THE COLLECTION OF LANDFILL MONITORING DATA AT THE FORMER CAM-5 DEW LINE SITE

Mackar Inlet, Nunavut

FINAL REPORT – 2014

(O/Ref.: CD2655) (Y/Ref.: DLCMON (QIKIQ12))

DEFENCE CONSTRUCTION CANADA

JUNE 2015

Tel.: 418 653-4422 Fax: 418 653-3583

THE COLLECTION OF LANDFILL MONITORING DATA AT THE FORMER CAM-5 DEW LINE SITE

FINAL REPORT - 2014

Mackar Inlet, Nunavut

(O/Ref.: CD2655) (Y/Ref.: DLCMON (QIKIQ12))

DEFENCE CONSTRUCTION CANADA

JUNE 2015

Presented to:

Nahed Farah

Defence Construction Canada

Written by:

Andrew Passalis, P. Eng.

Field Engineer

Verified by:

Jean-Plerre Pelletier, B. Sc., Chemist Project Leader

Approved by:

Philippe Gélinas, P. Eng., M.Sc., M.B.A.

Team Leader

TABLE OF CONTENTS

1	OUT	LINE	1				
	1.1	OBJECTIVE AND SCOPE OF WORK	1				
	1.2	FIELD PROGRAM STAFF AND TIMING	1				
	1.3	2014 WEATHER CONDITIONS	2				
	1.4	REPORT FORMAT	2				
2	MET	HODOLOGY	4				
	2.1	VISUAL INSPECTION	4				
	2.2	SOIL SAMPLING	4				
	2.3	GROUNDWATER SAMPLING	5				
	2.4	THERMAL MONITORING	6				
	2.5	FIELD NOTES AND DATA	6				
	2.6	QUALITY CONTROL	7				
	2.7	QA/QC PROCEDURES	7				
	2.8	Project References	7				
3	LOWER SITE LANDFILL – SOUTH						
	3.1	SUMMARY	9				
	3.2	PRELIMINARY STABILITY ASSESSMENT	13				
	3.3	LOCATION PLAN	13				
	3.4	PHOTOGRAPHIC RECORDS	15				
4	NON	I-HAZARDOUS WASTE LANDFILL	18				
	4.1	SUMMARY	18				
	4.2	PRELIMINARY STABILITY ASSESSMENT	21				
	4.3	LOCATION PLAN	21				
	4.4	PHOTOGRAPHIC RECORDS	23				
5	USA	F & ASBESTOS LANDFILL	26				
	5.1	SUMMARY	26				
	5.2	PRELIMINARY STABILITY ASSESSMENT	29				
	5.3	LOCATION PLAN	29				

	5.4	PHOTOGRAPHIC RECORDS	31
6	TIER	II DISPOSAL FACILITY	33
	6.1	SUMMARY	33
	6.2	PRELIMINARY STABILITY ASSESSMENT	36
	6.3	LOCATION PLAN	37
	6.4	THERMISTOR ANNUAL MAINTENANCE REPORTS	39
	6.5	Photographic Records	44
	6.6	SOIL SAMPLE ANALYTICAL DATA	47
	6.7	GROUNDWATER SAMPLE ANALYTICAL DATA	48
	6.8	MONITORING WELL SAMPLING / INSPECTION LOGS	49

LIST OF TABLES

Table I: 2014 Monitoring Requirements for CAM-5 Landfills	1
Γable II: Summary of Soil Sampling at CAM-5 - August 2014	5
Γable III: Summary of Groundwater Sampling at CAM-5, August 2014	6
Fable IV: Visual Inspection Checklist / Report – Lower Site Landfill - South1	0
Γable V: Preliminary Stability Assessment – Lower Site Landfill – South1	3
Fable VI: Landfill Visual Inspection Photo Log – Lower Site Landfill – South1	6
Fable VII: Visual Inspection Checklist / Report – Non-Hazardous Waste Landfill 1	9
Fable VIII: Preliminary Stability Assessment – Non-Hazardous Waste Landfill2	1
Fable IX: Landfill Visual Inspection Photo Log – Non-Hazardous Waste Landfill2	4
Fable X: Visual Inspection Checklist / Report – USAF & Asbestos Landfill2	7
Table XI: Preliminary Stability Assessment – USAF and Asbestos Landfill2	9
Fable XII: Landfill Visual Inspection Photo Log – USAF & Asbestos Landfill3	2
Table XIII: Visual Inspection Checklist / Report – Tier II Disposal Facility3	4
Fable XIV: Preliminary Stability Assessment – Tier II Disposal Facility3	6
Fable XV: Landfill Visual Inspection Photo Log – Tier II Disposal Facility4	5
Γable XVI: Tier II Summary Table for Soil Analytical Data4	7
Fable XVII: Tier II Summary Table for Groundwater Analytical Data4	8

LIST OF FIGURES

Figure 1 : CAM-5.1 Overall Site Plan	3
Figure 2 : CAM-5.2 Lower Site Landfill - South	14
Figure 3 : CAM-5.3 Mackar Inlet – Non-Hazardous Waste Landfill	22
Figure 4 : CAM-5.4 Mackar Inlet – USAF & Asbestos Landfill	30
Figure 5 : CAM-5.5 Mackar Inlet – Tier II Disposal Facility	38

LIST OF ANNEXES

ANNEX 1 Laboratory Results

ANNEX 2 QA/QC Discussion

ANNEX 3 Field Notes and Chain of Custody Forms

1 **OUTLINE**

1.1 OBJECTIVE AND SCOPE OF WORK

The objective of the Defence Construction Canada (DCC) Landfill Monitoring Program is to collect sufficient information to assess the performance of landfills at former Distance Early Warning (DEW) Line Sites that have been remediated, from a geotechnical and environmental perspective. DCC has specified the requirements for the Landfill Monitoring Program in the document: Terms of Reference (TOR) – Services for the Collection of Landfill Monitoring Data, CAM-5 Mackar Inlet, FOX-M Hall Beach, FOX-2 Longstaff Bluff and FOX-3 Dewar Lakes DEW Line Sites, Nunavut Territory, Qikiqtaaluk Region DCC Project #: DLCMON(QIKIQ12), March 20, 2012. This report contains a summary of the findings from the 2014 inspection of the CAM-5 Mackar Inlet site.

Table I below summarizes the monitoring requirements of the 2014 season. No deviations from the TOR were experienced while completing the 2014 monitoring.

Landfill

Lower Site Landfill South

Non-Hazardous
Waste Landfill

USAF & Asbestos
Landfill

Tier II Disposal Facility

Visual
Inspection

Soil Sampling

Groundwater
Sampling

Monitoring

Monitoring

Table I: 2014 Monitoring Requirements for CAM-5 Landfills

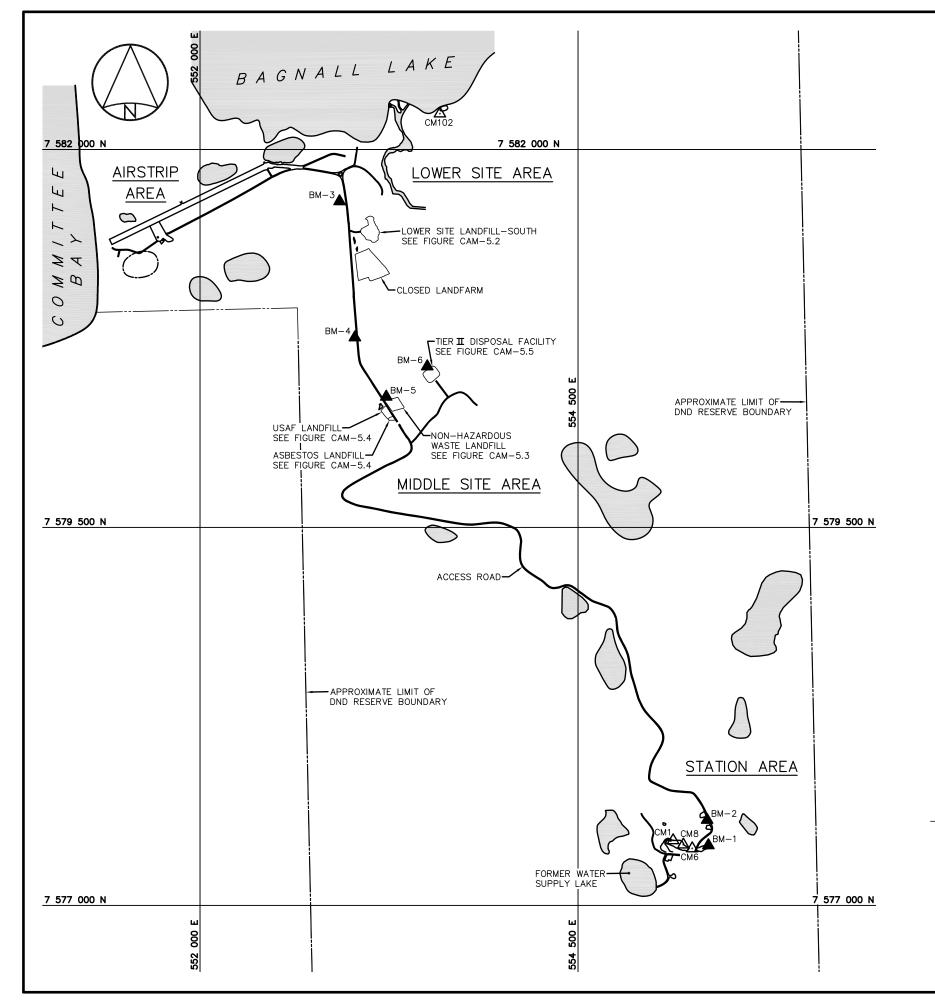
1.2 FIELD PROGRAM STAFF AND TIMING

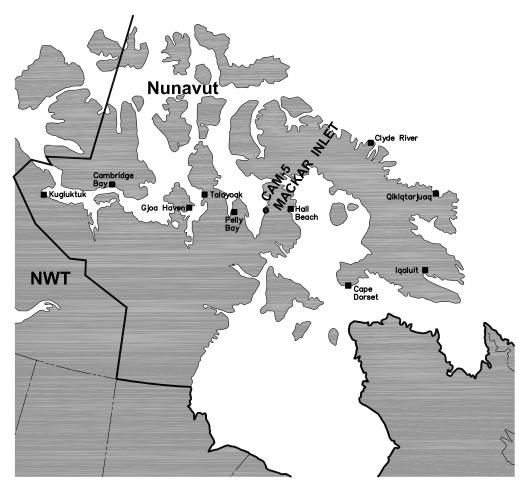
The 2014 on-site field program at CAM-5 Mackar Inlet took place on August 21, 2014. Biogénie, a division of EnGlobe Corp. (Biogénie) subcontracted Sila Remediation Inc. (Sila), from Igloolik, Nunavut to perform the fieldwork. The Sila field program was executed by Mr. Andrew Passalis with the assistance of four local representatives, whose names and responsibilities are detailed below:

- Mr. Andrew Passalis, Project Engineer (Sila)
- John Henry Etegak, Field Technician (Sila)
- Benjamin Kaniak, Field Technician (Sila)
- Dyson Koaha, Field Technician (Sila)
- Joe Koaha, Wildlife Monitor (Sila)

1.3 **2014 WEATHER CONDITIONS**

Seasonally cool weather conditions were observed during the CAM-5 Mackar Inlet monitoring event with daytime temperatures ranging between 4-5°C. Skies were generally overcast to mostly cloudy and moderate winds ranging between 15-25 km/hr from the northeast throughout the day.


1.4 REPORT FORMAT


This report describes the work carried out in August 2014 at four landfill sites at CAM-5. Results from soil and groundwater sampling, thermal monitoring and visual inspection of the sites are also presented in the formats described in the TOR (Reference A). An electronic version of the report and its component tables, figures and data files are included in an Addendum DVD-ROM, which is appended to this report.

The report is organized with a separate section for each of the landfill areas. Each section contains all relevant information for that landfill area for the 2014 Landfill Monitoring Program. The following information is provided in each landfill section:

- Visual inspection checklist.
- Visual inspection drawing mark-up.
- A selection of visual inspection photos.
- Thermal monitoring inspection reports (where applicable).
- Summary of 2014 soil analytical data (where applicable).
- Summary of 2014 groundwater analytical data (where applicable).
- Monitoring well development/sampling reports (where applicable).

An overall site plan (Figure CAM 5.1) presents an overview of the former CAM-5 site with the localization of each landfill areas. For the photographic record, a photographic index has been completed as per the TOR for each of the landfill areas. The full resolution photos are included in electronic format in the Addendum DVD-ROM to this report. Certificates of Analysis, QA/QC analytical results and field notes are attached in the Annexes.

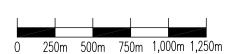
LOCATION OF MACKAR INLET WITHIN NUNAVUT TERRITORY
SCALE: NTS

LEGEND

 Δ^{CM1}

SURVEY CONTROL MONUMENT

 \triangle^{BM-1}


PERMANENT BENCHMARK LOCATION (6)

_ APPROXIMATE LOCATION OF PROPERTY BOUNDARY

ARCHAEOLOGICAL FEATURE

BODY OF WATER

1	FINAL	15-06-26	P.L.	A.P.	P.G.
NO.	VERSION	DATE	PAR	VERIF.	APPR

COLLECTION OF LANDFILL MONITORING DATA

CAM-5, MACKAR INLET, NUNAVUT

OVERALL SITE PLAN

SITE REMEDIATION SOLUTIONS

Biogenie, a division of EnGlobe Corp. 4495 Wifrid-Hamel blvd, Suite 200 Quebec, (Quebec) CANADA G1P 2J7

Quebec, (Quebec) CANADA G1P 2J7 Phone: 418-653-4422 www.biogenie-env.com

MEASUREMENT UNIT	SCALE:	DATE (month-year):			
Meter	1 : 25,000	JUNE 2015			
DRAWN BY:	VERIFIED BY:	APPROVED BY:			
L. LA PIERRE	A. PASSALIS	P. GÉLINAS P. Eng			
PROJECT NO:	DRAWING NO:	PAGE			
CD2655_400_403	CD2655_400_403_101-CAM-	5.1 CAM-5.1			

FIGURE CAM-5.1

2 METHODOLOGY

2.1 VISUAL INSPECTION

Data and information collected during the visual inspection of the CAM-5 landfills are included in the visual inspection data sheets. These data sheets include such inspection data as the location of settlement, erosion, frost action, sloughing and cracking, animal burrows, vegetation cover and stress, staining, seepage points, exposed debris, and any other features of note.

Each feature was identified with an alphabetical tag to be used consistently each year in an effort to track changes in conditions for each specific feature.

Digital photos were taken to illustrate the current state of the landfills as well as features of interest. Annotated sketches/diagrams are included in the report for each landfill.

The photos were taken with a Nikon D5100 16.2 megapixel (MP) digital camera. Full resolution digital jpg copies are available on the DVD-ROM appended with this report. The photo log, including the local coordinates from where the photo was taken, orientation (relative to map north), feature of note and picture numbers are included with each landfill report.

2.2 **SOIL SAMPLING**

The soil sampling methodology conformed to guidance provided in the following Canadian Council of Ministers of the Environment (CCME) documents:

- CCME Guidance Document on the Management of Contaminated Sites in Canada, April 1997, CCME PN 1279. (CCME catalogue http://www.ccme.ca/pdfs/cat_eng.pdf).
- CCME EPC-NCS62E Guidance Manual on Sampling, Analysis, and Data Management for Contaminated Sites - Volume I: Main Report, Dec 93 (CCME catalogue - http://www.ccme.ca/pdfs/cat_eng.pdf).
- CCME EPC-NCS66E Guidance Manual on Sampling, Analysis, and Data Management for Contaminated Sites - Volume II: Analytical Method Summaries, Dec. 93 (CCME catalogue - http://www.ccme.ca/pdfs/cat_eng.pdf).
- Reference method for the Determination of Petroleum Hydrocarbons in Soil Tier I Method, 2001.
- CCME Subsurface Assessment Handbook for Contaminated Sites, March 1994, EPC-NCSRP-48E (CCME catalogue - "http://www.ccme.ca/pdfs/cat_eng.pdf").

Testpits were dug using a hand shovel down to refusal or permafrost. The shovel was cleaned between testpits. Soil samples were placed directly in the laboratory provided jars/bottles and were not mixed. Disposable nitrile glove were worn and disposed of after each sample collection. Jars/bottles were cleaned prior to placement into the cooler. For the 2014 monitoring event, four soil sampling stations were visited. A surface (0-15 cm depth) and subsurface sample (40-50 cm depth below surface) were taken at each sampling station. No frozen ground or frost was encountered at the soil stations during the August 2014 sampling.

As specified in the TOR (Reference A), the following soil sampling procedures were adhered to:

- Where required, the soil samples were collected from locations between a two to four metre radius of the monitoring wells.
- Blind field duplicates (10%) were collected for quality assurance and quality control purposes.
- Duplicate samples (10%) were also taken and sent to a second laboratory for quality control purposes.
- An additional 10% of soil samples taken were sent to the owner's representative (ESG OPS CENTRE) in Kingston for archiving as specified by DCC.

The soil samples were analyzed for requested parameters (TPH (F1-F3), total metals and PCBs) as specified by DCC. It should be noted that:

- Exova performed Total PCBs analysis with a method detection limit of 0.1 mg/kg, whereas the contractual requirement is 0.05 mg/kg;
- Exova performed PHC Fractions F2 and F3 with a detection limit of 50 mg/kg, whereas the contractual requirement is 40 mg/kg.

Table II below summarizes the soil sampling at CAM-5 during the August, 2014 field program.

Table II: Summary of Soil Sampling at CAM-5 - August 2014

Landfill Site	Soil Sample Locations					
Tier II Disposal Facility	MW-5	MW-6	MW-7	MW-8		

2.3 GROUNDWATER SAMPLING

The groundwater sampling methodology conformed to guidance provided in the following CCME documents:

 CCME EPC-NCS62E Guidance Manual on Sampling, Analysis and Data Management for Contaminated Sites - Volume I: Main Report, Dec 1993 (CCME catalogue - http://www.ccme.ca/pdfs/cat_eng.pdf). CCME EPC-NCS66E Guidance Manual on Sampling, Analysis and Data Management for Contaminated Sites - Volume II: Analytical Method Summaries, Dec. 1993 (CCME catalogue - http://www.ccme.ca/pdfs/cat_eng.pdf).

Well dedicated Waterra foot valves and tubing were used to sample the groundwater. Wells were purged as specified and measurements of *in situ* temperature, conductivity, and pH were taken. Sampling took place when these parameters were stabilized. The samples were not acidified and were not filtered (as directed in the TOR). The 2014 field program included sampling all of the 4 monitoring wells at the CAM-5 Tier II Disposal Facility. A summary of the groundwater sampling undertaken at CAM-5 is summarized in Table III.

Table III: Summary of Groundwater Sampling at CAM-5, August 2014

Landfill Site	Groundwater Sample Locations						
Tier II Disposal Facility	MW-5	MW-6	MW-7	MW-8			

In sampled wells, no signs of free-phase hydrocarbon product were detected. Monitoring Well Development and Sampling Record forms are included in appropriate sections in this report. It should be noted that, although requested in the chain-of-custody document, mercury was not analyzed by Exova. When available, QA Results from Maxxam were used.

2.4 THERMAL MONITORING

The 2014 thermal monitoring program at CAM-5 consisted of an inspection of the thermistors and data loggers, the downloading of all datasets, and the manual reading of thermistors. One datalogger was re-installed at VT-3 after off-site servicing and repair. Specific detailed information regarding temperature data is contained in the Tier II Disposal Facility section of this report. It should be noted that all datalogger batteries were changed in 2014.

2.5 FIELD NOTES AND DATA

Field notes from the 2014 Landfill Monitoring Program, including soil and water sampling, are included in Annex 3 for reference. Notes were written in field books, previously prepared logs or entered directly into a field computer. The notes were scanned to an Adobe pdf document for future reference and back up. Locations of all observations and features for the visual inspection were recorded using Garmin Oregon 400 hand-held GPS, which included a combination of continuous tracks and discrete waypoints. Datasets collected from the individual vertical thermistors were downloaded directly to a field laptop computer.

2.6 QUALITY CONTROL

It should be noted that, although samples were sent to Exova and Maxxam laboratories, only Exova's battles/jars were used.

Sila implemented standard sample collection techniques to decrease the likelihood of compromising collected samples. The methods used for sample collection are summarized in Sections 2.2 and 2.3 of this report. The following measures were taken to minimize sample cross-contamination:

- All samples were placed directly into the appropriate laboratory supplied containers (for the particular analysis).
- Soil samples were collected with the use of decontaminated sampling equipment and/or nitrile gloves that were used only once.
- Water samples were collected through the use of dedicated Waterra foot valves and tubing.

Chain-of-Custody (COC) forms were completed by the Project Engineer prior to mobilisation and finalised after sample collection. The samples were refrigerated prior to off-site shipment, in chilled coolers, by First Air Cargo directly to Maxxam (via Yellowknife) and Exova in Edmonton and ESG, via Ottawa to Kingston, Ontario, where they were checked in by laboratory representatives. All analyses were completed as specified on COC forms. Annex 1 provides communications with Exova concerning sample integrity at reception. The communications indicate that all samples received were acceptable for analysis.

2.7 **QA/QC Procedures**

Sila used standard QA/QC procedures as specified in the TOR and CCME Guidance Documents for this project. The following is a summary of the analytical QA/QC samples collected:

- 10% Blind Duplicate Samples of soil and water were sent to Exova. Results can be found in Annex 1.
- 10% Inter-laboratory Duplicate Samples were sent to Maxxam (to determine if variation in procedures may cause significant difference in analytical results). Results can be found in Annex 1.
- 10% Archival Samples of soil to ESG.

2.8 Project References

The following references are specifically relevant to the 2014 Landfill Monitoring activities:

A. Invitation to Tender – Contractor Services for the Collection of Landfill Monitoring Data: CAM-5 Mackar Inlet, FOX-M Hall Beach, FOX-2 Longstaff Bluff and FOX-3 Dewar Lakes – DEW Line Sites Nunavut Territory Qikiqtaaluk Region. DCC Project #: DLCMON(QIKIQ12), March 20, 2012.

- B. Terms of Reference Services for the Collection of Landfill Monitoring Data: CAM-5 Mackar Inlet, FOX-M Hall Beach, FOX-2 Longstaff Bluff and FOX-3 Dewar Lakes – DEW Line Sites Nunavut Territory Qikiqtaaluk Region. DCC Project #: DLCMON(QIKIQ12), March 20, 2012.
- C. Contractor Services for the Collection of Landfill Monitoring Data: CAM-5 Mackar Inlet, FOX-M Hall Beach, FOX-2 Longstaff Bluff and FOX-3 Dewar Lakes DEW Line Sites Nunavut Territory Qikiqtaaluk Region. Technical Proposal May 2012.
- D. Post-Field Progress Report, CAM-5 former DEW Line Sites 2014, October, 2014.

3 LOWER SITE LANDFILL – SOUTH

3.1 **SUMMARY**

The visual inspection of the Lower Site Landfill – South was completed on August 21, 2014. No soil or water sampling was performed for the 2104 monitoring of this site.

As of 2014, no erosion, staining or debris features with "significant" or "unacceptable" severity ratings were identified in the Preliminary Stability Assessment of the Lower Site Landfill – South. Five new settlement features were noticed in 2014 on the east crest and side, the central cover and the southwest slope. All other settlement features are consistent with previous observations. One new erosion feature was noted extending from the east crest down to the toe. All other erosion features were consistent with previous observations. Two new staining features were noted on the east cover (hydrocarbon stain) and the southwest toe (rust colour staining). Ponded water and seepage were noted on the east side slope and toe and were consistent with previous observations. Two new tensions cracks were noticed on the southwest and northwest side slopes. No exposed debris was noted.

At this time the overall performance of the landfill is rated as acceptable.

The Visual Inspection Checklist/Report is included in Table IV of this report and has been completed as per the TOR. Please refer to Figure CAM-5.2 for a sketch of the Lower Site Landfill – South detailing the location of photographs of features.

Table IV: Visual Inspection Checklist / Report - Lower Site Landfill - South

DEW LINE CLEANUP: POST-CONSTRUCTION - LANDFILL MONITORING
VISUAL INSPECTION CHECKLIST
INSPECTION REPORT - PAGE 1 of 3

SITE NAME: CAM-5 Mackar Inlet

LANDFILL DESIGNATION: Lower Site Landfill – South (Regrade Landfill)

DATE OF INSPECTION: August 21, 2014

DATE OF PREVIOUS INSPECTION: August 29, 2013

INSPECTED BY: A. Passalis

REPORT PREPARED BY: A. Passalis

MONITORING EVENT NUMBER: 4

The inspector/reporter represents to the best of his/her knowledge that the following statements and observations are true and correct and to the best of the preparer's actual knowledge, no material facts have been suppressed or misstated.

Table IV: LOWER SITE LANDFILL VISUAL INSPECTION (PAGE 2 OF 3)

Site Name: CAM-5, Mackar Inlet

Landfill: Low er Site Landfill - South (Regrade)

Date Inspected: August 21, 2014
Inspected by: Andrew Passalis, P.Eng.

Signature:

	Checklist Item	Present (Yes/No)		Length (m)	Width (m)	Depth (m)	Extent	Description	Photographic Record	Severity Rating	Additional Comments
			FEATURE C See Figure CAM-5.2 (W side)	0.4 - 1	0.2 - 0.6	0.1 - 0.2		Minor settlement	LSLF-3	Acceptable	Two minor depressions (potholes) on the surface of lobe. Consistent with previous observation.
			FEATURE D See Figure CAM-5.2 (W cover)	6	0.15 - 0.4	0.05 - 0.15		Minor settlement	LSLF-9, 10	Acceptable	Linear depression on the west landfill surface. Consistent with previous observation.
			FEATURE E See Figure CAM-5.2 (E cover)	0.5	0.5	0.2		Minor settlement	LSLF-22, 23	Acceptable	Two minor depression (potholes) on the surface of lobe. Consistent with previous observation.
	Settlement	Yes	FEATURE M See Figure CAM-5.2 (E crest and side) - 3 New Obs.	0.3 - 0.6	0.2 - 0.4	0.05-0.1	Occasional	Minor settlement	LSLF-27, 28, 30-33	Acceptable	Seven minor depressions on the east landfill surface.
			FEATURE P See Figure CAM-5.2 (C cover) - New Obs.	4	0.2	0.02		Minor settlement	LSLF-1	Acceptable	Linear depression on central cover area.
			FEATURE R See Figure CAM-5.2 (SW slope) - New Obs.	2	0.3	0.05		Minor settlement	LSLF-16	Acceptable	Linear depression on southwest side slope.
			FEATURE A See Figure CAM-5.2 (Access Road - W toe)	10	2	0.1		Minor erosion channel	LSLF-1	Acceptable	Minor erosion across access road (west toe). Consistent with previous observation.
			FEATURE H See Figure CAM-5.2 (NW side slope)	20	0.5 - 2	0.1 - 0.3		Large erosion channel	LSLF-50-53	Marginal	Large erosion channel extending along the northwest side slope (downgradient of Feature J). Consistent with previous observation.
	Erosion	Yes	FEATURE I See Figure CAM-5.2 (N side slope)	6 - 7	3	0.02	Occasional	Minor erosion channels	LSLF-60, 61	Acceptable	Three minor erosion channels on the north side of the landfill. Self armouring. Consistent with previous observation.
			FEATURE J See Figure CAM-5.2 (NW side slope)	40	0.15 - 0.3	0.02 - 0.05		Minor erosion channel	LSLF-54	Acceptable	Mnor erosion channel extending along northwest side of landfill (connects to Feature H). Consistent with previous observation.
			FEATURE N See Figure CAM-5.2 (E crest & side slope) 1 New Obs.	1 - 25	0.3 - 0.5	0.01 - 0.02		Scouring and minor erosion channels	LSLF-34-39	Acceptable	Scouring at crest and two minor erosion channels (1 new) on the east side slope of the landfill. Consistent with previous observation.

COLLECTION OF LANDFILL MONITORING DATA – FINAL REPORT, 2014

FORMER CAM-5 DISTANT EARLY WARNING LINE SITE, NUNAVUT

Table IV: LOWER SITE LANDFILL VISUAL INSPECTION (PAGE 3 OF 3)

Checklist Item	Present (Yes/No)	Location	Length (m)	Width (m)	Depth (m)	Extent	Description	Photographic Record	Severity Rating	Additional Comments
Frost Action	No	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Animal Burrows	No	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Vegetation	No	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
		FEATURE G See Figure CAM-5.2 (NE toe)	1 -4	10	N/A	Isolated	Rust coloured staining and bacterial sheen	LSLF-40, 41, 43	Acceptable	Rust coloured staining and bacterial sheen present in ponded water at the toe of east slope of the landfill. Consistent with previous observation.
Staining	Yes	FEATURE L See Figure CAM-5.2 (E cover) - 1 New Obs.	0.15 - 0.3	0.15 - 0.3	N/A	Isolated	Hydrocarbon stains	LSLF- 21, 29	Acceptable	Two small hydrocarbon stains on east cover
		FEATURE Q See Figure CAM-5.2 (SW toe) - New Obs.	1 - 4	0.4 - 2	N/A	Isolated	Rust coloured staining	LSLF-5-7	Acceptable	Two localized areas along southwest toe. Appears to be associated with seasonal ponding/seepage. Dry at time of inspection.
Vegetation Stress	No	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Seepage Points	Yes	FEATURE G See Figure CAM-5.2 (NE side slope and toe)	8 - 15	1 - 4	N/A	Occasional	Seepage along toe and slope	LSLF- 40-43, 45, 47, 48	Acceptable	Seepage and ponded water along east side slope and toe. Large wetted area on east side slope. Consistent with previous observation.
Debris exposed	No	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Presence/Condition of Monitoring Instruments	No	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
		FEATURE K See Figure CAM-5.2 (S cover)	N/A	N/A	N/A	N/A	Ponded water on south cover	N/A	N/A	Not observed during 2014 inspection.
		FEATURE O See Figure CAM-5.2 (NW toe)	N/A	N/A	N/A	N/A	Ponded water northwest of landfill	N/A	N/A	Not observed during 2014 inspection.
Other Feature of Note	Yes	FEATURE R See Figure CAM-5.2 (SW side slope) - New Obs.	3	0.001-0.003	Unknown	Isolated	Tension crack	LSLF-14-16	N/A	Tension crack extending across southwest side slope. Localized settlement in area.
		FEATURE S See Figure CAM-5.2 (NW side slope) - New Obs.	16	0.02-0.1	Unknown	Isolated	Partially infilled tension crack	LSLF-55-57	Acceptable	Tension crack extending across cover at inside corner on northwest side of landfill.
Additional Photographs	Yes	See Figure CAM-5.2 and Photographic Record	N/A	N/A	N/A	N/A	General photographic record	N/A	N/A	No features of note, general photos of the landfill for record keeping purposes.

