

CAM-E Keith Bay Long Term Monitoring

Year 3 Report

Crown-Indigenous Relations and Northern Affairs Canada

Project number: 60686962

January 16, 2023

Statement of Qualifications and Limitations

The attached Report (the "Report") has been prepared by AECOM Canada Ltd. ("AECOM") for the benefit of the Client ("Client") in accordance with the agreement between AECOM and Client, including the scope of work detailed therein (the "Agreement").

The information, data, recommendations and conclusions contained in the Report (collectively, the "Information"):

- is subject to the scope, schedule, and other constraints and limitations in the Agreement and the qualifications contained in the Report (the "Limitations"):
- represents AECOM's professional judgement in light of the Limitations and industry standards for the preparation of similar reports;
- may be based on information provided to AECOM which has not been independently verified;
- has not been updated since the date of issuance of the Report and its accuracy is limited to the time period and circumstances in which it was collected, processed, made or issued;
- must be read as a whole and sections thereof should not be read out of such context;
- was prepared for the specific purposes described in the Report and the Agreement; and
- in the case of subsurface, environmental or geotechnical conditions, may be based on limited testing and on the assumption that such conditions are uniform and not variable either geographically or over time..

AECOM shall be entitled to rely upon the accuracy and completeness of information that was provided to it and has no obligation to update such information. AECOM accepts no responsibility for any events or circumstances that may have occurred since the date on which the Report was prepared and, in the case of subsurface, environmental or geotechnical conditions, is not responsible for any variability in such conditions, geographically or over time.

AECOM agrees that the Report represents its professional judgement as described above and that the Information has been prepared for the specific purpose and use described in the Report and the Agreement, but AECOM makes no other representations, or any guarantees or warranties whatsoever, whether express or implied, with respect to the Report, the Information or any part thereof.

Without in any way limiting the generality of the foregoing, any estimates or opinions regarding probable construction costs or construction schedule provided by AECOM represent AECOM's professional judgement in light of its experience and the knowledge and information available to it at the time of preparation. Since AECOM has no control over market or economic conditions, prices for construction labour, equipment or materials or bidding procedures, AECOM, its directors, officers and employees are not able to, nor do they, make any representations, warranties or guarantees whatsoever, whether express or implied, with respect to such estimates or opinions, or their variance from actual construction costs or schedules, and accept no responsibility for any loss or damage arising therefrom or in any way related thereto. Persons relying on such estimates or opinions do so at their own risk.

Except (1) as agreed to in writing by AECOM and Client; (2) as required by-law; or (3) to the extent used by governmental reviewing agencies for the purpose of obtaining permits or approvals, the Report and the Information may be used and relied upon only by

AECOM accepts no responsibility, and denies any liability whatsoever, to parties other than Client who may obtain access to the Report or the Information for any injury, loss or damage suffered by such parties arising from their use of, reliance upon, or decisions or actions based on the Report or any of the Information ("improper use of the Report"), except to the extent those parties have obtained the prior written consent of AECOM to use and rely upon the Report and the Information. Any injury, loss or damages arising from improper use of the Report shall be borne by the party making such use.

This Statement of Qualifications and Limitations is attached to and forms part of the Report and any use of the Report is subject to the terms hereof.

AECOM: 2015-04-13

© 2009-2015 AECOM Canada Ltd. All Rights Reserved.

Project number: 60686962

Prepared for:

Crown-Indigenous Relations and Northern Affairs Canada

Prepared by:

AECOM Canada Ltd. 101 – 18817 Stony Plain Road NW Edmonton, AB T5S 0C2 Canada

T: 780.486.7000 F: 780.486.7070 aecom.com

© 2023 AECOM Canada Ltd.. All Rights Reserved.

This document has been prepared by AECOM Canada Ltd. ("AECOM") for sole use of our client (the "Client") in accordance with generally accepted consultancy principles, the budget for fees and the terms of reference agreed between AECOM and the Client. Any information provided by third parties and referred to herein has not been checked or verified by AECOM, unless otherwise expressly stated in the document. No third party may rely upon this document without the prior and express written agreement of AECOM.

Quality information

Prepared by

Checked by

Alysha Selinger

Junior Environmental Professional

David Bugden

Senior Environmental Professional

Verified by

Cathy Corrigan, M.Sc., P.Eng. Senior Geological Engineer Approved by

Jessica Stepney, P.Eng. Senior Environmental Engineer

PERMIT TO PRACTICE
AECON, CANADA, LTD./

Signature

2023-01-17

PERMIT NUMBER: P 639

NWT/NU Association of Professional Engineers and Geoscientists

Revision History

Revision	Revision date	Details	Name
Rev 0	Nov. 18, 2022	Draft	Alysha Selinger
Rev 1	Jan. 16, 2023	Final	Alysha Selinger

Distribution List

# Hard Copies	PDF Required	Association / Company Name
1	Yes	CIRNAC

Executive Summary

The CAM-E Keith Bay site was originally an intermediate Distant Early Warning (DEW) Line site implemented by the United States Air Force (USAF) in cooperation with the Canadian Department of National Defence (DND). Constructed in 1957, the site was taken out of service in 1963 and custody of the site was assumed by Crown-Indigenous Relations and Northern Affairs Canada (CIRNAC). Remediation of the site began in 2016 and two landfill facilities were constructed to house the demolition waste: a non-hazardous waste landfill (NHWL) and a Tier II Landfill. As part of the construction work, the beach airstrip and access roads were also upgraded.

The field program was completed on August 7, 2022, including visual inspection and sampling. A visual and environmental monitoring inspection was completed for the Site and documented via checklist along with a photographic record.

Groundwater collection continues to be problematic; no groundwater samples were collected at either the NHWL or Tier II Landfill as the monitoring wells were dry within the active layer. Surface water or soil samples were also not collected as there was no observed seepage points or staining at the Site. Thermal data was collected from the thermistors and processed off-site. Significant wildlife damage and disturbance was observed in the vicinity of the thermistors. The data loggers and thermistor cables were found pulled from four of five casings, with thermistor VT-B-2's cable severed. The severed data logger was removed from Site and left with a CIRNAC representative. Claw and teeth marks on the casing and locks were identified by the Wildlife Monitor as originating from a polar bear. Data was successfully retrieved from VT-A-1, VT-A-2, VT-B-1, and VT-B-2 (up until severance) with a partial data download of VT-A-3 that was found to be corrupt. In-situ manual readings was also taken at each thermistor location following the initial data downloads with the exception of VT-B-2. New batteries were installed in all four remaining data loggers, set to expire July 2024, which will coincide with Year 5 monitoring activities.

Based on the results of the 2022 Year 3 activities, the remediation strategy for CAM-E appears to be meeting the objectives expected for Phase I of the Long-Term Monitoring Plan (LTMP). Physical stability criteria are the focus of Phase I; the thermistor data indicates the Tier II Landfill contents remain frozen and the visual inspection of both landfills found them to be in acceptable condition overall as per Abandoned Military Sites Remediation Protocol (AMSRP) severity ratings. The differential settlement observed at the landfills is presently not a concern but appears to have worsened since Year 1. The shape of the settlement features suggest it may be due to infilled pre-existing frost wedge cracks, in which case, the settlement should not progressively worsen.

Continuation of Phase I monitoring into Year 5 (2024) is recommended with subsequent evaluation for progression into Phase II at that time.

Table of Contents

1	Intro	duction	1
	1.1	Objective	1
	1.2	Scope of Work	1
2	Bac	kground Information	2
	2.1	Site Description	2
	2.2	Previous Reports and Monitoring Programs	2
3	Refe	erence Guidelines	
	3.1	Groundwater	
	3.2	Surface Water	
	3.3	Soil	
4	202	2 Monitoring Program Methodology	4
	4.1	Health and Safety Plan	4
	4.2	Geotechnical Monitoring and Visual Inspection	4
	4.3	Natural Environment Monitoring	4
	4.4	Groundwater Sampling	5
	4.4.1	Groundwater Sampling Methodology	5
	4.5	Surface Water Sampling Methodology	5
	4.6	Soil Sampling Methodology	6
	4.7	Thermal Monitoring	6
	4.7.1	Thermal Data Collection Methodology	6
	4.8	Quality Assurance and Quality Control	7
5	Res	ults	8
	5.1	Natural Environment	8
	5.2	Non-Hazardous Waste Landfill (NHWL)	8
	5.2.1	Geotechnical Monitoring and Visual Inspection	8
	5.2.2	Groundwater Monitoring	9
	5.2.3	Surface Water Monitoring	9
	5.2.4	Soil Monitoring	9
	5.2.5	Landfill Performance	9
	5.3	Tier II Landfill	9
	5.3.1	Geotechnical Monitoring and Visual Inspection	9
	5.3.2	Thermal Monitoring	. 10
	5.3.3	Groundwater Monitoring	. 15
	5.3.4	Surface Water Monitoring	. 15
	5.3.5	Soil Monitoring	. 15
	5.3.6	Landfill Performance	. 16
6	Con	clusion and Recommendations	17
7	Refe	erences	18

Figures

Figure 1. VT-A-1 Max Freeze and Thaw Curves	1
Figure 2. VT-A-2 Max Freeze and Thaw Curves	
Figure 3. VT-B-1 Max Freeze and Thaw Curves	
Figure 4. VT-B-2 Max Freeze and Thaw Curves	1
Tables	
Table 4-1 CAM-E Keith Bay Groundwater Well Locations	
Table 4-2 CAM-E Keith Bay Thermistor Locations	
Table 5-1 Maximum Thaw Depth by Year (shown in metres below	ground surface)1

Appendices

Appendix A.	Figures
Appendix B.	Photographic Record
Appendix C.	Monitoring Checklists and Daily Field Report
Appendix D.	Groundwater Sampling Logs
Appendix E.	Thermal Monitoring Graphs
Appendix F.	Thermal Sampling Data (available on USB)

Acronyms and Abbreviations

AECOM Canada Ltd.

ALS Environmental Laboratories

AMSRP Abandoned Military Site Remediation Protocol
CALA Canadian Association for Laboratory Accreditation
CCME Canadian Council of Ministers of the Environment

CCUSBA Communication Cable USB-A

COM Communication Channel for Data Loggers

CIRNAC Crown-Indigenous Relations and Northern Affairs Canada

DEW Distant Early Warning

DND Department of National Defense

DO Dissolved Oxygen

GPS Global Positioning System HASP Health and Safety Plan

INAC Indigenous and Northern Affairs Canada (formerly AANDC)

LTM Long Term Monitoring

LTMP Long Term Monitoring Plan

NHWL Non-Hazardous Waste Landfill

NU Nunavut

ORP Oxidative-Reduction Potential
PCBs Polychlorinated Biphenyls
PHCs Petroleum Hydrocarbons
POL Petroleum, Oil, and Lubricants

QA Quality Assurance

QC Quality Control

QA/QC Quality Assurance/Quality Control

RPD Relative Percent Difference

TDS Total Dissolved Solids
TSS Total Suspended Solids
ULA Upper Limit of Acceptability
USAF United States Air Force

UTM Universal Transverse Mercator

Project number: 60686962

1 Introduction

AECOM Canada Ltd. (AECOM) was retained by Crown-Indigenous Relations and Northern Affairs Canada (CIRNAC) to conduct the long term monitoring (LTM) activities at former Distant Early Warning (DEW) Line site CAM-E Keith Bay (herein referred to as "the site"). CAM-E is located at 68° 15.37'N, 88° 10.42'W on the eastern side of Simpson Peninsula, approximately 75 km east of Kugaaruk, Nunavut (NU). This report outlines Year 3 of the monitoring program.

