# Nunavut Baffin Region 2014 DEW Line Landfill Monitoring Program FOX-5 Broughton Island Final Monitoring Report

## **Prepared for:**

#### **Public Works and Government Services Canada**

#### Prepared by:



121 Granton Drive, Suite 12 Richmond Hill, Ontario L4B 3N4

February 2015

350600-515-003

Printed on Recycled Paper Containing Post-Consumer Fibre





#### **SENES Consultants**

121 Granton Drive, Suite 12 Richmond Hill, Ontario Canada L4B 3N4

> Tel 905 764 9380 Fax 905 764 9386 Email senes@senes.ca www.senes.ca

> > C.F. GRAVELLE

350600-515

19 February 2015

Public Works and Government Services Canada Western Region – Environmental Services 5<sup>th</sup> Floor, 10025 Jasper Avenue ATB Financial Plaza North Tower Edmonton, AB, T5J 1S6

Attention:

Ms. Liana Smith

Project Manager

RE:

**Final Monitoring Report** 

Baffin Region Nunavut DEW LINE Landfill Monitoring Program

Fox-5 Broughton Island, NU

DND Project #: DLCLFMP2 (QIKIQ14)

Dear Ms. Smith:

Please find enclosed the Final Monitoring Report for the 2014 Landfill Monitoring Program at the former FOX-5 DEW Line site located on Broughton Island in Nunavut.

Regards,

**SENES Consultants** 

Stephen J. Borcsok, P.Eng.

Environmental Engineer

Charles F. Gravelle, M.Sc.E.

Senior Geotechnical Engineer

#### **EXECUTIVE SUMMARY**

SENES Consultants (SENES) was retained by Public Works and Government Services Canada (PWGSC) on behalf of the Department of National Defence (DND) to complete the 2014 landfill monitoring at the former FOX-5 DEW Line Site. This site is located on Broughton Island, off the east coast of Baffin Island in Nunavut.

The former DEW Line site was decommissioned in 1991 and a remotely operated North Warning System (NWS) Short Range Radar Station has been constructed in its vicinity. Environmental cleanup, demolition, and remediation of the old facilities were completed between 2001 and 2006. Three landfills constructed as part of these works, namely the Middle Site Tier II Soil Disposal Facility and Non-Hazardous Waste Landfill, Main Landfill, and Station Non-Hazardous Landfill.

The DEW Line landfill monitoring program is divided into three phases: Phase I (yearly for five years following the completion of remediation activities at the site), Phase II (years 7, 10, 15, and 25 following completion of remediation activities), and Phase III (to be determined when Phase II is completed). This 2014 monitoring event represents the year 7 event as part of Phase II of the monitoring program, however it has been completed in year 8 due to a delay in the monitoring program at this site.

The scope of monitoring work at each landfill noted above included:

- A visual inspection of the landfill;
- Collection of soil samples from each landfill;
- Collection of groundwater samples from each landfill; and
- Collection of thermal data from vertical thermistor installations at each landfill (only at Middle Site and Main landfills).

The performance of each landfill was assessed using the results of this inspection and comparison of these results to those of previous monitoring events. Trends in physical changes to the landfill observed during the visual inspection, and trends in concentrations of selected parameters in soil and groundwater over time were analyzed to determine if each landfill is performing as designed and what, if any remedial actions are required.

Performance of each landfill was assessed and rated as acceptable, marginal, significant, or unacceptable. These ratings indicate the potential for failure of the landfill, with acceptable representing no failure potential, marginal representing low to moderate failure potential, significant representing imminent failure potential, and unacceptable representing failure of the landfill has already occurred.

The results of this monitoring program indicate the performance of the Middle Site Tier II Soil Disposal Facility and Non-Hazardous Waste Landfill is acceptable. Regular scheduled monitoring of this landfill should be continued. No remedial actions are required at this time.

The results of this monitoring program indicate the performance of the Main Landfill is acceptable. Regular scheduled monitoring of this landfill should be continued. No remedial actions are required at this time.

The results of this monitoring program indicate the performance of the Station Non-Hazardous Waste Landfill is acceptable. Regular scheduled monitoring of this landfill should be continued. No remedial actions are required at this time.

# TABLE OF CONTENTS

|     |                          |                                                                                                                                                                                                                    | <u>Page No.</u>                               |
|-----|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|
| EXE | CUTIV                    | E SUMMARY                                                                                                                                                                                                          | I                                             |
| TAB | LE OF                    | CONTENTS                                                                                                                                                                                                           | III                                           |
| 1.0 | 1.1<br>1.2<br>1.3<br>1.4 | KGROUND  Objective of Study  Scope of Work  Site Geology, Hydrogeology and Hydrology  Site Land-Use Description                                                                                                    | 1-1<br>1-1<br>1-1<br>1-2                      |
|     | 1.5<br>1.6<br>1.7<br>1.8 | Field Program Staff and Field Schedule  Weather Conditions  Project References  Report Structure                                                                                                                   | 1-3<br>1-3                                    |
| 2.0 | APPI<br>2.1              | ROACH & METHODOLOGY (GENERAL)                                                                                                                                                                                      | 2-1<br>2-1<br>2-1<br>2-2<br>2-3<br>2-4        |
|     | 2.2<br>2.3               | Field Notes and Data (to be included as Appendix B)                                                                                                                                                                | 2-6                                           |
| 3.0 |                          | DLE SITE TIER II SOIL DISPOSAL FACILITY/NON-HAZARDOUS DFILL  Landfill Description  Summary of Work Conducted  3.2.1 Visual Inspection  3.2.2 Soil Sampling.  3.2.3 Groundwater Sampling  3.2.4 Thermal Monitoring. | 3-1<br>3-1<br>3-1<br>3-1<br>3-1<br>3-1<br>3-2 |
|     | 3.3                      | Results of the Monitoring Program                                                                                                                                                                                  | 3-3<br>3-3<br>3-3<br>3-3                      |
|     | 3.4                      | Soil Sampling                                                                                                                                                                                                      | 3-7                                           |

|     |      |        | 3.4.1.3 Soil Trend Analysis by Parameter and Discussion of Trends | 3-9  |
|-----|------|--------|-------------------------------------------------------------------|------|
|     |      | 3.4.2  | Groundwater Sampling                                              | 3-10 |
|     |      |        | 3.4.2.1 Monitoring Well Sampling/Inspection Logs                  | 3-10 |
|     |      |        | 3.4.2.2 Water Levels/Groundwater Flow                             |      |
|     |      |        | 3.4.2.3 Laboratory Analytical Results                             | 3-11 |
|     |      |        | 3.4.2.4 Discussion of Results by Parameter                        |      |
|     |      |        | 3.4.2.5 Groundwater Trend Analysis by Parameter & Discussion of   |      |
|     |      |        | Trends                                                            | 3-12 |
|     |      | 3.4.3  | Thermal Monitoring                                                | 3-13 |
|     |      |        | 3.4.3.1 Thermistor Annual Maintenance Reports                     | 3-13 |
|     |      |        | 3.4.3.2 Summary of Findings from Annual DEW Line Thermal          |      |
|     |      |        | Reports                                                           |      |
|     | 3.5  | Conclu | usions/Overall Performance of the Landfill                        | 3-13 |
|     | 3.6  | Recon  | nmendations/Next Steps                                            | 3-14 |
| 4.0 | MAIN | LLAND  | PFILL                                                             | 11   |
| 4.0 | 4.1  |        |                                                                   |      |
|     | 4.1  |        | ill Descriptionary of Work Conducted                              |      |
|     | 4.2  |        | Visual Inspection                                                 |      |
|     |      | 4.2.1  | Soil Sampling                                                     |      |
|     |      | 4.2.2  | Groundwater Sampling                                              |      |
|     |      | 4.2.4  | Thermal Monitoring                                                |      |
|     | 4.3  |        | s of the Monitoring Program                                       |      |
|     | 4.5  | 4.3.1  | Visual Inspection                                                 |      |
|     |      | ₹.5.1  | 4.3.1.1 Stability Assessment                                      |      |
|     |      |        | 4.3.1.2 Photographic Records                                      |      |
|     |      |        | 4.3.1.3 Trend Analysis                                            |      |
|     |      |        | 4.3.1.4 Discussion of Results/Trends                              |      |
|     |      | 4.3.2  | Soil Sampling                                                     |      |
|     |      |        | 4.3.2.1 Laboratory Analytical Results                             |      |
|     |      |        | 4.3.2.2 Discussion of Results – Comparison to Baseline            |      |
|     |      |        | 4.3.2.3 Soil Trend Analysis by Parameter and Discussion of Trends |      |
|     |      | 4.3.3  | Groundwater Sampling                                              |      |
|     |      |        | 4.3.3.1 Monitoring Well Sampling/Inspection Logs                  |      |
|     |      |        | 4.3.3.2 Water Levels/Groundwater Flow                             |      |
|     |      |        | 4.3.3.3 Laboratory Analytical Results                             | 4-9  |
|     |      |        | 4.3.3.4 Discussion of Results by Parameter                        |      |
|     |      |        | 4.3.3.5 Groundwater Trend Analysis by Parameter & Discussion of   |      |
|     |      |        | Trends                                                            | 4-11 |
|     |      | 4.3.4  | Thermal Monitoring                                                | 4-12 |
|     |      |        | 4.3.4.1 Thermistor Annual Maintenance Reports                     | 4-12 |
|     |      |        | 4.3.4.2 Summary of Findings from Annual DEW Line Thermal          |      |
|     |      |        | Reports                                                           |      |
|     | 4.4  |        | usions/Overall Performance of the Landfill                        |      |
|     | 4.5  | Recon  | nmendations/Next Steps                                            | 4-12 |

| 5.0 | STA | TION NO                   | ON-HAZARDOUS WASTE LANDFILL                                       | 5-1  |  |
|-----|-----|---------------------------|-------------------------------------------------------------------|------|--|
|     | 5.1 | Landfi                    | ill Description                                                   | 5-1  |  |
|     | 5.2 | Summary of Work Conducted |                                                                   |      |  |
|     |     | 5.2.1                     | Visual Inspection                                                 |      |  |
|     |     | 5.2.2                     | Soil Sampling                                                     |      |  |
|     |     | 5.2.3                     | Groundwater Sampling                                              |      |  |
|     |     | 5.2.4                     | Thermal Monitoring                                                |      |  |
|     | 5.3 | Result                    | s of the Monitoring Program                                       |      |  |
|     |     | 5.3.1                     | Visual Inspection                                                 |      |  |
|     |     |                           | 5.3.1.1 Stability Assessment                                      |      |  |
|     |     |                           | 5.3.1.2 Photographic Records                                      |      |  |
|     |     |                           | 5.3.1.3 Trend Analysis                                            |      |  |
|     |     |                           | 5.3.1.4 Discussion of Results/Trends                              |      |  |
|     |     | 5.3.2                     | Soil Sampling                                                     | 5-5  |  |
|     |     |                           | 5.3.2.1 Laboratory Analytical Results                             | 5-6  |  |
|     |     |                           | 5.3.2.2 Discussion of Results – Comparison to Baseline            |      |  |
|     |     |                           | 5.3.2.3 Soil Trend Analysis by Parameter and Discussion of Trends |      |  |
|     |     | 5.3.3                     | Groundwater Sampling                                              |      |  |
|     |     |                           | 5.3.3.1 Monitoring Well Sampling/Inspection Logs                  |      |  |
|     |     |                           | 5.3.3.2 Water Levels/Groundwater Flow                             |      |  |
|     |     |                           | 5.3.3.3 Laboratory Analytical Results                             | 5-10 |  |
|     |     |                           | 5.3.3.4 Discussion of Results by Parameter                        |      |  |
|     |     |                           | 5.3.3.5 Groundwater Trend Analysis by Parameter & Discussion of   |      |  |
|     |     |                           | Trends                                                            | 5-12 |  |
|     | 5.4 | Concl                     | usions/Overall Performance of the Landfill                        |      |  |
|     | 5.5 | Recon                     | nmendations/Next Steps                                            | 5-13 |  |

# LIST OF TABLES

|                                                                                 | <u>Page No.</u> |
|---------------------------------------------------------------------------------|-----------------|
| Table 1.1: Summary of Multi-Year Monitoring Program                             | 1-3             |
| Table 1.2: Weather Conditions by Site                                           | 1-3             |
| Table 2.1: Summary of Monitoring Program/Requirements (by Landfill)             | 2-1             |
| Table 3.1: Summary of Work Conducted by Soil Sampling Location (Middle Site La  |                 |
| Table 3.2: Summary of Work Conducted by Groundwater Sampling Location           | (Middle Site    |
| Landfill)                                                                       |                 |
| Table 3.3: Summary of Work Conducted by Thermistor Location (Middle Site Land   |                 |
| Table 3.4: Visual Inspection Checklist (Middle Site Landfill                    |                 |
| Table 3.5: Preliminary Stability Assessment (Middle Site Landfill               |                 |
| Table 3.6: Landfill Visual Inspection Photo Log (Middle Site Landfill)          |                 |
| Table 3.7: Visual Inspection Trends (Middle Site Landfill)                      |                 |
| Table 3.8: Soil Chemical Analysis Results (Middle Site Landfill)                |                 |
| Table 3.9: Evaluation of 2014 Soil Analytical Data (Middle Site Landfill)       | 3-8             |
| Table 3.10: Evaluation of Soil Result Trends (Middle Site Landfill)             |                 |
| Table 3.11: Groundwater Levels (Middle Site Landfill)                           |                 |
| Table 3.12: Groundwater Chemical Analysis Results (Middle Site Landfill)        |                 |
| Table 3.13: Evaluation of Groundwater Analytical Results (Middle Site Landfill) |                 |
| Table 3.14: Evaluation of Groundwater Result Trends (Middle Site Landfill)      |                 |
| Table 4.1: Summary of Work Conducted by Soil Sampling Location (Main Landfill)  |                 |
| Table 4.2: Summary of Work Conducted by Groundwater Sampling Location (Main     |                 |
| Table 4.3: Summary of Work Conducted by Thermistor Location (Main Landfill)     |                 |
| Table 4.4: Visual Inspection Checklist (Main Landfill)                          |                 |
| Table 4.5: Preliminary Stability Assessment (Main Landfill)                     |                 |
| Table 4.6: Landfill Visual Inspection Photo Log (Main Landfill)                 |                 |
| Table 4.7: Visual Inspection Trends (Main Landfill)                             |                 |
| Table 4.8: Soil Chemical Analysis Results (Main Landfill)                       |                 |
| Table 4.9: Evaluation of 2014 Soil Analytical Data (Main Landfill)              |                 |
| Table 4.10: Evaluation of Soil Result Trends (Main Landfill)                    |                 |
| Table 4.11: Groundwater Levels (Main Landfill)                                  |                 |
| Table 4.12: Groundwater Chemical Analysis Results (Main Landfill)               |                 |
| Table 4.13: Evaluation of Groundwater Analytical Results (Main Landfill)        |                 |
| Table 4.14: Evaluation of Groundwater Result Trends (Main Landfill)             |                 |
| Table 5.1: Summary of Work Conducted by Soil Sampling Location (Station Landfil |                 |
| Table 5.2: Summary of Work Conducted by Groundwater Sampling Location (Stat     | ,               |
|                                                                                 |                 |
| Table 5.3: Visual Inspection Checklist (Station Landfill)                       | follows 5-2     |
| Table 5.4: Preliminary Stability Assessment (Station Landfill)                  |                 |
| Table 5.5: Landfill Visual Inspection Photo Log (Station Landfill)              |                 |
| Table 5.6: Visual Inspection Trends (Station Landfill)                          |                 |
| Table 5.7: Soil Chemical Analysis Results (Station Landfill)                    |                 |
| Table 5.8: Evaluation of 2014 Soil Analytical Data (Station Landfill)           |                 |
| Table 5.9: Evaluation of Soil Result Trends (Station Landfill)                  |                 |
| Table 5.10: Groundwater Levels (Station Landfill)                               |                 |
| · · · · · · · · · · · · · · · · · · ·                                           |                 |

| Table 5.11: Groundwater Analytical Results (Station Landfill)                                            |
|----------------------------------------------------------------------------------------------------------|
| LIST OF FIGURES                                                                                          |
| Follows                                                                                                  |
| Page No.                                                                                                 |
| Figure 1 – Site Overview1-1                                                                              |
| Figure 2 – Middle Site Area Non-Hazardous Waste Landfill and Tier II Disposal Facility3-1                |
| $Figure\ 2A-Middle\ Site\ Area\ Non-Hazardous\ Waste\ Landfill\ and\ Tier\ II\ Disposal\ Facility\ Soil$ |
| Contaminant Distribution Plan                                                                            |
| Figure 2B - Middle Site Area Non-Hazardous Waste Landfill and Tier II Disposal Facility                  |
| Groundwater Contaminant Distribution Plan                                                                |
| Figure 3 – Main Landfill4-1                                                                              |
| Figure 3A – Main Landfill Soil Contaminant Distribution Plan4-1                                          |
| Figure 3B – Main Landfill Groundwater Contaminant Distribution Plan4-1                                   |
| Figure 4 – Station Area Non-Hazardous Waste Landfill5-1                                                  |
| Figure 2A – Station Area Non-Hazardous Waste Landfill Soil Contaminant Distribution Plan 5-1             |
| Figure 2B – Station Area Non-Hazardous Waste Landfill Groundwater Contaminant Distribution               |
| Plan5-1                                                                                                  |
|                                                                                                          |
| LIST OF APPENDICES                                                                                       |
|                                                                                                          |
| Appendix A - Range of the Report and Limitation of Responsibilities Appendix B - Field Notes             |
| Appendix C - Laboratory QA/QC Reports and Certificates of Analysis                                       |
| Appendix D – Thermistor Reports                                                                          |
| Appendix E – Historical Chemistry Summary Tables (Soil)                                                  |
| Appendix F – Chemical Concentration Trend Graphs (Soil)                                                  |
| Appendix G – Historical Chemistry Summary Tables (Groundwater)                                           |
| Appendix H – Chemical Concentration Trend Graphs (Groundwater)                                           |
|                                                                                                          |

#### 1.0 BACKGROUND

SENES Consultants (SENES) was retained by Public Works and Government Services Canada (PWGSC) on behalf of the Department of National Defence (DND) to complete landfill monitoring at the former FOX-5 DEW Line Site.

The FOX-5 DEW Line site is located on the southeastern edge of Broughton Island, located off the east coast of Baffin Island. The FOX-5 site is located at 67° 33' north latitude and 63° 49' west longitude. It is located approximately 9 km east of the community of Qikiqtarjuaq and is accessible via all-terrain vehicle on a formerly maintained road. As part of the site decommissioning and remediation program three landfills, namely the Middle Site Tier II Soil Disposal Facility and Non-Hazardous Waste Landfill, Main Landfill, and Station Area Non-Hazardous Landfill were constructed to manage the site derived wastes. The location of the landfills is provided on the Site Overview in Figure 1.

#### 1.1 OBJECTIVE OF STUDY

The objective of this study was to collect and analyze post-closure landfill monitoring data for three landfills located at the FOX-5 DEW Line site located on Broughton Island, Nunavut.

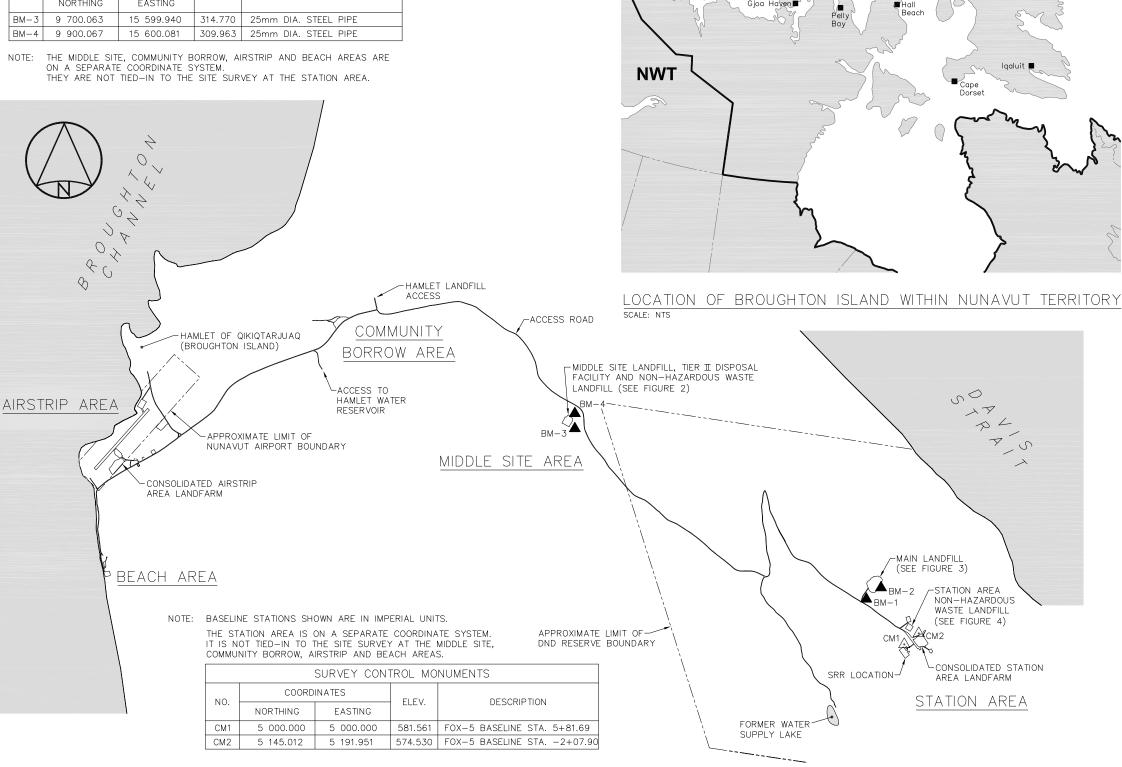
#### 1.2 SCOPE OF WORK

The scope of work for this project has been detailed in the *Terms of Reference* for DND Project # DLCLFMP2 (QIKIQ14), dated June 2014. The scope of work completed at each landfill includes:

- A visual inspection of the landfill;
- Collection of soil samples from five locations at each landfill;
- Collection of groundwater samples from five monitoring wells at each landfill; and
- Collection of thermal data from four vertical thermistor installations at the Middle Site Tier II Soil Disposal Facility and Non-Hazardous Waste Landfill, and from eight vertical thermistor locations at the Main Landfill.

#### 1.3 SITE GEOLOGY, HYDROGEOLOGY AND HYDROLOGY

Broughton Island is located within the Canadian Shield, in the Rae Domain of the Churchill Province. Bedrock in the area is composed of Paleoproterozoic granulite-facies granitoids. The edge of the Laurentide ice sheet was present in this area during the Pleistocene epoch. It is in an area of continuous permafrost with low ground ice content. Local surficial geologic conditions


| PERMANENT BENCHMARKS |           |           |         |                      |  |  |  |
|----------------------|-----------|-----------|---------|----------------------|--|--|--|
| NO.                  | COORD     | INATES    | ELEV.   | DESCRIPTION          |  |  |  |
|                      | NORTHING  | EASTING   | ELEV.   | DESCRIPTION          |  |  |  |
| BM-1                 | 5 599.643 | 4 498.140 | 514.934 | 25mm DIA. STEEL PIPE |  |  |  |
| BM-2                 | 5 749.976 | 4 692.327 | 502.600 | 25mm DIA. STEEL PIPE |  |  |  |

NOTE: THE STATION AREA IS ON A SEPARATE COORDINATE SYSTEM.

IT IS NOT TIED—IN TO THE SITE SURVEY AT THE MIDDLE SITE,

COMMUNITY BORROW, AIRSTRIP AND BEACH AREAS.

| PERMANENT BENCHMARKS |             |            |         |                      |  |  |
|----------------------|-------------|------------|---------|----------------------|--|--|
| NO.                  | COORDINATES |            | EL EV   | DESCRIPTION          |  |  |
| NO.                  | NORTHING    | EASTING    | ELEV.   | DESCRIPTION          |  |  |
| BM-3                 | 9 700.063   | 15 599.940 | 314.770 | 25mm DIA. STEEL PIPE |  |  |
| BM-4                 | 9 900.067   | 15 600.081 | 309.963 | 25mm DIA. STEEL PIPE |  |  |



■ Kugluktuk

Nunavut

#### LEGEND:

∧ CN

SURVEY CONTROL MONUMENT (2)



PERMANENT BENCHMARK LOCATION (4)



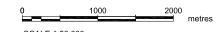
APPROXIMATE LOCATION OF



BODY OF WATER

PROPERTY BOUNDARY

#### NOTES:


- HORIZONTAL CONTROL REFERENCED TO SURVEY CONTROL MONUMENTS.
- 2. ALL ELEVATIONS REFER TO MEAN SEA LEVEL.
- 3. ALL DIMENSIONS ARE IN METRES UNLESS NOTED OTHERWISE.

#### **REVISIONS:**

| No. | Date: | Ву: | Revisions |
|-----|-------|-----|-----------|
|     |       |     |           |
|     |       |     |           |
|     |       |     |           |

#### REFERENCE:

AECOM, FILE No.: FOX-5.1 Year 6 LF MON.dwg, Feb. 2013







PUBLIC WORKS AND GOVERNMENT SERVICES CANADA

# 2014 DEW LINE MONITORING PROGRAM

FOX-5 BROUGHTON ISLAND, NUNAVUT

#### SITE OVERVIEW

| Drawn By: I.S.Z. | Approved By: |          | Project No: 350600-515-3 |
|------------------|--------------|----------|--------------------------|
| Date: FEB. 2015  | Scale:       | 1:50,000 | Drawing No: FIGURE 1     |

were observed to generally consist of thin layers of soil overlying bedrock with many rock outcrops.

Groundwater flow is seasonal, occurring mainly in the summer period of maximum active layer thaw. Groundwater is located at shallow depths and is highly affected by local permafrost conditions. Average annual precipitation on Broughton Island is 262 mm, of which over 85% consists of snow. Surface water on Broughton Island drains to Baffin Bay which surrounds the island through well-defined drainage channels present on the island. Based on the local topography, surface water at the Middle Site Landfill is expected to drain to the west into Baffin Bay, while surface water at the Main and Station Area Non-Hazardous Landfills is expected to drain to the northeast into Baffin Bay.

Based on the results of thermal data collected at the landfills, the maximum and minimum depths of active layer thaw in landfills at the FOX-5 site for the 2013 calendar year were 1.8 m and 2.4 m, respectively.

#### 1.4 SITE LAND-USE DESCRIPTION

The unmanned FOX-5 North Warning System (NWS) Short Range Radar (SRR) station is located in the vicinity of the former DEW Line site. Two landfills (Station Non-Hazardous and Main) are located near this station at the high point of the island. The third landfill (Middle Site) is located approximately halfway between the community of Qikiqtarjuaq and the FOX-5 station. Aside from the community of Qikiqtarjuaq, Broughton Island is uninhabited and consists of open tundra.

#### 1.5 FIELD PROGRAM STAFF AND FIELD SCHEDULE

The DEW Line landfill monitoring program is divided into three phases: Phase I (yearly for five years following the completion of remediation activities at the site), Phase II (years 7, 10, 15, and 25 following completion of remediation activities), and Phase III (to be determined when Phase II is completed). This 2014 monitoring event represents the year 7 event as part of Phase II of the monitoring program, however it has been completed in year 8 due to a delay in the monitoring program at this site. The monitoring program for this site is detailed in Table 1.1.

The 2014 monitoring program was completed by Messrs. Jason Mauchan and Stephen Borcsok, of SENES Consultants between 19 and 23 August 2014.

Table 1.1: Summary of Multi-Year Monitoring Program

| No. of Years After<br>Construction | Monitoring Event Number | Year                               |
|------------------------------------|-------------------------|------------------------------------|
| Prior to and during                | Baseline                | 1998, 2000, 2001, 2004, 2005, 2006 |
| 1                                  | 1                       | 2007                               |
| 2                                  | 2                       | 2008                               |
| 3                                  | 3                       | 2009                               |
| 4                                  | 4                       | 2010                               |
| 6                                  | 5                       | 2012                               |
| 7                                  | 6                       | 2013                               |
| 8                                  | 7                       | 2014*                              |
| 10                                 | 8                       | 2016                               |
| 15                                 | 9                       | 2021                               |
| 25                                 | 10                      | 2031                               |

<sup>\* -</sup> Year 7 monitoring was completed during Year 8 due to a delay in the monitoring program schedule.

#### 1.6 WEATHER CONDITIONS

Weather conditions during the site inspection are described below in Table 1.2.

**Table 1.2: Weather Conditions by Site** 

| Date           | Weather Conditions                                  | Landfills Monitored |
|----------------|-----------------------------------------------------|---------------------|
| 19 August 2014 | Partly cloudy, occasional showers, calm winds, 15°C | Middle, Station     |
| 20 August 2014 | Cloudy, light wind from east, 8°C                   | Station, Main       |
| 21 August 2014 | Cloudy, light wind from east ,8 °C                  | Middle, Main        |
| 22 August 2014 | Cloudy, moderate wind from north, 4 °C              | Middle, Main        |
| 23 August 2014 | Cloudy, moderate wind from north, 4 °C              | Middle              |

#### 1.7 PROJECT REFERENCES

"Terms of Reference. DEW Line Landfill Monitoring Program. DEW Line Sites Nunavut Baffin Region, DND Project #: DLCLFMP2 (QIKIQ14)." Prepared by Environmental Services, Public Works & Government Services Canada, Western Region, Edmonton, AB on behalf of The Department of National Defence of Canada, dated June 2014.

"FOX-5 Broughton Island Year 6 Landfill Monitoring" Prepared for Defence Construction Canada by AECOM, dated March 2013.

"Site Specific Health and Safety Plan for 2014 Nunavut Baffin Region DEW Line Landfill Monitoring Program, FOX-M Hall Beach, NU, FOX-4 Cape Hooper, NU, FOX-5 Broughton Island, NU. Prepared by SENES Consultants, dated July 2014.

"Logistics & Work Plan. Prepared for: 2014 Nunavut Baffin Region DEW Line Landfill Monitoring Program, FOX-M Hall Beach, NU, FOX-4 Cape Hooper, NU, FOX-5 Broughton Island, NU." Prepared by SENES Consultants, dated July 2014.

#### 1.8 REPORT STRUCTURE

A general overview of the approach and methodology taken during the site inspection is provided in Section 2.0 while detailed results of the monitoring program for each of the three landfills at FOX-5 are presented in Sections 3.0 through 5.0.

#### 2.0 APPROACH & METHODOLOGY (GENERAL)

#### 2.1 SUMMARY OF WORK

#### 2.1.1 Health and Safety

A Site Specific Health and Safety Plan was prepared for the 2014 site inspection by SENES Consultants and reviewed by PWGSC and DND prior to the commencement of field work. The field work component of this work was completed in accordance with this site specific health and safety plan. No health and safety incidents occurred during the site inspection.

#### 2.1.2 Field Program

The scope of the monitoring program is shown in Table 2.1 below. The number of locations where monitoring was to take place are shown in parentheses.

| Table 2.1 | : Summary of Mor | nitoring Program/F | Requirements (by I | Landfill) |
|-----------|------------------|--------------------|--------------------|-----------|
| 10.11     | ¥7• 1            | O 11               | <b>C</b> 1 4       | <b>T</b>  |

| Landfill          | Visual     | Soil         | Groundwater  | Temperature |
|-------------------|------------|--------------|--------------|-------------|
|                   | Inspection | Monitoring*  | Monitoring   | Monitoring  |
|                   |            |              |              | Locations   |
| Middle Site       | ما         | √(5)         | √(5)         | √(4)        |
| Landfill          | V          | V (3)        | V (3)        | V (4)       |
| Main Landfill     | $\sqrt{}$  | $\sqrt{(5)}$ | $\sqrt{(5)}$ | √(8)        |
| Station Non-      | J          | √(5)         | √(5)         | NA          |
| HazardousLandfill | ٧          | V (3)        | v (3)        | IVA         |

<sup>\* -</sup> two soil samples were collected at each monitoring location: one surface sample from 0-15 cm, and one subsurface sample from 40-50 cm.

#### 2.1.3 Visual Inspection

As part of the monitoring program a visual inspection of each landfill was to be conducted and a visual inspection checklist completed for each landfill site. Inspection information including Landfill Designation, Landfill Type, Date, Monitoring Event Number, Weather Conditions, and the Name of the Inspector was recorded for each landfill. The following information was recorded for each of the respective landfill locations:

- Settlement;
- Erosion;

NA – Not applicable as there are no thermistors installed at this location.

- Lateral movement;
- Sloughing of slopes;
- Cracks:
- Frost action;
- Animal burrows;
- Vegetation re-establishment on surface;
- Vegetation stress;
- Staining;
- Seepage points or ponded water;
- Debris or liner exposure;
- Condition of monitoring points; and
- Other relevant observations.

The presence of the above conditions was recorded along with their location, dimensions, extent, and description.

Photographic records were taken to document the general condition of the landfill. All photographs were referenced to existing monuments, and include a visual reference to indicate the scale of the photograph. A detailed figure of each landfill showing the results of the inspection has been created.

Historical features and conditions have been noted during previous monitoring events. Existing features were compared to these features noted in the most recent monitoring report and comparative analysis is included in this monitoring report.

#### 2.1.4 Soil Sampling

Two soil samples were collected at each sampling location: one sample from 0-15 cm depth, and one sample from 40-50 cm depth. Samples were collected from test pits manually excavated with hand tools (pick/shovel). Each soil sample was collected in one single use zip-top plastic bag and one 60 mL glass jar, which was filled with soil such that no headspace remained in the jar. Hand tools were rinsed with water between sampling locations. During sample collection, soil that had come into contact with the hand tools was discarded and not collected as part of each sample.

All soil sampling locations were backfilled after each monitoring event. All locations were photographed during sampling and after backfilling was completed, with these photographs included in the Photographic Records for the site.

Soil samples were analyzed for the following parameters:

- Petroleum Hydrocarbons (PHCs): F1-F4 fractions. (F1-F3 fractions were summed to obtain an analogous modified total petroleum hydrocarbons (TPH) concentration);
- Inorganic elements: arsenic, cadmium, chromium, cobalt, copper, lead, nickel, zinc, mercury; and
- Polychlorinated Biphenyls (PCBs Total Aroclors).

Analyses were carried out by Maxxam Analytics, an ISO 17025 certified laboratory in Mississauga, Ontario, Nepean, Ontario, and Calgary, Alberta. Duplicate sample analyses were carried out by AGAT Laboratories of Mississauga, Ontario, an ISO 17025 certified laboratory. Soil sample portions collected in 60mL glass jars were analyzed for PHC F1-F4 fractions, while the remaining portion collected in a zip-top plastic bag was analyzed for inorganic elements and PCBs. The impact on the results from using zip-top plastic bags as sampling containers is negligible.

#### 2.1.5 Groundwater Sampling

Groundwater samples were collected from each well where enough water was present to collect a sample. Wells were monitored to determine the water level and depth to bottom, and purged prior to sampling, with pH, conductivity, and temperature being measured during purging until values for these parameters have stabilized.

Wells were purged and sampled using new dedicated sampling equipment consisting of high density polyethylene (HDPE) tubing with an HDPE foot valve. No significant issues with turbidity were encountered during sampling. All tubing and foot valves were only used at one monitoring well location, and were removed from the site following sampling to prevent damage due to freezing.

Groundwater samples were analyzed for the following parameters. In cases where insufficient water was present, sampling was prioritized in the order presented below. Metals were not filtered.

- Petroleum Hydrocarbons (PHCs): F1-F4 fractions. (F1-F3 fractions have been summed to obtain an analogous total petroleum hydrocarbons (TPH) concentration);
- Inorganic elements: arsenic, cadmium, chromium, cobalt, copper, lead, nickel, zinc, mercury; and

Polychlorinated Biphenyls (PCBs – Total Aroclors).

Groundwater samples were collected in the following sampling containers:

- Metals 120 mL plastic bottle preserved with nitric acid;
- Mercury 100 mL clear glass bottle preserved with hydrochloric acid;
- PHC F1 fraction and BTEX 3 x 40 mL clear glass vials;
- PHC F2-F4 fractions 2 x 500 mL glass bottle preserved with sodium bisulphate;
- Polychlorinated Biphenyls 500 mL glass bottle with no preservative;

Analyses were carried out by Maxxam Analytics, an ISO 17025 certified laboratory in Mississauga, Ontario, Nepean, Ontario, and Calgary, Alberta. Duplicate sample analyses were carried out by AGAT Laboratories of Mississauga, Ontario, an ISO 17025 certified laboratory.

Soil and groundwater samples were kept cool and shipped in insulated coolers with ice or ice packs when possible. Samples were shipped under chain-of-custody protocols and coolers were sealed with custody seals by SENES staff prior to shipment. No issues with sample temperature were reported by the laboratories upon receipt of samples. Sample hold times were met with the exception of soil samples from the Middle Site and Main landfills, and soil samples from locations MW-18 and MW-19 at the Station Non-Hazardous Waste Landfills, which exceeded sample hold times due to errors during shipping.

#### 2.1.6 Comparison of Soil and Groundwater Monitoring Data

Soil and groundwater monitoring data collected during the 2014 monitoring program has been compared to data collected during previous monitoring events, as well as background concentrations (soil only), baseline average concentrations (soil and groundwater), and DEW Line Cleanup Criteria (soil only).

Background chemical concentrations were determined from soil sampling conducted by Environmental Science Group (ESG) in 1984 and 1990, and represent soil chemical conditions in the area that have not been impacted by site activities.

Baseline average concentrations (BAC) represent existing soil and groundwater chemistry at the landfill areas prior to and during remediation.

The DEW Line Cleanup Criteria were developed as part of the DEW Line Cleanup Protocol to provide a consistent approach across all DEW Line sites that is generally protective of the Arctic ecosystem. The Cleanup Criteria differentiates between Tier I and Tier II soils. Soil containing

parameters at concentrations above the Tier I Criteria but below the Tier II Criteria was acceptable for placement in a non-hazardous waste landfill, while soil containing parameters at concentrations above the Tier II Criteria are to be treated/disposed of in a manner that precludes contact with the Arctic ecosystem.

Comparison to background, baseline, and Tier I/II DEW Line Cleanup Criteria have been included in the summary chemical tables in this report. Parameter concentrations in soil exceeding background levels are not discussed in this report as their presence does not necessarily indicate that contaminant migration from a landfill was or is occurring. Concentrations above background levels may be as a result of site activities conducted prior to the construction of the landfill. However baseline concentrations account for site activities that occurred prior to and during construction of the landfill, and parameter concentrations above these levels may indicate contaminant migration is occurring.

#### 2.1.7 Thermal Monitoring

Thermal monitoring and thermal data downloading was completed at the Main and Middle Site Landfills. No thermal monitoring was completed at the Station Non-Hazardous Waste Landfill as this landfill does not have thermistor installations. Monitoring consisted of the following steps:

- Inspection of the condition of thermistor installations, noting their condition, damage if applicable, and any specific repair requirements;
- Retrieval of ground temperature data from the thermistor installations using a personal computer equipped with the appropriate software (ProLog) to retrieve the data at each location (data was reviewed in the field to ensure completeness);
- Collection of manual readings of Thermistors using ProLog software;
- Measurement of the distance of each thermistor cable above the ground;
- Replacement of batteries (following retrieval of ground temperature data) in dataloggers. The following batteries are required for each datalogger:
  - o 1 Ultra-Logger Lithium Battery 5.2 amp 12 volt, Lakewood model identification ULB-15;
  - o 1 Ultra-Logger Lithium Battery 9 volt, Lakewood model identification ULB-1; and
- Resetting datalogger memory to zero and restarting readings. The system was monitored using the personal computer to ensure that the dataloggers were functioning and temperatures were being recorded.

Following the site inspection, the downloaded data was forwarded to DND to be analyzed by Tetra Tech EBA. The results of these analyses have been summarized in this report, and the thermistor reports are provided in Appendix D.

#### 2.2 FIELD NOTES AND DATA (TO BE INCLUDED AS APPENDIX B)

Field notes for each landfill monitored as part of this program are included in Appendix B. The checklist templates were included in the Terms of Reference for the program and copies were provided by DND staff prior to use during the monitoring program.

#### 2.3 QA/QC

Intra-laboratory comparison of soil and groundwater analytical results has been completed by Maxxam Analytics as part of their standard internal QA/QC procedures, and are provided in the Certificates of Analysis in Appendix A. Blind duplicates were collected for approximately 10% of the soil and groundwater samples collected, and were submitted to a second laboratory, AGAT Laboratories of Mississauga, Ontario, an ISO 17025 certified laboratory, for interlaboratory comparison of results. Each duplicate sample was also sent to the ESG Ops Centre in Kingston, Ontario for archiving.

The relative percent difference (RPD) was calculated for the analytical results of duplicate samples submitted for inter-laboratory comparison. The RPD is calculated to assess the precision of duplicate measurements. RPD values under 30% are considered acceptable levels of precision for this program as specified in the Terms of Reference for the program. A discussion of the results for duplicate samples and RPD values are provided with the analytical results for each landfill.

# 3.0 MIDDLE SITE TIER II SOIL DISPOSAL FACILITY/NON-HAZARDOUS WASTE LANDFILL

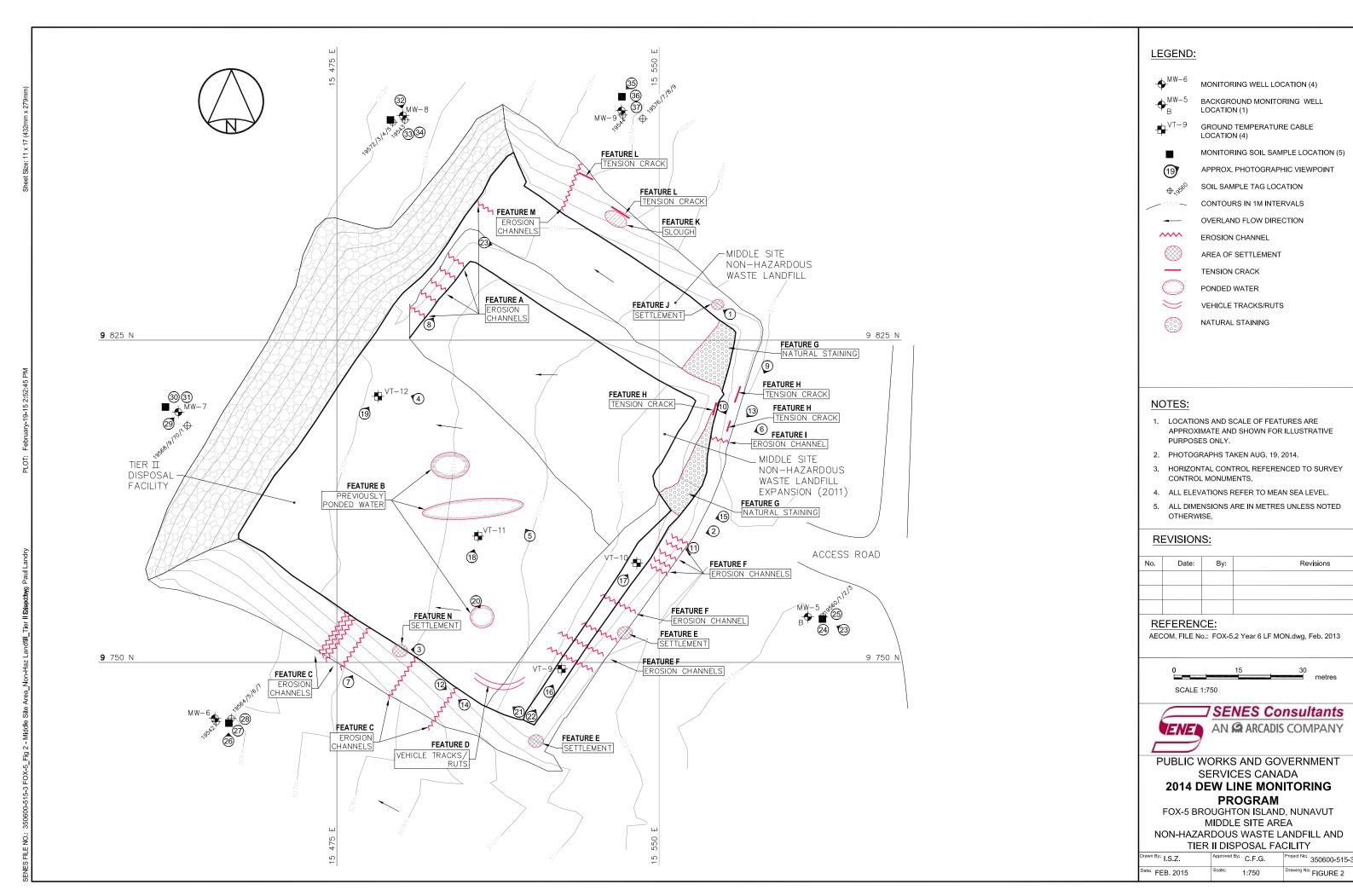
#### 3.1 LANDFILL DESCRIPTION

The Middle Site Tier II Soil Disposal Facility/Non-Hazardous Waste Landfill (herein referred to as the Middle Site Landfill) is located along the road between Qikiqtarjuaq and the station area on the southeast corner of Broughton Island. The conjoined facility was newly constructed to contain non-hazardous debris derived from demolition and surface debris pickup, and to dispose of Tier II contaminated soil. A detailed drawing of this landfill is provided in Figure 2. The historical chemical results for soil samples collected at this landfill are shown in plan on Figure 2A. The historical chemical results for groundwater samples collected at this landfill are shown in plan on Figure 2B.

#### 3.2 SUMMARY OF WORK CONDUCTED

#### 3.2.1 Visual Inspection

The visual inspection of the landfill was completed with no deviations from the visual inspection work plan.


#### 3.2.2 Soil Sampling

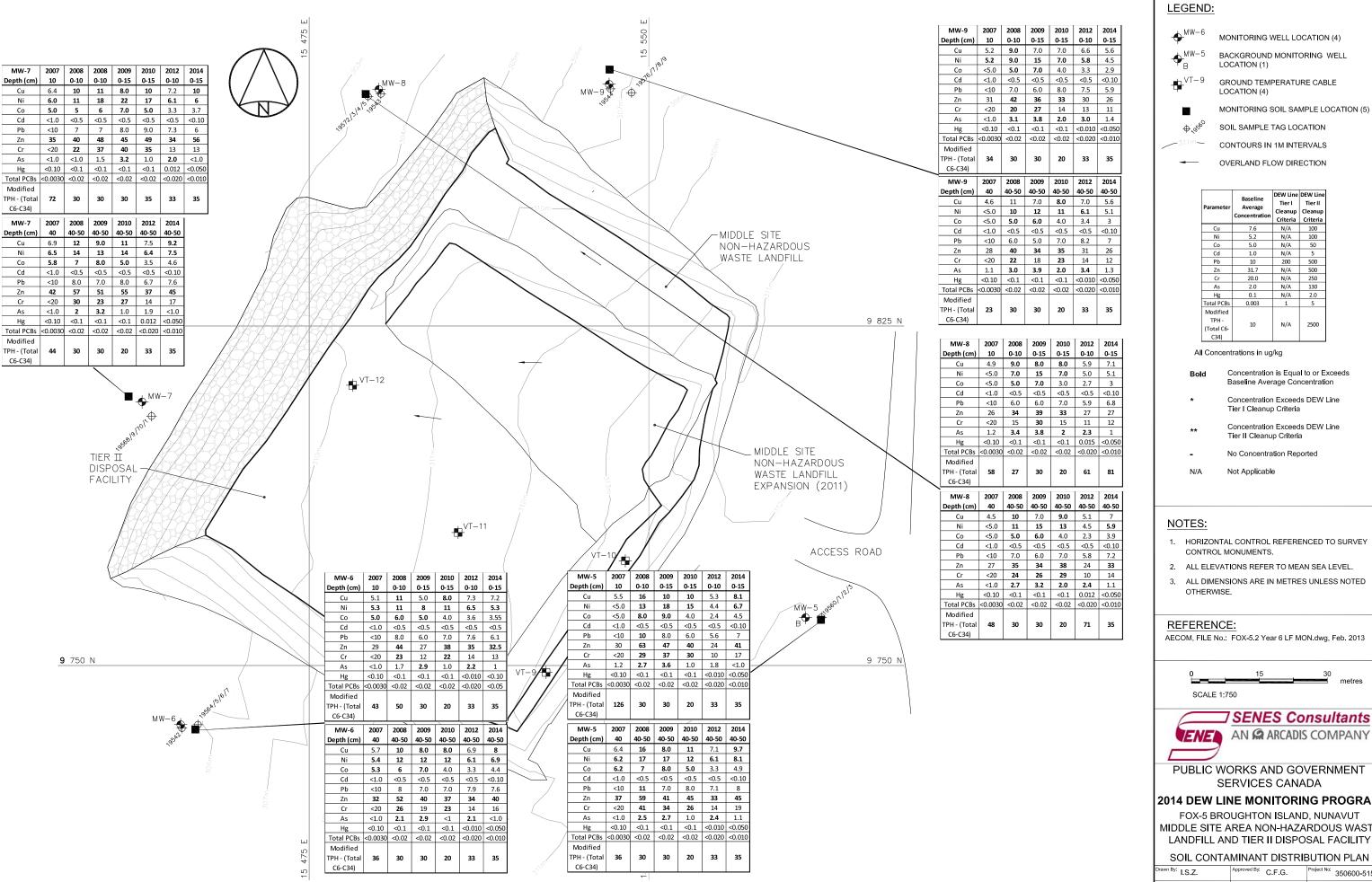

Soil samples were collected at five (5) locations as shown on the site plan. Surface and subsurface samples were collected at each location. There were no deviations from the soil sampling work plan. One duplicate soil sample was collected at surface at MW-6. Soil sampling completed at the landfill is summarized in Table 3.1.

Table 3.1: Summary of Work Conducted by Soil Sampling Location (Middle Site Landfill)

| Location    | Surface Soil<br>Sample Collected | Subsurface<br>Soil Sample<br>Collected |
|-------------|----------------------------------|----------------------------------------|
| F5-MID-MW-5 |                                  | $\sqrt{}$                              |
| F5-MID-MW-6 | $\sqrt{D}$                       | $\sqrt{}$                              |
| F5-MID-MW-7 | $\sqrt{}$                        | $\sqrt{}$                              |
| F5-MID-MW-8 | $\sqrt{}$                        | $\sqrt{}$                              |
| F5-MID-MW-9 |                                  | $\sqrt{}$                              |

 $D = \begin{array}{c} \text{duplicate sample collected} \\ \sqrt{\text{- sample collected}} \\ X - \text{no sample collected} \end{array}$ 





MONITORING WELL LOCATION (4)

BACKGROUND MONITORING WELL

GROUND TEMPERATURE CABLE

MONITORING SOIL SAMPLE LOCATION (5)

SOIL SAMPLE TAG LOCATION

OVERLAND FLOW DIRECTION

| Parameter  | Baseline<br>Average<br>Concentration | DEW Line<br>Tier I<br>Cleanup<br>Criteria | DEW Line<br>Tier II<br>Cleanup<br>Criteria |
|------------|--------------------------------------|-------------------------------------------|--------------------------------------------|
| Cu         | 7.6                                  | N/A                                       | 100                                        |
| Ni         | 5.2                                  | N/A                                       | 100                                        |
| Co         | 5.0                                  | N/A                                       | 50                                         |
| Cd         | 1.0                                  | N/A                                       | 5                                          |
| Pb         | 10                                   | 200                                       | 500                                        |
| Zn         | 31.7                                 | N/A                                       | 500                                        |
| Cr         | 20.0                                 | N/A                                       | 250                                        |
| As         | 2.0                                  | N/A                                       | 130                                        |
| Hg         | 0.1                                  | N/A                                       | 2.0                                        |
| Total PCBs | 0.003                                | 1                                         | 5                                          |
| Modified   |                                      |                                           |                                            |
| TPH -      | 4.0                                  |                                           | 2500                                       |
| (Total C6- | 10                                   | N/A                                       | 2500                                       |
| C34)       |                                      |                                           |                                            |

#### All Concentrations in ug/kg

Concentration is Equal to or Exceeds Baseline Average Concentration

Concentration Exceeds DEW Line Tier I Cleanup Criteria

Concentration Exceeds DEW Line Tier II Cleanup Criteria

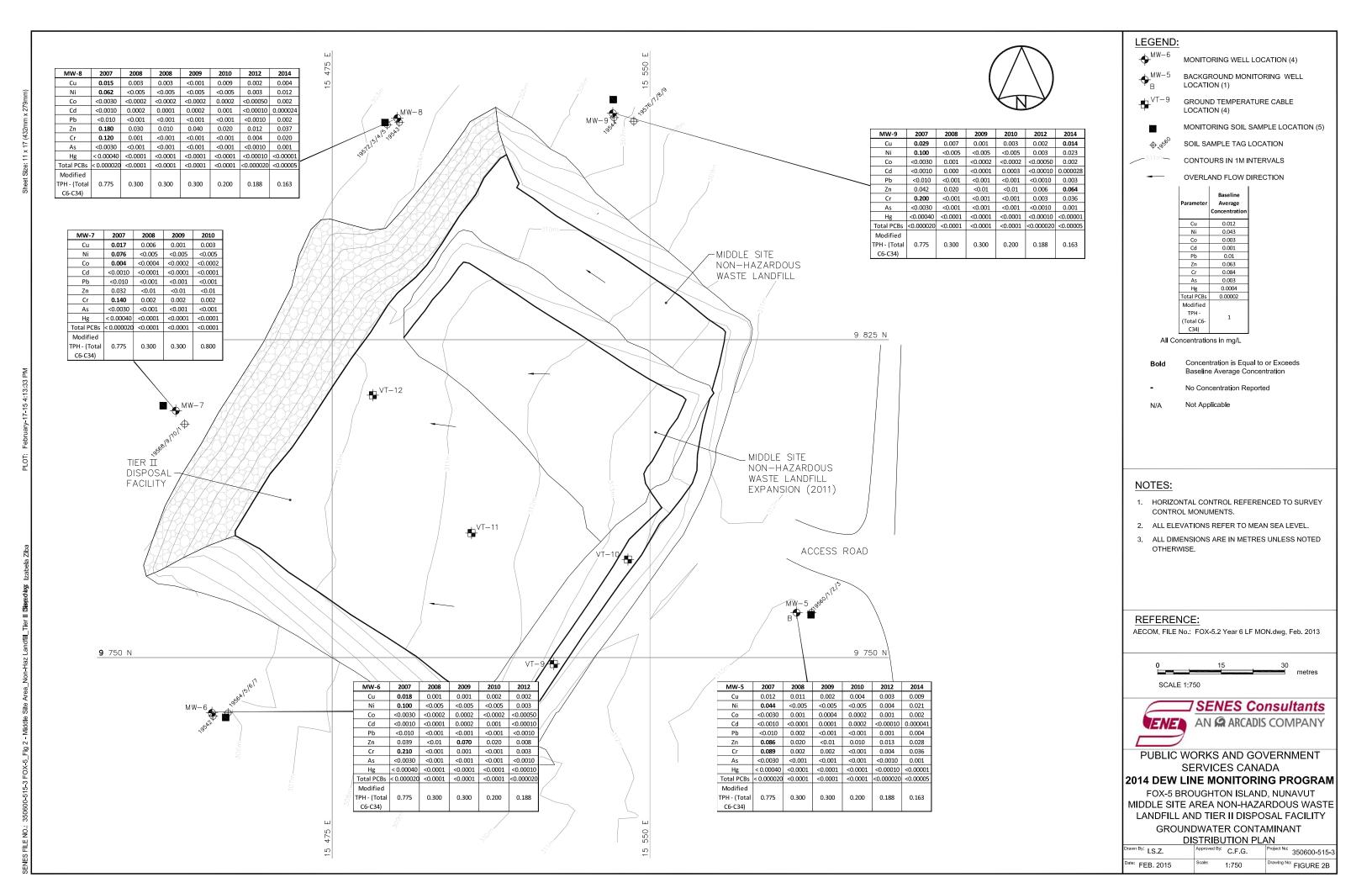
No Concentration Reported

Not Applicable

- HORIZONTAL CONTROL REFERENCED TO SURVEY
- 2. ALL ELEVATIONS REFER TO MEAN SEA LEVEL.
- 3. ALL DIMENSIONS ARE IN METRES UNLESS NOTED

AECOM, FILE No.: FOX-5.2 Year 6 LF MON.dwg, Feb. 2013






SERVICES CANADA

#### 2014 DEW LINE MONITORING PROGRAM

FOX-5 BROUGHTON ISLAND, NUNAVUT MIDDLE SITE AREA NON-HAZARDOUS WASTE LANDFILL AND TIER II DISPOSAL FACILITY

| Drawn By: I.S.Z. | Approved By: | C.F.G. | Project No. 350600-515-3 |
|------------------|--------------|--------|--------------------------|
| Date: FEB 2015   | Scale:       | 1:750  | Drawing No: FIGURE 2A    |



#### 3.2.3 Groundwater Sampling

Groundwater monitoring was completed at five monitoring wells as shown on Figure 2. Inspection of the groundwater monitoring wells and groundwater sampling at the Middle Site Landfill was generally completed as per the work plan. As indicated in Table 3.2, groundwater samples were not collected from two of five monitoring wells at this landfill as the wells were found to be dry during the recent monitoring program. No duplicate groundwater samples were collected at this landfill.