3.2 Preliminary Stability Assessment

The Preliminary Stability Assessment for Lower Site Landfill – South has been completed as per the TOR and is included as Table V hereafter.

Table V: Preliminary Stability Assessment - Lower Site Landfill - South

Feature	Severity Rating	Extent
Settlement	Acceptable	Occasional
Erosion	Marginal	Occasional
Frost Action	Not observed	None
Staining	Acceptable	Isolated
Vegetation Stress	Not observed	None
Seepage/Ponded Water	Acceptable	Occasional
Debris Exposure	Not observed	None
Overall Landfill Performance	Accep	otable

Performance/ Severity Rating	Description
Acceptable	Noted features are of little consequence. The landfill is performing as designed. Minor deviations in environmental or physical performance may be observed, such as isolated areas of erosion, settlement.
Marginal	Physical/environmental performance appears to be deteriorating with time. Observations may include an increase in size or number of features of note, such as differential settlement, erosion or cracking. No significant impact on landfill stability to-date, but potential for failure is assessed as low or moderate.
Significant	Significant or potentially significant changes affecting landfill stability, such as significant changes in slope geometry, significant erosion or differential settlement; scarp development. The potential for failure is assessed as imminent.
Unacceptable	Stability of landfill is compromised to the extent that ability to contain waste materials is compromised. Examples may include: Debris exposed in erosion channels or areas of differential settlement. Liner exposed. Slope failure.
Extent	Description
Isolated	Singular feature.
Occasional	Features of note occurring at irregular intervals/locations.
Numerous	Many features of note, impacting less than 50% of the surface area of the landfill.
Extensive	Impacting greater than 50% of the surface area of the landfill.

3.3 LOCATION PLAN

The Location Plan for the Lower Site Landfill - South has been completed as per the TOR and is included in the following page as Figure CAM-5.2 Lower Site Landfill - South.

3.4 PHOTOGRAPHIC RECORDS

The Photographic Record for Lower Site Landfill – South has been completed as per the TOR and is included as Table VI hereafter. Full-sized photographs are contained in the Addendum DVD-ROM.

Table VI: Landfill Visual Inspection Photo Log – Lower Site Landfill – South (Page 1 of 2)

Site Name: CAM-5, Mackar Inlet

Landfill: Lower Site Landfill - South (Regrade)

Date Inspected: August 21, 2014

Inspected by: Andrew Passalis, P.Eng.

Photo		Size		Vantage Point		Vantage Point		Vantage Point		
(LSLF-)	Filename	(KB)	Date	Easting	Northing	Caption				
1	C514_2685	4 399	14-08-21	553059	7581464	View looking south at erosion across access road to landfill - FEATURE A				
2	C514_2686	4 292	14-08-21	553062	7581453	View looking southeast along west toe of Lower Site Landfill - South				
3	C514_2687	4 290	14-08-21	553113	7581412	View looking northwest at two pothole depressions on west side of Lower Site Landfill - South - FEATURE C				
4	C514_2688	4 325	14-08-21	553116	7581414	View looking southeast along west side of Lower Site Landfill - South				
5	C514_2689	4 369	14-08-21	553111	7581408	View looking southwest at minor seepage along west toe of Lower Site Landfill - South. Note staining - FEATURE Q				
6	C514_2690	4 280	14-08-21	553102	7581398	View looking northeast at minor seepage along west toe of Lower Site Landfill - South. Note staining - FEATURE Q				
7	C514_2691	4 430	14-08-21	553125	7581403	View of Lower Site Landfill - South staining at toe of Lower Site Landfill - South - FEATURE Q				
8	C514_2692	4 372	14-08-21	553130	7581399	View of Lower Site Landfill - South ponded water along southwest toe of Lower Site Landfill - South - FEATURE G				
9	C514_2693	4 375	14-08-21	553128	7581413	View looking northwest at linear depression with cobbles on southwest cover of Lower Site Landfill - South - FEATURE D				
10	C514_2694	4 405	14-08-21	553124	7581422	View looking southwest at linear depression with cobbles on southwest cover of Lower Site Landfill - South - FEATURE D				
11	C514_2695	4 270	14-08-21	553142	7581386	View looking northwest along southwest side of Lower Site Landfill - South				
12	C514_2696	4 299	14-08-21	553152	7581389	View looking east along south side of Lower Site Landfill - South				
13	C514_2697	1 159	14-08-21	553148	7581397	Panoramic view looking northwest to east from south end of Lower Site Landfill - South				
14	C514_2698	4 439	14-08-21	553147	7581387	View looking northwest at tension crack along southwest crest of Lower Site Landfill - South - FEATURE R				
15	C514_2699	4 247	14-08-21	553143	7581395	View of tension crack along southwest crest of Lower Site Landfill - South - FEATURE R				
16	C514_2700	4 431	14-08-21	553145	7581394	View looking southwest at linear depression on southwest side of Lower Site Landfill - South - FEATURE R				
17	C514_2701	4 304	14-08-21	553169	7581428	View looking west along south side of Lower Site Landfill - South				
18	C514_2702	4 318	14-08-21	553170	7581430	View looking northeast along southeast side of Lower Site Landfill - South				
19	C514_2703	4 369	14-08-21	553144	7581439	View looking north at linear depression on southeast cover of Lower Site Landfill - South - FEATURE P				
20	C514_2704	4 384	14-08-21	553147	7581447	View looking west at linear depression on southeast cover of Lower Site Landfill - South - FEATURE P				
21	C514_2705	4 299	14-08-21	553150	7581455	View of single stain on east cover of Lower Site Landfill - South - FEATURE L				
22	C514_2706	4 458	14-08-21	553173	7581449	View looking north at two pothole depressions near east crest - FEATURE E				
23	C514_2707	4 339	14-08-21	553165	7581454	View looking northeast at two pothole depressions near east crest - FEATURE E				
24	C514_2708	4 351	14-08-21	553160	7581471	View looking north-northwest along east side slope of Lower Site Landfill - South				
25	C514_2710	4 341	14-08-21	553160	7581463	View looking southwest across central cover area of Lower Site Landfill - South				
26	C514_2711	4 373	14-08-21	553157	7581464	View looking west across north cover area of Lower Site Landfill - South				
27	C514_2712	4 342	14-08-21	553154	7581468	View looking north at two pothole depressions near east crest - FEATURE M				
28	C514_2713	4 345	14-08-21	553146	7581471	View looking east at two pothole depressions near east crest - FEATURE M				
29	C514_2714	4 469	14-08-21	553145	7581465	View of small stain on east cover - FEATURE L				

Table VI: Landfill Visual Inspection Photo Log – Lower Site Landfill – South (Page 2 of 2)

	l Lanaini Vici	Ī	, , , , , , , , , , , , , , , , , , , ,	Vantage Point		ndfill – South (Page 2 of 2)
Photo (LSLF-)	Filename	Size	Date	Ť		Caption
30	C514_2715	(KB) 4 377	14-08-21	Easting 553147	7581485	View looking east at small depression on east side slope - FEATURE M
31	C514_2716	4 430	14-08-21	553155	7581484	View looking northwest at small depression on east side slope - FEATURE M
32	C514_2717	4 384	14-08-21	553140	7581487	View looking east at 4 small depressions near east crest of Lower Site Landfill - South - FEATURE M
33	C514_2718	4 428	14-08-21	553146	7581495	View looking south at 4 small depressions near east crest of Lower Site Landfill - South - FEATURE M
34	C514_2719	4 425	14-08-21	553139	7581498	View looking east at erosion along east crest (scouring) of Lower Site Landfill - South - FEATURE N
35	C514_2720	4 433	14-08-21	553143	7581505	View looking south at erosion along east crest (scouring) of Lower Site Landfill - South - FEATURE N
36	C514_2721	4 381	14-08-21	553132	7581506	View looking at erosion on east side slope of Lower Site Landfill - South - FEATURE N
37	C514_2722	4 381	14-08-21	553129	7581510	View looking northeast at erosion (fines only) on east side slope of Lower Site Landfill - South - FEATURE N
38	C514_2723	4 306	14-08-21	553155	7581519	View looking west at erosion (fines only) on east side slope of Lower Site Landfill - South - FEATURE N
39	C514_2724	4 420	14-08-21	553156	7581513	View looking southwest at erosion (fines only) on east side slope of Lower Site Landfill - South - FEATURE N
40	C514_2725	4 458	14-08-21	553160	7581507	View looking northwest at staining and water ponding along northeast toe of Lower Site Landfill - South - FEATURE G
41	C514_2726	4 349	14-08-21	553156	7581510	View looking at staining and bacterial sheen on water ponding along northeast toe of Lower Site Landfill - South - FEATURE G
42	C514_2727	4 392	14-08-21	553168	7581509	View looking northwest from southeast edge of Lower Site Landfill - South ponded area on east toe of Lower Site Landfill - South - FEATURE G
43	C514_2728	4 444	14-08-21	553154	7581527	View looking south at staining and ponded water along northeast toe of Lower Site Landfill - South - FEATURE G
44	C514_2729	4 406	14-08-21	553150	7581525	View looking northwest at ponded water along northeast toe of Lower Site Landfill - South
45	C514_2730	4 352	14-08-21	553141	7581540	View looking south along east toe of Lower Site Landfill - South. Note wetted area on northeast side slope - FEATURE G
46	C514_2731	4 446	14-08-21	553128	7581533	View looking south along east crest of Lower Site Landfill - South
47	C514_2732	4 292	14-08-21	553129	7581537	View looking southeast at east side slope of Lower Site Landfill - South. Note wetted on side slope - FEATURE G
48	C514_2733	4 447	14-08-21	553145	7581539	View looking south at wetted area on northeast side slope - FEATURE G
49	C514_2734	4 363	14-08-21	553123	7581539	View looking northeast along northeast side slope of Lower Site Landfill - South
50	C514_2735	4 397	14-08-21	553110	7581526	View looking north at erosion on north side slope - FEATURE H
51	C514_2736	4 382	14-08-21	553105	7581537	View looking north at erosion on north side slope - FEATURE H
52	C514_2737	4 346	14-08-21	553097	7581548	View looking south at erosion on north side slope - FEATURE H
53	C514_2738	4 405	14-08-21	553108	7581530	View looking south at erosion on north side slope - FEATURE H
54	C514_2739	4 426	14-08-21	553113	7581489	View looking north at minor erosion on west side of Lower Site Landfill - South - FEATURE J
55	C514_2740	4 397	14-08-21	553129	7581494	View looking northwest at crack on north cover of Lower Site Landfill - South - FEATURE S
56	C514_2742	4 407	14-08-21	553120	7581498	View at crack on north cover of Lower Site Landfill - South - FEATURE S
57	C514_2743	4 441	14-08-21	553108	7581503	View looking southeast at crack on north cover of Lower Site Landfill - South FEATURE S
58	C514_2744	1 044	14-08-21	553104	7581487	Panoramic view looking southwest to east from north side of Lower Site Landfill - South
59	C514_2745	4 412	14-08-21	553103	7581492	View looking northeast at erosion extending along the northwest side of Lower Site Landfill - South
60	C514_2746	4 403	14-08-21	553086	7581474	View looking south-southeast at minor erosion on the northwest side slope of Lower Site Landfill - South - FEATURE I
61	C514_2747	4 324	14-08-21	553077	7581485	View looking south-southeast at minor erosion on the northwest side slope of Lower Site Landfill - South - FEATURE I
62	C514_2748	4 375	14-08-21	553064	7581469	View looking northeast along northwest side of Lower Site Landfill - South

4 NON-HAZARDOUS WASTE LANDFILL

4.1 **SUMMARY**

The 2014 monitoring of the Non-Hazardous Waste Landfill (NHWLF) conducted on August 21, 2014. No soil or water sampling was performed for the 2014 monitoring of this site.

As of the 2014 monitoring event, no feature with "significant" or "unacceptable" severity ratings was identified in the Preliminary Stability Assessment of the NHWLF. One isolated area of settlement and staining, and numerous minor erosional features were observed on the landfill surface or side slopes, all of which have an acceptable severity rating. During the 2014 investigation, additional erosional features were identified on the north, south and east side slopes.

Based on the results of the Preliminary Stability Assessment, the NHWLF has an acceptable severity rating.

The Visual Inspection Checklist/Report has been completed as per the TOR and is included as Table VII of this report. Please refer to Figure CAM-5.3 for a sketch of the NHWL detailing the location of photographs and erosional features.

Table VII: Visual Inspection Checklist / Report – Non-Hazardous Waste Landfill

DEW LINE CLEANUP: POST-CONSTRUCTION - LANDFILL MONITORING VISUAL INSPECTION CHECKLIST INSPECTION REPORT - PAGE 1 of 2

SITE NAME: CAM-5 Mackar Inlet

LANDFILL DESIGNATION: Non-Hazardous Waste Landfill (New landfill)

DATE OF INSPECTION: August 21, 2014

DATE OF PREVIOUS INSPECTION: August 29, 2013

INSPECTED BY: A. Passalis

REPORT PREPARED BY: A. Passalis

MONITORING EVENT: 4

The inspector/reporter represents to the best of his/her knowledge that the following statements and observations are true and correct and to the best of the preparer's actual knowledge, no material facts have been suppressed or misstated.

Table VII: NON-HAZARDOUS WASTE LANDFILL VISUAL INSPECTION (PAGE 2 OF 2)

Site Name: CAM-5, Mackar Inlet

Landfill: Non-Hazardous Waste Landfill (New)

Date Inspected: Inspected by: August 21, 2014 Andrew Passalis, P.Eng.

	20
gnature:	100
	Manh

Checklist Item	Present (Yes/No)	Location	Length (m)	Width (m)	Depth (m)	Extent	Description	Photographic Record	Severity Rating	Additional Comments
Settlement	Yes	FEATURE G See Figure CAM-5.3 (SW crest)	1.25	0.15	0.05	Isolated	Linear depression	NHWLF-17	Acceptable	Linear depression running parallel to west crest. Consistent with previous observation.
Settlement	Tes	FEATURE M See Figure CAM-5.3 (SE side slope) - New obs	1.2	0.4	0.07	Isolated	Linear depression	NHWLF-9, 10	Acceptable	Linear depression on side slope adjacent to Type 1 cover.
		FEATURE B See Figure CAM-5.3 (N side slope)	8	0.1	0.05		2 minor erosion channels	N/A		Not observed during 2014 assessment.
		FEATURE H See Figure CAM-5.3 (S side slope) - 3 New Obs.	6	0.1	0.01 - 0.02		Minor erosion channels	NHWLF-11-14		5 areas of minor erosion on south side slope. Self armouring.
Erosion	Yes	FEATURE I See Figure CAM-5.3 (S side slope)	6	0.1	0.01 - 0.02	Occasional	Minor erosion channel	NHWLF-16	Acceptable	Self armouring erosion channel on the south side slope of the landfill. Consistent with previous observation.
Elosioli	Yes	FEATURE J See Figure CAM-5.3 (S toe)	40	0.5 - 2	0.05 - 0.1	Occasional	Minor erosion channel	NHWLF-22	Acceptable	Minor erosion in drainage feature extending along south side and southwest corner of landfill. Consistent with previous observation.
		FEATURE K See Figure CAM-5.3 (N side slope) - 1 New Obs.	8	0.15 - 0.2	0.02 - 0.05		Minor erosion channels	NHWLF-30-33		2 areas of minor erosion channels on north slope of the landfill.
		FEATURE L See Figure CAM-5.3 (E side slope) - New Obs	6	0.15	0.05		Minor erosion channels	NHWLF-39, 41- 43		3 areas of minor erosion channels on east slope of the landfill.
Frost Action		N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Animal Burrows	No	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Vegetation	1	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Staining	Yes	FEATURE F See Figure CAM-5.3 (NE cover)	0.6	0.2	N/A	Isolated	Hydrocarbon Stain	NHWLF-40	Acceptable	Minor hydrocarbon stain on the landfill surface. Consistent with previous observation.
Vegetation Stress	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Seepage Points	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Debris Exposed	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Presence/Condition of Monitoring Instruments	Yes	N/A	N/A	N/A	N/A	N/A	Monitoring wells	N/A	N/A	Monitoring well casings are in good condition.
		Feature D	N/A	N/A	N/A	N/A	N/A	N/A	N/A	Not observed during 2014 assessment.
Other Feature of Note	Yes	FEATURE E See Figure CAM-5.3 (S and W toe)	100	0.5 - 4	0.05 - 0.3	Isolated	Drainage and ponded water	NHWLF-15, 22, 23	Acceptable	Water along south and west sides of landfill. Consistent with previous observation.
Additional Photographs	Yes	See Figure CAM-5.3 and Photographic Record	N/A	N/A	N/A	N/A	General photographic record	N/A	N/A	No features of note, general photos of the landfill for record keeping purposes.
Overall Landfill Performance	Acceptable									

4.2 PRELIMINARY STABILITY ASSESSMENT

The Preliminary Stability Assessment for NHWLF has been completed as per the TOR and is included as Table VIII hereafter.

Table VIII: Preliminary Stability Assessment – Non-Hazardous Waste Landfill

Feature	Severity Rating	Extent		
Settlement	Acceptable	Isolated		
Erosion	Acceptable	Occasional		
Frost Action	Not observed	None		
Staining	Acceptable	Isolated		
Vegetation Stress	Not observed	None		
Seepage/Ponded Water	Acceptable	Isolated		
Debris Exposure	Not observed	None		
Overall Landfill Performance	Acc	eptable		

Performance/ Severity Rating	Description				
Acceptable	Noted features are of little consequence. The landfill is performing as designed. Minor deviations in environmental or physical performance may be observed, such as isolated areas of erosion, settlement.				
Marginal	Physical/environmental performance appears to be deteriorating with time. Observations may include an increase in size or number of features of note, such as differential settlement, erosion or cracking. No significant impact on landfill stability to-date, but potential for failure is assessed as low or moderate.				
Significant	Significant or potentially significant changes affecting landfill stability, such as significant changes in slope geometry, significant erosion or differential settlement; scarp development. The potential for failure is assessed as imminent.				
Unacceptable	Stability of landfill is compromised to the extent that ability to contain waste materials is compromised. Examples may include: Debris exposed in erosion channels or areas of differential settlement. Liner exposed. Slope failure.				
Extent	Description				
Isolated	Singular feature.				
Occasional	Features of note occurring at irregular intervals/locations.				
Numerous	Many features of note, impacting less than 50% of the surface area of the landfill.				
Extensive	Impacting greater than 50% of the surface area of the landfill.				

4.3 LOCATION PLAN

The Location Plan for the NHWLF has been completed as per the TOR and is included in the following page as Figure CAM-5.3 Mackar Inlet – Non-Hazardous Waste Landfill.

5:\CD2655\FINAL\CAM-5\2014\CD2655_400_403_101-CAM-5.3.dwg, CAM-5.3, 2015-06-26 3:16:27 PN

4.4 PHOTOGRAPHIC RECORDS

The Photographic Record for the NHWLF has been completed as per the TOR and is included in the following pages as Table IX. Full-sized photographs are contained in the Addendum DVD-ROM.

Table IX: Landfill Visual Inspection Photo Log – Non-Hazardous Waste Landfill (page 1 of 2)

Site Name: CAM-5, Mackar Inlet

Landfill: Non-Hazardous Waste Landfill (New)

Date Inspected: August 21, 2014 Inspected by: Andrew Passalis, P.Eng.

Photo				Vantage Point		
(NHWLF-)	Filename	Size (KB)	Date	Easting	Northing	Caption
1	C514_2616	4 393	14-08-21	553372	7580281	View looking west-southwest at south side of NHWLF
2	C514_2617	4 140	14-08-21	553374	7580284	View looking northwest at east side of NHWLF
3	C514_2618	4 359	14-08-21	553371	7580283	View looking west at east corner of NHWLF
4	C514_2619	4 143	14-08-21	553349	7580293	View looking northwest along east side slope of NHWLF
5	C514_2620	4 234	14-08-21	553349	7580292	View looking southwest along south side slope of NHWLF
6	C514_2621	4 407	14-08-21	553335	7580300	View looking northwest along east crest of NHWLF
7	C514_2622	4 378	14-08-21	553335	7580299	View looking southwest along south crest of NHWLF
8	C514_2623	1 173	14-08-21	553333	7580300	Panoramic view looking southwest to north from east corner of NHWLF
9	C514_2624	4 318	14-08-21	553332	7580296	View looking southeast at small depression on south side slope of NHWLF - FEATURE M
10	C514_2625	4 341	14-08-21	553331	7580290	View looking east at small depression on south side slope of NHWLF - FEATURE M
11	C514_2626	4 403	14-08-21	553327	7580298	View looking southeast at minor erosion on south side slope - FEATURE H
12	C514_2627	4 420	14-08-21	553318	7580295	View looking southeast at minor erosion on south side slope - FEATURE H
13	C514_2628	4 443	14-08-21	553304	7580290	View looking southeast at minor erosion on south side slope - FEATURE H
14	C514_2629	4 420	14-08-21	553308	7580275	View looking northwest at minor erosion on south side slope - FEATURE H
15	C514_2630	4 451	14-08-21	553304	7580277	View looking west-southwest at fines deposited along south toe of NHWLF
16	C514_2631	4 390	14-08-21	553292	7580272	View looking northwest at minor erosion on south side slope - FEATURE I
17	C514_2632	4 302	14-08-21	553274	7580281	View looking northwest along west crest of NHWLF
18	C514_2633	4 378	14-08-21	553276	7580281	View looking northeast along south crest of NHWLF
19	C514_2634	1 250	14-08-21	553276	7580283	Panoramic view looking northwest to east from south corner of NHWLF
20	C514_2635	4 281	14-08-21	553271	7580270	View looking northwest along west side slope of NHWLF
21	C514_2636	4 445	14-08-21	553273	7580270	View looking northeast along south side slope of NHWLF
22	C514_2637	4 353	14-08-21	553266	7580261	View looking northeast at minor erosion in drainage feature extending along south toe of NHWLF - FEATURE J
23	C514_2638	4 314	14-08-21	553264	7580263	View looking northwest at drainage feature extending along west toe of NHWLF
24	C514_2639	4 420	14-08-21	553293	7580292	View looking north across cover of NHWLF
25	C514_2640	4 417	14-08-21	553242	7580331	View looking southeast along west crest of NHWLF

Table IX: Landfill Visual Inspection Photo Log – Non-Hazardous Waste Landfill (page 2 OF 2)

Photo				Vantage Point		
(NHWLF-)	Filename	Size (KB)	Date	Easting	Northing	Caption
26	C514_2641	4 354	14-08-21	553242	7580333	View looking northeast along north crest of NHWLF
27	C514_2642	1 342	14-08-21	553245	7580333	Panoramic view looking northeast to south from west corner of NHWLF
28	C514_2643	4 346	14-08-21	553226	7580334	View looking southeast along west side slope of NHWLF
29	C514_2644	4 425	14-08-21	553227	7580337	View looking northeast along north side slope of NHWLF
30	C514_2645	4 320	14-08-21	553262	7580337	View looking northwest at minor erosion on north side slope of NHWLF - FEATURE K
31	C514_2647	4 364	14-08-21	553257	7580350	View looking southeast at minor erosion on north side slope of NHWLF - FEATURE K
32	C514_2648	4 355	14-08-21	553283	7580344	View looking northwest at minor erosion on north side slope of NHWLF - FEATURE K
33	C514_2649	4 356	14-08-21	553279	7580354	View looking southeast at minor erosion on north side slope of NHWLF - FEATURE K
34	C514_2650	4 420	14-08-21	553302	7580351	View looking southwest along north crest of NHWLF
35	C514_2651	4 428	14-08-21	553304	7580351	View looking southeast along east crest of NHWLF
36	C514_2652	1 294	14-08-21	553302	7580348	Panoramic view looking southeast to west from north corner of NHWLF
37	C514_2653	4 172	14-08-21	553306	7580359	View looking southwest along north side slope of NHWLF
38	C514_2654	4 220	14-08-21	553308	7580358	View looking southeast along east side slope of NHWLF
39	C514_2655	4 337	14-08-21	553309	7580340	View of NHWLF erosion of NHWLF fine along top 1 m of NHWLF slope - FEATURE L
40	C514_2656	4 453	14-08-21	553304	7580337	View of NHWLF small stain on northeast cover of NHWLF - FEATURE F
41	C514_2657	4 275	14-08-21	553323	7580318	View looking northeast at minor erosion on east side slope of NHWLF - FEATURE L
42	C514_2658	4 388	14-08-21	553334	7580322	View looking southwest at minor erosion on east side slope of NHWLF - FEATURE L
43	C514_2659	4 362	14-08-21	553331	7580306	View looking northeast at minor erosion on east side slope of NHWLF - FEATURE L

5 USAF & ASBESTOS LANDFILL

5.1 **SUMMARY**

The 2014 monitoring of the USAF & Asbestos Landfill conducted on August 21, 2014 consisted of a visual inspection. No soil sampling was performed in 2014.

As of the 2014 monitoring event, no feature with "significant" or "unacceptable" severity ratings was identified in the Preliminary Stability Assessment of the USAF & Asbestos Landfill. Little to no change was observed since the 2013 investigation, as the features identified at the landfill appear to be primarily construction artifacts (rutting caused by various vehicles). New single settlement and erosional features were identified in 2014.

Based on observations made during the 2014 monitoring program, the USAF & Asbestos landfill have an acceptable performance rating in terms of debris containment.

The Visual Inspection Checklist/Report has been completed as per the TOR and is included as Table X in this report. Please refer to Figure CAM-5.4 for a sketch of the USAF & Asbestos Landfill detailing the location of photographs and features.

Table X: Visual Inspection Checklist / Report – USAF & Asbestos Landfill

DEW LINE CLEANUP: POST-CONSTRUCTION - LANDFILL MONITORING VISUAL INSPECTION CHECKLIST INSPECTION REPORT – PAGE 1 of 2

SITE NAME: CAM-5 Mackar Inlet

LANDFILL DESIGNATION: USAF & Asbestos Landfills (Regrade landfill)

DATE OF INSPECTION: August 21, 2014

DATE OF PREVIOUS INSPECTION: August 29, 2013

INSPECTED BY: A. Passalis

REPORT PREPARED BY: A. Passalis

MONITORING EVENT: 4

The inspector/reporter represents to the best of his/her knowledge that the following statements and observations are true and correct and to the best of the preparer's actual knowledge, no material facts have been suppressed or misstated.

Table X: USAF and ASBESTOS LANDFILL VISUAL INSPECTION (PAGE 2 OF 2)

Site Name: CAM-5, Mackar Inlet

Landfill: USAF and Asbestos landfills (Regrade)

Date Inspected:

Inspected by:

August 21, 2014

Andrew Passalis, P.Eng.

Signature:

Settlement Yes	Checklist Item	Present (Yes/No)	Location	Length (m)	Width (m)	Depth (m)	Extent	Description	Photographic Record	Severity Rating	Additional Comments
Settlement			See Figure CAM-5.4	2	0.6	0.2	Isolated	Linear depression	USAF-1	Acceptable	Linear depression adjacent to access road. Consistent with previous observation.
See Figure CAM-5.4	Settlement	Yes	See Figure CAM-5.4	0.6 - 1	0.15 - 0.2	0.05	Isolated	Minor depressions	USAF-11-13	Acceptable	3 linear type depressions near west crest of landfill. Consistent with previous observation.
Erosion			See Figure CAM-5.4	0.2 - 2	0.15	0.1	Isolated	Minor depressions	USAF-18, 19	Acceptable	2 linear type depressions on north cover of landfill.
Animal Burrows No	Erosion	Yes	See Figure CAM-5.4				Isolated	Minor erosion	USAF-24	•	Minor erosion extending along east toe. Self armouring.
N/A N/A				100000000000000000000000000000000000000		7/899/6/8/8		177777777		12/2/2012	6001484R
Staining No Feature B 0.4 0.2 N/A Isolated Hydrocarbon Stain N/A Acceptable Not observed during 2014 assessment. Vegetation Stress No N/A		No	- 37.1		A COMPANIA						
Vegetation Stress No N/A N/A					2507,2502		N/A	5-77-5-1		4.000.00	T-1775-07
Seepage Points No N/A N/A N/A N/A N/A N/A N/A	Staining	No	Feature B	, C. W. C. W. C.		0.000,000.00	Isolated	Hydrocarbon Stain	25.000.5000.5	Acceptable	Not observed during 2014 assessment.
Seepage Prints NA	Vegetation Stress	No	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Presence/Condition of Monitoring Instruments No N/A	Seepage Points	INO	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Instruments No N/A	Debris Exposed	Yes	Feature J	0.1	0.15	0.1 (exposed)	Isolated	Landfill plaque	USAF-10	Acceptable	the contraction of the action and the contraction of the contraction o
See Figure CAM-5.4 (S and NE cover) Yes See Figure CAM-5.4 (S and NE cover) FEATURE F See Figure CAM-5.4 (NE cover) FEATURE I See Figure CAM-5.4 (Ned of landfill) Yes See Figure CAM-5.4 N/A N/A N/A N/A N/A N/A N/A N/		No	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Other Features of Note Yes See Figure CAM-5.4 (NE cover) FEATURE I See Figure CAM-5.4 (N end of landfill) Yes See Figure CAM-5.4 Additional Photographs Yes See Figure CAM-5.4 Additional Photographs Yes See Figure CAM-5.4 Additional Photographic Record N/A N/A N/A N/A N/A N/A N/A N/			See Figure CAM-5.4 (S and NE cover)	1 - 20	0.2 - 0.5	0.05 - 0.15	Marginal	Vehicle tracks	USAF-4-6, 17	Acceptable	Vehicle tracks and rutting are present at several locations on the landfill surface. Consistent with previous observation.
See Figure CAM-5.4 (N end of landfill) Additional Photographs Yes See Figure CAM-5.4 and Photographic Record N/A N/A N/A N/A N/A N/A N/A N/	Other Features of Note	Yes	See Figure CAM-5.4	1	1	0.2	Isolated	Granular fertilizer	USAF-23	Acceptable	A small pile of granular fertilizer remains at the north-east corner of the regrade. Consistent with previous observation.
Additional Photographs Yes Photographic Record N/A N/A N/A photographic record N/A purposes.			See Figure CAM-5.4	14	14	0.1	Isolated	Rough Grading	USAF-21, 22	Acceptable	
Overall Landfill Performance Acceptable	Additional Photographs	Yes	•	N/A	N/A	N/A	N/A	l	N/A	N/A	No features of note, general photos of the landfill for record keeping purposes.
	Overall Landfill Performance	Acceptable	е				•				

5.2 PRELIMINARY STABILITY ASSESSMENT

The Preliminary Stability Assessment for the USAF & Asbestos Landfill has been completed as per the TOR and is included as Table XI hereafter.

