NWB Annual	Panort		Vone	being rep	nortod:	2022	
	NWB 1BR-NUI	N1828		d Date:	Jorteu.	April 11, 20	18
			Expi	y Date:		April 10, 20	28
	Project Name:		lunatta Environmer			Landfarm"	
	Licensee:	_	a Environmental S		c. "NESI"		
	Mailing Addre	SS:	1575 Federal Roa P.O. Box 267, Iqa	ıd luit,			
			Nunavut XOA 0H0				
	Name of Comprelationship betw	pany filin een the two	g Annual Report (entities, if applicable	if different :	from Name o	of Licensee please	clarify
	NESI owns and o	perates a	the Project (*optional Hydrocarbon Imp	acted Soil			1
	oetroleum produ	ucts at va	perations consists rious concentration	ns at the g	geosynthet	tic lined	
	oractices break o	down con	nous soil microorg npounds into, wate	r, carbon	and hydro	igen sulphide.	
Licence Requ	uirements: the li	icensee r	must provide the f	ollowing	informatio	on in accodance	with
A summary re obtaining war management	eport of water u ter; sewage and	se and w I greywat	raste disposal acti ter management; o	vities, inc Irill waste	cluding, be manager	ut not limited to nent; solid and	methods of hazardous waste
-	Water Source(s		Rain and melt wat	er. Hydroc	arbon con	taminated.	
				Actual Qu Quantity	antity Use Allowable (ed Domestic (cu. Drilling (cu.m)	m)
				Total Qua	intity Used	Drilling (cu.m)	
	Waste Manage	ment and	l/or Disposal				
	Additional Deta	nils:	No water was rele	ased into	the enviro	nment 2021	
A list of unau	thorized discha	irges and	l a summary of fol	low-up a	ctions take	en.	
	Spill No.: Date of Spill:		(as re	ported to	the Spill H	lot-line)	
	Date of Notifica Additional Deta	ation to ar ails: (impac	n Inspector: ts to water, mitigation m	easures, sho	ort/long term i	monitoring, etc)	_
Revisions to	the Spill Contin	gency Pl	an				
	Additional Deta	ails: No re	visions to the Spill	Contingen	icv plan		
Revisions to	the Abandonme	ent and R	lestoration Plan				
revisions to							
	Additional Deta	ils: Abanı	donment and Resto	ration pla	n updated		٦
Progressive I	Additional Deta	ails (i.e., w	rtaken vork completed and	future wo	rks propos	sed)	
Results of the	e Monitoring Pro	ogram in	cluding:				
	The GPS Co-o location where	rdinates e source:	(in degrees, minu s of water are utili	tes and s zed;	econds of	f latitude and lo	ngitude) of each
	Additional Deta	ails: No wa	ater was drawn fron	n source			
	The GPS Co-o location where	rdinates e wastes	(in degrees, minu associated with the	tes and s ne licence	econds of are depo	f latitude and lo sited;	ngitude) of each
	Additional Deta	sile:					
	Results of any	addition	nal sampling and/o	or analysi	s that was	s requested by	an Inspector
	Addison	vile: N	augete bir la				
	AUUIUUNAI Deta	ins. NO FE	quests by Inspecto				
Any -th	tails on t		ato disc===	eto-1	ho P-	by November	of the ve b-i-
reported.	on water U	_o or was	ste disposal reque	_wa ay t	Juard	_yveniber 1	mo year benly
	Additional Deta	ails: No re	quest by NWB				_
Any response	es or follow-up	actions o	on inspection/com	pliance re	eports		
	Additional Deta	ails: (Date	s of Report, Follow	up by the	Licensee)	<u> </u>	
Any addition	al comments or	informat	tion for the Board	to consid	ler		I
Date Submitt Submitted/Pr Contact Infor	epared by:	James F	y 28, 2023 1. Wilson for Nunatt 867-979-1488	a Environ	mental Ser	rvices Inc.	7
_onwet milor		Fax:	867-979-1478 jim@nunatta.ca				7

GPS Coordinates

GPS Coordinates for water sources utilized

		Latit	ude		Longitude			
Source Description	Deg	o Min	Sec	Deg	o Min	Sec	,,	
							-	
					•		Ī	

GPS Locations of areas of waste disposal

Location Description (type)	Latitude					L	ong	jitud	е			
	Deg	0	Min	,	Sec	,,	Deg	0	Min	,	Sec	,,
Treated water discharge point		68		32	46	.47		63		45	,	49.9

Soils accepted at Landfarm in 2022

Project #	Customer	Cubic Metres	Date	Contaminant
22-42	coop building 164	17.50	Jun 14/2022	heating fuel
22-54	Dept of Environment building #1555	117.0	06/23/2022	Diesel fuel
22-00	CAPS nunavut	28.0	11/18/2022	Heating fuel
22-61	Angela Akpik	22.0	7/22/2022	Heating fuel
	Tower Arctic Rocks	2.0	06/24 2022	Hydraulic oil
	Tower Arctic Soil	2.0	6/25/2022	Diesel/soil
	Tower Arctic soil/rocks	1.0	8/5/2022	hydraulic oil
	Total Soils 2022	189.50		

Soils removed from Landfarm 2022

Cu/M Project #

Customer

No soils removed from the cells at Nunatta landfarm in 2022

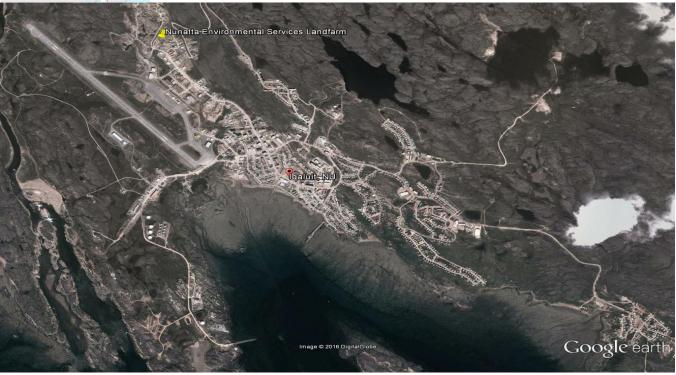
Cubic meters Total removed

Water/Snow received at Landfarm 2022

•	١.		
٩ı	M	M	•

Project #	Customer	Cu/m	Date	Contaminant
22-42	Coop building 154 spill	1.5	May 15, 2022	Heating oil
	Total cu/M received in 2022	1.5		
WATER Project #	Customer	Litres	Date	Contaminant
	NCL construction Ltd	11,000	July 16 2022	hydrocarbons
	Total litres received 2022	11,000		

