THE COLLECTION OF LANDFILL MONITORING DATA - FOX-5 AND FOX-M FORMER DEW LINE SITES: DRAFT FINAL REPORT 2008

Qikiqtaaluk Region, Nunavut

Preliminary Version

(Y/Ref.: DLCMON (Qikiq 08))(O/Ref.: CD8177)

DEFENCE CONSTRUCTION CANADA

December 2008

THE COLLECTION OF LANDFILL MONITORING DATA - FOX-5 AND FOX-M FORMER DEW LINE SITES: DRAFT FINAL REPORT 2008

Qikiqtaaluk Region, Nunavut

Preliminary Version
(Y/Ref.: DLCMON (Qikiq 08)) (O/Ref.: CD8177)

DEFENCE CONSTRUCTION CANADA

December 2008

Presented to:	Nahed Farah Defence Construction Canada
Written by:	Andrew Passalis, P.Eng.
	Project Engineer
Verified by:	Jean-Pierre Pelletier, B.Sc.
	Team Leader, Northern Canada Office
Approved by:	
	Renald Gauthier, D.E.S.S. P. Geol.
	Project Manager, Northern Canada Team

TABLE OF CONTENTS

1	INIF	RODUCTION	1
	1.1	LOCATION AND SITE FEATURES	1
	1.2	Objectives and Scope of Work	2
	1.3	REPORT FORMAT	3
	1.4	Project References	4
2	OUT	LINE AND METHODOLOGY	6
	2.1	FIELD PROGRAM STAFF	6
	2.2	VISUAL INSPECTION	6
	2.3	SOIL SAMPLING	7
	2.4	GROUNDWATER SAMPLING	9
	2.5	Thermal Monitoring	10
	2.6	FIELD NOTES AND DATA	10
	2.7	QUALITY CONTROL	11
	2.8	QA/QC Procedures	12
3	STA	TION AREA NON-HAZARDOUS WASTE LANDFILL	13
	3.1	Background and Monitoring Program	13
	3.2	VISUAL INSPECTION REPORT	14
	3.3	Preliminary Stability Assessment	17
	3.4	Location Plan	17
	3.5	Photographic Records	17
	3.6	Thermal Monitoring Data	22
	3.7	SOIL SAMPLE ANALYTICAL DATA	22
	3.8	GROUNDWATER SAMPLE ANALYTICAL DATA	22
	3.9	Monitoring Well Sampling/Inspection Logs	22

4	MAIN	I LANDFILL	23
	4.1	Background and Monitoring Program	23
	4.2	VISUAL INSPECTION REPORT	27
	4.3	Preliminary Stability Assessment	32
	4.4	LOCATION PLAN	33
	4.5	PHOTOGRAPHIC RECORDS	33
	4.6	THERMAL MONITORING DATA	38
	4.7	Landfill Temperature Data from Dataloggers	38
	4.8	SOIL SAMPLE ANALYTICAL DATA	47
	4.9	GROUNDWATER SAMPLE ANALYTICAL DATA	51
	4.10	MONITORING WELL SAMPLING/INSPECTION LOGS	51
5		DLE SITE TIER II DISPOSAL FACILITY / NON-HAZARDOUS WASTE	54
	5.1	Background and Monitoring Program	54
	5.2	Visual Inspection Report	55
	5.3	Preliminary Stability Assessment	61
	5.4	Location Plan	62
	5.5	PHOTOGRAPHIC RECORDS	62
	5.6	Thermal Monitoring Data	68
	5.7	Landfill Temperature Data from Dataloggers	68
	5.8	SOIL SAMPLE ANALYTICAL DATA	68
	5.9	GROUNDWATER SAMPLE ANALYTICAL DATA	76
	5.10	Monitoring Well Sampling/Inspection Logs	76

LIST OF FIGURES

Figure 1:	Locations of Landfills	5
Figure 2 :	Location Plan of Station Area Non-hazardous Waste Landfill	19
Figure 3 :	Location Plan of Main Landfill	26
Figure 4 :	FOX-5 Broughton Island VT-1	39
Figure 5 :	F0X-5 Broughton Island VT-2	40
Figure 6 :	FOX-5 Broughton Island VT-3	41
Figure 7 :	FOX-5 Broughton Island VT-4	42
Figure 8 :	FOX-5 Broughton Island VT-5	43
Figure 9 :	F0X-5 Broughton Island VT-6	44
Figure 10 :	F0X-5 Broughton Island VT-7	45
Figure 11:	F0X-5 Broughton Island VT-8	46
Figure 12:	Location Plan of Middle Site Tier II DF / NHWLF	63
Figure 13:	F0X-5 Broughton Island VT-9	69
Figure 14:	F0X-5 Broughton Island VT-10	70
Figure 15 :	Broughton Island VT-11	71
Figure 16 :	F0X-5 Broughton Island VT-12	72

LIST OF TABLES

Table I:	2008 Monitoring Requirements for FOX-5 Landfills2
Table II:	Sila's Field Team6
Table III :	Summary of Soil Sampling at FOX-5, August 2008 Landfill Site Soil Sampling Stations
Table IV:	Summary of Groundwater Sampling at FOX-5, August 20069
Table V:	Visual Inspection Checklist – Inspection Report – Station Area Non-Hazardous Waste Landfill
Table VI:	Station Area Non-hazardous Waste Landfill Inspection Sheet16
Table VII:	Preliminary Stability Assessment – SA NHWLF18
Table VIII:	Photographic Record – Station Area Non-Hazardous Waste Landfill 20
Table IX:	Soil Analytical Results25
Table X:	Groundwater Analytical Results25
Table XI:	Visual Inspection Checklist – Inspection Report – Main Landfill29
Table XII:	Main Landfill Inspection Sheet30
Table XIII:	Preliminary Stability Assessment – Main Landfill32
Table XIV:	Photographic Record - Main Landfill34
Table XV:	Soil Chemical Analysis Results – Main Landfill
Table XVI:	Evaluation of Soil Chemical Analysis Results – Main Landfill49
Table XVII:	Groundwater Chemical Analysis Results52
Table XVIII:	Evaluation of 2008 Groundwater Analytical Data - Main Landfill 53

Table XIX :	Visual Inspection Checklist — Inspection Report — Middle Site Tier II DF / NHLWLF58
Table XX :	Inspection Sheet - Middle Site Tier II Disposal Facility / Non-hazardous Waste Landfill
Table XXI :	Preliminary Stability Assessment – Middle Site Tier II DF / NHLWLF
Table XXII :	Photographic Record - Middle Site Tier II DF / NHLWLF64
Table XXIII :	Soil Chemical Analysis Results – Middle Site Tier II DF / NHLWLF 73
Table XXIV :	Evaluation of 2008 Soil Analytical Results - Middle Site Tier II DF / NHLWLF74
Table XXV :	Groundwater Chemical Analysis Results — Middle Site Tier II DF / NHLWLF77
Table XXVI :	Evaluation of 2008 Groundwater Analytical Data - Middle Tier II DF / NHLWLF78

LIST OF APPENDICES

APPENDIX A Range of the Report and Limitation of Responsibilities

APPENDIX B Certificates of Analysis

APPENDIX C Field Notes

APPENDIX D QA/QC Reports

APPENDIX E Thermistor Annual Maintenance Reports

APPENDIX F Monitoring Well Sampling Logs

1 INTRODUCTION

1.1 LOCATION AND SITE FEATURES

The FOX-5 Broughton Island DEW Line site is located on the southeastern edge of Broughton Island. Broughton Island is a small island off the east coast of the Cumberland Peninsula of Baffin Island. The FOX-5 site is located at 67° 33' north latitude and 63° 49' west longitude. The site is located approximately 9 km east of the community of Qikiqtarjuaq (formerly Broughton Island) and sits on a high point about 2 km inland of Davis Strait. The main site is approximately 550 m above sea level and is accessed by an all-season road; however, the road has not been maintained since the completion of the site clean-up.

FOX-5 was originally an auxiliary station within the original DEW Line system that was decommissioned in 1991. A remotely operated North Warning System Short Range Radar Station has been constructed in its vicinity. The environmental clean-up and demolition of facilities not required for the operation of the SRR site commenced in 2001 and was completed during the summer of 2006. The clean-up included the closure and remediation of two existing landfills as well as the construction of two landfills for the disposal of non-hazardous wastes generated from demolition, and collection of site debris, one of which was also constructed to contain Tier II soils in a separate cell. These landfills, as shown on the overall site plan, Figure 1 FOX-5, include:

- Station Non-Hazardous Waste Landfill;
- Main Landfill: and
- Middle Site Tier II Soil Disposal Facility/Non-Hazardous Waste Landfill.

The Airstrip Landfill, not shown in Figure 1, does not require monitoring as it was completely excavated.

In accordance with the NTI-DND Cooperation Agreement, landfill monitoring is to be carried out following clean-up of the site. The monitoring schedule for the 2008 FOX-5 Broughton Island site is provided in Table I.

Visual Groundwater **Thermal** Landfill **Soil Sampling** Inspection Monitoring Sampling Station Area **√ NHWLF** \checkmark Main Landfill Middle Site Tier II Disposal Facility / **NHWLF**

Table I: 2008 Monitoring Requirements for F0X-5 Landfills

1.2 OBJECTIVES AND SCOPE OF WORK

The objective of the Defence Construction Canada (hereinafter called "DCC") Landfill Monitoring Program is to collect sufficient information to assess the landfills' performance, from a geotechnical and environmental perspective. DCC has specified the requirements for the Landfill Monitoring Program in the document *Terms of Reference* (ToR) – *Consulting Services for the Collection of Landfill Monitoring Data - FOX-5 Broughton Island and FOX-M Hall Beach DEW Line Sites, Nunavut Territory, Qikiqtaaluk Region, DCC Project # DLC MON*, December 14, 2007 (ToR, reference B).

The scope of work for the Landfill Monitoring Program is defined in the ToR (reference B) and in Biogenie S.R.D.C. Inc's (hereinafter called "Biogenie") accepted proposal dated February 2008 (reference C) that was submitted to DCC. The scope of work generally includes the following activities:

- Landfill Monitoring for each of the FOX-5 Landfills:
- Visual inspection;
- Soil sampling;

- Groundwater sampling;
- Thermal monitoring (Main Landfill and DCC Tier II Disposal Facility);
- Create photographic record; and
- Draft and Final reports.

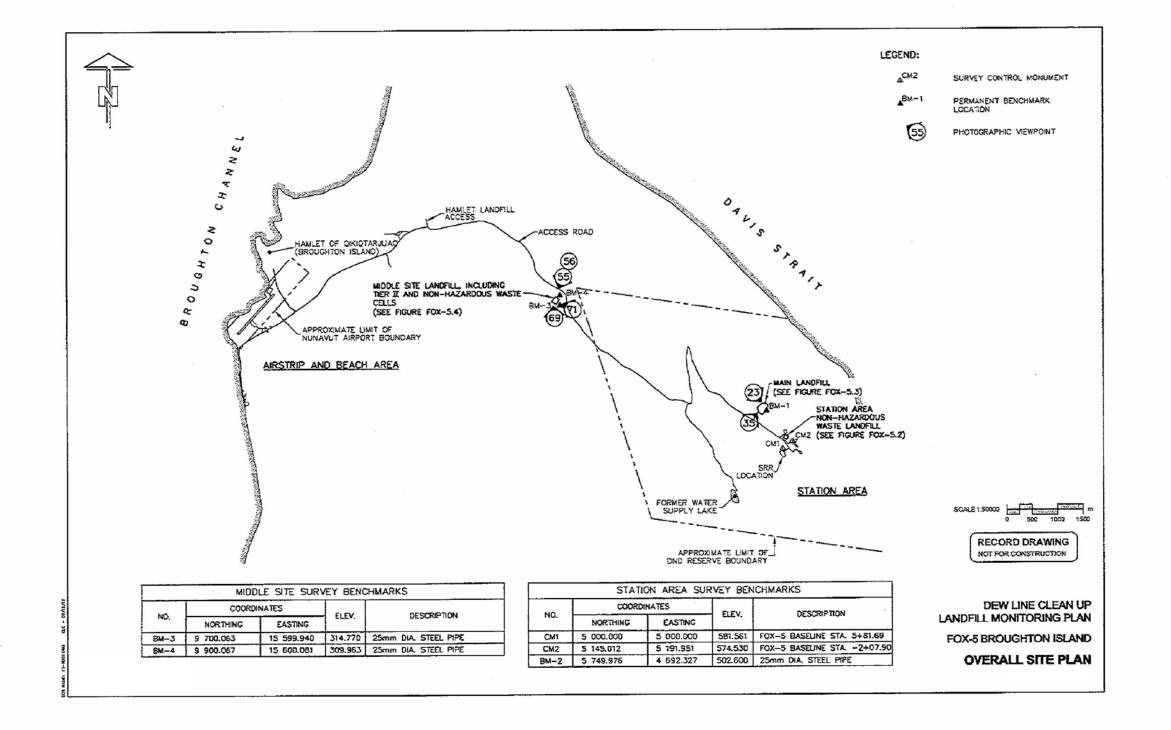
1.3 REPORT FORMAT

This report describes the work carried out in August 2008 at three landfill sites at FOX-5 Broughton Island. Results from soil and groundwater sampling, thermal monitoring, and visual inspection of the sites are also presented in the formats described in the ToR (reference B). An electronic version of the report and its component tables, figures and data files is included in a CD-ROM, which is enclosed with the report.

The report is organized with a separate chapter for each of the landfill areas. Each chapter contains all relevant information for that landfill area, for the 2008 Landfill Monitoring Program. The following information is provided in each landfill section:

- Visual inspection checklist;
- Visual inspection drawing mark-up;
- A selection of visual inspection photos;
- Thermal monitoring summary (where applicable);
- Plots of ground temperatures with depth at each thermistor installation (where applicable);
- Summary of 2008 soil analytical data;
- Evaluation of 2008 soil analytical data, as compared to baseline conditions;
- Summary of 2008 groundwater analytical data; and
- Monitoring well development/sampling reports (where applicable).

For the photographic record, the printed copy of the report only includes an index and thumbnail image of photos for each of the landfill areas. The actual photos are included in electronic format in the CD-ROM. Certificates of Analysis, QA/QC analytical results and field notes are attached in appendices.


1.4 Project References

The following references are specifically relevant to the 2008 Landfill Monitoring activities:

- A. Request for Abbreviated Proposal- Consultant Services Collection of Landfill Monitoring Data for the DEW Line Sites: FOX-M Hall Beach and FOX-5 Broughton Island, Nunavut Territory Qikiqtaaluk Region, Nunavut. DCC Project # DLC MON (Qikiq 08), January 14, 2008.
- B. Terms of Reference Consulting Services for the Collection of Landfill Monitoring Data FOX-5 Broughton Island and FOX-M Hall Beach DEW Line Sites, Nunavut Territory, Qikiqtaaluk Region, DCC Project # DLC MON, December 14, 2007.
- C. Technical Proposal The Collection of Landfill Monitoring Data for the DEW Line Sites: FOX-M Hall Beach and FOX-5 Broughton Island, Nunavut Territory Qikiqtaaluk Region, Nunavut. Project Ref. 6121-045, February 2008.
- D. Post-Field Progress Report, FOX-5 Landfill Monitoring 2008, September 5, 2008.

The range of the report, limitation of responsibilities as well as the detailed procedures for the use of this report are presented in Appendix A.

A	FINAL VERSION	08-12-18	P.L.	J.P.P.	J.P.P.
NO.	VERSION	DATE	PAR	VERIF.	APPR

Construction de Défense Canada Defence Construction Canada

DRAFT FINAL REPORT COLLECTION OF LANDFILL MONITORING DATA

FOX-5, QIKIQTAALUK REGION (NUNAVUT)

OVERALL SITE PLAN

SITE REMEDIATION SOLUTIONS

Biogenie S.R.D.C. inc. 4495 Wifrid-Hamel Blvd., Suite 200 Quebec (Quebec) CANADA G1P 2J7 Phone: (418) 653-4422 Fax.: (418) 653-3583

EASUREMENT UNIT Meter	SCALE: 1 : 75,000	DATE (month-year): AUGUST 2008
rawn by: P. LÉGARÉ	VERIFIED BY: JP. PELLETIER	APPROVED BY: JP. PELLETIER
ROJECT NO: CD8177_001_160	DRAWING NO: CD8177_001_160-PL1	PAGE PL

FIGURE 1

2 OUTLINE AND METHODOLOGY

2.1 FIELD PROGRAM STAFF

On-site 2008 field program at FOX-5 Broughton Island took place from August 19 to 22, 2008. Biogenie sub-contracted Sila Remediation Inc. from Igloolik, Nunavut to perform the field work. The Sila field program was executed by Mr. Andrew Passalis and four local Inuit representatives.

The Sila Field Team (Table II) consisted of an engineer and local support personnel. The team was made up of the following individuals:

PersonnelRoleAndrew PassalisProject EngineerMina KunilusieField TechnicianDanny AudlakiakField TechnicianAlan KooneeliusieWildlife MonitorGeorge KuniluiseeWildlife Monitor

Table II: Sila's Field Team

2.2 VISUAL INSPECTION

Data and information collected during the visual inspection of the FOX-5 landfills are included in the visual inspection datasheets. These data sheets include such inspection data as the location of settlement, erosion, frost action, sloughing and cracking, animal burrows, vegetation cover and stress, staining, seepage points, exposed debris, and any other features of note.

Each feature was identified with an alphabetical tag to be used consistently each year in an effort to track changes in condition for each specific feature. New features are added to the checklist and are noted as new observations. This letter is shown on the figures for each landfill along with the symbol for the particular feature.

Digital photos with a measure of scale were taken to show the actual general state of the landfills as well as features of interest. Annotated sketches/diagrams are included in the present report for each landfill.

The photos were taken with a Sony Cyber-shot 7.2 megapixel (MP) digital camera. Full resolution digital jpg copies are furnished on a CD-ROM appended with the final report. The photo log, including the local coordinates from where the photo was taken, orientation (relative to map north), feature of note and picture number is included with each landfill report.

2.3 SOIL SAMPLING

The soil sampling methodology conformed to guidance provided in the following Canadian Council of Ministers of the Environment (CCME) documents:

- CCME Guidance Document on the Management of Contaminated Sites In Canada, April 1997, CCME PN 1279. (CCME catalogue http://www.ccme.ca/pdfs/cat_eng.pdf);
- CCME EPC-NCS62E Guidance Manual on Sampling, Analysis, and Data Management for Contaminated Sites Volume I: Main Report, December 1993 (CCME catalogue http://www.ccme.ca/pdfs/cat_eng.pdf);
- CCME EPC-NCS66E Guidance Manual on Sampling, Analysis, and Data Management for Contaminated Sites - Volume II: Analytical Method Summaries, December 1993 (CCME catalogue http://www.ccme.ca/pdfs/cat_eng.pdf);
- Reference method for the Determination of Petroleum Hydrocarbons in Soil Tier I Method, 2001; and

• CCME Subsurface Assessment Handbook for Contaminated Sites, March 1994, EPC-NCSRP-48E (CCME catalogue - www.ccme.ca/pdfs/cat_eng.pdf).

For the 2008 monitoring event, 12 soil-sampling stations were visited. One surface sample (0-15 cm depth below surface) and one subsurface sample (40-50 cm depth below surface) were collected from each sampling station. The laboratory's Certificates of Analysis for the 2008 monitoring campaign are presented in Appendix B. No frozen ground or frost was encountered at the soil sampling stations during the August 2008 sampling.

As specified in the ToR (reference B), the soil sampling procedures were adhered to:

- Where required, the soil samples were collected from locations between two to four meter radius of the monitoring wells;
- Blind field duplicates (10 %) were collected for Quality Assurance and Quality Control purposes;
- Duplicate samples (10 %) were also collected and submitted to a second laboratory for quality control purposes; and
- An additional 10 % of soil samples collected were sent to the owner's representative (ESG OPS CENTRE) in Kingston for archiving as specified by DCC.

The soil samples were analyzed for requested parameters (TPH, Total metals and PCBs) as specified by DCC. Table III below summarizes the soil sampling locations at FOX-5 during the August 2008 field program.

Table III: Summary of Soil Sampling at FOX-5, August 2008 Landfill Site Soil Sampling Stations

Landfill Site	Soil Sample Locations							
Main Landfill	MW-10	MW-11	MW-12	MW-13	MW-14			
Middle Site Tier II/NHWLF	MW-5	MW-6	MW-7	MW-8	MW-9			

Notes:

Soil samples annotated as "MW" were collected as per the ToR (reference B) between 2-4 metres from monitoring wells. All soil samples (except F4-25) were collected from two depths (0-15 cm and 40-50 cm generally)

2.4 GROUNDWATER SAMPLING

The soil sampling methodology conformed to guidance provided in the following Canadian Council of Ministers of the Environment (CCME) documents:

- CCME EPC-NCS62E Guidance Manual on Sampling, Analysis, and Data Management for Contaminated Sites - Volume I: Main Report, December 1993 (CCME catalogue - http://www.ccme.ca/pdfs/cat_eng.pdf); and
- CCME EPC-NCS66E Guidance Manual on Sampling, Analysis, and Data Management for Contaminated Sites - Volume II: Analytical Method Summaries, December 1993 (CCME catalogue http://www.ccme.ca/pdfs/cat_eng.pdf).

Wells were purged as specified and measurements of *in situ* temperature, conductivity and pH were taken. Sampling took place when these parameters were stabilized. Turbidity readings were also collected at each station. The samples were not acidified and were not filtered (as directed in ToR).

There are 15 monitoring wells at FOX-5. During the 2006 field program, it was possible to sample 14 out of 15 monitoring wells. One monitoring well (MW-14) could not be sampled due to dry conditions at the time of sampling. A summary of the status of the monitoring wells and the attempts made are summarized in Table IV.

In sampled wells, no signs of free-phase hydrocarbon product were detected. Monitoring Well Development and Sampling Record forms are included in appropriate sections in this report.

Table IV: Summary of Groundwater Sampling at FOX-5, August 2006

Landfill Site	Groundwater Sample Locations						
Station AREA NHWLF	MW-15	MW-16	MW-17	MW-18	MW-19		
Main Landfill	MW-10	MW-11	MW-12	MW-13			
Middle Site Tier II/NHWLF	MW-5	MW-6	MW-7	MW-8	MW-9		

Notes: All monitoring wells were inspected and found to be in good condition with no significant concerns identified.

2.5 THERMAL MONITORING

All thermistors at the Main Landfill and Middle Site Tier II Disposal Facility were inspected and found to be in good condition with no significant concerns identified. With the exception of two manual temperature readings at VT-4 and VT-10, all analogues/ thermocouples were observed to be functioning properly. Data from all thermistors were successfully retrieved. All clocks exhibited slight drift and were syncronized using the Prolog software.

Specific detailed information regarding temperature data is contained in the report section on the Main Landfill and Middle Site Tier II Soil Disposal Facility.

2.6 FIELD NOTES AND DATA

Field notes from the 2008 landfill monitoring program, including soil and water sampling are included in Appendix C for reference. Notes were written in field notebooks with indelible pen and were scanned to an Adobe pdf document for future reference and back-up. Locations of all observations and features for the visual inspection were recorded using a hand-held Garmin 60Cx GPS device, which included a combination of continuous tracks and discrete waypoints. Data packages collected from the individual vertical thermistors was downloaded directly to a field laptop computer.

2.7 QUALITY CONTROL

Standards for sample collection were implemented to decrease the likelihood of compromising collected samples. The methods used for sample collection are summarized in Section 2.3 and 2.4 of this report. Ensuring the following minimized sample cross contamination:

- All samples were placed directly into an appropriate laboratory supplied containers (for the particular analysis);
- Soil samples were collected with the use of decontaminated sampling equipment and/or nitrile gloves that were used only once;
- Water samples were collected through the use of dedicated Waterra footvalves and tubing; and
- All samples were stored in chilled coolers/refrigerators throughout the field program and chilled coolers during subsequent transfer to the respective laboratory.

Chains of custody (COC) forms were completed by the Project Engineer after sample collection. The samples were refrigerated prior to off-site shipment by First Air Cargo directly to Bodycote and Maxxam in Ottawa, Ontario and ESG, via Ottawa to Kingston, Ontario where they were checked in by laboratory representatives. All analysis was completed as specified on COC forms.

2.8 QA/QC PROCEDURES

Standard QA/QC procedures as specified in the TOR and CCME Guidance Documents for this project were used. The following is a summary of the analytical QA/QC samples collected:

- 10% Blind Duplicate Samples of soil and water were sent to Bodycote;
- 10% Interlab Duplicate Samples were sent to Maxxam (looking for variation in procedures causing significant difference in analytical result). Results for both the blind duplicates and the interlab duplicates can be found in in corresponding sections of each report, as actual values and relative percent differences; and
- 10% Archival Samples of soil to ESG (soils).

Bodycote has QA/QC measures for the analysis of the samples. Bodycote QC samples will typically be introduced into the analytical stream on a batch basis, normally comprising 20% – 30% of the total sample throughput. A batch size of 15 – 20 typically includes one of each control standard, reference standard, surrogate spike, duplicate sample, and method blank. A **control sample** is a blank matrix fortified with analyte of interest and carried through all analytical steps to monitor lab performance (recovery & basis) on clean matrix. A **reference sample** is a sample with predetermined certified characteristics that undergoes the same processing as samples used to evaluate accuracy of procedure. A **surrogate spike** is an organic compound with similar chemical composition and behaviour in the analytical process used to monitor recovery in each sample. A **duplicate sample** occurs when client samples are analyzed in duplicate to monitor reproducibility in analysis and preparation. Finally, a **method blank** is a blank sample matrix carried through the same procedure as the samples, it is used to monitor for process contamination.

Maxxam follows similar in-house QA/QC procedures. Bodycote and Maxxam QA/QC reports can be found in Appendix D.

3 STATION AREA NON-HAZARDOUS WASTE LANDFILL

3.1 BACKGROUND AND MONITORING PROGRAM

The Station Area Non-Hazardous Waste Landfill (SANHWLF) was constructed east of the station area for the disposal of non-hazardous materials generated from the demolition of facilities not required for the operation of the SRR, for site debris collected during clean-up and for Tier I contaminated soil. The location of this landfill encompasses the former sewage outfall, and is located within the vicinity of an area of hydrocarbon contamination originating at the garage area. Several areas of contaminated soil were also identified up-gradient of this landfill during the site investigation, including Tier I and II levels of lead, Tier I PCBs and a large Type B (fuel oil) hydrocarbon plume that extended into the footprint for the new landfill construction. All of the above-noted contaminated soil areas were reportedly excavated during clean-up, however it is expected that residual contaminant levels may be observed in the up-gradient vicinity of this landfill.

The design of the Station Non-Hazardous Waste Landfill included the construction of compacted perimeter berms, and the placement of a cover of compacted granular fill over the landfilled material. Five groundwater monitoring wells are installed at the landfill perimeter. The long term monitoring plan consists of visual monitoring, and the collection of soil and groundwater samples.

As requested in the ToR, the 2008 monitoring of this landfill only includes visual inspection to verify for evidence of settlement or erosion.

3.2 VISUAL INSPECTION REPORT

The visual inspection of the Station Area Non-Hazardous Waste Landfill was conducted on August 19 and 20, 2008. The Visual Inspection Checklist/Report has been completed as per the ToR (reference B) and is included as Table V of this report.

Settlement

Indications of consolidation or differential settlement were not noted.

Erosion

Erosion of the capping material was not noted.

Frost Action

Evidence of frost action was not noted.

Evidence of Burrowing Animals

Indications of burrowing animals were not noted.

Re-establishment of Vegetation

Based on the regional setting of this landfill reestablishment of vegetation is not likely.

Staining

Areas of staining were not observed at the time of the inspection.

Seepage Points

There were no seepage points observed at this landfill.

Debris

Two pieces of partially exposed metal debris, including a crushed barrel and braided cable were observed adjacent to the west toe of the landfill. The location of this debris is illustrated on Figure 2 FOX-5 Broughton Island – Station Area Non-Hazardous Waste Landfill.

Discussion

The Station Area Landfill performance with respect to containment of the debris within the landfill is rated as acceptable. Visual inspection report, including supporting photos and drawing, is presented in the following pages.

It was noted that surface runoff directed overtop of the landfill and either continues flowing over the capping material or infiltrates the landfill. The surface water run off has not resulted in any significant erosion of note. No frost action was observed near the wells MW-15 to MW-19 of this area (see Figure 2 FOX-5 Broughton Island – Station Area Non-Hazardous Waste Landfill).

Table V: Visual Inspection Checklist — Inspection Report — Station Area Non-Hazardous Waste Landfill

SITE NAME:	STATION AREA NON-HAZARDOUS WASTE LANDFILL
LANDFILL DESIGNATION:	
DATE OF INSPECTION:	AUGUST 19-20, 2008
DATE OF PREVIOUS	AUGUST 19-21, 2007
INSPECTION:	
INSPECTED BY:	A. PASSALIS
REPORT PREPARED BY:	SILA REMEDIATION INC. / BIOGENIE S.R.D.C. INC.

The inspector/reporter represents to the best of their knowledge, the following statements and observations are true and correct and to the best of the preparer's actual knowledge, no material facts have been suppressed or misstated.

Table VI: Station Area Non-hazardous Waste Landfill Inspection Sheet

Checklist Item	Present (Yes/No)	Location	Length	Width	Depth	Extent	Description	Photographic Record	Severity Rating	Additional Comments
Settlement	No	N/A	N/A	N/A	N/A	None	N/A	N/A	Not observed	N/A
Erosion	No	N/A	N/A	N/A	N/A	None	N/A	N/A	Not observed	N/A
Frost Action	No	N/A	N/A	N/A	N/A	None	N/A	N/A	Not observed	N/A
Animal Burrows	No	N/A	N/A	N/A	N/A	None	N/A	N/A	Not observed	N/A
Vegetation	No	N/A	N/A	N/A	N/A	None	N/A	N/A	Not observed	N/A
Staining	No	N/A	N/A	N/A	N/A	None	N/A	N/A	Not observed	N/A
Vegetation Stress	No	N/A	N/A	N/A	N/A	None	N/A	N/A	Not observed	N/A
Seepage Points	No	N/A	N/A	N/A	N/A	None	N/A	N/A	Not observed	N/A
Debris Exposed	Yes	Feature H (new) See Figure 2 for location	N/A	N/A	0.3 m	Isolated	Partially exposed crushed drum and braided cable noted at toe of landfill	F5_08-0533, 0534	Acceptable	5025E, 5193N: 2 x 1 m area located between 5-7 m SW of CLS monument
Presence/Condition of Monitoring Instruments	No	N/A	N/A	N/A	N/A	None	N/A	N/A	Not observed	N/A
Other Features of Note	No									

3.3 Preliminary Stability Assessment

The Preliminary Stability Assessment for Station Area Non-Hazardous Waste Landfill has been completed as per the ToR and is included as Table VII of this report.

3.4 LOCATION PLAN

The Location Plan has been completed as per the ToR and is included in the following Figure 2 FOX-5 Broughton Island – Station Area Non-Hazardous Waste Landfill.

3.5 PHOTOGRAPHIC RECORDS

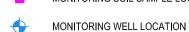
The Photographic Record for Station Area Non-Hazardous Waste Landfill has been completed as per the Terms of Reference and is included in the following Table VIII. The Photographic Record only contains an index and "thumbnail" photographs; full sized photographs are contained in the Addendum CD-ROM.

Table VII: Preliminary Stability Assessment - SA NHWLF

Feature	Severity Rating	Extent					
Settlement	Not observed	None					
Erosion	Not observed	None					
Frost Action	Not observed	None					
Staining	Not observed	None					
Vegetation Stress	Not observed	None					
Seepage/Ponded Water	Not observed	None					
Debris exposure	Acceptable	Isolated					
Overall Landfill	•	4.33					
Performance	A	cceptable					
Performance/ Severity	Door						
Rating		eription The latest terms of the latest terms					
Acceptable	Noted features are of little consequence. The landfill is performing as designed. Minor deviations in environmental or physical performance may be observed, such as isolated areas of erosion, settlement. Physical/environmental performance appears to be deteriorating with time. Observations may include an increase in size or number of features of note, such as differential settlement, erosion or cracking. No significant impact on landfill stability to date, but potential for failure is assessed as low or moderate.						
Marginal							
Significant Unacceptable	stability, such as significant significant erosion or development. The potential fo	ificant changes affecting landfill t changes in slope geometry, lifferential settlement; scarp r failure is assessed as imminent. mised to the extent that ability to					
7		compromised. Examples may					
	• Debris exposed in erosion settlement.	channels or areas of differential					
	Liner exposed.						
	Slope failure.						
Extent	Desc	ription					
Isolated	Singular feature	•					
Occasional	Features of note occurring at i	rregular intervals/locations					
Numerous		ted less than 50% of the surface					
г.:	In a set in a superior the set 500/ set	241					

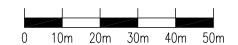
LEGEND

TB M4


TEMPORARY BENCHMARK

PERMANENT BENCHMARK

COORDINATE POINT


MONITORING SOIL SAMPLE LOCATION

EXPOSED FEATURE

		,	NTS (AS BUILT) WASTE LANDFILL					
NO.	NORTHING	EASTING	ELEV.					
101	5 257.7	5 059.3	571.4					
102	5 230.2	5 102.8	573.5					
103	5 185.1	5 076.2	574.6					
104	5 212.3	5 031.6	573.5					

COORDINATE POINTS (AS BUILT) MONITORING WELLS									
NO.	NORTHING	EASTING	ELEV.						
MW - 15	5 180.1	5 132.8	571.50						
MW-16	5 175.2	5 041.7	570.63						
MW-17	5 252.9	5 028.5	567.00						
MW-18	5 284.7	5 061.3	565.82						
MW-19	5 265.1	5 101.2	567.33						

A	FINAL VERSION	08-12-18	P.L.	J.P.P.	J.P.P.
NO.	VERSION	DATE	PAR	VERIF.	APPR.