Table XI: Preliminary Stability Assessment – USAF and Asbestos Landfill

Feature	Severity Rating	Extent		
Settlement	Acceptable	Isolated		
Erosion	Acceptable	Isolated		
Frost Action	Not observed	None		
Staining	Not observed	None		
Vegetation Stress	Not observed	None		
Seepage/Ponded Water	Not observed	None		
Debris Exposure	Acceptable	Isolated		
Overall Landfill Performance	Ac	ceptable		

Performance/ Severity Rating	Description
Acceptable	Noted features are of little consequence. The landfill is performing as designed. Minor deviations in environmental or physical performance may be observed, such as isolated areas of erosion, settlement.
Marginal	Physical/environmental performance appears to be deteriorating with time. Observations may include an increase in size or number of features of note, such as differential settlement, erosion or cracking. No significant impact on landfill stability to-date, but potential for failure is assessed as low or moderate.
Significant	Significant or potentially significant changes affecting landfill stability, such as significant changes in slope geometry, significant erosion or differential settlement; scarp development. The potential for failure is assessed as imminent.
Unacceptable	Stability of landfill is compromised to the extent that ability to contain waste materials is compromised. Examples may include: Debris exposed in erosion channels or areas of differential settlement. Liner exposed. Slope failure.
Extent	Description
Isolated	Singular feature.
Occasional	Features of note occurring at irregular intervals/locations.
Numerous	Many features of note, impacting less than 50% of the surface area of the landfill.
Extensive	Impacting greater than 50% of the surface area of the landfill.

5.3 **LOCATION PLAN**

The Location Plan for the USAF & Asbestos Landfills has been completed as per the TOR and is included in the following page as Figure CAM-5.4 Mackar Inlet – USAF & Asbestos Landfills.

5.4 PHOTOGRAPHIC RECORDS

The Photographic Record for the USAF & Asbestos Landfills has been completed as per the TOR and is included in the following pages as Table XII. Full-sized photographs are contained in the Addendum DVD-ROM.

Table XII: Landfill Visual Inspection Photo Log – USAF & Asbestos Landfill

Site Name: CAM-5, Mackar Inlet
Landfill: USAF (Regrade)
Date Inspected: August 21, 2014
Inspected by: Andrew Passalis, P.Eng.

Photo				Vantag	e Point	
(USAF-)	Filename	Size (KB)	Date	Easting	Northing	Caption
1	C514_2660	4 398	14-08-21	553287	7580212	View looking northwest along east side of Landfills. Note linear depression on right extending parallel to access road - FEATURE A
2	C514_2661	4 283	14-08-21	553285	7580212	View looking west along south side of USAF and Asbestos Landfills
3	C514_2662	1 102	14-08-21	553280	7580215	Panoramic view looking west to north from southwest corner of USAF and Asbestos Landfills
4	C514_2663	4 411	14-08-21	553268	7580234	View looking north at tire ruts on south cover of USAF and Asbestos Landfills
5	C514_2664	4 329	14-08-21	553261	7580238	View looking south at tire ruts on south cover of USAF and Asbestos Landfills
6	C514_2665	4 302	14-08-21	553269	7580220	View looking north at tire ruts on south cover of USAF and Asbestos Landfills
7	C514_2666	4 298	14-08-21	553255	7580214	View looking northwest along west side of USAF and Asbestos Landfills
8	C514_2667	4 442	14-08-21	553258	7580214	View looking east along south side of USAF and Asbestos Landfills
9	C514_2668	4 313	14-08-21	553247	7580210	View looking northwest at west toe of USAF and Asbestos Landfills
10	C514_2670	4 392	14-08-21	553264	7580229	View of former DIAND landfill corner marker - Feature J
11	C514_2671	4 306	14-08-21	553220	7580249	View looking northwest at minor depression near west crest of USAF and Asbestos Landfills - FEATURE C
12	C514_2672	4 403	14-08-21	553223	7580259	View looking southwest at linear depressions on west cover of USAF and Asbestos Landfills - FEATURE C
13	C514_2673	4 323	14-08-21	553221	7580253	View looking northwest at linear depressions on west cover of USAF and Asbestos Landfills - FEATURE C
14	C514_2674	4 408	14-08-21	553201	7580271	View looking southeast along west side of USAF and Asbestos Landfills
15	C514_2675	4 401	14-08-21	553199	7580273	View looking northeast along north side of USAF and Asbestos Landfills
16	C514_2676	1 185	14-08-21	553203	7580273	Panoramic view looking northeast to south from northwest corner of USAF and Asbestos Landfills
17	C514_2677	4 344	14-08-21	553208	7580278	View looking southwest at tire ruts on northwest corner of USAF and Asbestos Landfills - FEATURE E
18	C514_2678	4 374	14-08-21	553220	7580284	View looking southwest at minor erosion on north side of USAF and Asbestos Landfills- FEATURE G
19	C514_2679	4 426	14-08-21	553219	7580280	View looking northwest at minor erosion on north side of USAF and Asbestos Landfills - FEATURE G
20	C514_2680	4 401	14-08-21	553217	7580288	View of sparse vegetation on north side of USAF and Asbestos Landfills
21	C514_2681	4 360	14-08-21	553215	7580290	View looking north at new cover material placed at the north end of USAF and Asbestos Landfills
22	C514_2682	4 397	14-08-21	553233	7580301	View looking north-northwest along east side - new cover material placed at the north end of USAF and Asbestos Landfills
23	C514_2683	4 324	14-08-21	553233	7580297	View of three small piles of USAF and Asbestos Landfills fertilize on north side of USAF and Asbestos Landfills
24	C514_2684	4 314	14-08-21	553236	7580298	View looking southeast at minor erosion extending along long access road (east side of USAF and Asbestos Landfills) - FEATURE H

6 TIER II DISPOSAL FACILITY

6.1 **SUMMARY**

The 2014 monitoring of the Tier II Disposal Facility conducted on August 29, 2014 consisted of a visual inspection to identify areas of erosion conducted and as per the TOR, soil and groundwater samples were taken as well as thermal monitoring.

No TPH, PCBs or relatively high metal concentrations were detected at any of the soil sampling locations. Two monitoring wells were dry (MW-5 and MW-7) and a third well (MW-6) contained insufficient water at the time of the assessment and consequently could not be sampled. No TPH, PCBs or relatively high metal concentrations were detected in the sample collected from monitoring well MW-8. As Exova did not perform mercury analysis, QA result from Maxxam is presented (with associated method detection limit).

All dataloggers and thermistors were observed to be functioning properly at the time of inspection. The datalogger removed from VT-3 in August 2013 was re-installed after off-site repair and maintenance.

As of the 2014 monitoring event, no feature with "significant" or "unacceptable" severity ratings was identified in the Preliminary Stability Assessment of the Tier II Disposal Facility. A few areas with minor settlement and erosion were noted. This includes one existing and one new area of settlement and two new areas of erosion. One small existing stain was also noted on the cover of the facility.

Based on observations made during the 2014 monitoring program, The Tier II Disposal Facility overall performance rating is acceptable.

The Visual Inspection Checklist/Report has been completed as per the TOR and is included as Table XIII of this report. Please refer to Figure CAM-5.5 for a sketch of the Tier II Disposal Facility detailing the location of photographs and features.

Table XIII: Visual Inspection Checklist / Report – Tier II Disposal Facility

DEW LINE CLEANUP: POST-CONSTRUCTION - LANDFILL MONITORING VISUAL INSPECTION CHECKLIST INSPECTION REPORT – PAGE 1 of 2

SITE NAME: CAM-5 Mackar Inlet

LANDFILL DESIGNATION: Tier II Disposal Facility (New landfill)

DATE OF INSPECTION: August 21, 2014

DATE OF PREVIOUS INSPECTION: August 29, 2013

INSPECTED BY: A. Passalis

REPORT PREPARED BY: A. Passalis

MONITORING EVENT NUMBER: 4

The inspector/reporter represents to the best of his/her knowledge that the following statements and observations are true and correct and to the best of the preparer's actual knowledge, no material facts have been suppressed or misstated.

Table XIII: TIER II DISPOSAL FACILITY VISUAL INSPECTION (PAGE 2 OF 2)

Site Name: CAM-5, Mackar Inlet

Landfill: Tier II Disposal Facility (New)

Date Inspected: August 21, 2014

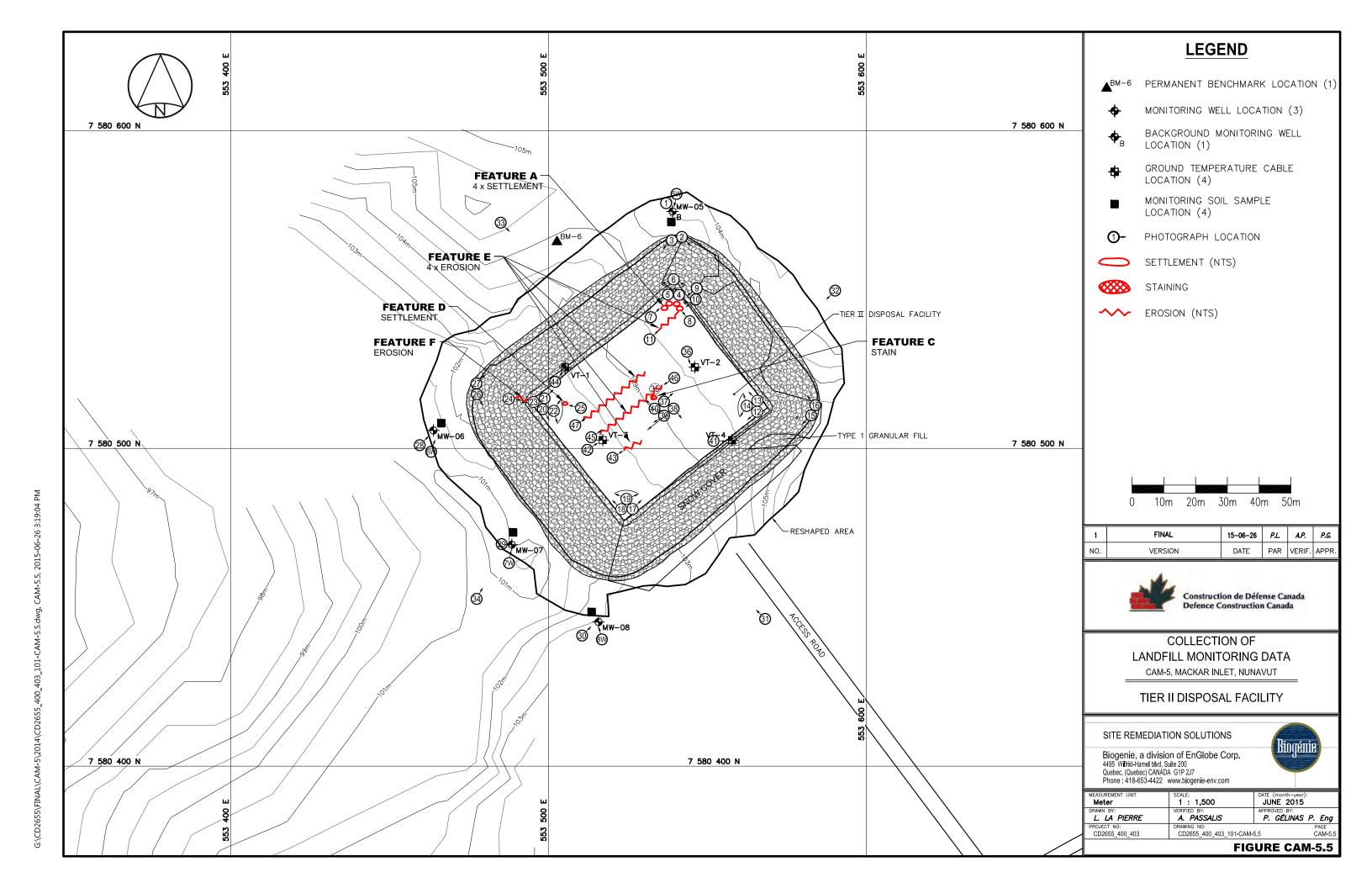
Inspected by: Andrew Passalis, P.Eng.

Signature:

Checklist Item	Present (Yes/No)	Location	Length (m)	Width (m)	Depth (m)	Extent	Description	Photographic Record	Severity Rating	Additional Comments
Settlement	Yes	FEATURE A See Figure CAM-5.5 (N crest)		0.2 - 0.3	0.05 - 0.1	Isolated	4 areas of settlement	Tier I⊦7-9	Acceptable	Each area of settlement is associated with a large cobble in the landfill cover. Consistent with previous observation.
		FEATURE D See Figure CAM-5.5 (W cover) - New Obs.	0.4	0.15	0.05	Isolated	Single depression	Tier II-25	Acceptable	Pothole-type depression on cover.
Erosion	Yes	FEATURE E See Figure CAM-5.5 (N and C cover) - New Obs.	6 - 26	0.1	0.02	Occasional	4 x Minor shallow erosion	Tier II-10, 11, 43, 45- 47	Acceptable	Shallow linear features orientated NE-SW across facility cover. Possibly associated with final grading.
	163	FEATURE F See Figure CAM-5.5 (W crest) - New Obs	1.5	1	0.1	Isolated	Deposition of fines	Tier II-23, 24	Acceptable	Deposition of fine grained material at corner of cover.
Frost Action		N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Animal Burrows	No	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Vegetation		N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Staining	Yes	FEATURE C See Figure CAM-5.5 (C cover)	0.4	0.35	N/A	Isolated	Hydrocarbon stain	Tier II-35	Acceptable	Hydrocarbon stain located at the approximate center of the facility. Consistent with previous observation.
Vegetation Stress	No	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Seepage Points	No	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Debris Exposed	No	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Presence/Condition of Monitoring Instruments	Yes	N/A	N/A	N/A	N/A	N/A	Thermistors (VT-1 through VT- 4) and Groundwater Wells (MW-5 though MW-8)	Tier II-44, 36, 42, 41 Tier II-1, 28, 29, 30	N/A	Monitoring wells and thermistor casings are in good condition.
Other Features of Note	No	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Additional Photographs	Yes	See Figure CAM-5.5 and Photographic Record	N/A	N/A	N/A	N/A	General Photographic record	General Photographic record	N/A	N/A
Overall Landfill Performance	Acceptable									

6.2 PRELIMINARY STABILITY ASSESSMENT

The Preliminary Stability Assessment for the Tier II Disposal Facility has been completed as per the TOR and is included as Table XIV hereafter.


Table XIV: Preliminary Stability Assessment – Tier II Disposal Facility

Feature	Severity Rating	Extent
Settlement	Acceptable	Isolated
Erosion	Acceptable	Occasional
Frost Action	Not observed	None
Staining	Acceptable	Isolated
Vegetation Stress	Not observed	None
Seepage/Ponded Water	Not observed	None
Debris Exposure	Not observed	None
Overall Landfill Performance	Acceptable	

Performance/ Severity Rating	Description
Acceptable	Noted features are of little consequence. The landfill is performing as designed. Minor deviations in environmental or physical performance may be observed, such as isolated areas of erosion, settlement.
Marginal	Physical/environmental performance appears to be deteriorating with time. Observations may include an increase in size or number of features of note, such as differential settlement, erosion or cracking. No significant impact on landfill stability to-date, but potential for failure is assessed as low or moderate.
Significant	Significant or potentially significant changes affecting landfill stability, such as significant changes in slope geometry, significant erosion or differential settlement; scarp development. The potential for failure is assessed as imminent.
Unacceptable	Stability of landfill is compromised to the extent that ability to contain waste materials is compromised. Examples may include: Debris exposed in erosion channels or areas of differential settlement. Liner exposed. Slope failure.
Extent	Description
Isolated	Singular feature.
Occasional	Features of note occurring at irregular intervals/locations.
Numerous	Many features of note, impacting less than 50% of the surface area of the landfill.
Extensive	Impacting greater than 50% of the surface area of the landfill.

6.3 LOCATION PLAN

The Location Plan for the Tier II Disposal Facility has been completed as per the TOR and is included in the following page as Figure CAM-5.5 Mackar Inlet – Tier II Disposal Facility.

6.4 THERMISTOR ANNUAL MAINTENANCE REPORTS

All thermistors at the Tier II Disposal Facility were inspected and found to be in good condition with no significant concerns identified. Data from all thermistors was successfully retrieved with the exception of VT-3, whose datalogger was re-installed after off-site repairs and maintenance during the 2013 monitoring period. Batteries were also changed in all other dataloggers.

Review of the downloaded thermal data identified all analogues/thermocouples to be functioning properly during the 2014 monitoring period.

Internal memories were reset and clocks were synchronized using the Prolog software. Manual resistive readings were collected from the thermistor strings as per the TOR. Manual readings and inspection results for each thermistor are presented on the Thermistor Annual Maintenance Reports (VT-1 to VT-4) included in this section of the report.

Contractor Name:	Sila Remediation Inc.	Inspection Date:	21/08/2014
Prepared By:	A.Passalis		

Thermistor Information

Site Name:	CAM-5	Thermistor Location	on	Tier II Dispo	sal Facility	
Thermistor Number	: VT-1	Inclination		Vertical		
Install Date:	2010-09-07	First Date Event		2012-08-30	Last Date Event	2013-08-29
Coordinates and Ele	evation	N 7580525.5	Е	553505.3	Elev	109.1
Length of Cable (m)	10.5	Cable Lead Above Grou	ınd (m) 3.47	Nodal Point	S	16
Datalogger Serial #	7110050			Cable Seria	al Number	VT-10

Thermistor Inspection

		Good]
	Yes		No	Problem/Maintenance
Casing	x		-	
Cover	x		-	
Data Logger	x		-	
Cable	x		-	
Beads	x		-	
Battery Installation Date		2012-08-28		
Battery Levels	Main	11.34 V		Aux <u>13.38</u>

Manual Ground Temperature Readings

Bead	ohms	Degrees C
1	10.54	8.9412
2	13.128	4.4729
3	14.715	2.1705
4	15.647	0.9666
5	16.725	-0.3668
6	17.737	-1.5095
7	18.731	-2.6224
8	19.563	-3.4544

Bead	ohms	Degrees C
9	20.29	-4.331
10	20.95	-5.1183
11	21.71	-5.696
12	22.1	-6.0217
13	22.62	-6.5389
14	23.01	-6.9096
15	23.17	-7.1122
16	23.34	-7.2577

Observations and Proposed Maintenance

Download file: Site_050_VT-1_Aug_21_2014

Contractor Name:	Sila Remediation Inc.	Inspection Date:	21/08/2014
Prepared By:	A.Passalis		

Thermistor Information

Site Name:	CAM-5		Thermistor Location		Tier II Dispo	sal Facility		
Thermistor Numbe	r: VT-2		Inclination		Vertical			
Install Date:	2010-09-07		First Date Event		2012-08-30	Last Date Event	- :	2013-08-29
Coordinates and E	evation	N	7580525.5	Е	553546.1	Elev	109.6	1
Length of Cable (m) 8.25	Cable	e Lead Above Ground ((m) 3.00	Nodal Point	S		16
Datalogger Serial #	7110073				Cable Seria	l Number		VT-9

Thermistor Inspection

		Good			
	Yes		No	Problem/Main	tenance
Casing	x				
Cover	x				
Data Logger	x				
Cable	x				
Beads	x				
Battery Installation Date		2012-08-28			
Battery Levels	Main	11.34 V		Aux <u>13.</u>	38

Manual Ground Temperature Readings

Bead	ohms	Degrees C
1	12.417	5.5282
2	13.171	4.1909
3	14.153	2.9318
4	15.071	1.6485
5	16.127	0.2898
6	17.079	-0.8172
7	18.84	-0.8172
8	19.79	-2.7857

Bead	ohms	Degrees C
9	20.61	-4.6508
10	20.34	-5.3451
11	22.12	-6.0028
12	22.52	-7.4981
	-	-
	-	-
	-	-
-	-	-

Download file: Site_073_VT-2_Aug_21_2014

Contractor Name:	Sila Remediation Inc.	Inspection Date:	21/08/2014
Prepared By:	A.Passalis		

Thermistor Information

Site Name:	CAM-5		Thermistor Location	on	Tier II Dispo	sal Facility		
Thermistor Number	: VT-3		Inclination		Vertical			
Install Date:	2010-09-07		First Date Event		2012-08-30	Last Date Event	:	2013-08-29
Coordinates and Ele	evation	N	7580502.6	Е	553517.1	Elev	108.3	3
Length of Cable (m)	9.25	Cable	e Lead Above Grou	nd (m) 3.53	Nodal Point	is		16
Datalogger Serial #	7110076				Cable Seria	al Number		VT-5

Thermistor Inspection

		Good			
	Yes		No	Problem	/Maintenance
Casing	x				
Cover	x			_	
Data Logger	x				
Cable	x				
Beads	x				
Battery Installation Date		2012-08-28			
Battery Levels	Main	11.34 V		Aux	13.38

Manual Ground Temperature Readings

Bead	ohms	Degrees C
1	10.013	9.7793
2	10.432	8.9564
3	12.976	4.7099
4	13.9	3.2918
5	14.651	2.2182
6	15.771	0.7623
7	16.754	-0.4735
8	18.801	-2.7053

Bead	ohms	Degrees C
9	19.759	-3.7264
10	20.51	-4.5926
11	21.23	-5.2703
12	21.79	-5.8493
13	22.39	-6.395
14	22.86	-6.8659
-	-	-
-	-	-

Observations and Proposed Maintenance

Download file: Site_001_default_Aug_27_2014

Datalogger re-installed after off-site servicing/repair. Restart prior to installation.

Contractor Name:	Sila Remediation Inc.	Inspection Date:	21/08/2014
Prepared By:	A.Passalis		

Thermistor Information

Site Name:	CAM-5	Ther	mistor Locati	ion	Tier II Dispo	sal Facility		
Thermistor Number	VT-4	Inclir	nation		Vertical			
Install Date:	2010-09-07	First	Date Event		2012-08-30	Last Date Event		2013-08-29
Coordinates and Ele	evation	N 7580	502.6	Е	553557.8	Elev	108.	5
Length of Cable (m)	10.5	Cable Lea	d Above Grou	und (m) 3.47	Nodal Point	S		16
Datalogger Serial #	7110071				Cable Seria	l Number		VT-8

Thermistor Inspection

		Good		
	Yes	No	1	Problem/Maintenance
Casing	x			
Cover	x			
Data Logger	x		_	
Cable	x		_	
Beads	x		_	
Battery Installation Date		2012-08-28		
Battery Levels	Main	11.34 V		Aux <u>13.87</u>

Manual Ground Temperature Readings

Bead	ohms	Degrees C
1	10.097	10.2176
2	11.939	6.5693
3	14.083	3.0193
4	15.129	1.6309
5	16.025	0.4492
6	17.223	-0.9447
7	18.293	-2.1652
8	19.3	-3.1702

Bead	ohms	Degrees C
9	20.02	-3.9914
10	20.75	-4.7356
11	21.41	-5.4146
12	22.04	-5.9381
13	22.63	-6.5199
14	22.97	-6.8659
15	23.29	-7.1534
16	23.58	-7.4615

Observations and Proposed Maintenance

Download file: Site_071_VT-4_Aug_21_2014

6.5 PHOTOGRAPHIC RECORDS

The Photographic Record for the Tier II Disposal Facility has been completed as per the TOR and is included in the following pages as Table XV. Full-sized photographs are contained in the Addendum DVD-ROM.

Table XV: Landfill Visual Inspection Photo Log – Tier II Disposal Facility (page 1 of 2)

Site Name: CAM-5, Mackar Inlet

Landfill: Tier II Disposal Facility (New)

Date Inspected: August 21, 2014

Inspected by: Andrew Passalis, P.Eng.

Photo		Size		Vantag	e Point	
(Tier II-)	Filename	(KB)	Date	Easting	Northing	Caption
1	C514_2560	4 386	14-08-21	553538	7580575	View of MW-5
2	C514_2561	4 252	14-08-21	553541	7580566	View looking southeast along east toe of Tier II DF
3	C514_2562	4 433	14-08-21	553540	7580565	View looking southwest along north toe of Tier II DF
4	C514_2563	4 398	14-08-21	553540	7580549	View looking southeast along east crest of Tier II DF
5	C514_2564	4 312	14-08-21	553539	7580549	View looking southwest along north crest of Tier II DF
6	C514_2565	1 394	14-08-21	553540	7580551	Panoramic view looking southeast to southwest from north corner of Tier II DF
7	C514_2566	4 431	14-08-21	553533	7580542	View looking northeast at small depression near crest on north corner of Tier II DF - FEATURE A
8	C514_2567	4 363	14-08-21	553543	7580541	View looking northwest at small depression near crest on north corner of Tier II DF - FEATURE A
9	C514_2568	4 398	14-08-21	553545	7580549	View looking southwest at small depression near crest on north corner of Tier II DF - FEATURE A
10	C514_2569	4 326	14-08-21	553545	7580546	View looking southwest at minor erosion on north cover of Tier II DF - FEATURE E
11	C514_2570	4 363	14-08-21	553533	7580536	View looking northeast at minor erosion on north cover of Tier II DF - FEATURE E
12	C514_2571	4 383	14-08-21	553567	7580512	View looking southwest along south crest of Tier II DF
13	C514_2572	4 342	14-08-21	553567	7580514	View looking northwest along east crest of Tier II DF
14	C514_2573	1 297	14-08-21	553563	7580513	Panoramic view looking north to southwest from east corner of Tier II DF
15	C514_2574	4 407	14-08-21	553584	7580511	View looking southwest along south toe of Tier II DF
16	C514_2575	4 265	14-08-21	553584	7580512	View looking northwest along east toe of Tier II DF
17	C514_2576	4 283	14-08-21	553526	7580480	View looking northeast along south crest of Tier II DF
18	C514_2577	4 419	14-08-21	553524	7580480	View looking southwest along west crest of Tier II DF
19	C514_2578	1 288	14-08-21	553524	7580483	Panoramic view looking east to northwest from south corner of Tier II DF
20	C514_2579	4 331	14-08-21	553498	7580513	View looking southeast along west crest of Tier II DF
21	C514_2580	4 377	14-08-21	553498	7580515	View looking northeast along north crest of Tier II DF
22	C514_2581	1 424	14-08-21	553501	7580513	Panoramic view looking northwest to south from west corner of Tier II DF
23	C514_2582	4 385	14-08-21	553495	7580514	View looking west at deposition of fines on west corner of Tier II DF - FEATURE F
24	C514_2583	4 354	14-08-21	553489	7580515	View looking east at deposition of fines on west corner of Tier II DF - FEATURE F
25	C514_2584	4 280	14-08-21	553509	7580513	View looking west-northwest at minor depression on west cover of Tier II DF - FEATURE D

Table XV: Landfill Visual Inspection Photo Log – Tier II Disposal Facility (page 2 of 2)

Photo		Size		Vantag	e Point	
(Tier II-)	Filename	(KB)	Date	Easting	Northing	Caption
26	C514_2585	4 280	14-08-21	553477	7580517	View looking southeast along west toe of Tier II DF
27	C514_2586	4 413	14-08-21	553477	7580519	View looking northeast along north toe of Tier II DF
28	C514_2587	4 293	14-08-21	553461	7580502	View looking northeast at MW-6
29	C514_2589	4 345	14-08-21	553487	7580470	View looking east of MW-7
30	C514_2590	4 351	14-08-21	553512	7580442	View looking northeast at MW-8
31	C514_2591	4 433	14-08-21	553568	7580447	View looking northeast at south side of Tier II DF
32	C514_2592	4 259	14-08-21	553590	7580549	View looking southwest at east side of Tier II DF
33	C514_2595	4 395	14-08-21	553485	7580571	View looking southeast at north side of Tier II DF
34	C514_2600	4 420	14-08-21	553477	7580454	View looking northeast at west side of Tier II DF
35	C514_2603	4 471	14-08-21	553534	7580518	View of small stain on central cover area of Tier II DF - FEATURE C
36	C514_2604	4 286	14-08-21	553544	7580530	View looking south at VT-2
37	C514_2605	4 299	14-08-21	553537	7580514	View looking northeast from central cover
38	C514_2606	4 326	14-08-21	553538	7580513	View looking southeast from central cover
39	C514_2607	4 295	14-08-21	553536	7580512	View looking southwest from central cover
40	C514_2608	4 405	14-08-21	553535	7580513	View looking northwest from central cover
41	C514_2609	4 400	14-08-21	553553	7580502	View looking east at VT-4
42	C514_2610	4 351	14-08-21	553513	7580500	View looking northeast at VT-3
43	C514_2611	4 316	14-08-21	553521	7580498	View looking northeast at minor erosion on west cover of Tier II DF - FEATURE E
44	C514_2612	4 386	14-08-21	553503	7580522	View looking northeast at VT-1
45	C514_2613	4 396	14-08-21	553515	7580504	View looking northeast at minor erosion on central cover - FEATURE E
46	C514_2614	4 450	14-08-21	553539	7580522	View looking southwest at minor erosion on central cover - FEATURE E
47	C514_2615	4 291	14-08-21	553509	7580508	View looking southwest at minor erosion on central cover - FEATURE E
Soil Sampli						
MW5	C514_2593	4 404	14-08-21	553539		Sampling location C514-1W located upgradient of Tier II DF
5W	C514_2594	4 301	14-08-21	553540		View looking east at MW-01 located upgradient of Tier II DF
MW6	C514_2596	4 347	14-08-21	553466		Sampling location C514-2W located downgradient of Tier II DF
6W	C514_2597	4 368	14-08-21	553463	7580500	View looking southwest at MW-02 located downgradient of Tier II DF
MW7	C514_2598	4 327	14-08-21	553489		Sampling location C514-3W located downgradient of Tier II DF
7W	C514_2599	4 401	14-08-21	553488		View looking south at MW-03 located downgradient of Tier II DF
MW8	C514_2601	4 318	14-08-21	553514		Sampling location C514-4W located downgradient of Tier II DF
8W	C514_2602	4 418	14-08-21	553517	7580441	View looking east at MW-04 located downgradient of Tier II DF

6.6 SOIL SAMPLE ANALYTICAL DATA

The soil chemical analysis results for the 2014 Tier II Disposal Facility samples are presented in Table XVI hereafter. Certificates of analysis and results of field duplicates collected as part of the QA/QC program are presented in Annexes 1 and 2.