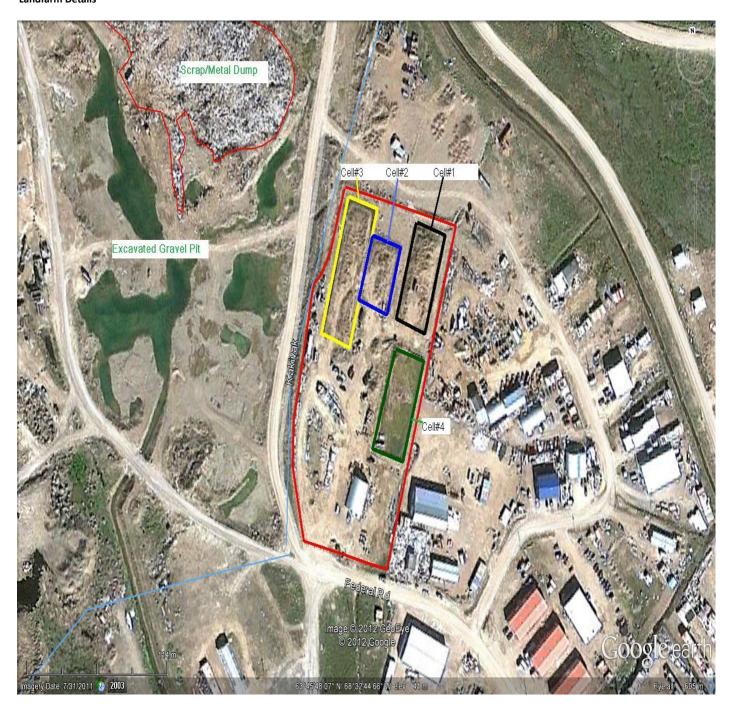
Soils contained in Landfarm cells freezeup 2022

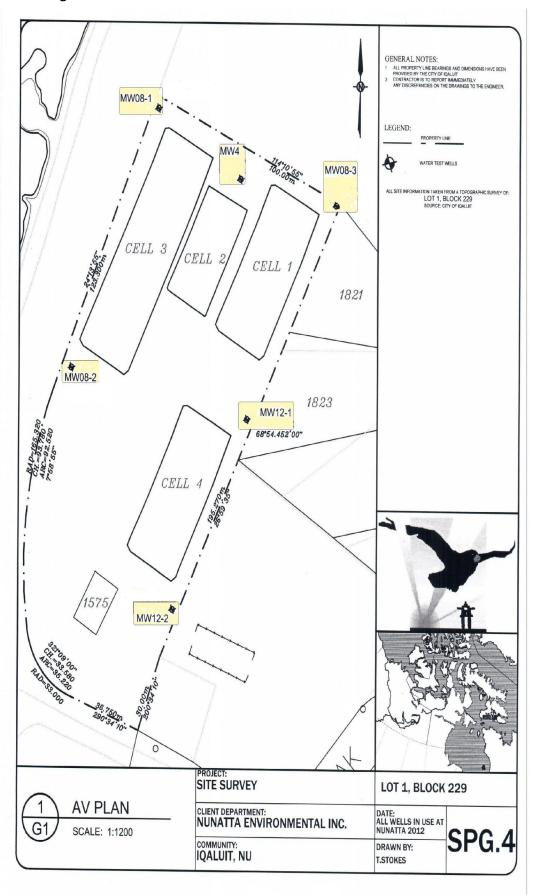

Cell #	Dimension	Cell reference	Soil in progress	Rocks	Protective layer	Total soil contained	Soil remediated and ready to remove.
	Meters		cubic meters	C/m	C/m	C/m	
1	60X30		750	400	687	1837	0
2	50X25		0	0	400	400	0
3	90X30		460	10	1062	1532	260*
4	60X30		600	80	800	680	0
		Totals	1810	490	2949	5249	

^{*} pending

During the screening of summer of 2022 we removed a lot of rocks and cobbles These will be removed to be crushed as soon as we are able Volume of rocks not in calculations above

Map Overview




Landfarm

Landfarm Details

Monitoring Well Locations

2022 Monitoring Summary

Summer of 2022 was brighter than last few years but more wind than normal. Temperatures were cool and bugs were not an issue except on a couple days. This is unusuall for us at Nunatta. We are located next to the old metal dump and we have many places of standing water and this breeds lots of bugs in a normal year. this year was an exception. Cool winds and lots of moisture but not heavy rain. Misty mornings and some short rains did keep us from working soil as much as we like during summer months.

We did manage to get some soil from cell 1 through the screening plant but due to the discharged rocks and we did not have any place to put them we were forced to stop. Plans to have construction company remove them to crush into 3/4 gravel did not happen due to a large amount of late season construction in Iqaluit. Thes will be removed in summer of 2023. Cell #4 we screened out half of the soil and placed the soil into cell #3 with plans to remove it in summer of 2023. Again the smaller stone removed during this screening process created a large pile right up to the stacker belt and forced us to stop. These will be removed during the summer of 2023 again to be crushed into clear 3/4 stone. No water sample were

Water pumped within landfarm cells 2022

Date Action From Destination Litre

No water was pumped within Nunatta landfarm during the summer of 2022
In the spring of the year we had very little water collect in our cells what water we had evaporated off early in the summer and for the first time ever we saw our cells dry We saw no need to even transfer water from cell to cell

For this reason no water was pumped out of the landfarm into the environment

No water released in to the environment in 2022

Total pumped 0
Total Cu/M 0

Consruction of cell #2

In 2013 Nunatta Environmental applied for and was approved for an extension and replacement of liner for cell #2. The cell was used for rocks and cobbles removed from the screening process. The liner used in cell #2 was only 20 mm and Nunatta felt this liner should be brought up to the 30 mm minimum standard & at the same time the cell could be made longer to accommodate our equipment. Nunatta purchased 40 mil liner and #16 cloth to make it better than code. Liner is on site in Iqaluit. Permission was granted for the summer of 2014 construction season but due to cold weather and no place to put all the rocks stored in that cell delayed the work. The summer of 2019 we found a local construction company to remove the rocks to be crushed in 3/4 gravel.

