection work plan.

6.2.2 Soil Sampling

Soil samples were collected at five (5) locations as shown on the site plan. Surface and subsurface samples were collected at each location. There were no deviations from the soil sampling work plan. One duplicate soil sample was collected from surface soil at the PAL-27 sample location. Soil sampling completed at the landfill is summarized in Table 6.1.


Table 6.1: Summary of Work Conducted by Soil Sampling Location (Pallet Line Landfill)


Location	Surface Soil Sample Collected	Subsurface Soil Sample Collected
F4-PAL-25	$\sqrt{}$	
F4-PAL-26		$\sqrt{}$
F4-PAL-27	$\sqrt{\mathrm{D}}$	$\sqrt{}$
F4-PAL-28		
F4-PAL-29	V	

D = duplicate sample collected $\sqrt{\ }$ - sample collected X - no sample collected

6.2.3 Groundwater Sampling

No groundwater monitoring wells are present at this landfill.

6.2.4 Thermal Monitoring

No thermistor installations are present at this landfill.

6.3 RESULTS OF THE MONITORING PROGRAM

6.3.1 Visual Inspection

The visual inspection at the Pallet Line Landfill was completed on 25 and 26 August 2014. The results of the visual inspection are detailed in Table 6.2 and shown on Figure 5 and in the photo log Table 6.5.

Table 6.2: Visual Inspection Results (Pallet Line Landfill)

Item	Description
Settlement	None observed.
Erosion	None observed.
Frost Action	None observed.
Sloughing and Cracking	None observed.
Animal Burrows	None observed.
Vegetation	None observed.
Staining	None observed.
Vegetation Stress	None observed.
Seepage Points	None observed.
Debris Exposed	None observed.
Presence/Condition of Monitoring Instruments	No monitoring instruments are present at this landfill.
Other Features of Note	Ponded water northeast of the landfill. (Feature A)

6.3.1.1 Inspection Checklist

The visual inspection checklist completed for this landfill during the site inspection is provided in Table 6.3.

6.3.1.2 Stability Assessment

The preliminary stability assessment completed during the site inspection is provided in Table 6.4.

6.3.1.3 Photographic Records

The photograph log for the site is provided in Table 6.5.

TABLE 6.3 - VISUAL INSPECTION CHECKLIST

DEW LINE CLEANUP: POST-CONSTRUCTION - LANDFILL MONITORING INSPECTION REPORT - PAGE 1 OF 2

SITE NAME: FOX-4

LANDFILL DESIGNATION: Pallet Line Landfill

DATE OF INSPECTION: 25 and 26 August 2014

DATE OF PREVIOUS INSPECTION: N/A

INSPECTED BY: S. Borcsok, J. Mauchan

REPORT PREPARED BY: S. Borcsok

The inspector/reporter represents to the best of their knowledge, the following statements and observations are true and correct and to the best of the preparer's actual knowledge, no material facts have been suppressed or misstated.

TABLE 6.3 - VISUAL INSPECTION CHECKLIST - INSPECTION REPORT – PAGE 2 OF 2

Checklist Item	Present Yes/No	Location (Describe relative to existing monuments/features and relative to landfill design i.e. surface, berms, toe)	Length	Width	Depth	Extent relative to Area of Landfill (%)	Description	Photographic Records Focal length, location, view point & direction (relative to magnetic north) Feature of note Scale	Additional Comments
Settlement	NO								
Erosion	NO								
Frost Action	NO								
Sloughing and Cracking	NO								
Animal Burrows	NO								
Vegetation	NO								
Staining	NO								
Vegetation Stress	NO								
Seepage Points	NO								
Debris Exposed	NO								
Presence/Condition – Monitoring Instruments	NO								
Features of Note.	YES	Ponded water northeast of landfill (Feature A).				<1%		17.1	

SITE:: FOX-4 LANDFILL: PALLET LINE LANDFILL 2

Table 6.4: Preliminary Stability Assessment - FOX-4 Pallet Landfill

Feature	Severity Rating	Extent	
Settlement	None	None	
Erosion	None	None	
Frost Action	None	None	
Staining	None	None	
Vegetation Stress	None	None	
Seepage/Ponded Water	Acceptable	Isolated	
Debris exposure	None	None	
Overall Landfill Performance: ACCEPTABLE			

Performance/ Severity Rating	Description
Acceptable	Noted features are of little consequence. The landfill is performing as designed. Minor deviations in environmental or physical performance may be observed, such as isolated areas of erosion, settlement.
Marginal	Physical/environmental performance appears to be deteriorating with time. Observations may include an increase in size or number of features of note, such as differential settlement, erosion or cracking. No significant impact on landfill stability to date, but potential for failure is assessed as low or moderate.
Significant	Significant or potentially significant changes affecting landfill stability, such as significant changes in slope geometry, significant erosion or differential settlement; scarp development. The potential for failure is assessed as imminent.
Unacceptable	Stability of landfill is compromised to the extent that ability to contain waste materials is compromised. Examples may include: - Debris exposed in erosion channels or areas of differential settlement. - Liner exposed. - Slope failure.

Extent	Description
Isolated	Singular feature
Occasional	Features of note occurring at irregular intervals/locations
Numerous	Many features of note, impacted less than 50% of the surface area of the landfill
Extensive	Impacting greater than 50% of the surface area of the landfill

FOX-4 Pallet Line Landfill (see Figure 5)

Photo 1.1 (FOX-4 PAL P-1 east.jpg)	Photo 1.2 (FOX-4 PAL P-1 south.jpg)
Description: View east along the northern limit of the Pallet Line Landfill.	Description: View south across the Pallet Line Landfill.
Date: August 28, 2014	Date: August 28, 2014

Photo 2.1 (FOX-4 PAL P-2 east.jpg)	Photo 2.2 (FOX-4 PAL P-2 south.jpg)
Description: View east along northern limit of Pallet Line Landfill.	Description: View south across landfill.
Date: August 28, 2014	Date: August 28, 2014

Photo 2.3 (FOX-4 PAL P-2 west.jpg)	Photo 3.1 (FOX-4 PAL P-3 west.jpg)
Description: View west along northern limit of landfill. Access road seen on right.	Description: View across landfill from northeast corner.
Date: August 28, 2014	Date: August 28, 2014

Photo 4.1 (FOX-4 PAL P-4 south.jpg)	Photo 5.1 (FOX-4 PAL P-5 west.jpg)
Description: The northeast corner of the landfill.	Description: View west across landfill.

Date: August 28, 2014

Date: August 28, 2014

Photo 6.1 (FOX-4 PAL P-6 nw.jpg)	Photo 7.1 (FOX-4 PAL P-7 west.jpg)
Description: View uphill of landfill from the southeastern corner.	Description: View east of the southern toe of the landfill.
Date: August 28, 2014	Date: August 28, 2014

Photo 8.1 (FOX-4 PAL P-8 east.jpg)	Photo 8.2 (FOX-4 PAL P-8 north.jpg)
Description: The southeastern slope of the landfill.	Description: View uphill from southern edge of landfill.
Date: August 28, 2014	Date: August 28, 2014

Photo 8.3 (FOX-4 PAL P-8 west.jpg)	Photo 9.1 (FOX-4 PAL P-9 ne.jpg)
Description: The southern slope of the landfill.	Description: View uphill of southern slope.
Date: August 28, 2014	Date: August 28, 2014

Photo 9.3 (FOX-4 PAL P-9 west.jpg)
Description: The southern slope of the landfill near F4-28.

Date: August 28, 2014 Date: August 28, 2014

Photo 10.1 (FOX-4 PAL P-10 ne.jpg)	Photo 10.2 (FOX-4 PAL P-10 north.jpg)
Description: View uphill from southwestern corner of landfill.	Description: View north, looking uphill from southwestern corner of landfill.
Date: August 28, 2014	Date: August 28, 2014

Photo 10.3 (FOX-4 PAL P-10 se.jpg)	Photo 11.1 (FOX-4 PAL P-11 north.jpg)
	Description: View toward the northwestern corner of the landfill.
Date: August 28, 2014	Date: August 28, 2014

Photo 11.2 (FOX-4 PAL P-11 south.jpg)	Photo 12.1 (FOX-4 PAL P-12 east.jpg)
Photo 11.2 (FOX-4 PAL P-11 south.jpg) Description: View looking along eastern slope of the landfill.	Photo 12.1 (FOX-4 PAL P-12 east.jpg) Description: The relatively flat terrain of the northern part of the landfill.
Date: August 28, 2014	Date: August 28, 2014

Photo 12.2 (FOX-4 PAL P-12 nw.jpg)	Photo 12.3 (FOX-4 PAL P-12 sw.jpg)
Description: View toward northwest corner of the landfill.	Description: View from Pallet Line Landfill toward access roads. Monument is on the right hand side.

Date: August 28, 2014 Date: August 28, 2014

Photo 13.1 (FOX-4 PAL P-13 north.jpg)	Photo 13.2 (FOX-4 PAL P-13 nw.jpg)
Description: The relatively flat terrain of the northeastern part of the landfill.	Description: View northwest along landfill.

Date: August 28, 2014

Date: August 28, 2014

Photo 13.3 (FOX-4 PAL P-13 se.jpg)	Photo 13.4 (FOX-4 PAL P-13 west.jpg)
Description: View toward eastern extents of the landfill.	Description: View along landfill looking west.
Date: August 28, 2014	Date: August 28, 2014

Photo 14.1 (FOX-4 PAL P-14 sw.jpg)	Photo 15.1 (FOX-4 PAL P-15.jpg)
Description: View of Pallet Line Landfill across the access road from near F4-25.	Description: F4-PAL-25 during sample collection.
25/03/2014	Hooper 25/108/2014
Date: August 28, 2014	Date: August 28, 2014

Photo 18.1 (FOX-4 PAL P-18.jpg)	Photo 19.1 (FOX-4 PAL P-19.jpg)
Photo 18.1 (FOX-4 PAL P-18.jpg) Description: Sample collection of F4-PAL-26.	Photo 19.1 (FOX-4 PAL P-19.jpg) Description: After sample collection and backfill of F4-PAL-26.
Date: August 28, 2014	Date: August 28, 2014
Date: August 28, 2014	Date: August 28, 2014

Photo 20.1 (FOX-4 PAL P-20 north.jpg)	Photo 21.1 (FOX-4 PAL P-21.jpg)
Description: View north toward landfill from F4-PAL-27.	Description: F4-PAL-27 during sample collection.
25/08/2014	25/08/2014
Detail Annual 28, 2014	Data: August 28, 2014
Date: August 28, 2014	Date: August 28, 2014

Photo 22.1 (FOX-4 PAL P-22.jpg)	Photo 23.1 (FOX-4 PAL P-23 ne.jpg)
Description: After sample collection and backfill of F4-PAL-27.	Description: View toward Pallet Line Landfill from near F4-PAL-28.
Date: August 28, 2014	Date: August 28, 2014

Photo 24.1 (FOX-4 PAL P-24.jpg)	Photo 25.1 (FOX-4 PAL P-25.jpg)
Photo 24.1 (FOX-4 PAL P-24.jpg) Description: F4-PAL-28 during sample collection.	Photo 25.1 (FOX-4 PAL P-25.jpg) Description: After sample collection and backfill of F4-PAL-28.
Date: August 28, 2014	Date: August 28, 2014
Dutc. 1148451 20, 2017	Date: 114545t 20, 2017

Photo 26.1 (FOX-4 PAL P-26 east.jpg)	Photo 27.1 (FOX-4 PAL P-27.jpg)
Description: View across access road toward Pallet Line Landfill from near F4-PAL-29.	Description: Sample collection of F4-PAL-29.
25/09/2011/4	FOX-4 HOOPER 25/108/2014
Date: August 28, 2014	Date: August 28, 2014

Photo 28.1 (FOX-4 PAL P-28.jpg)	Photo 29.1 (FOX-4 PAL P-29.jpg)
Photo 28.1 (FOX-4 PAL P-28.jpg) Description: After sample collection and backfill of F4-PAL-29.	Photo 29.1 (FOX-4 PAL P-29.jpg) Description: View of Pallet Line Landfill from high ground to the south.
Date: August 28, 2014	

6.3.1.4 Trend Analysis

No trends in visual observations at this landfill can be completed as 2014 is the first year of monitoring at this landfill.

6.3.1.5 Discussion of Results/Trends

The 2014 visual inspection of the Pallet Line Landfill did not identify any items of concern. Ponded water was noted northeast of the landfill however this is not expected to represent an issue at the present time.

6.3.2 Soil Sampling

Soil sampling at the Pallet Line Landfill was completed on 26 August 2014. As previously reported a total of eleven samples including one duplicate sample were procured from five locations as shown in plan on Figure 5.

6.3.2.1 Laboratory Analytical Results

The analytical results for soil samples collected at the Pallet Line Landfill are presented in Table 6.6.

A duplicate soil sample was collected from surface soil at the PAL-27 sample location and was submitted to AGAT, a secondary laboratory for QA/QC purposes. The RPDs for the duplicate sample results were above 30% for four of eleven parameters. In these cases, parameter concentrations were very low and small differences in reported concentrations resulted in large RPD values. The duplicate sample results are believed to be consistent.

6.3.2.2 Discussion of Results - Comparison to Baseline/Background

A discussion of the results for each parameter analyzed in soil at the Pallet Line Landfill is provided in Table 6.7. The discussion includes a comparison of results from upgradient (PAL-25, PAL-26) and downgradient (PAL-27, PAL-28, PAL-29) soil sampling locations to the baseline average concentrations (BAC) that have been determined for each landfill from soil chemistry at the landfill area prior to and during remediation. Upgradient locations are those near the landfill that are not influenced by migration of contaminants through the landfill, and downgradient locations are at the toe of the landfill or from areas of preferential drainage.

TABLE 6.6

RESULTS OF ANALYSIS FOR PARAMETERS IN SOIL AT PALLET LINE LANDFILL

	Background	Baseline	DEW Line	DEW Line	F4-PAL-	F4-PAL-	F4-PAL-	F4-PAL-	F4-PAL-	F4-PAL-	F4-PAL-	F4-PAL-	F4-PAL-	F4-PAL-	F4-PAL-	F4-PAL-
	Concentration	Average	Cleanup	Cleanup	25-S	25-D	26-S	26-D	27-S	27-S	27-S	27-D	28-S	28-D	29-S	29-D
PARAMETERS		Concentration	Tier I	Tier II						(DUP)	(AVG)					
			Criteria	Criteria												
					25-Aug-14	25-Aug-14	25-Aug-14	25-Aug-14	25-Aug-14	25-Aug-14	25-Aug-14	25-Aug-14	25-Aug-14	25-Aug-14	25-Aug-14	25-Aug-14
	(_)	(+)	(*)	(**)	0-15cm	40-50cm	0-15cm	40-50cm	0-15cm	0-15cm	0-15cm	40-50cm	0-15cm	40-50cm	0-15cm	40-50cm
Copper	30	27	-	100	23	<u>33+</u>	18	<u>61+</u>	12	11	11.5	19	18	<u>43+</u>	<u>46+</u>	20
Nickel	24	17	-	100	14	23+	12	<u>43+</u>	8.4	3	5.7	16	17	<u>41+</u>	16	<u>37+</u>
Cobalt	9	3.9	-	50	4.6+	7.4+	3.2	<u>12+</u>	2.9	2.8	2.85	4+	6.1+	12+	5.6+	<u>9.6+</u>
Cadmium	0.62	1.0	-	5	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.5	< 0.5	< 0.10	< 0.10	0.11	< 0.10	0.14
Lead	6	10	200	500	10	6.8	<u>33+</u>	7	<u>8</u>	<u>13+</u>	10.5+	<u>41+</u>	5.9	9.3	<u>12+</u>	8.2
Zinc	41	37	-	500	38+	<u>46+</u>	28	<u>61+</u>	19	19	19	28	31	<u>67+</u>	43+	<u>61+</u>
Chromium	41	39	-	250	<u>50+</u>	<u>58+</u>	27	<u>78+</u>	20	20	20	30	31	<u>61+</u>	<u>72+</u>	84+
Arsenic	29	37	-	30	<u>38+</u>	110+	21	140+	14	9	11.5	11	7	14	17	14
Mercury	-	0.10	-	2	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.10	< 0.10	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050
Total PCBs	-	0.050	1	5	< 0.010	< 0.010	0.036	< 0.010	< 0.010	< 0.05	< 0.05	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010
PHC F1 (C6-C10)	-	-	-	-	<10	<10	<10	<10	<10	<5	<10	190	<10	<10	<10	<10
PHC F2 (C10-C16)	-	-	-	-	<10	<10	<10	<10	<10	16	16	2700	<10	<10	<10	<10
PHC F3 (C16-C34)	-	-	-	-	<10	<10	24	<10	13	52	32.5	380	34	10	130	120
PHC F4 (C34-C50)	-	-	-	-	<10	<10	<10	<10	<10	< 50	< 50	<10	34	<10	19	<10
Modifed TPH (Total C6-C34)	-	26	-	2500	15	15	34+	15	23	70.5+	46.75+	3270+**	44+	20	140+	130+

NOTES:

All parameter values in $\mu g/g\ (ppm)$ unless otherwise indicated.

- Exceeds FOX-4 Pallet Line Landfill Background Concentration.
- + Exceeds FOX-4 Pallet Line Landfill Baseline Average Concentration.
- Exceeds DEW Line Cleanup Tier I Criteria.
- ** Exceeds DEW Line Cleanup Tier II Criteria.
- (DUP) Duplicate sample analyzed by AGAT Laboratories for QA/QC purposes.
- (AVG) Average concentration of duplicate samples.
- < Not detected.
- No concentration reported.

Table 6.7: Evaluation of 2014 Soil Analytical Data (Pallet Line Landfill)

Parameter	Baseline Average Concentration (ug/g)	2014 Results
Copper	27	Detectable concentrations ranged between 18 and 61 ug/g for upgradient samples and between 11.5 and 46 ug/g for downgradient samples, with the highest concentration reported in the subsurface sample collected from the PAL-26 sample location while the lowest concentration was reported within the surface sample at the PAL-27 sample location. Four of eleven samples reported concentrations above the BAC.
Nickel	17	Detectable concentrations ranged between 12 and 43 ug/g for upgradient samples and between 5.7 and 41 ug/g for downgradient samples, with the highest concentration reported in the subsurface sample collected from the PAL-26 sample location while the lowest concentration was reported in the subsurface sample at the PAL-27 sample location. Four of eleven samples reported concentrations above the BAC.
Cobalt	3.9	Detectable concentrations ranged between 3.2 and 12 ug/g for upgradient samples and between 2.85 and 12 ug/g for downgradient samples, with the highest concentration reported in the subsurface sample collected from the PAL-26 sample location while the lowest concentration was reported in the subsurface sample at the PAL-27 sample location. Eight of eleven samples reported concentrations above the BAC.
Cadmium	1.0	No detectable concentrations were reported in upgradient samples. Detectable concentrations ranged between 0.11 and 0.14 ug/g in downgradient samples, with the highest concentration reported in the subsurface sample at the PAL-29 sample location while the lowest concentration was reported in the subsurface sample at the PAL-28 sample location. The remaining nine of eleven samples reported concentrations below the laboratory detection limit (DL). All eleven samples reported concentrations below the BAC.
Lead	10	Detectable concentrations ranged between 6.8 and 33 ug/g for upgradient samples and between 5.9 and 41 ug/g for downgradient samples, with the highest concentration reported in the subsurface sample at the PAL-27 sample location and the lowest concentration in the surface sample at the PAL-28 sample location. Five of eleven samples reported concentrations above the BAC.
Zinc	37	Detectable concentrations ranged between 28 and 61 ug/g for upgradient samples and between 19 and 67 ug/g for downgradient samples, with the highest concentration reported in the subsurface sample at the PAL-28 sample location and the lowest concentration within the surface sample at the PAL-27 sample location. Six of eleven samples reported concentrations above the BAC.
Chromium	39	Detectable concentrations ranged between 27 and 78 ug/g for upgradient samples and between 20 and 84 ug/g for downgradient samples, with the highest concentration reported in the subsurface sample at the PAL-29 sample location and the lowest concentration in the surface sample at the PAL-27

Parameter	Baseline Average Concentration (ug/g)	2014 Results				
		sample location. Six of eleven samples reported concentrations above the BAC.				
Arsenic	37	Detectable concentrations ranged between 21 and 140 ug/g for upgradient samples and between 7 and 17 ug/g for downgradient samples, with the highest concentration reported in the subsurface sample at the PAL-26 sample location and the lowest concentration in the surface sample at the PAL-28 sample location. Three of eleven samples reported concentrations above the BAC and DEW Line Cleanup Tier II Criteria of 30 ug/g, however only one concentration exceeds the site-specific arsenic criteria of 130 ug/g.				
Mercury	0.10	All eleven samples reported concentrations less than the laboratory DL (0.050 ug/g and 0.10 ug/g for the duplicate sample submitted to the secondary laboratory).				
PCBs	0.050	One detectable concentration of 0.036 ug/g was reported in the surface soil sample collected at the upgradient PAL-26 sample location. The remaining ten of eleven samples reported concentrations less than the laboratory DL (0.010 ug/g and 0.05 ug/g for the duplicate sample submitted to the secondary laboratory). All samples reported concentrations below the BAC.				
ТРН	26	Modified TPH concentrations ranged between 15 and 34 ug/g for upgradient samples and between 15 and 3270 ug/g for downgradient samples, with the highest concentration reported in the subsurface sample at the PAL-27 sample location and the lowest concentration in the surface and subsurface samples at the PAL-25 sample location and the subsurface sample at the PAL-26 sample location. One sample (the subsurface sample at PAL-27) reported a concentration above the DEW Line Cleanup Tier II Criteria of 2500 ug/g. Seven of eleven samples reported concentrations above the BAC.				

Results for arsenic and TPH reported concentrations above the applicable DEW Line Cleanup Tier II Criteria for these parameters. Natural levels of arsenic above these criteria are known to occur in soil in the vicinity of this landfill, however one sample concentration exceeds the site-specific arsenic criteria of 130 ug/g for the site. The location where TPH concentrations were reported above the Tier II Criteria (location PAL-27) is downgradient of the landfill, however it is unclear whether this result is due to contaminant migration from the landfill.

6.3.2.3 Soil Trend Analysis by Parameter and Discussion of Trends

No trends are available for soil results at the Pallet Line Landfill as 2014 represents the first year of monitoring at this landfill.

6.4 CONCLUSIONS/OVERALL PERFORMANCE OF THE LANDFILL

Based on the findings of the 2014 landfill monitoring program, the performance of the landfill is considered to be acceptable. One soil sample collected at this landfill reported a TPH concentration above the DEW Line Cleanup Tier II Criteria. It is unclear whether this exceedance is due to contaminant migration from the landfill or was caused by another source such as a fuel spill.

6.5 RECOMMENDATIONS/NEXT STEPS

During the next monitoring event at the site, it is recommended that additional soil samples be collected in the vicinity of the TPH exceedance at PAL-27 to horizontally delineate the extent of contamination and provide insight into whether this result is due to contaminant migration from the landfill. Regular monitoring of this landfill as per the monitoring schedule shown in Table 1.1 should be continued, however no remedial work is necessary at this time.

7.0 TANNER BAY LANDFILL

7.1 LANDFILL DESCRIPTION

The Tanner Bay Landfill is located at the original beach landing area for the site along Tanner Bay, and has an approximate area of 2,000 m². This landfill was an existing landfill at the site prior to the cleanup. A detailed drawing of this landfill is provided in Figure 6. The historical chemical results for soil samples collected at this landfill are shown in plan on Figure 6A.

7.2 SUMMARY OF WORK CONDUCTED

7.2.1 Visual Inspection

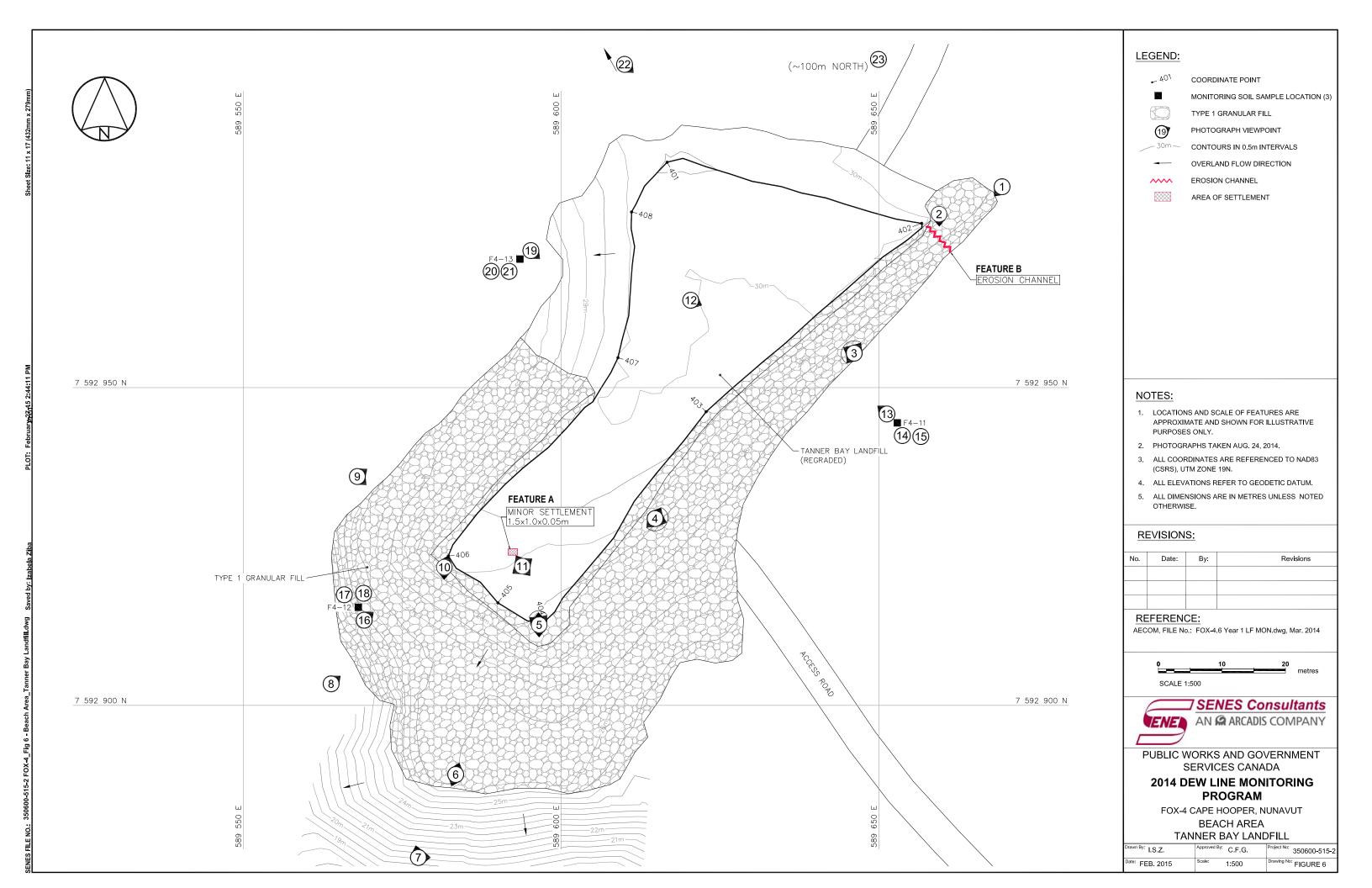
The visual inspection of the landfill was completed with no deviations from the visual inspection work plan.

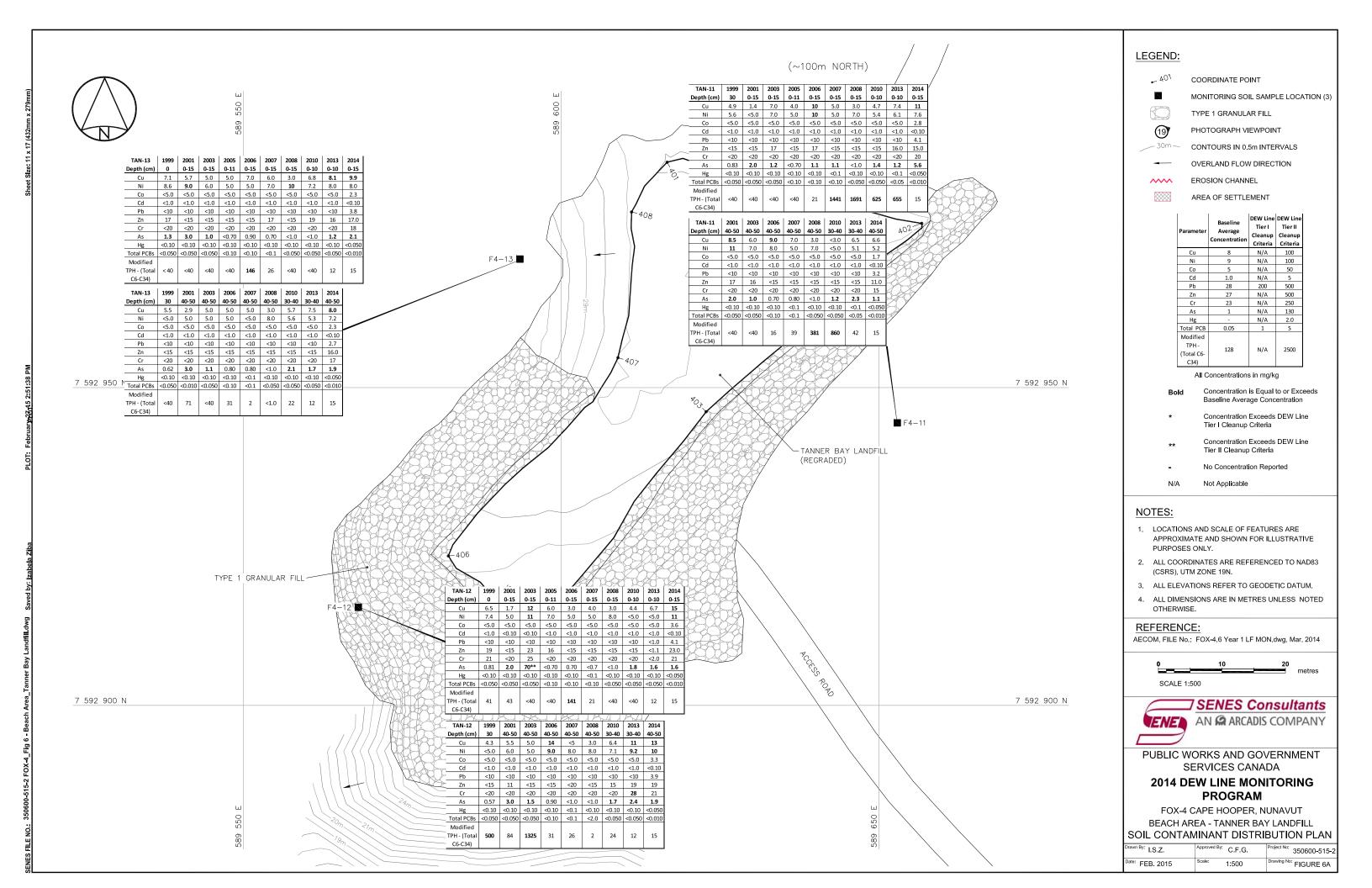
7.2.2 Soil Sampling

Soil samples were collected at three (3) locations as shown on the site plan. Surface and subsurface samples were collected at each location. There were no deviations from the soil sampling work plan. One duplicate soil sample was collected from surficial soils at sample location TAN-11. Soil sampling completed at the landfill is summarized in Table 7.1.

Table 7.1: Summary of Work Conducted by Soil Sampling Location (Tanner Bay Landfill)

Location	Surface Soil Sample Collected	Subsurface Soil Sample Collected
F4-TAN-11	√D	
F4-TAN-12		
F4-TAN-13		


D = duplicate sample collected $\sqrt{-}$ sample collected X - no sample collected


7.2.3 Groundwater Sampling

No groundwater monitoring wells are present at this landfill

7.2.4 Thermal Monitoring

No thermistor installations are present at this landfill.

7.3 RESULTS OF THE MONITORING PROGRAM

7.3.1 Visual Inspection

The visual inspection at the Tanner Bay Landfill was completed on 24 August 2014. The results of the visual inspection are detailed in Table 7.2 and shown on Figure 6 and in the photo log Table 7.5.

Table 7.2: Visual Inspection Results (Tanner Bay Landfill)

Item	Description
Settlement	Minor settlement was observed at one location at the southwest end of the
	landfill cap. (Feature A)
Erosion	One small erosion channel was observed on the northeast corner of the landfill.
	(Feature B)
Frost Action	None observed.
Sloughing and Cracking	None observed.
Animal Burrows	None observed.
Vegetation	No vegetation was observed on the landfill.
Staining	Natural reddish staining was observed on the north end of the southeast berm of
	the landfill.
Vegetation Stress	No vegetation was observed on the landfill.
Seepage Points	No active seepage points were observed.
Debris Exposed	A small pile of debris consisting of wood and metal scraps was observed
	approximately 100 m north of the landfill. This debris did not originate within
	the landfill.
Presence/Condition of	No monitoring instruments were present at this landfill.
Monitoring Instruments	
Other Features of Note	Tire ruts and an area of previously ponded water were observed on the top of
	the landfill.

7.3.1.1 Inspection Checklist

The visual inspection checklist completed during the site inspection is provided in Table 7.3.

7.3.1.2 Stability Assessment

The preliminary stability assessment completed during the site inspection is provided in Table 7.4.

7.3.1.3 Photographic Records

The photograph log for the site is provided in Table 7.5.

TABLE 7.3 - VISUAL INSPECTION CHECKLIST

DEW LINE CLEANUP: POST-CONSTRUCTION - LANDFILL MONITORING INSPECTION REPORT - PAGE 1 OF 2

SITE NAME: FOX-4

LANDFILL DESIGNATION: Tanner Bay Landfill

DATE OF INSPECTION: 24 August 2014

DATE OF PREVIOUS INSPECTION: N/A

INSPECTED BY: J. Mauchan

REPORT PREPARED BY: S. Borcsok

The inspector/reporter represents to the best of their knowledge, the following statements and observations are true and correct and to the best of the preparer's actual knowledge, no material facts have been suppressed or misstated.

TABLE 7.3 - VISUAL INSPECTION CHECKLIST - INSPECTION REPORT – PAGE 2 OF 2

Checklist Item	Present Yes/No	Location (Describe relative to existing monuments/features and relative to landfill design i.e. surface, berms, toe)	Length	Width	Depth	Extent relative to Area of Landfill (%)	Description	Photographic Records Focal length, location, view point & direction (relative to magnetic north) Feature of note Scale	Additional Comments
Settlement		Southwest end of cap (Feature					Minor		
	YES	A)	1.5	1.0	0.05	<1%	settlement	11.2	
Erosion	YES	NE corner of landfill (Feature B)	2.0	0.8	0.05	<1%	Erosion channel	1.1, 2.1	
Frost Action									
	NO								
Sloughing and Cracking	NO								
Animal Burrows									
	NO								
Vegetation	NO								
Staining	NO								
Vegetation Stress	NO								
Seepage Points	NO								
Debris Exposed	YES	Approx. 100 m north of landfill					Tin cans, metal strap, wood	23.1	Minor debris not associated with landfill
Presence/Condition – Monitoring Instruments	NO								
Features of Note.	YES	Former ponded water at north end of landfill Tire ruts on landfill cap				<1%		12.1, 11.1	

2

Table 7.4: Preliminary Stability Assessment - FOX-4 Tanner Bay Landfill

Feature	Severity Rating	Extent					
Settlement	Acceptable	Isolated					
Erosion	Acceptable	Isolated					
Frost Action	None	None					
Staining	None	None					
Vegetation Stress	None	None					
Seepage/Ponded Water	None	None					
Debris exposure	None	None					
Overall Landfill Performance: ACCEPTABLE							

Performance/ Severity Rating	Description
Acceptable	Noted features are of little consequence. The landfill is performing as designed. Minor deviations in environmental or physical performance may be observed, such as isolated areas of erosion, settlement.
Marginal	Physical/environmental performance appears to be deteriorating with time. Observations may include an increase in size or number of features of note, such as differential settlement, erosion or cracking. No significant impact on landfill stability to date, but potential for failure is assessed as low or moderate.
Significant	Significant or potentially significant changes affecting landfill stability, such as significant changes in slope geometry, significant erosion or differential settlement; scarp development. The potential for failure is assessed as imminent.
Unacceptable	Stability of landfill is compromised to the extent that ability to contain waste materials is compromised. Examples may include: - Debris exposed in erosion channels or areas of differential settlement. - Liner exposed. - Slope failure.

Extent	Description
Isolated	Singular feature
Occasional	Features of note occurring at irregular intervals/locations
Numerous	Many features of note, impacted less than 50% of the surface area of the landfill
Extensive	Impacting greater than 50% of the surface area of the landfill

FOX-4 Tanner Bay Landfill (see Figure 6)

Photo 1.1 (FOX-4 TAN P-1 sw.jpg)	Photo 2.1 (FOX-4 TAN P-2 south.jpg)
Description: View from the northeastern corner of the Tanner Bay Landfill. View looking southwest along the slope. Erosion channel at field book location. (FEATURE B)	Description: View of erosion channel on slope near northeastern corner of landfill. (FEATURE B)
24/03/2014	24/08/2014
Date: August 24, 2014	Date: August 24, 2014

Photo 3.1 (FOX-4 TAN P-3 ne.jpg)	Photo 3.2 (FOX-4 TAN P-3 nw.jpg)
Description: View looking along eastern slope of Tanner Bay Landfill.	Description: View looking upslope from the toe of the slope near F4-TAN-11.
24/03/2014	24/08/2014
Date: August 24, 2014	Date: August 24, 2014

Photo 3.3 (FOX-4 TAN P-3 sw.jpg)	Photo 4.1 (FOX-4 TAN P-4 ne.jpg)
Description: View along the eastern slope of the Tanner Bay Landfill.	Description: View along the top of the slope, looking toward the northeast corner of the landfill.
24/08/2014	247/08//2014
Date: August 24, 2014	Date: August 24, 2014

Photo 4.2 (FOX-4 TAN P-4 se.jpg)	Photo 4.3 (FOX-4 TAN P-4 sw.jpg)
Description: View looking downhill of the eastern slope of the Tanner Bay Landfill.	Description: The top of the slope along southeast portion of the Tanner Bay Landfill.
24/08/2014	24/06/72014
Date: August 24, 2014	Date: August 24, 2014

Photo 5.1 (FOX-4 TAN P-5 north.jpg)	Photo 5.2 (FOX-4 TAN P-5 ne.jpg)
Photo 5.1 (FOX-4 TAN P-5 north.jpg) Description: View across the landfill cap from the southeastern corner of the landfill.	Photo 5.2 (FOX-4 TAN P-5 ne.jpg) Description: View of the top of the eastern slope of the landfill.
24/08/2014	24/08/2014
Date: August 24, 2014	Date: August 24, 2014

Photo 5.3 (FOX-4 TAN P-5 nw.jpg)	Photo 5.4 (FOX-4 TAN P-5 south.jpg)
Description: View from the southeastern corner toward the southwestern corner. View along the top of the slope.	Description: View downhill of landfill slope from southeastern corner of cap.
24/08/2014	24/08/2014
Date: August 24, 2014	Date: August 24, 2014

Photo 6.1 (FOX-4 TAN P-6 north.jpg)	Photo 6.2 (FOX-4 TAN P-6 south.jpg)
Description: View looking uphill from toe of Tanner Bay Landfill.	Description: View looking downhill from toe of the landfill.
24/08/2014	24/08/2014
Date: August 24, 2014	Date: August 24, 2014

Photo 7.1 (FOX-4 TAN P-7 east.jpg)	Photo 7.2 (FOX-4 TAN P-7 north.jpg)
Description: The sloped terrain downhill of the Tanner Bay Landfill.	Description: The sloped terrain downhill of the Tanner Bay Landfill. Wildlife monitor seen on the landfill.
24/08/2014	24/108//2014
Date: August 24, 2014	Date: August 24, 2014

Photo 8.1 (FOX-4 TAN P-8 ne.jpg)	Photo 9.1 (FOX-4 TAN P-9 ne.jpg)
Description: View toward the Tanner Bay Landfill from adjacent to the southwestern toe.	Description: View along western slope of the Tanner Bay Landfill.
237.087.2014	24/08/2014
Date: August 24, 2014	Date: August 24, 2014

Photo 9.2 (FOX-4 TAN P-9 se.jpg)	Photo 10.1 (FOX-4 TAN P-10 ne.jpg)
Photo 9.2 (FOX-4 TAN P-9 se.jpg) Description: The southern portion of the landfill cap.	Photo 10.1 (FOX-4 TAN P-10 ne.jpg) Description: The western slope of the Tanner Bay Landfill. View from the southwestern corner of the cap.
24/08/2014	
Date: August 24, 2014	Date: August 24, 2014

Photo 10.2 (FOX-4 TAN P-10 south.jpg)	Photo 11.1 (FOX-4 TAN P-11 ne.jpg)
	Description: The Tanner Bay Landfill cap. Tire ruts visible north of field book.
Date: August 24, 2014	Date: August 24, 2014

Photo 11.2 (FOX-4 TAN P-11 north.jpg)	Photo 11.3 (FOX-4 TAN P-11 se.jpg)
Description: Minor settlement observed on landfill cap measured 1.5 m x 1.0 m x 0.05 m. Minor settlement located in photo at white paper on ground. (FEATURE A)	Description: The southern portion of the landfill cap and the southern slope toward Tanner Bay.
24/09/2014	24/03/2014
Date: August 24, 2014	Date: August 24, 2014

Photo 11.4 (FOX-4 TAN P-11 sw.jpg)	Photo 12.1 (FOX-4 TAN P-12 se.jpg)
Description: The southern portion of the cap.	Description: The northern portion of the cap, looking toward Tanner Bay. Area of former ponded water in foreground.
24/03/2014	24//08//2014
Date: August 24, 2014	Date: August 24, 2014

Photo 13.1 (FOX-4 TAN P-13 nw.jpg)	Photo 14.1 (FOX-4 TAN P-14.jpg)
Description: The eastern slope of the Tanner Bay Landfill from F4-TAN-11.	Description: Sample collection at F4-TAN-11.
Date: August 24, 2014	Date: August 24, 2014

Photo 15.1 (FOX-4 TAN P-15jpg)	Photo 16.1 (FOX-4 TAN P-16 ne.jpg)
Description: After sample collection and backfill at F4-TAN-11.	Description: View up the slope of the Tanner Bay Landfill from adjacent to F4-TAN-12.
Date: August 24, 2014	Date: August 24, 2014

Photo 17.1 (FOX-4 TAN P-17.jpg)	Photo 18.1 (FOX-4 TAN P-18.jpg)
Photo 17.1 (FOX-4 TAN P-17.jpg) Description: Sample collection of F4-TAN-12	Photo 18.1 (FOX-4 TAN P-18.jpg) Description: After sample collection and backfill of F4-TAN-12.
Date: August 24, 2014	Date: August 24, 2014

Photo 19.1 (FOX-4 TAN P-19 se.jpg)	Photo 20.1 (FOX-4 TAN P-20.jpg)
Photo 19.1 (FOX-4 TAN P-19 se.jpg) Description: The Tanner Bay Landfill view from F4-TAN-13.	Photo 20.1 (FOX-4 TAN P-20.jpg) Description: Sample collection of F4-TAN-13.
Date: August 24, 2014	Date: August 24, 2014

Photo 21.1 (FOX-4 TAN P-21.jpg)	Photo 22.1 (FOX-4 TAN P-22 se.jpg)
Photo 21.1 (FOX-4 TAN P-21.jpg) Description: After sample collection and backfill of F4-TAN-13.	Photo 22.1 (FOX-4 TAN P-22 se.jpg) Description: View looking toward the Tanner Bay Landfill from the access road.
Date: August 24, 2014	Date: August 24, 2014

Photo 23.1 (FOX-4 TAN P-23.jpg)	Photo 23.1 (FOX-4 TAN P-23.jpg)
Photo 23.1 (FOX-4 TAN P-23.jpg) Description: Debris pile located approximately 100m north of landfill.	Photo 23.1 (FOX-4 TAN P-23.jpg)
Date: August 24, 2014	Date: August 24, 2014

7.3.1.4 Trend Analysis

No trends in visual observations at this landfill can be observed as 2014 is the first year of monitoring at this landfill following re-grading of the landfill area during the 2011-2013 maintenance.

7.3.1.5 Discussion of Results/Trends

The results of the visual inspection indicate that the performance of the landfill is acceptable. All identified issues were minor and of no consequence to the performance of the landfill.

7.3.2 Soil Sampling

Soil sampling at the Tanner Bay Landfill was completed on 24 August 2014. As previously reported a total of seven samples including one duplicate sample were procured from four locations as shown in plan on Figure 6.

7.3.2.1 Laboratory Analytical Results

The analytical results for soil samples collected at the Tanner Bay Landfill are presented in Table 7.6.

A duplicate soil sample was collected from surface soil at sample location TAN-11 and was submitted to AGAT, a secondary laboratory for QA/QC purposes. The RPDs for the duplicate sample results were above 30% for three of eleven parameters. In these cases, parameter concentrations were very low and small differences in reported concentrations resulted in large RPD values. The duplicate sample results are believed to be consistent.

7.3.2.2 Discussion of Results - Comparison to Baseline/Background

A discussion of the results for each parameter analyzed in soil at the Tanner Bay Landfill is provided in Table 7.7. The discussion includes a comparison of results from upgradient (TAN-11) and downgradient (TAN-12, TAN-13) soil sampling locations to the baseline average concentrations (BAC) that have been determined for each landfill from soil chemistry at the landfill area prior to and during remediation. Upgradient locations are those near the landfill that are not influenced by migration of contaminants through the landfill, and downgradient locations are at the toe of the landfill or from areas of preferential drainage.

TABLE 7.6

	Background Concentration	Baseline Average	DEW Line Cleanup	DEW Line Cleanup	F4-TAN- 11-S	F4-TAN- 11-S	F4-TAN- 11-S	F4-TAN- 11-D	F4-TAN- 12-S	F4-TAN- 12-D	F4-TAN- 13-S	F4-TAN- 13-D
PARAMETERS		Concentration	Tier I	Tier II		(DUP)	(AVG)					
			Criteria	Criteria								
					24-Aug-14							
	(_)	(+)	(*)	(**)	0-15 cm	0-15 cm	0-15 cm	40-50 cm	0-15 cm	40-50 cm	0-15 cm	40-50 cm
Copper	19	8.0	-	100	11+	12+	11.5+	6.6	15+	13+	9.9+	8
Nickel	19	9.3	-	100	7.6	2	4.8	5.2	11+	10+	8	7.2
Cobalt	7.9	5.0	-	50	2.8	2.4	2.6	1.7	3.6	3.3	2.3	2.3
Cadmium	1.0	1.0	-	5	< 0.10	< 0.5	< 0.5	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Lead	10	28	200	500	4.1	4	4.05	3.2	4.1	3.9	3.8	2.7
Zinc	34	27	-	500	15	12	13.5	11	23	19	17	16
Chromium	31	23	-	250	20	13	16.5	15	21	21	18	17
Arsenic	5.5	1.1	-	30	<u>5.6+</u>	<u>6+</u>	5.8+	1.1	1.6+	1.9+	2.1+	1.9+
Mercury	-	-	-	2	< 0.050	< 0.10	< 0.10	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050
Total PCBs	0.00035	0.050	1	5	< 0.010	< 0.05	< 0.05	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010
PHC F1 (C6-C10)	-	-	-	-	<10	<5	<10	<10	<10	<10	<10	<10
PHC F2 (C10-C16)	-	-	-	-	<10	<10	<10	<10	<10	<10	<10	<10
PHC F3 (C16-C34)	-	-	-	-	<10	< 50	< 50	<10	<10	<10	<10	<10
PHC F4 (C34-C50)	-	-	-	-	<10	< 50	< 50	<10	<10	<10	<10	<10
Modifed TPH (Total C6-C34)	-	128	-	2500	15	32.5	23.75	15	15	15	15	15

RESULTS OF ANALYSIS FOR PARAMETERS IN SOIL AT TANNER BAY LANDFILL

NOTES:

All parameter values in $\mu g/g\ (ppm)$ unless otherwise indicated.

- Exceeds FOX-4 Tanner Bay Landfill Background Concentration.
- Exceeds FOX-4 Tanner Bay Landfill Baseline Average Concentration.
- * Exceeds DEW Line Cleanup Tier I Criteria.
- ** Exceeds DEW Line Cleanup Tier II Criteria.
- (DUP) Duplicate sample analyzed by AGAT Laboratories for QA/QC purposes.
- (AVG) Average concentration of duplicate samples.
- < Not detected.
- No concentration reported.

Table 7.7: Evaluation of 2014 Soil Analytical Data (Tanner Bay Landfill)

Parameter	Baseline Average Concentration (ug/g)	2014 Results					
Copper	8.0	Detectable concentrations ranged between 6.6 and 11.5 ug/g for upgradient samples and between 8 and 15 ug/g for downgradient samples, with the highest concentration reported in the surface sample collected from the TAN-12 sample location while the lowest concentration was reported within the subsurface sample at the TAN-11 sample location. Five of seven samples reported concentrations above the BAC.					
Nickel 9.3		Detectable concentrations ranged between 4.8 and 5.2 ug/g for upgradient samples and between 7.2 and 11 ug/g for downgradient samples, with the highest concentration reported in the surface sample collected from the TAN-12 sample location while the lowest concentration was reported within the surface sample at the TAN-11 sample location. Two of seven samples reported concentrations above the BAC.					
Cobalt	5.0	Detectable concentrations ranged between 1.7 and 2.6 ug/g for upgradient samples and between 2.3 and 3.6 ug/g for downgradient samples, with the highest concentration reported in the surface sample collected from the TAN-12 sample location while the lowest concentration was reported within the subsurface sample at the TAN-11 sample location. All samples reported concentrations below the BAC.					
Cadmium	1.0	All seven reported concentrations were less than the laboratory DL (0.10 ug/g and 0.5 ug/g for the duplicate sample submitted to the secondary laboratory). All samples reported concentrations below the BAC.					
Lead	28	Detectable concentrations ranged between 3.2 and 4.05 ug/g for upgradient samples and between 2.7 and 4.1 ug/g for downgradient samples, with the highest concentration reported in the surface sample collected from the TAN-12 sample location while the lowest concentration was reported within the subsurface sample at the TAN-13 sample location. All samples reported concentrations below the BAC.					
Zinc	27	Detectable concentrations ranged between 11 and 13.5 ug/g for upgradient samples and between 16 and 23 ug/g for downgradient samples, with the highest concentration reported in the surface sample collected from the TAN-12 sample location while the lowest concentration was reported within the subsurface sample at the TAN-11 sample location. All samples reported concentrations below the BAC.					
Chromium	23	Detectable concentrations ranged between 15 and 16.5 ug/g for upgradient samples and between 17 and 21 ug/g for downgradient samples, with the highest concentration reported in the surface sample collected from the TAN-12 sample location while the lowest concentration was reported within the subsurface sample at the TAN-11 sample location. All samples reported concentrations below the BAC.					

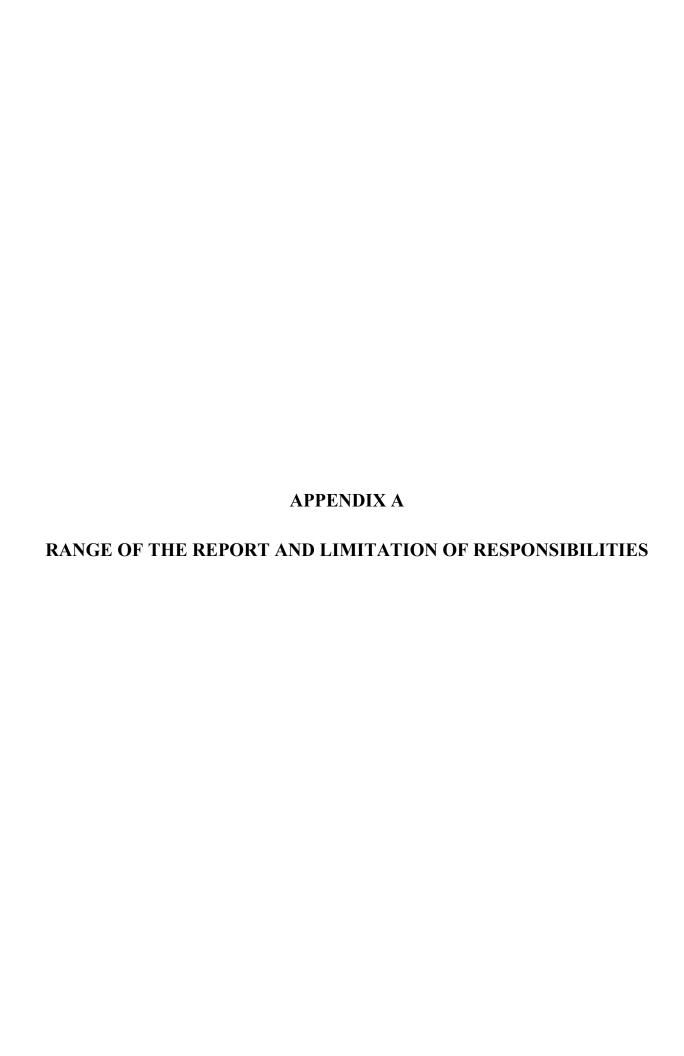
Parameter Baseline Average Concentration (ug/g)		2014 Results
Arsenic	1.1	Detectable concentrations ranged between 1.1 and 5.8 ug/g for upgradient samples and between 1.6 and 2.1 ug/g for downgradient samples, with the highest concentration reported in the surface sample collected from the TAN-11 sample location while the lowest concentration was reported within the subsurface sample at the TAN-11 sample location. Six of seven samples reported concentrations above the BAC.
Mercury	-	All seven samples reported concentrations less than the laboratory DL (0.050 ug/g and 0.10 ug/g for the duplicate sample submitted to the secondary laboratory).
PCBs	0.050	All seven samples reported concentrations less than the laboratory DL (0.010 ug/g and 0.05 ug/g for the duplicate sample submitted to the secondary laboratory).
ТРН	128	No detectable concentrations for PHC fractions F1, F2 and F3 were detected in the seven samples. Variable detection limits resulted in modified TPH concentrations between 15 and 32.5 ug/g.

7.3.2.3 Soil Trend Analysis by Parameter and Discussion of Trends

A discussion of the trends observed for parameter concentrations in soil from 1994 to 2014 are presented in Table 7.8. Trends have been analyzed for upgradient (TAN-11) and downgradient (TAN-12, TAN-13) locations.

Table 7.8: Evaluation of Soil Result Trends (Tanner Bay Landfill)

Parameter	Trends					
Connor	Concentrations show an upward trend for upgradient soil locations and a slight upward trend for					
Copper	downgradient soil locations.					
Nickel	Concentrations show an upward trend for upgradient soil locations and a slight downward trend for					
NICKEI	downgradient soil locations.					
Cobalt	Concentrations show a relatively stable trend for upgradient and downgradient soil locations.					
Cadmium	Concentrations show a slight downward trend for upgradient and downgradient soil locations.					
Lead	Concentrations show a slight downward trend for upgradient and downgradient soil locations.					
Zinc	Concentrations show an upward trend for upgradient soil locations and a slight downward trend for					
Zilic	downgradient soil locations.					
Chromium	Concentrations show a slight upward trend for upgradient and downgradient soil locations.					
Arsenic	Concentrations show a slight upward trend for upgradient soil locations and a slight downward					
Aisenic	trend for downgradient soil locations.					
Mercury	Concentrations show a relatively stable trend for upgradient and downgradient soil locations as all					
iviciculy	results have been below the laboratory detection limit for all sampling events.					
PCBs	Concentrations show a relatively stable trend for upgradient and downgradient soil locations as all					


Parameter	Trends
	results have been below the laboratory detection limit for all sampling events.
ТРН	Concentrations show an upward trend for upgradient soil locations and a slight downward trend for
1111	downgradient soil locations.

7.4 CONCLUSIONS/OVERALL PERFORMANCE OF THE LANDFILL

Based on the findings of the 2014 landfill monitoring program, the performance of the landfill is considered to be acceptable.

7.5 RECOMMENDATIONS/NEXT STEPS

Regular monitoring of this landfill as per the monitoring schedule shown in Table 1.1 should be continued. No remedial work is necessary at this time.

RANGE OF THE REPORT AND LIMITATION OF RESPONSIBILITIES

This landfill monitoring program was commissioned as part of an ongoing program assessing the performance of landfills present at the subject site. The visual observations, test data, chemical analyses and conclusions given in this landfill monitoring report are considered to provide a fair representation of the surface and subsurface conditions within or adjacent to each landfill subject to monitoring. It should be noted, however, that any conclusions regarding the performance of these landfills are based on interpretation of conditions observed during the landfill monitoring program and at specific locations and sampling depths.

This monitoring report, prepared for Public Works and Government Services (PWGSC) and the Department of National Defence (DND), does not provide certification or warranty, expressed or implied, that the monitoring program uncovered all potential issues of environmental or geotechnical concern at the landfills inspected. The material in the report reflects SENES' best judgement in light of the information available at the time of report preparation in November 2014. Changes to soil and/or groundwater quality in the areas investigated can occur following the date of testing. Any use which a third party makes of, or any reliance on, or decisions based on this report or of parts thereof made by them, is the sole responsibility of such third parties unless otherwise agreed-to by duly authorized representatives from SENES, PWGSC and DND.