Table XVI: Tier II Summary Table for Soil Analytical Data

								F	Paramet	ters					
		Depth											F1	F2	F3
Sample # Locatio		(cm)	As [mg/kg]	Cd [mg/kg]	Cr [mg/kg]	Co [mg/kg]	o Cu Pb Ni Zn Ho kg] [mg/kg] [mg/kg] [mg/kg] [mg/kg] [mg/	Hg [mg/kg]	PCBs [mg/kg]		C ₁₀ -C ₁₆ [mg/kg]	C ₁₆ -C ₃₄ [mg/kg]			
Detection Limit	•		0.2	0.01	0.5	0.1	1.0	5.0	0.5	1	0.01	0.1	10	50	50
Upgradient So	oil Sample	S													
C514-5WA	MW-05	0-15	0.2	0.01	4.6	2.2	3.1	<4.9	3.0	14	<0.01	<0.1	<10	<50	<50
C514-5WB	10100-03	40-50	0.2	0.03	3.9	2.8	5.9	<5	6.1	18	<0.01	< 0.1	<10	<50	<50
Downgradien	t Soil Sam	ples													
C514-6WA	MW-06	0-15	<0.2	0.02	3.1	2.3	2.2	<4.9	2.9	15	<0.01	<0.1	<10	<50	<50
C514-6WB	10100-00	40-50	<0.2	<0.01	3.0	2.3	5.0	<5	3.1	12	<0.01	<0.1	<10	<50	<50
C514-7WA	MW-07	0-15	0.7	<0.01	15.4	3.7	8.6	7.3	11.4	22	<0.01	<0.1	<10	<50	<50
C514-7WB	10100-07	40-50	0.2	<0.01	6.2	3.2	6.7	<4.9	7.7	20	<0.01	<0.1	<10	<50	<50
C514-8WA	MW-08	0-15	<0.2	<0.01	3.7	2.7	6.1	<5	8.1	16	<0.01	<0.1	<10	<50	<50
C514-8WB	IVIVV-UO	40-50	0.2	<0.01	4.6	3.2	7.4	<4.9	4.5	17	<0.01	<0.1	<10	<50	<50

6.7 GROUNDWATER SAMPLE ANALYTICAL DATA

The groundwater chemical analysis results for the 2014 Tier II Disposal Facility samples are presented in Table XVII hereafter. Certificates of analysis and results for groundwater samples collected as part of the QA/QC program are presented in Annexes 1 and 2. Samples were collected from MW-8. MW-5 and MW-7 were dry at the time of monitoring and MW-6 contained insufficient water to collect a sample. Although requested on the chain-of-custody, Exova did not perform mercury analysis in sample collected at MW-08. QA sample was sent to Maxxam. Result is presented in Table XVII below.

Table XVII: Tier II Summary Table for Groundwater Analytical Data

							Р	aramete	rs					
		_	•		•				_			F1	F2	F3
Sample #	Location	As	Cd	Cr	Co	Cu	Pb	Ni [ma/L]	Zn [ma/l]	Hg	PCBs	C ₆ -C ₁₀	C ₁₀ -C ₁₆	C ₁₀ -C ₃₄
		[mg/L]	[mg/L]	[mg/L]	[mg/L]	[mg/L]	[mg/L]	[mg/L]	[mg/L]	[ug/L]	[ug/L]	[mg/L]	[mg/L]	[mg/L]
Detection Li	nit	0.0002	0.00001	0.0005	0.0001	0.001	0.0001	0.0005	0.001	0.02*	0.1	0.1	0.1	0.1
Upgradient	Groundw	ater Sar	nple											
C514-5W	MW-05						-	Well Dry	/ -					
Downgradi	ent Groun	dwater	Samples											
C514-6W	MW-06		Insufficient Water											
C514-7W	MW-07		- Well Dry -											
C514-8W	MW-08	0.0040	0.00005	0.0678	0.0158	0.092	0.0118	0.0485	0.092	<0.02*	<0.1	<0.1	<0.1	<0.1

^{*:} Detection limit and result from Maxxam

6.8 Monitoring Well Sampling / Inspection Logs

The monitoring well sampling logs for MW-5 to MW-8 are presented in this section.

Site Name:	CAM-5	Mackar Inlet	Nunavut
Date of Sampling Event:	2014-08-21	Time:	12:15
Names of Samplers:	A.Passalis		
Landfill Name:		II Disposal Facility	
Monitoring Well ID:	MW-5		
Sample Number:	N/A (dry)		
Condition of Well:	Good		
Management Date			
Measured Data	F 4		
Well pipe height above ground	54	ID.	
Diameter of well (cm)=	4	ID	
Depth of well installation (cm)=	350		
(from ground surface)	000		
Length screened section (cm)=	200		
Depth to top of screen (cm)=	50		
(from ground surface)			
Donth to water surface (are)		Manager and readle add	
Depth to water surface (cm)=	N/A	Measurement method:	Interface Meter
(from top of pipe)		(meter, tape, etc.)	
Static water level (cm)=	N/A		
(below ground surface)		Friday and Aladaha an	
Measured well refusal depth (cm)=	191	Evidence of sludge or	No
(i.e. depth to frozen ground)		siltation:	
Thickness of water column (cm)=	N/A		
Static volume of water in well (mL)=	N/A		
Otatio volume of water in well (int)-	14/71		
Free product thickness (mm)=	N/A	Measurement method:	
()		(meter, paste, etc.)	Interface Meter
		(, p,	
Purging: (Y/N)	N	Purging/Sampling	N/A
		Equipment:	
Volume Purged Water=	N/A		
Decontamination required: (Y/N)	N/A		
Number washes:	N/A		
Number rinses:	N/A		
Final pH=	N/A		
Final Conductivity (uS/cm)=	N/A		
Final Temperature (deg C)=	N/A		

Site Name:	CAM-5	Mackar Inlet	Nunavut
Date of Sampling Event:	2014-08-21	Time:	12:45
Names of Samplers:	A.Passalis		
Landfill Name:		Il Disposal Facility	
Monitoring Well ID:	MW-6		
Sample Number:	N/A	Insufficient sample volume	
Condition of Well:	Good		
Measured Data			
Well pipe height above ground	63		
Diameter of well (cm)=	4	ID	
Depth of well installation (cm)=	350		
(from ground surface)	000		
Length screened section (cm)=	200		
Depth to top of screen (cm)=	50		
(from ground surface)	30		
Depth to water surface (cm)=	208	Measurement method:	Interface Meter
(from top of pipe)		(meter, tape, etc.)	Interiore interes
Static water level (cm)=	145		
(below ground surface)	140		
Measured well refusal depth (cm)=	211	Evidence of sludge or	No
(i.e. depth to frozen ground)	211	siltation:	140
Title			
Thickness of water column (cm)=	3		
Static volume of water in well (mL)=	38		
Free product thickness (mm)=	0	Measurement method:	
Free product trickness (mm)=	U		Interface Meter
		(meter, paste, etc.)	
Purging: (Y/N)	N	Purging/Sampling	N/A
i digilig. (1/14)	14	Equipment:	I W/ /*\
Volume Purged Water=	N/A	Ечирпепт.	
Decontamination required: (Y/N)	N/A		
Number washes:	N/A		
Number rinses:	N/A		
	1 4/ / 1		
Final pH=	N/A		
Final Conductivity (uS/cm)=	N/A		
Final Temperature (deg C)=	N/A		
. () /		<u> </u>	

Site Name:	CAM-5	Mackar Inlet	Nunavut
Date of Sampling Event:	2014-08-21	Time:	12:55
Names of Samplers:	A.Passalis		
Landfill Name:		Il Disposal Facility	
Monitoring Well ID:	MW-7		
Sample Number:	N/A (dry)		
Condition of Well:	Good		
Measured Data			
Well pipe height above ground	38		
Diameter of well (cm)=	4	ID	
Depth of well installation (cm)=	350		
(from ground surface)			
Length screened section (cm)=	200		
Depth to top of screen (cm)=	50		
(from ground surface)	30		
Depth to water surface (cm)=	N/A	Measurement method:	Interface Meter
(from top of pipe)	14,71	(meter, tape, etc.)	mitoridoo motor
Static water level (cm)=	N/A		
(below ground surface)	14//(
Measured well refusal depth (cm)=	169	Evidence of sludge or	No
(i.e. depth to frozen ground)	105	siltation:	110
Thickness of water column (cm)=	N/A		
` '			
Static volume of water in well (mL)=	N/A		
Free product thickness (mm)=	N/A	Measurement method:	
rice product thickness (min)=	14//((meter, paste, etc.)	Interface Meter
		(meter, paste, etc.)	
Purging: (Y/N)	N	Purging/Sampling	N/A
gg. (1/14)		Equipment:	, .
Volume Purged Water=	N/A	Equipment.	
Decontamination required: (Y/N)	N/A		
Number washes:	N/A		
Number rinses:	N/A		
Final pH=	N/A		
Final Conductivity (uS/cm)=	N/A		
Final Temperature (deg C)=	N/A		
:a. : sporataro (aog o/-	, , ,	<u> </u>	

Site Name:	CAM-5	Mackar Inlet	Nunavut
Date of Sampling Event:	2014-08-21	Time:	12:55
Names of Samplers:	A.Passalis		
Landfill Name:		Il Disposal Facility	
Monitoring Well ID:	MW-8		
Sample Number:	C514-8W	(dup: C514-BDW1)	
Condition of Well:	Good		
Measured Data			
Well pipe height above ground	69		
		ID.	
Diameter of well (cm)=	4	ID	
Depth of well installation (cm)=	350		
(from ground surface)	000		
Length screened section (cm)=	200		
Depth to top of screen (cm)=	50		
(from ground surface)			
Donth to water surface (sm)		Magazina antino athe adi	
Depth to water surface (cm)=	205	Measurement method:	Interface Meter
(from top of pipe)		(meter, tape, etc.)	
Static water level (cm)=	136		
(below ground surface)		<u> </u>	
Measured well refusal depth (cm)=	232	Evidence of sludge or	No
(i.e. depth to frozen ground)		siltation:	
Thickness of water column (cm)=	27		
Static volume of water in well (mL)=	339		
Ctatic volume of water in well (inc)=			
Free product thickness (mm)=	0	Measurement method:	
, ,		(meter, paste, etc.)	Interface Meter
		, , , ,	
Purging: (Y/N)	Υ	Purging/Sampling	Waterra Tubing,
		Equipment:	Foot Valve
Volume Purged Water=	500 mL		
Decontamination required: (Y/N)	N, dedicated		
Number washes:	N/A		
Number rinses:	N/A		
Final pH=	8.6		
Final Conductivity (uS/cm)=	441		
Final Temperature (deg C)=	2.4		

ANNEX 1

Laboratory Results

Jean-Pierre Pelletier

De: Angela Lyster <Angela.Lyster@exova.com>

Envoyé: 28 février 2015 10:42 À: Jean-Pierre Pelletier

Objet: RE: TR: SIF report - Cambridge Bay Project

Pièces jointes: SIF CAM-5.pdf; Lot notes CAM-5.pdf; Confirmation of Analysis - Lot 1023071.pdf; COC - Lot 1023071.pdf

Hi Jean-Pierre,

I printed the report for CAM-5, but it's showing up blank because there were no sample non-conformances (see attached). I have also attached the lot notes for CAM-5, as well as the COC and COA.

If you need something else from this report, please let me know. I can work with our IT department to develop something a little different.

Thanks, Angela

Angela Lyster Client Services Manager, Western Canada Exova Canada 403-827-1316

-----Original Message-----

angela.lyster@exova.com

From: Jean-Pierre Pelletier [mailto:Jean-Pierre.Pelletier@lvm.ca]

Sent: Saturday, February 28, 2015 9:02 AM

To: Angela Lyster

Subject: RE: TR: SIF report - Cambridge Bay Project

Good morning Angela,

Could you make it Monday? It is the last piece missing for a report I have to wrap up.

Thx

^{**}SVP prendre note du nouveau numéro de téléphone/poste et de bureau / Please take note of my new phone/extension and office suite number**

7217 Roper Road NW Edmonton, Alberta Canada, T6B 3J4

T: +1 (780) 438-5522 F: +1 (780) 434-8586 E: Edmonton@exova.com W: www.exova.com

Sample Integrity Scorecard

Notes on lot for CAM-5

Received extra sample C514-BD1.

Report was issued to correct for missing Mercury analysis on samples 1023071 (9 and 10). Previous report 1943938.

As per credit request dated Nov 11/14 from Angela Lyster credit 14-830425 and reissue with updated price for the CCMEC Service,

Page 1 of 3 **EXOVO**

Confirmation of Service Request

Lot ID: 1023071

Number of Samples: 11

Printed Date: Nov 19, 2014

Please verify the following service request. If you have corrections or questions, please contact Client Services.

Main Contact:	Primary Administrator:	Invoice Delivery To:	Bill Paid by:
Attn: Jean-Pierre Pelletier	Attn: Jean-Pierre Pelletier	Attn: Accounts Payable	Attn: Jean-Pierre Pelletier
SILA Remediation	SILA Remediation	SILA Remediation	SILA Remediation
250-1260 Boul Lebourgneuf	250-1260 Boul Lebourgneuf	350, rue Franquet	250-1260 Boul Lebourgneuf
Quebec, QC G2K 2G2	Quebec, QC G2K 2G2	Sainte-Foy, QC G1P 4P3	Quebec, QC G2K 2G2
Phone: (581) 984-2585	Phone: (581) 984-2585	Phone: (418) 653-4422	Phone: (581) 984-2585
Fax:	Fax:	Fax: (418) 653-3583	Fax:

Agreement Id 105540 Well Name Project Id CAM-5 2014 Well Location Project Name 2014 LFM Field Project Location Mackar Inlet Formation Project Legal Elevation KB PO# Elevation GR Proj. Acct. Code 14.071.309663 Drilling License Control Id C0042763 Sampled By A. Passalis Report Due Oct 08, 2014 Sampling Company Sila Received Date Aug 28, 2014 Est. Disposal Date Nov 07, 2014				
Project Name Project Location Project Location Project Legal Elevation KB PO# Elevation GR Proj. Acct. Code 14.071.309663 Drilling License Control Id C0042763 Sampled By A. Passalis Report Due Oct 08, 2014 Sampling Company Sila	Agreement Id	105540	Well Name	
Project Location Project Legal Elevation KB PO# Elevation GR Proj. Acct. Code 14.071.309663 Drilling License Control Id C0042763 Sampled By A. Passalis Report Due Oct 08, 2014 Sampling Company Sila	Project Id	CAM-5 2014	Well Location	
Project Legal PO# Elevation KB Elevation GR Proj. Acct. Code 14.071.309663 Control Id C0042763 Report Due Oct 08, 2014 Elevation KB Elevation GR Drilling License Sampled By A. Passalis Sampling Company Sila	Project Name	2014 LFM	Field	
PO# Elevation GR Proj. Acct. Code 14.071.309663 Drilling License Control Id C0042763 Sampled By A. Passalis Report Due Oct 08, 2014 Sampling Company Sila	Project Location	Mackar Inlet	Formation	
Proj. Acct. Code 14.071.309663 Control Id C0042763 Report Due Oct 08, 2014 Drilling License Sampled By A. Passalis Sampling Company Sila	Project Legal		Elevation KB	
Control Id C0042763 Sampled By A. Passalis Report Due Oct 08, 2014 Sampling Company Sila	PO#		Elevation GR	
Report Due Oct 08, 2014 Sampling Company Sila	Proj. Acct. Code	14.071.309663	Drilling License	
	Control Id	C0042763	Sampled By	A. Passalis
Received Date Aug 28, 2014 Est. Disposal Date Nov 07, 2014	Report Due	Oct 08, 2014	Sampling Company	Sila
	Received Date	Aug 28, 2014	Est. Disposal Date	Nov 07, 2014

Service Information

Sample Id	1 4837192	Service 05	Service Name Drying and Grinding
Date Sampled Priority Sample Description	08-21-2014 Normal C514-5WA	PCB2 I DISP TT44-noB CCMEC-E	B PCBs in soil or sediments Environmental Disposal Fee CCME metals in soil no HWS Boron CCME Hydrocarbons: BTEX, F1-F4 in Soil by Cold Extraction
Sample Id Date Sampled	2 4837193 08-21-2014		Service Name Drying and Grinding B PCBs in soil or sediments
Priority Sample Description	Normal C514-5WB	DISP TT44-noB CCMEC-E	Environmental Disposal Fee CCME metals in soil no HWS Boron CCME Hydrocarbons: BTEX, F1-F4 in Soil by Cold Extraction
Sample Id	3 4837194	Service 05	Service Name Drying and Grinding
Date Sampled Priority Sample Description	08-21-2014 Normal C514-6WA	PCB2 I DISP TT44-noB CCMEC-E	B PCBs in soil or sediments Environmental Disposal Fee CCME metals in soil no HWS Boron CCME Hydrocarbons: BTEX, F1-F4 in Soil by Cold Extraction
Sample Id	4 4837195	Service 05	Service Name Drying and Grinding
Date Sampled Priority Sample Description	08-21-2014 Normal C514-6WB	PCB2 I DISP TT44-noB CCMEC-E	B PCBs in soil or sediments Environmental Disposal Fee CCME metals in soil no HWS Boron CCME Hydrocarbons: BTEX, F1-F4 in Soil by Cold Extraction

Page 2 of 3 **Exova**

Confirmation of Service Request

Lot ID: 1023071

Number of Samples: 11

Printed Date: Nov 19, 2014

Please verify the following service request. If you have corrections or questions, please contact Client Services.

Sample Id
Date Sampled OB-21-2014 PCB2 PCB3 in soil or sediments DISP Environmental Disposal Fee CCME metals in soil no HWNS Boron
Disp
Priority Normal C514-7WA C514-7WA C514-7WA C514-7WA C514-7WA C6ME metals in sol in o HWS Boron C6ME metals in sol in o H
Sample C514-7WA
Description
Sample Id
May
Date Sampled 09-21-2014 DISP Environmental Disposal Fee CCME + Manual Disp Come Environmental Disposal Fee Come Environm
Date Sample 08-21-2014 Normal TT44-noB CCME metals in soil no HWS Boron
Priority Normal DISP
Comparison Com
Description
Sample Id 7
Marcology
Mary 198
Date Sample O8-21-2014 Normal TT44-noB CCME metals in soil no HWS Boron
DISP
Composition
Sample Id
Sample Id
Sample A
May
Disparse
Priority Normal DISP
Sample Description
Sample Id Service
Sample Id
Sample Id 4837200
TW22
Date Sampled Priority Normal Normal DISP Environmental Disposal Fee CCMEW-E CCMEW-E CCMEBTEX, F1,F2, F3 in water by GC/FID/MSD Sample Id 10 Service BCFID/MSD Service Name Total Hg TW22 Total metals - water PCB3 B PCBs in water TW22 Total metals - water PCB3 B PCBs in water DISP Environmental Disposal Fee CCMEW-E
Priority Normal DISP Environmental Disposal Fee CCMEW-E CCME BTEX, F1,F2, F3 in water by GC/FID/MSD Sample Id 10 Service Name 4837201 HG Total Hg TW22 Total metals - water PCB3 B PCBs in water Date Sampled 08-21-2014 PCB3 B PCBs in water DISP Environmental Disposal Fee CCMEW-E CCME BTEX, F1,F2, F3 in water by GC/FID/MSD Sample Id 11 Service Service Name Disp Environmental Disposal Fee Description GC/FID/MSD Sample Id 11 Service Service Name Disp Disp Environmental Disposal Fee Disp Disp Disp Disp Disp Disp Disp Disp
Sample C514-8W CCMEW-E CCME BTEX, F1,F2, F3 in water by GC/FID/MSD Sample Id 10 Service Service Name Total Hg TW22 Total metals - water Priority Normal DISP Environmental Disposal Fee CCME BTEX, F1,F2, F3 in water by GC/FID/MSD B PCB3 B PCBs in water PCB3 B PCBs in water DISP Environmental Disposal Fee CCMEW-E CCME BTEX, F1,F2, F3 in water by GC/FID/MSD Sample Id 11 Service Service Name OSC/FID/MSD Sample Id 11 Service Service Name OSC/FID/MSD Date Sampled 08-21-2014 PCB2 B PCBs in soil or sediments DISP Environmental Disposal Fee TT44-noB CCME metals in soil no HWS Boron
Description Sample Id 10
Sample Id 10 4837201 Bate Sampled O8-21-2014 Priority Normal Description Service Service Name Total Hg TW22 Total metals - water PCB3 B PCBs in water DISP Environmental Disposal Fee CCMEW-E CCMEW-E CCMEW-E CCMEBTEX, F1,F2, F3 in water by GC/FID/MSD Service Service Name Drying and Grinding PCB2 Date Sampled O8-21-2014 Priority Normal DISP Environmental Disposal Fee Service Name Drying and Grinding PCB2 B PCBs in soil or sediments DISP Environmental Disposal Fee TT44-noB CCME metals in soil no HWS Boron
Asample 10 4837201 HG Total Hg TW22 Total metals - water PCB3 B PCBs in water PCB3 B PCBs in water DISP Environmental Disposal Fee CCMEW-E CCMEW-E CCME BTEX, F1,F2, F3 in water by GC/FID/MSD Sample 10 11 Service Service Name Date Sampled 08-21-2014 Priority Normal Normal OSE SERVICE SERVICE Name DISP DISP Environmental Disposal Fee DISP Environmental Disposal Fee TT44-noB CCME metals in soil no HWS Boron CCME metals in soil no HWS Boron
TW22 Total metals - water Priority Normal DISP Environmental Disposal Fee CCMEW-E CCME BTEX, F1,F2, F3 in water by GC/FID/MSD Sample Id 11 Service Service Name Date Sampled 08-21-2014 DISP DISP Environmental Disposal Fee Date Sampled 08-21-2014 DISP DISP Environmental Disposal Fee Disposal Grinding PCB2 B PCBs in soil or sediments DISP Environmental Disposal Fee TT44-noB CCME metals in soil no HWS Boron
Priority Normal Sample C514-BDW1 Sample Id Service PCB3 B PCBs in water DISP Environmental Disposal Fee CCME BTEX, F1,F2, F3 in water by GC/FID/MSD Service Name Drying and Grinding PCB2 B PCBs in soil or sediments DISP Environmental Disposal Fee TT44-noB CCME BTEX, F1,F2, F3 in water by GC/FID/MSD Service Name Drying and Grinding PCB2 B PCBs in soil or sediments DISP Environmental Disposal Fee TT44-noB CCME metals in soil no HWS Boron
Priority Sample C514-BDW1 DISP CCMEW-E CCME BTEX, F1,F2, F3 in water by GC/FID/MSD Sample Id 11 Service Drying and Grinding PCB2 Priority Normal Normal DISP Environmental Disposal Fee CCME BTEX, F1,F2, F3 in water by GC/FID/MSD Service Name Drying and Grinding PCB2 B PCBs in soil or sediments DISP Environmental Disposal Fee TT44-noB CCME metals in soil no HWS Boron
Sample C514-BDW1 Sample Id Service Service Name Drying and Grinding PCB2 B PCBs in soil or sediments DISP CME BTEX, F1,F2, F3 in water by GC/FID/MSD Service Service Name Drying and Grinding PCB2 B PCBs in soil or sediments DISP CME BTEX, F1,F2, F3 in water by GC/FID/MSD Service Name Drying and Grinding PCB2 B PCBs in soil or sediments DISP CME metals in soil no HWS Boron CME metals in soil no HWS Boron
Sample Id 11 Service 4837290 Date Sampled Priority Normal Service Service Name DISP Environmental Disposal Fee TT44-noB CCME BTEX, F1,F2, F3 in water by GC/FID/MSD Service Name Drying and Grinding PCB2 B PCBs in soil or sediments DISP Environmental Disposal Fee TT44-noB CCME metals in soil no HWS Boron
Sample Id 11 Service Service Name 4837290 Date Sampled Priority Normal OF14 RP4 CF14 RP4 Service Service Name 05 Drying and Grinding PCB2 B PCBs in soil or sediments DISP Environmental Disposal Fee TT44-noB CCME metals in soil no HWS Boron
Date Sampled Normal OS Drying and Grinding PCB2 B PCBs in soil or sediments DISP Environmental Disposal Fee CCME metals in soil no HWS Boron
PCB2 B PCBs in soil or sediments Date Sampled 08-21-2014 DISP Environmental Disposal Fee Priority Normal TT44-noB CCME metals in soil no HWS Boron
Date Sampled 08-21-2014 DISP Environmental Disposal Fee Priority Normal TT44-noB CCME metals in soil no HWS Boron
Priority Normal TT44-noB CCME metals in soil no HWS Boron
Comple CF44 DD4
Description by Cold Extraction
by Colu Extraction
Other Rillable Services Service Service Name Overtity
Other Billable Services Service Name Quantity OF Drying and Grinding 9.00
Other Billable Services Service Service Name Quantity 05 Drying and Grinding 9.00 CCMEC-E CCME Hydrocarbons: BTEX, F1-F4 in Soil 9.00

Page 3 of 3

Confirmation of Service Request

Lot ID: 1023071

Number of Samples: 11

Printed Date: Nov 19, 2014

Please verify the following service request. If you have corrections or questions, please contact Client Services.

CCMEC-E	CCME Hydrocarbons: BTEX, F1-F4 in Soil	9.00
CCMEW-E	CCME BTEX, F1,F2, F3 in water by	2.00
CCMEW-E	CCME BTEX, F1,F2, F3 in water by	2.00
DISP	Environmental Disposal Fee	11.00
DISP	Environmental Disposal Fee	11.00
PCB2	PCBs in soil or sediments	9.00
PCB2	PCBs in soil or sediments	9.00
PCB3	PCBs in water	2.00
PCB3	PCBs in water	2.00
TT44-noB	CCME metals in soil no HWS Boron	9.00
TT44-noB	CCME metals in soil no HWS Boron	9.00
TW22	Total metals - water	2.00
TW22	Total metals - water	2.00

Sample Service Count

Service Name	Service Code	Service Quantity
CCME BTEX, F1,F2, F3 in water by GC/FID/MSD	CCMEW-E	2
CCME Hydrocarbons: BTEX, F1-F4 in Soil by Cold Extraction	CCMEC-E	9
CCME metals in soil no HWS Boron	TT44-noB	9
Drying and Grinding	05	9
Environmental Disposal Fee	DISP	11
PCBs in soil or sediments	PCB2	9
PCBs in water	PCB3	2
Total Hg	HG	2
Total metals - water	TW22	2

Notes

Report was issued to correct for missing Mercury analysis on samples 1023071 (9 and 10) . Previous report 1943938

If required for invoice approval, please sign and return to the address indicated at the top of the page.

(Signature)			

Report Delivery Plan

Contact	Company	Address
Andrew Passalis	SILA Remediation	350, rue Franquet
		Sainte-Foy, QC G1P 4P3
		Phone: (204) 791-4938 Fax: (418) 653-3583
<u>Copies</u> <u>Del</u>	<u>ivery</u> <u>Format</u>	Email: andrew.passalis@gmail.com
1 Email - S	Single Report PDF	
Jean-Pierre Pelletier	SILA Remediation	250-1260 Boul Lebourgneuf
		Quebec, QC G2K 2G2
		Phone: (581) 984-2585 Fax:
<u>Copies</u> <u>Del</u>	<u>ivery</u> <u>Format</u>	Email: jean-peirre.pelletier@lvm.ca
1 Email - S	Single Report PDF	

7217 Roper Road NW Edmonton, Alberta T6B 3J4, Canada

T: +1 (780) 438-5522 F: +1 (780) 434-8586 E: Edmonton@exova.com W: www.exova.com

Report Transmission Cover Page

Bill To: Biogenie S.R.D.C. Inc.

350, rue Franquet

Project: Report To: Biogenie S.R.D.C. Inc.

ID: CAM-5 2014 Name:

Location:

P.O.:

Control Number: 2014 LFM

G1P 4P3 LSD:

Mackar Inlet

14.071.309663

Date Received: Aug 28, 2014 Date Reported: Sep 8, 2014 Report Number: 1943938

Lot ID: 1023071

C0042763

Attn: Jean-Pierre Pelletier

Sainte-Foy, QC, Canada

Sampled By: A. Passalis

Acct code:

Company: Sila

Contact & Affiliation	Address	Delivery Commitments	
Accounts Payable Biogenie S.R.D.C. Inc.	350, rue Franquet Sainte-Foy, Quebec G1P 4P3 Phone: (418) 653-4422 Fax: (418) 653-3583 Email: n/a	On [Lot Approval and Final Test Report Approval] send (Invoice) by Post	М
Eric Thomassin-Lacroix Biogenie S.R.D.C. Inc.	350, rue Franquet Sainte-Foy, Quebec G1P 4P3 Phone: (418) 653-4422 Fax: (418) 653-3583 Email: n/a	On [Lot Approval and Final Test Report Approval] send (COC, Test Report) by Post	М
Andrew Passalis Biogenie S.R.D.C. Inc.	350, rue Franquet Sainte-Foy, Quebec G1P 4P3 Phone: (418) 653-4422 Fax: (418) 653-3583 Email: andrew.passalis@gmail.com	On [Report Approval] send (COC, Test Report) by Email - Merge Reports On [Report Approval] send (Test Report) by Email - Single Report	
Jean-Pierre Pelletier Biogenie S.R.D.C. Inc.	350, rue Franquet Sainte-Foy, Quebec G1P 4P3 Phone: (418) 653-4422 Fax: (418) 653-3583 Email: jean-peirre.pelletier@lvm.ca	On [Report Approval] send (COC, Test Report) by Email - Merge Reports On [Report Approval] send (Test Report) by Email - Single Report	

Notes To Clients:

T: +1 (780) 438-5522 F: +1 (780) 434-8586 E: Edmonton@exova.com W: www.exova.com

Page 1 of 23

Analytical Report

Bill To: Biogenie S.R.D.C. Inc.

Report To: Biogenie S.R.D.C. Inc.

350, rue Franquet 2014 LFM Name: Sainte-Foy, QC, Canada Location:

G1P 4P3

Attn: Jean-Pierre Pelletier P.O.:

Sampled By: A. Passalis

Company: Sila

Project:

LSD:

Acct code:

ID: CAM-5 2014

Mackar Inlet

14.071.309663

Lot ID: 1023071

Control Number: C0042763 Aug 28, 2014 Date Received: Date Reported: Sep 8, 2014

1943938 Report Number:

	Refe	rence Number	1023071-1	1023071-2	1023071-3	
		Sample Date	Aug 21, 2014	Aug 21, 2014	Aug 21, 2014	
		Sample Time	NA	NA	NA	
	Sa	mple Location				
	Samp	le Description	C514-5WA	C514-5WB	C514-6WA	
		Matrix	Soil	Soil	Soil	
Analyte		Units	Results	Results	Results	Nominal Detection Limit
Hot Water Soluble						
Boron	Hot Water Soluble	mg/kg	<0.20	<0.20	<0.20	0.2
Metals Strong Acid Dige	stion					
Mercury	Strong Acid Extractable	mg/kg	<0.01	<0.01	0.01	0.01
Antimony	Strong Acid Extractable	mg/kg	<0.2	<0.2	<0.2	0.2
Arsenic	Strong Acid Extractable	mg/kg	0.2	0.2	<0.2	0.2
Barium	Strong Acid Extractable	mg/kg	11	20	12	1
Beryllium	Strong Acid Extractable	mg/kg	0.1	0.1	0.1	0.1
Cadmium	Strong Acid Extractable	mg/kg	0.01	0.03	0.02	0.01
Chromium	Strong Acid Extractable	mg/kg	4.6	3.9	3.1	0.5
Cobalt	Strong Acid Extractable	mg/kg	2.2	2.8	2.3	0.1
Copper	Strong Acid Extractable	mg/kg	3.1	5.9	2.2	1
Lead	Strong Acid Extractable	mg/kg	<4.9	<5.0	<4.9	5
Molybdenum	Strong Acid Extractable	mg/kg	<1.0	<1.0	<1.0	1
Nickel	Strong Acid Extractable	mg/kg	3.0	6.1	2.9	0.5
Selenium	Strong Acid Extractable	mg/kg	<0.3	<0.3	<0.3	0.3
Silver	Strong Acid Extractable	mg/kg	0.3	0.5	0.1	0.1
Thallium	Strong Acid Extractable	mg/kg	0.06	0.05	<0.05	0.05
Tin	Strong Acid Extractable	mg/kg	2.9	2.9	3.0	1
Uranium	Strong Acid Extractable	mg/kg	0.5	0.6	<0.5	0.5
Vanadium	Strong Acid Extractable	mg/kg	10.2	9.9	7.4	0.1
Zinc	Strong Acid Extractable	mg/kg	14	18	15	1
Physical and Aggregate		99				
Moisture	Wet Weight @ 105°C	%	6.4	7.5	6.8	0.1
Mono-Aromatic Hydroca						
Extraction Date	Volatiles		28-Aug-14	28-Aug-14	28-Aug-14	
Benzene	Dry Weight	mg/kg	<0.005	<0.005	<0.005	0.005
Toluene	Dry Weight	mg/kg	<0.02	<0.03	<0.02	0.02
Ethylbenzene	Dry Weight	mg/kg	<0.01	<0.01	<0.01	0.01
Total Xylenes (m,p,o)	Dry Weight	mg/kg	<0.03	<0.03	<0.03	0.03
Volatile Petroleum Hydro		99	10.00	10.00	10.00	0.00
F1 C6-C10	Dry Weight	mg/kg	<10	<10	<10	10
F1 -BTEX	Dry Weight	mg/kg	<10	<10	<10	10
Extractable Petroleum H		9,119	710	310	-1.0	10
Extraction Date	Total Extractables		29-Aug-14	29-Aug-14	29-Aug-14	
Silica Gel Cleanup	Total Extraolabiles		Done	Done	Done	
F2c C10-C16	Dry Weight	mg/kg	<50	<50	<50	50
1 20 010 010	Dry Worgin	mg/kg	~ 50	~ 00	\ 00	30

T: +1 (780) 438-5522 F: +1 (780) 434-8586 E: Edmonton@exova.com W: www.exova.com

Analytical Report

Bill To: Biogenie S.R.D.C. Inc.