Construction de Défense Canada Defence Construction Canada

DRAFT FINAL REPORT COLLECTION OF LANDFILL MONITORING DATA FOX-5, BROUGHTON ISLAND (NUNAVUT)

STATION AREA NON-HAZARDEOUS WASTE LANDFILL

SITE REMEDIATION SOLUTIONS

Biogenie S.R.D.C. inc. 4495 Wilfrig-Hamel Blvd., Suite 200 Quebec (Quebec) CANADA G1P 2J7 Phone: (418) 653-4422 Fax.: (418) 653-3583

MEASUREMENT UNIT Meter	SCALE: 1 : 1,000	DATE (month-year): DECEMBER 2008				
DRAWN BY: P. LÉGARÉ	VERIFIED BY: JP. PELLETIER	APPROVED BY: JP. PELLETIER				
PROJECT NO: CD8177_001_160	DRAWING NO: CD8177_001_160-PL2	PAGE PL				

FIGURE 2

Table VIII: Photographic Record - Station Area Non-Hazardous Waste Landfill

Photo	Thumbnail	Filename	Date	Vantag	je Point	Contian
Photo	Inumbhaii	riiename	Date	Easting	Northing	Caption
1		F5_08-0478- 0480	19/08/2008	5082E	5108N	Panoramic view SE to E across former station area pad.
2		F5_08-0481	19/08/2008	5055E	5139N	View NW along access road to former station area pad.
3		F5_08-0483	19/08/2008	5048E	5133N	View SE of Commemorative Plaque.
4		F5_08-0484- 0486	19/08/2008	5071E		45 panoramic view looking NW to W along west side of Station NHWLF. MW16 in background.
5	-	F5_08-0487- 0490	19/08/2008	5076E	5186N	45 panoramic view looking S to SW from south corner of Station NHWLF.
6	1	F5_08-0500- 0506	19/08/2008	5033E	5211N	150 panoramic view looking W through SE from west corner of Station NHWLF.

All photo locations in local coordinates unless otherwise noted.

Table VIII (continued): Photographic Record – Station Area Non-Hazardous Waste Landfill

Photo	Thumbnail	Filename	Date	Vantag	je Point	Caption
	mambhan	1 Herianie	Date	Easting	Northing	σαριιστί
7		F5_08-0507- 0511	19/08/2008	5060E	5256N	90 panoramic view looking SW to NW from north corner of Station NHWLF.
8		F5_08-0525- 0527	19/08/2008	5101E	7//8181	90 panoramic view looking NW to SW from east corner of Station NHWLF.
9		F5_08-0528	19/08/2008	5039E	5177N	Looking SE at MW16
10		F5_08-0532	19/08/2008	5028E	5255N	Soil samples 104 and 105.
11		F5_08-0534	19/08/2008	5025E	5193N	View NNW at explosed edge of buried metal (crushed drum) and cable located 57 m SE of CLS Monument at toe of Station NHWLF.
12		F5_08-0537	20/08/2008	5133E	5180N	Looking W at soil samples 107 and 108 at MW-15.
13		F5_08-0538	20/08/2008	5101E	5265N	MW-19.
14		F5_08-0542	20/08/2008	5060E	5288N	Looking S at MW-18.

All photo locations in local coordinates unless otherwise noted.

3.6 THERMAL MONITORING DATA

Not applicable to this landfill area.

3.7 SOIL SAMPLE ANALYTICAL DATA

Soil samples were not scheduled to be collected during the 2008 inspection period.

3.8 GROUNDWATER SAMPLE ANALYTICAL DATA

Groundwater samples were not scheduled to be collected during the 2008 inspection period.

3.9 Monitoring Well Sampling/Inspection Logs

Monitoring well sampling was not scheduled during the 2008 inspection period.

4 MAIN LANDFILL

4.1 BACKGROUND AND MONITORING PROGRAM

The Main Landfill is located in a broad valley approximately 1 km northwest of the Station Area. The landfill including engineered cover encompasses an area of approximately 30,000 m² with a toe extending approximately 3.5 m above existing grade. Based on existing information regarding this landfill as a source of contamination, its potential migration pathways and receptors, the Main Landfill was classified as moderate potential environmental risk. The remediation consisted of a leachate containment, the design of which consisted of a synthetic liner system, and the placement of sufficient granular fill at surface to cause aggradation of permafrost through the landfill contents. Existing drainage channels for surface water were backfilled and drainage was rerouted towards the north, south and west sides of the landfill.

Five groundwater monitoring wells are installed at the landfill perimeter, and eight thermistors are installed within the landfill footprint to monitor freeze back conditions. In addition, four of the downgradient thermistor installations are also equipped with pore pressure piezometers to monitor pore pressure in the downgradient landfill area for slope stability.

The long term monitoring plan consists of visual monitoring, collection of soil and groundwater samples and monitoring of subsurface ground temperatures. Pore pressures were reported to have stabilized at the time of the 2007 monitoring period in the downgradient landfill area and consequently did not require monitoring during the 2008 period.

The 2008 monitoring of this landfill includes visual inspection to verify for evidence of settlement or erosion and collection of soil and groundwater samples to monitor for the presence of leachate. Groundwater monitoring well locations, as well as soil sample and thermistor installation locations are identified on Figure 3 Location Plan of Main Landfill.

The soil and groundwater analytical data are presented in Tables IX and X, respectively. Soil at all stations was sampled as specified. Groundwater from each of the monitoring wells was sampled for all parameters as per the ToR (reference B), with the exception of MW-14 which was found dry at the time of monitoring.

Table IX : Soil Analytical Results

Sample #	Location	Depth (cm)	Cu [mg/L]	Ni [mg/L]	Co [mg/L]	Cd [mg/L]	Pb [mg/L]	Zn [mg/L]	Cr [mg/L]	As [mg/L]	Hg [mg/L]	PCBs [mg/L]	F1 C ₈ -C ₁₀	F2 C ₁₀ -C ₁₆	F3 C ₁₆ -C ₃₂
		(0111)	[9, -]	[9, -]	[9, -]	[9, -]	[9/ =]	[9, =]	[9, -]	[9, -]	[9, -]	[9, -]	00 0 10	0 10 0 10	0 10 0 32
200808-116-FOX5	MW-11	0-10	12	13	6	<0.5	12	53	28	4.0	<0.1	<0.02	<20	<20	<20
200808-117-FOX5	MW-11	40-50	11	12	5	<0.5	16	42	27	2.8	<0.1	< 0.02	<20	<20	<20
200808-119-FOX5	MW-12	0-10	10	8	4	<0.5	11	57	17	2.2	<0.1	< 0.02	<20	<20	<20
200808-120-FOX5	MW-12	0-10	10	14	4	<0.5	14	57	31	1.8	<0.1	<0.02	<20	<20	<20
200808-121-FOX5	MW-12	40-50	11	14	5	<0.5	17	59	32	3.0	<0.1	< 0.02	<20	<20	<20
200808-122-FOX5	MW-13	0-10	11	15	5	<0.5	11	52	30	1.9	<0.1	< 0.02	<20	<20	47
200808-123-FOX5	MW-13	40-50	7	25	3	<0.5	7	35	56	<1.0	<0.1	<0.02	<20	<20	<20
200808-125-FOX5	MW-14	0-10	8	10	4	<0.5	10	41	20	1.1	<0.1	< 0.02	<20	<20	<20
200808-126-FOX5	MW-14	40-50	9	12	4	<0.5	11	43	24	1.3	<0.1	< 0.02	<20	<20	<20
200808-128-FOX5	MW-10	0-10	11	14	5	<0.5	10	44	28	2.0	<0.1	<0.02	<20	<20	1,750
200808-129-FOX5	MW-10	40-50	13	24	7	<0.5	10	60	54	2.3	<0.1	<0.02	<20	<20	<20

Table X : Groundwater Analytical Results

Sample #	Location	Cu [µg/L]	Ni [µg/L]	Co [µg/L]	Cd [µg/L]	Pb [μg/L]	Zn [µg/L]	Cr [µg/L]	As [µg/L]	Hg [µg/L]	PCBs [µg/L]	F1 C ₆ -C ₁₀	F2 C ₁₀ -C ₁₆	F3 C ₁₆ -C ₃₄
-		[2,5,1]	[MB, L]	[69, -]	[2,5]	[2, 2]	[49,-]	[49,-]	[M3, -]	[MB, L]	[2,5]	06 010	010 016	0 16 0 34
200808-118-FOX5	MW-11	0.002	0.006	0.0003	0.0006	<0.001	0.01	0.007	<0.001	<0.0001	<0.1	<0.2	<0.2	<0.2
200808-124-FOX5	MW-13	0.075	0.023	0.0013	0.0003	0.004	0.07	0.083	<0.001	<0.0001	<0.1	<0.2	<0.2	<0.2
200808-127-FOX5	MW-12	0.010	0.005	0.0004	0.0014	0.001	0.02	0.012	<0.001	<0.0001	<0.1	<0.2	<0.2	<0.2
200808-130-FOX5	MW-10	0.001	<0.005	<0.0002	0.0001	<0.001	0.01	0.001	<0.001	<0.0001	<0.1	<0.2	<0.2	<0.2
200808-131-FOX5	MW-16	0.005	<0.005	0.0016	0.0003	0.004	0.07	0.004	<0.001	<0.0001	<0.1	<0.2	0.3	0.3

MW-11

LEGEND

₁ TBM4

TEMPORARY BENCHMARK

PERMANENT BENCHMARK

101⊸

COORDINATE POINT

MONITORING SOIL SAMPLE LOCATION

VERTICAL THERMISTOR LOCATION

EXPOSED FEATURE

	DINATE POINTS ERTICAL THER					
NO.	NORTHING	EASTING				
VT-1	5 871.2	4 671.1				
VT-2	5 864.2	4 658.5				
VT-3	5 855.8	4 681.5				
VT-4	5 848.4	4 669.3				
VT-5	5 832.7	4 644.6				
VT-6	5 811.8	4 557.9				
VT-7	5 751.2	4 602.7				
VT-8	5 722.2	4 615.8				

С	COORDINATE POINTS (AS BUILT) MONITORING WELLS									
NO.	NORTHING	EASTING	ELEV.							
MW-10	5 660.5	4 514.2	511.18							
MW-11	5 904.4	4 665.5	484.41							
MW-12	5 891.5	4 700.2	479.79							
MW-13	5 858.1	4 719.3	480.55							
MW-14	5 801.6	4 700.7	493.43							

	FINAL	VERSIO	N	08-12-	-18	P.L.	J.P.P.	J.P.I
() 1	0m	20m 3	30m	40m	n 50	9m	

VERSION

Construction de Défense Canada **Defence Construction Canada**

DATE BY VERIF. APPR.

DRAFT FINAL REPORT COLLECTION OF LANDFILL MONITORING DATA

FOX-5, BROUGHTON ISLAND (NUNAVUT)

MAIN LANDFILL

SITE REMEDIATION SOLUTIONS

Biogenie S.R.D.C. inc. 4495 Wilfrid-Hamel Blvd., Suite 200 Quebec (Quebec) CANADA G1P 2J7 Phone: (418) 653-4422 Fax.: (418) 653-3583

EASUREMENT UNIT Meter	SCALE: 1 : 1,000	DATE (month-year): DECEMBER 2008
RAWN BY: P. LÉGARÉ	VERIFIED BY: JP. PELLETIER	APPROVED BY: JP. PELLETIER
ROJECT NO: CD8177_001_160	DRAWING NO: CD8177_001_160-PL3	PAGE PL

FIGURE 3

4.2 VISUAL INSPECTION REPORT

The visual inspection of the Main Landfill was conducted on August 20, 2008. The Visual Inspection Checklist/Report has been completed as per the ToR and is included as Table XI in this report.

Settlement

Indications of consolidation or differential settlement were not noted.

Erosion

Erosion of the capping material was not noted. Erosion in several peripheral areas to the southeast, southwest and north of the landfill appear to be active. The observed surface runoff pattern is consistent with planned remedial measures to direct flow around the landfill. Surface runoff has resulted in the erosion and re-deposition of sandy soil along the various perimeter drainage areas. The erosion is not in direct contact with the landfill, however has resulted in the recent exposure of various pieces of metal debris in areas to the north and southeast of the landfill. Further erosion is expected to continue until the channels naturally stabilize.

Frost Action

Evidence of frost action was not noted.

Evidence of Burrowing Animals

Indications of burrowing animals were not noted.

Re-establishment of Vegetation

Based on the regional setting of this landfill re-establishment of vegetation is not likely.

Staining

Areas of staining were not observed at the time of the inspection.

Seepage Points

There were no seepage points observed at this landfill.

Debris

In addition to the two locations of exposed debris identified in 2007, several new areas of surface and partially exposed debris were noted, including one location on the landfill and three locations in perimeter areas to the north, east and southeast.

New debris on the landfill included a piece of exposed metal strapping and sheet metal located immediately northeast of VT-5. A piece of exposed geotextile material previously noted in this area during the 2007 inspection was renoted in 2008. In addition, a small piece of exposed geotextile material was also noted near the south toe of the landfill. Debris exposed in the perimeter areas included: a partially exposed crushed barrel located immediately adjacent MW-12; a heavy equipment track cleat located in drainage channel on north side of landfill; and various pieces of metal debris (pipe, angle iron and conduit) exposed in the erosion feature east of landfill. Two pieces of exposed cable noted during the 2007 inspection were also noted in 2008. The location of this debris is illustrated on Figure 3 FOX-5 Broughton Island – Main Landfill.

Presence/Condition of Monitoring Instruments

Protective surface casings at VT-1 to VT4 are leaning down gradient, inclined between 10° (VT-1) and 20° (VT-4) from vertical. Observations are consistent with 2007 inspection results. No frost action was observed near the wells MW-9 to MW-14 of this area (see Figure 3 FOX-5 Broughton Island – Main Landfill).

Discussion

The Main Landfill performance with respect to containment of the debris within the landfill is rated as acceptable. Visual inspection report, including supporting photos and drawing, is presented in the following pages.

It was noted that surface runoff has continued to erode sandy soil from the drainage channels situated along the southwest, northwest and southeast sides of the landfill. The channel to the southwest appears less pronounced from previous year with gradual widening along the sides of the channel. The observed surface runoff pattern is consistent with planned remedial measures to direct flow around the landfill. The erosion is not in direct contact with the landfill, however it is anticipated that additional debris may be continue to be exposed with ongoing erosion of the peripheral drainage areas.

Table XI: Visual Inspection Checklist – Inspection Report – Main Landfill

SITE NAME:	MAIN LANDFILL
LANDFILL DESIGNATION:	
DATE OF INSPECTION:	AUGUST 20, 2008
DATE OF PREVIOUS INSPECTION:	AUGUST 19-21, 2007
INSPECTED BY:	A. PASSALIS
REPORT PREPARED BY:	SILA REMEDIATION INC. / BIOGENIE S.R.C.C.
	INC.

The inspector/reporter represents to the best of their knowledge, the following statements and observations are true and correct and to the best of the preparer's actual knowledge, no material facts have been suppressed or misstated.

Table XII: Main Landfill Inspection Sheet

Checklist Item	Present (Yes/No)	Location	Length	Width	Depth	Extent	Description	Photographic Record	Severity Rating	Additional Comments
Settlement	No	N/A	N/A	N/A	N/A	None	N/A	N/A	Not observed	N/A
Erosion	Yes	Feature A See Figure 3 (southwest and northwest side of landfill)	~100 m	1 to 5 m	0 to 1 m	Isolated	Surface runoff erosion channel	F5_08-0638 to 0644	Acceptable	Surface runoff has continued to erode a channel in sandy soil along the southwest side of the landfill and deposited material along the northwest side of the landfill. The channel appears less pronounced from previous year with gradual widening along the sides of the channel. The erosion is not in direct contact with the landfill. Further erosion could occur along the up gradient section of the channel, where the soils are particularly sandy, until the channel naturally stabilizes. The observed surface runoff pattern is consistent with planned remedial measures to direct flow around the landfill.
		Feature I See Figure 3 (southwest side of landfill)	~90 m	2 to 8 m	0 to 0.3 m	Isolated	Surface runoff erosion	F5_08-0573 to 0578, 0630 and 0631	Acceptable	Surface runoff has eroded sandy soil along the runoff channel parallel to the southeast side of the landfill and deposited material in a localized area at the end of the armoured channel (4697E, 5771N - east of the landfill). Further erosion has occured downgradient of the channel that has resulted in exposure of metal debris. The erosion should naturally stabilize given the cobbly and bouldery terrain adjacent and downslope of the landfill. The erosion is not in direct contact with the landfill however limited erosion has occured within 6 m of MW-14. The observed surface runoff pattern is consistent with planned remedial measures to direct flow around the landfill.
		Feature B See Figure 3 (northeast side, down slope of landfill)	20 m	0 to 2 m	0 to 0.5 m	Isolated	Surface runoff erosion channel	F5_08-0598 and 0599	Acceptable	Early seasonal surface runoff has eroded a small channel down slope of the landfill. Runoff appears to have originated from the toe of the landfill. No apparent changes from previous years observations.
		Feature J (new) See Figure 3 (northeast side, down slope of landfill)	40 m	1 to 2 m	0 to 0.5 m	Isolated	Surface runoff erosion channel	F5_08-0588	Acceptable	Surface runoff has eroded a small channel on the north side of the landfill. The erosion should naturally stabilize given the cobbly and bouldery terrain. The observed surface runoff pattern is consistent with planned remedial measures to direct flow around the landfill.

Table XII (continued): Main Landfill Inspection Sheet

Checklist Item	Present (Yes/No)	Location	Length	Width	Depth	Extent	Description	Photographic Record	Severity Rating	Additional Comments
Frost Action	No	N/A	N/A	N/A	N/A	None	N/A	N/A	Not observed	N/A
Animal Burrows	No	N/A	N/A	N/A	N/A	None	N/A	N/A	Not observed	N/A
Vegetation	No	N/A	N/A	N/A	N/A	None	N/A	N/A	Not observed	N/A
Staining	No	N/A	N/A	N/A	N/A	None	N/A	N/A	Not observed	N/A
Vegetation Stress	No	N/A	N/A	N/A	N/A	None	N/A	N/A	Not observed	N/A
Seepage Points	No	N/A	N/A	N/A	N/A	None	N/A	N/A	Not observed	N/A
		Feature C See Figure 3	N/A	N/A	N/A	Isolated	Partially buried metal cable	F5_08-0598, 0599	Acceptable	4714E, 5881N: Partially buried rusted metal cable surface debris.
Debris Exposed		Feature K See Figure 3	N/A	N/A	N/A	Isolated	Exposed strapping and sheet metal	F5_08-0555	Acceptable	4648E, 5834N: Piece of exposed strapping (1m x 5 cm) and black sheet metal (0.2 x 0.3 m) located downslope of VT-5.
	Yes	Feature M See Figure 3	N/A	N/A	N/A	Isolated	Surface metal debris	F5_08-0587, 0588	Acceptable	4582E, 5896N: Metal debris (track cleat) located in drainage channel on north side of landfill.
		Feature N See Figure 3	N/A	N/A	N/A	Isolated	Exposed steel drum	F5_08-0597	Acceptable	4700E, 5892N: Partially exposed metal drum immediately adjacent MW-12.
		Feature O See Figure 3	N/A	N/A	N/A	Isolated	Exposed metal debris	F5_08-0632 to 0636	Acceptable	4717E, 5828N: Metal debris, including pipe, angle iron and conduit exposed in erosion feature east of landfill.
Presence/Condition of Monitoring Instruments	Yes	See Figure 3 VT-1 to VT-8	N/A	N/A	N/A	N/A	Inclined protective surface casings	F5_08-0545, 0546, 0551, 0554, 0608, 0627 to 0629	Marginal	Protective surface casings at VT-1 to VT4 are leaning down gradient, inclined between 10° (VT-1) and 20° (VT-4) from vertical. Observations are consisent with previous year. Successfully downloaded ground temperature data from loggers.
Other Features of Note: Exposed Non-woven Geotextile		Feature D See Figure 3	N/A	N/A	N/A	Isolated	Exposed geotextile	F5_08-0553	Acceptable	4644E, 5833N: Non-woven geotextile fabric exposed immediately east of VT-5.
	Yes	Feature L See Figure 3	N/A	N/A	N/A	Isolated	Geotextile	F5_08-0569, 0570	Acceptable	4623E, 5700N: Small piece of exposed non- woven geotextile.
Overall Landfill Performance:	Acceptable					Į.		ļ	I	1

4.3 PRELIMINARY STABILITY ASSESSMENT

The Preliminary Stability Assessment for Main Landfill has been completed as per the ToR and is included as Table XIII of this report.

Table XIII: Preliminary Stability Assessment - Main Landfill

Feature	Severity Rating	Extent
Settlement	Not observed	None
Erosion	Acceptable	Isolated
Frost Action	Not observed	None
Staining	Not observed	None
Vegetation Stress	Not observed	None
Seepage/Ponded Water	Not observed	None
Debris exposure	Acceptable	Isolated
Overall Landfill Performance	Acce	ptable

Performance/ Severity Rating	Description
Acceptable	Noted features are of little consequence. The landfill is performing as designed. Minor deviations in environmental or physical performance may be observed, such as isolated areas of erosion, settlement.
Marginal	Physical/environmental performance appears to be deteriorating with time. Observations may include an increase in size or number of features of note, such as differential settlement, erosion or cracking. No significant impact on landfill stability to date, but potential for failure is assessed as low or moderate.
Significant	Significant or potentially significant changes affecting landfill stability, such as significant changes in slope geometry, significant erosion or differential settlement; scarp development. The potential for failure is assessed as imminent.

Table XIII (continued): Preliminary Stability Assessment – Main Landfill

Unacceptable	Stability of landfill is compromised to the extent that ability
	to contain waste materials is compromised. Examples may
	include:
	Debris exposed in erosion channels or areas of differential settlement.
	Liner exposed.
	Slope failure.
Extent	Description
Isolated	Singular feature
Occasional	Features of note occurring at irregular intervals/locations
Numerous	Many features of note, impacted less than 50% of the surface
	area of the landfill
Extensive	Impacting greater than 50% of the surface area of the landfill

4.4 LOCATION PLAN

The Location Plan for the Main Landfill has been completed as per the ToR and is included in Figure 3.

4.5 PHOTOGRAPHIC RECORDS

The Photographic Record for Main Landfill has been completed as per the ToR and is included in the following page as Table XIV. The Photographic Record only contains an index and "thumbnail" photographs; full sized photographs are contained in the CD-ROM

Table XIV: Photographic Record - Main Landfill

Photo	Thumbnail	Filename	Date	Vanta	ge Point	Caption		
Piloto	THUIHDHAH	riiename	Date	Easting	Northing	Сарион		
15		F5_08-0545	20/08/2008	4614E	5721N	View NE at VT-8.		
16		F5_08-0547	20/08/2008	4599E	5749N	View NE at VT-7.		
17		F5_08-0549	20/08/2008	4591E	5768N	View NNE at exposed piece of 0.7 m long braided cable.		
18		F5_08-0551	20/08/2008	4554E	5809N	View NE at VT-6.		
19		F5_08-0553	20/08/2008	4644E	5833N	Exposed piece of geotextile material east of VT-5.		
20	D.	F5_08-0554	20/08/2008	4642E	5830N	View NE at VT-5.		
21	3	F5_08-0555	20/08/2008	4648E	5834N	Piece of exposed strapping (1m x 5 cm) and black sheet metal (20 x 30 cm).		

Table XIV (continued): Photographic Record – Main Landfill

Photo	Thumbnail	Filename	Date	Vanta	ge Point	Caption	
Piloto	Thumbhan	Filename	Date	Easting	Northing	Сарион	
22		F5_08-0557- 0560	20/08/2008	4648E	5833N	90 panoramic view N through E from VT-5.	
23		F5_08-0563- 0568	20/08/2008	4648E	5833N	90 panoramic view SW to NW from VT-5.	
24		F5_08-0570	20/08/2008	4623E	5700N	View NNW at small piece of exposed geotextile in rocks. VT-8 in background.	
25	W. State	F5_08-0573- 0574	20/08/2008	4697E	5771N	View SW to W at end of rock berm/drainage channel bordering southeast side of Main LF.	
26	Mind of the last	F5_08-0575- 0578	20/08/2008	4697E	5771N	90 panoramic NW to NE from end of rock berm / drainage channel bordering southeast side of Main LF.	
27		F5_08-0579	20/08/2008	4666E	5904N	View NE at MW-11.	
28		F5_08-0581- 0586	20/08/2008	4529E	5858N	180 panoramic view NE to SW through E along drainage channel bordering northeast side of Main LF.	

Table XIV (continued): Photographic Record – Main Landfill

Photo	Thumbnail	Filename	Date	Vanta	ge Point	Caption
FIIOLO	THUIHDHAH	Filenanie	Date	Easting	Northing	Сарион
29		F5_08-0588	20/08/2008	4582E	5896N	View SW at metal debris (track cleat) located in drainage channel on north side of Main LF.
30		F5_08-0597	20/08/2008	4700E	5892N	View of partially exposed metal drum immediately adjacent MW-12.
31		F5_08-0599	20/08/2008	4710E	5878N	View NE at exposed steel cable SE of MW-12 at Main LF.
32	8	F5_08-0604	20/08/2008	4697E	5799N	View NE at MW-14 at Main LF.
33		F5_08-0608- 0610	20/08/2008	4669E	5848N	80 panoramic view NW to NE from VT-4 at Main LF.
34		F5_08-0614	20/08/2008	4514E	5661N	View NE at MW-10 at Main LF.
35		F5_08-0615- 0616	20/08/2008	4583E	5674N	View E to NE at ponded water at south toe of Main LF.

Table XIV (continued): Photographic Record – Main Landfill

Photo	Thumbnail	Filename	Date	Vanta	ge Point	Caption
-11010	Tildilibilali	Tilename	Date	Easting	Northing	Сарион
36		F5_08-0617- 0619	20/08/2008	4615E		90 panoramic view NE to NW along east toe of Main LF. Near start of drainage channel that borders the east side of Main LF.
37	in a	F5_08-0623- 0626	20/08/2008	4707E	5802N	90 panoramic view NE to NW at drainage channel east of MW- 14 and east toe of Main LF.
38		F5_08-0627	20/08/2008	4659E	5864N	View NW at VT-2.
39		F5_08-0628	20/08/2008	4671E	5871N	View NW at VT-1.
40		F5_08-0629	20/08/2008	4682E	5856N	View NW at VT-3.
41		F5_08-0630	20/08/2008	4718E	5828N	View NE along drainage channel east of Main LF toe.
42		F5_08-0631	20/08/2008	4718E	5828N	View SW along drainage channel east of Main LF toe.
43		F5_08-0638- 043	20/08/2008	4529E	5665N	180 panoramic view NNW to SSE at drainage channel bordering west side of Main LF.

4.6 THERMAL MONITORING DATA

All thermistors at the Main Landfill were inspected and found to be in good condition with no significant concerns identified. Data from all thermistors were successfully retrieved. With the exception one manual temperature reading at VT-4, all analogues/thermocouples were observed to be functioning properly at the time of the inspection. Further review of the downloaded data also identified periodic errors in temperature readings obtained from sensor #10 at VT-6. All clocks exhibited slight drift and were syncronized using the Prolog software.

No datalogger batteries were replaced during the landfill inspection. All dataloggers had batteries that are expected to be functional until the summer of 2011.

4.7 LANDFILL TEMPERATURE DATA FROM DATALOGGERS

Manual resistive and temperature data readings were collected from the thermistor strings as per the ToR. Manual readings and inspection results for each thermistor are presented on the Thermistor Annual Maintenance Reports included in Appendix E. A complete datalogger RAW data set for 2007-2008 period has been forwarded to DCC as per the Terms of Reference.

Figures 4 to 11 in the following pages summarize temperature data obtained from the dataloggers. This data is a representative sampling of monthly data points downloaded from thermistor dataloggers for the 2007-2008 period.