Since 2018 Nunatta Staff has been busy dealing with large projects in all parts of Nunavut. To do this work we have to we waway during the summer months. When Covid hit we thought this would be a good time to work on the landfarm bringing cell #2 up to code with a new thicker liner.

The lockdown of southern travelers made extra work for Nunatta who were on the road all summer doing work in Grise Fiord, Umingmaktok, Bathurst Inlet, Cape Dorset and the landfarm got missed. This trend has continued to 2022 with our staff working remotly most of the summer months. In fall of 2022 Quilliq Energy approached Nunatta to see if they could have all their consumables stored at Nunatta inside a lined cell. This was due in part to the water crisis that happened in Iqaluit over the summer then diesel fuel was found indrinking water samples and at one point it was asked if it could be coming from items stored at the Quilliq energy power plant located next to the water treatment plant.

So everything was cleaned up and removed from site and oils, glycols, and waste were moved to Nunatta Landfarm cell #2. Since then it has been decided Quillic energy was not the cause of the contamination contamination.

In the mean time Quilliq energy has concluded it is much easier to have consumables delivered and watse removed when required rather than try to store it all on site.

Nunatta has cell #2 full of drums and totes but still has plans to replace the liner should a warm summer with less remote work come into play in the near future.

TABLE 1
PARACEL LABORATORIES
WORKORDER: 2225433
REPORT DATE: 06/23/2022

CLIENT: Nunatta Environmental Services Inc.

ATTENTION: Jim Wilson

PROJECT: Spring Landfarm Samples 2022

Parameter	Units MDL	Regulation	Sample						
				Cell #1 FR-1	Cell #1 M-2	Cell #1 RR-3	Cell #1 RL-4		
Sample Date (m/d/y)			Select Reg	06/14/2022 08:45	06/14/2022 08:45	06/14/2022 08:45	06/14/2022 08:45		
Physical Characteristics									
	% by Wt.	0.1	REGS	92.5	95.2	97.1	95.8		
Microbiological	70 Dy VV L.	0.1	ILEG5	32.3	55.2	57.1	33.0		
Heterotrophic Plate Count	CFU/g	1000	REGS	4000	3000	1000	7000		
Metals	Ci 0/6	1000	11203	4000	3000	1000	7000		
Antimony	ug/g dry	1.0	REGS	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)		
Arsenic	ug/g dry	1.0	REGS	3.4	4.3	3.1	3.1		
Barium	ug/g dry	1.0	REGS	46.4	41.7	34.2	38.9		
Beryllium	ug/g dry	0.5	REGS	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)		
Boron	ug/g dry	1.0	REGS	2.0	2.0	2.3	2.1		
Cadmium	ug/g dry	0.5	REGS	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)		
Chromium Cobalt	ug/g dry	5.0 5.0	REGS REGS	31.1 8.1	29.3 7.2	24.4 6.2	23.9 6.3		
	ug/g dry						•		
Copper Lead	ug/g dry	5.0 1.0	REGS REGS	19.5	18.1	13.2 13.1	13.3 17.0		
Molybdenum	ug/g dry ug/g dry	1.0	REGS	17.2 1.3	10.6 1.1	ND (1.0)	ND (1.0)		
Nickel		5.0	REGS	1.3	11.2	9.9	9.8		
Selenium	ug/g dry ug/g dry	1.0	REGS	ND (1.0)	ND (1.0)	9.9 ND (1.0)	9.8 ND (1.0)		
Silver	ug/g dry	0.3	REGS	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)		
Thallium	ug/g dry	1.0	REGS	ND (0.3)	ND (0.3)	ND (0.3)	ND (0.3)		
Tin	ug/g dry	5.0	REGS	ND (5.0)	ND (5.0)	ND (5.0)	ND (5.0)		
Uranium	ug/g dry	1.0	REGS	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)		
Vanadium	ug/g dry	10.0	REGS	58.2	56.7	50.7	46.6		
Zinc	ug/g dry	20.0	REGS	58.8	52.1	49.6	52.7		
Volatiles									
Benzene	mg/kg dry	0.02	REGS	ND (0.02)	ND (0.02)	ND (0.02)	ND (0.02)		
Ethylbenzene	mg/kg dry	0.05	REGS	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)		
Toluene	mg/kg dry	0.05	REGS	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)		
m/p-Xylene	mg/kg dry	0.05	REGS	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)		
o-Xylene	mg/kg dry	0.05	REGS	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)		
Xylenes, total	mg/kg dry	0.05	REGS	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)		
Hydrocarbons									
F1 PHCs (C6-C10)	mg/kg dry	7	REGS	ND (7)	ND (7)	ND (7)	ND (7)		
F2 PHCs (C10-C16)	mg/kg dry	4	REGS	ND (4)	32	ND (4)	227		
F3 PHCs (C16-C34)	mg/kg dry	8	REGS	58	205	136	402		
F4 PHCs (C34-C50)	mg/kg dry	6 50	REGS	71 N/A	202 326	166	639 950		
F4G PHCs (gravimetric) Semi-Volatiles	ug/g dry	30	REGS	IN/A	320	216	950		
Acenaphthene	mg/kg dry	0.02	REGS	N/A	N/A	N/A	N/A		
Acenaphthylene	mg/kg dry	0.02	REGS	N/A	N/A	N/A	N/A		
Anthracene	mg/kg dry	0.02	REGS	N/A	N/A	N/A	N/A		
Benzo[a]anthracene	mg/kg dry	0.02	REGS	N/A	N/A	N/A	N/A		
Benzo[a]pyrene	mg/kg dry	0.02	REGS	N/A	N/A	N/A	N/A		
Benzo[b]fluoranthene	mg/kg dry	0.02	REGS	N/A	N/A	N/A	N/A		
Benzo[g,h,i]perylene	mg/kg dry	0.02	REGS	N/A	N/A	N/A	N/A		
Benzo[k]fluoranthene	mg/kg dry	0.02	REGS	N/A	N/A	N/A	N/A		
1,1-Biphenyl	mg/kg dry	0.02	REGS	N/A	N/A	N/A	N/A		
Chrysene	mg/kg dry	0.02	REGS	N/A	N/A	N/A	N/A		
Dibenzo[a,h]anthracene	mg/kg dry	0.02	REGS	N/A	N/A	N/A	N/A		
Fluoranthene	mg/kg dry	0.02	REGS	N/A	N/A	N/A	N/A		
Fluorene	mg/kg dry	0.02	REGS	N/A	N/A	N/A	N/A		
Indeno [1,2,3-cd] pyrene	mg/kg dry	0.02	REGS	N/A	N/A	N/A	N/A		
1-Methylnaphthalene	mg/kg dry	0.02	REGS	N/A	N/A	N/A	N/A		
2-Methylnaphthalene	mg/kg dry	0.02	REGS	N/A	N/A	N/A	N/A		
Methylnaphthalene (1&2)	mg/kg dry	0.04	REGS	N/A	N/A	N/A	N/A		
Naphthalene	mg/kg dry	0.01	REGS	N/A	N/A	N/A	N/A		
Phenanthrene	mg/kg dry	0.02	REGS	N/A	N/A	N/A	N/A		
Pyrene	mg/kg dry	0.02	REGS	N/A	N/A	N/A	N/A		
Quinoline	mg/kg dry	0.10	REGS	N/A	N/A	N/A	N/A		
PCBs	!	0.05	5500	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)		
PCBs, total	ug/g dry	0.05	REGS	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)		