350, rue Franquet

Project: ID:

Lot ID: 1023071

Report To: Biogenie S.R.D.C. Inc.

CAM-5 2014 2014 LFM Name:

Control Number: C0042763 Date Received: Aug 28, 2014 Sep 8, 2014

Sainte-Foy, QC, Canada G1P 4P3

LSD:

Mackar Inlet Date Reported:

Attn: Jean-Pierre Pelletier

Sampled By: A. Passalis

P.O.: Acct code:

Location:

1943938 Report Number:

Company: Sila

Reference Number Sample Date Sample Time **Sample Location**

1023071-1 Aug 21, 2014 NA

14.071.309663

1023071-2 Aug 21, 2014 1023071-3

054451414

NA

Aug 21, 2014 NA

0544 514/0

CEAA CIMA

		Sample Description	C514-5WA	C514-5WB	C514-6WA	
		Matrix	Soil	Soil	Soil	
Analyte		Units	Results	Results	Results	Nominal Detection Limit
Extractable Petroleum F	lydrocarbons - Soil	- Continued				
F3c C16-C34	Dry Weight	mg/kg	<50	<50	<50	50
F4c C34-C50	Dry Weight	mg/kg	<100	<100	<100	100
F4HTGCc C34-C50+	Dry Weight	mg/kg	<100	<100	<100	100
% C50+		%	<5	<5	<5	
Polychlorinated Biphen	yls - Soil					
Aroclor 1016	Dry Weight	mg/kg	<0.1	<0.1	<0.1	0.1
Aroclor 1221	Dry Weight	mg/kg	<0.1	<0.1	<0.1	0.1
Aroclor 1232	Dry Weight	mg/kg	<0.1	<0.1	<0.1	0.1
Aroclor 1242	Dry Weight	mg/kg	<0.1	<0.1	<0.1	0.1
Aroclor 1248	Dry Weight	mg/kg	<0.1	<0.1	<0.1	0.1
Aroclor 1254	Dry Weight	mg/kg	<0.1	<0.1	<0.1	0.1
Aroclor 1260	Dry Weight	mg/kg	<0.1	<0.1	<0.1	0.1
Aroclor 1262	Dry Weight	mg/kg	<0.1	<0.1	<0.1	0.1
Aroclor 1268	Dry Weight	mg/kg	<0.1	<0.1	<0.1	0.1
Total PCBs	Dry Weight	mg/kg	<0.1	<0.1	<0.1	0.1
Polychlorinated Biphen	yls - Soil - Surrogat	е				
Decachlorobiphenyl	Surrogate	%	100	110	100	50-150

T: +1 (780) 438-5522 F: +1 (780) 434-8586 E: Edmonton@exova.com W: www.exova.com

Analytical Report

Bill To: Biogenie S.R.D.C. Inc.

Report To: Biogenie S.R.D.C. Inc. ID: CAM-5 2014 Name: 350, rue Franquet

Sainte-Foy, QC, Canada Location:

G1P 4P3 LSD:

Attn: Jean-Pierre Pelletier P.O.: Sampled By: A. Passalis Acct code:

Company: Sila

Project:

14.071.309663

Control Number: C0042763 2014 LFM Date Received: Aug 28, 2014 Mackar Inlet Date Reported: Sep 8, 2014

> 1943938 Report Number:

Lot ID: 1023071

Units	Results	Results	Results	Nominal Detecti Limit
Matrix	Soil	Soil	Soil	
Sample Description	C514-6WB	C514-7WA	C514-7WB	
Sample Location				
Sample Time	NA	NA	NA	
Sample Date	Aug 21, 2014	Aug 21, 2014	Aug 21, 2014	
Reference Number	1023071-4	1023071-5	1023071-6	

	Sar	mple Location				
	Samp	le Description	C514-6WB	C514-7WA	C514-7WB	
		Matrix	Soil	Soil	Soil	
Analyte		Units	Results	Results	Results	Nominal Detection Limit
Hot Water Soluble						
Boron	Hot Water Soluble	mg/kg	<0.20	<0.20	<0.20	0.2
Metals Strong Acid Dige	estion					
Mercury	Strong Acid Extractable	mg/kg	<0.01	<0.01	<0.01	0.01
Antimony	Strong Acid Extractable	mg/kg	<0.2	<0.2	<0.2	0.2
Arsenic	Strong Acid Extractable	mg/kg	<0.2	0.7	0.2	0.2
Barium	Strong Acid Extractable	mg/kg	13	28	29	1
Beryllium	Strong Acid Extractable	mg/kg	0.1	0.2	0.2	0.1
Cadmium	Strong Acid Extractable	mg/kg	<0.01	<0.01	<0.01	0.01
Chromium	Strong Acid Extractable	mg/kg	3.0	15.4	6.2	0.5
Cobalt	Strong Acid Extractable	mg/kg	2.3	3.7	3.2	0.1
Copper	Strong Acid Extractable	mg/kg	5.0	8.6	6.7	1
Lead	Strong Acid Extractable	mg/kg	<5.0	7.3	<4.9	5
Molybdenum	Strong Acid Extractable	mg/kg	<1.0	<1.0	<1.0	1
Nickel	Strong Acid Extractable	mg/kg	3.1	11.4	7.7	0.5
Selenium	Strong Acid Extractable	mg/kg	<0.3	<0.3	<0.3	0.3
Silver	Strong Acid Extractable	mg/kg	<0.1	0.3	0.1	0.1
Thallium	Strong Acid Extractable	mg/kg	< 0.05	0.08	0.07	0.05
Tin	Strong Acid Extractable	mg/kg	3.4	7.9	4.1	1
Uranium	Strong Acid Extractable	mg/kg	1.2	0.9	0.8	0.5
Vanadium	Strong Acid Extractable	mg/kg	8.0	17.3	11.9	0.1
Zinc	Strong Acid Extractable	mg/kg	12	22	20	1
Physical and Aggregate	Properties					
Moisture	Wet Weight @ 105°C	%	2.1	3.7	2.2	0.1
Mono-Aromatic Hydroca	arbons - Soil					
Extraction Date	Volatiles		28-Aug-14	28-Aug-14	28-Aug-14	
Benzene	Dry Weight	mg/kg	< 0.005	< 0.005	< 0.005	0.005
Toluene	Dry Weight	mg/kg	< 0.02	< 0.02	< 0.02	0.02
Ethylbenzene	Dry Weight	mg/kg	<0.01	<0.01	<0.01	0.01
Total Xylenes (m,p,o)	Dry Weight	mg/kg	< 0.03	< 0.03	< 0.03	0.03
Volatile Petroleum Hydr	ocarbons - Soil					
F1 C6-C10	Dry Weight	mg/kg	<10	<10	<10	10
F1 -BTEX	Dry Weight	mg/kg	<10	<10	<10	10
Extractable Petroleum H	lydrocarbons - Soil	-				
Extraction Date	Total Extractables		29-Aug-14	29-Aug-14	29-Aug-14	
Silica Gel Cleanup			Done	Done	Done	
F2c C10-C16	Dry Weight	mg/kg	<50	<50	<50	50

T: +1 (780) 438-5522 F: +1 (780) 434-8586 E: Edmonton@exova.com W: www.exova.com

Analytical Report

Bill To: Biogenie S.R.D.C. Inc.

Report To: Biogenie S.R.D.C. Inc.

350, rue Franquet 2014 LFM Name: Sainte-Foy, QC, Canada Location:

G1P 4P3

Attn: Jean-Pierre Pelletier

Sampled By: A. Passalis

Company: Sila

Project:

LSD:

P.O.:

Acct code:

CAM-5 2014 ID:

Mackar Inlet

14.071.309663

Control Number: C0042763

Lot ID: 1023071

Date Received: Aug 28, 2014 Date Reported: Sep 8, 2014 1943938 Report Number:

Reference Number 1023071-4 1023071-5 1023071-6 Sample Date Aug 21, 2014 Aug 21, 2014 Aug 21, 2014 Sample Time NA NA NA **Sample Location Sample Description** C514-7WA C514-7WB C514-6WB

		Sample Description	C314-0VD	C314-7 VVA	C314-7 WD	
		Matrix	Soil	Soil	Soil	
Analyte		Units	Results	Results	Results	Nominal Detection Limit
Extractable Petroleum F	lydrocarbons - Soil -	Continued				
F3c C16-C34	Dry Weight	mg/kg	<50	<50	<50	50
F4c C34-C50	Dry Weight	mg/kg	<100	<100	<100	100
F4HTGCc C34-C50+	Dry Weight	mg/kg	<100	<100	<100	100
% C50+		%	<5	<5	<5	
Polychlorinated Biphen	yls - Soil					
Aroclor 1016	Dry Weight	mg/kg	<0.1	<0.1	<0.1	0.1
Aroclor 1221	Dry Weight	mg/kg	<0.1	<0.1	<0.1	0.1
Aroclor 1232	Dry Weight	mg/kg	<0.1	<0.1	<0.1	0.1
Aroclor 1242	Dry Weight	mg/kg	<0.1	<0.1	<0.1	0.1
Aroclor 1248	Dry Weight	mg/kg	<0.1	<0.1	<0.1	0.1
Aroclor 1254	Dry Weight	mg/kg	<0.1	<0.1	<0.1	0.1
Aroclor 1260	Dry Weight	mg/kg	<0.1	<0.1	<0.1	0.1
Aroclor 1262	Dry Weight	mg/kg	<0.1	<0.1	<0.1	0.1
Aroclor 1268	Dry Weight	mg/kg	<0.1	<0.1	<0.1	0.1
Total PCBs	Dry Weight	mg/kg	<0.1	<0.1	<0.1	0.1
Polychlorinated Biphen	yls - Soil - Surrogate					
Decachlorobiphenyl	Surrogate	%	110	130	120	50-150

T: +1 (780) 438-5522 F: +1 (780) 434-8586 E: Edmonton@exova.com W: www.exova.com

Analytical Report

Bill To: Biogenie S.R.D.C. Inc.

350, rue Franquet

Project: Report To: Biogenie S.R.D.C. Inc. ID:

CAM-5 2014 2014 LFM

Sainte-Foy, QC, Canada G1P 4P3

Name: Location: Mackar Inlet

LSD:

Date Reported: Sep 8, 2014 1943938 Report Number:

Date Received:

Control Number: C0042763

Attn: Jean-Pierre Pelletier

P.O.: Sampled By: A. Passalis

Company: Sila

14.071.309663 Acct code:

Reference Number
Sample Date
Sample Time
Sample Location

1023071-7 Aug 21, 2014 NA

1023071-8 Aug 21, 2014

1023071-11 Aug 21, 2014

NA

NA

Lot ID: 1023071

Aug 28, 2014

	Sample Location					
	Sampl	Sample Description		C514-8WB	C514-BD1	
		Matrix	Soil	Soil	Soil	
Analyte		Units	Results	Results	Results	Nominal Detection
Hot Water Soluble						
Boron	Hot Water Soluble	mg/kg	<0.20	<0.20	<0.20	0.2
Metals Strong Acid Dige	estion					
Mercury	Strong Acid Extractable	mg/kg	<0.01	<0.01	<0.01	0.01
Antimony	Strong Acid Extractable	mg/kg	<0.2	<0.2	<0.2	0.2
Arsenic	Strong Acid Extractable	mg/kg	<0.2	0.2	0.2	0.2
Barium	Strong Acid Extractable	mg/kg	19	19	21	1
Beryllium	Strong Acid Extractable	mg/kg	<0.1	0.2	0.2	0.1
Cadmium	Strong Acid Extractable	mg/kg	<0.01	<0.01	<0.01	0.01
Chromium	Strong Acid Extractable	mg/kg	3.7	4.6	5.1	0.5
Cobalt	Strong Acid Extractable	mg/kg	2.7	3.2	2.9	0.1
Copper	Strong Acid Extractable	mg/kg	6.1	7.4	5.3	1
Lead	Strong Acid Extractable	mg/kg	<5.0	<4.9	<4.9	5
Molybdenum	Strong Acid Extractable	mg/kg	<1.0	<1.0	<1.0	1
Nickel	Strong Acid Extractable	mg/kg	8.1	4.5	6.8	0.5
Selenium	Strong Acid Extractable	mg/kg	<0.3	<0.3	<0.3	0.3
Silver	Strong Acid Extractable	mg/kg	<0.1	<0.1	<0.1	0.1
Thallium	Strong Acid Extractable	mg/kg	0.05	0.06	0.06	0.05
Tin	Strong Acid Extractable	mg/kg	3.5	3.6	3.4	1
Uranium	Strong Acid Extractable	mg/kg	<0.5	0.6	0.6	0.5
Vanadium	Strong Acid Extractable	mg/kg	9.1	11.5	10.9	0.1
Zinc	Strong Acid Extractable	mg/kg	16	17	17	1
Physical and Aggregate	Properties					
Moisture	Wet Weight @ 105°C	%	1.7	2.7	2.0	0.1
Mono-Aromatic Hydroc	arbons - Soil					
Extraction Date	Volatiles		28-Aug-14	28-Aug-14	28-Aug-14	
Benzene	Dry Weight	mg/kg	< 0.005	< 0.005	< 0.005	0.005
Toluene	Dry Weight	mg/kg	<0.02	< 0.02	< 0.02	0.02
Ethylbenzene	Dry Weight	mg/kg	<0.01	<0.01	<0.01	0.01
Total Xylenes (m,p,o)	Dry Weight	mg/kg	< 0.03	< 0.03	< 0.03	0.03
Volatile Petroleum Hydr	rocarbons - Soil					
F1 C6-C10	Dry Weight	mg/kg	<10	<10	<10	10
F1 -BTEX	Dry Weight	mg/kg	<10	<10	<10	10
Extractable Petroleum I	Hydrocarbons - Soil					
Extraction Date	Total Extractables		29-Aug-14	29-Aug-14	29-Aug-14	
Silica Gel Cleanup			Done	Done	Done	
F2c C10-C16	Dry Weight	mg/kg	<50	<50	<50	50

T: +1 (780) 438-5522 F: +1 (780) 434-8586 E: Edmonton@exova.com W: www.exova.com

Analytical Report

Bill To: Biogenie S.R.D.C. Inc.

Dry Weight

Dry Weight

Dry Weight

Dry Weight

Surrogate

Polychlorinated Biphenyls - Soil - Surrogate

Report To: Biogenie S.R.D.C. Inc.

ID: 350, rue Franquet 2014 LFM Name: Sainte-Foy, QC, Canada Location:

LSD:

P.O.:

G1P 4P3

Attn: Jean-Pierre Pelletier

Sampled By: A. Passalis

Company: Sila

Aroclor 1260

Aroclor 1262

Aroclor 1268

Total PCBs

Decachlorobiphenyl

Project:

CAM-5 2014

Mackar Inlet

14.071.309663 Acct code:

Lot ID: 1023071

< 0.1

<0.1

< 0.1

< 0.1

120

0.1

0.1

0.1

0.1

50-150

Control Number: C0042763 Date Received: Aug 28, 2014 Date Reported: Sep 8, 2014

Report Number: 1943938

		Reference Number	1023071-7	1023071-8	1023071-11	
		Sample Date	Aug 21, 2014	Aug 21, 2014	Aug 21, 2014	
		Sample Time	NA	NA	NA	
		Sample Location				
		Sample Description	C514-8WA	C514-8WB	C514-BD1	
		Matrix	Soil	Soil	Soil	
Analyte		Units	Results	Results	Results	Nominal Detection Limit
Extractable Petroleum F	lydrocarbons - Soil	- Continued				
F3c C16-C34	Dry Weight	mg/kg	<50	<50	<50	50
F4c C34-C50	Dry Weight	mg/kg	<100	<100	<100	100
F4HTGCc C34-C50+	Dry Weight	mg/kg	<100	<100	<100	100
% C50+		%	<5	<5	<5	
Polychlorinated Biphen	yls - Soil					
Aroclor 1016	Dry Weight	mg/kg	<0.1	<0.1	<0.1	0.1
Aroclor 1221	Dry Weight	mg/kg	<0.1	<0.1	<0.1	0.1
Aroclor 1232	Dry Weight	mg/kg	<0.1	<0.1	<0.1	0.1
Aroclor 1242	Dry Weight	mg/kg	<0.1	<0.1	<0.1	0.1
Aroclor 1248	Dry Weight	mg/kg	<0.1	<0.1	<0.1	0.1
Aroclor 1254	Dry Weight	mg/kg	<0.1	<0.1	<0.1	0.1

<0.1

<0.1

< 0.1

< 0.1

120

mg/kg

mg/kg

mg/kg

mg/kg

%

<0.1

<0.1

< 0.1

< 0.1

120

T: +1 (780) 438-5522 F: +1 (780) 434-8586 E: Edmonton@exova.com W: www.exova.com

Lot ID: 1023071

C0042763

1943938

Aug 28, 2014

Sep 8, 2014

Control Number:

Date Received:

Date Reported:

Report Number:

Analytical Report

Bill To: Biogenie S.R.D.C. Inc.

Report To: Biogenie S.R.D.C. Inc.

ID: 350, rue Franquet Name: Sainte-Foy, QC, Canada Location:

G1P 4P3

Attn: Jean-Pierre Pelletier

Sampled By: A. Passalis Company: Sila

Project:

LSD:

P.O.:

Acct code:

CAM-5 2014 2014 LFM

Mackar Inlet

14.071.309663

Reference Number

1023071-9 Aug 21, 2014

1023071-10 Aug 21, 2014

NA

C514-8W

NA

Sample Location Sample Description

Sample Date

Sample Time

C514-BDW1

	Sample Description	C314-0VV	C314-DDW1		
	Matrix	Water	Water		
	Units	Results	Results	Results	Nominal Detection Limit
Total	mg/L	26.3	27.7		0.02
Total	mg/L	6.7	6.9		0.2
Total	mg/L	31.5	33.1		0.05
Total	mg/L	15.6	16.2		0.2
Total	mg/L	0.478	0.497		0.005
Total	mg/L	14.1	14.6		0.4
Total	mg/L	43.5	45.4		0.05
Total	mg/L	69.9	70.9		0.4
Total	mg/L	8.3	8.4		0.3
Total	mg/L	< 0.0002	< 0.0002		0.0002
Total	mg/L	0.0040	0.0042		0.0002
Total	mg/L	0.180	0.190		0.001
Total	mg/L	0.0008	0.0007		0.0001
Total	mg/L	< 0.0005	< 0.0005		0.0005
Total	mg/L	0.148	0.144		0.002
Total	mg/L	0.00005	0.00006		0.00001
Total	mg/L	0.0678	0.0762		0.0005
Total	mg/L	0.0158	0.0162		0.0001
Total	mg/L	0.092	0.095		0.001
Total	mg/L	0.0118	0.0119		0.0001
Total	mg/L	0.035	0.036		0.001
Total	mg/L	0.007	0.007		0.001
Total	mg/L	0.0485	0.0520		0.0005
Total	mg/L	0.0031	0.0031		0.0002
Total	mg/L	0.00068	0.00167		0.00001
Total	mg/L	0.077	0.080		0.001
Total	mg/L	0.00027	0.00027		0.00005
Total	mg/L	<0.001	<0.001		0.001
Total	mg/L	1.64	1.72		0.0005
Total	mg/L	0.0063	0.0063		0.0005
Total	mg/L	0.0582	0.0602		0.0001
Total	mg/L	0.092	0.093		0.001
Total	mg/L	0.004	0.004		0.001
rocarbons - Water					
	mg/L	<0.001	<0.001		0.001
	mg/L	< 0.0005	< 0.0005		0.0005
	Total	Matrix Units	Matrix Water	Matrix Water Water Water Units Results Results Results	Matrix Water Water Water

50-150

Analytical Report

Bill To: Biogenie S.R.D.C. Inc.

Report To: Biogenie S.R.D.C. Inc. ID: 350, rue Franquet Name:

> Sainte-Foy, QC, Canada Location:

G1P 4P3 LSD:

Attn: Jean-Pierre Pelletier P.O.: Sampled By: A. Passalis

Company: Sila Project:

CAM-5 2014 2014 LFM

Mackar Inlet

Date Received: Date Reported: Report Number:

Control Number:

Aug 28, 2014 Sep 8, 2014 1943938

C0042763

Lot ID: 1023071

Acct code: 14.071.309663

> **Reference Number** Sample Date Sample Time **Sample Location Sample Description**

1023071-9 Aug 21, 2014

1023071-10 Aug 21, 2014

NA NA

Matrix

C514-8W Water

C514-BDW1 Water

Analyte	Units	Results	Results	Results	Nominal Detection Limit
Mono-Aromatic Hydrocarbons - Water - Continued					
Ethylbenzene	mg/L	<0.001	< 0.001		0.001
Total Xylenes (m,p,o)	mg/L	< 0.002	< 0.002		0.002
Volatile Petroleum Hydrocarbons - Water					
F1 C6-C10	mg/L	<0.1	<0.1		0.1
F1 -BTEX	mg/L	<0.1	<0.1		0.1
Extractable Petroleum Hydrocarbons - Water					
F2 C10-C16	mg/L	<0.1	<0.1		0.1

F1 -BTEX	mg/L	<0.1	<0.1	0.1
Extractable Petroleum Hydrocarbons - Water				
F2 C10-C16	mg/L	<0.1	<0.1	0.1
F3 C16-C34	mg/L	<0.1	<0.1	0.1
F3+ C34+	mg/L	<0.1	<0.1	0.1
Polychlorinated Biphenyls - Water				
Aroclor 1016	ug/L	<0.1	<0.1	0.1
Aroclor 1221	ug/L	<0.1	<0.1	0.1
Aroclor 1232	ug/L	<0.1	<0.1	0.1
Aroclor 1242	ug/L	<0.1	<0.1	0.1
Aroclor 1248	ug/L	<0.1	<0.1	0.1
Aroclor 1254	ug/L	<0.1	<0.1	0.1
Aroclor 1260	ug/L	<0.1	<0.1	0.1
Aroclor 1262	ug/L	<0.1	<0.1	0.1
Aroclor 1268	ug/L	<0.1	<0.1	0.1
Total PCBs	ug/L	<0.1	<0.1	0.1

Approved by:

Anthony Neumann, MSc Laboratory Operations Manager

Anthony Weuman

65

61

Polychlorinated Biphenyls - Water - Surrogate

Decachlorobiphenyl

Surrogate

T: +1 (780) 438-5522 F: +1 (780) 434-8586 E: Edmonton@exova.com W: www.exova.com

Quality Control

Bill To: Biogenie S.R.D.C. Inc. Project:

Report To: Biogenie S.R.D.C. Inc. ID: CAM-5 2014

350, rue Franquet Name: 2014 LFM Sainte-Foy, QC, Canada Location: Mackar Inlet

G1P 4P3 LSD:

Attn: Jean-Pierre Pelletier P.O.:
Sampled By: A. Passalis Acct code:

Company: Sila

Lot ID: 1023071

Control Number: C0042763

Date Received: Aug 28, 2014

Date Reported: Sep 8, 2014

Report Number: 1943938

Hot Water Solub	le					
Blanks	Units	Measured	Lower Limit	Upper Limit		Passed QC
Boron	mg/L	0.0071	-0.01	0.02		yes
Date Acquired:	August 29, 2014					
Client Sample Rep	licates Units	Replicate 1	Replicate 2	% RSD Criteria	Absolute Criteria	Passed QC
Boron	mg/kg	<0.20	<0.20	10	0.10	yes
Date Acquired:	August 29, 2014					
Control Sample	Units	Measured	Lower Limit	Upper Limit		Passed QC
Boron	mg/kg	1.52	1.07	2.05		yes
Date Acquired:	August 29, 2014					
Boron	mg/kg	0.09	0.09	0.11		yes
Date Acquired:	August 29, 2014					·
Metals Strong A	cid Digestion					
Blanks	Units	Measured	Lower Limit	Upper Limit		Passed QC
Mercury	ug/L	0.05	-0.07	0.13		yes
Antimony	ug/L	0.127	-0.1	0.2		yes
Arsenic	ug/L	0.027	-0.2	0.2		yes
Barium	ug/L	0.061	-1	1		yes
Beryllium	ug/L	0.004	-0.1	0.1		yes
Cadmium	ug/L	-0.008	-0.01	0.01		yes
Chromium	ug/L	0.052	-0.5	0.5		yes
Cobalt	ug/L	0.005	-0.1	0.1		yes
Copper	ug/L	0.109	-0.6	1.2		yes
Lead	ug/L	0.017	-5.0	5.0		yes
Molybdenum	ug/L	0.059	-1.0	1.0		yes
Nickel	ug/L	0.117	-0.4	0.7		yes
Selenium	ug/L	-0.015	-0.3	0.3		yes
Silver	ug/L	0.121	-0.09	0.14		yes
Thallium	ug/L	-0.012	-0.04	0.04		yes
Tin	ug/L	4.107	0.0	7.2		yes
Uranium	ug/L	0.006	-0.5	0.5		yes
Vanadium	ug/L	0.005	-0.1	0.1		yes
Zinc	ug/L	0.234	-1	1		yes
Date Acquired:	September 02, 2014					
Client Sample Rep	licates Units	Replicate 1	Replicate 2	% RSD Criteria	Absolute Criteria	Passed QC
Mercury	mg/kg	0.04	0.04	10	0.03	yes
Antimony	mg/kg	<0.2	<0.2	20	0.4	yes
Arsenic	mg/kg	2.3	2.2	20	0.4	yes
Barium	mg/kg	36	37	20	2	yes
Beryllium	mg/kg	0.4	0.3	20	0.2	yes
Cadmium	mg/kg	0.01	0.02	20	0.02	yes
Chromium	mg/kg	11.6	11.6	20	1.1	yes

14.071.309663

T: +1 (780) 438-5522 F: +1 (780) 434-8586 E: Edmonton@exova.com W: www.exova.com

Quality Control

Bill To: Biogenie S.R.D.C. Inc. Project:

Report To: Biogenie S.R.D.C. Inc. ID: CAM-5 2014 350, rue Franquet Name: 2014 LFM

Sainte-Foy, QC, Canada Location: Mackar Inlet

G1P 4P3 LSD:

Attn: Jean-Pierre Pelletier P.O.:
Sampled By: A. Passalis Acct code:

Company: Sila

Lot ID: 1023071

Control Number: C0042763

Date Received: Aug 28, 2014

Date Reported: Sep 8, 2014

Report Number: 1943938

Metals Strong Aci	d Digestion - Continue	ed				
Client Sample Replie	cates Units	Replicate 1	Replicate 2	% RSD Criteria	Absolute Criteria	Passed QC
Cobalt	mg/kg	4.9	4.3	20	0.2	yes
Copper	mg/kg	6.6	6.8	20	2.2	yes
Lead	mg/kg	8.1	7.4	20	0.2	yes
Molybdenum	mg/kg	<1.0	<1.0	20	2.2	yes
Nickel	mg/kg	7.9	8.5	20	1.1	yes
Selenium	mg/kg	<0.3	<0.3	20	0.7	yes
Silver	mg/kg	0.3	0.2	20	0.22	yes
Thallium	mg/kg	0.15	0.14	20	0.11	yes
Tin	mg/kg	2.9	3.0	20	2.2	yes
Uranium	mg/kg	0.7	0.7	20	1.1	yes
Vanadium	mg/kg	21.0	20.3	20	0.2	yes
Zinc	mg/kg	18	17	20	2	yes
Date Acquired:	September 02, 2014					
Control Sample	Units	Measured	Lower Limit	Upper Limit		Passed QC
Mercury	mg/kg	0.30	0.28	0.34		yes
Antimony	mg/kg	39.4	36.1	43.9		yes
Arsenic	mg/kg	40.7	36.7	44.3		yes
Barium	mg/kg	192	185	215		yes
Beryllium	mg/kg	19.4	17.4	22.2		yes
Cadmium	mg/kg	2.09	1.80	2.20		yes
Chromium	mg/kg	100	92.2	105.8		yes
Cobalt	mg/kg	21.2	18.5	22.5		yes
Copper	mg/kg	201	176.3	207.3		yes
Lead	mg/kg	21.0	18.6	21.8		yes
Molybdenum	mg/kg	196	172.6	215.4		yes
Nickel	mg/kg	99.8	90.6	107.4		yes
Selenium	mg/kg	37.2	36.1	42.9		yes
Silver	mg/kg	20.2	16.69	21.97		yes
Thallium	mg/kg	10.3	9.57	11.23		yes
Tin	mg/kg	189	171.9	201.9		yes
Uranium	mg/kg	102	90.3	108.0		yes
Vanadium	mg/kg	18.4	16.3	20.3		yes
Zinc	mg/kg	201	180	220		yes
Date Acquired:	September 02, 2014					
Mercury	mg/kg	0.08	0.05	0.11		yes
Date Acquired:	September 02, 2014					
Mercury	mg/kg	0.28	0.15	0.42		yes
Antimony	mg/kg	0.6	0.3	1.1		yes
Arsenic	mg/kg	80.4	65.9	97.9		yes
Barium	mg/kg	247	213	270		yes
Beryllium	mg/kg	0.6	0.5	0.9		yes

