THE COLLECTION OF LANDFILL MONITORING DATA AT THE FORMER FOX-2 DEW LINE SITE

Longstaff Bluff, Nunavut

REVISED FINAL REPORT – 2014

(O/Ref.: CD2655) (Y/Ref.: DLCMON (QIKIQ12)

DEFENCE CONSTRUCTION CANADA

NOVEMBER 2015

418 653-4422

418 653-3583

Tel.:

Fax:

THE COLLECTION OF LANDFILL MONITORING DATA AT THE FORMER FOX-2 DEW LINE SITE

REVISED FINAL REPORT - 2014

Longstaff Bluff, Nunavut

(O/Ref.: CD2655) (Y/Ref.: DLCMON (QIKIQ12)

DEFENCE CONSTRUCTION CANADA

NOVEMBER 2015

Presented to:

Nahed Farah

Defence Construction Canada

Written by:

Martin Fleury, P.Eng.

Project Manager

Verified by:

Jean-Pierre Pelletier, B. Sc., Chemist

Project Leader

Approved by:

Philippe Gélinas, P.Eng., M. Sc., M.B.A.

Team Leader

TABLE OF CONTENTS

1	OUT	LINE	1
	1.1	OBJECTIVE AND SCOPE OF WORK	1
	1.2	FIELD PROGRAM STAFF AND TIMING	1
	1.3	2014 WEATHER CONDITIONS	2
	1.4	REPORT FORMAT	2
2	MET	HODOLOGY	4
	2.1	VISUAL INSPECTION	4
	2.2	SOIL SAMPLING	4
	2.3	GROUNDWATER SAMPLING	6
	2.4	THERMAL MONITORING	6
	2.5	FIELD NOTES AND DATA	7
	2.6	QUALITY CONTROL	7
	2.7	QA/QC Procedures	7
	2.8	PROJECT REFERENCES	8
3	AIRS	STRIP CAMP LANDFILL LOBE A	9
	3.1	SUMMARY	9
	3.2	Preliminary Stability Assessment	12
	3.3	LOCATION PLAN	13
	3.4	PHOTOGRAPHIC RECORDS	15
	3.5	SOIL SAMPLE ANALYTICAL DATA	17
4	HAN	IGAR NON-HAZARDOUS WASTE LANDFILL	18
	4.1	SUMMARY	18
	4.2	PRELIMINARY STABILITY ASSESSMENT	21
	4.3	LOCATION PLAN	22
	4.4	PHOTOGRAPHIC RECORDS	24
	4.5	SOIL SAMPLE ANALYTICAL DATA	26
	4.6	GROUNDWATER SAMPLE ANALYTICAL DATA	27
	4.7	MONITORING WELL SAMPLING / INSPECTION LOGS	28

5	WES	ST LANDFILL LOBE E	33
	5.1	SUMMARY	33
	5.2	PRELIMINARY STABILITY ASSESSMENT	36
	5.3	LOCATION PLAN	37
	5.4	PHOTOGRAPHIC RECORDS	39
	5.5	SOIL SAMPLE ANALYTICAL DATA	41
6	TIER	R II DISPOSAL FACILITY	42
	6.1	SUMMARY	42
	6.2	Preliminary Stability Assessment	45
	6.3	LOCATION PLAN	46
	6.4	THERMISTOR ANNUAL MAINTENANCE REPORTS	48
	6.5	PHOTOGRAPHIC RECORDS	53
	6.6	SOIL SAMPLE ANALYTICAL DATA	55
	6.7	GROUNDWATER SAMPLE ANALYTICAL DATA	56
	6.8	MONITORING WELL SAMPLING / INSPECTION LOGS	57
7	UPP	ER SITE LANDFILL LOBE A	62
	7.1	SUMMARY	62
	7.2	Preliminary Stability Assessment	65
	7.3	LOCATION PLAN	66
	7.4	THERMISTOR ANNUAL MAINTENANCE REPORTS	68
	7.5	PHOTOGRAPHIC RECORDS	73
	7.6	SOIL SAMPLE ANALYTICAL DATA	75
	7.7	GROUNDWATER SAMPLE ANALYTICAL DATA	76
	7.8	MONITORING WELL SAMPLING / INSPECTION LOGS	77

LIST OF TABLES

Table I: 2014 Monitoring Requirements for FOX-2 Landfills	1
Table II: Summary of Soil Sampling at FOX-2 - August 2014	5
Table III: Summary of Groundwater Sampling at FOX-2 - August 2014	6
Table IV: Visual Inspection Checklist – Airstrip Camp Landfill Lobe A	.10
Table V: Preliminary Stability Assessment – Airstrip Camp Landfill Lobe A	.12
Table VI: Visual Inspection Photo Log – Airstrip Camp Landfill Lobe A	16
Table VII: Airstrip Camp Landfill Lobe A Summary Table for Soil Analytical Data	.17
Table VIII: Visual Inspection Checklist – Hangar Non-Hazardous Waste Landfill	.19
Table IX: Preliminary Stability Assessment – Hangar	21
Table X: Landfill Visual Inspection Photo Log – Hangar Non-Hazardous Waste Landfill	
Table XI: Hangar Non-Hazardous Waste Landfill Summary Table for Soil Analytical Data	
Table XII: Hangar Non-Hazardous Waste Landfill Summary Table for Groundwater Analytical Data	
Table XIII: Visual Inspection Checklist – West Landfill Lobe E	34
Table XIV: Preliminary Stability Assessment – West Landfill Lobe E	36
Table XV: Landfill Visual Inspection Photo Log – West Landfill Lobe E	40
Table XVI: West Landfill Lobe E Summary Table for Soil Analytical Data	41
Table XVII: Visual Inspection Checklist – Tier II Disposal Facility	43
Table XVIII: Preliminary Stability Assessment – Tier II Disposal Facility	45
Table XIX: Landfill Visual Inspection Photo Log – Tier II Disposal Facility	54
Table XX: Tier II Summary Table for Soil Analytical Data	55
Table XXI: Tier II Summary Table for Groundwater Analytical Data	56
Table XXII: Visual Inspection Checklist – Upper Site Landfill Lobe A	63

Table XXIII: Pre	liminary Stability Assessment – Upper Site Landfill Lobe A	65
Table XXIV: Lar	ndfill Visual Inspection Photo Log – Upper Site Landfill Lobe A	74
Table XXV: Upp	per Site Landfill Lobe A Summary Table for Soil Analytical Data	75
	pper Site Landfill Lobe A Summary Table for Groundwater Analytical	
LIST OF FIGUR	RES	
Figure 1 : FOX-	2.1 Longstaff Bluff - Overall Site Plan	3
Figure 2 : FOX-	2.2 Longstaff Bluff - Airstrip Camp Landfill Lobe A	14
Figure 3 : FOX-	2.3 Longstaff Bluff – Hangar Non-Hazardous Waste Landfill	23
Figure 4 : FOX-	2.4 Longstaff Bluff – West Landfill Lobe E	38
Figure 5 : FOX-	2.5 Longstaff Bluff - Tier II Disposal Facility	47
Figure 6 : FOX-	2.6 Longstaff Bluff - Upper Site Landfill Lobe A	67
LIST OF ANNE	XES	
ANNEX 1	Certificates of Analysis and QA/QC reports	
ANNEX 2	QA/QC Discussion	
ANNEX 3	Field Notes and COC Forms	
ANNEX 4	Range of the Report and Limitation of Responsibilities	

1 OUTLINE

1.1 OBJECTIVE AND SCOPE OF WORK

The objective of the Defence Construction Canada (DCC) Landfill Monitoring Program is to collect sufficient information to assess the performance of landfills at former Distance Early Warning (DEW) Line Sites that have been remediated from a geotechnical and environmental perspective. DCC has specified the requirements for the Landfill Monitoring Program in the document: Terms of Reference (TOR) – Services for the Collection of Landfill Monitoring Data CAM-5 Mackar Inlet, FOX-M Hall Beach, FOX-2 Longstaff Bluff, FOX-3 Dewar Lakes DEW Line Sites Nunavut Territory, Qikiqtaaluk Region DCC Project #: DLCMON(QIKIQ12), March 20, 2012. This report contains a summary of the findings from the 2014 inspection of the FOX-2 Longstaff Bluff site.

Table I below summarizes the monitoring requirements of the 2014 season. No deviations from the TOR were experienced while completing the 2014 monitoring.

Table I: 2014 Monitoring Requirements for FOX-2 Landfills

Landfill	Visual Inspection	Soil Sampling	Groundwater Sampling	Thermal Monitoring
Airstrip Camp Landfill Lobe A	✓	✓		
Hangar Non-Hazardous Waste Landfill	✓	✓	✓	
West Landfill Lobe E	✓	✓		
Tier II Disposal Facility	✓	√	✓	✓
Upper Site Landfill Lobe A	✓	✓	✓	✓

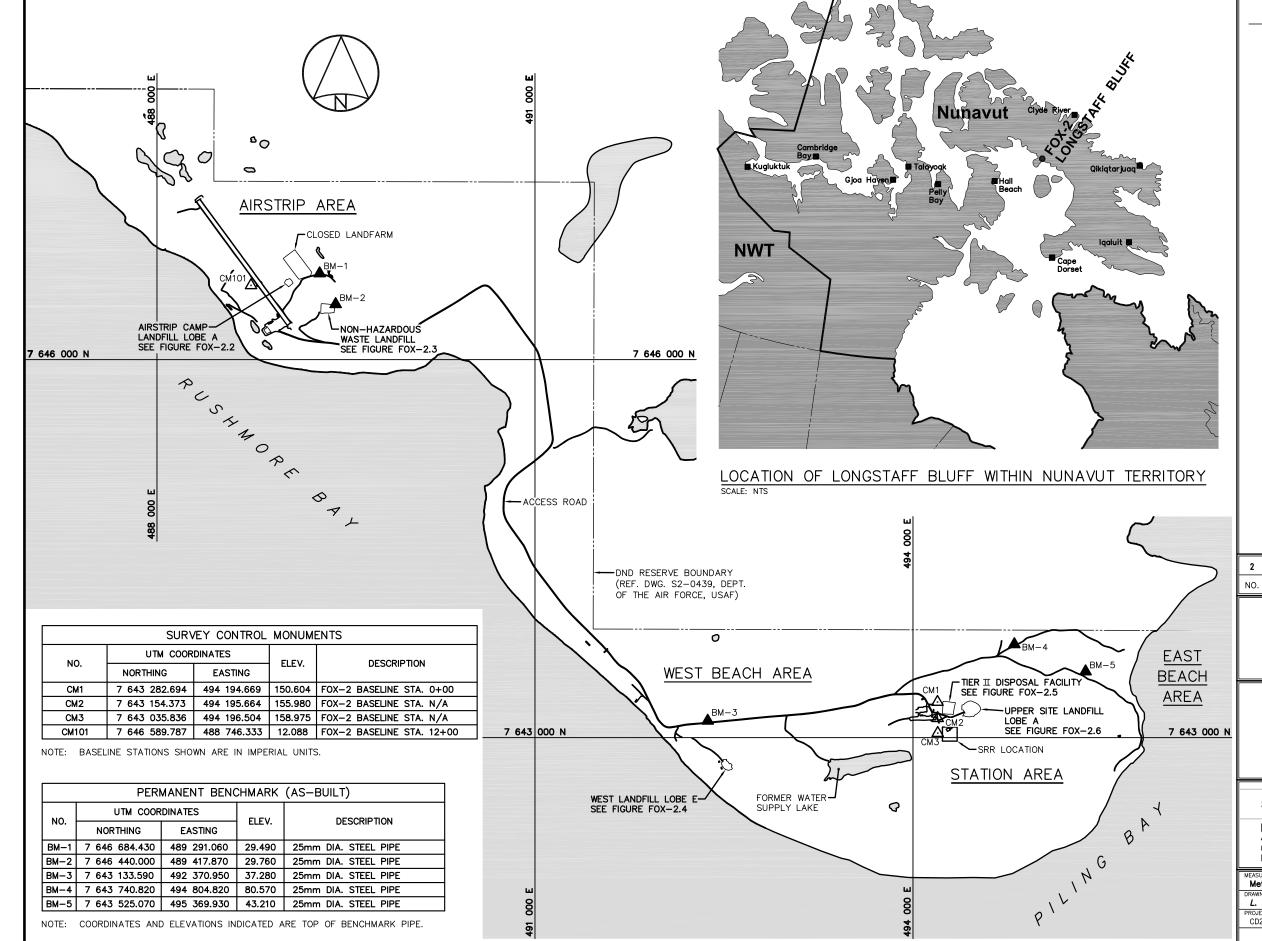
1.2 FIELD PROGRAM STAFF AND TIMING

The 2014 on-site field program at FOX-2 Longstaff Bluff took place from August 23 to August 26, 2014. Biogénie, a division of EnGlobe Corp. (Biogénie) subcontracted Sila Remediation Inc. (Sila), from Igloolik, Nunavut to perform the fieldwork. The Sila field program was to be executed by Mr. Martin Fleury with the assistance of four local representatives, whose names and responsibilities are detailed below:

- Mr. Martin Fleury, Project Engineer (Englobe);
- Mr. Caleb Qanatsiaq, Field Assistant (Sila);
- Mr. Philip Siakuluk, Field Assistant (Sila);
- Mr. George Inuksuk, Wildlife Monitor (Sila); and
- Mr. David Qanatsiaq, Wildlife Monitor (Sila).

1.3 2014 WEATHER CONDITIONS

Weather conditions at FOX-2 Longstaff Bluff were seasonably average, with temperatures ranging from 3 - 9 ℃ with high winds and no precipitation.


1.4 REPORT FORMAT

This report describes the work carried out in August 2014 at the five (5) landfill sites at FOX-2 Longstaff Bluff. Results from soil and groundwater sampling, thermal monitoring and visual inspection of the sites are also presented in the formats described in the TOR (Reference A). An electronic version of the report and its associated tables, figures and data files are included in an Addendum DVD-ROM, which is appended to this report.

The report is organized with a separate section for each of the landfill areas. Each section contains all relevant information for that landfill area for the 2014 Landfill Monitoring Program. The following information is provided in each landfill section:

- Visual inspection checklist;
- Visual inspection drawing mark-up;
- A selection of visual inspection photos;
- Thermal monitoring inspection reports (where applicable);
- Summary of 2014 soil analytical data (where applicable);
- Summary of 2014 groundwater analytical data (where applicable); and
- Monitoring well development/sampling reports (where applicable).

For the photographic records, the printed copy of the report includes an index image of photos for each of the landfill areas. The full resolution photos are included in electronic format in the Addendum DVD-ROM attached to this report. Certificates of Analyses, Quality Assurance/Quality Control (QA/QC) analytical results and field notes are attached in the Annexes.

LEGEND

— APPROXIMATE LOCATION OF PROPERTY BOUNDARY

Δ

SURVEY CONTROL MONUMENT

PERMANENT BENCHMARK LOCATION

BODY OF WATER

2	FINAL	15-11-10	P.L.	B.M.	M.F.
NO.	VERSION	DATE	BY	VERIF.	APPR

Construction de Défense Canada Defence Construction Canada

COLLECTION OF LANDFILL MONITORING DATA

FOX-2, LONGSTAFF BLUFF, NUNAVUT

OVERALL SITE PLAN

SITE REMEDIATION SOLUTIONS

Biogenie, a division of EnGlobe Corp. 4495 Wifrid-Hamel blvd, Suite 200 Quebec, (Quebec) CANADA G1P 2J7

Phone : 418-653-4422 www.biogenie-env.com

EASUREMENT UNIT Meter	SCALE: 1: 30,000	DATE (month-year): NOVEMBER 2015
RAWN BY: L. LA PIERRE	VERIFIED BY: B. MACKAY	APPROVED BY: M. FLEURY P. Eng.
ROJECT NO: CD2655_410_413	DRAWING NO: CD2655_410_413_101-FOX-2	PAGE 2_A PL

FIGURE FOX-2.1

4

2 METHODOLOGY

2.1 VISUAL INSPECTION

Data and information collected during the visual inspection of the FOX-2 landfills are included in the visual inspection data sheets. These data sheets include inspection data such as the location of settlement, erosion, frost action, sloughing and cracking, animal burrows, vegetation cover and stress, staining, seepage points, exposed debris, and any other features of note.

Each feature was identified with an alphabetical or numerical tag to be used consistently each year in an effort to track changes in conditions for each specific feature.

Digital photos were taken to illustrate the current state of the landfills as well as features of interest. Annotated sketches/diagrams are included in the report for each landfill.

The photos were taken with an Apple Ipad Air. Full resolution digital jpg copies are available on the DVD-ROM appended to this report. The photo log, including the local coordinates from where the photo was taken, orientation (relative to map north), features of note, and picture numbers are included with each landfill report.

2.2 SOIL SAMPLING

The soil sampling methodology conformed to guidance provided in the following Canadian Council of Ministers of the Environment (CCME) documents:

- CCME Guidance Document on the Management of Contaminated Sites in Canada, April 1997, CCME PN 1279. (CCME catalogue http://www.ccme.ca/pdfs/cat_eng.pdf).
- CCME EPC-NCS62E Guidance Manual on Sampling, Analysis, and Data Management for Contaminated Sites - Volume I: Main Report, Dec 1993 (CCME catalogue -http://www.ccme.ca/pdfs/cat_eng.pdf).
- CCME EPC-NCS66E Guidance Manual on Sampling, Analysis, and Data Management for Contaminated Sites - Volume II: Analytical Method Summaries, Dec. 1993 (CCME catalogue -http://www.ccme.ca/pdfs/cat_eng.pdf).
- Reference method for the Determination of Petroleum Hydrocarbons in Soil Tier I Method, 2001.
- CCME Subsurface Assessment Handbook for Contaminated Sites, March 1994, EPC-NCSRP-48E (CCME catalogue http://www.ccme.ca/pdfs/cat_eng.pdf).

Testpits were dug using a hand shovel down to refusal or permafrost. The shovel was cleaned between testpits. Soil samples were placed directly in the laboratory provided jars/bottles and were not mixed. Disposable nitrile glove were worn and disposed of after each sample collection. Jars/bottles were cleaned prior to placement into the cooler. For the 2014 monitoring event, 21 soil sampling stations were visited. A surface sample (0-15 cm in depth) and subsurface sample (40-50 cm in depth below surface) were taken at each sampling station. Depth samples were not collected at several locations due to the presence of bedrock. When applicable, the presence of bedrock is indicated in the Soil Sampling Analytical Data Summary tables for the various landfills.

As specified in the TOR (Reference A), the following soil sampling procedures were adhered to:

- Where required, the soil samples were collected from locations between a two to four metre radius of the monitoring wells.
- Blind field duplicates (10%) were collected for quality assurance and quality control purposes.
- Duplicate samples (10%) were also taken and sent to a second laboratory for quality control purposes.
- An additional 10% of soil samples taken were sent to the owner's representative (ESG OPS CENTRE) in Kingston for archiving as specified by DCC.

The soil samples were analyzed for requested parameters (TPH [F1-F3], total metals and PCBs) as specified in the TOR. It should be noted that 2 jars containing soil samples were broken during transportation. There is no indication from the laboratory as per which sample was lost. Exova confirmed that they still had enough soil to perform all requested analyses. Table II below summarizes the soil sampling at FOX-2 during the August 2014 field program:

Table II: Summary of Soil Sampling at FOX-2 - August 2014

Landfill Site	Soil Sample Locations					
Airstrip Landfill Lobe A	F2-1	F2-2	F2-3	F2-4		
Non-Hazardous Waste Landfill	MW-5	MW-6	MW-7	MW-8		
West Landfill	F2-5	F2-6	F2-7	F2-8		
West Landini	F2-9	-	-	-		
Tier II Disposal Facility	MW-9	MW-10	MW-11	MW-12		
Upper Site Landfill	MW-13	MW-14	MW-15	MW-16		

2.3 GROUNDWATER SAMPLING

The groundwater sampling methodology conformed to guidance provided in the following CCME documents:

- CCME EPC-NCS62E Guidance Manual on Sampling, Analysis and Data Management for Contaminated Sites - Volume I: Main Report, Dec 1993 (CCME catalogue - http://www.ccme.ca/pdfs/cat_eng.pdf).
- CCME EPC-NCS66E Guidance Manual on Sampling, Analysis and Data Management for Contaminated Sites - Volume II: Analytical Method Summaries, Dec. 1993 (CCME catalogue -http://www.ccme.ca/pdfs/cat_eng.pdf).

Wells were purged as specified and measurements of *in-situ* temperature, conductivity, and pH were taken. Sampling took place when these parameters were stabilized. The samples were not acidified and were not filtered (as directed in the TOR).

The 2014 field program included sampling four (12) monitoring wells at FOX-2; a summary of the groundwater sampling undertaken is summarized in Table III. As samples were not filtered, sediment was present in all but one groundwater sample (MW15) and required a digest which raised the RDL. The RDL for sample collected at MW15 is the usual RDL used by Exova. It should be noted that, although requested in the COC, Exova did not perform PHC Fraction F1 analysis. Concentrations measured in the QA samples sent to Maxxam are presented where applicable.

In sampled wells, no signs of free-phase hydrocarbon product were detected. Monitoring Well Development and Sampling Record forms are included in the appropriate sections in this report.

Table III. Sullinary of Groundwater Sampling at 1 OX-2 - August 2014								
Landfill Site	Groundwater Sample Locations							
Non-Hazardous Waste Landfill	MW-5 - dry	MW-6 - dry	MW-7 - dry	MW-8				
Tier II Disposal Facility	MW-9	MW-10	MW-11	MW-12				

MW-13

Table III: Summary of Groundwater Sampling at FOX-2 - August 2014

MW-14

MW-15

MW-16

2.4 THERMAL MONITORING

Upper Site Landfill

The 2014 thermal monitoring program at FOX-2 consisted of an inspection of the thermistors and data loggers, the downloading of all datasets, and the manual reading of thermistors. Specific detailed information regarding temperature data is contained in the Tier II Disposal Facility and Upper Site Landfill Lobe A sections of this report. The datalogger for VT-2 (Tier II disposal facility) was missing. Batteries were changed in all other dataloggers.

2.5 FIELD NOTES AND DATA

Field notes from the 2014 Landfill Monitoring Program, including soil and water sampling, are included in Annex 3 for reference. Notes were written in field books, previously prepared logs, or entered directly into a field computer. The notes were scanned into an Adobe pdf document for future reference and back up. Locations of all observations and features for the visual inspection were recorded using a Garmin GPS eTrex 30 hand-held GPS, which included a combination of continuous tracks and discrete waypoints. Datasets collected from the individual vertical thermistors were downloaded directly to a field laptop computer.

2.6 QUALITY CONTROL

It should be noted that, although samples were sent to Exova and Maxxam laboratories, only Exova's bottles/jars were used.

Sila implemented standard sample collection techniques to decrease the likelihood of compromising collected samples. The methods used for sample collection are summarized in Sections 2.2 and 2.3 of this report. The following measures were taken to minimize sample cross-contamination:

- All samples were placed directly into the appropriate laboratory-supplied containers (for the particular analysis).
- Soil samples were collected with the use of decontaminated sampling equipment and/or nitrile gloves that were used only once.
- Water samples were collected through the use of dedicated Waterra foot valves and tubing.

Chain-of-Custody (COC) forms were completed by the Project Engineer prior to mobilisation and finalised after sample collection. The samples were refrigerated prior to off-site shipment in chilled coolers by First Air Cargo directly to Maxxam Analytics Inc. (Maxxam) in Ottawa, Ontario (via Iqaluit), Exova in Ottawa, Ontario (via Iqaluit), and ESG in Kingston, Ontario (via Iqaluit), where they were checked in by laboratory representatives. All analyses were completed as specified on COC forms.

Annex 1 provides a sample integrity report from Exova. This report indicates that all samples received were acceptable for analysis.

2.7 QA/QC PROCEDURES

Sila used standard QA/QC procedures as specified in the TOR and CCME Guidance Documents for this project. The following is a summary of the analytical QA/QC samples collected:

- 10% Blind Duplicate Samples of soil and water were sent to Exova. Results can be found in Annex 1.
- 10% Inter-laboratory Duplicate Samples were sent to Maxxam (to determine if variation in procedures may cause significant difference in analytical results).
- 10% Archival Samples of soil were sent to ESG.

2.8 PROJECT REFERENCES

The following references are specifically relevant to the 2014 Landfill Monitoring activities:

- A. Invitation to Tender Contractor Services for the Collection of Landfill Monitoring Data: CAM-5 Mackar Inlet, FOX-M Hall Beach, FOX-2 Longstaff Bluff and FOX-3 Dewar Lakes DEW Line Sites Nunavut Territory Qikiqtaaluk Region. DCC Project #: DLCMON (QIKIQ12), March 20, 2012.
- B. Terms of Reference Services for the Collection of Landfill Monitoring Data: CAM-5 Mackar Inlet, FOX-M Hall Beach, FOX-2 Longstaff Bluff and FOX-3 Dewar Lakes DEW Line Sites Nunavut Territory Qikiqtaaluk Region. DCC Project #: DLCMON (QIKIQ12), March 20, 2012.
- C. Contractor Services for the Collection of Landfill Monitoring Data: CAM-5 Mackar Inlet, FOX-M Hall Beach, FOX-2 Longstaff Bluff and FOX-3 Dewar Lakes DEW Line Sites Nunavut Territory Qikiqtaaluk Region. Technical Proposal May 2012.
- D. Post-Field Progress Report, FOX-2 DEW Line Sites 2014, September 2014.

9

3 AIRSTRIP CAMP LANDFILL LOBE A

3.1 SUMMARY

On August 25, 2014 soil sampling and a visual inspection were completed at the Airstrip Camp Landfill Lobe A.

TPH fraction F3 was detected in surface soil sample at F2-8-2014 (80 mg/kg). No PCBs were detected in the collected soil samples. Elevated concentrations of most metals (with the exception of cadmium) were detected in most soil samples, with emphasis on arsenic, chromium and zinc.

As of 2014, no erosion features with "significant" or "unacceptable" severity ratings were identified in the Preliminary Stability Assessment of the Airstrip Camp Landfill Lobe A. There are isolated occurrences of ponding water at the south and southwest limits of the landfill. Areas of settlement/rough grading identified during the baseline and 2013 inspections were not observed in 2014. No exposed debris was noticed.

At this time, the overall performance of the landfill is rated as acceptable.

The Visual Inspection Checklist is included in Table IV of this report and has been completed as per the TOR. Please refer to Figure FOX-2.2 for a sketch of the Airstrip Camp Landfill Lobe A detailing the location of photographs and features.

Table IV: Visual Inspection Checklist – Airstrip Camp Landfill Lobe A

DEW LINE CLEANUP: POST-CONSTRUCTION - LANDFILL MONITORING VISUAL INSPECTION CHECKLIST

INSPECTION REPORT – PAGE 1 of 2

SITE NAME: FOX-2 Longstaff Bluff

LANDFILL DESIGNATION: Airstrip Camp Landfill Lobe A (Regrade Landfill)

DATE OF INSPECTION: August 25, 2014

DATE OF PREVIOUS INSPECTION: August 27, 2013

INSPECTED BY: M. Fleury

REPORT PREPARED BY: M. Fleury

MONITORING EVENT NUMBER: 3

The inspector/reporter represents to the best of his/her knowledge that the following statements and observations are true and correct and to the best of the preparer's actual knowledge, no material facts have been suppressed or misstated.

COLLECTION OF LANDFILL MONITORING DATA – REVISED FINAL REPORT, 2014
FOX-2 DISTANT EARLY WARNING LINE SITE, LONGSTAFF BLUFF, NUNAVUT

TABLE IV: AIRSTRIP CAMP LANDFILL VISUAL INSPECTION (PAGE 2 OF 2)

Checklist Item	Present (Y/N)	Feature Label	Location	Length (m)	Width (m)	Depth (m)	Extent Relative to Area of Landfill (%)	Description	Photographic Reference	Severity Rating	Additional Comments
	N	А	North portion of the landfill top	N/A	N/A	N/A	N/A	Area of rough grading / settlement observed in baseline and in 2013 inspections	4 and 5	N/A	Not observed during the 2014 inspection.
	N	В	East portion of the landfill top	N/A	N/A	N/A	N/A	Area of rough grading / settlement observed in baseline and in 2013 inspections	3	N/A	Not observed during the 2014 inspection.
Settlement	N	С	Southeast limit of the landfill top	N/A	N/A	N/A	N/A	Settlement observed in 2013	2 and 3	N/A	Not observed during the 2014 inspection.
	N	D	Southeast limit of the landfill top	N/A	N/A	N/A	N/A	Settlement observed in 2013	2 and 3	N/A	Not observed during the 2014 inspection.
	N	E	West portion of the landifll top	N/A	N/A	N/A	N/A	Area of rough grading / settlement observed in 2013	N/A	N/A	Not observed during the 2014 inspection.
Erosion	N	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Frost Action	N	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Animal Burrows	N	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Vegetation	N	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Staining	N	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Vegetation Stress	N	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Seepage Points	Y	F	South limit of the landfill	8	4	0.1	1%	Ponding water	23	Acceptable	Thin layer of soil with underlying bedrock. No Signficant Change from Previous Observation.
Geepage Forms	'	G	Southwest limit of the landfill	4	20	0.15	4%	Ponding water	25	Acceptable	Thin layer of soil with underlying bedrock. No Signficant Change from Previous Observation.
Debris Exposed	N	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Presence / Condition of Monitoring Instruments	N	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Other Features of Note	N	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A

Legend : N/A Not applicable

11

3.2 PRELIMINARY STABILITY ASSESSMENT

The Preliminary Stability Assessment for the Airstrip Camp Landfill Lobe A has been completed as per the TOR and is included as Table V hereafter.

Table V: Preliminary Stability Assessment - Airstrip Camp Landfill Lobe A

Feature	Severity Rating	Extent
Settlement	Not observed	None
Erosion	Not observed	None
Frost Action	Not observed	None
Staining	Not observed	None
Vegetation Stress	Not observed	None
Seepage/Ponded Water	Acceptable	Isolated
Debris Exposure	Not observed None	
Overall Landfill Performance	Accep	otable

Performance/Severity Rating	Description
Acceptable	Noted features are of little consequence. The landfill is performing as designed. Minor deviations in environmental or physical performance may be observed, such as isolated areas of erosion, settlement.
Marginal	Physical/environmental performance appears to be deteriorating with time. Observations may include an increase in size or number of features of note, such as differential settlement, erosion or cracking. No significant impact on landfill stability to-date, but potential for failure is assessed as low or moderate.
Significant	Significant or potentially significant changes affecting landfill stability, such as significant changes in slope geometry, significant erosion or differential settlement; scarp development. The potential for failure is assessed as imminent.
Unacceptable	Stability of the landfill is compromised to the extent that the ability to contain waste materials is compromised. Examples may include: Debris exposed in erosion channels or areas of differential settlement. Liner exposed. Slope failure.
Extent	Description
Isolated	Singular feature.
Occasional	Features of note occurring at irregular intervals/locations.
Numerous	Many features of note, impacting less than 50% of the surface area of the landfill.
Extensive	Impacting greater than 50% of the surface area of the landfill.

3.3 LOCATION PLAN

The Location Plan for the Airstrip Camp Landfill Lobe A has been completed as per the TOR and is presented in Figure FOX-2.2.

3.4 PHOTOGRAPHIC RECORDS

The Photographic Record for Airstrip Camp Landfill Lobe A has been completed as per the TOR and is included as Table VI hereafter. Full-sized photographs are contained in the Addendum DVD-ROM.

Table VI: Visual Inspection Photo Log – Airstrip Camp Landfill Lobe A

Site Name: FOX-2, Longstaff Bluff
Landfill: Airstrip Camp Landfill
Date Inspected: August 25, 2014
Inspected by: Martin Fleury

Photo	Filename	Size (KB)	Date	Vantage	Point	Caption
Photo	riiename	Size (NB)	Date	Easting	Northing	Сариоп
1	IMG_0483	2 595	2014-08-25	18 W 489074	7646630	West view of F2-6-2014 soil sampling location.
2	IMG_0484	2 176	2014-08-25	18 W 489080	7646609	Panoramic view of the Airstrip Camp Landfill top, Southwest.
3	IMG_0485	2 199	2014-08-25	18 W 489080	7646609	Panoramic view of the Airstrip Camp Landfill top, West - Southwest.
4	IMG_0486	2 172	2014-08-25	18 W 489080	7646609	Panoramic view of the Airstrip Camp Landfill top, West - Northwest.
5	IMG_0487	2 160	2014-08-25	18 W 489080	7646609	Panoramic view of the Airstrip Camp Landfill top, Northwest.
6	IMG_0488	1 969	2014-08-25	18 W 489005	7646593	Panoramic view of the Airstrip Camp Landfill top, North.
7	IMG_0489	1 988	2014-08-25	18 W 489005	7646593	Panoramic view of the Airstrip Camp Landfill top, Northeast.
8	IMG_0490	1 958	2014-08-25	18 W 489005	7646593	Panoramic view of the Airstrip Camp Landfill top, East.
9	IMG_0491	1 932	2014-08-25	18 W 489005	7646593	Panoramic view of the Airstrip Camp Landfill top, Southeast.
10	IMG_0492	1 908	2014-08-25	18 W 489005	7646593	Panoramic view of the Airstrip Camp Landfill top, South - Southeast.
11	IMG_0493	2 590	2014-08-25	18 W 489033	7646633	Northeast view of the Airstrip Camp Landfill northern limit.
12	IMG_0494	3 261	2014-08-25	18 W 489074	7646630	View of the F2-6-2014 soil sampling location.
13	IMG_0495	2 774	2014-08-25	18 W 489074	7646630	Northwest view of the F2-6-2014 soil sampling location.
14	IMG_0496	3 128	2014-08-25	18 W 489074	7646630	Northwest view of the F2-6-2014 soil sampling location.
15	IMG_0497	2 879	2014-08-25	18 W 489006	7646617	Southeast view of F2-7-2014 soil sampling location.
16	IMG_0499	2 920	2014-08-25	18 W 489050	7646616	General Northeast view of the Landfill top.
17	IMG_0500	3 131	2014-08-25	18 W 489006	7646617	View of F2-7-2014 soil sampling location.
18	IMG_0501	3 077	2014-08-25	18 W 489006	7646617	Southeast view of F2-7-2014 soil sampling location.
19	IMG_0502	2 714	2014-08-25	18 W 489013	7646599	Southeast view of F2-8-2014 soil sampling location.
20	IMG_0505	2 574	2014-08-25	18 W 489013	7646599	East view of F2-8-2014 soil sampling location.
21	IMG_0506	3 067	2014-08-25	18 W 489013	7646599	Northeast view of F2-8-2014 soil sampling location.
22	IMG_0507	2 817	2014-08-25	18 W 489037	7646580	Northeast view of F2-9-2014 soil sampling location.
23	IMG_0508	1 883	2014-08-25	18 W 489048	7646577	North view of a ponding water location (Feature F).
24	IMG_0509	2 187	2014-08-25	18 W 489037	7646580	View of F2-9-2014 soil sampling location.
25	IMG_0510	2 505	2014-08-25	18 W 489020	7646594	Northwest view of a ponding water location (Feature G).

3.5 SOIL SAMPLE ANALYTICAL DATA

The soil chemical analysis results for the 2014 Airstrip Camp Landfill Lobe A samples are presented in Table VII hereafter. Certificates of analysis and results of field duplicates collected as part of the QA/QC program are presented in Annex 1 at the end of this report. It should be noted that sample numbers have been altered. Please refer to Annex 1 for the sample ID key.