Table 3.2: Summary of Work Conducted by Groundwater Sampling Location (Middle Site Landfill)

| Location    | Visual<br>Inspection/<br>Groundwater<br>Monitoring | Sample collected for PCB analysis | Sample collected<br>for metals<br>analysis | Sample collected<br>for PHCs F1-F4<br>analysis |
|-------------|----------------------------------------------------|-----------------------------------|--------------------------------------------|------------------------------------------------|
| F5-MID-MW-5 | $\sqrt{}$                                          | $\sqrt{}$                         | $\sqrt{}$                                  | $\sqrt{}$                                      |
| F5-MID-MW-6 | V                                                  | X <sup>N</sup>                    | X <sup>N</sup>                             | X <sup>N</sup>                                 |
| F5-MID-MW-7 | V                                                  | X <sup>N</sup>                    | X <sup>N</sup>                             | X <sup>N</sup>                                 |
| F5-MID-MW-8 | V                                                  | V                                 | V                                          | V                                              |
| F5-MID-MW-9 | V                                                  | V                                 | V                                          | V                                              |

D = duplicate sample collected

I – insufficient water in well to collect sample

#### 3.2.4 Thermal Monitoring

Thermal monitoring was completed at three of the four vertical thermistor locations at the Middle Site Landfill. Data from the thermistor F5-MID-VT-12 did not appear correct in the field, and no realtime response was noted from any thermistor beads at this location. This thermistor was removed from site and returned to DND for repairs. A summary of thermistor work completed at this landfill is provided in Table 3.3.

Table 3.3: Summary of Work Conducted by Thermistor Location (Middle Site Landfill)

| Location     | Realtime Data | Data       | Batteries |
|--------------|---------------|------------|-----------|
|              |               | Downloaded | Replaced  |
| F5-MID-VT- 9 |               |            | $\sqrt{}$ |
| F5-MID-VT-10 | $\sqrt{}$     | $\sqrt{}$  | $\sqrt{}$ |
| F5-MID-VT-11 | $\sqrt{}$     | $\sqrt{}$  | $\sqrt{}$ |
| F5-MID-VT-12 | X             | X          | X         |

 $<sup>\</sup>sqrt{\ }$  - sample collected X – no sample collected

N – no water in well (well was dry)

#### 3.3 RESULTS OF THE MONITORING PROGRAM

#### 3.3.1 Visual Inspection

The visual inspection at the Middle Site Landfill was completed on 19 August 2014. The visual inspection checklist completed during the site inspection is provided in Table 3.4.

#### 3.3.1.1 Stability Assessment

The preliminary stability assessment completed during the site inspection is provided in Table 3.5.

#### 3.3.1.2 Photographic Records

The photograph log for the site is provided in Table 3.6.

#### 3.3.1.3 Trend Analysis

The observations obtained during the visual inspection from the current 2014 monitoring event were compared to the observations obtained during the previous 2012 monitoring event, and are presented in Table 3.7 below for each category observed.

#### **TABLE 3.4 - VISUAL INSPECTION CHECKLIST**

# DEW LINE CLEANUP: POST-CONSTRUCTION - LANDFILL MONITORING INSPECTION REPORT – PAGE 1 OF 2

SITE NAME: FOX-5

LANDFILL DESIGNATION: Middle Site Non-Hazardous Waste Landfill and Tier II Disposal Facility

DATE OF INSPECTION: 19 August 2014

DATE OF PREVIOUS INSPECTION: 13-16 August 2012

INSPECTED BY: S. Borcsok, J. Mauchan

REPORT PREPARED BY: S. Borcsok

The inspector/reporter represents to the best of their knowledge, the following statements and observations are true and correct and to the best of the preparer's actual knowledge, no material facts have been suppressed or misstated.

## TABLE 3.4 - VISUAL INSPECTION CHECKLIST - INSPECTION REPORT – PAGE 2 OF 2

| Checklist Item                                 | Present<br>Yes/No | Location (Describe relative to existing monuments/features and relative to landfill design i.e. surface, berms, toe)       | Length      | Width          | Depth          | Extent relative to<br>Area of Landfill<br>(%) | Description                                                  | Photographic Records Focal length, location, view point & direction (relative to magnetic north) Feature of note Scale | Additional Comments |
|------------------------------------------------|-------------------|----------------------------------------------------------------------------------------------------------------------------|-------------|----------------|----------------|-----------------------------------------------|--------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|---------------------|
| Settlement                                     | YES               | Small areas of settlement on<br>northeast, southeast, southwest<br>berms of landfill (FEATURE E)                           |             |                |                | <1%                                           | Small holes and depressions                                  | P-1, P-2, P-3,                                                                                                         |                     |
| Erosion                                        | YES               | Erosion channels on northeast, southeast, southwest berms, and top of landfill (FEATURE A, C, F, I, M)                     | ~10m (typ.) | 0.2m<br>(typ.) | 0.2m<br>(typ.) | <1%                                           | Erosion channels                                             | P-6, P-7, P-8, P-9, P-12, P-<br>14, P-15,                                                                              |                     |
| Frost Action                                   | NO                |                                                                                                                            |             |                |                |                                               |                                                              |                                                                                                                        |                     |
| Sloughing and Cracking                         | YES               | Tension cracks on northeast and<br>southeast berms of landfill<br>(FEATURE H, L)                                           | 0.5m        |                |                | <1%                                           | Tension cracks                                               | P-10, P-13                                                                                                             |                     |
| Animal Burrows                                 | NO                |                                                                                                                            |             |                |                |                                               |                                                              |                                                                                                                        |                     |
| Vegetation                                     | YES               | At MW-5                                                                                                                    |             |                |                | <1%                                           | Small shrubs                                                 | P-24                                                                                                                   |                     |
| Staining                                       | YES               | North end of southeast berm (FEATURE G)                                                                                    |             |                |                | 5%                                            | Natural red<br>staining on<br>aggregate                      | P-9                                                                                                                    |                     |
| Vegetation Stress                              | NO                |                                                                                                                            |             |                |                |                                               |                                                              |                                                                                                                        |                     |
| Seepage Points                                 | NO                |                                                                                                                            |             |                |                |                                               |                                                              |                                                                                                                        |                     |
| Debris Exposed                                 | NO                |                                                                                                                            |             |                |                |                                               |                                                              |                                                                                                                        |                     |
| Presence/Condition –<br>Monitoring Instruments | YES               | Four thermistor installations<br>within the landfill and five<br>monitoring wells outside the<br>perimeter of the landfill |             |                |                | <1%                                           | Thermistor<br>installations<br>and monitoring<br>wells       | P-16 to P-19, P-23, P-26, P-29, P-32, P-35                                                                             |                     |
| Features of Note.                              | YES               | Top of landfill (FEATURE B, D)                                                                                             |             |                |                | ~2%                                           | Vehicle tracks<br>and areas of<br>previously<br>ponded water | P-5, P-20, P-21, P-22                                                                                                  |                     |

SITE:: FOX-5 LANDFILL: MIDDLE SITE LANDFILL 2

Table 3.5: Preliminary Stability Assessment - FOX-5 Middle Site Landfill

| Feature                                  | Severity Rating | Extent     |  |  |
|------------------------------------------|-----------------|------------|--|--|
| Settlement                               | Acceptable      | Occasional |  |  |
| Erosion                                  | Acceptable      | Occasional |  |  |
| Frost Action                             | None            | None       |  |  |
| Staining                                 | Acceptable      | Isolated   |  |  |
| Vegetation Stress                        | None            | None       |  |  |
| Seepage/Ponded Water                     | Acceptable      | Isolated   |  |  |
| Debris exposure                          | None            | None       |  |  |
| Overall Landfill Performance: ACCEPTABLE |                 |            |  |  |

| Performance/<br>Severity Rating | Description                                                                                                                                                                                                                                                                                                                |
|---------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Acceptable                      | Noted features are of little consequence. The landfill is performing as designed. Minor deviations in environmental or physical performance may be observed, such as isolated areas of erosion, settlement.                                                                                                                |
| Marginal                        | Physical/environmental performance appears to be deteriorating with time. Observations may include an increase in size or number of features of note, such as differential settlement, erosion or cracking. No significant impact on landfill stability to date, but potential for failure is assessed as low or moderate. |
| Significant                     | Significant or potentially significant changes affecting landfill stability, such as significant changes in slope geometry, significant erosion or differential settlement; scarp development. The potential for failure is assessed as imminent.                                                                          |
| Unacceptable                    | Stability of landfill is compromised to the extent that ability to contain waste materials is compromised. Examples may include:  - Debris exposed in erosion channels or areas of differential settlement.  - Liner exposed.  - Slope failure.                                                                            |

| Extent     | Description                                                                       |
|------------|-----------------------------------------------------------------------------------|
| Isolated   | Singular feature                                                                  |
| Occasional | Features of note occurring at irregular intervals/locations                       |
| Numerous   | Many features of note, impacted less than 50% of the surface area of the landfill |
| Extensive  | Impacting greater than 50% of the surface area of the landfill                    |

## Middle Site Non-Hazardous Waste Landfill (see Figure 2)

| Photo 1 (FOX-5 MID P-1.jpg)                                                                                                          | Photo 2 (FOX-5 MID P-2.jpg)                                               |
|--------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|
| Description: View looking northwest along northeastern slope of landfill. Minor settlement noted at field book location. (FEATURE J) | Description: View looking southwest along southeastern slope of landfill. |
| 19/08/2014                                                                                                                           | 19/03/2014                                                                |
| Date: August 19, 2014                                                                                                                | Date: August 19, 2014                                                     |

| Photo 3 (FOX-5 MID P-3.jpg)                                                                                            | Photo 4 (FOX-5 MID P-4.jpg)                  |
|------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|
| Description: Settlement noted at top of southwestern landfill slope. View looking west partially downhill. (FEATURE N) | Description: View looking west toward VT-12. |
| 19/08/2014                                                                                                             | 19/08/2014                                   |
| Date: August 19, 2014                                                                                                  | Date: August 19, 2014                        |

| Photo 5 (FOX-5 MID P-5.jpg)                                                                                                                                                                 | Photo 6 (FOX-5 MID P-6.jpg)                                                                                                                          |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|
| Description: View looking northwest across cap of landfill. Evidence of previously ponded water on cap. VT-11 is adjacent to boulder seen on right hand side of photo. ( <b>FEATURE B</b> ) | Description: View looking southwest toward southeastern landfill slope. Erosion channel observed at geological hammer location. ( <b>FEATURE I</b> ) |
| 19/08/2014                                                                                                                                                                                  | 19/09/2014                                                                                                                                           |
| Date: August 19, 2014                                                                                                                                                                       | Date: August 19, 2014                                                                                                                                |

TABLE 3.6: LANDFILL VISUAL INSPECTION PHOTO LOG (MIDDLE SITE LANDFILL)

| Photo 7 (FOX-5 MID P-7.jpg)                                                                                                                                  | Photo 8 (FOX-5 MID P-8.jpg)                                                  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|
| Description: Erosion channel on southwestern slope. View northeast from toe. Note second erosion channel can be seen top left of photo. ( <b>FEATURE C</b> ) | Description: View northeast looking over minor erosion channels. (FEATURE A) |
|                                                                                                                                                              | 19/03/2014                                                                   |
| Date: August 19, 2014                                                                                                                                        | Date: August 19, 2014                                                        |

| Photo 9 (FOX-5 MID P-9.jpg)                                                                                                                    | Photo 10 (FOX-5 MID P-10.jpg)                                                                                                               |
|------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|
| Description: View southwest along southeastern slope of landfill. Erosion channels and natural staining were observed. ( <b>FEATURE G, I</b> ) | Description: Small tension cracks observed at northern end of southeastern slope.  Small crack visible below geological hammer. (FEATURE H) |
| 19/08/2014                                                                                                                                     | 19/08/2014                                                                                                                                  |
| Date: August 19, 2014                                                                                                                          | Date: August 19, 2014                                                                                                                       |

| Photo 11 (FOX-5 MID P-11.jpg)                           | Photo 12 (FOX-5 MID P-12.jpg)                                   |
|---------------------------------------------------------|-----------------------------------------------------------------|
| Description: View toward VT-10 from southeastern slope. | Description: Erosion channel on southwestern slope. (FEATURE C) |
| 19703/2014                                              | 19/08/2014                                                      |
| Date: August 19, 2014                                   | Date: August 19, 2014                                           |

| Photo 13 (FOX-5 MID P-13.jpg)                                                                                                                       | Photo 14 (FOX-5 MID P-14.jpg)                                                                  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|
| Photo 13 (FOX-5 MID P-13.jpg)  Description: View southwest along southeastern slope. Tension crack noted adjacent to geological hammer. (FEATURE H) | Photo 14 (FOX-5 MID P-14.jpg)  Description: Erosion channel on southwestern slope. (FEATURE C) |
| 19/08/2014                                                                                                                                          | 19/08/2014                                                                                     |
| Date: August 19, 2014                                                                                                                               | Date: August 19, 2014                                                                          |

| Photo 15 (FOX-5 MID P-15.jpg)                                                                                      | Photo 16 (FOX-5 MID P-16.jpg)            |
|--------------------------------------------------------------------------------------------------------------------|------------------------------------------|
| Photo 15 (FOX-5 MID P-15.jpg)  Description: View of erosion channels on southeastern slope near VT-10. (FEATURE F) | Description: View northeast toward VT-9. |
| Date: August 19, 2014                                                                                              | Date: August 19, 2014                    |

| Photo 17 (FOX-5 MID P-17.jpg)             | Photo 18 (FOX-5 MID P-18.jpg)         |
|-------------------------------------------|---------------------------------------|
| Description: View northeast toward VT-10. | Description: View north toward VT-11. |
| 19/08/2014                                |                                       |
| Date: August 19, 2014                     | Date: August 19, 2014                 |

| Photo 19 (FOX-5 MID P-19.jpg)             | Photo 20 (FOX-5 MID P-20.jpg)                                                          |
|-------------------------------------------|----------------------------------------------------------------------------------------|
| Description: View northeast toward VT-12. | Description: View of previously ponded water near southern corner of cap.  (FEATURE B) |
| 19/03/2014                                | 19/08/2014                                                                             |

Date: August 19, 2014

Date: August 19, 2014

| Photo 21 (FOX-5 MID P-21.jpg)                                                                  | Photo 22 (FOX-5 MID P-22.jpg)                                                                                                                               |
|------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Description: View northwest across landfill cap. Vehicle tracks and ruts observed. (FEATURE D) | Description: View northeast toward VT-9 from southern corner of landfill cap. VT-11 seen in distance. Vehicle and ATV tracks observed. ( <b>FEATURE D</b> ) |
| 19/08/2014                                                                                     | 19/03/2014                                                                                                                                                  |
| Date: August 19, 2014                                                                          | Date: August 19, 2014                                                                                                                                       |

| Photo 23 (FOX-5 MID P-23.jpg)       | Photo 24 (FOX-5 MID P-24.jpg)             |
|-------------------------------------|-------------------------------------------|
| Description: View west toward MW-5. | Description: Sample location F5-MID-MW-5. |
| 19/103/2014                         | 19/08/2014                                |
| Date: August 19, 2014               | Date: August 19, 2014                     |

| Photo 25 (FOX-5 MID P-25.jpg)                                                          | Photo 26 (FOX-5 MID P-26.jpg)        |
|----------------------------------------------------------------------------------------|--------------------------------------|
| Description: Once samples were collected at F5-MID-MW-5, the test hole was backfilled. | Description: View north toward MW-6. |
| 19/08/2014                                                                             | 19/08/2014                           |
| Date: August 19, 2014                                                                  | Date: August 19, 2014                |

| Photo 27 (FOX-5 MID P-27.jpg)                                                     | Photo 28 (FOX-5 MID P-28.jpg)                                                                 |
|-----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|
| Photo 27 (FOX-5 MID P-27.jpg)  Description: F5-MID-MW-6 during sample collection. | Photo 28 (FOX-5 MID P-28.jpg)  Description: F5-MID-MW-6 after sample collection and backfill. |
| Date: August 19, 2014                                                             | Date: August 19, 2014                                                                         |

| Photo 29 (FOX-5 MID P-29.jpg)                                                              | Photo 30 (FOX-5 MID P-30.jpg)                                                     |
|--------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|
| Photo 29 (FOX-5 MID P-29.jpg)  Description: View of northwestern landfill slope from MW-7. | Photo 30 (FOX-5 MID P-30.jpg)  Description: F5-MID-MW-7 during sample collection. |
| Date: August 19, 2014                                                                      | Date: August 19, 2014                                                             |

| Photo 31 (FOX-5 MID P-31.jpg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Photo 32 (FOX-5 MID P-32.jpg)        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|
| Description: F5-MID-MW-7 after sample collection and backfill.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Description: View south toward MW-8. |
| Territorial (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (199 | T3/08/2014                           |

Date: August 19, 2014

Date: August 19, 2014

| Photo 33 (FOX-5 MID P-33.jpg)                                                     | Photo 34 (FOX-5 MID P-34.jpg)                                                                 |
|-----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|
| Photo 33 (FOX-5 MID P-33.jpg)  Description: F5-MID-MW-8 during sample collection. | Photo 34 (FOX-5 MID P-34,jpg)  Description: F5-MID-MW-8 after sample collection and backfill. |
| Date: August 19, 2014                                                             | Date: August 19, 2014                                                                         |

| Photo 35 (FOX-5 MID P-35.jpg)                                            | Photo 36 (FOX-5 MID P-36.jpg)                      |
|--------------------------------------------------------------------------|----------------------------------------------------|
| Description: View southeast toward MW-9 and northern corner of landfill. | Description: F5-MID-MW-9 during sample collection. |
| 19703/2014                                                               | 19/08/2014                                         |
| Date: August 19, 2014                                                    | Date: August 19, 2014                              |

| Photo 37 (FOX-5 MID P-37.jpg)                                      |  |
|--------------------------------------------------------------------|--|
| Description: F5-MID-MID-MW-9 after sample collection and backfill. |  |
| 19/03/2014                                                         |  |
| Date: August 19, 2014                                              |  |

**Table 3.7: Visual Inspection Trends (Middle Site Landfill)** 

| Item         | <b>AECOM 2012</b>                | <b>SENES 2014</b>             | Trend                 |
|--------------|----------------------------------|-------------------------------|-----------------------|
|              | Observations                     | Observations                  |                       |
| Settlement   | Occasional minor settlement      | Minor settlement was          | Occasional settlement |
|              | was observed on the berms and    | observed at four locations    | noted on southwest,   |
|              | the cover of the landfill. The   | on the southwest, southeast   | southeast, and        |
|              | typical size of the settlement   | and northeast berms of the    | northeast berms in    |
|              | areas was approximately 400      | landfill. (Feature E)         | both previous and     |
|              | millimetre (mm) length by 300    |                               | current monitoring    |
|              | mm width and 30 mm to 100        |                               | event. Differential   |
|              | mm depth. Some differential      |                               | settlement and        |
|              | settlement, due to the weight of |                               | cracking under        |
|              | large boulders placed on the     |                               | boulders placed       |
|              | landfill to protect the          |                               | around thermistor     |
|              | thermistors, was also observed.  |                               | installations was     |
|              | Minor cracks have formed         |                               | noted in the previous |
|              | around VT-11 and VT-12 as a      |                               | event but not during  |
|              | result of the differential       |                               | the current event.    |
|              | settlement.                      |                               |                       |
| Erosion      | Several erosion channels were    | Small erosion channels were   | Erosion channels      |
|              | observed on the northeast and    | observed on the southwest     | were noted on the     |
|              | southwest slopes along           | and southeast berms, and on   | southwest and         |
|              | preferred drainage pathways,     | the top of the landfill along | southeast berms, and  |
|              | with occasional channels         | the north end. (Feature A, C, | on the top of the     |
|              | forming on the cover and         | F, I, M)                      | landfill in the       |
|              | southeast side of the landfill.  |                               | previous and current  |
|              | The channel dimensions ranged    |                               | monitoring events.    |
|              | from 2 m length by 150 mm        |                               | More erosion          |
|              | width by 10 mm depth to 25 m     |                               | channels were noted   |
|              | length by 1 m width by 100       |                               | on the southwest and  |
|              | mm depth. The majority of        |                               | southeast berms       |
|              | the erosion channels appear to   |                               | during the current    |
|              | have self-armoured.              |                               | monitoring event.     |
| Frost Action | Indications of frost action were | None noted in previous or     | None observed at this |
|              | not observed.                    | current monitoring event.     | landfill.             |

| Item                      | <b>AECOM 2012</b>                                                                                                                                                                                                                                                                                                                                                            | <b>SENES 2014</b>                                                                                                                                                          | Trend                                                                                                                                                                    |
|---------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                           | Observations                                                                                                                                                                                                                                                                                                                                                                 | Observations                                                                                                                                                               |                                                                                                                                                                          |
| Sloughing and<br>Cracking | Cracking at the toe of the northwest berm - possibly due to differential settlement caused by the weight of the rip rap. Cracking at the toe of the berm on the northeast side.  One portion may have sloughed on the northeast side of the berm, however, it is more likely that it was constructed this way.  Numerous tension cracks on the southeast and southwest side. | Two small tension cracks were observed on the northeast and southeast berms of the landfill. (Feature H, L)                                                                | Small tension cracks are present in both the current and previous monitoring report. They do not appear to be worsening with time.                                       |
| Animal Burrows            | Evidence of burrowing animals was not observed.                                                                                                                                                                                                                                                                                                                              | None noted in previous or current monitoring event.                                                                                                                        | None observed at this landfill.                                                                                                                                          |
| Vegetation                | One isolated shrub (unidentified) was observed on the southwest berm.                                                                                                                                                                                                                                                                                                        | No vegetation was observed within the limits of this landfill.                                                                                                             | Vegetation is not establishing itself on the landfill.                                                                                                                   |
| Staining                  | Red staining that appears to be natural was observed on the east portion of the surface of the landfill. The source of the staining is believed to be the granular material used to cap the landfill.                                                                                                                                                                        | Natural reddish staining was<br>observed on the north end of<br>the southeast berm of the<br>landfill during the previous<br>and current monitoring<br>events. (Feature G) | Natural staining was present in the same area during the current and previous monitoring events.                                                                         |
| Vegetation Stress         | Not noted in 2012 report.                                                                                                                                                                                                                                                                                                                                                    | None noted in previous or current monitoring event.                                                                                                                        | None observed at this landfill.                                                                                                                                          |
| Seepage Points            | Some washed rock observed on<br>the south corner of the<br>southwest berm is indicative of<br>water exiting the berm at<br>that location.                                                                                                                                                                                                                                    | No active seepage points were observed.                                                                                                                                    | A seepage point was observed in the previous monitoring report on the southwest berm. This point was not observed to be a seepage point in the current monitoring event. |

| Item                                         | <b>AECOM 2012</b>                                                                                                                                                                                                                                                                              | <b>SENES 2014</b>                                                                                                                                                                                                                                                                                                                 | Trend                                                                                                                                                                                                                                                                            |
|----------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                              | Observations                                                                                                                                                                                                                                                                                   | Observations                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                  |
| Debris Exposed                               | Several small pieces of wood and one piece of geotextile were observed around the berms of the landfill. The debris does not appear to have originated from within the landfill.                                                                                                               | None observed.                                                                                                                                                                                                                                                                                                                    | Occasional debris was observed around the berms of the landfill during the previous monitoring event, but was not observed in the current monitoring event. The debris was not believed to have originated from the landfill and may have blown away or been physically removed. |
| Presence/Condition of Monitoring Instruments | Four vertical thermistor installations and five monitoring well installations were observed at the landfill.                                                                                                                                                                                   | Four vertical thermistor installations and five monitoring well installations were observed at the landfill. These monitoring installations were found to be in good condition. Soil surrounding the monitoring well installations was observed to be very soft. MW-9 had standing water in the well casing around the standpipe. | Monitoring instruments were observed. during the previous and current monitoring event.                                                                                                                                                                                          |
| Other Features of Note                       | There are occasional low areas on the top of the landfill that have allowed ponding of water.  These areas have a higher moisture content then the surrounding areas and have allowed the deposition of fine material within them. This fine material retains water making these spots softer. | Vehicle tracks and areas of previously ponded water were observed on the top of the landfill. (Feature B, D)                                                                                                                                                                                                                      | Areas of previously ponded water on top of the landfill were noted during the previous and current monitoring events.  Vehicle tracks were noted on top of the landfill during the current monitoring event but not the previous event.                                          |

## 3.3.1.4 Discussion of Results/Trends

A comparison of the visual inspection results of the 2012 and 2014 monitoring events at the Middle Site Landfill indicates that some additional erosion channels have formed along the berms of the landfill. This trend is considered minor and not of concern to the stability of the

landfill at the present time. No other tangible changes in the physical condition of the landfill were observed.

#### 3.4 SOIL SAMPLING

Soil sampling at the Middle Site Landfill was completed on 19 August 2014. As previously reported a total of eleven samples including one duplicate sample were procured from five locations as shown in plan on Figure 2.

### 3.4.1.1 Laboratory Analytical Results

The analytical results for soil samples collected at the Middle Site Landfill are presented in Table 3.8.

A duplicate soil sample was collected at surface at MW-6 and was submitted to AGAT, a secondary laboratory for QA/QC purposes. The RPDs for the duplicate sample results were below 30%, indicating consistency between the results.

## 3.4.1.2 Discussion of Results - Comparison to Baseline

A discussion of the analytical results for each parameter analyzed in soil samples collected at the Middle Site Landfill is provided in Table 3.9. The discussion includes a comparison of results from upgradient (MW-5) and downgradient (MW-6, MW-7, MW-8, MW-9) soil sampling locations to baseline average concentrations (BAC) that have been determined for each landfill from soil chemistry at the landfill area prior to and during remediation.

TABLE 3.8

#### RESULTS OF ANALYSIS FOR PARAMETERS IN SOIL AT MIDDLE SITE LANDFILL

|                            | Background    | Baseline      | DEW Line | DEW Line | F5-MID-     | F5-MID-     | F5-MID-     | F5-MID-   | F5-MID-    | F5-MID-     | F5-MID-    | F5-MID-    | F5-MID-    | F5-MID-     | F5-MID-    | F5-MID-    |
|----------------------------|---------------|---------------|----------|----------|-------------|-------------|-------------|-----------|------------|-------------|------------|------------|------------|-------------|------------|------------|
|                            | Concentration | Average       | Cleanup  | Cleanup  | MW-5-S      | MW-5-D      | MW-6-S      | MW-6-S    | MW-6-S     | MW-6-D      | MW-7-S     | MW-7-D     | MW-8-S     | MW-8-D      | MW-9-S     | MW-9-D     |
| PARAMETERS                 |               | Concentration | Tier I   | Tier II  |             |             |             | (DUP)     | (AVG)      |             |            |            |            |             |            |            |
|                            |               |               | Criteria | Criteria |             |             |             |           |            |             |            |            |            |             |            |            |
|                            |               |               |          |          | 0-15 cm     | 40-50 cm    | 0-15 cm     | 0-15 cm   | 0-15 cm    | 40-50 cm    | 0-15 cm    | 40-50 cm   | 0-15 cm    | 40-50 cm    | 0-15 cm    | 40-50 cm   |
|                            | (_)           | (+)           | (*)      | (**)     | 19-Aug-14   | 19-Aug-14   | 19-Aug-14   | 19-Aug-14 | 19-Aug-14  | 19-Aug-14   | 19-Aug-14  | 19-Aug-14  | 19-Aug-14  | 19-Aug-14   | 19-Aug-14  | 19-Aug-14  |
| Copper                     | 10            | 7.6           | -        | 100      | 8.1+        | 9.7+        | 6.4         | 8+        | 6.4        | 8+          | 10+        | 9.2+       | 7.1        | 7           | 5.6        | 5.6        |
| Nickel                     | 5.3           | 5.2           | -        | 100      | <u>6.7+</u> | <u>8.1+</u> | <u>5.6+</u> | 5         | 5.3+       | <u>6.9+</u> | <u>6+</u>  | 7.5+       | 5.1        | <u>5.9+</u> | 4.5        | 5.1        |
| Cobalt                     | 4.0           | 5.0           | -        | 50       | 4.5         | 4.9         | 3.4         | 3.7       | 3.55       | 4.4         | 3.7        | <u>4.6</u> | 3          | 3.9         | 2.9        | 3          |
| Cadmium                    | 1.0           | 1.0           | -        | 5        | < 0.10      | < 0.10      | < 0.10      | < 0.5     | < 0.5      | < 0.10      | < 0.10     | < 0.10     | < 0.10     | < 0.10      | < 0.10     | < 0.10     |
| Lead                       | 5.0           | 10.0          | 200      | 500      | <u>7.0</u>  | 8.0         | <u>6.2</u>  | 6.0       | <u>6.1</u> | <u>7.6</u>  | <u>6.0</u> | <u>7.6</u> | <u>6.8</u> | <u>7.2</u>  | <u>5.9</u> | <u>7.0</u> |
| Zinc                       | 46            | 31.7          | -        | 500      | 41+         | 45+         | 31          | 34+       | 32.5       | 40+         | <u>56+</u> | 45+        | 27         | 33+         | 26         | 26         |
| Chromium                   | 19            | 20.0          | -        | 250      | 17          | 19          | 12          | 14        | 13         | 16          | 13         | 17         | 12         | 14          | 11         | 12         |
| Arsenic                    | 1.93          | 2.0           | -        | 30       | <1.0        | 1.1         | <1.0        | 1         | 1          | <1.0        | <1.0       | <1.0       | 1          | 1.1         | 1.4        | 1.3        |
| Mercury                    | 0.5           | 0.1           | -        | 2        | < 0.050     | < 0.050     | < 0.050     | < 0.10    | < 0.10     | < 0.050     | < 0.050    | < 0.050    | < 0.050    | < 0.050     | < 0.050    | < 0.050    |
| Total PCBs                 | 0.001         | 0.003         | 1        | 5        | < 0.010     | < 0.010     | < 0.010     | < 0.05    | < 0.05     | < 0.010     | < 0.010    | < 0.010    | < 0.010    | < 0.010     | < 0.010    | < 0.010    |
| PHC F1 (C6-C10)            | -             | -             | -        | -        | <10         | <10         | <10         | <5        | <10        | <10         | <10        | <10        | <10        | <10         | <10        | <10        |
| PHC F2 (C10-C16)           | -             | -             | -        | -        | <10         | <10         | <10         | <10       | <10        | <10         | <10        | <10        | <10        | <10         | <10        | <10        |
| PHC F3 (C16-C34)           | -             | -             | -        | -        | < 50        | < 50        | < 50        | < 50      | < 50       | < 50        | < 50       | < 50       | 71         | < 50        | < 50       | < 50       |
| PHC F4 (C34-C50)           | -             | -             | -        | -        | < 50        | < 50        | < 50        | < 50      | < 50       | < 50        | < 50       | < 50       | < 50       | < 50        | < 50       | < 50       |
| Modifed TPH (Total C6-C34) | 5.0           | 10            | -        | 2500     | 35+         | 35+         | <u>35+</u>  | 32.5+     | 32.5+      | <u>35+</u>  | <u>35+</u> | 35+        | <u>81+</u> | <u>35+</u>  | 35+        | <u>35+</u> |

#### NOTES:

All parameter values in  $\mu g/g\ (ppm)$  unless otherwise indicated.

Exceeds FOX-5 Middle Site Landfill Background Concentration.

+ Exceeds FOX-5 Middle Site Landfill Baseline Average Concentration.

Exceeds DEW Line Cleanup Tier I Criteria.

Exceeds DEW Line Cleanup Tier II Criteria.

(DUP) Duplicate sample analyzed by AGAT Laboratories for QA/QC purposes.

(AVG) Average concentration of duplicate samples.

< Not detected.

No concentration reported.

Table 3.9: Evaluation of 2014 Soil Analytical Data (Middle Site Landfill)

| Parameter | Baseline Average<br>Concentration<br>(ug/g) | 2014 Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|-----------|---------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Copper    | 7.6                                         | Detectable concentrations ranged between 8.1 and 9.7 ug/g for the upgradient samples and 5.6 and 10 ug/g for the downgradient samples, with the highest concentration reported in the surface sample collected from the MW-7 sample location while the lowest concentration was reported within the surficial and subsurface samples at the MW-9 sample location. 5 of the 11 samples analyzed reported concentrations below the BAC while 6 of 11 samples reported a parameter concentration slightly above the BAC. |
| Nickel    | 5.2                                         | Detectable concentrations ranged between 6.7 and 8.1 ug/g for the upgradient samples and 4.5 and 7.5 ug/g for the downgradient samples, with the highest concentration reported in the subsurface sample collected from the MW-5 sample location while the lowest concentration was reported in the surface sample at the MW-9 sample location. 7 of the 11 samples analyzed reported concentrations below the BAC while 4 of 11 samples reported a parameter concentration slightly above the BAC.                   |
| Cobalt    | 5.0                                         | Detectable concentrations ranged between 4.5 and 4.9 ug/g for the upgradient samples and 2.9 and 4.6 ug/g for the downgradient samples, with the highest concentration reported in the subsurface sample at the MW-5 sample location while the lowest concentration was reported in the surface sample at the MW-9 sample location. All 11 samples analyzed reported concentrations below the BAC.                                                                                                                    |
| Cadmium   | 1.0                                         | All reported concentrations were less than the laboratory detection limit (0.10 ug/g and 0.5 ug/g for the duplicate sample submitted to the secondary laboratory) and the BAC.                                                                                                                                                                                                                                                                                                                                        |
| Lead      | 10                                          | Detectable concentrations ranged between 7.0 and 8.0 ug/g for the upgradient samples and 5.9 and 7.6 ug/g for the downgradient samples, with the highest concentration reported in the subsurface sample at the MW-5 sample location and the lowest concentration in the surface sample at the MW-9 sample location. All 11 samples reported concentrations below the baseline average.                                                                                                                               |
| Zinc      | 32                                          | Detectable concentrations ranged between 41 and 45 ug/g for the upgradient samples and 26 and 56 ug/g for the downgradient samples, with the highest concentration reported in the surface sample at the MW-7 sample location and the lowest concentration within the surface and subsurface samples at the MW-9 sample location. 4 of the 11 samples analyzed reported concentrations below the BAC while 7 of 11 samples reported a parameter concentration slightly above the BAC.                                 |
| Chromium  | 20                                          | Detectable concentrations ranged between 17 and 19 ug/g for the upgradient samples and 11 and 17 ug/g for the downgradient samples, with the highest concentration reported in the subsurface sample at the MW-5 sample location and the lowest concentration in the surface sample at the MW-9 sample location. All 11 samples reported concentrations below the BAC.                                                                                                                                                |
| Arsenic   | 2.0                                         | A detectable concentration of 1.1 ug/g was reported for one upgradient sample, and concentrations for downgradient samples ranged between 1 and 1.4 ug/g, with the highest concentration reported in the surface sample at the MW-9 sample location and the lowest concentration in the surface sample at the MW-6 sample location. All 11 samples reported                                                                                                                                                           |

| Parameter | Baseline Average<br>Concentration<br>(ug/g) | 2014 Results                                                                                                                                                                                                                                                                                                                                                                                                 |
|-----------|---------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|           |                                             | concentrations below the BAC, with 5 of these results below the laboratory detection lmit (1.0 ug/g).                                                                                                                                                                                                                                                                                                        |
| Mercury   | 0.10                                        | All 11 samples reported concentrations less than the laboratory detection limit (0.050 ug/g and 0.10 ug/g for the duplicate sample submitted to the secondary laboratory) and BAC.                                                                                                                                                                                                                           |
| PCBs      | 0.003                                       | All 11 samples reported concentrations less than the laboratory detection limit (0.010 ug/g and 0.05 ug/g for the duplicate sample submitted to the secondary laboratory) and BAC.                                                                                                                                                                                                                           |
| ТРН       | 10                                          | One detectable concentration of 81 ug/g was reported in the surface sample at the downgradient MW-8 sample location. The remaining 10 of 11 samples reported concentrations below the laboratory detection limit for PHC fractions F1, F2 and F3, however the corresponding modified TPH concentrations are above the BAC due to the use of half detection limits in calculating the modified TPH parameter. |

### 3.4.1.3 Soil Trend Analysis by Parameter and Discussion of Trends

A discussion of the trends observed for parameter concentrations in soil from 2007 to 2014 are presented in Table 3.10. Trends have been analyzed for upgradient and downgradient locations, where upgradient locations are those near the landfill that are not influenced by migration of contaminants through the landfill, and downgradient locations are at the toe of the landfill or from areas of preferential drainage. Note that these trend analyses were performed on six datasets, however a minimum of seven data sets are recommended to establish a statistical trend.

**Table 3.10: Evaluation of Soil Result Trends (Middle Site Landfill)** 

| Parameter | 2014 Results                                                                                       |
|-----------|----------------------------------------------------------------------------------------------------|
| Connor    | Concentrations show a downward trend for upgradient soil locations and a very slight downward      |
| Copper    | trend for downgradient soil locations. Concentrations are clustered around the baseline average.   |
| Nickel    | Concentrations show a downward trend for upgradient and downgradient soil locations.               |
| NICKEI    | Concentrations have generally been above the baseline average.                                     |
| Cobalt    | Concentrations show a downward trend for upgradient and downgradient soil locations.               |
| Cobait    | Concentrations have generally been above the baseline average.                                     |
| Cadmium   | Concentrations have been below laboratory detection limits at all locations for all monitoring     |
| Caumum    | events.                                                                                            |
|           | Concentrations show a very slight downward trend for upgradient soil locations and an upward       |
| Lead      | trend for downgradient soil locations. Concentrations have generally been above the baseline       |
|           | average.                                                                                           |
| Zinc      | Concentrations show a downward trend for upgradient and downgradient soil locations.               |
| Zilic     | Concentrations have generally been above the baseline average.                                     |
| Chromium  | Concentrations show a downward trend for upgradient and downgradient soil locations.               |
| Cinomium  | Concentrations have generally been above the baseline average.                                     |
| Arsenic   | Concentrations show a slight downward trend for upgradient and downgradient soil locations.        |
| Arsenic   | Some concentrations were above the baseline average in past monitoring events but all results were |

| Parameter | 2014 Results                                                                                          |
|-----------|-------------------------------------------------------------------------------------------------------|
|           | below the baseline average in the 2014 monitoring report.                                             |
| Mercury   | Concentrations have been below laboratory detection limits at all locations for all monitoring events |
| Wiercury  | except for some locations in 2012 where very low concentrations were detected.                        |
| PCBs      | Concentrations have been below laboratory detection limits at all locations for all monitoring        |
| rcbs      | events.                                                                                               |
| ТРН       | Most concentrations have been below detection limits for F1, F2 and F3 parameters. No trend is        |
| 1111      | apparent for this parameter for upgradient or downgradient soil locations.                            |

### 3.4.2 Groundwater Sampling

Groundwater sampling was completed at the Middle Landfill on 19 August 2014. As previously reported a total of three samples were procured from three monitoring wells as shown in plan on Figure 2.

## 3.4.2.1 Monitoring Well Sampling/Inspection Logs

Monitoring well sampling/inspection logs are provided following this page.

### 3.4.2.2 Water Levels/Groundwater Flow

Water levels were measured at the Middle Landfill on 19 August 2014. The groundwater levels measured are shown below in Table 3.11. Based on the measured groundwater levels, groundwater flow is expected to be towards the northwest, however groundwater flow will be highly affected by freeze/thaw cycles and permafrost.

**Table 3.11: Groundwater Levels (Middle Site Landfill)** 

| Monitoring<br>Well | Date      | Ground<br>Surface<br>Elevation<br>(m) | Water<br>Level<br>(m bgs) | Water Level<br>Elevation (m) | Depth<br>to<br>Bottom<br>(m bgs) | Bottom<br>Elevation<br>(m) |
|--------------------|-----------|---------------------------------------|---------------------------|------------------------------|----------------------------------|----------------------------|
| MW-5               | 19-Aug-14 | 313.2                                 | 0.73                      | 312.47                       | 1.69                             | 311.51                     |
| MW-6               | 19-Aug-14 | 305.9                                 | Dry                       | N/A                          | 0.4                              | 305.5                      |
| MW-7               | 19-Aug-14 | 303.1                                 | Dry                       | N/A                          | 0.84                             | 302.26                     |
| MW-8               | 19-Aug-14 | 303.5                                 | 0.83                      | 302.67                       | 1.48                             | 302.02                     |
| MW-9               | 19-Aug-14 | 306.7                                 | 0.96                      | 305.74                       | 1.55                             | 305.15                     |

Monitoring well MW-6 had not been reported dry in any of the previous monitoring years. Monitoring well MW-7 was reported to be dry in 2012. It is recommended that monitoring of all wells continue during future monitoring events.

| Site Name:                                   | FOX-5        | Middle Site Non-Haz/Tier II      |                 |
|----------------------------------------------|--------------|----------------------------------|-----------------|
| Date of Sampling Event:                      | 19-Aug-14    | Time:                            | 3nm             |
| Names of Samplers:                           | 10 7 (49 1 1 | S.Borcsok                        | Ортп            |
| Traines or Gampioner                         |              | J.Mauchan                        |                 |
| Landfill Name:                               | Middle       | Samples Collected:               | YES             |
| Monitoring Well ID:                          | MW-5         | PHC F1                           |                 |
| Sample Number:                               |              | Inorganic Elements               |                 |
| Condition of Well:                           | OK           | PHC F2-F4                        |                 |
| soft ground ar                               |              | PCBs                             |                 |
| Measured Data                                |              | Duplicate Collected?             |                 |
| Well pipe height above ground                | 62           |                                  | F5-MID-MW-5     |
| (cm)=                                        |              | •                                |                 |
| Diameter of well (cm)=                       | 5            |                                  |                 |
| Depth of well installation (cm)=             |              |                                  |                 |
| , , ,                                        |              |                                  |                 |
| (from ground surface)                        |              |                                  |                 |
| Length screened section                      |              |                                  |                 |
| (cm)=                                        |              |                                  |                 |
| Depth to top of screen (cm)=                 |              |                                  |                 |
| (from ground surface)                        |              |                                  |                 |
|                                              |              |                                  |                 |
| Depth to water surface (cm)=                 | 135          | Measurement method: (meter,      | Interface Meter |
|                                              |              | tape, etc)                       |                 |
|                                              |              |                                  |                 |
| (from top of pine)                           |              |                                  |                 |
| ( from top of pipe) Static water level (cm)= |              |                                  |                 |
| (below ground surface)                       |              |                                  |                 |
| Measured well refusal depth                  | 231          | Evidence of sludge or siltation: | None            |
| (cm) =                                       | 231          | Evidence of studge of sittation. | NONE            |
| (i.e. depth to frozen ground)                |              |                                  |                 |
| Measured well refusal depth                  |              |                                  |                 |
| from ground surface                          |              |                                  |                 |
| Thickness of water column                    | 96           |                                  |                 |
| Static volume of water in well               |              |                                  |                 |
|                                              | 1.94         |                                  |                 |
| (L)                                          |              |                                  |                 |
| Free product thickness (mm)=                 | 0            | Measurement method:              | IM              |
|                                              | -            |                                  |                 |
| Purging: (Y/N)                               | Υ            | Purging/Sampling Equipment:      | Waterra         |
| Volume Purged Water=                         | 3L           | (dry after 2L)                   | tubing and      |
| Decontamination required:                    | N            | (5.) 5                           | footvalve       |
| (Y/N)                                        |              |                                  |                 |
| Number washes:                               |              |                                  |                 |
| Number rinses:                               |              |                                  |                 |
| ramer moes.                                  |              |                                  |                 |
| Final pH=                                    | 8.89         |                                  |                 |
| Final Conductivity (uS/cm)=                  | 45.7         |                                  |                 |
| Final Temperature (degC)=                    | 5.7          |                                  |                 |
| . mai romporataro (aogo)=                    | Ų.,          |                                  |                 |

| Site Name:                       | FOX-5     | Middle Site Non-Haz/Tier II            |                 |
|----------------------------------|-----------|----------------------------------------|-----------------|
| Date of Sampling Event:          | 19-Aug-14 |                                        | 305pm           |
| Names of Samplers:               |           | S.Borcsok                              | ССС             |
|                                  |           | J.Mauchan                              |                 |
| Landfill Name:                   | Middle    | Samples Collected:                     | NO              |
| Monitoring Well ID:              | MW-6      | PHC F1                                 | _               |
| Sample Number:                   |           | Inorganic Elements                     |                 |
| Condition of Well:               |           | PHC F2-F4                              |                 |
| soft ground around cas           | sing      | PCBs                                   |                 |
| Measured Data                    | J         | Duplicate Collected?                   |                 |
| Well pipe height above ground    | 70        | Sample ID:                             |                 |
| (cm)=                            |           | •                                      |                 |
| Diameter of well (cm)=           | 5         |                                        |                 |
| Depth of well installation (cm)= |           |                                        |                 |
| . ,                              |           |                                        |                 |
| (from ground surface)            |           |                                        |                 |
| Length screened section          |           |                                        |                 |
| (cm)=                            |           |                                        |                 |
| Depth to top of screen (cm)=     |           |                                        |                 |
| (from ground surface)            |           |                                        |                 |
| \                                |           |                                        |                 |
| Depth to water surface (cm)=     | N/A (Dry) | Measurement method: (meter, tape, etc) | Interface Meter |
|                                  |           | ιωρο, οιο)                             |                 |
| ( from top of pipe)              |           |                                        |                 |
| Static water level (cm)=         |           |                                        |                 |
| (below ground surface)           |           |                                        |                 |
| Measured well refusal depth      | 110       | Evidence of sludge or siltation:       | None            |
| (cm)=                            | •         |                                        |                 |
| (i.e. depth to frozen ground)    |           |                                        |                 |
| Measured well refusal depth      |           |                                        |                 |
| from ground surface              |           |                                        |                 |
| Thickness of water column        | 0         |                                        |                 |
| Static volume of water in well   | 0         |                                        |                 |
| Statio volume of water in Well   | 0         |                                        |                 |
|                                  |           |                                        |                 |
| Free product thickness (mm)=     | 0         | Measurement method:                    | IM              |
| i ree product trickness (IIIII)= | U         | ivicasurement method.                  | IIVI            |
| Purging: (Y/N)                   | N         | Durging/Compline Facion and            | N/A             |
|                                  | IN        | Purging/Sampling Equipment:            | IN/A            |
| Volume Purged Water=             |           |                                        |                 |
| Decontamination required:        |           |                                        |                 |
| (Y/N)<br>Number washes:          |           |                                        |                 |
|                                  |           |                                        |                 |
| Number rinses:                   |           |                                        |                 |
| Figure11                         |           |                                        |                 |
| Final Conductivity (v.C/cm)      |           |                                        |                 |
| Final Conductivity (uS/cm)=      |           |                                        |                 |
| Final Temperature (degC)=        |           |                                        |                 |

| Site Name:                       | FOX-5     | Middle Site Non-Haz/Tier II            |                 |
|----------------------------------|-----------|----------------------------------------|-----------------|
| Date of Sampling Event:          |           |                                        | 310pm           |
| Names of Samplers:               |           | S.Borcsok                              | Сторин          |
|                                  |           | J.Mauchan                              |                 |
| Landfill Name:                   | Middle    | Samples Collected:                     | NO              |
| Monitoring Well ID:              | MW-7      | PHC F1                                 | _               |
| Sample Number:                   |           | Inorganic Elements                     |                 |
| Condition of Well:               | OK        | PHC F2-F4                              |                 |
| cap of casing not completel      | y sealed  | PCBs                                   |                 |
| Measured Data                    |           | Duplicate Collected?                   |                 |
| Well pipe height above ground    | 69        | Sample ID:                             |                 |
| (cm)=                            |           | •                                      |                 |
| Diameter of well (cm)=           | 5         |                                        |                 |
| Depth of well installation (cm)= |           |                                        |                 |
| . ,                              |           |                                        |                 |
| (from ground surface)            |           |                                        |                 |
| Length screened section          |           |                                        |                 |
| (cm)=                            |           |                                        |                 |
| Depth to top of screen (cm)=     |           |                                        |                 |
| (from ground surface)            |           |                                        |                 |
| \                                |           |                                        |                 |
| Depth to water surface (cm)=     | N/A (Dry) | Measurement method: (meter, tape, etc) | Interface Meter |
|                                  |           | 13,50,010)                             |                 |
| ( from top of pipe)              |           |                                        |                 |
| Static water level (cm)=         |           |                                        |                 |
| (below ground surface)           |           |                                        |                 |
| Measured well refusal depth      | 153       | Evidence of sludge or siltation:       | None            |
| (cm)=                            |           |                                        |                 |
| (i.e. depth to frozen ground)    |           |                                        |                 |
| Measured well refusal depth      |           |                                        |                 |
| from ground surface              |           |                                        |                 |
| Thickness of water column        | 0         |                                        |                 |
| Static volume of water in well   |           |                                        |                 |
| Statio volume of water in well   |           |                                        |                 |
|                                  |           |                                        |                 |
| Free product thickness (mm)=     | 0         | Measurement method:                    | IM              |
| i ree product trickness (IIIII)= | U         | ivicasurement method.                  | IIVI            |
| Purging: (Y/N)                   | N         | Durging/Compline Facion and            | N/A             |
|                                  | IN        | Purging/Sampling Equipment:            | IN/A            |
| Volume Purged Water=             |           |                                        |                 |
| Decontamination required:        |           |                                        |                 |
| (Y/N)<br>Number washes:          |           |                                        |                 |
| Number wasnes:<br>Number rinses: |           |                                        |                 |
| inumber finses:                  |           |                                        |                 |
| Final all                        |           |                                        |                 |
| Final Conductivity (uS/cm)-      |           |                                        |                 |
| Final Conductivity (uS/cm)=      |           |                                        |                 |
| Final Temperature (degC)=        |           |                                        |                 |

| Site Name:                       | FOX-5  | Middle Site Non-Haz/Tier II      |                 |
|----------------------------------|--------|----------------------------------|-----------------|
| Date of Sampling Event:          |        | Time:                            | 315pm           |
| Names of Samplers:               |        | S.Borcsok                        | 0.0p            |
|                                  |        | J.Mauchan                        |                 |
| Landfill Name:                   | Middle | Samples Collected:               | YES             |
| Monitoring Well ID:              | MW-8   | PHC F1                           |                 |
| Sample Number:                   |        | Inorganic Elements               | YES             |
| Condition of Well:               | OK     | PHC F2-F4                        |                 |
| soft soil around casir           |        | PCBs                             |                 |
| Measured Data                    |        | Duplicate Collected?             | NO              |
| Well pipe height above ground    | 60     |                                  | F5-MID-MW-8     |
| (cm)=                            |        | ·                                |                 |
| Diameter of well (cm)=           | 5      |                                  |                 |
| Depth of well installation (cm)= |        |                                  |                 |
|                                  |        |                                  |                 |
| (from ground surface)            |        |                                  |                 |
| Length screened section          |        |                                  |                 |
| (cm)=                            |        |                                  |                 |
| Depth to top of screen (cm)=     |        |                                  |                 |
| (from ground surface)            |        |                                  |                 |
|                                  |        |                                  |                 |
| Depth to water surface (cm)=     | 143    | Measurement method: (meter,      | Interface Meter |
|                                  |        | tape, etc)                       |                 |
|                                  |        |                                  |                 |
|                                  |        |                                  |                 |
| ( from top of pipe)              |        |                                  |                 |
| Static water level (cm)=         |        |                                  |                 |
| (below ground surface)           |        |                                  |                 |
| Measured well refusal depth      | 208    | Evidence of sludge or siltation: | None            |
| (cm)=                            |        |                                  |                 |
| (i.e. depth to frozen ground)    |        |                                  |                 |
| Measured well refusal depth      |        |                                  |                 |
| from ground surface              |        |                                  |                 |
| Thickness of water column        | 0.65   |                                  |                 |
| Static volume of water in well   | 1.31   |                                  |                 |
|                                  |        |                                  |                 |
|                                  |        |                                  |                 |
| Free product thickness (cm)=     | 0      | Measurement method:              |                 |
| Free product top                 |        |                                  |                 |
| Purging: (Y/N)                   | Υ      | Purging/Sampling Equipment:      | Waterra         |
| Volume Purged Water=             | 2L     | (dry after 1 L)                  | Tubing/         |
| Decontamination required:        | N      |                                  | Footvalve       |
| (Y/N)                            |        |                                  |                 |
| Number washes:                   |        |                                  |                 |
| Number rinses:                   |        |                                  |                 |
|                                  |        |                                  |                 |
| Final pH=                        | 8.61   |                                  |                 |
| Final Conductivity (uS/cm)=      | 27.3   |                                  |                 |
| Final Temperature (degC)=        | 5      |                                  |                 |

| Middle Site Non-Haz/Tier II      | FOX-5     | Middle Site Non-Haz/Tier II      |                 |
|----------------------------------|-----------|----------------------------------|-----------------|
| Time:                            | 19-Aug-14 |                                  | 330pm           |
| Names of Samplers:               |           | S.Borcsok                        |                 |
|                                  |           | J.Mauchan                        |                 |
| Landfill Name:                   | Middle    | Samples Collected:               | YES             |
| Monitoring Well ID:              | MW-9      | PHC F1                           |                 |
| Sample Number:                   |           | Inorganic Elements               | YES             |
| Condition of Well:               | OK        | PHC F2-F4                        |                 |
| soft soil around casir           |           | PCBs                             |                 |
| Measured Data                    |           | Duplicate Collected?             | NO              |
| Well pipe height above ground    | 70        | Sample ID:                       | F5-MID-MW-9     |
| (cm)=                            |           | ·                                |                 |
| Diameter of well (cm)=           | 5         |                                  |                 |
| Depth of well installation (cm)= |           |                                  |                 |
|                                  |           |                                  |                 |
| (from ground surface)            |           |                                  |                 |
| Length screened section          |           |                                  |                 |
| (cm)=                            |           |                                  |                 |
| Depth to top of screen (cm)=     |           |                                  |                 |
| (from ground surface)            |           |                                  |                 |
|                                  |           |                                  |                 |
| Depth to water surface (cm)=     | 166       | Measurement method: (meter,      | Interface Meter |
|                                  |           | tape, etc)                       |                 |
|                                  |           |                                  |                 |
|                                  |           |                                  |                 |
| ( from top of pipe)              |           |                                  |                 |
| Static water level (cm)=         |           |                                  |                 |
| (below ground surface)           |           |                                  |                 |
| Measured well refusal depth      | 225       | Evidence of sludge or siltation: | None            |
| (cm)=                            |           |                                  |                 |
| (i.e. depth to frozen ground)    |           |                                  |                 |
| Measured well refusal depth      |           |                                  |                 |
| from ground surface              |           |                                  |                 |
| Thickness of water column        | 0.59      |                                  |                 |
| Static volume of water in well   | 1.19      |                                  |                 |
|                                  |           |                                  |                 |
|                                  |           |                                  |                 |
| Free product thickness (mm)=     | 0         | Measurement method:              | IM              |
|                                  |           |                                  |                 |
| Purging: (Y/N)                   | Υ         | Purging/Sampling Equipment:      | Waterra         |
| Volume Purged Water=             | 2L        | (dry after 1 L)                  |                 |
| Decontamination required:        | N         | , ,                              | Footvalve       |
| · (Y/N)                          |           |                                  |                 |
| Number washes:                   |           |                                  |                 |
| Number rinses:                   |           |                                  |                 |
|                                  |           |                                  |                 |
| Final pH=                        | 8.03      |                                  |                 |
| Final Conductivity (uS/cm)=      | 31        |                                  |                 |
| Final Temperature (degC)=        | 4.3       |                                  |                 |

### 3.4.2.3 Laboratory Analytical Results

The analytical results for groundwater samples collected at the Middle Site Landfill are presented in Table 3.12. No duplicate groundwater samples were collected at the Middle Site Landfill.