14.071.309663

T: +1 (780) 438-5522 F: +1 (780) 434-8586 E: Edmonton@exova.com W: www.exova.com

Quality Control

Bill To: Biogenie S.R.D.C. Inc. Project:

Report To: Biogenie S.R.D.C. Inc. ID: CAM-5 2014 350, rue Franquet Name: 2014 LFM

Sainte-Foy, QC, Canada Location: Mackar Inlet

G1P 4P3 LSD:
Attn: Jean-Pierre Pelletier P.O.:

Sampled By: A. Passalis Acct code: 14.071.309663

Company: Sila

Lot ID: **1023071**Control Number: C0042763

Date Received: Aug 28, 2014
Date Reported: Sep 8, 2014

Report Number: 1943938

Metals Strong Acid Digestion - Continued								
Control Sample	Units	Measured	Lower Limit	Upper Limit	Passed QC			
Cadmium	mg/kg	1.87	1.50	2.64	yes			
Chromium	mg/kg	33.2	27.4	39.2	yes			
Cobalt	mg/kg	13.6	11.3	16.0	yes			
Copper	mg/kg	187	162.7	222.9	yes			
Lead	mg/kg	119	99.6	135.6	yes			
Molybdenum	mg/kg	2.6	2.0	3.8	yes			
Nickel	mg/kg	57.0	47.1	73.5	yes			
Selenium	mg/kg	0.6	0.3	1.3	yes			
Silver	mg/kg	0.7	0.25	1.15	yes			
Thallium	mg/kg	0.32	0.26	0.40	yes			
Tin	mg/kg	3.2	1.0	5.4	yes			
Uranium	mg/kg	1.2	0.9	1.5	yes			
Vanadium	mg/kg	39.4	31.5	56.1	yes			
Zinc	mg/kg	465	355	550	yes			
Date Acquired:	September 02, 2014							

Metals	Total
--------	-------

Blanks	Units	Measured	Lower Limit	Upper Limit	Passed QC
Aluminum	mg/L	0.0043	-0.01	0.02	yes
Calcium	mg/L	0.0071	-0.1	0.1	yes
Iron	mg/L	0.0015	-0.01	0.02	yes
Magnesium	mg/L	0.0054	-0.04	0.04	yes
Manganese	mg/L	-0.0001	-0.003	0.003	yes
Potassium	mg/L	0.014	-0.1	0.2	yes
Silicon	mg/L	0.0026	-0.03	0.04	yes
Sodium	mg/L	0.0134	-0.1	0.2	yes
Sulfur	mg/L	0.0123	-0.1	0.2	yes
Antimony	ug/L	0.00028326	-0.2	0.2	yes
Arsenic	ug/L	0.0134757	-0.2	0.2	yes
Barium	ug/L	0.00987838	-1	1	yes
Beryllium	ug/L	0	-0.1	0.1	yes
Bismuth	ug/L	0.00671813	-0.5	0.5	yes
Boron	ug/L	0.0826097	-1	3	yes
Cadmium	ug/L	0.00957206	-0.007	0.012	yes
Chromium	ug/L	0.00351784	-0.7	0.3	yes
Cobalt	ug/L	-0.00132446	-0.1	0.1	yes
Copper	ug/L	0.796508	-1	1	yes
Lead	ug/L	0.00554493	-0.1	0.1	yes
Lithium	ug/L	0.0120698	-1	1	yes
Molybdenum	ug/L	0.0573581	-1	1	yes
Nickel	ug/L	-0.00784534	-0.5	0.5	yes
Selenium	ug/L	0.0089705	-0.2	0.2	yes

T: +1 (780) 438-5522 F: +1 (780) 434-8586 E: Edmonton@exova.com W: www.exova.com

Lot ID: 1023071

Aug 28, 2014

Sep 8, 2014

1943938

Control Number: C0042763

Date Received:

Date Reported:

Report Number:

Quality Control

Bill To: Biogenie S.R.D.C. Inc. Project:

Report To: Biogenie S.R.D.C. Inc. ID: CAM-5 2014

350, rue Franquet Name: 2014 LFM Sainte-Foy, QC, Canada Location: Mackar Inlet

G1P 4P3 LSD:

Attn: Jean-Pierre Pelletier P.O.:

Sampled By: A. Passalis Acct code: 14.071.309663

Company: Sila

Blanks	Units	Measured	Lower Limit	Upper Limit		Passed QC
Silver	ug/L	0.00226237	-0.02	0.10		yes
Strontium	ug/L	0.0330841	-1	1		ye
Thallium	ug/L	0.00173928	-0.05	0.05		ye
Tin	ug/L	-0.0331463	-1	1		ye
Titanium	ug/L	0	-0.5	0.5		ye
Uranium	ug/L	0.00181467	-0.5	0.5		ye
Vanadium	ug/L	0.0875498	-0.1	0.1		ye
Zinc	ug/L	0.643524	-0	1		ye
Zirconium	ug/L	0.00970992	-1	1		ye
Date Acquired: Septem	nber 02, 2014					
Client Sample Replicates	Units	Replicate 1	Replicate 2	% RSD Criteria	Absolute Criteria	Passed Q0
Aluminum	mg/L	13.1	13.6	15	0.03	ye
Calcium	mg/L	169	170	15	0.6	ye
Iron	mg/L	22.8	23.7	15	0.20	ye
Magnesium	mg/L	71.3	71.7	15	0.40	ye
Manganese	mg/L	0.320	0.326	15	0.010	ye
Potassium	mg/L	13.9	14.1	15	1.2	ye
Silicon	mg/L	16.4	17.0	15	0.10	ye
Sodium	mg/L	261	262	15	1.2	ye
Sulfur	mg/L	146	148	15	0.1	ye
Antimony	ug/L	<0.2	<0.2	15	0.4	ye
Arsenic	ug/L	0.5	0.5	15	0.4	ye
Barium	ug/L	179	179	15	2	ye
Beryllium	ug/L	<0.1	<0.1	15	0.2	ye
Bismuth	ug/L	<0.5	<0.5	15	1.1	ye
Boron	ug/L	9	8	15	4	ye
Cadmium	ug/L	< 0.005	< 0.005	15	0.022	ye
Chromium	ug/L	<0.5	<0.5	15	1.1	ye
Cobalt	ug/L	<0.1	<0.1	15	0.2	ye
Copper	ug/L	<1	<1	15	2	ye
Lead	ug/L	0.1	0.1	15	0.2	ye
Lithium	ug/L	4	4	15	2	ye
Molybdenum	ug/L	<1	<1	15	2	ye
Nickel	ug/L	<0.5	<0.5	15	1.1	ye
Selenium	ug/L	<0.2	<0.2	15	0.4	ye
Silver	ug/L	<0.01	<0.01	15	0.22	ye
Strontium	ug/L	306	316	15	2	ye
Thallium	ug/L	<0.05	<0.05	15	0.11	ye
Tin	ug/L	<1	<1	15	2	ye
Titanium	ug/L	2.6	2.4	15	1.1	ye
Uranium	ug/L	<0.5	<0.5	15	1.1	ye
Vanadium	ug/L	0.2	0.2	15	0.2	ye

T: +1 (780) 438-5522 F: +1 (780) 434-8586 E: Edmonton@exova.com W: www.exova.com

Quality Control

Bill To: Biogenie S.R.D.C. Inc. Project:

Report To: Biogenie S.R.D.C. Inc. ID: CAM-5 2014 350, rue Franquet Name: 2014 LFM

350, rue Franquet Name: 2014 LFM Sainte-Foy, QC, Canada Location: Mackar Inlet

G1P 4P3 LSD:

Attn: Jean-Pierre Pelletier P.O.:
Sampled By: A. Passalis Acct code:

Company: Sila

tt: Lot ID: **1023071**

Control Number: C0042763

Date Received: Aug 28, 2014

Date Reported: Sep 8, 2014

Report Number: 1943938

Client Sample Rep	licates Units	Replicate 1	Replicate 2	% RSD Criteria	Absolute Criteria	Passed QC
Zinc	ug/L	2	3	15	2	yes
Zirconium	ug/L	<10	<10	15	2	yes
Date Acquired:	September 02, 2014					
Control Sample	Units	Measured	Lower Limit	Upper Limit		Passed QC
Aluminum	mg/L	4.08	3.46	4.30		yes
Calcium	mg/L	50.9	45.5	52.7		yes
Iron	mg/L	2.08	1.83	2.19		yes
Magnesium	mg/L	19.7	18.14	22.14		yes
Manganese	mg/L	0.526	0.442	0.538		yes
Potassium	mg/L	49.6	45.8	55.8		yes
Silicon	mg/L	2.06	1.81	2.21		yes
Sodium	mg/L	50.3	45.9	56.0		yes
Sulfur	mg/L	10.4	8.9	10.9		yes
Antimony	ug/L	12.2	10.8	13.2		yes
Arsenic	ug/L	12.4	10.4	12.5		yes
Barium	ug/L	64	54	68		yes
Beryllium	ug/L	6.0	4.9	6.8		yes
Bismuth	ug/L	29.6	24.8	34.4		yes
Boron	ug/L	121	102	139		yes
Cadmium	ug/L	0.664	0.473	0.781		yes
Chromium	ug/L	31.7	26.5	33.7		yes
Cobalt	ug/L	6.2	5.2	6.7		yes
Copper	ug/L	65	53	67		yes
Lead	ug/L	6.3	5.2	7.1		yes
Lithium	ug/L	62	53	77		yes
Molybdenum	ug/L	63	56	66		yes
Nickel	ug/L	32.3	25.6	33.4		yes
Selenium	ug/L	11.7	9.9	12.3		yes
Silver	ug/L	6.51	5.39	7.13		yes
Strontium	ug/L	61	54	69		yes
Thallium	ug/L	3.26	2.81	3.89		yes
Tin	ug/L	63	56	66		yes
Titanium	ug/L	32.6	26.6	35.7		yes
Uranium	ug/L	29.6	25.7	36.3		yes
Vanadium	ug/L	6.4	5.1	7.2		yes
Zinc	ug/L	61	53	67		yes
Zirconium	ug/L	64	53	67		yes
Date Acquired:	September 02, 2014					
Antimony	ug/L	41.0	37.5	43.1		yes
Arsenic	ug/L	41.0	37.7	44.7		yes
Barium	ug/L	206	190	214		yes
Beryllium	ug/L	19.1	17.4	22.2		yes

14.071.309663

T: +1 (780) 438-5522 F: +1 (780) 434-8586 E: Edmonton@exova.com W: www.exova.com

Quality Control

Bill To: Biogenie S.R.D.C. Inc. Project:

Report To: Biogenie S.R.D.C. Inc.

ID: CAM-5 2014 Name: 2014 LFM

350, rue Franquet Sainte-Foy, QC, Canada

Mackar Inlet

14.071.309663

G1P 4P3

LSD:

Location:

Date Received: Aug 28, 2014 Date Reported: Sep 8, 2014 1943938 Report Number:

Control Number: C0042763

Lot ID: 1023071

Attn: Jean-Pierre Pelletier

P.O.: Sampled By: A. Passalis Acct code:

Company: Sila

Metals Total - Co	ontinued				
Control Sample	Units	Measured	Lower Limit	Upper Limit	Passed QC
Bismuth	ug/L	93.5	91.3	106.3	yes
Boron	ug/L	387	343	436	yes
Cadmium	ug/L	2.11	1.915	2.205	yes
Chromium	ug/L	101	90.0	110.0	yes
Cobalt	ug/L	19.9	18.1	21.4	yes
Copper	ug/L	202	185	208	yes
Lead	ug/L	19.4	18.6	21.8	yes
Lithium	ug/L	194	173	222	yes
Molybdenum	ug/L	206	189	225	yes
Nickel	ug/L	103	90.0	110.0	yes
Selenium	ug/L	40.0	36.1	42.9	yes
Silver	ug/L	20.3	18.00	22.00	yes
Strontium	ug/L	192	182	212	yes
Thallium	ug/L	9.42	9.16	10.96	yes
Tin	ug/L	200	191	213	yes
Titanium	ug/L	106	91.5	106.3	yes
Uranium	ug/L	93.9	90.2	109.0	yes
Vanadium	ug/L	20.6	16.9	22.1	yes
Zinc	ug/L	202	183	218	yes
Date Acquired:	September 02, 2014				
Antimony	ug/L	11.6	10.8	13.2	yes
Arsenic	ug/L	12.4	11.2	13.6	yes
Barium	ug/L	60	54	66	yes
Beryllium	ug/L	5.7	5.2	6.5	yes
Bismuth	ug/L	28.5	27.0	33.0	yes
Boron	ug/L	112	108	132	yes
Cadmium	ug/L	0.629	0.560	0.692	yes
Chromium	ug/L	30.7	27.0	33.0	yes
Cobalt	ug/L	6.1	5.4	6.6	yes
Copper	ug/L	64	54	66	yes
Lead	ug/L	6.0	5.4	6.6	yes
Lithium	ug/L	58	53	66	yes
Molybdenum	ug/L	59	54	66	yes
Nickel	ug/L	31.2	27.0	33.0	yes
Selenium	ug/L	11.5	10.3	13.4	yes
Silver	ug/L	6.05	5.40	6.60	yes
Strontium	ug/L	60	54	66	yes
Thallium	ug/L	2.96	0.00	6.00	yes
Tin	ug/L	61	54	66	yes
Titanium	ug/L	32.7	27.0	33.0	yes
Uranium	ug/L	28.8	27.0	33.0	yes
Vanadium	ug/L	6.3	5.4	6.6	yes

T: +1 (780) 438-5522 F: +1 (780) 434-8586 E: Edmonton@exova.com W: www.exova.com

Quality Control

Bill To: Biogenie S.R.D.C. Inc.

Report To: Biogenie S.R.D.C. Inc.

ID: CAM-5 2014

350, rue Franquet

Name: 2014 LFM Location:

Sainte-Foy, QC, Canada

G1P 4P3

LSD:

Project:

Mackar Inlet

Date Reported: Report Number:

Date Received:

Aug 28, 2014 Sep 8, 2014

Attn: Jean-Pierre Pelletier

P.O.:

1943938

Lot ID: 1023071

Control Number: C0042763

Sampled By: A. Passalis

14.071.309663 Acct code:

COI	пр	any	-	Ollo

ontrol Sample	Units	Measured	Lower Limit	Upper Limit	Passed Q
Zinc	ug/L	61	57	69	ye
Zirconium	ug/L	61	54	66	ye
Date Acquired:	September 02, 2014				·
Antimony	ug/L	2.0	1.8	2.2	ye
Arsenic	ug/L	2.1	1.8	2.3	ye
Barium	ug/L	10	9	11	ye
Beryllium	ug/L	1	0.8	1.1	ye
Bismuth	ug/L	5.2	4.5	5.4	ye
Boron	ug/L	20	17	23	ye
Cadmium	ug/L	0.103	0.092	0.116	ye
Chromium	ug/L	5.2	4.6	5.4	ye
Cobalt	ug/L	1.0	0.9	1.1	y
Copper	ug/L	11	9	11	y
Lead	ug/L	1.0	0.9	1.1	y
Lithium	ug/L	10	9	11	y
Molybdenum	ug/L	10	9	11	у
Nickel	ug/L	5.2	4.5	5.5	y
Selenium	ug/L	1.9	1.6	2.2	у
Silver	ug/L	1.00	0.87	1.07	у
Strontium	ug/L	10	9	11	у
Thallium	ug/L	0.50	0.48	0.57	у
Tin	ug/L	10	10	11	у
Titanium	ug/L	4.7	4.5	5.4	у
Uranium	ug/L	4.8	4.5	5.5	y
Vanadium	ug/L	1.0	0.8	1.1	y
Zinc	ug/L	10	9	11	y
Zirconium	ug/L	10	9	11	у
Date Acquired:	September 02, 2014				·
Aluminum	mg/L	19.0	18.80	20.60	у
Calcium	mg/L	239	230.0	257.6	у
Iron	mg/L	9.43	9.07	10.15	y
Magnesium	mg/L	95.5	92.78	104.72	у
Manganese	mg/L	2.39	2.260	2.560	у
Potassium	mg/L	237	232.2	259.9	у
Silicon	mg/L	9.88	9.48	10.74	у
Sodium	mg/L	238	226.8	267.4	у
Sulfur	mg/L	148	136.5	166.3	у
Date Acquired:	September 02, 2014				·
Aluminum	mg/L	3.98	3.46	4.44	у
Calcium	mg/L	51.0	45.0	55.0	y.
Iron	mg/L	2.08	1.80	2.20	ye.

T: +1 (780) 438-5522 F: +1 (780) 434-8586 E: Edmonton@exova.com W: www.exova.com

Lot ID: 1023071

C0042763

1943938

Aug 28, 2014

Sep 8, 2014

Control Number:

Date Received:

Date Reported:

Report Number:

Quality Control

Bill To: Biogenie S.R.D.C. Inc. Project:

Report To: Biogenie S.R.D.C. Inc. ID: CAM-5 2014

350, rue Franquet Name: 2014 LFM Sainte-Foy, QC, Canada Location: Mackar Inlet

G1P 4P3 LSD:

Attn: Jean-Pierre Pelletier P.O.:

Sampled By: A. Passalis Acct code: 14.071.309663

Company: Sila

Metals Total - Co	ontinued					
Control Sample	Units	Measured	Lower Limit	Upper Limit		Passed QC
Magnesium	mg/L	19.8	17.99	22.01		yes
Manganese	mg/L	0.526	0.449	0.551		yes
Potassium	mg/L	49.5	45.0	55.0		yes
Silicon	mg/L	2.07	1.92	2.22		yes
Sodium	mg/L	50.2	45.0	55.0		yes
Sulfur	mg/L	10.4	9.0	11.0		yes
Date Acquired:	September 02, 2014					
Aluminum	mg/L	0.39	0.36	0.44		yes
Calcium	mg/L	5.1	4.6	5.6		yes
Iron	mg/L	0.21	0.18	0.22		yes
Magnesium	mg/L	1.96	1.84	2.18		yes
Manganese	mg/L	0.052	0.046	0.056		yes
Potassium	mg/L	4.9	4.5	5.5		yes
Silicon	mg/L	0.20	0.18	0.22		yes
Sodium	mg/L	4.9	4.7	5.5		yes
Sulfur	mg/L	3.0	2.8	3.2		yes
Date Acquired:	September 02, 2014					
Physical and Aq	gregate Properties					
Client Sample Rep		Replicate 1	Replicate 2	% RSD Criteria	Absolute Criteria	Passed QC
Moisture	%	2.7	2.6	10	0.3	yes
Date Acquired:	August 29, 2014					·
Mono-Aromatic	Hydrocarbons - Soil					
Blanks	Units	Measured	Lower Limit	Upper Limit		Passed QC
Benzene	ng	0	-1.650	1.650		yes
Toluene	ng	2.04	-8.01	8.01		yes
Ethylbenzene	ng	0	-3.99	3.99		yes
m,p-Xylene	ng	0	-3.99	3.99		yes
o-Xylene	ng	0	-3.99	3.99		yes
Date Acquired:	August 28, 2014					
Replicates	Units	Replicate 1	Replicate 2	% RSD Criteria	Absolute Criteria	Passed QC
Benzene	mg/kg	0.783	0.852	20	0.004	yes
Toluene	mg/kg	0.80	0.86	20	0.01	yes
Ethylbenzene	mg/kg	0.81	0.87	20	0.01	yes
m,p-Xylene	mg/kg	1.62	1.74	20	0.01	yes
o-Xylene	mg/kg	0.81	0.88	20	0.01	yes
Date Acquired:	August 28, 2014					-
Control Sample	Units	Measured	Lower Limit	Upper Limit		Passed QC
Benzene	mg/kg	1.20	1.063	1.438		yes
Toluene	mg/kg	1.24	1.06	1.44		yes
	3 3					,

T: +1 (780) 438-5522 F: +1 (780) 434-8586 E: Edmonton@exova.com W: www.exova.com

Quality Control

Bill To: Biogenie S.R.D.C. Inc. Project:

Report To: Biogenie S.R.D.C. Inc. ID: CAM-5 2014

350, rue Franquet Name: 2014 LFM Sainte-Foy, QC, Canada Location: Mackar Inlet

G1P 4P3 LSD:

Attn: Jean-Pierre Pelletier P.O.:
Sampled By: A. Passalis Acct code:

Mono-Aromatic Hydrocarbons - Soil -

Company: Sila

Lot ID: 1023071

Control Number: C0042763

Date Received: Aug 28, 2014

Date Reported: Sep 8, 2014

Report Number: 1943938

Continued	Halt-	M	Lauren Linete	Harris I love		D1 00
Control Sample	Units	Measured	Lower Limit	Upper Limit		Passed QC
Ethylbenzene	mg/kg	1.23	1.06	1.44		yes
m,p-Xylene	mg/kg	2.45	2.12	2.88		yes
o-Xylene	mg/kg	1.24	1.06	1.44		yes
Date Acquired:	August 28, 2014					
Mono-Aromatic I	Hydrocarbons - Water					
Replicates	Units	Replicate 1	Replicate 2	% RSD Criteria	Absolute Criteria	Passed QC
Benzene	mg/L	0.025	0.023	20	0.002	yes
Toluene	mg/L	0.0248	0.0234	20	0.0020	yes
Ethylbenzene	mg/L	0.025	0.024	20	0.002	yes
m,p-Xylene	mg/L	0.046	0.042	20	0.002	yes
o-Xylene	mg/L	0.026	0.025	20	0.002	yes
Date Acquired:	August 28, 2014					
Control Sample	Units	Measured	Lower Limit	Upper Limit		Passed QC
Benzene	mg/L	0.048	0.042	0.058		yes
Toluene	mg/L	0.0495	0.0425	0.0575		yes
Ethylbenzene	mg/L	0.049	0.042	0.058		yes
m,p-Xylene	mg/L	0.098	0.085	0.115		yes
o-Xylene	mg/L	0.049	0.042	0.058		yes
Date Acquired:	August 28, 2014					
Volatile Petroleu	m Hydrocarbons - Soi	I				
Blanks	Units	Measured	Lower Limit	Upper Limit		Passed QC
F1 C6-C10	ng	514.12	-1599	1599		yes
Date Acquired:	August 28, 2014					
Replicates	Units	Replicate 1	Replicate 2	% RSD Criteria	Absolute Criteria	Passed QC
F1 C6-C10	mg/kg	17	20	20	4	yes
Date Acquired:	August 28, 2014					
Control Sample	Units	Measured	Lower Limit	Upper Limit		Passed QC
F1 C6-C10	mg/kg	19	14	21		yes
Date Acquired:	August 28, 2014					
Volatile Petroleu	m Hydrocarbons - Wa	ter				
Control Sample	Units	Measured	Lower Limit	Upper Limit		Passed QC

8.0

Replicate 1

0.6

Replicate 2

8.0

% RSD Criteria

yes

Absolute Criteria Passed QC

14.071.309663

Extractable Petroleum Hydrocarbons -

Date Acquired: August 28, 2014

mg/L

Units

F1 C6-C10

Replicates

Soil

T: +1 (780) 438-5522 F: +1 (780) 434-8586 E: Edmonton@exova.com W: www.exova.com

Quality Control

Bill To: Biogenie S.R.D.C. Inc. Project:

Report To: Biogenie S.R.D.C. Inc. CAM-5 2014 ID:

350, rue Franquet 2014 LFM Name: Sainte-Foy, QC, Canada Location: Mackar Inlet

G1P 4P3 LSD:

Attn: Jean-Pierre Pelletier P.O.: Sampled By: A. Passalis Acct code:

Extractable Petroleum Hydrocarbons -

Company: Sila

Lot ID: 1023071

Control Number: C0042763 Date Received: Aug 28, 2014 Date Reported: Sep 8, 2014

Report Number: 1943938

Replicates	Units	Replicate 1	Replicate 2	% RSD Criteria	Absolute Criteria	Passed QC
F2c C10-C16	mg/kg	226	213	30	20	yes
F3c C16-C34	mg/kg	857	803	30	20	yes
F4c C34-C50	mg/kg	256	233	30	30	yes
F4c+ C50+	mg/kg	<100	<100	30	20	yes
Date Acquired:	August 28, 2014					
Control Sample	Units	Measured	Lower Limit	Upper Limit		Passed QC
F2c C10-C16	mg/kg	82	79	121		yes
F3c C16-C34	mg/kg	125	122	158		yes
F4c C34-C50	mg/kg	189	170	230		yes
Date Acquired:	August 28, 2014					
Matrix Spike	Units	% Recovery	Lower Limit	Upper Limit		Passed QC
F2c C10-C16	mg/kg	78	65	135		yes
F3c C16-C34	mg/kg	89	65	135		yes
F4c C34-C50	mg/kg	82	65	135		yes
Date Acquired:	August 28, 2014					
Vater Replicates	Units	Replicate 1	Replicate 2	% RSD Criteria	Absolute Criteria	Passed QC
•		•	•	% RSD Criteria		Passed QC
F2 C10-C16	mg/L	3.4	3.2	30	0.2	yes
F3 C16-C34	mg/L	11.8	10.9	30	0.2	yes
F3+ C34+	mg/L	3.4	3.1	30	0.2	yes
Date Acquired:	September 03, 2014					
Control Sample	Units	Measured	Lower Limit	Upper Limit		Passed QC
F2 C10-C16	mg/L	85.4	69.4	124.0		yes
F3 C16-C34	mg/L	145	120.0	160.0		yes
Date Acquired:	September 03, 2014					
Matrix Spike	Units	% Recovery	Lower Limit	Upper Limit		Passed QC
F2 C10-C16	mg/L	76	75	125		yes
F3 C16-C34	mg/L	116	75	125		yes
F3+ C34+	mg/L	78	75	125		yes
Date Acquired:	September 03, 2014					
Polychlorinated	Biphenyls - Soil					
Polychlorinated Blanks	Biphenyls - Soil Units	Measured	Lower Limit	Upper Limit		Passed QC

0

0

0

0

0

-0.3

-0.3

-0.3

-0.3

-0.3

0.3

0.3

0.3

0.3

0.3

yes

yes

yes

yes

yes

14.071.309663

ug/mL

ug/mL

ug/mL

ug/mL

ug/mL

Aroclor 1016

Aroclor 1221

Aroclor 1232

Aroclor 1242

Aroclor 1248

Quality Control

Bill To: Biogenie S.R.D.C. Inc. Project:

Report To: Biogenie S.R.D.C. Inc. ID: CAM-5 2014

350, rue Franquet Name: 2014 LFM Sainte-Foy, QC, Canada Location: Mackar Inlet

G1P 4P3 LSD:

Attn: Jean-Pierre Pelletier P.O.:
Sampled By: A. Passalis Acct code:

Company: Sila

Lot ID: 1023071

Control Number: C0042763

Date Received: Aug 28, 2014

Date Reported: Sep 8, 2014

Report Number: 1943938

Polychlorinated l	Biphenyls - Soil -					
Continued						
Blanks	Units	Measured	Lower Limit	Upper Limit		Passed QC
Aroclor 1254	ug/mL	0	-0.3	0.3		yes
Aroclor 1260	ug/mL	0	-0.3	0.3		yes
Aroclor 1262	ug/mL	0	-0.3	0.3		yes
Aroclor 1268	ug/mL	0	-0.3	0.3		yes
Date Acquired:	September 02, 2014					
Calibration Check	Units	% Recovery	Lower Limit	Upper Limit		Passed QC
Aroclor 1254	ug/mL	110.00	80	120		yes
Date Acquired:	September 02, 2014					
Polychlorinated I	Biphenyls - Soil -					
Surrogate						
Blanks	Units	Measured	Lower Limit	Upper Limit		Passed QC
Decachlorobiphen	nyl %	110.323	50	150		yes
Date Acquired:	September 02, 2014					
Polychlorinated I	Biphenyls - Water					
Blanks	Units	Measured	Lower Limit	Upper Limit		Passed QC
Aroclor 1016	ug/mL	0	-0.3	0.3		yes
Aroclor 1221	ug/mL	0	-0.3	0.3		yes
Aroclor 1232	ug/mL	0	-0.3	0.3		yes
Aroclor 1242	ug/mL	0	-0.3	0.3		yes
Aroclor 1248	ug/mL	0	-0.3	0.3		yes
Aroclor 1254	ug/mL	0	-0.3	0.3		yes
Aroclor 1260	ug/mL	0	-0.3	0.3		yes
Aroclor 1262	ug/mL	0	-0.3	0.3		yes
Aroclor 1268	ug/mL	0	-0.3	0.3		yes
Date Acquired:	September 03, 2014					
Calibration Check	Units	% Recovery	Lower Limit	Upper Limit		Passed QC
Aroclor 1254	ug/mL	110.00	80	120		yes
Date Acquired:	September 03, 2014					
Replicates	Units	Replicate 1	Replicate 2	% RSD Criteria	Absolute Criteria	Passed QC
Aroclor 1016	ug/L	<0.1	<0.1	20	0.2	yes
Aroclor 1221	ug/L	<0.1	<0.1	20	0.2	yes
Aroclor 1232	ug/L	<0.1	<0.1	20	0.2	yes
Aroclor 1242	ug/L	<0.1	<0.1	20	0.2	yes
Aroclor 1248	ug/L	<0.1	<0.1	20	0.2	yes
Aroclor 1254	ug/L	0.8	1	20	0.2	yes
Aroclor 1260	ug/L	<0.1	<0.1	20	0.2	yes
Aroclor 1262	ug/L	<0.1	<0.1	20	0.2	yes
Aroclor 1268	ug/L	<0.1	<0.1	20	0.2	yes

14.071.309663

7217 Roper Road NW Edmonton, Alberta T6B 3J4, Canada

T: +1 (780) 438-5522 F: +1 (780) 434-8586 E: Edmonton@exova.com W: www.exova.com

Quality Control

Bill To: Biogenie S.R.D.C. Inc. Project:

Report To: Biogenie S.R.D.C. Inc. ID: CAM-5 2014 2014 LFM

350, rue Franquet Name: Sainte-Foy, QC, Canada Location: Mackar Inlet

G1P 4P3 LSD:

Attn: Jean-Pierre Pelletier P.O.:

Sampled By: A. Passalis Acct code: 14.071.309663

Company: Sila

Lot ID: 1023071

Control Number: C0042763 Date Received: Aug 28, 2014 Date Reported: Sep 8, 2014

Report Number: 1943938

Polychlorinated Biphenyls - Water -Continued

Matrix Spike Units

% Recovery **Lower Limit Upper Limit** Passed QC Aroclor 1254 ug/L 95 50 150 yes

Date Acquired: September 03, 2014

Polychlorinated Biphenyls - Water -

Surrogate

Blanks Units Measured **Lower Limit Upper Limit Passed QC** Decachlorobiphenyl % 79.4089 50 150 yes

Date Acquired: September 03, 2014

7217 Roper Road NW Edmonton, Alberta T6B 3J4, Canada T: +1 (780) 438-5522 F: +1 (780) 434-8586 E: Edmonton@exova.com W: www.exova.com

Methodology and Notes

Bill To: Biogenie S.R.D.C. Inc.