APPENDIX B

FIELD NOTES

APPENDIX B.1 – Thermistor Inspection Reports

APPENDIX B.2 – Monitoring Well Inspection Reports

APPENDIX B.3 – Visual Inspection Reports

	Name: 5E				Ins	pection Date: 25 Aug /14
Prepared 8	By: 5. 6	Porcsok				
Thermistor	Information					
	FOX - 4		Thermisto	or Location MA	1-H	AZARDOUS ITLER IL DISP FACILATY
	Number: V	7.3	Inclination	n VERT	• • • •	HEMODES THERE SE DIST TIGGICATI
Install Date			First Date			Last Date Event
Coordinate	s and Eleva	tion i	٧		E	Elev
Length of C			Cable Lead Abo	ove Ground (m)		Nodal Points
	Serial # フ				·	Cable Serial Number
Thermistor	Type ULl	<u> </u>				
Thermistor	r Inspection	1				
		•	Good		Nee	eds Maintenance
C	Casing		4			
C	Cover					
D	Data Logger		6			
C	Cable		×			
В	Beads				9	1.2.6.7 not wolly
В	Battery Instal	lation Date				
В	attery Level	S	Main	11. 3	<u> </u>	Aux 1 3 3 8
Manual Gro	ound Temp	erature Reading	ne			
marigar are	Bead	ohoms V	Degrees C			Bead ohms / Degrees C
-	J	O O	381,0742			Bead ohms V Degrees C
	2	0	-101.4553			
	3	1.3253	12,6434			
	Ч	1.3241				
	<u> </u>	1.3583	13.7501			
		<u> </u>	-90.1096			
7		<u> </u>	381.0742			
8		1.2111	8.8153			
Observation	ns and Prop	osed Maintena	ınce			
clock	-2:32	153		<u> </u>		
D	esricant 1	needs peplacin	5			