Table VII: Airstrip Camp Landfill Lobe A Summary Table for Soil Analytical Data

													F1	F2	F3
Sample #	Location	Depth [cm]	Cu [mg/kg]	Ni [mg/kg]	Co [mg/kg]	Cd [mg/kg]	Pb [mg/kg]	Zn [mg/kg]	Cr [mg/kg]	As [mg/kg]	Hg [mg/kg]	PCBs [mg/kg]	C ₆ -C ₁₀ [mg/kg]	C ₁₀ -C ₁₆ [mg/kg]	C ₁₆ -C ₃₄ [mg/kg]
RDL - Exova			1	1	1	0.5	1	2	1	1	0.1	0.02	10	10	20
Upgradient Soil Sample	s		•	•	•		•	•		•	•				
F2-6-A-2014	F2-6	0 - 10	91	96	19	<0.5	10	143	79	39	<0.1	< 0.02	<10	<10	<20
F2-6-B-2014	FZ-0	40 - 50	74	62	13	<0.5	4	95	107	21	<0.1	< 0.02	<10	<10	<20
Downgradient Soil Sam	ples														
F2-7-A-2014	F2-7	0 - 10	50	52	14	<0.5	9	93	86	39	<0.1	< 0.02	<10	<10	<20
F2-7-B-2014	ΓΖ-/	40 - 50	46	48	14	<0.5	9	95	61	31	<0.1	< 0.02	<10	<10	<20
F2-8-A-2014	F2-8	0 - 10	50	58	14	<0.5	9	92	93	42	<0.1	< 0.02	<10	<10	<20
F2-8-B-2014	1 2-0	40 - 50	55	61	16	<0.5	10	89	101	108	<0.1	< 0.02	<10	<10	<20
F2-9-A-2014	F2-9	0 - 10	69	82	24	<0.5	24	132	121	46	<0.1	< 0.02	<10	<10	80
F2-9-B-2014] FZ-9	40 - 50	65	85	17	< 0.5	11	119	151	35	<0.1	< 0.02	<10	<10	<20

4 HANGAR NON-HAZARDOUS WASTE LANDFILL

4.1 SUMMARY

The visual inspection of the Hangar Non-Hazardous Waste Landfill was completed on August 25, 2014. Soil samples and groundwater samples were collected during the 2014 monitoring.

TPH fraction F3 was detected in the surface soil sample at location MW-6 (60 mg/kg). No relatively high metal concentrations or PCBs were detected in the collected soil samples. Elevated concentrations of most metals (with the exception of cadmium) were detected in most soil samples, with emphasis on chromium, nickel and zinc.

Groundwater quantity was sufficient to perform sampling for analysis of all required parameters at MW-8 only. Monitoring wells MW-5 and 7 were either dry or frozen and MW-6 did not have enough to allow sampling. No TPH, PCBs or elevated concentration of metals were detected in the sample collected at MW-8. As samples were not filtered, sediment was present and required a digest which raised the RDL.

As of the 2014 monitoring event, no features were identified as "significant" or "unacceptable." Occasional areas of minor settlement observed during the 2013 inspection were not observed in 2014. No erosion features or exposed debris were noticed.

At this time, the overall performance of the landfill is rated as acceptable.

The Visual Inspection Checklist has been completed as per the TOR and is included as Table VIII of this report. Please refer to Figure Fox 2.3 for a sketch of the Hangar Non-Hazardous Waste Landfill detailing the location of photographs and features.

Table VIII: Visual Inspection Checklist – Hangar Non-Hazardous Waste Landfill

DEW LINE CLEANUP: POST-CONSTRUCTION - LANDFILL MONITORING VISUAL INSPECTION CHECKLIST

INSPECTION REPORT – PAGE 1 of 2

SITE NAME: FOX-2 Longstaff Bluff

LANDFILL DESIGNATION: Hangar Non-Hazardous Waste Landfill (New Landfill)

DATE OF INSPECTION: August 25, 2014

DATE OF PREVIOUS INSPECTION: August 27, 2013

INSPECTED BY: M. Fleury

REPORT PREPARED BY: M. Fleury

MONITORING EVENT: 3

The inspector/reporter represents to the best of his/her knowledge that the following statements and observations are true and correct and to the best of the preparer's actual knowledge, no material facts have been suppressed or misstated.

COLLECTION OF LANDFILL MONITORING DATA – REVISED FINAL REPORT, 2014
FOX-2 DISTANT EARLY WARNING LINE SITE, LONGSTAFF BLUFF, NUNAVUT

TABLE VIII: HANGAR NON-HAZARDOUS WASTE LANDFILL VISUAL INSPECTION (PAGE 2 OF 2)

Not applicable

Checklist Item	Present (Y/N)	Feature Label	Location	Length (m)	Width (m)	Depth (m)	Extent Relative to Area of Landfill (%)	Description	Photographic Reference	Severity Rating	Additional Comments
	N	А	East portion of the landfill top	N/A	N/A	N/A	N/A	Settlement observed in 2013	N/A	N/A	Not observed during the 2014 inspection.
Settlement	N	В	East limit of the landfill top	N/A	N/A	N/A	N/A	Settlement observed in 2013	N/A	N/A	Not observed during the 2014 inspection.
	N	С	North limit of the landfill top	N/A	N/A	N/A	N/A	Settlement observed in 2013	N/A	N/A	Not observed during the 2014 inspection.
Erosion	N	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Frost Action	N	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Animal Burrows	N	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Vegetation	N	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Staining	N	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Vegetation Stress	N	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Seepage Points	N	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
		N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Debris Exposed	N	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
		F2-MW-5	East - Northeast side of the landfill	N/A	N/A	N/A	N/A	Groundwater Monitoring Well	1	N/A	Well in good condition - Dry or frozen.
Presence / Condition of		F2-MW-6	West - Northwest side of the landfill	N/A	N/A	N/A	N/A	Groundwater Monitoring Well	20	N/A	Well in good condition - Dry or frozen.
Monitoring Instruments	Y	F2-MW-7	West side of the landfill	N/A	N/A	N/A	N/A	Groundwater Monitoring Well	18	N/A	Well in good condition - Dry or frozen.
		F2-MW-8	West - Southwest side of the landfill	N/A	N/A	N/A	N/A	Groundwater Monitoring Well	N/A	N/A	Good condition.
Other Features of Note	N	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A

Legend: N/A

4.2 PRELIMINARY STABILITY ASSESSMENT

The Preliminary Stability Assessment for the Hangar Non-Hazardous Waste Landfill has been completed as per the TOR and is included as Table IX hereafter.

Table IX: Preliminary Stability Assessment – Hangar

Feature	Severity Rating	Extent
Settlement	Not observed	None
Erosion	Not observed	None
Frost Action	Not observed	None
Staining	Not observed	None
Vegetation Stress	Not observed	None
Seepage/Ponded Water	Not observed	None
Debris Exposure	Not observed	None
Overall Landfill Performance	Acc	eptable

Performance/Severity Rating	Description
Acceptable	Noted features are of little consequence. The landfill is performing as designed. Minor deviations in environmental or physical performance may be observed, such as isolated areas of erosion, settlement.
Marginal	Physical/environmental performance appears to be deteriorating with time. Observations may include an increase in size or number of features of note, such as differential settlement, erosion or cracking. No significant impact on landfill stability to-date, but potential for failure is assessed as low or moderate.
Significant	Significant or potentially significant changes affecting landfill stability, such as significant changes in slope geometry, significant erosion or differential settlement; scarp development. The potential for failure is assessed as imminent.
Unacceptable	Stability of the landfill is compromised to the extent that the ability to contain waste materials is compromised. Examples may include: Debris exposed in erosion channels or areas of differential settlement. Liner exposed. Slope failure.
Fretont	
Extent	Description
Isolated	Singular feature.
Occasional	Features of note occurring at irregular intervals/locations.
Numerous	Many features of note, impacting less than 50% of the surface area of the landfill.
Extensive	Impacting greater than 50% of the surface area of the landfill.

4.3 LOCATION PLAN

The Location Plan for the Hangar Non-Hazardous Waste Landfill has been completed as per the TOR and is presented in Figure FOX-2.3.

LEGEND

▲BM-2 APPROXIMATE PERMANENT BENCHMARK LOCATION

MONITORING WELL LOCATION

BACKGROUND MONITORING WELL LOCATION

SOIL SAMPLING LOCATION

PHOTOGRAPH VIEWPOINT LOCATION

2	FINAL	15-11-10	P.L.	B.M.	M.F.
NO.	VERSION	DATE	BY	VERIF.	APPR

COLLECTION OF LANDFILL MONITORING DATA

FOX-2, LONGSTAFF BLUFF, NUNAVUT

HANGAR NON-HAZARDOUS WASTE LANDFILL

SITE REMEDIATION SOLUTIONS

Biogenie, a division of EnGlobe Corp. 4495 Wilfrig-Hamel blvd, Suite 200 Quebec, (Quebec) CANADA G1P 2J7 Phone: 418-653-4422 www.biogenie-env.com

DATE (month-year): NOVEMBER 2015	
	-

MEASUREMENT UNIT	SCALE:	DATE (month-year):
Meter	1 : 750	NOVEMBER 2015
DRAWN BY:	VERIFIED BY:	APPROVED BY:
L. LA PIERRE	B. MACKAY	M. FLEURY P. Eng.
PROJECT NO:	DRAWING NO:	PAGE
CD2655_410_413	CD2655_410_413_101-FOX-2	2_C PL

FIGURE FOX-2.3

4.4 PHOTOGRAPHIC RECORDS

The Photographic Record for the Hangar Non-Hazardous Waste Landfill has been completed as per the TOR and is included in the following pages as Table X. Full-sized photographs are contained in the Addendum DVD-ROM.

Table X: Landfill Visual Inspection Photo Log – Hangar Non-Hazardous Waste Landfill

Site Name:

FOX-2, Longstaff Bluff Hangar Non-Hazardous Waste Landfill August 25, 2014 Landfill:

Date Inspected: Martin Fleury Inspected by:

Dhata	File manne	Cina (IVD)	Data	Vantage	Point	Constan
Photo	Filename	Size (KB)	Date	Easting	Northing	Caption
1	IMG_0451	2 106	2014-08-25	18 W 489418	7646429	Southeast view of MW-5.
2	IMG_0452	2 430	2014-08-25	18 W 489422	7646429	Northwest view of F2-MW-5-S soil sampling location.
3	IMG_0453	2 115	2014-08-25	18 W 489413	7646431	South view of the eastern slope of the Landfill.
4	IMG_0454	2 217	2014-08-25	18 W 489413	7646431	West view of the eastern slope of the Landfill.
5	IMG_0455	1 794	2014-08-25	18 W 489404	7646442	Panoramic view of the Landfill North and East slopes, South.
6	IMG_0456	1 998	2014-08-25	18 W 489404	7646442	Panoramic view of the Landfill North and East slopes, South - Southwest.
7	IMG_0457	2 000	2014-08-25	18 W 489404	7646442	Panoramic view of the Landfill North and East slopes, West - Southwest.
8	IMG_0458	1 771	2014-08-25	18 W 489404	7646442	Panoramic view of the Landfill North and East slopes, West.
9	IMG_0459	2 473	2014-08-25	18 W 489388	7646387	Panoramic view of the Landfill top, North - Northeast.
10	IMG_0460	2 312	2014-08-25	18 W 489388	7646387	Panoramic view of the Landfill top, North.
11	IMG_0461	2 189	2014-08-25	18 W 489388	7646387	Panoramic view of the Landfill top, Northwest.
12	IMG_0462	2 282	2014-08-25	18 W 489388	7646387	Panoramic view of the Landfill top, West.
13	IMG_0463	2 098	2014-08-25	18 W 489388	7646387	Panoramic view of the Landfill Area, Southwest.
14	IMG_0464	2 289	2014-08-25	18 W 489388	7646387	Panoramic view of the Landfill Area, Southeast.
15	IMG_0465	2 452	2014-08-25	18 W 489388	7646387	Panoramic view of the Landfill Area, East.
16	IMG_0466	2 498	2014-08-25	18 W 489422	7646429	Northwest view of F2-MW-5-S soil sampling location.
17	IMG_0467	2 957	2014-08-25	18 W 489293	7646444	South view of F2-MW-8-S soil sampling location.
18	IMG_0468	2 379	2014-08-25	18 W 489286	7646402	Southeast view of F2-MW-7-S soil sampling location.
19	IMG_0469	2 479	2014-08-25	18 W 489286	7646399	East view of MW-7.
20	IMG_0470	2 351	2014-08-25	18 W 489298	7646360	Northeast view of MW-6.
21	IMG_0471	2 302	2014-08-25	18 W 489298	7646360	View of MW-6.
22	IMG_0472	2 455	2014-08-25	18 W 489301	7646361	East view of F2-MW-6-S soil sampling location.
23	IMG_0473	1 891	2014-08-25	18 W 489291	7646362	Panoramic view of the Landfill West and South slopes, North view.
24	IMG_0474	2 193	2014-08-25	18 W 489291	7646362	Panoramic view of the Landfill West and South slopes, Northeast view.
25	IMG_0475	1 947	2014-08-25	18 W 489291	7646362	Panoramic view of the Landfill West and South slopes, East view.
26	IMG_0476	2 372	2014-08-25	18 W 489317	7646388	Panoramic view of the Landfill top, North - Northwest view.
27	IMG_0477	2 517	2014-08-25	18 W 489317	7646388	Panoramic view of the Landfill top, North view.
28	IMG_0478	2 437	2014-08-25	18 W 489317	7646388	Panoramic view of the Landfill top, North - Northeast view.
29	IMG_0479	2 286	2014-08-25	18 W 489317	7646388	Panoramic view of the Landfill top, East - Northeast view.
30	IMG_0480	2 546	2014-08-25	18 W 489317	7646388	Panoramic view of the Landfill top, East view.
31	IMG_0481	2 210	2014-08-25	18 W 489317	7646388	Panoramic view of the Landfill Area, South view.
32	IMG_0482	2 889	2014-08-25	18 W 489301	7646361	Northeast view of F2-MW-6-S soil sampling location.

4.5 SOIL SAMPLE ANALYTICAL DATA

The soil chemical analysis results for the 2014 Hangar Non-Hazardous Waste Landfill samples are presented in Table XI hereafter. Certificates of analyses and results of field duplicates collected as part of the QA/QC program are presented in Annex 1 at the end of this report.

Table XI: Hangar Non-Hazardous Waste Landfill Summary Table for Soil Analytical Data

													F1	F2	F3
Sample #	Location	Depth [cm]	Cu [mg/kg]	Ni [mg/kg]	Co [mg/kg]	Cd [mg/kg]	Pb [mg/kg]	Zn [mg/kg]	Cr [mg/kg]	As [mg/kg]	Hg [mg/kg]	PCBs [mg/kg]	C ₆ -C ₁₀ [mg/kg]	C ₁₀ -C ₁₆ [mg/kg]	C ₁₆ -C ₃₄ [mg/kg]
RDL - Exova			1	1	1	0.5	1	2	1	1	0.1	0.02	10	10	20
Upgradient Soil Sample	s														
F2-MW-5-S-A-2014	MW5	0 - 10	25	46	15	<0.5	6	94	103	19	<0.1	< 0.02	<10	<10	<20
F2-MW-5-S-B-2014	IVIVVO	40 - 50	31	44	13	<0.5	4	93	103	26	<0.1	< 0.02	<10	<10	<20
Downgradient Soil Sam	ples														
F2-MW-6-S-A-2014	MW6	0 - 10	59	84	18	<0.5	6	110	165	19	<0.1	< 0.02	<10	<10	60
F2-MW-6-S-B-2014	IVIVVO	40 - 50	90	99	23	<0.5	8	119	146	36	<0.1	< 0.02	<10	<10	<20
F2-MW-7-S-A-2014	MW7	0 - 10	82	107	21	< 0.5	11	109	168	27	<0.1	< 0.02	<10	<10	<20
F2-MW-7-S-B-2014	IVIVV /	40 - 50	56	59	13	<0.5	9	75	103	16	<0.1	< 0.02	<10	<10	<20
F2-MW-8-S-A-2014	MW8	0 - 10	77	123	44	<0.5	12	163	140	27	<0.1	< 0.02	<10	<10	<20
F2-MW-8-S-B-2014	IVIVO	40 - 50	55	101	27	<0.5	9	126	142	58	<0.1	< 0.02	<10	<10	<20

4.6 GROUNDWATER SAMPLE ANALYTICAL DATA

Groundwater could only be sampled at MW-8. As PHC fraction F1 analysis was not performed by Exova, the result from Maxxam (and associated RDL) is presented in Table XII. The groundwater chemical analyses results and evaluation for the analytical data for the 2014 Hangar Non-Hazardous Waste Landfill samples are presented in Table XII hereafter. As samples were not filtered, sediment was present and required a digest which raised the RDL. Certificates of analyses and results for groundwater samples collected as part of the QA/QC program are presented in Annex 1 at the end of this report.

Table XII: Hangar Non-Hazardous Waste Landfill Summary Table for Groundwater Analytical Data

							_					F1	F2	F3
Sample #	Location	Cu [mg/L]	Ni [ma/L]	Co	Cd [mg/L]	Pb [mg/L]	Zn [mg/L]	Cr [mg/L]	As [mg/L]	Hg [mg/L]	PCBs [ug/L]	C ₆ -C ₁₀	C ₁₀ -C ₁₆	C ₁₀ -C ₃₄
		[mg/L]	[mg/L]	[mg/L]	[IIIg/L]	[IIIg/L]	[mg/L]	[IIIg/L]	[IIIg/L]	[mg/L]	[ug/L]	[mg/L]	[mg/L]	[mg/L]
RDL - Exova	-	0.01	0.01	0.01	0.008	0.01	0.04	0.05	0.02	0.0001	0.1	0.025*	0.1	0.2
Upgradient Groundw	ater Sampl	е												
F2-MW-5-2014	MW5						Insufficie	ent Water to	o Sample					
Downgradient Groun	dwater Sar	nples												
F2-MW-6-2014	F2-MW-6-2014 MW6 Insufficient Water to Sample													
F2-MW-7-2014 MW7 Insufficient Water to Sample														
F2-MW-8-2014	MW8	0.06	0.28	0.05	<0.008	0.01	0.12	<0.05	0.04	<0.0001	<0.1	<0.025*	<0.1	<0.2

^{*:} RDL and Concentration from Maxxam

4.7 Monitoring Well Sampling / Inspection Logs

The monitoring well sampling logs for MW-5 to MW-8 are presented in this section. Monitoring Wells 5 and 7 were dry while MW-6 did not have enough water to allow sampling. All wells appear in good condition.

Develo	pment of	Monitoring Wells	
Site Name:	FOX-2	Longstaff Bluff	
Date of Sampling Event:	2014-08-25	Time:	10:15
Names of Samplers:		Martin Fleury	
		Caleb Qanatsiaq	
		Philip Siakuluk	
Landfill Name:		Non-Hazardous Waste Landfill	
Monitoring Well ID:			
Sample Number:			
Condition of Well:	Good		
Measured Data			
Well pipe height above ground (cm)=	37		
Diameter of well (cm)=	5		
Depth of well installation (cm)=	3400		
(from ground surface)			
Length screened section (cm)=	3000		
Depth to top of screen (cm)=	400		
(from ground surface)	400		
Depth to water surface (cm)=	dry	Measurement method: (meter,	Interface meter
•	dry	`	intenace meter
(from top of pipe) Static water level (cm)=	dry	tape, etc.)	
• • •	ury		
(below ground surface) Measured well refusal depth BGS	133	Evidence of sludge or siltation:	Frozen
·	133	Evidence of sludge of silitation.	Fiozeii
(cm)=	NA		
Thickness of water column (cm)=			
Static volume of water in well (mL)=	NA		
Free product thickness (mm)=	NA	Measurement method: (meter,	Interface meter
		paste, etc.)	
Division A/AD	N.	Durging/Compiling Facilities	Motorus tubica
Purging: (Y/N)		Purging/Sampling Equipment:	
Volume Purged Water (L)=	NA	Dedicated Mataus Tubban	Foot Valve
Decontamination required: (Y/N)	N	Dedicated Waterra Tubing	
Number washes:	NA		
Number rinses:	NA		
Final pH=	NA		
Final Conductivity (uS/cm)=	NA		
Final Temperature (degC)=	NA NA		
i mai Temperature (dego)=	INA		

Development of Monitoring Wells			
Site Name:	FOX-2	Longstaff Bluff	
Date of Sampling Event:	2014-08-25	Time:	11:45
Names of Samplers:		Martin Fleury	
		Caleb Qanatsiaq	
		Philip Siakuluk	
Landfill Name:		Non-Hazardous Waste Landfill	
Monitoring Well ID:			
Sample Number:			
Condition of Well:	Good		
Measured Data			
	OF		
Well pipe height above ground (cm)=	25		
Diameter of well (cm)=	5		
Depth of well installation (cm)=	3500		
(from ground surface)	0000		
Length screened section (cm)=	3000		
Depth to top of screen (cm)=	440		
(from ground surface)			
Depth to water surface (cm)=	223	Measurement method: (meter,	Interface meter
(from top of pipe)		tape, etc.)	
Static water level (cm)=	198	ιαρο, στο.,	
(below ground surface)	.00		
Measured well refusal depth BGS	215	Evidence of sludge or siltation:	Frozen
(cm)=	2.0	_ washes or slaags or smallern	1102011
Thickness of water column (cm)=	17		
Static volume of water in well (mL)=	340	not enough water for sampling	
Free product thickness (mm)=	NA	Measurement method: (meter,	Interface meter
		paste, etc.)	
Purging: (Y/N)	N	Purging/Sampling Equipment:	Matarra tubina
Volume Purged Water (L)=	NA NA	ranging/sampling Equipment:	Foot Valve
Decontamination required: (Y/N)		Dodinated Waterra Tubina	1 UUL V dIVE
	N NA	Dedicated Waterra Tubing	
Number vises:	NA NA		
Number rinses:	NA		
Final all	NIA		
Final Conductivity (US/om)	NA NA		
Final Conductivity (uS/cm)=	NA NA		
Final Temperature (degC)=	NA		

Develo	pment of	Monitoring Wells	
		-	
Site Name:	FOX-2	Longstaff Bluff	
Date of Sampling Event:	2014-08-25	•	11:25
Names of Samplers:		Martin Fleury	
·		Caleb Qanatsiaq	
		Philip Siakuluk	
Landfill Name:	Hangar	Non-Hazardous Waste Landfill	
Monitoring Well ID:			
Sample Number:			
Condition of Well:			
Measured Data			
Well pipe height above ground (cm)=	29		
Diameter of well (cm)=			
Depth of well installation (cm)=			
(from ground surface)			
Length screened section (cm)=	3000		
(e)			
Depth to top of screen (cm)=	350		
(from ground surface)			
Depth to water surface (cm)=		Measurement method: (meter,	Interface meter
(from top of pipe)		•	interface meter
Static water level (cm)=		tape, etc.)	
` ,	` • ′		
(below ground surface) Measured well refusal depth BGS		Evidence of sludge or siltation:	Frozen
•	214	Evidence of studge of stitution.	1 102611
(cm)= Thickness of water column (cm)=	NA (dry)		
, ,			
Static volume of water in well (mL)=	NA (dry)		
Free product thickness (mm)=	NA	Measurement method: (meter,	Interface meter
		paste, etc.)	
Purging: (Y/N)	N	Purging/Sampling Equipment:	Waterra tubing
Volume Purged Water (L)=	NA		Foot Valve
Decontamination required: (Y/N)	N	Dedicated Waterra Tubing	
Number washes:			
Number rinses:	NA		
Final pH=	NA		
Final Conductivity (uS/cm)=	NA		
Final Temperature (degC)=			
- pr (ge)	1		

pment of	Monitoring Wells	
	· ·	
2014-08-25		10:45
	Philip Siakuluk	
	Non-Hazardous Waste Landfill	
Good		
39		
500		
190	Measurement method: (meter,	Interface meter
	tape, etc.)	
151		
210	Evidence of sludge or siltation:	Frozen
59		
1180		
NA	Measurement method: (meter,	Interface meter
	paste, etc.)	
	Puraina/Samplina Equipment:	Waterra tubina
	r diging/Sampling Equipment.	Foot Valve
	Dodicated Waterra Tubina	i ool vaive
	Dedicated Waterra Tubing	
INA		
6.54		
	FOX-2 2014-08-25 Hangar MW-8 MW-8-2014 Good 39 5 3500 3000 500 190 151 210 59 1180	Time: Martin Fleury Caleb Qanatsiaq Philip Siakuluk Hangar Non-Hazardous Waste Landfill MW-8 MW-8-2014 Good 39 5 3500 190 Measurement method: (meter, tape, etc.) 151 210 Evidence of sludge or siltation: 59 1180 NA Measurement method: (meter, paste, etc.) Y Purging/Sampling Equipment: 1.5 N Dedicated Waterra Tubing NA NA 6.54 461

33

5 WEST LANDFILL LOBE E

5.1 SUMMARY

On August 24, 2014 soil sampling and a visual inspection were completed at the West Landfill Lobe E.

Soil sampling was conducted at the surface of four (4) of the five (5) soil sampling locations. Surface sample at F2-9 could not be collected due to the presence of bedrock. Depth sample could not be collected at any stations due to the presence of bedrock at 0.1 m for ground surface.

TPH fraction F3 concentration from surface samples collected at F2-3, F2-4 and F2-5 ranged from 100 to 360 mg/kg, with the highest concentration detected at F2-3. No PCBs were detected in the collected soil samples. Relatively high concentrations of copper, nickel and zinc were detected at SS3 (316, 357 and 236 mg/kg, respectively). Elevated levels of nickel and zinc were detected at F2-4 (114 and 176 mg/kg, respectively), while elevated concentrations of zinc and chromium were detected at F2-1 (121 and 167 mg/kg, respectively).

As of the 2014 monitoring event, no features were identified as "significant" or "unacceptable." An isolated area of minor erosion was observed on the southeast landfill surface. No erosion feature or exposed debris was noticed.

At this time, the overall performance of the landfill is rated as acceptable.

The Visual Inspection Checklist has been completed as per the TOR and is included as Table XIII of this report. Please refer to Figure Fox 2.4 for a sketch of the West Landfill Lobe E detailing the location of photographs and features.

Table XIII: Visual Inspection Checklist – West Landfill Lobe E

DEW LINE CLEANUP: POST-CONSTRUCTION - LANDFILL MONITORING VISUAL INSPECTION CHECKLIST

INSPECTION REPORT – PAGE 1 of 2

SITE NAME: FOX-2 Longstaff Bluff

LANDFILL DESIGNATION: West Landfill Lobe E (Regraded Landfill)

DATE OF INSPECTION: August 24, 2014

DATE OF PREVIOUS INSPECTION: August 27, 2013

INSPECTED BY: M. Fleury

REPORT PREPARED BY: M. Fleury

MONITORING EVENT: 3

The inspector/reporter represents to the best of his/her knowledge that the following statements and observations are true and correct and to the best of the preparer's actual knowledge, no material facts have been suppressed or misstated.

COLLECTION OF LANDFILL MONITORING DATA – REVISED FINAL REPORT, 2014
FOX-2 DISTANT EARLY WARNING LINE SITE, LONGSTAFF BLUFF, NUNAVUT

TABLE XIII: WEST LANDFILL VISUAL INSPECTION (PAGE 2 OF 2)

Checklist Item	Present (Y/N)	Feature Label	Location	Length (m)	Width (m)	Depth (m)	Extent Relative to Area of Landfill (%)	Description	Photographic Reference	Severity Rating	Additional Comments
Settlement	N	А	North limit of the landfill top	N/A	N/A	N/A	N/A	Settlement noted during baseline inspection	N/A	N/A	Not observed during the 2014 inspection.
	Y	F	Southeast end of the landfill	16	0.7	0.15	<1%	Drainage channel	13 and 14	Acceptable	No Significance Change from Previous Observation.
	N	В	North limit of the landfill	N/A	N/A	N/A	N/A	Drainage channel observed in 2013	N/A	N/A	Not observed during the 2014 inspection.
Erosion	N	С	West limit of the landfill	N/A	N/A	N/A	N/A	Drainage channel observed in 2013	4 and 7	N/A	Not observed during the 2014 inspection.
	N	D	West limit of the landfill	N/A	N/A	N/A	N/A	Drainage channel observed in 2013	4and7	N/A	Not observed during the 2014 inspection.
	N	E	West limit of the landfill	N/A	N/A	N/A	N/A	Drainage channel observed in 2013	4 and 7	N/A	Not observed during the 2014 inspection.
Frost Action	N	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Animal Burrows	N	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Vegetation	N	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Staining	N	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Vegetation Stress	N	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Seepage Points	N	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Debris Exposed	N	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Presence / Condition of Monitoring Instruments	N	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
	N	G	Northeast limit of the landfill top	N/A	N/A	N/A	N/A	Non-compacted section observed in 2013	N/A	N/A	Not observed during the 2014 inspection.
Other Features of Note	Y	Н	Near the centre of the landfill	5	2	NA	<1%	Bedrock Outcrop	11	Acceptable	No Significance Change from Previous Observation.
		I	Northeast limit of the landfill	6	3	NA	<1%	Bedrock Outcrop	12	Acceptable	No Significance Change from Previous Observation.

Legend : N/A Not applicable

5.2 PRELIMINARY STABILITY ASSESSMENT

The Preliminary Stability Assessment for the West Landfill Lobe E has been completed as per the TOR and is included as Table XIV hereafter.

Table XIV: Preliminary Stability Assessment – West Landfill Lobe E

Feature	Severity Rating	Extent
Settlement	Not observed	None
Erosion	Acceptable	Isolated
Frost Action	Not observed	None
Staining	Not observed	None
Vegetation Stress	Not observed	None
Seepage/Ponded Water	Not observed	None
Debris Exposure	Not observed	None
Overall Landfill Performance	Accep	otable

Performance/Severity Rating	Description
Acceptable	Noted features are of little consequence. The landfill is performing as designed. Minor deviations in environmental or physical performance may be observed, such as isolated areas of erosion, settlement.
Marginal	Physical/environmental performance appears to be deteriorating with time. Observations may include an increase in size or number of features of note, such as differential settlement, erosion or cracking. No significant impact on landfill stability todate, but potential for failure is assessed as low or moderate.
Significant	Significant or potentially significant changes affecting landfill stability, such as significant changes in slope geometry, significant erosion or differential settlement; scarp development. The potential for failure is assessed as imminent.
Unacceptable	Stability of the landfill is compromised to the extent that the ability to contain waste materials is compromised. Examples may include: • Debris exposed in erosion channels or areas of differential settlement. • Liner exposed. • Slope failure.
Extent	Description
Isolated	Singular feature.
Occasional	Features of note occurring at irregular intervals/locations.
Numerous	Many features of note, impacting less than 50% of the surface area of the landfill.
Extensive	Impacting greater than 50% of the surface area of the landfill.

5.3 LOCATION PLAN

The Location Plan for the West Landfill Lobe E has been completed as per the TOR and is presented in Figure FOX-2.4.

5.4 PHOTOGRAPHIC RECORDS

The Photographic Record for the West Landfill Lobe E has been completed as per the TOR and is included in the following pages as Table XV. Full-sized photographs are contained in the Addendum DVD-ROM.

Table XV: Landfill Visual Inspection Photo Log – West Landfill Lobe E

Photo	File nam e	Size (KB)	Date	Vantage Point		Continu
	riiettaitte	SIZE (ND)	Date	Easting	Northing	Caption
1	IMG_0939	2 025	24-08-2014	18 W 492569	7642785	Southwest view of F2-2-2014 soil sampling location.
2	IMG_0940	1 781	24-08-2014	18 W 492569	7642785	Southw est view of southern part of the West Landfill Lobe E
3	IMG_0941	1 556	24-08-2014	18 W 492569	7642785	West view of Northern part of the West Landfill Lobe E.
4	IMG_0942	1 793	24-08-2014	18 W 492484	7642761	Northeast view of F2-4-2014 soil sampling location.
5	IMG_0943	1 861	24-08-2014	18 W 492484	7642761	East view of F2-4-2014 soil sampling location.
6	IMG_0944	1 762	24-08-2014	18 W 492484	7642761	East Southeast view of F2-4-2014 soil sampling location.
7	IMG_0945	2 342	24-08-2014	18 W 492468	7642787	East view of F2-5-2014 soil sampling location.
8	IMG_0946	1 900	24-08-2014	18 W 492515	7642735	Northw est view of F2-3-2014 soil sampling location.
9	IMG_0947	1 903	24-08-2014	18 W 492515	7642735	North view of the West Landfill Lobe E, top.
10	IMG_0948	1 955	24-08-2014	18 W 492515	7642735	Northeast view of the West Landfill Lobe E, top.
11	IMG_0949	2 052	24-08-2014	18 W 492523	7642800	Southeast view of Bedrock Outcrop (Feature H).
12	IMG_0950	1 991	24-08-2014	18 W 492541	7642790	Northw est view of Bedrock Outcrop (Feature I).
13	IMG_0951	2 417	24-08-2014	18 W 492546	7642754	Southw est view of a drainage channel (Feature F).
14	IMG_0952	2 145	24-08-2014	18 W 492537	7642741	Northeast view of a drainage channel (Feature F).
15	IMG_0953	1 856	24-08-2014	18 W 492541	7642811	West view of F2-1-2014 soil sampling location.
16	IMG_0954	1 601	24-08-2014	18 W 492541	7642811	Southwest view of F2-1-2014 soil sampling location.
17	IMG_0955	1 816	24-08-2014	18 W 492541	7642790	West Landfill - Lobe Egeneral layout picture - Southeast view.
18	IMG_0956	1 753	24-08-2014	18 W 492541	7642790	West Landfill - Lobe Egeneral layout picture - South view.
19	IMG_0957	1 753	24-08-2014	18 W 492541	7642790	West Landfill - Lobe Egeneral layout picture - Southw est view.
20	IMG_0958	1 638	24-08-2014	18 W 492541	7642790	West Landfill - Lobe Egeneral layout picture - West view.
21	IMG_0959	1 477	24-08-2014	18 W 492541	7642790	West Landfill - Lobe Egeneral layout picture - West - Northwest
22	IMG_0960	1 602	24-08-2014	18 W 492541	7642790	West Landfill - Lobe Egeneral layout picture - Northwest view.

5.5 SOIL SAMPLE ANALYTICAL DATA

Soil sampling was conducted at the surface of four (4) of the five (5) soil sampling locations. Surface sample at SS2 could not be collected due to the presence of bedrock. Depth sample could not be collected at any stations due to the presence of bedrock at 0.1 m for ground surface. The soil chemical analyses results for the 2014 West Landfill Lobe E samples are presented in Table XVI hereafter. Certificates of analyses and results of field duplicates collected as part of the QA/QC program are presented in Annex 1 at the end of this report. It should be noted that sample numbers have been altered. Please refer to Annex 1 for the sample ID key.

