

QIKIQ15 BAFFIN REGION DEW LINE SITE MONITORING

2016 FOX-4 Monitoring Report

Submitted to:

Department of National Defence ADM (Infrastructure & Environment) Ottawa, Ontario K1A 0K2

ATTN: Alison Street and Cynthia Tremblay

Report Number: 1530908-2000-R6-V3

Distribution:

Department of National Defence - 2 hard copies and 8 electronic copies Golder Associates Ltd. - 1 electronic copy

Executive Summary

Golder Associates Ltd. (Golder) has been contracted by Public Services and Procurement Canada (PSPC), on behalf of the Department of National Defence (DND), to complete the 2015-2018 Distant Early Warning (DEW) Line Sites Landfill Monitoring Program in the Baffin Region of Nunavut. The five DEW Line sites that were monitored in 2016 as part of the QIKIQ15 contract are FOX-2, FOX-3, FOX-4, FOX-5 and DYE-M. These sites are all now in the Post-Construction Monitoring Phase of their remedial program.

This Monitoring Report presents the 2016 post-construction inspection and monitoring results for five landfills at FOX-4: the Non-Hazardous Waste Landfill and Tier II Disposal Facility, Helipad West Landfill, Station Area Landfill, Pallet Line Landfill and Tanner Bay Landfill. The 2016 monitoring event was Year 18 for FOX-4; the initial environmental cleanup and demolition of old facilities at the FOX-4 site took place between 1996 and 1999. A second round of environmental cleanup and maintenance was completed between 2011 and 2013 to address certain elements of the Cooperation Agreement that were not addressed during the initial FOX-4 cleanup. FOX-4 was last monitored in 2014.

Non-Hazardous Waste Landfill and Tier II Disposal Facility

Based on the visual inspection, there were no indications of instability at the Non-Hazardous Waste Landfill and Tier II Disposal Facility. No sloughing or exposed waste was observed. A new crack was observed on the slope between the Non-Hazardous Waste Landfill and Tier II Disposal Facility crest surfaces that was assigned an "Acceptable" severity rating because there is minimal risk of slope failure and waste exposure. Previously observed occasional minor self-armouring erosion on the landfill slopes does not appear to be deteriorating with time. Isolated locations with minor settlement, debris, tire tracks and rough grading were observed on the landfill surfaces, however these are not considered of concern. Overall, the physical performance of this landfill was assessed as "Acceptable".

Concentrations of metals in soil were highest overall at the deep sample location MW11-1. At this location, the concentrations of cadmium, lead and chromium were greater than those reported in 2014 and the concentrations of copper, nickel, cobalt, cadmium, zinc and chromium exceeded their baseline mean concentrations plus 3 σ ; the concentration of arsenic was equal to its baseline mean concentration plus 3 σ . Cadmium was the most commonly noted exceedance in 2016, and at all soil sampling locations, cadmium was greater than the concentrations observed in 2014.

Modified TPH concentrations in soil (maximum of 491 mg/kg in the deep sample at MW12-08) were detected at the shallow and deep MW11-03 sample locations, the shallow MW11-04 sample location and the shallow and deep MW12-08 shallow and deep sample locations. The concentrations of modified TPH at the shallow and deep MW12-08 sample locations were greater than the concentrations reported in 2014. No detectable concentrations of mercury or PCB were noted in any of the soil samples in 2016.

The highest concentrations of metals in groundwater were observed at MW11-02. At this location, the concentrations of nickel, cobalt and zinc were greater than those reported in previous years and the concentrations of cobalt and zinc exceeded their baseline mean concentrations plus 3σ. At all other locations, the concentrations of most metals were lower than those reported in 2014. No detectable concentrations of chromium, mercury, PHC or PCB were noted in any of the groundwater samples in 2016.

Comparison of groundwater elevations based on estimated grade elevation and the measured water depth in the wells indicates that groundwater in was highest to the north at MW11-01, and lowest towards the west at MW12-07. The water levels at MW11-02, MW11-03 and MW12-08 indicate there is generally a western gradient in the area of the landfills. This is consistent with local grades.

Overall, it was noted that the soil sampling location with the most exceedances of the baseline mean plus 3σ (entirely metals), MW11-01, was located upgradient of the landfills. The only groundwater sample with exceedances of the baseline mean plus 3σ was MW11-02, located between the landfills and in an area where ponded water and staining are noted. This could potentially reflect impact from the landfills. Metals concentrations for a number of the soil (notably cadmium) and groundwater sampling results were greater than in 2014. Fewer than seven samples have been collected for trend confirmation and therefore additional data are required to confirm an increasing trend.

No modifications to the ongoing monitoring program at this landfill are recommended. Additional data is required to assess if the observed increases in 2016 relate to impact from the landfills or reflect variations in natural conditions.

Helipad West Landfill

Based on the visual inspection, there were no indications of instability at the the Helipad West Landfill. No sloughing or exposed waste was observed. A new tension crack was observed at the top of the west slope that was assigned a "Marginal" severity rating because it is at the top of a fairly large slope that was recently regraded. Occasional minor self-armouring erosion observed on the landfill slopes does not appear to be deteriorating with time. Isolated locations with minor settlement, sink holes and debris were observed at the landfill, however these are not considered a concern. The sink holes do not appear to be caused by groundwater flow, permafrost thaw or settlement of the subsurface. They appear to be simply caused by sand and gravel washing into voids of the adjacent boulder rockfill, as a result of the gravel cover not being filter compatible with the boulder rockfill. The overall physical performance of this landfill was assessed as "Marginal" because of the newly observed tension crack near the top of the west slope.

Concentrations of metals in soil were highest overall at the shallow sample location MW98-01, located downgradient of the south side of the landfill. Metals concentrations at this location were relatively stable at this location from 1999 to 2013, but increased in 2014 and 2016. The concentrations of most metals observed in 2016 represent new historical maxima and the concentrations of copper, nickel, cobalt, zinc and chromium exceeded their baseline mean concentration plus 3 σ . At MW98-02, MW98-03 and MW98-06, the concentrations of most metals were less than or similar to those reported in previous years.

PHC were detected at the shallow and deep MW98-03 locations, the shallow MW98-06 location and the shallow MW98-02 location at modified TPH concentrations of between 54 mg/kg and 3,358 mg/kg. The modified TPH concentration reported at MW98-02 in 2016 exceeded the baseline mean concentration plus 3σ and represents a new historical maximum concentration. No detectable concentrations of cadmium, mercury or PCB were noted in any of the samples in 2016.

At MW98-02, the concentrations of all metals and PHC in groundwater were lower in comparison to those reported in recent years. No cadmium, chromium, mercury or PCB were detected at this location in 2016.

Overall, it was noted that a number of the soil sampling results (e.g., metals at MW98-01 and PHC at MW98-02) were greater than in previous years; this may be reflective of an ongoing impact from the landfill. No modifications to the ongoing monitoring program at this landfill are recommended.

Station Area Landfill

The Station Area Non-Hazardous Waste Landfill had no observed cracking, exposed waste or indications of slope instability. The landfill has some previously observed minor settlement, erosion, ponded water and staining features. This landfill was assessed to have an "Acceptable" overall performance because all observed features were assessed as "Acceptable". Previously observed sink holes located along the edge of the landfill and a small minor settlement area on the cover surface do not appear to have changed since the last inspection. The sink holes do not appear to be caused by groundwater flow, permafrost thaw or settlement of the subsurface. They appear to be simply caused by sand and gravel washing into voids of the adjacent boulder rockfill, as a result of the gravel cover not being filter compatible with the boulder rockfill. Previously observed erosion channels are self-armouring and are not considered to be a concern. Previously observed ponded water along the edge of the landfill and orange staining may be related to landfill seepage.

Concentrations of metal parameters in soil were highest overall at the shallow MW98-07 sample location, located upgradient of the east side of the landfill. At all three locations, the concentrations of metals were similar to or less than those reported in previous years. No detectable concentrations of cadmium or mercury were noted in any of the samples in 2016.

PHC were detected at upgradient location MW98-07; the modified TPH concentration observed in 2016 exceeded the baseline mean concentration plus 3σ and represents a new historical maximum concentration. PCB were detected at the shallow and deep MW98-08 locations and the shallow MW98-09 location, at concentrations between 0.08 mg/kg and 1.46 mg/kg. The PCB concentration reported at the shallow MW98-08 location exceeded the baseline mean concentration plus 3σ and represents a new historical maximum concentration.

In 2016, groundwater samples could not be collected from any of the three monitoring wells adjacent to the landfill as they were dry or frozen. It is also noted that the casing and monitoring well pipe were filled with bentonite clay and therefore collecting of an accurate sample at these locations should not be possible.

The historical graphs in Appendix C show concentration trends at the Station Area Non-Hazardous Waste Landfill. At downgradient locations MW98-08 and MW98-09, relatively stable trends are noted for most parameters. At upgradient location MW98-07, slight increasing trends are noted for a number of parameters, notably for chromium and modified TPH. The concentrations of all metals at MW98-07 were less than, or similar to, those reported in recent years and the increasing trends observed at MW98-07 are not considered to reflect impact from the landfill. Given the staining in the area of standing water and the presence of elevated PCB at MW98-08 in 2016, impact from the landfill may be occurring, however overall, there is no evident increasing trend in the metals concentrations in this area, with the possible exception of arsenic, up to 2014.

It is recommended that soil samples from closer to the ponded water/staining area be collected during the next monitoring event. It is further recommended, considering the inability to collect groundwater samples from the wells (because they are filled with bentonite clay), that consideration be given to collection of water samples from either the ponded surface water, or a shallow hand dug excavation. In addition, an attempt should be made to flush these wells during the next sampling program.

SA.

2016 FOX-4 MONITORING REPORT

Pallet Line Landfill

During the 2016 visual inspection there were no observations of erosion, settlement, cracking, exposed waste or indications of instability at the Pallet Line Landfill. The previously observed ponded water was not present during the 2016 visual inspection. A new small hydrocarbon stain was observed in 2016 that was likely caused by a fuel spill and is not related to landfill performance. Based on the visual inspection, the overall stability performance of the landfill was assessed as "Acceptable".

Concentrations of metals were highest overall at the sample location F4-27 (shallow sample), located downgradient of the east side of the landfill. At F4-26, F4-27, F4-28 and F4-29, the majority of metals concentrations were greater than those reported in 2014. Concentrations of cadmium and PCB at F4-25, F4-26, F4-27 and F4-29 increased from those reported in 2014 (mostly non-detectable) and exceeded their respective baseline mean concentrations plus 3σ . PHC were detected at the F4-26, F4-27 and F4-28 sampling locations; the modified TPH concentrations at F4-26 and F4-28 were greater than the concentrations reported in 2014 and exceeded the baseline mean concentration plus 3σ . No detectable concentrations of mercury were noted in any of the samples in 2016.

Overall, it was noted that whereas metals concentrations for a number of the soil sampling results were greater than in the previous monitoring session, they were not markedly different at upgradient vs downgradient locations. Considering that fewer than seven samples have been collected, confirmation of trends is not possible at this time the data do not suggest that impact from the landfill is occurring.

No modifications to the ongoing monitoring program at this landfill are recommended. Additional data is required to assess if the observed increases in 2016 relate to impact from the landfill or reflect variations in natural conditions or sampling/analytical program influences.

Tanner Bay Landfill

The Tanner Bay Landfill exhibited some isolated minor settlement, cracking, self-armouring erosion and ponded water. The overall stability performance of the landfill was assessed as "Acceptable".

The concentrations of metals were highest overall at the deep F4-12 sample location, located immediately downgradient of the west side of the landfill. A slight increasing trend of most metals have been observed at this location since 2008. Exceedances of the baseline mean concentration plus 3σ were reported for copper at F4-11 (shallow sample), F4-12 (shallow and deep samples) and F4-13 (deep sample) and for arsenic at F4-12 (deep sample). It is noted that the baseline mean concentrations plus 3σ at the Tanner Bay Landfill are lower in comparison to other FOX-4 landfills. The concentrations of copper and arsenic at all locations were lower than their respective background mean concentrations. No detectable concentrations of mercury, PHC or PCB were noted in any of the samples in 2016.

Overall, it is noted that slight increases in some metal concentrations have been observed at the downgradient locations F4-12 and/or F4-13 including copper, nickel, zinc and chromium. Concentrations of copper appear to be increasing at upgradient location F4-11 as well. These increases are not significant enough to warrant concern, but should continue to be assessed. No modifications to the ongoing monitoring program at this landfill are recommended.

Table of Contents

1.0	INTRODUCTION1					
	1.1	Objective of the Study	1			
	1.2	Scope of Work	1			
2.0	BACK	BACKGROUND				
	2.1	Site Description				
	2.2	Site Geology, Hydrogeology and Hydrology				
	2.3	Land-Use Description				
	2.4	Field Program Staff and Schedule				
	2.5	Weather Conditions				
	2.6	Project References				
	2.7	Report Structure				
3.0		OACH & METHODOLOGY (GENERAL)				
5.0	3.1	Summary of Work				
	3.1.1	Health and Safety				
	3.1.2	Field Program				
	3.1.3	Visual Inspection				
	3.1.4	Thermal Monitoring				
	3.1.4	Soil Sampling				
	3.1.6	Groundwater Sampling				
	3.2	Field Notes and Data				
	3.3	QA/QC				
4.0		MONITORING PROGRAM RESULTS				
	4.1	Non-Hazardous Waste Landfill and Tier II Disposal Facility	16			
	4.1.1	Landfill Description	16			
	4.1.2	Visual Inspection	18			
	4.1.3	Thermal Monitoring	28			
	4.1.4	Summary of Sampling Deviations	29			
	4.1.5	Soil Sampling	29			
	4.1.6	Groundwater Sampling	34			

4.1.7	Conclusions and Overall Performance of the Non-Hazardous Waste Landfill and Tier II Disposa	I Facility 37
4.1.8	Recommendations for the Non-Hazardous Waste Landfill and Tier II Disposal Facility	37
4.2	Helipad West Landfill	38
4.2.1	Landfill Description	38
4.2.2	Visual Inspection	40
4.2.3	Summary of Sampling Deviations	48
4.2.4	Soil Sampling	48
4.2.5	Groundwater Sampling	51
4.2.6	Conclusions and Overall Performance of the Helipad West Landfill	53
4.2.7	Recommendations for the Helipad West Landfill	53
4.3	Station Area Landfill	54
4.3.1	Landfill Description	54
4.3.2	Visual Inspection	56
4.3.3	Summary of Sampling Deviations	62
4.3.4	Soil Sampling	62
4.3.5	Groundwater Sampling	65
4.3.6	Conclusions and Overall Performance of the Station Area Landfill	65
4.3.7	Recommendations for the Station Area Landfill	65
4.4	Pallet Line Landfill	66
4.4.1	Landfill Description	66
4.4.2	Visual Inspection	68
4.4.3	Summary of Sampling Deviations	73
4.4.4	Soil Sampling	73
4.4.5	Conclusions and Overall Performance of the Pallet Line Landfill	76
4.4.6	Recommendations for the Pallet Line Landfill	76
4.5	Tanner Bay Landfill	77
4.5.1	Landfill Description	77
4.5.2	Visual Inspection	79
4.5.3	Summary of Sampling Deviations	84
4.5.4	Soil Sampling	84
4.5.5	Conclusions and Overall Performance of the Tanner Bay Landfill	87

4.5.6	Recommendations for the Tanner Bay Landfill	87
5.0 QA/0	QC RESULTS	88
5.1	Sample Hold Times	88
5.2	Accuracy	89
5.3	Reliability	89
5.4	Reproducibility (Duplicate Analysis)	90
5.4.1	Soil Samples	91
5.4.2	Groundwater Samples	93
5.4.3	Overall Lab Data Reproducibility	94
5.5	QA/QC Conclusions	95
TABLES		
Table 2-1:	Field Personnel and Roles	
Table 2-2:	Summary of Weather Conditions	
Table 3-1:	Summary of QIKIQ15 Project Monitoring Schedule	
Table 3-2:	Summary of Monitoring Requirements for Landfills at FOX-4	9
Table 4-1:	Visual Inspection Checklist – Non-Hazardous Waste Landfill and Tier II Disposal Facility	20
Table 4-2:	Preliminary Stability Assessment – Non-Hazardous Waste Landfill and Tier II Disposal Facility	23
Table 4-3:	Summary Table of Photographic Log – Non-Hazardous Waste Landfill and Tier II Disposal Facility	23
Table 4-4:	Soil Chemical Analysis Results - Non-Hazardous Waste Landfill and Tier II Disposal Facility	33
Table 4-5:	Monitoring Well Groundwater Levels and Groundwater Chemical Analysis Results - Non-Hazardous Waste Landfill and Tier II Disposal Facility	36
Table 4-6:	Visual Inspection Checklist – Helipad West Landfill	42
Table 4-7:	Preliminary Stability Assessment – Helipad West Landfill	45
Table 4-8:	Summary Table of Photographic Log – Helipad West Landfill	45
Table 4-9:	Soil Chemical Analysis Results – Helipad West Landfill	50
Table 4-10	: Monitoring Well Groundwater Levels and Groundwater Chemical Analysis Results – Helipad West Landfill	52
Table 4-11	: Visual Inspection Checklist – Station Area Landfill	58
Table 4-12	: Preliminary Stability Assessment – Station Area Landfill	60
Table 4-13	: Summary Table of Photographic Log – Station Area Landfill	60
Table 4-14	: Soil Chemical Analysis Results – Station Area Landfill	64
Table 4-15	: Visual Inspection Checklist – Pallet Line Landfill	70
Table 4-16	: Preliminary Stability Assessment – Pallet Line Landfill	71

Table 4-17:	Summary Table of Photographic Log – Pallet Line Landfill	71
Table 4-18:	Soil Chemical Analysis Results – Pallet Line Landfill	75
Table 4-19:	Visual Inspection Checklist – Tanner Bay Landfill	81
Table 4-20:	Preliminary Stability Assessment – Tanner Bay Landfill	83
Table 4-21:	Summary Table of Photographic Log – Tanner Bay Landfill	83
Table 4-22:	Soil Chemical Analysis Results – Tanner Bay Landfill	86
FIGURES		
Figure FOX-4.1:	Overall Site Plan	4
Figure FOX-4.2:	The Non-Hazardous Waste Landfill and Tier II Disposal Facility (with photo numbers and feature annotations)	17
Figure FOX-4.3:	Helipad West Landfill (with photo numbers and feature annotations)	39
Figure FOX-4.4:	Station Area Landfill Plan (with photo numbers and feature annotations)	55
Figure FOX-4.5:	Pallet Line Landfill Plan (with photo numbers and feature annotations)	67
Figure FOX-4.6:	Tanner Bay Landfill Plan (with photo numbers and feature annotations)	78

APPENDICES

APPENDIX A

Report Limitations

APPENDIX B

Field Records

APPENDIX C

Laboratory Certificates of Analysis and QA/QC Reports Historical Monitoring Results

APPENDIX D

Photograph Log

W.

2016 FOX-4 MONITORING REPORT

1.0 INTRODUCTION

Golder Associates Ltd. (Golder) has been contracted by Public Services and Procurement Canada (PSPC), on behalf of the Department of National Defence (DND), to complete the 2015-2018 Distant Early Warning (DEW) Line Sites Landfill Monitoring Program in the Baffin Region of Nunavut (hereafter referred to as the "Project"). The contract number with PSPC is W6837-151002/001/NCS. The DND file number for the Project is QIKIQ15. The contracted scope of work is in accordance with the project Terms of Reference (TOR) dated April 2015, Golder Proposal P1530908 dated June 16, 2015 ("Golder Proposal") and the minutes of the May 12, 2016 meeting attended by Golder and DND.

The five DEW Line sites that were monitored in 2016 as part of the QIKIQ15 contract are FOX-2, FOX-3, FOX-4, FOX-5 and DYE-M. These sites are all now in the Post-Construction Monitoring Phase of their remedial program. Post-Construction Monitoring was carried out in accordance with the TOR and implemented as per Golder's Logistics and Work Plan (LWP) dated July 25, 2016. Monitoring activities included geotechnical visual inspection, thermal monitoring, soil and groundwater sampling.

This monitoring report presents the 2016 post-construction inspection and monitoring results for FOX-4 (the site). The 2016 monitoring was Year 18 for FOX-4; the initial environmental cleanup and demolition of old facilities at the FOX-4 site took place between 1996 and 1999. A second round of environmental cleanup and maintenance was completed between 2011 and 2013 to address certain elements of the Cooperation Agreement that were not addressed during the initial FOX-4 cleanup. FOX-4 was last monitored in 2014.

Appendix A is a summary of the report limitations and forms part of the report.

1.1 Objective of the Study

The objective of the landfill monitoring program is to collect sufficient information to assess the performance, integrity, and stability of the landfills from a geotechnical and environmental perspective for the protection of human health and the environment. The monitoring program is designed to monitor landfill integrity and to determine in the event of any evident deterioration or impacts identified from sampling results, if remedial measures are required.

1.2 Scope of Work

The scope of work for this project includes the following:

- Project management including liaison with DND, project team coordination, scope management, cost management, schedule management and resource coordination;
- 2) Preparation of a site-specific Health Safety and Environment Plan (HASEP) and procurement of safety equipment and supplies (e.g., personal protective equipment, first aid kits and satellite phones);
- Development of a Logistics and Work Plan (LWP) for each field season that outlines the field schedule, travel plans, accommodation, hiring of local Inuit contract workers, all-terrain vehicle (ATV) and charter aircraft rental;
- 4) Completion of field work consisting of visual inspection, photographic documentation, thermistor data collection and soil and water sample collection;

- 5) Preparation of a Field Work Progress Report that summarizes field work activities completed each year (submitted under separate cover);
- 6) Preparation of a Consultant Inuit Participation Plan (CIPP) and Report (CIPR), that contains the Inuit employment and subcontracting content (submitted under separate cover); and,
- 7) Preparation of draft and final monitoring reports for each site with visual inspection results, photographic log, thermistor data collection, figures of inspection features and photograph locations, soil and groundwater quality monitoring results, Quality Analysis / Quality Control (QA/QC) and data interpretation.

2.0 BACKGROUND

2.1 Site Description

FOX-4 (Cape Hooper) is located on the east coast of Baffin Island, approximately midway between the communities of Qikiqtarjuaq and Clyde River, at 68° 28' north latitude and 66° 50' west longitude.

The former DEW Line site comprised facilities at the summit of Cape Hooper, consisting of communications, accommodations, and maintenance facilities, and an airstrip, fuel storage and maintenance facilities near the coast. These areas are referred to as the Upper Site (Station Area) and Lower Site (Airstrip Area), respectively. A North Warning System (NWS) Short Range Radar (SRR) station has been constructed and is operating in the vicinity of the Upper Site. An access road extends south of the Airstrip Area to the Beach Area, located on Tanner Bay, where equipment and supplies were mobilized to the site by water.

The initial environmental cleanup and demolition of old facilities at the FOX-4 site took place between 1996 and 1999, prior to finalization of the Cooperation Agreement between DND and Nunavut Tunngavik Inc. (NTI) that outlined general requirements for DEW Line site cleanup. A second round of environmental cleanup and maintenance was completed between 2011 and 2013 to address certain elements of the Cooperation Agreement that were not addressed during the initial FOX-4 cleanup. This work included excavation and relocation of the Helipad Landfill East, construction of the Non-Hazardous Waste Landfill for disposal of non-hazardous demolition and site wastes, construction of the Tier II Disposal Facility for disposal of Tier II soil excavated at the FOX-4 site (i.e., Helipad Landfill East) and construction of the Pallet Line landfill.

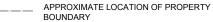
Five landfills remain at the site as a result of these works:

- Non-Hazardous Waste Landfill and Tier II Disposal Facility;
- Helipad West Landfill;
- Station Area Landfill;
- Pallet Line Landfill; and,
- Tanner Bay Landfill.

The above five landfills, shown in plan on Figure FOX-4.1, are part of the FOX-4 long-term monitoring program.

LOCATION OF CAPE HOOPER WITHIN NUNAVUT TERRITORY

SURVEY CONTROL MONUMENTS						
NO	UTM COORDINATES		EL EV	DECODIDATION		
NO.	NORTHING	EASTING	ELEV.	DESCRIPTION		
CM1	7 597 342.901	590 033.350	388.309	LEAD PLUG IN ROCK		
CLS50	7 596 163.812	588 267.720	12.131	19mm DIA. REBAR AND CAP		
CLS51	7 596 154.292	588 317.374	17.038	19mm DIA. REBAR AND CAP		
CLS52	7 596 134.413	588 421.327	19.969	19mm DIA. REBAR AND CAP		
CLS53	7 595 729.011	588 972.572	5.664	19mm DIA. REBAR AND CAP		
CLS54	7 595 705.706	589 183.429	2.043	19mm DIA. REBAR AND CAP		
CLS55	7 595 622.365	589 234.457	10.231	19mm DIA. REBAR AND CAP		
CLS56	7 597 305.287	590 093.442	379.717	19mm DIA. REBAR AND CAP		
CLS57	7 597 199.807	590 001.415	366.177	19mm DIA. REBAR AND CAP		
CLS58	7 597 176.541	589 966.724	361.512	19mm DIA. REBAR AND CAP		
CLS59	7 597 067.880	590 104.590	372.086	19mm DIA. REBAR AND CAP		


LEGEND:

 \triangle^{C}

SURVEY CONTROL MONUMENT

ARCHAEOLOGICAL FEATURES

LIMIT OF LANDFILLS

BODY OF WATER

NOTES:

- ALL COORDINATES ARE REFERENCED TO NAD83 (CSRS), UTM ZONE 19N.
- 2. ALL ELEVATIONS REFER TO GEODETIC DATUM.
- 3. ALL DIMENSIONS ARE IN METRES UNLESS NOTED OTHERWISE.

REFERENCE:

PREVIOUS INSPECTION FIGURES FROM SENES CONSULTANTS, PROJECT NO. 350600-515-2, 2014 DEW LINE MONITORING PROGRAM, DATED FEB. 2015

JENT

DEPARTMENT OF NATIONAL DEFENCE CANADA

PROJECT

2016 FOX-4 MONITORING REPORT

TITLE

OVERALL SITE PLAN

CONSULTANT Golder Associates

YYYY-MM-DD	2016-11-03
DESIGNED	RM
PREPARED	TDR
REVIEWED	DCJ
APPROVED	DP

PROJECT NO. PHASE REV. FIGURE 1530908 2000 A FOX-4.1

V

2016 FOX-4 MONITORING REPORT

2.2 Site Geology, Hydrogeology and Hydrology

FOX-4 Cape Hooper is located within the Canadian Shield, in the Rae Domain of the Churchill Province. Bedrock in the area is composed of Paleoproterozoic granulite-facies paragneiss. The edge of the Laurentide ice sheet was present in this area during the Pleistocene epoch. It is in an area of continuous permafrost with low ground ice content. Local surficial geologic conditions were observed to generally consist of coarse weathered rock and deposits of marine origin.

Groundwater flow is seasonal, occurring mainly in the summer period of maximum active layer thaw. Groundwater is located at shallow depths and is highly affected by local permafrost conditions. Average annual precipitation at Cape Hooper is 278 mm, of which over 80% consists of snow. Surface water in the Station Area and the Airstrip Area drains to Baffin Bay, which surrounds the Station Area. The Beach Area to the south drains through a drainage channel leading from Water Supply Lake to Tanner Bay.

The Station Area, including the Helipad Landfill and the Station Area Landfill is an elevated headland with ground levels reaching 390 metres above sea level (masl). The Airstrip Area ranges from approximately 30 masl at the Pallet Line Landfill, declining to below 17 masl to the west of the Tier II landfill, towards Baffin Bay. At the Beach Area, the Tanner Bay Landfill elevation is also approximately 30 masl, declining to the west and south, towards the drainage channel and Tanner Bay. Based on the local topography, the Non-Hazardous Waste Landfill and Tier II Disposal Facility and the Helipad West generally drain to the west; the Pallet Line Landfill generally drains to the southwest; and Station Area Non-Hazardous Waste Landfill drains to the northwest.

2.3 Land-Use Description

In the 1950s, DEW Line sites were constructed across a number of locations in the northern parts of Alaska, Canada and Greenland, between latitudes 65 and 70 degrees to maintain surveillance of the North American Airspace. In 1963, improvements in surveillance technology led to the closure of most of the DEW Line sites and their replacement with the NWS. Since the 1990s, investigations, decommissioning, and clean-up activities have been undertaken at the DEW Line sites. Clean-up and decommissioning activities involved the demolition of surplus buildings and structures, excavation of contaminated soils, and the regrading of existing landfills. New engineered landfills were also constructed for the disposal of excavated soils and building materials.

Landfills at DEW Line sites can be categorized as follows:

- **Re-graded:** Existing landfills that were re-graded and capped with gravel;
- **Leachate Contained:** Existing landfills that were capped with gravel and provided with an impermeable membrane keyed into the permafrost (either only on the sides or over the entire surface), to contain leachate;
- New NH: New non-hazardous waste landfills; and,
- New Tier II: New Tier II disposal facilities (used for the disposal of Tier II soils as described by the DEW Line Cleanup Criteria) have impermeable liners below and above the contaminated soil to encapsulate the contents and contain the leachate. Tier II landfills are designed with a saturated granular perimeter berm keyed into the permafrost and sufficient cover of granular material to promote permafrost aggradation into the landfilled materials.

The five landfills in the monitoring program at FOX-4 fall into the following categories:

- Non-Hazardous Waste Landfill and Tier II Disposal Facility (New NH and Tier II);
- Helipad West Landfill (Regraded);
- Station Area Landfill (Regraded);
- Pallet Line Landfill (Regraded); and
- Tanner Bay Landfill (Regraded).

2.4 Field Program Staff and Schedule

Table 2-1 presents a list of field personnel, roles, responsibilities and dates for the FOX-4 2016 monitoring program.

Table 2-1: Field Personnel and Roles

Name (Affiliation)	Role / Responsibility	Site	Date
Darrin Johnson (Golder)	Field Geotechnical Lead / Inspections	FOX-4	August 2-5, 2016
Kevin Rattray (Golder)	Field Environmental Lead / Soil and Water Sampling	FOX-4	August 2-5, 2016
JoAnne Bisson (Golder)	Environmental Field Technician / Soil and Water Sampling	FOX-4	August 2-5, 2016
Jaypootie Moesesie (Inuit Subcontractor)	Wildlife Monitor	FOX-4	August 2-5, 2016
Jeremiah Toomasie (Inuit Subcontractor)	Wildlife Monitor	FOX-4	August 2-5, 2016

2.5 Weather Conditions

Table 2-2 presents a summary of weather conditions on each day of the FOX-4 monitoring program.

Table 2-2: Summary of Weather Conditions

Date	Weather
August 2	Sun and cloud, 10°C to 13°C
August 3	Sun and cloud, 10°C
August 4	Sun and cloud, 10°C to 17°C
August 5	Sun and cloud, 15°C

TATE OF THE PARTY OF THE PARTY

2016 FOX-4 MONITORING REPORT

2.6 Project References

- Canadian Council of Ministers of the Environment (CCME, 1993). "Guidance Manual on Sampling, Analysis and Data Management for Contaminated Sites Guidance Manual on Sampling, Analysis and Data Management for Contaminated Sites Volumes I and II, Main Report and Analytical Methods".
- Department of National Defence (DND, 2015). "Terms of Reference, DEW Line Monitoring Program CAM-5, FOX-M, 2, 3, 4, 5, DYE-M", QIKIQ15 Contract, April 2015.
- Golder Associates Ltd. (Golder, 2015), "Solicitation No. W6837-151002/A Baffin Region Dew Line Sites Monitoring Program", Report P1530908, dated June 16, 2015.
- "FOX-4, Cape Hooper Nunavut. 2013 Geotechncial Quality Assurance Summary." Prepared by AECOM for Defence Construction Canada, dated November 2013.
- Golder Associates Ltd. (Golder, 2016a). "Baffin Region DEW Line Site Monitoring Health Safety and Environment Plan", Report 1530908-2000-V2, dated July 25, 2016.
- Golder Associates Ltd. (Golder, 2016b), "2016 Landfill Monitoring Program for QIKIQ15 Contract: Logistics and Work Plan", Report 1530908-2000-R1-V2, dated July 25, 2016.
- Golder Associates Ltd. (Golder, 2016c). "2016 Baffin Region DEW Line Site Landfill Monitoring Field Work Progress Report", Report 1530908-2000-R2-V2, dated October 7, 2016.

2.7 Report Structure

This report describes the monitoring program carried out in August 2016 at FOX-4. Results from visual inspection activities, thermal monitoring, soil sampling and groundwater sampling are presented in accordance with the TOR.

Each of the landfills is described in separate sub-sections (Sections 4.1 to 4.5). Each section contains the following 2016 monitoring information:

- Scope deviations summary;
- Visual Inspection Checklist;
- Preliminary Stability Assessment Table;
- Table of visual inspection photographs;
- Landfill plan with photograph locations and observed features;
- Summary of thermal monitoring (if applicable for landfill);
- Summary of soil sampling analytical results;
- Summary of groundwater sampling analytical results (if applicable for landfill); and,
- Discussion of overall landfill performance based on available monitoring data.

Appendix A provides a Limitation of Responsibilities and forms part of the report. Thermal and groundwater monitoring field record sheets are included in Appendix B. Laboratory certificates of analysis, historical landfill monitoring results and QA/QC reports are included in Appendix C. A photographic log is included in Appendix D. An electronic version of the report, tables, figures, full resolution photos and laboratory certificates of analysis are saved on a DVD-ROM, which is appended to the hardcopy of the report.

3.0 APPROACH & METHODOLOGY (GENERAL)

3.1 Summary of Work

3.1.1 Health and Safety

Golder developed a Health, Safety and Environment Plan (Golder, 2016b) for the QIKIQ15 field program, which describes potential hazards, risks and proposed mitigation measures. Unique health and safety risks included the potential for wildlife encounters, travel by air in light planes and on ATVs, long distances to the nearest emergency health care facilities and variable weather conditions. In addition, Golder developed a Logistics and Work Plan (Golder, 2016c) for the field program that contained the detailed schedule and travel plans, contact information, accommodation details, transportation, communications, field equipment and sampling protocols.

3.1.2 Field Program

Table 3-1 provides a summary of the monitoring schedule for the seven DEW Line sites that are part of the QIKIQ15 Project. FOX-4 was monitored in 2016 (Year 18) and will be monitored again in 2018 (Year 20). The field monitoring program consisted of the following activities:

- Visual inspection (of five landfills) including photographic documentation of observed conditions;
- Thermal monitoring (i.e., datalogger downloading at landfills with thermistors);
- Soil sampling; and,
- Groundwater sampling (at landfills with monitoring wells).

Table 3-2 provides a summary of monitoring activities by landfill.

Table 3-1: Summary of QIKIQ15 Project Monitoring Schedule

	Year			
DEW Line Site	2015	2016	2017	2018
CAM-5 Mackar Inlet	Year 5		Year 7	
FOX-M Hall Beach			Year 10	
FOX-2 Longstaff Bluff	Year 4	Year 5		Year 7
FOX-3 Dewar Lakes	Year 4 ^(a)	Year 5 ^(a)		Year 7
FOX-4 Cape Hooper		Year 18		Year 20
FOX-5 Broughton Island		Year 10		
DYE-M Cape Dyer	Year 2	Year 3	Year 4	Year 5

Legend Phase I Monitoring
Phase II Monitoring

Note:

a) At FOX-3 in 2015 and 2016 (Years 4 and 5) – Complete a geotechnical inspection of the thermokarst regrade.

Table 3-2: Summary of Monitoring Requirements for Landfills at FOX-4

		Visual Inspection	Soil Sampling ^(a)	Groundwater Sampling	Thermal Monitoring
Landfill Designation	Type of Landfill	✓ = yes	Locations x Samples	# of Monitoring Wells	# of Thermistors
FOX-4 Cape Hooper	-				
Non-Hazardous Waste Landfill and Tier II Disposal Facility	New NH and Tier II	•	8 X 2	8	10 (see note b)
Helipad West Landfill	Regraded	~	4 X 2	4	
Station Area Landfill	Regraded	✓	3 X 2	3	
Pallet Line Landfill	Regraded	✓	5 X 2		
Tanner Bay Landfill	Regraded	→ □	3 X 2		
	TOTAL	5	46	15	10

Notes:

3.1.3 Visual Inspection

At each of the FOX-4 landfill locations, a visual inspection was conducted to observe whether there were any visual signs of erosion, cracking, seepage, ponded water, stressed vegetation (potentially caused by the landfill) and for physical stability. Photographic records of the landfills were taken to document the observed conditions and other notable features. Northing and Easting coordinates were recorded for all photograph and feature locations using a Garmin GLO portable GPS receiver (2-5 m accuracy) with Bluetooth connection to a field tablet.

Visual inspection information was used to complete a Preliminary Stability Assessment for each landfill. Each observed feature was assigned a Severity Rating (Acceptable, Marginal, Significant or Unacceptable) and Extent (Isolated, Occasional, Numerous or Extensive) and then the landfill was assigned an overall Performance Rating (Acceptable, Marginal, Significant or Unacceptable). If a type of feature was not observed during the inspection, then the Severity Rating was reported as "Not Observed" in the Preliminary Stability Assessment. Definitions of these terms are as follows:

Feature Severity Rating / Landfill Performance Rating	Description
Not Observed	This type of feature was not observed at the landfill during the inspection.
Acceptable	Noted features are of little consequence. The landfill is performing as designed. Minor deviations in environmental or physical performance may be observed, such as isolated areas of erosion, settlement.
Marginal	Physical/environmental performance appears to be deteriorating with time. Observations may include an increase in size or number of features of note, such as differential settlement, erosion or cracking. No significant impact on landfill stability to date, but potential for failure is assessed as low or moderate.

a) (# x #) Indicates the number of sampling points at each landfill. Samples are collected from two depths at each sampling point; from 0-15 cm and from 40-50 cm (or at refusal).

b) Reorganize dataloggers VT-2 through VT-6 and reinstall dataloggers VT-8 & VT-9 at FOX-4 Tier II Disposal Facility.

Feature Severity Rating / Landfill Performance Rating	Description
Significant	Significant or potentially significant changes affecting landfill stability, such as significant changes in slope geometry, significant erosion or differential settlement; scarp development. The potential for failure is assessed as imminent.
Unacceptable	Stability of landfill is compromised to the extent that ability to contain waste materials is compromised. Examples may include: Debris exposed in erosion channels or areas of differential settlement. Liner exposed. Slope failure.
Extent	Description
Isolated	Singular feature
Occasional	Features of note occurring at irregular intervals/locations
Numerous	Many features of note, impacting less than 50% of the surface area of the landfill
Extensive	Impacting greater than 50% of the surface area of the landfill

3.1.4 Thermal Monitoring

The landfills that require leachate containment (e.g., Tier II Disposal Facility) and rely on permafrost aggradation incorporate ground temperature monitoring systems with vertical thermistor strings that measure temperature at various depths and automated dataloggers that allow for data collection. The data recorded on the dataloggers was downloaded using a laptop computer and Prolog software from Lakewood Systems Ltd. Thermistor inspection and data downloading details were recorded on field record sheets included in Appendix B.

At the FOX-4 site, thermistors and data loggers were installed only at the Non-Hazardous Waste Landfill and Tier II Disposal Facility.

3.1.5 Soil Sampling

Soil samples were collected in accordance with the TOR, the Golder Proposal, Logistics and Work Plan and Canadian Council of Ministers of the Environment (CCME) Guidance Manual on Sampling, Analysis and Data Management for Contaminated Sites – Volumes I and II, Main Report and Analytical Methods (CCME, 1993). Soil sampling procedures of note are as follows (deviations from the TOR are noted *in italics*):

- Soil samples were collected within 2 to 4 metres of monitoring wells (where applicable). Where there was no corresponding monitoring well soil samples were collected within 2 to 4 metres of previous sample locations. Previous consultants left pins and tags in the ground to indicate where they sampled soil. Golder sampled away from those locations and did not leave pins in the ground.
- Coordinates of the 2016 soil sampling locations were recorded using a field tablet equipped with a Garmin GPS and confirmed to be consistent with previous/required sampling locations prior to sampling.

TAX

2016 FOX-4 MONITORING REPORT

- Test pits were dug with a shovel that was washed between sample locations. The shovel was decontaminated with soap and water, methyl hydrate and rinsed with distilled water before each use. Soil samples were collected by hand using a single-use disposable nitrile glove and placed into new/clean glass sample jars provided by the laboratory that were labelled with the sample location ID and depth.
- Soil samples were generally collected at 0 to 15 centimetres (cm) depth and at 40 to 50 cm depth at the locations in accordance with the TOR. At some locations, the sample collection depth was adjusted where soil was frozen or refusal on rock was encountered. Where refusal on a large rock(s) was encountered near surface, the sampling location was moved slightly to avoid the large rock(s). When rocks were encountered prior to reaching the target sampling depth, the test pit was enlarged and the rock(s) were excavated if possible. If the specified sampling depth could not be reached after expending reasonable effort to enlarge the hole in an attempt to remove rock(s), a sample was collected at or near the zone of refusal (in accordance with the TOR). If refusal was encountered after the shallow soil sample depth and even with additional effort it was not possible to remove the rock(s) causing refusal, then only one soil sample was collected at that location (noted as "refusal" in summary tables below).
- At locations where the ground was covered with snow and ice, excavation of the snow was attempted but, in general, it was impossible to dig through the ice and frozen ground beneath the snow and soil samples were not collected (noted as "frozen" in summary tables below).
- Inter-lab field duplicates were collected for approximately 10% of the total soil samples collected. The field duplicates were collected from relatively homogenous soil material *in the test pit*, such that the composition of the samples was the same and to minimize escape of volatile compounds.
- In order to assess the effectiveness of decontamination of the shovel used for soil sampling, an equipment rinsate (equipment blank) sample was completed following a typical decontamination procedure. This was conducted during sampling of the FOX-4 landfill, by pouring distilled water over the decontaminated shovel and capturing it in water sample bottles.

3.1.6 Groundwater Sampling

Groundwater samples were collected in accordance with the TOR, the Golder Proposal, Logistics and Work Plan and CCME (1993). Groundwater sampling procedures of note are as follows (*deviations in italics*):

- Water levels in the wells were measured with an interface probe that was decontaminated with soap and water, methyl hydrate and rinsed with distilled water before each use.
- At monitoring well locations where there was snow on the ground surrounding the well and no measurable water level or water that could be pumped with the peristaltic pump, water samples were not collected (noted as "frozen" in the summary tables below).
- At monitoring well locations that had no measurable water level or water that could be pumped with the peristaltic pump, water samples were not collected (noted as "dry" in summary tables below).
- In wells with limited water depth and/or slow recharge, purging was only carried out until the field parameters were observed to stabilize and then sampling was commenced in the priority order outlined in the TOR. The number of water sample bottles collected and parameters that could not be analysed are listed in footnotes following the respective summary tables below.

SP

2016 FOX-4 MONITORING REPORT

- Purging and sampling was carried out using a peristaltic pump and a low-flow purge rate of less than 100 mL/min was maintained. Peristaltic pump flexible tubing and nylon tubing extending down the well was single-use and disposed after use at each well (i.e., not reused). Sample tubing was removed from the wells after completion of the sampling event and disposed off-site.
- Groundwater samples were pumped directly from the well into analysis-specific bottles provided by the laboratory that were labelled with the sample location ID. Groundwater samples were not field filtered and were not field-acidified or preserved (in accordance with the TOR).
- Where groundwater was insufficient, sampling was prioritized in the following order:
 - Petroleum hydrocarbons: F1 fraction;
 - Inorganic elements total concentrations: arsenic, cadmium, chromium, cobalt, copper, lead, nickel,
 zinc and mercury. Samples were not filtered (which is why low turbidity is so important) or preserved;
 - Petroleum hydrocarbons: F2, F3 and F4 fractions; and
 - PCBs (polychlorinated biphenyls Total Aroclor analysis).
- Inter-lab duplicates were collected for 10% of the total groundwater samples collected.
- A field blank was filled in the field with distilled water and analyzed for all parameters.
- A travel blank of laboratory prepared water accompanied the sampling containers for the whole duration of the program, and analyzed for the entire suite of parameters.
- In order to assess the effectiveness of decontamination of the groundwater level / interface probe, an equipment rinsate (equipment blank) sample was completed following a typical decontamination procedure. This was conducted during sampling of the FOX-2 landfill, by pouring distilled water over the decontaminated probe and capturing it in water sample bottles.
- No equipment blanks were required for the sample collection tubing as new tubing was used at each sampling location.

3.2 Field Notes and Data

Visual inspection photographs, features, locations and notes were recorded in the field with a tablet computer equipped with a camera and Global Positioning System (GPS). Field data and photographs from the tablet were uploaded to an online Geographic Information System (GIS) database that was used to generate the photograph log and figures presented in this report.

Thermistor inspection and monitoring data were recorded on field record sheets included in Appendix B. Thermistor locations were recorded with either the field tablet or a hand-held GPS.

Soil sampling locations were photographed before test pit excavation, at the maximum depth of the test pit excavation and after backfilling. Soil sampling locations were recorded with either the field tablet or a hand-held GPS.

Groundwater monitoring data was recorded on field record sheets included in Appendix B. Monitoring well locations were recorded with either the field tablet or a hand-held GPS.

3.3 **QA/QC**

Quality Assurance (QA) is the system of validation checks performed to measure quality in order to determine if the quality objectives have been met. Quality control (QC) is the set of procedures which are incorporated into the project's standard operating procedures to ensure that it achieves its quality objectives.

The QC procedures incorporated into the monitoring program carried out at FOX-4 included:

- Using only ISO 17025 certified environmental labs to perform the soil and groundwater analyses. Golder used Paracel Laboratories Ltd. (Paracel) of Ottawa as the primary lab and AGAT Environmental (AGAT) of Mississauga for the duplicate samples. Both of these laboratories are ISO 17025 certified for the analyses performed. The laboratories also exchanged their "Standard Methods" for the analyses in the program to harmonize their procedures for the duplicate analysis;
- The field sampling for soil and groundwater was completed by a two-person team, which helped to ensure that all of the sampling and field identification procedures were followed in order;
- Duplicate soil samples were collected from relatively homogenous soil material in the test pit, such that the composition of the samples was the same and to minimize escape of petroleum hydrocarbon (F1 fraction) compounds;
- Duplicate groundwater samples were prepared by alternately filling bottles for each lab for each parameter type; the yield of the wells in some cases prevented filling the whole suite of sample bottles;
- To minimize the possibility of cross contamination, soil samples were collected directly from the test pits with nitrile gloved hands, at the designated depth intervals, and placed into lab-supplied sample jars leaving no headspace. New gloves were used for each sample. The shovel and trowel used to open the test pits were cleaned manually then rinsed with methyl hydrate and distilled water;
- To minimize the risk of cross-contamination, groundwater samples were pumped from the monitoring wells using dedicated tubing inserted into the well and another dedicated length of tubing between the rollers in the peristaltic pump. Staff holding the sample bottles wore nitrile gloves. Samples were labelled at the monitoring well with identification, time and date;
- Groundwater samples were neither filtered nor preserved in the field. The low-flow sampling technique was employed to minimize the presence of sediment in the water sample;
- Soil samples were not preserved in the field;
- To minimize the time delay from actual sample collection to receipt at the lab, Golder sent coolers from the site to the staging point every time a resupply flight occurred. From the staging point communities, the coolers were sent via First Air to Ottawa Airport where Golder picked them up and took them to Golder's office in Ottawa, where they were checked for breakage, legibility of the labels and accuracy and completeness of the chain of custody. After being checked in Ottawa, the samples were dispatched to the primary and duplicate labs. The maximum allowable hold times for samples were largely met; where they were exceeded, it was due to the logistical limitations of flying in and out of the sites and the long chain of transport from the staging points to the labs.

QA was measured by the duplicate analysis and review of the QA/QC data contained in each laboratory certificate of results. In addition to the duplicate analyses, a field blank (consisting of bottles filled with distilled water in the field) was submitted to Paracel for analysis of all specified parameters. Trip blanks consisted of bottles filled with distilled water and sealed at the laboratory. A trip blank was brought to the field for the overall 2016 program and back, then submitted to Paracel for analysis of all specified parameters.

The soil samples and groundwater samples were collected with only dedicated single-use equipment. The water sampling tubing was single-use from the well to sample bottle, and soil samples were collected from the test pits into sample jars using single-use gloves. This was possible because the texture of the soil samples was generally loose sandy soil. Nevertheless, equipment blanks were prepared for each type of sample. For groundwater sampling, the equipment blank was a sample of water poured over the water level probe, after it had been washed off, and for soil sampling it was a sample of water poured over the trowel after it had been washed between samples.

A discussion of the QA/QC results is provided in Section 5.

4.0 2016 MONITORING PROGRAM RESULTS

Photographs 1 through 196 (in Appendix D) document the observed conditions during the visual inspection including features on the cover/toe of the landfills, the groundwater monitoring wells, soil sample locations before excavation, after excavation and after backfilling as well as the condition of thermistors. The photographs taken at each of the landfill sites to document the observed conditions are organized as follows:

- Non-Hazardous Waste Landfill and Tier II Disposal Facility Photographs 1 through 82;
- Helipad West Landfill Photographs 83 through 122;
- Station Area Landfill Photographs 123 through 152;
- Pallet Line Landfill Photographs 153 through 178; and
- Tanner Bay Landfill Photographs 179 through 196.

A complete log of all photographs is included in Appendix D. Copies of all digital photograph files are included on a DVD attached to this report. Visual inspection photographs are identified by an "ATT number" in the file name which are noted in brackets in the visual inspection photograph log tables.

Many of the acceptable features observed during the inspection do not appear to be related to landfill performance. For example, shallow depressions that appear to be unchanged since construction of the landfill (i.e., as-built condition) or minor hydrocarbon staining from post-construction anthropogenic activities (e.g., ATV use). These acceptable features that do not appear to be related to landfill performance have been reported as "not a concern". Self-armouring erosion, minor water ponding and seepage without staining have also been reported as "not a concern" because they are not indicative of deteriorating landfill performance and/or may be weather related. In addition, some minor cracking that appears to be related to thaw creep does not indicate slope instability and is not considered to be a concern at the present time. Significant features that are related to landfill performance have been photographed and described in detail.

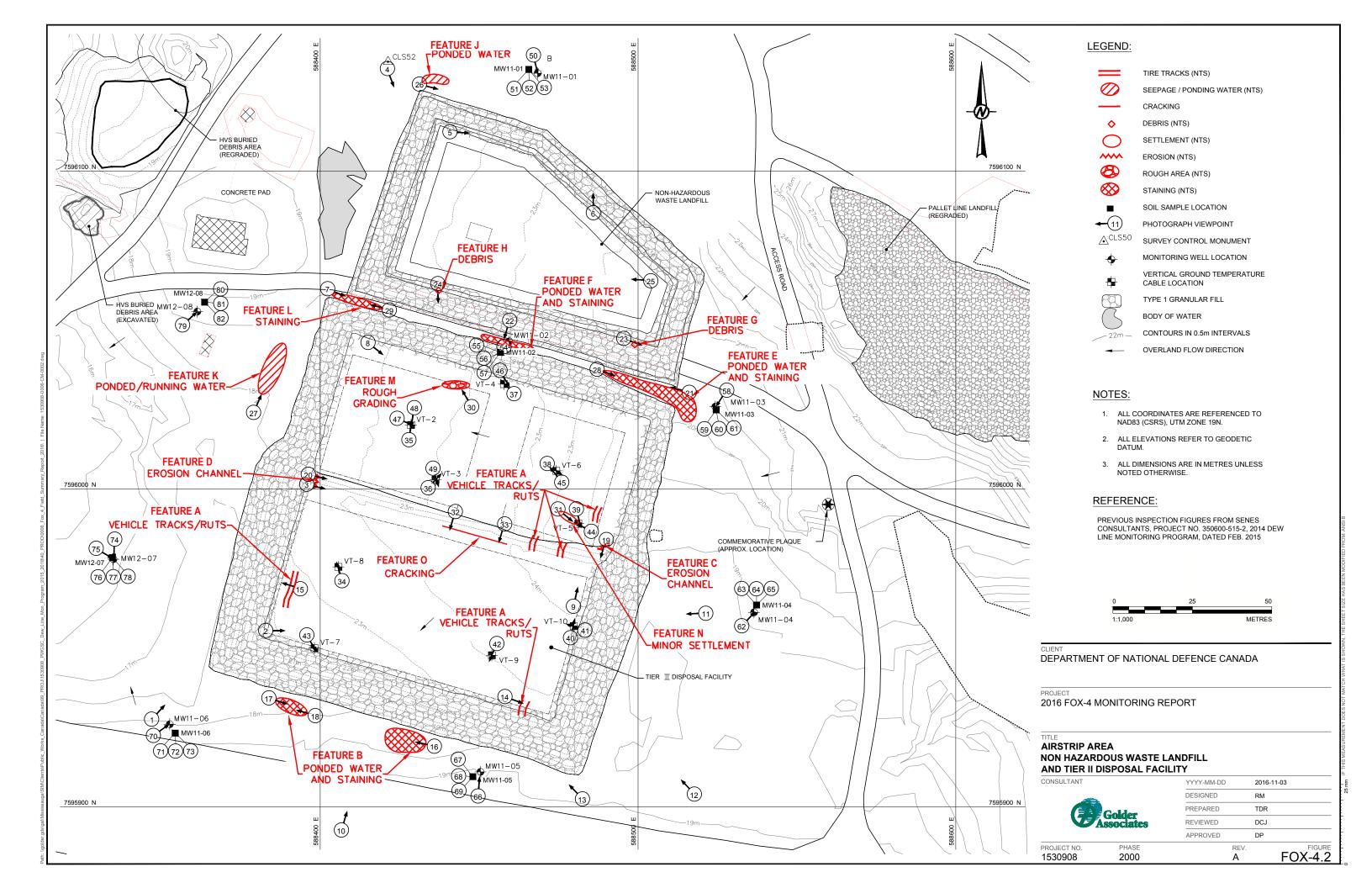
The monitoring program results are listed for each landfill in the sections below. In the tables contained within the text and Appendix C, data which exceed the arithmetic mean background data and baseline arithmetic mean data are identified by <u>underlined</u> and **bold** fonts, respectively. The background arithmetic mean limits for each landfill have been previously established using the arithmetic mean concentrations for soil samples collected outside the landfill areas between 1992 and 2011. The baseline arithmetic mean limits were calculated based on the concentrations for soil samples collected at each of the current soil sampling locations adjacent to the landfills, between 1998 and 2013. Soil and groundwater quality data are also compared to the baseline mean concentration plus three standard deviations (3 σ); exceedances of this standard are shaded. This limit is based on the "three-sigma rule of thumb", wherein it is expected that nearly all values not influenced by changes in impact lie within three standard deviations of the arithmetic mean.

A modified total petroleum hydrocarbons (TPH) value, calculated as the sum of the PHC F1, F2 and F3 fractions, is discussed throughout this report to allow for comparison to TPH baseline data.

Historical soil and groundwater results and charts are included in Appendix C. It should be noted that there are discrepancies in the highlighting of baseline and background arithmetic mean exceedances between the 2016 soil and groundwater data summary tables within the body of the report and the historical chemistry tables in Appendix C; exceedances noted in the data tables within the body of the report are considered the correct

interpretation of the 2016 results. Discussion of the 2016 data in this report focused on identifying trends, as well as identifying data results for locations where concentrations significantly different (typically greater) than previous years are observed, or locations where concentrations exceeded the baseline concentration plus 3σ .

Duplicate soil samples were collected at a total of four locations at FOX-4. This included the deep F4-13 (40-50 cm), shallow F4-28 (0-15 cm), shallow MW11-01 (0-15 cm) and deep MW98-03 (40-50 cm) sample locations. A duplicate groundwater sample was also collected at monitoring well MW11-01. For these duplicate sample locations, the averages of the two concentrations are presented in the tables and used to discuss in the results in Section 4. The reproducibility of the duplicate sample results is discussed in Section 5.


4.1 Non-Hazardous Waste Landfill and Tier II Disposal Facility

4.1.1 Landfill Description

The Non-Hazardous Waste Landfill (NHWL) and Tier II Disposal Facility are located north of the west end of the Cape Hooper airstrip. The Non-Hazardous Waste Landfill and Tier II Disposal Facility have approximate areas of 4,000 m² and 10,000 m², respectively. The Non-Hazardous Waste Landfill was constructed for disposal of non-hazardous demolition and site wastes between 2011 and 2013, whereas the Tier II Disposal Facility was constructed for disposal of Tier II soil excavated at the FOX-4 site. The original cell of the Tier II Disposal Facility was constructed in 1997; it was expanded to the southwest between 2011 and 2013; the 2016 monitoring event represented the second post-construction monitoring event at these combined landfills.

Seven groundwater monitoring wells, MW11-01 and MW11-03 through MW11-06 and MW12-07 through MW12-08 have been installed around the combined perimeter of the landfills; an eighth well, MW11-02, is located between the two landfills. There are 9 functioning thermistors installed within the Tier II Disposal Facility landfill. The long term monitoring plan for these landfills consists of visual inspection, the collection of soil and groundwater samples, and monitoring of subsurface ground temperatures of the Tier II landfill. The approximate locations for the collection of soil and groundwater samples, and thermistor locations are identified on Figure FOX-4.2.

4.1.2 Visual Inspection

The NHWL and Tier II Disposal Facility exhibits some observed minor settlement, erosion, cracking, ponded/running water and staining. No sloughing, exposed waste or indications of instability were observed. Observed debris, rough grading and tire tracks were documented during the visual inspection but are not considered to be related to landfill performance. Table 4-1 presents a summary of observed visual inspection features and Table 4-2 presents the Preliminary Stability Assessment results. This landfill was assessed to have an "Acceptable" overall performance because was all features were assigned an "Acceptable" severity rating. Table 4-3 is a log of photographs taken during the 2016 visual inspection.

A new crack was observed during the 2016 inspection on the slope between the NHWL and Tier II Disposal Facility crest surfaces (Feature O). It was assigned an "Acceptable" severity rating because there is minimal risk of slope failure and waste exposure. However, it should be identified and monitored during future visual inspections to determine if it is changing with time.

There were several areas along the toe of the landfill with ponded water during the 2016 inspection and some of these areas exhibit orange staining that may be caused by landfill seepage. Two of these are located near sampling locations MW11-02 and MW11-03. Features B, E, F and J were observed during previous inspections and do not appear to changing significantly with time. A new area with orange staining but no ponded water was observed at the west end of the ditch between the landfills (Feature L) that may be related to landfill seepage. There was also a new observation of ponded water along the west toe of the Tier II Disposal Facility (Feature K).

Previously observed minor self-armouring erosion was observed on the Tier II Disposal Facility slopes (Features C and D) but it does not appear to be deteriorating with time. Isolated minor settlement (new Feature N), debris (previously observed Features H and G), tire tracks (previously observed Feature A) and rough grading (new Feature M) on the landfill surface are not considered a concern.

Table 4-1: Visual Inspection Checklist – Non -Hazardous Waste Landfill and Tier II Disposal Facility

SITE NAME: FOX-4

LANDFILL DESIGNATION: Non-Hazardous Waste Landfill and Tier II Disposal Facility

DATE OF INSPECTION: August 2, 2016

DATE OF PREVIOUS INSPECTION: August 26, 2014

INSPECTED BY: Darrin Johnson

REPORT PREPARED BY: Darrin Johnson

MONITORING EVENT NUMBER: 12

The inspector/reporter represents to the best of his/her knowledge that the following statements and observations are true and correct and to the best of the preparer's actual knowledge, no material facts have been suppressed or misstated.

Table 4-1: Visual Inspection Checklist — Non-Hazardous Waste Landfill and Tier II Disposal Facility

Checklist Item	Present (Y/N)	Feature ID (A, B, etc.)	Location Description	Easting	Northing	Length (m)	Width (m)	Depth (m)	Extent of Landfill Area (%)	Description (Severity Rating)	Comparison to Historical Observations	Photos
Settlement	Y	I	NHWL crest surface	588504.0	7596065.5	5	5	0.2	0.18%	As-built undulation (Acceptable)	Previously observed but not considered settlement	25
		N	Tier II DF crest surface	588474.8	7595993.7	10	3	0.3	0.42%	Minor settlement (Acceptable)	New	31
Erosion	Υ	С	Slope between crest surfaces	588490.0	7595984.1	5	5	0.1	0.18%	Minor self- armouring erosion (Acceptable)		19
Erosion		D	Slope between crest surfaces	588396.9	7596003.1	5	1	0.1	0.04%	Minor self- armouring erosion (Acceptable)	No change	20
Lateral Movement	N											
Frost Action	N											
Sloughing	N											
Cracking	Y	0	Tier II DF bottom of crest surface grade change	588442.5	7595992.9	35	0.05	-	<0.01%	Tension crack (Acceptable)	New	32, 33
Animal Burrows	N											
Vegetation	N											
Staining	Y	L	Valley between landfills	588421.7	7596056.3	30	1.00	-	0.21%	Orange staining (Acceptable)	ange staining New	

Table 4-1: Visual Inspection Checklist — Non-Hazardous Waste Landfill and Tier II Disposal Facility

Checklist Item	Present (Y/N)	Feature ID (A, B, etc.)	Location Description	Easting	Northing	Length (m)	Width (m)	Depth (m)	Extent of Landfill Area (%)	Description (Severity Rating)	Comparison to Historical Observations	Photos
Vegetation Stress	N											
		В	South toe	588435.9	7595919.1	20	5	0.2	0.71%	Ponded water with orange staining (Acceptable)	Smaller area compared to previous observation	16, 17, 18
Saamana an		E	Ditch between landfills	588516.1	7596030.4	35	1	0.1	0.25%	Orange staining and seepage (Acceptable) Extended in length (~10 m) since previous observation		21, 28
Seepage or Ponded Water	Y	F	Ditch between landfills	588459.6	7596053.1	20	1	0.1	0.14%	Ponded water near MW with some staining (Acceptable)	Unchanged area since previous observation	22
		J	Northwest toe	588431.2	7596127.4	10	2	0.1	0.14%	Ponded water (Acceptable)	Unchanged since previous observation	26
		К	West toe	588379.0	7596024.1	20	2	0.1	0.29%	Ponded/running water (Acceptable)	New	27
Debris and/or Liner	Y	G	NHWL east slope	588495.5	7596047.4	-	-	-	-	Small bits of metal and wood (Acceptable)	Unchanged since previous observation	23
Exposed	'	Н	NHWL south slope	588437.0	7596064.6	-	-	-	-	Some pieces of metal (Acceptable)	Unchanged since previous observation	24

Table 4-1: Visual Inspection Checklist — Non-Hazardous Waste Landfill and Tier II Disposal Facility

Checklist Item	Present (Y/N)	Feature ID (A, B, etc.)	Location Description	Easting	Northing	Length (m)	Width (m)	Depth (m)	Extent of Landfill Area (%)	Description (Severity Rating)	Comparison to Historical Observations	Photos	
Presence / Condition of Monitoring Instruments	Y	-	MW11-01 to -06, MW12-07 to -08, VT-2 to -10	-	-	-	-	-	-	All monitoring wells and thermistors intact Ponded water around MW11-02	-	34-50, 54, 58, 62, 66, 70, 74, 75, 79	
			Southeast crest	588458.1	7595934.7	10	0.5	0.1	0.04%	Tire tracks	Previously	14	
Features of Note/Other	Υ	Y	A	Southwest crest	588393.7	7595968.6	5	0.5	0.1	0.02%	(Acceptable)	observed, no change	15
Observations		М	Tier II crest surface	588447.6	7596025.9	30	15	-	3.2%	Rough grading that may be as- built (Acceptable)	New	30	

Landfill Area = 14,000 m²

Table 4-2: Preliminary Stability Assessment — Non-Hazardous Waste Landfill and Tier II Disposal Facility

Feature	Severity Rating	Extent		
Settlement	Acceptable	Isolated		
Erosion	Acceptable	Occasional		
Lateral Movement	Not observed	-		
Frost Action	Not observed	-		
Sloughing	Not observed	-		
Cracking	Acceptable	Isolated		
Animal Burrows	Not observed	-		
Vegetation Establishment	Not observed	-		
Staining	Acceptable	Occasional		
Vegetation Stress	Not observed	-		
Seepage/Ponded Water	Acceptable	Occasional		
Debris and/or Liner Exposure	Acceptable	Isolated		
Other	Acceptable	Occasional		
Overall Landfill Performance	Acceptable			

Photo	Description (file name)	Easting	Northing	Date
1	FOX 4 – NHWL/Tier II DF – Southwest toe facing northeast (ATT10_Photo10.jpg)	588347.9	7595926.5	2-Aug-2016
2	FOX 4 – NHWL/Tier II DF – Crest facing east (ATT11_Photo11.jpg)	588382.8	7595955.5	2-Aug-2016
3	FOX 4 – NHWL/Tier II DF – West crest edge where landfill surface changes elevation facing east (ATT12_Photo12.jpg)	588395.7	7596001.5	2-Aug-2016
4	FOX 4 – NHWL/Tier II DF – Northwest toe facing southeast (ATT13_Photo13.jpg)	588421.1	7596132.3	2-Aug-2016
5	FOX 4 – NHWL/Tier II DF – North crest facing east (ATT14_Photo14.jpg)	588440.8	7596112.4	2-Aug-2016
6	FOX 4 – NHWL/Tier II DF – North crest facing north (ATT15_Photo15.jpg)	588485.9	7596086.9	2-Aug-2016
7	FOX 4 – NHWL/Tier II DF – Ditch between landfills facing east – Feature L – Orange staining (Acceptable) (ATT16_Photo16.jpg)	588402.3	7596063.0	2-Aug-2016
8	FOX 4 – NHWL/Tier II DF – Crest surface facing southeast (ATT17_Photo17.jpg)	588415.0	7596046.1	2-Aug-2016

Disposal Facility						
Photo	Description (file name)	Easting	Northing	Date		
9	FOX 4 – NHWL/Tier II DF – Crest edge facing north (ATT18_Photo18.jpg)	588479.5	7595960.9	2-Aug-2016		
10	FOX 4 – NHWL/Tier II DF – South toe facing north (ATT19_Photo19.jpg)	588541.2	7596023.5	2-Aug-2016		
11	FOX 4 – NHWL/Tier II DF – East toe facing west (ATT20_Photo20.jpg)	588521.3	7595960.9	2-Aug-2016		
12	FOX 4 – NHWL/Tier II DF – SE corner toe facing northwest (ATT21_Photo21.jpg)	588517.7	7595904.0	2-Aug-2016		
13	FOX 4 – NHWL/Tier II DF – SE corner toe facing northwest (ATT46_Photo46.jpg)	588482.5	7595902.5	2 Aug 2016		
14	FOX 4 – NHWL/Tier II DF – SE crest facing east – Feature A – Tire tracks (Acceptable) (ATT163_Photo163.jpg)	588458.1	7595934.7	2 Aug 2016		
15	FOX 4 – NHWL/Tier II DF – Crest surface facing west – Feature A – Tire tracks (Acceptable) (ATT98_Photo98.jpg)	588393.7	7595968.6	2 Aug 2016		
16	FOX 4 – NHWL/Tier II DF – South toe facing west – Feature B – Ponded water (Acceptable) (ATT164_Photo164.jpg)	588435.9	7595919.1	2 Aug 2016		
17	FOX 4 – NHWL/Tier II DF – South toe facing east – Feature B – Ponded water with orange staining (Acceptable) (ATT96_Photo96.jpg)	588383.8	7595934.3	2-Aug-2016		
18	FOX 4 – NHWL/Tier II DF – South toe facing west – Feature B – Ponded water with some orange staining (Acceptable) (ATT97_Photo97.jpg)	588398.4	7595928.7	2-Aug-2016		
19	FOX 4 – NHWL/Tier II DF – Feature C – Minor erosion of internal sloped crest at edge (Acceptable), facing south (ATT116_Photo116.jpg)	588490.0	7595984.1	2-Aug-2016		
20	FOX 4 – NHWL/Tier II DF – Slope between crest surfaces facing east – Feature D – Minor erosion (Acceptable) (ATT99_Photo99.jpg)	588396.9	7596003.1	2-Aug-2016		
21	FOX 4 – NHWL/Tier II DF – Ditch between landfills facing west – Feature E – Orange staining and seepage (Acceptable) (ATT117_Photo117.jpg)	588516.1	7596030.4	2-Aug-2016		
22	FOX 4 – NHWL/Tier II DF – Feature F – Ponded water near MW11-02 (Acceptable), facing south (ATT105_Photo105.jpg)	588459.6	7596053.1	2-Aug-2016		
23	FOX 4 – NHWL/Tier II DF – Feature G – Small bits of metal and wood (Acceptable), facing east (ATT104_Photo104.jpg)	588495.5	7596047.4	2-Aug-2016		
24	FOX 4 – NHWL/Tier II DF – Feature H – Some pieces of metal (Acceptable), facing south (ATT106_Photo106.jpg)	588437.0	7596064.6	2-Aug-2016		

Photo	Description (file name)	Easting	Northing	Date
25	FOX 4 – NHWL/Tier II DF – Crest surface facing west – Previously observed minor settlement (Feature I) considered as built undulations (Acceptable) (ATT102_Photo102.jpg)	588504.0	7596065.5	2-Aug-2016
26	FOX 4 – NHWL/Tier II DF – Northwest toe facing east – Feature J – Ponded water (Acceptable) (ATT101_Photo101.jpg)	588431.2	7596127.4	2-Aug-2016
27	FOX 4 – NHWL/Tier II DF – Feature K – Running water along west toe facing northeast (Acceptable) (ATT100_Photo100.jpg)	588379.0	7596024.1	2-Aug-2016
28	FOX 4 – NHWL/Tier II DF – Feature E – Ponded water in valley between landfills, facing east (Acceptable) (ATT103_Photo103.jpg)	588487.1	7596037.7	2-Aug-2016
29	FOX 4 – NHWL/Tier II DF – Feature L – Orange staining between landfills, facing west (Acceptable) (ATT107_Photo107.jpg)	588421.7	7596056.3	2-Aug-2016
30	FOX 4 – NHWL/Tier II DF – Crest surface facing north – Feature M – Rough grading (Acceptable) (ATT110_Photo110.jpg)	588447.6	7596025.9	2-Aug-2016
31	FOX 4 – NHWL/Tier II DF – Crest surface facing southeast – Feature N – Minor settlement (Acceptable) (ATT114_Photo114.jpg)	588474.8	7595993.7	2-Aug-2016
32	FOX 4 – NHWL/Tier II DF – Feature O – Cracking at bottom of crest surface change (Acceptable), facing south (ATT128_Photo128.jpg)	588442.5	7595992.9	3-Aug-2016
33	FOX 4 – NHWL/Tier II DF – Feature O – East end of cracking at toe of crest surface grade change (Acceptable), facing south (ATT129_Photo129.jpg)	588458.0	7595989.0	3-Aug-2016
34	FOX 4 – NHWL/Tier II DF – Thermistor VT 8 (replaced repaired datalogger) (ATT120_Photo120.jpg)	588406.0	7595975.8	3-Aug-2016
35	FOX-4 – NHWL/Tier II DF – Thermistor VT-2 (ATT108_Photo108.jpg)	588427.6	7596019.9	2-Aug-2016
36	FOX-4 – NHWL/Tier II DF – Thermistor VT-3 (ATT109_Photo109.jpg)	588435.2	7596002.2	2-Aug-2016
37	FOX-4 – NHWL/Tier II DF – Thermistor VT-4 (ATT111_Photo111.jpg)	588459.4	7596033.7	2-Aug-2016
38	FOX-4 – NHWL/Tier II DF – Thermistor VT-6 (ATT112_Photo112.jpg)	588471.4	7596008.0	2-Aug-2016
39	FOX-4 – NHWL/Tier II DF – Thermistor VT-5 (ATT113_Photo113.jpg)	588480.5	7595989.0	2-Aug-2016

	Disposal Facility	F. di	No. 41 Co.	5.4
Photo	Description (file name)	Easting	Northing	Date
40	FOX-4 – NHWL/Tier II DF – Thermistor VT-10 (ATT115_Photo115.jpg)	588480.2	7595956.2	2-Aug-2016
41	FOX-4 – NHWL/Tier II DF – Thermistor VT-10 (datalogger not moved) (ATT118_Photo118.jpg)	588480.4	7595958.6	3-Aug-2016
42	FOX-4 – NHWL/Tier II DF – Thermistor VT-9 (replaced repaired datalogger) (ATT119_Photo119.jpg)	588454.5	7595948.8	3-Aug-2016
43	FOX-4 – NHWL/Tier II DF – Thermistor VT-7 (datalogger not moved) (ATT121_Photo121.jpg)	588398.3	7595950.6	3-Aug-2016
44	FOX-4 – NHWL/Tier II DF – Thermistor VT-5 (datalogger labeled T-2 moved to VT-2, formerly misidentified as VT-5A) (ATT122_Photo122.jpg)	588480.0	7595989.9	3-Aug-2016
45	FOX-4 – NHWL/Tier II DF – Thermistor VT-6 (datalogger labeled T1 not moved) (ATT123_Photo123.jpg)	588474.0	7596007.1	3-Aug-2016
46	FOX-4 – NHWL/Tier II DF – Thermistor VT-4 (datalogger labeled T3 moved to VT-3) (ATT124_Photo124.jpg)	588457.6	7596034.6	3-Aug-2016
47	FOX-4 – NHWL/Tier II DF – Thermistor VT-2 (short datalogger cable) (ATT125_Photo125.jpg)	588428.9	7596021.9	3-Aug-2016
48	FOX-4 – NHWL/Tier II DF – Thermistor VT-2 (datalogger VT-05 moved to VT-5) (ATT126_Photo126.jpg)	588428.9	7596021.9	3-Aug-2016
49	FOX-4 – NHWL/Tier II DF – Thermistor VT-3 (datalogger labeled T4 moved to VT-4) (ATT127_Photo127.jpg)	588436.3	7596003.3	3-Aug-2016
50	FOX-4 – NHWL/Tier II DF – MW11-01 (ATT29_Photo29.jpg)	588465.4	7596132.8	3-Aug-2016
51	FOX-4 – NHWL/Tier II DF – Soil sampling location MW11-01 before excavation (ATT30_Photo30.jpg)	588465.6	7596132.0	3-Aug-2016
52	FOX-4 – NHWL/Tier II DF – Soil sampling location MW11-01 after excavation (ATT31_Photo31.jpg)	588465.6	7596132.0	3-Aug-2016
53	FOX-4 – NHWL/Tier II DF – Soil sampling location MW11-01 after backfilling (ATT33_Photo33.jpg)	588465.6	7596132.0	3-Aug-2016
54	FOX-4 – NHWL/Tier II DF – MW11-02 (ATT40_Photo40.jpg)	588457.8	7596044.8	3-Aug-2016
55	FOX-4 – NHWL/Tier II DF – Soil sampling location MW11-02 before excavation (ATT37_Photo37.jpg)	588456.7	7596043.0	3-Aug-2016
56	FOX-4 – NHWL/Tier II DF – Soil sampling location MW11-02 after excavation (ATT38_Photo38.jpg)	588456.7	7596043.0	3-Aug-2016
57	FOX-4 – NHWL/Tier II DF – Soil sampling location MW11-02 after backfilling (ATT39_Photo39.jpg)	588456.7	7596043.0	3-Aug-2016

Photo	Description (file name)	Easting	Northing	Date
58	FOX-4 – NHWL/Tier II DF – MW11-03 (ATT41_Photo41.jpg)	588526.1	7596027.1	3-Aug-2016
59	FOX-4 – NHWL/Tier II DF – Soil sampling location MW11-03 before excavation (ATT42_Photo42.jpg)	588524.6	7596024.9	3-Aug-2016
60	FOX-4 – NHWL/Tier II DF – Soil sampling location MW11-03 after excavation (ATT43_Photo43.jpg)	588524.6	7596024.9	3-Aug-2016
61	FOX-4 – NHWL/Tier II DF – Soil sampling location MW11-03 after backfilling (ATT44_Photo44.jpg)	588524.6	7596024.9	3-Aug-2016
62	FOX-4 – NHWL/Tier II DF – MW11-04 (ATT45_Photo45.jpg)	588535.0	7595962.8	3-Aug-2016
63	FOX-4 – NHWL/Tier II DF – Soil sampling location MW11- 04 before excavation (ATT46_Photo46.jpg)	588537.3	7595963.5	3-Aug-2016
64	FOX-4 – NHWL/Tier II DF – Soil sampling location MW11- 04 after excavation (ATT47_Photo47.jpg)	588537.3	7595963.5	3-Aug-2016
65	FOX-4 – NHWL/Tier II DF – Soil sampling location MW11- 04 after backfilling (ATT48_Photo48.jpg)	588537.3	7595963.5	3-Aug-2016
66	FOX-4 – NHWL/Tier II DF – MW11-05 (ATT2_Photo2.jpg)	588448.2	7595907.8	2-Aug-2016
67	FOX-4 – NHWL/Tier II DF – Soil sampling location MW11-05 before excavation (ATT3_Photo3.jpg)	588448.0	7595909.5	2-Aug-2016
68	FOX-4 – NHWL/Tier II DF – Soil sampling location MW11-05 after excavation (ATT4_Photo4.jpg)	588448.0	7595909.5	2-Aug-2016
69	FOX-4 – NHWL/Tier II DF – Soil sampling location MW11-05 after backfilling (ATT5_Photo5.jpg)	588448.0	7595909.5	2-Aug-2016
70	FOX-4 – NHWL/Tier II DF – MW11-06 (ATT6_Photo6.jpg)	588350.1	7595925.5	2-Aug-2016
71	FOX-4 – NHWL/Tier II DF – Soil sampling location MW11-06 before excavation (ATT7_Photo7.jpg)	588387.3	7596082.2	2-Aug-2016
72	FOX-4 – NHWL/Tier II DF – Soil sampling location MW11-06 after excavation (ATT8_Photo8.jpg)	588387.3	7596082.2	2-Aug-2016
73	FOX-4 – NHWL/Tier II DF – Soil sampling location MW11-06 after backfilling (ATT9_Photo9.jpg)	588387.3	7596082.2	2-Aug-2016
74	FOX-4 – NHWL/Tier II DF – MW12-07 (ATT10_Photo10.jpg)	588334.5	7595978.6	2-Aug-2016
75	FOX-4 – NHWL/Tier II DF – MW12-07 (ATT11_Photo11.jpg)	588334.5	7595978.6	2-Aug-2016
76	FOX-4 – NHWL/Tier II DF – Soil sampling location at MW12-07 before excavation (ATT12_Photo12.jpg)	588334.6	7595978.4	2-Aug-2016

Table 4-3: Summary Table of Photographic Log – Non-Hazardous Waste Landfill and Tier II Disposal Facility

	Diopoda i domy	-		
Photo	Description (file name)	Easting	Northing	Date
77	FOX-4 – NHWL/Tier II DF – Soil sampling location at MW12-07 after excavation (ATT13_Photo13.jpg)	588334.6	7595978.4	2-Aug-2016
78	FOX-4 – NHWL/Tier II DF – Soil sampling location at MW12-07 after backfilling (ATT14_Photo14.jpg)	588334.6	7595978.4	2-Aug-2016
79	FOX-4 – NHWL/Tier II DF – MW12-08 (ATT25_Photo25.jpg)	588362.4	7596058.1	3-Aug-2016
80	FOX-4 – NHWL/Tier II DF – Soil sampling location MW12-08 before excavation (ATT26_Photo26.jpg)	588363.6	7596058.8	3-Aug-2016
81	FOX-4 – NHWL/Tier II DF – Soil sampling location MW12-08 after excavation (ATT27_Photo27.jpg)	588363.6	7596058.8	3-Aug-2016
82	FOX-4 – NHWL/Tier II DF – Soil sampling location MW12-08 after backfilling (ATT28_Photo28.jpg)	588363.6	7596058.8	3-Aug-2016

4.1.3 Thermal Monitoring

The data recorded on the thermistor dataloggers located at the Tier II Disposal Facility (VT-2 through VT-10) was downloaded using a laptop computer and Prolog software from Lakewood Systems Ltd. Thermistor inspection and data downloading details were recorded on field record sheets included in Appendix B.

All thermistor dataloggers were downloaded at their existing locations (i.e., prior to relocating any dataloggers). At VT-7 and VT-10, both ULB1 and ULB15 batteries were replaced in order to download the data. Two repaired dataloggers were replaced/reinstalled at locations VT-8 and VT-9 (and equipped with new ULB1 and ULB15 batteries) at the Tier II Disposal Facility. The location of all dataloggers at this site were reviewed relative to the thermistor string identification and some were relocated to their original/historic locations prior to the 2013/2014 maintenance activities. Dataloggers at VT-3 and VT-4 were switched. Dataloggers at VT-2 (previously misidentified as VT-5A) and VT-5 were switched. The original VT-1 thermistor had been previously decommissioned and, therefore, was not downloaded. A total of 9 thermistor dataloggers are installed and functional at the site, as follows:

Thermistor Location ID	Datalogger ID
VT-1 (decommissioned)	Not applicable
VT-2 (misidentified as VT-5A)	T-2
VT-3	T-3
VT-4	T-4
VT-5	T-5
VT-6	T-1
VT-7	T-7
VT-8	T-8
VT-9	T-9
VT-10	T-10

Sir.

2016 FOX-4 MONITORING REPORT

4.1.4 Summary of Sampling Deviations

The field work was conducted as per the TOR with the following exceptions:

- The deep soil samples at MW11-02 and MW11-04 could not be collected due to refusal on rock; and,
- The groundwater samples at MW11-06 and MW12-08 could not be collected because the wells were dry.

4.1.5 Soil Sampling

Table 4-4 presents a summary of analytical results for soil samples collected at the Non-Hazardous Waste Landfill and Tier II Disposal Facility. MW11-01 represents an upgradient sampling location, whereas MW11-02, MW11-03, MW11-04, MW11-05, MW11-06, MW12-07 and MW12-08 represent downgradient sampling locations, based on topography.

Table 4-4 also lists the arithmetic mean background and baseline values for the landfill, in addition to the baseline mean plus 3σ limits. At the Non-Hazardous Waste Landfill and Tier II Disposal Facility, the background arithmetic means for copper, nickel, cobalt, lead, zinc, chromium and arsenic are greater than the baseline arithmetic means.

MW11-01

Sampling location MW11-01 is located upgradient of the Non-Hazardous Waste Landfill, approximately 16 m north of the toe. The estimated elevation of this sampling point is 21 masl. As shown in Photos 51 and 52, the area consists of sand and gravel with some rock and sparse vegetation. The soils consisted of a dark brown sand with some gravel.

For the shallow sample at MW11-01 (0-15 cm, duplicate location), the concentrations of all metals were greater than those reported in 2014. The average concentrations of nickel, cobalt, cadmium, zinc and chromium exceeded their baseline mean concentrations plus 3σ. No mercury, PHC or PCB were detected at this location in 2016.

The deep sample at MW11-01 (30-40 cm) exhibited metal concentrations greater than those in the shallow sample. The concentrations of cadmium, lead and chromium were greater than those reported in 2014, whereas the concentrations of all other metals were slightly lower. The concentrations of copper, nickel, cobalt, cadmium, zinc and chromium exceeded their baseline mean concentrations plus 3σ ; the concentration of arsenic was equal to its baseline mean concentration plus 3σ . No mercury, PHC or PCB were detected at this location in 2016.

MW11-02

Sampling location MW11-02 is located between the Non-Hazardous Waste Landfill and the Tier II Disposal Facility, immediately south of the toe of the NHWL. The estimated elevation of this sampling point is 19.5 masl. As shown in Photo 22, some ponding of water was observed in the ditch that runs between the landfills, in the immediate vicinity of this soil sample location. The area largely consists of sand and gravel and is not vegetated (Photos 55 and 56). The soils consisted of wet brown sand with some gravel and stone. The excavation filled with water soon after the hole was completed. It is noted that there were two samples identified as MW11-1a in the soil sampling field sheets in Appendix B and no samples identified as MW12-2a. Two soil samples (shallow and deep) were submitted for laboratory analysis at the MW-11 location and therefore the second field record for MW11-1 where only a single collected was attributed to the shallow sample at MW-12.

For the shallow sample at MW11-02 (0-15 cm), the concentrations of all metals, with the exception of cadmium, were less than those reported in 2014. The concentration of cadmium (3.8 mg/kg) exceeded the baseline mean concentration plus 3 σ (1.7 mg/kg); none of the other parameters exceeded their baseline mean concentrations plus 3 σ . No mercury, PHC or PCB were detected at this location in 2016.

2016 FOX-4 MONITORING REPORT

MW11-03

Sampling location MW11-03 is located downgradient (cross-gradient) of the Non-Hazardous Waste Landfill, approximately 14 m east of the toe. The estimated elevation of this sampling point is 20.5 masl. As shown in Photo 21, some ponding of water and orange staining was observed in the ditch that runs between the landfills, approximately 6 m west of this soil sample location. The area largely consists of sand and gravel and is not vegetated (Photos 59 and 60). The soils consisted of wet brown sand with some gravel and stone.

For the shallow sample at MW11-03 (0-15 cm), the concentrations of all metals, with the exception of cadmium, lead and arsenic, were less than those reported in 2014. The concentration of lead (288 mg/kg) was much greater than the concentration observed in 2014 (10 mg/kg). The concentrations of cadmium and lead exceeded their baseline mean concentrations plus 3σ); none of the other parameters exceeded their baseline mean concentrations plus 3σ . The concentration of modified TPH (85 mg/kg) was greater than the concentration of 49 mg/kg reported in 2014. The concentration of the PHC F4 fraction in 2016 was 32 mg/kg. No mercury or PCB were detected at this location in 2016.

The deep sample at MW11-03 (30-40 cm) exhibited metal concentrations greater than those in the shallow sample. The concentrations of all metals, with the exception of cobalt, were greater than those reported in 2014. The concentrations of cadmium, lead and zinc exceeded their baseline mean concentrations plus 3σ); none of the other parameters exceeded their baseline mean concentrations plus 3σ. The concentration of modified TPH (77 mg/kg) was greater than the concentration of 23 mg/kg reported in 2014. The concentration of the PHC F4 fraction in 2016 was 30 mg/kg. No mercury or PCB were detected at this location in 2016.

MW11-04

Sampling location MW11-04 is located downgradient of the Tier II Disposal Facility, approximately 34 m east of the toe. The estimated elevation of this sampling point is 19 masl. As shown in Photos 63 and 64, the area consists of sand and gravel with some rock and sparse vegetation. The soils consisted of wet brown sand with some gravel and stone.

For the shallow sample at MW11-04 (0-15 cm), the concentrations of all metals were greater than those reported in 2014. The concentration of cadmium (1.9 mg/kg) slightly exceeded the baseline mean concentration plus 3 σ (1.7 mg/kg); none of the other parameters exceeded their baseline mean concentrations plus 3 σ . The concentration of modified TPH (44 mg/kg) was below the concentration of 92 mg/kg reported in 2014. The concentration of the PHC F4 fraction in 2016 was 33 mg/kg. No mercury or PCB were detected at this location in 2016.

MW11-05

Sampling location MW11-05 is located downgradient of the Tier II Disposal Facility, approximately 8 m south of the toe. The estimated elevation of this sampling point is 18.5 masl. As shown in Photo 16, some ponding of water was observed along the southern toe of the landfill, in the vicinity of this soil sample location. The area largely consists of sand and gravel is not vegetated (Photos 67 and 68). The soils consisted of wet brown sand with some gravel. The excavation filled with water soon after the hole was completed.

For the shallow sample at MW11-05 (0-15 cm), the concentrations of all metals were greater than those reported in 2014, with the exception of chromium. The concentration of arsenic (83.7 mg/kg) was much greater than the concentration observed in 2014 (10 mg/kg) and exceeded the baseline mean concentration plus 3σ (69 mg/kg); none of the other parameters exceeded their baseline mean concentrations plus 3σ . No mercury, PHC or PCB were detected at this location in 2016.

2016 FOX-4 MONITORING REPORT

The deep sample at MW11-05 (40-50 cm) exhibited metals concentrations lower than those in the shallow sample. The concentrations of cadmium, lead and arsenic were greater than those reported in 2014, whereas the concentrations of all other metals were less than in 2014. No mercury, PHC or PCB were detected at this location in 2016. None of the reported values exceeded their respective baseline mean concentrations plus 3 σ .

MW11-06

Sampling location MW11-06 is located downgradient of the Tier II Disposal Facility, approximately 22 m southwest of the toe. The estimated elevation of this sampling point is 18 masl. As shown in Photos 17 and 18, some ponding of water and orange staining was observed along the southern toe of the landfill, approximately 25 m east of this soil sample location. The area largely consists of sand and gravel is not vegetated (Photos 71 and 72). The soils consisted of brown sand with some gravel and stone.

For the shallow sample at MW11-06 (0-15 cm), the concentrations of cadmium and lead were greater than those reported in 2014, whereas the concentrations of all other metals were lower than in 2014. No mercury, PHC or PCB were detected at this location in 2016. None of the reported values exceeded their respective baseline mean concentration plus 3 σ .

The deep sample at MW11-06 (30-40 cm) exhibited metals concentrations greater than those in the shallow sample. The concentrations of all metals, with the exception of cadmium, were less than those reported in 2014. The concentration of cadmium (1.8 mg/kg) marginally exceeded the baseline mean concentration plus 3σ (1.7 mg/kg); none of the other parameters exceeded their baseline mean concentrations plus 3σ . No PHC or PCB were detected at this location in 2016.

MW12-07

Sampling location MW12-07 is located downgradient of the Tier II Disposal Facility, approximately 35 m west of the toe. The estimated elevation of this sampling point is 16.5 masl. As shown in Photos 76 and 77, the area largely consists of sand and gravel with some rock and sparse vegetation. The soils consisted of wet grey sand, gravel and stone. The excavation filled with water soon after the hole was completed.

For the shallow sample at MW12-07 (0-15 cm), the concentrations of all metals, with the exception of cadmium, were less than those reported in 2014. The concentration of cadmium (1.8 mg/kg) marginally exceeded the baseline mean concentration plus 3σ (1.7 mg/kg); none of the other parameters exceeded their baseline mean concentrations plus 3σ. No mercury, PHC or PCB were detected at this location in 2016.

The deep sample at MW12-07 (30-40 cm) exhibited metals concentrations greater than those in the shallow sample. The concentrations of all metals were greater than those reported in 2014. The concentration of cadmium (3.6 mg/kg) exceeded the baseline mean concentration plus 3σ (1.7 mg/kg); none of the other parameters exceeded their baseline mean concentrations plus 3σ . No mercury, PHC or PCB were detected at this location in 2016.

MW12-08

Sampling location MW12-08 is located downgradient of the Non-Hazardous Waste Landfill, approximately 35 m west of the toe. A ponded water area (Feature K) is located between the landfill and this sampling location. The estimated elevation of this sampling point is 18.5 masl. As shown in Photos 80 and 81, the area largely consists of sand and gravel and is not vegetated. The soils consisted of brown sand with some gravel and stone.

For the shallow sample at MW12-08 (0-15 cm), the concentrations of all metals, with the exception of cadmium, were less than those reported in 2014. The concentration of cadmium (2.1 mg/kg) slightly exceeded the baseline mean concentration plus 3σ (1.7 mg/kg); none of the other parameters exceeded their baseline mean concentrations plus 3σ . The concentration of modified TPH (434 mg/kg) was greater than the concentration reported in 2014 (67 mg/kg). No mercury or PCB were detected at this location in 2016.

The deep sample at MW12-08 (40-50 cm) exhibited metals concentrations greater than those in the shallow sample. The concentrations of all metals, with the exception of cadmium, were less than those reported in 2014. The concentration of cadmium (3.1 mg/kg) exceeded the baseline mean concentration plus 3σ (1.7 mg/kg). The concentration of modified TPH (491 mg/kg) was greater than the concentration reported in 2014 (374 mg/kg. No mercury or PCB were detected at this location in 2016.

Table 4-4: Soil Chemical Analysis Results — Non-Hazardous Waste Landfill and Tier II Disposal Facility

ID	Depth (cm)	Cu (mg/kg)	Ni (mg/kg)	Co (mg/kg)	Cd (mg/kg)	Pb (mg/kg)	Zn (mg/kg)	Cr (mg/kg)	As (mg/kg)	Hg (mg/kg)	Total PCBs (mg/kg)	F1 (mg/kg)	F2 (mg/kg)	F3 (mg/kg)	F4 (mg/kg)
Background Mean		<u>30.2</u>	<u>24.0</u>	<u>8.8</u>	<u>1.0</u>	<u>10.0</u>	<u>41.5</u>	<u>40.6</u>	<u>28.6</u>	<u>NA</u>	<u>NA</u>	<u>NA</u>	<u>NA</u>	<u>NA</u>	<u>NA</u>
Baseline Mean		12.8	9.9	5.0	1.0	5.6	21.9	21.5	12.2	0.100	0.050	NA	NA	NA	NA
Baseline + 3σ		83.5	34.5	11.4	1.7	38.3	66.6	67.2	69.2	0.14	0.11	NA	NA	NA	NA
Upgradient															
MW11-01b	0-15	<u>70.1</u>	<u>59</u>	<u>14.4</u>	<u>5.4</u>	<u>10.9</u>	<u>88.7</u>	<u>84.3</u>	<u>49.8</u>	<0.1	<0.05	<7	<4	<8	<6
MW11-01b dup	0-15	<u>92</u>	<u>66</u>	<u>14.4</u>	<0.5	<u>11</u>	<u>105</u>	<u>81</u>	<u>57</u>	<0.10	<0.05	<5	<10	<50	<50
MW11-01b (Dup Avg)	0-15	<u>81</u>	<u>63</u>	<u>14.4</u>	<u>3.0</u>	<u>11</u>	<u>96.9</u>	<u>83</u>	<u>53</u>	<0.1	<0.05	<6	<7	<29	<28
MW11-01a	30-40	<u>91.7</u>	<u>69.3</u>	<u>16.2</u>	<u>6.1</u>	<u>13.4</u>	<u>102</u>	<u>88.7</u>	<u>69.2</u>	<0.1	<0.05	<7	<4	<8	<6
Downgradient															
MW11-02a	0-15	<u>31.5</u>	<u>26.3</u>	<u>9.6</u>	<u>3.8</u>	7.9	<u>47.3</u>	<u>63.9</u>	20.8	<0.1	<0.05	<7	<4	<8	<6
MW11-02 (deep)	1														
MW11-03b	0-15	21.3	11	3.4	<u>2.7</u>	<u>288</u>	<u>49.8</u>	32.5	16.8	<0.1	<0.05	<7	<4	79	32
MW11-03a	30-40	28.5	14	4.1	<u>9.4</u>	<u>77.5</u>	<u>74.2</u>	40.5	26	<0.1	<0.05	<7	<4	71	30
MW11-04a	0-15	11.1	10	3.3	<u>1.9</u>	5	23.1	34.1	9.4	<0.1	<0.05	<7	<4	38	33
MW11-04 (deep)	1														
MW11-05b	0-15	11.6	11.4	3.6	<u>1.7</u>	4.5	19.2	23.5	<u>83.7</u>	<0.1	<0.05	<7	<4	<8	<6
MW11-05a	40-50	8.6	8.9	3	<u>1.6</u>	4.1	17.8	22.5	13.1	<0.1	<0.05	<7	<4	<8	<6
MW11-06b	0-15	8.9	8.7	2.8	<u>1.2</u>	4.3	15.3	19	10.4	<0.1	<0.05	<7	<4	<8	<6
MW11-06a	30-40	12	10.3	3.3	<u>1.8</u>	4.5	19.9	24.4	19.9	<0.1	<0.05	<7	<4	<8	<6
MW12-07b	0-15	16	17.7	4.5	<u>1.8</u>	4	31.1	23.4	10.9	<0.1	<0.05	<7	<4	<8	<6
MW12-07a	30-40	26.7	<u>28</u>	7.8	<u>3.6</u>	7.4	<u>50.8</u>	<u>48.4</u>	25.3	<0.1	<0.05	<7	<4	<8	<6
MW12-08b	0-15	12.1	11.6	3.8	<u>2.1</u>	8.6	26	33.2	9.6	<0.1	<0.05	<7	389	41	<6
MW12-08a	40-50	17.9	21	7.4	<u>3.1</u>	8	<u>43.6</u>	<u>56</u>	7.3	<0.1	<0.05	<7	464	23	<6

Notes:

NA: Not available; ID: Soil sample location ID.