Contractor Name: SENES		Inan	ection Date: 25 A	110 114	
Prepared By: 5. Borcsok		Tursh	ection Date: 22 17	W 77 1	
			* •		
Thermistor Information	Prite and the second		7 / 7	5 ///	
Site Name: FoX-4 Thermistor Number: VT-4	Thermistor Location Non-	- H47	eardous / 11er II L	up Facility	
Install Date:	First Date Event		Last Date	Event	
Coordinates and Elevation N	Filst Date Event	E	Lasi Dale	Elev	
	ble Lead Above Ground (m)		Nodal Points	LICV	
	255	Cable Serial Number			
Thermistor Type UL16					
Thermistor Inspection	Good	Nee	ds Maintenance		
Casing					
Cover					
Data Logger					
Cable	7				
Beads	, Ø				
Battery Installation Date	7.				
Battery Levels	Main /1. 34		Aux	1217	
Manual Ground Temperature Readings	1				
Bead phris V	Degrees C	l	Bead ohms	Degrees C	
1 1.4353	\$ 16.3765			<u> </u>	
``` ````````````````	15.6102				
2 1.4121					
3 / 3870	19.7373				
4 1.3625	13.8939	Į		1	
	13.2291	ŀ			
		ŀ			
6 0	381.0742	Į			
7 0.	1	ı			
8	─ ↓	ļ			
0		L	•	<u> </u>	
Observations and Proposed Maintenan	<u>ce</u>				
clock -2:21:17					
clock -2:21:17 Dessicant needs replacing	;				

				7 (0 //
Contractor Name: SENES		lns	pection Date:	25 Aug/19
Prepared By: 5. Borcsok				
Thermistor Information				
Site Name: FOX-Y	Thermistor L	ocation NoN-l+	AZANDOUS,	TIENIL DISPOSEN FACILITY
Thermistor Number: VT-5	Inclination	VERT	,	
Install Date:	First Date Ev			Last Date Event
Coordinates and Elevation	N	E		Elev
Length of Cable (m)	Cable Lead Above	Ground (m)	Nodal Points	
Datalogger Serial # 701257			Cable Serial	Number
Thermistor Type UL16				
Thermistor Inspection	50-dwg		Percent	- Fall - WRAPPED
	Good	Nec	eds Maintenan	ce
Casing	9	□		
Cover	P			
Data Logger	P			
Cable	Ø			
Beads	P			
Battery Installation Date	<u>?</u>			
Battery Levels	Main	11, 3	74	Aux /3.14
Manual Ground Temperature Read				 1
Bead ohms	Degrees C		Bead	ohms Degrees C
1 1.5004	18.7602			
2 1.4912	16.6138			
3 1.4158				
7. 1130				
1. 1000	15.1752			
5 1.3784	14.4325			
6 1.3595	13.8107			
	381.0742		<u> </u>	
				
8 0	381.0742			
Observations and Proposed Mainte	enance			
clase -7 1 1.111	· ch	Datalosse-	labelled VT	1-2, location on drawing is VI-5
- Causs 110.	, , , , , , , , , , , , , , , , , , ,	- · ·	- • -•	15 VT-5
clack - Z days 1:10: Was on I have a Chansed to 12 Loy	recon enely			ļ
Chareed to 19 Las	F.O			
Dessident needs nee	la ement			j

Contractor Name: SENES		Inspection Date: 25 Aug //4
Prepared By: 5. Borcsok		
Thermistor Information		
Site Name: FOX-4	Thermistor Location //c-	-Hazardous /Tier IL Disposal Face
Thermistor Number: V7-5A	Inclination VERT	
Install Date:	First Date Event	Last Date Event
Coordinates and Elevation	N	E Elev
Length of Cable (m)	Cable Lead Above Ground (m)	Nodal Points
Datalogger Serial #808003		Cable Serial Number
Thermistor Type UL16		
Thermistor Inspection		
Thermistor Inspection	Good	Needs Maintenance
Thermistor Inspection Casing	Good	Needs Maintenance □
	Good Z	
Casing	Good Z	
Casing	Z b	

11.34

Manual Ground Temperature Readings

Battery Levels

Bead	ohpará ∨	Degrees C
Ì	1.4596	17-2894
2	1.4230	15.9924
3	1.3990	15, 1554
4	1:3/01	12.1123
5	1.3735	14. 2713
6	0	381-4742
7	0	
8	0	V

Main

		···
Bead	ohms	Degrees C
-	/	

13.28

Aux

Observations and Proposed Maintenance

clock -2:20:09
This thermutor is not on drawing Descreant needs replacing

550/55				20	1111		
Contractor Name: SENES			Inspection Date	s: 4.5 /	Hug/19		
Prepared By: 5. Borcsok							
Thermistor Information			•				
Site Name: FOX- 9	Thermisto	r Location MaN	- 14A2ARDO	US/TIER	IT DISD FACILITY		
Thermistor Number: VT-6	Inclination	VERT		007 170714	I DISP FACILITY		
Install Date:	First Date	Event		Last Date			
Coordinates and Elevation	N		E Elev				
Length of Cable (m)	ve Ground (m) Nodal Points						
Datalogger Serial # 707258 Thermistor Type UL16	Cable Serial Number						
VT-1 on layer VT-6	1.0						
Thermistor Inspection	or aws	g er	CENT FETT	- WE DER	ED		
	Good		Needs Mainten	ance			
Casing	Ø	-					
Cover							
Data Logger	Ø		0		-		
Cable) Z						
Beads	Þ						
Battery Installation Date		?					
Battery Levels	Main	11.34	1	Aux	12.77		
				_			
Manual Ground Temperature Readi	ngs						
Bead ohms	Degrees C		Bead	ohms	Degrees C		
1 1.4602	17.3085						
2 1.4296	16.2259						
3 1.4053	15.3731						
7 1.3815	14.5474						
5 1.3566	13.6926						
6 1.3357	12,9799						
7 0	381-6742						
8 0	₹.						
Observations and Proposed Mainter	nance						
clark , 2:20:45							
Datalosse labelled VI	T-1 on draw	ing this if V	T-6				
Dessicant needs replace	(10)						
DEISICANI NEWS PEPILO							

Contractor Name: SENES	Inspection Date: 25 Aug //9
Prepared By: S. Borcsok	

Thermistor Information

Site Name: FOX-4	Thermistor Location Nov	Thermistor Location NON - HAZAK BOUS ITHER IT DISPOSAL FACILY		
Thermistor Number: V T-7	Inclination VERT			
Install Date:	First Date Event		Last D	ate Event
Coordinates and Elevation	N	E		Elev
Length of Cable (m)	Cable Lead Above Ground (m)		Nodal Points	
Datalogger Serial # 07/ 100 79			Cable Serial Number	er
Thermistor Type UL16				

Thermistor Inspection

	Good	Needs Maintenance
Casing	/	o
Cover	Ø,	<u> </u>
Data Logger	, **	D
Cable	A.	
Beads	ń	
Battery installation Date	?	
Battery Levels	Main7.68	Aux

Manual Ground Temperature Readings

Bead	ohms ∨	Degrees C
1	1.2141	8:9135
2	1.1885	8.0687
3	1.0889	9,8072
4	1.0489	3.4992
5	1.0144	2.3660
6	0.9807	1-2587
7	0.9465	0.1278
8	0.9268	-0.5295

Bead	ohms	Degrees C
9	0.9095	-1.1055
10	0.8972	-1.5200
U	0.8858	-1,9026
12	0.8786	-2,1476
13	O	381.0742
14	0	1
15	O	۸.
16	0	V

Observations and Proposed Maintenance

clock _2:11:42 Desucant needs replacing

200		· [0 200 \$ 644.	
Contractor Name: SENES			Inspection Date: 25 1749/14	
Prepared By: 5. Borcsuk			_	
Thermistor Information				
Site Name: WT-8	Thermistor Location NGN -	HAZ	ARDOUS/TIER II DISPOSAL FACILITY	
Thermistor Number:	Inclination VERT			
Install Date:	First Date Event		Last Date Event	
Coordinates and Elevation	N	E	Elev	
Length of Cable (m)	Cable Lead Above Ground (m)		Nodal Points	
Datalogger Serial #07/1 0047			Cable Serial Number	
Thermistor Type ULI6	<u> </u>			
Thermistor Inspection				
Thermistor hispection	Good	Noc	eds Maintenance	
		IVE	sus ivialitienance	
Casing	/ □			
Cover			Gasketon cover removed	
Oove.	9	LJ	THE ON COO TOTAL EDI	
Data Logger		Ø		
Cable	~			
·		ш		
Beads	9			
Pottoni Installation Date	7		-	
Battery Installation Date				
Battery Levels	Main		Aux	
Manual Ground Temperature Readi	<u>ings</u>			
Bead ohms	Degrees C		Bead ohms Degrees C	
				
1				
•				
<u> </u>	· · · · · · · · · · · · · · · · · · ·			
Observations and Proposed Mainte	nance			
		a . L	squarton from the data losser.	
COMMUNICAMONIS CY	or real the	_U	yurunun fan The dant 1055er.	
Cauld not down	load Datalogser rem	ovec	1. Hom site	
Dessieant needs replace	enat.			

Contractor Name: SENES		Inspection Date: 25 Aug //U	
Prepared By: S. Burcsok		mispection Date. 23 77 037779	
Troparou By.	•	·	
Thermistor Information	<u>,</u>		
Site Name: Fox-4	Thermistor Location NON-AAZARDOUS/THER IDISPOSAL FACILITY		
Thermistor Number: VT-9	Inclination VERT	Last Data Francis	
Install Date: Coordinates and Elevation	First Date Event	Last Date Event	
Length of Cable (m)	Cable Lead Above Grou	E Elev und (m) Nodal Points	
Datalogger Serial # 07/1082	TOAME LEAD ADOVE GIOL	Cable Serial Number	
Thermistor Type UL/6		Oable Genal Number	
Thermistor Inspection	Good	Needs Maintenance	
Casing			
Cover			
Data Logger		×	
Cable		×	
Beads		X	
Battery Installation Date	?		
Battery Levels	Main	Aux	
		•	
Manual Ground Temperature Readi	ngs		
Bead ohms	Degrees C	Bead ohms Degrees C	
	·		
Observations and Proposed Mainte	nance		
		Invalid argunest to time	
	,	encode"	
Datalogger removed fr	om site.	ت د د د د د د د د د د د د د د د د د د د	
Dessicant needs replace	emeat		

Contractor Name: SENES	Inspection Date: 25 Aug //4
Prepared By: 5. Borcsole	

Thermistor Information

Site Name: Fox-4	Thermistor Location NON - HAZARDOUS / TIER IL DISPOSAL FACILITY		
Thermistor Number: VT-10	Inclination		
Install Date:	First Date Event		Last Date Event
Coordinates and Elevation	N	Е	Elev
Length of Cable (m)	Cable Lead Above Ground (m)	Nodal Poir	nts
Datalogger Serial #		Cable Seri	ial Number
Thermistor Type			

Thermistor Inspection

	Good	Nee	ds Maintenance		
Casing					
Cover		7 .	Coverwar too t	tight toge	1 back on
Data Logger	9/				My
Cable				· · · · · · · · · · · · · · · · · · ·	
Beads	Ź			· · · · · · · · · · · · · · · · · · ·	
Battery Installation Date	2		· ·	-	
Battery Levels	Main	11.34	Aux	2.43	

Both Sal to 11/05

Manual Ground Temperature Readings

Bead	ohrpé V	Degrees C
1	1.2214	9.1355
2	1.133/	6.2521
3	1.0755	4.3766
4	1.0402	3.2144
5	1.0030	1.9924
6	6,7657	0.7623
7	0.9391	-0.1205
8	0.9200	-0.7560

Bead	ohms V	Degrees C
9	0.9073	-1.1796
10	0.8960	-1.5585
11	0.8867	-1,8846
12	0.8803	-2.0879
13	0.8748	-2,2735
14	6.8705	-2,4181
15	0	381.0742
16	0	4

Observations and Prop	osed Mainte	enance
-----------------------	-------------	--------

clock -63 days 23:58:17

Dessicant needs replacing

Site Name:	FOX-4		
Date of Sampling Event:		Time:	7000
Names of Samplers:		nino.	
realities of Gampiers.	3.77		
Landfill Name:	NH/TIER II	Samples Collected:	42-5
Monitoring Well ID:		PHC F1	13
Sample Number:			
Condition of Well:		PHC F2-F4	
Condition of tren.		PCBs	
Measured Data		Duplicate Collected?	
Well pipe height above ground		Duplicate Collected:	
(cm)=	170		
Diameter of well (cm)=	5		
Depth of well installation (cm)=			
		•	
(from ground surface)			
Length screened section			
(cm)=			
Depth to top of screen (cm)=		<u> </u>	
Dopar to top or corcon (ciri)=			
(from ground surface)	•		
(nom ground durided)			
Depth to water surface (cm)=	141	Measurement method: (meter, tape, etc)	5 Lead
Dopin to maior canado (cini)=	176	tane etc)	11.10.196
(from top of pipe)		ιαρο, σιο,	rura
Static water level (cm)=	101		
(below ground surface)	106		
Measured well refusal depth	11.0	Evidence of sludge or siltation:	AIG
(cm)=	408	Evidence of evidence of evidence in	100
(i.e. depth to frozen ground)			
		•	
	ĺ		
Thickness of water column	232		
Static volume of water in well	4.71		
Table Folding Of Water at Well	111		
			ļ
Free product thickness (mm)=	0	Measurement method:	In
- 130 p. 6 day anomiodo (mm)-		Modedionion monitor.	ا اسلا
Purging: (Y/N)	Y	Purging/Sampling Equipment:	Water
Volume Purged Water=	201	г агушу/зашршіу Едаіртіені.	T. Land
Decontamination required:	206		Tubins/ Footvalve
(Y/N)	$\wedge I$		FOOTVEIVE
Number washes:	/ 		
Number rinses:			
Number mises.			
Final pH≕	7.77		
Final Conductivity (uS/cm)=	160.3		
Final Temperature (degC)=	3.1	· · · · · · · · · · · · · · · · · · ·	
	2,[

			T
Site Name			
Date of Sampling Event	13 Aug/19	★ Time:	620pm
Names of Samplers:	JM/SB		
	<u> </u>		
Landfill Name:		Samples Collected:	
Monitoring Well ID:		PHC F1	
Sample Number:	FY-NH-MW	11-02 Inorganic Elements	
Condition of Well:	OK Ponded	water at location PHC F2-F4	
	,	PCBs	
Measured Data		Duplicate Collected?	NO
Well pipe height above ground	~~~	•	
(cm)=	\ \ \ \		
Diameter of well (cm)=			
Depth of well installation (cm)=		* Monitored 24- Aug/14	
l		Sampled 25-Aus/14	
(from ground surface)		34.7100 00 000171	
Length screened section			
(cm)=			
Depth to top of screen (cm)=			
(from ground surface)			
(nom ground carrace)		, ,	
Depth to water surface (cm)=	0.47	Measurement method: (meter,	7- 1. P
Departie water surface (9/11)=	U . 46M	tano otol	Intertace
(from top of pipe)		tape, etc)	Mester-
Static water level (cm)=			
(below ground surface)	-9cm	j	
		Evidence of aludes as citations	Al a
Measured well refusal depth	1.78m	Evidence of sludge or siltation:	/VO
(cm)=	ļ		
(i.e. depth to frozen ground)	- · · · · ·	··	
Thislenger	7 70		
Thickness of water column	1.32m		
Static volume of water in well	2.654		
Free product thickness (mm)=	0	Measurement method:	IM
	- -		
Purging: (Y/N)	Y	Purging/Sampling Equipment:	hiaterra
Volume Purged Water=	94	- alguigi çarripinig Equipitionia	Tubins/
Decontamination required:	/-		Footvalve
(Y/N)	N		100114116
Number washes:	-, -		
Number rinses:			
ivumber mises.			
Final att	7.45		
Final Conductivity (uS/cm)	170.2		
Final Conductivity (uS/cm)=	3.0		
Final Temperature (degC)=	3.0		

Site Name:	Fax-4		
Date of Sampling Event:		√ Time:	610pm
Names of Samplers:		Time.	5. 771
ramos si campiois.	31770		
Landfill Name:	NH/TIERTE	Samples Collected:	
Monitoring Well ID:		PHC F1	<u> </u>
Sample Number:	FY-NU-M		
Condition of Well:		PHC F2-F4	<i>J</i> ,
30174111311 31 17 311	- 10	PCBs	
Measured Data		Duplicate Collected?	NO
Well pipe height above ground	200		
(cm)=	55		
Diameter of well (cm)=	5	· · ·	
Depth of well installation (cm)=		* Monitored 24 Aus/14	
}		Sampled 25 Aug/14	
(from ground surface)	·	340716W 20 1709111	
Length screened section			
(cm)=			
Depth to top of screen (cm)=			
. , ,			
(from ground surface)			
Depth to water surface (cm)=	02	Measurement method: (meter,	Enterfece
	83	tape, etc)	
(from top of pipe)		, , ,	
Static water level (cm)=			
(below ground surface)			
Measured well refusal depth	0711	Evidence of sludge or siltation:	No
(cm)=	274	-	
(i.e. depth to frozen ground)	i		
Thickness of water column		 -	
Static volume of water in well	3,84		
			·
Free product thickness (mm)=	0	Measurement method:	IM
` '	-		
Purging: (Y/N)	7	Purging/Sampling Equipment:	Waterra
Volume Purged Water=	124		Tubins/
Decontamination required:	İ		Footvalue
(Y/N)	\mathcal{N}		, , , , , , , , , ,
Number washes:			
Number rinses:			
Final pH=	7.81		
Final Conductivity (uS/cm)=	7.81		
Final Temperature (degC)=	2.9		
- 1 - 3 - 7	- '		

Site Name:			
Date of Sampling Event:	25-Aug/1	イメ Time:	600pm
Names of Samplers:	JM/SB		
Landfill Name:	NH/TIER II	Samples Collected:	V
Monitoring Well ID:		PHC F1	/
Sample Number:			
Condition of Well:		PHC F2-F4	
Condition of them.	~	PCBs	
Measured Data		Duplicate Collected?	NO
Well pipe height above ground		Duplicate Collected:	
	33		
(cm)=	5		
Diameter of well (cm)=		11 1 21 6 111	
Depth of well installation (cm)=		x Monitored 24 Aug/14 Sampled 25 Aug/14	
		Sampled 25 Aus 1/4	
(from ground surface)		,	
Length screened section			
(cm)=			
Depth to top of screen (cm)=			
(from ground surface)			
1		•	
Depth to water surface (cm)=	00	Measurement method: (meter,	Tatorface
,,	80	tape, etc)	
(from top of pipe)			ries
Static water level (cm)=			
(below ground surface)			
Measured well refusal depth		Evidence of sludge or siltation:	4.
_ *	196	Evidence of sludge of siliation.	NO
(cm)=	'''		
(i.e. depth to frozen ground)			
	ì		
Thistoness of water and	71/		
Thickness of water column	1.16m		
Static volume of water in well	2.33L		
	ļ		
Free product thickness (mm)=	0	Measurement method:	IM
, ,			· · · · · · · · · · · · · · · · · · ·
Purging: (Y/N)	-y- 	Purging/Sampling Equipment:	Waterra
Volume Purged Water=	102	gg. camping Equipment	Tubing/
Decontamination required:			Funtvalve
Y/N)	\sim \sim \sim		10011-1100
Number washes:	-		
Number wasnes: Number rinses:			·
Number rinses:			
P			
Final pH=	7.50		
Final Conductivity (uS/cm)=	196.9		
Final Temperature (degC)=	2.7		

Site Name:	FOX-4		
Date of Sampling Event:	24A49/14	Time	550 pm
Names of Samplers:			,
	1,		
Landfill Name:	NH/T/CD 77	Samples Collected:	
		PHC F1	
Monitoring Well ID:			
Sample Number:	179-704-7700		
Condition of Well:	OK, water	pordal aroundwell PHC F2-F4	
		PCBs	
Measured Data		Duplicate Collected?	No
Well pipe height above ground	0/		
(cm)=	36		
Diameter of well (cm)=			
Depth of well installation (cm)=			
(from ground surface)	1		ł
Length screened section			
(cm)=			
Depth to top of screen (cm)=			
(from ground surface)			
Depth to water surface (cm)=	00	Measurement method: (meter,	Interface
	95	tape, etc)	Meter
(from top of pipe)			1
Static water level (cm)=			
(below ground surface)			
Measured well refusal depth	2.2	Evidence of sludge or siltation:	11 -
(cm)=	213		NO
(i.e. depth to frozen ground)			
(i.e. depiir to frozen ground)			
Thislesses	1.0		
Thickness of water column			
Static volume of water in well	2.40	•	
		· ·	
			•
Free product thickness (mm)=	0	Measurement method:	IM
			Ţ
Purging: (Y/N)	9	Purging/Sampling Equipment:	Caterra
Volume Purged Water=	90	r drging/oampring Equipment.	Tubing/
Decontamination required:			
	\mathcal{N}	•	Footvalve
(Y/N)			
Number washes:	· .		
Number rinses:			
Final pH≕	7.71		
Final Conductivity (uS/cm)=	146.4		
Final Temperature (degC)=	2.7		

	T	,	
Site Name:	FOX-4		
Date of Sampling Event:	24 Aug//	Time:	540pm
Names of Samplers:	IM/SB		
			1
Landfill Name:	WHITIERIE	Samples Collected:	No
Monitoring Well ID:		PHC F1	
Sample Number:		Inorganic Elements	
Condition of Well:		PHC F2-F4	
	,	PCBs	
Measured Data		Duplicate Collected?	
Well pipe height above ground		Dapitodio Concolodi,	\
(cm)=	I (/ A		
Diameter of well (cm)=			
Depth of well installation (cm)=			
Deput of well installation (CIII)=			
(from around ourface)			
(from ground surface)			
Length screened section			
(cm)=			
Depth to top of screen (cm)=			
<u>,, </u>			
(from ground surface)			
Depth to water surface (cm)=	N/A	Measurement method: (meter,	
	(Dry)	tape, etc)	Meter
(from top of pipe)	(1) 7/	L.	
Static water level (cm)=			
(below ground surface)			
Measured well refusal depth	0.0	Evidence of sludge or siltation:	BoH
(cm)=	98		
(i.e. depth to frozen ground)			
Thickness of water column			
Static volume of water in well	0		
	ļ		
	0	· · · · · · · · · · · · · · · · · · ·	
Free product thickness (mm)=	U	Measurement method:	IM
Purging: (Y/N)	Ν	Purging/Sampling Equipment:	Khatora 111
Volume Purged Water=			14 Any / 11/14
Decontamination required:	Λ.		Foothan Ne
(Y/N)	N		1, 10
Number washes:			
Number rinses:	İ		
Final pH=	İ		
Final Conductivity (uS/cm)=	1		
Final Temperature (degC)=			
- indi Tomporadore (dego)-			

O't- N] max	T	ı .
Site Name:			
Date of Sampling Event:		Time:	530pm
Names of Samplers:	JM/SB		
Landfill Name:	NH/TIERII	Samples Collected:	YES
Monitoring Well ID:		PHC F1	ζ
Sample Number:	FY-NH-MW	12-07 Inorganic Elements	1
Condition of Well:	lockbroken	JFC PHC F2-F4	0/
	booker i-pl		
Measured Data	,	Duplicate Collected?	
Well pipe height above ground			
(cm)=	44		
Diameter of well (cm)=			
Depth of well installation (cm)=			
Dopin of wor instantation (on)-			1
(from ground surface)			
Length screened section			
·			
(cm)=			
Depth to top of screen (cm)=			

(from ground surface)			
Depth to water surface (cm)=	275	Measurement method: (meter,	Interface
	<i>74</i> / 3	tape, etc)	Meter-
(from top of pipe)			•
Static water level (cm)=			
(below ground surface)			
Measured well refusal depth	202	Evidence of sludge or siltation:	NO
(cm)=	202		•
(i.e. depth to frozen ground)			
Thickness of water column	1.27m		
Static volume of water in well			
Classo voidino di water ili well	~ 170		
Free product thickness (mm)=		Moon woment mother de	7-14
riee product unckness (mm)=	3	Measurement method:	IM
		D 1 (0 11 11 11 11 11 11 11 11 11 11 11 11 11	76 15
Purging: (Y/N)	<i>y</i>	Purging/Sampling Equipment:	watera
Volume Purged Water=	92		Tub/199/
Decontamination required:	\sim		Foutvalve
(Y/N)			
Number washes:			
Number rinses:			
Final pH=	7.48		
Final Conductivity (uS/cm)=	175.7	· · · · · · · · · · · · · · · · · · ·	
Final Temperature (degC)=	3.1		
111111111111111111111111111111111111111	-		

Site Name:	FOY-4		1
Date of Sampling Event:		Timo:	640pm
Names of Samplers:		1 11116.	8-10pm
Names of Samplers.	3.1775		
Landfill Name:	ALL/THEO IT	Samples Collected:	NO
Monitoring Well ID:		PHC F1	700
Sample Number:		Inorganic Elements	
Condition of Well:		PHC F2-F4	
Condition of Well.	0.0	PCBs	
Measured Data		Duplicate Collected?	
Well pipe height above ground		Duplicate Collected:	
(cm)=	58		
Diameter of well (cm)=			
Depth of well installation (cm)=			
(from ground surface)			
Length screened section			
(cm)=		<u></u>	
Depth to top of screen (cm)=			
(from ground surface)			-
Depth to water surface (cm)=	N/A (Dry)	Measurement method: (meter, tape, etc)	
(from top of pipe)	ן נדוש)	що, ото,	7,40
Static water level (cm)=			
(helow ground surface)			
Measured well refusal depth	1.10m	Evidence of sludge or siltation:	No
(XII)=	,		
(i.e. depth to frozen ground)			
Thiokness of water activity			
Thickness of water column	0		
Static volume of water in well	0		
Free product thickness (mm)=	0	Measurement method:	IM
Purging: (Y/N)	N	Purging/Sampling Equipment:	(Valte/Xts\
Volume Purged Water=	//	i urgaig/oampang Equipment.	The Serve X N/17
Decontamination required:			El Marking
(Y/N)			1 Observat
Number washes:			
Number rinses:			
Number mises.			
Final pH=			
Final Conductivity (uS/cm)=			· · · · · · · · · · · · · · · · · · ·
Final Temperature (degC)=			
a. romporatare (acgo)-			

	1		
Site Name:			
Date of Sampling Event:	25 Aug/1	Y Time:	10am
Names of Samplers:			
		,	
Landfill Name	CTATION	Camples Callestade	4
Landfill Name:		Samples Collected:	YES
Monitoring Well ID:	14048-07	PHC F1	
Sample Number:		Inorganic Elements	✓
Condition of Well:	Casingfu	11 of bestowle PHC F2-F4	1,
lock rusted and broke		PCBs	
Measured Data		Duplicate Collected?	NO
Well pipe height above ground		Bapileate Collected:	700
l	22		
(cm)=	22		
Diameter of well (cm)=	7		
Depth of well installation (cm)=			
(from ground surface)			
Length screened section			
(cm)=			
Depth to top of screen (cm)=			
(from ground surface)			
Depth to water surface (cprl)=	1 10.	Measurement method: (meter, tape, etc)	Takentin
2 op 11. to 11a.o. ca.11a.o. (9.1,	1.12m	tano otal	Fire race
/ from top of pipo)		tape, etc)	Meter
(from top of pipe)			
Static water level (cm)=			
(below ground surface)			
Measured well refusal depth	210	Evidence of sludge or siltation:	NO
(cm)=	212		
(i.e. depth to frozen ground)	_	:	
,			
	i		
Thickness of water column	100		
	100		
Static volume of water in well	2.03		
 			
Free product thickness (mm)=	0	Measurement method:	IM
1 100 product unontess (IIIII)=	$ \sigma$	ivicasurement method.	ا الما
			1
Purging: (Y/N)	7	Purging/Sampling Equipment:	
Volume Purged Water=	76		Tubing/
Decontamination required:	,		_
(Y/N)	\mathcal{N}		Footsalve
Number washes:			4,,+0
Number rinses:			
rannoer mises:			
	700		
Final pH=	7,90		
Final Conductivity (uS/cm)=	190.0		
Final Temperature (degC)=	3.2		
	-		

Other Manner			i
Site Name:	FOX - 4		
Date of Sampling Event:	25/449/14	Time:	1010g A
Names of Samplers:	58/JM		
			· ·
Landfill Name:	STATION	Samples Collected:	NO
Monitoring Well ID:		PHC F1	
Sample Number:		Inorganic Elements	
Condition of Well:	Straker	aterand bestor to PHC F2-F4	
Alleucaring	2100000	PCBs	
Measured Data		Duplicate Collected?	
Well pipe height above ground		Duplicate Collecteu:	
	1 // 1		
(cm)=	~->	<u> </u>	
Diameter of well (cm)=			
Depth of well installation (cm)=			
(from ground surface)			
Length screened section			
(cm)=			
Depth to top of screen (cm)=			
(,			
(from ground surface)			
(nom ground surface)			
Depth to water surface (cm)=		Massurament method: (meter	
Depth to water surface (cm)=	100	ivieasurement method. (meter,	Intertace
/ funnis 2	100	Measurement method: (meter, tape, etc)	Meter
(from top of pipe)			, _/
Static water level (cm)=			
(below ground surface)			
Measured well refusal depth	ادما	Evidence of sludge or siltation:	NO
(cm)=	120	` .	100
(i.e. depth to frozen ground)			
	i		
Thickness of water column	20		
Static volume of water in well	0.41L		
Citatio Volume of Water in Well	J. 11 L		
	J	ŀ	
Funn munch state 1			
Free product thickness (mm)=	0	Measurement method:	IM
Purging: (Y/N)	\mathcal{N}	Purging/Sampling Equipment:	Workerras
Volume Purged Water=			Tustof
Decontamination required:			- 1XV
(Y/N)			Fout take
Number washes:			MA
Number rinses:			/V///
14411001 1111003.			
Final att			
Final Conductivity (v.S/cm)	+		
Final Conductivity (uS/cm)=			
Final Temperature (degC)=			

	1222		
Site Name:			
Date of Sampling Event:	25 Aug/14	Time:	1005 and
Names of Samplers:			
Landfill Name:	CTATION	Comples Colleges	A/A
		Samples Collected:	No
Monitoring Well ID:		PHC F1	
Sample Number:		Inorganic Elements	
Condition of Well:	Standing au	terin casing over PHC F2-F4	\
3-plus this water fell into	standerpe	this is water in well PCBs	
Measured Data	**************************************	Duplicate Collected?	
Well pipe height above ground			`
(cm)=	19		
	5		
Diameter of well (cm)=	>		
Depth of well installation (cm)=	i		
(from ground surface)			
Length screened section			
(cm)=			
Depth to top of screen (cm)=			
Depth to top of screen (cm)=			
/5	'		
(from ground surface)		,,,	
Depth to water surface (cm)=	109	Measurement method: (meter, tape, etc)	Total face
	'''	tape. etc)	M /
(from top of pipe)	i		Merer
Static water level (cm)=		· 	
(below ground surface)		Polynom pull no a	
Measured well refusal depth	130	Evidence of sludge or siltation:	No
(cm)=	・プロー		• • •
(i.e. depth to frozen ground)			
Thickness of water column	21		
Static volume of water in well	0.436		
Free product thickness (mm)=	0	Measurement method:	TM
product anomitodo (mm)-	~	wicadarement method.	1"
			. (/ /!
Purging: (Y/N)	N	Purging/Sampling Equipment:	N/A
Volume Purged Water=	<u> </u>		
Decontamination required:			
(Y/N)			
Number washes:			
Number vasites:			
Number mises.			
<u> </u>			
Final pH=		<u></u>	
Final Conductivity (uS/cm)=			
Final Temperature (degC)=			
· · · · · · · · · · · · · · · · · · ·			

Site Name	FOX-4		
Date of Sampling Event:		Time	930gm
Names of Samplers:		Time	130411
Trained of Gampions.	371770	·	
Landfill Name:	Holipad	West Samples Collected	YES
Monitoring Well ID:		PHC F1	
Sample Number:	1 18 01	Inorganic Elements	
Condition of Well:	OV on bold	ror lack, PHC F2-F4	
Gonaldon of Well.		standpire PCBs	
Measured Data	no capes	Duplicate Collected?	
Well pipe height above ground	11.00		700
(cm)=	45	F4-HEL-MW98-01	
Diameter of well (cm)=	5	1,702	
Depth of well installation (cm)=	<u> </u>		
(from ground surface)	ļ		[
Length screened section			
(cm)=			
Depth to top of screen (cm)=			
, ,, ,, ,, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,		·	
(from ground surface)			
	į		***
Depth to water surface (cm)=	111	Measurement method: (meter,	Taterfice
, , ,	166	tape, etc)	M
(from top of pipe)		,	Meter
Static water level (cm)=			
(below ground surface)	ľ		
Measured well refusal depth	232	Evidence of sludge or siltation:	
(cm)=	232	-	10
(i.e. depth to frozen ground)			
Thickness of water column	116		
Static volume of water in well	2.35		
	ļ		,
Free product thickness (mm)=	0	Measurement method:	IM
Purging: (Y/N)	Y	Purging/Sampling Equipment:	(Jatera
Volume Purged Water=	96	3 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Tubins/
Decontamination required:			cuátualve
(Y/N)	N		-ourvalve
Number washes:			
Number rinses:			
Final pH=	6.90		
Final Conductivity (uS/cm)=	180.2		
Final Temperature (degC)=	2.2		:
	1		

	T = //		
Site Name			
Date of Sampling Event		Time:	1130am
Names of Samplers	JM/SB		
			/
Landfill Name	HELIPAD	WEST Samples Collected:	1
Monitoring Well ID:	MW98-02	PHC F1	
Sample Number		Inorganic Elements	7
Condition of Well.		tonite filled all PHC F2-F4	
	of casing	PCBs	/
Measured Data		Duplicate Collected?	
Well pipe height above ground	25	F4-HEL-MW98-02	
(cm)=	23	1 4 HEL - 11W18 - 02	
Diameter of well (cm)=	5		
Depth of well installation (cm)=	İ		
	ſ		
(from ground surface)	1		
Length screened section			
· · · · · · · · · · · · · · · · · · ·	1		
(cm)=			
Depth to top of screen (cm)=			
(from ground surface)			
	ļ		
Depth to water surface (cm)=	0-7	Measurement method: (meter, tape, etc)	Total
, , ,	87	tape, etc)	Diversace
(from top of pipe)		, ,	Meter
Static water level (cm)=			
(below ground surface)			
		Evidence of aludes or siltetions	
Measured well refusal depth	160	Evidence of sludge or siltation:	No
(cm)=	'00		
(i.e. depth to frozen ground)			
	<u> </u>		
Thickness of water column	73		
Static volume of water in well	1.48		
Table 1 of the of the of the of the of	0		
Free product thickness (mm)=	O	Measurement method:	IN
Purging: (Y/N)	Y	Purging/Sampling Equipment:	Watera
Volume Purged Water=	64		Tubins/
Decontamination required:			1 ·
(Y/N)	•		Footvalve
Number washes:		• •	
Number rinses:			
Number mises.			
— , , , ,			
Final pH=	6.60		
Final Conductivity (uS/cm)=	320.0		
Final Temperature (degC)=	2.5		

Site Name	Lax 4	T	<u> </u>
Site Name: Date of Sampling Event:	2001-111	Time:	11/1//
Names of Samplers:		i inte.	1140am
Names of Samplers.	311738	: '	
Landfill Name:	HEUDAD	WEST Samples Collected:	
Monitoring Well ID:		PHC F1	<u> </u>
Sample Number:		Inorganic Elements	7
Condition of Well:		enoff PHC F2-F4	
Condition of Well.	Cura Ell	ent bestonthe PCBs	
Measured Data	2000 113 1177	Duplicate Collected?	
Well pipe height above ground		Daphotto Comottou.	F4-4EL
(cm)=	30		-MW98-03
Diameter of well (cm)=	<	** * * **	111
Depth of well installation (cm)=			
,			
(from ground surface)			
Length screened section		·	
(cm)=			
Depth to top of screen (cm)=		could not be determined	
, , ,		as probe become covered	
(from ground surface)		(in bendavide	
	:		
Depth to water surface (cm)=	Waterin	/ Measurement method: (meter,	Interface
	well, but	/ tape, etc)	Meter
(from top of pipe)	level		vere
Static water level (cm)=			
(below ground surface)			
Measured well refusal depth	1 (1/)	Evidence of sludge or siltation:	Somebest
(cm)=	1.44		in Etandpip
(i.e. depth to frozen ground)			
Thickness of water column			
Static volume of water in well			
Free product thickness (mm)=	0	Measurement method:	IM
Purging: (Y/N)		Purging/Sampling Equipment:	Waterra
Volume Purged Water=			Tubingand
Decontamination required:			Tubing and Footvalve
· (Y/N)			routvalve
Number washes:			<u> </u>
Number rinses:			
Final pH=	6.60		
Final Conductivity (uS/cm)=	120.(
Final Temperature (degC)=	1.6		

O'lla Manna	I		•
Site Name:			4111
Date of Sampling Event	25/749//4	Time:	1145pm
Names of Samplers:	5M/SB		
Landfill Name:	HELIPAD	WEST Samples Collected:	NO
Monitoring Well ID:	MW98-06	PHC F1	
Sample Number:		Inorganic Elements	
Condition of Well:		Gled of PHC F2-F4	
casing, no i-plug, best	in stander		<u> </u>
Measured Data		Duplicate Collected?	
Well pipe height above ground		Daplicate Collected 1	
(cm)=			`
Diameter of well (cm)=		·	
Depth of well installation (cm)=			
Deput of well installation (CIII)=			
(from avound ourfees)			
(from ground surface)		,	
Length screened section			
(cm)=			
Depth to top of screen (cm)=			
(from ground surface)			
Depth to water surface (cm)=	NA	Measurement method: (meter, tape, etc)	Tater-Face
	(Dry)	tape, etc)	M. A.
(from top of pipe)			rever
Static water level (cm)=		·	
(below ground surface)			
Measured well refusal depth		Evidence of sludge or siltation:	A1A
(cm)=	117		/ √ @
(i.e. depth to frozen ground)	' ' '		
(i.e. departe frezen gredna)			
Thickness of water column			
	0		
Static volume of water in well	0		
Free product thickness (mm)=	0	Measurement method:	IM
	-		
Purging: (Y/N)	N	Purging/Sampling Equipment:	NIA
Volume Purged Water=		. a.g. g. camping Equipmont	
Decontamination required:	 		
(Y/N)	\sim	·	
Number washes:			
Number rinses:			
inumber mises:			
Final pH=			
Final Conductivity (uS/cm)=			
Final Temperature (degC)=			

DEW LINE CLEANUP: POST-CONSTRUCTION - LANDFILL MONITORING

VISUAL INSPECTION CHECKLIST INSPECTION REPORT – PAGE 1 OF 2

CATCH AND A CATCHER CONTRACTOR
SILE NAME: $FOX-Y$
I ANDERT I DESIGNATION.
NON-HAZARDOUS WASTE LANDFILL /TIER IT DISPLAND FILL
DATE OF INSPECTION:
76 Hugust 2014
DATE OF PREVIOUS INSPECTION: A//A C/2/21/
_
INSPECTED BY: Jason Mauchan / Stopher Barcsole
PRPORT DREDADED BV.
Stephen Borcsok
The inspector/reporter represents to the best of the their knowledge, the following statements and observations are true and
correct and to the best of the preparer's actual knowledge, no material facts have been suppressed or misstated.

LANDFILL:

	A de de la constante de la con	Additional Comments										1 Thermith was not on drawing (SA)	
E 2 OF 2	Photographic Records Focal length, location, view point & direction (relative to magnetic north) Feature of note										2.CM		
ORT - PAG	Decerintian	Depression	Erasion					Noturel oxidation			Small metal		The rat
CHECKLIST - INSPECTION REPORT - PAGE 2 OF 2	Extent relative to Area of Landfill (%)	13				:			,		×1×		<1//>//>
INSPEC	Depth		770										
LIST -]	Width	0.3 h 0.3 h	~3~-2~ O.Z~										
HECK	Length	0.3r	222			:							
VISUAL INSPECTION	Location (Describe relative to existing monuments/features and relative to landfill design i.e. surface, berms, toe)	NE corner of Norther	West side of skip bodovery Nand 5 side of TII londall and extised					YES Inponded unter			Southeast cornerof NonHaz land B/1	See drawing, Swells	On The II Dip Gallip
VIS	Present Yes/No	YES	KES	No	No	8	No	Yes	No	No	122	755	KES.
	Checklist Item	Settlement	Erosion	Frost Action	Sloughing and Cracking	Animal Burrows	Vegetation	Staining	Vegetation Stress	Seepage Points	Debris Exposed	Presence/Condition – Monitoring Instruments	Features of Note.

Preliminary Stability Assessment Landfill: FOX-4 Nontaz / Tier II Disposal Facility

Feature	Severity Rating	Extent
Settlement	ACCEPTABLE	ISOLATED
Erosion	ACCEPTABLE	OCCASIONAL
Frost Action	NONE	NONE
Staining	ACCEPTABLE	ISOL AND
Vegetation Stress	NONE	NONE
Seepage/Ponded Water	ACCEPTA BLE	OCCASIONAL
Debris exposure	ACCEPTABLE	OCCASIONAL
Overall Landfill Performance	ACCEPTABLE	

Performance/ Severity Rating	Description
Acceptable	Noted features are of little consequence. The landfill is performing as designed. Minor deviations in environmental or physical performance may be observed, such as isolated areas of erosion, settlement.
Marginal	Physical/environmental performance appears to be deteriorating with time. Observations may include an increase in size or number of features of note, such as differential settlement, erosion or cracking. No significant impact on landfill stability to date, but potential for failure is assessed as low or moderate.
Significant	Significant or potentially significant changes affecting landfill stability, such as significant changes in slope geometry, significant erosion or differential settlement; scarp development. The potential for failure is assessed as imminent.
Unacceptable	Stability of landfill is compromised to the extent that ability to contain waste materials is compromised. Examples may include: - Debris exposed in erosion channels or areas of differential settlement. - Liner exposed. - Slope failure.

Extent	Description	
Isolated	Singular feature	
Occasional	Features of note occurring at irregular intervals/locations	
Numerous	Many features of note, impacted less than 50% of the surface area of the landfill	
Extensive	Impacting greater than 50% of the surface area of the landfill	

LANDFILL:

DEW LINE CLEANUP: POST-CONSTRUCTION - LANDFILL MONITORING

VISUAL INSPECTION CHECKLIST INSPECTION REPORT – PAGE 1 OF 2

SITE NAME:
1-X0-1
LANDFILL DESIGNATION: 12 F1 1900 11 CCT 1 20 11 11 11 11 11 11 11 11 11 11 11 11 11
TELLIFU WESI CAMPILL
DATE OF INSPECTION: 7 / 0 1 / 0 / 1
46 HUBUST 2014
DATE OF PREVIOUS INSPECTION: * , / / / / / / / / / /
WH (Land+11) repaired in 2013)
INSPECTED BY:
Jason Hauchan / Trepher Borcsoll
J'H'NE BOTCOK
The inspector/reporter represents to the best of the their knowledge, the following statements and observations are true and
correct and to the best of the preparer's actual knowledge, no material facts have been suppressed or misstated.

7

	-		717	TT _ T CT/	771 171	CITECOTOR - INSTRUCTION WELOW! - LAGE 2 OF 2	INI - LAG	0.4 OF 4	
Checklist Item	Present Yes/No	Location (Describe relative to existing monuments/features and relative to landfill design i.e. surface, berms, foe)	- Lenoth	wide.		Extent relative to Area of Landfill	Donnist	Photographic Records Focal length, location, view point & direction (relative to magnetic north) Feature of note	
Settlement	465	At bothm of berns above large granular fills	and distriction of the state of			1.	Smoll Sinkhaler	ocarie	Additional Comments
Erosion	YES	My Downhillon steep slapes				20%	Erosion Chanele		
Frost Action	No								
Sloughing and Cracking	80								
Animal Burrows	NO								
uc	A No								
Staining	KES	Access raid west of 14498-02				×>	Ox. staining	Ox. staining in erasion channel (notion longin)	3(0)
Vegetation Stress	ON								
Seepage Points	SN								
Debris Exposed	534	Un benu (seedawing)				117	CII Small metal		
Presence/Condition – Monitoring Instruments	SƏX								
Features of Note.	185	Above bern (seednauing				<1,1/2	, Timuts		

Preliminary Stability Assessment Landfill: FOX- Y HEUPAD WEST LAND FICE

Feature	Severity Rating	Extent
Settlement	ACCEPTABLE	OCCASIONAL
Erosion	ACCEPTABLE	OCCASIONAL
Frost Action	NONE	NONE
Staining	ACCEPTABLE	OCCASIONAL
Vegetation Stress	NONE	NONE
Seepage/Ponded Water	NONE	NONE
Debris exposure	ACCEPTABLE	OCCASIONAL
Overall Landfill Performance	ACCEPTABLE	

Performance/ Severity Rating	Description	
Acceptable	Noted features are of little consequence. The landfill is performing as designed. Minor deviations in environmental or physical performance may be observed, such as isolated areas of erosion, settlement.	
Marginal	Physical/environmental performance appears to be deteriorating with time. Observations may include an increase in size or number of features of note, such as differential settlement, erosion or cracking. No significant impact on landfill stability to date, but potential for failure is assessed as low or moderate.	
Significant	Significant or potentially significant changes affecting landfill stability, such as significant changes in slope geometry, significant erosion or differential settlement; scarp development. The potential for failure is assessed as imminent.	
Unacceptable	Stability of landfill is compromised to the extent that ability to contain waste materials is compromised. Examples may include: - Debris exposed in erosion channels or areas of differential settlement Liner exposed Slope failure.	

Extent	Description
Isolated	Singular feature
Occasional	Features of note occurring at irregular intervals/locations
Numerous	Many features of note, impacted less than 50% of the surface area of the landfill
Extensive	Impacting greater than 50% of the surface area of the landfill

DEW LINE CLEANUP: POST-CONSTRUCTION - LANDFILL MONITORING

INSPECTION REPORT – PAGE 1 OF 2 VISUAL INSPECTION CHECKLIST

SITE NAME: $FOX-Y$
LANDFILL DESIGNATION: STATION AREA LANDFILL
DATE OF INSPECTION: 26 AUGUST 2014
DATE OF PREVIOUS INSPECTION: N/A (Land HIL repaired 12 2013)
INSPECTED BY: JOSON Mauchan / Stephen Borcook
REPORT PREPARED BY: Stephen Borcook
The inspector/reporter represents to the best of the their knowledge, the following statements and observations are true and correct and to the best of the preparer's actual knowledge, no material facts have been suppressed or misstated.

7

Additional Comments Wedl cusings filled With bertwite clay
--

VISUAL INSPECTION CHECKLIST - INSPECTION REPORT - PACE 2 OF 2

Preliminary Stability Assessment Landfill: FOX-Y STATION AREA LANDFILL

Feature	Severity Rating	Extent
Settlement	ACCEPTABLE	OCCASIONAL
Erosion	ACCEPTABLE	OCCASIONAL
Frost Action	NONE	NONE
Staining	ACCEPTABLE	OCCASIONAL
Vegetation Stress	NONE	NONE
Seepage/Ponded Water	ACCEPTABLE	OCCASIONAL
Debris exposure	ACCEPTABLE	OCCASIONAL
Overall Landfill Performance	ACCEPTABLE	

Performance/ Severity Rating	Description	
Acceptable	Noted features are of little consequence. The landfill is performing as designed. Minor deviations in environmental or physical performance may be observed, such as isolated areas of erosion, settlement.	
Marginal	Physical/environmental performance appears to be deteriorating with time. Observations may include an increase in size or number of features of note, such as differential settlement, erosion or cracking. No significant impact on landfill stability to date, but potential for failure is assessed as low or moderate.	
Significant	Significant or potentially significant changes affecting landfill stability, such as significant changes in slope geometry, significant erosion or differential settlement; scarp development. The potential for failure is assessed as imminent.	
Unacceptable	Stability of landfill is compromised to the extent that ability to contain waste materials is compromised. Examples may include: - Debris exposed in erosion channels or areas of differential settlement. - Liner exposed. - Slope failure.	

Extent	Description
Isolated	Singular feature
Occasional	Features of note occurring at irregular intervals/locations
Numerous	Many features of note, impacted less than 50% of the surface area of the landfill
Extensive	Impacting greater than 50% of the surface area of the landfill

DEW LINE CLEANUP: POST-CONSTRUCTION - LANDFILL MONITORING

VISUAL INSPECTION CHECKLIST INSPECTION REPORT – PAGE 1 OF 2

correct and to the best of the preparer's actual knowledge, no material facts have been suppressed or misstated.
REPORT PREPARED BY: Stephen Borcsok
INSPECTED BY: Sason Mauchan / Stephen Borcsol
DATE OF PREVIOUS INSPECTION: NIA (Landfill repaired in 2013)
DATE OF INSPECTION: 25 August 2014
LANDFILL DESIGNATION: PALLET LINE LANDFILL
SITE NAME: $FOX-Y$

VISUAL INSPECTION CHECKLIST - INSPECTION REPORT - PAGE 2 OF 2

realures of Note,	uments	Presence/Condition	Seepage Points	Vegetation Stress	Staining	Vegetation	Animal Burrows	Sloughing and Cracking	Frost Action	Erosion	Settlement	Checklist Item
YES	No	No	NO	97	Νο	No	No	Ŋδ	NO	Nö	NB	Present Yes/No
of landfil												Location (Describe relative to existing monuments/features and relative to landfill design i.e. surface, berms, toe)
												Length
												Width
												Depth
7.(7												Extent relative to Area of Landfill (%)
Pondey												Description
												Photographic Records Focal length, location, view point & direction (relative to magnetic north) Feature of note Scale
												Additional Comments

SITE: FOX-4

LANDFILL: PALLET LINE

Preliminary Stability Assessment Landfill: FOX-4 PALLET LINE

Feature	Severity Rating	Extent
Settlement	NONE	NONE
Erosion	NONE	NONE
Frost Action	NONE	NONE
Staining	NONE	NONE
Vegetation Stress	NONE	NONE
Seepage/Ponded Water	ACCEPTABLE	ISOLATED
Debris exposure	NONE	NONE
Overall Landfill Performance	ACCEPTABLE	

Performance/ Severity Rating	Description
Acceptable	Noted features are of little consequence. The landfill is performing as designed. Minor deviations in environmental or physical performance may be observed, such as isolated areas of erosion, settlement.
Marginal	Physical/environmental performance appears to be deteriorating with time. Observations may include an increase in size or number of features of note, such as differential settlement, erosion or cracking. No significant impact on landfill stability to date, but potential for failure is assessed as low or moderate.
Significant	Significant or potentially significant changes affecting landfill stability, such as significant changes in slope geometry, significant erosion or differential settlement; scarp development. The potential for failure is assessed as imminent.
Unacceptable	Stability of landfill is compromised to the extent that ability to contain waste materials is compromised. Examples may include: - Debris exposed in erosion channels or areas of differential settlement. - Liner exposed. - Slope failure.

Extent	Description
Isolated	Singular feature
Occasional	Features of note occurring at irregular intervals/locations
Numerous	Many features of note, impacted less than 50% of the surface area of the landfill
Extensive	Impacting greater than 50% of the surface area of the landfill

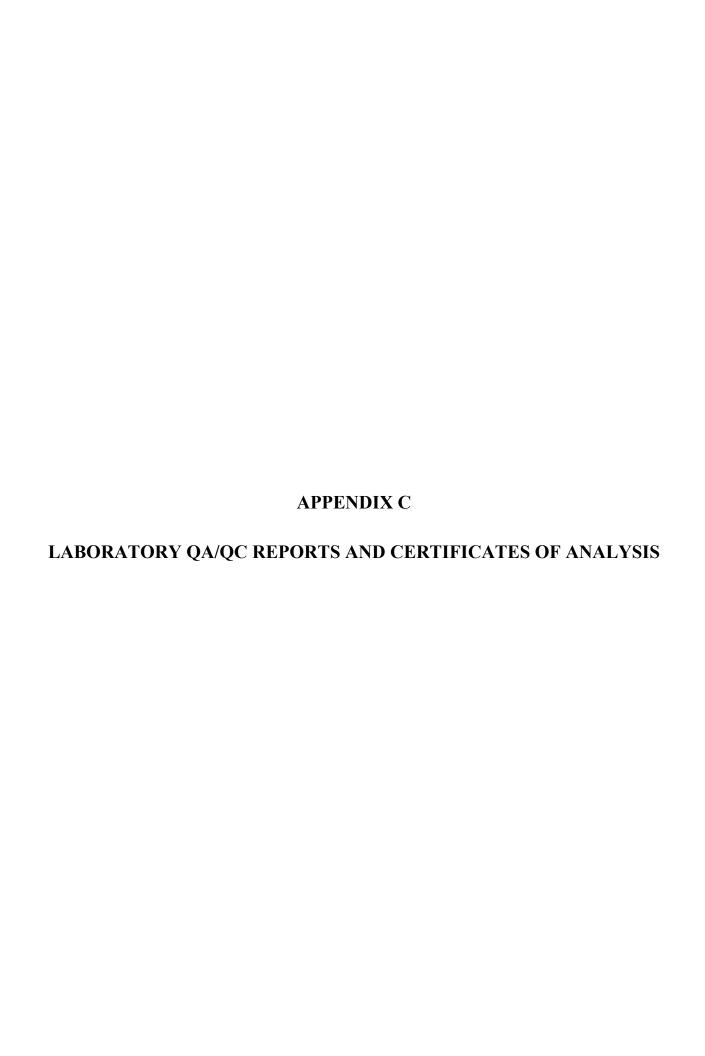
τ

DEW LINE CLEANUP: POST-CONSTRUCTION - LANDFILL MONITORING

VISUAL INSPECTION CHECKLIST INSPECTION REPORT – PAGE 1 OF 2

CYPPE NIANATE.
SILE NAME: POX-4
LANDFILL DESIGNATION: TANNER BAY LAND FILL
DATE OF INSPECTION: 24 August 2014
DATE OF PREVIOUS INSPECTION: N/A
INSPECTED BY: 5. Mauchan
REPORT PREPARED BY: S. Borcsok
The inspector/reporter represents to the best of the their knowledge, the following statements and observations are true and correct and to the best of the preparer's actual knowledge, no material facts have been suppressed or misstated.

Charlist Itom		1000年の日本の日本の日本の日本の日本の日本の日本の日本の日本の日本の日本の日本の日本の					**************************************		•	
	Yes/No	Yes/No (Describe relative to	Length	Length Width Depth	Depth	Extent relative to	Description	Photographic	Additional	_
		existing	,			Area extent		Focal length,	Comments/ Preliminary	
		and relative to	~* }			ot Landfill		Location, view	Stability	
		landfill/area design i.e.				7, ed (%)		point & direction Feature of note	Assessment	
Settlement	>	Sead car (VIS)	1.	6.	10 Cm	A 808 A		Scale	W	<u> </u>
Erosion	7	N. F. S. S. S. S. S. S. S. S. S. S. S. S. S.		7	7 6			3 000 100		-
Lateral Movement	. 2	144 (7)	3)U 57	<u>ب</u>	31 6 4	100 C 100 D	Creating	,	-
Sloughing of	,									ı
slopes	フ							-		
Cracks	2									
Frost Action	2									1.
Animal Burrows	Z									
Vegetation re- establishment	2									
Vegetation Stress	2									- 1
Staining	7									-
Seepage Points, or ponded water	~	tions once paralect	Š	500	10:0	V	No panita	P19		
Debris or liner Exposure	·					يئ	hincans	 	Minos debris	
Presence/ Condition of Monitoring Instruments	2					5				
Other Features of Note.		Oncop Nect P-8	S	ar.	0.03	A.	Free buts	Free wats GPS 145 PS		
										-


Rete in the Rein

Preliminary Stability Assessment Landfill: FOX-4 Tanner Bay Landfill

Feature	Severity Rating	Extent
Settlement	ACCEPTABLE	ISOLATED
Erosion	ACCEPTABLE	ISOLATED
Frost Action	NONE	NONE
Staining	NONE	NONE
Vegetation Stress	NONE	NanE
Seepage/Ponded Water	NONE	NONE
Debris exposure	NONE	NONE
Overall Landfill Performance	ACCEPTABLE	

Performance/ Severity Rating	Description
Acceptable	Noted features are of little consequence. The landfill is performing as designed. Minor deviations in environmental or physical performance may be observed, such as isolated areas of erosion, settlement.
Marginal	Physical/environmental performance appears to be deteriorating with time. Observations may include an increase in size or number of features of note, such as differential settlement, erosion or cracking. No significant impact on landfill stability to date, but potential for failure is assessed as low or moderate.