Table XVI: West Landfill Lobe E Summary Table for Soil Analytical Data

													F1	F2	F3
Sample #	Location	Depth [cm]	Cu [mg/kg]	Ni [mg/kg]	Co [mg/kg]	Cd [mg/kg]	Pb [mg/kg]	Zn [mg/kg]	Cr [mg/kg]	As [mg/kg]	Hg [mg/kg]	PCBs [mg/kg]	C ₆ -C ₁₀ [mg/kg]	C ₁₀ -C ₁₆ [mg/kg]	C ₁₆ -C ₃₄ [mg/kg]
RDL - Exova			1	1	1	0.5	1	2	1	1	0.1	0.02	10	10	20
Upgradient Soil Sample	s														
F2-1-A-2014	F2-1	0 - 10	47	95	19	<0.5	7	121	167	12	<0.1	< 0.02	<10	<10	<20
F2-1-B-2014	FZ-1	40 - 50			Not	sampled du	ie to bedro	ck (bedroc	k reached	at 0.1 m b	elow ground	d surface)			
F2-2-A-2014	F2-2	0 - 10					Notaama	led due to l	andraal: /h	adraal: aut	oron)				
F2-2-B-2014	FZ-Z	40 - 50					Not Samp	ned due to i	bearock (L	earock out	crop)				
Downgradient Soil Sam	ples														
F2-3-A-2014	F2-3	0 - 10	316	357	64	1.6	4	236	17	6	<0.1	< 0.02	<10	<10	360
F2-3-B-2014	Γ2 - 3	40 - 50			Not	sampled du	ue to bedro	ck (bedroc	k reached	at 0.1 m b	elow ground	d surface)			
F2-4-A-2014	F2-4	0 - 10	70	114	27	<0.5	6	176	96	15	<0.1	< 0.02	<10	<10	150
F2-4-B-2014	FZ-4	40 - 50	Not sampled due to bedrock (bedrock reached at 0.1 m below ground surface)												
F2-5-A-2014	F2-5	0 - 10	64	56	20	<0.5	7	120	76	77	<0.1	< 0.02	<10	<10	100
F2-5-B-2014	FZ-0	40 - 50			Not	sampled du	ue to bedro	ck (bedroc	k reached	at 0.1 m b	elow ground	d surface)			

6 TIER II DISPOSAL FACILITY

6.1 SUMMARY

The 2014 monitoring of the Tier II Disposal Facility conducted on August 24, 2014 consisted of a visual inspection, soil and groundwater sampling as well as thermal monitoring.

TPH fraction F3 was detected in the surface samples for locations MW-9 and MW-11 (70 and 40 mg/kg, respectively) and in the bottom sample located at MW-11 (30 mg/kg). All metals, with the exception of mercury and cadmium, showed elevated concentration. No PCBs were detected at any of the soil sampling locations. Depth sample at location MW-10 could not be collected due to the presence of bedrock at 0.2 m below ground surface.

Water level was sufficient to allow sampling for PCBs and metal analyses at all but one location (MW-11). However, water was insufficient to complete TPH analysis. No PCBs or relatively high metal results were detected in any of the samples. As samples were not filtered, sediment was present and required a digest which raised the RDL.

Thermal monitoring was conducted at the Tier II Disposal Facility. No datalogger was present at VT-2. All other data loggers were observed to be functioning properly with only minor issues noted at VT-1 (refer to maintenance reports). However, no maintenance is proposed at this time. Batteries were changed in all dataloggers present.

As of the 2014 monitoring event, no features were identified as "significant" or "unacceptable." No settlement or erosion feature nor exposed debris was noticed.

Overall, the performance rating of the Tier II Disposal Facility is acceptable.

The Visual Inspection Checklist has been completed as per the TOR and is included as Table XVII of this report. Please refer to Figure Fox 2.5 for a sketch of the Tier II Disposal Facility detailing the location of photographs and features.

Table XVII: Visual Inspection Checklist – Tier II Disposal Facility

DEW LINE CLEANUP: POST-CONSTRUCTION - LANDFILL MONITORING VISUAL INSPECTION CHECKLIST INSPECTION REPORT - PAGE 1 of 2

SITE NAME: FOX-2 Longstaff Bluff

LANDFILL DESIGNATION: Tier II Disposal Facility (New Landfill)

DATE OF INSPECTION: August 24, 2014

DATE OF PREVIOUS INSPECTION: August 27, 2013

INSPECTED BY: M. Fleury

REPORT PREPARED BY: M. Fleury

MONITORING EVENT NUMBER: 3

The inspector/reporter represents to the best of his/her knowledge that the following statements and observations are true and correct and to the best of the preparer's actual knowledge, no material facts have been suppressed or misstated.

COLLECTION OF LANDFILL MONITORING DATA – REVISED FINAL REPORT, 2014
FOX-2 DISTANT EARLY WARNING LINE SITE, LONGSTAFF BLUFF, NUNAVUT

TABLE XVII: TIER II DISPOSAL FACILITY VISUAL INSPECTION (PAGE 2 OF 2)

Checklist Item	Present (Y/N)	Feature Label	Location	Length (m)	Width (m)	Depth (m)	Extent Relative to Area of Landfill (%)	Description	Photographic Reference	Severity Rating	Additional Comments
Settlement	N	А	Western landfill surface	N/A	N/A	N/A	N/A	Settlement noted during baseline inspection	1	N/A	Not observed during 2014 inspection.
Erosion	N	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Frost Action	N	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Animal Burrows	N	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Vegetation	N	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Staining	N	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Vegetation Stress	N	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Seepage Points	N	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Debris Exposed	N	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
		F2-MW-9	South side of the landfill	N/A	N/A	N/A	N/A	Groundwater Monitoring Well	27	N/A	Good condition. Casing lifted by frost action.
		F2-MW-10	Northeast corner of the landfill	N/A	N/A	N/A	N/A	Groundwater Monitoring Well	6	N/A	Good condition. Casing lifted by frost action.
		F2-MW-11	Middle north side of the landfill	N/A	N/A	N/A	N/A	Groundwater Monitoring Well	8	N/A	Good Condition. Dry / frozen. Casing lifted by frost action.
Presence / Condition of		F2-MW-12	Northwest corner of the landfill	N/A	N/A	N/A	N/A	Groundwater Monitoring Well	11	N/A	Good condition.
Monitoring Instruments	Y	F2-VT-1	Southwest limit of the landfill top	N/A	N/A	N/A	N/A	Thermistors - Data Logger	1	N/A	Casing in good condition. Memory was full.
		F2-VT-2	Northwest portion of the landfill top	N/A	N/A	N/A	N/A	Thermistors - Data Logger	2	N/A	Casing in good condition. No Data Logger in the casing.
		F2-VT-3	Northeast portion of the landfill top	N/A	N/A	N/A	N/A	Thermistors - Data Logger	3	N/A	Casing and Data Logger in good condition.
		F2-VT-4	Northeast limit of the landfill top	N/A	N/A	N/A	N/A	Thermistors - Data Logger	N/A	N/A	Casing and Data Logger in good condition.
Other Features of Note	N	В	Middle and west portion of the landfill top	N/A	N/A	N/A	N/A	Areas of rough grading observed in 2013	1, 18, 19	N/A	Not observed during 2014 inspection.

Legend : N/A Not applicable

6.2 PRELIMINARY STABILITY ASSESSMENT

The Preliminary Stability Assessment for the Tier II Disposal Facility has been completed as per the TOR and is included as Table XVIII hereafter.

Table XVIII: Preliminary Stability Assessment – Tier II Disposal Facility

Feature	Severity Rating	Extent		
Settlement	Not observed	None		
Erosion	Not observed	None		
Frost Action	Not observed	None		
Staining	Not observed	None		
Vegetation Stress	Not observed	None		
Seepage/Ponded Water	Not observed	None		
Debris Exposure	Not observed	None		
Overall Landfill Performance	Acce	eptable		

Performance/Severity Rating	Description
Acceptable	Noted features are of little consequence. The landfill is performing as designed. Minor deviations in environmental or physical performance may be observed, such as isolated areas of erosion, settlement.
Marginal	Physical/environmental performance appears to be deteriorating with time. Observations may include an increase in size or number of features of note, such as differential settlement, erosion or cracking. No significant impact on landfill stability to-date, but potential for failure is assessed as low or moderate.
Significant	Significant or potentially significant changes affecting landfill stability, such as significant changes in slope geometry, significant erosion or differential settlement; scarp development. The potential for failure is assessed as imminent.
Unacceptable	Stability of the landfill is compromised to the extent that the ability to contain waste materials is compromised. Examples may include: • Debris exposed in erosion channels or areas of differential settlement. • Liner exposed. • Slope failure.
Extent	Description
Isolated	Singular feature.
Occasional	Features of note occurring at irregular intervals/locations.
Numerous	Many features of note, impacting less than 50% of the surface area of the landfill.
Extensive	Impacting greater than 50% of the surface area of the landfill.

6.3 LOCATION PLAN

The Location Plan for the Tier II Disposal Facility has been completed as per the TOR and is presented in Figure FOX-2.5.

LEGEND

SURVEY CONTROL MONUMENT

MONITORING WELL LOCATION

2	FINAL	15-11-10	P.L.	B.M.	M.F.
NO.	VERSION	DATE	BY	VERIF.	APPR

ENT UNIT	SCALE:	DATE (month-year):
	1 : 750	NOVEMBER 2015
:	VERIFIED BY:	APPROVED BY:
PIERRE	B. MACKAY	M. FLEURY P. Eng
VO:	DRAWING NO:	PAGE
	OD00000 110 110 101 0011	

6.4 THERMISTOR ANNUAL MAINTENANCE REPORTS

The thermistor inspection reports VT-1 to VT-4 are presented in this section.

Contractor Name:	Sila Remediation Inc.	Inspection Date:	23/08/2014
Prepared By:	Martin Fleury		

Site Name: FOX	(-2 Longstaff Bluff		Thermistor Loc	ation		Tier II Dispos	al Facility	
Thermistor Numb	er: VT-1		Inclination			Vertical		
Install Date:	13/08/2011		First Date Ever	nt: 27/08/20)13	L	ast Date Event	23/08/2014
Coordinates and	Elevation	N	7643205		W	494253	Elev	151
Length of Cable (m)	Cal	ble Lead Above G	round (m)	1.3	Nodal Points		14
Datalogger Seria	# 7110002					Cable Serial	Number	111169

Thermistor Inspection

		Good]
	Yes		No	Problem/Maintenance
Casing	x			
Cover	x			
Data Logger	x			
Cable	x			
Beads	x			
Battery Installation Date		13/08/2011		
Battery Levels	Main	NA		Aux <u>na</u>

Manual Ground Temperature Readings

Bead	ohms	Degrees C
1		
2		
3		
4		
5		
6		
7		
8		

Bead	ohms	Degrees C
9		
10		
11		
12		
13		
14		

Observations and Proposed Maintenance

No manual readings could be made with switchbox (values never got stable) but the sensors displayed representative readings with the Lakewood Software

No maintenance proposed. Memory downloaded and logger restarted

Batteries changed on August 23, 2014. Communication re-established after battery changed.

Contractor Name:	Sila Remediation Inc.	Inspection Date:	23/08/2014
Prepared By:	Martin Fleury		

Site Name: FOX-2 Longstaff	Bluff	Thermistor Loca	tion	Tier II Dispos	al Facility	
Thermistor Number: VT-2		Inclination		Vertical		
Install Date: 13/08/20)11	First Date Event	: 27/08/2013		ast Date Event	23/08/2014
Coordinates and Elevation	N	7643243	W	494267	Elev	154
Length of Cable (m)	Cabl	le Lead Above Gro	ound (m) 3.82	Nodal Points		11
Datalogger Serial #	NA			Cable Serial	Number	111168

Thermistor Inspection

		Good		
	Yes		No	Problem/Maintenance
Casing	x			
Cover	x			
Data Logger			NA	No datalogger in casing
Cable	x			
Beads	x			
Battery Installation Date		NA		
Battery Levels	Main	NA		Aux NA

Manual Ground Temperature Readings

Bead	ohms	Degrees C
1	10902	8.1145
2	13052	4.4638
3	14363	2.5556
4	15345	1.2501
5	16433	-0.091
6	17053	-0.8114
7	17733	-1.5685
8	18316	-2.1922

Bead	ohms	Degrees C
9	18214	-2.0847
10	19359	-3.2544
11	20930	-4.739

0	hearvatione	and	Dronosad	Maintenance
u	DSELVATIONS	anu	FIODUSEU	wantenance

NΙΛ	data	loager	in	thic	casing
INO	uala	louuei	ш	เบเธ	Casillu

Contractor Name:	Sila Remediation Inc.	Inspection Date:	23/08/2014		
Prepared By:	Martin Fleury				

Site Name: FOX-2 Longsta	Thermistor Location		Tier II Dispos			
Thermistor Number: VT-3		Inclination		Vertical		
Install Date: 13/08	/2011	First Date Event	: 27/08/2013	L	ast Date Event	23/08/2014
Coordinates and Elevation	N	7643235	W	494301	Elev	156
Length of Cable (m)	Cabl	e Lead Above Gr	ound (m) 2.7	Nodal Points		11
Datalogger Serial # 7	110008			Cable Serial	Number	111169

Thermistor Inspection

		Good]
	Yes		No	Problem/Maintenance
Casing	x			
Cover	x			
Data Logger	x			
Cable	x			
Beads	x			
Battery Installation Date		13/08/2011		
Battery Levels	Main	NA		Aux NA

Manual Ground Temperature Readings

Bead	ohms	Degrees C
1	12128	5.9431
2	13928	3.1662
3	15049	1.6335
4	16348	0.0102
5	16878	-0.611
6	17534	-1.3503
7	18159	-2.0264
8	19325	-3.2208

Bead	ohms	Degrees C
9	19731	-3.6178
10	20740	-4.5662
11	21430	-5.1855

Observations and Proposed Maintenance

No connection could be made with computer until batteries replacement

Batteries replaced on August 23, 2014

Memory downloaded and logger restarted

Contractor Name:	Sila Remediation Inc.	Inspection Date:	23/08/2014
Prepared By:	Martin Fleury		

Site Name: FOX-2 Longs	taff Bluff	Thermistor Loca	tion	Tier II Disposal Facility			
Thermistor Number: VT-4	Inclination		Vertical				
Install Date: 13/0	8/2011	First Date Event:	27/08/2013	La	ast Date Event	23/08/2014	
Coordinates and Elevation	n N	7643253	W	494312	Elev	154	
Length of Cable (m)	Cable	e Lead Above Gro	und (m) 2.65	Nodal Points		14	
Datalogger Serial #				Cable Serial N	lumber	111170	

Thermistor Inspection

		Good		
	Yes		No	Problem/Maintenance
Casing	x			_
Cover	x			
Data Logger	x			
Cable	x			
Beads	x			
Battery Installation Date		13/08/2011		
Battery Levels	Main	11.74	V (Best)	Aux13.14 V (Best)

Manual Ground Temperature Readings

Bead	ohms	Degrees C
1	14139	2.8674
2	15466	1.0958
3	16371	-0.0173
4	16742	-0.4537
5	17241	-1.024
6	18480	-2.3636
7	19280	-3.1762
8	19890	-3.7708

Bead	ohms	Degrees C
9	20630	-4.4653
10	75400	-27.3293
13	22780	-6.3352
14	23150	-6.637
15	23220	-6.6935
16	23460	-6.8858

Observations and Proposed Maintenance

Memory downloaded and logger restarted Batteries replaced on August 23, 2014

6.5 PHOTOGRAPHIC RECORDS

The Photographic Record for the Tier II Disposal Facility has been completed as per the TOR and is included in the following pages as Table XIX. Full-sized photographs are contained in the Addendum DVD-ROM.

Table XIX: Landfill Visual Inspection Photo Log – Tier II Disposal Facility

Site Name: FOX-2, Longstaff Bluff
Landfill: Tier II Disposal Facility
Date Inspected: August 24, 2014
Inspected by: Martin Fleury

Photo	Filename	Size (KB)	Date	Vantage Point		
FIIOTO	riieiiaiiie	Size (ND)	Date	Easting	Northing	Caption
1	IMG_0410	2 222	2014-08-24	18 W 494253	7643205	North - Northeast view of VT-1 thermistor casing.
2	IMG_0411	1 912	2014-08-24	18 W 494267	7643243	East - Northeast view of VT-2 thermistor casing.
3	IMG_0412	1 906	2014-08-24	18 W 494301	7643235	East view of VT-3 thermistor casing.
4	IMG_0910	2 049	2014-08-24	18 W 494341	7643177	Northwest view of the southern slope of the Tier II Disposal Facility.
5	IMG_0911	2 309	2014-08-24	18 W 494341	7643177	North view of the eastern slope of the Tier II Disposal Facility.
6	IMG_0913	1 441	2014-08-24	18 W 494341	7643287	West view of F2-MW-10.
7	IMG_0914	2 197	2014-08-24	18 W 494342	7643285	West view of F2-MW-10-S soil sampling.
8	IMG_0915	1 401	2014-08-24	18 W 494282	7643300	West view of MW-11.
9	IMG_0916	2 338	2014-08-24	18 W 494282	7643300	East view of F2-MW-11-S soil sampling location.
10	IMG_0917	2 347	2014-08-24	18 W 494282	7643300	East view of F2-MW-11-S soil sampling location.
11	IMG_0918	2 332	2014-08-24	18 W 494232	7643300	Southeast view of MW-12.
12	IMG_0919	1 792	2014-08-24	18 W 494236	7643303	South view of F2-MW-12-S soil sampling location.
13	IMG_0920	2 065	2014-08-24	18 W 494236	7643303	South view of F2-MW-12-S soil sampling location.
14	IMG_0921	2 164	2014-08-24	18 W 494237	7643301	East - Southeast view of the northern slope of the Tier II
15	IMG_0922	1 945	2014-08-24	18 W 494237	7643301	Disposal Facility. South view of the western slope of the Tier II Disposal Facility.
16	IMG_0923	2 107	2014-08-24	18 W 494258	7643261	Panoramic view of the Tier II Disposal Facility top, East - Northeast.
17	IMG_0924	2 261	2014-08-24	18 W 494258	7643261	Panoramic view of the Tier II Disposal Facility top, East - Southeast.
18	IMG_0925	2 342	2014-08-24	18 W 494258	7643261	Panoramic view of the Tier II Disposal Facility top, South - Southeast.
19	IMG_0926	2 050	2014-08-24	18 W 494258	7643261	Panoramic view of the Tier II Disposal Facility top, South.
20	IMG_0927	1 858	2014-08-24	18 W 494258	7643261	Panoramic view of the Tier II Disposal Facility top, Southwest.
21	IMG_0928	1 857	2014-08-24	18 W 494303	7643199	Panoramic view of the Tier II Disposal Facility top, West.
22	IMG_0929	2 033	2014-08-24	18 W 494303	7643199	Panoramic view of the Tier II Disposal Facility top, Northwest.
23	IMG_0930	2 357	2014-08-24	18 W 494303	7643199	Panoramic view of the Tier II Disposal Facility top, North.
24	IMG_0931	2 322	2014-08-24	18 W 494303	7643199	Panoramic view of the Tier II Disposal Facility top, North - Northeast.
25	IMG_0932	2 142	2014-08-24	18 W 494303	7643199	Panoramic view of the Tier II Disposal Facility top, East.
26	IMG_0933	2 191	2014-08-24	18 W 494303	7643199	Panoramic view of the Tier II Disposal Facility top, Southeast.
27	IMG_0934	2 176	2014-08-24	18 W 494277	7643177	Northw est view of MW-9.
28	IMG_0935	2 102	2014-08-24	18 W 494278	7643177	South view of F2-MW-9-S soil sampling location.

6.6 SOIL SAMPLE ANALYTICAL DATA

Depth sample at location MW-10 could not be collected due to the presence of bedrock at 0.2 m below ground surface. The soil chemical analysis results for the 2014 Tier II Disposal Facility samples are presented in Table XX hereafter. Certificates of analyses and results of field duplicates collected as part of the QA/QC program are presented in Annex 1 at the end of this report.

Table XX: Tier II Summary Table for Soil Analytical Data

Table XX. Her ii Sullilla							y lable for Son Analytical Data								
		_											F1	F2	F3
Sample #	Location	Depth [cm]	Cu [mg/kg]	Ni [mg/kg]	Co [mg/kg]	Cd [mg/kg]	Pb [mg/kg]	Zn [mg/kg]	Cr [mg/kg]	As [mg/kg]	Hg [mg/kg]	PCBs [mg/kg]	C ₆ -C ₁₀ [mg/kg]	C ₁₀ -C ₁₆ [mg/kg]	C ₁₆ -C ₃₄ [mg/kg]
RDL - Exova			1	1	1	0.5	1	2	1	1	0.1	0.02	10	10	20
Upgradient Soil Sample	s														
F2-MW-9-S-A-2014	MW9	0 - 10	46	46	12	<0.5	9	72	58	40	<0.1	< 0.02	<10	<10	70
F2-MW-9-S-B-2014	IVIVV9	40 - 50	46	62	11	<0.5	9	72	102	36	<0.1	< 0.02	<10	<10	<20
Downgradient Soil Sam	ples														
F2-MW-10-S-A-2014	MW10	0 - 15	71	62	11	<0.5	11	81	96	56	<0.1	< 0.02	<10	<10	<20
F2-MW-10-S-B-2014	IVIVVIO	40 - 50			Not	sampled du	ie to bedro	ock (bedroc	k reached	l at 0.2 m b	elow groun	d surface)			
F2-MW-11-S-A-2014	MW11	0 - 15	65	48	12	<0.5	11	79	61	51	<0.1	< 0.02	<10	<10	40
F2-MW-11-S-B-2014	IVIVVIII	40 - 50	73	48	11	<0.5	12	75	57	47	<0.1	< 0.02	<10	<10	30
F2-MW-12-S-A-2014	MW12	0 - 15	72	60	17	<0.5	12	90	58	70	<0.1	< 0.02	<10	<10	<20
F2-MW-12-S-B-2014	IVIVVIZ	40 - 50	72	78	20	<0.5	14	104	97	65	<0.1	< 0.02	<10	<10	<20

6.7 GROUNDWATER SAMPLE ANALYTICAL DATA

Water level was sufficient to allow sampling for PCBs and metal analyses at all but one location (MW-11). However, water was insufficient to complete TPH analysis. No PCBs or relatively high metal results were detected in any of the samples. The groundwater chemical analyses results and evaluation for the analytical data for the 2014 Tier II Disposal Facility samples are presented in Table XXI hereafter. As samples were not filtered, sediment was present and required a digest which raised the RDL. Certificates of analyses and results for groundwater samples collected as part of the QA/QC program are presented in Annex 1, at the end of this report.

Table XXI: Tier II Summary Table for Groundwater Analytical Data

			4010 /1/		II Julilii	.a. y .a.		• aa.		i iai y tice	. Data			
		Cu [mg/L]	Ni [mg/L]	Co [mg/L]	Cd [mg/L]	Pb [mg/L]	Zn [mg/L]	Cr [mg/L]	As [mg/L]			F1	F2	F3
Sample #	Location									Hg	PCBs	C ₆ -C ₁₀	C ₁₀ -C ₁₆	C ₁₀ -C ₃₄
										[mg/L]	[ug/L]	[mg/L]	[mg/L]	[mg/L]
RDL - Exova		0.01	0.01	0.01	0.008	0.01	0.04	0.05	0.02	0.0001	0.1	NA	0.1	0.2
Upgradient Groundwater Sample														
F2-MW-9-2014	MW9	0.04	0.10	0.02	<0.008	<0.01	0.06	< 0.05	<0.02	<0.0001	<0.1	Insufficie	nt Water to	Sample
Downgradient Groundwater Samples														
F2-MW-10-2014	MW10	0.23	0.34	0.07	<0.008	0.08	0.23	0.18	0.11	<0.0001	<0.1	Insufficie	nt Water to	Sample
F2-MW-11-2014	MW11		Insufficient Water to Sample											
F2-MW-12-2014	MW12	0.08	0.12	0.02	<0.008	0.02	0.10	0.05	0.04	<0.0001	<0.1	Insufficie	nt Water to	Sample

6.8 Monitoring Well Sampling / Inspection Logs

The monitoring well sampling logs for MW-9 to MW-12 are presented in this section. It should be noted that the casing at MW9 and 10 heaved due to frost action, while only the screen at MW-11 was impacted by frost action.

Develo	pment of	Monitoring Wells	
Site Name:	FOX-2	Longstaff Bluff	
Date of Sampling Event:	2014-08-24	Time:	17:00
Names of Samplers:		Martin Fleury	
		Caleb Qanatsiaq	
		Philip Siakuluk	
Landfill Name:		Tier II Disposal Facility	
Monitoring Well ID:	MW-9		
Sample Number:	MW-9-2014		
· · · · · · · · · · · · · · · · · · ·		acted by frost action	
	, ,	•	
Measured Data			
Well pipe height above ground (cm)=	26		
Diameter of well (cm)=	5		
Depth of well installation (cm)=	360		
(from ground surface)			
Length screened section (cm)=	300		
, ,			
Depth to top of screen (cm)=	52		
(from ground surface)			
Depth to water surface (cm)=	111	Measurement method: (meter,	Interface meter
(from top of pipe)		tape, etc.)	
Static water level (cm)=	85	ιαρο, σιο.)	
(below ground surface)			
Measured well refusal depth BGS	247	Evidence of sludge or siltation:	Frozen
(cm)=		Evidence of cladge of children.	1 102011
Thickness of water column (cm)=	162		
Static volume of water in well (mL)=	3240		
Static volume of water in well (IIIL)=	3240		
Free product thickness (mm)=	NA	Measurement method: (meter,	Interface meter
i ice pioddet tillekiless (IIIII)=	13/7	paste, etc.)	miteriace meter
		paste, etc.)	
Division (V/N)	Y	Durging/Compling Coulogs at	Matarra tubiran
Purging: (Y/N)		Purging/Sampling Equipment:	
Volume Purged Water (L)=	3.5	Dodinated Mataus Tubban	Foot Valve
Decontamination required: (Y/N)	N	Dedicated Waterra Tubing	
Number washes:	NA		
Number rinses:	NA		
Final all	7 45		
Final Conductivity (US/om)	7.45		
Final Conductivity (uS/cm)=	200		
Final Temperature (degC)=	2.28		

Develo	pment of	Monitoring Wells	
Site Name:	FOX-2	Longstaff Bluff	
Date of Sampling Event:	2014-08-24		15:30
Names of Samplers:		Martin Fleury	
		Caleb Qanatsiaq	
		Philip Siakuluk	
Landfill Name:		Tier II Disposal Facility	
Monitoring Well ID:	MW-10		
Sample Number:	MW-10-201	4	
Condition of Well:	Casing impa	acted by frost action	
		•	_
Measured Data			
Well pipe height above ground (cm)=	32		
Diameter of well (cm)=	5		
Depth of well installation (cm)=	340		
(from ground surface)			
Length screened section (cm)=	300		
, ,			
Depth to top of screen (cm)=	40		
(from ground surface)			
Depth to water surface (cm)=	219	Measurement method: (meter,	Interface meter
(from top of pipe)		tape, etc.)	
Static water level (cm)=	187	ιαρο, στο.)	
(below ground surface)			
Measured well refusal depth BGS	247	Evidence of sludge or siltation:	Frozen
(cm)=			
Thickness of water column (cm)=	60		
Static volume of water in well (mL)=	1200		
Static volume of water in well (IIIL)-	1200		
Free product thickness (mm)=	NA	Measurement method: (meter,	Interface meter
		paste, etc.)	
		pacto, cto.)	
Purging: (Y/N)	Y	Purging/Sampling Equipment:	Waterra tubina
Volume Purged Water (L)=	1.5	r urging/Sampling Equipment.	Foot Valve
Decontamination required: (Y/N)		Dodinated Waterra Tubina	root valve
Number washes:	N NA	Dedicated Waterra Tubing	
	NA NA		
Number rinses:	NA		
Final nU	6.07		
Final Conductivity (US/om)	6.07		
Final Conductivity (uS/cm)=	877		
Final Temperature (degC)=	3.62		

Develo	pment of	Monitoring Wells	
Site Name:	FOX-2	Longstaff Bluff	
Date of Sampling Event:	2014-08-24	Time:	16:10
Names of Samplers:		Martin Fleury	
		Caleb Qanatsiaq	
		Philip Siakuluk	
Landfill Name:		Tier II Disposal Facility	
Monitoring Well ID:	MW-11		
Sample Number:	MW-11-201	4	
Condition of Well:	Screen impa	acted by permafrost action	
	-		
Measured Data			
Well pipe height above ground (cm)=	60		
Diameter of well (cm)=	5		
Depth of well installation (cm)=	330		
(from ground surface)			
Length screened section (cm)=	300		
()			
Depth to top of screen (cm)=	29		
(from ground surface)			
Depth to water surface (cm)=	242	Measurement method: (meter,	Interface meter
(from top of pipe)		tape, etc.)	
Static water level (cm)=	194	ιαρο, σιο.)	
(below ground surface)			
Measured well refusal depth BGS	212	Evidence of sludge or siltation:	Frozen
(cm)=		Evidence of cladge of citation.	1102011
Thickness of water column (cm)=	18	not enough water for sampling	
Static volume of water in well (mL)=	360	not energy water for earnpring	
Static volume of water in well (inc)=	300		
	N. A		
Free product thickness (mm)=	NA	Measurement method: (meter,	Interface meter
		paste, etc.)	
Purging: (Y/N)	N	Purging/Sampling Equipment:	
Volume Purged Water (L)=	NA		Foot Valve
Decontamination required: (Y/N)	N	Dedicated Waterra Tubing	
Number washes:	NA		
Number rinses:	NA		
Final pH=	NA		
Final Conductivity (uS/cm)=	NA		
Final Temperature (degC)=	NA		

Develo	pment of	Monitoring Wells	
2010.0	pinone or		
Site Name:	FOX-2	Longstaff Bluff	
Date of Sampling Event:			16:25
Names of Samplers:		Martin Fleury	
Traines of Gampiones		Caleb Qanatsiaq	
		Philip Siakuluk	
Landfill Name:		Tier II Disposal Facility	
Monitoring Well ID:			
Sample Number:		4	
Condition of Well:		•	
001101110111011	0.000		
Measured Data			
Well pipe height above ground (cm)=	42		
Diameter of well (cm)=	5		
Depth of well installation (cm)=	350		
(from ground surface)			
Length screened section (cm)=	300		
Depth to top of screen (cm)=	40		
(from ground surface)			
("o" ground oundoo)			
Depth to water surface (cm)=	157	Measurement method: (meter,	Interface meter
(from top of pipe)		tape, etc.)	
Static water level (cm)=	115	ιαρο, στο.)	
(below ground surface)			
Measured well refusal depth BGS	253	Evidence of sludge or siltation:	Frozen
(cm)=			
Thickness of water column (cm)=	138		
Static volume of water in well (mL)=	2760		
Free product thickness (mm)=	NA	Measurement method: (meter,	Interface meter
Purging: (Y/N)	Y	Purging/Sampling Equipment:	Waterra tubing
		. a.gg, capig Equipment.	Tracona tabing
Volume Purged Water (L)=	3		Foot Valve
(<u>-</u>)			
Decontamination required: (Y/N)	N	Dedicated Waterra Tubing	
Number washes:	NA		
Number rinses:	NA		
Final pH=	6.81		
Final Conductivity (uS/cm)=	445		
Final Temperature (degC)=	2.25		

7 UPPER SITE LANDFILL LOBE A

7.1 SUMMARY

The 2014 monitoring of the Upper Site Landfill Lobe A conducted on August 24, 2014 consisted of a visual inspection, soil and groundwater sampling as well as thermal monitoring.

TPH fraction F3 was detected in both surface and depth samples at MW-14 and MW-15 at concentrations ranging from 30 to 120 mg/kg. PCBs were not detected in any soil samples. With the exception of cadmium, lead and mercury, elevated levels of metals were detected in all soil samples.

Three (3) out of four (4) wells contained enough water to perform groundwater sampling for all parameters. MW-14 and MW-16 lacked the necessary quantity of water to conduct sampling for TPH analysis. The sample collected at MW-15 for TPH analysis by Exova was lost in transportation (broken bottle). No relatively high metal concentrations or PCBs were detected in any of the groundwater samples. As samples were not filtered, sediment was present in all but one groundwater sample (MW15) and required a digest which raised the RDL. The RDL for sample collected at MW15 is the usual RDL used by Exova.

All datalogger batteries were changed on 24 August 2014. Thermal monitoring was conducted at the Upper Site Landfill Lobe A, all data loggers and thermistors were observed to be functioning properly and datasets were successfully retrieved.

As of the 2014 monitoring event, no features were identified as "significant" or "unacceptable." One area of minor settlement was noticed on the southern slope. Neither erosion feature nor exposed debris was noticed. Overall, the performance rating of the Upper Site Landfill Lobe A is acceptable.

The Visual Inspection Checklist has been completed as per the TOR and is included as Table XXII of this report. Please refer to Figure Fox 2.6 for a sketch of the Upper Site Landfill Lobe A detailing the location of photographs and features.

Table XXII: Visual Inspection Checklist – Upper Site Landfill Lobe A

DEW LINE CLEANUP: POST-CONSTRUCTION - LANDFILL MONITORING
VISUAL INSPECTION CHECKLIST
INSPECTION REPORT - PAGE 1 of 2

SITE NAME: FOX-2 Longstaff Bluff

LANDFILL DESIGNATION: Upper Site Landfill Lobe A (Regraded Landfill)

DATE OF INSPECTION: August 24, 2014

DATE OF PREVIOUS INSPECTION: August 27, 2013

INSPECTED BY: M. Fleury

REPORT PREPARED BY: M. Fleury

MONITORING EVENT NUMBER: 3

The inspector/reporter represents to the best of his/her knowledge that the following statements and observations are true and correct and to the best of the preparer's actual knowledge, no material facts have been suppressed or misstated.

COLLECTION OF LANDFILL MONITORING DATA – REVISED FINAL REPORT, 2014
FOX-2 DISTANT EARLY WARNING LINE SITE, LONGSTAFF BLUFF, NUNAVUT

TABLE XII: UPPER SITE LANDFILL VISUAL INSPECTION (PAGE 2 OF 2)

Checklist Item	Present (Y/N)	Feature Label	Location	Length (m)	Width (m)	Depth (m)	Extent Relative to Area of Landfill (%)	Description	Photographic Reference	Severity Rating	Additional Comments
Settlement	Y	A + B	Southern slope of the landfill	15	50	N/A	5%	Area of Settlement (includes Features A and B observed previously)	1	Acceptable	Observed with thermistor casing inclination during 2014 inspection. No change from previous observation.
Erosion	N	N/A	N/A	N/A	N/A	N/A	N/A	N/A	NA	NA	N/A
Frost Action	N	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Animal Burrows	N	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Vegetation	N	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Staining	N	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Vegetation Stress	N	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Seepage Points	N	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Debris Exposed	N	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
		F2-MW-13	South side of the access road	N/A	N/A	N/A	N/A	Groundwater Monitoring Well	27	N/A	Good condition.
		F2-MW-14	North side of the landfill	N/A	N/A	N/A	N/A	Groundwater Monitoring Well	15	N/A	Good condition.
		F2-MW-15	Northeast side of the landfill	N/A	N/A	N/A	N/A	Groundwater Monitoring Well	10	N/A	Good condition.
Presence / Condition of Monitoring	Y	F2-MW-16	East side of the landfill	N/A	N/A	N/A	N/A	Groundwater Monitoring Well	9	N/A	Casing heaved due to frost action.
Instruments	'	F2-VT-5	Centre West portion of the Landfill top	N/A	N/A	N/A	N/A	Thermistors - Data Logger	3	N/A	Casing inclined to approx. 15° from vertical.
		F2-VT-6	Centre East portion of the Landfill top	N/A	N/A	N/A	N/A	Thermistors - Data Logger	5	N/A	Casing inclined to approx. 10° from vertical.
		F2-VT-7	Southern limit of the landfill top	N/A	N/A	N/A	N/A	Thermistors - Data Logger	1	N/A	Casing inclined to approx. 25° from vertical.
		F2-VT-8	Eastern limit of the landfill top	N/A	N/A	N/A	N/A	Thermistors - Data Logger	7	N/A	Casing inclined to approx. 35° from vertical.
Other Features of Note	N	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A

Legend : N/A Not applicable

7.2 PRELIMINARY STABILITY ASSESSMENT

The Preliminary Stability Assessment for the Upper Site Landfill Lobe A has been completed as per the TOR and is included as Table XXIII hereafter.