<u>Underlined values</u>: Results exceed Background arithmetic mean.

Bold Values: Results exceed Baseline arithmetic mean.

Shaded Values: Results exceed the Baseline arithmetic mean plus 3o.

1: The deep soil samples at MW11-02 and MW11-04 could not be collected due to refusal on rock.

4.1.6 Groundwater Sampling

Groundwater sampling and monitoring well inspection field records are included in Appendix B. Table 4-4 presents a summary of groundwater levels and analytical results for groundwater samples collected at the Non-Hazardous Waste Landfill and Tier II Disposal Facility. It is noted there are two handwritten well sampling sheets for MW11-4 in Appendix B (one where the well was dry). A water sample labelled MW11-4 was submitted for laboratory analysis and therefore the well sampling sheet where the well was dry was attributed to MW11-6.

MW11-01

The depth to groundwater measured at MW11-01 (duplicate location) in 2016 was 1.01 m below grade. The calculated relative percent difference (RPD) values for this duplicate sampled location indicated that the original and duplicate results differ by greater than 30% for nickel, and therefore these results should be interpreted with caution. The average concentrations of all metals in the 2016 groundwater sample were lower than those reported in 2014. No cadmium, lead, chromium, arsenic, mercury, PHC or PCB were detected at this location in 2016. None of the reported values exceeded their respective baseline mean concentration plus 3σ.

MW11-02

The depth to groundwater measured at MW11-02 in 2016 was 0.03 m above grade. The concentrations of nickel, cobalt and zinc were greater than those reported in previous years, whereas the concentrations of all other metals were lower. The concentrations of cobalt (0.0357 mg/L) and zinc (19 mg/L) exceeded their baseline mean concentrations plus 3σ (0.034 mg/L and 4.43 mg/L, respectively); none of the other parameters exceeded their baseline mean concentrations plus 3σ . No cadmium, lead, chromium, mercury, PHC or PCB were detected at this location in 2016.

MW11-03

The depth to groundwater measured at MW11-03 in 2016 was 1.11 m below grade. The concentrations of all metals, with the exception of zinc, were lower than those reported in 2014. No chromium, arsenic, mercury, PHC or PCB were detected at this location in 2016. None of the reported values exceeded their respective baseline mean concentration plus 3σ .

MW11-04

The depth to groundwater measured at MW11-04 in 2016 was 0.65 m below grade. The concentrations of all metals, with the exception of zinc, were lower than those reported in 2014. No chromium, arsenic, mercury, PHC or PCB were detected at this location in 2016. None of the reported values exceeded their respective baseline mean concentration plus 3σ .

MW11-05

The depth to groundwater measured at MW11-05 in 2016 was 0.28 m below grade. The concentrations of all metals, with the exception of zinc, were lower than those reported in 2014. No cadmium, lead, chromium, arsenic, mercury, PHC or PCB were detected at this location in 2016. None of the reported values exceeded their respective baseline mean concentration plus 3σ.

MW12-07

The depth to groundwater measured at MW12-07 in 2016 was 0.51 m below grade. The concentrations of all metals, with the exception of zinc, were lower than those reported in 2014. No cadmium, lead, chromium, arsenic, mercury, PHC or PCB were detected at this location in 2016. None of the reported values exceeded their respective baseline mean concentration plus 3σ .

Table 4-5: Monitoring Well Groundwater Levels and Groundwater Chemical Analysis Results - Non-Hazardous Waste Landfill and Tier II Disposal Facility

ID	GW Depth BGS (m)	Cu (mg/L)	Ni (mg/L)	Co (mg/L)	Cd (mg/L)	Pb (mg/L)	Zn (mg/L)	Cr (mg/L)	As (mg/L)	Hg (mg/L)	Total PCBs (mg/L)	F1 (mg/L)	F2 (mg/L)	F3 (mg/L)	F4 (mg/L)
Baseline Mea	an	0.010	0.057	0.0087	0.0010	0.0071	0.84	0.0306	0.0183	0.0006	0.0001	NA	NA	NA	NA
Baseline + 3c	ī	0.063	0.301	0.034	0.0043	0.05	4.43	0.2589	0.14	0.0026	0.0007	NA	NA	NA	NA
Upgradie	nt														
MW11-01	1.01	0.001	0.007	0.0011	<0.0001	<0.0001	0.01	<0.001	<0.001	<0.0001	<0.00005	<0.025	<0.100	<0.100	<0.100
MW11-01 dup	1.01	<0.005	0.01	0.0015	<0.0001	<0.0001	<0.005	<0.001	<0.001	<0.0001	<0.00005	<0.025	<0.1	<0.1	<0.1
MW11-01 (Dup Avg)	1.01	0.003	0.01	0.0013	<0.0001	<0.0001	0.01	<0.001	<0.001	<0.0001	<0.00005	<0.025	<0.1	<0.1	<0.1
Downgrad	dient														
MW11-02	-0.03	0.0026	0.162	0.0357	<0.0001	<0.0001	19	<0.001	0.003	<0.0001	<0.00005	<0.025	<0.100	<0.100	<0.100
MW11-03	1.11	0.0031	0.059	0.0236	0.0002	0.0006	0.527	<0.001	<0.001	<0.0001	<0.00005	<0.025	<0.100	<0.100	<0.100
MW11-04	0.65	0.0047	0.011	0.003	<0.0001	0.0002	0.208	<0.001	<0.001	<0.0001	<0.00005	<0.025	<0.100	<0.100	<0.100
MW11-05	0.28	0.0018	0.012	0.0057	<0.0001	<0.0001	2.35	<0.001	<0.001	<0.0001	<0.00005	<0.025	<0.100	<0.100	<0.100
MW11-	06 ¹														
MW12-07	0.51	0.001	0.007	0.0033	<0.0001	<0.0001	0.155	<0.001	<0.001	<0.0001	<0.00005	<0.025	<0.100	<0.100	<0.100
MW12-	08 ¹														

Notes:

ID: Monitoring well location ID.

GW: Groundwater.

BGS: Below ground surface.

NA: Not available

Bold Values: Results exceed Baseline arithmetic mean.

Shaded Values: Results exceed the Baseline arithmetic mean plus 3o.

1: The groundwater samples at MW11-06 and MW12-08 could not be collected because the wells were dry.

4.1.7 Conclusions and Overall Performance of the Non-Hazardous Waste Landfill and Tier II Disposal Facility

Based on the visual inspection, there were no indications of instability at the Non-Hazardous Waste Landfill and Tier II Disposal Facility. No sloughing or exposed waste was observed. A new crack (Feature O) was observed on the slope between the Non-Hazardous Waste Landfill and Tier II Disposal Facility crest surfaces that was assigned an "Acceptable" severity rating. Previously observed occasional minor self-armouring erosion on the landfill slopes does not appear to be deteriorating with time. Isolated locations with minor settlement, debris, tire tracks and rough grading were observed on the landfill surfaces, however these are not considered of concern. Overall, the physical performance of this landfill was assessed as "Acceptable".

Concentrations of metals in soil were highest overall at the deep sample location MW11-01. At this location, the concentrations of cadmium, lead and chromium were greater than those reported in 2014 and the concentrations of copper, nickel, cobalt, cadmium, zinc and chromium exceeded their baseline mean concentrations plus 3 σ ; the concentration of arsenic was equal to its baseline mean concentration plus 3 σ . Cadmium was the most commonly noted exceedance in 2016, and at all soil sampling locations, cadmium was greater than the concentrations observed in 2014.

Modified TPH concentrations in soil (maximum of 491 mg/kg in the deep sample at MW12-08) were detected at the shallow and deep MW11-03 sample locations, the shallow MW11-04 sample location and the shallow and deep MW12-08 shallow and deep sample locations. The concentrations of modified TPH at the shallow and deep MW12-08 sample locations were greater than the concentrations reported in. No detectable concentrations of mercury or PCB were noted in any of the soil samples in 2016.

The highest concentrations of metals in groundwater were observed at MW11-02. At this location, the concentrations of nickel, cobalt and zinc were greater than those reported in previous years and the concentrations of cobalt and zinc exceeded their baseline mean concentrations plus 3σ . At all other locations, the concentrations of most metals were lower than those reported in 2014. No detectable concentrations of chromium, mercury, PHC or PCB were noted in any of the groundwater samples in 2016.

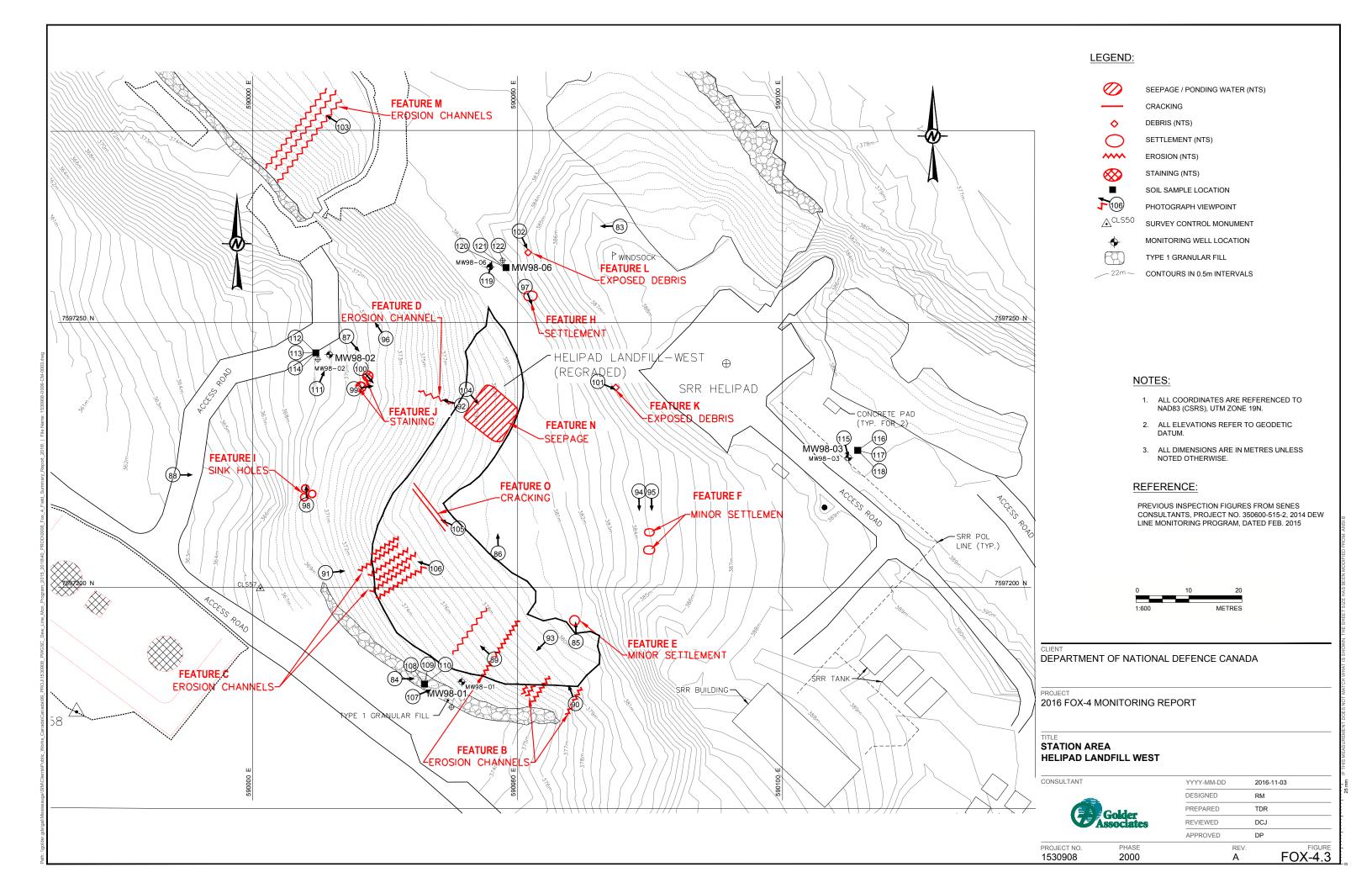
Comparison of groundwater elevations based on estimated grade elevation and the measured water depth in the wells indicates that groundwater in was highest to the north at MW11-01, and lowest towards the west at MW12-07. The water levels at MW11-02, MW11-03 and MW12-08 indicate there is generally a western gradient in the area of the landfills. This is consistent with local grades.

Overall, it was noted that the soil sampling location with the most exceedances of the baseline mean plus 3 σ (entirely metals), MW11-01, was located upgradient of the landfills. The only groundwater sample with exceedances of the baseline mean plus 3 σ was MW11-02, located between the landfills and in an area where ponded water and staining are noted. This could potentially reflect impact from the landfills. Metals concentrations for a number of the soil (notably cadmium) and groundwater sampling results were greater than in 2014. Fewer than seven samples have been collected for trend confirmation and therefore additional data are required to confirm an increasing trend.

4.1.8 Recommendations for the Non-Hazardous Waste Landfill and Tier II Disposal Facility

No modifications to the ongoing monitoring program at this landfill are recommended. Additional data is required to assess if the observed increases in 2016 relate to impact from the landfills or reflect variations in natural conditions.

4.2 Helipad West Landfill


4.2.1 Landfill Description

The Helipad West Landfill is located at the Upper Site to the west of the Short Range Radar (SRR) facilities, and has an approximate area of 7,000 m². This landfill was initially built during the construction of the SRR site, before the cleanup of the FOX-4 site. It is understood to contain waste materials from the module train, garage, communication dishes, and other miscellaneous wastes. This landfill is classified as a regraded landfill. Four groundwater monitoring wells, MW98-01 through MW98-03 and MW98-06, are installed around the landfill perimeter. Approximate soil and groundwater sampling locations are provided on Figure FOX-4.3.

At the time of the initial FOX-4 remediation program in the late 1990s, there were two landfills near the helipad, designated as Helipad Landfill East and Helipad Landfill West. They were both initially assessed to present a low environmental risk; remediation activities consisted of the removal of surface debris and contaminated soil and the placement of a cover of granular material.

During the 2011-2013 FOX-4 maintenance remediation program, the Helipad Landfill East was re-classified as posing a moderate environmental risk because of indications that impacted leachate was being generated. The Helipad Landfill East was consequently excavated completely, and its contents were relocated, because its location and topography were not suitable for installing a leachate containment system. The low risk classification of the Helipad Landfill West remained unchanged and the cover was stabilized by regrading it with additional granular material.

4.2.2 Visual Inspection

The Helipad West Landfill has some observed settlement, erosion, cracking, seepage and staining. No sloughing, exposed waste or indications of instability were observed. Table 4-6 presents a summary of observed visual inspection features and Table 4-7 presents the Preliminary Stability Assessment results. This landfill was assessed to have a "Marginal" overall performance because a new crack observed in 2016 was assigned a "Marginal" severity rating. Table 4-8 is a log of photographs taken during the 2016 visual inspection.

A new tension crack was observed during the 2016 inspection at the crest of the west slope (Feature O) that was assigned a "Marginal" severity rating because it is at the top of a fairly large slope that was recently regraded. This crack should be identified and monitored during future visual inspections to determine if it is changing with time.

Previously observed orange staining at the toe of the landfill slope (Feature J) was observed again in 2016, however there was no active seepage at the time of the visual inspection. This staining may be caused by landfill seepage. An area of saturated soil was observed on the upper slope that did not have any associated staining and is likely related to thaw seepage (new Feature N).

There were several areas with previously observed minor settlement (Features E and F) and small sink holes (Features H and I), however these they do not appear to have changed since 2014 and are not considered a concern. The sink holes do not appear to be caused by groundwater flow, permafrost thaw or settlement of the subsurface. They appear to be simply caused by sand and gravel washing into voids of the adjacent boulder rockfill, as a result of the gravel cover not being filter compatible with the boulder rockfill. Precipitation runoff from both the landfill granular cover and the adjacent bedrock abutments likely contributed to their formation. They have not resulted in exposed waste to date and do not require any remedial attention at the present time (other than ongoing visual monitoring at the current frequency).

One area with previously observed settlement appears to be uneven ground that may be an as-built condition (Feature G). There are three areas with previously observed erosion channels (Features B, C and D) that are self-armouring and do not appear to be deteriorating with time. Some new self-armouring erosion was observed on a slope north of the landfill (Feature M) but it was stable at the time of the visual inspection and is not considered to be a concern. Two pieces of debris (Features K and L) that were observed previously are not buried landfill waste that has become exposed due to erosion or sloughing.

Previously observed Feature A (vehicle tracks/ruts) were not noted during the 2016 visual inspection.

Table 4-6: Visual Inspection Checklist – Helipad West Landfill

SITE NAME: FOX-4

LANDFILL DESIGNATION: Helipad West Landfill

DATE OF INSPECTION: August 4, 2016

DATE OF PREVIOUS INSPECTION: August 25, 2014

INSPECTED BY: Darrin Johnson

REPORT PREPARED BY: Darrin Johnson

MONITORING EVENT NUMBER: 12

The inspector/reporter represents to the best of his/her knowledge that the following statements and observations are true and correct and to the best of the preparer's actual knowledge, no material facts have been suppressed or misstated.

Table 4-6: Visual Inspection Checklist – Helipad West Landfill

Checklist Item	Present (Y/N)	Feature ID (A, B, etc.)	Location Description	Easting	Northing	Length (m)	Width (m)	Depth (m)	Extent of Landfill Area (%)	Description (Severity Rating)	Comparison to Historical Observations	Photos
		Е	West slope near station	590056.2	7597190.6	3	5	0.3	0.21%	Minor settlement (Acceptable)	Previously observed, no change	85
		F	Crest surface	590072.9	7597218.2	5	5	0.3	0.36%	Minor settlement (Acceptable)	Previously observed, no change	94, 95
Settlement	Y	G	NW toe	590025.1	7597247.0	5	5	0.3	0.36%	As-built uneven ground (Acceptable)	Previously observed but not considered settlement	96
		Н	Slope above landfill	590051.4	7597256.8	0.3	0.3	0.5	<0.01%	Small sink holes (Acceptable)	Previously observed, no change	97
		I	Toe of slope at edge of rip-rap	590010.1	7597215.6	1	1	0.3	<0.01%	Small sink holes (Acceptable)	Previously observed, no change	98
		В	West slope	590045.6	7597186.5	15	25	0.1	5.4%	Self-armouring erosion channels (Acceptable)	Previously observed, no change	89,90
		С	West slope	590013.7	7597202.8	10	10	0.1	1.4%	Self-armouring erosion channels (Acceptable)	Previously observed, no change	91,106
Erosion	Y	D	Northwest slope	590039.4	7597234.4	10	3	0.3	0.4%	Self-armouring erosion channel (Acceptable)	Previously observed, no change	92
		М	West slope of graded area north of landfill	590017.0	7597287.1	15	5	0.1	1.1%	Self-armouring erosion channels (Acceptable)	New	103

Table 4-6: Visual Inspection Checklist – Helipad West Landfill

Checklist Item	Present (Y/N)	Feature ID (A, B, etc.)	Location Description	Easting	Northing	Length (m)	Width (m)	Depth (m)	Extent of Landfill Area (%)	Description (Severity Rating)	Comparison to Historical Observations	Photos
Lateral Movement	N											
Frost Action	N											
Sloughing	N											
Cracking	Y	0	West slope	590038.8	7597211.2	10	0.1	0.05	0.01%	Minor weathered tension crack with smaller parallel crack above (Marginal)	New	105
Animal Burrows	N											
Vegetation	N											
Staining	N											
Vegetation Stress	N											
Seepage or Ponded	Y	J	Toe	590019.1	7597237.5	5	1	0.01	0.07%	Orange seepage with sheen, soft saturated ground (Acceptable)	Previously observed, no change	99, 100
Water	ĭ	N	West slope	590040.3	7597237.4	10	10	-	1.4%	Saturated soil on slope with seepage at toe (Acceptable)	New	104
Debris and/or Liner	Y	К	Slope above landfill	590065.1	7597238.9	-	-	-	,_	Exposed wires (Acceptable)	Previously observed, no change	101
Exposed	1	L	Slope above landfill	590050.3	7597267.3	-	-	-	,_	Exposed steel pipe (Acceptable)	Previously observed, no change	102

Table 4-6: Visual Inspection Checklist – Helipad West Landfill

Checklist Item	Present (Y/N)	Feature ID (A, B, etc.)	Location Description	Easting	Northing	Length (m)	Width (m)	Depth (m)	Extent of Landfill Area (%)	Description (Severity Rating)	Comparison to Historical Observations	Photos
Presence / Condition of Monitoring Instruments	Y	-	MW98-01, -02, -03, -06	-	-	-	-	,	-	All monitoring wells intact MW98-02 casing full of water and bentonite MW98-06 casing full of bentonite	-	107, 111, 115, 119
Features of Note / Other Observations	N											

Landfill Area = 7,000 m².

Table 4-7: Preliminary Stability Assessment – Helipad West Landfill

Feature	Severity Rating	Extent				
Settlement	Acceptable	Occasional				
Erosion	Acceptable	Occasional				
Lateral Movement	Not observed	-				
Frost Action	Not observed	-				
Sloughing	Not observed	-				
Cracking	Marginal	Isolated				
Animal Burrows	Not observed	-				
Vegetation Establishment	Not observed	-				
Staining	Acceptable	Occasional				
Vegetation Stress	Not observed	-				
Seepage/Ponded Water	Acceptable	Occasional				
Debris and/or Liner Exposure	Acceptable	Occasional				
Other	Not observed	-				
Overall Landfill Performance	Marginal					

Table 4-8: Summary Table of Photographic Log – Helipad West Landfill

Photo	Description (file name)	Easting	Northing	Date
83	FOX 4 – Helipad West Landfill - From helipad facing west (ATT26_Photo26.jpg)	590069.3	7597268.2	4-Aug-2016
84	FOX 4 – Helipad West Landfill – From toe facing east towards MW98-01 (ATT27_Photo27.jpg)	590026.8	7597182.8	4-Aug-2016
85	FOX 4 – Helipad West Landfill – Feature E – Minor settlement, facing north (Acceptable) (ATT28_Photo28.jpg)	590061.0	7597189.8	4-Aug-2016
86	FOX 4 – Helipad West Landfill – Crest facing north in area of previously observed vehicle tracks (Feature A not observed in 2016) (ATT29_Photo29.jpg)	590046.3	7597206.5	4-Aug-2016
87	FOX 4 – Helipad West Landfill – NW toe facing southeast upslope – Previously observed settlement (Feature G) is uneven ground at centre and previously observed staining (Feature J) at right (ATT30_Photo30.jpg)	590017.7	7597247.4	4-Aug-2016
88	FOX 4 – Helipad West Landfill – Toe facing east upslope (ATT31_Photo31.jpg)	589984.9	7597221.3	4-Aug-2016
89	FOX 4 – Helipad West Landfill – SW slope facing northwest – Feature B – Minor self armouring erosion channels (Acceptable) (ATT149_Photo149.jpg)	590045.6	7597186.5	4-Aug-2016
90	FOX 4 – Helipad West Landfill – South end of west slope facing north – Feature B – Minor self armouring erosion (Acceptable) (ATT150_Photo150.jpg)	590060.9	7597178.1	4-Aug-2016
91	FOX 4 – Helipad West Landfill – Toe of slope facing east – Feature C – Minor self armouring erosion channels (Acceptable) (ATT153_Photo153.jpg)	590013.7	7597202.8	4-Aug-2016

Table 4-8: Summary Table of Photographic Log – Helipad West Landfill

Photo	Description (file name)	Easting	Northing	Date
92	FOX 4 – Helipad West Landfill – Crest of slope facing northwest – Feature D – Minor self armouring erosion at top of slope (Acceptable) (ATT143_Photo143.jpg)	590039.4	7597234.4	4-Aug-2016
93	FOX 4 – Helipad West Landfill – Previously observed vehicle tracks (Feature A) not considered noteworthy in 2016, facing southwest downslope (ATT148_Photo148.jpg)	590056.2	7597190.6	4-Aug-2016
94	FOX 4 – Helipad West Landfill – Feature F – Minor settlement or uneven ground (Acceptable), facing south (ATT146_Photo146.jpg)	590072.9	7597218.2	4-Aug-2016
95	FOX 4 – Helipad West Landfill – Feature F – Close up of minor settlement areas with cap for scale (Acceptable), facing south (ATT147_Photo147.jpg)	590072.9	7597218.2	4-Aug-2016
96	FOX 4 – Helipad West Landfill – NW toe facing northwest – Previously observed settlement (Feature G) appears to be area of uneven ground and not considered noteworthy in 2016 (ATT157_Photo157.jpg)	590025.1	7597247.0	4-Aug-2016
97	FOX 4 – Helipad West Landfill – Slope above landfill facing south – Feature H – Previously observed settlement area with small sinkholes (Acceptable) (ATT141_Photo141.jpg)	590051.4	7597256.8	4-Aug-2016
98	FOX 4 – Helipad West Landfill – West toe facing north – Feature I – Minor sink holes at edge of coarse rock fill (Acceptable) (ATT154_Photo154.jpg)	590010.1	7597215.6	4-Aug-2016
99	FOX 4 – Helipad West Landfill – Feature J – Orange staining and seepage with sheen, soft saturated ground – West toe facing east (Acceptable) (ATT155_Photo155.jpg)	590019.1	7597237.5	4-Aug-2016
100	FOX 4 – Helipad West Landfill – Feature J – Orange staining with no seepage at time of 2016 inspection – West toe facing southeast (ATT156_Photo156.jpg)	590020.4	7597241.4	4-Aug-2016
101	FOX 4 – Helipad West Landfill – Slope above landfill and below helipad facing west– Feature K – previously observed exposed wires (Acceptable) (ATT145_Photo145.jpg)	590065.1	7597238.9	4-Aug-2016
102	FOX 4 – Helipad West Landfill – Slope east of MW98-06 facing south – Feature L – Exposed steel pipe (Acceptable) (ATT142_Photo142.jpg)	590050.3	7597267.3	4-Aug-2016
103	FOX 4 – Helipad West Landfill – Slope northwest of landfill facing northwest – Feature M – Self armouring erosion (Acceptable) (ATT140_Photo140.jpg)	590017.0	7597287.1	4-Aug-2016
104	FOX 4 – Helipad West Landfill – Feature N – Saturated wet slope with seepage at toe – West slope facing southeast (ATT144_Photo144.jpg)	590040.3	7597237.4	4-Aug-2016
105	FOX 4 – Helipad West Landfill – West slope facing northwest – Feature O – Minor cracking (Marginal), weathered, small parallel crack above (ATT151_Photo151.jpg)	590038.8	7597211.2	4-Aug-2016

Table 4-8: Summary Table of Photographic Log – Helipad West Landfill

Photo	Description (file name)	Easting	Northing	Date
106	FOX 4 – Helipad West Landfill – West slope west – Feature C – Self armouring erosion (Acceptable) (ATT152_Photo152.jpg)	590034.6	7597203.7	4-Aug-2016
107	FOX-4 – Helipad West Landfill – MW98-01 (ATT83_Photo83.jpg)	590030.2	7597179.4	4-Aug-2016
108	FOX-4 – Helipad West Landfill – Soil sampling location MW98-01 before excavation (ATT84_Photo84.jpg)	590032.4	7597181.8	4-Aug-2016
109	FOX-4 – Helipad West Landfill – Soil sampling location MW98-01 after excavation (ATT85_Photo85.jpg)	590032.4	7597181.8	4-Aug-2016
110	FOX-4 – Helipad West Landfill – Soil sampling location MW98-01 after backfilling (ATT86_Photo86.jpg)	590032.4	7597181.8	4-Aug-2016
111	FOX-4 – Helipad West Landfill – MW98-02 monitoring well casing full of water and bentonite (ATT79_Photo79.jpg)	590013.8	7597243.4	4-Aug-2016
112	FOX-4 – Helipad West Landfill – Soil sampling location MW98-02 before excavation (ATT80_Photo80.jpg)	590011.9	7597244.3	4-Aug-2016
113	FOX-4 – Helipad West Landfill – Soil sampling location MW98-02 after excavation (ATT81_Photo81.jpg)	590011.9	7597244.3	4-Aug-2016
114	FOX-4 – Helipad West Landfill – Soil sampling location MW98-02 after backfilling (ATT82_Photo82.jpg)	590011.9	7597244.3	4-Aug-2016
115	FOX-4 – Helipad West Landfill – MW98-03 (ATT87_Photo87.jpg)	590112.4	7597225.7	4-Aug-2016
116	FOX-4 – Helipad West Landfill – Soil sampling location MW98-03 before excavation (ATT88_Photo88.jpg)	590114.2	7597225.9	4-Aug-2016
117	FOX-4 – Helipad West Landfill – Soil sampling location MW98-03 after excavation (ATT89_Photo89.jpg)	590114.2	7597225.9	4-Aug-2016
118	FOX-4 – Helipad West Landfill – Soil sampling location MW98-03 after backfilling (ATT90_Photo90.jpg)	590114.2	7597225.9	4-Aug-2016
119	FOX-4 – Helipad West Landfill – MW98-06 monitoring well casing full of bentonite (ATT75_Photo75.jpg)	590044.2	7597258.0	4-Aug-2016
120	FOX-4 – Helipad West Landfill – Soil sample location MW98-06 before excavation (ATT76_Photo76.jpg)	590047.8	7597260.4	4-Aug-2016
121	FOX-4 – Helipad West Landfill – Soil sample location MW98-6 after excavation (ATT77_Photo77.jpg)	590047.8	7597260.4	4-Aug-2016
122	FOX-4 – Helipad West Landfill – Soil sample location MW98-06 after backfilling (ATT78_Photo78.jpg)	590047.8	7597260.4	4-Aug-2016

4.2.3 Summary of Sampling Deviations

The field work was conducted as per the TOR with the following exception:

- The deep soil samples at MW98-01, MW98-02 and MW98-06 could not be collected due to refusal on rock; and.
- The groundwater samples at MW98-01, MW98-03 and MW98-06 could not be collected because the wells were dry.

4.2.4 Soil Sampling

Table 4-9 presents a summary of analytical results for soil samples collected at the Helipad West Landfill. MW98-03 and MW98-06 represent upgradient sampling locations, whereas MW98-01 and MW98-02 represent downgradient sampling locations.

Table 4-9 also lists the arithmetic mean background and baseline values for the landfill, in addition to the baseline mean plus 3σ limits. At the Helipad West Landfill, the background arithmetic means for copper, nickel, cobalt, zinc and chromium are greater than the baseline arithmetic means. The background arithmetic means for copper and cobalt are also greater than the baseline means plus 3σ .

MW98-03

Sampling location MW98-03 is located upgradient of the landfill, approximately 62 m east of the toe. The estimated elevation of this sampling point is 389 masl. As shown in Photos 116 and 117, the area consists of sand, gravel and rock and is not vegetated. The soils consisted of brown sand, gravel and stone.

For the shallow sample at MW98-03 (0-15 cm), the concentrations of metals were similar to those reported in previous years. The modified TPH concentration observed in 2016 was consistent with concentrations observed in recent years. No cadmium, mercury or PCB were detected at this location in 2016. None of the reported values exceeded their respective baseline mean concentrations plus 3σ.

The deep sample at MW98-03 (40-50 cm, duplicate location) exhibited similar metals concentrations to the shallow sample. The concentrations of metals were similar to those reported in previous years. The average modified TPH concentration observed in 2016 (73 mg/kg) represents a new historical maximum concentration; the previous maximum concentration of 41 mg/kg was observed in 2006. No cadmium, mercury or PCB were detected at this location in 2016. None of the reported values exceeded their respective baseline mean concentration plus 3 σ .

MW98-06

Sampling location MW98-06 is located upgradient of the landfill, approximately 8 m north of the toe. The estimated elevation of this sampling point is 382 masl. As shown in Photos 120 and 121, the area largely consists of sand and gravel and is not vegetated. The soils consisted of grey sand with gravel and stone.

For the shallow sample at MW98-06 (0-15 cm), the concentrations of copper, nickel and lead were elevated compared to recent years, whereas the concentrations of other metals were less than or similar to the concentrations reported in previous years. The modified TPH concentration observed in 2016 (170 mg/kg) is greater than the concentration observed in 2015 (28 mg/kg) but was below the baseline mean concentration (222 mg/kg). The concentration of the PHC F4 fraction in 2016 was 28 mg/kg. No cadmium, mercury or PCB were detected at this location in 2016. None of the reported values exceeded their respective baseline mean concentration plus 3σ .

MW98-01

Sampling location MW98-01 is located downgradient of the landfill, approximately 5 m south of the toe. The estimated elevation of this sampling point is 372.5 masl. As shown in Photos 108 and 109, the area is covered with sand and gravel and is not vegetated; a channel containing boulders and stones is present immediately south of the sampling location. The soils consisted of wet brown sand with some gravel.

For the shallow sample at MW98-01 (0-15 cm), the concentrations of most metals observed in 2016 represent new historical maxima. Metals concentrations were relatively stable at this location from 1999 to 2013, but increased in 2014 and 2016. The concentrations of copper, nickel, cobalt, zinc and chromium exceeded their baseline mean concentration plus 3 σ ; none of the other parameters exceeded their baseline mean concentrations plus 3 σ . No cadmium, mercury, PHC or PCB were detected at this location in 2016.

MW98-02

Sampling location MW98-02 is located downgradient of the landfill, approximately 27 m west of the toe. The estimated elevation of this sampling point is 369 masl. As shown in Photos 99 and 100, orange staining was observed approximately 8 m upgradient (east) of the sampling location. The area consists of sand and gravel with some rock and is not vegetated (Photos 112 and 113). The soils consisted of brown sand with some gravel.

For the shallow sample at MW98-02 (0-15 cm), the concentrations of all metals were less than or similar to those reported in previous years. The modified TPH concentration observed in 2016 (3,358 mg/kg) exceeded the baseline mean concentration plus 3σ (1,772 mg/kg) and represents a new historical maximum concentration; the previous maximum concentration of 1,582 mg/kg was observed in 2005. None of the other parameters exceeded their baseline mean concentrations plus 3σ . No cadmium, mercury or PCB were detected at this location in 2016.

Table 4-9: Soil Chemical Analysis Results – Helipad West Landfill

ID	Depth (cm)	Cu (mg/kg)	Ni (mg/kg)	Co (mg/kg)	Cd (mg/kg)	Pb (mg/kg)	Zn (mg/kg)	Cr (mg/kg)	As (mg/kg)	Hg (mg/kg)	Total PCBs (mg/kg)	F1 (mg/kg)	F2 (mg/kg)	F3 (mg/kg)	F4 (mg/kg)
Background Mean		<u>30.2</u>	<u>24.0</u>	<u>8.8</u>	<u>1.0</u>	<u>10.0</u>	<u>41.5</u>	<u>40.6</u>	<u>28.6</u>	<u>NA</u>	<u>NA</u>	<u>NA</u>	<u>NA</u>	<u>NA</u>	<u>NA</u>
Baseline Mean		15.4	15.8	5.9	1.0	24.0	35.5	34.9	33.8	NA	0.001	NA	NA	NA	NA
Baseline + 3σ		28.7	25.2	8.1	1.1	38.0	51.2	52.6	123.1	NA	0.17	NA	NA	NA	NA
Upgradient															
MW98-03b	0-15	15.2	14.6	5.2	<0.5	5.7	31.9	<u>44.1</u>	21	<0.1	<0.05	<7	<4	48	29
MW98-03a	40-50	13.6	12.9	4.3	<0.5	4.3	25.2	31.5	24.2	<0.1	<0.05	<7	<4	82	53
MW98-03a dup	40-50	19	18	5.1	<0.5	6	36	34	22	<0.10	<0.05	<5	<10	<50	<50
MW98-03a (Dup Avg)	40-50	16	15	4.7	<0.5	5	31	33	23	<0.1	<0.05	<6	<7	66	52
MW98-06a	0-15	25.2	20.7	6.3	<0.5	8	37.8	<u>47.8</u>	18.4	<0.1	<0.05	<7	6	160	28
MW98-06 (dee	ep) ¹														
Downgradient															
MW98-01a	0-15	<u>67.8</u>	<u>44.5</u>	<u>15.6</u>	<0.5	5	<u>71.2</u>	<u>139</u>	<u>74.7</u>	<0.1	<0.05	<7	<4	<8	<6
MW98-01 (dee	ep) ¹														
MW98-02a	0-15	16.1	16.5	5.7	<0.5	4.6	33.3	<u>42.3</u>	18.2	<0.1	<0.05	258	2850	250	<6
MW98-02 (dee	p) 1														

Notes:

NA: Not available; ID: Soil sample location ID.

<u>Underlined values</u>: Results exceed Background arithmetic mean.

Bold Values: Results exceed Baseline arithmetic mean.

Shaded Values: Results exceed the Baseline arithmetic mean plus 3o.

1: The deep soil samples at MW98-01, MW98-02 and MW98-06 could not be collected due to refusal on rock.

4.2.5 Groundwater Sampling

Groundwater sampling and monitoring well inspection field records are included in Appendix B. Table 4-10 presents a summary of groundwater levels and analytical results for groundwater samples collected at the Helipad West Landfill. The groundwater samples at MW98-01, MW98-03 and MW98-06 could not be collected because the wells were dry.

MW98-02

The depth to groundwater measured at MW98-02 in 2016 was 0.16 m below grade. The concentrations of all metals were lower in comparison to those reported in recent years. Similarly, the modified TPH concentration observed in 2016 was less than those reported in recent years. No cadmium, chromium, mercury or PCB were detected at this location in 2016. None of the reported values exceeded their respective baseline mean concentration plus 3σ .

Table 4-10: Monitoring Well Groundwater Levels and Groundwater Chemical Analysis Results – Helipad West Landfill

ID	GW Depth BGS (m)	Cu (mg/L)	Ni (mg/L)	Co (mg/L)	Cd (mg/L)	Pb (mg/L)	Zn (mg/L)	Cr (mg/L)	As (mg/L)	Hg (mg/L)	Total PCBs (mg/L)	F1 (mg/L)	F2 (mg/L)	F3 (mg/L)	F4 (mg/L)
Baseline Mean		0.072	1.03	0.044	0.0018	0.016	0.14	1.27	0.015	NA	0.000026	NA	NA	NA	NA
Baseline + 3σ		0.17	2.8	0.19	0.0031	0.05	0.43	2.79	0.06	NA	0.00012	NA	NA	NA	NA
Upgradient															
MW98	-03 ¹														
MW98-06 ¹															
Downgradient															
MW98	-01 ¹														
MW98-02	0.16	0.0006	0.006	0.003	<0.0001	0.0001	0.09	<0.001	0.004	<0.0001	<0.00005	0.395	<0.100	<0.100	<0.100

Notes:

ID: Monitoring well location ID.

GW: Groundwater.

BGS: Below ground surface.

NA: Not available

Bold Values: Results exceed Baseline arithmetic mean.

1: The groundwater samples at MW98-01, MW98-03 and MW98-06 could not be collected because the wells were dry.

4.2.6 Conclusions and Overall Performance of the Helipad West Landfill

Based on the visual inspection, there were no indications of instability at the the Helipad West Landfill. No sloughing or exposed waste was observed. A new tension crack (Feature O) was observed at the top of the west slope that was assigned a "Marginal" severity rating. Occasional minor self-armouring erosion observed on the landfill slopes does not appear to be deteriorating with time. Isolated locations with minor settlement, sink holes and debris were observed at the landfill but these are not considered a concern. The overall physical performance of this landfill was assessed as "Marginal" because of the newly observed tension crack near the top of the west slope.

Concentrations of metals in soil were highest overall at the shallow sample location MW98-01, located downgradient of the south side of the landfill. Metals concentrations at this location were relatively stable at this location from 1999 to 2013, but increased in 2014 and 2016. The concentrations of most metals observed in 2016 represent new historical maxima and the concentrations of copper, nickel, cobalt, zinc and chromium exceeded their baseline mean concentration plus 3 σ . At MW98-02, MW98-03 and MW98-06, the concentrations of most metals were less than or similar to those reported in previous years.

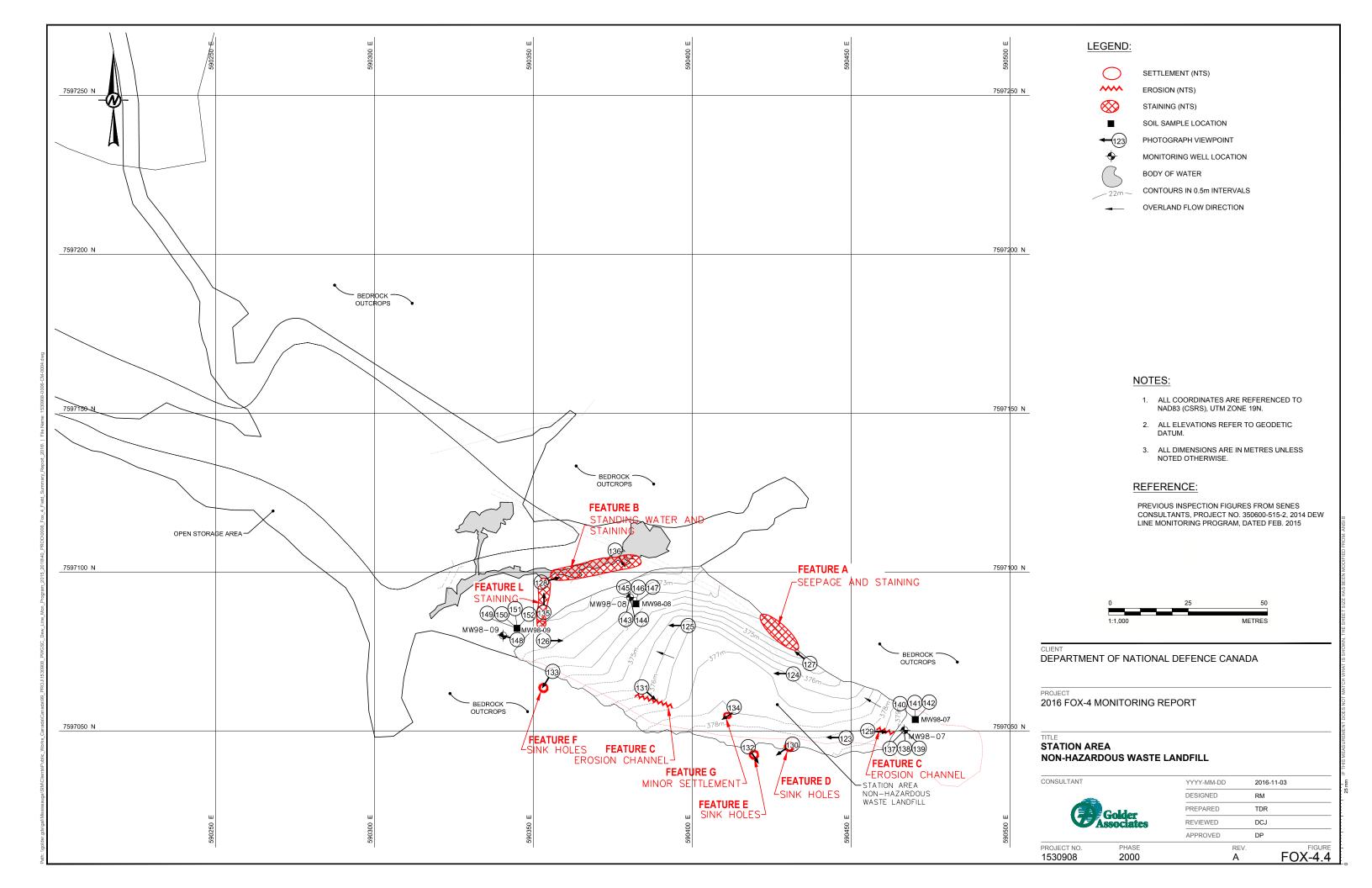
PHC were detected at the shallow and deep MW98-03 locations, the shallow MW98-02 location and the shallow MW98-06 location at modified TPH concentrations between 54 mg/kg and 3,358 mg/kg; the latter value was reported at MW98-02 and was considerably higher than the concentrations at the other locations. The significantly elevated modified TPH concentration reported at MW98-02 in 2016 exceeded the baseline mean concentration plus 3 σ and represents a new historical maximum concentration. No detectable concentrations of cadmium, mercury or PCB were noted in any of the samples in 2016.

In 2016, a groundwater sample could only be collected at MW98-02; the concentrations of all metals and PHC were lower in comparison to those reported in recent years. No cadmium, chromium, mercury or PCB were detected at this location in 2016.

Overall, it was noted that a number of the soil sampling results (e.g., metals at MW98-01 and PHC at MW98-02) were greater than in previous years; this may be reflective of an ongoing impact from the landfill.

4.2.7 Recommendations for the Helipad West Landfill

No modifications to the ongoing monitoring program at this landfill are recommended.


4.3 Station Area Landfill

4.3.1 Landfill Description

The Station Area Landfill is a non-hazardous waste landfill located east of the Short Range Radar (SRR) station facilities at the Upper Site, and has an approximate area of 2,000 m². This landfill was constructed for disposal of demolition and remediation waste generated during cleanup activities. The design of this landfill included the construction of perimeter berms and placement of granular cover material over the waste materials.

The long term monitoring plan for this landfill consists of visual inspection and the periodic collection of soil and groundwater samples. Three groundwater monitoring wells, MW98-07 through MW98-09, are installed around the landfill perimeter. The approximate locations for the collection of soil and groundwater samples are identified on Figure FOX-4.4.

4.3.2 Visual Inspection

The Station Area Landfill exhibits some observed minor settlement, erosion, ponded water and staining features. There was no observed cracking, exposed waste or indications of slope instability. Table 4-11 presents a summary of observed visual inspection features and Table 4-12 presents the Preliminary Stability Assessment results. This landfill was assessed to have an "Acceptable" overall performance because all observed features were assessed as "Acceptable." Table 4-13 is a log of photographs taken during the 2016 visual inspection.

There are some previously observed sink holes located along the edge of the landfill (Features D, E, F) where the cover surface abuts large boulders and bedrock outcrops. The sink holes do not appear to be caused by groundwater flow, permafrost thaw or settlement of the subsurface. They appear to be simply caused by sand and gravel washing into voids of the adjacent boulder rockfill, as a result of the gravel cover not being filter compatible with the boulder rockfill. Precipitation runoff from both the landfill granular cover and the adjacent bedrock abutments likely contributed to their formation. They have not resulted in exposed waste to date and do not require any remedial attention at the present time (other than ongoing visual monitoring at the current frequency).

There was a small minor settlement area on the cover surface (Feature G) that does not appear to have changed since the previous inspection. Previously observed erosion channels (Feature C) appear to be self-armouring and are not a concern.

There were two areas of previously observed ponded water (Features A and B) with orange staining that may be related to landfill seepage. Feature L is an area of orange staining at the west toe of the landfill that may be related to landfill seepage but did not have any associated ponded water.

Previously observed Features H (settlement), I (debris), J (debris) and K (old culvert) were not identified as noteworthy features during the 2016 visual inspection.

Table 4-11: Visual Inspection Checklist – Station Area Landfill

SITE NAME: FOX-4

LANDFILL DESIGNATION: Station Area Non-Hazardous Waste Landfill

DATE OF INSPECTION: August 4, 2016

DATE OF PREVIOUS INSPECTION: August 25, 2014

INSPECTED BY: Darrin Johnson

REPORT PREPARED BY: Darrin Johnson

MONITORING EVENT NUMBER: 12

The inspector/reporter represents to the best of his/her knowledge that the following statements and observations are true and correct and to the best of the preparer's actual knowledge, no material facts have been suppressed or misstated.

Table 4-11: Visual Inspection Checklist — Station Area Landfill

Checklist Item	Present (Y/N)	Feature ID (A, B, etc.)	Location Description	Easting	Northing	Length (m)	Width (m)	Depth (m)	Extent of Landfill Area (%)	Description	Comparison to Historical Observations	Photos
		D	South edge of landfill	590431.5	7597045.8	2	1	0.5	0.1%	Sink holes (Acceptable)	Previously observed, no change	130
Cattlena ant	V	E	South edge of landfill	590417.6	7597045.0	2	1	0.5	0.1%	Sink holes (Acceptable)	Previously observed, no change	132
Settlement	Y	F	Southwest edge of landfill	590356.1	7597068.7	3	1	0.5	0.15%	Sink holes (Acceptable)	Previously observed, no change	133
		G	Central cover	590413.2	7597057.5	5	2	0.3	0.50%	Minor settlement (Acceptable)	Previously observed, no change	134
	Y	С	Central and	590455.2	7597050.1	10	2	0.1	1.0%	Minor self- armouring erosion channels (Acceptable)	observed, no	129
Erosion			east end of cover surface	590384.1	7597063.8	15	2	0.01	1.5%			131
Lateral Movement	N											
Frost Action	N											
Sloughing	N											
Cracking	N											
Animal Burrows	N											
Vegetation	N											
Staining	Y	L	West toe of landfill	590353.3	7597087.3	15	3	-	2.3%	Orange staining (Acceptable)	Previously observed, no change	135
Vegetation Stress	N											_

Table 4-11: Visual Inspection Checklist — Station Area Landfill

Checklist Item	Present (Y/N)	Feature ID (A, B, etc.)	Location Description	Easting	Northing	Length (m)	Width (m)	Depth (m)	Extent of Landfill Area (%)	Description	Comparison to Historical Observations	Photos
Seepage or	Y	А	Lower toe at east end	590437.0	7597071.2	15	3	0.1	2.2%	Minor seepage with some orange staining (Acceptable)	Previously observed, no change	127
Ponded Water	Y	В	Northwest end	590352.5	7597096.8	30	5	0.1	7.5%	Standing water with orange staining (Acceptable)	Previously observed, no change	128, 136
Debris and/or Liner Exposed	N											
Presence / Condition of Monitoring Instruments	Y	MW98-07, -08, -09	-	-	-	-	-	-	-	Monitoring wells intact	Casings filled with bentonite	137, 143, 144, 148
Features of Note / Other Observations	N											

Landfill Area = 2,000 m².

Table 4-12: Preliminary Stability Assessment — Station Area Landfill

Feature	Severity Rating	Extent	
Settlement	Acceptable	Occasional	
Erosion	Acceptable	Isolated	
Lateral Movement	Not observed	-	
Frost Action	Not observed	-	
Sloughing	Not observed	-	
Cracking	Not observed	-	
Animal Burrows	Not observed	-	
Vegetation Establishment	Not observed	-	
Staining	Acceptable	Occasional	
Vegetation Stress	Not observed	-	
Seepage/Ponded Water	Acceptable	Occasional	
Debris and/or Liner Exposure	Not observed	-	
Other	Not observed	-	
Overall Landfill Performance	Acceptal	ole	

Table 4-13: Summary Table of Photographic Log — Station Area Landfill

Photo	Description (file name)	Easting	Northing	Date
123	FOX 4 – Station Area Landfill – East end facing west (ATT22_Photo22.jpg)	590448.4	7597047.8	4-Aug-2016
124	FOX 4 – Station Area Landfill – North slope facing west (ATT23_Photo23.jpg)	590431.8	7597067.9	4-Aug-2016
125	FOX 4 – Station Area Landfill – North side facing west and MW98-08 – Feature L (staining) and Feature B (ponded water) in background (Acceptable) (ATT24_Photo24.jpg)	590398.7	7597083.1	4-Aug-2016
126	FOX 4 – Station Area Landfill – West end facing east – Previously observed minor settlement (Feature H) is just rough grading and not considered noteworthy (ATT25_Photo25.jpg)	590353.2	7597078.5	4-Aug-2016
127	FOX 4 – Station Area Landfill – East end toe facing northwest – Previously observed Feature A - Seepage with orange staining (Acceptable) (ATT134_Photo134.jpg)	590437.0	7597071.2	4-Aug-2016
128	FOX 4 – Station Area Landfill – Northwest toe facing east – Feature B – Ponded water with orange staining (Acceptable) (ATT137_Photo137.jpg)	590352.5	7597096.8	4-Aug-2016

Table 4-13: Summary Table of Photographic Log — Station Area Landfill

Photo	Description (file name)	Easting	Northing	Date
129	FOX 4 – Station Area Landfill – East end facing east – Feature C – Minor self armouring erosion with fines washed down slope, soft ground at bottom of slope (Acceptable) (ATT130_Photo130.jpg)	590455.2	7597050.1	4-Aug-2016
130	FOX 4 – Station Area Landfill – Feature D – Sink holes along south edge of landfill facing southwest (Acceptable) (ATT131_Photo131.jpg)	590431.5	7597045.8	4-Aug-2016
131	FOX 4 – Station Area Landfill – Crest surface facing east – Feature C – Minor self armouring erosion (Acceptable) (ATT139_Photo139.jpg)	590384.1	7597063.8	4-Aug-2016
132	FOX 4 – Station Area Landfill – Feature E – Sink holes along south edge of landfill, facing southeast (Acceptable) (ATT132_Photo132.jpg)	590417.6	7597045.0	4-Aug-2016
133	FOX 4 – Station Area Landfill – Feature F – Sink holes along south edge of landfill, facing southwest (Acceptable) (ATT138_Photo138.jpg)	590356.1	7597068.7	4-Aug-2016
134	FOX 4 – Station Area Landfill – Central crest surface facing southwest – Feature G – Previously observed minor settlement (<0.1 m deep) may just be rough grading (Acceptable) (ATT133_Photo133.jpg)	590413.2	7597057.5	4-Aug-2016
135	FOX 4 – Station Area Landfill – West toe facing north – Feature L – Orange staining (Acceptable) (ATT136_Photo136.jpg)	590353.3	7597087.3	4-Aug-2016
136	FOX 4 – Station Area Landfill – Northwest toe facing southeast towards landfill – Feature B – Ponded water with orange staining (Acceptable) (ATT135_Photo135.jpg)	590375.7	7597106.8	4-Aug-2016
137	FOX-4 – Station Area Landfill – MW98-07 monitoring well casing filled with bentonite (ATT69_Photo69.jpg)	590470.2	7597053.6	4-Aug-2016
138	FOX-4 – Station Area Landfill – MW98-07 (ATT70_Photo70.jpg)	590470.2	7597053.6	4-Aug-2016
139	FOX-4 – Station Area Landfill – MW98-07 (ATT71_Photo71.jpg)	590470.2	7597053.6	4-Aug-2016
140	FOX-4 – Station Area Landfill – Soil sampling location MW98-07 before excavation (ATT59_Photo59.jpg)	590462.4	7597054.2	4-Aug-2016
141	FOX-4 – Station Area Landfill – Soil sampling location MW98-07 after excavation (ATT60_Photo60.jpg)	590462.4	7597054.2	4-Aug-2016
142	FOX-4 – Station Area Landfill – Soil sampling location MW98-07 after backfilling (ATT61_Photo61.jpg)	590462.4	7597054.2	4-Aug-2016
143	FOX-4 – Station Area Landfill – MW98-08 (ATT72_Photo72.jpg)	590381.2	7597088.9	4-Aug-2016

Table 4-13: Summary Table of Photographic Log — Station Area Landfill

Photo	Description (file name)	Easting	Northing	Date
144	FOX-4 – Station Area Landfill – MW98-08 monitoring well casing filled with bentonite (ATT73_Photo73.jpg)	590381.2	7597088.9	4-Aug-2016
145	FOX-4 – Station Area Landfill – Soil sampling location MW98-08 before excavation (ATT62_Photo62.jpg)	590382.3	7597090.0	4-Aug-2016
146	FOX-4 – Station Area Landfill – Soil sampling location MW98-08 after excavation (ATT63_Photo63.jpg)	590382.3	7597090.0	4-Aug-2016
147	FOX-4 – Station Area Landfill – Soil sampling location MW98-08 after backfilling (ATT64_Photo64.jpg)	590382.3	7597090.0	4-Aug-2016
148	FOX-4 – Station Area Landfill – MW98-09 with bentonite inside protective casing (ATT74_Photo74.jpg)	590343.0	7597079.8	4-Aug-2016
149	FOX-4 – Station Area Landfill – Soil sampling location MW98-09 before excavation (ATT65_Photo65.jpg)	590344.9	7597082.3	4-Aug-2016
150	FOX-4 – Station Area Landfill – Soil sampling location MW98-09 after excavation (ATT66_Photo66.jpg)	590344.9	7597082.3	4-Aug-2016
151	FOX-4 – Station Area Landfill – Soil sampling location MW98-09 after excavation (ATT67_Photo67.jpg)	590344.9	7597082.3	4-Aug-2016
152	FOX-4 – Station Area Landfill – Soil sampling location MW98-09 after backfilling (ATT68_Photo68.jpg)	590344.9	7597082.3	4-Aug-2016

4.3.3 Summary of Sampling Deviations

The field work was conducted as per the TOR with the following exceptions:

- The deep soil samples at MW98-07 and MW98-09 could not be collected due to refusal on rock;
- The groundwater samples at MW98-07 and MW98-08 could not be collected because the wells were dry; and,
- The groundwater sample at MW98-09 could not be collected because the groundwater in the well was frozen.

4.3.4 Soil Sampling

Table 4-14 presents a summary of analytical results for soil samples collected at the Station Area Landfill. MW98-07 represents an upgradient sampling location, whereas MW98-08 and MW98-09 represent downgradient sampling locations.

Table 4-14 also lists the arithmetic mean background and baseline values for the landfill, in addition to the baseline mean plus 3σ limits. At the Station Area Landfill, the background arithmetic means for copper, nickel, cobalt, cadmium, zinc, chromium and arsenic are greater than the baseline arithmetic means. The background arithmetic means for cobalt, cadmium and arsenic are greater than the baseline means plus 3σ .

MW98-07

Sampling location MW98-07 is located upgradient of the landfill, immediately east of the toe. The estimated elevation of this sampling point is 379.5 masl. As shown in Photos 140 and 141, the area consists of sand and gravel with some rock and is not vegetated. The soils consisted of brown sand with gravel and stone.

For the shallow sample at MW98-07 (0-15 cm), the concentrations of all metals were less than, or similar to, those reported in recent years. The modified TPH and PHC F3 fraction concentrations observed in 2016 (938 mg/kg and 913 mg/kg, respectively) represent new historical maximum concentrations; the previous maximum TPH concentration of 411 mg/kg was observed in 2005. The 2016 modified TPH value of 938 mg/kg exceeded the baseline mean concentration plus 3σ; none of the other parameters exceeded their baseline mean concentrations plus 3σ. No cadmium, mercury or PCB were detected at this location in 2016.

MW98-08

Sampling location MW98-08 is located at the north toe of, and within, the landfill cover. The estimated elevation of this sampling point is 373 masl. As shown in Photos 128 and 136, ponding of water and orange staining is observed along the north toe of the landfill, approximately 15 m north (downgradient) of the sampling location. The area largely consists of sand and gravel with sparse vegetation. The soils consisted of brown sand with some gravel and stone.

For the shallow sample at MW98-08 (0-15 cm), the concentrations of all metals were less than or similar to those reported in previous years. Whereas arsenic had exhibited a slight increasing trend to 2014, the 2016 results indicate a decline. No cadmium, mercury or PHC were detected at this location in 2016. The PCB concentration observed in 2016 (1.46 mg/kg) exceeded the baseline mean concentration plus 3σ (0.6 mg/kg) and represents a new historical maximum concentration; the previous maximum concentration of 0.26 mg/kg was observed in 2014 and 2001. None of the other parameters exceeded their baseline mean concentrations plus 3σ .

For the deep sample at MW98-08 (30-40 cm), metals concentrations were slightly lower than those in the shallow sample. The concentrations of all metals were less than or similar to those reported in previous years. Whereas arsenic had exhibited a slight increasing trend to 2014, the 2016 results indicate a decline. No cadmium, mercury or PHC were detected at this location in 2016. The PCB concentration observed in 2016 (0.19 mg/kg) is similar to the concentrations observed in 2014 and 2015 (0.19 mg/kg and 0.18 mg/kg, respectively). None of the reported values exceeded their respective baseline mean concentration plus 3σ .

MW98-09

Sampling location MW98-09 is located downgradient of the landfill, approximately 5 m west of the toe. The estimated elevation of this sampling point is 372.5 masl. As shown in Photo 135, ponding of water and orange staining is observed along the toe of the landfill, approximately 5 m east of the sampling location. The area largely consists of sand and gravel and is not vegetated (Photo 149). The soils consisted of grey sand with some gravel and stone.

For the shallow sample at MW98-09 (0-15 cm), the concentrations of all metals were similar to those reported in previous years. The concentrations of copper and nickel increased slightly in 2016 and represent new historical maxima. No cadmium, mercury or PHC were detected at this location in 2016. The PCB concentration observed in 2016 (0.08 mg/kg) is similar to the concentrations observed in previous years. None of the reported values exceeded their respective baseline mean concentration plus 3σ .

Table 4-14: Soil Chemical Analysis Results – Station Area Landfill

ID	Depth (cm)	Cu (mg/kg)	Ni (mg/kg)	Co (mg/kg)	Cd (mg/kg)	Pb (mg/kg)	Zn (mg/kg)	Cr (mg/kg)	As (mg/kg)	Hg (mg/kg)	Total PCB (mg/kg)	F1 (mg/kg)	F2 (mg/kg)	F3 (mg/kg)	F4 (mg/kg)
Background N	<u>Mean</u>	<u>30.2</u>	<u>24.0</u>	<u>8.8</u>	<u>1.0</u>	<u>10.0</u>	<u>41.5</u>	<u>40.6</u>	<u>28.6</u>	<u>NA</u>	<u>NA</u>	<u>NA</u>	<u>NA</u>	<u>NA</u>	<u>NA</u>
Baseline Mea	an	16.6	19.7	5.0	0.12	25.6	35.2	27.8	13.1	NA	0.16	NA	NA	NA	NA
Baseline + 3c	ז	35.2	64.1	7.7	0.3	36.7	53.5	50.4	22.7	NA	0.6	NA	NA	NA	NA
Upgradient	Upgradient														
MW98-07a	0-15	21.8	17.2	5.2	<0.5	9	35	40.3	17.3	<0.1	<0.05	<7	21	913	203
MW98-07 ((deep) ¹														
Downgradie	nt														
MW98-08b	0-15	11	11.9	3.8	<0.5	3.4	21	23.7	16.3	<0.1	1.46	<7	<4	<8	<6
MW98-08a	30-40	8.7	9.5	3.2	<0.5	2.5	20.3	21.7	14.5	<0.1	0.19	<7	<4	<8	<6
MW98-09a	0-15	18.3	13.3	4.6	<0.5	6.1	33.3	29.2	13.8	<0.1	0.08	<7	<4	<8	<6
MW98-09 (deep) ¹															

Notes:

NA: Not available; ID: Soil sample location ID.

<u>Underlined values</u>: Results exceed Background arithmetic mean.

Bold Values: Results exceed Baseline arithmetic mean.

Shaded Values: Results exceed the Baseline arithmetic mean plus 3 σ .

1: The deep soil samples at MW98-07 and MW98-09 could not be collected due to refusal on rock.

4.3.5 Groundwater Sampling

Groundwater sampling and monitoring well inspection field records are included in Appendix B. There were no groundwater samples collected at this landfill in 2016.

4.3.6 Conclusions and Overall Performance of the Station Area Landfill

The Station Area Non-Hazardous Waste Landfill had no observed cracking, exposed waste or indications of slope instability. The landfill has some previously observed minor settlement, erosion, ponded water and staining features. This landfill was assessed to have an "Acceptable" overall performance because all observed features were assessed as "Acceptable". Previously observed sink holes located along the edge of the landfill and a small minor settlement area on the cover surface do not appear to have changed since the last inspection. The sink holes do not appear to be caused by groundwater flow, permafrost thaw or settlement of the subsurface. They appear to be simply caused by sand and gravel washing into voids of the adjacent boulder rockfill, as a result of the gravel cover not being filter compatible with the boulder rockfill. Previously observed erosion channels are self-armouring and are not considered to be a concern. Previously observed ponded water along the edge of the landfill and orange staining may be related to landfill seepage.

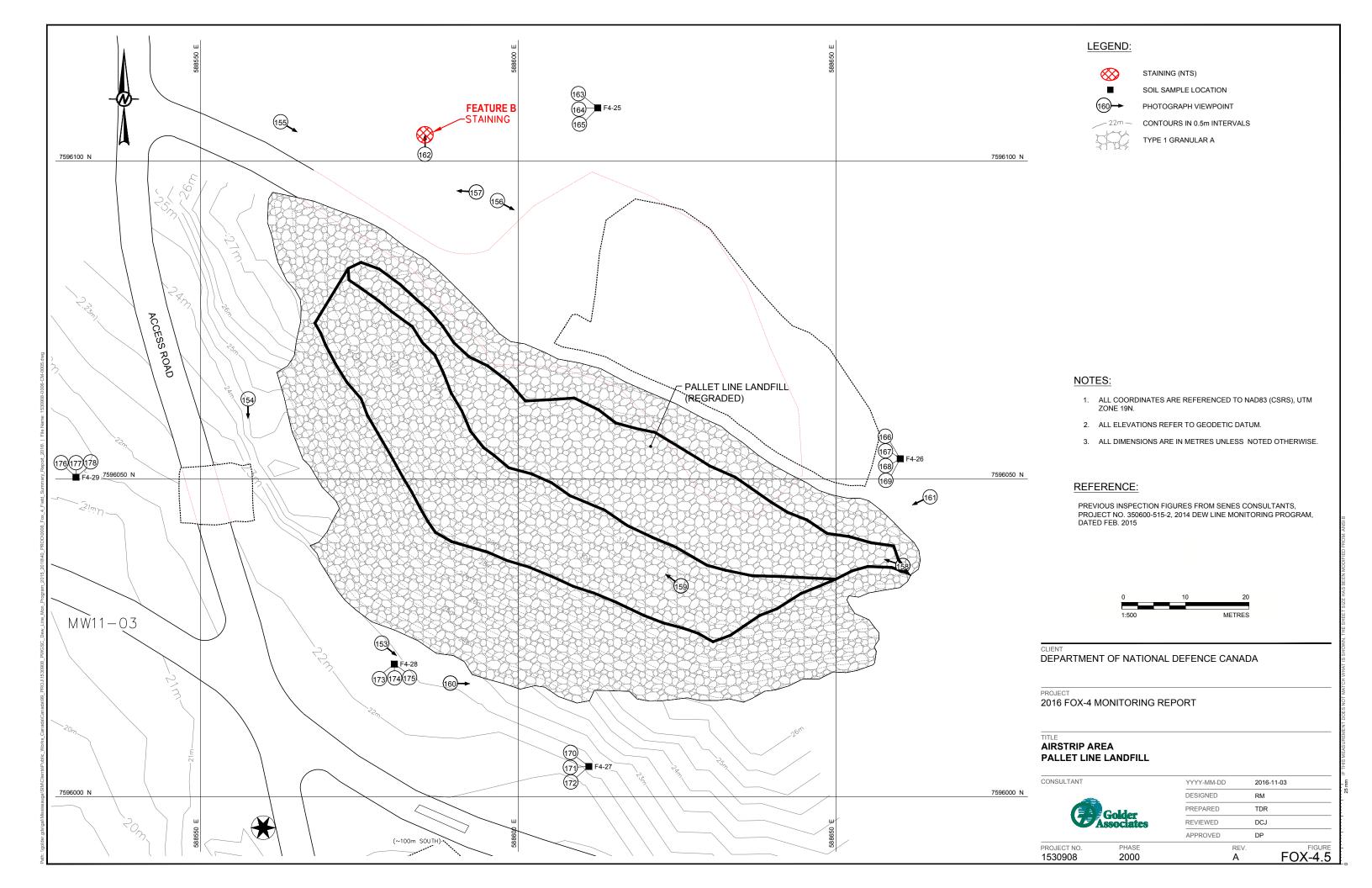
Concentrations of metal parameters in soil were highest overall at the shallow MW98-07 sample location, located upgradient of the east side of the landfill. At all three locations, the concentrations of metals were similar to or less than those reported in previous years. No detectable concentrations of cadmium or mercury were noted in any of the samples in 2016.

PHC were detected at upgradient location MW98-07; the modified TPH concentration observed in 2016 exceeded the baseline mean concentration plus 3 σ and represents a new historical maximum concentration. PCB were detected at the shallow and deep MW98-08 locations and the shallow MW98-09 location, at concentrations between 0.08 mg/kg and 1.46 mg/kg. The PCB concentration reported at the shallow MW98-08 location exceeded the baseline mean concentration plus 3 σ and represents a new historical maximum concentration.In 2016, groundwater samples could not be collected from any of the three monitoring wells adjacent to the landfill as they were dry or frozen. It is also noted that the casing and monitoring well pipe were filled with bentonite clay making collection of an accurate groundwater sample at these locations not be possible.

The historical graphs in Appendix C show concentration trends at the Station Area Non-Hazardous Waste Landfill. At downgradient locations MW98-08 and MW98-09, relatively stable trends are noted for most parameters. At upgradient location MW98-07, slight increasing trends are noted for a number of parameters, notably for chromium and modified TPH. The concentrations of all metals at MW98-07 were less than, or similar to, those reported in recent years and the increasing trends observed at MW98-07 are not considered to reflect impact from the landfill. Given the staining in the area of standing water and the presence of elevated PCB at MW98-08 in 2016, impact from the landfill may be occurring, however overall, there is no evident increasing trend in the metals concentrations in this area, with the possible exception of arsenic, up to 2014.

4.3.7 Recommendations for the Station Area Landfill

It is recommended that soil samples from closer to the ponded water/staining area be collected during the next monitoring event. It is further recommended, considering the inability to collect groundwater samples from the wells (because they are filled with bentonite clay), that consideration could be given to collection of water samples from either the ponded surface water, or a shallow hand dug excavation. In addition, an attempt should be made to flush these wells during the next sampling program.



4.4 Pallet Line Landfill

4.4.1 Landfill Description

The Pallet Line Landfill is located at the Lower Site, north of the airstrip and east of the Non-Hazardous Waste Landfill, and has an approximate area of 1,300 m². This landfill was in existence prior to the recent cleanup, however, it was upgraded between 2011 and 2013. Landfill remediation consisted of excavation and removal of three areas of Tier II contaminated soil and regrading with 0.4 m of Type 1 granular fill over 0.4 m of Type 2 granular fill. Approximate sampling locations are provided in Figure FOX-4.5. The 2016 monitoring event represented the second monitoring event at this landfill after it was upgraded.

4.4.2 Visual Inspection

The Pallet Line Landfill exhibited no evidence of instability, erosion, settlement or exposed waste. There was a small area (4 m x 4 m) with dark staining (Feature B) on the crest of the Pallet Line Landfill that does not appear to be related to landfill seepage (i.e., it could potentially be from a small surficial hydrocarbon spill). Previously observed ponded water (Feature A) was not observed during the 2016 visual inspection. Table 4-15 presents a summary of observed visual inspection features and Table 4-16 presents the Preliminary Stability Assessment results. This landfill was assessed to have an "Acceptable" overall performance. Table 4-17 is a log of photographs taken during the 2016 visual inspection.

Table 4-15: Visual Inspection Checklist – Pallet Line Landfill

SITE NAME: FOX-4

LANDFILL DESIGNATION: Pallet Line Landfill

DATE OF INSPECTION: August 5, 2016

DATE OF PREVIOUS INSPECTION: August 28, 2014

INSPECTED BY: Darrin Johnson

REPORT PREPARED BY: Darrin Johnson

MONITORING EVENT NUMBER: 12

The inspector/reporter represents to the best of his/her knowledge that the following statements and observations are true and correct and to the best of the preparer's actual knowledge, no material facts have been suppressed or misstated.

Table 4-15: Visual Inspection Checklist – Pallet Line Landfill

Checklist Item	Present (Y/N)	Feature ID (A, B, etc.)	Location Description	Easting	Northing	Length (m)	Width (m)	Depth (m)	Extent of Landfill Area (%)	Description (Severity Rating)	Comparison to Historical Observations	Photos
Settlement	N											
Erosion	N											
Lateral Movement	N											
Frost Action	N											
Sloughing	N											
Cracking	N											
Animal Burrows	N											
Vegetation	N											
Staining	Y	В	Crest surface of landfill	588585.3	7596101.1	2.00	2.00	-	0.31%	Minor dark hydrocarbon stain (Acceptable)	New	162
Vegetation Stress	N											
Seepage or Ponded Water	N	А	East crest	588664.8	7596047.2	-	-	-	-	Previously observed ponded water	Not observed in 2016	161
Debris and/or Liner Exposed	N											
Presence / Condition of Monitoring Instruments	N											
Features of Note / Other Observations	N											

Landfill Area = 1,300 m².

Table 4-16: Preliminary Stability Assessment – Pallet Line Landfill

Feature	Severity Rating	Extent
Settlement	Not observed	-
Erosion	Not observed	-
Lateral Movement	Not observed	-
Frost Action	Not observed	-
Sloughing	Not observed	-
Cracking	Not observed	-
Animal Burrows	Not observed	-
Vegetation Establishment	Not observed	-
Staining	Acceptable	Isolated
Vegetation Stress	Not observed	-
Seepage/Ponded Water	Not observed	-
Debris and/or Liner Exposure	Not observed	-
Other	Not observed	-
Overall Landfill Performance	Acce	eptable

Table 4-17: Summary Table of Photographic Log – Pallet Line Landfill

Photo	Description (file name)	Easting	Northing	Date
153	FOX 4 – Pallet Line Landfill – Southwest slope and toe facing southeast (ATT2_Photo2.jpg)	588578.5	7596024.2	5 Aug 2016
154	FOX 4 – Pallet Line Landfill – West toe facing south (ATT3_Photo3.jpg)	588557.5	7596062.6	5-Aug-2016
155	FOX 4 – Pallet Line Landfill – Northwest corner facing southeast (ATT4_Photo4.jpg)	588562.6	7596106.2	5-Aug-2016
156	FOX 4 – Pallet Line Landfill – Crest of landfill facing southeast (ATT5_Photo5.jpg)	588596.7	7596093.8	5-Aug-2016
157	FOX 4 – Pallet Line Landfill – Crest facing northwest (ATT6_Photo6.jpg)	588946.5	7596283.9	5-Aug-2016
158	FOX 4 – Pallet Line Landfill – South end facing northwest (ATT7_Photo7.jpg)	588660.5	7596036.4	5-Aug-2016
159	FOX 4 – Pallet Line Landfill – South slope facing northwest (ATT8_Photo8.jpg)	588625.6	7596033.2	5-Aug-2016
160	FOX 4 – Pallet Line Landfill – Toe of south slope facing east (ATT9_Photo9.jpg)	588589.3	7596017.9	5-Aug-2016
161	FOX 4 – Pallet Line Landfill – Previously observed ponded water (Feature A) not observed in 2016 – East end facing southwest (ATT95_Photo95.jpg)	588664.8	7596047.2	5-Aug-2016
162	FOX 4 – Pallet Line Landfill – Crest surface of landfill facing north – Feature B – Minor dark (potential hydrocarbon) staining not related to landfill performance (Acceptable) (ATT94_Photo94.jpg)	588585.3	7596101.1	5-Aug-2016

Table 4-17: Summary Table of Photographic Log – Pallet Line Landfill

Photo	Description (file name)	Easting	Northing	Date
163	FOX-4 – Pallet Line Landfill – Soil sample location F4-25 before excavation (ATT49_Photo49.jpg)	588612.5	7596108.4	3-Aug-2016
164	FOX-4 – Pallet Line Landfill – Soil sample location F4-25 after excavation (ATT50_Photo50.jpg)	588612.5	7596108.4	3-Aug-2016
165	FOX-4 – Pallet Line Landfill – Soil sample location F4-25 after backfilling (ATT51_Photo51.jpg)	588612.5	7596108.4	3-Aug-2016
166	FOX-4 – Pallet Line Landfill – Soil sampling location F4-26 before excavation (ATT52_Photo52.jpg)	588660.1	7596053.2	3-Aug-2016
167	FOX-4 – Pallet Line Landfill – Soil sampling location F4-26 after excavation (ATT53_Photo53.jpg)	588660.1	7596053.2	3-Aug-2016
168	FOX-4 – Pallet Line Landfill – Soil sampling location F4-26 after excavation (ATT54_Photo54.jpg)	588660.1	7596053.2	3-Aug-2016
169	FOX-4 – Pallet Line Landfill – Soil sampling location F4-26 after backfilling (ATT55_Photo55.jpg)	588660.1	7596053.2	3-Aug-2016
170	FOX-4 – Pallet Line Landfill – Soil sampling location F4-27 before excavation (ATT56_Photo56.jpg)	588611.1	7596004.8	3-Aug-2016
171	FOX-4 – Pallet Line Landfill – Soil sampling location F4-27 after excavation (ATT57_Photo57.jpg)	588611.1	7596004.8	3-Aug-2016
172	FOX-4 – Pallet Line Landfill – Soil sampling location F4-27 after backfilling (ATT58_Photo58.jpg)	588611.1	7596004.8	3-Aug-2016
173	FOX-4 – Pallet Line Landfill – Soil sampling location F4-28 before excavation (ATT91_Photo91.jpg)	588580.5	7596020.9	5-Aug-2016
174	FOX-4 – Pallet Line Landfill – Soil sampling location F4-28 after excavation (ATT92_Photo92.jpg)	588580.5	7596020.9	5-Aug-2016
175	FOX-4 – Pallet Line Landfill – Soil sampling location F4-28 after backfilling (ATT93_Photo93.jpg)	588580.5	7596020.9	5-Aug-2016
176	FOX-4 – Pallet Line Landfill – Soil sampling location F4-29 before excavation (ATT34_Photo34.jpg)	588530.4	7596050.3	3-Aug-2016
177	FOX-4 – Pallet Line Landfill – Soil sampling location F4-29 after excavation (ATT35_Photo35.jpg)	588530.4	7596050.3	3-Aug-2016
178	FOX-4 – Pallet Line Landfill – Soil sampling location F4-29 after backfilling (ATT36_Photo36.jpg)	588530.4	7596050.3	3-Aug-2016

4.4.3 Summary of Sampling Deviations

The field work was conducted as per the TOR with the following exceptions:

■ The deep soil samples at F4-25, F4-26, F4-27, F4-28 and F4-29 could not be collected due to refusal on rock.

4.4.4 Soil Sampling

Table 4-18 presents a summary of analytical results for soil samples collected at the Pallet Line Landfill. F4-25 and F4-26 represent upgradient sampling locations, whereas F4-27, F4-28 and F4-29 represent downgradient sampling locations.

Table 4-18 also lists the arithmetic mean background and baseline values for the site, in addition to the baseline mean plus baseline plus 3σ limits. At the Pallet Line Landfill, the background arithmetic means for copper, nickel, cobalt, zinc and chromium are greater than the baseline arithmetic means.

F4-25

Sampling location F4-25 is located upgradient of the landfill, approximately 35 m north of the toe. The estimated elevation of this sampling point is 32 masl. As shown in Photos 163 and 164, the area consists of sand and gravel with some rock and is not vegetated. The soils consisted of yellow-brown sand, gravel and stone.

For the shallow sample at F4-25 (0-15 cm), the concentrations of most metals were slightly lower than those reported in 2014. The concentration of cadmium (2.8 mg/kg) increased from the non-detectable concentration (less than 0.1 mg/kg) observed in 2014 and exceeded the baseline mean concentration plus 3σ (1.0 mg/kg). No mercury or PHC were detected at this location in 2016. The PCB concentration (0.27 mg/kg) exceeded the baseline mean concentration plus 3σ (0.05 mg/kg); no PCB were detected in 2014. None of the other parameters exceeded their baseline mean concentrations plus 3σ .

F4-26

Sampling location F4-26 is located upgradient of the landfill, approximately 9 m north of the toe. The estimated elevation of this sampling point is 31 masl. As shown in Photos 166 and 167, the area consists of sand with some gravel and rock and is not vegetated. The soils consisted of brown sand with some gravel and stone.

For the shallow sample at F4-26 (0-15 cm), the concentrations of all metals, with the exception of lead, were greater than those reported in 2014. The concentration of cadmium (3.2 mg/kg) increased from the non-detectable concentration (less than 0.1 mg/kg) observed in 2014 and exceeded the baseline mean concentration plus 3σ (1.0 mg/kg). No mercury was detected at this location in 2016. The modified TPH concentration (265 mg/kg) was greater than the concentration reported in 2014 (34 mg/kg) and exceeded the baseline mean concentration plus 3σ (94 mg/kg). The concentration of the PHC F4 fraction in 2016 was 68 mg/kg. The PCB concentration (0.14 mg/kg) exceeded the baseline mean concentration plus 3σ (0.05 mg/kg); a PCB concentration of 0.036 mg/kg was reported in 2014. None of the other parameters exceeded their baseline mean concentrations plus 3σ .

F4-27

Sampling location F4-27 is located downgradient of the landfill, approximately 10 m south of the toe. The estimated elevation of this sampling point is 22 masl. As shown in Photos 170 and 171, the largely area consists of sand with some gravel and is not vegetated. The soils consisted of yellow-brown sand.

For the shallow sample at F4-27 (0-15 cm), the concentrations of all metals were greater than those reported in 2014. The concentration of cadmium (3.5 mg/kg) increased from the non-detectable concentration (less than 0.5 mg/kg) observed in 2014 to a concentration exceeding the baseline mean concentration plus 3σ (1.0 mg/kg). No mercury was detected at this location in 2016. The modified TPH concentration (70 mg/kg) was greater than the concentration of 54 mg/kg reported in 2014. The PCB concentration (0.16 mg/kg) exceeded the baseline mean concentration plus 3σ (0.05 mg/kg); no PCB were detected in 2014. None of the other parameters exceeded their baseline mean concentrations plus 3σ .

F4-28

Sampling location F4-28 is located downgradient of the landfill, approximately 5 m south of the toe. The estimated elevation of this sampling point is 22.5 masl. As shown in Photos 173 and 174, the area consists of sand and gravel and is not vegetated. The soils consisted of yellow-brown sand, gravel and stone.

For the shallow samples at F4-28 (0-15 cm, duplicate location), the calculated RPD values indicated the original and duplicate sample results differ by more than 30% for zinc and this result should therefore be interpreted with caution. The average concentrations of all metals were greater than those reported in 2014. The average modified TPH concentration (96 mg/kg) was greater than the concentration of 44 mg/kg reported in 2014 and marginally exceeded the baseline mean concentration plus 3σ (94 mg/kg). The average concentration of the PHC F4 fraction in 2016 was 48 mg/kg. No cadmium, mercury or PCB were detected at this location in 2016. None of the reported values exceeded their respective baseline mean concentrations plus 3σ .

F4-29

Sampling location F4-29 is located downgradient of the landfill, approximately 33 m west of the toe. The estimated elevation of this sampling point is 21.5 masl. As shown in Photos 176 and 177, the area consists of sand and gravel and is not vegetated. The soils consisted of brown sand, gravel and stone.

For the shallow sample at F4-29 (0-15 cm), the concentrations of most metals were greater than those reported in 2014. The concentration of cadmium (4.9 mg/kg) increased from the non-detectable concentration (less than 0.1 mg/kg) observed in 2014 to a concentration exceeding the baseline mean concentration plus 3σ (1.0 mg/kg). No nickel, mercury or PHC were detected at this location in 2016. The PCB concentration (0.25 mg/kg) exceeded the baseline mean concentration plus 3σ (0.05 mg/kg); no PCB were detected in 2014. None of the other parameters exceeded their baseline mean concentrations plus 3σ .

Table 4-18: Soil Chemical Analysis Results – Pallet Line Landfill

ID	Depth (cm)	Cu (mg/kg)	Ni (mg/kg)	Co (mg/kg)	Cd (mg/kg)	Pb (mg/kg)	Zn (mg/kg)	Cr (mg/kg)	As (mg/kg)	Hg (mg/kg)	Total PCB (mg/kg)	F1 (mg/kg)	F2 (mg/kg)	F3 (mg/kg)	F4 (mg/kg)
Background Mean		<u>30.2</u>	<u>24.0</u>	<u>8.8</u>	0.62	<u>6.4</u>	<u>41.5</u>	<u>40.6</u>	<u>28.6</u>	<u>NA</u>	<u>NA</u>	<u>NA</u>	<u>NA</u>	<u>NA</u>	<u>NA</u>
Baseline Mean		26.5	17.0	3.9	1.0	10.0	37.3	39.4	37.2	0.10	0.050	NA	NA	NA	NA
Baseline + 3σ		66.6	37.2	10.8	1.0	21.8	97.6	94.3	171.4	0.100	0.05	NA	NA	NA	NA
Upgradient															
F4-25a	0-15	22.7	13.7	4.6	<u>2.8</u>	<u>8.4</u>	33.3	<u>50.6</u>	<u>31.9</u>	<0.1	0.27	<7	<4	<8	<6
F4-25 (deep)) ¹														
F4-26a	0-15	<u>31.3</u>	<u>27.3</u>	7.7	<u>3.2</u>	<u>15.8</u>	41.3	<u>61.1</u>	<u>60.9</u>	<0.1	0.14	<7	<4	259	68
F4-26 (deep)) ¹														
Downgradient															
F4-27a	0-15	<u>53.5</u>	<u>25.1</u>	6.0	<u>3.5</u>	<u>15.2</u>	<u>44.4</u>	<u>49.4</u>	23	<0.1	0.16	<7	<4	64	10
F4-27 (deep)) ¹														
F4-28a	0-15	<u>35.8</u>	23	7.8	<0.5	<u>12.4</u>	<u>53.1</u>	<u>48.1</u>	13.4	<0.1	<0.05	<7	<4	127	46
F4-28a dup	0-15	<u>40</u>	<u>31</u>	<u>10.2</u>	<0.5	<u>16</u>	<u>72</u>	<u>61</u>	15	<0.10	<0.05	<5	<10	<50	<50
F4-28a (Dup Avg)	0-15	<u>38</u>	<u>27</u>	<u>9.0</u>	<0.5	<u>14</u>	<u>63</u>	<u>55</u>	14	<0.1	<0.05	<6	<7	89	48
F4-28 (deep)	1														
F4-29a	0-15	<u>50.1</u>	<1.0	<u>9.8</u>	<u>4.9</u>	<u>9.7</u>	<u>54.6</u>	<u>72.1</u>	<u>37.4</u>	<0.1	0.25	<7	<4	<8	<6
F4-29 (deep)) ¹														

Notes:

NA: Not available

<u>Underlined values</u>: Results exceed Background arithmetic mean.

Bold Values: Results exceed Baseline arithmetic mean.

Shaded Values: Results exceed the Baseline arithmetic mean plus 3o.

1: The deep soil samples at F4-25, F4-26, F4-27, F4-28 and F4-29 could not be collected due to refusal.

37.

2016 FOX-4 MONITORING REPORT

4.4.5 Conclusions and Overall Performance of the Pallet Line Landfill

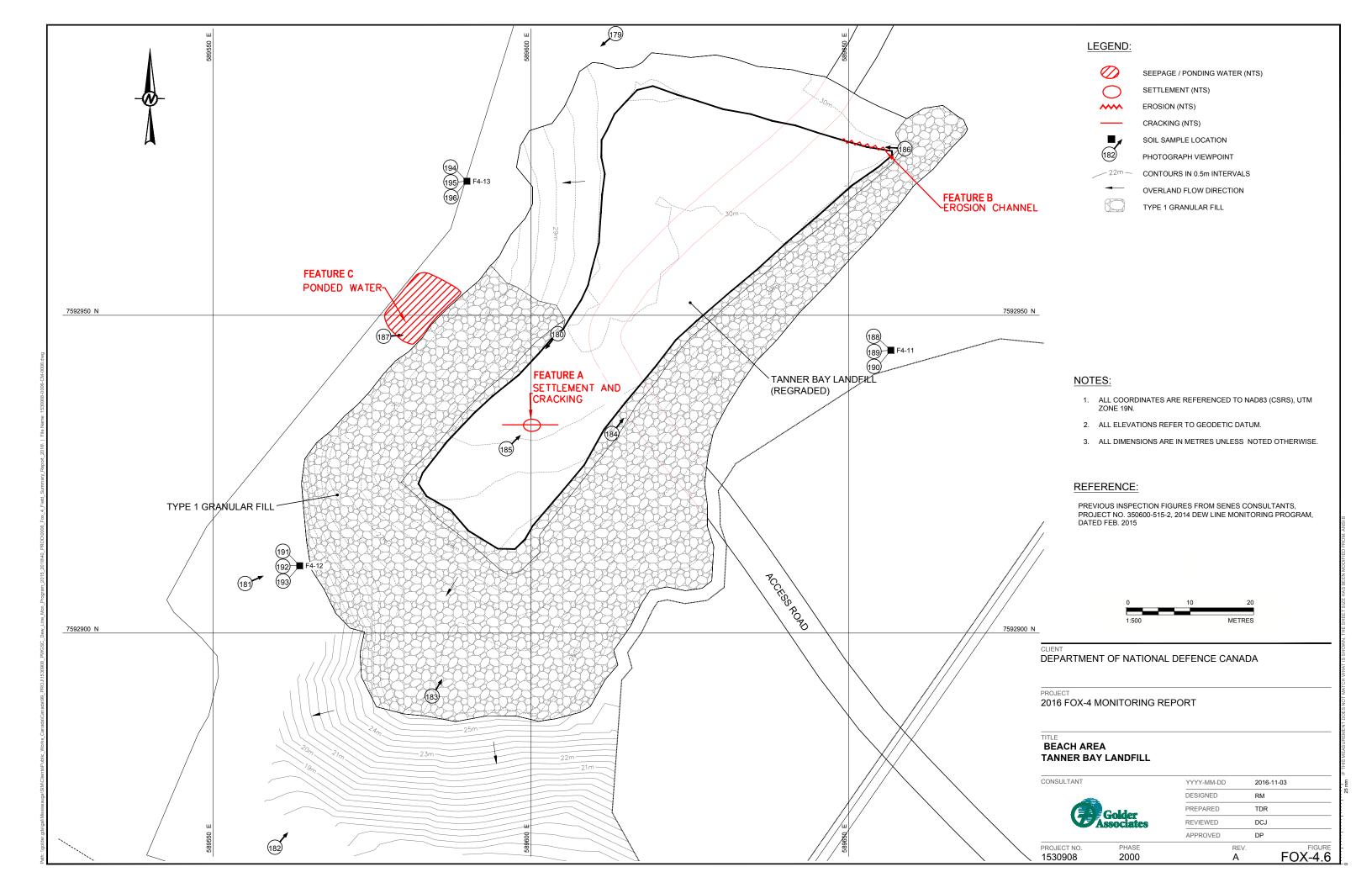
During the 2016 visual inspection there were no observations of erosion, settlement, cracking, exposed waste or indications of instability at the Pallet Line Landfill. Previously observed ponded water (Feature A) was not present during the 2016 visual inspection. A new small hydrocarbon stain (Feature B) was observed in 2016 but it does not appear to be related to landfill performance. Based on the visual inspection, the overall stability performance of the landfill was assessed as "Acceptable".

Concentrations of metals were highest overall at the sample location F4-27 (shallow sample), located downgradient of the east side of the landfill, however, the concentrations observed in 2016 do not represent an overall increase from 2014. At F4-26, F4-27, F4-28 and F4-29, the majority of metals concentrations were greater than those reported in 2014. Concentrations of cadmium and PCB at F4-25, F4-26, F4-27 and F4-29 increased from those reported in 2014 (mostly non-detectable) and exceeded their respective baseline mean concentrations plus 3 σ . PHC were detected at the F4-26, F4-27 and F4-28 sampling locations; the modified TPH concentrations at F4-26 and F4-28 were greater than the concentrations reported in 2014 and exceeded the baseline mean concentration plus 3 σ . No detectable concentrations of mercury were noted in any of the samples in 2016.

Overall, it was noted that whereas metals concentrations for a number of the soil sampling results were greater than in the previous monitoring session, they were not markedly different at upgradient vs downgradient locations. Considering that fewer than seven samples have been collected, confirmation of trends is not possible at this time; the data do not suggest that impact from the landfill is occurring.

4.4.6 Recommendations for the Pallet Line Landfill

No modifications to the ongoing monitoring program at this landfill are recommended. Additional data is required to assess if the observed increases in 2016 relate to impact from the landfill or reflect variations in natural conditions or sampling/analytical program influences.



4.5 Tanner Bay Landfill

4.5.1 Landfill Description

The Tanner Bay Landfill is located at the original beach landing area for the site along Tanner Bay, and has an approximate area of 2,000 m². This landfill existed prior to the recent cleanup. The remediation of the Tanner Bay landfill consisted of removal of exposed debris, the placement of a 1 m compacted granular cover layer and the placement of erosion protection at the toe of the landfill. Approximate sampling locations are provided in Figure FOX-4.6.

4.5.2 Visual Inspection

The Tanner Bay Landfill exhibited isolated locations with observed minor settlement, cracking, self-armouring erosion and ponded water. Table 4-19 presents a summary of observed visual inspection features and Table 4-20 presents the Preliminary Stability Assessment results. This landfill was assessed to have an "Acceptable" overall performance as all observed features were assessed as "Acceptable". Table 4-21 is a log of photographs taken during the 2016 visual inspection.

An area of previously observed minor settlement (Feature A) does not appear to have changed in size or depth of settlement, however a weathered crack was observed in the same area during the 2016 visual inspection. Previously observed erosion at the northeast end of the landfill (Feature B) appears to be self-armouring and is not considered a concern. There was some new ponded water observed along the west toe of the landfill (Feature C) during the 2016 visual inspection, however there was no associated staining observed.

Table 4-15: Visual Inspection Checklist – Pallet Line Landfill

SITE NAME: FOX-4

LANDFILL DESIGNATION: Tanner Bay Landfill

DATE OF INSPECTION: August 4, 2016

DATE OF PREVIOUS INSPECTION: August 24, 2014

INSPECTED BY: Darrin Johnson

REPORT PREPARED BY: Darrin Johnson

MONITORING EVENT NUMBER: 12

The inspector/reporter represents to the best of his/her knowledge that the following statements and observations are true and correct and to the best of the preparer's actual knowledge, no material facts have been suppressed or misstated.