Figure 4: FOX-5 Broughton Island VT-1

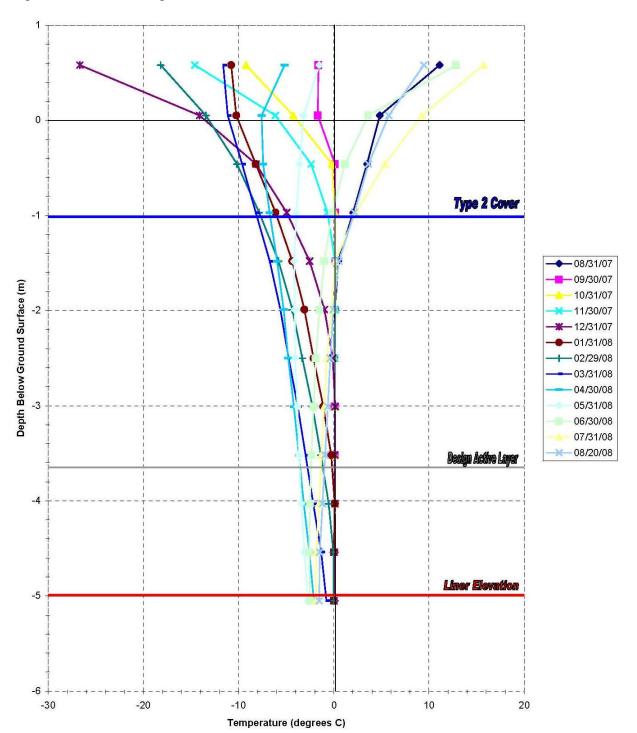


Figure 5: FOX-5 Broughton Island VT-2

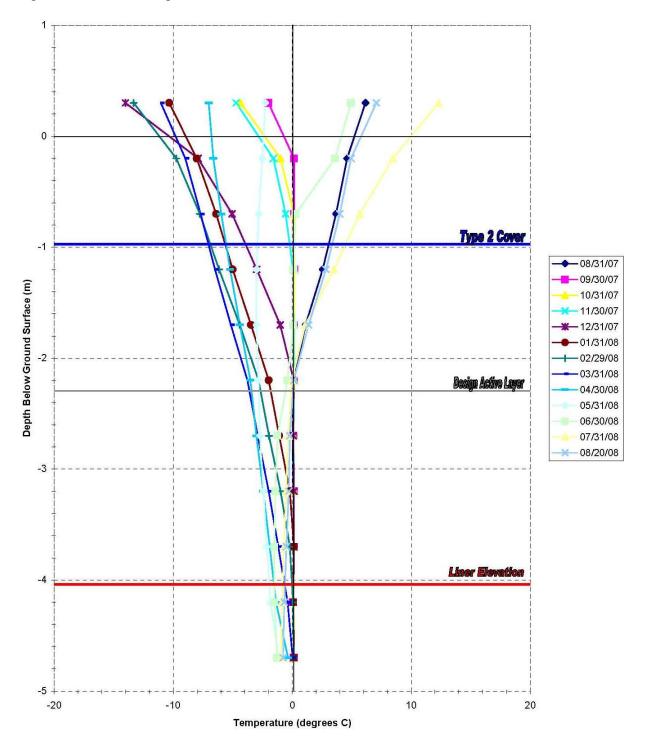


Figure 6: FOX-5 Broughton Island VT-3

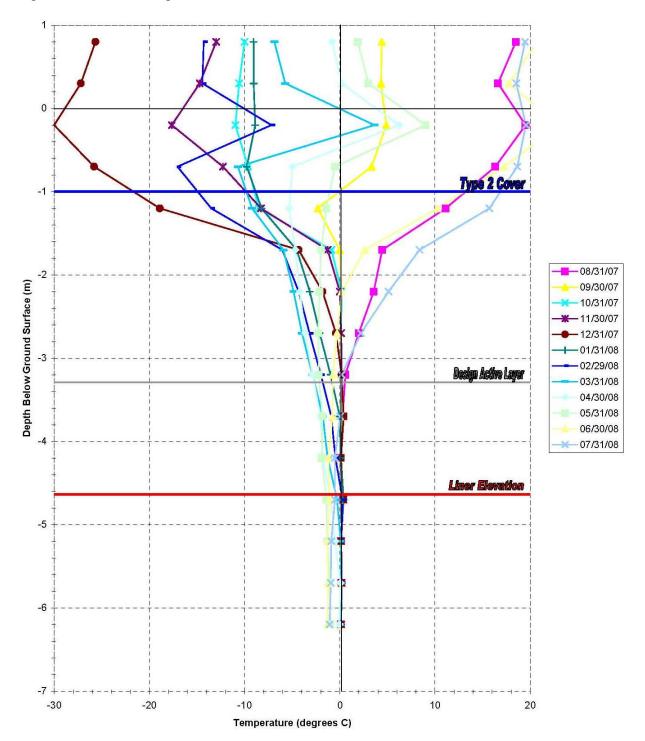


Figure 7: FOX-5 Broughton Island VT-4

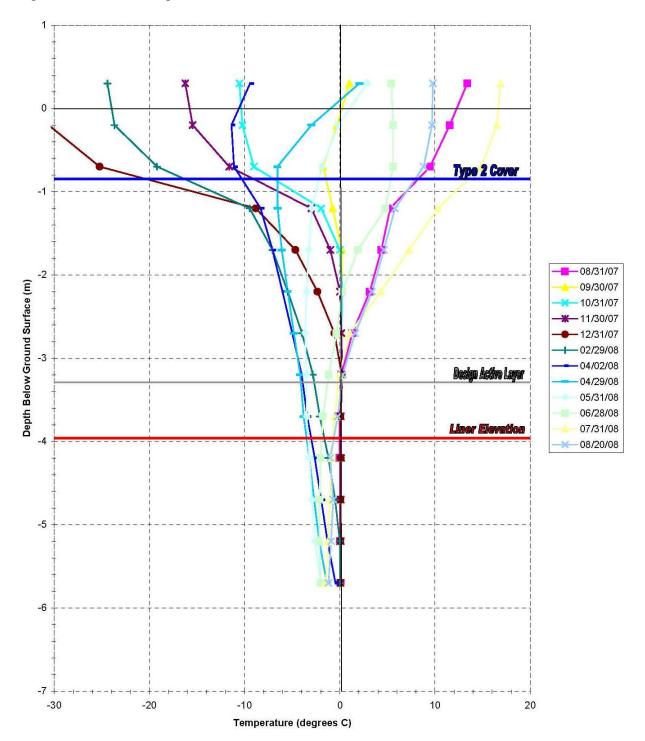


Figure 8: FOX-5 Broughton Island VT-5

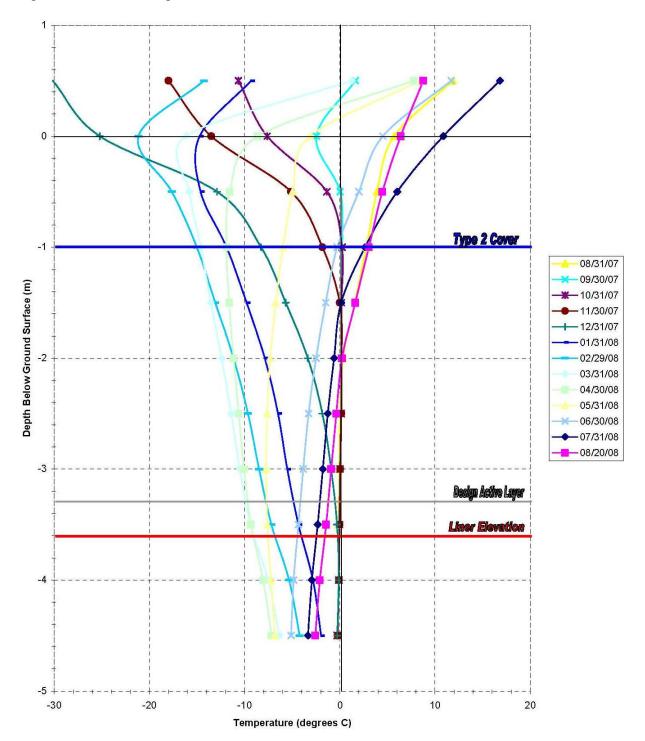


Figure 9: FOX-5 Broughton Island VT-6

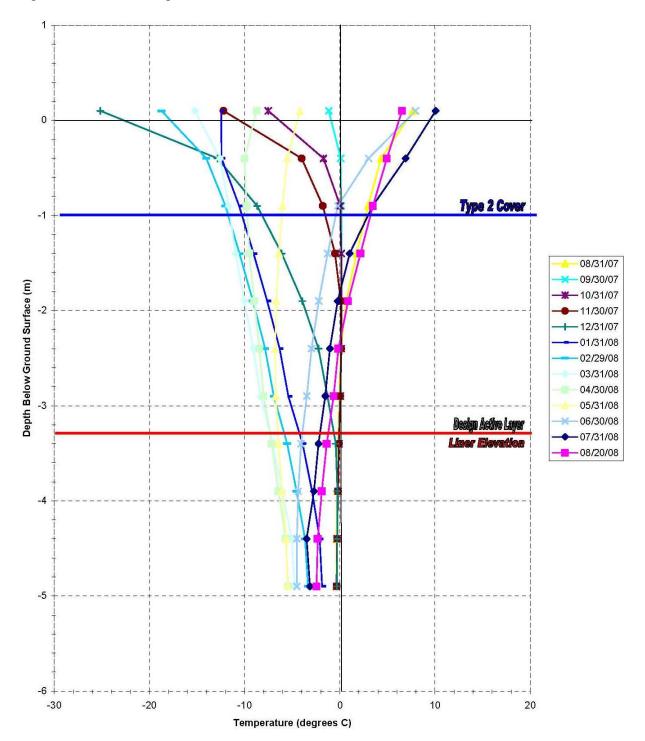


Figure 10: FOX-5 Broughton Island VT-7

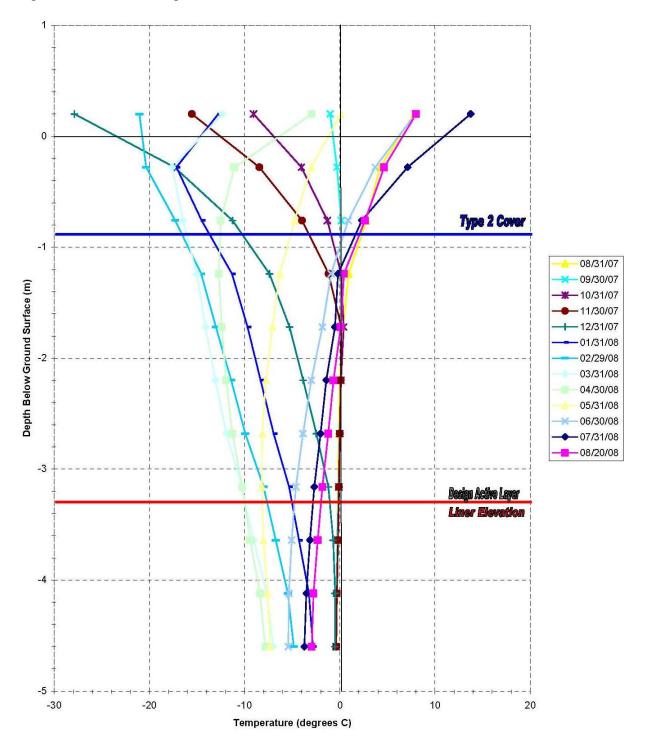
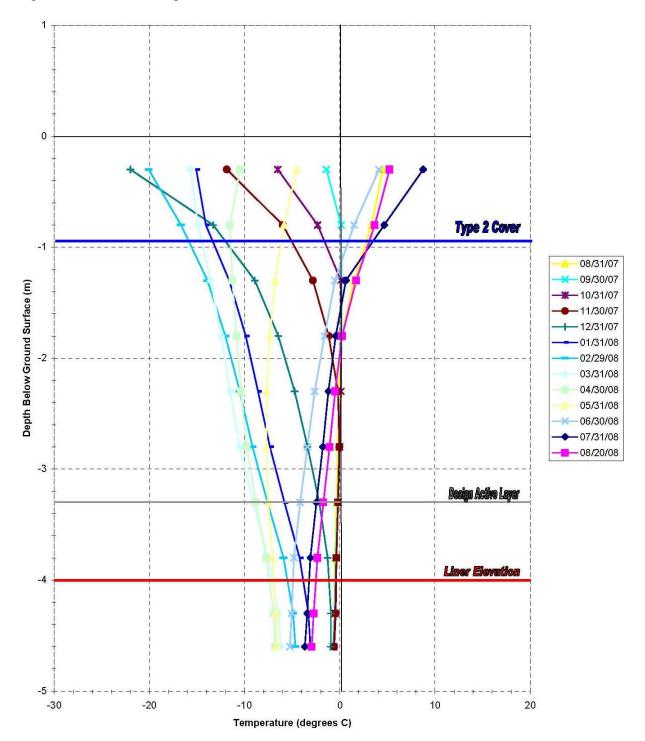



Figure 11: FOX-5 Broughton Island VT-8

4.8 SOIL SAMPLE ANALYTICAL DATA

The soil chemical analysis results for the 2008 Main Landfill samples are presented in Table XV and evaluated in Table XVI, enclosed in the following pages.

Table XV : Soil Chemical Analysis Results – Main Landfill

Sample #	Location	Depth (cm)	Cu [mg/L]	Ni [mg/L]	Co [mg/L]	Cd [mg/L]	Pb [mg/L]	Zn [mg/L]	Cr [mg/L]	As [mg/L]	Hg [mg/L]	PCBs [mg/L]	F1 C ₈ -C ₁₀	F2 C ₁₀ -C ₁₆	F3 C ₁₆ -C ₃₂
200808-116-FOX5	MW-11	0-10	12	13	6	<0.5	12	53	28	4.0	<0.1	<0.02	<20	<20	<20
200808-117-FOX5	MW-11	40-50	11	12	5	<0.5	16	42	27	2.8	<0.1	<0.02	<20	<20	<20
200808-119-FOX5	MW-12	0-10	10	8	4	<0.5	11	57	17	2.2	<0.1	<0.02	<20	<20	<20
200808-120-FOX5	MW-12	0-10	10	14	4	<0.5	14	57	31	1.8	<0.1	<0.02	<20	<20	<20
200808-121-FOX5	MW-12	40-50	11	14	5	<0.5	17	59	32	3.0	<0.1	<0.02	<20	<20	<20
200808-122-FOX5	MW-13	0-10	11	15	5	<0.5	11	52	30	1.9	<0.1	<0.02	<20	<20	47
200808-123-FOX5	MW-13	40-50	7	25	3	<0.5	7	35	56	<1.0	<0.1	<0.02	<20	<20	<20
200808-125-FOX5	MW-14	0-10	8	10	4	<0.5	10	41	20	1.1	<0.1	<0.02	<20	<20	<20
200808-126-FOX5	MW-14	40-50	9	12	4	<0.5	11	43	24	1.3	<0.1	<0.02	<20	<20	<20
200808-128-FOX5	MW-10	0-10	11	14	5	<0.5	10	44	28	2.0	<0.1	<0.02	<20	<20	1,750
200808-129-FOX5	MW-10	40-50	13	24	7	<0.5	10	60	54	2.3	<0.1	<0.02	<20	<20	<20

 $\label{thm:condition} \textbf{Table XVI: Evaluation of Soil Chemical Analysis Results} - \textbf{Main Landfill}$

Parameter	Arithmetic Mean (+/- 95% Conf.)	Maximum Baseline (mg/kg)	2008	Comments
Copper	8.5 +/- 1.3	23	Majority of results are elevated slightly above the baseline mean, however well below the observed baseline maximum concentration.	Concentrations ranged between 7-13 mg/kg with a mean of 10.1, slightly above the baseline mean.
Nickel	<5.0	11	Detectable concentrations were noted at all sample locations, with the majority of concentrations exceeding the observed baseline maximum.	Concentrations ranged between 8-25 mg/kg with a mean of 14.3. The highest concentrations of 24 mg/kg and 25 mg/kg were noted at depth at MW-10 and MW-13, respectively.
Cobalt	<5.0	5.2	Majority of sample results were consistent or equal with the reported baseline mean, with two exceptions.	The shallow sample at MW-11 and depth sample at MW-10 exhibited concentrations of 6 mg/kg and 7 mg/kg, respectively. The arithmetric mean of all samples was 4.7 mg/kg.
Cadmium	<1.0	1	All concentrations are consistent with the baseline mean (non-detect).	
Lead	<10	25	Detectable concentrations were noted at all sample locations, with several concentrations equal to or exceeding the baseline mean. All concentrations were below the observed baseline maximum.	Concentrations ranged between 7-17 mg/kg with a mean of 11.2. The highest concentrations of 16 mg/kg and 17 mg/kg were noted at depth at MW-11 and MW-12, respectively.

Table XVI (continued): Evaluation of Soil Chemical Analysis Results – Main Landfill

Parameter	Arithmetic Mean (+/- 95% Conf.)	Maximum Baseline (mg/kg)	2008	Comments
Zinc	38.5 +/- 8.9	180	With one exception, all sample results exceeded the baseline mean. Of the exceedances, approximately half were also noted to slightly exceed the 95% confidence limit. All concentrations were well below the reported baseline maximum.	Concentrations ranged between 35-60 mg/kg with a mean of 47.9 mg/kg. Shallow samples collected at MW-11 (53 mg/kg) and MW-13 (52 mg/kg), depth sample at MW-10 (60 mg/kg) and both samples at MW-12 (57 and 59 mg/kg) exceeded the 95% confidence limit.
Chromium	<20		Detectable concentrations (including one at and one below the reported baseline detection limit), were noted at all sample locations.	Concentrations ranged between 17-56 mg/kg with a mean of 29.5. The highest concentrations of 54 mg/kg and 56 mg/kg were noted at depth at MW-10 and MW-13, respectively
Arsenic	2.2 +/- 0.5	5.8	Concentrations are consistent or below with the baseline mean, with three exceptions. All results were below the reported baseline maximum concentration.	Concentrations ranged between <1.0 -4.0 mg/kg with a mean of 1.8 mg/kg. Depth sample at MW-12 and both samples at MW-11 reported concentrations in excess of the 95% confidence limit.
Mercury	<0.10		All concentrations are consistent with the baseline mean (non-detect).	
PCBs	< 0.0030	0.26	All concentrations are consistent with the baseline mean (non-detect).	
ТРН	<10	740	Concentrations are consistent with the baseline mean (non-detect), with two exceptions.	Shallow samples at MW-13 and MW-10 reported concentrations of 47 mg/kg and 1,750 mg/kg, respectively. The concentration at MW-10 is well in excess of the reported baseline maximum.

4.9 GROUNDWATER SAMPLE ANALYTICAL DATA

The groundwater chemical analysis results for the 2008 Main Landfill samples are presented in Table XVII and evaluated in Table XVIII, enclosed in the following pages. As noted above, MW-14 was dry at the time of inspection and consequently no samples were collected at this location.

4.10 Monitoring Well Sampling/Inspection Logs

The monitoring well sampling logs for MW-10 to MW-14 are presented in Appendix F.

Table XVII : Groundwater Chemical Analysis Results

Sample #	Location	Cu [µg/L]	Ni [µg/L]	Co [µg/L]	Cd [µg/L]	Pb [μg/L]	Zn [µg/L]	Cr [µg/L]	As [µg/L]	Hg [µg/L]	PCBs [µg/L]	F1 C ₆ -C ₁₀	F2 C ₁₀ -C ₁₆	F3 C ₁₆ -C ₃₄
200808-118-FOX5	MW-11	0.002	0.006	0.0003	0.0006	<0.001	0.01	0.007	<0.001	<0.0001	<0.1	<0.2	<0.2	<0.2
200808-124-FOX5	MW-13	0.075	0.023	0.0013	0.0003	0.004	0.07	0.083	<0.001	<0.0001	<0.1	<0.2	<0.2	<0.2
200808-127-FOX5	MW-12	0.010	0.005	0.0004	0.0014	0.001	0.02	0.012	<0.001	<0.0001	<0.1	<0.2	<0.2	<0.2
200808-130-FOX5	MW-10	0.001	<0.005	<0.0002	0.0001	<0.001	0.01	0.001	<0.001	<0.0001	<0.1	<0.2	<0.2	<0.2
200808-131-FOX5	MW-16	0.005	<0.005	0.0016	0.0003	0.004	0.07	0.004	<0.001	<0.0001	<0.1	<0.2	0.3	0.3

Table XVIII: Evaluation of 2008 Groundwater Analytical Data - Main Landfill

Parameter	2008	Comments
Copper	Detectable concentrations were noted at all sample locations, ranging between 0.001 (detection limit) – 0.075 mg/L.	The lowest concentration was noted at MW-10 (upgradient) whereas the highest result was noted at MW-13, downgradient of the landfill.
Nickel	Detectable concentrations were noted at all sample locations, with one exception. Results ranged between <0.005 – 0.023 mg/L.	The lowest concentration was noted at MW-10 (upgradient) whereas the highest result was noted at MW-13, downgradient of the landfill.
Cobalt	Detectable concentrations were noted at all sample locations, with one exception. Results ranged between <0.0002 – 0.0013 mg/L.	The lowest concentration was noted at MW-10 (upgradient) whereas the highest result was noted at MW-13, downgradient of the landfill.
Cadmium	Detectable concentrations were noted at all sample locations, ranging between 0.0001 (detection limit) – 0.0014 mg/L.	The lowest concentration was noted at MW-10 (upgradient) whereas the highest result was noted at MW-12, downgradient of the landfill.
Lead	Detectable concentrations were noted at two sample locations, ranging between 0.001 (detection limit) – 0.004 mg/L.	The lowest concentrations were noted at MW-10 (upgradient) and MW-11 (downgradient) and the highest result was noted at MW-13, also downgradient of the landfill.
Zinc	Detectable concentrations were noted at all sample locations, ranging between 0.01 (detection limit) – 0.07 mg/L.	The lowest concentration was noted at MW-10 (upgradient) and MW-11 (downgradient) and the highest result was noted at MW-13, also downgradient of the landfill.
Chromium	Detectable concentrations were noted at all sample locations, ranging between 0.001 (detection limit) – 0.083 mg/L.	The lowest concentration was noted at MW-10 (upgradient) whereas the highest result was noted at MW-13, downgradient of the landfill.
Arsenic	All concentrations were below the method detection limit of 0.001 mg/L	
Mercury	All concentrations were below the method detection limit of 0.0001 mg/L	
PCBs	All concentrations were below the method detection limit of 0.1 ug/L	
TPH	All concentrations were below the method detection limit of 0.2 mg/L	

5 MIDDLE SITE TIER II DISPOSAL FACILITY / NON-HAZARDOUS WASTE LANDFILL

5.1 BACKGROUND AND MONITORING PROGRAM

The Middle Site Tier II Soil Disposal Facility/Non-Hazardous Waste Landfill (Middle Site Tier II DF/NHWLF) is located along the road between the main station and the community of Qikiqtarjuaq. Before construction, the area had no visual or olfactory indication of contamination or debris. The conjoined facility was constructed to contain non-hazardous debris derived from demolition and surface debris pickup, and to dispose of Tier II level contaminated soil.

The landfill was constructed with two separate cells, based on difffering containment requirements. The Non-Hazardous Waste cell was constructed of compacted perimeter berms, with the placement of a cover of compacted granular fill over the landfilled material. The Tier II cell was constructed with the placement of low-permeability, saturated, compacted berms, the installation of a liner system over the berms and along the landfill base, and the placement of a surface liner system over the landfill contents with the placement of overlying sufficient granular fill to promote freezeback of landfill contents. Five groundwater monitoring wells were installed at the landfill perimeter, and four thermistors were installed in the Tier II Facility cell.

The long term monitoring plan consists of visual monitoring, the collection of soil and groundwater samples, and monitoring of subsurface ground temperatures of the landfill.

The 2008 monitoring of this landfill includes visual inspection to verify for evidence of settlement or erosion and collection of soil and groundwater samples to monitor for the presence of leachate. Groundwater monitoring well locations, as well as soil sample and thermistor installation locations, are identified on Figure 12 Location Plan of Middle Site Tier II Disposal Facility / NHWLF.

The soil and groundwater analytical data are presented in the following sections. Soil at all stations was sampled as specified. Groundwater from each of the monitoring wells was sampled for all parameters as per the ToR (reference B).

5.2 VISUAL INSPECTION REPORT

The visual inspection of the Middle Site Tier II DF / NHLWLF was conducted on August 21, 2008. The Visual Inspection Checklist/Report has been completed as per the ToR and is included as Table XIX of this report.

Settlement

A subtle depression was noted on the southwest corner of the NHWLF cell. The depression was consistent with that observed during the 2007 inspection with no apparent changes. A small isolated depression was also noted along the toe of the slope break of the NHWLF further to the southeast.

Indications of differential settlement were noted at two locations along the toe of the slope break between the Tier II and NHWLF cells. Numerous small tension cracks were observed at each location, extending up to 3 mm in width and 2 cm in depth with orientations between 0 and 45 degrees to the slope break.

An area of settlement was noted on the far north corner of the NHWLF where the surface transitions from Type I to Type II cover material. Settlement in this may have potentially resulted from a lack of compaction near the crest of the landfill. No photos from the 2007 inspection were available for comparison.

Erosion

Minor erosion of the capping material was noted at several new locations on the Tier II DF and one existing location on the NHWLF. The minor erosion channel previously noted on the northwest face of the NHWLF was consistent with that observed during the 2007 inspection with no apparent changes.

Channelling of surface runoff on the Tier II DF has resulted in development of minor rills that extend across the central area of the cell. Runoff has resulted in a meandering erosion pattern that extends in a west direction towards the southwest face of the facility. Surface runoff has also resulted in the development of four new erosional features, extending from the crest to the toe on the southwest face of the Tier II DF. These features extended up to 2.5 m in width and 0.15 m in depth.

Frost Action

Evidence of frost action were not noted.

Evidence of Burrowing Animals

Indications of burrowing animals were not noted.

Re-establishment of Vegetation

Based on the regional setting of this landfill re-establishment of vegetation is not likely.

Staining

Areas of natural surface staining were observed at the time of the inspection, including naturally patchy and mottled reddish discoloration at eastern extent of the NHWLF covering an area of approximately 580 m². Similar discoloration also noted in vicinity of VT-12.

Seepage Points

There were no seepage points observed at this landfill.

Debris

Surface or exposed debris was not noted at this landfill.

Presence/Condition of Monitoring Instruments

All monitoring wells and thermistor locations were in good condition with no evidence of frost action observed.

Discussion

The Middle Site Tier II DF / NHLWLF performance with respect to containment of debris and soil within the landfill is rated as acceptable. Visual inspection report, including supporting photos and drawing, is presented hereinafter.

It was noted that surface runoff has resulted in the development of small rills across the surface with more pronounced channelling on the southwest face of the Tier II DF. Although these features are currently noted as acceptable, it is anticipated that erosion of these areas will continue and should be monitored closely.

Table XIX: Visual Inspection Checklist – Inspection Report – Middle Site Tier II DF / NHLWLF

SITE NAME:	MIDDLE SITE TIER II DISPOSAL FACITILY / NON-
	HAZARDOUS WASTE LANDFILL
LANDFILL DESIGNATION:	
DATE OF INSPECTION:	AUGUST 21, 2008
DATE OF PREVIOUS	AUGUST 19-21, 2007
INSPECTION:	
INSPECTED BY:	A. PASSALIS
REPORT PREPARED BY:	SILA REMEDIATION INC.

The inspector/reporter represents to the best of the their knowledge, the following statements and observations are true and correct and to the best of the preparer's actual knowledge, no material facts have been suppressed or misstated.

Table XX: Inspection Sheet - Middle Site Tier II Disposal Facility / Non-hazardous Waste Landfill

Checklist Item	Present (Yes/No)	Location	Length	Width	Depth	Extent	Description	Photographic Record	Severity Rating	Additional Comments
		Feature E See Figure 12	~ 5 m	~ 2 m	< 3 cm	Isolated	Subtle depression		Acceptable	Subtle depression on surface of NHWLF grading slightly to the northwest. There is potential for additional settlement and water ponding to occur as the landfill contents settle over time. No apparent change to since 07 inspection.
Settlement	Yes	Feature P See Figure 12	14 m x 1.5 m and 3 m x 1 m	1 to 3 mm	1 to 2 cm	Occasional	Minor tension cracks (2 areas)	F5_08-0707, 0708 F5_08-0710	Acceptable	15519E, 9819N and 15535E, 9807N: Minor tension cracks observed extending parallel to 45° along toe of slope between Tier II Facility and NHWLF. Cracks likely resulting from differential settlement between facilities.
		Feature Q See Figure 12	0.7 m	0.7 m	5 cm	Isolated	Depression	F5_08-0709	Acceptable	15530E, 9811N: Isolated depression situated at the toe of the slope break between Tier II and NHWLF.
		Feature R See Figure 12	~ 4 m	~ 3 m	0.15 m	Isolated	Minor settlement	F5_08-0692	Acceptable	15518E, 9859N: Settlement on the north corner of the NHWLF potentially due to lack of compaction near the crest of the landfill. No photos from 07 inspection for comparison.
		Feature F See Figure 12	~ 18 m	<0.5 m	~ 0.15 m	Isolated	Minor erosion	F5_08-0701 and 0702	Acceptable	15496E, 9840N: Minor erosion along northwest slope of landfill due to channeling of surface runoff. Cobbles and boulders are present on the slope and provide natural armouring. No apparent changes from 07 inspection.
Erosion	Yes	Feature S See Figure 12	4 x ~ 15 m	0.6 to 2.5 m	0.05 to 0.15 m	Isolated	Minor erosion	F5_08-0719 to 0722 and 0729 to 0733	Acceptable	Between 15481E, 9759N and 15475E, 9776N: Minor erosion along southwest slope of landfill due to channeling of surface runoff from the Tier II Facility. Erosion will likely continue to occur at these locations from ongoing channeling across the surface of the facility.
		Feature T See Figure 12	~ 40 m	1 to 1.5 m	0 to 3 cm	Occasional	Minor erosion	F5_08-0736 and 0737	Acceptable	Between 15523E, 9787N and 15483E, 9784N: Minor erosion along the central and north surface of Tier II Facility due to channeling of surface runoff. Meandering erosional pattern flowing in a west direction towards Feature P.

Table XX (continued): Inspection Sheet - Middle Site Tier II Disposal Facility / Non-hazardous Waste Landfill

Checklist Item	Present (Yes/No)	Location	Length	Width	Depth	Extent	Description	Photographic Record	Severity Rating	Additional Comments
Frost Action	No	N/A	N/A	N/A	N/A	None	N/A	N/A	Not observed	N/A
Animal Burrows	No	N/A	N/A	N/A	N/A	None	N/A	N/A	Not observed	N/A
Vegetation	No	N/A	N/A	N/A	N/A	None	N/A	N/A	Not observed	N/A
Staining	Yes	Feature G See Figure 12	30 m	20 m	N/A	Isolated	Subtle discolouration (2 locations)	N/A	Acceptable	Naturally patchy and mottled reddish discoloration on surface of landfill at eastern extent of NHWLF. Area covers approximately 580 m². Similar discolouration also noted in vicinity of VT-12.
Vegetation Stress	No	N/A	N/A	N/A	N/A	None	N/A	N/A	Not observed	N/A
Seepage Points	No	N/A	N/A	N/A	N/A	None	N/A	N/A	Not observed	N/A
Debris Exposed	No	N/A	N/A	N/A	N/A	None	N/A	N/A	Not observed	N/A
Presence/Condition of Monitoring Instruments	Yes	See Figure 12 VT-9 to VT-12	N/A	N/A	N/A	N/A	N/A	F5_08-0661, 0671, 0711, 0735	Acceptable	Successfully downloaded ground temperature data from loggers.
Other Features of Note:	No	N/A	N/A	N/A	N/A	None	N/A	N/A	Not observed	N/A

Overall Landfill Performance Acceptable

5.3 Preliminary Stability Assessment

The Preliminary Stability Assessment for Middle Site Tier II DF / NHLWLF has been completed as per the Terms of Reference and is included as Table XXI of this report.

Table XXI: Preliminary Stability Assessment – Middle Site Tier II DF / NHLWLF

Feature	Severity Rating	Extent
Settlement	Acceptable	Isolated
Erosion	Acceptable	Isolated
Frost Action	Not observed	None
Staining	Acceptable	Occasional
Vegetation Stress	Not observed	None
Seepage/Ponded Water	Not observed	None
Debris exposure	Not observed	None
Overall Landfill Performance	Acc	ceptable

Performance/ Severity Rating **Description** Noted features are of little consequence. The landfill is Acceptable performing as designed. Minor deviations in environmental or physical performance may be observed, such as isolated areas of erosion, settlement. Physical/environmental performance Marginal appears be deteriorating with time. Observations may include an increase in size or number of features of note, such as differential settlement, erosion or cracking. No significant impact on landfill stability to date, but potential for failure is assessed as low or moderate. Significant Significant or potentially significant changes affecting landfill stability, such as significant changes in slope geometry, erosion significant or differential settlement; scarp development. The potential for failure is assessed as imminent.

Table XXI (continued): Preliminary Stability Assessment – Middle Site Tier II DF / NHLWLF

Unacceptable	Stability of landfill is compromised to the extent that ability to contain waste materials is compromised. Examples may include:							
	Debris exposed in erosion channels or areas of differential settlement.							
	Liner exposed.							
	Slope failure.							
Extent	Description							
Isolated	Singular feature							
Occasional	Features of note occurring at irregular intervals/locations							
Numerous	Many features of note, impacted less than 50% of the surfactures of the landfill							
Extensive	ve Impacting greater than 50% of the surface area of the landfill							

5.4 LOCATION PLAN

The Location Plan for the Middle Site Tier II DF / NHLWLF has been completed as per the Terms of Reference and is included in the following page as Figure 12 Location Plan of Middle Site Tier II DF / NHLWLF.

5.5 PHOTOGRAPHIC RECORDS

The Photographic Record for Middle Site Tier II DF / NHLWLF has been completed as per the Terms of Reference and is included in the following page as Table XXII. The Photographic Record in Table XXII only contains an index and "thumbnail" photographs; full sized photographs are contained in the Addendum CD-ROM.

FEATURE F

0m-0.5m WIDE

0m-0.15m DEEP

EROSION

LEGEND

₁ TBM4

TEMPORARY BENCHMARK

BM−1 ▲

9 900 N


BM-4

MM-8

PERMANENT BENCHMARK

101⊸

COORDINATE POINT

VERTICAL THERMISTOR LOCATION

COORDINATE POINTS (AS-BUILT)						
\ \ \	ERTICAL THER	RMISTORS				
NO.	NORTHING	EASTING				
VT-9	9 748.5	15 527.3				
VT-10	9 773.1	15 544.8				
VT-11	9 779.4	15 507.9				
VT-12	9 811.9	15 484.6				

С	COORDINATE POINTS (AS BUILT) MONITORING WELLS						
NO.	NORTHING	EASTING	ELEV.				
MW-5	9 760.6	15 584.6	313.23				
MW-6	9 736.9	15 446.6	305.89				
MW-7	9 808.2	15 438.1	303.13				
MW-8	9 877.3	15 490.4	303.48				
MW-9	9 878.4	15 541.2	306.69				

0	10m	20m	30m	40m	50m	
						\neg

A	FINAL VERSION	08-12-18	P.L.	J.P.P.	J.P.P.
NO.	VERSION	DATE	BY	VERIF.	APPR.

Construction de Défense Canada **Defence Construction Canada**

DRAFT FINAL REPORT

COLLECTION OF LANDFILL MONITORING DATA

FOX-5, BROUGHTON ISLAND (NUNAVUT)

MIDDLE SITE NON-HAZARDOUS WASTE LANDFILL AND TIER II DISPOSAL FACILITY

SITE REMEDIATION SOLUTIONS

Biogenie S.R.D.C. inc. 4495 Wilfrid-Hamel Blvd., Suite 200 Quebec (Quebec) CANADA G1P 2J7 Phone: (418) 653-4422 Fax.: (418) 653-3583

1: 1,000 P. LÉGARÉ J.-P. PELLETIER PROJECT NO: CD8177_001_160 DRAWING NO: CD8177_001_160-PL4 FIGURE 12

Table XXII: Photographic Record - Middle Site Tier II DF / NHLWLF

Photo	Thumbnail	Filonamo	Filename Date		e Point	Caption
	Thumbhan	Filenanie	Date	Easting	Northing	Сарион
44	1160	F5_08-0659- 0664	21/08/2008	15546E	9787N	180 panoramic view SW to NE through N of top of Tier II Facility from VT-10. VT-9 in background. Standing on east corner of Tier II Facility.
45		F5_08-0671	21/08/2008	15508E	9779N	View NW at VT-11, VT-12 in background.
46		F5_08-0672	21/08/2008	15482E	7626N	View E at VT-12.
47		F5_08-0673- 0679	21/08/2008	15482E	7626N	180 panoramic view NE to SW through S at NHWLF and Tier II Facility. Standing on west corner of NHWLF.
48		F5_08-0680- 0683	21/08/2008	15554E		90 panoramic view NW to NE at discolouration on surface of NHWLF. Standing on south corner of NHWLF
49	Para	F5_08-0687- 0691	21/08/2008	15568E	9828N	90 panoramic view NW to SW from east corner of NHWLF.
50		F5_08-0692	21/08/2008	15517E	9859N	View N at settlement feature on north corner of NHWLF (3 x 3 m x 0.2 m deep).

Table XXII (continued): Photographic Record — Middle Site Tier II DF / NHLWLF

Photo	Thumbnail	Filename	Date	Vantage Point		Caption
				Easting	Northing	Сарион
51		F5_08-0693- 0697	21/08/2008	15517E	9859N	90 panoramic view SE to SW from north corner of NHWLF.
52		F5_08-0700	21/08/2008	15497E		View NW at drainage feature on northwest face near NHWLF and Tier II partition. Feature F.
53		F5_08-0703	21/08/2008	15495E	9835N	View SE along NHWLF (left) and Tier II slope break.
54		F5_08-0707	21/08/2008	15519E	9818N	Minor tension cracks along toe of NHWLF and Tier slope break. Cracks 14 x 2 m, parallel and up to 45° from breakline.
55	700	F5_08-0709	21/08/2008	15530E	9811N	Isolated depression along toe of slope break. 0.7 x 0.7 m.
56		F5_08-0711	21/08/2008	15526E	9/4/10	View NE at VT-9 on south corner of Tier II Facility. VT-10 in background.
57		F5_08-0712- 0717	21/08/2008	15522E	9737N	120 panoramic view NE to W from south corner of Tier II Facility.

Table XXII (continued): Photographic Record — Middle Site Tier II DF / NHLWLF

Photo	Thumbnail	Filename	Date	Vantag	je Point	Caption
-11010	Inumbhan	Filenanie	Date	Easting	Northing	Сарион
58		F5_08-0719- 0721	21/08/2008	15481E	9759N	View SW at shallow erosion features extending down southwest face of Tier II Facility.
59		F5_08-0722	21/08/2008	15466E	9/4910	View NE at shallow erosion features extending down southwest face of Tier II Facility.
60		F5_08-0723- 0729	21/08/2008	15455E	9780N	150 panoramic view N to SE through E from west corner of Tier II Facility.
61		F5_08-0731	21/08/2008	15455E	9776N	View SW at shallow erosion features extending down west corner face of Tier II Facility.
62		F5_08-0732	21/08/2008	15445E		View SW at shallow erosion features extending down west corner face of Tier II Facility.
63	A	F5_08-0735	21/08/2008	15545E	9773N	Manual reading and downloading data at VT-10.
64		F5_08-0737	21/08/2008	15509E	9787N	View W at shallow erosional features extending from middle to west corner of Tier II Facility.

All photo locations in local coordinates unless otherwise noted.

Table XXII (continued): Photographic Record — Middle Site Tier II DF / NHLWLF

Photo	Thumbnail	Filename	Date	Vantag	e Point	Caption
	Tildilibilali	Filefiallie	Date	Easting	Northing	Сарион
65		F5_08-0745- 0748	21/08/2008	15486E	I YXX/N	90 panoramic view SE to SW at northwest face of NHWLF/Tier II Facility.
66	to the state of th	F5_08-0749- 0751	21/08/2008	15458E	9863N	120 panoramic view E to SW at northwest face of NHWLF/Tier II Facility.
67		F5_08-0756- 0759	21/08/2008	15426E	u ////////	120 panoramic view N to SE through E along northwest and southwest toe of Tier II Facility.
68		F5_08-0764- 0771	21/08/2008	15506E	9722N	180 panoramic view NW to SE through E at draiange channel along southwest side of Tier II Facility.
69		F5_08-0775- 0779	21/08/2008	15585E	9749N	120 panoramic view SW to N at Tier II / NHWLF from MW-5.
70		F5_08-0780- 0781	21/08/2008	15482E	10073N	30 panoramic view S to SW at NHWLF / Tier II Facility.

All photo locations in local coordinates unless otherwise noted.

5.6 THERMAL MONITORING DATA

All thermistors at the Middle Site Tier II DF / NHLWLF were inspected and found to be in good condition with no significant concerns identified. Data from all thermistors were successfully retrieved. With the exception two sensor readings (analogs #2 and #5) at VT-10, all analogues/thermocouples were observed to be functioning properly at the time of the inspection. All clocks exhibited slight drift and were syncronized using the Prolog software.

No datalogger batteries were replaced during the landfill inspection. All dataloggers had batteries that are expected to be functional until the summer of 2011.

5.7 LANDFILL TEMPERATURE DATA FROM DATALOGGERS

Manual resistive and temperature data readings were collected from the thermistor strings as per the Terms of Reference. Manual readings and inspection results for each thermistor are presented on the Thermistor Annual Maintenance Reports included in Appendix E. A complete datalogger RAW data set for 2007-2008 period has been forwarded to DCC as per the Terms of Reference.

Figures 13 to 16 in the following pages summarize temperature data obtained from the dataloggers. This data is a representative sampling of monthly data points downloaded from thermistor dataloggers for the 2007-2008 period.

