## 2017 WATER QUALITY MONITORING PROGRAM

#### **IQALUIT INTERNATIONAL AIRPORT**

#### **FINAL REPORT**

## BOUYGUES-SINTRA DESIGN BUILD JOINT VENTURE

Mr. Olivier Walon Project Director Bouygues – Sintra Design Build Joint Venture - IIAIP 9975 de Châteauneuf Street, Locale B Brossard, Quebec J4Z 3V6



November 28, 2017

O/Ref.: QE17-130-2

Confidential and privileged document





**FINAL REPORT** 

 ${\it Privileged \ and \ confidential \ document \ presented \ to}$ 

## BOUYGUES-SINTRA DESIGN BUILD JOINT VENTURE

Prepared and verified by:

Jan Wollenberg, B.Sc., M.Sc.

Project Manager

Approved by:

Jennifer Godin Project Director



#### **TABLE OF CONTENTS**

| 1. | INTR | ODUCTI   | ON                                                       | 1  |
|----|------|----------|----------------------------------------------------------|----|
|    | 1.1  | Projec   | ct                                                       | 1  |
|    | 1.2  | Object   | tives                                                    | 1  |
|    | 1.3  | Gener    | ral Conditions and Limitations of the Study              | 1  |
| 2. | SITE | AND SAI  | MPLING LOCATIONS                                         | 2  |
| 3. | WOR  | K PERFO  | ORMED AND METHODOLOGY                                    | 4  |
|    | 3.1  | Summ     | nary of Work Performed                                   | 4  |
|    | 3.2  | Sampl    | ling Strategy                                            | 4  |
|    |      | 3.2.1    | Timeline of Work Performed                               | 4  |
|    |      | 3.2.2    | Work Preparation                                         | 4  |
|    | 3.3  | Locati   | ing Sampling Points                                      | 4  |
|    | 3.4  | Water    | r Sampling                                               | 5  |
|    | 3.5  | Sampl    | le Containers and Sample Preservation                    | 5  |
|    | 3.6  | Labora   | atory Analyses                                           | 5  |
|    |      | 3.6.1    | Analytical Program                                       | 5  |
|    |      | 3.6.2    | QA/QC program                                            | 5  |
| 4. | RESU | JLTS     |                                                          | 7  |
|    | 4.1  | Chemi    | ical Analysis                                            | 7  |
|    |      | 4.1.1    | Applicable Water Quality Criteria                        | 7  |
|    | 4.2  | QA/Q     | C Program                                                | 7  |
|    |      | 4.2.1    | Laboratory                                               | 7  |
| 5. | DATA | A INTERF | PRETATION                                                | 8  |
|    | 5.1  | Water    | r Extraction Points – Monthly Sampling                   | 8  |
|    | 5.2  | Water    | r Quality Monitoring Points – Pre- and Post-Construction | 8  |
|    |      | 5.2.1    | Water Extraction Points                                  | 8  |
|    |      | 5.2.2    | Site Inflow Points                                       | 8  |
|    |      | 5.2.3    | Site Outflow Points                                      | 9  |
| 6. | CON  | CLUSION  | NS AND RECOMMENDATIONS                                   | 10 |

Privileged and confidential document

Qikiqtaaluk Environmental

Bouygues-Sintra Design Build Joint Venture

#### **LIST OF TABLES**

| TABLE 1 | Description and Coordinates of Sampling Locations | 2 |
|---------|---------------------------------------------------|---|
| TABLE 2 | Parameters Analyzed                               | 3 |

#### **LIST OF APPENDICES**

APPENDIX A General Conditions and Limitations of the Study

**APPENDIX B** Figures

**APPENDIX C** Analytical Results Tables

**APPENDIX D** Certificates of Analysis

Privileged and confidential document

Qikiqtaaluk Environmental

Bouygues-Sintra Design Build Joint Venture

#### LIST OF ABBREVIATIONS AND ACRONYMS

AIP Arctic Infrastructure Partners Inc.

BOD<sub>5</sub> Biochemical oxygen demand over 5 days

BTEX Benzene, toluene, ethylbenzene and xylenes

CALA Canadian Association for Laboratory Accreditation

CCME Canadian Council of Ministers of the Environment

DBJV Design Build Joint Venture

EWPF Environmental Waste Processing Facility

GPS Global Positioning System

IIAIP Iqaluit International Airport Improvement Project

MDDELCC Ministère du Développement durable, de l'Environnement et de la Lutte contre les

changements climatiques

NWB Nunavut Water Board

PAH Polycyclic aromatic hydrocarbons
pH Measure of acidity or alkalinity

QA/QC Quality Assurance/Quality Control

RPD Relative percent difference

TO&G Total oil and grease

TPH Total petroleum hydrocarbons

TSS Total suspended solids

VOC Volatile organic compounds

WQMP Water Quality Monitoring Program

Privileged and confidential document

Qikiqtaaluk Environmental

Bouygues-Sintra Design Build Joint Venture

#### 1. INTRODUCTION

#### 1.1 Project

Arctic Infrastructure Partners Inc. (AIP) currently holds a water licence issued by the Nunavut Water Board (NWB) covering the operations for the Iqaluit International Airport Improvement Project (IIAIP). As a condition of the licence, a water quality monitoring program (WQMP) was established to ensure that the construction activities do not have an adverse effect on the waterbodies surrounding the airport. Qikiqtaaluk Environmental (QE) was retained to collect water samples from predefined monitoring points at Iqaluit International Airport and interpret the results. On June 5, 2017, QE submitted a quote for the 2017 construction season, and received approval from Design Build Joint Venture (DBJV) to proceed with the work on June 14, 2017. Sintra Inc. was responsible for coordinating the on-site work for the DBJV.

#### 1.2 Objectives

The objectives of the WQMP are to ensure that the construction work does not adversely affect water quality at the Iqaluit International Airport through:

- The collection of water samples from the Site's entry and exit points, at the start and end of each construction season, as required by the NWB water licence;
- The collection of monthly water samples from the water extraction points in use throughout the construction season, as required by the NWB water licence;
- The analysis of water samples for the parameters requested by the NWB;
- The comparison of the results to the guideline values established by the NWB.

#### 1.3 General Conditions and Limitations of the Study

The fieldwork was planned and executed based on the information available. The information included in this report is subject to the general conditions and limitations of the study, as described in Appendix A.

Qikiqtaaluk Environmental

Bouygues-Sintra Design Build Joint Venture

#### 2. SITE AND SAMPLING LOCATIONS

The location of Iqaluit International Airport is presented in Figure 1 of Appendix B, whereas the sampling locations for the WQMP are presented in Figure 2.

Table 1, below, lists the approximate coordinates for each sampling location, along with the associated sampling frequency. The parameters analyzed as part of the WQMP are presented in Table 2, below. The Group 1 parameters apply to the pre- and post-construction season sampling, whereas the Group 2 parameters apply to the monthly sampling at the extraction points.

TABLE 1
Descriptions and Coordinates of Sampling Locations

| Station ID | Station Description                             | Station Type         | Station GPS<br>Coordinates    | Parameters                    | Sampling Frequency                               |
|------------|-------------------------------------------------|----------------------|-------------------------------|-------------------------------|--------------------------------------------------|
| IIA- 2     | Point 1                                         | Water extraction     | 63°45'16"N<br>68°32'54"W      | Group 1<br>(refer to Table 2) | Twice annually (prior to construction activities |
| IIA-4.2    | Point 4                                         | Water extraction     | 63°45'20.57"N<br>68°32'5.22"W |                               | and near the end of season): June 2017           |
| IIA-5      | Carney Creek Upstream<br>Project Area           | Inflow to Site       | 63°45'45"N,<br>68°33'1"W      |                               | September 2017                                   |
| IIA-6      | Start of Inner Field<br>Drainage Ditch          | Inflow to Site       | 63°45'46"N,<br>68°33'59"W     |                               |                                                  |
| IIA-7      | Carney Creek<br>Downstream Project Area         | Outflow from<br>Site | 63°45'19"N,<br>68°32'23"W     |                               |                                                  |
| IIA-8      | Inner Field Ditch<br>Downstream Project Area    | Outflow from<br>Site | 63°45'9"N,<br>68°32'11"W      |                               |                                                  |
| IIA-9      | Southern Inner Field<br>Downstream Project Area | Outflow from<br>Site | 63°44'56"N,<br>68°31'57"W     |                               |                                                  |
| IIA- 2     | Point 1                                         | Water extraction     | 63°45'16"N<br>68°32'54"W      | Group 2<br>(refer to Table 2) | Monthly:<br>July 2017                            |
| IIA-4.2    | Point 4                                         | Water extraction     | 63°45'20.57"N<br>68°32'5.22"W |                               | August 2017                                      |

Qikiqtaaluk Environmental

Bouygues-Sintra Design Build Joint Venture

## TABLE 2 Parameters Analyzed

| Group 1 Parameters            | Group 2 Parameters |
|-------------------------------|--------------------|
| TSS                           | TSS                |
| TO&G (extraction points only) | TO&G               |
| Total copper                  | ТРН                |
| Total iron                    | Propylene glycol   |
| Total mercury                 | BTEX               |
| Total zinc                    | рН                 |
| Total aluminum                | Ethylene glycol    |
| Total cobalt                  | РАН                |
| Ethylene glycol               | Arsenic            |
| BOD₅                          | Total lead         |
| ТРН                           |                    |
| PAH                           |                    |
| BTEX                          |                    |
| Total cadmium                 |                    |
| Total chromium                |                    |
| Total lead                    |                    |
| Total nickel                  |                    |
| Total phosphorous             |                    |
| Total manganese               |                    |
| Total arsenic                 |                    |
| Propylene glycol              |                    |
| рН                            |                    |

Qikiqtaaluk Environmental

Bouygues-Sintra Design Build Joint Venture

#### 3. WORK PERFORMED AND METHODOLOGY

#### 3.1 Summary of Work Performed

There are currently no standards for environmental sampling in Nunavut. As such, all fieldwork was conducted in accordance with the applicable guidelines established by the *MDDELCC*, the NWB, and the client's requirements.

The scope of work included the following tasks:

- Preparation of sample containers;
- Collection and shipment of surface water samples to an analytical laboratory;
- Chemical analysis of the water samples in accordance with the established analytical program;
- > Preparation of a technical report detailing the findings of the sampling program.

#### 3.2 Sampling Strategy

The sampling locations and the number of samples to be collected were established in the water licence application submitted to the NWB. Locations were carefully selected to provide an accurate overview of the water quality on Site.

#### 3.2.1 Timeline of Work Performed

Sampling at the extraction points was carried out on June 17, July 22, August 21, and September 30, 2017.

Sampling at the stations located at the inflow to and outflow from the Site was carried out on June 17 and September 30, 2017. It should be noted that although construction ended in late August, QE was not notified until mid-September that construction activities had ceased. As such, the post-construction sampling campaign was carried out on September 30, 2017.

#### 3.2.2 Work Preparation

Before beginning fieldwork, preparations included:

- ➤ Logistical coordination between the QE Project Manager and Technician, and the Client representatives on-site;
- Preparation of field equipment and materials.

#### 3.3 Locating Sampling Points

Sampling points were located using the GPS coordinates provided in the NWB Licence.

Privileged and confidential document

Qikiqtaaluk Environmental

Bouygues-Sintra Design Build Joint Venture

#### 3.4 Water Sampling

Water sampling was performed using a new container for each water sample collected. Each sample was transferred to the appropriate sample container, containing the necessary preservation agents, provided by the analytical laboratory.

#### 3.5 Sample Containers and Sample Preservation

All samples collected were placed in jars and bottles provided by the analytical laboratory. Samples were labelled and stored in coolers with ice packs, also provided by the laboratory, to maintain them at a temperature of approximately 4°C until delivery at the laboratory. Samples were stored in a refrigerator at QE's EWPF. Samples were brought to First Air or Canadian North for transport air cargo to Ottawa, where they were collected by Caduceon Environmental Laboratories (Caduceon). Instructions were given to the air carriers to refrigerate the coolers containing the samples, while taking care to ensure they did not freeze. Waybill numbers were provided to the laboratory to ensure the samples could be collected from the transporter the morning following their arrival.

#### 3.6 Laboratory Analyses

#### 3.6.1 Analytical Program

The water quality analytical program and choice of parameters was based on the guidelines stipulated by the NWB.

Water samples collected during the fieldwork were delivered to the analytical laboratory as promptly as possible. The selected analytical laboratory was accredited by CALA for all analyses performed. Certificates of accreditation are available upon request. In addition, the analytical reports were verified and signed by a member of the Association of the Chemical Profession of Ontario.

The detection limits associated with each parameter analyzed are presented in Tables I through IV of Appendix C. Analytical methods are outlined in the certificates of analysis presented in Appendix D.

#### 3.6.2 QA/QC Program

All projects completed by QE include a QA/QC program to verify the reliability, precision and accuracy of the fieldwork analytical results.

#### 3.6.2.1 On-site

Several precautions were taken during the course of the fieldwork to eliminate the risk of contamination from equipment and sampling instruments, and to ensure effective and representative sampling. The precautions taken, particularly during collection, transport, identification, and preservation of samples included:

- The application of standardized work procedures through ongoing training of field technicians regarding the various standardized methods of sample collection and management;
- Development of a work plan and coordination of employees by management;
- Use of disposable nitrile gloves for each sample collected;

Privileged and confidential document

Qikiqtaaluk Environmental

Bouygues-Sintra Design Build Joint Venture

- Careful use and protection of the appropriate sampling containers and measuring instruments used during sample collection, transport and preservation;
- Precise identification and labelling of all samples shipped to the laboratory accompanied by a completed and signed chain of custody form;
- Preservation and storage of samples according to the standardized methods recommended by the MDDELCC;
- Shipment of samples to the laboratory as promptly as possible, within 24 hours of collection, where possible.

No field blanks were used during water sampling, as no significant external sources of contamination (dust, atmospheric emissions, VOCs, etc.) were identified in the vicinity of the Site sampling locations. No trip blanks were used, as all samples were preserved in hermetically sealed containers during transport between the Site and the laboratory.

#### *3.6.2.2* At the Laboratory

Caduceon applies its own QA/QC program, in accordance with CALA requirements, so as to provide analytical results of the highest possible quality and reliability. This program includes, among others, the following elements:

- Laboratory blank;
- Laboratory duplicate;
- Control/reference samples;
- Certified reference materials;
- Sample spiking;
- Surrogates (organics).

A summary of the laboratory's internal QA/QC program is available upon request.

Privileged and confidential document

Qikiqtaaluk Environmental

Bouygues-Sintra Design Build Joint Venture

#### 4. RESULTS

#### 4.1 Chemical Analysis

Results are presented in table format in Appendix C. The complete laboratory certificates of analysis are presented in Appendix D.

#### 4.1.1 Applicable Water Quality Criteria

The analytical results were compared to the guidelines stipulated in the water licence issued by NWB and to the CCME *Canadian Water Quality Guidelines for the Protection of Aquatic Life* when no guideline value was provided in the water licence.

#### 4.2 QA/QC Program

#### 4.2.1 Laboratory

The results of Caduceon's internal control measures are considered to be acceptable, and fall within CALA's suggested RPD for all analyses performed (laboratory blanks, laboratory duplicates, control/reference samples, certified reference materials, sample spiking and surrogates (organics)).

Privileged and confidential document

Qikiqtaaluk Environmental

Bouygues-Sintra Design Build Joint Venture

#### 5. DATA INTERPRETATION

#### 5.1 Water Extraction Points – Monthly Sampling

Water samples were collected in July and August 2017 from the 2 water extraction locations used during the 2017 construction season. The locations sampled were Points 1 and 4 (IIA-2 and IIA-4.2).

The analytical results revealed that the water quality at both extraction points respected guideline values for all parameters analyzed in both July and August 2017.

#### 5.2 Water Quality Monitoring Points – Pre and Post-Construction

#### 5.2.1 Water Extraction Points

#### 5.2.1.1 Point 1 (IIA-2)

Iron and zinc concentrations for both the June and September sampling campaigns exceeded the guideline values; the exceedances were negligible in the June sample, whereas an increased iron concentration was observed in September. This pattern is likely due to seasonal fluctuations in background metal concentrations, as a similar trend was observed during the 2016 sampling campaign. Copper, zinc, and aluminium concentrations were also slightly above guideline values in September 2017. Again, the exceedances were minor, and are likely due to seasonal fluctuations in background concentrations.

#### 5.2.1.2 Point 4 (IIA-4.2)

Pre-construction (June) aluminium, zinc, and iron concentrations were slightly above guideline levels. At the end of the construction season, iron and zinc levels were again below guideline levels, whereas aluminium concentrations remained slightly above guideline levels.

#### 5.2.2 Site Inflow Points

#### 5.2.2.1 Point IIA-5 (Carney Creek Upstream Project Area)

Aluminium, copper, iron, and zinc slightly exceeded guideline levels during the June sampling campaign, but were once again below the guideline levels during the September campaign. The 2016 data showed a similar pattern, indicating that higher metals concentrations may be present in the water as a background concentration. All other parameters analyzed at this location were below guideline concentrations.

#### 5.2.2.2 Point IIA-6 (Start of the Inner Field Drainage Ditch)

All parameters analyzed respected guideline levels during both the June and September sampling campaigns.

Privileged and confidential document

Qikiqtaaluk Environmental

Bouygues-Sintra Design Build Joint Venture

#### 5.2.3 Site Outflow Points

#### 5.2.3.1 Point IIA-7 (Carney Creek Downstream Project Area)

Zinc concentrations slightly exceeded guideline levels in June and September. Given that higher levels of zinc were already observed at the Site point of entry (location IIA-5), it is unlikely that this exceedance is a result of construction activities.

#### 5.2.3.2 Point IIA-8 (Inner Field Ditch Downstream Project Area)

Iron and zinc concentrations were above the guideline values in both June and September. Given that pre-construction iron and zinc concentrations at the Site point of entry (location IIA-5) were also above guideline levels in June, it is unlikely that this exceedance is a result of construction activities. Similar concentrations of iron and zinc were also measured prior to the 2016 construction season, indicating that the water quality does not appear to have changed at this location due to construction activities.