Table XXIII: Preliminary Stability Assessment – Upper Site Landfill Lobe A

Feature	Severity Rating	Extent		
Settlement	Acceptable	Occasional		
Erosion	Not observed	None		
Frost Action	Not observed	None		
Staining	Not observed	None		
Vegetation Stress	Not observed	None		
Seepage/Ponded Water	Not observed	None		
Debris Exposure	Not observed	None		
Overall Landfill Performance	Acce	ptable		

Performance/Severity Rating	Description
Acceptable	Noted features are of little consequence. The landfill is performing as designed. Minor deviations in environmental or physical performance may be observed, such as isolated areas of erosion, settlement.
Marginal	Physical/environmental performance appears to be deteriorating with time. Observations may include an increase in size or number of features of note, such as differential settlement, erosion or cracking. No significant impact on landfill stability to-date, but potential for failure is assessed as low or moderate.
Significant	Significant or potentially significant changes affecting landfill stability, such as significant changes in slope geometry, significant erosion or differential settlement; scarp development. The potential for failure is assessed as imminent.
Unacceptable	Stability of the landfill is compromised to the extent that the ability to contain waste materials is compromised. Examples may include: • Debris exposed in erosion channels or areas of differential settlement. • Liner exposed. • Slope failure.
Extent	Description
Isolated	Singular feature.
Occasional	Features of note occurring at irregular intervals/locations.
Numerous	Many features of note, impacting less than 50% of the surface area of the landfill.
Extensive	Impacting greater than 50% of the surface area of the landfill.

7.3 LOCATION PLAN

The Location Plan for the Upper Site Landfill Lobe A has been completed as per the TOR and and is presented in Figure FOX-2.6.

7.4 THERMISTOR ANNUAL MAINTENANCE REPORTS

The thermistor inspection reports VT-5 to VT-8 are presented in this section.

Contractor Name:	Sila Remediation Inc.	Inspection Date:	24/08/2014
Prepared By:	Martin Fleury		

Site Name: FOX-2 Longstaff Bluff		Т	Thermistor Location		Upper Site La			
Thermistor Number: VT-5			Inclination 15° from		15° from vertic	vertical		
Install Date: 13/08/2011			First Date Event: 27/08/2013		Last Date Event 24/08/201			
Coordinates and Ele	evation	N	7643237		W	494452	Elev	155
Length of Cable (m)		Cable I	Lead Above Gro	und (m)	2.8	Nodal Points		11
Datalogger Serial #	7110033					Cable Serial I	Number	111160

Thermistor Inspection

<u> </u>		Good					
	Yes		No	F	Problem/M	aintena	nce
Casing	x						
Cover	x						
Data Logger	x						
Cable	x						
Beads	x						
Battery Installation Date		13/08/2011					
Battery Levels	Main	11.34	V (Bes	st)	Aux	13.38	V (Best)

Manual Ground Temperature Readings

Bead	ohms	Degrees C
1	13111	4.3733
2	14009	3.0509
3	15736	0.7562
4	16712	-0.4189
5	17316	-1.1082
6	17962	-1.8162
7	18718	-2.6094
8	19405	-3.2997

Bead	ohms	Degrees C
9	20380	-4.2339
10	21030	-4.8293
11	21750	-5.4652

Observations and Proposed Maintenance

Memory downloaded and logger restarted Batteries replaced on August 24, 2014

Contractor Name:	Sila Remediation Inc.	Inspection Date:	24/08/2014
Prepared By:	Martin Fleury		

Site Name: FOX-2 Longstaff Bluff		Thermistor L	Thermistor Location		Upper Site Landfill Lobe A		
Thermistor Number: N	/T-6	Inclination		10° from vertic	al		
Install Date:	3/08/2011	First Date Ev	vent: 27/08/2013	La	ast Date Event	24/08/2014	
Coordinates and Eleva	ation	N 7643235	W	494484	Elev	153	
Length of Cable (m)		Cable Lead Above	Ground (m) 2.8	Nodal Points		10	
Datalogger Serial #	7110035			Cable Serial N	lumber	111162	

Thermistor Inspection

		Good					
	Yes		No	Р	Problem/N	/laintena	ance
Casing	x		_				
Cover	x		_				
Data Logger	x		-				
Cable	x		_				
Beads	x		-				
Battery Installation Date		13/08/2011					
Battery Levels	Main	11.34	V (Bes	t)	Aux	13.38	V (Best)

Manual Ground Temperature Readings

Bead	ohms	Degrees C
1	13339	4.0282
2	13803	3.3457
3	15118	1.5434
4	16645	-0.3407
5	17264	-1.0499
6	17891	-1.7398
7	18450	-2.3324
8	19220	-3.1166

Bead	ohms	Degrees C
9	20020	-3.8949
10	20750	-4.5753

Observations and Proposed Maintenance

Memory downloaded and logger restarted Batteries replaced on August 24, 2014

Contractor Name:	Sila Remediation Inc.	Inspection Date:	24/08/2014
Prepared By:	Martin Fleury		

Site Name: FOX-2 Longstaff Bluff		Thermistor Location	Thermistor Location		Upper Site Landfill Lobe A		
Thermistor Number: VT	Inclination	Inclination 25° from vertical					
Install Date: 13	/08/2011	First Date Event: 27/08/	First Date Event: 27/08/2013		Last Date Event 24/08/20		
Coordinates and Elevati	on N	7643189	W	494438	Elev	154	
Length of Cable (m)	Ca	able Lead Above Ground (m	1.65	Nodal Points		13	
Datalogger Serial #	7110034			Cable Serial Nun	nber	111161	

Thermistor Inspection

tor mapection					
		Good			
	Yes		No	Problem	n/Maintenance
Casing	x				
Cover	x				
Data Logger	x				
Cable	x				
Beads	x				
Battery Installation Date		13/08/2011			
Battery Levels	Main	11.34	V (Best)	Aux	13.26 V (Best)

Manual Ground Temperature Readings

Bead	ohms	Degrees C
1	15690	0.8136
2	16364	-0.0089
3	16982	-0.7304
4	17562	-1.3812
5	18217	-2.0879
6	18910	-2.8052
7	19361	-3.2563
8	19886	-3.767

Bead	ohms	Degrees C
9	20310	-4.1685
10	20900	-4.7118
11	21370	-5.1326
12	21660	-5.387
13	21880	-5.5775

Observations and Proposed Maintenance

Memory downloaded and logger restarted Batteries replaced on August 24, 2014

Contractor Name:	Sila Remediation Inc.	Inspection Date:	24/08/2014
Prepared By:	Martin Fleury		

Site Name: FOX-2 Longstaff	Bluff	Thermistor Loca	tion		Upper Site Lan	dfill Lobe A	
Thermistor Number: VT-8		Inclination 35			35° from vertical		
Install Date: 13/08/20	011	First Date Event	: 27/08/2013	3	La	st Date Event	24/08/2014
Coordinates and Elevation	N	7643232	\	N	494507	Elev	151
Length of Cable (m)	Cabl	e Lead Above Gro	ound (m) 2	2.65	Nodal Points		14
Datalogger Serial # 71	10010				Cable Serial N	umber	111158

Thermistor Inspection

tor mapection						
		Good				
	Yes		No	Problem	/Maintenance	
Casing	x					
Cover	x					
Data Logger	x					
Cable	x					
Beads	x					
Battery Installation Date		13/08/2011				
Battery Levels	Main	11.34	V (Best)	Aux	13.5 V (Best)

Manual Ground Temperature Readings

Bead	ohms	Degrees C
1	15640	0.8762
2	16106	0.3014
3	16862	-0.5926
4	17406	-1.2086
5	18057	-1.9179
6	18662	-2.5519
7	19444	-3.3381
8	19932	-3.811

Bead	ohms	Degrees C
9	20520	-4.3639
10	21110	-4.9011
11	21580	-5.3172
12	22180	-5.8339
13	22540	-6.1365
14	22850	-6.3927

Observations and Proposed Maintenance

Memory downloaded and logger restarted Batteries replaced on August 24, 2014

7.5 PHOTOGRAPHIC RECORDS

The Photographic Record for the Upper Site Landfill Lobe A has been completed as per the TOR and is included in the following pages as Table XXIV. Full-sized photographs are contained in the Addendum DVD-ROM.

Table XXIV: Landfill Visual Inspection Photo Log – Upper Site Landfill Lobe A

Site Name: FOX-2, Longstaff Bluff
Landfill: Upper Site Landfill Lobe A
Date Inspected: August 24, 2014

Date Inspected: August 24, 20 Inspected by: Martin Fleury

Photo	Filename	Size (KB)	Date	Vantage	Point	Caption
Piloto	riiellallie	SIZE (ND)	Date	Easting	Northing	Сарнон
1	IMG_0413	1 791	2014-08-24	18 W 494438	7643189	South - Southeast view of VT-7 thermistor casing.
2	IMG_0414	2 078	2014-08-24	18 W 494438	7643189	View of VT-7 data logger box.
3	IMG_0415	2 212	2014-08-24	18 W 494452	7643237	South view of VT-5 thermistor casing.
4	IMG_0416	1 984	2014-08-24	18 W 494452	7643237	View of VT-5 data logger box.
5	IMG_0417	2 190	2014-08-24	18 W 494484	7643235	South view of VT-6 thermistor casing.
6	IMG_0418	1 784	2014-08-24	18 W 494484	7643235	View of VT-6 data logger box.
7	IMG_0419	2 229	2014-08-24	18 W 494507	7643232	South view of VT-8 thermistor casing.
8	IMG_0420	1 967	2014-08-24	18 W 494507	7643232	View of VT-8 data logger box.
9	IMG_0433	2 223	2014-08-24	18 W 494543	7643212	Northeast view of MW-16.
10	IMG_0434	2 077	2014-08-24	18 W 494529	7643264	Southeast view of MW-15.
11	IMG_0435	2 081	2014-08-24	18 W 494531	7643264	Northeast view of F2-MW-15-S soil sampling location.
12	IMG_0436	2 949	2014-08-24	18 W 494531	7643264	Southwest view of F2-MW-15-S soil sampling location.
13	IMG_0437	2 430	2014-08-24	18 W 494544	7643211	North view of F2-MW-16-S soil sampling location.
14	IMG_0438	2 957	2014-08-24	18 W 494531	7643264	Southwest view of F2-MW-15-S soil sampling location.
15	IMG_0439	1 682	2014-08-24	18 W 494476	7643300	South view of MW-14.
16	IMG_0440	2 050	2014-08-24	18 W 494473	7643303	North view of F2-MW-14-S sampling location.
17	IMG_0441	2 076	2014-08-24	18 W 494473	7643303	South view of F2-MW-14-S sampling location.
18	IMG_0442	2 201	2014-08-24	18 W 494448	7643286	Southeast view of the northern slope of the Upper Site Landfill Lobe A.
19	IMG_0443	2 179	2014-08-24	18 W 494448	7643286	West -Southwest view of the northern slope of the Upper Site Landfill Lobe A.
20	IMG_0444	2 213	2014-08-24	18 W 494429	7643250	Panoramic view of the Upper Site Landfill Lobe A top, East - Northeast.
21	IMG_0445	2 403	2014-08-24	18 W 494429	7643250	Panoramic view of the Upper Site Landfill Lobe A top, East - Southeast.
22	IMG_0446	2 432	2014-08-24	18 W 494429	7643250	Panoramic view of the Upper Site Landfill Lobe A top, Southeast.
23	IMG_0447	2 220	2014-08-24	18 W 494429	7643250	Panoramic view of the Upper Site Landfill Lobe A top, South.
24	IMG_0448	2 630	2014-08-24	18 W 494429	7643250	Panoramic view of the Upper Site Landfill Lobe A top, South - Southw est.
25	IMG_0449	2 068	2014-08-24	18 W 494395	7643189	North View of the Western slope of the Upper Site Landfill Lobe
26	IMG_0450	2 500	2014-08-24	18 W 494395	7643189	Southeast view of the Western slope of the Upper Site Landfill Lobe A.
27	IMG_0908	1 892	2014-08-24	18 W 494362	7643177	East view of MW-13.
28	IMG_0909	2 555	2014-08-24	18 W 494366	7643174	East view of F2-MW-13-S soil sampling location.

7.6 SOIL SAMPLE ANALYTICAL DATA

The soil chemical analyses results for the 2014 Upper Site Landfill Lobe A samples are presented in Table XXV hereafter. Certificates of analyses and results of field duplicates collected as part of the QA/QC program are presented in Annex 1 at the end of this report.

Table XXV: Upper Site Landfill Lobe A Summary Table for Soil Analytical Data

Tuble AXV. Opper one Editable A Salimary Tuble for Soil Analytical Bata															
													F1	F2	F3
Sample #	Location	Depth [cm]	Cu [mg/kg]	Ni [mg/kg]	Co [mg/kg]	Cd [mg/kg]	Pb [mg/kg]	Zn [mg/kg]	Cr [mg/kg]	As [mg/kg]	Hg [mg/kg]	PCBs [mg/kg]		C ₁₀ -C ₁₆ [mg/kg]	
RDL - Exova			1	1	1	0.5	1	2	1	1	0.1	0.02	10	10	20
Upgradient Soil Sample	s														
F2-MW-13-S-A-2014	MW13	0 - 10	42	38	12	<0.5	8	69	52	35	<0.1	< 0.02	<10	<10	<20
F2-MW-13-S-B-2014	IVIVVIO	40 - 50	43	50	12	<0.5	8	76	82	36	<0.1	< 0.02	<10	<10	<20
Downgradient Soil Sam	ples														
F2-MW-14-S-A-2014	MW14	0 - 10	44	52	12	<0.5	8	71	78	35	<0.1	< 0.02	<10	<10	120
F2-MW-14-S-B-2014	10100 14	40 - 50	55	55	13	<0.5	8	79	73	41	<0.1	<0.02	<10	<10	30
F2-MW-15-S-A-2014	MW 15	0 - 10	62	47	15	<0.5	9	91	46	35	<0.1	<0.02	<10	<10	100
F2-MW-15-S-B-2014	IVIVVIO	40 - 50	50	50	14	<0.5	8	81	66	34	<0.1	< 0.02	<10	<10	50
F2-MW-16-S-A-2014	MW16	0 - 10	63	47	11	<0.5	9	84	56	41	<0.1	<0.02	<10	<10	<20
F2-MW-16-S-B-2014	1010 0 10	40 - 50	73	63	29	<0.5	10	92	86	46	<0.1	< 0.02	<10	<10	<20

7.7 GROUNDWATER SAMPLE ANALYTICAL DATA

Three (3) out of four (4) wells contained enough water to perform groundwater sampling for all parameters. MW-14 and MW-16 lacked the necessary quantity of water to conduct sampling for TPH analysis. The sample collected at MW-15 for TPH analysis by Exova was lost in transportation (broken bottle). TPH results (and associated RDL) presented for MW-15 are from the QA duplicate sent to Maxxam. As samples were not filtered, sediment was present in all but one groundwater sample (MW15) and required a digest which raised the RDL. The RDL for sample collected at MW15 is the usual RDL used by Exova.

The groundwater chemical analyses results and evaluation for the analytical data for the 2014 Upper Site Landfill Lobe A samples are presented in Table XXVI hereafter. Certificates of analyses and results for groundwater samples collected as part of the QA/QC program are presented in Annex 1 at the end of this report.

Table XXVI: Upper Site Landfill Lobe A Summary Table for Groundwater Analytical Data

	Iabic		opper	SILE La	mann Lo	DE A SU	ııııııaı y	lable	ioi Gio	unuwai	ei Aliai	yılcal Da	lla	
							_		_			F1	F2	F3
Sample #	Location	Cu [mg/L]	Ni [mg/L]	Co [mg/L]	Cd [mg/L]	Pb [mg/L]	Zn [mg/L]	Cr [mg/L]	As [mg/L]	Hg [mg/L]	PCBs [ug/L]	C ₆ -C ₁₀ [mg/L]	C ₁₀ -C ₁₆ [mg/L]	C ₁₀ -C ₃₄ [mg/L]
RDL - Exova*		0.01	0.01	0.01	0.008	0.01	0.04	0.05	0.02	0.0001	0.1	NA	0.1	0.2
Upgradient Groundy	vater Sampl	le												
F2-MW-13-2014	MW13						Insuffici	ent Water	to Sample					
Downgradient Groun	ndwater Sai	mples												
F2-MW-14-2014	MW14	0.26	0.28	0.06	<0.008	0.03	0.55	0.20	0.06	<0.0001	<0.1	Insufficier	nt Water to	Sample
F2-MW-15-2014	MW15	0.018	0.042	0.0105	0.0007**	0.004	0.03	0.002	< 0.001	<0.0001	<0.1	<0.025***	<0.1***	<0.2***
1 2-10100-13-2014	RDL**	0.001**	0.005**	0.0020**	0.0001**	0.001**	0.01**	0.001**	0.001**	0.0001**	0.1**	0.025*	0.1*	0.2*
F2-MW-16-2014	MW16	0.43	0.35	0.09	<0.008	0.06	4.37	0.32	0.22	< 0.0001	<0.1	Insufficier	nt Water to	Sample

^{*:} RDL adapted for analysis performed with digest due to turbidity in sample

^{**:} RDL: Usual RDL from Exova

^{***:} RDL and Concentration from Maxxam (Bottle to Exova broke during shipping)

7.8 Monitoring Well Sampling / Inspection Logs

The monitoring well sampling logs for MW-13 to MW-16 are presented in this section. It should be noted that the casing at MW-16 heaved due to frost action.

Develo	pment of	Monitoring Wells	
		9	
Site Name:	FOX-2	Longstaff Bluff	
Date of Sampling Event:	2014-08-24	Time:	15:10
Names of Samplers:		Martin Fleury	
		Caleb Qanatsiaq	
		Philip Siakuluk	
Landfill Name:		pper Site Landfill Lobe A	
Monitoring Well ID:	MW-13		
Sample Number:		4	
Condition of Well:	Good		
Measured Data			
Well pipe height above ground (cm)=	34		
Diameter of well (cm)=	5		
Depth of well installation (cm)=	350		
(from ground surface)			
Length screened section (cm)=	300		
Depth to top of screen (cm)=	40		
(from ground surface)			
,			
Depth to water surface (cm)=	NA (dry)	Measurement method: (meter,	Interface meter
(from top of pipe)		tape, etc.)	
Static water level (cm)=	NA		
(below ground surface)			
Measured well refusal depth BGS	432		
(cm)=			
Thickness of water column (cm)=	NA		
Static volume of water in well (mL)=	NA		
Free product thickness (mm)=	NA	Measurement method: (meter,	Interface meter
Purging: (Y/N)	N		
r diging. (1/14)	I N		
Volume Purged Water (L)=	NA		
voidine i diged vvater (L)=	1471		
Decentermination required: (MA)	N I		
Decontamination required: (Y/N)	N		
Number washes:	NA		
Number rinses:	NA		
F(111	N I A		
Final Conductivity (US/om)	NA		
Final Conductivity (uS/cm)=	NA		
Final Temperature (degC)=	NA		

Develo	pment of	Monitoring Wells	
		<u> </u>	
Site Name:	FOX-2	Longstaff Bluff	
Date of Sampling Event:	2014-08-24	_	14:30
Names of Samplers:		Martin Fleury	
·		Caleb Qanatsiaq	
		Philip Siakuluk	
Landfill Name:	U	pper Site Landfill Lobe A	
Monitoring Well ID:			
Sample Number:		4	
Condition of Well:			
Measured Data			
Well pipe height above ground (cm)=	32		
Diameter of well (cm)=	5		
Depth of well installation (cm)=	350		
(from ground surface)			
Length screened section (cm)=	300		
Depth to top of screen (cm)=	40		
(from ground surface)			
(morn ground candos)			
Depth to water surface (cm)=	152	Measurement method: (meter,	Interface meter
(from top of pipe)		tape, etc.)	mitoriaco motor
Static water level (cm)=	120	ταρο, στο.)	
(below ground surface)			
Measured well refusal depth BGS	292	Evidence of sludge or siltation:	Freezing
(cm)=		Evidence of cladge of citation.	1 10021119
Thickness of water column (cm)=	172		
Static volume of water in well (mL)=	3440		
Statio volume of water in wen (int_)=	0110		
Free product thickness (mm)=	NA	Measurement method: (meter,	Interface meter
		Table 1. The state of the state	
Demails at AVAD	Y	Duraina/Complian Faultanant	\\/ at a wea !
Purging: (Y/N)	l ^r	Purging/Sampling Equipment:	Waterra tubing
Volume Purged Water (L)=	3.5		Foot Valve
volume Purged vvaler (L)=	ა.5		root valve
Decontamination required: (Y/N)	N	Dedicated Waterra Tubing	
Number washes:	NA		
Number rinses:	NA		
Final pH=	8.00		
Final Conductivity (uS/cm)=	750		
Final Temperature (degC)=	2.65		

	Monitoring Wells	pment of	Develo					
	Longstaff Bluff	FOX-2	Site Name:					
13:10	Time:	2014-08-24	Date of Sampling Event:					
	Martin Fleury		Names of Samplers:					
	Caleb Qanatsiaq							
	Philip Siakuluk							
	pper Site Landfill Lobe A	U	Landfill Name:					
		MW-15	Monitoring Well ID:					
	4		Sample Number:					
			Measured Data					
		42	Well pipe height above ground (cm)=					
		5	Diameter of well (cm)=					
		320	Depth of well installation (cm)=					
			(from ground surface)					
		300	Length screened section (cm)=					
		320	Depth to top of screen (cm)=					
		020	(from ground surface)					
			(nom ground sundee)					
Interface meter	Measurement method: (meter,	202	Depth to water surface (cm)=					
Interiace meter	•	202	(from top of pipe)					
	tape, etc.)	178	Static water level (cm)=					
		170	` '					
		318	(below ground surface) Measured well refusal depth BGS					
		310	•					
		140	(cm)= Thickness of water column (cm)=					
		2800	,					
		2800	Static volume of water in well (mL)=					
Interface meter	Measurement method: (meter,	NA	Free product thickness (mm)=					
Matarra tubisa	Purging/Sampling Equipment:	Υ	Duraina: (V/A)					
			Purging: (Y/N)					
Foot Valve		3	Volume Purged Water (L)=					
	Dedicated Waterra Tubing	N	Decontamination required: (Y/N)					
		NA	Number washes:					
		NA	Number rinses:					
		7.04	-					
		7,94	Final pH=					
		144	Final Conductivity (uS/cm)=					
		2,45	Final Temperature (degC)=					

Develo	pment of	Monitoring Wells	
Site Name:	FOX-2	Longstaff Bluff	
Date of Sampling Event:	2014-08-24	•	12:50
Names of Samplers:		Martin Fleury	
		Caleb Qanatsiaq	
		Philip Siakuluk	
Landfill Name:	U	pper Site Landfill Lobe A	
Monitoring Well ID:			
Sample Number:		4	
Condition of Well:	Casing heav	ved due to frost action	
	j		
Measured Data			
Well pipe height above ground (cm)=	34		
Diameter of well (cm)=	5		
Depth of well installation (cm)=	340		
(from ground surface)			
Length screened section (cm)=	300		
,			
Depth to top of screen (cm)=	73		
(from ground surface)			
Depth to water surface (cm)=	91	Measurement method: (meter,	Interface meter
(from top of pipe)		tape, etc.)	
Static water level (cm)=	57	tapo, cto.)	
(below ground surface)			
Measured well refusal depth BGS	226	Evidence of sludge or siltation:	Frozen
(cm)=		Evidence of cladge of citation.	1102011
Thickness of water column (cm)=	169		
Static volume of water in well (mL)=	3380		
Static volume of water in well (IIIL)=	3360		
Free product thickness (mm)=	NA	Measurement method: (meter,	Interface meter
()		paste, etc.)	
		paoto, oto.)	
Duraina: (V/N)	Y	Durging/Compling Equipment	Matarra tubisa
Purging: (Y/N)		Purging/Sampling Equipment:	Waterra tubing
Volume Purged Water (L)=	3.5	Dadia stad Matawa Tulsia w	Foot Valve
Decontamination required: (Y/N)	N	Dedicated Waterra Tubing	
Number washes:	NA NA		
Number rinses:	NA		
F: 1 11	7.04		
Final pH=	7.34		
Final Conductivity (uS/cm)=	290		
Final Temperature (degC)=	2.15		

ANNEX 1 Certificates of Analysis and QA/QC reports

ADDENDUM TO CERTIFICATE OF ANALYSIS AND CHAIN OF COSTODY

It should be noted that the following certificate of analysis (COA) and related chain of custody (COC's) contains some sample names inversion. In consequence, the sampling station labels shown in the COA and COC's should be read as following:

Sample label shown in COA	Laboratory I.D.	Correct sample identification
F2-1-A-2014	1131191	F2-7-A-2014
F2-1-B-2014	1131192	F2-7-B-2014
F2-2-A-2014	1131193	F2-8-A-2014
F2-2-B-2014	1131194	F2-8-B-2014
F2-3-A-2014	1131195	F2-9-A-2014
F2-3-B-2014	1131196	F2-9-B-2014
F2-4-A-2014	1131197	F2-6-A-2014
F2-4-B-2014	1131198	F2-6-B-2014
F2-6-A-2014	1131204	F2-4-A-2014
F2-7-A-2014	1131205	F2-3-A-2014
F2-8-A-2014	1131206	F2-1-A-2014

EXOVA
146 COLONNADE ROAD #8
OTTAWA
ONTARIO
CANADA
K2E 7Y1

T: +1 (613) 727-5692 F: +1 (613) 727-5222 E: SALES@EXOVA.COM W: www.EXOVA.COM

Sample Integrity Scorecard

Summary								
Total Total Pass Total Failed % Passed Reports								
Process	5	0	5	0				
Data Quality	5	1	4	20				

Ottawa Workorder: 1418941 (Fox-3)

Process

Were the sample containers packaged well? Yes If No, please explain:

Was the COC received? Yes

Was the COC filled in adequately and legibly? No please explain: No quotation included on COC

Was the COC received without damage? Yes If No, please explain:

Were the sample containers clearly labelled? Yes If No, please explain:

Data Quality

Were the samples received within recommended holding times? Yes

Were samples received in containers appropriate to the matrix and analysis required? No Most samples did have the correct containers but ideally we should have two jars per soil sample and for 3 of the samples we only received one jar.

Were the expected number of samples received? No * If No, please explain: 6 samples were not received.

Were all samples received intact (not damaged/broken)? Yes * If No, please explain:

For water samples only, were they received without a noticeable layer of sediment? N/A If No, please explain:

Was sufficient sample volume received? Yes If No, please explain:

Non-Conformances

Process: 1 Data Quality: 2 Total: 3

Ottawa Workorder: 1418943 (Fox-2)

Process

Were the sample containers packaged well? Yes If No, please explain:

Was the COC received? Yes

Was the COC filled in adequately and legibly? No please explain: No quotation included on COC

Was the COC received without damage? Yes If No, please explain:

Were the sample containers clearly labelled? Yes If No, please explain:

Data Quality

Were the samples received within recommended holding times? Yes

Were samples received in containers appropriate to the matrix and analysis required? Yes

Were the expected number of samples received? Yes If No, please explain:

Were all samples received intact (not damaged/broken)? No * If No, please explain: 2 soil jars were received broken

For water samples only, were they received without a noticeable layer of sediment? N/A If No, please explain:

Was sufficient sample volume received? Yes If No, please explain:

Non-Conformances

Process: 1 Data Quality: 1 Total: 2

Ottawa Workorder: 1418944 (Fox-2)

Process

Were the sample containers packaged well? Yes If No, please explain:

Was the COC received? Yes

Was the COC filled in adequately and legibly? No please explain: No quotation included on COC

Was the COC received without damage? Yes If No, please explain:

Were the sample containers clearly labelled? Yes If No, please explain:

Data Quality

Were the samples received within recommended holding times? Yes

Were samples received in containers appropriate to the matrix and analysis required? Yes

Were the expected number of samples received? Yes

Were all samples received intact (not damaged/broken)? Yes * If No, please explain:

For water samples only, were they received without a noticeable layer of sediment? N/A If No, please explain:

Was sufficient sample volume received? Yes If No, please explain:

Non-Conformances

Process: 1 Data Quality: 0 Total: 1

Ottawa Workorder: 1418982 (Fox-2)

Process

Were the sample containers packaged well? Yes If No, please explain:

Was the COC received? Yes

Was the COC filled in adequately and legibly? No please explain: No quotation included on COC

Was the COC received without damage? Yes If No, please explain:

Were the sample containers clearly labelled? Yes If No, please explain:

Data Quality

Were the samples received within recommended holding times? Yes

Were samples received in containers appropriate to the matrix and analysis required? Yes

Were the expected number of samples received? Yes * If No, please explain:

Were all samples received intact (not damaged/broken)? No * If No, please explain: One of the 1L amber bottles broke during shipping.

For water samples only, were they received without a noticeable layer of sediment? Yes If No, please explain:

Was sufficient sample volume received? No If No, please explain: While the appropriate bottles were received there were many bottles with insufficient sample volumes. The lab did the best with what they were given.

Non-Conformances

Process: 1 Data Quality: 2 Total: 3

Ottawa Workorder: 1421066 (Fox-3)

Process

Were the sample containers packaged well? Yes If No, please explain:

Was the COC received? Yes

Was the COC filled in adequately and legibly? No please explain: No quotation included on COC

Was the COC received without damage? Yes If No, please explain:

Were the sample containers clearly labelled? Yes If No, please explain:

Data Quality

Were the samples received within recommended holding times? Yes

Were samples received in containers appropriate to the matrix and analysis required? No Many of the samples only had two of the required 5 bottles. Out of 9 sample sets only 2 had the appropriate bottles.

Were the expected number of samples received? Yes * If No, please explain:

Were all samples received intact (not damaged/broken)? Yes * If No, please explain:

For water samples only, were they received without a noticeable layer of sediment? No If No, please explain: One of the metals bottles had sediment which required the MRL's to be raised.

Was sufficient sample volume received? No If No, please explain: There were many bottles with insufficient sample volumes. The lab did the best with what they were given.

Non-Conformances

Process: 1 Data Quality: 3 Total: 4

Certificate of Analysis

Client: Sila Remediation Inc.

200-4495 Boul. Wilfrid-Hamel

Québec, QC G1P 2J7

Attention: Mr. Jean-Pierre Pelletier

PO#:

Invoice to: Sila Remediation Inc. Page 1 of 9

Report Number: 1418943

Date Submitted: 2014-09-04

Date Reported: 2015-02-19

Project: Dew Line Monitoring Fox-2

COC #: 789358

Dear Jean-Pierre Pelletier:

Please find attached the analytical results for your samples. If you have any questions regarding this report, please do not hesitate to call (613-727-5692).

Report Comments:

Revision 1: Sample ID for RN#1131169 amended to F2-MW-13-S-A-2014 as per client request.

APPROVAL:

Charlie (Long) Qu
Laboratory Supervisor, Organics

All analysis is completed in Ottawa, Ontario (unless otherwise indicated).

Exova Ottawa is accredited by CALA, Canadian Association for Laboratory Accreditation to ISO/IEC 17025 for tests which appear on our CALA scope of accreditation. It can be found at http://www.cala.ca/scopes/2602.pdf.

Exova (Ottawa) is certified and accredited for specific parameters by OMAFRA, Ontario Ministry of Agriculture, Food and Rural Affairs (for farm soils). Licensed by Ontario MOE for specific tests in drinking water.

Exova (Mississauga) is accredited for specific parameters by SCC, Standards Council of Canada (to ISO 17025)

Please note: Field data, where presented on the report, has been provided by the client and is presented for informational purposes only. Guideline values listed on this report are provided for ease of use (informational purposes) only. Exova recommends consulting the official provincial or federal guideline as required.

Certificate of Analysis

Client: Sila Remediation Inc.

200-4495 Boul. Wilfrid-Hamel

Québec, QC

G1P 2J7

Attention: Mr. Jean-Pierre Pelletier

PO#:

Invoice to: Sila Remediation Inc.

Report Number: 1418943

Date Submitted: 2014-09-04

Date Reported: 2015-02-19

Project: Dew Line Monitoring Fox-2

COC #: 789358

				Lab I.D. Sample Matrix Sample Type Sampling Date Sample I.D.	1131169 Soil 2014-08-24 F2-MW-13-S-A-2014	1131170 Soil 2014-08-24 F2-MW-13-S-B-2014	1131171 Soil 2014-08-24 F2-MW-14-S-A-2014	1131172 Soil 2014-08-24 F2-MW-14-S-B-2014
Group	Analyte	MRL	Units	Guideline				
General Chemistry	Moisture	0.1	%		11.6	10.8	25.4	10.9
Hydrocarbons	F1 (C6-C10)	10	ug/g		<10	<10	<10	<10
	F2 (C10-C16)	10	ug/g		<10	<10	<10	<10
	F3 (C16-C34)	20	ug/g		<20	<20	120	30
Mercury	Hg	0.1	ug/g		<0.1	<0.1	<0.1	<0.1
Metals	As	1	ug/g		35	36	35	41
	Cd	0.5	ug/g		<0.5	<0.5	<0.5	<0.5
	Со	1	ug/g		12	12	12	13
	Cr	1	ug/g		52	82	78	73
	Cu	1	ug/g		42	43	44	55
	Ni	1	ug/g		38	50	52	55
	Pb	1	ug/g		8	8	8	8
	Zn	2	ug/g		69	76	71	79
PCBs	Polychlorinated Biphenyls (PCBs)	0.02	ug/g		<0.02	<0.02	<0.02	<0.02

Guideline = * = Guideline Exceedence

All analysis completed in Ottawa, Ontario (unless otherwise indicated by ** which indicates analysis was completed in Mississauga, Ontario).

Results relate only to the parameters tested on the samples submitted.

Methods references and/or additional QA/QC information available on request.

Certificate of Analysis

Client: Sila Remediation Inc.

200-4495 Boul. Wilfrid-Hamel

Québec, QC

G1P 2J7

Attention: Mr. Jean-Pierre Pelletier

PO#:

Invoice to: Sila Remediation Inc.