1.1 Objective

The objective of the long term monitoring event was to complete Year 3 monitoring activities as described in the *CAM-E, Keith Bay Long Term Monitoring Plan* (AECOM, 2019). The program included visual monitoring of the Nonhazardous Waste Landfill (NHWL), visual inspection of general site conditions and the natural environment, collection and analysis of groundwater samples, and collection of thermal monitoring data. Analysis of field data and visual observations was conducted to satisfy the requirements of the *Abandoned Military Site Remediation Protocol* (INAC, 2009; AMSRP).

1.2 Scope of Work

The scope of work for the 2022 long term monitoring activities included the following:

- Prepare and submit a Logistics Plan detailing the work schedule.
- Prepare and submit a Work Plan detailing the work methodologies.
- Prepare and submit a detailed Health and Safety Plan (HASP).
- Mobilize to and from CAM-E Keith Bay via chartered Twin Otter aircraft, with one field day on site.
- Provision of a wildlife monitor (with firearm) from nearest community.
- Monitoring of general site conditions (i.e., access roads and airstrip, etc.) and natural environment as outlined in section 4.1 of the addendum to the Long Term Monitoring Plan (LTMP) along with visual inspection of the Non-Hazardous Waste Landfill (NHWL) and Tier II Soil Disposal Landfill.
- Visual inspection of the NHWL in accordance with Appendix B of the Addendum to the LTMP. Observations will be documented via a photographic record, visual monitoring checklist, and a site map.
- Purge monitoring wells, collect in situ field parameters, and collect groundwater samples from three (3) monitoring wells around the NHWL and from four (4) monitoring wells around the Tier II landfill.
- Collect soil samples if seepage or staining has been identified during visual inspection. Parameters to be
 analysed include: Polychlorinated Biphenyls (PCBs), petroleum hydrocarbons, and metals (As, Cd, Co, Cr, Pb,
 Ni, and Zn).
- Collect thermal monitoring data (both manually and through the download of thermistor data) from five (5) thermistors on the Tier II landfill. Re-set data loggers and replace batteries.
- Replace locks on monitoring wells and thermistors.
- Collect and analyse blind duplicates from at least 20% of samples.
- Submit water samples to a Canadian Association for Laboratory Accreditation (CALA) accredited laboratory for analysis of petroleum hydrocarbon fractions (F1 and F2), total and dissolved metals, major ions, hardness, total dissolved solids, total suspended solids, pH, conductivity, and polychlorinated biphenyls.
- Prepare a field report summarizing LTM activities within two weeks of fieldwork completion.
- Submit draft and final copies of the CAM-E Long term Monitoring Report (Year 3) Report to CIRNAC.

Details regarding specific methodology of each task are included in Section 4.

2 Background Information

2.1 Site Description

CAM-E is located approximately 75 kilometres (km) east of Kugaruuk, Nunavut, on the eastern edge of Simpson Peninsula at 68° 15.37' N, 88° 10.42' W. **Figure 1** in **Appendix A** shows the general site location. The CAM-E site was an intermediate DEW Line site constructed by the United States Air Force (USAF) in cooperation with the Canadian Department of National Defense (DND). Constructed in 1957, the site was decommissioned in 1963 and custody of the site was assumed by CIRNAC.

The site consists of the Main Station Area, Main airstrip, and Beach Area (AECOM, 2020). At the time of operation, the infrastructure at the Main Station included a garage, warehouse, petroleum, oil, and lubricant (POL) tanks and pipelines, a module train, antenna, and radar tower, three Quonset huts, drum caches, pallet storage line, a house for local Inuit workers ("Inuit house"), a small airstrip (North Airstrip), storage pads, a landfill, waste dumps, a sewage disposal area and discharge pipe, and a freshwater lake. The Main Airstrip and Beach Area, located about 5.6 km south, consisted of a larger beach airstrip, helicopter landing area, two Quonset huts, waste dumps, a barrel dump, a bunker, and a small shack.

Remediation of the site began in 2016 and included demolishing most of the infrastructure. As part of the construction work, the beach airstrip and access roads were upgraded. Two landfill facilities were constructed to house the non-hazardous waste from infrastructure and debris, and Tier II level contaminated soil: a NHWL and a Tier II Landfill, respectively.

2.2 Previous Reports and Monitoring Programs

AECOM reviewed the following reports prior to the field program:

- CAM-E Keith Bay Long Term Monitoring Event 2020 Long Term Monitoring Report (BluMetric, 2021)
- CAM-E, Keith Bay Site Remediation Construction Summary Report (AECOM, 2020)
- Addendum to: CAM-E Long Term Monitoring Plan (CIRNAC, 2020)
- CAM-E, Keith Bay Long Term Monitoring Plan (AECOM, 2019)
- Abandoned Military Site Remediation Protocol (AMSRP) (INAC, 2009)

The requirements for long term monitoring as laid out in the AMSRP include:

- Phase I: Years 1, 3, and 5
- Phase II: Years 7, 10, 15, and 25
- Phase III: Beyond Year 25, if required

Phase I monitoring is conducted to confirm landfill stability criteria are achieved, while Phase II is to verify that equilibrium conditions are established during Phase I. Phase III will be carried out if long term issues such as liner integrity, permafrost stability, or significant storm events occur.

3 Reference Guidelines

Review of the CAM-E LTMP and AMSRP identified the applicable guidelines for use in the LTM program. The following sections describe the reference guidelines selected for each type of sample collected at the site.

3.1 Groundwater

During the construction phase, monitoring wells were installed hydraulically upgradient and downgradient of the new landfills (MW17-01 – MW17-07). Due to the absence of appropriate groundwater criteria, the analytical data for groundwater should be compared to available historical data from the site. According to the AMSRP, if the analytical results are within the average +/- three standard deviations, the landfill is deemed acceptable and performing as expected. If the analytical results do not meet these criteria, further measures should be recommended ranging from increasing monitoring frequency to developing a new remedial plan.

For CAM-E, limited background data is available as the wells have been routinely dry within the active layer, with the water level probe hitting the frozen base at permafrost level. One baseline sample was collected during the two-year construction period in 2017, however this does not provide enough information to calculate Upper Limits of Acceptability (ULAs). Similarly, year 1 of the LTM Program was unable to collect samples due to wells being dry within the active layer. Further monitoring events must occur to calculate future ULAs.

3.2 Surface Water

Due to the absence of appropriate surface water criteria, the analytical data for surface water should be compared to available historical data from the site. According to the AMSRP, if the analytical results are within the average +/-three standard deviations, the landfill is deemed acceptable and performing as expected. If the analytical results do not meet these criteria, further measures should be recommended ranging from increasing monitoring frequency to developing a new remedial plan.

No baseline surface water samples exist for the site. Given the absence of appropriate reference guidelines or baseline reference data, the Canadian Council of Ministers of the Environment (CCME) guidelines for protection of aquatic life are used purely as a point of reference and are not meant to be interpreted as criteria. The CCME guidelines are a conservative reference as the closest surface water body is approximately 950 m from the Tier II Landfill or 1,100 m from the NHWL.

3.3 Soil

Baseline soil samples were collected in 2017 prior to the construction of the NHWL and Tier II Landfill and were analyzed for PHCs, PCBs and metals. The results can be used to calculate ULAs and used as criteria per the AMSRP, however no soil samples have been collected since 2017 and there has been no need to calculate ULAs. The baseline data can be found in the 2020 CAM-E (Keith Bay) Construction Summary Report (AECOM, 2020).

4 2022 Monitoring Program Methodology

The site investigation for the 2022 CAM-E Long Term Monitoring Program was completed on August 7, 2022 by AECOM personnel David Bugden and Alysha Selinger accompanied by CIRNAC representative Melanie Netser, wildlife monitor Noah Alookie, and a field technician Max Dubeau with Nunatta Environmental. The site was accessed by Twin-Otter aircraft provided by Kenn Borek Ltd. The team was to depart from Kugaaruk, but due to fuel shortages, departure was made from Gjoa Haven to the site.

4.1 Health and Safety Plan

In preparation for the field program, a site-specific HASP was produced and submitted to CIRNAC previously under a separate cover. The HASP identified risks and suspected hazards associated with work on the site. It specifically addressed any known or suspected hazards and provided mitigative measures including protocols for COVID-19. Included in the HASP were emergency contacts and procedures for medical, mechanical, or weather emergencies. Prior to the start of work, a review of the HASP was completed with all personnel involved in the field program.

4.2 Geotechnical Monitoring and Visual Inspection

The physical integrity of the NHWL and Tier II Landfill was inspected at the CAM-E site during the 2022 monitoring event. The purpose of the visual inspection was to look for evidence of the following:

- Erosion, ponding, frost action, settlement, and lateral movement
- Animal burrows, vegetation, vegetation stresses
- Staining or seepage

These features were documented by use of the visual monitoring checklist and through site photographs. Site features that were documented in the previous monitoring event were specifically inspected for any observed changes, and new features observed during the 2022 visual monitoring were documented.

4.3 Natural Environment Monitoring

Natural environment data was collected during the 2022 long term monitoring event. The specific observations that were noted included:

- Wildlife sightings (species, number, gender, juveniles)
- Evidence of recent presence of wildlife (droppings, tracks, feathers/fur, carcass remains, etc.)
- Wildlife activity (summering/nesting/denning, migratory/passing through)
- Qualitative assessment of relative numbers versus previous years (more, same, less).

Additional observations or information were not collected from local residents due to logistical restraints that caused the field team to stage from Gjoa Haven in place of Kugaaruk.

4.4 Groundwater Sampling

There are seven groundwater monitoring wells (MW17-01 – MW17-07) around the NHWL and Tier II Landfill. There was no evidence of wildlife damage to the groundwater wells at the time of assessment. Well locations are provided in **Table 4-1** and shown in **Figure 2** of **Appendix A**.

Table 4-1 CAM-E Keith Bay Groundwater Well Locations

Well	UTM83-16 Northing (m)	UTM83-16 Easting (m)
MW17-01	7571319.8	452278.7
MW17-02	7571241.7	452304.4
MW17-03	7571294.9	452410.2
MW17-04	7571375.6	452341.8
MW17-05	7571447.2	452315.5
MW17-06	7571483.4	452366.8
MW17-07	7571432.7	452411.0

4.4.1 Groundwater Sampling Methodology

The following outlines the methodology that was prepared for this program in the event that the wells contained groundwater.