#### 5.2.3.3 Point IIA-9 (Southern Inner Field Downstream Project Area)

Iron, manganese, copper, and lead concentrations were slightly above guideline values during the June sampling campaign. During the September sampling campaign, manganese and lead concentrations were once again below guideline values, indicating that the exceedances measured in June were likely due to seasonal fluctuations in background concentrations. Iron and zinc remained slightly above guideline levels in September, which is consistent with the results from the 2016 sampling campaign.

Overall, the analyses of the water samples collected as part of the WQMP revealed no significant difference in the Site's water quality before and after the construction season. The slight variations observed for certain metals are most likely related to seasonal changes. As such, it does not appear that the construction activities are having an impact on the Site's water quality.

Privileged and confidential document

Qikiqtaaluk Environmental

Bouygues-Sintra Design Build Joint Venture

#### 6. CONCLUSIONS AND RECOMMENDATIONS

QE was retained by the Bouygues-Sintra Design Build Joint Venture to carry out water sampling and results interpretation as part of the WQMP for the Iqaluit International Airport construction project.

Water samples were collected at the airport between June and September 2017. The results demonstrated that during the construction season (July and August), water at the extraction points remained suitable for use with all parameters measured showing concentrations below guideline values. Concentrations of certain metals, notably iron, zinc, and aluminium, slightly exceeded guideline values at several locations both before and after the construction season June and September 2017, respectively. Yet, given that metals concentrations above criteria were already measured at the Site inflow point before construction activities began, exceedances are likely due to elevated background concentrations and seasonal fluctuations, rather than the construction activities. Based on the results of the 2016 and 2017 sampling campaigns, the construction activities at the airport do not appear to have had a negative impact on the Site's water quality.



**APPENDIX A**General Conditions and Limitations of the Study



## GENERAL CONDITIONS AND LIMITATIONS PHASES II AND III AND REMEDIATION

This report was prepared for the exclusive use of the client to whom it is addressed (the "Client") and is strictly confidential. This report or a copy by a third person shall not be used without written authorization from the Client, in which a copy will be provided to Qikiqtaaluk Environmental Inc. (QE), as well as a written authorization from QE. The use and/or copy of this report is subject to the present general conditions and limitations. QE will not be liable or obligated by any unauthorized use of this report by a third party; a third party shall be responsible for all consequences resulting from the use of this report.

The facts, interpretations, conclusions and recommendations contained in this report concern the site described in this report (the "Site") and do not apply to any other site or area. This report must be read in its entirety, as individual sections may be misinterpreted. The Client and all other authorized persons, in accordance with the above, must only rely on the information found in the "final report"; QE shall not be held responsible for the use of any other texts, opinions or draft documents or reports issued by QE or the translation, partial or complete, of the final version of the report.

The environmental site assessment carried out by QE, described in this report (the Assessment), was performed for the specific purposes of the scope of work described in the present report, and should in no way serve any other purpose. The methodology followed is described in the present report, and the Assessment meets, to the best of our knowledge, the rules of conduct and professional practices accepted in the field of expertise concerned at the time the report was written.

The results of the present report are limited to the conditions the day(s) the work was carried out. Unless otherwise specified, the work, results, interpretation of the data, comments, recommendations and conclusions contained in this report are based, to the best of our knowledge, on the applicable policies, laws and regulations at the time the report was written and apply specifically to the Site, as well as on professional opinions expressed specifically in the context of the contract awarded by the Client. If these policies, laws or regulations are modified, or differ from those presumed, QE must be informed by the Client in order to revise, if applicable, the interpretative contents of the report. When no policy, law or regulation is available to interpret the data, work, comments, recommendations and conclusions expressed in the report, they are based, to the best of our knowledge, on the regulations and accepted professional practices in the fields of expertise concerned.

All descriptions, assessments and estimates mentioned in the report concerning the nature, composition and quality of soils or groundwater are only valid for the locations where boreholes and surveys were performed, and only at the depths in which the samples were collected. Fluctuations in groundwater levels, as well as activities carried out on the Site and surrounding properties, are factors that may influence the condition of the Site over time.

The scope of work carried out was defined based on the information provided by the Client, the defined scope of work objectives of the contract, previous available environmental site assessments, the condition of the Site at the time of the work, applicable policies, laws and regulations, as well as, to the best of our knowledge, acceptable professional rules and practices in the fields of expertise concerned. The fact that a substance was not analyzed during the study does not eliminate the possibility that this substance be found at concentrations above the detection limits or the criteria indicated in the applicable policies, laws and regulations. In addition, the precision of data obtained and its interpretation are relative to the analytical methods used, the limitations of the equipment, the choice of analytical parameters, the uniformity of underground conditions, as well as the physical constraints associated with the Site.

The assessment of the degree and extent of the contamination, as well as the volume estimate of contaminated matter to be managed result from an extrapolation between surveys and are provided for information purposes only. The actual quantities could be higher or lower than the estimate. Information provided should not be used as geotechnical data, unless otherwise mentioned in the report.

The present report contains information obtained from the Client and third parties, the accuracy of which has not been verified. The information was obtained, to the best of our knowledge, in accordance with known and accepted rules of conduct and professional practices in the fields of expertise concerned. QE presumes that the information provided by the Client or by a third party is accurate and correct. QE cannot be held responsible for its accuracy or reliability, or the omission or non-disclosure of pertinent information by the Client or a third party. QE cannot guarantee the accuracy of the laboratory results obtained by a subcontractor. However, QE ensures that all subcontractors have the required qualifications and certifications in accordance with applicable policies, laws and regulations, and, to the best of our knowledge, are in accordance with the rules of conduct and professional practices accepted in the field for the fields of expertise concerned.

QE cannot be held responsible for damages resulting from hidden or unforeseeable events or changes in the Site conditions that take place after the date the information was collected. In addition, QE cannot be held responsible for the use of this report by a third party and/or for purposes other than those for which it has been written, or for any real or perceived loss of the Site, or failure of a transaction due to the contents of this report. QE has no interest in the Site covered in the present report.

All opinions expressed and references made to policies, laws and regulations mentioned in the report are solely technical and provided for the client's information only and should not, under any circumstances, be considered as legal advice or a legal opinion.





APPENDIX B
Figures



BOUYGUES-SINTRA DESIGN

BUILD JOINT VENTURE

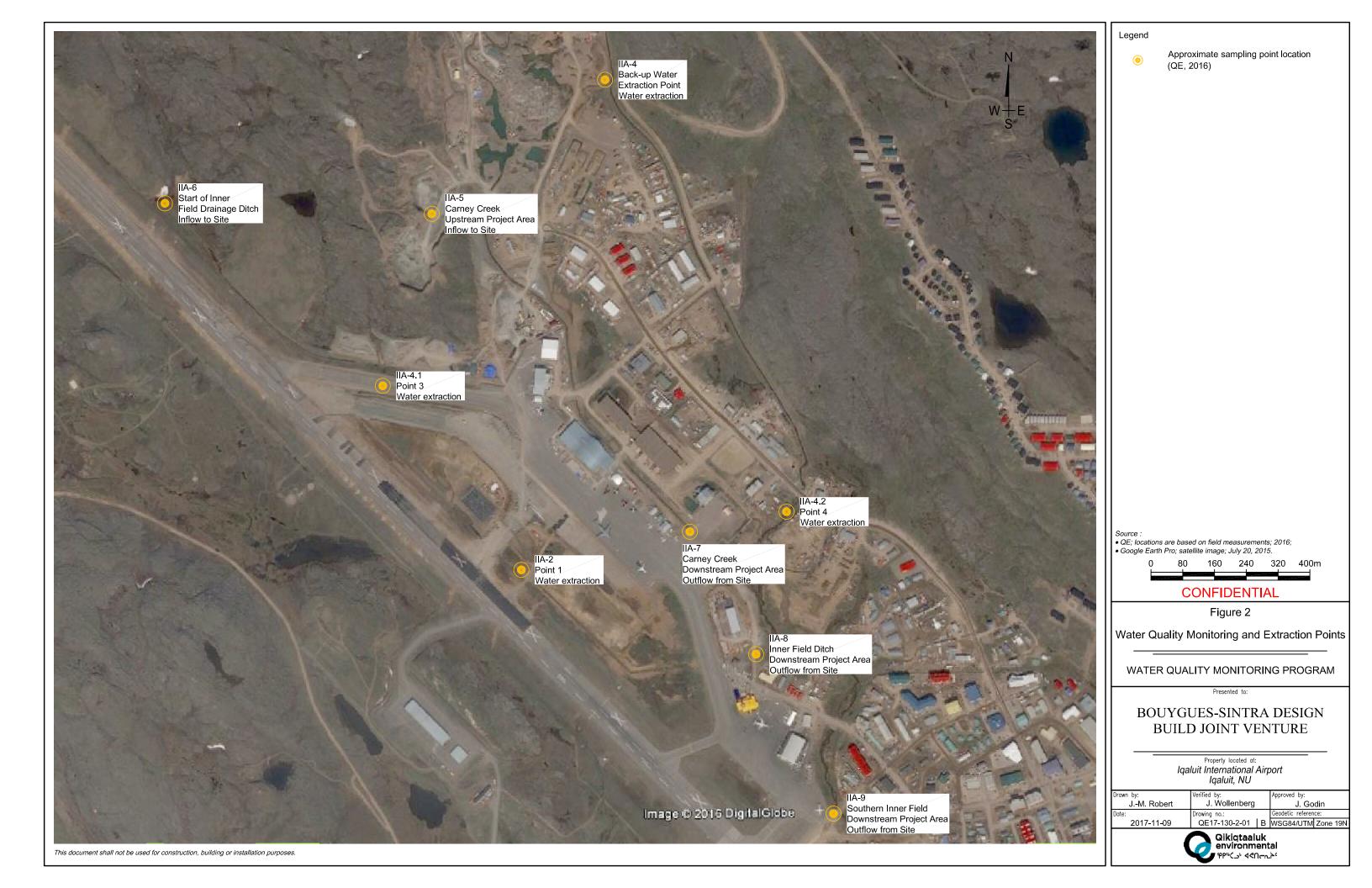
Property located at:

Iqaluit International Airport

Iqaluit, NU

Regional Site Location

WATER QUALITY MONITORING PROGRAM


 Drawn by:
 Verified by:
 Approved by:

 J.-M. Robert
 J. Wollenberg
 J. Godin

 Date:
 Drawing no.:
 Geodetic reference:

 2017-11-09
 QE17-130-2-01 A
 Latitude/Longitude







**APPENDIX C**Analytical Results Tables

TABLE I: June Detection Limits associated with each Parameter
Bouygues-Sintra Design Build Joint Venture
2017 Water Quality Monitoring Program Iqaluit International Airport

|                                       |                |              | Client ID                          | IIA-2          | IIA-4.2        | IIA-5          | IIA-6          | IIA-7          | IIA-8          | IIA-9          | DUP-1          |
|---------------------------------------|----------------|--------------|------------------------------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|
|                                       |                |              | Sample ID                          | B17-17824-1    | B17-17824-2    | B17-17009-1    | B17-17009-2    | B17-17009-3    | B17-17009-4    | B17-17009-5    | B17-17009-6    |
|                                       | CCME Guideline | Date 0       | Collected (yyyy-mm-dd)  Analytical | 2017-06-21     | 2017-06-21     | 2017-06-17     | 2017-06-17     | 2017-06-17     | 2017-06-17     | 2017-06-17     | 2017-06-17     |
| Analyte                               | for Freshwater | Unit         | Detection                          |                |                |                |                |                |                |                |                |
|                                       | Habitat        | ,            | Limit                              |                |                |                |                |                |                |                |                |
| Hardness                              | N/A            | mg/L         | 1                                  | 36             | 35             | 71             | 11             | 60             | 35             | 28             | 25             |
| Acenaphthene                          | 5.8            | μg/L         | 0.05                               | < 0.05         | < 0.05         | < 0.05         | < 0.05         | < 0.05         | < 0.05         | < 0.05         | < 0.05         |
| Acenaphthylene                        | N/A            | μg/L         | 0.05                               | 65.9           | < 0.05         | < 0.05         | < 0.05         | < 0.05         | < 0.05         | < 0.05         | < 0.05         |
| Anthrosono                            | 0.1<br>0.012   | mg/L         | 0.005                              | 0.04<br>< 0.05 | 0.39<br>< 0.05 | 0.48<br>< 0.05 | 0.02<br>< 0.05 | 0.09<br>< 0.05 | 0.03<br>< 0.05 | 0.26<br>< 0.05 | 0.19<br>< 0.05 |
| Anthracene<br>Arsenic                 | 0.005          | μg/L         | 0.05<br>0.0001                     | < 0.0001       | < 0.001        | 0.0007         | < 0.0001       | 0.0002         | < 0.001        | 0.0002         | 0.0001         |
| Benzene                               | 370            | mg/L<br>μg/L | 0.0001                             | < 0.5          | < 0.5          | < 0.5          | < 0.5          | < 0.5          | < 0.5          | < 0.5          | < 0.5          |
| Benzo(a)anthracene                    | N/A            | μg/L         | 0.05                               | < 0.05         | < 0.05         | < 0.05         | < 0.05         | < 0.05         | < 0.05         | < 0.05         | < 0.05         |
| Benzo(a)pyrene                        | 0.015          | μg/L         | 0.01                               | < 0.01         | < 0.01         | < 0.01         | < 0.01         | < 0.01         | < 0.01         | < 0.01         | < 0.01         |
| Benzo(b)fluoranthene                  | N/A            | μg/L         | 0.05                               | < 0.05         | < 0.05         | < 0.05         | < 0.05         | < 0.05         | < 0.05         | < 0.05         | < 0.05         |
| Benzo(b+k)fluoranthene                | N/A            | μg/L         | 0.1                                | < 0.1          | < 0.1          | < 0.1          | < 0.1          | < 0.1          | < 0.1          | < 0.1          | < 0.1          |
| Benzo(g,h,i)perylene                  | N/A            | μg/L         | 0.05                               | < 0.05         | < 0.05         | < 0.05         | < 0.05         | < 0.05         | < 0.05         | < 0.05         | < 0.05         |
| Benzo(k)fluoranthene                  | N/A            | μg/L         | 0.05                               | < 0.05         | < 0.05         | < 0.05         | < 0.05         | < 0.05         | < 0.05         | < 0.05         | < 0.05         |
| BOD <sub>5</sub>                      | N/A            | mg/L         | 3                                  | <3             | < 3            | < 3            | < 3            | < 3            | 4              | <3             | < 3            |
| Cadmium                               | 0.00009        | mg/L         | 0.00002                            | < 0.000014     | < 0.000014     | 0.000017       | < 0.000014     | 0.000035       | < 0.000014     | 0.000019       | < 0.000014     |
| Chromium                              | 0.0089         | mg/L         | 0.002                              | < 0.001        | < 0.001        | < 0.001        | < 0.001        | < 0.001        | < 0.001        | 0.001          | < 0.001        |
| Chrysene                              | N/A            | μg/L         | 0.05                               | < 0.05         | < 0.05         | < 0.05         | < 0.05         | < 0.05         | < 0.05         | < 0.05         | < 0.05         |
| Cobalt                                | N/A            | mg/L         | 0.0001                             | < 0.005        | < 0.005        | < 0.005        | < 0.005        | < 0.005        | < 0.005        | < 0.005        | < 0.005        |
| Copper                                | 0.002          | mg/L         | 0.0001                             | 0.0012         | 0.0017         | 0.0027         | 0.001          | 0.0017         | 0.0013         | 0.0031         | 0.0017         |
| Dibenzo(a,h)anthracene                | N/A            | μg/L         | 0.05                               | < 0.05         | < 0.05         | < 0.05         | < 0.05         | < 0.05         | < 0.05         | < 0.05         | < 0.05         |
| Ethylbenzene                          | 90             | μg/L         | 0.5                                | < 0.5          | < 0.5          | < 0.5          | < 0.5          | < 0.5          | < 0.5          | < 0.5          | < 0.5          |
| Ethylene Glycol                       | 192            | mg/L         | 3                                  | < 3            | < 3            | < 3            | < 3            | < 3            | < 3            | < 3            | < 3            |
| Fluoranthene                          | 0.04           | μg/L         | 0.05                               | < 0.05         | < 0.05         | < 0.05         | < 0.05         | < 0.05         | < 0.05         | < 0.05         | < 0.05         |
| Fluorene                              | 3              | μg/L         | 0.05                               | < 0.05         | < 0.05         | < 0.05         | < 0.05         | < 0.05         | < 0.05         | < 0.05         | < 0.05         |
| Indeno(1,2,3,-cd)pyrene               | N/A            | μg/L         | 0.05                               | < 0.05         | < 0.05         | < 0.05         | < 0.05         | < 0.05         | < 0.05         | < 0.05         | < 0.05         |
| Iron                                  | 0.3            | mg/L         | 0.005                              | 0.311          | 0.916          | 1.29           | 0.086          | 0.142          | 0.251          | 0.966          | 0.578          |
| Lead                                  | 0.001          | mg/L         | 0.00002                            | 0.00005        | 0.00053        | 0.0016         | 0.00004        | 0.00025        | 0.00008        | 0.00116        | 0.0004         |
| Manganese                             | N/A            | mg/L         | 0.001                              | 0.022          | 0.036          | 0.059          | 0.006          | 0.056          | 0.088          | 0.049          | 0.025          |
| Mercury                               | 0.000026       | mg/L         | 0.00002                            | < 0.00002      | < 0.00002      | < 0.00002      | < 0.00002      | < 0.00002      | < 0.00002      | < 0.00002      | < 0.00002      |
| Methylnaphthalene 2-(1-)              | N/A            | μg/L         | 0.07                               | < 0.07         | < 0.07         | < 0.07         | < 0.07         | < 0.07         | < 0.07         | < 0.07         | < 0.07         |
| Methylnaphthalene,1-                  | N/A            | μg/L         | 0.05                               | < 0.05         | < 0.05         | < 0.05         | < 0.05         | < 0.05         | < 0.05         | < 0.05         | < 0.05         |
| Methylnaphthalene,2-                  | N/A            | μg/L         | 0.05                               | < 0.05         | < 0.05         | < 0.05         | < 0.05         | < 0.05         | < 0.05         | < 0.05         | < 0.05         |
| Naphthalene                           | 1.1            | μg/L         | 0.05                               | < 0.05         | < 0.05         | < 0.05         | < 0.05         | < 0.05         | < 0.05         | < 0.05         | < 0.05         |
| Nickel Oil & Grease-Total             | 0.025          | mg/L         | 0.0002                             | < 0.0002       | 0.0005         | 0.008          | < 0.0002       | 0.0006         | 0.0004         | 0.0011         | 0.0006         |
|                                       | N/A            | mg/L         | 1                                  | < 1.0<br>7.27  | < 1.0<br>7.34  | 7.00           | 7.21           |                | not required   | 7.65           | 7.61           |
| pH (limit 6.5 - 9)<br>PHC F1 (C6-C10) | 9<br>N/A       | -<br>μg/L    | 20                                 | < 20           | 7.34<br>< 20   | 7.88           | 7.31<br>46     | 7.94           | 7.83           | 7.65<br>< 20   | 7.61<br>< 20   |
| PHC F1 (C6-C10) PHC F2 (>C10-C16)     | N/A<br>N/A     | μg/L<br>μg/L | 50                                 | < 20<br>< 50   | < 50           | < 50           | < 50           | < 50           | < 50           | < 20<br>< 50   | < 20<br>< 50   |
| PHC F3 (>C16-C34)                     | N/A<br>N/A     | μg/L         | 400                                | < 400          | < 400          | < 400          | < 400          | < 400          | < 400          | < 400          | < 400          |
| PHC F4 (>C34-C50)                     | N/A            | μg/L         | 400                                | < 400          | < 400          | < 400          | < 400          | < 400          | < 400          | < 400          | < 400          |
| Phenanthrene                          | 0.4            | μg/L         | 0.05                               | < 0.05         | < 0.05         | < 0.05         | < 0.05         | < 0.05         | < 0.05         | < 0.05         | < 0.05         |
| Phosphorus-Total                      | N/A            | mg/L         | 0.01                               | 0.02           | 0.05           | 0.02           | < 0.01         | 0.01           | < 0.01         | 0.08           | 0.07           |
| Propylene Glycol                      | 500            | mg/L         | 3                                  | <3             | < 3            | < 3            | <3             | < 3            | <3             | <3             | < 3            |
| Pyrene                                | 0.025          | μg/L         | 0.05                               | < 0.05         | < 0.05         | < 0.05         | < 0.05         | < 0.05         | < 0.05         | < 0.05         | < 0.05         |
| Toluene                               | 2              | μg/L         | 0.5                                | < 0.5          | < 0.5          | < 0.5          | < 0.5          | < 0.5          | < 0.5          | < 0.5          | < 0.5          |
| Total Glycols                         | N/A            | mg/L         | 3                                  | <3             | <3             | <3             | <3             | <3             | < 3            | <3             | < 3            |
| Total Suspended Solids                | N/A            | mg/L         | 3                                  | < 3            | <3             | 5              | <3             | 3              | < 3            | 60             | 37             |
| Xylene, m,p-                          | N/A            | μg/L         | 0.4                                | < 0.4          | < 0.4          | < 0.4          | < 0.4          | < 0.4          | < 0.4          | < 0.4          | < 0.4          |
| Xylene, m,p,o-                        | N/A            | μg/L         | 0.4                                | < 0.4          | < 0.4          | < 0.4          | < 0.4          | < 0.4          | < 0.4          | < 0.4          | < 0.4          |
| Xylene, o-                            | N/A            | μg/L         | 0.1                                | < 0.1          | < 0.1          | < 0.1          | < 0.1          | < 0.1          | < 0.1          | < 0.1          | < 0.1          |
| Zinc                                  | 0.03           | mg/L         | 0.005                              | 0.04           | 0.032          | 0.134          | 0.006          | 0.032          | 0.036          | 0.026          | 0.013          |