5.8 SOIL SAMPLE ANALYTICAL DATA

The soil chemical analysis results for the 2008 Middle Site Tier II DF / NHLWLF samples are presented in Table XXIII and evaluated in Table XXIV, enclosed in the following pages.

Figure 13: FOX-5 Broughton Island VT-9

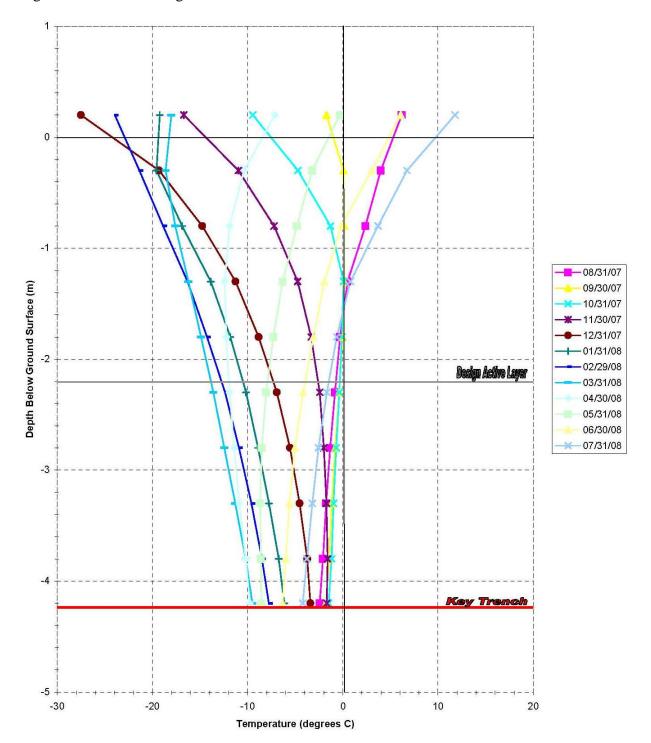


Figure 14: FOX-5 Broughton Island VT-10

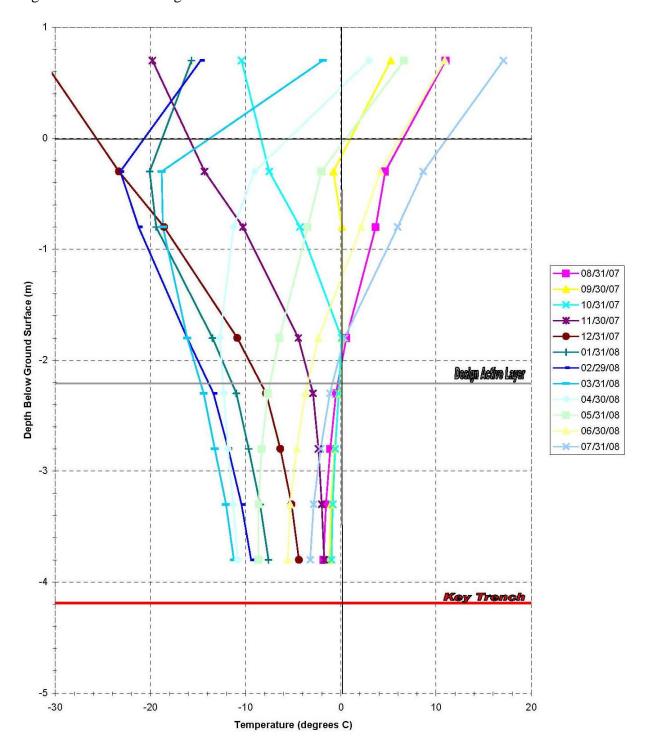


Figure 15: Broughton Island VT-11

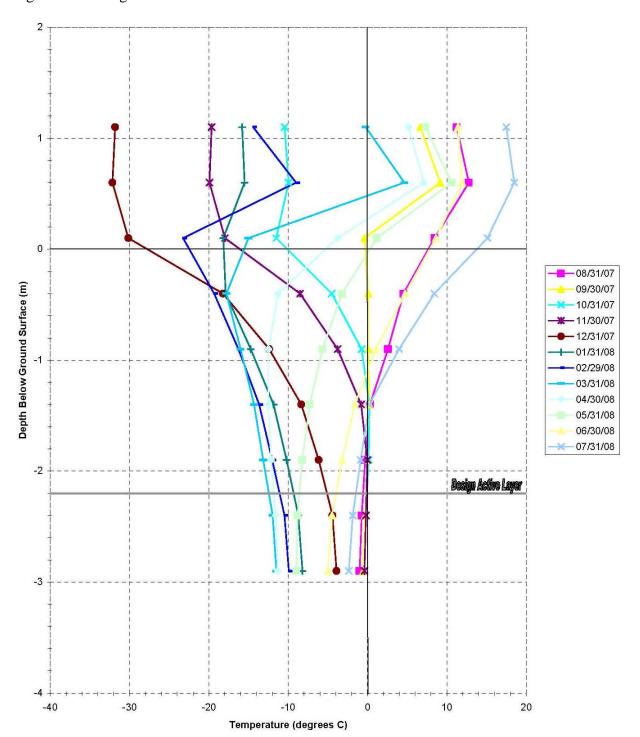
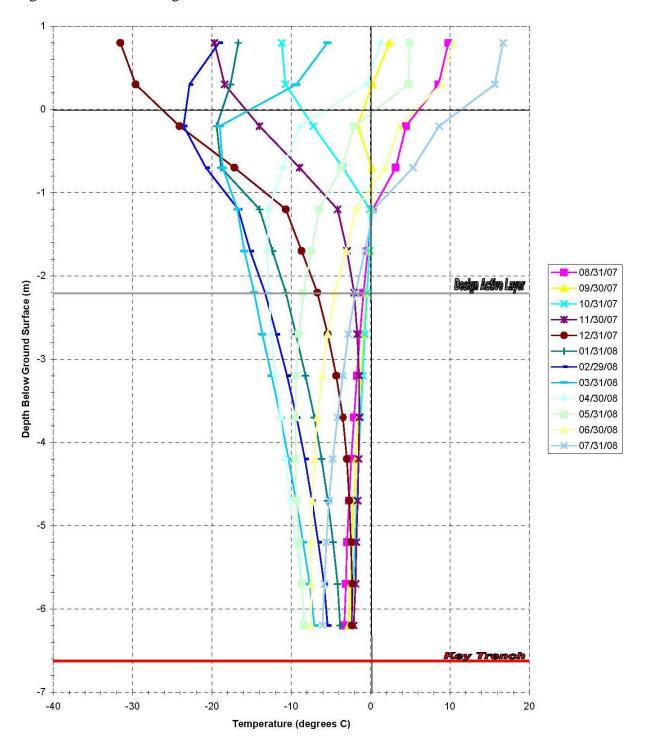



Figure 16: FOX-5 Broughton Island VT-12

 $Table\ XXIII: Soil\ Chemical\ Analysis\ Results - Middle\ Site\ Tier\ II\ DF\ /\ NHLWLF$

Sample #	Location	Depth (cm)	Cu [mg/L]	Ni [mg/L]	Co [mg/L]	Cd [mg/L]	Pb [mg/L]	Zn [mg/L]	Cr [mg/L]	As [mg/L]	Hg [mg/L]	PCBs [mg/L]	F1 C ₈ -C ₁₀	F2 C ₁₀ -C ₁₆	F3 C ₁₆ -C ₃₂
210808-132-FOX5	MW-9	0-10	9	9	5	<0.5	7	42	20	3.1	<0.1	<0.02	<20	<20	<20
210808-133-FOX5	MW-9	40-50	11	10	5	<0.5	6	40	22	3.0	<0.1	<0.02	<20	<20	<20
210808-135-FOX5	MW-8	0-10	9	7	5	<0.5	6	34	15	3.4	<0.1	<0.02	<20	<20	27
210808-136-FOX5	MW-8	40-50	10	11	5	<0.5	7	35	24	2.7	<0.1	<0.02	<20	<20	<20
210808-139-FOX5	MW-7	0-10	10	11	5	<0.5	7	40	22	<1.0	<0.1	<0.02	<20	<20	<20
210808-140-FOX5	MW-7	0-10	11	18	56	<0.5	7	48	37	1.5	<0.1	<0.02	<20	<20	<20
210808-141-FOX5	MW-7	40-50	12	14	7	<0.5	8	57	30	2.0	<0.1	<0.02	<20	<20	<20
210808-143-FOX5	MW-6	0-10	11	11	6	<0.5	8	44	23	1.7	<0.1	<0.02	<20	<20	30
210808-144-FOX5	MW-6	40-50	10	12	6	<0.5	8	52	26	2.1	<0.1	<0.02	<20	<20	<20
210808-146-FOX6	MW-5	0-10	16	13	8	<0.5	10	63	29	2.7	<0.1	<0.02	<20	<20	<20
210808-147-FOX5	MW-5	40-50	16	17	7	<0.5	11	59	41	2.5	<0.1	<0.02	<20	<20	<20

Table XXIV: Evaluation of 2008 Soil Analytical Results - Middle Site Tier II DF / NHLWLF

	Base	eline		
Parameter	Arithmetic Mean (+/- 95% Conf.)	Maximum (mg/kg)	2008	Comments
Copper	7.6 +/- 0.4	11	All concentrations exceed the 95% confidence limit. Three samples exceeded the observed baseline maximum.	Concentrations ranged between 9-16 mg/kg with a mean of 11.2. The highest concentrations of 16 mg/kg were noted in the shallow and depth sample at MW-5, upgradient of the landfill.
Nickel	5.2 +/- 0.6	8.3	All concentrations exceed the 95% confidence limit and with the exception of one sample, also exceeded the observed baseline maximum.	Concentrations ranged between 7-18 mg/kg with a mean of 11.5. The highest concentrations of 17 mg/kg and 18 mg/kg were noted in the depth sample at MW-5 and the duplicate shallow sample at MW-7, respectively.
Cobalt	<5.0	7.5	Detectable concentrations were noted at all sample locations, with one sample result exceeding the observed baseline maximum.	Concentrations ranged between 5-8 mg/kg with a mean of 5.9. The highest concentrations of 7 mg/kg and 8 mg/kg were noted in the depth and shallow samples at MW-5, upgradient of the landfill.
Cadmium	<1.0		All concentrations are consistent with the baseline mean (non-detect).	
Lead	<10		Detectable concentrations at or below the baseline mean were reported, with one exception.	Concentrations ranged between 7-11 mg/kg with a mean of 7.7. The highest concentrations of 10 mg/kg and 11 mg/kg were noted in the shallow and depth samples collected at MW-5, respectively.
Zinc	31.7 +/- 2.1	46	All concentrations exceed the 95% confidence limit including approximately half that exceed the observed baseline maximum.	Concentrations ranged between 34-63 mg/kg with a mean of 46 mg/kg, equal to the baseline maximum. Shallow and depth samples collected at MW-5 and MW7 and a depth sample collected at MW-6 exceeded the baseline maximum.

Table XXIV (continued): Evaluation of 2008 Soil Analytical Results - Middle Site Tier II DF / NHLWLF

	Base	eline		
Parameter	Arithmetic Mean (+/- 95% Conf.)	Maximum (mg/kg)	2008	Comments
Chromium	<20		Detectable concentrations (including one at and one below the reported baseline detection limit), were noted at all sample locations.	Concentrations ranged between 15-41 mg/kg with a mean of 25.1. The highest concentration of 41 mg/kg was noted in the depth sample MW-5, upgradient of the landfill.
Arsenic	2.0+/- 0.2	3.5	Approximately half of the concentrations are consistent with the baseline mean and within the 95% confidence limit. The remaining results exceed the 95% confidence limit and are below the observed baseline maximum.	Concentrations ranged between <1.0 -3.4 mg/kg with a mean of 2.3 mg/kg. Shallow and depth samples at MW-5, MW-8 and MW-9 all reported concentrations in excess of the 95% confidence limit.
Mercury	<0.10		All concentrations are consistent with the baseline mean (non-detect).	
PCBs	<0.0030	<0.1	All concentrations are consistent with the baseline mean (non-detect).	
ТРН	16 +/- 2	28	Concentrations are non-detect, with two exceptions.	Shallow samples at MW-6 and MW-8 reported concentrations of 27 mg/kg and 30 mg/kg, respectively, consistent with the observed baseline maximum.

5.9 GROUNDWATER SAMPLE ANALYTICAL DATA

The groundwater chemical analysis results for the 2008 Middle Site Tier II DF / NHLWLF samples are presented in Table XXV and evaluated in Table XXVI, enclosed in the following pages. As noted above, MW-14 was dry at the time of inspection and consequently no samples were collected at this location.

5.10 Monitoring Well Sampling/Inspection Logs

The monitoring well sampling logs for MW-5 to MW-9 are included in Appendix F.

 $Table\ XXV: Groundwater\ Chemical\ Analysis\ Results-Middle\ Site\ Tier\ II\ DF\ /\ NHLWLF$

Comple #	Location	Cu	Ni	Co	Cd	Pb	Zn	Cr	As	Hg	PCBs	F1	F2	F3
Sample #	Location	[mg/L]	[mg/L]	[mg/L]	[mg/L]	[mg/L]	[mg/L]	[mg/L]	[mg/L]	[mg/L]	[mg/L]	C ₈ -C ₁₀	C ₁₀ -C ₁₆	C_{16} - C_{32}
210808-134-FOX5	MW-9	0.007	<0.005	0.0005	0.0002	<0.001	0.02	<0.001	<0.001	<0.0001	<0.1	<0.2	<0.2	<0.2
210808-137-FOX5	MW-8	0.003	<0.005	<0.0002	0.0002	<0.001	0.03	0.001	<0.001	<0.0001	<0.1	<0.2	<0.2	<0.2
210808-138-FOX5	MW-8	0.003	<0.005	<0.0002	0.0001	<0.001	0.01	<0.001	<0.001	<0.0001	<0.1	<0.2	<0.2	<0.2
210808-142-FOX5	MW-7	0.006	<0.005	<0.0004	<0.0001	<0.001	<0.01	0.002	<0.001	<0.0001	<0.1	<0.2	<0.2	<0.2
210808-145-FOX5	MW-6	0.001	<0.005	<0.0002	<0.0001	<0.001	<0.01	<0.001	<0.001	<0.0001	<0.1	<0.2	<0.2	<0.2
210808-148-FOX5	MW-5	0.011	<0.005	0.0006	<0.0001	0.002	0.02	0.002	<0.001	<0.0001	<0.1	<0.2	<0.2	<0.2
TRIP BLANK		<0.001	<0.005	<0.0002	<0.0001	<0.001	<0.01	<0.001	<0.001	<0.0001	<0.1	<0.2	<0.2	<0.2

Table XXVI: Evaluation of 2008 Groundwater Analytical Data - Middle Tier II DF / NHLWLF

Parameter	2008	Comments
Copper	Detectable concentrations were noted at all sample locations, ranging between 0.001 (detection limit) – 0.011 mg/L.	The lowest concentration was noted at MW-6 whereas the highest result was noted at MW-5, downgradient of the landfill.
Nickel	All concentrations were below the method detection limit of 0.005 mg/L.	
Cobalt	Detectable concentrations were noted at three sample locations ranging between $0.0004 - 0.0006$ mg/L.	Non-detect readings (<0.0002 mg/L) were noted at MW-6 and MW-8, whereas the highest result was noted at MW-5, upgradient of the landfill.
Cadmium	Trace concentrations of 0.0002 mg/L (detection limit) were noted at two sample locations.	Trace concentations were noted at MW-8 and MW-9, downgradient of the landfill.
Lead	Detectable concentrations were noted at two sample locations, ranging between 0.001 (detection limit) – 0.002 mg/L.	Non-detect levels were noted at MW-7, MW-8 and MW-9 (downgradient), whereas the highest result was noted at MW-5, upgradient of the landfill.
Zinc	Detectable concentrations were noted at all sample locations, with two exceptions. Detectable results ranged between 0.01 – 0.03 mg/L.	Non-detect levels were noted at MW-6 and MW-7 (downgradient), whereas the highest result was noted at MW-8, also located downgradient of the landfill. Detectable concentrations of 0.02 mg/kg were noted at MW-5. upgradient of the landfill.
Chromium	Trace concentrations were noted at all sample locations, with two exceptions. Detectable results ranged between 0.001 – 0.002 mg/L.	Non-detect levels were noted at MW-6 and MW-9, whereas the highest results was noted at MW-5 located upgradient of the landfill.
Arsenic	All concentrations were below the method detection limit of 0.001 mg/L	
Mercury	All concentrations were below the method detection limit of 0.0001 mg/L	
PCBs	All concentrations were below the method detection limit of 0.1 ug/L	
TPH	All concentrations were below the method detection limit of 0.2 mg/L	

APPENDIX A Range of the Report and Limitation of Responsibilities

RANGE OF THE REPORT AND LIMITATION OF RESPONSIBILITIES

A – Recipient and Use

This report ("Report") was prepared by Biogenie S.R.D.C. Inc. ("Biogenie") at the request and for the sole benefit of the Client ("Client"), and is intended to be used exclusively by the Client.

B -Site Conditions

Any description of the target site ("Site"), soil and/or groundwater included in the Report is only provided as an indication to the Client, and unless otherwise specifically mentioned in the Report such description shall not at any time and under any circumstances be used for purposes other than to gain a better understanding of the Site and to fulfil the requirements of the mandate assigned to Biogenie by the Client ("Mandate").

All information, including but not limiting the comprehensiveness of the data, charts, descriptions, drawings, tables, analysis results, compilations, and any conclusion and recommendation included in the Report, shall arise from the direct observation of the Site during a specific period, namely the fulfilment of the Mandate, and from the interpretation of such information and data available during the same period.

The content of the Report shall not apply in any way or to any part of the Site or to any parameter, material or analysis excluded from the Mandate.

Biogenie shall not be held responsible for the presence of any substance or material of a different nature, or of a similar nature but with different concentrations, as those indicated in the Report, and this in any part or parts of the Site excluded from the Mandate.

The content of the Report, including its conclusions and recommendations, shall not apply to any period preceding or following the Mandate. The physiochemical conditions of the Site, and the type and degree of contamination identified on the Site, may vary within a given period depending on a number of factors, especially the current activities taking place on the Site and/or on lands adjacent to the Site.

A review of the Report and/or changes in the parameters, conclusions and/or recommendations may prove to be necessary in the event of a change in the Site conditions or the discovery of pertinent information subsequent to the production of the Report.

C - Legislation, Regulations, Guidelines and Policies

The interpretation of the data and observations concerning the Site, as well as the conclusions and recommendations resulting from these, shall take into account the laws, regulations, standards, policies and/or guidelines applicable to the Project and that are in effect at the time of the fulfilment of the Mandate. In the event no current law, regulation, policy, guideline or standard applies to the project, Biogenie shall take into account proven environmental and professional rules and practices when drawing up the Report.

Any change in the legislation, regulations, standards, policies and/or guidelines applicable to the project may result in the need to review the Report and/or modify its parameters, conclusions and/or recommendations.

D – Use of Report

The Report is intended for the exclusive use of the Client and shall only be used for the purpose it was meant for.

The content of the Report and its conclusions and recommendations only apply to the Site and may not, at any time and under any circumstances, apply to any land adjacent to the Site or to any other land located in the vicinity of the Site.

Any reproduction in any form whatsoever and any distribution or use of the Report, in whole or in part, by a person other that the Client, is strictly forbidden without the prior written consent of Biogenie. Biogenie makes no declaration and pledges no responsibility towards any person other than the Client with regard to the content of the Report and the conclusions and recommendations expressed therein.

Biogenie is in no way responsible for any loss, fine or penalty, or for any expense, damage or other prejudice of any type whatsoever, sustained by a person other than the Client as a result of the unauthorized use of the Report.

No provision of the Report shall be construed as or considered to be a legal opinion of Biogenie's.

S:\MO\Range&Limit.doc/2008-12-18

COLLECTION OF LANDFILL MONITORING DATA AT THE FOX-5 AND FOX-M FORMER DEW LINE SITES DRAFT FINAL REPORT 2008

APPENDIX B Certificates of Analysis

Client: Sila Remediation Inc.

200-4495 Boul. Wilfrid-Hamel

Quebec, QC

G1P 2J7

Attention: Mr. Jean-Pierre Pelletier

Report Number:

2821238

Date:

2008-12-17

Date Submitted:

2008-08-25

Project:

FOX-5

P.O. Number:

280128

Chain of Custody Number: 89809							Matrix:		Soil	
		LAB ID:	653459	653460	653461	653462	653463		GUIDELINE	
	Sam	ple Date:	2008-08-20	2008-08-20	2008-08-21	2008-08-21	2008-08-21			
		ample ID:	200808-128-	200808-129-	210808-132-	210808-133-	210808-135-			
		-	FOX5	FOX5	FOX5	FOX5	FOX5			
PARAMETER	UNITS	MRL						TYPE	LIMIT	UNITS
Moisture	%	0.1	4.7	9.2	10.4	10.7	11.1			
Arsenic	ug/g	1.0	2.0	2.3	3.1	3.0	3.4			İ
Cadmium	ug/g	0.5	<0.5	<0.5	<0.5	<0.5	<0.5			İ
Chromium	ug/g	1	28	54	20	22	15			İ
Cobalt	ug/g	1	5	7	5	5	5			ĺ
Copper	ug/g	1	11	13	9	11	9			1
Lead	ug/g	1	10	10	7	6	6			1
Mercury	ug/g	0.1	<0.1	<0.1	<0.1	<0.1	<0.1			1
Nickel	ug/g	1	14	24	9	10	7			
Zinc	ug/g	1	44	60	42	40	34			
	-3.5	· ·								
				1						
										ĺ
										l
										1
					n.					
										1
										1
										1
						l				1
								i		1
			I	I		I	i l	I	i	1

MRL = Method Reporting Limit INC = Incomplete AO = Aesthetic Objective OG = Operational Guideline MAC = Maximum Allowable Concentration IMAC = Interim Maximum Allowable Concentration Comment: This is an amendment and supercedes all previous copies of this report. QC Data has been added.

APPROVAL:	
	Lorna Wilson

Client: Sila Remediation Inc.

200-4495 Boul. Wilfrid-Hamel

Quebec, QC G1P 2J7

Attention: Mr. Jean-Pierre Pelletier

Report Number:

2821238

Date: **Date Submitted:** 2008-12-17 2008-08-25

Project:

FOX-5

P.O. Number:

280128

							P.O. Number:		280128	
Chain of Custody Number: 89809							Matrix:		Soil	
· · · · · · · · · · · · · · · · · · ·		LAB ID:	653464	653465	653466	653467	653468		GUIDELINE	
	San	nple Date:	2008-08-21	2008-08-21	2008-08-21	2008-08-21	2008-08-21			
		ample ID:	210808-136-	210808-139-	210808-140-	210808-141-	210808-143-			
		•	FOX5	FOX5	FOX5	FOX5	FOX5			
PARAMETER	UNITS	MRL						TYPE	LIMIT	UNITS
Moisture	%	0.1	14.2	6.2	7.9	8.4	10.0			
Arsenic	ug/g	1.0	2.7	<1.0	1.5	2.0	1.7			
Cadmium	ug/g	0.5	<0.5	<0.5	<0.5	<0.5	<0.5			
Chromium	ug/g	1	24	22	37	30	23			
Cobalt	ug/g	1	5	5	6	7	6			
Copper	ug/g	1	10	10	11	12	11			
Lead	ug/g	1	7	7	7	8	8			
Mercury	ug/g	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	1		
Nickel	ug/g	1	11	11	18	14	11	[
Zinc	ug/g	1	35	40	48	57	44			
		ı								
				1						
						1			l 1	
									1	
	1									
		I				ı				

MRL = Method Reporting Limit INC = Incomplete AO = Aesthetic Objective OG = Operational Guideline MAC = Maximum Allowable Concentration IMAC = Interim Maximum Allowable Concentration Comment:

٩I	PF	PR	O	V	٩L	:	

Lorna Wilson

Client: Sila Remediation Inc.

200-4495 Boul. Wilfrid-Hamel

Quebec, QC G1P 2J7

Attention: Mr. Jean-Pierre Pelletier

Report Number:

2821238

Date:

2008-12-17

Date Submitted:

2008-08-25

Project:

FOX-5

P.O. Number:

280128

Matrix:

Chain of Custody Number: 89809						 Matrix:		Soil	
		LAB ID:	653469	653470	653471			GUIDELINE	
	Sam	ple Date:	2008-08-21	2008-08-21	2008-08-21				
	Sa	ample ID:	210808-144-	210808-146-	210808-147-		1		
		•	FOX5	FOX5	FOX5				
PARAMETER	UNITS	MRL					TYPE	LIMIT	UNITS
Moisture	%	0.1	13.2	12.1	10.1				
Arsenic	ug/g	1.0	2.1	2.7	2.5				
Cadmium	ug/g	0.5	<0.5	<0.5	<0.5				
Chromium	ug/g	1	26	29	41				
Cobalt	ug/g	1	6	8	7				
Copper	ug/g	1	10	16	16				
Lead	ug/g	1	8	10	11				
Mercury	ug/g	0.1	<0.1	<0.1	<0.1				
Nickel	ug/g	1	12	13	17				
Zinc	ug/g	1	52	63	59				
]						
			ĺ						
]					
							ll .	ĺ	
	l l		1				II.		l

3 of 4

MRL = Method Reporting Limit INC = Incomplete AO = Aesthetic Objective OG = Operational Guideline MAC = Maximum Allowable Concentration IMAC = Interim Maximum Allowable Concentration Comment:

APPROVAL:	
	Lorna Wilson

Client: Sila Remediation Inc.

200-4495 Boul. Wilfrid-Hamel

Quebec, QC G1P 2J7

Attention: Mr. Jean-Pierre Pelletier

Report Number:

2821238

Date:

2008-12-17

Date Submitted:

2008-08-25

Project:

FOX-5

P.O. Number:

280128

Matriv:

Chain of Custody Number: 89809							Matrix:		Soil	
	LAB II								GUIDELINE	
	San	nple Date:								
	S	iample ID:	LAB BLANK	%	QC RECOVERY	DATE ANALYSED				
				RECOVERY	RANGE			- T/DE	1 15417	LINUTO
PARAMETER	UNITS	MRL		100	00.400	0000 00 00		TYPE	LIMIT	UNITS
Moisture	%	0.1	<0.1	100	80-120	2008-08-28				
Arsenic	ug/g	1.0	<1.0	129	50-150	2008-08-26	1	1		
Cadmium	ug/g	0.5	<0.5	106	50-150	2008-08-26	1			
Chromium	ug/g	1	<1	93	70-130	2008-08-26				
Cobalt	ug/g	1	<1	86	70-130	2008-08-26				
Copper	ug/g	1 1	<1	90	80-120	2008-08-26				
Lead	ug/g	1	<1	85	74-126	2008-08-26	1			
Mercury	ug/g	0.1	<0.1	80	70-130	2008-08-27				
Nickel	ug/g	1	<1	90	68-132	2008-08-26				
Zinc	ug/g	1	<1	107	84-116	2008-08-26				
]								
							1			
					1					
			1							
					1	1	1			
					1		1]	
			l	}						
			1			1				
									1	
						1	1			

MRL = Method Reporting Limit INC = Incomplete AO = Aesthetic Objective OG = Operational Guideline MAC = Maximum Allowable Concentration IMAC = Interim Maximum Allowable Concentration Comment:

APPROVAL:		
	Herb Yu	

QA Coordinator

Client: Sila Remediation Inc.

200-4495 Boul. Wilfrid-Hamel

Quebec, QC

G1P 2J7

Attention: Mr. Jean-Pierre Pelletier

Chain of Custody Number: 89809

Report Number:

2821238

Date:

2008-12-17 2008-08-25

Date Submitted:

Project:

FOX-5

P.O. Number:

280128

Matrix:

Soil

Chain of Custody Number: 89809							Wati ix.		3011	
	<u> </u>	LAB ID:	653459	653460	653461	653462	653463		GUIDELINE	
	Sam	ple Date:	2008-08-20	2008-08-20	2008-08-21	2008-08-21	2008-08-21			
	Sa	mple ID:	200808-128-	200808-129-	210808-132-	210808-133-	210808-135-			
		•	FOX5	FOX5	FOX5	FOX5	FOX5			
PARAMETER	UNITS	MRL						TYPE	LIMIT	UNITS
Polychlorinated Biphenyls - PCBs										
Polychlorinated Biphenyls (PCBs)	ug/g	0.02	<0.02	<0.02	<0.02	<0.02	<0.02			
									1	
										l
										1
								1		
										1
										1
										1
										l
<u> </u>										

MRL = Method Reporting Limit INC = Incomplete AO = Aesthetic Objective OG = Operational Guideline MAC = Maximum Allowable Concentration IMAC = Interim Maximum Allowable Concentration Comment: This is an amendment and supercedes all previous copies of this report. QC Data has been added.

APPROVAL	٠
----------	---

Mina Nasirai

KEPUKI OF ANALYSIS

Client: Sila Remediation Inc.

200-4495 Boul. Wilfrid-Hamel

Quebec, QC

G1P 2J7

Attention: Mr. Jean-Pierre Pelletier

Report Number:

2821238

Date:

2008-12-17 2008-08-25

Date Submitted:

... .. _.

Project:

FOX-5

P.O. Number:

280128

Matrix:

Soil

Chain of Custody Number: 89809							Matrix:		Soil	
		LAB ID:	653464	653465	653466	653467	653468		GUIDELINE	
	Sam	ple Date:	2008-08-21	2008-08-21	2008-08-21	2008-08-21	2008-08-21			
	S	ample ID:	210808-136-	210808-139-	210808-140-	210808-141-	210808-143-			
			FOX5	FOX5	FOX5	FOX5	FOX5			
PARAMETER	UNITS	MRL						TYPE	LIMIT	UNITS
Polychlorinated Biphenyls - PCBs										
Polychlorinated Biphenyls (PCBs)	ug/g	0.02	<0.02	<0.02	<0.02	<0.02	<0.02			
										l
									1	
								1		
								i		

MRL = Method Reporting Limit INC = Incomplete AO = Aesthetic Objective OG = Operational Guideline MAC = Maximum Allowable Concentration IMAC = Interim Maximum Allowable Concentration Comment:

APPROVAL:		
	Mina Nasirai	

Client: Sila Remediation Inc.

200-4495 Boul. Wilfrid-Hamel

Quebec, QC G1P 2J7

Attention: Mr. Jean-Pierre Pelletier

Report Number:

2821238 2008-12-17

Date: Date Submitted:

2008-08-25

Project:

FOX-5

P.O. Number:

280128

Matrix

Soil

Chain of Custody Number: 89809						Matrix:		Soil	
Onam of Gustody Humber. Gusto	_	LAB ID:	653469	653470	653471			GUIDELINE	
	Sam	ple Date:	2008-08-21	2008-08-21	2008-08-21				
	S	ample ID:	210808-144- FOX5	210808-146- FOX5	210808-147- FOX5				
PARAMETER	UNITS	MRL		_			TYPE	LIMIT	UNITS
Polychlorinated Biphenyls - PCBs									ĺ
Polychlorinated Biphenyls (PCBs)	ug/g	0.02	<0.02	<0.02	<0.02				
							l		

MRL = Method Reporting Limit INC = Incomplete AO = Aesthetic Objective OG = Operational Guideline MAC = Maximum Allowable Concentration IMAC = Interim Maximum Allowable Concentration Comment:

APPROVAL:			
	Mina	Nasirai	

Client: Sila Remediation Inc.

200-4495 Boul. Wilfrid-Hamel

Quebec, QC G1P 2J7

Attention: Mr. Jean-Pierre Pelletier

Report Number:

2821238

Date:

2008-12-17

Date Submitted:

2008-08-25

Project:

FOX-5

P.O. Number:

280128

Chain of Custody Number: 89809	LAB ID: Sample Date: Sample ID: LAB BLANK LAB QC RECOVERY RANGE RANG								
								GUIDELINE	
	Sar	nple Date:							
	S	Sample ID:	LAB BLANK	%	QC RECOVERY RANGE	DATE ANALYSED			
PARAMETER	UNITS	MRL					TYPE	LIMIT	UNITS
Polychlorinated Biphenyls - PCBs									
Polychlorinated Biphenyls (PCBs)	ug/g	0.02	<0.02	96	60-140	2008-08-29			
Siyonomulaa Diprociya (i. 325)	3,3	5.52							
									1
								ı	
						•			

MRL = Method Reporting Limit INC = Incomplete AO = Aesthetic Objective OG = Operational Guideline MAC = Maximum Allowable Concentration IMAC = Interim Maximum Allowable Concentration Comment:

APPROVAL:		
	Herb Yu	_

QA Coordinator

Results relate only to the parameters tested on the samples submitted for analysis.

Client: Sila Remediation Inc.

200-4495 Boul. Wilfrid-Hamel

Quebec, QC G1P 2J7

Attention: Mr. Jean-Pierre Pelletier

Report Number:

2821238

Date:

2008-12-17

Date Submitted:

2008-08-25

Project:

FOX-5

P.O. Number:

280128

Matrix:

Soil

Chain of Custody Number: 89809							Matrix:		Soil	
Juliani di dudicaj italiadi.		LAB ID:	653459	653460	653461	653462	653463		GUIDELINE	
	Sam	ple Date:	2008-08-20	2008-08-20	2008-08-21	2008-08-21	2008-08-21			
	S	ample ID:	200808-128-	200808-129-	210808-132-	210808-133-	210808-135-			
		•	FOX5	FOX5	FOX5	FOX5	FOX5			
PARAMETER	UNITS	MRL	·					TYPE	LIMIT	UNITS
PERCENT MOISTURE										
Moisture	%	0.1	4.7	9.2	10.4	10.7	11.1			
CCME Total Petroleum Hydrocarbons				1						
F1 (C6-C10)	ug/g	20	<20	<20	<20	<20	<20			
F2 (C10-C16)	ug/g	20	<20	<20	<20	<20	<20			
F3 (C16-C34)	ug/g	20	1750	<20	<20	<20	27			
					1					

MRL = Method Reporting Limit INC = Incomplete AO = Aesthetic Objective OG = Operational Guideline MAC = Maximum Allowable Concentration IMAC = Interim Maximum Allowable Concentration Comment: This is an amendment and supercedes all previous copies of this report. QC Data has been added. 653459: GC/FID analysis indicated presence of F4 (C34-C50) at 339 ug/g.

APPROVAL:	
	Mina Nasirai

Client: Sila Remediation Inc.

