

TRUSTED.
RESPONSIVE.
RELIABLE.

300-2319 St. Laurent Blvd. Ottawa, Ontario K1G 4J8

p: 1-800-749-1947 e: paracel@paracellabs.com

www.paracellabs.com

OTTAWA NIAGARA FALLS MISSISSAUGA

Certificate of Analysis

Nunatta Environmental Services Inc.

P.O. Box 267 Phone: (867) 979-1488 Igaluit, NU X0A 0H0 Fax: (867) 979-1478

Attn: Jason Taylor

Client PO:

Project: Landfarm

Custody: 61137

Report Date: 7-Jun-2010

Order Date: 1-Jun-2010

Order #: 1023110


This Certificate of Analysis contains analytical data applicable to the following samples as submitted:

 Paracel ID
 Client ID

 1023110-01
 Cell 4

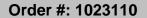
 1023110-02
 1 Berm

1023110-03 post Pumped Water

Certificate of Analysis

Report Date: 07-Jun-2010 Order Date:1-Jun-2010

Client: Nunatta Environmental Services Inc.


Client PO: Project Description: Landfarm

Analysis Summary Table

Analysis	Method Reference/Description	Extraction Date Analysis Date
BTEX	EPA 624 - P&T GC-MS	4-Jun-10 5-Jun-10
CCME PHC F1	CWS Tier 1 - P&T GC-FID	4-Jun-10 5-Jun-10
CCME PHC F2 - F4	CWS Tier 1 - GC-FID, extraction	2-Jun-10 3-Jun-10

OTTAWA

NIAGARA FALLS

Certificate of Analysis

Report Date: 07-Jun-2010 Order Date:1-Jun-2010

Client: Nunatta Environmental Services Inc.

Client PO: Project Description: Landfarm

	Client ID: Sample Date: Sample ID:	Cell 4 31-May-10 1023110-01	1 Berm 31-May-10 1023110-02	post Pumped Water 31-May-10 1023110-03	- - -
	MDL/Units	Water	Water	Water	-
Volatiles					
Benzene	0.5 ug/L	<0.5	<0.5	<0.5	-
Ethylbenzene	0.5 ug/L	0.7	<0.5	<0.5	-
Toluene	0.5 ug/L	1.5	<0.5	<0.5	-
m,p-Xylenes	0.5 ug/L	2.1	<0.5	<0.5	-
o-Xylene	0.5 ug/L	1.4	<0.5	<0.5	-
Xylenes, total	1.0 ug/L	3.5	<1.0	<1.0	-
Toluene-d8	Surrogate	110%	105%	110%	-
Hydrocarbons					
F1 PHCs (C6-C10)	200 ug/L	<200	<200	<200	-
F2 PHCs (C10-C16)	100 ug/L	<100	<100	<100	-
F3 PHCs (C16-C34)	100 ug/L	<100	<100	<100	-
F4 PHCs (C34-C50)	100 ug/L	<100	<100	<100	-
F1 + F2 PHCs	300 ug/L	<300	<300	<300	-
F3 + F4 PHCs	200 ug/L	<200	<200	<200	-

Certificate of Analysis

Report Date: 07-Jun-2010 Order Date:1-Jun-2010

Client: Nunatta Environmental Services Inc.

Client PO: Project Description: Landfarm

Method Quality Control: Blank

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
,	rtooan	LIIIII	Office	Result	/0INLO	LIIIII	INI D	LIIIII	110100
Hydrocarbons									
F1 PHCs (C6-C10)	ND	200	ug/L						
F2 PHCs (C10-C16)	ND	100	ug/L						
F3 PHCs (C16-C34)	ND	100	ug/L						
F4 PHCs (C34-C50)	ND	100	ug/L						
Volatiles									
Benzene	ND	0.5	ug/L						
Ethylbenzene	ND	0.5	ug/L						
Toluene	ND	0.5	ug/L						
m,p-Xylenes	ND	0.5	ug/L						
o-Xylene	ND	0.5	ug/L						
Xylenes, total	ND	1.0	ug/L						
Surrogate: Toluene-d8	85.1		ug/L		106	76-118			

OTTAWA

Certificate of Analysis

Report Date: 07-Jun-2010 Order Date:1-Jun-2010

Client: Nunatta Environmental Services Inc.