TABLE 1
PARACEL LABORATORIES
WORKORDER: 2225433

REPORT DATE: 06/23/2022

CLIENT: Nunatta Environmental Services Inc.

ATTENTION: Jim Wilson

PROJECT: Spring Landfarm Samples 2022

Parameter	Units	MDL	Regulation					
				Cell #3 MR-1	Cell #3 RM-2	Cell #3 RL-3	Cell #3 RR-4	Cell #3 FR-5
Sample Date (m/d/y)			Select Reg	06/14/2022 08:45	06/14/2022 08:45	06/14/2022 08:45	06/14/2022 08:45	06/14/2022 08:45
Physical Characteristics								
% Solids	% by Wt.	0.1	REGS	94.6	93.7	94.5	94.8	94.6
Microbiological								
Heterotrophic Plate Count	CFU/g	1000	REGS	ND (1000)	9000	4000	9000	10000
Metals			250					
Antimony	ug/g dry	1.0	REGS	N/A	N/A	N/A	N/A	N/A
Arsenic	ug/g dry	1.0	REGS	N/A	N/A	N/A	N/A	N/A
Barium	ug/g dry	1.0 0.5	REGS REGS	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A
Beryllium Boron	ug/g dry ug/g dry	1.0	REGS	N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A
Cadmium	ug/g dry	0.5	REGS	N/A	N/A	N/A	N/A	N/A
Chromium	ug/g dry	5.0	REGS	N/A	N/A	N/A	N/A	N/A
Cobalt	ug/g dry	5.0	REGS	N/A	N/A	N/A	N/A	N/A
Copper	ug/g dry	5.0	REGS	N/A	N/A	N/A	N/A	N/A
Lead	ug/g dry	1.0	REGS	N/A	N/A	N/A	N/A	N/A
Molybdenum	ug/g dry	1.0	REGS	N/A	N/A	N/A	N/A	N/A
Nickel	ug/g dry	5.0	REGS	N/A	N/A	N/A	N/A	N/A
Selenium	ug/g dry	1.0	REGS	N/A	N/A	N/A	N/A	N/A
Silver	ug/g dry	0.3	REGS	N/A	N/A	N/A	N/A	N/A
Thallium	ug/g dry	1.0	REGS	N/A	N/A	N/A	N/A	N/A
Tin	ug/g dry	5.0	REGS	N/A	N/A	N/A	N/A	N/A
Uranium	ug/g dry	1.0	REGS	N/A	N/A	N/A	N/A	N/A
Vanadium	ug/g dry	10.0	REGS	N/A	N/A	N/A	N/A	N/A
Zinc	ug/g dry	20.0	REGS	N/A	N/A	N/A	N/A	N/A
Volatiles								
Benzene	mg/kg dry	0.02	REGS	ND (0.02)				
Ethylbenzene	mg/kg dry	0.05	REGS	ND (0.05)				
Toluene	mg/kg dry	0.05	REGS	ND (0.05)				
m/p-Xylene	mg/kg dry	0.05	REGS	ND (0.05)				
o-Xylene	mg/kg dry	0.05	REGS	ND (0.05)				
Xylenes, total	mg/kg dry	0.05	REGS	ND (0.05)				
Hydrocarbons								
F1 PHCs (C6-C10)	mg/kg dry	7	REGS	ND (7)				
F2 PHCs (C10-C16)	mg/kg dry	4	REGS	55	43	37	48	102
F3 PHCs (C16-C34)	mg/kg dry	8	REGS	238	196	139	180	353
F4 PHCs (C34-C50)	mg/kg dry	6	REGS	139	137	98	123	293
F4G PHCs (gravimetric)	ug/g dry	50	REGS	N/A	N/A	N/A	N/A	529
Semi-Volatiles		0.03	DEGG	ND (0.03)				
Acenaphthene Acenaphthylene	mg/kg dry	0.02	REGS REGS	ND (0.02) ND (0.02)				
Anthracene	mg/kg dry mg/kg dry	0.02	REGS	ND (0.02)				
Benzo[a]anthracene	mg/kg dry	0.02	REGS	ND (0.02)	ND (0.02)	ND (0.02)	ND (0.02)	0.03
Benzo[a]pyrene	mg/kg dry	0.02	REGS	0.06	0.06	0.04	0.04	0.07
Benzo[b]fluoranthene	mg/kg dry	0.02	REGS	ND (0.02)				
Benzo[g,h,i]perylene	mg/kg dry	0.02	REGS	0.03	0.03	0.03	0.02	0.17
Benzo[k]fluoranthene	mg/kg dry	0.02	REGS	ND (0.02)				
1,1-Biphenyl	mg/kg dry	0.02	REGS	ND (0.02)				
Chrysene	mg/kg dry	0.02	REGS	ND (0.02)	ND (0.02)	ND (0.02)	ND (0.02)	0.07
Dibenzo[a,h]anthracene	mg/kg dry	0.02	REGS	ND (0.02)				
Fluoranthene	mg/kg dry	0.02	REGS	ND (0.02)	ND (0.02)	ND (0.02)	ND (0.02)	0.02
Fluorene	mg/kg dry	0.02	REGS	ND (0.02)				
Indeno [1,2,3-cd] pyrene	mg/kg dry	0.02	REGS	ND (0.02)	ND (0.02)	ND (0.02)	ND (0.02)	0.03
1-Methylnaphthalene	mg/kg dry	0.02	REGS	ND (0.02)	ND (0.02)	ND (0.02)	ND (0.02)	0.04
2-Methylnaphthalene	mg/kg dry	0.02	REGS	ND (0.02)	ND (0.02)	ND (0.02)	ND (0.02)	0.06
Methylnaphthalene (1&2)	mg/kg dry	0.04	REGS	ND (0.04)	ND (0.04)	ND (0.04)	ND (0.04)	0.09
Naphthalene	mg/kg dry	0.01	REGS	ND (0.01)	ND (0.01)	ND (0.01)	ND (0.01)	0.03
Phenanthrene	mg/kg dry	0.02	REGS	ND (0.02)	ND (0.02)	ND (0.02)	ND (0.02)	0.02
Pyrene	mg/kg dry	0.02	REGS	ND (0.02)	ND (0.02)	ND (0.02)	ND (0.02)	0.04
Quinoline	mg/kg dry	0.10	REGS	ND (0.10)				
PCBs								
PCBs, total	ug/g dry	0.05	REGS	N/A	N/A	N/A	N/A	N/A