Significant	Significant or potentially significant changes affecting landfill stability, such as significant changes in slope geometry, significant erosion or differential settlement; scarp development. The potential for failure is assessed as imminent.
Unacceptable	Stability of landfill is compromised to the extent that ability to contain waste materials is compromised. Examples may include: - Debris exposed in erosion channels or areas of differential settlement. - Liner exposed. - Slope failure.

Extent	Description
Isolated	Singular feature
Occasional	Features of note occurring at irregular intervals/locations
Numerous	Many features of note, impacted less than 50% of the surface area of the landfill
Extensive	Impacting greater than 50% of the surface area of the landfill

Your Project #: 350600-515

Site Location: FOX-4 CAPE HOOPER

Your C.O.C. #: na

Attention:Stephen Borcsok

Decommissioning Consulting Services Limited 121 Granton Dr Unit 11 Richmond Hill, ON L4B 3N4

Report Date: 2014/09/11

Report #: R3153325

Version: 1

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B4G0864 Received: 2014/09/03, 13:15

Sample Matrix: Soil # Samples Received: 46

" Sumples Received. To		D-1-	D-1-		
Analyses	Quantity	Date Extracted	Date Analyzed	Laboratory Method	Reference
Petroleum Hydro. CCME F1 & BTEX in Soil	1			OTT SOP-00002	CCME CWS
Petroleum Hydro. CCME F1 & BTEX in Soil	19	2014/09/04	2014/09/05	OTT SOP-00002	CCME CWS
Petroleum Hydro. CCME F1 & BTEX in Soil	8	2014/09/05	2014/09/05	OTT SOP-00002	CCME CWS
Petroleum Hydro. CCME F1 & BTEX in Soil	12	2014/09/05	2014/09/06	OTT SOP-00002	CCME CWS
Petroleum Hydro. CCME F1 & BTEX in Soil	5	2014/09/05	2014/09/08	OTT SOP-00002	CCME CWS
Petroleum Hydro. CCME F1 & BTEX in Soil (1)	1	2014/09/04	2014/09/09	CAM SOP-00315	CCME PHC-CWS m
Petroleum Hydrocarbons F2-F4 in Soil (1)	1	2014/09/06	2014/09/07	CAM SOP-00316	CCME CWS
Petroleum Hydrocarbons F2-F4 in Soil	23	2014/09/03	2014/09/05	OTT SOP-00001	CCME CWS
Petroleum Hydrocarbons F2-F4 in Soil	21	2014/09/03	2014/09/06	OTT SOP-00001	CCME CWS
Petroleum Hydrocarbons F2-F4 in Soil	1	2014/09/03	2014/09/09	OTT SOP-00001	CCME CWS
Strong Acid Leachable Metals by ICPMS (1)	40	2014/09/08	2014/09/09	CAM SOP-00447	EPA 6020 m
Strong Acid Leachable Metals by ICPMS (1)	6	2014/09/08	2014/09/10	CAM SOP-00447	EPA 6020 m
MOISTURE	30	N/A	2014/09/05	CAM SOP-00445	McKeague 2nd ed 1978
MOISTURE	15	N/A	2014/09/08	CAM SOP-00445	McKeague 2nd ed 1978
Moisture (1)	1	N/A	2014/09/04	CAM SOP-00445	R.Carter,1993
Polychlorinated Biphenyl in Soil (1)	2	2014/09/04	2014/09/04	CAM SOP-00309	EPA 8082 m
Polychlorinated Biphenyl in Soil (1)	16	2014/09/04	2014/09/05	CAM SOP-00309	EPA 8082 m
Polychlorinated Biphenyl in Soil (1)	2	2014/09/04	2014/09/06	CAM SOP-00309	EPA 8082 m
Polychlorinated Biphenyl in Soil (1)	8	2014/09/05	2014/09/05	CAM SOP-00309	EPA 8082 m
Polychlorinated Biphenyl in Soil (1)	12	2014/09/05	2014/09/06	CAM SOP-00309	EPA 8082 m
Polychlorinated Biphenyl in Soil (1)	6	2014/09/06	2014/09/07	CAM SOP-00309	EPA 8082 m

Sample Matrix: Water # Samples Received: 10

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Reference
Petroleum Hydro. CCME F1 & BTEX in Water	10	N/A	2014/09/04	OTT SOP-00002	CCME CWS
Petroleum Hydrocarbons F2-F4 in Water	10	2014/09/04	2014/09/04	OTT SOP-00001	CCME Hydrocarbons
Mercury in Water by CVAA (1)	6	2014/09/09	2014/09/10	CAM SOP-00453	EPA 7470A m
Mercury (low level) (1)	4	2014/09/08	2014/09/09	CAM SOP-00453	EPA 7470 m

Your Project #: 350600-515

Site Location: FOX-4 CAPE HOOPER

Your C.O.C. #: na

Attention:Stephen Borcsok

Decommissioning Consulting Services Limited 121 Granton Dr Unit 11 Richmond Hill, ON L4B 3N4

Report Date: 2014/09/11

Report #: R3153325

Version: 1

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B4G0864 Received: 2014/09/03, 13:15

Sample Matrix: Water # Samples Received: 10

	D	ate	Date		
Analyses	Quantity E	xtracted	Analyzed	Laboratory Method	Reference
Polychlorinated Biphenyl in Water (1)	10 2	014/09/05	2014/09/06	5 CAM SOP-00309	EPA 8082 m

^{*} RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) This test was performed by Maxxam Analytics Mississauga

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager. Keshani Vijh, Project Manager Email: KVijh@maxxam.ca Phone# (613) 274-0573

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Decommissioning Consulting Services Limited

Client Project #: 350600-515

Site Location: FOX-4 CAPE HOOPER

Sampler Initials: SB

RESULTS OF ANALYSES OF SOIL

			MESSETS SI	,,	0. 50.2				
Maxxam ID		XK1904	XK1905	XK1906	XK1907	XK1908	XK1909		
Sampling Date		2014/08/24	2014/08/24	2014/08/24	2014/08/24	2014/08/24	2014/08/24		
COC Number		na	na	na	na	na	na		
	Units	F4-TAN-11-S	F4-TAN-11-D	F4-TAN-12-S	F4-TAN-12-D	F4-TAN-13-S	F4-TAN-13-D	RDL	QC Batch
Inorganics									
Moisture	%	12	15	6.6	2.7	19	14	0.2	3734883
RDL = Reportable Detection L QC Batch = Quality Control B									
Maxxam ID		XK1910)	XK1911	XK1912	!	XK1913		
Sampling Date		2014/08/	25 20	14/08/25	2014/08/	25 20	014/08/25		

Maxxam ID		XK1910	XK1911	XK1912	XK1913		
Sampling Date		2014/08/25	2014/08/25	2014/08/25	2014/08/25		
COC Number		na	na	na	na		
	Units	F4-HEL-MW98-01-S	F4-HEL-MW98-01-D	F4-HEL-MW98-02-S	F4-HEL-MW98-02-D	RDL	QC Batch
Inorganics							
Inorganics Moisture	%	8.8	8.0	7.3	8.3	0.2	3734883
	-	8.8	8.0	7.3	8.3	0.2	3734883

Maxxam ID		XK1914	XK1915	XK1958	XK1959		
Sampling Date		2014/08/25	2014/08/25	2014/08/25	2014/08/25		
COC Number		na	na				
	Units	F4-HEL-MW98-03-S	F4-HEL-MW98-03-D	F4-HEL-MW98-06-S	F4-HEL-MW98-06-D	RDL	QC Batch
Inorganics							
Inorganics Moisture	%	3.0	7.7	5.5	6.7	0.2	3734885
		3.0	7.7	5.5	6.7	0.2	3734885

Maxxam ID		XK1960			XK1961			XK1962		
Sampling Date		2014/08/25			2014/08/25			2014/08/25		
COC Number										
	Units	F4-STA-MW98-07-S	RDL	QC Batch	F4-STA-MW98-07-D	RDL	QC Batch	F4-STA-MW98-08-S	RDL	QC Batch
Inorganics										
								_		2724005
Moisture	%	8.5	0.2	3734885	8.6	1.0	3736784	6.5	0.2	3734885
Moisture RDL = Reportable Detection I		8.5	0.2	3734885	8.6	1.0	3736784	6.5	0.2	3/34885

QC Batch = Quality Control Batch

Maxxam ID		XK1963	XK1964	XK1965	XK1966		
Sampling Date		2014/08/25	014/08/25 2014/08/25 2014/08/25		2014/08/24		
COC Number							
	Units	F4-STA-MW98-08-D	F4-STA-MW98-09-S	F4-STA-MW98-09-D	F4-NH-MW11-01-S	RDL	QC Batch
Inorganics							
Moisture	%	14	5.3	8.4	8.0	0.2	3734885
RDL = Reportable Detectio	n I imit						
TIDE TREPORTABLE Detection							

Decommissioning Consulting Services Limited

Client Project #: 350600-515

Site Location: FOX-4 CAPE HOOPER

Sampler Initials: SB

RESULTS OF ANALYSES OF SOIL

Maxxam ID		XK1967	XK1968	XK1969	XK1984		
Sampling Date		2014/08/24	2014/08/24	2014/08/24	2014/08/24		
COC Number							
	Units	F4-NH-MW11-01-D	F4-NH-MW11-02-S	F4-NH-MW11-02-D	F4-NH-MW11-03-S	RDL	QC Batch
Inorganics							
Moisture	%	5.1	13	18	12	0.2	3734885
RDL = Reportable Detection L QC Batch = Quality Control Ba							

Maxxam ID		XK1985	XK1986	XK1987	XK1988		
Sampling Date		2014/08/24	2014/08/24	2014/08/24	2014/08/24		
COC Number							
	Units	F4-NH-MW11-03-D	F4-NH-MW11-04-S	F4-NH-MW11-04-D	F4-NH-MW11-05-S	RDL	QC Batch
lu aurauita							
Inorganics							
Moisture	%	12	16	17	15	0.2	3734885
		12	16	17	15	0.2	3734885

Maxxam ID		XK1989	XK1990		XK1991	XK1992		
Sampling Date		2014/08/24	2014/08/24		2014/08/24	2014/08/24		
COC Number								
	Units	F4-NH-MW11-05-D	F4-NH-MW11-06-S	QC Batch	F4-NH-MW11-06-D	F4-NH-MW12-07-S	RDL	QC Batch
Inorganics								
Moisture	%	15	8.3	3734885	24	23	0.2	3734887
Moisture RDL = Reportable Detection		15	8.3	3734885	24	23	0.2	3734887

Maxxam ID		XK1993	XK1994	XK1995	XK2004	XK2005		
Sampling Date		2014/08/24	2014/08/24	2014/08/24	2014/08/25			
COC Number								
	Units	F4-NH-MW12-07-D	F4-NH-MW12-08-S	F4-NH-MW12-08-D	F4-PAL-25-S	F4-PAL-25-D	RDL	QC Batch
Inorganics								
Moisture	%	14	6.6	6.0	1.5	2.4	0.2	3734887
RDL = Reportable Detection	Limit							
QC Batch = Quality Control B	-4-6							

Maxxam ID		XK2006	XK2007	XK2008	XK2009	XK2010	XK2011	XK2012		
Sampling Date										
COC Number										
	Units	F4-PAL-26-S	F4-PAL-26-D	F4-PAL-27-S	F4-PAL-27-D	F4-PAL-28-S	F4-PAL-28-D	F4-PAL-29-S	RDL	QC Batch
Inorganics										
Moisture	%	15	11	13	21	8.7	13	8.6	0.2	3734887

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Decommissioning Consulting Services Limited

Client Project #: 350600-515

Site Location: FOX-4 CAPE HOOPER

Sampler Initials: SB

RESULTS OF ANALYSES OF SOIL

Maxxam ID		XK2013		
Sampling Date				
COC Number				
	Units	F4-PAL-29-D	RDL	QC Batch
Inorganics				
Inorganics Moisture	%	16	0.2	3734887
		16	0.2	3734887

Decommissioning Consulting Services Limited

Client Project #: 350600-515

Site Location: FOX-4 CAPE HOOPER

Sampler Initials: SB

ELEMENTS BY ATOMIC SPECTROSCOPY (SOIL)

Maxxam ID			XK1904	XK1905		XK1906		XK1907		
Sampling Date			2014/08/24	2014/08/24		2014/08/24		2014/08/24		
COC Number			na	na		na		na		
	Units	Criteria	F4-TAN-11-S	F4-TAN-11-D	QC Batch	F4-TAN-12-S	QC Batch	F4-TAN-12-D	RDL	QC Batch
Metals										
Acid Extractable Arsenic (As)	ug/g	12	5.6	1.1	3739567	1.6	3739716	1.9	1.0	3739567
Acid Extractable Cadmium (Cd)	ug/g	22	<0.10	<0.10	3739567	<0.10	3739716	<0.10	0.10	3739567
Acid Extractable Chromium (Cr)	ug/g	87	20	15	3739567	21	3739716	21	1.0	3739567
Acid Extractable Cobalt (Co)	ug/g	-	2.8	1.7	3739567	3.6	3739716	3.3	0.10	3739567
Acid Extractable Copper (Cu)	ug/g	91	11	6.6	3739567	15	3739716	13	0.50	3739567
Acid Extractable Lead (Pb)	ug/g	600	4.1	3.2	3739567	4.1	3739716	3.9	1.0	3739567
Acid Extractable Nickel (Ni)	ug/g	50	7.6	5.2	3739567	11	3739716	10	0.50	3739567
Acid Extractable Zinc (Zn)	ug/g	360	15	11	3739567	23	3739716	19	5.0	3739567
Acid Extractable Mercury (Hg)	ug/g	50	<0.050	<0.050	3739567	<0.050	3739716	<0.050	0.050	3739567

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Criteria: CCME Industrial

Canadian Environmental Quality Guidelines for Soil 1998-1999

Maxxam ID			XK1908		XK1909		XK1910		
Sampling Date			2014/08/24		2014/08/24		2014/08/25		
COC Number			na		na		na		
	Units	Criteria	F4-TAN-13-S	QC Batch	F4-TAN-13-D	QC Batch	F4-HEL-MW98-01-S	RDL	QC Batch
Metals									
Acid Extractable Arsenic (As)	ug/g	12	2.1	3739269	1.9	3739567	25	1.0	3739269
Acid Extractable Cadmium (Cd)	ug/g	22	<0.10	3739269	<0.10	3739567	<0.10	0.10	3739269
Acid Extractable Chromium (Cr)	ug/g	87	18	3739269	17	3739567	49	1.0	3739269
Acid Extractable Cobalt (Co)	ug/g	-	2.3	3739269	2.3	3739567	9.7	0.10	3739269
Acid Extractable Copper (Cu)	ug/g	91	9.9	3739269	8.0	3739567	34	0.50	3739269
Acid Extractable Lead (Pb)	ug/g	600	3.8	3739269	2.7	3739567	6.1	1.0	3739269
Acid Extractable Nickel (Ni)	ug/g	50	8.0	3739269	7.2	3739567	31	0.50	3739269
Acid Extractable Zinc (Zn)	ug/g	360	17	3739269	16	3739567	47	5.0	3739269
Acid Extractable Mercury (Hg)	ug/g	50	<0.050	3739269	<0.050	3739567	<0.050	0.050	3739269

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Criteria: CCME Industrial

Decommissioning Consulting Services Limited

Client Project #: 350600-515

Site Location: FOX-4 CAPE HOOPER

Sampler Initials: SB

ELEMENTS BY ATOMIC SPECTROSCOPY (SOIL)

Maxxam ID			XK1911		XK1912		XK1913		
Sampling Date			2014/08/25		2014/08/25		2014/08/25		
COC Number			na		na		na		
	Units	Criteria	F4-HEL-MW98-01-D	QC Batch	F4-HEL-MW98-02-S	QC Batch	F4-HEL-MW98-02-D	RDL	QC Batch
Metals									
Acid Extractable Arsenic (As)	ug/g	12	23	3739567	130	3739269	42	1.0	3739716
Acid Extractable Cadmium (Cd)	ug/g	22	<0.10	3739567	<0.10	3739269	<0.10	0.10	3739716
Acid Extractable Chromium (Cr)	ug/g	87	47	3739567	40	3739269	54	1.0	3739716
Acid Extractable Cobalt (Co)	ug/g	-	9.3	3739567	6.5	3739269	9.9	0.10	3739716
Acid Extractable Copper (Cu)	ug/g	91	32	3739567	19	3739269	34	0.50	3739716
Acid Extractable Lead (Pb)	ug/g	600	5.8	3739567	5.6	3739269	10	1.0	3739716
Acid Extractable Nickel (Ni)	ug/g	50	31	3739567	19	3739269	35	0.50	3739716
Acid Extractable Zinc (Zn)	ug/g	360	45	3739567	38	3739269	55	5.0	3739716
Acid Extractable Mercury (Hg)	ug/g	50	<0.050	3739567	<0.050	3739269	<0.050	0.050	3739716

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Criteria: CCME Industrial

Canadian Environmental Quality Guidelines for Soil 1998-1999

Maxxam ID			XK1914	XK1915		XK1958		
Sampling Date			2014/08/25	2014/08/25		2014/08/25		
COC Number			na	na				
	Units	Criteria	F4-HEL-MW98-03-S	F4-HEL-MW98-03-D	QC Batch	F4-HEL-MW98-06-S	RDL	QC Batch
Metals								
Acid Extractable Arsenic (As)	ug/g	12	31	30	3739567	40	1.0	3739269
Acid Extractable Cadmium (Cd)	ug/g	22	<0.10	<0.10	3739567	0.14	0.10	3739269
Acid Extractable Chromium (Cr)	ug/g	87	32	32	3739567	51	1.0	3739269
Acid Extractable Cobalt (Co)	ug/g	-	4.4	4.7	3739567	6.7	0.10	3739269
Acid Extractable Copper (Cu)	ug/g	91	14	19	3739567	20	0.50	3739269
Acid Extractable Lead (Pb)	ug/g	600	4.2	5.5	3739567	7.1	1.0	3739269
Acid Extractable Nickel (Ni)	ug/g	50	13	16	3739567	20	0.50	3739269
Acid Extractable Zinc (Zn)	ug/g	360	32	31	3739567	77	5.0	3739269
Acid Extractable Mercury (Hg)	ug/g	50	<0.050	<0.050	3739567	<0.050	0.050	3739269

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Criteria: CCME Industrial

Decommissioning Consulting Services Limited

Client Project #: 350600-515

Site Location: FOX-4 CAPE HOOPER

Sampler Initials: SB

ELEMENTS BY ATOMIC SPECTROSCOPY (SOIL)

Maxxam ID			XK1959		XK1960		XK1961		
Sampling Date			2014/08/25		2014/08/25		2014/08/25		
COC Number									
	Units	Criteria	F4-HEL-MW98-06-D	QC Batch	F4-STA-MW98-07-S	QC Batch	F4-STA-MW98-07-D	RDL	QC Batch
Metals									
Acid Extractable Arsenic (As)	ug/g	12	66	3739269	33	3739716	48	1.0	3739269
Acid Extractable Cadmium (Cd)	ug/g	22	0.11	3739269	0.11	3739716	<0.10	0.10	3739269
Acid Extractable Chromium (Cr)	ug/g	87	40	3739269	61	3739716	67	1.0	3739269
Acid Extractable Cobalt (Co)	ug/g	-	6.2	3739269	7.8	3739716	11	0.10	3739269
Acid Extractable Copper (Cu)	ug/g	91	41	3739269	50	3739716	63	0.50	3739269
Acid Extractable Lead (Pb)	ug/g	600	6.1	3739269	23	3739716	5.7	1.0	3739269
Acid Extractable Nickel (Ni)	ug/g	50	21	3739269	30	3739716	47	0.50	3739269
Acid Extractable Zinc (Zn)	ug/g	360	52	3739269	57	3739716	56	5.0	3739269
Acid Extractable Mercury (Hg)	ug/g	50	<0.050	3739269	<0.050	3739716	<0.050	0.050	3739269

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Criteria: CCME Industrial

Canadian Environmental Quality Guidelines for Soil 1998-1999

Maxxam ID			XK1962		XK1963		XK1964		
Sampling Date			2014/08/25		2014/08/25		2014/08/25		
COC Number									
	Units	Criteria	F4-STA-MW98-08-S	QC Batch	F4-STA-MW98-08-D	QC Batch	F4-STA-MW98-09-S	RDL	QC Batch
Metals									
Acid Extractable Arsenic (As)	ug/g	12	21	3739716	20	3739567	14	1.0	3739269
Acid Extractable Cadmium (Cd)	ug/g	22	<0.10	3739716	<0.10	3739567	<0.10	0.10	3739269
Acid Extractable Chromium (Cr)	ug/g	87	28	3739716	32	3739567	25	1.0	3739269
Acid Extractable Cobalt (Co)	ug/g	-	4.0	3739716	4.0	3739567	3.7	0.10	3739269
Acid Extractable Copper (Cu)	ug/g	91	16	3739716	12	3739567	16	0.50	3739269
Acid Extractable Lead (Pb)	ug/g	600	5.4	3739716	3.7	3739567	7.5	1.0	3739269
Acid Extractable Nickel (Ni)	ug/g	50	14	3739716	14	3739567	12	0.50	3739269
Acid Extractable Zinc (Zn)	ug/g	360	30	3739716	32	3739567	35	5.0	3739269
Acid Extractable Mercury (Hg)	ug/g	50	<0.050	3739716	<0.050	3739567	<0.050	0.050	3739269

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Criteria: CCME Industrial

Decommissioning Consulting Services Limited

Client Project #: 350600-515

Site Location: FOX-4 CAPE HOOPER

Sampler Initials: SB

ELEMENTS BY ATOMIC SPECTROSCOPY (SOIL)

Maxxam ID			XK1965	XK1966		XK1967		
Sampling Date			2014/08/25	2014/08/24		2014/08/24		
COC Number								
	Units	Criteria	F4-STA-MW98-09-D	F4-NH-MW11-01-S	QC Batch	F4-NH-MW11-01-D	RDL	QC Batch
Metals								
Acid Extractable Arsenic (As)	ug/g	12	66	48	3739269	170	1.0	3739716
Acid Extractable Cadmium (Cd)	ug/g	22	<0.10	<0.10	3739269	<0.10	0.10	3739716
Acid Extractable Chromium (Cr)	ug/g	87	26	73	3739269	83	1.0	3739716
Acid Extractable Cobalt (Co)	ug/g	-	3.9	11	3739269	17	0.10	3739716
Acid Extractable Copper (Cu)	ug/g	91	16	52	3739269	98	0.50	3739716
Acid Extractable Lead (Pb)	ug/g	600	5.7	9.9	3739269	13	1.0	3739716
Acid Extractable Nickel (Ni)	ug/g	50	13	40	3739269	73	0.50	3739716
Acid Extractable Zinc (Zn)	ug/g	360	28	86	3739269	110	5.0	3739716
Acid Extractable Mercury (Hg)	ug/g	50	<0.050	<0.050	3739269	<0.050	0.050	3739716

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Criteria: CCME Industrial

Canadian Environmental Quality Guidelines for Soil 1998-1999

			\##40.60		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\				
Maxxam ID			XK1968		XK1969		XK1984		
Sampling Date			2014/08/24		2014/08/24		2014/08/24		
COC Number									
	Units	Criteria	F4-NH-MW11-02-S	QC Batch	F4-NH-MW11-02-D	QC Batch	F4-NH-MW11-03-S	RDL	QC Batch
Metals									
Acid Extractable Arsenic (As)	ug/g	12	31	3739716	34	3739567	12	1.0	3739269
Acid Extractable Cadmium (Cd)	ug/g	22	<0.10	3739716	<0.10	3739567	2.3	0.10	3739269
Acid Extractable Chromium (Cr)	ug/g	87	80	3739716	82	3739567	39	1.0	3739269
Acid Extractable Cobalt (Co)	ug/g	-	14	3739716	14	3739567	4.8	0.10	3739269
Acid Extractable Copper (Cu)	ug/g	91	49	3739716	52	3739567	22	0.50	3739269
Acid Extractable Lead (Pb)	ug/g	600	11	3739716	12	3739567	10	1.0	3739269
Acid Extractable Nickel (Ni)	ug/g	50	41	3739716	42	3739567	14	0.50	3739269
Acid Extractable Zinc (Zn)	ug/g	360	70	3739716	74	3739567	50	5.0	3739269
Acid Extractable Mercury (Hg)	ug/g	50	<0.050	3739716	<0.050	3739567	<0.050	0.050	3739269

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Criteria: CCME Industrial

Decommissioning Consulting Services Limited

Client Project #: 350600-515

Site Location: FOX-4 CAPE HOOPER

Sampler Initials: SB

ELEMENTS BY ATOMIC SPECTROSCOPY (SOIL)

Maxxam ID			XK1985	XK1986		XK1987		
Sampling Date			2014/08/24	2014/08/24		2014/08/24		
COC Number								
	Units	Criteria	F4-NH-MW11-03-D	F4-NH-MW11-04-S	QC Batch	F4-NH-MW11-04-D	RDL	QC Batch
Metals								
Acid Extractable Arsenic (As)	ug/g	12	21	7.4	3739269	11	1.0	3739567
Acid Extractable Cadmium (Cd)	ug/g	22	0.90	<0.10	3739269	<0.10	0.10	3739567
Acid Extractable Chromium (Cr)	ug/g	87	36	21	3739269	31	1.0	3739567
Acid Extractable Cobalt (Co)	ug/g	-	4.3	2.1	3739269	3.7	0.10	3739567
Acid Extractable Copper (Cu)	ug/g	91	18	7.4	3739269	13	0.50	3739567
Acid Extractable Lead (Pb)	ug/g	600	8.8	2.5	3739269	3.1	1.0	3739567
Acid Extractable Nickel (Ni)	ug/g	50	12	7.1	3739269	14	0.50	3739567
Acid Extractable Zinc (Zn)	ug/g	360	37	16	3739269	27	5.0	3739567
Acid Extractable Mercury (Hg)	ug/g	50	<0.050	<0.050	3739269	<0.050	0.050	3739567

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Criteria: CCME Industrial

Canadian Environmental Quality Guidelines for Soil 1998-1999

Maxxam ID			XK1988	XK1989	XK1990		
Sampling Date			2014/08/24	2014/08/24	2014/08/24		
COC Number							
	Units	Criteria	F4-NH-MW11-05-S	F4-NH-MW11-05-D	F4-NH-MW11-06-S	RDL	QC Batch
Metals							
Acid Extractable Arsenic (As)	ug/g	12	10	12	22	1.0	3739269
Acid Extractable Cadmium (Cd)	ug/g	22	<0.10	<0.10	<0.10	0.10	3739269
Acid Extractable Chromium (Cr)	ug/g	87	24	28	24	1.0	3739269
Acid Extractable Cobalt (Co)	ug/g	-	2.7	3.4	3.5	0.10	3739269
Acid Extractable Copper (Cu)	ug/g	91	11	14	13	0.50	3739269
Acid Extractable Lead (Pb)	ug/g	600	2.5	3.1	3.9	1.0	3739269
Acid Extractable Nickel (Ni)	ug/g	50	9.0	11	11	0.50	3739269
Acid Extractable Zinc (Zn)	ug/g	360	18	22	21	5.0	3739269
Acid Extractable Mercury (Hg)	ug/g	50	<0.050	<0.050	<0.050	0.050	3739269

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Criteria: CCME Industrial

Decommissioning Consulting Services Limited

Client Project #: 350600-515

Site Location: FOX-4 CAPE HOOPER

Sampler Initials: SB

ELEMENTS BY ATOMIC SPECTROSCOPY (SOIL)

Maxxam ID			XK1991		XK1992	XK1993		
Sampling Date			2014/08/24		2014/08/24	2014/08/24		
COC Number								
	Units	Criteria	F4-NH-MW11-06-D	QC Batch	F4-NH-MW12-07-S	F4-NH-MW12-07-D	RDL	QC Batch
Metals								
Acid Extractable Arsenic (As)	ug/g	12	45	3739567	30	16	1.0	3739269
Acid Extractable Cadmium (Cd)	ug/g	22	<0.10	3739567	0.13	<0.10	0.10	3739269
Acid Extractable Chromium (Cr)	ug/g	87	29	3739567	41	24	1.0	3739269
Acid Extractable Cobalt (Co)	ug/g	-	3.8	3739567	9.9	5.1	0.10	3739269
Acid Extractable Copper (Cu)	ug/g	91	14	3739567	36	17	0.50	3739269
Acid Extractable Lead (Pb)	ug/g	600	5.4	3739567	13	4.5	1.0	3739269
Acid Extractable Nickel (Ni)	ug/g	50	14	3739567	36	20	0.50	3739269
Acid Extractable Zinc (Zn)	ug/g	360	26	3739567	74	31	5.0	3739269
Acid Extractable Mercury (Hg)	ug/g	50	<0.050	3739567	<0.050	<0.050	0.050	3739269

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Criteria: CCME Industrial

Canadian Environmental Quality Guidelines for Soil 1998-1999

Maxxam ID			XK1994	XK1995	XK2004	XK2005	XK2006		
Sampling Date			2014/08/24	2014/08/24	2014/08/25				
COC Number									
	Units	Criteria	F4-NH-MW12-08-S	F4-NH-MW12-08-D	F4-PAL-25-S	F4-PAL-25-D	F4-PAL-26-S	RDL	QC Batch
Metals									
Acid Extractable Arsenic (As)	ug/g	12	59	16	38	110	21	1.0	3739567
Acid Extractable Cadmium (Cd)	ug/g	22	<0.10	<0.10	<0.10	<0.10	<0.10	0.10	3739567
Acid Extractable Chromium (Cr)	ug/g	87	52	64	50	58	27	1.0	3739567
Acid Extractable Cobalt (Co)	ug/g	-	6.9	7.8	4.6	7.4	3.2	0.10	3739567
Acid Extractable Copper (Cu)	ug/g	91	24	30	23	33	18	0.50	3739567
Acid Extractable Lead (Pb)	ug/g	600	15	18	10	6.8	33	1.0	3739567
Acid Extractable Nickel (Ni)	ug/g	50	19	22	14	23	12	0.50	3739567
Acid Extractable Zinc (Zn)	ug/g	360	53	56	38	46	28	5.0	3739567
Acid Extractable Mercury (Hg)	ug/g	50	<0.050	<0.050	<0.050	<0.050	<0.050	0.050	3739567

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Criteria: CCME Industrial

Decommissioning Consulting Services Limited

Client Project #: 350600-515

Site Location: FOX-4 CAPE HOOPER

Sampler Initials: SB

ELEMENTS BY ATOMIC SPECTROSCOPY (SOIL)

Maxxam ID			XK2007	XK2008		XK2009	XK2010	XK2011		
Sampling Date										
COC Number										
	Units	Criteria	F4-PAL-26-D	F4-PAL-27-S	QC Batch	F4-PAL-27-D	F4-PAL-28-S	F4-PAL-28-D	RDL	QC Batch
Metals										
Acid Extractable Arsenic (As)	ug/g	12	140	14	3739269	11	7.0	14	1.0	3739567
Acid Extractable Cadmium (Cd)	ug/g	22	<0.10	<0.10	3739269	<0.10	<0.10	0.11	0.10	3739567
Acid Extractable Chromium (Cr)	ug/g	87	78	20	3739269	30	31	61	1.0	3739567
Acid Extractable Cobalt (Co)	ug/g	-	12	2.9	3739269	4.0	6.1	12	0.10	3739567
Acid Extractable Copper (Cu)	ug/g	91	61	12	3739269	19	18	43	0.50	3739567
Acid Extractable Lead (Pb)	ug/g	600	7.0	8.0	3739269	41	5.9	9.3	1.0	3739567
Acid Extractable Nickel (Ni)	ug/g	50	43	8.4	3739269	16	17	41	0.50	3739567
Acid Extractable Zinc (Zn)	ug/g	360	61	19	3739269	28	31	67	5.0	3739567
Acid Extractable Mercury (Hg)	ug/g	50	<0.050	<0.050	3739269	<0.050	<0.050	<0.050	0.050	3739567

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Criteria: CCME Industrial

Canadian Environmental Quality Guidelines for Soil 1998-1999

Maxxam ID			XK2012		XK2013		
Sampling Date							
COC Number							
	Units	Criteria	F4-PAL-29-S	QC Batch	F4-PAL-29-D	RDL	QC Batch
Metals							
Acid Extractable Arsenic (As)	ug/g	12	17	3739567	14	1.0	3739269
Acid Extractable Cadmium (Cd)	ug/g	22	<0.10	3739567	0.14	0.10	3739269
Acid Extractable Chromium (Cr)	ug/g	87	72	3739567	84	1.0	3739269
Acid Extractable Cobalt (Co)	ug/g	-	5.6	3739567	9.6	0.10	3739269
Acid Extractable Copper (Cu)	ug/g	91	46	3739567	20	0.50	3739269
Acid Extractable Lead (Pb)	ug/g	600	12	3739567	8.2	1.0	3739269
Acid Extractable Nickel (Ni)	ug/g	50	16	3739567	37	0.50	3739269
Acid Extractable Zinc (Zn)	ug/g	360	43	3739567	61	5.0	3739269
Acid Extractable Mercury (Hg)	ug/g	50	<0.050	3739567	<0.050	0.050	3739269

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Criteria: CCME Industrial

Decommissioning Consulting Services Limited

Client Project #: 350600-515

Site Location: FOX-4 CAPE HOOPER

Sampler Initials: SB

PETROLEUM HYDROCARBONS (CCME)

Maxxam ID			XK1904	XK1905	XK1906	XK1907	XK1908	XK1909		
			2014/08/24	2014/08/24	2014/08/24	2014/08/24	2014/08/24	2014/08/24		
Sampling Date					- , ,	- , ,	- , ,	, ,		
COC Number			na	na	na	na	na	na		
	Units	Criteria	F4-TAN-11-S	F4-TAN-11-D	F4-TAN-12-S	F4-TAN-12-D	F4-TAN-13-S	F4-TAN-13-D	RDL	QC Batch
BTEX & F1 Hydrocarbons										
Benzene	ug/g	5	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	0.005	3737250
Toluene	ug/g	0.8	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	0.02	3737250
Ethylbenzene	ug/g	20	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.01	3737250
o-Xylene	ug/g	-	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	0.02	3737250
p+m-Xylene	ug/g	-	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	0.04	3737250
Total Xylenes	ug/g	-	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	0.04	3737250
F1 (C6-C10)	ug/g	-	<10	<10	<10	<10	<10	<10	10	3737250
F1 (C6-C10) - BTEX	ug/g	-	<10	<10	<10	<10	<10	<10	10	3737250
F2-F4 Hydrocarbons										
F2 (C10-C16 Hydrocarbons)	ug/g	-	<10	<10	<10	<10	<10	<10	10	3734889
F3 (C16-C34 Hydrocarbons)	ug/g	-	<10	<10	<10	<10	<10	<10	10	3734889
F4 (C34-C50 Hydrocarbons)	ug/g	-	<10	<10	<10	<10	<10	<10	10	3734889
Reached Baseline at C50	ug/g	-	Yes	Yes	Yes	Yes	Yes	Yes		3734889
Surrogate Recovery (%)										
1,4-Difluorobenzene	%	-	130	128	125	122	124	122		3737250
4-Bromofluorobenzene	%	-	85	92	80	70	79	85		3737250
D10-Ethylbenzene	%	-	95	83	95	93	83	88		3737250
D4-1,2-Dichloroethane	%	-	125	119	122	120	121	124		3737250
o-Terphenyl	%	-	78	80	80	79	82	77		3734889

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Criteria: CCME Industrial

Decommissioning Consulting Services Limited

Client Project #: 350600-515

Site Location: FOX-4 CAPE HOOPER

Sampler Initials: SB

PETROLEUM HYDROCARBONS (CCME)

Maxxam ID			XK1910	XK1911	XK1912	XK1913		
Sampling Date			2014/08/25	2014/08/25	2014/08/25	2014/08/25		
COC Number			na	na	na	na		
	Units	Criteria	F4-HEL-MW98-01-S	F4-HEL-MW98-01-D	F4-HEL-MW98-02-S	F4-HEL-MW98-02-D	RDL	QC Batch
BTEX & F1 Hydrocarbons								
Benzene	ug/g	5	<0.005	<0.005	<0.005	<0.005	0.005	3737250
Toluene	ug/g	0.8	<0.02	<0.02	<0.02	<0.02	0.02	3737250
Ethylbenzene	ug/g	20	<0.01	<0.01	<0.01	<0.01	0.01	3737250
o-Xylene	ug/g	-	<0.02	<0.02	<0.02	<0.02	0.02	3737250
p+m-Xylene	ug/g	-	<0.04	<0.04	<0.04	<0.04	0.04	3737250
Total Xylenes	ug/g	-	<0.04	<0.04	<0.04	<0.04	0.04	3737250
F1 (C6-C10)	ug/g	-	<10	<10	<10	100	10	3737250
F1 (C6-C10) - BTEX	ug/g	-	<10	<10	<10	100	10	3737250
F2-F4 Hydrocarbons								
F2 (C10-C16 Hydrocarbons)	ug/g	-	<10	<10	26	1100	10	3734889
F3 (C16-C34 Hydrocarbons)	ug/g	-	<10	<10	35	250	10	3734889
F4 (C34-C50 Hydrocarbons)	ug/g	-	<10	<10	<10	<10	10	3734889
Reached Baseline at C50	ug/g	-	Yes	Yes	Yes	Yes		3734889
Surrogate Recovery (%)								
1,4-Difluorobenzene	%	-	126	115	123	122		3737250
4-Bromofluorobenzene	%	-	78	73	82	98		3737250
D10-Ethylbenzene	%	-	99	91	95	107		3737250
D4-1,2-Dichloroethane	%	-	127	121	121	122		3737250
o-Terphenyl	%	-	78	78	79	80		3734889

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Criteria: CCME Industrial

Decommissioning Consulting Services Limited

Client Project #: 350600-515

Site Location: FOX-4 CAPE HOOPER

Sampler Initials: SB

PETROLEUM HYDROCARBONS (CCME)

Maxxam ID			XK1914	XK1915	XK1958	XK1959		
Sampling Date			2014/08/25	2014/08/25	2014/08/25	2014/08/25		
COC Number			na	na				
	Units	Criteria	F4-HEL-MW98-03-S	F4-HEL-MW98-03-D	F4-HEL-MW98-06-S	F4-HEL-MW98-06-D	RDL	QC Batch
BTEX & F1 Hydrocarbons								
Benzene	ug/g	5	<0.005	<0.005	<0.005	<0.005	0.005	3736246
Toluene	ug/g	0.8	<0.02	<0.02	<0.02	<0.02	0.02	3736246
Ethylbenzene	ug/g	20	<0.01	<0.01	<0.01	<0.01	0.01	3736246
o-Xylene	ug/g	-	<0.02	<0.02	<0.02	<0.02	0.02	3736246
p+m-Xylene	ug/g	-	<0.04	<0.04	<0.04	<0.04	0.04	3736246
Total Xylenes	ug/g	-	<0.04	<0.04	<0.04	<0.04	0.04	3736246
F1 (C6-C10)	ug/g	-	<10	<10	<10	<10	10	3736246
F1 (C6-C10) - BTEX	ug/g	-	<10	<10	<10	<10	10	3736246
F2-F4 Hydrocarbons								
F2 (C10-C16 Hydrocarbons)	ug/g	-	<10	<10	<10	<10	10	3734925
F3 (C16-C34 Hydrocarbons)	ug/g	-	<10	<10	18	100	10	3734925
F4 (C34-C50 Hydrocarbons)	ug/g	-	<10	<10	<10	23	10	3734925
Reached Baseline at C50	ug/g	-	Yes	Yes	Yes	Yes		3734925
Surrogate Recovery (%)								
1,4-Difluorobenzene	%	-	123	98	128	115		3736246
4-Bromofluorobenzene	%	-	93	80	80	83		3736246
D10-Ethylbenzene	%	-	92	81	89	89		3736246
D4-1,2-Dichloroethane	%	-	125	90	124	117		3736246
o-Terphenyl	%	-	94	97	75	112		3734925

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Criteria: CCME Industrial

Decommissioning Consulting Services Limited

Client Project #: 350600-515

Site Location: FOX-4 CAPE HOOPER

Sampler Initials: SB

PETROLEUM HYDROCARBONS (CCME)

	_							
Maxxam ID			XK1960			XK1961		
Sampling Date			2014/08/25			2014/08/25		
COC Number								
	Units	Criteria	F4-STA-MW98-07-S	RDL	QC Batch	F4-STA-MW98-07-D	RDL	QC Batch
BTEX & F1 Hydrocarbons								
Benzene	ug/g	5	<0.005	0.005	3736246	<0.005	0.005	3739314
Toluene	ug/g	0.8	<0.02	0.02	3736246	<0.02	0.02	3739314
Ethylbenzene	ug/g	20	<0.01	0.01	3736246	<0.01	0.01	3739314
o-Xylene	ug/g	-	<0.02	0.02	3736246	<0.02	0.02	3739314
p+m-Xylene	ug/g	-	<0.04	0.04	3736246	<0.04	0.04	3739314
Total Xylenes	ug/g	-	<0.04	0.04	3736246	<0.04	0.04	3739314
F1 (C6-C10)	ug/g	-	<10	10	3736246	<10	10	3739314
F1 (C6-C10) - BTEX	ug/g	-	<10	10	3736246	<10	10	3739314
F2-F4 Hydrocarbons								
F2 (C10-C16 Hydrocarbons)	ug/g	-	<10	10	3734925	<10	10	3738629
F3 (C16-C34 Hydrocarbons)	ug/g	-	28	10	3734925	<50	50	3738629
F4 (C34-C50 Hydrocarbons)	ug/g	-	<10	10	3734925	<50	50	3738629
Reached Baseline at C50	ug/g	-	Yes		3734925	Yes		3738629
Surrogate Recovery (%)								
1,4-Difluorobenzene	%	-	127		3736246			
4-Bromofluorobenzene	%	-	81		3736246			
D10-Ethylbenzene	%	-	85		3736246			
D4-1,2-Dichloroethane	%	-	122		3736246			
1,4-Difluorobenzene	%	-				88		3739314
4-Bromofluorobenzene	%	-				106		3739314
D10-Ethylbenzene	%	-				84		3739314
D4-1,2-Dichloroethane	%	-				89		3739314
o-Terphenyl	%	-				97		3738629
o-Terphenyl	%	-	107		3734925			
PDI - Papartable Detection I	innit	•						•

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Criteria: CCME Industrial

Decommissioning Consulting Services Limited

Client Project #: 350600-515

Site Location: FOX-4 CAPE HOOPER

Sampler Initials: SB

PETROLEUM HYDROCARBONS (CCME)

Maxxam ID			XK1962 XK1963		XK1964	XK1965		
Sampling Date			2014/08/25	2014/08/25	2014/08/25	2014/08/25		
COC Number								
	Units	Criteria	F4-STA-MW98-08-S	F4-STA-MW98-08-D	F4-STA-MW98-09-S	F4-STA-MW98-09-D	RDL	QC Batch
BTEX & F1 Hydrocarbons								
Benzene	ug/g	5	<0.005	<0.005	<0.005	<0.005	0.005	3736246
Toluene	ug/g	0.8	<0.02	<0.02	<0.02	<0.02	0.02	3736246
Ethylbenzene	ug/g	20	<0.01	<0.01	<0.01	<0.01	0.01	3736246
o-Xylene	ug/g	-	<0.02	<0.02	<0.02	<0.02	0.02	3736246
p+m-Xylene	ug/g	1	<0.04	<0.04	<0.04	<0.04	0.04	3736246
Total Xylenes	ug/g	-	<0.04	<0.04	<0.04	<0.04	0.04	3736246
F1 (C6-C10)	ug/g	-	<10	<10	<10	<10	10	3736246
F1 (C6-C10) - BTEX	ug/g	-	<10	<10	<10	<10	10	3736246
F2-F4 Hydrocarbons								
F2 (C10-C16 Hydrocarbons)	ug/g	-	10	<10	<10	<10	10	3734925
F3 (C16-C34 Hydrocarbons)	ug/g	-	<10	<10	<10	<10	10	3734925
F4 (C34-C50 Hydrocarbons)	ug/g	-	<10	<10	<10	<10	10	3734925
Reached Baseline at C50	ug/g	-	Yes	Yes	Yes	Yes		3734925
Surrogate Recovery (%)								
1,4-Difluorobenzene	%	-	128	124	121	129		3736246
4-Bromofluorobenzene	%	-	86	80	82	90	_	3736246
D10-Ethylbenzene	%	-	90	89	89	90		3736246
D4-1,2-Dichloroethane	%	-	129	121	122	122		3736246
o-Terphenyl	%	-	116	115	107	107		3734925

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Criteria: CCME Industrial

Decommissioning Consulting Services Limited

Client Project #: 350600-515

Site Location: FOX-4 CAPE HOOPER

Sampler Initials: SB

PETROLEUM HYDROCARBONS (CCME)

Maxxam ID			XK1966	XK1967 XK1968		XK1969		
Sampling Date			2014/08/24	2014/08/24	2014/08/24	2014/08/24		
COC Number								
	Units	Criteria	F4-NH-MW11-01-S	F4-NH-MW11-01-D	F4-NH-MW11-02-S	F4-NH-MW11-02-D	RDL	QC Batch
BTEX & F1 Hydrocarbons								
Benzene	ug/g	5	<0.005	<0.005	<0.005	<0.005	0.005	3736246
Toluene	ug/g	0.8	<0.02	<0.02	<0.02	<0.02	0.02	3736246
Ethylbenzene	ug/g	20	<0.01	<0.01	<0.01	<0.01	0.01	3736246
o-Xylene	ug/g	-	<0.02	<0.02	<0.02	<0.02	0.02	3736246
p+m-Xylene	ug/g	-	<0.04	<0.04	<0.04	<0.04	0.04	3736246
Total Xylenes	ug/g	-	<0.04	<0.04	<0.04	<0.04	0.04	3736246
F1 (C6-C10)	ug/g	-	<10	<10	<10	<10	10	3736246
F1 (C6-C10) - BTEX	ug/g	-	<10	<10	<10	<10	10	3736246
F2-F4 Hydrocarbons								
F2 (C10-C16 Hydrocarbons)	ug/g	-	<10	<10	<10	<10	10	3734925
F3 (C16-C34 Hydrocarbons)	ug/g	-	<10	<10	<10	21	10	3734925
F4 (C34-C50 Hydrocarbons)	ug/g	-	<10	<10	<10	<10	10	3734925
Reached Baseline at C50	ug/g	-	Yes	Yes	Yes	Yes		3734925
Surrogate Recovery (%)								
1,4-Difluorobenzene	%	-	124	117	121	120		3736246
4-Bromofluorobenzene	%	-	71	86	71	78		3736246
D10-Ethylbenzene	%	-	84	93	93	95		3736246
D4-1,2-Dichloroethane	%	-	124	120	122	124		3736246
o-Terphenyl	%	-	110	121	102	107		3734925

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Criteria: CCME Industrial

Decommissioning Consulting Services Limited

Client Project #: 350600-515

Site Location: FOX-4 CAPE HOOPER

Sampler Initials: SB

PETROLEUM HYDROCARBONS (CCME)

Maxxam ID			XK1984	XK1985	XK1986	XK1987		
Sampling Date			2014/08/24	2014/08/24	2014/08/24	2014/08/24		
COC Number								
	Units	Criteria	F4-NH-MW11-03-S	F4-NH-MW11-03-D	F4-NH-MW11-04-S	F4-NH-MW11-04-D	RDL	QC Batch
BTEX & F1 Hydrocarbons								
Benzene	ug/g	5	<0.005	<0.005	<0.005	<0.005	0.005	3736246
Toluene	ug/g	0.8	<0.02	<0.02	<0.02	<0.02	0.02	3736246
Ethylbenzene	ug/g	20	<0.01	<0.01	<0.01	<0.01	0.01	3736246
o-Xylene	ug/g	-	<0.02	<0.02	<0.02	<0.02	0.02	3736246
p+m-Xylene	ug/g	-	<0.04	<0.04	<0.04	<0.04	0.04	3736246
Total Xylenes	ug/g	-	<0.04	<0.04	<0.04	<0.04	0.04	3736246
F1 (C6-C10)	ug/g	-	<10	<10	<10	<10	10	3736246
F1 (C6-C10) - BTEX	ug/g	-	<10	<10	<10	<10	10	3736246
F2-F4 Hydrocarbons								
F2 (C10-C16 Hydrocarbons)	ug/g	-	<10	<10	<10	<10	10	3734925
F3 (C16-C34 Hydrocarbons)	ug/g	-	39	13	82	<10	10	3734925
F4 (C34-C50 Hydrocarbons)	ug/g	-	<10	<10	14	<10	10	3734925
Reached Baseline at C50	ug/g	-	Yes	Yes	Yes	Yes		3734925
Surrogate Recovery (%)								
1,4-Difluorobenzene	%	-	122	119	121	122		3736246
4-Bromofluorobenzene	%	-	78	80	75	79		3736246
D10-Ethylbenzene	%	-	93	88	90	90		3736246
D4-1,2-Dichloroethane	%	-	127	116	117	122		3736246
o-Terphenyl	%	-	127	107	106	117		3734925

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Criteria: CCME Industrial

Decommissioning Consulting Services Limited

Client Project #: 350600-515

Site Location: FOX-4 CAPE HOOPER

Sampler Initials: SB

PETROLEUM HYDROCARBONS (CCME)

		XK1988	XK1989	XK1990		
		2014/08/24	2014/08/24	2014/08/24		
Units	Criteria	F4-NH-MW11-05-S	F4-NH-MW11-05-D	F4-NH-MW11-06-S	RDL	QC Batch
ug/g	5	<0.005	<0.005	<0.005	0.005	3736246
ug/g	0.8	<0.02	<0.02	<0.02	0.02	3736246
ug/g	20	<0.01	<0.01	<0.01	0.01	3736246
ug/g	-	<0.02	<0.02	<0.02	0.02	3736246
ug/g	-	<0.04	<0.04	<0.04	0.04	3736246
ug/g	-	<0.04	<0.04	<0.04	0.04	3736246
ug/g	-	<10	<10	<10	10	3736246
ug/g	-	<10	<10	<10	10	3736246
ug/g	-	<10	<10	<10	10	3734925
ug/g	-	43	17	17	10	3734925
ug/g	-	<10	<10	<10	10	3734925
ug/g	-	Yes	Yes	Yes		3734925
%	-	123	118	118		3736246
%	-	74	82	80		3736246
%	-	90	83	88		3736246
%	-	122	118	116		3736246
%	-	125	117	110		3734925
	ug/g ug/g ug/g ug/g ug/g ug/g ug/g ug/g	ug/g 5 ug/g 0.8 ug/g 20 ug/g - u	Units Criteria F4-NH-MW11-05-S Ug/g 5	Units Criteria F4-NH-MW11-05-S F4-NH-MW11-05-D ug/g 5 <0.005	Criteria F4-NH-MW11-05-S F4-NH-MW11-05-D F4-NH-MW11-06-S Ug/g 5	Units Criteria F4-NH-MW11-05-S F4-NH-MW11-05-D F4-NH-MW11-06-S RDL

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Criteria: CCME Industrial

Decommissioning Consulting Services Limited

Client Project #: 350600-515

Site Location: FOX-4 CAPE HOOPER

Sampler Initials: SB

PETROLEUM HYDROCARBONS (CCME)

Maxxam ID			XK1991	XK1992	XK1993	XK1994		
Sampling Date			2014/08/24	2014/08/24	2014/08/24	2014/08/24		
COC Number								
	Units	Criteria	F4-NH-MW11-06-D	F4-NH-MW12-07-S	F4-NH-MW12-07-D	F4-NH-MW12-08-S	RDL	QC Batch
BTEX & F1 Hydrocarbons								
Benzene	ug/g	5	<0.005	<0.005	<0.005	<0.005	0.005	3737250
Toluene	ug/g	0.8	<0.02	<0.02	<0.02	<0.02	0.02	3737250
Ethylbenzene	ug/g	20	<0.01	<0.01	<0.01	<0.01	0.01	3737250
o-Xylene	ug/g	-	<0.02	<0.02	<0.02	<0.02	0.02	3737250
p+m-Xylene	ug/g	-	<0.04	<0.04	<0.04	<0.04	0.04	3737250
Total Xylenes	ug/g	-	<0.04	<0.04	<0.04	<0.04	0.04	3737250
F1 (C6-C10)	ug/g	-	<10	<10	<10	<10	10	3737250
F1 (C6-C10) - BTEX	ug/g	-	<10	<10	<10	<10	10	3737250
F2-F4 Hydrocarbons								
F2 (C10-C16 Hydrocarbons)	ug/g	-	<10	<10	<10	34	10	3734927
F3 (C16-C34 Hydrocarbons)	ug/g	-	22	56	<10	21	10	3734927
F4 (C34-C50 Hydrocarbons)	ug/g	-	<10	<10	<10	<10	10	3734927
Reached Baseline at C50	ug/g	-	Yes	Yes	Yes	Yes		3734927
Surrogate Recovery (%)								
1,4-Difluorobenzene	%	-	119	117	128	116		3737250
4-Bromofluorobenzene	%	-	72	78	69	80		3737250
D10-Ethylbenzene	%	-	100	99	103	91		3737250
D4-1,2-Dichloroethane	%	-	123	121	115	109		3737250
o-Terphenyl	%	-	81	77	79	82		3734927

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Criteria: CCME Industrial

Decommissioning Consulting Services Limited

Client Project #: 350600-515

Site Location: FOX-4 CAPE HOOPER

Sampler Initials: SB

PETROLEUM HYDROCARBONS (CCME)

Maxxam ID			XK1995	XK2004	XK2005	XK2006	XK2007	XK2008		
Sampling Date			2014/08/24	2014/08/25						
COC Number										
	Units	Criteria	F4-NH-MW12-08-D	F4-PAL-25-S	F4-PAL-25-D	F4-PAL-26-S	F4-PAL-26-D	F4-PAL-27-S	RDL	QC Batch
BTEX & F1 Hydrocarbons										
Benzene	ug/g	5	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	0.005	3737250
Toluene	ug/g	0.8	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	0.02	3737250
Ethylbenzene	ug/g	20	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.01	3737250
o-Xylene	ug/g	-	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	0.02	3737250
p+m-Xylene	ug/g	-	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	0.04	3737250
Total Xylenes	ug/g	-	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	0.04	3737250
F1 (C6-C10)	ug/g	-	<10	<10	<10	<10	<10	<10	10	3737250
F1 (C6-C10) - BTEX	ug/g	-	<10	<10	<10	<10	<10	<10	10	3737250
F2-F4 Hydrocarbons										
F2 (C10-C16 Hydrocarbons)	ug/g	-	320	<10	<10	<10	<10	<10	10	3734927
F3 (C16-C34 Hydrocarbons)	ug/g	-	49	<10	<10	24	<10	13	10	3734927
F4 (C34-C50 Hydrocarbons)	ug/g	-	<10	<10	<10	<10	<10	<10	10	3734927
Reached Baseline at C50	ug/g	-	Yes	Yes	Yes	Yes	Yes	Yes		3734927
Surrogate Recovery (%)										
1,4-Difluorobenzene	%	-	120	122	124	117	126	129		3737250
4-Bromofluorobenzene	%	-	77	72	75	72	71	80		3737250
D10-Ethylbenzene	%	-	119	100	98	101	97	102		3737250
D4-1,2-Dichloroethane	%	-	128	118	121	117	113	113		3737250
o-Terphenyl	%	-	80	83	81	75	76	77		3734927

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Criteria: CCME Industrial

Decommissioning Consulting Services Limited

Client Project #: 350600-515

Site Location: FOX-4 CAPE HOOPER

Sampler Initials: SB

PETROLEUM HYDROCARBONS (CCME)

Maxxam ID			XK2009	XK2010	XK2011	XK2012	XK2013		
Sampling Date									
COC Number									
	Units	Criteria	F4-PAL-27-D	F4-PAL-28-S	F4-PAL-28-D	F4-PAL-29-S	F4-PAL-29-D	RDL	QC Batch
BTEX & F1 Hydrocarbons									
Benzene	ug/g	5	<0.005	<0.005	<0.005	<0.005	<0.005	0.005	3737266
Toluene	ug/g	0.8	<0.02	<0.02	<0.02	<0.02	<0.02	0.02	3737266
Ethylbenzene	ug/g	20	<0.01	<0.01	<0.01	<0.01	<0.01	0.01	3737266
o-Xylene	ug/g	-	<0.02	<0.02	<0.02	<0.02	<0.02	0.02	3737266
p+m-Xylene	ug/g	-	<0.04	<0.04	<0.04	<0.04	<0.04	0.04	3737266
Total Xylenes	ug/g	-	<0.04	<0.04	<0.04	<0.04	<0.04	0.04	3737266
F1 (C6-C10)	ug/g	-	190	<10	<10	<10	<10	10	3737266
F1 (C6-C10) - BTEX	ug/g	-	190	<10	<10	<10	<10	10	3737266
F2-F4 Hydrocarbons									
F2 (C10-C16 Hydrocarbons)	ug/g	-	2700	<10	<10	<10	<10	10	3734927
F3 (C16-C34 Hydrocarbons)	ug/g	-	380	34	10	130	120	10	3734927
F4 (C34-C50 Hydrocarbons)	ug/g	-	<10	34	<10	19	<10	10	3734927
Reached Baseline at C50	ug/g	-	Yes	Yes	Yes	Yes	Yes		3734927
Surrogate Recovery (%)									
1,4-Difluorobenzene	%	-	118	121	120	121	120		3737266
4-Bromofluorobenzene	%	-	83	102	93	93	93		3737266
D10-Ethylbenzene	%	-	116	83	85	86	77		3737266
D4-1,2-Dichloroethane	%	-	113	122	122	123	122		3737266
o-Terphenyl	%	-	83	79	78	82	78		3734927

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Criteria: CCME Industrial

Decommissioning Consulting Services Limited

Client Project #: 350600-515

Site Location: FOX-4 CAPE HOOPER

Sampler Initials: SB

POLYCHLORINATED BIPHENYLS BY GC-ECD (SOIL)

Maxxam ID			XK1904		XK1905		XK1906	XK1907		
Sampling Date			2014/08/24		2014/08/24		2014/08/24	2014/08/24		
COC Number			na		na		na	na		
	Units	Criteria	F4-TAN-11-S	QC Batch	F4-TAN-11-D	QC Batch	F4-TAN-12-S	F4-TAN-12-D	RDL	QC Batch
PCBs										
Aroclor 1016	ug/g	-	<0.010	3737684	<0.010	3736297	<0.010	<0.010	0.010	3737684
Aroclor 1221	ug/g	-	<0.010	3737684	<0.010	3736297	<0.010	<0.010	0.010	3737684
Aroclor 1232	ug/g	-	<0.010	3737684	<0.010	3736297	<0.010	<0.010	0.010	3737684
Aroclor 1242	ug/g	-	<0.010	3737684	<0.010	3736297	<0.010	<0.010	0.010	3737684
Aroclor 1248	ug/g	-	<0.010	3737684	<0.010	3736297	<0.010	<0.010	0.010	3737684
Aroclor 1254	ug/g	-	<0.010	3737684	<0.010	3736297	<0.010	<0.010	0.010	3737684
Aroclor 1260	ug/g	-	<0.010	3737684	<0.010	3736297	<0.010	<0.010	0.010	3737684
Aroclor 1262	ug/g	-	<0.010	3737684	<0.010	3736297	<0.010	<0.010	0.010	3737684
Aroclor 1268	ug/g	-	<0.010	3737684	<0.010	3736297	<0.010	<0.010	0.010	3737684
Total PCB	ug/g	33	<0.010	3737684	<0.010	3736297	<0.010	<0.010	0.010	3737684
Surrogate Recovery (%)										
Decachlorobiphenyl	%	-	82	3737684	89	3736297	88	83		3737684

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Criteria: CCME Industrial

Decommissioning Consulting Services Limited

Client Project #: 350600-515

Site Location: FOX-4 CAPE HOOPER

Sampler Initials: SB

POLYCHLORINATED BIPHENYLS BY GC-ECD (SOIL)

Maxxam ID			XK1908	XK1909	XK1910	XK1911		
Sampling Date			2014/08/24	2014/08/24	2014/08/25	2014/08/25		
COC Number			na	na	na	na		
	Units	Criteria	F4-TAN-13-S	F4-TAN-13-D	F4-HEL-MW98-01-S	F4-HEL-MW98-01-D	RDL	QC Batch
PCBs								
Aroclor 1016	ug/g	-	<0.010	<0.010	<0.010	<0.010	0.010	3736297
Aroclor 1221	ug/g	-	<0.010	<0.010	<0.010	<0.010	0.010	3736297
Aroclor 1232	ug/g	-	<0.010	<0.010	<0.010	<0.010	0.010	3736297
Aroclor 1242	ug/g	-	<0.010	<0.010	<0.010	<0.010	0.010	3736297
Aroclor 1248	ug/g	-	<0.010	<0.010	<0.010	<0.010	0.010	3736297
Aroclor 1254	ug/g	-	<0.010	<0.010	<0.010	<0.010	0.010	3736297
Aroclor 1260	ug/g	-	<0.010	<0.010	<0.010	<0.010	0.010	3736297
Aroclor 1262	ug/g	-	<0.010	<0.010	<0.010	<0.010	0.010	3736297
Aroclor 1268	ug/g	-	<0.010	<0.010	<0.010	<0.010	0.010	3736297
Total PCB	ug/g	33	<0.010	<0.010	<0.010	<0.010	0.010	3736297
Surrogate Recovery (%)								
Decachlorobiphenyl	%	-	85	87	82	93		3736297

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Criteria: CCME Industrial

Decommissioning Consulting Services Limited

Client Project #: 350600-515

Site Location: FOX-4 CAPE HOOPER

Sampler Initials: SB

POLYCHLORINATED BIPHENYLS BY GC-ECD (SOIL)

Maxxam ID			XK1912		XK1913	XK1914		
Sampling Date			2014/08/25		2014/08/25	2014/08/25		
COC Number			na		na	na		
	Units	Criteria	F4-HEL-MW98-02-S	QC Batch	F4-HEL-MW98-02-D	F4-HEL-MW98-03-S	RDL	QC Batch
PCBs								
Aroclor 1016	ug/g	-	<0.010	3736297	<0.010	<0.010	0.010	3737684
Aroclor 1221	ug/g	-	<0.010	3736297	<0.010	<0.010	0.010	3737684
Aroclor 1232	ug/g	-	<0.010	3736297	<0.010	<0.010	0.010	3737684
Aroclor 1242	ug/g	-	<0.010	3736297	<0.010	<0.010	0.010	3737684
Aroclor 1248	ug/g	-	<0.010	3736297	<0.010	<0.010	0.010	3737684
Aroclor 1254	ug/g	-	<0.010	3736297	<0.010	<0.010	0.010	3737684
Aroclor 1260	ug/g	-	<0.010	3736297	<0.010	<0.010	0.010	3737684
Aroclor 1262	ug/g	-	<0.010	3736297	<0.010	<0.010	0.010	3737684
Aroclor 1268	ug/g	-	<0.010	3736297	<0.010	<0.010	0.010	3737684
Total PCB	ug/g	33	<0.010	3736297	<0.010	<0.010	0.010	3737684
Surrogate Recovery (%)								
Decachlorobiphenyl	%	-	87	3736297	81	86		3737684

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Criteria: CCME Industrial

Decommissioning Consulting Services Limited

Client Project #: 350600-515

Site Location: FOX-4 CAPE HOOPER

Sampler Initials: SB

POLYCHLORINATED BIPHENYLS BY GC-ECD (SOIL)

Maxxam ID			XK1915		XK1958		XK1959		
Sampling Date			2014/08/25		2014/08/25		2014/08/25		
COC Number			na						
	Units	Criteria	F4-HEL-MW98-03-D	QC Batch	F4-HEL-MW98-06-S	QC Batch	F4-HEL-MW98-06-D	RDL	QC Batch
PCBs									
Aroclor 1016	ug/g	-	<0.010	3736297	<0.010	3737684	<0.010	0.010	3736297
Aroclor 1221	ug/g	-	<0.010	3736297	<0.010	3737684	<0.010	0.010	3736297
Aroclor 1232	ug/g	-	<0.010	3736297	<0.010	3737684	<0.010	0.010	3736297
Aroclor 1242	ug/g	-	<0.010	3736297	<0.010	3737684	<0.010	0.010	3736297
Aroclor 1248	ug/g	-	<0.010	3736297	<0.010	3737684	<0.010	0.010	3736297
Aroclor 1254	ug/g	-	<0.010	3736297	<0.010	3737684	<0.010	0.010	3736297
Aroclor 1260	ug/g	-	<0.010	3736297	<0.010	3737684	<0.010	0.010	3736297
Aroclor 1262	ug/g	-	<0.010	3736297	<0.010	3737684	<0.010	0.010	3736297
Aroclor 1268	ug/g	-	<0.010	3736297	<0.010	3737684	<0.010	0.010	3736297
Total PCB	ug/g	33	<0.010	3736297	<0.010	3737684	<0.010	0.010	3736297
Surrogate Recovery (%)		•		•					
Decachlorobiphenyl	%	-	84	3736297	96	3737684	80		3736297

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Criteria: CCME Industrial

Decommissioning Consulting Services Limited

Client Project #: 350600-515

Site Location: FOX-4 CAPE HOOPER

Sampler Initials: SB

POLYCHLORINATED BIPHENYLS BY GC-ECD (SOIL)

Maxxam ID			XK1960		XK1961		XK1962		
Sampling Date			2014/08/25		2014/08/25		2014/08/25		
COC Number									
	Units	Criteria	F4-STA-MW98-07-S	QC Batch	F4-STA-MW98-07-D	QC Batch	F4-STA-MW98-08-S	RDL	QC Batch
PCBs									
Aroclor 1016	ug/g	-	<0.010	3737684	<0.010	3736297	<0.010	0.010	3737684
Aroclor 1221	ug/g	-	<0.010	3737684	<0.010	3736297	<0.010	0.010	3737684
Aroclor 1232	ug/g	-	<0.010	3737684	<0.010	3736297	<0.010	0.010	3737684
Aroclor 1242	ug/g	-	<0.010	3737684	<0.010	3736297	<0.010	0.010	3737684