Client PO: Project Description: Landfarm

Method Quality Control: Duplicate

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Hydrocarbons									
F1 PHCs (C6-C10)	ND	200	ug/L	ND				32	
Volatiles									
Benzene	ND	0.5	ug/L	ND				20	
Ethylbenzene	ND	0.5	ug/L	ND				35	
Toluene	ND	0.5	ug/L	ND				30	
m,p-Xylenes	ND	0.5	ug/L	ND				34	
o-Xylene	ND	0.5	ug/L	ND				32	
Surrogate: Toluene-d8	85.4		ug/L	ND	107	76-118			

OTTAWA

Certificate of Analysis

Report Date: 07-Jun-2010 Order Date:1-Jun-2010

Client: Nunatta Environmental Services Inc.

Client PO: Project Description: Landfarm

Method Quality Control: Spike

Result	Reporting Limit	Units	Source Result					Notes
1840	200	ug/L	ND	92.2	68-117			
1060	100	ug/L	ND	66.2	61-129			
2920	100	ug/L	ND	73.0	61-129			
1660	100	ug/L	ND	69.2	61-129			
27.6	0.5	ug/L	ND	69.1	55-141			
45.6	0.5	ug/L	ND	114	61-139			
32.0	0.5	ug/L	ND	80.1	54-136			
78.0	0.5	ug/L	ND	97.5	61-139			
44.1	0.5	ug/L	ND	110	60-142			
88.1		ug/L		110	76-118			
	1840 1060 2920 1660 27.6 45.6 32.0 78.0 44.1	Result Limit 1840 200 1060 100 2920 100 1660 100 27.6 0.5 45.6 0.5 32.0 0.5 78.0 0.5 44.1 0.5	Result Limit Units 1840 200 ug/L 1060 100 ug/L 2920 100 ug/L 1660 100 ug/L 27.6 0.5 ug/L 45.6 0.5 ug/L 32.0 0.5 ug/L 78.0 0.5 ug/L 44.1 0.5 ug/L	Result Limit Units Result 1840 200 ug/L ND 1060 100 ug/L ND 2920 100 ug/L ND 1660 100 ug/L ND 27.6 0.5 ug/L ND 45.6 0.5 ug/L ND 32.0 0.5 ug/L ND 78.0 0.5 ug/L ND 44.1 0.5 ug/L ND	Result Limit Units Result %REC 1840 200 ug/L ND 92.2 1060 100 ug/L ND 66.2 2920 100 ug/L ND 73.0 1660 100 ug/L ND 69.2 27.6 0.5 ug/L ND 69.1 45.6 0.5 ug/L ND 114 32.0 0.5 ug/L ND 80.1 78.0 0.5 ug/L ND 97.5 44.1 0.5 ug/L ND 110	Result Limit Units Result %REC Limit 1840 200 ug/L ND 92.2 68-117 1060 100 ug/L ND 66.2 61-129 2920 100 ug/L ND 73.0 61-129 1660 100 ug/L ND 69.2 61-129 27.6 0.5 ug/L ND 69.1 55-141 45.6 0.5 ug/L ND 114 61-139 32.0 0.5 ug/L ND 80.1 54-136 78.0 0.5 ug/L ND 97.5 61-139 44.1 0.5 ug/L ND 110 60-142	Result Limit Units Result %REC Limit RPD 1840 200 ug/L ND 92.2 68-117 1060 100 ug/L ND 66.2 61-129 2920 100 ug/L ND 73.0 61-129 1660 100 ug/L ND 69.2 61-129 27.6 0.5 ug/L ND 69.1 55-141 45.6 0.5 ug/L ND 114 61-139 32.0 0.5 ug/L ND 80.1 54-136 78.0 0.5 ug/L ND 97.5 61-139 44.1 0.5 ug/L ND 110 60-142	Result Limit Units Result %REC Limit RPD Limit 1840 200 ug/L ND 92.2 68-117 1060 100 ug/L ND 66.2 61-129 2920 100 ug/L ND 73.0 61-129 1660 100 ug/L ND 69.2 61-129 27.6 0.5 ug/L ND 69.2 61-129 27.6 0.5 ug/L ND 114 61-139 32.0 0.5 ug/L ND 80.1 55-141 45.6 0.5 ug/L ND 80.1 54-136 78.0 0.5 ug/L ND 97.5 61-139 44.1 0.5 ug/L ND 110 60-142