Water level and depth to bottom were to be recorded, and an approximate well volume calculated. A peristaltic pump and dedicated disposable polyethylene tubing was to be used to purge and sample using low-flow sampling methodology. The following recordings were to be taken prior to sampling; water level, total depth of water, height of well stick-up, presence of hydrocarbons, and hydrocarbon thickness (if appropriate). The monitoring well was then to be purged until water quality parameters stabilized, including dissolved oxygen (DO), oxidative-reduction potential (ORP), temperature, pH, conductivity, and turbidity were to be recorded prior to sampling. Parameter readings during the purging process would be recorded every 3 to 5 minutes, aiming for three consecutive readings within 5% prior to sampling. If stabilization could not be achieved before depletion of the water column, purging would stop, and sample collection would begin. Laboratory supplied containers were to be filled, packed with ice in coolers, and shipped to ALS Laboratories in Edmonton for analysis.

ALS is an accredited Canadian Association for Laboratory Accreditation (CALA), where samples were to be analyzed for:

- PHC Fractions F1 and F2;
- Total and dissolved metals;
- Major ions, hardness, total dissolved solids, total suspended solids;
- pH, conductivity; and
- PCBs.

4.5 Surface Water Sampling Methodology

The following outlines the methodology that was prepared for this program in the event that surface water was identified on site.

Following the collection of each water sample, temperature, pH, dissolved oxygen, and conductivity were to be recorded. Observations such as turbidity, evidence of groundwater indicators (surface sheen, vegetation), and presence or evidence of aquatic life, humans and/or animals on site were also to be noted.

All collected surface water samples were to be placed in appropriate laboratory-supplied, clean sample bottles, placed in insulated coolers (provided by ALS Laboratory) to be maintained between 0 and 10 degrees Celsius (°C),

and shipped to the laboratory under a Chain of Custody. Global Position System (GPS) Universal Transverse Mercator (UTM) coordinates were to be documented for surface water sampling locations.

The following parameters were to be analyzed:

- PHC Fractions F1 and F2 (C6-C16);
- Total and dissolved metals;
- PCBs; and
- Total suspended solids (TSS), total dissolved solids (TDS), and routine parameters including major ions and hardness.

4.6 Soil Sampling Methodology

In the event that visual inspections identified the need for soil samples to be collected, samples were to be collected with a small trowel which will be decontaminated with a laboratory-grade biodegradable cleaner (Alconox®) and rinsed between sampling locations. Soils samples were to be collected to a maximum depth of 30 cm and packed into laboratory supplied jars with minimal to no headspace. Samples were to be kept cool and packed on ice for shipment to ALS laboratories.

The following parameters were to be analysed:

- PCBs;
- PHC Fractions F1-F4; and
- Metals.

4.7 Thermal Monitoring

Five thermistor strings, which measure temperatures at various depths below the ground surface, were installed in the Tier II Landfill in 2018 to provide a record of permafrost aggradation through the containment berms and landfill contents over time, and to provide an indication of the average active layer depth. The thermistor strings are equipped with Lakewood Systems RX16ML Data Loggers and include 11 to 13 beads spaced every 0.6 m for a general length of 5 to 7 m. Thermistor locations are listed in **Table 4-2** and shown on **Figure 2** of **Appendix A**.

Table 4-2 CAM-E Keith Bay Thermistor Locations

Thermistor	UTM83-16 Northing (m)	UTM83-16 Easting (m)
VT-A-1	7571335.8	452305.5
VT-A-2	7571274.0	452325.2
VT-A-3	7571300.7	452368.0
VT-B-1	7571319.5	452326.2
VT-B-2	7571294.4	452342.9

4.7.1 Thermal Data Collection Methodology

The thermistor casings were visually inspected for their condition and any damage documented. The Data Loggers were then connected to a laptop and downloaded with ProLog software using the designated CCUSBA Communication Cable and reset. Both the main battery and back-up 9-volt battery were replaced within each Data Logger. The Data Logger was then disconnected from the thermistor cable so manual readings could be taken as a backup in the event of malfunction. Once the Data Logger was reconnected, the cable was placed back in the casing with the Data Logger on top and locked.

The thermal data was then processed off-site to produce ground temperatures curves and rate plots for each thermistor, with clear indication of the 0°C isotherm. These graphs provided the basis for discussion of freeze back and active layer depth within the landfill during the period of maximum thaw.

4.8 Quality Assurance and Quality Control

A Quality Assurance/Quality Control (QA/QC) program was to be followed in the event that sampling occurred to check that sampling and analytical data collected are interpretable, defensible, and comparable. This would involve QA/QC measures in both the collection and analysis of environmental samples.

Quality Control (QC) measures apply to the collection, preservation, shipment, and analysis of samples and include the following:

- Sampling techniques performed in accordance with standard written AECOM protocols.
- Thorough field notes taken during the site visit.
- All samples collected in laboratory provided sample containers, and kept cool prior to shipment.
- Samples assigned unique sample control numbers and transported under chain of custody procedures.
- The analytical laboratory chosen with proficiency certification issued by CALA.

Quality Assurance (QA) measures include the collection of field duplicate samples. A blind duplicate sample consists of a second aliquot of an individual sample that is submitted to the analytical laboratory under a separate label such that the analytical laboratory has no prior knowledge that it is a duplicate. The CAM-E LTM program specifies that field duplicates be collected at a rate of minimum 10%.

The relative percent difference (RPD) between duplicate results is used to assess overall sampling precision. The RPD is a measure of the variability between two duplicate analyses and is calculated by the following equation:

RPD =
$$100 \times ((2 \times (x_1 - x_2))/(x_1 + x_2))$$

Where x_1 is the primary results and x_2 is the blind duplicate result.

Acceptable RPD values vary on the analytical parameters, the sample matrix and the concentrations of analytes in the sample. For metals in soils acceptable RPD values are 35%, and 50% for organics in soils (e.g., PHCs and PCBs). Only when concentrations are at least 10 times the method detection limit are RPD calculations considered valid.

5 Results

Drawings, with inspection feature markups, are provided on figures in **Appendix A.** Photographs of the site taken during the site monitoring program are presented in **Appendix B.** The Visual Inspection Checklist can be found in **Appendix C**.

It should be noted that frost wedge cracking on the surrounding tundra and encroaching towards the landfill was visible from the aerial approach, particularly to the east and south of the landfills. These natural permafrost terrain features were previously misidentified in the Year 1 monitoring event as erosion (BluMetric, 2021). Visual inspection markups on **Figure 2** in **Appendix A** have been updated accordingly.

5.1 Natural Environment

Observations of the natural environment were limited to the evidence of polar bear activity among the thermistors. No polar bears were spotted while on site, only evidence of past activity and knowledge of polar bear sightings during previous site visits. There was no evidence of establishment of vegetation on site at the time of the inspection. The complete Natural Environment Checklist is available in **Appendix C**.

5.2 Non-Hazardous Waste Landfill (NHWL)

5.2.1 Geotechnical Monitoring and Visual Inspection

The following subsections describe the results of the geotechnical monitoring visual inspections completed at the landfill and immediately surrounding area.

5.2.1.1 Settlement

Some differential settlement was noted on the west side of the NHWL extending 30-40 m out from the slope (see Photograph 13 in **Appendix B**). Differential settlement was also noted midway on the south slope extending approximately 10 m out from the slope with smaller settlement on the southeast corner (Photographs 17 and 18 in **Appendix B**). This settlement was noted in the previous Year 1 investigation in 2020 (BluMetric, 2021) and appears to have continued to develop. Currently, the features do not compromise the performance of the NHWL. The north and east slopes were found to be in good condition with no notable defects. Of note is that the mainly linear shape of the settlement and its position moving away from the landfill toe suggests that it may be due to pre-existing frost wedge cracks that were covered during construction. If this is the case, the settlement should not be expected to continue to worsen.

5.2.1.2 Erosion

The 2022 inspection did not identify any signs of erosion on site. The Year 1 features identified as erosion have been updated as frost wedge cracking and are naturally occurring features of the surrounding tundra. In their current condition, the frost wedge cracks do not compromise the performance of the NHWL and will only present a potential risk if new cracks develop proximate or within the landfill. These features are most clearly displayed in Photograph 3 of **Appendix B**.

5.2.1.3 Animal Presence

No evidence of wildlife activity was noted at the NHWL; no animals were sighted nor burrows noted during the investigation.

5.2.1.4 **Debris**

Minimal scattered surface debris was observed throughout the site but was not observed to be exposed or originating from the NHWL.

5.2.1.5 Staining

No staining was observed.

Project number: 60686962

5.2.1.6 Vegetation Stress

No evidence of revegetation was noted.

5.2.1.7 Seepage and Ponding

Indicators of seepage or active seepage points were not observed.

5.2.1.8 Monitoring Instruments

The monitoring wells around the perimeter of the NHWL, MW17-04, MW17-05, MW17-06 and MW17-07, were found in good condition.

5.2.2 Groundwater Monitoring

All wells were found to be dry within the active layer again in 2022, so no samples were collected. The depth to ice values were recorded and are included in **Appendix D**.

5.2.3 Surface Water Monitoring

No surface water ponding or seepage were noted, consistent with baseline and previous monitoring events, so no samples were collected at the site during the 2022 long term monitoring event.

5.2.4 Soil Monitoring

No soil samples were collected at the time of the 2022 long term monitoring event as there was no evidence of seepage or staining.

5.2.5 Landfill Performance

The overall performance condition of the NHWL is rated as acceptable in 2022 based on the severity ratings presented in AMSRP Volume II (INAC, 2009). This is consistent with the condition documented in the Year 1 inspection (BluMetric, 2021). While some settlement features appear slightly larger since the 2020 inspection, the settlement does not appear to be affecting the stability, or performance, of the landfill. The consistent lack of active layer groundwater and surface water accumulation along the toe also indicate little to no risk associated with contaminant migration from the landfill.

5.3 Tier II Landfill

5.3.1 Geotechnical Monitoring and Visual Inspection

5.3.1.1 Settlement

The top of the Tier II landfill and the north and east slopes were observed to be in good condition. Minor differential settlement was noted on the northwest corner, and middle of the west and south slopes of the landfill (Photographs 25 and 30 in **Appendix B**). These settlement cracks from the south and west berms were noted in the previous Year 1 investigation in 2020 (BluMetric, 2021) and appear to have continued to develop. Currently, the features do not compromise the landfill performance. The north and east slopes were found to be in good condition with no notable defects. Similar to the NHWL, the mainly linear shape of the settlement and its position moving away from the landfill toe suggests that it may be due to pre-existing frost wedge cracks that were covered during construction. If this is the case, the settlement should not be expected to continue to worsen.

5.3.1.2 **Erosion**

The 2022 inspection did not identify any signs of erosion on site. The Year 1 features identified as erosion have been updated as frost wedge cracking and are naturally occurring features of the surrounding tundra. These features closest to the Tier II Landfill are displayed in Photographs 1 - 4 of **Appendix B**.

Project number: 60686962

5.3.1.3 Animal Presence

Evidence of animal activity onsite included polar bear scratches and teeth marks on the thermistor casings and locks. Data Loggers from thermistors VT-A-1, VT-B-1, and VT-B-2 had been pulled from their casings with VT-B-2 severed and relocated to the vicinity of VT-B-1. Animal evidence was not observed around the groundwater wells, and no animal burrows were noted on site during the investigation. The field team did not actively see any wildlife while on site or during the aerial approach.