Aroclor 1248	ug/g	-	<0.010	3737684	<0.010	3736297	<0.010	0.010	3737684
Aroclor 1254	ug/g	-	0.032	3737684	<0.010	3736297	0.26	0.010	3737684
Aroclor 1260	ug/g	-	<0.010	3737684	<0.010	3736297	<0.010	0.010	3737684
Aroclor 1262	ug/g	-	<0.010	3737684	<0.010	3736297	<0.010	0.010	3737684
Aroclor 1268	ug/g	-	<0.010	3737684	<0.010	3736297	<0.010	0.010	3737684
Total PCB	ug/g	33	0.032	3737684	<0.010	3736297	0.26	0.010	3737684
Surrogate Recovery (%)		•		•		•			
Decachlorobiphenyl	%	-	77	3737684	81	3736297	82		3737684

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Criteria: CCME Industrial

Decommissioning Consulting Services Limited

Client Project #: 350600-515

Site Location: FOX-4 CAPE HOOPER

Sampler Initials: SB

POLYCHLORINATED BIPHENYLS BY GC-ECD (SOIL)

Maxxam ID			XK1963		XK1964	XK1965		
Sampling Date			2014/08/25		2014/08/25	2014/08/25		
COC Number								
	Units	Criteria	F4-STA-MW98-08-D	QC Batch	F4-STA-MW98-09-S	F4-STA-MW98-09-D	RDL	QC Batch
PCBs								
Aroclor 1016	ug/g	-	<0.010	3737684	<0.010	<0.010	0.010	3738673
Aroclor 1221	ug/g	-	<0.010	3737684	<0.010	<0.010	0.010	3738673
Aroclor 1232	ug/g	-	<0.010	3737684	<0.010	<0.010	0.010	3738673
Aroclor 1242	ug/g	-	<0.010	3737684	<0.010	<0.010	0.010	3738673
Aroclor 1248	ug/g	-	<0.010	3737684	<0.010	<0.010	0.010	3738673
Aroclor 1254	ug/g	-	0.18	3737684	0.10	0.15	0.010	3738673
Aroclor 1260	ug/g	-	<0.010	3737684	<0.010	<0.010	0.010	3738673
Aroclor 1262	ug/g	-	<0.010	3737684	<0.010	<0.010	0.010	3738673
Aroclor 1268	ug/g	-	<0.010	3737684	<0.010	<0.010	0.010	3738673
Total PCB	ug/g	33	0.18	3737684	0.10	0.15	0.010	3738673
Surrogate Recovery (%)	•							
Decachlorobiphenyl	%	-	84	3737684	80	82		3738673

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Criteria: CCME Industrial

Decommissioning Consulting Services Limited

Client Project #: 350600-515

Site Location: FOX-4 CAPE HOOPER

Sampler Initials: SB

POLYCHLORINATED BIPHENYLS BY GC-ECD (SOIL)

Maxxam ID			XK1966	XK1967	XK1968	XK1969		
Sampling Date			2014/08/24	2014/08/24	2014/08/24	2014/08/24		
COC Number								
	Units	Criteria	F4-NH-MW11-01-S	F4-NH-MW11-01-D	F4-NH-MW11-02-S	F4-NH-MW11-02-D	RDL	QC Batch
PCBs								
Aroclor 1016	ug/g	-	<0.010	<0.010	<0.010	<0.010	0.010	3737684
Aroclor 1221	ug/g	-	<0.010	<0.010	<0.010	<0.010	0.010	3737684
Aroclor 1232	ug/g	-	<0.010	<0.010	<0.010	<0.010	0.010	3737684
Aroclor 1242	ug/g	-	<0.010	<0.010	<0.010	<0.010	0.010	3737684
Aroclor 1248	ug/g	-	<0.010	<0.010	<0.010	<0.010	0.010	3737684
Aroclor 1254	ug/g	-	<0.010	<0.010	<0.010	0.012	0.010	3737684
Aroclor 1260	ug/g	-	<0.010	<0.010	<0.010	<0.010	0.010	3737684
Aroclor 1262	ug/g	-	<0.010	<0.010	<0.010	<0.010	0.010	3737684
Aroclor 1268	ug/g	-	<0.010	<0.010	<0.010	<0.010	0.010	3737684
Total PCB	ug/g	33	<0.010	<0.010	<0.010	0.012	0.010	3737684
Surrogate Recovery (%)								
Decachlorobiphenyl	%	-	85	96	92	89		3737684

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Criteria: CCME Industrial

Decommissioning Consulting Services Limited

Client Project #: 350600-515

Site Location: FOX-4 CAPE HOOPER

Sampler Initials: SB

POLYCHLORINATED BIPHENYLS BY GC-ECD (SOIL)

Maxxam ID			XK1984	XK1985		XK1986		
Sampling Date			2014/08/24	2014/08/24		2014/08/24		
COC Number								
	Units	Criteria	F4-NH-MW11-03-S	F4-NH-MW11-03-D	QC Batch	F4-NH-MW11-04-S	RDL	QC Batch
PCBs								
Aroclor 1016	ug/g	-	<0.010	<0.010	3737684	<0.010	0.010	3736297
Aroclor 1221	ug/g	-	<0.010	<0.010	3737684	<0.010	0.010	3736297
Aroclor 1232	ug/g	-	<0.010	<0.010	3737684	<0.010	0.010	3736297
Aroclor 1242	ug/g	-	<0.010	<0.010	3737684	<0.010	0.010	3736297
Aroclor 1248	ug/g	-	<0.010	<0.010	3737684	<0.010	0.010	3736297
Aroclor 1254	ug/g	-	0.083	0.048	3737684	<0.010	0.010	3736297
Aroclor 1260	ug/g	-	<0.010	<0.010	3737684	<0.010	0.010	3736297
Aroclor 1262	ug/g	-	<0.010	<0.010	3737684	<0.010	0.010	3736297
Aroclor 1268	ug/g	-	<0.010	<0.010	3737684	<0.010	0.010	3736297
Total PCB	ug/g	33	0.083	0.048	3737684	<0.010	0.010	3736297
Surrogate Recovery (%)	•							
Decachlorobiphenyl	%	-	73	84	3737684	86		3736297

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Criteria: CCME Industrial

Decommissioning Consulting Services Limited

Client Project #: 350600-515

Site Location: FOX-4 CAPE HOOPER

Sampler Initials: SB

POLYCHLORINATED BIPHENYLS BY GC-ECD (SOIL)

Maxxam ID			XK1987		XK1988	XK1989		
Sampling Date			2014/08/24		2014/08/24	2014/08/24		
COC Number								
	Units	Criteria	F4-NH-MW11-04-D	QC Batch	F4-NH-MW11-05-S	F4-NH-MW11-05-D	RDL	QC Batch
PCBs								
Aroclor 1016	ug/g	-	<0.010	3737684	<0.010	<0.010	0.010	3738673
Aroclor 1221	ug/g	-	<0.010	3737684	<0.010	<0.010	0.010	3738673
Aroclor 1232	ug/g	-	<0.010	3737684	<0.010	<0.010	0.010	3738673
Aroclor 1242	ug/g	-	<0.010	3737684	<0.010	<0.010	0.010	3738673
Aroclor 1248	ug/g	-	<0.010	3737684	<0.010	<0.010	0.010	3738673
Aroclor 1254	ug/g	-	<0.010	3737684	<0.010	<0.010	0.010	3738673
Aroclor 1260	ug/g	-	<0.010	3737684	<0.010	<0.010	0.010	3738673
Aroclor 1262	ug/g	-	<0.010	3737684	<0.010	<0.010	0.010	3738673
Aroclor 1268	ug/g	-	<0.010	3737684	<0.010	<0.010	0.010	3738673
Total PCB	ug/g	33	<0.010	3737684	<0.010	<0.010	0.010	3738673
Surrogate Recovery (%)	•						•	
Decachlorobiphenyl	%	-	84	3737684	74	81		3738673

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Criteria: CCME Industrial

Decommissioning Consulting Services Limited

Client Project #: 350600-515

Site Location: FOX-4 CAPE HOOPER

Sampler Initials: SB

POLYCHLORINATED BIPHENYLS BY GC-ECD (SOIL)

Maxxam ID			XK1990	XK1991		XK1992		
Sampling Date			2014/08/24	2014/08/24		2014/08/24		
COC Number								
	Units	Criteria	F4-NH-MW11-06-S	F4-NH-MW11-06-D	QC Batch	F4-NH-MW12-07-S	RDL	QC Batch
PCBs								
Aroclor 1016	ug/g	-	<0.010	<0.010	3737684	<0.010	0.010	3738673
Aroclor 1221	ug/g	-	<0.010	<0.010	3737684	<0.010	0.010	3738673
Aroclor 1232	ug/g	-	<0.010	<0.010	3737684	<0.010	0.010	3738673
Aroclor 1242	ug/g	-	<0.010	<0.010	3737684	<0.010	0.010	3738673
Aroclor 1248	ug/g	-	<0.010	<0.010	3737684	<0.010	0.010	3738673
Aroclor 1254	ug/g	-	<0.010	<0.010	3737684	<0.010	0.010	3738673
Aroclor 1260	ug/g	-	<0.010	<0.010	3737684	<0.010	0.010	3738673
Aroclor 1262	ug/g	-	<0.010	<0.010	3737684	<0.010	0.010	3738673
Aroclor 1268	ug/g	-	<0.010	<0.010	3737684	<0.010	0.010	3738673
Total PCB	ug/g	33	<0.010	<0.010	3737684	<0.010	0.010	3738673
Surrogate Recovery (%)	•							
Decachlorobiphenyl	%	-	86	86	3737684	81		3738673

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Criteria: CCME Industrial

Decommissioning Consulting Services Limited

Client Project #: 350600-515

Site Location: FOX-4 CAPE HOOPER

Sampler Initials: SB

POLYCHLORINATED BIPHENYLS BY GC-ECD (SOIL)

Maxxam ID			XK1993		XK1994	XK1995		
Sampling Date			2014/08/24		2014/08/24	2014/08/24		
COC Number								
	Units	Criteria	F4-NH-MW12-07-D	QC Batch	F4-NH-MW12-08-S	F4-NH-MW12-08-D	RDL	QC Batch
PCBs								
Aroclor 1016	ug/g	-	<0.010	3738673	<0.010	<0.010	0.010	3737684
Aroclor 1221	ug/g	-	<0.010	3738673	<0.010	<0.010	0.010	3737684
Aroclor 1232	ug/g	-	<0.010	3738673	<0.010	<0.010	0.010	3737684
Aroclor 1242	ug/g	-	<0.010	3738673	<0.010	<0.010	0.010	3737684
Aroclor 1248	ug/g	-	<0.010	3738673	<0.010	<0.010	0.010	3737684
Aroclor 1254	ug/g	-	<0.010	3738673	<0.010	<0.010	0.010	3737684
Aroclor 1260	ug/g	-	<0.010	3738673	<0.010	<0.010	0.010	3737684
Aroclor 1262	ug/g	-	<0.010	3738673	<0.010	<0.010	0.010	3737684
Aroclor 1268	ug/g	-	<0.010	3738673	<0.010	<0.010	0.010	3737684
Total PCB	ug/g	33	<0.010	3738673	<0.010	<0.010	0.010	3737684
Surrogate Recovery (%)								
Decachlorobiphenyl	%	-	76	3738673	81	90		3737684

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Criteria: CCME Industrial

Decommissioning Consulting Services Limited

Client Project #: 350600-515

Site Location: FOX-4 CAPE HOOPER

Sampler Initials: SB

POLYCHLORINATED BIPHENYLS BY GC-ECD (SOIL)

Maxxam ID			XK2004	XK2005	XK2006	XK2007	XK2008	XK2009		
Sampling Date			2014/08/25							
COC Number										
	Units	Criteria	F4-PAL-25-S	F4-PAL-25-D	F4-PAL-26-S	F4-PAL-26-D	F4-PAL-27-S	F4-PAL-27-D	RDL	QC Batch
PCBs										
Aroclor 1016	ug/g	-	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	0.010	3736297
Aroclor 1221	ug/g	-	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	0.010	3736297
Aroclor 1232	ug/g	-	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	0.010	3736297
Aroclor 1242	ug/g	-	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	0.010	3736297
Aroclor 1248	ug/g	-	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	0.010	3736297
Aroclor 1254	ug/g	-	<0.010	<0.010	0.036	<0.010	<0.010	<0.010	0.010	3736297
Aroclor 1260	ug/g	-	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	0.010	3736297
Aroclor 1262	ug/g	-	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	0.010	3736297
Aroclor 1268	ug/g	-	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	0.010	3736297
Total PCB	ug/g	33	<0.010	<0.010	0.036	<0.010	<0.010	<0.010	0.010	3736297
Surrogate Recovery (%)										
Decachlorobiphenyl	%	-	92	80	81	89	89	88		3736297

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Criteria: CCME Industrial

Decommissioning Consulting Services Limited

Client Project #: 350600-515

Site Location: FOX-4 CAPE HOOPER

Sampler Initials: SB

POLYCHLORINATED BIPHENYLS BY GC-ECD (SOIL)

Maxxam ID			XK2010	XK2011	XK2012	XK2013		
Sampling Date								
COC Number								
	Units	Criteria	F4-PAL-28-S	F4-PAL-28-D	F4-PAL-29-S	F4-PAL-29-D	RDL	QC Batch
PCBs								
Aroclor 1016	ug/g	-	<0.010	<0.010	<0.010	<0.010	0.010	3736297
Aroclor 1221	ug/g	-	<0.010	<0.010	<0.010	<0.010	0.010	3736297
Aroclor 1232	ug/g	-	<0.010	<0.010	<0.010	<0.010	0.010	3736297
Aroclor 1242	ug/g	-	<0.010	<0.010	<0.010	<0.010	0.010	3736297
Aroclor 1248	ug/g	-	<0.010	<0.010	<0.010	<0.010	0.010	3736297
Aroclor 1254	ug/g	-	<0.010	<0.010	<0.010	<0.010	0.010	3736297
Aroclor 1260	ug/g	-	<0.010	<0.010	<0.010	<0.010	0.010	3736297
Aroclor 1262	ug/g	-	<0.010	<0.010	<0.010	<0.010	0.010	3736297
Aroclor 1268	ug/g	-	<0.010	<0.010	<0.010	<0.010	0.010	3736297
Total PCB	ug/g	33	<0.010	<0.010	<0.010	<0.010	0.010	3736297
Surrogate Recovery (%)	•		•	•				
Decachlorobiphenyl	%	-	90	91	83	84		3736297

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Criteria: CCME Industrial

Decommissioning Consulting Services Limited

Client Project #: 350600-515

Site Location: FOX-4 CAPE HOOPER

Sampler Initials: SB

ELEMENTS BY ATOMIC SPECTROSCOPY (WATER)

Maxxam ID		XK2030	XK2031	XK2032	XK2033	XK2034				
Sampling Date		2014/08/24	2014/08/24	2014/08/24	2014/08/24	2014/08/24				
Units F4-NH-MW11-01 F4-NH-MW11-02 F4-NH-MW11-03 F4-NH-MW11-04 F4-NH-MW11-05 RDL QC I										
Metals										
Mercury (Hg)	mg/L	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	0.00010	3741391		
RDL = Reportable Detection Limit										
QC Batch = Quality Control Batch										

Maxxam ID		XK2035	XK2036	XK2037	XK2038	XK2039		
Sampling Date		2014/08/24	2014/08/25	2014/08/25	2014/08/25	2014/08/25		
	Units	F4-NH-MW12-07	F4-STA-MW98-07	F4-HEL-MW98-01	F4-HEL-MW98-02	F4-HEL-MW98-03	RDL	QC Batch
Metals								
Mercury (Hg)	mg/L	<0.00010					0.00010	3741391
Mercury (Hg)	ug/L		<0.01	<0.01	<0.01	<0.01	0.01	3739875
11161641 (118)	~6/ =							

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Decommissioning Consulting Services Limited

Client Project #: 350600-515

Site Location: FOX-4 CAPE HOOPER

Sampler Initials: SB

PETROLEUM HYDROCARBONS (CCME)

Maxxam ID		XK2030	XK2031	XK2032	XK2033	XK2034		
Sampling Date		2014/08/24	2014/08/24	2014/08/24	2014/08/24	2014/08/24		
	Units	F4-NH-MW11-01	F4-NH-MW11-02	F4-NH-MW11-03	F4-NH-MW11-04	F4-NH-MW11-05	RDL	QC Batch
BTEX & F1 Hydrocarbons								
Benzene	ug/L	<0.20	<0.20	<0.20	<0.20	<0.20	0.20	3735534
Toluene	ug/L	<0.20	0.41	0.97	<0.20	<0.20	0.20	3735534
Ethylbenzene	ug/L	<0.20	0.51	<0.20	<0.20	<0.20	0.20	3735534
o-Xylene	ug/L	<0.20	3.4	0.48	<0.20	<0.20	0.20	3735534
p+m-Xylene	ug/L	<0.40	1.7	0.46	<0.40	<0.40	0.40	3735534
Total Xylenes	ug/L	<0.40	5.1	0.95	<0.40	<0.40	0.40	3735534
F1 (C6-C10)	ug/L	<25	72	28	31	33	25	3735534
F1 (C6-C10) - BTEX	ug/L	<25	66	26	31	33	25	3735534
F2-F4 Hydrocarbons								
F2 (C10-C16 Hydrocarbons)	ug/L	<100	120	<100	<100	<100	100	3735514
F3 (C16-C34 Hydrocarbons)	ug/L	<100	<100	<100	<100	<100	100	3735514
F4 (C34-C50 Hydrocarbons)	ug/L	<100	<100	<100	<100	<100	100	3735514
Reached Baseline at C50	ug/L	Yes	Yes	Yes	Yes	Yes		3735514
Surrogate Recovery (%)								
1,4-Difluorobenzene	%	93	113	114	113	115		3735534
4-Bromofluorobenzene	%	97	89	89	90	98		3735534
D10-Ethylbenzene	%	90	79	95	91	92		3735534
D4-1,2-Dichloroethane	%	83	104	103	106	104		3735534
o-Terphenyl	%	90	94	91	92	94		3735514
RDL = Reportable Detection L								

QC Batch = Quality Control Batch

Decommissioning Consulting Services Limited

Client Project #: 350600-515

Site Location: FOX-4 CAPE HOOPER

Sampler Initials: SB

PETROLEUM HYDROCARBONS (CCME)

Maxxam ID		XK2035	XK2036	XK2037	XK2038	XK2039		
Sampling Date		2014/08/24	2014/08/25	2014/08/25	2014/08/25	2014/08/25		
	Units	F4-NH-MW12-07	F4-STA-MW98-07	F4-HEL-MW98-01	F4-HEL-MW98-02	F4-HEL-MW98-03	RDL	QC Batch
BTEX & F1 Hydrocarbons								
Benzene	ug/L	<0.20	<0.20	<0.20	0.47	<0.20	0.20	3735534
Toluene	ug/L	<0.20	<0.20	<0.20	5.7	<0.20	0.20	3735534
Ethylbenzene	ug/L	<0.20	<0.20	<0.20	4.8	<0.20	0.20	3735534
o-Xylene	ug/L	<0.20	<0.20	<0.20	22	<0.20	0.20	3735534
p+m-Xylene	ug/L	<0.40	<0.40	<0.40	10	<0.40	0.40	3735534
Total Xylenes	ug/L	<0.40	<0.40	<0.40	32	<0.40	0.40	3735534
F1 (C6-C10)	ug/L	<25	<25	41	400	<25	25	3735534
F1 (C6-C10) - BTEX	ug/L	<25	<25	41	350	<25	25	3735534
F2-F4 Hydrocarbons								
F2 (C10-C16 Hydrocarbons)	ug/L	<100	<100	<100	940	<100	100	3735514
F3 (C16-C34 Hydrocarbons)	ug/L	<100	<100	<100	<100	<100	100	3735514
F4 (C34-C50 Hydrocarbons)	ug/L	<100	<100	<100	<100	<100	100	3735514
Reached Baseline at C50	ug/L	Yes	Yes	Yes	Yes	Yes		3735514
Surrogate Recovery (%)								
1,4-Difluorobenzene	%	113	118	115	116	115		3735534
4-Bromofluorobenzene	%	89	89	90	88	99		3735534
D10-Ethylbenzene	%	77	95	85	86	81		3735534
D4-1,2-Dichloroethane	%	104	107	105	103	104		3735534
o-Terphenyl	%	94	92	94	92	91		3735514
RDL = Reportable Detection L	imit							

QC Batch = Quality Control Batch

Decommissioning Consulting Services Limited

Client Project #: 350600-515

Site Location: FOX-4 CAPE HOOPER

Sampler Initials: SB

POLYCHLORINATED BIPHENYLS BY GC-ECD (WATER)

Maxxam ID		XK2030	XK2031	XK2032	XK2033	XK2034		
Sampling Date		2014/08/24	2014/08/24	2014/08/24	2014/08/24	2014/08/24		
	Units	F4-NH-MW11-01	F4-NH-MW11-02	F4-NH-MW11-03	F4-NH-MW11-04	F4-NH-MW11-05	RDL	QC Batch
PCBs								
Aroclor 1016	ug/L	<0.05	<0.05	<0.05	<0.05	<0.05	0.05	3737223
Aroclor 1221	ug/L	<0.05	<0.05	<0.05	<0.05	<0.05	0.05	3737223
Aroclor 1232	ug/L	<0.05	<0.05	<0.05	<0.05	<0.05	0.05	3737223
Aroclor 1242	ug/L	<0.05	<0.05	<0.05	<0.05	<0.05	0.05	3737223
Aroclor 1248	ug/L	<0.05	<0.05	<0.05	<0.05	<0.05	0.05	3737223
Aroclor 1254	ug/L	<0.05	<0.05	<0.05	<0.05	<0.05	0.05	3737223
Aroclor 1260	ug/L	<0.05	<0.05	<0.05	<0.05	<0.05	0.05	3737223
Aroclor 1262	ug/L	<0.05	<0.05	<0.05	<0.05	<0.05	0.05	3737223
Aroclor 1268	ug/L	<0.05	<0.05	<0.05	<0.05	<0.05	0.05	3737223
Total PCB	ug/L	<0.05	<0.05	<0.05	<0.05	<0.05	0.05	3737223
Surrogate Recovery (%)		•					•	
Decachlorobiphenyl	%	72	70	75	91	92		3737223

				1		1	1	
Maxxam ID		XK2035	XK2036	XK2037	XK2038	XK2039		
Sampling Date		2014/08/24	2014/08/25	2014/08/25	2014/08/25	2014/08/25		
	Units	F4-NH-MW12-07	F4-STA-MW98-07	F4-HEL-MW98-01	F4-HEL-MW98-02	F4-HEL-MW98-03	RDL	QC Batch
PCBs								
Aroclor 1016	ug/L	<0.05	<0.05	<0.05	<0.05	<0.05	0.05	3737223
Aroclor 1221	ug/L	<0.05	<0.05	<0.05	<0.05	<0.05	0.05	3737223
Aroclor 1232	ug/L	<0.05	<0.05	<0.05	<0.05	<0.05	0.05	3737223
Aroclor 1242	ug/L	<0.05	<0.05	<0.05	<0.05	<0.05	0.05	3737223
Aroclor 1248	ug/L	<0.05	<0.05	<0.05	<0.05	<0.05	0.05	3737223
Aroclor 1254	ug/L	<0.05	<0.05	<0.05	<0.05	<0.05	0.05	3737223
Aroclor 1260	ug/L	<0.05	<0.05	<0.05	<0.05	<0.05	0.05	3737223
Aroclor 1262	ug/L	<0.05	<0.05	<0.05	<0.05	<0.05	0.05	3737223
Aroclor 1268	ug/L	<0.05	<0.05	<0.05	<0.05	<0.05	0.05	3737223
Total PCB	ug/L	<0.05	<0.05	<0.05	<0.05	<0.05	0.05	3737223
Surrogate Recovery (%)	<u>. </u>						-	
Decachlorobiphenyl	%	78	79	83	81	86		3737223
		•		•	•	•		

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Decommissioning Consulting Services Limited

Client Project #: 350600-515

Site Location: FOX-4 CAPE HOOPER

Sampler Initials: SB

GENERAL COMMENTS

Results relate only to the items tested.

QUALITY ASSURANCE REPORT

Decommissioning Consulting Services Lir....

Client Project #: 350600-515

Site Location: FOX-4 CAPE HOOPER

			Matrix	Spike	Spiked	Blank	Method	Blank	RP	D
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	Units	Value (%)	QC Limits
3734889	o-Terphenyl	2014/09/05	80	30 - 130	78	30 - 130	80	%		
3734925	o-Terphenyl	2014/09/05	117	30 - 130	95	30 - 130	113	%		
3734927	o-Terphenyl	2014/09/06	90	30 - 130	82	30 - 130	77	%		
3735514	o-Terphenyl	2014/09/04	95	30 - 130	95	30 - 130	96	%		
3735534	1,4-Difluorobenzene	2014/09/04	111	70 - 130	123	70 - 130	97	%		
3735534	4-Bromofluorobenzene	2014/09/04	114	70 - 130	121	70 - 130	95	%		
3735534	D10-Ethylbenzene	2014/09/04	94	70 - 130	104	70 - 130	81	%		
3735534	D4-1,2-Dichloroethane	2014/09/04	96	70 - 130	104	70 - 130	82	%		
3736246	1,4-Difluorobenzene	2014/09/04	126	60 - 140	113	60 - 140	97	%		
3736246	4-Bromofluorobenzene	2014/09/04	82	60 - 140	107	60 - 140	83	%		
3736246	D10-Ethylbenzene	2014/09/04	91	30 - 130	89	30 - 130	76	%		
3736246	D4-1,2-Dichloroethane	2014/09/04	120	60 - 140	106	60 - 140	91	%		
3736297	Decachlorobiphenyl	2014/09/04	80	60 - 130	84	60 - 130	85	%		
3737223	Decachlorobiphenyl	2014/09/06	95	60 - 130	94	60 - 130	82	%		
3737250	1,4-Difluorobenzene	2014/09/05	124	60 - 140	128	60 - 140	127	%		
3737250	4-Bromofluorobenzene	2014/09/05	98	60 - 140	81	60 - 140	79	%		
3737250	D10-Ethylbenzene	2014/09/05	120	30 - 130	93	30 - 130	95	%		
3737250	D4-1,2-Dichloroethane	2014/09/05	112	60 - 140	118	60 - 140	126	%		
3737266	1,4-Difluorobenzene	2014/09/06	126	60 - 140	130	60 - 140	126	%		
3737266	4-Bromofluorobenzene	2014/09/06	86	60 - 140	77	60 - 140	70	%		
3737266	D10-Ethylbenzene	2014/09/06	95	30 - 130	99	30 - 130	104	%		
3737266	D4-1,2-Dichloroethane	2014/09/06	129	60 - 140	123	60 - 140	127	%		
3737684	Decachlorobiphenyl	2014/09/05	91	60 - 130	76	60 - 130	81	%		
3738629	o-Terphenyl	2014/09/08	96	60 - 130	95	60 - 130	100	%		
3738673	Decachlorobiphenyl	2014/09/07	76	60 - 130	81	60 - 130	73	%		
3739314	1,4-Difluorobenzene	2014/09/09	89	60 - 140	89	60 - 140	89	%		
3739314	4-Bromofluorobenzene	2014/09/09	105	60 - 140	106	60 - 140	106	%		
3739314	D10-Ethylbenzene	2014/09/09	92	60 - 140	88	60 - 140	90	%		
3739314	D4-1,2-Dichloroethane	2014/09/09	87	60 - 140	86	60 - 140	87	%		
3734883	Moisture	2014/09/05							3.7	50
3734885	Moisture	2014/09/05							26	50
3734887	Moisture	2014/09/08							12	50

QUALITY ASSURANCE REPORT(CONT'D)

Decommissioning Consulting Services Lir....

Client Project #: 350600-515

Site Location: FOX-4 CAPE HOOPER

			Matrix	Spike	Spiked	Blank	Method	Blank	RP	D
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	Units	Value (%)	QC Limits
3734889	F2 (C10-C16 Hydrocarbons)	2014/09/06	89	50 - 130	90	80 - 120	<10	ug/g	NC	50
3734889	F3 (C16-C34 Hydrocarbons)	2014/09/06	89	50 - 130	90	80 - 120	<10	ug/g	2.8	50
3734889	F4 (C34-C50 Hydrocarbons)	2014/09/06	89	50 - 130	90	80 - 120	<10	ug/g	9.0	50
3734925	F2 (C10-C16 Hydrocarbons)	2014/09/05	126	50 - 130	99	80 - 120	<10	ug/g	NC	50
3734925	F3 (C16-C34 Hydrocarbons)	2014/09/05	126	50 - 130	99	80 - 120	<10	ug/g	NC	50
3734925	F4 (C34-C50 Hydrocarbons)	2014/09/05	126	50 - 130	99	80 - 120	<10	ug/g	NC	50
3734927	F2 (C10-C16 Hydrocarbons)	2014/09/06	97	50 - 130	85	80 - 120	<10	ug/g	NC	50
3734927	F3 (C16-C34 Hydrocarbons)	2014/09/06	97	50 - 130	85	80 - 120	<10	ug/g	NC	50
3734927	F4 (C34-C50 Hydrocarbons)	2014/09/06	97	50 - 130	85	80 - 120	<10	ug/g	NC	50
3735514	F2 (C10-C16 Hydrocarbons)	2014/09/04	76	50 - 130	75	60 - 130	<100	ug/L		
3735514	F3 (C16-C34 Hydrocarbons)	2014/09/04	76	50 - 130	75	60 - 130	<100	ug/L		
3735514	F4 (C34-C50 Hydrocarbons)	2014/09/04	76	50 - 130	75	60 - 130	<100	ug/L		
3735534	Benzene	2014/09/04	97	70 - 130	90	70 - 130	<0.20	ug/L	NC	40
3735534	Ethylbenzene	2014/09/04	81	70 - 130	84	70 - 130	<0.20	ug/L	NC	40
3735534	F1 (C6-C10) - BTEX	2014/09/04					<25	ug/L	5.3	40
3735534	F1 (C6-C10)	2014/09/04	118	70 - 130	87	70 - 130	<25	ug/L	4.4	40
3735534	o-Xylene	2014/09/04	123	70 - 130	81	70 - 130	<0.20	ug/L	1.1	40
3735534	p+m-Xylene	2014/09/04	77	70 - 130	81	70 - 130	<0.40	ug/L	2.4	40
3735534	Toluene	2014/09/04	76	70 - 130	82	70 - 130	<0.20	ug/L	NC	40
3735534	Total Xylenes	2014/09/04					<0.40	ug/L	0.55	40
3736246	Benzene	2014/09/04	77	60 - 140	77	60 - 140	<0.005	ug/g	NC	50
3736246	Ethylbenzene	2014/09/04	73	60 - 140	78	60 - 140	<0.01	ug/g	NC	50
3736246	F1 (C6-C10) - BTEX	2014/09/04					<10	ug/g	NC	50
3736246	F1 (C6-C10)	2014/09/04	100	60 - 140	92	80 - 120	<10	ug/g	NC	50
3736246	o-Xylene	2014/09/04	79	60 - 140	90	60 - 140	<0.02	ug/g	NC	50
3736246	p+m-Xylene	2014/09/04	69	60 - 140	70	60 - 140	<0.04	ug/g	NC	50
3736246	Toluene	2014/09/04	73	60 - 140	76	60 - 140	<0.02	ug/g	NC	50
3736246	Total Xylenes	2014/09/04					<0.04	ug/g	NC	50
3736297	Aroclor 1016	2014/09/04					<0.010	ug/g	NC	50
3736297	Aroclor 1221	2014/09/04					<0.010	ug/g	NC	50
3736297	Aroclor 1232	2014/09/04					<0.010	ug/g	NC	50
3736297	Aroclor 1242	2014/09/04					<0.010	ug/g	NC	50

QUALITY ASSURANCE REPORT(CONT'D)

Decommissioning Consulting Services Lir....

Client Project #: 350600-515

Site Location: FOX-4 CAPE HOOPER

			Matrix	Spike	Spiked	Blank	Method	Blank	RP	'D
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	Units	Value (%)	QC Limits
3736297	Aroclor 1248	2014/09/04					<0.010	ug/g	NC	50
3736297	Aroclor 1254	2014/09/04					<0.010	ug/g	NC	50
3736297	Aroclor 1260	2014/09/04	93	60 - 130	99	60 - 130	<0.010	ug/g	NC	50
3736297	Aroclor 1262	2014/09/04					<0.010	ug/g	NC	50
3736297	Aroclor 1268	2014/09/04					<0.010	ug/g	NC	50
3736297	Total PCB	2014/09/04	93	60 - 130	99	60 - 130	<0.010	ug/g	NC	50
3736784	Moisture	2014/09/04							1.6	20
3737223	Aroclor 1016	2014/09/06					<0.05	ug/L	NC	40
3737223	Aroclor 1221	2014/09/06					<0.05	ug/L	NC	40
3737223	Aroclor 1232	2014/09/06					<0.05	ug/L	NC	40
3737223	Aroclor 1242	2014/09/06					<0.05	ug/L	NC	30
3737223	Aroclor 1248	2014/09/06					<0.05	ug/L	NC	30
3737223	Aroclor 1254	2014/09/06					<0.05	ug/L	NC	30
3737223	Aroclor 1260	2014/09/06	73	60 - 130	71	60 - 130	<0.05	ug/L	NC	30
3737223	Aroclor 1262	2014/09/06					<0.05	ug/L	NC	40
3737223	Aroclor 1268	2014/09/06					<0.05	ug/L	NC	40
3737223	Total PCB	2014/09/06	73	60 - 130	71	60 - 130	<0.05	ug/L	NC	40
3737250	Benzene	2014/09/06	88	60 - 140	94	60 - 140	<0.005	ug/g	NC	50
3737250	Ethylbenzene	2014/09/06	75	60 - 140	79	60 - 140	<0.01	ug/g	NC	50
3737250	F1 (C6-C10) - BTEX	2014/09/06					<10	ug/g	NC	50
3737250	F1 (C6-C10)	2014/09/06	90	60 - 140	93	80 - 120	<10	ug/g	NC	50
3737250	o-Xylene	2014/09/06	76	60 - 140	87	60 - 140	<0.02	ug/g	NC	50
3737250	p+m-Xylene	2014/09/06	70	60 - 140	71	60 - 140	<0.04	ug/g	NC	50
3737250	Toluene	2014/09/06	75	60 - 140	76	60 - 140	<0.02	ug/g	NC	50
3737250	Total Xylenes	2014/09/06					<0.04	ug/g	NC	50
3737266	Benzene	2014/09/08	78	60 - 140	88	60 - 140	<0.005	ug/g	NC	50
3737266	Ethylbenzene	2014/09/08	78	60 - 140	75	60 - 140	<0.01	ug/g	NC	50
3737266	F1 (C6-C10) - BTEX	2014/09/08					<10	ug/g	NC	50
3737266	F1 (C6-C10)	2014/09/08	91	60 - 140	93	80 - 120	<10	ug/g	NC	50
3737266	o-Xylene	2014/09/08	81	60 - 140	78	60 - 140	<0.02	ug/g	NC	50
3737266	p+m-Xylene	2014/09/08	70	60 - 140	71	60 - 140	<0.04	ug/g	NC	50
3737266	Toluene	2014/09/08	75	60 - 140	79	60 - 140	<0.02	ug/g	NC	50

QUALITY ASSURANCE REPORT(CONT'D)

Decommissioning Consulting Services Lir....

Client Project #: 350600-515

Site Location: FOX-4 CAPE HOOPER

			Matrix	Spike	Spiked	Blank	Method	Blank	RP	'D
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	Units	Value (%)	QC Limits
3737266	Total Xylenes	2014/09/08					<0.04	ug/g	NC	50
3737684	Aroclor 1016	2014/09/05					<0.010	ug/g	NC	50
3737684	Aroclor 1221	2014/09/05					<0.010	ug/g	NC	50
3737684	Aroclor 1232	2014/09/05					<0.010	ug/g	NC	50
3737684	Aroclor 1242	2014/09/05					<0.010	ug/g	NC	50
3737684	Aroclor 1248	2014/09/05					<0.010	ug/g	NC	50
3737684	Aroclor 1254	2014/09/05					<0.010	ug/g	NC	50
3737684	Aroclor 1260	2014/09/05	93	60 - 130	86	60 - 130	<0.010	ug/g	NC	50
3737684	Aroclor 1262	2014/09/05					<0.010	ug/g	NC	50
3737684	Aroclor 1268	2014/09/05					<0.010	ug/g	NC	50
3737684	Total PCB	2014/09/05	93	60 - 130	86	60 - 130	<0.010	ug/g	NC	50
3738629	F2 (C10-C16 Hydrocarbons)	2014/09/08	103	50 - 130	102	80 - 120	<10	ug/g	NC	30
3738629	F3 (C16-C34 Hydrocarbons)	2014/09/08	103	50 - 130	102	80 - 120	<50	ug/g	NC	30
3738629	F4 (C34-C50 Hydrocarbons)	2014/09/08	111	50 - 130	110	80 - 120	<50	ug/g	NC	30
3738673	Aroclor 1016	2014/09/07					<0.010	ug/g	NC	50
3738673	Aroclor 1221	2014/09/07					<0.010	ug/g	NC	50
3738673	Aroclor 1232	2014/09/07					<0.010	ug/g	NC	50
3738673	Aroclor 1242	2014/09/07					<0.010	ug/g	NC	50
3738673	Aroclor 1248	2014/09/07					<0.010	ug/g	NC	50
3738673	Aroclor 1254	2014/09/07					<0.010	ug/g	NC	50
3738673	Aroclor 1260	2014/09/07	81	60 - 130	90	60 - 130	<0.010	ug/g	NC	50
3738673	Aroclor 1262	2014/09/07					<0.010	ug/g	NC	50
3738673	Aroclor 1268	2014/09/07					<0.010	ug/g	NC	50
3738673	Total PCB	2014/09/07	81	60 - 130	90	60 - 130	<0.010	ug/g	NC	50
3739269	Acid Extractable Arsenic (As)	2014/09/09	NC	75 - 125	103	80 - 120	<1.0	ug/g	2.9	30
3739269	Acid Extractable Cadmium (Cd)	2014/09/09	105	75 - 125	102	80 - 120	<0.10	ug/g	NC	30
3739269	Acid Extractable Chromium (Cr)	2014/09/09	NC	75 - 125	102	80 - 120	<1.0	ug/g	0.56	30
3739269	Acid Extractable Cobalt (Co)	2014/09/09	110	75 - 125	104	80 - 120	<0.10	ug/g	3.4	30
3739269	Acid Extractable Copper (Cu)	2014/09/09	NC	75 - 125	103	80 - 120	<0.50	ug/g	1.4	30
3739269	Acid Extractable Lead (Pb)	2014/09/09	104	75 - 125	104	80 - 120	<1.0	ug/g	1.5	30
3739269	Acid Extractable Mercury (Hg)	2014/09/09	109	75 - 125	108	80 - 120	<0.050	ug/g	NC	30
3739269	Acid Extractable Nickel (Ni)	2014/09/09	NC	75 - 125	102	80 - 120	<0.50	ug/g	0.42	30

QUALITY ASSURANCE REPORT(CONT'D)

Decommissioning Consulting Services Lir....

Client Project #: 350600-515

Site Location: FOX-4 CAPE HOOPER

Sampler Initials: SB

			Matrix	Spike	Spiked	Blank	Method	Blank	RP	·D
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	Units	Value (%)	QC Limits
3739269	Acid Extractable Zinc (Zn)	2014/09/09	NC	75 - 125	102	80 - 120	<5.0	ug/g	0.97	30
3739314	Benzene	2014/09/09	88	60 - 140	89	60 - 140	< 0.005	ug/g	NC	50
3739314	Ethylbenzene	2014/09/09	102	60 - 140	101	60 - 140	<0.01	ug/g	NC	50
3739314	F1 (C6-C10) - BTEX	2014/09/09					<10	ug/g	NC	50
3739314	F1 (C6-C10)	2014/09/09	90	60 - 140	95	80 - 120	<10	ug/g	NC	50
3739314	o-Xylene	2014/09/09	94	60 - 140	92	60 - 140	<0.02	ug/g	NC	50
3739314	p+m-Xylene	2014/09/09	90	60 - 140	90	60 - 140	<0.04	ug/g	NC	50
3739314	Toluene	2014/09/09	92	60 - 140	93	60 - 140	<0.02	ug/g	NC	50
3739314	Total Xylenes	2014/09/09					<0.04	ug/g	NC	50
3739567	Acid Extractable Arsenic (As)	2014/09/10	NC	75 - 125	101	80 - 120	<1.0	ug/g	16	30
3739567	Acid Extractable Cadmium (Cd)	2014/09/10	103	75 - 125	99	80 - 120	<0.10	ug/g	NC	30
3739567	Acid Extractable Chromium (Cr)	2014/09/10	NC	75 - 125	99	80 - 120	<1.0	ug/g	6.2	30
3739567	Acid Extractable Cobalt (Co)	2014/09/10	101	75 - 125	101	80 - 120	<0.10	ug/g	0.74	30
3739567	Acid Extractable Copper (Cu)	2014/09/10	NC	75 - 125	101	80 - 120	<0.50	ug/g	7.7	30
3739567	Acid Extractable Lead (Pb)	2014/09/10	100	75 - 125	99	80 - 120	<1.0	ug/g	NC	30
3739567	Acid Extractable Mercury (Hg)	2014/09/10	107	75 - 125	104	80 - 120	<0.050	ug/g	NC	30
3739567	Acid Extractable Nickel (Ni)	2014/09/10	NC	75 - 125	101	80 - 120	<0.50	ug/g	0.67	30
3739567	Acid Extractable Zinc (Zn)	2014/09/10	NC	75 - 125	97	80 - 120	<5.0	ug/g	5.9	30
3739716	Acid Extractable Arsenic (As)	2014/09/09	NC	75 - 125	102	80 - 120	<1.0	ug/g	21	30
3739716	Acid Extractable Cadmium (Cd)	2014/09/09	99	75 - 125	98	80 - 120	<0.10	ug/g	NC	30
3739716	Acid Extractable Chromium (Cr)	2014/09/09	NC	75 - 125	101	80 - 120	<1.0	ug/g	2.9	30
3739716	Acid Extractable Cobalt (Co)	2014/09/09	101	75 - 125	102	80 - 120	<0.10	ug/g	1.7	30
3739716	Acid Extractable Copper (Cu)	2014/09/09	NC	75 - 125	102	80 - 120	<0.50	ug/g	2.5	30
3739716	Acid Extractable Lead (Pb)	2014/09/09	99	75 - 125	102	80 - 120	<1.0	ug/g	0.76	30
3739716	Acid Extractable Mercury (Hg)	2014/09/09	104	75 - 125	103	80 - 120	<0.050	ug/g	NC	30
3739716	Acid Extractable Nickel (Ni)	2014/09/09	NC	75 - 125	101	80 - 120	<0.50	ug/g	1.8	30
3739716	Acid Extractable Zinc (Zn)	2014/09/09	NC	75 - 125	101	80 - 120	<5.0	ug/g	0.41	30
3739875	Mercury (Hg)	2014/09/09	95	75 - 125	91	80 - 120	<0.01	ug/L	NC	20
3741391	Mercury (Hg)	2014/09/10	102	80 - 120	99	80 - 120	<0.00010	mg/L	NC	20

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

QUALITY ASSURANCE REPORT(CONT'D)

Decommissioning Consulting Services Lir....

Client Project #: 350600-515

Site Location: FOX-4 CAPE HOOPER

Sampler Initials: SB

		Matrix	Spike	Spiked	Blank	Method	Blank	RP	
QC Batch Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	Units	Value (%)	QC Limits

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spiked amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than 2x that of the native sample concentration).

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (one or both samples < 5x RDL).

Decommissioning Consulting Services Limited

Client Project #: 350600-515

Site Location: FOX-4 CAPE HOOPER

Sampler Initials: SB

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

Clistia Campie
Cristina Carriere, Scientific Services
- Paul K
Paul Rubinato, Analyst, Maxxam Analytics
Elis Stell
Steve Roberts, Lab Supervisor, Ottawa

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Page lof S.

Tel: (905) 882-5984 Fax: (905) 882-8962 Email: engineers@dcsltd.ca Website: www.dcsltd.ca

	Project	No.:	350600-515	Site: FOX-4	Cape	· Hoo	per			100	I	Analy	yses Requested		N	oice	
Shipper	Field End Date: Lab: Require	26 A MAXX ed Date: on No.:	_	Location Turnaro	Courie Oto	tawa	Day(s	5)	F1	2-F4		ics: As, Cd, Cr, Co, Cu, Pb, Ni, Zn, Hg				Field Pro	
Location/ Hole No.	Sample No.	Depth (m)	Descr	iption	Label No.	Grab/ Comp.	Da Colle	253	PHCs F	PHCs F2-F4	PCBs	Inorganics:			pH	Floatrical	Preservatives
F4-TA		Carl Chicago Company	50	11	No.		24 Au	- 1	×	- /	X	×				Conductivity	
FY-TA				,			1	11	X	X	X	X					FERRENET
FY-TA									X	X	X	X	NEAD STATE OF THE				
FY-TA			freite i			HE			X	X	X	X					
F4-17A	N-13-	5							X	X	X	X			o Hi		
F4- TA							V		X	X	X	X					
F4-4E	L-MW	98-01-5			THE RES		25 Ag	5/14	X	X	X	X				3	-Sep-14 13:15
FY-HEL) Ta	1		X	X	X	X				Keshani V	-
FY-HEL	-MW98	-02-5			IŞ .	N. H			X	X	X	X					
F4-HEL	-MW98	-02-D						T A S	X	X	X	X				B4G08	364
P4-HEL	-MW98	-03-5							X	X	X	X				KP2	OTT-002
FY-HEL-	ASSESSMENT OF THE PERSON NAMED IN		4			n Egy	1		X	X	X	X			F		1531. 428
Relinquish Relinquish Relinquish	ed By:		Date: Date:	Time: Time:	Receiv	red By: Pelon red By:	13:11	03	Laboratory		emarks		S ARE TO BE SENT TO	О ТНЕ І	PROJEC	T MANAGER.	

Project No. and Date

Page Zof S.

Tel: (905) 882-5984 Fax: (905) 882-8962 Email: engineers@dcsltd.ca Website: www.dcsltd.ca

	Project	t No.:	350600-515	Site: FOX-4	Cape	Hosp	er			1/14	1	Analy	ses Requested	1/2	ico	
Shipper	Field E Date: Lab: Requir Quotati	26 A	Cechician: S. 1 43457 // 4 θη	Route: Location Turnaro	Courie	awa	Day(s)			F4		s: As, Cd, Cr, Co, Cu, Pb, Ni, Zn, Hg				S,7,S 7,6 7,8,7 OTTAWA
	WIDL'S	10 Meet.	The State of the S			1,00			E	F2-F4	200	anic			Field Proce	edures
Location/ Hole No.		Depth (m)	Descrip	tion		Grab/ Comp.	Date Collecte	ed ?	PHCs	PHCs	PCBs	Inorganics:		pH	Electrical Conductivity	Preservatives
FY-HEL-	MW98-	06-5	501	L			25 Aug/	14 7	X	X	X	×				
F4-HEL					J. 18		1	1	X	X	X	X				
F4-STA					12 1		The state of	1	X	X	X	×		THE PERSON		STATE AND
F4-5774-				TV BUT I				1	X	X	X	X				
FY-STA									X	X	X	X		11/1/2		
FY-STA-	MW98	-08-D						T	X	X	X	X		101		
FY-STA.	MW98	-09-5			Mark.				X	X	X	×				
FY-STA					PIETI		1	1	X	X	X	X		the beauti		Call Side
F4-NH							24Aux	1/4	X	X	X	X				4.14
FY-NH							1		X	X	X	X				
FY-NH									X	X	X	X			Territoria de la compansión de la compan	
F4-NH				V	Mun				X	×	×	×				
Relinquish Relinquish			Date:	Time:		ed By: Palor ed By:	. Ketseyli	ilor	Laboratory		marks L RE		S ARE TO BE SENT TO THI	E PROJECT	MANAGER.	
Relinquish	ed By:		Date:	Time:	Receiv	ed By:			La							

Project No. and Date

Page Zof _.

Tel: (905) 882-5984 Fax: (905) 882-8962 Email: engineers@dcsltd.ca Website: www.dcsltd.ca

	Project	No.:	350600-515	Site: FOX-	1 Cap	e Ho	per			1	Analy	ses Requested	1/2	ica	
Shipper	Project Field E Date: Lab:	Manager ngineer/I 26 / MAX	r: Pechician: Hugust, XAM	S. Borcsok S. Borcsok/J. M /// Route: Location Turnar	Couri	er tawa					Cd, Cr, Co, Cu, Pb, Ni, Zn, Hg	ses requested	To tem	ica nps: 6,7,7 5,5 6,5 D IN Oil	5,7,5 7,6 7,8,7 AWA
	. St.	on No.: To Meet:							2-F4	4	As,			E: LI D	
Location/	Sample	Depth	D.	escription	Labe	Grab/	Date	Cs F1	PHCs F2-F4	38	Inorganics:			Field Proc	edures
Hole No.	No.	(m)	Parl De	escription	No.	Comp.	Collected	PHCs	PH(PCBs	Inor		pH	Electrical Conductivity	Preservatives
F4-NH	- MWII	-03-5	50	16			24 Aug/14	X	X	X	X		By Hall		
FY-NH	-MWII	-03-D)	×	X	X	X				
F4-NH-			6-2			872		×	X	X	X				
F-4-NH-	-MWII	-04-D					B	\times	X	X	X		10		
F4-NH-	-MWII	-05-5			102			X	X	X	X				
F4-NH-	MWII	-05-D						X	X	X	X				
F4-N#-	MWII	-06-S				D.TY		X	X	X	X				
F4-NH-	MWII	-06-D						X	X	X	8				
FY-NH-	-MWIZ	-07-5						X	X	X	X			-11-11-128	
F4-NH-	MWIZ	-07-D						X	X	X	×		and the		
F4-NH-		-08-5						X	X	X	X				
F4-NH-		-08-D	4				A	X	X	X	X				
Relinquish	ed By:		Date: 2014/09 Date:	Time: 3: (Recei	ved By: De Pilo ved By:	~ Kelsey Pil	Laboratory		emark LL RE		S ARE TO BE SENT TO TH	E PROJECT	MANAGER.	
Relinquish	ed By:		Date:	Time:	Recei	ved By:		Lab							11.5

Project No. and Date

Page 4 of _.

Tel: (905) 882-5984 Fax: (905) 882-8962 Email: engineers@dcsltd.ca Website: www.dcsltd.ca

	Project	t No.:	350600-515 S	ite: FOX-4	Cape	Hoof	per			1	Anal	yses Requested	17. 6	No	ico	
Shipper	Field E Date: Lab: Requir Quotati	26 / MAXX red Date:		Location Turnard	Courie	tawa	3 642-67		F2-F4		s: As, Cd, Cr, Co, Cu, Pb, Ni, Zn, Hg			temp 5,	75.677 5,5 6,7,0 RECDIN	OTTAWA
				TYVETERA				s F1	's F2	S	Inorganics:			1 2 1	Field Proc	edures
Location/ Hole No.	No.	Depth (m)	Descript	ion	Label No.	Grab/ Comp.	Date Collected	PHCs	PHCs	PCBs	Inorg		عاساه	pН	Electrical Conductivity	Preservatives
FY-PA	-25	-S	SOIL	1115			25 Auxl	X	X	X	X		H. Paris			
FY-PA			1					X	X	X	X					TYME L
FY-PAL	-26	-5		1984				×	X	X	X			R. F. YE		
FY-PAC	-26	-D						X	X	X	X					
F4-PAL	-27	-5						X	X	X	X	E 15 0		4		
F4-PAL	~27	-D						X	X	X	X					
FY-PAL-	-28	-5						X	X	X	X					
FY-PAL FY-PAL	-28	-D				TY.		X	X	X	X			The l		
FY-PAL	-29	-5				file.	1.7	X	X	X	X					
FY-PAL	-29	-D	V					X	X	X	X					
Relinquish Relinquish			Date: 26/4/09/63	Time: \3.10	Receiv	red By: y Pilor ed By:	KetzyPilo	Laboratory	1500	mark: L RE		'S ARE TO BE SENT	TO THE PR	ојест	MANAGER.	
Relinquish	ed By:		Date:	Time:	Receiv	ed By:		Lab								

Project No. and Date

Page 5 of 5.

121 Granton Drive, Unit 11, Richmond Hill, ON Tel: (905) 882-5984 Fax: (905) 882-8962 Email: engineers@dcsltd.ca Website: www.dcsltd.ca

	Project	t No.:	350600-515	Site: FOX- 4	Cape	Hoop	er			1	Analy	ses Requested	No	ice	
Shipper	Field E Date: Lab: Requir Quotati	26 Au MAXXII ed Date:	Gechician:	S. Borcsok S. Borcsok/J. Mar Route: Location Turnaro	Courie	awa	Day(s)		74		: As, Cd, Cr, Co, Cu, Pb, Ni, Zn, Hg		tem 5,	nps:6,7,7 S,5 6,7 ECD IIV	5,7,5 7,8,7 0,787 0,787
all years	MDL's	To Meet:			Joseph II			臣	F2-1		anics			Field Proc	edures
Location/ Hole No.		Depth (m)	Desc	ription	100000	Grab/ Comp.	Date Collected	PHCs 1	PHCs F2-F4	PCBs	Inorganics:		pН	Electrical Conductivity	Preservatives
F4-NH-		THE RESERVE AND ADDRESS OF THE PERSON NAMED IN	GROUND	WATER			24 Aus/14		X	×	K	768 PER DE PER 1899	并有用 了		WITT X
FY-NH				1	188	197	1	X	X	X	X				
F4-NH-								X	X	X	X				
FY-NH-					9			X	X	X	X				
FY-NH-	MWII	-05				V. Yi		X	X	×	X				
FY-NH-	MWIZ	-07			21164		V	X	X	X	X		271		le y U
F4-STA	-MW9	8-07					25 Aug/14	X	X	X	X				
FY-HEL	-MW9	8-01						X	X	X	X				
FY-HEL				1				X	X	X	X				
F4-HE	L-MW	98-03	C	Y	(1)		V	X	X	X	\times				
	100														
Relinquish			Date: Date:	Time: 13'(0)	Receiv Receiv	ed By: Pilon ed By:	. Kelsey Pilor	atory		mark L RE		S ARE TO BE SENT TO THE	PROJECT	MANAGER.	
Relinquish	ed By:		Date:	Time:	Receiv	ed By:		Laboratory							

Project No. and Date

INVOICE INFORMATION	REPORT	INFORMATIO	V (if differ	s from invoice)		PROJ	ECT INFOR	MATION		TURNAROUND TIME (TAT) REQUIRED		
mpany Name:	Company Nar	me:	THE PE		Quotation #;					Regular TAT (5-7 days)	L.	
ntact Name:	Contact Name	e:			P.O. #:	1				PLEASE PROVIDE ADVANCE NOTICE FOR RUSH PROJECTS		
dress:	Address:				Project #:				Telegraph	Rush TAT (Applicable Surcharge)		
					Site Location:					1 Day (100%)		
one:Fax:	Phone:		Fax:		Site #:					2 Days (50%)		
ail:	Email:	All Control of the Co	NO.		Sampled By:	7				3-4 Days (25%)		
MOE REGULATED DRINKING WATER OR WATER MUST BE SUBMITTED ON THE MAXXAM DR				5 1 1	ANALY	SIS REQU	JESTED		Rush Con	firmation #:		
REGULATION 153 (2011)		REGULATIONS	101	/ CrVI			,		Date Requ	uired:		
				- / Hg						LABORATORY USE ONLY		
Table 1 Res/Park Med/Fine Table 2 Ind/Comm Coarse	CCME MISA	Sanitary Sev Storm Sewe		Metal					CUSTODYS			
Table 3 Agri/Other	PWQ0 Mur	nicipality:		CIRCLE)	0				Present			
Table	Other (Specify):			SE CIR						10 1/2 10		
FOR RSC (PLEASE CIRCLE) YES / NO	REG 558 (MINIMUM	1 3 DAY TAT REQU	RED)	(PLEA:					COOLING	MEDIA () ()		
Include Criteria on Certificate	of Analysis (Y/N	V)?		FILTERED					PRESENT			
SAMPLES MUST BE KEPT COOL (< 10 $^{\circ}$ C) FROM TIME (1 - 4		319/10		
SAMPLE IDENTIFICATION		MATRI MPLED MATRI	# OF CONT.	FIELD						COMMENTS / TAT COMMENTS		
										The second secon		
								100/01	801	ť		
3						++				REC'D IN OTTAWA		
			-		+++	++			-			
RELINQUISHED BY: (Signature/Print) DATE: ()	YYY/MM/DD)	TIME:	RECEIVE	BY: (Signature/Prin	(+)	ATE: (YYY	Y/MM/DD)	TIME:	#JARS L	3-Sep-1 13:15		
DATE: [1	,,,		Λ	DA- 1/	(h)		1 1		ANDA	Keshani Vijh		
		gK	Mey	filos le	I say Villa	2014	109/02	10:30) Jobiviii	B4G0864		126
		m	(ARRYN 1	014/	one or other	0.600000		D700007	1	

Your Project #: MB4G0864 Your C.O.C. #: B4G0864

Attention: SUB CONTRACTOR
MAXXAM ANALYTICS
CAMPOBELLO
6740 CAMPOBELLO ROAD
MISSISSAUGA, ON
CANADA L5N 2L8

Report Date: 2014/09/11 Report #: R1640164

Version: 1

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B477851 Received: 2014/09/04, 08:40

Sample Matrix: Water # Samples Received: 10

		Date	Date
Analyses	Quantity	Extracted	Analyzed Laboratory Method Analytical Method
Cadmium - low level CCME (Total)	7	2014/09/04	2014/09/10 AB SOP-00014 / AB
			SOP-00043
Cadmium - low level CCME (Total)	3	2014/09/04	2014/09/11 AB SOP-00014 / AB
			SOP-00043
Elements by ICP - Total	7	2014/09/08	2014/09/08 AB SOP-00014 / AB
			SOP-00042
Elements by ICP - Total	3	2014/09/08	2014/09/09 AB SOP-00014 / AB
			SOP-00042
Elements by ICPMS - Total	7	2014/09/08	2014/09/08 AB SOP-00014 / AB
			SOP-00043
Elements by ICPMS - Total	3	2014/09/08	2014/09/11 AB SOP-00014 / AB
•			SOP-00043

^{*} RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager.

Cynny Hagen, Project Manager Assistant Email: CHagen@maxxam.ca

Email: CHagen@maxxam.ca Phone# (403) 735-2273

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

MAXXAM ANALYTICS Client Project #: MB4G0864

REGULATED METALS (CCME/AT1) - TOTAL

Maxxam ID		KM9969		KM9970		KM9971		
Sampling Date		2014/08/24		2014/08/24		2014/08/24		
COC Number		B4G0864		B4G0864		B4G0864		
	UNITS	F4-NH-MW11-01	RDL	F4-NH-MW11-02	RDL	F4-NH-MW11-03	RDL	QC Batch
		(XK2030)		(XK2031)		(XK2032)		

		(XIX2030)		(XIXZU31)		(XIXZUJZ)		
Low Level Elements								
Total Cadmium (Cd)	ug/L	0.59	0.020	0.043	0.020	1.1	0.020	7624997
Elements								
Total Aluminum (AI)	mg/L	34	0.0030	3.1	0.0030	80 (1)	0.0075	7629192
Total Antimony (Sb)	mg/L	0.0066	0.00060	<0.00060	0.00060	0.017	0.00060	7629192
Total Arsenic (As)	mg/L	0.033	0.00020	0.11	0.00020	0.053	0.00020	7629192
Total Barium (Ba)	mg/L	0.024	0.010	0.043	0.010	0.13	0.010	7629198
Total Beryllium (Be)	mg/L	0.0043	0.0010	<0.0010	0.0010	0.0036	0.0010	7629192
Total Boron (B)	mg/L	<0.020	0.020	0.031	0.020	0.045	0.020	7629198
Total Calcium (Ca)	mg/L	91	0.30	22	0.30	58	0.30	7629198
Total Chromium (Cr)	mg/L	0.96	0.0010	0.027	0.0010	0.54	0.0010	7629192
Total Cobalt (Co)	mg/L	0.031	0.00030	0.0073	0.00030	0.095	0.00030	7629192
Total Copper (Cu)	mg/L	0.056	0.00020	0.022	0.00020	0.13	0.00020	7629192
Total Iron (Fe)	mg/L	100	0.060	68	0.060	80	0.060	7629198
Total Lead (Pb)	mg/L	0.018	0.00020	0.0039	0.00020	0.26	0.00020	7629192
Total Lithium (Li)	mg/L	0.028	0.020	<0.020	0.020	0.033	0.020	7629198
Total Magnesium (Mg)	mg/L	6.0	0.20	6.6	0.20	17	0.20	7629198
Total Manganese (Mn)	mg/L	0.30	0.0040	0.56	0.0040	0.77	0.0040	7629198
Total Molybdenum (Mo)	mg/L	0.0085	0.00020	0.0085	0.00020	0.0052	0.00020	7629192
Total Nickel (Ni)	mg/L	0.30	0.00050	0.037	0.00050	0.33	0.00050	7629192
Total Phosphorus (P)	mg/L	0.23	0.10	<0.10	0.10	0.39	0.10	7629198
Total Potassium (K)	mg/L	1.1	0.30	9.2	0.30	6.1	0.30	7629198
Total Selenium (Se)	mg/L	0.00063	0.00020	0.00058	0.00020	0.0013	0.00020	7629192
Total Silicon (Si)	mg/L	17	0.10	9.0	0.10	39	0.10	7629198
Total Silver (Ag)	mg/L	0.00010	0.00010	<0.00010	0.00010	0.00028	0.00010	7629192
Total Sodium (Na)	mg/L	7.0	0.50	50	0.50	7.6	0.50	7629198
Total Strontium (Sr)	mg/L	0.027	0.020	0.23	0.020	0.076	0.020	7629198
Total Sulphur (S)	mg/L	4.7	0.20	22	0.20	21	0.20	7629198
Total Thallium (TI)	mg/L	<0.00020	0.00020	<0.00020	0.00020	0.00041	0.00020	7629192
Total Tin (Sn)	mg/L	0.0093	0.0010	<0.0010	0.0010	0.0057	0.0010	7629192
Total Titanium (Ti)	mg/L	13 (1)	0.010	0.41	0.0010	8.4 (1)	0.0050	7629192
Total Uranium (U)	mg/L	0.0078	0.00010	0.0018	0.00010	0.0063	0.00010	7629192
Total Vanadium (V)	mg/L	0.28	0.0010	0.016	0.0010	0.25	0.0010	7629192

RDL = Reportable Detection Limit

⁽¹⁾ Detection limits raised due to dilution to bring analyte within the calibrated range.

MAXXAM ANALYTICS Client Project #: MB4G0864

REGULATED METALS (CCME/AT1) - TOTAL

Maxxam ID		KM9969		KM9970		KM9971		
Sampling Date		2014/08/24		2014/08/24		2014/08/24		
COC Number		B4G0864		B4G0864		B4G0864		
	UNITS	F4-NH-MW11-01	RDL	F4-NH-MW11-02	RDL	F4-NH-MW11-03	RDL	QC Batch
		(XK2030)		(XK2031)		(XK2032)		

Total Zinc (Zn) mg/L 0.094 0.0030 17 (1) 0.030 0.33 0.0030 7	7629192
--	---------

RDL = Reportable Detection Limit (1) Detection limits raised due to dilution to bring analyte within the calibrated range.

MAXXAM ANALYTICS Client Project #: MB4G0864

REGULATED METALS (CCME/AT1) - TOTAL

Maxxam ID		KM9972		KM9973		KM9974		
Sampling Date		2014/08/24		2014/08/24		2014/08/24		
COC Number		B4G0864		B4G0864		B4G0864		
	UNITS	F4-NH-MW11-04	RDL	F4-NH-MW11-05	RDL	F4-NH-MW12-07	RDL	QC Batch
		(XK2033)		(XK2034)		(XK2035)		

	1	(24:12000)		(21.12001)		(24.12000)		
Low Level Elements								
Total Cadmium (Cd)	ug/L	0.12	0.020	0.083	0.020	0.25	0.020	7624997
Elements								
Total Aluminum (AI)	mg/L	21	0.0030	18	0.0030	29	0.0030	7629192
Total Antimony (Sb)	mg/L	<0.00060	0.00060	<0.00060	0.00060	<0.00060	0.00060	7629192
Total Arsenic (As)	mg/L	0.024	0.00020	0.031	0.00020	0.040	0.00020	7629192
Total Barium (Ba)	mg/L	0.14	0.010	0.12	0.010	0.18	0.010	7629198
Total Beryllium (Be)	mg/L	<0.0010	0.0010	<0.0010	0.0010	0.0013	0.0010	7629192
Total Boron (B)	mg/L	0.024	0.020	<0.020	0.020	<0.020	0.020	7629198
Total Calcium (Ca)	mg/L	59	0.30	15	0.30	27	0.30	7629198
Total Chromium (Cr)	mg/L	0.20	0.0010	0.068	0.0010	0.14	0.0010	7629192
Total Cobalt (Co)	mg/L	0.018	0.00030	0.014	0.00030	0.026	0.00030	7629192
Total Copper (Cu)	mg/L	0.069	0.00020	0.056	0.00020	0.082	0.00020	7629192
Total Iron (Fe)	mg/L	28	0.060	25	0.060	44	0.060	7629198
Total Lead (Pb)	mg/L	0.016	0.00020	0.014	0.00020	0.021	0.00020	7629192
Total Lithium (Li)	mg/L	0.033	0.020	<0.020	0.020	0.036	0.020	7629198
Total Magnesium (Mg)	mg/L	63	0.20	16	0.20	25	0.20	7629198
Total Manganese (Mn)	mg/L	0.34	0.0040	0.32	0.0040	0.44	0.0040	7629198
Total Molybdenum (Mo)	mg/L	0.0041	0.00020	0.0029	0.00020	0.0021	0.00020	7629192
Total Nickel (Ni)	mg/L	0.13	0.00050	0.055	0.00050	0.092	0.00050	7629192
Total Phosphorus (P)	mg/L	0.57	0.10	0.28	0.10	1.2	0.10	7629198
Total Potassium (K)	mg/L	13	0.30	7.6	0.30	10	0.30	7629198
Total Selenium (Se)	mg/L	0.00051	0.00020	0.00038	0.00020	0.00068	0.00020	7629192
Total Silicon (Si)	mg/L	36	0.10	31	0.10	38	0.10	7629198
Total Silver (Ag)	mg/L	<0.00010	0.00010	<0.00010	0.00010	0.00014	0.00010	7629192
Total Sodium (Na)	mg/L	38	0.50	13	0.50	18	0.50	7629198
Total Strontium (Sr)	mg/L	0.25	0.020	0.070	0.020	0.11	0.020	7629198
Total Sulphur (S)	mg/L	38	0.20	3.4	0.20	9.8	0.20	7629198
Total Thallium (TI)	mg/L	0.00045	0.00020	0.00036	0.00020	0.00059	0.00020	7629192
Total Tin (Sn)	mg/L	<0.0010	0.0010	<0.0010	0.0010	0.0013	0.0010	7629192
Total Titanium (Ti)	mg/L	2.6 (1)	0.0025	1.8	0.0010	3.3 (1)	0.0025	7629192
Total Uranium (U)	mg/L	0.0032	0.00010	0.0027	0.00010	0.015	0.00010	7629192
Total Vanadium (V)	mg/L	0.098	0.0010	0.065	0.0010	0.10	0.0010	7629192

RDL = Reportable Detection Limit

⁽¹⁾ Detection limits raised due to dilution to bring analyte within the calibrated range.

MAXXAM ANALYTICS Client Project #: MB4G0864

REGULATED METALS (CCME/AT1) - TOTAL

Maxxam ID		KM9972		KM9973		KM9974		
Sampling Date		2014/08/24		2014/08/24		2014/08/24		
COC Number		B4G0864		B4G0864		B4G0864		
	UNITS	F4-NH-MW11-04	RDL	F4-NH-MW11-05	RDL	F4-NH-MW12-07	RDL	QC Batch
		(XK2033)		(XK2034)		(XK2035)		

	mg/L 0.18	0.0030 0.65	0.0030 0.13	0.0030 7629192
--	-----------	-------------	-------------	----------------

RDL = Reportable Detection Limit

MAXXAM ANALYTICS Client Project #: MB4G0864

REGULATED METALS (CCME/AT1) - TOTAL

Maxxam ID		KM9975	i	KM9976	KM9977	KM9978		İ
Sampling Date		2014/08/25		2014/08/25	2014/08/25	2014/08/25		
COC Number		B4G0864		B4G0864	B4G0864	B4G0864		