Report Number: 1418943
Date Submitted: 2014-09-04
Date Reported: 2015-02-19

Project: Dew Line Monitoring Fox-2

COC #: 789358

				Lab I.D. Sample Matrix Sample Type Sampling Date Sample I.D.	1131173 Soil 2014-08-24 F2-MW-15-S-A-2014	1131174 Soil 2014-08-24 F2-MW-15-S-B-2014	1131175 Soil 2014-08-24 F2-MW-16-S-A-2014	1131176 Soil 2014-08-24 F2-MW-16-S-B-2014
Group	Analyte	MRL	Units	Guideline				
General Chemistry	Moisture	0.1	%		17.4	13.2	14.7	8.4
Hydrocarbons	F1 (C6-C10)	10	ug/g		<10	<10	<10	<10
	F2 (C10-C16)	10	ug/g		<10	<10	<10	<10
	F3 (C16-C34)	20	ug/g		100	50	<20	<20
Mercury	Hg	0.1	ug/g		<0.1	<0.1	<0.1	<0.1
Metals	As	1	ug/g		35	34	41	46
	Cd	0.5	ug/g		<0.5	<0.5	<0.5	<0.5
	Со	1	ug/g		15	14	11	29
	Cr	1	ug/g		46	66	56	86
	Cu	1	ug/g		62	50	63	73
	Ni	1	ug/g		47	50	47	63
	Pb	1	ug/g		9	8	9	10
	Zn	2	ug/g		91	81	84	92
PCBs	Polychlorinated Biphenyls (PCBs)	0.02	ug/g		<0.02	<0.02	<0.02	<0.02

All analysis completed in Ottawa, Ontario (unless otherwise indicated by ** which indicates analysis was completed in Mississauga, Ontario).

Results relate only to the parameters tested on the samples submitted.

Methods references and/or additional QA/QC information available on request.

Certificate of Analysis

Client: Sila Remediation Inc.

200-4495 Boul. Wilfrid-Hamel

Québec, QC

G1P 2J7

Attention: Mr. Jean-Pierre Pelletier

PO#:

Invoice to: Sila Remediation Inc.

Report Number: 1418943
Date Submitted: 2014-09-04
Date Reported: 2015-02-19

Project: Dew Line Monitoring Fox-2

COC #: 789358

				Lab I.D. Sample Matrix Sample Type Sampling Date Sample I.D.	1131177 Soil 2014-08-24 F2-MW-5-S-A-2014	1131178 Soil 2014-08-24 F2-MW-5-S-B-2014	1131179 Soil 2014-08-24 F2-MW-6-S-A-2014	1131180 Soil 2014-08-24 F2-MW-6-S-B-2014
Group	Analyte	MRL	Units	Guideline				
General Chemistry	Moisture	0.1	%		8.8	6.2	9.3	4.8
Hydrocarbons	F1 (C6-C10)	10	ug/g		<10	<10	<10	<10
	F2 (C10-C16)	10	ug/g		<10	<10	<10	<10
	F3 (C16-C34)	20	ug/g		<20	<20	60	<20
Mercury	Hg	0.1	ug/g		<0.1	<0.1	<0.1	<0.1
Metals	As	1	ug/g		19	26	19	36
	Cd	0.5	ug/g		<0.5	<0.5	<0.5	<0.5
	Со	1	ug/g		15	13	18	23
	Cr	1	ug/g		103	103	165	146
	Cu	1	ug/g		25	31	59	90
	Ni	1	ug/g		46	44	84	99
	Pb	1	ug/g		6	4	6	8
	Zn	2	ug/g		94	93	110	119
PCBs	Polychlorinated Biphenyls (PCBs)	0.02	ug/g		<0.02	<0.02	<0.02	<0.02

All analysis completed in Ottawa, Ontario (unless otherwise indicated by ** which indicates analysis was completed in Mississauga, Ontario).

Results relate only to the parameters tested on the samples submitted.

Methods references and/or additional QA/QC information available on request.

Certificate of Analysis

Client: Sila Remediation Inc.

200-4495 Boul. Wilfrid-Hamel

Québec, QC

G1P 2J7

Attention: Mr. Jean-Pierre Pelletier

PO#:

Invoice to: Sila Remediation Inc.

Report Number: 1418943
Date Submitted: 2014-09-04
Date Reported: 2015-02-19

Project: Dew Line Monitoring Fox-2

COC #: 789358

				Lab I.D. Sample Matrix Sample Type Sampling Date Sample I.D.	1131181 Soil 2014-08-24 F2-DUP-1-2014	1131182 Soil 2014-08-24 F2-DUP-4-2014	1131183 Soil 2014-08-24 F2-DUP-7-2014	1131184 Soil 2014-08-24 F2-DUP-10-2014
Group	Analyte	MRL	Units	Guideline				
General Chemistry	Moisture	0.1	%		13.9	6.9	6.1	8.2
Hydrocarbons	F1 (C6-C10)	10	ug/g		<10	<10	<10	<10
	F2 (C10-C16)	10	ug/g		<10	<10	<10	<10
	F3 (C16-C34)	20	ug/g		40	<20	<20	<20
Mercury	Hg	0.1	ug/g		<0.1	<0.1	<0.1	<0.1
Metals	As	1	ug/g		44	14	30	34
	Cd	0.5	ug/g		<0.5	<0.5	<0.5	<0.5
	Со	1	ug/g		14	14	36	18
	Cr	1	ug/g		50	105	102	80
	Cu	1	ug/g		54	22	70	70
	Ni	1	ug/g		45	46	110	71
	Pb	1	ug/g		9	4	11	12
	Zn	2	ug/g		78	94	162	110
PCBs	Polychlorinated Biphenyls (PCBs)	0.02	ug/g		<0.02	<0.02	<0.02	<0.02

All analysis completed in Ottawa, Ontario (unless otherwise indicated by ** which indicates analysis was completed in Mississauga, Ontario).

Results relate only to the parameters tested on the samples submitted.

Methods references and/or additional QA/QC information available on request.

Certificate of Analysis

Client: Sila Remediation Inc.

200-4495 Boul. Wilfrid-Hamel

Québec, QC

G1P 2J7

Attention: Mr. Jean-Pierre Pelletier

PO#:

Invoice to: Sila Remediation Inc.

Report Number: 1418943
Date Submitted: 2014-09-04
Date Reported: 2015-02-19

Project: Dew Line Monitoring Fox-2

COC #: 789358

				Lab I.D. Sample Matrix Sample Type Sampling Date Sample I.D.	1131185 Soil 2014-08-24 F2-DUP-13-2014
Group	Analyte	MRL	Units	Guideline	
General Chemistry	Moisture	0.1	%		4.1
Hydrocarbons	F1 (C6-C10)	10	ug/g		<10
	F2 (C10-C16)	10	ug/g		<10
	F3 (C16-C34)	20	ug/g		<20
Mercury	Hg	0.1	ug/g		<0.1
Metals	As	1	ug/g		27
	Cd	0.5	ug/g		<0.5
	Со	1	ug/g		17
	Cr	1	ug/g		78
	Cu	1	ug/g		72
	Ni	1	ug/g		76
	Pb	1	ug/g		9
	Zn	2	ug/g		125
PCBs	Polychlorinated Biphenyls (PCBs)	0.02	ug/g		<0.02

All analysis completed in Ottawa, Ontario (unless otherwise indicated by ** which indicates analysis was completed in Mississauga, Ontario).

Results relate only to the parameters tested on the samples submitted.

Methods references and/or additional QA/QC information available on request.

Certificate of Analysis

Client: Sila Remediation Inc.

200-4495 Boul. Wilfrid-Hamel

Québec, QC

G1P 2J7

Attention: Mr. Jean-Pierre Pelletier

PO#:

Invoice to: Sila Remediation Inc.

Report Number: 1418943 Date Submitted: 2014-09-04 Date Reported: 2015-02-19

Project: Dew Line Monitoring Fox-2

COC #: 789358

QC Summary

	Analyt	e		Blank		QC % Rec	QC Limits
Run No:	208523	Analysis Date:	2014-0	09-07 Method :	SW8	46 8081A/8082A	
Polychlo	rinated Biphen	yls (PCBs)		<0.02 ug/g		85	50-120
Run No:	275801	Analysis Date:	2014-0	09-08 Method :	EPA	200.8	
As				<1 ug/g		98	70-130
Cd				<0.5 ug/g		82	70-130
Со				<1 ug/g		89	70-130
Cr				<1 ug/g		90	70-130
Cu				<1 ug/g		91	70-130
Ni				<1 ug/g		91	70-130
Pb				<1 ug/g		85	70-130
Zn				<2 ug/g		90	70-130
Run No:	275861	Analysis Date:	2014-0	09-09 Method :	EPA	200.8	
As				<1 ug/g		100	70-130
Cd				<0.5 ug/g		93	70-130
Со				<1 ug/g		94	70-130

Guideline = * = Guideline Exceedence

All analysis completed in Ottawa, Ontario (unless otherwise indicated by ** which indicates analysis was completed in Mississauga, Ontario).

Results relate only to the parameters tested on the samples submitted.

Methods references and/or additional QA/QC information available on request.

Certificate of Analysis

Client: Sila Remediation Inc.

200-4495 Boul. Wilfrid-Hamel

Québec, QC

G1P 2J7

Attention: Mr. Jean-Pierre Pelletier

PO#:

Invoice to: Sila Remediation Inc.

Report Number: 1418943
Date Submitted: 2014-09-04
Date Reported: 2015-02-19

Project: Dew Line Monitoring Fox-2

COC #: 789358

QC Summary

	Analy	te	Blank		QC % Rec	QC Limits
Cr			<1 ug/g		95	70-130
Cu			<1 ug/g		95	70-130
Ni			<1 ug/g		93	70-130
Pb			<1 ug/g		96	70-130
Zn			<2 ug/g		98	70-130
Run No:	275875	Analysis Date: 2014-	09-09 Method:	M SM	3112B-3500B	
Hg			<0.1 ug/g		92	76-123
Run No:	275877	Analysis Date: 2014-	09-09 Method:	M SM	3112B-3500B	
Hg			<0.1 ug/g		89	76-123
Run No:	275948	Analysis Date: 2014-	09-10 Method:	M SM	3112B-3500B	
Hg			<0.1 ug/g		87	76-123
Run No:	275958	Analysis Date: 2014-	09-10 Method:	EPA 2	200.8	
As			<1 ug/g		100	70-130
Cd			<0.5 ug/g		93	70-130
Co			<1 ug/g		98	70-130
Cr			<1 ug/g		101	70-130
Cu			<1 ug/g		99	70-130

Guideline = * = Guideline Exceedence

All analysis completed in Ottawa, Ontario (unless otherwise indicated by ** which indicates analysis was completed in Mississauga, Ontario).

Results relate only to the parameters tested on the samples submitted.

Methods references and/or additional QA/QC information available on request.

Certificate of Analysis

Client: Sila Remediation Inc.

200-4495 Boul. Wilfrid-Hamel

Québec, QC G1P 2J7

Attention: Mr. Jean-Pierre Pelletier

PO#:

Invoice to: Sila Remediation Inc.

Report Number: 1418943 Date Submitted: 2014-09-04 Date Reported: 2015-02-19

Project: Dew Line Monitoring Fox-2

COC #: 789358

QC Summary

Analyte	,	Blank		QC % Rec	QC Limits
Ni		<1 ug/g		100	70-130
Pb		<1 ug/g		95	70-130
Zn		<2 ug/g		98	70-130
Run No: 276008	Analysis Date: 2014-	09-11 Method :	ССМІ	E	
F1 (C6-C10)		<10 ug/g		95	80-120
Run No: 276013	Analysis Date: 2014-	09-11 Method :	C SM	12540B	
Moisture		<0.1 %		100	80-120
Run No: 276027	Analysis Date: 2014-	09-11 Method :	ССМІ	E	
F2 (C10-C16)		<10 ug/g		87	50-120
F3 (C16-C34)		<20 ug/g		87	50-120
Run No: 276125	Analysis Date: 2014-	09-12 Method :	ССМІ	E	
F2 (C10-C16)		<10 ug/g		88	50-120
F3 (C16-C34)		<20 ug/g		88	50-120
Run No: 276129	Analysis Date: 2014-	09-12 Method :	C SM	l2540B	
Moisture		<0.1 %		99	80-120

Guideline = * = Guideline Exceedence

All analysis completed in Ottawa, Ontario (unless otherwise indicated by ** which indicates analysis was completed in Mississauga, Ontario).

Results relate only to the parameters tested on the samples submitted.

Methods references and/or additional QA/QC information available on request.

Certificate of Analysis

Client: Sila Remediation Inc.

200-4495 Boul. Wilfrid-Hamel

Québec, QC G1P 2J7

Attention: Mr. Jean-Pierre Pelletier

PO#:

APPROVAL:

Invoice to: Sila Remediation Inc. Page 1 of 7

 Report Number:
 1418982

 Date Submitted:
 2014-09-01

 Date Reported:
 2014-09-09

 Project:
 FOX-2

 COC #:
 789387

APPROVAL:

Charlie (Long) Qu

Laboratory Supervisor, Organics

Dear Jean-Pierre Pelletier: Please find attached the analytical results for your samples. If you have any questions regarding this report, please do not hesitate to call (613-727-5692). Report Comments:

Exova (Ottawa) is certified and accredited for specific parameters by:

Laboratory Supervisor, Inorganics

CALA, Canadian Association for Laboratory Accreditation (to ISO 17025), OMAFRA, Ontario Ministry of Agriculture, Food and Rural Affairs (for farm soils), Licensed by Ontario MOE for specific tests in drinking water.

Exova (Mississauga) is accredited for specific parameters by: SCC, Standards Council of Canada (to ISO 17025)

Lorna Wilson

Please note: Field data, where presented on the report, has been provided by the client and is presented for informational purposes only.

Guideline values listed on this report are provided for ease of use (informational purposes) only. Exova recommends consulting the official provincial or federal guideline as required.

Certificate of Analysis

Client: Sila Remediation Inc.

200-4495 Boul. Wilfrid-Hamel

Québec, QC

G1P 2J7

Attention: Mr. Jean-Pierre Pelletier

PO#:

Invoice to: Sila Remediation Inc.

 Report Number:
 1418982

 Date Submitted:
 2014-09-01

 Date Reported:
 2014-09-09

 Project:
 FOX-2

 COC #:
 789387

				Lab I.D. Sample Matrix Sample Type Sampling Date Sample I.D.	1131312 Water 2014-08-25 F2-MW-8-2014	1131313 Water 2014-08-24 F2-MW-9-2014	1131314 Water 2014-08-24 F2-MW-10-2014	1131315 Water 2014-08-24 F2-MW-12-2014
Group	Analyte	MRL	Units	Guideline				
Hydrocarbons	F2 (C10-C16)	100	ug/L		<100			
	F3 (C16-C34)	200	ug/L		<200			
	F4 (C34-C50)	200	ug/L		<200			
Mercury	Hg Total	0.0001	mg/L		<0.0001	<0.0001	<0.0001	<0.0001
Metals	As	0.02	mg/L		0.04	<0.02	0.11	0.04
	Cd	0.008	mg/L		<0.008	<0.008	<0.008	<0.008
	Со	0.01	mg/L		0.05	0.02	0.07	0.02
	Cr	0.05	mg/L		<0.05	<0.05	0.18	0.05
	Cu	0.01	mg/L		0.06	0.04	0.23	0.08
	Ni	0.01	mg/L		0.28	0.10	0.34	0.12
	Pb	0.01	mg/L		0.01	<0.01	0.08	0.02
	Zn	0.04	mg/L		0.12	0.06	0.23	0.10
PCBs	Polychlorinated Biphenyls (PCBs)	0.1	ug/L		<0.1	<0.1	<0.1	<0.1
				Lab I.D. Sample Matrix Sample Type Sampling Date Sample I.D.	1131316 Water 2014-08-24 F2-MW-14-2014	1131317 Water 2014-08-24 F2-MW-15-2014	1131318 Water 2014-08-24 F2-MW-16-2014	1131319 Water 2014-08-24 F2-DUP-A-2014
Group	Analyte	MRL	Units	Guideline				
Mercury	Hg Total	0.0001	mg/L		<0.0001	<0.0001	<0.0001	<0.0001
Metals	As	0.001	mg/L			<0.001		
		0.02	mg/L		0.06		0.22	<0.02
	Cd	0.0001	mg/L			0.0007		
		0.008	mg/L		<0.008		<0.008	<0.008
	Со	0.0002	mg/L			0.0105		

Guideline =

Results relate only to the parameters tested on the samples submitted. Methods references and/or additional QA/QC information available on request.

^{* =} Guideline Exceedence

^{** =} Analysis completed at Mississauga, Ontario.

Certificate of Analysis

Client: Sila Remediation Inc.

200-4495 Boul. Wilfrid-Hamel

Québec, QC

G1P 2J7

Attention: Mr. Jean-Pierre Pelletier

PO#:

Invoice to: Sila Remediation Inc.

 Report Number:
 1418982

 Date Submitted:
 2014-09-01

 Date Reported:
 2014-09-09

 Project:
 FOX-2

 COC #:
 789387

				Lab I.D. Sample Matrix Sample Type Sampling Date Sample I.D.	1131316 Water 2014-08-24 F2-MW-14-2014	1131317 Water 2014-08-24 F2-MW-15-2014	1131318 Water 2014-08-24 F2-MW-16-2014	1131319 Water 2014-08-24 F2-DUP-A-2014
Group	Analyte	MRL	Units	Guideline				2.24
Metals	Со	0.01	mg/L		0.06		0.09	0.01
	Cr	0.001	mg/L			0.002		
		0.05	mg/L		0.20		0.32	<0.05
	Cu	0.001	mg/L			0.018		
		0.01	mg/L		0.26		0.43	0.04
	Ni	0.005	mg/L			0.042		
		0.01	mg/L		0.28		0.35	0.07
	Pb	0.001	mg/L			0.004		
		0.01	mg/L		0.03		0.06	<0.01
	Zn	0.01	mg/L			0.03		
		0.04	mg/L		0.55		4.37	0.06
PCBs	Polychlorinated Biphenyls (PCBs)	0.1	ug/L		<0.1	<0.1	<0.1	<0.1

Lab I.D.

Sample Matrix Sample Type Sampling Date 1131320 Water

2014-08-24

				Sample I.D.	F2-DUP-D-2014
Group	Analyte	MRL	Units	Guideline	
Mercury	Hg Total	0.0001	mg/L		<0.0001
Metals	As	0.02	mg/L		0.03
	Cd	0.008	mg/L		<0.008
	Со	0.01	mg/L		0.05
	Cr	0.05	mg/L		<0.05
	Cu	0.01	mg/L		0.06
	Ni	0.01	mg/L		0.27

Guideline =

* = Guideline Exceedence

** = Analysis completed at Mississauga, Ontario.

Results relate only to the parameters tested on the samples submitted.

Methods references and/or additional QA/QC information available on request.

Certificate of Analysis

Client: Sila Remediation Inc.

200-4495 Boul, Wilfrid-Hamel

Québec, QC

G1P 2J7

Attention: Mr. Jean-Pierre Pelletier

PO#:

Invoice to: Sila Remediation Inc.

Report Number: 1418982
Date Submitted: 2014-09-01
Date Reported: 2014-09-09
Project: FOX-2
COC #: 789387

				Lab I.D. Sample Matrix Sample Type Sampling Date Sample I.D.	1131320 Water 2014-08-24 F2-DUP-D-2014
Group	Analyte	MRL	Units	Guideline	
Metals	Pb	0.01	mg/L		0.01
	Zn	0.04	mg/L		0.11
PCBs	Polychlorinated Biphenyls (PCBs)	0.1	ug/L		<0.1

Certificate of Analysis

Client: Sila Remediation Inc.

200-4495 Boul. Wilfrid-Hamel

Québec, QC

G1P 2J7

Attention: Mr. Jean-Pierre Pelletier

PO#:

Invoice to: Sila Remediation Inc.

 Report Number:
 1418982

 Date Submitted:
 2014-09-01

 Date Reported:
 2014-09-09

 Project:
 FOX-2

 COC #:
 789387

QC Summary

Analyte	Blank	QC % Rec	QC Limits
Run No 249261 Analysis Date 2014-	09-05 Method P 8	8081A	
Polychlorinated Biphenyls (PCBs)	<0.1 ug/L	102	50-120
Run No 275660 Analysis Date 2014-	09-05 Method EF	PA 200.8	
As	<0.001 mg/L	101	93-106
Cd	<0.0001 mg/L	99	93-107
Со	<0.0002 mg/L	102	94-106
Cr	<0.001 mg/L	100	94-106
Cu	<0.001 mg/L	102	93-106
Ni	<0.005 mg/L	103	94-106
Pb	<0.001 mg/L	104	70-130
Zn	<0.01 mg/L	101	94-106
Run No 275719 Analysis Date 2014-	09-06 Method M	SM3112B-3500B	
Hg Total	<0.0001 mg/L		
Run No 275758 Analysis Date 2014	09-08 Method O	CCME Reg 153	
F2 (C10-C16)	<100 ug/L	73	50-120

Guideline = * = Guideline Exceedence

** = Analysis completed at Mississauga, Ontario.

Results relate only to the parameters tested on the samples submitted.

Methods references and/or additional QA/QC information available on request.

Certificate of Analysis

Client: Sila Remediation Inc.

200-4495 Boul. Wilfrid-Hamel

Québec, QC

G1P 2J7

Attention: Mr. Jean-Pierre Pelletier

PO#:

Invoice to: Sila Remediation Inc.

 Report Number:
 1418982

 Date Submitted:
 2014-09-01

 Date Reported:
 2014-09-09

 Project:
 FOX-2

 COC #:
 789387

QC Summary

Analyte	Blank	QC % Rec	QC Limits		
F3 (C16-C34)	<200 ug/L	73	50-120		
F4 (C34-C50)	<200 ug/L	73	50-120		
Run No 275800 Analysis Date 2014-	Run No 275800 Analysis Date 2014-09-08 Method EPA				
As	<0.02 mg/L	109	70-130		
Cd	<0.008 mg/L	92	70-130		
Со	<0.01 mg/L	96	70-130		
Cr	<0.05 mg/L	99	70-130		
Cu	<0.01 mg/L	97	70-130		
Ni	<0.01 mg/L	99	70-130		
Pb	<0.01 mg/L	89	70-130		
Zn	<0.04 mg/L	100	70-130		

Guideline = * = Guideline Exceedence

** = Analysis completed at Mississauga, Ontario.

Results relate only to the parameters tested on the samples submitted.

Methods references and/or additional QA/QC information available on request.

Certificate of Analysis

Client: Sila Remediation Inc.

200-4495 Boul. Wilfrid-Hamel

Québec, QC

G1P 2J7

Attention: Mr. Jean-Pierre Pelletier

PO#:

Invoice to: Sila Remediation Inc.

 Report Number:
 1418982

 Date Submitted:
 2014-09-01

 Date Reported:
 2014-09-09

 Project:
 FOX-2

 COC #:
 789387

Sample Comment Summary

Sample ID: 1131312 F2-MW-8-2014	Metals analysis performed on aqua-regia digest of sample material.
Sample ID: 1131313 F2-MW-9-2014	Metals analysis performed on aqua-regia digest of sample material.
Sample ID: 1131314 F2-MW-10-2014	Metals analysis performed on aqua-regia digest of sample material.
Sample ID: 1131315 F2-MW-12-2014	Metals analysis performed on aqua-regia digest of sample material.
Sample ID: 1131316 F2-MW-14-2014	Metals analysis performed on aqua-regia digest of sample material.
Sample ID: 1131318 F2-MW-16-2014	Metals analysis performed on aqua-regia digest of sample material.
Sample ID: 1131319 F2-DUP-A-2014	Metals analysis performed on aqua-regia digest of sample material.
Sample ID: 1131320 F2-DUP-D-2014	Metals analysis performed on aqua-regia digest of sample material.

Certificate of Analysis

Client: Sila Remediation Inc.

200-4495 Boul. Wilfrid-Hamel

Québec, QC G1P 2J7

Attention: Mr. Jean-Pierre Pelletier

Dear Jean-Pierre Pelletier:

PO#:

Invoice to: Sila Remediation Inc. Page 1 of 10

Report Number: 1418944

Date Submitted: 2014-09-04

Date Reported: 2014-09-12

Project: Dew Line Monitoring Fox-2

COC #: 789357

Please find attached the analytical results for your samples. If you have any questions regarding this report, please do not hesitate to call (613-727-5692). Report Comments:

APPROVAL: APPROVAL:		
	APPROVAL:	APPROVAL:

Lorna Wilson Charlie (Long) Qu

Laboratory Supervisor, Inorganics

Laboratory Supervisor, Organics

Exova (Ottawa) is certified and accredited for specific parameters by:

CALA, Canadian Association for Laboratory Accreditation (to ISO 17025), OMAFRA, Ontario Ministry of Agriculture, Food and Rural Affairs (for farm soils), Licensed by Ontario MOE for specific tests in drinking water.

Exova (Mississauga) is accredited for specific parameters by: SCC, Standards Council of Canada (to ISO 17025)

Please note: Field data, where presented on the report, has been provided by the client and is presented for informational purposes only.

Guideline values listed on this report are provided for ease of use (informational purposes) only. Exova recommends consulting the official provincial or federal guideline as required.

Certificate of Analysis

Client: Sila Remediation Inc.

200-4495 Boul. Wilfrid-Hamel

Québec, QC

G1P 2J7

Attention: Mr. Jean-Pierre Pelletier

PO#:

Invoice to: Sila Remediation Inc.

Report Number: 1418944

Date Submitted: 2014-09-04

Date Reported: 2014-09-12

Project: Dew Line Monitoring Fox-2

COC #: 789357

				Lab I.D. Sample Matrix Sample Type Sampling Date Sample I.D.	1131191 Soil 2014-08-25 F2-1-A-2014	1131192 Soil 2014-08-25 F2-1-B-2014	1131193 Soil 2014-08-25 F2-2-A-2014	1131194 Soil 2014-08-25 F2-2-B-2014
Group	Analyte	MRL	Units	Guideline				
General Chemistry	Moisture	0.1	%		8.6	10.6	7.3	11.4
Hydrocarbons	F1 (C6-C10)	10	ug/g		<10	<10	<10	<10
	F2 (C10-C16)	10	ug/g		<10	<10	<10	<10
	F3 (C16-C34)	20	ug/g		<20	<20	<20	<20
Mercury	Hg	0.1	ug/g		<0.1	<0.1	<0.1	<0.1
Metals	As	1	ug/g		39	31	42	108
	Cd	0.5	ug/g		<0.5	<0.5	<0.5	<0.5
	Со	1	ug/g		14	14	14	16
	Cr	1	ug/g		86	61	93	101
	Cu	1	ug/g		50	46	50	55
	Ni	1	ug/g		52	48	58	61
	Pb	1	ug/g		9	9	9	10
	Zn	2	ug/g		93	95	92	89
PCBs	Polychlorinated Biphenyls (PCBs)	0.02	ug/g		<0.02	<0.02	<0.02	<0.02

Guideline = * = Guideline Exceedence

** = Analysis completed at Mississauga, Ontario.

Results relate only to the parameters tested on the samples submitted.

Methods references and/or additional QA/QC information available on request.

Certificate of Analysis

Client: Sila Remediation Inc.

200-4495 Boul. Wilfrid-Hamel

Québec, QC

G1P 2J7

Attention: Mr. Jean-Pierre Pelletier

PO#:

Invoice to: Sila Remediation Inc.

Report Number: 1418944

Date Submitted: 2014-09-04

Date Reported: 2014-09-12

Project: Dew Line Monitoring Fox-2

COC #: 789357

				Lab I.D. Sample Matrix Sample Type Sampling Date Sample I.D.	1131195 Soil 2014-08-25 F2-3-A-2014	1131196 Soil 2014-08-25 F2-3-B-2014	1131197 Soil 2014-08-25 F2-4-A-2014	1131198 Soil 2014-08-25 F2-4-B-2014
Group	Analyte	MRL	Units	Guideline				
General Chemistry	Moisture	0.1	%		10.1	9.6	4.2	14.1
Hydrocarbons	F1 (C6-C10)	10	ug/g		<10	<10	<10	<10
	F2 (C10-C16)	10	ug/g		<10	<10	<10	<10
	F3 (C16-C34)	20	ug/g		80	<20	<20	<20
Mercury	Hg	0.1	ug/g		<0.1	<0.1	<0.1	<0.1
Metals	As	1	ug/g		46	35	39	21
	Cd	0.5	ug/g		<0.5	<0.5	<0.5	<0.5
	Со	1	ug/g		24	17	19	13
	Cr	1	ug/g		121	151	79	107
	Cu	1	ug/g		69	65	91	74
	Ni	1	ug/g		82	85	96	62
	Pb	1	ug/g		24	11	10	4
	Zn	2	ug/g		132	119	143	95
PCBs	Polychlorinated Biphenyls (PCBs)	0.02	ug/g		<0.02	<0.02	<0.02	<0.02

Guideline = * = Guideline Exceedence

** = Analysis completed at Mississauga, Ontario.

Results relate only to the parameters tested on the samples submitted.

Methods references and/or additional QA/QC information available on request.

Certificate of Analysis

Client: Sila Remediation Inc.

200-4495 Boul. Wilfrid-Hamel

Québec, QC

G1P 2J7

Attention: Mr. Jean-Pierre Pelletier

PO#:

Invoice to: Sila Remediation Inc.

Report Number: 1418944

Date Submitted: 2014-09-04

Date Reported: 2014-09-12

Project: Dew Line Monitoring Fox-2

COC #: 789357

				Lab I.D. Sample Matrix Sample Type Sampling Date Sample I.D.	1131199 Soil 2014-08-25 F2-MW-7-S-A-2014	1131200 Soil 2014-08-25 F2-MW-7-S-B-2014	1131201 Soil 2014-08-25 F2-MW-8-S-A-2014	1131202 Soil 2014-08-25 F2-MW-8-S-B-2014
Group	Analyte	MRL	Units	Guideline				
General Chemistry	Moisture	0.1	%		7.2	5.0	11.7	5.2
Hydrocarbons	F1 (C6-C10)	10	ug/g		<10	<10	<10	<10
	F2 (C10-C16)	10	ug/g		<10	<10	<10	<10
	F3 (C16-C34)	20	ug/g		<20	<20	<20	<20
Mercury	Hg	0.1	ug/g		<0.1	<0.1	<0.1	<0.1
Metals	As	1	ug/g		27	16	27	58
	Cd	0.5	ug/g		<0.5	<0.5	<0.5	<0.5
	Со	1	ug/g		21	13	44	27
	Cr	1	ug/g		168	103	140	142
	Cu	1	ug/g		82	56	77	55
	Ni	1	ug/g		107	59	123	101
	Pb	1	ug/g		11	9	12	9
	Zn	2	ug/g		109	75	163	126
PCBs	Polychlorinated Biphenyls (PCBs)	0.02	ug/g		<0.02	<0.02	<0.02	<0.02

Guideline = * = Guideline Exceedence

** = Analysis completed at Mississauga, Ontario.

Results relate only to the parameters tested on the samples submitted.

Methods references and/or additional QA/QC information available on request.

Certificate of Analysis

Client: Sila Remediation Inc.

200-4495 Boul. Wilfrid-Hamel

Québec, QC

G1P 2J7

Attention: Mr. Jean-Pierre Pelletier

PO#:

Invoice to: Sila Remediation Inc.

Report Number: 1418944

Date Submitted: 2014-09-04

Date Reported: 2014-09-12

Project: Dew Line Monitoring Fox-2

COC #: 789357

				Lab I.D. Sample Matrix Sample Type Sampling Date Sample I.D.	1131203 Soil 2014-08-24 F2-5-A-2015	1131204 Soil 2014-08-24 F2-6-A-2015	1131205 Soil 2014-08-24 F2-7-A-2015	1131206 Soil 2014-08-24 F2-8-A-2015
Group	Analyte	MRL	Units	Guideline				
General Chemistry	Moisture	0.1	%		34.7	73.9	76.5	5.3
Hydrocarbons	F1 (C6-C10)	10	ug/g		<10	<10	<10	<10
	F2 (C10-C16)	10	ug/g		<10	<10	<10	<10
	F3 (C16-C34)	20	ug/g		100	150	360	<20
Mercury	Hg	0.1	ug/g		<0.1	<0.1	<0.1	<0.1
Metals	As	1	ug/g		77	15	6	12
	Cd	0.5	ug/g		<0.5	<0.5	1.6	<0.5
	Со	1	ug/g		20	27	64	19
	Cr	1	ug/g		76	96	17	167
	Cu	1	ug/g		64	70	316	47
	Ni	1	ug/g		56	114	357	95
	Pb	1	ug/g		7	6	4	7
	Zn	2	ug/g		120	176	236	121
PCBs	Polychlorinated Biphenyls (PCBs)	0.02	ug/g		<0.02	<0.02	<0.02	<0.02

Guideline = * = Guideline Exceedence

** = Analysis completed at Mississauga, Ontario.

Results relate only to the parameters tested on the samples submitted.

Methods references and/or additional QA/QC information available on request.

Certificate of Analysis

Client: Sila Remediation Inc.

200-4495 Boul. Wilfrid-Hamel

Québec, QC

G1P 2J7

Attention: Mr. Jean-Pierre Pelletier

PO#:

Invoice to: Sila Remediation Inc.

Report Number: 1418944

Date Submitted: 2014-09-04

Date Reported: 2014-09-12

Project: Dew Line Monitoring Fox-2

COC #: 789357

				Lab I.D. Sample Matrix Sample Type Sampling Date Sample I.D.	1131207 Soil 2014-08-24 F2-MW-9-S-A-2014	1131208 Soil 2014-08-24 F2-MW-9-S-B-2014	1131209 Soil 2014-08-24 F2-MW-10-S-A-2014	1131210 Soil 2014-08-24 F2-MW-11-S-A-2014
Group	Analyte	MRL	Units	Guideline				
General Chemistry	Moisture	0.1	%		12.8	14.6	15.6	12.0
Hydrocarbons	F1 (C6-C10)	10	ug/g		<10	<10	<10	<10
	F2 (C10-C16)	10	ug/g		<10	<10	<10	<10
	F3 (C16-C34)	20	ug/g		70	<20	<20	40
Mercury	Hg	0.1	ug/g		<0.1	<0.1	<0.1	<0.1
Metals	As	1	ug/g		40	36	56	51
	Cd	0.5	ug/g		<0.5	<0.5	<0.5	<0.5
	Со	1	ug/g		12	11	11	12
	Cr	1	ug/g		58	102	96	61
	Cu	1	ug/g		46	46	71	65
	Ni	1	ug/g		46	62	62	48
	Pb	1	ug/g		9	9	11	11
	Zn	2	ug/g		72	72	81	79
PCBs	Polychlorinated Biphenyls (PCBs)	0.02	ug/g		<0.02	<0.02	<0.02	<0.02

Guideline = * = Guideline Exceedence

** = Analysis completed at Mississauga, Ontario.

Results relate only to the parameters tested on the samples submitted.

Methods references and/or additional QA/QC information available on request.

Certificate of Analysis

Client: Sila Remediation Inc.

200-4495 Boul. Wilfrid-Hamel

Québec, QC

G1P 2J7

Attention: Mr. Jean-Pierre Pelletier

PO#:

Invoice to: Sila Remediation Inc.