TABLE 1 PARACEL LABORATORIES WORKORDER: 2225433

REPORT DATE: 06/23/2022

CLIENT: Nunatta Environmental Services Inc. ATTENTION: Jim Wilson

PROJECT: Spring Landfarm Samples 2022

Parameter	Units	MDL	Regulation			1	T
				Cell #4 FR-1	Cell #4 MR-2	Cell #4 ML-3	Cell #4 RL-4
Sample Date (m/d/y)			Select Reg	06/14/2022 09:00	06/14/2022 09:00	06/14/2022 09:00	06/14/2022 09:00
Physical Characteristics							
% Solids	% by Wt.	0.1	REGS	92.8	92.7	93.0	93.7
Microbiological Parameters							
Heterotrophic Plate Count	CFU/g	1000	REGS	44000	59000	> 200,000	19000
Metals							
Antimony	ug/g dry	1.0	REGS	N/A	N/A	N/A	N/A
Arsenic	ug/g dry	1.0	REGS	N/A	N/A	N/A	N/A
Barium	ug/g dry	1.0	REGS	N/A	N/A	N/A	N/A
Beryllium	ug/g dry	0.5	REGS	N/A	N/A	N/A	N/A
Boron	ug/g dry	1.0	REGS	N/A	N/A	N/A	N/A
Cadmium	ug/g dry	0.5	REGS	N/A	N/A	N/A	N/A
Chromium	ug/g dry	5.0	REGS	N/A	N/A	N/A	N/A
Cobalt	ug/g dry	5.0	REGS	N/A	N/A	N/A	N/A
Copper	ug/g dry	5.0	REGS	N/A	N/A	N/A	N/A
Lead	ug/g dry	1.0	REGS	N/A	N/A	N/A	N/A
Molybdenum	ug/g dry	1.0	REGS	N/A	N/A	N/A	N/A
Nickel	ug/g dry	5.0	REGS	N/A	N/A	N/A	N/A
Selenium	ug/g dry	1.0	REGS	N/A	N/A	N/A	N/A
Silver	ug/g dry	0.3	REGS	N/A	N/A	N/A	N/A
Thallium	ug/g dry	1.0	REGS	N/A	N/A	N/A	N/A
Tin	ug/g dry	5.0	REGS	N/A	N/A	N/A	N/A
Uranium	ug/g dry	1.0	REGS	N/A	N/A	N/A	N/A
Vanadium	ug/g dry	10.0	REGS	N/A	N/A	N/A	N/A
Zinc	ug/g dry	20.0	REGS	N/A	N/A	N/A	N/A
Volatiles	-6/8 /			.,,	,	.,,	.,,
Benzene	mg/kg dry	0.02	REGS	ND (0.02)	ND (0.02)	ND (0.02)	ND (0.02)
Ethylbenzene	mg/kg dry	0.05	REGS	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)
Toluene	mg/kg dry	0.05	REGS	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)
m/p-Xylene	mg/kg dry	0.05	REGS	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)
o-Xylene	mg/kg dry	0.05	REGS	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)
Xylenes, total		0.05	REGS	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)
Hydrocarbons	mg/kg dry	0.05	REGS	ND (0.05)	ND (0.05)	ND (0.03)	ND (0.03)
,	ma/ka dni	7	REGS	ND (7)	ND (7)	ND /7\	ND /7\
F1 PHCs (C6-C10)	mg/kg dry		REGS	ND (7)	ND (7) 431	ND (7) 228	ND (7)
F2 PHCs (C10-C16)	mg/kg dry	4					
F3 PHCs (C16-C34)	mg/kg dry	8	REGS	166	383	166	87
F4 PHCs (C34-C50)	mg/kg dry	6	REGS	59	80	52	35
F4G PHCs (gravimetric)	ug/g dry	50	REGS	N/A	N/A	N/A	N/A
Semi-Volatiles				/>	/>	/	/>
Acenaphthene	mg/kg dry	0.02	REGS	ND (0.02)	ND (0.02)	ND (0.02)	ND (0.02)
Acenaphthylene	mg/kg dry	0.02	REGS	ND (0.02)	ND (0.02)	ND (0.02)	ND (0.02)
Anthracene	mg/kg dry	0.02	REGS	ND (0.02)	ND (0.02)	ND (0.02)	ND (0.02)
Benzo[a]anthracene	mg/kg dry	0.02	REGS	ND (0.02)	ND (0.02)	ND (0.02)	ND (0.02)
Benzo[a]pyrene	mg/kg dry	0.02	REGS	ND (0.02)	ND (0.02)	ND (0.02)	ND (0.02)
Benzo[b]fluoranthene	mg/kg dry	0.02	REGS	ND (0.02)	ND (0.02)	ND (0.02)	ND (0.02)
Benzo[g,h,i]perylene	mg/kg dry	0.02	REGS	ND (0.02)	ND (0.02)	ND (0.02)	ND (0.02)
Benzo[k]fluoranthene	mg/kg dry	0.02	REGS	ND (0.02)	ND (0.02)	ND (0.02)	ND (0.02)
1,1-Biphenyl	mg/kg dry	0.02	REGS	ND (0.02)	ND (0.02)	ND (0.02)	ND (0.02)
Chrysene	mg/kg dry	0.02	REGS	ND (0.02)	ND (0.02)	ND (0.02)	ND (0.02)
Dibenzo[a,h]anthracene	mg/kg dry	0.02	REGS	ND (0.02)	ND (0.02)	ND (0.02)	ND (0.02)
Fluoranthene	mg/kg dry	0.02	REGS	ND (0.02)	ND (0.02)	0.03	ND (0.02)