	UNITS	F4-STA-MW98-07 (XK2036)	QC Batch	F4-HEL-MW98-01 (XK2037)	F4-HEL-MW98-02 (XK2038)	F4-HEL-MW98-03 (XK2039)	RDL	QC Batch
		(2000)		(2002)	(2000)	(20.00)		
Low Level Elements								
Total Cadmium (Cd)	ug/L	0.52	7624997	0.48	0.042	0.086	0.020	7624997
Elements								
Total Aluminum (AI)	mg/L	2.5	7629192	0.71	0.24	1.1	0.0030	7629630
Total Antimony (Sb)	mg/L	<0.00060	7629192	<0.00060	<0.00060	<0.00060	0.00060	7629630
Total Arsenic (As)	mg/L	0.0015	7629192	0.0016	0.027	0.0025	0.00020	7629630
Total Barium (Ba)	mg/L	0.026	7629198	0.017	0.012	0.011	0.010	7629638
Total Beryllium (Be)	mg/L	<0.0010	7629192	<0.0010	<0.0010	<0.0010	0.0010	7629630
Total Boron (B)	mg/L	<0.020	7629198	0.27	0.065	0.077	0.020	7629638
Total Calcium (Ca)	mg/L	2.0	7629198	15	39	8.5	0.30	7629638
Total Chromium (Cr)	mg/L	0.22	7629192	0.066	0.067	0.048	0.0010	7629630
Total Cobalt (Co)	mg/L	0.020	7629192	0.0098	0.018	0.0021	0.00030	7629630
Total Copper (Cu)	mg/L	0.035	7629192	0.17	0.0057	0.0063	0.00020	7629630
Total Iron (Fe)	mg/L	2.2	7629198	1.2	9.6	1.5	0.060	7629638
Total Lead (Pb)	mg/L	0.0037	7629192	0.0018	0.0013	0.0021	0.00020	7629630
Total Lithium (Li)	mg/L	<0.020	7629198	<0.020	<0.020	<0.020	0.020	7629638
Total Magnesium (Mg)	mg/L	1.2	7629198	4.9	5.8	5.3	0.20	7629638
Total Manganese (Mn)	mg/L	0.045	7629198	0.079	0.57	0.048	0.0040	7629638
Total Molybdenum (Mo)	mg/L	0.0068	7629192	0.0018	0.0025	0.0024	0.00020	7629630
Total Nickel (Ni)	mg/L	0.19	7629192	0.097	0.043	0.048	0.00050	7629630
Total Phosphorus (P)	mg/L	<0.10	7629198	<0.10	<0.10	<0.10	0.10	7629638
Total Potassium (K)	mg/L	1.2	7629198	1.6	3.0	1.7	0.30	7629638
Total Selenium (Se)	mg/L	<0.00020	7629192	0.00020	0.00076	0.00023	0.00020	7629630
Total Silicon (Si)	mg/L	3.9	7629198	5.0	4.0	8.3	0.10	7629638
Total Silver (Ag)	mg/L	<0.00010	7629192	<0.00010	<0.00010	<0.00010	0.00010	7629630
Total Sodium (Na)	mg/L	2.5	7629198	5.9	5.4	5.6	0.50	7629638
Total Strontium (Sr)	mg/L	<0.020	7629198	0.078	0.18	0.032	0.020	7629638
Total Sulphur (S)	mg/L	3.6	7629198	15	12	11	0.20	7629638
Total Thallium (TI)	mg/L	<0.00020	7629192	<0.00020	<0.00020	<0.00020	0.00020	7629630
Total Tin (Sn)	mg/L	<0.0010	7629192	<0.0010	<0.0010	<0.0010	0.0010	7629630
Total Titanium (Ti)	mg/L	0.13	7629192	0.051	0.020	0.059	0.0010	7629630
Total Uranium (U)	mg/L	0.00071	7629192	0.00037	0.00036	0.00050	0.00010	7629630
Total Vanadium (V)	mg/L	0.0046	7629192	0.0023	0.0020	0.0024	0.0010	7629630
RDL = Reportable Detec	tion Limit							

MAXXAM ANALYTICS Client Project #: MB4G0864

REGULATED METALS (CCME/AT1) - TOTAL

QC Batch
7629630

RDL = Reportable Detection Limit

MAXXAM ANALYTICS Client Project #: MB4G0864

General Comments

Results relate only to the items tested.

P.O. #: Site Location:

Quality Assurance Report Maxxam Job Number: CB477851

QA/QC			Date				
Batch			Analyzed				
Num Init	QC Type	Parameter	yyyy/mm/dd	Value	Recovery	UNITS	QC Limits
7629192 KA3	Matrix Spike	Total Aluminum (Al)	2014/09/08		94	%	80 - 120
	·	Total Antimony (Sb)	2014/09/08		104	%	80 - 120
		Total Arsenic (As)	2014/09/08		106	%	80 - 120
		Total Beryllium (Be)	2014/09/08		86	%	80 - 120
		Total Chromium (Cr)	2014/09/08		99	%	80 - 120
		Total Cobalt (Co)	2014/09/08		101	%	80 - 120
		Total Copper (Cu)	2014/09/08		NC	%	80 - 120
		Total Lead (Pb)	2014/09/08		102	%	80 - 120
		Total Molybdenum (Mo)	2014/09/08		115	%	80 - 120
		Total Nickel (Ni)	2014/09/08		99	%	80 - 120
		Total Selenium (Se)	2014/09/08		102	%	80 - 120
		Total Silver (Ag)	2014/09/08		97	%	80 - 120
		Total Thallium (TI)	2014/09/08		101	%	80 - 120
		Total Tin (Sn)	2014/09/08		112	%	80 - 120
		Total Titanium (Ti)	2014/09/08		100	%	80 - 120
		Total Uranium (U)	2014/09/08		109	%	80 - 120
		Total Vanadium (V)	2014/09/08		107	%	80 - 120
		Total Zinc (Zn)	2014/09/08		NC	%	80 - 120
	Spiked Blank	Total Aluminum (AI)	2014/09/08		106	%	80 - 120
	Opined Blank	Total Antimony (Sb)	2014/09/08		109	%	80 - 120
		Total Artimony (GB)	2014/09/08		110	%	80 - 120
		Total Beryllium (Be)	2014/09/08		114	%	80 - 120
		Total Chromium (Cr)	2014/09/08		110	%	80 - 120
		Total Cobalt (Co)	2014/09/08		113	%	80 - 120
		Total Cobait (Co) Total Copper (Cu)	2014/09/08		113	% %	80 - 120
					113	%	80 - 120 80 - 120
		Total Lead (Pb)	2014/09/08				
		Total Molybdenum (Mo)	2014/09/08		115	%	80 - 120
		Total Nickel (Ni)	2014/09/08		109	%	80 - 120
		Total Selenium (Se)	2014/09/08		111	%	80 - 120
		Total Silver (Ag)	2014/09/08		104	%	80 - 120
		Total Thallium (TI)	2014/09/08		113	%	80 - 120
		Total Title (Sn)	2014/09/08		116	%	80 - 120
		Total Titanium (Ti)	2014/09/08		112	%	80 - 120
		Total Uranium (U)	2014/09/08		117	%	80 - 120
		Total Vanadium (V)	2014/09/08		116	%	80 - 120
		Total Zinc (Zn)	2014/09/08		107	%	80 - 120
	Method Blank	Total Aluminum (Al)	2014/09/08	<0.0030		mg/L	
		Total Antimony (Sb)	2014/09/08	<0.00060		mg/L	
		Total Arsenic (As)	2014/09/08	<0.00020		mg/L	
		Total Beryllium (Be)	2014/09/08	<0.0010		mg/L	
		Total Chromium (Cr)	2014/09/08	< 0.0010		mg/L	
		Total Cobalt (Co)	2014/09/08	<0.00030		mg/L	
		Total Copper (Cu)	2014/09/08	<0.00020		mg/L	
		Total Lead (Pb)	2014/09/08	<0.00020		mg/L	
		Total Molybdenum (Mo)	2014/09/08	<0.00020		mg/L	
		Total Nickel (Ni)	2014/09/08	< 0.00050		mg/L	
		Total Selenium (Se)	2014/09/08	<0.00020		mg/L	
		Total Silver (Ag)	2014/09/08	< 0.00010		mg/L	
		Total Thallium (TI)	2014/09/08	< 0.00020		mg/L	
		Total Tin (Sn)	2014/09/08	< 0.0010		mg/L	
		Total Titanium (Ti)	2014/09/08	< 0.0010		mg/L	
		Total Uranium (U)	2014/09/08	< 0.00010		mg/L	
		Total Vanadium (V)	2014/09/08	< 0.0010		mg/L	
		Total Zinc (Zn)	2014/09/08	< 0.0030		mg/L	ļ
	RPD	Total Aluminum (Al)	2014/09/08	NC		%	20
		,	_				

P.O. #: Site Location:

Quality Assurance Report (Continued)

Maxxam Job Number: CB477851

QA/QC			Date			
Batch			Analyzed			
Num Init	QC Type	Parameter	yyyy/mm/dd	Value	Recovery UNITS	QC Limits
7629192 KA3	RPD	Total Antimony (Sb)	2014/09/08	NC	%	20
		Total Arsenic (As)	2014/09/08	NC	%	20
		Total Beryllium (Be)	2014/09/08	NC	%	20
		Total Chromium (Cr)	2014/09/08	NC	%	20
		Total Cobalt (Co)	2014/09/08	NC	%	20
		Total Copper (Cu)	2014/09/08	1.5	%	20
		Total Lead (Pb)	2014/09/08	NC	%	20
		Total Molybdenum (Mo)	2014/09/08	NC	%	20
		Total Nickel (Ni)	2014/09/08	NC	%	20
		Total Selenium (Se)	2014/09/08	NC	%	20
		Total Silver (Ag)	2014/09/08	NC	%	20
		Total Thallium (TI)	2014/09/08	NC	%	20
		Total Tin (Sn)	2014/09/08	NC	%	20
		Total Titanium (Ti)	2014/09/08	NC	%	20
		Total Uranium (U)	2014/09/08	NC	%	20
		Total Vanadium (V)	2014/09/08	NC	%	20
		Total Zinc (Zn)	2014/09/08	3.4	%	20
7629198 JBA	Matrix Spike	Total Barium (Ba)	2014/09/08		79 (1) %	80 - 120
		Total Boron (B)	2014/09/08		85 %	80 - 120
		Total Calcium (Ca)	2014/09/08		NC %	80 - 120
		Total Iron (Fe)	2014/09/08		85 %	80 - 120
		Total Lithium (Li)	2014/09/08		82 %	80 - 120
		Total Magnesium (Mg)	2014/09/08		87 %	80 - 120
		Total Manganese (Mn)	2014/09/08		88 %	80 - 120
		Total Phosphorus (P)	2014/09/08		85 %	80 - 120
		Total Potassium (K)	2014/09/08		81 %	80 - 120
		Total Silicon (Si)	2014/09/08		83 %	80 - 120
		Total Sodium (Na)	2014/09/08		NC %	80 - 120
		Total Strontium (Sr)	2014/09/08		82 %	80 - 120
	Spiked Blank	Total Barium (Ba)	2014/09/08		84 %	80 - 120
		Total Boron (B)	2014/09/08		87 %	80 - 120
		Total Calcium (Ca)	2014/09/08		91 %	80 - 120
		Total Iron (Fe)	2014/09/08		91 %	80 - 120
		Total Lithium (Li)	2014/09/08		84 %	80 - 120
		Total Magnesium (Mg)	2014/09/08		91 %	80 - 120
		Total Manganese (Mn)	2014/09/08		93 %	80 - 120
		Total Phosphorus (P)	2014/09/08		88 %	80 - 120
		Total Potassium (K)	2014/09/08		81 %	80 - 120
		Total Silicon (Si)	2014/09/08		85 %	80 - 120
		Total Sodium (Na)	2014/09/08		88 %	80 - 120
		Total Strontium (Sr)	2014/09/08		87 %	80 - 120
	Method Blank	Total Barium (Ba)	2014/09/08	< 0.010	mg/L	
		Total Boron (B)	2014/09/08	< 0.020	mg/L	
		Total Calcium (Ca)	2014/09/08	< 0.30	mg/L	
		Total Iron (Fe)	2014/09/08	< 0.060	mg/L	
		Total Lithium (Li)	2014/09/08	< 0.020	mg/L	
		Total Magnesium (Mg)	2014/09/08	<0.20	mg/L	
		Total Manganese (Mn)	2014/09/08	< 0.0040	mg/L	
		Total Phosphorus (P)	2014/09/08	<0.10	mg/L	
		Total Potassium (K)	2014/09/08	< 0.30	mg/L	
		Total Silicon (Si)	2014/09/08	<0.10	mg/L	
		Total Sodium (Na)	2014/09/08	< 0.50	mg/L	
		Total Strontium (Sr)	2014/09/08	< 0.020	mg/L	
		Total Sulphur (S)	2014/09/08	< 0.20	mg/L	
	RPD	Total Barium (Ba)	2014/09/08	NC	%	20
		· ·				

P.O. #: Site Location:

Quality Assurance Report (Continued)

Maxxam Job Number: CB477851

QA/QC			Date				
Batch			Analyzed				
Num Init	QC Type	Parameter	yyyy/mm/dd	Value	Recovery	UNITS	QC Limits
7629198 JBA	RPD	Total Boron (B)	2014/09/08	2.0		%	20
		Total Calcium (Ca)	2014/09/08	0.9		%	20
		Total Iron (Fe)	2014/09/08	NC		%	20
		Total Lithium (Li)	2014/09/08	NC		%	20
		Total Magnesium (Mg)	2014/09/08	2.3		%	20
		Total Manganese (Mn)	2014/09/08	NC		%	20
		Total Phosphorus (P)	2014/09/08	NC		%	20
		Total Potassium (K)	2014/09/08	4.6		%	20
		Total Silicon (Si)	2014/09/08	1.4		%	20
		Total Sodium (Na)	2014/09/08	2.8		%	20
		Total Strontium (Śr)	2014/09/08	2.0		%	20
		Total Sulphur (S)	2014/09/08	2.3		%	20
7629630 KA3	Matrix Spike	Total Aluminum (AI)	2014/09/11		NC	%	80 - 120
		Total Antimony (Sb)	2014/09/11		96	%	80 - 120
		Total Arsenic (As)	2014/09/11		96	%	80 - 120
		Total Beryllium (Be)	2014/09/11		100	%	80 - 120
		Total Chromium (Cr)	2014/09/11		98	%	80 - 120
		Total Cobalt (Co)	2014/09/11		94	%	80 - 120
		Total Copper (Cu)	2014/09/11		96	%	80 - 120
		Total Lead (Pb)	2014/09/11		94	%	80 - 120
		Total Molybdenum (Mo)	2014/09/11		103	%	80 - 120
		Total Nickel (Ni)	2014/09/11		96	%	80 - 120
		Total Selenium (Se)	2014/09/11		100	%	80 - 120
		Total Selenium (Se) Total Silver (Ag)	2014/09/11		89	%	80 - 120
		Total Thallium (TI)	2014/09/11		95	% %	80 - 120
		Total Triallidin (Tr) Total Tin (Sn)	2014/09/11		100	%	80 - 120
		` ,					
		Total Uranium (Ti)	2014/09/11		100	%	80 - 120
		Total Vanadium (U)	2014/09/11		98	%	80 - 120
		Total Vanadium (V)	2014/09/11		104	%	80 - 120
	On the all Discole	Total Zinc (Zn)	2014/09/11		94	%	80 - 120
	Spiked Blank	Total Aluminum (Al)	2014/09/10		98	%	80 - 120
		Total Antimony (Sb)	2014/09/10		98	%	80 - 120
		Total Arsenic (As)	2014/09/10		96	%	80 - 120
		Total Beryllium (Be)	2014/09/10		95	%	80 - 120
		Total Chromium (Cr)	2014/09/10		96	%	80 - 120
		Total Cobalt (Co)	2014/09/10		92	%	80 - 120
		Total Copper (Cu)	2014/09/10		96	%	80 - 120
		Total Lead (Pb)	2014/09/10		100	%	80 - 120
		Total Molybdenum (Mo)	2014/09/10		102	%	80 - 120
		Total Nickel (Ni)	2014/09/10		96	%	80 - 120
		Total Selenium (Se)	2014/09/10		98	%	80 - 120
		Total Silver (Ag)	2014/09/10		93	%	80 - 120
		Total Thallium (TI)	2014/09/10		102	%	80 - 120
		Total Tin (Sn)	2014/09/10		103	%	80 - 120
		Total Titanium (Ti)	2014/09/10		96	%	80 - 120
		Total Uranium (U)	2014/09/10		93	%	80 - 120
		Total Vanadium (V)	2014/09/10		101	%	80 - 120
		Total Zinc (Zn)	2014/09/10		91	%	80 - 120
	Method Blank	Total Aluminum (AI)	2014/09/11	< 0.0030		mg/L	
		Total Antimony (Sb)	2014/09/11	< 0.00060		mg/L	
		Total Arsenic (As)	2014/09/11	0.00023, R	DL=0.00020	mg/L	
		Total Beryllium (Be)	2014/09/11	< 0.0010		mg/L	
		Total Chromium (Cr)	2014/09/11	< 0.0010		mg/L	
		Total Cobalt (Co)	2014/09/11	< 0.00030		mg/L	
		Total Copper (Cu)	2014/09/11	< 0.00020		mg/L	
		,				-	

P.O. #: Site Location:

Quality Assurance Report (Continued)

Maxxam Job Number: CB477851

QA/QC			Date				
Batch			Analyzed				
Num Init	QC Type	Parameter	yyyy/mm/dd	Value	Recovery	UNITS	QC Limits
7629630 KA3	Method Blank	Total Lead (Pb)	2014/09/11	<0.00020	•	mg/L	
		Total Molybdenum (Mo)	2014/09/11	< 0.00020		mg/L	
		Total Nickel (Ni)	2014/09/11	< 0.00050		mg/L	
		Total Selenium (Se)	2014/09/11	0.00022,	RDL=0.00020	mg/L	
		Total Silver (Ag)	2014/09/11	< 0.00010		mg/L	
		Total Thallium (TI)	2014/09/11	< 0.00020		mg/L	
		Total Tin (Sn)	2014/09/11	< 0.0010		mg/L	
		Total Titanium (Ti)	2014/09/11	< 0.0010		mg/L	
		Total Uranium (U)	2014/09/11	< 0.00010		mg/L	
		Total Vanadium (V)	2014/09/11	< 0.0010		mg/L	
		Total Zinc (Zn)	2014/09/11	< 0.0030		mg/L	
	RPD	Total Aluminum (Al)	2014/09/11	8.0		%	20
		Total Antimony (Sb)	2014/09/11	NC		%	20
		Total Arsenic (As)	2014/09/11	1.3		%	20
		Total Beryllium (Be)	2014/09/11	NC		%	20
		Total Chromium (Cr)	2014/09/11	NC		%	20
		Total Cobalt (Co)	2014/09/11	NC		%	20
		Total Copper (Cu)	2014/09/11	NC		%	20
		Total Lead (Pb)	2014/09/11	NC		%	20
		Total Molybdenum (Mo)	2014/09/11	NC		%	20
		Total Nickel (Ni)	2014/09/11	NC		%	20
		Total Selenium (Se)	2014/09/11	NC		%	20
		Total Silver (Ag)	2014/09/11	NC		%	20
		Total Thallium (TI)	2014/09/11	NC		%	20
		Total Tin (Sn)	2014/09/11	NC		%	20
		Total Titanium (Ti)	2014/09/11	NC		%	20
		Total Uranium (U)	2014/09/11	NC		%	20
		Total Vanadium (V)	2014/09/11	NC		%	20
		Total Zinc (Zn)	2014/09/11	NC		%	20
7629638 STI	Matrix Spike	Total Barium (Ba)	2014/09/09		93	%	80 - 120
. 020000 0	mann opino	Total Boron (B)	2014/09/09		98	%	80 - 120
		Total Calcium (Ca)	2014/09/09		NC	%	80 - 120
		Total Iron (Fe)	2014/09/09		98	%	80 - 120
		Total Lithium (Li)	2014/09/09		97	%	80 - 120
		Total Magnesium (Mg)	2014/09/09		NC	%	80 - 120
		Total Manganese (Mn)	2014/09/09		105	%	80 - 120
		Total Phosphorus (P)	2014/09/09		96	%	80 - 120
		Total Potassium (K)	2014/09/09		98	%	80 - 120
		Total Silicon (Si)	2014/09/09		100	%	80 - 120
		Total Sodium (Na)	2014/09/09		101	%	80 - 120
		Total Strontium (Sr)	2014/09/09		95	%	80 - 120
	Spiked Blank	Total Barium (Ba)	2014/09/09		93	%	80 - 120
	opinoa Biarin	Total Boron (B)	2014/09/09		97	%	80 - 120
		Total Calcium (Ca)	2014/09/09		98	%	80 - 120
		Total Iron (Fe)	2014/09/09		98	%	80 - 120
		Total Lithium (Li)	2014/09/09		96	%	80 - 120
		Total Magnesium (Mg)	2014/09/09		101	%	80 - 120
		Total Manganese (Mn)	2014/09/09		105	%	80 - 120
		Total Phosphorus (P)	2014/09/09		95	%	80 - 120
		Total Potassium (K)	2014/09/09		96	%	80 - 120
		Total Silicon (Si)	2014/09/09		98	%	80 - 120
		Total Solium (Na)	2014/09/09		100	%	80 - 120
		Total Socium (Na) Total Strontium (Sr)	2014/09/09		96	%	80 - 120
	Method Blank	Total Barium (Ba)	2014/09/09	<0.010	30	mg/L	00 - 120
	Motified Blatik	Total Boron (B)	2014/09/09	<0.010		mg/L	
		. 3.41 201011 (2)	2017/00/00	-0.020		9/ ⊏	

P.O. #: Site Location:

Quality Assurance Report (Continued)

Maxxam Job Number: CB477851

QA/QC			Date				
Batch			Analyzed				
Num Init	QC Type	Parameter	yyyy/mm/dd	Value	Recovery	UNITS	QC Limits
7629638 STI	Method Blank	Total Calcium (Ca)	2014/09/09	< 0.30		mg/L	
		Total Iron (Fe)	2014/09/09	< 0.060		mg/L	
		Total Lithium (Li)	2014/09/09	< 0.020		mg/L	
		Total Magnesium (Mg)	2014/09/09	< 0.20		mg/L	
		Total Manganese (Mn)	2014/09/09	< 0.0040		mg/L	
		Total Phosphorus (P)	2014/09/09	< 0.10		mg/L	
		Total Potassium (K)	2014/09/09	< 0.30		mg/L	
		Total Silicon (Si)	2014/09/09	< 0.10		mg/L	
		Total Sodium (Na)	2014/09/09	< 0.50		mg/L	
		Total Strontium (Sr)	2014/09/09	< 0.020		mg/L	
		Total Sulphur (S)	2014/09/09	< 0.20		mg/L	
	RPD	Total Barium (Ba)	2014/09/09	0.9		%	20
		Total Boron (B)	2014/09/09	NC		%	20
		Total Calcium (Ca)	2014/09/09	0.8		%	20
		Total Iron (Fe)	2014/09/09	NC		%	20
		Total Lithium (Li)	2014/09/09	NC		%	20
		Total Magnesium (Mg)	2014/09/09	0.8		%	20
		Total Manganese (Mn)	2014/09/09	0.2		%	20
		Total Phosphorus (P)	2014/09/09	NC		%	20
		Total Potassium (K)	2014/09/09	2.1		%	20
		Total Silicon (Si)	2014/09/09	1.8		%	20
		Total Sodium (Na)	2014/09/09	1		%	20
		Total Strontium (Sr)	2014/09/09	1.2		%	20
		Total Sulphur (S)	2014/09/09	2.1		%	20

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spiked amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than 2x that of the native sample concentration).

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (one or both samples < 5x RDL).

(1) Recovery or RPD for this parameter is outside control limits. The overall quality control for this analysis meets acceptability criteria.

Validation Signature Page

Maxxam	Job	#: B	4778	51
--------	-----	------	------	----

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

Peng Liang, Analyst II

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

CLIENT NAME: ARCADIS SENES CANADA INC(DCS) 121 GRANTON DRIVE, UNIT #11, RICHMOND HILL, ON L4B3N4 (905) 882-5984

ATTENTION TO: Steve Borcsok

PROJECT: 350600-515

AGAT WORK ORDER: 14Z884832

SOIL ANALYSIS REVIEWED BY: Sofka Pehlyova, Senior Analyst

TRACE ORGANICS REVIEWED BY: Neli Popnikolova, Senior Chemist

WATER ANALYSIS REVIEWED BY: Sofka Pehlyova, Senior Analyst

DATE REPORTED: Sep 16, 2014

PAGES (INCLUDING COVER): 11

VERSION*: 1

Should you require any information regarding this analysis please contact your client services representative at (905) 712-5100

*NOTES	

All samples will be disposed of within 30 days following analysis. Please contact the lab if you require additional sample storage time.

AGAT Laboratories (V1)

Page 1 of 11

AGAT WORK ORDER: 14Z884832

PROJECT: 350600-515

Metals Scan (Soil)

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: ARCADIS SENES CANADA INC(DCS)

SAMPLING SITE:

ATTENTION TO: Steve Borcsok SAMPLED BY:J. Mauchan

motais souri (son)		

DATE RECEIVED: 2014-09-05									DATE REPORTED: 2014-09-16
		SAMDLE DESC	PIDTION	E4 TAN 11 G	S F4 - PAL - 27 - S	F4 - HEL -	F4 - STA - MW98 - 07 - 8	F4 - NH - MW1:	2
		SAMP	LE TYPE:	Soil 8/24/2014	Soil 8/25/2014	Soil 8/25/2014	Soil 8/25/2014	- 06 - 3 Soil 8/25/2014	
Parameter	Unit	G/S	RDL	5774845	5774880	5774884	5774890	5774900	
Arsenic	μg/g		1	6	9	14	43	15	
Cadmium	μg/g		0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
Cobalt	μg/g		0.5	2.4	2.8	7.4	10.5	4.4	
Chromium	μg/g		2	13	20	39	68	32	
Copper	μg/g		1	12	11	22	65	16	
Lead	μg/g		1	4	13	6	6	5	
Mercury	μg/g		0.10	<0.10	<0.10	<0.10	<0.10	<0.10	
Nickel	μg/g		1	2	3	16	39	9	
Zinc	μg/g		5	12	19	41	58	25	

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to T1(All)

5774845-5774900

Certified By:

Sofiea Pehlyona

AGAT WORK ORDER: 14Z884832

PROJECT: 350600-515

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: ARCADIS SENES CANADA INC(DCS)

SAMPLING SITE:

ATTENTION TO: Steve Borcsok SAMPLED BY:J. Mauchan

	• · · · · · === = · · · · · · · · · · ·								
					PCBs (s	oil)			
DATE RECEIVED: 2014-09-05									DATE REPORTED: 2014-09-16
						F4 - HEL -	F4 - STA -	F4 - NH - MW12	2
		SAMPLE DESC	RIPTION: F	⁻ 4 - TAN - 11 - S	F4 - PAL - 27 - S	MW98 - 02 - S	MW98 - 07 - 8	- 08 - S	
		SAMP	LE TYPE:	Soil	Soil	Soil	Soil	Soil	
		DATE S	AMPLED:	8/24/2014	8/25/2014	8/25/2014	8/25/2014	8/25/2014	
Parameter	Unit	G/S	RDL	5774845	5774880	5774884	5774890	5774900	
PCBs	μg/g		0.05	< 0.05	< 0.05	<0.05	< 0.05	< 0.05	
Surrogate	Unit	Acceptabl	e Limits						
Decachlorobiphenyl	%	60-1	30	96	92	90	92	94	

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard **5774845-5774900** Results are based on the dry weight of soil extracted.

SAMPLING SITE:

Certificate of Analysis

AGAT WORK ORDER: 14Z884832

PROJECT: 350600-515

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: ARCADIS SENES CANADA INC(DCS)

ATTENTION TO: Steve Borcsok SAMPLED BY: J. Mauchan

PCBs (water)									
DATE RECEIVED: 2014-09-05 DATE REPORTED: 2014-09-16									
				F4 - NH - MW11					
	;	SAMPLE DES	CRIPTION:	- 01					
SAMPLE TYPE:			PLE TYPE:	Water					
		DATE S	SAMPLED:	8/24/2014					
Parameter	Unit	G/S	RDL	5774902					
PCBs	μg/L		0.1	<0.1					
Surrogate	Unit	Acceptab	le Limits						
Decachlorobiphenyl	%	60-1	30	103					

RDL - Reported Detection Limit; G / S - Guideline / Standard Comments:

AGAT WORK ORDER: 14Z884832

PROJECT: 350600-515

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: ARCADIS SENES CANADA INC(DCS)

SAMPLING SITE:

ATTENTION TO: Steve Borcsok SAMPLED BY: J. Mauchan

PHCs	F1	- F4	(Soil))
-------------	----	------	--------	---

DATE RECEIVED: 2014-09-05							ı	DATE REPORTED: 2014-09-16
		SAMPLE DESCRIPTION	DN: F4 - TAN - 11 -	S F4 - PAL - 27 - S	F4 - HEL - MW98 - 02 - S	F4 - STA - MW98 - 07 - 8	F4 - NH - MW12 - 08 - S	
		SAMPLE TYP DATE SAMPLE	ED: 8/24/2014	Soil 8/25/2014	Soil 8/25/2014	Soil 8/25/2014	Soil 8/25/2014	
Parameter	Unit	G/S RDL	5774845	5774880	5774884	5774890	5774900	
Benzene	μg/g	0.02	< 0.02	<0.02	< 0.02	< 0.02	< 0.02	
Toluene	μg/g	0.08	<0.08	<0.08	<0.08	<0.08	<0.08	
Ethylbenzene	μg/g	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	
Xylene Mixture	μg/g	0.05	< 0.05	< 0.05	<0.05	< 0.05	< 0.05	
F1 (C6 to C10)	μg/g	5	<5	<5	<5	<5	<5	
F1 (C6 to C10) minus BTEX	μg/g	5	<5	<5	<5	<5	<5	
F2 (C10 to C16)	μg/g	10	<10	16	20	<10	48	
F3 (C16 to C34)	μg/g	50	<50	52	54	<50	<50	
F4 (C34 to C50)	μg/g	50	<50	<50	<50	<50	<50	
Gravimetric Heavy Hydrocarbons	μg/g	50	NA	NA	NA	NA	NA	
Moisture Content	%	0.1	11.6	10.4	8.0	9.1	5.5	
Surrogate	Unit	Acceptable Limit	s					
Terphenyl	%	60-140	84	110	89	103	110	

Comments:

RDL - Reported Detection Limit; G / S - Guideline / Standard

5774845-5774900 Results are based on sample dry weight. The soil sample was prepared in the lab using the Methanol extraction technique. The sample was not field preserved with methanol and an Encore was not provided for analysis.

The C6-C10 fraction is calculated using toluene response factor.

The C10 - C16, C16 - C34, and C34 - C50 fractions are calculated using the average response factor for n-C10, n-C16, and n-C34.

Gravimetric Heavy Hydrocarbons are not included in the Total C16-C50 and are only determined if the chromatogram of the C34 - C50 hydrocarbons indicates that hydrocarbons >C50 are present.

The chromatogram has returned to baseline by the retention time of nC50.

Total C6 - C50 results are corrected for BTEX contributions.

This method complies with the Reference Method for the CWS PHC and is validated for use in the laboratory.

nC6 and nC10 response factors are within 30% of Toluene response factor. nC10, nC16 and nC34 response factors are within 10% of their average.

C50 response factor is within 70% of nC10 + nC16 + nC34 average.

Linearity is within 15%.

Extraction and holding times were met for this sample.

Fractions 1-4 are quantified with the contribution of PAHs. Under Ontario Regulation 153, results are considered valid without determining the PAH contribution if not requested by the client.

Quality Control Data is available upon request.

AGAT WORK ORDER: 14Z884832

PROJECT: 350600-515

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: ARCADIS SENES CANADA INC(DCS)

SAMPLING SITE:

ATTENTION TO: Steve Borcsok SAMPLED BY:J. Mauchan

PHCs F1 -	F4 (Water)
-----------	------------

DATE RECEIVED: 2014-09-05				DATE REPORTED: 2014-09-
			F4 - NH - MW11	
	5	SAMPLE DESCRIPTION:	- 01	
		SAMPLE TYPE:	Water	
		DATE SAMPLED:	8/24/2014	
Parameter	Unit	G/S RDL	5774902	
Benzene	μg/L	0.20	<0.20	
Toluene	μg/L	0.20	<0.20	
Ethylbenzene	μg/L	0.10	<0.10	
Xylene Mixture	μg/L	0.20	<0.20	
F1 (C6 to C10)	μg/L	25	<25	
F1 (C6 to C10) minus BTEX	μg/L	25	<25	
F2 (C10 to C16)	μg/L	100	<100	
F3 (C16 to C34)	μg/L	100	<100	
F4 (C34 to C50)	μg/L	100	<100	
Gravimetric Heavy Hydrocarbons	μg/L	500	NA	
Surrogate	Unit	Acceptable Limits		
Terphenyl	%	60-140	96	

Comments: 5774902

RDL - Reported Detection Limit; G / S - Guideline / Standard

The C6-C10 fraction is calculated using Toluene response factor.

The C10 - C16, C16 - C34, and C34 - C50 fractions are calculated using the average response factor for n-C10, n-C16, and nC34.

Gravimetric Heavy Hydrocarbons are not included in the Total C16 - C50 and are only determined if the chromatogram of the C34 - C50 Hydrocarbons indicated that hydrocarbons > C50 are present.

The chromatogram has returned to baseline by the retention time of nC50.

Total C6-C50 results are corrected for BTEX contributions.

This method complies with the Reference Method for the CWS PHC and is validated for use in the laboratory.

nC6 and nC10 response factors are within 30% of Toluene response factor.

nC10, nC16 and nC34 response factors are within 10% of their average.

C50 response factor is within 70% of nC10 + nC16 nC34 average.

Linearity is within 15%.

Extraction and holding times were met for this sample.

Fractions 1-4 are quantified with the contribution of PAHs. Under Ontario Regulation 153, results are considered valid without determining the PAH contribution if not requested by the client.

NA = Not Applicable

AGAT WORK ORDER: 14Z884832

PROJECT: 350600-515

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: ARCADIS SENES CANADA INC(DCS)

SAMPLING SITE:

ATTENTION TO: Steve Borcsok SAMPLED BY:J. Mauchan

	Metals (Water)										
ATE RECEIVED: 2014-09-05 DATE REPORTED: 2014-09-16											
			F4 - NH - MW11								
	\$	SAMPLE DESCRIPTION:	- 01								
		SAMPLE TYPE:	Water								
		DATE SAMPLED:	8/24/2014								
Parameter	Unit	G/S RDL	5774902								
Arsenic	mg/L	0.003	0.009								
Cadmium	mg/L	0.002	< 0.002								
Chromium	mg/L	0.003	1.07								
Cobalt	mg/L	0.001	0.036								
Copper	mg/L	0.003	0.105								
∟ead	mg/L	0.002	0.020								
Mercury	mg/L	0.0001	<0.0001								
Nickel	mg/L	0.003	0.268								
Zinc	mg/L	0.005	0.107								

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard

Certified By:

Sofiea Pehlyona

Quality Assurance

CLIENT NAME: ARCADIS SENES CANADA INC(DCS)

AGAT WORK ORDER: 14Z884832

PROJECT: 350600-515

ATTENTION TO: Steve Borcsok

SAMPLING SITE: SAMPLED BY:J. Mauchan

	Soil Analysis																					
RPT Date: Sep 16, 2014				DUPLICATI	E		REFERE	NCE MA	TERIAL	METHOD	BLAN	K SPIKE	МАТ	RIX SPI	IKE							
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	lank Measured	Measured Limit		Acceptable Limits	Limite				Limite		Recovery	Lie	eptable mits	Recovery	Lie	eptable mits
		ld		.			Value	Lower	Upper		Lower	Upper]	1	Upper							
Metals Scan (Soil)																						
Arsenic	1		3	3	0.0%	< 1	95%	70%	130%	95%	80%	120%	96%	70%	130%							
Cadmium	1		< 0.5	< 0.5	0.0%	< 0.5	101%	70%	130%	107%	80%	120%	108%	70%	130%							
Cobalt	1		8.7	8.5	2.3%	< 0.5	95%	70%	130%	97%	80%	120%	96%	70%	130%							
Chromium	1		17	17	0.0%	< 2	102%	70%	130%	99%	80%	120%	96%	70%	130%							
Copper	1		22	22	0.0%	< 1	101%	70%	130%	103%	80%	120%	100%	70%	130%							
Lead	1		9	9	0.0%	< 1	118%	70%	130%	115%	80%	120%	110%	70%	130%							
Mercury	1		< 0.10	< 0.10	0.0%	< 0.10	120%	70%	130%	104%	80%	120%	106%	70%	130%							
Nickel	1		12	12	0.0%	< 1	78%	70%	130%	95%	80%	120%	89%	70%	130%							
Zinc	1		43	45	4.5%	< 5	102%	70%	130%	106%	80%	120%	103%	70%	130%							

Certified By:

Sofika Pehlyona

Quality Assurance

CLIENT NAME: ARCADIS SENES CANADA INC(DCS)

AGAT WORK ORDER: 14Z884832

PROJECT: 350600-515

ATTENTION TO: Steve Borcsok

SAMPLING SITE: SAMPLED BY:J. Mauchan

	Trace Organics Analysis														
RPT Date: Sep 16, 2014				DUPLICATI	E		REFERE	NCE MA	TERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPI	IKE
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured		ptable nits	Recovery	Acceptabl Limits		Recovery	1 11	eptable mits
		ld					Value	Lower	Upper	,	Lower	Upper			Upper
PHCs F1 - F4 (Soil)								•	•						•
Benzene	1		< 0.02	< 0.02	0.0%	< 0.02	82%	50%	140%	116%	60%	130%	81%	50%	140%
Toluene	1		< 0.08	< 0.08	0.0%	< 0.08	91%	50%	140%	116%	60%	130%	91%	50%	140%
Ethylbenzene	1		< 0.05	< 0.05	0.0%	< 0.05	97%	50%	140%	115%	60%	130%	92%	50%	140%
Xylene Mixture	1		< 0.05	< 0.05	0.0%	< 0.05	99%	50%	140%	118%	60%	130%	90%	50%	140%
F1 (C6 to C10)	1		< 5	< 5	0.0%	< 5	105%	60%	140%	93%	80%	120%	81%	60%	140%
F2 (C10 to C16)	1		< 10	< 10	0.0%	< 10	100%	60%	140%	104%	80%	120%	75%	60%	140%
F3 (C16 to C34)	1		< 50	< 50	0.0%	< 50	103%	60%	140%	101%	80%	120%	85%	60%	140%
F4 (C34 to C50)	1		< 50	< 50	0.0%	< 50	99%	60%	140%	107%	80%	120%	102%	60%	140%
PCBs (soil)															
PCBs	1		< 0.1	< 0.1	0.0%	< 0.1	79%	60%	140%	74%	60%	140%	121%	60%	140%
PHCs F1 - F4 (Water)															
Benzene	1		< 0.20	< 0.20	0.0%	< 0.20	115%	50%	140%	119%	60%	130%	114%	50%	140%
Toluene	1		< 0.20	< 0.20	0.0%	< 0.20	117%	50%	140%	113%	60%	130%	116%	50%	140%
Ethylbenzene	1		< 0.10	< 0.10	0.0%	< 0.10	113%	50%	140%	106%	60%	130%	107%	50%	140%
Xylene Mixture	1		< 0.20	< 0.20	0.0%	< 0.20	107%	50%	140%	110%	60%	130%	115%	50%	140%
F1 (C6 to C10)	1		< 25	< 25	0.0%	< 25	91%	60%	140%	81%	60%	140%	99%	60%	140%
F2 (C10 to C16)	1		< 100	< 100	0.0%	< 100	100%	60%	140%	66%	60%	140%	76%	60%	140%
F3 (C16 to C34)	1		< 100	< 100	0.0%	< 100	96%	60%	140%	113%	60%	140%	83%	60%	140%
F4 (C34 to C50)	1		< 100	< 100	0.0%	< 100	82%	60%	140%	76%	60%	140%	65%	60%	140%
PCBs (water)															
PCBs	1		< 0.1	< 0.1	0.0%	< 0.1	96%	60%	140%	99%	60%	140%	88%	60%	140%

Quality Assurance

CLIENT NAME: ARCADIS SENES CANADA INC(DCS)

PROJECT: 350600-515

AGAT WORK ORDER: 14Z884832

ATTENTION TO: Steve Borcsok

SAMPLED BY:J. Mauchan

Water Analysis DUPLICATE REFERENCE MATERIAL METHOD BLANK SPIKE RPT Date: Sep 16, 2014 MATRIX SPIKE Method Acceptable Acceptable Acceptable Sample Measured Limits Blank Dup #2 **PARAMETER** Batch Dup #1 RPD Recovery Recovery Value Lower Upper Lower Upper Lower Upper Metals (Water) < 0.003 102% 70% 130% Arsenic < 0.003 0.0% < 0.003 97% 99% 90% 110% 90% 110% 130% Cadmium 1 < 0.002 < 0.002 0.0% < 0.002 99% 90% 110% 108% 90% 110% 102% 70% Chromium 1 < 0.003 < 0.003 0.0% < 0.003 101% 90% 110% 110% 90% 110% 103% 70% 130% Cobalt 1 < 0.001 < 0.001 0.0% < 0.001 98% 90% 110% 103% 90% 110% 102% 70% 130% 1 < 0.003 < 0.003 0.0% < 0.003 104% 90% 110% 110% 90% 110% 106% 70% 130% Copper Lead < 0.002 < 0.002 0.0% < 0.002 98% 90% 110% 99% 90% 110% 97% 70% 130% 1 Mercury 5776891 <0.0001 < 0.0001 0.0% < 0.0001 100% 90% 110% 99% 90% 110% 95% 80% 120% Nickel 1 < 0.003 < 0.003 0.0% < 0.003 105% 90% 110% 108% 90% 110% 103% 70% 130% Zinc 1 < 0.005 < 0.005 0.0% < 0.005 99% 90% 110% 104% 90% 110% 104% 70% 130%

Certified By:

Sofra Pehlyora

Method Summary

CLIENT NAME: ARCADIS SENES CANADA INC(DCS)

PROJECT: 350600-515

SAMPLING SITE:

AGAT WORK ORDER: 14Z884832

ATTENTION TO: Steve Borcsok

SAMPLED BY:J. Mauchan

SAMPLING SITE:		SAMPLED BY:J.	nauchan			
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE			
Soil Analysis			-			
Arsenic	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS			
Cadmium	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS			
Cobalt	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS			
Chromium	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS			
Copper	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS			
Lead	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS			
Mercury	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS			
Nickel	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS			
Zinc	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS			
Trace Organics Analysis						
PCBs	ORG-91-5113	EPA SW-846 3541 & 8082	GC/ECD			
Decachlorobiphenyl	ORG-91-5113	EPA SW-846 3541 & 8082	GC/ECD			
PCBs	ORG-91-5112	EPA SW-846 3510 & 8082	GC/ECD			
Decachlorobiphenyl	ORG-91-5112	EPA SW-846 3510 & 8082	GC/ECD			
Benzene	VOL-91-5009	EPA SW-846 5035 & 8260	P&TGC/MS			
Toluene	VOL-91-5009	EPA SW-846 5035 & 8260	P&TGC/MS			
Ethylbenzene	VOL-91-5009	EPA SW-846 5035 & 8260	P&TGC/MS			
Xylene Mixture	VOL-91-5009	EPA SW-846 5035 & 8260	P&TGC/MS			
F1 (C6 to C10)	VOL-91-5009	CCME Tier 1 Method	P&TGC/FID			
F1 (C6 to C10) minus BTEX	VOL-91-5009	CCME Tier 1 Method	P&TGC/FID			
F2 (C10 to C16)	VOL-91-5009	CCME Tier 1 Method, EPA SW846 8015	GC / FID			
F3 (C16 to C34)	VOL-91-5009	CCME Tier 1 Method, EPA SW846 8015	GC / FID			
F4 (C34 to C50)	VOL-91-5009	CCME Tier 1 Method, EPA SW846 8015	GC / FID			
Gravimetric Heavy Hydrocarbons	VOL-91-5009	CCME Tier 1 Method	BALANCE			
Moisture Content	VOL-91-5009	CCME Tier 1 Method	BALANCE			
Terphenyl	VOL-91-5009		GC/FID			
Benzene	VOL-91-5010	MOE PHC-E3421	(P&T)GC/FID			
Toluene	VOL-91-5010	MOE PHC-E3421	(P&T)GC/FID			
Ethylbenzene	VOL-91-5010	MOE PHC-E3421	(P&T)GC/FID			
Xylene Mixture	VOL-91-5010	MOE PHC-E3421	(P&T)GC/FID			
F1 (C6 to C10)	VOL-91-5010	MOE PHC-E3421	(P&T)GC/FID			
F1 (C6 to C10) minus BTEX	VOL-91-5010	MOE PHC-E3421	(P&T)GC/FID			
F2 (C10 to C16)	VOL-91-5010	MOE PHC-E3421	GC/FID			
F3 (C16 to C34)	VOL-91-5010	MOE PHC-E3421	GC/FID			
F4 (C34 to C50)	VOL -91- 5010	MOE PHC-E3421	GC/FID			
Gravimetric Heavy Hydrocarbons	VOL-91-5010	MOE PHC-E3421	BALANCE			
Terphenyl	VOL-91-5010		GC/FID			
Water Analysis						
Arsenic	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS			
Cadmium	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS			
Chromium	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS			
Cobalt	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS			
Copper	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS			
Lead	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS			
Mercury	MET-93-6100	EPA SW 846 7470 & 245.1	CVAAS			
Nickel	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS			
Zinc	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS			

121 Granton Drive, Unit 11, Richmond Hill, ON
Tel: (905) 882-5984 Fax: (905) 882-8962
Email: engineers@dcsltd.ca Website: www.dcsltd.ca

Chain of Custody Record

63/68/54.

Relinquished By:	Relinquished By:	١	Relinanished Rv				4-NH-HW11-01	2-80-81MN-4N-3-2	4-STA-NW98-07-8	-내-내:	-4-PAL-27-S	F4-TAN-11-S	Location/ Hole No.				Ship	per			
ed By:	ed By:	lauchan	ed Rv:				Vi1-01	12-90-5	198-07-8	=4-HEL-MW98-03-5	27-5	· -S	Sample Do	MDL's To Meet:	Quotation No.:	Required Date:	Lab:	Date:	Field Engineer/Techician:	Project Manager:	Project No.:
Date:	Date:	0.5	Date:				Ground						Depth (m)	Meet:	6.)ate:	AGAT	26 Au	neer/Tech	nager:	Sec.
le:		26 Aug 2014	ie:				and Water	Soil	Sail	Sc. 1	Seil	Sail	De	५७६ वर्				26 Aug 2014	ician:		350600-515
							ater						Description	attached	-				S. Borcs	S. Borcsok	Site: FOX-
Time:	Time:		Time:													Turnaround:	Location	Route:	Borcsok/J. Mauchan	ok	FOX- 4
Received By:	Received By:	Shc2mi	Received By:										Label G No. Co			Y	077	Courier	chan		Cope
(yed By:	By: +5/14	MIN)	Rv:				AP/E	aya	asa	ASA	35/	JAN.	Grab/] Comp. Co			STD Day(s)	TTAWA				Hoope
		\mathcal{D}					24A49 2014	ayAngaoly	25Aug 2014	25A-2014	35 Aug 2614	24 Aug Zoi4	Date Collected			y(s)					1
L	aborato	ry	4				<	1	5	<	<	<	PHCs PHCs		4						-
		ALL	Remarks:				<	5	<u> </u>	<		$\overline{}$	PCBs								-
		RESUL	ırks:				<		(<	<	<			As, C	Ed, Cr,	Co, C	u, Pb,	Ni, Z	n, Hg	Anal
		TS ARE																			Analyses Requested
		ТОВЕ	ŀ																		eques
		SENT 7																			ted
		ALL RESULTS ARE TO BE SENT TO THE PROJECT MANAGER.	-																		
		PROJEC	1					_					рH								
		TMAN												Fi							TOUR
		AGER.											Electrical Conductivity	Field Procedures							7147
			į										-	ceduı							188
													Preservatives	es							1258 H882H 000
													es						_		2

Landfill Monitoring Detection Limits

Parameter	Soil (mg/kg)	Groundwater (mg/L)
Copper	<3.0	<0.005
Nickel	<5.0	<0.010
Cobalt	<5.0	<0.005
Cadmium	<1.0	<0.001
Lead	<10	<0.01
Zinc	<15	<0.005
Chromium	<20	<0.005
Arsenic	<0.2	<0.05
Mercury	<0.1	<0.001
PCBs	<0.05	<0.003
TPH	<40	<1

APPENDIX D

HISTORICAL CHEMISTRY SUMMARY TABLES (SOIL)

FUX-4 Cape Hoop	VL Facility Monitori per - NHWL & Ti	ing. Summa ier II Disp	ry of 2013 an osal Facilit	ies - Summa	il Analytical ary of 2013-	Data** -2028 Soil A	Analytical	Data	1				Τ	Г	T		1				
Sample ID	Location	Year	Monitoring Year	Monitoring Phase	Depth (cm)	Cu [mg/kg]	Ni [mg/kg]	Co [mg/kg]	Cd [mg/kg]	Pb [mg/kg]	Zn [mg/kg]	Cr [mg/kg]	As [mg/kg]	Hg [mg/kg]	Total PCB [mg/kg]	F1 C ₆ -C ₁₀ [mg/kg]	F2 C ₁₀ - C ₁₆ [mg/kg]	F3 C ₁₆ - C ₃₄ [mg/kg]	Modified TPH^ - Total C6-C34 [mg/kg]	TPH Io	dentity % Lube Oil
Background Average						<u>30</u>	<u>24</u>	2	<u>1.0</u>	<u>10</u>	<u>41</u>	<u>41</u>	<u>29</u>			1	1	1			
Baseline Data - Average						13	10	5.0	1.0	5.6	22	21	12	0.100	0.050				41		
Baseline Data - Standard Deviati						24	8	2.1	0.23	11	15	15	19	0.014	0.0188				70	-	
Baseline Average + 3xStandard	Deviation					83	34	11	1.7	38	67	67	69	0.14	0.11				251		
Detection Limit						<3.0	<5.0	<5.0	<1.0	<10	<15	<20	<0.2	<0.1	< 0.05				<40		
DEW Line Cleanup Tier I Cr.	riteria									200					1		T				
DEW Line Cleanup Tier II C	Criteria & DLCU Hydrocarb	on Action Leve	l & site specific A	As criteria		100	100	50	5	500	500	250	130	2.0	5				2500		
Monitoring Data																					
Upgradient	BMW 11-01 surface																				
F4-NH-MW11-01-S	BMW 11-01 surface BMW 11-01	2014	16	Phase II	0-15	<u>52</u>	<u>40</u>	<u>11</u>	< 0.10	9.9	<u>86</u>	<u>73</u>	48	< 0.050	< 0.010	<10	<10	<10	15	1	
	BMW 11-01	2014	18	Phase II	0.10	24	10	11	-0.10	,,,	<u></u>	,,,	- 10	-0.030	-0.010	-10	-10	-10	#N/A		
	BMW 11-01	2018	20	Phase II															#N/A		
	BMW 11-01	2023	25	Phase II															#N/A		
	BMW 11-01	2028	30	Phase II															#N/A		
				Phase III															#N/A		
ļ	1		1	-															#N/A		
		+		+															#N/A #N/A		
	BMW 11-01 depth	1		1															#1N/A		
F4-NH-MW11-01-D	BMW 11-01	2014	16	Phase II	40-50	98	73	17	< 0.10	13	110	83	170	< 0.050	< 0.010	<10	<10	<10	15		
	BMW 11-01	2016	18	Phase II						-									#N/A		
	BMW 11-01	2018	20	Phase II															#N/A		
	BMW 11-01	2023	25	Phase II															#N/A		
	BMW 11-01	2028	30	Phase II															#N/A		
				Phase III															#N/A		
ļ	1		1	-															#N/A		
						-	-												#N/A		
Downgradient																					
F4-NH-MW11-02-S	MW 11-02 surface MW 11-02	2014	16	Phase II	0-15	<u>49</u>	41	14	< 0.10	11	70	80	<u>31</u>	< 0.050	< 0.010	<10	<10	<10	15		
	MW 11-02	2016	18	Phase II		12	- 12		5.10					5.050		10			#N/A		
	MW 11-02	2018	20	Phase II															#N/A		
	MW 11-02	2023	25	Phase II															#N/A		
	MW 11-02	2028	30	Phase II															#N/A		
				Phase III															#N/A		
																			#N/A		
																			110 - 1 -		
																			#N/A		
	MW 11-02 depth																		#N/A #N/A		
F4-NH-MW11-02-D	MW 11-02 depth MW 11-02	2014	16	Phase II	40-50	52	42	14	<0.10	12	74	82	34	< 0.050	0,012	<10	<10	21	#N/A		
F4-NH-MW11-02-D	MW 11-02 depth MW 11-02 MW 11-02	2014 2016	16 18	Phase II Phase II	40-50	52	42	14	<0.10	12	74	82	34	<0.050	0.012	<10	<10	21			
F4-NH-MW11-02-D	MW 11-02 MW 11-02 MW 11-02	2016 2018	18 20	Phase II Phase II	40-50	52	42	14	<0.10	12	74	82	34	<0.050	0.012	<10	<10	21	#N/A 31 #N/A #N/A		
F4-NH-MW11-02-D	MW 11-02 MW 11-02 MW 11-02 MW 11-02	2016 2018 2023	18 20 25	Phase II Phase II Phase II	40-50	52	42	14	<0.10	12	74	82	34	<0.050	0.012	<10	<10	21	#N/A 31 #N/A #N/A #N/A		
F4-NH-MW11-02-D	MW 11-02 MW 11-02 MW 11-02	2016 2018	18 20	Phase II Phase II Phase II Phase II	40-50	52	42	14	<0.10	12	74	82	34	<0.050	0.012	<10	<10	21	#N/A 31 #N/A #N/A #N/A #N/A		
F4-NH-MW11-02-D	MW 11-02 MW 11-02 MW 11-02 MW 11-02	2016 2018 2023	18 20 25	Phase II Phase II Phase II	40-50	52	42	14	<0.10	12	74	82	34	<0.050	0.012	<10	<10	21	#N/A 31 #N/A #N/A #N/A #N/A #N/A		
F4-NH-MW11-02-D	MW 11-02 MW 11-02 MW 11-02 MW 11-02	2016 2018 2023	18 20 25	Phase II Phase II Phase II Phase II	40-50	52	42	14	<0.10	12	74	82	34	<0.050	0.012	<10	<10	21	#N/A 31 #N/A #N/A #N/A #N/A #N/A #N/A		
F4-NH-MW11-02-D	MW 11-02 MW 11-02 MW 11-02 MW 11-02	2016 2018 2023	18 20 25	Phase II Phase II Phase II Phase II	40-50	52	42	14	<0.10	12	74	82	34	<0.050	0.012	<10	<10	21	#N/A 31 #N/A #N/A #N/A #N/A #N/A #N/A #N/A		
F4-NH-MW11-02-D	MW 11-02 MW 11-02 MW 11-02 MW 11-02	2016 2018 2023	18 20 25	Phase II Phase II Phase II Phase II	40-50	52	42	14	<0.10	12	74	82	34	<0.050	0.012	<10	<10	21	#N/A 31 #N/A #N/A #N/A #N/A #N/A #N/A		
F4-NH-MW11-02-D	MW 11-02 MW 11-02 MW 11-02 MW 11-02 MW 11-02 MW 11-03 MW 11-03 surface MW 11-03	2016 2018 2023 2028 2028	18 20 25	Phase II Phase II Phase II Phase II	40-50	52	42	14	<0.10	12	74	82	34	<0.050	0.012	<10	<10	21	#N/A 31 #N/A #N/A #N/A #N/A #N/A #N/A #N/A		
	MW 11-02 MW 11-02 MW 11-02 MW 11-02 MW 11-02 MW 11-02 MW 11-03 MW 11-03 MW 11-03	2016 2018 2023 2028 2028 2014 2014 2016	18 20 25 30 16 18	Phase II Phase II Phase II Phase II Phase III Phase III Phase III Phase II															#N/A 31 #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A		
	MW 11-02 MW 11-02 MW 11-02 MW 11-02 MW 11-02 MW 11-02 MW 11-03 MW 11-03 MW 11-03 MW 11-03	2016 2018 2023 2028 2028 2014 2014 2016 2018	18 20 25 30 16 18 20	Phase II Phase II Phase II Phase II Phase III Phase III Phase III Phase III Phase III Phase II															#N/A 31 #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A		
	MW 11-02 MW 11-02 MW 11-02 MW 11-02 MW 11-02 MW 11-03 MW 11-03 MW 11-03 MW 11-03 MW 11-03	2016 2018 2023 2028 2028 2014 2014 2016 2018 2023	18 20 25 30 16 18 20 25	Phase II Phase II Phase II Phase II Phase III Phase III Phase III Phase II Phase II Phase II Phase II Phase II															#N/A 31 #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A		
	MW 11-02 MW 11-02 MW 11-02 MW 11-02 MW 11-02 MW 11-02 MW 11-03 MW 11-03 MW 11-03 MW 11-03	2016 2018 2023 2028 2028 2014 2014 2016 2018	18 20 25 30 16 18 20	Phase II Phase II Phase II Phase III Phase III Phase III Phase III Phase III Phase III Phase III Phase III Phase III Phase III															#N/A 31 #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A		
	MW 11-02 MW 11-02 MW 11-02 MW 11-02 MW 11-02 MW 11-03 MW 11-03 MW 11-03 MW 11-03 MW 11-03	2016 2018 2023 2028 2028 2014 2014 2016 2018 2023	18 20 25 30 16 18 20 25	Phase II Phase II Phase II Phase II Phase III Phase III Phase III Phase II Phase II Phase II Phase II Phase II															#N/A 31 #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A		
	MW 11-02 MW 11-02 MW 11-02 MW 11-02 MW 11-02 MW 11-03 MW 11-03 MW 11-03 MW 11-03 MW 11-03	2016 2018 2023 2028 2028 2014 2014 2016 2018 2023	18 20 25 30 16 18 20 25	Phase II Phase II Phase II Phase III Phase III Phase III Phase III Phase III Phase III Phase III Phase III Phase III Phase III															#N/A 31 #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A		
	MW 11-02 MW 11-02 MW 11-02 MW 11-02 MW 11-02 MW 11-03 MW 11-03 MW 11-03 MW 11-03 MW 11-03	2016 2018 2023 2028 2028 2014 2014 2016 2018 2023	18 20 25 30 16 18 20 25	Phase II Phase II Phase II Phase II Phase III Phase III Phase III Phase III Phase II Phase II Phase II Phase II Phase II															#N/A 31 #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A		
F4-NH-MW11-03-S	MW 11-02 MW 11-02 MW 11-02 MW 11-02 MW 11-02 MW 11-03 MW 11-03 MW 11-03 MW 11-03 MW 11-03 MW 11-03 MW 11-03	2016 2023 2028 2028 2014 2016 2018 2023 2028	18 20 25 30 16 18 20 25	Phase II Phase II Phase II Phase II Phase III Phase III Phase III Phase III Phase II Phase II Phase II Phase II Phase II	0-15	22	14	4.8		10	50	39	12	<0.050	0.083				#N/A 31 #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A		
F4-NH-MW11-03-S	MW 11-02 MW 11-02 MW 11-02 MW 11-02 MW 11-02 MW 11-02 MW 11-02 MW 11-03 MW 11-03 MW 11-03 MW 11-03 MW 11-03 MW 11-03 MW 11-03 MW 11-03 MW 11-03 MW 11-03	2016 2018 2023 2028 2028 2014 2016 2018 2023 2028 2014	18 20 25 30 16 18 20 25 30	Phase II Phase II Phase II Phase II Phase III Phase III Phase III Phase III Phase III Phase III Phase III Phase III Phase III Phase III Phase III Phase III															#N/A 31 #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A		
F4-NH-MW11-03-S	MW 11-02 MW 11-02 MW 11-02 MW 11-02 MW 11-02 MW 11-02 MW 11-03 MW 11-03 MW 11-03 MW 11-03 MW 11-03 MW 11-03 MW 11-03 MW 11-03 MW 11-03 MW 11-03	2016 2018 2023 2028 2028 2028 2014 2016 2018 2023 2028 2028	18 20 25 30 16 18 20 25 30	Phase II Phase II Phase III Phase III Phase III Phase III Phase III Phase III Phase III Phase III Phase III Phase III Phase III Phase III Phase III Phase III Phase III Phase III	0-15	22	14	4.8	2.3	10	50	39	12	<0.050	0.083	<10	<10	39	#N/A 31 #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A		
F4-NH-MW11-03-S	MW 11-02 MW 11-02 MW 11-02 MW 11-02 MW 11-02 MW 11-03 MW 11-03	2016 2018 2023 2028 2028 2014 2016 2018 2023 2028 2028	18 20 25 30 16 18 20 25 30 16 16 18 20 25 30	Phase II Phase II Phase II Phase II Phase II Phase III Phase III Phase III Phase III Phase II Phase III Phase III Phase III Phase III Phase III Phase III Phase III Phase III Phase III Phase III Phase III Phase III Phase III	0-15	22	14	4.8	2.3	10	50	39	12	<0.050	0.083	<10	<10	39	#N/A 31 #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A		
F4-NH-MW11-03-S	MW 11-02 MW 11-02 MW 11-02 MW 11-02 MW 11-02 MW 11-02 MW 11-03 MW 11-03 MW 11-03 MW 11-03 MW 11-03 MW 11-03 MW 11-03 MW 11-03 MW 11-03 MW 11-03 MW 11-03 MW 11-03 MW 11-03 MW 11-03 MW 11-03 MW 11-03	2016 2018 2023 2028 2028 2014 2016 2018 2023 2028 2014 2016 2018 2023 2028	18 20 25 30 16 18 20 25 30 16 18 20 25 30	Phase II Phase II Phase III	0-15	22	14	4.8	2.3	10	50	39	12	<0.050	0.083	<10	<10	39	#N/A 31 #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A		
F4-NH-MW11-03-S	MW 11-02 MW 11-02 MW 11-02 MW 11-02 MW 11-02 MW 11-03 MW 11-03	2016 2018 2023 2028 2028 2014 2016 2018 2023 2028 2028	18 20 25 30 16 18 20 25 30 16 16 18 20 25 30	Phase II Phase II Phase II Phase II Phase III Phase III Phase III Phase III Phase II Phase II Phase III	0-15	22	14	4.8	2.3	10	50	39	12	<0.050	0.083	<10	<10	39	#N/A 31 #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A		
	MW 11-02 MW 11-02 MW 11-02 MW 11-02 MW 11-02 MW 11-02 MW 11-03 MW 11-03 MW 11-03 MW 11-03 MW 11-03 MW 11-03 MW 11-03 MW 11-03 MW 11-03 MW 11-03 MW 11-03 MW 11-03 MW 11-03 MW 11-03 MW 11-03 MW 11-03	2016 2018 2023 2028 2028 2014 2016 2018 2023 2028 2014 2016 2018 2023 2028	18 20 25 30 16 18 20 25 30 16 18 20 25 30	Phase II Phase II Phase III	0-15	22	14	4.8	2.3	10	50	39	12	<0.050	0.083	<10	<10	39	#N/A 31 #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A		
F4-NH-MW11-03-S	MW 11-02 MW 11-02 MW 11-02 MW 11-02 MW 11-02 MW 11-02 MW 11-03 MW 11-03 MW 11-03 MW 11-03 MW 11-03 MW 11-03 MW 11-03 MW 11-03 MW 11-03 MW 11-03 MW 11-03 MW 11-03 MW 11-03 MW 11-03 MW 11-03 MW 11-03	2016 2018 2023 2028 2028 2014 2016 2018 2023 2028 2014 2016 2018 2023 2028	18 20 25 30 16 18 20 25 30 16 18 20 25 30	Phase II Phase II Phase II Phase II Phase III Phase III Phase III Phase III Phase II Phase II Phase III	0-15	22	14	4.8	2.3	10	50	39	12	<0.050	0.083	<10	<10	39	#N/A 31 #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A		

FOX-4 Cape Hoop	per - NHWL & Ti	er II Disp	osal Facilit	ies - Summa	rv of 2013	-2028 Soil	Analytical	Data												
			1														F2 C	E2 C		
																F1 C ₆ -C ₁	F2 C ₁₀	C ₃₄	Modified TPH^ -	