5.3.1.4 Debris

Minimal scattered surface debris was observed throughout the site but was not observed to be exposed or originating from the landfill.

5.3.1.5 Staining

No staining was observed.

5.3.1.6 Vegetation Stress

No evidence of revegetation was noted.

5.3.1.7 Seepage and Ponding

Indicators of seepage or active seepage points were not observed.

5.3.1.8 Monitoring Instruments

The monitoring wells on the perimeter of the Tier II Landfill, MW17-01, MW17-02, MW17-03 and MW17-04, were generally in good condition. A bailer was found frozen inside MW17-01, however a depth to ice measurement was still manageable. The five thermistor casings installed in the landfill berm and contents received some damage from polar bear activity. Damage to the thermistor casings was superficial with claw and teeth marks. All casings were found uncapped, except for VT-A-2 that was still capped, pinned, and dummy locked. The thermistor VT-B-2 Data Logger was severed from the cable and removed from site. Thermistor VT-A-3 was found with bite marks on the cable and water in the data logger. A clock reset error was also noted upon download.

5.3.2 Thermal Monitoring

5.3.2.1 Thermistor Inspection and Data Collection

Ground temperature data was retrieved by AECOM personnel during the 2022 field program at CAM-E. On August 7, 2022, data was successfully retrieved from VT-A-1, VT-A-2, VT-B-1, and VT-B-2 with a partial data download of VT-A-3. The VT-B-2 Data Logger was found severed from its thermistor string cable; the data logger was later removed from site and left with a CIRNAC representative. The data download from VT-B-2 was successful with the ProLog software generated rate plot indicating the date the connection had been severed. A clock reset error was incurred during the download of VT-A-3 resulting in the partial download. An in-situ manual reading was also taken at each thermistor location following the initial data downloads with the exception of VT-B-2. New batteries were installed in all four remaining data loggers, set to expire July 2024, which will coincide with Year 5 monitoring activities.

Significant wildlife damage and disturbance was observed in the vicinity of the thermistors. The data loggers and thermistor strings were found pulled from four of five casings, with thermistor VT-B-2's string cable severed. Claw and teeth marks on the casing and locks were identified by the Wildlife Monitor as originating from a polar bear. The previous LTM site visit in 2020 reported five polar bear sightings at the site, and polar bear sightings and encounters were documented during site construction. Therefore, a continued bear presence on site is expected.

Given the condition the thermistors were found in, it is possible the bead elevations may have shifted when the Data Loggers were pulled from the casings at VT-A-1, VT-A-3, VT-B-1 and VT-B-2. Since the caps were also removed from those thermistors, it is possible precipitation could have entered the casing and wet the containment sand. Moisture within the casing may damage the thermistor cables themselves or influence the thermal readings compared to those which remained dry. VT-A-2 was found capped and therefore could provide a dry reference in subsequent monitoring events if thermal data shows signs of interference.

5.3.2.2 Thermal Data Evaluation

Five thermistors were installed within the Tier II Landfill to document the active layer depth fluctuation over time as the thermal conditions stabilize on site. During the site visit, temperature measurements, recorded in degree Celsius (°C) from February 6, 2020, to August 7, 2022, were downloaded from all five thermistors. The data was processed to analyze annual temperature patterns and trends over time. Rate Plots, Figures 1 through 4 in **Appendix E**, present the temperature fluctuation recorded for each thermistor bead at 4 of the 5 thermistor locations. The Ground Temperature Curves, Figures 5 through 8 in **Appendix E**, depict the temperature depth profiles mid-month over the last two years. Due to corruption of the VT-A-3 data, neither a Rate Plot nor Ground Temperature Curve could be plotted.

The primary means of containment for the Tier II landfill is within berms constructed of saturated, compacted, low permeability granular fill that become largely impermeable once permafrost has aggraded into them. Three thermistors were installed in the berms of the landfill, VT-A-1, VT-A-2 and VT-A-3, and two within the landfill contents, VT-B-1 and VT-B-2, to measure the active layer depth. Ideally, the landfill berms and soil contents become consistently frozen. Secondary (shorter term) containment is provided via geomembrane installed at the landfill base, along the containment berms, and over the top the landfill contents. A thick granular surface cover is placed at a design thickness of 3 m that is intended to keep the containment berms, and ideally contents, consistently frozen. The maximum active layer depths recorded during monitoring events are compared to the cover thickness, top of berm and top of landfill contents to confirm that the thermal containment design is performing as intended. These depths are included on the Ground Temperature Curves to visualize the thermal conditions with respect to the various landfill layers (see **Appendix E**).

Interpolation of the results allowed for determination of the per annum maximum thaw at each thermistor location. As shown in **Table 5-1**, between 2019 and 2022 the maximum active layer depth has generally decreased, although not consistently. Some variability is expected, in line with climatic variability over different years, and climatic variability (including climate change) is included within derivation of the cover thickness design. However, the key information shown in **Table 5-1** is that the landfill contents have been consistently frozen since 2019, with the maximum active layer depth limited to within the surface cover since 2020. This is consistent with design predictions and monitoring results from other sites which have freeze-back occurring within 2-5 years following construction.

Table 5-1 Maximum Thaw Depth by Year (shown in metres below ground surface)

Thermistor	Thermistor Location	2019	Year 1 of LTM 2020	Year 3 of LTM 2022
	Thermistor Location	Surface Cover is 3 m thick ^a Depth to Waste from Cap Surface is 4 m ^a		
VT-A-1	West Berm	1.9	1.7	1.8
VT-A-2	South Berm	2.2	2.0	2.0
VT-A-3	East Berm	2.3	2.0	_ b
VT-B-1	Central for Contents	2.8	1.9	2.1
VT-B-2	Central for Contents	3.0	1.9	1.9 °

^a – Based on design and as-built information (AECOM, 2020)

Figures 1 through 4, below, are a simplification of the Ground Temperature Curves in **Appendix E** and provide the maximum freeze (depicted with annual data from January 15) and maximum thaw (August 15 annually) with respect to the landfill cap surface, top of waste, bottom of waste, and 0°C isotherm. The range of temperature variability narrows from approximately 5-degrees at the top of the landfill contents, to approximately 2-degrees at the end of the thermistor strings. The low variability demonstrates an approach towards steady-state conditions indicating the containment method is performing as designed. Intersection of the curves with the 0°C isotherm provides the maximum thaw depth presented in **Table 5-1** and informs the active layer depth. The active layer remains 2 m above the top of waste at all thermistor locations and shows that the Tier II soil has been frozen continuously since 2019.

^b – Thermistor VT-A-3 was found with bite marks on the cable and water in the Data Logger, a clock reset error was also noted upon download. The data is corrupt and unable to be processed.

^c – Reflective of data up to November 6, 2021. Data logger records indicate this is the day the data logger was severed from the thermistor cable.

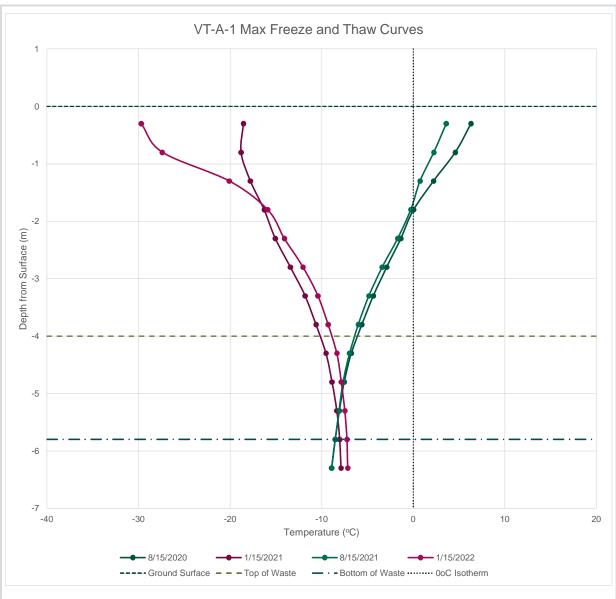
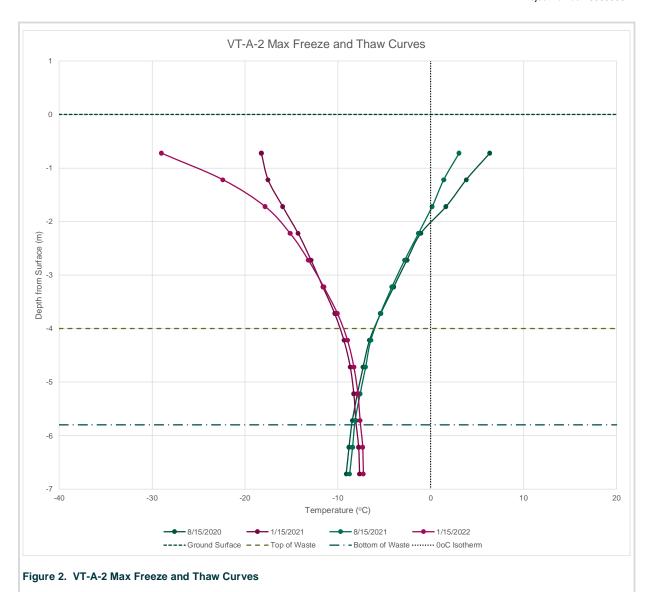



Figure 1. VT-A-1 Max Freeze and Thaw Curves

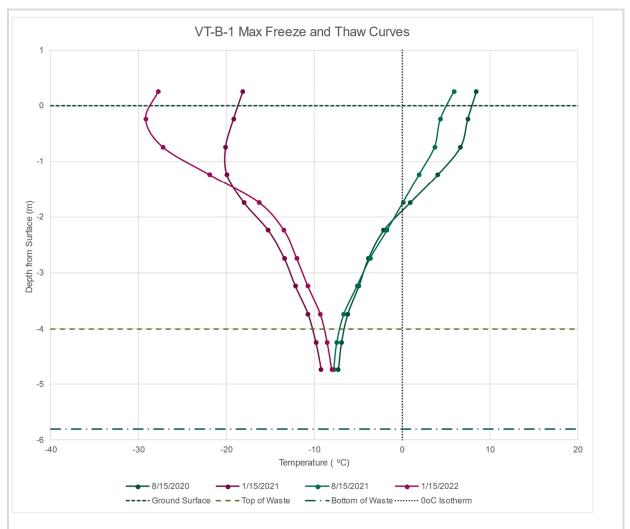


Figure 3. VT-B-1 Max Freeze and Thaw Curves

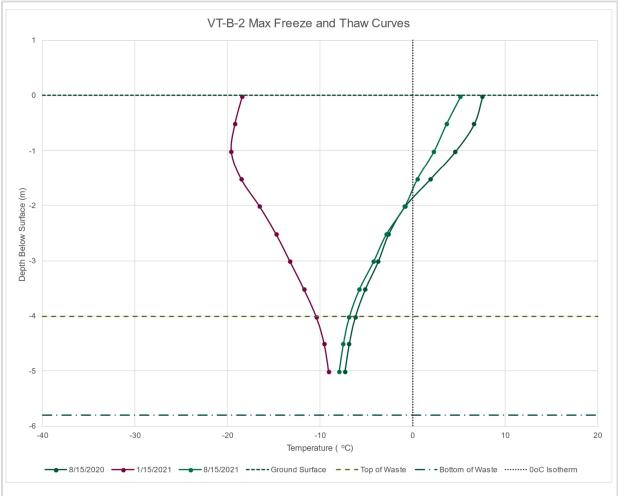


Figure 4. VT-B-2 Max Freeze and Thaw Curves

Note: 2022 data unavailable due to severance on November 6, 2021. Data Logger has been removed from site.