200-4495 Boul. Wilfrid-Hamel

Quebec, QC G1P 2J7

Attention: Mr. Jean-Pierre Pelletier

Report Number:

Date Submitted:

2821238

Date:

2008-12-17 2008-08-25

Project:

FOX-5

P.O. Number:

280128

Matrix:

Soil

Chain of Custody Number: 89809							Matrix:		5011	
		LAB ID:	653464	653465	653466	653467	653468		GUIDELINE	
	San	nple Date:	2008-08-21	2008-08-21	2008-08-21	2008-08-21	2008-08-21			
	s	ample ID:	210808-136-	210808-139-	210808-140-	210808-141-	210808-143-			
		·	FOX5	FOX5	FOX5	FOX5	FOX5			
PARAMETER	UNITS	MRL						TYPE	LIMIT	UNITS
PERCENT MOISTURE										1
Moisture	%	0.1	14.2	6.2	7.9	8.4	10.0			1
CCME Total Petroleum Hydrocarbons							1			1
F1 (C6-C10)	ug/g	20	<20	<20	<20	<20	<20			
F2 (C10-C16)	ug/g	20	<20	<20	<20	<20	<20			
F3 (C16-C34)	ug/g	20	<20	<20	20	<20	30			
								1		ı
										1
	1		l							1
										1
										1
										1
										1
]									ı
										1
										1
	1									1
			ŀ							1
		1								1
				1						ı
					1					1
										ı
		1					1			

MRL = Method Reporting Limit INC = Incomplete AO = Aesthetic Objective OG = Operational Guideline MAC = Maximum Allowable Concentration IMAC = Interim Maximum Allowable Concentration Comment:

APPROVAL:		
	Mine Meniral	

Client: Sila Remediation Inc.

200-4495 Boul. Wilfrid-Hamel

Quebec, QC G1P 2J7

Attention: Mr. Jean-Pierre Pelletier

Report Number:

2821238

Date:

2008-12-17

Date Submitted:

2008-08-25

Project:

FOX-5

P.O. Number:

280128

Matrix:

Soil

Chain of Custody Number: 89809						Matrix:		Soil	
		LAB ID:	653469	653470	653471			GUIDELINE	
	Sam	ple Date:	2008-08-21	2008-08-21	2008-08-21				
	S	ample ID:	210808-144-	210808-146-	210808-147-				
		•	FOX5	FOX5	FOX5				
PARAMETER	UNITS	MRL					TYPE	LIMIT	UNITS
PERCENT MOISTURE									
Moisture	%	0.1	13.2	12.1	10.1				
CCME Total Petroleum Hydrocarbons									
F1 (C6-C10)	ug/g	20	<20	<20	<20		ı		
F2 (C10-C16)	ug/g	20	<20	<20	<20				
F3 (C16-C34)	ug/g	20	<20	<20	<20				
		1							
							ľ		
						l			

MRL = Method Reporting Limit INC = Incomplete AO = Aesthetic Objective OG = Operational Guideline MAC = Maximum Allowable Concentration IMAC = Interim Maximum Allowable Concentration Comment:

APPROVAL:	
,	Mina Nasirai

Client: Sila Remediation Inc.

200-4495 Boul. Wilfrid-Hamel

Quebec, QC G1P 2J7

Attention: Mr. Jean-Pierre Pelletier

Report Number:

2821238

Date:

2008-12-17

Date Submitted:

2008-08-25

Project:

FOX-5

P.O. Number:

280128

F2 (C10-C16)		LAB ID: nple Date: sample ID: MRL 0.1 20 20 20 20	<0.1 <20	LAB QC % RECOVERY	QC RECOVERY RANGE	DATE ANALYSED	ТҮРЕ	GUIDELINE	UNITS
PERCENT MOISTURE Moisture CCME Total Petroleum Hydrocarbons F1 (C6-C10) F2 (C10-C16)	WNITS % ug/g ug/g	MRL 0.1 20 20	<0.1	% RECOVERY	RECOVERY RANGE	ANALYSED	ТҮРЕ	LIMIT	UNITS
PERCENT MOISTURE Moisture CCME Total Petroleum Hydrocarbons F1 (C6-C10) F2 (C10-C16)	WNITS % ug/g ug/g	MRL 0.1 20 20	<0.1	% RECOVERY	RECOVERY RANGE	ANALYSED	TYPE	LIMIT	UNITS
PERCENT MOISTURE Moisture CCME Total Petroleum Hydrocarbons F1 (C6-C10) F2 (C10-C16)	% ug/g ug/g	0.1 20 20	<20		80-120	2008-08-28	TYPE	LIMIT	UNITS
Moisture CCME Total Petroleum Hydrocarbons F1 (C6-C10) F2 (C10-C16)	ug/g ug/g	20 20	<20		80-120	2008-08-28			
CCME Total Petroleum Hydrocarbons F1 (C6-C10)	ug/g ug/g	20 20	<20		80-120	2008-08-28			1
F1 (C6-C10) F2 (C10-C16)	ug/g	20			I		II		
F1 (C6-C10) F2 (C10-C16)	ug/g	20		1	I		1		
F2 (C10-C16)	ug/g			99	80-120	2008-08-29			
		20	<20	77	50-120	2008-08-28			
		1 20	<20	77	50-120	2008-08-28			

MRL = Method Reporting Limit INC = Incomplete AO = Aesthetic Objective OG = Operational Guideline MAC = Maximum Allowable Concentration IMAC = Interim Maximum Allowable Concentration Comment:

APPROVAL:		
	Horb Vu	

QA Coordinator

REPORT OF ANALYSIS

Client: Sila Remediation Inc.

200-4495 Boul. Wilfrid-Hamel

Quebec, QC G1P 2J7

Attention: Mr. Jean-Pierre Pelletier

Report Number:

2821218

Date: **Date Submitted:** 2008-12-17 2008-08-25

Project:

FOX-5

P.O. Number:

280128

Chain of Custody Number: 89811 LAB ID: 653373 653374 653375 653376 653377 GUIDELINE	UNITS
Sample ID: 190808-103- 190808-106- 200808-109- 200808-112- 200808-115-	UNITS
Sample ID: 190808-103- 190808-106- 200808-109- 200808-112- 200808-115-	UNITS
FOX5 FOX5 FOX5 FOX5	UNITS
	UNITS
	UNITS
PARAMETER UNITS MRL TYPE LIMIT	
Arsenic mg/L 0.001 <0.001 <0.001 <0.001 <0.001 <0.001	
Cadmium mg/L 0.0001 0.0003 <0.0001 <0.0001 0.0002	
Chromium mg/L 0.001 0.007 0.018 <0.001 0.003 0.058	
Cobalt mg/L 0.0002 0.0018 0.0010 <0.0002 0.0011 0.0033	
Copper mg/L 0.001 0.011 0.043 0.002 0.004 0.115	
Lead mg/L 0.001 0.010 0.002 <0.001 0.001 0.006	
Mercury mg/L 0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001	
Nickel mg/L 0.005 <0.005 0.013 <0.005 0.128	
Zinc mg/L 0.01 0.08 0.01 0.03 0.01 0.11	
1	

MRL = Method Reporting Limit INC = Incomplete AO = Aesthetic Objective OG = Operational Guideline MAC = Maximum Allowable Concentration IMAC = Interim Maximum Allowable Concentration Comment: This is an amendment and supercedes all previous copies of this report. QC Data has been added as per client request.

APPROVAL:		
	Lorna Wilson	

KEPUKI OF ANALYSIS

Client: Sila Remediation Inc.

200-4495 Boul. Wilfrid-Hamel

Quebec, QC G1P 2J7

Attention: Mr. Jean-Pierre Pelletier

Report Number:

2821218

Date:

2008-12-17

Date Submitted:

2008-08-25

Project:

FOX-5

P.O. Number:

280128

Chain of Custody Number: 89811							Matrix:		Water	
		LAB ID:	653378	653379	653380	653381	653382		GUIDELINE	
	Sam	ple Date:	2008-08-20	2008-08-20	2008-08-20	2008-08-20	2008-08-19			
		ample ID:	200808-118-	200808-124-	200808-127-	200808-130-	190808-131-			
		•	FOX5	FOX5	FOX5	FOX5	FOX5			
PARAMETER	UNITS	MRL						TYPE	LIMIT	UNITS
Arsenic	mg/L	0.001	<0.001	<0.001	<0.001	<0.001	<0.001			
Cadmium	mg/L	0.0001	0.0006	0.0003	0.0014	0.0001	0.0003			
Chromium	mg/L	0.001	0.007	0.083	0.012	0.001	0.004			
Cobalt	mg/L	0.0002	0.0003	0.0013	0.0004	<0.0002	0.0016			
Copper	mg/L	0.001	0.002	0.075	0.010	0.001	0.005			
Lead	mg/L	0.001	<0.001	0.004	0.001	<0.001	0.004			
Mercury	mg/L	0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001			
Nickel	mg/L	0.005	0.006	0.023	0.005	<0.005	<0.005			
Zinc	mg/L	0.01	0.01	0.07	0.02	0.01	0.07			
	····g· =									
	ĺ									

MRL = Method Reporting Limit INC = Incomplete AO = Aesthetic Objective OG = Operational Guideline MAC = Maximum Allowable Concentration IMAC = Interim Maximum Allowable Concentration Comment:

APPROVAL:	
	Lorna Wilson

KEPUKI OF ANALYSIS

Client: Sila Remediation Inc.

200-4495 Boul. Wilfrid-Hamel

Quebec, QC

G1P 2J7

Attention: Mr. Jean-Pierre Pelletier

Report Number:

2821218

Date:

2008-12-17

Date Submitted:

2008-08-25

Project:

FOX-5

P.O. Number:

280128

Chain of Custody Number: 89811							Matrix:		Water	_
		AB ID:							GUIDELINE	
	Sampl	e Date:]		
		nple ID:	LAB BLANK	LAB QC % RECOVERY	QC RECOVERY RANGE	DATE ANALYSED				
PARAMETER	UNITS	MRL						TYPE	LIMIT	UNITS
rsenic	mg/L	0.001	<0.001	96	81-119	2008-08-27				
admium		0.0001	<0.0001	100	86-114	2008-08-27				
hromium	mg/L	0.001	<0.001	104	89-111	2008-08-27				
obalt	mg/L	0.0002	<0.0002	105	88-112	2008-08-27				
opper	mg/L	0.001	<0.001	104	86-114	2008-08-27				
ead	mg/L	0.001	<0.001	105	89-111	2008-08-27				
lercury	mg/L	0.0001	<0.0001	94	78-122	2008-08-26				
lickel	mg/L	0.005	<0.005	105	92-108	2008-08-27				
linc	mg/L	0.01	<0.01	96	89-111	2008-08-27				

MRL = Method Reporting Limit INC = Incomplete AO = Aesthetic Objective OG = Operational Guideline MAC = Maximum Allowable Concentration IMAC = Interim Maximum Allowable Concentration Comment:

APPROVAL:	
	Herb Yu
	QA Coordinator

Client: Sila Remediation Inc.

200-4495 Boul. Wilfrid-Hamel

Quebec, QC

G1P 2J7

Attention: Mr. Jean-Pierre Pelletier

Report Number:

2821218

Date:

2008-12-17

Date Submitted:

2008-08-25

Project:

FOX-5

P.O. Number:

280128

Matrix:

Chain of Custody Number: 89811							Matrix:		Water	
		LAB ID:	653373	653374	653375	653376	653378		GUIDELINE	
	San	Sample Date:		2008-08-20	2008-08-19	2008-08-20	2008-08-20			
	Sample ID:		2008-08-19 190808-103-	190808-106-	200808-109-	200808-112-	200808-118-			
		•	FOX5	FOX5	FOX5	FOX5	FOX5			
			1							
PARAMETER	UNITS	MRL						TYPE	LIMIT	UNITS
CME Total Petroleum Hydrocarbons										
1 (C6-C10)	mg/L	0.2	<0.2	<0.2	<0.2	<0.2	<0.2			
² (C10-C16)	mg/L	0.2	0.5	<0.2	<0.2	<0.2	<0.2			
F3 (C16-C34)	mg/L	0.2	0.3	<0.2	<0.2	0.3	<0.2			
,		1							1	
					1				1	
										ľ
			1						ı	l
			1							l
		1								
					İ					
						i			i	
										1
									l	
										l
]						
									ı	1
				1		1				
									l	<u> </u>
										1

MRL = Method Reporting Limit INC = Incomplete AO = Aesthetic Objective OG = Operational Guideline MAC = Maximum Allowable Concentration IMAC = Interim Maximum Allowable Concentration Comment:

APPROVAL:	
	Mina Nasirai

Client: Sila Remediation Inc.

200-4495 Boul. Wilfrid-Hamel

Quebec, QC G1P 2J7

Attention: Mr. Jean-Pierre Pelletier

Report Number:

2821218

Date:

2008-12-17

Date Submitted:

2008-08-25

Project:

FOX-5

P.O. Number:

280128 Water

Chain of Custody Number: 89811 Matrix:

LAB ID:			653379	653380	653381	653382		GUIDELINE	
	Sample Date:			2008-08-20	2008-08-20	2008-08-19			
	s	ample ID:	2008-08-20 200808-124-	200808-127-	200808-130-	190808-131-	ı		
		•	FOX5	FOX5	FOX5	FOX5	i		
							il		
PARAMETER	UNITS	MRL					TYPE	LIMIT	UNITS
CCME Total Petroleum Hydrocarbons									
F1 (C6-C10)	mg/L	0.2	<0.2	<0.2	<0.2	<0.2			
F2 (C10-C16)	mg/L	0.2	<0.2	<0.2	<0.2	0.3			
F3 (C16-C34)	mg/L	0.2	<0.2	<0.2	<0.2	0.3			
							ı		
			l				il		
							4		
							d .		
							1		
							1		
			l						
	1						ĺ	1	
							1		
							4		
							d .		
							4	1	
	1						1		
	1		[1		1		
							1		
							1		
							1		
							1	ı	
	1				1				
							1		
							4		
							1		
							1		

MRL = Method Reporting Limit INC = Incomplete AO = Aesthetic Objective OG = Operational Guideline MAC = Maximum Allowable Concentration IMAC = Interim Maximum Allowable Concentration Comment:

APPROVAL:	
	Mina Nasirai

Client: Sila Remediation Inc.

200-4495 Boul. Wilfrid-Hamel

Quebec, QC G1P 2J7

Attention: Mr. Jean-Pierre Pelletier

Report Number:

2821218

Date:

2008-12-17

Date Submitted:

2008-08-25

Project:

FOX-5

P.O. Number:

280128

Chain of Custody Number: 89811							Matrix:		Water	
Chain of Custody Number: 69611		LAB ID:				I	Madix.		GUIDELINE	
	Com		-		-		-	╂	COIDELINE	
	Sam Sa	ple Date: ample ID:	LAB BLANK	LAB QC % RECOVERY	QC RECOVERY RANGE	DATE ANALYSED				
PARAMETER	UNITS	MRL		1120012711	71			TYPE	LIMIT	UNITS
CCME Total Petroleum Hydrocarbons	UNITS	MILL						1175	Liviti	UNITS
F1 (C6-C10)	mg/L	0.2	<0.2	99	80-120	2008-08-27				
F2 (C10-C16)	mg/L	0.2	<0.2	71	50-120	2008-08-27				
F2 (C10-C10)	mg/L	0.2	<0.2	71	50-120	2008-08-27				
F3 (C16-C34)	mg/L	0.2	<0.2	''	50-120	2000-00-27				
					1					
								l		
					ĺ			[
			1							
									1	
									1	
					ľ					
							1			

MRL = Method Reporting Limit INC = Incomplete AO = Aesthetic Objective OG = Operational Guideline MAC = Maximum Allowable Concentration IMAC = Interim Maximum Allowable Concentration Comment:

APPROVAL:		
,	Herb Yu	_

QA Coordinator

KEPUKI OF ANALYSIS

Client: Sila Remediation Inc.

200-4495 Boul. Wilfrid-Hamel

Quebec, QC

G1P 2J7

Attention: Mr. Jean-Pierre Pelletier

Report Number:

2821218

Date:

2008-12-17

Date Submitted:

2008-08-25

Project:

FOX-5

P.O. Number:

280128

. . .

Water

Chain of Custody Number: 89811							Matrix:		Water	
LAB ID:			653373	653374	653375	653376	653378		GUIDELINE	
	San	nple Date:	2008-08-19	2008-08-20	2008-08-19	2008-08-20	2008-08-20			
	S	Sample ID:	190808-103-	190808-106- FOX5	200808-109- FOX5	200808-112- FOX5	200808-118- FOX5			
			FOX5	FOXS	FOXS	FOXS				
PARAMETER	UNITS	MRL						TYPE	LIMIT	UNITS
Polychlorinated Biphenyls - PCBs										
Polychlorinated Biphenyls (PCBs)	ug/L	0.1	<0.1	<0.1	<0.1	<0.1	<0.1			
									1	
	- 1									
		1								
					1					
										1
					İ					
	1			ŀ						
	1								1	l
				l						
	ĺ									
				1						
	- 1									1
		1			1					
				i						
				1						

MRL = Method Reporting Limit INC = Incomplete AO = Aesthetic Objective OG = Operational Guideline MAC = Maximum Allowable Concentration IMAC = Interim Maximum Allowable Concentration Comment:

APPROVAL:		
	Mina Nasirai	

Client: Sila Remediation Inc.

Quebec, QC

200-4495 Boul. Wilfrid-Hamel

Report Number:

2821218

Date:

2008-12-17

Date Submitted:

2008-08-25

G1P 2J7 Attention: Mr. Jean-Pierre Pelletier

Project:

FOX-5

P.O. Number:

280128

Chain of Custody Number: 89811							Matrix:		Water	
		LAB ID:	653379	653380	653381	653382			GUIDELINE	
	Sam	ple Date:	2008-08-20	2008-08-20	2008-08-20	2008-08-19				
	s	ample ID:	200808-124-	200808-127-	200808-130-	190808-131-		1		
			FOX5	FOX5	FOX5	FOX5				
PARAMETER	UNITS	MRL						TYPE	LIMIT	UNITS
Polychlorinated Biphenyls - PCBs										
Polychlorinated Biphenyls (PCBs)	ug/L	0.1	<0.1	<0.1	<0.1	<0.1				l
	1		1							
					1	ľ		l		
				1				1		
								ii	ľ	
			ı			ł				ĺ
			i			l			i	
				ı						ı
]	1						
			1			1				
		1			1				ı	
				l	į .					1
					i			ŀ		ĺ
				l						
			l				1			
					ı					İ
					l			I		l
								1		
			1			1				
					1		1	l .		l
								l		
								l		
				1						

MRL = Method Reporting Limit INC = Incomplete AO = Aesthetic Objective OG = Operational Guideline MAC = Maximum Allowable Concentration IMAC = Interim Maximum Allowable Concentration Comment:

APPROVAL:

Mina Nasirai

Organic Lab Supervisor

KEPUKI OF ANALYSIS

Client: Sila Remediation Inc.

200-4495 Boul. Wilfrid-Hamel

Quebec, QC G1P 2J7

Attention: Mr. Jean-Pierre Pelletier

Report Number:

2821218

Date:

2008-12-17

Date Submitted:

2008-08-25

Project:

FOX-5

P.O. Number:

280128

Chain of Custody Number: 89811 Matrix: Water

onan or outloay warmson see.		LAB ID:						GUIDELINE	
	Sam	ple Date:							
	S	ample ID:	LAB BLANK	LAB QC % RECOVERY	QC RECOVERY RANGE	DATE ANALYSED			
PARAMETER	UNITS	MRL					TYPE	LIMIT	UNITS
Polychlorinated Biphenyls - PCBs Polychlorinated Biphenyls (PCBs)	ug/L	0.1	<0.1	96	80-120	2008-08-28			

MRL = Method Reporting Limit INC = Incomplete AO = Aesthetic Objective OG = Operational Guideline MAC = Maximum Allowable Concentration IMAC = Interim Maximum Allowable Concentration Comment:

APPROVAL:	
	Herb Yu
	QA Coordinator

KEPUKI OF ANALYSIS

Client: Sila Remediation Inc.

200-4495 Boul. Wilfrid-Hamel

Quebec, QC G1P 2J7

Attention: Mr. Jean-Pierre Pelletier

Chain of Custody Number: 89803

Report Number:

2821219

Date:

2008-12-17

Date Submitted:

2008-08-25

Project:

FOX-5

P.O. Number:

280128

Water Matrix:

Chain of Custody Number. 89803		LAB ID:	653383	653384	653385	653386	653387	GUIDELINE		
	Sam	ple Date:	2008-08-21	2008-08-21	2008-08-21	2008-08-21	2008-08-21			
		ample ID:	210808-134-	210808-137-	210808-138-	210808-142-	210808-145-	4		
		•	FOX5	FOX5	FOX5	FOX5	FOX5			
PARAMETER	UNITS	MRL						TYPE	LIMIT	UNITS
Arsenic	mg/L	0.001	<0.001	<0.001	<0.001	<0.001	<0.001	4		
Cadmium	mg/L	0.0001	0.0002	0.0002	0.0001	<0.0001	<0.0001			
Chromium	mg/L	0.001	<0.001	0.001	<0.001	0.002	<0.001	i		
Cobalt	mg/L	0.0002	0.0005	<0.0002	<0.0002	0.0004	<0.0002	i		
Copper	mg/L	0.001	0.007	0.003	0.003	0.006	0.001	i		
Lead	mg/L	0.001	<0.001	<0.001	<0.001	0.001	<0.001	ı		
Mercury	mg/L	0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	ı		
Nickel	mg/L	0.005	<0.005	<0.005	<0.005	<0.005	<0.005	ı		
Zinc	mg/L	0.01	0.02	0.03	0.01	<0.01	<0.01	ı		
								i		
								i e		
				l				ı e		
								i		
			1					ı		
					ĺ			d		
					ĺ			ı		
								d .		
<i>.</i>			1					ı		
								i		
								ı		
								i		
				1				i		
								ı		
								i		
								d		
								ı		
								d		
								ı		

MRL = Method Reporting Limit INC = Incomplete AO = Aesthetic Objective OG = Operational Guideline MAC = Maximum Allowable Concentration IMAC = Interim Maximum Allowable Concentration Comment: This is an amendment and supercedes all previous copies of this report. QC Data has been added as per client request.

APPROVAL:		
	Larra Milara	

Lorna Wilson

Agriculture Lab Supervisor

Client: Sila Remediation Inc.

200-4495 Boul. Wilfrid-Hamel

Quebec, QC G1P 2J7

Attention: Mr. Jean-Pierre Pelletier

Report Number:

2821219

Date:

2008-12-17

Date Submitted:

2008-08-25

Project:

FOX-5

P.O. Number:

280128

Matrix: Water Chain of Custody Number: 89803

	LAB ID:		653388	653389				GUIDELINE	
	San	ple Date:	2008-08-21	2008-08-21					
	s	ample ID:	210808-148-	ТВ					
			FOX5						
PARAMETER	UNITS	MRL					TYPE	LIMIT	UNITS
Arsenic	mg/L	0.001	<0.001	<0.001					
Cadmium	mg/L	0.0001	<0.0001	<0.0001					
Chromium	mg/L	0.001	0.002	<0.001					
Cobalt	mg/L	0.0002	0.0006	<0.0002					
Copper	mg/L	0.001	0.011	<0.001					
Lead	mg/L	0.001	0.002	<0.001					
Mercury	mg/L	0.0001	<0.0001	<0.0001					
Nickel	mg/L	0.005	<0.005	<0.005					
Zinc	mg/L	0.01	0.02	<0.01				i	l
				İ					
								1	
		1							
	ł					1		ı	
							ŀ		
			1						
	ĺ								1
			1			l			
									1
					1				

MRL = Method Reporting Limit INC = Incomplete AO = Aesthetic Objective OG = Operational Guideline MAC = Maximum Allowable Concentration IMAC = Interim Maximum Allowable Concentration Comment:

APPROVAL:	
	Lorna Wilcon

Agriculture Lab Supervisor

KEPUKI OF ANALYSIS

Client: Sila Remediation Inc.

200-4495 Boul. Wilfrid-Hamel

Quebec, QC

G1P 2J7

Attention: Mr. Jean-Pierre Pelletier

Report Number:

2821219

Date:

2008-12-17 2008-08-25

Date Submitted:

Project:

FOX-5

P.O. Number:

280128

Matrix:

Chain of Custody Number: 89803							Matrix:		Water	
		LAB ID:							GUIDELINE	
	Sam	ple Date:								
		mple ID:	LAB BLANK	LAB QC	QC	DATE		1		
				%	RECOVERY	ANALYSED				
				RECOVERY	RANGE					
PARAMETER	UNITS	MRL						TYPE	LIMIT	UNIT
Arsenic	mg/L	0.001	<0.001	96	81-119	2008-08-27				
Cadmium	mg/L	0.0001	<0.0001	100	86-114	2008-08-27		1		
Chromium	mg/L	0.001	<0.001	104	89-111	2008-08-27				
Cobalt	mg/L	0.0002	<0.0002	105	88-112	2008-08-27		l .		
Copper	mg/L	0.001	<0.001	104	86-114	2008-08-27				
ead	mg/L	0.001	<0.001	105	89-111	2008-08-27				
Mercury	mg/L	0.0001	<0.0001	88	78-122	2008-08-29			i	
Nickel	mg/L	0.005	<0.005	105	92-108	2008-08-27		1		
Zinc	mg/L	0.01	<0.01	96	89-111	2008-08-27				l
										1
								1		
								l	1	
								il .	ŀ	1
				l						
								l	1	
					1			l .		1
								l l		
				1]	
								l .		
								l	ĺ	
								I		

MRL = Method Reporting Limit INC = Incomplete AO = Aesthetic Objective OG = Operational Guideline MAC = Maximum Allowable Concentration IMAC = Interim Maximum Allowable Concentration Comment:

APPROVAL:	
	Herb Yu

QA Coordinator

KEPUKI OF ANALYSIS

Client: Sila Remediation Inc.

200-4495 Boul. Wilfrid-Hamel

Quebec, QC G1P 2J7

Attention: Mr. Jean-Pierre Pelletier

Report Number:

2821219

Date:

2008-12-17

Date Submitted:

2008-08-25

Project:

FOX-5

P.O. Number:

280128

atrix:

Chain of Custody Number: 89803						Matrix:		Water		
		LAB ID:	653383	653384	653385	653386	653387		GUIDELINE	
	Sam	ple Date:	2008-08-21	2008-08-21	2008-08-21	2008-08-21	2008-08-21			
	S	ample ID:	210808-134-	210808-137-	210808-138-	210808-142-	210808-145-			
			FOX5	FOX5	FOX5	FOX5	FOX5			
PARAMETER	UNITS	MRL						TYPE	LIMIT	UNITS
CCME Total Petroleum Hydrocarbons				1						
F1 (C6-C10)	mg/L	0.2	<0.2	<0.2	<0.2	<0.2	<0.2			
F2 (C10-C16)	mg/L	0.2	<0.2	<0.2	<0.2	<0.2	<0.2			
F3 (C16-C34)	mg/L	0.2	<0.2	<0.2	<0.2	<0.2	<0.2			
]			
				1						1
							1			
								ľ		İ
		[
			1							
		1						1		1
			J				1			
										1
								l		
				1						

MRL = Method Reporting Limit INC = Incomplete AO = Aesthetic Objective OG = Operational Guideline MAC = Maximum Allowable Concentration IMAC = Interim Maximum Allowable Concentration Comment:

APPROVAL:		
	Mine Medical	

viilla I lasii ai

Organic Lab Supervisor

Client: Sila Remediation Inc.

200-4495 Boul. Wilfrid-Hamel

Quebec, QC G1P 2J7

Attention: Mr. Jean-Pierre Pelletier

Report Number:

2821219

Date:

2008-12-17

Date Submitted:

2008-08-25

Project:

FOX-5

P.O. Number:

280128

Chain of Custody Number: 89803							Matrix:		Water	
•		LAB ID:	653388	653389					GUIDELINE	
	Sam	ple Date:	2008-08-21	2008-08-21						
	s	ample ID:	210808-148-	TB				1		
		•	FOX5				l			
PARAMETER	UNITS	MRL						TYPE	LIMIT	UNITS
CCME Total Petroleum Hydrocarbons							l			
71 (C6-C10)	mg/L	0.2	<0.2	<0.2						
⁷ 2 (C10-C16)	mg/L	0.2	<0.2	<0.2	1					
3 (C16-C34)	mg/L	0.2	<0.2	<0.2						
									l .	
							1			
		l			1					
]								
	1					1				
		i					1			
						ł				
	ĺ	l								
					1					
						l				
							1			
		[

MRL = Method Reporting Limit INC = Incomplete AO = Aesthetic Objective OG = Operational Guideline MAC = Maximum Allowable Concentration IMAC = Interim Maximum Allowable Concentration Comment:

APPROVAL:		

Mina Nasirai

Organic Lab Supervisor

Client: Sila Remediation Inc.

200-4495 Boul. Wilfrid-Hamel

Quebec, QC G1P 2J7

Attention: Mr. Jean-Pierre Pelletier

Report Number:

2821219

Date:

2008-12-17

Date Submitted:

2008-08-25

Project:

FOX-5

P.O. Number:

280128

Chain of Custody Number: 89803							Matrix:		Water	
Chain of Custody Number: 03003		LAB ID:	I	1	1		III GUIA.	l .	GUIDELINE	
	Com.							1	COIDELINE	
	Sam Sa	ple Date: ample ID:	LAB BLANK	LAB QC % RECOVERY	QC RECOVERY RANGE	DATE ANALYSED				
PARAMETER	UNITS	MRL						TYPE	LIMIT	UNITS
CCME Total Petroleum Hydrocarbons						_		· · · · · -		
F1 (C6-C10)	mg/L	0.2	<0.2	99	80-120	2008-08-27	1	l		
F2 (C10-C16)	mg/L	0.2	<0.2	71	50-120	2008-08-27				
F3 (C16-C34)	mg/L	0.2	<0.2	71	50-120	2008-08-27		l		
									1	

MRL = Method Reporting Limit INC = Incomplete AO = Aesthetic Objective OG = Operational Guideline MAC = Maximum Allowable Concentration IMAC = Interim Maximum Allowable Concentration Comment:

APPROVAL:	
	Herb Yu
	QA Coordinator

Client: Sila Remediation Inc.

200-4495 Boul. Wilfrid-Hamel

Quebec, QC G1P 2J7

Attention: Mr. Jean-Pierre Pelletier

Report Number:

2821219

Date:

2008-12-17

Date Submitted:

2008-08-25

Project:

FOX-5

P.O. Number:

280128

Chain of Custody Number: 89803							Matrix:		Water	
•		LAB ID:	653383	653384	653385	653386	653387		GUIDELINE	
	San	nple Date:	2008-08-21	2008-08-21	2008-08-21	2008-08-21	2008-08-21			
	S	ample ID:	210808-134-	210808-137-	210808-138-	210808-142-	210808-145-			
	_		FOX5	FOX5	FOX5	FOX5	FOX5	l		
PARAMETER	UNITS	MRL						TYPE	LIMIT	UNITS
Polychlorinated Biphenyls - PCBs										
Polychlorinated Biphenyls (PCBs)	ug/L	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	1		-
				1						
		İ								
							l i		l	
			·							
		J								

MRL = Method Reporting Limit INC = Incomplete AO = Aesthetic Objective OG = Operational Guideline MAC = Maximum Allowable Concentration IMAC = Interim Maximum Allowable Concentration Comment:

APPROVAL:			
	Mina	Nasirai	

Organic Lab Supervisor

REPORT OF ANALYSIS

Client: Sila Remediation Inc.

200-4495 Boul. Wilfrid-Hamel

Quebec, QC G1P 2J7

Attention: Mr. Jean-Pierre Pelletier

Report Number:

2821219 2008-12-17

Date: **Date Submitted:**

2008-08-25

Project:

FOX-5

P.O. Number:

280128

Matrix:

Water

Chain of Custody Number: 89803			Chain of Custody Number: 89803									
Olidin of Gustouy Numbers Goods		LAB ID:	653388	653389					GUIDELINE			
	Sam	ple Date:	2008-08-21	2008-08-21				1				
	S	ample ID:	210808-148-	TB				1				
		•	FOX5					1				
PARAMETER	UNITS	MRL						TYPE	LIMIT	UNITS		
Polychlorinated Biphenyls - PCBs								1		ı		
Polychlorinated Biphenyls (PCBs)	ug/L	0.1	<0.1	<0.1	1			'		1		
, , , ,	-							l '				
										ı		
										ı		
								'		ĺ		
										l		
		1						('		l		
,				l				'		ĺ		
	l .					1						
								l '		l		
	1							1		1		
				l						l		
								,		ı		
								1		l		
	1				1			<u> </u>		ı		
				ł						l		
	ł							,		ı		
		1]				1		l		
								1		ı		
								1				
								'				
								1				
								j ,				

MRL = Method Reporting Limit INC = Incomplete AO = Aesthetic Objective OG = Operational Guideline MAC = Maximum Allowable Concentration IMAC = Interim Maximum Allowable Concentration Comment:

APPROVAL:

Mina Nasirai

Organic Lab Supervisor

KEPUKI OF ANALYSIS

Client: Sila Remediation Inc.

200-4495 Boul. Wilfrid-Hamel

Quebec, QC G1P 2J7

Attention: Mr. Jean-Pierre Pelletier

Report Number:

2821219

Date:

2008-12-17 2008-08-25

Project:

Date Submitted:

P.O. Number:

280128

FOX-5

Chain of Custody Number: 89803							Matrix:		Water	
		LAB ID:							GUIDELINE	
	Sam	ple Date:]		
	S	ample ID:	LAB BLANK	LAB QC % RECOVERY	QC RECOVERY RANGE	DATE ANALYSED				
PARAMETER	UNITS	MRL						TYPE	LIMIT	UNITS
Polychlorinated Biphenyls - PCBs										
Polychlorinated Biphenyls (PCBs)	ug/L	0.1	<0.1	96	80-120	2008-08-28				
	-			1						
				l						
								1		
								j		
			ŀ					1		
]	1						
								ll .		
			l							
								l		
								ı		
			l							
					l			1		
					ŀ					
								l		
MDI - Mathad Baradina Limit INC - Incomplete AC - Acathatia Objective								II		

MRL = Method Reporting Limit INC = Incomplete AO = Aesthetic Objective OG = Operational Guideline MAC = Maximum Allowable Concentration IMAC = Interim Maximum Allowable Concentration Comment:

APPROVAL:		
,	Herb Yu	

QA Coordinator

Your Project #: FOX-5 MONITORING

Site: BROUGTON ISLAND Your C.O.C. #: 00570041

Attention: Jean-Pierre Pelletier
Sila Remediation
4495 boul Wilfred Hamel bureau
Ville de Quebec, QC
CANADA J1P 2G7

Report Date: 2008/08/29

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: A894895 Received: 2008/08/25, 14:10

Sample Matrix: Soil # Samples Received: 4

		Date	Date		Method
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Reference
Petroleum Hydro. CCME F1 & BTEX in Soil	4	2008/08/27	2008/08/28	CAM SOP-00315	CCME CWS
Petroleum Hydrocarbons F2-F4 in Soil	4	2008/08/27	2008/08/28	CAM SOP-00316	CCME CWS
Mercury in Soil by CVAA	4	2008/08/28	2008/08/28	CAM SOP-00453	EPA 7470
Acid Extr. Metals (aqua regia) by ICPMS	4	2008/08/28	2008/08/28	CAM SOP-00447	EPA 6020
MOISTURE	4	N/A	2008/08/28	CAM SOP-00445	McKeague 2nd ed 1978
Polychlorinated Biphenyl in Soil	1	2008/08/27	2008/08/28	CAM SOP-00307	EPA 8082
Polychlorinated Biphenyl in Soil	3	2008/08/27	2008/08/29	CAM SOP-00307	EPA 8082

Sample Matrix: Water # Samples Received: 2

		Date	Date	Method
Analyses	Quantity	Extracted	Analyzed Laboratory Method	Reference
Petroleum Hydro. CCME F1 & BTEX in Water	2	2008/08/28	2008/08/29 CAM SOP-00315	CCME CWS
Petroleum Hydrocarbons F2-F4 in Water	2	2008/08/27	2008/08/28 CAM SOP-00316	CCME Hydrocarbons
Total Metals Analysis by ICPMS	2	N/A	2008/08/28 CAM SOP-00447	EPA 6020
Polychlorinated Biphenyl in Water	2	2008/08/27	2008/08/29 CAM SOP-00307	EPA 8081 modified

^{*} RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager.