Report Number: 1418944
Date Submitted: 2014-09-04
Date Reported: 2014-09-12

Project: Dew Line Monitoring Fox-2

COC #: 789357

				Lab I.D. Sample Matrix Sample Type Sampling Date Sample I.D.	1131211 Soil 2014-08-24 F2-MW-11-S-B-2014	1131212 Soil 2014-08-24 F2-MW-12-S-A-2014	1131213 Soil 2014-08-24 F2-MW-12-S-B-2014
Group	Analyte	MRL	Units	Guideline			
General Chemistry	Moisture	0.1	%		12.9	7.5	7.5
Hydrocarbons	F1 (C6-C10)	10	ug/g		<10	<10	<10
	F2 (C10-C16)	10	ug/g		<10	<10	<10
	F3 (C16-C34)	20	ug/g		30	<20	<20
Mercury	Hg	0.1	ug/g		<0.1	<0.1	<0.1
Metals	As	1	ug/g		47	70	65
	Cd	0.5	ug/g		<0.5	<0.5	<0.5
	Co	1	ug/g		11	17	20
	Cr	1	ug/g		57	58	97
	Cu	1	ug/g		73	72	72
	Ni	1	ug/g		48	60	78
	Pb	1	ug/g		12	12	14
	Zn	2	ug/g		75	90	104
PCBs	Polychlorinated Biphenyls (PCBs)	0.02	ug/g		<0.02	<0.02	<0.02

Guideline = *

* = Guideline Exceedence

** = Analysis completed at Mississauga, Ontario.

Results relate only to the parameters tested on the samples submitted. Methods references and/or additional QA/QC information available on request.

Certificate of Analysis

Client: Sila Remediation Inc.

200-4495 Boul. Wilfrid-Hamel

Québec, QC

G1P 2J7

Attention: Mr. Jean-Pierre Pelletier

PO#:

Invoice to: Sila Remediation Inc.

 Report Number:
 1418944

 Date Submitted:
 2014-09-04

 Date Reported:
 2014-09-12

Project: Dew Line Monitoring Fox-2

COC #: 789357

QC Summary

	Analyte				Blank		QC % Rec	QC Limits
Run No	208523	Analysis Date	2014-0	09-09	Method	SV	V846 8081A/8082A	
Polychlo	rinated Biphenyls	(PCBs)			<0.02 ug/g		85	50-120
Run No	275861	Analysis Date	2014-0	09-09	Method	EF	A 200.8	
As					<1 ug/g		100	70-130
Cd					<0.5 ug/g		93	70-130
Со					<1 ug/g		94	70-130
Cr					<1 ug/g		95	70-130
Cu					<1 ug/g		95	70-130
Ni					<1 ug/g		93	70-130
Pb					<1 ug/g		96	70-130
Zn					<2 ug/g		98	70-130
Run No	275877	Analysis Date	2014-0	09-09	Method	М	SM3112B-3500B	
Hg					<0.1 ug/g		89	70-130
Run No	275948	Analysis Date	2014-0	09-10	Method	М	SM3112B-3500B	
Hg					<0.1 ug/g		87	70-130

Guideline = * = Guideline Exceedence

** = Analysis completed at Mississauga, Ontario.

Results relate only to the parameters tested on the samples submitted.

Methods references and/or additional QA/QC information available on request.

Certificate of Analysis

Client: Sila Remediation Inc.

200-4495 Boul. Wilfrid-Hamel

Québec, QC

G1P 2J7

Attention: Mr. Jean-Pierre Pelletier

PO#:

Invoice to: Sila Remediation Inc.

 Report Number:
 1418944

 Date Submitted:
 2014-09-04

 Date Reported:
 2014-09-12

Project: Dew Line Monitoring Fox-2

COC #: 789357

QC Summary

	Analy	rte .			Blank		QC % Rec	QC Limits
Run No	275958	Analysis Date	2014-0	9-10	Method	EF	A 200.8	
As					<1 ug/g		100	70-130
Cd					<0.5 ug/g		91	70-130
Со					<1 ug/g		98	70-130
Cr					<1 ug/g		101	70-130
Cu					<1 ug/g		99	70-130
Ni					<1 ug/g		100	70-130
Pb					<1 ug/g		95	70-130
Zn					<2 ug/g		98	70-130
Run No	276008	Analysis Date	2014-0	9-11	Method	CC	CME	
F1 (C6-C	(10)				<10 ug/g		95	80-120
Run No	276053	Analysis Date	2014-0	9-11	Method	М	SM3112B-3500B	
Hg					<0.1 ug/g		87	70-130
Run No	276089	Analysis Date	2014-0	9-12	Method	CC	CME	
F2 (C10-	C16)				<10 ug/g		89	50-120
F3 (C16-	C34)				<20 ug/g		89	50-120
Run No	276091	Analysis Date	2014-0	9-12	Method	C:	SM2540B	

Guideline = * = Guideline Exceedence

^{** =} Analysis completed at Mississauga, Ontario.

Results relate only to the parameters tested on the samples submitted.

Methods references and/or additional QA/QC information available on request.

Certificate of Analysis

Client: Sila Remediation Inc.

200-4495 Boul. Wilfrid-Hamel

Québec, QC

G1P 2J7

Attention: Mr. Jean-Pierre Pelletier

PO#:

Invoice to: Sila Remediation Inc.

Report Number: 1418944
Date Submitted: 2014-09-04
Date Reported: 2014-09-12

Project: Dew Line Monitoring Fox-2

COC #: 789357

QC Summary

Analyte	Blank	QC % Rec	QC Limits
Moisture	<0.1 %	99	80-120
Run No 276092 Analysis Date 2014-	09-11 Method CC	CME	_
F1 (C6-C10)	<10 ug/g	96	80-120

Your Project #: MB4G1542 Your C.O.C. #: B4G1542

Attention: SUB CONTRACTOR
MAXXAM ANALYTICS
CAMPOBELLO
6740 CAMPOBELLO ROAD
MISSISSAUGA, ON
CANADA L5N 2L8

Report Date: 2014/09/11 Report #: R1640183

Version: 1

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B478781 Received: 2014/09/06, 11:00

Sample Matrix: Water # Samples Received: 2

		Date	Date	
Analyses	Quantity	Extracted	Analyzed Laboratory Method	Analytical Method
Cadmium - low level CCME (Total)	2	2014/09/06	2014/09/11 AB SOP-00014 / AB	EPA 200.8 R5.4 m
			SOP-00043	
Elements by ICP - Total	2	2014/09/09	2014/09/09 AB SOP-00014 / AB	EPA 200.7 CFR 2012 m
			SOP-00042	
Elements by ICPMS - Total	2	2014/09/09	2014/09/10 AB SOP-00014 / AB	EPA 200.8 R5.4 m
			SOP-00043	

^{*} RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager.

Cynny Hagen, Project Manager Assistant Email: CHagen@maxxam.ca Phone# (403) 735-2273

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Total cover pages: 1

REGULATED METALS (CCME/AT1) - TOTAL

	1	(XK5042)	(XK5043)		
	UNITS	F2-DUP-B-2014	F2-DUP-E-2014	RDL	QC Batch
COC Number		B4G1542	B4G1542		
Sampling Date		2014/08/24	2014/08/25		
Maxxam ID		KN5488	KN5489		

			1	
ug/L	1.2	0.31	0.020	7627879
mg/L	2.8	6.0	0.0030	7630480
mg/L	<0.00060	<0.00060	0.00060	7630480
mg/L	0.0052	0.028	0.00020	7630480
mg/L	0.028	0.062	0.010	7630498
mg/L	<0.0010	<0.0010	0.0010	7630480
mg/L	<0.020	0.024	0.020	7630498
mg/L	11	36	0.30	7630498
mg/L	0.061	0.032	0.0010	7630480
mg/L	0.016	0.045	0.00030	7630480
mg/L	0.054	0.057	0.00020	7630480
mg/L	4.6	13	0.060	7630498
mg/L	0.014	0.013	0.00020	7630480
mg/L	<0.020	0.065	0.020	7630498
mg/L	6.2	15	0.20	7630498
mg/L	0.13	0.19	0.0040	7630498
mg/L	0.0032	0.0017	0.00020	7630480
mg/L	0.090	0.26	0.00050	7630480
mg/L	<0.10	0.18	0.10	7630498
mg/L	2.6	6.7	0.30	7630498
mg/L	0.00044	0.00079	0.00020	7630480
mg/L	7.1	14	0.10	7630498
mg/L	<0.00010	<0.00010	0.00010	7630480
mg/L	3.2	7.1	0.50	7630498
mg/L	0.026	0.048	0.020	7630498
mg/L	13	40	0.20	7630498
mg/L	<0.00020	<0.00020	0.00020	7630480
mg/L	<0.0010	<0.0010	0.0010	7630480
mg/L	0.16	0.52	0.0010	7630480
mg/L	0.0012	0.00097	0.00010	7630480
mg/L	0.0065	0.019	0.0010	7630480
	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	mg/L <0.00060	mg/L <0.00060 <0.00060 mg/L 0.0052 0.028 mg/L 0.028 0.062 mg/L <0.0010 <0.0010 mg/L <0.020 0.024 mg/L 11 36 mg/L 0.061 0.032 mg/L 0.016 0.045 mg/L 0.054 0.057 mg/L 4.6 13 mg/L 0.054 0.057 mg/L 0.014 0.013 mg/L 0.014 0.013 mg/L 0.020 0.065 mg/L 0.13 0.19 mg/L 0.0032 0.0017 mg/L 0.090 0.26 mg/L 0.090 0.26 mg/L 0.00044 0.00079 mg/L 0.00044 0.00079 mg/L 3.2 7.1 mg/L 0.026 0.048 mg/L 0.0026 0.048 mg/L	mg/L <0.00060 <0.00060 0.00060 mg/L 0.0052 0.028 0.00020 mg/L 0.028 0.062 0.010 mg/L <0.0010 <0.0010 0.0010 mg/L <0.020 0.024 0.020 mg/L 11 36 0.30 mg/L 0.061 0.032 0.0010 mg/L 0.016 0.045 0.00030 mg/L 0.054 0.057 0.00020 mg/L 4.6 13 0.060 mg/L 4.6 13 0.0002 mg/L 4.6 13 0.0002 mg/L 4.6 13 0.0002 mg/L 4.6 13 0.0002 mg/L 40.020 0.065 0.020 mg/L 6.2 15 0.20 mg/L 0.032 0.0017 0.00020 mg/L 0.090 0.26 0.00050 mg/L 0.00010 0.0

RDL = Reportable Detection Limit

MAXXAM ANALYTICS Client Project #: MB4G1542

REGULATED METALS (CCME/AT1) - TOTAL

Maxxam ID		KN5488	KN5489		
Sampling Date		2014/08/24	2014/08/25		
COC Number		B4G1542	B4G1542		
	UNITS	F2-DUP-B-2014	F2-DUP-E-2014	RDL	QC Batch
		(XK5042)	(XK5043)		

Total Zinc (Zn)	mg/L	0.088	0.12	0.0030	7630480

RDL = Reportable Detection Limit

MAXXAM ANALYTICS Client Project #: MB4G1542

Package 1 5.0°C

Each temperature is the average of up to three cooler temperatures taken at receipt

General Comments

Results relate only to the items tested.

MAXXAM ANALYTICS Attention: SUB CONTRACTOR Client Project #: MB4G1542

P.O. #: Site Location:

Quality Assurance Report Maxxam Job Number: CB478781

QA/QC			Date				
Batch			Analyzed				
Num Init	QC Type	Parameter	yyyy/mm/dd	Value	Recovery	UNITS	QC Limits
7630480 KA3	Matrix Spike	Total Aluminum (Al)	2014/09/10		NC	%	80 - 120
	·	Total Antimony (Sb)	2014/09/10		114	%	80 - 120
		Total Arsenic (As)	2014/09/10		118	%	80 - 120
		Total Beryllium (Be)	2014/09/10		95	%	80 - 120
		Total Chromium (Cr)	2014/09/10		116	%	80 - 120
		Total Cobalt (Co)	2014/09/10		116	%	80 - 120
		Total Copper (Cu)	2014/09/10		113	%	80 - 120
		Total Lead (Pb)	2014/09/10		116	%	80 - 120
		Total Molybdenum (Mo)	2014/09/10		105	%	80 - 120
		Total Nickel (Ni)	2014/09/10		113	%	80 - 120
		Total Selenium (Se)	2014/09/10		116	%	80 - 120
		Total Silver (Ag)	2014/09/10		112	%	80 - 120
		Total Thallium (TI)	2014/09/10		118	%	80 - 120
		Total Tin (Sn)	2014/09/10		116	%	80 - 120
		Total Titanium (Ti)	2014/09/10		115	%	80 - 120
		Total Uranium (U)	2014/09/10		115	%	80 - 120
		Total Vanadium (V)	2014/09/10		102	%	80 - 120
		Total Zinc (Zn)	2014/09/10		103	%	80 - 120
	Spiked Blank	Total Aluminum (Al)	2014/09/09		103	%	80 - 120
		Total Antimony (Sb)	2014/09/09		107	%	80 - 120
		Total Arsenic (As)	2014/09/09		108	%	80 - 120
		Total Beryllium (Be)	2014/09/09		117	%	80 - 120
		Total Chromium (Cr)	2014/09/09		108	%	80 - 120
		Total Cobalt (Co)	2014/09/09		110	%	80 - 120
		Total Copper (Cu)	2014/09/09		109	%	80 - 120
		Total Lead (Pb)	2014/09/09		109	%	80 - 120
		Total Molybdenum (Mo)	2014/09/09		112	%	80 - 120
		Total Nickel (Ni)	2014/09/09		107	%	80 - 120
		Total Selenium (Se)	2014/09/09		112	%	80 - 120
		Total Silver (Ag)	2014/09/09		102	%	80 - 120
		Total Thallium (TI)	2014/09/09		109	%	80 - 120
		Total Tin (Sn)	2014/09/09		109	%	80 - 120
		Total Uranium (Ti)	2014/09/09		108	%	80 - 120
		Total Uranium (U)	2014/09/09		108	%	80 - 120
		Total Vanadium (V) Total Zinc (Zn)	2014/09/09 2014/09/09		112 112	% %	80 - 120 80 - 120
	Method Blank	Total Aluminum (Al)	2014/09/09	< 0.0030	112	mg/L	00 - 120
	Method Blank	Total Antimony (Sb)	2014/09/09	<0.0060		mg/L	
		Total Arsenic (As)	2014/09/09	<0.00000		mg/L	
		Total Beryllium (Be)	2014/09/09	< 0.0010		mg/L	
		Total Chromium (Cr)	2014/09/09	< 0.0010		mg/L	
		Total Cobalt (Co)	2014/09/09	<0.00030		mg/L	
		Total Copper (Cu)	2014/09/09	<0.00020		mg/L	
		Total Lead (Pb)	2014/09/09	<0.00020		mg/L	
		Total Molybdenum (Mo)	2014/09/09	< 0.00020		mg/L	
		Total Nickel (Ni)	2014/09/09	< 0.00050		mg/L	
		Total Selenium (Se)	2014/09/09	< 0.00020		mg/L	
		Total Silver (Ag)	2014/09/09	< 0.00010		mg/L	
		Total Thallium (TI)	2014/09/09	<0.00020		mg/L	
		Total Tin (Sn)	2014/09/09	< 0.0010		mg/L	
		Total Titanium (Ti)	2014/09/09	< 0.0010		mg/L	
		Total Uranium (U)	2014/09/09	< 0.00010		mg/L	
		Total Vanadium (V)	2014/09/09	< 0.0010		mg/L	
		Total Zinc (Zn)	2014/09/09	< 0.0030		mg/L	
	RPD	Total Aluminum (AI)	2014/09/10	17.5		%	20
		• •					

Maxxam Analytics International Corporation o/a Maxxam Analytics Calgary: 2021 - 41st Avenue N.E. T2E 6P2 Telephone(403) 291-3077 Fax(403) 291-9468

MAXXAM ANALYTICS Attention: SUB CONTRACTOR Client Project #: MB4G1542

P.O. #: Site Location:

Quality Assurance Report (Continued)

Maxxam Job Number: CB478781

QA/QC			Date				
Batch			Analyzed				
Num Init	QC Type	Parameter	yyyy/mm/dd	Value	Recovery	UNITS	QC Limits
7630480 KA3	RPD	Total Antimony (Sb)	2014/09/10	NC		%	20
		Total Arsenic (As)	2014/09/10	NC		%	20
		Total Beryllium (Be)	2014/09/10	NC		%	20
		Total Chromium (Cr)	2014/09/10	NC		%	20
		Total Cobalt (Co)	2014/09/10	NC		%	20
		Total Copper (Cu)	2014/09/10	0.3		%	20
		Total Lead (Pb)	2014/09/10	NC		%	20
		Total Molybdenum (Mo)	2014/09/10	NC		%	20
		Total Nickel (Ni)	2014/09/10	NC		%	20
		Total Selenium (Se)	2014/09/10	NC		%	20
		Total Silver (Ag)	2014/09/10	NC		%	20
		Total Thallium (TI)	2014/09/10	NC		%	20
		Total Tin (Sn)	2014/09/10	NC		%	20
		Total Titanium (Ti)	2014/09/10	7.2		%	20
		Total Uranium (U)	2014/09/10	3.7		%	20
		Total Vanadium (V)	2014/09/10	NC		%	20
		Total Zinc (Zn)	2014/09/10	NC		%	20
7630498 MAP	Matrix Spike	Total Barium (Ba)	2014/09/09	110	98	%	80 - 120
7030430 WA	Matrix Opino	Total Boron (B)	2014/09/09		100	%	80 - 120
		Total Calcium (Ca)	2014/09/09		NC	%	80 - 120
		Total Iron (Fe)	2014/09/09		NC	% %	80 - 120
		Total Lithium (Li)	2014/09/09		100	% %	80 - 120
		Total Magnesium (Mg)	2014/09/09		NC	% %	80 - 120
		Total Magnesium (Mg) Total Manganese (Mn)	2014/09/09		101	% %	80 - 120
		Total Phosphorus (P)	2014/09/09		100	%	80 - 120 80 - 120
		Total Potassium (K)	2014/09/09		98 NG	%	80 - 120
		Total Silicon (Si)	2014/09/09		NC 400	%	80 - 120
		Total Sodium (Na)	2014/09/09		102	%	80 - 120
	Chilead Dlank	Total Strontium (Sr)	2014/09/09		NC	%	80 - 120
	Spiked Blank	Total Barium (Ba)	2014/09/09		98	%	80 - 120
		Total Boron (B)	2014/09/09		100	%	80 - 120
		Total Calcium (Ca)	2014/09/09		104	%	80 - 120
		Total Iron (Fe)	2014/09/09		105	%	80 - 120
		Total Lithium (Li)	2014/09/09		100	%	80 - 120
		Total Magnesium (Mg)	2014/09/09		99	%	80 - 120
		Total Manganese (Mn)	2014/09/09		102	%	80 - 120
		Total Phosphorus (P)	2014/09/09		97	%	80 - 120
		Total Potassium (K)	2014/09/09		96	%	80 - 120
		Total Silicon (Si)	2014/09/09		101	%	80 - 120
		Total Sodium (Na)	2014/09/09		101	%	80 - 120
	M (1 15)	Total Strontium (Sr)	2014/09/09	0.040	100	%	80 - 120
	Method Blank	Total Barium (Ba)	2014/09/09	< 0.010		mg/L	
		Total Boron (B)	2014/09/09	< 0.020		mg/L	
		Total Calcium (Ca)	2014/09/09	< 0.30		mg/L	
		Total Iron (Fe)	2014/09/09	<0.060		mg/L	
		Total Lithium (Li)	2014/09/09	< 0.020		mg/L	
		Total Magnesium (Mg)	2014/09/09	<0.20		mg/L	
		Total Manganese (Mn)	2014/09/09	<0.0040		mg/L	
		Total Phosphorus (P)	2014/09/09	<0.10		mg/L	
		Total Potassium (K)	2014/09/09	<0.30		mg/L	
		Total Silicon (Si)	2014/09/09	<0.10		mg/L	
		Total Sodium (Na)	2014/09/09	<0.50		mg/L	
		Total Strontium (Sr)	2014/09/09	< 0.020		mg/L	
		Total Sulphur (S)	2014/09/09	<0.20		mg/L	
	RPD	Total Barium (Ba)	2014/09/09	1.9		%	20

Maxxam Analytics International Corporation o/a Maxxam Analytics Calgary: 2021 - 41st Avenue N.E. T2E 6P2 Telephone(403) 291-3077 Fax(403) 291-9468

MAXXAM ANALYTICS Attention: SUB CONTRACTOR Client Project #: MB4G1542

P.O. #: Site Location:

Quality Assurance Report (Continued)

Maxxam Job Number: CB478781

QA/QC			Date				
Batch			Analyzed				ļ
Num Init	QC Type	Parameter	yyyy/mm/dd	Value	Recovery	UNITS	QC Limits
7630498 MAP	RPD	Total Boron (B)	2014/09/09	NC		%	20
		Total Calcium (Ca)	2014/09/09	1.6		%	20
		Total Iron (Fe)	2014/09/09	5.6		%	20
		Total Lithium (Li)	2014/09/09	NC		%	20
		Total Magnesium (Mg)	2014/09/09	2.0		%	20
		Total Manganese (Mn)	2014/09/09	2.1		%	20
		Total Phosphorus (P)	2014/09/09	NC		%	20
		Total Potassium (K)	2014/09/09	1.5		%	20
		Total Silicon (Si)	2014/09/09	7.6		%	20
		Total Sodium (Na)	2014/09/09	1.7		%	20
		Total Strontium (Sr)	2014/09/09	2.2		%	20
		Total Sulphur (S)	2014/09/09	1.5		%	20

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spiked amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than 2x that of the native sample concentration).

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (one or both samples < 5x RDL).

Maxxam Analytics International Corporation o/a Maxxam Analytics Calgary: 2021 - 41st Avenue N.E. T2E 6P2 Telephone(403) 291-3077 Fax(403) 291-9468

Validation Signature Page

Maxxam	.lob	#-	R47	787	81

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

Peng Liang, Analyst II

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Site#: FOX-2

Site Location: LONG STAFF BLUFF

Your C.O.C. #: 23243

Attention:Jean-Pierre Pelletier

Biogenie Inc Quebec 1170, rue Levis Terrebonne, QC CANADA J6W 5S6

Report Date: 2014/09/12

Report #: R3155070

Version: 1

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B4G1542 Received: 2014/09/03, 13:10

Sample Matrix: Soil # Samples Received: 5

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Reference
Petroleum Hydro. CCME F1 & BTEX in Soil	5	2014/09/05	2014/09/08	OTT SOP-00002	CCME CWS
Petroleum Hydrocarbons F2-F4 in Soil	5	2014/09/05	2014/09/06	OTT SOP-00001	CCME CWS
Strong Acid Leachable Metals by ICPMS (1)	5	2014/09/09	2014/09/11	CAM SOP-00447	EPA 6020 m
MOISTURE	5	N/A	2014/09/08	CAM SOP-00445	McKeague 2nd ed 1978
Polychlorinated Biphenyl in Soil (1)	5	2014/09/09	2014/09/09	CAM SOP-00309	EPA 8082 m

Sample Matrix: Water # Samples Received: 2

		Date	Date		
Analyses C	Quantity	Extracted	Analyzed	Laboratory Method	Reference
Petroleum Hydro. CCME F1 & BTEX in Water (1)	2	N/A	2014/09/07	CAM SOP-00315	CCME PHC-CWS m
Petroleum Hydrocarbons F2-F4 in Water (1)	2	2014/09/06	2014/09/07	CAM SOP-00316	CCME PHC-CWS m
Mercury (low level) (1)	2	2014/09/08	2014/09/09	CAM SOP-00453	EPA 7470 m
Polychlorinated Biphenyl (PCB) (1)	1	2014/09/08	2014/09/10	CAM SOP-00309	EPA 8082 m
Polychlorinated Biphenyl (PCB) (1)	1	2014/09/08	2014/09/11	CAM SOP-00309	EPA 8082 m

^{*} RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager. Parnian Baber, Project Manager Email: pbaber@maxxam.ca
Phone# (613) 274-0573

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

⁽¹⁾ This test was performed by Maxxam Analytics Mississauga

Biogenie Inc

Site Location: LONG STAFF BLUFF

Sampler Initials: MF

RESULTS OF ANALYSES OF SOIL

Maxxam ID		XK5037	XK5038	XK5039	XK5040	XK5041			
Sampling Date		2014/08/24	2014/08/25	2014/08/25	2014/08/25	2014/08/25			
COC Number		23243	23243	23243	23243	23243			
	Units	F2-DUP-2-2014	F2-DUP-5-2014	F2-DUP-8-2014	F2-DUP-11-2014	F2-DUP-14-2014	RDL	QC Batch	
Inorganics									
Inorganics									
Moisture	%	13	8.3	8.8	6.2	6.1	0.2	3737495	
		13	8.3	8.8	6.2	6.1	0.2	3737495	

Biogenie Inc

Site Location: LONG STAFF BLUFF

Sampler Initials: MF

ELEMENTS BY ATOMIC SPECTROSCOPY (SOIL)

Maxxam ID		XK5037	XK5038	XK5039	XK5040	XK5041		
Sampling Date		2014/08/24	2014/08/25	2014/08/25	2014/08/25	2014/08/25		
COC Number		23243	23243	23243	23243	23243		
	Units	F2-DUP-2-2014	F2-DUP-5-2014	F2-DUP-8-2014	F2-DUP-11-2014	F2-DUP-14-2014	RDL	QC Batch
Metals								
Acid Extractable Antimony (Sb)	ug/g	0.36	ND	0.26	ND	0.51	0.20	3741441
Acid Extractable Arsenic (As)	ug/g	45	22	43	33	32	1.0	3741441
Acid Extractable Barium (Ba)	ug/g	89	120	85	96	75	0.50	3741441
Acid Extractable Beryllium (Be)	ug/g	0.47	0.63	1.5	0.49	0.80	0.20	3741441
Acid Extractable Boron (B)	ug/g	ND	ND	ND	ND	ND	5.0	3741441
Acid Extractable Cadmium (Cd)	ug/g	0.15	ND	0.36	0.14	0.31	0.10	3741441
Acid Extractable Chromium (Cr)	ug/g	44	83	83	82	71	1.0	3741441
Acid Extractable Cobalt (Co)	ug/g	15	17	52	18	20	0.10	3741441
Acid Extractable Copper (Cu)	ug/g	57	28	110	67	100	0.50	3741441
Acid Extractable Lead (Pb)	ug/g	10	6.9	16	11	10	1.0	3741441
Acid Extractable Molybdenum (Mo)	ug/g	2.5	0.96	1.5	0.83	1.7	0.50	3741441
Acid Extractable Nickel (Ni)	ug/g	44	42	160	69	100	0.50	3741441
Acid Extractable Selenium (Se)	ug/g	0.72	ND	0.52	ND	0.54	0.50	3741441
Acid Extractable Silver (Ag)	ug/g	ND	ND	ND	ND	ND	0.20	3741441
Acid Extractable Thallium (Tl)	ug/g	0.45	0.30	0.52	0.18	0.50	0.050	3741441
Acid Extractable Uranium (U)	ug/g	2.8	3.0	4.9	3.1	3.1	0.050	3741441
Acid Extractable Vanadium (V)	ug/g	39	66	66	64	59	5.0	3741441
Acid Extractable Zinc (Zn)	ug/g	81	110	240	120	140	5.0	3741441
Acid Extractable Mercury (Hg)	ug/g	ND	ND	ND	ND	ND	0.050	3741441

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

ND = Not detected

Biogenie Inc

Site Location: LONG STAFF BLUFF

Sampler Initials: MF

PETROLEUM HYDROCARBONS (CCME)

Maxxam ID		XK5037	XK5038	XK5039	XK5040	XK5041		
Sampling Date		2014/08/24	2014/08/25	2014/08/25	2014/08/25	2014/08/25		
COC Number		23243	23243	23243	23243	23243		
	Units	F2-DUP-2-2014	F2-DUP-5-2014	F2-DUP-8-2014	F2-DUP-11-2014	F2-DUP-14-2014	RDL	QC Batch
BTEX & F1 Hydrocarbons								
Benzene	ug/g	ND	ND	ND	ND	ND	0.005	3737266
Toluene	ug/g	ND	ND	ND	ND	ND	0.02	3737266
Ethylbenzene	ug/g	ND	ND	ND	ND	ND	0.01	3737266
o-Xylene	ug/g	ND	ND	ND	ND	ND	0.02	3737266
p+m-Xylene	ug/g	ND	ND	ND	ND	ND	0.04	3737266
Total Xylenes	ug/g	ND	ND	ND	ND	ND	0.04	3737266
F1 (C6-C10)	ug/g	ND	ND	ND	ND	ND	10	3737266
F1 (C6-C10) - BTEX	ug/g	ND	ND	ND	ND	ND	10	3737266
F2-F4 Hydrocarbons								
F2 (C10-C16 Hydrocarbons)	ug/g	ND	ND	ND	ND	ND	10	3737494
F3 (C16-C34 Hydrocarbons)	ug/g	11	ND	ND	ND	ND	10	3737494
F4 (C34-C50 Hydrocarbons)	ug/g	ND	ND	ND	ND	ND	10	3737494
Reached Baseline at C50	ug/g	Yes	Yes	Yes	Yes	Yes		3737494
Surrogate Recovery (%)		•						
1,4-Difluorobenzene	%	125	130	129	122	119		3737266
4-Bromofluorobenzene	%	84	73	71	72	69		3737266
D10-Ethylbenzene	%	90	89	93	92	96		3737266
D4-1,2-Dichloroethane	%	117	119	122	118	122		3737266
o-Terphenyl	%	81	81	79	80	80		3737494
RDL = Reportable Detection I	imit							

QC Batch = Quality Control Batch

ND = Not detected

Biogenie Inc

Site Location: LONG STAFF BLUFF

Sampler Initials: MF

POLYCHLORINATED BIPHENYLS BY GC-ECD (SOIL)

Maxxam ID		XK5037	XK5038	XK5039	XK5040	XK5041		
Sampling Date		2014/08/24	2014/08/25	2014/08/25	2014/08/25	2014/08/25		
COC Number		23243	23243	23243	23243	23243		
	Units	F2-DUP-2-2014	F2-DUP-5-2014	F2-DUP-8-2014	F2-DUP-11-2014	F2-DUP-14-2014	RDL	QC Batch
PCBs								
Aroclor 1242	ug/g	ND	ND	ND	ND	ND	0.010	3740733
Aroclor 1248	ug/g	ND	ND	ND	ND	ND	0.010	3740733
Aroclor 1254	ug/g	ND	ND	ND	ND	ND	0.010	3740733
Aroclor 1260	ug/g	ND	ND	ND	ND	ND	0.010	3740733
Total PCB	ug/g	ND	ND	ND	ND	ND	0.010	3740733
Surrogate Recovery (%)								
Decachlorobiphenyl	%	93	89	92	96	104		3740733
PDI - Papartable Detection	n Limit	•	•	•				

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

ND = Not detected

Biogenie Inc

Site Location: LONG STAFF BLUFF

Sampler Initials: MF

ELEMENTS BY ATOMIC SPECTROSCOPY (WATER)

Maxxam ID		XK5042	XK5043		
Sampling Date		2014/08/24	2014/08/25		
COC Number		23243	23243		
	Units	F2-DUP-B-2014	F2-DUP-E-2014	RDL	QC Batch
Metals					
Mercury (Hg)	ug/L	ND	ND	0.01	3739875
, , ,	0/ -			0.01	0,000,0
RDL = Reportable Detection L				0.01	0.000.0
,	imit			0.01	0.030.0

Biogenie Inc

Site Location: LONG STAFF BLUFF

Sampler Initials: MF

PETROLEUM HYDROCARBONS (CCME)

Maxxam ID		XK5042	XK5043		
Sampling Date		2014/08/24	2014/08/25		
COC Number		23243	23243		
	Units	F2-DUP-B-2014	F2-DUP-E-2014	RDL	QC Batch
BTEX & F1 Hydrocarbons					
Benzene	ug/L	ND	ND	0.20	3738749
Toluene	ug/L	ND	ND	0.20	3738749
Ethylbenzene	ug/L	ND	ND	0.20	3738749
o-Xylene	ug/L	ND	ND	0.20	3738749
p+m-Xylene	ug/L	ND	ND	0.40	3738749
Total Xylenes	ug/L	ND	ND	0.40	3738749
F1 (C6-C10)	ug/L	ND	ND	25	3738749
F1 (C6-C10) - BTEX	ug/L	ND	ND	25	3738749
F2-F4 Hydrocarbons					
F2 (C10-C16 Hydrocarbons)	ug/L	ND	ND	100	3738651
F3 (C16-C34 Hydrocarbons)	ug/L	ND	ND	200	3738651
F4 (C34-C50 Hydrocarbons)	ug/L	ND	ND	200	3738651
Reached Baseline at C50	ug/L	Yes	Yes		3738651
Surrogate Recovery (%)	•				
1,4-Difluorobenzene	%	103	103		3738749
4-Bromofluorobenzene	%	96	95		3738749
D10-Ethylbenzene	%	121	111		3738749
D4-1,2-Dichloroethane	%	91	89		3738749
o-Terphenyl	%	98	98		3738651
RDL = Reportable Detection I	imit			•	
QC Batch = Quality Control B	atch				
ND = Not detected					

Biogenie Inc

Site Location: LONG STAFF BLUFF

Sampler Initials: MF

POLYCHLORINATED BIPHENYLS BY GC-ECD (WATER)

Maxxam ID		XK5042	XK5043		
Sampling Date		2014/08/24	2014/08/25		
COC Number		23243	23243		
	Units	F2-DUP-B-2014	F2-DUP-E-2014	RDL	QC Batch
PCBs					
Aroclor 1016	ug/L	ND	ND	0.01	3739832
Aroclor 1221	ug/L	ND	ND	0.01	3739832
Aroclor 1232	ug/L	ND	ND	0.01	3739832
Aroclor 1262	ug/L	ND	ND	0.01	3739832
Aroclor 1268	ug/L	ND	ND	0.01	3739832
Aroclor 1242	ug/L	ND	ND	0.01	3739832
Aroclor 1248	ug/L	ND	ND	0.01	3739832
Aroclor 1254	ug/L	ND	ND	0.01	3739832
Aroclor 1260	ug/L	ND	ND	0.01	3739832
Total PCB	ug/L	ND	ND	0.01	3739832
Surrogate Recovery (%)					
Decachlorobiphenyl	%	94	100		3739832
RDL = Reportable Detectio	n Limit				
QC Batch = Quality Control Batch					
ND = Not detected					

Biogenie Inc

Site Location: LONG STAFF BLUFF

Sampler Initials: MF

GENERAL COMMENTS

Results relate only to the items tested.