IIA-2 Point 1 63°45'16"N, 68°32'54"W

IIA-4 Backup Water Extraction Point - Cooordinates 63°45'55"N, 68°32'37"W

IIA-4.1 Point 3 Innear Field Near Taxiway A - Coorindates 63°45'33"N, 68°33'26"W

IIA-4.2 Point 4 Creek Before it Crosses Federal Road - Coordinates 63°45'22"N, 68°32'1"W

IIA-5 Carney Creek Upstream Project Area 63°45'45"N, 68°33'1"W

IIA-6 Start of Inner Field Drainage Ditch 63°45'46"N, 68°33'59"W

IIA-7 Carney Creek Downstream Project Area 63°45'19"N, 68°32'23"W

IIA-8 Inner Field Ditch Downstream Project Area 63°45'9"N, 68°32'11"W

IIA-9 Southern Inner Field Downstream Project Area 63°44'56"N, 68°31'57"W

BOD<sub>5</sub>: Biological oxygen demand (5 days)

F1 (C<sub>6-10</sub>): Petroleum hydrocarbons Fraction 1 (C<sub>6</sub> to C<sub>10</sub>)

F2 (C<sub>10-16</sub>): Petroleum hydrocarbons Fraction 2 (C<sub>10</sub> to C<sub>16</sub>)

F3 ( $C_{16-34}$ ): Petroleum hydrocarbons Fraction 3 ( $C_{16}$  to  $C_{34}$ )

F4 (C  $_{\rm 34-50}$  ): Petroleum hydrocarbons Fraction 4 (C  $_{\rm 34}$  to C  $_{\rm 50}$ 

= Detection limit above guideline value

= Guideline value varies based on hardness value



## TABLE II: July Detection Limits associated with each Parameter Bouygues-Sintra Design Build Joint Venture 2017 Water Quality Monitoring Program Iqaluit International Airport

|                          | Client ID                                   |      |                                  |             |             |  |  |  |
|--------------------------|---------------------------------------------|------|----------------------------------|-------------|-------------|--|--|--|
|                          |                                             |      | Sample ID                        | B17-20720-1 | B17-20720-2 |  |  |  |
|                          |                                             | Date | Collected (yyyy-mm-dd)           | 2017-07-22  | 2017-07-22  |  |  |  |
| Analyte                  | CCME Guideline<br>for Freshwater<br>Habitat | Unit | Analytical<br>Detection<br>Limit |             |             |  |  |  |
| Acenaphthene             | 5.8                                         | μg/L | 0.05                             | < 0.05      | < 0.05      |  |  |  |
| Acenaphthylene           | N/A                                         | μg/L | 0.05                             | < 0.05      | < 0.05      |  |  |  |
| Anthracene               | 0.012                                       | μg/L | 0.05                             | < 0.05      | < 0.05      |  |  |  |
| Arsenic                  | 0.005                                       | mg/L | 0.0001                           | 0.0002      | 0.0001      |  |  |  |
| Benzene                  | 370                                         | μg/L | 0.5                              | < 0.5       | < 0.5       |  |  |  |
| Benzo(a)anthracene       | N/A                                         | μg/L | 0.05                             | < 0.05      | < 0.05      |  |  |  |
| Benzo(a)pyrene           | 0.015                                       | μg/L | 0.01                             | < 0.01      | < 0.01      |  |  |  |
| Benzo(b)fluoranthene     | N/A                                         | μg/L | 0.05                             | < 0.05      | < 0.05      |  |  |  |
| Benzo(b+k)fluoranthene   | N/A                                         | μg/L | 0.1                              | < 0.1       | < 0.1       |  |  |  |
| Benzo(g,h,i)perylene     | N/A                                         | μg/L | 0.05                             | < 0.05      | < 0.05      |  |  |  |
| Benzo(k)fluoranthene     | N/A                                         | μg/L | 0.05                             | < 0.05      | < 0.05      |  |  |  |
| Chrysene                 | N/A                                         | μg/L | 0.05                             | < 0.05      | < 0.05      |  |  |  |
| Dibenzo(a,h)anthracene   | N/A                                         | μg/L | 0.05                             | < 0.05      | < 0.05      |  |  |  |
| thylbenzene              | 90                                          | μg/L | 0.5                              | < 0.5       | < 0.5       |  |  |  |
| thylene Glycol           | 192                                         | mg/L | 3                                | < 3         | < 3         |  |  |  |
| Fluoranthene             | 0.04                                        | μg/L | 0.05                             | < 0.05      | < 0.05      |  |  |  |
| luorene                  | 3                                           | μg/L | 0.05                             | < 0.05      | < 0.05      |  |  |  |
| ndeno(1,2,3,-cd)pyrene   | N/A                                         | μg/L | 0.05                             | < 0.05      | < 0.05      |  |  |  |
| .ead                     | 0.001                                       | mg/L | 0.00002                          | 0.00012     | < 0.00002   |  |  |  |
| Methylnaphthalene 2-(1-) | N/A                                         | μg/L | 0.07                             | < 0.07      | < 0.07      |  |  |  |
| Methylnaphthalene,1-     | N/A                                         | μg/L | 0.05                             | < 0.05      | < 0.05      |  |  |  |
| Methylnaphthalene,2-     | N/A                                         | μg/L | 0.05                             | < 0.05      | < 0.05      |  |  |  |
| Naphthalene              | 1.1                                         | μg/L | 0.05                             | < 0.05      | < 0.05      |  |  |  |
| Dil & Grease-Total       | N/A                                         | mg/L | 1                                | 2.1         | 75.2        |  |  |  |
| oH @25°C                 | 9                                           | -    | -                                | 7.94        | 7.78        |  |  |  |
| PHC F1 (C6-C10)          | N/A                                         | μg/L | 20                               | < 20        | < 20        |  |  |  |
| PHC F2 (>C10-C16)        | N/A                                         | μg/L | 50                               | < 50        | < 50        |  |  |  |
| PHC F3 (>C16-C34)        | N/A                                         | μg/L | 400                              | < 400       | < 400       |  |  |  |
| PHC F4 (>C34-C50)        | N/A                                         | μg/L | 400                              | < 400       | < 400       |  |  |  |
| Phenanthrene             | 0.4                                         | μg/L | 0.05                             | < 0.05      | < 0.05      |  |  |  |
| Propylene Glycol         | 500                                         | mg/L | 3                                | < 3         | < 3         |  |  |  |
| Pyrene                   | 0.025                                       | μg/L | 0.05                             | < 0.05      | < 0.05      |  |  |  |
| oluene                   | 2                                           | μg/L | 0.5                              | < 0.5       | < 0.5       |  |  |  |
| Total Suspended Solids   | N/A                                         | mg/L | 3                                | 9           | < 3         |  |  |  |
| Kylene, m,p-             | N/A                                         | μg/L | 0.4                              | < 0.4       | < 0.4       |  |  |  |
| (ylene, m,p,o-           | N/A                                         | μg/L | 0.4                              | < 0.4       | < 0.4       |  |  |  |
| (ylene, o-               | N/A                                         | μg/L | 0.1                              | < 0.1       | < 0.1       |  |  |  |

F1 ( $C_{6-10}$ ): Petroleum hydrocarbons Fraction 1 ( $C_6$  to  $C_{10}$ )

F2 (C<sub>10-16</sub>): Petroleum hydrocarbons Fraction 2 (C<sub>10</sub> to C<sub>16</sub>)

F3 (C $_{16\cdot34}$ ): Petroleum hydrocarbons Fraction 3 (C $_{16}$  to C $_{34}$ )

F4 ( $C_{34-50}$ ): Petroleum hydrocarbons Fraction 4 ( $C_{34}$  to  $C_{50}$ )

IIA-2 Point 1 63°45'16"N, 68°32'54"W

IIA-4.2 Point 4 Creek Before it Crosses Federal Road - Coordinates 63°45'22"N, 68°32'1"W

= Detection limit above guideline value

= Parameter above guideline value

= Guideline value varies based on hardness value



O/Ref.: QE17-130-2

## TABLE III: August Detection Limits associated with each Parameter Bouygues-Sintra Design Build Joint Venture 2017 Water Quality Monitoring Program Iqaluit International Airport

|                          |                                             |        | Client ID                        | IIA-2       | IIA-4.2<br>B17-24654-2 |  |
|--------------------------|---------------------------------------------|--------|----------------------------------|-------------|------------------------|--|
|                          |                                             |        | Sample ID                        | B17-24654-1 |                        |  |
|                          |                                             | Date 0 | Collected (yyyy-mm-dd)           | 2017-08-21  | 2017-08-21             |  |
| Analyte                  | CCME Guideline<br>for Freshwater<br>Habitat | Unit   | Analytical<br>Detection<br>Limit |             |                        |  |
| Acenaphthene             | 5.8                                         | μg/L   | 0.05                             | < 0.05      | < 0.05                 |  |
| Acenaphthylene           | N/A                                         | μg/L   | 0.05                             | < 0.05      | < 0.05                 |  |
| Anthracene               | 0.012                                       | μg/L   | 0.05                             | < 0.05      | < 0.05                 |  |
| Arsenic                  | 0.005                                       | mg/L   | 0.0001                           | 0.0001      | 0.0001                 |  |
| Benzene                  | 370                                         | μg/L   | 0.5                              | < 0.5       | < 0.5                  |  |
| Benzo(a)anthracene       | N/A                                         | μg/L   | 0.05                             | < 0.05      | < 0.05                 |  |
| Benzo(a)pyrene           | 0.015                                       | μg/L   | 0.01                             | < 0.01      | < 0.01                 |  |
| Benzo(b)fluoranthene     | N/A                                         | μg/L   | 0.05                             | < 0.05      | < 0.05                 |  |
| Benzo(b+k)fluoranthene   | N/A                                         | μg/L   | 0.1                              | < 0.1       | < 0.1                  |  |
| Benzo(g,h,i)perylene     | N/A                                         | μg/L   | 0.05                             | < 0.05      | < 0.05                 |  |
| Benzo(k)fluoranthene     | N/A                                         | μg/L   | 0.05                             | < 0.05      | < 0.05                 |  |
| Chrysene                 | N/A                                         | μg/L   | 0.05                             | < 0.05      | < 0.05                 |  |
| Dibenzo(a,h)anthracene   | N/A                                         | μg/L   | 0.05                             | < 0.05      | < 0.05                 |  |
| Ethylbenzene             | 90                                          | μg/L   | 0.5                              | < 0.5       | < 0.5                  |  |
| Ethylene Glycol          | 192                                         | mg/L   | 3                                | < 3         | < 3                    |  |
| Fluoranthene             | 0.04                                        | μg/L   | 0.05                             | < 0.05      | < 0.05                 |  |
| Fluorene                 | 3                                           | μg/L   | 0.05                             | < 0.05      | < 0.05                 |  |
| ndeno(1,2,3,-cd)pyrene   | N/A                                         | μg/L   | 0.05                             | < 0.05      | < 0.05                 |  |
| Lead                     | 0.001                                       | mg/L   | 0.00002                          | 0.00039     | 0.00039                |  |
| Methylnaphthalene 2-(1-) | N/A                                         | μg/L   | 0.07                             | < 0.07      | < 0.07                 |  |
| Methylnaphthalene,1-     | N/A                                         | μg/L   | 0.05                             | < 0.05      | < 0.05                 |  |
| Methylnaphthalene,2-     | N/A                                         | μg/L   | 0.05                             | < 0.05      | < 0.05                 |  |
| Naphthalene              | 1.1                                         | μg/L   | 0.05                             | < 0.05      | < 0.05                 |  |
| Oil & Grease-Total       | N/A                                         | mg/L   | 1                                | < 1.0       | < 1.0                  |  |
| оН @25°C                 | 9                                           | -      | -                                | 7.92        | 7.97                   |  |
| PHC F1 (C6-C10)          | N/A                                         | μg/L   | 20                               | < 20        | < 20                   |  |
| PHC F2 (>C10-C16)        | N/A                                         | μg/L   | 50                               | < 50        | < 50                   |  |
| PHC F3 (>C16-C34)        | N/A                                         | μg/L   | 400                              | < 400       | < 400                  |  |
| PHC F4 (>C34-C50)        | N/A                                         | μg/L   | 400                              | < 400       | < 400                  |  |
| Phenanthrene             | 0.4                                         | μg/L   | 0.05                             | < 0.05      | < 0.05                 |  |
| Propylene Glycol         | 500                                         | mg/L   | 3                                | < 3         | < 3                    |  |
| Pyrene                   | 0.025                                       | μg/L   | 0.05                             | < 0.05      | < 0.05                 |  |
| Toluene                  | 2                                           | μg/L   | 0.5                              | < 0.5       | < 0.5                  |  |
| Total Suspended Solids   | N/A                                         | mg/L   | 3                                | < 3         | < 3                    |  |
| Xylene, m,p-             | N/A                                         | μg/L   | 0.4                              | < 0.4       | < 0.4                  |  |
| Xylene, m,p,o-           | N/A                                         | μg/L   | 0.4                              | < 0.4       | < 0.4                  |  |
| Xylene, o-               | N/A                                         | μg/L   | 0.1                              | < 0.1       | < 0.1                  |  |

F1 (C<sub>6-10</sub>): Petroleum hydrocarbons Fraction 1 (C<sub>6</sub> to C<sub>10</sub>)

IIA-2 Point 1 63°45'16"N, 68°32'54"W

IIA-4.2 Point 4 Creek Before it Crosses Federal Road - Coordinates 63°45'22"N, 68°32'1"W

= Detection limit above guideline value

= Parameter above guideline value

= Guideline value varies based on hardness value



O/Ref.: QE17-130-2

F2 ( $C_{10-16}$ ): Petroleum hydrocarbons Fraction 2 ( $C_{10}$  to  $C_{16}$ )

F3 (C<sub>16-34</sub>): Petroleum hydrocarbons Fraction 3 (C<sub>16</sub> to C<sub>34</sub>)

F4 ( $C_{34-50}$ ): Petroleum hydrocarbons Fraction 4 ( $C_{34}$  to  $C_{50}$ )