Table 4-19: Visual Inspection Checklist – Tanner Bay Landfill

Checklist Item	Present (Y/N)	Feature ID (A, B, etc.)	Location Description	Easting	Northing	Length (m)	Width (m)	Depth (m)	Extent of Landfill Area (%)	Description (Severity Rating)	Comparison to Historical Observations	Photos
Settlement	Y	А	Crest surface	589596.1	7592929.0	6	4	0.2	1.2%	Minor settlement and weathered crack (Acceptable)	Settlement observed previously but weathered crack observed in 2016	185
Erosion	Y	В	Southeast corner	589658.8	7592976.2	30	2	0.1	3.0%	Minor self-armouring erosion channel (Acceptable)	Previously observed, no change	186
Lateral Movement	N											
Frost Action	N											
Sloughing	N											
Cracking	Y	А	Crest surface	589596.1	7592929.0	10	0.01	-	0.01%	Minor settlement and weathered crack (Acceptable)	Settlement observed previously but weathered crack observed in 2016	185
Animal Burrows	N											
Vegetation	N											
Staining	N											
Vegetation Stress	N											
Seepage or Ponded Water	Y	С	West toe	589576.8	7592946.7	15	10	0.1	7.5%	Ponded water (Acceptable)	New	187
Debris and/or Liner Exposed	N											

Table 4-19: Visual Inspection Checklist – Tanner Bay Landfill

Checklist Item		Feature ID (A, B, etc.)	Location Description	Easting	Northing	Length (m)	Width (m)	Depth (m)	Extent of Landfill Area (%)	Description (Severity Rating)	Comparison to Historical Observations	Photos
Presence / Condition of Monitoring Instruments	N											
Features of Note / Other Observations	N											

Landfill Area = 2,000 m²

Table 4-20: Preliminary Stability Assessment – Tanner Bay Landfill

Feature	Severity Rating	Extent
Settlement	Acceptable	Isolated
Erosion	Acceptable	Isolated
Lateral Movement	Not observed	-
Frost Action	Not observed	-
Sloughing	Not observed	-
Cracking	Acceptable	Isolated
Animal Burrows	Not observed	-
Vegetation Establishment	Not observed	-
Staining	Not observed	-
Vegetation Stress	Not observed	-
Seepage/Ponded Water	Acceptable	Isolated
Debris and/or Liner Exposure	Not observed	-
Other	Not observed	-
Overall Landfill Performance	Acce	eptable

Table 4-21: Summary Table of Photographic Log – Tanner Bay Landfill

Photo	Description (file name)	Easting	Northing	Date
179	FOX 4 – Tanner Bay Landfill – North end facing southwest (ATT32_Photo32.jpg)	589613.3	7592994.3	4-Aug-2016
180	FOX 4 – Tanner Bay Landfill – Crest facing southwest (ATT33_Photo33.jpg)	589604.2	7592947.1	4-Aug-2016
181	FOX 4 – Tanner Bay Landfill – Southwest toe facing northeast (ATT34_Photo34.jpg)	589555.0	7592907.8	4-Aug-2016
182	FOX 4 – Tanner Bay Landfill – South toe near river facing northeast (ATT35_Photo35.jpg)	589559.7	7592866.3	4-Aug-2016
183	FOX 4 – Tanner Bay Landfill – Southwest slope facing northeast (ATT36_Photo36.jpg)	589584.4	7592890.1	4-Aug-2016
184	FOX 4 – Tanner Bay Landfill – Southeast crest edge facing northeast (ATT37_Photo37.jpg)	589612.7	7592931.4	4-Aug-2016
185	FOX 4 – Tanner Bay Landfill – Crest surface facing northeast – Feature A – Minor settlement area with weathered crack (Acceptable) (ATT159_Photo159.jpg)	589596.1	7592929.0	4-Aug-2016
186	FOX 4 – Tanner Bay Landfill – Northeast corner facing west – Feature B – Minor erosion (Acceptable) (ATT160_Photo160.jpg)	589658.8	7592976.2	4-Aug-2016
187	FOX 4 – Tanner Bay Landfill – Feature C – Ponded water at west toe, facing east (Acceptable) (ATT158_Photo158.jpg)	589576.8	7592946.7	4-Aug-2016
188	FOX-4 – Tanner Bay Landfill – Soil sampling location F4-11 before excavation (ATT21_Photo21.jpg)	589656.6	7592944.5	3-Aug-2016
189	FOX-4 – Tanner Bay Landfill – Soil sampling location F4-11 after excavation (ATT22_Photo22.jpg)	589656.6	7592944.5	3-Aug-2016

Table 4-21: Summary Table of Photographic Log – Tanner Bay Landfill

Photo	Description (file name)	Easting	Northing	Date
190	FOX-4 – Tanner Bay Landfill – Soil sampling location F4-11 after backfilling (ATT23_Photo23.jpg)	589656.6	7592944.5	3-Aug-2016
191	FOX-4 – Tanner Bay Landfill – Soil sampling location F4-12 before excavation (ATT18_Photo18.jpg)	589563.6	7592910.6	3-Aug-2016
192	FOX-4 – Tanner Bay Landfill – Soil sampling location F4-12 after excavation (ATT19_Photo19.jpg)	589563.6	7592910.6	3-Aug-2016
193	FOX-4 – Tanner Bay Landfill – Soil sampling location F4-12 after backfilling (ATT20_Photo20.jpg)	589563.6	7592910.6	3-Aug-2016
194	FOX-4 – Tanner Bay Landfill – Soil sampling location F4-13 before excavation (ATT15_Photo15.jpg)	589589.9	7592971.1	3-Aug-2016
195	FOX-4 – Tanner Bay Landfill – Soil sampling location F4-13 after excavation (ATT16_Photo16.jpg)	589589.9	7592971.1	3-Aug-2016
196	FOX-4 – Tanner Bay Landfill – Soil sampling location F4-13 after backfilling (ATT17_Photo17.jpg)	589589.9	7592971.1	3-Aug-2016

4.5.3 Summary of Sampling Deviations

The field work was conducted as per the TOR. There were no notable exceptions to the scope of work.

4.5.4 Soil Sampling

Table 4-22 presents a summary of analytical results for soil samples collected at the Tanner Bay Landfill. F4-11 represents an upgradient sampling location, whereas F4-12 and F4-13 represent downgradient sampling locations.

Table 4-22 also lists the arithmetic mean background and baseline values for the landfill, in addition to the baseline mean plus baseline plus 3σ limits. At the Tanner Bay Landfill, the background arithmetic means for copper, nickel, cobalt, zinc, chromium and arsenic are greater than the baseline arithmetic means. The background arithmetic means for copper, nickel, cobalt and arsenic are also greater than the baseline means plus 3σ .

F4-11

Sampling location F4-11 is located upgradient of the landfill, approximately 15 m east of the toe. The estimated elevation of this sampling point is 30 masl. As shown in Photos 188 and 189, the area consists of sand and gravel with some rock and sparse vegetation. The soils consisted of a brown sand with some gravel and stone.

For the shallow sample at F4-11 (0-15 cm), the concentrations of most metals were similar to those reported in previous years. The concentration of copper (9.9 mg/kg) exceeded the baseline mean concentration plus 3σ (8.0 mg/kg), however, it was less than the concentration observed in 2014 (11.5 mg/kg); none of the other parameters exceeded their baseline mean concentrations plus 3σ . It is noted that cadmium was detected at this location for the first time. No mercury, PHC or PCB were detected at this location in 2016.

2016 FOX-4 MONITORING REPORT

For the deep sample at F4-11 (40-50 cm), metals concentrations were similar to those in the shallow sample. The concentrations of most metals were similar to those reported in previous years. Similarly to the shallow sample, cadmium was detected at this location for the first time. No mercury, PHC or PCB were detected at this location in 2016. None of the reported values exceeded their respective baseline mean concentration plus 3 σ .

F4-12

Sampling location F4-12 is located downgradient of the landfill, immediately southwest of the toe. The estimated elevation of this sampling point is 23 masl. As shown in Photos 191 and 192, the area is largely covered with sand and gravel with some rock and is not vegetated. The soils consisted of brown sand with some gravel. The excavation filled with water soon after the hole was completed.

For the shallow sample at F4-12 (0-15 cm), the concentrations of most metals were similar to those reported in previous years. The concentration of copper (10.5 mg/kg) exceeded the baseline mean concentration plus 3σ (8.0 mg/kg), however, was less than the concentration observed in 2014 (15 mg/kg); none of the other parameters exceeded their baseline mean concentrations plus 3σ . It is noted that cadmium was detected at this location for the first time. No mercury, PHC or PCB were detected at this location in 2016.

For the deep sample at F4-12 (30-40 cm), metals concentrations were greater than those in the shallow sample. The concentrations of most metals were greater than those reported in previous years. The concentrations of copper (10.5 mg/kg) and arsenic (3.6 mg/kg) exceeded their baseline mean concentrations plus 3σ (8.0 mg/kg and 3.1 mg/kg, respectively); none of the other parameters exceeded their baseline mean concentrations plus 3σ. Overall, a slight increasing trend of most metals have been observed at this location since 2008. Similar to the shallow sample, cadmium was detected at this location for the first time. No mercury, PHC or PCB were detected at this location in 2016.

F4-13

Sampling location F4-13 is located downgradient of the landfill, approximately 8 m west of the toe, in the northern part of the landfill. The estimated elevation of this sampling point is 26 masl. As shown in Photos 194 and 195, the area is largely covered with sand and gravel with sparse vegetation. The soils consisted of reddish-brown sand with some gravel.

For the shallow sample at F4-13 (0-15 cm), the concentrations of most metals were less than those reported in recent years. It is noted that cadmium was detected at this location for the first time. No mercury, PHC or PCB were detected at this location in 2016. None of the reported values exceeded their respective baseline mean concentration plus 3σ .

For the deep sample at F4-13 (40-50 cm, duplicate location), metals concentrations were greater than those in the shallow sample. It is noted that the calculated RPD values indicated the original and duplicate sample results differ by more than 30% for arsenic and this result should therefore be interpreted with caution. The concentrations of most metals were greater than those reported in previous years. The concentration of copper (10.5 mg/kg) exceeded the baseline mean concentration plus 3σ (8.0 mg/kg); none of the other parameters exceeded their baseline mean concentrations plus 3σ . Similarly to the shallow sample, cadmium was detected at this location for the first time. No mercury, PHC or PCB were detected at this location in 2016.

Table 4-22: Soil Chemical Analysis Results – Tanner Bay Landfill

											Total				
	Depth	Cu	Ni	Со	Cd	Pb	Zn	Cr	As	Hg	PCB	F1	F2	F3	F4
ID	(cm)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
Background Mean		<u>19.1</u>	<u>19.2</u>	<u>7.9</u>	<u>1.0</u>	<u>10.0</u>	<u>34.1</u>	<u>30.6</u>	<u>5.5</u>	<u>NA</u>	0.00035	<u>NA</u>	<u>NA</u>	<u>NA</u>	<u>NA</u>
Baseline Mean		8.0	9.3	5.0	1.0	28.0	27.0	23.0	1.1	NA	0.050	NA	NA	NA	NA
Baseline + 3σ		8.0	16.7	7.6	4.5	78.7	44.9	44.7	3.1	NA	0.05	NA	NA	NA	NA
Upgradient															
F4-11b	0-15	9.9	8.2	2.9	<u>1.8</u>	4.8	17.8	18.4	1.2	<0.1	<0.05	<7	<4	<8	<6
F4-11a	40-50	6.5	5.9	1.9	<u>1.4</u>	3	12.9	15.5	1.2	<0.1	<0.05	<7	<4	<8	<6
Downgradient															
F4-12b	0-15	10.5	10.1	3.4	<u>2.0</u>	4.4	21.6	22.8	1.8	<0.1	<0.05	<7	<4	<8	<6
F4-12a	30-40	13.6	13	4.1	<u>2.5</u>	6.6	24.8	26.8	3.6	<0.1	<0.05	<7	<4	<8	<6
F4-13b	0-15	6.5	6.1	2.0	1.0	2.6	11	10.5	1.4	<0.1	<0.05	<7	<4	<8	<6
F4-13a	40-50	10.6	9.2	3.2	<u>1.8</u>	4.7	19	20	3.1	<0.1	<0.05	<7	<4	<8	<6
F4-13a dup	40-50	10	8	2.7	<0.5	4	19	17	2	<0.10	<0.05	<5	<10	<50	<50
F4-13a (Dup Avg)	40-50	10	9	3.0	<u>1.2</u>	4	19	19	3	<0.1	<0.05	<6	<7	<29	<28

Notes:

NA: Not available

<u>Underlined values</u>: Results exceed Background arithmetic mean.

Bold Values: Results exceed Baseline arithmetic mean.

Shaded Values: Results exceed the Baseline arithmetic mean plus 3o.

4.5.5 Conclusions and Overall Performance of the Tanner Bay Landfill

The Tanner Bay Landfill exhibited some isolated minor settlement, cracking, self-armouring erosion and ponded water. The overall stability performance of the landfill was assessed as "Acceptable".

The concentrations of metals were highest overall at the deep F4-12 sample location, located immediately downgradient of the west side of the landfill. A slight increasing trend of most metals have been observed at this location since 2008. Exceedances of the baseline mean concentration plus 3 σ were reported for copper at F4-11 (shallow sample), F4-12 (shallow and deep samples) and F4-13 (deep sample) and for arsenic at F4-12 (deep sample). It is noted that the baseline mean concentrations plus 3 σ at the Tanner Bay Landfill are lower in comparison to other FOX-4 landfills. The concentrations of copper and arsenic at all locations were lower than their respective background mean concentrations. No detectable concentrations of mercury, PHC or PCB were noted in any of the samples in 2016.

The historical graphs in Appendix C show concentration trends at the Tanner Bay Landfill. Overall, it is noted that slight increases in some metal concentrations have been observed at the downgradient locations F4-12 and/or F4-13 including copper, nickel, zinc and chromium. Concentrations of copper appear to be increasing at upgradient location F4-11 as well. At F4-11, an increasing trend is also noted for modified TPH up until 2014, however no PHC were detected at this location in 2016. These increases are not significant enough to warrant concern, but should continue to be assessed.

4.5.6 Recommendations for the Tanner Bay Landfill

No modifications to the ongoing monitoring program at this landfill are recommended.

5.0 QA/QC RESULTS

The results of the QA/QC program described in Section 3.3 are discussed herein. The results are described in terms of accuracy, reliability (blank analysis) and reproducibility (duplicate analysis).

The five DEW Line sites visited in 2016 were executed as a single field program using standard operating procedures which were consistent for all sites in the field program. The QA/QC analysis below contains both program-level (applicable to all five sites) and site-level discussions, which focus on the FOX-4 site. The laboratory reports related to the QA/QC discussion are contained in Appendix C.

5.1 Sample Hold Times

The generally accepted hold times for the parameters analyzed in this program are:

- Metals in soil: 180 days, metals in water: 60 days;
- Mercury in soil and water: 28 days;
- PCB in soil: 365 days, PCB in water: 14 days;
- PHC-F1 in soil: 48 hours (if unpreserved), PHC-F1 in water: 7 days; and,
- PHC F2-F4 in soil: 14 days, PHC F2-F4 in water: 7 days.

At FOX-4, the soil sampling was carried out on August 2-5, 2016. The soil samples collected on August 2 and 3, 2016 were received at Paracel and AGAT on August 9, 2016 and extraction for PHC F1 commenced the following day, which was eight days post sampling for those collected on August 2nd. The soil samples collected on August 4 and 5, 2016 were received at Paracel and AGAT on August 16, 2016 and extraction for PCB commenced the following day, which was thirteen days post sampling for those collected on August 4th.

Maximum hold times were exceeded for PHC-F1 (soil) due to its very short hold time of 48 hours. The very short hold time for unpreserved PHC-F1 in soil is a known issue but it has been decided to not preserve this parameter in order to maintain consistency with earlier years and data in the program. The hold times for PHC F2-F4 were all met for soil.

The groundwater sampling was carried out on August 2-4, 2016. The groundwater samples collected on August 2 and 3, 2016 were received at Paracel and AGAT on August 9, 2016 and analysis commenced that day, which was seven days post sampling for those collected on August 2nd. The maximum hold times were exceeded for PHC-F2-F4 for the two groundwater samples collected on the August 2nd (MW11-5 and MW12-7). The groundwater sample collected on August 4, 2016 (MW98-02) was received at Paracel on August 16, 2016 and analysis commenced that day, which was twleve days post sampling; the maximum hold times were exceeded for PHC-F1-F4 in this sample .

5.2 Accuracy

Accuracy is a measure of how close a measured value is to the true value. The accuracy of the laboratory data is generally evaluated by the laboratory through the use of matrix spikes or surrogate recoveries. For the FOX-4 samples, Paracel performed two spike analyses on water and two on soil. The spike recovery for copper in one of the two soil samples was below the lower end of the acceptable range and the spike recoveries for PHC F2-F3 fractions in one of the two soil samples were above the upper end of the acceptable range; however the majority of parameters met the acceptable data quality objectives, therefore Paracel accepted the batches. The spike recoveries for groundwater were well within the acceptable ranges, with the exception of arsenic in one of the two samples; the majority of parameters met the acceptable data quality objectives, therefore Paracel accepted the batches. AGAT also performed matrix spikes on the batches that included FOX-4 soil and water samples and all of their results were within their own data quality objectives.

Paracel performed two lab blanks for both soil and water, and all were all non-detect. AGAT also performed lab blanks in the batches that included FOX-4 soil and water samples and all of their results were non-detect.

Matrix spike recoveries outside the acceptable range of individual parameters indicate the copper and PHC F2-F3 fractions soil results from Paracel should be interpreted with caution. Matrix spike recoveries outside the acceptable range of individual parameters indicate the arsenic groundwater results from Paracel should be interpreted with caution. All other spike recoveries for the monitoring program are within the acceptable limits and the accuracy of the results is considered acceptable on this basis.

5.3 Reliability

Reliability is a measure of certainty that the concentrations reported by the labs are reliable indicators of field conditions and have not been affected other sources of contamination such as ambient air or cross-contamination from other samples. The analysis of blanks provides a measure of reliability. A set of bottles of deionized water from Paracel accompanied the team on the entire 2016 monitoring program as a Trip Blank. These bottles were not opened at the sites. The analytical reports from Paracel indicate that no parameters were detected in the Trip Blank. One Field Blank was prepared on the 2016 program. Sample bottles were filled with distilled water in the field at FOX-2. No parameters were detected in the Field Blank.

Two Equipment Blanks were prepared: one to test the decontamination of the groundwater probe, and the other to test the decontamination of the soil sample trowel. No parameters were detected in the Shovel Blank. Zinc was the only parameter detected in the Probe Blank, at a concentration (0.006 mg/L) marginally above the MDL of 0.005 mg/L. The Trip Blank, Field Blank and two Equipment Blank sample results are summarized in the table below.

Blank Samples

	Cu	Ni	Со	Cd	Pb	Zn	Cr	As	Hg	Total PCB	F1	F2	F3	F4
ID	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)
Trip Blank	<0.0005	<0.001	<0.0005	<0.0001	<0.0001	<0.005	<0.001	<0.001	<0.0001	<0.00005	<0.025	<0.100	<0.100	<0.100
Field Blank	<0.0005	<0.001	<0.0005	<0.0001	<0.0001	<0.005	<0.001	<0.001	<0.0001	<0.00005	<0.025	NA	NA	NA
Shovel Blank	<0.0005	<0.001	<0.0005	<0.0001	<0.0001	<0.005	<0.001	<0.001	<0.0001	<0.00005	<0.025	<0.100	<0.100	<0.100
Probe Blank	<0.0005	<0.001	<0.0005	<0.0001	<0.0001	0.006	<0.001	<0.001	<0.0001	<0.00005	<0.025	<0.100	<0.100	<0.100

Note: NA - Not analyzed

The Trip Blank, Field Blank and two Equipment Blank sample results indicate that the laboratory results from the 2016 monitoring program were not affected by external influences associated with sampling, storage and transport.

5.4 Reproducibility (Duplicate Analysis)

The reproducibility of lab results was measured through the testing of field duplicate samples. Duplicate soil samples were prepared in the field by mixing up a homogeneous batch of soil in the test pit being sampled, and taking portions of soil and alternately filling the sample jars for the two labs. Duplicate groundwater samples were prepared by alternately filling bottles for each lab for each parameter type.

The labs also performed internal duplicate analysis. Paracel performed two duplicate analyses of soil, which indicated all duplicate pairs met the program's targets, with the exception of the PHC F3-F4 fraction in one of the two internal duplicates, which had RPDs of 66.7% and 50.0%, respectively. Paracel noted that the PHC F3 and F4 sample results were less than ten times the method detection limit (MDL). Paracel also completed two duplicate analyses for groundwater and all duplicate pairs met the program's targets. AGAT performed two duplicate analyses of parameters in soil; a maximum RPD of 10.5% was achieved. AGAT also performed a duplicate analysis of parameters in groundwater, a maximum RPD of 13.9% was achieved, and thus their duplicates met the program requirements.

The total number of original soil samples collected for the 2016 program was 213, for which 21 duplicate soil samples were prepared and analyzed, providing a duplicate ratio of approximately 10%. A total of 41 groundwater samples were collected and six duplicates were analyzed, which is a duplicate ratio of greater than 10% for each site and for the program. The distribution of duplicate soil and groundwater samples over the five sites is provided in the table below.

Four soil duplicates and one groundwater duplicate were prepared at FOX-4.

Soil Samples and Duplicates

	DYE-M	FOX-2	FOX-3	FOX-4	FOX-5	Totals
Soil Samples Collected	93	31	31	34	24	213
Duplicate Soil Samples	7	4	4	4	2	21
Percent	8%	13%	13%	12%	8%	10%

Groundwater Samples and Duplicates

		DEW L				
	DYE-M	FOX-2	FOX-3	FOX-4	FOX-5	Totals
Monitoring Well Sampled	9	9	7	7	9	41
Duplicate Groundwater Samples	2	1	1	1	1	6
Percent	22%	11%	14%	14%	11%	15%

To determine the reproducibility of the original and duplicate sample results, the RPD was calculated according to the following equation:

$$RPD = \frac{|x_2 - x_1|}{\left(\frac{x_1 + x_2}{2}\right)} \times 100\%$$

Where, x_1 and x_2 are the original and duplicate concentrations of a given parameter in a pair. RPD can only be calculated if concentrations of given parameters are greater than the analytical method detection limits (MDL) in both the duplicate and original samples of the pair. Additionally, the RPD calculation is less meaningful when the reported concentrations are less than five (5) times the MDL. RPD have been calculated wherever the concentrations of a parameter were five (5) times greater than the MDL in both the original and duplicate samples. Sample RPD were calculated by taking the average of the parameter RPD for a given sample-duplicate pair, and a program-level RPD was calculated by taking the average of all sample RPD to arrive at a program-wide indication of repeatability.

The TOR sets a data quality objective (DQO) for the RPD in soil and groundwater between a sample and its blind field duplicate of 30%. A discussion or the RPD for the program and at FOX-4 is provided below.

5.4.1 Soil Samples

Organics and PCB

Program Level Interpretation

The PCB concentrations were below the detection limit for all of the duplicate pairs of soil samples in the program.

PHC F3 was detected in five samples in the program and PHC F2 was detected in one of those five samples. In each case it was the sample analyzed by Paracel, whereas the duplicate sample analyzed by AGAT did not. Paracel's MDL was equal to the program's requirement whereas AGAT's MDL was higher and they showed no exceedance of their MDL. None of the above are at concentrations that are greater than five times the program MDL therefore RPD were not calculated.

Metals

Program Level Interpretation

Mercury and cadmium concentrations were below detection limits for all 21 original and duplicate pairs in the program.

RPD calculations were undertaken for the seven remaining metals (copper, nickel, cobalt, lead, zinc, chromium and arsenic) for the 21 pairs of duplicate soil samples. The program-level average RPD for the soil sample duplicate analysis was 18%, which met the specified data quality objective for field duplicates for inorganics of 30%.

Two of the 21 soil sample pairs in the program had a sample average RPD of over 30%; one of which was collected at FOX-2. Fifteen parameter pairs exhibited an RPD of over 30%; three of them were at FOX-2. Overall, the most frequent metals to have an RPD over 30% were zinc, copper and nickel. The results for the samples analyzed by AGAT exhibited generally higher metals concentrations in 15 cases; Paracel's overall concentrations were higher in four cases, and in two cases it was evenly spilt. There appears to be a bias, in that results from AGAT were generally higher than those of Paracel but this does not impact interpretation of the results.

Site Level Interpretation

From the four soil sample duplicates taken at FOX-4 there were 32 potential parameter pairs for RPD analysis (8 metals for a total of 4 samples). Mercury was not detectable in all samples. As shown in the table below, 23 of the 32 potential metal parameter pairs exhibited concentrations greater than five times the MDL in both the original and duplicate, and therefore 23 individual RPD were calculated. Four RPD exceeded 30% (zinc at F4-28a and copper, nickel and zinc at MW98-3a). The individual RPD ranged from 0% to 35%. Zinc exhibited the highest RPD, from 0% to 35% and chromium was the lowest, from 10% to 13%. The average of the 23 RPD calculations from the four samples was just 17%, which was on the low side of the range of RPD in the program and met the field data quality objective of less than 30%. The table below summarizes the metals results and RPD calculations for FOX-4.

All of the individual RPD at FOX-4 were below 30%, with the exceptions of zinc at F4-28a (30%) and copper, nickel and zinc at MW98-03a (33%, 33% and 35%, respectively) and the site average RPD was 17%. In light of the relatively low average RPD, it can be concluded that the reproducibility of the soil sample results at FOX-4 was acceptable.

Relative Percent Difference Analysis of Soil Data at FOX-4

Parameter Concentrations (mg/kg)											
Sample ID	Lab	Cu	Ni	Co	Cd	Pb	Zn	Cr	As	Sample	Any Over
MDL		<1	<1	<1	<0.5	<1	<1	<1	<1	Average 30%?	
F4-13a	Paracel	10.6	9.2	3.2	1.8	4.7	19	20	3.1		
F4-13a (duplicate)	AGAT	10	8	2.7	<0.5	4	19	17	2	9%	no
RPD		6%	14%				0%	16%			
F4-28a	Paracel	35.8	23	7.8	<0.5	12.4	53.1	48.1	13.4		
F4-28a (duplicate)	AGAT	40	31	10.2	<0.5	16	72	61	15	23%	1 (Zn)
RPD		11%	29.6%	27%		25%	30.2%	24%	11%		
MW11-01b	Paracel	70.1	59	14.4	5.4	10.9	88.7	84.3	49.8		
MW11-01b (duplicate)	AGAT	92	66	14.4	<0.5	11	105	81	57	10%	no
RPD		27%	11%	0%		1%	17%	4%	13%		
MW98-03a	Paracel	13.6	12.9	4.3	<0.5	4.3	25.2	31.5	24.2		
MW98-03a (duplicate)	AGAT	19	18	5.1	<0.5	6	36	34	22	24%	3 (Cu, Ni, Zn)
RPD		33%	33%				35%	8%	10%		
										17%	4

Note: Parameters with concentrations <5 x MDL are **bold and highlighted yellow**.

5.4.2 Groundwater Samples

Organics and PCB

The PHC F1-F4 results for all six of the duplicate pairs of groundwater samples in the program were below the detection limit and all PCB concentrations were below the detection limit. The reliability of these results is therefore considered acceptable.

Metals

Program Level Interpretation

Mercury was not detected in any original-duplicate groundwater pair; the reproducibility of the results is therefore considered acceptable. Six groundwater duplicate samples for a total of eight metals detected at greater than the MDL in one or more samples, resulted in 48 potential parameter pairs for duplicate analysis via RPD calculation. The metals concentrations were very low overall; in fact 33 of the possible 48 pairs exhibited one or both values less than five times the MDL and therefore, in addition to analyzing the QC by RPD analysis it is noted that of the 48 parameter pairs, there were:

- 22 pairs where both labs reported non-detect for the same metals in the parameter pair (good repeatability);
- 10 pairs where one lab reported non-detect and the other lab reported a value less than five times the MDL for the pair (good repeatability);
- 1 pair where both labs reported values that were less than five times the MDL (good repeatability);

- 10 pairs where both labs reported values that were greater than five times the MDL, so an RPD could be calculated. Of those:
 - 6 were under 30% (good repeatability)
 - 4 were over 30% (poor repeatability); and,
- 5 pairs where one lab reported a value less than five times the MDL and the other lab reported a value over five times the MDL and the RPD was over 30% (poor repeatability).

The average of the 10 RPD calculated for analysis of metals in water was 50%, which exceeds the data quality objective of 30%. This however omits the 38 other parameter pairs. A broader representation of program level RPD can be achieved by including all parameter pairs which either had values reported or were non-detect in both parameters. This leaves out only the 10 pairs where one member was non-detect. An RPD of zero has been assigned to pairs for which both members were non-detect. Using this metric, the program level RPD is 26%.

Site Level Interpretation

At FOX-4, the duplicate groundwater sample was collected at MW11-01. Cadmium, lead, chromium, arsenic and mercury were non-detect in both samples collected at this monitoring location, therefore they were excluded from the RPD calculations. As shown in the table below, there was only one groundwater parameter pair for which the concentrations in the original and duplicate were over five times the MDL (nickel); thus, only one RPD was calculated for the groundwater duplicates at FOX-4. The RPD is 35%, which is just over the field data quality objective of 30%. A possible reason for the higher than desired RPD for this sample could be the limited purging due to the small volume of groundwater available in the well.

Relative Percent Difference Analysis of Groundwater Data at FOX-4

		ı	Parameter Conc				
Sample ID Lab		Cu	Ni	Со	Zn	Average RPD	Any Over 30%?
MDL		<0.0005	<0.001	<0.001	<0.005		
MW11-01	Paracel	0.001	0.007	0.0011	0.01		
MW11-01 (Duplicate) AGAT		<0.005	0.01	0.0015	<0.005	35%	1 (Ni)
RPD			35%				

Note: Parameters with concentrations <5 x MDL are **bold and highlighted yellow**.

5.4.3 Overall Lab Data Reproducibility

Based on a sample average of the field RPD for soil of 17% and considering that only four individual soil parameter pairs exhibited an RPD slightly over 30%, it is concluded that that the lab data is acceptable. The reproducibility of groundwater data was higher (only RPD calculated was 35%), however, the reported concentrations are low. It is noted that the concentrations of cadmium, lead, chromium, arsenic and mercury were non-detect in both samples at the groundwater duplicate location, which suggests the lab data is acceptable.

5.5 QA/QC Conclusions

The QA/QC analysis has shown that:

- Achieving maximum hold times of PHC is not possible given the logistics of transport from the remote site location unless samples are field preserved;
- With the exception of zinc detected marginally over the MDL in the Probe Blank, the concentrations of parameters in the two Equipment Blanks and one Field Blank were non-detect, as they should be to indicate that no spurious contaminates were biasing the samples while in transit;
- The duplicate analyses for soil met the program field data quality objectives; and,
- The duplicate analyses for water indicated a notable difference in nickel results reported by the two labs, however, the reported concentrations are low.

Report Signature Page

We trust that this Monitoring Report meets the Project requirements of DND. Please direct any questions to the undersigned.

GOLDER ASSOCIATES LTD.

Jamie Bonany, M.A.Sc. Environmental Field Lead

Darrin Johnson, P.Eng. (NU, NT, ON), PMP Associate, Project Manager and

DCJ/DHP/PJD/JEB/sk

Geotechnical Engineer

Paul Dewaele, M.Sc. P.Eng. (NU, NT, ON) Principal, Geo-Environmental Engineer

Don Plenderleith, P.Eng. (NU, NT, ON), PMP Principal, Project Director and Environmental Engineer

Don Plenderletto

Golder, Golder Associates and the GA globe design are trademarks of Golder Associates Corporation..

 $\label{lem:gas_gal_out} $$ \an one of the content of the content$

APPENDIX A

Report Limitations

REPORT LIMITATIONS

This report has been prepared as an assessment of the environmental condition and visual inspection of the subject site. The monitoring program described in this report was conducted in a manner consistent with that level of care and skill normally exercised by other members of the engineering and science professions currently practising under similar conditions, subject to the time limits and financial and physical constraints applicable to the services. The scope of work was carried out in accordance with the agreement between Golder Associates Ltd. and the client.

The assessment of environmental conditions at this Site has been made using the results of chemical analysis of soil and groundwater from a limited number of locations. The Site conditions between sampling locations have been inferred based on conditions observed at sampling locations. Subsurface conditions may vary from those encountered at the sample locations. Additional study, including further subsurface investigation, can reduce the inherent uncertainties associated with this type of study. However, it is never possible, even with exhaustive sampling and testing, to dismiss the possibility that part of a Site may be contaminated and remain undetected. Visual inspection comments are based on observed conditions at the time of the inspection and may change with time.

Any use which a third party makes of this report, or any reliance on, or decisions to be made based on it, are the responsibility of such third parties. Golder Associates Ltd. accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on the information contained in this report.

The content of this report is based on information collected during our monitoring program, our present understanding of the Site conditions, and our professional judgement in light of such information at the time of writing this report. This report provides a professional opinion and therefore no warranty is expressed, implied, or made as to the conclusions and recommendations offered in this report. This report does not provide a legal opinion regarding compliance with applicable laws. With respect to regulatory compliance issues, it should be noted that regulatory statutes and the interpretation of regulatory statutes are subject to change.

The findings and conclusions of this report are valid only as of the date of this report. If new information is discovered, Golder Associates Ltd. should be requested to re-evaluate the conclusions of this report, and to provide amendments as required.

APPENDIX B

Field Records

Monitoring Well Sampling Logs

Thermistor Inspection Record Sheets

Soil Sampling Record Sheets

Appendix B1

FOX-4 Thermistor Sheets

Inspector Name:	Kevin Rattray / Darrin Johnson	Inspection Date:	August	3 , 2016
Inspector Signature / F	Prepared By:			

Thermistor Information (*Some Information can be pre-populated from thermistor logs)

Site Name:	FOX-4	Landfill:	Non hazardous	/ Tier II	
Thermistor Number:	VT-2	Inclination:	Vertical		
Datalogger model no:	RX	Datalogger ca	ble download model	: US	В
*Install Date:		First Date Eve	nt	Last Date Eve	ent
*Coordinates and Eleva	tion	N 588428.4	E 7596019.9	Ele	V
Length of Cable (m)		Cable Lead Above C	Fround (m)	0.5	
Datalogger Serial #	67755	Nodal Points	8		

Thermistor Inspection

	Good	Needs M	aintenance	Description
Casing	X			
Cover	X			
Data Logger	X			
Cable	X			
Beads		Х	Beads 7 and 8 not fu	nctioning
Lock condition		Х	Cut and replaced	
Battery Installation Date	2012? (U	LB5)		
Battery Levels	Main	11.34	Aux	13.63

Manual Ground Temperature Readings

Bead	٧	Degrees C
1	1.42	15.72
2	1.38	14.59
3	1.35	13.43
4	1.32	12.52
5	1.29	11.42
6	1.27	10.72
7	0	-
8	0	-

Bead	ohms	Degrees C

Battery Information

Batteries changed? Yes No x Monitoring Year:

Battery model number installed: Existing ULB5 (expires in 2015 according to sticker)

Expected battery life (years): 2015-2017 (3-5 years)

<u>Datalogger Programming (Describe programming completed; beads and frequency)</u>

Observations and Proposed Maintenance

Logger filename VT-02 downloaded at 4:28pm. Logger filename is VT-2, date August 3, 2016, time 15:42 (actually 16:30). Relocated the logger to original T-5 location after downloading. Moved logger T2 (from original T-5 location) to this location. Switched loggers between VT-5 and VT-5A (2014). This is original T-2 location.

Inspector Name:	Darrin Johnson	Inspection Date:	August	3,2016
Inspector Signature / I	Prepared By:			

Thermistor Information (*Some Information can be pre-populated from thermistor logs)

Site Name:	FOX-4	Landfill:	Tier II		
Thermistor Number:	VT-3	Inclination:	Vertical		
Datalogger model no:	R-X	Datalogger	cable download mode	el: USB	
*Install Date:		First Date E	vent	Last Date Event	
*Coordinates and Eleva	tion	N 588436.2	E 7596002.9	Elev	22.5
Length of Cable (m)		Cable Lead Above	e Ground (m)		
Datalogger Serial #	67703	Nodal Points	8 (Only 5 beads)		

Thermistor Inspection

tor mopeotion				
	Good	Needs M	aintenance Description	
Casing	Х			
Cover	X			
Data Logger	X			
Cable	X		Small old style connector	
Beads		Χ	Beads 6-8 not functioning	
Lock condition		Χ	Cut and changed lock	
Battery Installation Date	2012?			
Battery Levels	Main	11.34	Aux <u>12.65</u>	

Manual Ground Temperature Readings

Bead	٧	Degrees C
1	1.38	14.6
2	1.35	13.4
3	1.31	12.3
4	1.27	11.1
5	1.25	10.3
6	0	381.0
7	0	381.0
8	0	381.0

Bead	ohms	Degrees C

Battery	Information

Batteries changed ?	Yes	No x Monitoring Year:
Battery model number installed:		Existing ULB5 (expires in 2015 according to sticker)
Expected battery life (years):		2015-2017 (3-5 years)

Datalogger Programming (Describe programming completed; beads and frequency)

Observations and Proposed Maintenance

VT-4 download at at 2:32pm on August 3, 2016. Logger for VT-4 (relocated after downloading). Logger date August 3, 2016 and time 11:10am (actually 2:40pm). Logger VT-3/T3 relocated to this location (from VT-4). This is the original T3 location.

Inspector Name:	Darrin Johnson	Inspection Date:	August	3 2016	
Inspector Signature /	Prepared By:				

Thermistor Information (*Some Information can be pre-populated from thermistor logs)

Site Name:	FOX-4	Landfill:	Tier II		
Thermistor Number:	VT-4	Inclination:	Vertical		
Datalogger model no:	R-X	Datalogger o	able download model	USB	
*Install Date:		First Date Ev	vent	Last Date Event	
*Coordinates and Elevat	tion	N 588457.8	E 7596032.9	Elev	22.7
Length of Cable (m)		Cable Lead Above	Ground (m)		
Datalogger Serial #	67725	Nodal Points	8		

Thermistor Inspection

	Good	Needs M	aintenance Description	
Casing	X			
Cover	X			
Data Logger	X			
Cable	X		Small old plastic plug	
Beads		Х	Beads 1,2,6,7 appear damaged	
Lock condition		Х	Cut and changed	
Battery Installation Date	2012?			
Battery Levels	Main	11.34	Aux <u>13.75</u>	

Manual Ground Temperature Readings

Bead	V	Degrees C
1	0	381
2	0.0024	-90.1
3	1.23	9.67
4	1.25	10.40
5	1.26	10.41
6	0.0035	-86.4
7	0	381
8	1.446	16.8

Bead	ohms	Degrees C

Battery Information

Batteries changed ?	Yes	No x Monitoring Year:
Battery model number installed:		Existing ULB5 (expires in 2015 according to sticker)
Expected battery life (years):		2015-2017 (3-5 years)

<u>Datalogger Programming (Describe programming completed; beads and frequency)</u>

Observations and Proposed Maintenance

Downloaded as VT-3 at 3:19pm on August 3, 2016. Logger date August 3, 2016, time 14:36 (actually 3:21pm). After downloading this logger was relocated to VT-3. Logger T4 moved to this location from VT-3. This is original location T-4. Loggers for VT-3 and VT-4 were switched locations.

Inspector Name:	Darrin Johnson	Inspection Date:	August	3,2016
Inspector Signature /	Prepared By:			

Thermistor Information (*Some Information can be pre-populated from thermistor logs)

Site Name:	FOX-4	Landfill:	Tier II		
Thermistor Number:	VT-5	Inclination:	Vertical		
Datalogger model no:	R-X	Datalogger ca	able download mode	el: USB	
*Install Date:		First Date Ev	ent	Last Date Event	
*Coordinates and Elevat	tion	N 588481.3	E 7595989	Elev	22.6
Length of Cable (m)		Cable Lead Above	Ground (m)	1.2	
Datalogger Serial #	806109	Nodal Points	8		

Thermistor Inspection

	Good	Needs M	aintenance Description
Casing	X		
Cover	X		
Data Logger	X		
Cable	X		Small old plastic plug
Beads		Х	Beads 6-8 not functioning
Lock condition		Х	Cut and changed
Battery Installation Date	2012 (UL	.B5)	
Battery Levels	Main	11.34	Aux <u>13.75</u>

Manual Ground Temperature Readings

Bead	٧	Degrees C
1	1.41	15.5
2	1.37	14.2
3	1.33	12.9
4	1.28	11.1
5	1.30	11.9
6	0	381
7	0	381
8	0	381

Bead	ohms	Degrees C

Battery Information

Batteries changed? Yes No x Monitoring Year:

Battery model number installed: Existing ULB5 (expires in 2015 according to sticker)

Expected battery life (years): 2015-2017 (3-5 years)

Datalogger Programming (Describe programming completed; beads and frequency)

Observations and Proposed Maintenance

Logger labeled T2 on outside (filename VT-05 on prolog). Downloaded at 2:53pm on August 3, 2016. Data logger date August 3, 2016, time 14:13 (actually 3:00pm). Logger T2 moved to original T2 location after downloading. Logger T-5 relocated to this location (from original T-2 location). Loggers switched between VT-5 and VT-5A (2016). This is original T-5 location.

Inspector Name:	Darrin Johnson	Inspection Date:	August	3,2016
Inspector Signature /	Prepared By:			

Thermistor Information (*Some Information can be pre-populated from thermistor logs)

Site Name:	FOX-4	Landfill:	Tier II		
Thermistor Number:	VT-6	Inclination:	Vertical		
Datalogger model no:	R-X	Datalogger c	able download mode	l: USB	
*Install Date:		First Date Ev	rent	Last Date Event	
*Coordinates and Eleva	tion	N 588474.1	E 7596005.8	Elev	23.1
Length of Cable (m)		Cable Lead Above	Ground (m)	Approximately 0.5	
Datalogger Serial #	705043	Nodal Points	8		

Thermistor Inspection

	Good	Needs Ma	Maintenance Description
Casing	Χ		
Cover	X		
Data Logger	X		
Cable	X		Small old plastic plug
Beads		Χ	Beads 7 and 8 not functioning
Lock condition		Χ	Cut and changed
Battery Installation Date	2012?		
Battery Levels	Main	11.34	Aux <u>13.89</u>

Manual Ground Temperature Readings

Bead	٧	Degrees C
1	1.38	14.72
2	1.36	14.02
3	1.33	12.86
4	1.29	11.71
5	1.26	10.58
6	1.24	9.7
7	0	381
8	0	381

Bead	ohms	Degrees C

Battery Information

Batteries changed? Yes No x Monitoring Year:

Battery model number installed: Existing ULB5 (expires in 2015 according to sticker)

Expected battery life (years): 2015-2017 (3-5 years)

<u>Datalogger Programming (Describe programming completed; beads and frequency)</u>

Observations and Proposed Maintenance

Downloaded at 4:04pm on August 3, 2016. Logger is VT-1, Date August 3, 2016, Time 15:19 at 4pm. No logger T-6 so did not move this logger (VT-1 was decommissioned).

Inspector Name:	Darrin Johnson	Inspection Date:	August	3,2016
Inspector Signature / F	Prepared By:			

Thermistor Information (*Some Information can be pre-populated from thermistor logs)

Site Name:	FOX-4	Landfill:	Tier II		
Thermistor Number:	VT-7	Inclination:	82 degrees		
Datalogger model no:	R-X	Datalogger ca	ble download mode	l: USB	
*Install Date:		First Date Eve	ent	Last Date Event	
*Coordinates and Eleva	tion	N 588398.3	E 7595950.2	Elev	22.4
Length of Cable (m)		Cable Lead Above (Ground (m)	3.3	
Datalogger Serial #	07110044	Nodal Points	16		

Thermistor Inspection

	Good	Needs Maintenance	Description
Casing	X		
Cover	X		
Data Logger	X		
Cable	X		
Beads		χ Beads 13-16	S appear damaged
Lock condition		X Replaced lo	ck
Battery Installation Date	2008? (L	JLB5) - Probably dead?	
Battery Levels	Main	0?	Aux <u>0?</u>

Manual Ground Temperature Readings

Bead	V	Degrees C
1	1.42	16.14
2	1.37	14.29
3	1.18	7.91
4	1.06	4.14
5	0.95	0.18
6	0.92	-0.82
7	0.88	-1.90
8	0.85	-3.02

Bead	٧	Degrees C
9	0.83	-3.89
10	0.81	-4.56
11	0.80	-4.77
12	0.78	-5.55
13	-	381.0
14	-	381.0
15	_	381.0
16	0.0085	-101.45

Battery Information

Batteries changed? Yes X No Monitoring Year: 2016
Battery model number installed: ULB15 and ULB1
Expected battery life (years): 7-8 years (2023-2024)

<u>Datalogger Programming (Describe programming completed; beads and frequency)</u>

Observations and Proposed Maintenance

Unable to download initially (batteries dead?). Swapped out ULB5 for new ULB15 and then downloaded logger on August 3, 2016 at 1:35pm. Replaced both ULB1 and ULB15. Logger time and date when downloaded: November 29, 2014, 4:51 (actually 1:40pm).

Inspector Name:	Darrin Johnson	Inspection Date:	August	3,2016
Inspector Signature /	Prepared By:			

Thermistor Information (*Some Information can be pre-populated from thermistor logs)

Site Name:	FOX-4	Landfill:	Tier II		
Thermistor Number:	VT-8	Inclination:	88 degrees		
Datalogger model no:	RX - 16	Datalogger ca	able download model	USB	
*Install Date:		First Date Eve	ent	Last Date Event	
*Coordinates and Eleva	tion	N 588406.1	E 7595975.8	Elev	23.2
Length of Cable (m)		Cable Lead Above	Ground (m)	Approximately 6.5	
Datalogger Serial #	07110047	Nodal Points	16		

Thermistor Inspection

	Good	Needs Ma	aintenance	Description
Casing	X			
Cover	Χ			
Data Logger	Χ			
Cable	Χ			_
Beads	Χ			_
Lock condition		Χ	Lock changed	
Battery Installation Date	3-Aug-1	6		
Battery Levels	Main	11.34	Aux	13.38

Manual Ground Temperature Readings

Bead	٧	Degrees C
1	1.47	15.80
2	1.42	15.70
3	1.43	16.20
4	1.41	15.50
5	1.45	16.80
6	1.46	17.20
7	1.45	16.80
8	1.40	15.30

Bead	V	Degrees C
9	1.21	8.8
10	1.11	5.5
11	1.00	2.00
12	0.93	-0.30
13	0.90	-1.1
14	0.83	-3.7
15	0.80	-4.7
16	0.78	-5.30

Battery Information

Batteries changed? Yes x No Monitoring Year: 2016
Battery model number installed: ULB15 and ULB1
Expected battery life (years): 7-8 years (2023-2024)

<u>Datalogger Programming (Describe programming completed; beads and frequency)</u>

Observations and Proposed Maintenance

Replaced repaired logger with new ULB1 and ULB15 batteries. Downloaded at 1:53pm on August 3, 2016.

Inspector Name:	Darrin Johnson	Insp	pection Date:	August	3,2016	
Inspector Signature / Prepared By:						

Thermistor Information (*Some Information can be pre-populated from thermistor logs)

Site Name:	FOX-4		Landfill:	Tier II		
Thermistor Number:	VT-9		Inclination:	84 degrees		
Datalogger model no:	RX - 16		Datalogger cable	download model:	CC USB	
*Install Date:	August 3, 2016		First Date Event		Last Date Event	
*Coordinates and Elevat	ion	Ν	588454.4	E 7595947.9	Elev	23.5
Length of Cable (m)		Cable	Lead Above Gro	und (m)	Approximately 6.5	
Datalogger Serial #	07110082	Nodal	Points 16			

Thermistor Inspection

	Good	Needs Ma	aintenance	Description
Casing	X			
Cover	X			
Data Logger	Χ			
Cable	X			
Beads	X			
Lock condition		Χ	Replaced lock	
Battery Installation Date	3-Aug-1	6		
Battery Levels	Main	11.34	Aux	13.38

Manual Ground Temperature Readings

Bead	ohms	Degrees C
1	1.424	16.062
2	1.428	16.167
3	1.430	16.253
4	1.4425	16.678
5	1.4187	15.843
6	1.4328	16.336
7	1.4261	16.102
8	14.2695	14.482

Bead	ohms	Degrees C
9	1.2005	8.727
10	1.0927	4.932
11	0.9958	1.757
12	0.730	-0.2068
13	0.9059	-1.228
14	0.8293	-3.826
15	0.8023	-4.759
16	0.7858	-5.345

Battery Information

Batteries changed? Yes x No Monitoring Year: 2016

Battery model number installed: ULB15 and ULB1

Expected battery life (years): 7-8 years (2023-2024)

<u>Datalogger Programming (Describe programming completed; beads and frequency)</u>

Observations and Proposed Maintenance

Logger date January 14, 2016, downloaded at 12:15pm on August 3, 2016. Replaced repaired datalogger with new ULB1 and ULB15 batteries.

Inspector Name:	Darrin Johnson		Inspection Date:	August	3,2016
Inspector Signature / Prepared By:					

Thermistor Information (*Some Information can be pre-populated from thermistor logs)

Site Name:	FOX-4	Landfill:	Tier II		
Thermistor Number:	VT-10	Inclination:	Vertical		
Datalogger model no:	R-X	Datalogger o	able download mod	del: U	SB
*Install Date:		First Date Ev	vent	Last Date Ev	/ent
*Coordinates and Elevat	tion	N 588479.9	E 7595945	. 8 EI	ev 23.9
Length of Cable (m)		Cable Lead Above	Ground (m)	2	
Datalogger Serial #	07110049	Nodal Points	16		

Thermistor Inspection

	Good	Needs Maintenance Description	
Casing	X		
Cover		X Hard to remove (removed rubber ring)	
Data Logger	Χ		
Cable	Χ		
Beads		X No data for beads 15 and 16	
Lock condition		X Replaced	
Battery Installation Date	2008 (be	fore new batteries in 2016)	
Battery Levels	Main	<u>0</u> Aux <u>0</u>	

Manual Ground Temperature Readings

Bead	٧	Degrees C
1	1.45	16.98
2	1.30	11.68
3	1.15	6.76
4	1.04	3.08
5	0.94	-0.02
6	0.92	-0.84
7	0.86	-2.67
8	0.84	-3.59

Bead	٧	Degrees C
9	0.82	-4.17
10	0.80	-4.76
11	0.79	-5.21
12	0.78	-5.53
13	0.77	-5.77
14	0.77	-5.96
15	0	-
16	0	-

Battery Information

Batteries changed? Yes x No Monitoring Year: 2016

Battery model number installed: ULB15 and ULB1

Expected battery life (years): 7-8 years (2023-2024)

<u>Datalogger Programming (Describe programming completed; beads and frequency)</u>

Observations and Proposed Maintenance

Unable to download (batteries dead?). Downloaded with new batteries (ULB-15 and ULB-1) at 4:45pm on August 3, 2016. Datalogger date 11/07/14 time 3:42 (actually 17:00).

Appendix B2

FOX-4 Monitoring Well Data

Sample Number(s) include dups.: Bottles filled (by parameter type) Date of Sampling Event: Weather Sunny, +20 Names of Samplers JB, KL Description of well condition and surrounding ground conditions (note ponding of water): Bentonite and water pulled up beyond well in casing, removed casing to sample. Lock (condition, presence, model, manufacturer): Ok Pre-Measured Data (from water well record log)		An	nex J: Monitorin	g Wells Sampli	ng Log	
Sample Number(s) include dups.: Bottles filled (by parameter type) Date of Sampling Event: Sunny, +20 Names of Samplers JB, KL Description of well condition and surrounding ground conditions (note ponding of water): Bentonite and water pulled up beyond well in casing, removed casing to sample. Lock (condition, presence, model, manufacturer): Ok Pre-Measured Data (from water well record log) Depth of well installation (cm): Depth of well installation (cm): Depth of screen (cm): Depth of sorreen (cm): Depth of sorreen (cm): Field Measurements Measurement method (interface probe, tape, etc): Interface Probe Well pipe height above ground (cm) (to top of pipe): Static water level (cm) from top of pipe: Static water level (cm) (below ground surface) calculated: Measured well refusal depth (cm) (measured after sampling from top of pipe): Thickness of water column (cm): Static Volume of water in well (mL): Free product thickness (mm): Evidence of Sludge or siltation: Purge Information Summary Purging/sampling equipment, sampling technique and equipment calibration information: Well purged (Y/N): Volume Purged (L) (note multiple purging events): Parameter Initial Stablized Final Notes pH	Site Name:	FOX4			Landfill Name:	
Bottles filled (by parameter type) Date of Sampling Event: Sunny, +20	Monitoring Well ID:	MW-1				Station Area
Date of Sampling Event: Weather Sunny, +20 JB, KL Description of well condition and surrounding ground conditions (note ponding of water): Bentonite and water pulled up beyond well in casing, removed casing to sample. Lock (condition, presence, model, manufacturer): Ok Pre-Measured Data (from water well record log) Depth of well installation (cm): Depth to top of screen (cm): Depth to top of screen (cm): Depth dessurements Measurement method (interface probe, tape, etc): Mell pipe height above ground (cm) (to top of pipe): Static water level (cm) (below ground surface) calculated: Measured well refusal depth (cm) (measured after sampling from top of pipe): Thickness of water column (cm): Purge Information Summary Purging/sampling equipment, sampling technique and equipment calibration information: Purge Information Summary Purging/sampling equipment, sampling technique and equipment calibration information: Parameter Initial Stablized Final Notes pH	Sample Number(s) inclu	ıde dups.:	-			
Weather JB, KL Sunny, +20 JB, KL JB	Bottles filled (by param	eter type)	-			
Names of Samplers JB, KL Description of well condition and surrounding ground conditions (note ponding of water): Bentonite and water pulled up beyond well in casing, removed casing to sample. Lock (condition, presence, model, manufacturer): Ok Pre-Measured Data (from water well record log) Depth of well installation (cm): Depth to top of screen (cm): Length of screened section (cm): Length of screened section (cm): Well pipe height above ground (cm) (to top of pipe): Static water level (cm) from top of pipe: Static water level (cm) (below ground surface) calculated: Weasured well refusal depth (cm) (measured after sampling from top of pipe): Trickickness of water column (cm): Pree product thickness (mm): Static Volume of Sludge or siltation: Purge Information Summary Purging/sampling equipment, sampling technique and equipment calibration information: Well purged (Y/N): Parameter Initial Stablized Final Notes PH	Date of Sampling Event	:		4 August	2016	Time: 17:40
Description of well condition and surrounding ground conditions (note ponding of water): Bentonite and water pulled up beyond well in casing, removed casing to sample. Dock (condition, presence, model, manufacturer): Depth of well installation (cm): Depth of screen (cm): Diameter of well	Weather	Sunny, +20				
Sentonite and water pulled up beyond well in casing, removed casing to sample. Lock (condition, presence, model, manufacturer): Ok Pre-Measured Data (from water well record log) Depth of well installation (cm): Depth of well installation (cm): Length of screened section (Names of Samplers	JB, KL				
Pre-Measured Data (from water well record log) Depth of well installation (cm): Depth of screen (cm): Depth of well installation (cm	Description of well cond	dition and surr	rounding ground	conditions (no	te ponding of water):	
Pre-Measured Data (from water well record log) Depth of well installation (cm): - Diameter of well (cm): - Depth to top of screen (cm): - Length of screened section (cm): - Depth to top of screen (cm): - Length of screened section (cm): - Depth to top of screen (cm): - Length of screened section (cm): - Depth to top of pipe: Depth top of pipe: De	Bentonite and water pເ	ılled up beyon	d well in casing, i	removed casing	g to sample.	
Depth of well installation (cm): Depth to top of screen (cm): Field Measurements Measurement method (interface probe, tape, etc): Mell pipe height above ground (cm) (to top of pipe): Static water level (cm) from top of pipe: Static water level (cm) (below ground surface) calculated: Measured well refusal depth (cm) (measured after sampling from top of pipe): Thickness of water column (cm): Free product thickness (mm): Deurge Information Summary Purging/sampling equipment, sampling technique and equipment calibration information: Well purged (Y/N): Deurge Information Summary Purged (L) (note multiple purging events): Parameter Initial Stablized Final Notes pH	ock (condition, presen	ce, model, ma	ınufacturer):	Ok		
Depth of well installation (cm): Depth to top of screen (cm): Depth to top of screen (cm): Field Measurements Measurement method (interface probe, tape, etc): Well pipe height above ground (cm) (to top of pipe): Static water level (cm) from top of pipe: Static water level (cm) (below ground surface) calculated: Measured well refusal depth (cm) (measured after sampling from top of pipe): Thickness of water column (cm): Free product thickness (mm): Purge Information Summary Purging/sampling equipment, sampling technique and equipment calibration information: - Well purged (Y/N): - Recharge Rate: - Wolume Purged (L) (note multiple purging events): - Parameter Initial Stablized Final Notes pH - Conductivity (mS/cm) - Turbidity (NTU) - Temperature (degC) - Visual/olfactory observations: - Decontamination of sampling equipment Type of decontamination fluid(s): Water, soap, decon interface probe.		_				
Depth to top of screen (cm): - Length of screened section (cm): - Length descreened section (cm): - Length of screened section (cm): -			l record log)	5:	·	
Measurement method (interface probe, tape, etc): Interface Probe Mell pipe height above ground (cm) (to top of pipe):	·		-		• •	4.4
Measurement method (interface probe, tape, etc): Mell pipe height above ground (cm) (to top of pipe): Static water level (cm) from top of pipe: Static water level (cm) (below ground surface) calculated: Measured well refusal depth (cm) (measured after sampling from top of pipe): Measured well refusal depth (cm) (measured after sampling from top of pipe): Measured well refusal depth (cm) (measured after sampling from top of pipe): Measured well refusal depth (cm) (measured after sampling from top of pipe): Measured well refusal depth (cm) (measured after sampling from top of pipe): Measured well refusal depth (cm) (measured after sampling from top of pipe): Measured well refusal depth (cm) (measured after sampling from top of pipe): Measured well refusal depth (cm) (measured after sampling from top of pipe): Measured well refusal depth (cm) (measured after sampling from top of pipe): Measured well refusal depth (cm) (measured after sampling from top of pipe): Measured well refusal depth (cm) (measured after sampling from top of pipe): Measured well refusal depth (cm) (measured after sampling from top of pipe): Measured well refusal depth (cm) (measured after sampling from top of pipe): Measured well refusal depth (cm) (measured after sampling from top of pipe): Measured well refusal depth (cm) (measured after sampling from top of pipe): Measured well refusal depth (cm) (measured after sampling from top of pipe): Measured well refusal depth (cm) (measured after sampling from top of pipe): Measured well refusal depth (cm) (measured after sampling from top of pipe): Measured well refusal depth (cm) (measured after sampling from top of pipe): Measured well refusal depth (cm) (measured after sampling from top of pipe): Measured well refusal depth (cm) (measured after sampling from top of pipe): Measured well refusal depth (cm) (measured after sampling from top of pipe): Measured well refusal depth (cm) (measured sampling from top of pipe): Measured well refusal depth (cm) (measured sampling	Depth to top of screen	(cm):		Length of so	creened section (cm):	_
Measurement method (interface probe, tape, etc): Interface Probe Well pipe height above ground (cm) (to top of pipe):	Field Measurements					
Well pipe height above ground (cm) (to top of pipe): Static water level (cm) from top of pipe: Static water level (cm) (below ground surface) calculated: Measured well refusal depth (cm) (measured after sampling from top of pipe): Thickness of water column (cm): Free product thickness (mm): Purge Information Summary Purging/sampling equipment, sampling technique and equipment calibration information: Well purged (Y/N): Parameter Initial Stablized Final Notes pH Conductivity (mS/cm) Turbidity (NTU) Temperature (degC) Visual/olfactory observations: Water, soap, decon interface probe.		(interface pro	he. tane. etc):	Interface Pr	ohe	
Static water level (cm) from top of pipe: Static water level (cm) (below ground surface) calculated: Measured well refusal depth (cm) (measured after sampling from top of pipe): Measured well refusal depth (cm) (measured after sampling from top of pipe): Measured well refusal depth (cm) (measured after sampling from top of pipe): Metasured well refusal depth (cm) (measured after sampling from top of pipe): Metasured well refusal depth (cm) (measured after sampling from top of pipe): Metasured value of Sludge or siltation: Purge Information Summary Purging/sampling equipment, sampling technique and equipment calibration information: Mell purged (Y/N): Parameter Initial Stablized Final Notes Parameter Initial Stablized Final Notes Parameter Initial Stablized Final Notes Purpidity (mS/cm) - - Turbidity (mS/cm) - - Turbidity (mS/cm) - - Turbidity (nS/cm) - - Temperature (degC) - - Mell purged (degC) - -		•	• • •			— _
Astatic water level (cm) (below ground surface) calculated: Measured well refusal depth (cm) (measured after sampling from top of pipe): Measured well refusal depth (cm) (measured after sampling from top of pipe): Measured well refusal depth (cm) (measured after sampling from top of pipe): Methods of water column (cm): - Static Volume of water in well (mL): Evidence of Sludge or siltation: - Evidence of Sludge or siltation: - Well purged Information Summary Purging/sampling equipment, sampling technique and equipment calibration information: - Well purged (Y/N): - Recharge Rate: - Well purged (Y/N): - Parameter Initial Stablized Final Notes pH Conductivity (mS/cm) Turbidity (NTU) Temperature (degC) Visual/olfactory observations: - Visual/olfactory observations: - Visual/olfactory observations: - Water, soap, decon interface probe.						-
Measured well refusal depth (cm) (measured after sampling from top of pipe): Thickness of water column (cm): Free product thickness (mm): Purge Information Summary Purging/sampling equipment, sampling technique and equipment calibration information: Well purged (Y/N): Parameter Initial Stablized Final Notes pH				ed:		-
Thickness of water column (cm): Free product thickness (mm): Free product of Sludge or siltation: Free product of Sludge or			· ·		o of nine):	149.1 dry
Purge Information Summary Purging/sampling equipment, sampling technique and equipment calibration information:			-		• • •	
Purge Information Summary Purging/sampling equipment, sampling technique and equipment calibration information:			-			
Parameter Initial Stablized Final Notes pH	-	•	ng technique and	equipment ca	libration information:	
Parameter Initial Stablized Final Notes pH Conductivity (mS/cm) Turbidity (NTU) Temperature (degC) Visual/olfactory observations: Decontamination of sampling equipment Type of decontamination fluid(s): Water, soap, decon interface probe.	Well purged (Y/N):		_		Recharge Rate:	_
Parameter Initial Stablized Final Notes pH Conductivity (mS/cm) Turbidity (NTU) Temperature (degC) Visual/olfactory observations: Decontamination of sampling equipment Type of decontamination fluid(s): Water, soap, decon interface probe.		e multiple pur	ging events):	_		
pH	0 (7)		,			
Conductivity (mS/cm)	Parameter	Initial	Stablized	Final	Note	es
Turbidity (NTU) Temperature (degC) //isual/olfactory observations: Decontamination of sampling equipment Type of decontamination fluid(s): Water, soap, decon interface probe.	рН	-	-	-		
Temperature (degC) /isual/olfactory observations: Decontamination of sampling equipment Type of decontamination fluid(s): Water, soap, decon interface probe.	Conductivity (mS/cm)	-	-	-		
/isual/olfactory observations: - Decontamination of sampling equipment Type of decontamination fluid(s): Water, soap, decon interface probe.	Turbidity (NTU)	-	-	-		
Decontamination of sampling equipment Type of decontamination fluid(s): Water, soap, decon interface probe.	Temperature (degC)	-	-	-		
ype of decontamination fluid(s): Water, soap, decon interface probe.	/isual/olfactory observ -	ations:				
	Decontamination of sa	mpling equipr	ment			
Number of washes: - Number of rinses: -	• •	on fluid(s):	Water, soap, o	lecon interface	probe.	
	Number of washes:				Number of rinses:	

Site Name: FOX4 Monitoring Well ID: MW-2 Sample Number(s) include dups.: Bottles filled (by parameter type) Date of Sampling Event: Weather Sunny, +20 Names of Samplers JB Description of well condition and sundry ground. Casing ponded with was	- All	4 August	Landfill Name:	Helipad
Sample Number(s) include dups.: Bottles filled (by parameter type) Date of Sampling Event: Weather Sunny, +20 Names of Samplers JB Description of well condition and su				Helipad
Bottles filled (by parameter type) Date of Sampling Event: Weather Sunny, +20 Names of Samplers JB Description of well condition and su		Δ Διισιιςτ		
Date of Sampling Event: Weather Names of Samplers Description of well condition and su		Δ Διισιιςτ		
Weather Sunny, +20 Names of Samplers JB Description of well condition and su		Δ Διισιιςτ		
Names of Samplers JB Description of well condition and su		+ / tagast	2016	Time: 16:30
Description of well condition and su				
·				_
Dry ground. Casing ponded with wa	irrounding ground o	conditions (no	te ponding of water):	_
- · , o. · · · · · · · · · · · · · · · · · ·	ter and bentonite a	bove plug.		
Lock (condition, presence, model, n	nanufacturer):	No lock add	ded, crown lock	
Pre-Measured Data (from water w	ell record log)			
Depth of well installation (cm):	-	_ Diameter o	• •	4.4
Depth to top of screen (cm):	_	Length of so	creened section (cm):	
Field Measurements				
Measurement method (interface pr	obe. tape. etc):	Interface Pr	robe	
Well pipe height above ground (cm)	• • •			- 60
Static water level (cm) from top of p				76
Static water level (cm) (below grou		ed:		16
Measured well refusal depth (cm) (•		n of nine)·	116
Thickness of water column (cm):			me of water in well (mL):	608
Free product thickness (mm):			f Sludge or siltation:	-
Purge Information Summary Purging/sampling equipment, samp Peristaltic pump	ling technique and	equipment ca	libration information:	
Well purged (Y/N):	-		Recharge Rate:	-
Volume Purged (L) (note multiple p	urging events):	-		
Parameter Initial	Stablized	Final	Notes	
I'	6.65		6.89	
, , , , , , , , , , , , , , , , , , ,	101 0.26	57	0.288	3
, , ,	220 19		66	
Temperature (degC) 11	1.08 9.4	.9	7.56	j
Visual/olfactory observations:				
Cloudy, no odour				
Decontamination of sampling equi	nment			
Type of decontamination fluid(s):		nethyl interfac	ce probe, disposable tubin	nα
Number of washes: -	vvater, Suap, II	ietiiyi iiiteriat	Number of rinses:	<u>წ</u> .
			indiliber of fillses:	-
				

	An	nex J: Monitoring	g Wells Sampli	ng Log	
Site Name:	te Name: FOX4			Landfill Name:	Helipad
Monitoring Well ID:	MW-3				Landfill
Sample Number(s) inclu	ıde dups.:	-			
Bottles filled (by param	eter type)	-			
Date of Sampling Event	:		4 August	2016	Time: 17:00
Weather	Sunny, +20	<u> </u>	-		
Names of Samplers	JB, KL				
Description of well con-	dition and suri	ounding ground	conditions (no	te ponding of water):	_
Bentonite buldging fror	n casing.		•		
Lock (condition, presen	ce, model, ma	nufacturer):	Ok		
Pre-Measured Data (fro		record log)	Diameter	fall /ams\.	4.7
Depth of well installation			Diameter o		4.4
Depth to top of screen	(cm):	-	Length of so	creened section (cm):	
Field Measurements					
Measurement method	(interface pro	be, tape, etc):	Interface Pr	obe	
Well pipe height above	ground (cm) (to top of pipe):			_ 30
Static water level (cm) f	from top of pi	oe:		-	
Static water level (cm)			ed:		-
Measured well refusal of		· ·		p of pipe):	108.5 dry
Thickness of water colu		-	. •	ne of water in well (mL):	
Free product thickness		-		Sludge or siltation:	-
Purge Information Sum Purging/sampling equip -	-	ng technique and	equipment ca	libration information:	_
Well purged (Y/N):				Recharge Rate:	
Volume Purged (L) (not	e multiple pur	ging events):	-		
000 () (0 0 = = ==,			
Parameter	Initial	Stablized	Final	Note	<u>!</u> S
рН	-	-	-		
Conductivity (mS/cm)	-	-	-		
Turbidity (NTU)	-	-	-		
Temperature (degC)	-	-	-		
Visual/olfactory observ					
Decontamination of sa Type of decontamination			lecon interface	nrohe	
Number of washes:	m nulu(s):	Water, soap, o	iecon interrace	Number of rinses:	
number of washes:		1		number of finses:	
Other relevant comme	ntc	Dry well			
other relevant comme	11.3.	DI y Well			

			Wells Sampli		
Site Name:	FOX4			Landfill Name:	
Monitoring Well ID:	MW-6				Helipad
Sample Number(s) inclu	ıde dups.:	-			
Bottles filled (by param	eter type)	-			
Date of Sampling Event	:		4 August	2016	Time: 15:50
Weather	Light breeze,	sunny, +20			
Names of Samplers	JB				
Description of well con-	dition and surr	ounding ground o	conditions (no	te ponding of water):	
Dry ground. Evidence o	f frost lifting. B	Bentonite sludge i	n casing.		
Lock (condition, presen	ce, model, ma	nufacturer):	Replaced lo	ck	
Pre-Measured Data (fro	om water well	record log)			
Depth of well installation		-	Diameter of	f well (cm):	4.4
Depth to top of screen		_		creened section (cm):	
septific top of screen	(CIII).		Length of st	reened section (cm).	
Field Measurements					
Measurement method	(interface prob	oe, tape, etc):	Interface Pr	obe	
Well pipe height above	ground (cm) (t	to top of pipe):			
Static water level (cm)	from top of pip	oe:			-
CL - 1	(halaw graund	surface) calculat	od.		_
Static water level (cm)	(below ground	Surface) Calculate	eu.		
Static water level (cm) (Measured well refusal (o of pipe):	103 dry well
Measured well refusal of	depth (cm) (me		pling from top		103 dry well
Measured well refusal of the column of the c	depth (cm) (me imn (cm): (mm):		npling from top Static Volun	o of pipe): ne of water in well (mL): Sludge or siltation:	
Measured well refusal of the column of the c	depth (cm) (me imn (cm): (mm):	easured after sam 	npling from top Static Volun Evidence of	ne of water in well (mL): Sludge or siltation:	
Measured well refusal of thickness of water colustrickness of water colustrickness free product thickness purge Information Sum Purging/sampling equip	depth (cm) (me imn (cm): (mm):	easured after sam 	npling from top Static Volun Evidence of	ne of water in well (mL): Sludge or siltation: libration information:	
Measured well refusal of Thickness of water columns of the product thickness Purge Information Sum Purging/sampling equipation of the purging of the purged (Y/N):	depth (cm) (me imn (cm): (mm): nmary oment, samplin	easured after sam - - - ng technique and -	npling from top Static Volun Evidence of	ne of water in well (mL): Sludge or siltation:	
Measured well refusal of thickness of water columns of the product thickness of the product thickness of the purge Information Sum Purging/sampling equipation of the purged (Y/N):	depth (cm) (me imn (cm): (mm): nmary oment, samplin	easured after sam - - - ng technique and -	npling from topStatic Volun _ Evidence of equipment cal	ne of water in well (mL): Sludge or siltation: libration information:	
Measured well refusal of Thickness of water columneree product thickness Purge Information Surrepurging/sampling equipation Well purged (Y/N):	depth (cm) (me imn (cm): (mm): nmary oment, samplin	easured after sam - - - ng technique and -	npling from topStatic Volun _ Evidence of equipment cal	ne of water in well (mL): Sludge or siltation: libration information:	- -
Measured well refusal of Thickness of water columness of water columne	depth (cm) (me imn (cm): (mm): nmary oment, samplin e multiple pur	easured after sam ng technique and - ging events):	Static Volun Evidence of equipment cal	ne of water in well (mL): Sludge or siltation: libration information: Recharge Rate:	- -
Measured well refusal of Thickness of water columness of water columne	depth (cm) (me imn (cm): (mm): nmary oment, samplin e multiple pur	easured after sam ng technique and ging events): Stablized	Static Volun Evidence of equipment cal	ne of water in well (mL): Sludge or siltation: libration information: Recharge Rate:	- -
Measured well refusal of Thickness of water columness of water columne	depth (cm) (me imn (cm): (mm): (mm): (mm);	easured after sam ng technique and - ging events): Stablized -	Static Volun Static Volun Evidence of equipment cal - Final -	ne of water in well (mL): Sludge or siltation: libration information: Recharge Rate:	- -
Measured well refusal of Thickness of water colustree product thickness Purge Information Sum Purging/sampling equip Well purged (Y/N): Volume Purged (L) (not Parameter pH Conductivity (mS/cm)	depth (cm) (me imn (cm): (mm): nmary oment, samplin e multiple pure	easured after sam	Static Volun Static Volun Evidence of equipment cal - Final -	ne of water in well (mL): Sludge or siltation: libration information: Recharge Rate:	- -
Measured well refusal of Thickness of water columness of water columness. Purge Information Sum Purging/sampling equipates. Well purged (Y/N): Volume Purged (L) (not Parameter pH Conductivity (mS/cm) Turbidity (NTU) Temperature (degC) Visual/olfactory observents.	depth (cm) (me imn (cm): (mm): (mm): nmary oment, samplin e multiple purp Initial - - - - -	easured after sam ging technique and - ging events): Stablized	Static Volun Static Volun Evidence of equipment cal - Final	ne of water in well (mL): Sludge or siltation: libration information: Recharge Rate:	- -
Measured well refusal of Thickness of water columness of water columness. Purge Information Sumpling equipation of Sampling Inches Sampling equipation of Sampling Inches Sampling equipation of Sampling Equipation of Sampling Inches Sampling equipation of Sampling equipation	depth (cm) (me imn (cm): (mm): (mm): (mm): (mm);	easured after same =	Static Volun Static Volun Evidence of equipment cal - Final	ne of water in well (mL): Sludge or siltation: libration information: Recharge Rate: Note	- -
Measured well refusal of Thickness of water column Free product thickness Purge Information Sum Purging/sampling equipates Well purged (Y/N): Volume Purged (L) (not Parameter pH Conductivity (mS/cm) Turbidity (NTU) Temperature (degC) Visual/olfactory observents	depth (cm) (me imn (cm): (mm): (mm): nmary oment, samplin e multiple pure Initial ations: mpling equipn on fluid(s):	easured after sam ging technique and - ging events): Stablized	Static Volun Static Volun Evidence of equipment cal - Final	ne of water in well (mL): Sludge or siltation: libration information: Recharge Rate: Note	- -

	Ann	nex J: Monitoring	Wells Sampli	ng Log	
Site Name:	FOX4			Landfill Name:	Station Area
Monitoring Well ID:	MW-7				Landfill
Sample Number(s) inclu	ide dups.:	None	_		
Bottles filled (by parame	eter type)	None			
Date of Sampling Event	:		4 August	2016	 Time: 2:45
Weather	Light breeze, -	+20			
Names of Samplers	JB, KR				_
Description of well cond	dition and surre	ounding ground o	onditions (no	te ponding of water):	_
Ponded water in casing			•		
Lock (condition, present		nufacturer):	Replaced cr	own lock	
•		•			
Pre-Measured Data (fro	om water well	record log)			
Depth of well installation	on (cm):	-	Diameter of	f well (cm):	4.4
Depth to top of screen	(cm):	-	 Length of so	creened section (cm):	-
			_		
Field Measurements					
Measurement method	(interface prob	oe, tape, etc):	Interface Pr	obe	
Well pipe height above	ground (cm) (t	to top of pipe):			_
Static water level (cm) f	rom top of pip	e:			187.2
Static water level (cm) (below ground	surface) calculate	ed:		187.2
Measured well refusal of	depth (cm) (me	easured after sam	pling from to	o of pipe):	194.2
Thickness of water colu				ne of water in well (mL):	106
Free product thickness	(mm):	-	Evidence of	Sludge or siltation:	-
Purge Information Sum Purging/sampling equip Dug out bentonite and	ment, samplin	-		libration information:	
Well purged (Y/N):		-		Recharge Rate:	-
Volume Purged (L) (not	e muitipie purg	ging events):			
Parameter	Initial	Stablized	Final	Note	c
pH	-	- Stabilzed	-	Note	3
Conductivity (mS/cm)	_	_	1-		
Turbidity (NTU)					
Temperature (degC)	_	1_			
Temperature (degc)	<u> </u>	1-			
Visual/olfactory observa	ations:				
Decontamination of sa	mpling equipm	nent			
Type of decontamination	n fluid(s):				
Number of washes:	-			Number of rinses:	-
Other relevant commer	nts:	Unable to sami	ole without ge	etting setiment in pipe. Lo	ooks like bentonite h

	Anr	ex J: Monitorin	g Wells Sampli	ing Log	
Site Name:	FOX4			Landfill Name:	Station Area
Monitoring Well ID:	MW-8				Landfill
Sample Number(s) incl	ude dups.:	_			
Bottles filled (by param	neter type)	-			_
Date of Sampling Even	t:		4 August	2016	Time: 15:00
Weather	Light breeze,	sunny, +20			<u></u>
Names of Samplers	JB, KR				
Description of well con	dition and surre	ounding ground	conditions (no	te ponding of water):	
Dry ground, casing fille	r pushed up (be	entonite).			
Lock (condition, preser	nce, model, mar	nufacturer):	Changed to	crown	_
Pre-Measured Data (fi	om water well	record log)			
Depth of well installati	on (cm):	-	Diameter o	f well (cm):	4.4
Depth to top of screen	(cm):	-	Length of so	creened section (cm):	-
Field Measurements					
Measurement method	(interface prob	e, tape, etc):	Interface Pr	robe	
Well pipe height above					
Static water level (cm)	_				-
Static water level (cm)			ed:		
Measured well refusal	_			p of pipe):	105.2 dry
Thickness of water colu		-		me of water in well (mL):	
	, ,	-		, ,	Evidence of
					sludge
Free product thickness	(mm):	_	Evidence of	f Sludge or siltation:	bentonite
•	,	-	_	J	
Purge Information Sur	nmary				
Purging/sampling equi	-	g technique and	equipment ca	libration information:	
-	,, -	0	-4-1		
-					
Well purged (Y/N):		_		Recharge Rate:	
Volume Purged (L) (no	te multiple pure	ing events):	_		
0 (7)		,	-		
Parameter	Initial	Stablized	Final	Note	S
pН	-	-	-		
Conductivity (mS/cm)	_	_	-		
Turbidity (NTU)	_	-	-		
Temperature (degC)	†_	_	_		
remperature (dege)			<u> </u>		
Visual/olfactory observ	vations:				
-	rations.				
Decontamination of sa	mpling oquing	ont			
			acan intarfaca	nroho	
Type of decontaminati Number of washes:		Soap, water de	econ interrace	Number of rinses:	
number of wasnes:		2		number of rinses:	2
Othor volovent comme	mts.				
Other relevant comme	11115;				_

	Ann	ex J: Monitoring	g Wells Sampli	ing Log	
Site Name:	FOX4			Landfill Name:	Station Area
Monitoring Well ID:	MW-9				Landfill
Sample Number(s) inclu	ide dups.:	-	_		
Bottles filled (by param	eter type)	-			
Date of Sampling Event	:		4 August	2016	 Time: 15:15
Weather	Light breeze, s	sunny, +20			
Names of Samplers	JB, KR				
Description of well cond	dition and surro	ounding ground	conditions (no	te ponding of water):	_
Dry ground. Well casing			=	•	
Lock (condition, presen		_	-		
Pre-Measured Data (fro	nm water well	record log)			
Depth of well installation		-	Diameter o	f well (cm):	4.4
Depth to top of screen				creened section (cm):	4.4
Depth to top of screen	(CIII).		religition so	creened section (cm).	-
Field Measurements					
Measurement method	(interface prob	e, tape, etc):	Interface Pr	robe	
Well pipe height above	ground (cm) (to	o top of pipe):			
Static water level (cm) f	rom top of pip	e:			-
Static water level (cm) (below ground	surface) calculat	ted:		-
Measured well refusal o	depth (cm) (me	asured after sar	npling from to	p of pipe):	104 dry possible i
Thickness of water colu	mn (cm):	-	Static Volur	me of water in well (mL):	-
Free product thickness	(mm):	-	Evidence of	f Sludge or siltation:	-
Purge Information Sum Purging/sampling equip	-	g technique and	l equipment ca	libration information:	
Well purged (Y/N):		-		Recharge Rate:	_
Volume Purged (L) (not	e multiple purg	ing events):			
		T			
Parameter	Initial	Stablized	Final	Note	S
pH	-	 -	-		
Conductivity (mS/cm)	-	<u> </u>	-		
Turbidity (NTU)	-	<u> -</u>			
Temperature (degC)	-	1-	-		
Visual/olfactory observa					
Decontamination of sa					
Type of decontamination	n fluid(s):	Soap, water d	econ interface		
Number of washes:				Number of rinses:	
Other relevant commer	nts:				

	Annex	J: Monitoring \	Wells Sampling	Log	
Site Name:	FOX4		_	Landfill Name:	Non Haz
Monitoring Well ID:	MW11-1		_		Pier II
Sample Number(s) inclu	de dups.:	-			
Bottles filled (by parame	eter type)	All plus dup			_
Date of Sampling Event:	<u>_</u>	3	August	2016	Time: 11:30
Weather	No wind, sunny,	+15			_
Names of Samplers	JB, RN				_
Description of well cond	ition and surrou	nding ground co	nditions (note p	onding of water):	
Dry ground, well in good	condition.				
Lock (condition, presenc	e, model, manu	facturer):	Replaced lock,	crown.	
Pre-Measured Data (fro	m water well re	cord log)			
Depth of well installation		-	Diameter of we	all (cm).	4.4
Depth to top of screen (ened section (cm):	
Depth to top of screen (-	_ Length of scree	ineu section (ciii).	
Field Measurements					
Measurement method (interface probe,	tape, etc):	Interface Probe	<u>j</u>	_
Well pipe height above ยู	ground (cm) (to t	top of pipe):			81
Static water level (cm) fr	om top of pipe:				182.4
Static water level (cm) (Ł	oelow ground su	rface) calculated	d:		101.4
Measured well refusal d	epth (cm) (meas	ured after samp	ling from top of	pipe):	296.5
Thickness of water colur	nn (cm):	114.1	Static Volume	of water in well (mL):	1735
Free product thickness (mm):	-	Evidence of Slu	dge or siltation:	No
Purging/sampling equipoperistaltic pump Well purged (Y/N): Volume Purged (L) (note		-	quipment calibra	Recharge Rate:	
Parameter	Initial	Stablized	Final	Notes	•
рН	7.38	7.08			
Conductivity (mS/cm)	0.057	0.057			
Turbidity (NTU)	0.037	0.037			
Temperature (degC)	9.45	7.32			
remperature (degc)	5.45	7.32	0.14		
Visual/olfactory observa	tions:				
Clear, no odour					
Decontamination of san	npling equipmer	nt			
Type of decontamination	n fluid(s):	Methyl water so	ap decon of inte	erface probe	
Number of washes:	1			Number of rinses:	1
_					
Other relevant commen	ts: I	Disposable tubir	ıg		

	, , , , , ,	(J: Monitoring V	veiis Sampiing i	.og	
Site Name:	FOX4			Landfill Name:	Non Haz
Monitoring Well ID:	MW11-2				Tier II
Sample Number(s) inclu	ide dups.:	-			
Bottles filled (by parame	eter type)	ΑII			_
Date of Sampling Event	:	3	August	2016	Time: 14:30
Weather	Overcast, +15				_
Names of Samplers	JB, RN				_
Description of well cond	dition and surrou	nding ground co	nditions (note p	onding of water):	_
Surrounding ground is p	onded. Moist in	casing.			
Lock (condition, presen	ce, model, manu	facturer):	Good, crown.		
Pre-Measured Data (fro	nm water well re	cord log)			
Depth of well installation		-	Diameter of we	ill (cm).	4.4
Depth to top of screen (_	_		ned section (cm):	
septification of screening	_		Length of scree	nea section (cm).	
Field Measurements					
Measurement method ((interface probe,	tape, etc):	Interface Probe	!	_
Well pipe height above	ground (cm) (to t	top of pipe):			52
Static water level (cm) f					49.2
Static water level (cm) (below ground su	rface) calculated	l:		-2.8
Measured well refusal o	depth (cm) (meas	ured after samp	ling from top of	pipe):	108.2
			•	• • •	
Thickness of water colu	` ′ ′ –	59	Static Volume o	of water in well (mL):	
Thickness of water colu Free product thickness (Purge Information Sum	(mm):	-	Static Volume o	• • •	No
Purge Information Sum Purging/sampling equip - Well purged (Y/N):	(mm): mary ment, sampling t	echnique and ed	Static Volume of Evidence of Slu	of water in well (mL): dge or siltation:	
Purge Information Sum Purging/sampling equip - Well purged (Y/N):	(mm): mary ment, sampling t	echnique and ed	Static Volume of Evidence of Slu	of water in well (mL): dge or siltation: ation information:	No
Purge Information Sum Purging/sampling equip - Well purged (Y/N): Volume Purged (L) (note	(mm): mary ment, sampling t e multiple purgin	echnique and ed - g events):	Static Volume of Evidence of Sluquipment calibra	of water in well (mL): dge or siltation: ation information: Recharge Rate: Notes	No
Purge Information Sum Purging/sampling equip - Well purged (Y/N): Volume Purged (L) (note	(mm): mary ment, sampling t e multiple purgin	echnique and ed - g events): Stablized	Static Volume of Evidence of Sluquipment calibra	of water in well (mL): dge or siltation: etion information: Recharge Rate: Notes	No
Purge Information Sum Purging/sampling equip - Well purged (Y/N): Volume Purged (L) (note	e multiple purgin	echnique and ed - g events): Stablized 5.83	Static Volume of Evidence of Sluquipment calibrates - Final 5.98	of water in well (mL): dge or siltation: ation information: Recharge Rate: Notes	No
Purge Information Sum Purging/sampling equip - Well purged (Y/N): Volume Purged (L) (note Parameter pH Conductivity (mS/cm)	e multiple purgin Initial 5.69 0.644	eechnique and ed - g events): Stablized 5.83 0.741	Static Volume of Slu Evidence of Slu quipment calibra - Final 5.98 0.869	of water in well (mL): dge or siltation: ation information: Recharge Rate: Notes	No
Purge Information Sum Purging/sampling equip - Well purged (Y/N): Volume Purged (L) (note Parameter pH Conductivity (mS/cm) Turbidity (NTU) Temperature (degC) Visual/olfactory observa Clear, no odour Decontamination of sai	mary ment, sampling to ment, sampling to multiple purgin Initial 5.69 0.644 7.1 10.27 ations:		Static Volume of Evidence of Sluquipment calibrates Final 5.98 0.869 6.8 9.09	of water in well (mL): dge or siltation: ation information: Recharge Rate: Notes	No
Purge Information Sum Purging/sampling equip - Well purged (Y/N): Volume Purged (L) (note Parameter pH Conductivity (mS/cm) Turbidity (NTU) Temperature (degC) Visual/olfactory observa	mary ment, sampling to ment, sampling to multiple purgin Initial 5.69 0.644 7.1 10.27 ations:	echnique and ecceptions of the control of the contr	Final 5.98 0.869 6.8 9.09	of water in well (mL): dge or siltation: ation information: Recharge Rate: Notes	No

		J: Monitoring V	veiis Sampiing	_	
_	FOX4		-	Landfill Name:	Non Haz
_	MW11-3				Pier II
Sample Number(s) includ	· -	No dup			
Bottles filled (by parame	eter type) <u>/</u>	All			<u> </u>
Date of Sampling Event:	_	3	August	2016	Time:
Weather	Sunny, +15				_
Names of Samplers	JB, RN				_
Description of well cond	ition and surrou	nding ground co	nditions (note	ponding of water):	
Ponding water in well ca	ising.				
Lock (condition, presenc	e, model, manuf	acturer):	Good, crown.		
Due Manager d Data /fee					
Pre-Measured Data (fro Depth of well installation		cora log) -	Diameter of w	vell (cm):	4.4
Depth to top of screen (_		ened section (cm):	
Jeptil to top of screen (t			Length of scre	erieu section (ciii).	
Field Measurements					
Measurement method (i	interface probe,	tape, etc):	Interface Prob	oe .	
Well pipe height above g	ground (cm) (to t	op of pipe):			- 3.
Static water level (cm) fr	rom top of pipe:				14
Static water level (cm) (k		rface) calculated	l :		11
Measured well refusal de	-			of pipe):	175.
			•	• • •	
illickiless of water colui-	IIII (CIII).	30.6	Static Volume	of water in well (mL):	46.
Free product thickness (mm):	-	Evidence of SI	of water in well (mL): udge or siltation:	No 465
Purge Information Sump Purging/sampling equipr Peristaltic pump Well purged (Y/N):	mm): mary ment, sampling t	echnique and ed	Evidence of SI	udge or siltation:	
Purge Information Summ Purging/sampling equipm Peristaltic pump	mm): mary ment, sampling t	echnique and ed	Evidence of SI	udge or siltation:	
Purge Information Summurging/sampling equipmoduleristaltic pump Well purged (Y/N):	mm): mary ment, sampling t	echnique and ed	Evidence of SI	udge or siltation:	No -
Purge Information Sumi Purge Information Sumi Purging/sampling equipr Peristaltic pump Well purged (Y/N): Volume Purged (L) (note	mm): mary ment, sampling t	echnique and ed - g events):	Evidence of SI quipment calib - Final	udge or siltation: ration information: Recharge Rate: Notes	No -
Purge Information Sumi Purge Information Sumi Purging/sampling equipr Peristaltic pump Well purged (Y/N): Volume Purged (L) (note	mary ment, sampling t multiple purging	echnique and ed - g events): Stablized	Evidence of SI quipment calib - Final 5.	udge or siltation: ration information: Recharge Rate: Notes	No -
Purge Information Sumi Purge Information Sumi Purging/sampling equipr Peristaltic pump Well purged (Y/N): Volume Purged (L) (note	mary ment, sampling t multiple purging Initial 5.87	echnique and ed - g events): Stablized 5.55	Evidence of SI quipment calib - Final 5. 0.14	ration information: Recharge Rate:Notes 5	No -
Purge Information Summaring/Sampling equipmerstaltic pump Well purged (Y/N): Volume Purged (L) (note Parameter pH Conductivity (mS/cm)	mary ment, sampling t multiple purging Initial 5.87 0.136	echnique and ed - g events): Stablized 5.55 0.142	Evidence of SI quipment calib Final 5. 0.14 13.	udge or siltation: ration information: Recharge Rate: Notes 5	No -
Purge Information Summaring/sampling equipmeristaltic pump Well purged (Y/N): Volume Purged (L) (note Parameter pH Conductivity (mS/cm) Turbidity (NTU) Temperature (degC) Visual/olfactory observa	mm): mary ment, sampling t multiple purging Initial 5.87 0.136 18 9.28	echnique and ed g events): Stablized 5.55 0.142 13.8 8.98	Evidence of SI quipment calib Final 5. 0.14 13.	udge or siltation: ration information: Recharge Rate: Notes 5	No -
pH Conductivity (mS/cm) Turbidity (NTU)	mm): mary ment, sampling t multiple purging Initial 5.87 0.136 18 9.28 stions:	echnique and ed g events): Stablized 5.55 0.142 13.8 8.98	Final S. 0.14 13. 8.3	udge or siltation: ration information: Recharge Rate: Notes 5	

		v J. Wioliitoliiig v	Wells Sampling	_	
Site Name:	FOX4		_	Landfill Name:	Non Haz
Monitoring Well ID:	MW11-4		_		Pier II
Sample Number(s) inclu	· -	-			
Bottles filled (by param	- · · · · · -	All			
Date of Sampling Event	: -	3	August	2016	Time:
Weather	-				_
Names of Samplers	JB	1. 1	1 / .	II. C	_
Description of well con-	dition and surrou	nding ground co	inditions (note	ponding of water):	
Lock (condition, presen	ce, model, manu	facturer):	-		
Pre-Measured Data (fro	om water well re	cord log)			
Depth of well installation		-	Diameter of w	rell (cm):	4.
Depth to top of screen	(cm):	-	_	ened section (cm):	-
	-		-		
Field Measurements					
Measurement method	(interface probe,	tape, etc):	Interface Prob	e	
Well pipe height above	ground (cm) (to	top of pipe):			3
Static water level (cm)	from top of pipe:				95.
Static water level (cm)	(below ground su	rface) calculated	d:		64.
Measured well refusal of		•	•	• • •	159.
Thickness of water colu	ımn (cm):	64.3	Static Volume	of water in well (mL):	97
			_	or water in wen (iniz).	
Free product thickness Purge Information Sum	nmary	-	Evidence of SI	udge or siltation:	No
Purge Information Sum Purging/sampling equip	nmary oment, sampling t	-	Evidence of SI	udge or siltation:	
Purge Information Sum Purging/sampling equip	nmary oment, sampling t	-	Evidence of SI	udge or siltation:	<u>-</u>
Purge Information Sum Purging/sampling equip - Well purged (Y/N): Volume Purged (L) (not	nmary oment, sampling t 	- g events):	Evidence of SI quipment calib Final	udge or siltation: ration information: Recharge Rate: Notes	<u>-</u>
Purge Information Sum Purging/sampling equip - Well purged (Y/N): Volume Purged (L) (not	nmary oment, sampling to - e multiple purgin	- ng events): Stablized	Evidence of SI quipment calib - Final 7.0	udge or siltation: ration information: Recharge Rate: Notes	<u>-</u>
Purge Information Sum Purging/sampling equip - Well purged (Y/N): Volume Purged (L) (not Parameter pH	nmary oment, sampling to e multiple purgin Initial 6.96	- g events): Stablized 7.05	Evidence of SI quipment calib - Final 7.0 0.10	ration information: Recharge Rate: Notes	<u>-</u>
Purge Information Sum Purging/sampling equip - Well purged (Y/N): Volume Purged (L) (not Parameter pH Conductivity (mS/cm)	e multiple purgin	- g events): Stablized 7.05 0.165	Final 7.0	udge or siltation: ration information: Recharge Rate: Notes 8	<u>-</u>
Purge Information Sum Purging/sampling equip - Well purged (Y/N): Volume Purged (L) (not Parameter pH Conductivity (mS/cm) Turbidity (NTU) Temperature (degC)	nmary oment, sampling to the multiple purgin Initial 6.96 0.216 28.6 10	- g events): Stablized 7.05 0.165 18.5	Final 7.0	udge or siltation: ration information: Recharge Rate: Notes 8	<u>-</u>
Purge Information Sum Purging/sampling equip - Well purged (Y/N): Volume Purged (L) (not Parameter pH Conductivity (mS/cm) Turbidity (NTU) Temperature (degC)	nmary oment, sampling to the multiple purgin Initial 6.96 0.216 28.6 10	- g events): Stablized 7.05 0.165 18.5	Final 7.0	udge or siltation: ration information: Recharge Rate: Notes 8	<u>-</u>
Purge Information Sum Purging/sampling equip - Well purged (Y/N): /olume Purged (L) (not Parameter pH Conductivity (mS/cm) Turbidity (NTU) Temperature (degC) /isual/olfactory observ	e multiple purgin	- g events): Stablized 7.05 0.165 18.5 9.11	Final 7.0	udge or siltation: ration information: Recharge Rate: Notes 8	<u>-</u>
Purge Information Sum Purging/sampling equip - Well purged (Y/N): Volume Purged (L) (not Parameter pH Conductivity (mS/cm) Turbidity (NTU) Temperature (degC) Visual/olfactory observ Cloudy, no odour Decontamination of sa	nmary oment, sampling to the multiple purgin Initial 6.96 0.216 28.6 10 ations:	- Stablized 7.05 0.165 18.5 9.11	Final 7.0 0.10 20. 7.9	ration information: Recharge Rate:	<u>-</u>
Purge Information Sum Purging/sampling equip - Well purged (Y/N): Volume Purged (L) (not Parameter pH Conductivity (mS/cm) Turbidity (NTU)	nmary oment, sampling to the multiple purgin Initial 6.96 0.216 28.6 10 ations:	- Stablized 7.05 0.165 18.5 9.11	Final 7.0 0.10 20. 7.9	udge or siltation: ration information: Recharge Rate: Notes 8	<u>-</u>

	Anno	ex J: Monitoring \	Wells Sampling	Log	
Site Name:	FOX4		_	Landfill Name:	Non Haz
Monitoring Well ID:	MW11-5		_		Tier II
Sample Number(s) inclu	ıde dups.:	No dups			
Bottles filled (by param	eter type)	All			<u> </u>
Date of Sampling Event	:	2	August	2016	Time: 15:00
Weather	15 degress				_
Names of Samplers	JB, KR				_
Description of well con-	dition and surro	unding ground co	onditions (note	ponding of water):	
Moist ground, ponded	water within the	e casing but not a	bove the cap.		
Lock (condition, presen	ce, model, man	ufacturer):	_		
Pre-Measured Data (fro	om water well r	ecord log)			
Depth of well installation		-	Diameter of w	vell (cm):	4.4
Depth to top of screen		_	_	eened section (cm):	
septification of serveri	(6111).			terred section (erri).	
Field Measurements					
Measurement method	(interface probe	e, tape, etc):	Interface Prob	oe	_
Well pipe height above	ground (cm) (to	top of pipe):			34
Static water level (cm) f	from top of pipe	2:			62
Static water level (cm) ((below ground s	urface) calculate	d:		2
Measured well refusal of	depth (cm) (mea	asured after samp	oling from top o	of pipe):	147.
Thickness of water colu	mn (cm):	85.5	Static Volume	of water in well (mL):	1300
Free product thickness	(mm):	-	Evidence of SI	udge or siltation:	No
Purge Information Sum Purging/sampling equip Peristaltic pump Well purged (Y/N): Volume Purged (L) (not	oment, sampling		quipment calib	ration information: Recharge Rate:	<u>-</u>
Parameter	Initial	Stablized	Final	Note	c
pH	7.52				
Conductivity (mS/cm)	0.193				
Turbidity (NTU)	C			0	
Temperature (degC)	12.03				
Visual/olfactory observ no visual or olfactory, c Decontamination of sa Type of decontamination Number of washes:	lear mpling equipm		ı, decon interfa	ice probe soap, water, Number of rinses:	mekyal
Number of washes:					
Other relevant commer	nts:	Slow recharge, r	emoved half o	f the water column bef	ore sampling.