## 3.4.2.4 Discussion of Results by Parameter

An evaluation of the groundwater analytical results at the Station Non-Hazardous Waste Landfill is presented in Table 3.13. The discussion includes a comparison of results from upgradient (MW-5) and downgradient (MW-8, MW-9) monitoring well locations to the baseline average concentrations (BAC) that have been determined for each landfill from groundwater chemistry at the landfill area prior to and during remediation. No groundwater samples were collected from downgradient wells MW-6 and MW-7 during this monitoring event.

**Table 3.13: Evaluation of Groundwater Analytical Results (Middle Site Landfill)** 

|           | Baseline      |                                                                               |  |  |
|-----------|---------------|-------------------------------------------------------------------------------|--|--|
| D         | Average       | 2014 D                                                                        |  |  |
| Parameter | Concentration | 2014 Results                                                                  |  |  |
|           | (mg/L)        |                                                                               |  |  |
|           |               | Detectable concentrations were 0.087 mg/L for the upgradient well and were    |  |  |
|           |               | 0.0044 and 0.014 mg/L for the downgradient wells, with the highest            |  |  |
| Connor    | 0.012         | concentration reported at monitoring well MW-9 and the lowest concentration   |  |  |
| Copper    | 0.012         | at monitoring well MW-8.                                                      |  |  |
|           |               | 2 of the 3 samples analyzed reported concentrations below the BAC, while 1 of |  |  |
|           |               | the samples reported a concentration slightly higher than the BAC.            |  |  |
|           |               | Detectable concentrations were 0.021 mg/L for the upgradient well and were    |  |  |
|           | 0.043         | 0.012 and 0.023 mg/L for the downgradient wells, with the highest             |  |  |
| Nickel    |               | concentration reported at monitoring well MW-9 and the lowest concentration   |  |  |
|           |               | at monitoring well MW-8. All 3 samples reported concentrations below the      |  |  |
|           |               | BAC.                                                                          |  |  |
|           |               | Detectable concentrations were 0.0022 mg/L for the upgradient well and were   |  |  |
| Cobalt    | 0.003         | 0.0019 mg/L for both downgradient wells, with the highest concentration at    |  |  |
| Cobait    |               | monitoring well MW-5 and the lowest concentration at monitoring wells MW-     |  |  |
|           |               | 8 and MW-9. All 3 samples reported concentrations below the BAC.              |  |  |
|           |               | Detectable concentrations were 0.000041 mg/L at the upgradient well and       |  |  |
|           |               | were 0.000024 and 0.000028 mg/L at the downgradient wells, with the highest   |  |  |
| Cadmium   | 0.001         | concentration at monitoring well MW-5 and the lowest concentration at         |  |  |
|           |               | monitoring well MW-8. All 3 samples reported concentrations below the         |  |  |
|           |               | BAC.                                                                          |  |  |
| Lead      | 0.01          | Detectable concentrations were 0.0036 mg/L at the upgradient well and were    |  |  |
| Leau      | 0.01          | 0.0023 and 0.0031 mg/L at the downgradient wells, with the highest            |  |  |

**TABLE 3.12** 

## RESULTS OF ANALYSIS FOR PARAMETERS IN GROUNDWATER AT MIDDLE SITE LANDFILL

| PARAMETERS                 | Baseline<br>Average<br>Concentration | F5-MID-<br>MW-5 | F5-MID-<br>MW-8 | F5-MID-<br>MW-9 |
|----------------------------|--------------------------------------|-----------------|-----------------|-----------------|
|                            | (+)                                  | 19-Aug-14       | 19-Aug-14       | 19-Aug-14       |
| Copper                     | 0.012                                | 0.0087          | 0.0044          | 0.014+          |
| Nickel                     | 0.043                                | 0.021           | 0.012           | 0.023           |
| Cobalt                     | 0.003                                | 0.0022          | 0.0019          | 0.0019          |
| Cadmium                    | 0.001                                | 0.000041        | 0.000024        | 0.000028        |
| Lead                       | 0.01                                 | 0.0036          | 0.0023          | 0.0031          |
| Zinc                       | 0.063                                | 0.028           | 0.037           | 0.064+          |
| Chromium                   | 0.084                                | 0.036           | 0.02            | 0.036           |
| Arsenic                    | 0.003                                | 0.00081         | 0.0007          | 0.00076         |
| Mercury                    | 0.0004                               | < 0.00001       | < 0.00001       | < 0.00001       |
| Total PCBs                 | 0.00002                              | < 0.00005       | < 0.00005       | < 0.00005       |
| PHC F1 (C6-C10)            | -                                    | < 0.025         | < 0.025         | < 0.025         |
| PHC F2 (C10-C16)           | -                                    | < 0.1           | < 0.1           | < 0.1           |
| PHC F3 (C16-C34)           | -                                    | < 0.2           | < 0.2           | < 0.2           |
| PHC F4 (C34-C50)           | -                                    | < 0.2           | < 0.2           | < 0.2           |
| Modifed TPH (Total C6-C34) | 1                                    | 0.163           | 0.163           | 0.163           |

#### **NOTES:**

All parameter values in mg/L (ppm) unless otherwise indicated.

+ Exceeds Middle Site Landfill Baseline Average Concentration

(DUP) Duplicate sample analyzed by AGAT Laboratories for QA/QC purposes.

(AVG) Average concentration of duplicate sample analyses.

RDL Reportable Detection Limit.

< Not detected.

| Parameter | Baseline<br>Average<br>Concentration<br>(mg/L) | 2014 Results                                                                                                                                                                                                                                                                                                                                                                            |
|-----------|------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|           |                                                | concentration at monitoring well MW-5 and the lowest concentration at monitoring well MW-8. All 3 samples reported concentrations below the BAC.                                                                                                                                                                                                                                        |
| Zinc      | 0.063                                          | Detectable concentrations were 0.028 mg/L at the upgradient well and were 0.037 and 0.064 mg/L at the downgradient wells, with the highest concentration at monitoring well MW-9 and the lowest concentration at monitoring well MW-5. 2 of the 3 samples analyzed reported concentrations below the BAC, while 1 of the samples reported a concentration slightly higher than the BAC. |
| Chromium  | 0.084                                          | Detectable concentrations were 0.036 mg/L at the upgradient well and were 0.02 and 0.036 mg/L at the downgradient wells, with the highest concentration at monitoring wells MW-5 and MW-9 and the lowest concentration at monitoring well MW-8. All 3 samples reported concentrations below the BAC.                                                                                    |
| Arsenic   | 0.003                                          | Detectable concentrations were 0.00081 mg/L for the upgradient well and were 0.0007 and 0.00076 mg/L for the downgradient wells, with the highest concentration at monitoring well MW-5 and the lowest concentration at monitoring well MW-8. All 3 samples reported concentrations below the BAC.                                                                                      |
| Mercury   | 0.0004                                         | All 3 samples reported concentrations below the laboratory detection limit of 0.00001 mg/L and below the BAC.                                                                                                                                                                                                                                                                           |
| PCBs      | 0.00002                                        | All 3 samples reported concentrations below the laboratory detection limit of 0.00005 mg/L. This detection limit is above the baseline average, however as the BAC for PCBs at this site was based on a lower detection limit from a previous sampling event.                                                                                                                           |
| ТРН       | 1                                              | All 3 samples reported concentrations of PHC fractions F1, F2, and F3 below their respective detection limits. The calculated modified TPH value was 0.163 mg/L for all 3 samples, below the BAC.                                                                                                                                                                                       |

## 3.4.2.5 Groundwater Trend Analysis by Parameter & Discussion of Trends

A discussion of the trends observed for parameter concentrations in groundwater from 2007 to 2014 are presented in Table 3.14. Note that these trend analyses were performed on six datasets, however a minimum of seven data sets are recommended to establish a statistical trend.

**Table 3.14: Evaluation of Groundwater Result Trends (Middle Site Landfill)** 

| Parameter | 2014 Results                                                                                  |  |  |  |  |
|-----------|-----------------------------------------------------------------------------------------------|--|--|--|--|
| Connor    | Concentrations show a downward trend for upgradient and downgradient wells. Reported          |  |  |  |  |
| Copper    | concentrations are generally below the baseline average.                                      |  |  |  |  |
| Niekol    | Concentrations show a slight downward trend for upgradient wells and a downward trend for     |  |  |  |  |
| Nickel    | downgradient wells. Reported concentrations were above the baseline average in 2007 but since |  |  |  |  |

| Parameter | 2014 Results                                                                                    |  |  |  |  |
|-----------|-------------------------------------------------------------------------------------------------|--|--|--|--|
|           | 2008 have been below the baseline average.                                                      |  |  |  |  |
| Cobalt    | Concentrations show an upward trend for upgradient wells and a slight downward trend for        |  |  |  |  |
| Cobait    | downgradient wells. Reported concentrations are clustered around the baseline average.          |  |  |  |  |
|           | Concentrations show a downward trend for upgradient and downgradient wells, however this trend  |  |  |  |  |
| Cadmium   | is due to lower laboratory detection limits over time. Reported concentrations are below the    |  |  |  |  |
|           | baseline average.                                                                               |  |  |  |  |
| Lead      | Concentrations show a downward trend for upgradient and downgradient wells. Reported            |  |  |  |  |
| Leau      | concentrations are generally below the baseline average.                                        |  |  |  |  |
| Zinc      | Concentrations show a slight downward trend for upgradient and downgradient wells. Reported     |  |  |  |  |
| Zilic     | concentrations are generally below the baseline average.                                        |  |  |  |  |
| Chromium  | Concentrations show a slight downward trend for upgradient wells and a downward trend for       |  |  |  |  |
| Cinomium  | downgradient wells. Reported concentrations are generally below the baseline average.           |  |  |  |  |
|           | Concentrations show a downward trend for upgradient and downgradient wells, however this trend  |  |  |  |  |
| Arsenic   | is due to lower laboratory detection limits over time. Reported concentrations are below the    |  |  |  |  |
|           | baseline average.                                                                               |  |  |  |  |
| Mercury   | All results were below laboratory detection limits for all monitoring events.                   |  |  |  |  |
| PCBs      | All results were below laboratory detection limits for all monitoring events.                   |  |  |  |  |
|           | Concentrations show a downward trend for upgradient and downgradient wells, however this trend  |  |  |  |  |
| TPH       | is due to lower laboratory detection limits over time. One reported concentration was above the |  |  |  |  |
|           | baseline average.                                                                               |  |  |  |  |

## 3.4.3 Thermal Monitoring

Thermal monitoring was completed at this landfill between 21 and 23 August 2014.

### 3.4.3.1 Thermistor Annual Maintenance Reports

The thermistor annual maintenance reports completed during the site inspection are provided following this page.

### 3.4.3.2 Summary of Findings from Annual DEW Line Thermal Reports

Thermistor data was analyzed by Tetra Tech EBA. The results of the thermal reports indicate that the landfill is stabilizing and performing as expected from a thermal perspective. The Thermal Report for the Tier II Disposal Facility is provided in Appendix D.

#### 3.5 CONCLUSIONS/OVERALL PERFORMANCE OF THE LANDFILL

Based on the findings of the 2014 landfill monitoring program and comparison of these findings to the results of the 2012 monitoring program, the performance of the landfill is considered to be acceptable.

| O = = troopton             | Marra        | OFNEO                |                           |                     | · a. | · · · · · · · · · · · · · · · · · · · |             |                 | 4.4      |
|----------------------------|--------------|----------------------|---------------------------|---------------------|------|---------------------------------------|-------------|-----------------|----------|
| Contractor                 |              | SENES<br>S. Barrasak |                           |                     | Ins  | pection Date                          | <u>(I</u>   | 21-A            | ug-14    |
| Prepared E                 | 3y:          | S. Borcsok           |                           |                     |      |                                       |             |                 |          |
| Thermistor                 | Information  |                      |                           |                     |      |                                       |             |                 |          |
| Site Name:                 |              | FOX-5                |                           |                     | Mid  | ldle Site Lan                         | dfill       |                 |          |
| Thermistor                 |              | VT-9                 | Inclination<br>First Date |                     |      |                                       | Last Date   | - Front         |          |
| Install Date<br>Coordinate |              | vation               | N 9748.5                  |                     | E    | 15527.3                               | Lasi Daii   | e Event<br>Elev | 313.4    |
| Length of C                |              | vation               | Cable Lead Abo            |                     |      | Nodal Poin                            | ıts         | LICV            | 010.1    |
| Datalogger                 | r Serial # 0 |                      |                           |                     |      | Cable Seria                           | al Number   |                 |          |
| Thermistor                 | Type: UL     | 16                   |                           |                     |      |                                       |             |                 |          |
| Thermisto                  | r Inspecti   | ion                  |                           |                     |      |                                       |             |                 |          |
|                            |              |                      | Good                      | 1                   | Ne   | eds Maintena                          | ance        |                 |          |
| (                          | Casing       |                      | $\Box X$                  | ļ                   |      |                                       |             |                 |          |
| (                          | Cover        |                      | $\Box X$                  | ļ                   |      |                                       |             |                 |          |
| ſ                          | Data Logg    | jer                  | $\Box X$                  | ļ                   |      |                                       |             |                 |          |
| (                          | Cable        |                      | $\Box X$                  | !                   |      |                                       |             |                 |          |
| F                          | Beads        |                      | $\Box X$                  | ļ                   |      |                                       |             |                 |          |
| F                          | Battery Ins  | stallation Date      | Jul-10                    | l                   |      |                                       |             |                 |          |
|                            | Battery Lev  |                      | Main                      | 11.34 / 11.34       |      |                                       | Aux         | 12.53 / 13.5    | 50       |
|                            | · ·          |                      |                           | (Battery level befo | ore  | replacemen                            | <del></del> |                 |          |
| Manual Gr                  | ound Ter     | nperature Read       | dings_                    | (=====,             |      |                                       |             |                 |          |
|                            | Bead         | Volts                | Degrees C                 |                     |      | Bead                                  | Volts       | De              | grees C  |
|                            | 1            | 1.1316               | 6.2022                    | <u>!</u>            |      | 9                                     | -           |                 | -2.6846  |
|                            | 2            | 1.113                | 5.5956                    |                     |      | 10                                    | -           |                 | -3.1598  |
|                            | 3            | 1.0432               | 3.3118                    | ;                   |      | 11                                    | 0           |                 | 381.0742 |
|                            | 4            | 0.9757               | 1.0925                    |                     |      | 12                                    | 0           |                 | 381.0742 |
|                            | 5            | 0.9397               | -0.0800                   |                     |      | 13                                    | 0           |                 | 381.0742 |
|                            | 6            | 0.9188               | -0.7968                   |                     |      | 14                                    | 0           |                 | 381.0742 |
|                            | 7            | 0.8927               | -1.6714                   |                     |      | 15                                    | 0           |                 | 381.0742 |
| L                          | 8            | 0.8748               | -2.2735                   | ,                   |      | 16                                    | 0           |                 | 381.1    |
| Observation                | ons and F    | Proposed Maint       | tenance                   |                     |      |                                       |             |                 |          |
|                            |              | needs to be rep      |                           |                     |      |                                       |             |                 |          |
| ľ                          | Jessican     | TIECUS IO DE TOP     | ласси                     |                     |      |                                       |             |                 |          |
|                            |              |                      |                           |                     |      |                                       |             |                 |          |
|                            |              |                      |                           |                     |      |                                       |             |                 |          |

| Contractor I               | Name:                 | SENES              |                              |                   | Ins          | pection Date:         | :           | 21-Aug-14     | +      |
|----------------------------|-----------------------|--------------------|------------------------------|-------------------|--------------|-----------------------|-------------|---------------|--------|
| Prepared By                | y:                    | S. Borcsok         |                              |                   |              |                       |             |               |        |
| Thermistor I               | Informati             | on                 |                              |                   |              |                       |             |               |        |
| Site Name:                 |                       | FOX-5              | Thermistor                   | Location          | Mic          | ddle Site Land        | dfill       |               |        |
| Thermistor I               |                       | VT-10              | Inclination:                 |                   |              |                       |             |               |        |
| Install Date:              |                       | - 0                | First Date E                 | Event             | _            | 155440                | Last Date   |               | 244.0  |
| Coordinates<br>Length of C |                       |                    | N 9773.1<br>Cable Lead Above | e Ground (m)      | E            | 15544.8<br>Nodal Poin | ts          | Elev          | 314.0  |
| Datalogger                 | Serial # 0            | 02020230           |                              |                   |              | Cable Seria           |             |               |        |
| Thermistor <sup>-</sup>    | Type: UL              | .16                |                              |                   | _            |                       |             |               |        |
| Thermistor                 | Inspect               | ion                |                              |                   |              |                       |             |               |        |
| 111011111                  | mop.                  | <u>1011</u>        | Good                         |                   | Ne           | eds Maintena          | ance        |               |        |
| С                          | Casing                |                    | $\Box X$                     |                   |              |                       |             |               | _      |
| С                          | Cover                 |                    | $\Box X$                     |                   |              |                       |             |               |        |
| D                          | ata Logg              | jer                | □X                           |                   |              |                       |             |               |        |
| С                          | able                  |                    | $\Box X$                     |                   |              |                       |             |               |        |
| В                          | seads                 |                    |                              |                   |              | X beads 2, 5          |             |               |        |
| В                          | attery Ins            | stallation Date    | Batteri <u>es re</u>         | eplaced before d  | dow <u>r</u> | nloading as P         | roLog would | d not connect |        |
|                            | sattery Le            |                    | Main                         | 11.34             |              |                       | Aux         | 13.50         |        |
|                            | •                     |                    | -                            | (Battery level af |              | eplacement)           | _           |               |        |
| Manual Gro                 | ound Ter              | mperature Reac     |                              | •                 |              | ·<br>                 |             |               |        |
| L                          | Bead                  | Volts              | Degrees C                    |                   |              | Bead                  | Volts       | Degrees       | С      |
| L                          | 1                     | 1.0246             | 2.7016                       |                   |              | 9                     | 0.8834      |               | 1.9823 |
| L                          | 2                     | 0                  | 381.0742                     |                   |              | 10                    | 0.8753      |               | 2.2554 |
| L                          | 3                     | 1.0706             | 4.2083                       |                   |              | 11                    | 0           | 38            | 1.0742 |
| <u> </u>                   | 4                     | 1.0822             | 4.5876                       |                   |              | 12                    | 0           | 38            | 1.0742 |
| L                          | 5                     | 0                  | 381.0742                     |                   |              | 13                    | 0           | 38            | 1.0742 |
| <u> </u>                   | 6                     | 0.9622             | 0.6462                       |                   |              | 14                    | 0           | 38            | 1.0742 |
| L                          | 7                     | 0.9259             | -0.5574                      |                   |              | 15                    | 0           | 38            | 1.0742 |
| L                          | 8                     | 0.9076             | -1.1899                      |                   |              | 16                    | 0           | 38            | 1.0742 |
| Obser <u>vatio</u>         | ns a <u>nd F</u>      | Proposed Maint     | tenance                      |                   |              |                       |             |               |        |
|                            |                       | er clock time -53: |                              |                   |              |                       |             |               |        |
|                            |                       | needs to be rep    |                              |                   |              |                       |             |               |        |
| ľ                          | <del>C</del> SSICALIT | Needs to be teb    | laceu                        |                   |              |                       |             |               |        |
|                            |                       |                    |                              |                   |              |                       |             |               |        |

| Contractor No.                 | mo:     | CENIES          |                        |                  | Inci       | acation Data        |             | 21 Aug 14           |
|--------------------------------|---------|-----------------|------------------------|------------------|------------|---------------------|-------------|---------------------|
| Contractor Na                  | me.     | SENES           |                        |                  | IIIS       | pection Date        | •           | 21-Aug-14           |
| Prepared By:                   |         | S. Borcsok      |                        |                  |            |                     |             |                     |
| Thermistor Info                | ormatic | n               |                        |                  |            |                     |             |                     |
| Site Name:                     |         | FOX-5           |                        | r Location       | Mid        | ldle Site Lan       | dfill       |                     |
| Thermistor Nu                  | mber: \ | VT-11           | Inclination            |                  |            |                     | Last Data I | =                   |
| Install Date:<br>Coordinates a | nd Elov | vation          | First Date<br>N 9779.4 | Event            | E          | 15507.9             | Last Date E | event<br>Elev 311.4 |
| Length of Cab                  |         | /alion          | Cable Lead Abo         | ve Ground (m)    |            | Nodal Poin          |             | <u> </u>            |
| Datalogger Se                  |         | 2020270         | 000.0 2000 / 100       |                  |            | Cable Seria         |             |                     |
| Thermistor Ty                  |         |                 |                        |                  |            |                     |             |                     |
| The sum into so In             | 4!      |                 |                        |                  |            |                     |             |                     |
| Thermistor In                  | specti  | <u>on</u>       | Good                   |                  | Nee        | eds Maintena        | ance        |                     |
| Cas                            | ina     |                 | □X                     |                  |            | out mament          |             |                     |
|                                | •       |                 | □X                     |                  |            | -                   |             |                     |
| Cov                            |         |                 |                        |                  |            |                     |             |                     |
| Data                           | a Logge | er              | □X                     |                  |            |                     |             |                     |
| Cab                            | le      |                 | □X                     |                  |            |                     |             |                     |
| Bea                            | ds      |                 |                        |                  | <b>□</b> } | <b>K</b> Bead #10 r | not working |                     |
| Batt                           | ery Ins | tallation Date  | Unknown                |                  |            |                     |             |                     |
| Batt                           | ery Lev | vels            | Main                   | 11.3             | 4          |                     | _Aux _      | 12.41               |
|                                |         |                 |                        | (Battery level a | fter re    | eplacement)         |             |                     |
| Manual Groun                   | nd Ten  | nperature Rea   | <u>dings</u>           | Ī                |            |                     |             |                     |
| В                              | Bead    | Volts           | Degrees C              |                  |            | Bead                | Volts       | Degrees C           |
|                                | 1       | 1.0936          | 4.9594                 |                  |            | 9                   | 0.8937      | -1.6380             |
|                                | 2       | 1.0889          | 4.7897                 |                  |            | 10                  | 0.0017      | -93.1005            |
|                                | 3       | 1.1275          | 6.0698                 |                  |            | 11                  | 0           | 381.0742            |
|                                | 4       | 1.1409          | 6.5069                 |                  |            | 12                  | 0           | 381.0742            |
|                                | 5       | 1.0609          | 3.8913                 |                  |            | 13                  | 0           | 381.0742            |
|                                | 6       | 1.9737          | 1.0270                 |                  |            | 14                  | 0           | 381.0742            |
|                                | 7       | 0.9487          | 0.2013                 |                  |            | 15                  | 0           | 381.0742            |
|                                | 8       | 0.9053          | -1.2461                |                  |            | 16                  | 0.0005      | 101.4553            |
| Observations                   | and P   | roposed Main    | tenance                |                  |            |                     |             |                     |
|                                |         |                 |                        |                  |            |                     |             |                     |
| Des                            | Sicant  | needs to be rep | Diaceu                 |                  |            |                     |             |                     |
|                                |         |                 |                        |                  |            |                     |             |                     |
|                                |         |                 |                        |                  |            |                     |             |                     |

| Contractor Name                      | : SENES             |                             | ln                   | spection Date:         |               | 21-Aug-14 |
|--------------------------------------|---------------------|-----------------------------|----------------------|------------------------|---------------|-----------|
| Prepared By:                         | S. Borcsok          |                             |                      |                        |               |           |
| Thermistor Inform                    | nation              |                             |                      |                        |               |           |
| Site Name:                           | FOX-5               | Thermistor                  |                      | iddle Site Land        | dfill         |           |
| Thermistor Numb                      | er: VT-12           | Inclination:                |                      |                        |               |           |
| Install Date:                        |                     | First Date                  |                      | 45404.0                | Last Date Ev  |           |
| Coordinates and<br>Length of Cable ( |                     | N 9811.9<br>Cable Lead Abov | E (Cround (m)        | 15484.6<br>Nodal Point | Ele<br>to     | ev 310.3  |
| Datalogger Serial                    |                     | Cable Lead Abov             | ve Ground (III)      | Cable Seria            |               |           |
| Thermistor Type:                     |                     |                             |                      | Ouble Cone             | ar rambor     |           |
| Th                                   |                     |                             |                      |                        |               |           |
| Thermistor Inspe                     | ection              | Good                        | Ne                   | eeds Maintena          | ance          |           |
| Casing                               |                     | □X                          |                      |                        | •             |           |
| Cover                                |                     | □X                          |                      |                        |               |           |
| Data Lo                              | agar                |                             |                      | X                      |               |           |
|                                      | oggei               | □X                          |                      |                        |               |           |
| Cable                                |                     |                             |                      |                        |               |           |
| Beads                                |                     |                             |                      | X All beads re         | eporting 0V   |           |
| Battery                              | Installation Date   | Unknown                     |                      |                        |               |           |
| Battery                              | Levels              | Main _                      | 11.34                |                        | _Aux1         | 2.41      |
|                                      |                     |                             | (Battery level in ex | isting batteries       | in datalogger | )         |
| Manual Ground                        | Temperature Rea     | <u>dings</u>                |                      |                        |               |           |
| Bea                                  | d Volts             | Degrees C                   |                      | Bead                   | Volts         | Degrees C |
| 1                                    | 0                   | 381.0742                    |                      | 9                      | 0             | 381.0742  |
| 2                                    | 0                   | 381.0742                    |                      | 10                     | 0             | 381.0742  |
| 3                                    | 0                   | 381.0742                    |                      | 11                     | 0             | 381.0742  |
| 4                                    | 0                   | 381.0742                    |                      | 12                     | 0             | 381.0742  |
| 5                                    | 0                   | 381.0742                    |                      | 13                     | 0             | 381.0742  |
| 6                                    | 0                   | 381.0742                    |                      | 14                     | 0             | 381.0742  |
| 7                                    | 0                   | 381.0742                    |                      | 15                     | 0             | 381.0742  |
| 8                                    | 0                   | 381.0742                    |                      | 16                     | 0             | 381.0742  |
| Observations ar                      | d Proposed Main     | tenance                     |                      |                        |               |           |
| · -                                  | ds reported 0 volts |                             | dings                |                        |               |           |
|                                      | gger returned to DN | · ·                         | •                    |                        |               |           |
|                                      | ant needs to be rep |                             |                      |                        |               |           |

# 3.6 RECOMMENDATIONS/NEXT STEPS

Regular monitoring of this landfill as per the monitoring schedule shown in Table 1.1 should be continued. No remedial work is necessary at this time.

#### 4.0 MAIN LANDFILL

#### 4.1 LANDFILL DESCRIPTION

The Main Landfill is located approximately 1 km northwest of the Station Area, in a broad valley that slopes downward towards the Arctic Ocean, and has an approximate area of  $10,000\text{m}^2$ . The Main Landfill was an existing landfill that was regraded and remediated. A detailed drawing of this landfill is provided in Figure 3. The historical chemical results for soil samples collected at this landfill are shown in plan on Figure 3A. The historical chemical results for groundwater samples collected at this landfill are shown in plan on Figure 3B.

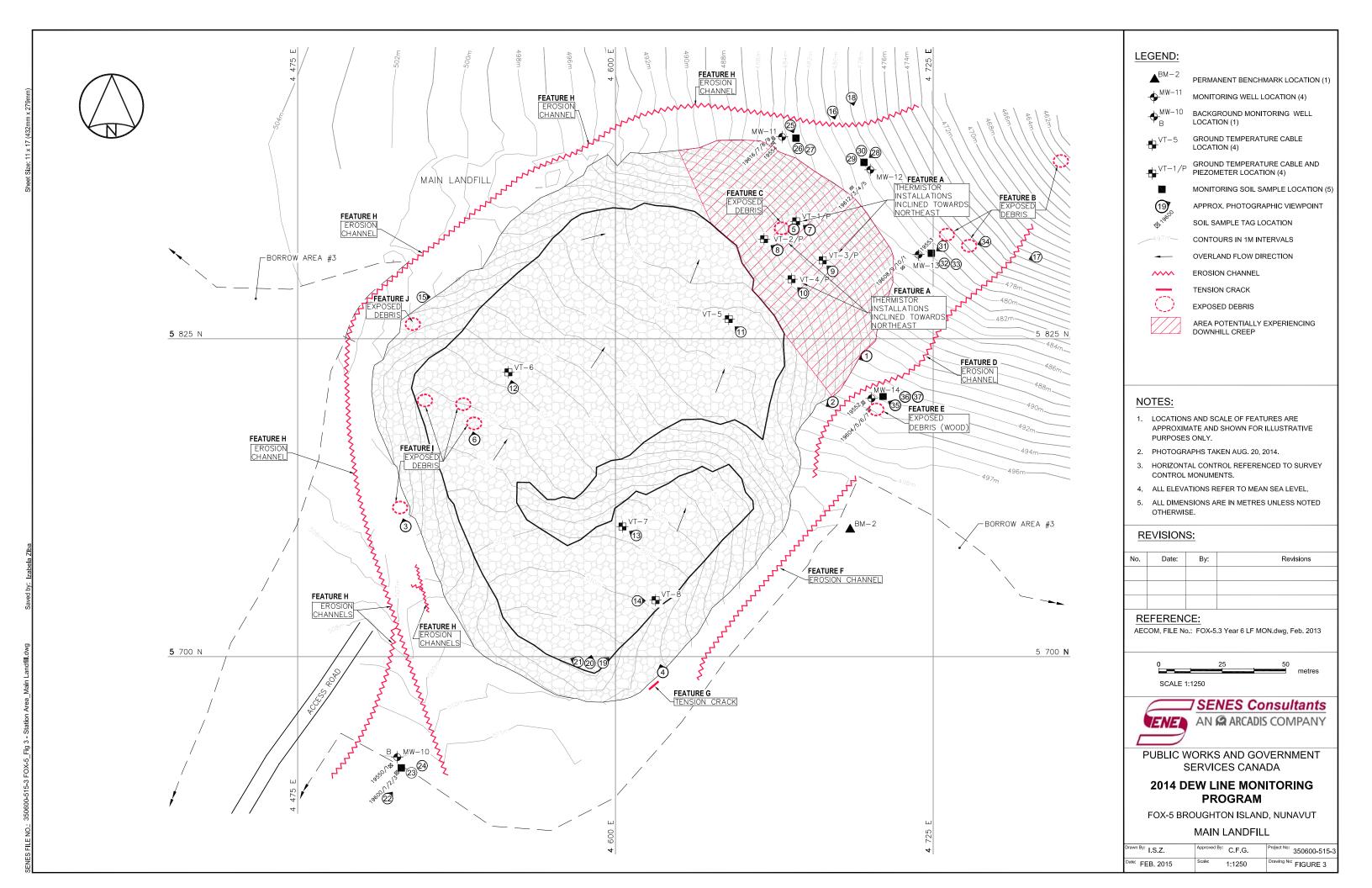
### 4.2 SUMMARY OF WORK CONDUCTED

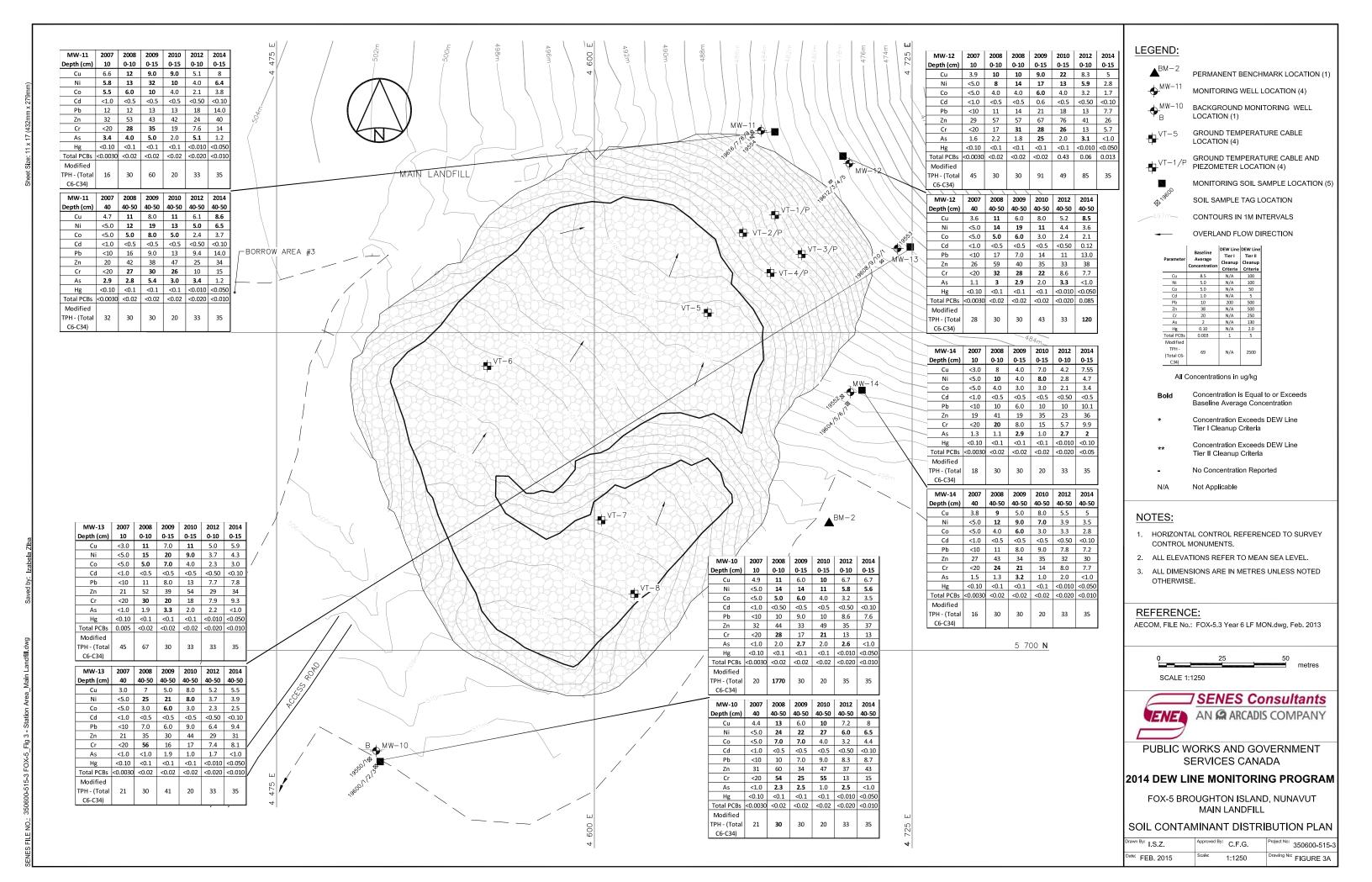
### 4.2.1 Visual Inspection

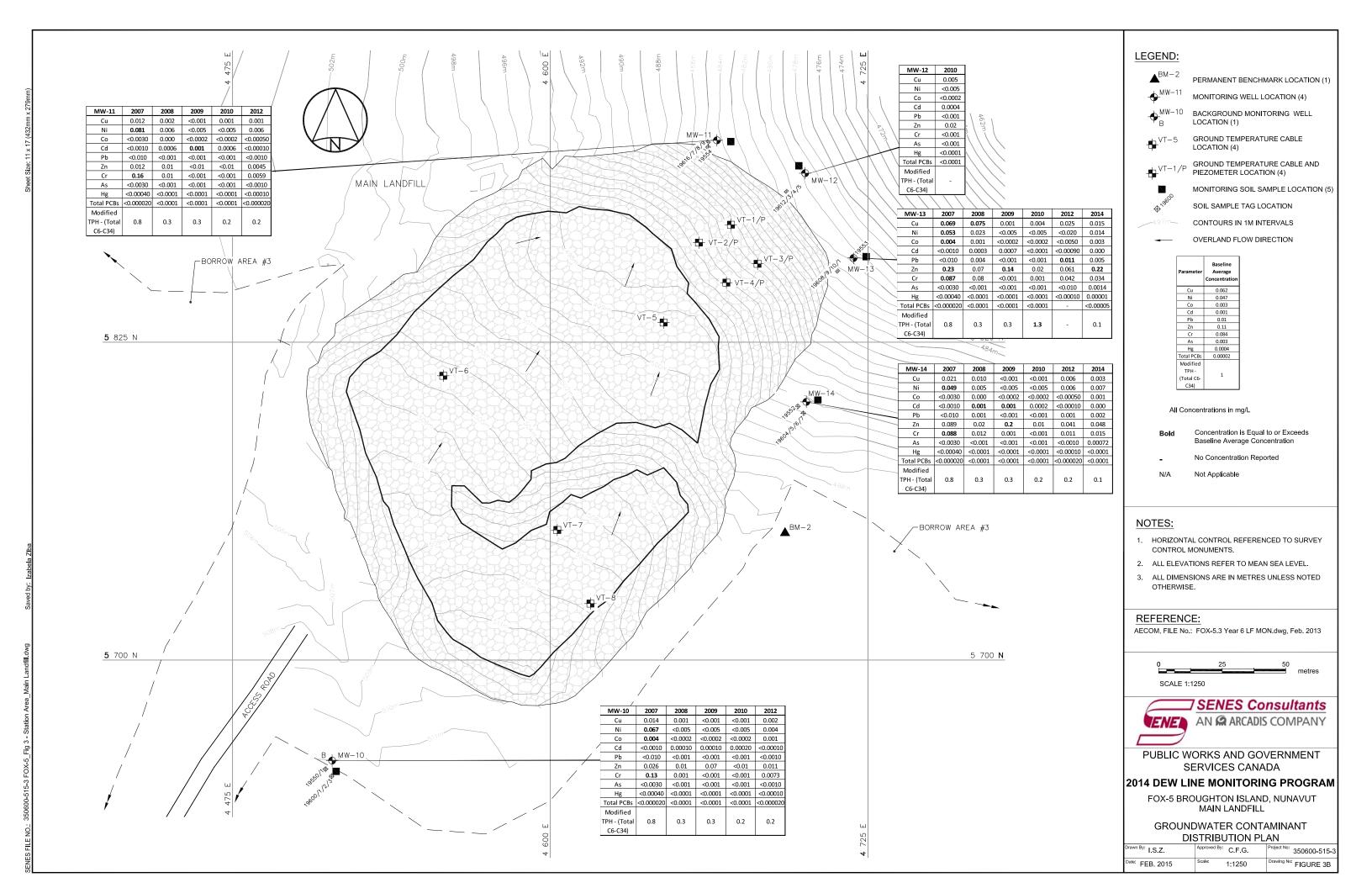
The visual inspection of the landfill was completed with no deviations from the visual inspection work plan.

## 4.2.2 Soil Sampling

Soil samples were collected at five (5) locations as shown on Figure 3. Surface and subsurface samples were collected at each location. There were no deviations from the soil sampling work plan. A duplicate sample was collected at depth at MW-14. Soil sampling completed at the landfill is summarized in Table 4.1.


Table 4.1: Summary of Work Conducted by Soil Sampling Location (Main Landfill)


| Location    | Surface Soil<br>Sample<br>Collected | Subsurface Soil Sample Collected |
|-------------|-------------------------------------|----------------------------------|
| F5-MN-MW-10 | $\sqrt{}$                           | $\sqrt{}$                        |
| F5-MN-MW-11 | $\sqrt{}$                           | $\sqrt{}$                        |
| F5-MN-MW-12 |                                     |                                  |
| F5-MN-MW-13 |                                     |                                  |
| F5-MN-MW-14 | $\sqrt{D}$                          | √ V                              |


D = duplicate sample collected  $\sqrt{-\text{sample collected}}$ 

X – no sample collected

### 4.2.3 Groundwater Sampling







Groundwater monitoring was completed at five monitoring wells as shown on Figure 3. Groundwater monitoring and sampling at this landfill was generally completed as per the work plan. As indicated in Table 4.2, groundwater samples were not collected from three of five monitoring wells at this landfill as the wells were dry or had insufficient water. One duplicate groundwater sample was collected at MW-14.

Table 4.2: Summary of Work Conducted by Groundwater Sampling Location (Main Landfill)

| Location    | Visual<br>Inspection/<br>Groundwater<br>Monitoring | Sample collected for PCB analysis | Sample collected<br>for metals<br>analysis | Sample collected<br>for PHCs F1-F4<br>analysis |
|-------------|----------------------------------------------------|-----------------------------------|--------------------------------------------|------------------------------------------------|
| F5-MN-MW-10 | $\sqrt{}$                                          | $X^N$                             | $X^{N}$                                    | $X^{N}$                                        |
| F5-MN-MW-11 | $\sqrt{}$                                          | $X^{I}$                           | $X^{I}$                                    | $X^{I}$                                        |
| F5-MN-MW-12 |                                                    | $X^N$                             | $X^N$                                      | $X^N$                                          |
| F5-MN-MW-13 |                                                    |                                   |                                            |                                                |
| F5-MN-MW-14 | V                                                  | $\sqrt{D}$                        | $\sqrt{D}$                                 | $\sqrt{D}$                                     |

D - duplicate sample collected

√ - sample collected

X - no sample collected

N - no water in well (well was dry)

I - insufficient water in well to collect sample

Monitoring well MW-10 had not been reported dry in any of the previous monitoring years. Monitoring well MW-12 was reported to be dry in 2008, 2009, and 2012, but contained a limited amount of water in 2010. It is recommended that monitoring of all wells continue during future monitoring events.

#### 4.2.4 Thermal Monitoring

Thermal monitoring was completed at all eight of the vertical thermistor locations at the Main Landfill. A summary of thermistor work completed at this landfill is provided in Table 4.3.

Table 4.3: Summary of Work Conducted by Thermistor Location (Main Landfill)

| Location   | Realtime Data | Data       | Batteries |
|------------|---------------|------------|-----------|
|            |               | Downloaded | Replaced  |
| F5-MN-VT-1 |               |            | $\sqrt{}$ |
| F5-MN-VT-2 | $\sqrt{}$     | $\sqrt{}$  | $\sqrt{}$ |
| F5-MN-VT-3 | $\sqrt{}$     | $\sqrt{}$  | $\sqrt{}$ |
| F5-MN-VT-4 | $\sqrt{}$     | $\sqrt{}$  | $\sqrt{}$ |
| F5-MN-VT-5 | $\sqrt{}$     | $\sqrt{}$  | $\sqrt{}$ |
| F5-MN-VT-6 | $\sqrt{}$     | $\sqrt{}$  | $\sqrt{}$ |
| F5-MN-VT-7 | V             |            | V         |
| F5-MN-VT-8 | V             |            | V         |

#### 4.3 RESULTS OF THE MONITORING PROGRAM

#### 4.3.1 Visual Inspection

The visual inspection at the Main Landfill was completed on 20 August 2014. The visual inspection checklist completed during the site inspection is provided in Table 4.4.

#### 4.3.1.1 Stability Assessment

The preliminary stability assessment completed during the site inspection is provided in Table 4.5.

#### 4.3.1.2 Photographic Records

The photographic records for the Main Landfill are provided in Table 4.6.

#### 4.3.1.3 Trend Analysis

The observations obtained during the visual inspection from the current 2014 monitoring event were compared to the observations obtained during the previous 2012 monitoring event, and are presented in Table 4.7 below for each category observed.

#### **TABLE 4.4 - VISUAL INSPECTION CHECKLIST**

# DEW LINE CLEANUP: POST-CONSTRUCTION - LANDFILL MONITORING INSPECTION REPORT – PAGE 1 OF 2

SITE NAME: FOX-5

LANDFILL DESIGNATION: Main Landfill

DATE OF INSPECTION: 20 August 2014

DATE OF PREVIOUS INSPECTION: 13-16 August 2012

INSPECTED BY: S. Borcsok, J. Mauchan

REPORT PREPARED BY: S. Borcsok

The inspector/reporter represents to the best of their knowledge, the following statements and observations are true and correct and to the best of the preparer's actual knowledge, no material facts have been suppressed or misstated.

#### TABLE 4.4 - VISUAL INSPECTION CHECKLIST - INSPECTION REPORT – PAGE 2 OF 2

| Checklist Item                                 | Present<br>Yes/No | Location (Describe relative to existing monuments/features and relative to landfill design i.e. surface, berms, toe) | Length                                               | Width | Depth | Extent relative to<br>Area of Landfill<br>(%) | Description                                                                                        | Photographic Records Focal length, location, view point & direction (relative to magnetic north) Feature of note Scale | Additional Comments                                                                                    |
|------------------------------------------------|-------------------|----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|-------|-------|-----------------------------------------------|----------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|
| Settlement                                     | NO                |                                                                                                                      |                                                      |       |       |                                               |                                                                                                    |                                                                                                                        |                                                                                                        |
| Erosion                                        | YES               | Around the perimeter of the landfill (FEATURE D, F, H)                                                               | Along most<br>of the<br>perimeter of<br>the landfill | 1m    | 0.5m  | ~2%                                           | Erosion evident<br>in drainage<br>channels<br>around<br>perimeter of the<br>landfill               | P-1, P-2                                                                                                               |                                                                                                        |
| Frost Action                                   | NO                |                                                                                                                      |                                                      |       |       |                                               |                                                                                                    |                                                                                                                        |                                                                                                        |
| Sloughing and Cracking                         | YES               | Tension crack on south end of landfill (FEATURE G)                                                                   | 0.5m                                                 |       |       |                                               | Small tension crack                                                                                | P-4                                                                                                                    |                                                                                                        |
| Animal Burrows                                 | NO                |                                                                                                                      |                                                      |       |       |                                               |                                                                                                    |                                                                                                                        |                                                                                                        |
| Vegetation                                     | NO                |                                                                                                                      |                                                      |       |       |                                               |                                                                                                    |                                                                                                                        |                                                                                                        |
| Staining                                       | NO                |                                                                                                                      |                                                      |       |       |                                               |                                                                                                    |                                                                                                                        |                                                                                                        |
| Vegetation Stress                              | NO                |                                                                                                                      |                                                      |       |       |                                               |                                                                                                    |                                                                                                                        |                                                                                                        |
| Seepage Points                                 | NO                |                                                                                                                      |                                                      |       |       |                                               |                                                                                                    |                                                                                                                        |                                                                                                        |
| Debris Exposed                                 | YES               | Within boulders in cap and outside perimeter of landfill (FEATURE B, C, E, I)                                        |                                                      |       |       | <1%                                           | Metal cables,<br>small metal and<br>wood debris                                                    | P-3, P-5, P-6, P-15, P-34, P-35                                                                                        | Debris not suspected to have originated within the landfill                                            |
| Presence/Condition –<br>Monitoring Instruments | YES               | Eight thermistors within landfill<br>and five monitoring wells<br>outside perimeter of landfill<br>(FEATURE A)       |                                                      |       |       |                                               | Thermistors<br>and Monitoring<br>Wells –<br>Thermistors 1,<br>2, 3, 4 are<br>inclined<br>downslope | P-7 to P-14, P-22, P-25, P-28, P-31,                                                                                   |                                                                                                        |
| Features of Note.                              | YES               | Fine soil particles infilling void spaces in boulders in landfill cap                                                |                                                      |       |       | 50%                                           | Fine soil<br>particles<br>infilling void<br>spaces in<br>boulders in<br>landfill cap               | P-5, P-6                                                                                                               | This is a natural process that would be expected to occur with the materials used to construct the cap |

SITE:: FOX-5 LANDFILL: MAIN LANDFILL 2

Table 4.5: Preliminary Stability Assessment - FOX-5 Main Landfill

| Feature                           | Severity Rating | Extent     |
|-----------------------------------|-----------------|------------|
| Settlement                        | None            | None       |
| Erosion                           | Acceptable      | Occasional |
| Frost Action                      | None            | None       |
| Staining                          | None            | None       |
| Vegetation Stress                 | None            | None       |
| Seepage/Ponded Water              | None            | None       |
| Debris exposure                   | Acceptable      | Occasional |
| Overall Landfill Performance: ACC | EDTARI E        |            |

| Performance/<br>Severity Rating | Description                                                                                                                                                                                                                                                                                                                |
|---------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Acceptable                      | Noted features are of little consequence. The landfill is performing as designed. Minor deviations in environmental or physical performance may be observed, such as isolated areas of erosion, settlement.                                                                                                                |
| Marginal                        | Physical/environmental performance appears to be deteriorating with time. Observations may include an increase in size or number of features of note, such as differential settlement, erosion or cracking. No significant impact on landfill stability to date, but potential for failure is assessed as low or moderate. |
| Significant                     | Significant or potentially significant changes affecting landfill stability, such as significant changes in slope geometry, significant erosion or differential settlement; scarp development. The potential for failure is assessed as imminent.                                                                          |
| Unacceptable                    | Stability of landfill is compromised to the extent that ability to contain waste materials is compromised. Examples may include:  - Debris exposed in erosion channels or areas of differential settlement Liner exposed Slope failure.                                                                                    |

| Extent     | Description                                                                       |
|------------|-----------------------------------------------------------------------------------|
| Isolated   | Singular feature                                                                  |
| Occasional | Features of note occurring at irregular intervals/locations                       |
| Numerous   | Many features of note, impacted less than 50% of the surface area of the landfill |
| Extensive  | Impacting greater than 50% of the surface area of the landfill                    |

#### Main Landfill (see Figure 3)

| Photo 1 (FOX-5 MN P-1.jpg)                                                                       | Photo 2 (FOX-5 MN P-2.jpg)                                                                                   |
|--------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|
| Photo 1 (FOX-5 MN P-1,jpg)  Description: Erosion channel on eastern side of cap, north of MW-14. | Photo 2 (FOX-5 MN P-2.jpg)  Description: Erosion channel on eastern side of cap, south of MW-14. (FEATURE D) |
| Date: August 20, 2014                                                                            | Date: August 20, 2014                                                                                        |

| Photo 3 (FOX-5 MN P-3.jpg)                                                                                                                       | Photo 4 (FOX-5 MN P-4.jpg)                                              |
|--------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|
| Description: View north over exposed debris along western edge of landfill. Exposed debris is metal wire seen above trowel. ( <b>FEATURE I</b> ) | Description: Small tension crack on south side of landfill. (FEATURE G) |
| 20/08/2014                                                                                                                                       | 20/08/2014                                                              |
| Date: August 20, 2014                                                                                                                            | Date: August 20, 2014                                                   |

| Photo 5 (FOX-5 MN P-5.jpg)                                                                          | Photo 6 (FOX-5 MN P-6.jpg)                                                                                                  |
|-----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|
| Photo 5 (FOX-5 MN P-5.jpg)  Description: Exposed debris observed near VT-2. (FEATURE C)  20/09/2014 | Photo 6 (FOX-5 MN P-6.jpg)  Description: View north toward exposed debris (metal wires) from southwest of VT-6. (FEATURE I) |
| Date: August 20, 2014                                                                               | Date: August 20, 2014                                                                                                       |

| Photo 7 (FOX-5 MN P-7.jpg)                                                              | Photo 8 (FOX-5 MN P-8.jpg)                                                             |
|-----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|
| Description: View northwest of VT-1. VT-1 observed to be slightly slanted.  (FEATURE A) | Description: View northwest of VT-2. VT-2 observed to be slightly slanted. (FEATURE A) |
| 2000(2014                                                                               | 20/03/2014                                                                             |
| Date: August 20, 2014                                                                   | Date: August 20, 2014                                                                  |

| Photo 9 (FOX-5 MN P-9.jpg)                                                             | Photo 10 (FOX-5 MN P-10.jpg)                                                       |
|----------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|
| Description: View northwest of VT-3. VT-3 observed to be slightly slanted. (FEATURE A) | Description: View northwest of VT-4. VT-4 observed to be very slanted. (FEATURE A) |
| **************************************                                                 | 20/08/2014                                                                         |

| Photo 11 (FOX-5 MN P-11.jpg)             | Photo 12 (FOX-5 MN P-12.jpg)         |
|------------------------------------------|--------------------------------------|
| Description: View northwest toward VT-5. | Description: View north toward VT-6. |
| 20/08/2014                               | 20/08/2014                           |

Date: August 20, 2014

Date: August 20, 2014

| Photo 13 (FOX-5 MN P-13.jpg)                                      | Photo 14 (FOX-5 MN P-14.jpg)                             |
|-------------------------------------------------------------------|----------------------------------------------------------|
| Photo 13 (FOX-5 MN P-13.jpg)  Description: View west toward VT-7. | Photo 14 (FOX-5 MN P-14.jpg)  Description: View of VT-8. |
| Date: August 20, 2014                                             | Date: August 20, 2014                                    |

| Photo 15 (FOX-5 MN P-15.jpg)                                                                         | Photo 16 (FOX-5 MN P-16.jpg)                               |
|------------------------------------------------------------------------------------------------------|------------------------------------------------------------|
| Description: View east across landfill. Exposed debris (corrugated metal) in foreground. (FEATURE J) | Description: View east, downslope, away from the landfill. |
| 20/08/2014                                                                                           | 20/08/2014                                                 |
| Date: August 20, 2014                                                                                | Date: August 20, 2014                                      |

| Photo 17 (FOX-5 MN P-17.jpg)                                                              | Photo 18 (FOX-5 MN P-18.jpg)                                         |
|-------------------------------------------------------------------------------------------|----------------------------------------------------------------------|
| Description: View west over erosion channel, toward northern end of landfill. (FEATURE D) | Description: View south toward northern end of landfill. (FEATURE H) |
| 20/08/2014                                                                                | 20/08/2014                                                           |
| Date: August 20, 2014                                                                     | Date: August 20, 2014                                                |

| Photo 19 (FOX-5 MN P-19.jpg)                                        | Photo 20 (FOX-5 MN P-20.jpg)                        |
|---------------------------------------------------------------------|-----------------------------------------------------|
| Description: View northeast toward VT-8 from south end of landfill. | Description: View north from south end of landfill. |
| 20/08/2014                                                          | 20/08/2014                                          |
| Date: August 20, 2014                                               | Date: August 20, 2014                               |

| Photo 21 (FOX-5 MN P-21.jpg)                       | Photo 22 (FOX-5 MN P-22.jpg)                                                |
|----------------------------------------------------|-----------------------------------------------------------------------------|
| Description: View west from south end of landfill. | Description: View northeast of MW-10, looking toward south end of landfill. |
| 20/08/201                                          | 4                                                                           |
| Date: August 20, 2014                              | Date: August 20, 2014                                                       |

| Photo 23 (FOX-5 MN P-23.jpg)                                                     | Photo 24 (FOX-5 MN P-24.jpg)                                                                 |
|----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|
| Photo 23 (FOX-5 MN P-23.jpg)  Description: F5-MN-MW-10 during sample collection. | Photo 24 (FOX-5 MN P-24,jpg)  Description: F5-MN-MW-10 after sample collection and backfill. |
| Date: August 20, 2014                                                            | Date: August 20, 2014                                                                        |

| Description: View south toward MW-11 and north end of landfill.  Description: | iption: F5-MN-MW-11 during sample collection. |
|-------------------------------------------------------------------------------|-----------------------------------------------|
|                                                                               |                                               |
| Date: August 20, 2014  Date: August 20, 2014                                  | August 20, 2014                               |

| Photo 27 (FOX-5 MN P-27.jpg)                                   | Photo 28 (FOX-5 MN P-28.jpg)                                        |
|----------------------------------------------------------------|---------------------------------------------------------------------|
| Description: F5-MN-MW-11 after sample collection and backfill. | Description: View southwest toward MW-12 and north end of landfill. |
| 20/03/2014                                                     | 20/08/2014                                                          |
| Date: August 20, 2014                                          | Date: August 20, 2014                                               |

| Photo 29 (FOX-5 MN P-29.jpg)                                                     | Photo 30 (FOX-5 MN P-30.jpg)                                                                 |
|----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|
| Photo 29 (FOX-5 MN P-29.jpg)  Description: F5-MN-MW-12 during sample collection. | Photo 30 (FOX-5 MN P-30.jpg)  Description: F5-MN-MW-12 after sample collection and backfill. |
| Date: August 20, 2014                                                            | Date: August 20, 2014                                                                        |

| Photo 31 (FOX-5 MN P-31.jpg)                                                                                 | Photo 32 (FOX-5 MN P-32.jpg)                       |
|--------------------------------------------------------------------------------------------------------------|----------------------------------------------------|
| Description: View west toward MW-13 and north end of landfill. Vertical thermistors can be seen in distance. | Description: F5-MN-MW-13 during sample collection. |
| 20/03/2014                                                                                                   | 20/08/2014                                         |
| Date: August 20, 2014                                                                                        | Date: August 20, 2014                              |

| Photo 33 (FOX-5 MN P-33.jpg)                                   | Photo 34 (FOX-5 MN P-34.jpg)                                                               |
|----------------------------------------------------------------|--------------------------------------------------------------------------------------------|
| Description: F5-MN-MW-13 after sample collection and backfill. | Description: Exposed debris northeast of MW-13 included pieces of scrap wood.  (FEATURE B) |
| 20//08/2014                                                    | 20/08/2014                                                                                 |
| Date: August 20, 2014                                          | Date: August 20, 2014                                                                      |

| Photo 35 (FOX-5 MN P-35.jpg)                                                                                       | Photo 36 (FOX-5 MN P-36.jpg)                                                     |
|--------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|
| Photo 35 (FOX-5 MN P-35.jpg)  Description: View west toward MW-14 and landfill beyond erosion channel. (FEATURE D) | Photo 36 (FOX-5 MN P-36.jpg)  Description: F5-MN-MW-13 during sample collection. |
|                                                                                                                    | 20/08/2014                                                                       |
| Date: August 20, 2014                                                                                              | Date: August 20, 2014                                                            |

| Photo 37 (FOX-5 MN P-37.jpg)                                   |  |
|----------------------------------------------------------------|--|
| Description: F5-MN-MW-13 after sample collection and backfill. |  |
| 20/03/2014                                                     |  |
| Date: August 20, 2014                                          |  |

**Table 4.7: Visual Inspection Trends (Main Landfill)** 

| Item                      | <b>AECOM 2012</b>                                                                                                                                                                                                                                       | SENES 2014 Observations                                                                                                                                                                                                         | Trend                                                                                       |
|---------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|
|                           | Observations                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                 |                                                                                             |
| Settlement                | Indications of settlement were not observed.                                                                                                                                                                                                            | None observed.                                                                                                                                                                                                                  | None observed at this landfill.                                                             |
| Erosion                   | Fines were observed next to flow channels adjacent to the landfill. Due to the size of the boulders placed on the landfill, it is unclear if a portion of the fines have migrated from underneath, or if they all originated from the surrounding area. | Erosion channels were noted around the perimeter of the landfill, draining to the northeast. It is understood that the flow of water was redirected to flow around the landfill in this manner. (Feature D, F, H)               | Erosion in drainage channels is continuing around the landfill.                             |
| Frost Action              | Indications of frost action were not observed.                                                                                                                                                                                                          | None observed.                                                                                                                                                                                                                  | None observed at this landfill.                                                             |
| Sloughing and<br>Cracking | One tension crack was observed on the south end of the landfill.                                                                                                                                                                                        | A small tension crack was observed on the south end of the landfill. (Feature G)                                                                                                                                                | The same tension crack was observed in both reports but does not appear to be worsening.    |
| Animal Burrows            | Evidence of burrowing animals was not observed.                                                                                                                                                                                                         | None observed.                                                                                                                                                                                                                  | None observed at this landfill.                                                             |
| Vegetation                | Indications of vegetation were not observed.                                                                                                                                                                                                            | No vegetation was observed at this landfill.                                                                                                                                                                                    | None observed at this landfill.                                                             |
| Staining                  | Staining was not evident at the landfill.                                                                                                                                                                                                               | None observed.                                                                                                                                                                                                                  | None observed at this landfill.                                                             |
| Vegetation Stress         | Indications of vegetation were not observed.                                                                                                                                                                                                            | No vegetation was observed at this landfill.                                                                                                                                                                                    | None observed at this landfill.                                                             |
| Seepage Points            | Indications of seepage were not observed.                                                                                                                                                                                                               | None observed.                                                                                                                                                                                                                  | None observed at this landfill.                                                             |
| Debris Exposed            | Occasional small pieces of metal and wood, and pieces of metal cable or rebar were observed. It does not appear that the debris originated from the landfill.                                                                                           | Occasional small pieces of metal and wood debris were observed around the landfill and within the large boulders placed as cover. It does not appear that this debris originated from within the landfill. (Feature B, C, E, I) | Debris exposure<br>has not originated<br>within the landfill<br>and is relatively<br>minor. |

| Item               | <b>AECOM 2012</b>              | SENES 2014 Observations             | Trend              |
|--------------------|--------------------------------|-------------------------------------|--------------------|
|                    | <b>Observations</b>            |                                     |                    |
| Presence/Condition | Four vertical thermistor       | Eight vertical thermistor           | Inclination of the |
| of Monitoring      | installations and five         | installations and five monitoring   | thermistors was    |
| Instruments        | monitoring well installations  | well installations were observed at | visible in 2012    |
|                    | were observed at the landfill. | the landfill. Monitoring wells were | report but was not |
|                    |                                | in good condition, although locks   | noted as an issue. |
|                    |                                | on all wells were broken. Standing  | It is unclear if   |
|                    |                                | water was noted inside the casing   | inclination became |
|                    |                                | of MW-13. Vertical Thermistors      | worse between      |
|                    |                                | VT-1, 2, 3, and 4 were inclined     | 2012 and 2014.     |
|                    |                                | towards the northeast. (Feature A)  |                    |
| Other Features of  | None noted.                    | Fine soil particles are slowly      | Infilling of void  |
| Note               |                                | infilling the void spaces in and    | spaces is expected |
|                    |                                | around the large boulders placed as | to continue over   |
|                    |                                | the landfill cap.                   | time.              |

#### 4.3.1.4 Discussion of Results/Trends

The Main Landfill is located in a valley that is sloped towards the ocean. Vertical thermistors VT-1, 2, 3, and 4 are located at the lowest end of the landfill within this valley. The inclination of these vertical thermistors may indicate that the landfill is undergoing a slow translational failure known as downhill creep, in which the landfill itself is sliding down the slope of the valley. The presence of a tension crack at the opposite high point of the landfill may also indicate that this creep is occurring. It is understood that the vertical thermistors were installed perpendicular to the ground surface which would result in some of them being angled from true vertical, however continued monitoring is required to confirm if the inclination is increasing over time.