MELISSA MORRISON, Project Manager Email: Melissa.Morrison@maxxamanalytics.com Phone# (613) 274-0573

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section

Your Project #: FOX-5 MONITORING

Site: BROUGTON ISLAND Your C.O.C. #: 00570041

Attention: Jean-Pierre Pelletier

Sila Remediation 4495 boul Wilfred Hamel bureau Ville de Quebec, QC CANADA J1P 2G7

Report Date: 2008/08/29

CERTIFICATE OF ANALYSIS

-2

5.10.2 of ISO/IEC 17025:2005(E), signing the reports. SCC and CAEAL have approved this reporting process and electronic report format.

For Service Group specific validation please refer to the Validation Signature Page

Total cover pages: 2

Sila Remediation

Client Project #: FOX-5 MONITORING Project name: BROUGTON ISLAND

Sampler Initials: AP

RESULTS OF ANALYSES OF SOIL

	Units	190808-100-FOX-5	200808-107-FOX-5	200808-119-FOX-5	210808-128-FOX-5	RDL	QC Batch
COC Number		00570041	00570041	00570041	00570041		
Sampling Date		2008/08/19	2008/08/20	2008/08/20	2008/08/21		
Maxxam ID		AH2917	AH2918	AH2919	AH2920		

Inorganics							
Moisture	%	6.9	8.4	4.6	8.2	0.2	1598705

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Sila Remediation

Client Project #: FOX-5 MONITORING Project name: BROUGTON ISLAND

Sampler Initials: AP

ELEMENTS BY ATOMIC SPECTROSCOPY (SOIL)

Maxxam ID		AH2917	AH2918	AH2919		
Sampling Date		2008/08/19	2008/08/20	2008/08/20		
COC Number		00570041	00570041	00570041		
	Units	190808-100-FOX-5	200808-107-FOX-5	200808-119-FOX-5	RDL	QC Batch

Metals						
Acid Extractable Mercury (Hg)	ug/g	ND	ND	ND	0.05	1598719
Acid Extractable Arsenic (As)	ug/g	1	1	2	1	1598716
Acid Extractable Cadmium (Cd)	ug/g	ND	ND	0.2	0.1	1598716
Acid Extractable Chromium (Cr)	ug/g	10	29	11	1	1598716
Acid Extractable Cobalt (Co)	ug/g	3.1	7.9	2.8	0.1	1598716
Acid Extractable Copper (Cu)	ug/g	8.3	18	6.0	0.5	1598716
Acid Extractable Lead (Pb)	ug/g	8	5	12	1	1598716
Acid Extractable Nickel (Ni)	ug/g	4.7	15	5.6	0.5	1598716
Acid Extractable Zinc (Zn)	ug/g	41	51	44	5	1598716

ND = Not detected

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Maxxam ID		AH2920		
Sampling Date		2008/08/21		
COC Number		00570041		
	Units	210808-128-FOX-5	RDL	QC Batch

Metals				
Acid Extractable Mercury (Hg)	ug/g	ND	0.05	1598719
Acid Extractable Arsenic (As)	ug/g	2	1	1598716
Acid Extractable Cadmium (Cd)	ug/g	ND	0.1	1598716
Acid Extractable Chromium (Cr)	ug/g	13	1	1598716
Acid Extractable Cobalt (Co)	ug/g	3.8	0.1	1598716
Acid Extractable Copper (Cu)	ug/g	6.9	0.5	1598716
Acid Extractable Lead (Pb)	ug/g	7	1	1598716
Acid Extractable Nickel (Ni)	ug/g	6.3	0.5	1598716
Acid Extractable Zinc (Zn)	ug/g	39	5	1598716

ND = Not detected

RDL = Reportable Detection Limit

Sila Remediation

Client Project #: FOX-5 MONITORING Project name: BROUGTON ISLAND

Sampler Initials: AP

PETROLEUM HYDROCARBONS (CCME)

	Units	190808-100-FOX-5	200808-107-FOX-5	200808-119-FOX-5	RDL	QC Batch
COC Number		00570041	00570041	00570041		
Sampling Date		2008/08/19	2008/08/20	2008/08/20		
Maxxam ID		AH2917	AH2918	AH2919		

ug/g	ND	ND	ND	10	1598205
ug/g	ND	ND	ND	10	1598205
ug/g	ND	ND	ND	10	1598184
ug/g	36	ND	ND	10	1598184
ug/g	Yes	Yes	Yes		1598184
%	101	101	102		1598205
%	97	95	96		1598205
%	95	97	97		1598205
%	98	97	99		1598205
%	86	86	87		1598184
	ug/g ug/g ug/g ug/g % % %	ug/g ND ug/g ND ug/g 36 ug/g Yes % 101 % 97 % 95 % 98	ug/g ND ND ug/g ND ND ug/g 36 ND ug/g Yes Yes % 101 101 % 97 95 % 95 97 % 98 97	ug/g ND ND ug/g ND ND ug/g 36 ND ND ug/g Yes Yes Yes % 101 101 102 % 97 95 96 % 95 97 97 % 98 97 99	ug/g ND ND 10 ug/g ND ND ND 10 ug/g 36 ND ND 10 ug/g Yes Yes Yes % 101 101 102 % 97 95 96 % 95 97 97 % 98 97 99

ND = Not detected

RDL = Reportable Detection Limit

Sila Remediation

Client Project #: FOX-5 MONITORING Project name: BROUGTON ISLAND

Sampler Initials: AP

PETROLEUM HYDROCARBONS (CCME)

	Units	210808-128-FOX-5	RDL	QC Batch
COC Number		00570041		
Sampling Date		2008/08/21		
Maxxam ID		AH2920		

BTEX & F1 Hydrocarbons				
F1 (C6-C10)	ug/g	ND	10	1598205
F1 (C6-C10) - BTEX	ug/g	ND	10	1598205
F2-F4 Hydrocarbons				
F2 (C10-C16 Hydrocarbons)	ug/g	ND	10	1598184
F3 (C16-C34 Hydrocarbons)	ug/g	660	10	1598184
Reached Baseline at C50	ug/g	Yes		1598184
Surrogate Recovery (%)				
1,4-Difluorobenzene	%	101		1598205
4-Bromofluorobenzene	%	95		1598205
D10-Ethylbenzene	%	94		1598205
D4-1,2-Dichloroethane	%	98		1598205
o-Terphenyl	%	86		1598184

ND = Not detected

RDL = Reportable Detection Limit

Sila Remediation

Client Project #: FOX-5 MONITORING Project name: BROUGTON ISLAND

Sampler Initials: AP

POLYCHLORINATED BIPHENYLS BY GC-ECD (SOIL)

COC Number	Units	00570041 190808-100-FOX-5	00570041 200808-107-FOX-5	00570041 200808-119-FOX-5	RDI	QC Batch
COC Number						
Sampling Date		2008/08/19	2008/08/20	2008/08/20		
Maxxam ID		AH2917	AH2918	AH2919		

PCBs						
Aroclor 1262	ug/g	ND	ND	ND	0.01	1597931
Aroclor 1016	ug/g	ND	ND	ND	0.01	1597931
Aroclor 1221	ug/g	ND	ND	ND	0.01	1597931
Aroclor 1232	ug/g	ND	ND	ND	0.01	1597931
Aroclor 1242	ug/g	ND	ND	ND	0.01	1597931
Aroclor 1248	ug/g	ND	ND	ND	0.01	1597931
Aroclor 1254	ug/g	0.02	ND	0.01	0.01	1597931
Aroclor 1260	ug/g	ND	ND	ND	0.01	1597931
Aroclor 1268	ug/g	ND	ND	ND	0.01	1597931
Total PCB	ug/g	0.02	ND	0.01	0.01	1597931
Surrogate Recovery (%)						
2,4,5,6-Tetrachloro-m-xylene	%	69	77	83		1597931
Decachlorobiphenyl	%	76	110	83		1597931

ND = Not detected

RDL = Reportable Detection Limit

Sila Remediation

Client Project #: FOX-5 MONITORING Project name: BROUGTON ISLAND

Sampler Initials: AP

POLYCHLORINATED BIPHENYLS BY GC-ECD (SOIL)

Maxxam ID		AH2920		
Sampling Date		2008/08/21		
COC Number		00570041		
	Units	210808-128-FOX-5	RDL	QC Batch

PCBs				
Aroclor 1262	ug/g	ND	0.01	1597931
Aroclor 1016	ug/g	ND	0.01	1597931
Aroclor 1221	ug/g	ND	0.01	1597931
Aroclor 1232	ug/g	ND	0.01	1597931
Aroclor 1242	ug/g	ND	0.01	1597931
Aroclor 1248	ug/g	ND	0.01	1597931
Aroclor 1254	ug/g	ND	0.01	1597931
Aroclor 1260	ug/g	ND	0.01	1597931
Aroclor 1268	ug/g	ND	0.01	1597931
Total PCB	ug/g	ND	0.01	1597931
Surrogate Recovery (%)				
2,4,5,6-Tetrachloro-m-xylene	%	91		1597931
Decachlorobiphenyl	%	96		1597931

ND = Not detected

RDL = Reportable Detection Limit

Sila Remediation

Client Project #: FOX-5 MONITORING Project name: BROUGTON ISLAND

Sampler Initials: AP

ELEMENTS BY ATOMIC SPECTROSCOPY (WATER)

Maxxam ID		AH2921	AH2922		
Sampling Date		2008/08/19	2008/08/21		
COC Number		00570041	00570041		
	Units	190808-103-FOX5	210808-137-FOX-5	RDL	QC Batch

Metals					
Total Arsenic (As)	ug/L	ND	ND	1	1598680
Total Cadmium (Cd)	ug/L	0.3	ND	0.1	1598680
Total Chromium (Cr)	ug/L	ND	ND	5	1598680
Total Cobalt (Co)	ug/L	1.5	ND	0.5	1598680
Total Copper (Cu)	ug/L	4	4	1	1598680
Total Lead (Pb)	ug/L	3.2	0.5	0.5	1598680
Total Nickel (Ni)	ug/L	2	3	1	1598680
Total Zinc (Zn)	ug/L	62	11	5	1598680

ND = Not detected

RDL = Reportable Detection Limit

Sila Remediation

Client Project #: FOX-5 MONITORING Project name: BROUGTON ISLAND

Sampler Initials: AP

PETROLEUM HYDROCARBONS (CCME)

Maxxam ID		AH2921		AH2922		
Sampling Date		2008/08/19		2008/08/21		
COC Number		00570041		00570041		
	Units	190808-103-FOX5	QC Batch	210808-137-FOX-5	RDL	QC Batch

ug/L	ND	1598905	ND	100	1598905
ug/L	ND	1598905	ND	100	1598905
ug/L	410	1598134	ND	100	1598380
ug/L	270	1598134	ND	100	1598380
ug/L	Yes	1598134	Yes		1598380
%	98	1598905	98		1598905
%	102	1598905	102		1598905
%	99	1598905	98		1598905
%	103	1598905	103		1598905
%	86	1598134	80		1598380
	ug/L ug/L ug/L ug/L % % %	ug/L ND ug/L 410 ug/L 270 ug/L Yes % 98 % 102 % 99 % 103	ug/L ND 1598905 ug/L 410 1598134 ug/L 270 1598134 ug/L Yes 1598134 % 98 1598905 % 102 1598905 % 99 1598905 % 103 1598905	ug/L ND 1598905 ND ug/L 410 1598134 ND ug/L 270 1598134 ND ug/L Yes 1598134 Yes % 98 1598905 98 % 102 1598905 102 % 99 1598905 98 % 103 1598905 103	ug/L ND 1598905 ND 100 ug/L 410 1598134 ND 100 ug/L 270 1598134 ND 100 ug/L Yes 1598134 Yes 100 % 98 1598905 98 102 % 99 1598905 98 102 % 99 1598905 98 103 % 103 1598905 103 103

ND = Not detected

RDL = Reportable Detection Limit

Sila Remediation

Client Project #: FOX-5 MONITORING Project name: BROUGTON ISLAND

Sampler Initials: AP

POLYCHLORINATED BIPHENYLS BY GC-ECD (WATER)

Maxxam ID		AH2921	AH2922		
Sampling Date		2008/08/19	2008/08/21		
COC Number		00570041	00570041		
	Units	190808-103-FOX5	210808-137-FOX-5	RDL	QC Batch

PCBs					
PCBS					
Aroclor 1016	ug/L	ND	ND	0.05	1598303
Aroclor 1221	ug/L	ND	ND	0.05	1598303
Aroclor 1232	ug/L	ND	ND	0.05	1598303
Aroclor 1242	ug/L	ND	ND	0.05	1598303
Aroclor 1248	ug/L	ND	ND	0.05	1598303
Aroclor 1254	ug/L	ND	ND	0.05	1598303
Aroclor 1260	ug/L	ND	ND	0.05	1598303
Aroclor 1262	ug/L	ND	ND	0.05	1598303
Aroclor 1268	ug/L	ND	ND	0.05	1598303
Total PCB	ug/L	ND	ND	0.05	1598303
Surrogate Recovery (%)					
2,4,5,6-Tetrachloro-m-xylene	%	60	80		1598303
Decachlorobiphenyl	%	98	108		1598303

ND = Not detected RDL = Reportable Detection Limit

Sila Remediation

Client Project #: FOX-5 MONITORING Project name: BROUGTON ISLAND

Sampler Initials: AP

5.0°C Package 1

Each temperature is the average of up to three cooler temperatures taken at receipt

GENERAL COMMENTS

F1-BTEX Analysis: The BTEX results used for the F1-BTEX calculation were obtained from Headspace-GC analysis.

Sample AH2921-01: F2-F3 analysis was performed on unpreserved sample as per client request.

Sample AH2922-01: F2-F3 analysis was performed on unpreserved sample as per client request.

Results relate only to the items tested.

Attention: Jean-Pierre Pelletier

Client Project #: FOX-5 MONITORING

P.O. #:

Project name: BROUGTON ISLAND

Quality Assurance Report Maxxam Job Number: TA894895

QA/QC			Date			
Batch	QC Type	Doromotor	Analyzed	Value Recovery	Lloito	OC Limita
Num Init 1597931 LGA	MATRIX SPIKE	Parameter 2,4,5,6-Tetrachloro-m-xylene	yyyy/mm/dd 2008/08/28	Value Recovery 60	Units %	QC Limits 40 - 130
1397931 LGA	WATKIN SPIKE		2008/08/28	104	% %	40 - 130
		Decachlorobiphenyl Aroclor 1260	2008/08/28	94	% %	30 - 130
		Total PCB	2008/08/28	94	%	30 - 130
	Cnikad Plank	2,4,5,6-Tetrachloro-m-xylene		89	%	40 - 130
	Spiked Blank		2008/08/28 2008/08/28	97	%	40 - 130
		Decachlorobiphenyl Aroclor 1260	2008/08/28	97 87	% %	30 - 130
		Total PCB	2008/08/28	87	%	30 - 130
	Method Blank	2,4,5,6-Tetrachloro-m-xylene	2008/08/28	96	%	40 - 130
	WELLIOU DIALIK	Decachlorobiphenyl	2008/08/28	103	%	40 - 130
		Aroclor 1262	2008/08/28	ND, RDL=0.01	ug/g	40 - 130
		Aroclor 1202 Aroclor 1016	2008/08/28	ND, RDL=0.01	ug/g ug/g	
		Aroclor 1221	2008/08/28	ND, RDL=0.01	ug/g ug/g	
		Aroclor 1221 Aroclor 1232	2008/08/28	ND, RDL=0.01	ug/g ug/g	
		Aroclor 1232 Aroclor 1242	2008/08/28	ND, RDL=0.01	ug/g ug/g	
		Aroclor 1242 Aroclor 1248	2008/08/28	ND, RDL=0.01		
			2008/08/28	ND, RDL=0.01	ug/g	
		Aroclor 1254 Aroclor 1260	2008/08/28	ND, RDL=0.01 ND, RDL=0.01	ug/g	
		Aroclor 1268	2008/08/28	ND, RDL=0.01	ug/g	
		Total PCB	2008/08/28	ND, RDL=0.01	ug/g	
	RPD	Aroclor 1262	2008/08/28	NC NC	ug/g %	50
	RPD	Decachlorobiphenyl	2008/08/28	2.9	% %	
		. ,		NC	% %	N/A
		Aroclor 1016	2008/08/28			50
		Aroclor 1221	2008/08/28	NC NC	%	50
		Aroclor 1232	2008/08/28	NC NC	%	50
		Aroclor 1242	2008/08/28	NC NO	%	50
		Aroclor 1248	2008/08/28	NC	%	50
		Aroclor 1254	2008/08/28	NC NO	%	50
		Aroclor 1260	2008/08/28	NC	%	50
		Aroclor 1268	2008/08/28	NC	%	50
		Total PCB	2008/08/28	NC	%	50
1598134 JJE	MATRIX SPIKE	o-Terphenyl	2008/08/28	95	%	30 - 130
		F2 (C10-C16 Hydrocarbons)	2008/08/28	106	%	60 - 130
		F3 (C16-C34 Hydrocarbons)	2008/08/28	106	%	60 - 130
	Spiked Blank	o-Terphenyl	2008/08/29	91	%	30 - 130
		F2 (C10-C16 Hydrocarbons)	2008/08/29	103	%	60 - 130
		F3 (C16-C34 Hydrocarbons)	2008/08/29	103	%	60 - 130
	Method Blank	o-Terphenyl	2008/08/28	82	%	30 - 130
		F2 (C10-C16 Hydrocarbons)	2008/08/28	ND, RDL=100	ug/L	
		F3 (C16-C34 Hydrocarbons)	2008/08/28	ND, RDL=100	ug/L	
	RPD	F2 (C10-C16 Hydrocarbons)	2008/08/28	NC	%	50
		F3 (C16-C34 Hydrocarbons)	2008/08/28	NC	%	50
1598184 JJE	MATRIX SPIKE	o-Terphenyl	2008/08/27	89	%	30 - 130
		F2 (C10-C16 Hydrocarbons)	2008/08/27	97	%	60 - 130
		F3 (C16-C34 Hydrocarbons)	2008/08/27	97	%	60 - 130
	Spiked Blank	o-Terphenyl	2008/08/27	90	%	30 - 130
		F2 (C10-C16 Hydrocarbons)	2008/08/27	97	%	60 - 130
		F3 (C16-C34 Hydrocarbons)	2008/08/27	97	%	60 - 130
	Method Blank	o-Terphenyl	2008/08/27	89	%	30 - 130
		F2 (C10-C16 Hydrocarbons)	2008/08/27	ND, RDL=10	ug/g	
		F3 (C16-C34 Hydrocarbons)	2008/08/27	ND, RDL=10	ug/g	
	RPD	F2 (C10-C16 Hydrocarbons)	2008/08/27	NC	%	50
		F3 (C16-C34 Hydrocarbons)	2008/08/27	NC	%	50
1598205 DTI	MATRIX SPIKE	1,4-Difluorobenzene	2008/08/27	102	%	60 - 140
		4-Bromofluorobenzene	2008/08/27	99	%	60 - 140

Attention: Jean-Pierre Pelletier

Client Project #: FOX-5 MONITORING

P.O. #

Project name: BROUGTON ISLAND

Quality Assurance Report (Continued)

Maxxam Job Number: TA894895

QA/QC			Date			
Batch		_	Analyzed			
Num Init	QC Type	Parameter	yyyy/mm/dd	Value Recovery	Units	QC Limit
1598205 DTI	MATRIX SPIKE	D10-Ethylbenzene	2008/08/27	103	%	30 - 130
		D4-1,2-Dichloroethane	2008/08/27	99	%	60 - 140
		F1 (C6-C10)	2008/08/27	95	%	60 - 140
	Spiked Blank	1,4-Difluorobenzene	2008/08/27	100	%	60 - 140
		4-Bromofluorobenzene	2008/08/27	99	%	60 - 140
		D10-Ethylbenzene	2008/08/27	98	%	30 - 130
		D4-1,2-Dichloroethane	2008/08/27	100	%	60 - 140
		F1 (C6-C10)	2008/08/27	82	%	60 - 140
	Method Blank	1,4-Difluorobenzene	2008/08/27	101	%	60 - 140
	mounou Diani.	4-Bromofluorobenzene	2008/08/27	95	%	60 - 140
		D10-Ethylbenzene	2008/08/27	97	%	30 - 13
		D4-1,2-Dichloroethane	2008/08/27	99	%	60 - 140
		F1 (C6-C10)	2008/08/27	ND, RDL=10		00 - 14
		F1 (C6-C10) F1 (C6-C10) - BTEX	2008/08/27	ND, RDL=10 ND, RDL=10	ug/g	
	DDD	,		· ·	ug/g	E
	RPD	F1 (C6-C10)	2008/08/27	NC	%	5
. =		F1 (C6-C10) - BTEX	2008/08/27	NC	%	5
1598303 LGA	MATRIX SPIKE	2,4,5,6-Tetrachloro-m-xylene	2008/08/29	67	%	30 - 15
		Decachlorobiphenyl	2008/08/29	90	%	29 - 13
		Aroclor 1260	2008/08/29	77	%	30 - 13
		Total PCB	2008/08/29	77	%	30 - 13
	Spiked Blank	2,4,5,6-Tetrachloro-m-xylene	2008/08/29	74	%	30 - 15
		Decachlorobiphenyl	2008/08/29	89	%	29 - 13
		Aroclor 1260	2008/08/29	96	%	30 - 13
	RPD	Aroclor 1260	2008/08/29	6.4	%	4
	Spiked Blank	Total PCB	2008/08/29	96	%	30 - 13
	RPD	Total PCB	2008/08/29	6.4	%	4
	Method Blank	2,4,5,6-Tetrachloro-m-xylene	2008/08/29	99	%	30 - 15
	Wictioa Blank	Decachlorobiphenyl	2008/08/29	108	%	29 - 13
		Aroclor 1016	2008/08/29	ND, RDL=0.05	ug/L	29 - 13
		Aroclor 1221	2008/08/29	ND, RDL=0.05	-	
				The state of the s	ug/L	
		Aroclor 1232	2008/08/29	ND, RDL=0.05	ug/L	
		Aroclor 1242	2008/08/29	ND, RDL=0.05	ug/L	
		Aroclor 1248	2008/08/29	ND, RDL=0.05	ug/L	
		Aroclor 1254	2008/08/29	ND, RDL=0.05	ug/L	
		Aroclor 1260	2008/08/29	ND, RDL=0.05	ug/L	
		Aroclor 1262	2008/08/29	ND, RDL=0.05	ug/L	
		Aroclor 1268	2008/08/29	ND, RDL=0.05	ug/L	
		Total PCB	2008/08/29	ND, RDL=0.05	ug/L	
598380 JKA	MATRIX SPIKE	o-Terphenyl	2008/08/28	87	%	30 - 13
		F2 (C10-C16 Hydrocarbons)	2008/08/28	89	%	60 - 13
		F3 (C16-C34 Hydrocarbons)	2008/08/28	89	%	60 - 13
	Spiked Blank	o-Terphenyl	2008/08/28	84	%	30 - 13
	•	F2 (C10-C16 Hydrocarbons)	2008/08/28	82	%	60 - 13
		F3 (C16-C34 Hydrocarbons)	2008/08/28	82	%	60 - 13
	Method Blank	o-Terphenyl	2008/08/28	76	%	30 - 13
	Wothou Blank	F2 (C10-C16 Hydrocarbons)	2008/08/28	ND, RDL=100	ug/L	00 10
		F3 (C16-C34 Hydrocarbons)	2008/08/28	ND, RDL=100	ug/L ug/L	
	DDD	,				
	RPD	F2 (C10-C16 Hydrocarbons)	2008/08/28	NC NC	%	5
E00000 ID:::	MATRIX ORUS	F3 (C16-C34 Hydrocarbons)	2008/08/28	NC	%	00 46
598680 JBW	MATRIX SPIKE	Total Arsenic (As)	2008/08/28	99	%	80 - 12
		Total Cadmium (Cd)	2008/08/28	101	%	80 - 12
		Total Chromium (Cr)	2008/08/28	94	%	80 - 12
		Total Cobalt (Co)	2008/08/28	93	%	80 - 12
		Total Copper (Cu)	2008/08/28	88	%	80 - 12
		Total Lead (Pb)	2008/08/28	92	%	80 - 12

Attention: Jean-Pierre Pelletier

Client Project #: FOX-5 MONITORING

P.O. #:

Project name: BROUGTON ISLAND

Quality Assurance Report (Continued)

Maxxam Job Number: TA894895

QA/QC Batch			Date Analyzed		
Num Init	QC Type	Parameter	yyyy/mm/dd	Value Recovery Units	QC Limits
1598680 JBW	MATRIX SPIKE	Total Nickel (Ni)	2008/08/28	91 %	80 - 120
1000000 0000	WATER OF THE	Total Zinc (Zn)	2008/08/28	88 %	80 - 120
	Spiked Blank	Total Arsenic (As)	2008/08/28	99 %	86 - 119
	Opinou Biarin	Total Cadmium (Cd)	2008/08/28	105 %	85 - 116
		Total Chromium (Cr)	2008/08/28	97 %	80 - 120
		Total Cobalt (Co)	2008/08/28	96 %	82 - 117
		Total Copper (Cu)	2008/08/28	96 %	80 - 117
		Total Lead (Pb)	2008/08/28	99 %	80 - 120
		Total Nickel (Ni)	2008/08/28	96 %	81 - 117
		Total Zinc (Zn)	2008/08/28	98 %	80 - 120
	Method Blank	Total Arsenic (As)	2008/08/28	ND, RDL=1 ug/L	00 120
	Welliod Blank	Total Cadmium (Cd)	2008/08/28	ND, RDL=0.1 ug/L	
		Total Chromium (Cr)	2008/08/28	ND, RDL=5 ug/L	
		Total Cobalt (Co)	2008/08/28	ND, RDL=0.5 ug/L	
		Total Copper (Cu)	2008/08/28	ND, RDL=1 ug/L	
		Total Lead (Pb)	2008/08/28	ND, RDL=0.5 ug/L	
		Total Nickel (Ni)	2008/08/28	ND, RDL=0.5 ug/L	
		Total Zinc (Zn)	2008/08/28	ND, RDL=1 ug/L ND, RDL=5 ug/L	
	RPD	Total Arsenic (As)	2008/08/28	NC %	25
	KI D	Total Cadmium (Cd)	2008/08/28	NC %	25
		Total Chromium (Cr)	2008/08/28	NC %	25 25
		Total Cobalt (Co)	2008/08/28	NC %	25 25
		Total Copper (Cu)	2008/08/28	NC %	25 25
		Total Lead (Pb)	2008/08/28	NC %	25 25
		Total Nickel (Ni)	2008/08/28	3.2	25 25
		` '	2008/08/28	NC %	25 25
E0070E C A	DDD [AU2020 04]	Total Zinc (Zn)			
1598705 C_A	RPD [AH2920-01]	Moisture	2008/08/28		50 75 105
1598716 VIV	MATRIX SPIKE	Acid Extractable Arsenic (As) Acid Extractable Cadmium (Cd)	2008/08/28	103 % 103 %	75 - 125 75 - 125
		` ,	2008/08/28		
		Acid Extractable Chromium (Cr)	2008/08/28	103 %	75 - 125
		Acid Extractable Cobalt (Co)	2008/08/28	99 %	75 - 125
		Acid Extractable Copper (Cu)	2008/08/28	100 %	75 - 125
		Acid Extractable Lead (Pb)	2008/08/28	102 %	75 - 125
		Acid Extractable Nickel (Ni)	2008/08/28	100 %	75 - 125
	OC CTANDADD	Acid Extractable Zinc (Zn)	2008/08/28	NC (1) %	75 - 125
	QC STANDARD	Acid Extractable Arsenic (As)	2008/08/28	94 %	75 - 125
		Acid Extractable Cadmium (Cd)	2008/08/28	87 %	75 - 125
		Acid Extractable Chromium (Cr)	2008/08/28	98 %	75 - 125
		Acid Extractable Cobalt (Co)	2008/08/28	92 %	75 - 125
		Acid Extractable Copper (Cu)	2008/08/28	92 %	75 - 125
		Acid Extractable Lead (Pb)	2008/08/28	97 %	75 - 125
		Acid Extractable Nickel (Ni)	2008/08/28	91 %	75 - 125
	M (I 15)	Acid Extractable Zinc (Zn)	2008/08/28	92 %	75 - 125
	Method Blank	Acid Extractable Arsenic (As)	2008/08/28	ND, RDL=1 ug/g	
		Acid Extractable Cadmium (Cd)	2008/08/28	ND, RDL=0.1 ug/g	
		Acid Extractable Chromium (Cr)	2008/08/28	ND, RDL=1 ug/g	
		Acid Extractable Cobalt (Co)	2008/08/28	ND, RDL=0.1 ug/g	
		Acid Extractable Copper (Cu)	2008/08/28	ND, RDL=0.5 ug/g	
		Acid Extractable Lead (Pb)	2008/08/28	ND, RDL=1 ug/g	
		Acid Extractable Nickel (Ni)	2008/08/28	ND, RDL=0.5 ug/g	
		Acid Extractable Zinc (Zn)	2008/08/28	ND, RDL=5 ug/g	
	RPD	Acid Extractable Arsenic (As)	2008/08/28	NC %	35
		Acid Extractable Cadmium (Cd)	2008/08/28	NC %	35
		Acid Extractable Chromium (Cr)	2008/08/28	9.7 %	35
		Acid Extractable Cobalt (Co)	2008/08/28	6.3 %	35

Attention: Jean-Pierre Pelletier

Client Project #: FOX-5 MONITORING

P.O. #

Project name: BROUGTON ISLAND

Quality Assurance Report (Continued)

Maxxam Job Number: TA894895

QA/QC			Date				
Batch			Analyzed				
Num Init	QC Type	Parameter	yyyy/mm/dd	Value	Recovery	Units	QC Limits
1598716 VIV	RPD	Acid Extractable Copper (Cu)	2008/08/28	3.0		%	35
		Acid Extractable Lead (Pb)	2008/08/28	6.8		%	35
		Acid Extractable Nickel (Ni)	2008/08/28	4.2		%	35
		Acid Extractable Zinc (Zn)	2008/08/28	4.1		%	35
1598719 LCH	MATRIX SPIKE	Acid Extractable Mercury (Hg)	2008/08/28		91	%	75 - 125
	QC STANDARD	Acid Extractable Mercury (Hg)	2008/08/28		103	%	75 - 125
	Method Blank	Acid Extractable Mercury (Hg)	2008/08/28	ND, R	DL=0.05	ug/g	
	RPD	Acid Extractable Mercury (Hg)	2008/08/28	NC		%	35
1598905 GBA	MATRIX SPIKE	1,4-Difluorobenzene	2008/08/29		98	%	70 - 130
		4-Bromofluorobenzene	2008/08/29		102	%	70 - 130
		D10-Ethylbenzene	2008/08/29		106	%	70 - 130
		D4-1,2-Dichloroethane	2008/08/29		101	%	70 - 130
		F1 (C6-C10)	2008/08/29		98	%	70 - 130
	Spiked Blank	1,4-Difluorobenzene	2008/08/28		98	%	70 - 130
		4-Bromofluorobenzene	2008/08/28		102	%	70 - 130
		D10-Ethylbenzene	2008/08/28		101	%	70 - 130
		D4-1,2-Dichloroethane	2008/08/28		102	%	70 - 130
		F1 (C6-C10)	2008/08/28		111	%	70 - 130
	Method Blank	1,4-Difluorobenzene	2008/08/28		99	%	70 - 130
		4-Bromofluorobenzene	2008/08/28		101	%	70 - 130
		D10-Ethylbenzene	2008/08/28		98	%	70 - 130
		D4-1,2-Dichloroethane	2008/08/28		101	%	70 - 130
		F1 (C6-C10)	2008/08/28	ND, R	DL=100	ug/L	
		F1 (C6-C10) - BTEX	2008/08/28	ND, R	DL=100	ug/L	
	RPD	F1 (C6-C10)	2008/08/28	NC		%	40
		F1 (C6-C10) - BTEX	2008/08/28	NC		%	40

ND = Not detected

N/A = Not Applicable

NC = Non-calculable

RPD = Relative Percent Difference

QC Standard = Quality Control Standard

SPIKE = Fortified sample

(1) The recovery in the matrix spike was not calculated (NC). Because of the high concentration of this analyte in the parent sample, the relative difference between the spiked and unspiked concentrations is not sufficiently significant to permit a reliable recovery calculation.

Validation Signature Page

Maxxam Job #: A894895

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

CHARLES ANCKER, B.Sc., M.Sc., C.Chem, Senior Analyst

CHARLES ANCKER, B.Sc., M.Sc., C.Chem, Senior Analyst

CHRISTINA NERVO, Scientific Services

MEDHAT RISKALLAH, Manager, Hydrocarbon Department

Juzuna Popovic, Supervisor, Hydrocarbons

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. SCC and CAEAL have approved this reporting process and electronic report format.