	An	nex J: Monitoring	Wells Sampl	ing Log	
Site Name:	FOX4			Landfill Name:	Non Haz
Monitoring Well ID:	MW11-6				Tier II
Sample Number(s) incl	ude dups.:	-			
Bottles filled (by param	eter type)	No samples, w	ell is dry		
Date of Sampling Event	t :		2 August	2016	Time: 16:10
Weather	15 degrees				<u> </u>
Names of Samplers	JB, KR				
Description of well con	dition and suri	rounding ground	conditions (no	ote ponding of water):	_
Dry ground, well in goo	d condition.				
Lock (condition, preser	ice, model, ma	nufacturer):	-		
					_
Pre-Measured Data (fr	om water wel	l record log)			
Depth of well installation	on (cm):	-	Diameter o	of well (cm):	4.4
Depth to top of screen	(cm):	_	Length of s	creened section (cm):	
Field Measurements					
Measurement method	(interface pro	be, tape, etc):	Interface P	robe	
Well pipe height above	Well pipe height above ground (cm) (to top of pipe):				
Static water level (cm)	from top of pi	pe:			-
Static water level (cm)	(below ground	d surface) calculat	ed:		-
Measured well refusal	depth (cm) (m	easured after san	npling from to	p of pipe):	98.4
Thickness of water colu	ımn (cm):	-	Static Volu	me of water in well (mL):	-
Free product thickness	(mm):	-	Evidence o	f Sludge or siltation:	No
Purge Information Sun Purging/sampling equip	•	ng technique and	equipment ca	alibration information:	
Well purged (Y/N):		-		Recharge Rate:	-
Volume Purged (L) (not	e multiple pur	ging events):	-		
		,			
Parameter	Initial	Stablized	Final	Note	2S
рН	-	-	-		
Conductivity (mS/cm)	-	-	-		
Turbidity (NTU)	-	-	-		
Temperature (degC)	-	-	-		
Visual/olfactory observ	rations:		•	·	
Decontamination of sa	mpling equipr	ment			
Type of decontamination	on fluid(s):	Interface prob	e decon soap	and water.	
Number of washes:	-		<u>'</u>	Number of rinses:	-
Other relevant comme	nts:	Well cap missi	ng, replaced v	vith a new one. Dry well.	

		ex J: Monitoring \	Wells Sampli		
Site Name:	FOX4		_	Landfill Name:	Non Haz
Monitoring Well ID:	MW12-7		_		Pier II
Sample Number(s) incl	•	No dups			
Bottles filled (by param	neter type)	All			_
Date of Sampling Event	t:	2	August	2016	Time: 16:30
Weather	15 degrees				_
Names of Samplers	JB, KR				_
Description of well con Moist ground.	dition and surro	unding ground co	nditions (no	te ponding of water):	_
Lock (condition, presen	nce, model, man	ufacturer):	Looks to be	in good condition. Crown	1
Pre-Measured Data (fr	om water well i	ecord log)			
Depth of well installation		-	Diameter o	f well (cm):	4.4
Depth to top of screen	•		-	creened section (cm):	
Depth to top of screen	(ciii).		_ Length or st	creened section (em).	
Field Measurements	/:t.a.ufa.a.a		lata of a a D	h	
Measurement method	•	• •	Interface Pr	rope	
Well pipe height above					32 (see photo
Static water level (cm)					82.7
Static water level (cm)		· ·			50.7
Measured well refusal		•	_		144
Thickness of water colu		61.3	-	me of water in well (mL):	932
Free product thickness	(mm):	-	_Evidence of	Sludge or siltation:	No
Purge Information Sun Purging/sampling equip Peristaltic pump Well purged (Y/N):	pment, sampling		quipment ca	libration information: Recharge Rate:	
Volume Purged (L) (not	te multiple purgi	ing events):	-		
Parameter	Initial	Stablized	Final	Notes	5
raiailletei		6.04	l -		
рН	6.26	0.01			
рН		0.145	-		
pH Conductivity (mS/cm)	0.147	0.145 2.5	-		
pH Conductivity (mS/cm) Turbidity (NTU) Temperature (degC)	0.147 3.7 10.5	0.145 2.5	-		
pH Conductivity (mS/cm) Turbidity (NTU) Temperature (degC) Visual/olfactory observ	0.147 3.7 10.5	0.145 2.5	-		
pH Conductivity (mS/cm) Turbidity (NTU) Temperature (degC) Visual/olfactory observ No odour, clear	0.147 3.7 10.5 vations:	0.145 2.5 11.23	-		
pH Conductivity (mS/cm) Turbidity (NTU)	0.147 3.7 10.5 vations:	0.145 2.5 11.23	-	and water. Disposable tuk	oing.
pH Conductivity (mS/cm) Turbidity (NTU) Temperature (degC) Visual/olfactory observ No odour, clear Decontamination of sa	0.147 3.7 10.5 vations:	0.145 2.5 11.23	-	· · · · · · · · · · · · · · · · · · ·	oing.
pH Conductivity (mS/cm) Turbidity (NTU) Temperature (degC) Visual/olfactory observ No odour, clear Decontamination of sa Type of decontamination	0.147 3.7 10.5 vations:	0.145 2.5 11.23	-	and water. Disposable tub Number of rinses:	oing.

	Ann	ex J: Monitoring	Wells Sampli	ng Log	
Site Name:	FOX4			Landfill Name:	Non Haz
Monitoring Well ID:	MW12-8				Pier II
Sample Number(s) inclu	ide dups.:	_			
Bottles filled (by param	eter type)	-			<u></u>
Date of Sampling Event	:		3 August	2016	Time: 10:40
Weather	No wind, sunn	y, +15			_
Names of Samplers	JB				_
Description of well con-	dition and surro	ounding ground o	conditions (not	e ponding of water):	
Dry ground and dry wel	II. Casing in goo	d condition.			
Lock (condition, presen	ce, model, mar	nufacturer):	Ok, crown		
Pre-Measured Data (fro		record log)			
Depth of well installation		_	Diameter of	• •	4.4
Depth to top of screen	(cm):	-	Length of so	reened section (cm):	_
Field Measurements					
Measurement method	•	•	Interface Pr	obe	_
Well pipe height above					_
Static water level (cm)	from top of pip	e:			
Static water level (cm)					
Measured well refusal of	depth (cm) (me	asured after sam	pling from top	of pipe):	172.9 dry well
Thickness of water colu	mn (cm):	_	Static Volun	ne of water in well (mL):	
Free product thickness	(mm):	_	Evidence of	Sludge or siltation:	No
Purge Information Sum Purging/sampling equip	-	g technique and	equipment cal	ibration information:	
Well purged (Y/N):		-		Recharge Rate:	_
Volume Purged (L) (not	e multiple purg	ing events):	-		
• • • • • • • • • • • • • • • • • • • •					
Parameter	Initial	Stablized	Final	Note	S
рН	-	-	-		
Conductivity (mS/cm)	-	-	-		
Turbidity (NTU)	-	-	-		
Temperature (degC)	-	-	-		
Visual/olfactory observ					
Decontamination of sa			: .	datau	
Type of decontamination	on Tiula(S):	Interface probe	e with soap an		
Number of washes:				Number of rinses:	
Other relevant commer	nts:	Dry well.			

Appendix B3

FOX-4 Thermistor Inspection Sheets

GOLOBE PROJECT # 1530908 PHASE 2000

ANNEX	M: Thermistor Inspection Template
Inspector Name: DAWW TIKE	
Inspector Signature / Prepared By:	
The ampleton information (#Comp. informa	
	nation can be pre-populated from thermistor logs)
	Landfill: TW2 T
Datalogger model no:	Datalogger cable download model: W.)6
*Install Date:	First Date Event Last Date Event
*Coordinates and Elevation	N 7 596 902, 9E 580 436.3 Elev 22.5
Length of Cable (m)	Cable Lead Above Ground (m)
Datalogger Serial # 67703	Nodal Points 3 (CAVA) 5 B (2005)
Thermistor Inspection	
	Good Needs Maintenance Description
Casing	
Cover	
Data Logger	
Cable	- SMALL OLD STYLE CONNECTED
Beads	BY BUROS 6-8 DAMAGEN
Lock condition	CMT & CHANGOD WILL
Battery Installation Date	2012:
Battery Levels	Main 11.39 Aux 12.65 V
Manual Ground Temperature Readings	<u>s</u>
Bead ohms Deg	grees C Bead ohms Degrees C
1 1.38 14	.6
7 135 17	.4
3 131 17	7
4 1.22 11	<u></u>
5 1.25 10	,3
6 0 381	1.0
7 1 381	1.0
8 0 38	
3 0	1. V
attery Information	/
atteries changed? Yes	No Monitoring Year:
attery model number installed: xpected battery life (years):	TWG ULBS EVERU IN 2015
xpected battery life (years).	7012 - 9014
atalogger Programming (Describe pro	ogramming completed; beads and frequency)
NA	
A - 1	
	•
	VT-9
pservations and Proposed Maintenan	CE VUIMINDADEL)
LIGGER FOR	UT- 4 (RECOUNTED WITHE POUNTEDING)
COGGO PATY AN	100 NOONHONDER) @ 2:32 PM ON AUG. 3/2016 -5, 3/2016 (08/03/16)
lim€ [1	· 10 (2 7) 40 (P)
LOGGER IS FOR VI	1-4 (RECOLATED AFTER DUMPLUSDINGTO VT-4)
0 FEST VT-3/13 RAT	MATIO TO THU COUNTON (FROM VT-4)

GOLDER PROJET #1530908 PHASE 2000

ANNE	X M: Thermistor Inspection Template
	Inspection Date: Albust 3/2016
Inspector Signature / Prepared By:	
Thermistor Information (*Some Information	mation can be pre-populated from thermistor logs)
	T-1 Landfill: T(V-1)
Thermistor Number: VT-V	
Datalogger model no:	Datalogger cable download model: MG
*Install Date:	First Date Event Last Date Event
*Coordinates and Elevation	N 7596 033.9 E 598 457 8 Elev 22.7
Length of Cable (m)	Cable Lead Above Ground (m)
Datalogger Serial # 6 7 125	Nodal Points
Thermistor Inspection	
	Good Needs Maintenance Description
Casing	
Cover	
Data Logger	
Cable	- Smal old Plastic Pina
Beads	1 BEARS (,2,6,7 DAMAGE
Lock condition	CMT & CHANGEO
Battery Installation Date	2012?
Battery Levels	Main Aux
34	
Manual Ground Temperature Reading	<u>gs</u>
Bead ohms De	egrees C Bead ohms Degrees C
1 0 3	RI
7, 0,0024 -	-90.1
1 102	9 64
7 1.15	1.01
4 1.65	(0,70
5 1.76	10,41
6 0.003\$ -8	0(4)
	0.6
7 0.5 3	N/
<u> </u>	6.8
ette ur Information	
attery Information atteries changed ? Yes	No Monitoring Year:
attery model number installed:	ULBIS Worldwing real.
xpected battery life (years):	2015-2017
etelegger Dreamaning (Descript	
ataiogyer Programming (Describe pr	rogramming completed; beads and frequency)
N/A	
bearustiane and Dranged Mainten	MOWNLOAGUE AS VT-3 12 3/1919 IN AND
uservations and Proposed Maintenal	nce / 2/1 - 10.76 @ 3,21 }
Cocom pare o	8/03/16) MA = 17.30 C TON TO VT
AFTIM DOWNLOAD	nce DOWNLOAGER AS VT-3 @ 3:1999 IN AND S B/03/16 TIME 14:36 @ 3:21 F ING THIS LOGGEN WAS REWSCATED TO VT INCO TO THIS LOCATION FROM VT-3
tracción 74 ma	WID TO THIS LOCATION FROM VT-3
MUDUER 18 110	TOTAL

- OPIBINAL LOCATION T-4 - COGERS FOR VT-3 & VT-4 SWITCHED LOCATIONS

GOLDER PROJECT #1530908 PHASE \$2000

Inspector Name: PARCH V	Mal/And Inspection Patrick And Andrew
Inspector Name: VARCHW Inspector Signature / Prepared By: 2	Inspection Date: Abbist 3, 2016
	FORILIMAL T-5 LOCATION)
Thermistor Information (*Some Inform	mation can be pre-populated from thermistor logs)
Site Name: 1-01-4	Landfill: TIER TE
Thermistor Number: 1/T-1/5/	Inclination: 90°
Datalogger model no: 2	Datalogger cable download model: WK
*Install Date:	First Date Event Last Date Event
*Coordinates and Elevation	N 7595 989.1 E 588 481.2 Elev 22.6
Length of Cable (m)	Cable Lead Above Ground (m)
Datalogger Serial # 806 109	Nodal Points 2
Thermistor Inspection	
THE THIS COLUMN TO THE	Good Needs Maintenance Description
Casing	Description
Cover	
Data Logger	
Cable	
Beads	SMALL OLD CLASTIC PLUG TARRE
Lock condition	1 12401 6- V DAMAGOD
	- CUT & CHANGO
Battery Installation Date	2012 (MB5)
Battery Levels	MainAux
Manual Ground Temperature Reading	<u>15</u>
Bead ohms De	egrees C Bead ohms Degrees C
1 111 15	Bead Offins Degrees C
1.71 13	10
C 1.34 19	1.7
1.33 /2	2.9
4 1.28 11	1
13	
2 1.54	• 7
16 0 3	381
7 0 3	4
R C 31	7
0 91	<u> </u>
Dette in Information	
Battery Information Batteries changed ? Yes	No. III Maritaria Van
Battery model number installed:	No Monitoring Year:
Expected battery life (years):	2015-2013
, , , , , , , , , , , , , , , , , , , ,	2005
Datalogger Programming (Describe pro	ogramming completed; beads and frequency)
NIA	
14/1.	
ALL STATE	of FILENAME A
GUR LASIEUZO TZ	NT-85 ON PAOLOGY 1. 52 ON VAL BUT 7/7011
Dbservations and Proposed Maintenan	ace DOWNLANDO, & L. JOHN MILLS
DATA LACORE	TO ATTO THIS COCATION FROM TO TO THIS COCATION FROM TO TO THIS COCATION FROM TO TO THE COCATION FROM TO TO THE COCATION FROM THE COCATION FRO
- roll College	1300. 1000
Tid and s to	TO OPERATE A CONTRACTOR DAWNUSADIN
- CPG6 BYL A PYINED	10 A MRIGHA
	THE COCATION / FLAM ()
- 1.0 b GBZ T-B 1	DELOCATED 19 1415 CHARLES TO TOTAL
0.01/15/01	LOCATION (2006 MONITORINI AMOUNT)
	7 . 10 / 5 8 17 1
- 606648 SWITCHEN	BETWEEN VT-5 & VT-5A(2015)

GOLDER PROJECT # 1530908 PHASE 2000

ANNEX	M: Thermistor Inspection Template
	Inspection Date: Abbist 3/2016
Inspector Signature / Prepared By: 🗡	2113
Thermistor Information (*Some Information	nation can be pre-populated from thermistor logs)
Site Name: Fat 4	Landfill: No. Hay/Tyr 7
Thermistor Number: VTSP	Inclination: 76°
Datalogger model no:	Datalogger cable download model: USS
Install Date:	First Date Event Last Date Event
Coordinates and Elevation Length of Cable (m)	N Elev Elev Cable Lead Above Ground (m)
Datalogger Serial # 6 7755	Nodal Points 8
Thermistor Inspection	
Hemister inspection	Good Needs Maintenance Description
Casing	
Cover	
Data Logger	
Cable	
Beads	1 Beat 7+8 we damaged
Lock condition	a cut and replaced
Battery Installation Date Battery Levels	2012? (u. 85). Main 11:39 Aux 13.6.3
Sales y Lovels	Main 11.39 Aux 13.63
fanual Ground Temperature Readings	<u> </u>
Bead ohms Deg	grees C Bead ohms Degrees C
1 1.42 10.	12
2 1.38 14.	59
2 1 35 13.	-13
4 1,32 12	70
11.32 14,	52
5 1.29 10	41
6 1.27 10.	.71
7 0 -	
8 0 /	
attery Information atteries changed ? Yes	No Monitoring Year:
attery model number installed:	ULRS (
spected battery life (years):	2015 (3 YMAY) BW CONLO LAIT 5 YMARS)
atalogger Programming (Describe pro	(2017—2017) Ogramming completed; beads and frequency)
// C	istramming completed, peads and frequency)
MIA	
• •	
nonmotions and Drawcood Maintenan	- Lac case Filt Cont / The De Danhappin & 4:28pm
99es is UT-2 date	ce LOE GOZ FILENAME VT-02 DONANDA: 40 € 4:28PM 8/3/2016 15:42 € 16:30
ELDEATEN THE LIGH	GER TO UMBINAL T-5 LOCATION
OUTO LOLLING TA	BOUNCESONS (EAST CHO OF LF) (FROM BUSINAL T-5 LOCATION) TO THIS COLOTION
LOGGER BUTH	UPN VT-5 & VT-5A (2014)
C. 30	

GOLORP PROJECT #1530908 PHASE 2000

AN	NEX M: Thermistor Inspection Template
	Johnson Date: Abbist 3/2016
Inspector Signature / Prepared By	D kn
Thermistor Information (*Some	Information can be pre-populated from thermistor logs)
Site Name: Fox -U	Landfill: Time TE
Thermistor Number: VT-	Inclination: 90°
Datalogger model no:	Datalogger cable download model: 4/58
*Install Date:	First Date Event Last Date Event
*Coordinates and Elevation	N 4 596 05 TE 588 474 TELEV 23
Length of Cable (m)	Cable Lead Above Ground (m) √ 0.5 ↑
Datalogger Serial # 7a50 ¥3	Nodal Points 😴
Thermistor Inspection	
	Good Needs Maintenance Description
Casing	Description
Cover	
Data Logger	
Cable	
Beads	- Jestines See Ferific Chip
Lock condition	15000 1 2 000000
	- Cuy + CHANGED
Battery Installation Date	10 36
Battery Levels	Main (34) Aux 389
Manual Ground Temperature Rea	<u>adings</u>
Bead ohms	Degrees C Bead ohms Degrees C
1	14 17
1617	19.70
7 1.36	19.00
3 1.33	12.86
9 1.29	
5 1.26	10-50
6 1.24	9.7
7 0	381
7 0	781
8	381
Battery Information	
Batteries changed? Yes	s No Monitoring Year:
Battery model number installed: Expected battery life (years):	0.015
Expedied battery life (years).	4015-2017
Datalogger Programming (Descri	pe programming completed; beads and frequency)
A 7/ 0	
N/A	
	a lindless of our about
Observations and Proposed Main	DEMMINIST OF HISTORY ON MINE IT - AND THE OWN OF THE PROPERTY
and the second s	TA BANK OR MALL TIME IF 19 Q. 4A
LOGGER 15 V	tenance DOWNWADOR OF 4:04PM ON AND 3/2014 T-1, DATE 08/03/16, TIME 15:19@4A 6 50 DID NOT MOVE THIS LOGGER
NO LOGEUR T	6 CO DID WAT MORE THIS LOGGE

GOLDER PROJECT #1530908 PHASE \$1000

ANNEX M: Thermistor Inspection Template LOHNESH Inspector Name: Inspection Date: AlabiasT Inspector Signature / Prepared By: 1 Thermistor Information (*Some Information can be pre-populated from thermistor logs) Site Name: Landfill: Thermistor Number: Inclination: Datalogger model no: 🔌 🦋 Datalogger cable download model: CC V151 *Install Date: First Date Event Last Date Event Coordinates and Elevation N 7 595 949, 9 E 588 398 Elev 22,4 Length of Cable (m) Cable Lead Above Ground (m) 🔩 🕺 Datalogger Serial # Nodal Points Thermistor Inspection Needs Maintenance Description Casing Cover 15 Data Logger Cable Beads Lock condition NOTHINIA **Battery Installation Date** DISPAR 7 **Battery Levels** Main Manual Ground Temperature Readings ohms V Bead **Degrees C** Bead ohms Degrees C 42 0,83 89 0 0.81 0.80 (1 0.78 0.92 88 15 3 81.0 0.85 0,0165 **Battery Information** Batteries changed? Yes Monitoring Year: Battery model number installed: Expected battery life (years): Datalogger Programming (Describe programming completed; beads and frequency) - UNABUL TO DOWNORD (BATTURIES DOGOT)

- SWAPPER OUT WEST FOR HUN MEST (PHAS BATTONY FROM)

AND THOS DOWNLOADED LOGGED ON AND 3/2016 @ 1:35 PM

- PURILODO BOTH WEST & WAST ON ANG. 4/2016

- LOGGER TIME & DATE; 11/29/4 4:51. P. 1:40PM

GOLORP PROJECT #1530908 PHASE \$1000

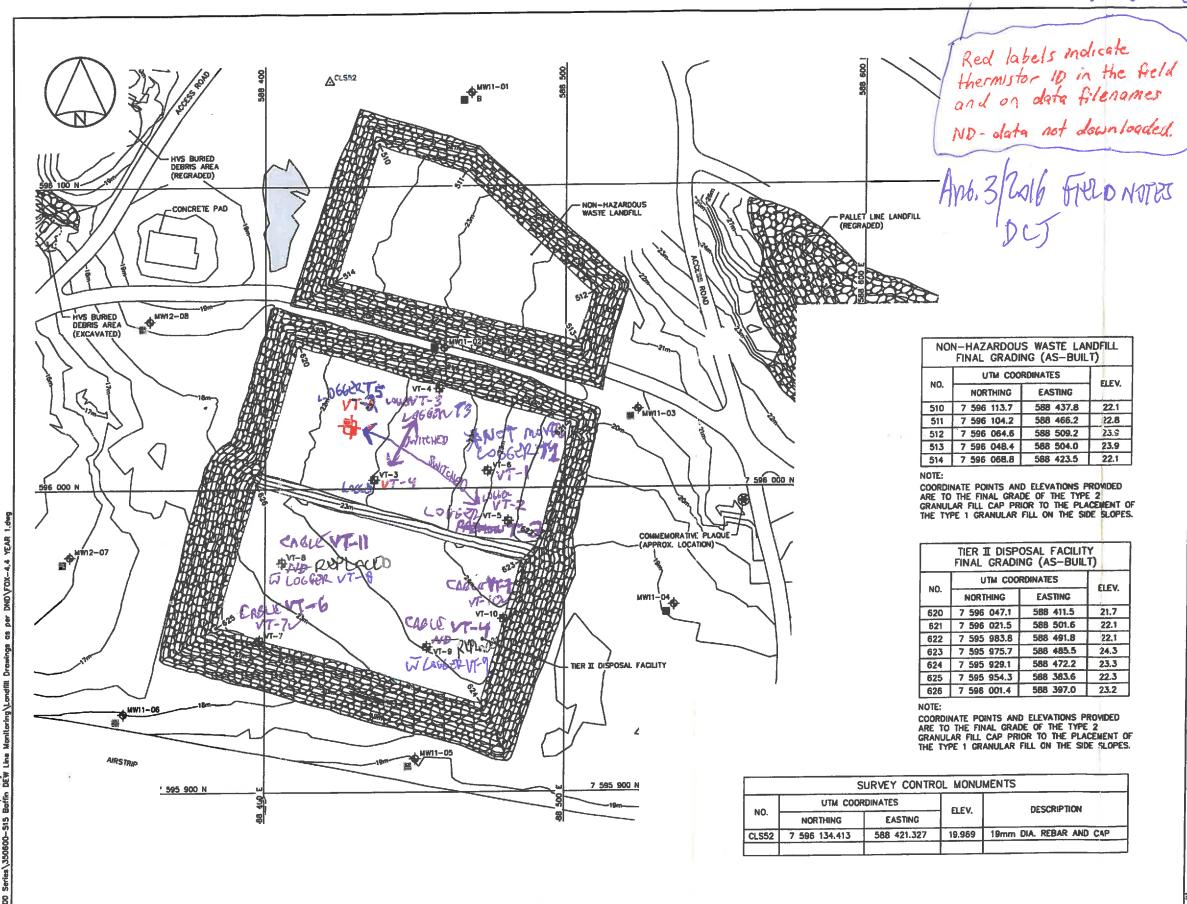
	ANNEX M: Th	ermisto	or Inspection To	emplate	
Inspector Name: DARL	N JOHNSON		Inspection I	Date: Alubus	T 7 7016
Inspector Signature / Prepa					7,000
Thermistor Information (*		n be pre-p	opulated from them	nistor logs)	
Site Name: FOX-4		Landfill:	TIBLIL	0 /	
Thermistor Number:	34447	Inclination	on: Ge		
Datalogger model no: 🥡	-16	Datalogo	er cable download r	nodel: USB	
*Install Date:		First Dat	e Event	Last Date	e Ev e nt
*Coordinates and Elevation	N =	1577 9	75,5 E 588 75	15.7	Elev 73,7
Length of Cable (m)			ove Ground (m)	~ 6.5 m	
Datalogger Serial # 0 9	11 0044 Noda	al Points	16		
Thermistor Inspection					
Coning	Good		Needs Maintenand	ce	Description
Casing				<u> </u>	
Cover					!!
Data Logger					
Cable					
Beads					
Lock condition			1 COCI	K CHANG	80
Battery Installation	n Date	RUG	3,7016		
Battery Levels		Main	11.34 V	Aux	13.2 RV
	14				
Manual Ground Temperatu	re Readings				
Bead ohms	Degrees C		Bead	d ohms	Degrees C
1.40	15.8		9	1.21	8.8
2 1.42	15.7		10	(.11	5.5
3 1.43	16.2		11	1.00	2.0
4 1.42	15.5		12	P.93	-0.3
5 1.45	16.8		13	0.90	-/1/
6 1.46	17.2		14	0.83	-3,7
7 1.45	16.8		15	0.00	-4.7
8 1.40	15.3		16	0.78	-5.7
Battery Information Batteries changed ? Battery model number installe Expected battery life (years): Datalogger Programming (I		No CLE F-B ing comp	Monitorin 15 4 Mag 4 Mag (20)	1 3-2024	7016
14					

- RUPLACEP MPAINES LIBER WITH NOW ULBI & ULBIS BATTURES - DOWN LOADED @ 1:53 PM ON ANG 3, 2016

GOLDER PROJECT #1530908 PHASE 2000

ANNEX M	: Thermistor Inspection Template
Inspector Name: DARRIN JOHNSON	
Inspector Signature / Prepared By	Carrier Bate. Provide
	on can be pre-populated from thermistor logs)
Site Name:	
	Landfill: TUR T
	Inclination:
	Datalogger cable download model: CC NJA
*Install Date: Au 6 3 / Coll *Coordinates and Elevation	First Date Event Last Date Event
Length of Cable (m)	N 7515947,7 E 588-154,0 Elev 77.5
	Cable Lead Above Ground (m)
Datalogger Serial # 1711 0080	Nodal Points 6
Thermistor Inspection	
	Good Needs Maintenance Description
Casing	
Cover	
Data Logger	
Cable	
Beads	
Lock condition	a laterial cock
Battery Installation Date	W6-3, 2016
Battery Levels	
Dattery Levels	MainAux13.3 \$ V
Manual Ground Temperature Réadings	
Bead ohms Degre	es C Bead ohms Degrees C
1 1.725 6.6	62 9\$ 1.2085 8.724
2 1.428 16.1	67 1,0917 4,932
3 1,480 16,2	53 18 0,991R 1.757
4 1.4425 (6.6	78 12 0.9365 - 0.2068
5 1.4187 15.84	13 0.9059 -1.228
5 1.4328 6.33	6 14 0. 8292 -3, 826
7 1.4261 [6.]0	7 15 0.8023 -4.759
3 14,2695 4.41	16 0.7858 -5.345
Battery Information	
Batteries changed ? Yes	No Monitoring Year: 7.016
Battery model number installed:	
expected battery life (years):	7-8 1000 12020 12020
	- (- 100/2 (c-10)/d(14)
atalogger Programming (Describe progra	amming completed; beads and frequency)

- LOGGER DATE 01/14/16, DOWNLOADED @ [ZISTEM ON ANG)
- REPLACED REPAIRED DATALOGGER WITH NEW MUS) 4 MUSIS BATTONER


NONE

GOLDER PROJECT # 1530908 PHASE 2000

:4	ANNEX M: Th	nermistor	Inspec	tion Tem	plate		
Inspector Name: DA	MOUNTED MIS		Ins	pection Date	: AUGUST "	3,2016	7
Inspector Signature / Prep	pared By: 🕡 🔘	V				7	7
Thermistor Information	(*Some Information ca	an he pre-no	nulated fro	om thermisto	or loge)		_
Site Name:	Forcal	Landfill:	TIER I		i logs)		_
Thermistor Number:	VT-10	Inclination		00 (1/5	alle M.		
Datalogger model no:	ex -			wnload mod		7 7-1-0	
*Install Date:		First Date			Last Date Eve	ent	-
*Coordinates and Elevation	n N7	595 99		588 470		v 23.9	7
Length of Cable (m)	Cab	le Lead Abo		(m) 200			7
Datalogger Serial #02/	10749 Nod	al Points 🎉	6				7
The project or be execution	H JA						_
Thermistor Inspection	Good	d	Noodo Ma	intonouse	D		
Casing	Good	19	INCEUS MIZ	aintenance	Des	scription	_
Cover			□	(10:00) 5		LA De la Die	0.0
Data Logger				HARD -	to umars	/Moves All	BBUN
Cable						1906	.)
Beads							_
Lock condition				0.1001	100		
	an Data		10.00	ROPLAC		21107 1 / EM	1 , 1
Battery Installati	on Date	2008	はんし	one MI		AR IN DE	16)
Battery Levels	*	Main	0		_Aux <u>C</u>	<u> </u>	_/
Manual Ground Tempera	ture Readings	1					
Bead ohms	Degrees C			Bead	ohms /	Degrees C	_
1.73	16.98			9	0.82	-4.17	
2 1,30	11,68	Į.		10	0.30	-4.76	
3 1.15	6.76			10	0.79	- 5,21	1
4 1.04	3 5 3			12	0.78	-57.53	1
5 0.94	-0.02		j	13	0.77	-5,77	1
6 0.92	-0.84		- 1	14	0.77	-5.96	1
7 0.86	- 2.67		l	15	0. 47		1
8 0,84	-3.59		ł	16			-
	0.01		L	70	0		_
Battery Information					-	N	
Batteries changed ?	Yes	No [Monitoring Y	ear: 📿	116	
Battery model number insta		3/5 A	ULBI				_
Expected battery life (years)	· 	B A MAN	5 (2013)-	7024)		-
Datalogger Programming	(Describe programm	ina comple	ted: bead	s and frequ	encv)	ä	
110							
NIH							
*							
					79		
Observations and Propose	ed Maintenance	/		la Ca	7)		
WABLE TO	BAWNUDAD	(Ba)	r exic	שארולם ז	· /		
Download with	new batter	y (m	B-15	+ Mas.	1) 64:	45 pm on A	1963/1
clock: 11/07	1			_			7

Appendix B4

FOX-4 Thermistors Field Sketch

GENERAL NOTES:

- 1. ALL COORDINATES ARE REFERENCED TO NAD83 (CSRS), UTM ZONE 19N. ALL ELEVATIONS REFER TO GEODETIC DATUM.
- 2. ALL DIMENSIONS ARE IN METRES UNLESS NOTED OTHERWISE.

LEGEND:

SURVEY CONTROL MONUMENT (1)

COORDINATE POINT

MONITORING WELL LOCATION (B)

VERTICAL GROUND TEMPERATURE CABLE LOCATION (10)

MONITORING SOIL SAMPLE LOCATION (8)

TYPE 1 GRANULAR FILL

BODY OF WATER

NON-HAZARDOUS WASTE LANDFILL TIER I DISPOSAL FACILITY MONITORING WELLS (AS-BUILT)

ND.	UTM COO	ELEV.	
NO.	NORTHING	EASTING	ELEV.
MW11-01	7 596 130.8	588 468.4	21.0
MW11-02	7 596 046.4	588 459.4	19.5
MW11-03	7 596 025.9	588 524.3	20.3
MW11-04	7 595 961.2	588 536.5	19.2
MW11-05	7 595 911.0	588 450.4	18.6
MW11-06	7 595 926.0	588 352.6	18.0
MW12-07	7 595 977.9	588 334.9	16.4
MW12-08	7 596 055.8	588 361.3	18.7

TIER II DISPOSAL FACILITY GROUND TEMPERATURE CABLES (AS-BUILT)

NO.	UTM COO	ELEV.			
NO.	NORTHING	NORTHING EASTING			
VT-3	7 596 002.9	588 436.3	22.5		
VT-4	7 596 033.0	588 457.8	22.7		
VT-5	7 595 989.1	588 481.2	22.6		
VT-6	7 596 005.7	588 474.2	23.1		
VT-7	7 595 949.9	588 398.2	22.4		
VT-8	7 595 975.5	588 405.7	23.2		
VT-9	7 595 947.7	588 454.0	23.5		
VT-10	7 595 956.9	588 479.7	23.9		

PUBLIC WORKS AND GOVERNMENT SERVICES CANADA **2014 DEW LINE MONITORING PROGRAM**

FOX-4 CAPE HOOPER, NUNAVUT NON-HAZARDOUS WASTE LANDFILL AND TIER II DISPOSAL FACILITY SAMPLE LOCATION PLAN

mey: P.A.L. preved By: C.F.G. Project No. 350600-515 Drawing No: FIGURE 15 JULY 2014

Appendix B5

FOX-4 Monitoring Well Log Sheets

ANNEX J: Mo	nitoring Well S	ampling Log	(Complete All	Fields)
Site Name:		Landfill Name:		
Monitoring Well ID:	MW-1			
Sample Number(s) include dups	s.:e			
Bottles filled (by parameter type): Ø			
Date of Sampling Event:	Aug 4		T	ime: 17:40
Weather:	+200 S	unny		
Names of Samplers:	JB, K	_		
Description of Well Condition an	d Surrounding grou	und conditions (not	e ponding of wate	r):
Bentonite + water p				
Lock (condition, presence, mode	l, manufacturer):			
Pre-Measured Data (From Wate	er Well Becord I a	·		
*Depth of well installation (cm)=	er Well Necold E	3,	(ama)-	
*Depth to top of screen (cm)=		_ Diameter of well	, ,	
note: *depths are from ground surface		_Length screened	section (cm)=	
Field Measurements				
Measurement method (interface)	prohe) tane etc):			
Well pipe height above ground (c				
Static water level (cm) from top of		_		
Static water level (cm) (below gro		lated =		-
Measured well refusal depth (cm)	,		1// 0 1	_
Thickness of water column (cm)=			<u>149.1 c m</u> f water in well (mL	
Free product thickness (mm)=		_		· —
Troo product anomicos (mm)		_ Evidence (of sludge or siltation	on:
Purging Information Summary*				1
Purging/sampling equipment, sam and equipment calibration informa				ı
Well purged (Y/N):	uon.	Beckerer Deter		
Volume Purged (L) (note multiple		Recharge Rate:		
purging events if applicable):				1
		Ballana IV.	1=1	Notes (5 or
Parameter	Initial	Stabilized	Final	stabilized)
pH				append have may a
Conductivity (uS/cm)				
Turbidity (NTU)				
Temperature (degC)	Ü			
Visual/olfactory observations (incl.	colour, odour,			
presence of free product/sheen/glo	bules,			
siltation):	_			
Decontamination of sampling equ	uipment			
Type of decontamination fluid (s):	-	decario	00/210 000/2	
Number washes:	20,11	0-2007 1714	Number rinses:	
•	Lou of war	terin well d		
* Complete field notes including full suite of v should be apended to this summary.	vater quality indicator p	arameters VS time as	per EPA low flow samp	oling procedures

	ANNEX J: Mo	nitoring Well S	Sampling Loc	(Complete Ali	Fields)
	Site Name:	Fox4	Landfill Nam	e: helipad	r icius)
	Monitoring Well ID:	MW-2		racti para	
	Sample Number(s) include dup	s.;			
	Bottles filled (by parameter type): A11		V	
	Date of Sampling Event:	Aug 4		7	ime: // : 2 -
- 1	Weather:	+28 Sunny 1		,	ime: 16:30
	Maines of Samplers.	38			
-1	Description of Well Condition an	d Surrounding grou	and conditions (r	ote ponding of wets	or).
	dry ground, CA	Sing Onnda	ed in installa	00 3 b 1	
-1	Lock (condition, presence, mode	I, manufacturer):	No Lock	added Com	TITE about pur
	Pre-Measured Data (From Wate	or Wall December		400e2 (00D	1 COER
	*Depth of well installation (cm)=	er well kecord Fo			
	*Depth to top of screen (cm)=		_Diameter of we		
	note: *depths are from ground surface		_Length screen	ed section (cm)=	
	Field Measurements				
	Measurement method (interface p	orobe tane etc):			
Ĭ	Well pipe height above ground (cr				
	Static water level (cm) from top of		•	60 cm	
	Static water level (cm) (below ground		atod —	-76 cm	
	Measured well refusal depth (cm)	(measure after can	ateu =	166cm	_
П	Thickness of water column (cm)=	(modedic diter sail		of water in a H t t	
	Free product thickness (mm)=			of water in well (mL	
	•		Evidence	of sludge or siltatio	n:
	Purging Information Summary*				
į	Purging/sampling equipment, samp and equipment calibration informati	on:		1	
e e	Vell purged (Y/N):	_	peristal	tic pump	
\	olume Purged (L) (note multiple		Recharge Rate	:	
р	urging events if applicable):				
	Parameter		The state of the s		
9.9	Falance	Initial	Stabilized	Final	Notes (i not
-	рН	6.65	6.97	6.89	
\vdash	Conductivity (uS/cm) mS	101	.267	.288	
\vdash	Turbidity (NTU)	220	190	66	
_	Temperature (degC)	11.08	9.49	7.56	
Vi	sual/olfactory observations (incl. co	olour, odour,			> other side
	esence of free product/sheen/globo ation):	ules,	Cloudy,	vo odour	
311					
De	contamination of sampling equi	pment			
Ту	pe of decontamination fluid (s): k	Jater/SOAP.	14 cm 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	25 20	\
Nu	pe of decontamination fluid (s): mber washes:		10 1 N W 1 1 1 1	Number riness	Tilling
Oth	ner Relevant Comments:	oulled casin	g to acces	S well.	10217
* Co	mplete field notes including full suite of wa		-		ng procedures

ANNEX J: Moni	toring Well S	ampling Log (Complete All	Fields)
Site Name:	Fox 4	Landfill Name:	Heli PAd	land fill
Monitoring Well ID:	MW-3			2000 / 11/
Sample Number(s) include dups.:	0	_		
Bottles filled (by parameter type):	2			
Date of Sampling Event:	Aug 4+	۲		me: 17:00
Weather:	7	nny		
Names of Samplers:	JB,	KL		
Description of Well Condition and S	Surrounding grou	und conditions (note	ponding of water	.).
Bentonite buldaing	FROM Casi	n q .		
Lock (condition, presence, model, r	nanufacturer):	aK		
Pre-Measured Data (From Water				
*Depth of well installation (cm)=	Men Kecola Fo			
*Depth to top of screen (cm)=		_ Diameter of well (*	
note: *depths are from ground surface		_Length screened	section (cm)=	
Field Measurements		84		
Measurement method(interface pro	be, tape, etc):			
Well pipe height above ground (cm)		=	30cm	
Static water level (cm) from top of pi		-	3 - 67,	_
Static water level (cm) (below ground	d surface) calcul	ated =		_
Measured well refusal depth (cm) (m	•		108 5 cm	
Thickness of water column (cm)=		Static volume of v	water in well (mL)	dry
Free product thickness (mm)=		Evidence of	sludge or siltation	
		•		
Purging Information Summary* Purging/sampling equipment, sampling	na technique			
and equipment calibration information				
Well purged (Y/N):		Recharge Rate:		
Volume Purged (L) (note multiple				
purging events if applicable):	0			
Parameter	Initial	Stabilized	Final	Notes (Final
P		e neuvinier.	r Iridi	stabilized)
pH Conductivity (uS/cm)				
Turbidity (NTU)				
Temperature (degC)		·		
				N
Visual/olfactory observations (incl. color presence of free product/sheen/globul				
siltation):	_			
	_			
Decontamination of sampling equip		,		
Type of decontamination fluid (s):	SOAP wate	r decon int	ertace frob	se
Number washes:			Number rinses:	1
Other Relevant Comments:	dry well			
* Complete field notes including full suite of wate should be apended to this summary.	r quality indicator pa	rameters VS time as per	r EPA low flow sampli	ng procedures

ANNEX J: Monit	oring Well Sa	ampling Log (Complete All F	ields)
Site Name:		_Landfill Name:		
Monitoring Well ID:	MW-6			
Sample Number(s) include dups.:				
Bottles filled (by parameter type):	8			
Date of Sampling Event:	Augher		Tim	e: 15:50
Weather:	+20 sunn	y, slight bre	eze	
Names of Samplers:	JB			
Description of Well Condition and S	urrounding grou	nd conditions (note	ponding of water):	
dry ground, evidence	of frost (Lifting casing	bentonite slud	R CA CASING
Lock (condition, presence, model, m	nanufacturer):	replaced	LOCK	
Pre-Measured Data (From Water \				
*Depth of well installation (cm)=		Diameter of well (cm)=	
*Depth to top of screen (cm)=		Length screened	section (cm)=	*
note: *depths are from ground surface		-	. ,	
Field Measurements				
Measurement method (interface pro	be, tape, etc):	interface	probe	
Well pipe height above ground (cm)	(to top of pipe)=			
Static water level (cm) from top of pi	oe =			-
Static water level (cm) (below ground	i surface) calcula	ated =		_
Measured well refusal depth (cm) (m	easure after sam	npling)=	103cm dryc	- vell
Thickness of water column (cm)=		_	water in well (mL)=	
Free product thickness (mm)=		Evidence of	sludge or siltation:	
Purging Information Summary* Purging/sampling equipment, sampling and equipment calibration information				
Well purged (Y/N):		Recharge Rate:		
Volume Purged (L) (note multiple purging events if applicable):				
pulging evente ii applicable).			The spinson is a	
Parameter	Initial	Stabilized	Final	Notes (if not
рН				stabilizad)
Conductivity (uS/cm)				
Turbidity (NTU)				
Temperature (degC)				
Visual/olfactory observations (incl. color presence of free product/sheen/globule siltation):				
Decontamination of sampling equip	ment			
Type of decontamination fluid (s):		METHYLINALIA	decan interf	acl
Number washes:	(Number rinses:	2
Other Relevant Comments:		2		
				
* Complete field notes including full suite of water should be apended to this summary.	r quality indicator pa	rameters VS time as po	er EPA low flow sampling	ng procedures

ANNEX J: MONIT	oring well 5a	impling Log	(Complete All Fi	elds)
Site Name:	Fox 4	_Landfill Name:	Station A	ea Londfill
Monitoring Well ID:	MW-9	_		
Sample Number(s) include dups.:	sone.			
Bottles filled (by parameter type):	none			
Date of Sampling Event:	August "	4 [†]	Time	e: 2:45
Weather:	+20 1156+	breeze.		
Names of Samplers:	JE/KR.			- E
Description of Well Condition and S	Surrounding grour	nd conditions (not	te ponding of water):	ponded
water in casing about				
Lock (condition, presence, model, n	manufacturer):	•	e cour loc	k.
Pre-Measured Data (From Water \	Well Record Loc	<u>1</u>)		
*Depth of well installation (cm)=		Diameter of well	(cm)=	
*Depth to top of screen (cm)= note: *depths are from ground surface		Length screened	d section (cm)=	
Field Measurements				
Measurement method (interface pro	be, tape, etc):			
Well pipe height above ground (cm)			0	
Static water level (cm) from top of pi			187.2	-
Static water level (cm) (below ground	d surface) calcula	ated =	197.2	-
Measured well refusal depth (cm) (m	•		194.2	-
Thickness of water column (cm)=			of water in well (mL)=	<u>-</u>
Free product thickness (mm)=			of sludge or siltation:	
Purging Information Summary* Purging/sampling equipment, sampling and equipment calibration information	ng technique		within cas settled	
Well purged (Y/N): Volume Purged (L) (note multiple purging events if applicable):		Recharge Rate:		
Parameter	Initial	Stabilized	Final	Notes # not
		- Harbura		stabilized)
Conductivity (uS/cm)				
Conductivity (uS/cm)				
Turbidity (NTU) Temperature (degC)				
Temperature (degC)				
Visual/olfactory observations (incl. color presence of free product/sheen/globul siltation):				
Decontamination of sampling equip	ment			
Type of decontamination fluid (s):				
			Number rinses:	
Number washes: Other Relevant Comments:	nable to se	uple withou	Number rinses:	edinat Clls break

ANNEX J: Mor	nitoring Well S	Sampling Log	(Complete All I	ields)
Site Name:				area Land Fill
Monitoring Well ID:	_mw-8			
Sample Number(s) include dups				
Bottles filled (by parameter type)):			
Date of Sampling Event:	Aug 41.	16	Tir	ne: /5:00
Weather:	+200c \$v	nny, slight	prese	
Names of Samplers:	_ SBIKE	ξ `		
Description of Well Condition and	d Surrounding gro	und conditions (ne	ote ponding of water): Daniel
Gonte dry grow	IAd, CASING	filler push	id up (pentoni	te
Lock (condition, presence, mode	l, manufacturer):	Changes	to crown	
Pre-Measured Data (From Wate		10.		
*Depth of well installation (cm)=	ei Aveil Mecold E		H />	
*Depth to top of screen (cm)=		Diameter of we	` '	
note: *depths are from ground surface		Length screens	ed section (cm)=	
Field Measurements				
Measurement method (interface p	orohe tane etc):		ce probe	
Well pipe height above ground (cr			ce probe	
Static water level (cm) from top of		,–		_
Static water level (cm) (below grou	•	llated =		_
Measured well refusal depth (cm)	•		1302	-
Thickness of water column (cm)=	(intensure after sa		105.2 cm	-ded
Free product thickness (mm)=			of water in well (mL)	
. too product anothroso (mm)-		_ Evidence	of sludge or siltation	
Purging Information Summary*			Evidence	of studge bento
Purging/sampling equipment, sample and equipment calibration informat				
Well purged (Y/N):	1011.	Package Date		
Volume Purged (L) (note multiple		Recharge Rate	·	
purging events if applicable):				
g 3				Notes (# not
Parameter	Initial	Stabilized	Final	stabilizad)
рН	1			
Conductivity (uS/cm)				
Turbidity (NTU)				
Temperature (degC)				
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	colour odour			
visual/olfactory observations (incl. o				
Visual/olfactory observations (incl. opresence of free product/sheen/glob				
presence of free product/sheen/glob siltation):	pules,	450		
presence of free product/sheen/globsiltation):	pules,	de60^	10 a b	
presence of free product/sheen/globsiltation): Decontamination of sampling equal Type of decontamination fluid (s):	pules,	dobor er interface		
presence of free product/sheen/glob siltation):	pules,	depon er interface	Plab Number rinses:	1

 J_{i}^{r}

ANNEX J: MONI	coring well S	sampling Log (Complete All F	ields)
Site Name:	Fox 4	Landfill Name:	Stationa	rea Landfill
Monitoring Well ID:	MW-9			
Sample Number(s) include dups.:				
Bottles filled (by parameter type):	Ø			
Date of Sampling Event:	Aug 4th		Tir	ne: /5:15
Weather:	+200 Suni	ng slight bre	22-2	
Names of Samplers:	JOIKR			
Description of Well Condition and S	Surrounding grou	and conditions (note	ponding of water):
dry ground wall ca	sing ponde	d with sluda	e From bent	onite able to co
Lock (condition, presence, model, r	nanufacturer):			w gloves
Pre-Measured Data (From Water	Well Record Lo	g)		
*Depth of well installation (cm)=		_ Diameter of well ((cm)=	
*Depth to top of screen (cm)= note: *depths are from ground surface		Length screened	section (cm)=	
Field Measurements				
Measurement method (interface pro	be, tape, etc):	interface	probo	
Well pipe height above ground (cm)	(to top of pipe):	=	1/2-	
Static water level (cm) from top of pi	pe =	•		_
Static water level (cm) (below ground	d surface) calcul	ated =		_
Measured well refusal depth (cm) (m	ieasure after sai	mpling)=	104cm dry	possible ice
Thickness of water column (cm)=			water in well (mL)	
Free product thickness (mm)=		•	sludge or siltation	
Purging Information Summary* Purging/sampling equipment, sampling and equipment calibration information		-		
Well purged (Y/N): Volume Purged (L) (note multiple purging events if applicable):		Recharge Rate:		
Parameter	Initial	Stabilized	Final	Notes (if not
pH			ringi	stabilizad
Conductivity (uS/cm)				
Turbidity (NTU)				
Temperature (degC)				
Visual/olfactory observations (incl. cole	OUE odour			
presence of free product/sheen/globul siltation):		· · · · · · · · · · · · · · · · · · ·		
Decontamination of sampling equip	ment -			
Type of decontamination fluid (s):	supp, wate.	decon inter	face probe	
Number washes:			Number rinses:	
Other Relevant Comments:				
* Complete field notes including full suite of wate should be apended to this summary.	r quality indicator pa	arameters VS time as pe	r EPA low flow sampli	ng procedures

ANNEX J: Mo	onitoring Well S	Sampling Log	(Complete All F	ields)
Site Name:	Fox 4	Landfill Name:	NON haz	Pier 2
Monitoring Well ID:	MW11-1			11010
Sample Number(s) include dup				
Bottles filled (by parameter type	e): all+	DUP	<u> </u>	
Date of Sampling Event:	Aug 2rd		Tim	ne: //:36
Weather:	150c NO	windy Synni	Y	11-30
Names of Samplers:	- 3B, R	N		
Description of Well Condition a			te ponding of water	١٠
dry ground Well			to perioning of mator,	
Lock (condition, presence, mod	el, manufacturer):	replaced L	ock crow	1
Pre-Measured Data (From Wa				
*Depth of well installation (cm)=		Diameter of well	l (cm)=	
*Depth to top of screen (cm)= note: *depths are from ground surface		Length screened	d section (cm)=	
Field Measurements				
Measurement method (interface	probe, tape, etc):	interf	ace probe	
Well pipe height above ground (cm) (to top of pipe)	=	\$1	
Static water level (cm) from top of	of pipe =		182.4	_
Static water level (cm) (below gro	ound surface) calcu	lated =	296.5	_
Measured well refusal depth (cm) (measure after sa	mpling)=		_
Thickness of water column (cm)=	·	Static volume o	of water in well (mL)	=
Free product thickness (mm)=		_	of sludge or siltation	
Purging Information Summary* Purging/sampling equipment, san and equipment calibration informa	npling technique			
	auon;	- PEristal	tic pump	
Well purged (Y/N): Volume Purged (L) (note multiple purging events if applicable):		Recharge Rate:		
				I Vote a la company
Parameter	Initial	Stabilized	Final	Notes (1) not : stabilized
рН	7.38	7,08	6.78	
Conductivity (uS/e m) ทุริ <i>c</i> ศ	-057	,057	.057	
Turbidity (NTU)	0.0	00	00	
Temperature (degC)	9.45	7.32	6.14	
Visual/olfactory observations (incl. presence of free product/sheen/glosiltation):		Clear 10	odour	
Decontamination of sampling eq	uipment			
Type of decontamination fluid (s):	METAY WA	sur supo doc	on of interface	orobe
Number washes:	1		Number rinses:	1
Other Relevant Comments:	disposable 1	Nbing		
* Complete field notes including full suite of should be apended to this summary.	water quality indicator p	arameters VS time as	per EPA low flow sampling	ng procedures

ANNEX J: Mon	toring Well Sa	ampling Log (C	Complete All Fie	lds)
Site Name:			NON hazara	
Monitoring Well ID:	MW11-2			
Sample Number(s) include dups.:		_		
Bottles filled (by parameter type):	All			
Date of Sampling Event:	Aug 3	0. \	Time	14:30
Weather:	1500 Overc	Ast		17.30
Names of Samplers:	SB. RN			
Description of Well Condition and	Surrounding group	nd conditions (note	ponding of water)	
Surrounding aro	udd is pand	ed Moist in	CA CIAR	
Lock (condition, presence, model,	manufacturer):	good ci	Cario	
l .				
Pre-Measured Data (From Water *Depth of well installation (cm)=	Well Record Log	••		
		Diameter of well (· ,	
*Depth to top of screen (cm)= note: *depths are from ground surface		Length screened s	section (cm)=	
Field Measurements				
Measurement method (interface pro	oho tomo etali		1	
Well pipe height above ground (cm		interface	probe	
Static water level (cm) from top of p		-	<u>Jacm</u>	
, , ,	•	_	49,2cm	
Static water level (cm) (below grour Measured well refusal depth (cm) (r	-	_	188.2 108.2	
Thickness of water column (cm)=	neasure aner sam	-		
Free product thickness (mm)=			water in well (mL)=	
riee product unokness (mm)-		Evidence of	sludge or siltation:	NO
Purging Information Summary*				
Purging/sampling equipment, sample and equipment calibration information				
		5 . 5 .		
Well purged (Y/N): Volume Purged (L) (note multiple		Recharge Rate: _		
purging events if applicable):				
			Sarahan Markanan P	N-1- Pi
Parameter	Initial	Stabilized	Final	Notes (# 1.54 stabilized
pH	5.69	5,83	5.98	
Conductivity (u8/cm) mS	.644	.746	.869	
Turbidity (NTU)	7.1	7.9	6.8	
Temperature (degC)	10.27	9.71	9.09	
Visual/olfactory observations (incl. co	lour, odour.			
presence of free product/sheen/globu		clear no o	dour	
siltation):	_			
Decontamination of sampling equip		·		
Type of decontamination fluid (s):		de ide	Γ.	
Number washes:	SUAD & Nate	2 accor inter		
Other Relevant Comments:			Number rinses:	
uner Relevant Comments:				-
* Complete field notes including full suite of wat should be apended to this summary.	er quality indicator par	ameters VS time as pe	er EPA low flow sampling	procedures

ANNEX J: Mon	itoring Well S	ampling Log	(Complete All Fi	ields)
Site Name:			NON hAZ	•
Monitoring Well ID:	MW 11-3	_		
Sample Number(s) include dups.		dup		
Bottles filled (by parameter type):				
Date of Sampling Event:	Aug 3		Tim	ie:
Weather:	1500 50	114		
Names of Samplers:	JB AN			
Description of Well Condition and	Surrounding grou	and conditions (not	le ponding of water):	
ponded water in		,		
Lock (condition, presence, model,	, manufacturer):		TOVIA	
Pre-Measured Data (From Wate	r Well Record Lo			
*Depth of well installation (cm)=	, mail making me	Diameter of well	(cm)=	
*Depth to top of screen (cm)=		Length screened	` '	
note: *depths are from ground surface	Y	_ Longin concomo	1 3000011 (0111)—	
Field Measurements				
Measurement method (interface p	robe, tape, etc):	interface	probe	
Well pipe height above ground (cm) (to top of pipe)=				
Static water level (cm) from top of pipe =				_
	Static water level (cm) (below ground surface) calculated = 175.6 cm			
Measured well refusal depth (cm) (•			-
Thickness of water column (cm)=		. 0,	of water in well (mL)=	<u>-</u>
Free product thickness (mm)=		_	of sludge or siltation:	
			77 414494 4	
Purging Information Summary* Purging/sampling equipment, samp	-line toohnique			
and equipment calibration informati		poristal)	L'a namp	
Well purged (Y/N):	,	Recharge Rate:	tic pump	
Volume Purged (L) (note multiple		, roomarge rate.		
purging events if applicable):				
Parameter	Initial	Stabilized	Final	Notes in act
			National Section 1997	stabilizea)
pH	5.87	5.55	5.50	
Conductivity (uS/cm) MS	0.136	.142	.145	
Turbidity (NTU)	18.	13.8	/3.2	
Temperature (degC)	9.28	8.98	8.32	
Visual/olfactory observations (incl. co	. ,		_	
presence of free product/sheen/glob siltation):	ules,	clear no	odovr	
Siltation	_			
Decontamination of sampling equ				
Type of decontamination fluid (s):	SCAP of water	r decon inter	face onobe dis	south & thing
Number washes:	2	- Variety	Number rinses:	1
Other Relevant Comments:			_	
Cilioi Moiorain Sommonio		 -		
* Complete field notes including full suite of wa	ater quality indicator r	arameters VS time as	per EPA low flow sampli	ng procedures

ANNEX J: Mon	itoring Well S	Sampling Log	(Complete All F	ields)
Site Name:			SAH GON	
Monitoring Well ID:	MW 11-4		1111	
Sample Number(s) include dups.				
Bottles filled (by parameter type):	114	E1		
Date of Sampling Event:			Tir	ne:
Weather:	7.59.5			
Names of Samplers:	JB			
Description of Well Condition and		und conditions (not	te nonding of water	١٠
1		and obligations (no	ic politing of water)
Lock (condition, presence, model,	manufacturer):			r
Pre-Measured Data (From Water	r Well Record Lo	oa)		
*Depth of well installation (cm)=		Diameter of well	(cm)=	
*Depth to top of screen (cm)=		Length screened	•	
note: *depths are from ground surface				
Field Measurements				
Measurement method (interface pr	obe, tape, etc):			
Well pipe height above ground (cm) (to top of pipe)	=	31cm	
Static water level (cm) from top of	oipe =		95.6cm	_
Static water level (cm) (below ground	nd surface) calcu	lated =	159.9	
Measured well refusal depth (cm) (measure after sa	mpling)=		
Thickness of water column (cm)=		Static volume o	f water in well (mL)	=
Free product thickness (mm)=			of sludge or siltation	
Duraina Information Cummond		-	_	
Purging Information Summary* Purging/sampling equipment, samp	ling technique			
and equipment calibration information				
Well purged (Y/N):		Recharge Rate:		7
Volume Purged (L) (note multiple				
purging events if applicable):				
Pagneter	Initial	Stabilized	Final	Notes (Find
- L				stabilized
Conductivity (US/om) = C	6.96	7.05	7.05	
Conductivity (uS/cm) \(\tau S \) Turbidity (NTU)	.216	.165	.103	
Temperature (degC)	10.0	18.5	20.6	
. , , , ,		9.11	7.94	
Visual/olfactory observations (incl. co		<u> </u>	,	
presence of free product/sheen/globs siltation):	iles,	Cloudy 1	10 odour	
,	-			
Decontamination of sampling equi	=			
Type of decontamination fluid (s): _o	lecon interface	50Ap+wate	r. disposable	tobing
Number washes:			Number rinses:	
Other Relevant Comments:				
* Complete field notes including full suite of wa should be apended to this summary.	ter quality indicator p	arameters VS time as	per EPA low flow sampl	ing procedures

	ANNEX J: Mo	nitoring Well	Sampling Loc	(Complete Al	Fields)
	Site Name:	Fox 4	l andfill Nam	e: NON haz t	rieigs)
	Monitoring Well ID:	MW11-5		C. NON MAZ 7	Tier 2
	Sample Number(s) include dups	.: Nodup			
	Bottles filled (by parameter type)				
	Date of Sampling Event:	Aug 2rd	2011	- 0.	
	Weather:	15 plus			Time: 15:00
1	Names of Samplers:	3B, KA			
	Description of Well Condition and			-4- "	
	moist ground pen	ded was to a	und conditions (n	ote ponding of water	er):
I	ock (condition, presence, model	, manufacturer):	SISSIN AND C	asing botnot	above CAP
	re-Measured Data (From Wate	r Well Record L	og)		
*1	Depth of well installation (cm)=		Diameter of we	ell (cm)=	
*[Depth to top of screen (cm)=			ed section (cm)=	
no	te: *depths are from ground surface			54 555110H (CHI)=	
	eld Measurements	_			
M	easurement method (interface p	robe, tape, etc):			
	ell pipe height above ground (cn		=	34cm	
	atic water level (cm) from top of			62cm	
Sta	atic water level (cm) (below grou	nd surface) calcu	lated =	1000 cm	
Me	easured well refusal depth (cm) (measure after sa	mpling)=		
Thi	ickness of water column (cm)=				
Fre	ee product thickness (mm)=			of sludge or siltatio	
В				or siduge or siliatio	n:
Pur	r ging Information Summary* ging/sampling equipment, samp	ling toohni			
and	equipment calibration information	ing technique	لا لم يميم		
1	ll purged (Y/N):		Recharge Rate	TE PUMP	
Volu	ıme Purged (L) (note multiple		Necharge Rate		
purg	ging events if applicable):				
	Parameter	fe wer			The Value of the last
111191		Initial	Stabilized	Final	Notes (it not stabilized)
-	pH	7.52	7.11	6.54	
-	Conductivity (uS/cm)	0.193 MSka	0-210	0.190	
-	Turbidity (NTU)	0.0	0.0	0.0	
	Temperature (degC)	12.03	9.89	9.19	
Visua	al/olfactory observations (incl. co	lour, odour,			
prese	ence of free product/sheen/globu	iles,	no visual or	olfactory,	clear
Sittati	on <i>j</i> ,	-			
Deco	ntamination of sampling equip	oment			
Туре	of decontamination fluid (s):	Isposable to	bina decani	alenta a la	
Numb	of decontamination fluid (s):		1 20001	Number riness	p, worlf, MEKYAl
Other	Relevant Comments:	Slow secharge	renoved half	Fwater colon be	fore Sampling
* Compl should b	ete field notes including full suite of wat be apended to this summary.	er quality indicator pa	rameters VS time as	per EPA low flow sampli	ing procedures

	ANNEX J: Monit	oring Well S	ampling Log	(Complete All I	Fields)
	Site Name:			NON hAZ	
	Monitoring Well ID:	Mw11-4		JOUR REE	1161 2
	Sample Number(s) include dups.:	<u> </u>	_		
	Bottles filled (by parameter type):	NO SAA	roles inte	11 800	
	Date of Sampling Event:	Ava 2	7 14.5 1		me: 16:10
	Weather:	1500			110. 76.70
	Names of Samplers:	JB, K	R		
	Description of Well Condition and S			te ponding of water	1.
ı	dry ground, well	in good cond	+101	no portaining of water	<i></i>
	Lock (condition, presence, model, n	nanufacturer):			
ı	Pro-Money and Date (From Water)	Mall December			
ı	Pre-Measured Data (From Water \ *Depth of well installation (cm)=	Well Record Lo	•		
ı	*Depth to top of screen (cm)=		_Diameter of wel		
	note: *depths are from ground surface		_Length screene	d section (cm)=	
ı	Field Measurements				
	Measurement method (interface pro	hel tane etch:			
	Well pipe height above ground (cm)				
	Static water level (cm) from top of pi		-	56cm	_
	Static water level (cm) (below ground		atod =	Ó	_
	Measured well refusal depth (cm) (m	•		20	_
	Thickness of water column (cm)=	casule allei sai	-	98.4cm	_
	Free product thickness (mm)=		•	of water in well (mL)	
	_		. Evidence	of sludge or siltation	1:
	Purging Information Summary*	*			
	Purging/sampling equipment, sampling and equipment calibration information	ig technique			
	Well purged (Y/N):		Beeken Dat		
	Volume Purged (L) (note multiple		Recharge Rate:		
	purging events if applicable):				
3					Notes Property
	Parameter	Initial	Stabilized	Final	Notes (d net stabilized)
L	рН				
L	Conductivity (uS/cm)				
L	Turbidity (NTU)				
L	Temperature (degC)				
	isual/olfactory observations (incl. colo				
	resence of free product/sheen/globule	es,			
5	iltation):	_			
D	econtamination of sampling equip	ment			
T	ype of decontamination fluid (s):	Aterface pro	he donn and	assler.	
N	umber washes:		THE CALL THE C	Number rinses:	
0	ther Relevant Comments:	ell CAD Mic.	sina fini -	_	
		dry well	Jing, 10 Flac	ed to New one	
* (complete field notes including full suite of water ould be apended to this summary.	quality indicator pa	rameters VS time as	per EPA low flow sampling	ng procedures

ANNEX J: Mon	toring Well Sa	ampling Log	(Complete All F	ields)
Site Name:	Fox4		NON HAZ	-
Monitoring Well ID:	MW12-7			
Sample Number(s) include dups.:	Nodue			
Bottles filled (by parameter type):	JB. KR	114		
Date of Sampling Event:	Aug 2		Tim	e: /6:30
Weather:	_15°c			
Names of Samplers:	JB, KR			
Description of Well Condition and	Surrounding grou	nd conditions (no	te ponding of water):	
moist ground				
Lock (condition, presence, model,	manufacturer):	Lockinge	od condition.	Cromy
Pre-Measured Data (From Water	Well Record Lo	,		
*Depth of well installation (cm)=	-	Diameter of well	(cm)=	
*Depth to top of screen (cm)=		Length screened	` '	
note: *depths are from ground surface		_ Longar Sorceries	a section (cm)=	
Field Measurements				
Measurement method (interface pr	obe, tape, etc):			
Well pipe height above ground (cm			32cm 51	e photo
Static water level (cm) from top of p			82.7 cm	_
Static water level (cm) (below groun	•	ated =	144 cm	-
Measured well refusal depth (cm) (•		11967	-
Thickness of water column (cm)=		. 07	of water in well (mL)=	<u>-</u>
Free product thickness (mm)=			of sludge or siltation:	
			o, o.e.go o. oa.ion.	700
Purging Information Summary* Purging/sampling equipment, samp	ling toobnique			
and equipment calibration information		nacista	Itic punp	
Well purged (Y/N):	-	Recharge Rate:		
Volume Purged (L) (note multiple		reonarge rate.		
purging events if applicable):				
Parameter.	Initial	Stabilized		Notes (* not
		Stabilized	Final	stabilize#
PH	6.26	6.04		
Conductivity (uS/cm) ms cm	0.147	0.145		
Turbidity (NTU)	3.7	2,5		
Temperature (degC)	10.50	11-23		
Visual/olfactory observations (incl. co		,	,	
presence of free product/sheen/globusiltation):	ıles,	noodour	rlear	
Siliation).	_			
Decontamination of sampling equi	pment			
Type of decontamination fluid (s):	interface D	robe decon in	water+ sono.	disposable Tisher
Number washes:	· ·		Number rinses:	(0300)
Other Relevant Comments:	see Photo. br	entonite he		
* Complete field notes including full suite of wa should be apended to this summary.	ter quality indicator pa	rameters VS time as	per EPA low flow sampling	ng procedures

ANNEX J: Moni	toring Well S	ampling Log (Complete All F	ields)
Site Name:	Fox4	Landfill Name:	NON hAR	pier 2
Monitoring Well ID:	MW12-8			
Sample Number(s) include dups.:				
Bottles filled (by parameter type):				
Date of Sampling Event:	Aug 3			ne: 10:40
Weather:	150c Non	und sunny	,	
Names of Samplers:	JB			
Description of Well Condition and	Surrounding grou	and conditions (not	e ponding of water):
dry ground, dry	well. CAS	5. ng 11 good	Conditition	
Lock (condition, presence, model,				
Pre-Measured Data (From Water	Well Pecerd I o			
*Depth of well installation (cm)=	Well Record Lo		/am\-	
*Depth to top of screen (cm)=		Diameter of well Length screened	. ,	
note: *depths are from ground surface		_ Length screened	section (cm)=	
Field Measurements				
Measurement method (interface pro	obe. tane. etc):			
Well pipe height above ground (cm)		=		
Static water level (cm) from top of p				_
Static water level (cm) (below groun	•	ated =		_
Measured well refusal depth (cm) (n	•		172.9cm di	- u tua il
Thickness of water column (cm)=		. 0,	water in well (mL)	_
Free product thickness (mm)=		•	f sludge or siltation	
		, = = 11001100 0	oldage of siliation	" <u>Po</u>
Purging Information Summary*	in a 4a ah - :			
Purging/sampling equipment, sampli and equipment calibration information		00=:4-1	م مر محنا	
Well purged (Y/N):	•	Recharge Rate:	are ports	
Volume Purged (L) (note multiple		recharge rate.		
purging events if applicable):				
Parameter	1-79-1	0.12		Notes (* not
Parameter	Initial	Stabilized	Final	stabilizaci
pH				
Conductivity (uS/cm)				
Turbidity (NTU)				
Temperature (degC)				
Visual/olfactory observations (incl. co				
presence of free product/sheen/globu siltation):	les,			
sination	_		··	
Decontamination of sampling equip	•			
Type of decontamination fluid (s):	17 ter face 1	probe to som	pe water	
Number washes:			Number rinses:	
Other Relevant Comments:	drywell		•	
	•			
* Complete field notes including full suite of wat should be apended to this summary.	er quality indicator pa	arameters VS time as p	er EPA low flow sampl	ing procedures

Appendix B6

FOX-4 Soil Sampling Field Notes

LANDFILL NAME	SOIL SAMPLE ID	DEPTH (m)	SOIL DESCRIPTION	GPS Northing	GPS Easting	CD0 Ft		
Von Hay Tier 2	MW-11-5a	50cm	with water		or o casuing	GPS Elevation	Photographs	Backfilled (Y/N)
Non Haz	MW-11-56	30 cm	brown sind				3	У
Non Hay	MWII-6a	40cm	refused (rocky) at your coster and said				3	1
Non Higher	MW-11-66	30cm	Brown Sand				3	4
<i>(</i> 1)	MW 12-7a	Loca	Silty sind		-		3	Y
	14W17-7b	20cm	silty sand				3	4
Tame-Bay	F4-13a	50 cm	111 /	reliche			3	Y
Tone Bay	F4-13b	30c ~	silty sad				3	Y
()	F4-17a	4000	Billow refersal at 40cm West 100ge sifty.	5d			5	y
11	FU-126	30	loose sifty sender	5			3	4

RECORD OF SOIL SAMPLING

DATE: Aug 3rd

SOIL SAMPLE ID	DEPTH (m)	SOIL DESCRIPTION	CDC North				
		de la la	ого молліпд	GPS Easting	GPS Elevation	Photographs	Backfilled (Y/N)
F4-11a	500-	Silty soul					
		()				3	1
J 1 1 1 1							
1-11-11	30cm	/				3	
A4.1 - 5		and bouldes.					
MW 12-8a	3000	loose sol	-			-	
						5	Y
11.1.	20	loon of 1 100	4			9	\ \ /
MM 15-8P	Som	326	and the second		2	5	Y
		0 0 0					
MWII-la	22. YO.	Kocky refusal					
	and lacen	at The				3	7
241 111 -1 h		1	and the species approximately and technical and the second	C Control of Section 1			
MMILLE	30cm	Signar, Since sell ands)	Duplica	tel		7	14
		5,7,2003		CATCA Special Market		2	
EU-19	30-	Sand/cobble					
210	ب مری د	hard pack		,		">	7.5
		refusal due	to hard or	ckd rock	3	<u> </u>	
F4-29	i i	1	/				
	Not Su	spla, too had	ge CEN	Do getto		A. To be a second of the secon	C1704
	7/1.	Sit and some					
MWII-la	3000	sad w/ cobbk				7	4
		very wet Rockey	retesal			70.00	1
Miller	11	lune rocks /refeso)					ja e
17W11-3a	3 Vem	, v			9	`7	j/
		1 - Che Sand	some rock	<u>S</u> .		7	
	F4-11a F4-11a MW12-8a MW12-8b MW11-1a MW11-1b F4-29 MW11-1a	F4-11a 50cm F4-11b 30cm MW12-8a 50cm MW11-1a 30cm MW11-1a 30cm F4-29 30cm.	FU-11a Socn stark brown silty send who genics FU-11b 30cm lease send who less. MW 12-8a socn loose sel with rocks MW 12-8b 30cm loose sed with rocks MW 11-1a seyoun at 40cm selections been send some self consisted at 40cm (cobble). MW 11-1b 30cm send, some silt organics (smill roots). FU-29a 30cm. Sound cobble hard pack refusal due. FU-29 Not sampled; too had. MW 11-1a 30cm set and some send we cobble way we to Rocke. MW 11-1a 30cm set and some send we cobble way we to Rocke.	FY-110 Socn start brown silty send al organics FY-110 Socn loose send and bouldes. MW12-8a socn loose send with rocks of send at your send cost send organics (send roots) Duplices FY-29a socn send costle refusal due to hard pack refusal due to hard send to hard pack refusal due to hard send to hard	FU-11a Social Start brown of Board of Board of Start of Social roles of Start of Star	FY-110 Social Stark brown Stry Sand Wall-10 Social	FU-11a SOCI SILY SENDERS GPS Earling GPS Elevation Photographs FU-11a SOCI SILY SENDERS FU-11b BOCK SILY SENDERS MW 12-8a SOCI LOCSE SCHOOL SOCI WITH TOLKS MW 12-8b SOCI LOCSE SCHOOL SOCI WITH TOLKS MW 11-1a SENDERS SCHOOL SOCI SOCI SOCI SOCI SOCI SOCI SOCI SOCI

ES

LANDFILL NAME	SOIL SAMPLE ID	DEPTH (m)	SOIL DESCRIPTION	GPS Northing	GPS Easting	GPS Elevation	Photographs		i
Mer hay	MW11-3B	30	s mad			o. o Livadon	Priotographs	Backfilled (Y/N)	74,0
non haz Tier 2	MW 11-4A	30cm	SAND W cobble Large rock refusal				3	Y	day
Mon haz Tier 2	F25A	30cm	SAND & COBBLE Tefusuldue to hard PACKED TOCKS				3	Y .	Y
non haz Tierz	F26A	4 30cm	Sand w Cobble refusal due to Rock & Cobble				3	× /	
non haz Tierz	F27A	30cm	Loose sand Refusal Atsand and rock				3	/	À
Station area Land Lill	MW-7A	430	gravel, Rock Loose sand refusal at bedrock				3		<u>Au</u> Au
STAtion area Landfill	MW-8A	430	gravel, Rock with				3	7	
Station area LANGFILL	MW-86	40	SAND W SMALL COBBLE REFUSAL AT LANGER COBBLE			·	3	Y	
Station area Land fill	Mw-9a	. 30	SAND W Gravel and rock. refusalat comparted				3	<i>y</i>	
Landing pad	Mw-6 a	430	gravel, rock, compet sand Refusal at compact rock				Section 1		

SHE NAME:

RECORD OF SOIL SAMPLING

LANDFILL NAME	SOIL SAMPLE ID	DEPTH (m)	SOIL DESCRIPTION	GPS Northing	GPS Easting	070 51	_		
Lady pad	19W-2a	30,2	sitte sud Liesel oder		GFS Easting	GPS Elevation	Photographs	Backfilled (Y/N)	
landy part	MW-26		cocky refusal				,		
landely pad	MW-la	30cm	silty send and gravel large rock refuse				3	Y	
landy pad	MW-3a	30ca	dry sand				3	y	
lands pad	14W-3b	5000	_				3	y	Aug
Pallet line	F4-28a	4300-	Brown sand and cobbles.	duplicak	r		3	4	Ang
Pullet the	FY-Rinsate.	Equipm	at Rosale San	86					Han
									Mingagan 1
ii									

APPENDIX C

Laboratory Certificates of Analysis and QA/QC Reports Historical Monitoring Results

Appendix C1

Certificate Of Analysis –
Paracel Laboratories Ltd.,
Aug. 15, 2016; Order #1633139

300 - 2319 St. Laurent Blvd Ottawa, ON, K1G 4J8 1-800-749-1947 www.paracellabs.com

Certificate of Analysis

Golder Associates Ltd. (Ottawa)

1931 Robertson Rd. Ottawa, ON K2H 5B7 Attn: Alyssa Troke

Client PO:

Project: 1530908-2000

Custody: 108715, 108714, 108716

Report Date: 15-Aug-2016 Order Date: 9-Aug-2016

Order #: 1633139

This Certificate of Analysis contains analytical data applicable to the following samples as submitted:

Paracel ID	Client ID
1633139-01	MW11-1a
1633139-02	MW11-1b
1633139-03	MW11-2a
1633139-04	MW11-3a
1633139-05	MW11-3b
1633139-06	MW11-4a
1633139-07	MW11-5a
1633139-08	MW11-5b
1633139-09	MW11-6a
1633139-10	F4-11a
1633139-11	F4-11b
1633139-12	F4-12a
1633139-13	F4-12b
1633139-14	F4-13a
1633139-15	F4-13b
1633139-16	MW11-6b
1633139-17	MW12-7a
1633139-18	MW12-7b
1633139-19	MW12-8a
1633139-20	MW12-8b
1633139-21	F4-25a
1633139-22	F4-26a
1633139-23	F4-27a
1633139-24	F4-29a

Approved By:

Mark Foto

Mark Foto, M.Sc. Lab Supervisor

Certificate of Analysis

Client: Golder Associates Ltd. (Ottawa)

Report Date: 15-Aug-2016

Order Date: 9-Aug-2016

Client PO: Project Description: 1530908-2000

Analysis Summary Table

Analysis	Method Reference/Description	Extraction Date	Analysis Date
CCME-SQG: Metals by ICP-OES	based on MOE E3470, ICP-OES	11-Aug-16	11-Aug-16
Mercury by CVAA	EPA 7471B - CVAA, digestion	11-Aug-16	11-Aug-16
PCBs, total	SW846 8082A - GC-ECD	11-Aug-16	11-Aug-16
PHC F1	CWS Tier 1 - P&T GC-FID	10-Aug-16	11-Aug-16
PHCs F2 to F4	CWS Tier 1 - GC-FID, extraction	12-Aug-16	14-Aug-16
Solids, %	Gravimetric, calculation	10-Aug-16	10-Aug-16

Certificate of Analysis

Order #: 1633139

Report Date: 15-Aug-2016

Order Date: 9-Aug-2016

Client: Golder Associates Ltd. (Ottawa)

Client PO: Project Description: 1530908-2000

	OIL ALID F	N 10 14 4 4	MW11-1b	NAV44 0	I 888/44 0
	Client ID:	MW11-1a		MW11-2a	MW11-3a
	Sample Date:	03-Aug-16 1633139-01	03-Aug-16 1633139-02	03-Aug-16 1633139-03	03-Aug-16 1633139-04
	Sample ID:	1633139-01 Soil	1033139-02 Soil	1033139-03 Soil	1633139-04 Soil
	MDL/Units	5011	5011	5011	5011
Physical Characteristics					
% Solids	0.1 % by Wt.	96.4	96.3	89.0	89.7
Metals					
Arsenic	1.0 ug/g dry	69.2	49.8	20.8	26.0
Cadmium	0.5 ug/g dry	6.1	5.4	3.8	9.4
Chromium	1.0 ug/g dry	88.7	84.3	63.9	40.5
Cobalt	1.0 ug/g dry	16.2	14.4	9.6	4.1
Copper	1.0 ug/g dry	91.7	70.1	31.5	28.5
Lead	1.0 ug/g dry	13.4	10.9	7.9	77.5
Mercury	0.1 ug/g dry	<0.1	<0.1	<0.1	<0.1
Nickel	1.0 ug/g dry	69.3	59.0	26.3	14.0
Zinc	1.0 ug/g dry	102	88.7	47.3	74.2
Hydrocarbons					
F1 PHCs (C6-C10)	7 ug/g dry	<7	<7	<7	<7
F2 PHCs (C10-C16)	4 ug/g dry	<4	<4	<4	<4
F3 PHCs (C16-C34)	8 ug/g dry	<8	<8	<8	71
F4 PHCs (C34-C50)	6 ug/g dry	<6	<6	<6	30
PCBs					-
PCBs, total	0.05 ug/g dry	<0.05	<0.05	<0.05	<0.05
Decachlorobiphenyl	Surrogate	88.8%	99.8%	92.0%	91.9%

Report Date: 15-Aug-2016

Certificate of Analysis

Client: Golder Associates Ltd. (Ottawa)

Physical Characteristics % Solids	Client ID: Sample Date: Sample ID: MDL/Units	MW11-3b 03-Aug-16 1633139-05 Soil	MW11-4a 03-Aug-16 1633139-06 Soil	MW11-5a 02-Aug-16 1633139-07 Soil	MW11-5b 02-Aug-16 1633139-08 Soil
Metals			<u> </u>	1	
Arsenic	1.0 ug/g dry	16.8	9.4	13.1	83.7
Cadmium	0.5 ug/g dry	2.7	1.9	1.6	1.7
Chromium	1.0 ug/g dry	32.5	34.1	22.5	23.5
Cobalt	1.0 ug/g dry	3.4	3.3	3.0	3.6
Copper	1.0 ug/g dry	21.3	11.1	8.6	11.6
Lead	1.0 ug/g dry	288	5.0	4.1	4.5
Mercury	0.1 ug/g dry	<0.1	<0.1	<0.1	<0.1
Nickel	1.0 ug/g dry	11.0	10.0	8.9	11.4
Zinc	1.0 ug/g dry	49.8	23.1	17.8	19.2
Hydrocarbons			-		-
F1 PHCs (C6-C10)	7 ug/g dry	<7	<7	<7	<7
F2 PHCs (C10-C16)	4 ug/g dry	<4	<4	<4	<4
F3 PHCs (C16-C34)	8 ug/g dry	79	38	<8	<8
F4 PHCs (C34-C50)	6 ug/g dry	32	33	<6	<6
PCBs					
PCBs, total	0.05 ug/g dry	<0.05	<0.05	<0.05	<0.05
Decachlorobiphenyl	Surrogate	90.1%	92.8%	78.5%	92.8%

Report Date: 15-Aug-2016

Certificate of Analysis Client: Golder Associates Ltd. (Ottawa)

	Client ID:	MW11-6a	F4-11a	F4-11b	F4-12a
	Sample Date:	02-Aug-16	03-Aug-16	03-Aug-16	03-Aug-16
	Sample ID:	1633139-09	1633139-10	1633139-11	1633139-12
	MDL/Units	Soil	Soil	Soil	Soil
Physical Characteristics	•		•	•	
% Solids	0.1 % by Wt.	87.1	93.8	97.7	87.5
Metals					
Arsenic	1.0 ug/g dry	19.9	1.2	1.2	3.6
Cadmium	0.5 ug/g dry	1.8	1.4	1.8	2.5
Chromium	1.0 ug/g dry	24.4	15.5	18.4	26.8
Cobalt	1.0 ug/g dry	3.3	1.9	2.9	4.1
Copper	1.0 ug/g dry	12.0	6.5	9.9	13.6
Lead	1.0 ug/g dry	4.5	3.0	4.8	6.6
Mercury	0.1 ug/g dry	<0.1	<0.1	<0.1	<0.1
Nickel	1.0 ug/g dry	10.3	5.9	8.2	13.0
Zinc	1.0 ug/g dry	19.9	12.9	17.8	24.8
Hydrocarbons					
F1 PHCs (C6-C10)	7 ug/g dry	<7	<7	<7	<7
F2 PHCs (C10-C16)	4 ug/g dry	<4	<4	<4	<4
F3 PHCs (C16-C34)	8 ug/g dry	<8	<8	<8	<8
F4 PHCs (C34-C50)	6 ug/g dry	<6	<6	<6	<6
PCBs					
PCBs, total	0.05 ug/g dry	<0.05	<0.05	<0.05	<0.05
Decachlorobiphenyl	Surrogate	95.0%	94.4%	96.6%	96.0%

Report Date: 15-Aug-2016

Certificate of Analysis Client: Golder Associates Ltd. (Ottawa)

	Client ID:	F4-12b	F4-13a	F4-13b	MW11-6b
	Sample Date:	03-Aug-16	03-Aug-16	03-Aug-16	02-Aug-16
	Sample ID:	1633139-13	1633139-14	1633139-15	1633139-16
	MDL/Units	Soil	Soil	Soil	Soil
Physical Characteristics					
% Solids	0.1 % by Wt.	85.3	84.6	86.8	90.6
Metals	•		•		-
Arsenic	1.0 ug/g dry	1.8	3.1	1.4	10.4
Cadmium	0.5 ug/g dry	2.0	1.8	1.0	1.2
Chromium	1.0 ug/g dry	22.8	20.0	10.5	19.0
Cobalt	1.0 ug/g dry	3.4	3.2	2.0	2.8
Copper	1.0 ug/g dry	10.5	10.6	6.5	8.9
Lead	1.0 ug/g dry	4.4	4.7	2.6	4.3
Mercury	0.1 ug/g dry	<0.1	<0.1	<0.1	<0.1
Nickel	1.0 ug/g dry	10.1	9.2	6.1	8.7
Zinc	1.0 ug/g dry	21.6	19.0	11.0	15.3
<u>Hydrocarbons</u>					
F1 PHCs (C6-C10)	7 ug/g dry	<7	<7	<7	<7
F2 PHCs (C10-C16)	4 ug/g dry	<4	<4	<4	<4
F3 PHCs (C16-C34)	8 ug/g dry	<8	<8	<8	<8
F4 PHCs (C34-C50)	6 ug/g dry	<6	<6	<6	<6
PCBs					
PCBs, total	0.05 ug/g dry	<0.05	<0.05	<0.05	<0.05
Decachlorobiphenyl	Surrogate	89.1%	95.1%	101%	91.6%

Report Date: 15-Aug-2016

Certificate of Analysis Client: Golder Associates Ltd. (Ottawa)

	Client ID:	MW12-7a	MW12-7b	MW12-8a	MW12-8b
	Sample Date:	02-Aug-16	02-Aug-16	03-Aug-16	03-Aug-16
	Sample ID:	1633139-17	1633139-18	1633139-19	1633139-20
	MDL/Units	Soil	Soil	Soil	Soil
Physical Characteristics			•	•	•
% Solids	0.1 % by Wt.	82.8	84.3	97.0	95.5
Metals					
Arsenic	1.0 ug/g dry	25.3	10.9	7.3	9.6
Cadmium	0.5 ug/g dry	3.6	1.8	3.1	2.1
Chromium	1.0 ug/g dry	48.4	23.4	56.0	33.2
Cobalt	1.0 ug/g dry	7.8	4.5	7.4	3.8
Copper	1.0 ug/g dry	26.7	16.0	17.9	12.1
Lead	1.0 ug/g dry	7.4	4.0	8.0	8.6
Mercury	0.1 ug/g dry	<0.1	<0.1	<0.1	<0.1
Nickel	1.0 ug/g dry	28.0	17.7	21.0	11.6
Zinc	1.0 ug/g dry	50.8	31.1	43.6	26.0
Hydrocarbons					
F1 PHCs (C6-C10)	7 ug/g dry	<7	<7	<7	<7
F2 PHCs (C10-C16)	4 ug/g dry	<4	<4	464	389
F3 PHCs (C16-C34)	8 ug/g dry	<8	<8	23	41
F4 PHCs (C34-C50)	6 ug/g dry	<6	<6	<6	<6
PCBs		_			
PCBs, total	0.05 ug/g dry	<0.05	<0.05	<0.05	<0.05
Decachlorobiphenyl	Surrogate	93.1%	91.9%	95.6%	97.1%

Report Date: 15-Aug-2016

Order Date: 9-Aug-2016

Certificate of Analysis

Client: Golder Associates Ltd. (Ottawa)

Client PO: Project Description: 1530908-2000

	Client ID: Sample Date:	F4-25a 03-Aug-16	F4-26a 03-Aug-16	F4-27a 02-Aug-16	F4-29a 02-Aug-16	
	Sample ID:	1633139-21	1633139-22	1633139-23	1633139-24	
	MDL/Units	Soil	Soil	Soil	Soil	
Physical Characteristics			T	T	T	
% Solids	0.1 % by Wt.	98.8	95.5	84.1	92.0	
Vietals			,	_		
Arsenic	1.0 ug/g dry	31.9	60.9	23.0	37.4	
Cadmium	0.5 ug/g dry	2.8	3.2	3.5	4.9	
Chromium	1.0 ug/g dry	50.6	61.1	49.4	72.1	
Cobalt	1.0 ug/g dry	4.6	7.7	6.0	9.8	
Copper	1.0 ug/g dry	22.7	31.3	53.5	50.1	
Lead	1.0 ug/g dry	8.4	15.8	15.2	9.7	
Mercury	0.1 ug/g dry	<0.1	<0.1	<0.1	<0.1	
Nickel	1.0 ug/g dry	13.7	27.3	25.1	<1.0	
Zinc	1.0 ug/g dry	33.3	41.3	44.4	54.6	
Hydrocarbons						
F1 PHCs (C6-C10)	7 ug/g dry	<7	<7	<7	<7	
F2 PHCs (C10-C16)	4 ug/g dry	<4	<4	<4	<4	
F3 PHCs (C16-C34)	8 ug/g dry	<8	259	64	<8	
F4 PHCs (C34-C50)	6 ug/g dry	<6	68	10	<6	
PCBs						
PCBs, total	0.05 ug/g dry	0.27	0.14	0.16	0.25	
Decachlorobiphenyl	Surrogate	87.0%	83.0%	103%	83.4%	

Client: Golder Associates Ltd. (Ottawa)

Certificate of Analysis

Order #: 1633139

Report Date: 15-Aug-2016 Order Date: 9-Aug-2016

Client PO: Project Description: 1530908-2000

Method Quality Control: Blank

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Hydrocarbons									
F1 PHCs (C6-C10)	ND	7	ug/g						
F2 PHCs (C10-C16)	ND	4	ug/g						
F3 PHCs (C16-C34)	ND	8	ug/g						
F4 PHCs (C34-C50)	ND	6	ug/g						
Metals									
Arsenic	ND	1.0	ug/g						
Cadmium	ND	0.5	ug/g						
Chromium	ND	1.0	ug/g						
Cobalt	ND	1.0	ug/g						
Copper	ND	1.0	ug/g						
Lead	ND	1.0	ug/g						
Mercury	ND	0.1	ug/g						
Nickel	ND	1.0	ug/g						
Zinc	ND	1.0	ug/g						
PCBs									
PCBs, total	ND	0.05	ug/g						
Surrogate: Decachlorobiphenyl	0.0937		ug/g		93.7	60-140			

Report Date: 15-Aug-2016

Certificate of Analysis

Client: Golder Associates Ltd. (Ottawa)

Order Date: 9-Aug-2016 Client PO: Project Description: 1530908-2000

Method Quality Control: Duplicate

	Reporting			Source		%REC		RPD	
Analyte	Result	Limit	Units	Result	%REC	Limit	RPD	Limit	Notes
Hydrocarbons									
F1 PHCs (C6-C10)	ND	7	ug/g dry	ND				40	
F2 PHCs (C10-C16)	ND	4	ug/g dry	ND				30	
F3 PHCs (C16-C34)	55	8	ug/g dry	27			66.7	30	QR-01
F4 PHCs (C34-C50)	32	6	ug/g dry	19			50.0	30	QR-01
Metals			00,						
Antimony	ND	1.0	ug/g dry	ND			0.0	30	
Arsenic	70.3	1.0	ug/g dry	69.2			1.6	30	
Barium	103	1.0	ug/g dry	107			4.0	30	
Beryllium	ND	1.0	ug/g dry	ND			0.0	30	
Boron	3.53	1.0	ug/g dry	3.50			0.7	30	
Cadmium	6.12	0.5	ug/g dry	6.09			0.5	30	
Chromium	87.8	1.0	ug/g dry	88.7			1.1	30	
Cobalt	16.3	1.0	ug/g dry	16.2			0.4	30	
Copper	94.0	1.0	ug/g dry	91.7			2.5	30	
Lead	14.6	1.0	ug/g dry	13.4			8.7	30	
Mercury	ND	0.1	ug/g dry	ND			0.0	30	
Molybdenum	1.73	1.0	ug/g dry	1.95			11.9	30	
Nickel	68.6	1.0	ug/g dry	69.3			1.0	30	
Selenium	ND	1.0	ug/g dry	ND			0.0	30	
Silver	ND	0.5	ug/g dry	ND			0.0	30	
Thallium	ND	1.0	ug/g dry	ND			0.0	30	
Tin	ND	5.0	ug/g dry	ND			0.0	30	
Uranium	ND	1.0	ug/g dry	ND				30	
Vanadium	83.8	1.0	ug/g dry	83.7			0.1	30	
Zinc	104	1.0	ug/g dry	102			2.1	30	
PCBs									
PCBs, total	ND	0.05	ug/g dry	ND				40	
Surrogate: Decachlorobiphenyl	0.121		ug/g dry		95.0	60-140			
Physical Characteristics									
% Solids	91.0	0.1	% by Wt.	91.0			0.0	25	

Client: Golder Associates Ltd. (Ottawa)

Certificate of Analysis

Order #: 1633139

Report Date: 15-Aug-2016 Order Date: 9-Aug-2016

Client PO: Project Description: 1530908-2000

Method Quality Control: Spike

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Hydrocarbons									
F1 PHCs (C6-C10)	162	7	ug/g		80.9	80-120			
F2 PHCs (C10-C16)	81	4	ug/g	ND	80.4	60-140			
F3 PHCs (C16-C34)	219	8	ug/g	ND	105	60-140			
F4 PHCs (C34-C50)	139	6	ug/g	ND	99.8	60-140			
Metals									
Antimony	267		ug/L	ND	107	70-130			
Arsenic	1630		ug/L	1380	98.5	70-130			
Barium	238		ug/L		95.1	70-130			
Beryllium	254		ug/L	9.08	98.0	70-130			
Boron	317		ug/L	70.0	98.9	70-130			
Cadmium	353		ug/L	122	92.6	70-130			
Chromium	1980		ug/L	1770	83.0	70-130			
Cobalt	551		ug/L	325	90.2	70-130			
Copper	2000		ug/L	1830	67.7	70-130		C	QM-07
Lead	478		ug/L	267	84.2	70-130			
Mercury	1.28	0.1	ug/g	ND	85.3	70-130			
Molybdenum	275		ug/L	39.0	94.4	70-130			
Nickel	1570		ug/L	1390	71.8	70-130			
Selenium	230		ug/L	11.3	87.5	70-130			
Silver	231		ug/L	3.82	91.0	70-130			
Thallium	230		ug/L	11.3	87.5	70-130			
Tin	273		ug/L	85.8	74.9	70-130			
Uranium	246		ug/L	ND	98.5	70-130			
Vanadium	1880		ug/L	1670	80.8	70-130			
Zinc	2220		ug/L	2030	74.8	70-130			
PCBs									
PCBs, total	0.661	0.05	ug/g	ND	130	60-140			
Surrogate: Decachlorobiphenyl	0.142		ug/g		111	60-140			

Client: Golder Associates Ltd. (Ottawa)

Certificate of Analysis

Order #: 1633139

Report Date: 15-Aug-2016 Order Date: 9-Aug-2016

Client PO: Project Description: 1530908-2000

Qualifier Notes:

QC Qualifiers:

QM-07: The spike recovery was outside acceptance limits for the MS and/or MSD. The batch was accepted based on

other acceptable QC.

QR-01: Duplicate RPD is high, however, the sample result is less than 10x the MDL.

Sample Data Revisions

None

Work Order Revisions / Comments:

None

Other Report Notes:

n/a: not applicable ND: Not Detected

MDL: Method Detection Limit

Source Result: Data used as source for matrix and duplicate samples

%REC: Percent recovery.

RPD: Relative percent difference.

Soil results are reported on a dry weight basis when the units are denoted with 'dry'.

Where %Solids is reported, moisture loss includes the loss of volatile hydrocarbons.