#### 4.3.2 Soil Sampling

Soil sampling was completed at the Main Landfill on 20 August 2014. As previously reported a total of eleven samples including one duplicate sample were procured from five locations as shown in plan on Figure 2.

#### 4.3.2.1 Laboratory Analytical Results

The analytical results for soil samples collected at the Main Landfill are presented in Table 4.8.

A duplicate soil sample was collected at surface at MW-14 and was submitted to AGAT, a secondary laboratory for QA/QC purposes. The RPDs for the duplicate sample results were below 30%, indicating good agreeability of the results for all parameters except for copper.

**TABLE 4.8** 

#### RESULTS OF ANALYSIS FOR PARAMETERS IN SOIL AT MAIN LANDFILL

|                            | Background    | Baseline      | DEW Line | DEW Line | F5-MN-      | F5-MN-    | F5-MN-      | F5-MN-      | F5-MN-    | F5-MN-     | F5-MN-    | F5-MN-    | F5-MN-    | F5-MN-     | F5-MN-    | F5-MN-    |
|----------------------------|---------------|---------------|----------|----------|-------------|-----------|-------------|-------------|-----------|------------|-----------|-----------|-----------|------------|-----------|-----------|
|                            | Concentration | Average       | Cleanup  | Cleanup  | MW-10-S     | MW-10-D   | MW-11-S     | MW-11-D     | MW-12-S   | MW-12-D    | MW-13-S   | MW-13-D   | MW-14-S   | MW-14-S    | MW-14-S   | MW-14-D   |
| PARAMETERS                 |               | Concentration | Tier I   | Tier II  |             |           |             |             |           |            |           |           |           | (DUP)      | (AVG)     |           |
|                            |               |               | Criteria | Criteria |             |           |             |             |           |            |           |           |           |            |           |           |
|                            |               |               |          |          | 0-15 cm     | 40-50 cm  | 0-15 cm     | 40-50 cm    | 0-15 cm   | 40-50 cm   | 0-15 cm   | 40-50 cm  | 0-15 cm   | 0-15 cm    | 0-15 cm   | 40-50 cm  |
|                            | (_)           | (+)           | (*)      | (**)     | 20-Aug-14   | 20-Aug-14 | 20-Aug-14   | 20-Aug-14   | 20-Aug-14 | 20-Aug-14  | 20-Aug-14 | 20-Aug-14 | 20-Aug-14 | 20-Aug-14  | 20-Aug-14 | 20-Aug-14 |
| Copper                     | 11            | 8.5           | -        | 100      | 6.7         | 8         | 8           | <u>8.6+</u> | 5         | 8.5        | 5.9       | 5.5       | 6.1       | 9          | 7.55      | 5         |
| Nickel                     | 5.3           | 5.0           | -        | 100      | <u>5.6+</u> | 6.5+      | <u>6.4+</u> | 6.5+        | 2.8       | 3.6        | 4.3       | 3.9       | 4.4       | 5          | 4.7       | 3.5       |
| Cobalt                     | 5.0           | 5.0           | -        | 50       | 3.5         | 4.4       | 3.8         | 3.7         | 1.7       | 2.1        | 3         | 2.5       | 3.1       | 3.7        | 3.4       | 2.8       |
| Cadmium                    | 1.0           | 1.0           | -        | 5        | < 0.10      | < 0.10    | < 0.10      | < 0.10      | < 0.10    | 0.12       | < 0.10    | < 0.10    | < 0.10    | < 0.5      | < 0.5     | < 0.10    |
| Lead                       | 10            | 10            | 200      | 500      | 7.6         | 8.7       | <u>14+</u>  | <u>14+</u>  | 7.7       | <u>13+</u> | 7.8       | 9.4       | 9.1       | <u>11+</u> | 10.05+    | 7.2       |
| Zinc                       | 46            | 38            | -        | 500      | 37          | 43+       | 40+         | 34          | 26        | 38         | 34        | 31        | 32        | 40         | 36        | 30        |
| Chromium                   | 20            | 20            | -        | 250      | 13          | 15        | 14          | 15          | 5.7       | 7.7        | 9.3       | 8.1       | 8.8       | 11         | 9.9       | 7.7       |
| Arsenic                    | 1.9           | 2             | -        | 30       | <1.0        | <1.0      | 1.2         | 1.2         | <1.0      | <1.0       | <1.0      | <1.0      | <1.0      | 2.0        | 2.0       | <1.0      |
| Mercury                    | 0.5           | 0.10          | -        | 2        | < 0.050     | < 0.050   | < 0.050     | < 0.050     | < 0.050   | < 0.050    | < 0.050   | < 0.050   | < 0.050   | < 0.10     | < 0.10    | < 0.050   |
| Total PCBs                 | 0.010         | 0.003         | 1        | 5        | < 0.010     | < 0.010   | < 0.010     | < 0.010     | 0.013     | 0.085      | < 0.010   | < 0.010   | < 0.010   | < 0.05     | < 0.05    | < 0.010   |
| PHC F1 (C6-C10)            | -             | -             | -        | -        | <10         | <10       | <10         | <10         | <10       | <10        | <10       | <10       | <10       | <5         | <10       | <10       |
| PHC F2 (C10-C16)           | -             | -             | -        | -        | <10         | <10       | <10         | <10         | <10       | <10        | <10       | <10       | <10       | <10        | <10       | <10       |
| PHC F3 (C16-C34)           | -             | -             | -        | -        | < 50        | < 50      | < 50        | < 50        | < 50      | 110        | < 50      | < 50      | <50       | < 50       | <50       | < 50      |
| PHC F4 (C34-C50)           | -             | -             | -        | -        | < 50        | < 50      | < 50        | < 50        | < 50      | 56         | < 50      | < 50      | <50       | < 50       | <50       | <50       |
| Modifed TPH (Total C6-C34) | 5.0           | 69            | -        | 2500     | <u>35</u>   | <u>35</u> | <u>35</u>   | <u>35</u>   | <u>35</u> | 120+       | <u>35</u> | <u>35</u> | <u>35</u> | 32.5       | 33.75     | <u>35</u> |

#### NOTES:

All parameter values in  $\mu g/g$  (ppm) unless otherwise indicated.

- \_ Exceeds FOX-5 Main Landfill Background Concentration.
- + Exceeds FOX-5 Main Landfill Baseline Average Concentration.
- Exceeds DEW Line Cleanup Tier I Criteria.
- Exceeds DEW Line Cleanup Tier II Criteria.
- (DUP) Duplicate sample analyzed by AGAT Laboratories for QA/QC purposes.
- (AVG) Average concentration of duplicate samples.
- < Not detected.
- No concentration reported.

Concentrations of copper in this sample were reported as 6.1 and 9 ug/g from Maxxam and AGAT, respectively, yielding an RPD of 38.4%. Given the low concentrations of copper and the agreeability with the rest of the parameter results, this duplicate result is considered acceptable.

#### 4.3.2.2 Discussion of Results - Comparison to Baseline

A discussion of the analytical results for each parameter analyzed in soil samples collected at the Main Landfill is provided in Table 4.9. The discussion includes a comparison of results from upgradient (MW-10) and downgradient (MW-11, MW-12, MW-13, MW-14) soil sampling locations to baseline average concentrations (BAC) that have been determined for each landfill from soil chemistry at the landfill area prior to and during remediation.

**Table 4.9: Evaluation of 2014 Soil Analytical Data (Main Landfill)** 

| Parameter | Baseline Average<br>Concentration<br>(ug/g) | 2014 Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-----------|---------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Copper    | 8.0                                         | Detectable concentrations ranged between 6.7 and 8 ug/g for upgradient samples and 5 and 9 ug/g for downgradient samples, with the highest concentration reported in the surface sample at the MW-14 sample location and the lowest concentration in the surface sample at the MW-12 sample location and in the subsurface sample at the MW-14 sample location. 8 of 11 samples reported concentrations below the BAC while 3 of 11 samples reported concentrations slightly above the BAC. |
| Nickel    | 4.0                                         | Detectable concentrations ranged between 5.6 and 6.5 ug/g for upgradient samples and 2.8 and 6.5 ug/g for downgradient samples, with the highest concentration in the subsurface samples at the MW-10 and MW-11 sample locations and the lowest concentration in the surface sample at the MW-12 sample location. 4 of 11 samples reported concentrations below the BAC while 7 of 11 samples reported concentrations slightly above the BAC.                                               |
| Cobalt    | 3.0                                         | Detectable concentrations ranged between 3.5 and 4.4 ug/g for upgradient samples and 1.7 and 3.8 ug/g for downgradient samples, with the highest concentration reported in the subsurface sample at the MW-10 sample location and the lowest concentration in the surface sample at the MW-12 sample location. 5 of 11 samples reported concentrations below the BAC while 6 of 11 samples reported concentrations slightly above the BAC.                                                  |
| Cadmium   | 1.0                                         | One detectable concentration of 0.12 ug/g was reported for the subsurface sample collected at the MW-12 sample location (downgradient). The remaining 10 of 11 samples reported concentrations less than the laboratory detection limit (0.10 ug/g and 0.5 ug/g for the duplicate submitted to the secondary laboratory) and below the BAC.                                                                                                                                                 |
| Lead      | 10                                          | Detectable concentrations ranged between 7.6 and 8.7 ug/g for upgradient samples and 7.2 and 14 ug/g for downgradient samples, with the highest concentration reported in surface and subsurface samples at the MW-11                                                                                                                                                                                                                                                                       |

| Parameter | Baseline Average<br>Concentration<br>(ug/g) | 2014 Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|-----------|---------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|           |                                             | sample location and the lowest concentration in the subsurface sample at the MW-14 sample location. 7 of 11 samples reported concentrations below the BAC while 4 of 11 samples reported concentrations slightly above the BAC.                                                                                                                                                                                                                                               |
| Zinc      | 38                                          | Detectable concentrations ranged between 37 and 43 ug/g for upgradient samples and 26 and 40 ug/g for downgradient samples, with the highest concentration in the subsurface sample at the MW-10 sample location and the lowest concentration in the surface sample at the MW-12 sample location. 7 of 11 samples reported concentrations below the BAC while 4 of 11 samples reported concentrations slightly above the BAC.                                                 |
| Chromium  | 20                                          | Detectable concentrations ranged between 13 and 15 ug/g for upgradient samples and 5.7 and 15 ug/g for downgradient samples, with the highest concentration in the subsurface samples at the MW-10 and MW-11 sample locations and the lowest concentration in the surface sample at the MW-12 sample location. All 11 samples reported concentrations below the BAC.                                                                                                          |
| Arsenic   | 2                                           | Detectable concentrations were not reported in upgradient samples, and ranged between 1.2 and 2 ug/g for downgradient samples, with the highest concentration in the surface sample at the MW-14 sample location and the lowest concentration in surface and subsurface samples at the MW-11 sample location. All 11 samples reported concentrations below the BAC with 8 of the eleven samples reporting concentrations less than the laboratory detection limit (1.0 ug/g). |
| Mercury   | 0.10                                        | All 11 samples reported concentrations less than the laboratory detection limit (0.050 ug/g and 0.10 ug/g for the duplicate sample submitted to the secondary laboratory) and BAC.                                                                                                                                                                                                                                                                                            |
| PCBs      | 0.003                                       | Detectable concentrations of 0.013 and 0.085 ug/g were detected in surface and subsurface samples at the downgradient MW-12 sample location, respectively. 9 of the 11 samples reported concentrations below the BAC while 2 of the 11 samples reported concentrations slightly higher than the BAC.                                                                                                                                                                          |
| ТРН       | 40                                          | One detectable concentration of 120 ug/g was reported in the subsurface sample collected at the downgradient MW-12 sample location. The remaining 10 of 11 samples reported concentrations below the laboratory detection limit for PHC fractions F1, F2 and F3 and their modified TPH values concentrations are below the BAC.                                                                                                                                               |

### 4.3.2.3 Soil Trend Analysis by Parameter and Discussion of Trends

A discussion of the trends observed for parameter concentrations in soil from 2007 to 2014 are presented in Table 4.10. Note that these trend analyses were performed on six datasets, however a minimum of seven data sets are recommended to establish a statistical trend.

**Table 4.10: Evaluation of Soil Result Trends (Main Landfill)** 

| Parameter  | 2014 Results                                                                                          |
|------------|-------------------------------------------------------------------------------------------------------|
| Connor     | Concentrations are generally stable for upgradient and downgradient soil locations. Reported          |
| Copper     | concentrations are clustered around the baseline average.                                             |
|            | Concentrations show a downward trend for upgradient and downgradient soil locations.                  |
| Nickel     | Concentrations reported during the 2014 sampling program are clustered around the baseline            |
| NICKCI     | average while concentrations in past monitoring years were more elevated but well below the Tier II   |
|            | Cleanup Criteria.                                                                                     |
|            | Concentrations show a downward trend for upgradient and downgradient soil locations.                  |
| Cobalt     | Concentrations reported during the 2014 sampling program are above the baseline average while         |
| Coount     | concentrations in past monitoring years were more elevated but well below the Tier II Cleanup         |
|            | Criteria.                                                                                             |
|            | Concentrations have been below laboratory detection limits at all locations for all monitoring events |
| Cadmium    | except for one concentration marginally higher than the baseline average in 2009 and one              |
|            | concentration well below the baseline average in 2014.                                                |
|            | Concentrations show a slight upward trend for upgradient and downgradient soil locations.             |
| Lead       | Concentrations are slightly above the baseline average but well below Tier I and Tier II Cleanup      |
|            | Criteria.                                                                                             |
| Zinc       | Concentrations are generally stable for upgradient soil locations and show a slight downward trend    |
| 23110      | for downgradient soil locations. Concentrations are clustered around the baseline average.            |
| Chromium   | Concentrations show a downward trend for upgradient and downgradient soil locations.                  |
| Cinomium   | Concentrations are generally clustered around the baseline average.                                   |
| Arsenic    | Concentrations show a slight downward trend for upgradient and downgradient soil locations.           |
| THE SOURCE | Concentrations are generally clustered around the baseline average.                                   |
| Mercury    | Concentrations have been below laboratory detection limits at all locations for all monitoring        |
| whereary   | events.                                                                                               |
|            | Concentrations have been below laboratory detection limits at all locations for all monitoring events |
| PCBs       | except for MW-12 which has reported concentrations above the baseline average but below the Tier      |
|            | I and II Cleanup Criteria.                                                                            |
|            | Concentrations show a slight upward trend for downgradient soil locations, and a very strong          |
|            | downward trend for upgradient soil locations. The downward trend is due to a very high                |
| TPH        | concentration of 1770 ug/g in surface soil at MW-10 from 2008 which skews the results. Excluding      |
|            | this result shows a very slight upward trend for upgradient soil locations. Concentrations have       |
|            | generally been slightly higher than the baseline average.                                             |

### 4.3.3 Groundwater Sampling

Groundwater sampling at the Main Landfill was completed on 20 August 2014. As previously reported a total of three samples including one duplicate were procured from two monitoring wells as shown in plan on Figure 3.

### 4.3.3.1 Monitoring Well Sampling/Inspection Logs

Monitoring well sampling/inspection logs are provided following this page.

#### 4.3.3.2 Water Levels/Groundwater Flow

Water levels were measured at the Main Landfill on 20 August 2014. The groundwater levels measured are shown below in Table 4.11. Based on the measured groundwater levels, groundwater flow is expected to be towards the northeast, however groundwater flow will be highly affected by freeze/thaw cycles and permafrost.

| Monitoring<br>Well | Date      | Ground<br>Surface<br>Elevation<br>(m) | Water<br>Level<br>(m bgs) | Water Level<br>Elevation (m) | Depth to<br>Bottom<br>(m bgs) | Bottom<br>Elevation<br>(m) |
|--------------------|-----------|---------------------------------------|---------------------------|------------------------------|-------------------------------|----------------------------|
| MW-10              | 20-Aug-14 | 511.2                                 | Dry                       | N/A                          | 1.32                          | 509.88                     |
| MW-11              | 20-Aug-14 | 484.4                                 | 1.25                      | 483.15                       | 1.56                          | 482.84                     |
| MW-12              | 20-Aug-14 | 479.8                                 | Dry                       | N/A                          | 1.19                          | 478.61                     |
| MW-13              | 20-Aug-14 | 480.6                                 | 0.9                       | 479.7                        | 1.32                          | 479.28                     |
| MW-14              | 20-Aug-14 | 493.4                                 | 0.84                      | 492.56                       | 1.44                          | 491.96                     |

**Table 4.11: Groundwater Levels (Main Landfill)** 

#### 4.3.3.3 Laboratory Analytical Results

The analytical results for groundwater analyses at the Main Landfill are presented in Table 4.12.

A duplicate groundwater sample was collected at MW-14 and was submitted to AGAT, a secondary laboratory for QA/QC purposes. The RPDs for the duplicate sample results were above 30%, indicating poor agreeability of the results for all parameters. In this instance, reported concentrations of parameters are very low, in the parts per billion range. Where such low concentrations are encountered, relatively small changes in concentration can result in high RPD values. Based on this the duplicate results are acceptable.

#### 4.3.3.4 Discussion of Results by Parameter

A discussion of the results for each parameter analyzed in groundwater at the Main Landfill is provided in Table 4.13. The discussion includes a comparison of results to the baseline average concentrations that have been determined for each landfill from groundwater chemistry at the landfill area prior to and during remediation. Note that the results are for downgradient wells as the upgradient well MW-10 was dry during the 2014 monitoring event.

# **Monitoring Well Sampling Record**

| Site Name:                                     | FOX-5        | Main Landfill                          |                 |
|------------------------------------------------|--------------|----------------------------------------|-----------------|
| Date of Sampling Event:                        |              |                                        | 145pm           |
| Names of Samplers:                             |              | S.Borcsok                              |                 |
|                                                |              | J.Mauchan                              |                 |
| Landfill Name:                                 | Main         | Samples Collected:                     | NO              |
| Monitoring Well ID:                            | MW-10        | PHC F1                                 |                 |
| Sample Number:                                 |              | Inorganic Elements                     |                 |
| Condition of Well:                             | OK           | PHC F2-F4                              |                 |
| lock rusted shut, broke                        |              | PCBs                                   |                 |
| Measured Data                                  |              | Duplicate Collected?                   |                 |
| Well pipe height above ground                  | 40           | ·                                      |                 |
| (cm)=                                          |              |                                        |                 |
| Diameter of well (cm)=                         | 5            |                                        |                 |
| Depth of well installation (cm)=               |              |                                        |                 |
| , ,                                            |              |                                        |                 |
| (from ground surface)                          |              |                                        |                 |
| Length screened section                        |              |                                        |                 |
| (cm)=                                          |              |                                        |                 |
| Depth to top of screen (cm)=                   |              |                                        |                 |
| (from ground surface)                          |              |                                        |                 |
|                                                |              |                                        |                 |
| Depth to water surface (cm)=                   | N/A (Dry)    | Measurement method: (meter, tape, etc) | Interface Meter |
|                                                |              |                                        |                 |
| ( from top of pipe)                            |              |                                        |                 |
| Static water level (cm)=                       |              |                                        |                 |
| (below ground surface)                         |              |                                        |                 |
| Measured well refusal depth                    | 172          | Evidence of sludge or siltation:       | None            |
| (cm)=                                          |              |                                        |                 |
| (i.e. depth to frozen ground)                  |              |                                        |                 |
|                                                |              |                                        |                 |
| Thickness of water column                      | 0            |                                        |                 |
|                                                |              |                                        |                 |
| Static volume of water in well                 | 0            |                                        |                 |
|                                                |              |                                        |                 |
| Free product thickness (mm)=                   | 0            | Measurement method:                    | 18.4            |
| Free product thickness (mm)=                   | U            | Measurement method:                    | IM              |
| D                                              | NI/A (Danis) | Durging/Consuling Family               | N1/A            |
| Purging: (Y/N)                                 | N/A (Dry)    | Purging/Sampling Equipment:            | N/A             |
| Volume Purged Water= Decontamination required: |              |                                        |                 |
| •                                              |              |                                        |                 |
| (Y/N)<br>Number washes:                        |              |                                        |                 |
| Number wasnes.  Number rinses:                 |              |                                        |                 |
| Number mises.                                  |              |                                        |                 |
| Final pH=                                      |              |                                        |                 |
| Final Conductivity (uS/cm)=                    |              |                                        |                 |
| Final Temperature (degC)=                      |              |                                        |                 |
| i iliai Tellipelatule (degc)=                  |              |                                        |                 |

# **Monitoring Well Sampling Record**

| Site Name:                       | FOX-5   | Main Landfill                          |                 |
|----------------------------------|---------|----------------------------------------|-----------------|
| Date of Sampling Event:          |         |                                        | 140pm           |
| Names of Samplers:               |         | S.Borcsok                              |                 |
|                                  |         | J.Mauchan                              |                 |
| Landfill Name:                   | Main    | Samples Collected:                     | NO              |
| Monitoring Well ID:              | MW-11   | PHC F1                                 | _               |
| Sample Number:                   |         | Inorganic Elements                     |                 |
| Condition of Well:               | OK      | PHC F2-F4                              |                 |
| lock was taped but bro           |         | PCBs                                   |                 |
| Measured Data                    |         | Duplicate Collected?                   |                 |
| Well pipe height above ground    | 102     | ·                                      |                 |
| (cm)=                            |         |                                        |                 |
| Diameter of well (cm)=           | 5       |                                        |                 |
| Depth of well installation (cm)= |         |                                        |                 |
|                                  |         |                                        |                 |
| (from ground surface)            |         |                                        |                 |
| Length screened section          |         |                                        |                 |
| (cm)=                            |         |                                        |                 |
| Depth to top of screen (cm)=     |         |                                        |                 |
| (from ground surface)            |         |                                        |                 |
|                                  |         |                                        |                 |
| Depth to water surface (cm)=     | 227     | Measurement method: (meter, tape, etc) | Interface Meter |
|                                  |         | ,                                      |                 |
| ( from top of pipe)              |         |                                        |                 |
| Static water level (cm)=         |         |                                        |                 |
| (below ground surface)           |         |                                        |                 |
| Measured well refusal depth      | 258     | Evidence of sludge or siltation:       | None            |
| (cm)=                            |         |                                        |                 |
| (i.e. depth to frozen ground)    |         |                                        |                 |
|                                  |         |                                        |                 |
| Thickness of water column        | 0.31    |                                        |                 |
| Static volume of water in well   | 0.62    |                                        |                 |
|                                  |         |                                        |                 |
| Free product thickness (mm)=     | 0       | Measurement method:                    | IM              |
|                                  |         |                                        |                 |
| Purging: (Y/N)                   | Υ       | Purging/Sampling Equipment:            | Waterra         |
| Volume Purged Water=             | 0       |                                        | Tubing/         |
| Decontamination required:        | N       | Purging attempted, no water was        | Footvalve       |
| (Y/N)                            | <u></u> | able to be purged                      |                 |
| Number washes:                   |         |                                        |                 |
| Number rinses:                   |         |                                        |                 |
|                                  |         |                                        |                 |
| Final pH=                        |         |                                        |                 |
| Final Conductivity (uS/cm)=      |         |                                        |                 |
| Final Temperature (degC)=        |         |                                        |                 |

# **Monitoring Well Sampling Record**

| Site Name:                       | FOX-5     | Main Landfill                          |                 |
|----------------------------------|-----------|----------------------------------------|-----------------|
| Date of Sampling Event:          |           |                                        | 135pm           |
| Names of Samplers:               |           | S.Borcsok                              | тобрин          |
|                                  |           | J.Mauchan                              |                 |
| Landfill Name:                   | Main      | Samples Collected:                     | NO              |
| Monitoring Well ID:              | MW-12     | PHC F1                                 |                 |
| Sample Number:                   |           | Inorganic Elements                     |                 |
| Condition of Well:               | OK        | PHC F2-F4                              |                 |
| lock was taped but bro           |           | PCBs                                   |                 |
| Measured Data                    |           | Duplicate Collected?                   |                 |
| Well pipe height above ground    | 35        |                                        |                 |
| (cm)=                            |           |                                        |                 |
| Diameter of well (cm)=           | 5         |                                        |                 |
| Depth of well installation (cm)= |           |                                        |                 |
| ` '                              |           |                                        |                 |
| (from ground surface)            |           |                                        |                 |
| Length screened section          |           |                                        |                 |
| (cm)=                            |           |                                        |                 |
| Depth to top of screen (cm)=     |           |                                        |                 |
| (from ground surface)            |           |                                        |                 |
| ( 1 3 11 11 11 11 11 11          |           |                                        |                 |
| Depth to water surface (cm)=     | N/A (Dry) | Measurement method: (meter, tape, etc) | Interface Meter |
|                                  |           |                                        |                 |
| ( from top of pipe)              |           |                                        |                 |
| Static water level (cm)=         |           |                                        |                 |
| (below ground surface)           |           |                                        |                 |
| Measured well refusal depth      | 154       | Evidence of sludge or siltation:       | None            |
| (cm)=                            |           |                                        |                 |
| (i.e. depth to frozen ground)    |           |                                        |                 |
|                                  |           |                                        |                 |
| Thickness of water column        | 0         |                                        |                 |
| Static volume of water in well   | 0         |                                        |                 |
|                                  |           |                                        |                 |
| Free product thickness (mm)=     | 0         | Measurement method:                    | IM              |
| D.,                              | N I       | Durging/Compliant Foreigns of          | NI/A            |
| Purging: (Y/N)                   | N         | Purging/Sampling Equipment:            | N/A             |
| Volume Purged Water=             |           |                                        |                 |
| Decontamination required:        |           |                                        |                 |
| (Y/N)                            |           |                                        |                 |
| Number washes:                   |           |                                        |                 |
| Number rinses:                   |           |                                        |                 |
| P1                               |           |                                        |                 |
| Final PH=                        |           |                                        |                 |
| Final Conductivity (uS/cm)=      |           |                                        |                 |
| Final Temperature (degC)=        |           |                                        |                 |

# **Monitoring Well Sampling Record**

| Site Name:                       | FOX-5     | Main Landfill                    |                 |
|----------------------------------|-----------|----------------------------------|-----------------|
| Date of Sampling Event:          |           |                                  | 130pm           |
| Names of Samplers:               | _0 / te.g | S.Borcsok                        | . с с р         |
| Tames of Campions                |           | J.Mauchan                        |                 |
| Landfill Name:                   | Main      | Samples Collected:               | YES             |
| Monitoring Well ID:              | MW-13     | PHC F1                           |                 |
| Sample Number:                   |           | Inorganic Elements               |                 |
| Condition of Well:               | OK        | PHC F2-F4                        |                 |
| lock taped but broken, water in  |           | PCBs                             |                 |
| Measured Data                    |           | Duplicate Collected?             |                 |
| Well pipe height above ground    | 55        |                                  | F5-MN-MW-13     |
| (cm)=                            |           | '                                |                 |
| Diameter of well (cm)=           | 5         |                                  |                 |
| Depth of well installation (cm)= |           |                                  |                 |
| , ,                              |           |                                  |                 |
| (from ground surface)            |           |                                  |                 |
| Length screened section          |           |                                  |                 |
| (cm)=                            |           |                                  |                 |
| Depth to top of screen (cm)=     |           |                                  |                 |
| (from ground surface)            |           |                                  |                 |
|                                  |           |                                  |                 |
| Depth to water surface (cm)=     | 145       | Measurement method: (meter,      | Interface Meter |
|                                  |           | tape, etc)                       |                 |
|                                  |           |                                  |                 |
| ( from top of pipe)              |           |                                  |                 |
| Static water level (cm)=         |           |                                  |                 |
| (below ground surface)           |           |                                  |                 |
| Measured well refusal depth      | 187       | Evidence of sludge or siltation: | None            |
| (cm)=                            | 107       | Evidence of studge of sittation. | NOTIC           |
| (i.e. depth to frozen ground)    |           |                                  |                 |
| (i.e. deptil to hozen ground)    |           |                                  |                 |
|                                  |           |                                  |                 |
| Thickness of water column        | 42        |                                  |                 |
| Static volume of water in well   | 0.85      |                                  |                 |
| Static volume of water in well   | 0.65      |                                  |                 |
|                                  |           |                                  |                 |
| Free product thickness (mm)=     | 0         | Measurement method:              | 18.4            |
| riee product thickness (mm)=     | U         | ivieasurement method:            | IM              |
| D 0781                           | \/        | Dunning/Open Prof. 1             | 14/-/-          |
| Purging: (Y/N)                   | Y         | Purging/Sampling Equipment:      | Waterra         |
| Volume Purged Water=             | 3L        |                                  | Tubing/         |
| Decontamination required:        | N         |                                  | Footvalve       |
| (Y/N)                            |           |                                  |                 |
| Number washes:                   |           |                                  |                 |
| Number rinses:                   |           |                                  |                 |
| Final all                        | 7 00      |                                  |                 |
| Final Conductivity (uS/cm)       | 7.88      |                                  |                 |
| Final Conductivity (uS/cm)=      | 24.6      |                                  |                 |
| Final Temperature (degC)=        | 3.2       |                                  |                 |

# **Monitoring Well Sampling Record**

| Site Name:                         | FOX-5        | Main Landfill                    |                    |
|------------------------------------|--------------|----------------------------------|--------------------|
| Date of Sampling Event:            |              |                                  | 125pm              |
| Names of Samplers:                 | 20 7 (49 1 1 | S.Borcsok                        | 1200111            |
| Tames of Campions                  |              | J.Mauchan                        |                    |
| Landfill Name:                     | Main         | Samples Collected:               | YES                |
| Monitoring Well ID:                | MW-14        | PHC F1                           |                    |
| Sample Number:                     | 10100 1 1    | Inorganic Elements               |                    |
| Condition of Well:                 | OK           | PHC F2-F4                        |                    |
| Condition of Well.                 | OIX          | PCBs                             |                    |
| Measured Data                      |              | Duplicate Collected?             |                    |
| Well pipe height above ground      | 50           |                                  | F5-MN-MW-14        |
| (cm)=                              | 30           | Campie ib.                       | 1 3 IVII V IVIV 14 |
| Diameter of well (cm)=             | 5            |                                  |                    |
| Depth of well installation (cm)=   | <u> </u>     |                                  |                    |
| Depth of Well Installation (CIII)= |              |                                  |                    |
| (from ground surface)              |              |                                  |                    |
| Length screened section            |              |                                  |                    |
| (cm)=                              |              |                                  |                    |
| Depth to top of screen (cm)=       |              |                                  |                    |
| (from ground surface)              |              |                                  |                    |
| (Hom ground surface)               |              |                                  |                    |
| Depth to water surface (cm)=       | 134          | Measurement method: (meter,      | Interface Meter    |
| Depuir to water surface (om)=      | 104          | tape, etc)                       | interface wieter   |
|                                    |              | ιαρο, οιο)                       |                    |
|                                    |              |                                  |                    |
| ( from top of pipe)                |              |                                  |                    |
| Static water level (cm)=           |              |                                  |                    |
| (below ground surface)             |              |                                  |                    |
| Measured well refusal depth        | 184          | Evidence of sludge or siltation: | None               |
| (cm)=                              | 101          | Evidence of sladge of smallern.  | 140110             |
| (i.e. depth to frozen ground)      |              |                                  |                    |
| (not depart to negon greatia)      |              |                                  |                    |
|                                    |              |                                  |                    |
| Thickness of water column          | 50           |                                  |                    |
| Static volume of water in well     |              |                                  |                    |
| Static volume of water in well     | 1.02         |                                  |                    |
|                                    |              |                                  |                    |
| Free product thickness (mm)=       | 0            | Measurement method:              | IM                 |
| i ree product trickness (IIIII)=   | U            | weasurement method.              | IIVI               |
| D                                  | Υ            | Durging/Consuling Facilities at  | \^/ata::::=        |
| Purging: (Y/N)                     |              | Purging/Sampling Equipment:      | Waterra            |
| Volume Purged Water=               | 3L           |                                  | Tubing/            |
| Decontamination required:          | N            |                                  | Footvalve          |
| (Y/N)<br>Number washes:            |              |                                  |                    |
|                                    |              |                                  |                    |
| Number rinses:                     |              |                                  |                    |
| Final all                          | 0.40         |                                  |                    |
| Final Conductivity (uS/cm)         | 8.48         |                                  |                    |
| Final Conductivity (uS/cm)=        | 25.8         |                                  |                    |
| Final Temperature (degC)=          | 3.1          |                                  |                    |

**TABLE 4.12** 

#### RESULTS OF ANALYSIS FOR PARAMETERS IN GROUNDWATER AT MAIN LANDFILL

| PARAMETERS                 | Baseline Average PARAMETERS Concentration |           | F5-MN-<br>MW-14 | F5-MN-<br>MW-14<br>(DUP) | F5-MN-<br>MW-14<br>(AVG) |
|----------------------------|-------------------------------------------|-----------|-----------------|--------------------------|--------------------------|
|                            | (+)                                       | 20-Aug-14 | 20-Aug-14       | 20-Aug-14                | 20-Aug-14                |
| Copper                     | 0.062                                     | 0.015     | 0.0047          | 0.002                    | 0.00335                  |
| Nickel                     | 0.047                                     | 0.014     | 0.0091          | 0.004                    | 0.00655                  |
| Cobalt                     | 0.003                                     | 0.0029    | 0.0011          | < 0.001                  | 0.0011                   |
| Cadmium                    | 0.001                                     | 0.000044  | 0.00002         | < 0.001                  | 0.00002                  |
| Lead                       | 0.01                                      | 0.0053    | 0.0022          | 0.001                    | 0.0016                   |
| Zinc                       | 0.11                                      | 0.22+     | 0.058           | 0.038                    | 0.048                    |
| Chromium                   | 0.084                                     | 0.034     | 0.022           | 0.008                    | 0.015                    |
| Arsenic                    | 0.003                                     | 0.0014    | 0.00072         | < 0.001                  | 0.00072                  |
| Mercury                    | 0.0004                                    | 0.00001   | < 0.00001       | < 0.0001                 | < 0.0001                 |
| Total PCBs                 | 0.00002                                   | < 0.00005 | < 0.00005       | < 0.0001                 | < 0.0001                 |
| PHC F1 (C6-C10)            | -                                         | < 0.025   | < 0.025         | < 0.025                  | < 0.025                  |
| PHC F2 (C10-C16)           | -                                         | < 0.1     | < 0.1           | < 0.1                    | < 0.1                    |
| PHC F3 (C16-C34)           | -                                         | < 0.1     | < 0.1           | < 0.1                    | < 0.1                    |
| PHC F4 (C34-C50)           | -                                         | < 0.1     | < 0.1           | < 0.1                    | < 0.1                    |
| Modifed TPH (Total C6-C34) | 1                                         | 0.113     | 0.113           | 0.113                    | 0.113                    |

#### **NOTES:**

All parameter values in mg/L (ppm) unless otherwise indicated.

+ Exceeds Main Landfill Baseline Average Concentration

(DUP) Duplicate sample analyzed by AGAT Laboratories for QA/QC purposes.

(AVG) Average concentration of duplicate sample analyses.

RDL Reportable Detection Limit.

< Not detected.

**Table 4.13: Evaluation of Groundwater Analytical Results (Main Landfill)** 

| Parameter       | Baseline Average<br>Concentration<br>(mg/L) | 2014 Results                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |
|-----------------|---------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| 0.062<br>Copper |                                             | Detectable ranged between 0.0047 and 0.015 mg/L with the highest concentration recorded at monitoring well MW-13 and the lowest concentration recorded at monitoring well MW-14. All three concentrations were below the BAC.                                                                                        |  |  |  |  |  |
| Nickel          | 0.047                                       | Detectable concentrations ranged between 0.0091 and 0.014 mg/L, with the highest concentration recorded at monitoring well MW-13 and the lowest concentration recorded at monitoring well MW-14. All three concentrations were below the BAC.                                                                        |  |  |  |  |  |
| Cobalt          | 0.003                                       | Detectable concentrations ranged between 0.0011 and 0.0029 mg/L, with the highest concentration recorded at monitoring well MW-13 and the lowest concentration recorded at monitoring well MW-14. All three concentrations were below the BAC.                                                                       |  |  |  |  |  |
| Cadmium         | 0.001                                       | Detectable ranged between 0.00002 and 0.000044 mg/L, with the highest concentration recorded at monitoring well MW-13 and the lowest concentration recorded at monitoring well MW-14. All three concentrations were below the BAC.                                                                                   |  |  |  |  |  |
| Lead            | 0.01                                        | Detectable concentrations ranged between 0.002 and 0.0053 mg/L, with the highest concentration recorded at monitoring well MW-13 and the lowest concentration recorded at monitoring well MW-14. All three concentrations were below the BAC.                                                                        |  |  |  |  |  |
| Zinc            | 0.11                                        | Detectable concentrations ranged between 0.058 and 0.22 mg/L, with the highest concentration recorded at monitoring well MW-13 and the lowest concentration recorded at MW-14. Two of the three samples reported concentrations below the BAC while one of the three samples reported a concentration above the BAC. |  |  |  |  |  |
| Chromium        | 0.084                                       | Detectable concentrations ranged between 0.022 and 0.034 mg/L, with the highest concentration recorded at monitoring well MW-13 and the lowest concentration recorded at monitoring well MW-14. All three concentrations were below the BAC.                                                                         |  |  |  |  |  |

| Parameter | Baseline Average<br>Concentration<br>(mg/L) | 2014 Results                                                                                                                               |
|-----------|---------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|
|           | 0.003                                       | Detectable concentrations ranged between 0.00072 and 0.0014 mg/L,                                                                          |
| Arsenic   |                                             | with the highest concentration recorded at monitoring well MW-13 and the lowest concentration recorded at monitoring well MW-14. All three |
|           |                                             | concentrations were below the BAC.                                                                                                         |
| Mercury   | 0.0004                                      | A detectable concentration of 0.00001 mg/L was reported at monitoring                                                                      |
| Wicicury  |                                             | well MW-13. All three concentrations were below the BAC.                                                                                   |
|           | 0.00002                                     | All results were below the laboratory detection limit of 0.00005 mg/L.                                                                     |
| PCBs      |                                             | The laboratory detection limit is above the BAC as it was defined based                                                                    |
|           |                                             | on a lower detection limit from a previous monitoring event.                                                                               |
|           | 1                                           | All results were below the laboratory detection limits for PHC fractions                                                                   |
| TPH       |                                             | F1, F2, and F3 resulting in a modified TPH value of 0.113 mg/L. All                                                                        |
|           |                                             | three concentrations were below the BAC.                                                                                                   |

## 4.3.3.5 Groundwater Trend Analysis by Parameter & Discussion of Trends

A discussion of the trends observed for parameter concentrations in groundwater from 2007 to 2014 are presented in Table 4.14. Note that these trend analyses were performed on six datasets, however a minimum of seven data sets are recommended to establish a statistical trend.

**Table 4.14: Evaluation of Groundwater Result Trends (Main Landfill)** 

| Parameter   | 2014 Results                                                                                     |
|-------------|--------------------------------------------------------------------------------------------------|
| Connor      | Concentrations show a downward trend for upgradient and downgradient wells. Reported             |
| Copper      | concentrations are generally below the baseline average.                                         |
| Nickel      | Concentrations show a downward trend for upgradient and downgradient wells. Reported             |
| NICKEI      | concentrations are generally below the baseline average.                                         |
| Cobalt      | Concentrations show a slight downward trend for upgradient and a downward trend for              |
| Cobait      | downgradient wells. Reported concentrations are generally clustered around the baseline average. |
| Cadmium     | Concentrations show a downward trend for upgradient and downgradient wells. Reported             |
| Cadilliulli | concentrations are generally clustered around the baseline average.                              |
| Lead        | Concentrations show a downward trend for upgradient and a slight upward trend for downgradient   |
| Leau        | wells. Reported concentrations are generally below the baseline average.                         |
| Zinc        | Concentrations show a slight downward trend for upgradient wells and are generally stable for    |
| Zilic       | downgradient wells. Reported concentrations are generally below the baseline average.            |
| Chromium    | Concentrations show a downward trend for upgradient and downgradient wells. Reported             |
| Cinoilluin  | concentrations are generally below the baseline average.                                         |
| Arsenic     | Concentrations show a downward trend for upgradient wells and an upward trend of downgradient    |
| Aiselic     | wells. Reported concentrations are generally below the baseline average.                         |
| Mercury     | All concentrations are below the laboratory detection limit for mercury for all sampling events  |
| ivicicui y  | except for one concentration of 0.00001 mg/L in 2014.                                            |
| PCBs        | All concentrations are below the laboratory detection limit for PCBs for all sampling events.    |

| Parameter | 2014 Results                                                                         |
|-----------|--------------------------------------------------------------------------------------|
| TPH       | Concentrations show a downward trend for upgradient and downgradient wells. Reported |
| 1РП       | concentrations are generally below the baseline average.                             |

#### 4.3.4 Thermal Monitoring

Thermal monitoring results were retrieved from thermistor installations at the Main Landfill on 21 and 22 August 2014.

#### 4.3.4.1 Thermistor Annual Maintenance Reports

Thermistor annual maintenance reports are provided following this page.

#### 4.3.4.2 Summary of Findings from Annual DEW Line Thermal Reports

Thermistor data was analyzed by Tetra Tech EBA. The results of the thermal reports indicate that the landfill is stabilizing and performing as expected from a thermal perspective. The Thermal Report for the Tier II Disposal Facility is provided in Appendix D.

#### 4.4 CONCLUSIONS/OVERALL PERFORMANCE OF THE LANDFILL

Based on the findings of the 2014 landfill monitoring program and comparison of these findings to the results of the 2012 monitoring program, the performance of the Main Landfill is considered to be acceptable. The potential downhill creep of the landfill that may be indicated by inclined thermistor installations at the northeast corner of the landfill is of concern, but has not compromised the integrity of the landfill at this time. It is understood that the vertical thermistors were installed perpendicular to the ground surface which would result in some of them being angled from true vertical, however continued monitoring is required to confirm if the inclination is increasing over time.

#### 4.5 RECOMMENDATIONS/NEXT STEPS

Due to the downhill creep suggested by the inclined thermistor installations at the northeast corner of the landfill, it is recommended that as part of ongoing monitoring work, the location and inclination of the thermistor installations, as well as the location of the toe of the landfill at its northeast corner be monitored to determine if downhill creep is occurring.

| Contractor Name:             | SENES          |                |                    | Insp  | ection Date: | •                     | 22-Aug-14    |
|------------------------------|----------------|----------------|--------------------|-------|--------------|-----------------------|--------------|
| Prepared By:                 | S. Borcsok     |                |                    |       |              |                       |              |
| Thermistor Information       | n              |                |                    |       |              |                       |              |
|                              | FOX-5          | Thermisto      | or Location        | Mai   | n Landfill   |                       |              |
| Thermistor Number: V         |                |                | n: Slanted off-ver |       |              |                       |              |
| nstall Date:                 |                | First Date     | Event              |       |              | Last Date E           | vent         |
| Coordinates and Eleva        | ation          | N 5871.2       |                    | Е     | 4671.1       |                       | lev 485.5    |
| Length of Cable (m)          |                | Cable Lead Abo | ove Ground (m)     |       | Nodal Poin   |                       |              |
| eatalogger Serial # 02020269 |                |                |                    |       | Cable Seria  | al Number             |              |
| Thermistor Type: UL1         | 6              |                |                    |       |              |                       |              |
| Thermistor Inspection        | <u>on</u>      |                |                    |       |              |                       |              |
|                              |                | Good           |                    | Nee   | eds Maintena | ince                  |              |
| Casing                       |                | □X             |                    |       | -            |                       |              |
| Cover                        |                | □X             |                    |       |              |                       |              |
| Data Logge                   | r              | $\Box X$       |                    |       | -            |                       |              |
| Cable                        |                | $\Box X$       |                    |       |              |                       |              |
| Beads                        |                | $\Box X$       |                    |       |              |                       |              |
| Battery Inst                 | allation Date  | Unknown        |                    |       |              |                       |              |
| Battery Levels               |                | Main           | 11.34 / 11.34      |       |              | Aux 1                 | 2.77 / 13.75 |
| •                            |                |                | (Battery level be  | efore | replacement  | -<br>t / after replac | cement)      |
| Manual Ground Tem            | perature Rea   | <u>dings</u>   | ` ,                |       | •            | •                     | ,            |
| Bead                         | Volts          | Degrees C      |                    |       | Bead         | Volts                 | Degrees C    |
| 1                            | 1.1805         | 7.8056         |                    |       | 9            | 0.8766                | -2.2142      |
| 2                            | 1.1463         | 6.6843         |                    |       | 10           | 0.8657                | -2.5836      |
| 3                            | 1.0592         | 3.8364         |                    |       | 11           | 0.8509                | -3.0843      |
| 4                            | 1.0002         | 1.8996         |                    |       | 12           | 0.8467                | -3.2275      |
| 5                            | 0.9409         | -0.0597        |                    |       | 13           | 0.0017                | -93.1005     |
| 6                            | 0.9236         | -0.6363        |                    |       | 14           | 0.0017                | -93.1005     |
| 7                            | 0.9070         | -1.1899        |                    |       | 15           | 0.0017                | -93.1005     |
| 8                            | 0.8907         | -1.7381        |                    |       | 16           | 0.0005                | -101.4553    |
| Ob                           |                | 4              | -                  |       | -            |                       |              |
| Observations and Pr          |                | ·              |                    |       |              |                       |              |
| Dessicant n<br>Clock behin   | eeds to be rep | olaced         |                    |       |              |                       |              |

| nermistor Information te Name: FC nermistor Number: VT- stall Date: coordinates and Elevation ength of Cable (m) |            | Thermisto Inclination First Date | or Location       | Mai   |             |              |              |
|------------------------------------------------------------------------------------------------------------------|------------|----------------------------------|-------------------|-------|-------------|--------------|--------------|
| te Name: FC nermistor Number: VT- stall Date: coordinates and Elevation ength of Cable (m)                       | 2          | Inclination                      |                   | Mai   |             |              |              |
| nermistor Number: VT-<br>stall Date:<br>pordinates and Elevation<br>ength of Cable (m)                           | 2          | Inclination                      |                   | Mai   |             |              |              |
| stall Date:<br>oordinates and Elevation<br>ength of Cable (m)                                                    |            |                                  | : Clanted off yor | iviai | n Landfill  |              |              |
| oordinates and Elevation                                                                                         | on         | First Date                       | i. Sianteu on-ven | tical |             |              |              |
| ength of Cable (m)                                                                                               | on         |                                  | Event             |       |             | Last Date Ev | rent         |
|                                                                                                                  |            |                                  |                   | Е     | 4658.5      | Ele          | ev 491.0     |
| atalonner Serial # 0201                                                                                          | - : :      |                                  | ove Ground (m)    |       | Nodal Point |              |              |
| Datalogger Serial # 02020228                                                                                     |            |                                  |                   |       | Cable Seria | ıl Number    |              |
| nermistor Type: UL16                                                                                             |            |                                  |                   |       |             |              |              |
| nermistor Inspection                                                                                             |            |                                  |                   |       |             |              |              |
|                                                                                                                  |            | Good                             |                   |       | ds Maintena | nce          |              |
| Casing                                                                                                           |            | □X                               |                   |       |             |              |              |
| Cover                                                                                                            |            | □X                               |                   |       |             |              |              |
| Data Logger                                                                                                      |            | $\Box X$                         |                   |       |             |              |              |
| Cable                                                                                                            |            | $\Box X$                         |                   |       |             |              |              |
| Beads                                                                                                            |            | $\Box X$                         |                   |       |             |              |              |
| Battery Installa                                                                                                 | ation Date | Unknown                          |                   |       |             |              |              |
| Battery Levels                                                                                                   | •          |                                  | 11.34 / 11.34     |       |             | Aux 13       | 3.21 / 13.87 |
| 2011019 201010                                                                                                   |            | Main                             | (Battery level be | fore  | replacement | _            |              |
| anual Ground Tempe                                                                                               | rature Rea | <u>dings</u>                     | (======           |       |             |              | ,            |
| Bead                                                                                                             | Volts      | Degrees C                        |                   |       | Bead        | Volts        | Degrees C    |
| 1                                                                                                                | 1.1487     | 6.7868                           |                   |       | 9           | 0.8798       | -2.1059      |
| 2                                                                                                                | 1.1044     | 5.3136                           |                   |       | 10          | 0.8683       | -2.4931      |
| 3                                                                                                                | 1.0568     | 3.7565                           |                   |       | 11          | 0.8527       | -3.0427      |
| 4                                                                                                                | 0.9949     | 1.7264                           |                   |       | 12          | 0            | 381.0742     |
| 5                                                                                                                | 0.9439     | 0.0392                           |                   |       | 13          | 0            | 381.0742     |
| 6                                                                                                                | 0.9230     | -0.6567                          |                   |       | 14          | 0            | 381.0742     |
| 7                                                                                                                | 0.9065     | -1.2078                          |                   |       | 15          | 0            | 381.0742     |
| 8                                                                                                                | 0.8937     | -1.6380                          |                   |       | 16          | 0            | 381.0742     |
|                                                                                                                  |            | 4                                | -                 |       |             |              |              |
| bservations and Prop                                                                                             |            | <u> </u>                         | _                 |       |             |              |              |
| Dessicant nee<br>Clock behind                                                                                    | -          | olaced                           |                   |       |             |              |              |

|                                           | 251150             |                |                         | 5.            |                 |               |
|-------------------------------------------|--------------------|----------------|-------------------------|---------------|-----------------|---------------|
| Contractor Name:                          | SENES              |                | lins                    | spection Date | e:              | 22-Aug-14     |
| Prepared By:                              | S. Borcsok         |                |                         |               |                 |               |
| Thermistor Informa                        | ation              |                |                         |               |                 |               |
| Site Name:                                | FOX-5              |                |                         | ain Landfill  |                 |               |
| Thermistor Number                         | r: VT-3            |                | n: Slanted off-vertical | l             |                 |               |
| Install Date:                             |                    | First Date     |                         |               | Last Date       |               |
| Coordinates and El                        |                    | N 5855.8       | E                       | 4681.5        | -               | Elev 486.     |
| Length of Cable (m                        |                    | Cable Lead Abo | ove Ground (m)          | Nodal Poir    |                 |               |
| Datalogger Serial #<br>Thermistor Type: U |                    |                |                         | Cable Sen     | ial Number      |               |
| Thermision Type. o                        | JL16               |                |                         |               |                 |               |
| Thermistor Inspec                         | <u>ction</u>       | Oned           | Nic                     | !- Mainton    |                 |               |
|                                           |                    | Good           |                         | eeds Mainten  | ance            |               |
| Casing                                    |                    | □X             |                         |               |                 |               |
| Cover                                     |                    | □X             |                         |               |                 |               |
| Data Log                                  | gger               | $\Box X$       |                         |               |                 |               |
| Cable                                     |                    | $\Box X$       |                         |               |                 |               |
| Beads                                     |                    | $\Box X$       |                         |               |                 |               |
| Battery I                                 | nstallation Date   | Unknown        |                         |               |                 |               |
| Battery L                                 | _evels             | Main           | 11.34 / 11.34           |               | Aux             | 13.26 / 13.75 |
|                                           |                    |                | (Battery level before   | e replacemer  | nt / after repl | acement)      |
| Manual Ground Te                          | emperature Rea     | dings          | _                       |               |                 |               |
| Bead                                      | Volts              | Degrees C      |                         | Bead          | Volts           | Degrees C     |
| 1                                         | 1.1652             | 7.3046         | į                       | 9             | 0.9385          | -0.138        |
| 2                                         | 1.1657             | 7.3221         |                         | 10            | 0.9230          | -0.656        |
| 3                                         | 1.1878             | 8.0463         | <u>.</u>                | 11            | 0.9041          | -1.287        |
| 4                                         | 1.1954             | 8.2974         | 4                       | 12            | 0.8900          | -1.761        |
| 5                                         | 1.1760             | 7.6577         | 1                       | 13            | 0.8760          | -2.232        |
| 6                                         | 1.0936             | 4.9594         |                         | 14            | 0.8669          | -2.542        |
| 7                                         | 1.0475             | 3.4518         | <u>;</u>                | 15            | 0.8597          | -2.785        |
| 8                                         | 0.9783             | 1.1807         |                         | 16            | 0.0017          | -93.100       |
| Observations and                          | I Proposed Main    | tenance        |                         |               |                 |               |
|                                           | nt needs to be rep |                |                         |               |                 |               |
|                                           | ehind 44:34        |                |                         |               |                 |               |