Fluorene	mg/kg dry	0.02	REGS	ND (0.02)	ND (0.02)	ND (0.02)	ND (0.02)
Indeno [1,2,3-cd] pyrene	mg/kg dry	0.02	REGS	ND (0.02)	ND (0.02)	ND (0.02)	ND (0.02)
1-Methylnaphthalene	mg/kg dry	0.02	REGS	ND (0.02)	ND (0.02)	ND (0.02)	ND (0.02)
2-Methylnaphthalene	mg/kg dry	0.02	REGS	ND (0.02)	ND (0.02)	ND (0.02)	ND (0.02)
Methylnaphthalene (1&2)	mg/kg dry	0.04	REGS	ND (0.04)	ND (0.04)	ND (0.04)	ND (0.04)
Naphthalene	mg/kg dry	0.01	REGS	ND (0.01)	0.03	ND (0.01)	ND (0.01)
Phenanthrene	mg/kg dry	0.02	REGS	ND (0.02)	ND (0.02)	ND (0.02)	ND (0.02)
Pyrene	mg/kg dry	0.02	REGS	ND (0.02)	0.02	0.05	ND (0.02)
Quinoline	mg/kg dry	0.10	REGS	ND (0.10)	ND (0.10)	ND (0.10)	ND (0.10)
PCBs		5.10		(0.10)	(0.10)	(0.10)	(0.10)
				1	1	1	1

TABLE 1
PARACEL LABORATORIES LTD.

ATTENTION: Jim Wilson

WORKORDER: 2241184

PROJECT: Fall Landfarm Samples 2022

CLIENT: Nunatta Environmental Services Inc.

REPORT DATE: 10/12/2022

Parameter	Units	MDL	Regulation	Sample						
				CELL #1- Front	CELL #1- Front-2	CELL #1- Middle	CELL #1- Back			
Sample Date (m/d/y)			Select Reg	10/03/2022 02:30	10/03/2022 02:30	10/03/2022 02:30	10/03/2022 02:			
Physical Characteristics										
% Solids	% by Wt.	0.1	REGS	94.0	90.8	95.5	95.1			
Microbiological Parameters										
Heterotrophic Plate Count	CFU/g	1000	REGS	> 150000	47000	3000	3000			
Metals										
Antimony	ug/g dry	1	REGS	ND (1)	ND (1)	ND (1)	ND (1)			
Arsenic	ug/g dry	1	REGS	2	3	3	2			
Barium	ug/g dry	1	REGS	44	34	28	25			
Beryllium	ug/g dry	0.5	REGS	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)			
Boron	ug/g dry	5.0	REGS	ND (5.0)	ND (5.0)	ND (5.0)	ND (5.0)			
Cadmium	ug/g dry	0.5	REGS	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)			
Chromium	ug/g dry	5	REGS	21	23	23	19			
Cobalt	ug/g dry	1	REGS	5	6	5	5			
Copper	ug/g dry	5	REGS	21	12	11	11			
Lead	ug/g dry	1	REGS	13	9	10	10			
Molybdenum	ug/g dry	1	REGS	2	ND (1)	ND (1)	ND (1)			
Nickel	ug/g dry	5	REGS	9	9	8	8			
Selenium	ug/g dry	1	REGS	ND (1)	ND (1)	ND (1)	ND (1)			
Silver	ug/g dry	0.3	REGS	ND (0.3)	ND (0.3)	ND (0.3)	ND (0.3)			
Thallium	ug/g dry	1	REGS	ND (1)	ND (1)	ND (1)	ND (1)			
Tin	ug/g dry	5	REGS	ND (5)	ND (5)	ND (5)	ND (5)			
Uranium	ug/g dry	1	REGS	ND (1)	ND (1)	ND (1)	ND (1)			
Vanadium	ug/g dry	10	REGS	41	45	46	39			
Zinc	ug/g dry	20	REGS	75	53	40	39			
Volatiles										
Benzene	mg/kg dry	0.02	REGS	ND (0.02)	ND (0.02)	ND (0.02)	ND (0.02)			
Ethylbenzene	mg/kg dry	0.05	REGS	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)			
Toluene	mg/kg dry	0.05	REGS	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)			
m/p-Xylene	mg/kg dry	0.05	REGS	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)			
o-Xylene	mg/kg dry	0.05	REGS	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)			
Xylenes, total	mg/kg dry	0.05	REGS	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)			
Hydrocarbons	<u> </u>			<u> </u>	· ,	<u> </u>	, ,			
F1 PHCs (C6-C10)	mg/kg dry	7	REGS	ND (7)	ND (7)	ND (7)	ND (7)			
F2 PHCs (C10-C16)	mg/kg dry	4	REGS	145	70	88	46			
F3 PHCs (C16-C34)	mg/kg dry	8	REGS	487	45	323	184			
F4 PHCs (C34-C50)	mg/kg dry	6	REGS	267	52	296	194			
PCBs	3. 0 - 7						-			
PCBs, total	ug/g dry	0.05	REGS	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)			
,	~6/6 ~! 1	1		(0.03)	(0.05)	1.12 (0.03)	(0.00)			