5.3.3 Groundwater Monitoring

All wells were found to be dry within the active layer again in 2022, so no samples were collected. The depth to ice values were recorded and are included in **Appendix D**.

5.3.4 Surface Water Monitoring

No surface water ponding or seepage were noted, consistent with baseline and previous monitoring events, so no samples were collected at the site during the 2022 long term monitoring event.

5.3.5 Soil Monitoring

No soil or surface water samples were collected at the time of the 2022 long term monitoring event as there was no evidence of seepage or staining.

Project number: 60686962

5.3.6 Landfill Performance

The overall performance condition of the Tier II Landfill is considered acceptable in 2022 based on the severity ratings presented in AMSRP Volume II (INAC, 2009). This is consistent with the condition documented in the Year 1 inspection (BluMetric, 2021). While some settlement features appear slightly larger since the 2020 inspection, the settlement does not appear to be affecting the stability, or performance, of the landfill and the landfill surface did not show any evidence of settlement or erosion. The thermal data demonstrate that permafrost containment of the Tier II soil has been in place since 2019. The thermal data, combined with consistent lack of active layer groundwater and surface water accumulation along the toe, support the conclusion that there has been no contaminant migration from the landfill.

6 Conclusion and Recommendations

Based on the results of the 2022 Year 3 activities, the remediation strategy for CAM-E appears to be meeting the objectives expected for Phase I of the LTMP. Physical stability criteria are the focus of Phase I; the thermistor data indicates the Tier II Landfill contents remain frozen and the visual inspection of both landfills found them to be in acceptable condition overall. The differential settlement observed at the landfills is presently not a concern but appears to have worsened since Year 1. The shape of the settlement features suggest it may be due to infilled pre-existing frost wedge cracks, in which case, the settlement should not progressively worsen. Continuation of Phase I monitoring into Year 5 is recommended with subsequent evaluation for progression into Phase II at that time.

Groundwater collection continues to be problematic. Collection of soil samples, beyond the current LTMP specification of seepage and staining, could provide a data source to supplement the lack of groundwater data. This approach was used for landfill monitoring by DND at their DEW Line sites.

It is paramount that all instrument casings are locked to prevent further damage to the thermistors and make the instruments more secure from unauthorized access. This would work to mitigate against the recurring polar bear activity on site and act as a deterrent for possible human vandalization or interference. Thermistors and groundwater wells were locked with Guard Key 111 and additional key sets were left with a CIRNAC representative. It is recommended keys are provided for the next monitoring event to avoid cutting and replacement of locks on site. Further, it is recommended additional locks are brought to site during future visits in the event locks are found missing or damaged.

Repair or reinstallation of severed thermistor VT-B-2 is not yet recommended at the site given the associated cost and VT-B-1 remaining functional within the contents of the Tier II Landfill. The data obtained from thermistor VT-A-3 was corrupt. Standing water found in the VT-A-3 Data Logger case was removed, dried, and a fresh moisture indicator pad was placed inside prior to properly storing the case in the thermistor housing. It is recommended this thermistor is assessed during the next monitoring event to determine if the issue is rectified, or if the thermistor is irreparably damaged. Fortifying the thermistor casings may become necessary to protect the remaining functional instruments; alterations may include installing metal casing caps in place of the current plastic caps and using heavyduty locks on each end of the pin.

7 References

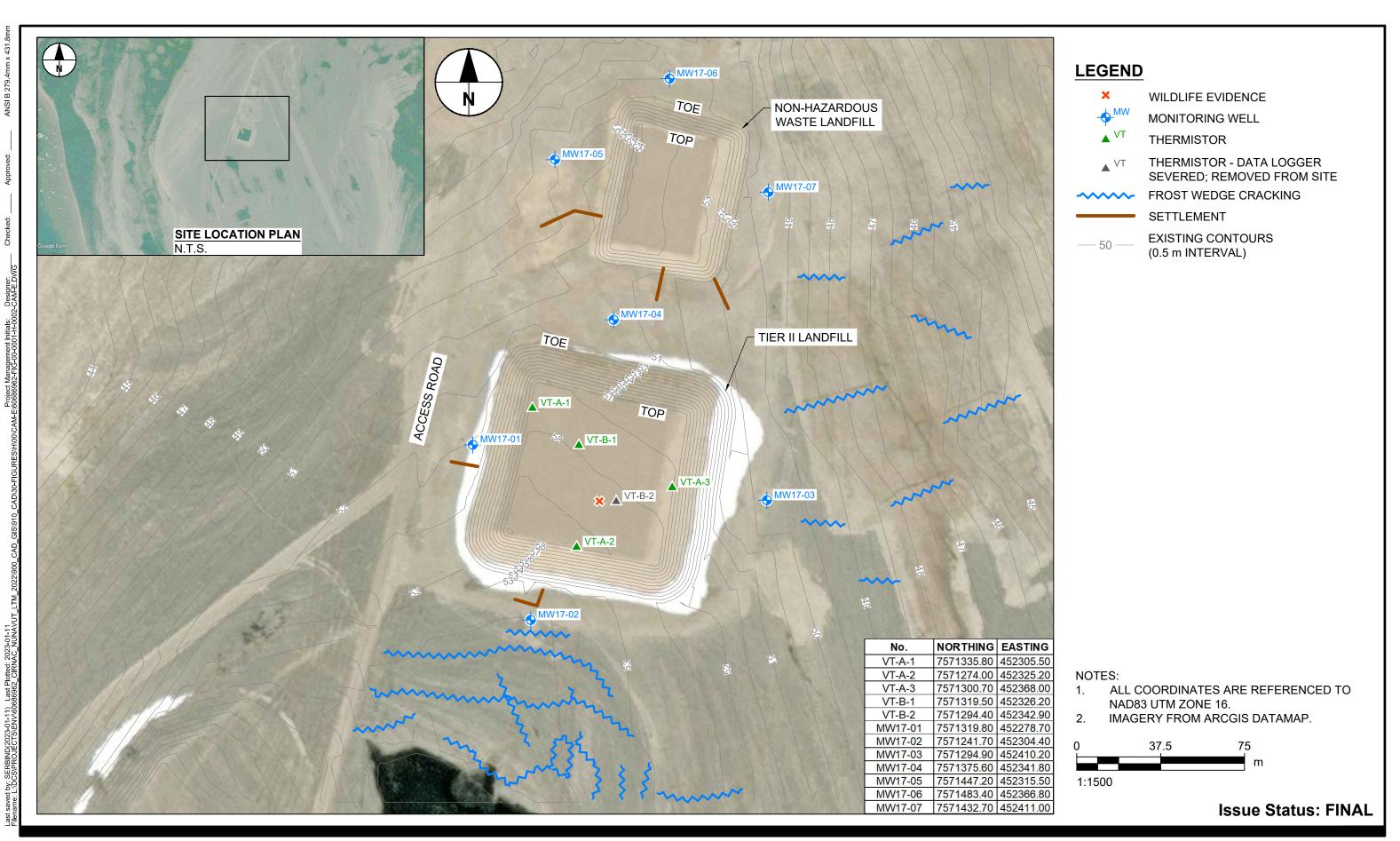
- AECOM Canada Ltd. (AECOM). 2020. CAM-E, Keith Bay Site Remediation Construction Summary Report. Submitted to Public Services and Procurement Canada. March 30, 2020.
- AECOM. 2019. CAM-E, Keith Bay Long Term Monitoring Plan. Submitted to Public Services and Procurement Canada. December 17, 2019.
- BluMetric Environmental Inc. (BluMetric). 2021. CAM-E Keith Bay Long Term Monitoring Event 2020 Long Term Monitoring Report. Submitted to Crown-Indigenous Relations and Northern Affairs Canada. February 18, 2021.
- Crown-Indigenous Relations and Northern Affairs Canada (CIRNAC). 2020. Addendum to: CAM-E Long Term Monitoring Plan. Submitted to Crown-Indigenous Relations and Northern Affairs Canada.
- Indigenous and Northern Affairs Canada (INAC). 2009. Abandoned Miliary Site Remediation Protocol (AMSRP).

Appendix A

Figures

ALL COORDINATES ARE REFERENCED TO NAD83 UTM ZONE 16. IMAGERY FROM ARCGIS DATAMAP.

2022 Nunavut Sites Long-Term Monitoring


CAM-E Keith Bay (Year 3)
Crown-Indigenous Relations and Northern Affairs Canada
Project No.: 60686962 Date: 2023-01-11

NON-HAZARDOUS WASTE LANDFILL AND TIER II LANDFILL **LOCATION PLAN**

AECOM

Issue Status: FINAL

Figure 1

2022 Nunavut Sites Long-Term Monitoring
CAM-E Keith Bay (Year 3)
Crown-Indigenous Relations and Northern Affairs Canada

Project No.: 60686962 Date: 2023-01-11

NON-HAZARDOUS WASTE LANDFILL AND TIER II LANDFILL VISUAL INSPECTION

Appendix B

Photographic Record

Site Name:
CAM-E Long-Term Monitoring – Year 3

Site Location

Keith Bay, Nunavut

Project No. 60686962

Photo No.

Date

8/7/2022

Direction Photo Taken

East

Area

Site Condition

Description

Aerial view of main station overlooking NHWL and Tier II Landfill. Various frost wedge cracks were visible on the east side from aerial view. Cracks are natural permafrost terrain features. Landfills visible in photo (boxed).

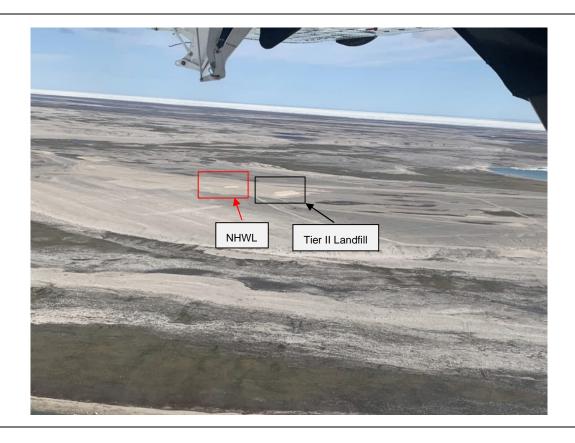


Photo No.

Date

2

8/7/2022

Direction Photo Taken

East

Area

Site Condition

Description

Frost wedge cracking visible on the south side from aerial view (circled).

Appendix B - CAM-E Photographic Record.Docx
Page 1 of 22

 Site Name:
 Site Location
 Project No.

 CAM-E Long-Term Monitoring – Year 3
 Keith Bay, Nunavut
 60686962

Photo No.

Date

3

8/7/2022

Direction Photo Taken

Northwest

Area

Site Condition

Description

Frost wedge cracks on east side of site.