Lock broken

| Contractor Name:                         | SENES          |                | Ins                    | pection Date           | :                 | 21-Aug-14   |
|------------------------------------------|----------------|----------------|------------------------|------------------------|-------------------|-------------|
| Prepared By:                             | S. Borcsok     |                |                        |                        |                   |             |
| hermistor Information                    | n .            |                |                        |                        |                   |             |
| Site Name:                               | FOX-5          | Thermisto      | r Location Ma          | in Landfill            |                   |             |
| hermistor Number:                        |                |                | : Slanted off-vertical |                        |                   |             |
| nstall Date:                             |                | First Date     |                        |                        | Last Date Ev      |             |
| Coordinates and Ele                      | vation         | N 5848.4       | E_                     | 4669.3                 | Ele               | ev 491      |
| ength of Cable (m) Datalogger Serial # 0 | 12020265       | Cable Lead Abo | ve Ground (m)          | Nodal Poin Cable Seria |                   |             |
| hermistor Type: UL                       |                |                |                        | Cable Sell             | ai Nullibei       |             |
| 1,0111110101 1,700. 02                   | 10             |                |                        |                        |                   |             |
| hermistor Inspecti                       | <u>on</u>      | Cood           | No                     | ada Mainton            |                   |             |
| 0 .                                      |                | Good<br>□X     |                        | eds Maintena           | ance              |             |
| Casing                                   |                |                |                        | -                      |                   |             |
| Cover                                    |                | □X             |                        |                        |                   |             |
| Data Logg                                | er             | □X             |                        |                        |                   |             |
| Cable                                    |                | □X             |                        |                        |                   |             |
| Beads                                    |                | $\Box X$       |                        |                        |                   |             |
| Battery Ins                              | tallation Date | Unknown        |                        |                        |                   |             |
| Battery Le                               | vels           | Main           | 11.34 / 11.34          |                        | Aux 12            | .41 / 13.63 |
|                                          |                |                | (Battery level before  | replacemen             | t / after replace | ement)      |
| Manual Ground Ten                        | nperature Rea  | <u>dings</u>   |                        | ·                      | ·                 | ,           |
| Bead                                     | Volts          | Degrees C      |                        | Bead                   | Volts             | Degrees C   |
| 1                                        | 1.1019         | 5.2313         |                        | 9                      | 0.9102            | -1.082      |
| 2                                        | 1.1027         | 5.2588         |                        | 10                     | 0.8960            | -1.55       |
| 3                                        | 1.1379         | 6.4094         |                        | 11                     | 0.8924            | -1.68       |
| 4                                        | 1.1487         | 6.7643         |                        | 12                     | 0.8663            | -2.56       |
| 5                                        | 1.1049         | 5.3311         |                        | 13                     | 0.8479            | -3.18       |
| 6                                        | 1.0389         | 3.1719         |                        | 14                     | 0.0005            | -101.45     |
| 7                                        | 0.9514         | 0.2898         |                        | 15                     | 0.0005            | -101.45     |
| 8                                        | 0.9530         | -0.2550        |                        | 16                     | 0.0011            | -96.18      |
|                                          |                |                |                        |                        |                   |             |
| Dbservations and F                       | ronosed Main   | tenance        |                        |                        |                   |             |

| repared By:                         | S. Borcsok        |                            |                  |               |                       |                    | <del></del>   |          |
|-------------------------------------|-------------------|----------------------------|------------------|---------------|-----------------------|--------------------|---------------|----------|
|                                     |                   |                            |                  |               |                       |                    |               |          |
| hermistor Informati                 | ion               |                            |                  |               |                       |                    |               |          |
| ite Name:                           | FOX-5             | Thermistor                 | r Location       | Ma            | in Landfill           |                    |               |          |
| hermistor Number:                   | VT-5              | Inclination                |                  |               |                       |                    |               |          |
| nstall Date:<br>Coordinates and Ele |                   | First Date                 | Event            | E             | 16116                 | Last Date          |               | 406.2    |
| ength of Cable (m)                  |                   | N 5832.7<br>Cable Lead Abo | ve Ground (m)    | _ <u>=</u> _  | 4644.6<br>Nodal Point | ts                 | Elev          | 496.2    |
| atalogger Serial #                  |                   |                            |                  |               | Cable Seria           |                    |               |          |
| hermistor Type: UL                  | _16               |                            |                  |               |                       |                    |               |          |
| hermistor Inspect                   | <u>tion</u>       |                            |                  |               |                       |                    |               |          |
|                                     |                   | Good                       |                  | Ne            | eds Maintena          | ınce               |               |          |
| Casing                              |                   | □X                         |                  |               |                       |                    |               |          |
| Cover                               |                   | $\Box X$                   |                  |               |                       |                    |               |          |
| Data Log                            | ger               | $\Box X$                   |                  |               |                       |                    |               |          |
| Cable                               |                   | $\Box X$                   |                  |               |                       |                    |               |          |
| Beads □                             |                   |                            | □>               | K Beads 1, 2, | , 3 not work          | king               |               |          |
| Battery In                          | stallation Date   | Unknown                    |                  |               |                       |                    |               |          |
| Battery Le                          |                   | Main                       | 11.34 / 11.34    |               |                       | Aux                | 13.38 / 13.99 | )        |
| -                                   |                   |                            | (Battery level b | efore         | replacemen            | –<br>t / after rep | -             |          |
| lanual Ground Te                    | mperature Rea     | <u>dings</u>               | _                |               |                       |                    |               |          |
| Bead                                | Volts             | Degrees C                  |                  |               | Bead                  | Volts              | Degr          | ees C    |
| 1                                   | 0.0000            | 381.0742                   |                  |               | 9                     | 0.8834             |               | -1.9823  |
| 2                                   | 0.0000            | 381.0742                   |                  |               | 10                    | 0.8632             |               | -2.6665  |
| 3                                   | 0.0000            | 381.0742                   |                  |               | 11                    | 0.8522             |               | -3.0427  |
| 4                                   | 1.0219            | 2.6140                     | <u>!</u>         |               | 12                    | 0.0000             |               | 381.0742 |
| 5                                   | 0.9559            | 0.4390                     |                  |               | 13                    | 0.0000             |               | 381.0742 |
| 6                                   | 0.9403            | -0.0800                    |                  |               | 14                    | 0.0000             |               | 381.0742 |
| 7                                   | 0.9162            | -0.8835                    | ,                |               | 15                    | 0.0000             |               | 381.0742 |
| 8                                   | 0.8987            | -1.4688                    | ,                |               | 16                    | 0.0000             |               | 381.0742 |
| bservations and                     | Proposed Main     | tenance                    |                  |               |                       |                    |               |          |
|                                     | t needs to be rep |                            |                  | —             |                       |                    |               |          |

|                                | _              |                       | •             |           |               |
|--------------------------------|----------------|-----------------------|---------------|-----------|---------------|
| Contractor Name: SENES         |                | Ins                   | spection Date | :         | 21-Aug-14     |
| Prepared By: S. Borcsok        |                |                       |               |           |               |
| Thermistor Information         |                |                       |               |           |               |
| Site Name: FOX-5               | Thermisto      | or Location Ma        | ain Landfill  |           |               |
| Thermistor Number: VT-6        | Inclination    | n: Vertical           |               |           |               |
| Install Date:                  | First Date     |                       |               | Last Date |               |
| Coordinates and Elevation      | N 5811.8       | E_                    | 4557.9        |           | Elev 501.4    |
| Length of Cable (m)            | Cable Lead Abo | ove Ground (m)        | Nodal Poir    |           |               |
| Datalogger Serial # 02020256   |                |                       | Cable Seri    | al Number |               |
| Thermistor Type: UL16          |                |                       |               |           |               |
| Thermistor Inspection          | Cood           | NI                    | · J- Mainton  |           |               |
|                                | Good           |                       | eds Mainten   | ance      |               |
| Casing                         | □X             |                       |               |           |               |
| Cover                          | □X             |                       |               |           |               |
| Data Logger                    | □X             |                       |               |           |               |
| Cable                          | $\Box X$       |                       |               |           |               |
| Beads                          | $\Box X$       |                       |               |           |               |
| Battery Installation Date      | Unknown        |                       |               |           |               |
| Battery Levels                 | Main           | 11.34 / 11.34         |               | Aux       | 13.14 / 13.50 |
| •                              |                | (Battery level before | e replacemen  |           |               |
| Manual Ground Temperature Rea  | dings          |                       |               |           | ·             |
| Bead Volts                     | Degrees C      |                       | Bead          | Volts     | Degrees C     |
| 1 1.1682                       | 7.4022         |                       | 9             | 0.8689    | -2.4750       |
| 2 1.1013                       | 5.2114         | _                     | 10            | 0.8516    | -3.0609       |
| 3 1.0378                       | 3.1344         |                       | 11            | 0.8522    | -3.0427       |
| 4 0.9799                       | 1.2310         |                       | 12            | 0.0000    | 381.0742      |
| 5 0.9417                       | -0.0318        |                       | 13            | 0.0000    | 381.0742      |
| 6 0.9217                       | -0.7000        |                       | 14            | 0.0000    | 381.0742      |
| 7 0.9041                       | -1.2870        |                       | 15            | 0.0000    | 381.0742      |
| 8 0.8840                       | -1.9643        |                       | 16            | 0.0000    | 381.0742      |
| Observations and Proposed Main | itenance       |                       |               |           |               |
| Dessicant needs to be re       | <u> </u>       |                       |               |           |               |
| Clock behind 57:01             | 1              |                       |               |           |               |

| 2                      |                |                |                   |       | pection Date: |                  | 21-Aug-14    |       |
|------------------------|----------------|----------------|-------------------|-------|---------------|------------------|--------------|-------|
| Prepared By:           | S. Borcsok     |                |                   |       |               |                  |              |       |
| Thermistor Information |                |                |                   |       |               |                  |              |       |
|                        | FOX-5          | Thermisto      | r Location        | Mai   | n Landfill    |                  |              |       |
| Thermistor Number: V   |                | Inclination    |                   |       |               |                  |              |       |
| nstall Date:           |                | First Date     | Event             |       |               | Last Date Ev     | vent         |       |
| Coordinates and Eleva  | ation          | N 5751.2       |                   | Е     | 4602.7        |                  | ev 5         | 505.6 |
| ength of Cable (m)     |                | Cable Lead Abo | ove Ground (m)    |       | Nodal Point   |                  |              |       |
| Datalogger Serial # 02 |                |                |                   |       | Cable Seria   | al Number        |              |       |
| Thermistor Type: UL1   | 6              |                |                   |       |               |                  |              |       |
| Thermistor Inspection  | <u>on</u>      |                |                   |       |               |                  |              |       |
|                        |                | Good           |                   | Nee   | eds Maintena  | ince             |              |       |
| Casing                 |                | $\Box X$       |                   |       |               |                  |              |       |
| Cover                  |                | $\Box X$       |                   |       |               |                  |              |       |
| Data Logge             | r              | $\Box X$       |                   |       |               |                  |              |       |
| Cable                  |                | $\Box X$       |                   |       |               |                  |              |       |
| Beads                  |                | □X             |                   |       |               |                  |              |       |
| Battery Inst           | allation Date  | Unknown        |                   |       |               |                  |              |       |
| Battery Leve           |                | Main           | 11.34 / 11.34     |       |               | Aux 12           | 2.04 / 13.14 |       |
| Dattery Levi           | CIS            | Iviaiii        |                   | -f    | ************  |                  |              |       |
| Manual Craund Tam      | manatura Daa   | alia           | (Battery level be | eiore | replacement   | i / aiter repiac | ement)       |       |
| Manual Ground Tem      |                | -              | 1                 |       |               | M. It.           | <b>D</b>     |       |
| Bead                   | Volts          | Degrees C      | 1                 |       | Bead          | Volts            | Degrees (    |       |
| 1                      | 1.1634         | 7.2445         | 1                 |       | 9             | 0.8576           |              | .8583 |
| 2                      | 1.0913         | 4.8845         | 1                 |       | 10            | 0.8431           |              | .3526 |
| 3                      | 0.9884         | 1.5128         | 1                 |       | 11            | 0.8363           |              | .5851 |
| 4                      | 0.9457         | 0.1000         |                   |       | 12            | 0.0000           | 381.         | .0742 |
| 5                      | 0.9284         | -0.4735        |                   |       | 13            | 0.0000           | 381.         | .0742 |
| 6                      | 0.9102         | -1.0825        |                   |       | 14            | 0.0000           | 381.         | .0742 |
| 7                      | 0.8924         | -1.6816        |                   |       | 15            | 0.0000           | 381.         | .0742 |
| 8                      | 0.8718         | -2.3768        | ]                 |       | 16            | 0.0000           | 381.         | .0742 |
| Observations and Pr    | onosod Main    | tonanco        |                   |       |               |                  |              |       |
|                        | eeds to be rep |                |                   |       |               |                  |              |       |

| Contractor Name:       | SENES         |                |                   | Insp | pection Date: |                  | 21-Aug-14    |        |
|------------------------|---------------|----------------|-------------------|------|---------------|------------------|--------------|--------|
| Prepared By:           | S. Borcsok    |                |                   |      |               |                  |              |        |
| Thermistor Information | n             |                |                   |      |               |                  |              |        |
|                        | FOX-5         | Thermisto      | or Location       | Mai  | n Landfill    |                  |              |        |
| Thermistor Number: V   |               | Inclination    |                   |      |               |                  |              |        |
| nstall Date:           |               | First Date     | Event             |      |               | Last Date E      | vent         |        |
| Coordinates and Eleva  | ation         | N 5722.2       |                   | E    | 4615.8        |                  | lev          | 505.8  |
| _ength of Cable (m)    |               | Cable Lead Abo | ove Ground (m)    |      | Nodal Point   |                  |              |        |
| Datalogger Serial # 02 |               |                |                   |      | Cable Seria   | al Number        |              |        |
| Thermistor Type: UL1   | 6             |                |                   |      |               |                  |              |        |
| Thermistor Inspection  | <u>on</u>     |                |                   |      |               |                  |              |        |
|                        |               | Good           |                   | Nee  | eds Maintena  | ince             |              |        |
| Casing                 |               | $\Box X$       |                   |      |               |                  |              |        |
| Cover                  |               | $\Box X$       |                   |      |               |                  |              |        |
| Data Logge             | r             | $\Box X$       |                   |      |               |                  |              |        |
| Cable                  |               | $\Box X$       |                   |      |               |                  |              |        |
| Beads                  |               | $\Box X$       |                   |      |               |                  |              |        |
| Battery Inst           | allation Date | Unknown        |                   |      |               |                  |              |        |
| Battery Lev            |               | Main           | 11.34 / 11.34     |      |               | Aux 1            | 3.02 / 13.50 |        |
| Dattery Levi           | 515           | Iviaiii        |                   | fo   | ************  | _                |              |        |
| Manual Craund Tam      | maratura Daa  | -li            | (Battery level be | iore | replacement   | i / aiter repiac | ement)       |        |
| Manual Ground Tem      |               |                | 1                 |      |               |                  | <u> </u>     | _      |
| Bead                   | Volts         | Degrees C      | 1                 |      | Bead          | Volts            | Degrees      |        |
| 1                      | 1.1219        | 5.8851         |                   |      | 9             | 0.8528           |              | 3.0219 |
| 2                      | 1.0556        | 3.7165         | 1                 |      | 10            | 0.8473           |              | 3.2093 |
| 3                      | 0.9769        | 1.1328         |                   |      | 11            | 0.0000           |              | 1.0742 |
| 4                      | 0.9379        | -0.1586        |                   |      | 12            | 0.0000           | 38           | 1.0742 |
| 5                      | 0.9181        | -0.8172        |                   |      | 13            | 0.0000           | 38           | 1.0742 |
| 6                      | 0.9022        | -1.3510        |                   |      | 14            | 0.0000           | 38           | 1.0742 |
| 7                      | 0.8846        | -1.9437        |                   |      | 15            | 0.0000           | 38           | 1.0742 |
| 8                      | 0.8640        | -2.6406        |                   |      | 16            | 0.0000           | 38           | 1.0742 |
| Observations and Pr    | onesed Main   | tononoo        |                   |      |               |                  |              |        |
| observations and Pr    | oposed Main   | tenance        |                   |      |               |                  |              |        |

#### 5.0 STATION NON-HAZARDOUS WASTE LANDFILL

#### 5.1 LANDFILL DESCRIPTION

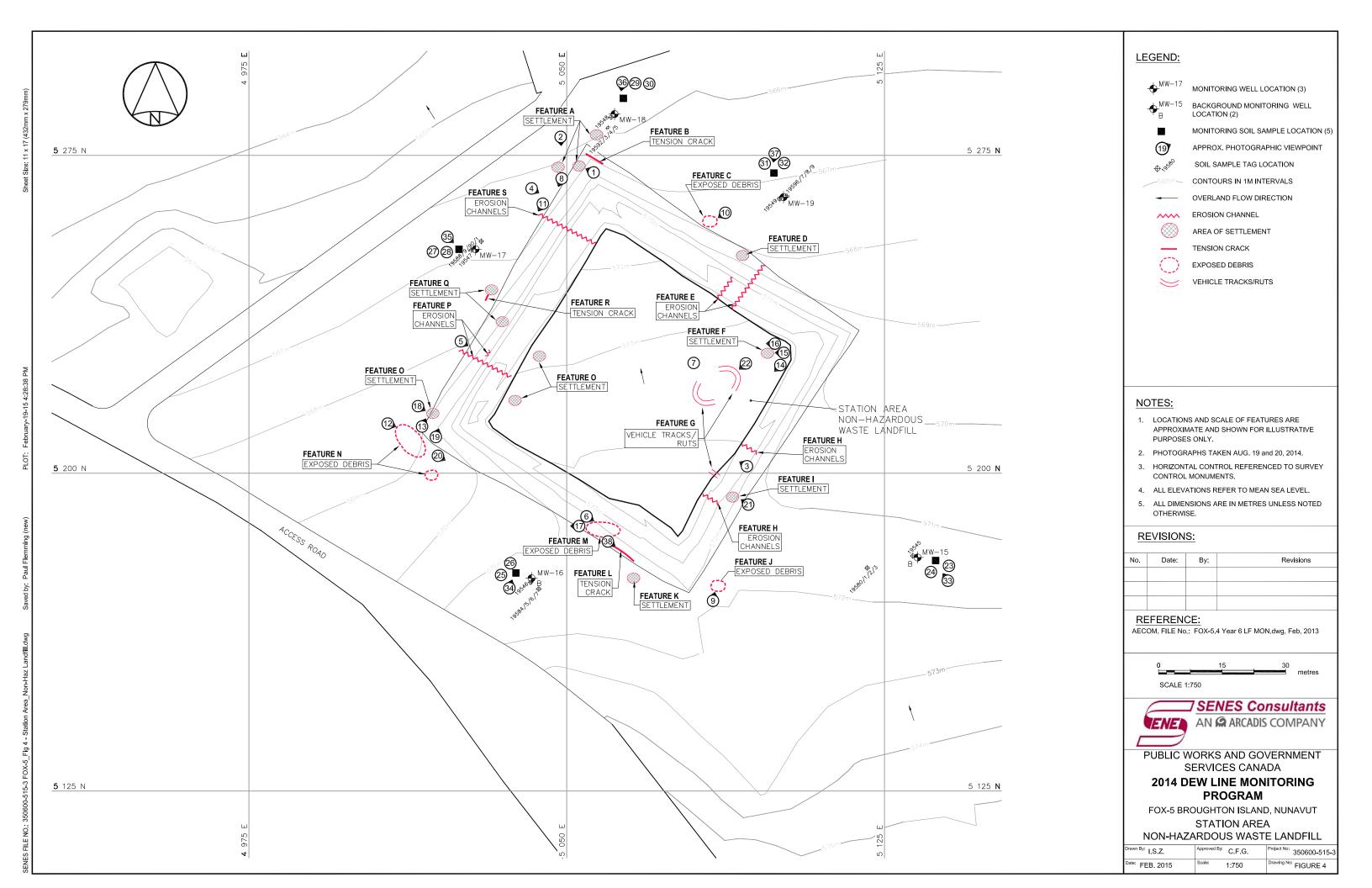
The Station Non-Hazardous Waste Landfill is located east of the station area at the southeast corner of Broughton Island. This landfill was newly constructed at the location of the former sewage outfall for the disposal of Tier I contaminated soil, site debris collected during cleanup, and non-hazardous materials generated from demolition of facilities not required for the operation of the North Warning System Short Range Radar (SRR) Station. A detailed drawing of this landfill is provided in Figure 4. The historical chemical results for soil samples collected at this landfill are shown in plan on Figure 4A. The historical chemical results for groundwater samples collected at this landfill are shown in plan on Figure 4B.

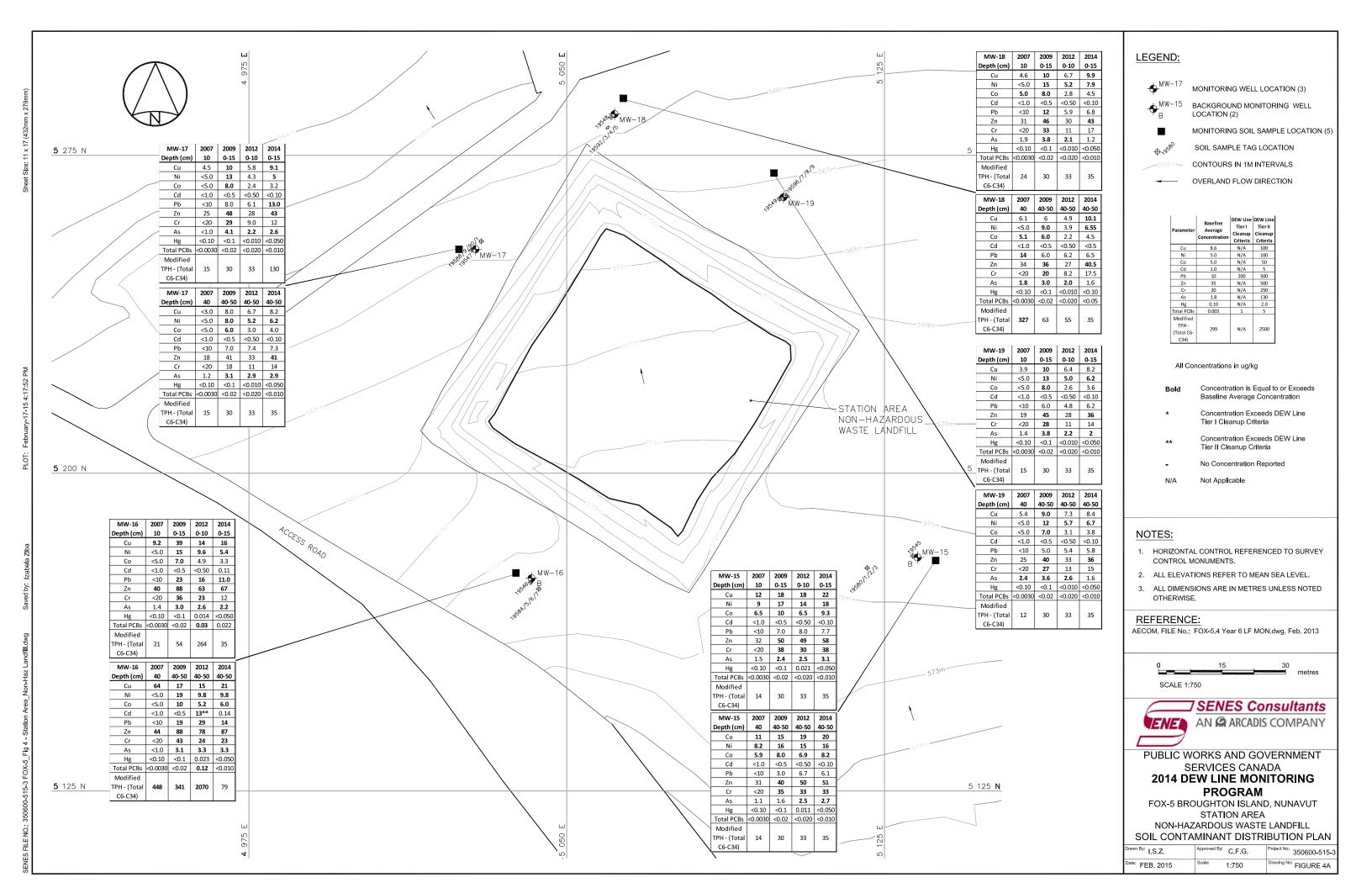
#### 5.2 SUMMARY OF WORK CONDUCTED

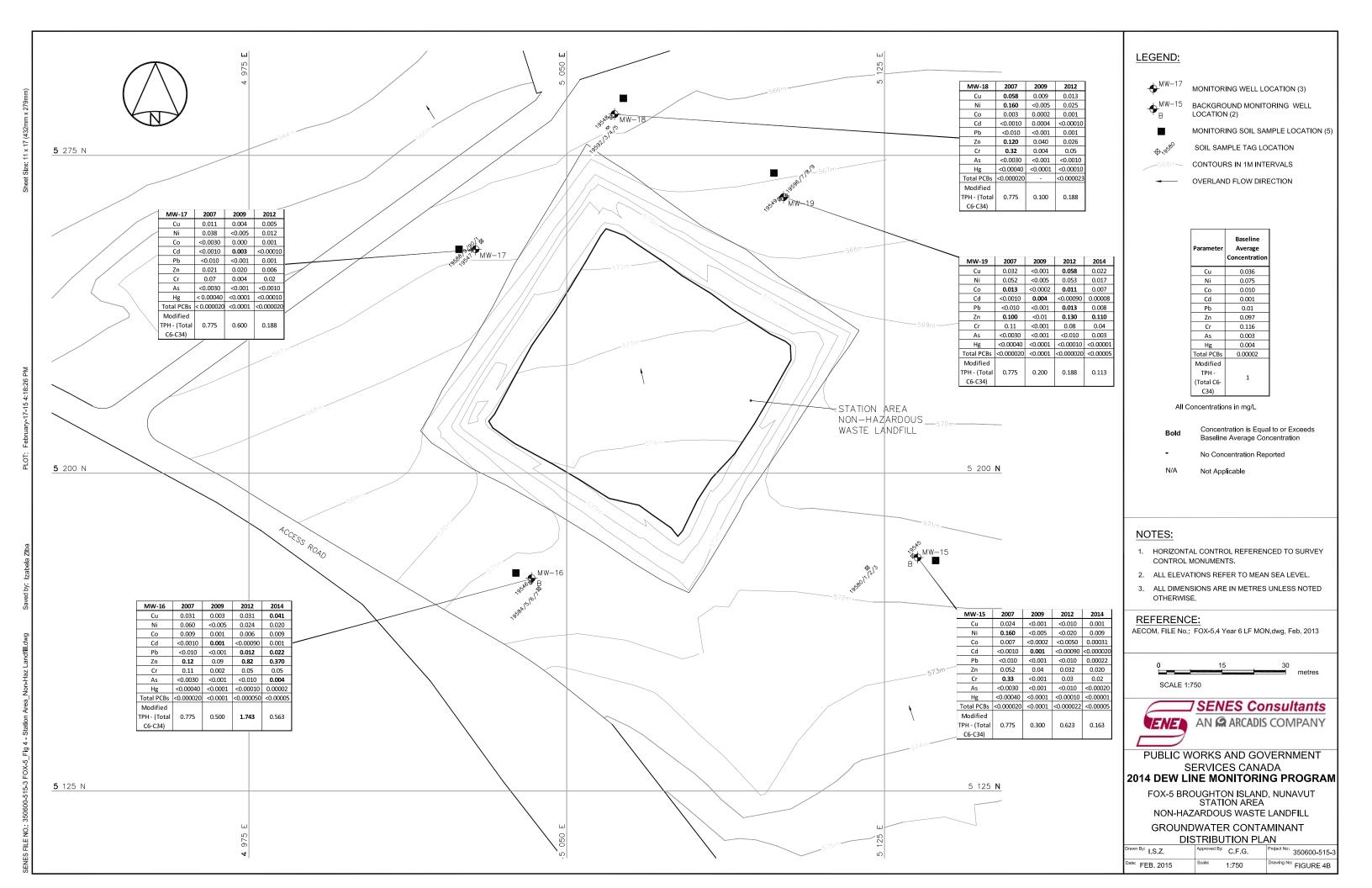
#### **5.2.1** Visual Inspection

The visual inspection of the landfill was completed with no deviations from the visual inspection work plan.

#### 5.2.2 Soil Sampling


Soil samples were collected at five (5) locations as shown on the site plan. Surface and Subsurface samples were collected at each location. There were no deviations from the soil sampling work plan. Soil sampling completed at the landfill is summarized in Table 5.1.


Table 5.1: Summary of Work Conducted by Soil Sampling Location (Station Landfill)


| Location     | Surface Soil<br>Sample<br>Collected | Subsurface Soil Sample Collected |
|--------------|-------------------------------------|----------------------------------|
| F5-STA-MW-15 | V                                   | V                                |
| F5-STA-MW-16 | $\sqrt{}$                           | $\sqrt{}$                        |
| F5-STA-MW-17 | $\sqrt{}$                           | $\sqrt{}$                        |
| F5-STA-MW-18 |                                     | $\sqrt{D}$                       |
| F5-STA-MW-19 | V                                   |                                  |

D = duplicate sample collected  $\sqrt{\ }$  - sample collected X - no sample collected

#### 5.2.3 Groundwater Sampling







Groundwater monitoring was completed at five monitoring wells as shown on Figure 4. Groundwater monitoring and sampling at the Station Non-Hazardous Waste Landfill was generally completed as per the work plan. As indicated in Table 5.2, groundwater samples were not collected from two of five monitoring wells at this landfill as the wells had insufficient water. No duplicate groundwater samples were collected at this landfill.

Table 5.2: Summary of Work Conducted by Groundwater Sampling Location (Station Landfill)

| Location     | Visual<br>Inspection/<br>Groundwater<br>Monitoring | Sample collected for PCB analysis | Sample collected<br>for metals<br>analysis | Sample collected<br>for PHCs F1-F4<br>analysis |
|--------------|----------------------------------------------------|-----------------------------------|--------------------------------------------|------------------------------------------------|
| F5-STA-MW-15 | $\sqrt{}$                                          | $\sqrt{}$                         | $\sqrt{}$                                  | $\sqrt{}$                                      |
| F5-STA-MW-16 | $\sqrt{}$                                          | $\sqrt{}$                         | $\sqrt{}$                                  | $\sqrt{}$                                      |
| F5-STA-MW-17 | $\sqrt{}$                                          | $X^{I}$                           | $X^{I}$                                    | $X^{I}$                                        |
| F5-STA-MW-18 |                                                    | $X^{I}$                           | $X^{I}$                                    | $X^{I}$                                        |
| F5-STA-MW-19 | V                                                  | V                                 | V                                          |                                                |

D - duplicate sample collected

√ - sample collected

X - no sample collected

N - no water in well (well was dry)

I - insufficient water in well to collect sample

No wells at the Station Non-Hazardous Waste Landfill have been reported to be dry during the previous monitoring events.

#### **5.2.4 Thermal Monitoring**

No thermal monitoring was completed at this landfill as no thermal monitoring installations have been installed at this landfill.

#### 5.3 RESULTS OF THE MONITORING PROGRAM

#### **5.3.1** Visual Inspection

The visual inspection at the Station Non-Hazardous Waste Landfill was completed on 20 August 2014. The visual inspection checklist completed during the site inspection is provided in Table 5.3.

#### 5.3.1.1 Stability Assessment

#### **TABLE 5.3 - VISUAL INSPECTION CHECKLIST**

# DEW LINE CLEANUP: POST-CONSTRUCTION - LANDFILL MONITORING INSPECTION REPORT – PAGE 1 OF 2

SITE NAME: FOX-5

LANDFILL DESIGNATION: Station Non-Hazardous Waste Landfill

DATE OF INSPECTION: 20 August 2014

DATE OF PREVIOUS INSPECTION: 13-16 August 2012

INSPECTED BY: S. Borcsok, J. Mauchan

REPORT PREPARED BY: S. Borcsok

The inspector/reporter represents to the best of their knowledge, the following statements and observations are true and correct and to the best of the preparer's actual knowledge, no material facts have been suppressed or misstated.

#### TABLE 5.3 - VISUAL INSPECTION CHECKLIST - INSPECTION REPORT – PAGE 2 OF 2

| Checklist Item                                 | Present<br>Yes/No | Location (Describe relative to existing monuments/features and relative to landfill design i.e. surface, berms, toe)                                                 | Length                                          | Width          | Depth          | Extent relative to<br>Area of Landfill<br>(%) | Description                                                                                                                         | Photographic Records Focal length, location, view point & direction (relative to magnetic north) Feature of note Scale | Additional Comments                                                    |
|------------------------------------------------|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|----------------|----------------|-----------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|
| Settlement                                     | YES               | Occasional areas of minor settlement on berms, top cover, and outside toe (FEATURE A, D, F, I, K, O, Q)                                                              | 0.5m (typ.)                                     | 0.5m<br>(typ.) | 0.2m<br>(typ.) | 1%                                            | Small holes and depressions                                                                                                         | P-1, P-2, P-4, P-8, P-15, P-21,                                                                                        |                                                                        |
| Erosion                                        | YES               | Erosion channels going downhill<br>on northwest, northeast and<br>southeast berms (FEATURE E,<br>H, P, S)                                                            | 10-15m<br>(typ.)                                | 0.2m<br>(typ.) | 0.1m<br>(typ.) | 1%                                            | Erosion<br>channels<br>flowing down<br>berms                                                                                        | P-3, P-5,                                                                                                              |                                                                        |
| Frost Action                                   | NO                |                                                                                                                                                                      |                                                 |                |                |                                               |                                                                                                                                     |                                                                                                                        |                                                                        |
| Sloughing and Cracking                         | YES               | Tension cracks on southwest<br>berm and at north corner of<br>landfill (FEATURE B, L, R)                                                                             | 1m, 6m on<br>south berm,<br>5m on north<br>berm |                |                | <1%                                           | Tension cracks<br>on landfill<br>berms                                                                                              | P-38                                                                                                                   |                                                                        |
| Animal Burrows                                 | NO                |                                                                                                                                                                      |                                                 |                |                |                                               |                                                                                                                                     |                                                                                                                        | No burrows observed, but an arctic hare was observed near the landfill |
| Vegetation                                     | YES               | Very sparse shrubs and grasses on berms and top of landfill                                                                                                          |                                                 |                |                | <1%                                           | Small shrubs<br>and grasses                                                                                                         | P-32                                                                                                                   |                                                                        |
| Staining                                       | NO                |                                                                                                                                                                      |                                                 |                |                |                                               |                                                                                                                                     |                                                                                                                        |                                                                        |
| Vegetation Stress                              | NO                |                                                                                                                                                                      |                                                 |                |                |                                               |                                                                                                                                     |                                                                                                                        |                                                                        |
| Seepage Points                                 | NO                |                                                                                                                                                                      |                                                 |                |                |                                               |                                                                                                                                     |                                                                                                                        |                                                                        |
| Debris Exposed                                 | YES               | Occasional debris was observed outside the landfill at the southwest corner, southeast corner, and north of the landfill, and on the south berm (FEATURE C, J, M, N) |                                                 |                |                | <1%                                           | Small pieces of<br>metal and<br>wood, north of<br>the landfill is a<br>large piece of<br>reinforced<br>concrete (2m x<br>1m x 0.5m) | P-6, P-7, P-9, P-10, P-12, P-13,                                                                                       | Debris not suspected to have originated within the landfill            |
| Presence/Condition –<br>Monitoring Instruments | YES               | Outside perimeter of landfill, see<br>Figure 3                                                                                                                       |                                                 |                |                |                                               | Five monitoring wells                                                                                                               | P-33 to P-37                                                                                                           |                                                                        |
| Features of Note                               | YES               | Vehicle (ATV) tracks and ruts<br>on top surface of landfill<br>(FEATURE G)                                                                                           |                                                 |                |                | 1%                                            |                                                                                                                                     | P-3, P-22                                                                                                              |                                                                        |

2

The preliminary stability assessment completed during the site inspection is provided in Table 5.4.

### 5.3.1.2 Photographic Records

The photograph log for the site is provided in Table 5.5.

## 5.3.1.3 Trend Analysis

Trend analysis for visual inspections during the current 2014 monitoring event and the previous 2012 monitoring event are provided below in Table 5.6.

Table 5.4: Preliminary Stability Assessment - FOX-5 Station Non-Hazardous Landfill

| Feature                           | Severity Rating | Extent     |
|-----------------------------------|-----------------|------------|
| Settlement                        | Acceptable      | Occasional |
| Erosion                           | Acceptable      | Occasional |
| Frost Action                      | None            | None       |
| Staining                          | None            | None       |
| Vegetation Stress                 | None            | None       |
| Seepage/Ponded Water              | None            | None       |
| Debris exposure                   | Acceptable      | Occasional |
| Overall Landfill Performance: ACC | EPTABLE         |            |

| Performance/<br>Severity Rating | Description                                                                                                                                                                                                                                                                                                                |
|---------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Acceptable                      | Noted features are of little consequence. The landfill is performing as designed. Minor deviations in environmental or physical performance may be observed, such as isolated areas of erosion, settlement.                                                                                                                |
| Marginal                        | Physical/environmental performance appears to be deteriorating with time. Observations may include an increase in size or number of features of note, such as differential settlement, erosion or cracking. No significant impact on landfill stability to date, but potential for failure is assessed as low or moderate. |
| Significant                     | Significant or potentially significant changes affecting landfill stability, such as significant changes in slope geometry, significant erosion or differential settlement; scarp development. The potential for failure is assessed as imminent.                                                                          |
| Unacceptable                    | Stability of landfill is compromised to the extent that ability to contain waste materials is compromised. Examples may include:  - Debris exposed in erosion channels or areas of differential settlement.  - Liner exposed.  - Slope failure.                                                                            |

| Extent     | Description                                                                       |
|------------|-----------------------------------------------------------------------------------|
| Isolated   | Singular feature                                                                  |
| Occasional | Features of note occurring at irregular intervals/locations                       |
| Numerous   | Many features of note, impacted less than 50% of the surface area of the landfill |
| Extensive  | Impacting greater than 50% of the surface area of the landfill                    |

#### **Station Area NHWL (see Figure 4)**

| Photo 1 (FOX-5 SA P-1.jpg)                                                                        | Photo 2 (FOX-5 SA P-2.jpg)                                                                                                        |
|---------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|
| Photo 1 (FOX-5 SA P-1.jpg)  Description: View looking down slope at minor settlement. (FEATURE A) | Photo 2 (FOX-5 SA P-2.jpg)  Description: View looking southwest along toe of landfill. Minor settlement noted at toe. (FEATURE A) |
| 20/08/2014  20/08/2014                                                                            | Date: August 20, 2014                                                                                                             |
| Date: August 20, 2014                                                                             | Date: August 20, 2014                                                                                                             |

| Photo 3 (FOX-5 SA P-3.jpg)                                                                                                    | Photo 4 (FOX-5 SA P-4.jpg)                                                                                                     |
|-------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|
| Description: View looking up hill toward minor erosion channels likely initiated by vehicle tracks/ruts. ( <b>FEATURE H</b> ) | Description: View looking southeast of near the north corner of the Station Area landfill. Minor settlement noted. (FEATURE A) |
| 20/08/2014                                                                                                                    | 20/03/2014                                                                                                                     |
| Date: August 20, 2014                                                                                                         | Date: August 20, 2014                                                                                                          |

TABLE 5.5: LANDFILL VISUAL INSPECTION PHOTO LOG (STATION LANDFILL)

| Photo 5 (FOX-5 SA P-5.jpg)                                                      | Photo 6 (FOX-5 SA P-6.jpg)                                                               |
|---------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|
| Description: View of erosion channel on northwest wall of landfill. (FEATURE P) | Description: View of minor amounts of debris on southwestern landfill wall.  (FEATURE M) |
| 20/08/22014                                                                     | 20/03/2014                                                                               |
| Date: August 20, 2014                                                           | Date: August 20, 2014                                                                    |

| Photo 7 (FOX-5 SA P-7.jpg)                                                               | Photo 8 (FOX-5 SA P-8.jpg)                                                                                                 |
|------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|
| Photo 7 (FOX-5 SA P-7.jpg)  Description: An example of the minor debris on landfill cap. | Photo 8 (FOX-5 SA P-8.jpg)  Description: View southwest along landfill wall. Settlement observed. (FEATURE A)  20/108/2014 |
| Date: August 20, 2014                                                                    | Date: August 20, 2014                                                                                                      |

| Photo 9 (FOX-5 SA P-9.jpg)                                                                                 | Photo 10 (FOX-5 SA P-10.jpg)                                                                                        |
|------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|
| Description: Exposed debris near southern corner of landfill. Debris included metal strapping. (FEATURE J) | Description: Debris adjacent to northeast wall of landfill. Concrete piece with rebar is seen in photo. (FEATURE C) |
| 20/03/2014                                                                                                 | 20/08/2014                                                                                                          |
| Date: August 20, 2014                                                                                      | Date: August 20, 2014                                                                                               |

| Photo 11 (FOX-5 SA P-11.jpg)                                    | Photo 12 (FOX-5 SA P-12.jpg)                                                                                                                          |
|-----------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|
| Description: View southwest along northwestern toe of landfill. | Description: View east toward western corner of landfill. Observed debris included metal strapping, seen adjacent to field book. ( <b>FEATURE N</b> ) |
| 20/08/2014                                                      | 20/08/2014                                                                                                                                            |
| Date: August 20, 2014                                           | Date: August 20, 2014                                                                                                                                 |

| Photo 13 (FOX-5 SA P-13.jpg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Photo 14 (FOX-5 SA P-14.jpg)                       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|
| Description: View of debris at eastern toe of landfill. Debris includes metal strapping and rope. (FEATURE N)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Description: View south along eastern edge of cap. |
| The contraction of the contracti | 20/08/2014                                         |
| Date: August 20, 2014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Date: August 20, 2014                              |

| Photo 15 (FOX-5 SA P-15.jpg)                                                       | Photo 16 (FOX-5 SA P-16.jpg)                      |
|------------------------------------------------------------------------------------|---------------------------------------------------|
| Description: View of minor settlement observed at eastern end of cap.  (FEATURE F) | Description: View west along northern end of cap. |
| 20/08/2014                                                                         | 2070372014                                        |
| Date: August 20, 2014                                                              | Date: August 20, 2014                             |

| Photo 17 (FOX-5 SA P-17.jpg)                           | Photo 18 (FOX-5 SA P-18.jpg)                                                   |
|--------------------------------------------------------|--------------------------------------------------------------------------------|
| Description: View west along southern toe of landfill. | Description: Minor settlement observed at western toe of landfill. (FEATURE O) |
| 20/06/2014                                             | 20/08/2014                                                                     |
| Date: August 20, 2014                                  | Date: August 20, 2014                                                          |

TABLE 5.5: LANDFILL VISUAL INSPECTION PHOTO LOG (STATION LANDFILL)

| Photo 19 (FOX-5 SA P-19.jpg)                             | Photo 20 (FOX-5 SA P-20.jpg)                             |
|----------------------------------------------------------|----------------------------------------------------------|
| Description: View north along western slope of landfill. | Description: View east along southern slope of landfill. |
| 20/08/2014                                               | 20/08/2014                                               |
| Date: August 20, 2014                                    | Date: August 20, 2014                                    |

| Photo 21 (FOX-5 SA P-21.jpg)                                                    | Photo 22 (FOX-5 SA P-22.jpg)                                                |
|---------------------------------------------------------------------------------|-----------------------------------------------------------------------------|
| Description: View of minor settlement on eastern slope of landfill. (FEATURE I) | Description: View looking west of vehicle tracks/ruts, from eastern corner. |
|                                                                                 |                                                                             |
| 20/08/2014                                                                      | 20/08/2014                                                                  |
| Date: August 20, 2014                                                           | Date: August 20, 2014                                                       |

| Photo 23 (FOX-5 SA P-23.jpg)                                                     | Photo 24 (FOX-5 SA P-24.jpg)                                                                 |
|----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|
| Photo 23 (FOX-5 SA P-23.jpg)  Description: F5-SA-MW-15 during sample collection. | Photo 24 (FOX-5 SA P-24.jpg)  Description: F5-SA-MW-15 after sample collection and backfill. |
| Date: August 20, 2014                                                            | Date: August 20, 2014                                                                        |

| Photo 25 (FOX-5 SA P-25.jpg)                       | Photo 26 (FOX-5 SA P-26.jpg)                                   |
|----------------------------------------------------|----------------------------------------------------------------|
| Description: F5-SA-MW-16 during sample collection. | Description: F5-SA-MW-16 after sample collection and backfill. |
| Date: August 20, 2014                              | Date: August 20, 2014                                          |

| Photo 27 (FOX-5 SA P-27.jpg)                                                     | Photo 28 (FOX-5 SA P-28.jpg)                                                                 |
|----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|
| Photo 27 (FOX-5 SA P-27.jpg)  Description: F5-SA-MW-17 during sample collection. | Photo 28 (FOX-5 SA P-28.jpg)  Description: F5-SA-MW-17 after sample collection and backfill. |
| Date: August 20, 2014                                                            | Date: August 20, 2014                                                                        |

| Photo 29 (FOX-5 SA P-29.jpg)                                                     | Photo 30 (FOX-5 SA P-30.jpg)                                                                 |
|----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|
| Photo 29 (FOX-5 SA P-29.jpg)  Description: F5-SA-MW-18 during sample collection. | Photo 30 (FOX-5 SA P-30.jpg)  Description: F5-SA-MW-18 after sample collection and backfill. |
|                                                                                  |                                                                                              |
| Date: August 20, 2014                                                            | Date: August 20, 2014                                                                        |

| Photo 31 (FOX-5 SA P-31.jpg)                       | Photo 32 (FOX-5 SA P-32.jpg)                                   |
|----------------------------------------------------|----------------------------------------------------------------|
| Description: F5-SA-MW-19 during sample collection. | Description: F5-SA-MW-19 after sample collection and backfill. |
|                                                    |                                                                |
| Date: August 20, 2014                              | Date: August 20, 2014                                          |

| Photo 33 (FOX-5 SA P-33.jpg)                           | Photo 34 (FOX-5 SA P-34.jpg)                                           |
|--------------------------------------------------------|------------------------------------------------------------------------|
| Description: View northwest toward MW-15 and landfill. | Description: View northeast toward MW-16. ATVs parked on landfill cap. |
|                                                        |                                                                        |
| Date: August 20, 2014                                  | Date: August 20, 2014                                                  |

|                                           | T                                     |
|-------------------------------------------|---------------------------------------|
| Photo 35 (FOX-5 SA P-35.jpg)              | Photo 36 (FOX-5 SA P-36.jpg)          |
| Description: View southeast toward MW-17. | Description: View south toward MW-18. |
|                                           |                                       |
| Date: August 20, 2014                     | Date: August 20, 2014                 |

| Photo 37 (FOX-5 SA P-37.jpg)                                                   | Photo 38 (FOX-5 SA P-38.jpg)                                                      |  |  |
|--------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|--|--|
| Description: View of MW-19. Northern slope of landfill seen in the background. | Description: View of tension crack on southwestern slope of landfill. (FEATURE L) |  |  |
| 20/08/2014                                                                     | 20/08/2014                                                                        |  |  |
|                                                                                |                                                                                   |  |  |
| Date: August 20, 2014                                                          | Date: August 20, 2014                                                             |  |  |

**Table 5.6: Visual Inspection Trends (Station Landfill)** 

| Item                      | AECOM 2012                                                                                                                                                                                                                                                                                                                    | <b>SENES 2014</b>                                                                                                           | Trend                                                                                                                                     |  |  |
|---------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|                           | Observations                                                                                                                                                                                                                                                                                                                  | <b>Observations</b>                                                                                                         |                                                                                                                                           |  |  |
| Settlement                | Minor settlement was observed occasionally on the berms and top cover of the landfill. A number of sinkholes were observed on the southwest, northeast, and northwest sides of the landfill. Several settlement areas previously identified on the landfill cover were filled as part of the construction activities in 2011. | Minor settlement was observed occasionally on the berms and on top of the landfill. (Feature A, D, F, I, K, O, Q)           | Minor areas of settlement were noted in the previous and current monitoring events but sinkholes were not observed during the 2014 event. |  |  |
| Erosion                   | Erosion was observed on the northwest and northeast slopes in preferred channels that appear to have selfarmoured.  Some minor erosion was seen around large cobbles on the southeast and northwest side.  Some of the minor channels still have some fines that are migrating from the landfill cover to the toe.            | Minor erosion channels were observed on the northwest, northeast, and southeast berms of the landfill. (Feature E, H, P, S) | Erosion channels are becoming more numerous on the landfill but are not negatively affecting the performance of the landfill.             |  |  |
| Frost Action              | Indications of frost action were not evident.                                                                                                                                                                                                                                                                                 | None observed.                                                                                                              | None observed at this landfill.                                                                                                           |  |  |
| Sloughing and<br>Cracking | Tension cracks were noted on berms and outside the landfill.                                                                                                                                                                                                                                                                  | Small tension cracks were observed on the berms on the south and north ends of the landfill. (Feature B, L, R)              | Tension cracks remain present but do not appear to be worsening with time.                                                                |  |  |
| Animal Burrows            | Evidence of burrowing animals was not observed.                                                                                                                                                                                                                                                                               | None observed. An arctic hare was observed in the vicinity of the landfill during the site inspection.                      | None observed at this landfill. It is not expected that animals are using the landfill as a site for burrows.                             |  |  |
| Vegetation                | One isolated shrub (unidentified) and some green colouring was observed on the top cover of the landfill.                                                                                                                                                                                                                     | Isolated small pieces of vegetation were observed on the berms and top of the landfill.                                     | Vegetation is slowly establishing itself on the landfill.                                                                                 |  |  |
| Staining                  | Staining was not observed at the landfill.                                                                                                                                                                                                                                                                                    | None observed.                                                                                                              | None observed at this landfill.                                                                                                           |  |  |
| Vegetation Stress         | None noted.                                                                                                                                                                                                                                                                                                                   | None observed.                                                                                                              | None observed at this landfill.                                                                                                           |  |  |

| Item               | <b>AECOM 2012</b>                                                                                                                                                                                                                                                                                                | <b>SENES 2014</b>                                                                                                                                                                                                                                    | Trend                                                                                                                                                                        |
|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                    | Observations                                                                                                                                                                                                                                                                                                     | Observations                                                                                                                                                                                                                                         |                                                                                                                                                                              |
| Seepage Points     | Moisture was evident at the northwest berm of the landfill. It was not known if the moisture was originating from within the landfill or from surface drainage. Some washed rock observed near the north corner of the northwest berm is indicative of water exiting the berm at that location.                  | None observed.                                                                                                                                                                                                                                       | Seepage may be occurring from the landfill at certain times of the year, however it does not appear to be negatively affecting the performance of the landfill.              |
| Debris Exposed     | Several small pieces of metal or wood and one large piece of concrete were observed around and between the west and south corners of the landfill. The large piece of reinforced concrete was located at the toe of the northeast berm. It is not suspected that the debris originated from within the landfill. | Several small pieces of metal and wood debris were observed around the landfill. One large piece of reinforced concrete was observed north of the landfill. The debris is not suspected to have originated within the landfill. (Feature C, J, M, N) | Debris exposure is minor and debris did not originate from within the landfill. The large piece of reinforced concrete is not negatively affecting the landfill performance. |
| Presence/Condition | Five monitoring wells were                                                                                                                                                                                                                                                                                       | Five monitoring wells were                                                                                                                                                                                                                           | Monitoring well                                                                                                                                                              |
| of Monitoring      | observed around the landfill.                                                                                                                                                                                                                                                                                    | observed around the landfill.                                                                                                                                                                                                                        | installations continue                                                                                                                                                       |
| Instruments        |                                                                                                                                                                                                                                                                                                                  | Standing water was noted in the casing around the standpipe at MW-19.                                                                                                                                                                                | to be in good condition.                                                                                                                                                     |
| Other Features of  | None noted.                                                                                                                                                                                                                                                                                                      | Vehicle tracks and ruts on top                                                                                                                                                                                                                       | Minor tracks and ruts                                                                                                                                                        |
| Note               |                                                                                                                                                                                                                                                                                                                  | surface of landfill. (Feature G)                                                                                                                                                                                                                     | are now present at the landfill.                                                                                                                                             |

## 5.3.1.4 Discussion of Results/Trends

The results of the visual inspection indicate that the performance of the landfill is acceptable. All identified issues were minor and of no consequence to the performance of the landfill.

The findings of the 2014 investigation are consistent with those of the 2012 investigation. No trends were observed that are indicative of degradation of the performance of the landfill.

### 5.3.2 Soil Sampling

Soil sampling at the Station Non-Hazardous Waste Landfill was completed on 19 August 2014. As previously reported a total of eleven samples including one duplicate sample were procured from five locations as shown in plan on Figure 2.

#### 5.3.2.1 Laboratory Analytical Results

The laboratory analytical results for soil samples collected at the Station Non-Hazardous Waste Landfill during the 2014 monitoring event are provided in Table 5.7. A duplicate soil sample was collected at depth at MW-18 and was submitted to AGAT, a secondary laboratory for QA/QC purposes. The RPDs for the duplicate sample results were below 30%, indicating good agreeability of the results.

#### 5.3.2.2 Discussion of Results – Comparison to Baseline

A discussion of the analytical results for each parameter analyzed in soil samples collected at the Station Non-Hazardous Waste Landfill during the 2014 monitoring event are provided in Table 5.8. The discussion includes a comparison of results from upgradient (MW-15, MW-16) and downgradient (MW17, MW-18, MW-19) soil sampling locations to baseline average concentrations (BAC) that have been determined for each landfill from soil chemistry at the landfill area prior to and during remediation.