CCME PHC additional information:

- The method for the analysis of PHCs complies with the Reference Method for the CWS PHC and is validated for use in the laboratory. All prescribed quality criteria identified in the method has been met.
- F1 range corrected for BTEX.
- F2 to F3 ranges corrected for appropriate PAHs where available.
- The gravimetric heavy hydrocarbons (F4G) are not to be added to C6 to C50 hydrocarbons.
- In the case where F4 and F4G are both reported, the greater of the two results is to be used for comparison to CWS PHC criteria.

TRUSTED . RESPONSIVE. RELIABLE. LABORATORIES LTD.

Head Office 300-2319 St. Laurent Blvd. Ottawa, Ontario K1G 4J8 p: 1-800-749-1947 e: paracel@paracellabs.com Chain of Custody (Lab Use Only)

Nº 108715

	, age	1 0	+
-	***	-	_
mr.			PRO A

	8-20	300		- '	Furna	round	Time:
Contact Name: Alyssa Troke Quote # 16-010							□ 3 Day
Address: 1931 Roberts on Road, Ottawa, ON PO#				_			/
K2H5B7 Email Address:) salda	0.000	- 101 - 121 - 1	□ 2 Da	ıy		Regular
Telephone: 613-592-9600 alyssa_troke@	goide	a . com		Date F	Requir	ed:	
Criteria: □ O. Reg. 153/04 (As Amended) Table □ RSC Filing □ O. Reg. 558/00 □ PWQO □ CCME □ SUB (Stor	orm) 🗆 SUE	3 (Sanitary) M	unicipality: _			Other:	
Matrix Type: S (Soil/Sed.) GW (Ground Water) SW (Surface Water) SS (Storm/Sanitary Sewer) P (Paint) A (Air) O (Other)	quired Ana	alyses //					Saffie
Paracel Order Number:		TIT					
1633139 -501\ g g g Sample Taken	٩		2				
Sample ID/Location Name	s s	Hg CrVI	guot				
Sample 1D/Location Name \(\Sigma\) \(\pi\) \(\pi\) Date Time \(\frac{\pi}{\pi}\)	VOCs PAHS	Hg CrVI B (HX	00				
1 MW 11-1a S 2 Aug 3			IV.	+ 601	ML+	250	mu.
2 MW 11-1B			V				
3 MW 11-2a			V				
4 MW 11-3a Aug 3			V				
5 MW 11-3B	mi Agra		1		8 (1.00)	7	
6 MW 11-4 a			1			Jan /	N/
7 HW 11 - 4 8				-		-11-0	eritiys V
8 MW 11-5a S Aug 2			V	11170	100	Qui a	
9 MW 11-5B 1 Dus 2			/				
10 MW 11-6a V Au. 2.			1/1		V		
Comments: Proceed with flagorolless at exce	eden(Cen	pold.	\$ MO	Method	of Delive	ry:
Removed losse ice/water from conters. The ALASA. J	Dava.		1 - 2 - 01	, 1	T	con l	A.
elinquished By (Sign): Received by Driver/Depote Received at D		7)	Verit	fied By:	<u> </u>	90 1	NIX.
Olyssa Sinke	4. C			1			
telinquished By (Print): AIVSSA Troke Date/Time: Aug. 9/16 7:10 Date/Time: Date/Time: Aug. 9/16 7:10 Date/Time: Date/Time: Aug. 9/16 7:10 Date/Time: Date/	Magg	1160	///oo Date	Time: /		9/16	3:52

LABORATORIES LTD.

RESPONSIVE. RELIABLE .

Head Office 300-2319 St. Laurent Blvd. Ottawa, Ontario K1G 4J8 p: 1-800-749-1947 e: paracel@paracellabs.com Chain of Custody (Lab Use Only)

Nº 108714

1530908

Page 2 of 4 Client Name: Project Reference: 153708 - 2005 Goldor Associates **Turnaround Time:** Contact Name: Alyssa Troke Quote # 16-010 □ 1 Day □ 3 Day 1931 Robertson Road, Ottawa, ON PO# Regular KZH 5B7 □ 2 Day Email Address: alyssa_troke@golder.com 613-592-9600 Date Required: Criteria: □ O. Reg. 153/04 (As Amended) Table □ RSC Filing □ O. Reg. 558/00 □ PWQO □ CCME □ SUB (Storm) □ SUB (Sanitary) Municipality: □ Other: Matrix Type: S (Soil/Sed.) GW (Ground Water) SW (Surface Water) SS (Storm/Sanitary Sewer) P (Paint) A (Air) O (Other) Required Analyses Paracel Order Number: PHCs F1-F4+BTEX of Containers 1633 139 - 501 Air Volume goote Sample Taken 1633143 - Water B (HWS) Sample ID/Location Name Time Date F4-11a S -60ml+ 250 F4-11B 5 F4-12a 3 5 2 4 F4-12B Ś 5 5 7 5 2 9 10 Comments: Method of Delivery: loose ice/water from coolers Relinquished By (Sign) Received by Driver Depot Received at Lak Relinquished By (Print): Troke Date/Time: 11.00 Date/Time; Date/Time: Aug S/ 18:00 Temperature: 8 6 °C pH Verified A 1/Bv:

RESPONSIVE . RELIABLE. LABORATORIES LTD.

TRUSTED .

Head Office 300-2319 St. Laurent Blvd. Ottawa, Ontario K1G 4J8 p: 1-800-749-1947 e: paracel@paracellabs.com Chain of Custody (Lab Use Only)

№ 108716

Page 3 of 4

Client Name: Golder Associates Contact Name:				Project Reference: 15309 08 - 2000											Turnaround Time:				
					Quote #	16-0	010)										□3 Da	
Addres	" see page 1				PO#											(5)		,	*
Telepho					Email Address:										- 2 I	Day		Regi	ular
																Requir	red:		
Criter	ia: 🗆 O. Reg. 153/04 (As Amended) Table 🗆 R	SC Filing D	10. Rej	g. 558/0	D □ PWQO □	CCME 🗆 SU	B (Sto	orm)		UB	Sani	tary)	Mui	nicipality: _			Other:		
Matrix	Type: S (Soil/Sed.) GW (Ground Water) SW (Surface Wat	er) \$8 (Storm/	Sanitary S	Sewer) P	(Paint) A (Air) O	(Other)	Re	quir	ed A	nal	vses					11			
Parac	el Order Number:		T	Į "y			X	T	Π				T	1	1	Т	T -	Т	
	1633 139 - Soil		Je J	imer	Samul	e Taken	-F4+BTEX			ь									
	1633143 - water	Matrix	Air Volume	of Containers	Sampi	e raken	豆	VS.	s	ils by IC			B (HWS)	vote					
	Sample ID/Location Name	Ma	Air	0 #	Date	Time	PFHCs	VOC	PAHs	Metals	Hg	CrVI	В (Н	22					
1	MW11-8B	2		2	Aug 3									/	-1	50ml-	+ 35	onl	7
2	F4-25 a				10									/			1		-
3	F4-26 a			П	a jugue	l page								/		-			
. 4	F4-27a		L SUPPRES											7					-)
5	F4-29a	V		t	U		T							V		1 120	V		-
6	MW11-1	W		6	A 3					-				V			·		
7	HW11-2	1,1		6	Ans 3		T							V	_				-
8	MW11-3	W		6	AS3		1	T						V					
9	MW 11-4	W.		6	A-63		\dagger		Г	-				1		_			\dashv
10	MW11-5	W		6	Aug 2		1			-				1			-		
Comm	ents:	V)				_	1						Method	d of Deliv	ery:	
	Removed loose ice/water for	am Con	less.	6	3				/	2						D	mp Bo	X	
0	shed by (Sign);	Receive	d by Deir	er/Depo	,	Receiv	ved at l	aby	/	2		7		Ver	ified By:	/			
- CC Relinqui	lyssa Irako shed By (Print): Alyssa Troke	Date/Ti	no.	40.9	15-11	on Date!	1	1	\langle	\leq	57)	7		1/100	1/	4		, ,	
	ne: Aug 8/16 18:00			149.9/	econoligica construction and accordant to the		erature	9	1/9	°C	//(-(1		e/Time; Verified (\)	By:	59//	0 3!	52

LABORATORIES LTD.

TRUSTED .
RESPONSIVE .
RELIABLE .

Head Office 300-2319 St. Laurent Blvd. Ottawa, Ontario K1G 4J8 p: 1-800-749-1947 e: paracel@paracellabs.com Chain of Custody
(Lab Use Only)

Nº 108717

Page 4 of 4

									_			_					_			
lient Na	me: Golder Associates		Project Reference: 1530908 - 2000												Turnaround Time:					
ontact N	ame: Alyssa Troke				Quote#	16-0	010									🗆 l Da	ay		□ 3 D	ay
ddress:	1931 Robertson Road, Ottawa NZHSB7	9,00			PO# Email Address: aly SS4 -				1.0	om.						□ 2 Date I	ay Require	ed.	Regular	
	012 312 1600			200.00	and an arrangement of the second second					**********	Carri	am.N	3.4	niainalita		Date	1)ther:		
riteria	: 🗆 O. Reg. 153/04 (As Amended) Table 🔔 🗆 RSC	Filing D	O. Reg.	558/00	пъмбо пс	CME LISU	B (210	riii)	П 9) au	Sam	агу)	IVIU	шегране	y •		⊔∪	ther:		
latrix T	rpe: S (Soil/Sed.) GW (Ground Water) SW (Surface Water) S	SS (Storm/S	anitary Se	ewer) P (Paint) A (Air) O (C	Other)	Rec	uire	ed A	naly	ses									
arace	Order Number: 1633 139 - Soil 1633 143 - Water	rix	Air Volume	of Containers	Sample	Taken	s F1-F4+BTEX	s	S	Metals by ICP			B (HWS)	seed						
	Sample ID/Location Name	Matrix	Air	# of	Date	Time	PHC	VOCs	PAHs	Meta	Hg	CrVI	В (Н	010						
1	MW 12-7	W		6	Aug 2									/						
2			-																	
3					Dec 1	- 8 (^ 7														
4					1 12	2 1 2												1		la 7
5	h tis to the		90	14.				11												
6								ess										Late	0.4	
7																	12	100	p-19	
8																				
9	da du a																1.0			
10																				
Comme	moved loose ice/water from	1, 000	lers.	É	3	In.	ived at	Lake	_	7					Verifie	ł Rv		of Deliv		1
Relinguis	thed By (Sign): 4500 Jocke thed By (Print): Alyssa Troke	Receive	nd by Dri	4	(2	Pan Date	Tjme:	1	(A)	99	1	6	0	//:a	Date/T	The ime;	Aug	1116	3:	52
	e: Aug 8/16 18:00	Temper	ature: S	76		Tem	peratur	2:5	1/	_°C				14	pH Ve	ified [v]	By! K	5.		

Appendix C2

Certificate Of Analysis –
Paracel Laboratories Ltd.,
Sept. 2, 2016; Order #1633143

300 - 2319 St. Laurent Blvd Ottawa, ON, K1G 4J8 1-800-749-1947 www.paracellabs.com

Certificate of Analysis

Golder Associates Ltd. (Ottawa)

1931 Robertson Rd. Ottawa, ON K2H 5B7 Attn: Alyssa Troke

Client PO:

Project: 1530908-2000 Custody: 108716, 108717 Report Date: 2-Sep-2016 Order Date: 9-Aug-2016

Revised Report

Order #: 1633143

This Certificate of Analysis contains analytical data applicable to the following samples as submitted:

Paracel ID	Client ID
1633143-01	MW11-1
1633143-02	MW11-2
1633143-03	MW11-3
1633143-04	MW11-4
1633143-05	MW11-5
1633143-06	MW12-7

Approved By:

2:MX

Tim McCooeye Senior Advisor

Certificate of Analysis

Client: Golder Associates Ltd. (Ottawa)

Report Date: 02-Sep-2016

Order Date: 9-Aug-2016

Client PO: Project Description: 1530908-2000

Analysis Summary Table

Analysis	Method Reference/Description	Extraction Date Analysis Date
Mercury by CVAA	EPA 245.1 - Cold Vapour AA	10-Aug-16 10-Aug-16
Metals, ICP-MS	EPA 200.8 - ICP-MS	10-Aug-16 10-Aug-16
PCBs, total	EPA 608 - GC-ECD	11-Aug-16 11-Aug-16
PHC F1	CWS Tier 1 - P&T GC-FID	9-Aug-16 10-Aug-16
PHCs F2 to F4	CWS Tier 1 - GC-FID, extraction	10-Aug-16 10-Aug-16

Certificate of Analysis

Order #: 1633143

Report Date: 02-Sep-2016

Client: Golder Associates Ltd. (Ottawa)

Order Date: 9-Aug-2016

Client PO:

Project Description: 1530908-2000

	Client ID:	MW11-1	MW11-2	MW11-3	MW11-4
	Sample Date:	03-Aug-16	03-Aug-16	03-Aug-16	03-Aug-16
	Sample ID:	1633143-01	1633143-02	1633143-03	1633143-04
	MDL/Units	Water	Water	Water	Water
Metals					
Mercury	0.0001 mg/L	<0.0001	<0.0001	<0.0001	<0.0001
Arsenic	0.001 mg/L	<0.001	0.003	<0.001	<0.001
Cadmium	0.0001 mg/L	<0.0001	<0.0001	0.0002	<0.0001
Chromium	0.001 mg/L	<0.001	<0.001	<0.001	<0.001
Cobalt	0.0005 mg/L	0.0011	0.0357	0.0236	0.0030
Copper	0.0005 mg/L	0.0010	0.0026	0.0031	0.0047
Lead	0.0001 mg/L	<0.0001	<0.0001	0.0006	0.0002
Nickel	0.001 mg/L	0.007	0.162	0.059	0.011
Zinc	0.005 mg/L	0.010	19.0	0.527	0.208
Hydrocarbons					
F1 PHCs (C6-C10)	0.025 mg/L	<0.025	<0.025	<0.025	<0.025
F2 PHCs (C10-C16)	0.100 mg/L	<0.100	<0.100	<0.100	<0.100
F3 PHCs (C16-C34)	0.100 mg/L	<0.100	<0.100	<0.100	<0.100
F4 PHCs (C34-C50)	0.100 mg/L	<0.100	<0.100	<0.100	<0.100
PCBs					
PCBs, total	0.00005 mg/L	<0.00005	<0.00005	<0.00005	<0.00005
Decachlorobiphenyl	Surrogate	88.3%	77.0%	72.5%	86.6%

Certificate of Analysis

Client: Golder Associates Ltd. (Ottawa)

Client PO:

Report Date: 02-Sep-2016 Order Date: 9-Aug-2016

Project Description: 1530908-2000

	Client ID: Sample Date: Sample ID:	MW11-5 02-Aug-16 1633143-05	MW12-7 02-Aug-16 1633143-06	- - -	- - -
Metals	MDL/Units	Water	Water	-	-
	0.0001 mg/L	0.0004	0.0004		
Mercury		<0.0001	<0.0001	-	-
Arsenic	0.001 mg/L	<0.001	<0.001	-	-
Cadmium	0.0001 mg/L	<0.0001	<0.0001	-	-
Chromium	0.001 mg/L	<0.001	<0.001	-	-
Cobalt	0.0005 mg/L	0.0057	0.0033	-	-
Copper	0.0005 mg/L	0.0018	0.0010	-	-
Lead	0.0001 mg/L	<0.0001	<0.0001	-	-
Nickel	0.001 mg/L	0.012	0.007	-	-
Zinc	0.005 mg/L	2.35	0.155	-	-
Hydrocarbons					
F1 PHCs (C6-C10)	0.025 mg/L	<0.025	<0.025	-	-
F2 PHCs (C10-C16)	0.100 mg/L	<0.100 [1]	<0.100 [1]	-	-
F3 PHCs (C16-C34)	0.100 mg/L	<0.100 [1]	<0.100 [1]	-	-
F4 PHCs (C34-C50)	0.100 mg/L	<0.100 [1]	<0.100 [1]	-	-
PCBs	· · · · · · · · · · · · · · · · · · ·		-		
PCBs, total	0.00005 mg/L	<0.00005	<0.00005	-	-
Decachlorobiphenyl	Surrogate	83.8%	84.2%	-	-
			-		

Certificate of Analysis

Order #: 1633143

Report Date: 02-Sep-2016

Client: Golder Associates Ltd. (Ottawa)Order Date: 9-Aug-2016Client PO:Project Description: 1530908-2000

Method Quality Control: Blank

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Hydrocarbons									
F1 PHCs (C6-C10)	ND	0.025	mg/L						
F2 PHCs (C10-C16)	ND	0.100	mg/L						
F3 PHCs (C16-C34)	ND	0.100	mg/L						
F4 PHCs (C34-C50)	ND	0.100	mg/L						
Metals									
Mercury	ND	0.0001	mg/L						
Arsenic	ND	0.001	mg/L						
Cadmium	ND	0.0001	mg/L						
Chromium	ND	0.001	mg/L						
Cobalt	ND	0.0005	mg/L						
Copper	ND	0.0005	mg/L						
Lead	ND	0.0001	mg/L						
Nickel	ND	0.001	mg/L						
Zinc	ND	0.005	mg/L						
PCBs									
PCBs, total	ND	0.00005	mg/L						
Surrogate: Decachlorobiphenyl	0.00018		mg/L		74.1	60-140			

Report Date: 02-Sep-2016

Order Date: 9-Aug-2016

Certificate of Analysis

Client: Golder Associates Ltd. (Ottawa)

Client PO: Project Description: 1530908-2000

Method Quality Control: Duplicate

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Hydrocarbons F1 PHCs (C6-C10)	ND	0.025	mg/L	ND				30	
Metals									
Arsenic	ND	0.001	mg/L	ND			0.0	20	
Cadmium	ND	0.0001	mg/L	ND			0.0	20	
Chromium	ND	0.001	mg/L	ND			0.0	20	
Cobalt	0.00108	0.0005	mg/L	0.00111			2.9	20	
Copper	0.00102	0.0005	mg/L	0.00097			5.1	20	
Lead	ND	0.0001	mg/L	ND			0.0	20	
Nickel	0.0072	0.001	mg/L	0.0071			1.1	20	
Zinc	0.011	0.005	mg/L	0.010			4.8	20	

Report Date: 02-Sep-2016 Order Date: 9-Aug-2016

Project Description: 1530908-2000

Certificate of Analysis

Client: Golder Associates Ltd. (Ottawa) Client PO:

Method Quality Control: Spike

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Hydrocarbons									
F1 PHCs (C6-C10)	1.99	0.025	mg/L		99.5	68-117			
F2 PHCs (C10-C16)	1.84	0.100	mg/L		102	60-140			
F3 PHCs (C16-C34)	3.66	0.100	mg/L		98.4	60-140			
F4 PHCs (C34-C50)	2.35	0.100	mg/L		94.6	60-140			
Metals									
Mercury	0.00286	0.0001	mg/L		95.3	80-120			
Arsenic	49.8		ug/L	0.09	99.5	80-120			
Cadmium	48.2		ug/L	0.02	96.4	80-120			
Chromium	47.1		ug/L	0.07	94.1	80-120			
Cobalt	48.6		ug/L	1.11	94.9	80-120			
Copper	46.4		ug/L	0.97	90.9	80-120			
Lead	48.3		ug/L	0.02	96.6	80-120			
Nickel	53.7		ug/L	7.1	93.1	80-120			
Zinc	60		ug/L	10	99.7	80-120			
PCBs									
PCBs, total	0.000978	0.00005	mg/L		97.8	60-140			
Surrogate: Decachlorobiphenyl	0.00017		mg/L		71.2	60-140			

Client: Golder Associates Ltd. (Ottawa)

Certificate of Analysis

Order #: 1633143

Report Date: 02-Sep-2016 Order Date: 9-Aug-2016

Client PO: Project Description: 1530908-2000

Qualifier Notes:

Login Qualifiers :

Sample - One or more parameter received past hold time -

Applies to samples: MW11-5, MW12-7

Sample Qualifiers:

1: Holding time had been exceeded upon receipt of the sample at the laboratory.

Sample Data Revisions

None

Work Order Revisions / Comments:

Revision 1, all results reported in mg/L.

Other Report Notes:

n/a: not applicable ND: Not Detected

MDL: Method Detection Limit

Source Result: Data used as source for matrix and duplicate samples

%REC: Percent recovery.

RPD: Relative percent difference.

CCME PHC additional information:

- The method for the analysis of PHCs complies with the Reference Method for the CWS PHC and is validated for use in the laboratory. All prescribed quality criteria identified in the method has been met.
- F1 range corrected for BTEX.
- F2 to F3 ranges corrected for appropriate PAHs where available.
- The gravimetric heavy hydrocarbons (F4G) are not to be added to C6 to C50 hydrocarbons.
- In the case where F4 and F4G are both reported, the greater of the two results is to be used for comparison to CWS PHC criteria.

LABORATORIES LTD.

RESPONSIVE. RELIABLE.

Head Office 300-2319 St. Laurent Blvd. Ottawa, Ontario K1G 4J8 p: 1-800-749-1947 e: paracel@paracellabs.com Chain of Custody (Lab Use Only)

Nº 108716

Page 3 of 4

Client	Name: O III A		-		T				-	-						-			
11 2	GOIDER HSSOCIATES		Project Reference: 1530908 - 2000											Turnaround Time:					
Contac	t Name:				Quote#	16-0									ol D				
Addres	s: seepage1				PO #	10 (110	_	-						-	шу		□ 3 Day	
	scepager				Email Address:				-						$ \Box$ 2 D	av		Regu	low
Teleph	one:				Linaii Audiciss.											2	i y	m Kegu	lar
Criter	in TO Par 162/04/A-1- LAVELL															Require	:d:		
Cinci	ia: 🗆 O. Reg. 153/04 (As Amended) Table 🗆 RS	SC Filing [10. Re _į	z. 558/00) □ PWQO □	CCME ISU	B (Sto	orm)		UB (Sanit	ary)	Municip	pality:		0	ther:		
Matrix	Type: S (Soil/Sed.) GW (Ground Water) SW (Surface Water	r) SS (Storm/	Sanitary S	Sewer) P	(Paint) A (Air) O	(Other)	Re	quir	ed A	naly	ses					-,14(1),-14(1),-14(1)			
	el Order Number:	E.	T	T	T		×	T	П		Т	Т		_	T -	Г			
	1633139 - 501		b	ner			4+BTEX												
			nm	ntai	Sampl	e Taken	+44+			ICE			2	5					
	1633143 - water	- X	Air Volume	of Containers			S FI	S	92	ls by			See .	2					
	Sample ID/Location Name	Matrix	Air	# of	Date	Time	PHC	VOC	PAHs	Metals l	FIE	CrVI	B (HWS)	2					
1	MW12-8B	3		2	Aug 3									/	-6	MIT	- 25	mit	7
2	F4-25a	11		П	103		T	T	П			1	1	/		Piv	1	3 1-10	-
3	F4-26 a			$\dagger \dagger$				T			\Box	+	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	/			+		-
. 4	F4-27a											+	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	/	_				-1
5	F4-29a	1		t			+					1	1	/			V	X 19 **	-)
6	MW11-1	W		6	N 3		+	+				+	1	/			V		
7	HW 11-2	10		6	Ay3		+	\vdash				1	-	/	+				\dashv
8	MW11-3	W		6	Any 1		+	\vdash	\vdash			+	V	,	-				-1
9	MW N-4	 		6	My 3		-	1		-		+	- 1	/	-				4
10	MW11-5	W		6	A-63	_	+	+	-			\dashv	V	/					_{
Comm	ents:	IW		0	1416 mm			1					l V	1_		16.0	PEN II		_1
	1)		3 / KI	6 Hord	الد	14	~	0	2	a	LYS	10,	Elag.	Method	of Delive	ry:	
	Removed loose ice/water from	in C00/	ers.	0	0	BYOH &	41	+1	X,	KŁ	edi	chc	200	, F211	212-7	Ur	m Bo	X	
0	sica of (sign).	Received	l by Driv	er/Depot		Receiv	ved at	Laby!	//	>		7	Res	Wert	iddily:	/	V		
elinoni	Lyssa Irako shed By (Print): Alyssa Troke	8	//	16	6		1	1	4	/	77	_			11	1	\leq		
ate/Tin	shed By (Print): Aly SSO Troke no: Aug 8/16 18-00				16 7:1				919	24	1/4	(4/1	O Date	Time:	Ay	9/10	2 3:5	2
-10. 110	1109 0/18 10-00	1 cmpera	uire: $$	46 0		Tempk	erature	- 1	1	C				pH V	erified [V	By: 143)		

RESPONSIVE . RELIABLE.

Head Office 300-2319 St. Laurent Blvd. Ottawa, Ontario K1G 4J8 p: 1-800-749-1947

e: paracel@paracellabs.com

Chain of Custody (Lab Use Only)

№ 108717

	LABORATORIES LTD	, nc	LIAD	L						e: ţ	parac	ег се р	aracellabs	.com		Page	<u>4</u> of	4	
Client Na	me: Golder Associates				Project Reférence	1530	908	3-	20	00)					Turna			
Contact N					Quote#	16-0									01D	ay		□ 3 Da	ay
Address:	1931 Robertson Road, Ottawa KZH SB7	i, or)		PO#										Day			Regular	
	: 613-592-9600				alyssa-troke@golder.com									Date Required:					
Criteria	: 🗆 O. Reg. 153/04 (As Amended) Table 🗆 RSC	Filing 🗆	O. Reg	. 558/00	□PWQO □	CCME I SU	B (Sto	rm)		JB (S	Sanita	ry) l	Aunicipal	ity:		00)ther:		
Matrix T	rpe: S (Soil/Sed.) GW (Ground Water) SW (Surface Water) S	S (Storm/S	anitary S	ewer) P (Paint) A (Air) O (Other)	Red	quire	ed A	naly	ses								
Parace	Order Number: 1633 139 - Soll 1633 143 - Water	Sample Taken			SS	Is	Metals by ICP			see gooke									
	Sample ID/Location Name Watrix Air Volume Somble ID/Location Name Sample ID/Location Name				Date	Time	PHC	VOC	PAHs	Met	Hg	Z Z	n						4000
1	MW 12-7	W	,	6	Aug 2								V						,
2																			
3					1														
4																			
5	· · ·																		
6	*																		
7																			
8																			
9																			
10																			
Comments: Removed loose ce/water from coolets.					3				_)					Method of Delivery: Drop Box				
Collins 1 100%				Veribero E	(2		ived at	Laby	4	/	2				ed By:	11	1	_	
Relinquished By (Print): Alyssa Troke DaterTime: Aug 9 DaterTime: Aug 8/16/18/00 Temperature: 976						Dan Date	Tyme: peratur	: d	7/	9.27 °C	119	(///	Date/ pH V	rime; erified [v	Aig 9 rBy! K	5.	5.	56

Appendix C3

Certificate Of Analysis –
Paracel Laboratories Ltd.,
Aug. 22, 2016; Order #1634162

300 - 2319 St. Laurent Blvd Ottawa, ON, K1G 4J8 1-800-749-1947 www.paracellabs.com

Certificate of Analysis

Golder Associates Ltd. (Ottawa)

1931 Robertson Rd. Ottawa, ON K2H 5B7 Attn: Alyssa Troke

Client PO:

Project: 1530908-2000 Report Date: 22-Aug-2016
Custody: 26764 Order Date: 16-Aug-2016

Order #: 1634162

This Certificate of Analysis contains analytical data applicable to the following samples as submitted:

Paracel ID	Client ID
1634162-01	MW98-1A
1634162-02	MW98-2A
1634162-03	MW98-3A
1634162-04	MW98-3B
1634162-05	MW98-6A
1634162-06	MW98-7A
1634162-07	MW98-8A
1634162-08	MW98-8B
1634162-09	MW98-9A
1634162-10	F4-28A

Approved By:

Dale Robertson, BSc Laboratory Director

Certificate of Analysis

Client: Golder Associates Ltd. (Ottawa)

Report Date: 22-Aug-2016

Order Date: 16-Aug-2016

Client PO: Project Description: 1530908-2000

Analysis Summary Table

Analysis	Method Reference/Description	Extraction Date	Analysis Date
CCME-SQG: Metals by ICP-OES	based on MOE E3470, ICP-OES	18-Aug-16	18-Aug-16
Mercury by CVAA	EPA 7471B - CVAA, digestion	19-Aug-16	19-Aug-16
PCBs, total	SW846 8082A - GC-ECD	17-Aug-16	18-Aug-16
PHC F1	CWS Tier 1 - P&T GC-FID	18-Aug-16	19-Aug-16
PHCs F2 to F4	CWS Tier 1 - GC-FID, extraction	18-Aug-16	18-Aug-16
Solids, %	Gravimetric, calculation	18-Aug-16	18-Aug-16

Report Date: 22-Aug-2016

Certificate of Analysis Client: Golder Associates Ltd. (Ottawa)

Order Date: 16-Aug-2016 Client PO: Project Description: 1530908-2000

	_				-
	Client ID:	MW98-1A	MW98-2A	MW98-3A	MW98-3B
	Sample Date:	04-Aug-16	04-Aug-16	04-Aug-16	04-Aug-16
	Sample ID:	1634162-01	1634162-02	1634162-03	1634162-04
	MDL/Units	Soil	Soil	Soil	Soil
Physical Characteristics					
% Solids	0.1 % by Wt.	89.7	89.4	96.5	96.9
Metals	-		- -	•	-
Arsenic	1.0 ug/g dry	74.7	18.2	24.2	21.0
Cadmium	0.5 ug/g dry	<0.5	<0.5	<0.5	<0.5
Chromium	1.0 ug/g dry	139	42.3	31.5	44.1
Cobalt	1.0 ug/g dry	15.6	5.7	4.3	5.2
Copper	1.0 ug/g dry	67.8	16.1	13.6	15.2
Lead	1.0 ug/g dry	5.0	4.6	4.3	5.7
Mercury	0.1 ug/g dry	<0.1	<0.1	<0.1	<0.1
Nickel	1.0 ug/g dry	44.5	16.5	12.9	14.6
Zinc	1.0 ug/g dry	71.2	33.3	25.2	31.9
Hydrocarbons					
F1 PHCs (C6-C10)	7 ug/g dry	<7 [1]	258 [1]	<7 [1]	<7 [1]
F2 PHCs (C10-C16)	4 ug/g dry	<4	2850	<4	<4
F3 PHCs (C16-C34)	8 ug/g dry	<8	250	82	48
F4 PHCs (C34-C50)	6 ug/g dry	<6	<6	53	29
PCBs			-	-	
PCBs, total	0.05 ug/g dry	<0.05	<0.05	<0.05	<0.05
Decachlorobiphenyl	Surrogate	86.7%	88.2%	95.7%	101%

Report Date: 22-Aug-2016

Order Date: 16-Aug-2016

Certificate of Analysis

Client: Golder Associates Ltd. (Ottawa)

Client PO: Project Description: 1530908-2000

	Client ID: Sample Date: Sample ID: MDL/Units	MW98-6A 04-Aug-16 1634162-05 Soil	MW98-7A 04-Aug-16 1634162-06 Soil	MW98-8A 04-Aug-16 1634162-07 Soil	MW98-8B 04-Aug-16 1634162-08 Soil
Physical Characteristics	1 2 2 2 1 1 1 1		T	1	1
% Solids	0.1 % by Wt.	98.3	96.0	93.9	94.1
Metals			1	1	1
Arsenic	1.0 ug/g dry	18.4	17.3	14.5	16.3
Cadmium	0.5 ug/g dry	<0.5	<0.5	<0.5	<0.5
Chromium	1.0 ug/g dry	47.8	40.3	21.7	23.7
Cobalt	1.0 ug/g dry	6.3	5.2	3.2	3.8
Copper	1.0 ug/g dry	25.2	21.8	8.7	11.0
Lead	1.0 ug/g dry	8.0	9.0	2.5	3.4
Mercury	0.1 ug/g dry	<0.1	<0.1	<0.1	<0.1
Nickel	1.0 ug/g dry	20.7	17.2	9.5	11.9
Zinc	1.0 ug/g dry	37.8	35.0	20.3	21.0
Hydrocarbons					
F1 PHCs (C6-C10)	7 ug/g dry	<7 [1]	<7 [1]	<7 [1]	<7 [1]
F2 PHCs (C10-C16)	4 ug/g dry	6	21	<4	<4
F3 PHCs (C16-C34)	8 ug/g dry	160	913	<8	<8
F4 PHCs (C34-C50)	6 ug/g dry	28	203	<6	<6
PCBs					
PCBs, total	0.05 ug/g dry	<0.05	<0.05	0.19	1.46
Decachlorobiphenyl	Surrogate	86.9%	83.1%	90.9%	96.4%

Certificate of Analysis

Client: Golder Associates Ltd. (Ottawa)

Client PO:

Report Date: 22-Aug-2016 Order Date: 16-Aug-2016

Project Description: 1530908-2000

	Client ID:	MW98-9A	F4-28A	-	-
	Sample Date:	04-Aug-16	05-Aug-16	-	-
	Sample ID:	1634162-09	1634162-10	-	-
	MDL/Units	Soil	Soil	-	-
Physical Characteristics			•		
% Solids	0.1 % by Wt.	93.9	91.9	-	-
Metals					
Arsenic	1.0 ug/g dry	13.8	13.4	•	-
Cadmium	0.5 ug/g dry	<0.5	<0.5	•	-
Chromium	1.0 ug/g dry	29.2	48.1	-	-
Cobalt	1.0 ug/g dry	4.6	7.8	-	-
Copper	1.0 ug/g dry	18.3	35.8	-	-
Lead	1.0 ug/g dry	6.1	12.4	-	-
Mercury	0.1 ug/g dry	<0.1	<0.1	-	-
Nickel	1.0 ug/g dry	13.3	23.0	-	-
Zinc	1.0 ug/g dry	33.3	53.1	-	-
Hydrocarbons					
F1 PHCs (C6-C10)	7 ug/g dry	<7 [1]	<7 [1]	•	-
F2 PHCs (C10-C16)	4 ug/g dry	<4	<4	-	-
F3 PHCs (C16-C34)	8 ug/g dry	<8	127	•	-
F4 PHCs (C34-C50)	6 ug/g dry	<6	46	-	-
PCBs					
PCBs, total	0.05 ug/g dry	0.08	<0.05	1	-
Decachlorobiphenyl	Surrogate	96.5%	86.8%	-	-

Certificate of Analysis

Client: Golder Associates Ltd. (Ottawa)

Report Date: 22-Aug-2016

Order Date: 16-Aug-2016

Client PO: Project Description: 1530908-2000

Method Quality Control: Blank

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Hydrocarbons									
F1 PHCs (C6-C10)	ND	7	ug/g						
F2 PHCs (C10-C16)	ND	4	ug/g						
F3 PHCs (C16-C34)	ND	8	ug/g						
F4 PHCs (C34-C50)	ND	6	ug/g						
Metals									
Arsenic	ND	1.0	ug/g						
Cadmium	ND	0.5	ug/g						
Chromium	ND	1.0	ug/g						
Cobalt	ND	1.0	ug/g						
Copper	ND	1.0	ug/g						
Lead	ND	1.0	ug/g						
Mercury	ND	0.1	ug/g						
Nickel	ND	1.0	ug/g						
Zinc	ND	1.0	ug/g						
PCBs									
PCBs, total	ND	0.05	ug/g						
Surrogate: Decachlorobiphenyl	0.0792		ug/g		79.2	60-140			

Report Date: 22-Aug-2016

Certificate of Analysis

Client: Golder Associates Ltd. (Ottawa)

Order Date: 16-Aug-2016 Client PO: Project Description: 1530908-2000

Method Quality Control: Duplicate

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Hydrocarbons									
F1 PHCs (C6-C10)	ND	7	ug/g dry	ND				40	
F2 PHCs (C10-C16)	ND	4	ug/g dry	ND				30	
F3 PHCs (C16-C34)	177	8	ug/g dry	159			10.6	30	
F4 PHCs (C34-C50)	68	6	ug/g dry	60			13.1	30	
Metals		-	-9-97						
Antimony	ND	1.0	ug/g dry	ND				30	
Arsenic	ND	1.0	ug/g dry	ND				30	
Barium	137	1.0	ug/g dry	148			8.1	30	
Beryllium	ND	1.0	ug/g dry	ND			0.0	30	
Boron	ND	1.0	ug/g dry	ND			0.0	30	
Cadmium	ND	0.5	ug/g dry	ND				30	
Chromium	31.9	10.0	ug/g dry	33.2			4.0	30	
Cobalt	6.53	1.0	ug/g dry	6.99			6.8	30	
Copper	16.0	1.0	ug/g dry	17.0			6.1	30	
Lead	4.86	1.0	ug/g dry	5.57			13.5	30	
Mercury	ND	0.1	ug/g dry	ND			0.0	30	
Molybdenum	ND	1.0	ug/g dry	ND			0.0	30	
Nickel	11.8	1.0	ug/g dry	12.4			4.9	30	
Selenium	ND	1.0	ug/g dry	ND			0.0	30	
Silver	ND	0.5	ug/g dry	ND			0.0	30	
Thallium	ND	1.0	ug/g dry	ND			0.0	30	
Tin	ND	5.0	ug/g dry	ND			0.0	30	
Uranium	ND	1.0	ug/g dry	ND				30	
Vanadium	46.8	1.0	ug/g dry	50.9			8.6	30	
Zinc	39.1	1.0	ug/g dry	41.1			5.0	30	
PCBs			•						
PCBs, total	ND	0.05	ug/g dry	ND				40	
Surrogate: Decachlorobiphenyl	0.102		ug/g dry		97.8	60-140			
Physical Characteristics									
% Solids	59.9	0.1	% by Wt.	59.7			0.4	25	
			•						

Report Date: 22-Aug-2016 Order Date: 16-Aug-2016

Project Description: 1530908-2000

Certificate of Analysis

Client: Golder Associates Ltd. (Ottawa)
Client PO:

Method Quality Control: Spike

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Hydrocarbons									
F1 PHCs (C6-C10)	186	7	ug/g		93.0	80-120			
F2 PHCs (C10-C16)	214	4	ug/g	21	179	60-140		C)M-06
F3 PHCs (C16-C34)	393	8	ug/g	46	155	60-140		C	M-06
F4 PHCs (C34-C50)	186	6	ug/g	ND	125	60-140			
Metals									
Antimony	246		ug/L	ND	98.3	70-130			
Arsenic	253		ug/L	ND	101	70-130			
Barium	215		ug/L		86.0	70-130			
Beryllium	217		ug/L	ND	86.7	70-130			
Boron	248		ug/L	11.2	94.9	70-130			
Cadmium	297		ug/L	ND	119	70-130			
Chromium	209		ug/L		83.7	70-130			
Cobalt	354		ug/L	140	85.6	70-130			
Copper	555		ug/L	340	86.0	70-130			
Lead	301		ug/L	111	75.8	70-130			
Mercury	1.23	0.1	ug/g	ND	82.0	70-130			
Molybdenum	231		ug/L	18.3	85.2	70-130			
Nickel	449		ug/L	247	80.7	70-130			
Selenium	185		ug/L	ND	74.1	70-130			
Silver	184		ug/L	ND	73.5	70-130			
Thallium	195		ug/L	16.6	71.2	70-130			
Tin	229		ug/L	13.0	86.4	70-130			
Uranium	281		ug/L	ND	112	70-130			
Vanadium	1210		ug/L	1020	77.0	70-130			
Zinc	997		ug/L	821	70.4	70-130			
PCBs									
PCBs, total	0.523	0.05	ug/g	ND	126	60-140			
Surrogate: Decachlorobiphenyl	0.106		ug/g		102	60-140			

Report Date: 22-Aug-2016

Certificate of Analysis

Client: Golder Associates Ltd. (Ottawa)

Client: Golder Associates Ltd. (Ottawa)

Order Date: 16-Aug-2016

Client PO:

Project Description: 1530908-2000

Qualifier Notes:

Login Qualifiers:

Sample - One or more parameter received past hold time - PHC F1

Applies to samples: MW98-1A, MW98-2A, MW98-3A, MW98-3B, MW98-6A, MW98-7A, MW98-8A, MW98-8B,

MW98-9A, F4-28A

Sample Qualifiers:

1: Holding time had been exceeded upon receipt of the sample at the laboratory.

QC Qualifiers:

QM-06: Due to noted non-homogeneity of the QC sample matrix, the spike recoveries were out side the accepted

range. Batch data accepted based on other QC.

Sample Data Revisions

None

Work Order Revisions / Comments:

None

Other Report Notes:

n/a: not applicable ND: Not Detected

MDL: Method Detection Limit

Source Result: Data used as source for matrix and duplicate samples

%REC: Percent recovery. RPD: Relative percent difference.

Soil results are reported on a dry weight basis when the units are denoted with 'dry'.

Where %Solids is reported, moisture loss includes the loss of volatile hydrocarbons.

CCME PHC additional information:

- The method for the analysis of PHCs complies with the Reference Method for the CWS PHC and is validated for use in the laboratory. All prescribed quality criteria identified in the method has been met.
- F1 range corrected for BTEX.
- F2 to F3 ranges corrected for appropriate PAHs where available.
- The gravimetric heavy hydrocarbons (F4G) are not to be added to C6 to C50 hydrocarbons.
- In the case where F4 and F4G are both reported, the greater of the two results is to be used for comparison to CWS PHC criteria.

TRUSTED .
RESPONSIVE .
RELIABLE .

Head Office 300-2319 St. Laurent Blvd. Ottawa, Ontario K1G 4J8

p: 1-800-749-1947 e: paracel@paracellabs.com www.paracellabs.com Chain of Custody
(Lab Use Only)

Nº 26764

Page /	of 2
1.00. +	- 0. 01

Client Name: Golder Associates			Project	Reference: 15	30908	TAT:	Regular		3 Day							
Contact Name: Alyssa Troke			Quote #	Reference: 15	+ Colde	Tew Li	nes Ho	nitor:	19	[] 2 Day [] 1 Day						
Address: 1931 Robertson Road	Otta	lig	PO#						7	100	1.1	1 Day				
K 217 5 B7	1		Email A	address: alys					Date Re	equired:						
613 392 7600				The second secon		th@gol										
Criteria: [] O. Reg. 153/04 (As Amended) Table [] R	SC Filing	[]0.	Reg. 558	00 []PWQO D	(CCME []	SUB (Storm) [SUB (Sani	tary) Munic	ipality:	1] Other: _		_			
Matrix Typer (Soil/Sed.) (Ground Water) SW (Surface Water) S.	S (Storm/S	anitary Se	ewer) P (1	Paint) A (Air) O (O	ther)	- E 20 E		R	tequired A	nalyses						
Paracel Order Number: 1634 163 - Wat	er		ers										П			
1634162 - Soil	8	Air Volume	of Containers	Sample	Taken	ce										
Sample ID/Location Name	Matrix	Air	# of	Date	Time	28										
1 MW98-1A	S		2	Aug-H	To the second	X			-61	mit	250/	m1-	-			
2 MW98-2A	S		2	.)		X					ſ		1			
3 MW 98-3A	2		2			×										
4 MIN 98-3B	8		2	30111173		×						a				
5 MW 98 - 6A	2		2	1		X										
6 MW 98 - 7A	9		2	Avg-4		X										
7 4141 98 - 84	S		2	3		X					1					
8 411 98 - 83	3	111	2			X					\top					
, MW 98 - 9A	2		2	1		1X	7.0				1					
10 4-28A	S		2	Avg 5		X					V					
Comments: Proceed regar	old	es		6 1	old	tim	e pe	er			Method of	Delivery JOH	in			
Relinquished By (Sign):	Receive	d by Dri	ver/Depo	100	1	ved at Lab: SVNPEPO	40.400 % (600000000	DOKI	Verifie 1A	d By: Rad	iel	Subje	4			
Relinquished By (Print): Journe Woodhouse	-	me: ()	The state of the s	1111	Marie Control	Time: A GC		03.				1160	4:59			
Date/Time: Aug 16/2016 1030am	Temper	ature: <u>I</u>	1.8	C	Temp	erature: 8.8	<u>, 'C</u>		pH Ve	rified [X] I	By: N/4					

TRUSTED .
RESPONSIVE .
RELIABLE .

Head Office 300-2319 St. Laurent Blvd. Ottawa, Ontario K1G 4J8 p: 1-800-749-1947 e: paracel@paracellabs.com www.paracellabs.com Chain of Custody (Lab Use Only)

Nº 26765

Page 2 of 2

Client Name: Golder Associates		Project	Reference: / 2	3090	8-2	.00C) —		TAT: X	Regular	[] 3 Day		
Contact Name: See page		Quote #	15-30	3090 7 Golde	Den	; Line	s Monis	toring	, ,	2 Day	[] 1 Day		
Address:		PO#						~			[] I Day		
<u> </u>	2	Email A	ddress: aly	ssa_trol	ue g	older	,(0M		Date Requ	ired:			_
Telephone:			do	lender	leith	@ 901	der-co	m					
Criteria: [] O. Reg. 153/04 (As Amended) Table [] RSC F	iling []	O. Reg. 558	00 []PWQO [CCME []S	UB (Storm)	[]SUB	(Sanitary) N	Aunicipality		[] Ot	her:		
Matrix Type(S)(Soil/Sed.) (Ground Water) SW (Surface Water) SS (Sto	orm/Sanitary	Sewer) P (Paint) A (Air) O (Other)				Requi	red Ana	lyses			
Paracel Order Number: 1634162-5011	9!	STS											
1634163-water	li me	# of Containers	Sampl	e Taken	cee								
Sample ID/Location Name	Matrix Air Vo	# of	Date	Time	30								
	W	6	Aug 4	1700	X						17.58		1
	W	6	Aug 5	_	X								1
3	1		U	1									
4													
5				7	1								
6											9		
7													
8							1						
9				1				\					
10				5 10 1									
Comments:										Met	hod of Deliv	ery;	
Some Waddouse		Driver/Depo	4/5	10	ived at Lab:	Parn	Dol	CMAI	Verified B	achel	Subj	act	
Courting 1	ate/Time:	28 23	61611	Date	Time: A \ perature: 8	16168	010 0	5110	Date/Tin	ie: Aug ied [V By:_	16/16	5.7)()
Date/Time: Aug 16/2016 1030am To	emperature	8.8	C.	iemj	octature: C	.0.0			Ipri vem	ica [A ph; "	1/2		

Appendix C4

Certificate Of Analysis –
Paracel Laboratories Ltd.,
Sept. 2, 2016; Order #1634163

300 - 2319 St. Laurent Blvd Ottawa, ON, K1G 4J8 1-800-749-1947 www.paracellabs.com

Certificate of Analysis

Golder Associates Ltd. (Ottawa)

1931 Robertson Rd. Ottawa, ON K2H 5B7 Attn: Alyssa Troke

Client PO:

Project: 1530908-2000 Custody: 26765 Report Date: 2-Sep-2016 Order Date: 16-Aug-2016

Revised Report

Order #: 1634163

This Certificate of Analysis contains analytical data applicable to the following samples as submitted:

 Paracel ID
 Client ID

 1634163-01
 MW98-02

 1634163-02
 Fox 4 - Rinsate

Approved By:

2:MX

Tim McCooeye Senior Advisor

Certificate of Analysis

Client: Golder Associates Ltd. (Ottawa)

Report Date: 02-Sep-2016

Order Date: 16-Aug-2016

Client PO: Project Description: 1530908-2000

Analysis Summary Table

Analysis	Method Reference/Description	Extraction Date	Analysis Date
Mercury by CVAA	EPA 245.1 - Cold Vapour AA	17-Aug-16	17-Aug-16
Metals, ICP-MS	EPA 200.8 - ICP-MS	18-Aug-16	19-Aug-16
PCBs, total	EPA 608 - GC-ECD	18-Aug-16	18-Aug-16
PHC F1	CWS Tier 1 - P&T GC-FID	16-Aug-16	18-Aug-16
PHCs F2 to F4	CWS Tier 1 - GC-FID, extraction	19-Aug-16	19-Aug-16

Report Date: 02-Sep-2016

Order Date: 16-Aug-2016

Certificate of Analysis

Client: Golder Associates Ltd. (Ottawa)

Client PO: Project Description: 1530908-2000

	Client ID:	MW98-02	Fox 4 - Rinsate	<u> </u>	_
	Sample Date:	04-Aug-16	05-Aug-16	-	-
	Sample ID:	1634163-01	1634163-02	-	-
	MDL/Units	Water	Water	-	-
Metals			•		
Mercury	0.0001 mg/L	<0.0001	<0.0001	-	-
Arsenic	0.001 mg/L	0.004	<0.001	-	-
Cadmium	0.0001 mg/L	<0.0001	<0.0001	-	-
Chromium	0.001 mg/L	<0.001	<0.001	-	-
Cobalt	0.0005 mg/L	0.0030	<0.0005	-	-
Copper	0.0005 mg/L	0.0006	<0.0005	-	-
Lead	0.0001 mg/L	0.0001	<0.0001	-	-
Nickel	0.001 mg/L	0.006	<0.001	-	-
Zinc	0.005 mg/L	0.090	<0.005	-	-
Hydrocarbons					
F1 PHCs (C6-C10)	0.025 mg/L	0.395 [1]	<0.025 [1]	-	-
F2 PHCs (C10-C16)	0.100 mg/L	<0.100 [1]	<0.100 [1]	-	-
F3 PHCs (C16-C34)	0.100 mg/L	<0.100 [1]	<0.100 [1]	-	-
F4 PHCs (C34-C50)	0.100 mg/L	<0.100 [1]	<0.100 [1]	-	-
PCBs	-		-		
PCBs, total	0.00005 mg/L	<0.00005	<0.00005	-	-
Decachlorobiphenyl	Surrogate	54.8% [4]	72.4%	-	-

Certificate of Analysis

Client: Golder Associates Ltd. (Ottawa)

Report Date: 02-Sep-2016

Order Date: 16-Aug-2016

Client PO: Project Description: 1530908-2000

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Hydrocarbons									
F1 PHCs (C6-C10)	ND	0.025	mg/L						
F2 PHCs (C10-C16)	ND	0.100	mg/L						
F3 PHCs (C16-C34)	ND	0.100	mg/L						
F4 PHCs (C34-C50)	ND	0.100	mg/L						
Metals									
Mercury	ND	0.0001	mg/L						
Arsenic	ND	0.001	mg/L						
Cadmium	ND	0.0001	mg/L						
Chromium	ND	0.001	mg/L						
Cobalt	ND	0.0005	mg/L						
Copper	ND	0.0005	mg/L						
Lead	ND	0.0001	mg/L						
Nickel	ND	0.001	mg/L						
Zinc	ND	0.005	mg/L						
PCBs			J						
PCBs, total	ND	0.00005	mg/L						
Surrogate: Decachlorobiphenyl	1.00020		mg/L		80.6	60-140			

Report Date: 02-Sep-2016

Page 5 of 7

Certificate of Analysis

Client: Golder Associates Ltd. (Ottawa)

Order Date: 16-Aug-2016 Client PO: Project Description: 1530908-2000

Method Quality Control: Duplicate

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Hydrocarbons F1 PHCs (C6-C10)	ND	0.025	ma/l	ND				30	
	טוו	0.025	mg/L	ND				30	
Metals									
Mercury	ND	0.0001	mg/L	ND				20	
Arsenic	ND	0.001	mg/L	0.0013			0.0	20	
Cadmium	ND	0.0001	mg/L	ND			0.0	20	
Chromium	ND	0.001	mg/L	ND			0.0	20	
Cobalt	ND	0.0005	mg/L	ND			0.0	20	
Copper	ND	0.0005	mg/L	ND				20	
Lead	ND	0.0001	mg/L	ND			0.0	20	
Nickel	ND	0.001	mg/L	ND				20	
Zinc	ND	0.005	mg/L	ND			0.0	20	

Report Date: 02-Sep-2016

Certificate of Analysis Client: Golder Associates Ltd. (Ottawa)

Order Date: 16-Aug-2016 Client PO: Project Description: 1530908-2000

Method Quality Control: Spike

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Hydrocarbons									
F1 PHCs (C6-C10)	1.83	0.025	mg/L		91.3	68-117			
F2 PHCs (C10-C16)	1.67	0.100	mg/L		93.0	60-140			
F3 PHCs (C16-C34)	3.16	0.100	mg/L		85.0	60-140			
F4 PHCs (C34-C50)	2.12	0.100	mg/L		85.3	60-140			
Metals									
Mercury	0.00309	0.0001	mg/L	ND	103	70-130			
Arsenic	39.0		ug/L	1.3	75.3	80-120		Q	M-07
Cadmium	49.2		ug/L	0.01	98.4	80-120			
Chromium	49.9		ug/L	0.1	99.6	80-120			
Cobalt	49.0		ug/L	0.02	98.1	80-120			
Copper	48.0		ug/L	ND	96.0	80-120			
Lead	47.5		ug/L	0.08	94.8	80-120			
Nickel	49.2		ug/L	ND	98.5	80-120			
Zinc	52		ug/L	0.2	103	80-120			
PCBs									
PCBs, total	0.00110	0.00005	mg/L		110	60-140			
Surrogate: Decachlorobiphenyl	0.00021		mg/L		87.2	60-140			

Report Date: 02-Sep-2016

Page 7 of 7

Certificate of Analysis

Client: Golder Associates Ltd. (Ottawa)

Client: Golder Associates Ltd. (Ottawa)

Order Date: 16-Aug-2016

Client PO:

Project Description: 1530908-2000

Qualifier Notes:

Login Qualifiers:

Sample - One or more parameter received past hold time - CCME F1-F4 past hold time Applies to samples: MW98-02, Fox 4 - Rinsate

Sample Qualifiers:

1: Holding time had been exceeded upon receipt of the sample at the laboratory.

4: The surrogate recovery for this sample is outside of established control limits due to a sample matrix effect.

QC Qualifiers:

QM-07: The spike recovery was outside acceptance limits for the MS and/or MSD. The batch was accepted based on other acceptable QC.

Sample Data Revisions

None

Work Order Revisions / Comments:

Revision 1, all results reported as mg/L.

Other Report Notes:

n/a: not applicable ND: Not Detected

MDL: Method Detection Limit

Source Result: Data used as source for matrix and duplicate samples

%REC: Percent recovery.

RPD: Relative percent difference.

CCME PHC additional information:

- The method for the analysis of PHCs complies with the Reference Method for the CWS PHC and is validated for use in the laboratory. All prescribed quality criteria identified in the method has been met.
- F1 range corrected for BTEX.
- F2 to F3 ranges corrected for appropriate PAHs where available.
- The gravimetric heavy hydrocarbons (F4G) are not to be added to C6 to C50 hydrocarbons.
- In the case where F4 and F4G are both reported, the greater of the two results is to be used for comparison to CWS PHC criteria.

TRUSTED. RESPONSIVE.

Head Office 300-2319 St. Laurent Blvd. Ottawa, Ontario K1G 4J8 p: 1-800-749-1947 e: paracel@paracellabs.com

www.paracellabs.com

Nº 26765

Page 2 of 2

Chain of Custody

(Lab Use Only)

differs: Compared	Chent Name:	Project Refer	ronos 1 /-	2 . 0 00	2	Α.			-	rage 🕿	10	5.02		
Criteria: [10 Reg. 153.04 (As Amended) Table [1 RSC Films [1] O. Reg. SSE00 [1 Films [1] O. Reg. SSE00	Contact Name:		15.	50908	1	1000	18 8.	TA	TAT: Regular [13 Day					
Criteria: [10 Reg. 153.04 (As Americal) Table	Address: See page	1 12	2-304	Golder	Den	i Lines,	Monito	119	,					
Aplendarie: the golder com Criteria: [10. Reg. [5304 (As Amendal) Table_ [1] SSC Filing [10. Reg. 58300 [1] PMOD (Accuse) [1808 (Saminary) Monitorpolity [1] Others arrich Type Soil Scal) (Ground Water) SW (Surface Water) SS (Soom Sanitary Sever) P (Paint) A (Air) O (Other) Required Analyses arracel Order Number: [634 62-501] Sample ID/Location Name Sample ID/Location Name Aplendarie: the golder com Required Analyses Sample Taken Sample ID/Location Name Aplendarie: the golder com Required Analyses Sample Taken Aplendarie: the golder com Required Analyses Required				7		4		J	[] 2 Da	iy []	1 Day			
Tatrit Type Soil Soil (Ground Water) SW (Surface Water) SS (Storm Sanitary Sever) P (Paint) A (Air) O (Other) Required Analyses G34 G2-Soil	Telephone:	Email Addres		e_trok	eeg	0/dlr.(0	M	Da	te Required:					
Arracel Order Number: 1634 162 - Soil Sample Taken Sample Taken Sample ID/Location Name	Criteria: [] O. Reg. 153/04 (As Amended) Table [] RSC Filing [] O.	Dan \$59/00	dela	enderi	e.th	@go/de	er.con	١				_		
Sample ID/Location Name Sample ID/Location Name MW98-02 Fox 4-Rinsele Municipal Sample Sample Taken Sample ID/Location Name MW98-02 Municipal Sample Taken Municipal S	Matrix Type(S)Soil/Sed.) (GV) (Ground Water) SW (Surface Water) SS (State State Stat	, Keg. 739/00	1 11 MOO 1/10	CMB [JSU	B (Storm)	L PSUB (Sar	nitary) Mun	icipality:		[]Other:				
Sample ID/Location Name Sample ID/Location Name MW98 - 02 Fox 4 - Rinsort MW98 - 03 Method of Delivery Proceled regardless of hold time per Prussa & C. Method of Delivery	Paracel Order Number: 16 21146 2	sewer) P (Paint)	A (Air) O (Other	r).				Required	d Analyse:	S				
1 MW98-62 GW 6 Aug 4 1700 X 2 Fox 4 - Rinsak GW 6 Aug 5 - X 3 4 5 6 7 8 9 10 mments: Samples not preserved, not field filtered. Sc. Method of Delivery. Proceed regardless of hold time per Plyssa &	1634162-5011	ers							T	T				
1 MW98-62 GW 6 Aug 4 1700 X 2 Fox 4 - Rinsak GW 6 Aug 5 - X 3 4 5 6 7 8 9 10 mments: Samples not preserved, not field filtered. Sc. Method of Delivery. Proceed regardless of hold time per Plyssa &		Contain	Sample Ta	aken	ofe									
1 MW98-62 GW 6 Aug 4 1700 X 2 Fox 4 - Rinsak GW 6 Aug 5 - X 3 4 5 6 7 8 9 10 mments: Samples not preserved, not field filtered. Sc. Method of Delivery. Proceed regardless of hold time per Plyssa &	Sample ID/Location Name	l of C	Date	Time	28									
Fox 4 - Rinsak M A B B B B B B B B B B B B	1111100				V			_				9		
and the state of t	2 Fox 4 - Rinsote MIN			700	X	-	\vdash	_		1 1	2.3			
mments: Samples not preserved, not field filtered. Sc. Method of Delivery. Proceed regardless of hold time per physical &c.	3	6 /	9 5	_	/\		\vdash					1		
mments: Samples not preserved, not field fittered. Sc. Method of Delivery. Proceed regardless of hold time per Prussa &c.	4	-		$\overline{}$	-	_								
mments: Samples not preserved, not field fittered. Sc. Method of Delivery: Proceed regardless of hold time per Prussa &c.	5				\		-							
mments: Samples not preserved, not field fittered. Sc. Method of Delivery: Proceed regardless of hold time per Plyssa &c.	6				\rightarrow									
mments: Samples not preserved, not field fittered. Sc. Method of Delivery: Proceed regardless of hold time per Prussa &c.	7	-			_	1								
mments: Samples not preserved, not field filtered. Sc. Method of Delivery. Proceed regardless of hold time per Plyssa &c.	8		1		_	1								
Proceed regardless of hold time per Plyssa &c. Method of Delivery.	9					`								
Proceed regardless of hold time per Plyssa &c. Method of Delivery.	10													
Proceed regardless of hold time per Aussa &c. Method of Delivery:		100			, ,									
nowaries By (Sign):	Proceed regardless of ho	Ved Lal +	7	- fi-	eld	filts	rec	1. X	Ċ.	Method of I	Delivery:			
Received by Driver Depot Received at lob.	Received by Drive	er/Depot:		Received	at Lab:	4550	X	. Von	East Day					
Received at Lab: SUNCEPCIN DON MAT Received By: Outsided		de		Sin	NER	TRN	DOK N	Ar Ven		d CI				
Time 1 a 1/ 100 i localitato de la local	elinquished By (Print): Joseph Woodhouse Date/Time: Onto 103/2		61/2	Date/Tim	e: AUG	16 9016	03.10	Date	Time: A	0 16/1	DACT C	10		
Time: Aug 16/2016 1030 Temperature: 8.8°C Temperature: 8.8°C pH Verified [VB: RS	Temperature: 8	1.50		Temperat	ure: 💆	8 1c		pH '	Verified [V	R. RS	V ().()	1()		

Appendix C5

Certificate Of Analysis – AGAT Laboratories Ltd., Nov. 2, 2016; Order #16Z124588

CLIENT NAME: GOLDER ASSOCIATES LTD 1931 ROBERTSON ROAD OTTAWA, ON K2H5B7 (613) 592-9600

ATTENTION TO: Alyssa Troke

PROJECT: 1530908 (2000)

AGAT WORK ORDER: 16Z124588

SOIL ANALYSIS REVIEWED BY: Mike Muneswar, BSc (Chem), Senior Inorganic Analyst

TRACE ORGANICS REVIEWED BY: Oksana Gushyla, Trace Organics Lab Supervisor

WATER ANALYSIS REVIEWED BY: Mike Muneswar, BSc (Chem), Senior Inorganic Analyst

DATE REPORTED: Nov 02, 2016

PAGES (INCLUDING COVER): 9

VERSION*: 2

Should you require any information regarding this analysis please contact your client services representative at (905) 712-5100

ı	<u>*NOTES</u>
İ	VERSION 2:Revised Report Sent on Nov 2, 2016

All samples will be disposed of within 30 days following analysis. Please contact the lab if you require additional sample storage time.

AGAT Laboratories (V2)

Page 1 of 9

SAMPLING SITE: DEW Line

Certificate of Analysis

AGAT WORK ORDER: 16Z124588

PROJECT: 1530908 (2000)

ATTENTION TO: Alyssa Troke

SAMPLED BY:

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CCME	Metals	Scan	(Soil)	(incl.	Ha)

						()()
DATE RECEIVED: 2016-08-09						DATE REPORTED: 2016-11-02
	5	SAMPLE DESCRIP	PTION:	F4-13a	MW11-1B	
		SAMPLE ⁻	TYPE:	Soil	Soil	
		DATE SAME	PLED:	2016-08-03	2016-08-03	
Parameter	Unit	G/S R	RDL	7761612	7761613	
Arsenic	mg/kg		1	2	57	
Cadmium	mg/kg	(0.5	<0.5	<0.5	
Cobalt	mg/kg	(0.5	2.7	14.4	
Chromium	mg/kg		1	17	81	
Copper	mg/kg		1	10	92	
Lead	mg/kg		1	4	11	
Mercury	mg/kg	0).10	<0.10	<0.10	
Nickel	mg/kg		1	8	66	
Zinc	mg/kg		1	19	105	

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard

7761612 Revised Nov 02, 2016.

Revision: This report replaces the Certificate of Analysis issued on Aug 18, 2016. It has been updated to correct all values previously reported for sample F4-13a (7761612).

Certified By:

Make Muneman

SAMPLING SITE: DEW Line

Certificate of Analysis

AGAT WORK ORDER: 16Z124588

PROJECT: 1530908 (2000)

ATTENTION TO: Alyssa Troke

SAMPLED BY:

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

				PCBs (Total)) - Soil
DATE RECEIVED: 2016-08-09					DATE REPORTED: 2016-11-02
		SAMPLE DESCRIPTION:	F4-13a	MW11-1B	
		SAMPLE TYPE:	Soil	Soil	
		DATE SAMPLED:	2016-08-03	2016-08-03	
Parameter	Unit	G/S RDL	7761612	7761613	
PCBs	mg/kg	0.05	< 0.05	< 0.05	
Moisture Content	%	0.05	13.7	3.5	
Surrogate	Unit	Acceptable Limits			
Decachlorobiphenyl	%	60-130	112	108	

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard

7761612-7761613 Results are based on the dry weight of soil extracted.

SAMPLING SITE: DEW Line

Certificate of Analysis

AGAT WORK ORDER: 16Z124588

PROJECT: 1530908 (2000)

ATTENTION TO: Alyssa Troke

SAMPLED BY:

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

Petroleum Hydrocarbons F1 - F4 (C6 - C50) in Soil

					004.500	(65 655) 65
DATE RECEIVED: 2016-08-09						DATE REPORTED: 2016-11-02
		SAMPLE DESC	RIPTION:	F4-13a	MW11-1B	
		SAMP	LE TYPE:	Soil	Soil	
		DATE S	AMPLED:	2016-08-03	2016-08-03	
Parameter	Unit	G/S	RDL	7761612	7761613	
C6 - C10 (F1)	mg/kg		5	<5	<5	
C>10 - C16 (F2)	mg/kg		10	<10	<10	
C>16 - C34 (F3)	mg/kg		50	<50	<50	
C>34 - C50 (F4)	mg/kg		50	<50	<50	
Gravimetric Heavy Hydrocarbons	mg/kg		50	NA	NA	
Moisture Content	%		0.1	13.7	3.5	

RDL - Reported Detection Limit; G / S - Guideline / Standard Comments:

7761612-7761613 Results are based on sample dry weight.

The C6-C10 fraction is calculated using toluene response factor.

The C10 - C16, C16 - C34, and C34 - C50 fractions are calculated using the average response factor for n-C10, n-C16, and n-C34.

Gravimetric Heavy Hydrocarbons are not included in the Total C16-C50 and are only determined if the chromatogram of the C34 - C50 hydrocarbons indicates that hydrocarbons >C50 are present.

The chromatogram has returned to baseline by the retention time of nC50.

Total C6 - C50 results are corrected for BTEX contributions.

This method complies with the Reference Method for the CWS PHC and is validated for use in the laboratory.

nC6 and nC10 response factors are within 30% of Toluene response factor.

nC10, nC16 and nC34 response factors are within 10% of their average.

C50 response factor is within 70% of nC10 + nC16 + nC34 average.

Linearity is within 15%.

Extraction and holding times were met for this sample.

Fractions 1-4 are quantified with the contribution of PAHs. Under Ontario Regulation 153, results are considered valid without determining the PAH contribution if not requested by the client.

Quality Control Data is available upon request.

The soil sample was prepared in the lab using the Methanol extraction technique. The sample was not field preserved with methanol and an Encore was not provided for analysis.

Quality Assurance

CLIENT NAME: GOLDER ASSOCIATES LTD

AGAT WORK ORDER: 16Z124588 PROJECT: 1530908 (2000) ATTENTION TO: Alyssa Troke

SAMPLING SITE: DEW Line SAMPLED BY:

				Soi	l Ana	alysis	5										
RPT Date: Nov 02, 2016			С	UPLICATI	E		REFEREN	ICE MA	TERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPI	KE		
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured Value			Limito		Recovery	منا أ	ptable nits	Recovery	1 :	ptable nits
		Iu	·	·			value	Lower	Upper		Lower	Upper	,		Upper		
CCME Metals Scan (Soil) (incl. Ho	3)																
Arsenic	7760820		2	2	NA	< 1	103%	70%	130%	99%	80%	120%	95%	70%	130%		
Cadmium	7760820		<0.5	<0.5	NA	< 0.5	109%	70%	130%	104%	80%	120%	97%	70%	130%		
Cobalt	7760820		4.5	4.4	2.2%	< 0.5	105%	70%	130%	113%	80%	120%	100%	70%	130%		
Chromium	7760820		11	11	0.0%	< 1	92%	70%	130%	112%	80%	120%	110%	70%	130%		
Copper	7760820		9	10	10.5%	< 1	95%	70%	130%	109%	80%	120%	97%	70%	130%		
Lead	7760820		4	4	NA	< 1	118%	70%	130%	93%	80%	120%	87%	70%	130%		
Mercury	7760820		<0.10	<0.10	NA	< 0.10	99%	70%	130%	90%	80%	120%	84%	70%	130%		
Nickel	7760820		8	9	4.7%	< 1	105%	70%	130%	110%	80%	120%	98%	70%	130%		
Zinc	7760820		22	23	NA	< 1	97%	70%	130%	103%	80%	120%	96%	70%	130%		

Comments: NA signifies Not Applicable.

Duplicate Qualifier: As the measured result approaches the RL, the uncertainty associated with the value increases dramatically, thus duplicate acceptance limits apply only where the average of the two duplicates is greater than five times the RL.

Quality Assurance

CLIENT NAME: GOLDER ASSOCIATES LTD

AGAT WORK ORDER: 16Z124588 PROJECT: 1530908 (2000) ATTENTION TO: Alyssa Troke

SAMPLING SITE: DEW Line SAMPLED BY:

			Trac	e Orç	ganio	cs Ar	nalysi	is							
RPT Date: Nov 02, 2016			С	UPLICATI	.		REFEREN	NCE MA	TERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPI	KE
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured Value	Acceptable Limits		Recovery	منا ا	ptable nits	Recovery	1 1 11	ptable mits
		lu lu		-			value	Lower	Upper		Lower U			Lower	Upper
Petroleum Hydrocarbons F1 - F4	(C6 - C50) i	n Soil													
C6 - C10 (F1)	7761612		< 5	< 5	NA	< 5	76%	60%	130%	89%	60%	130%	87%	60%	130%
C>10 - C16 (F2)	7760850		< 10	< 10	NA	< 10	107%	70%	130%	91%	70%	130%	99%	70%	130%
C>16 - C34 (F3)	7760850		< 50	< 50	NA	< 50	104%	70%	130%	94%	70%	130%	96%	70%	130%
C>34 - C50 (F4)	7760850		< 50	< 50	NA	< 50	104%	70%	130%	101%	70%	130%	88%	70%	130%
PCBs (Total) - Water															
PCBs		TW	<0.05	<0.05	0.0%	<0.05	115%	60%	140%	104%	60%	140%	110%	60%	140%
PCBs (Total) - Soil															
PCBs	7762942		< 0.05	< 0.05	0.0%	< 0.05	111%	60%	140%	111%	60%	140%	113%	60%	140%
Petroleum Hydrocarbon F1 - F4 i	n Water														
C6 - C10 (F1)	7759370		< 25	< 25	NA	< 25	97%	70%	130%	109%	70%	130%	74%	70%	130%
C>10 - C16 (F2)		TW	< 100	< 100	NA	< 100	104%	70%	130%	79%	70%	130%	72%	70%	130%
C>16 - C34 (F3)		TW	< 100	< 100	NA	< 100	102%	70%	130%	83%	70%	130%	93%	70%	130%
C>34 - C50 (F4)		TW	< 100	< 100	NA	< 100	83%	70%	130%	88%	70%	130%	101%	70%	130%

Comments: Tap water analysis has been performed as QC sample testing for duplicate and matrix spike due to insufficient sample volume. When the average of the sample and duplicate results is less than 5x the RDL, the Relative Percent Difference (RPD) will be indicated as Not Applicable (NA).

Quality Assurance

CLIENT NAME: GOLDER ASSOCIATES LTD

AGAT WORK ORDER: 16Z124588 PROJECT: 1530908 (2000) ATTENTION TO: Alyssa Troke

SAMPLING SITE: DEW Line SAMPLED BY:

	Water Analysis																				
RPT Date: Nov 02, 2016	T Date: Nov 02, 2016 DUPLICATE						REFEREN	ICE MA	TERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPI	KE						
PARAMETER	Batch	Sample Id	Dup #1	Dup #2	RPD	Method Blank	Measured Value	Measured Limits		Acceptable Limits		Limito		Limito		Recovery	منا ا	ptable nits	Recovery	1 1 1 1	ptable nits
		Id	·	·			value	Lower	Upper		l .	Upper		Lower	Upper						
CCME Metals - (Water) - (incl. Hg)																					
Arsenic	7761523		< 0.001	< 0.001	NA	< 0.001	97%	90%	110%	97%	90%	110%	104%	70%	130%						
Cadmium	7761523		< 0.0001	< 0.0001	NA	< 0.0001	100%	90%	110%	103%	90%	110%	107%	70%	130%						
Chromium	7761523		< 0.001	< 0.001	NA	< 0.001	101%	90%	110%	100%	90%	110%	104%	70%	130%						
Cobalt	7761523		0.0012	0.0013	NA	< 0.0005	103%	90%	110%	103%	90%	110%	106%	70%	130%						
Copper	7761523		0.070	0.073	4.2%	< 0.005	102%	90%	110%	100%	90%	110%	101%	70%	130%						
Lead	7761523		0.0293	0.0300	2.4%	< 0.0001	96%	90%	110%	96%	90%	110%	97%	70%	130%						
Mercury	7761523		<0.0001	<0.0001	NA	< 0.0001	103%	90%	110%	101%	90%	110%	105%	80%	120%						
Nickel	7761523		< 0.001	< 0.001	NA	< 0.001	101%	90%	110%	102%	90%	110%	106%	70%	130%						
Zinc	7761523		0.087	0.100	13.9%	< 0.005	100%	90%	110%	101%	90%	110%	106%	70%	130%						

Comments: NA signifies Not Applicable.

Duplicate Qualifier: As the measured result approaches the RL, the uncertainty associated with the value increases dramatically, thus duplicate acceptance limits apply only where the average of the two duplicates is greater than five times the RL.

Certified By:

Mile Munemen

Method Summary

CLIENT NAME: GOLDER ASSOCIATES LTD

AGAT WORK ORDER: 16Z124588
PROJECT: 1530908 (2000)

ATTENTION TO: Alyssa Troke

SAMPLING SITE: DEW Line SAMPLED BY:

SAMPLING SITE: DEW Line		SAMPLED BY:						
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE					
Soil Analysis	•							
Arsenic	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS					
Cadmium	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS					
Cobalt	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS					
Chromium	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS					
Copper	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS					
Lead	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS					
Mercury	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS					
Nickel	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS					
Zinc	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS					
Trace Organics Analysis								
PCBs	ORG-91-5113	EPA SW-846 3541 & 8082	GC/ECD					
Moisture Content		MOE E3139	BALANCE					
Decachlorobiphenyl	ORG-91-5113	EPA SW-846 3541 & 8082	GC/ECD					
PCBs	ORG-91-5112	EPA SW-846 3510 & 8082	GC/ECD					
Initial Sample Volume			GC/FID					
Decachlorobiphenyl	ORG-91-5112	EPA SW-846 3510 & 8082	GC/ECD					
C6 - C10 (F1)	VOL-91-5010	MOE PHC-E3421	(P&T)GC/FID					
C>10 - C16 (F2)	VOL-91-5010	MOE PHC-E3421	GC/FID					
C>16 - C34 (F3)	VOL-91-5010	MOE PHC-E3421	GC/FID					
C>34 - C50 (F4)	VOL -91- 5010	MOE PHC-E3421	GC/FID					
Gravimetric Heavy Hydrocarbons	VOL-91-5010	MOE PHC-E3421	BALANCE					
C6 - C10 (F1)	VOL-91-5009	CCME Tier 1 Method	P & T GC/FID					
C>10 - C16 (F2)	VOL-91-5009	CCME Tier 1 Method, EPA SW846 8015	GC / FID					
C>16 - C34 (F3)	VOL-91-5009	CCME Tier 1 Method, EPA SW846 8015	GC / FID					
C>34 - C50 (F4)	VOL-91-5009	CCME Tier 1 Method, EPA SW846 8015	GC / FID					
Gravimetric Heavy Hydrocarbons	VOL - 5012	CCME Tier 1 Method	GRAVIMETRIC ANALYSIS					
Moisture Content	VOL-91-5009	CCME Tier 1 Method	Balance					
Water Analysis								
Arsenic	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS					
Cadmium	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS					
Chromium	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS					
Cobalt	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS					
Copper	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS					
Lead	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS					
Mercury	MET-93-6100	EPA SW-846 7470 & 245.1	CVAAS					
Nickel	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS					
Zinc	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS					

SR12

5835 Coopers Avenue

Laboratory Use Only
Work Order #: 67 74588

Mississauga, Ontario L4Z 1Y2 Ph: 905.712.5100 Fax: 905.712.5122

Report Information: Company: Contact: Contact	Associ				Regulatory Requ	irements:	□ No	o Reg	ulat	ory Rec	uirem		(Custod Notes:	y Sea	I Intac	ct: CC	□Ye	28		,9]No	5.3 DN/F
Address: Phone: Reports to be sent to: 1. Email: 2. Email:	obertson 1,0N i 9600	CZH 56	37		Regulation 153/04 Table	□Sanitary □Storm Region		Regulation 558 CCME Prov. Water Quality Objectives (PWQO) Other				Regular TAT Rush TAT (Rush Surchar 3 Business Days				ime						
Project Information: Project: DEW Line Site Location: Sampled By:	e 2016	-			Is this submission Record of Site Co		- (icat	uldelin e of An				,	PI	ease į	orovia	e prior	notific	cation	for rush	
AGAT Quote #: Please note: If quota Invoice Information: Company: Contact: Address: Email:	ition number is not pice			es No 🗆	Sample Matrix Legend B Biota GW Ground Water O Oil P Paint S Soil SD Sediment SW Surface Water	Field Filtered - Metals, Hg, CrVI (Please Circle)	and Inorganics	Metal Scan Hvdride Forming Metals	Client Custom Metals	□ CN □ NO ₂ /NO ₂ H □ SAR	SS: CTP CNH, CTKN CAPING CONO, CNO, NO.	□ voc □втех □тнм	CCME Fractions 1 to 4		henols		Organochlorine Pesticides	TCLP Metals/Inorganics Sewer Use	OR 69566	-	total metals	total Piers
Sample Identification	Date Sampled	Time Sampled	# of Containers	Sample Matrix	Comments/ Special Instructions	Y/N	Metals	Metal Scan Hydride For	Client	ORPs:	Nutrients:	Volatiles:	CCME	PAHs	Chlorophenols	PCBs	Organo	TCLP Meta	B			
MW 11-1 DUP	Any 3		5 2	W S		N		d	-				18	-	550				V			
MW11-1B	Ay3		2	S		_		14					A						V			
						Test N																
						.mps1.61																
Samples Relinquished By (Print Name and Sign): Samples Relinquished By (Print Name and Sign): Samples Relinquished By (Print Name and Nign):	1 11	nolat	Date Avg & Date	Time 19	Samples Received By (P) Samples Received By (P)	rint Name and Supp.	u	M	M			Pate Pate	8/1	0	ime	h	10	Nº:	Page		_ of _	54

Appendix C6

Certificate Of Analysis – AGAT Laboratories Ltd., Nov. 2, 2016; Order #16Z124588

CLIENT NAME: GOLDER ASSOCIATES LTD 1931 ROBERTSON ROAD OTTAWA, ON K2H5B7 (613) 592-9600

ATTENTION TO: Alyssa Troke

PROJECT: 1530908 (2000)

AGAT WORK ORDER: 16Z124588

SOIL ANALYSIS REVIEWED BY: Mike Muneswar, BSc (Chem), Senior Inorganic Analyst

TRACE ORGANICS REVIEWED BY: Oksana Gushyla, Trace Organics Lab Supervisor

WATER ANALYSIS REVIEWED BY: Mike Muneswar, BSc (Chem), Senior Inorganic Analyst

DATE REPORTED: Nov 02, 2016

PAGES (INCLUDING COVER): 9

VERSION*: 1

Should you require any information regarding this analysis please contact your client services representative at (905) 712-5100

*NOTES	

All samples will be disposed of within 30 days following analysis. Please contact the lab if you require additional sample storage time.

AGAT Laboratories (V1)

Page 1 of 9

Member of: Association of Professional Engineers, Geologists and Geophysicists of Alberta (APEGGA)

Western Enviro-Agricultural Laboratory Association (WEALA) Environmental Services Association of Alberta (ESAA) AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation.

Certificate of Analysis

AGAT WORK ORDER: 16Z124588

PROJECT: 1530908 (2000)

ATTENTION TO: Alyssa Troke

SAMPLED BY:

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: GOLDER ASSOCIATES LTD

SAMPLING SITE: DEW Line

				PCBs (Total) - Water
DATE RECEIVED: 2016-08-09				DATE REPORTED: 2016-11-02
		SAMPLE DESCRIPTION:	MW11-1 Dup	
		SAMPLE TYPE:	Water	
		DATE SAMPLED:	2016-08-03	
Parameter	Unit	G/S RDL	7761611	
PCBs	mg/L	0.00005	< 0.00005	
Initial Sample Volume			0.70	
Surrogate	Unit	Acceptable Limits		
Decachlorobiphenyl	%	60-130	78	

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard

SAMPLING SITE: DEW Line

Gravimetric Heavy Hydrocarbons

Certificate of Analysis

AGAT WORK ORDER: 16Z124588

PROJECT: 1530908 (2000)

ATTENTION TO: Alyssa Troke

SAMPLED BY:

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

Petroleum Hydrocarbon F1 - F4 in Water

DATE RECEIVED: 2016-08-09				DATE REPORTED: 2016-11-02
	5	SAMPLE DESCRIPT	ΓΙΟΝ: MW11-1 Dup	
		SAMPLE T	YPE: Water	
		DATE SAMP	PLED: 2016-08-03	
Parameter	Unit	G/S RI	DL 7761611	
C6 - C10 (F1)	mg/L	0.0)25 <0.025	
C>10 - C16 (F2)	mg/L	0	.1 <0.1	
C>16 - C34 (F3)	mg/L	0	.1 <0.1	
C>34 - C50 (F4)	mg/L	0	.1 <0.1	

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard

7761611 The C6-C10 fraction is calculated using Toluene response factor.

The C10 - C16, C16 - C34, and C34 - C50 fractions are calculated using the average response factor for n-C10, n-C16, and nC34.

NA

Gravimetric Heavy Hydrocarbons are not included in the Total C16 - C50 and are only determined if the chromatogram of the C34 - C50 Hydrocarbons indicated that hydrocarbons > C50 are present.

The chromatogram has returned to baseline by the retention time of nC50.

Total C6-C50 results are corrected for BTEX contributions.

mg/L

This method complies with the Reference Method for the CWS PHC and is validated for use in the laboratory.

0.5

nC6 and nC10 response factors are within 30% of Toluene response factor. nC10, nC16 and nC34 response factors are within 10% of their average.

C50 response factor is within 70% of nC10 + nC16 nC34 average.

Linearity is within 15%.

Extraction and holding times were met for this sample.

Fractions 1-4 are quantified with the contribution of PAHs. Under Ontario Regulation 153/04, results are considered valid without determining the PAH contribution if not requested by the client.

NA = Not Applicable

Certified By:

Jung

SAMPLING SITE: DEW Line

Zinc

Certificate of Analysis

AGAT WORK ORDER: 16Z124588

PROJECT: 1530908 (2000)

ATTENTION TO: Alyssa Troke

SAMPLED BY:

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CCME Metals - (Water) - (incl. Hg)

				COIVIL IVI	Stais - (Water) - (mer. rig)
DATE RECEIVED: 2016-08-09					DATE REPORTED: 2016-11-02
		SAMPLE DESC	CRIPTION:	MW11-1 Dup	
		SAMF	LE TYPE:	Water	
		DATE S	AMPLED:	2016-08-03	
Parameter	Unit	G/S	RDL	7761611	
Arsenic	mg/L		0.001	<0.001	
Cadmium	mg/L		0.0001	< 0.0001	
Chromium	mg/L		0.001	<0.001	
Cobalt	mg/L		0.0005	0.0015	
Copper	mg/L		0.005	< 0.005	
Lead	mg/L		0.0001	< 0.0001	
Mercury	mg/L		0.0001	< 0.0001	
Nickel	mg/L		0.001	0.010	

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard

mg/L

0.005

<0.005

Certified By:

Mile Muneum

Quality Assurance

CLIENT NAME: GOLDER ASSOCIATES LTD

AGAT WORK ORDER: 16Z124588 PROJECT: 1530908 (2000) ATTENTION TO: Alyssa Troke

SAMPLING SITE: DEW Line SAMPLED BY:

				Soi	l Ana	alysis	3										
RPT Date: Nov 02, 2016			DUPLICATE				REFERENCE MATERIAL			METHOD	BLANK	SPIKE	MAT	KE			
PARAMETER	Batch	Sample Id	Dup #1	Dup #2	RPD	Method Blank	Measured	Acceptable Limits Lower Upper		l Limite		Recovery	Lin	ptable nits	Recovery	1 1 1 1 1	ptable nits
		Iū	·	·			value			·	Lower	Upper		Lower	Upper		
CCME Metals Scan (Soil) (incl. Ho	j)																
Arsenic	7760820		2	2	NA	< 1	103%	70%	130%	99%	80%	120%	95%	70%	130%		
Cadmium	7760820		<0.5	<0.5	NA	< 0.5	109%	70%	130%	104%	80%	120%	97%	70%	130%		
Cobalt	7760820		4.5	4.4	2.2%	< 0.5	105%	70%	130%	113%	80%	120%	100%	70%	130%		
Chromium	7760820		11	11	0.0%	< 1	92%	70%	130%	112%	80%	120%	110%	70%	130%		
Copper	7760820		9	10	10.5%	< 1	95%	70%	130%	109%	80%	120%	97%	70%	130%		
Lead	7760820		4	4	NA	< 1	118%	70%	130%	93%	80%	120%	87%	70%	130%		
Mercury	7760820		<0.10	<0.10	NA	< 0.10	99%	70%	130%	90%	80%	120%	84%	70%	130%		
Nickel	7760820		8	9	4.7%	< 1	105%	70%	130%	110%	80%	120%	98%	70%	130%		
Zinc	7760820		22	23	NA	< 1	97%	70%	130%	103%	80%	120%	96%	70%	130%		

Comments: NA signifies Not Applicable.

Duplicate Qualifier: As the measured result approaches the RL, the uncertainty associated with the value increases dramatically, thus duplicate acceptance limits apply only where the average of the two duplicates is greater than five times the RL.

Quality Assurance

CLIENT NAME: GOLDER ASSOCIATES LTD

PROJECT: 1530908 (2000) SAMPLING SITE:DEW Line AGAT WORK ORDER: 16Z124588 ATTENTION TO: Alyssa Troke

SAMPLED BY:

			Trac	e Org	ganio	cs Ar	alys	is							
RPT Date: Nov 02, 2016			С	UPLICAT	<u></u> Е		REFEREN	NCE MA	TERIAL	METHOD	BLANK	SPIKE	MATRIX SPIKE		
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured Value	Acceptable Limits		Recovery	منا ا	ptable nits	Recovery	1 1 1 1	ptable
		lu lu	·				value	Lower	Upper		Lower	Upper		Lower	Upper
Petroleum Hydrocarbons F1 - F4	(C6 - C50) i	n Soil													
C6 - C10 (F1)	7761612		< 5	< 5	NA	< 5	76%	60%	130%	89%	60%	130%	87%	60%	130%
C>10 - C16 (F2)	7760850		< 10	< 10	NA	< 10	107%	70%	130%	91%	70%	130%	99%	70%	130%
C>16 - C34 (F3)	7760850		< 50	< 50	NA	< 50	104%	70%	130%	94%	70%	130%	96%	70%	130%
C>34 - C50 (F4)	7760850		< 50	< 50	NA	< 50	104%	70%	130%	101%	70%	130%	88%	70%	130%
PCBs (Total) - Water															
PCBs		TW	<0.05	<0.05	0.0%	<0.05	115%	60%	140%	104%	60%	140%	110%	60%	140%
PCBs (Total) - Soil															
PCBs	7762942		< 0.05	< 0.05	0.0%	< 0.05	111%	60%	140%	111%	60%	140%	113%	60%	140%
Petroleum Hydrocarbon F1 - F4 ir	n Water														
C6 - C10 (F1)	7759370		< 25	< 25	NA	< 25	97%	70%	130%	109%	70%	130%	74%	70%	130%
C>10 - C16 (F2)		TW	< 100	< 100	NA	< 100	104%	70%	130%	79%	70%	130%	72%	70%	130%
C>16 - C34 (F3)		TW	< 100	< 100	NA	< 100	102%	70%	130%	83%	70%	130%	93%	70%	130%
C>34 - C50 (F4)		TW	< 100	< 100	NA	< 100	83%	70%	130%	88%	70%	130%	101%	70%	130%

Comments: Tap water analysis has been performed as QC sample testing for duplicate and matrix spike due to insufficient sample volume. When the average of the sample and duplicate results is less than 5x the RDL, the Relative Percent Difference (RPD) will be indicated as Not Applicable (NA).

Certified By:

Juz

Quality Assurance

CLIENT NAME: GOLDER ASSOCIATES LTD

AGAT WORK ORDER: 16Z124588 PROJECT: 1530908 (2000) ATTENTION TO: Alyssa Troke

SAMPLING SITE: DEW Line SAMPLED BY:

Of this Elito of Elbert Elito			5 EEB B 1.												
				Wate	er An	alysi	S								
RPT Date: Nov 02, 2016		DUPLICATE				REFERENCE MATERIAL			METHOD	BLANK	SPIKE	MATRIX SPIKE		KE	
PARAMETER	Batch	Sample Id	Dup #1	Dup #2	RPD	Method Blank	Measured Value	Acceptable Limits		Recovery	Lie	ptable nits	Recovery	Lin	ptable nits
		lu lu					value	Lower Upper			Lower	Upper		Lower	Upper
CCME Metals - (Water) - (incl. I	Hg)														
Arsenic	7761523		< 0.001	< 0.001	NA	< 0.001	97%	90%	110%	97%	90%	110%	104%	70%	130%
Cadmium	7761523		< 0.0001	< 0.0001	NA	< 0.0001	100%	90%	110%	103%	90%	110%	107%	70%	130%
Chromium	7761523		< 0.001	< 0.001	NA	< 0.001	101%	90%	110%	100%	90%	110%	104%	70%	130%
Cobalt	7761523		0.0012	0.0013	NA	< 0.0005	103%	90%	110%	103%	90%	110%	106%	70%	130%
Copper	7761523		0.070	0.073	4.2%	< 0.005	102%	90%	110%	100%	90%	110%	101%	70%	130%
Lead	7761523		0.0293	0.0300	2.4%	< 0.0001	96%	90%	110%	96%	90%	110%	97%	70%	130%
Mercury	7761523		<0.0001	<0.0001	NA	< 0.0001	103%	90%	110%	101%	90%	110%	105%	80%	120%
Nickel	7761523		< 0.001	< 0.001	NA	< 0.001	101%	90%	110%	102%	90%	110%	106%	70%	130%
Zinc	7761523		0.087	0.100	13.9%	< 0.005	100%	90%	110%	101%	90%	110%	106%	70%	130%

Comments: NA signifies Not Applicable.

Duplicate Qualifier: As the measured result approaches the RL, the uncertainty associated with the value increases dramatically, thus duplicate acceptance limits apply only where the average of the two duplicates is greater than five times the RL.

Method Summary

CLIENT NAME: GOLDER ASSOCIATES LTD

AGAT WORK ORDER: 16Z124588
PROJECT: 1530908 (2000)

ATTENTION TO: Alyssa Troke

SAMPLING SITE:DEW Line SAMPLED BY:

SAMPLING SITE: DEW LINE		SAMPLED BY:	
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Soil Analysis		-	•
Arsenic	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Cadmium	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Cobalt	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Chromium	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Copper	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Lead	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Mercury	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Nickel	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Zinc	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Trace Organics Analysis			
PCBs	ORG-91-5113	EPA SW-846 3541 & 8082	GC/ECD
Moisture Content		MOE E3139	BALANCE
Decachlorobiphenyl	ORG-91-5113	EPA SW-846 3541 & 8082	GC/ECD
PCBs	ORG-91-5112	EPA SW-846 3510 & 8082	GC/ECD
Initial Sample Volume			GC/FID
Decachlorobiphenyl	ORG-91-5112	EPA SW-846 3510 & 8082	GC/ECD
C6 - C10 (F1)	VOL-91-5010	MOE PHC-E3421	(P&T)GC/FID
C>10 - C16 (F2)	VOL-91-5010	MOE PHC-E3421	GC/FID
C>16 - C34 (F3)	VOL-91-5010	MOE PHC-E3421	GC/FID
C>34 - C50 (F4)	VOL -91- 5010	MOE PHC-E3421	GC/FID
Gravimetric Heavy Hydrocarbons	VOL-91-5010	MOE PHC-E3421	BALANCE
C6 - C10 (F1)	VOL-91-5009	CCME Tier 1 Method	P & T GC/FID
C>10 - C16 (F2)	VOL-91-5009	CCME Tier 1 Method, EPA SW846 8015	GC / FID
C>16 - C34 (F3)	VOL-91-5009	CCME Tier 1 Method, EPA SW846 8015	GC / FID
C>34 - C50 (F4)	VOL-91-5009	CCME Tier 1 Method, EPA SW846 8015	GC / FID
Gravimetric Heavy Hydrocarbons	VOL - 5012	CCME Tier 1 Method	GRAVIMETRIC ANALYSIS
Moisture Content	VOL-91-5009	CCME Tier 1 Method	Balance
Water Analysis			
Arsenic	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS
Cadmium	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS
Chromium	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS
Cobalt	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS
Copper	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS
1			100.110
Lead	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS
	MET-93-6103 MET-93-6100	EPA SW-846 6020A & 200.8 EPA SW-846 7470 & 245.1	ICP-MS CVAAS
Lead Mercury Nickel			

SR12

5835 Coopers Avenue

Laboratory Use Only
Work Order #: 67 74588

Mississauga, Ontario L4Z 1Y2 Ph: 905.712.5100 Fax: 905.712.5122

Report Information: Company: Contact: C	Associ				Regulatory Requ	irements:	□ No	o Reg	ulat	ory Rec	uirem		Custody Seal Intact: Ves No No									
Contact: Address: 1931 Robertson Road Ottawa, ON KZH5BT William Son Road Ottawa, ON KZH5BT Li3 592 9600 Fax: Reports to be sent to: 1. Email: 2. Email:					Regulation 153/04 Table	□Sanitary □Storm Region		Sanitary Storm Prov Obje Indicate One			Prov. Water Quality Objectives (PWQO)			Turnaround Time (TAT) Required: Regular TAT 5 to 7 Business Days Rush TAT (Rush Surcharges Apply) 3 Business Days Days Days Day OR Date Required (Rush Surcharges May Apply):								
Project Information: Project: DEW Line Site Location: Sampled By:	e 2016	-			Is this submission Record of Site Co		- (icat	uldelin e of An				,	PI	ease į	orovia	e prior	notific	cation	for rush	
AGAT Quote #: Please note: If quota Invoice Information: Company: Contact: Address: Email:	ition number is not pice			es No 🗆	Sample Matrix Legend B Biota GW Ground Water O Oil P Paint S Soil SD Sediment SW Surface Water	Field Filtered - Metals, Hg, CrVI (Please Circle)	and Inorganics	Metal Scan Hvdride Forming Metals	Client Custom Metals	□ CN □ NO ₂ /NO ₂ H □ SAR	SS: CTP CNH, CTKN CAPING CONO, CNO, NO.	□ voc □втех □тнм	CCME Fractions 1 to 4		henols		Organochlorine Pesticides	TCLP Metals/Inorganics Sewer Use	OR 69566	-	total metals	total Piers
Sample Identification	Date Sampled	Time Sampled	# of Containers	Sample Matrix	Comments/ Special Instructions	Y/N	Metals	Metal Scan Hydride For	Client	ORPs:	Nutrients:	Volatiles:	CCME	PAHs	Chlorophenols	PCBs	Organo	TCLP Meta	B			
MW 11-1 DUP	Any 3		5 2	W S		N		d	-				18	-	550				V			
MW11-1B	Ay3		2	S		_		14					A						V			
						Test N																
						.mps1.61																
Samples Relinquished By (Print Name and Sign): Samples Relinquished By (Print Name and Sign): Samples Relinquished By (Print Name and Nign):	1 11	nolat	Date Avg & Date	Time 19	Samples Received By (P) Samples Received By (P)	rint Name and Supp.	u	M	M			Pate Pate	8/1	0	ime	h	10	Nº:	Page		_ of _	54

Appendix C7

Certificate Of Analysis – AGAT Laboratories Ltd., Nov. 2, 2016; Order #16Z126821

CLIENT NAME: GOLDER ASSOCIATES LTD 1931 ROBERTSON ROAD OTTAWA, ON K2H5B7 (613) 592-9600

ATTENTION TO: Alyssa Troke

PROJECT: 1530908-2000

AGAT WORK ORDER: 16Z126821

SOIL ANALYSIS REVIEWED BY: Mike Muneswar, BSc (Chem), Senior Inorganic Analyst

TRACE ORGANICS REVIEWED BY: Oksana Gushyla, Trace Organics Lab Supervisor

DATE REPORTED: Nov 02, 2016

PAGES (INCLUDING COVER): 8

VERSION*: 2

Should you require any information regarding this analysis please contact your client services representative at (905) 712-5100

*NOTES
VERSION 2:Revised Report Sent on Nov 2, 2016

All samples will be disposed of within 30 days following analysis. Please contact the lab if you require additional sample storage time.