Project:

Lot ID: 1023071

Report To: Biogenie S.R.D.C. Inc.

ID: Name:
 CAM-5 2014
 Control Number:
 C0042763

 2014 LFM
 Date Received:
 Aug 28, 2014

350, rue Franquet Sainte-Foy, QC, Canada G1P 4P3

Location: LSD: Mackar Inlet Date Reported:

Date Reported: Sep 8, 2014 Report Number: 1943938

Attn: Jean-Pierre Pelletier

P.O.:

Acct code: 14.071.309663

Company: Sila

Sampled By: A. Passalis

Method of Analysis				
Method Name	Reference	Method	Date Analysis Started	Location
Boron in general soil	McKeague	 * Hot Water Soluble Boron - Azomethine-H Method, 4.61 	29-Aug-14	Exova Edmonton
BTEX-CCME in Soil EDM	CCME	 Reference Method for Canada-Wide Standard for PHC in Soil, CWS PHCS TIER 1 	28-Aug-14	Exova Edmonton
BTEX-CCME in Soil EDM	US EPA	* US EPA method, 8260B/5035	28-Aug-14	Exova Edmonton
BTEX-CCME in Water EDM	US EPA	* US EPA method, 8260B/5035	28-Aug-14	Exova Edmonton
BTEX-CCME in Water EDM	US EPA	 Volatile Organic Compounds by GCMS / Purge and Trap for Aqueous Samples, 8260B/5030B 	28-Aug-14	Exova Edmonton
Mercury (Hot Block) in Soil	US EPA	 Determination of Hg in Sediment by Cold Vapor Atomic Absorption Spec, 245.5 	02-Sep-14	Exova Edmonton
Metals ICP-MS (Hot Block) in soil	SW-846	 * Acid Digestion of Sediments, Sludges, and Soils, EPA 3050B 	02-Sep-14	Exova Edmonton
Metals ICP-MS (Total) in water	APHA/USEPA	 Metals By Inductively Coupled Plasma/Mass Spectrometry, APHA 3125 B / USEPA 200.2, 200.8 	02-Sep-14	Exova Edmonton
Metals Trace (Total) in water	APHA	 * Inductively Coupled Plasma (ICP) Method, 3120 B 	02-Sep-14	Exova Edmonton
Moisture	Carter	 * Gravimetric Method with Oven Drying, 51.2 	29-Aug-14	Exova Edmonton
PCB - Soil	US EPA	 Polychlorinated Biphenyls (PCBs) by Gas Chromatography, 8082A 	02-Sep-14	Exova Calgary
PCB - Water	US EPA	 Polychlorinated Biphenyls (PCBs) by Gas Chromatography, 8082A 	03-Sep-14	Exova Calgary
TEH-CCME in Soil (Shake) EDM	CCME	 Reference Method for Canada-Wide Standard for PHC in Soil, CWS PHCS TIER 1 	28-Aug-14	Exova Edmonton
TEH-CCME in Water EDM	MMCA	 Petroleum Hydrocarbons in Water, A108.0 	03-Sep-14	Exova Edmonton
		* Reference Method Modified		

 Exova
 T: +1 (780) 438-5522

 7217 Roper Road NW
 F: +1 (780) 434-8586

 Edmonton, Alberta
 E: Edmonton@exova.com

 T6B 3J4, Canada
 W: www.exova.com

Attn: Jean-Pierre Pelletier

Lot ID: 1023071

C0042763

Aug 28, 2014

Sep 8, 2014

1943938

Control Number:

Date Received:

Date Reported:

Report Number:

Methodology and Notes

Bill To: Biogenie S.R.D.C. Inc. Project:

Report To: Biogenie S.R.D.C. Inc. ID: CAM-5 2014

350, rue Franquet Name: 2014 LFM Sainte-Foy, QC, Canada Location: Mackar Inlet

P.O.:

G1P 4P3 LSD:

Sampled By: A. Passalis Acct code: 14.071.309663

Company: Sila

References

APHA Standard Methods for the Examination of Water and Wastewater

Carter Soil Sampling and Methods of Analysis.

McKeague Manual on Soil Sampling and Methods of Analysis

SW-846 Test Methods for Evaluating Solid Waste

US EPA US Environmental Protection Agency Test Methods

Comments:

Please direct any inquiries regarding this report to our Client Services group.

Results relate only to samples as submitted.

The test report shall not be reproduced except in full, without the written approval of the laboratory.

Page 23 of 23

Analytical Report

Bill To: Biogenie S.R.D.C. Inc.

Project:

CAM-5 2014 ID:

C0042763 Control Number:

Lot ID: 1023071

350, rue Franquet Sainte-Foy, QC, Canada

2014 LFM Name: Location: Mackar Inlet

Date Received: Aug 28, 2014 Sep 8, 2014 Date Reported:

G1P 4P3

Report To: Biogenie S.R.D.C. Inc.

LSD: P.O.: Report Number: 1943938

Attn: Jean-Pierre Pelletier Sampled By: A. Passalis

Acct code: 14.071.309663

Company: Sila

Petroleum Hydrocarbons in Soil

Batch Notes

- The method used complies with the Reference Method for the Canada Wide Standards for Petroleum Hydrocarbons in Soil - Tier 1, April 2001, including Addendum 1, and is accredited for use in Exova.
- 2. Modifications of the method: See Notes and Methodology for nonconformances (if applicable).
- Qualifications on results: See Notes and Methodology for nonconformances (if applicable). 3.
- Silica gel treatment is performed for fractions F2, F3, F4.
- F1-BTEX: BTEX has been subtracted from the F1 fraction. 5.
- If analyzed, naphthalene has been subtracted from fraction F2 and selected PAHs have been subtracted from fraction 6. F3.
- 7. F4HTGC is reported when more than 5% of the total carbon envelope elutes past C50.
- Exova does not routinely report Gravimetric Heavy Hydrocarbons (F4G or F4G-sg), F4HTGC through extended range high temperature GC is reported instead.
- When both F4(C₃₄-C₅₀) and F4HTGC are reported, F4HTGC is the final F4 that is to be used for interpreting the CWS.
- Quality criteria met for the batch: Data is reported in Quality Control Section of report (if requested).
 - -nC6 and nC10 response factors (RF) are within 30% of RF for toluene
 - -nC₁₀, nC₁₆ and nC₃₄ RFs are within 10% of each other
 - -nC50 RF is within 30% of the average RF for nC10+nC16+nC34
 - -linearity is within 15% for each of the calibrated carbon ranges
- 11. Batch data for analytical quality control are available on request.
- 12. Extraction and analysis holding times were met: See Notes and Methodology for nonconformances (if applicable).

Approved by:

Anthony Neumann, MSc **Laboratory Operations Manager**

Anthony Weuman

		_	ED	120	02	_		-			,	_																					
Page	Please indicate a		Submission of this	15	14	T C	12		10	9	00		0	OI	4	ω	2		Site I.D.	Special Instruc	Date Required	Priority 1- Urgent 2-		Quote #	Proj. Acct. Code:	PO/AFE#:	Legal Location:	Project Location:	Project Name:	Project ID:	Project Information	www.exova.com	Exova
of Contro	Please indicate any potentially hazardous samples		Submission of this form acknowledges acceptance of Exova's Standard Terms						CS14 - BDW1	CS14-8W	SVA	SWA	7wB	7w*	6WB	6wA	SWB	CS14- SWA	Sample Description	Special Instructions/Comments (please include contact information including ph. # if different from above).	d:	Emergency (contact lab for turnaround and pricing) Priority 1-2 working days (100% surcharge) Urgent 2-3 working days (50% surcharge)	STATE STATES	4.071-309613				MACKARINLET	2014 LFM	CAM-5 2014	tion	ED 120-02	calibrating, advising
Control # C 0042763	es	ina-conditions/j	Exova's Standard																Depth start end in cm m	t information includi	Signature:		SH Priorit	Copy of report:	Agreement ID:	E-mail: St	Fax:	Cell:	Phone:	Attention:		Address:	Invoice to:
2763			Terms						-									21/08/14	Date/Time Sampled	ng ph. # if different from above)	ure:	When "ASAP" is requested, turn around will default to a 100% RUSH priority, with pricing and turn around time to match. Please contact the lab prior to submitting RUSH samples. If not all samples require RUSH, please indicate in the special instructions.	,	f.†		scan-Dierre pelletero			320	J.P. Pelletier	\sim	Sovel	SILA REMEDIATION
			LOT: 102						=	WATER								SOIL	Matrix			ind will default to a 1 time to match. Pleas ples. If not all samplinstructions.		4	ca	LO IVM.		5892	EX.		C		AJOと
			1023071	_						11								5.1	Sampling Method	Number	of Co.			Copy of invo	E-mail 2:	E-mail 1:	Fax:	Cell:	Phone:	Attention:		Address:	Report To:
			COC						×	X X	8 8 8 8	X	× \	<i>₹</i>	<i>8</i> <i>×</i> , <i>×</i> ,	<i>x</i>	X X	2 X X X			als('s (FI	(see que	ote)	oice:		andrew assalis	:						
Received by:	Temp. received:	# and size of coolers	Shipping:																Enter tests above (v relevant samples below)	T.N	rera	· Q			1	salis e smail					X		
Waybill:	Delivery Method:		COD Y/ N					C									=		Indicate i deficienc number.	Shifted a section of the section of	Date/Time stamp:	Company: This section		Sampled by:	2	QA/QC	Excel	PDF	Fax	Online	Mail	E-Mail	Report Results
	thod:		received in an inappropriate container	8. Indicate any samples	not received	7. Indicate any samples	were received broken	6. Indicate any samples that	extra samples	5. Indicate any missing or	hold time or temp.	4. Indicate any samples not	were not clearly labeled	3. Indicate any samples that	received in Exova supplies	2. Indicate any samples not	were not packaged well	1. Indicate any samples that	Indicate in the space allotted any deficiencies by the corresponding number.		e stamp:	Company: 57LA This section for Lab use only		by: A. PASSALK	Sample Custody (please print)	X	×	Other (list below)	BCCSR	SPIGEC	Ab Tier 1	W HCDWOG	Regulatory Requirement

Your Project #: CAM-3/CAM-5 LFM

Site Location: SHEPHERD BAY/MACKAR INLET

Your C.O.C. #: A159155

Attention: JEAN-PIERRE PELLETIER

SILA REMEDIATION 4495 BL. WILFRID- HAMEL, BUR 1 QUEBEC, PQ CANADA G1P 2T7

> Report Date: 2014/09/22 Report #: R1647060 Version: 3R

CERTIFICATE OF ANALYSIS – REVISED REPORT

MAXXAM JOB #: B478367 Received: 2014/09/04, 10:45

Sample Matrix: Soil # Samples Received: 1

		Date	Date	
Analyses	Quantity	Extracted	Analyzed Laboratory Method	Analytical Method
BTEX/F1 by HS GC/MS (MeOH extract)	1	2014/09/05	2014/09/08 AB SOP-00039	CCME CWS/EPA 8260C m
CCME Hydrocarbons (F2-F4 in soil)	1	2014/09/05	2014/09/09 AB SOP-00036 / AB	CCME PHC-CWS
			SOP-00040	
Elements by ICPMS - Soils	1	2014/09/10	2014/09/10 AB SOP-00001 / AB	EPA 200.8 R5.4 m
			SOP-00043	
Moisture	1	N/A	2014/09/06 AB SOP-00002	CCME PHC-CWS
Polychlorinated Biphenyls (1)	1	2014/09/06	2014/09/08 CAL SOP-00149	EPA 8082A R1 m

Sample Matrix: Water # Samples Received: 1

		Date	Date	
Analyses	Quantity	Extracted	Analyzed Laboratory Method	Analytical Method
BTEX/F1 in Water by HS GC/MS	1	N/A	2014/09/05 AB SOP-00039	CCME CWS/EPA 8260C m
CCME Hydrocarbons (F2-F4 in water)	1	2014/09/06	2014/09/07 AB SOP-00037 / AB	CCME PHC-CWS m
			SOP-00040	
Mercury - Low Level (Total) (1)	1	2014/09/09	2014/09/09 CAL SOP-00007	EPA 1631 RE 20460 m
Elements by ICPMS - Total	1	2014/09/09	2014/09/10 AB SOP-00014 / AB	EPA 200.8 R5.4 m
			SOP-00043	
Polychlorinated Biphenyls (1)	1	2014/09/06	2014/09/09 CAL SOP-00149	EPA 8082A R1 m

^{*} RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) This test was performed by Maxxam Calgary Environmental

Your Project #: CAM-3/CAM-5 LFM

Site Location: SHEPHERD BAY/MACKAR INLET

Your C.O.C. #: A159155

Attention: JEAN-PIERRE PELLETIER

SILA REMEDIATION 4495 BL. WILFRID- HAMEL, BUR 1 QUEBEC, PQ G1P 2T7 CANADA

> Report Date: 2014/09/22 Report #: R1647060

> > Version: 3R

CERTIFICATE OF ANALYSIS – REVISED REPORT -2-

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager.

Tanya Eugine, M.Sc., Project Manager Email: TEugine@maxxam.ca Phone# (780) 577-7144

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

SILA REMEDIATION

Client Project #: CAM-3/CAM-5 LFM

Site Location: SHEPHERD BAY/MACKAR INLET

Sampler Initials: AP

AT1 BTEX AND F1-F4 IN SOIL (SOIL)

Maxxam ID		KN2769		
Sampling Date		2014/08/21		
COC Number		A159155		
	UNITS	C514-7WB	RDL	QC Batch

Physical Properties				
Moisture	%	2.0	0.30	7627619
Ext. Pet. Hydrocarbon				
F2 (C10-C16 Hydrocarbons)	mg/kg	<10	10	7627782
F3 (C16-C34 Hydrocarbons)	mg/kg	<50	50	7627782
Reached Baseline at C50	mg/kg	Yes		7627782
Volatiles				
F1 (C6-C10) - BTEX	mg/kg	<12	12	7627727
(C6-C10)	mg/kg	<12	12	7627727
Surrogate Recovery (%)				
1,4-Difluorobenzene (sur.)	%	98		7627727
4-Bromofluorobenzene (sur.)	%	98		7627727
D10-ETHYLBENZENE (sur.)	%	100		7627727
D4-1,2-Dichloroethane (sur.)	%	93		7627727
O-TERPHENYL (sur.)	%	82		7627782

SILA REMEDIATION

Client Project #: CAM-3/CAM-5 LFM

Site Location: SHEPHERD BAY/MACKAR INLET

Sampler Initials: AP

AT1 BTEX AND F1-F4 IN WATER (WATER)

2014/08/21		
 		QC Batch
UNITS	A159155	2014/08/21 A159155

Ext. Pet. Hydrocarbon				
F2 (C10-C16 Hydrocarbons)	mg/L	<0.71 (1)	0.71	7623510
F3 (C16-C34 Hydrocarbons)	mg/L	<1.4 (1)	1.4	7623510
Reached Baseline at C50	mg/L	Yes		7623510
Volatiles				
F1 (C6-C10) - BTEX	ug/L	<100	100	7627246
(C6-C10)	ug/L	<100	100	7627246
Surrogate Recovery (%)				
1,4-Difluorobenzene (sur.)	%	101		7627246
4-Bromofluorobenzene (sur.)	%	98		7627246
D4-1,2-Dichloroethane (sur.)	%	96		7627246
O-TERPHENYL (sur.)	%	85		7623510

RDL = Reportable Detection Limit
(1) Detection limit raised based on sample volume used for analysis.

SILA REMEDIATION

Client Project #: CAM-3/CAM-5 LFM

Site Location: SHEPHERD BAY/MACKAR INLET

Sampler Initials: AP

POLYCHLORINATED BIPHENYLS BY GC-ECD (SOIL)

	UNITS	C514-7WB	RDL	QC Batch
COC Number		A159155		
Sampling Date		2014/08/21		
Maxxam ID		KN2769		

Polychlorinated Biphenyls				
Aroclor 1016	mg/kg	<0.010	0.010	7628083
Aroclor 1221	mg/kg	<0.010	0.010	7628083
Aroclor 1232	mg/kg	<0.010	0.010	7628083
Aroclor 1242	mg/kg	<0.010	0.010	7628083
Aroclor 1248	mg/kg	<0.010	0.010	7628083
Aroclor 1254	mg/kg	<0.010	0.010	7628083
Aroclor 1260	mg/kg	<0.010	0.010	7628083
Aroclor 1262	mg/kg	<0.010	0.010	7628083
Aroclor 1268	mg/kg	<0.010	0.010	7628083
Total Aroclors	mg/kg	<0.010	0.010	7628083
Surrogate Recovery (%)				
NONACHLOROBIPHENYL (sur.)	%	79		7628083

SILA REMEDIATION

Client Project #: CAM-3/CAM-5 LFM

Site Location: SHEPHERD BAY/MACKAR INLET

Sampler Initials: AP

ELEMENTS BY ATOMIC SPECTROSCOPY (SOIL)

	UNITS	C514-7WB	RDL	QC Batch
COC Number		A159155		
Sampling Date		2014/08/21		
Maxxam ID		KN2769		

			1	i
Elements				
Total Arsenic (As)	mg/kg	<1.0	1.0	7632817
Total Cadmium (Cd)	mg/kg	<0.10	0.10	7632817
Total Chromium (Cr)	mg/kg	85	1.0	7632817
Total Cobalt (Co)	mg/kg	3.5	1.0	7632817
Total Copper (Cu)	mg/kg	7.9	5.0	7632817
Total Lead (Pb)	mg/kg	2.5	1.0	7632817
Total Mercury (Hg)	mg/kg	<0.050	0.050	7632817
Total Nickel (Ni)	mg/kg	40	1.0	7632817
Total Zinc (Zn)	mg/kg	17	10	7632817

SILA REMEDIATION

Client Project #: CAM-3/CAM-5 LFM

Site Location: SHEPHERD BAY/MACKAR INLET

Sampler Initials: AP

POLYCHLORINATED BIPHENYLS BY GC-ECD (WATER)

Maxxam ID		KN2770		
Sampling Date		2014/08/21		
COC Number		A159155		
	UNITS	C514-8W	RDL	QC Batch

Polychlorinated Biphenyls				
Aroclor 1016	mg/L	<0.000050	0.000050	7627921
Aroclor 1221	mg/L	<0.000050	0.000050	7627921
Aroclor 1232	mg/L	<0.000050	0.000050	7627921
Aroclor 1242	mg/L	<0.000050	0.000050	7627921
Aroclor 1248	mg/L	<0.000050	0.000050	7627921
Aroclor 1254	mg/L	<0.000050	0.000050	7627921
Aroclor 1260	mg/L	<0.000050	0.000050	7627921
Aroclor 1262	mg/L	<0.000050	0.000050	7627921
Aroclor 1268	mg/L	<0.000050	0.000050	7627921
Total Aroclors	mg/L	<0.000050	0.000050	7627921
Surrogate Recovery (%)				
NONACHLOROBIPHENYL (sur.)	%	76		7627921

SILA REMEDIATION

Client Project #: CAM-3/CAM-5 LFM

Site Location: SHEPHERD BAY/MACKAR INLET

Sampler Initials: AP

ELEMENTS BY ATOMIC SPECTROSCOPY (WATER)

	UNITS	C514-8W	RDL	QC Batch
COC Number		A159155		
Sampling Date		2014/08/21		
Maxxam ID		KN2770		

Elements				
Total Arsenic (As)	mg/L	0.0032	0.00020	7631124
Total Cadmium (Cd)	mg/L	0.000085	0.000020	7631124
Total Chromium (Cr)	mg/L	0.059	0.0010	7631124
Total Cobalt (Co)	mg/L	0.014	0.00030	7631124
Total Copper (Cu)	mg/L	0.080	0.00020	7631124
Total Lead (Pb)	mg/L	0.015	0.00020	7631124
Total Nickel (Ni)	mg/L	0.042	0.00050	7631124
Total Zinc (Zn)	mg/L	0.080	0.0030	7631124
Low Level Elements				
Total Mercury (Hg)	ug/L	<0.020 (1)	0.020	7630982

⁽¹⁾ Due to the sample matrix, sample required dilution. Detection limit was adjusted accordingly

SILA REMEDIATION

Client Project #: CAM-3/CAM-5 LFM

Site Location: SHEPHERD BAY/MACKAR INLET

Sampler Initials: AP

Package 1 6.7°C

Each temperature is the average of up to three cooler temperatures taken at receipt

General Comments

Sample KN2769-01: Sample extracted for F24 past method-specified hold time.

POLYCHLORINATED BIPHENYLS BY GC-ECD (SOIL) Comments

Sample KN2769-02 Polychlorinated Biphenyls: Sample extracted past method-specified hold time.

POLYCHLORINATED BIPHENYLS BY GC-ECD (WATER) Comments

Sample KN2770-01 Polychlorinated Biphenyls: Sample extracted past method-specified hold time.

Results relate only to the items tested.

Attention: JEAN-PIERRE PELLETIER Client Project #: CAM-3/CAM-5 LFM

P.O. #:

Site Location: SHEPHERD BAY/MACKAR INLET

Quality Assurance Report Maxxam Job Number: EB478367

QA/QC			Date				
Batch	00 T	5	Analyzed		5		001: "
Num Init	QC Type	Parameter	yyyy/mm/dd	Value	Recovery	UNITS	QC Limits
7623510 JR1	Matrix Spike	O-TERPHENYL (sur.)	2014/09/07		82	%	50 - 130
		F2 (C10-C16 Hydrocarbons)	2014/09/07		NC	%	50 - 130
	0 "	F3 (C16-C34 Hydrocarbons)	2014/09/07		89	%	50 - 130
	Spiked Blank	O-TERPHENYL (sur.)	2014/09/07		86	%	50 - 130
		F2 (C10-C16 Hydrocarbons)	2014/09/07		94	%	70 - 130
		F3 (C16-C34 Hydrocarbons)	2014/09/07		91	%	70 - 130
	Method Blank	O-TERPHENYL (sur.)	2014/09/07		85	%	50 - 130
		F2 (C10-C16 Hydrocarbons)	2014/09/07	<0.10		mg/L	
		F3 (C16-C34 Hydrocarbons)	2014/09/07	<0.20		mg/L	
	RPD	F2 (C10-C16 Hydrocarbons)	2014/09/07	NC		%	40
		F3 (C16-C34 Hydrocarbons)	2014/09/07	NC		%	40
7627246 PS7	Matrix Spike	1,4-Difluorobenzene (sur.)	2014/09/05		96	%	70 - 130
		4-Bromofluorobenzene (sur.)	2014/09/05		99	%	70 - 130
		D4-1,2-Dichloroethane (sur.)	2014/09/05		101	%	70 - 130
		(C6-C10)	2014/09/05		92	%	70 - 130
	Spiked Blank	1,4-Difluorobenzene (sur.)	2014/09/05		97	%	70 - 130
		4-Bromofluorobenzene (sur.)	2014/09/05		97	%	70 - 130
		D4-1,2-Dichloroethane (sur.)	2014/09/05		96	%	70 - 130
		(C6-C10)	2014/09/05		117	%	70 - 130
	Method Blank	1,4-Difluorobenzene (sur.)	2014/09/05		99	%	70 - 130
		4-Bromofluorobenzene (sur.)	2014/09/05		98	%	70 - 130
		D4-1,2-Dichloroethane (sur.)	2014/09/05		99	%	70 - 130
		F1 (C6-C10) - BTEX	2014/09/05	<100		ug/L	
		(C6-C10)	2014/09/05	<100		ug/L	
	RPD	F1 (C6-C10) - BTEX	2014/09/05	NC		%	40
		(C6-C10)	2014/09/05	NC		%	40
7627619 NBA	Method Blank	Moisture	2014/09/06	< 0.30		%	
7627727 NP2	Matrix Spike						
-	[KN2776-01]	1,4-Difluorobenzene (sur.)	2014/09/08		107	%	60 - 140
		4-Bromofluorobenzene (sur.)	2014/09/08		102	%	60 - 140
		D10-ETHYLBENZENE (sur.)	2014/09/08		105	%	60 - 130
		D4-1,2-Dichloroethane (sur.)	2014/09/08		95	%	60 - 140
		(C6-C10)	2014/09/08		105	%	60 - 140
	Spiked Blank	1,4-Difluorobenzene (sur.)	2014/09/08		99	%	60 - 140
		4-Bromofluorobenzene (sur.)	2014/09/08		101	%	60 - 140
		D10-ETHYLBENZENE (sur.)	2014/09/08		104	%	60 - 130
		D4-1,2-Dichloroethane (sur.)	2014/09/08		93	%	60 - 140
		(C6-C10)	2014/09/08		109	%	60 - 140
	Method Blank	1,4-Difluorobenzene (sur.)	2014/09/08		97	%	60 - 140
	ou Diam.	4-Bromofluorobenzene (sur.)	2014/09/08		99	%	60 - 140
		D10-ETHYLBENZENE (sur.)	2014/09/08		105	%	60 - 130
		D4-1,2-Dichloroethane (sur.)	2014/09/08		93	%	60 - 140
		F1 (C6-C10) - BTEX	2014/09/08	<12	50	mg/kg	00 140
		(C6-C10)	2014/09/08	<12		mg/kg	
7627782 AK8	Matrix Spike	(88 810)	2014/00/00	\1Z		mg/kg	
70277027110	[KN2773-01]	O-TERPHENYL (sur.)	2014/09/09		79	%	50 - 130
	[.4.42770-01]	F2 (C10-C16 Hydrocarbons)	2014/09/09		86	%	50 - 130
		F3 (C16-C34 Hydrocarbons)	2014/09/09		90	%	50 - 130
	Spiked Blank	O-TERPHENYL (sur.)	2014/09/09		80	%	50 - 130
	opinca biarin	F2 (C10-C16 Hydrocarbons)	2014/09/09		93	% %	70 - 130
		F3 (C16-C34 Hydrocarbons)	2014/09/09		93 96	% %	70 - 130 70 - 130
	Method Blank	O-TERPHENYL (sur.)	2014/09/09		88	% %	50 - 130
	IVICUIOU DIAIIK	` ,		<10	00	_	50 - 150
		F2 (C10-C16 Hydrocarbons)	2014/09/09			mg/kg	
		E2 (C16 C24 Hydrocorbono)	2014/00/00				
7627921 LZ3	Matrix Spike	F3 (C16-C34 Hydrocarbons) NONACHLOROBIPHENYL (sur.)	2014/09/09 2014/09/09	<50	89	mg/kg %	30 - 130

Attention: JEAN-PIERRE PELLETIER Client Project #: CAM-3/CAM-5 LFM

P.O. #:

Site Location: SHEPHERD BAY/MACKAR INLET

Quality Assurance Report (Continued)

Maxxam Job Number: EB478367

QA/QC			Date				
Batch			Analyzed				
Num Init	QC Type	Parameter	yyyy/mm/dd	Value	Recovery	UNITS	QC Limits
7627921 LZ3	Matrix Spike	Aroclor 1260	2014/09/09		90	%	30 - 130
	Spiked Blank	NONACHLOROBIPHENYL (sur.)	2014/09/08		90	%	30 - 130
	'	Aroclor 1260	2014/09/08		96	%	30 - 130
	Method Blank	NONACHLOROBIPHENYL (sur.)	2014/09/08		91	%	30 - 130
		Aroclor 1016	2014/09/08	< 0.000050		mg/L	
		Aroclor 1221	2014/09/08	< 0.000050		mg/L	
		Aroclor 1232	2014/09/08	< 0.000050		mg/L	
		Aroclor 1242	2014/09/08	< 0.000050		mg/L	
		Aroclor 1248	2014/09/08	<0.000050		mg/L	
		Aroclor 1254	2014/09/08	<0.000050		mg/L	
		Aroclor 1260	2014/09/08	<0.000050		mg/L	
		Aroclor 1262	2014/09/08	<0.000050		•	
						mg/L	
		Aroclor 1268	2014/09/08	<0.000050		mg/L	
	555	Total Aroclors	2014/09/08	<0.000050		mg/L	40
	RPD	Aroclor 1016	2014/09/09	NC		%	40
		Aroclor 1221	2014/09/09	NC		%	40
		Aroclor 1232	2014/09/09	NC		%	40
		Aroclor 1242	2014/09/09	NC		%	40
		Aroclor 1248	2014/09/09	NC		%	40
		Aroclor 1254	2014/09/09	NC		%	40
		Aroclor 1260	2014/09/09	NC		%	40
		Aroclor 1262	2014/09/09	NC		%	40
		Aroclor 1268	2014/09/09	NC		%	40
		Total Aroclors	2014/09/09	NC		%	40
628083 LZ3	Matrix Spike						
	[KN2776-02]	NONACHLOROBIPHENYL (sur.)	2014/09/08		78	%	30 - 130
	[]	Aroclor 1260	2014/09/08		72	%	30 - 130
	Spiked Blank	NONACHLOROBIPHENYL (sur.)	2014/09/08		82	%	30 - 130
	Орікса Віалік	Aroclor 1260	2014/09/08		89	%	30 - 130
	Method Blank	NONACHLOROBIPHENYL (sur.)	2014/09/08		81	%	30 - 130
	Welliou Blank	Aroclor 1016	2014/09/08	< 0.010	01		30 - 130
						mg/kg	
		Aroclor 1221	2014/09/08	<0.010		mg/kg	
		Aroclor 1232	2014/09/08	<0.010		mg/kg	
		Aroclor 1242	2014/09/08	<0.010		mg/kg	
		Aroclor 1248	2014/09/08	<0.010		mg/kg	
		Aroclor 1254	2014/09/08	<0.010		mg/kg	
		Aroclor 1260	2014/09/08	< 0.010		mg/kg	
		Aroclor 1262	2014/09/08	< 0.010		mg/kg	
		Aroclor 1268	2014/09/08	< 0.010		mg/kg	
		Total Aroclors	2014/09/08	< 0.010		mg/kg	
630982 RK3	Matrix Spike	Total Mercury (Hg)	2014/09/09		94	%	80 - 120
	Spiked Blank	Total Mercury (Hg)	2014/09/10		101	%	80 - 120
	Method Blank	Total Mercury (Hg)	2014/09/09	< 0.0020		ug/L	
	RPD	Total Mercury (Hg)	2014/09/09	NC		%	20
'631124 SF3	Matrix Spike	Total Arsenic (As)	2014/09/09		108	%	80 - 120
001124 010	Matrix Opino	Total Cadmium (Cd)	2014/09/09		110	%	80 - 120
		Total Chromium (Cr)	2014/09/09		107	%	80 - 120
		Total Cobalt (Co)	2014/09/09		107		
						%	80 - 120
		Total Copper (Cu)	2014/09/09		107	%	80 - 120
		Total Lead (Pb)	2014/09/09		111	%	80 - 120
		Total Nickel (Ni)	2014/09/09		107	%	80 - 120
		Total Zinc (Zn)	2014/09/09		111	%	80 - 120
					405		
	Spiked Blank	Total Arsenic (As)	2014/09/09		105	%	
	Spiked Blank	Total Arsenic (As) Total Cadmium (Cd) Total Chromium (Cr)	2014/09/09 2014/09/09		105 103 104	% %	80 - 120 80 - 120