Biogenie Inc

Site Location: LONG STAFF BLUFF

Sampler Initials: MF

QUALITY ASSURANCE REPORT

QA/QC				Date				
Batch	Init	QC Type	Parameter	Analyzed	Value	Recovery	Units	QC Limits
3737266	LGA	Matrix Spike	1,4-Difluorobenzene	2014/09/08		126	%	60 - 140
			4-Bromofluorobenzene	2014/09/08		86	%	60 - 140
			D10-Ethylbenzene	2014/09/08		95	%	30 - 130
			D4-1,2-Dichloroethane	2014/09/08		129	%	60 - 140
			Benzene	2014/09/08		78	%	60 - 140
			Toluene	2014/09/08		75	%	60 - 140
			Ethylbenzene	2014/09/08		78	%	60 - 140
			o-Xylene	2014/09/08		81	%	60 - 140
			p+m-Xylene	2014/09/08		70	%	60 - 140
			F1 (C6-C10)	2014/09/08		91	%	60 - 140
3737266	LGA	Spiked Blank	1,4-Difluorobenzene	2014/09/06		130	%	60 - 140
			4-Bromofluorobenzene	2014/09/06		77	%	60 - 140
			D10-Ethylbenzene	2014/09/06		99	%	30 - 130
			D4-1,2-Dichloroethane	2014/09/06		123	%	60 - 140
			Benzene	2014/09/06		88	%	60 - 140
			Toluene	2014/09/06		79	%	60 - 140
			Ethylbenzene	2014/09/06		75	%	60 - 140
			o-Xylene	2014/09/06		78	%	60 - 140
			p+m-Xylene	2014/09/06		71	%	60 - 140
			F1 (C6-C10)	2014/09/06		93	%	80 - 120
3737266	LGA	Method Blank	1,4-Difluorobenzene	2014/09/06		126	%	60 - 140
			4-Bromofluorobenzene	2014/09/06		70	%	60 - 140
			D10-Ethylbenzene	2014/09/06		104	%	30 - 130
			D4-1,2-Dichloroethane	2014/09/06		127	%	60 - 140
			Benzene	2014/09/06	ND,		ug/g	
					RDL=0.005		0, 0	
			Toluene	2014/09/06	ND <i>,</i> RDL=0.02		ug/g	
			Ethylbenzene	2014/09/06	ND , RDL=0.01		ug/g	
			o-Xylene	2014/09/06	ND , RDL=0.02		ug/g	
			p+m-Xylene	2014/09/06	ND , RDL=0.04		ug/g	
			Total Xylenes	2014/09/06	ND <i>,</i> RDL=0.04		ug/g	
			F1 (C6-C10)	2014/09/06	ND , RDL=10		ug/g	
			F1 (C6-C10) - BTEX	2014/09/06	ND , RDL=10		ug/g	
3737266	LGA	RPD	Benzene	2014/09/08	NC		%	50
			Toluene	2014/09/08	NC		%	50
			Ethylbenzene	2014/09/08	NC		%	50
			o-Xylene	2014/09/08	NC		%	50
			p+m-Xylene	2014/09/08	NC		%	50
			Total Xylenes	2014/09/08	NC		%	50
			F1 (C6-C10)	2014/09/08	NC		%	50
			F1 (C6-C10) - BTEX	2014/09/08	NC		%	50
3737494	AH1	Matrix Spike	o-Terphenyl	2014/09/06		71	%	30 - 130
		, -	F2 (C10-C16 Hydrocarbons)	2014/09/06		103	%	50 - 130
			F3 (C16-C34 Hydrocarbons)	2014/09/06		103	%	50 - 130
			F4 (C34-C50 Hydrocarbons)	2014/09/06		103	%	50 - 130

Biogenie Inc

Site Location: LONG STAFF BLUFF

Sampler Initials: MF

QA/QC				Date				
Batch	Init	QC Type	Parameter	Analyzed	Value	Recovery	Units	QC Limits
3737494	AH1	Spiked Blank	o-Terphenyl	2014/09/06		76	%	30 - 130
			F2 (C10-C16 Hydrocarbons)	2014/09/06		86	%	80 - 120
			F3 (C16-C34 Hydrocarbons)	2014/09/06		86	%	80 - 120
			F4 (C34-C50 Hydrocarbons)	2014/09/06		86	%	80 - 120
3737494	AH1	Method Blank	o-Terphenyl	2014/09/06		81	%	30 - 130
			F2 (C10-C16 Hydrocarbons)	2014/09/06	ND , RDL=10		ug/g	
			F3 (C16-C34 Hydrocarbons)	2014/09/06	ND , RDL=10		ug/g	
			F4 (C34-C50 Hydrocarbons)	2014/09/06	ND , RDL=10		ug/g	
3737494	AH1	RPD	F2 (C10-C16 Hydrocarbons)	2014/09/06	44		%	50
3,3, .3 .		2	F3 (C16-C34 Hydrocarbons)	2014/09/06	45		%	50
			F4 (C34-C50 Hydrocarbons)	2014/09/06	NC		%	50
3737495	LHR	RPD	Moisture	2014/09/08	13		%	50
3738651	DPO	Matrix Spike	o-Terphenyl	2014/09/06		101	%	60 - 130
			F2 (C10-C16 Hydrocarbons)	2014/09/06		NC	%	50 - 130
			F3 (C16-C34 Hydrocarbons)	2014/09/06		113	%	50 - 130
			F4 (C34-C50 Hydrocarbons)	2014/09/06		120	%	50 - 130
3738651	DPO	Spiked Blank	o-Terphenyl	2014/09/06		102	%	60 - 130
		·	F2 (C10-C16 Hydrocarbons)	2014/09/06		103	%	60 - 130
			F3 (C16-C34 Hydrocarbons)	2014/09/06		107	%	60 - 130
			F4 (C34-C50 Hydrocarbons)	2014/09/06		111	%	60 - 130
3738651	DPO	Method Blank	o-Terphenyl	2014/09/06		99	%	60 - 130
			F2 (C10-C16 Hydrocarbons)	2014/09/06	ND , RDL=100		ug/L	
			F3 (C16-C34 Hydrocarbons)	2014/09/06	ND , RDL=200		ug/L	
			F4 (C34-C50 Hydrocarbons)	2014/09/06	ND , RDL=200		ug/L	
3738651	DPO	RPD	F2 (C10-C16 Hydrocarbons)	2014/09/07	NC		%	30
3730031	DIO	III D	F3 (C16-C34 Hydrocarbons)	2014/09/07	NC		%	30
			F4 (C34-C50 Hydrocarbons)	2014/09/07	NC		%	30
3738749	SHK	Matrix Spike [XK5043-01]	1,4-Difluorobenzene	2014/09/07	NC	101	%	70 - 130
3730713	31111	Matrix Spine [Anso is 61]	4-Bromofluorobenzene	2014/09/07		102	%	70 - 130
			D10-Ethylbenzene	2014/09/07		123	%	70 - 130
			D4-1,2-Dichloroethane	2014/09/07		89	%	70 - 130
			Benzene	2014/09/07		115	%	70 - 130
			Toluene	2014/09/07		117	%	70 - 130
			Ethylbenzene	2014/09/07		130	%	70 - 130
			o-Xylene	2014/09/07		125	%	70 - 130
			p+m-Xylene	2014/09/07		120	%	70 - 130
			F1 (C6-C10)	2014/09/07		88	%	70 - 130
3738749	SHK	Spiked Blank	1,4-Difluorobenzene	2014/09/09		100	%	70 - 130
			4-Bromofluorobenzene	2014/09/09		102	%	70 - 130
			D10-Ethylbenzene	2014/09/09		105	%	70 - 130
			D4-1,2-Dichloroethane	2014/09/09		90	%	70 - 130
			Benzene	2014/09/09		100	%	70 - 130
			Toluene	2014/09/09		102	%	70 - 130
			Ethylbenzene	2014/09/09		111	%	70 - 130
			o-Xylene	2014/09/09		109	%	70 - 130
1			p+m-Xylene	2014/09/09		102	%	70 - 130
			F1 (C6-C10)	2014/09/09		106	%	70 - 130

Biogenie Inc

Site Location: LONG STAFF BLUFF

Sampler Initials: MF

QA/QC				Date		_		
Batch	Init	QC Type	Parameter	Analyzed	Value	Recovery	Units	QC Limits
3738749	SHK	Method Blank	1,4-Difluorobenzene	2014/09/07		101	%	70 - 130
			4-Bromofluorobenzene	2014/09/07		99	%	70 - 130
			D10-Ethylbenzene	2014/09/07		97	%	70 - 130
			D4-1,2-Dichloroethane	2014/09/07	ND	91	%	70 - 130
			Benzene	2014/09/07	ND , RDL=0.20		ug/L	
			Toluene	2014/09/07	ND , RDL=0.20		ug/L	
			Ethylbenzene	2014/09/07	ND , RDL=0.20		ug/L	
			o-Xylene	2014/09/07	ND , RDL=0.20		ug/L	
İ			p+m-Xylene	2014/09/07	ND , RDL=0.40		ug/L	
			Total Xylenes	2014/09/07	ND , RDL=0.40		ug/L	
			F1 (C6-C10)	2014/09/07	ND , RDL=25		ug/L	
			F1 (C6-C10) - BTEX	2014/09/07	ND <i>,</i> RDL=25		ug/L	
3738749	SHK	RPD [XK5043-01]	Benzene	2014/09/07	NC		%	30
			Toluene	2014/09/07	NC		%	30
			Ethylbenzene	2014/09/07	NC		%	30
			o-Xylene	2014/09/07	NC		%	30
			p+m-Xylene	2014/09/07	NC		%	30
			Total Xylenes	2014/09/07	NC		%	30
			F1 (C6-C10)	2014/09/07	NC		%	30
			F1 (C6-C10) - BTEX	2014/09/07	NC		%	30
3739832	SHG	Matrix Spike	Decachlorobiphenyl	2014/09/10		105	%	60 - 130
0.0000	00	····at······ op····c	Aroclor 1260	2014/09/10		95	%	60 - 130
			Total PCB	2014/09/10		95	%	60 - 130
3739832	SHG	Spiked Blank	Decachlorobiphenyl	2014/09/10		107	%	60 - 130
373303 2	5110	Spinea Blank	Aroclor 1260	2014/09/10		98	%	60 - 130
			Total PCB	2014/09/10		98	%	60 - 130
3739832	SHG	Method Blank	Aroclor 1016	2014/09/10	ND , RDL=0.01	30	ug/L	00 100
			Aroclor 1221	2014/09/10	ND , RDL=0.01		ug/L	
			Aroclor 1232	2014/09/10	ND , RDL=0.01		ug/L	
			Aroclor 1262	2014/09/10	ND , RDL=0.01		ug/L	
			Aroclor 1268	2014/09/10	ND , RDL=0.01		ug/L	
			Decachlorobiphenyl	2014/09/10		109	%	60 - 130
			Aroclor 1242	2014/09/10	ND , RDL=0.01		ug/L	
			Aroclor 1248	2014/09/10	ND , RDL=0.01		ug/L	
			Aroclor 1254	2014/09/10	ND , RDL=0.01		ug/L	

Biogenie Inc

Site Location: LONG STAFF BLUFF

Sampler Initials: MF

QA/QC				Date				
Batch	Init	QC Type	Parameter	Analyzed	Value	Recovery	Units	QC Limits
			Aroclor 1260	2014/09/10	ND,		ug/L	
					RDL=0.01			
			Total PCB	2014/09/10	ND,		ug/L	
					RDL=0.01			
3739832	SHG	RPD	Aroclor 1016	2014/09/10	NC		%	40
			Aroclor 1221	2014/09/10	NC		%	40
			Aroclor 1232	2014/09/10	NC		%	40
			Aroclor 1262	2014/09/10	NC		%	40
			Aroclor 1268	2014/09/10	NC		%	40
			Aroclor 1242	2014/09/10	NC		%	40
			Aroclor 1248	2014/09/10	NC		%	40
			Aroclor 1254	2014/09/10	NC		%	40
			Aroclor 1260	2014/09/10	NC		%	40
			Total PCB	2014/09/10	NC		%	40
3739875	RON	•	Mercury (Hg)	2014/09/09		95	%	75 - 125
3739875	RON	Spiked Blank	Mercury (Hg)	2014/09/09		91	%	80 - 120
3739875	RON	Method Blank	Mercury (Hg)	2014/09/09	ND,		ug/L	
					RDL=0.01			
3739875	RON		Mercury (Hg)	2014/09/09	NC		%	20
3740733	LPG	Matrix Spike	Decachlorobiphenyl	2014/09/09		95	%	60 - 130
			Aroclor 1260	2014/09/09		114	%	60 - 130
			Total PCB	2014/09/09		114	%	60 - 130
3740733	LPG	Spiked Blank	Decachlorobiphenyl	2014/09/09		94	%	60 - 130
			Aroclor 1260	2014/09/09		115	%	60 - 130
			Total PCB	2014/09/09		115	%	60 - 130
3740733	LPG	Method Blank	Decachlorobiphenyl	2014/09/09		88	%	60 - 130
			Aroclor 1242	2014/09/09	ND , RDL=0.010		ug/g	
			Aroclor 1248	2014/09/09	ND , RDL=0.010		ug/g	
			Aroclor 1254	2014/09/09	ND , RDL=0.010		ug/g	
			Aroclor 1260	2014/09/09	ND , RDL=0.010		ug/g	
			Total PCB	2014/09/09	ND , RDL=0.010		ug/g	
3740733	LPG	RPD	Aroclor 1242	2014/09/09	NC		%	50
			Aroclor 1248	2014/09/09	NC		%	50
			Aroclor 1254	2014/09/09	NC		%	50
			Aroclor 1260	2014/09/09	NC		%	50
			Total PCB	2014/09/09	NC		%	50
3741441	GBU	Matrix Spike	Acid Extractable Antimony (Sb)	2014/09/11		103	%	75 - 125
			Acid Extractable Arsenic (As)	2014/09/11		100	%	75 - 125
			Acid Extractable Barium (Ba)	2014/09/11		99	%	75 - 125
			Acid Extractable Beryllium (Be)	2014/09/11		104	%	75 - 125
			Acid Extractable Boron (B)	2014/09/11		103	%	75 - 125
			Acid Extractable Cadmium (Cd)	2014/09/11		98	%	75 - 125
			Acid Extractable Chromium (Cr)	2014/09/11		104	%	75 - 125
			Acid Extractable Cobalt (Co)	2014/09/11		101	%	75 - 125
			Acid Extractable Copper (Cu)	2014/09/11		100	%	75 - 125
			Acid Extractable Lead (Pb)	2014/09/11		99	%	75 - 125
			Acid Extractable Molybdenum (Mo)	2014/09/11		102	%	75 - 125

Biogenie Inc

Site Location: LONG STAFF BLUFF

Sampler Initials: MF

04/00				Data				
QA/QC Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	Units	QC Limits
שמנכוו	mmt	QC Type	Acid Extractable Nickel (Ni)	2014/09/11	value	100	%	75 - 125
			Acid Extractable McKer (M) Acid Extractable Selenium (Se)	2014/09/11		101	%	75 - 125 75 - 125
			Acid Extractable Silver (Ag)	2014/09/11		101	%	75 - 125 75 - 125
			Acid Extractable Silver (Ag) Acid Extractable Thallium (TI)	2014/09/11		94	%	75 - 125 75 - 125
			Acid Extractable Trialium (T) Acid Extractable Uranium (U)	2014/09/11		101	%	75 - 125 75 - 125
			• •				% %	75 - 125 75 - 125
			Acid Extractable Vanadium (V)	2014/09/11		108		
			Acid Extractable Zinc (Zn)	2014/09/11		102	%	75 - 125
2744444	CDII	Coding d Diami	Acid Extractable Mercury (Hg)	2014/09/11		100	%	75 - 125
3741441	GBU	Spiked Blank	Acid Extractable Antimony (Sb)	2014/09/11		106	%	80 - 120
			Acid Extractable Arsenic (As)	2014/09/11		105	%	80 - 120
			Acid Extractable Barium (Ba)	2014/09/11		102	%	80 - 120
			Acid Extractable Beryllium (Be)	2014/09/11		106	%	80 - 120
			Acid Extractable Boron (B)	2014/09/11		107	%	80 - 120
			Acid Extractable Cadmium (Cd)	2014/09/11		102	%	80 - 120
			Acid Extractable Chromium (Cr)	2014/09/11		105	%	80 - 120
			Acid Extractable Cobalt (Co)	2014/09/11		108	%	80 - 120
			Acid Extractable Copper (Cu)	2014/09/11		106	%	80 - 120
			Acid Extractable Lead (Pb)	2014/09/11		103	%	80 - 120
			Acid Extractable Molybdenum (Mo)	2014/09/11		105	%	80 - 120
			Acid Extractable Nickel (Ni)	2014/09/11		104	%	80 - 120
			Acid Extractable Selenium (Se)	2014/09/11		103	%	80 - 120
			Acid Extractable Silver (Ag)	2014/09/11		105	%	80 - 120
			Acid Extractable Thallium (TI)	2014/09/11		99	%	80 - 120
			Acid Extractable Uranium (U)	2014/09/11		105	%	80 - 120
			Acid Extractable Vanadium (V)	2014/09/11		105	%	80 - 120
			Acid Extractable Zinc (Zn)	2014/09/11		102	%	80 - 120
			Acid Extractable Mercury (Hg)	2014/09/11		103	%	80 - 120
3741441	GBU	Method Blank	Acid Extractable Antimony (Sb)	2014/09/11	ND , RDL=0.20		ug/g	
			Acid Extractable Arsenic (As)	2014/09/11	ND , RDL=1.0		ug/g	
			Acid Extractable Barium (Ba)	2014/09/11	ND , RDL=0.50		ug/g	
			Acid Extractable Beryllium (Be)	2014/09/11	ND , RDL=0.20		ug/g	
			Acid Extractable Boron (B)	2014/09/11	ND , RDL=5.0		ug/g	
			Acid Extractable Cadmium (Cd)	2014/09/11	ND , RDL=0.10		ug/g	
			Acid Extractable Chromium (Cr)	2014/09/11	ND , RDL=1.0		ug/g	
			Acid Extractable Cobalt (Co)	2014/09/11	ND , RDL=0.10		ug/g	
			Acid Extractable Copper (Cu)	2014/09/11	ND , RDL=0.50		ug/g	
			Acid Extractable Lead (Pb)	2014/09/11	ND , RDL=1.0		ug/g	
			Acid Extractable Molybdenum (Mo)	2014/09/11	ND , RDL=0.50		ug/g	
			Acid Extractable Nickel (Ni)	2014/09/11	ND , RDL=0.50		ug/g	

Biogenie Inc

Site Location: LONG STAFF BLUFF

Sampler Initials: MF

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC				Date				
Batch	Init	QC Type	Parameter	Analyzed	Value	Recovery	Units	QC Limits
			Acid Extractable Selenium (Se)	2014/09/11	ND , RDL=0.50		ug/g	
			Acid Extractable Silver (Ag)	2014/09/11	ND , RDL=0.20		ug/g	
			Acid Extractable Thallium (TI)	2014/09/11	ND , RDL=0.050		ug/g	
			Acid Extractable Uranium (U)	2014/09/11	ND , RDL=0.050		ug/g	
			Acid Extractable Vanadium (V)	2014/09/11	ND , RDL=5.0		ug/g	
			Acid Extractable Zinc (Zn)	2014/09/11	ND , RDL=5.0		ug/g	
			Acid Extractable Mercury (Hg)	2014/09/11	ND , RDL=0.050		ug/g	
3741441	GBU	RPD	Acid Extractable Antimony (Sb)	2014/09/11	NC		%	30
			Acid Extractable Arsenic (As)	2014/09/11	NC		%	30
			Acid Extractable Barium (Ba)	2014/09/11	1.1		%	30
			Acid Extractable Beryllium (Be)	2014/09/11	NC		%	30
			Acid Extractable Boron (B)	2014/09/11	NC		%	30
			Acid Extractable Cadmium (Cd)	2014/09/11	NC		%	30
			Acid Extractable Chromium (Cr)	2014/09/11	NC		%	30
			Acid Extractable Cobalt (Co)	2014/09/11	19		%	30
			Acid Extractable Copper (Cu)	2014/09/11	NC		%	30
			Acid Extractable Lead (Pb)	2014/09/11	NC		%	30
			Acid Extractable Molybdenum (Mo)	2014/09/11	NC		%	30
			Acid Extractable Nickel (Ni)	2014/09/11	NC		%	30
			Acid Extractable Selenium (Se)	2014/09/11	NC		%	30
			Acid Extractable Silver (Ag)	2014/09/11	NC		%	30
			Acid Extractable Thallium (TI)	2014/09/11	NC		%	30
			Acid Extractable Uranium (U)	2014/09/11	NC		%	30
			Acid Extractable Vanadium (V)	2014/09/11	NC		%	30
			Acid Extractable Zinc (Zn)	2014/09/11	NC		%	30
			Acid Extractable Mercury (Hg)	2014/09/11	NC		%	30

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spiked amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than 2x that of the native sample concentration).

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (one or both samples < 5x RDL).

Biogenie Inc

Site Location: LONG STAFF BLUFF

Sampler Initials: MF

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

Cristia Carriere
Cristina Carriere, Scientific Services
n. Risheld
Medhat Riskallah, Manager, Hydrocarbon Department
Paul Rubinato, Analyst, Maxxam Analytics
Suzana Popumi
Suzana Popovic, Supervisor, Hydrocarbons
Gli Meli
Steve Roberts, Lab Supervisor, Ottawa

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

ANNEX 2QA/QC Discussion

QUALITY ASSURANCE / QUALITY CONTROL

Quality Assurance/Quality Control (QA/QC) program was implemented to monitor the quality of the analytical results. The main objective of this QA/QC program is to insure that sampling data and analysis results are complete, precise, exact, representative and comparable. The review consisted of evaluating sample collection/handling methodology, general laboratory comments, field (blind) duplicate samples, and inter-laboratory duplicate samples.

1. LABORATORIES

Samples collected during the monitoring program were submitted to laboratories accredited by the Canadian Association for Laboratory Accreditation (CALA):

Main Laboratory

Exova 146 Colonnade Road #8 Ottawa, Ontario K2E 7Y1

CALA Registration number: 2602

Quality Assurance Laboratory

Maxxam Analytics International Corporation o/a Maxxam Analytics Campobello 6740 Campobello Road L5N 2L8

CALA Registration number: 2996

2. FIELD QA/QC

Standard sample collection techniques were implemented to decrease the likelihood of compromising collected samples, such as:

- Pre-cleaned sample containers were provided by the laboratory.
- Monitoring equipment was decontaminated between sampling stations and dedicated sampling systems were utilized.
- Soil samples were placed directly in the laboratory provided jars/bottles and were not mixed.
- Disposable nitrile glove were worn and disposed of after each sample collection.
- Jars/bottles were cleaned prior to placement into the cooler.
- Water samples were collected through the use of dedicated Waterra foot valves and tubing.

- Ice Packs or bagged ice (Ziplock bags) were used to ensure that sample temperature would be kept below 10 °C during transportation.
- Samples were kept at the laboratory at temperatures below 4℃.

Correspondences from Exova concerning the integrity of the samples are provided in Annex 1. These documents indicate that all samples received were acceptable for analysis.

The following is a summary of the analytical QA/QC procedure implemented in the field:

- 10% field Blind Duplicate Samples of soil and water were sent to Exova: five blind duplicate soil sample (F2-DUP-1, 4, 7, 10, 13-2014) and two blind duplicate groundwater sample (F2-DUP-A, D-2014) were submitted, as an independent check on data reproducibility, and to assess the field QA/QC protocols.
- 10% Inter-laboratory Duplicate Samples were sent to Maxxam: five blind duplicate soil sample (F2-DUP-2, 5, 8, 11, 14-2014) and two blind duplicate groundwater sample (F2-DUP-B, E-2014) were submitted (to determine if variation in procedures may cause significant difference in analytical results).
- 10% Archival Samples of soil were sent to ESG.

3. LABORATORIES QA/QC

Quality assurance documents from Exova only provide a summary of the QA/QC results. The quantity of samples per batch per analysis is not provided.

Quality assurance documents from Maxxam indicate that:

- The soil samples analyzed for metals, PCBs and PHCs were done in 1 single batch per parameter group:
 - Batch 3741441 for metals
 - Batch 3740733 for PCBs
 - Batch 3737266 for PHC fraction F1
 - Batch 3737494 for PHC fraction F2-F3
- The water samples analyzed was done in the following batches:
 - Batch 7630480 for most metals
 - Batch 7627879 for cadmium
 - Batch 3739875 for mercury
 - Batch 3739832 for PCBs
 - Batch 3738749 for PHC fraction F1
 - Batch 3738651 for PHC fraction F2-F3

4. DATA MANAGEMENT AND INTERPRETATION

4.1. FIELD WORK

The relative percent difference (RPD) is used to evaluate the sample result variability. Average RPD values of 30% for each parameter analyzed from the same laboratory are considered an indication of acceptable duplicate sample variability. For groundwater samples, an RPD of greater than 30% may reflect difference in sample turbidity or variance in the sample procedures. These performance criteria are applicable when the concentrations of the original and duplicate sample are five times or greater than the laboratory method detection limit, since the uncertainty increases dramatically as the concentration approaches the detection limit. Table I provides the detection limit for each parameter and the associated minimum concentration to be reached in order to be eligible for RPD calculation.

Table I: Minimum Concentration for QA/QC RPD Calculation

		Soil			Water				
Parameter	Laboratory	Units	MDL	RPD Minimum*	Units	MDL	RPD Minimum*		
As	Exova	mg/kg	1.0	5.0	mg/L	0.02000	0.1000		
AS	Maxxam	mg/kg	1.0	5.0	mg/L	0.00020	0.0010		
Cd	Exova	mg/kg	0.50	2.5	mg/L	0.008000	0.04000		
Cu	Maxxam	mg/kg	0.10	0.5	mg/L	0.000020	0.00010		
Cr	Exova	mg/kg	1.0	5.0	mg/L	0.050	0.250		
Ci	Maxxam	mg/kg	1.0	5.0	mg/L	0.001	0.005		
Co	Exova	mg/kg	1.0	5.0	mg/L	0.0100	0.0500		
CO	Maxxam	mg/kg	0.1	0.5	mg/L	0.0003	0.0015		
Cu	Exova	mg/kg	1.0	5.0	mg/L	0.0100	0.0500		
Cu	Maxxam	mg/kg	0.5	2.5	mg/L	0.0002	0.0010		
Pb	Exova	mg/kg	1.0	5.0	mg/L	0.0100	0.0500		
FU	Maxxam	mg/kg	1.0	5.0	mg/L	0.0002	0.0010		
Ni	Exova	mg/kg	1.0	5.0	mg/L	0.0100	0.0500		
IVI	Maxxam	mg/kg	0.5	2.5	mg/L	0.0005	0.0025		
Zn	Exova	mg/kg	2	10.0	mg/L	0.040	0.200		
211	Maxxam	mg/kg	5	25.0	mg/L	0.003	0.015		
Hg	Exova	mg/kg	0.10	0.5	mg/L	0.0001	0.0005		
''5	Maxxam	mg/kg	0.05	0.3	mg/L	0.0100	0.0500		
Total PCBs	Exova	mg/kg	0.02	0.1	ug/L	0.10	0.50		
TOTAL PCDS	Maxxam	mg/kg	0.01	0.1	ug/L	0.01	0.05		
PHC F1	Exova	mg/kg	10	50.0	mg/L	NA	NA		
	Maxxam	mg/kg	25	125.0	mg/L	0.025	0.125		
PHC F2	Exova	mg/kg	10	50.0	mg/L	0.1	0.5		
	Maxxam	mg/kg	100	500.0	mg/L	0.1	0.5		
PHC F3	Exova	mg/kg	20	100.0	mg/L	0.1	0.5		
rncr3	Maxxam	mg/kg	200	1000.0	mg/L	0.2	1.0		

^{*:} The RPD Minimum is the minimum concentration to be reached for QA/QC Relative Percent Difference Calculation NA: Not Available

4.1.1. SOIL SAMPLES

Five blind duplicate soil samples were submitted for intra- and inter-laboratory comparisons. The original and duplicate intra- and inter-laboratory metal, PCB and PHC soil sample results are summarized in Tables II along with the calculated RPD for each parameter. As noted in the tables, several of the results from the original and/or duplicate samples were below or within five times the laboratory method detection limits, and therefore RPD values were not calculated for these parameters.

Review of results indicated relatively minor differences in metal concentrations within the intralaboratory duplicate samples, with several individual parameter RPD values generally falling just above the acceptable range (between 30 and 40%). RPD for nickel and chromium in samples F2-MW-7-S-A-2014 and F2-DUP-7-2014 are above the acceptable limit of 30% (40 and 71%, respectively).

Results from the inter-laboratory duplicate samples indicated greater concentration differences for various parameters in three samples. In sample F2-DUP-11-2014, the concentration of nickel (69 mg/kg) and chromium (82 mg/kg) is very close to those reported for the intra-laboratory duplicate F2-DUP-10-2014 (71 and 80 mg/kg, respectively). The concentration of chromium in sample F2-DUP-2-2014 (44 mg/kg) is also very close to the concentration of chromium in the intra-laboratory duplicate F2-DUP-1-2014 (50 mg/kg). These similar concentrations in the duplicates could potentially be due to lack of sample uniformity. No other explanation can be provided at this time for the other deviations.

4.1.2. WATER SAMPLES

Two blind duplicate groundwater samples (F2-DUP-A-2014 / F2-DUP-D-2014) were submitted for intra-laboratory and two duplicates were also sent for inter-laboratory comparisons (F2-DUP-B-2014 / F2-DUP-E-2014). The original and duplicate intra- and inter-laboratory metal, PCB and PHC sample results are summarized in Table III, along with the calculated RPD for each parameter. As noted in the table, all calculated RPD values were within acceptable parameters.

4.2. LABORATORIES

QA/QC results from both laboratories do not raise any concern. QA/QC results from both laboratories are included with the certificates of analysis provided in Annexe 1.

4.2.1. BLANKS

All blanks from both laboratories, for both matrices and for all parameters were below the detection limits.

4.2.2. ANALYTICAL DUPLICATES

All analytical duplicates from both laboratories, for both matrices and for all parameters had RSD's at or below 20%.

4.2.3. CONTROL SAMPLES

All control samples from both laboratories, for both matrices and for all parameters had concentrations between the upper and lower concentration established for each parameter.

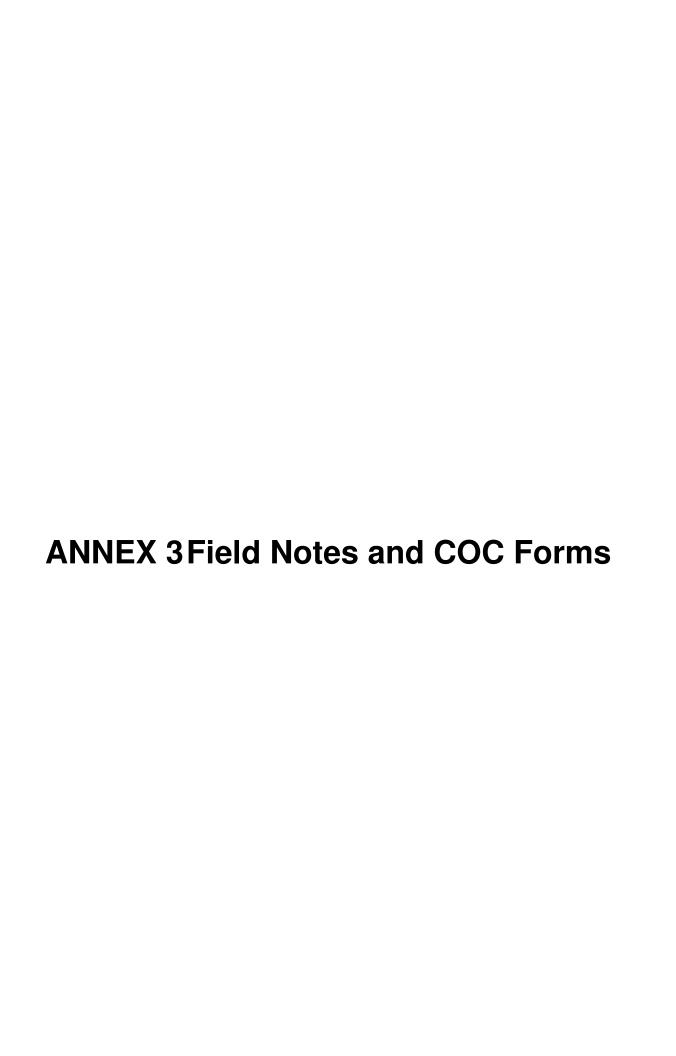

Table II: FOX-2 Soil Chemical Analysis Results - Quality Assurance Samples

		Table II: FOX-2 Soil Chemical Analysis Results - Quality Assurance Samples Parameters												
												F1	F2	F3
Sample #	Laboratory	Cu	Ni	Co	Cd	Pb	Zn	Cr	As	Hg	PCBs	C ₆ -C ₁₀	C ₁₀ -C ₁₆	C ₁₆ -C ₃₄
		[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]			
												[mg/kg]	[mg/kg]	[mg/kg]
RDL - Exova		1.0	1.0	1.0	0.50	1.0	2	1	1	0.1	0.02	10	10	20
RPD Minimum - Exova		5.0	5.0	5.0	2.50	5.0	10	5	5	0.5	0.1	50	50	100
RDL - Maxxam		0.5	0.5	0.1	0.10	1.0	5	1	1	0.05	0.01	10	10	10
RPD Minimum - Maxxam		2.5	2.5	0.5	0.50	5.0	25	5	5	0.25	0.05	50	50	50
				Intr	a-Lab Dup	licate San	nples							
F2-6-A-2014	1	91.0	96.0	19.0	<0.5	10.0	143	79	39	<0.1	<0.02	<10	<10	<20
F2-DUP-13-2014	Exova	72.0	76.0	17.0	<0.5	9.0	125	78	27	<0.1	<0.02	<10	<10	<20
Relative % Difference	I	23.3	23.3	11.1	N/A	10.5	13	1	36	N/A	N/A	N/A	N/A	N/A
F2-MW-14-S-B-2014	F	55.0	55.0	13.0	<0.5	8.0	79	73	41	<0.1	<0.02	<10	<10	30
F2-DUP-1-2014	Exova	54.0	45.0	14.0	<0.5	9.0	78	50	44	<0.1	<0.02	<10	<10	40
Relative % Difference	•	1.8	20.0	7.4	N/A	11.8	1	37	7	N/A	N/A	N/A	N/A	N/A
		•		•	•	•	•			•	•	•		•
F2-MW-5-S-A-2014	Exova	25.0	46.0	15.0	<0.5	6.0	94	103	19	<0.1	< 0.02	<10	<10	<20
F2-DUP-4-2014	LXOVA	22.0	46.0	14.0	<0.5	4.0	94	105	14	<0.1	< 0.02	<10	<10	<20
Relative % Difference		12.8	0.0	6.9	N/A	N/A	0	2	30	N/A	N/A	N/A	N/A	N/A
F2-MW-7-S-A-2014	Exova	82.0	107.0	21.0	<0.5	11.0	109	168	27	<0.1	< 0.02	<10	<10	<20
F2-DUP-10-2014	LXOVA	70.0	71.0	18.0	<0.5	12.0	110	80	34	<0.1	< 0.02	<10	<10	<20
Relative % Difference		15.8	40.4	15.4	N/A	8.7	1	71	23	N/A	N/A	N/A	N/A	N/A
=======================================	1													
F2-MW-8-S-A-2014	Exova	77.0	123.0	44.0	<0.5	12.0	163	140	27	<0.1	<0.02	<10	<10	<20
F2-DUP-7-2014 Relative % Difference		70.0 9.5	110.0 11.2	36.0 20.0	<0.5 N/A	11.0 8.7	162	102 31	30 11	<0.1 N/A	<0.02 N/A	<10 N/A	<10 N/A	<20 N/A
helative % Difference		9.5	11.2	20.0	IN/A	0.7	'	ु ।	11	IN/A	IN/A	IN/A	IN/A	IN/A
				Inte	r-I ah Dun	licate San	nnles							
F2-MW-14-S-B-2014	Exova	55.0	55.0	13.0	<0.5	8.0	79	73	41	<0.1	< 0.02	<10	<10	30
F2-DUP-2-2014	Maxxam	57.0	44.0	15.0	0.15	10.0	81	44	45	<0.05	<0.01	<10	<10	11
Relative % Difference		3.6	22.2	14.3	N/A	22.2	3	50	9	N/A	N/A	N/A	N/A	N/A
F2-MW-5-S-A-2014	Exova	25.0	46.0	15.0	< 0.5	6.0	94	103	19	<0.1	< 0.02	<10	<10	<20
F2-DUP-5-2014	Maxxam	28.0	42.0	17.0	<0.1	6.9	110	83	22	< 0.05	<0.01	<10	<10	<10
Relative % Difference	•	11.3	9.1	12.5	N/A	14.0	15.7	21.5	15	N/A	N/A	N/A	N/A	N/A
F2-MW-8-S-A-2014	Exova	77.0	123.0	44.0	<0.5	12.0	163	140	27	<0.1	< 0.02	<10	<10	<20
F2-DUP-8-2014	Maxxam	110.0	160.0	52.0	0.36	16.0	240	83	43	<0.05	<0.01	<10	<10	<10
Relative % Difference		35.3	26.1	16.7	N/A	28.6	38	51	46	N/A	N/A	N/A	N/A	N/A
F2-MW-7-S-A-2014	Exova	82.0	107.0	21.0	<0.5	11.0	109	168	27	<0.1	<0.02	<10	<10	<20
F2-DUP-11-2014	Maxxam	67.0	69.0	18.0	0.14	11.0	120	82	33	<0.05	<0.01	<10	<10	<10
Relative % Difference		20.1	43.2	15.4	N/A	0.0	10	69	20	N/A	N/A	N/A	N/A	N/A
F2-6-A-2014	Exova	91.0	96.0	19.0	<0.5	10.0	143	79	39	<0.1	<0.02	<10	<10	<20
F2-DUP-14-2014	Maxxam	100.0	100.0	20.0	0.31	10.0	140	71	32	< 0.05	< 0.01	<10	<10	<10
Relative % Difference		9.4	4.1	5.1	N/A	0.0	2	10.7	20	N/A	N/A	N/A	N/A	N/A