TABLE IV: September Detection Limits associated with each Parameter Bouygues-Sintra Design Build Joint Venture 2017 Water Quality Monitoring Program Iqaluit International Airport

|                              |                |      | Client ID                   | IIA-2       | IIA-4.2     | IIA-5           | IIA-6           | IIA-7                 | IIA-8       | IIA-9           |
|------------------------------|----------------|------|-----------------------------|-------------|-------------|-----------------|-----------------|-----------------------|-------------|-----------------|
|                              |                |      | Sample ID                   | B17-29659-6 | B17-29659-7 | B17-29659-1     | B17-29659-2     | B17-29659-3           | B17-29659-4 | B17-29659-5     |
|                              |                |      | Date Collected (yyyy-mm-dd) | 2017-09-30  | 2017-09-30  | 2017-09-30      | 2017-09-30      | 2017-09-30            | 2017-09-30  | 2017-09-30      |
|                              | CCME Guideline |      | Analytical                  |             |             |                 |                 |                       |             |                 |
| Analyte                      | for Freshwater | Unit | Detection                   |             |             |                 |                 |                       |             |                 |
|                              | Habitat        |      | Limit                       |             |             |                 |                 |                       |             |                 |
| Acenaphthene                 | 5.8            | μg/L | 0.05                        | < 0.05      | < 0.05      | < 0.05          | < 0.05          | < 0.05                | < 0.05      | < 0.05          |
| Acenaphthylene               | N/A            | μg/L | 0.05                        | < 0.05      | < 0.05      | < 0.05          | < 0.05          | < 0.05                | < 0.05      | < 0.05          |
| Aluminum                     | 0.1            | mg/L | 0.005                       | 0.28        | 0.04        | 0.05            | 0.03            | 0.05                  | 0.03        | 0.04            |
| Anthracene                   | 0.012          | μg/L | 0.05                        | < 0.05      | < 0.05      | < 0.05          | < 0.05          | < 0.05                | < 0.05      | < 0.05          |
| Arsenic                      | 0.005          | mg/L | 0.0001                      | 0.0002      | < 0.0001    | < 0.0001        | < 0.0001        | < 0.0001              | 0.0001      | 0.0001          |
| Benzene                      | 370            | μg/L | 0.5                         | < 0.5       | < 0.5       | < 0.5           | < 0.5           | < 0.5                 | < 0.5       | < 0.5           |
| Benzo(a)anthracene           | N/A            | μg/L | 0.05                        | < 0.05      | < 0.05      | < 0.05          | < 0.05          | < 0.05                | < 0.05      | < 0.05          |
| Benzo(a)pyrene               | 0.015          | μg/L | 0.01                        | < 0.01      | < 0.01      | < 0.01          | < 0.01          | < 0.01                | < 0.01      | < 0.01          |
| Benzo(b)fluoranthene         | N/A            | μg/L | 0.05                        | < 0.05      | < 0.05      | < 0.05          | < 0.05          | < 0.05                | < 0.05      | < 0.05          |
| Benzo(b+k)fluoranthene       | N/A            | μg/L | 0.1                         | < 0.1       | < 0.1       | < 0.1           | < 0.1           | < 0.1                 | < 0.1       | < 0.1           |
| Benzo(g,h,i)perylene         | N/A            | μg/L | 0.05                        | < 0.05      | < 0.05      | < 0.05          | < 0.05          | < 0.05                | < 0.05      | < 0.05          |
| Benzo(k)fluoranthene         | N/A            | μg/L | 0.05                        | < 0.05      | < 0.05      | < 0.05          | < 0.05          | < 0.05                | < 0.05      | < 0.05          |
| BOD <sub>5</sub>             | N/A            | mg/L | 3                           | 6           | 5           | 5               | 5               | 4                     | 5           | 7               |
| Cadmium                      | 0.00009        | mg/L | 0.00002                     | < 0.000014  | < 0.000014  | < 0.000014      | < 0.00014       | < 0.000014            | 0.000019    | < 0.000014      |
| Chromium                     | 0.0089         | mg/L | 0.002                       | < 0.001     | < 0.001     | < 0.001         | < 0.001         | < 0.001               | < 0.001     | < 0.001         |
| Chrysene                     | N/A            | μg/L | 0.05                        | < 0.05      | < 0.05      | < 0.05          | < 0.05          | < 0.05                | < 0.05      | < 0.05          |
| Cobalt                       | N/A            | mg/L | 0.0001                      | < 0.005     | < 0.005     | < 0.005         | < 0.005         | < 0.005               | < 0.005     | < 0.005         |
| Copper                       | 0.002          | mg/L | 0.0001                      | 0.0024      | 0.0007      | 0.0009          | 0.0013          | 0.0011                | 0.0016      | 0.0011          |
| Dibenzo(a,h)anthracene       | N/A            | μg/L | 0.05                        | < 0.05      | < 0.05      | < 0.05          | < 0.05          | < 0.05                | < 0.05      | < 0.05          |
| Ethylbenzene                 | 90             | μg/L | 0.5                         | < 0.5       | < 0.5       | < 0.5           | < 0.5           | < 0.5                 | < 0.5       | < 0.5           |
| Ethylene Glycol              | 192            | mg/L | 3                           | < 3         | < 3         | < 3             | < 3             | < 3                   | < 3         | < 3             |
| Fluoranthene                 | 0.04           | μg/L | 0.05                        | < 0.05      | < 0.05      | < 0.05          | < 0.05          | < 0.05                | < 0.05      | < 0.05          |
| Fluorene                     | 3              | μg/L | 0.05                        | < 0.05      | < 0.05      | < 0.05          | < 0.05          | < 0.05                | < 0.05      | < 0.05          |
| Indeno(1,2,3,-cd)pyrene      | N/A            | μg/L | 0.05                        | < 0.05      | < 0.05      | < 0.05          | < 0.05          | < 0.05                | < 0.05      | < 0.05          |
| Iron                         | 0.3            | mg/L | 0.005                       | 1.52        | 0.014       | 0.036           | 0.099           | 0.058                 | 1.08        | 1.6             |
| Lead                         | 0.001          | mg/L | 0.00002                     | 0.00034     | < 0.00002   | 0.00003         | < 0.00002       | 0.00004               | 0.00009     | 0.00007         |
| Manganese                    | N/A            | mg/L | 0.001                       | 0.113       | 0.008       | 0.026           | 0.017           | 0.082                 | 0.455       | 0.201           |
| Mercury                      | 0.000026       | mg/L | 0.00002                     | < 0.00002   | < 0.00002   | < 0.00002       | < 0.00002       | < 0.00002             | < 0.00002   | < 0.00002       |
| Methylnaphthalene 2-(1-)     | N/A            | μg/L | 0.07                        | < 0.05      | < 0.05      | < 0.05          | < 0.05          | < 0.05                | < 0.05      | 0.21            |
| Methylnaphthalene,1-         | N/A            | μg/L | 0.05                        | < 0.05      | < 0.05      | < 0.05          | < 0.05          | < 0.05                | < 0.05      | 0.22            |
| Methylnaphthalene,2-         | N/A            | μg/L | 0.05                        | < 0.07      | < 0.07      | < 0.07          | < 0.07          | < 0.07                | 0.08        | 0.43            |
| Naphthalene                  | 1.1            | μg/L | 0.05                        | < 0.05      | < 0.05      | < 0.05          | < 0.05          | < 0.05                | < 0.05      | 0.36            |
| Nickel                       | 0.025          | mg/L | 0.0002                      | 0.0012      | 0.0004      | 0.0005          | 0.0005          | 0.0009                | 0.0016      | 0.001           |
| Oil & Grease-Total           | N/A            | mg/L | 1                           | 4.3         | 2.3         |                 |                 | Analysis not required | T = 00      | T 7.00          |
| pH (limit 6.5 - 9)           | 9              | -    | -                           | 8.01        | 7.71        | 7.8             | 7.79            | 7.97                  | 7.98        | 7.98            |
| PHC F1 (C6-C10)              | N/A            | μg/L | 20                          | < 20        | < 20        | < 20            | < 20            | < 20                  | < 20        | < 20            |
| PHC F2 (>C10-C16)            | N/A            | μg/L | 50                          | < 50        | < 50        | < 50            | < 50            | < 50                  | < 50        | < 50            |
| PHC F3 (>C16-C34)            | N/A            | μg/L | 400                         | < 400       | < 400       | < 400           | < 400           | < 400                 | < 400       | < 400           |
| PHC F4 (>C34-C50)            | N/A<br>0.4     | μg/L | 400<br>0.05                 | < 400       | < 400       | < 400<br>< 0.05 | < 400<br>< 0.05 | < 400<br>< 0.05       | < 400       | < 400<br>< 0.05 |
| Phenanthrene<br>Phenanthrene | ·              | μg/L |                             | < 0.05      | < 0.05      |                 |                 |                       | < 0.05      | 0.05            |
| Phosphorus-Total             | N/A            | mg/L | 0.01                        | 0.05        | 0.02        | 0.02            | 0.01            | 0.02                  | 0.02        |                 |
| Propylene Glycol             | 500            | mg/L | 3                           | < 3         | <3          | < 3             | < 3             | < 3                   | < 3         | < 3             |
| Pyrene                       | 0.025          | μg/L | 0.05                        | < 0.05      | < 0.05      | < 0.05          | < 0.05          | < 0.05                | < 0.05      | < 0.05          |
| Toluene                      | 2              | μg/L | 0.5                         | < 0.5       | < 0.5       | < 0.5           | < 0.5           | < 0.5                 | < 0.5       | < 0.5           |
| Total Glycols                | N/A            | mg/L | 6                           | < 6<br>5    | < 6         | < 6             | < 6             | < 6                   | < 6<br>4    | < 6             |
| Total Suspended Solids       | N/A            | mg/L | 3                           |             | < 3         | <3              | < 3             | < 3                   | · ·         | < 3             |
| Xylene, m,p-                 | N/A            | μg/L | 0.4                         | < 0.4       | < 0.4       | < 0.4           | < 0.4           | < 0.4                 | < 0.4       | < 0.4           |
| Xylene, m,p,o-               | N/A            | μg/L | 0.4                         | < 0.4       | < 0.4       | < 0.4           | < 0.4           | < 0.4                 | < 0.4       | < 0.4           |
| Xylene, o-                   | N/A            | μg/L | 0.1                         | < 0.1       | < 0.1       | < 0.1           | < 0.1           | < 0.1                 | < 0.1       | < 0.1           |
| Zinc                         | 0.03           | mg/L | 0.005                       | 0.089       | 0.008       | 0.011           | 0.005           | 0.079                 | 0.049       | 0.034           |

IIA-2 Point 1 63°45'16"N, 68°32'54"W

IIA-4 Backup Water Extraction Point - Cooordinates 63°45'55"N, 68°32'37"W

IIA-4.1 Point 3 Innear Field Near Taxiway A - Coorindates 63°45'33"N, 68°33'26"W

IIA-4.2 Point 4 Creek Before it Crosses Federal Road - Coordinates 63°45'22"N, 68°32'1"W

IIA-5 Carney Creek Upstream Project Area 63°45'45"N, 68°33'1"W

IIA-6 Start of Inner Field Drainage Ditch 63°45'46"N, 68°33'59"W

IIA-7 Carney Creek Downstream Project Area 63°45'19"N, 68°32'23"W

IIA-8 Inner Field Ditch Downstream Project Area 63°45'9"N, 68°32'11"W IIA-9 Southern Inner Field Downstream Project Area 63°44'56"N, 68°31'57"W BOD<sub>5</sub>: Biological oxygen demand (5 days)

F1 (C<sub>6-10</sub>): Petroleum hydrocarbons Fraction 1 (C<sub>6</sub> to C<sub>10</sub>)

F2 (C<sub>10-16</sub>): Petroleum hydrocarbons Fraction 2 (C<sub>10</sub> to C<sub>16</sub>)

F3 (C<sub>16-34</sub>): Petroleum hydrocarbons Fraction 3 (C<sub>16</sub> to C<sub>34</sub>)

F4 (C<sub>34-50</sub>): Petroleum hydrocarbons Fraction 4 (C<sub>34</sub> to C<sub>50</sub>)

= Detection limit above guideline value

Parameter above guideline value

= Guideline value varies based on hardness value





**APPENDIX D**Certificates of Analysis



Final Report

C.O.C.: --- REPORT No. B17-17009

Rev. 1

**Report To:** 

Qikiqtaaluk Env. Inc.

9935, rue de Chateauneuf, Entrée 1 Brossard Quebec J4Z 3V4 Canada

Attention: Eleni Mouriki

DATE RECEIVED: 20-Jun-17

DATE REPORTED: 11-Jul-17

SAMPLE MATRIX: Surface Water

**Caduceon Environmental Laboratories** 

2378 Holly Lane

Ottawa Ontario K1V 7P1 Tel: 613-526-0123

Fax: 613-526-1244

JOB/PROJECT NO.: IIAIP (QE17-130-2)

P.O. NUMBER: 430001496

WATERWORKS NO.

|                        |          |          | Client I.D.         |                       | IIA-5       | IIA-6       | IIA-7       | IIA-8       |
|------------------------|----------|----------|---------------------|-----------------------|-------------|-------------|-------------|-------------|
|                        |          |          | Sample I.D.         |                       | B17-17009-1 | B17-17009-2 | B17-17009-3 | B17-17009-4 |
|                        |          |          | Date Collect        | ed                    | 17-Jun-17   | 17-Jun-17   | 17-Jun-17   | 17-Jun-17   |
| Parameter              | Units    | R.L.     | Reference<br>Method | Date/Site<br>Analyzed |             |             |             |             |
| Hardness (as CaCO3)    | mg/L     | 1        | SM 3120             | 23-Jun-17/O           | 71          | 11          | 60          | 35          |
| pH @25°C               | pH Units |          | SM 4500H            | 21-Jun-17/O           | 7.88        | 7.31        | 7.94        | 7.83        |
| Total Suspended Solids | mg/L     | 3        | SM 2540D            | 27-Jun-17/O           | 5           | < 3         | 3           | < 3         |
| Aluminum               | mg/L     | 0.01     | SM 3120             | 23-Jun-17/O           | 0.48        | 0.02        | 0.09        | 0.03        |
| Arsenic                | mg/L     | 0.0001   | EPA 200.8           | 26-Jun-17/O           | 0.0007      | < 0.0001    | 0.0002      | < 0.0001    |
| Cadmium                | mg/L     | 0.000014 | EPA 200.8           | 26-Jun-17/O           | 0.000017    | < 0.000014  | 0.000035    | < 0.000014  |
| Chromium               | mg/L     | 0.001    | EPA 200.8           | 26-Jun-17/O           | < 0.001     | < 0.001     | < 0.001     | < 0.001     |
| Cobalt                 | mg/L     | 0.005    | SM 3120             | 23-Jun-17/O           | < 0.005     | < 0.005     | < 0.005     | < 0.005     |
| Copper                 | mg/L     | 0.0001   | EPA 200.8           | 26-Jun-17/O           | 0.0027      | 0.0010      | 0.0017      | 0.0013      |
| Iron                   | mg/L     | 0.005    | SM 3120             | 23-Jun-17/O           | 1.29        | 0.086       | 0.142       | 0.251       |
| Lead                   | mg/L     | 0.00002  | EPA 200.8           | 26-Jun-17/O           | 0.00160     | 0.00004     | 0.00025     | 0.00008     |
| Manganese              | mg/L     | 0.001    | SM 3120             | 23-Jun-17/O           | 0.059       | 0.006       | 0.056       | 0.088       |
| Mercury                | mg/L     | 0.00002  | SM 3112B            | 11-Jul-17/R           | < 0.00002   | < 0.00002   | < 0.00002   | < 0.00002   |
| Nickel                 | mg/L     | 0.0002   | EPA 200.8           | 26-Jun-17/O           | 0.0008      | < 0.0002    | 0.0006      | 0.0004      |
| Phosphorus-Total       | mg/L     | 0.01     | MOEE 3367           | 26-Jun-17/O           | 0.02        | < 0.01      | 0.01        | < 0.01      |
| Zinc                   | mg/L     | 0.005    | SM 3120             | 23-Jun-17/O           | 0.134       | 0.006       | 0.032       | 0.036       |
| BOD                    | mg/L     | 3        | SM 5210B            | 21-Jun-17/O           | < 3         | < 3         | < 3         | 4           |
| Benzene                | μg/L     | 0.5      | EPA 8260            | 28-Jun-17/O           | < 0.5       | < 0.5       | < 0.5       | < 0.5       |
| Toluene                | μg/L     | 0.5      | EPA 8260            | 28-Jun-17/O           | < 0.5       | < 0.5       | < 0.5       | < 0.5       |
| Ethylbenzene           | μg/L     | 0.5      | EPA 8260            | 28-Jun-17/O           | < 0.5       | < 0.5       | < 0.5       | < 0.5       |
| Xylene, m,p-           | μg/L     | 0.4      | EPA 8260            | 28-Jun-17/O           | < 0.4       | < 0.4       | < 0.4       | < 0.4       |
| Xylene, o-             | μg/L     | 0.1      | EPA 8260            | 28-Jun-17/O           | < 0.1       | < 0.1       | < 0.1       | < 0.1       |
| Xylene, m,p,o-         | μg/L     | 0.4      | EPA 8260            | 28-Jun-17/O           | < 0.4       | < 0.4       | < 0.4       | < 0.4       |
| Toluene-d8 (SS)        | %        |          | EPA 8260            | 28-Jun-17/O           | 98.0        | 98.0        | 98.0        | 97.0        |
| PHC F1 (C6-C10)        | μg/L     | 20       | MOE E3421           | 28-Jun-17/O           | 34          | 46          | 27          | 31          |
| PHC F2 (>C10-C16)      | μg/L     | 50       | MOE E3421           | 26-Jun-17/K           | < 50        | < 50        | < 50        | < 50        |
| PHC F3 (>C16-C34)      | μg/L     | 400      | MOE E3421           | 26-Jun-17/K           | < 400       | < 400       | < 400       | < 400       |

NOTE: Revision created upon request from client to add Hg & Hardness to the Final Report.

R.L. = Reporting Limit

Test methods may be modified from specified reference method unless indicated by an \*

Site Analyzed=K-Kingston, W-Windsor, O-Ottawa, R-Richmond Hill



Final Report

C.O.C.: --- REPORT No. B17-17009

Rev. 1

**Report To:** 

Qikiqtaaluk Env. Inc.