Photo No.

4

Date 8/7/2022

Direction Photo Taken

Northeast

Area

Site Condition

Description

A closer aerial view of natural permafrost terrain features: thermokarst terrain (circled) on southside of the site. Tier II Landfill visible (boxed).

Appendix B - CAM-E Photographic Record.Docx
Page 2 of 22

 Site Name:
 Site Location
 Project No.

 CAM-E Long-Term Monitoring – Year 3
 Keith Bay, Nunavut
 60686962

Photo No.

Date

8/7/2022

Direction Photo Taken

N/A

Area

Tier II Landfill

Description

Thermistor VT-A-2. Bite marks on casing from polar bears.

Photo No.

Date

6

8/7/2022

Direction Photo Taken

N/A

Area

Tier II Landfill

Description

Thermistor VT-A-1. Data logger found hanging out of casing.

Appendix B - CAM-E Photographic Record.Docx
Page 3 of 22

CAM-E Long-Term Monitoring – Year 3

Site Location
Keith Bay, Nunavut

Project No. 60686962

Photo No.

Date

7

8/7/2022

Direction Photo Taken

N/A

Area

Tier II Landfill

Description

Thermistor VT-B-1. Cable on ground approximately 2.17 m from casing.

Photo No.

Date

8

8/7/2022

Direction Photo Taken

Southwest

Area

Tier II Landfill

Description

Thermistor VT-B-1.
Cable on ground is approximately 2.17 m from casing. Data Logger severed from thermistor VT-B-2 and found near VT-B-1 casing (circled). Severed Data Logger removed from site and left with CIRNAC representative.

Appendix B - CAM-E Photographic Record.Docx
Page 4 of 22

Site Name:
CAM-E Long-Term Monitoring – Year 3

Site Location
Keith Bay, Nunavut

Project No. 60686962

Photo No.

Date

8/7/2022

Direction Photo Taken

Southeast

Area

NHWL

Description

Northwest corner of NHWL in good condition. Tier II Landfill in distance.

Photo No.

Date

10

8/7/2022

Direction Photo Taken

South-southwest

Area

NHWL

Description

MW17-06. North slope of NHWL in good condition.

Appendix B - CAM-E Photographic Record.Docx
Page 5 of 22

Site Name:
CAM-E Long-Term Monitoring – Year 3

Site Location

Keith Bay, Nunavut

Project No. 60686962

Photo No.

Date

8/7/2022

Direction Photo Taken

South

Area

NHWL

Description

West slope of NHWL in good condition.

Photo No.

Date

12 8/7/2022

Direction Photo Taken

N/A

Area

 NHWL

Description

Minor differential settlement on west side of NHWL.

Appendix B - CAM-E Photographic Record.Docx
Page 6 of 22

 Site Name:
 Site Location
 Project No.

 CAM-E Long-Term Monitoring – Year 3
 Keith Bay, Nunavut
 60686962

Photo No.

Date

13

8/7/2022

Direction Photo Taken

East

Area

NHWL

Description

Differential settlement from west slope of NHWL out 30 - 40 m. Continuation shown in Photo 14.

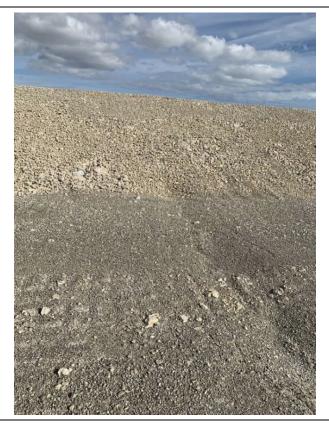


Photo No.

Date

14

8/7/2022

Direction Photo Taken

East-southeast

Area

NHWL Description

Continuation of apparent settlement from west slope as shown on left side of photo. Settlement extends 30 – 40 m away from cell.

Additional settlement is visible on right side of photo.

The shape and orientation of the settlement cracks suggest they may be due to underlying frost-wedge cracks that were covered with fill during construction.

Appendix B - CAM-E Photographic Record.Docx
Page 7 of 22

Project No.

60686962

Site Name:

CAM-E Long-Term Monitoring – Year 3

Keith Bay, Nunavut

Photo No.

Date

15

8/7/2022

Direction Photo Taken

Northeast

Area

NHWL

Description

Southwest corner of NHWL in good condition.

Photo No.

16

Date 8/7/2022

Direction Photo Taken

East

Area

NHWL

Description

South slope of NHWL in good condition.

Appendix B - CAM-E Photographic Record.Docx
Page 8 of 22

 Site Name:
 Site Location
 Project No.

 CAM-E Long-Term Monitoring – Year 3
 Keith Bay, Nunavut
 60686962

Photo No.

Date

17

8/7/2022

Direction Photo Taken

North

Area

NHWL

Description

Differential settlement midway on south side of NHWL, extending approximately 10 m.

Photo No.

Date

18

8/7/2022

Direction Photo Taken

Northwest

Area

Area

NHWL

Description

Southeast corner of NHWL, differential settlement extending out.

Appendix B - CAM-E Photographic Record.Docx
Page 9 of 22

Site Name:
CAM-E Long-Term Monitoring – Year 3

Site Location
Keith Bay, Nunavut

Project No. 60686962

Photo No.

Date

19

8/7/2022

Direction Photo Taken

Northwest

Area

NHWL

Description

East side of NHWL in good condition.

Photo No.

Date

20 8/7/2022

Direction Photo Taken

Southwest

.

Area

NHWL

Description

Northeast corner of NHWL in good condition.

Appendix B - CAM-E Photographic Record.Docx
Page 10 of 22

 Site Name:
 Site Location
 Project No.

 CAM-E Long-Term Monitoring – Year 3
 Keith Bay, Nunavut
 60686962

Photo No.

Date

21 8/7/2022

Direction Photo Taken

West

Area

NHWL

Description

North slope of NHWL in good condition.

Photo No.

Date

8/7/2022

Direction Photo Taken

South

Area

NHWL

Description

Top of NHWL facing Tier II Landfill in good condition.

Appendix B - CAM-E Photographic Record.Docx
Page 11 of 22

Site Name: CAM-E Long-Term Monitoring – Year 3 Site Location

Keith Bay, Nunavut

Project No. 60686962

Photo No.

Date

23

8/7/2022

Direction Photo Taken

East

Area

NHWL

Description

Frost wedge cracking off west side of NHWL viewed from top of cell. This may be source of observed linear settlement features moving away from the landfill toe.

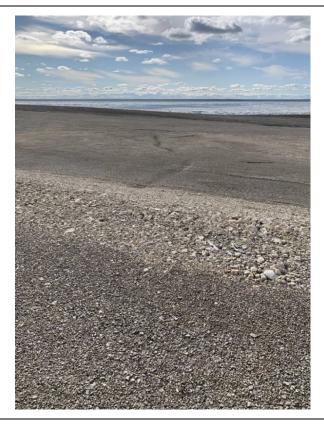


Photo No.

Date

24

8/7/2022

Direction Photo Taken

South

Area

Tier II Landfill

Description

MW 17-04. North side of Tier II Landfill in good condition.

Appendix B - CAM-E Photographic Record.Docx
Page 12 of 22

Site Name:
CAM-E Long-Term Monitoring – Year 3

Site Location
Keith Bay, Nunavut

Project No. 60686962

Photo No.

Date

25

8/7/2022

Direction Photo Taken

Southeast

Area

Tier II Landfill

Description

Northwest corner of Tier II Landfill, differential settling at base extending out.

Photo No.

Date

26 8/7/2022

Direction Photo Taken

North

Area

Tier II Landfill

Description

West slope of Tier II Landfill in good condition.

Appendix B - CAM-E Photographic Record.Docx
Page 13 of 22

Site Name:
CAM-E Long-Term Monitoring – Year 3

Site Location

Keith Bay, Nunavut

Project No. 60686962

Photo No.

Date

27

8/7/2022

Direction Photo Taken

Southwest

Area

Tier II Landfill

Description

Differential settlement off west side of Tier II Landfill.

Photo No.

Date

28 8/7/2022

Direction Photo Taken

Northeast

.

Area

Tier II Landfill

Description

Southwest corner of Tier II Landfill in good condition.

Appendix B - CAM-E Photographic Record.Docx
Page 14 of 22

Site Name: CAM-E Long-Term Monitoring – Year 3 Site Location

Keith Bay, Nunavut

Project No. 60686962

Photo No.

Date

29

8/7/2022

Direction Photo Taken

West

Area

Tier II Landfill

Description

South slope of Tier II Landfill in good condition.

Photo No.

Date

30

8/7/2022

Direction Photo Taken

West

Area

Tier II Landfill

Description

Differential settlement off south side of Tier II Landfill, extending outward.

Again, shape and position of features suggests pre-existing frost wedge cracks that were covered during construction.

Appendix B - CAM-E Photographic Record.Docx
Page 15 of 22

 Site Name:
 Site Location
 Project No.

 CAM-E Long-Term Monitoring – Year 3
 Keith Bay, Nunavut
 60686962

Photo No.

Date

31

8/7/2022

Direction Photo Taken

Northwest

Area

Tier II Landfill

Description

Southeast corner of Tier II Landfill in good condition.

Photo No.

Date

32

8/7/2022

Direction Photo Taken

South

Area

Tier II Landfill

Description

East slope of Tier II Landfill in good condition.

Appendix B - CAM-E Photographic Record.Docx
Page 16 of 22

Site Name: CAM-E Long-Term Monitoring – Year 3 Site Location
Keith Bay, Nunavut

Project No. 60686962

Photo No.

Date

33

8/7/2022

Direction Photo Taken

Southwest

Area

Tier II Landfill

Description

Northeast corner of Tier II Landfill in good condition.

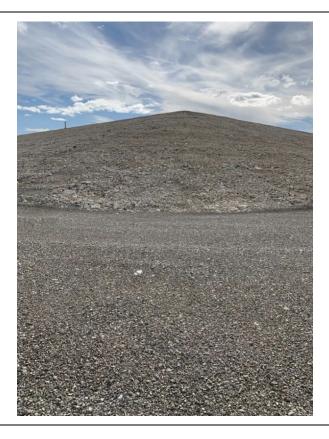


Photo No.

Date

34

8/7/2022

Direction Photo Taken

South

Area

Tier II Landfill

Description

Top of Tier II Landfill in good condition.

Appendix B - CAM-E Photographic Record.Docx
Page 17 of 22

Site Name: CAM-E Long-Term Monitoring – Year 3 Site Location

Keith Bay, Nunavut

Project No. 60686962

Photo No.

Date

35

8/7/2022

Direction Photo Taken

Southeast

Area

Tier II Landfill

Description

Top of Tier II Landfill in good condition. Severed Data Logger from VT-B-2 (circled), pulled cable from VT-B-1 (boxed).