OTTAWA

NIAGARA FALLS

Certificate of Analysis

Report Date: 07-Jun-2010 Order Date:1-Jun-2010

Client: Nunatta Environmental Services Inc.

Client PO: Project Description: Landfarm

Sample and QC Qualifiers Notes

None

Sample Data Revisions

None

Work Order Revisions/Comments:

None

Other Report Notes:

n/a: not applicable

MDL: Method Detection Limit

Source Result: Data used as source for matrix and duplicate samples

%REC: Percent recovery.

RPD: Relative percent difference.

CCME PHC additional information:

- The method for the analysis of PHCs complies with the Reference Method for the CWS PHC and is validated for use in the laboratory. All prescribed quality criteria identified in the method has been met.
- F1 range corrected for BTEX.
- F2 to F3 ranges corrected for appropriate PAHs where available.
- The gravimetric heavy hydrocarbons (F4G) are not to be added to C6 to C50 hydrocarbons.
- In the case where F4 and F4G are both reported, the greater of the two results is to be used for comparison to CWS PHC criteria.

TRUSTED.
RESPONSIVE.
RELIABLE.

OTTAWA ® NIAGARA FALLS ® MISSISSAUGA ® SARNIA

300-2319 St. Laurent Blvd. Ottawa, Ontario K1G 4J8

p: 1-800-749-1947

e: paracel@paracellabs.com

www.paracellabs.com

Chain of Custody Record Nº 61137

Pg. ___ of _

Company Name: NunAttal ENU. Secure 3	Proj	ect Re	f:	Lund For	m			Date Require	ed:		
Contact Name: JASON TAYLOR Address: P.O BOX 267 TRAIN AND SON OHO	PO# Quote #						□Not Quoted	Turn Around Time: [] 1-day [] 2-day [] Regular			
Tel: (867) 879-1488 Cell:		Regulatory/Guideline Requirements									
Email: nunotta anopth nestel net	Pres	Preservative to be added by Paracel? □Yes □No									
Matrix Types: S-Soil/Sed GW-Ground Water SW-S	Surface	e Water	SS-	Storm/Sanitary	Sewe	er A-			Drinking Wate	r	
Sample Information							Aı	nalysis Requ	ired		
Paracel Order # 1023109-500 1023110 - water Sample Identification	Matrix	Air Volume	# Containers	Date Sampled dd/mm/yy	n-1-12	BTCX (normal)	chesonn tograft				Hazardous? (Y/N)
1 Cell I NG	9		1	3/109/10	X	×	4				N
2 cell I NW	5		l	31/05/10		1					N
3 Cell 1 56	4		l	31/05/10							N
4 cell 5 W	9		ŀ	31/05/10							N
5 ceil 2 North	4		1	31/05/10							N
6 cell 2 South	5		1	31/05/10							N
	5w		1	31/05/10							N
	Sw		i	3//09/10							N
	SW		1	31/05/10	ok	X	+				N
10				Jul 1440							
Comments: No VOC via	als		ıb		71 (
Relinquished By: Date: Received at Depot: Date: Received at Depot: Date:	Time:			Received at Lab: Date:	llu	110	Time: \(:<\0\)	Verified By: V	1110	Time: A	31