9935, rue de Chateauneuf, Entrée 1 Brossard Quebec J4Z 3V4 Canada

Attention: Eleni Mouriki

DATE RECEIVED: 20-Jun-17

DATE REPORTED: 11-Jul-17

SAMPLE MATRIX: Surface Water

**Caduceon Environmental Laboratories** 

2378 Holly Lane

Ottawa Ontario K1V 7P1 Tel: 613-526-0123

Fax: 613-526-1244

JOB/PROJECT NO.: IIAIP (QE17-130-2)

P.O. NUMBER: 430001496

WATERWORKS NO.

|                          |        |      | Client I.D.         |                       | IIA-5       | IIA-6       | IIA-7       | IIA-8       |
|--------------------------|--------|------|---------------------|-----------------------|-------------|-------------|-------------|-------------|
|                          |        |      | Sample I.D.         |                       | B17-17009-1 | B17-17009-2 | B17-17009-3 | B17-17009-4 |
|                          |        |      | Date Collect        | ed                    | 17-Jun-17   | 17-Jun-17   | 17-Jun-17   | 17-Jun-17   |
| Parameter                | Units  | R.L. | Reference<br>Method | Date/Site<br>Analyzed |             |             |             |             |
| PHC F4 (>C34-C50)        | μg/L   | 400  | MOE E3421           | 26-Jun-17/K           | < 400       | < 400       | < 400       | < 400       |
| Acenaphthene             | μg/L   | 0.05 | EPA 8270            | 27-Jun-17/K           | < 0.05      | < 0.05      | < 0.05      | < 0.05      |
| Acenaphthylene           | μg/L   | 0.05 | EPA 8270            | 27-Jun-17/K           | < 0.05      | < 0.05      | < 0.05      | < 0.05      |
| Anthracene               | μg/L   | 0.05 | EPA 8270            | 27-Jun-17/K           | < 0.05      | < 0.05      | < 0.05      | < 0.05      |
| Benzo(a)anthracene       | μg/L   | 0.05 | EPA 8270            | 27-Jun-17/K           | < 0.05      | < 0.05      | < 0.05      | < 0.05      |
| Benzo(a)pyrene           | μg/L   | 0.01 | EPA 8270            | 27-Jun-17/K           | < 0.01      | < 0.01      | < 0.01      | < 0.01      |
| Benzo(b)fluoranthene     | μg/L   | 0.05 | EPA 8270            | 27-Jun-17/K           | < 0.05      | < 0.05      | < 0.05      | < 0.05      |
| Benzo(b+k)fluoranthene   | μg/L   | 0.1  | EPA 8270            | 27-Jun-17/K           | < 0.1       | < 0.1       | < 0.1       | < 0.1       |
| Benzo(g,h,i)perylene     | μg/L   | 0.05 | EPA 8270            | 27-Jun-17/K           | < 0.05      | < 0.05      | < 0.05      | < 0.05      |
| Benzo(k)fluoranthene     | μg/L   | 0.05 | EPA 8270            | 27-Jun-17/K           | < 0.05      | < 0.05      | < 0.05      | < 0.05      |
| Chrysene                 | μg/L   | 0.05 | EPA 8270            | 27-Jun-17/K           | < 0.05      | < 0.05      | < 0.05      | < 0.05      |
| Dibenzo(a,h)anthracene   | μg/L   | 0.05 | EPA 8270            | 27-Jun-17/K           | < 0.05      | < 0.05      | < 0.05      | < 0.05      |
| Fluoranthene             | μg/L   | 0.05 | EPA 8270            | 27-Jun-17/K           | < 0.05      | < 0.05      | < 0.05      | < 0.05      |
| Fluorene                 | μg/L   | 0.05 | EPA 8270            | 27-Jun-17/K           | < 0.05      | < 0.05      | < 0.05      | < 0.05      |
| Indeno(1,2,3,-cd)pyrene  | μg/L   | 0.05 | EPA 8270            | 27-Jun-17/K           | < 0.05      | < 0.05      | < 0.05      | < 0.05      |
| Methylnaphthalene,1-     | μg/L   | 0.05 | EPA 8270            | 27-Jun-17/K           | < 0.05      | < 0.05      | < 0.05      | < 0.05      |
| Methylnaphthalene,2-     | μg/L   | 0.05 | EPA 8270            | 27-Jun-17/K           | < 0.05      | < 0.05      | < 0.05      | < 0.05      |
| Methylnaphthalene 2-(1-) | μg/L   | 0.07 | EPA 8270            | 27-Jun-17/K           | < 0.07      | < 0.07      | < 0.07      | < 0.07      |
| Naphthalene              | μg/L   | 0.05 | EPA 8270            | 27-Jun-17/K           | < 0.05      | < 0.05      | < 0.05      | < 0.05      |
| Phenanthrene             | μg/L   | 0.05 | EPA 8270            | 27-Jun-17/K           | < 0.05      | < 0.05      | < 0.05      | < 0.05      |
| Pyrene                   | μg/L   | 0.05 | EPA 8270            | 27-Jun-17/K           | < 0.05      | < 0.05      | < 0.05      | < 0.05      |
| Terphenyl-d14 (SS)       | % rec. | 10   | EPA 8270            | 27-Jun-17/K           | 111         | 116         | 118         | 121         |
| Propylene Glycol         | mg/L   | 3    | EPA 8015            | 22-Jun-17/O           | < 3         | < 3         | < 3         | < 3         |
| Ethylene Glycol          | mg/L   | 3    | EPA 8015            | 22-Jun-17/O           | < 3         | < 3         | < 3         | < 3         |
| Diethylene Glycol        | mg/L   | 3    | EPA 8015            | 22-Jun-17/O           | < 3         | < 3         | < 3         | < 3         |
| Total Glycols            | mg/L   | 3    | EPA 8015            | 22-Jun-17/O           | < 3         | < 3         | < 3         | < 3         |

NOTE: Revision created upon request from client to add Hg & Hardness to the Final Report.

R.L. = Reporting Limit

Test methods may be modified from specified reference method unless indicated by an \*

Site Analyzed=K-Kingston, W-Windsor, O-Ottawa, R-Richmond Hill



Final Report

C.O.C.: --- REPORT No. B17-17009

Rev. 1

**Report To:** 

Qikiqtaaluk Env. Inc.

9935, rue de Chateauneuf, Entrée 1 Brossard Quebec J4Z 3V4 Canada

Attention: Eleni Mouriki

DATE RECEIVED: 20-Jun-17

DATE REPORTED: 11-Jul-17

SAMPLE MATRIX: Surface Water

**Caduceon Environmental Laboratories** 

2378 Holly Lane

Ottawa Ontario K1V 7P1 Tel: 613-526-0123

Fax: 613-526-1244

JOB/PROJECT NO.: IIAIP (QE17-130-2)

P.O. NUMBER: 430001496

WATERWORKS NO.

|                        |          |          | Client I.D.         |                       | IIA-9       | DUP-1       |  |
|------------------------|----------|----------|---------------------|-----------------------|-------------|-------------|--|
|                        |          |          | Sample I.D.         |                       | B17-17009-5 | B17-17009-6 |  |
|                        |          |          | Date Collected      |                       | 17-Jun-17   | 17-Jun-17   |  |
| Parameter              | Units    | R.L.     | Reference<br>Method | Date/Site<br>Analyzed |             | ı           |  |
| Hardness (as CaCO3)    | mg/L     | 1        | SM 3120             | 23-Jun-17/O           | 28          | 25          |  |
| pH @25°C               | pH Units |          | SM 4500H            | 21-Jun-17/O           | 7.65        | 7.61        |  |
| Total Suspended Solids | mg/L     | 3        | SM 2540D            | 27-Jun-17/O           | 60          | 37          |  |
| Aluminum               | mg/L     | 0.01     | SM 3120             | 23-Jun-17/O           | 0.26        | 0.19        |  |
| Arsenic                | mg/L     | 0.0001   | EPA 200.8           | 26-Jun-17/O           | 0.0002      | 0.0001      |  |
| Cadmium                | mg/L     | ).000014 | EPA 200.8           | 26-Jun-17/O           | 0.000019    | < 0.000014  |  |
| Chromium               | mg/L     | 0.001    | EPA 200.8           | 26-Jun-17/O           | 0.001       | < 0.001     |  |
| Cobalt                 | mg/L     | 0.005    | SM 3120             | 23-Jun-17/O           | < 0.005     | < 0.005     |  |
| Copper                 | mg/L     | 0.0001   | EPA 200.8           | 26-Jun-17/O           | 0.0031      | 0.0017      |  |
| Iron                   | mg/L     | 0.005    | SM 3120             | 23-Jun-17/O           | 0.966       | 0.578       |  |
| Lead                   | mg/L     | 0.00002  | EPA 200.8           | 26-Jun-17/O           | 0.00116     | 0.00040     |  |
| Manganese              | mg/L     | 0.001    | SM 3120             | 23-Jun-17/O           | 0.049       | 0.025       |  |
| Mercury                | mg/L     | 0.00002  | SM 3112B            | 11-Jul-17/R           | < 0.00002   | < 0.00002   |  |
| Nickel                 | mg/L     | 0.0002   | EPA 200.8           | 26-Jun-17/O           | 0.0011      | 0.0006      |  |
| Phosphorus-Total       | mg/L     | 0.01     | MOEE 3367           | 26-Jun-17/O           | 0.08        | 0.07        |  |
| Zinc                   | mg/L     | 0.005    | SM 3120             | 23-Jun-17/O           | 0.026       | 0.013       |  |
| BOD                    | mg/L     | 3        | SM 5210B            | 21-Jun-17/O           | < 3         | < 3         |  |
| Benzene                | μg/L     | 0.5      | EPA 8260            | 28-Jun-17/O           | < 0.5       | < 0.5       |  |
| Toluene                | μg/L     | 0.5      | EPA 8260            | 28-Jun-17/O           | < 0.5       | < 0.5       |  |
| Ethylbenzene           | μg/L     | 0.5      | EPA 8260            | 28-Jun-17/O           | < 0.5       | < 0.5       |  |
| Xylene, m,p-           | μg/L     | 0.4      | EPA 8260            | 28-Jun-17/O           | < 0.4       | < 0.4       |  |
| Xylene, o-             | μg/L     | 0.1      | EPA 8260            | 28-Jun-17/O           | < 0.1       | < 0.1       |  |
| Xylene, m,p,o-         | μg/L     | 0.4      | EPA 8260            | 28-Jun-17/O           | < 0.4       | < 0.4       |  |
| Toluene-d8 (SS)        | %        |          | EPA 8260            | 28-Jun-17/O           | 98.0        | 98.0        |  |
| PHC F1 (C6-C10)        | μg/L     | 20       | MOE E3421           | 28-Jun-17/O           | < 20        | < 20        |  |
| PHC F2 (>C10-C16)      | μg/L     | 50       | MOE E3421           | 26-Jun-17/K           | < 50        | < 50        |  |
| PHC F3 (>C16-C34)      | μg/L     | 400      | MOE E3421           | 26-Jun-17/K           | < 400       | < 400       |  |

NOTE: Revision created upon request from client to add Hg & Hardness to the Final Report.

R.L. = Reporting Limit

Test methods may be modified from specified reference method unless indicated by an \*

Site Analyzed=K-Kingston, W-Windsor, O-Ottawa, R-Richmond Hill



Final Report

C.O.C.: --- REPORT No. B17-17009

Rev. 1

Report To:

Qikiqtaaluk Env. Inc.

9935, rue de Chateauneuf, Entrée 1 Brossard Quebec J4Z 3V4 Canada

Attention: Eleni Mouriki

DATE RECEIVED: 20-Jun-17

DATE REPORTED: 11-Jul-17

SAMPLE MATRIX: Surface Water

**Caduceon Environmental Laboratories** 

2378 Holly Lane

Ottawa Ontario K1V 7P1 Tel: 613-526-0123

Fax: 613-526-1244

JOB/PROJECT NO.: IIAIP (QE17-130-2)

P.O. NUMBER: 430001496

WATERWORKS NO.

|                          |        |      | Client I.D.         |                       | IIA-9       | DUP-1       |  |
|--------------------------|--------|------|---------------------|-----------------------|-------------|-------------|--|
|                          |        |      | Sample I.D.         |                       | B17-17009-5 | B17-17009-6 |  |
|                          |        |      | Date Collect        | ed                    | 17-Jun-17   | 17-Jun-17   |  |
| Parameter                | Units  | R.L. | Reference<br>Method | Date/Site<br>Analyzed |             |             |  |
| PHC F4 (>C34-C50)        | μg/L   | 400  | MOE E3421           | 26-Jun-17/K           | < 400       | < 400       |  |
| Acenaphthene             | μg/L   | 0.05 | EPA 8270            | 27-Jun-17/K           | < 0.05      | < 0.05      |  |
| Acenaphthylene           | μg/L   | 0.05 | EPA 8270            | 27-Jun-17/K           | < 0.05      | < 0.05      |  |
| Anthracene               | μg/L   | 0.05 | EPA 8270            | 27-Jun-17/K           | < 0.05      | < 0.05      |  |
| Benzo(a)anthracene       | μg/L   | 0.05 | EPA 8270            | 27-Jun-17/K           | < 0.05      | < 0.05      |  |
| Benzo(a)pyrene           | μg/L   | 0.01 | EPA 8270            | 27-Jun-17/K           | < 0.01      | < 0.01      |  |
| Benzo(b)fluoranthene     | μg/L   | 0.05 | EPA 8270            | 27-Jun-17/K           | < 0.05      | < 0.05      |  |
| Benzo(b+k)fluoranthene   | μg/L   | 0.1  | EPA 8270            | 27-Jun-17/K           | < 0.1       | < 0.1       |  |
| Benzo(g,h,i)perylene     | μg/L   | 0.05 | EPA 8270            | 27-Jun-17/K           | < 0.05      | < 0.05      |  |
| Benzo(k)fluoranthene     | μg/L   | 0.05 | EPA 8270            | 27-Jun-17/K           | < 0.05      | < 0.05      |  |
| Chrysene                 | μg/L   | 0.05 | EPA 8270            | 27-Jun-17/K           | < 0.05      | < 0.05      |  |
| Dibenzo(a,h)anthracene   | μg/L   | 0.05 | EPA 8270            | 27-Jun-17/K           | < 0.05      | < 0.05      |  |
| Fluoranthene             | μg/L   | 0.05 | EPA 8270            | 27-Jun-17/K           | < 0.05      | < 0.05      |  |
| Fluorene                 | μg/L   | 0.05 | EPA 8270            | 27-Jun-17/K           | < 0.05      | < 0.05      |  |
| Indeno(1,2,3,-cd)pyrene  | μg/L   | 0.05 | EPA 8270            | 27-Jun-17/K           | < 0.05      | < 0.05      |  |
| Methylnaphthalene,1-     | μg/L   | 0.05 | EPA 8270            | 27-Jun-17/K           | < 0.05      | < 0.05      |  |
| Methylnaphthalene,2-     | μg/L   | 0.05 | EPA 8270            | 27-Jun-17/K           | < 0.05      | < 0.05      |  |
| Methylnaphthalene 2-(1-) | μg/L   | 0.07 | EPA 8270            | 27-Jun-17/K           | < 0.07      | < 0.07      |  |
| Naphthalene              | μg/L   | 0.05 | EPA 8270            | 27-Jun-17/K           | < 0.05      | < 0.05      |  |
| Phenanthrene             | μg/L   | 0.05 | EPA 8270            | 27-Jun-17/K           | < 0.05      | < 0.05      |  |
| Pyrene                   | μg/L   | 0.05 | EPA 8270            | 27-Jun-17/K           | < 0.05      | < 0.05      |  |
| Terphenyl-d14 (SS)       | % rec. | 10   | EPA 8270            | 27-Jun-17/K           | 127         | 100         |  |
| Propylene Glycol         | mg/L   | 3    | EPA 8015            | 22-Jun-17/O           | < 3         | < 3         |  |
| Ethylene Glycol          | mg/L   | 3    | EPA 8015            | 22-Jun-17/O           | < 3         | < 3         |  |
| Diethylene Glycol        | mg/L   | 3    | EPA 8015            | 22-Jun-17/O           | < 3         | < 3         |  |
| Total Glycols            | mg/L   | 3    | EPA 8015            | 22-Jun-17/O           | < 3         | < 3         |  |

NOTE: Revision created upon request from client to add Hg & Hardness to the Final Report.

R.L. = Reporting Limit

Test methods may be modified from specified reference method unless indicated by an \*

Site Analyzed=K-Kingston, W-Windsor, O-Ottawa, R-Richmond Hill



Final Report

C.O.C.: --- REPORT No. B17-17824

**Report To:** 

Caduceon Environmental Laboratories

Qikiqtaaluk Env. Inc.