TABLE 5.7

#### RESULTS OF ANALYSIS FOR PARAMETERS IN SOIL AT STATION NON-HAZARDOUS WASTE LANDFILL

|                            | Background    | Baseline      | DEW Line | DEW Line | F5-SA       | F5-SA       | F5-SA       | F5-SA       | F5-SA       | F5-SA       | F5-SA      | F5-SA       | F5-SA      | F5-SA        | F5-SA       | F5-SA       |
|----------------------------|---------------|---------------|----------|----------|-------------|-------------|-------------|-------------|-------------|-------------|------------|-------------|------------|--------------|-------------|-------------|
|                            | Concentration | Average       | Cleanup  | Cleanup  | MW-15-S     | MW-15-D     | MW-16-S     | MW-16-D     | MW-17-S     | MW-17-D     | MW-18-S    | MW-18-D     | MW-18-D    | MW-18-D      | MW-19-S     | MW-19-D     |
| PARAMETERS                 |               | Concentration | Tier I   | Tier II  |             |             |             |             |             |             |            |             | (DUP)      | (AVG)        |             |             |
|                            |               |               | Criteria | Criteria |             |             |             |             |             |             |            |             |            |              |             |             |
|                            |               |               |          |          | 0-15 cm     | 40-50 cm    | 0-15 cm     | 40-50 cm    | 0-15 cm     | 40-50 cm    | 0-15 cm    | 40-50 cm    | 40-50 cm   | 40-50 cm     | 0-15 cm     | 40-50 cm    |
|                            | (_)           | (+)           | (*)      | (**)     | 19-Aug-14   | 19-Aug-14   | 19-Aug-14   | 19-Aug-14   | 19-Aug-14   | 19-Aug-14   | 19-Aug-14  | 19-Aug-14   | 19-Aug-14  | 19-Aug-14    | 19-Aug-14   | 19-Aug-14   |
| Copper                     | 10            | 8.6           | -        | 100      | <u>22+</u>  | <u>20+</u>  | <u>16+</u>  | <u>21+</u>  | 9.1+        | 8.2         | 9.9+       | 9.2+        | <u>11+</u> | <u>10.1+</u> | 8.2         | 8.4         |
| Nickel                     | 5.3           | 5.0           | -        | 100      | <u>18+</u>  | <u>16+</u>  | <u>5.4+</u> | <u>9.8+</u> | 5.0         | <u>6.2+</u> | 7.9+       | <u>7.1+</u> | <u>6+</u>  | 6.55+        | <u>6.2+</u> | <u>6.7+</u> |
| Cobalt                     | 4.0           | 5.0           | -        | 50       | <u>9.3+</u> | <u>8.2+</u> | 3.3         | <u>6+</u>   | 3.2         | 4           | <u>4.5</u> | <u>4.4</u>  | <u>4.5</u> | <u>4.45</u>  | 3.6         | 3.8         |
| Cadmium                    | 1.0           | 1.0           | -        | 5        | < 0.10      | < 0.10      | 0.11        | 0.14        | < 0.10      | < 0.10      | < 0.10     | < 0.10      | < 0.5      | < 0.5        | < 0.10      | < 0.10      |
| Lead                       | 5.0           | 10            | 200      | 500      | 7.7         | <u>6.1</u>  | <u>11+</u>  | <u>14+</u>  | <u>13+</u>  | <u>7.3</u>  | <u>6.8</u> | <u>5.9</u>  | <u>7</u>   | 6.45         | 6.2         | <u>5.8</u>  |
| Zinc                       | 46            | 35            | -        | 500      | <u>58+</u>  | <u>51+</u>  | <u>67+</u>  | <u>87+</u>  | 43+         | 41+         | 43+        | 39+         | 42+        | 40.5+        | 36+         | 36+         |
| Chromium                   | 19            | 20            | -        | 250      | <u>38+</u>  | <u>33+</u>  | 12          | <u>23+</u>  | 12          | 14          | 17         | 17          | 18         | 17.5         | 14          | 15          |
| Arsenic                    | 1.93          | 1.8           | -        | 30       | <u>3.1+</u> | 2.7+        | 2.2+        | 3.3+        | <u>2.6+</u> | 2.9+        | 1.2        | 1.2         | 2          | 1.6          | 2.0+        | 1.6         |
| Mercury                    | 0.5           | 0.10          | -        | 2        | < 0.050     | < 0.050     | < 0.050     | < 0.050     | < 0.050     | < 0.050     | < 0.050    | < 0.050     | < 0.10     | < 0.10       | < 0.050     | < 0.050     |
| Total PCBs                 | 0.001         | 0.003         | 1        | 5        | < 0.010     | < 0.010     | 0.022       | < 0.010     | < 0.010     | < 0.010     | < 0.010    | < 0.010     | < 0.05     | < 0.05       | < 0.010     | < 0.010     |
| PHC F1 (C6-C10)            | -             | -             | -        | -        | <10         | <10         | <10         | <10         | <10         | <10         | <10        | <10         | <5         | <10          | <10         | <10         |
| PHC F2 (C10-C16)           | -             | -             | -        | -        | <10         | <10         | <10         | 23          | <10         | <10         | <10        | <10         | <10        | <10          | <10         | <10         |
| PHC F3 (C16-C34)           | -             | -             | -        | -        | < 50        | < 50        | < 50        | 51          | 120         | < 50        | < 50       | < 50        | <50        | < 50         | < 50        | <50         |
| PHC F4 (C34-C50)           | -             | -             | -        | -        | < 50        | < 50        | < 50        | < 50        | < 50        | < 50        | < 50       | < 50        | <50        | < 50         | < 50        | < 50        |
| Modifed TPH (Total C6-C34) | 5.0           | 299           | -        | 2500     | <u>35</u>   | <u>35</u>   | <u>35</u>   | <u>79</u>   | <u>130</u>  | <u>35</u>   | <u>35</u>  | <u>35</u>   | <u>35</u>  | <u>35</u>    | <u>35</u>   | <u>35</u>   |

#### NOTES:

All parameter values in  $\mu g/g$  (ppm) unless otherwise indicated.

- Exceeds FOX-5 Station Non-Hazardous Waste Landfill Background Concentration.
- + Exceeds FOX-5 Station Non-Hazardous Waste Landfill Baseline Average Concentration.
- Exceeds DEW Line Cleanup Tier I Criteria.
- Exceeds DEW Line Cleanup Tier II Criteria.
- (DUP) Duplicate sample analyzed by AGAT Laboratories for QA/QC purposes.
- (AVG) Average concentration of duplicate samples.
- < Not detected.
- No concentration reported.

**Table 5.8: Evaluation of 2014 Soil Analytical Data (Station Landfill)** 

| Parameter | Baseline<br>Average<br>Concentration<br>(ug/g) | 2014 Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|-----------|------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Copper    | 9.0                                            | Detectable concentrations ranged between 16 and 22 ug/g for upgradient samples and 8.2 and 11 ug/g in downgradient samples, with the highest concentration recorded in the surface sample at the MW-15 sample location and the lowest concentration recorded in the surface sample at the MW-19 sample location and in the subsurface sample at the MW-17 sample location. Three of the eleven samples reported concentrations less than the BAC, while eight of the eleven samples reported a concentration slightly higher than the BAC. |
| Nickel    | 5.0                                            | Detectable concentrations ranged between 5.4 and 18 ug/g for upgradient samples and 5.0 and 7.9 ug/g for downgradient samples, with the highest concentration recorded in the surface sample at the MW-15 sample location and the lowest concentration recorded in the surface sample at the MW-17 sample location. One of eleven samples reported a concentration equivalent to the BAC, while ten of the eleven samples reported a concentration slightly higher than the BAC.                                                           |
| Cobalt    | 5.0                                            | Detectable concentrations ranged between 3.3 and 9.3 ug/g for upgradient samples and 3.2 and 4.5 ug/g for downgradient samples, with the highest concentration recorded in the surface sample at the MW-15 sample location and the lowest concentration recorded at surface at the MW-17 sample location. Eight of the eleven samples reported concentrations less than the BAC, while three of the eleven samples reported a concentration slightly higher than the BAC.                                                                  |
| Cadmium   | 1.0                                            | Detectable concentrations of 0.11 and 0.44 ug/g were reported in surface and subsurface samples, respectively, at the upgradient MW-16 sample location.  All eleven samples reported concentrations below the BAC.                                                                                                                                                                                                                                                                                                                         |
| Lead      | 10                                             | Detectable concentrations ranged between 6.1 and 14 ug/g for upgradient samples and 5.8 and 13 ug/g for downgradient samples, with the highest concentration recorded in the subsurface sample at the MW-16 sample location and the lowest concentration recorded in the subsurface sample at the MW-19 sample location. Eight of the eleven samples reported concentrations less than the BAC, while three of the eleven samples reported a concentration slightly higher than the BAC.                                                   |
| Zinc      | 35                                             | Detectable concentrations ranged between 51 and 87 ug/g for upgradient samples and 36 and 43 ug/g for downgradient samples, with the highest concentration recorded in the subsurface sample at the MW-16 sample location and the lowest concentration recorded in surface and subsurface samples at the MW-19 sample location. All eleven samples reported concentrations slightly above the BAC.                                                                                                                                         |

| Parameter | Baseline<br>Average<br>Concentration<br>(ug/g) | 2014 Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|-----------|------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Chromium  | 20                                             | Detectable concentrations ranged between 12 and 38 ug/g for upgradient samples and 12 and 18 ug/g for downgradient samples, with the highest concentration recorded in the surface sample at the MW-15 sample location and the lowest concentration recorded in the surface samples at the MW-16 and MW-17 sample locations. Eight of the eleven samples reported concentrations less than the BAC, while three of the eleven samples reported a concentration slightly higher than the BAC. |
| Arsenic   | 2.0                                            | Detectable concentrations ranged between 2.2 and 3.3 for upgradient samples and 1.2 and 2.9 ug/g for downgradient samples, with the highest concentration recorded in the subsurface sample at the MW-16 sample location and the lowest concentration recorded in surface and subsurface samples at the MW-18 sample location. All eleven samples reported concentrations below the BAC.                                                                                                     |
| Mercury   | 0.10                                           | All results were below the laboratory detection limit of 0.050 ug/g (and 0.10 ug/g for the duplicate sample submitted to the secondary laboratory) and were below the BAC.                                                                                                                                                                                                                                                                                                                   |
| PCBs      | 0.003                                          | One detectable concentration of 0.022 ug/g was reported in the surface sample at the upgradient MW-16 sample location. Ten of the eleven samples reported concentrations less than the BAC, while one of the eleven samples reported a concentration slightly higher than the BAC.                                                                                                                                                                                                           |
| ТРН       | 299                                            | Detectable concentrations of PHCs F1, F2, and F3 were reported for the subsurface sample at the upgradient MW-16 sample location and the surface sample at the downgradient MW-17 sample location, yielding modified TPH concentrations of 79 and 130 ug/g, respectively. All eleven samples reported concentrations below the BAC.                                                                                                                                                          |

#### 5.3.2.3 Soil Trend Analysis by Parameter and Discussion of Trends

A discussion of the trends observed for parameter concentrations in soil from 2007 to 2014 are presented in Table 5.9. Note that these trend analyses were performed on six datasets, however a minimum of seven data sets are recommended to establish a statistical trend.

**Table 5.9: Evaluation of Soil Result Trends (Station Landfill)** 

| Parameter | 2014 Results                                                                                                                                                                                                                                                                                                                                                                                                                      |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Copper    | Concentrations show a slight downward trend for upgradient soil locations and a slight upward trend for downgradient soil locations. Reported concentrations are generally above the baseline average.                                                                                                                                                                                                                            |
| Nickel    | Concentrations show a slight upward trend for upgradient and downgradient soil locations. Reported concentrations are generally above the baseline average.                                                                                                                                                                                                                                                                       |
| Cobalt    | Concentrations show an upward trend for upgradient soil locations and a downward trend for downgradient soil locations. Reported concentrations are generally above the baseline average.                                                                                                                                                                                                                                         |
| Cadmium   | Concentrations show a slight upward trend for upgradient soil locations and a slight downward trend for downgradient soil locations. Reported concentrations are generally below the baseline average, with most results below the laboratory detection limit. One result in 2012 was 13 ug/g, above the Tier II Cleanup Criteria of 5 ug/g for cadmium, however the 2014 result at this location was below the baseline average. |
| Lead      | Concentrations show a slight upward trend for upgradient and downgradient soil locations. Reported concentrations are generally above the baseline average.                                                                                                                                                                                                                                                                       |
| Zinc      | Concentrations show a slight upward trend for upgradient and downgradient soil locations. Reported concentrations are above and below the baseline average.                                                                                                                                                                                                                                                                       |
| Chromium  | Concentrations show an upward trend for upgradient soil locations and a slight downward trend for downgradient soil locations. Reported concentrations are generally above the baseline average.                                                                                                                                                                                                                                  |
| Arsenic   | Concentrations show an upward trend for upgradient soil locations and a slight downward trend for downgradient soil locations. Reported concentrations are generally above the baseline average.                                                                                                                                                                                                                                  |
| Mercury   | Concentrations show a downward trend for upgradient and downgradient soil locations, however most results are below the laboratory detection limits and the trend is caused by decreasing detection limits over time.                                                                                                                                                                                                             |
| PCBs      | Concentrations show a slight upward trend for upgradient soil locations and are generally stable for downgradient soil locations. Most results are below the laboratory detection limits. Detectable concentrations are above the baseline average.                                                                                                                                                                               |
| ТРН       | Concentrations show a slight upward trend for upgradient soil locations and are generally stable for downgradient soil locations. Most results are below the baseline average.                                                                                                                                                                                                                                                    |

### 5.3.3 Groundwater Sampling

Groundwater sampling at the Station Non-Hazardous Waste Landfill was completed on 19 and 20 August 2014. As previously reported a total of three groundwater samples were procured from three monitoring wells as shown in plan on Figure 4.

#### 5.3.3.1 Monitoring Well Sampling/Inspection Logs

Monitoring well sampling/inspection logs are provided following this page.

#### 5.3.3.2 Water Levels/Groundwater Flow

Water levels were measured at the Station Non-Hazardous Waste Landfill on 19 August 2014. The groundwater levels measured are shown below in Table 5.10. Based on the measured groundwater levels, groundwater flow is expected to be towards the north, however groundwater flow will be highly affected by freeze/thaw cycles and permafrost.

| Monitoring<br>Well | Date           | Ground<br>Surface<br>Elevation<br>(m) | Water<br>Level<br>(m bgs) | Water Level<br>Elevation (m) | Depth to<br>Bottom<br>(m bgs) | Bottom<br>Elevation<br>(m) |
|--------------------|----------------|---------------------------------------|---------------------------|------------------------------|-------------------------------|----------------------------|
| MW-15              | 19 August 2014 | 571.5                                 | 0.70                      | 570.8                        | 1.72                          | 569.78                     |
| MW-16              | 19 August 2014 | 570.6                                 | 0.65                      | 569.95                       | 1.22                          | 569.38                     |
| MW-17              | 19 August 2014 | 567.0                                 | 1.28                      | 565.72                       | 1.55                          | 565.45                     |
| MW-18              | 19 August 2014 | 565.8                                 | 1.36                      | 564.44                       | 1.41                          | 564.39                     |
| MW-19              | 19 August 2014 | 567.3                                 | 1.15                      | 566.15                       | 1.62                          | 565.68                     |

**Table 5.10: Groundwater Levels (Station Landfill)** 

#### 5.3.3.3 Laboratory Analytical Results

Laboratory analytical results for groundwater at the Station Non-Hazardous Waste Landfill are presented in Table 5.11. No duplicate groundwater samples were collected at the Station Non-Hazardous Waste Landfill.

#### 5.3.3.4 Discussion of Results by Parameter

An evaluation of the groundwater analytical results at the Station Non-Hazardous Waste Landfill is presented in Table 5.12. The discussion includes a comparison of results from upgradient (MW-15, MW-16) and downgradient (MW-19) monitoring well locations to the baseline average concentrations (BAC) that have been determined for each landfill from groundwater chemistry at the landfill area prior to and during remediation. No groundwater samples were collected from downgradient wells MW-17 and MW-18 during this monitoring event.

| Site Name:                       | FOX-5           | Station Area Landfill                  |                 |
|----------------------------------|-----------------|----------------------------------------|-----------------|
| Date of Sampling Event:          | 19-Aug-14       |                                        | 745pm           |
| Names of Samplers:               | 10 7 (49 1 1    | S.Borcsok                              | 7 10pm          |
| riames or sample or              |                 | J.Mauchan                              |                 |
| Landfill Name:                   | Station         | Samples Collected:                     | YES             |
| Monitoring Well ID:              | MW-15           | PHC F1                                 |                 |
| Sample Number:                   |                 | Inorganic Elements                     |                 |
| Condition of Well:               | OK              | PHC F2-F4                              |                 |
| soft soil around casir           |                 | PCBs                                   |                 |
| Measured Data                    | <u> </u>        | Duplicate Collected?                   |                 |
| Well pipe height above ground    | 59              |                                        | F5-SA-MW-15     |
| (cm)=                            |                 | '                                      |                 |
| Diameter of well (cm)=           | 5               |                                        |                 |
| Depth of well installation (cm)= |                 |                                        |                 |
| . ,                              |                 |                                        |                 |
| (from ground surface)            |                 |                                        |                 |
| Length screened section          |                 |                                        |                 |
| (cm)=                            |                 |                                        |                 |
| Depth to top of screen (cm)=     |                 |                                        |                 |
| (from ground surface)            |                 |                                        |                 |
|                                  |                 |                                        |                 |
| Depth to water surface (cm)=     | 129             | Measurement method: (meter, tape, etc) | Interface Meter |
|                                  |                 | tape, etc)                             |                 |
|                                  |                 |                                        |                 |
| ( from top of pipe)              |                 |                                        |                 |
| Static water level (cm)=         |                 |                                        |                 |
| (below ground surface)           |                 |                                        |                 |
| Measured well refusal depth      | 231             | Evidence of sludge or siltation:       | None            |
| (cm)=                            |                 | ő                                      |                 |
| (i.e. depth to frozen ground)    |                 |                                        |                 |
|                                  |                 |                                        |                 |
|                                  |                 |                                        |                 |
| Thickness of water column        | 102             |                                        |                 |
| Static volume of water in well   | 2.07            |                                        |                 |
|                                  |                 |                                        |                 |
|                                  |                 |                                        |                 |
| Free product thickness (mm)=     | 0               | Measurement method:                    | IM              |
|                                  | -               |                                        |                 |
| Purging: (Y/N)                   | Υ               | Purging/Sampling Equipment:            | Waterra         |
| Volume Purged Water=             |                 | (Dry after 1.5L)                       | Tubing/         |
| Decontamination required:        | N               | (D) and not                            | Footvalve       |
| (Y/N)                            | . •             |                                        | . 30            |
| Number washes:                   |                 |                                        |                 |
| Number rinses:                   |                 |                                        |                 |
|                                  |                 |                                        |                 |
| Final pH=                        | 7.66            |                                        |                 |
| Final Conductivity (uS/cm)=      | 30.3            |                                        |                 |
| Final Temperature (degC)=        | 4.2             |                                        |                 |
|                                  | ·· <del>-</del> |                                        |                 |

| Site Name:                       | FOX-5     | Station Area Landfill            |                 |
|----------------------------------|-----------|----------------------------------|-----------------|
| Date of Sampling Event:          | 19-Aug-14 |                                  | 755pm           |
| Names of Samplers:               |           | S.Borcsok                        | 1               |
| ·                                |           | J.Mauchan                        |                 |
| Landfill Name:                   | Station   | Samples Collected:               | YES             |
| Monitoring Well ID:              | MW-16     | PHC F1                           |                 |
| Sample Number:                   |           | Inorganic Elements               | YES             |
| Condition of Well:               | OK        | PHC F2-F4                        | YES             |
| broken lock                      |           | PCBs                             | YES             |
| Measured Data                    |           | Duplicate Collected?             | NO              |
| Well pipe height above ground    | 46        | Sample ID:                       | F5-SA-MW-16     |
| (cm)=                            |           |                                  |                 |
| Diameter of well (cm)=           | 5         |                                  |                 |
| Depth of well installation (cm)= |           |                                  |                 |
|                                  |           |                                  |                 |
| (from ground surface)            |           |                                  |                 |
| Length screened section          |           |                                  |                 |
| (cm)=                            |           |                                  |                 |
| Depth to top of screen (cm)=     |           |                                  |                 |
| (from ground surface)            |           |                                  |                 |
|                                  |           |                                  |                 |
| Depth to water surface (cm)=     | 111       | Measurement method: (meter,      | Interface Meter |
|                                  |           | tape, etc)                       |                 |
|                                  |           |                                  |                 |
|                                  |           |                                  |                 |
| ( from top of pipe)              |           |                                  |                 |
| Static water level (cm)=         |           |                                  |                 |
| (below ground surface)           | 400       | E : 1                            | <b>.</b>        |
| Measured well refusal depth      | 168       | Evidence of sludge or siltation: | None            |
| (cm)=                            |           |                                  |                 |
| (i.e. depth to frozen ground)    |           |                                  |                 |
|                                  |           |                                  |                 |
| Thickness of water column        | 57        |                                  |                 |
|                                  |           |                                  |                 |
| Static volume of water in well   | 1.15      |                                  |                 |
|                                  |           |                                  |                 |
| Francis Latellia ( )             |           | Maria                            |                 |
| Free product thickness (mm)=     | 0         | Measurement method:              | IM              |
|                                  | .,        |                                  |                 |
| Purging: (Y/N)                   | Y         | Purging/Sampling Equipment:      | Waterra         |
| Volume Purged Water=             | 2L        | (Dry after 0.5L)                 | Tubing/         |
| Decontamination required:        | N         |                                  | Footvalve       |
| (Y/N)                            |           |                                  |                 |
| Number washes:                   |           |                                  |                 |
| Number rinses:                   |           |                                  |                 |
| <u> </u>                         | 7.0       |                                  |                 |
| Final PH=                        | 7.8       |                                  |                 |
| Final Conductivity (uS/cm)=      | 27.7      |                                  |                 |
| Final Temperature (degC)=        | 4         |                                  |                 |

| Site Name:                       | FOX-5       | Station Area Landfill            |                 |
|----------------------------------|-------------|----------------------------------|-----------------|
| Date of Sampling Event:          |             |                                  | 805pm           |
| Names of Samplers:               | 10 / (49 11 | S.Borcsok                        | СССРП           |
| Training of Gampions             |             | J.Mauchan                        |                 |
| Landfill Name:                   | Station     | Samples Collected:               | NO              |
| Monitoring Well ID:              | MW-17       | PHC F1                           |                 |
| Sample Number:                   |             | Inorganic Elements               |                 |
| Condition of Well:               | OK          | PHC F2-F4                        |                 |
| soft ground around cas           |             | PCBs                             |                 |
| Measured Data                    |             | Duplicate Collected?             |                 |
| Well pipe height above ground    | 35          | Sample ID:                       |                 |
| (cm)=                            |             | •                                |                 |
| Diameter of well (cm)=           | 5           |                                  |                 |
| Depth of well installation (cm)= |             |                                  |                 |
|                                  |             |                                  |                 |
| (from ground surface)            |             |                                  |                 |
| Length screened section          |             |                                  |                 |
| (cm)=                            |             |                                  |                 |
| Depth to top of screen (cm)=     |             |                                  |                 |
| (from ground surface)            |             |                                  |                 |
|                                  |             |                                  |                 |
| Depth to water surface (cm)=     | 163         | Measurement method: (meter,      | Interface Meter |
|                                  |             | tape, etc)                       |                 |
|                                  |             |                                  |                 |
|                                  |             |                                  |                 |
| ( from top of pipe)              |             |                                  |                 |
| Static water level (cm)=         |             |                                  |                 |
| (below ground surface)           |             |                                  |                 |
| Measured well refusal depth      | 190         | Evidence of sludge or siltation: | None            |
| (cm)=                            |             |                                  |                 |
| (i.e. depth to frozen ground)    |             |                                  |                 |
|                                  |             |                                  |                 |
| Thickness of water column        | 27          |                                  |                 |
|                                  |             |                                  |                 |
| Static volume of water in well   | 0.54        |                                  |                 |
|                                  |             |                                  |                 |
| From mande of the late           | ^           | B.4                              |                 |
| Free product thickness (mm)=     | 0           | Measurement method:              | IM              |
| 5 . 6.50                         | <u> </u>    | <u> </u>                         |                 |
| Purging: (Y/N)                   | N           | Purging/Sampling Equipment:      | None            |
| Volume Purged Water=             |             |                                  |                 |
| Decontamination required:        |             |                                  |                 |
| (Y/N)                            |             |                                  |                 |
| Number washes:                   |             |                                  |                 |
| Number rinses:                   |             |                                  |                 |
| P1                               |             |                                  |                 |
| Final pH=                        |             |                                  |                 |
| Final Conductivity (uS/cm)=      |             |                                  |                 |
| Final Temperature (degC)=        |             |                                  |                 |

| Site Name:                       | FOX-5        | Station Area Landfill            |                 |
|----------------------------------|--------------|----------------------------------|-----------------|
| Date of Sampling Event:          | 19-Aug-14    |                                  | 815pm           |
| Names of Samplers:               | 10 7 (49 1 1 | S.Borcsok                        | Отории          |
| Tames of Campions                |              | J.Mauchan                        |                 |
| Landfill Name:                   | Station      | Samples Collected:               | NO              |
| Monitoring Well ID:              | MW-18        | PHC F1                           |                 |
| Sample Number:                   |              | Inorganic Elements               |                 |
| Condition of Well:               | OK           | PHC F2-F4                        |                 |
| standpipe very low in ca         |              | PCBs                             |                 |
| Measured Data                    | J            | Duplicate Collected?             |                 |
| Well pipe height above ground    | 80           | Sample ID:                       |                 |
| (cm)=                            |              | '                                |                 |
| Diameter of well (cm)=           | 5            |                                  |                 |
| Depth of well installation (cm)= |              |                                  |                 |
| ` '                              |              |                                  |                 |
| (from ground surface)            |              |                                  |                 |
| Length screened section          |              |                                  |                 |
| (cm)=                            |              |                                  |                 |
| Depth to top of screen (cm)=     |              |                                  |                 |
| (from ground surface)            |              |                                  |                 |
| ,                                |              |                                  |                 |
| Depth to water surface (cm)=     | 216          | Measurement method: (meter,      | Interface Meter |
|                                  |              | tape, etc)                       |                 |
|                                  |              |                                  |                 |
|                                  |              |                                  |                 |
| ( from top of pipe)              |              |                                  |                 |
| Static water level (cm)=         |              |                                  |                 |
| (below ground surface)           |              |                                  |                 |
| Measured well refusal depth      | 221          | Evidence of sludge or siltation: | None            |
| (cm)=                            |              |                                  |                 |
| (i.e. depth to frozen ground)    |              |                                  |                 |
|                                  |              |                                  |                 |
| <del></del>                      |              |                                  |                 |
| Thickness of water column        | 5            |                                  |                 |
| Static volume of water in well   | 0.10         |                                  |                 |
|                                  |              |                                  |                 |
|                                  |              |                                  |                 |
| Free product thickness (mm)=     | 0            | Measurement method:              | IM              |
|                                  |              |                                  |                 |
| Purging: (Y/N)                   | N            | Purging/Sampling Equipment:      | None            |
| Volume Purged Water=             |              |                                  |                 |
| Decontamination required:        |              |                                  |                 |
| (Y/N)                            |              |                                  |                 |
| Number washes:                   |              |                                  |                 |
| Number rinses:                   |              |                                  |                 |
|                                  |              |                                  |                 |
| Final pH=                        |              |                                  |                 |
| Final Conductivity (uS/cm)=      |              |                                  |                 |
| Final Temperature (degC)=        |              |                                  |                 |

| Site Name:                       | FOX-5     | Station Area Landfill            |                 |
|----------------------------------|-----------|----------------------------------|-----------------|
| Date of Sampling Event:          | 19-Aug-14 |                                  | 125pm           |
| Names of Samplers:               |           | S.Borcsok                        |                 |
|                                  |           | J.Mauchan                        |                 |
| Landfill Name:                   | Station   | Samples Collected:               | YES             |
| Monitoring Well ID:              | MW-19     | PHC F1                           | YES             |
| Sample Number:                   |           | Inorganic Elements               | YES             |
| Condition of Well:               | OK        | PHC F2-F4                        | YES             |
| water around standpipe           |           | PCBs                             |                 |
| Measured Data                    |           | Duplicate Collected?             |                 |
| Well pipe height above ground    | 50        | Sample ID:                       | F5-SA-MW-19     |
| (cm)=                            |           |                                  |                 |
| Diameter of well (cm)=           | 5         |                                  |                 |
| Depth of well installation (cm)= |           | Well monitored 19 August 2014    |                 |
|                                  |           | Well sampled 20 August 2014      |                 |
| (from ground surface)            |           |                                  |                 |
| Length screened section          |           |                                  |                 |
| (cm)=                            |           |                                  |                 |
| Depth to top of screen (cm)=     |           |                                  |                 |
| (from ground surface)            |           |                                  |                 |
| Donth to water surface (em)      | 150       | Magazrament method: (meter       | Interfece Motor |
| Depth to water surface (cm)=     | 150       | Measurement method: (meter,      |                 |
|                                  |           | tape, etc)                       |                 |
|                                  |           |                                  |                 |
| ( from top of pipe)              |           |                                  |                 |
| Static water level (cm)=         |           |                                  |                 |
| (below ground surface)           |           |                                  |                 |
| Measured well refusal depth      | 197       | Evidence of sludge or siltation: | None            |
| (cm)=                            |           | ő                                |                 |
| (i.e. depth to frozen ground)    |           |                                  |                 |
|                                  |           |                                  |                 |
|                                  |           |                                  |                 |
| Thickness of water column        | 47        |                                  |                 |
| Static volume of water in well   | 0.95      |                                  |                 |
|                                  |           |                                  |                 |
|                                  |           |                                  |                 |
| Free product thickness (mm)=     | 0         | Measurement method:              | IM              |
|                                  |           |                                  |                 |
| Purging: (Y/N)                   | Υ         | Purging/Sampling Equipment:      | Waterra         |
| Volume Purged Water=             | 3L        |                                  | Tubing/         |
| Decontamination required:        | N         |                                  | Footvalve       |
| (Y/N)                            |           |                                  |                 |
| Number washes:                   |           |                                  |                 |
| Number rinses:                   |           |                                  |                 |
|                                  |           |                                  |                 |
| Final pH=                        | 7.92      |                                  |                 |
| Final Conductivity (uS/cm)=      | 33.3      |                                  |                 |
| Final Temperature (degC)=        | 4.2       |                                  |                 |

**TABLE 5.11** 

#### RESULTS OF ANALYSIS FOR PARAMETERS IN GROUNDWATER AT STATION NON-HAZARDOUS WASTE LANDFILL

| PARAMETERS                 | Baseline<br>Average<br>Concentration | F5-SA-<br>MW-15 | F5-SA-<br>MW-16 | F5-SA-<br>MW-19 |
|----------------------------|--------------------------------------|-----------------|-----------------|-----------------|
|                            | (+)                                  | 19-Aug-14       | 19-Aug-14       | 20-Aug-14       |
| Copper                     | 0.036                                | 0.0011          | 0.041+          | 0.022           |
| Nickel                     | 0.075                                | 0.009           | 0.02            | 0.017           |
| Cobalt                     | 0.010                                | 0.00031         | 0.0086          | 0.0066          |
| Cadmium                    | 0.001                                | < 0.000020      | 0.00079         | 0.00008         |
| Lead                       | 0.01                                 | 0.00022         | 0.022+          | 0.0075          |
| Zinc                       | 0.097                                | 0.02            | 0.37+           | 0.11+           |
| Chromium                   | 0.116                                | 0.018           | 0.052           | 0.04            |
| Arsenic                    | 0.003                                | < 0.00020       | 0.0037          | 0.0028          |
| Mercury                    | 0.004                                | < 0.00001       | 0.00002         | < 0.00001       |
| Total PCBs                 | 0.00002                              | < 0.00005       | < 0.00005       | < 0.00005       |
| PHC F1 (C6-C10)            | -                                    | < 0.025         | < 0.025         | < 0.025         |
| PHC F2 (C10-C16)           | -                                    | < 0.1           | 0.45            | < 0.100         |
| PHC F3 (C16-C34)           | -                                    | < 0.2           | < 0.2           | < 0.1           |
| PHC F4 (C34-C50)           | -                                    | < 0.2           | < 0.2           | < 0.1           |
| Modifed TPH (Total C6-C34) | 1                                    | 0.25            | 0.45            | 0.25            |

#### **NOTES:**

All parameter values in mg/L (ppm) unless otherwise indicated.

+ Exceeds Station Area Landfill Baseline Average Concentration

(DUP) Duplicate sample analyzed by AGAT Laboratories for QA/QC purposes.

RDL Reportable Detection Limit.

< Not detected.

- No concentration reported.

**Table 5.12: Evaluation of Groundwater Analytical Results (Station Landfill)** 

| Parameter | Baseline Average<br>Concentration<br>(mg/L) | 2014 Results                                                                                                                                                                                                                                                                                                                                                                                |
|-----------|---------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Copper    | 0.036                                       | Detectable concentrations were 0.0011 and 0.041 mg/L at the upgradient wells and 0.022 mg/L at the downgradient well, with the highest concentration recorded at monitoring well MW-16 and the lowest concentration recorded at monitoring well MW-15. 2 of the 3 samples reported concentrations below the BAC while 1 of the 3 samples reported a concentration slightly above the BAC.   |
| Nickel    | 0.075                                       | Detectable concentrations ranged were 0.009 and 0.02 mg/L at the upgradient wells and 0.017 mg/L at the downgradient well with the highest concentration recorded at monitoring well MW-16 and the lowest concentration recorded at monitoring well MW-15. All 3 samples reported concentrations below the BAC.                                                                             |
| Cobalt    | 0.01                                        | Detectable concentrations were 0.00031 and 0.0086 mg/L at the upgradient wells and 0.0066 mg/L at the downgradient well, with the highest concentration recorded at monitoring well MW-16 and the lowest concentration recorded at monitoring well MW-15. All 3 samples reported concentrations below the BAC.                                                                              |
| Cadmium   | 0.001                                       | Detectable concentrations were 0.00079 mg/L at the upgradient well MW-16 and 0.00008 mg/L at the downgradient well MW-19. The reported concentration at monitoring well MW-15 was less than the laboratory detection limit (0.000020 mg/L). All 3 samples reported concentrations below the BAC.                                                                                            |
| Lead      | 0.01                                        | Detectable concentrations were 0.00022 and 0.022 mg/L at the upgradient wells and 0.0075 mg/L at the downgradient well, with the highest concentration recorded at monitoring well MW-16 and the lowest concentration recorded at monitoring well MW-15. 2 of the 3 samples reported concentrations below the BAC while 1 of the 3 samples reported a concentration slightly above the BAC. |
| Zinc      | 0.097                                       | Detectable concentrations were 0.02 and 0.37 mg/L at the upgradient wells and 0.11 mg/L at the downgradient well, with the highest concentration recorded at monitoring well MW-16 and the lowest concentration recorded at monitoring well MW-15. 1 of the 3 samples reported a concentration below the BAC while 2 of the 3 samples reported concentrations slightly above the BAC.       |
| Chromium  | 0.12                                        | Detectable concentrations were 0.018 and 0.052 mg/L at the upgradient wells and 0.04 mg/L at the downgradient well, with the highest concentration recorded at monitoring well MW-16 and the lowest concentration recorded at monitoring well MW-15. All 3 samples reported concentrations below the BAC.                                                                                   |

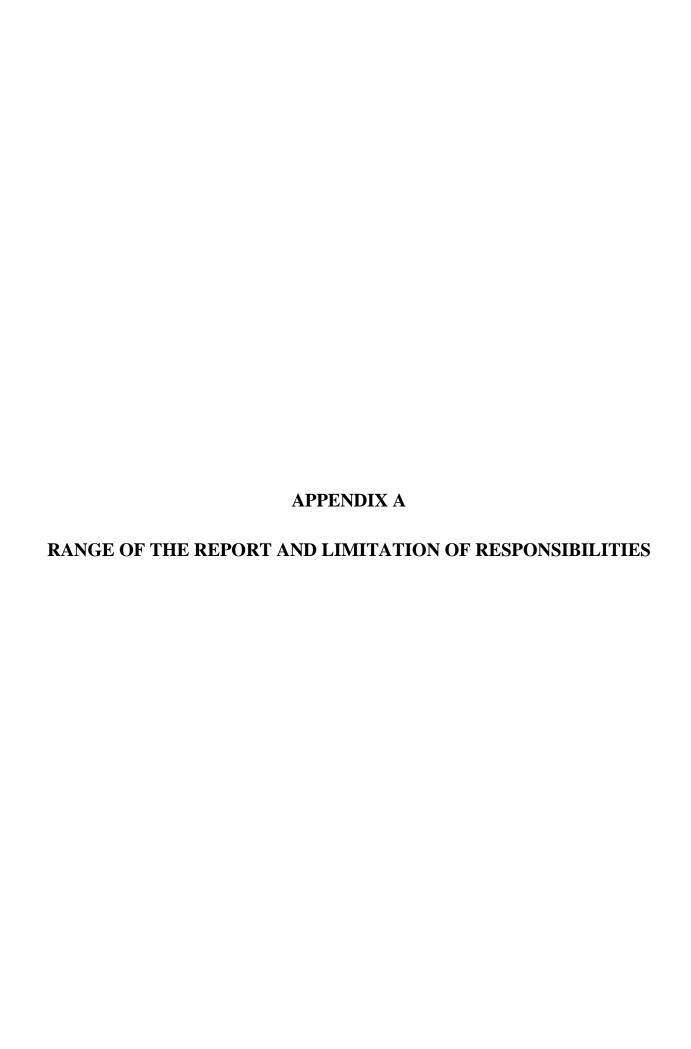
|           | Baseline Average |                                                                          |
|-----------|------------------|--------------------------------------------------------------------------|
| Parameter | Concentration    | 2014 Results                                                             |
|           | (mg/L)           |                                                                          |
|           |                  | Detectable concentrations were 0.0037 mg/L at the upgradient well MW-    |
|           |                  | 16 and 0.0028 mg/L at the downgradient well MW-19. The reported          |
| Arsenic   | 0.003            | concentration at monitoring well MW-15 was less than the laboratory      |
| Arsenic   | 0.003            | detection limit (0.00020 mg/L). 2 of the 3 samples reported              |
|           |                  | concentrations below the BAC while 1 of the 3 samples reported a         |
|           |                  | concentration slightly above the BAC.                                    |
|           |                  | A detectable concentration of 0.00002 mg/L was reported at upgradient    |
| Mercury   | 0.004            | well MW-16. All 3 samples reported concentrations below the BAC, of      |
|           |                  | which two were below the laboratory detection limit (0.00001 mg/L).      |
|           |                  | All 3 samples reported concentrations less than the laboratory detection |
| PCBs      | 0.00002          | limit (0.00005 mg/L). The laboratory detection limit is above the BAC as |
| PCBS      | 0.00002          | it was defined based on a lower detection limit from a previous          |
|           |                  | monitoring event.                                                        |
| ТРН       | 1                | A detectable concentration of 0.45 mg/L was reported at upgradient well  |
| 1111      | 1                | MW-16. All 3 results were below the BAC.                                 |

## 5.3.3.5 Groundwater Trend Analysis by Parameter & Discussion of Trends

A discussion of the trends observed for parameter concentrations in groundwater from 2007 to 2014 are presented in Table 5.13. Note that these trend analyses were performed on six datasets, however a minimum of seven data sets are recommended to establish a statistical trend.

**Table 5.13: Evaluation of Groundwater Result Trends (Station Landfill)** 

| Parameter                                                                              | 2014 Results                                                                                     |
|----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|
|                                                                                        | Concentrations show a very slight upward trend for upgradient wells and very slight downward     |
| Copper                                                                                 | trend for downgradient wells. Reported concentrations are below or slightly above the baseline   |
|                                                                                        | average.                                                                                         |
| Nickel                                                                                 | Concentrations show a downward trend for upgradient and downgradient wells. Reported             |
| Nickei                                                                                 | concentrations are below the baseline average except for two 2007 results.                       |
| Cobalt                                                                                 | Concentrations show a very slight upward trend for upgradient wells and very slight downward     |
| Cobait                                                                                 | trend for upgradient wells. Reported concentrations are above and below the baseline average.    |
| Cadmium Concentrations show a downward trend for upgradient and downgradient wells. Re |                                                                                                  |
| Caumum                                                                                 | concentrations are clustered around the baseline average.                                        |
| Lead                                                                                   | Concentrations show an upward trend for upgradient and downgradient wells. Reported              |
| Leau                                                                                   | concentrations are clustered around the baseline average.                                        |
| Zinc                                                                                   | Concentrations show an upward trend for upgradient wells and a very slight upward trent for      |
| Zinc                                                                                   | downgradient wells. Reported concentrations are generally clustered around the baseline average. |
| Chromium                                                                               | Concentrations show a downward trend for upgradient and downgradient wells. Reported             |
| Cinomium                                                                               | concentrations are generally below the baseline average.                                         |
| Arsenic                                                                                | Concentrations show an upward trend for upgradient and downgradient wells. Reported              |
| Aisenic                                                                                | concentrations are clustered around the baseline average.                                        |


| Parameter | 2014 Results                                                                                         |
|-----------|------------------------------------------------------------------------------------------------------|
| Maraury   | All reported concentrations are below the laboratory detection limit except for one 2014 value that  |
| Mercury   | is very slightly above the laboratory detection limit and well below the baseline average.           |
| PCBs      | All reported concentrations are below the laboratory detection limit and below the baseline average. |
| ТРН       | Concentrations show a slight downward trend for upgradient wells and a downward trend for            |
| ТРП       | downgradient wells. Concentrations are above and below the baseline average.                         |

#### 5.4 CONCLUSIONS/OVERALL PERFORMANCE OF THE LANDFILL

Based on the results of the 2014 monitoring program, the performance of the Station Non-Hazardous Waste Landfill is acceptable.

#### 5.5 RECOMMENDATIONS/NEXT STEPS

Regular monitoring of this landfill as per the monitoring schedule shown in Table 1.1 should be continued. No remedial work is necessary at this time.



#### RANGE OF THE REPORT AND LIMITATION OF RESPONSIBILITIES

This landfill monitoring program was commissioned as part of an ongoing program assessing the performance of landfills present at the subject site. The visual observations, test data, chemical analyses and conclusions given in this landfill monitoring report are considered to provide a fair representation of the surface and subsurface conditions within or adjacent to each landfill subject to monitoring. It should be noted, however, that any conclusions regarding the performance of these landfills are based on interpretation of conditions observed during the landfill monitoring program and at specific locations and sampling depths.

This monitoring report, prepared for Public Works and Government Services (PWGSC) and the Department of National Defence (DND), does not provide certification or warranty, expressed or implied, that the monitoring program uncovered all potential issues of environmental or geotechnical concern at the landfills inspected. The material in the report reflects SENES' best judgement in light of the information available at the time of report preparation in November 2014. Changes to soil and/or groundwater quality in the areas investigated can occur following the date of testing. Any use which a third party makes of, or any reliance on, or decisions based on this report or of parts thereof made by them, is the sole responsibility of such third parties unless otherwise agreed-to by duly authorized representatives from SENES, PWGSC and DND.

# APPENDIX B

# **FIELD NOTES**

**APPENDIX B.1 – Thermistor Inspection Reports** 

**APPENDIX B.2** – Monitoring Well Inspection Reports

**APPENDIX B.3 – Visual Inspection Reports** 

| Contractor Name: SENES  | Inspection Date: 22 Aug//4 |
|-------------------------|----------------------------|
| Prepared By: 5. Borcsok |                            |

#### Thermistor Information

| Site Name: FOX-5             | Thermistor Location MAIN LA |                                  | ANDFILL          |              |  |
|------------------------------|-----------------------------|----------------------------------|------------------|--------------|--|
| Thermistor Number: VT - \    | Inclination Slanted off     | Inclination Stanfed off restreat |                  |              |  |
| Install Date:                | First Date Event            |                                  | Las              | t Date Event |  |
| Coordinates and Elevation    | N                           | Е                                |                  | Elev         |  |
| Length of Cable (m)          | Cable Lead Above Ground (m) |                                  | Nodal Points     |              |  |
| Datalogger Serial # 02020267 |                             |                                  | Cable Serial Nur | mber         |  |
| Thermistor Type ULI 6        |                             |                                  |                  |              |  |

#### **Thermistor Inspection**

| · <del></del>             | Good     | Needs Maintenance               |
|---------------------------|----------|---------------------------------|
| Casing                    | 4        |                                 |
| Cover                     | Ø        |                                 |
| Data Logger               | Ø        |                                 |
| Cable                     |          |                                 |
| Beads                     | <b>_</b> | _ <u> </u>                      |
| Battery Installation Date |          | 7 /21.445/14                    |
| Battery Levels            | Main _   | 11.34 / 11.34 Aux 12.77 / 13.75 |

#### **Manual Ground Temperature Readings**

| Bead | onms/V | Degrees C |
|------|--------|-----------|
| i    | 1.1805 | 7.8056    |
| 2    | 1.1963 | 6,6843    |
| 3    | 1.0592 | 3.8364    |
| 4    | 1.0002 | 1.8996    |
| 5    | 0.9409 | -0.0597   |
| 6    | 0.9236 | -0,6363   |
| 7    | 0.9070 | -1.1899   |
| 8    | 0.8907 | -1.7381   |

| Bead | ohpris  | Degrees C |
|------|---------|-----------|
| 9    | 6.8766  | -2.2192   |
| 10   | 0-8657  | -2.5836   |
| R    | 08509   | -3.0843   |
| 12   | 0.8467  | -3.2275   |
| 13   | 6.0017  | -93.1005  |
| 14   |         | -93.1005  |
| 15   | V       | -93.1005  |
| 16   | G. 0005 | -101.4553 |

#### **Observations and Proposed Maintenance**

| clak - 48:38<br>Dessicant needs replacement | 190 | <br> |
|---------------------------------------------|-----|------|
| Dessicant needs replicement                 | 115 |      |
| ĺ                                           | /35 |      |
|                                             |     |      |
| ĺ                                           |     |      |

| Contractor Name: SENES  | Inspection Date: 22 Aug //4 |
|-------------------------|-----------------------------|
| Prepared By: S. Borcsok |                             |

Thermistor Information

| Site Name: Fox-5             | Thermistor Location MAIN LANDPILC |                             |                |                |   |
|------------------------------|-----------------------------------|-----------------------------|----------------|----------------|---|
| Thermistor Number: VT-2      | Inclination アンペレンショ               | Inclination TNCWNED TO EAST |                |                |   |
| Install Date:                | First Date Event                  |                             | L;             | ast Date Event |   |
| Coordinates and Elevation    | N                                 | Е                           |                | Elev           |   |
| Length of Cable (m)          | Cable Lead Above Ground (m)       |                             | Nodal Points   |                | • |
| Datalogger Serial # クフッとっとこと |                                   |                             | Cable Serial N | lumber         |   |
| Thermistor Type ひし16         |                                   |                             |                |                |   |

**Thermistor Inspection** 

|                           | Good       | Needs Maintenance      |
|---------------------------|------------|------------------------|
| Casing                    | p -        |                        |
| Cover                     | 7          |                        |
| Data Logger               | Ø          |                        |
| Cable                     | <b>X</b>   |                        |
| Beads                     |            |                        |
| Battery Installation Date |            | 22 Aug/W               |
| Battery Levels            | Main 11.39 | /11.34 Aux 17.21//3.87 |

**Manual Ground Temperature Readings** 

|      | ipciature riedui |           |
|------|------------------|-----------|
| Bead | ohms             | Degrees C |
| 1    | 1.1487           | 6.7868    |
| 2    | 1.1044           | 5,3136    |
| 3    | 1.0568           | 3.7565    |
| 4    | 0.9949           | 1.7264    |
| 5    | 0.9439           | 0.0392    |
| 6    | 0.9230           | -0.6567   |
| 7    | 0.9065           | -1.2078   |
| 8    | 0.8937           | -1.6380   |

| Bead | ohms   | Degrees C |
|------|--------|-----------|
| 9    | 0.8798 | -2.1059   |
| 10   | 0.8683 | -2.4931   |
| 11   | 0,8527 | -3.0927   |
| 12   | 0      | 381.0742  |
| 13   | }      |           |
| 17   |        |           |
| 15   |        |           |
| 16   | y      | <u> </u>  |

Observations and Proposed Maintenance

clock -48:04
Dessiont needs repla

| 5.0 | 172, | 10  |
|-----|------|-----|
| ን   |      | 100 |

| Contractor Name: SENES  | Inspection Date: ZZ Aug//4 |
|-------------------------|----------------------------|
| Prepared By: S. Borcsok |                            |

Thermistor Information

| Site Name: FOX~ 5          | Thermistor Location M       | AIN   | LANDFILL            |          |
|----------------------------|-----------------------------|-------|---------------------|----------|
| Thermistor Number: VT-3    | Inclination TILTED TO 6     | اروات | $\mathcal{T}$       |          |
| Install Date:              | First Date Event            |       | Last Da             | te Event |
| Coordinates and Elevation  | N                           | Е     |                     | Elev     |
| Length of Cable (m)        | Cable Lead Above Ground (m) |       | Nodal Points        |          |
| Datalogger Serial #ピンプレンング |                             |       | Cable Serial Number |          |
| Thermistor Type UL16       |                             |       |                     |          |

**Thermistor Inspection** 

| The state of the s | Good         | Needs Maintenance            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|------------------------------|
| Casing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |              | - Inch Loker off due to rust |
| Cover                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <b>7</b>     | ·                            |
| Data Logger                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              |                              |
| Cable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |              |                              |
| Beads                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\not$       | <b>-</b>                     |
| Battery Installation Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |              | /221443/14                   |
| Battery Levels                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Main 11-34./ | 11.34 Aux 13.26/17,75        |

**Manual Ground Temperature Readings** 

| Bead | ohms 🗸 | Degrees C |
|------|--------|-----------|
| 1    | 1.1652 | 7.3046    |
| 2    | 1.1657 | 7.3221    |
| 3    | 1.1878 | 8,0463    |
| 4    | 1.1954 | 8.2974    |
| 5    | 1.1768 | 7.6877    |
| 6    | 1.0936 | 4,9894    |
| 7    | 1.0475 | 3,4518    |
| 8    | 0.9783 | 1.1867    |

| Bead | ohøris 🗸 | Degrees C |
|------|----------|-----------|
| 9    | 6.9385   | 1.1383    |
| 10   | 0,9230   | -0.6567   |
| И    | 0.9041   | -1.2870   |
| 12   | 0.8900   | -6.7612   |
| 13   | 0.8760   | -2.2322   |
| 17   | 0,8669   | -2-5422   |
| 15   | 0.8597   | -2.7857   |
| 16   | 0.0017   | -93,1005  |

Dessice-t needs replacement clock - 44:34



21

| Contractor Name: SENES  | Inspection Date: 4 1749 //4 |
|-------------------------|-----------------------------|
| Prepared By: S. Borcsok |                             |

Thermistor Information

| Site Name: FOX-5 Thermistor Location |                            | MAIN I | LANDFILL            | · |
|--------------------------------------|----------------------------|--------|---------------------|---|
| Thermistor Number: VT-4              | Inclination Inclined       | 1 ~30' | to east             |   |
| Install Date:                        | First Date Event           | ,      | Last Date Event     |   |
| Coordinates and Elevation            | N                          | Ë      | Elev                |   |
| Length of Cable (m)                  | Cable Lead Above Ground (r | m) N   | lodal Points        |   |
| Datalogger Serial # 0 202020         | 55                         | (      | Cable Serial Number |   |
| Thermistor Type UL16                 |                            |        |                     |   |

**Thermistor Inspection** 

| <del></del>               | Good            | Needs Maintenance      |
|---------------------------|-----------------|------------------------|
| Casing                    | Dokbut inclined |                        |
| Cover                     | ∕d .            |                        |
| Data Logger               |                 |                        |
| Cable                     |                 |                        |
| Beads                     | ´≠              |                        |
| Battery Installation Date |                 | / 21 Aci /14           |
| Battery Levels            | Main 1/. 3 9    | /11.34 Aux 12.41/13.63 |

**Manual Ground Temperature Readings** 

| Bead | oḥm∕s √ | Degrees C |
|------|---------|-----------|
| 1    | 1.1019  | 5.2313    |
| 2    | 1.1027  | 5.7588    |
| 3    | 1.1379  | 6.4094    |
| 4    | 1.1487  | 6.7643    |
| 5    | 1,1049  | 5.3311    |
| 6    | 1.0389  | 3.1719    |
| 7    | 0.9574  | 6.7898    |
| 8    | 0.9530  | -0.2550   |

| Bead | ohms V | Degrees C |
|------|--------|-----------|
| 9    | 0.9102 | -1.0825   |
| 10   | 0.8960 | -1.5585   |
| ħ    | 0.8924 | -1.6816   |
| 12   | 0.8663 | -2,5803   |
| 13   | 0.8479 | -3.1884   |
| 19   | 0.0005 | -101,7553 |
| 15   | 0,0005 | 1         |
| 16   | 0,0011 | -96.1857  |

**Observations and Proposed Maintenance** 

| Dessiont needs replacement |
|----------------------------|
|----------------------------|

Strony 3.0 m

| Contractor Name: SENES                                   |                            | Inspection Date: 21 Aug/              | 14        |
|----------------------------------------------------------|----------------------------|---------------------------------------|-----------|
| Prepared By: 5. Borcsok                                  |                            | · · · · · · · · · · · · · · · · · · · |           |
| Thermistor Information                                   |                            |                                       |           |
| Site Name: Fox - 5                                       | Thermistor Location MAI    | N LANDFILL                            |           |
| Thermistor Number: VT-5                                  | Inclination Stanted off re |                                       |           |
| Install Date:                                            | First Date Event           | Last Date Even                        | t         |
| Coordinates and Elevation N                              |                            | E Elev                                |           |
| Length of Cable (m) Ca Datalogger Serial # 02 0 20 2 5 2 | ble Lead Above Ground (m)  | Nodal Points                          |           |
| Thermistor Type ULI                                      |                            | Cable Serial Number                   |           |
| memilion Type (CI)                                       |                            |                                       |           |
| Thermistor Inspection                                    | Good                       | Needs Maintenance                     |           |
| Casing                                                   | <u> </u>                   |                                       |           |
| Cover                                                    |                            |                                       |           |
| Data Logger                                              |                            |                                       | ·         |
| Cable                                                    | Ø<br>                      |                                       |           |
|                                                          | Ü                          |                                       |           |
| Beads                                                    |                            | 1,2,3 not reading<br>/ 21 Aug/14      |           |
| Battery Installation Date                                |                            | / 21 Aby/19                           |           |
| Battery Levels                                           | Main                       | /11.34 Aux 13                         | 38/139    |
|                                                          |                            |                                       |           |
| Manual Ground Temperature Readings                       |                            |                                       |           |
| Bead ohms                                                | Degrees C                  | Bead ohms                             | Degrees C |
| 1 0                                                      | 381.0742                   | 9 0.8834                              | -1.9823   |
| 2 0                                                      |                            | 10 0,8632                             | -2,6665   |
| 3 0                                                      | <u> </u>                   | 11 0.8522                             | -3.0427   |
| 4 1.0219                                                 | 2.6140                     | 2 c                                   | 381.0742  |
| 5 0.9559                                                 | 6.4390                     | 13 0                                  | 1         |
| 6 0.9403                                                 | -0.0800                    | 17 U                                  |           |
| 7. 0.9162 -                                              | · 0. 8835                  | /s 0                                  |           |
| 8 0.8987 -                                               | 1.4688                     | 16 8                                  | V         |
| Observations and Proposed Maintenand                     | <u>ce</u>                  |                                       |           |
| Dessicant needs replaced                                 |                            |                                       | -         |
| Dessicant needs replaced                                 | je                         |                                       |           |
|                                                          |                            |                                       | ĺ         |
|                                                          |                            |                                       |           |

| Contractor Name: SENES  | Inspection Date: U Aug // 9 |
|-------------------------|-----------------------------|
| Prepared By: S. Borcsck |                             |

#### Thermistor Information

| Site Name: Fox-5            | Thermistor Location MA      | IN L | ANDFILL        |          |         |  |
|-----------------------------|-----------------------------|------|----------------|----------|---------|--|
| Thermistor Number: VT-6     | Inclination 51/2 (1/4 of    | Ver  | 7              |          |         |  |
| Install Date:               | First Date Event            |      | l.             | ast Date | e Event |  |
| Coordinates and Elevation   | N                           | Ε    |                |          | Elev    |  |
| Length of Cable (m)         | Cable Lead Above Ground (m) |      | Nodal Points   |          |         |  |
| Datalogger Serial #02020256 |                             |      | Cable Serial I | Vumber   |         |  |
| Thermistor Type UL/6        |                             |      |                |          |         |  |