TABLE 1
PARACEL LABORATORIES

LTD.

WORKORDER: 2241184
REPORT DATE: 10/12/2022

CLIENT: Nunatta Environmental Services Inc.

ATTENTION: Jim Wilson

PROJECT: Fall Landfarm Samples 2022

Parameter	Units	MDL	Regulation			
				CELL #3- Front	CELL #3- Middle	CELL #3- Back
Sample Date (m/d/y)			Select Reg	10/03/2022 02:30	10/03/2022 02:30	10/03/2022 02:30
Physical Characteristics						
% Solids	% by Wt.	0.1	REGS	93.0	92.6	93.0
Microbiological						
Heterotrophic Plate Count	CFU/g	1000	REGS	2000	1000	6000
Metals						
Antimony	ug/g dry	1	REGS	N/A	N/A	N/A
Arsenic	ug/g dry	1	REGS	N/A	N/A	N/A
Barium	ug/g dry	1	REGS	N/A	N/A	N/A
Beryllium	ug/g dry	0.5	REGS	N/A	N/A	N/A
Boron	ug/g dry	5.0	REGS	N/A	N/A	N/A
Cadmium	ug/g dry	0.5	REGS	N/A	N/A	N/A
Chromium	ug/g dry	5	REGS	N/A	N/A	N/A
Cobalt	ug/g dry	1	REGS	N/A	N/A	N/A
Copper	ug/g dry	5	REGS	N/A	N/A	N/A
Lead	ug/g dry	1	REGS	N/A	N/A	N/A
Molybdenum	ug/g dry	1	REGS	N/A	N/A	N/A
Nickel	ug/g dry	5	REGS	N/A	N/A	N/A
Selenium	ug/g dry	1	REGS	N/A	N/A	N/A
Silver	ug/g dry	0.3	REGS	N/A	N/A	N/A
Thallium	ug/g dry	1	REGS	N/A	N/A	N/A
Tin	ug/g dry	5	REGS	N/A	N/A	N/A
Uranium	ug/g dry	1	REGS	N/A	N/A	N/A
Vanadium	ug/g dry	10	REGS	N/A	N/A	N/A
Zinc	ug/g dry	20	REGS	N/A	N/A	N/A
Volatiles						
Benzene	mg/kg dry	0.02	REGS	ND (0.02)	ND (0.02)	ND (0.02)
Ethylbenzene	mg/kg dry	0.05	REGS	ND (0.05)	ND (0.05)	ND (0.05)
Toluene	mg/kg dry	0.05	REGS	ND (0.05)	ND (0.05)	ND (0.05)
m/p-Xylene	mg/kg dry	0.05	REGS	ND (0.05)	ND (0.05)	ND (0.05)
o-Xylene	mg/kg dry	0.05	REGS	ND (0.05)	ND (0.05)	ND (0.05)
Xylenes, total	mg/kg dry	0.05	REGS	ND (0.05)	ND (0.05)	ND (0.05)
Hydrocarbons						
F1 PHCs (C6-C10)	mg/kg dry	7	REGS	ND (7)	ND (7)	ND (7)
F2 PHCs (C10-C16)	mg/kg dry	4	REGS	56	34	34
F3 PHCs (C16-C34)	mg/kg dry	8	REGS	194	160	113
F4 PHCs (C34-C50)	mg/kg dry	6	REGS	164	147	80
PCBs	3. 3 <i>i</i>					
PCBs, total	ug/g dry	0.05	REGS	N/A	N/A	N/A

TABLE 1 PARACEL LABORATORIES LTD. **WORKORDER: 2241184**

REPORT DATE: 10/12/2022

ATTENTION: Jim Wilson

PROJECT: Fall Landfarm Samples 2022

CLIENT: Nunatta Environmental Services Inc.