2378 Holly Lane

9935, rue de Chateauneuf, Entrée 1 Brossard Quebec J4Z 3V4 Canada Ottawa Ontario K1V 7P1 Tel: 613-526-0123

Attention: Eleni Mouriki

Fax: 613-526-1244

JOB/PROJECT NO.: IIAIP (QE17-130-2)

DATE RECEIVED: 27-Jun-17
DATE REPORTED: 11-Jul-17

P.O. NUMBER: 430001496

SAMPLE MATRIX: Surface Water

WATERWORKS NO.

|                        |          |          | Client I.D.         |                       | IIA-2       | IIA-4.2     |  |
|------------------------|----------|----------|---------------------|-----------------------|-------------|-------------|--|
|                        |          |          | Sample I.D.         |                       | B17-17824-1 | B17-17824-2 |  |
|                        |          |          | Date Collect        | ed                    | 21-Jun-17   | 21-Jun-17   |  |
| Parameter              | Units    | R.L.     | Reference<br>Method | Date/Site<br>Analyzed |             |             |  |
| Hardness (as CaCO3)    | mg/L     | 1        | SM 3120             | 29-Jun-17/O           | 36          | 35          |  |
| pH @25°C               | pH Units |          | SM 4500H            | 28-Jun-17/O           | 7.27        | 7.34        |  |
| Total Suspended Solids | mg/L     | 3        | SM 2540D            | 28-Jun-17/O           | < 3         | < 3         |  |
| Aluminum               | mg/L     | 0.01     | SM 3120             | 29-Jun-17/O           | 0.04        | 0.39        |  |
| Arsenic                | mg/L     | 0.0001   | EPA 200.8           | 28-Jun-17/O           | < 0.0001    | < 0.0001    |  |
| Cadmium                | mg/L     | ).000014 | EPA 200.8           | 28-Jun-17/O           | < 0.000014  | < 0.000014  |  |
| Chromium               | mg/L     | 0.001    | EPA 200.8           | 28-Jun-17/O           | < 0.001     | < 0.001     |  |
| Cobalt                 | mg/L     | 0.005    | SM 3120             | 29-Jun-17/O           | < 0.005     | < 0.005     |  |
| Copper                 | mg/L     | 0.0001   | EPA 200.8           | 28-Jun-17/O           | 0.0012      | 0.0017      |  |
| Iron                   | mg/L     | 0.005    | SM 3120             | 29-Jun-17/O           | 0.311       | 0.916       |  |
| Lead                   | mg/L     | 0.00002  | EPA 200.8           | 28-Jun-17/O           | 0.00005     | 0.00053     |  |
| Manganese              | mg/L     | 0.001    | SM 3120             | 29-Jun-17/O           | 0.022       | 0.036       |  |
| Mercury                | mg/L     | 0.00002  | SM 3112B            | 11-Jul-17/R           | < 0.00002   | < 0.00002   |  |
| Nickel                 | mg/L     | 0.0002   | EPA 200.8           | 28-Jun-17/O           | < 0.0002    | 0.0005      |  |
| Phosphorus-Total       | mg/L     | 0.01     | MOEE 3367           | 28-Jun-17/O           | 0.02        | 0.05        |  |
| Zinc                   | mg/L     | 0.005    | SM 3120             | 29-Jun-17/O           | 0.040       | 0.032       |  |
| BOD                    | mg/L     | 3        | SM 5210B            | 28-Jun-17/O           | < 3         | < 3         |  |
| Benzene                | μg/L     | 0.5      | EPA 8260            | 28-Jun-17/O           | < 0.5       | < 0.5       |  |
| Toluene                | μg/L     | 0.5      | EPA 8260            | 28-Jun-17/O           | < 0.5       | < 0.5       |  |
| Ethylbenzene           | μg/L     | 0.5      | EPA 8260            | 28-Jun-17/O           | < 0.5       | < 0.5       |  |
| Xylene, m,p-           | μg/L     | 0.4      | EPA 8260            | 28-Jun-17/O           | < 0.4       | < 0.4       |  |
| Xylene, o-             | μg/L     | 0.1      | EPA 8260            | 28-Jun-17/O           | < 0.1       | < 0.1       |  |
| Xylene, m,p,o-         | μg/L     | 0.4      | EPA 8260            | 28-Jun-17/O           | < 0.4       | < 0.4       |  |
| Toluene-d8 (SS)        | %        |          | EPA 8260            | 28-Jun-17/O           | 99.0        | 99.0        |  |
| PHC F1 (C6-C10)        | μg/L     | 20       | MOE E3421           | 28-Jun-17/O           | < 20        | < 20        |  |
| PHC F2 (>C10-C16)      | μg/L     | 50       | MOE E3421           | 29-Jun-17/K           | < 50        | < 50        |  |
| PHC F3 (>C16-C34)      | μg/L     | 400      | MOE E3421           | 29-Jun-17/K           | < 400       | < 400       |  |
| PHC F4 (>C34-C50)      | μg/L     | 400      | MOE E3421           | 29-Jun-17/K           | < 400       | < 400       |  |

NOTE: Acceptable Holding Time for BOD exceeded upon arrival at lab.

R.L. = Reporting Limit

Test methods may be modified from specified reference method unless indicated by an \* Site Analyzed=K-Kingston,W-Windsor,O-Ottawa,R-Richmond Hill



Final Report

C.O.C.: --- REPORT No. B17-17824

**Report To:** 

**Caduceon Environmental Laboratories** 

Qikiqtaaluk Env. Inc.

2378 Holly Lane

9935, rue de Chateauneuf, Entrée 1 Brossard Quebec J4Z 3V4 Canada Ottawa Ontario K1V 7P1 Tel: 613-526-0123

Attention: Eleni Mouriki

Fax: 613-526-1244

JOB/PROJECT NO.: IIAIP (QE17-130-2)

DATE RECEIVED: 27-Jun-17
DATE REPORTED: 11-Jul-17

P.O. NUMBER: 430001496

SAMPLE MATRIX: Surface Water

WATERWORKS NO.

|                          |        |      | Client I.D.         |                       | IIA-2       | IIA-4.2     |  |
|--------------------------|--------|------|---------------------|-----------------------|-------------|-------------|--|
|                          |        |      | Sample I.D.         |                       | B17-17824-1 | B17-17824-2 |  |
|                          |        |      | Date Collect        | ed                    | 21-Jun-17   | 21-Jun-17   |  |
| Parameter                | Units  | R.L. | Reference<br>Method | Date/Site<br>Analyzed |             |             |  |
| Oil & Grease-Total       | mg/L   | 1.0  | SM 5520             | 05-Jul-17/K           | < 1.0       | < 1.0       |  |
| Acenaphthene             | μg/L   | 0.05 | EPA 8270            | 06-Jul-17/K           | < 0.05      | < 0.05      |  |
| Acenaphthylene           | μg/L   | 0.05 | EPA 8270            | 06-Jul-17/K           | 65.9        | < 0.05      |  |
| Anthracene               | μg/L   | 0.05 | EPA 8270            | 06-Jul-17/K           | < 0.05      | < 0.05      |  |
| Benzo(a)anthracene       | μg/L   | 0.05 | EPA 8270            | 06-Jul-17/K           | < 0.05      | < 0.05      |  |
| Benzo(a)pyrene           | μg/L   | 0.01 | EPA 8270            | 06-Jul-17/K           | < 0.01      | < 0.01      |  |
| Benzo(b)fluoranthene     | μg/L   | 0.05 | EPA 8270            | 06-Jul-17/K           | < 0.05      | < 0.05      |  |
| Benzo(b+k)fluoranthene   | μg/L   | 0.1  | EPA 8270            | 06-Jul-17/K           | < 0.1       | < 0.1       |  |
| Benzo(g,h,i)perylene     | μg/L   | 0.05 | EPA 8270            | 06-Jul-17/K           | < 0.05      | < 0.05      |  |
| Benzo(k)fluoranthene     | μg/L   | 0.05 | EPA 8270            | 06-Jul-17/K           | < 0.05      | < 0.05      |  |
| Chrysene                 | μg/L   | 0.05 | EPA 8270            | 06-Jul-17/K           | < 0.05      | < 0.05      |  |
| Dibenzo(a,h)anthracene   | μg/L   | 0.05 | EPA 8270            | 06-Jul-17/K           | < 0.05      | < 0.05      |  |
| Fluoranthene             | μg/L   | 0.05 | EPA 8270            | 06-Jul-17/K           | < 0.05      | < 0.05      |  |
| Fluorene                 | μg/L   | 0.05 | EPA 8270            | 06-Jul-17/K           | < 0.05      | < 0.05      |  |
| Indeno(1,2,3,-cd)pyrene  | μg/L   | 0.05 | EPA 8270            | 06-Jul-17/K           | < 0.05      | < 0.05      |  |
| Methylnaphthalene,1-     | μg/L   | 0.05 | EPA 8270            | 06-Jul-17/K           | < 0.05      | < 0.05      |  |
| Methylnaphthalene,2-     | μg/L   | 0.05 | EPA 8270            | 06-Jul-17/K           | < 0.05      | < 0.05      |  |
| Methylnaphthalene 2-(1-) | μg/L   | 0.07 | EPA 8270            | 06-Jul-17/K           | < 0.07      | < 0.07      |  |
| Naphthalene              | μg/L   | 0.05 | EPA 8270            | 06-Jul-17/K           | < 0.05      | < 0.05      |  |
| Phenanthrene             | μg/L   | 0.05 | EPA 8270            | 06-Jul-17/K           | < 0.05      | < 0.05      |  |
| Pyrene                   | μg/L   | 0.05 | EPA 8270            | 06-Jul-17/K           | < 0.05      | < 0.05      |  |
| Terphenyl-d14 (SS)       | % rec. | 10   | EPA 8270            | 06-Jul-17/K           | 105         | 105         |  |
| Propylene Glycol         | mg/L   | 3    | EPA 8015            | 29-Jun-17/O           | < 3         | < 3         |  |
| Ethylene Glycol          | mg/L   | 3    | EPA 8015            | 29-Jun-17/O           | < 3         | < 3         |  |
| Diethylene Glycol        | mg/L   | 3    | EPA 8015            | 29-Jun-17/O           | < 3         | < 3         |  |
| Total Glycols            | mg/L   | 3    | EPA 8015            | 29-Jun-17/O           | < 3         | < 3         |  |

NOTE: Acceptable Holding Time for BOD exceeded upon arrival at lab.

R.L. = Reporting Limit

Test methods may be modified from specified reference method unless indicated by an \* Site Analyzed=K-Kingston,W-Windsor,O-Ottawa,R-Richmond Hill

Greg Clarkin, BSc., C. Chem Lab Manager - Ottawa District

The analytical results reported herein refer to the samples as received. Reproduction of this analytical report in full or in part is prohibited without prior consent from Caduceon Environmental Laboratories.



Final Report

C.O.C.: --- REPORT No. B17-20720

**Report To:** 

Caduceon Environmental Laboratories

Qikiqtaaluk Env. Inc.

2378 Holly Lane

9935, rue de Chateauneuf, Entrée 1 Brossard Quebec J4Z 3V4 Canada Ottawa Ontario K1V 7P1 Tel: 613-526-0123

Attention: Eleni Mouriki

Fax: 613-526-1244

DATE RECEIVED: 24-Jul-17

JOB/PROJECT NO.: IIAIP (QE17-130-2)

DATE REPORTED: 28-Jul-17

P.O. NUMBER: 430001496

SAMPLE MATRIX: Surface Water

WATERWORKS NO.

|                        |          |         | Client I.D.         |                       | IIA-2       | IIA-4.2     |  |
|------------------------|----------|---------|---------------------|-----------------------|-------------|-------------|--|
|                        |          |         | Sample I.D.         |                       | B17-20720-1 | B17-20720-2 |  |
|                        |          |         | Date Collecte       | ed                    | 22-Jul-17   | 22-Jul-17   |  |
| Parameter              | Units    | R.L.    | Reference<br>Method | Date/Site<br>Analyzed |             |             |  |
| pH @25°C               | pH Units |         | SM 4500H            | 24-Jul-17/O           | 7.94        | 7.78        |  |
| Total Suspended Solids | mg/L     | 3       | SM 2540D            | 26-Jul-17/O           | 9           | < 3         |  |
| Aluminum               | mg/L     | 0.01    | SM 3120             | 26-Jul-17/O           | 0.12        | 0.02        |  |
| Antimony               | mg/L     | 0.0001  | EPA 200.8           | 24-Jul-17/O           | < 0.0001    | < 0.0001    |  |
| Arsenic                | mg/L     | 0.0001  | EPA 200.8           | 24-Jul-17/O           | 0.0002      | 0.0001      |  |
| Barium                 | mg/L     | 0.001   | SM 3120             | 26-Jul-17/O           | 0.016       | 0.001       |  |
| Beryllium              | mg/L     | 0.002   | SM 3120             | 26-Jul-17/O           | < 0.002     | < 0.002     |  |
| Bismuth                | mg/L     | 0.02    | SM 3120             | 26-Jul-17/O           | < 0.02      | < 0.02      |  |
| Boron                  | mg/L     | 0.005   | SM 3120             | 26-Jul-17/O           | 0.023       | 0.012       |  |
| Cadmium                | mg/L     | 0.00001 | EPA 200.8           | 24-Jul-17/O           | < 0.000014  | < 0.000014  |  |
| Calcium                | mg/L     | 0.02    | SM 3120             | 26-Jul-17/O           | 26.6        | 16.2        |  |
| Chromium               | mg/L     | 0.001   | EPA 200.8           | 24-Jul-17/O           | < 0.001     | < 0.001     |  |
| Chromium (VI)          | mg/L     | 0.001   | MOE E3056           | 25-Jul-17/O           | < 0.001     | < 0.001     |  |
| Cobalt                 | mg/L     | 0.0001  | EPA 200.8           | 24-Jul-17/O           | 0.0003      | < 0.0001    |  |
| Copper                 | mg/L     | 0.0001  | EPA 200.8           | 24-Jul-17/O           | 0.0015      | 0.0009      |  |
| Iron                   | mg/L     | 0.005   | SM 3120             | 26-Jul-17/O           | 1.08        | 0.016       |  |
| Lead                   | mg/L     | 0.00002 | EPA 200.8           | 24-Jul-17/O           | 0.00012     | < 0.00002   |  |
| Magnesium              | mg/L     | 0.01    | SM 3120             | 26-Jul-17/O           | 5.21        | 2.41        |  |
| Manganese              | mg/L     | 0.001   | SM 3120             | 26-Jul-17/O           | 0.085       | 0.002       |  |
| Mercury                | mg/L     | 0.00002 | SM 3112B            | 26-Jul-17/R           | < 0.00002   | < 0.00002   |  |
| Molybdenum             | mg/L     | 0.0001  | EPA 200.8           | 24-Jul-17/O           | 0.0011      | 0.0007      |  |
| Nickel                 | mg/L     | 0.0002  | EPA 200.8           | 24-Jul-17/O           | 0.0009      | 0.0003      |  |
| Potassium              | mg/L     | 0.1     | SM 3120             | 26-Jul-17/O           | 1.3         | 0.5         |  |
| Sodium                 | mg/L     | 0.2     | SM 3120             | 26-Jul-17/O           | 12.3        | 2.5         |  |
| Strontium              | mg/L     | 0.001   | SM 3120             | 26-Jul-17/O           | 0.085       | 0.039       |  |
| Tin                    | mg/L     | 0.05    | SM 3120             | 26-Jul-17/O           | < 0.05      | < 0.05      |  |
| Titanium               | mg/L     | 0.005   | SM 3120             | 26-Jul-17/O           | 0.009       | < 0.005     |  |

R.L. = Reporting Limit

Test methods may be modified from specified reference method unless indicated by an \*

Greg Clarkin , BSc., C. Chem Lab Manager - Ottawa District

Site Analyzed=K-Kingston,W-Windsor,O-Ottawa,R-Richmond Hill
The analytical results reported berein refer to the camples as received. Reproduction of the



Final Report

C.O.C.: --- REPORT No. B17-20720

Client I D

**Report To:** 

Qikiqtaaluk Env. Inc.

9935, rue de Chateauneuf, Entrée 1 Brossard Quebec J4Z 3V4 Canada

Attention: Eleni Mouriki

DATE RECEIVED: 24-Jul-17

DATE REPORTED: 28-Jul-17

SAMPLE MATRIX: Surface Water

**Caduceon Environmental Laboratories** 

2378 Holly Lane

Ottawa Ontario K1V 7P1 Tel: 613-526-0123

Fax: 613-526-1244

JOB/PROJECT NO.: IIAIP (QE17-130-2)

ΠΔ-4 2

P.O. NUMBER: 430001496

WATERWORKS NO.

IIA-2

|                          |        |         | Client I.D.         |                       | IIA-2       | IIA-4.2     |  |
|--------------------------|--------|---------|---------------------|-----------------------|-------------|-------------|--|
|                          |        |         | Sample I.D.         |                       | B17-20720-1 | B17-20720-2 |  |
|                          |        |         | Date Collect        | ed                    | 22-Jul-17   | 22-Jul-17   |  |
| Parameter                | Units  | R.L.    | Reference<br>Method | Date/Site<br>Analyzed |             |             |  |
| Selenium                 | mg/L   | 0.001   | EPA 200.8           | 24-Jul-17/O           | < 0.001     | < 0.001     |  |
| Silver                   | mg/L   | 0.00002 | EPA 200.8           | 24-Jul-17/O           | < 0.00002   | < 0.00002   |  |
| Uranium                  | mg/L   | 0.00005 | EPA 200.8           | 24-Jul-17/O           | 0.00066     | 0.00024     |  |
| Vanadium                 | mg/L   | 0.005   | SM 3120             | 26-Jul-17/O           | < 0.005     | < 0.005     |  |
| Yttrium                  | mg/L   | 0.005   | SM 3120             | 26-Jul-17/O           | < 0.005     | < 0.005     |  |
| Zinc                     | mg/L   | 0.005   | SM 3120             | 26-Jul-17/O           | 0.091       | < 0.005     |  |
| Acenaphthene             | μg/L   | 0.05    | EPA 8270            | 27-Jul-17/K           | < 0.05      | < 0.05      |  |
| Acenaphthylene           | μg/L   | 0.05    | EPA 8270            | 27-Jul-17/K           | < 0.05      | < 0.05      |  |
| Anthracene               | μg/L   | 0.05    | EPA 8270            | 27-Jul-17/K           | < 0.05      | < 0.05      |  |
| Benzo(a)anthracene       | μg/L   | 0.05    | EPA 8270            | 27-Jul-17/K           | < 0.05      | < 0.05      |  |
| Benzo(a)pyrene           | μg/L   | 0.01    | EPA 8270            | 27-Jul-17/K           | < 0.01      | < 0.01      |  |
| Benzo(b)fluoranthene     | μg/L   | 0.05    | EPA 8270            | 27-Jul-17/K           | < 0.05      | < 0.05      |  |
| Benzo(b+k)fluoranthene   | μg/L   | 0.1     | EPA 8270            | 27-Jul-17/K           | < 0.1       | < 0.1       |  |
| Benzo(g,h,i)perylene     | μg/L   | 0.05    | EPA 8270            | 27-Jul-17/K           | < 0.05      | < 0.05      |  |
| Benzo(k)fluoranthene     | μg/L   | 0.05    | EPA 8270            | 27-Jul-17/K           | < 0.05      | < 0.05      |  |
| Chrysene                 | μg/L   | 0.05    | EPA 8270            | 27-Jul-17/K           | < 0.05      | < 0.05      |  |
| Dibenzo(a,h)anthracene   | μg/L   | 0.05    | EPA 8270            | 27-Jul-17/K           | < 0.05      | < 0.05      |  |
| Fluoranthene             | μg/L   | 0.05    | EPA 8270            | 27-Jul-17/K           | < 0.05      | < 0.05      |  |
| Fluorene                 | μg/L   | 0.05    | EPA 8270            | 27-Jul-17/K           | < 0.05      | < 0.05      |  |
| Indeno(1,2,3,-cd)pyrene  | μg/L   | 0.05    | EPA 8270            | 27-Jul-17/K           | < 0.05      | < 0.05      |  |
| Methylnaphthalene,1-     | μg/L   | 0.05    | EPA 8270            | 27-Jul-17/K           | < 0.05      | < 0.05      |  |
| Methylnaphthalene,2-     | μg/L   | 0.05    | EPA 8270            | 27-Jul-17/K           | < 0.05      | < 0.05      |  |
| Methylnaphthalene 2-(1-) | μg/L   | 0.07    | EPA 8270            | 27-Jul-17/K           | < 0.07      | < 0.07      |  |
| Naphthalene              | μg/L   | 0.05    | EPA 8270            | 27-Jul-17/K           | < 0.05      | < 0.05      |  |
| Phenanthrene             | μg/L   | 0.05    | EPA 8270            | 27-Jul-17/K           | < 0.05      | < 0.05      |  |
| Pyrene                   | μg/L   | 0.05    | EPA 8270            | 27-Jul-17/K           | < 0.05      | < 0.05      |  |
| Terphenyl-d14 (SS)       | % rec. | 10      | EPA 8270            | 27-Jul-17/K           | 109         | 101         |  |

R.L. = Reporting Limit

Test methods may be modified from specified reference method unless indicated by an \* Site Analyzed=K-Kingston,W-Windsor,O-Ottawa,R-Richmond Hill



**Final Report** 

C.O.C.: --- REPORT No. B17-20720

**Report To:** 

Qikiqtaaluk Env. Inc.