AGAT Laboratories (V2)

Page 1 of 8

SAMPLING SITE: DEW Line

Certificate of Analysis

AGAT WORK ORDER: 16Z126821

PROJECT: 1530908-2000

ATTENTION TO: Alyssa Troke

SAMPLED BY:

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CCME Metals Scan (Soil) (incl. Hg)

				CCIVIE	vietais Scari (Son) (mci. rig)
DATE RECEIVED: 2016-08-16						DATE REPORTED: 2016-11-02
		SAMPLE DESC	CRIPTION:	F4-28A dup	MW98-3A dup	
		SAME	PLE TYPE:	Soil	Soil	
		DATE S	SAMPLED:	2016-08-04	2016-08-04	
Parameter	Unit	G/S	RDL	7777796	7777801	
Arsenic	mg/kg		1	15	22	
Cadmium	mg/kg		0.5	<0.5	<0.5	
Cobalt	mg/kg		0.5	10.2	5.1	
Chromium	mg/kg		1	61	34	
Copper	mg/kg		1	40	19	
Lead	mg/kg		1	16	6	
Mercury	mg/kg		0.10	<0.10	<0.10	
Nickel	mg/kg		1	31	18	
Zinc	mg/kg		1	72	36	

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard

7777801 Revised Nov 02, 2016.

Revision: This report replaces the Certificate of Analysis issued on Sep 15, 2016. It has been updated to correct Arsenic value previously reported for sample MW98-3A dup (7777801).

Certified By:

Winte Munemin

Certificate of Analysis

AGAT WORK ORDER: 16Z126821

PROJECT: 1530908-2000

ATTENTION TO: Alyssa Troke

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

SAMPLING SITE: DEW Line				SAMPLED BY:							
					PCBs (Total)	al) - Soil					
DATE RECEIVED: 2016-08-16						DATE REPORTED: 2016-11-02					
		SAMPLE DESCRI	IPTION: I	F4-28A dup	MW98-3A dup						
		SAMPLE	TYPE:	Soil	Soil						
		DATE SAM	MPLED:	2016-08-04	2016-08-04						
Parameter	Unit	G/S	RDL	7777796	7777801						
PCBs	mg/kg		0.05	<0.05	<0.05						
Surrogate	Unit	Acceptable L	_imits								
Decachlorobiphenyl	%	60-130		120	112						

RDL - Reported Detection Limit; G / S - Guideline / Standard Comments:

7777796-7777801 Results are based on the dry weight of soil extracted.

SAMPLING SITE: DEW Line

Certificate of Analysis

AGAT WORK ORDER: 16Z126821

PROJECT: 1530908-2000

ATTENTION TO: Alyssa Troke

SAMPLED BY:

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

Petroleum Hydrocarbons F1 - F4 (C6 - C50) in Soil

			1 0110	Tourn Try ar	. 0001001101	1 1 (00 000) 111 0011
DATE RECEIVED: 2016-08-16						DATE REPORTED: 2016-11-02
		SAMPLE DESC	CRIPTION:	F4-28A dup	MW98-3A dup	
		SAMF	PLE TYPE:	Soil	Soil	
		DATE S	SAMPLED:	2016-08-04	2016-08-04	
Parameter	Unit	G/S	RDL	7777796	7777801	
C6 - C10 (F1)	mg/kg		5	<5	<5	
C>10 - C16 (F2)	mg/kg		10	<10	<10	
C>16 - C34 (F3)	mg/kg		50	<50	<50	
C>34 - C50 (F4)	mg/kg		50	<50	<50	
Gravimetric Heavy Hydrocarbons	mg/kg		50	NA	NA	
Moisture Content	%		0.1	4.9	2.8	

RDL - Reported Detection Limit; G / S - Guideline / Standard Comments:

7777796-7777801 Results are based on sample dry weight.

The C6-C10 fraction is calculated using toluene response factor.

The C10 - C16, C16 - C34, and C34 - C50 fractions are calculated using the average response factor for n-C10, n-C16, and n-C34.

Gravimetric Heavy Hydrocarbons are not included in the Total C16-C50 and are only determined if the chromatogram of the C34 - C50 hydrocarbons indicates that hydrocarbons >C50 are present.

The chromatogram has returned to baseline by the retention time of nC50.

Total C6 - C50 results are corrected for BTEX contributions.

This method complies with the Reference Method for the CWS PHC and is validated for use in the laboratory.

nC6 and nC10 response factors are within 30% of Toluene response factor.

nC10, nC16 and nC34 response factors are within 10% of their average.

C50 response factor is within 70% of nC10 + nC16 + nC34 average.

Linearity is within 15%.

Extraction and holding times were met for this sample.

Fractions 1-4 are quantified with the contribution of PAHs. Under Ontario Regulation 153, results are considered valid without determining the PAH contribution if not requested by the client.

Quality Control Data is available upon request.

The soil sample was prepared in the lab using the Methanol extraction technique. The sample was not field preserved with methanol and an Encore was not provided for analysis.

Quality Assurance

CLIENT NAME: GOLDER ASSOCIATES LTD

AGAT WORK ORDER: 16Z126821 PROJECT: 1530908-2000 ATTENTION TO: Alyssa Troke

SAMPLING SITE: DEW Line SAMPLED BY:

Or will Elito of Libert Elito	•						•	J,		• •					
				Soi	l Ana	alysis	6								
RPT Date: Nov 02, 2016			С	UPLICAT	E		REFERENCE MATERIAL			METHOD BLANK SPIKE			MATRIX SPIR		IKE
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured Value		ptable nits	Recovery	1 1 1 1 1	ptable nits	Recovery	1 1 1 1 1	eptable mits
		ld	-				value	Lower	Upper		Lower	Upper		Lower	Upper
CCME Metals Scan (Soil) (incl	. Hg)														
Arsenic	7785299		5	5	0.0%	< 1	108%	70%	130%	97%	80%	120%	101%	70%	130%
Cadmium	7785299		< 0.5	<0.5	NA	< 0.5	100%	70%	130%	109%	80%	120%	105%	70%	130%
Cobalt	7785299		15.1	15.1	0.0%	< 0.5	102%	70%	130%	106%	80%	120%	108%	70%	130%
Chromium	7785299		27	27	1.2%	< 1	88%	70%	130%	102%	80%	120%	107%	70%	130%
Copper	7785299		7	7	2.2%	< 1	97%	70%	130%	105%	80%	120%	104%	70%	130%
Lead	7785299		5	5	NA	< 1	103%	70%	130%	104%	80%	120%	103%	70%	130%
Mercury	7785299		<0.10	<0.10	NA	< 0.10	106%	70%	130%	90%	80%	120%	90%	70%	130%
Nickel	7785299		36	35	3.3%	< 1	101%	70%	130%	106%	80%	120%	106%	70%	130%
Zinc	7785299		67	66	0.6%	< 1	100%	70%	130%	109%	80%	120%	106%	70%	130%

Comments: NA signifies Not Applicable.

Duplicate Qualifier: As the measured result approaches the RL, the uncertainty associated with the value increases dramatically, thus duplicate acceptance limits apply only where the average of the two duplicates is greater than five times the RL.

AGAT WORK ORDER: 16Z126821

Quality Assurance

CLIENT NAME: GOLDER ASSOCIATES LTD

PROJECT: 1530908-2000 ATTENTION TO: Alyssa Troke

SAMPLING SITE: DEW Line SAMPLED BY:

OAWI EINO OITE.DEW EINC								ו וועור וכ		1.					
			Trac	e Or	ganio	cs Ar	alysi	is							
RPT Date: Nov 02, 2016			D	DUPLICATE			REFERENCE MATERIAL			METHOD BLANK SPIKE			MATRIX SPIKE		KE
PARAMETER	Batch	Sample Id	Dup #1	Dup #2	RPD	Method Blank	Measured Value		ptable nits	Recovery	Lin	ptable nits	Recovery	Lin	ptable nits
		Iu		·			value	Lower	Upper		Lower	Upper		Lower	Upper
PCBs (Total) - Soil															
PCBs	7779859		< 0.1	< 0.1	NA	< 0.1	118%	60%	140%	99%	60%	140%	101%	60%	140%
Petroleum Hydrocarbons F1 - F4	(C6 - C50) i	n Soil													
C6 - C10 (F1)	7783958		< 5	< 5	NA	< 5	96%	60%	130%	105%	60%	130%	92%	60%	130%
C>10 - C16 (F2)	7785901		< 10	< 10	NA	< 10	102%	70%	130%	96%	70%	130%	70%	70%	130%
C>16 - C34 (F3)	7785901		< 50	< 50	NA	< 50	103%	70%	130%	97%	70%	130%	72%	70%	130%
C>34 - C50 (F4)	7785901		< 50	< 50	NA	< 50	98%	70%	130%	97%	70%	130%	83%	70%	130%

Comments: When the average of the sample and duplicate results is less than 5x the RDL, the Relative Percent Difference (RPD) will be indicated as Not Applicable (NA).

Certified By:

Jenez

Method Summary

CLIENT NAME: GOLDER ASSOCIATES LTD

PROJECT: 1530908-2000

AGAT WORK ORDER: 16Z126821

ATTENTION TO: Alyssa Troke

SAMPLING SITE:DEW Line SAMPLED BY:

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Soil Analysis			
Arsenic	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Cadmium	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Cobalt	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Chromium	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Copper	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Lead	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Mercury	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Nickel	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Zinc	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Trace Organics Analysis			
PCBs	ORG-91-5113	EPA SW-846 3541 & 8082	GC/ECD
Decachlorobiphenyl	ORG-91-5113	EPA SW-846 3541 & 8082	GC/ECD
C6 - C10 (F1)	VOL-91-5009	CCME Tier 1 Method	P & T GC/FID
C>10 - C16 (F2)	VOL-91-5009	CCME Tier 1 Method, EPA SW846 8015	GC / FID
C>16 - C34 (F3)	VOL-91-5009	CCME Tier 1 Method, EPA SW846 8015	GC / FID
C>34 - C50 (F4)	VOL-91-5009	CCME Tier 1 Method, EPA SW846 8015	GC / FID
Gravimetric Heavy Hydrocarbons	VOL - 5012	CCME Tier 1 Method	GRAVIMETRIC ANALYSIS
Moisture Content	VOL-91-5009	CCME Tier 1 Method	Balance

5835 Coopers Avenue Mississauga, Ontario L4Z 1Y2 **Laboratory Use Only**

Chain of Custody R	Record	If this is a Dri	nking Water	sample, please	use Drinking Water Chain of (orm (p	otable	water		h.aga man c	tlabs.	otion)		Coole Arriva				9.	A	7.4	19	7
Report Information: Company: Contact: Alys	sa To	+ SSOC	ate		Regulatory Requi		ts: Sewer		No	Regulatory			nent		Custo	s: 👛	0	i	☐Yes		□No		□N
Report Information: Company: Contact: Address: Address: Phone: Reports to be sent to: 1. Email: Address: Address	SB7 29600 Le gol Lerleit	Fax: der co	n Ider-	(om	Table Indicate One Indicate One Ind/Com Res/Park Agriculture Soil Texture (Check One) Coarse		Sanit Storr	n		Prov. W Objecti		PWQC		R	egu	lar T	(Rush	ı Surcha	argea Apply)	to 7 Busin Business ays		ays 1 Busir Day	ness
Project Information:	0908			A	Is this submission Record of Site Con Yes Sample Matrix	dition?	ege ege		Ce	teport Guid ertificate of Yes	Ana					_	Pleas	se pro	uired (Rus ovide prior ive of week	notification	on for i	rush TAT	ays
Invoice Information:	number is not pi	44		analysis.	Legend B Biota GW Ground Water O Oil P Paint S Soil SD Sediment SW Surface Water	Metals and Inorganics	can	Hydride Forming Metals	tals	ORPS: CIS-HWS CIT: CICN COT CIEC CI-FOC CIND, NO. CITOTAIN CIND CIPH CISAR Nutrients: CIPP CINH, CIKN CINO, CINO, NO.	□ vос □ втех □ тнм	CCME Fractions 1 to 4		PAHS Chlorophenols		Organochlorine Pesticides	TCLP Metals/Inorganics	Jse	9				
Sample Identification F4-28 A dup MW98-3A dup	Date Sampled Aug 4 Aug 4	Time Sampled	# of Containers	Sample Matrix	Comments/ Special Instructions	Metals	Metal Scan	Hydride	Client (ORPS:	Volatiles:	CCME	ABNS	PAHS	PCBs	Organo	TCLP N	Sewer Use	XX Quale				
									7	-0 FU													
											900												

		-	-				
honor Woodhouse	Jone Online	Aug 16	1030	Samples Received By (Print Name and Sign): [Reactive Let 120 11111	16 Aug 16	Time 17h50	Page of
ফ্রেমুটিs Relinquished By (Print Name and Sign):		Date	Time	Samples Received By (Print Name and Sign):	16/8/17	10 42 Nº:	T 018523
vurgent (I): DIV 78-1511 010					Pink Copy - Client Yellow Cor	ov - AGAT White Copy- A	GAT Deby letters November 2, 2

Appendix C8

Certificate Of Analysis –
Paracel Laboratories Ltd.,
Sept. 2, 2016; Order #1635445

300 - 2319 St. Laurent Blvd Ottawa, ON, K1G 4J8 1-800-749-1947 www.paracellabs.com

Certificate of Analysis

Golder Associates Ltd. (Ottawa)

1931 Robertson Rd. Ottawa, ON K2H 5B7 Attn: Alyssa Troke

Client PO:

Project: 1530908-2000 Custody: 20409/102554 Report Date: 2-Sep-2016 Order Date: 26-Aug-2016

Order #: 1635445

This Certificate of Analysis contains analytical data applicable to the following samples as submitted:

Paracel ID	Client ID
1635445-01	MW-6
1635445-02	MW-16
1635445-03	MW-12
1635445-04	MW-13
1635445-05	MW-15
1635445-06	MW-14
1635445-07	MW-9
1635445-08	MW-10
1635445-09	Probe Blank
1635445-10	MW-7
1635445-11	Field Blank
1635445-12	Trip Blank

Approved By:

Dale Robertson, BSc Laboratory Director

Certificate of Analysis

Client: Golder Associates Ltd. (Ottawa)

Report Date: 02-Sep-2016

Order Date: 26-Aug-2016

Client PO: Project Description: 1530908-2000

Analysis Summary Table

Analysis	Method Reference/Description	Extraction Date	Analysis Date
Mercury by CVAA	EPA 245.1 - Cold Vapour AA	30-Aug-16	30-Aug-16
Metals, ICP-MS	EPA 200.8 - ICP-MS	1-Sep-16	2-Sep-16
PCBs, total	EPA 608 - GC-ECD	30-Aug-16	30-Aug-16
PHC F1	CWS Tier 1 - P&T GC-FID	26-Aug-16	29-Aug-16
PHCs F2 to F4	CWS Tier 1 - GC-FID, extraction	29-Aug-16	30-Aug-16

Report Date: 02-Sep-2016

Order Date: 26-Aug-2016

Certificate of Analysis

Client: Golder Associates Ltd. (Ottawa)

Client PO: Project Description: 1530908-2000

	Client ID: Sample Date: Sample ID:	MW-6 19-Aug-16 1635445-01	MW-16 20-Aug-16 1635445-02	MW-12 20-Aug-16 1635445-03	MW-13 20-Aug-16 1635445-04
	MDL/Units	Water	Water	Water	Water
Metals					
Mercury	0.0001 mg/L	<0.0001	<0.0001	<0.0001	<0.0001
Arsenic	0.001 mg/L	<0.001	<0.001	<0.001	<0.001
Cadmium	0.0001 mg/L	<0.0001	<0.0001	0.0003	<0.0001
Chromium	0.001 mg/L	<0.001	<0.001	<0.001	0.001
Cobalt	0.0005 mg/L	0.0045	0.0128	0.0244	0.0120
Copper	0.0005 mg/L	0.0064	0.0031	0.0082	0.0141
Lead	0.0001 mg/L	<0.0001	<0.0001	<0.0001	<0.0001
Nickel	0.001 mg/L	0.053	0.033	0.097	0.069
Zinc	0.005 mg/L	0.008	0.759	0.037	0.012
Hydrocarbons					
F1 PHCs (C6-C10)	0.025 mg/L	<0.025 [2]	<0.025 [2]	<0.025 [2]	<0.025 [2]
F2 PHCs (C10-C16)	0.100 mg/L	<0.100 [2]	<0.216 [1] [2]	<0.100 [2]	-
F3 PHCs (C16-C34)	0.100 mg/L	<0.100 [2]	<0.216 [1] [2]	<0.100 [2]	-
F4 PHCs (C34-C50)	0.100 mg/L	<0.100 [2]	<0.216 [1] [2]	<0.100 [2]	-
PCBs					
PCBs, total	0.00005 mg/L	<0.00005		<0.00005	-
Decachlorobiphenyl	Surrogate	85.5%	-	88.8%	-

Report Date: 02-Sep-2016

Certificate of Analysis Client: Golder Associates Ltd. (Ottawa)

Order Date: 26-Aug-2016 Client PO: Project Description: 1530908-2000

	Client ID:	MW-15	MW-14	MW-9	MW-10
	Sample Date:	20-Aug-16	20-Aug-16	20-Aug-16	20-Aug-16
	Sample ID:	1635445-05	1635445-06	1635445-07	1635445-08
	MDL/Units	Water	Water	Water	Water
Metals					
Mercury	0.0001 mg/L	<0.0001	<0.0001	<0.0001	<0.0001
Arsenic	0.001 mg/L	<0.001	<0.001	<0.001	<0.001
Cadmium	0.0001 mg/L	0.0003	0.0001	0.0002	0.0007
Chromium	0.001 mg/L	<0.001	<0.001	<0.001	<0.001
Cobalt	0.0005 mg/L	0.0094	0.0133	0.0243	0.0673
Copper	0.0005 mg/L	0.0056	0.0078	0.0079	0.0613
Lead	0.0001 mg/L	<0.0001	<0.0001	<0.0001	0.0003
Nickel	0.001 mg/L	0.036	0.042	0.102	0.256
Zinc	0.005 mg/L	0.024	0.025	0.043	0.119
Hydrocarbons					
F1 PHCs (C6-C10)	0.025 mg/L	<0.025 [2]	<0.025 [2]	<0.025 [2]	<0.025 [2]
F2 PHCs (C10-C16)	0.100 mg/L	<0.100 [2]	<0.100 [2]	<0.100 [2]	<0.100 [2]
F3 PHCs (C16-C34)	0.100 mg/L	<0.100 [2]	<0.100 [2]	<0.100 [2]	<0.100 [2]
F4 PHCs (C34-C50)	0.100 mg/L	<0.100 [2]	<0.100 [2]	<0.100 [2]	<0.100 [2]
PCBs		_	_	_	
PCBs, total	0.00005 mg/L	<0.00005	<0.00005	<0.00005	<0.00005
Decachlorobiphenyl	Surrogate	90.7%	90.2%	97.1%	77.8%

Certificate of Analysis

Client: Golder Associates Ltd. (Ottawa)

Report Date: 02-Sep-2016

Order Date: 26-Aug-2016

Client PO: Project Description: 1530908-2000

	Client ID: Sample Date: Sample ID:	Probe Blank 19-Aug-16 1635445-09	MW-7 19-Aug-16 1635445-10	Field Blank 19-Aug-16 1635445-11	Trip Blank 08-Aug-16 1635445-12
	MDL/Units	Water	Water	Water	Water
Metals				1	,
Mercury	0.0001 mg/L	<0.0001	<0.0001	<0.0001	<0.0001
Arsenic	0.001 mg/L	<0.001	<0.001	<0.001	<0.001
Cadmium	0.0001 mg/L	<0.0001	0.0003	<0.0001	<0.0001
Chromium	0.001 mg/L	<0.001	<0.001	<0.001	<0.001
Cobalt	0.0005 mg/L	<0.0005	0.0308	<0.0005	<0.0005
Copper	0.0005 mg/L	<0.0005	0.0097	<0.0005	<0.0005
Lead	0.0001 mg/L	<0.0001	<0.0001	<0.0001	<0.0001
Nickel	0.001 mg/L	<0.001	0.201	<0.001	<0.001
Zinc	0.005 mg/L	0.006	0.059	<0.005	<0.005
Hydrocarbons					
F1 PHCs (C6-C10)	0.025 mg/L	<0.025 [2]	<0.025 [2]	<0.025 [2]	<0.025 [2]
F2 PHCs (C10-C16)	0.100 mg/L	<0.100 [2]	<0.100 [2]	-	<0.100 [2]
F3 PHCs (C16-C34)	0.100 mg/L	<0.100 [2]	<0.100 [2]	-	<0.100 [2]
F4 PHCs (C34-C50)	0.100 mg/L	<0.100 [2]	<0.100 [2]	-	<0.100 [2]
PCBs					
PCBs, total	0.00005 mg/L	<0.00005	<0.00005	<0.00005	<0.00005 [2]
Decachlorobiphenyl	Surrogate	74.8%	90.5%	93.1%	83.4% [2]

Certificate of Analysis

Client: Golder Associates Ltd. (Ottawa)

Report Date: 02-Sep-2016

Order Date: 26-Aug-2016

Client PO: Project Description: 1530908-2000

Method Quality Control: Blank

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Hydrocarbons									
F1 PHCs (C6-C10)	ND	0.025	mg/L						
F2 PHCs (C10-C16)	ND	0.100	mg/L						
F3 PHCs (C16-C34)	ND	0.100	mg/L						
F4 PHCs (C34-C50)	ND	0.100	mg/L						
Metals									
Mercury	ND	0.0001	mg/L						
Arsenic	ND	0.001	mg/L						
Cadmium	ND	0.0001	mg/L						
Chromium	ND	0.001	mg/L						
Cobalt	ND	0.0005	mg/L						
Copper	ND	0.0005	mg/L						
Lead	ND	0.0001	mg/L						
Nickel	ND	0.001	mg/L						
Zinc	ND	0.005	mg/L						
PCBs									
PCBs, total	ND	0.00005	mg/L						
Surrogate: Decachlorobiphenyl	0.00019		mg/L		77.9	60-140			

Report Date: 02-Sep-2016

Order Date: 26-Aug-2016

Certificate of Analysis

Client: Golder Associates Ltd. (Ottawa)

Client PO: Project Description: 1530908-2000

Method Quality Control: Duplicate

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Hydrocarbons F1 PHCs (C6-C10)	ND	0.025	mg/L	ND				30	
Metals									
Mercury	ND	0.0001	mg/L	ND				20	
Arsenic	ND	0.001	mg/L	ND				20	
Cadmium	ND	0.0001	mg/L	ND				20	
Chromium	ND	0.001	mg/L	ND			0.0	20	
Cobalt	0.00083	0.0005	mg/L	0.00083			0.1	20	
Copper	0.00055	0.0005	mg/L	0.00062			12.0	20	
Lead	ND	0.0001	mg/L	ND				20	
Nickel	ND	0.001	mg/L	ND			0.0	20	
Zinc	ND	0.005	mg/L	ND			0.0	20	

Report Date: 02-Sep-2016 Order Date: 26-Aug-2016

Project Description: 1530908-2000

Certificate of Analysis Client: Golder Associates Ltd. (Ottawa)

Client PO:

Method Quality Control: Spike

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Hydrocarbons									
F1 PHCs (C6-C10)	1.93	0.025	mg/L		96.4	68-117			
F2 PHCs (C10-C16)	1.98	0.100	mg/L		110	60-140			
F3 PHCs (C16-C34)	4.07	0.100	mg/L		109	60-140			
F4 PHCs (C34-C50)	2.58	0.100	mg/L		104	60-140			
Metals									
Mercury	0.00292	0.0001	mg/L	ND	97.2	70-130			
Arsenic	44.0		ug/L		88.1	80-120			
Cadmium	47.0		ug/L		93.9	80-120			
Chromium	47.4		ug/L		94.7	80-120			
Cobalt	47.0		ug/L		94.0	80-120			
Copper	47.0		ug/L		94.0	80-120			
Lead	44.7		ug/L		89.4	80-120			
Nickel	46.4		ug/L		92.8	80-120			
Zinc	46		ug/L		91.9	80-120			
PCBs									
PCBs, total	0.00112	0.00005	mg/L		112	60-140			
Surrogate: Decachlorobiphenyl	0.00022		mg/L		89.3	60-140			

Report Date: 02-Sep-2016 Order Date: 26-Aug-2016

Project Description: 1530908-2000

Certificate of Analysis

Client: Golder Associates Ltd. (Ottawa) Client PO:

Qualifier Notes:

Login Qualifiers:

Sample - One or more parameter received past hold time -

Applies to samples: MW-6, MW-7, Trip

Sample - Insufficient volume - low volume PHCs - if analysis possible run as per client

Applies to samples: MW-16

Sample Qualifiers:

1: Elevated Reporting Limits due to limited sample volume.

2: Holding time had been exceeded upon receipt of the sample at the laboratory.

Sample Data Revisions

None

Work Order Revisions / Comments:

None

Other Report Notes:

n/a: not applicable ND: Not Detected

MDL: Method Detection Limit

Source Result: Data used as source for matrix and duplicate samples

%REC: Percent recovery.

RPD: Relative percent difference.

CCME PHC additional information:

- The method for the analysis of PHCs complies with the Reference Method for the CWS PHC and is validated for use in the laboratory. All prescribed quality criteria identified in the method has been met.
- F1 range corrected for BTEX.
- F2 to F3 ranges corrected for appropriate PAHs where available.
- The gravimetric heavy hydrocarbons (F4G) are not to be added to C6 to C50 hydrocarbons.
- In the case where F4 and F4G are both reported, the greater of the two results is to be used for comparison to CWS PHC criteria.

GPARACEL	1		ED .	E	. Sa	300-2 Ottav	Office 2319 St. L va, Ontar 800-749-	io K1G	4J8			Ch	ain of (Lab Us	e Only)			
LABORATORIES LTD.	8	LIAB			1.00	e: pa	racel@pa .paracella	aracella	bs.com			I N P		204 of 5	,,	7	
Client Name: 6AC	SHI LINE		Project	Reference: 1530	2908-20	oon		1			TAT: [LKegul:	ar	[] 3 Day	1	T	1
Contact Name: See and			Quote #		1.50			- 2/4/4/4						4		-	
Address:			PO#	, , ,								[] 2 Day		[] 1 Day			
11111111	1		Email /	ddress: See f	29,1						Date Red	quired:		5	ach Vision	-	+
Telephone:					<u> </u>	124.75 MILES											
Criteria: [] O. Reg. 153/04 (As Amended) Table [] R	SC Filing	[] 0.	Reg. 558	00 [] PWOO X	CCME []SU	JB (Storm)	[] SUE	(Sanita	iry) Mur	iicipalit	у:		[] Othe	ľ			
Matrix Type: S (Soil/Sed.) GW (Ground Water) SW (Surface Water) S	S (Storm Sa	mitary Se	wer) P (Paint) A (Air) O (O	ther)				a di	Requ	ired Ar	alyses	95		£ (1/4)		1
Paracel Order Number: 1635440 - Soil 1635448 - Water	×	Air Volume	of Containers	Sample	Taken	6-010		<i>i</i> .	1					Bong C	2014	the second secon	
Sample ID/Location Name	Matrix	Air	# of	Date	Time	Se											
V1 F2-3a	5		2	Aug 21/16		X			11	oh-oregi	A RECEIVED	60'	mlt	250	ml-	- I	7
2 MW-6	W		6	Aug 19/16	15:45	X					-		\$		7.1		1
3 MW-16	W		5	Aug 20/16	11:00	X	no	P	CBS	,	angi	use	SPH	Cs i	£10	ss, &	2/2
4 MW-12	W	in reserve	6	Aug 20/16	16:00	X	M	as		,		1			1		
5 UW-13	W	tente	4	Aug 20/16	10:00	X	no	PC	Bs	or	PH	5	2			Parameter Carlo	-
6 MW-15	W		6	Aug 26/16	12:00	X			X				\$	10.77	1		7
1 MW-14	(1)		6	Aug 20/16		X	ger i	ng i					8	F .	G) ',\$7)	-	1
8 MW-9	W	000 00000	6	Aug 20/16		X						11	>				1
9 MW-10	W	la sis	6	Aug 20/16	The second secon	X		1					4	V. 155	4	-	1
10 Probe Blank	W	×	6	Aug 19/16	Burger Charles	X	**************************************	7					V	a-1		- Constant	1
Comments: MW-16: analyse PHCs if HW-13: no PCB or PHC	1 1			w volume)									Metho	of Deliv			
Relinquished By (Sign): Olyssa Jacke	Receive	-	ver/Depo	TEOUSE	SV	red at Lab;	ORN	-	RM		Verifie	20	chel	TO SECURIOR WILLIAM TO SECURIOR WITH THE PARTY OF THE PAR	oject	THE RESERVE	
Relinquished By (Print): Alussa Todo Date/Time: Aug Worlds 10:00	Date/Til		Lefter.	8/11/2 170 C	Tempo	Fime () () erature (<u>)</u>	3 10	VID	(1)	VI.	Date/T pH Ve		Hug Hay: 12	26// S	6 9	3:5L	1

Date/Time:

TRUSTED.
RESPONSIVE.

RELIABLE.

Temperature:

Head Office 300-2319 St. Laurent Blvd. Ottawa, Ontario K1G 4J8

p: 1-800-749-1947 e: paracel@paracellabs.com Chain of Custody
(Lab Use Only)

Nº 102554

OTTAWA @ KINGSTON @ NIAGARA @ MISSISSAUGA @ SARNIA Page 5 of 5 www.paracellabs.com Project Reference: 15 30 908 TAT; Regular [] 3 Day Contact Name: [] 2 Day [] 1 Day Address: PO# Date Required: Email Address: see page Telephone: Criteria: [] O. Reg. 153/04 (As Amended) Table _ [] RSC Filing [] O. Reg. 558/00 [] PWQO X CCME [] SUB (Storm) [] SUB (Sanitary) Municipality: [] Other: Matrix Type: S (Soil/Sed.) GW (Ground Water) SW (Surface Water) SS (Storm/Sanitary Sewer) P (Paint) A (Air) O (Other) Required Analyses Paracel Order Number: PHCs F1-F4+BTEX Containers cote 1635440-501 Air Volume Sample Taken 10 by 1635445-water. 100 B (HWS) Matrix VOCs of Sample ID/Location Name Time Date 1 W 14:250 2 PHC Blank W 3 4 5 6 7 8 9 10 Mothod of Delivery Comments: Relinquished By (Sign): Verified By: Received by Driver/Depot DOK MAI Rachel Subject 00 Date/Time: M/696 2016 Date/Time:

Temperature: 12,3 %

pH Verified [WBy: 1

Appendix C9

Certificate Of Analysis –
Paracel Laboratories Ltd.,
Sept. 2, 2016; Order #1634163

300 - 2319 St. Laurent Blvd Ottawa, ON, K1G 4J8 1-800-749-1947 www.paracellabs.com

Certificate of Analysis

Golder Associates Ltd. (Ottawa)

1931 Robertson Rd. Ottawa, ON K2H 5B7 Attn: Alyssa Troke

Client PO:

Project: 1530908-2000 Custody: 26765 Report Date: 2-Sep-2016 Order Date: 16-Aug-2016

Revised Report

Order #: 1634163

This Certificate of Analysis contains analytical data applicable to the following samples as submitted:

 Paracel ID
 Client ID

 1634163-01
 MW98-02

 1634163-02
 Fox 4 - Rinsate

Approved By:

2:MX

Tim McCooeye Senior Advisor

Certificate of Analysis

Client: Golder Associates Ltd. (Ottawa)

Report Date: 02-Sep-2016

Order Date: 16-Aug-2016

Client PO: Project Description: 1530908-2000

Analysis Summary Table

Analysis	Method Reference/Description	Extraction Date	Analysis Date
Mercury by CVAA	EPA 245.1 - Cold Vapour AA	17-Aug-16	17-Aug-16
Metals, ICP-MS	EPA 200.8 - ICP-MS	18-Aug-16	19-Aug-16
PCBs, total	EPA 608 - GC-ECD	18-Aug-16	18-Aug-16
PHC F1	CWS Tier 1 - P&T GC-FID	16-Aug-16	18-Aug-16
PHCs F2 to F4	CWS Tier 1 - GC-FID, extraction	19-Aug-16	19-Aug-16

Report Date: 02-Sep-2016

Certificate of Analysis

Client: Golder Associates Ltd. (Ottawa)

Order Date: 16-Aug-2016 Client PO: Project Description: 1530908-2000

	Client ID:	MW98-02	Fox 4 - Rinsate	-	-
	Sample Date:	04-Aug-16	05-Aug-16	-	-
	Sample ID:	1634163-01	1634163-02	-	-
	MDL/Units	Water	Water	-	-
Metals					
Mercury	0.0001 mg/L	<0.0001	<0.0001	-	-
Arsenic	0.001 mg/L	0.004	<0.001	-	-
Cadmium	0.0001 mg/L	<0.0001	<0.0001	-	-
Chromium	0.001 mg/L	<0.001	<0.001	-	-
Cobalt	0.0005 mg/L	0.0030	<0.0005	-	-
Copper	0.0005 mg/L	0.0006	<0.0005	-	-
Lead	0.0001 mg/L	0.0001	<0.0001	-	-
Nickel	0.001 mg/L	0.006	<0.001	-	-
Zinc	0.005 mg/L	0.090	<0.005	-	-
Hydrocarbons					
F1 PHCs (C6-C10)	0.025 mg/L	0.395 [1]	<0.025 [1]	-	-
F2 PHCs (C10-C16)	0.100 mg/L	<0.100 [1]	<0.100 [1]	-	-
F3 PHCs (C16-C34)	0.100 mg/L	<0.100 [1]	<0.100 [1]	-	-
F4 PHCs (C34-C50)	0.100 mg/L	<0.100 [1]	<0.100 [1]	-	-
PCBs	-			-	
PCBs, total	0.00005 mg/L	<0.00005	<0.00005	-	-
Decachlorobiphenyl	Surrogate	54.8% [4]	72.4%	-	-

Certificate of Analysis

Client: Golder Associates Ltd. (Ottawa)

Report Date: 02-Sep-2016

Order Date: 16-Aug-2016

Client PO: Project Description: 1530908-2000

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Hydrocarbons									
F1 PHCs (C6-C10)	ND	0.025	mg/L						
F2 PHCs (C10-C16)	ND	0.100	mg/L						
F3 PHCs (C16-C34)	ND	0.100	mg/L						
F4 PHCs (C34-C50)	ND	0.100	mg/L						
Metals									
Mercury	ND	0.0001	mg/L						
Arsenic	ND	0.001	mg/L						
Cadmium	ND	0.0001	mg/L						
Chromium	ND	0.001	mg/L						
Cobalt	ND	0.0005	mg/L						
Copper	ND	0.0005	mg/L						
Lead	ND	0.0001	mg/L						
Nickel	ND	0.001	mg/L						
Zinc	ND	0.005	mg/L						
PCBs			J						
PCBs, total	ND	0.00005	mg/L						
Surrogate: Decachlorobiphenyl	1.00020		mg/L		80.6	60-140			

Report Date: 02-Sep-2016

Certificate of Analysis

Client: Golder Associates Ltd. (Ottawa)

Order Date: 16-Aug-2016 Client PO: Project Description: 1530908-2000

Method Quality Control: Duplicate

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Hydrocarbons F1 PHCs (C6-C10)	ND	0.025	mg/L	ND				30	
Metals	ND	0.0004		ND				00	
Mercury	ND	0.0001	mg/L	ND				20	
Arsenic	ND	0.001	mg/L	0.0013			0.0	20	
Cadmium	ND	0.0001	mg/L	ND			0.0	20	
Chromium	ND	0.001	mg/L	ND			0.0	20	
Cobalt	ND	0.0005	mg/L	ND			0.0	20	
Copper	ND	0.0005	mg/L	ND				20	
Lead	ND	0.0001	mg/L	ND			0.0	20	
Nickel	ND	0.001	mg/L	ND				20	
Zinc	ND	0.005	mg/L	ND			0.0	20	

Report Date: 02-Sep-2016

Certificate of Analysis Client: Golder Associates Ltd. (Ottawa)

Order Date: 16-Aug-2016 Client PO: Project Description: 1530908-2000

Method Quality Control: Spike

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Hydrocarbons									
F1 PHCs (C6-C10)	1.83	0.025	mg/L		91.3	68-117			
F2 PHCs (C10-C16)	1.67	0.100	mg/L		93.0	60-140			
F3 PHCs (C16-C34)	3.16	0.100	mg/L		85.0	60-140			
F4 PHCs (C34-C50)	2.12	0.100	mg/L		85.3	60-140			
Metals									
Mercury	0.00309	0.0001	mg/L	ND	103	70-130			
Arsenic	39.0		ug/L	1.3	75.3	80-120		Q	M-07
Cadmium	49.2		ug/L	0.01	98.4	80-120			
Chromium	49.9		ug/L	0.1	99.6	80-120			
Cobalt	49.0		ug/L	0.02	98.1	80-120			
Copper	48.0		ug/L	ND	96.0	80-120			
Lead	47.5		ug/L	0.08	94.8	80-120			
Nickel	49.2		ug/L	ND	98.5	80-120			
Zinc	52		ug/L	0.2	103	80-120			
PCBs									
PCBs, total	0.00110	0.00005	mg/L		110	60-140			
Surrogate: Decachlorobiphenyl	0.00021		mg/L		87.2	60-140			

Report Date: 02-Sep-2016

Page 7 of 7

Certificate of Analysis

Client: Golder Associates Ltd. (Ottawa)

Client: Golder Associates Ltd. (Ottawa)

Order Date: 16-Aug-2016

Client PO:

Project Description: 1530908-2000

Qualifier Notes:

Login Qualifiers:

Sample - One or more parameter received past hold time - CCME F1-F4 past hold time Applies to samples: MW98-02, Fox 4 - Rinsate

Sample Qualifiers:

1: Holding time had been exceeded upon receipt of the sample at the laboratory.

4: The surrogate recovery for this sample is outside of established control limits due to a sample matrix effect.

QC Qualifiers:

QM-07: The spike recovery was outside acceptance limits for the MS and/or MSD. The batch was accepted based on other acceptable QC.

Sample Data Revisions

None

Work Order Revisions / Comments:

Revision 1, all results reported as mg/L.

Other Report Notes:

n/a: not applicable ND: Not Detected

MDL: Method Detection Limit

Source Result: Data used as source for matrix and duplicate samples

%REC: Percent recovery.

RPD: Relative percent difference.

CCME PHC additional information:

- The method for the analysis of PHCs complies with the Reference Method for the CWS PHC and is validated for use in the laboratory. All prescribed quality criteria identified in the method has been met.
- F1 range corrected for BTEX.
- F2 to F3 ranges corrected for appropriate PAHs where available.
- The gravimetric heavy hydrocarbons (F4G) are not to be added to C6 to C50 hydrocarbons.
- In the case where F4 and F4G are both reported, the greater of the two results is to be used for comparison to CWS PHC criteria.

TRUSTED. RESPONSIVE.

Head Office 300-2319 St. Laurent Blvd. Ottawa, Ontario K1G 4J8 p: 1-800-749-1947 e: paracel@paracellabs.com

www.paracellabs.com

Nº 26765

Page 2 of 2

Chain of Custody

(Lab Use Only)

differs: Compared	Chent Name:	Project Refer	ronos 1 /-	2 . 0 00	2	Α.			-	rage 🕿	10	5.02
Criteria: [10 Reg. 153.04 (As Amended) Table [1 RSC Films [1] O. Reg. SSE00 [1 Films [1] O. Reg. SSE00	Contact Name:		15.	50908	1	1000	18 8.	TA	T: K Regi	ılar [1	3 Day	
Criteria: [10 Reg. 153.04 (As Americal) Table	Address: See page	1 12	2-304	Golder	Den	i Lines,	Monito	119	,			
Aplendarie: the golder com Criteria: [10. Reg. [5304 (As Amendal) Table_ [1] SSC Filing [10. Reg. 58300 [1] PMOD (Accuse) [1808 (Saminary) Monitorpolity [1] Others arrich Type Soil Scal) (Ground Water) SW (Surface Water) SS (Soom Sanitary Sever) P (Paint) A (Air) O (Other) Required Analyses arracel Order Number: [634 62-501] Sample ID/Location Name Sample ID/Location Name Aplendarie: the golder com Required Analyses Sample Taken Sample ID/Location Name Aplendarie: the golder com Required Analyses Sample Taken Aplendarie: the golder com Required Analyses Required				7		4		J	[] 2 Da	iy []	1 Day	
Tatrit Type Soil Soil (Ground Water) SW (Surface Water) SS (Storm Sanitary Sever) P (Paint) A (Air) O (Other) Required Analyses G34 G2-Soil	Telephone:	Email Addres		e_trok	eeg	0/dlr.(0	M	Da	te Required:			
Arracel Order Number: 1634 162 - Soil Sample Taken Sample Taken Sample ID/Location Name	Criteria: [] O. Reg. 153/04 (As Amended) Table [] RSC Filing [] O.	Dan \$59/00	dela	enderi	e.th	@go/de	er.con	١				_
Sample ID/Location Name Sample ID/Location Name MW98-02 Fox 4-Rinsele Municipal Sample Sample Taken Sample ID/Location Name MW98-02 Municipal Sample Taken Municipal S	Matrix Type(S)Soil/Sed.) (GV) (Ground Water) SW (Surface Water) SS (State State Stat	, Keg. 739/00	1 11 MOO 1/10	CMB [JSU	B (Storm)	L PSUB (Sar	nitary) Mun	icipality:		[]Other:		
Sample ID/Location Name Sample ID/Location Name MW98 - 02 Fox 4 - Rinsort MW98 - 03 Method of Delivery Proceled regardless of hold time per Prussa & C. Method of Delivery	Paracel Order Number: 16 21146 2	sewer) P (Paint)	A (Air) O (Other	r).				Required	d Analyse:	S		
1 MW98-62 GW 6 Aug 4 1700 X 2 Fox 4 - Rinsak GW 6 Aug 5 - X 3 4 5 6 7 8 9 10 mments: Samples not preserved, not field filtered. Sc. Method of Delivery. Proceed regardless of hold time per Aussa &	1634162-5011	ers							T	T		
1 MW98-62 GW 6 Aug 4 1700 X 2 Fox 4 - Rinsak GW 6 Aug 5 - X 3 4 5 6 7 8 9 10 mments: Samples not preserved, not field filtered. Sc. Method of Delivery. Proceed regardless of hold time per Aussa &		Contain	Sample Ta	aken	ofe							
1 MW98-62 GW 6 Aug 4 1700 X 2 Fox 4 - Rinsak GW 6 Aug 5 - X 3 4 5 6 7 8 9 10 mments: Samples not preserved, not field filtered. Sc. Method of Delivery. Proceed regardless of hold time per Aussa &	Sample ID/Location Name	l of C	Date	Time	28							
Fox 4 - Rinsak M A B B B B B B B B B B B B	1111100				V			_				9
and the state of t	2 Fox 4 - Rinsote MIN			700	X	-	\vdash	_		1 1	2.3	
mments: Samples not preserved, not field filtered. Sc. Method of Delivery. Proceed regardless of hold time per physical &c.	3	6 /	9 5	_	/\		\vdash					1
mments: Samples not preserved, not field fittered. Sc. Method of Delivery. Proceed regardless of hold time per Prussa &c.	4	-		$\overline{}$	-	_						
mments: Samples not preserved, not field fittered. Sc. Method of Delivery: Proceed regardless of hold time per Prussa &c.	5				\		-					
mments: Samples not preserved, not field fittered. Sc. Method of Delivery: Proceed regardless of hold time per Plyssa &c.	6				\rightarrow							
mments: Samples not preserved, not field fittered. Sc. Method of Delivery: Proceed regardless of hold time per Plyssa &c.	7	-			_	1						
mments: Samples not preserved, not field filtered. Sc. Method of Delivery. Proceed regardless of hold time per Plyssa &c.	8		1		_	1						
Proceed regardless of hold time per Plyssa &c. Method of Delivery.	9					`						
Proceed regardless of hold time per Plyssa &c. Method of Delivery.	10											
Proceed regardless of hold time per Aussa &c. Method of Delivery:		100			, ,							
nowaries By (Sign):	Proceed regardless of ho	Ved Lal +	7	- fi-	eld	filts	rec	1. X	Ċ.	Method of I	Delivery:	
Received by Driveli Depot: Received at lob.	Received by Drive	er/Depot:		Received	at Lab:	4550	X	. Von	East Day			
Received at Lab: SUNCEPCIN DON MAT Received By: Outsided		de		Sin	NER	TRN	DOK N	Ar Ven		d CI		
Time 1 a 1/ 100 i localitato de la local	elinquished By (Print): Joseph Woodhouse Date/Time: Onto 103/2		61/2	Date/Tim	e: AUG	16 9016	03.10	Date	Time: A	0 16/1	A S'C	10
Time: Aug 16/2016 1030 Temperature: 8.8°C Temperature: 8.8°C pH Verified [VB: RS	Temperature: 8	1.50		Temperat	ure: 💆	8 1c		pH '	Verified [V	R. RS	V ().()	1()

Appendix C10

Historical Soil Water Chemistry Data

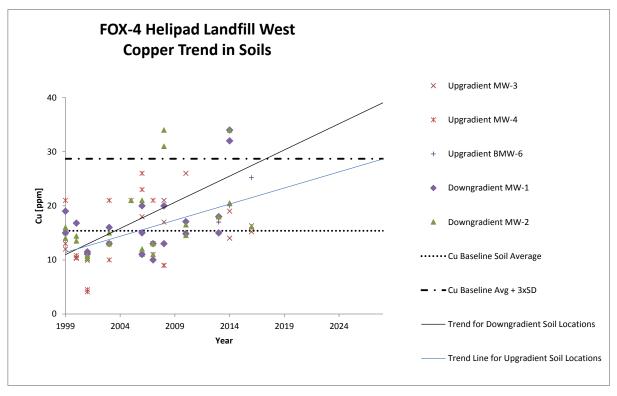
гол-4 Саре Но	ooper - Helipad Land	iiii west	- summary	or Soil Analy	ucai Dat	a ^{.c.}	l				1		l	l	1	1		ı	1		
Sample ID	Location	Year	Monitoring Year	Monitoring Phase	Depth	Cu	Ni	Co	Cd	Pb	Zn	Cr	As	Hg	Total PCB	F1 C ₁₀	F2 C ₁₀ -C ₁₆	F3 C ₁₆ -C ₃₄	Modified TPH^ Total C6-C34	TPH 1	Identity
					(cm)	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	% Fuel Oil	% Lube
						1															
Background Data - Ave Baseline Data - Averag						30 15	24 16	5.9	1.0	10 24	36	<u>41</u> 35	29 34		0.001			ı	222	n/a	n/a
Baseline Data - Standard						4.4	3.2	0.7	0.02	4.7	5	5.9	30		0.056				517	,	11/11
Baseline average + 3xStar	ndard Deviation					29	25	8	1.1	38	51	53	123		0.17				1772		
Detection Limit						3.0	5.0	5.0	1.0	10	15	20	1.0	0.10	0.001				40		
										200					1						
DEW Line Cleanup Tier I Co	Criteria Criteria & site specific As criteria					100	100	50	5	500	500	250	130	2.0	5				2500		
						100	100	30	,	300	300	230	150	2.0	,				2300		
Monitoring Data Upgradient- HELIPAL																					
Opgradient-112211711	MW-3 Surface (prior to 201	3 excavation)																			
99-3729	MW-3	1999	1	Phase I	0	13	11	< 5.0	<1.0	<1.0	26	28	12	< 0.10	0.015				< 40	n/a	n/a
FO-3-1 FO-3-1	MW-3 MW-3	2000 2001	3	Phase I Phase I	0-15 0-15	10 9.9	10 12	2.6 3.9	<0.10 <0.10	4.0 3.0	18 25	16 23	17 12	<0.050 <0.050	<0.0030 <0.010				<100 <20	n/a n/a	n/a n/a
FO-3-1 FOM3-1	MW-3 MW-3	2001	5	Phase I Phase I	0-15	13	10	4.0	<0.10	<1.0	23	24	9 <u>5</u>	<0.050	<0.010	<10	<40	85	110	11/2	11/ a
MW-3(Soil)0-15cm	MW-3	2006	8	Phase II	0-15	18	7.0	2.0	<1.0	<1.0	16	16	8.4	< 0.040	< 0.10	<12	20	40	66		
MW-3(Soil)0-15cm	MW-3	2007	9	Phase II	0-15	13	10	3.0	0.9	<1.0	25	25	10	< 0.040	< 0.10	<11	<20	<20	26		
MW-3(Soil)0-15cm 10-16957/58	MW-3 MW-3	2008 2010	10 12	Phase II Phase II	0-15 0-10	21 26	19 17	6.0 14	<0.50 <1.0	7.0 <10	23 <u>52</u>	48 43	49 13	<0.10	<0.050 <0.003	<1.0 <10	<1.0 4.1	18 28	19 37	-	-
not sampled	24 W -J	2010	12	1 11a5C 11	0-10	20	1/	14	~1.0	-10	34	+5	1.0	~0.1	~0.003	-10	r.1	20	3,	†	
F4-HEL-MW98-03-S	MW-3	2014	16	Phase II	0-15	14	13	4.4	< 0.10	4.2	32	32	31	< 0.050	< 0.010	<10	<10	<10	15		
MW98-03b	MW-3	2016	18	Phase II	0-15	15.2	14.6	5.2	< 0.5	5.7	31.9	44.1	21	< 0.1	< 0.05	<7	<4	48	53.5 #N/A		
	+	2018 2023	20 25	Phase II Phase II															#N/A #N/A		
		2023	30	Phase II															#N/A		
				Phase III															#N/A		
	MW-3 depth (prior to 2013	ovanvati\	1			1					-	 			-		-	-	#N/A	-	-
99-3731	MW-3 depth (prior to 2013 MW-3	1999	1	Phase I	30	12	9.1	<5.0	<1.0	<1.0	20	22	11	< 0.10	0.0047				< 40	n/a	n/a
FO-3-2	MW-3	2000	2	Phase I	40-50	10	11	2.7	< 0.10	3.0	21	18	8.0	< 0.050	< 0.0030				<100	n/a	n/a
FO-3-2	MW-3	2001	3	Phase I	40-50	10	13	3.8	< 0.10	4.0	24	23	13	< 0.050	< 0.010				<20	n/a	n/a
not sampled MW-3(Soil)40-50cm	MW-3 MW-3	2003 2006	5 8	Phase II	40-50	11	8.0	3.0	<1.0	<1.0	14	14	11	< 0.040	< 0.10	<12	<10	30	41	-	
MW-3(Soil)40-50cm	MW-3	2007	9	Phase II	40-50	11	9.0	3.0	0.9	<1.0	17	15	11	<0.040	<0.10	<10	<20	<20	25		
MW-3(Soil)40-50cm	MW-3	2008	10	Phase II	40-50	17	14	< 5.0	< 0.50	7.0	<2.0	25	17	< 0.10	< 0.050	<1.0	<1.0	<1.0	1.5		
10-16959/60	MW-3	2010	12	Phase II	30-40	15	13	5.3	<1.0	<10	28	28	14	< 0.10	0.008	<10	4.5	<9.0	14 #N/A	-	
not sampled F4-HEL-MW98-03-D	MW-3	2013 2014	16	Phase II	40-50	19	16	4.7	< 0.10	5.5	31	32	30	< 0.050	< 0.010	<10	<10	<10	#1N/A		
MW98-03a	MW-3	2016	18	Phase II	40-50	16	15	4.7	<0.5	5	31	33	23	<0.1	< 0.05	<6	<7	66	72.5		
		2018	20	Phase II															#N/A		
		2023 2028	25 30	Phase II Phase II															#N/A #N/A		
		2020	30	Thase II															#N/A		
																			#N/A		
	1	+	-								1	-			-		-		#N/A	-	-
	MW-4 Surface (prior to 201	3 excavation)	+			1						1			 		 		#N/A	 	
99-3713	MW-4	1999	1	Phase I	0	21	15	5.1	<1.0	<u>11</u>	<u>46</u>	35	44	< 0.10	0.049				#N/A	100	- 0
FO-4-1	MW-4	2000	2	Phase I	0-15	11	10	2.7	< 0.10	<1.0	25	19	<1.0	< 0.050	0.068		1		#N/A	n/a	n/a
FO-4-1 FOM4-1	MW-4 MW-4	2001 2003	3 5	Phase I Phase I	0-15 0-15	4.1 10	7.0 9.0	2.5 4.0	<0.10 <1.0	3.0 <1.0	12 22	11 21	11 9.6	<0.050 <0.040	<0.010 <0.005	<10	<40	<40	#N/A 45	n/a	n/a
MW-4	MW-4 MW-4	2005	7	Phase II	0-13	21	6.0	3.0	<1.0	<1.0	19	15	4.5	<0.040	< 0.050	<1.0	<40	<40	41		
MW-4(Soil)0-15cm	MW-4	2006	8	Phase II	0-15	23	15	4.0	<1.0	<u>15</u>	<u>51</u>	33	<u>37</u>	0.050	1.00	<12	100	210	316		
MW-4 (Soil)0-15cm	MW-4 MW-4	2007	9	Phase II	0-15	13	9.0	3.0	<0.9	<10 3.0	35	20	14	<0.04	0.7	<11	24	78	108		
MW-4 (Soil)0-15cm	MW-4	2008 2010	10 12	Phase II Phase II	0-15	9.0	8.0	<5	< 0.5	3.0	<20	20	5	< 0.1	< 0.05	<10	<10	<10	15 #N/A	 	
	MW-4 depth (prior to 2013	excavation)	12																		
99-3715	MW-4	1999	1	Phase I	30	15	10	< 5.0	<1.0	<1.0	26	34	23	< 0.10	0.042				< 40	n/a	n/a
FO-4-2 FO-4-2	MW-4 MW-4	2000 2001	3	Phase I Phase I	40-50 40-50	10 4.5	10 8.0	3.1 2.2	<0.10 <0.10	3.0 2.0	23 15	19 12	10 5.0	<0.050 <0.050	0.015 0.010		-		<100 <20	n/a n/a	n/a n/a
	MW-4	2001	5	Phase I	40-50	21	15	6.0	<1.0	<1.0	29	26	19	<0.040	< 0.0010	<1.0	<40	<40	41	/ a	11/2
FOM4-2	MW-4	2006	8	Phase II	40-50	26	15	4.0	<1.0	<u>11</u>	<u>51</u>	35	18	0.14	0.90	<12	220	210	436		
MW-4(Soil)40-50cm	3 ***** *	2007	9	Phase II	40-50	21	13	4.0	<0.9	11	<u>49</u>	31	14	< 0.04	0.7	<11	137	141	284		
MW-4(Soil)40-50cm MW-4 (Soil)40-50cm	MW-4			Phase II	40-50	9	8	<5	< 0.5	3	<20	18	4.0	< 0.1	< 0.05	<10	<10	<10	15 #N/A	-	
MW-4(Soil)40-50cm	MW-4 MW-4	2008	10							1						•	1				1
MW-4(Soil)40-50cm MW-4 (Soil)40-50cm		2010	12	Phase II															1111/11		
MW-4(Soil)40-50cm MW-4 (Soil)40-50cm MW-4 (Soil)40-50cm MW-4 (Soil)40-50cm	MW-4 BMW-06 surface (after 201 MW-6	2010 3 excavation) 2013	12	Phase II Phase II	0-10	17	14	<5.0	<1.0	<1.0	35	39	77	< 0.10	< 0.050	<1	<4.0	<9.0	7		
MW-4(Soil)40-50cm MW-4 (Soil)40-50cm MW-4 (Soil)40-50cm MW-4 (Soil)40-50cm 13-27331/13-27357 F4-HEL-MW98-06-S	MW-4 BMW-06 surface (after 201 MW-6 MW-6	2010 3 excavation) 2013 2014	12 15 16	Phase II Phase II Phase II	0-15	20	20	6.7	0.14	7.1	77.	51	40	< 0.050	< 0.010	<10	<10	18	7 28		
MW-4(Soil)40-50cm MW-4 (Soil)40-50cm MW-4 (Soil)40-50cm MW-3 (Soil)40-50cm 13-27331/13-27357	MW-4 BMW-06 surface (after 201 MW-6	2010 3 excavation) 2013 2014 2016	12 15 16 18	Phase II Phase II Phase II Phase II															7 28 169.5		
MW-4(Soil)40-50cm MW-4 (Soil)40-50cm MW-4 (Soil)40-50cm MW-4 (Soil)40-50cm 13-27331/13-27357 F4-HEL-MW98-06-S	MW-4 BMW-06 surface (after 201 MW-6 MW-6	2010 3 excavation) 2013 2014	12 15 16	Phase II Phase II Phase II	0-15	20	20	6.7	0.14	7.1	77.	51	40	< 0.050	< 0.010	<10	<10	18	7 28		

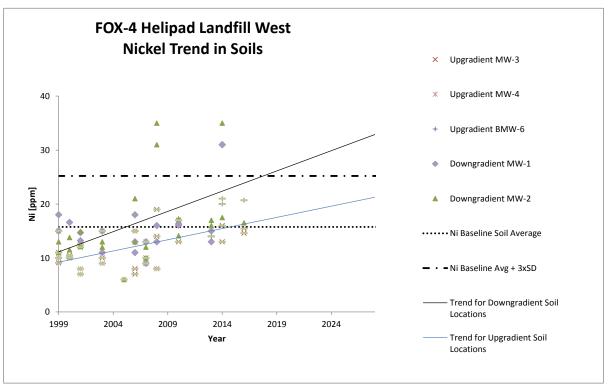
FOX-4 Cape Hooper - Helipad Landfill West - Summary of Soil Analytical Data**

FOX-4 Cape Hoo	oper - Helipad Land	Ifill West	- Summary	of Soil Analy	tical Data	a**				1			ı				1	1	1		
																F1 C ₆ -	F2	F3			
		**								***					m i non	C ₁₀	C ₁₀ -C ₁₆	C ₁₆ -C ₃₄	Modified TPH^		
sample ID	Location	Year	Monitoring Year	Monitoring Phase	Depth	Cu	Ni	Co	Cd	Pb	Zn	Cr	As	Hg	Total PCB				Total C6-C34	TPH	Identity
					(cm)	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	% Fuel Oil	% Lube C
																			#N/A		1
	BMW-06 depth (after 2013																		#N/A		
13-27332/33	MW-6	2013	15	Phase II	30-40	17	14	< 5.0	<1.0	<1.0	32	41	39	< 0.10	< 0.050	<1.0	4.3	15	19.8		+
F4-HEL-MW98-06-D	MW-6	2014	16	Phase II	40-50	41	21	6.2	0.11	6.1	52	40	66	< 0.050	< 0.010	<10	<10	100	111		1
Not sampled - refusal	MW-6	2016	18	Phase II															#N/A		
		2018	20	Phase II															#N/A		
		2023	25	Phase II															#N/A		+
		2028	30	Phase II								1							#N/A #N/A		+
												1							#N/A		+
																			#N/A		1
																			#N/A		
Downgradient- Helipad																					
	MW-01 surface	1000																		,	,
99-3725 EO 1 1	MW-01	1999	1	Phase I	0 15	15 17	15 17	5.0 4.9	<1.0 <0.10	<1.0 5.0	36 36	47 34	45 58	<0.10 <0.050	<0.0030 <0.0030				< 40 <100	n/a n/a	n/a n/a
FO-1-1 FO-1-1	MW-01 MW-01	2000 2001	3	Phase I Phase I	0-15 0-15	11	17	5.5	<0.10	3.0	66	24	<u>58</u> 14	< 0.050	< 0.0030	 	 	-	65	0.0	n/a 100
FOM-1-1	MW-01 MW-01	2001	5	Phase I	0-15	13	11	5.3	<1.0	<1.0	69	47	13	< 0.040	< 0.0040	<10	<40	<40	45	5.0	100
MW-1	MW-01	2006	8	Phase II	0-12	11	11	6.0	<1.0	<1.0	29	28	30	< 0.040	< 0.050	<1.0	< 40	< 40	41		T
MW-1(Soil) 0-15cm	MW-01	2006	8	Phase II	0-15	15	13	4.0	<1.0	<1.0	33	26	<u>81</u>	< 0.040	< 0.10	<12	<10	20	31		
MW-1(Soil)0-15cm	MW-01	2007	9	Phase II	0-15	13	13	4	0.9	<1.0	62	29	<u>51</u>	<0.040	<0.10	<11	<20	32	47.5		
MW-1(Soil)0-15cm	MW-01	2008	10	Phase II	0-15	20	16	5	< 0.50	<u>20</u>	<2.0	31	16	< 0.10	< 0.050	<1.0	138	85	224		
10-16989/90	MW-01	2010	12	Phase II	0-10	15	16	7.0	<1.0	<1.0	<u>60</u> 30	40	17	< 0.10	< 0.0030	4.4	60	13	77		+
13-27334/35 F4-HEL-MW98-01-S	MW-01 MW-01	2013 2014	15 16	Phase II Phase II	0-10 0-15	18 34	15 31	<5.0 <u>9.7</u>	<1.0 <0.10	<1.0 6.1	30 47	42 49	17 25	<0.10 <0.050	<0.050 <0.010	<1.0 <10	<4.0 <10	<9.0 <10	15	-	+
MW98-01a	MW-01	2014	18	Phase II	0-15	67.8	44.5	<u>15.6</u>	<0.10	5	71.2	139	74.7	<0.030	< 0.010	<7	<4	<8	9.5		+
MW 70-01a	MW-01	2018	20	Phase II	0-13	97.0	44.5	15.0	10.5	,	71.2	137	77.7	×0.1	40.05				#N/A		1
		2023	25	Phase II															#N/A		
		2028	30	Phase II															#N/A		
																			#N/A		
																			#N/A		
																			#N/A #N/A		+
	MW-01 depth																		,		1
99-3727	MW-01	1999	1	Phase I	30	19	18	6.9	<1.0	<1.0	48	<u>57</u>	25	< 0.10	< 0.0030				< 40	n/a	n/a
n/s	MW-01	2000	2	Phase I	40-50																
FO-1-2	MW-01	2001	3	Phase I	40-50	12	13	4.3	< 0.10	3.0	27	23	15	< 0.050	< 0.010				<20	n/a	n/a
FOM-1-2	MW-01	2003	5 8	Phase I	40-50	16	15	7.0 5.0	<1.0	<1.0 <1.0	<u>50</u> 30	<u>57</u>	19	<0.040 <0.040	<0.0010 <0.10	<10 <12	<40	<40 50	45 76		
MW-1(Soil) 40-50cm MW-1(Soil)40-50cm	MW-01 MW-01	2006 2007	9	Phase II Phase II	40-50 40-50	20 10	18 9	3.0	<1.0	<1.0	32	31 23	8	< 0.040	< 0.10	<11	20 <20	51	67		+
MW-1(Soil)40-50cm	MW-01	2008	10	Phase II	40-50	13	13	<5.0	< 0.50	6	<2.0	22	14	< 0.10	< 0.050	<1.0	1800	42	1843		
10-16991/92	MW-01	2010	12	Phase II	30-40	17	16	6.9	<1.0	<1.0	48	41	75	< 0.10	< 0.0030	51	120	10	181		
13-27336/37	MW-01	2013	15	Phase II	30-40	15	13	< 5.0	<1.0	<1.0	28	42	38	< 0.10	< 0.050	<1.0	<4.0	< 9.0	7.0		
F4-HEL-MW98-01-D	MW-01	2014	16	Phase II	40-50	<u>32</u>	<u>31</u>	9.3	< 0.10	5.8	<u>45</u>	<u>47</u>	23	< 0.050	< 0.010	<10	<10	<10	15		
Not sampled - refusal	MW-01	2016	18	Phase II															#N/A		
		2018 2023	20 25	Phase II Phase II															#N/A #N/A		+
		2023	30	Phase II															#N/A		1
																			#N/A		
																			#N/A		
																			#N/A		—
	MW-02 surface	1																	#N/A		+
99-3733	MW-02 surface MW-02	1999	1	Phase I	0	14	11	< 5.0	<1.0	<1.0	32	43	45	< 0.10	< 0.0030		1		< 40	n/a	n/a
FO-2-1	MW-02	2000	2	Phase I	0-15	14	14	4.6	< 0.10	3.0	33	31	15	< 0.050	< 0.0030				<100	n/a	n/a
FO-2-1	MW-02	2001	3	Phase I	0-15	10	12	4.0	< 0.10	3.0	25	22	16	< 0.050	< 0.010				11.0	95	5.0
FOM-2-1	MW-02	2003	5	Phase I	0-15	13	12	6.0	<1.0	<1.0	30	43	83	< 0.040	< 0.0040	<10	<40	95	120		\perp
MW-2	MW-02	2005	7	Phase II	0-10	21	6.0	9.0	<1.0	<1.0	37	30	14	<0.040	< 0.050	<1.0	1100	480	1581		
MW-2(Soil)0-15cm MW-2(Soil)0-15cm	MW-02 MW-02	2006 2007	8	Phase II Phase II	0-15 0-15	12 11	13 10	4.0 3.0	<1.0 0.9	<1.0 <1.0	24 24	26 25	13 21	<0.040	<0.10 <0.10	<12 12	90 320	70 20	166 352		+
MW-2(Soil)0-15cm	MW-02 MW-02	2007	10	Phase II	0-15	31	31	10	< 0.50	9	33	46	8	< 0.10	< 0.050	16	862	305	1183	-	+
10-16977/78	MW-02	2010	12	Phase II	0-10	16	17	7.4	<1.0	<1.0	41	41	20	< 0.10	< 0.0030	<4.0	39	11	52		†
13-27338/39	MW-02	2013	15	Phase II	0-10	18	16	<5.0	<1.0	<1.0	36	43	50	< 0.10	< 0.050	<1.0	<4.0	< 9.0	7.0		
F4-HEL-MW98-02-S	MW-02	2014	16	Phase II	0-15	20.5	17.5	6.95	< 0.5	5.8	39.5	39.5	<u>72</u>	< 0.10	< 0.05	<10	23	44.5	72.5		
MW98-02a	MW-02	2016	18	Phase II	0-15	16.1	16.5	5.7	< 0.5	4.6	33.3	42.3	18.2	< 0.1	< 0.05	258	2850	250	3358		1
		2018	20	Phase II												-			#N/A	-	+
		2023	25	Phase II							<u> </u>	1	1			-	-		#N/A #N/A	-	+
		2028	30	Phase III Phase III															#N/A		+
		1	1	1 11a5C 111			1	1	-		+	+	+	 	 	-	 	!			+
																			#N/A		
																			#N/A #N/A		+

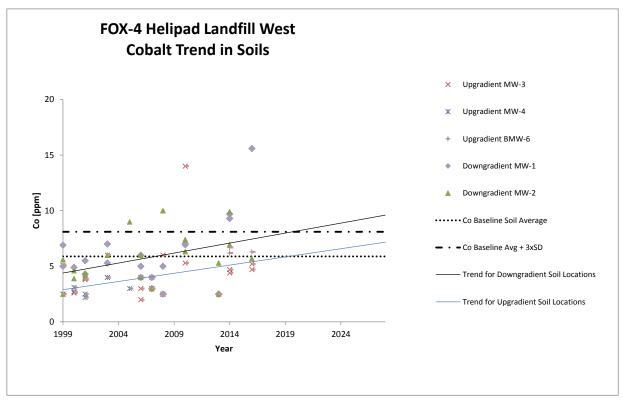
FOX-4 Cape Hooper - Helipad Landfill West - Summary of Soil Analytical Data**

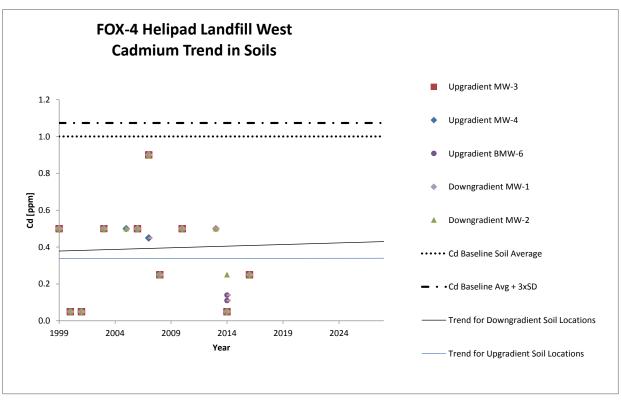
1011 Cape II	ooper - Henpad Lane	iiii west	Oummany	OI CON I HILL	y ticai Dat		,														
Sample ID	Location	Year	Monitoring Year	Monitoring Phase	Depth	Cu	Ni	Co	Cd	Pb	Zn	Cr	As	Hg	Total PCB	F1 C ₁₀	F2 C ₁₀ -C ₁₆	F3 C ₁₆ -C ₃₄	Modified TPH^ Total C6-C34	TPH !	Identity
					(cm)	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	% Fuel Oil	% Lube Oil
	MW-02 depth																		<u> </u>		
99-3735	MW-02	1999	1	Phase I	30	16	13	5.6	<1.0	<1.0	33	<u>46</u>	<u>58</u>	< 0.10	< 0.0030				49	100	0
FO-2-2	MW-02	2000	2	Phase I	40-50	14	12	3.9	< 0.10	3.0	30	27	<u>92</u>	< 0.050	< 0.0030				<100	n/a	n/a
FO-2-2	MW-02	2001	3	Phase I	40-50	11	15	4.4	< 0.10	3.0	28	23	<u>42</u>	< 0.050	< 0.010				<2.0	n.d	n.d
FOM-2-2	MW-02	2003	5	Phase I	40-50	15	13	6.0	<1.0	<1.0	33	<u>46</u>	21	< 0.040	< 0.0010	<10	<40	48	73		
MW-2(Soil)40-50cm	MW-02	2006	8	Phase II	40-50	21	21	6.0	<1.0	<1.0	32	33	12	< 0.040	< 0.10	60	920	60	1040		
MW-2(Soil)40-50cm	MW-02	2007	9	Phase II	40-50	13	12	3	0.9	<1.0	24	24	8	< 0.040	<0.10	99	3300	87	3486	4	
MW-2(Soil)40-50cm	MW-02	2008	10	Phase II	40-50	<u>34</u>	<u>35</u>	<u>10</u>	< 0.50	10	33	<u>49</u>	12	< 0.10	< 0.050	62	6800	764	7626		
10-16979/80	MW-02	2010	12	Phase II	30-40	15	14	6.3	<1.0	<1.0	32	37	21	< 0.10	< 0.0030	<4.0	17	<8.0	23		
13-27340/41	MW-02	2013	15	Phase II	30-40	18	17	5.3	<1.0	<1.0	32	43	16	< 0.10	< 0.050	25	970	120	1115		
F4-HEL-MW98-02-D	MW-02	2014	16	Phase II	40-50	34	<u>35</u>	9.9	< 0.10	10	<u>55</u>	<u>54</u>	42	< 0.050	< 0.010	100	1100	250	1450		
		2016	18	Phase II															#N/A		
		2018	20	Phase II															#N/A	'	
		2023	25	Phase II															#N/A		
		2028	30	Phase II															#N/A	'	
				Phase III															#N/A		
																			#N/A		
																			#N/A		
																			#N/A		
	F4-17 surface (prior to 2013	excavation)																			
F4-17	F4-17	2005	7	Phase II	0-5														#N/A		
F4-17(Soil) 0-15cm	F4-17	2006	8	Phase II	0-15											<12	10	10	26		
	F4-17 depth																				
F4-17(Soil) 40-45cm	F4-17	2006	8	Phase II	40-45											<12	10	<10	21		
	F4-18 surface																		1		
S-1-1	MW-1 d/g	2001	3	Phase I	0-15	22	21	6.8	< 0.10	15	44	35	42	< 0.050	< 0.010				#N/A	95	5
F4-18	F4-18	2005	7	Phase II	0-5											<12	1040	2220	3266	· '	
F4-18(Soil) 0-15cm	F4-18	2006	8	Phase II	0-15											<12	140	420	566	'	
	F4-18 depth																				
F4-18(Soil) 40-50cm	F4-18	2006	8	Phase II	40-50											97	420	50	567		
	F4-19 surface																		1		
F4-19(Soil)0-15cm	F4-19	2006	8	Phase II	0-15											<12	1670	430	2106		
	F4-19 depth																	1			
F4- 19(Soil)40-45cm	F4-19	2006	8	Phase II	40-45											66	2560	650	3276		
	F4-20 surface	•	•			•		•	•	•	•	•	•	•	•	•		-			
F4-20	F4-20	2005	7	Phase II	0-6											<12	<40	<40	46		
F4-20(Soil) 0-15cm	F4-20	2006	8	Phase II	0-15											<12	360	390	756		
, ,	F4-20 depth																	1	1		
F4-20(Soil)30-40cm	F4-20	2006	8	Phase II	30-40			1								96	6940	420	7456		

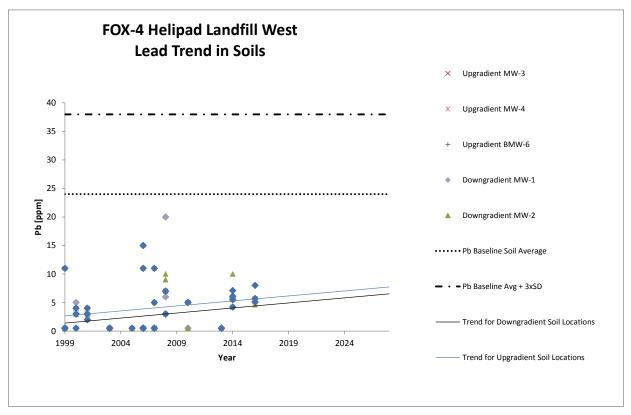

Note: Total Hydrocarbons (C_6 - C_{30}) has been calculated by adding results for F1, F2 and F3. ** The Helipad Landfill West underwent additional regrading in 2013.

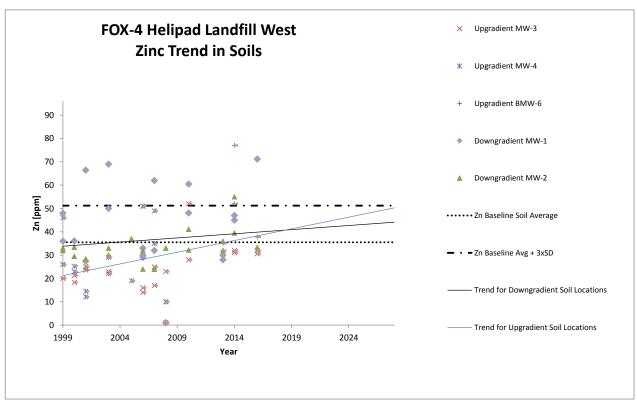

Legend

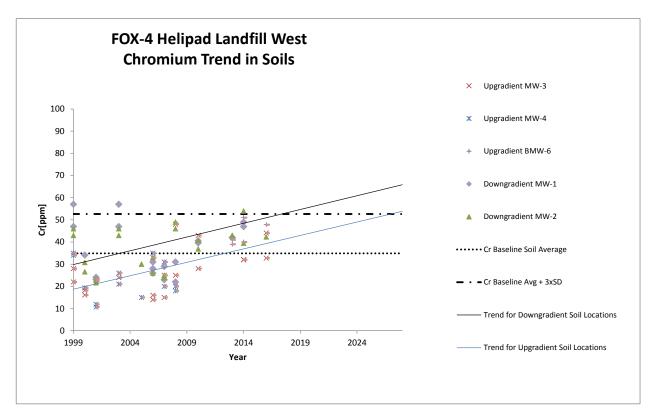
XX sample exceeds background
XX sample exceeds baseline
XX sample exceeds DLCU Tier I criteria
XX sample exceeds DLCU Tier II criteria

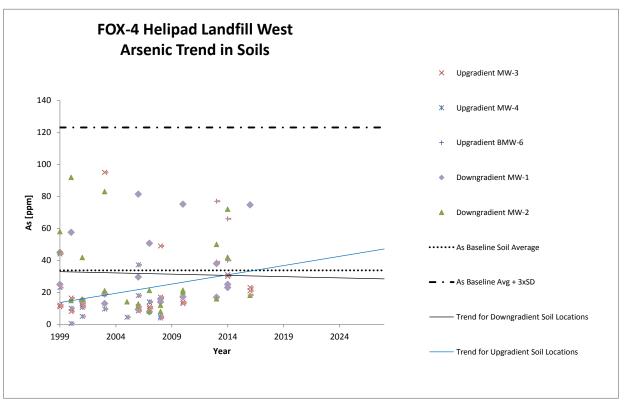

FOX-4 Helipad Landfill West Trends in Soil Inorganics, PCBs and PHCs (modified TPH)

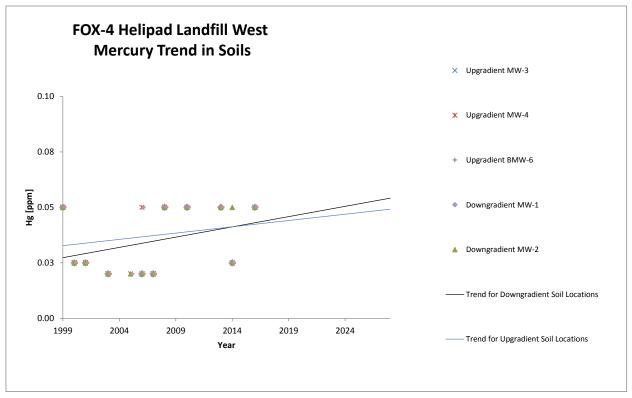

Where results are below detection, half of the detection limit has been used in the charts. Helipad Landfill West underwent additional regrading in 2013.



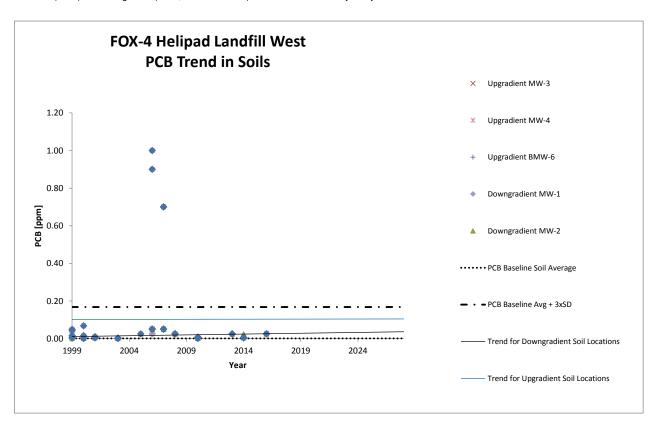

FOX-4 Helipad Landfill West Trends in Soil Inorganics, PCBs and PHCs (modified TPH)

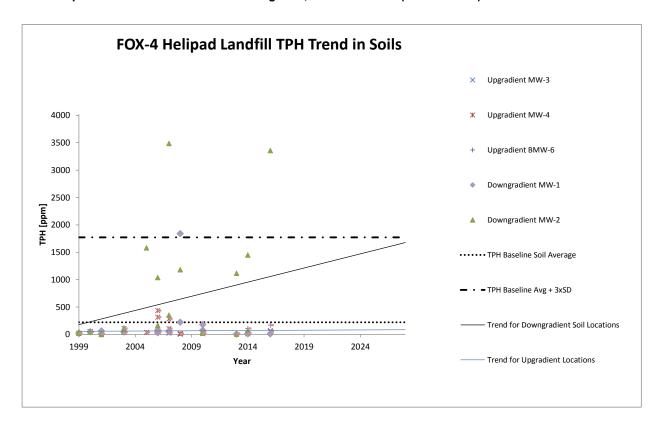



FOX-4 Helipad Landfill West Trends in Soil Inorganics, PCBs and PHCs (modified TPH)



FOX-4 Helipad Landfill West Trends in Soil Inorganics, PCBs and PHCs (modified TPH)

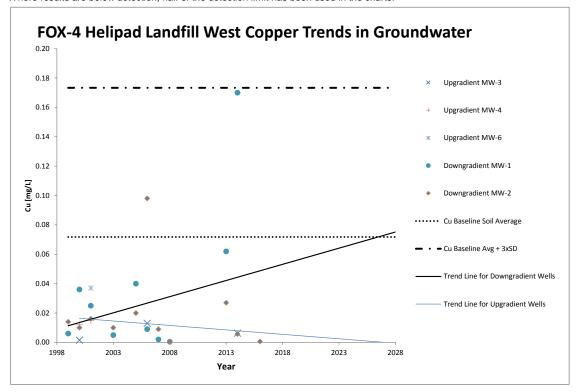


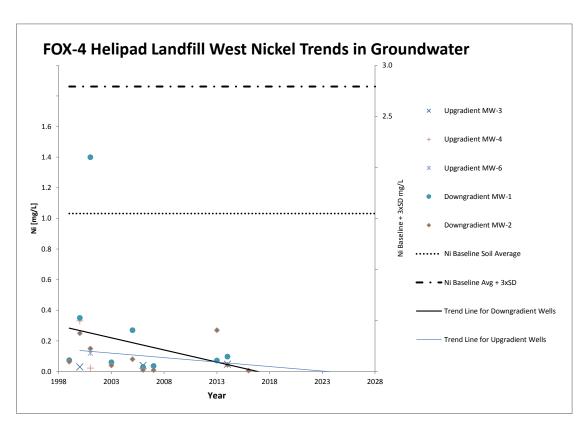

FOX-4 Helipad Landfill West Trends in Soil Inorganics, PCBs and PHCs (modified TPH)

Baseline (1998) and background (1992, 2010 and 2011) did not include mercury analysis for this landfill.

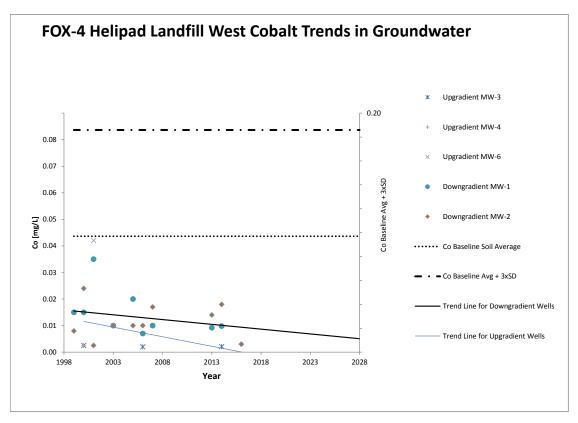
FOX-4 Helipad Landfill West Trends in Soil Inorganics, PCBs and PHCs (modified TPH)

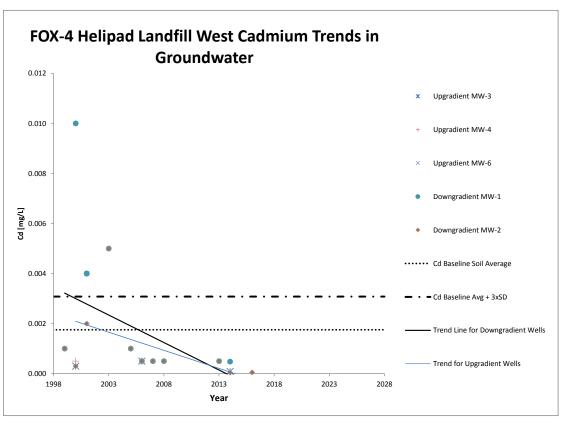
FOX-4 Cape Ho	oper - Heli	ipad Landfi	11 West - Su	ımmary of	Groundwa	ater Analyt	ical Data*	*												
Î	_			Monitoring											F1 C ₆ -C ₁₀	F2 C ₁₀ -C ₁₆	F3 C ₁₆ -C ₃₄	Modified TPH^ -		
Sample #	Location	Date	Monitoring Year	Phase	Cu	Ni	Co	Cd	Pb	Zn	Cr	As	Hg	Total	ri CgC ₁₀	r2 C ₁₀ -C ₁₆	rs C ₁₆ -C ₃₄	Modified TPH^ - Total C6-C34	ТРН І	identity
					[mg/L]	[mg/L]	[mg/L]	[mg/L]	[mg/L]	[mg/L]	[mg/L]	[mg/L]	[mg/L]	PCB [mg/L]	(mg/L)	(mg/L)	(mg/L)	[mg/L]	% Fuel Oil	% Lube Oil
Baseline Data																				
Upgradient- Helipad West													1			1	1	1		
WF4-MW3_98 WF4-MW4_98	MW-3 MW-4	1998 1998			0.026 0.048	0.98 0.42	0.03	0.0015 0.0012	0.0076 0.0130	0.14 0.05	0.7	0.0028 0.0079		<0.00001 0.00008				4.0		
WF4-MW6_98	MW-6	1998			0.096	2.00	0.13	0.0024	0.0095	0.30	1.9	0.0048		<0.00001				4.0		
Downgradient					0.083	0.97			0.034			0.037		0.00003						
WF4-MW1-98 WF4-MW2-98	MW-1 MW-2	1998 1998			0.083	0.97	0.028	0.0018 0.0018	0.034	0.12	1.5	0.037		0.00003				2.0		
																		7.0		-
		N value			5	5	5	5	5	5	5	5	0	5				5		
		Baseline Average Standard Deviation	-		0.072	1.03 0.587	0.044	0.0018	0.016	0.14	1.27 0.505	0.015		0.000026 0.000032				7.2 6.1		
	Average +	3xStandard Deviation	1		0.034	2.8	0.19	0.00	0.011	0.43	2.79	0.014		0.000032				25.4		
		Detection Limit			0.005	0.010	0.005	0.001	0.010	0.005	0.005	0.050	0.001	0.00001				5.0		
Monitoring Data																				
Upgradient - MW-3	MW-3	2000		DL. · · · T	<0.000	0.02	<0.005	0.0003	<0.000	0.12	0.007	<0.002	<0.004	<0.000005			1	Z0.1		
PO-3-1 MW-3	MW-3 MW-3	2000 2006	2 8	Phase II	<0.003	0.03	<0.005 0.002	0.0003 <0.001	<0.002 0.020	0.13 0.99	0.007	< 0.002	<0.001 <0.0002	<0.00025 <0.0001	< 0.025	< 0.1	<0.1	<0.1 0.113		
no sample taken	MW-3	2013																		
F4-HEL-MW98-03	MW-3	2014	16	Phase II	0.0063	0.048	0.0021	0.000086	0.0021	0.16	0.048	0.0025	< 0.00001	< 0.05	< 0.025	< 0.100	< 0.100	0.1125		
Not sampled - dry	MW-3	2016 2018	18 20	Phase II Phase II					 			 		1			1	#N/A #N/A		
		2018	25	Phase II Phase II								<u> </u>						#N/A		
		2028	30	Phase II														#N/A		
				Phase III														#N/A		
																		#N/A #N/A		
																		#14/11		
Upgradient - MW-4																				
PO-4-1	MW-4	2000	2	Phase I	0.012	0.33	< 0.005	0.0005	0.005	0.047	0.053	< 0.002	< 0.001	<0.000021						
PO-4-1 MW-4	MW-4 MW-4	2001 2006	3 8	Phase I Phase II	0.015	0.022	< 0.005	0.004	0.003	0.63	0.095	0.009	< 0.0001	< 0.00005				< 0.1		
Upgradient - MW-6		2000		T Hase II								1	1	1		ı	1	ı		
PO-6-1	MW-6	2001	3	Phase I	0.037	0.12	0.042	0.004	0.04	7.8	0.087	0.02	< 0.00010	< 0.000050				<1.0		
MW-6 no sample taken - well dry	MW-6 MW-6	2006 2013	8 15	Phase II Phase II														#N/A #N/A		
no sample taken - well dry	MW-6	2013	16	Phase II														#N/A		
Not sampled - dry	MW-6	2016	18	Phase II														#N/A		
		2018	20	Phase II														#N/A		
		2023 2028	25 30	Phase II Phase II								-						#N/A #N/A		
		2020	30	Phase III														#N/A		
																		#N/A		
D 11 107/14						1												#N/A		<u> </u>
Downgradient - MW-1 99-3813	MW-1	1999	1	Phase I	0.006	0.074	0.015	0.001	<1.0	0.17	0.014	< 0.05	< 0.001	< 0.00002			<u> </u>	< 5		
PO-1-1	MW-1	2000	2	Phase I	0.036	0.35	0.015	0.01	0.132	3.54	0.036	0.019	< 0.0010	< 0.000021				< 0.10		
PO-1-1	MW-1	2001	3	Phase I	0.025	1.4	0.035	0.004	0.07	4.8	0.027	0.03	< 0.00010	< 0.00005				< 0.1		<u> </u>
PO-1-1 MW-1	MW-1 MW-1	2003 2005	5 7	Phase II	<0.010 0.04	0.06 0.27	0.01	<0.010 0.001	<0.010 0.09	0.28 0.42	0.01	<0.010 0.02	<0.00020 <0.00020	1			1	0.43 <5.0		
MW-1	MW-1	2005	8	Phase II	0.009	0.03	0.02	< 0.001	0.09	0.42	0.47	0.002	<0.00020	< 0.0001				<0.10		
MW-1	MW-1	2007	9	Phase II	0.002	0.036	0.01	< 0.0010	0.003	0.39	0.005	0.002	< 0.00010							
MW-1	MW-1	2008	10	Phase II	< 0.0010	0.072	0.0000	< 0.0010	< 0.0010	<0.020	< 0.050	< 0.010	< 0.00010	< 0.000050				< 0.20		
13-27355 F4-HEL-MW98-01	MW-1 MW-1	2013 2014	15 16	Phase II Phase II	0.062 0.17	0.072	0.0092	<0.0010	<0.0010 0.0018	0.28 0.38	0.079	0.0044 0.0016	<0.00040	<0.0030 <0.05	0.041	< 0.100	< 0.100	<0.050 0.141		+
Not sampled - dry	MW-1	2016	18	Phase II	0.17	0.027	0.0070	0.00010	0.0010	0.50	0.000	0.0010	-0.00001	-0.03	0.011	-0.100	-0.100	#N/A		
		2018	20	Phase II														#N/A		
		2023	25 30	Phase II					 			 						#N/A #N/A		
		2028	30	Phase III								 		1			1	#N/A #N/A		
				* 118.0C ***														#N/A		
																		#N/A		$\perp = -$
Downgradient - MW-2 99-3814	MW-2	1999	1	Phase I	0.014	0.064	0.008	0.001	< 0.010	0.053	0.012	< 0.050	< 0.0010	< 0.000050				<5.0		
99-3814 PO-2-1	MW-2 MW-2	2000	2	Phase I Phase I	0.014	0.064	0.008	0.001	<0.010 0.01	0.053	0.012	0.004	<0.0010	<0.000050			1	< 5.0 0.65		+
PO-2-1	MW-2	2001	3	Phase I	0.016	0.15	< 0.005	0.002	0.1	0.47	0.02	0.02	< 0.00010	< 0.000050			<u> </u>	0.81		
PO-2-1	MW-2	2003	5	Phase I	0.01	0.04	0.01	< 0.010	< 0.010	0.1	0.01	0.01	< 0.00020					2.6		
MW-2 MW-2	MW-2 MW-2	2005 2006	7 8	Phase II Phase II	0.02 0.098	0.08	0.01	0.001 <0.001	0.01 0.01	0.39 0.58	0.07	0.03 0.014	<0.00020 <0.00020	< 0.0001			1	0.96		
MW-2 MW-2	MW-2 MW-2	2006	9	Phase II Phase II	0.098	0.009	0.017	< 0.001	0.001	0.08	0.009	0.014	<0.00020	\0.0001				0.732		
MW-2	MW-2	2008	10	Phase II	< 0.0010			< 0.0010	< 0.0010	0.0214	< 0.050	< 0.010	< 0.00010	< 0.000050				0.869		
13-27356	MW 02	2013	15	Phase II	0.027	0.27	0.014	< 0.0010	< 0.0010	0.14	0.45	0.065	< 0.00040	< 0.0030				1.08		1

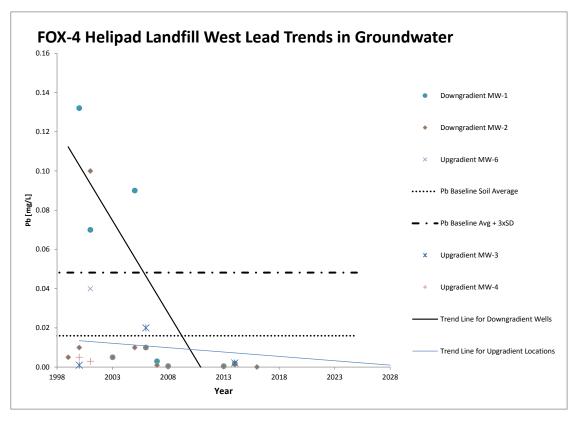

FOX-4 Cape I	DX-4 Cape Hooper - Helipad Landfill West - Summary of Groundwater Analytical Data**																			
Sample #	Location	Date	Monitoring Year	Monitoring Phase	Cu	Ni	Со	Cd	Pb	Zn	Cr	As	Нg	Total	F1 C _{6*} C ₁₀	F2 C ₁₀ -C ₁₆	F3 C ₁₆ -C ₃₄	Modified TPH^ - Total C6-C34	TPH I	Identity
					[mg/L]	[mg/L]	[mg/L]	[mg/L]	[mg/L]	[mg/L]	[mg/L]	[mg/L]	[mg/L]	PCB [mg/L]	(mg/L)	(mg/L)	(mg/L)	[mg/L]	% Fuel Oil	% Lube Oil
F4-HEL-MW98-02	MW-2	2014	16	Phase II	0.0057	0.043	0.018	0.000042	0.0013	0.034	0.067	0.027	< 0.00001	< 0.05	0.4	0.94	< 0.100	1.39		
MW98-02	MW-2	2016	18	Phase II	0.0006	0.006	0.003	< 0.0001	0.0001	0.09	< 0.001	0.004	< 0.0001	< 0.00005	0.395	< 0.100	< 0.100	0.495		
		2018	20	Phase II														#N/A		
		2023	25	Phase II														#N/A		
		2028	30	Phase II														#N/A		
				Phase III														#N/A		
																		#N/A		
																		#N/A		

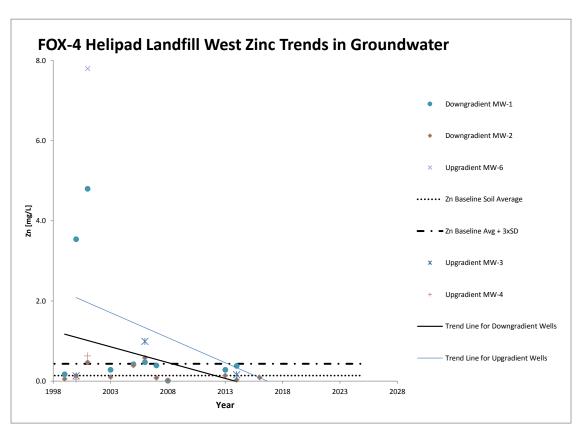

Note: Total Hydrocarbons (C_6 - C_{54}) has been calculated by adding results for F1, F2 and F3. ** The Helipad Landfill West underwent additional regrading in 2013.