COLLECTION OF LANDFILL MONITORING DATA AT THE FOX-5 AND FOX-M FORMER DEW LINE SITES DRAFT FINAL REPORT 2008

APPENDIX C Field Notes

ABRÉVIATIONS ET SYMBOLES

Δ	Station de triangulation.	C.	Centre.
0	Station de polygonale.	()	Axe ou ligne de centre
0	Station de stadia.	CI.	Clou.
B.P.	Borne de pierre.	Bord.	Bordure.
М	Monument.	Puis.	Puisard.
T.F	Tige de fer.	Reg 7	Regard d'égout.
P	Piquet.	Tel.	Poteau de téléphone
P.F.	Point foré.	V.AV.	Visée avant.
R.N.	Repère de nivellement.	V.AR.	Visée arrière.
C.G.	Croix gravée.	P.T.	Point tournant,
	Clōture.	H.I.	Hauteur d'instrument.

-x-x-x Clôture de grillage.

Contours d'immeubles.

Date A UG 19, 208 Page 5°C, CLEAR, DEPART QIKITARJUAG. @ 1+45 ARRIVE AT UPPER SITE C 15:30. DALY SAFETY MEETING REMEN DAILY WOLK PLAN SOL I WATER SAMPLINGI INSPECTION, DATA COLLECTION 16 CIPS MW-16 MW-17 Wh -18 19 MW-19 14W-15 PHOTO GE ALUNY NO TU STA (IMAGE 38). PHUTO PLAGUE + BASE - SE DHOTO NW (IMAGE 43) 22 23 PHOTO. S. FROM & WRITE OF USNHAULF (IMAGE 38) - 360° PANUMAMIC. 74 PHOTO W FROM W SIDE UF USNIMIE 180 PANUA

No.	No •
bate	Date Aug 19, 2008 Page 3
25. P40.00 N. (WTOE) 2700	C1.52 T=2.30c 1.25/21
PANORAMIC (IMAGE 41+42)	021 - 165 / 188 / 141
26 PHOTO E (360° PSNOC).	PH-5.21/ 5.43/5.49
(INSGE 39 + 40)	cond = 0.444 / 0.390/0.382
97 (LS 2005 - R30 MONUMENT.	TURB 20145/157./43.5 NOW
"7±302"	TOTAL 3L.
n a bear and plants.	190808-100/10/ @ 0-10
MW-16 1630.	1-102 0 40-50
TEST PIT - 29m NW OF	S+INTERLAG X2.
MW. Sales Sa	190808 -103 WATER
BROWN SAND, F-MED	NATER. 3x DUP + INTERLAS
GR. TR GRAVEL, DAMP, Pg.	3x40m2, 2x1LAMBER, 1x 125 plastic
No chour- st-cdoure 40+	1800
5/up = 0.40 m - 1 111	MW-17. TP 3.4 m N 8 MW.
Z=0,919 m F/P= Ø	Brown F-med sand, pg,
bottom 2.2m 100	tra e gravel, damp, no odor
water = ~1.28 m	
C 1	190808-104 0-10
START.	-105 40-50
T= 3.3°C TURB 22/2 NTU	. S/up=0.3
ORD = 142 mV	¥=1.693 FIP=0
PH-5011	botton = 1.99
Cond = 0.822 ms/cm	weter = 0.3.

Date AUGUST 20, 2008 Page 5. Date AUG 19:2000 Page 4 DH - 5.94 15.97 1599 BOU MEET AT HOTEL, DIST ? CHECK and = 0.151 /0.132/0.155 T=2.7/18/2.0 BATTERIES/RADIOS - OH.1 ORP=145 /136/135 20 , 920An TURB 17,7 /128/104 1 Structed - WHITE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TOTAL TO THE TOTA MW-15 VOK. TP 4m. S. 5 up 45 Z=1.224 F/8:0 INT. PROPE: HERON Button 228 ICE. mule , HORIBA U22+6 TURBS HANNA HI 97803 T: 2.8/24/2. 190808 - 106 WATER Cord 0.168/0.085/0.117 ZXIL AMCER, 3×40mL, 1×250 DH 5.87/5.58 / 5.56 PLASTLE CRA 151/187/226 27 - PHOTO OF PART. EXP BARGEL TUAS 301/339/63.4: CRUSIED + STEEL (SS) CABLE WATER 200808-109 5-7m SW OF CLS MONS 200808-107 O-10 + ACH. -108 40-56 1805 LEAVE SITE ADJ ESG 2866961 1930 BACK IN TOWN BENSAND F-MEDGE, PG, UNDACK ICE PACKS IN FREELER SUME CS SAND+CHAVEL, DAMP, NO 000UR TOTA 2.5 L.

10-50km/h. E wino.	No.
Date AU 20168 Page 6	Date Aug 20/58 Page 7
MW-19 USNHWLE	mv-18 / 10:45
TP. 3.6 m S 6) MW	TP-2.7 mw of mw.
51 up = 35cm	5 up 0.35
7 = 0.481 F/1=0	2 1,758 P18, 0
BOT 2.07 - ICE	BOTTON 1.875
T = 3.1./2.2/20	T= 3.0
. cond 0.084, / 0.074/0.075	pH 7.50 7.76
PH 6.36/6.52/6.80	Good 0.132
ORP 141/1,25/118 20.	ore 110
TURB 553/7/634 or	Tura 546 -Sl. treat
BRN-TURBID.	TOTAL 250 ML
SILTATION	. Son - Brown SAND F- med
- SOW - BROWN SAN- F- MED	gr, pg, ding, tr-some gravel
CIR, TRIGRAVEL, SOME CASS	A chis
+ BLOAS, DAMP, NO ODULA	200808-113 0-10
200808-110 0-10	-114 40-50
- 111 40-50	water -115 only notals
WATER -112	etrice.

Date Avg 20108 Page 8	. DatePage
MAIN LANDEILL	VT-7 height 0.9m.
VT-8 V. C. G. C. C. C. C. C. C. C. C. C. C. C. C. C.	Donaloadi
cable a/g 0,70.	
SERIAL 82020259	Surger Surger
MANUAL DEADINGS 112:00	1 10757 84
1 12514 9 5.1939	2 12983 4.1
2 13.631 3.6566	3 14.207 21
3. 15004 1.6711	4 16 028 0.
4 16154 0.1836	5 15.501 0
5 16760 -6.4939	-0
6. 127 269 - 40197	17304
7. 1.7825 -47381	8 17864 -1
8 1.8400 -2.4181	18345
9 18758 -2.7468	18. \$4624 -2
10 18994 - 2.9933	18917 - 9
	1500 (1500)
DOWNLOAD XZ	8110-1881
40%, mart 11-34	men 400%, mai 1134
kvx 12.90	AVX 12.41
Reset Clock	102 2 20 11
	100 - 1

No	No
DatePagePX	DatePage
WAYPT 28 prexposed preced	PT28 P. Exp steel strapping I'm
cable 0.7m brigg	was son w + small
photo w/VT's in backgrad	piece 8 misc bik metal sheet.
	20 cm x 30 cm
VT-6 MAINLE. 1320.	15m downslope JVT-5
height 0.75 , luck rusting	VT-5 V. lock stort to lust
noweathercap	PANUNAMIC N-E-S-W-N.
SEMSOR	cable heart o.bm
1 11689 6.8518	men 40%
2 12844 4.9045	SENSOR
3 13862 3,4618	10067
4 14719 2-1530	2 11.512 9,9768
5 15701 0.8682	3 13.124 6.9268
6 16 498 -0.1586	4 13.704 4.4479
7 16 901 -0.6363	5 15005 3.0393
8. 17.530 -1.4073	15976 1.6108
9 17926 -1.9026	7 16501 0.2241
18253 -2.3768	8 17061 -0.3947
11 18 439 -2,4750	9 17519 -0.8554
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	10 17997 -1.4867
1 em = 40%	11 18564 -2.1059
part man 11.34	BIT - 2,5603
Avx 12.77	MAIN - 11034
	AUV. 15/19

.

No.	No
Date Page [2	DatePage13
	1446. TP
Pr 30 Smell precid textile	MW-11 2.8m 0E of no
1- rocks, VT-8 inbkgul	S/mp 1-00~
The second secon	* 2.192 FIP. Ø
31- Looking along 5 sided	BUTTO- 2.81
LA.	
32 - BM. 1000 1000	SOIL FIBRN SAND F-CSGR
The state of the s	LIG. TR. SILT, DANG.
DRAMAGE (CHAMMAL) BORDERY	Some CRAVEL + CBIS.
	NO COOLS
~15 m S & TOE FORE	
SAND, F.G. IN CHANNEL	200808-116 0-10
LE PROTECTED BY WALL OF SUPIS.	-117 40-50
NOT-00 MOTTORS 2014	WATER -1180
33 END GE ROCK BERM, FLOW	1 - Lund (30) 2 - Lund (11 - 12 - 12)
VMOER TO E DOWNSLOPE	39/31/28
FLOWS WIN 10 ~ 8 MW. 143	PH 7.14/7.17/7.15
	cond 0.097/0069/0056
	cnp 135/170/175
	turs 27.4/43.6123.7
THE REPORT OF THE RESIDENCE OF THE RESID	TOTAL 2L
THE RESIDENCE OF THE PARTY OF T	
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Date 1 Avg 20108 Page 15 Date 20- AUG D9 Page 14 MW-13 16:00 MW-12 TP 3.2m W8 MW 26. TO 40 m NE 8 mw S/40=0.35m S/4P= 0.50~ I Dry F18-0 Z = 1.385 -F/P=0 BOTTON 1.61- ICE. bottom= 1.77 SULL BEBRNSAND, F-CSGR 2008 DEC 119 / DUP + INTER T = 3.5 / 2.6 355 T- pH 6.75/ 200 00055 m5/cm/0.048 0-10 (FAGH. 6-120 V 10 5 TURB 867 NTW/482 -121 40-50 LATER - 122 TOTAL IL . WATER 200808-174 DEBRIS I METRI IN AREA, MUSE TIN CANS, FYP CBU, CONSUED MW14 TP 33 M ENE OF MW Drum. S/UP = 0.45 R = 1326 F/B = 0 130 TOM 2.65 SUIL 200808-125 0410 -126 40-50 BRN SAND F-CS Gr. W. g. demp. tr. grand tobs, no odoví

No	No.
Date	Date Aug 20156 Page 17
T: 3.0/2.1/24	MEM 40%
Cond 0.676/0.060/0.060	BAT MAIN 11.34.
pu 7.47/16:37 6.72	AUX: 13.02
10 104 10 1 1000	THE PARK OF THE PA
- la la la la la la la la la la la la la	1740 MW-10
200808127	TP-2.9m W 8 mw.
· VT-A hight 1.1 mag	s/ap = 0-30m
good cond.	V 0.887 F18-0
17:10	botton 2-38n.
SENGLE SOME	
98577	SOIL BRN SAND, MEDGR, P.G.
7 \$ 9802 10.1795	DAMP TOWAT @ 0.40
3 9598 10.7868	TR GRAVELA CBLS, NOOD
4 11645 6.7868	15 TENED SERVICE STATE OF THE SERVIC
5 12959 3.4.6051	200808-128 + ARCH 6-16
6 13679 3.4118	200808-129 40-5
7 15078 1.6485	WHER-130, ARMIN
8 15936 0.3227	T 31.9/2012 D
9 16412 -0-2168	Cond 0.055/0.052/0.053
? X? 10 16 704 - 22,3866(-23.3853	OH 6.62/6,47/6.3Z
11 16 745 -0.6363	000 232/226/226
12 17 052 - 0.8656	TURS 44,2/84.5/64.4
13 17350 -1.1617	TOTAL 4L
10 11 500 - 101017	1011-17-

BI.				
38	-/m·8 14		DOWNLOADXZ	ALEXANDER OF THE PARTY OF THE P
30	100 15.		. 0 300	11 11 005
	7.0		VTO	de height again
41	DNAITHLE TOP		100 - 00	
	3E SIDE, FLOWING		Sesse" 105"	7
	0.5 m deep , fc		2 1160	1 01 -
	to toe upto	Stortupe	3 135	
4 1	r-2 1925	The second second	4 1460	A CONTRACTOR OF THE PROPERTY O
3	0.9 alg cable		15A	215
1	4/0	160 (AC)=	1621	
1	102845 19.29	742	7 166	
422 3	1 12776 14.95		8- 167	P4 - 0,333
- La	13336 3.5		9 170	60 -0.717
-20 4	14222 2.8	8142	10 173	
135	15 235 1.3	3896	174	
30		1456	12 175	47 -15098
h		1383		-1.5585
9		0.2957	BAT 111.	
, 9		0.547	A1x 13.	50 111
0	10 11	0-7000		
1	1, 16900 -	0.8132		

No. Aug 30108 06 Page 20	No
VT-3	8+42 Bend doorge chul
Surve	: piece of steel in crossor
1 10382 8.7977	chanel, programo
7 10.368 8.8153	7 2 4/2 = A(2 4/2 P) 11 3 5 2 5 8 3 6 5 6 5 5 5
3 10.329 9.0521	43 Start & erosion chancel
4 10.840) 9.1353	looks N
5 10 055 9.5063	
6 12801 4.9045	FINIST 21.00 -
7 13376 3.7740	BEAR MONITORS - 19:30
8 14454 2.3760	
9 15438 09867	Sall
15641 0.2797	LIST OF FIELD DUPS & ARCHIVES
11 16467 -0.3134	160-101 . 101
12 16029 -0.2728	119-120 /20
13 16849 -0.6898	139-140 120
14 16852 - 67790	139 720
13 17002 -0.9039	
1020221-21-21	
main 11:34 men 40%	INTERLAB WATERLAB
Nux 1302	100 103
	139
	139 107 BMIR DUP + MISH
	128. 138. RELABEL 138. BURS 138. BURS

7°C, 40+KNLW, 8mm Date Augailos Page 22 Date Aug21/08 Page 23 LEAVE 830 , ARRIVE & MADLE HOURS. PANIN -- 13. + CRUAD SITE egam. - 50 GEORGE - BEAR MONTOR MINA - 13 + QUAD GEORGE - 11.5 + GOVAD+RIFLE DAMM + MINA - TECHNICIANS ALLAN. 11.5 + RIFLE AND THE STATE OF T TIER II/ NHULF: PT 98 (IMAGE 49) - PANDR GW-OF THE PERSON Contract to the second NE EVT-ID. PT 49 (IMAGE 52) - PANGE SW and the second second - NE PT 50 ENT-11 / 1795 50) P+51 CUT-12 (~ 51) + The state of the season · PANUR NE-SW-4 2 14 5 1 1 1 PT 52-70 OUTLINE OF NOTURAL DISCOLOURATION ON SURFACE THE REPORT OF THE PARTY OF THE OF NEWSE DT 71 N-E OF STEEN (IMAGE C.5) 29.4 PT 72 (IMAGE 67) NIW-N. 74) Carl L PT 73 (IMAGE LI) PAN NW SW PT 74 (IMAGE 62) , PAN SE-SW-+ PLONE RIPRAP TO SW. 345 TO POS SETTLEMENT ON N CORNER

Date Aug 21/08 Page 74 Date 4 4 4 21 08 Page 75 UT-10 V good cond. PT 75 FEATURE F, LOOKING NW Cable hight 0.65 m MNORFE CHONGE (1 MAGE 63)+64 Sensor 10741 8.4733 - NOLEAN 381,0742 ON METER PT 76 (IMAGE 70) NE, NO GLANGE PTY MINOR TENSION CRACKS. 12297 5.7378 11 to slope edge + upto 450. 12395 5.4708 PT 78 NeND 14mx2m 14153 ? (-96.1851) PT 79 ISOLOT- SETTLEM G.7x O.7 14928 1.7741 DEPRESSION TYP. WHILE. Pt 80 3mx/m grea - minor 16524 -0.2068 tension crackak 12277 -1.0442 17.849 -1,7201 PT 81 VT-9 (IMAGE 48) PT 82 PAN NE NW. (IMAGES 17821 -2.1059 46,47,53) PT 83 3x Ecosion CH ROM CREST . COM COVER REGD. - BRUKEN OFF PEGFER DEEP - entire slope each BAT 1134 NEM 4090 aux 12-90 DT FOR IMAGE 45 DAN NOW-S EROSION GIAMEN 84-85 RESET CLOCK + START 2.5 m W & 10cm days & Stope

TEMP - 3-40C. Date Nug 21/08 Page 26 Date Avg 21/08 Page 27 cable hegyt= 0.60 VT-a caste height 0.65m Sersor SENSUL 12.965 46700 93724 10298 5.6505 10030 9,4103 12368 13265 4.1709 11231 7.5700 5.6904 14556 2 3766 12306 13 1 25 0.2418 16056 3.7165 16 878 -0.6745 14 970 1.6309 16122 +0.1205 17623 -165765 16876 -0.8835 18147 -2.2142 -1,3689 17476 18572 - 2.2665 10 19/12 - 3 0843 11:34 BAT MAIN 11-34 12.41 - AUX MEM 402 12.77 Aux A POSS PT 88-89 ERUSION CHANNEL MINOR ON SYRFACE, 1-1.5h W.DE BIW 975. 1 1-3CM DEER. , VIEW SW.

No	No.
Date 12/08 Page 28	Date Avg 21/08 Page 29
	11:30
VT-12 Cable height = 0.45-	Marg 311 n N g mw.
	5/up = 0.55
Jenson	X = 1.592 F/P 10
1 10960 77103	botton 2.39 ICE
2 10631 8.5110	73 - 0 66 61
3 12956 4,6051	210808-132 6-10
4 13 139 4,4 105	-133 40-50
5 15444 1.6925	WATER -134
6 16395 0.1763	SOIL - BRN SAND, Fig, TR.
7 17318 -17796	FINES, SOME GRAAL+
8 17910 -1.8640	CBUS, DAMP, NO DOUR
9 18518 -25603	Units DARK BOOK OF THE EDITION
10 19197 -3.1598	1 1.9/1.7./1.6
11 19647 -4.2150	pH 5.01/5.24 15.47
12 19677 -42598	Cond. 0.391/0.092/0.065
13, 19954 -48349	ore 198/197/198
4 40187 -4.9108	TURE 77.9/34.4/74 6.
MAIN 1134 2845 7219-513104	TOTAL 2L
FINISH DOWN LOADED OllAn	
The same of the sa	
NAT DISCOLURATION OF SOIL	190808 - 103 - 131
· Arouno · VT - 12 , PHOTO.	BD

No.	
Date. Av 3 2 108 Page 30	Date Aug 31 108 Page 31
MW-8. 12.00	MW-7 TP29mWgmw.
te 3 m Swg mw-	5/mp 0.60 2 : 1525 F/P. 0
T 1.303 FIP-D	13 otto m = 2 560.
bottom 251	SOIL BENSAND F-MED
SOIL. BON SIND, FG, SOME-	CIR, DOME CS GRAVEL + CBIS,
TR COLS, NO GOOR.	Damp, NUGDONY TR FINES.
111 600 100 000	210808-139 x2 0-10
BD+INTERLOS -135 0-10	-140 0-10 -141 40-50
WATER -137/138	-142 WATER
T = 201/116/117	
Cond 0.137/0.088/0.088 p4 5.34/5.44/5.47	Cond = 0.188/0.201/0.208
ore 214/199/213	PH = \$.5/5.83/6.19
TUEB 322/616/21-2 TOTAL 52.	TURS 140/192/102
	TOTAL 3.5L
	BEN-TRANSL.

Date Avg 21/08 Page 32 Date Avg 21/08 Page 33 P+95 1430 MW-6 TP 25m N 8 MW MW-5 TP-3m. ENE JAW S/up =0.50 5/40 = 0.50 V = 1.244 FIR=0 1385 FIPED Button 2 45. Borron - 254 m SOIL = BENSAND, F-CSQT SOIL BLN SAND F-Mar damp, to fine, some WITH GRAVEL DAMP, SINE GBIS, NO GOOUR gravel + dols, no odos. rootlets to 0 15. 20808-196 0-10 210808-143 0-10 -147 40.50 -144 40-50 -148 - water -145 WATER-T =1.3/1.5/1.3 Cord = 0.194/0.103/6.099 T 1.5/104/1.4 and 0.091/ 0.093/0110 PH - 6.24/6.43/6.20 pH 6.62/5.90/6.02 ON9 = 200/222/236 GRP 2+7/253/254 TURS- 45-1/68-6/561 TURB 182/163/108. TOTAL 3.5L SL TURB 75/12-4L. welkaling drange channel border west side of Meril FINISH 245 BACK TURIK 9 57.35 FUEL In w x 0.2 m doep PT 94 at top.

COLLECTION OF LANDFILL MONITORING DATA AT THE FOX-5 AND FOX-M FORMER DEW LINE SITES DRAFT FINAL REPORT 2008

APPENDIX D QA/QC Reports

2008 Summary of Quality Control Sample Data, FOX-5 Broughton Island

			Depth	Date			•		į	_				202	F1	F2	F3	TPH
Lab ID #	Sample #	Location	[cm]	(yyyy-mm-dd)	Cu	Ni	Co	Cd	Pb	Zn	Cr	As	Hg	PCBs	$C_6 - C_{10}$	C ₁₀ -C ₁₆	C ₁₆ -C ₃₄	C ₆ -C ₃₄
Soil		•										•	•			•		
Bodycote - 653434	200808-128	MW-10	0-10	2008-08-20	11	14	5	<0.5	10	44	28	2	<0.1	<0.02	<20	<20	1750	1750
Maxxam - AH2920	200000-120	10100-10	0-10	2000-00-20	6.9	6.3	3.8	<0.1	7	39	13	2	< 0.05	0.01	<10	<10	660	660
Inter-lab RSD					32.4	53.6	19.3	-	25.0	8.5	51.7	0.0	-	-	-	-	-	64.0
Bodycote - 653442	190808-119				10	8	4	<0.5	11	57	17	2.2	<0.1	<0.02	<20	<20	<20	<20
Bodycote - 653443	190808-120	MW-12	0-10	2008-08-20	10	14	4	< 0.5	14	57	31	1.8	<0.1	< 0.02	<20	<20	<20	<20
Maxxam - AH2919	190808-119				6	5.6	2.8	0.2	12	44	11	2	< 0.05	0.02	<10	<10	<10	<10
Intra-lab RSD					0.0	38.6	0.0	-	17.0	0.0	41.2	14.1	-	-	-	-	-	-
Inter-lab RSD					35.4	60.6	25.0	-	10.9	18.2	67.3	7.4	-	-	-	-	-	-
Groundwater																		-
Bodycote - 653384	210808-137				0.003	<0.005	< 0.0002	0.0002	<0.001	0.03	0.001	<0.001	< 0.0001	< 0.0001	<0.2	<0.2	<0.2	<0.2
Bodycote - 653385	210808-138	MW-8		2008-08-21	0.003	<0.005	< 0.0002	0.0001	< 0.001	0.01	< 0.001	< 0.001	< 0.0001	< 0.0001	<0.2	<0.2	<0.2	<0.2
Maxxam - AH2922	210808-137				0.004	0.003	< 0.0005	<0.0001	0.0005	0.011	< 0.005	<0.001	-	<0.00005	<0.1	<0.1	<0.1	<0.1
Intra-lab RSD					0.0	-	-	47.1	-	70.7	-			-	-		-	-
Inter-lab RSD					20.2	-	-	0.0	-	6.7	-	-	-	-	-	-	-	-
Trip Blank	Trio Blank																	
Bodycote - 653389	TB	Trip Blank		2008-08-22	<0.001	<0.005	< 0.0002	<0.0001	<0.001	<0.01	<0.001	<0.001	< 0.0001	< 0.0001	<0.2	<0.2	<0.2	<0.2

Lab QA - Soil

Lab ID #	Cu	Ni	Co	Cd	Pb	Zn	Cr	As	Hg	PCBs
Bodycote - Lab Blank (ug/g)	<1	<1.0	<1	<0.5	<1	<1	<1	<1.0	<0.1	<0.02
Bodycote - Lab QC % Recovery	90	90	86	106	85	107	93	129	80	96
Maxxam - Matrix Spike (% Recovery)	100	100	99	103	102	NC	103	103		94
Maxxam - QC Standard (% Recovery)	92	91	92	87	97	92	98	94		87
Maxxam - Method Blank (mg/kg)	<0.001	<0.001	<0.0005	< 0.0001	< 0.0005	<0.005	<0.005	<0.001		<0.01

Lab QA - Water

Lab ID #	Cu	Ni	Co	Cd	Pb	Zn	Cr	As	Hg	PCBs
Bodycote - Lab Blank (mg/L)	<0.001	<0.005	< 0.0002	<0.0001	<0.001	<0.01	<0.001	<0.001	< 0.0001	<0.00001
Bodycote - Lab QC % Recovery	104	105	105	100	105	96	104	96	88	96
Maxxam - Matrix Spike (% Recovery)	88	91	93	101	92	88	94	99	-	77
Maxxam - Spiked Blank (% Recovery)	96	96	96	105	99	98	97	99	-	96
Maxxam - Method Blank (mg/L)	<0.001	<0.001	< 0.0005	< 0.0001	< 0.0005	<0.005	<0.005	<0.001	-	<0.00005

RSD - Relative Standard Deviation expressed as a percent

All concentrations expressed as milligrams per kilogram based on a dry weight basis

NC - The recovery in the matrix spike was not calculated (NC). Because of the high concentration of this analyte in the parent sample, the relative difference between the spiked and unspiked concentrations is not sufficiently significant to permit a reliable recovery calculation.

COLLECTION OF LANDFILL MONITORING DATA AT THE FOX-5 AND FOX-M FORMER DEW LINE SITES DRAFT FINAL REPORT 2008

APPENDIX E Thermistor Annual Maintenance Reports

ontractor Name:	Sila Remediation	n Inc.	Inspe	ection Date:		20/08/2008
repared By:	A.Passalis					
hermistor Inform	ation					
ite Name:	FOX-5 Broughto	n Thermistor	Location	Upper Site N	lain Landfill	
hermistor Numb		Inclination		Vertical		
stall Date:	7//18/2006	First Date I		8//08/2007	Last Date Ev	
oordinates and			E	4671 5 Nodal Point		ev 4
ength of Cable (atalogger Serial	# 0202064	Cable Lead Abov	e Ground (m) 0.9	Cable Seria		16
atalogger ochlar	#			Cable Corla	Hamber	
hermistor Insp	ection ection					
		Good	Need	ls Maintenanc	e	
Casing		Yes	No			
Cover		Yes	No			
Data Le	ogger	Yes	No			
Cable	-33	Yes	No			
Beads		Yes	No			
		tes				
Battery	Installation Date		09/01/2006			
Battery	Levels	Main _	11.34		_Aux1	3.50
Manual Ground	Temperature Readi	ings				
Bea		Degrees C		Bead	ohms	Degrees C
1	10557	8.8531		9	17060	-0.9217
2	11602	6.9493		10	17321	-1.1899
3	13570	3.6566		11	17461	-1.5098
4	14604	2.1530		12	17547	-1.5585
5	15932	0.5073				
6	16261	-0.0419				
7	16699	-0.3337				
	16714	-0.7178				
8						

Contractor Name:	Sila Remediation Inc.	Inspection Date:	20/08/2008
Prepared By:	A.Passalis		

Thermistor Information

Site Name:	FOX-5 Brough	nton	Thermistor Location		Upper Site M	lain Landfill	
Thermistor Number:	VT-2		Inclination		Vertical		
Install Date:	8//18/2006		First Date Event		8//21/2007	Last Date E	vent 8/19/200
Coordinates and Elev	ation	N	5864	E	4658	E	lev 49
Length of Cable (m)	8.6	Cable	e Lead Above Ground (m) 0.90	Nodal Points	S	1
Datalogger Serial #	02020228	}			Cable Serial	Number	169

Thermistor Inspection

	Good	Needs Maintenan	ce	
Casing	Yes	No		
Cover	Yes	No		
Data Logger	Yes	No		
Cable	Yes	No		
Beads	Yes	No		
Battery Installation Date	09/01/2	006		
Battery Levels	Main1	1.34	Aux	13.26

Manual Ground Temperature Readings

Bead	ohms	Degrees C
1	10284	9.2942
2	12776	4.9319
3	13336	3.5787
4	14222	2.8142
5	15235	1.3896
6	16266	0.1456
7	16488	-0.1383
8	16563	-0.2957

Bead	ohms	Degrees C
9	16731	-0.5117
10	16817	-0.7000
11	16900	-0.8172

Observat	ions and Proposed	<u>Maintenance</u>		

Contractor Name:	Sila Remediation Inc	».	Inspection Date:	20/08/2008
Prepared By:	A.Passalis			
Thermistor Informatio	n			
Site Name:	FOX-5 Broughton	Thermistor Location	Upper Site Main Landfill	
Thermistor Number:	VT-3	Inclination	Vertical	

First Date Event

5856

9.8 Cable Lead Above Ground (m)

Thermistor Inspectio	<u>n</u>

Length of Cable (m)

Datalogger Serial #

Coordinates and Elevation

8//18/2006

02020255

Install Date:

or mapeonon	Good	Needs	Maintenance	
Casing	Yes	No		
Cover	Yes	No		
Data Logger	Yes	No		
Cable	Yes	No		
Beads	Yes	No		
Battery Installation Date		09/01/2006		
Battery Levels	Main	11.34	Aux	13.02

8//21/2007

0.85 Nodal Points

4682

Cable Serial Number

Last Date Event

Elev

Manual Ground Temperature Readings

Bead	ohms	Degrees C
1	10382	8.7977
2	10368	8.8153
3	10329	9.0521
4	10401	9.1353
5	10055	9.5063
6	12801	4.9045
7	13376	3.7740
8	14454	2.3760

Bead	ohms	Degrees C
9	15438	0.9867
10	15641	0.2797
11	16467	-0.3134
12	16029	-0.2728
13	16849	-0.6898
14	16852	-0.7790
15	17002	-0.9039

8/20/2008

491

1697

15

Observat	ions and Proposed	<u>Maintenance</u>			
				-	
	1				

Contractor Nam	Contractor Name: S		tion Inc.		Inspe	ction Date:		20	/08/2008
Prepared By:		A.Passalis							
Thermistor Infor	matio	n							
Site Name:		FOX-5 Broug	hton Thermisto	r Location		Upper Site I	Main Landfill		
Thermistor Num	ber:		Inclination			Vertical			
Install Date:		8//16/2006	First Date			8//21/2007	Last Date		8/20/200
Coordinates and			N 5846		E	4669		Elev	49
Length of Cable			9 Cable Lead Abo	ve Ground (m)	1.10	Nodal Point			1
Datalogger Seri	al #	0202026				Cable Seria	Number		169
Thermistor Ins	pecti	<u>on</u>	Good		Need	s Maintenand	e		
Casin	a		Yes		No				
Cove	•		Yes		No				
	Logge	2r	Yes		No				
Cable		<i>-</i> 1							
			Yes		No				
Bead	-		Yes		No				
Batte	ry Ins	tallation Date		09/01/2006					
Batte	ry Le	els	Main	11.34			_Aux	13.02	
Manual Ground	d Ten	perature Re	adings	1					
Be	ad	ohms	Degrees C			Bead	ohms		Degrees C
	1	9937	9.8577			9	16412		0.2068
	2	9802	10.1795			10	16704		23.3853
	3	9598	10.7868			11	16745		0.6363
<u> </u>	4	11645	6.7868			12	17052		0.8653
	5	12959	4.6051			13	17350		1.1617
	6	13679	3.4118						
	7	15078	1.6485						

Observations and Proposed Maintenance

Contractor Name:	Sila Remediation Inc.	Inspection Date:	20/08/2008
Prepared By:	A.Passalis		

Thermistor Information

Site Name:	FOX-5 Brough	ton	Thermistor Location		Upper Site M	ain Landfill	
Thermistor Number:	VT-5		Inclination		Vertical		
Install Date:	8//16/2006		First Date Event		8//21/2007	Last Date Event	8/20/2008
Coordinates and Elev	<u>vatio</u> n	N	5833	E	4645	Elev	499
Length of Cable (m)	8	Cabl	e Lead Above Ground (m	0.60	Nodal Points	3	11
Datalogger Serial #	02020252				Cable Serial	Number	1699

Thermistor Inspection

	Good	Needs Maintenand	ce	
Casing	Yes	No		
Cover	Yes	No		
Data Logger	Yes	No		
Cable	Yes	No		
Beads	Yes	No		
Battery Installation Date	0	9/01/2006		
Battery Levels	Main	11.34	_Aux	13.14

Manual Ground Temperature Readings

Bead	ohms	Degrees C
1	10067	9.9768
2	11512	6.9268
3	13124	4.4479
4	13704	3.0393
5	15005	1.6108
6	15976	0.2241
7	16501	-0.3947
8	17061	-0.8554

Bead	ohms	Degrees C
9	17519	-1.4867
10	17997	-2.1059
11	18564	-2.5603

<u>Observations</u>	<u>and</u>	Proposed	<u>Maintenance</u>

Observat	ions and Proposed Maintenance

hermistor Information	1							
Site Name:	FOX-5 Broughton	Thermisto			Upper Site M	lain Landfi	ill	
hermistor Number:		Inclination			Vertical	1 15 1		
nstall Date: Coordinates and Eleva	8//17/2006 ation N	First Date 5812	Event		8//21/2007 4558	Last Date	Elev	8/20/20
ength of Cable (m)			ve Ground (m)		Nodal Point		LICV	
Datalogger Serial #	02020256				Cable Seria	l Number		17
hermistor Inspection	<u>n</u>	Good		Needs	: Maintenanc	e		
Casing		Yes		No				
Cover		Yes		No				
Data Logge	r	Yes		No				
Cable		Yes		No				
Beads		Yes		No				
Deads								
	allation Date		09/01/2006					
		——— Main	09/01/2006			Aux	12.77	
Battery Inst Battery Lev	els					Aux	12.77	
Battery Inst	els				Bead	_Aux	12.77	Degrees C
Battery Inst Battery Lev	els perature Reading	<u>18</u>			Bead		12.77	
Battery Inst Battery Lev Manual Ground Tem Bead	els <u>perature Reading</u> ohms	<u>as</u> Degrees C				ohms	12.77	Degrees C
Battery Inst Battery Lev Manual Ground Tem Bead 1	perature Reading ohms 11689	Degrees C 6.8518			9	ohms 17926	12.77	Degrees C -1.9026
Battery Inst Battery Lev Manual Ground Tem Bead 1 2	perature Reading ohms 11689 12844	Degrees C 6.8518 4.9045			9	ohms 17926 18253	12.77	Degrees C -1.9026 -2.3768
Battery Inst Battery Lev Manual Ground Tem Bead 1 2 3	perature Reading ohms 11689 12844 13802	Degrees C 6.8518 4.9045 3.4618			9	ohms 17926 18253	12.77	Degrees C -1.9026 -2.3768
Battery Inst Battery Lev Manual Ground Tem Bead 1 2 3 4	perature Reading ohms 11689 12844 13802 14719	Degrees C 6.8518 4.9045 3.4618 2.1530			9	ohms 17926 18253	12.77	Degrees C -1.9026 -2.3768
Battery Inst Battery Lev Manual Ground Tem Bead 1 2 3 4 5	perature Reading ohms 11689 12844 13802 14719	Degrees C 6.8518 4.9045 3.4618 2.1530 0.8682			9	ohms 17926 18253		Degrees C -1.9026 -2.3768
Battery Inst Battery Lev Manual Ground Tem Bead 1 2 3 4 5 6	perature Reading ohms 11689 12844 13802 14719 15701 16498	Degrees C 6.8518 4.9045 3.4618 2.1530 0.8682 -0.1586			9	ohms 17926 18253	12.77	Degrees C -1.9026 -2.3768