9935, rue de Chateauneuf, Entrée 1 Brossard Quebec J4Z 3V4 Canada

Attention: Eleni Mouriki

DATE RECEIVED: 24-Jul-17

DATE REPORTED: 28-Jul-17

SAMPLE MATRIX: Surface Water

**Caduceon Environmental Laboratories** 

2378 Holly Lane

Ottawa Ontario K1V 7P1

Tel: 613-526-0123 Fax: 613-526-1244

JOB/PROJECT NO.: IIAIP (QE17-130-2)

P.O. NUMBER: 430001496

WATERWORKS NO.

|                    |       |      | Client I.D.         |                       | IIA-2       | IIA-4.2     |  |
|--------------------|-------|------|---------------------|-----------------------|-------------|-------------|--|
|                    |       |      | Sample I.D.         |                       | B17-20720-1 | B17-20720-2 |  |
|                    |       |      | Date Collecte       | ed                    | 22-Jul-17   | 22-Jul-17   |  |
| Parameter          | Units | R.L. | Reference<br>Method | Date/Site<br>Analyzed |             |             |  |
| Benzene            | μg/L  | 0.5  | EPA 8260            | 24-Jul-17/O           | < 0.5       | < 0.5       |  |
| Toluene            | μg/L  | 0.5  | EPA 8260            | 24-Jul-17/O           | < 0.5       | < 0.5       |  |
| Ethylbenzene       | μg/L  | 0.5  | EPA 8260            | 24-Jul-17/O           | < 0.5       | < 0.5       |  |
| Xylene, m,p-       | μg/L  | 0.4  | EPA 8260            | 24-Jul-17/O           | < 0.4       | < 0.4       |  |
| Xylene, o-         | μg/L  | 0.1  | EPA 8260            | 24-Jul-17/O           | < 0.1       | < 0.1       |  |
| Xylene, m,p,o-     | μg/L  | 0.4  | EPA 8260            | 24-Jul-17/O           | < 0.4       | < 0.4       |  |
| Toluene-d8 (SS)    | %     |      | EPA 8260            | 24-Jul-17/O           | 99.0        | 99.0        |  |
| PHC F1 (C6-C10)    | μg/L  | 20   | MOE E3421           | 25-Jul-17/O           | < 20        | < 20        |  |
| PHC F2 (>C10-C16)  | μg/L  | 50   | MOE E3421           | 26-Jul-17/K           | < 50        | < 50        |  |
| PHC F3 (>C16-C34)  | μg/L  | 400  | MOE E3421           | 26-Jul-17/K           | < 400       | < 400       |  |
| PHC F4 (>C34-C50)  | μg/L  | 400  | MOE E3421           | 26-Jul-17/K           | < 400       | < 400       |  |
| Oil & Grease-Total | mg/L  | 1.0  | SM 5520             | 26-Jul-17/K           | 2.1         | 75.2        |  |
| Propylene Glycol   | mg/L  | 3    | EPA 8015            | 26-Jul-17/O           | < 3         | < 3         |  |
| Ethylene Glycol    | mg/L  | 3    | EPA 8015            | 26-Jul-17/O           | < 3         | < 3         |  |

R.L. = Reporting Limit

Test methods may be modified from specified reference method unless indicated by an \* Site Analyzed=K-Kingston,W-Windsor,O-Ottawa,R-Richmond Hill



Final Report

C.O.C.: ---**REPORT No. B17-24654** 

**Report To:** 

**Caduceon Environmental Laboratories** 

Qikiqtaaluk Env. Inc.

2378 Holly Lane

9935, rue de Chateauneuf, Entrée 1 Brossard Quebec J4Z 3V4 Canada

Ottawa Ontario K1V 7P1 Tel: 613-526-0123

Attention: Eleni Mouriki

Fax: 613-526-1244

DATE RECEIVED: 24-Aug-17

JOB/PROJECT NO.: IIAIP (QE17-130-2)

DATE REPORTED: 31-Aug-17

P.O. NUMBER: 430001496

SAMPLE MATRIX: Surface Water

WATERWORKS NO.

|                        |          |         | Client I.D.         |                       | IIA-2       | IIA-4.2     |  |
|------------------------|----------|---------|---------------------|-----------------------|-------------|-------------|--|
|                        |          |         | Sample I.D.         |                       | B17-24654-1 | B17-24654-2 |  |
|                        |          |         | Date Collect        | ed                    | 21-Aug-17   | 21-Aug-17   |  |
| Parameter              | Units    | R.L.    | Reference<br>Method | Date/Site<br>Analyzed |             |             |  |
| pH @25°C               | pH Units |         | SM 4500H            | 24-Aug-17/O           | 7.92        | 7.97        |  |
| Arsenic                | mg/L     | 0.0001  | EPA 200.8           | 25-Aug-17/O           | 0.0001      | 0.0001      |  |
| Lead                   | mg/L     | 0.00002 | EPA 200.8           | 25-Aug-17/O           | 0.00039     | 0.00039     |  |
| Total Suspended Solids | mg/L     | 3       | SM 2540D            | 30-Aug-17/O           | < 3         | < 3         |  |
| Benzene                | μg/L     | 0.5     | EPA 8260            | 24-Aug-17/O           | < 0.5       | < 0.5       |  |
| Toluene                | μg/L     | 0.5     | EPA 8260            | 24-Aug-17/O           | < 0.5       | < 0.5       |  |
| Ethylbenzene           | μg/L     | 0.5     | EPA 8260            | 24-Aug-17/O           | < 0.5       | < 0.5       |  |
| Xylene, m,p-           | μg/L     | 0.4     | EPA 8260            | 24-Aug-17/O           | < 0.4       | < 0.4       |  |
| Xylene, o-             | μg/L     | 0.1     | EPA 8260            | 24-Aug-17/O           | < 0.1       | < 0.1       |  |
| Xylene, m,p,o-         | μg/L     | 0.4     | EPA 8260            | 24-Aug-17/O           | < 0.4       | < 0.4       |  |
| Toluene-d8 (SS)        | %        |         | EPA 8260            | 24-Aug-17/O           | 109         | 10.0        |  |
| PHC F1 (C6-C10)        | μg/L     | 20      | MOE E3421           | 24-Aug-17/O           | < 20        | < 20        |  |
| PHC F2 (>C10-C16)      | μg/L     | 50      | MOE E3421           | 28-Aug-17/K           | < 50        | < 50        |  |
| PHC F3 (>C16-C34)      | μg/L     | 400     | MOE E3421           | 9                     | < 400       | < 400       |  |
| PHC F4 (>C34-C50)      | μg/L     | 400     | MOE E3421           |                       | < 400       | < 400       |  |
| Oil & Grease-Total     | mg/L     | 1.0     | SM 5520             | 28-Aug-17/K           | < 1.0       | < 1.0       |  |
| Acenaphthene           | μg/L     | 0.05    | EPA 8270            | 31-Aug-17/K           | < 0.05      | < 0.05      |  |
| Acenaphthylene         | μg/L     | 0.05    | EPA 8270            | 31-Aug-17/K           | < 0.05      | < 0.05      |  |
| Anthracene             | μg/L     | 0.05    | EPA 8270            | 31-Aug-17/K           | < 0.05      | < 0.05      |  |
| Benzo(a)anthracene     | μg/L     | 0.05    | EPA 8270            | 31-Aug-17/K           | < 0.05      | < 0.05      |  |
| Benzo(a)pyrene         | μg/L     | 0.01    | EPA 8270            | 31-Aug-17/K           | < 0.01      | < 0.01      |  |
| Benzo(b)fluoranthene   | μg/L     | 0.05    | EPA 8270            | 31-Aug-17/K           | < 0.05      | < 0.05      |  |
| Benzo(b+k)fluoranthene | μg/L     | 0.1     | EPA 8270            | 31-Aug-17/K           | < 0.1       | < 0.1       |  |
| Benzo(g,h,i)perylene   | μg/L     | 0.05    | EPA 8270            | 31-Aug-17/K           | < 0.05      | < 0.05      |  |
| Benzo(k)fluoranthene   | μg/L     | 0.05    | EPA 8270            | 31-Aug-17/K           | < 0.05      | < 0.05      |  |
| Chrysene               | μg/L     | 0.05    | EPA 8270            | 31-Aug-17/K           | < 0.05      | < 0.05      |  |
| Dibenzo(a,h)anthracene | μg/L     | 0.05    | EPA 8270            | 31-Aug-17/K           | < 0.05      | < 0.05      |  |

R.L. = Reporting Limit

Test methods may be modified from specified reference method unless indicated by an \* Site Analyzed=K-Kingston, W-Windsor, O-Ottawa, R-Richmond Hill, B-Barrie



Final Report

C.O.C.: --- REPORT No. B17-24654

**Report To:** 

**Caduceon Environmental Laboratories** 

Qikiqtaaluk Env. Inc.

2378 Holly Lane

9935, rue de Chateauneuf, Entrée 1 Brossard Quebec J4Z 3V4 Canada Ottawa Ontario K1V 7P1 Tel: 613-526-0123

Attention: Eleni Mouriki

Fax: 613-526-1244

DATE RECEIVED: 24-Aug-17

JOB/PROJECT NO.: IIAIP (QE17-130-2)

DATE REPORTED: 31-Aug-17 SAMPLE MATRIX: Surface Water

P.O. NUMBER: 430001496

WATERWORKS NO.

|                          |        |      | Client I.D.         |                       | IIA-2       | IIA-4.2     |  |
|--------------------------|--------|------|---------------------|-----------------------|-------------|-------------|--|
|                          |        |      | Sample I.D.         |                       | B17-24654-1 | B17-24654-2 |  |
|                          |        |      | Date Collect        | ed                    | 21-Aug-17   | 21-Aug-17   |  |
| Parameter                | Units  | R.L. | Reference<br>Method | Date/Site<br>Analyzed |             |             |  |
| Fluoranthene             | μg/L   | 0.05 | EPA 8270            | 31-Aug-17/K           | < 0.05      | < 0.05      |  |
| Fluorene                 | μg/L   | 0.05 | EPA 8270            | 31-Aug-17/K           | < 0.05      | < 0.05      |  |
| Indeno(1,2,3,-cd)pyrene  | μg/L   | 0.05 | EPA 8270            | 31-Aug-17/K           | < 0.05      | < 0.05      |  |
| Methylnaphthalene,1-     | μg/L   | 0.05 | EPA 8270            | 31-Aug-17/K           | < 0.05      | < 0.05      |  |
| Methylnaphthalene,2-     | μg/L   | 0.05 | EPA 8270            | 31-Aug-17/K           | < 0.05      | < 0.05      |  |
| Methylnaphthalene 2-(1-) | μg/L   | 0.07 | EPA 8270            | 31-Aug-17/K           | < 0.07      | < 0.07      |  |
| Naphthalene              | μg/L   | 0.05 | EPA 8270            | 31-Aug-17/K           | < 0.05      | < 0.05      |  |
| Phenanthrene             | μg/L   | 0.05 | EPA 8270            | 31-Aug-17/K           | < 0.05      | < 0.05      |  |
| Pyrene                   | μg/L   | 0.05 | EPA 8270            | 31-Aug-17/K           | < 0.05      | < 0.05      |  |
| Terphenyl-d14 (SS)       | % rec. | 10   | EPA 8270            | 31-Aug-17/K           | 107         | 102         |  |
| Propylene Glycol         | mg/L   | 3    | EPA 8015            | 25-Aug-17/O           | < 3         | < 3         |  |
| Ethylene Glycol          | mg/L   | 3    | EPA 8015            | 25-Aug-17/O           | < 3         | < 3         |  |

R.L. = Reporting Limit

Test methods may be modified from specified reference method unless indicated by an \* Site Analyzed=K-Kingston,W-Windsor,O-Ottawa,R-Richmond Hill,B-Barrie





Final Report

C.O.C.: --- REPORT No. B17-29659

**Report To:** 

Qikiqtaaluk Env Inc

9935, rue de Chateauneuf, Entrée 1 Brossard Quebec J4Z 3V4 Canada

Attention: Eleni Mouriki

DATE RECEIVED: 04-Oct-17

DATE REPORTED: 13-Oct-17

SAMPLE MATRIX: Surface Water

**Caduceon Environmental Laboratories** 

2378 Holly Lane

Ottawa Ontario K1V 7P1 Tel: 613-526-0123

Fax: 613-526-1244

JOB/PROJECT NO.: IIAIP (QE17-130-2)

P.O. NUMBER: 430001496

WATERWORKS NO.

|                        |          |         | Client I.D.         |                       | IIA-5       | IIA-6       | IIA-7       | IIA-8       |
|------------------------|----------|---------|---------------------|-----------------------|-------------|-------------|-------------|-------------|
|                        |          |         | Sample I.D.         |                       | B17-29659-1 | B17-29659-2 | B17-29659-3 | B17-29659-4 |
|                        |          |         | Date Collecte       | ed                    | 30-Sep-17   | 30-Sep-17   | 30-Sep-17   | 30-Sep-17   |
| Parameter              | Units    | R.L.    | Reference<br>Method | Date/Site<br>Analyzed |             |             |             |             |
| pH @25°C               | pH Units |         | SM 4500H            | 06-Oct-17/O           | 7.80        | 7.79        | 7.97        | 7.98        |
| Total Suspended Solids | mg/L     | 3       | SM 2540D            | 12-Oct-17/O           | < 3         | < 3         | < 3         | 4           |
| Aluminum               | mg/L     | 0.01    | SM 3120             | 05-Oct-17/O           | 0.05        | 0.03        | 0.05        | 0.03        |
| Arsenic                | mg/L     | 0.0001  | EPA 200.8           | 06-Oct-17/O           | < 0.0001    | < 0.0001    | < 0.0001    | 0.0001      |
| Cadmium                | mg/L     | 0.00001 | EPA 200.8           | 06-Oct-17/O           | < 0.000014  | < 0.000014  | < 0.000014  | 0.000019    |
| Chromium               | mg/L     | 0.001   | EPA 200.8           | 06-Oct-17/O           | < 0.001     | < 0.001     | < 0.001     | < 0.001     |
| Cobalt                 | mg/L     | 0.005   | SM 3120             | 05-Oct-17/O           | < 0.005     | < 0.005     | < 0.005     | < 0.005     |
| Copper                 | mg/L     | 0.0001  | EPA 200.8           | 06-Oct-17/O           | 0.0009      | 0.0013      | 0.0011      | 0.0016      |
| Iron                   | mg/L     | 0.005   | SM 3120             | 05-Oct-17/O           | 0.036       | 0.099       | 0.058       | 1.08        |
| Lead                   | mg/L     | 0.00002 | EPA 200.8           | 06-Oct-17/O           | 0.00003     | < 0.00002   | 0.00004     | 0.00009     |
| Manganese              | mg/L     | 0.001   | SM 3120             | 05-Oct-17/O           | 0.026       | 0.017       | 0.082       | 0.455       |
| Mercury                | mg/L     | 0.00002 | SM 3112 B           | 10-Oct-17/O           | < 0.00002   | < 0.00002   | < 0.00002   | < 0.00002   |
| Nickel                 | mg/L     | 0.0002  | EPA 200.8           | 06-Oct-17/O           | 0.0005      | 0.0005      | 0.0009      | 0.0016      |
| Phosphorus-Total       | mg/L     | 0.01    | MOEE 3367           | 11-Oct-17/O           | 0.02        | 0.01        | 0.02        | 0.02        |
| Zinc                   | mg/L     | 0.005   | SM 3120             | 05-Oct-17/O           | 0.011       | 0.005       | 0.079       | 0.049       |
| BOD                    | mg/L     | 3       | SM 5210B            | 05-Oct-17/O           | 5           | 5           | 4           | 5           |
| Benzene                | μg/L     | 0.5     | EPA 8260            | 10-Oct-17/O           | < 0.5       | < 0.5       | < 0.5       | < 0.5       |
| Toluene                | μg/L     | 0.5     | EPA 8260            | 10-Oct-17/O           | < 0.5       | < 0.5       | < 0.5       | < 0.5       |
| Ethylbenzene           | μg/L     | 0.5     | EPA 8260            | 10-Oct-17/O           | < 0.5       | < 0.5       | < 0.5       | < 0.5       |
| Xylene, m,p-           | μg/L     | 0.4     | EPA 8260            | 10-Oct-17/O           | < 0.4       | < 0.4       | < 0.4       | < 0.4       |
| Xylene, o-             | μg/L     | 0.1     | EPA 8260            | 10-Oct-17/O           | < 0.1       | < 0.1       | < 0.1       | < 0.1       |
| Xylene, m,p,o-         | μg/L     | 0.4     | EPA 8260            | 10-Oct-17/O           | < 0.4       | < 0.4       | < 0.4       | < 0.4       |
| Toluene-d8 (SS)        | %        |         | EPA 8260            | 10-Oct-17/O           | 95.0        | 96.0        | 92.0        | 85.0        |
| PHC F1 (C6-C10)        | μg/L     | 20      | MOE E3421           | 10-Oct-17/O           | < 20        | < 20        | < 20        | < 20        |
| PHC F2 (>C10-C16)      | μg/L     | 50      | MOE E3421           | 10-Oct-17/K           | < 50        | < 50        | < 50        | < 50        |
| PHC F3 (>C16-C34)      | μg/L     | 400     | MOE E3421           | 10-Oct-17/K           | < 400       | < 400       | < 400       | < 400       |
| PHC F4 (>C34-C50)      | μg/L     | 400     | MOE E3421           | 10-Oct-17/K           | < 400       | < 400       | < 400       | < 400       |