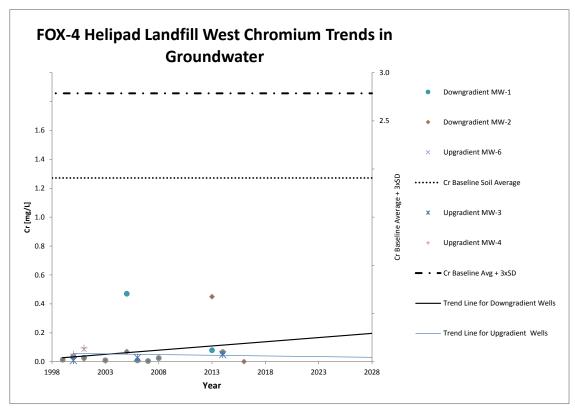
Legend XX Sample exceeds Baseline Average

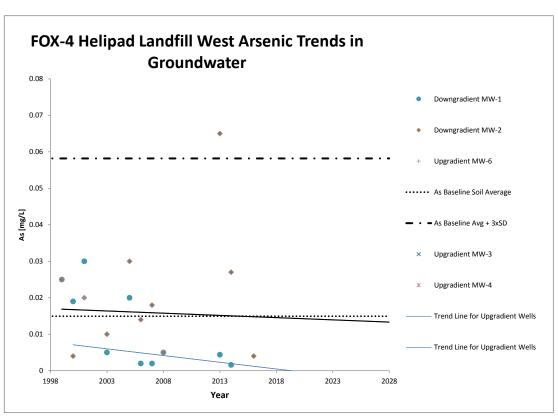

FOX-4 Helipad Landfill West Graphs of Trends for Inorganic Elements, PCBs and TPH in Groundwater Samples

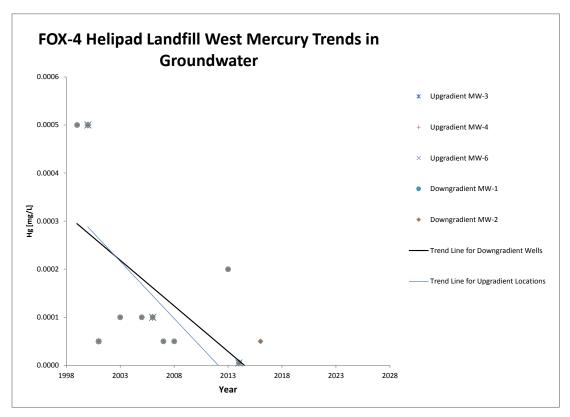

Where results are below detection, half of the detection limit has been used in the charts.




FOX-4 Helipad Landfill West Graphs of Trends for Inorganic Elements, PCBs and TPH in Groundwater Samples



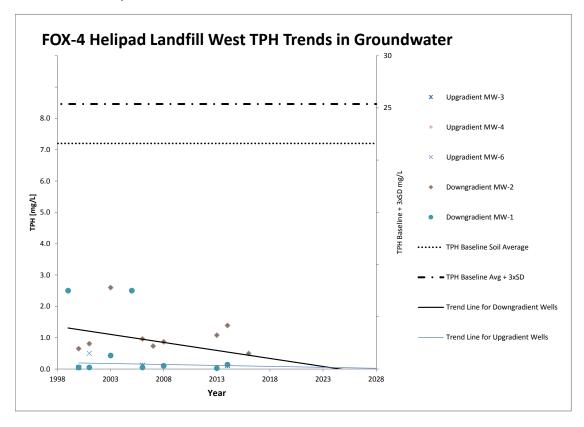

FOX-4 Helipad Landfill West Graphs of Trends for Inorganic Elements, PCBs and TPH in Groundwater Samples



FOX-4 Helipad Landfill West Graphs of Trends for Inorganic Elements, PCBs and TPH in Groundwater Samples



FOX-4 Helipad Landfill West Graphs of Trends for Inorganic Elements, PCBs and TPH in Groundwater Samples


Mercury was not analyzed in 1998 Baseline samples.

Mercury results were below detection in monitoring groundwater samples up to 2014. Trendlines reflect changes in detection limits

PCB results in groundwater have been below detection. Trendlines reflect changes in detection limits.

FOX-4 Helipad Landfill West Graphs of Trends for Inorganic Elements, PCBs and TPH in Groundwater Samples

FOX-4 Cape Hoop	per - Station Area l	Landfill - Su	ımmary of 19	99-2028 Soil	Analytical D	ata**															
Sample #	Location	Year	Monitoring Year	Monitoring Phase	Depth (cm)	Cu [mg/kg]	Ni [mg/kg]	Co [mg/kg]	Gd [mg/kg]	Pb [mg/kg]	Zn [mg/kg]	Cr [mg/kg]	As [mg/kg]	Hg [mg/kg]	Total PCB [mg/kg]	F1 C ₆ -C ₁₀ [mg/kg]	F2 C ₁₀ -C ₁₆ [mg/kg]	F3 C ₁₆ -C ₃₄ [mg/kg]	Modified TPH^ - Total C6-C34 [mg/kg]	TPH	dentity % Lube Oil
Background Data - Avera Baseline Data - Average	ige					30 17	24 20	8.8 5	1.00 0.12	10.0 26	41 35	41 28	28.6 13		0.16	1	1		53	n/a	n/a
Baseline Data - Standard	Deviation					6	14.8	0.9	0.05	4	6	8	3		0.14				30	n/ a	11/ a
Baseline average + 3xStanda Detection Limit	ard Deviation					35 3.0	64 5.0	7.7 5.0	0.3 1.0	37 10	53 15	50 20	23 0.20	0.10	0.6				144 40		
DEW Line Cleanup Tie	er I Criteria									200					f						
DEW Line Cleanup Tie	er II Criteria & site spec	cific As criteria				100	100	50	5	500	500	250	130	2.0	5				2500		
Monitoring Data Upgradient																					
99-3737	MW-7 surface MW-7	1999	1	Phase I	0	<u>69</u>	15	<5.0	<1.0	64	71	<u>50</u>	9.7	< 0.10	0.13				< 40	n/a	n/a
FO.7-1 FO.7-1 FO.M-7-1 MW-7 MW-7 (Soil) 0-15 cm MW-7(Soil) 0-15 cm MW-	MW-7 MW-7 MW-7 MW-7 MW-7 MW-7 MW-7 MW-7	2000 2001 2003 2005 2006 2008 2010 2013 2014 2016 2018 2023 2028	2 3 5 7 8 10 12 15 16 18 20 25 30	Phase I Phase I Phase II	0-15 0-15 0-15 0-15 0-8 0-15 0-15 0-10 0-10 0-10 0-15 0-15	54 17 11 50 11 47 45 32 50 21.8	32 11 10 17 10 21 21 22 30 17.2	6.3 3.4 4.0 7.0 3.0 6.0 5.6 5.5 7.8 5.2	1.0 <0.10 <0.10 <1.0 <1.0 <1.0 <1.0 <1.0	27 12 <1.0 43 <1.0 40 39 13 23 9	80 28 22 52 20 48 48 57 35	41 19 37 20 41 31 43 61 40.3	17 12 19 17 11 20 11 26 33 17.3	<.0.050 <0.050 <0.040 <0.040 <0.040 <0.10 <0.10 <0.10 <0.10 <0.05 <0.05 <0.05	0.12 6.2 0.021 0.10 <0.10 0.050 0.05 0.04 0.032 <0.05	<1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <7	<40 <40 <1.0 <1.0 <1.0 4.3 5.3 <10 21	44 390 30 170 20 12 28 913	<100 11 15 65 411 171 25 22 38 938 #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A	n/a 95	5
99-5759 n/s FO.7-2 FO.7-2 TOM.7-2 MW-7 (Soil) 40-50 cm MW-7(Soil) 40-50 cm 13-27319/20 F4-STA-MW98-07-D Not sampled - refusal	MW-7 depth MW-7 MW-7 MW-7 MW-7 MW-7 MW-7 MW-7 MW-7	1999 2000 2001 2003 2006 2008 2010 2013 2014 2014 2018 2023 2023	1 2 3 5 5 8 10 12 15 16 16 18 20 25 30	Phase I Phase I Phase I Phase II	30 40-50 40-50 40-50 40-50 40-50 30-40 30-40 40-50	410 14 32 18 53 35 32 64	24 15 23 14 32 21 22 43	6.5 3.7 8.0 4.0 8.0 7.4 <5.0 10.8	<1.0 <0.10 <0.10 <0.10 <1.0 <1.0 <1.0 <1	11 4.0 <1.0 <1.0 24 17 13 5.85	42 25 39 24 46 50 48 57	61 23 49 28 61 45 31 67-5	20 22 23 13 24 16 14 45.5	<0.10 <0.040 <0.040 <0.040 <0.10 <0.10 <0.10 <0.10	0.019 6.19 <0.0010 <0.010 <0.050 0.017 <0.050 <0.05	<1.0 <1.0 <1.0 <1.0 <1.0 <10 <10	<40 <1.0 <1.0 <1.1 7.1 4.8 <10	<40 230 180 39 14 <50	#N/A < 40 54 41 231 181 47 24 35 #N/A #N/A #N/A #N/A #N/A #N/A	n/a 95	n/a 5.0
99-3741 FO.8-1 FO.8-1 FO.8-1 FO.8-1 FO.8-1 WW-8 (Soil) 0-15 cm MW-8 (Soil) 0-15 cm MW-	MW-8 surface MW-8 MW-8 MW-8 MW-8 MW-8 MW-8 MW-8 MW-8	1999 2000 2001 2003 2005 2006 2008 2010 2013 2014 2014 2018 2023 2028	1 2 3 5 5 7 7 8 8 10 12 15 16 18 20 25 30	Phase I Phase I Phase I Phase I Phase II	0 0-15 0-15 0-15 0-10 0-15 0-10 0-15 0-10 0-15 0-15	14 16 12 13 11 11 13 19 12 10 16 11	11 12 12 11 11 9.0 10 10 11 14 11.9	<5.0 4.3 3.7 4.0 4.0 4.0 <5.0 <5.0 <5.0 4.0 3.8	<1.0 <0.10 <0.10 <0.10 <0.10 <1.0 <1.0 <	<1.0 5.0 4.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 5.0 3.0 <1.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3	34 39 33 22 29 20 21 40 23 30 21	28 25 20 21 20 20 19 29 23 25 28 23.7	10 14 12 12 6.6 10 17 7.5 21 21 16.3	<0.10 <0.050 <0.050 <0.050 <0.040 <0.040 <0.040 <0.010 <0.010 <0.010 <0.10 <0.10 <0.10	0.080 0.12 0.26 <0.0010 <0.050 <0.050 <0.050 0.0060 <0.056 1.46	<1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <7	<40 < 40 10 <1.0 5.5 3.4 10 <4	<40 < 40 150 37 15 9,5 <10 < 8	<40 <100 <20 41 41 161 38 21 18 20 10 #N/A #N/A #N/A #N/A #N/A #N/A	n/a n/a n/a n/a	n/a n/a n/a n/a
99-3743 FO-8-2 FO-8-2 FO-8-2 FO-M-8-2 MW-8 (Soil) 40-50 cm MW-8 (Soil) 40-50 cm 10-10947/48 13-27:23/24 H-3T3-AWW-8-08-D MW98-08a	MW-8 depth MW-8 MW-8 MW-8 MW-8 MW-8 MW-8 MW-8 MW-8 MW-8 MW-8 MW-8	1999 2000 2001 2003 2006 2008 2010 2013 2014 2016 2018 2023 2028	1 2 2 3 3 5 8 10 112 115 116 118 20 225 30	Phase I Phase I Phase I Phase I Phase I Phase II	30 40-50 40-50 40-50 40-50 40-50 40-50 30-40 30-40 30-40 30-40	17 17 11 15 15 17 16 15 12 8.7	16 12 14 14 12 12 12 9.2 13 14 9.5	<5.0 3.5 4.3 5 3.0 <5.0 <5.0 4.0 3.2	<1.0 <0.10 <0.10 <0.10 <0.10 <1.0 <0.050 <1.0 <1.0 <0.050 <1.0 <0.10 <0.10	<1.0 4.0 3.0 70 <1.0 7.0 <1.0 7.0 <1.0 4.0 2.5	42 27 30 27 20 <2.0 27 38 32 20.3	36 25 24 24 22 21 26 24 28 32 21.7	19 11 37 12 11 11 11 8.3 16 20 14.5	<0.10 <0.050 <0.050 <0.040 <0.040 <0.040 <0.10 <0.10 <0.15 <0.15 <0.050	0.019 0.053 0.060 <0.0010 <0.010 <0.050 0.019 0.19 0.19	<1.0 <1.0 <1.0 <1.0 <1.0 <10 <7	<40 <1.0 <1.0 <1.0 4.4 4.9 <10 <4	<40 30 42 37 5.5 <10 <8	#N/A 150 <100 <100 25 41 31 43 42 15 15 10 #N/A #N/A #N/A #N/A #N/A #N/A #N/A	100 n/a 95	0 n/a 5.0

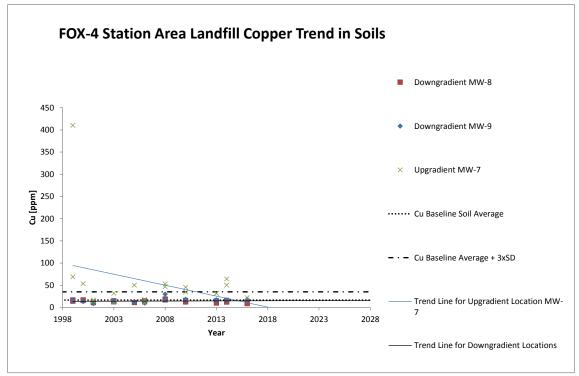
								1				1			1	1		1	1		
																F1 C ₆ -C ₁₀	F2 C ₁₀ -C ₁₆	F3 C ₁₆ -C ₃₄			
c 1 #			N N	3.6	D 4		Ni	_	61	***		_			25 - 1 pcm	F1 C6-C10	F2 G09-G16	F5 Gg-G4	Modified TPH^ -		
Sample #	Location	Year	Monitoring Year	Monitoring Phase	Depth	Cu	Ni	Co	Cd	Pb	Zn	Cr	As	Hg	Total PCB				Total C6-C34	TPH I	dentity
					(cm)	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	% Fuel Oil	% Lube Oil						
	MW-9 surface																				
99-3745	MW-9	1999	1	Phase I	0	15	11	< 5.0	<1.0	<1.0	29	32	<u>36</u>	< 0.10	0.20				68	100	0
FO-9-1	MW-9	2000	2	Phase I	0-15	14	13	4.1	< 0.10	5.0	29	21	<u>46</u>	< 0.050	0.35				<100	n/a	n/a
FO-9-1	MW-9	2001	3	Phase I	0-15	11	13	4.3	< 0.10	4.0	53	20	19	< 0.050	0.080				<20	n/a	n/a
FOM-9-1	MW-9	2003	5	Phase I	0-15	15	13	6.0	< 0.10	<1.0	40	29	15	< 0.040	0.12	<1.0	<40	<40	41		
MW-9	MW-9	2005	7	Phase II	0-11	11	9.0	4.0	<1.0	<1.0	25	21	6.7	< 0.040	2.9	<1.0	< 40	< 40	41		1
MW-9 (Soil) 0-15 cm	MW-9	2006	8	Phase II	0-15	11	10	3.0	<1.0	<1.0	20	22	61	< 0.040	< 0.10	<1.0	10	<1.0	11		
MW-9(Soil)0-15cm	MW-9	2008	10	Phase II	0-15	17	12	< 5.0	< 0.050	7.0	< 2.0	30	18	< 0.10	0.17	<1.0	36	56	93		
10-16949/50	MW-9	2010	12	Phase II	0-10	18	8.6	5.83	<1.0	<1.0	39	32	14	< 0.10	0.053	<1.0	6.1	13	20		
13-27327/28	MW-9	2013	15	Phase II	0-10	15	12	< 5.0	<1.0	<10	41	28	10	< 0.10	0.07	<10	4.1	6.9	16		
F4-STA-MW98-09-S	MW-9	2014	16	Phase II	0-15	16	12	3.7	< 0.10	8	35	25	14	< 0.050	0.1	<10	<10	<10	15		
MW98-09a	MW-9	2016	18	Phase II	0-15	18.3	13.3	4.6	< 0.5	6.1	33.3	29.2	13.8	< 0.1	0.08	<7	<4	<8	10		
		2018	20	Phase II															#N/A		1
		2023	25	Phase II															#N/A		
		2028	30	Phase II															#N/A		
				Phase III															#N/A		1
																			#N/A		
																			#N/A		
																			#N/A		
	MW-9 depth																				
99-3747	MW-9	1999	1	Phase I	30	15	11	< 5.0	<1.0	<1.0	22	25	<u>38</u>	< 0.10	0.33				75	100	0
FO-9-2	MW-9	2000	2	Phase I	40-50	14	13	4.8	< 0.10	4.0	34	25	15	< 0.050	0.13				<100	n/a	n/a
FO-9-2	MW-9	2001	3	Phase I	40-50	9	11	3.5	< 0.10	4.0	26	21	11	< 0.050	0.21				<20	n/a	n/a
FOM-9-2	MW-9	2003	5	Phase I	40-50	12	11	5.0	< 0.10	<1.0	31	32	170	< 0.040	0.10	<1.0	<40	<40	41		
MW-9 (Soil) 40-45 cm	MW-9	2006	8	Phase II	40-45	10	10	3.0	<1.0	<1.0	18	22	25	< 0.040	< 0.10	<1.0	<1.0	<1.0	2		
MW-9(Soil)40-50cm	MW-9	2008	10	Phase II	40-50	30	8.7	7.0	< 0.050	6.0	37	<u>65</u>	15	< 0.10	0.050	<1.0	<1.0	29	30		
10-16951/52	MW-9	2010	12	Phase II	30-40	17	6.6	7.82	<1.0	<1.0	51	47	26	< 0.10	0.056	<1.0	17	30	48		1
13-27329/30	MW-9	2013	15	Phase II	40-50	17	13	<5.0	<1.0	<10	32	33	11	< 0.040	0.07	<10	6.4	145	156		
F4-STA-MW98-09-D	MW-9	2014	16	Phase II	40-50	16	13	3.9	< 0.10	6	28	26	<u>66</u>	< 0.050	0.15	<10	<10	<10	15		
Not sampled - refusal	MW-9	2016	18	Phase II															#N/A		
	ļ	2018	20	Phase II															#N/A		$\overline{}$
		2023	25	Phase II											ļ				#N/A		
	l	2028	30	Phase II											-				#N/A		
	ļ			Phase III						1					-	-	1		#N/A		
ļ						ļ													#N/A		
	ļ																		#N/A		
L																1			#N/A		

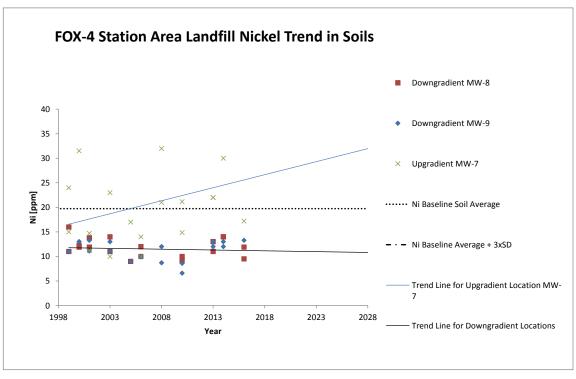
Note: Total Hydrocarbons (C₆-C₅₄) has been calculated by adding results for F1, F2 and F3.

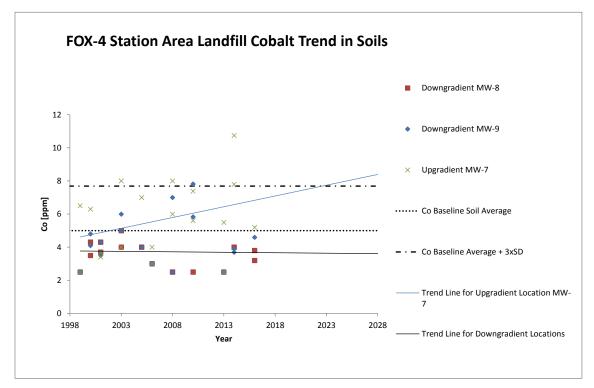
** Additional regrading of the Station Landfill occurred in 2013.

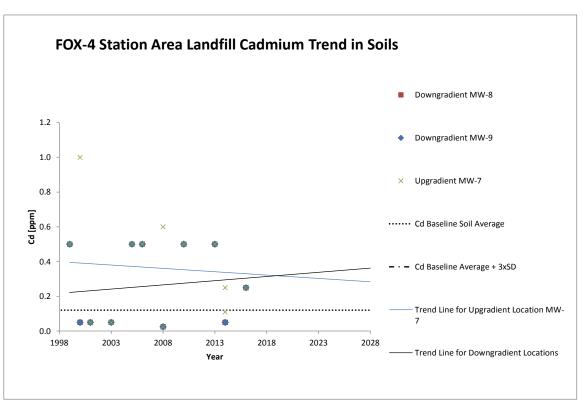
egend

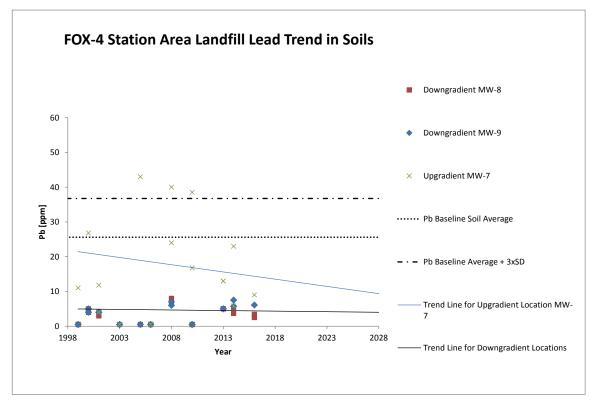
XX sample exceeds background

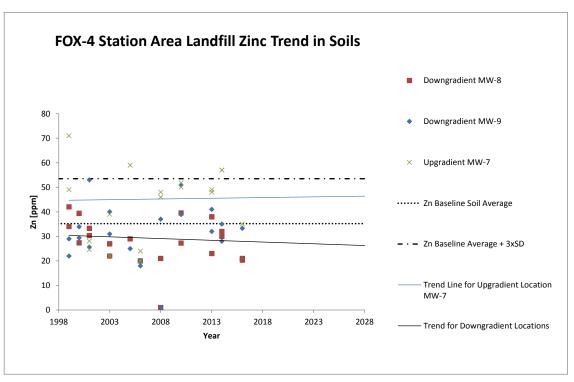

XX sample exceeds baseline

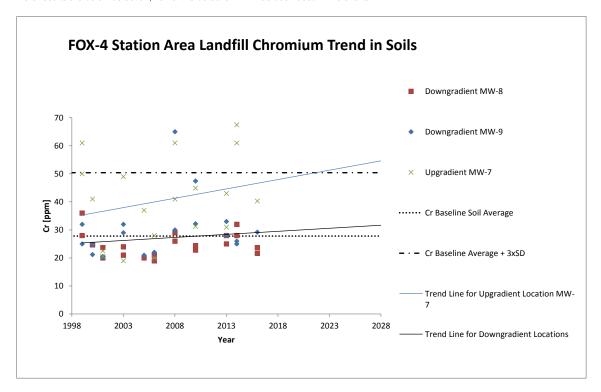

XX sample exceeds DLCU Ter I enteria

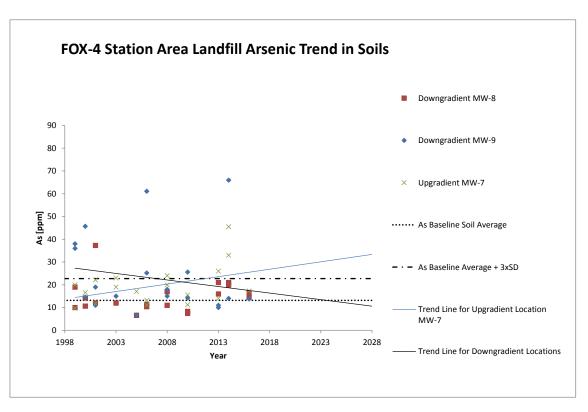

XX sample exceeds DLCU Ter II enteria

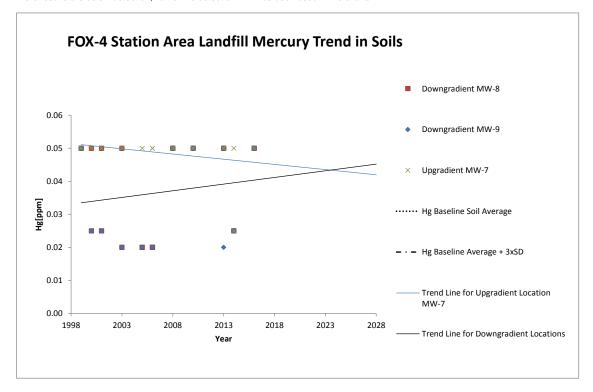

FOX-4 Station Area Landfill Trends in Soil Inorganics, PCBs and PHCs (modified TPH)

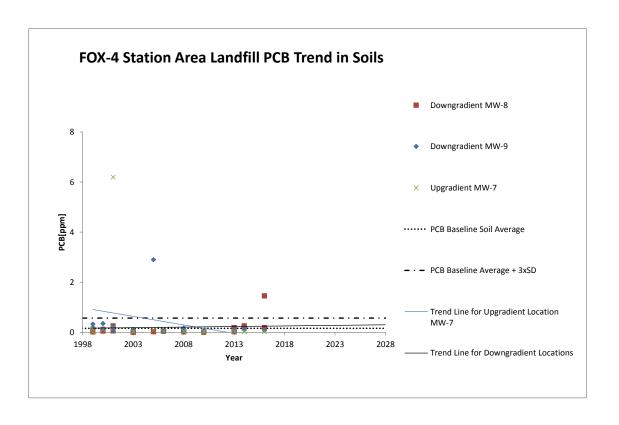

Where results are below detection, half of the detection limit has been used in the charts.

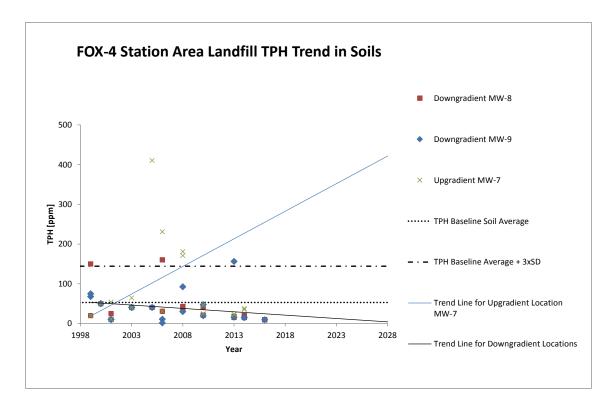


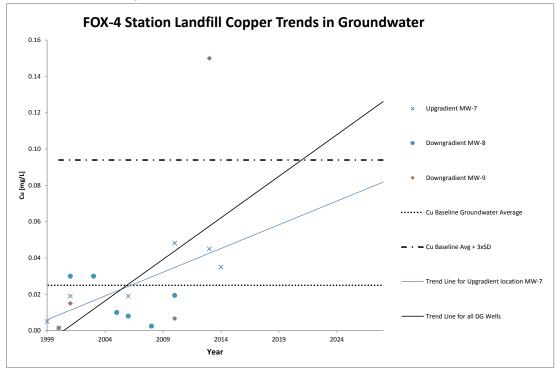


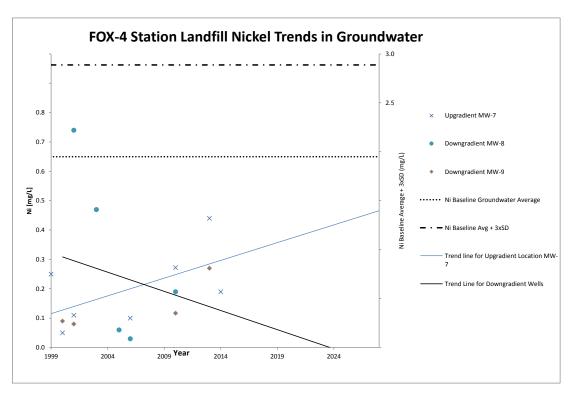




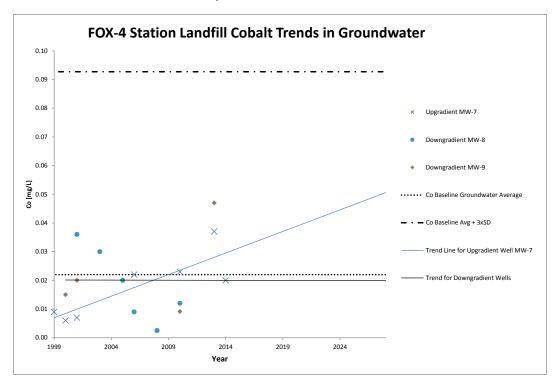


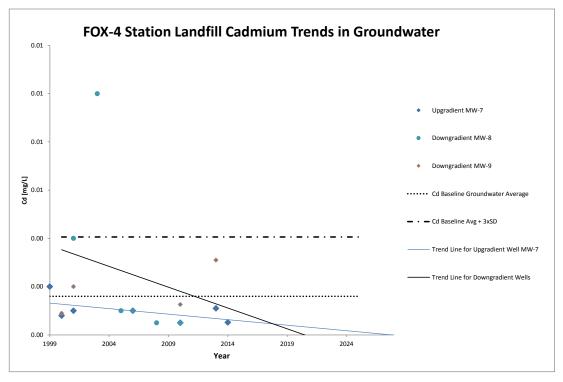


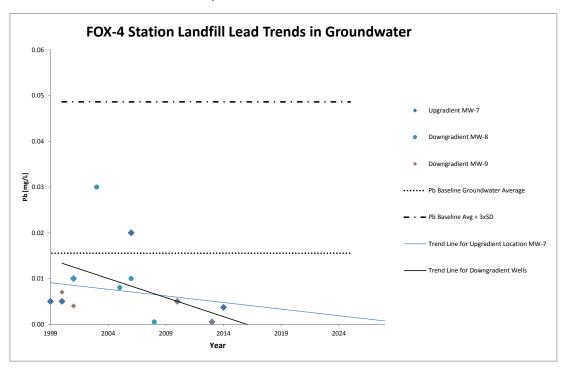

FOX-4 Station Area Landfill Trends in Soil Inorganics, PCBs and PHCs (modified TPH) Where results are below detection, half of the detection limit has been used in the charts.

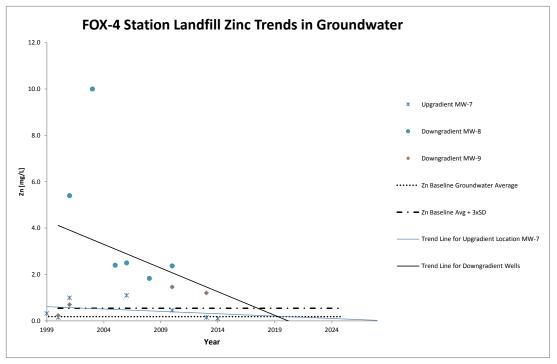


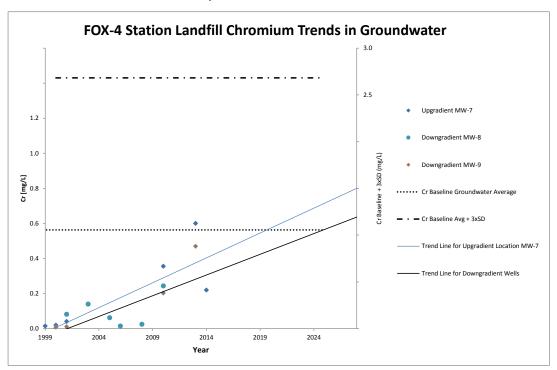
																F2 C _{tot}	F3 C _w -			
Sample #	Location	Year	Monitoring Year	Monitoring Phase	Cu	Ni	Co	Cd	Pb	Zn	Cr	As	Hg	Total PCB	F1 C ₆ -C ₁₀	C ₁₆	C _M	Modified TPH^ - Total C6-C34	TPH	Identity
					[mg/L]	[mg/L]	[mg/L]	[mg/L]	[mg/L]	[mg/L]	[mg/L]	[mg/L]	[mg/L]	[mg/L]	[mg/L]	[mg/L]	[mg/L]	[mg/L]	% Fuel Oil	% Lube (
Baseline Data		II	1					l				I .		L				[HIQ/ 1.1]	/01 dei Oii	/o Labe (
Upgradient:																				
WF4-MW-7-98	BMW 07	1998			0.020	0.19	0.0078	0.0021	0.027	0.10	0.31	0.0020		0.000021				2.0		
WF4-MW7-98 Downgradient:	BMW 07	1999	1		0.0050	0.25	0.0090	0.0020	< 0.010	0.32	0.015	< 0.050	< 0.0010	< 0.000020				<5.0	l .	-
WF4-MW9-98	MW-9	1998			0.050	1.5	0.049	0.00066	0.015	0.12	1.4	0.014		0.000038						
		N value			3	3	3	3	3	3	3	3	1	3				2		
		Average Standard Deviation	1		0.025	0.65	0.022	0.0016	0.016 0.0110	0.2	0.56 0.71	0.050 0.012	0.001	0.0002				5.0	1	
	_	Standard Deviation	1		0.023	2.9	0.024	0.001	0.049	0.5	2.7	0.012		0.000				6.1		
		Detection Limit			0.0050	0.010	0.0050	0.0010	0.010	0.0050	0.0050	0.050	0.0010	0.0030				1.0		
Monitoring Data Upgradient - MW-7															T TDIT		1 F1, F2, F3 fra		1	
Upgradient - MW-/ 99-3815	BMW 07	1999	1	Phase I	0.005	0.25	0.009	0.002	< 0.01	0.32	0.015	< 0.005	< 0.001	< 0.00002	10tai 1PH W	iii appear whei	1 F1, F2, F3 fra	< 5	cred	
PO-7-1	BMW 07	2000	2	Phase I	< 0.003	0.25	0.009	0.002	0.005	0.32	0.013	<0.003	< 0.001	< 0.000025				<0.1		
PO-7-1	BMW 07	2001	3	Phase I	0.019	0.11	0.007	0.001	0.010	0.99	0.041	0.01	< 0.0001	< 0.00005				<0.1		
n/s	BMW 07	2003	5	Phase I																
MW-7	BMW 07 BMW 07	2006 2008	8 10	Phase II Phase II	0.019	0.100	0.022	0.001	0.02	1.1	0.014	0.002	< 0.0002	< 0.0001				<0.1		-
10-18408	BMW 07	2010	12	Phase II	0.048	0.27	0.023	< 0.0010	< 0.010	0.45	0.36	< 0.0030	< 0.0040	< 0.000020				<1.0		-
13-27353	BMW 07	2013	15	Phase II	0.045	0.44	0.023	0.0011	< 0.0010	0.15	0.60	< 0.0030	< 0.0040	< 0.0030	< 0.05	< 0.5	<1.0	0.775		
F4-STA-MW98-07	BMW 07	2014	16	Phase II	0.04	0.19	0.02	0.0005	0.0037	0.10	0.22	0.0015	< 0.00001	< 0.00005	< 0.025	< 0.100	< 0.100	0.113		
Not sampled - dry	BMW 07	2016	18	Phase II														#N/A		
		2018	20	Phase II														#N/A		
		2023 2028	25 30	Phase II Phase II														#N/A #N/A	1	
		2020	30	Phase III														#N/A	-	
																		#N/A		
																		#N/A		
Downgradient - MW-8	MW-8	2001	3	T 70 T	0.00	0.74	0.026	0.004	0.04	5.4	0.004	0.04	10,0004	-0.00005				0.01		1
PO-8-1 PO-8	MW-8	2003	5	Phase I Phase I	0.03	0.74	0.036	0.004	0.01	10	0.082	0.01	<0.0001	<0.00005				0.24		-
MW-8	MW-8	2005	7	Phase II	0.01	0.06	0.02	0.001	0.008	2.4	0.062	0.006	< 0.0002	<0.0030				< 0.05		
MW-8	MW-8	2006	8	Phase II	0.008	0.030	0.009	0.001	0.010	2.5	0.015	0.003	< 0.0002	< 0.0001				< 0.1		
MW-8	MW-8	2008	10	Phase II	< 0.005		< 0.005	< 0.0010	< 0.0010	1.8	< 0.050	< 0.010	< 0.00010	< 0.000050				0.22		
10-18407	MW-8	2010 2013	12 15	Phase II Phase II	0.019	0.19	0.012	< 0.0010	< 0.010	2.4	0.24	< 0.0030	< 0.0040	< 0.000020				<1.0 #N/A		-
not sampled No sample collected - well w		2013	16	Phase II														#N/A		
Not sampled - dry	MW-8	2014	18	Phase II														#N/A		
Not sampicu - ury	MW-0	2018	20	Phase II														#N/A		
		2023	25	Phase II														#N/A		
		2028	30	Phase II														#N/A		
				Phase III														#N/A		
																		#N/A #N/A		1
Downgradient - MW-9		1	-					l		l		I	L			L	L	#N/A		
PO-8-1	MW 09	2000	2	Phase I	< 0.003	0.09	0.015	0.0009	0.0070	0.23	0.0080	0.0080	< 0.001	< 0.00003				< 0.1		
PO-9-1	MW 09	2001	3	Phase I	0.015	0.08	0.02	0.0020	0.0040	0.7	0.011	0.02	< 0.0001	< 0.00005				< 0.1		
n/s	MW 09	2003	5	Phase I																1
MW-9	MW 09 MW 09	2006 2008	8 10	Phase II Phase II										1						-
10-18406	MW 09	2008	10	Phase II Phase II	0.0067	0.12	0.0091	0.0013	< 0.010	1.5	0.20	< 0.0030	< 0.0040	< 0.000020				<1.0		
13-27354	MW 09	2010	15	Phase II	0.0067	0.12	0.0091	0.0013	< 0.0010	1.2	0.470	0.0030	< 0.0040	< 0.000020	< 0.05	< 0.5	<1.0	0.775		<u> </u>
No sample collected - well w		2013	16	Phase II	****		*****											#N/A		
Not sampled - frozen	MW 09	2016	18	Phase II														#N/A		
		2018	20	Phase II														#N/A		
		2023	25	Phase II														#N/A		
		2028	30	Phase II								-		1				#N/A	-	₩
		1	1	Phase III								-		1				#N/A #N/A	-	

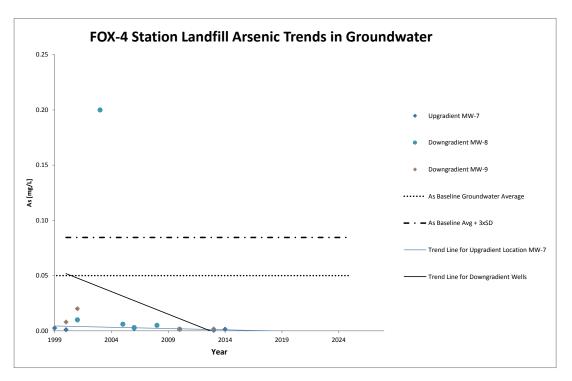

Note: Total Hydrocarbons (C_6 - C_{54}) has been calculated by adding results for F1, F2 and F3. ** Additional regrading of the Station Landfill occurred in 2013.

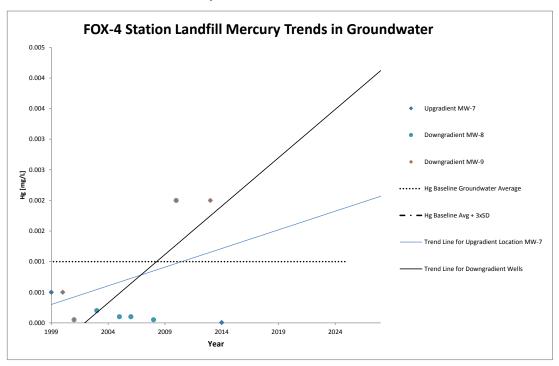

FOX-4 Station Landfill Graphs of Trends for Inorganic Elements, PCBs and TPH in Groundwater Samples

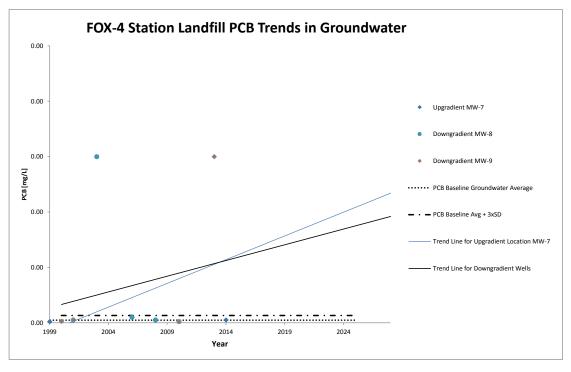


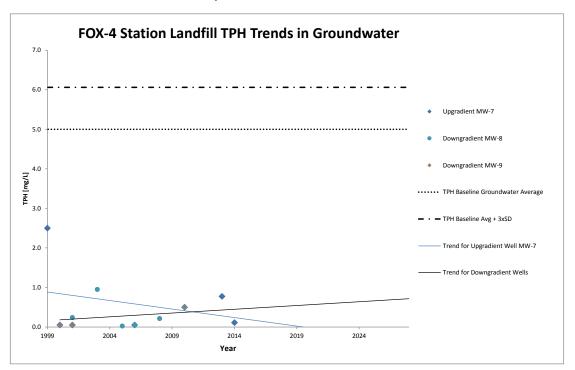

FOX-4 Station Landfill Graphs of Trends for Inorganic Elements, PCBs and TPH in Groundwater Samples




FOX-4 Station Landfill Graphs of Trends for Inorganic Elements, PCBs and TPH in Groundwater Samples




FOX-4 Station Landfill Graphs of Trends for Inorganic Elements, PCBs and TPH in Groundwater Samples



FOX-4 Station Landfill Graphs of Trends for Inorganic Elements, PCBs and TPH in Groundwater Samples

FOX-4 Station Landfill Graphs of Trends for Inorganic Elements, PCBs and TPH in Groundwater Samples

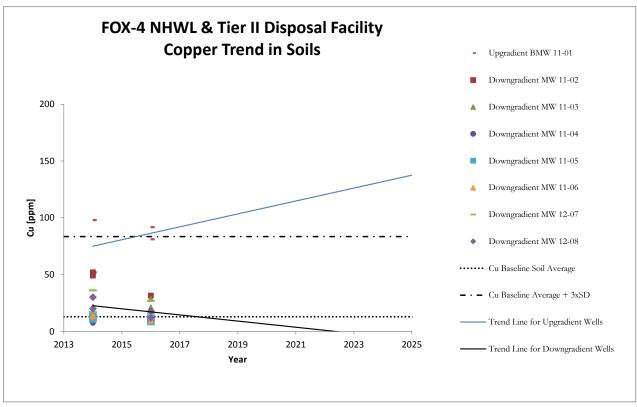
	New Tier II and NHV	VL Facility Monitori	ng. Summar	ry of 2013 and	d Ongoing Soi	l Analytical	Data**														
Second S	FOX-4 Cape Hoop	per - NHWL & Ti	er II Disp	osal Facilit	ies - Summa	ry of 2013-	-2028 Soil	Analytical	Data	1				1		1		1		1	
Professionary	Sample ID	Location	Year	Monitoring Year	Monitoring Phase													C ₁₆	C ₃₄	Total C6-C34	
Part	Background Average																				
Mary	Baseline Data - Average																				
Mary																					
## A Comp 1st Comp 1	Baseline Average + 3xStandard	Deviation													0.14						
Mary	Detection Limit						<3.0	<5.0	<5.0	<1.0	<10	<15	<20	<0.2	<0.1	< 0.05				<40	
## 14 Company for Control of Section and Control of Con	DEW Line Cleanup Tier I C	Criteria														1			1		
Page		Criteria & DLCU Hydrocarb	on Action Leve	l & site specific A	ls criteria		100	100	50	5	500	500	250	130	2.0	5				2500	
May																					
REAL MARTINIS S. BREAT LINE 1846 18 1876 18	Upgradient		,																		
Martin Day Day Life Day	F4.NH.MW11 01 S		2014	16	Phoen II	0.15	52	an.	11	<0.10	9.0	86	73	ΔR	<0.050	<0.010	<10	<10	<10	15	
Dec 1971 306 30 40 1	MW11-1b (Dup Avg)																				
March 1968 1968 1969		BMW 11-01	2018	20	Phase II		_													#N/A	
Note 1																					
March Marc		BMW 11-01	2028	30			-	-	-					-	1				-		
WW 1-44 app.					1 11a5C 111		<u> </u>		<u> </u>												
May 10 days 1																				#N/A	
Note 100 2014		D1600 44 0: : :																		#N/A	
March Marc	EA NH MW11 01 D		2014	16	Dhese II	40.50	ne	72	17	<0.10	12	110	92	170	<0.050	<0.010	<10	<10	<10	15	
SINGE 1.00 201 2							91.7				13.4										
RWY 164 326 30 Phos						30 10	7417	9710	10.2	0.7	<u> 10. 1</u>		0017	97.2	-0.1	-0.03		.,			
Property																					
Tengendies		BMW 11-01	2028	30																	
Description Color				-	rnase III																
Description																					
My 162 capta My																					
Fight Mark 1142 2014 56 Pour II 0.15 49 41 41 50 89 31 0.000 0.000 0.10 0.10 0.15	Downgradient														1						
MST 1-02	E4 NILI MW41 02 C		2014	16	Dhasa II	0.15	40	41	14	<0.10	11	70	90	21	<0.050	<0.010	<10	<10	<10	15	
MW 1-02 2018 2019 Pane							31.5				7.9	47.3									
MY 11-02 2018 30 Place II		MW 11-02	2018	20	Phase II															#N/A	
Pasc																					
FANIANTIACE		MW 11-02	2028	30																	
MW 1-02 depth			1		1 1145C 111		<u> </u>	1											-		
MW MW MW MW MW MW MW MW																					
H-NI-MWI-1-02 MWI-1-02 MWI-																					
Not sampled - refinal	E4 NILL MOVIAL OF IN		2014	47	Dle II	40.50		40	14	ZC 10	10	74	00	24	<0.050	0.012	-40	240	21	24	
MW 1-1-02 2018 20						40-50	52	42	14	<0.10	12	<u>/4</u>	<u>82</u>	<u> 34</u>	<0.050	0.012	<10	<10	21		
MW 11-02 20/23 25 Phase II	- tot sampled - rerusal																				
Phase II				25											1				L	#N/A	
MW 1-03 surface	1	MW 11-02	2028	30			-	-							1				-		
MW Hose Ho				1	r mase 111																
MW 11-03 surface																					
Facility																					
MWII-3b	E4 NILL MW44 02 C		2014	47	DL. II	0.45	22	44	4.0	2.2	10	F0	20	40	<0.050	0.002	-40	-40	20	40	
MW 11-03													32.5						39 79		
MW 11-03						0.5	2110		3.1	<u></u>	200	1710	52.5	10.0		-0.03			- '		
Phase II		MW 11-03	2023	25	Phase II															#N/A	
MW 1-03 Column MW MW MW MW MW MW MW M		MW 11-03	2028	30			1	-	-								-		-		
MW II-03 depth MW II-03 depth Phase II 40-50 18 12 4.3 0.9 8.8 37 36 21 <0.050 0.048 <10 <10 13 23 MW II-03 2014 16 Phase II 30-40 28.5 14 4.1 9.4 77.5 74.2 40.5 26 <0.1 <0.050 <0.048 <10 <10 13 23 MW II-03 2016 2018 20 Phase II 30-40 28.5 14 4.1 9.4 77.5 74.2 40.5 26 <0.1 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050	1	+	<u> </u>	-	rnase III		-												 		
MW 11-03 depth			1		 		<u> </u>	1							1				—		
FENH-MW11-03-D MW 11-03 2014 16 Phase II 40-50 18 12 4.3 0.9 8.8 37 36 21 <0.050 0.048 <10 <10 13 23																					
MWI1-3a																					
MW 11-03 2018 20 Phase II #N/A																					
MW 11-03 2023 25 Phase II	191 W 11-Ja					JV-40	46.5	14	4.1	7.4	11.5	14.4	40.5	20	~U.1	~0.05	>1	~**	/1		
MW 11-03 2028 30 Phase II #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A																					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					Phase II															#N/A	
#N/A				 	Phase III		-	-	-						1		-		-		
					1																
																				#N/A	

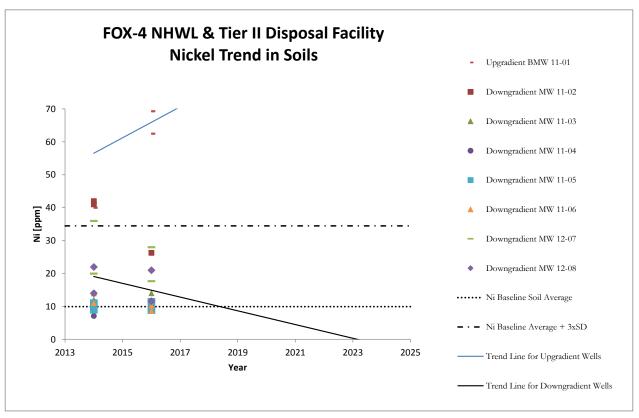
FOX-4 Cape Hoope	er - NHWL & Ti	er II Disp	osal Faciliti	es - Summa	ry of 2013-	-2028 Soil	Analytical	Data													
																	F2 C ₁₀ -	F3 C ₁₆			
Sample ID	Location	Year	Monitoring Year	Monitoring Phase	Depth	Cu	Ni	Co	Cd	Pb	Zn	Cr	As	Hg	Total	F1 C ₆ -C ₁₀	C ₁₆	C ₃₄	Modified TPH^ - Total C6-C34	TPH	Identity
Sample 1D	Location	ı cııı	Monitoring Tear	Montoning Finasc		[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]		[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]		
	MW 11-04 surface		-		(cm)										PCB [mg/kg]	1				% Fuel Oil	% Lube Oil
F4-NH-MW11-04-S	MW 11-04	2014	16	Phase II	0-15	7.4	7.1	2.1	< 0.10	2.5	16	21	7.4	< 0.050	< 0.010	<10	<10	82	92		\vdash
MW11-4a	MW 11-04	2016	18	Phase II	0-15	11.1	10	3.3	<u>1.9</u>	5	23.1	34.1	9.4	< 0.1	< 0.05	<7	<4	38			
	MW 11-04 MW 11-04	2018 2023	20	Phase II															#N/A #N/A		
	MW 11-04 MW 11-04	2023	25 30	Phase II Phase II															#N/A #N/A		\vdash
				Phase III															#N/A		
																			#N/A		
																			#N/A #N/A		
	MW 11-04 depth																		#1N/ A		
F4-NH-MW11-04-D	MW 11-04	2014	16	Phase II	40-50	13	14	3.7	< 0.10	3.1	27	31	11	< 0.050	< 0.010	<10	<10	<10	15		
Not sampled - refusal	MW 11-04	2016	18	Phase II															#N/A		
	MW 11-04 MW 11-04	2018 2023	20 25	Phase II Phase II															#N/A #N/A		
	MW 11-04	2023	30	Phase II															#N/A		+
				Phase III															#N/A		
																			#N/A		
			-	<u> </u>														1	#N/A #N/A		+
	MW 11-05 surface	1	<u> </u>			<u> </u>	-						 		<u> </u>	1	 	<u> </u>	#1N/A	 	
F4-NH-MW11-05-S	MW 11-05	2014	16	Phase II	0-15	11	9	2.7	< 0.10	2.5	18	24	10	< 0.050	< 0.010	<10	<10	43	53		\vdash
MW11-5b	MW 11-05	2016	18	Phase II	0-15	11.6	11.4	3.6	1.7	4.5	19.2	23.5	83.7	< 0.1	< 0.05	<7	<4	<8	10		
	MW 11-05	2018	20	Phase II															#N/A		
	MW 11-05	2023 2028	25 30	Phase II															#N/A		+
	MW 11-05	2028	30	Phase III Phase III														1	#N/A #N/A		+
				111100 111															#N/A		
																			#N/A		
																			#N/A		
F4-NH-MW11-05-D	MW 11-05 depth MW 11-05	2014	16	Phase II	40-50	14	11	3.4	< 0.10	3.1	22	28	12	< 0.050	< 0.010	<10	<10	17	27		
MW11-5a	MW 11-05	2014	18	Phase II	40-50	8.6	8.9	3	1.6	4.1	17.8	22.5	13.1	< 0.1	< 0.05	<7	<4	<8	10		
	MW 11-05	2018	20	Phase II															#N/A		
	MW 11-05	2023	25 30	Phase II															#N/A		
	MW 11-06	2028	30	Phase II Phase III															#N/A #N/A		+
				rnase m															#N/A		+
																			#N/A		
																			#N/A		
	MW 11-06 surface MW 11-06	2011		D1 77	0.45	40		0.7	10.40	**		24		10.050	.0.040			4.7	27		
F4-NH-MW11-06-S MW11-6b	MW 11-06 MW 11-06	2014 2016	16 18	Phase II Phase II	0-15 0-15	13 8.9	11 8.7	3.5 2.8	<0.10 1.2	3.9 4.3	21 15.3	24 19	22 10.4	<0.050 <0.1	<0.010 <0.05	<10	<10 <4	17 <8	27 10		\vdash
MW 11-00	MW 11-06	2018	20	Phase II	0-13	6.7	0.7	2.0	1,2	4.3	15.5	17	10.4	NO.1	~0.03	-/	\- 4	~0	#N/A		+
	MW 11-06	2023	25	Phase II															#N/A		
	MW 11-06	2028	30	Phase II															#N/A		
				Phase III															#N/A #N/A		
																			#N/A		
																			#N/A		
	MW 11-06 depth																				$\perp =$
F4-NH-MW11-06-D MW11-6a	MW 11-06 MW 11-06	2014 2016	16 18	Phase II Phase II	40-50 30-40	14 12	14 10.3	3.8	<0.10 1.8	5.4 4.5	26 19.9	29 24.4	45 19.9	<0.050 <0.1	<0.010 <0.05	<10	<10	22 <8	32 10	-	+
M W 11-6a	MW 11-06 MW 11-06	2016	18	Phase II Phase II	30-40	12	10.3	5.3	1.8	4.5	19.9	24.4	19.9	<0.1	<0.05	×/	\4	<u>~</u> 8	10 #N/A		+
	MW 11-06	2023	25	Phase II															#N/A		<u> </u>
	MW 11-06	2028	30	Phase II															#N/A		
				Phase III													ļ	1	#N/A		
	-					-									1	1	-		#N/A #N/A		+
	<u> </u>																	1	#N/A		+
	MW 12-07 surface	ļ																			
F4-NH-MW11-07-S	MW 12-07	2014	16	Phase II	0-15	<u>36</u>	36 17.7	9.9 4.5	0.13	<u>13</u>	74	41	<u>30</u>	< 0.050	< 0.010	<10	<10	56	66		
	MW 12-07 MW 12-07	2016 2018	18 20	Phase II Phase II	0-15	16	17.7	4.5	1.8	4	31.1	23.4	10.9	< 0.1	< 0.05	</td <td><4</td> <td><8</td> <td>10 #N/A</td> <td> </td> <td>+</td>	<4	<8	10 #N/A	 	+
MW12-7b																		+	#N/A		+
MW 12-70		2023	25	Phase II								1	1	1							
35.W 12-7.U	MW 12-07 MW 12-07	2023 2028	25 30	Phase II Phase II															#N/A		
DEW 12-10	MW 12-07		25 30																#N/A #N/A		
14x 12-7U	MW 12-07		25 30	Phase II															#N/A		

FOX-4 Cape Ho	oper - NHWL & T	ier II Disp	osal Faciliti	es - Summa	ry of 2013-	2028 Soil	Analytical	Data													-
Sample ID	Location	Year		Monitoring Phase	Depth	Cu	Ni	Co	Cd	Pb	Zn	Cr	As	Hg	Total	F1 C ₆ -C ₁₀	F2 C ₁₀ -	F3 C ₁₆ -	Modified TPH^ Total C6-C34	ТРН	Identity
					(cm)	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	PCB [mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	% Fuel Oil	% Lube Oil
	MW 12-07 depth				` /										- 10 8						
F4-NH-MW11-07-D	MW 12-07	2014	16	Phase II	40-50	17	20	5.1	< 0.10	4.5	31	24	16	< 0.050	< 0.010	<10	<10	<10	15		
MW12-07a	MW 12-07	2016	18	Phase II	30-40	26.7	28	7.8	3.6	7.4	50.8	48.4	25.3	< 0.1	< 0.05	<7	<4	<8	10		
	MW 12-07	2018	20	Phase II															#N/A		
	MW 12-07	2023	25	Phase II															#N/A		
	MW 12-07	2028	30	Phase II															#N/A		
				Phase III															#N/A		
																			#N/A		
																			#N/A		
																			#N/A		
	MW 12-08 surface																				<u> </u>
F4-NH-MW11-08-S	MW 12-08	2014	16	Phase II	0-15	20	14	5.65	< 0.5	<u>10</u>	39	42	<u>37</u>	< 0.10	< 0.05	<10	41	21	67		ĺ
MW12-8b	MW 12-08	2016	18	Phase II	0-15	12.1	11.6	3.8	2.1	8.6	26	33.2	9.6	< 0.1	< 0.05	<7	389	41	434		ĺ
	MW 12-08	2018	20	Phase II															#N/A		
	MW 12-08	2023	25	Phase II															#N/A		Ĺ
	MW 12-08	2028	30	Phase II															#N/A		Ĺ
				Phase III															#N/A		1
																			#N/A		
																			#N/A		1
																			#N/A		
	MW 12-08 depth																				Ĺ
F4-NH-MW11-08-D	MW 12-08	2014	16	Phase II	40-50	30	22	7.8	< 0.10	<u>18</u>	<u>56</u>	<u>64</u>	16	< 0.050	< 0.010	<10	320	49	374		
MW12-8a	MW 12-08	2016	18	Phase II	40-50	17.9	21	7.4	3.1	8	43.6	<u>56</u>	7.3	< 0.1	< 0.05	<7	464	23	.,		
	MW 12-08	2018	20	Phase II															#N/A		
	MW 12-08	2023	25	Phase II															#N/A		<u> </u>
	MW 12-08	2028	30	Phase II															#N/A		
				Phase III															#N/A		1
																			#N/A		
																			#N/A		
I	1		1			l		1								1		1	#N/A	1	Í

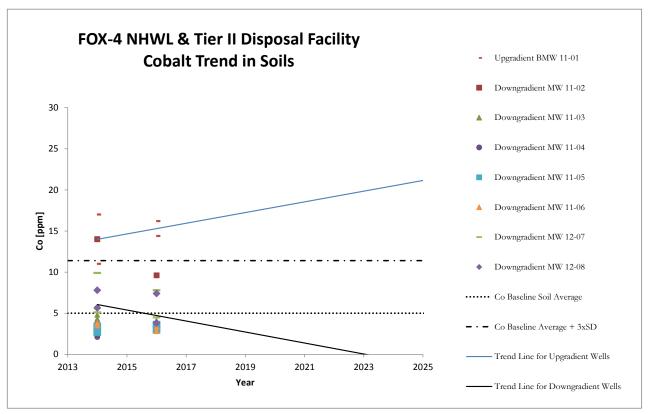
Note: Total Hydrocarbons (C₆-C₃₀) has been calculated by adding results for F1, F2 and F3.

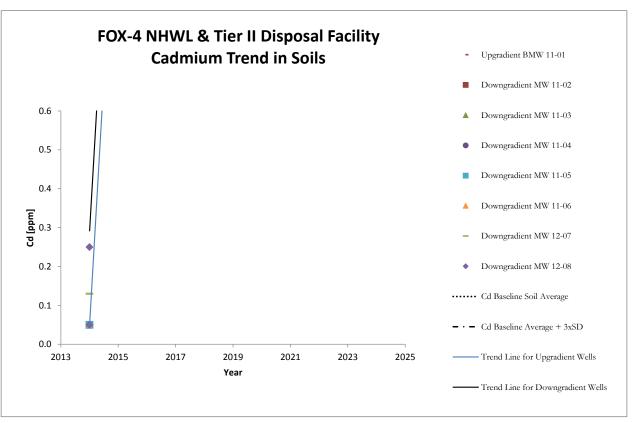
** The New Tier II and NHWI. Facility was constructed in 2012 during additional remediation at FOX-4. The facilities received Tier II and Non-Hazardous material and were both closed in 2013.

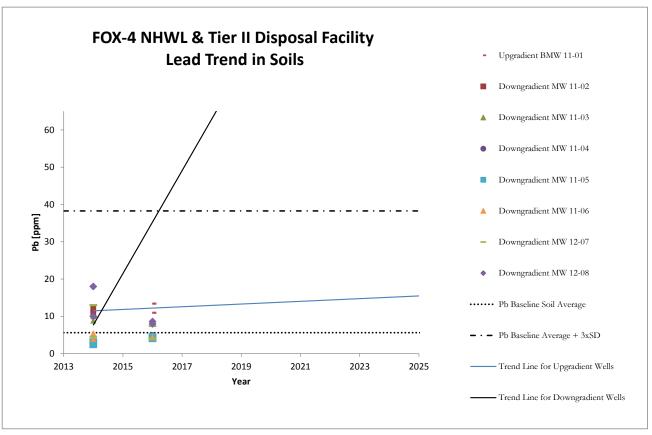

Monitoring wells were established around the facilities in 2013.

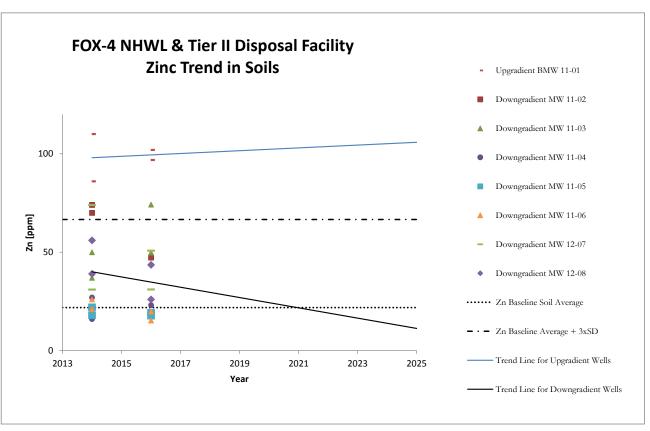

Legend XX sample exceeds background
XX sample exceeds baseline
XX sample exceeds DLCU Tier I criteria
XX sample exceeds DLCU Tier II criteria

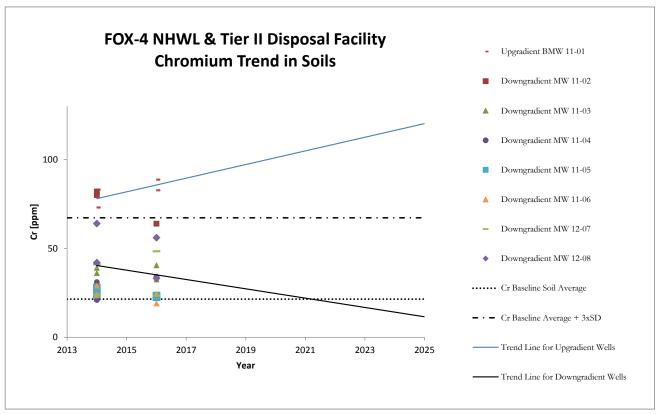
FOX-4 NHWL & Tier II Disposal Facility Trends in Soil Inorganics, PCBs and PHCs (modified TPH)

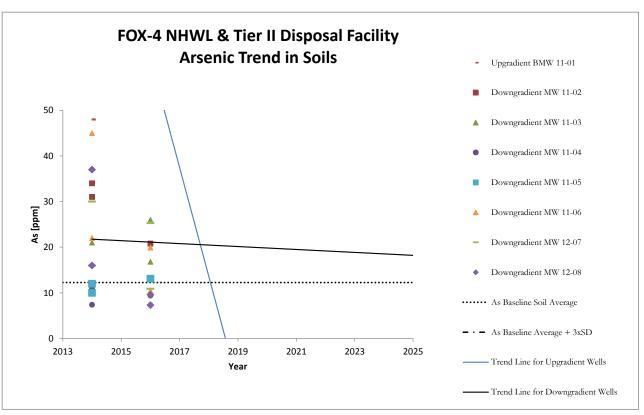

Where results are below detection, half of the detection limit has been used in the charts.

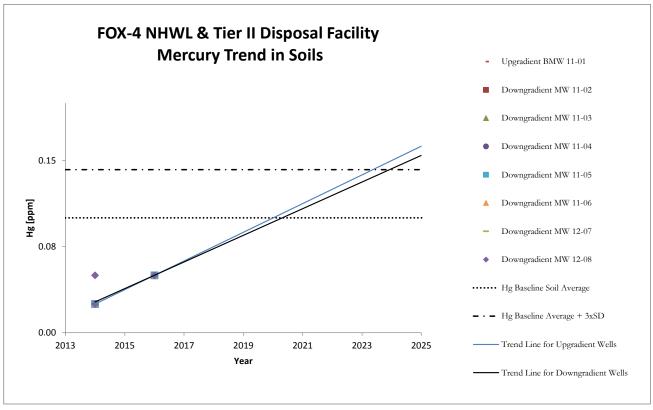

New monitoring locations were established in 2013 around the Tier II and NHWL facilities at FOX-4 and will be monitored as part of the landfill monitor program at FOX-4.

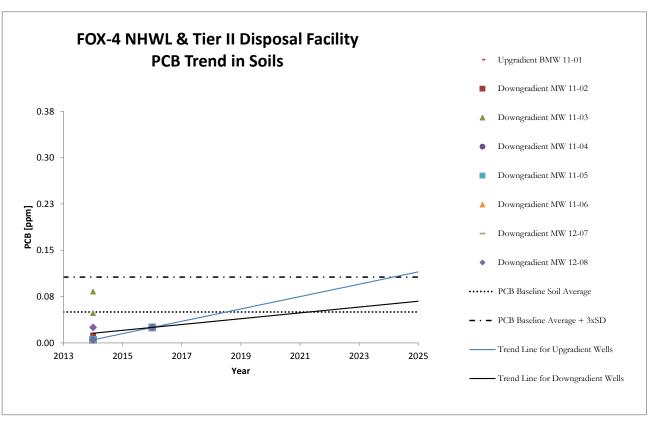


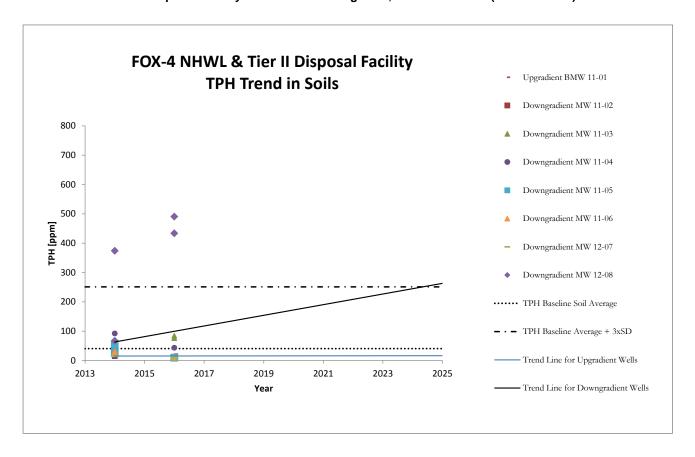

FOX-4 NHWL & Tier II Disposal Facility Trends in Soil Inorganics, PCBs and PHCs (modified TPH)




FOX-4 NHWL & Tier II Disposal Facility Trends in Soil Inorganics, PCBs and PHCs (modified TPH)




FOX-4 NHWL & Tier II Disposal Facility Trends in Soil Inorganics, PCBs and PHCs (modified TPH)



FOX-4 NHWL & Tier II Disposal Facility Trends in Soil Inorganics, PCBs and PHCs (modified TPH)

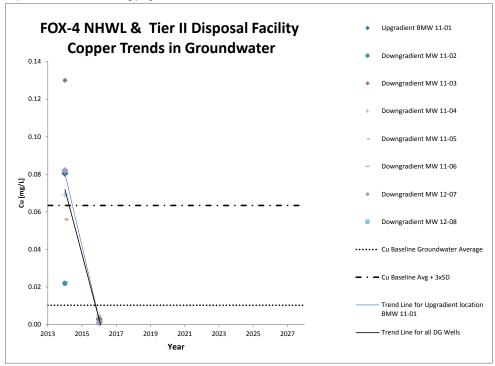
FOX-4 NHWL & Tier II Disposal Facility Trends in Soil Inorganics, PCBs and PHCs (modified TPH)

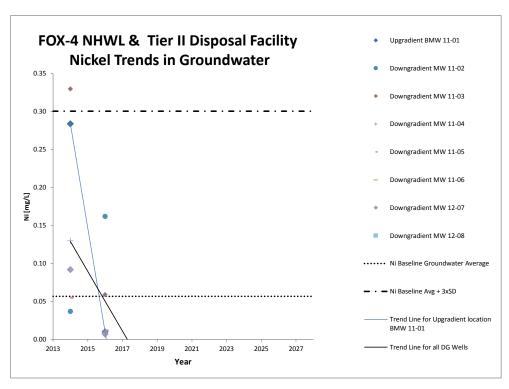
New Tier II and NHWL Facility Monitoring, Summary of 2013 and Ongoing Groundwater Analytical Data**

New Tier II and NHW FOX-4 Cape Hoope									nalytic	al Data										
1 021-4 Сирс 1100р	I	I ICI II D	l sposar r acn	lty - Summary	01 1777	2000 (Jioune	water 11		ui Data					F1 C ₆ -	F2	F3			
Sample ID	Location	Year	Monitoring Year	Monitoring Phase	Cu	Ni	Со	Cd	Pb	Zn	Cr	As	Hg	Total PCB	C ₁₀	C ₁₀ -C ₁₆	C ₁₆ -C ₃₄	Modified TPH^ - Total C6-C34	ТРН І	dentity
					[mg/L]	[mg/L]	[mg/L]	[mg/L]	[mg/L]	[mg/L]	[mg/L]	[mg/L]	[mg/L]	[mg/L]	[mg/L]	[mg/L]	[mg/L]	[mg/L]	% Fuel Oil	Oil
		aseline Average			0.010	0.057	0.0087	0.0010	0.0071	0.84	0.0306	0.0183	0.0006	0.0001				0.65		
		ndard Deviation			0.018	0.081	0.008	0.001	0.015	1.20	0.076	0.042	0.001	0.0002				0.97		
1	Baseline Average + 3xStar				0.063	0.301	0.034	0.0043	0.05	4.43	0.2589	0.14	0.0026	0.0007				3.55		
		Detection Limit			0.0050	0.0050	0.005	0.0050	0.0050	0.0050	0.0050	0.0050	0.0050	0.0050				1.0		
Monitoring Data																				
Upgradient BMW 11-01																				
F4-NH-MW11-01	BMW 11-01	2014	16	Phase II	0.0805	0.284	0.0335	0.00059	0.019	0.1005	1.015	0.021	< 0.0001	< 0.0001	< 0.025	< 0.100	< 0.100	0.11		
MW11-1	BMW 11-01	2016	18	Phase II	0.003	0.01	0.0013	< 0.0001	< 0.0001	0.01	< 0.001	< 0.001	< 0.0001	< 0.00005	< 0.025	< 0.1	< 0.1	0.11		
	BMW 11-01	2018	20	Phase II														#N/A		
	BMW 11-01	2023	25	Phase II														#N/A		
		2028	30	Phase II														#N/A		<u> </u>
				Phase III														#N/A		
																		#N/A		
																		#N/A		
			<u> </u>	1							L				<u> </u>			#N/A		
																		#N/A		
																		#N/A		
Downgradient - MW 11-02																				
F4-NH-MW11-02	MW 11-02	2014	16	Phase II	0.022	0.037	0.0073	0.000043	0.0039	17	0.027	0.11	< 0.00010	< 0.00005	0.072	0.12	< 0.100	0.24		
MW11-2	MW 11-02	2016	18	Phase II	0.0026	0.162	0.0357	< 0.0001	< 0.0001	19	< 0.001	0.003	< 0.0001	< 0.00005	< 0.025	< 0.100	< 0.100	0.11		
	MW 11-02	2018	20	Phase II														#N/A		
	MW 11-02	2023	25	Phase II														#N/A		
		2028	30	Phase II														#N/A		
				Phase III														#N/A		
																		#N/A		
															-			#N/A		
																		#N/A		
																		#N/A		,
																		#N/A		
Downgradient- MW 11-03	3.000 44.00					0.00	0.00#	0.0044	0.04			0.050	10.00040		0.000	-0.400	10.400	0.40		
F4-NH-MW11-03	MW 11-03	2014	16	Phase II	0.13	0.33	0.095 0.0236	0.0011	0.26	0.33	0.54 <0.001	0.053 <0.001	<0.00010	<0.00005 <0.00005	0.028 <0.025	<0.100	<0.100 <0.100	0.13		
MW11-3	MW 11-03 MW 11-03	2016	18	Phase II	0.0031	0.059	0.0236	0.0002	0.0006	0.527	<0.001	<0.001	< 0.0001	<0.00005	<0.025	< 0.100	<0.100	0.11 #N/A		
	MW 11-03	2018 2023	20 25	Phase II Phase II											+			#N/A		
	MW 11-05	2023	30	Phase II Phase II											 			#N/A		
	+	2020	30	Phase III											 			#N/A		
	+		+	111000 111					 		 				+ + +			#N/A		
			1															#N/A		
			1															#N/A		
																		#N/A		
	+		 												 			#N/A		
Downgradient- MW 11-04	+		1	1	-	1		1	—		 	t	t	<u> </u>						
F4-NH-MW11-04	MW 11-04	2014	16	Phase II	0.069	0.13	0.018	0.00012	0.016	0.18	0.2	0.024	< 0.00010	< 0.00005	0.031	< 0.100	< 0.100	0.13		
MW11-4	MW 11-04	2016	18	Phase II	0.0047	0.011	0.003	< 0.0001	0.0002	0.208	< 0.001	< 0.001	< 0.0001	< 0.00005	< 0.025	< 0.100	< 0.100	0.11		
*	MW 11-04	2018	20	Phase II														#N/A		
	MW 11-04	2023	25	Phase II														#N/A		
		2028	30	Phase II														#N/A		
				Phase III														#N/A		
																		#N/A		
																		#N/A		
																		#N/A		
																		#N/A		
			1		1							1						#N/A		

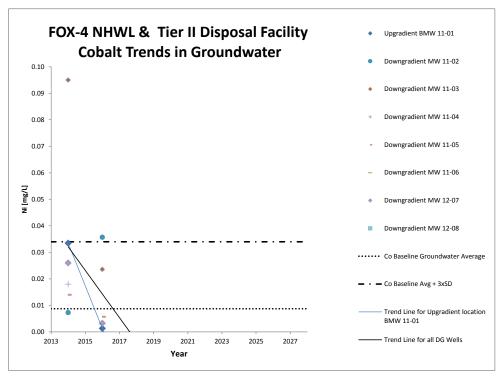
New Tier II and NHWL Facility Monitoring. Summary of 2013 and Ongoing Groundwater Analytical Data**

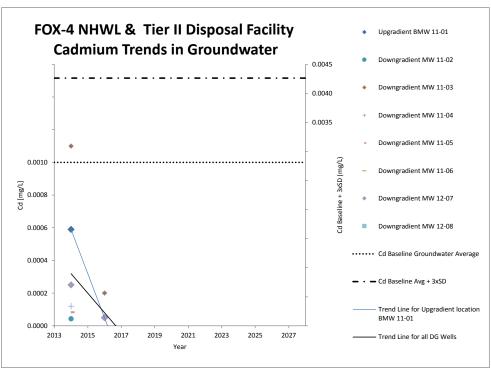
FOX-4 Cape Hooper	- NWHL & '	Гier II D	isposal Facili	ity - Summary	of 1999	-2006 (Ground	water A	nalytica	al Data										
Sample ID	Location	Year	Monitoring Year	Monitoring Phase	Cu	Ni	Со	Cd	Pb	Zn	Cr	As	Hg	Total PCB	F1 C ₆ -	F2 C ₁₀ -C ₁₆	F3 C ₁₆ -C ₃₄	Modified TPH^ - Total C6-C34		Identity
					[mg/L]	[mg/L]	[mg/L]	[mg/L]	[mg/L]	[mg/L]	[mg/L]	[mg/L]	[mg/L]	[mg/L]	[mg/L]	[mg/L]	[mg/L]	[mg/L]	% Fuel Oil	Oil
Downgradient- MW 11-05			1																	
F4-NH-MW11-05	MW 11-05	2014	16	Phase II	0.056	0.055	0.014	0.000083	0.014	0.65	0.068	0.031	< 0.00010	< 0.00005	0.033	< 0.100	< 0.100	0.13		
MW11-5	MW 11-05	2016	18	Phase II	0.0018	0.012	0.0057	< 0.0001	< 0.0001	2.35	< 0.001	< 0.001	< 0.0001	< 0.00005	< 0.025	< 0.100	< 0.100	0.11		
	MW 11-05	2018	20	Phase II														#N/A		
	MW 11-05	2023	25	Phase II														#N/A		
		2028	30	Phase II														#N/A		
				Phase III														#N/A		
																		#N/A		
																		#N/A		
															1			#N/A		
			1											-				#N/A		
																		#N/A		
Downgradient- MW 11-06			1																	
No sample collected - well was dry	MW 11-04	2014	16	Phase II														#N/A		
Not sampled - dry	MW 11-04	2016	18	Phase II														#N/A		
	MW 11-04	2018	20	Phase II														#N/A		
	MW 11-04	2023	25	Phase II														#N/A		
		2028	30	Phase II														#N/A		
				Phase III														#N/A		
																		#N/A		
																		#N/A		
																		#N/A		
																		#N/A		
																		#N/A		
Downgradient- MW 12-07																				
F4-NH-MW12-07	MW 12-07	2014	16	Phase II	0.082	0.092	0.026	0.00025	0.021	0.13	0.14	0.04	< 0.00010	< 0.00005	< 0.025	< 0.100	< 0.100	0.11		
MW12-7	MW 12-07	2016	18	Phase II	0.001	0.007	0.0033	< 0.0001	< 0.0001	0.155	< 0.001	< 0.001	< 0.0001	< 0.00005	< 0.025	< 0.100	< 0.100	0.11		
	MW 12-07	2018	20	Phase II														#N/A		
	MW 12-07	2023	25	Phase II														#N/A		
		2028	30	Phase II														#N/A		
				Phase III														#N/A		
																		#N/A		
																		#N/A		
																		#N/A		
																		#N/A		
Downgradient- MW 12-08			•																	
No sample collected - well was dry	MW 12-08	2014	16	Phase II														#N/A		
Not sampled - dry	MW 12-08	2016	18	Phase II														#N/A		
• •	MW 12-08	2018	20	Phase II														#N/A		
	MW 12-08	2023	25	Phase II														#N/A		
		2028	30	Phase II														#N/A		
				Phase III											1			#N/A		
			1															#N/A		
																		#N/A		
																		#N/A		
+														I	1			#N/A	<u> </u>	

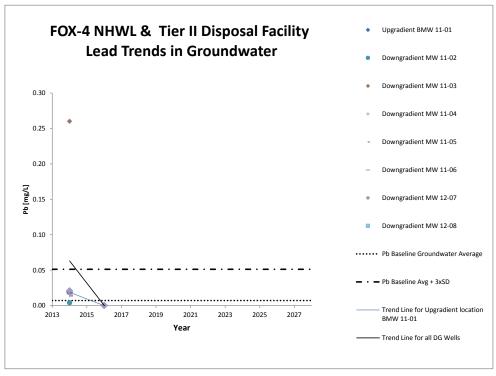

Note: Total Hydrocarbons (C6-C34) has been calculated by adding results for F1, F2 a<1.0 F3.

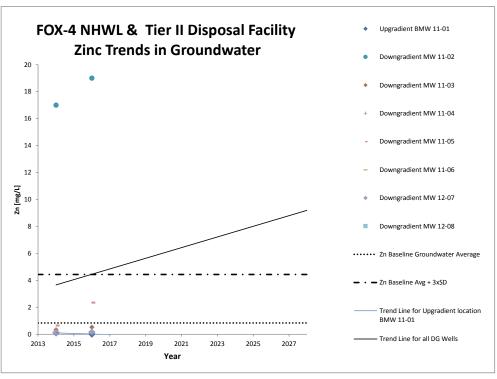

^{**} Further remediation occurred at the NHWL and Tier II Disposal Facility in 2011, 2012 and 2013. Because of this work, baseline data includes monitoring results in Monitoring Years 1-15 prior to the additional remediaton. This data can be found at the top of this sheet and on the sheet labelled Previous FOX-4 NHWL & Tier II GW Sum

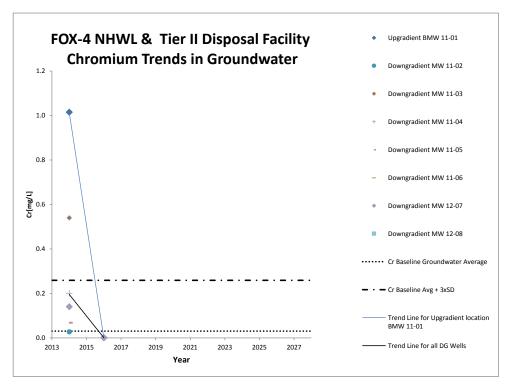
FOX-4 NHWL & Tier II Disposal Facility Graphs of Trends for Inorganic Elements, PCBs and TPH in Groundwater Samples

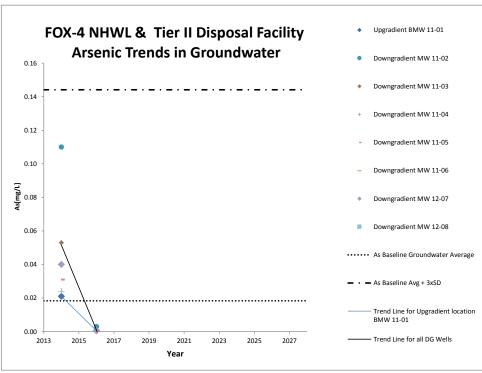

Where results are below detection, half of the detection limit has been used in the charts.

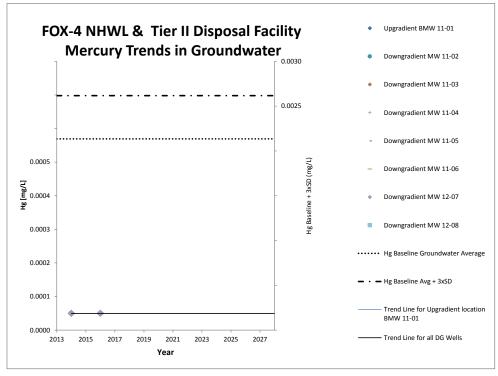

New monitoring locations were established in 2013 around the Tier II and NHWL facilities at FOX-4 and will be monitored as part of the landfill monitoring program.