Sample ID	Location	Year	Monitoring Year	Monitoring Phase	Depth	Cu [mg/kg]	Ni [mg/kg]	Co [mg/kg]	Cd [mg/kg]	Pb [mg/kg]	Zn [mg/kg]	Cr [mg/kg]	As [mg/kg]	Hg [mg/kg]	Total	[mg/kg]	[mg/kg]	[mg/kg]	Total C6-C34 [mg/kg]	TPH Identity
					(cm)	[5/ 45]	[mg/ ng]	[g/ ng]	[mg/ ng]	[5/ 45]	[g/ kg]	[mg/ ng]	[mg/ kg]	[mg/ ng]	PCB [mg/kg]	[g/ *g]	[mg/ kg]	[mg/ ng]	[mg/ kg]	% Fuel Oil % Lube Oil
	MW 11-04 surface																			
F4-NH-MW11-04-S	MW 11-04 MW 11-04	2014 2016	16 18	Phase II	0-15	7.4	7.1	2.1	< 0.10	2.5	16	21	7.4	< 0.050	< 0.010	<10	<10	82	92 #N/A	
	MW 11-04 MW 11-04	2016	20	Phase II Phase II			+						-						#N/A	
	MW 11-04	2023		Phase II															#N/A	+ + + + + + + + + + + + + + + + + + + +
	MW 11-04	2028	25 30	Phase II															#N/A	
				Phase III															#N/A	
																			#N/A	
							_												#N/A #N/A	
	MW 11-04 depth																		7714/21	
F4-NH-MW11-04-D	MW 11-04	2014	16	Phase II	40-50	13	14	3.7	< 0.10	3.1	27	31	11	< 0.050	< 0.010	<10	<10	<10	15	
	MW 11-04	2016	18	Phase II															#N/A	
	MW 11-04 MW 11-04	2018	20	Phase II															#N/A	
	MW 11-04 MW 11-04	2023 2028	25 30	Phase II Phase II															#N/A #N/A	
	WW 11-04	2020	50	Phase III															#N/A	+
																			#N/A	
			1																#N/A	
			1																#N/A	+
E4 NILL MOV/44 OF C	MW 11-05 surface	201.1	47	Dls. II	0.45	4.4	-	2.7	ZO 40	2.5	10	24	40	<0.050	20.010	.40	40	42	50	+
F4-NH-MW11-05-S	MW 11-05 MW 11-05	2014 2016	16 18	Phase II Phase II	0-15	11	9	2.7	< 0.10	2.5	18	24	10	< 0.050	< 0.010	<10	<10	43	53 #N/A	+
<u> </u>	MW 11-05 MW 11-05	2016	20	Phase II Phase II		1											1		#N/A	+
	MW 11-05	2023	25	Phase II															#N/A	
	MW 11-05	2028	30	Phase II															#N/A	
				Phase III															#N/A	
																			#N/A	
							_												#N/A	
	MW 11-05 depth						_												#N/A	
F4-NH-MW11-05-D	MW 11-05	2014	16	Phase II	40-50	14	11	3.4	< 0.10	3.1	22	28	12	< 0.050	< 0.010	<10	<10	17	27	+
	MW 11-05	2016	18	Phase II															#N/A	
	MW 11-05	2018	20	Phase II															#N/A	
	MW 11-05	2023	25 30	Phase II															#N/A	
	MW 11-06	2028	30	Phase III			_												#N/A #N/A	
				Filase III			+						-						#N/A	
																			#N/A	
																			#N/A	
	MW 11-06 surface																			
F4-NH-MW11-06-S	MW 11-06	2014	16	Phase II	0-15	13	11	3.5	< 0.10	3.9	21	24	22	< 0.050	< 0.010	<10	<10	17	27	
	MW 11-06 MW 11-06	2016 2018	18 20	Phase II															#N/A #N/A	
	MW 11-06	2023	25	Phase II Phase II															#N/A	
	MW 11-06	2028	30	Phase II															#N/A	
				Phase III															#N/A	
ļ			1																#N/A	
			+	+															#N/A #N/A	+ + + + + + + + + + + + + + + + + + + +
	MW 11-06 depth		+						1						1		+	+	#IN/A	+ + +
F4-NH-MW11-06-D	MW 11-06	2014	16	Phase II	40-50	14	14	3.8	< 0.10	5.4	26	29	<u>45</u>	< 0.050	< 0.010	<10	<10	22	32	
	MW 11-06	2016	18	Phase II															#N/A	
	MW 11-06	2018	20	Phase II															#N/A	
	MW 11-06 MW 11-06	2023 2028	25 30	Phase II Phase II						-						-	1		#N/A #N/A	
1	MW 11-06	2028	.50	Phase III													1		#N/A #N/A	+ + +
			+	. 1.1150 111					1						1		+	+	#N/A	+ + +
																			#N/A	
																			#N/A	
T14.3.114.3.0004	MW 12-07 surface		1	DI	0.15	1			0.15		-			-0					-	
F4-NH-MW11-07-S	MW 12-07 MW 12-07	2014 2016	16	Phase II	0-15	<u>36</u>	<u>36</u>	9.9	0.13	<u>13</u>	74	41	30	< 0.050	< 0.010	<10	<10	56	66 #NI/A	+ + +
	MW 12-07 MW 12-07	2016	18 20	Phase II Phase II													1		#N/A #N/A	+ + + + + + + + + + + + + + + + + + + +
	MW 12-07	2018	25	Phase II													1		#N/A	+ + +
	MW 12-07	2028	30	Phase II															#N/A	
				Phase III															#N/A	
																			#N/A #N/A	

FOX-4 Cape Ho	oper - NHWL & T	ier II Disp	osal Faciliti	ies - Summa	ry of 2013-	-2028 Soil	Analytical	Data													-
ample ID	Location	Year	Monitoring Year	Monitoring Phase	Depth	Cu [mg/kg]	Ni [mg/kg]	Co [mg/kg]	Cd [mg/kg]	Pb [mg/kg]	Zn [mg/kg]	Cr [mg/kg]	As [mg/kg]	Hg [mg/kg]	Total	F1 C ₆ -C ₁₀ [mg/kg]	F2 C ₁₀ - C ₁₆ [mg/kg]	F3 C ₁₆ C ₃₄ [mg/kg]	Modified TPH^ Total C6-C34 [mg/kg]		Identity
	MW 12-07 depth				(cm)		1								PCB [mg/kg]					% Fuel Oil	% Lube 0
F4-NH-MW11-07-D	MW 12-07 depth MW 12-07	2014	16	Phase II	40-50	17	20	5.1	< 0.10	4.5	31	24	16	< 0.050	< 0.010	<10	<10	<10	15		+
14-MII-MW11-07-D	MW 12-07	2014	18	Phase II	40-30	- 17	20	5.1	×0.10	4.3	31	24	10	<0.030	<0.010	~10	~10	~10	#N/A		+
	MW 12-07	2018	20	Phase II															#N/A		+
	MW 12-07	2023	25	Phase II															#N/A		+
	MW 12-07	2023	30	Phase II															#N/A		+
	WW 12-07	2020	30	Phase III															#N/A		+
				rnasc m															#N/A		+
																			#N/A		+
																			#N/A		†
	MW 12-08 surface																		,		†
4-NH-MW11-08-S	MW 12-08	2014	16	Phase II	0-15	20	14	5.65	< 0.5	10	39	42	37	< 0.10	< 0.05	<10	41	21	67		
	MW 12-08	2016	18	Phase II															#N/A		†
	MW 12-08	2018	20	Phase II															#N/A		†
	MW 12-08	2023	25	Phase II															#N/A		1
	MW 12-08	2028	30	Phase II															#N/A		
				Phase III															#N/A		1
																			#N/A		
																			#N/A		
																			#N/A		
	MW 12-08 depth																				
F4-NH-MW11-08-D	MW 12-08	2014	16	Phase II	40-50	30	22	7.8	< 0.10	<u>18</u>	<u>56</u>	<u>64</u>	16	< 0.050	< 0.010	<10	320	49	374		
	MW 12-08	2016	18	Phase II					1						1				#N/A		
	MW 12-08	2018	20	Phase II															#N/A		
	MW 12-08	2023	25	Phase II															#N/A		
	MW 12-08	2028	30	Phase II															#N/A		
				Phase III															#N/A		
																			#N/A		
				1					1	·				1	1	·			#N/A		
						1	1	1		1			1			1			#N/A	1	1

sample exceeds background

sample exceeds baseline
sample exceeds DLCU Tier I criteria
sample exceeds DLCU Tier II criteria

XX

 $\mathbf{X}\mathbf{X}$ XX

Legend

Note: Total Hydrocarbons (C₆-C₅₀) has been calculated by adding results for F1, F2 and F3.

** The New Tier II and NHWI, Facility was constucted in 2012 during additional remediation at FOX-4.
The facilities received Tier II and Non-Hazardous material and were both closed in 2013.

Monitoring wells were established around the facilities in 2013.

FOX-4 Cape Ho	ooper - Helipad Land	Ifill West	- Summar	y of Soil Ana	lytical Da	ata**															
•	1															F1 Ce	- F2	F3			
																C ₁₀	C ₁₀ -C ₁₆	C ₁₆ -C ₃₄	Modified TPH^		
sample ID	Location	Year	Monitoring Year	Monitoring Phase	Depth	Cu	Ni	Co	Cd	Pb	Zn	Cr	As	Hg	Total PCB				Total C6-C34	TPH I	Identity
					(cm)	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	% Fuel Oil	% Lube C
Background Data - Ave						<u>30</u>	24	8.8	1.0	10	41	41	<u>29</u>								
Baseline Data - Average Baseline Data - Standard						15 4.4	16 3.2	5.9 0.7	1.0 0.02	24 4.7	36 5	35 5.9	34 30		0.001				222 517	n/a	n/a
Baseline average + 3xStar						29	25	8	1.1	38	51	53	123		0.030				1772		l
Detection Limit						3.0	5.0	5.0	1.0	10	15	20	1.0	0.10	0.001				40		
DEW Line Cleanup Tier I Cr						100	100	50	-	200 500	500	250	130	2.0	1				2500		
	Criteria & site specific As criteria					100	100	30	,	300	300	250	130	2.0	,				2300		
Monitoring Data Upgradient- HELIPAL																					
Opgracient-TIEEITAL	MW-3 Surface (prior to 2013	3 excavation)																			
99-3729	MW-3	1999	1	Phase I	0	13	11	< 5.0	<1.0	<1.0	26	28	12	< 0.10	0.015				< 40	n/a	n/a
FO-3-1	MW-3	2000	2	Phase I	0-15	10	10	2.6	< 0.10	4.0	18	16	17	< 0.050	< 0.0030				<100	n/a	n/a
FO-3-1	MW-3	2001	3	Phase I	0-15	9.9	12	3.9	< 0.10	3.0	25	23	12	< 0.050	< 0.010			0.5	<20	n/a	n/a
FOM3-1 MW-3(Soil)0-15cm	MW-3 MW-3	2003 2006	5 8	Phase I Phase II	0-15 0-15	13 18	7.0	4.0 2.0	<1.0 <1.0	<1.0 <1.0	23 16	24 16	95 8.4	<0.040 <0.040	<0.0040 <0.10	<10 <12	<40 20	85 40	110 66		
MW-3(Soil)0-15cm	MW-3	2006	9	Phase II	0-15	13	10	3.0	0.9	<1.0	25	25	10	< 0.040	<0.10	<11	<20	<20	26		
MW-3(Soil)0-15cm	MW-3	2008	10	Phase II	0-15	21	19	6.0	< 0.50	7.0	23	48	49	< 0.10	< 0.050	<1.0	<1.0	18	19		
10-16957/58	MW-3	2010	12	Phase II	0-10	26	17	14	<1.0	<10	52	43	13	<0.1	< 0.003	<10	4.1	28	37		
not sampled		2013																			
F4-HEL-MW98-03-S	MW-3	2014	16	Phase II	0-15	14	13	4.4	< 0.10	4.2	32	32	31	< 0.050	< 0.010	<10	<10	<10	15		1
	+	2016 2018	18 20	Phase II															#N/A #N/A		1
	+	2018	25	Phase II Phase II															#N/A		1
		2023	30	Phase II															#N/A		
				Phase III															#N/A		
																			#N/A		
	MW-3 depth (prior to 2013																			,	,
99-3731 FO-3-2	MW-3 MW-3	1999 2000	2	Phase I Phase I	30 40-50	12 10	9.1 11	<5.0 2.7	<1.0 <0.10	<1.0 3.0	20 21	22 18	11 8.0	<0.10 <0.050	0.0047 <0.0030				< 40 <100	n/a n/a	n/a n/a
FO-3-2	MW-3	2000	3	Phase I	40-50	10	13	3.8	<0.10	4.0	24	23	13	< 0.050	< 0.0030				<20	n/a	n/a
not sampled	MW-3	2003	5	Phase I	10 30			0.0	-0.10											,	,
MW-3(Soil)40-50cm	MW-3	2006	8	Phase II	40-50	11	8.0	3.0	<1.0	<1.0	14	14	11	< 0.040	< 0.10	<12	<10	30	41		
MW-3(Soil)40-50cm	MW-3	2007	9	Phase II	40-50	11	9.0	3.0	0.9	<1.0	17	15	11	< 0.040	< 0.10	<10	<20	<20	25		
MW-3(Soil)40-50cm	MW-3	2008	10	Phase II	40-50	17	14 13	<5.0 5.3	< 0.50	7.0	<2.0	25	17	< 0.10	< 0.050	<1.0 <10	<1.0 4.5	<1.0 <9.0	1.5		
10-16959/60 not sampled	MW-3	2010 2013	12	Phase II	30-40	15	13	3.3	<1.0	<10	28	28	14	< 0.10	0.008	<10	4.3	<9.0	#N/A		
F4-HEL-MW98-03-D	MW-3	2014	16	Phase II	40-50	19	16	4.7	< 0.10	5.5	31	32	30	< 0.050	< 0.010	<10	<10	<10	15		
		2016	18	Phase II															#N/A		
		2018	20	Phase II															#N/A		
		2023	25	Phase II															#N/A		
		2028	30	Phase II															#N/A #N/A		
	-																		#N/A		
																			#N/A		
																			#N/A		
	MW-4 Surface (prior to 2013					L													100.00		
99-3713 FO-4-1	MW-4 MW-4	1999 2000	1	Phase I Phase I	0-15	21 11	15 10	5.1 2.7	<1.0 <0.10	<u>11</u> <1.0	<u>46</u> 25	35 19	<u>44</u> <1.0	<0.10 <0.050	0.049				#N/A #N/A	100	0
FO-4-1 FO-4-1	MW-4 MW-4	2000	3	Phase I	0-15	4.1	7.0	2.7	<0.10	3.0	12	11	11	< 0.050	< 0.010				#N/A	n/a n/a	n/a n/a
FOM4-1	MW-4	2003	5	Phase I	0-15	10	9.0	4.0	<1.0	<1.0	22	21	9.6	< 0.040	< 0.005	<10	<40	<40	45	/	1-7,12
MW-4	MW-4	2005	7	Phase II	0-12	21	6.0	3.0	<1.0	<1.0	19	15	4.5	< 0.040	< 0.050	<1.0	<40	<40	41		
MW-4(Soil)0-15cm	MW-4	2006	8	Phase II	0-15	23	15	4.0	<1.0	15	51	33	37	0.050	1.00	<12	100	210	316		.
MW-4 (Soil)0-15cm	MW-4	2007	9	Phase II	0-15	13	9.0	3.0	<0.9	<10	35	20	14	<0.04	0.7	<11	24	78	108		-
MW-4 (Soil)0-15cm	MW-4	2008 2010	10 12	Phase II Phase II	0-15	9.0	8.0	<5	< 0.5	3.0	<20	20	5	< 0.1	< 0.05	<10	<10	<10	15 #N/A		1
	MW-4 depth (prior to 2013			1 111150 11					1												1
99-3715	MW-4	1999	1	Phase I	30	15	10	< 5.0	<1.0	<1.0	26	34	23	< 0.10	0.042				< 40	n/a	n/a
FO-4-2	MW-4	2000	2	Phase I	40-50	10	10	3.1	< 0.10	3.0	23	19	10	< 0.050	0.015				<100	n/a	n/a
FO-4-2	MW-4	2001	3	Phase I	40-50	4.5	8.0	2.2	<0.10	2.0	15	12	5.0	< 0.050	0.010	21.0		- 10	<20	n/a	n/a
FOM4-2 MW-4(Soil)40-50cm	MW-4 MW-4	2003 2006	5 8	Phase I Phase II	40-50 40-50	21 26	15 15	6.0 4.0	<1.0 <1.0	<1.0 11	29 <u>51</u>	26 35	19 18	<0.040 0.14	<0.0010 0.90	<1.0 <12	<40 220	<40 210	41 436		-
MW-4(Soil)40-50cm MW-4 (Soil)40-50cm	MW-4 MW-4	2006	9	Phase II Phase II	40-50	21	13	4.0	<0.9	11	49	31	14	<0.04	0.90	<11	137	141	284		
	MW-4	2007	10	Phase II	40-50	9	8	<5	< 0.5	3	<20	18	4.0	<0.04	< 0.05	<10	<10	<10	15		
MW-4 (Soil)40-50cm		2010	12	Phase II															#N/A		
					I																
MW-4 (Soil)40-50cm	BMW-06 surface (after 201.	3 excavation)									35	39	1 77	< 0.10							
MW-4 (Soil)40-50cm 13-27331/13-27357	MW-6	3 excavation) 2013	15	Phase II	0-10	17	14	<5.0	<1.0	<1.0			77		< 0.050	<1	<4.0	< 9.0	7		
MW-4 (Soil)40-50cm		2013 2014	15 16	Phase II	0-10 0-15	17 20	14 20	<5.0 6.7	<1.0 0.14	7.1	77	<u>51</u>	40	<0.050	<0.050	<1 <10	<4.0 <10	<9.0 18	7 28 #N/A		
MW-4 (Soil)40-50cm 13-27331/13-27357	MW-6	2013 2014 2016	15 16 18	Phase II Phase II															#N/A		
MW-4 (Soil)40-50cm 13-27331/13-27357	MW-6	2013 2014	15 16	Phase II																	
MW-4 (Soil)40-50cm 13-27331/13-27357	MW-6	3 excavation) 2013 2014 2016 2018	15 16 18 20	Phase II Phase II Phase II															#N/A #N/A #N/A #N/A		
MW-4 (Soil)40-50cm 13-27331/13-27357	MW-6	2013 2014 2016 2018 2023	15 16 18 20 25	Phase II Phase II Phase II Phase II															#N/A #N/A #N/A		

FOX-4 Cape Hooper - Helipad Landfill West - Summary of Soil Analytical Data**

FOX-4 Cape Hoo	oper - Helipad Land	lfill West	- Summar	y of Soil Ana	lytical Da	ıta**	1		1							,			ı		
																F1 C ₆	F2	F3			
Sample ID	Location	Year	Monitoring Year	Monitoring Phase	Depth	Cu	Ni	Co	Cd	Pb	Zn	Cr	As	Hg	Total PCB	C ₁₀	C ₁₀ -C ₁₆	C ₁₆ -C ₃₄	Modified TPH^ Total C6-C34	TPH	Identity
					(cm)	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	% Fuel Oil	% Lube 0
																			#N/A	70 Tuel On	70 IABLE C
	BMW-06 depth (after 2013	eveavation)																	#N/A		
13-27332/33	MW-6	2013	15	Phase II	30-40	17	14	< 5.0	<1.0	<1.0	32	41	<u>39</u>	< 0.10	< 0.050	<1.0	4.3	15	19.8		
F4-HEL-MW98-06-D	MW-6	2014	16	Phase II	40-50	<u>41</u>	21	6.2	0.11	6.1	<u>52</u>	40	66	< 0.050	< 0.010	<10	<10	100	111		
		2016	18	Phase II															#N/A		
		2018	20	Phase II															#N/A		
		2023 2028	25 30	Phase II Phase II															#N/A #N/A		
		2020	50	1 Hase 11															#N/A		
																			#N/A		
																			#N/A		
Downgradient- Helipad	I Jell W/+																		#N/A		
	MW-01 surface																				
99-3725	MW-01	1999	1	Phase I	0	15	15	5.0	<1.0	<1.0	36	47	45	< 0.10	< 0.0030				< 40	n/a	n/a
FO-1-1	MW-01	2000	2	Phase I	0-15	17	17	4.9	< 0.10	5.0	36	34	58	< 0.050	< 0.0030				<100	n/a	n/a
FO-1-1	MW-01	2001	3	Phase I	0-15	11	15	5.5	< 0.10	3.0	<u>66</u>	24	14	< 0.050	< 0.010				65	0.0	100
FOM-1-1	MW-01	2003	5	Phase I	0-15	13	11	5.3	<1.0	<1.0	<u>69</u>	<u>47</u>	13	< 0.040	< 0.0040	<10	<40	<40	45		
MW-1 MW/ 1/Soil) () 15cm	MW-01 MW-01	2006	8	Phase II	0-12 0-15	11 15	11 13	6.0 4.0	<1.0 <1.0	<1.0 <1.0	29 33	28 26	30 81	<0.040 <0.040	<0.050 <0.10	<1.0 <12	< 40 <10	< 40 20	41 31		1
MW-1(Soil) 0-15cm MW-1(Soil)0-15cm	MW-01 MW-01	2006 2007	9	Phase II Phase II	0-15	13	13	4.0	0.9	<1.0	62	26	<u>81</u> 51	<0.040	<0.10	<12	<10	32	47.5		1
MW-1(Soil)0-15cm	MW-01	2007	10	Phase II	0-15	20	16	5	< 0.50	20 20	<2.0	31	16	<0.10	< 0.050	<1.0	138	85	224		1
10-16989/90	MW-01	2010	12	Phase II	0-10	15	16	7.0	<1.0	<1.0	60	40	17	< 0.10	< 0.0030	4.4	60	13	77		
13-27334/35	MW-01	2013	15	Phase II	0-10	18	15	< 5.0	<1.0	<1.0	30	<u>42</u>	17	< 0.10	< 0.050	<1.0	<4.0	< 9.0	7		
F4-HEL-MW98-01-S	MW-01	2014	16	Phase II	0-15	34	31	9.7	< 0.10	6.1	47	49	25	< 0.050	< 0.010	<10	<10	<10	15		
		2016	18	Phase II															#N/A		
		2018 2023	20 25	Phase II Phase II															#N/A #N/A		
		2023	30	Phase II															#N/A		
		2020	50	1 11450 11															#N/A		
																			#N/A		
																			#N/A		
	MW-01 depth																		#N/A		
99-3727	MW-01	1999	1	Phase I	30	19	18	6.9	<1.0	<1.0	48	<u>57</u>	25	< 0.10	< 0.0030				< 40	n/a	n/a
n/s	MW-01	2000	2	Phase I	40-50					-											
FO-1-2	MW-01	2001	3	Phase I	40-50	12	13	4.3	< 0.10	3.0	27	23	15	< 0.050	< 0.010				<20	n/a	n/a
FOM-1-2	MW-01	2003	5	Phase I	40-50	16	15	7.0	<1.0	<1.0	<u>50</u>	<u>57</u>	19	< 0.040	< 0.0010	<10	<40	<40	45		
MW-1(Soil) 40-50cm	MW-01	2006	8	Phase II	40-50	20	18	5.0	<1.0	<1.0	30	31	9	< 0.040	< 0.10	<12	20	50	76		
MW-1(Soil)40-50cm MW-1(Soil)40-50cm	MW-01 MW-01	2007 2008	9	Phase II Phase II	40-50 40-50	10	9	3.0 <5.0	1 <0.50	<1.0 6	32 <2.0	23 22	8 14	<0.040 <0.10	<0.10 <0.050	<11 <1.0	<20 1800	51 42	67 1843		
10-16991/92	MW-01	2010	12	Phase II	30-40	17	16	6.9	<1.0	<1.0	48	41	75	< 0.10	< 0.0030	51	120	10	181		
13-27336/37	MW-01	2013	15	Phase II	30-40	15	13	<5.0	<1.0	<1.0	28	42	38	< 0.10	< 0.050	<1.0	<4.0	< 9.0	7.0		
F4-HEL-MW98-01-D	MW-01	2014	16	Phase II	40-50	32	<u>31</u>	9.3	< 0.10	5.8	<u>45</u>	47	23	< 0.050	< 0.010	<10	<10	<10	15		
		2016	18	Phase II															#N/A		
		2018	20	Phase II															#N/A		
		2023 2028	25 30	Phase II Phase II															#N/A #N/A		
		2020	30	Phase II															#N/A		
																			#N/A		
																			#N/A		
	MANY 02 C		<u> </u>						<u> </u>			<u> </u>							#N/A		
99-3733	MW-02 surface MW-02	1999	1	Phase I	0	14	11	<5.0	<1.0	<1.0	32	43	<u>45</u>	< 0.10	< 0.0030				< 40	n/a	n/a
FO-2-1	MW-02 MW-02	2000	2	Phase I	0-15	14	14	4.6	<0.10	3.0	33	31	15	< 0.050	< 0.0030			1	<100	n/a	n/a
FO-2-1	MW-02	2001	3	Phase I	0-15	10	12	4.0	< 0.10	3.0	25	22	16	< 0.050	< 0.010	1		1	11.0	95	5.0
FOM-2-1	MW-02	2003	5	Phase I	0-15	13	12	6.0	<1.0	<1.0	30	43	<u>83</u>	< 0.040	< 0.0040	<10	<40	95	120		
MW-2	MW-02	2005	7	Phase II	0-10	21	6.0	9.0	<1.0	<1.0	37	30	14	< 0.040	< 0.050	<1.0	1100	480	1581		
MW-2(Soil)0-15cm MW-2(Soil)0-15cm	MW-02	2006	8	Phase II	0-15 0-15	12 11	13 10	4.0 3.0	<1.0 0.9	<1.0 <1.0	24 24	26 25	13 21	<0.040	<0.10 <0.10	<12 12	90 320	70 20	166 352		1
191 W -2(3011)U-13CM	MW-02 MW-02	2007 2008	10	Phase II Phase II	0-15 0-15	31	10 <u>31</u>	3.0 10	< 0.50	<1.0 9	33	25 46	8	<0.040	<0.10	12	320 862	305	1183		1
MW-2(Soil)0.15cm	111 W -UZ	2008	12	Phase II	0-10	16	17	7.4	<1.0	<1.0	41	41	20	< 0.10	< 0.0030	<4.0	39	11	52		1
MW-2(Soil)0-15cm 10-16977/78	MW-02		15	Phase II	0-10	18	16	<5.0	<1.0	<1.0	36	43	<u>50</u>	< 0.10	< 0.050	<1.0	<4.0	< 9.0	7.0		
MW-2(Soil)0-15cm 10-16977/78 13-27338/39	MW-02 MW-02	2013			0-15	20.5	17.5	6.95	< 0.5	5.8	39.5	39.5	72	< 0.10	< 0.05	<10	23	44.5	72.5	1	
10-16977/78 13-27338/39		2013 2014	16	Phase II	0-15	20.5						1 -		. —							
10-16977/78	MW-02	2014 2016	16 18	Phase II	0-15	20.3													#N/A		
10-16977/78 13-27338/39	MW-02	2014 2016 2018	16 18 20	Phase II Phase II	0-15	20.5													#N/A #N/A		
10-16977/78 13-27338/39	MW-02	2014 2016 2018 2023	16 18 20 25	Phase II Phase II Phase II	0-15	20.3													#N/A #N/A #N/A		
10-16977/78 13-27338/39	MW-02	2014 2016 2018	16 18 20	Phase II Phase II Phase II Phase II	0-15	20.5													#N/A #N/A #N/A #N/A		
10-16977/78 13-27338/39	MW-02	2014 2016 2018 2023	16 18 20 25	Phase II Phase II Phase II	0-15	20.5													#N/A #N/A #N/A #N/A #N/A		
10-16977/78 13-27338/39	MW-02	2014 2016 2018 2023	16 18 20 25	Phase II Phase II Phase II Phase II	0-15	20.5													#N/A #N/A #N/A #N/A		

FOX-4 Cape Hooper - Helipad Landfill West - Summary of Soil Analytical Data**

TOX-4 Cape III	oper - Henpau Lanc	iiii w cst	- Summan	y of Son Ana	nyticai Da	ııa··															
Sample ID	Location	Year	Monitoring Year	Monitoring Phase	Depth (cm)	Cu [mg/kg]	Ni [mg/kg]	Co [mg/kg]	Cd [mg/kg]	Pb [mg/kg]	Zn [mg/kg]	Cr [mg/kg]	As [mg/kg]	Hg [mg/kg]	Total PCB [mg/kg]	F1 C ₆ - C ₁₀ [mg/kg]	F2 C ₁₀ -C ₁₆ [mg/kg]	F3 C ₁₆ -C ₃₄ [mg/kg]	Modified TPH^ Total C6-C34 [mg/kg]		Identity % Lube Oil
	MW-02 depth																				
99-3735	MW-02	1999	1	Phase I	30	16	13	5.6	<1.0	<1.0	33	46	<u>58</u>	< 0.10	< 0.0030				49	100	0
FO-2-2	MW-02	2000	2	Phase I	40-50	14	12	3.9	< 0.10	3.0	30	27	92	< 0.050	< 0.0030				<100	n/a	n/a
FO-2-2	MW-02	2001	3	Phase I	40-50	11	15	4.4	< 0.10	3.0	28	23	42	< 0.050	< 0.010				<2.0	n.d	n.d
FOM-2-2	MW-02	2003	5	Phase I	40-50	15	13	6.0	<1.0	<1.0	33	<u>46</u>	21	< 0.040	< 0.0010	<10	<40	48	73		
MW-2(Soil)40-50cm	MW-02	2006	8	Phase II	40-50	21	21	6.0	<1.0	<1.0	32	33	12	< 0.040	< 0.10	60	920	60	1040		
MW-2(Soil)40-50cm	MW-02	2007	9	Phase II	40-50	13	12	3	0.9	<1.0	24	24	8	<0.040	<0.10	99	3300	87	3486		
MW-2(Soil)40-50cm	MW-02	2008	10	Phase II	40-50	<u>34</u>	<u>35</u>	<u>10</u>	< 0.50	<u>10</u>	33	<u>49</u>	12	< 0.10	< 0.050	62	6800	764	7626	i .	
10-16979/80	MW-02	2010	12	Phase II	30-40	15	14	6.3	<1.0	<1.0	32	37	21	< 0.10	< 0.0030	<4.0	17	< 8.0	23		
13-27340/41	MW-02	2013	15	Phase II	30-40	18	17	5.3	<1.0	<1.0	32	43	16	< 0.10	< 0.050	25	970	120	1115		
F4-HEL-MW98-02-D	MW-02	2014	16	Phase II	40-50	34	<u>35</u>	9.9	< 0.10	10	55	54	42	< 0.050	< 0.010	100	1100	250	1450		
		2016	18	Phase II															#N/A		
		2018	20	Phase II															#N/A		
		2023	25	Phase II															#N/A		
		2028	30	Phase II															#N/A		
				Phase III															#N/A		
																			#N/A		
																			#N/A		
																			#N/A		
	F4-17 surface (prior to 2013	excavation)																			
F4-17	F4-17	2005	7	Phase II	0-5														#N/A		
F4-17(Soil) 0-15cm	F4-17	2006	8	Phase II	0-15											<12	10	10	26		
	F4-17 depth																				
F4-17(Soil) 40-45cm	F4-17	2006	8	Phase II	40-45											<12	10	<10	21		
	F4-18 surface																				
S-1-1	MW-1 d/g	2001	3	Phase I	0-15	22	21	6.8	< 0.10	15	44	35	42	< 0.050	< 0.010				#N/A	95	5
F4-18	F4-18	2005	7	Phase II	0-5											<12	1040	2220	3266	4	
F4-18(Soil) 0-15cm	F4-18	2006	8	Phase II	0-15											<12	140	420	566		
	F4-18 depth																				
F4-18(Soil) 40-50cm	F4-18	2006	8	Phase II	40-50											97	420	50	567		
	F4-19 surface																				
F4-19(Soil)0-15cm	F4-19	2006	8	Phase II	0-15											<12	1670	430	2106		
	F4-19 depth																				
F4- 19(Soil)40-45cm	F4-19	2006	8	Phase II	40-45											66	2560	650	3276		
	F4-20 surface																				
F4-20	F4-20	2005	7	Phase II	0-6											<12	<40	<40	46		
F4-20(Soil) 0-15cm	F4-20	2006	8	Phase II	0-15							1				<12	360	390	756		
	F4-20 depth																				
F4-20(Soil)30-40cm	F4-20	2006	8	Phase II	30-40											96	6940	420	7456	4	1 1

Note: Total Hydrocarbons (C_6 - C_{54}) has been calculated by adding results for F1, F2 and F3. ** The Helipad Landfill West underwent additional regrading in 2013.

Legend

XX sample exceeds background
xx sample exceeds baseline
xx sample exceeds DLCU Tier I criteria XX sample exceeds DLCU Tier II criteria

FOX-4 Cape Hoop	per - Station Area	Landfill - Su	ımmary of 19	99-2028 Soil A	Analytical Da	ıta**															
1																F1 C ₆ -C ₁₀	F2 G ₆₉ -G ₁₆	F3 G ₆ -G ₃₄	Modified TPH^ -		
Sample #	Location	Year	Monitoring Year	Monitoring Phase	Depth	Cu	Ni	Co	Cd	Pb	Zn	Cr	As	Hg	Total PCB				Modified TPH^ - Total C6-C34	TPH	Identity
					(cm)	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	% Fuel Oil	% Lube Oil
Background Data - Average Baseline Data - Average	ige					30 17	24	<u>8.8</u> 5	1.00 0.12	10.0 26	41 35	41 28	28.6 13		0.16				53	n/a	n/a
Baseline Data - Standard I	Deviation					6	14.8	0.9	0.05	4	6	8	3		0.14				30	, 4	**/ **
Baseline average + 3xStanda	ard Deviation					35	64	7.7	0.3	37	53	50	23		0.6				144		
Baseline average + 3xStanda Detection Limit						3.0	5.0	5.0	1.0	10	15	20	0.20	0.10	0.050				40		
DEW Line Cleanup Tie	er I Criteria						1			200			1		1						
DEFECT OF OR						100	100	50	5	500	500	250	130	2.0	5				2500		
DEW Line Cleanup Ties Monitoring Data	er II Untena & site spe	ecitic As criteria															-				
Upgradient	Isam -																				
99-3737	MW-7 surface MW-7	1999	1	Phase I	0	69	15	<5.0	<1.0	64	71	50	9.7	< 0.10	0.13	1	Т		< 40	n/a	n/a
FO-7-1	MW-7 MW-7	2000	2	Phase I	0-15 0-15	54 17	3 <u>2</u>	6.3 3.4	1.0 <0.10	27	80 28	<u>41</u> 21	17	<0.050 <0.050	0.12 6.2				<100 11	n/a 95	n/a 5
FO-7-1 FOM-7-1	MW-7	2001	5	Phase I Phase I	0-15	11	10	4.0	< 0.10	<u>12</u> <1.0	28	19	19	<0.050	0.021	<1.0	<40	44	65	. 95	3
MW-7	MW-7	2005	7	Phase II	0-8	50	17	7.0	<1.0	43	59	37	17	< 0.040	0.10	<1.0	<40	390	411		
MW-7 (Soil) 0-15 cm MW-7(Soil)0-15cm	MW-7 MW-7	2006 2008	10	Phase II Phase II	0-15 0-15	11 47	10 21	3.0 6.0	<1.0 0.60	<1.0 40	20 48	20 41	11 20	<0.040 <0.10	<0.10 0.050	<1.0 <1.0	<1.0 <1.0	30 170	31 171		
10-16953/54	MW-7	2010	12	Phase II	0-10	45	15	5.6	<1.0	39	52	31	11	< 0.10	0.05	<1.0	4.3	20	25		
13-27321/22 F4-STA-MW98-07-S	MW-7 MW-7	2013 2014	15 16	Phase II Phase II	0-10 0-15	32 50	22 30	5.5 7.8	<1.0 0.11	13 23	<u>49</u> 57	61	26 33	<0.10	0.04	<10 <10	5.3 <10	12 28	22 38		
		2016	18	Phase II			ļ <u></u>						<u> </u>	1					#N/A		
	+	2018 2023	20 25	Phase II Phase II													-		#N/A #N/A		
	1	2028	30	Phase II															#N/A		
	+	+		Phase III			 					 			 		+		#N/A #N/A		
																			#N/A		
	MW-7 depth					L							L						#N/A		
99-3739	MW-7	1999	1	Phase I	30	410	24	6.5	<1.0	11	49	61	20	< 0.10	0.019				< 40	n/a	n/a
n/s FO-7-2	MW-7 MW-7	2000 2001	2	Phase I Phase I	40-50 40-50	14	15	3.7	< 0.10	4.0	25	23	22		0.19				54	95	5.0
FOM-7-2	MW-7	2003	5	Phase I	40-50	32	23	8.0	<0.10	<1.0	39	49	23	< 0.040	< 0.0010	<1.0	<40	<40	41	- /3	3.0
MW- 7 (Soil) 40-50 cm	MW-7 MW-7	2006	8	Phase II Phase II	40-50 40-50	18	14	4.0 8.0	<1.0 <0.050	<1.0	24	28	13	<0.040	< 0.10	<1.0 <1.0	<1.0 <1.0	230	231		
MW-7(Soil)40-50cm 10-16955/56	MW-7 MW-7	2008 2010	10	Phase II	40-50 30-40	53 35	21	7.4	<0.050	24 17	46 50	61 45	24 16	<0.10	<0.050 0.017	<1.0	7.1	39	47		
13-27319/20	MW-7	2013	15	Phase II	30-40	32	22	< 5.0	<1.0	13	48	31	14	< 0.10	< 0.050	<10	4.8	14	24		
F4-STA-MW98-07-D	MW-7	2014 2016	16 18	Phase II Phase II	40-50	64	43	10.8	<0.5	5.85	57	67.5	45.5	< 0.10	<0.05	<10	<10	<50	35 #N/A		
		2018	20	Phase II															#N/A		
		2023 2028	25 30	Phase II Phase II		-							-			-	+		#N/A #N/A		-
				Phase III															#N/A		
	-					_	ļ									-	<u> </u>		#N/A #N/A		
																			#N/A		
Downgradient	MW-8 surface																		1		
99-3741	MW-8	1999	1	Phase I	0	14	11	<5.0	<1.0	<1.0	34	28	10	< 0.10	0.080				< 40	n/a	n/a
FO-8-1 FO-8-1	MW-8 MW-8	2000 2001	2	Phase I Phase I	0-15 0-15	16	12	4.3 3.7	<0.10 <0.10	5.0 4.0	39 33	25 20	14	<0.050 <0.050	0.12 0.26	-	+		<100 <20	n/a n/a	n/a n/a
FOM-8-1	MW-8	2003	5	Phase I	0-15	13	11	4.0	< 0.10	<1.0	22	21	12	< 0.040	< 0.0010	<1.0	<40	<40	41	11/4	11/ 4
MW-8 MW-8 (Soil) 0-15 cm	MW-8 MW-8	2005 2006	7	Phase II Phase II	0-10 0-15	11	9.0	4.0 3.0	<1.0 <1.0	<1.0 <1.0	29 20	20	6.6	<0.040	<0.050 <0.10	<1.0 <1.0	< 40 10	< 40 150	41 161		
MW-8 (Soil) 0-15 cm	MW-8	2008	10	Phase II	0-15	19	10	<5.0	<0.050	8.0	21	29	17	< 0.10	< 0.050	<1.0	<1.0	37	38		
10-16945/46	MW-8	2010	12	Phase II	0-10	12	10	<5.0	<1.0	<1.0	40	23	7.5	< 0.10	0.0060 <0.05	<1.0 <10	5.5 3.4	15 9.5	21 18		
13-27325/26 F4-STA-MW98-08-S	MW-8 MW-8	2013 2014	15 16	Phase II Phase II	0-10	16	11 14	<5.0 4.0	<1.0 <0.10	<10 5	23 30	25 28	21 21	<0.10 <0.050	0.26	<10	10	<10	20		
		2016	18	Phase II															#N/A		
	+	2018 2023	20 25	Phase II Phase II			<u> </u>						-	· · · · · · · · · · · · · · · · · · ·					#N/A #N/A		
		2028	30	Phase II															#N/A		
	+	+	+	Phase III	 	<u> </u>	 	 	 	<u> </u>		 	+	+	 	-	+		#N/A #N/A		-
			1																#N/A		
	MW-8 depth		1	1	1		-		1	1			1	1	1	-	1		#N/A		
99-3743	MW-8	1999	1	Phase I	30	17	16	<5.0	<1.0	<1.0	42	36	19	< 0.10	0.019		Ţ		150	100	0
FO-8-2 FO-8-2	MW-8 MW-8	2000 2001	2 3	Phase I Phase I	40-50 40-50	17 11	12	3.5 4.3	<0.10 <0.10	4.0 3.0	27 30	25 24	11 <u>37</u>	<0.050 <0.050	0.053	-	-	-	<100 25	n/a 95	n/a 5.0
FOM-8-2	MW-8	2003	5	Phase I	40-50	15	14	5	< 0.10	70	27	24	12	< 0.040	< 0.0010	<1.0	<40	<40	41		
MW-8 (Soil) 40-50 cm MW-8(Soil)40-50cm	MW-8 MW-8	2006 2008	8 10	Phase II Phase II	40-50 40-50	15 17	12	3.0 <5.0	<1.0 <0.050	<1.0 7.0	20 <2.0	21 26	11	<0.040 <0.10	<0.10 <0.050	<1.0 <1.0	<1.0 <1.0	30 42	31 43		-
10-16947/48	MW-8	2010	12	Phase II	30-40	16	9.2	< 5.0	<0.050	<1.0	27	26	8.3	< 0.10	0.019	<1.0	4.4	37	42		
13-27323/24	MW-8 MW-8	2013 2014	15 16	Phase II Phase II	30-40 40-50	15	13	<5.0 4.0	<1.0 <0.10	<10 4	38	28 32	16 20	<0.10 <0.050	0.19	<10 <10	4.9 <10	5.5 <10	15 15		
F4-STA-MW98-08-D	NW-8	2014	16	Phase II Phase II	40-50	12	14	4.0	×0.10	4	32	32	20	\0.050	0.18	<10	<10	~10	#N/A		
	4	2018	20	Phase II			ļ						1	1			1		#N/A #N/A		
	+	2023 2028	25 30	Phase II Phase II	1	-	 	1	1	1	-	-	+	-	+	-	+	-	#N/A #N/A		-
				Phase III															#N/A		
	+	+	+	+	1	 	 		1		-	-	+	-	+	+	+	-	#N/A #N/A		-
				1	1		i	1	T	1		1	1	1	1		T		#N/A		

New Section Place Place Place	Sample #	Location	Year	Monitoring Year	Monitoring Phase	Depth	Cu [mg/kg]	Ni [mg/kg]	Co [mg/kg]	Cd [mg/kg]	Pb [mg/kg]	Zn [mg/kg]	Cr [mg/kg]	As [mg/kg]	Hg [mg/kg]	Total PCB [mg/kg]	F1 C ₆ -C ₁₀	F2 C ₁₆ -C ₁₆	F3 C ₁₆ -C ₅₄	Modified TPH^ - Total C6-C34 [mg/kg]		Identity
9356 MWO 1999 1 Phoe 0 15 H St 11 St St 1 St St St						(cm)	[ms/ms]	[118-18]	1881	(66)	(1151.15)	[170 170]	(1187.18)	[FF8-76]	1881	(8/8)	(66)	(66)	[ms/ ms]	(66)	% Fuel Oil	% Lube Oil
16.9-1 MW	00.2745		1000		DI Y	0	15	11	<50	<1.0	<1.0	20	22	26	<0.10	0.20				60	100	-
Fig. Micro				1																		
Find-1-1 NRV 2003 5																		-				
MWO																	<1.0	<40	<40		11/4	11/ 4
MW 9 Ago 10 15 cm MW 9																						
MW-9 2008																			1			
10.1699/9 MW 9 2010 12 Phose II 0.10 18 8.6 5.83 ct.0 ct.0 39 32 14 ct.0 0.053 ct.0 ct.0 dt.1 32 0.15 15 15 15 15 15 15 15																						
15272/28 NW-9 2013 15 Phase II 0-10 15 12 <5.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0																						
H-STA-AWW9-49/S																0.000						
2016 18 Phase																						
2018 20	F4-STA-MW98-09-S	MW-9				0-15	16	12	3.7	< 0.10	- 8	35	25	14	< 0.050	0.1	<10	<10	<10			
2023 25																		-				
Second S							-	ļ	+	ļ				ļ	-			ļ				
Pase														-				-				
NW-9 depth			2028	30			-	ļ							-							
MW-9 deph				<u> </u>	Phase III																	
MW-9 depth														-				-				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			-					ļ										-				
99.3747 MW-9 1999 1 Phase			-					ļ							-					#N/A		
FO-92 MW-9 2000 2 Phase 40.50 14 13 4.8 \$\text{-}\$\$\$ \$\text{-}\$\$ \$\text{-}\$\$\$ \$\text{-}\$\$\$ \$\text{-}\$\$\$ \$\text{-}\$\$\$ \$\text{-}\$\$\$	00.2747	MW-9 depth	1000	.		70	45		-50			22	25	20	×0.10	0.22	-	ļ	-		100	
FO-92 MW-9 2001 3 Phase I 40-90 9 11 3.5 5.01.0 4.0 26 21 11 5.0.050 0.21 5.0.050 0.21 5.0.050 0.21 5.0.050 0.21 5.0.050 0.21 5.0.050 0.21 5.0.050 0.21 5.0.050 0.21 5.0.050 0.21 5.0.050 0.21 5.0.050 0.21 5.0.050 0.21 5.0.050 0.21 5.0.050 0.21 5.																	 	 	1			
FOMP-9 2003 5 Phase 1 40-50 12 11 5.0 <0.10 <1.0 31 32 70 <0.040 0.10 <1.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.																		-				
NW-9 (Soli) 40-45 cm MW-9 (2006) 8 Phase II 40-45 10 10 3.0 <1.0 <1.0 18 22 2.5 <0.040 <0.10 <1.0 <1.0 <1.0 <1.0 <1.0 <2.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <																			- 10		n/a	n/a
MW-9 2008 10 Phase II 40-50 30 8.7 7.0 <0.050 6.0 37 65 15 <0.10 0.050 <1.0 1.0 1.0 29 30 48 15.27329/30 MW-9 2010 12 Phase II 50-40 17 6.6 7.82 <1.0 <1.0 <1.0 \ 1.5 \ 27329/30 MW-9 2013 15 Phase II 40-50 16 13 3.9 <0.10 <1.0 <1.0 \ 1.5 \ 27329/30 MW-9 2014 16 Phase II 40-50 16 13 3.9 <0.10 <1.0 <1.0 \ 1.5 \ 27329/30 MW-9 2014 16 Phase II 40-50 16 13 3.9 <0.10 <1.0 <1.0 \ 1.5																						
10-1(951/52 MW-9 2010 12 Phase II 30-40 17 6.6 7.82 <1.0 <1.0 51 47 26 <0.10 0.056 <1.0 17 30 48 13-2732/30 MW-9 2013 15 Phase II 40-50 17 13 <5.0 <1.0 <1.0 32 33 11 <0.040 0.07 <1.0 6.4 145 156																						
15-27/20/9/0 MW-9 2013 15 Phase II 40-50 17 15 <5.0 <1.0 <1.0 32 33 11 <5.040 0.07 <10 6.4 145 156 14-STA-MW9-0-1D MW-9 2014 16 Phase II 40-50 16 13 3.9 <0.10 6 28 26 66 <0.080 0.15 <10 <10 <10 15 2016 18 Phase II 40-50 16 13 3.9 <0.10 6 28 26 66 <0.080 0.15 <10 <10 <10 HN/A 2018 20 Phase II 40-50 16 13 3.9 <0.10 6 28 26 66 <0.080 0.15 <10 <10 HN/A 2018 20 Phase II 40-50 16 13 3.9 <0.10 6 28 26 66 <0.080 0.15 <10 <10 HN/A 2018 20 Phase II 40-50 16 13 3.9 <0.10 6 28 26 66 <0.080 0.15 <10 <10 HN/A 2018 20 Phase II 40-50 16 13 3.9 <0.10 6 28 26 66 <0.080 0.15 <10 <10 HN/A 2018 20 Phase II 40-50 II																						
F4STA-MW84-09-D MW-9 2014 16 Phase II 40-50 16 13 3.9 <0.10 6 28 26 66 <0.080 0.15 <10 <10 <10 15																						
2016 18 Phase II	10 21027 00																					
2018 20 Phase II	P4-51A-MW98-09-D	MW-9				40-30	16	13	3.9	<0.10	6	28	26	66	< 0.050	0.15	<10	<10	>10			
2025 25 Phase II #N/A 2028 30 Phase II #N/A Phase II #N/A #N/A Phase II #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A								 	+	 	-	-	-	 	+		1	+	1			
2028 30 Phase II #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A							 		+	 				 	+			+				
Phase III #N/A #N/A #N/A #N/A						ļ		 	+	ļ		 	-	 	-		-		-		-	
#N/A #N/A			2028	30				 	+	 	-	-		 	+	-	1	+	-			
#N/A			-	1	Phase III			ļ	-	ļ	-			ļ	-		1	-	-			
			-			ļ		 		ļ		 	-	 	-		-		-		-	
			+	+	+	+		 	+	 	-	+	+	+	+		+	+	+	#N/A		

Note: Total Hydrocarbons $(C_0 \cdot C_{34})$ has been calculated by adding results for F1, F2 and F3. ** Additional regrading of the Station Landfill occurred in 2013.

			#N/A	
egend				
	XX	sample exceeds ba	ckground	
	XX	sample exceeds b	oaseline	
	XX	sample exceeds DLC	U Tier I criteria	
	XX	sample exceeds DLC	U Tier II criteria	

FOX-4 Cape	e Hooper - Pallet	Line Landf	ill - New	Landfill Mo	onitoring sta	arting in 201	4**												
nple ID	Location			Monitoring Phase	Depth	Cu [mg/kg]	Ni [mg/kg]	Co [mg/kg]	Cd [mg/kg]	Pb [mg/kg]	Zn [mg/kg]	Cr [mg/kg]	As [mg/kg]	Hg [mg/kg]	Total	F1	F2 G ₁₀ -G ₁₆	F3 C ₁₆ -C ₃₄ [mg/kg]	Modified TPH^ - Total C6-C34 TPH Identity [mg/kg]
					(cm)									(66)	PCB [mg/kg]	(**************************************	(**8/ *8)	[88]	% Fuel Oil % Lube
ckground Aver iseline Data -	rage - Average					30 27	24 17	3.9	1.0	<u>6</u> 10	41 37	4 <u>1</u> 39	29 37	0.10	0.050		1	1	26
	Standard Deviation					13.4	6.7	2.31	0.00	4	20.1	18.3	44.7	0.000	0.00				23
seline Average + :	3xStandard Deviation					67	37	10.8	1.0	22	98	94	171	0.100	0.05				94
tection Limit						3.0	5.0	5.0	1.0	10	15	20	0.20	0.10	0.050				10
EW Line Clean	ир Tier I Criteria									200					1				
EW Line Cleanup	Tier II Criteria & site specific	As criteria				100	100	50	5	500	500	250	130	2.0	5				2500
Ionitoring D	ata																		
pgradient	F4-25 Surface			1		1									1				
-PAL-25-S	F4-25 Surface	2014	16	Phase II	0-15	23	14	4.6	< 0.10	10	38	<u>50</u>	38	< 0.050	< 0.010	<10	<10	<10	15
		2016	18	Phase II															#N/A
		2018	20	Phase II				ļ											#N/A
		2023 2028	25 30	Phase II Phase II				ļ		ļ						ļ			#N/A #N/A
		2020		Phase III				ł			-				-		-		#N/A
						i		1											#N/A
																			#N/A
	P4 05 D1			-			-				-			-					#N/A
PAL-25-D	F4-25 Depth F4-25	2014	16	Phase II	40-50	33	23	7.4	< 0.10	6.8	46	<u>58</u>	110	< 0.050	< 0.010	<10	<10	<10	15
	1	2016	18	Phase II	10 20			1	-0.10	100	12		***	-0.050	-0.010			-10	#N/A
		2018	20	Phase II															#N/A
		2023	25	Phase II				ļ		ļ									#N/A
		2028	30	Phase III Phase III				ļ			-				-		-		#N/A #N/A
	-			Thase III			 	 			1			 			.		#N/A
																			#N/A
																			#N/A
DAT ACC	F4-26 Surface	2014	47	DI TI	0.15	100	120		z0.10	22	20	27	21	×0.050	0.026	<10	z10	24	24
PAL-26-S	F4-26	2014	16 18	Phase II Phase II	0-15	18.0	12.0	3.2	< 0.10	33	28	27	21	< 0.050	0.036	<10	<10	24	34 #N/A
		2018	20	Phase II				 											#N/A
		2023	25	Phase II															#N/A
		2028	30	Phase III				ļ											#N/A
				Filase III															#N/A #N/A
				· · · · · · · · · · · · · · · · · · ·		i	1	†		<u> </u>						<u> </u>			#N/A
																			#N/A
PAL-26-D	F4-26 Depth F4-26	4011		DI 77	40-50				< 0.10	-			140	< 0.050	< 0.010	<10	<10	<10	
PAL-26-D	F4-26	2014 2016	16	Phase II Phase II	40-50	61	43	12	<0.10	<u> </u>	61	78	140	< 0.050	<0.010	<10	<10	<10	15 #N/A
		2018	20	Phase II				1											#N/A
		2023	25	Phase II															#N/A
		2028	30	Phase II				ļ											#N/A
	-			Phase III						-	1				-		1		#N/A #N/A
								1											#N/A
																			#N/A
wngradient	E4 27 C C																		
PAL-27-S	F4-27 Surface F4-27	2014	16	Phase II	0-15	11.5	5.7	2.85	< 0.5	10.5	19	20	11.5	< 0.10	< 0.05	<10	16	32.5	53.5
	1.2	2016	18	Phase II	17	*****	3.1	2.03	-0.3		17		*1/	-0.10	5.05	-10	10	242	#N/A
		2018	20	Phase II															#N/A
		2023	25	Phase II		ļ				ļ						<u> </u>			#N/A
		2028	30	Phase II Phase III													1		#N/A #N/A
				Timoc III				l											#N/A
																			#N/A
	E4 27 D 4			1				ļ									ļ		0
PAL-27-D	F4-27 Depth F4-27	2014	16	Phase II	40-50	19	16	4	< 0.10	41	28	30	11	< 0.050	< 0.010	190	2700	380	3270
	1.727	2014	18	Phase II	70-30	1	10	1 7	~0.10		20	30	'''	~0.030	-0.010	120	2700	360	#N/A
		2018	20	Phase II															#N/A
		2023	25	Phase II				ļ											#N/A
	+	2028	30	Phase III						ļ	-					<u> </u>	-		#N/A
	1	-		1 masc 111				1		ļ				-					#N/A #N/A
								+							-	+			
				<u> </u>		L		ļ		L									#N/A #N/A

Ол-т Сар	Hooper - Pallet	Dille Dane	IIII - I TEW	Landini Moi	intoring of	1 201	1														
umple ID	Location	Year	Monitoring Year	Monitoring Phase	Depth	Cu [mg/kg]	Ni [mg/kg]	Co [mg/kg]	Cd [mg/kg]	Pb [mg/kg]	Zn [mg/kg]	Cr [mg/kg]	As [mg/kg]	Hg [mg/kg]	Total	F1 C ₆ -C ₁₀			Modified TPH^ - Total C6-C34	ТРН	Identity
					(cm)	[mg/kg]	[mg/kg]	[mg/ kg]	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	PCB [mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	% Fuel Oil	% Lube C
	F4-28 Surface				(CIII)										rca [ng/kg]					76 Puei On	/# Lube C
4-PAL-28-S	F4-28	2014	16	Phase II	0-15	18	17.0	6.1	< 0.10	5.9	31	31	7	< 0.050	< 0.010	<10	<10	34	44		
	1	2016	18	Phase II		1					V-								#N/A		†
		2018	20	Phase II				h											#N/A		+
		2023	25	Phase II															#N/A		1
	 	2028	30	Phase II		 		 			· · · · · ·								#N/A		+
				Phase III															#N/A		+
			1	Timoc III															#N/A		+
	+		1	-															#N/A		+
	+		+	 		 	+	 	 			1		 	 	 			#N/A		+
	F4-28 Depth	+	1			 									1				7718/1		+
4-PAL-28-D	F4-28	2014	16	Phase II	40-50	43	41	12	0.11	9.3	67	61	14	< 0.050	< 0.010	<10	<10	10	20		
	1	2016	18	Phase II							-								#N/A		1
		2018	20	Phase II		<u> </u>		†											#N/A		
		2023	25	Phase II				· · · · · · · · · · · · · · · · · · ·											#N/A		1
		2028	30	Phase II		-													#N/A		+
	 			Phase III		 								<u> </u>					#N/A		+
				Timese III		 									1				#N/A		1
	 		 	-							-				 				#N/A		+
															-				#N/A		+
	F4-29 Surface		 	 			 		 		· · · · · · · · · · · · · · · · · · ·			 	+				7718/15		+
4-PAL-29-S	F4-29	2014	16	Phase II	0-15	46	16.0	5.6	< 0.10	12	43	72	17	< 0.050	< 0.010	<10	<10	130	140		
11111200	1127	2016	18	Phase II	0.13	100	10.0	5.0	-0.10		10			-0.000		-10	-10	100	#N/A		+
	 	2018	20	Phase II		 	 	 	 	 			i	 	+	 			#N/A		
	+	2023	25	Phase II											+				#N/A		+
	-	2028	30	Phase II		 	-		-						 				#N/A		+
	+	2020		Phase III															#N/A		+
				Thase III															#N/A		+
	+			-		 			-						 	i			#N/A		+
	+			-		-									-				#N/A		+
	F4-29 Depth																		#IN/A		+
I-PAL-29-D	F4-29 Depth F4-29	2014	16	Phase II	40-50	20	37	9.6	0.14	8.2	61	84	14	< 0.050	< 0.010	<10	<10	120	130		
-1 AL-27-D	1-7-27	2014	18	Phase II	40-30	20	3/	2.0	0.14	0.4	01	02	1.4	~0.030	~0.010	\10	~10	120	#N/A		+
	+	2016	20	Phase II		+													#N/A #N/A		+
	+	2018	25	Phase II		+								 		 			#N/A		+
	+	2023	30	Phase II Phase II		+			 					 	 	-			#N/A #N/A		+
		1 2028	30	rmase II		1	1	I	I	I		I	I	1	I	1	1		#IN/A		1
	+			DI TIT				T				1							115 7 / 4		
				Phase III															#N/A		
				Phase III															#N/A #N/A #N/A		

sample exceeds baselground
sample exceeds baseline
sample exceeds DLCU Tier I criteria
sample exceeds DLCU Tier II criteria

XX XX XX XX

Note: Total Hydrocarbons (C_e-C₅₀) has been calculated by adding results for F1, F2 and F3.

** The Pallet Line Landfill originated from DEW Line operation activities. It was not part of the original monitoring which began in 1999.

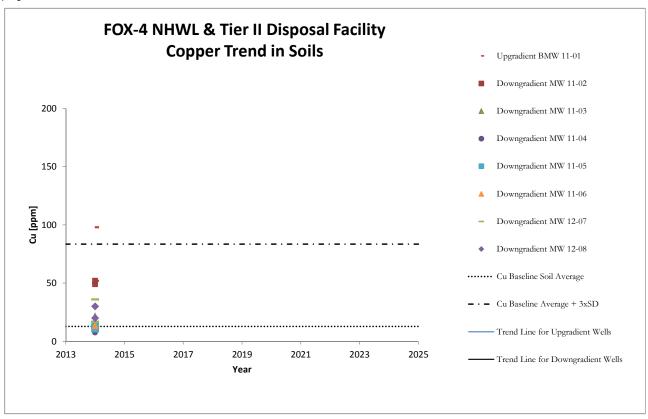
Additional regrading was performed in 2013 and monitoring locations were established for ongoing landfill monitoring.

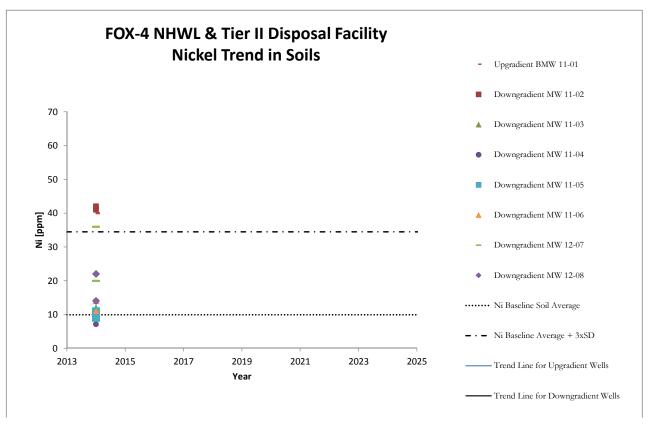
FOX-4 Cape	e Hooper - Tanne	r Bay L	andfill - S	Summary	of Soil	Analytic	al Data*	k													
						,										F1 C ₆ -	F2 G ₁₀	- F3 G	Modified		
			Monitoring Year	Monitoring Phase												C ₁₀	C ₁₆	C ₃₄	TPH^ - Total		
ample #	Location	Date	Monitoring Year	Monitoring Phase	Depth	Cu	Ni	Co	Cd	Pb	Zn	Cr	As	Hg	Total PCB				C6-C34	TPH	Identity
					(cm)	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	% Fuel Oil	% Lube Oil
ackground Aver	rage		I.	1		19	19	7.9	1.0	10	34	31	5.5		0.00035					,	77.7.000
Baseline Data - A	Average					8.0	9.3	5.0	1.0	28	27	23	1.1		0.050				128		
Baseline Data - S	Standard Deviation					0.0	2.5	0.85	1.16	17	6.0	7.2	0.7		0.00				265		
Baseline Average + 3	3xStandard Deviation					8.0	17	7.6	4.5	79	45	45	3.1		0.05				924		
						3.0	5.0	5.0	1.0	10	15	20	0.20	0.10	0.050				40		
Detection Limit									1									1	-		
DEW Line Cleans	up Tier I Criteria									200					1						
DEW Line Cleans	up Tier II Criteria					100	100	50	5	500	500	250	30	2.0	5				2500		
Monitoring D	ata																				
Upgradient	In																				
	F4-11 Surface																				
99-3763 FO-51-1	ML #1/F4-11 F4-11	1999 2001	1	Phase I Phase I	30 0-15	4.9 1.4	5.6 <5.0	<5.0 <5.0	<1.0	<10 <10	<15 <15	<20 <20	0.83 2.0	<0.10 <0.10	<0.050				<40 <40	n/a	n/a
FO-9-1	F4-9/F4-11	2003	5	Phase I	0-15	7.0	7.0	<5.0	<1.0	<10	17	<20	1.2	< 0.10	<0.050	<10	<40	<40	<40	n/a	n/a
F4-11	F4-11	2005	7	Phase II	0-11	4.0	5.0	<5.0	<1.0	<10	<15	<20	< 0.70	< 0.10	< 0.10	<10	<40	<40	<40		
F4-11(Soil)0-15cm	F4-11	2006	8	Phase II	0-15	10	10	<5.0	<1.0	<10	17	<20	1.1	< 0.10	< 0.10	<12	10	<10	21		
F4-11(Soil)0-15cm	F4-11	2007	9	Phase II	0-15	5.0	5.0	<5.0	<1.0	<10	<15	<20	1.1	< 0.1	< 0.10	<12	657	778	1441		
F4-11(Soil)0-15cm	F4-11	2008	10	Phase II	0-15	3.0	7.0	<5.0	<1.0	<10	<15	<20	<1.0	< 0.10	< 0.050	<1.0	1100	590	1691		
10-18023*/24	F-11	2010	12	Phase II	0-10	4.7	5.4	<5.0	<1.0	<10	<15	<20	1.4	< 0.10	< 0.050	<10	440	180	625		-
13-27258/59	F4-11 F4-11	2013	15	Phase II Phase II	0-10	7.4 11.5	6.1 4.8	<5.0 2.6	<1.0 <0.5	<10 4.05	16.0 13.5	<20 16.5	1.2 5.8	<0.1 <0.10	< 0.05	<10 <10	270 <10	380 <50	655 35		-
F4-TAN-11-S	r4-11	2014	16	Phase II Phase II	0-15	11.5	4.8	2.0	~0.5	4.05	13.3	10.3	- 20	~0.10	~0.05	~10	<10	<50	35 #N/A	-	-
		2016	20	Phase II Phase II	1				1	t	<u> </u>	t				-	1	1	#N/A	-	
		2023	25	Phase II	1		†	 	+	 		+	—	——	—		†	 	#N/A	 	
		2028	30	Phase II															#N/A		
				Phase III															#N/A		
								ļ		ļ									#N/A		
		+										-	l						#N/A	-	-
	P4 44 1 1								-			-						-	#N/A	-	-
EO SL 2	F4-11 depth	2004	_	DL *	40-50	8.5		<5.0	<1.0	<10	17		2.0	< 0.10	<0.050		-	-	<40	-	-
FO-51-2 FO-9-2	F4-9/F4-11	2001 2003	3	Phase I Phase I	40-50	6.0	7.0	<5.0	<1.0	<10	16	<20 <20	1.0	< 0.10	<0.050	<1.0	<40	<1.0	<40		
F4-11(Soil)40-50cm	F4-11	2006	8	Phase II	40-50	9.0	8.0	<5.0	<1.0	<10	<15	<20	0.70	< 0.10	< 0.10	<12	<10	<10	16		
F4-11(Soil)40-50cm	F4-11	2007	9	Phase II	40-50	7.0	5.0	<5.0	<1.0	<10	<15	<20	0.80	< 0.1	< 0.1	<11	<20	23	39		
F4-11(Soil)40-50cm	F4-11	2008	10	Phase II	40-50	3.0	7.0	<5.0	<1.0	<10	<15	<20	<1.0	< 0.10	< 0.050	<1.0	270	110	381		
10-18025*/26	F-11	2010	12	Phase II	30-40	< 3.0	<5.0	<5.0	<1.0	<10	<15	<20	1.2	< 0.10	< 0.050	<10	780	75	860		
13-27260/61	F4-11	2013	15	Phase II	30-40	6.5	5.1	<5.0	<1.0	<10	<15	<20	2.3	< 0.1	< 0.05	<10	4.4	33	42		
F4-TAN-11-D	F4-11	2014	16	Phase II	40-50	6.6	5.2	1.7	< 0.10	3.2	11.0	15	1.10	<0.050	< 0.010	<10	<10	<10	15 #N/A		
		2016 2018	18 20	Phase II Phase II															#N/A		
		2023	25	Phase II	-						<u> </u>	-				1			#N/A	-	
		2028	30	Phase II						-									#N/A		
				Phase III															#N/A		
																			#N/A		
																			#N/A		
_				ļ.															#N/A		
Downgradient	I																				
	F4-12 Surface				_																
99-3769 FO-52-1	MI. #3/F4-12 F4.12	1999 2001	1	Phase I Phase I	0-15	6.5	7.4	<5.0 <5.0	<1.0	<10 <10	19 <15	21 <20	0.81 2.0	<0.10 <0.10	<0.050 <0.050			-	41	100	100
FO-11-1	F4-11/F4-12	2003	5	Phase I	0-15	12	11	<5.0	<0.10	<10	23	25	70	<0.10	<0.050	<10	<40	<40	<40	- 0.0	100
F4-12	F4-12	2005	7	Phase II	0-13	6.0	7.0	<5.0	<1.0	<10	16	<20	< 0.70	< 0.10	< 0.10	<10	40	47	<40		
F4-12(Soil)0-15cm	F4-12	2006	8	Phase II	0-15	3.0	5.0	<5.0	<1.0	<10	<15	<20	0.70	< 0.10	< 0.10	<12	<10	130	141		
F4-12(Soil)0-15cm	F4-12	2007	9	Phase II	0-15	4.0	5.0	<5.0	<1.0	<10	<15	<20	< 0.7	< 0.1	< 0.10	<10	<10	11	21		
F4-12(Soil)0-15cm	F4-12	2008	10	Phase II	0-15	3.0	8.0	<5.0	<1.0	<10	<15	<20	<1.0	< 0.10	< 0.050	<1.0	<1.0	11	<40		
10-18019/20 13-27262/63	F4-12 F4-12	2010	12	Phase II	0-10	6.7	<5.0 <5.0	<5.0 <5.0	<1.0	<10 <1.0	<15 <1.1	<20 <2.0	1.8	<0.10	<0.050	<10 <10	5.6 < 4.0	< 9.0	<40 12	-	-
13-27262/63 F4-TAN-12-S	F4-12	2013 2014	15 16	Phase II Phase II	0-10	6.7	<5.0 11	<5.0 3.6	<0.10	<1.0 4.1	<1.1	<2.0 21	1.6	<0.10	<0.050	<10	< 4.0	< 9.0	12		
P4-1/AN-12-5	P4-12	2014	18	Phase II	0-13			3.0	40.10	7.1	2,00			40.000	-0.010		-10	-10	#N/A		
		2018	20	Phase II								1							#N/A		
		2023	25	Phase II															#N/A		
		2028	30	Phase II															#N/A		
				Phase III															#N/A		
		-								-	ļ	-						-	#N/A		
		-									-	ļ	<u> </u>					-	#N/A	-	-
	E4 10 1									 	-	 						-	#N/A	-	-
00.2774	F4-12 depth	-			+	<u> </u>		-		<10		l	0		< 0.050	-		+		4000	-
99-3771 FO-52-2	MI. #3/F4-12 F4-12	1999	3	Phase I Phase I	30	4.3 5.5	<5.0 6.0	<5.0 <5.0	<1.0 <1.0	<10	<15 11	<20 <20	0.57 3.0	< 0.10	<0.050			-	500 84	100.0	99
FO-52-2 FO-11-2	F4-11/F4-12	2001	5	Phase I Phase I	40-50	5.0	5.0	<5.0 <5.0	<1.0	<10	<15	<20 <20	1.5	<0.10	<0.050	35	1100	190	1325	1.0	99
F4-12(Soil)40-50cm	F4-12	2006	8	Phase II	40-50	14	9.0	<5.0	<1.0	<10	<15	<20	0.90	< 0.10	< 0.10	<12	20	<10	31	t	
F4-12(Soil)40-50cm	F4-12	2007	9	Phase II	40-50	<5	8.0	<5.0	<1.0	<10	<20	<20	<1.0	< 0.1	< 0.1	<11	<20	<20	26		
F4-12(Soil)40-50cm	F4-12	2008	10	Phase II	40-50	3.0	8.0	<5.0	<1.0	<10	<15	<20	<1.0	< 0.10	<2.0	<1.0	<1.0	<1.0	2		
10-18021*/22	F4-12	2010	12	Phase II	30-40	6.4	7.1	<5.0	<1.0	<10	15	<20	1.7	< 0.10	< 0.050	<10	5.7	13	24		
13-27264/65	F4-12	2013	15	Phase II	30-40	11	9.2	<5.0	<1.0	<10	19	28	2.4	< 0.10	< 0.050	<10	< 4.0	< 9.0	12	-	-
F4-TAN-12-D	F4-12	2014	16	Phase II	40-50	13	10	3.3	< 0.10	3.9	19	21	1.9	< 0.050	< 0.010	<10	<10	<10	15 #N/A		
	+	2016	18	Phase II					+	+		+						+	#N/A #N/A		-
		2018	20 25	Phase II Phase II	+				+	 	-	+	—	-		-	 	+	#N/A	-	-
				Phase II	1			!	 	1		l						1	#N/A		
		2028								1						1	1				
		2028	30		-			1											#N/A		
		2028	30	Phase III															#N/A #N/A		
		2028	30																		

FOX-4 Cape	Hooper - Tanner	Bay I	andfill - S	Summary o	of Soil	Analytica	al Data**	1													
Sample #	Location	Date	Monitoring Year	Monitoring Phase	Depth	Cu	Ni	Co	Cd	РЬ	Zn	Cr	As	Hg	Total PCB	F1 C ₀ -	F2 G ₁₀ -	F3 G ₆₀	Modified TPH^ - Total C6-C34	TPH I	Identity
		ļ			(cm)	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	% Fuel Oil	% Lube Oil
	F4-13 Surface																				
99-3765	ML #2/F4-13	1999	1	Phase I	0	7.1	8.6	<5.0	<1.0	<10	17	<20	1.3	< 0.10	< 0.050				< 40	n/a	n/a
FO-53-1	F4-13	2001	3	Phase I	0-15	5.7	9.0	<5.0	<1.0	<10	<15	<20	3.0	< 0.10	< 0.050				<40	0.0	100
FO-10-1	F4-10/F4-13	2003	5	Phase I	0-15	5.0	6.0	<5.0	<1.0	<10	<15	<20	1.0	< 0.10	< 0.050	<10	<40	<40	<40		