#### **Thermistor Inspection**

|                           | Good     | Needs Main    | tenance            |
|---------------------------|----------|---------------|--------------------|
| Casing                    | <u> </u> |               |                    |
| Cover                     | 16/      | <u> </u>      |                    |
| Data Logger               | <b>/</b> |               | ***                |
| Cable                     |          |               |                    |
| - Beads                   | 7        |               |                    |
| Battery Installation Date |          | /21 Aug//4    |                    |
| Battery Levels            | Main _   | 11.34 / 11.34 | 1 Aux 13.14 /13.50 |

#### **Manual Ground Temperature Readings**

| Bead | ohprís V | Degrees C |
|------|----------|-----------|
| 1    | 1.1682   | 7.4022    |
| Z    | 1.1013   | 5,2114    |
| 3    | 1.0378   | 3.1344    |
| 4    | 0.9799   | 1.2310    |
| 2    | 0,9417   | -0.0318   |
| 6    | 0.9217   | -0.7000   |
| 7    | 0.9041   | -1.2870   |
| 8    | 0.8840   | -1.9643   |

| -    |        | <u>′</u>  |
|------|--------|-----------|
| Bead | ohms V | Degrees C |
| 9    | 0.9689 | -2,4750   |
| 10   | 0.8516 | -3.0609   |
| 11   | 0,8522 | -3.0727   |
| 12   | 0      | 381.0742  |
| 13   | 0      | <u> </u>  |
| 14   | 0      |           |
| 15   | 0      | 0 /       |
| 16   | 0      | 4         |

#### Observations and Proposed Maintenance

Clock et -57 icl Dessicant needs replacing

| Contractor Name: SENES                                |                 | Inspection Date: 21 Aug //Y   |
|-------------------------------------------------------|-----------------|-------------------------------|
| Prepared By: S. Borcsok                               |                 |                               |
| Thermistor Information                                | <del>-</del>    |                               |
| Site Name: FOX-5                                      | Thermistor      | Location MAIN LANDIFILL       |
| hermistor Number: VT-7                                | Inclination     |                               |
| nstall Date:                                          | First Date E    |                               |
|                                                       | N               | E Elev                        |
| Length of Cable (m) Datalogger Serial # 0 2 0 2 0 257 | Cable Lead Abov |                               |
| Thermistor Type UC/6                                  |                 | Cable Serial Number           |
|                                                       |                 |                               |
| <u> Fhermistor Inspection</u>                         | Good            | Needs Maintenance             |
| Casing                                                |                 |                               |
| Cover                                                 |                 |                               |
| Data Logger                                           | <b>9</b>        |                               |
| Cable                                                 | 4/              |                               |
| Beads                                                 | 6               |                               |
| Battery Installation Date                             | 7               | or / ZIA                      |
| Battery Levels                                        | Main            | 11.34 /11.34 Aux 13.14 /12.04 |
| •                                                     |                 | × 2 × 2                       |
| lanual Ground Temperature Readir                      | uae             |                               |
| <u> </u>                                              |                 |                               |
| Bead ohpas V                                          | Degrees C       | Bead ohms / Degrees C         |
| 1.7637                                                | 7.2445          | 9 0.8576 -2.8587              |
| 2 1.0913                                              | 4.8845          | 10 0,8431 -3.3526             |
| 3 0,9884                                              | 1.5128          | 11 0.8363 -3.5851             |
| 7 0.9457                                              | 0/1000          | 12 0 381.0792                 |
|                                                       | -0.4735         | 13 0                          |
| 6 6.9162                                              | -1 087 0        | 14 6                          |
| 7 60004                                               | -1.0825         |                               |
| 0.0769                                                | -1.6816         |                               |
| 8 0.8/18                                              | -2.3768         | 16 0                          |
| oservations and Proposed Mainten                      | ance            |                               |
| Clock at 15:29                                        |                 | Dessicant needs replacing     |
|                                                       | <u>-</u>        | 2 33, 10 1,020 2 1.4 1.00     |
| -49:7<br>reset                                        | <i>}</i>        |                               |
| resiet                                                | -               |                               |
| İ                                                     |                 |                               |

Storage. 9.8 Leadl. 3.0





| Contractor Name: SENES  | Inspection Date: 21 Aug // 4 |
|-------------------------|------------------------------|
| Prepared By: S. Borcsok |                              |

Thermistor Information

| Site Name: FOX-5              | Thermistor Location MA      | IN L | ANDFILL      | -               |  |
|-------------------------------|-----------------------------|------|--------------|-----------------|--|
| Thermistor Number: VT-8       | Inclination VERT            |      | -            | <del>-</del>    |  |
| Install Date:                 | First Date Event            |      | -            | Last Date Event |  |
| Coordinates and Elevation     | N                           | E    |              | Elev            |  |
| Length of Cable (m)           | Cable Lead Above Ground (m) | )    | Nodal Points | S               |  |
| Datalogger Serial # O 2 0 2 0 | 259                         |      | Cable Serial | Number          |  |
| Thermistor Type UL - 16       |                             |      |              |                 |  |

**Thermistor Inspection** 

|                           | Good       | Needs Maintenance       |
|---------------------------|------------|-------------------------|
| Casing                    |            |                         |
| Cover                     |            |                         |
| Data Logger               |            |                         |
| Cable                     |            |                         |
| Beads                     |            |                         |
| Battery Installation Date | . ?        | /21 Aus/14              |
| Battery Levels            | Main 11.34 | ///.34 Aux 13.02 /13.50 |

**Manual Ground Temperature Readings** 

| Bead | ohpris V.147 | Degrees C |
|------|--------------|-----------|
|      | 7.1219       | 5.8857    |
| 1    | 1.0556       | 3.7165    |
| 3    | 0.9769       | 1.1328    |
| 9    | G. 9379      | -0.1586   |
| 5    | 0.9181       | -0.8172   |
| 6    | 0.9022       | -1.3510   |
| 7    | 0/8846       | -1,9437   |
| 8    | 0.8640       | -2.6406   |

| Bead | ohers Voltz | Degrees C |
|------|-------------|-----------|
| 9    | 0.8528      | -3,0219   |
| 16   | 0.8473      | -3.2097   |
| N    | 0           | 381.0792  |
| 17   | 6           | 1         |
| 13   | 0           |           |
| 19   | 0           |           |
| 15   | O           |           |
| 16   | 0           | <b>√</b>  |

Clock off: 3:08 (alhal kme 3:54)

Set 6- logger

Dessicant needs replacing

Shrykyth 4.3 Lead Legth 3.0

| Contractor Name: SENES  | Inspection Date: 2/ Aug // 4 |
|-------------------------|------------------------------|
| Prepared By: S. Borcsok |                              |

Thermistor Information

| Site Name: FOX-5                  | Thermistor Location M/D     | DLE SITE LAND!   | -166       |  |
|-----------------------------------|-----------------------------|------------------|------------|--|
| Thermistor Number: VT-9           | Inclination VERT            | <u> </u>         |            |  |
| Install Date:                     | First Date Event            | Las              | Date Event |  |
| Coordinates and Elevation         | N 7631386                   | E 0490287        | Elev       |  |
| Length of Cable (m)               | Cable Lead Above Ground (m) | Nodal Points     |            |  |
| Datalogger Serial # 0 20 20 26 26 | 102020261                   | Cable Serial Nun | nber       |  |
| Thermistor Type UL/6              |                             |                  |            |  |

**Thermistor Inspection** 

|                           | Good             | Needs Maintenance    |
|---------------------------|------------------|----------------------|
| Casing                    |                  |                      |
| Cover                     | ≅′               | D                    |
| Data Logger               | /a               |                      |
| Cable                     | $\mathbf{A}_{j}$ |                      |
| Beads                     | <b>4</b>         | O                    |
| Battery Installation Date | July 2010        |                      |
| Battery Levels            | Main 11:34       | /11:34 Aux 1253/1350 |

Manual Ground Temperature Readings

| Bead | ohms   | Degrees C |
|------|--------|-----------|
| 1    | 11316  | 6.2022    |
| ζ    | 1.1130 | 3.5956    |
| 3    | 1.0732 | 3.3118    |
| 4    | 0.9757 | 1.0925    |
| 5    | 0.9397 | -0.0800   |
| 6    | 0.5188 | -0,7968   |
| 7    | 0.8927 | -1.6714   |
| 8    | 0.8748 | -2.2735   |

| Bead | ohms | Degrees C |
|------|------|-----------|
| 9    |      | -2.6846   |
| 10   |      | -3.1598   |
| 10   | O    | 381,0742  |
| 12   | 1    | 1         |
| 13   |      |           |
| 14   |      |           |
| 15   |      | 4/        |
| 16   | 1/   | V         |

**Observations and Proposed Maintenance** 

| 7 | locked  Dessicant needs replacing | String Lead = 4-4m "  Lead L = 3-0  EBA label |  |
|---|-----------------------------------|-----------------------------------------------|--|
| Į |                                   |                                               |  |

| Contractor Name: SENES                  | <u> </u>                          | 21 0 114                    |
|-----------------------------------------|-----------------------------------|-----------------------------|
| Prepared By: 5. 80 rcsok                |                                   | Inspection Date: 21 Aug //4 |
| Frepared by. J. 607 90 K                |                                   |                             |
| Thermistor Information                  |                                   |                             |
| Site Name: FOX - 5                      |                                   | ion MIDDLE SITE LANDFILL    |
| Thermistor Number: VT- /O Install Date: | Inclination √F/3 First Date Event |                             |
| Coordinates and Elevation               | N First Date Event                | Last Date Event Elev        |
| Length of Cable (m)                     | Cable Lead Above Gro              |                             |
| Datalogger Serial # 020262 30           |                                   | Cable Serial Number         |
| Thermistor Type ULI6                    |                                   |                             |
| Thermistor Inspection                   |                                   |                             |
|                                         | Good                              | Needs Maintenance           |
| Casing                                  | K,                                |                             |
| Cover                                   |                                   | _ ·                         |
| Data Logger                             | <b>b</b>                          |                             |
| Cable                                   | Ø                                 |                             |
| Beads                                   | ø                                 | 1 22 Aug/14                 |
| Battery Installation Date               |                                   | 1 22 Aug/14                 |
| Battery Levels                          | Main 27                           | / 137 Aux 120 / 13.50       |
|                                         | 22 % (4)                          | •                           |
| Manual Ground Temperature Rea           | adings - 25/347//7                |                             |
| Bead ohms                               | Degrees C                         | Bead ohms Degrees C         |
| 1.0246                                  | 2,7016                            | 9 0.8834 -1.9823            |
| 2 0                                     | 381.0742                          | 10 0.8753 -2.2554           |
| 3 1.0706                                |                                   | 11 0 381.0742               |
| 4 1.0822                                | 4.5876                            | 12 0                        |
| 5 0                                     | 381.0742                          | 13 0                        |
| 6 0.9622                                | 0.6462                            | 14 0                        |
| 7 0.9259                                | -0.5574                           | 15 0                        |
| 8 0 9076                                | -1.1899                           | 16 G                        |
| Observations and Proposed Mair          | itenance                          |                             |
|                                         |                                   | ĥ.                          |
| 2488 14 14 14 CES                       | Arst a troubleshood<br>lacing     |                             |
| -33.64                                  | · ·                               |                             |
| Dessicant needs rep                     | lacing                            |                             |

| ·                              | hermistor Annual Mainte     | -                          |
|--------------------------------|-----------------------------|----------------------------|
| Contractor Name: SENES         |                             | Inspection Date: 21 Aug//9 |
| Prepared By: S. Borcsok        |                             |                            |
| Thermistor Information         |                             |                            |
| Site Name: Fox-5               | Thermistor Location MID     | DLE SITE LANDFILL          |
| Thermistor Number: VT-1(       | Inclination VERT            |                            |
| Install Date:                  | First Date Event            | Last Date Event            |
| Coordinates and Elevation      | N                           | E Elev                     |
| Length of Cable (m)            | Cable Lead Above Ground (m) | Nodal Points               |
| Datalogger Serial # 02010110   |                             | Cable Serial Number        |
| Thermistor Type UL / 6         | · <del></del>               |                            |
| Thermistor Inspection          |                             |                            |
| · · · · · ·                    | Good                        | Needs Maintenance          |
| Casing                         | p/                          |                            |
| Cover                          | 4                           |                            |
| Data Logger                    | $\mathbf{z}_{j}$            |                            |
| Cable                          | $\mathbf{A}_{j}$            |                            |
| Beads                          | A                           | □ Check \$10               |
| Battery Installation Date      |                             |                            |
| Battery Levels                 | Main                        | 11.34V Aux 13.14           |
|                                |                             |                            |
| Manual Ground Temperature Read | dings                       |                            |
| Bead ohms                      | Degrees C                   | Bead ohms Degrees C        |
| 1 1.0936                       | 4.9594                      | 9 0.8937 -1.6380           |
| 2. 1.0889                      | 4.7897                      | 10 0.0017 -93.1005         |

|      | iporatero ricaa: |           |
|------|------------------|-----------|
| Bead | ohms             | Degrees C |
| 1    | 1.0936           | 4.9594    |
| 2 ·  | 1.0889           | 4.7897    |
| 3    | 1.1275           | 6.0693    |
| 4    | 1.1409           | 6.5069    |
| 5    | 1.0609           | 3.8913    |
| 6    | 0.9737           | 1.0270    |
| 7    | 0,9487           | 0,2013    |
| 8    | 0,9053           | -1.2461   |

| Bead | ohms   | Degrees C |
|------|--------|-----------|
| 9    | 0.8937 | -1.6380   |
| 10   | 0.0017 | -93.1005  |
| 1(   | 0      | 381.0792  |
| 12   | 0      | )         |
| 1,3  | O      |           |
| 17   | 0      |           |
| 15   | 0      | ,         |
| 16   | 0.0005 | \$101.455 |

| Observations and | Proposed | Maintenance |
|------------------|----------|-------------|
|------------------|----------|-------------|

| Desil cant | need, replacement |  |
|------------|-------------------|--|
|            |                   |  |

### **Thermistor Annual Maintenance Report**

| Contractor Name: SENES  | Inspection Date: 21 Aug //9 |
|-------------------------|-----------------------------|
| Prepared By: 5. Borcsok |                             |

Thermistor Information

| Site Name: FOX-5          | Thermistor Loca      | Thermistor Location MIDDLE SITE LANDFILL |             |                               |  |
|---------------------------|----------------------|------------------------------------------|-------------|-------------------------------|--|
| Thermistor Number: VT-12  | Inclination VEG      |                                          |             |                               |  |
| Install Date:             | First Date Event     |                                          |             | Last Date Event Aug 19, 2007? |  |
| Coordinates and Elevation | N                    | E                                        |             | Elev                          |  |
| Length of Cable (m)       | Cable Lead Above Gro | ound (m)                                 | Nodal Poin  | nts                           |  |
| Datalogger Serial #020202 | 70                   |                                          | Cable Seria | al Number                     |  |
| Thermistor Type UL16      |                      | -                                        |             |                               |  |

**Thermistor Inspection** 

|                           | Good        | Needs Maintenance |
|---------------------------|-------------|-------------------|
| Casing                    | P           |                   |
| Cover                     | · P/        |                   |
| Data Logger               | <b>/</b> 6  |                   |
| Cable                     | Þ           |                   |
| Beads                     | □ `         | `X                |
| Battery Installation Date | Aug 19, 200 | 77 /              |
| Battery Levels            | Main        | 1/ Aux 12,41/     |

**Manual Ground Temperature Readings** 

| Bead | ohms | Degrees C |
|------|------|-----------|
| (    | 0    | 381.0742  |
| 2    | 1    | 1         |
| 3    |      |           |
| 4    |      |           |
| 5    |      |           |
| 6    |      |           |
| 7    | 1/   |           |
| 8    |      | U         |

| Bead | ohms | Degrees C |
|------|------|-----------|
| 9    | G    | 381.0742  |
| 10   |      |           |
| U    |      |           |
| 17   |      |           |
| 13   |      |           |
| 17   |      |           |
| 15   |      | W.        |
| 16   |      | U         |

Not working? Data All 0.000V.
Taken back to office

Small plastic bay taken off 4

Dessiont needs replacing

7.0

2.50, 60, 117

3.0

|                                                    | 1             |                                       |               |
|----------------------------------------------------|---------------|---------------------------------------|---------------|
| Site Name                                          |               |                                       | ı             |
| Date of Sampling Event                             | 19 Aug//4     | Time:                                 | 3pm           |
| Names of Samplers:                                 | <del></del>   |                                       | ,             |
|                                                    | 10.1/2.2      |                                       |               |
| l andfill Name                                     | Minnie        | Companies Colleges                    | 10000         |
| Landfill Name:                                     |               | Samples Collected:                    |               |
| Monitoring Well ID:                                |               | PHC F1                                |               |
| Sample Number:                                     | F5-MID-MW-    | 5 Inorganic Elements                  |               |
| Condition of Well:                                 | OK, soft soil | around casing PHC F2-F4               |               |
|                                                    |               | PCBs                                  |               |
| Measured Data                                      |               | Duplicate Collected?                  | <del> </del>  |
| Well pipe height above ground                      |               | Bapiloate Collected:                  | NO            |
|                                                    | / / /         |                                       |               |
| (cm)=                                              |               |                                       |               |
| Diameter of well (cm)=                             |               |                                       |               |
| Depth of well installation (cm)=                   |               |                                       |               |
|                                                    | ]             |                                       |               |
| (from ground surface)                              | ]             |                                       |               |
| Length screened section                            |               | . ,                                   |               |
| (cm)=                                              |               |                                       | ]             |
| Depth to top of screen (cm)=                       |               | -                                     |               |
| Deput to top of screen (citt)=                     |               |                                       |               |
|                                                    |               |                                       |               |
| (from ground surface)                              |               | · · · · · · · · · · · · · · · · · · · |               |
|                                                    |               |                                       |               |
| Depth to water surface (cm)=                       | 1.35m         | Measurement method: (meter,           | Interface     |
| 7                                                  |               | tape, etc)                            | MI            |
| ( from top of pipe)                                |               | ,,                                    | 1.613         |
| Static water level (cm)=                           |               |                                       |               |
|                                                    |               |                                       |               |
| (below ground surface) Measured well refusal depth |               |                                       |               |
| ivieasured well refusal depth                      | 2.31m         | Evidence of sludge or siltation:      | $N_{\rm O}$   |
| (011)-                                             | 2.01.         |                                       | · · ·         |
| (i.e. depth to frozen ground)                      |               |                                       |               |
|                                                    |               |                                       |               |
|                                                    |               |                                       |               |
| Thickness of water column                          | 0.960         |                                       |               |
| Static volume of water in well                     | 1.946         |                                       |               |
| Static volume of water in well                     | 1.176         |                                       |               |
|                                                    | ļ             |                                       |               |
|                                                    |               |                                       |               |
| Free product thickness (mm)=                       | 0             | Measurement method:                   | IM            |
|                                                    | <del></del>   |                                       |               |
| Purging: (Y/N)                                     | Y             | Purging/Sampling Equipment:           | Waterna Tubia |
| Volume Purged Weter                                |               | arging/oampility Equipment.           |               |
| Volume Purged Water=                               | J L COLYGEN   | J 26)                                 | and Footvatve |
| Decontamination required:                          | N'            |                                       |               |
| (Y/N)                                              | /0            |                                       |               |
| Number washes:                                     |               |                                       |               |
| Number rinses:                                     |               |                                       |               |
|                                                    |               | · · ·                                 |               |
| Final pH=                                          | 8.89          |                                       |               |
| Final Conductivity (uS/cm)=                        | 45.7          |                                       |               |
|                                                    |               | · · · · · · · · · · · · · · · · · · · |               |
| Final Temperature (degC)=                          | 5-7           |                                       |               |

|                                  | 1             |                                  | T        |
|----------------------------------|---------------|----------------------------------|----------|
| Site Name:                       |               |                                  |          |
| Date of Sampling Event:          | 19 Aug//9     | Time:                            | 305pm    |
| Names of Samplers:               | IM/SB         |                                  | ,        |
|                                  | <u> </u>      |                                  |          |
| Landfill Name:                   | MIDDIE        | Samples Collected:               | No       |
| Manitaring Wall ID:              | 17/1/1/1/10   |                                  |          |
| Monitoring Well ID:              |               | PHC F1                           |          |
| Sample Number:                   |               | Inorganic Elements               |          |
| Condition of Well:               | OK, soft soil | around casing PHC F2-F4          |          |
|                                  |               | PCBs                             |          |
| Measured Data                    |               | Duplicate Collected?             |          |
| Well pipe height above ground    |               |                                  |          |
| (cm)=                            | 70            |                                  | ,        |
| Diameter of well (cm)=           |               |                                  |          |
|                                  |               |                                  |          |
| Depth of well installation (cm)= | i             | ŀ                                |          |
|                                  |               |                                  |          |
| (from ground surface)            |               |                                  |          |
| Length screened section          |               | -                                |          |
| (cm)=                            |               |                                  |          |
| Depth to top of screen (cm)=     |               |                                  |          |
|                                  |               |                                  |          |
| (from ground surface)            |               |                                  |          |
| (Horn ground surface)            |               |                                  |          |
|                                  |               |                                  |          |
| Depth to water surface (cm)=     | NIA           | Measurement method: (meter,      | Intertie |
|                                  | (Dry)         | tape, etc)                       | Meder    |
| ( from top of pipe)              | · //          |                                  | 77015    |
| Static water level (cm)=         |               |                                  |          |
| (below ground surface)           |               |                                  |          |
| Measured well refusal depth      | 1 .           | Evidence of sludge or siltation: |          |
| (cm)=                            | 1.10          |                                  | No       |
| (i.e. depth to frozen ground)    |               |                                  |          |
| (i.e. depin to nozen ground)     | ,             |                                  |          |
|                                  |               |                                  |          |
| <del></del>                      |               |                                  |          |
| Thickness of water column        | 0             |                                  |          |
| Static volume of water in well   | 0             |                                  |          |
|                                  |               | · ·                              |          |
|                                  | ]             |                                  |          |
| Free product thickness (mm)=     |               | Méasurement method:              | "T" )    |
| r ree product unckness (mm)=     | 0             | ivieasurement method:            | 114      |
|                                  |               |                                  |          |
| Purging: (Y/N)                   | NO            | Purging/Sampling Equipment:      | NIA      |
| Volume Purged Water=             |               |                                  |          |
| Decontamination required:        |               |                                  |          |
| (Y/N)                            |               |                                  |          |
| Number washes:                   |               |                                  |          |
| Number rinses:                   | <del></del>   |                                  |          |
| inumber mises:                   |               |                                  |          |
|                                  |               |                                  |          |
| Final pH=                        |               |                                  |          |
| Final Conductivity (uS/cm)=      |               |                                  |          |
| Final Temperature (degC)=        |               |                                  |          |
|                                  |               |                                  |          |

| Site Name                               | FOX-5        |                                       | 1         |
|-----------------------------------------|--------------|---------------------------------------|-----------|
| Date of Sampling Event                  |              | Time:                                 | 310pm     |
| Names of Samplers:                      |              | 1 11110.                              | 31000     |
| Traines of Campiolo.                    | 31111-12     |                                       |           |
| Landfill Name:                          | MIDDLE       | Samples Collected:                    | No        |
| Monitoring Well ID:                     |              | PHC F1                                |           |
| Sample Number:                          |              | Inorganic Elements                    |           |
| Condition of Well:                      |              | caring not completely PHC F2-F4       |           |
|                                         | O R , Cay 07 | sealed. PCBs                          |           |
| Measured Data                           |              | Duplicate Collected?                  |           |
| Well pipe height above ground           |              | 2.54                                  |           |
| (cm)=                                   | 69           |                                       | i         |
| Diameter of well (cm)=                  | 3            |                                       |           |
| Depth of well installation (cm)=        |              |                                       |           |
| , , , , , , , , , , , , , , , , , , , , |              |                                       |           |
| (from ground surface)                   |              |                                       |           |
| Length screened section                 |              | _                                     |           |
| (cm)=                                   |              |                                       |           |
| Depth to top of screen (cm)=            |              |                                       |           |
| . , ,                                   |              |                                       |           |
| (from ground surface)                   |              |                                       |           |
|                                         |              |                                       |           |
| Depth to water surface (cm)=            | NIA          | Measurement method: (meter,           | Taterface |
|                                         | (Dry)        | tape, etc)                            | Motor     |
| ( from top of pipe)                     | (0, 1)       |                                       | 1100      |
| Static water level (cm)=                |              |                                       |           |
| (below ground surface)                  |              |                                       |           |
| Measured well refusal depth             | 1.53m        | Evidence of sludge or siltation:      | Bottom of |
| (CM)=                                   | 7.5211       |                                       | well felt |
| (i.e. depth to frozen ground)           |              |                                       | soft.     |
|                                         |              |                                       |           |
|                                         |              | · · · · · · · · · · · · · · · · · · · |           |
| Thickness of water column               | 0            |                                       |           |
| Static volume of water in well          | 0            |                                       |           |
|                                         |              |                                       |           |
|                                         |              |                                       |           |
| Free product thickness (mm)=            | 0            | Measurement method:                   | IM        |
|                                         |              |                                       |           |
| Purging: (Y/N)                          | No           | Purging/Sampling Equipment:           | NIA       |
| Volume Purged Water=                    |              |                                       |           |
| Decontamination required:               | İ            |                                       |           |
| (Y/N)                                   |              |                                       |           |
| Number washes:                          |              |                                       |           |
| Number rinses:                          |              |                                       |           |
|                                         |              |                                       |           |
| Final pH=                               |              |                                       |           |
| Final Conductivity (uS/cm)=             |              | 1                                     |           |
| Final Temperature (degC)=               |              |                                       |           |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <del></del>                           | 1                                |               |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|----------------------------------|---------------|
| Site Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1-0X-2                                |                                  |               |
| Date of Sampling Event                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                       | Time                             | : 315pm       |
| Names of Samplers:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | IM/SB                                 |                                  |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | · · · · · · · · · · · · · · · · · · · |                                  |               |
| Landfill Name:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | MIDPLE                                | Samples Collected                | : YE5         |
| Monitoring Well ID:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                       | PHC F1                           |               |
| Sample Number:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                       |                                  |               |
| Condition of Well:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | OK Carland                            | ground carns PHC F2-F4           |               |
| Condition of Well.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | UK, SOPF 30/1                         | QTOUNG CASIAS FILE FA            | <del></del>   |
| Manager & Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <u> </u>                              | PCBs                             |               |
| Measured Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                       | Duplicate Collected?             | NO            |
| Well pipe height above ground                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 10                                    |                                  |               |
| (cm)=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                       |                                  |               |
| Diameter of well (cm)=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                       |                                  |               |
| Depth of well installation (cm)=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       |                                  |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ]                                     |                                  |               |
| (from ground surface)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                       |                                  |               |
| Length screened section                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                       |                                  | l             |
| (cm)=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                       |                                  |               |
| Depth to top of screen (cm)=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -                                     |                                  |               |
| - spin is top or concern (citi)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | i                                     |                                  |               |
| (from ground surface)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                       |                                  |               |
| (nom ground surface)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                       |                                  |               |
| Denth to water surface (orb)-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | B 117.                                | Magaurament mathed: (mater       | - 1 0         |
| Depth to water surface (cm)=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1,43M                                 | Measurement method: (meter,      | 1-sterlace    |
| / fuero tem of mine)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | !                                     | tape, etc)                       | Meter         |
| ( from top of pipe)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                       |                                  |               |
| Static water level (cm)=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                       |                                  |               |
| (below ground surface)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                       |                                  |               |
| Measured well refusal depth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.08m                                 | Evidence of sludge or siltation: | No            |
| (ç/n)=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ,-                                    |                                  | 1             |
| (i.e. depth to frozen ground)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                       |                                  |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       | <del></del>                      |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                                  |               |
| Thickness of water column                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.65m                                 |                                  |               |
| Static volume of water in well                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.31_                                 |                                  |               |
| The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s | , , , , ,                             |                                  |               |
| Į į                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | İ                                     |                                  |               |
| Froe product this (mass /mas)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <del></del>                           | Management                       | <u></u>       |
| Free product thickness (mm)=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0                                     | Measurement method:              | IM            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                                  |               |
| Purging: (Y/N)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | YES                                   | Purging/Sampling Equipment:      | Watera Tubing |
| Volume Purged Water=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 24 Cdry after                         | · /L)                            | and FoutValve |
| Decontamination required:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1                                     |                                  |               |
| (Y/N)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\sim$                                |                                  |               |
| Number washes:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                       |                                  |               |
| Number rinses:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | - i                                   |                                  |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                                  |               |
| Final pH=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 8.61                                  |                                  |               |
| Final Conductivity (uS/cm)=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 27.3                                  |                                  |               |
| Final Temperature (degC)=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                       |                                  |               |
| r mai remperature (degc)=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5.0°C                                 | <u></u>                          |               |

| 01 11                            | T 1           |                                  |           |
|----------------------------------|---------------|----------------------------------|-----------|
| Site Name                        |               |                                  |           |
| Date of Sampling Event           |               | Time                             | 330pm     |
| Names of Samplers                | IM/SB         |                                  |           |
|                                  |               |                                  |           |
| Landfill Name                    | MIDDLE        | Samples Collected                | YES       |
| Monitoring Well ID:              |               | PHC F1                           | YES       |
| Sample Number                    |               |                                  | <u> </u>  |
|                                  |               | vate- around standpipe PHC F2-F4 |           |
| Condition of Well.               | soft soil     |                                  |           |
| Manager 1 Date                   |               | around casin, PCBs               |           |
| Measured Data                    |               | Duplicate Collected?             | NO        |
| Well pipe height above ground    | 70            |                                  |           |
| (cm)=                            |               |                                  |           |
| Diameter of well (cm)=           |               |                                  |           |
| Depth of well installation (cm)= | 1             |                                  |           |
|                                  | ]             |                                  |           |
| (from ground surface)            | ]             |                                  |           |
| Length screened section          |               |                                  |           |
| (cm)=                            |               |                                  |           |
| Depth to top of screen (cm)=     | _             |                                  |           |
|                                  |               |                                  |           |
| (from ground surface)            | ŀ             |                                  |           |
| (Horn ground surface)            |               |                                  |           |
| Donth to water confers (and      |               | 1.5                              |           |
| Depth to water surface (cryz)=   | 1.66 M        | Measurement method: (meter,      | Interface |
|                                  |               | tape, etc)                       | Moter     |
| ( from top of pipe)              |               | -                                | 770.0     |
| Static water level (cm)=         |               |                                  |           |
| (below ground surface)           |               |                                  |           |
| Measured well refusal depth      | 2.25m         | Evidence of sludge or siltation: |           |
| (cm)=                            | 2.2374        | _                                | NO        |
| (i.e. depth to frozen ground)    |               |                                  | , - 0     |
|                                  |               | -                                |           |
|                                  | l             |                                  |           |
| Thickness of water column        | 0.592         |                                  |           |
| Static volume of water in well   |               |                                  |           |
| Static volume of water in well   | 1.196         |                                  |           |
|                                  |               | •                                |           |
|                                  |               |                                  |           |
| Free product thickness (mm)=     | O             | Measurement method:              | IM        |
|                                  |               |                                  |           |
| Purging: (Y/N)                   | YES           | Purging/Sampling Equipment:      | Watera    |
| Volume Purged Water=             | 2L Cotyafter  | -/4)                             | Tubias    |
| Decontamination required:        | (             |                                  | <u></u>   |
| (Y/N)                            | $\mathcal{N}$ |                                  | Footvale  |
| Number washes:                   |               |                                  | 3411V     |
| Number rinses:                   |               |                                  |           |
| Hamber Hilses.                   | _             |                                  | -         |
| Final all                        | 2.03          | .,                               |           |
| Final Conductivity (v.Com)       |               |                                  |           |
|                                  | 31.0          |                                  |           |
| Final Temperature (degC)=        | 4.3           |                                  |           |

| Oita Niama                       | 1 P 3 / P  | <u> </u>                              |                                       |
|----------------------------------|------------|---------------------------------------|---------------------------------------|
| Site Name:                       |            |                                       |                                       |
| Date of Sampling Event:          | 20 Aug/19  | Time:                                 | 145pm                                 |
| Names of Samplers:               | IM 158     |                                       |                                       |
| •                                |            | -                                     |                                       |
| Landfill Name:                   | MAIN       | Samples Collected:                    | NO                                    |
| Monitoring Well ID:              |            |                                       | 100                                   |
|                                  |            | PHC F1                                | <u> </u>                              |
| Sample Number:                   |            | Inorganic Elements                    |                                       |
| Condition of Well:               | OK lockwas | rwted shut and booken PHC F2-F4       |                                       |
|                                  | , i        | off PCBs                              | \ \                                   |
| Measured Data                    |            | Duplicate Collected?                  |                                       |
| Well pipe height above ground    | UB         |                                       | \_                                    |
| (cm)=                            | 46         |                                       | `                                     |
| Diameter of well (cm)=           | 5          |                                       | -                                     |
|                                  |            |                                       |                                       |
| Depth of well installation (cm)= |            |                                       | i                                     |
|                                  |            |                                       |                                       |
| (from ground surface)            |            |                                       |                                       |
| Length screened section          |            |                                       |                                       |
| (cm)=                            |            |                                       |                                       |
| Depth to top of screen (cm)=     |            |                                       |                                       |
| , ,, .,,                         |            |                                       |                                       |
| (from ground surface)            |            |                                       |                                       |
| (nom ground surface)             |            |                                       |                                       |
| 5                                |            |                                       |                                       |
| Depth to water surface (cm)=     | NA         | Measurement method: (meter,           | Interface                             |
|                                  | (Dry)      | tape, etc)                            | Meter                                 |
| ( from top of pipe)              | (2,4)      |                                       | riere                                 |
| Static water level (cm)=         |            | · · · · · · · · · · · · · · · · · · · |                                       |
| (below ground surface)           |            |                                       |                                       |
| Measured well refusal depth      |            | Evidence of sludge or siltation:      |                                       |
| (cpr)=                           | 1.72m      | Evidence of sidage of sination.       | NO                                    |
|                                  | 1. , 2     |                                       |                                       |
| (i.e. depth to frozen ground)    |            |                                       |                                       |
|                                  | i          |                                       |                                       |
|                                  |            | <u></u>                               |                                       |
| Thickness of water column        | 0          |                                       |                                       |
| Static volume of water in well   | 0          |                                       |                                       |
|                                  | -          |                                       |                                       |
|                                  |            | l                                     | ł                                     |
| Eroo product this large (m. )    |            |                                       |                                       |
| Free product thickness (mm)=     | d          | Measurement method:                   | IM                                    |
|                                  |            |                                       |                                       |
| Purging: (Y/N)                   | NO         | Purging/Sampling Equipment:           | NIA                                   |
| Volume Purged Water=             |            |                                       | · · · · · · · · · · · · · · · · · · · |
| Decontamination required:        |            |                                       |                                       |
| (Y/N)                            |            | İ                                     |                                       |
| Number washes:                   |            |                                       |                                       |
|                                  |            |                                       |                                       |
| Number rinses:                   |            |                                       |                                       |
|                                  |            |                                       |                                       |
| Final pH=                        |            |                                       |                                       |
| Final Conductivity (uS/cm)=      |            |                                       |                                       |
| Final Temperature (degC)=        | 1          |                                       |                                       |
| , (2-30)                         |            |                                       |                                       |

| 0:: 11                                  | T &           |                                  |               |
|-----------------------------------------|---------------|----------------------------------|---------------|
|                                         | FOX-5         |                                  |               |
| Date of Sampling Event                  |               | Time                             | : 140pm       |
| Names of Samplers                       | 5M/SB         |                                  | <u> </u>      |
|                                         | <u> </u>      |                                  |               |
| Landfill Name:                          |               | Samples Collected                | : <i>NO</i>   |
| Monitoring Well ID:                     | MW-11         | PHC F1                           | 7             |
| Sample Number:                          |               | Inorganic Elements               | ;             |
| Condition of Well:                      | OK, lock was  | taped but ougs open PHC F2-F4    |               |
|                                         |               | and broken PCBs                  | <del></del>   |
| Measured Data                           |               | Duplicate Collected?             |               |
| Well pipe height above ground           |               |                                  |               |
| (cm)=                                   | 102           |                                  |               |
| Diameter of well (cm)=                  | 5-            |                                  |               |
| Depth of well installation (cm)=        |               |                                  |               |
| = 1 par or tron motandion (om)=         |               |                                  |               |
| (from ground surface)                   |               | 1                                |               |
| Length screened section                 |               |                                  |               |
|                                         |               |                                  |               |
| (cm)=<br>Depth to top of screen (cm)=   |               |                                  | <del> </del>  |
| Deput to top or screen (cm)=            |               |                                  |               |
| there are not a set a set               |               |                                  |               |
| (from ground surface)                   |               |                                  |               |
|                                         |               |                                  |               |
| Depth to water surface (cm)=            | 2.27m         | Measurement method: (meter,      | Interface     |
|                                         | 2.0           | tape, etc)                       | Meder         |
| ( from top of pipe)                     |               |                                  | 710-0         |
| Static water level (cm)=                |               |                                  |               |
| (below ground surface)                  |               |                                  |               |
| Measured well refusal depth             | 2.50m         | Evidence of sludge or siltation: | NO            |
| (cpri)=                                 | 2.3011        |                                  | /00           |
| (i.e. depth to frozen ground)           |               |                                  |               |
|                                         |               |                                  |               |
|                                         |               |                                  |               |
| Thickness of water column               | 0.31          |                                  | "             |
| Static volume of water in well          | 0.621         |                                  |               |
|                                         | J.62 L        |                                  |               |
|                                         |               |                                  |               |
| Free product thickness (mm)=            | O             | Moosy war and as attached        |               |
| Tree product unekness (mm)=             |               | Measurement method:              | IM            |
|                                         |               |                                  |               |
| Purging: (Y/N)                          | Y             | Purging/Sampling Equipment:      |               |
| Volume Purged Water=                    | 0             |                                  | and Footvalve |
| Decontamination required:               |               | Purging aftempted, could not set |               |
| (Y/N)                                   | $\mathcal{N}$ | any water out                    |               |
| Number washes:                          |               |                                  |               |
| Number rinses:                          |               |                                  |               |
|                                         |               |                                  |               |
| Final pH=                               |               |                                  |               |
| Final Conductivity (uS/cm)=             |               |                                  |               |
| Final Temperature (degC)=               |               |                                  |               |
| 11, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, |               |                                  |               |

|                                  | 1 = 417 =   |                                       | Y             |
|----------------------------------|-------------|---------------------------------------|---------------|
| Site Name                        |             |                                       |               |
| Date of Sampling Event:          | 20 Aug /4   | Time:                                 | 135pm         |
| Names of Samplers:               | JM ISB      |                                       |               |
|                                  |             |                                       |               |
| Landfill Name:                   | MAIN        | Samples Collected:                    | NO            |
| Monitoring Well ID:              |             | PHC F1                                | 7,0           |
| Sample Number:                   |             | Inorganic Elements                    |               |
| Condition of Well:               |             |                                       | $\overline{}$ |
| Condition of Well.               | OK 1000000  |                                       |               |
| <del></del>                      |             | PCBs                                  |               |
| Measured Data                    |             | Duplicate Collected?                  |               |
| Well pipe height above ground    | 35          |                                       |               |
| (cm)=                            | رو ا        |                                       |               |
| Diameter of well (cm)=           | 5           |                                       |               |
| Depth of well installation (cm)= |             |                                       |               |
|                                  |             |                                       |               |
| (from ground surface)            |             |                                       |               |
| Length screened section          |             |                                       |               |
| (cm)=                            |             |                                       |               |
| Depth to top of screen (cm)=     |             |                                       |               |
| Departo top of screen (onl)=     |             |                                       |               |
| /from ground ourfood             |             |                                       |               |
| (from ground surface)            |             |                                       |               |
|                                  |             |                                       |               |
| Depth to water surface (cm)=     | N/A         | Measurement method: (meter,           | Interface     |
| ·                                | (Dry)       | tape, etc)                            | Mater         |
| ( from top of pipe)              | · · · / ·   |                                       | 11610         |
| Static water level (cm)=         |             |                                       |               |
| (below ground surface)           |             |                                       |               |
| Measured well refusal depth      | 1 641       | Evidence of sludge or siltation:      |               |
| (cm)∕=                           | 1.54m       | <u> </u>                              | No            |
| (i.e. depth to frozen ground)    | į           |                                       |               |
| , , ,                            |             |                                       |               |
|                                  |             | i                                     |               |
| Thickness of water column        | 0           |                                       |               |
|                                  |             |                                       |               |
| Static volume of water in well   | 0           |                                       |               |
|                                  | J           | İ                                     |               |
|                                  |             |                                       |               |
| Free product thickness (mm)=     | Ø           | Measurement method:                   | IM            |
|                                  |             |                                       | , ,           |
| Purging: (Y/N)                   | No          | Purging/Sampling Equipment:           | NA            |
| Volume Purged Water=             |             |                                       | * 11"         |
| Decontamination required:        |             | · · · · · · · · · · · · · · · · · · · |               |
| (Y/N)                            | J           |                                       |               |
| Number washes:                   |             |                                       |               |
| Number rinses:                   | <del></del> |                                       |               |
| Number mises:                    |             |                                       |               |
|                                  |             |                                       |               |
| Final pH=                        |             |                                       |               |
| Final Conductivity (uS/cm)=      |             |                                       |               |
| Final Temperature (degC)=        |             |                                       |               |
|                                  |             |                                       |               |

|                                  |                | the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s |               |
|----------------------------------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| Site Name                        | FOX -5         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |
| Date of Sampling Event           | 20 Auc //4     | Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 130pm         |
| Names of Samplers                | FM /50         | I IIIIe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 120/3/4       |
| ivames of Samplers               | 311776         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |
|                                  |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |
| Landfill Name                    | MAIN           | Samples Collected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | YES           |
| Monitoring Well ID:              |                | PHC F1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |               |
| Sample Number:                   |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |
|                                  |                | Inorganic Elements                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |               |
| Condition of Well:               |                | standpipe PHC F2-F4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |               |
|                                  | lock taped but | boken PCBs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |               |
| Measured Data                    |                | Duplicate Collected?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |               |
| Well pipe height above ground    |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |
| 1 Table 1                        | <i>5</i> 5     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |
| (cm)=                            |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |
| Diameter of well (cm)=           | 5              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u></u>       |
| Depth of well installation (cm)= |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |
| l ` ´                            | <b>j</b>       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |
| (from ground surface)            |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |
|                                  |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |
| Length screened section          | İ              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |
| (cm)=                            |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |
| Depth to top of screen (cm)=     |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |
| 1                                |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ]             |
| (from ground surface)            | İ              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |
| (non ground surface)             |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |
|                                  |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |
| Depth to water surface (om)=     | 1.45m          | Measurement method: (meter, tape, etc)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Interface     |
| /                                | ' ' ' ' '      | tape, etc)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | /             |
| ( from top of pipe)              |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Meter         |
| Static water level (cm)=         |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |
|                                  | <b>]</b>       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |
| (below ground surface)           |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |
| Measured well refusal depth      | 1.87m          | Evidence of sludge or siltation:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1/0           |
| (c/n)=                           | 10011          | ~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | No            |
| (i.e. depth to frozen ground)    |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |
| (Ser departs nozon ground)       | <del></del>    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |
|                                  | ŀ              | · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |               |
|                                  |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |
| Thickness of water column        | 6.7 CA         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |
| Static volume of water in well   | 0.801          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |
|                                  | 00 L           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |
|                                  |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |
|                                  |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |
| Free product thickness (mm)=     | 0              | Measurement method:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | IM            |
| , ,                              | -              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u> </u>      |
| Purging: (Y/N)                   | <del>  </del>  | Burging/Compline Carlos                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 11-10 +1      |
|                                  | YES            | Purging/Sampling Equipment:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |               |
| Volume Purged Water=             | 31             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | and Footvalue |
| Decontamination required:        | , T            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |
| (Y/N)                            | $\mathcal{N}$  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |
| Number washes:                   | <del>'</del>   | <del></del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |               |
|                                  |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |
| Number rinses:                   |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |
|                                  |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |
| Final pH=                        | 7,88           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |
| Final Conductivity (uS/cm)=      | 24.6           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |
| Final Temperature (degC)=        | 3.2            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |
| i mar i emperature (dego)=       | ا ع،د          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u></u>       |

| Site Name:                       |               |                                      |               |
|----------------------------------|---------------|--------------------------------------|---------------|
| Date of Sampling Event:          | 20 Aug//4     | Time                                 | 125pm         |
| Names of Samplers:               |               |                                      | , - ,         |
|                                  |               |                                      |               |
| Landfill Name:                   | MAIN          | Samples Collected                    | VES           |
| Monitoring Well ID:              |               | PHC F1                               |               |
| Sample Number:                   |               |                                      |               |
|                                  |               |                                      |               |
| Condition of Well:               | OK            | PHC F2-F4                            |               |
|                                  |               | PCBs                                 |               |
| Measured Data                    |               | Duplicate Collected?                 | 9E_5          |
| Well pipe height above ground    | 50            |                                      |               |
| (cm)=                            |               | _                                    |               |
| Diameter of well (cm)=           | 5             | ·                                    |               |
| Depth of well installation (cm)= |               |                                      |               |
| <b>1</b>                         | <u> </u>      |                                      |               |
| (from ground surface)            |               |                                      |               |
| Length screened section          |               | ,                                    |               |
| (cm)=                            |               |                                      |               |
| Depth to top of screen (cm)=     |               | <u> </u>                             |               |
| Dopar to top or dereem (em)=     |               |                                      |               |
| (from ground surface)            |               |                                      |               |
| (non ground surface)             |               |                                      |               |
| Donth to water surface (art)     |               | Manager was and months of for a town | - 4 0         |
| Depth to water surface (cm)=     | 1.34m         | Measurement method: (meter,          | LATOTACE      |
|                                  |               | tape, etc)                           | Meter         |
| ( from top of pipe)              |               |                                      | 11010         |
| Static water level (cm)=         |               |                                      |               |
| (below ground surface)           |               |                                      |               |
| Measured well refusal depth      | 1.84m         | Evidence of sludge or siltation:     | None          |
| (cpn)j≥                          |               | •                                    | ,             |
| (i.e. depth to frozen ground)    | ·             |                                      |               |
|                                  | $\overline{}$ |                                      |               |
|                                  |               |                                      |               |
| Thickness of water column        | 50            | · .                                  |               |
| Static volume of water in well   | 1.02          | _                                    |               |
|                                  |               |                                      |               |
|                                  |               |                                      |               |
| Free product thickness (mm)=     | 0             | Measurement method:                  |               |
| 1 Too product thekness (IIIII)=  |               | ivicasurement method.                |               |
| D                                | Jee           | D                                    | 16 16 1       |
| Purging: (Y/N)                   | YES           | Purging/Sampling Equipment:          |               |
| Volume Purged Water=             | ,             |                                      | and Footvalie |
| Decontamination required:        | ,, [          |                                      |               |
| (Y/N)                            | <i>N</i>      |                                      |               |
| Number washes:                   | <u>i</u>      |                                      |               |
| Number rinses:                   |               |                                      |               |
|                                  |               |                                      |               |
| Final pH=                        | 8,48          |                                      |               |
| Final Conductivity (uS/cm)=      |               |                                      |               |
| Final Temperature (degC)=        | 3.1           |                                      |               |
| , (==30/                         |               | <del></del>                          |               |

| ·                                |           |                                       | ,         |
|----------------------------------|-----------|---------------------------------------|-----------|
| Site Name:                       |           |                                       |           |
| Date of Sampling Event:          |           | Time                                  | : 825pm   |
| Names of Samplers:               | JM/SB     |                                       |           |
|                                  |           |                                       |           |
| Landfill Name:                   | STATION   | Samples Collected                     | 455       |
| Monitoring Well ID:              | MW-19     | PHC F1                                |           |
| Sample Number:                   |           | Inorganic Elements                    |           |
| Condition of Well:               |           | around standpipe PHC F2-F4            |           |
|                                  | 01-, 11 0 | PCBs                                  |           |
| Measured Data                    |           | Duplicate Collected?                  |           |
| Well pipe height above ground    | İ         | C. A. Za . It                         |           |
| (cm)=                            | 35        | Somthed 20 Aus/14                     |           |
| Diameter of well (cm)=           | -5        |                                       |           |
| Depth of well installation (cm)= |           |                                       |           |
| Deput of well installation (cm)= |           | ].                                    |           |
| (from avoired scores as)         |           |                                       |           |
| (from ground surface)            |           |                                       |           |
| Length screened section          |           |                                       |           |
| (cm)=                            |           |                                       |           |
| Depth to top of screen (cm)=     |           |                                       |           |
|                                  |           |                                       |           |
| (from ground surface)            |           |                                       |           |
|                                  |           |                                       |           |
| Depth to water surface (cm)=     | 1.50 M    | Measurement method: (meter            | Interface |
|                                  | 7.3079    | tape, etc)                            | Meter     |
| ( from top of pipe)              |           |                                       | THEFO     |
| Static water level (cm)=         |           |                                       |           |
| (below ground surface)           |           |                                       |           |
| Measured well refusal depth      | 1.97m     | Evidence of sludge or siltation:      | 1/1       |
| (cpr)=                           | 1.172     |                                       | No        |
| (i.e. depth to frozen ground)    |           |                                       |           |
| <u> </u>                         |           | ,,,                                   |           |
|                                  | ]         |                                       |           |
| Thickness of water column        | 0,472     |                                       |           |
| Static volume of water in well   | 0.956     |                                       |           |
| Jano Toldino of Water in Well    | J. 73 C   |                                       |           |
|                                  |           |                                       |           |
| Froe product thickness (         | - 0       | Management of the set                 |           |
| Free product thickness (mm)=     | 0         | Measurement method:                   | Im        |
|                                  |           |                                       |           |
| Purging: (Y/N)                   | Υ         | Purging/Sampling Equipment:           |           |
| Volume Purged Water=             | 3L        |                                       | ,         |
| Decontamination required:        |           |                                       | . ***     |
| (Y/N)                            | N         |                                       |           |
| Number washes:                   |           |                                       |           |
| Number rinses:                   |           |                                       |           |
|                                  |           | <del></del>                           |           |
| Final pH=                        | 7.92      | · · · · · · · · · · · · · · · · · · · |           |
| Final Conductivity (uS/cm)=      | 33.3      |                                       |           |
| Final Temperature (degC)=        | 4-2       |                                       |           |
| 12                               | , ,       |                                       |           |

|                                  | 1             |                                  |             |
|----------------------------------|---------------|----------------------------------|-------------|
| Site Name:                       |               |                                  |             |
| Date of Sampling Event:          | 19 845/15     | Time:                            | 745pm       |
| Names of Samplers:               |               |                                  | i '         |
|                                  |               | <u>-</u>                         |             |
| Londfill Nome                    | CTATION       | Carranta a Calla eta eta         | 1100        |
| Landfill Name:                   |               | Samples Collected:               | YE5         |
| Monitoring Well ID:              |               | PHC F1                           | ~           |
| Sample Number:                   |               | -15 Inorganic Elements           | <i>J</i>    |
| Condition of Well:               | OK, soft soil | around cusins PHC F2-F4          | <u></u>     |
|                                  |               | PCBs                             |             |
| Measured Data                    |               | Duplicate Collected?             |             |
| Well pipe height above ground    |               | Duplicate Collected:             | 700         |
| =                                |               |                                  |             |
| (cm)=                            |               | <u>-</u>                         |             |
| Diameter of well (cm)=           |               |                                  |             |
| Depth of well installation (cm)= |               |                                  |             |
| 1                                |               |                                  |             |
| (from ground surface)            | ] i           |                                  |             |
| Length screened section          |               |                                  |             |
| T                                |               |                                  |             |
| Donth to top of several (cm)=    |               |                                  |             |
| Depth to top of screen (cm)=     |               |                                  |             |
|                                  |               |                                  |             |
| (from ground surface)            |               |                                  |             |
|                                  |               |                                  |             |
| Depth to water surface (cm)=     | 1 29          | Measurement method: (meter,      | Tatestic    |
|                                  | 1.41m         | tano oto)                        | DATOTALE    |
| / from top of pino)              | ·             | tape, etc)                       | Meter-      |
| ( from top of pipe)              |               |                                  | •           |
| Static water level (cm)=         |               |                                  |             |
| (below ground surface)           |               |                                  |             |
| Measured well refusal depth      | 2.31m         | Evidence of sludge or siltation: | A I -       |
| (cm)=                            | 2.3.7         | _                                | No          |
| (i.e. depth to frozen ground)    |               |                                  |             |
| ( <u>g</u>                       |               |                                  |             |
|                                  |               |                                  |             |
| Thickness of water column        | 1 . 2 .       |                                  |             |
|                                  | 7.00.         |                                  |             |
| Static volume of water in well   | 2,074         | 1                                |             |
|                                  |               |                                  |             |
|                                  | 1             |                                  |             |
| Free product thickness (mm)=     | 0             | Measurement method:              | IM          |
|                                  | <del></del>   | woodement method.                | ₩.1         |
| B 625.0                          | V             |                                  |             |
| Purging: (Y/N)                   | YES           | Purging/Sampling Equipment:      |             |
| Volume Purged Water=             | 4L (dry aff   | - 1.5L)                          | + Fot valve |
| Decontamination required:        | ,             |                                  |             |
| (Y/N)                            | $\sim$        |                                  |             |
| Number washes:                   |               |                                  |             |
| Number rinses:                   |               |                                  |             |
| Mulliber Illises.                |               |                                  |             |
|                                  |               |                                  |             |
| Final pH=                        | 7.66<br>36.3  |                                  |             |
| Final Conductivity (uS/cm)=      |               |                                  |             |
| Final Temperature (degC)=        | 4.2           |                                  |             |
| · · · · · · ·                    |               |                                  |             |

| Oita Nama                               | 1 P - 1 2 - 12 |                                        | _                                                 |
|-----------------------------------------|----------------|----------------------------------------|---------------------------------------------------|
| Site Name:                              |                |                                        |                                                   |
| Date of Sampling Event                  |                | Time:                                  | 755pm                                             |
| Names of Samplers:                      | IM 15B         | L                                      |                                                   |
|                                         |                | ,                                      |                                                   |
| Landfill Name:                          | STATION        | Samples Collected:                     | YES                                               |
| Monitoring Well ID:                     |                | PHC F1                                 | 1                                                 |
| Sample Number:                          |                |                                        |                                                   |
| Condition of Well:                      |                |                                        |                                                   |
| Condition of went                       | broke off      |                                        | <del>, , , , , , , , , , , , , , , , , , , </del> |
| Measured Data                           |                | Duplicate Collected?                   |                                                   |
| Well pipe height above ground           | <del></del>    | Duplicate Collecteu?                   | 700                                               |
| • · · · · · · · · · · · · · · · · · · · | 46             |                                        |                                                   |
| (cm)=                                   | L              |                                        |                                                   |
| Diameter of well (cm)=                  |                |                                        |                                                   |
| Depth of well installation (cm)=        |                |                                        |                                                   |
|                                         |                |                                        |                                                   |
| (from ground surface)                   |                |                                        |                                                   |
| Length screened section                 |                |                                        |                                                   |
| (cm)=                                   |                |                                        |                                                   |
| Depth to top of screen (cm)=            |                |                                        |                                                   |
|                                         |                |                                        |                                                   |
| (from ground surface)                   |                |                                        |                                                   |
| , , , , , , , , , , , , , , , , , , , , |                |                                        |                                                   |
| Depth to water surface (c/n)=           | 1 11.          | Measurement method: (meter, tape, etc) | T. J. C.                                          |
| = 5p to trails: 5a55 (g)                | 1.11m          | tane etc)                              | DATERIAL                                          |
| ( from top of pipe)                     |                | tape, etc)                             | Meter-                                            |
| Static water level (cm)=                |                |                                        | · ·                                               |
|                                         |                |                                        |                                                   |
| (below ground surface)                  |                | Estatement of all 1                    |                                                   |
| Measured well refusal depth             | 1.68m          | Evidence of sludge or siltation:       | Nο                                                |
| (cm)=                                   | 1.00.          |                                        | 100                                               |
| (i.e. depth to frozen ground)           |                |                                        |                                                   |
|                                         |                |                                        |                                                   |
|                                         |                |                                        |                                                   |
| Thickness of water column               | 0.57m          |                                        |                                                   |
| Static volume of water in well          | 1.15L          |                                        |                                                   |
| ·                                       |                |                                        |                                                   |
| ĺ                                       |                |                                        |                                                   |
| Free product thickness (mm)=            | 0              | Measurement method:                    | TM                                                |
| product anomicos (ilim)=                |                | Wooddie Hell Od.                       | IM                                                |
| Duraina (V/NI)                          |                | Duraina/Compline Equipment             | 111 51                                            |
| Purging: (Y/N)                          | YES            | Purging/Sampling Equipment:            |                                                   |
| Volume Purged Water=                    | 2L (dry off    | VUSL)                                  | +Foutvalve                                        |
| Decontamination required:               | $\sim$         |                                        |                                                   |
| (Y/N)                                   | /~             |                                        |                                                   |
| Number washes:                          |                |                                        |                                                   |
| Number rinses:                          | i              |                                        |                                                   |
|                                         |                |                                        |                                                   |
| Final pH=                               | 7.80           |                                        |                                                   |
| Final Conductivity (uS/cm)=             | 27.7           |                                        |                                                   |
| Final Temperature (degC)=               | 4.0            |                                        |                                                   |
| 1 3-7                                   |                |                                        |                                                   |

| 0:: 1                                 | T                                                |                                                |               |
|---------------------------------------|--------------------------------------------------|------------------------------------------------|---------------|
| Site Name:                            |                                                  |                                                |               |
| Date of Sampling Event:               | 19 Aus/14                                        | Time:                                          | 805pm         |
| Names of Samplers:                    | JM158                                            |                                                |               |
|                                       |                                                  |                                                |               |
| Landfill Name:                        | STATION                                          | Samples Collected:                             | No            |
| Monitoring Well ID:                   | MW-17                                            | PHC F1                                         | ,             |
| Sample Number:                        |                                                  | Inorganic Elements                             |               |
| Condition of Well:                    |                                                  |                                                |               |
|                                       | casing                                           | PCBs                                           |               |
| Measured Data                         | <del>                                     </del> | Duplicate Collected?                           |               |
| Well pipe height above ground         |                                                  |                                                |               |
| (cm)=                                 | 35                                               |                                                |               |
| Diameter of well (cm)=                | 5                                                |                                                |               |
| Depth of well installation (cm)=      |                                                  | <del>  -=</del> -                              |               |
| = opar or non monadation (off)=       |                                                  | •                                              |               |
| (from ground surface)                 | 1                                                |                                                |               |
| Length screened section               |                                                  |                                                |               |
| - , ,                                 |                                                  |                                                |               |
| (cm)=<br>Depth to top of screen (cm)= |                                                  |                                                |               |
| Depth to top of screen (cm)=          |                                                  |                                                |               |
| /f==== ===== 1 = f =                  |                                                  |                                                |               |
| (from ground surface)                 |                                                  |                                                |               |
|                                       |                                                  |                                                |               |
| Depth to water surface (cm)=          | 1.63m                                            | Measurement method: (meter,                    | Interface     |
|                                       |                                                  | tape, etc)                                     | Meter         |
| ( from top of pipe)                   |                                                  |                                                | ,, ., .       |
| Static water level (cm)=              |                                                  |                                                |               |
| (below ground surface)                |                                                  |                                                |               |
| Measured well refusal depth           | 1,90M                                            | Evidence of sludge or siltation:               | No            |
| (cm/)=                                | 10700                                            |                                                | 100           |
| (i.e. depth to frozen ground)         |                                                  |                                                |               |
|                                       |                                                  |                                                |               |
|                                       |                                                  | <u>                                       </u> |               |
| Thickness of water column             | 0.27m                                            |                                                |               |
| Static volume of water in well        | 0.54L                                            |                                                |               |
|                                       | U                                                |                                                |               |
|                                       |                                                  |                                                |               |
| Free product thickness (mm)=          | 0                                                | Measurement method:                            | <del></del>   |
| 1.00 product anothess (mm)-           |                                                  | weasurement method.                            | IN            |
| Duraina (V/N)                         | No                                               | Duraina/Complina Cardina anti-                 | NIA           |
| Purging: (Y/N)                        | 100                                              | Purging/Sampling Equipment:                    | 10117         |
| Volume Purged Water=                  |                                                  |                                                | $\overline{}$ |
| Decontamination required:             | $\sim$                                           | Not sampled (not enough water                  | ) I           |
| (Y/N)                                 | / -                                              | 3, 3 / 100010                                  | /             |
| Number washes:                        |                                                  |                                                |               |
| Number rinses:                        |                                                  |                                                |               |
|                                       |                                                  |                                                |               |
| Final pH=                             |                                                  |                                                |               |
| Final Conductivity (uS/cm)=           |                                                  |                                                |               |
| Final Temperature (degC)=             |                                                  |                                                |               |
|                                       |                                                  |                                                |               |

| Site Name:                          | 1 CON_C    | ·                                  | <del></del>     |
|-------------------------------------|------------|------------------------------------|-----------------|
|                                     |            | Time                               | 015             |
| Date of Sampling Event:             |            | Time                               | 815pm           |
| Names of Samplers:                  | GC/ ME     |                                    |                 |
| 1 2011 N                            |            |                                    | 16.             |
| Landfill Name:                      |            | Samples Collected:                 |                 |
| Monitoring Well ID:                 |            | PHC F1                             |                 |
| Sample Number:                      |            | Inorganic Elements                 |                 |
| Condition of Well:                  | OK, standp | pe is very low in Casing PHC F2-F4 |                 |
|                                     | ·          | PUBS                               |                 |
| Measured Data                       |            | Duplicate Collected?               |                 |
| Well pipe height above ground (cm)= | 80         | (measured from low point of top    | of open carin   |
| Diameter of well (cm)=              | 5          |                                    | . / 0 . 045///0 |
| Depth of well installation (cm)=    |            |                                    | <del> </del>    |
| Deput of Well Installation (cm)=    |            |                                    |                 |
| (from ground surface)               |            |                                    | <b> </b>        |
| Length screened section             |            |                                    |                 |
| (cm)=                               |            |                                    |                 |
| Depth to top of screen (cm)=        |            |                                    |                 |
|                                     |            |                                    |                 |
| (from ground surface)               |            |                                    |                 |
|                                     |            |                                    |                 |
| Denth to water surface (cm)-        | 0.14       | Mossurement method: (meter         |                 |
| Depth to water surface (cm)=        | 2.16m      | Measurement method: (meter,        | Interace        |
| (from top of pine)                  |            | tape, etc)                         | Meter           |
| ( from top of pipe)                 |            |                                    | -               |
| Static water level (cm)=            |            |                                    |                 |
| (below ground surface)              |            |                                    |                 |
| Measured well refusal depth         | 2.21m      | Evidence of sludge or siltation:   | A(a             |
| (cnp/)=                             |            |                                    | NO              |
| (i.e. depth to frozen ground)       |            | ·                                  |                 |
|                                     |            |                                    |                 |
| Thickness of water column           | 0.05m      |                                    |                 |
| Static volume of water in well      | -          |                                    |                 |
| Volume of train in train            | 0.100      |                                    |                 |
| Evon mundicat this large of the     |            |                                    | An              |
| Free product thickness (mm)=        | 0          | Measurement method:                | IM              |
|                                     |            |                                    |                 |
| Purging: (Y/N)                      | No         | Purging/Sampling Equipment:        | MA              |
| Volume Purged Water=                |            |                                    |                 |
| Decontamination required:           |            | Not sampled .                      |                 |
| (Y/N)                               | $\wedge$   | Not sampled<br>(Not enough water)  |                 |
| Number washes:                      |            |                                    |                 |
| Number rinses:                      |            |                                    |                 |
|                                     |            |                                    | <del></del>     |
| Final pH=                           |            |                                    |                 |
| Final Conductivity (uS/cm)=         | 1          |                                    |                 |
| Final Temperature (degC)=           |            |                                    |                 |
| i mai i emperature (dego)=          | <u></u>    |                                    |                 |