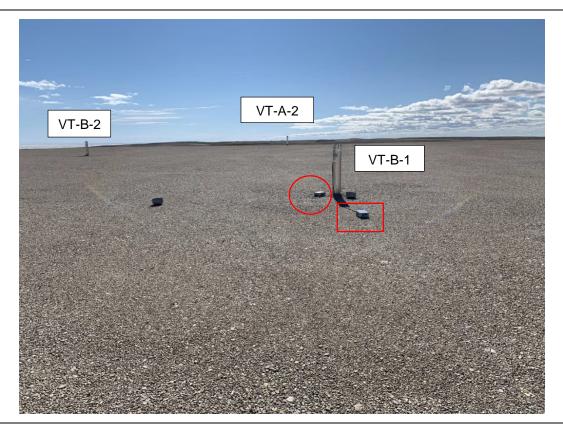


Photo No.

Date

36

8/7/2022

Direction Photo Taken

South

Area

Groundwater Wells

Description

MW17-06. Frozen, unable to sample. Depth to ice recorded. Well in good condition.

Appendix B - CAM-E Photographic Record.Docx
Page 18 of 22

Site Name: CAM-E Long-Term Monitoring – Year 3 Site Location

Keith Bay, Nunavut

Project No. 60686962

Photo No.

Date

37

8/7/2022

Direction Photo Taken

Southeast

Area

Groundwater Wells

Description

MW17-05. Frozen, unable to sample. Depth to ice recorded. Well in good condition. West slope of NHWL in background.

Photo No.

Date

38

8/7/2022

Direction Photo Taken

N/A

Area

Groundwater Wells

Description

MW17-04. Frozen, unable to sample. Depth to ice recorded. Well in good condition.

Appendix B - CAM-E Photographic Record.Docx
Page 19 of 22

Site Name:

Site Location

CAM-E Long-Term Monitoring – Year 3

Keith Bay, Nunavut

Project No. 60686962

Photo No.

Date

39

8/7/2022

Direction Photo Taken

N/A

Area

Groundwater Wells

Description

MW17-01. Frozen, unable to sample. Bailer frozen inside well. Depth to ice recorded. Well in good condition. West slope of Tier II Landfill in background.

Photo No.

Date

40 8/7/2022

Direction Photo Taken

West

Area

Groundwater Wells

Description

MW17-02. Frozen, unable to sample. Depth to ice recorded. Well in good condition. Southwest toe of Tier II Landfill on far right side. Frost wedge cracking visible on natural ground to the left.

Appendix B - CAM-E Photographic Record.Docx
Page 20 of 22

Site Name:

Site Location

CAM-E Long-Term Monitoring – Year 3 Keith Bay, Nunavut

Project No. 60686962

Photo No.

Date

41

8/7/2022

Direction Photo Taken

West

Area

Groundwater Wells

Description

MW17-03. Frozen, unable to sample. Depth to ice recorded. Well in good condition. East slope of Tier II Landfill in background.

Photo No.

Date

42

8/7/2022

Direction Photo Taken

West

Area

Groundwater Wells

Description

MW17-07. Frozen, unable to sample. Depth to ice recorded. Well in good condition. East slope of NHWL in background.

Appendix B - CAM-E Photographic Record.Docx
Page 21 of 22

Site Name: Site Location Project No. CAM-E Long-Term Monitoring – Year 3 Keith Bay, Nunavut

60686962

Photo No.

Date

43

8/7/2022

Direction Photo Taken

East

Area

Groundwater Wells

Description

MW17-07 in foreground. Frost wedge cracking throughout east portion of site visible in background.

Page 22 of 22 Appendix B - CAM-E Photographic Record.Docx

Appendix C

Monitoring Checklists and Daily Field Report

VISUAL MONITORING CHECKLIST

ITEM	PRESENCE / ABSENCE	EXTENT	DESCRIPTION / PHOTOGRAPHIC REFERENCE			
Settlement	Yes	No settling on landfill caps.	Some settling in areas around cells. West side of Tier II and NHWL cells show settlement. Appears to have increased since Year 1.			
Erosion	No					
Frost Action	No	Not on landfills, but in surrounding area.	Frost cracking on west side / between landfills. Natural features. Photos 1 – 4, 12-14, 17-18, 23, 25, 27, 30			
Animal Burrows	No					
Vegetation	No					
Staining	No					
Vegetation Stress	No					
Seepage Points	No					
Exposed Debris	No					
Condition of Monitoring Instruments		Monitoring wells in good condition, all frozen, bailer frozen in MW17-01.	Thermistors disturbed by bears, some damage. Photos 5-8			
Other Features of Note	N/A					

NATURAL ENVIRONMENT CHECKLIST

ITEM	PRESENCE / ABSENCE	EXTENT	DESCRIPTION / PHOTOGRAPHIC REFERENCE
Wildlife Sightings	No		
Evidence of Wildlife	Yes		Teeth and claw marks on thermistor casings from polar bears. Photos 5, 35
Wildlife Activity	Yes		Exploration of site and interaction with monitoring instruments. Photos 5 - 8
Relative Number	N/A		
Evidence of Revegetation	No		

Project Daily Report						
Client:	CIRNAC	Date:	7-Aug-22			
Project:	Nunavut Sites LTM	Weather:	10°C mostly sunny, consistent wind			
Project No.:	60686962					
Location:	Gjoa Haven / CAM-E	Number of Personnel On-Site :	7			
Departure Time:	10:15 AM MST	Return Time:	5:00 PM MST			
Company			Total # Workers			
AECOM	David Bugden	Alysha Selinger	2			
CIRNAC	Melanie Netser		1			
Nunatta	Max Dubeau	Noah Alookie	2			
Kenn Borek	Brian Good	Travis Fawcett	2			
Total			7			

Health and Safety

Observations/Near Misses/Incidents/H&S Issues

Given the polar bear activity on site, and an abundance of ice bergs in the bay on both the east and west sides of the site, the team stayed close to the landfill cells and did not approach the water in the beach area.

Technical Scope

Geotechnical Inspection

Both the NHWL and Tier II cells were visually inspected. Some frost settlement and cracks were observed around the base of the cells, but the cells themselves were in good condition. Minimal debris was observed throughout the site and no animal burrows were found.

Aquatic Monitoring

All seven wells were frozen. The depth to ice level was recorded. There was no sign of wildlife damage to the groundwater wells.

Temperature Monitoring

Upon arrival, the thermistor casings were open and the data loggers strewn across the top of the Tier II cell. Evidence of polar bear claw marks were found on the casings and caps, as well as teeth marks on the thermistor cords and some of the plastic lock housings. One of the data loggers (VT-B-2) was severed from the thermistor. Data was downloaded from VT-B-2 and the graph indicates the day the connection was severed. This data logger was removed from site. One of the five casings was still capped (VT-A-2). One of the data loggers had water in the case (VT-A-3); the data was downloaded, however an error was incurred so it may be corrupt. For data loggers that were pulled out of the casing and had the thermistor cord on the ground, the length was measured to try to adjust the height of the data nodes. Overall, data was successfully downloaded from 4 of the 5 thermistors but will require further inspection for validity given the circumstances. Batteries were replaced, recapped, and locked.

Communications or Deviation from Work Plan

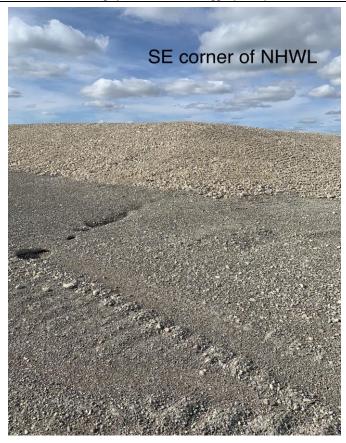
Another trip will need to be made to site to collect groundwater samples, if required.

Other:

Pilots found the airstrip to be in good condition and were able to taxi right up to the NHWL cell.

Project Daily Photo Record

Photograph 1: Evidence of Polar Bear Claw Marks on Thermistor Casings



Photograph 2: VT-B-1 Pulled from Casing with VT-B-2 Severed Nearby

AECOM

Photograph 3: Severed Data Logger (VT-B-2

Photograph 4: Frost Settlement off Southeast Corner of NHWL

Appendix D

Groundwater Sampling Logs

Groundwater Sampling Field Data

CAM-E Year 3 2022 **AECOM**

	Aquatics Monitoring									
Time	Temperature (°C)	Conductivity (µs/cm)	рН	ORP	NTU	ODO (mg/L)	Water Level (m)	Depth to Water (m)	Depth to Bottom (m)	Stick Up (m)
MW17-01										
		Frozen -	bailer frozei	n in well				0.48	-	0.51
MW17-02										
			Frozen					1.15	-	0.56
MW17-03										
			Frozen					1.18	-	0.47
MW17-04										
			Frozen					1.165	-	0.45
MW17-05										
			Frozen					1.145	-	0.37
MW17-06										
			Frozen					1.185	-	0.39
MW17-07										
			Frozen					1.19	-	0.535
Meteo										

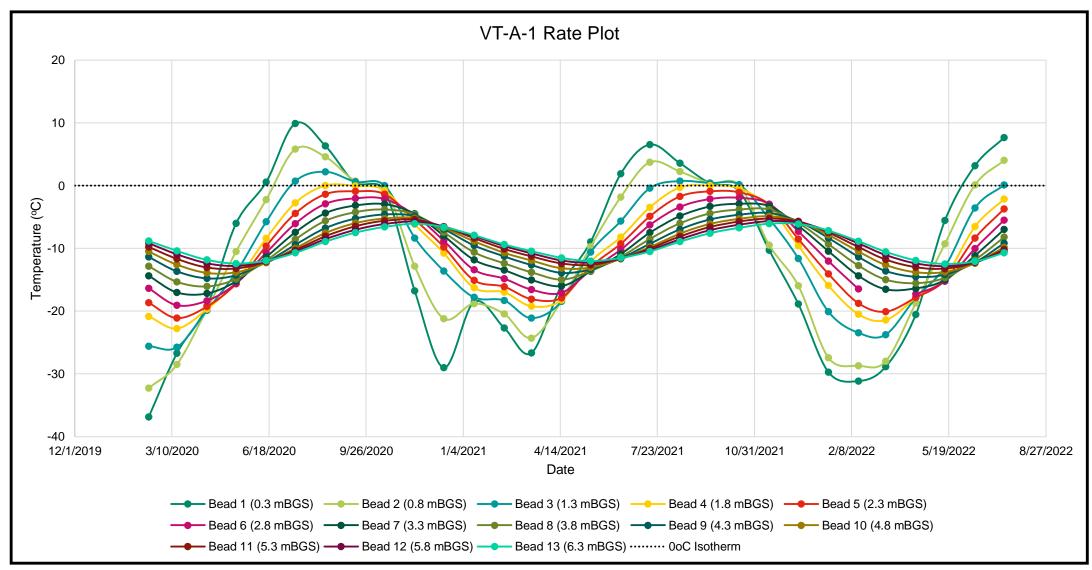
Notes:

ORP - Oxidative-Reduction Potential

NTU - Nephelometric Turbidity Units

ODO - Optical Dissolved Oxygen

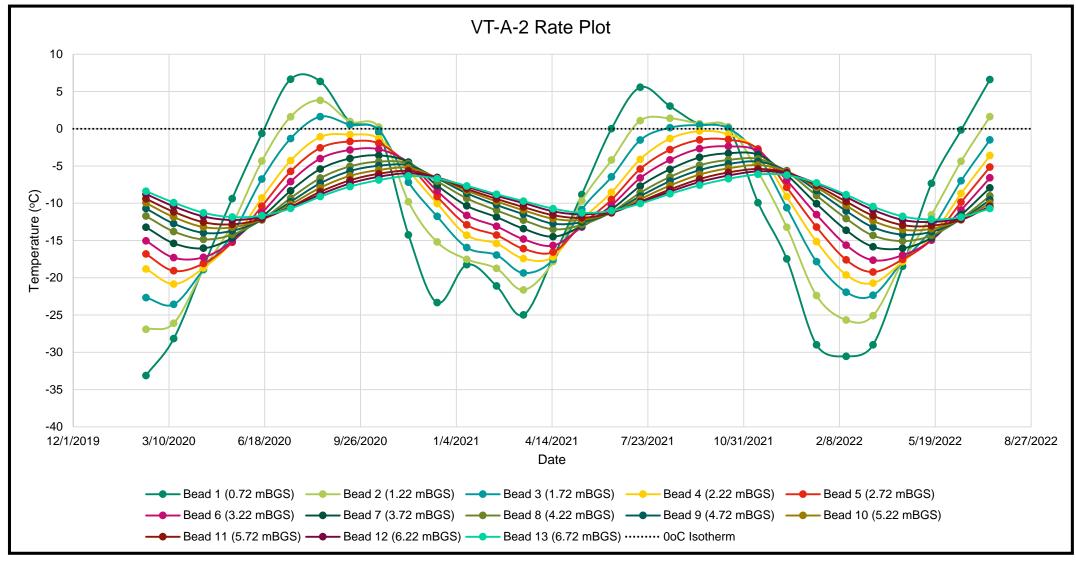
Stick Up - Height of well casing from ground surface to top of casing



Appendix **E**

Thermal Monitoring Graphs

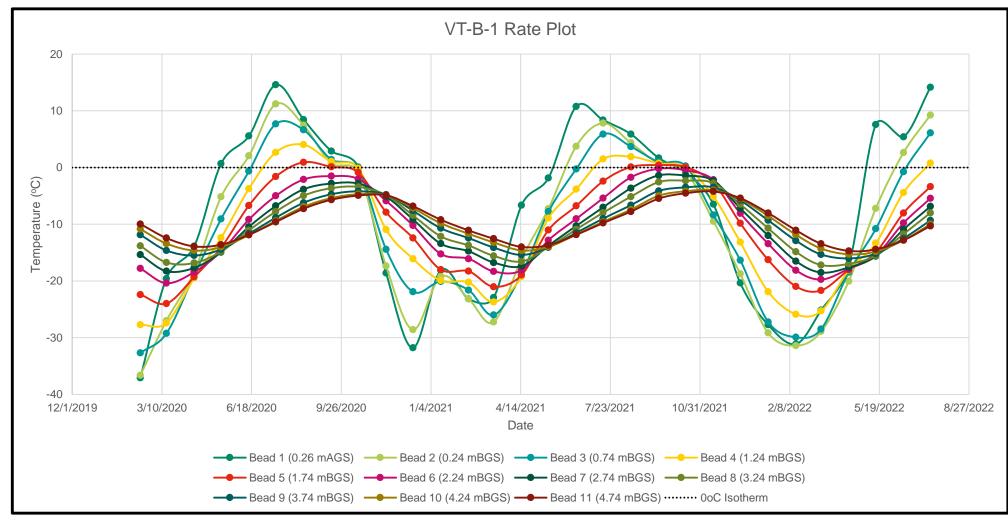
FIGURE E-1 CAM-E
Year 3 2022



Notes:

mBGS = Metres Below Ground Surface

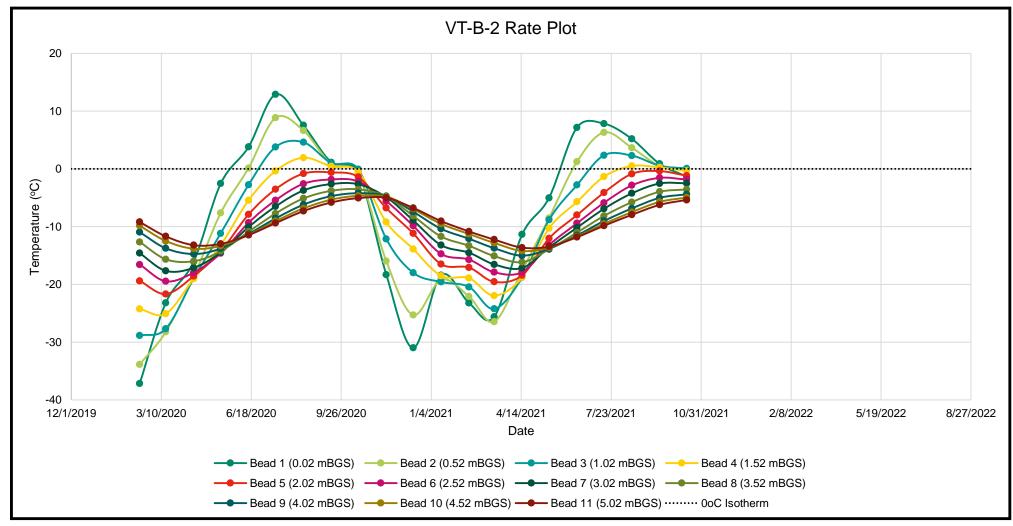
FIGURE E-2 Year 3 2022


CAM-E

Notes:

mBGS = Metres Below Ground Surface

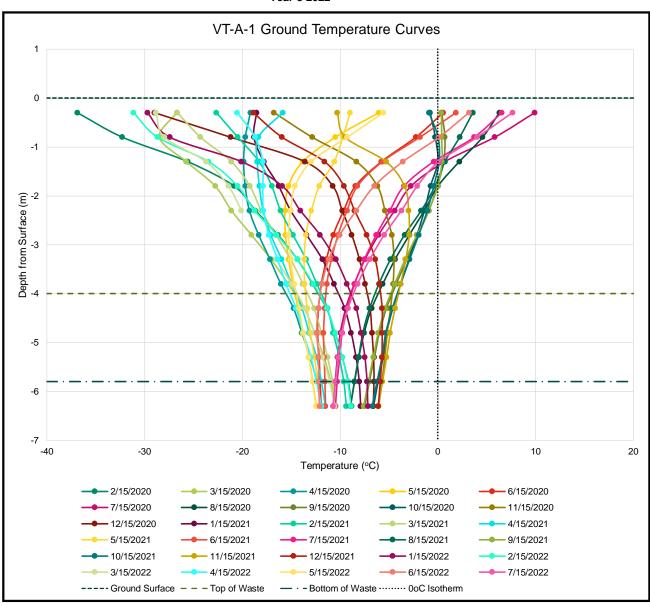
FIGURE E-3 CAM-E Year 3 2022


Notes:

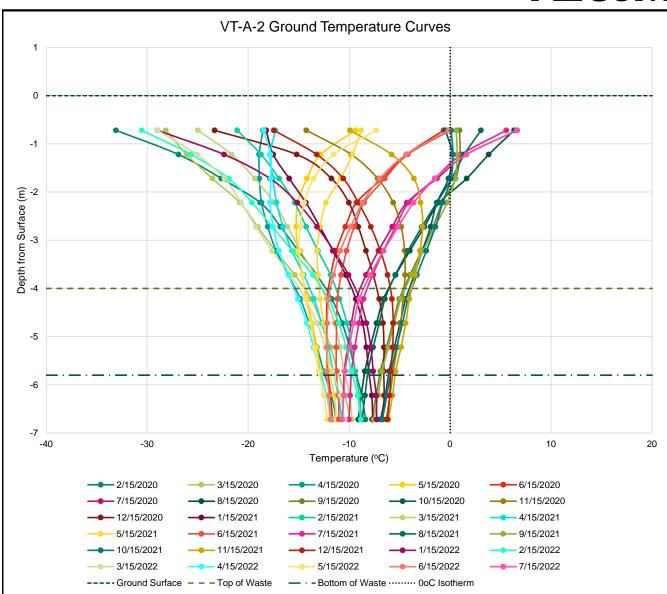
mAGS = Metres Above Ground Surface mBGS = Metres Below Ground Surface Bead 1 is located above ground surface.

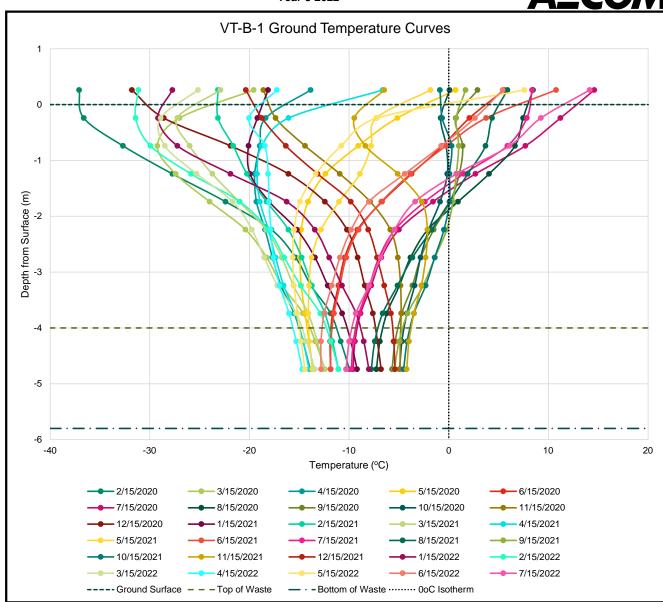
FIGURE E-4

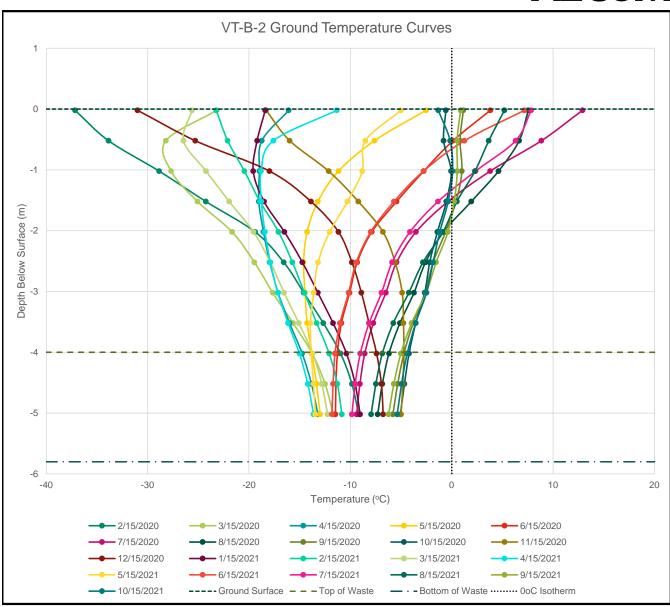
CAM-E Year 3 2022



Notes:


mBGS = Metres Below Ground Surface Data Logger severed on November 6, 2021


CAM-E Year 3 2022



CAM-E Year 3 2022

Appendix F

Thermal Sampling Data

Available on USB.

aecom.com