Maxxam Analytics International Corporation o/a Maxxam Analytics Edmonton: 9331 - 48th Street T6B 2R4 Telephone(780)577-7100 Fax(780)450-4187

Attention: JEAN-PIERRE PELLETIER Client Project #: CAM-3/CAM-5 LFM

P.O. #:

Site Location: SHEPHERD BAY/MACKAR INLET

Quality Assurance Report (Continued)

Maxxam Job Number: EB478367

QA/QC			Date			
Batch			Analyzed			
Num Init	QC Type	Parameter	yyyy/mm/dd	Value Recovery	UNITS	QC Limits
7631124 SF3	Spiked Blank	Total Cobalt (Co)	2014/09/09	106	%	80 - 120
		Total Copper (Cu)	2014/09/09	107	%	80 - 120
		Total Lead (Pb)	2014/09/09	109	%	80 - 120
		Total Nickel (Ni)	2014/09/09	106	%	80 - 120
		Total Zinc (Zn)	2014/09/09	110	%	80 - 120
	Method Blank	Total Arsenic (As)	2014/09/09	<0.00020	mg/L	
		Total Cadmium (Cd)	2014/09/09	<0.000020	mg/L	
		Total Chromium (Cr)	2014/09/09	<0.0010	mg/L	
		Total Cobalt (Co)	2014/09/09	<0.00030	mg/L	
		Total Copper (Cu)	2014/09/09	0.00027, RDL=0.00020	mg/L	
		Total Lead (Pb)	2014/09/09	<0.00020	mg/L	
		Total Nickel (Ni)	2014/09/09	<0.00050	mg/L	
		Total Zinc (Zn)	2014/09/09	0.0059, RDL=0.0030	mg/L	
	RPD	Total Copper (Cu)	2014/09/09	2.5	%	20
7632817 JEP	Matrix Spike	Total Arsenic (As)	2014/09/10	95	%	75 - 125
		Total Cadmium (Cd)	2014/09/10	96	%	75 - 125
		Total Chromium (Cr)	2014/09/10	90	%	75 - 125
		Total Cobalt (Co)	2014/09/10	93	%	75 - 125
		Total Copper (Cu)	2014/09/10	93	%	75 - 125
		Total Lead (Pb)	2014/09/10	98	%	75 - 125
		Total Mercury (Hg)	2014/09/10	100	%	75 - 125
		Total Nickel (Ni)	2014/09/10	NC	%	75 - 125
		Total Zinc (Zn)	2014/09/10	NC	%	75 - 125
	QC Standard	Total Arsenic (As)	2014/09/10	114	%	50 - 150
	QO Olandara	Total Chromium (Cr)	2014/09/10	92	%	41 - 159
		Total Cobalt (Co)	2014/09/10	100	%	75 - 125
		Total Copper (Cu)	2014/09/10	104	%	73 - 127
		Total Lead (Pb)	2014/09/10	104	%	54 - 146
		Total Nickel (Ni)	2014/09/10	108	% %	61 - 139
		Total Zinc (Zn)	2014/09/10	109	%	72 - 128
	Spiked Blank	Total Arsenic (As)	2014/09/10	88	% %	75 - 125
	Spikeu bialik	, ,				
		Total Cadmium (Cd)	2014/09/10	87	%	75 - 125
		Total Cabalt (Ca)	2014/09/10	85	%	75 - 125
		Total Cobalt (Co)	2014/09/10	87	%	75 - 125
		Total Copper (Cu)	2014/09/10	88	%	75 - 125
		Total Lead (Pb)	2014/09/10	90	%	75 - 125
		Total Mercury (Hg)	2014/09/10	96	%	75 - 125
		Total Nickel (Ni)	2014/09/10	87	%	75 - 125
		Total Zinc (Zn)	2014/09/10	89	%	75 - 125
	Method Blank	Total Arsenic (As)	2014/09/10	<1.0	mg/kg	
		Total Cadmium (Cd)	2014/09/10	<0.10	mg/kg	
		Total Chromium (Cr)	2014/09/10	<1.0	mg/kg	
		Total Cobalt (Co)	2014/09/10	<1.0	mg/kg	
		Total Copper (Cu)	2014/09/10	<5.0	mg/kg	
		Total Lead (Pb)	2014/09/10	<1.0	mg/kg	
		Total Mercury (Hg)	2014/09/10	<0.050	mg/kg	
		Total Nickel (Ni)	2014/09/10	<1.0	mg/kg	
		Total Zinc (Zn)	2014/09/10	<10	mg/kg	
	RPD	Total Arsenic (As)	2014/09/10	13.3	%	35
		Total Cadmium (Ćd)	2014/09/10	NC	%	35
		Total Chromium (Cr)	2014/09/10	3.4	%	35
		Total Cobalt (Co)	2014/09/10	7.4	%	35
		Total Copper (Cu)	2014/09/10	NC	%	35
		Total Lead (Pb)	2014/09/10	12.6	%	35
		Total Mercury (Hg)	2014/09/10	NC	%	35
		. C.a. Moroary (119)	2017/00/10		7.5	00

Attention: JEAN-PIERRE PELLETIER Client Project #: CAM-3/CAM-5 LFM

P.O. #:

Site Location: SHEPHERD BAY/MACKAR INLET

Quality Assurance Report (Continued)

Maxxam Job Number: EB478367

QA/QC			Date				
Batch			Analyzed				
Num Init	QC Type	Parameter	yyyy/mm/dd	Value	Recovery	UNITS	QC Limits
7632817 JEP	RPD	Total Nickel (Ni)	2014/09/10	9.1		%	35
		Total Zinc (Zn)	2014/09/10	15.1		%	35

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

QC Standard: A sample of known concentration prepared by an external agency under stringent conditions. Used as an independent check of method accuracy.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spiked amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than 2x that of the native sample concentration).

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (one or both samples < 5x RDL).

Maxxam Analytics International Corporation o/a Maxxam Analytics Edmonton: 9331 - 48th Street T6B 2R4 Telephone(780)577-7100 Fax(780)450-4187

Validation Signature Page

Maxxam Job #: B478367

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

Anna Koksharova, M.Sc., Senior Analyst

Daniel Reslan, Chem. Tech., Volatiles Supervisor

Justin Geisel, B.Sc., Supervisor, Organics

Into Heinel

Luba Shymushovska, Senior Analyst, Organic Department

Peng Liang, Analyst II

Validation Signature Page

Maxxa	m ,	Job	#:	B47	8367
-------	-----	-----	----	------------	------

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

Sandy Yuan, M.Sc., Scientific Specialist

Yashu Mohan, B.Sc. B.Tech., Senior Analyst

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

ANNEX 2

QA/QC Discussion

QUALITY ASSURANCE / QUALITY CONTROL

Quality Assurance/Quality Control (QA/QC) program was implemented to monitor the quality of the analytical results. The main objective of this QA/QC program is to insure that sampling data and analysis results are complete, precise, exact, representative and comparable. The review consisted of evaluating sample collection/handling methodology, general laboratory comments, field (blind) duplicate samples, and inter-laboratory duplicate samples.

1. LABORATORIES

Samples collected during the monitoring program were submitted to laboratories accredited by the Canadian Association for Laboratory Accreditation (CALA):

Main Laboratory

EXOVA 7217 Roper Road NW Edmonton, Alberta T6B 3J4, Canada

CALA Registration number: 2602

Quality Assurance Laboratory

Maxxam Analytics International Corporation o/a Maxxam Analytics Edmonton 9331 - 48th Street T6B 2R4 CALA Registration number: 2996

2. FIELD QA/QC

Standard sample collection techniques were implemented to decrease the likelihood of compromising collected samples, such as:

- Pre-cleaned sample containers were provided by the laboratory.
- Monitoring equipment was decontaminated between sampling stations and dedicated sampling systems were utilized.
- Soil samples were placed directly in the laboratory provided jars/bottles and were not mixed.
- Disposable nitrile glove were worn and disposed of after each sample collection.
- Jars/bottles were cleaned prior to placement into the cooler.
- Water samples were collected through the use of dedicated Waterra foot valves and tubing.
- Ice Packs or bagged ice (Ziplock bags) were used to ensure that sample temperature would be kept below 10°C during transportation.

• Samples were kept at the laboratory at temperatures below 4°C.

Correspondences from Exova concerning the integrity of the samples are provided in Annex 1. These documents indicate that all samples received were acceptable for analysis.

The following is a summary of the analytical QA/QC procedure implemented in the field:

- 10% field Blind Duplicate Samples of soil and water were sent to Exova: one blind duplicate soil sample (C514-BD1) and one blind duplicate groundwater sample (C514-BDW1) were submitted, as an independent check on data reproducibility, and to assess the field QA/QC protocols, along with one travel blank (C314/C514-TB).
- 10% Inter-laboratory Duplicate Samples were sent to Maxxam: one blind duplicate soil sample (C514-7WB) and one blind duplicate groundwater sample (C514-8W) were submitted (to determine if variation in procedures may cause significant difference in analytical results).
- 10% Archival Samples of soil were sent to ESG.

3. LABORATORIES QA/QC

Quality assurance documents from Exova only provide a summary of the QA/QC results. The quantity of samples per batch per analysis is not provided.

Quality assurance documents from Maxxam indicate that:

- The soil sample analyzed for metals, PCBs and PHCs were done in 1 single batch per parameter group:
 - Batch 7632817 for metals
 - Batch 7628083 for PCBs
 - Batch 7627727 for PHC fraction F1
 - Batch 7627782 for PHC fraction F2-F3
- The water sample analyzed was done in 3the following batches:
 - Batch 7631124 for most metals
 - Batch 7630982 for mercury
 - Batch 7627921 for PCBs
 - Batch 7627246 for PHC fraction F1
 - Batch 7623510 for PHC fraction F2-F3

4. DATA MANAGEMENT AND INTERPRETATION

4.1. FIELD WORK

The relative percent difference (RPD) is used to evaluate the sample result variability. Average RPD values of 30% for each parameter analyzed from the same laboratory are considered an indication of acceptable duplicate sample variability. For groundwater samples, an RPD of greater than 30% may reflect difference in sample turbidity or variance in the sample procedures. These performance criteria are applicable when the concentrations of the original and duplicate sample are five times or greater than the laboratory method detection limit, since the uncertainty increases dramatically as the concentration approaches the detection limit. Table I provides the detection limit for each parameter and the associated minimum concentration to be reached in order to be eligible for RPD calculation.

Table I: Minimum Concentration for QA/QC RPD Calculation

			Soil		Water								
Parameter	Laboratory	Units	MDL	RPD Minimum*	Units	MDL	RPD Minimum*						
As	Exova	mg/kg	0.2	1.0	mg/L	0.00020	0.0010						
AS	Maxxam	mg/kg	1.0	5.0	mg/L	0.00020	0.0010						
Cd	Exova	mg/kg	0.01	0.05	mg/L	0.000010	0.00005						
Ca	Maxxam	mg/kg	0.10	0.50	mg/L	0.000020	0.00010						
Cr	Exova	mg/kg	0.5	2.5	mg/L	0.0005	0.0025						
Ci	Maxxam	mg/kg	1.0	5.0	mg/L	0.0010	0.0050						
Ca	Exova	mg/kg	0.1	0.5	mg/L	0.00010	0.0005						
Co	Maxxam	mg/kg	1.0	5.0	mg/L	0.00030	0.0015						
C	Exova	mg/kg	1.0	5.0	mg/L	0.00100	0.0050						
Cu	Maxxam	mg/kg	5.0	25.0	mg/L	0.00020	0.0010						
Pb	Exova	mg/kg	5.0	25.0	mg/L	0.00010	0.0005						
PD	Maxxam	mg/kg	1.0	5.0	mg/L	0.00020	0.0010						
Ni	Exova	mg/kg	0.5	2.5	mg/L	0.00050	0.0025						
INI	Maxxam	mg/kg	1.0	5.0	mg/L	0.00050	0.0025						
7	Exova	mg/kg	1	5	mg/L	0.0010	0.005						
Zn	Maxxam	mg/kg	10	50	mg/L	0.0030	0.015						
Ца	Exova	mg/kg	0.01	0.05	mg/L	NA	NA						
Hg	Maxxam	mg/kg	0.05	0.25	mg/L	0.00002	0.00010						
Total PCBs	Exova	mg/kg	0.10	0.50	ug/L	0.10	0.50						
Total PCBS	Maxxam	mg/kg	0.01	0.05	ug/L	0.05	0.25						
DUC 51	Exova	mg/kg	10	50	mg/L	0.1	0.5						
PHC F1	Maxxam	mg/kg	12	60	mg/L	0.1	0.5						
PHC F2	Exova	mg/kg	50	250	mg/L	0.1	0.5						
PHC FZ	Maxxam	mg/kg	10	50	mg/L	0.1	0.5						
PHC F3	Exova	mg/kg	50	250	mg/L	0.1	0.5						
PIIC F3	Maxxam	mg/kg	50	250	mg/L	0.2	1.0						

^{*:} The RPD Minimum is the minimum concentration to be reached for QA/QC Relative Percent Difference Calculation

4.1.1. SOIL SAMPLES

One blind duplicate soil sample was submitted for intra- and inter-laboratory comparisons. The original and duplicate intra- and inter-laboratory metal, PCB and PHC soil sample results are summarized in Tables II along with the calculated RPD for each parameter. As noted in the tables, several of the results from the original and/or duplicate samples were below or within five times the laboratory method detection limits, and therefore RPD values were not calculated for these parameters.

Review of results indicated relatively minor differences in metal concentrations within the intralaboratory duplicate samples, with the individual parameter RPD values generally falling within the acceptable range.

Results from the inter-laboratory duplicate samples indicated significantly greater concentration differences for chromium and nickel. Inter-laboratory results do raise concern as the actual chromium and nickel concentrations are 5 to 10 times greater in results from Maxxam. The only potential explanation lies with the sample preparation methods:

- Samples are often ground with a stainless steel flail grinder or in a stainless steel housing. It is possible that the metal came off at this point. As can be seen, if this is the case, very little material was transferred to the soil because the levels are well below any guideline limits.
- It is possible that there are slight variations to the acid digestion which could lead to a higher extraction of certain recalcitrant elements. Chromium does tend to be one of those recalcitrant elements. Nickel generally does not fall in this category but if the chromium and nickel are together in a compound, this may be possible.

4.1.2. WATER SAMPLES

One blind duplicate groundwater sample (C514-8W / C514-BDW1) was submitted for intra- and inter-laboratory comparisons. The original and duplicate intra- and inter-laboratory metal, PCB and PHC sample results are summarized in Table III, along with the calculated RPD for each parameter. As noted in the table, mercury (which was not analyzed by Exova) and all organic parameters from the original and/or duplicate samples were below or within five times the laboratory method detection limits, and therefore RPD values were not calculated for these parameters.

Review of results indicated minor differences in metal concentrations between the original and intra-laboratory duplicate sample with all individual parameters falling within the acceptable performance criteria, ranging between 0.8% and 11.7%. Results from inter-laboratory results also indicate minor differences in measured concentrations.

The travel blank (TB) was submitted for metals, PCB and PHC analyses are also summarized in Tables III. As shown, all of the results were below the laboratory method detection.

4.2. LABORATORIES

QA/QC results from both laboratories do not raise any concern. QA/QC results from both laboratories are included with the certificates of analysis provided in Annexe 1.

4.2.1. Blanks

All blanks from both laboratories, for both matrices and for all parameters were below the detection limits.

4.2.2. ANALYTICAL DUPLICATES

All analytical duplicates from both laboratories, for both matrices and for all parameters had RSD' at or below 20%.

4.2.3. CONTROL SAMPLES

All control samples from both laboratories, for both matrices and for all parameters had concentrations between the upper and lower concentration established for each parameter.

Table II: Soil Chemical Analysis Results - Quality Assurance Samples

			Parameters														
	Laboratory											F1	F2	F3			
Sample #		As [mg/kg]	Cd [mg/kg]	Cr [mg/kg]	Co [mg/kg]	Cu [mg/kg]	Pb [mg/kg]	Ni [mg/kg]	Zn [mg/kg]	Hg [mg/kg]	PCBs [mg/kg]		C ₁₀ -C ₁₆ [mg/kg]				
RDL - Exova		0.2	0.01	0.5	0.1	1.0	5.0	0.5	1	0.01	0.10	10	50	50			
RPD Minimum	- Exova	1.0	0.05	2.5	0.5	5.0	25.0	2.5	5	0.05	0.50	50	250	250			
RDL - Maxxam		1.0	0.10	1.0	1.0	5.0	1.0	1.0	10	0.05	0.01	12	10	50			
RPD Minimum	- Maxxam	5.0	0.50	5.0	5.0	25.0	5.0	5.0	50	0.25	0.05	60	50	250			
				Intra-	Lab Du	plicate	Sample	s (Exov	a)								
C514-7WB	Exova	0.2	<0.01	6.2	3.2	6.7	<4.9	7.7	20	<0.01	<0.1	<10	<50	<50			
C514-BD1	LXOVA	0.2	<0.01	5.1	2.9	5.3	<4.9	6.8	17	<0.01	<0.1	<10	<50	<50			
Relative % Diffe	erence	N/A	N/A	19.5	N/A	N/A	N/A	12.4	N/A	N/A	N/A	N/A	N/A	N/A			
			Int	er-Lab	Duplica	te Sam	ples (Ex	ova-Ma	xxam)								
C514-7WB	Exova	0.2	<0.01	6.2	3.2	6.7	<4.9	7.7	20	<0.01	<0.1	<10	<50	<50			
0314-770	Maxxam	<1	<0.1	85.0	3.5	7.9	2.5	40.0	17	< 0.05	<0.01	<12	<10	<50			
Relative % Diffe	erence	N/A	N/A	172.8	N/A	N/A	N/A	135.4	N/A	N/A	N/A	N/A	N/A	N/A			

Table III: Groundwater Chemical Analysis Results - Quality Control Samples

		Parameters														
Sample #	Laboratory	As	Cd	Cr	Co	Cu	Pb	Ni	Zn	Ца	PCBs	F1	F2	F3		
Campic "		MS [mg/L]	-							Hg		C ₆ -C ₁₀	C ₁₀ -C ₁₆	C ₁₀ -C ₃₄		
		[IIIg/L]	[mg/L]	[mg/L]	[mg/L]	[mg/L]	[mg/L]	[mg/L]	[mg/L]	[mg/L]	[ug/L]					
RDL - Exova		0.0002	0.000010	0.0005	0.0001	0.0010	0.0001	0.0005	0.001	N/A	0.10	0.1	0.10	0.1		
RPD Minimum -	Exova	0.0010	0.000050	0.0025	0.0005	0.0050	0.0005	0.0025	0.005	N/A	0.50	0.5	0.50	0.5		
RDL - Maxxam		0.0002	0.000020	0.0010	0.0003	0.0002	0.0002	0.0005	0.003	0.00002	0.05	0.1	0.71	1.4		
RPD Minimum -	Maxxam	0.0010	0.000100	0.0050	0.0015	0.0010	0.0010	0.0025	0.015	0.00010	0.25	0.5	3.55	7.0		
												-	-			
				Intra	-Lab Du			(Exova)								
C514-8W	Exova	0.0040	0.000050	0.0678	0.0158	0.0920	0.0118		0.092	N/A	<0.10	<0.1	<0.1	<0.1		
C514-BDW1	ZXOTA	0.0042	0.000060	0.0762	0.0162	0.0950	0.0119	0.0520	0.093	N/A	<0.10	<0.1	<0.1	<0.1		
Relative % Differ	ence	4.9	N/A	11.7	2.5	3.2	0.8	7.0	1.1	N/A	N/A	N/A	N/A	N/A		
			lı	nter-Lab	Duplica	te Samp	oles (Exc	va-Max	xam)							
C514-8W	Exova	0.0040	0.000050	0.0678	0.0158	0.0920	0.0118	0.0485	0.092	N/A	<0.1	<0.1	<0.1	<0.1		
0314-000	Maxxam	0.0032	0.000085	0.0590	0.0140	0.0800	0.0150	0.0420	0.080	<0.02	<0.05	<0.1	<0.71	<1.4		
Relative % Differ	ence	22.2	N/A	13.9	12.1	14.0	23.9	14.4	14.0	N/A	N/A	N/A	N/A	N/A		
											•	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·			
C314/C514/TB	Travel Blank	<0.0002	<0.00001	<0.0005	<0.0001	< 0.001	<0.0001	<0.0005	<0.001	-	<0.1	<0.1	<0.1	<0.1		

ANNEX 3

Field Notes and Chain of Custody Forms

AAC AVOUT NE 15 DAOS 24 MOST ACROSS	447 V-NEW NEW CONSTRANCY ON (MAS 16 12) 447 V-NEW NEW ON (MAS 16 12) 447 V-NEW NEW OF OF TOE 448 V-WSW NEW ON NEW ON SWELL	450 DEPRINANT TUPE 451 MANY SMALL ERG 1, 10 W XI-24 V 454 V-5E, 455 ERUS (2013): V-5	45C EROSIS (2012) V. NIW (SE TUP ME) 20 V ST 20 V ST 45T V. NIW (ENE FROM BOLE OF PLANT) 45T V. NIW (ENE FROM BOLE OF PLANT) AST V. NIW (ENE FROM BOLE OF PLANT) NO STOIL TO AND DOWNED ZOW LEVEL
TERLICONN SCOOL ASA	BRN SALW CS - GA. DANKO BRN SALW CS - GA. DANKO 435 V " NE 8 SW SLOPE (ANW 7 12) FORMAND	MW. 8 (514-565 4/B., 1000) Ban Sans, M-Cs. 4, Dans, O. 10 40:50. 434 HYDrogan Sann. 1000	······································

3		
49276-W	a way a samo a	V JAWESTING + Re
423	Liston Sicons. V. New Sin.	SIZ IN- NW. Frances + POLE , NO DI MEGT
49.4		
	- M-	514 V-Se E SLUDE
	TENSION CRACK - 3 mLx 1-3 mV-	V-540/5E
	(a COEST	Sto wetter one o bone & slop 8xt.
	AUSOR UT DEPR 1 TOTAL AUSON	5
152	WAS TOE	18~
		ر ما ما
7 (6)	O COUTLOISE MEAN. (1975)	5-2~W, 10-3
	4 Q) X	- 5
0		C MIN EROSID
Sor	323	12
303	2 portoces 20.30,30,5	522 Chack ext Nwdin V-NW ?)
	・シントン	they work low W. 16
\$	Smallette Sitem 15x15 Volv	3cmt of dressor ens Sas V-SE
\$05	DE00.0~ 5000 40×20× 104 V-E	525 PAN SW-E, V-NE-0 CHOSION.
Soc	1	576 MIN EROS ON SWORE, CARST - TDE
	30x40x 54 V-E/S	1 6-7~ L, 15 L× 2+ Fre only
404	Scorne ecrest works 20t V-E/S.	Asosts V NN
	12-5-4	3
Ses.	VEXX FINESONU	527 V NE DOM TOE
<u>/</u>	5 SIN.	Shr How LEVEL
		The state of the s

	Testing,														
Exovo	calibrating,	Invoice to:			Report To	o:							120	Report	Regulatory
	advising	Company:	SILA REMET	MOTTAN	Company:									Results	Requirement
www.exova.com	ED 120-02	Address:	Oveber, QC. J.P. Pelletier	bournane	Address:									E-Mail	HCDWQG
Project Informa			Quebec, QC.	J										Mail	Ab Tier 1
Project ID:	CAM-5 2014	Attention:	J.P. Pelletier		Attention:									Online	SPIGEC
Project Name:	2014 LFM	Phone:	418-626-168	8 Ext	Phone:						1			Fax	BCCSR
Project Location:	MACKAR INLET	Cell:		5892	Cell:									PDF	Other (list below)
Legal Location:		Fax:			Fax:									Excel	(
PO/AFE#:		E-mail: 3 e	an-pierre pelletis	Lo lymi	E-mail 1:	a	ndn	w.	acc	alis	Ø. A	mai.	1.	QA/QC	X
Proj. Acct. Code:		Agreement ID:		ca	E-mail 2:						J		om	Sample C	ustody (please print)
Quote #	14.071-309613	Copy of repor	t:		Copy of inv	voice:								Sampled I	by: A.PASSALK
		RUSH Priority	/				3	100							
Emergen	cy (contact lab for turnaround and p		When "ASAP" is requested, turn arou				Vote							Company	SILA
Priority 1	-2 working days (100% surcharge)		priority, with pricing and turn around the lab prior to submitting RUSH san			ers	27	E.						9/9/201	
Urgent 2-	-3 working days (50% surcharge)		RUSH, please indicate in the special			Containers	Se	4	5					This sect	ion for Lab use only
Date Requir	ed.	Signat	aldh			Con	3	ū	Mehal					Date/Time	stamo:
						r of	\$ 4 T		Ze			13		24(3) 11111	osamp.
Special Instru	ctions/Comments (please include contact	information includir	ng ph. # if different from above			Number of	و ر		-					anaa-	
						2	Sign		-					AUG 2 8 F	
		Depth						F						Indicate in	the space allotted any
Site I.D.	Sample Description	start end	Date/Time Sampled	Matrix	Sampling Method			Eni √ releva	ter tes ant sa			v)		deficienci	es by the corresponding
	CELL	in cm m			Method	<u> </u>			_				_	number.	
2	C514- 5WA		21/08/14	SOIL.		2	XX			\vdash					1. Indicate any samples that
3	5 WB						X	X	-	-					were not packaged well
4	GWA					1 3	X		-	-				-	Indicate any samples not received in Exova supplies
5	6WB	 					VX.	X	-	-					received in Exova supplies
6	7WA 7WB	-					X			-					3. Indicate any samples that
7	8WA	-					X	X	-	-			_		were not clearly labeled
8	8 W &			- - - 				X							 Indicate any samples not received within the required
9	C514- 8W			I. William		7 0	r Dig	X	120						hold time or temp.
10	C514 - BDW1			WATER		7	X			-					Indicate any missing or extra samples
11	C3 (-1- 100W)					+	X	~	پد		-				
12	-	 		-		-			-		-	-			Indicate any samples that were received broken
13											-	-			
y 14															7. Indicate any samples where sufficient volume was
15				+		-									not received 8. Indicate any samples
Submission of this	s form acknowledges acceptance of	Exova's Standard	Terms	LOT: 102	3071		coc			Shir	ping:		CO	D Y/ N	received in an inappropriate
and Conditions (h	ttp://www.exova.com/about/terms-a	nd-conditions/)		W1	18861111			111			d size	of con		1/ 1	container
Please indicate	any potentially hazardous sample	e's					$\Pi\Pi$				p. rece			Delivery Meth	nod:
	. 1	0.004	0700				Ш				4-6			Waybill:	
Page	of Contro	ı# C 004	2163							Rec	eived b	DV:	1	BUNG	2

mananu	LA REMED	Report Address		Report To:			Same	as In	voice	t	Q		2.3			ution			lla	La		67	m.		SALE -	ULAT AT1	ORY	GUIDI	ELINES	S:
	P PELE MIE						-						1	Car	1-b	ner	ie	Pe	He	fie	16	CC	1			CCMI	E			
126	D BOUL LEBO	URGNEU	F																,					1		Regu	lated	Drinki	ng Wat	ter
Prov:	JUFBEL, QC 18-626-1688	PC:		Prov:					PC:				a	nd	rei	w 0	pas	sa	1,5	eg	ma	cile	COV	3	K	Other	r;			
tact #s: Ph: Z	13-626-1638	CALT SE	392	Ph:	_				Cell	_																				
amples are held for 60	alendar days after sample receipt	unless specified oth	nerwise.	9					Sept		-				W	ATE		11.5				-	Othe	r Ana	alysi	s			_	
ect # / Name:	CAM-3 10	Am-5 L	-Fm	oecillo			Ê		Assessment ICP Metals Set Lin			4		+4	u.	-	Regulated Metals	V Total Discolver							-				_	-
Location: Sr	nepherd Bau	mac	lear 1	nlet	2		/ A		3				10	DBTEX FI-F4	□ q		ulated Me	Diec		N	1	A	5			0				7
te #: 12 3	PASSALK	7.		pack	ш		CME		(sle)	=			- Age	BTE	□ Turb	DOC	ulate	Ē				-	-						ez.	nitte
	RUSH (Cor	ntact lab to re	(avnas	se for	-	~	0) 8		1	Iput			2)d [Regi	pto		AS	, (0	4	4,1	r	, 4	b,	MI) leu	Sub
SERVICE EQUESTED:	Date Required		036176)	ravai	11	cro	Metals (CCME / AT1)		ICP	II Le			4	23	Water	T	7	5	<			2	1	Ho	(ON	4	1	ot A	er's
TEQUESTED.	REGULAR (5 to 7 Days)		See	E	(75 mi	ed N	4	ment	lass	V		0	芷	2		3	8	1	4				•	1		7	0	Do	# of Containers Submitted
		Depth	Matrix	Date/Time Sampled	1	7 e (7	Regulated	Salinity	essr	Basic Class II Landfill	8		部門	OBTEX F1-F2	☐ Routine	□ T0C		Merriny	0	200							Ш		HOLD - Do not Analyze	Con
	Sample ID	(unit)	GW / SW Soil	YY/MM/DD 24:00	BIL	Sieve	Reg	Sali	Ass	Bas	Pc		出	B I			Total	Mar	0	2-				1					로	\$0 #
C514	- 7WB		SOIL	14/8/21	x				X		×								1											2
CS14	-8w.		GW	6.	X				χ		V		X				X	1	X.	<										7
C314			Soil	14/8/22	X				λ		ì																	1		7
C314			1	14/8/23	×				χ		X																			1
	- SWB			14/8/22	X				X		x																			1
C314				(*		707		î		x												7	- 1						7
	-13 WB				7				Ĺ		X								0	dos			IN!	VE	10	200	KNI	FF		2
	-15B			14/8/23	L		i in		X		$\hat{\lambda}$								B	VC	K	3	1		1		1/2		1	2
0-1	-11A			14/3/23	-				V											7		1				57	11	1106	Bull	
		1	C .		1				x		X						3, 11		1	1	-	201	4	09-	0	4	7	3	-	-
6314	15W		GW)	-						- 1	-	Х			- 1	X.	×	1		-	3				8	S.C.	-	-	7
		-																4		+	-						-	-	-	+
					15				1										47	em	p:	6	1	7	-	7				+
	Please indicate	Filtered, P	reserve		, F/I	P)																				1		an	1	1
inquished By (Sig	nature (Print)		iA	Date (YY/MM/DD):				Time	(24:0)0):		Rece	eived	Bv:			D	ate:	2	LAB	USE	ONL	Y /	Maxo	karn J	lob #:	01	178		74
linquished By (Sig	nature/Print):		1-4	Date (YY/MM/DD):			-	Time	(24:0	00):		6	n	in.	N	24	0	1	M	2/1	1	10	14		tody	111		10 KOR T		1
											200		44	20	11	Yn	71	-	9	5/10	10	20	-		eal		Tem	peratu	re	lo