F4-13	F4-13	2005	7	Phase II	0-11	5.0	5.0	<5.0	<1.0	<10	<15	<20	< 0.70	< 0.10	< 0.10	<10	<40	<40	<40		
F4-13(Soil)0-15cm	F4-13	2006	8	Phase II	0-15	7.0	5.0	<5.0	<1.0	<10	<15	<20	0.90	< 0.10	< 0.10	<12	10	130	146		
F4-13(Soil)0-15cm	F4-13	2007	9	Phase II	0-15	6.0	7.0	<5.0	<1.0	<10	17	<20	0.70	< 0.10	< 0.1	<12	<20	<20	26		
F4-13(Soil)0-15cm	F4-13	2008	10	Phase II	0-15	3.0	10	<5.0	<1.0	<10	<15	<20	<1.0	< 0.10	< 0.050	<1.0	<1.0	<1.0	<40		
10-18015*/16*	F4-13	2010	12	Phase II	0-10	6.8	7.2	<5.0	<1.0	<10	19	<20	<1.0	< 0.10	< 0.050	<10	4.5	9	<40		
13-27266/67	F4-13	2013	15	Phase II	0-10	8.1	8.0	<5.0	<1.0	<10	16	<20	1.2	< 0.10	< 0.050	<10	< 4.0	< 9.0	12		
F4-TAN-13-S	F4-13	2014	16	Phase II	0-15	9.9	8.0	2.3	< 0.10	3.8	17.0	18	2.1	< 0.050	< 0.010	<10	<10	<10	15		
		2016	18	Phase II															#N/A		
		2018	20	Phase II															#N/A		
		2023	25	Phase II															#N/A		
		2028	30	Phase II															#N/A		
		2020	- 50	Phase III									——	 		 			#N/A		
		+		711000,111						-			l						#N/A		
		+								-				<u> </u>					#N/A		-
	 	+		 									 	 	——	 			#N/A		-
	F4-13 depth	+																			
99-3767	ML #2/F4-13	1999	1	Phase I	30	5.5	<5.0	<5.0	<1.0	<10	<15	<20	0.62	< 0.10	< 0.050				<40	n/a	n/a
FO-53-2	F4-13	2001	3	Phase I	40-50	2.9	5.0	<5.0	<1.0	<10	<15	<20	3.0	< 0.10	< 0.010				71	0.0	100
FO-10-2	F4-10/F4-13	2003	5	Phase I	40-50	5.0	5.0	<5.0	<1.0	<10	<15	<20	1.1	< 0.10	<0.050	<10	<40	<40	<40	0.0	100
F4-13(Soil)40-50cm	F4-13	2003	8	Phase II	40-50	5.0	5.0	<5.0	<1.0	<10	<15	<20	0.80	< 0.10	<0.10	<12	20	<10	31	-	
F4-13(Soil)40-50cm	F4-13	2006	9	Phase II	40-50	5.0	<5.0	<5.0	<1.0	<10	<15	<20	0.80	<0.10	<0.10	<12	20	<10	2		
F4-13(Soil)40-50cm	F4-13	2007	10	Phase II	40-50	3.0	8.0	<5.0	<1.0	<10	<15	<20	<1.0	< 0.10	<0.050	<1.0	<1.0	<1.0	<1.0	-	1
10-18017*/18	F4-13				30-40	5.7	5.6	<5.0	<1.0	<10	<15	<20	2.1	< 0.10	<0.050	<10	5.4	12	22		-
13-27268/69	F4-13	2010	12	Phase II	30-40	7.5	5.3	<5.0	<1.0	<10	<15	<20	1.7	< 0.10	<0.050	<10	< 4.0	< 9.0	12		-
		2013		1		8.0	7.2	2.3	<0.10	2.7	16.0	17	1.7	<0.050		<10	<10	<10	15		
F4-TAN-13-D	F4-13	2014	16	Phase II	40-50	8.0	7.2	2.3	< 0.10	2.7	16.0	1/	1.9	< 0.050	< 0.010	<10	<10	<10			
		2016	18	Phase II															#N/A		
	ļ	2018	20	Phase II	-														#N/A		
		2023	25	Phase II									L	ļ		<u> </u>			#N/A		
		2028	30	Phase II															#N/A		
				Phase III				ļ											#N/A		
																			#N/A		
																			#N/A		
								l					1						#N/A		

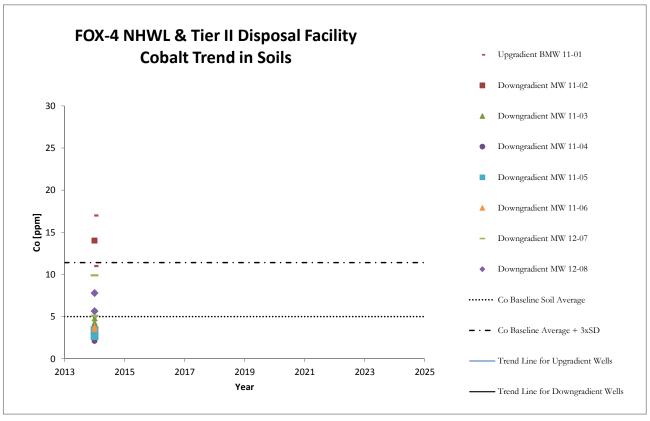
Note: Total Hydrocarbons (C₆-C₅₄) has been calculated by adding results for F1, F2 and F3.

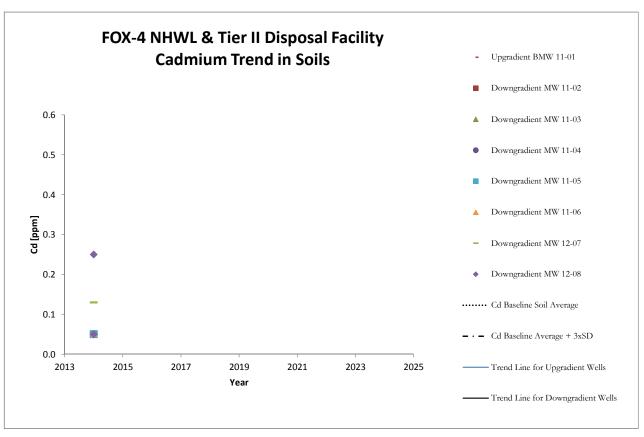
gend XX sample exceeds background
XX sample exceeds backline
XX sample exceeds DLCU Tier I criteria
XX sample exceeds DLCU Tier II criteria

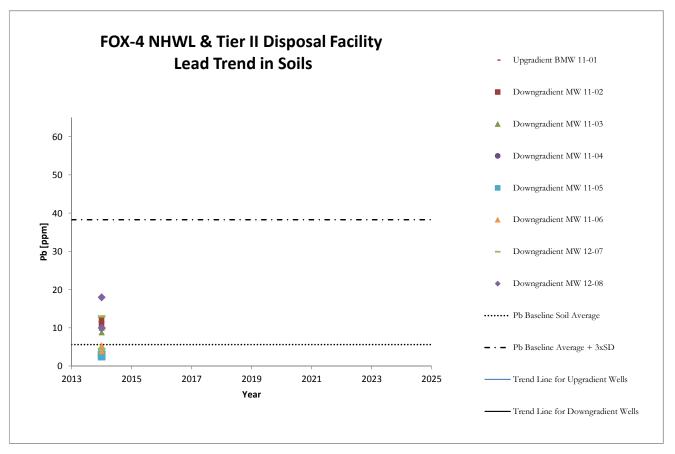

^{**} Tanner Bay Landfill is located in the South Zone. First year monitoring occurred in 1999. The landfill was regraded in 2013.

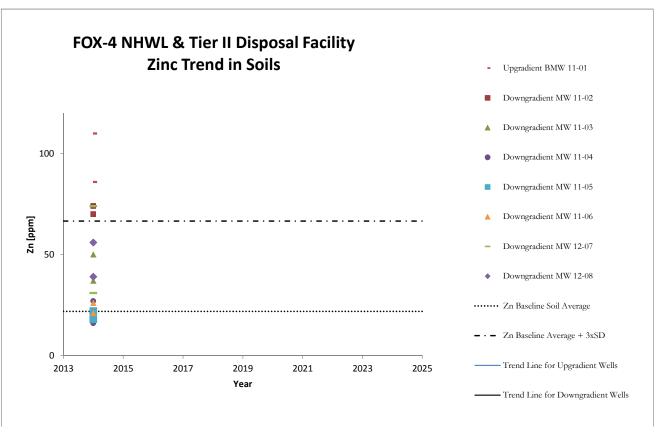

APPENDIX E CHEMICAL CONCENTRATION TREND GRAPHS (SOIL)

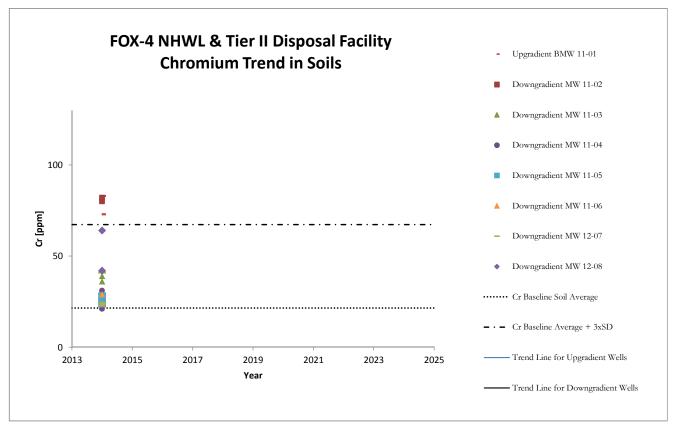
FOX-4 NHWL & Tier II Disposal Facility Trends in Soil Inorganics, PCBs and PHCs (modified TPH)

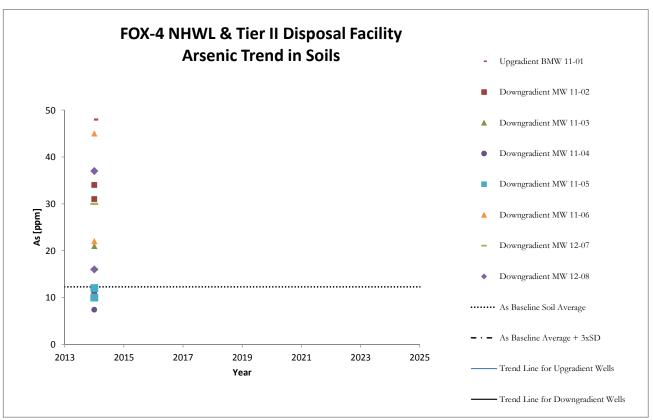

Where results are below detection, half of the detection limit has been used in the charts.

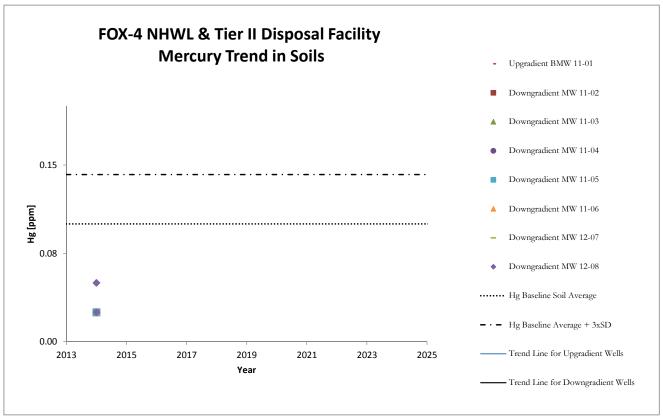

New monitoring locations were established in 2013 around the Tier II and NHWL facilities at FOX-4 and will be monitored as part of the landfill monitori program at FOX-4.

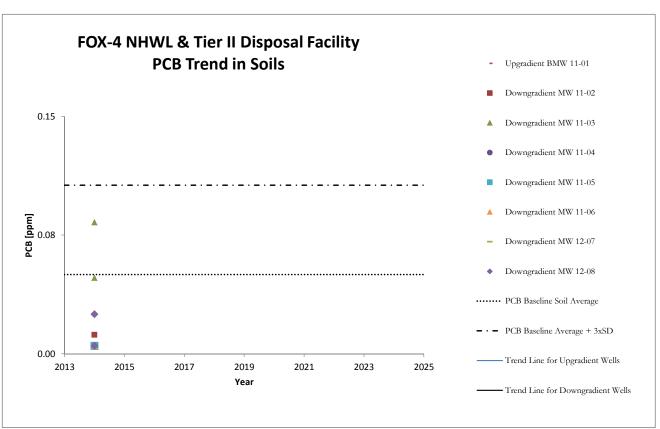


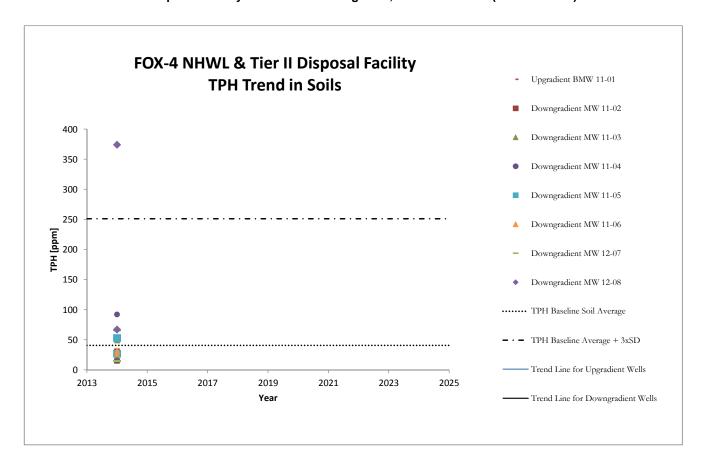

FOX-4 NHWL & Tier II Disposal Facility Trends in Soil Inorganics, PCBs and PHCs (modified TPH)



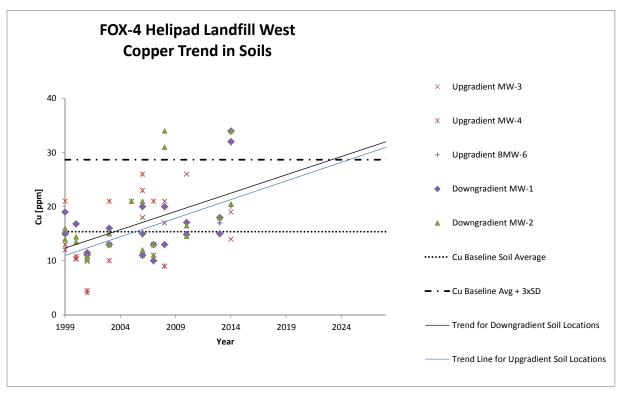

FOX-4 NHWL & Tier II Disposal Facility Trends in Soil Inorganics, PCBs and PHCs (modified TPH)

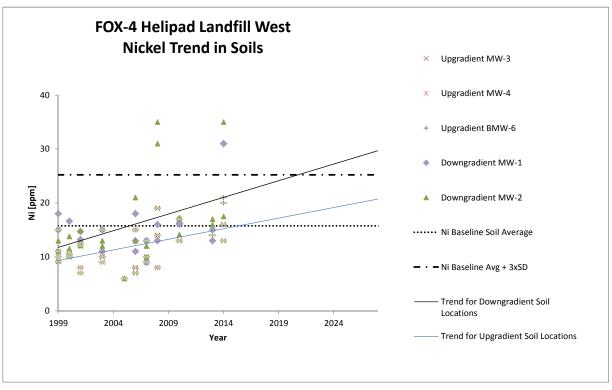


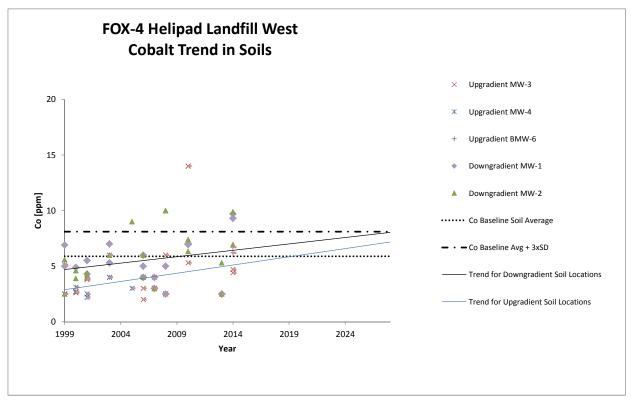

FOX-4 NHWL & Tier II Disposal Facility Trends in Soil Inorganics, PCBs and PHCs (modified TPH)

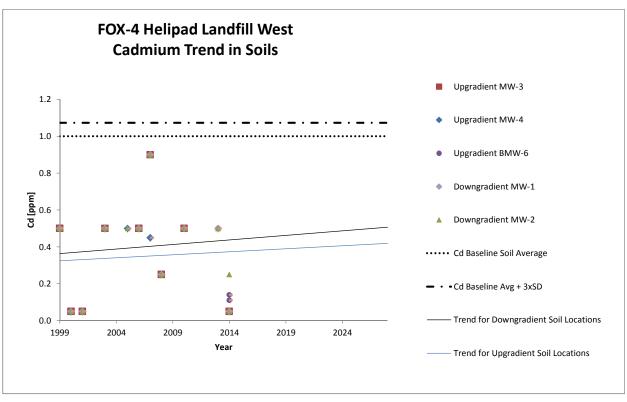


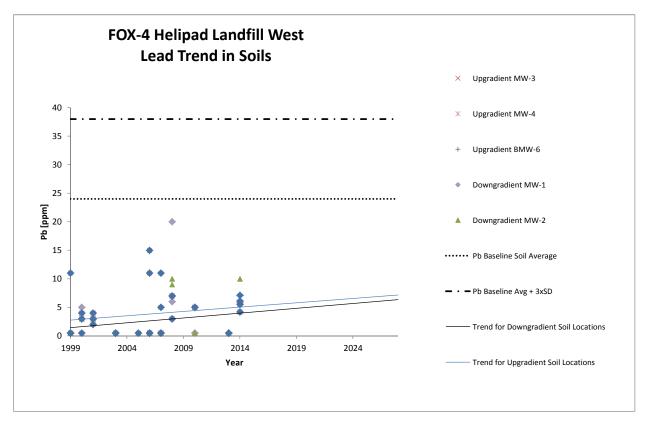
FOX-4 NHWL & Tier II Disposal Facility Trends in Soil Inorganics, PCBs and PHCs (modified TPH)

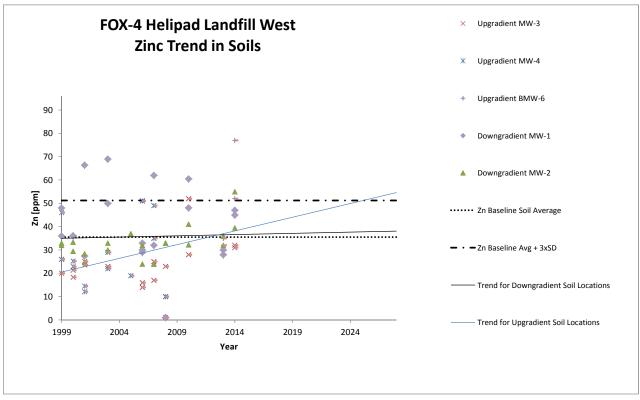


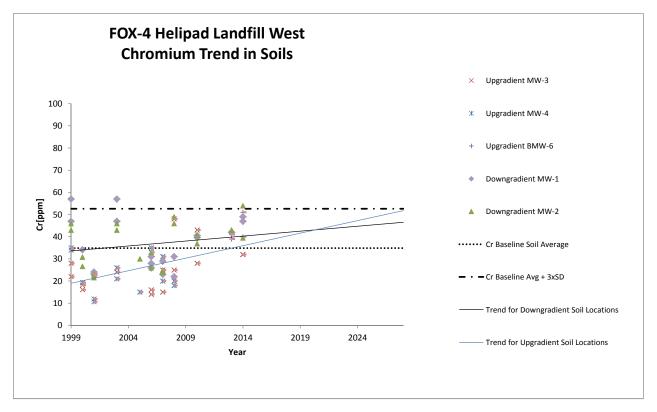

FOX-4 NHWL & Tier II Disposal Facility Trends in Soil Inorganics, PCBs and PHCs (modified TPH)

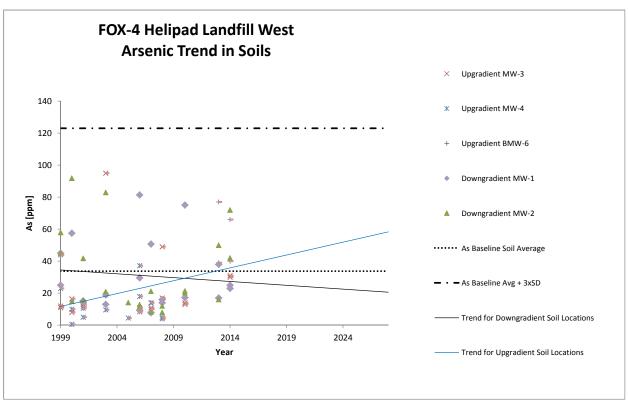

FOX-4 Helipad Landfill West Trends in Soil Inorganics, PCBs and PHCs (modified TPH)

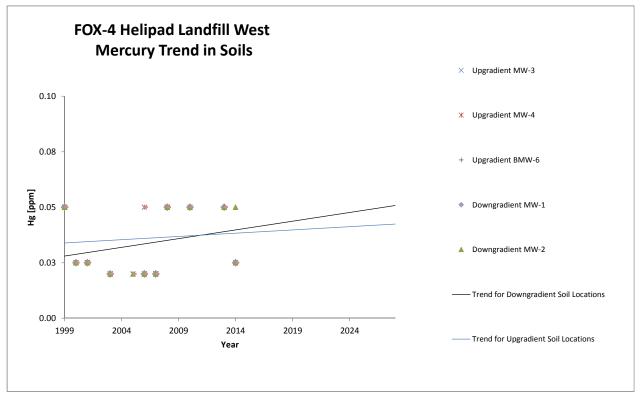

Where results are below detection, half of the detection limit has been used in the charts. Helipad Landfill West underwent additional regrading in 2013.



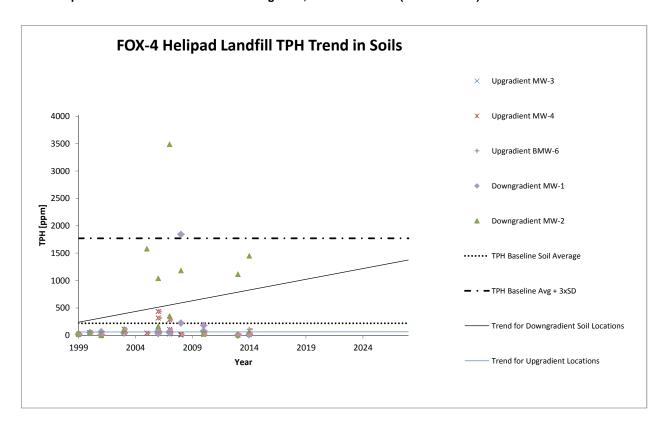

FOX-4 Helipad Landfill West Trends in Soil Inorganics, PCBs and PHCs (modified TPH)

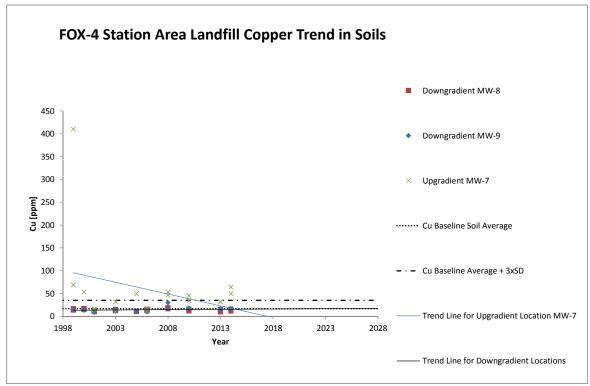


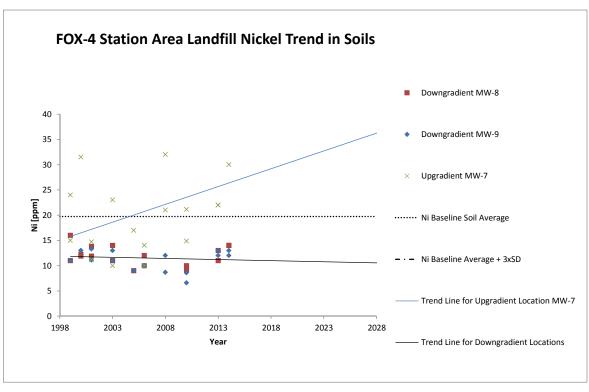

FOX-4 Helipad Landfill West Trends in Soil Inorganics, PCBs and PHCs (modified TPH)



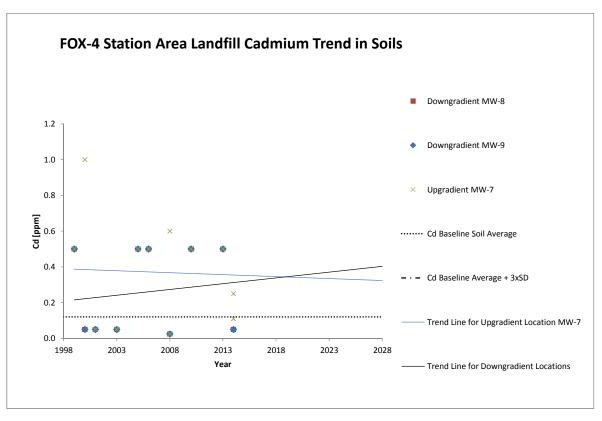
FOX-4 Helipad Landfill West Trends in Soil Inorganics, PCBs and PHCs (modified TPH)

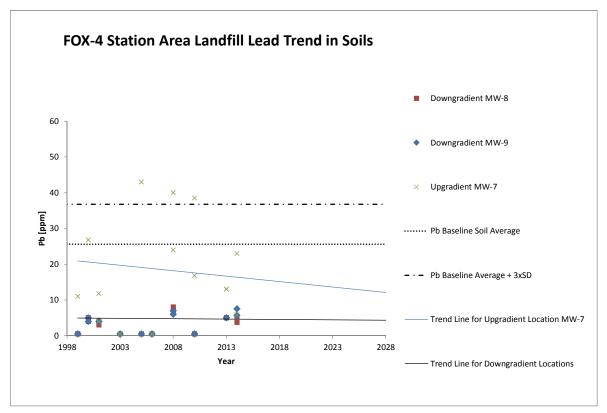

FOX-4 Helipad Landfill West Trends in Soil Inorganics, PCBs and PHCs (modified TPH)

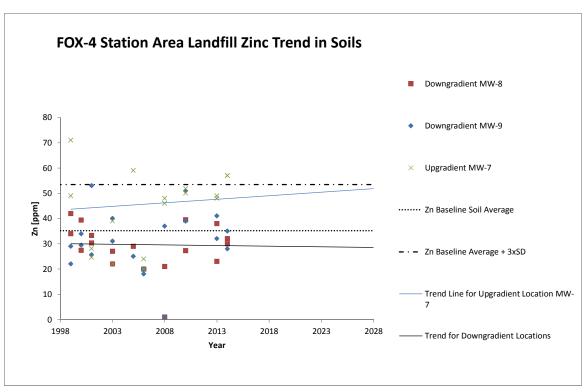


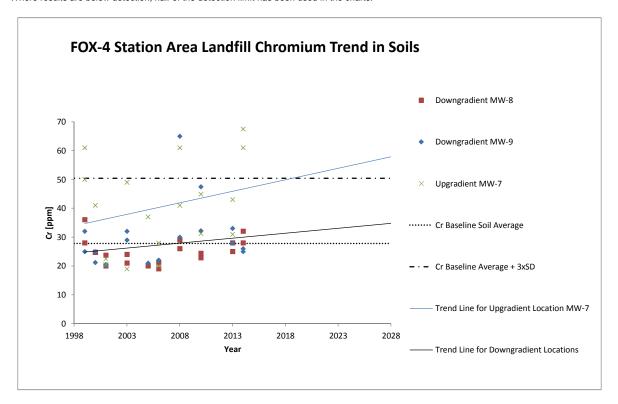

Baseline (1998) and background (1992, 2010 and 2011) did not include mercury analysis for this landfill.

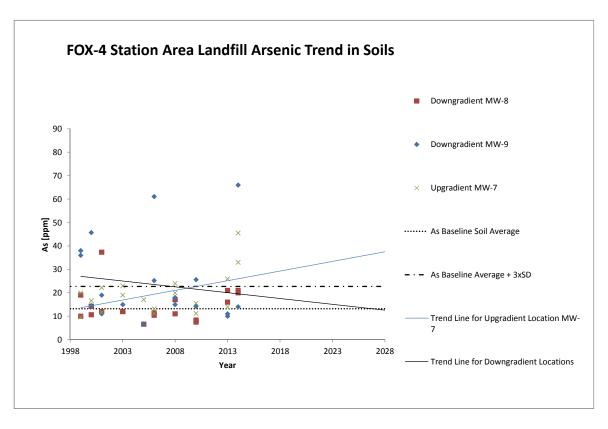


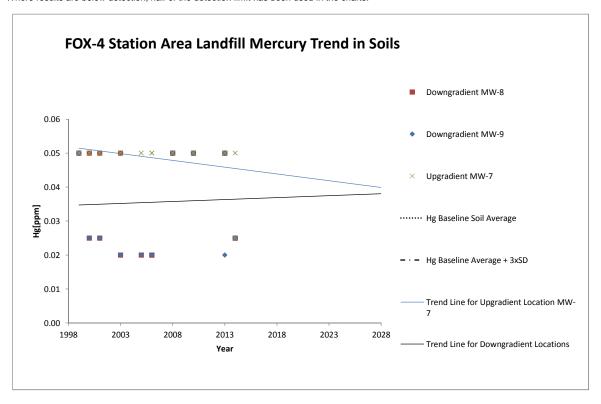

FOX-4 Helipad Landfill West Trends in Soil Inorganics, PCBs and PHCs (modified TPH)

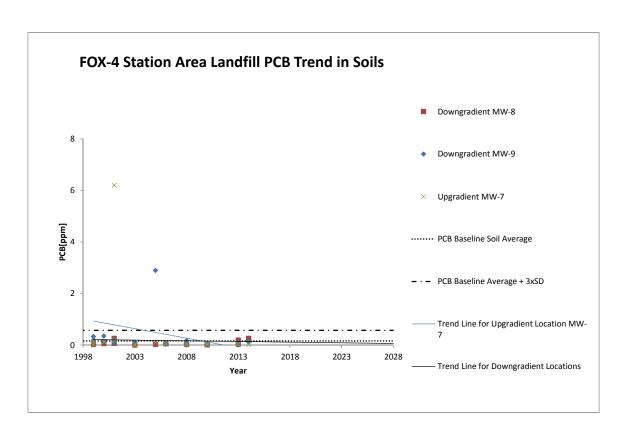


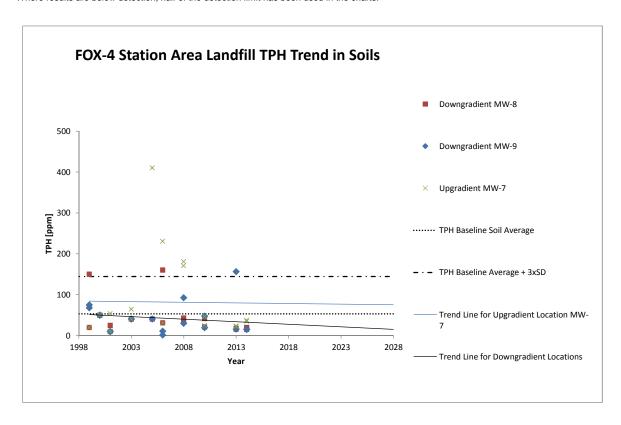


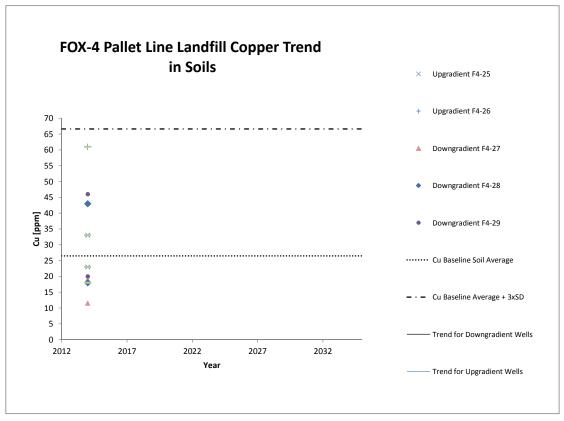


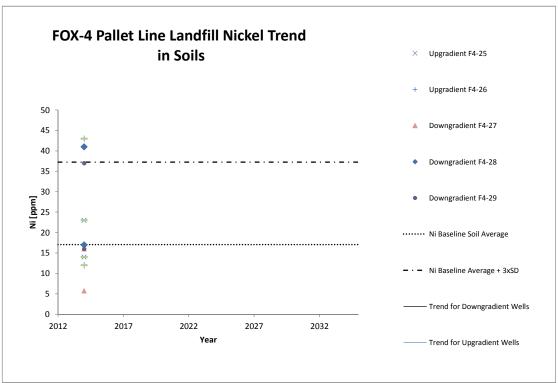


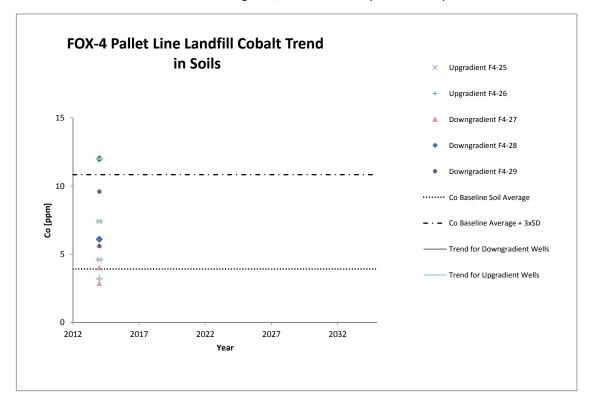


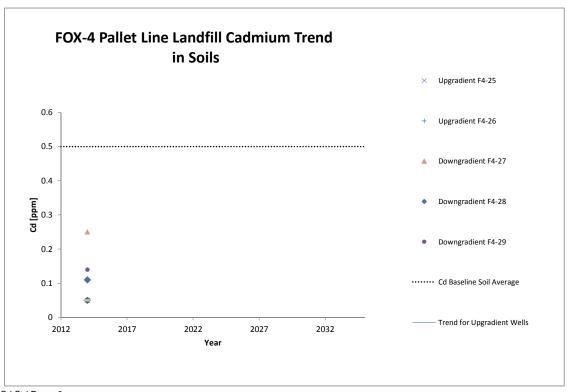


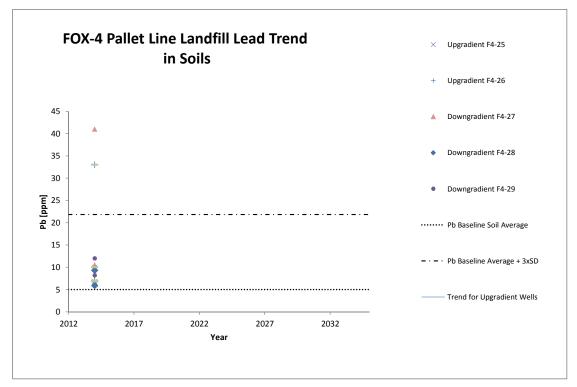


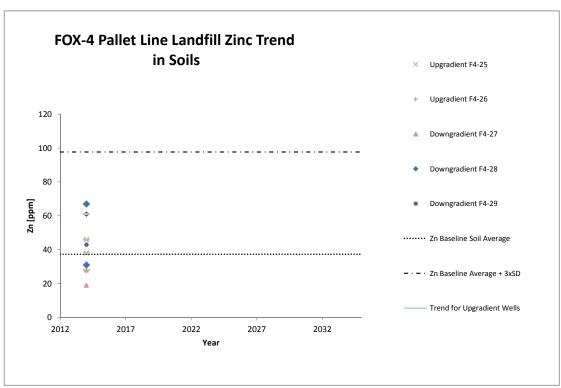


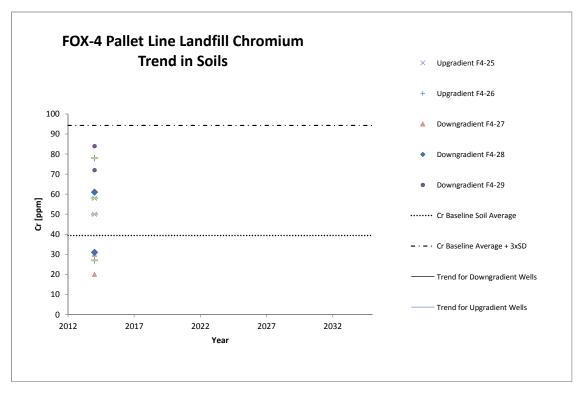


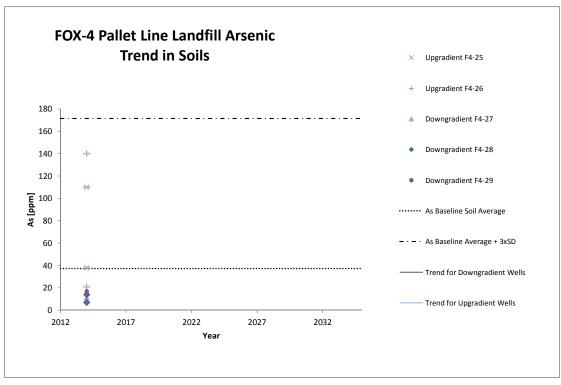

Where results are below detection, half of the detection limit has been used in the charts.

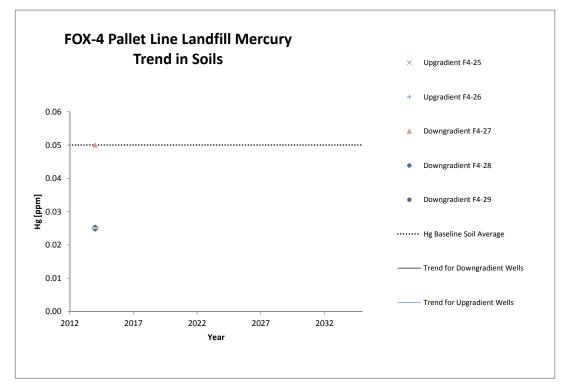

New monitoring locations were established in 2013 around the Pallet Line Landfill at FOX-4 and will be monitored as part of the landfill monitoring program.



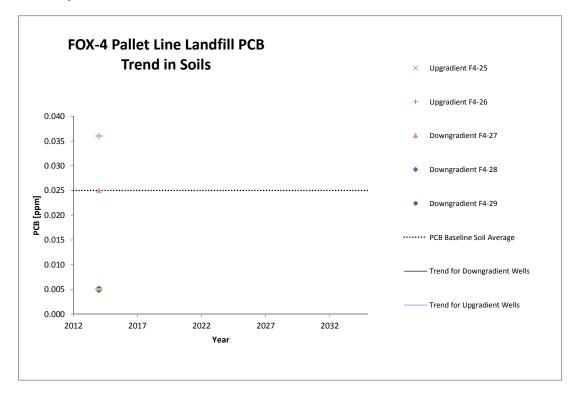

FOX-4 Pallet Line Landfill Trends in Soil Inorganics, PCBs and PHCs (modified TPH)

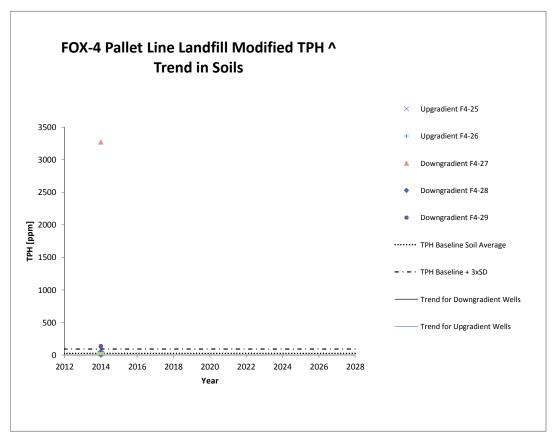


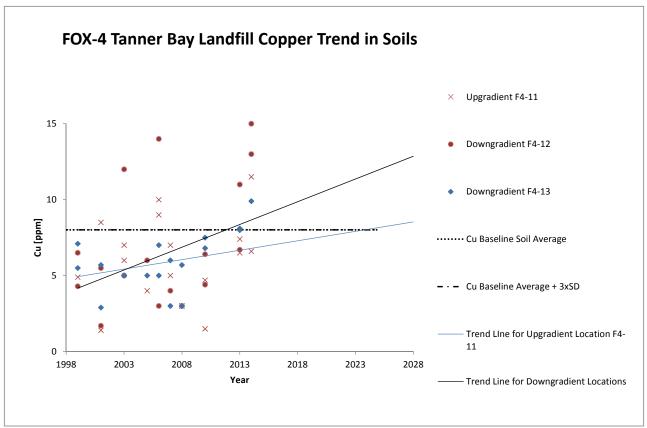

FOX-4 Pallet Line Landfill Trends in Soil Inorganics, PCBs and PHCs (modified TPH)

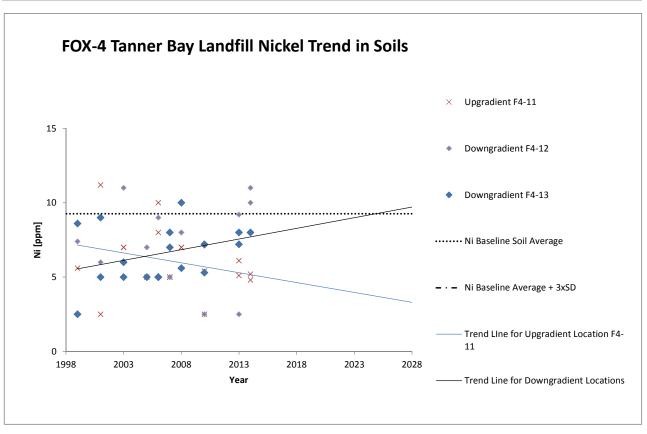


FOX-4 Pallet Line Landfill Trends in Soil Inorganics, PCBs and PHCs (modified TPH)

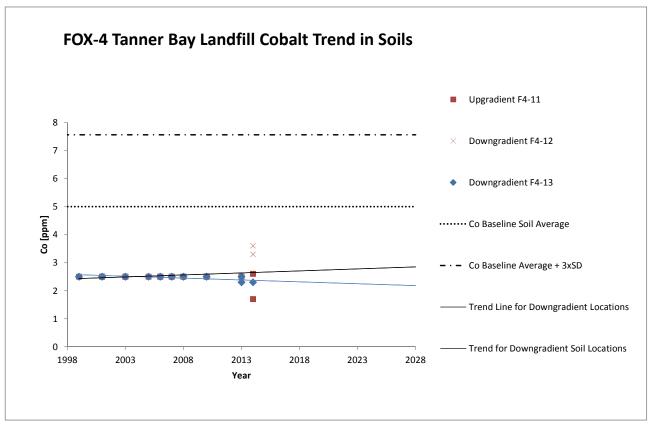


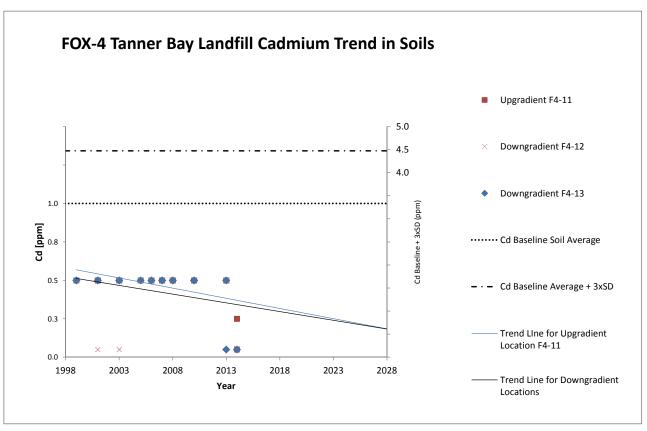

FOX-4 Pallet Line Landfill Trends in Soil Inorganics, PCBs and PHCs (modified TPH)

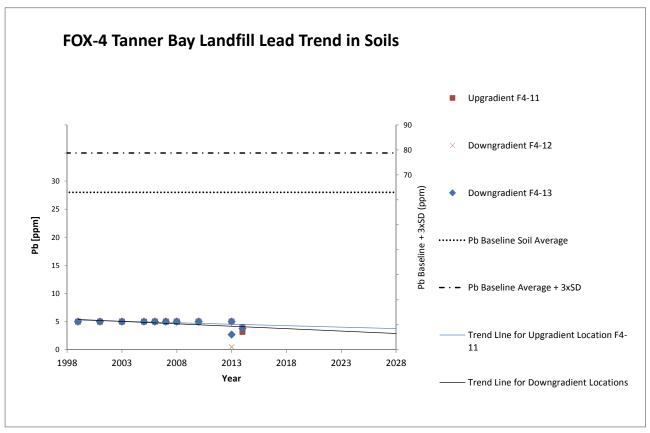

Hg Std Dev = 0

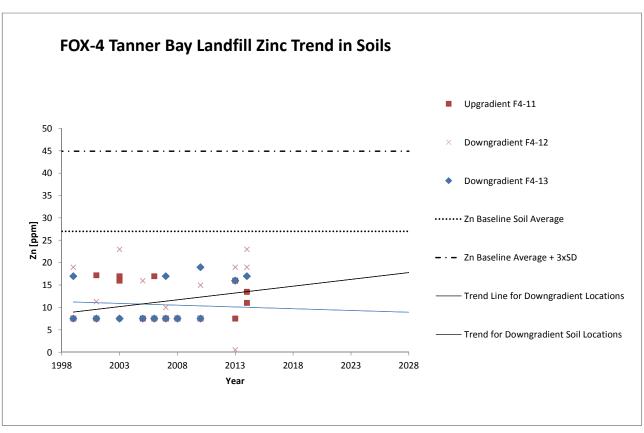


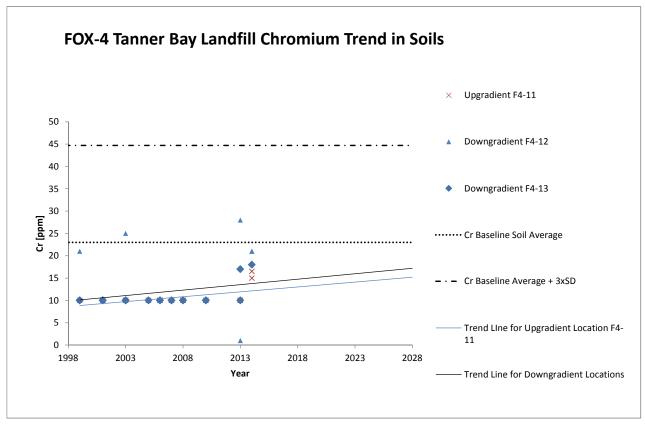
FOX-4 Pallet Line Landfill Trends in Soil Inorganics, PCBs and PHCs (modified TPH)

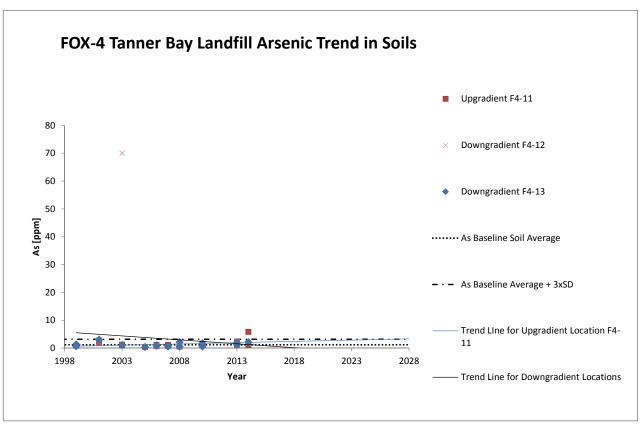


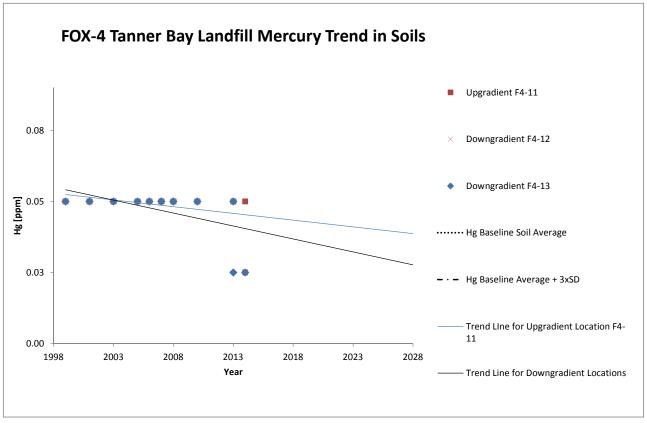

 $^{^{\}wedge}$ Total Hydrocarbons (C6-C34) has been calculated by adding results for F1, F2 and F3.



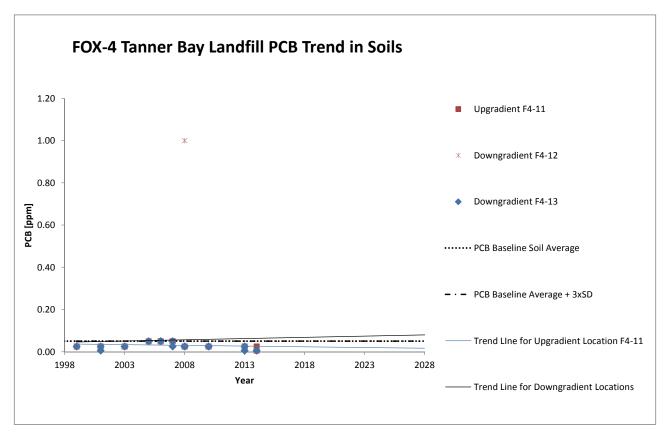

FOX-4 Tanner Bay Landfill Trends in Soil Inorganics, PCBs and PHCs (modified TPH)

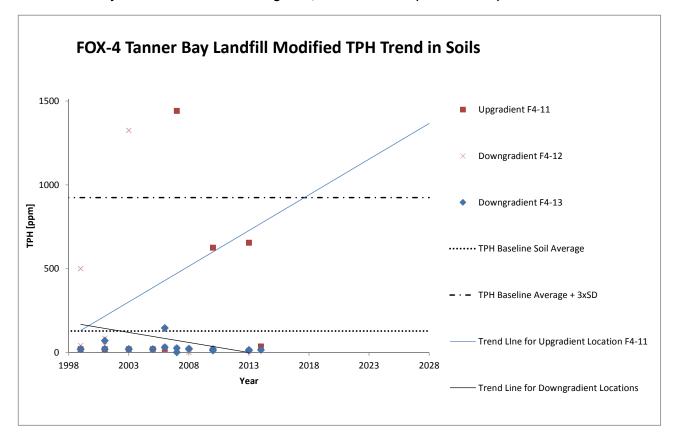


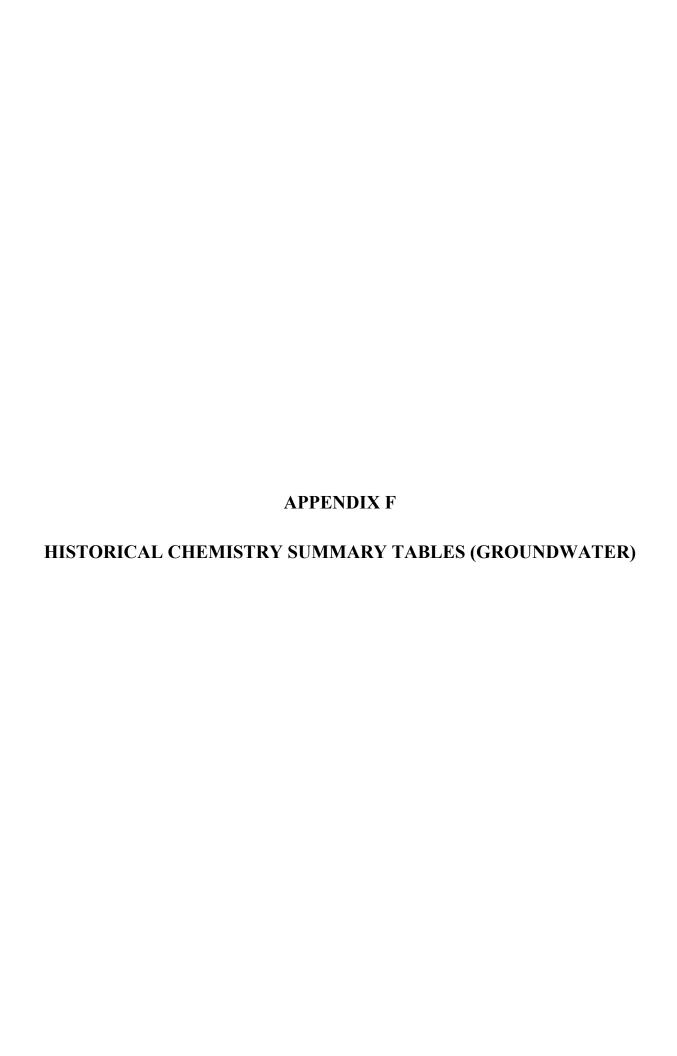

FOX-4 Tanner Bay Landfill Trends in Soil Inorganics, PCBs and PHCs (modified TPH)



FOX-4 Tanner Bay Landfill Trends in Soil Inorganics, PCBs and PHCs (modified TPH)




FOX-4 Tanner Bay Landfill Trends in Soil Inorganics, PCBs and PHCs (modified TPH)



Baseline samples were not analyzed for mercury at this location.

FOX-4 Tanner Bay Landfill Trends in Soil Inorganics, PCBs and PHCs (modified TPH)

New Tier II and NHWL Facility Monitoring. Summary of 2013 and Ongoing Groundwater Analytical Data**

FOX-4 Cape Hoop	er - NWHL &	Tier II D	isposal Facil	ity - Summar	ry of 199	9-2006	Groun	dwater	Analyti	ical Da	ta									
															F1 C ₆ -	F2	F3	Modified TPH^ -		
ample ID	Location	Year	Monitoring Year	Monitoring Phase	Cu	Ni	Co	Cd	Pb	Zn	Cr	As	Hg	Total PCB	C ₁₀	C_{10} - C_{16}	C ₁₆ -C ₃₄	Total C6-C34	TPH I	
					[mg/L]	[mg/L]	[mg/L]	[mg/L]	[mg/L]	[mg/L]	[mg/L]	[mg/L]	[mg/L]	[mg/L]	[mg/L]	[mg/L]	[mg/L]	[mg/L]	% Fuel Oil	. 0
		seline Average			0.010	0.057	0.0087	0.0010	0.0071	0.84	0.0306	0.0183	0.0006	0.0001				0.65		
		dard Deviation			0.018	0.081	0.008	0.001	0.015	1.20	0.076	0.042	0.001	0.0002				0.97		<u> </u>
- I	aseline Average + 3xStan				0.063	0.301	0.034	0.0043	0.05	4.43	0.2589	0.14	0.0026	0.0007				3.55		├
	I	Detection Limit			0.0050	0.0050	0.005	0.0050	0.0050	0.0050	0.0050	0.0050	0.0050	0.0050				1.0		
f :: 1 D :																				
Monitoring Data																				
pgradient BMW 11-01	D3 DV/ 4.4 . 0.4	0044		DI 17	0.000#	0.004		0.00050	0.040	0.4005	4.04#	0.004	.0.0004	-0.0004	×0.005	×0.400	<0.400	0.11		_
4-NH-MW11-01	BMW 11-01	2014	16	Phase II	0.0805	0.284	0.0335	0.00059	0.019	0.1005	1.015	0.021	< 0.0001	< 0.0001	< 0.025	< 0.100	< 0.100	0.11		₩
	BMW 11-01	2016	18	Phase II														#N/A		₩
	BMW 11-01	2018	20	Phase II														#N/A #N/A	-	-
	BMW 11-01	2023	25	Phase II		-								-				#N/A #N/A	1	₩
		2028	30	Phase II																₩
				Phase III														#N/A		₩
																		#N/A		₩
																		#N/A	-	₩
																		#N/A		₩
																		#N/A		₩
																		#N/A	1	↓
owngradient - MW 11-02			· · · · · · · · · · · · · · · · · · ·															1		—
I-NH-MW11-02	MW 11-02	2014	16	Phase II	0.022	0.037	0.0073	0.000043	0.0039	17	0.027	0.11	< 0.00010	< 0.00005	0.072	0.12	< 0.100	0.24		—
	MW 11-02	2016	18	Phase II														#N/A		Щ.
	MW 11-02	2018	20	Phase II														#N/A		<u>↓</u>
	MW 11-02	2023	25	Phase II														#N/A		
		2028	30	Phase II														#N/A		
				Phase III														#N/A		
																		#N/A		
																		#N/A		
							<u></u>	<u></u>	<u></u>	<u></u>		<u></u>		L				#N/A	<u> </u>	L
																		#N/A		
																		#N/A		
owngradient- MW 11-03																				
4-NH-MW11-03	MW 11-03	2014	16	Phase II	0.13	0.33	0.095	0.0011	0.26	0.33	0.54	0.053	< 0.00010	< 0.00005	0.028	< 0.100	< 0.100	0.13		
	MW 11-03	2016	18	Phase II														#N/A		
	MW 11-03	2018	20	Phase II														#N/A		
	MW 11-03	2023	25	Phase II														#N/A		
		2028	30	Phase II														#N/A		
				Phase III														#N/A		
																		#N/A		
																		#N/A		
																		#N/A		
																		#N/A		\vdash
																		#N/A		\vdash
Oowngradient- MW 11-04																				\vdash
4-NH-MW11-04	MW 11-04	2014	16	Phase II	0.069	0.13	0.018	0.00012	0.016	0.18	0.2	0.024	< 0.00010	< 0.00005	0.031	< 0.100	< 0.100	0.13		\vdash
	MW 11-04	2016	18	Phase II	0.007										~~~~			#N/A		\vdash
	MW 11-04	2018	20	Phase II								1		<u> </u>				#N/A	1	
	MW 11-04	2023	25	Phase II								1		<u> </u>				#N/A	1	
	4-1-VT	2023	30	Phase II														#N/A	1	t
		2020	50	Phase III														#N/A	1	 -
				* ****/C 111														#N/A	1	+
																		#N/A	1	+
																		#N/A		+-
	1	1			1	1		l		l	1	1	1	1			1	771 1/11	1	

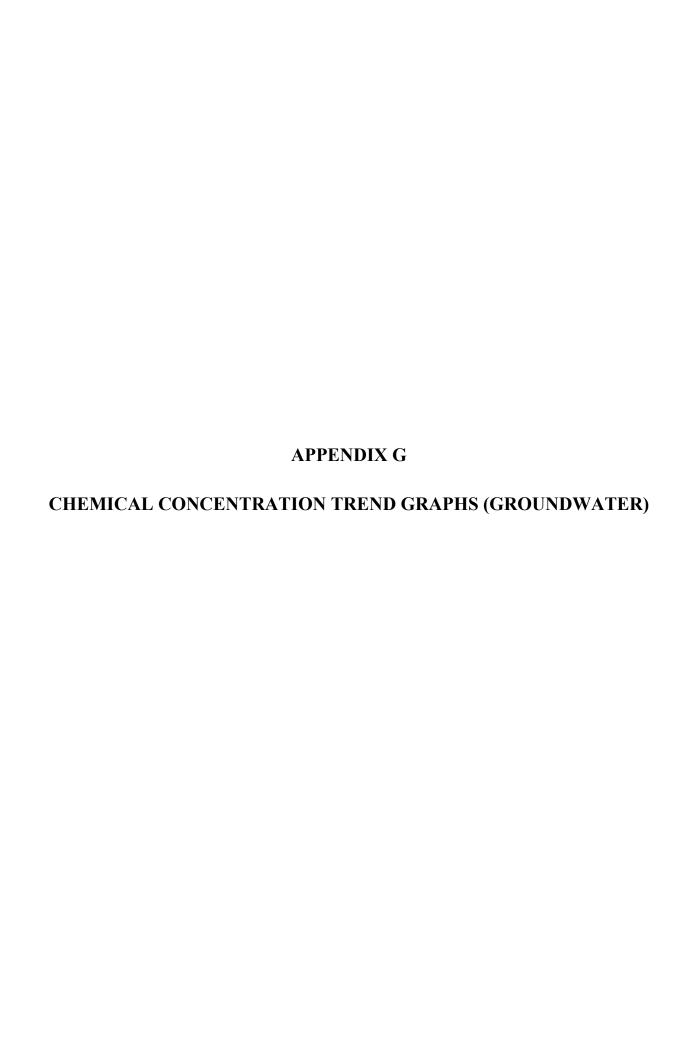
New Tier II and NHWL Facility Monitoring. Summary of 2013 and Ongoing Groundwater Analytical Data**

FOX-4 Cape Hooper	- NWHL &	Tier II L	Disposal Faci	lity - Summar	y of 199	9-2006	Groun	dwater	Analyti	cal Da	ta									
sample ID	Location	Year	Monitoring Year	Monitoring Phase	Cu	Ni	Со	Cd	Pb	Zn	Cr	As	Hg	Total PCB	F1 C ₆ -	F2 C ₁₀ -C ₁₆	F3 C ₁₆ -C ₃₄	Modified TPH^ - Total C6-C34	ТРН І	Identity
					[mg/L]	[mg/L]	[mg/L]	[mg/L]	[mg/L]	[mg/L]	[mg/L]	[mg/L]	[mg/L]	[mg/L]	[mg/L]	[mg/L]	[mg/L]	[mg/L] #N/A	% Fuel Oil	Oi
owngradient- MW 11-05																		#14/11		
4-NH-MW11-05	MW 11-05	2014	16	Phase II	0.056	0.055	0.014	0.000083	0.014	0.65	0.068	0.031	< 0.00010	< 0.00005	0.033	< 0.100	< 0.100	0.13		
	MW 11-05	2016	18	Phase II														#N/A		
	MW 11-05	2018	20	Phase II														#N/A		
	MW 11-05	2023	25	Phase II														#N/A		
		2028	30	Phase II														#N/A		
				Phase III														#N/A		
																		#N/A		
																		#N/A		
																		#N/A		
																		#N/A		
																		#N/A		
owngradient- MW 11-06 o sample collected - well was dry	MW 11-04	2014	16	Phase II														#N/A		
o sample collected - well was dry	MW 11-04	2014	18	Phase II														#N/A		
	MW 11-04	2018	20	Phase II														#N/A		
	MW 11-04	2023	25	Phase II														#N/A		
	MW 11-04	2023	30	Phase II														#N/A		
		2020	50	Phase III														#N/A		
				Timoc III														#N/A		
																		#N/A		
																		#N/A		
																		#N/A		
																		#N/A		
Downgradient- MW 12-07																		,		
4-NH-MW12-07	MW 12-07	2014	16	Phase II	0.082	0.092	0.026	0.00025	0.021	0.13	0.14	0.04	< 0.00010	< 0.00005	< 0.025	< 0.100	< 0.100	0.11		
	MW 12-07	2016	18	Phase II														#N/A		
	MW 12-07	2018	20	Phase II														#N/A		
	MW 12-07	2023	25	Phase II														#N/A		
		2028	30	Phase II														#N/A		
				Phase III														#N/A		
																		#N/A		
																		#N/A		
																		#N/A		
																		#N/A		
owngradient- MW 12-08				,,																
io sample collected - well was dry	MW 12-08	2014	16	Phase II														#N/A		
	MW 12-08	2016	18	Phase II														#N/A		
	MW 12-08	2018	20	Phase II														#N/A		
	MW 12-08	2023	25	Phase II														#N/A		
		2028	30	Phase II														#N/A		
				Phase III														#N/A		
																		#N/A		
		1			1							l		1			1	#N/A	1	1
+															1			#N/A		

Note: Total Hydrocarbons (C6-C34) has been calculated by adding results for F1, F2 a<1.0 F3.

^{**} Further remediation occurred at the NHWL and Tier II Disposal Facility in 2011, 2012 and 2013. Because of this work, baseline data includes monitoring results in Monitoring Years 1-15 prior to the additional remediaton. This data can be found at the top of this sheet and on the sheet labelled Previous FOX-4 NHWL & Tier II GW Sum

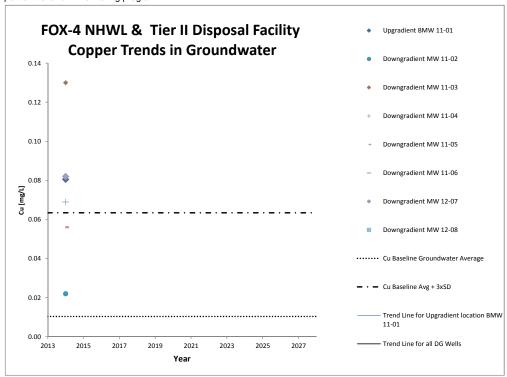
FOX-4 Cape Ho	ooper - Hel	ipad Landfi	ll West - Su	mmary of	Groundwa	ter Analyt	ical Data*	*											
Sample #	Location	Date	Monitoring Year	Monitoring Phase	Cu	Ni	Со	Cd	Pb	Zn	Cr	As	Hg	Total	F1 C ₆ -C ₁₀	F2 C _{10°} C ₁₆ I	F3 C ₁₆ *C ₃₄	Modified TPH^ - Total C6-C34	TPH Identity
					[mg/L]	[mg/L]	[mg/L]	[mg/L]	[mg/L]	[mg/L]	[mg/L]	[mg/L]	[mg/L]	PCB [mg/L]	(mg/L)	(mg/L)	(mg/L)	[mg/L]	% Fuel Oil % Lube Oil
Baseline Data					[mg] m	15/1	1115/ 41	1000/-0	jungo anj	11150 211	15/1	11190 441	150	Total India and	()()	(,)	(1195) 119	1-30/1	
Upgradient- Helipad West																			
WF4-MW3_98	MW-3	1998	1		0.026	0.98	0.03	0.0015	0.0076	0.14	0.7	0.0028		< 0.00001				4.0	
WF4-MW4_98 WF4-MW6_98	MW-4 MW-6	1998 1998			0.048	0.42 2.00	0.01	0.0012 0.0024	0.0130	0.05	0.8 1.9	0.0079		0.00008 <0.00001				17 4.0	
WF4-MW6_98	MW-0	1998			0.096	2.00	0.13	0.0024	0.0093	0.30	1.9	0.0048		<0.00001				4.0	
Downgradient										1									
WF4-MW1-98	MW-1	1998			0.083	0.97	0.028	0.0018	0.034	0.12	1.5	0.037		0.00003				2.0	
WF4-MW2-98	MW-2	1998			0.11	0.80	0.022	0.0018	0.016	0.078	1.4	0.022		0.00001				9.0	
		N valu			5	5	5	5	5	5	5	5	0	5	1			5	
		Baseline Average			0.072	1.03	0.044	0.0018	0.016	0.14	1.27	0.015	0	0.000026				7.2	
		Standard Deviation	n		0.034	0.587	0.047	0.000	0.011	0.098	0.505	0.014		0.000032				6.1	
	Average	+ 3xStandard Deviation			0.17	2.8	0.19	0.00	0.05	0.43	2.79	0.06		0.00012				25.4	
Maritanian Data		Detection Limi	it		0.005	0.010	0.005	0.001	0.010	0.005	0.005	0.050	0.001	0.00001				5.0	
Monitoring Data																			
Upgradient - MW-3 PO-3-1	MW-3	2000	2	Phase I	< 0.003	0.03	< 0.005	0.0003	< 0.002	0.13	0.007	< 0.002	< 0.001	< 0.000025	1	1		< 0.1	
MW-3	MW-3	2006	8	Phase II	0.013	0.04	0.002	< 0.0003	0.020	0.99	0.028	0.001	<0.0002	< 0.0001	< 0.025	< 0.1	<0.1	0.113	
no sample taken	MW-3	2013																	
F4-HEL-MW98-03	MW-3	2014	16	Phase II	0.0063	0.048	0.0021	0.000086	0.0021	0.16	0.048	0.0025	< 0.00001	< 0.05	< 0.025	< 0.100	< 0.100	0.1125	
		2016	18	Phase II				1	 									#N/A #N/A	
		2018 2023	20	Phase II Phase II				 										#N/A	
		2023	30	Phase II				†										#N/A	
				Phase III														#N/A	
																		#N/A	
																		#N/A	
Upgradient - MW-4		1																	
PO-4-1	MW-4	2000	2	Phase I	0.012	0.33	< 0.005	0.0005	0.005	0.047	0.053	< 0.002	< 0.001	< 0.000021					
PO-4-1	MW-4	2001	3	Phase I	0.015	0.022	< 0.005	0.004	0.003	0.63	0.095	0.009	< 0.0001	< 0.00005				< 0.1	
MW-4	MW-4	2006	8	Phase II															
Upgradient - MW-6 PO-6-1	MW-6	2001	3	Phase I	0.037	0.12	0.042	0.004	0.04	7.8	0.087	0.02	< 0.00010	< 0.000050				<1.0	
MW-6	MW-6	2001	8	Phase II	0.037	0.12	0.042	0.004	0.04	7.8	0.087	0.02	<0.00010	<0.000050				<1.0 #N/A	
no sample taken - well dry	MW-6	2013	15	Phase II														#N/A	
no sample taken - well dry		2014	16	Phase II														#N/A	
		2016	18	Phase II														#N/A	
		2018	20	Phase II					-									#N/A	
		2023	25	Phase II Phase II														#N/A #N/A	
		2020	- 50	Phase III														#N/A	
																		#N/A	
																		#N/A	
Downgradient - MW-1 99-3813	MW-1	1999	1	Phase I	0.006	0.074	0.015	0.001	<1.0	0.17	0.014	< 0.05	< 0.001	< 0.00002				< 5	
PO-1-1	MW-1	2000	2	Phase I	0.036	0.074	0.015	0.01	0.132	3.54	0.014	0.019	< 0.001	<0.00002				<0.10	
PO-1-1	MW-1	2001	3	Phase I	0.025	1.4	0.035												
PO-1-1			3					0.004	0.07	4.8	0.027	0.03	< 0.00010	< 0.00005				< 0.1	
	MW-1	2003	5	Phase I	< 0.010	0.06	0.01	< 0.010	< 0.010	0.28	0.01	< 0.010	< 0.00020	<0.00005				0.43	
MW-1	MW-1	2005	5 7	Phase I Phase II	<0.010 0.04	0.06 0.27	0.01 0.02	<0.010 0.001	<0.010 0.09	0.28 0.42	0.01 0.47	<0.010 0.02	<0.00020 <0.00020					0.43 <5.0	
MW-1 MW-1	MW-1 MW-1	2005 2006	5 7 8	Phase I Phase II Phase II	<0.010 0.04 0.009	0.06 0.27 0.03	0.01 0.02 0.007	<0.010 0.001 <0.0010	<0.010 0.09 0.01	0.28 0.42 0.47	0.01 0.47 0.009	<0.010 0.02 0.002	<0.00020 <0.00020 <0.00020	<0.00005				0.43	
MW-1 MW-1 MW-1	MW-1 MW-1 MW-1	2005 2006 2007	5 7 8 9	Phase II Phase II Phase II Phase II	<0.010 0.04 0.009 0.002	0.06 0.27	0.01 0.02	<0.010 0.001 <0.0010 <0.0010	<0.010 0.09 0.01 0.003	0.28 0.42 0.47 0.39	0.01 0.47 0.009 0.005	<0.010 0.02 0.002 0.002	<0.00020 <0.00020 <0.00020 <0.00010	<0.0001				0.43 <5.0 <0.10	
MW-1 MW-1 MW-1 MW-1 13-27355	MW-1 MW-1 MW-1 MW-1 MW-1	2005 2006 2007 2008 2013	5 7 8	Phase I Phase II Phase II	<0.010 0.04 0.009 0.002 <0.0010 0.062	0.06 0.27 0.03 0.036	0.01 0.02 0.007 0.01	<0.010 0.001 <0.0010 <0.0010 <0.0010 <0.0010	<0.010 0.09 0.01 0.003 <0.0010 <0.0010	0.28 0.42 0.47 0.39 <0.020 0.28	0.01 0.47 0.009 0.005 <0.050 0.079	<0.010 0.02 0.002 0.002 <0.010 0.0044	<0.00020 <0.00020 <0.00020 <0.00010 <0.00010 <0.00040	<0.0001 <0.000050 <0.0030				0.43 <5.0 <0.10 <0.20 <0.050	
MW-1 MW-1 MW-1 MW-1	MW-1 MW-1 MW-1 MW-1	2005 2006 2007 2008 2013 2014	5 7 8 9 10 15	Phase I Phase II Phase II Phase II Phase II Phase II Phase II Phase II	<0.010 0.04 0.009 0.002 <0.0010	0.06 0.27 0.03 0.036	0.01 0.02 0.007 0.01	<0.010 0.001 <0.0010 <0.0010 <0.0010	<0.010 0.09 0.01 0.003 <0.0010	0.28 0.42 0.47 0.39 <0.020	0.01 0.47 0.009 0.005 <0.050	<0.010 0.02 0.002 0.002 <0.010	<0.00020 <0.00020 <0.00020 <0.00010 <0.00010	<0.0001	0.041	<0.100	<0.100	0.43 <5.0 <0.10 <0.20 <0.050 0.141	
MW-1 MW-1 MW-1 MW-1 13-27355	MW-1 MW-1 MW-1 MW-1 MW-1	2005 2006 2007 2008 2013 2014 2016	5 7 8 9 10 15 16 18	Phase II Phase II Phase II Phase II Phase II Phase II Phase II Phase II Phase II	<0.010 0.04 0.009 0.002 <0.0010 0.062	0.06 0.27 0.03 0.036	0.01 0.02 0.007 0.01	<0.010 0.001 <0.0010 <0.0010 <0.0010 <0.0010	<0.010 0.09 0.01 0.003 <0.0010 <0.0010	0.28 0.42 0.47 0.39 <0.020 0.28	0.01 0.47 0.009 0.005 <0.050 0.079	<0.010 0.02 0.002 0.002 <0.010 0.0044	<0.00020 <0.00020 <0.00020 <0.00010 <0.00010 <0.00040	<0.0001 <0.000050 <0.0030	0.041	<0.100	<0.100	0.43 <5.0 <0.10 <0.20 <0.050 0.141 #N/A	
MW-1 MW-1 MW-1 MW-1 13-27355	MW-1 MW-1 MW-1 MW-1 MW-1	2005 2006 2007 2008 2013 2014 2016 2018	5 7 8 9 10 15 16 18 20	Phase II Phase II Phase II Phase II Phase II Phase II Phase II Phase III Phase III Phase III	<0.010 0.04 0.009 0.002 <0.0010 0.062	0.06 0.27 0.03 0.036	0.01 0.02 0.007 0.01	<0.010 0.001 <0.0010 <0.0010 <0.0010 <0.0010	<0.010 0.09 0.01 0.003 <0.0010 <0.0010	0.28 0.42 0.47 0.39 <0.020 0.28	0.01 0.47 0.009 0.005 <0.050 0.079	<0.010 0.02 0.002 0.002 <0.010 0.0044	<0.00020 <0.00020 <0.00020 <0.00010 <0.00010 <0.00040	<0.0001 <0.000050 <0.0030	0.041	<0.100	<0.100	0.43 <5.0 <0.10 <0.20 <0.050 0.141 #N/A #N/A	
MW-1 MW-1 MW-1 MW-1 13-27355	MW-1 MW-1 MW-1 MW-1 MW-1	2005 2006 2007 2008 2013 2014 2016 2018 2023	5 7 8 9 10 15 16 18 20 25	Phase II Phase II Phase II Phase II Phase II Phase II Phase II Phase II Phase II Phase II Phase II	<0.010 0.04 0.009 0.002 <0.0010 0.062	0.06 0.27 0.03 0.036	0.01 0.02 0.007 0.01	<0.010 0.001 <0.0010 <0.0010 <0.0010 <0.0010	<0.010 0.09 0.01 0.003 <0.0010 <0.0010	0.28 0.42 0.47 0.39 <0.020 0.28	0.01 0.47 0.009 0.005 <0.050 0.079	<0.010 0.02 0.002 0.002 <0.010 0.0044	<0.00020 <0.00020 <0.00020 <0.00010 <0.00010 <0.00040	<0.0001 <0.000050 <0.0030	0.041	<0.100	<0.100	0.43 <5.0 <0.10 <0.20 <0.050 0.141 #N/A #N/A	
MW-1 MW-1 MW-1 MW-1 13-27355	MW-1 MW-1 MW-1 MW-1 MW-1	2005 2006 2007 2008 2013 2014 2016 2018	5 7 8 9 10 15 16 18 20	Phase II Phase II Phase II Phase II Phase II Phase II Phase II Phase III Phase III Phase III	<0.010 0.04 0.009 0.002 <0.0010 0.062	0.06 0.27 0.03 0.036	0.01 0.02 0.007 0.01	<0.010 0.001 <0.0010 <0.0010 <0.0010 <0.0010	<0.010 0.09 0.01 0.003 <0.0010 <0.0010	0.28 0.42 0.47 0.39 <0.020 0.28	0.01 0.47 0.009 0.005 <0.050 0.079	<0.010 0.02 0.002 0.002 <0.010 0.0044	<0.00020 <0.00020 <0.00020 <0.00010 <0.00010 <0.00040	<0.0001 <0.000050 <0.0030	0.041	<0.100	<0.100	0.43 <5.0 <0.10 <0.20 <0.050 0.141 #N/A #N/A	
MW-1 MW-1 MW-1 MW-1 13-27355	MW-1 MW-1 MW-1 MW-1 MW-1	2005 2006 2007 2008 2013 2014 2016 2018 2023	5 7 8 9 10 15 16 18 20 25	Phase I Phase II Phase II Phase II Phase II Phase II Phase II Phase II Phase II Phase II	<0.010 0.04 0.009 0.002 <0.0010 0.062	0.06 0.27 0.03 0.036	0.01 0.02 0.007 0.01	<0.010 0.001 <0.0010 <0.0010 <0.0010 <0.0010	<0.010 0.09 0.01 0.003 <0.0010 <0.0010	0.28 0.42 0.47 0.39 <0.020 0.28	0.01 0.47 0.009 0.005 <0.050 0.079	<0.010 0.02 0.002 0.002 <0.010 0.0044	<0.00020 <0.00020 <0.00020 <0.00010 <0.00010 <0.00040	<0.0001 <0.000050 <0.0030	0.041	<0.100	<0.100	0.43 <5.0 <0.10 <0.20 <0.050 0.141 #N/A #N/A #N/A #N/A #N/A	
MW-1 MW-1 MW-1 MW-1 15-27355 F4-HEL-MW98-01	MW-1 MW-1 MW-1 MW-1 MW-1	2005 2006 2007 2008 2013 2014 2016 2018 2023	5 7 8 9 10 15 16 18 20 25	Phase I Phase II Phase II Phase II Phase II Phase II Phase II Phase II Phase II Phase II	<0.010 0.04 0.009 0.002 <0.0010 0.062	0.06 0.27 0.03 0.036	0.01 0.02 0.007 0.01	<0.010 0.001 <0.0010 <0.0010 <0.0010 <0.0010	<0.010 0.09 0.01 0.003 <0.0010 <0.0010	0.28 0.42 0.47 0.39 <0.020 0.28	0.01 0.47 0.009 0.005 <0.050 0.079	<0.010 0.02 0.002 0.002 <0.010 0.0044	<0.00020 <0.00020 <0.00020 <0.00010 <0.00010 <0.00040	<0.0001 <0.000050 <0.0030	0.041	<0.100	<0.100	0.43 <5.0 <0.10 <0.20 <0.050 0.141 #N/A #N/A #N/A #N/A	
MW-1 MW-1 MW-1 MW-1 MW-1 13-27355 F4-HEL-MW98-01 Downgradient - MW-2	MW-1 MW-1 MW-1 MW-1 MW-1 MW-1	2005 2006 2007 2008 2013 2014 2016 2018 2023 2028	5 7 8 8 9 10 15 16 18 20 25 30	Phase II Phase III Phase III Phase III Phase III Phase III Phase III Phase III Phase III Phase III Phase III Phase III Phase III Phase III	<0.010 0.04 0.009 0.009 0.002 <0.0010 0.062 0.17	0.06 0.27 0.03 0.036 0.072 0.097	0.01 0.02 0.007 0.01 0.01 0.0092	<0.010 0.001 <0.0010 <0.0010 <0.0010 <0.0010 0.00048	<0.010 0.09 0.01 0.003 <0.0010 <0.0010 0.0018	0.28 0.42 0.47 0.39 <0.020 0.28 0.38	0.01 0.47 0.009 0.005 <0.050 0.079 0.066	<0.010 0.02 0.002 0.002 0.002 <0.010 0.0044 0.0016	<0.00020 <0.00020 <0.00020 <0.00010 <0.00010 <0.00010 <0.00040 <0.00001	<0.0001 <0.000050 <0.0030 <0.05	0.041	<0.100	<0.100	0.43 <5.0 <0.10 <0.20 <0.050 0.141 #N/A #N/A #N/A #N/A #N/A	
MW-1 MW-1 MW-1 MW-1 MW-1 15-27355 F4-HEL-MW98-01 Downgradient - MW-2 99-3814	MW-1 MW-1 MW-1 MW-1 MW-1 MW-1	2005 2006 2007 2008 2013 2014 2016 2018 2023 2028	5 7 8 9 10 15 16 18 20 25	Phase I Phase II Phase II Phase II Phase II Phase II Phase II Phase II Phase II Phase II Phase II Phase II Phase II Phase II Phase III Phase II Phase II Phase II Phase II	<0.010 0.04 0.009 0.002 <0.0010 0.062 0.17	0.06 0.27 0.03 0.036 0.072 0.097	0.01 0.02 0.007 0.01 0.0092 0.0098	<0.010 <0.001 <0.0010 <0.0010 <0.0010 <0.0010 <0.0048	<0.010 0.09 0.01 0.003 <0.0010 <0.0010 0.0018 <	0.28 0.42 0.47 0.39 <0.020 0.28 0.38	0.01 0.47 0.009 0.005 <0.050 0.079 0.066	<0.010 0.02 0.002 0.002 <0.010 0.0044 0.0016	<0.00020 <0.00020 <0.00020 <0.00010 <0.00010 <0.00001 <0.00001	<0.0001 <0.000050 <0.0030 <0.05	0.041	<0.100	<0.100	0.43 <5.0 <0.10 <0.20 <0.050 0.141 #N/A #N/A #N/A #N/A #N/A #N/A *N/A *N/A *N/A	
MW-1 MW-1 MW-1 MW-1 MW-1 MW-1 S-27355 F4-HEL-MW98-01 Downgradient - MW-2 99-3814	MW-1 MW-1 MW-1 MW-1 MW-1 MW-1	2005 2006 2007 2008 2013 2014 2016 2018 2023 2028	5 7 8 9 10 15 16 18 20 25 30	Phase II Phase III Phase III Phase III Phase III Phase III Phase III Phase III Phase III Phase III Phase III Phase III Phase III Phase III	<0.010 0.04 0.009 0.009 0.002 <0.0010 0.062 0.17	0.06 0.27 0.03 0.036 0.072 0.097	0.01 0.02 0.007 0.01 0.01 0.0092	<0.010 0.001 <0.0010 <0.0010 <0.0010 <0.0010 0.00048	<0.010 0.09 0.01 0.003 <0.0010 <0.0010 0.0018	0.28 0.42 0.47 0.39 <0.020 0.28 0.38	0.01 0.47 0.009 0.005 <0.050 0.079 0.066	<0.010 0.02 0.002 0.002 0.002 <0.010 0.0044 0.0016	<0.00020 <0.00020 <0.00020 <0.00010 <0.00010 <0.00010 <0.00040 <0.00001	<0.0001 <0.000050 <0.0030 <0.05	0.041	<0.100	<0.100	0.43 <5.0 <0.10 <0.20 <0.050 0.141 #N/A #N/A #N/A #N/A #N/A	
MW-1 MW-1 MW-1 MW-1 MW-1 15-27355 F4-HEL-MW98-01 Downgradient - MW-2 99-3814 PO-2-1 PO-2-1	MW-1 MW-1 MW-1 MW-1 MW-1 MW-1 MW-1 MW-2 MW-2 MW-2 MW-2	2005 2006 2007 2008 2013 2014 2016 2018 2023 2028 2028	5 7 8 8 9 10 15 16 18 20 25 30	Phase II Phase III	<.0.010 0.04 0.009 0.002 <.0.0010 0.062 0.17 0.014 0.014 0.016 0.016	0.06 0.27 0.03 0.036 0.072 0.097 0.097	0.01 0.02 0.007 0.01 0.0092 0.0098 0.0098	 <0.010 <0.001 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0014 <0.0014 <0.0014 <0.0014 <0.0015 <l< td=""><td><0.010 0.09 0.01 0.003 <0.0010 <0.0010 0.0018 <<0.0010 0.0018 <<0.0010 0.0018 <<0.0010 0.0010 <<0.0010 0.00</td><td>0.28 0.42 0.47 0.39 <0.020 0.28 0.38 0.053 0.129 0.47 0.1</td><td>0.01 0.47 0.009 0.005 <0.050 0.079 0.066 0.012 0.012 0.028 0.02</td><td><0.010 0.02 0.002 0.002 0.002 0.004 0.0044 0.0016 <0.050 0.004 0.02 0.01</td><td><0.00020 <0.00020 <0.00020 <0.000020 <0.000010 <0.00010 <0.00001 <0.00001 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <</td><td><0.0001 <0.00050 <0.0030 <0.005 <0.005 <<0.000050 <0.000050 <0.000050</td><td>0.041</td><td><0.100</td><td><0.100</td><td>0.43 <5.0 <0.10 <0.20 <0.050 0.141 #N/A #N/A #N/A #N/A #N/A #N/A **</td><td></td></l<>	<0.010 0.09 0.01 0.003 <0.0010 <0.0010 0.0018 <<0.0010 0.0018 <<0.0010 0.0018 <<0.0010 0.0010 <<0.0010 0.00	0.28 0.42 0.47 0.39 <0.020 0.28 0.38 0.053 0.129 0.47 0.1	0.01 0.47 0.009 0.005 <0.050 0.079 0.066 0.012 0.012 0.028 0.02	<0.010 0.02 0.002 0.002 0.002 0.004 0.0044 0.0016 <0.050 0.004 0.02 0.01	<0.00020 <0.00020 <0.00020 <0.000020 <0.000010 <0.00010 <0.00001 <0.00001 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <	<0.0001 <0.00050 <0.0030 <0.005 <0.005 <<0.000050 <0.000050 <0.000050	0.041	<0.100	<0.100	0.43 <5.0 <0.10 <0.20 <0.050 0.141 #N/A #N/A #N/A #N/A #N/A #N/A **	
MW-1 MW-1 MW-1 MW-1 MW-1 J-27355 F4-HEL-MW98-01 Downgradient - MW-2 99-3814 FO-2-1 FO-2-1 FO-2-1 FO-2-1 FO-2-1 FO-2-1 MW-2	MW-1 MW-1 MW-1 MW-1 MW-1 MW-1 MW-2 MW-2 MW-2 MW-2 MW-2 MW-2	2005 2006 2007 2008 2013 2014 2016 2018 2023 2023 2023 2029 2000 2000 2000 2005	5 7 8 9 10 15 16 18 20 25 30 1 1 2 2 3 5 7	Phase II Phase I	0.010 0.04 0.009 0.002 0.002 0.017 0.017 0.014 0.014 0.016 0.016 0.012	0.06 0.27 0.03 0.036 0.072 0.097 0.097	0.01 0.02 0.007 0.01 0.0092 0.0098 0.0098 0.008 0.024 <0.005 0.01	 <0.010 <0.001 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0014 <0.0014 <0.0014 <0.0014 <0.0015 <0.0016 <0.0017 <0.0003 <0.0016 <0.0017 <l< td=""><td><0.010 0.09 0.01 0.01 0.003 <0.0010 <0.0010 0.0018 <0.010 0.011 <0.010 0.01 0.01</td><td>0.28 0.42 0.47 0.39 <0.020 0.28 0.38 0.129 0.47 0.1 0.39</td><td>0.01 0.47 0.009 0.005 <0.050 0.079 0.066 0.012 0.012 0.028 0.02 0.01 0.07</td><td><0.010 0.02 0.002 0.002 0.002 0.004 0.0044 0.0016 <<0.050 0.004 0.02 0.010 0.004 0.02 0.010 0.004 0.02</td><td><0.00020 <0.00020 <0.00020 <0.000020 <0.000010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00020</td><td><0.0001 <0.000050 <0.0030 <0.005 <0.005 <0.00050 <0.000050 <0.000050 <0.000050</td><td>0.041</td><td><0.100</td><td><0.100</td><td>0.43 <5.0 <0.10 <0.20 <0.050 0.141 #N/A #N/A #N/A #N/A #N/A #N/A #N/A 2.60</td><td></td></l<>	<0.010 0.09 0.01 0.01 0.003 <0.0010 <0.0010 0.0018 <0.010 0.011 <0.010 0.01 0.01	0.28 0.42 0.47 0.39 <0.020 0.28 0.38 0.129 0.47 0.1 0.39	0.01 0.47 0.009 0.005 <0.050 0.079 0.066 0.012 0.012 0.028 0.02 0.01 0.07	<0.010 0.02 0.002 0.002 0.002 0.004 0.0044 0.0016 <<0.050 0.004 0.02 0.010 0.004 0.02 0.010 0.004 0.02	<0.00020 <0.00020 <0.00020 <0.000020 <0.000010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00020	<0.0001 <0.000050 <0.0030 <0.005 <0.005 <0.00050 <0.000050 <0.000050 <0.000050	0.041	<0.100	<0.100	0.43 <5.0 <0.10 <0.20 <0.050 0.141 #N/A #N/A #N/A #N/A #N/A #N/A #N/A 2.60	
MW-1 MW-1 MW-1 MW-1 MW-1 13-27355 F4-HEL-MW98-01 Downgradient - MW-2 99-3814 FO-2-1 FO-2-1 FO-2-1 MW-2 MW-2	MW-1 MW-1 MW-1 MW-1 MW-1 MW-1 MW-1 MW-2 MW-2 MW-2 MW-2 MW-2 MW-2 MW-2	2005 2006 2007 2008 2013 2014 2016 2018 2023 2028 2028 2020 2000 2000 2000 200	5 7 8 9 10 15 16 18 20 25 30	Phase II Phase I	0.010 0.04 0.009 0.002 0.002 0.002 0.17 0.017 0.014 0.01 0.016 0.016 0.016 0.019 0.098	0.06 0.27 0.03 0.036 0.072 0.097 0.097	0.01 0.02 0.007 0.01 0.0092 0.0098 0.0098 0.008 0.024 <0.005 0.01 0.01	 <0.010 <0.001 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0014 <0.0014 <0.0014 <0.0014 <0.0015 <0.0016 <0.0017 <l< td=""><td><0.010 0.09 0.01 0.003 <0.0010 <0.0010 0.0018 <</td><td>0.28 0.42 0.47 0.39 <0.0(2) 0.28 0.38 0.38 0.053 0.129 0.47 0.1 0.39 0.58</td><td>0.01 0.47 0.009 0.005 <0.050 0.079 0.066 0.012 0.028 0.02 0.01 0.07 0.07 0.09</td><td><0.010 0.02 0.002 0.002 0.002 0.002 0.001 0.0044 0.0016 <0.0016 <0.050 0.004 0.002 0.01 0.003 0.001 0.001</td><td><0.00020 <0.00020 <0.00020 <0.00020 <0.00010 <0.00010 <0.00010 <0.0001 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00020 <0.00020 <0.00020 <0.00020</td><td><0.0001 <0.00050 <0.0030 <0.005 <0.005 <<0.000050 <0.000050 <0.000050</td><td>0.041</td><td><0.100</td><td><0.100</td><td>0.43 <5.0 <0.10 <0.20 <0.050 0.141 #N/A #N/A #N/A #N/A #N/A #N/A 0.65 0.81 2.6</td><td></td></l<>	<0.010 0.09 0.01 0.003 <0.0010 <0.0010 0.0018 <	0.28 0.42 0.47 0.39 <0.0(2) 0.28 0.38 0.38 0.053 0.129 0.47 0.1 0.39 0.58	0.01 0.47 0.009 0.005 <0.050 0.079 0.066 0.012 0.028 0.02 0.01 0.07 0.07 0.09	<0.010 0.02 0.002 0.002 0.002 0.002 0.001 0.0044 0.0016 <0.0016 <0.050 0.004 0.002 0.01 0.003 0.001 0.001	<0.00020 <0.00020 <0.00020 <0.00020 <0.00010 <0.00010 <0.00010 <0.0001 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00020 <0.00020 <0.00020 <0.00020	<0.0001 <0.00050 <0.0030 <0.005 <0.005 <<0.000050 <0.000050 <0.000050	0.041	<0.100	<0.100	0.43 <5.0 <0.10 <0.20 <0.050 0.141 #N/A #N/A #N/A #N/A #N/A #N/A 0.65 0.81 2.6	
MW-1 MW-1 MW-1 MW-1 MW-1 15-27355 F4-HEL-MW98-01 Downgradient - MW-2 99-3814 PO-2-1 PO-2-1 PO-2-1 PO-2-1 MW-2 MW-2 MW-2	MW-1 MW-1 MW-1 MW-1 MW-1 MW-1 MW-1 MW-2 MW-2 MW-2 MW-2 MW-2 MW-2 MW-2 MW-2	2005 2006 2007 2008 2013 2014 2016 2018 2023 2028 1999 2000 2001 2005 2005 2007	5 8 9 10 15 16 18 20 25 30 1 2 2 5 7 8 9	Phase II Phase II Phase III Phase III Phase III Phase III Phase III Phase III Phase III Phase III Phase III Phase III Phase III Phase III Phase III Phase III Phase III Phase III Phase III Phase II Phase II Phase II Phase II Phase II Phase II Phase III Phase III Phase III Phase III Phase III Phase III Phase III Phase III Phase III Phase III	0.010 0.04 0.009 0.002 0.002 0.002 0.17 0.17 0.014 0.01 0.016 0.016 0.012 0.09 0.099	0.06 0.27 0.03 0.036 0.072 0.097 0.097	0.01 0.02 0.007 0.01 0.0092 0.0098 0.0098 0.008 0.024 <0.005 0.01	<0.010 0.001 <0.0010 <0.0010 <0.0010 <0.0010 <0.00148 0.00148 0.0013 0.002 <0.010 0.0003 0.002 <0.010 <0.001 <0.001	<0.010 0.09 0.01 0.003 <0.0010 <0.0010 0.0018 <0.0010 0.0018 <0.010 0.011 0.011 0.011 0.001 0.001	0.28 0.42 0.47 0.39 <0.020 0.28 0.38 0.053 0.129 0.47 0.1 0.39 0.58	0.01 0.47 0.009 0.005 0.005 0.079 0.066 0.012 0.028 0.02 0.01 0.07 0.009	<0.010 0.02 0.002 0.002 0.002 0.004 0.0010 0.0044 0.0016 <	<	<0.0001 <0.00050 <0.0030 <0.005 <0.005 <0.000050 <0.000021 <0.000050 <0.00001	0.041	<0.100	<0.100	0.43 <5.0 <0.10 <0.20 <0.050 0.141 #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A 0.65 0.81 2.6	
MW-1 MW-1 MW-1 MW-1 MW-1 MW-1 15-27355 F4-HEL-MW98-01 Downgradient - MW-2 99-3814 PO-2-1 PO-2-1 PO-2-1 MW-2 MW-2 MW-2 MW-2	MW-1 MW-1 MW-1 MW-1 MW-1 MW-1 MW-1 MW-2 MW-2 MW-2 MW-2 MW-2 MW-2 MW-2 MW-2	2005 2006 2007 2008 2013 2014 2016 2018 2023 2028 2028 2020 2000 2000 2000 200	5 7 8 9 10 15 16 18 220 25 30	Phase II Phase II Phase III Phase III Phase III Phase III Phase II	0.010 0.04 0.09 0.002 0.002 0.017 0.014 0.014 0.014 0.01 0.016 0.01 0.02 0.09 0.099 0.009	0.06 0.27 0.03 0.03 0.036 0.096 0.097 0.097 0.097	0.01 0.02 0.007 0.01 0.0092 0.0098 0.0098 0.008 0.01 0.01 0.01 0.01 0.017	<0.010 0.001 <0.0010 <0.0010 <0.0010 <0.0010 <0.00148 0.001 0.0003 0.002 <0.010 <0.001 <0.0	<0.010 0.09 0.01 0.003 <0.0010 <0.0010 0.0018 <0.0010 0.0018 <0.0010 0.011 0.01 0.01 0.01 0.01 0.01	0.28 0.42 0.47 0.39 0.0120 0.28 0.38 0.053 0.129 0.47 0.1 0.39 0.88 0.08	0.01 0.47 0.09 0.005 0.015 0.079 0.066 0.012 0.022 0.02 0.01 0.07 0.009 0.005 0.009	<0.010 0.02 0.002 0.002 0.002 0.002 0.0010 0.0044 0.0016 <0.050 0.004 0.001 0.004 0.001 0.001 0.003 0.001 0.003 0.001	<00020 <0.00020 <0.00010 <0.00010 <0.00001 <0.00001 <0.00001 <0.00010 <0.0001 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.000000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.000000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.000000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.000000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.000000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.000000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.0000000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.000000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.000000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.000000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.000000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.000000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.000000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.000000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.000000 <0.00000 <0.000000 <0.000000 <0.0000000 <0.0000000 <0.00000000	<0.0001 <0.000050 <0.0030 <0.005 <0.005 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050	0.041	<0.100	<0.100	0.43 <5.0 <0.10 <0.20 <0.050 0.141 #N/A #N/A #N/A #N/A #N/A #N/A 0.65 0.65 0.96 0.732 0.869	
MW-1 MW-1 MW-1 MW-1 MW-1 MW-1 MW-1 Downgradient - MW-2 90-3814 PO-2-1 PO-2-1 PO-2-1 PO-2-1 MW-2 MW-2 MW-2	MW-1 MW-1 MW-1 MW-1 MW-1 MW-1 MW-1 MW-2 MW-2 MW-2 MW-2 MW-2 MW-2 MW-2 MW-2	2005 2006 2007 2008 2013 2014 2016 2018 2023 2028 1999 2000 2001 2005 2005 2007	5 8 9 10 15 16 18 20 25 30 1 2 2 5 7 8 9	Phase II Phase II Phase III Phase III Phase III Phase III Phase III Phase III Phase III Phase III Phase III Phase III Phase III Phase III Phase III Phase III Phase III Phase III Phase III Phase II Phase II Phase II Phase II Phase II Phase II Phase III Phase III Phase III Phase III Phase III Phase III Phase III Phase III Phase III Phase III	0.010 0.04 0.009 0.002 0.002 0.002 0.17 0.17 0.014 0.01 0.016 0.016 0.012 0.09 0.099	0.06 0.27 0.03 0.036 0.072 0.097 0.097	0.01 0.02 0.007 0.01 0.0092 0.0098 0.0098 0.008 0.024 <0.005 0.01 0.01	<0.010 0.001 <0.0010 <0.0010 <0.0010 <0.0010 <0.00148 0.00148 0.0013 0.002 <0.010 0.0003 0.002 <0.010 <0.001 <0.001	<0.010 0.09 0.01 0.003 <0.0010 <0.0010 0.0018 <0.0010 0.0018 <0.010 0.011 0.011 0.011 0.001 0.001	0.28 0.42 0.47 0.39 <0.020 0.28 0.38 0.053 0.129 0.47 0.1 0.39 0.58	0.01 0.47 0.009 0.005 0.005 0.079 0.066 0.012 0.028 0.02 0.01 0.07 0.009	<0.010 0.02 0.002 0.002 0.002 0.004 0.0010 0.0044 0.0016 <	<	<0.0001 <0.00050 <0.0030 <0.005 <0.005 <0.000050 <0.000021 <0.000050 <0.00001	0.041	<0.100	<0.100	0.43 <5.0 <0.10 <0.20 <0.050 0.141 #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A 0.65 0.81 2.6	

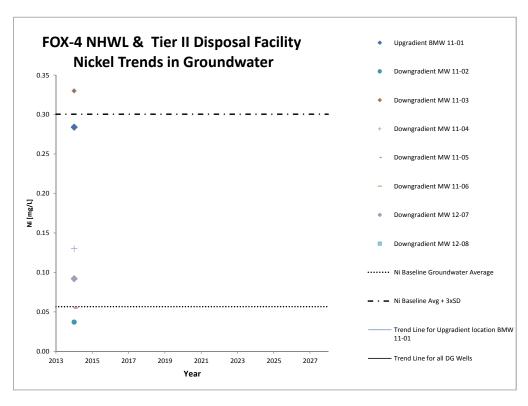

Sample #	Location	Date	Monitoring Year	Monitoring Phase	Cu	Ni	Co	Cd	Pb	Zn	Cr	As	Hg	Total	F1 C ₆ -C ₁₀	F2 C _{10*} C ₁₆	F3 C ₁₆ -C ₃₄	Modified TPH^ - Total C6-C34	TPH I	lentity
					[mg/L]	[mg/L]	[mg/L]	[mg/L]	[mg/L]	[mg/L]	[mg/L]	[mg/L]	[mg/L]	PCB [mg/L]	(mg/L)	(mg/L)	(mg/L)	[mg/L]	% Fuel Oil	% Lube Oil
		2018	20	Phase II														#N/A		
		2023	25	Phase II														#N/A		
		2028	30	Phase II														#N/A		
				Phase III														#N/A		
																		#N/A		
																		#N/A		

Note: Total Hydrocarbons (C₆-C₃₄) has been calculated by adding results ** The Helipad Landfill West underwent additional regrading in 2013.

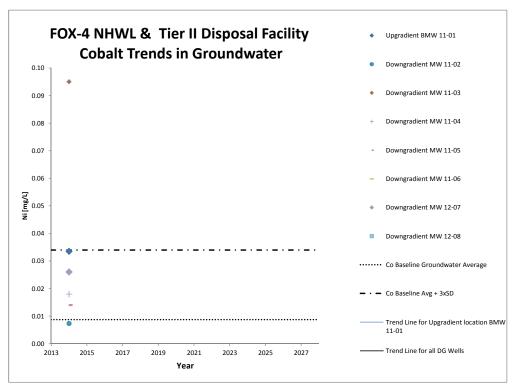
			Monitoring	Monitoring												F2 C 10°	F3 C 16"			
Sample #	Location	Year	Year	Phase	Cu	Ni	Co	Cd	Pb	Zn	Cr	As	Hg	Total PCB	F1 C & C 10	C16	C34	Modified TPH^ - Total C6-C34	TPH	Identity
					[mg/L]	[mg/L]	[mg/L]	[mg/L]	[mg/L]	[mg/L]	[mg/L]	[mg/L]	[mg/L]	[mg/L]	[mg/L]	[mg/L]	[mg/L]	[mg/L]	% Fuel Oil	% Lube 0
Baseline Data		-	1									-						Img/14	/o ruci Oii	/0 Lube
pgradient:																				
VF4-MW-7-98	BMW 07	1998	ļ		0.020	0.19	0.0078	0.0021	0.027	0.10	0.31	0.0020	,	0.000021				2.0	,	
WF4-MW7-98	BMW 07	1999			0.0050	0.25	0.0090	0.0020	< 0.010	0.32	0.015	< 0.050	< 0.0010	< 0.000020				<5.0		
Oowngradient: VF4-MW9-98	MW-9	1998			0.050	1.5	0.049	0.00066	0.015	0.12	1.4	0.014		0.000038						+
																				_
		N valu Averag			3 0.025	0.65	3	0.0016		0.2	3 0.56		1	3				5.0		-
		Averag Standard Deviatio			0.025	0.65	0.022	0.0016	0.016	0.2	0.56	0.050	0.001	0.0002				0	 	+
	Average +	3xStandard Deviatio			0.09	2.9	0.093	0.004	0.049	0.5	2.7	0.08		0.000				6.1		
		Detection Lim			0.0050	0.010	0.0050	0.0010	0.010	0.0050	0.0050	0.050	0.0010	0.0030				1.0		
Monitoring Data																				
Jpgradient - MW-7															Total TPH wil	l appear when	F1, F2, F3 frac	ctions are ente	red	
9-3815	BMW 07	1999	1	Phase I	0.005	0.25	0.009	0.002	< 0.01	0.32	0.015	< 0.005	< 0.001	< 0.00002				< 5		
PO-7-1	BMW 07	2000	2	Phase I	< 0.003	0.05	0.006	0.0008	0.005	0.15	0.02	< 0.002	< 0.001	< 0.000025				< 0.1		
PO-7-1	BMW 07	2001	3	Phase I	0.019	0.11	0.007	0.001	0.010	0.99	0.041	0.01	< 0.0001	< 0.00005				< 0.1	ļ	-
1/s MW-7	BMW 07 BMW 07	2003 2006	5 8	Phase II	0.019	0.100	0.022	0.001	0.02	1.1	0.014	0.002	< 0.0002	< 0.0001				< 0.1	ļ	+
NLW-/	BMW 07	2008	10	Phase II Phase II	0.019	0.100	0.022	0.001	0.02	1.1	0.014	0.002	NO.0002	~0.0001				NO.1	ļ	+
10-18408	BMW 07	2010	12	Phase II	0.048	0.27	0.023	< 0.0010	< 0.010	0.45	0.36	< 0.0030	< 0.0040	<0.000020				<1.0	-	
13-27353	BMW 07	2013	15	Phase II	0.045	0.44	0.037	0.0011	< 0.0010	0.15	0.60	< 0.0010	< 0.0040	< 0.0030	< 0.05	< 0.5	<1.0	0.775	ļ ·	
4-STA-MW98-07	BMW 07	2014	16	Phase II	0.04	0.19	0.02	0.0005	0.0037	0.10	0.22	0.0015	< 0.00001	< 0.00005	< 0.025	< 0.100	< 0.100	0.113		
		2016	18	Phase II														#N/A		
		2018	20	Phase II														#N/A		-
		2023 2028	25	Phase II Phase II								ļ		-				#N/A #N/A	ļ	-
		2028	30	Phase III														#N/A	-	-
		-	1	Thase III								1						#N/A	1	_
		-																#N/A	†	
Downgradient - MW-8																				
PO-8-1	MW-8	2001		Phase I	0.03	0.74	0.036	0.004	0.01	5.4	0.082	0.01	< 0.0001	< 0.00005				0.24		
PO-8 MW-8	MW-8 MW-8	2003 2005	5	Phase I Phase II	0.03	0.47	0.03	0.010	0.03	10 2.4	0.14	0.006	0.0002 <0.0002	< 0.0030				0.95 <0.05		-
MW-8	MW-8	2005	8	Phase II	0.001	0.030	0.02	0.001	0.008	2.4	0.062	0.006	<0.0002	< 0.0001				<0.05		
MW-8	MW-8	2008	10	Phase II	< 0.005	0.030	< 0.005	< 0.0010	< 0.0010	1.8	< 0.015	< 0.010	< 0.00010	< 0.00001				0.22	 	
0-18407	MW-8	2010	12	Phase II	0.019	0.19	0.012	< 0.0010	< 0.010	2.4	0.24	< 0.0030	< 0.0040	<0.000030				<1.0	1	+
not sampled		2013	15	Phase II														#N/A		
No sample collected - well was de	ry	2014	16	Phase II														#N/A		
		2016	18	Phase II														#N/A		
		2018	20	Phase II														#N/A		
		2023	25	Phase II								<u> </u>						#N/A	ļ	-
		2028	30	Phase III										-				#N/A #N/A	ļ	+
		+	1	rnase III														#N/A	1	+
		+	†										-					#N/A	<u> </u>	†
Downgradient - MW-9																				
PO-8-1	MW 09	2000	2	Phase I	< 0.003	0.09	0.015	0.0009	0.0070	0.23	0.0080	0.0080	< 0.001	< 0.00003				< 0.1		
O-9-1	MW 09	2001	3	Phase I	0.015	0.08	0.02	0.0020	0.0040	0.7	0.011	0.02	< 0.0001	< 0.00005				< 0.1		-
/s fW-9	MW 09 MW 09	2003 2006	5	Phase I									-					-	-	-
4W-9	MW 09	2006	8	Phase II Phase II				-										-	1	-
0-18406	MW 09	2010	12	Phase II	0.0067	0.12	0.0091	0.0013	< 0.010	1.5	0.20	< 0.0030	< 0.0040	<0.000020				<1.0	-	_
3-27354	MW 09	2013	15	Phase II	0.15	0.27	0.047	0.0031	< 0.0010	1.2	0.470	0.0018	< 0.0040	< 0.0030	< 0.05	< 0.5	<1.0	0.775		
lo sample collected - well was d		2014	16	Phase II														#N/A		
		2016	18	Phase II														#N/A		
		2018	20	Phase II														#N/A		
		2023	25	Phase II														#N/A		
		2028	30	Phase II														#N/A		
				Phase III														#N/A		₩
			1	1	1							1	1	1	1			#N/A	1	1

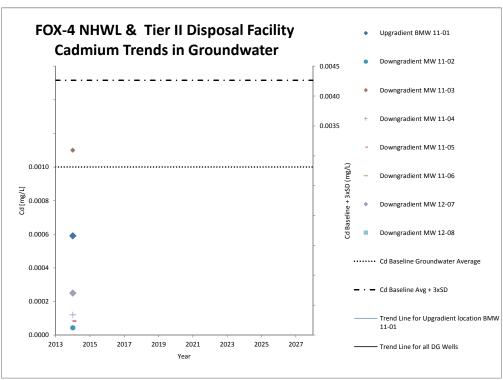
Note: Total Hydrocarbons (C₆-C₃₄) has been calculated by adding results for F1, F2 and F3.

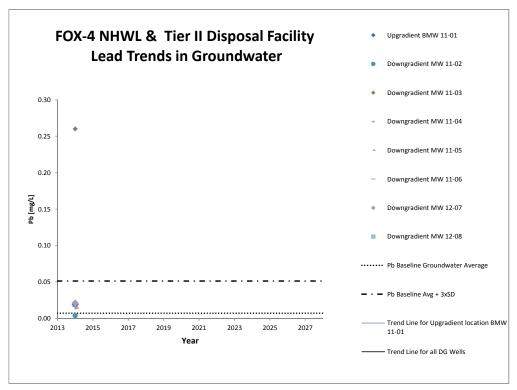

** Additional regrading of the Station Landfill occurred in 2013.

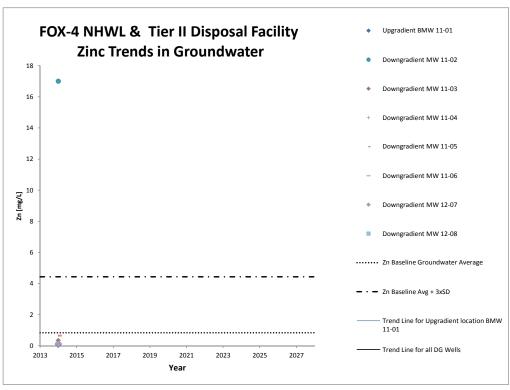


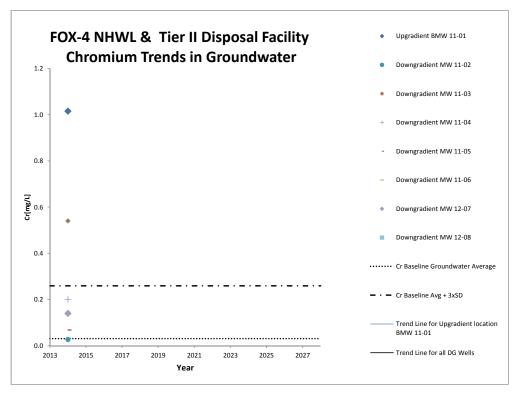
FOX-4 NHWL & Tier II Disposal Facility Graphs of Trends for Inorganic Elements, PCBs and TPH in Groundwater Samples

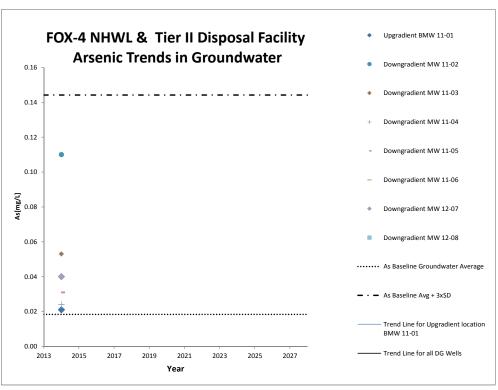

Where results are below detection, half of the detection limit has been used in the charts.

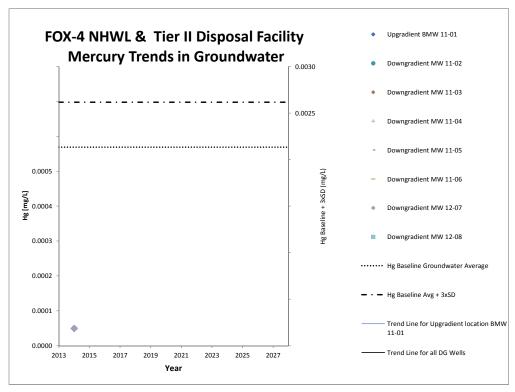

New monitoring locations were established in 2013 around the Tier II and NHWL facilities at FOX-4 and will be monitored as part of the landfill monitoring program.

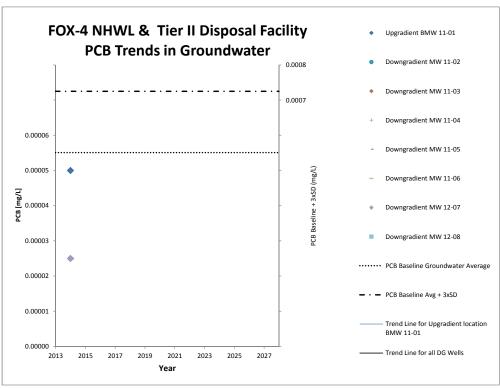


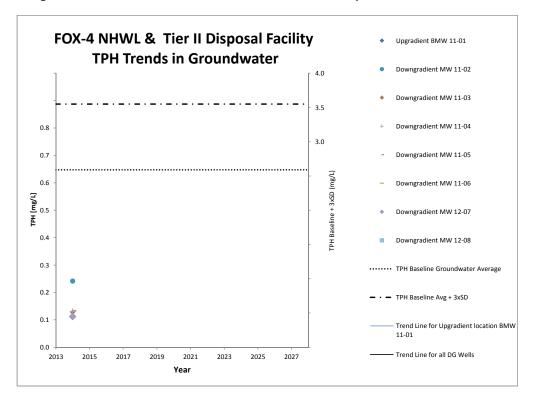

FOX-4 NHWL & Tier II Disposal Facility Graphs of Trends for Inorganic Elements, PCBs and TPH in Groundwater Samples



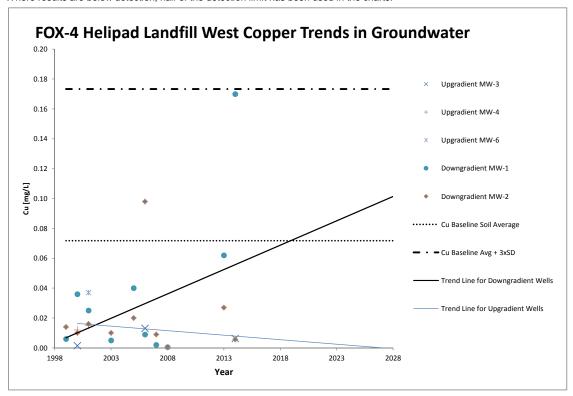

FOX-4 NHWL & Tier II Disposal Facility Graphs of Trends for Inorganic Elements, PCBs and TPH in Groundwater Samples

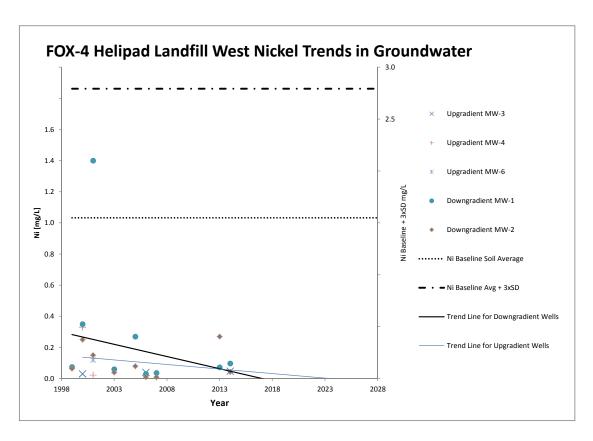


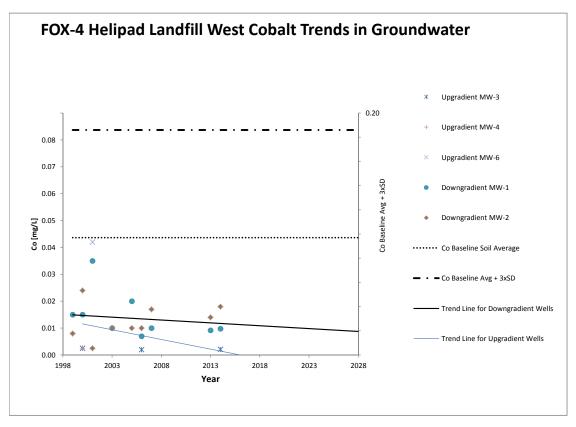

FOX-4 NHWL & Tier II Disposal Facility Graphs of Trends for Inorganic Elements, PCBs and TPH in Groundwater Samples

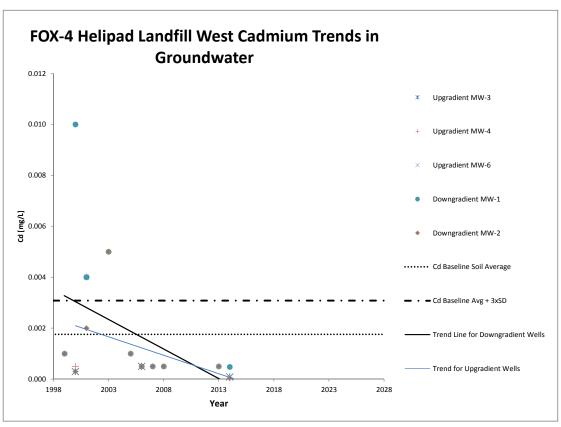


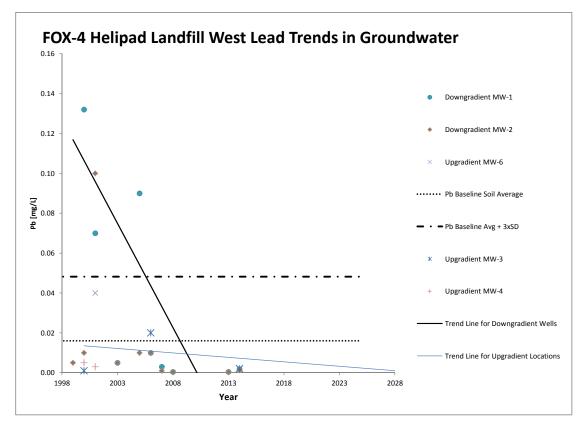
FOX-4 NHWL & Tier II Disposal Facility Graphs of Trends for Inorganic Elements, PCBs and TPH in Groundwater Samples

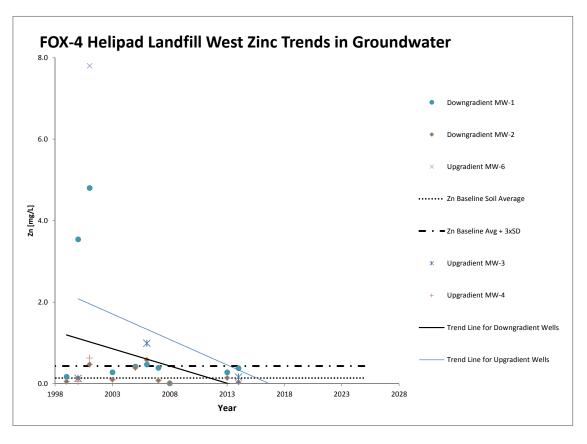


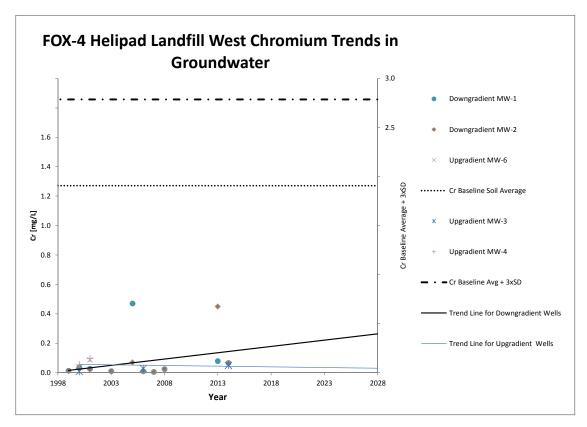

FOX-4 NHWL & Tier II Disposal Facility Graphs of Trends for Inorganic Elements, PCBs and TPH in Groundwater Samples

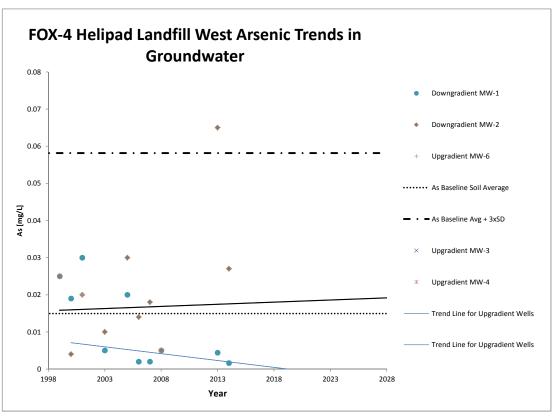

FOX-4 Helipad Landfill West Graphs of Trends for Inorganic Elements, PCBs and TPH in Groundwater Samples

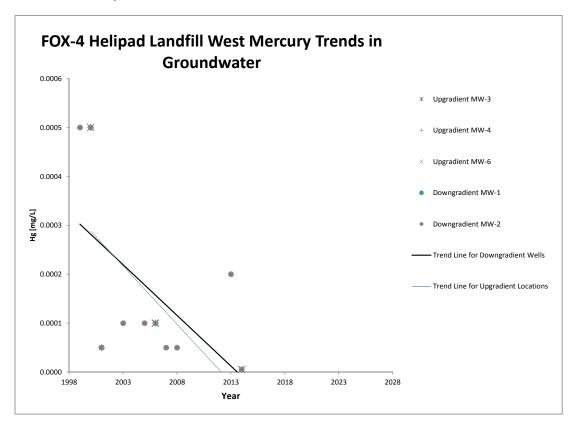

Where results are below detection, half of the detection limit has been used in the charts.



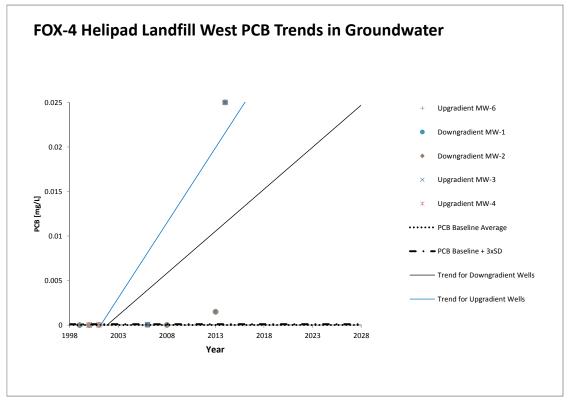

FOX-4 Helipad Landfill West Graphs of Trends for Inorganic Elements, PCBs and TPH in Groundwater Samples



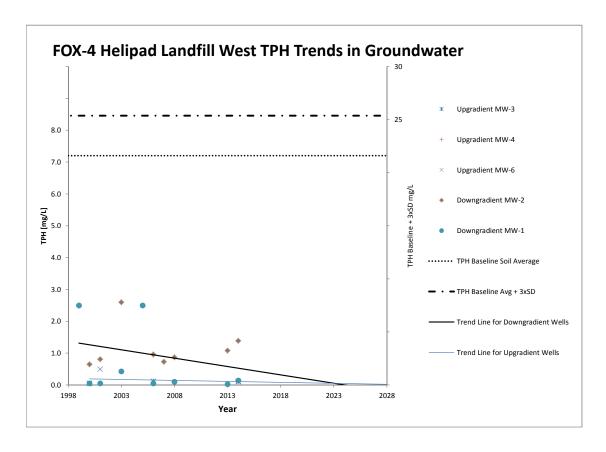

FOX-4 Helipad Landfill West Graphs of Trends for Inorganic Elements, PCBs and TPH in Groundwater Samples



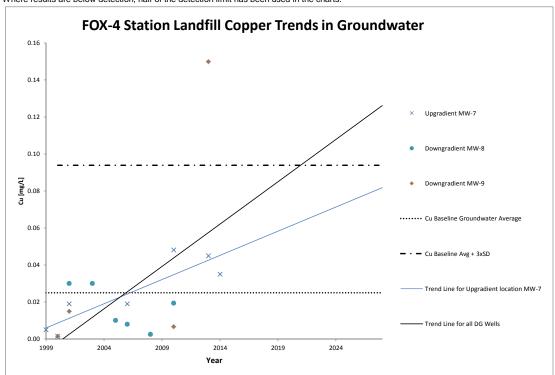
FOX-4 Helipad Landfill West Graphs of Trends for Inorganic Elements, PCBs and TPH in Groundwater Samples

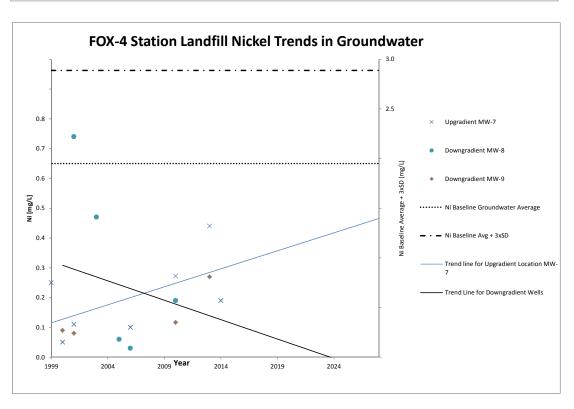


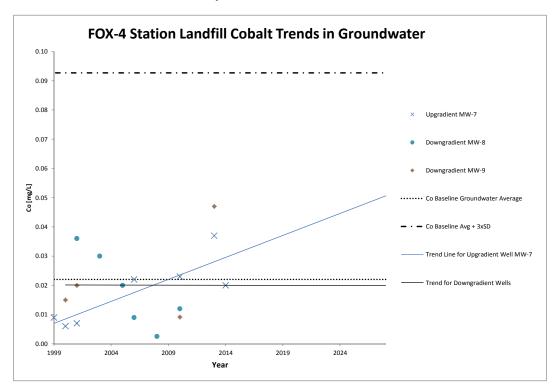
FOX-4 Helipad Landfill West Graphs of Trends for Inorganic Elements, PCBs and TPH in Groundwater Samples

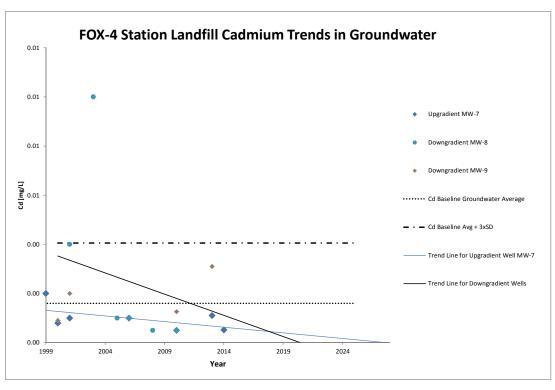

Mercury was not analyzed in 1998 Baseline samples.

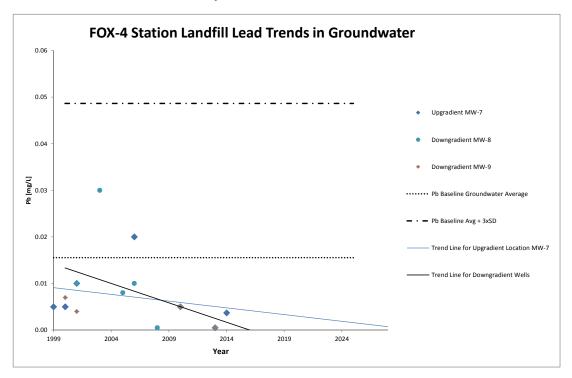
Mercury results were below detection in monitoring groundwater samples up to 2014. Trendlines reflect changes in detection limits

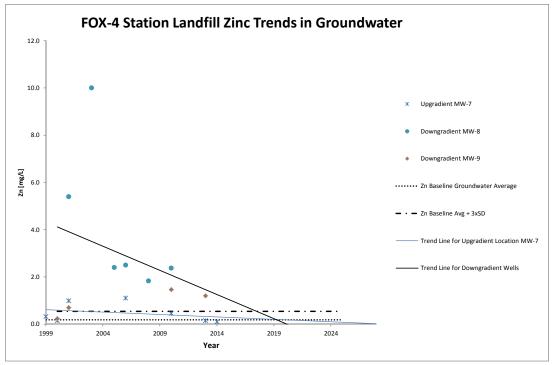

PCB results in groundwater have been below detection. Trendlines reflect changes in detection limits.

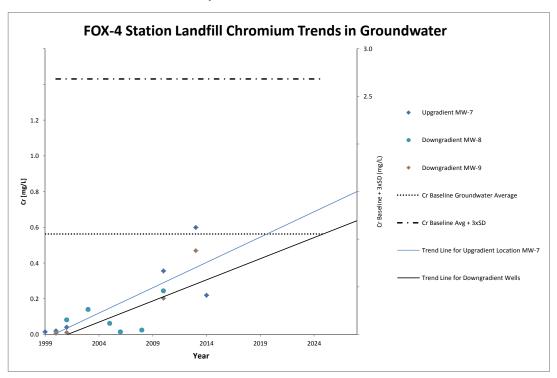

FOX-4 Helipad Landfill West Graphs of Trends for Inorganic Elements, PCBs and TPH in Groundwater Samples

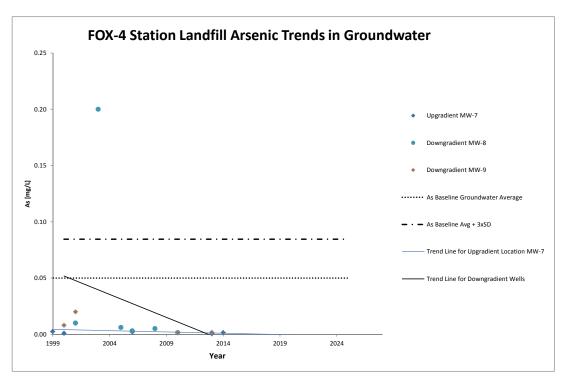

FOX-4 Station Landfill Graphs of Trends for Inorganic Elements, PCBs and TPH in Groundwater Samples

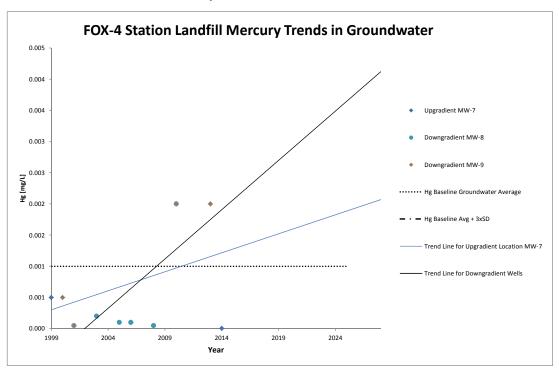

Where results are below detection, half of the detection limit has been used in the charts.

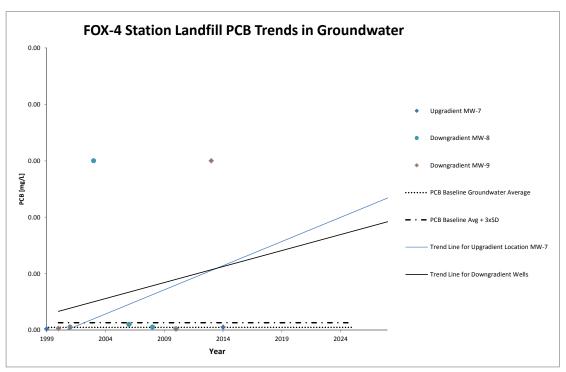


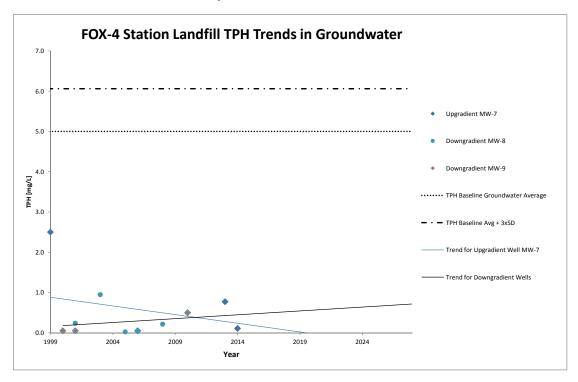

FOX-4 Station Landfill Graphs of Trends for Inorganic Elements, PCBs and TPH in Groundwater Samples




FOX-4 Station Landfill Graphs of Trends for Inorganic Elements, PCBs and TPH in Groundwater Samples




FOX-4 Station Landfill Graphs of Trends for Inorganic Elements, PCBs and TPH in Groundwater Samples



FOX-4 Station Landfill Graphs of Trends for Inorganic Elements, PCBs and TPH in Groundwater Samples

FOX-4 Station Landfill Graphs of Trends for Inorganic Elements, PCBs and TPH in Groundwater Samples