Table III: FOX-2 Groundwater Chemical Analysis Results - Quality Control Samples

							Pa	rameters							
Sample #	Laboratory	Cu	Ni	Со	Cd	Pb	Zn	Cr	As	Hg	PCBs	F1	F2	F3	
	,	[mg/L]	[mg/L]	[mg/L]	[mg/L]	[mg/L]	[mg/L]	[mg/L]	[mg/L]	[mg/L]	[mg/L]	[ug/L]	C ₆ -C ₁₀ [mg/L]	C ₁₀ -C ₁₆ [mg/L]	C ₁₀ -C ₃₄ [mg/L]
RDL - Exova	•	0.0100	0.0100	0.0100	0.00800	0.0100	0.040	0.050	0.0200	0.0001	0.10	NA	100.0	200.0	
RPD Minimum - Exova	a	0.0500	0.0500	0.0500	0.04000	0.0500	0.200	0.250	0.1000	0.0005	0.50	NA	500.0	1000.0	
RDL - Maxxam		0.0002	0.0005	0.0030	0.02000	0.0002	0.003	0.001	0.0002	0.0100	0.01	0.025	0.1	0.2	
RPD Minimum - Maxx	am	0.0010	0.0025	0.0150	0.10000	0.0010	0.015	0.005	0.0010	0.0500	0.05	0.125	0.5	1.0	
					lutus I	ah Dundiaa	h. Camania								
E0 1414 4 E 004 4	1					ab Duplica	•				0.4	1	(C . '		
F2-MW-15-2014	Exova	0.0180	0.0420	0.0105	0.00070	0.0040	0.030	0.002	<0.0001	<0.0001	<0,1	_	ufficient wa		
F2-DUP-A-2014	0.0400		0.0700	0.0100	<0.008	<0,01	0.060	<0,05	<0.02	<0.0001	<0,1	Insufficient water			
Relative % Difference		N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	
F2-MW-8-2014	Exova	0.0600	0.2800	0.0500	<0.008	0.0100	0.120	< 0.05	0.0200	<0.0001	<0.1	NA	<0.1	<0.2	
F2-DUP-D-2014	Exova	0.0600	0.2700	0.0500	<0.008	0.0100	0.110	<0,05	0.0300	<0.0001	<0,1),1 Insufficient water		ater	
Relative % Difference		0.0	3.6	0.0	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	
					1	- I. D I'	. 0								
E0 1044 45 0044		0.0400	0.0400	0.0405		ab Duplica			0.0004	0.0004	0.4				
F2-MW-15-2014	Exova	0.0180	0.0420	0.0105	0.00070	0.0040	0.030	0.002	<0.0001	<0.0001	<0,1	-	-	-	
F2-DUP-B-2014	Maxxam	0.0540	0.0900	0.0160	0.00120	0.0140	0.088	0.061	0.0052	<0.01	<0.01	<0.025	<0.1	<0.2	
Relative % Difference		N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	
FO MW 0 0014	Гуеле	0.0000	0.0750	0.0500	.0.000	0.0100	0.115	.0 0E	0.0050	-0.0004	.0.1	I NIA	.0.1	.00	
F2-MW-8-2014	Exova	0.0600	0.2750	0.0500	<0.008	0.0100	0.115	<0.05	0.0350	<0.0001	<0.1	NA 0.005	<0.1	<0.2	
F2-DUP-E-2014	Maxxam	0.0570	0.2600	0.0450	0.00031	0.0130	0.120	0.032	0.0280	<0.01	<0.01	<0.025	<0.1	<0.2	
Relative % Difference		5.1	5.6	10.5	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	

Number exceeding the 30% RPD reference

Theint 0, 1/m (N320°)

(Ballol) +494 to 496

Somple F2-4-2014

(HF 2015-06-29)

1 Dups 13-14 and 15 - General lay out - Ops pt 285 Pics 484 to 487 - GPS PT 7.86 PTCS 488 to 492

GP 57 7287 193 (N80°) F2-7-2014 (MF 2015-06-29)

F2-7-2014 (MF 2015-06-29)

P2-7-2014 (MF 2015-06-29)

P3-7-2014 (MF 2015-06-29)

P1(S 497+500+50) Sampled EZ-1-7014 A - F2-7-2014 (MF 2015-06-29) - Seneral My 201
- GPS PT 209
- F2-8-2014 (MF 2015-06-29)
- T2-2-7-7-1 (MF 2015-06-29)
- Somple F2-8-2014 (MF 2015-06-29) (Stopped à 0.45 m on 10 chs)

F2-9-2014 (MF 1015-06-29)

- F2-9-2014 (MF 2015-06-29)

Seven plud = 2-3-244, F3 Feal 1: Pondny Water

GRO 297

297

(3mx4m) · feat 2 : Pon Ingwater GPS 293 PICS 518+502+506 (4mx 20 m·t/-)

Hangki non Hazon dous Waste L.F. MW-S: 6ps pt 12) - Contim = 900d - Pitetor cop = 1,45mA65 - Salar - 6,53m AGS - Total short - 1220, PCC - Total depth = 1,33 h BGS - water table = dry, (posen) SA/ SPSPT 2-72 Pics 452 (N770°)

544 (66)

F1-HW-5-5-8 -+ Dtg-4 3hni3mA

Jeneral | Enjout Gospt 273 Pics 453-454 -6PS(97 774)
-6PS(97 774)
-6PS(97 774)
-6PS(97 774) - Sps ft 775 Dics 459 to 465 MN-8 GDS P7276 - Jenual and Itan = good but projector is full of water AGS - Protector top = 9,52m AS - Scroen top = 3,39m Afs - Well byttom = 2,10m 3655 - water table = 1.51m BGS

nitia parameters to = 1,30°c PH= G.54 conduct rity = 461 MS/m Pingl I volume of will Find parametas to=0,0,00 PH--0,11 conductivity-- S12 M M P, C467 (1211)

Sampled F7-MW-8-5< A-FZ-DUg-+/ F2-Dup-95 W-7: (SÓI) GSPT. 2-18 PESP468 (N20) Sampled f7-MW-7-5+ + Dups 10-11 and 17 (A) Swind worter: Grs pt - protector top = 0.5m AGS - Scient 2 = 0,79 m AGS - total Jean BGS = 7,14 m - watertable Light BGS = dry. (+03m?)

MW-6: GS PT 760 PFC5 9470-471 - genoral (nd) in = 100 cl - protector top = 0,5m AGS - Succh top = 6.75 m AGS - well bottom Jeph BB-2,15 - water a mm = 0,17 m Son Samp M (Gps pt 78) pics 472 (NBO°) + 182 1 MIII-105-71 Somple & FZ-MW-60-5-7014 (A-B)

al lay ut Pic! rure to no

2 (

visual andition Joseph Mickel Qim Stick-1,00m Serial # 1169 · No convoction made usith compade o manual pedings Channel 1 K SZ Channel all the time no good readings

Heres Mp montimu Heris replacemon meas we Ø

VO 1000 0,7855 0,785 0,798 D.7(e981/ 576431 14 0,75081 data are logyma wight (memory 40%) restanting memory neight of cable AGS=1,30, Vf-2 GPS 233 longer in this Serial # = 11168?

MISTEM

1+-3 ion is good resistance (

replay ha Hujes height of Cable AGS=7.70 Journload is now possible m 0.7876 a Restart memory heading we.

chand 11.031 FZFP,0 0,9433 7485 0,7404 73/6 0,7768

Madmgs resistance 4.37

Gas of 281 General new)
Pics of 281 General new)
(1800) (1010)

3

.

phosector Logality 1900)

"Sween Logality 1900)

"Sween Logality Acce = 0.07m

" water table John 265= 1.89m

" water table John 265= 1.89m

" water coloun = 0.0m

" water coloun = 0.

The state of the sound the

. Initial parameters: +0=275/pH=6/2 Conduct = 487 HS/cm

• Final parameters

parameters

pH= [6.8]

conduct= 445 puston

· Sampling HW-12-1014 · Well is in good general condition

Sol Sampling: Gos pt 256

test pit randred 0,75m + 920

sampled F2-HW-12-5-1014(B.)

general layout ops pt 27

(N 709) (N 200)

- Gos pt 258 - 8 pts (N 200)

- Gos of LSA - Person to 933

- Lucrector wint Ass = 0,660m

- water table dofth 865 = 0,47m

- water table dofth 865 = 0,45m

- wat

1014-73-24 5x-2-5upper bm 101+5 chunn 0,9694 -4,0154 0,0174 6,9444 0,8006 0,7971 0,7788 JOPH. 0,8594 0,775 0,9446

· Restart mombr o replace benteries 100KS to Wak 100d longht of Abl AGS = 1.65m DOS L general and tion = 5000 (inclinated at 1/- 150) load da volts dranno 0,8635 1, 5779 3,5244 X, 8146 0,7968 0,7303 4993

ea ding Norstonce Lestant logger mem works good gen mem lenght of cuble AGS = 2,8

\/		50S P	1 238
	- () (P	TCS 4/1	7-418
P SONIC	4 111	(07	
= 90m01	$a \mid (on)i$	lim = 90	000
(In	al condi- clinated t	0 +1-11	1) 6
b data	downlo	an-20 K	
	ings		
			resistana KD
1	1.0636	j.	13,339
2	11.0463	2	13,803
3	0.9901	3	15,118
	10.9337	4	(e 6-15
5	16,9119	2	17.264
6	10,8917	6	17 391
7	9170	7 /	12 45
6	-3.3500	9	1977
9	0.8745	9	20 07
	0,B04(11)	20,75
	10019		

= 40%. 11,34 V (main) best 13,38V (AV my 10start · 100KS, Howork, 906d 87 cable \$165 = 2. inclinated at 1/3 detadounlad batteries = 1134V(mai (best to both)

~mad	Mas		
Sen sors		chemnel	resistance
	69706		(KJL)
7	6.9530		15,640
3	0,9259	2	16.106
4	0,9076	3	16,862
5	0,3658	4	17,406
6	0.3651	5	16.021
$\hat{}$	a 3425	le	18, an
8	-41,0442	-)	19,444
y	0,3108	В	19,932
16	0,7952	q	20,52
	0,7811	16	2[.1]
12	0,7658		21,58
13	0,7570	12	22,18
	10,7485	13	12.54
		14	27,95
		ļ.	
o long	to coable	AGS = 2	,00m
· Nepla	to coable	KIT (-DU	un les good
0	,	7	

MW-16; SS pt 240 Productor=0,50m+65 p= (133 (N 60°) , 50 depth BG5 = 2.76m . Scroln top height AGS= 0.34m -Watu table depth BGS=0.57 m -initial parameters: to = 3.03 TH= 8.11 Resistant y=000 MS CM * Punges | volume of well · final parameters +°C = 24500 PH= 734 MS is the = 290 MS/cm · Samplmy MW-16-2014 55) Samphins: GPS et 248 F2-4M-16-5-7074 (N)
max

MND-15 COPS Pt 741 · 5552 Condition · Screen top height ACS=1, 12 · TOTAL WILL dopt 365 = 3,18m · Water table dopt B65 = 3.18 m - 1.40 m = 1.78 m e initial ponameters

+ 6 = 2.52 (conductivity)

Ph = 0.18 (MS/cm)

" Punge Ivolume of well

I to the second of th -, Sól Sampling Ops pt. 242 MW-15-5-7014 PICS 435+436+438 A (N 270°) (+ 90°) 53 m doph to Bichoux

Særnghing water 4W-15-7014 Hind Phrameters: To: 2.45 C DI+: 7.94 Candretin'ty: 144 MS/CM · Motectorheight= 0.64m (AGS) Sampling Dup-All
Dup-B
Dup-B MW-14-2014 GpSp. t 244 height 8 Mosector A GS-7,50 Nary Morson top A68=0,32m total well depth B65= 2,92m Warer table Jefth B65: 1.70m

water chump = 1.72m initial porumeters +0 = 21.75°C pH: B.Cel Conduct. = 415 MS/cm Soil Samona +BIPIT reached 0, 4m (bedrock) Sampled MW-14-5 (R BS PT. 245 - Dup 1 Dup 3 Ground water fra faramores; to = 2.650C conduct = 7-50 ms an PH-300

A MW-14-7014 5 440 + 441 (N 20) MINS (N) 140°) - 442 (N) 140°) 25 Pt 246 124 (N49+450 (N46°) (N150°)

- FOX-2/2014-08-24 HW-13: GPS Pt 249 Pic 908 (Iphon) (15100°) height of protector: 0,62m AGS
 height of Screentop: 0,34m AGS
 total well Jepth 3GS = 4,32m
 water table BGS = Juy Soil Sampling (test-pit stath=0.35m)

Bediacy

PIC 909 (N1009)

COS Pt 250

Sampling HW-13-5-2014 B tace I broth Gps pt 281 (general view)
pres on sufficient
(NB009) (N109)

DIC 9554 960 Gps pt 268 gencial layout: Sampling points - P2-5-1014 8 Sampled only(A)-10, in sics 10, 445 3 Sampled only(A)-10, in GRS of UCD refeat 21 bedick outure (on 13m) Sampled only A pics + 1585 DOSSUM DING DIS 924 PT 206 efeat 1: bachack outcup Cospet 267 West Landfill fox-2 Sampled and A CAS pt (Smx2m)

Exova 237 rue de Liverpool St-Algustin-de-Desmaures Ganada Ganada GaA 2C8

Numéro Demande: (Interne)

DEMAND D'ANALYSE

Sans Frais: +1 (866) 365-2310 T: +1 (416) 878-4927 F: +1 (418) 878-7185 C: Ventes @ excva.com www.exove.ce

XΞ

E: Eau / EP: Eau polable / ES: Eau souterraine / EA: Eau de surface / EB: Eau de baignade / EU: Eau usée / EM: Eau mine

1, Cr, Co, Cu, Pb, Ni, En, He	See send of the Company of the Compa
, Cd, Cr,	eles analyses solecilièrs que
icmarques: A	Signature du client Signature de differint

as noment les résultats sont requis

[C] Cocher si d'autres pages sont jointes pour la présente Demande d'analyse

DOC-0027, rev.04 (Québec / Français)

2013-03-05

Exova 237 rue de Liverpool St-Augustin-de-Desmaures Québec Canada G3A 2C8

Numéro Demande : (Interne)

DEMAND D'ANALYSE

200	100					-
	Ľ		j	X	3	
Ď.	Sans Frals: +1 (866) 365-2310	T: +1 (418) 878-4927	F: +1 (418) 878-7185	C: ventes@exova.com	www.exova.ca	

Auresse (Cermical)	(1)	Adresse (Facturation, si differente)		
	Code nosis	VIII O	Code postal	
	code posici	D	2000	
Téléphone	Télécopieur	Téléphone	Télécopieur	
Courriel		Courriel		
Lot ou Description du projet ;		Chargè de projet		
Bon de commande :		Numéro de soumission :		
Lieu d'échantillonnage: fgg. 2		Echanillonneur		
Spécifications requises (au bescin) :	volx	Certificat d'analyse :	☐ Français ☐ Anglais	☐ Fax ☐ Courriel (pdf)
	1	Paramètres demandés (v)	ndés (√)	
Votre Référence Échantillon	Date & Heure d'échantillonnage d'échantillonnage			Mature (voir code)
1. F2-4-2014-7-5-4-2014	1014-08-25			S S
42-4-04-5-4-014	- XXX			
75-4-8-8-4-2014	XXX			
402-8-5-8-MM-27 +	S XXX			
s. F2-5-A-2014	2014-08-24 XXX		Y	
102-V-1-23 -5102-V-07-25 8	A-2014 XXX		250	
102-7-6-2014 - F2-3-A-201	-A-20M XXX			
8 G2-8-4-2014-F2-11-2-1614	XXX 4-104-1			8

PAGE 1 DE 2

Date à laquelle les résultats sont requis

Signature du client Jaudule le laboraloire à effective les analyses spécifiées sur cette Demande d'arrabyse

2013-03-05

S. STATISHAME

9

8, 8, 9, P

Double si d'autres pages sont jointes pour la présente Demande d'analyse DOC-0027, rév.04 (Québec / Français)

Numéro Demande : (Interne)

DEMAND D'ANALYSE

Exova 237 rue de Liverpool St-Augustin-de-Desmaures Québec Canada G3A 2C8

EX Sans Frais: +1 (866) 365-2310 T: +1 (418) 878-4927 F: +1 (418) 878-7185 C: ventes © exvva.com www.exova.ca

Nom du Client Sila Como dintin	ration		3	j.
	v so	Adresse (Facturation, si différente)	,	1.
VIII)e	Code postal	Vile Code postal	ostal	
Téléphone	Tělécopieur	Téléphone Téléphone	Seur	1
Courriel	(e)====================================	Courriel	F7	
Lot ou Description du projet :		Chargé de projet :		-
Bon de commande :		Numèro de soumission :		
Lieu d'échantillonnage: PA-2		Échaniillonneur		
Spécifications requises (au besoin) :	lop)	Certificat d'analyse : ☐ Françals ☐ Anglais	☐ Fax ☐ Courriel (pdf)	dt)
	01	Paramètres demandés (√)		
Votre Référence Échantillon	Date & Heure d'échantillonnage		Nature (voir code)	ənrəfni - [J°] T
	70 m		(
2 f-2-441-9-5-8-7014	1014-08-24 XX		N -	.3
3 F2-4W-10-5-A-2014	XXXX *			
4.52-44W-11-5-A-2014	- XXX			
5. F2-4W-11-5-8-2014	XXX			
" F2-4W-12-5-4-2014	XXX	¥:		
7. F2-14W - 12-5-8-2014	\$ XXX		P P	
9.	4		×**	
Code de natures : Es Bau / EP: Eau potable / ES: Eau souterraine / EA: Eau de su	iterraine / EA: Eau de surface / EB: Eau de batonade / EU: Eau usée / EM: Eau mine	sée / EM: Eau mine		

4000

A. Air / AL: Aliment / LX: LixMat / S: Sol / SE: Sédiment / B: Boue / H: Huile / F: Frottis / EC: Écouvillon / PH: Produit pharmaceutique / Z: Autre (définir)

Remarques: As, Cd, Cr, Co,

Signature du client Jeutoriss le labomible à sfacture les analyses spécifiées sur celle Demande d'analyse

Date à laquelle les résultats sont requis

Cocher si d'autres pages sont jointes pour la présente Demande d'analyse

DOC-0027, fev.04 (Québec / Français)

				Exava 237 rue de Liverpool St-Augustin-de-Desmaures Quebec		5-2310 ×	Chieffee
DEMAND D'ANALYSE				GaA 2CB	U.; venies (d'exova.com www.axova.ce	(E)	
Nom du Client Sila Kerno da	ation						
Adresse (Certificat)			Adresse (Facturation, si différente)				
VIIIe	Code postal		Ville	00	Code postal		×
Téléphone	Télécapieur		Télephone	Tele	Telecopieur		
Courriel			Courriel				
Lat ou Description du projet;			Chargé de projet ;			-	
Bon de commande :			Numéro de soumission :		0		
Lieu d'échantillonnage :			Echantillonneur :) (A
Spécifications requises (au besoin) :		wr.	Certificat d'analyse :	☐ Français ☐ Anglais	П Бах	Courriel (pdf)	(Jpc
	34) J	Paramètres demandés (√)	ıdės (√)		_	
	·	(E.					Эu
Votre Référence Échantillon	Date & Heure d'échantillonnage	44-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-				Vature Sir code Sontena	netni - [3
	,	7 44 2 Hd4 - SSDA			- -		D°J T
1.F2-HW-13-5-A-2014	204 DB-24	XXX			N.	5	
12-42-14W-13-5-8-2014		XXX					
3. F2-HW-14-5-A-2014	•	XXX					
4. F2-4W-14-5-8-2014		XXX					
P102-4-5-S1-1071-24.2		メズメ					- 12.7
6. F2-4W-15-S-B-2014		XXX		See			
1.62-A-0-97-014-29.14		XXX			1,1		91
8. Pr-440-16-5-B-2014	A	 		3		B B	
Code de natures : E. Eau / EP: Eau potable / ES: Eau souterraine / EA: Eau de surface / EB: Eau de baignade / EU: Eau usée / EM: Eau mine	outerraine / EA: Eau de surface / E	:B: Eau de baignade / EU: E	au usée / EM: Eau mine				

Code de natures:

A. Air / AL. Aliment / LX. Lixiviat / S. Sol / SE: Sédimen I / B. Boue / H. Hulle / F. Frottis / EC. Écouvillon / PH: Produit pharmaceutique / Z. Autre (définir)

里

96, ર્કે

Signature du client Jaukorisa la laboratoire à effecture les analyses épédifées sur cette Demande d'analyse

Date à laquelle les résultats sont requis

[Cocher si d'autres pages sont jointes pour la présente Demande d'analyse

Numéro Demande : (Interne)

DEMAND D'ANALYSE

Sans Frais: +1 (866) T: +1 (418) 878-492 F: +1 (418) 878-718 C: ventes@exova.cc Exova 237 rue de Liverpool St-Augustin-de-Desmaures Oubbec Canada G3A 2C8

CONTRACT OF THE PERSON NAMED IN	100
K	EX
56) 365-2310	185 com

Nom du Client S'LO Konnectation	Tim			
Adresse (Certificat)		Adresse (Facturation, si differente)		
Ville	Code postal	Ville	Code postal	
Téléphone	Télécopieur	Téléphone	Tèlécopieur	
Courriel		Courriel		
Lot ou Description du projet :		Chargé de projet ;		
Bon de commande :		Numéro de soumission :		
Leu d'échantillonnage:	J	Échantilloneur:		
Spécifications requises (au besoin) ;	des	Certificat d'analyse : ☐ Français ☐ Anglais	is	odf)
	100	Paramètres demandés (√)		
Votre Référence Échantillon	Date & Heure d'échantillonnage		Mature (voir code)	ernefni - [0°] T
1. 4 C2-KW-S-2014	——————————————————————————————————————		22	
2 42- bus -6-2014	· ***		23 28	
3 F2-4W-7-2014	A 100 100 100 100 100 100 100 100 100 10		ES M	
1 F2-9W-8-2014	264-08-25 X XX		7 8	
5. f2-MW-S-S-A-2014				
* F2-4W-5-5-B-2019	XXX	X	2 2	No.
1. F2-4W-6-5-4-2014	XXX		7 5	
18. F2-400-6-5-8-2014	* XXX		S 8	
י ממאיקסמ סף סףסט				

N	-
atm	
B	
de.	L
9	Ø
Min	
0	
13	
tota	
\dot{C}	
中	Ь
7,	
B	
12	
2	
20	
Pb	
4	
3	40
$\hat{\varphi}$	
7	
8	
B	
	4
8	100
es:	
1 15	

Date à laquelle les résultats sont requis

Cocher si d'autres pages sont jointes pour la présente Demande d'analyse

2013-03-05

Signature du client Jautorise le laboratoire à effecture les analyses spécifiées sur cette Demande d'analyse

Exova 237 rue de Liverpool St-Augustin-de-Desmaures Canada G3A 2C8

Numéro Demande : (Interne)

DEMAND D'ANALYSE

EXC Sans Frais: +1 (866) 365-2310 T: +1 (418) 878-4927 F: +1 (418) 878-7185 C: ventes@exova.com www.exova.ca

NOM OU CLIENT SILE ICENTICATED	tan	-	2	41	*	3 *	_
Adresse (Certificat)		41	Adresse (Facturation, si différente)				
Ville	Code postal		Ville	Code postal			
Téléphone	Télécopieur		Telephone.	Telecopleur		25	
Courriel			Courrie				
Lot ou Description du projet :			Chargé de projet: JAN-FICRE	B BUTTE			_
Bon de commande :			Numêro de soumission :				
Lieu d'échaniillonnage : 1782	(3)		Echanilloringur: WHYCHO FLEWY	2			
Spécifications requises (au besoin) :	of a	روب	Certificat d'analyse : ☐ Français 🛱 Anglais	□ Fax	Courriel (pdf)	(Jpdi)	
		(Paramètres demandés (√)			7	_
(10)	44	hes H					
Votre Référence Échantillon	Date & Heure	977) R 811	1		boo iic	otni - (C	
		776-1 1240-1 132		× ×)Λ)		
		1		ś			_
1. F2- hum-9-2014	12014-08-24	XXX		7	FS 5	lie II	_
2 F2 -410-10-2014	2.0	X X X	2		V		
3-52-4-MAN-4-2914	12 1/3 1/3	《新型》					_
4. F2- HW-12-2014	· .	XXX)· 		-
5. Company of the		No.			U	0	
6.F2-41W-14-2014		XXX	· c		May 1		
7. F2- HW- 15-2014		SSS			10	10	
0 F2-MW- [6-2014		XXX		L Company	J)		

7

A: Alr / AL: Allment / LX: Lixiviat / S; Sol / SE: Sédiment / B; Boue / H: Hulle / F: Frottis / EC: Écouvillon / PH: Produit phařmaceutique / Z. Autre (définir) E: Eau / EP: Eau potable / ES: Eau souterraine / EA: Eau de surface / EB: Eau de balgnade / EU: Eau usée / EM: Eau mine Code de natures:

3	-
K	*
#	
Z	
M	
20	
B	
_	
Z	
total	
5	
里	\
4	_
C	
É	
5	91
~	
4	
7	
3	
~	
9	
ĺ	
1	
7	
3	
. ~	
3	
senbul	
E ~	

Signature du cilent Jaulorise le inbomplois è effectue les analyses spécifiées sur celle Demande d'analyse

Date à laquelle les résultats sont requis.

C Cocher si d'autres pages sont jointes pour la prèsente Demande d'analyse

DOC-0027, rév.04 (Québec / Français)

Exova 237 rue de Liverpool St-Augustin-de-Desmaures Gubésc Canada G3A 2C8

Numéro Demande : (Interne)

DEMAND D'ANALYSE

L		>	X	3	
Sans Frais: +1 (866) 365-2310	T: +1 (418) 876-4927	F: +1 (418) 876-7185	C: venles@exova.com	www.exova.ca	

Adresse (Certificat)		Adresse (Facturation, si différente)	
Viite	Code postal	Ville Code posta	stal
Téléphone	Télécopieur	Tèlécopieur	leur
Courriel ⁶		Courrie	
Lot ou Descriplion du projet :		Charge de projet :	
Bon de commande ;		Numéro de soumission :	
Lieu d'échamilionnage:		Echantillonneur;	
Spécifications requises (au besoin) :	X.	Certificat d'analyse : ☐ Français ☐ Anglais	☐ Fax ☐ Courriel (pdf)
)h	Paramètres demandés (√)	
Votre Référence Échantillon	Date & Heure d'échantillonnage	(he)-m)+U+ ** STOYOU	Mature (voir code) Mbr Contenants T [°C] - interne
1. FZ-DUD-A-2014		XX	\$ \frac{1}{2}
2. F2-DUD-1-2019	204-00-24 XXX	>	2 5
3 F2-DUP-14-2014	18148-25 XXX	7	5 2
4. F2-Drop & -2014	2014-08-75 XXX	٥	
102-01-01-23 s	2014-03-25 XXX	7	. 25
Dup13 6. F 2- Dupo 2014.	184-08-15 XXX		2 5
VI CONTRACTOR SERVING			18 Oct
8. +2-Dup-J-2014	(25-28-28 ×)	X	76 55

PAGE 1 DE 2

Date à laquelle les résultats sont requis

total consultrations

* * S. Cd., Co., Co., Pb, Ni, 2h, Ho

Remarques:

DOC-0027, rév.04 (Québec / Français)

pour la présente Demande d'analyse

2013-03-05

Signature du Client Jamoteo le laboratoire à effecture les analyses spécifiées sur cette Demande d'analyse

CHAIN OF CUSTODY RECORD

23243

49-55 Elizabeth Avenue, Suite 1014, St. John's, NL A1A 1W9 Tel: 709-754-0203 Fax: 709-754-8612 Toll Free: 1-888-492-7227

Maxxam

REPORT INFORMATION (if differs from invoice):

あ, G, C, G, B, W, 2 3-Sep-14 13:10 Parnian Baber OTT-002 For extra cost rush, specify Due Date. Rush analysis must be scheduled prior to sample submission. Client will be contacted if Rush date cannot be met. Other Analysis or Comments/Hazards REC'D IN OTTAWA custody sed presen DUE DATE: onia pacts **TEMP © Maxxam Receip** STANDARD: RUSH Due Date: 2555 KP2 Client Code: INTEGRITY VOC's EPA 624,8260 Email: jan - perie, peletion Olyn Bubmitted By. HACTNU-Menty Ph. 418-606-1054 Fax: 418-647-2540 Site Task #: 7 the Grader B PCB's 7 100-4495, Wilted Harrel Location: Lory Strift Blue S'HA9 PURPOSE OF CHANGE / REMARKS Soil (Pycible), TPH MILST, NS Fuel Oil Spill Policy Low Level BTEX & C.-C.= NB Policy Low Level TEH LOW Low Level TEH TPH Fractionadion (A.-C.) 8 Selenium (tow level) Red'd for CCME
Residential, Parklands, Agricultural
Residential for CCME Agricultural) Proj. Name: oal, Oubbe (C) Sul 25 tototetion#: Project #: # Od Metals Soil Tin (required for CCME soits) Jean Aprile Relletier Mercury with metales acan sold included in Mercury to the state metales acan keals blood the MoAH-OH, Debaut Metale Digest - for sediments of the MoAH-OH, Metale Digest - for sediments of the MoAH-CHCLO, and the metales acan was a sediment with the control of the metales of t 3014/69/b3 13:10 some order DATE / TIME (borbald flusted) teagid listor \$ 3 HCAp-MS Choose Total or Diss Metals SCAD-30 Choose Total or Diss Metals Sia Lab Filtration Required Field Filtered & Preserved Kolley Pillon Kelsey Pilon RECEIVED BY: (Signature/Print) # & type of Company Name: Contact Name: Specify Matrix: Surface/Salt/Ground/Tapwater/Sewage/Effluent/Seawater 264-08-25 204-08-62 Address: BH CB-CS 201-00-2 の子の方 20-400-75 2011-08-25 Potable/NonPotable/Tissue/Soll/Sludge/Metal PH: 18-653-477. Fax: 418-653-3583 TO BOOK NOW KOA OL Glosend W. S. waln millaume Robert Matrix" Pervedia; S.F. K B 701 RELINQUISHED BY: (Signature/Print) P(0)--7014 72014 Sample Identification Specify Guideline Requirements: INVOICE INFORMATION: -Dun-B H F2-Du0-2 000 1 CENVRIDEDE St., John's 05/05 F2-1140 Contact Name: 52-Dug DQ-25 Address:

ANNEX 4Range of the Report and Limitation of Responsibilities

Biogénie

SCOPE OF THE REPORT AND LIMITATION OF LIABILITY

A – Recipient and Use

This report ("Report") was prepared by Biogenie, a division of EnGlobe Corp., ("Biogenie") at the request and for the sole benefit of the Client ("Client"), and is intended to be used exclusively by the Client.

B -Site Conditions

Any description of the target site ("Site"), soil and/or groundwater included in the Report is only provided as an indication to the Client, and unless otherwise specifically mentioned in the Report such description shall not at any time and under any circumstances be used for purposes other than to gain a better understanding of the Site and to fulfil the requirements of the mandate assigned to Biogenie by the Client ("Mandate").

All information, including but not limiting the comprehensiveness of the data, charts, descriptions, drawings, tables, analysis results, compilations, and any conclusion and recommendation included in the Report, shall arise from the direct observation of the Site during a specific period, namely the fulfilment of the Mandate, and from the interpretation of such information and data available during the same period.

The content of the Report shall not apply in any way or to any part of the Site or to any parameter, material or analysis excluded from the Mandate.

Biogenie shall not be held responsible for the presence of any substance or material of a different nature, or of a similar nature but with different concentrations, as those indicated in the Report, and this in any part or parts of the Site excluded from the Mandate.

The content of the Report, including its conclusions and recommendations, shall not apply to any period preceding or following the Mandate. The physiochemical conditions of the Site, and the type and degree of contamination identified on the Site, may vary within a given period depending on a number of factors, especially the current activities taking place on the Site and/or on lands adjacent to the Site.

A review of the Report and/or changes in the parameters, conclusions and/or recommendations may prove to be necessary in the event of a change in the Site conditions or the discovery of pertinent information subsequent to the production of the Report.

C - Legislation, Regulations, Guidelines and Policies

The interpretation of the data and observations concerning the Site, as well as the conclusions and recommendations resulting from these, shall take into account the laws, regulations, standards, policies and/or guidelines applicable to the Project and that are in effect at the time of the fulfilment of the Mandate. In the event no current law, regulation, policy, guideline or standard applies to the project, Biogenie shall take into account proven environmental and professional rules and practices when drawing up the Report.

Any change in the legislation, regulations, standards, policies and/or guidelines applicable to the project may result in the need to review the Report and/or modify its parameters, conclusions and/or recommendations.

D – Use of Report

The Report is intended for the exclusive use of the Client and shall only be used for the purpose it was meant for.

The content of the Report and its conclusions and recommendations only apply to the Site and may not, at any time and under any circumstances, apply to any land adjacent to the Site or to any other land located in the vicinity of the Site.

Any reproduction in any form whatsoever and any distribution or use of the Report, in whole or in part, by a person other that the Client, is strictly forbidden without the prior written consent of Biogenie. Biogenie makes no declaration and pledges no responsibility towards any person other than the Client with regard to the content of the Report and the conclusions and recommendations expressed therein.

Biogenie is in no way responsible for any loss, fine or penalty, or for any expense, damage or other prejudice of any type whatsoever, sustained by a person other than the Client as a result of the unauthorized use of the Report.

No provision of the Report shall be construed as or considered to be a legal opinion of Biogenie's.

S:\MO\Range&Limit.doc/2015-11-20