Parameter	Units	MDL	Regulation			
				CELL #4- Front	CELL #4- Middle	CELL #4- Back
Sample Date (m/d/y)			Select Reg	10/03/2022 02:30	10/03/2022 02:30	10/03/2022 02:30
Physical Characteristics						
% Solids	% by Wt.	0.1	REGS	92.2	91.0	92.9
Microbiological Parameters						
Heterotrophic Plate Count	CFU/g	1000	REGS	3000	10000	3000
Metals						
Antimony	ug/g dry	1	REGS	N/A	N/A	N/A
Arsenic	ug/g dry	1	REGS	N/A	N/A	N/A
Barium	ug/g dry	1	REGS	N/A	N/A	N/A
Beryllium	ug/g dry	0.5	REGS	N/A	N/A	N/A
Boron	ug/g dry	5.0	REGS	N/A	N/A	N/A
Cadmium	ug/g dry	0.5	REGS	N/A	N/A	N/A
Chromium	ug/g dry	5	REGS	N/A	N/A	N/A
Cobalt	ug/g dry	1	REGS	N/A	N/A	N/A
Copper	ug/g dry	5	REGS	N/A	N/A	N/A
Lead	ug/g dry	1	REGS	N/A	N/A	N/A
Molybdenum	ug/g dry	1	REGS	N/A	N/A	N/A
Nickel	ug/g dry	5	REGS	N/A	N/A	N/A
Selenium	ug/g dry	1	REGS	N/A	N/A	N/A
Silver	ug/g dry	0.3	REGS	N/A	N/A	N/A
Thallium	ug/g dry	1	REGS	N/A	N/A	N/A
Tin	ug/g dry	5	REGS	N/A	N/A	N/A
Uranium	ug/g dry	1	REGS	N/A	N/A	N/A
Vanadium	ug/g dry	10	REGS	N/A	N/A	N/A
Zinc	ug/g dry	20	REGS	N/A	N/A	N/A
Volatiles						
Benzene	mg/kg dry	0.02	REGS	ND (0.02)	ND (0.02)	ND (0.02)
Ethylbenzene	mg/kg dry	0.05	REGS	ND (0.05)	ND (0.05)	ND (0.05)
Toluene	mg/kg dry	0.05	REGS	ND (0.05)	ND (0.05)	ND (0.05)
m/p-Xylene	mg/kg dry	0.05	REGS	ND (0.05)	ND (0.05)	ND (0.05)
o-Xylene	mg/kg dry	0.05	REGS	ND (0.05)	ND (0.05)	ND (0.05)
Xylenes, total	mg/kg dry	0.05	REGS	ND (0.05)	ND (0.05)	ND (0.05)
Hydrocarbons						
F1 PHCs (C6-C10)	mg/kg dry	7	REGS	ND (7)	ND (7)	ND (7)
F2 PHCs (C10-C16)	mg/kg dry	4	REGS	195	58	42
F3 PHCs (C16-C34)	mg/kg dry	8	REGS	40	145	124
F4 PHCs (C34-C50)	mg/kg dry	6	REGS	47	86	65
PCBs						
PCBs, total	ug/g dry	0.05	REGS	N/A	N/A	N/A

2022 Water Sample Results

During the summer of 2022 no water samples were collected by Nunatta Staff Ground did not thaw enough to gather samples from back wells Front wells have remainerd dry due to removal of gravel next to our fence. Pits floor is 4 meters lower than landfarm

Summary of Activities at Nunatta Environmental Services Inc. (NESI)

NWB licence 1BR-NUN-1828 Type "B"

Landfarm in Igaluit for 2022 season

Water/ Snow

there was 1.5 cubic meters of contaminated snow delivered to our landfarm during the spring of 2022

this snow was placed in cell #1 on the soil and allowed to melt into the soil

There was 11 totes of 1000L removed from the fuel pipeline testing. no smell of fuel evident but we placed this into a hole dug in cell #4 soil piles and the water used to thaw frozen soil and wet the soil. By doing so strip any hydrocarbons out of the water. no water leached out of the soil soil but was eveaporated off by sun and wind.

Soils

during the year of 2022 Nunatta received only 189.5 cubic meters of contaminated soil.

Only 3 cubic meters were containated by hydraulic oil from ruptured hose on machine at new port being built in Igaluit.

the balance of the soil was contaminated with P50 (diesel or heating oil)

this soil was placed in cell #1 and fertilizer was added and mixed in using excavator some soil was screened late in season and placed in Cell #4 Soil from cell #4 was screened and placed in cell #3 in small piles. This allows the soil to air out and allows oxygen and water into the soil to feed the This exposes the soil to the elements and allows oxygen and water into the soil to feed the baceria and speed up remediation. Late in the season the soil was excavated into a long pile to give as much surface area as possible and reduce foot print.

Test Wells

Monitoring Wells did not thaw out on the south east end or the south side of the property. Ones on north side are always dry due to excavation practices of the pit next door. The level of the pit floor ranges from 3 to 5 meters below the level of Nunatta landfarm. We test often to see if

Remediation practices

Nunatta Environmental Services has been improving soil remediation practices and each year find ways of reducing the time the soil spends in our landfarm. With these practices of careful monitoring and proper additions to the soil including innoculation of bacteria and enzymes from remediated soil

into the new soils, Nunatta has been able to reduce the remediation time to less than 1/2 of what it was 6 years ago.

Information gathered from soil sampling and testing in association with the University of Saskatchewan's

Soil Toxicology Department, Nunatta has been able to put them into practice at its landfarm.

We cannot thank Dr. Stephen Sciciliano enough for his assistance and for taking my phone calls and answering my emails over the past few years.

Nunatta constructed 2 temporary cells in Baker Lake this summer and will be constructing a large one on the Petrolium

Products site in the summer of 2022 to remediate the soil recovered from the gasoline spill of 2021

We plan to do work on our own cell #2 if the summer allows us time to complete this project

Soil: Spring and Fall soil samples were taken and samples sent to Paracell Labs in Ottawa for analysis.

The results indicate hydrocarbon remediaton is progressing at a very generous rate compared to the last few years.

Nunatta believes this is due to much higher microbial activity.

Lab reports show microbial count exceeds the normal found in Baffin Island soils.

Soils not innoculated with old soil show plate counts of 2,000-4,000.

Soils contained in cells 3 and 4 which have been screened, fertilizer added, and innoculated with

remediated soil show bacteria counts as high as TNTC (Too Numberous To Count).

These microbes are responsible for the breakdown of hydrocarbons into harmless components.

Managing and feeding microbes is the most important step in operating the Nunatta landfarm.

Previous management was storing soil and in doing so created a large healthy colony of the otherwise very sparce populated bacteria responsible for making the enzyme that breaks down fuel in Arctic conditions