Contractor Name:	Sila Remediatio	n Inc.	In	nspec	tion Date:		20/08/2008
Prepared By:	A.Passalis						
Thermistor Informatio	, .						
Site Name:	FOX-5 Brought	on Thermisto	Location	_	Upper Site M	ain I andfill	
hermistor Number:		Inclination	Location		Vertical	un Eunam	
nstall Date:	8//16/2006	First Date	Event		8//21/2007	Last Date Eve	nt 8/20/200
Coordinates and Elev	ation I	V 5751	E		4603	Elev	/50
ength of Cable (m)		Cable Lead Abo	e Ground (m)	0.90	Nodal Points		1
Datalogger Serial #	02020257				Cable Serial	Number	170
Thermistor Inspecti	on						
monimotor moposti	<u> </u>	Good	N	leeds	Maintenance	•	
0							
Casing		Yes	N	lo			
Cover		Yes	N	lo			
Data Logge	or.	Yes	N	lo			
•	.	103					
Cable		Yes	N	lo			
Beads		Yes	N	lo			
Battery Ins	tallation Date		09/01/2006				
•							
Battery Lev	/els	Main	11.34			Aux <u>12</u>	2.41
Manual Ground Ten	perature Read	<u>ings</u>					
Bead	ohms	Degrees C			Bead	ohms	Degrees C
1	10757	8.4079			9	18345	-2.3122
2	12983	4.6874			10	18624	-2.8038
3	14207	2.6741			11	18917	-2.9596
						10011	2.0000
4	16028	0.4390					
5	15501	0.2241					
6	16937	-0.6745					
7	17304	-1.2078					
8	17864	-1.8177					
Observations and P	roposed Maint	<u>enance</u>					

ermistor Information e Name: FC ermistor Number: V1 stall Date: 8// cordinates and Elevation gth of Cable (m) stalogger Serial # ermistor Inspection Casing Cover Data Logger Cable Beads Battery Install	16/2006 on N	Inclination First Date	Event		Upper Site I Vertical 8//21/2007 4516 Nodal Point Cable Serial	s S I Number	
hermistor Number: V7 estall Date: 8// coordinates and Elevation ength of Cable (m) atalogger Serial # hermistor Inspection Casing Cover Data Logger Cable Beads Battery Install	7-8 16/2006 on N 7.3 C	Inclination First Date 5722 able Lead Abo Good Yes Yes Yes Yes	Event	0.90 Needs No	Vertical 8//21/2007 4516 Nodal Point Cable Seria	Last Date Ev Ele s I Number	ev
hermistor Number: V7 nstall Date: 8// coordinates and Elevation ength of Cable (m) entalogger Serial # Chermistor Inspection Casing Cover Data Logger Cable Beads Battery Install	7-8 16/2006 on N 7.3 C	Inclination First Date 5722 able Lead Abo Good Yes Yes Yes Yes	Event	0.90 Needs No	Vertical 8//21/2007 4516 Nodal Point Cable Seria	Last Date Ev Ele s I Number	ev
nstall Date: 8/ii Coordinates and Elevation Length of Cable (m) Datalogger Serial # Chermistor Inspection Casing Cover Data Logger Cable Beads Battery Install	16/2006 on N 7.3 C	First Date 5722 able Lead Abo Good Yes Yes Yes Yes	Event	0.90 Needs No	8//21/2007 4516 Nodal Point Cable Seria	s S I Number	ev
Coordinates and Elevation Length of Cable (m) Datalogger Serial # Chermistor Inspection Casing Cover Data Logger Cable Beads Battery Install	on N 7.3 C	5722 able Lead Abo Good Yes Yes Yes Yes		0.90 Needs No	Nodal Point Cable Seria	s S I Number	ev
Catalogger Serial # Chermistor Inspection Casing Cover Data Logger Cable Beads Battery Install		Good Yes Yes Yes Yes	ve Ground (m)	Needs No No	Cable Seria	l Number	1
Casing Cover Data Logger Cable Beads Battery Install	02020259	Yes Yes Yes		No No			1
Casing Cover Data Logger Cable Beads Battery Install		Yes Yes Yes		No No	Maintenanc	e	
Casing Cover Data Logger Cable Beads Battery Install		Yes Yes Yes		No No	Maintenano	e	
Cover Data Logger Cable Beads Battery Install		Yes Yes Yes		No			
Data Logger Cable Beads Battery Install		Yes Yes					
Cable Beads Battery Install		Yes		No			
Beads Battery Install							
Battery Install		Yes		No			
_				No			
	ation Date		09/01/2006	6			
Battery Levels	3	Main	11.34	4		_Aux1	12.90
Manual Ground Tempe	erature Readir	nas					
Bead	ohms	Degrees C			Bead	ohms	Degrees C
11	12514	5.1939			9	<u>18</u> 758	-2.7468
2	13631	3.6566			10	18994	-2.9933
3	15004_	1.6711					
4	16154	0.1836					
5	16760	-0.4939				_	
6	17269	-1.0647					
7	17825	-1.7381					
8	18400	-2.4181					

ontractor Name:	Sila Remediatio	n Inc.	Inspe	ction Date:		21/08/2008
epared By:	A.Passalis					
ermistor Informat	ion					
te Name:	FOX-5 Broughte		cation		Tier II Disposal	Facility
ermistor Number stall Date:	09/01/2006	Inclination First Date Eve	ent	Vertical 8//21/2007	Last Date Ev	ent 8/20/2
ordinates and Ele		9749	E	15528		
ngth of Cable (m)		Cable Lead Above	Ground (m) 0.65	Nodal Point		
atalogger Serial #	02020261			Cable Seria	i Number	1
	4					
ermistor Inspec	<u>tion</u>	Good	Needs	s Maintenanc	e	
Casing		Yes	No			
Cover		Yes	No			
Data Log	ger	Yes	No			
Cable		Yes	No			
Beads		Yes	No			
Battery Ir	stallation Date		09/01/2006			
Battery L	evels	Main	11.34		_Aux1	2.77
anual Ground Te	emperature Read	inas				
Bead	ohms	Degrees C		Bead	ohms	Degrees C
1	12965	4.6700		9	18572	-2.2665
2	12368	5.6505		10	19112	-3.0843
3	13265	4.1709				
4	14556	2.3760				
5	16056	0.2418				
6_	16878	-0.6745				
7	17623	-1.5765				
8	18147	-2.2142				
bservations and	Proposed Maint	enance				

Contractor Name:	Sila Remediation Inc.	Inspection Date:	21/08/2008
Prepared By:	A.Passalis		

Thermistor Information

Site Name:	FOX-5 Brough	ton	Thermistor Location			Middle Site	ier II Disposa	l Facility	
Thermistor Number:	VT-10		Inclination			Vertical			
Install Date:	09/01/2006		First Date Event			8//21/2007	Last Date Ev	vent	8/20/2008
Coordinates and Elev	/ation	N	9773	_ E		15545	E	lev	314
Length of Cable (m)	7.4	Cable	Lead Above Ground ((m)	0.65	Nodal Point	3		10
Datalogger Serial #	02020230					Cable Seria	Number		1704

Thermistor Inspection

	Good	Needs Maintenanc	e	
Casing	Yes	No		
Cover	Yes	No		
Data Logger	Yes	No		
Cable	Yes	No		
Beads	Yes	No		
Battery Installation Date	09/01	1/2006		
Battery Levels	Main	11.34	_Aux	12.90

Manual Ground Temperature Readings

Bead	ohms	Degrees C
1	10741	8.4733
2	381.0742	-
3	12297	5.7378
4	12395	5.4708
5	14153	-96.1851
6	14928	1.7741
7	16524	-0.2068
8	17277	-1.0442

Bead	ohms	Degrees C
9	17849	-1.7201
10	17821	-2.1059
1		

Observations	and	Dropoedd	Maintonanco

<u>Observat</u>	<u>ions and Propos</u>	<u>ed Maintenance</u>			
	-				

Name	Elev 3
Inclination Vertical Inclination Vertical Inclination Stall Date: 09/01/2006 First Date Event 8//21/2007 Last pordinates and Elevation N 9779 E 15508 Inclination Event Secondary Inclination N 9779 E 15508 Inclination Inc	st Date Event 8/20/200 Elev 3
The Name	st Date Event 8/20/200 Elev 3
Stall Date:	Elev 3
Description N 9779 E 15508 Description Gable (m) 6.8 Cable Lead Above Ground (m) 0.60 Nodal Points Cable Serial Number No Cable Serial Number Cable Serial Number No Cable Se	Elev 3
Acade Cabl	
Hermistor Inspection Good Needs Maintenance Casing Yes No Cover Yes No Data Logger Yes No Cable Yes No Beads Yes No Battery Installation Date 09/01/2006 Battery Levels Main 11.34 Aux Manual Ground Temperature Readings Bead ohms Degrees C Bead o	mber 17
Casing Yes No Cover Yes No Data Logger Yes No Cable Yes No Beads Yes No Battery Installation Date 09/01/2006 Battery Levels Main 11.34 Aux Manual Ground Temperature Readings Bead ohms Degrees C Bead o	
Good Needs Maintenance	
Casing Yes No Cover Yes No Data Logger Yes No Cable Yes No Beads Yes No Battery Installation Date 09/01/2006 Battery Levels Main 11.34 Aux Ianual Ground Temperature Readings Bead ohms Degrees C Bead o	
Cover Yes No Data Logger Yes No Cable Yes No Beads Yes No Battery Installation Date 09/01/2006 Battery Levels Main 11.34 Aux Manual Ground Temperature Readings Bead ohms Degrees C Bead o	
Cable Yes No Beads Yes No Battery Installation Date 09/01/2006 Battery Levels Main 11.34 Aux Manual Ground Temperature Readings Bead ohms Degrees C Bead o	
Beads Yes No Battery Installation Date 09/01/2006 Battery Levels Main 11.34 Aux Manual Ground Temperature Readings Bead ohms Degrees C Bead o	
Battery Installation Date 09/01/2006 Battery Levels Main 11.34 Aux Manual Ground Temperature Readings Bead ohms Degrees C Bead o	
Battery Levels Main 11.34 Aux Manual Ground Temperature Readings Bead ohms Degrees C Bead o	
Manual Ground Temperature Readings Bead ohms Degrees C Bead o	
Manual Ground Temperature Readings Bead ohms Degrees C Bead o	x 12.41
Bead ohms Degrees C Bead o	
1 10298 9.3724 9 1	hms Degrees C
	7476 -1.3689
2 10030 9.4103	
3 11231 7.5700	
4 12306 5.6904	
5 13525 3.7165	
6 14970 1.6309	
7 16122 -0.1205	
8 16876 -0.8835	
Observations and Proposed Maintenance	

Contractor Name:	Sila Remediation Inc.	Inspection Date:	21/08/2008
Prepared By:	A.Passalis_		

Thermistor Information

Site Name:	FOX-5 Brough	ton Thermistor Location		Middle Site 7	ier II Disposal Facility	
Thermistor Number:	VT-12	Inclination		Vertical		
Install Date:	09/01/2006	First Date Event		8//21/2007	Last Date Event	8/20/2008
Coordinates and Elev	vation	N 9812	E	15485	Elev	310
Length of Cable (m)	10	Cable Lead Above Ground (m	1) 0.45	Nodal Points	3	15
Datalogger Serial #	02020270			Cable Serial	Number	1706

Thermistor Inspection

	Good	Needs Maintenand	e	
Casing	Yes	No		
Cover	Yes	No		
Data Logger	Yes	No		
Cable	Yes	No		
Beads	Yes	No		
Battery Installation Date	08/0	01/2006		
Battery Levels	Main	11.34	_Aux	12.29

Manual Ground Temperature Readings

Bead	ohms	Degrees C
1	10960	7.7103
2	10631	8.5110
3	12956	4.6051
4	13139	4.4105
5	15444	1.0925
6	16395	0.1763
7	17318	-1.1796
8	17910	-1.8640

Bead	ohms	Degrees C
9	18518	-2.5603
10	19107	-3.1598
11	19647	-4.2150
12	19677	-4.2598
13	19954	-4.6349
14	20157	-4.9108
15	20452	-5.3104

Observations and Propo	osed Maintenance
------------------------	------------------

<u>oservati</u>	servations and Proposed Maintenance		

APPENDIX F Monitoring Well Sampling Logs

Site Name:	FOX-5	Broughton Island	
Date of Sampling Event:			14:30
Names of Samplers:	A.Passalis		
Landfill Name:	Middle Site		
Monitoring Well ID:	BMW #5		
Sample Number:	200808-148		
Condition of Well:	Good		
Measured Data			
Well pipe height above ground	50		
(cm)=			
Diameter of well (cm)=	5		
Depth of well installation (cm)=	460		-
(from ground surface)			
Length screened section (cm)=			
Depth to top of screen (cm)=	60		
(from ground surface)			
Depth to water surface (cm)=	124	Measurement method: (meter,	Heron Interface Meter
(from top of pipe)		tape, etc)	
Static water level (cm)=	74		
(below ground surface)			
Measured well refusal depth (cm)=		Evidence of sludge or siltation:	No
(from ground surface)		1	
Thickness of water column (cm)=	121		
Static volume of water in well (mL)	2372		
Free product thickness (mm)=	0	Measurement method: (meter,	Heron Interface Meter
Purging: (Y/N)	Y	Purging/Sampling Equipment:	Waterra tubing & foot
			valve
Volume Purged Water (mL)=	4000		
Decontamination required: (Y/N)	N	dedicated sampling equipment	
Number washes:			
Number rinses:			
Final pH=	6.0		
Final Conductivity (uS/cm)=			
Final Temperature (degC)=			
Turbidity (NTU)=			

Site Name:	FOX-5	Broughton Island	
Date of Sampling Event:	21/08/2008		13:45
Names of Samplers:	A.Passalis	I IIII	10.10
Landfill Name:	Middle Site		
Monitoring Well ID:	MW #6		
Sample Number:	200808-145		
Condition of Well:	Good	-	
Measured Data			
Well pipe height above ground	50		
(cm)=			
Diameter of well (cm)=	5		
Depth of well installation (cm)=	470		
(from ground surface)			
Length screened section (cm)=	300		
Depth to top of screen (cm)=	50		
(from ground surface)			
Depth to water surface (cm)=	139	Measurement method: (meter,	Heron Interface Meter
(from top of pipe)		tape, etc)	
Static water level (cm)=	89		
(below ground surface)			
Measured well refusal depth (cm)=	204	Evidence of sludge or siltation:	No
(from ground surface)			
	_		
		s.	
Thickness of water column (cm)=	115		
Static volume of water in well (mL)	2254		
	_		
Free product thickness (mm)=	0	Measurement method: (meter,	Heron Interface Meter
Purging: (Y/N)		Purging/Sampling Equipment:	Waterra tubing & foot
			valve
Volume Purged Water (mL)=	3500		
Decontamination required: (Y/N)	N	dedicated sampling equipment	
Number washes:	na		
Number rinses:	na		
Final pH=	6.2		
Final Conductivity (uS/cm)=	99		
Final Temperature (degC)=	1.3		
Turbidity (NTU)=	56	-	

Site Name:	FOX-5	Broughton Island	
Date of Sampling Event:			13:00
Names of Samplers:	A.Passalis		
Landfill Name:	Middle Site		
Monitoring Well ID:	MW #7		
Sample Number:	200808-142		-
Condition of Well:	Good		
Measured Data			
Well pipe height above ground			
(cm)=			
Diameter of well (cm)=	5		-
Depth of well installation (cm)=			
(from ground surface)			
Length screened section (cm)=			
Depth to top of screen (cm)=	40		_
(from ground surface)			
` <u> </u>			
Depth to water surface (cm)=	153	Measurement method: (meter,	Heron Interface Meter
(from top of pipe)		tape, etc)	
Static water level (cm)=			
(below ground surface)			
Measured well refusal depth (cm)=		Evidence of sludge or siltation:	No
(from ground surface)			
Thickness of water column (cm)=	103		
Static volume of water in well (mL)	2019		
Free product thickness (mm)=	0	Measurement method: (meter,	Heron Interface Meter
Purging: (Y/N	Y	Purging/Sampling Equipment:	
			valve
Volume Purged Water (mL)=			
Decontamination required: (Y/N		dedicated sampling equipment	
Number washes	na na		
Number rinses	na		
Final pH=	6.2		
Final Conductivity (uS/cm)=	208		
Final Temperature (degC)=	1.0		
Turbidity (NTU)=			

Site Name:	FOX-5	Broughton Island	
Date of Sampling Event:	21/08/2008		12:00
Names of Samplers:	A.Passalis		
Landfill Name:	Middle Site		
Monitoring Well ID:	MW #8		
Sample Number:	200808-137		
Condition of Well:	Good		
Measured Data			
Well pipe height above ground	50		
(cm)=			
Diameter of well (cm)=	5		
Depth of well installation (cm)=	470		
(from ground surface)			
Length screened section (cm)=	300		
Depth to top of screen (cm)=	45		
(from ground surface)			
(g. ca.na ca.nacc)			
Depth to water surface (cm)=	130	Measurement method: (meter,	Heron Interface Meter
(from top of pipe)	.00	tape, etc)	rioren mendes meter
Static water level (cm)=	80	tapo, etc)	
(below ground surface)	00		
Measured well refusal depth (cm)=	201	Evidence of sludge or siltation:	No
(from ground surface)	201	Evidence of eladge of elitation.	140
(Horri ground surface)			
Thickness of water column (cm)=	121		
Static volume of water in well (mL)	2372		
· ·			
Free product thickness (mm)=	0	Measurement method: (meter,	Heron Interface Meter
Purging: (Y/N)	Υ	Purging/Sampling Equipment:	Waterra tubing & foot
			valve
Volume Purged Water (mL)=	5000		
Decontamination required: (Y/N)	N	dedicated sampling equipment	
Number washes:	na		
Number rinses:	na		
Final pH=	5.5		
Final Conductivity (uS/cm)=	88		
Final Temperature (degC)=	1.7		
Turbidity (NTU)=	21		
raibiaity (1410)–	۷ ا		

Site Name:	FOX-5	Broughton Island	
Date of Sampling Event:	21/08/2008		11:30
Names of Samplers:	A.Passalis		
Landfill Name:	Middle Site		
Monitoring Well ID:	MW #9		
Sample Number:	200808-134		
Condition of Well:	Good		· · · · · ·
			·
Measured Data	_		
Well pipe height above ground	55		
(cm)=			
Diameter of well (cm)=	5		
Depth of well installation (cm)=	460		
(from ground surface)			
Length screened section (cm)=	300		
Depth to top of screen (cm)=	50		
(from ground surface)			
Depth to water surface (cm)=	159	Measurement method: (meter,	Heron Interface Meter
(from top of pipe)		tape, etc)	
Static water level (cm)=	104		
(below ground surface)			
Measured well refusal depth (cm)=	184	Evidence of sludge or siltation:	No
(from ground surface)			
Thickness of water column (cm)=	80		
Static volume of water in well (mL)	1568		
Free product thickness (mm)=	0	Measurement method: (meter,	Heron Interface Meter
Purging: (Y/N)	Υ	Purging/Sampling Equipment:	Waterra tubing & foot
			valve
Volume Purged Water (mL)=			
Decontamination required: (Y/N)	N	dedicated sampling equipment	
Number washes:	na		
Number rinses:	na		
Final pH=	5.5		
Final Conductivity (uS/cm)=	65		
Final Temperature (degC)=	1.6		
Turbidity (NTU)=	74		

Site Name:	FOX-5	Broughton Island	
Date of Sampling Event:	20/08/2008		18:00
Names of Samplers:	A.Passalis	-	
Landfill Name:	US Main Landfill		
Monitoring Well ID:	BMW #10		
Sample Number:	200808-130		
Condition of Well:	Good		_
			_
Measured Data			
Well pipe height above ground (cm)=	30		-
Diameter of well (cm)=	5		
Depth of well installation (cm)=	450		
(from ground surface)	.50		
Length screened section (cm)=	100		
Depth to top of screen (cm)=	56		
(from ground surface)			
Depth to water surface (cm)=	89	Measurement method: (meter,	Heron Interface Meter
(from top of pipe)		tape, etc)	
Static water level (cm)=	59	_	
(below ground surface)			
Measured well refusal depth (cm)=	208	Evidence of sludge or siltation:	No
(from ground surface)			
Thickness of water column (cm)=	149		
Static volume of water in well (mL)	2920		
		-	
Free product thickness (mm)=	0	Measurement method: (meter,	Heron Interface Meter
Purging: (Y/N)	Υ	Purging/Sampling Equipment:	Waterra tubing & foot
Volume Burged Water (ml.)=	4000		valve
Volume Purged Water (mL)= Decontamination required: (Y/N)		dodicated sampling aguirment	
Number washes:		dedicated sampling equipment	_
	na		
Number rinses:	<u>na</u>		
Final pH=	6.3		
Final Conductivity (uS/cm)=	53		
Final Temperature (degC)=			
Turbidity (NTU)=			
Turbidity (NTO)=	04		

Site Name:	FOX-5	Broughton Island	
Date of Sampling Event:	20/08/2008		14:45
Names of Samplers:	A.Passalis		
Landfill Name:	US Main Landfill		
Monitoring Well ID:	MW #11		
Sample Number:	200808-118		
Condition of Well:	Good		
Measured Data			
Well pipe height above ground (cm)=	100		
Diameter of well (cm)=	5		
Depth of well installation (cm)=	470		
(from ground surface)			
Length screened section (cm)=	300		
Depth to top of screen (cm)=	60		
(from ground surface)			
Depth to water surface (cm)=	219	Measurement method: (meter,	Heron Interface Meter
(from top of pipe)		tape, etc)	_
Static water level (cm)=	119		
(below ground surface)			
Measured well refusal depth (cm)=	181	Evidence of sludge or siltation:	No
(from ground surface)			
Thickness of water column (cm)=	62		
Static volume of water in well (mL)	1215		
Static voidine of water in well (IIIL)	1210		
Free product thickness (mm)=	0	Measurement method: (meter,	Heron Interface Meter
The product and the control (many			
Purging: (Y/N)	Υ	Purging/Sampling Equipment:	•
			valve
Volume Purged Water (mL)=			
Decontamination required: (Y/N)		dedicated sampling equipment	
Number washes:	na		
Number rinses:	<u>n</u> a		
Final pH=			
Final Conductivity (uS/cm)=	56		
Final Temperature (degC)=			
Turbidity (NTU)=	24		

Site Name:	FOX-5	Broughton Island	
Date of Sampling Event:	20/08/2008		15:30
Names of Samplers:	A.Passalis		
Landfill Name:	US Main Landfill		
Monitoring Well ID:	MW #12		
Sample Number:	200808-122		
Condition of Well:	Good		
Measured Data			
Well pipe height above ground (cm)=	35		
Diameter of well (cm)=	5		
Depth of well installation (cm)=	460		
(from ground surface)			
Length screened section (cm)=	300		
Depth to top of screen (cm)=	60		
(from ground surface)			
Depth to water surface (cm)=	Dry	Measurement method: (meter,	Heron Interface Meter
(from top of pipe)		tape, etc)	
Static water level (cm)=	•		
(below ground surface)			
Measured well refusal depth (cm)=	126	Evidence of sludge or siltation:	na
(from ground surface)			
Thickness of water column (cm)=	0		
Static volume of water in well (mL)	0		
Free product thickness (mm)=	0	Measurement method: (meter,	Heron Interface Meter
	,,		
Purging: (Y/N)		Purging/Sampling Equipment:	
Volume Purged Water (mL)=			
Decontamination required: (Y/N)		dedicated sampling equipment	
Number washes:	na		
Number rinses:	na		
Final PH=	na na		
Final Conductivity (uS/cm)=			
Final Temperature (degC)=			
Turbidity (NTU)=	na		

Site Name:	FOX-5	Broughton Island	
Date of Sampling Event:	20/08/2008	Time:	16:00
Names of Samplers:	A.Passalis		
Landfill Name:	US Main Landfill		
Monitoring Well ID:	MW #13		
Sample Number:	200808-124		
Condition of Well:	Good		
Measured Data			
Well pipe height above ground	50		
(cm)=			
Diameter of well (cm)=	5		
Depth of well installation (cm)=	460		
(from ground surface)			
Length screened section (cm)=	300		
Depth to top of screen (cm)=	60		
(from ground surface)			
Depth to water surface (cm)=	139	Measurement method: (meter,	Heron Interface Meter
(from top of pipe)		tape, etc)	
Static water level (cm)=	89		
(below ground surface)			
Measured well refusal depth (cm)=	127	Evidence of sludge or siltation:	No
(from ground surface)			
<u> </u>			
Thickness of water column (cm)=			
Static volume of water in well (mL)	745		
Free product thickness (mm)=	0	Measurement method: (meter,	Heron Interface Meter
Purging: (Y/N)	Y	Purging/Sampling Equipment:	•
			valve
Volume Purged Water (mL)=			
Decontamination required: (Y/N)		dedicated sampling equipment	
Number washes:			
Number rinses:	na		
Final pH=			
Final Conductivity (uS/cm)=			
Final Temperature (degC)=			
Turbidity (NTU)=	58		

Site Name:	FOX-5	Broughton Island	
Date of Sampling Event:	20/08/2008		16:00
Names of Samplers:	A.Passalis		
Landfill Name:	US Main Landfill		
Monitoring Well ID:	MW #14		
Sample Number:	200808-124		
Condition of Well:	Good		
Measured Data			
Well pipe height above ground	50		
(cm)=			
Diameter of well (cm)=	5		
Depth of well installation (cm)=	460		
(from ground surface)			
Length screened section (cm)=	300		
Depth to top of screen (cm)=	60		
(from ground surface)			
Depth to water surface (cm)=	139	Measurement method: (meter,	Heron Interface Meter
(from top of pipe)		tape, etc)	
Static water level (cm)=	89		
(below ground surface)			
Measured well refusal depth (cm)=	127	Evidence of sludge or siltation:	No
(from ground surface)			
Thickness of water column (cm)=	38		
Static volume of water in well (mL)	745		
Free product thickness (mm)=	0	Measurement method: (meter,	Heron Interface Meter
Purging: (Y/N)	Υ	Purging/Sampling Equipment:	Waterra tubing & foot
			valve
Volume Purged Water (mL)=	1000		
Decontamination required: (Y/N)	N	dedicated sampling equipment	
Number washes:	na		
Number rinses:	na		
Final pH=	6.8		
Final Conductivity (uS/cm)=	48		
Final Temperature (degC)=	2.6		
Turbidity (NTU)=	58		

Site Name:	FOX-5	Broughton Island	
Date of Sampling Event:	20/08/2008	Time:	9:20
Names of Samplers:	A.Passalis		
·			
Landfill Name:	SNHWLF		
Monitoring Well ID:	BMW #15		
Sample Number:	200808-109		
Condition of Well:	Good		
Measured Data			-
Well pipe height above ground	45		
(cm)=			
Diameter of well (cm)=	5		
Depth of well installation (cm)=	455		
(from ground surface)			
Length screened section (cm)=	100		
Depth to top of screen (cm)=	52		
(from ground surface)			
Depth to water surface (cm)=	122	Measurement method: (meter,	Heron Interface Meter
(from top of pipe)		tape, etc)	
Static water level (cm)=	77		
(below ground surface)			
Measured well refusal depth (cm)=	183	Evidence of sludge or siltation:	No
(from ground surface)			
Thickness of water column (cm)=	106		
Static volume of water in well (mL)	2078		
Free product thickness (mm)=	0	Measurement method: (meter,	Heron Interface Meter
Purging: (Y/N)	Υ	Purging/Sampling Equipment:	Waterra tubing & foot
			valve
Volume Purged Water (mL)=	2500		
Decontamination required: (Y/N)	N	dedicated sampling equipment	
Number washes:	na		
Number rinses:	na		
Final pH=	5.6		
Final Conductivity (uS/cm)=	117		
Final Temperature (degC)=	2.1		
Turbidity (NTU)=			
Tarblady (1410)			

Site Name:	FOX-5	Broughton Island	
Date of Sampling Event:	19/08/2008		16:30
Names of Samplers:	A.Passalis		
Landfill Name:	SNHWLF		
Monitoring Well ID:	BMW #16		
Sample Number:	190808-103		
Condition of Well:	Good		
Measured Data			
Well pipe height above ground	40		
(cm)=			
Diameter of well (cm)=	5		
Depth of well installation (cm)=	446		
(from ground surface)			
Length screened section (cm)=	100		
Depth to top of screen (cm)=	46		
(from ground surface)			
Depth to water surface (cm)=	92	Measurement method: (meter,	Heron Interface Meter
(from top of pipe)		tape, etc)	
Static water level (cm)=	52		
(below ground surface)			
Measured well refusal depth (cm)=	180	Evidence of sludge or siltation:	No
(from ground surface)			
Thickness of water column (cm)=	128		
Static volume of water in well (mL)	2509		
Free product thickness (mm)=	0	Measurement method: (meter,	Heron Interface Meter
Purging: (Y/N)		Purging/Sampling Equipment:	Waterra tubing & foot
			valve
Volume Purged Water (mL)=	3000		
Decontamination required: (Y/N)	N	dedicated sampling equipment	
Number washes:	na		
Number rinses:	na		
Final pH=	5.5		
Final Conductivity (uS/cm)=	382		
Final Temperature (degC)=	2.1		
Turbidity (NTU)=	44		
Tarbiany (1110)			

Site Name:	FOX-5	Broughton Island	
Date of Sampling Event:	19/08/2008		18:00
Names of Samplers:	A.Passalis		
Landfill Name:	SNHWLF		
Monitoring Well ID:	MW #17		
Sample Number:	190808-106		
Condition of Well:	Good		
Measured Data			
Well pipe height above ground	30		
(cm)=			
Diameter of well (cm)=	5		
Depth of well installation (cm)=	446		
(from ground surface)			
Length screened section (cm)=	200		
Depth to top of screen (cm)=	60		
(from ground surface)			
Depth to water surface (cm)=	169	Measurement method: (meter,	Heron Interface Meter
(from top of pipe)		tape, etc)	
Static water level (cm)=	139		
(below ground surface)			
Measured well refusal depth (cm)=	169	Evidence of sludge or siltation:	No
(from ground surface)			
This leaves (see Leave (see)			
Thickness of water column (cm)=	30		
Static volume of water in well (mL)	588		
Free product thickness (mm)=	0	Measurement method: (meter,	Heron Interface Meter
Purging: (Y/N)	Υ	Purging/Sampling Equipment:	Waterra tubing & foot
- a.gg. (,	-		valve
Volume Purged Water (mL)=	900		
Decontamination required: (Y/N)	N	dedicated sampling equipment	
Number washes:	na		
Number rinses:	na		
. 1			
Final pH=	6		
Final Conductivity (uS/cm)=	135	 	
Final Temperature (degC)=	2.0	 	
Turbidity (NTU)=	104	-	
Turbidity (1410)-	104		

Site Name:	FOX-5	Broughton Island	
Date of Sampling Event:	20/08/2008		11:00
		ilme:	11:00
Names of Samplers:	A.Passalis		
Landfill Name:	SNHWLF		
Monitoring Well ID:	MW #18		
Sample Number:	200808-115		
Condition of Well:	Good		
Measured Data			
Well pipe height above ground	35		
(cm)=			
Diameter of well (cm)=	5		
Depth of well installation (cm)=	460		
(from ground surface)			
Length screened section (cm)=	300		
Depth to top of screen (cm)=	60		
(from ground surface)			
Double to work and on the contract of the cont	470		
Depth to water surface (cm)=	176	Measurement method: (meter,	Heron Interface Mete
(from top of pipe)	444	tape, etc)	
Static water level (cm)=	141		
(below ground surface)	153	Fridance of cludes as silketions	
Measured well refusal depth (cm)=	155	Evidence of sludge or siltation:	No
(from ground surface)			
Thickness of water column (cm)=	12		
Static volume of water in well (mL)	235		
Free product thickness (mm)=	0	Measurement method: (meter,	Heron Interface Meter
The product unchances (min)	<u>_</u>	mededicinent metrica. (meter,	TICION INCONACE MELE
Purging: (Y/N)	Υ	Purging/Sampling Equipment:	Waterra tubing & foo
			valve
Volume Purged Water (mL)=	250		
Decontamination required: (Y/N)	N	dedicated sampling equipment	
Number washes:	na		
Number rinses:	na		
Final pH=	7.8		
Final Conductivity (uS/cm)=	132		
Final Temperature (degC)=	3.0		
Turbidity (NTU)=	546		

Site Name:	FOX-5	Broughton Island	
Date of Sampling Event:	20/08/2008		10:15
Names of Samplers:	A.Passalis		
·	-		
Landfill Name:	SNHWLF		
Monitoring Well ID:	MW #19		
Sample Number:	200808-112		
Condition of Well:	Good		
Measured Data			
Well pipe height above ground	35		
(cm)=			
Diameter of well (cm)=	5		
Depth of well installation (cm)=	460		
(from ground surface)			
Length screened section (cm)=	300		
Depth to top of screen (cm)=	60		
(from ground surface)			
Depth to water surface (cm)=	148.1	Measurement method: (meter,	Heron Interface Meter
(from top of pipe)		tape, etc)	
Static water level (cm)=	113.1		
(below ground surface)			
Measured well refusal depth (cm)=	172	Evidence of sludge or siltation:	Yes
(from ground surface)			
Thickness of water column (cm)=	59		
Static volume of water in well (mL)	1154		
Free product thickness (mm)=	0	Measurement method: (meter,	Heron Interface Meter
Purging: (Y/N)	Y	Purging/Sampling Equipment:	Waterra tubing & foot
			valve valve
Volume Purged Water (mL)=	2000		
Decontamination required: (Y/N)	N	dedicated sampling equipment	
Number washes:	na		
Number rinses:	na		
Final pH=	6.8		
Final Conductivity (uS/cm)=	75		
Final Temperature (degC)=	2.0		
Turbidity (NTU)=	631		