The analytical results reported herein refer to the samples as received. Reproduction of this analytical report in full or in part is prohibited without prior consent from

R.L. = Reporting Limit

Test methods may be modified from specified reference method unless indicated by an \*

Site Analyzed=K-Kingston, W-Windsor, O-Ottawa, R-Richmond Hill, B-Barrie



**Final Report** 

C.O.C.: --- REPORT No. B17-29659

**Report To:** 

Caduceon Environmental Laboratories

Qikiqtaaluk Env Inc

2378 Holly Lane Ottawa Ontario K1V 7P1

9935, rue de Chateauneuf, Entrée 1 Brossard Quebec J4Z 3V4 Canada

Tel: 613-526-0123 Fax: 613-526-1244

Attention: Eleni Mouriki

JOB/PROJECT NO.: IIAIP (QE17-130-2)

DATE RECEIVED: 04-Oct-17

20 11111252 4000044

DATE REPORTED: 13-Oct-17

SAMPLE MATRIX: Surface Water

P.O. NUMBER: 430001496

WATERWORKS NO.

|                          |        |      | Client I.D.         |                       | IIA-5       | IIA-6       | IIA-7       | IIA-8       |
|--------------------------|--------|------|---------------------|-----------------------|-------------|-------------|-------------|-------------|
|                          |        |      | Sample I.D.         |                       | B17-29659-1 | B17-29659-2 | B17-29659-3 | B17-29659-4 |
|                          |        |      | Date Collect        | ed                    | 30-Sep-17   | 30-Sep-17   | 30-Sep-17   | 30-Sep-17   |
| Parameter                | Units  | R.L. | Reference<br>Method | Date/Site<br>Analyzed |             |             |             |             |
| Oil & Grease-Total       | mg/L   | 1.0  | SM 5520             | 11-Oct-17/K           |             |             |             |             |
| Propylene Glycol         | mg/L   | 3    | EPA 8015            | 05-Oct-17/O           | < 3         | < 3         | < 3         | < 3         |
| Ethylene Glycol          | mg/L   | 3    | EPA 8015            | 05-Oct-17/O           | < 3         | < 3         | < 3         | < 3         |
| Acenaphthene             | μg/L   | 0.05 | EPA 8270            | 11-Oct-17/K           | < 0.05      | < 0.05      | < 0.05      | < 0.05      |
| Acenaphthylene           | μg/L   | 0.05 | EPA 8270            | 11-Oct-17/K           | < 0.05      | < 0.05      | < 0.05      | < 0.05      |
| Anthracene               | μg/L   | 0.05 | EPA 8270            | 11-Oct-17/K           | < 0.05      | < 0.05      | < 0.05      | < 0.05      |
| Benzo(a)anthracene       | μg/L   | 0.05 | EPA 8270            | 11-Oct-17/K           | < 0.05      | < 0.05      | < 0.05      | < 0.05      |
| Benzo(a)pyrene           | μg/L   | 0.01 | EPA 8270            | 11-Oct-17/K           | < 0.01      | < 0.01      | < 0.01      | < 0.01      |
| Benzo(b)fluoranthene     | μg/L   | 0.05 | EPA 8270            | 11-Oct-17/K           | < 0.05      | < 0.05      | < 0.05      | < 0.05      |
| Benzo(b+k)fluoranthene   | μg/L   | 0.1  | EPA 8270            | 11-Oct-17/K           | < 0.1       | < 0.1       | < 0.1       | < 0.1       |
| Benzo(g,h,i)perylene     | μg/L   | 0.05 | EPA 8270            | 11-Oct-17/K           | < 0.05      | < 0.05      | < 0.05      | < 0.05      |
| Benzo(k)fluoranthene     | μg/L   | 0.05 | EPA 8270            | 11-Oct-17/K           | < 0.05      | < 0.05      | < 0.05      | < 0.05      |
| Chrysene                 | μg/L   | 0.05 | EPA 8270            | 11-Oct-17/K           | < 0.05      | < 0.05      | < 0.05      | < 0.05      |
| Dibenzo(a,h)anthracene   | μg/L   | 0.05 | EPA 8270            | 11-Oct-17/K           | < 0.05      | < 0.05      | < 0.05      | < 0.05      |
| Fluoranthene             | μg/L   | 0.05 | EPA 8270            | 11-Oct-17/K           | < 0.05      | < 0.05      | < 0.05      | < 0.05      |
| Fluorene                 | μg/L   | 0.05 | EPA 8270            | 11-Oct-17/K           | < 0.05      | < 0.05      | < 0.05      | < 0.05      |
| Indeno(1,2,3,-cd)pyrene  | μg/L   | 0.05 | EPA 8270            | 11-Oct-17/K           | < 0.05      | < 0.05      | < 0.05      | < 0.05      |
| Methylnaphthalene,1-     | μg/L   | 0.05 | EPA 8270            | 11-Oct-17/K           | < 0.05      | < 0.05      | < 0.05      | < 0.05      |
| Methylnaphthalene,2-     | μg/L   | 0.05 | EPA 8270            | 11-Oct-17/K           | < 0.05      | < 0.05      | < 0.05      | < 0.05      |
| Methylnaphthalene 2-(1-) | μg/L   | 0.07 | EPA 8270            | 11-Oct-17/K           | < 0.07      | < 0.07      | < 0.07      | 0.08        |
| Naphthalene              | μg/L   | 0.05 | EPA 8270            | 11-Oct-17/K           | < 0.05      | < 0.05      | < 0.05      | < 0.05      |
| Phenanthrene             | μg/L   | 0.05 | EPA 8270            | 11-Oct-17/K           | < 0.05      | < 0.05      | < 0.05      | < 0.05      |
| Pyrene                   | μg/L   | 0.05 | EPA 8270            | 11-Oct-17/K           | < 0.05      | < 0.05      | < 0.05      | < 0.05      |
| Terphenyl-d14 (SS)       | % rec. | 10   | EPA 8270            | 11-Oct-17/K           | 106         | 115         | 99.0        | 101         |

R.L. = Reporting Limit

Test methods may be modified from specified reference method unless indicated by an \* Site Analyzed=K-Kingston,W-Windsor,O-Ottawa,R-Richmond Hill,B-Barrie



**Final Report** 

C.O.C.: --- REPORT No. B17-29659

**Report To:** 

Qikiqtaaluk Env Inc

9935, rue de Chateauneuf, Entrée 1 Brossard Quebec J4Z 3V4 Canada

Attention: Eleni Mouriki

DATE RECEIVED: 04-Oct-17

DATE REPORTED: 13-Oct-17

SAMPLE MATRIX: Surface Water

**Caduceon Environmental Laboratories** 

2378 Holly Lane

Ottawa Ontario K1V 7P1

Tel: 613-526-0123 Fax: 613-526-1244

JOB/PROJECT NO.: IIAIP (QE17-130-2)

P.O. NUMBER: 430001496

WATERWORKS NO.

|                        |          |         | Client I.D.         |                       | IIA-9       | IIA-2       | IIA-4.2     |  |
|------------------------|----------|---------|---------------------|-----------------------|-------------|-------------|-------------|--|
|                        |          |         | Sample I.D.         |                       | B17-29659-5 | B17-29659-6 | B17-29659-7 |  |
|                        |          |         | Date Collect        | ed                    | 30-Sep-17   | 30-Sep-17   | 30-Sep-17   |  |
| Parameter              | Units    | R.L.    | Reference<br>Method | Date/Site<br>Analyzed |             |             |             |  |
| pH @25°C               | pH Units |         | SM 4500H            | 06-Oct-17/O           | 7.98        | 8.01        | 7.71        |  |
| Total Suspended Solids | mg/L     | 3       | SM 2540D            | 12-Oct-17/O           | < 3         | 5           | < 3         |  |
| Aluminum               | mg/L     | 0.01    | SM 3120             | 05-Oct-17/O           | 0.04        | 0.28        | 0.04        |  |
| Arsenic                | mg/L     | 0.0001  | EPA 200.8           | 06-Oct-17/O           | 0.0001      | 0.0002      | < 0.0001    |  |
| Cadmium                | mg/L     | 0.00001 | EPA 200.8           | 06-Oct-17/O           | < 0.000014  | < 0.000014  | < 0.000014  |  |
| Chromium               | mg/L     | 0.001   | EPA 200.8           | 06-Oct-17/O           | < 0.001     | < 0.001     | < 0.001     |  |
| Cobalt                 | mg/L     | 0.005   | SM 3120             | 05-Oct-17/O           | < 0.005     | < 0.005     | < 0.005     |  |
| Copper                 | mg/L     | 0.0001  | EPA 200.8           | 06-Oct-17/O           | 0.0011      | 0.0024      | 0.0007      |  |
| Iron                   | mg/L     | 0.005   | SM 3120             | 05-Oct-17/O           | 1.60        | 1.52        | 0.014       |  |
| Lead                   | mg/L     | 0.00002 | EPA 200.8           | 06-Oct-17/O           | 0.00007     | 0.00034     | < 0.00002   |  |
| Manganese              | mg/L     | 0.001   | SM 3120             | 05-Oct-17/O           | 0.201       | 0.113       | 0.008       |  |
| Mercury                | mg/L     | 0.00002 | SM 3112 B           | 10-Oct-17/O           | < 0.00002   | < 0.00002   | < 0.00002   |  |
| Nickel                 | mg/L     | 0.0002  | EPA 200.8           | 06-Oct-17/O           | 0.0010      | 0.0012      | 0.0004      |  |
| Phosphorus-Total       | mg/L     | 0.01    | MOEE 3367           | 11-Oct-17/O           | 0.02        | 0.05        | 0.02        |  |
| Zinc                   | mg/L     | 0.005   | SM 3120             | 05-Oct-17/O           | 0.034       | 0.089       | 0.008       |  |
| BOD                    | mg/L     | 3       | SM 5210B            | 05-Oct-17/O           | 7           | 6           | 5           |  |
| Benzene                | μg/L     | 0.5     | EPA 8260            | 10-Oct-17/O           | < 0.5       | < 0.5       | < 0.5       |  |
| Toluene                | μg/L     | 0.5     | EPA 8260            | 10-Oct-17/O           | < 0.5       | < 0.5       | < 0.5       |  |
| Ethylbenzene           | μg/L     | 0.5     | EPA 8260            | 10-Oct-17/O           | < 0.5       | < 0.5       | < 0.5       |  |
| Xylene, m,p-           | μg/L     | 0.4     | EPA 8260            | 10-Oct-17/O           | < 0.4       | < 0.4       | < 0.4       |  |
| Xylene, o-             | μg/L     | 0.1     | EPA 8260            | 10-Oct-17/O           | < 0.1       | < 0.1       | < 0.1       |  |
| Xylene, m,p,o-         | μg/L     | 0.4     | EPA 8260            | 10-Oct-17/O           | < 0.4       | < 0.4       | < 0.4       |  |
| Toluene-d8 (SS)        | %        |         | EPA 8260            | 10-Oct-17/O           | 98.0        | 94.0        | 100         |  |
| PHC F1 (C6-C10)        | μg/L     | 20      | MOE E3421           | 10-Oct-17/O           | < 20        | < 20        | < 20        |  |
| PHC F2 (>C10-C16)      | μg/L     | 50      | MOE E3421           | 10-Oct-17/K           | < 50        | < 50        | < 50        |  |
| PHC F3 (>C16-C34)      | μg/L     | 400     | MOE E3421           | 10-Oct-17/K           | < 400       | < 400       | < 400       |  |
| PHC F4 (>C34-C50)      | μg/L     | 400     | MOE E3421           | 10-Oct-17/K           | < 400       | < 400       | < 400       |  |

The analytical results reported herein refer to the samples as received. Reproduction of this analytical report in full or in part is prohibited without prior consent from Caduceon Environmental Laboratories.

R.L. = Reporting Limit

Test methods may be modified from specified reference method unless indicated by an \*

Site Analyzed=K-Kingston, W-Windsor, O-Ottawa, R-Richmond Hill, B-Barrie



**Final Report** 

C.O.C.: --- REPORT No. B17-29659

**Report To:** 

Qikiqtaaluk Env Inc

9935, rue de Chateauneuf, Entrée 1 Brossard Quebec J4Z 3V4 Canada

Attention: Eleni Mouriki

DATE RECEIVED: 04-Oct-17

DATE REPORTED: 13-Oct-17

SAMPLE MATRIX: Surface Water

**Caduceon Environmental Laboratories** 

2378 Holly Lane

Ottawa Ontario K1V 7P1

Tel: 613-526-0123 Fax: 613-526-1244

JOB/PROJECT NO.: IIAIP (QE17-130-2)

P.O. NUMBER: 430001496

WATERWORKS NO.

|                          |        |      | Client I.D.         |                       | IIA-9       | IIA-2       | IIA-4.2     |  |
|--------------------------|--------|------|---------------------|-----------------------|-------------|-------------|-------------|--|
|                          |        |      | Sample I.D.         |                       | B17-29659-5 | B17-29659-6 | B17-29659-7 |  |
|                          |        |      | Date Collect        | ed                    | 30-Sep-17   | 30-Sep-17   | 30-Sep-17   |  |
| Parameter                | Units  | R.L. | Reference<br>Method | Date/Site<br>Analyzed |             |             |             |  |
| Oil & Grease-Total       | mg/L   | 1.0  | SM 5520             | 11-Oct-17/K           |             | 4.3         | 2.3         |  |
| Propylene Glycol         | mg/L   | 3    | EPA 8015            | 05-Oct-17/O           | < 3         | < 3         | < 3         |  |
| Ethylene Glycol          | mg/L   | 3    | EPA 8015            | 05-Oct-17/O           | < 3         | < 3         | < 3         |  |
| Acenaphthene             | μg/L   | 0.05 | EPA 8270            | 11-Oct-17/K           | < 0.05      | < 0.05      | < 0.05      |  |
| Acenaphthylene           | μg/L   | 0.05 | EPA 8270            | 11-Oct-17/K           | < 0.05      | < 0.05      | < 0.05      |  |
| Anthracene               | μg/L   | 0.05 | EPA 8270            | 11-Oct-17/K           | < 0.05      | < 0.05      | < 0.05      |  |
| Benzo(a)anthracene       | μg/L   | 0.05 | EPA 8270            | 11-Oct-17/K           | < 0.05      | < 0.05      | < 0.05      |  |
| Benzo(a)pyrene           | μg/L   | 0.01 | EPA 8270            | 11-Oct-17/K           | < 0.01      | < 0.01      | < 0.01      |  |
| Benzo(b)fluoranthene     | μg/L   | 0.05 | EPA 8270            | 11-Oct-17/K           | < 0.05      | < 0.05      | < 0.05      |  |
| Benzo(b+k)fluoranthene   | μg/L   | 0.1  | EPA 8270            | 11-Oct-17/K           | < 0.1       | < 0.1       | < 0.1       |  |
| Benzo(g,h,i)perylene     | μg/L   | 0.05 | EPA 8270            | 11-Oct-17/K           | < 0.05      | < 0.05      | < 0.05      |  |
| Benzo(k)fluoranthene     | μg/L   | 0.05 | EPA 8270            | 11-Oct-17/K           | < 0.05      | < 0.05      | < 0.05      |  |
| Chrysene                 | μg/L   | 0.05 | EPA 8270            | 11-Oct-17/K           | < 0.05      | < 0.05      | < 0.05      |  |
| Dibenzo(a,h)anthracene   | μg/L   | 0.05 | EPA 8270            | 11-Oct-17/K           | < 0.05      | < 0.05      | < 0.05      |  |
| Fluoranthene             | μg/L   | 0.05 | EPA 8270            | 11-Oct-17/K           | < 0.05      | < 0.05      | < 0.05      |  |
| Fluorene                 | μg/L   | 0.05 | EPA 8270            | 11-Oct-17/K           | < 0.05      | < 0.05      | < 0.05      |  |
| Indeno(1,2,3,-cd)pyrene  | μg/L   | 0.05 | EPA 8270            | 11-Oct-17/K           | < 0.05      | < 0.05      | < 0.05      |  |
| Methylnaphthalene,1-     | μg/L   | 0.05 | EPA 8270            | 11-Oct-17/K           | 0.21        | < 0.05      | < 0.05      |  |
| Methylnaphthalene,2-     | μg/L   | 0.05 | EPA 8270            | 11-Oct-17/K           | 0.22        | < 0.05      | < 0.05      |  |
| Methylnaphthalene 2-(1-) | μg/L   | 0.07 | EPA 8270            | 11-Oct-17/K           | 0.43        | < 0.07      | < 0.07      |  |
| Naphthalene              | μg/L   | 0.05 | EPA 8270            | 11-Oct-17/K           | 0.36        | < 0.05      | < 0.05      |  |
| Phenanthrene             | μg/L   | 0.05 | EPA 8270            | 11-Oct-17/K           | < 0.05      | < 0.05      | < 0.05      |  |
| Pyrene                   | μg/L   | 0.05 | EPA 8270            | 11-Oct-17/K           | < 0.05      | < 0.05      | < 0.05      |  |
| Terphenyl-d14 (SS)       | % rec. | 10   | EPA 8270            | 11-Oct-17/K           | 124         | 104         | 111         |  |

R.L. = Reporting Limit

Test methods may be modified from specified reference method unless indicated by an \* Site Analyzed=K-Kingston,W-Windsor,O-Ottawa,R-Richmond Hill,B-Barrie

Greg Clarkin, BSc., C. Chem Lab Manager - Ottawa District

The analytical results reported herein refer to the samples as received. Reproduction of this analytical report in full or in part is prohibited without prior consent from Caduceon Environmental Laboratories.



#### **IQALUIT OFFICE**

2027 Iqaluit Lane P.O. Box 1228 Iqaluit, Nunavut XOA 0H0

**T**.: 867 222.8194 info@qenv.ca

#### **MONTREAL OFFICE**

9935 de Châteauneuf Street Entrance 1 – Suite 200 Brossard, Quebec J4Z 3V4 T.: 866 634.6367

info@qenv.ca

## www.qenv.ca