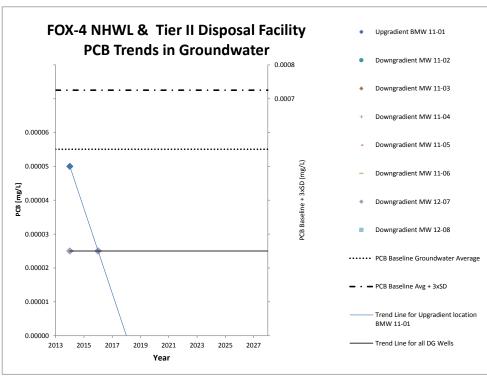


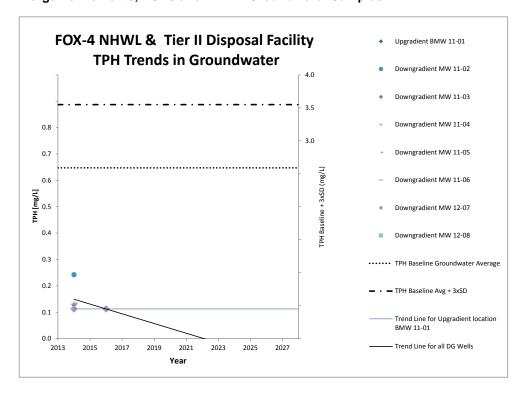

FOX-4 NHWL & Tier II Disposal Facility Graphs of Trends for Inorganic Elements, PCBs and TPH in Groundwater Samples




FOX-4 NHWL & Tier II Disposal Facility Graphs of Trends for Inorganic Elements, PCBs and TPH in Groundwater Samples

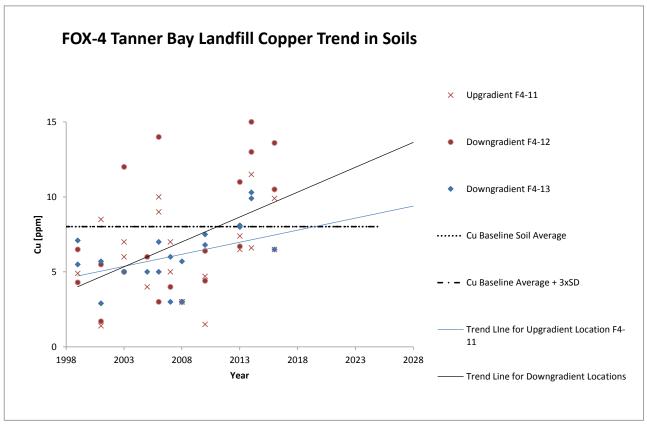


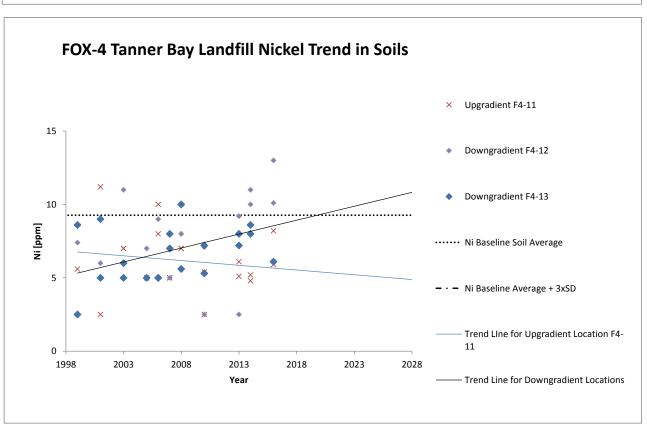

FOX-4 NHWL & Tier II Disposal Facility Graphs of Trends for Inorganic Elements, PCBs and TPH in Groundwater Samples



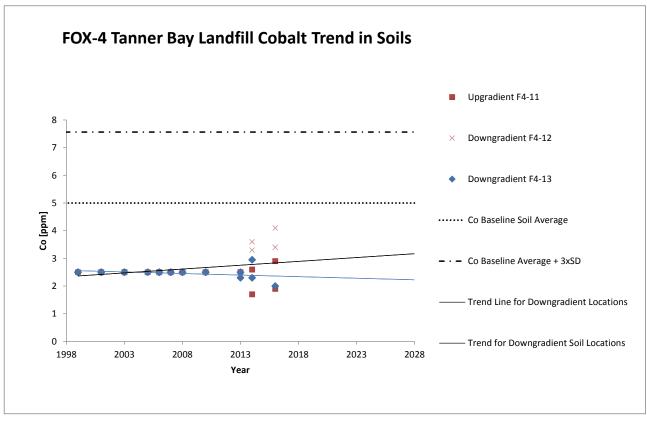
FOX-4 NHWL & Tier II Disposal Facility Graphs of Trends for Inorganic Elements, PCBs and TPH in Groundwater Samples

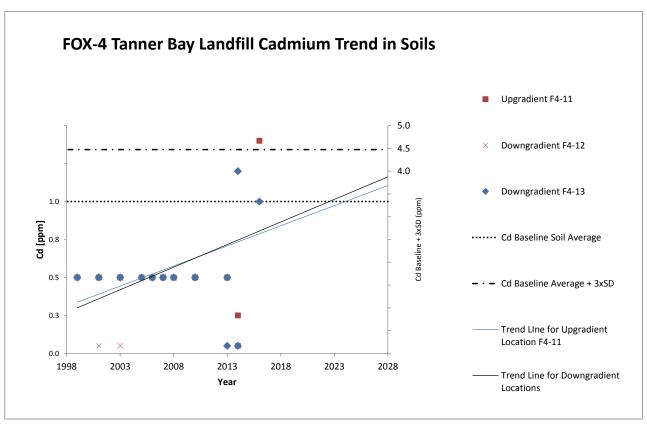
FOX-4 NHWL & Tier II Disposal Facility Graphs of Trends for Inorganic Elements, PCBs and TPH in Groundwater Samples

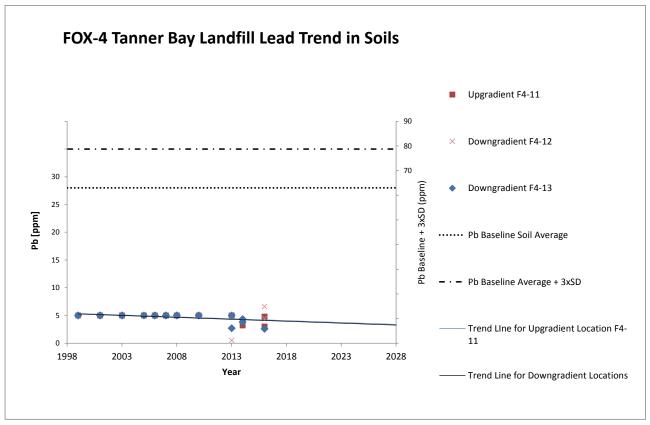

FOX-4 Cape	e Hooper - Tann	er Bav	Landfill -	- Summar	v of So	oil Analy	tical Dat	a**													
1011 / Oup	- I I I I I I I I I I I I I I I I I I I	CI Duy			1 01 00	, 	licui Dui														
	I			Monitoring				1	1	1	1	1	l	1		F1 C ₁₀	F2 C ₁₆	F3 C ₁₆ -C ₅₄	Modified TPH^ - Total	1	
Sample #	Location	Date	Monitoring Year	Phase	Depth	Cu	Ni	Co	Cd	Pb	Zn	Cr	As	Hg	Total PCB	V-90	V16	O16 O34	C6-C34	TPH	Identity
					(cm)	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	% Fuel Oil	% Lube Oil
Background Aver	rana		l	<u> </u>		19	19	7.9	1.0	10	34	31	5.5		0.00035		<u> </u>			% Fuel Oil	% Lube Oil
Baseline Data - /						8.0	9.3	5.0	1.0	28	27	23	1.1		0.050				128		
Baseline Data - S	Standard Deviation					0.0	2.5	0.85	1.16	17	6.0	7.2	0.7		0.00				265		
Baseline Average +	3xStandard Deviation					8.0	17	7.6	4.5	79	45	45	3.1		0.05				924		
						3.0	5.0	5.0	1.0	10	15	20	0.20	0.10	0.050				40		
Detection Limit						320	3.0	3.0	1.0	10	1.7	20	0.20	0.10	0.0.30				40		
DEW Line Clean.	up Tier I Criteria									200					1						
DEW Line Clean	up Tier II Criteria					100	100	50	5	500	500	250	30	2.0	5				2500		
Monitoring D																			2000		
Upgradient																					
	F4-11 Surface	_																			
99-3763	ML #1/F4-11	1999	1	Phase I	30	4.9	5.6	<5.0	<1.0 <1.0	<10 <10	<15	<20	0.83	< 0.10	<0.050 <0.050				<40	n/a	n/a
FO-51-1 FO-9-1	F4-11 F4-9/F4-11	2001	3	Phase I	0-15 0-15	1.4	<5.0	<5.0 <5.0	<1.0	<10	<15 17	<20	2.0	<0.10	< 0.050	-10	<40	<40	<40 <40	n/a	n/a
FO-9-1 F4-11	F4-9/F4-11 F4-11	2003	7	Phase I Phase II	0-15	7.0	7.0 5.0	<5.0	<1.0	<10	<15	<20 <20	<0.70	< 0.10	< 0.10	<10 <10	<40	<40	<40		
F4-11(Soil)0-15cm	F4-11	2006	8	Phase II	0-15	10	10	<5.0	<1.0	<10	17	<20	1.1	<0.10	< 0.10	<12	10	<10	21		
F4-11(Soil)0-15cm	F4-11	2007	9	Phase II	0-15	5.0	5.0	<5.0	<1.0	<10	<15	<20	1.1	< 0.1	< 0.10	<12	657	778	1441		
F4-11(Soil)0-15cm	F4-11	2008	10	Phase II	0-15	3.0	7.0	<5.0	<1.0	<10	<15	<20	<1.0	< 0.10	< 0.050	<1.0	1100	590	1691		
10-18023*/24	F-11	2010	12	Phase II	0-10	4.7	5.4	<5.0	<1.0	<10	<15	<20	1.4	< 0.10	< 0.050	<10	440	180	625		_
13-27258/59	F4-11	2013	15	Phase II	0-10	7.4 11.5	6.1 4.8	<5.0	<1.0	<10 4.05	16.0 13.5	<20 16.5	1.2	< 0.10	<0.05 <0.05	<10 <10	270	380 <50	655 35	-	-
F4-TAN-11-S F4-11b	F4-11 F4-11	2014 2016	16 18	Phase II Phase II	0-15 0-15	9.9	4.8 8.2	2.6	<0.5 1.8	4.05	13.5	16.5	5.8 1.2	< 0.10	< 0.05	<7	<10 <4	<50 <8	35 10	-	1
x 110	1.4-11	2016	18	Phase II Phase II						7.0		.00.4		10.1		<u> </u>			#N/A	†	
	1	2018	25	Phase II				t											#N/A		
		2028	30	Phase II															#N/A		
				Phase III															#N/A		
	+				\vdash														#N/A		
	+	+		-	\vdash		1	1	-	 	-	1	1	 	-	1	1	 	#N/A #N/A	-	-
	E4 41 4 d.	+			-											-			#N/A	-	<u> </u>
FO-51-2	F4-11 depth	2001	3	Phase I	40-50	8.5	11	<5.0	<1.0	<10	17	<20	2.0	<0.10	< 0.050		-	-	<40		-
FO-51-2 FO-9-2	F4-9/F4-11	2001	5	Phase I Phase I	40-50		7.0	<5.0 <5.0	<1.0	<10	1/	<20	1.0	<0.10	<0.050	<1.0	<40	<1.0	<40		†
F4-11(Soil)40-50cm	F4-11	2006	8	Phase II	40-50	6.0 9.0	8.0	<5.0	<1.0	<10	<15	<20	0.70	<0.10	< 0.10	<12	<10	<10	16		
F4-11(Soil)40-50cm	F4-11	2007	9	Phase II	40-50	7.0	5.0	<5.0	<1.0	<10	<15	<20	0.80	< 0.1	< 0.1	<11	<20	23	39		
F4-11(Soil)40-50cm	F4-11	2008	10	Phase II	40-50	3.0	7.0	<5.0	<1.0	<10	<15	<20	<1.0	< 0.10	< 0.050	<1.0	270	110	381		
10-18025*/26	F-11	2010	12	Phase II	30-40	<3.0	<5.0	<5.0	<1.0	<10	<15	<20	1.2	< 0.10	< 0.050	<10	780	75	860		
13-27260/61	F4-11	2013	15 16	Phase II Phase II	30-40 40-50	6.5	5.1	<5.0 1.7	<1.0	<10 3.2	<15 11.0	<20 15	2.3 1.10	<0.1	< 0.05	<10 <10	4.4 <10	33 <10	42 15		
F4-TAN-11-D F4-11a	F4-11 F4-11	2014 2016	16	Phase II Phase II	40-50	6.5	5.9	1.9	1.4	3.2	12.9	15.5	1.2	< 0.1	< 0.05	<7	<4	<8	10		
1-4-112	14-11	2018	20	Phase II	10.00														#N/A		
		2023	25	Phase II															#N/A		
		2028	30	Phase II															#N/A		
				Phase III															#N/A		
																			#N/A #N/A		
																			#N/A		
Downgradient		-	1																#14/21		1
Downgrauich	F4-12 Surface	1																			
99-3769	ML #3/F4-12	1999		Phase I	0	6.5	7.4	<5.0	<1.0	<10	19	21	0.81	< 0.10	< 0.050				41	100	0
FO-52-1	F4-12	2001	3	Phase I	0-15	1.7	5.0	<5.0	< 0.10	<10	<15	<20	2.0	< 0.10	< 0.050				43	0.0	100
FO-11-1	F4-11/F4-12	2003	5	Phase I	0-15	12	11	<5.0	< 0.10	<10	23	25	70	< 0.10	< 0.050	<10	<40	<40	<40		
F4-12	F4-12	2005	7	Phase II	0-11	6.0	7.0	<5.0	<1.0	<10	16	<20	< 0.70	< 0.10	< 0.10	<10	40	47	<40		
F4-12(Soil)0-15cm	F4-12	2006	8	Phase II	0-15 0-15	3.0	5.0	<5.0	<1.0 <1.0	<10 <10	<15	<20	0.70 <0.7	< 0.10	<0.10 <0.10	<12 <10	<10	130	141		-
F4-12(Soil)0-15cm F4-12(Soil)0-15cm	F4-12 F4-12	2007 2008	9	Phase II Phase II	0-15	4.0 3.0	5.0 8.0	<5.0 <5.0	<1.0	<10	<15 <15	<20 <20	<1.0	<0.1 <0.10	<0.10	<1.0	<1.0	11 11	21 <40		1
10-18019/20	F4-12	2010	12	Phase II	0-10	4.4	<5.0	<5.0	<1.0	<10	<15	<20	1.8	<0.10	<0.050	<10	5.6	<9.0	<40		1
13-27262/63	F4-12	2013	15	Phase II	0-10	6.7	<5.0	<5.0	<1.0	<1.0	<1.1	<2.0	1.6	< 0.10	< 0.050	<10	< 4.0	< 9.0	12		
F4-TAN-12-S	F4-12	2014	16	Phase II	0-15	15	11	3.6	< 0.10	4.1	23.0	21	1.6	< 0.050	< 0.010	<10	<10	<10	15		
F4-12b	F4-12	2016	18	Phase II	0-15	10.5	10.1	3.4	2	4.4	21.6	22.8	1.8	< 0.1	< 0.05	<7	<4	<8	10 #N/A		-
	+	2018	20	Phase II Phase II	\vdash		1	1		-	1	1	-			+	1		#N/A #N/A	-	+
	+	2023	25 30	Phase II Phase II				1		-	1	1				!	1		#N/A		†
		2020		Phase III				1								1			#N/A		
																			#N/A		
																			#N/A		
					\vdash														#N/A		
	F4-12 depth				\perp		1	1				ļ				1	ļ		ļ		
99-3771 FO-52-2	ML #3/F4-12 F4-12	1999 2001	1 3	Phase I	30 40-50	4.3	<5.0	<5.0	<1.0 <1.0	<10 <10	<15 11	<20	0.57	< 0.10	<0.050	-	 	-	500 84	100.0	0
FO-52-2 FO-11-2	F4-12 F4-11/F4-12	2001	3	Phase I Phase I	40-50	5.5	6.0 5.0	<5.0 <5.0	<1.0	<10	11 <15	<20 <20	3.0 1.5	<0.10	<0.050	35	1100	190	84 1325	1.0	99
F4-12(Soil)40-50cm	F4-11/F4-12 F4-12	2003	8	Phase I Phase II	40-50	14	9.0	<5.0 <5.0	<1.0	<10	<15	<20	0.90	<0.10	< 0.10	<12	20	190 <10	31	1	1
F4-12(Soil)40-50cm	F4-12	2007	9	Phase II	40-50	<5	8.0	<5.0	<1.0	<10	<20	<20	<1.0	< 0.1	< 0.1	<11	<20	<20	26		
F4-12(Soil)40-50cm	F4-12	2008	10	Phase II	40-50	3.0	8.0	<5.0	<1.0	<10	<15	<20	<1.0	< 0.10	< 2.0	<1.0	<1.0	<1.0	2		
10-18021*/22	F4-12	2010	12	Phase II	30-40	6.4	7.1	<5.0	<1.0	<10	15	<20	1.7	< 0.10	< 0.050	<10	5.7	13	24		
13-27264/65	F4-12	2013	15	Phase II	30-40	11	9.2	<5.0 3.3	<1.0	<10	19	28 21	2.4 1.9	<0.10	<0.050	<10 <10	< 4.0 <10	< 9.0 <10	12		
F4-TAN-12-D	F4-12	2014	16	Phase II	40-50 30-40	13.6	10	3.3 4.1	<0.10 2.5	3.9 6.6	19 24.8	26.8	1.9 3.6	<0.050	<0.010	<10	<10	<10 <8	15	—	
F4-12a	F4-12	2016 2018	18 20	Phase II Phase II	30-40	13.0	L)	4.1	4.2	0.0	24.0	20.0	3.0	NO.1	~0.03		~4	~0	#N/A		
	+	2018	25	Phase II Phase II			1									1			#N/A	1	1
	1	2028	30	Phase II							1								#N/A		
				Phase III															#N/A		
									1	1	1				1			1	#N/A	ı —	1
																			#N/A #N/A		

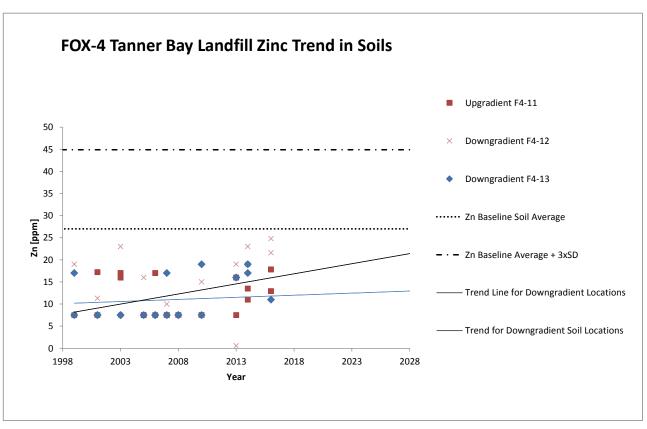

Sample #	Location	Date	Monitoring Year	Monitoring Phase	Depth	Cu	Ni	Co	Cd	Рb	Zn	Cr	As	Hg	Total PCB	F1 C ₀ -	F2 C ₁₀	F3 C ₁₆ -C ₃₄	Modified TPH^ - Total C6-C34	TPH I	Identity
					(cm)	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	% Fuel Oil	% Lube Oi
	F4-13 Surface																				
99-3765	ML #2/F4-13	1999	1	Phase I	0	7.1	8.6	<5.0	<1.0	<10	17	<20	1.3	< 0.10	< 0.050				< 40	n/a	n/a
FO-53-1	F4-13	2001	3	Phase I	0-15	5.7	9.0	<5.0	<1.0	<10	<15	<20	3.0	< 0.10	< 0.050				<40	0.0	100
FO-10-1	F4-10/F4-13	2003	5	Phase I	0-15	5.0	6.0	<5.0	<1.0	<10	<15	<20	1.0	< 0.10	< 0.050	<10	<40	<40	<40		
F4-13	F4-13	2005	7	Phase II	0-11	5.0	5.0	<5.0	<1.0	<10	<15	<20	< 0.70	< 0.10	< 0.10	<10	<40	<40	<40		
F4-13(Soil)0-15cm	F4-13	2006	8	Phase II	0-15	7.0	5.0	<5.0	<1.0	<10	<15	<20	0.90	< 0.10	< 0.10	<12	10	130	146		
F4-13(Soil)0-15cm	F4-13	2007	9	Phase II	0-15	6.0	7.0	<5.0	<1.0	<10	17	<20	0.70	< 0.10	< 0.1	<12	<20	<20	26		
F4-13(Soil)0-15cm	F4-13	2008	10	Phase II	0-15	3.0	10	<5.0	<1.0	<10	<15	<20	<1.0	< 0.10	< 0.050	<1.0	<1.0	<1.0	<40		
10-18015+/16+	F4-13	2010	12	Phase II	0-10	6.8	7.2	<5.0	<1.0	<10	19	<20	<1.0	< 0.10	< 0.050	<10	4.5	9	<40		
13-27266/67	F4-13	2013	15	Phase II	0-10	8.1	8.0	<5.0	<1.0	<10	16	<20	1.2	< 0.10	< 0.050	<10	< 4.0	< 9.0	12		
F4-TAN-13-S	F4-13	2014	16	Phase II	0-15	9.9	8.0	2.3	< 0.10	3.8	17.0	18	2.1	< 0.050	< 0.010	<10	<10	<10	15		
F4-13b	F4-13	2016	18	Phase II	0-15	6.5	6.1	2	1	2.6	11	10.5	1.4	< 0.1	< 0.05	<7	<4	<8	10		
		2018	20	Phase II															#N/A		
		2023	25	Phase II															#N/A		
		2028	30	Phase II															#N/A		
				Phase III															#N/A		
																			#N/A		
																			#N/A		
																			#N/A		
	F4-13 depth																				
99-3767	ML #2/F4-13	1999	1	Phase I	30	5.5	<5.0	<5.0	<1.0	<10	<15	<20	0.62	< 0.10	< 0.050				<40	n/a	n/a
FO-53-2	F4-13	2001	3	Phase I	40-50	2.9	5.0	<5.0	<1.0	<10	<15	<20	3.0	< 0.10	< 0.010				71	0.0	100
FO-10-2	F4-10/F4-13	2003	5	Phase I	40-50	5.0	5.0	<5.0	<1.0	<10	<15	<20	1.1	< 0.10	< 0.050	<10	<40	<40	<40		
F4-13(Soil)40-50cm	F4-13	2006	8	Phase II	40-50	5.0	5.0	<5.0	<1.0	<10	<15	<20	0.80	< 0.10	< 0.10	<12	20	<10	31		
F4-13(Soil)40-50cm	F4-13	2007	9	Phase II	40-50	5.0	<5.0	<5.0	<1.0	<10	<15	<20	0.80	< 0.1	< 0.1	<12	20	<10	2		
F4-13(Soil)40-50cm	F4-13	2008	10	Phase II	40-50	3.0	8.0	<5.0	<1.0	<10	<15	<20	<1.0	< 0.10	< 0.050	<1.0	<1.0	<1.0	<1.0		1
10-18017*/18	F4-13	2010	12	Phase II	30-40	5.7	5.6	<5.0	<1.0	<10	<15	<20	2.1	< 0.10	< 0.050	<10	5.4	12	22		
13-27268/69	F4-13	2013		T HASC II	30-40	7.5	5.3	<5.0	<1.0	<10	<15	<20	1.7	< 0.10	< 0.050	<10	< 4.0	< 9.0	12		<u> </u>
F4-TAN-13-D	F4-13	2013	16	Phase II	40-50	8.0	7.2	2.3	<0.10	2.7	16.0	17	1.9	<0.050	< 0.010	<10	<10	<10	15		
F4-13a (Dup Avg)	F4-13	2014	18	Phase II	40-50	10	9	3.0	1.2	4	19	19	3	< 0.1	< 0.05	<6	<7	<29	21		
r row (coup rivg)	1 4-17	2018	20	Phase II						<u> </u>									#N/A		
		2018	20	Phase II Phase II						—		 					 	 	#N/A		
	+	2023	30	Phase II															#N/A		-
	+	2028	- 50	Phase III															#N/A		
	+	\vdash	-	Phase III															#N/A		
		—																	#N/A		+
	1	1	1		1					ı	1	1		ı		1	1	1	991N/25		1

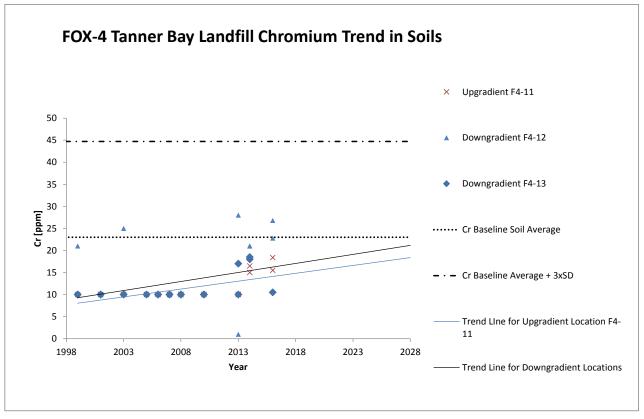
Note: Total Hydrocarbons (C₆-C₅₄) has been calculated by adding results for F1, F2 and F3.

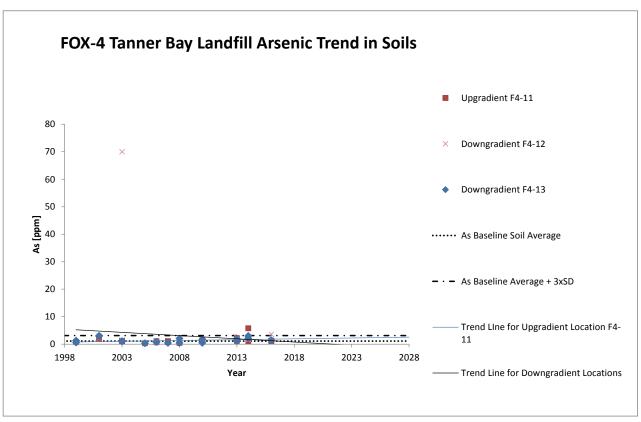

ad XX sample exceeds background
XX sample exceeds background
XX sample exceeds DLCU Tier I criteria
XX sample exceeds DLCU Tier II criteria

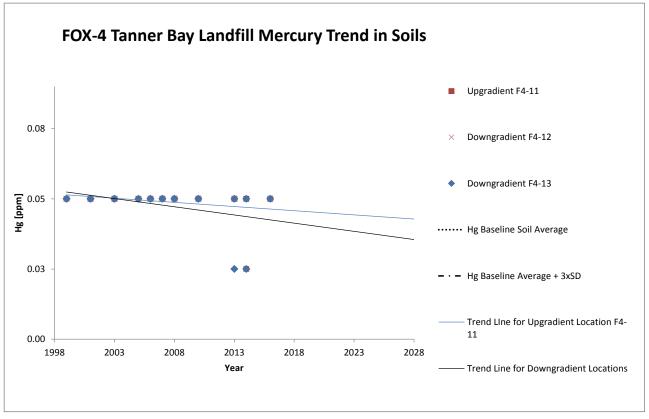

^{**} Tanner Bay Landfill is located in the South Zone. First year monitoring occurred in 1999. The landfill was regraded in 2013.



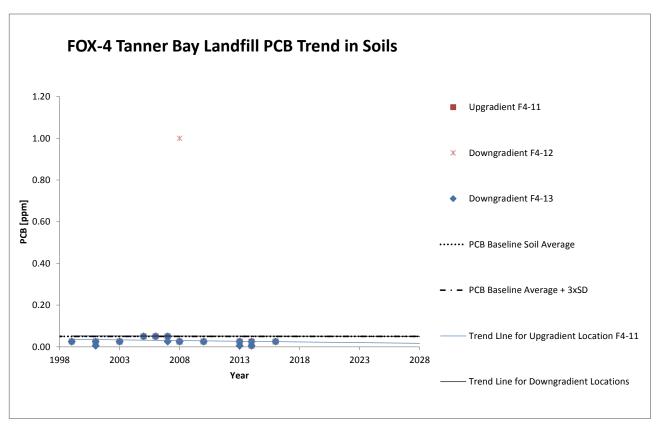

FOX-4 Tanner Bay Landfill Trends in Soil Inorganics, PCBs and PHCs (modified TPH)

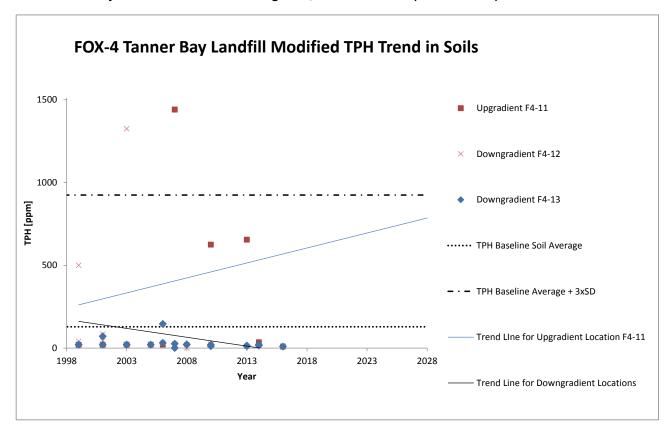



FOX-4 Tanner Bay Landfill Trends in Soil Inorganics, PCBs and PHCs (modified TPH)



FOX-4 Tanner Bay Landfill Trends in Soil Inorganics, PCBs and PHCs (modified TPH)




FOX-4 Tanner Bay Landfill Trends in Soil Inorganics, PCBs and PHCs (modified TPH)

Baseline samples were not analyzed for mercury at this location.

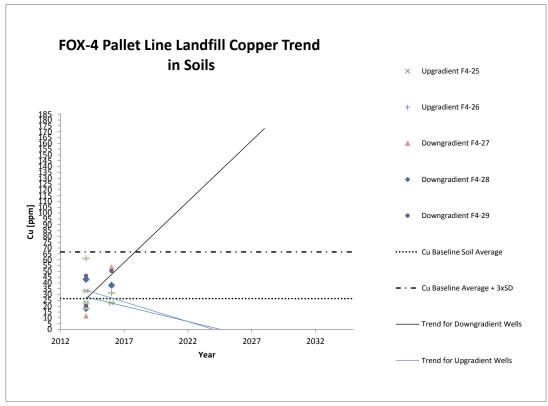
FOX-4 Tanner Bay Landfill Trends in Soil Inorganics, PCBs and PHCs (modified TPH)

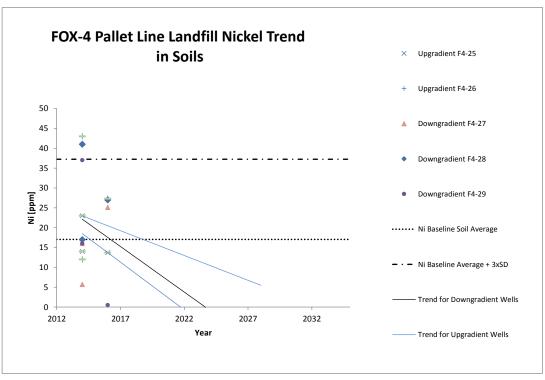
FOY 4 Can	Hooper - Pallet	Lina Lan	acii N	w Landfill	Manitarina	atantina in 1	0014**														
гол-ч Сар	Hooper - Fanet	Line Lan	uiii - ive	Landini	Monitoring	starting in 2	.014***														
Sample ID	Location	Year	Monitoring Yea	r Monitoring Phase	Depth	Cu [mg/kg]	Ni [mg/kg]	Co [mg/kg]	Cd [mg/kg]	Pb [mg/kg]	Zn [mg/kg]	Cr [mg/kg]	As [mg/kg]	Hg [mg/kg]	Total	F1 C ₀ -C ₁₀ [mg/kg]	F2 C ₁₀ -C ₁₀	F3 C ₁₆ -C ₃₄ [mg/kg]	Modified TPH^ - Total C6-C34 [mg/kg]	TPH	
Background Aver	age	1 1			(cm)	30	24	9	0.62	<u>6</u>	41	41	29		PCB [mg/kg]					% Fuel Oil	% Lube Oil
Baseline Data -	Average					27 13.4	6.7	3.9	1.0 0.00	10	37	39 18.3	37 44.7	0.10	0.050				26		
	Standard Deviation 3xStandard Deviation					13.4	6./	2.31 10.8	1.0	4 22	20.1	18.3 94	171	0.000	0.00				23 94		l
Detection Limit	AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA					3.0	5.0	5.0	1.0	10	15	20	0.20	0.10	0.050				10		
DEW Line Clean	up Tier I Criteria									200			1		1						
	Tier II Criteria & site specific	As criteria				100	100	50	5	500	500	250	130	2.0	5				2500		
Monitoring D	ata																				
Upgradient	F4-25 Surface																				
F4-PAL-25-S	F4-25	2014	16	Phase II	0-15	23	14	4.6	< 0.10	10	38	<u>50</u>	38	< 0.050	< 0.010	<10	<10	<10	15		
F4-25a	F4-25	2016 2018	18 20	Phase II Phase II	0-15	22.7	13.7	4.6	2.8	8.4	33.3	50.6	31.9	< 0.1	0.27	<7	<4	<8	9.5 #N/A		
		2023	25	Phase II															#N/A		
		2028	30	Phase III															#N/A		
	†	1		1 mase 111		<u> </u>													#N/A #N/A		
																			#N/A		
-	F4-25 Depth																	1	#N/A		
F4-PAL-25-D	F4-25	2014	16	Phase II	40-50	33	23	7.4	< 0.10	6.8	46	58	110	< 0.050	< 0.010	<10	<10	<10	15		
Not sampled - ref	us F4-25	2016 2018	18 20	Phase II Phase II		1					-				-	-	-	-	#N/A #N/A		-
		2023	25	Phase II															#N/A		
		2028	30	Phase III Phase III															#N/A		
				rnasc m							1								#N/A #N/A		
																			#N/A		
	F4-26 Surface																		#N/A		
F4-PAL-26-S	F4-26	2014	16	Phase II	0-15	18.0	12.0	3.2	< 0.10	33	28	27	21	< 0.050	0.036	<10	<10	24	34		
F4-26a		2016 2018	18 20	Phase II Phase II	0-15	31.3	27.3	7.7	3.2	15.8	41.3	61.1	60.9	< 0.1	0.14	<7	<4	259	264.5 #N/A		
		2023	25	Phase II															#N/A		
		2028	30	Phase III Phase III															#N/A		
				rnasc III															#N/A #N/A		
																			#N/A		
	F4-26 Depth			+															#N/A		
F4-PAL-26-D	F4-26	2014	16	Phase II	40-50	61	43	12	< 0.10	7	61	78	140	< 0.050	< 0.010	<10	<10	<10	15		
Not sampled - ref	us F4-26	2016 2018	18 20	Phase II Phase II															#N/A #N/A		
		2023	25	Phase II															#N/A		
		2028	30	Phase II Phase III															#N/A #N/A		
				Thase III															#N/A		
			_	1															#N/A #N/A		
Downgradient	1				1			1	l .	<u> </u>	1	l .	<u> </u>	1	1				#IN/A	l	1
	F4-27 Surface	l,								40.5					.0.05					ı	
F4-PAL-27-S F4-27a	F4-27 F4-27	2014 2016	16 18	Phase II Phase II	0-15 0-15	11.5 53.5	5.7 25.1	2.85 6	< 0.5	10.5 15.2	19 44.4	20 49.4	11.5 23	<0.10	<0.05 0.16	<10 <7	16	32.5	53.5		-
		2018	20	Phase II				Ů						-0.1				0,	#N/A		
	+	2023 2028	25 30	Phase II Phase II							-						-		#N/A #N/A		
		2020	30	Phase III															#N/A		
			_	1															#N/A		
	+	1		+		<u> </u>					t				1	 	 	1	#N/A 0		1
	F4-27 Depth																				
F4-PAL-27-D Not sampled - rei	F4-27 us F4-27	2014 2016	16 18	Phase II Phase II	40-50	19	16	4	< 0.10	41	28	30	11	< 0.050	< 0.010	190	2700	380	3270 #N/A		-
- tot sampled - ICI		2018	20	Phase II															#N/A		
		2023 2028	25 30	Phase II Phase II															#N/A #N/A		
	+	2020	30	Phase III															#N/A #N/A		
																			#N/A		
<u> </u>		1		+		1									-		-		#N/A #N/A		

FOX-4 Cape	Hooper - Pallet	Line Lar	ndfill - Nev	w Landfill I	Monitoring	starting in 2	2014**														
Sample ID	Location F4-28 Surface	Year	Monitoring Year	Monitoring Phase	Depth (cm)	Cu [mg/kg]	Ni [mg/kg]	Co [mg/kg]	Cd [mg/kg]	Pb [mg/kg]	Zn [mg/kg]	Cr [mg/kg]	As [mg/kg]	Hg [mg/kg]	Total PCB [mg/kg]	F1 C ₆ -C ₁₀ [mg/kg]	F2 C ₁₀ -C ₁₆ [mg/kg]	F3 C ₁₆ -C ₃₄ [mg/kg]	Modified TPH^ - Total C6-C34 [mg/kg]	TPH :	Identity % Lube Oil
	F4-28 Surface F4-28	2014	16	DI II	0-15	18	17.0	6.1	< 0.10	5.9	31	31	-	< 0.050	< 0.010	<10	<10	34	44		
F4-28a (Dup Avg)		2014	18	Phase II Phase II	0-15	38	27	9.0	<0.10	14	63	55	- 4	<0.050	< 0.05	<6	<7	34 89	95.5		
F4-28a (Dup Avg)	F4-28	2016			0-15	38	21	9.0	<0.5	14	63	33	14	<0.1	<0.03	<0	</td <td>89</td> <td>95.5 #N/A</td> <td></td> <td></td>	89	95.5 #N/A		
		2018	20 25	Phase II																	
		2023	30	Phase II Phase II															#N/A		
		2028	30	Phase III															#N/A		+
		-		l'nasc III															#N/A		
																			#N/A		
		1										1							#N/A		
		-										-							#N/A		
	F4-28 Depth	4011		71 77	40-50	43	41	12		0.2	67			10.050	< 0.010	<10	-40	10	**		
F4-PAL-28-D Not sampled - refus	F4-28	2014 2016	16	Phase II Phase II	40-50	43	41	12	0.11	9.3	67	61	14	< 0.050	<0.010	<10	<10	10	20 #N/A		
Not sampled - refus	F4-28		18																		+
		2018	20	Phase II															#N/A		+
		2023 2028	25 30	Phase II Phase II															#N/A		
		2028	30	Phase III															#N/A		
		-		Phase III															#N/A		
																			#N/A		
																			#N/A		
																			#N/A		
	F4-29 Surface									40											
	F4-29	2014	16	Phase II	0-15	46	16.0 <1.0	5.6	< 0.10	12	43	72	17	< 0.050	< 0.010	<10	<10	130	140		
F4-29a	F4-29	2016	18	Phase II	0-15	50.1	<1.0	9.8	4.9	9.7	<u>54.6</u>	72.1	<u>37.4</u>	< 0.1	0.25	</td <td><4</td> <td><8</td> <td>9.5</td> <td></td> <td> </td>	<4	<8	9.5		
		2018	20	Phase II															#N/A		
		2023 2028	25 30	Phase II Phase II															#N/A		
		2028	30																#N/A		
				Phase III															#N/A		
		1																	#N/A		
		1							-			-							#N/A		
		+						-			-	-	 			-			#N/A		
	F4-29 Depth	404		71 77	10 80	**			0.44	0.0				10.050	ZO 010	-40		440	400		
	F4-29	2014	16	Phase II	40-50	20	37	9.6	0.14	8.2	61	84	14	< 0.050	< 0.010	<10	<10	120	130		+
Not sampled - refus	F4-29	2016	18	Phase II															#N/A		
		2018	20	Phase II															#N/A		
		2023	25	Phase II								-							#N/A		
		2028	30	Phase II									ļ	ļ					#N/A		
				Phase III															#N/A		
																			#N/A		
																			#N/A		 '
																			#N/A		

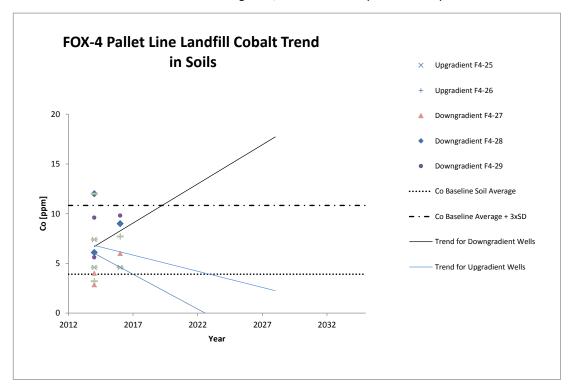
sample exceeds background sample exceeds baseline Legend XX sample exceeds DLCU Tier I criteria
sample exceeds DLCU Tier II criteria XX

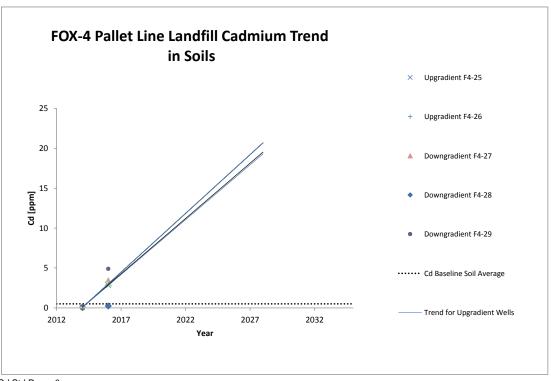
Note: Total Hydrocarbons (C_o-C_{5d}) has been calculated by adding results for F1, F2 and F3.

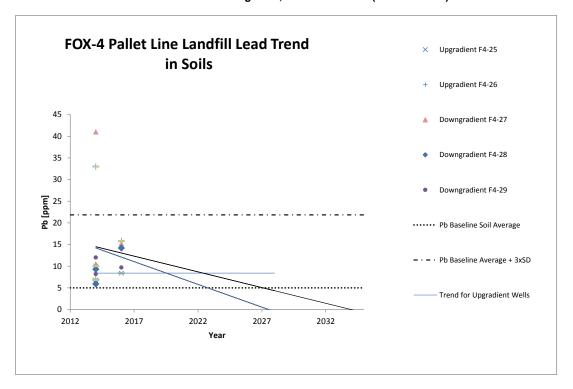

** The Pallet Line Landfill originated from DEW Line operation activities. It was not part of the original monitoring which began in 1999.

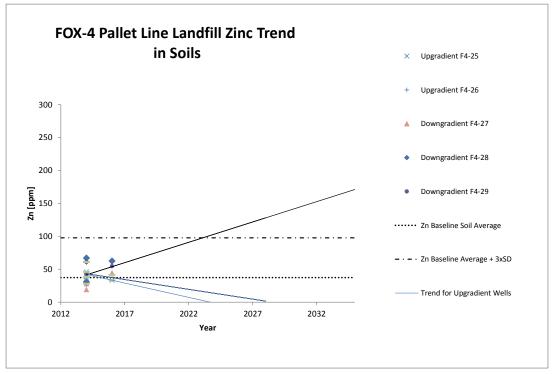

Additional regrading was performed in 2013 and monitoring locations were established for ongoing landfill monitoring.

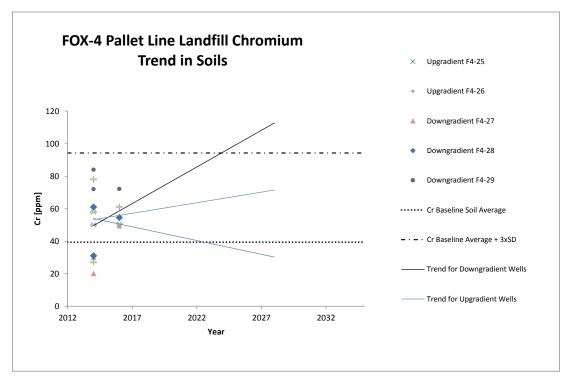
FOX-4 Pallet Line Landfill Trends in Soil Inorganics, PCBs and PHCs (modified TPH)

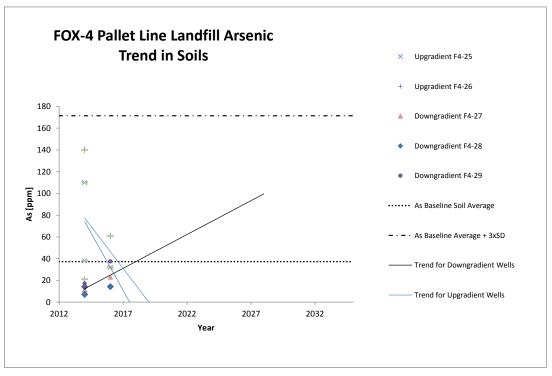

Where results are below detection, half of the detection limit has been used in the charts.

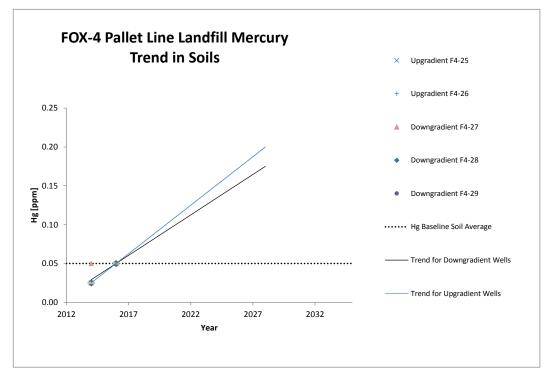

New monitoring locations were established in 2013 around the Pallet Line Landfill at FOX-4 and will be monitored as part of the landfill monitoring program



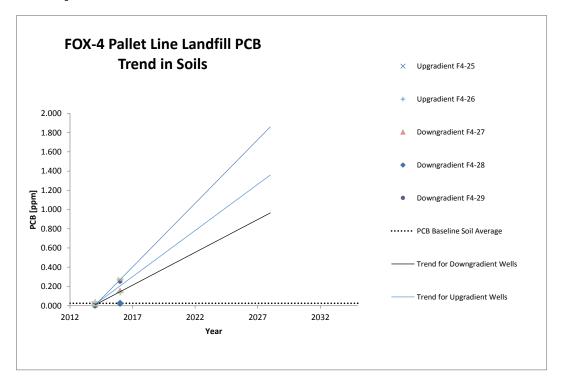

FOX-4 Pallet Line Landfill Trends in Soil Inorganics, PCBs and PHCs (modified TPH)

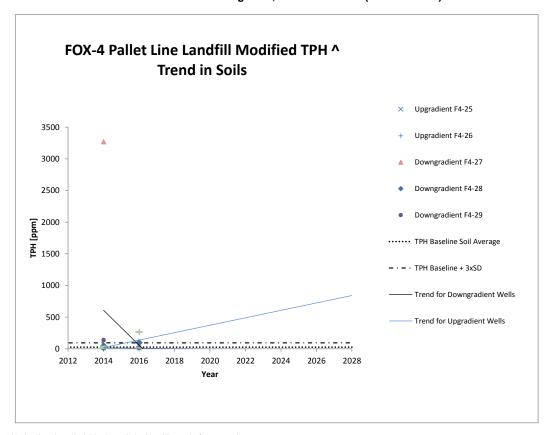



FOX-4 Pallet Line Landfill Trends in Soil Inorganics, PCBs and PHCs (modified TPH)



FOX-4 Pallet Line Landfill Trends in Soil Inorganics, PCBs and PHCs (modified TPH)




FOX-4 Pallet Line Landfill Trends in Soil Inorganics, PCBs and PHCs (modified TPH)

Hg Std Dev = 0

FOX-4 Pallet Line Landfill Trends in Soil Inorganics, PCBs and PHCs (modified TPH)

 $[\]hat{\ }$ Total Hydrocarbons (C6-C34) has been calculated by adding results for F1, F2 and F3.

2016 FOX-4 MONITORING REPORT

APPENDIX D

Photograph Log

Visual Inspection Photographs

Thermistor Photographs

Monitoring Well Photographs

Soil Sampling Photographs

PHOTOS		
Photo 1:	FOX-4 – NHWL/Tier II DF – Southwest toe facing northeast (ATT10_Photo10.jpg)	1
Photo 2:	FOX-4 – NHWL/Tier II DF – Crest facing east (ATT11_Photo11.jpg)	1
Photo 3:	FOX-4 – NHWL/Tier II DF – West crest edge where landfill surface changes elevation facing east (ATT12_Photo12.jpg)	2
Photo 4:	FOX-4 – NHWL/Tier II DF – Northwest toe facing southeast (ATT13_Photo13.jpg)	2
Photo 5:	FOX-4 – NHWL/Tier II DF – North crest facing east (ATT14_Photo14.jpg)	3
Photo 6:	FOX-4 – NHWL/Tier II DF – North crest facing north (ATT15_Photo15.jpg)	3
Photo 7:	FOX-4 – NHWL/Tier II DF – Ditch between landfills facing east – Feature L – Orange staining (Acceptable) (ATT16_Photo16.jpg)	4
Photo 8:	FOX-4 – NHWL/Tier II DF – Crest surface facing southeast (ATT17_Photo17.jpg)	4
Photo 9:	FOX-4 – NHWL/Tier II DF – Crest edge facing north (ATT18_Photo18.jpg)	5
Photo 10:	FOX-4 – NHWL/Tier II DF – South toe facing north (ATT19_Photo19.jpg)	5
Photo 11:	FOX-4 – NHWL/Tier II DF – East toe facing west (ATT20_Photo20.jpg)	6
Photo 12:	FOX-4 – NHWL/Tier II DF – SE corner toe facing northwest (ATT21_Photo21.jpg)	6
Photo 13:	FOX-4 – NHWL/Tier II DF – SE corner toe facing northwest (ATT46_Photo46.jpg)	7
Photo 14:	FOX-4 – NHWL/Tier II DF – SE crest facing east – Feature A – Tire tracks (Acceptable) (ATT163_Photo163.jpg)	7
Photo 15:	FOX-4 – NHWL/Tier II DF – Crest surface facing west – Feature A – Tire tracks (Acceptable) (ATT98_Photo98.jpg)	8
Photo 16:	FOX-4 – NHWL/Tier II DF – South toe facing west – Feature B – Ponded water (Acceptable) (ATT164_Photo164.jpg)	8
Photo 17:	FOX-4 – NHWL/Tier II DF – South toe facing east – Feature B – Ponded water with orange staining (Acceptable) (ATT96_Photo96.jpg)	g
Photo 18:	FOX-4 – NHWL/Tier II DF – South toe facing west – Feature B – Ponded water with some orange staining (Acceptable) (ATT97_Photo97.jpg)	g
Photo 19:	FOX-4 – NHWL/Tier II DF – Feature C – Minor erosion of internal sloped crest at edge (Acceptable), facing south (ATT116_Photo116.jpg)	10
Photo 20:	FOX-4 – NHWL/Tier II DF – Slope between crest surfaces facing east – Feature D – Minor erosion (Acceptable) (ATT99_Photo99.jpg)	10
Photo 21:	FOX-4 – NHWL/Tier II DF – Ditch between landfills facing west – Feature E – Orange staining and seepage (Acceptable) (ATT117_Photo117.jpg)	11
Photo 22:	FOX-4 – NHWL/Tier II DF – Feature F – Ponded water near MW11-02 (Acceptable), facing south (ATT105_Photo105.jpg)	11
Photo 23:	FOX-4 – NHWL/Tier II DF – Feature G – Small bits of metal and wood (Acceptable), facing east (ATT104_Photo104.jpg)	12
Photo 24:	FOX-4 – NHWL/Tier II DF – Feature H – Some pieces of metal (Acceptable), facing south (ATT106_Photo106.jpg)	12
Photo 25:	FOX-4 – NHWL/Tier II DF – Crest surface facing west – Previously observed minor settlement (Feature I) considered as-built undulations (Acceptable) (ATT102_Photo102.jpg)	13

i

Photo 26:	FOX-4 – NHWL/Tier II DF – Northwest toe facing east – Feature J – Ponded water (Acceptable) (ATT101_Photo101.jpg)	13
Photo 27:	FOX-4 – NHWL/Tier II DF – Feature K – Running water along west toe facing northeast (Acceptable) (ATT100_Photo100.jpg)	14
Photo 28:	FOX-4 – NHWL/Tier II DF – Feature E – Ponded water in valley between landfills, facing east (Acceptable) (ATT103_Photo103.jpg)	14
Photo 29:	FOX-4 – NHWL/Tier II DF – Feature L – Orange staining between landfills, facing west (Acceptable) (ATT107_Photo107.jpg)	15
Photo 30:	FOX-4 – NHWL/Tier II DF – Crest surface facing north – Feature M – Rough grading (Acceptable) (ATT110_Photo110.jpg)	15
Photo 31:	FOX-4 – NHWL/Tier II DF – Crest surface facing southeast – Feature N – Minor settlement (Acceptable) (ATT114_Photo114.jpg)	16
Photo 32:	FOX-4 – NHWL/Tier II DF – Feature O – Cracking at bottom of crest surface change (Acceptable), facing south (ATT128_Photo128.jpg)	16
Photo 33:	FOX-4 – NHWL/Tier II DF – Feature O – East end of cracking at toe of crest surface grade change (Acceptable), facing south (ATT129_Photo129.jpg)	17
Photo 34:	FOX-4 – NHWL/Tier II DF – Thermistor VT-8 (replaced repaired datalogger) (ATT120_Photo120.jpg)	17
Photo 35:	FOX-4 – NHWL/Tier II DF – Thermistor VT-2 (ATT108_Photo108.jpg)	18
Photo 36:	FOX-4 – NHWL/Tier II DF – Thermistor VT-3 (ATT109_Photo109.jpg)	18
Photo 37:	FOX-4 – NHWL/Tier II DF – Thermistor VT-4 (ATT111_Photo111.jpg)	19
Photo 38:	FOX-4 – NHWL/Tier II DF – Thermistor VT-6 (ATT112_Photo112.jpg)	19
Photo 39:	FOX-4 – NHWL/Tier II DF – Thermistor VT-5 (ATT113_Photo113.jpg)	20
Photo 40:	FOX-4 – NHWL/Tier II DF – Thermistor VT-10 (ATT115_Photo115.jpg)	20
Photo 41:	FOX-4 – NHWL/Tier II DF – Thermistor VT-10 (datalogger not moved) (ATT118_Photo118.jpg)	21
Photo 42:	FOX-4 – NHWL/Tier II DF – Thermistor VT-9 (replaced repaired datalogger) (ATT119_Photo119.jpg)	21
Photo 43:	FOX-4 – NHWL/Tier II DF – Thermistor VT-7 (datalogger not moved) (ATT121_Photo121.jpg)	22
Photo 44:	FOX-4 – NHWL/Tier II DF – Thermistor VT-5 (datalogger labeled T-2 moved to VT-2, formerly misidentified as VT-5A) (ATT122_Photo122.jpg)	22
Photo 45:	FOX-4 – NHWL/Tier II DF – Thermistor VT-6 (datalogger labeled T1 not moved) (ATT123_Photo123.jpg)	23
Photo 46:	FOX-4 – NHWL/Tier II DF – Thermistor VT-4 (datalogger labeled T3 moved to VT-3) (ATT124_Photo124.jpg)	23
Photo 47:	FOX-4 – NHWL/Tier II DF – Thermistor VT-2 (short datalogger cable) (ATT125_Photo125.jpg)	24
Photo 48:	FOX-4 – NHWL/Tier II DF – Thermistor VT-2 (datalogger VT-05 moved to VT-5) (ATT126_Photo126.jpg)	24
Photo 49:	FOX-4 – NHWL/Tier II DF – Thermistor VT-3 (datalogger labeled T4 moved to VT-4) (ATT127_Photo127.jpg)	25

Photo 50:	FOX-4 – NHWL/Tier II DF – MW11-01 (ATT29_Photo29.jpg)	25
Photo 51:	FOX-4 – NHWL/Tier II DF – Soil sampling location MW11-01 before excavation (ATT30_Photo30.jpg)	26
Photo 52:	FOX-4 – NHWL/Tier II DF – Soil sampling location MW11-01 after excavation (ATT31_Photo31.jpg)	26
Photo 53:	FOX-4 – NHWL/Tier II DF – Soil sampling location MW11-01 after backfilling (ATT33_Photo33.jpg)	27
Photo 54:	FOX-4 – NHWL/Tier II DF – MW11-02 (ATT40_Photo40.jpg)	27
Photo 55:	FOX-4 – NHWL/Tier II DF – Soil sampling location MW11-02 before excavation (ATT37_Photo37.jpg)	28
Photo 56:	FOX-4 – NHWL/Tier II DF – Soil sampling location MW11-02 after excavation (ATT38_Photo38.jpg)	28
Photo 57:	FOX-4 – NHWL/Tier II DF – Soil sampling location MW11-02 after backfilling (ATT39_Photo39.jpg)	29
Photo 58:	FOX-4 – NHWL/Tier II DF – MW11-03 (ATT41_Photo41.jpg)	29
Photo 59:	FOX-4 – NHWL/Tier II DF – Soil sampling location MW11-03 before excavation (ATT42_Photo42.jpg)	30
Photo 60:	FOX-4 – NHWL/Tier II DF – Soil sampling location MW11-03 after excavation (ATT43_Photo43.jpg)	30
Photo 61:	FOX-4 – NHWL/Tier II DF – Soil sampling location MW11-03 after backfilling (ATT44_Photo44.jpg)	31
Photo 62:	FOX-4 – NHWL/Tier II DF – MW11-04 (ATT45_Photo45.jpg)	31
Photo 63:	FOX-4 – NHWL/Tier II DF – Soil sampling location MW11-04 before excavation (ATT46_Photo46.jpg)	32
Photo 64:	FOX-4 – NHWL/Tier II DF – Soil sampling location MW11-04 after excavation (ATT47_Photo47.jpg)	32
Photo 65:	FOX-4 – NHWL/Tier II DF – Soil sampling location MW11-04 after backfilling (ATT48_Photo48.jpg)	33
Photo 66:	FOX-4 – NHWL/Tier II DF – MW11-05 (ATT2_Photo2.jpg)	33
Photo 67:	FOX-4 – NHWL/Tier II DF – Soil sampling location MW11-05 before excavation (ATT3_Photo3.jpg)	34
Photo 68:	FOX-4 – NHWL/Tier II DF – Soil sampling location MW11-05 after excavation (ATT4_Photo4.jpg)	34
Photo 69:	FOX-4 – NHWL/Tier II DF – Soil sampling location MW11-05 after backfilling (ATT5_Photo5.jpg)	35
Photo 70:	FOX-4 – NHWL/Tier II DF – MW11-06 (ATT6_Photo6.jpg)	35
Photo 71:	FOX-4 – NHWL/Tier II DF – Soil sampling location MW11-06 before excavation (ATT7_Photo7.jpg)	36
Photo 72:	FOX-4 – NHWL/Tier II DF – Soil sampling location MW11-06 after excavation (ATT8_Photo8.jpg)	36
Photo 73:	FOX-4 – NHWL/Tier II DF – Soil sampling location MW11-06 after backfilling (ATT9_Photo9.jpg)	37

Photo 74:	FOX-4 – NHWL/Tier II DF – MW12-07 (ATT10_Photo10.jpg)	37
Photo 75:	FOX-4 – NHWL/Tier II DF – MW12-07 (ATT11_Photo11.jpg)	38
Photo 76:	FOX-4 – NHWL/Tier II DF – Soil sampling location at MW12-07 before excavation (ATT12_Photo12.jpg)	38
Photo 77:	FOX-4 – NHWL/Tier II DF – Soil sampling location at MW12-07 after excavation (ATT13_Photo13.jpg)	39
Photo 78:	FOX-4 – NHWL/Tier II DF – Soil sampling location at MW12-07 after backfilling (ATT14_Photo14.jpg)	
Photo 79:	FOX-4 – NHWL/Tier II DF – MW12-08 (ATT25_Photo25.jpg)	40
Photo 80:	FOX-4 – NHWL/Tier II DF – Soil sampling location MW12-08 before excavation (ATT26_Photo26.jpg)	40
Photo 81:	FOX-4 – NHWL/Tier II DF – Soil sampling location MW12-08 after excavation (ATT27_Photo27.jpg)	41
Photo 82:	FOX-4 – NHWL/Tier II DF – Soil sampling location MW12-08 after backfilling (ATT28_Photo28.jpg)	41
Photo 83:	FOX-4 – Helipad West Landfill - From helipad facing west (ATT26_Photo26.jpg)	42
Photo 84:	FOX-4 – Helipad West Landfill – From toe facing east towards MW98-01 (ATT27_Photo27.jpg)	42
Photo 85:	FOX-4 – Helipad West Landfill – Feature E – Minor settlement, facing north (Acceptable) (ATT28_Photo28.jpg)	43
Photo 86:	FOX-4 – Helipad West Landfill – Crest facing north in area of previously observed vehicle tracks (Feature A not observed in 2016) (ATT29_Photo29.jpg)	43
Photo 87:	FOX-4 – Helipad West Landfill – NW toe facing southeast upslope – Previously observed settlement (Feature G) is uneven ground at centre and previously observed staining (Feature J) at right (ATT30_Photo30.jpg)	44
Photo 88:	FOX-4 – Helipad West Landfill – Toe facing east upslope (ATT31_Photo31.jpg)	
Photo 89:	FOX-4 – Helipad West Landfill – SW slope facing northwest – Feature B – Minor self armouring erosion channels (Acceptable) (ATT149_Photo149.jpg)	45
Photo 90:	FOX-4 – Helipad West Landfill – South end of west slope facing north – Feature B – Minor self armouring erosion (Acceptable) (ATT150_Photo150.jpg)	45
Photo 91:	FOX-4 – Helipad West Landfill – Toe of slope facing east – Feature C – Minor self armouring erosion channels (Acceptable) (ATT153_Photo153.jpg)	46
Photo 92:	FOX-4 – Helipad West Landfill – Crest of slope facing northwest – Feature D – Minor self armouring erosion at top of slope (Acceptable) (ATT143_Photo143.jpg)	
Photo 93:	FOX-4 – Helipad West Landfill – Previously observed vehicle tracks (Feature A) not considered noteworthy in 2016, facing southwest downslope (ATT148_Photo148.jpg)	47
Photo 94:	FOX-4 – Helipad West Landfill – Feature F – Minor settlement or uneven ground (Acceptable), facing south (ATT146_Photo146.jpg)	47
Photo 95:	FOX-4 – Helipad West Landfill – Feature F – Close up of minor settlement areas with cap for scale (Acceptable), facing south (ATT147_Photo147.jpg)	48
Photo 96:	FOX-4 – Helipad West Landfill – NW toe facing northwest – Previously observed settlement (Feature G) appears to be area of uneven ground and not considered noteworthy in 2016 (ATT157_Photo157.jpg)	

Photo 97:	FOX-4 – Helipad West Landfill – Slope above landfill facing south – Feature H – Previously observed settlement area with small sinkholes (Acceptable) (ATT141_Photo141.jpg)	49
Photo 98:	FOX-4 – Helipad West Landfill – West toe facing north – Feature I – Minor sink holes at edge of coarse rock fill (Acceptable) (ATT154_Photo154.jpg)	49
Photo 99:	FOX-4 – Helipad West Landfill – Feature J – Orange staining and seepage with sheen, soft saturated ground – West toe facing east (Acceptable) (ATT155_Photo155.jpg)	50
Photo 100:	FOX-4 – Helipad West Landfill – Feature J – Orange staining with no seepage at time of 2016 inspection – West toe facing southeast (ATT156_Photo156.jpg)	50
Photo 101:	FOX-4 – Helipad West Landfill – Slope above landfill and below helipad facing west– Feature K – previously observed exposed wires (Acceptable) (ATT145_Photo145.jpg)	51
Photo 102:	FOX-4 – Helipad West Landfill – Slope east of MW98-06 facing south – Feature L – Exposed steel pipe (Acceptable) (ATT142_Photo142.jpg)	51
Photo 103:	FOX-4 – Helipad West Landfill – Slope northwest of landfill facing northwest – Feature M – Self-armouring erosion (Acceptable) (ATT140_Photo140.jpg)	52
Photo 104:	FOX-4 – Helipad West Landfill – Feature N – Saturated wet slope with seepage at toe – West slope facing southeast (ATT144_Photo144.jpg)	52
Photo 105:	FOX-4 – Helipad West Landfill – West slope facing northwest – Feature O – Minor cracking at top of slope (Marginal), weathered, small parallel crack above (ATT151_Photo151.jpg)	53
Photo 106:	FOX-4 – Helipad West Landfill – West slope west – Feature C – Self-armouring erosion (Acceptable) (ATT152_Photo152.jpg)	53
Photo 107:	FOX-4 – Helipad West Landfill – MW98-01 (ATT83_Photo83.jpg)	54
Photo 108:	FOX-4 – Helipad West Landfill – Soil sampling location MW98-01 before excavation (ATT84_Photo84.jpg)	54
Photo 109:	FOX-4 – Helipad West Landfill – Soil sampling location MW98-01 after excavation (ATT85_Photo85.jpg)	55
Photo 110:	FOX-4 – Helipad West Landfill – Soil sampling location MW98-01 after backfilling (ATT86_Photo86.jpg)	55
Photo 111:	FOX-4 – Helipad West Landfill – MW98-02 monitoring well casing full of water and bentonite (ATT79_Photo79.jpg)	56
Photo 112:	FOX-4 – Helipad West Landfill – Soil sampling location MW98-02 before excavation (ATT80_Photo80.jpg)	56
Photo 113:	FOX-4 – Helipad West Landfill – Soil sampling location MW98-02 after excavation (ATT81_Photo81.jpg)	57
Photo 114:	FOX-4 – Helipad West Landfill – Soil sampling location MW98-02 after backfilling (ATT82_Photo82.jpg)	57
Photo 115:	FOX-4 – Helipad West Landfill – MW98-03 (ATT87_Photo87.jpg)	58
Photo 116:	FOX-4 – Helipad West Landfill – Soil sampling location MW98-03 before excavation (ATT88_Photo88.jpg)	58
Photo 117:	FOX-4 – Helipad West Landfill – Soil sampling location MW98-03 after excavation (ATT89_Photo89.jpg)	
Photo 118:	FOX-4 – Helipad West Landfill – Soil sampling location MW98-03 after backfilling (ATT90_Photo90.jpg)	

Photo 119:	FOX-4 – Helipad West Landfill – MW98-06 monitoring well casing full of bentonite (ATT75_Photo75.jpg)	60
Photo 120:	FOX-4 – Helipad West Landfill – Soil sample location MW98-06 before excavation (ATT76_Photo76.jpg)	60
Photo 121:	FOX-4 – Helipad West Landfill – Soil sample location MW98-06 after excavation (ATT77_Photo77.jpg)	61
Photo 122:	FOX-4 – Helipad West Landfill – Soil sample location MW98-06 after backfilling (ATT78_Photo78.jpg)	61
Photo 123:	FOX-4 – Station Area Landfill – East end facing west (ATT22_Photo22.jpg)	62
Photo 124:	FOX-4 – Station Area Landfill – North slope facing west (ATT23_Photo23.jpg)	62
Photo 125:	FOX-4 – Station Area Landfill – North side facing west and MW98-08 – Feature L (staining) and Feature B (ponded water) in background (Acceptable) (ATT24_Photo24.jpg)	63
Photo 126:	FOX-4 – Station Area Landfill – West end facing east – Previously observed minor settlement (Feature H) is just rough grading and not considered noteworthy (ATT25_Photo25.jpg)	63
Photo 127:	FOX-4 – Station Area Landfill – East end toe facing northwest – Previously observed Feature A - Seepage with orange staining (Acceptable) (ATT134_Photo134.jpg)	64
Photo 128:	FOX-4 – Station Area Landfill – Northwest toe facing east – Feature B – Ponded water with orange staining (Acceptable) (ATT137_Photo137.jpg)	64
Photo 129:	FOX-4 – Station Area Landfill – East end facing east – Feature C – Minor self-armouring erosion with fines washed down slope, soft ground at bottom of slope (Acceptable) (ATT130_Photo130.jpg)	65
Photo 130:	FOX-4 – Station Area Landfill – Feature D – Sink holes along south edge of landfill facing southwest (Acceptable) (ATT131_Photo131.jpg)	65
Photo 131:	FOX-4 – Station Area Landfill – Crest surface facing east – Feature C – Minor self- armouring erosion (Acceptable) (ATT139_Photo139.jpg)	66
Photo 132:	FOX-4 – Station Area Landfill – Feature E – Sink holes along south edge of landfill, facing southeast (Acceptable) (ATT132_Photo132.jpg)	66
Photo 133:	FOX-4 – Station Area Landfill – Feature F – Sink holes along south edge of landfill, facing southwest (Acceptable) (ATT138_Photo138.jpg)	67
Photo 134:	FOX-4 – Station Area Landfill – Central crest surface facing southwest – Feature G – Previously observed minor settlement (<0.1 m deep) may just be rough grading (Acceptable) (ATT133_Photo133.jpg)	67
Photo 135:	FOX-4 – Station Area Landfill – West toe facing north – Feature L – Orange staining (Acceptable) (ATT136_Photo136.jpg)	68
Photo 136:	FOX-4 – Station Area Landfill – Northwest toe facing southeast towards landfill – Feature B – Ponded water with orange staining (Acceptable) (ATT135_Photo135.jpg)	68
Photo 137:	FOX-4 – Station Area Landfill – MW98-07 monitoring well casing filled with bentonite (ATT69_Photo69.jpg)	69
Photo 138:	FOX-4 – Station Area Landfill – MW98-07 (ATT70_Photo70.jpg)	69
Photo 139:	FOX-4 – Station Area Landfill – MW98-07 (ATT71_Photo71.jpg)	70
Photo 140:	FOX-4 – Station Area Landfill – Soil sampling location MW98-07 before excavation (ATT59_Photo59.jpg)	70

Photo 141:	FOX-4 – Station Area Landfill – Soil sampling location MW98-07 after excavation (ATT60_Photo60.jpg)	71
Photo 142:	FOX-4 – Station Area Landfill – Soil sampling location MW98-07 after backfilling (ATT61_Photo61.jpg)	71
Photo 143:	FOX-4 – Station Area Landfill – MW98-08 (ATT72_Photo72.jpg)	72
Photo 144:	FOX-4 – Station Area Landfill – MW98-08 monitoring well casing filled with bentonite (ATT73_Photo73.jpg)	72
Photo 145:	FOX-4 – Station Area Landfill – Soil sampling location MW98-08 before excavation (ATT62_Photo62.jpg)	73
Photo 146:	FOX-4 – Station Area Landfill – Soil sampling location MW98-08 after excavation (ATT63_Photo63.jpg)	73
Photo 147:	FOX-4 – Station Area Landfill – Soil sampling location MW98-08 after backfilling (ATT64_Photo64.jpg)	74
Photo 148:	FOX-4 – Station Area Landfill – MW98-09 with bentonite inside protective casing (ATT74_Photo74.jpg)	74
Photo 149:	FOX-4 – Station Area Landfill – Soil sampling location MW98-09 before excavation (ATT65_Photo65.jpg)	75
Photo 150:	FOX-4 – Station Area Landfill – Soil sampling location MW98-09 after excavation (ATT66_Photo66.jpg)	75
Photo 151:	FOX-4 – Station Area Landfill – Soil sampling location MW98-09 after excavation (ATT67_Photo67.jpg)	76
Photo 152:	FOX-4 – Station Area Landfill – Soil sampling location MW98-09 after backfilling (ATT68_Photo68.jpg)	76
Photo 153:	FOX-4 – Pallet Line Landfill – Southwest slope and toe facing southeast (ATT2_Photo2.jpg)	77
Photo 154:	FOX-4 – Pallet Line Landfill – West toe facing south (ATT3_Photo3.jpg)	77
Photo 155:	FOX-4 – Pallet Line Landfill – Northwest corner facing southeast (ATT4_Photo4.jpg)	78
Photo 156:	FOX-4 – Pallet Line Landfill – Crest of landfill facing southeast (ATT5_Photo5.jpg)	78
Photo 157:	FOX-4 – Pallet Line Landfill – Crest facing northwest (ATT6_Photo6.jpg)	79
Photo 158:	FOX-4 – Pallet Line Landfill – South end facing northwest (ATT7_Photo7.jpg)	79
Photo 159:	FOX-4 – Pallet Line Landfill – South slope facing northwest (ATT8_Photo8.jpg)	80
Photo 160:	FOX-4 – Pallet Line Landfill – Toe of south slope facing east (ATT9_Photo9.jpg)	80
Photo 161:	FOX-4 – Pallet Line Landfill – Previously observed ponded water (Feature A) not observed in 2016 – East end facing southwest (ATT95_Photo95.jpg)	81
Photo 162:	FOX-4 – Pallet Line Landfill – Crest surface of landfill facing north – Feature B – Minor dark (potential hydrocarbon) staining not related to landfill performance (Acceptable) (ATT94_Photo94.jpg)	81
Photo 163:	FOX-4 – Pallet Line Landfill – Soil sample location F4-25 before excavation (ATT49_Photo49.jpg)	82
Photo 164:	FOX-4 – Pallet Line Landfill – Soil sample location F4-25 after excavation	
	(ATT50_Photo50.jpg)	82

Photo 165:	FOX-4 – Pallet Line Landfill – Soil sample location F4-25 after backfilling (ATT51_Photo51.jpg)	83
Photo 166:	FOX-4 – Pallet Line Landfill – Soil sampling location F4-26 before excavation (ATT52_Photo52.jpg)	83
Photo 167:	FOX-4 – Pallet Line Landfill – Soil sampling location F4-26 after excavation (ATT53_Photo53.jpg)	84
Photo 168:	FOX-4 – Pallet Line Landfill – Soil sampling location F4-26 after excavation (ATT54_Photo54.jpg)	84
Photo 169:	FOX-4 – Pallet Line Landfill – Soil sampling location F4-26 after backfilling (ATT55_Photo55.jpg)	85
Photo 170:	FOX-4 – Pallet Line Landfill – Soil sampling location F4-27 before excavation (ATT56_Photo56.jpg)	85
Photo 171:	FOX-4 – Pallet Line Landfill – Soil sampling location F4-27 after excavation (ATT57_Photo57.jpg)	86
Photo 172:	FOX-4 – Pallet Line Landfill – Soil sampling location F4-27 after backfilling (ATT58_Photo58.jpg)	86
Photo 173:	FOX-4 – Pallet Line Landfill – Soil sampling location F4-28 before excavation (ATT91_Photo91.jpg)	87
Photo 174:	FOX-4 – Pallet Line Landfill – Soil sampling location F4-28 after excavation (ATT92_Photo92.jpg)	87
Photo 175:	FOX-4 – Pallet Line Landfill – Soil sampling location F4-28 after backfilling (ATT93_Photo93.jpg)	88
Photo 176:	FOX-4 – Pallet Line Landfill – Soil sampling location F4-29 before excavation (ATT34_Photo34.jpg)	
Photo 177:	FOX-4 – Pallet Line Landfill – Soil sampling location F4-29 after excavation (ATT35_Photo35.jpg)	89
Photo 178:	FOX-4 – Pallet Line Landfill – Soil sampling location F4-29 after backfilling (ATT36_Photo36.jpg)	89
Photo 179:	FOX-4 – Tanner Bay Landfill – North end facing southwest (ATT32_Photo32.jpg)	90
Photo 180:	FOX-4 – Tanner Bay Landfill – Crest facing southwest (ATT33_Photo33.jpg)	90
Photo 181:	FOX-4 – Tanner Bay Landfill – Southwest toe facing northeast (ATT34_Photo34.jpg)	91
Photo 182:	FOX-4 – Tanner Bay Landfill – South toe near river facing northeast (ATT35_Photo35.jpg)	91
Photo 183:	FOX-4 – Tanner Bay Landfill – Southwest slope facing northeast (ATT36_Photo36.jpg)	92
Photo 184:	FOX-4 – Tanner Bay Landfill – Southeast crest edge facing northeast (ATT37_Photo37.jpg)	92
Photo 185:	FOX-4 – Tanner Bay Landfill – Crest surface facing northeast – Feature A – Minor settlement area with weathered crack (Acceptable) (ATT159_Photo159.jpg)	93
Photo 186:	FOX-4 – Tanner Bay Landfill – Northeast corner facing west – Feature B – Minor erosion (Acceptable) (ATT160_Photo160.jpg)	93
Photo 187:	FOX-4 – Tanner Bay Landfill – Feature C – Ponded water at west toe, facing east (Acceptable) (ATT158_Photo158.jpg)	94
Photo 188:	FOX-4 – Tanner Bay Landfill – Soil sampling location F4-11 before excavation (ATT21_Photo21.jpg)	94

Photo 189:	FOX-4 – Tanner Bay Landfill – Soil sampling location F4-11 after excavation (ATT22_Photo22.jpg)	95
Photo 190:	FOX-4 – Tanner Bay Landfill – Soil sampling location F4-11 after backfilling (ATT23_Photo23.jpg)	95
Photo 191:	FOX-4 – Tanner Bay Landfill – Soil sampling location F4-12 before excavation (ATT18_Photo18.jpg)	96
Photo 192:	FOX-4 – Tanner Bay Landfill – Soil sampling location F4-12 after excavation (ATT19_Photo19.jpg)	96
Photo 193:	FOX-4 – Tanner Bay Landfill – Soil sampling location F4-12 after backfilling (ATT20_Photo20.jpg)	97
Photo 194:	FOX-4 – Tanner Bay Landfill – Soil sampling location F4-13 before excavation (ATT15_Photo15.jpg)	97
Photo 195:	FOX-4 – Tanner Bay Landfill – Soil sampling location F4-13 after excavation (ATT16_Photo16.jpg)	98
Photo 196:	FOX-4 – Tanner Bay Landfill – Soil sampling location F4-13 after backfilling	98

Photo 1: FOX-4 – NHWL/Tier II DF – Southwest toe facing northeast (ATT10_Photo10.jpg)

Photo 2: FOX-4 – NHWL/Tier II DF – Crest facing east (ATT11_Photo11.jpg)

Photo 3: FOX-4 – NHWL/Tier II DF – West crest edge where landfill surface changes elevation facing east (ATT12_Photo12.jpg)

Photo 4: FOX-4 – NHWL/Tier II DF – Northwest toe facing southeast (ATT13_Photo13.jpg)

Photo 5: FOX-4 – NHWL/Tier II DF – North crest facing east (ATT14_Photo14.jpg)

Photo 6: FOX-4 – NHWL/Tier II DF – North crest facing north (ATT15_Photo15.jpg)

Photo 7: FOX-4 – NHWL/Tier II DF – Ditch between landfills facing east – Feature L – Orange staining (Acceptable) (ATT16_Photo16.jpg)

Photo 8: FOX-4 – NHWL/Tier II DF – Crest surface facing southeast (ATT17_Photo17.jpg)

Photo 9: FOX-4 – NHWL/Tier II DF – Crest edge facing north (ATT18_Photo18.jpg)

Photo 10: FOX-4 – NHWL/Tier II DF – South toe facing north (ATT19_Photo19.jpg)

Photo 11: FOX-4 – NHWL/Tier II DF – East toe facing west (ATT20_Photo20.jpg)

Photo 12: FOX-4 – NHWL/Tier II DF – SE corner toe facing northwest (ATT21_Photo21.jpg)

Photo 13: FOX-4 – NHWL/Tier II DF – SE corner toe facing northwest (ATT46_Photo46.jpg)

Photo 14: FOX-4 – NHWL/Tier II DF – SE crest facing east – Feature A – Tire tracks (Acceptable) (ATT163_Photo163.jpg)

Photo 15: FOX-4 – NHWL/Tier II DF – Crest surface facing west – Feature A – Tire tracks (Acceptable) (ATT98_Photo98.jpg)

Photo 16: FOX-4 – NHWL/Tier II DF – South toe facing west – Feature B – Ponded water (Acceptable) (ATT164_Photo164.jpg)

Photo 17: FOX-4 – NHWL/Tier II DF – South toe facing east – Feature B – Ponded water with orange staining (Acceptable) (ATT96_Photo96.jpg)

Photo 18: FOX-4 – NHWL/Tier II DF – South toe facing west – Feature B – Ponded water with some orange staining (Acceptable) (ATT97_Photo97.jpg)

Photo 19: FOX-4 – NHWL/Tier II DF – Feature C – Minor erosion of internal sloped crest at edge (Acceptable), facing south (ATT116_Photo116.jpg)

Photo 20: FOX-4 – NHWL/Tier II DF – Slope between crest surfaces facing east – Feature D – Minor erosion (Acceptable) (ATT99_Photo99.jpg)

Photo 21: FOX-4 – NHWL/Tier II DF – Ditch between landfills facing west – Feature E – Orange staining and seepage (Acceptable) (ATT117_Photo117.jpg)

Photo 22: FOX-4 – NHWL/Tier II DF – Feature F – Ponded water near MW11-02 (Acceptable), facing south (ATT105_Photo105.jpg)

Photo 23: FOX-4 – NHWL/Tier II DF – Feature G – Small bits of metal and wood (Acceptable), facing east (ATT104_Photo104.jpg)

Photo 24: FOX-4 – NHWL/Tier II DF – Feature H – Some pieces of metal (Acceptable), facing south (ATT106_Photo106.jpg)

Photo 25: FOX-4 – NHWL/Tier II DF – Crest surface facing west – Previously observed minor settlement (Feature I) considered as-built undulations (Acceptable) (ATT102_Photo102.jpg)

Photo 26: FOX-4 – NHWL/Tier II DF – Northwest toe facing east – Feature J – Ponded water (Acceptable) (ATT101_Photo101.jpg)

Photo 27: FOX-4 – NHWL/Tier II DF – Feature K – Running water along west toe facing northeast (Acceptable) (ATT100_Photo100.jpg)

Photo 28: FOX-4 – NHWL/Tier II DF – Feature E – Ponded water in valley between landfills, facing east (Acceptable) (ATT103_Photo103.jpg)

Photo 29: $FOX-4 - NHWL/Tier\ II\ DF - Feature\ L - Orange\ staining\ between\ landfills,\ facing\ west\ (Acceptable)\ (ATT107_Photo107.jpg)$

Photo 30: FOX-4 – NHWL/Tier II DF – Crest surface facing north – Feature M – Rough grading (Acceptable) (ATT110_Photo110.jpg)

Photo 31: FOX-4 – NHWL/Tier II DF – Crest surface facing southeast – Feature N – Minor settlement (Acceptable) (ATT114_Photo114.jpg)

Photo 32: FOX-4 – NHWL/Tier II DF – Feature O – Cracking at bottom of crest surface change (Acceptable), facing south (ATT128_Photo128.jpg)

Photo 33: FOX-4 – NHWL/Tier II DF – Feature O – East end of cracking at toe of crest surface grade change (Acceptable), facing south (ATT129_Photo129.jpg)

Photo 34: FOX-4 – NHWL/Tier II DF – Thermistor VT-8 (replaced repaired datalogger) (ATT120_Photo120.jpg)

Photo 35: FOX-4 – NHWL/Tier II DF – Thermistor VT-2 (ATT108_Photo108.jpg)

Photo 36: FOX-4 – NHWL/Tier II DF – Thermistor VT-3 (ATT109_Photo109.jpg)

Photo 37: FOX-4 – NHWL/Tier II DF – Thermistor VT-4 (ATT111_Photo111.jpg)

Photo 38: FOX-4 – NHWL/Tier II DF – Thermistor VT-6 (ATT112_Photo112.jpg)

Photo 39: FOX-4 – NHWL/Tier II DF – Thermistor VT-5 (ATT113_Photo113.jpg)

Photo 40: FOX-4 – NHWL/Tier II DF – Thermistor VT-10 (ATT115_Photo115.jpg)

Photo 41: FOX-4 – NHWL/Tier II DF – Thermistor VT-10 (datalogger not moved) (ATT118_Photo118.jpg)

Photo 42: FOX-4 – NHWL/Tier II DF – Thermistor VT-9 (replaced repaired datalogger) (ATT119_Photo119.jpg)

Photo 43: FOX-4 – NHWL/Tier II DF – Thermistor VT-7 (datalogger not moved) (ATT121_Photo121.jpg)

Photo 44: FOX-4 – NHWL/Tier II DF – Thermistor VT-5 (datalogger labeled T-2 moved to VT-2, formerly misidentified as VT-5A) (ATT122_Photo122.jpg)

Photo 45: FOX-4 – NHWL/Tier II DF – Thermistor VT-6 (datalogger labeled T1 not moved) (ATT123_Photo123.jpg)

Photo 46: FOX-4 – NHWL/Tier II DF – Thermistor VT-4 (datalogger labeled T3 moved to VT-3) (ATT124_Photo124.jpg)

Photo 47: FOX-4 – NHWL/Tier II DF – Thermistor VT-2 (short datalogger cable) (ATT125_Photo125.jpg)

Photo 48: FOX-4 – NHWL/Tier II DF – Thermistor VT-2 (datalogger VT-05 moved to VT-5) (ATT126_Photo126.jpg)

Photo 49: FOX-4 – NHWL/Tier II DF – Thermistor VT-3 (datalogger labeled T4 moved to VT-4) (ATT127_Photo127.jpg)

Photo 50: FOX-4 – NHWL/Tier II DF – MW11-01 (ATT29_Photo29.jpg)

Photo 51: FOX-4 – NHWL/Tier II DF – Soil sampling location MW11-01 before excavation (ATT30_Photo30.jpg)

Photo 52: FOX-4 – NHWL/Tier II DF – Soil sampling location MW11-01 after excavation (ATT31_Photo31.jpg)

Photo 53: FOX-4 – NHWL/Tier II DF – Soil sampling location MW11-01 after backfilling (ATT33_Photo33.jpg)

Photo 54: FOX-4 – NHWL/Tier II DF – MW11-02 (ATT40_Photo40.jpg)

Photo 55: FOX-4 – NHWL/Tier II DF – Soil sampling location MW11-02 before excavation (ATT37_Photo37.jpg)

Photo 56: FOX-4 – NHWL/Tier II DF – Soil sampling location MW11-02 after excavation (ATT38_Photo38.jpg)

Photo 57: FOX-4 – NHWL/Tier II DF – Soil sampling location MW11-02 after backfilling (ATT39_Photo39.jpg)

Photo 58: FOX-4 – NHWL/Tier II DF – MW11-03 (ATT41_Photo41.jpg)



Photo 59: FOX-4 – NHWL/Tier II DF – Soil sampling location MW11-03 before excavation (ATT42_Photo42.jpg)

Photo 60: FOX-4 – NHWL/Tier II DF – Soil sampling location MW11-03 after excavation (ATT43_Photo43.jpg)

Photo 61: FOX-4 – NHWL/Tier II DF – Soil sampling location MW11-03 after backfilling (ATT44_Photo44.jpg)

Photo 62: FOX-4 – NHWL/Tier II DF – MW11-04 (ATT45_Photo45.jpg)

Photo 63: FOX-4 – NHWL/Tier II DF – Soil sampling location MW11-04 before excavation (ATT46_Photo46.jpg)

Photo 64: FOX-4 – NHWL/Tier II DF – Soil sampling location MW11-04 after excavation (ATT47_Photo47.jpg)

Photo 65: FOX-4 – NHWL/Tier II DF – Soil sampling location MW11-04 after backfilling (ATT48_Photo48.jpg)

Photo 66: FOX-4 – NHWL/Tier II DF – MW11-05 (ATT2_Photo2.jpg)

Photo 67: FOX-4 – NHWL/Tier II DF – Soil sampling location MW11-05 before excavation (ATT3_Photo3.jpg)

Photo 68: FOX-4 – NHWL/Tier II DF – Soil sampling location MW11-05 after excavation (ATT4_Photo4.jpg)

Photo 69: FOX-4 – NHWL/Tier II DF – Soil sampling location MW11-05 after backfilling (ATT5_Photo5.jpg)

Photo 70: FOX-4 – NHWL/Tier II DF – MW11-06 (ATT6_Photo6.jpg)

Photo 71: FOX-4 – NHWL/Tier II DF – Soil sampling location MW11-06 before excavation (ATT7_Photo7.jpg)

Photo 72: FOX-4 – NHWL/Tier II DF – Soil sampling location MW11-06 after excavation (ATT8_Photo8.jpg)

Photo 73: FOX-4 – NHWL/Tier II DF – Soil sampling location MW11-06 after backfilling (ATT9_Photo9.jpg)

Photo 74: FOX-4 – NHWL/Tier II DF – MW12-07 (ATT10_Photo10.jpg)

Photo 75: FOX-4 – NHWL/Tier II DF – MW12-07 (ATT11_Photo11.jpg)

Photo 76: FOX-4 – NHWL/Tier II DF – Soil sampling location at MW12-07 before excavation (ATT12_Photo12.jpg)

Photo 77: FOX-4 – NHWL/Tier II DF – Soil sampling location at MW12-07 after excavation (ATT13_Photo13.jpg)

Photo 78: FOX-4 – NHWL/Tier II DF – Soil sampling location at MW12-07 after backfilling (ATT14_Photo14.jpg)

Photo 79: FOX-4 – NHWL/Tier II DF – MW12-08 (ATT25_Photo25.jpg)

Photo 80: FOX-4 – NHWL/Tier II DF – Soil sampling location MW12-08 before excavation (ATT26_Photo26.jpg)

Photo 81: FOX-4 – NHWL/Tier II DF – Soil sampling location MW12-08 after excavation (ATT27_Photo27.jpg)

Photo 82: FOX-4 – NHWL/Tier II DF – Soil sampling location MW12-08 after backfilling (ATT28_Photo28.jpg)

Photo 83: FOX-4 – Helipad West Landfill - From helipad facing west (ATT26_Photo26.jpg)

Photo 84: FOX-4 – Helipad West Landfill – From toe facing east towards MW98-01 (ATT27_Photo27.jpg)

Photo 85: FOX-4 – Helipad West Landfill – Feature E – Minor settlement, facing north (Acceptable) (ATT28_Photo28.jpg)

Photo 86: FOX-4 – Helipad West Landfill – Crest facing north in area of previously observed vehicle tracks (Feature A not observed in 2016) (ATT29_Photo29.jpg)

Photo 87: FOX-4 – Helipad West Landfill – NW toe facing southeast upslope – Previously observed settlement (Feature G) is uneven ground at centre and previously observed staining (Feature J) at right (ATT30_Photo30.jpg)

Photo 88: FOX-4 – Helipad West Landfill – Toe facing east upslope (ATT31_Photo31.jpg)

Photo 89: FOX-4 – Helipad West Landfill – SW slope facing northwest – Feature B – Minor self armouring erosion channels (Acceptable) (ATT149_Photo149.jpg)

Photo 90: FOX-4 – Helipad West Landfill – South end of west slope facing north – Feature B – Minor self armouring erosion (Acceptable) (ATT150_Photo150.jpg)

Photo 91: FOX-4 – Helipad West Landfill – Toe of slope facing east – Feature C – Minor self armouring erosion channels (Acceptable) (ATT153_Photo153.jpg)

Photo 92: FOX-4 – Helipad West Landfill – Crest of slope facing northwest – Feature D – Minor self armouring erosion at top of slope (Acceptable) (ATT143_Photo143.jpg)

Photo 93: FOX-4 – Helipad West Landfill – Previously observed vehicle tracks (Feature A) not considered noteworthy in 2016, facing southwest downslope (ATT148_Photo148.jpg)

Photo 94: FOX-4 – Helipad West Landfill – Feature F – Minor settlement or uneven ground (Acceptable), facing south (ATT146_Photo146.jpg)

Photo 95: FOX-4 – Helipad West Landfill – Feature F – Close up of minor settlement areas with cap for scale (Acceptable), facing south (ATT147_Photo147.jpg)

Photo 96: FOX-4 – Helipad West Landfill – NW toe facing northwest – Previously observed settlement (Feature G) appears to be area of uneven ground and not considered noteworthy in 2016 (ATT157_Photo157.jpg)

Photo 97: FOX-4 – Helipad West Landfill – Slope above landfill facing south – Feature H – Previously observed settlement area with small sinkholes (Acceptable) (ATT141_Photo141.jpg)

Photo 98: FOX-4 – Helipad West Landfill – West toe facing north – Feature I – Minor sink holes at edge of coarse rock fill (Acceptable) (ATT154_Photo154.jpg)

Photo 99: FOX-4 – Helipad West Landfill – Feature J – Orange staining and seepage with sheen, soft saturated ground – West toe facing east (Acceptable) (ATT155_Photo155.jpg)

Photo 100: FOX-4 – Helipad West Landfill – Feature J – Orange staining with no seepage at time of 2016 inspection – West toe facing southeast (ATT156_Photo156.jpg)

Photo 101: FOX-4 – Helipad West Landfill – Slope above landfill and below helipad facing west– Feature K – previously observed exposed wires (Acceptable) (ATT145_Photo145.jpg)

Photo 102: FOX-4 – Helipad West Landfill – Slope east of MW98-06 facing south – Feature L – Exposed steel pipe (Acceptable) (ATT142_Photo142.jpg)

Photo 103: FOX-4 – Helipad West Landfill – Slope northwest of landfill facing northwest – Feature M – Self-armouring erosion (Acceptable) (ATT140_Photo140.jpg)

Photo 104: FOX-4 – Helipad West Landfill – Feature N – Saturated wet slope with seepage at toe – West slope facing southeast (ATT144_Photo144.jpg)

Photo 105: FOX-4 – Helipad West Landfill – West slope facing northwest – Feature O – Minor cracking at top of slope (Marginal), weathered, small parallel crack above (ATT151_Photo151.jpg)

Photo 106: FOX-4 – Helipad West Landfill – West slope west – Feature C – Self-armouring erosion (Acceptable) (ATT152_Photo152.jpg)

Photo 107: FOX-4 – Helipad West Landfill – MW98-01 (ATT83_Photo83.jpg)

Photo 108: FOX-4 – Helipad West Landfill – Soil sampling location MW98-01 before excavation (ATT84_Photo84.jpg)

Photo 109: FOX-4 – Helipad West Landfill – Soil sampling location MW98-01 after excavation (ATT85_Photo85.jpg)

Photo 110: FOX-4 – Helipad West Landfill – Soil sampling location MW98-01 after backfilling (ATT86_Photo86.jpg)

Photo 111: FOX-4 – Helipad West Landfill – MW98-02 monitoring well casing full of water and bentonite (ATT79_Photo79.jpg)

Photo 112: FOX-4 – Helipad West Landfill – Soil sampling location MW98-02 before excavation (ATT80_Photo80.jpg)

Photo 113: FOX-4 – Helipad West Landfill – Soil sampling location MW98-02 after excavation (ATT81_Photo81.jpg)

Photo 114: FOX-4 – Helipad West Landfill – Soil sampling location MW98-02 after backfilling (ATT82_Photo82.jpg)

Photo 115: FOX-4 – Helipad West Landfill – MW98-03 (ATT87_Photo87.jpg)

Photo 116: FOX-4 – Helipad West Landfill – Soil sampling location MW98-03 before excavation (ATT88_Photo88.jpg)

Photo 117: FOX-4 – Helipad West Landfill – Soil sampling location MW98-03 after excavation (ATT89_Photo89.jpg)

Photo 118: FOX-4 – Helipad West Landfill – Soil sampling location MW98-03 after backfilling (ATT90_Photo90.jpg)

Photo 119: FOX-4 – Helipad West Landfill – MW98-06 monitoring well casing full of bentonite (ATT75_Photo75.jpg)

Photo 120: FOX-4 – Helipad West Landfill – Soil sample location MW98-06 before excavation (ATT76_Photo76.jpg)

Photo 121: FOX-4 – Helipad West Landfill – Soil sample location MW98-06 after excavation (ATT77_Photo77.jpg)

Photo 122: FOX-4 – Helipad West Landfill – Soil sample location MW98-06 after backfilling (ATT78_Photo78.jpg)

Photo 123: FOX-4 – Station Area Landfill – East end facing west (ATT22_Photo22.jpg)

Photo 124: FOX-4 – Station Area Landfill – North slope facing west (ATT23_Photo23.jpg)

Photo 125: FOX-4 – Station Area Landfill – North side facing west and MW98-08 – Feature L (staining) and Feature B (ponded water) in background (Acceptable) (ATT24_Photo24.jpg)

Photo 126: FOX-4 – Station Area Landfill – West end facing east – Previously observed minor settlement (Feature H) is just rough grading and not considered noteworthy (ATT25_Photo25.jpg)

Photo 127: FOX-4 – Station Area Landfill – East end toe facing northwest – Previously observed Feature A - Seepage with orange staining (Acceptable) (ATT134_Photo134.jpg)

Photo 128: FOX-4 – Station Area Landfill – Northwest toe facing east – Feature B – Ponded water with orange staining (Acceptable) (ATT137_Photo137.jpg)

Photo 129: FOX-4 – Station Area Landfill – East end facing east – Feature C – Minor self-armouring erosion with fines washed down slope, soft ground at bottom of slope (Acceptable) (ATT130_Photo130.jpg)

Photo 130: FOX-4 – Station Area Landfill – Feature D – Sink holes along south edge of landfill facing southwest (Acceptable) (ATT131_Photo131.jpg)

Photo 131: FOX-4 – Station Area Landfill – Crest surface facing east – Feature C – Minor self-armouring erosion (Acceptable) (ATT139_Photo139.jpg)

Photo 132: FOX-4 – Station Area Landfill – Feature E – Sink holes along south edge of landfill, facing southeast (Acceptable) (ATT132_Photo132.jpg)

Photo 133: FOX-4 – Station Area Landfill – Feature F – Sink holes along south edge of landfill, facing southwest (Acceptable) (ATT138_Photo138.jpg)

Photo 134: FOX-4 – Station Area Landfill – Central crest surface facing southwest – Feature G – Previously observed minor settlement (<0.1 m deep) may just be rough grading (Acceptable) (ATT133_Photo133.jpg)

Photo 135: FOX-4 – Station Area Landfill – West toe facing north – Feature L – Orange staining (Acceptable) (ATT136_Photo136.jpg)

Photo 136: FOX-4 – Station Area Landfill – Northwest toe facing southeast towards landfill – Feature B – Ponded water with orange staining (Acceptable) (ATT135_Photo135.jpg)

Photo 137: FOX-4 – Station Area Landfill – MW98-07 monitoring well casing filled with bentonite (ATT69_Photo69.jpg)

Photo 138: FOX-4 – Station Area Landfill – MW98-07 (ATT70_Photo70.jpg)

Photo 139: FOX-4 – Station Area Landfill – MW98-07 (ATT71_Photo71.jpg)

Photo 140: FOX-4 – Station Area Landfill – Soil sampling location MW98-07 before excavation (ATT59_Photo59.jpg)

Photo 141: FOX-4 – Station Area Landfill – Soil sampling location MW98-07 after excavation (ATT60_Photo60.jpg)

Photo 142: FOX-4 – Station Area Landfill – Soil sampling location MW98-07 after backfilling (ATT61_Photo61.jpg)

Photo 143: FOX-4 – Station Area Landfill – MW98-08 (ATT72_Photo72.jpg)

Photo 144: FOX-4 – Station Area Landfill – MW98-08 monitoring well casing filled with bentonite (ATT73_Photo73.jpg)

Photo 145: FOX-4 – Station Area Landfill – Soil sampling location MW98-08 before excavation (ATT62_Photo62.jpg)

Photo 146: FOX-4 – Station Area Landfill – Soil sampling location MW98-08 after excavation (ATT63_Photo63.jpg)

Photo 147: FOX-4 – Station Area Landfill – Soil sampling location MW98-08 after backfilling (ATT64_Photo64.jpg)

Photo 148: FOX-4 – Station Area Landfill – MW98-09 with bentonite inside protective casing (ATT74_Photo74.jpg)

Photo 149: FOX-4 – Station Area Landfill – Soil sampling location MW98-09 before excavation (ATT65_Photo65.jpg)

Photo 150: FOX-4 – Station Area Landfill – Soil sampling location MW98-09 after excavation (ATT66_Photo66.jpg)

Photo 151: FOX-4 – Station Area Landfill – Soil sampling location MW98-09 after excavation (ATT67_Photo67.jpg)

Photo 152: FOX-4 – Station Area Landfill – Soil sampling location MW98-09 after backfilling (ATT68_Photo68.jpg)

Photo 153: FOX-4 – Pallet Line Landfill – Southwest slope and toe facing southeast (ATT2_Photo2.jpg)

Photo 154: FOX-4 – Pallet Line Landfill – West toe facing south (ATT3_Photo3.jpg)

Photo 155: FOX-4 – Pallet Line Landfill – Northwest corner facing southeast (ATT4_Photo4.jpg)

Photo 156: FOX-4 – Pallet Line Landfill – Crest of landfill facing southeast (ATT5_Photo5.jpg)

Photo 157: FOX-4 – Pallet Line Landfill – Crest facing northwest (ATT6_Photo6.jpg)

Photo 158: FOX-4 – Pallet Line Landfill – South end facing northwest (ATT7_Photo7.jpg)

Photo 159: FOX-4 – Pallet Line Landfill – South slope facing northwest (ATT8_Photo8.jpg)

Photo 160: FOX-4 – Pallet Line Landfill – Toe of south slope facing east (ATT9_Photo9.jpg)

Photo 161: FOX-4 – Pallet Line Landfill – Previously observed ponded water (Feature A) not observed in 2016 – East end facing southwest (ATT95_Photo95.jpg)

Photo 162: FOX-4 – Pallet Line Landfill – Crest surface of landfill facing north – Feature B – Minor dark (potential hydrocarbon) staining not related to landfill performance (Acceptable) (ATT94_Photo94.jpg)

Photo 163: FOX-4 – Pallet Line Landfill – Soil sample location F4-25 before excavation (ATT49_Photo49.jpg)

Photo 164: FOX-4 – Pallet Line Landfill – Soil sample location F4-25 after excavation (ATT50_Photo50.jpg)

Photo 165: FOX-4 – Pallet Line Landfill – Soil sample location F4-25 after backfilling (ATT51_Photo51.jpg)

Photo 166: FOX-4 – Pallet Line Landfill – Soil sampling location F4-26 before excavation (ATT52_Photo52.jpg)

Photo 167: FOX-4 – Pallet Line Landfill – Soil sampling location F4-26 after excavation (ATT53_Photo53.jpg)

Photo 168: FOX-4 – Pallet Line Landfill – Soil sampling location F4-26 after excavation (ATT54_Photo54.jpg)

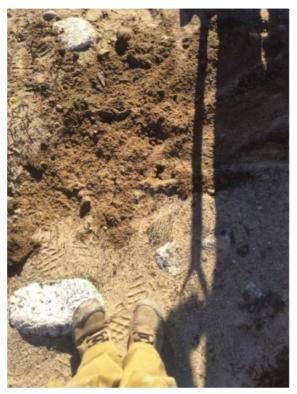


Photo 169: FOX-4 – Pallet Line Landfill – Soil sampling location F4-26 after backfilling (ATT55_Photo55.jpg)

Photo 170: FOX-4 – Pallet Line Landfill – Soil sampling location F4-27 before excavation (ATT56_Photo56.jpg)

Photo 171: FOX-4 – Pallet Line Landfill – Soil sampling location F4-27 after excavation (ATT57_Photo57.jpg)

Photo 172: FOX-4 – Pallet Line Landfill – Soil sampling location F4-27 after backfilling (ATT58_Photo58.jpg)

Photo 173: FOX-4 – Pallet Line Landfill – Soil sampling location F4-28 before excavation (ATT91_Photo91.jpg)

Photo 174: FOX-4 – Pallet Line Landfill – Soil sampling location F4-28 after excavation (ATT92_Photo92.jpg)

Photo 175: FOX-4 – Pallet Line Landfill – Soil sampling location F4-28 after backfilling (ATT93_Photo93.jpg)

Photo 176: FOX-4 – Pallet Line Landfill – Soil sampling location F4-29 before excavation (ATT34_Photo34.jpg)

Photo 177: FOX-4 – Pallet Line Landfill – Soil sampling location F4-29 after excavation (ATT35_Photo35.jpg)

Photo 178: FOX-4 – Pallet Line Landfill – Soil sampling location F4-29 after backfilling (ATT36_Photo36.jpg)

Photo 179: FOX-4 – Tanner Bay Landfill – North end facing southwest (ATT32_Photo32.jpg)

Photo 180: FOX-4 – Tanner Bay Landfill – Crest facing southwest (ATT33_Photo33.jpg)

Photo 181: FOX-4 – Tanner Bay Landfill – Southwest toe facing northeast (ATT34_Photo34.jpg)

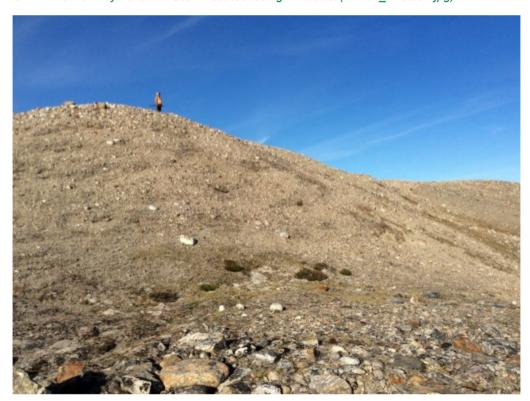


Photo 182: FOX-4 – Tanner Bay Landfill – South toe near river facing northeast (ATT35_Photo35.jpg)

Photo 183: FOX-4 – Tanner Bay Landfill – Southwest slope facing northeast (ATT36_Photo36.jpg)

Photo 184: FOX-4 – Tanner Bay Landfill – Southeast crest edge facing northeast (ATT37_Photo37.jpg)

Photo 185: FOX-4 – Tanner Bay Landfill – Crest surface facing northeast – Feature A – Minor settlement area with weathered crack (Acceptable) (ATT159_Photo159.jpg)

Photo 186: FOX-4 – Tanner Bay Landfill – Northeast corner facing west – Feature B – Minor erosion (Acceptable) (ATT160_Photo160.jpg)

Photo 187: FOX-4 – Tanner Bay Landfill – Feature C – Ponded water at west toe, facing east (Acceptable) (ATT158_Photo158.jpg)

Photo 188: FOX-4 – Tanner Bay Landfill – Soil sampling location F4-11 before excavation (ATT21_Photo21.jpg)

Photo 189: FOX-4 – Tanner Bay Landfill – Soil sampling location F4-11 after excavation (ATT22_Photo22.jpg)

Photo 190: FOX-4 – Tanner Bay Landfill – Soil sampling location F4-11 after backfilling (ATT23_Photo23.jpg)

Photo 191: FOX-4 – Tanner Bay Landfill – Soil sampling location F4-12 before excavation (ATT18_Photo18.jpg)

Photo 192: FOX-4 – Tanner Bay Landfill – Soil sampling location F4-12 after excavation (ATT19_Photo19.jpg)

Photo 193: FOX-4 – Tanner Bay Landfill – Soil sampling location F4-12 after backfilling (ATT20_Photo20.jpg)

Photo 194: FOX-4 – Tanner Bay Landfill – Soil sampling location F4-13 before excavation (ATT15_Photo15.jpg)

Photo 195: FOX-4 – Tanner Bay Landfill – Soil sampling location F4-13 after excavation (ATT16_Photo16.jpg)

Photo 196: FOX-4 – Tanner Bay Landfill – Soil sampling location F4-13 after backfilling (ATT17_Photo17.jpg)

 $\label{log:continuous} $$\clim{1}$ on $$\clim{1}$ on $\clim{1}$ on \c

At Golder Associates we strive to be the most respected global company providing consulting, design, and construction services in earth, environment, and related areas of energy. Employee owned since our formation in 1960, our focus, unique culture and operating environment offer opportunities and the freedom to excel, which attracts the leading specialists in our fields. Golder professionals take the time to build an understanding of client needs and of the specific environments in which they operate. We continue to expand our technical capabilities and have experienced steady growth with employees who operate from offices located throughout Africa, Asia, Australasia, Europe, North America, and South America.

Africa + 27 11 254 4800
Asia + 86 21 6258 5522
Australasia + 61 3 8862 3500
Europe + 356 21 42 30 20
North America + 1 800 275 3281
South America + 55 21 3095 9500

solutions@golder.com www.golder.com

Golder Associates Ltd. 6925 Century Avenue, Suite #100 Mississauga, Ontario, L5N 7K2 Canada

T: +1 (905) 567 4444