## VISUAL INSPECTION CHECKLIST INSPECTION REPORT – PAGE 1 OF 2

| STE NAME:                                                                                                                                                                                                                                    |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| FOX-5                                                                                                                                                                                                                                        |
| LANDFILL DESIGNATION: Middle Sik Tres I Disposal Facility Non-Hazardow Waste Loadfill                                                                                                                                                        |
| DATE OF INSPECTION: 19 Aug //4                                                                                                                                                                                                               |
| DATE OF PREVIOUS INSPECTION: 2012                                                                                                                                                                                                            |
| INSPECTED BY: Jagar Mauchar Stephen Borcsok                                                                                                                                                                                                  |
| REPORT PREPARED BY: Stepher Borcsak                                                                                                                                                                                                          |
| The inspector/reporter represents to the best of the their knowledge, the following statements and observations are true and correct and to the best of the preparer's actual knowledge, no material facts have been suppressed or misstated |

|                                           | M                 | VISUAL INSPECTION C                                                                                                  | HECK   | LIST - I    | NSPEC | CHECKLIST - INSPECTION REPORT - PAGE 2 OF 2 | ORT - PAG           | E 2 OF 2                                                                                                         |                    | _ |
|-------------------------------------------|-------------------|----------------------------------------------------------------------------------------------------------------------|--------|-------------|-------|---------------------------------------------|---------------------|------------------------------------------------------------------------------------------------------------------|--------------------|---|
| Checklist Item                            | Present<br>Yes/No | Location (Describe relative to existing monuments/features and relative to landfill design i.e. surface, berms, toe) | Length | Width       | Denth | Extent relative to<br>Area of Landfill      | Decemble            | Photographic Records Focal length, location, view point & direction (relative to magnetic north) Feature of note |                    |   |
| Settlement                                | ہ                 | NE, SE, SW Serms<br>of land fill                                                                                     |        |             |       | \                                           | Small holes         |                                                                                                                  | Authorial Comments |   |
| Erosion                                   | <u>&gt;</u> ـ     | NESESW tems +                                                                                                        | ~10m   | ~0.2m ~0.2m | ~0.2m | 1.) \                                       | Chanels             |                                                                                                                  |                    |   |
| Frost Action                              | 2                 |                                                                                                                      |        |             |       |                                             |                     |                                                                                                                  |                    |   |
| Sloughing and Cracking                    | >-                |                                                                                                                      | :      |             |       | .7.\                                        | Tensos              |                                                                                                                  |                    |   |
| Animal Burrows                            | >                 |                                                                                                                      |        |             |       | 14<br>15                                    | Cracks              |                                                                                                                  |                    |   |
| Vegetation                                | >-                | BY MW-S                                                                                                              |        |             |       |                                             | Small<br>Shabs      |                                                                                                                  |                    |   |
| Staining                                  | >-                | Northerd of southerst tem                                                                                            |        |             |       | 7.5                                         | Nagura (            |                                                                                                                  |                    |   |
| Vegetation Stress                         | 2                 |                                                                                                                      |        |             |       |                                             |                     |                                                                                                                  |                    |   |
| Seepage Points                            | 2                 |                                                                                                                      |        |             |       |                                             |                     |                                                                                                                  |                    |   |
| Debris Exposed                            | 2                 |                                                                                                                      |        |             | İ     |                                             |                     |                                                                                                                  |                    |   |
| Presence/Condition Monitoring Instruments | >~                |                                                                                                                      | dus.   |             |       | <17. Themshor                               | Themister,<br>Wells |                                                                                                                  | -                  |   |
| Features of Note.                         | >-                | On top cap of landfill                                                                                               |        |             |       | ~2'1,                                       | Vehicle,<br>Tracks, | Ares of Ponded                                                                                                   |                    |   |

Preliminary Stability Assessment Landfill: FOX-5 MIDDLE SITE

| Feature                      | Severity Rating | Extent     |
|------------------------------|-----------------|------------|
| Settlement                   | ACCEPTABLE      | OCCASIONAL |
| Erosion                      | ACCEPTABLE      | OCCASIONAL |
| Frost Action                 | NONE            | NONE       |
| Staining                     | ACCEPTABLE      | ISOLATED   |
| Vegetation Stress            | NONE            | NONE       |
| Seepage/Ponded Water         | ACCEPTABLE      | ISOLATED   |
| Debris exposure              | NONE            | NONE       |
| Overall Landfill Performance | A CCEPTABLE     |            |

| Performance/<br>Severity Rating | Description                                                                                                                                                                                                                                                                                                                |
|---------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Acceptable                      | Noted features are of little consequence. The landfill is performing as designed. Minor deviations in environmental or physical performance may be observed, such as isolated areas of erosion, settlement.                                                                                                                |
| Marginal                        | Physical/environmental performance appears to be deteriorating with time. Observations may include an increase in size or number of features of note, such as differential settlement, erosion or cracking. No significant impact on landfill stability to date, but potential for failure is assessed as low or moderate. |
| Significant                     | Significant or potentially significant changes affecting landfill stability, such as significant changes in slope geometry, significant erosion or differential settlement; scarp development. The potential for failure is assessed as imminent.                                                                          |
| Unacceptable                    | Stability of landfill is compromised to the extent that ability to contain waste materials is compromised. Examples may include:  - Debris exposed in erosion channels or areas of differential settlement.  - Liner exposed.  - Slope failure.                                                                            |

| Extent     | Description                                                                       |
|------------|-----------------------------------------------------------------------------------|
| Isolated   | Singular feature                                                                  |
| Occasional | Features of note occurring at irregular intervals/locations                       |
|            | Many features of note, impacted less than 50% of the surface area of the landfill |
| Extensive  | Impacting greater than 50% of the surface area of the landfill                    |

# DEW LINE CLEANUP: POST-CONSTRUCTION - LANDFILL MONITORING

### INSPECTION REPORT – PAGE 1 OF 2 VISUAL INSPECTION CHECKLIST

| OPTION AT A SECTION AND A SECTION AND A SECTION AND A SECTION AND A SECTION AND A SECTION AND A SECTION AND A SECTION AND A SECTION AND A SECTION AND A SECTION AND A SECTION AND A SECTION AND A SECTION AND A SECTION AND A SECTION AND A SECTION AND A SECTION AND A SECTION AND A SECTION AND A SECTION AND A SECTION AND A SECTION AND A SECTION AND A SECTION AND A SECTION AND A SECTION AND A SECTION AND A SECTION AND A SECTION AND A SECTION AND A SECTION AND A SECTION AND A SECTION AND A SECTION AND A SECTION AND A SECTION AND A SECTION AND A SECTION AND A SECTION AND A SECTION AND A SECTION AND A SECTION AND A SECTION AND A SECTION AND A SECTION AND A SECTION AND A SECTION AND A SECTION AND A SECTION AND A SECTION AND A SECTION AND A SECTION AND A SECTION AND A SECTION AND A SECTION AND A SECTION AND A SECTION AND A SECTION AND A SECTION AND A SECTION AND A SECTION AND A SECTION AND A SECTION AND A SECTION AND A SECTION AND A SECTION AND A SECTION AND A SECTION AND A SECTION AND A SECTION AND A SECTION AND A SECTION AND A SECTION AND A SECTION AND A SECTION AND A SECTION AND A SECTION AND A SECTION AND A SECTION AND A SECTION AND A SECTION AND A SECTION AND A SECTION AND A SECTION AND A SECTION AND A SECTION AND A SECTION AND A SECTION AND A SECTION AND A SECTION AND A SECTION AND A SECTION AND A SECTION AND A SECTION AND A SECTION AND A SECTION AND A SECTION AND A SECTION AND A SECTION AND A SECTION AND A SECTION AND A SECTION AND A SECTION AND A SECTION AND A SECTION AND A SECTION AND A SECTION AND A SECTION AND A SECTION AND A SECTION AND A SECTION AND A SECTION AND A SECTION AND A SECTION AND A SECTION AND A SECTION AND A SECTION AND A SECTION AND A SECTION AND A SECTION AND A SECTION AND A SECTION AND A SECTION AND A SECTION AND A SECTION AND A SECTION AND A SECTION AND A SECTION AND A SECTION AND A SECTION AND A SECTION AND A SECTION AND A SECTION AND A SECTION AND A SECTION AND A SECTION AND A SECTION AND A SECTION AND A SECTION AND A SECTION AND A SECTION AND A SECTION AND A SECTION AND A SECTION AND A SECT |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SILE INAME: FOX-5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| LANDFILL DESIGNATION: MAIN LANDFILL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| DATE OF INSPECTION: 20 Aug/14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| DATE OF PREVIOUS INSPECTION: 2012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| INSPECTED BY: Stepher Borcsok / Jason Mauchan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| REPORT PREPARED BY: Stephen Borcsok                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| The inspector/reporter represents to the best of the their knowledge, the following statements and observations are true and correct and to the best of the preparer's actual knowledge, no material facts have been suppressed or misstated.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |

| 4                         |
|---------------------------|
| $\frac{\lambda}{\lambda}$ |
| 70                        |
| SITE:                     |

|                                             |                                                                                                                      | Additional Comments |                                        |              |                        |                |            |          |                   |                | Did not orginate                                  | Themsters 1-4 are slove                        | down hill morene  |                            |
|---------------------------------------------|----------------------------------------------------------------------------------------------------------------------|---------------------|----------------------------------------|--------------|------------------------|----------------|------------|----------|-------------------|----------------|---------------------------------------------------|------------------------------------------------|-------------------|----------------------------|
| SE 2 OF 2                                   | Photographic Records Focal length, location, view point & direction (relative to magnetic north) Feature of note     | Scale               | chanell routed around landfill         |              |                        |                |            |          |                   |                |                                                   |                                                |                   |                            |
| ORT - PAC                                   | Dogowietis                                                                                                           | mandrineacr         | Draineze<br>chanelr r                  |              | Srall Shall            |                | :          |          |                   |                | Small metal                                       | Themores,<br>Wells                             | Fing Parthele     | virds around<br>boulder in |
| CHECKLIST - INSPECTION REPORT - PAGE 2 OF 2 | Extent relative to<br>Area of Landfill                                                                               |                     | 21.                                    |              |                        |                |            |          |                   |                |                                                   |                                                |                   |                            |
| INSPE                                       | Denth                                                                                                                |                     |                                        |              |                        |                |            |          |                   |                |                                                   |                                                |                   |                            |
| LIST -                                      | Width                                                                                                                |                     |                                        |              |                        |                |            |          |                   |                |                                                   |                                                |                   | =                          |
| HECK                                        | Lenoth                                                                                                               |                     |                                        |              | 0.5m                   |                |            |          |                   |                |                                                   |                                                |                   |                            |
| VISUAL INSPECTION                           | Location (Describe relative to existing monuments/features and relative to landfill design i.e. surface, berms, toe) |                     | Drainage chamely<br>around permeter of |              | South end of louthill  |                |            |          |                   |                | Within landfill cap<br>Loulder and outside publit | 8 Themisters, 5 Wells<br>95 on drawing         | Landhill ap       |                            |
| VIS                                         | Present<br>Yes/No                                                                                                    | 2                   | >-                                     | Z            | >                      | 2              | 2          |          | 2                 | 2              | >~                                                | <b>&gt;</b>                                    | λ                 |                            |
|                                             | Checklist Item                                                                                                       | Settlement          | Erosion                                | Frost Action | Sloughing and Cracking | Animal Burrows | Vegetation | Staining | Vegetation Stress | Seepage Points | Debris Exposed                                    | Presence/Condition –<br>Monitoring Instruments | Features of Note. |                            |

Preliminary Stability Assessment Landfill: FOX-5 MAIN LANDFILL

| Feature                      | Severity Rating | Extent     |
|------------------------------|-----------------|------------|
| Settlement                   | NONE            | NONE       |
| Erosion                      | ACCEPTABLE      | OCCASIONAL |
| Frost Action                 | NONE            | NONE       |
| Staining                     | NONE            | NONE       |
| Vegetation Stress            | NONE            | NONE       |
| Seepage/Ponded Water         | NONE            | NONE       |
| Debris exposure              | ACCEPTABLE      | OCCASIONAL |
| Overall Landfill Performance | ACCEPTABLE      |            |

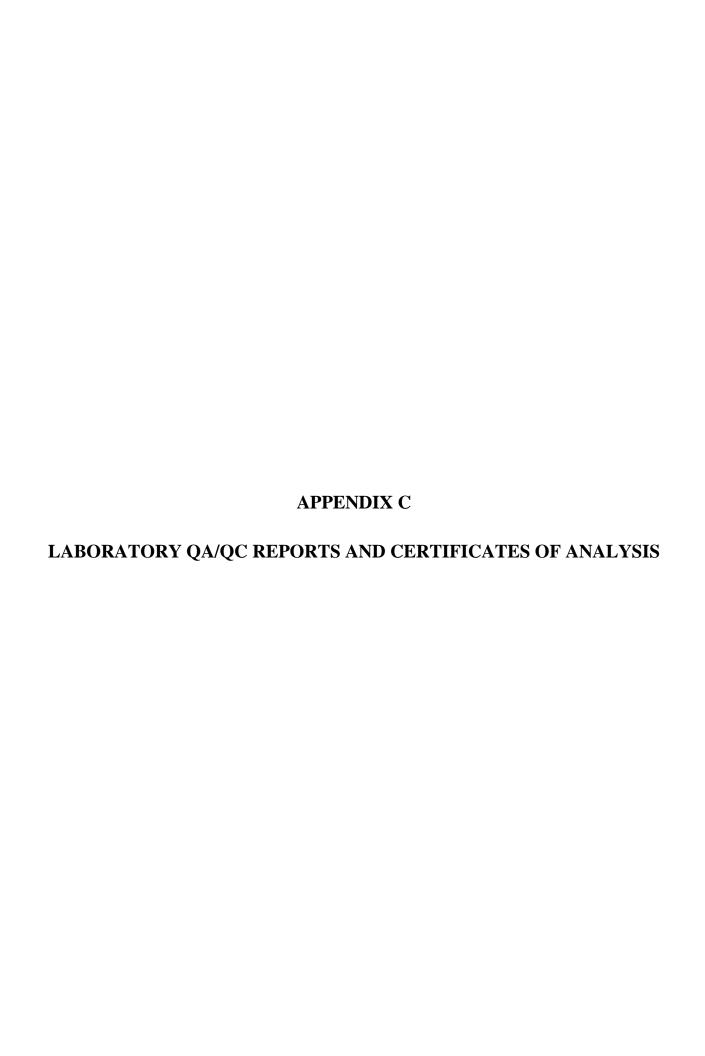
| Performance/<br>Severity Rating | Description                                                                                                                                                                                                                                                                                                                |
|---------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Acceptable                      | Noted features are of little consequence. The landfill is performing as designed. Minor deviations in environmental or physical performance may be observed, such as isolated areas of erosion, settlement.                                                                                                                |
| Marginal                        | Physical/environmental performance appears to be deteriorating with time. Observations may include an increase in size or number of features of note, such as differential settlement, erosion or cracking. No significant impact on landfill stability to date, but potential for failure is assessed as low or moderate. |
| Significant                     | Significant or potentially significant changes affecting landfill stability, such as significant changes in slope geometry, significant erosion or differential settlement; scarp development. The potential for failure is assessed as imminent.                                                                          |
| Unacceptable                    | Stability of landfill is compromised to the extent that ability to contain waste materials is compromised. Examples may include:  - Debris exposed in erosion channels or areas of differential settlement Liner exposed Slope failure.                                                                                    |

| Extent     | Description                                                                       |
|------------|-----------------------------------------------------------------------------------|
| Isolated   | Singular feature                                                                  |
| Occasional | Features of note occurring at irregular intervals/locations                       |
|            | Many features of note, impacted less than 50% of the surface area of the landfill |
|            | Impacting greater than 50% of the surface area of the landfill                    |

## VISUAL INSPECTION CHECKLIST INSPECTION REPORT – PAGE 1 OF 2

| SITE NAME:                                                                                                                   |
|------------------------------------------------------------------------------------------------------------------------------|
| TOX-5                                                                                                                        |
| LANDFILL DESIGNATION: CTOTO ( 1/24) 1/20 1/20 1/20 1/20 1/20 1/20 1/20 1/20                                                  |
| SITION NOW - HATCHKNOWS WAS JE CANDERLO                                                                                      |
| DATE OF INSPECTION: 20 Aug // 4                                                                                              |
| DATE OF PREVIOUS INSPECTION:                                                                                                 |
| 2012                                                                                                                         |
| INSPECTED BY: Jan Moules (Stophe Rose)                                                                                       |
| agona / July Chair                                                                                                           |
| KEPORT PREPARED BY: CLOOK                                                                                                    |
| 3.1 et 16, 001 csafe                                                                                                         |
| The inspector/reporter represents to the best of the their knowledge, the following statements and observations are true and |
| correct and to the best of the preparer's actual knowledge, no material facts have been suppressed or misstated.             |

| LANDFILL: STATION |
|-------------------|
| SITE: FOX-S       |
|                   |


|                                                | VI                | VISUAL INSPECTION (                                                                                                  | HECK                | LIST - I | NSPEC    | CHECKLIST - INSPECTION REPORT - PAGE 2 OF 2 | ORT - PAG           | E 2 OF 2                                                                                                         |                        |              |
|------------------------------------------------|-------------------|----------------------------------------------------------------------------------------------------------------------|---------------------|----------|----------|---------------------------------------------|---------------------|------------------------------------------------------------------------------------------------------------------|------------------------|--------------|
| Checklist Item                                 | Present<br>Yes/No | Location (Describe relative to existing monuments/features and relative to landfill design i.e. surface, berms, toe) | Length              | Width    | Denth    | Extent relative to<br>Area of Landfill      | Decreintion         | Photographic Records Focal length, location, view point & direction (relative to magnetic north) Feature of note |                        |              |
| Settlement                                     | >                 | on berms top outside the (see clus)                                                                                  | O. 5' M             | O.5" M   | 0,2 m    | N                                           | Small               | Koles                                                                                                            | Auditional Columnities | _            |
| Erosion                                        | 1                 | Going oben till on NW                                                                                                | 10<br>-15h          | 0.22     | 0,14     | 1/1                                         | Channell            |                                                                                                                  | 200                    | _            |
| Frost Action                                   | 2                 |                                                                                                                      |                     |          | ,        |                                             |                     |                                                                                                                  |                        |              |
| Sloughing and Cracking                         | >                 | On SW Sem and of                                                                                                     | I mand on long on I | 2000     | 2000 X B | 7/12                                        | Terres              |                                                                                                                  |                        |              |
| Animal Burrows                                 | 2                 |                                                                                                                      |                     | `I       | 1:       |                                             |                     |                                                                                                                  |                        |              |
| Vegetation                                     | <b>)~</b>         | On bernsond top of landfill                                                                                          |                     |          |          | 7.17                                        |                     |                                                                                                                  |                        | <del> </del> |
| Staining                                       | S                 |                                                                                                                      |                     |          |          |                                             |                     |                                                                                                                  |                        |              |
| Vegetation Stress                              | N                 |                                                                                                                      |                     |          |          |                                             |                     |                                                                                                                  |                        |              |
| Seepage Points                                 | >                 |                                                                                                                      |                     |          |          |                                             |                     |                                                                                                                  |                        |              |
| Debris Exposed                                 | 7                 | Sbem SWASECHIEFE                                                                                                     |                     |          |          | 21>                                         | Wood, metal,        | <11, Wood, metal, longe, renforced converte                                                                      | te Did not originate   | - L-1        |
| Presence/Condition –<br>Monitoring Instruments | >                 | 5 montoring wells<br>as perdrawing                                                                                   |                     |          |          |                                             | Mouthoras<br>Wellia |                                                                                                                  |                        |              |
| Features of Note.                              | λ                 | Top surface of landAll                                                                                               |                     |          |          | 1.1                                         | Vehicle             |                                                                                                                  |                        |              |

Preliminary Stability Assessment Landfill: FOX-S STATION LANDFILL

| Feature                      | Severity Rating | Extent     |
|------------------------------|-----------------|------------|
| Settlement                   | Acceptable      | Occasional |
| Erosion                      | Acceptable      | Occasional |
| Frost Action                 | None            | None       |
| Staining                     | None            | None       |
| Vegetation Stress            | None            | None       |
| Seepage/Ponded Water         | None            | None       |
| Debris exposure              | Acceptable      | Occasional |
| Overall Landfill Performance | ACCEPTABLE      |            |

| Performance/<br>Severity Rating | Description                                                                                                                                                                                                                                                                                                                |
|---------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Acceptable                      | Noted features are of little consequence. The landfill is performing as designed. Minor deviations in environmental or physical performance may be observed, such as isolated areas of erosion, settlement.                                                                                                                |
| Marginal                        | Physical/environmental performance appears to be deteriorating with time. Observations may include an increase in size or number of features of note, such as differential settlement, erosion or cracking. No significant impact on landfill stability to date, but potential for failure is assessed as low or moderate. |
| Significant                     | Significant or potentially significant changes affecting landfill stability, such as significant changes in slope geometry, significant erosion or differential settlement; scarp development. The potential for failure is assessed as imminent.                                                                          |
| Unacceptable                    | Stability of landfill is compromised to the extent that ability to contain waste materials is compromised. Examples may include:  - Debris exposed in erosion channels or areas of differential settlement.  - Liner exposed.  - Slope failure.                                                                            |

| Extent     | Description                                                                       |
|------------|-----------------------------------------------------------------------------------|
| Isolated   | Singular feature                                                                  |
| Occasional | Features of note occurring at irregular intervals/locations                       |
| Numerous   | Many features of note, impacted less than 50% of the surface area of the landfill |
| Extensive  | Impacting greater than 50% of the surface area of the landfill                    |





CLIENT NAME: ARCADIS SENES CANADA INC(DCS)
121 GRANTON DRIVE, UNIT #11,
RICHMOND HILL, ON L4B3N4
(905) 882-584

(905) 882-5984

**ATTENTION TO: Steve Borcsok** 

PROJECT: 350600-515

AGAT WORK ORDER: 14T881255

TRACE ORGANICS REVIEWED BY: Oksana Gushyla, Trace Organics Lab Supervisor

WATER ANALYSIS REVIEWED BY: Anthony Dapaah, PhD (Chem), Inorganic Lab Manager

DATE REPORTED: Sep 09, 2014

PAGES (INCLUDING COVER): 7

**VERSION\*: 1** 

Should you require any information regarding this analysis please contact your client services representative at (905) 712-5100

| *NOTES |  |
|--------|--|
|        |  |
|        |  |
|        |  |
|        |  |
|        |  |
|        |  |
|        |  |
|        |  |
|        |  |
|        |  |
|        |  |
|        |  |

All samples will be disposed of within 30 days following analysis. Please contact the lab if you require additional sample storage time.

**AGAT** Laboratories (V1)

Page 1 of 7



**CLIENT NAME: ARCADIS SENES CANADA INC(DCS)** 

### **Certificate of Analysis**

**AGAT WORK ORDER: 14T881255** 

PROJECT: 350600-515

**ATTENTION TO: Steve Borcsok** 

SAMPLED BY:

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

O. Reg. 153(511) - PHCs F1 - F4 (Water)

**DATE REPORTED: 2014-09-09 DATE RECEIVED: 2014-08-26** 

|                                | 5    | SAMPLE DESCRIPTION: | F5-MN-MW-14 |
|--------------------------------|------|---------------------|-------------|
|                                |      | SAMPLE TYPE:        | Water       |
|                                |      | DATE SAMPLED:       | 8/20/2014   |
| Parameter                      | Unit | G/S RDL             | 5741349     |
| Benzene                        | μg/L | 0.20                | <0.20       |
| Toluene                        | μg/L | 0.20                | <0.20       |
| Ethylbenzene                   | μg/L | 0.10                | <0.10       |
| Xylene Mixture                 | μg/L | 0.20                | <0.20       |
| F1 (C6 to C10)                 | μg/L | 25                  | <25         |
| F1 (C6 to C10) minus BTEX      | μg/L | 25                  | <25         |
| F2 (C10 to C16)                | μg/L | 100                 | <100        |
| F3 (C16 to C34)                | μg/L | 100                 | <100        |
| F4 (C34 to C50)                | μg/L | 100                 | <100        |
| Gravimetric Heavy Hydrocarbons | μg/L | 500                 | NA          |
| Surrogate                      | Unit | Acceptable Limits   |             |
| Terphenyl                      | %    | 60-140              | 120         |
|                                |      |                     |             |

Comments:

RDL - Reported Detection Limit; G / S - Guideline / Standard

5741349

SAMPLING SITE:

The C6-C10 fraction is calculated using Toluene response factor.

The C10 - C16, C16 - C34, and C34 - C50 fractions are calculated using the average response factor for n-C10, n-C16, and nC34.

Gravimetric Heavy Hydrocarbons are not included in the Total C16 - C50 and are only determined if the chromatogram of the C34 - C50 Hydrocarbons indicated that hydrocarbons > C50 are present.

The chromatogram has returned to baseline by the retention time of nC50.

Total C6-C50 results are corrected for BTEX contributions.

This method complies with the Reference Method for the CWS PHC and is validated for use in the laboratory.

nC6 and nC10 response factors are within 30% of Toluene response factor.

nC10, nC16 and nC34 response factors are within 10% of their average.

C50 response factor is within 70% of nC10 + nC16 nC34 average.

Linearity is within 15%.

Extraction and holding times were met for this sample.

Fractions 1-4 are quantified with the contribution of PAHs. Under Ontario Regulation 153, results are considered valid without determining the PAH contribution if not requested by the client.

NA = Not Applicable

| _      |      |     | _   |  |
|--------|------|-----|-----|--|
| $\sim$ | rtif | iad | Bv: |  |
| しせ     | 1111 | ıeu | DV. |  |



**CLIENT NAME: ARCADIS SENES CANADA INC(DCS)** 

**SAMPLING SITE:** 

PCBs

**Parameter** 

### **Certificate of Analysis**

**AGAT WORK ORDER: 14T881255** 

PROJECT: 350600-515

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

**ATTENTION TO: Steve Borcsok** 

**SAMPLED BY:** 

PCBs (water)

**DATE RECEIVED: 2014-08-26 DATE REPORTED: 2014-09-09** 

> SAMPLE DESCRIPTION: F5-MN-MW-14 **SAMPLE TYPE:** Water DATE SAMPLED: 8/20/2014 G/S RDL 5741349 < 0.1

μg/L Unit **Acceptable Limits** Surrogate Decachlorobiphenyl 94 60-130

Unit

RDL - Reported Detection Limit; G / S - Guideline / Standard Comments:

Certified By:



**CLIENT NAME: ARCADIS SENES CANADA INC(DCS)** 

**SAMPLING SITE:** 

### **Certificate of Analysis**

**AGAT WORK ORDER: 14T881255** 

PROJECT: 350600-515

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

ATTENTION TO: Steve Borcsok

**SAMPLED BY:** 

Metals Scan (Water)

DATE RECEIVED: 2014-08-26 DATE REPORTED: 2014-09-09

|      |                                                      |                                                                                       | Water<br>8/20/2014                                                                                                                                                                       |                                                                                                |
|------|------------------------------------------------------|---------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|
| Unit | G/S                                                  | RDL                                                                                   | 5741349                                                                                                                                                                                  |                                                                                                |
| mg/L |                                                      | 0.001                                                                                 | <0.001                                                                                                                                                                                   | Ī                                                                                              |
| mg/L |                                                      | 0.001                                                                                 | < 0.001                                                                                                                                                                                  |                                                                                                |
| mg/L |                                                      | 0.002                                                                                 | 0.008                                                                                                                                                                                    |                                                                                                |
| mg/L |                                                      | 0.001                                                                                 | < 0.001                                                                                                                                                                                  |                                                                                                |
| mg/L |                                                      | 0.002                                                                                 | 0.002                                                                                                                                                                                    |                                                                                                |
| mg/L |                                                      | 0.001                                                                                 | 0.001                                                                                                                                                                                    |                                                                                                |
| mg/L |                                                      | 0.0001                                                                                | < 0.0001                                                                                                                                                                                 |                                                                                                |
| mg/L |                                                      | 0.003                                                                                 | 0.004                                                                                                                                                                                    |                                                                                                |
| mg/L |                                                      | 0.005                                                                                 | 0.038                                                                                                                                                                                    |                                                                                                |
|      | mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L | DATE Unit G/S  mg/L  mg/L  mg/L  mg/L  mg/L  mg/L  mg/L  mg/L  mg/L  mg/L  mg/L  mg/L | mg/L     0.001       mg/L     0.001       mg/L     0.002       mg/L     0.001       mg/L     0.002       mg/L     0.001       mg/L     0.0001       mg/L     0.0001       mg/L     0.003 | Unit         DATE SAMPLED: G / S         8/20/2014           mg/L         0.001         <0.001 |

SAMPLE DESCRIPTION: F5-MN-MW-14

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard

CHARTERED BE MINISTER OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE ST



### **Quality Assurance**

CLIENT NAME: ARCADIS SENES CANADA INC(DCS)

PROJECT: 350600-515

AGAT WORK ORDER: 14T881255

ATTENTION TO: Steve Borcsok

SAMPLING SITE: SAMPLED BY:

|                              |            |              | Trac   | e Orç     | ganio | cs Ar           | nalysi            | S      |                 |          |           |                |          |           |                 |
|------------------------------|------------|--------------|--------|-----------|-------|-----------------|-------------------|--------|-----------------|----------|-----------|----------------|----------|-----------|-----------------|
| RPT Date: Sep 09, 2014       |            |              |        | DUPLICATE | E     |                 | REFEREN           | ICE MA | TERIAL          | METHOD   | BLANK     | SPIKE          | MAT      | RIX SPI   | KE              |
| PARAMETER                    | Batch      | Sample<br>Id | Dup #1 | Dup #2    | RPD   | Method<br>Blank | Measured<br>Value |        | eptable<br>nits | Recovery | 1 1 1 1 1 | ptable<br>nits | Recovery | 1 1 1 1 1 | eptable<br>mits |
|                              |            | la la        |        | .         |       |                 | value             | Lower  | Upper           |          | Lower     | Upper          | _        | Lower     | Upper           |
| O. Reg. 153(511) - PHCs F1 - | F4 (Water) |              |        |           |       |                 |                   |        |                 |          |           |                |          |           |                 |
| Benzene                      | 1          |              | < 0.20 | < 0.20    | 0.0%  | < 0.20          | 107%              | 50%    | 140%            | 118%     | 60%       | 130%           | 112%     | 50%       | 140%            |
| Toluene                      | 1          |              | < 0.20 | < 0.20    | 0.0%  | < 0.20          | 109%              | 50%    | 140%            | 118%     | 60%       | 130%           | 112%     | 50%       | 140%            |
| Ethylbenzene                 | 1          |              | < 0.10 | < 0.10    | 0.0%  | < 0.10          | 106%              | 50%    | 140%            | 118%     | 60%       | 130%           | 109%     | 50%       | 140%            |
| Xylene Mixture               | 1          |              | < 0.20 | < 0.20    | 0.0%  | < 0.20          | 105%              | 50%    | 140%            | 116%     | 60%       | 130%           | 111%     | 50%       | 140%            |
| F1 (C6 to C10)               | 1          |              | < 25   | < 25      | 0.0%  | < 25            | 87%               | 60%    | 140%            | 85%      | 60%       | 140%           | 89%      | 60%       | 140%            |
| F2 (C10 to C16)              | 1          |              | < 100  | < 100     | 0.0%  | < 100           | 104%              | 60%    | 140%            | 63%      | 60%       | 140%           | 98%      | 60%       | 140%            |
| F3 (C16 to C34)              | 1          |              | < 100  | < 100     | 0.0%  | < 100           | 104%              | 60%    | 140%            | 99%      | 60%       | 140%           | 102%     | 60%       | 140%            |
| F4 (C34 to C50)              | 1          |              | < 100  | < 100     | 0.0%  | < 100           | 84%               | 60%    | 140%            | 85%      | 60%       | 140%           | 102%     | 60%       | 140%            |
| PCBs (water)                 |            |              |        |           |       |                 |                   |        |                 |          |           |                |          |           |                 |
| PCBs                         | 1          |              | < 0.1  | < 0.1     | 0.0%  | < 0.1           | 95%               | 60%    | 140%            | 90%      | 60%       | 140%           | 100%     | 60%       | 140%            |

Certified By:

Juz



### **Quality Assurance**

CLIENT NAME: ARCADIS SENES CANADA INC(DCS)

PROJECT: 350600-515

AGAT WORK ORDER: 14T881255

ATTENTION TO: Steve Borcsok

SAMPLING SITE: SAMPLED BY:

|                        |                |           | Wate      | er Ar    | nalys           | is       |        |                 |          |       |                 |          |         |                 |
|------------------------|----------------|-----------|-----------|----------|-----------------|----------|--------|-----------------|----------|-------|-----------------|----------|---------|-----------------|
| RPT Date: Sep 09, 2014 |                | ı         | DUPLICATI | <b>=</b> |                 | REFEREN  | NCE MA | TERIAL          | METHOD   | BLANK | ( SPIKE         | MAT      | RIX SPI | KE              |
| PARAMETER              | Batch Samp     | le Dup #1 | Dup #2    | RPD      | Method<br>Blank | Measured |        | eptable<br>nits | Recovery | Lie   | eptable<br>nits | Recovery | 1 ::    | eptable<br>nits |
|                        | ld ld          |           |           |          |                 | Value    | Lower  | Upper           |          | Lower | Upper           |          | Lower   | Upper           |
| Metals Scan (Water)    |                |           |           |          |                 |          |        |                 |          |       |                 |          |         |                 |
| Arsenic                | 1              | 0.002     | 0.002     | 0.0%     | < 0.001         | 97%      | 90%    | 110%            | 105%     | 90%   | 110%            | 102%     | 70%     | 130%            |
| Cadmium                | 1              | < 0.001   | < 0.001   | 0.0%     | < 0.001         | 93%      | 90%    | 110%            | 102%     | 90%   | 110%            | 106%     | 70%     | 130%            |
| Chromium               | 1              | 0.003     | 0.003     | 0.0%     | < 0.002         | 100%     | 90%    | 110%            | 109%     | 90%   | 110%            | 106%     | 70%     | 130%            |
| Cobalt                 | 1              | < 0.001   | < 0.001   | 0.0%     | < 0.001         | 96%      | 90%    | 110%            | 102%     | 90%   | 110%            | 97%      | 70%     | 130%            |
| Copper                 | 1              | < 0.002   | < 0.002   | 0.0%     | < 0.002         | 104%     | 90%    | 110%            | 110%     | 90%   | 110%            | 108%     | 70%     | 130%            |
| Lead                   | 1              | < 0.001   | < 0.001   | 0.0%     | < 0.001         | 107%     | 90%    | 110%            | 110%     | 90%   | 110%            | 107%     | 70%     | 130%            |
| Mercury                | 5741349 574134 | 9 <0.0001 | <0.0001   | 0.0%     | < 0.0001        | 96%      | 90%    | 110%            | 105%     | 90%   | 110%            | 111%     | 80%     | 120%            |
| Nickel                 | 1              | < 0.003   | < 0.003   | 0.0%     | < 0.003         | 98%      | 90%    | 110%            | 105%     | 90%   | 110%            | 101%     | 70%     | 130%            |
| Zinc                   | 1              | 0.006     | 0.006     | 0.0%     | < 0.005         | 100%     | 90%    | 110%            | 107%     | 90%   | 110%            | 103%     | 70%     | 130%            |

CHARTERED BE ER MINORY & EDWARD OF CHEMIST OF CHEMIST OF CHEMIST OF CHEMIST OF CHEMIST OF CHEMIST OF CHEMIST OF CHEMIST OF CHEMIST OF CHEMIST OF CHEMIST OF CHEMIST OF CHEMIST OF CHEMIST OF CHEMIST OF CHEMIST OF CHEMIST OF CHEMIST OF CHEMIST OF CHEMIST OF CHEMIST OF CHEMIST OF CHEMIST OF CHEMIST OF CHEMIST OF CHEMIST OF CHEMIST OF CHEMIST OF CHEMIST OF CHEMIST OF CHEMIST OF CHEMIST OF CHEMIST OF CHEMIST OF CHEMIST OF CHEMIST OF CHEMIST OF CHEMIST OF CHEMIST OF CHEMIST OF CHEMIST OF CHEMIST OF CHEMIST OF CHEMIST OF CHEMIST OF CHEMIST OF CHEMIST OF CHEMIST OF CHEMIST OF CHEMIST OF CHEMIST OF CHEMIST OF CHEMIST OF CHEMIST OF CHEMIST OF CHEMIST OF CHEMIST OF CHEMIST OF CHEMIST OF CHEMIST OF CHEMIST OF CHEMIST OF CHEMIST OF CHEMIST OF CHEMIST OF CHEMIST OF CHEMIST OF CHEMIST OF CHEMIST OF CHEMIST OF CHEMIST OF CHEMIST OF CHEMIST OF CHEMIST OF CHEMIST OF CHEMIST OF CHEMIST OF CHEMIST OF CHEMIST OF CHEMIST OF CHEMIST OF CHEMIST OF CHEMIST OF CHEMIST OF CHEMIST OF CHEMIST OF CHEMIST OF CHEMIST OF CHEMIST OF CHEMIST OF CHEMIST OF CHEMIST OF CHEMIST OF CHEMIST OF CHEMIST OF CHEMIST OF CHEMIST OF CHEMIST OF CHEMIST OF CHEMIST OF CHEMIST OF CHEMIST OF CHEMIST OF CHEMIST OF CHEMIST OF CHEMIST OF CHEMIST OF CHEMIST OF CHEMIST OF CHEMIST OF CHEMIST OF CHEMIST OF CHEMIST OF CHEMIST OF CHEMIST OF CHEMIST OF CHEMIST OF CHEMIST OF CHEMIST OF CHEMIST OF CHEMIST OF CHEMIST OF CHEMIST OF CHEMIST OF CHEMIST OF CHEMIST OF CHEMIST OF CHEMIST OF CHEMIST OF CHEMIST OF CHEMIST OF CHEMIST OF CHEMIST OF CHEMIST OF CHEMIST OF CHEMIST OF CHEMIST OF CHEMIST OF CHEMIST OF CHEMIST OF CHEMIST OF CHEMIST OF CHEMIST OF CHEMIST OF CHEMIST OF CHEMIST OF CHEMIST OF CHEMIST OF CHEMIST OF CHEMIST OF CHEMIST OF CHEMIST OF CHEMIST OF CHEMIST OF CHEMIST OF CHEMIST OF CHEMIST OF CHEMIST OF CHEMIST OF CHEMIST OF CHEMIST OF CHEMIST OF CHEMIST OF CHEMIST OF CHEMIST OF CHEMIST OF CHEMIST OF CHEMIST OF CHEMIST OF CHEMIST OF CHEMIST OF CHEMIST OF CHEMIST OF CHEMIST OF CHEMIST OF CHEMIST OF CHEMIST OF CHEMIST OF CHEMIST OF CHEMIST OF CHEMIST OF CHEMIST OF CHEMIST O

Certified By:

### **Method Summary**

CLIENT NAME: ARCADIS SENES CANADA INC(DCS)

PROJECT: 350600-515

AGAT WORK ORDER: 14T881255

ATTENTION TO: Steve Borcsok

SAMPLING SITE: SAMPLED BY:

| SAMPLING SITE.                 |               | SAMPLED DT.              |                      |  |  |  |  |  |  |  |  |
|--------------------------------|---------------|--------------------------|----------------------|--|--|--|--|--|--|--|--|
| PARAMETER                      | AGAT S.O.P    | LITERATURE REFERENCE     | ANALYTICAL TECHNIQUE |  |  |  |  |  |  |  |  |
| Trace Organics Analysis        |               |                          | '                    |  |  |  |  |  |  |  |  |
| Benzene                        | VOL-91-5010   | MOE PHC-E3421            | (P&T)GC/FID          |  |  |  |  |  |  |  |  |
| Toluene                        | VOL-91-5010   | MOE PHC-E3421            | (P&T)GC/FID          |  |  |  |  |  |  |  |  |
| Ethylbenzene                   | VOL-91-5010   | MOE PHC-E3421            | (P&T)GC/FID          |  |  |  |  |  |  |  |  |
| Xylene Mixture                 | VOL-91-5010   | MOE PHC-E3421            | (P&T)GC/FID          |  |  |  |  |  |  |  |  |
| F1 (C6 to C10)                 | VOL-91-5010   | MOE PHC-E3421            | (P&T)GC/FID          |  |  |  |  |  |  |  |  |
| F1 (C6 to C10) minus BTEX      | VOL-91-5010   | MOE PHC-E3421            | (P&T)GC/FID          |  |  |  |  |  |  |  |  |
| F2 (C10 to C16)                | VOL-91-5010   | MOE PHC-E3421            | GC/FID               |  |  |  |  |  |  |  |  |
| F3 (C16 to C34)                | VOL-91-5010   | MOE PHC-E3421            | GC/FID               |  |  |  |  |  |  |  |  |
| F4 (C34 to C50)                | VOL -91- 5010 | MOE PHC-E3421            | GC/FID               |  |  |  |  |  |  |  |  |
| Gravimetric Heavy Hydrocarbons | VOL-91-5010   | MOE PHC-E3421            | BALANCE              |  |  |  |  |  |  |  |  |
| Terphenyl                      | VOL-91-5010   |                          | GC/FID               |  |  |  |  |  |  |  |  |
| PCBs                           | ORG-91-5112   | EPA SW-846 3510 & 8082   | GC/ECD               |  |  |  |  |  |  |  |  |
| Decachlorobiphenyl             | ORG-91-5112   | EPA SW-846 3510 & 8082   | GC/ECD               |  |  |  |  |  |  |  |  |
| Water Analysis                 |               |                          |                      |  |  |  |  |  |  |  |  |
| Arsenic                        | MET-93-6103   | EPA SW-846 6020A & 200.8 | ICP-MS               |  |  |  |  |  |  |  |  |
| Cadmium                        | MET-93-6103   | EPA SW-846 6020A & 200.8 | ICP-MS               |  |  |  |  |  |  |  |  |
| Chromium                       | MET-93-6103   | EPA SW-846 6020A & 200.8 | ICP-MS               |  |  |  |  |  |  |  |  |
| Cobalt                         | MET-93-6103   | EPA SW-846 6020A & 200.8 | ICP-MS               |  |  |  |  |  |  |  |  |
| Copper                         | MET-93-6103   | EPA SW-846 6020A & 200.8 | ICP-MS               |  |  |  |  |  |  |  |  |
| Lead                           | MET-93-6103   | EPA SW-846 6020A & 200.8 | ICP-MS               |  |  |  |  |  |  |  |  |
| Mercury                        | MET-93-6100   | EPA SW-846 7470 & 245.1  | CVAAS                |  |  |  |  |  |  |  |  |
| Nickel                         | MET-93-6103   | EPA SW-846 6020A & 200.8 | ICP-MS               |  |  |  |  |  |  |  |  |
| Zinc                           | MET-93-6103   | EPA SW-846 6020A & 200.8 | ICP-MS               |  |  |  |  |  |  |  |  |

121 Granton Drive, Unit 11, Richmond Hill, ON
Tel: (905) 882-5984 Fax: (905) 882-8962
Email: engineers@dcsltd.ca Website: www.dcsltd.ca

Med blee
Chain of Custody Record

58/43/4-0 Page of 1. 20 whet

| Relinquished By: | Relinquished By: | Relinquished By:                                               |   |  |  |  |        |   | FS-MN-MW    | Location/<br>Hole No.      |                  |               |                |                | Ship           | per     |                                   |                  |                  |
|------------------|------------------|----------------------------------------------------------------|---|--|--|--|--------|---|-------------|----------------------------|------------------|---------------|----------------|----------------|----------------|---------|-----------------------------------|------------------|------------------|
| ed By:           | ed By:           | ed By:                                                         |   |  |  |  |        |   | WM-1        | Sample<br>No.              | MIDL             |               | Quotat         | Requir         | Lab:           | Date:   | Field H                           | Projec           | Project No.:     |
|                  |                  |                                                                |   |  |  |  |        |   | -14         | Depth<br>(m)               | 1 0 IVIEEL       | 745           | Quotation No.: | Required Date: | ACAT           |         | ngineer/                          | Project Manager: | No.:             |
| Date:            | Date:            | Date:                                                          |   |  |  |  |        |   | GROUNDWATER | Description                |                  | SEC ATTACINES |                |                |                |         | Field Engineer/Techician: S. Borc | S. Borcsok       | 350600-515 Site: |
| Time:            | Time:            | Time:                                                          |   |  |  |  |        |   |             |                            |                  | 3             | •              | Turnaround:    | Location CHawa | Route:  | S. Borcsok/J. Mauchan             | sok              | Site: FOX-5      |
| Received By:     | Received By:     | Received By:                                                   |   |  |  |  |        |   |             | Label (                    |                  |               |                | E              | OHai           | Courier | uchan                             |                  | Broughten Island |
| d By:            | d By:            | By:                                                            |   |  |  |  |        |   |             | Grab/<br>Comp. (           |                  |               |                | STD D          | UG.            |         |                                   |                  | かなり              |
|                  | 236              | J. Bon                                                         |   |  |  |  |        |   | 20-Aug/14   | Date<br>Collected          |                  |               |                | _Day(s)        |                |         |                                   |                  | and              |
| La               | borato           | 7                                                              |   |  |  |  |        |   | X           | PHCs                       | F1               |               |                |                | 191            |         |                                   | **               | H,               |
|                  | _                | <u>ک</u> ک                                                     |   |  |  |  |        |   | X           | PHCs                       | s F2-F4          |               |                |                |                |         |                                   |                  |                  |
|                  |                  | Remarks:<br>ALL RES                                            |   |  |  |  |        |   | X           | PCBs                       | ;                |               |                |                |                |         |                                   |                  | Н                |
|                  |                  | ESUL                                                           |   |  |  |  |        |   | X           | Inorg                      | anic             | s: A          | s, Co          | l, Cr,         | Co, Cı         | ı, Pb,  | Ni, Zı                            | , Hg             | Ana              |
|                  |                  | TS A                                                           | Г |  |  |  |        |   |             |                            |                  |               |                |                |                |         |                                   |                  | lyse             |
|                  |                  | Æ TO                                                           |   |  |  |  |        |   | $\exists$   |                            |                  |               |                |                |                |         |                                   |                  | Analyses Req     |
|                  |                  | ) BE (                                                         | Н |  |  |  |        |   |             |                            |                  |               |                |                |                |         |                                   |                  | quested          |
|                  |                  | SENT                                                           |   |  |  |  |        |   |             |                            |                  |               |                |                |                |         |                                   |                  | ted              |
|                  |                  | тот                                                            | Т |  |  |  |        |   |             |                            |                  |               | _              |                |                |         |                                   |                  | 1                |
|                  |                  | на эн                                                          |   |  |  |  |        |   |             |                            |                  |               |                |                |                |         |                                   |                  |                  |
|                  |                  | OJEC                                                           |   |  |  |  | ****** |   |             | *                          |                  |               |                |                |                |         |                                   |                  |                  |
|                  |                  | TMA                                                            |   |  |  |  | _      | _ | $\dashv$    | _                          | L.               | l             |                |                |                |         |                                   |                  |                  |
|                  |                  | Remarks:<br>ALL RESULTS ARE TO BE SENT TO THE PROJECT MANAGER. |   |  |  |  |        |   |             | Electrical<br>Conductivity | Field Procedures |               |                |                |                |         |                                   |                  |                  |
|                  |                  |                                                                |   |  |  |  |        |   |             | Preservatives              | edures           |               |                |                |                |         |                                   |                  |                  |



Your Project #: 350600-515

Site Location: FOX-5 BROUGHTON ISLAND

Your C.O.C. #: na

### **Attention:Stephen Borcsok**

Decommissioning Consulting Services Limited 121 Granton Dr Unit 11 Richmond Hill, ON L4B 3N4

Report Date: 2014/09/02

Report #: R3142277

Version: 1

### **CERTIFICATE OF ANALYSIS**

MAXXAM JOB #: B4F4066 Received: 2014/08/25, 09:40

Sample Matrix: Water # Samples Received: 3

|                                          |          | Date       | Date       |                          |                   |
|------------------------------------------|----------|------------|------------|--------------------------|-------------------|
| Analyses                                 | Quantity | Extracted  | Analyzed   | <b>Laboratory Method</b> | Reference         |
| Petroleum Hydro. CCME F1 & BTEX in Water | 3        | N/A        | 2014/08/25 | OTT SOP-00002            | CCME CWS          |
| Petroleum Hydrocarbons F2-F4 in Water    | 3        | 2014/08/27 | 2014/08/28 | OTT SOP-00001            | CCME Hydrocarbons |
| Mercury (low level) (1)                  | 3        | 2014/08/27 | 2014/08/27 | CAM SOP-00453            | EPA 7470 m        |
| Polychlorinated Biphenyl in Water (1)    | 3        | 2014/08/26 | 2014/08/27 | CAM SOP-00309            | EPA 8082 m        |

<sup>\*</sup> RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

### **Encryption Key**

Please direct all questions regarding this Certificate of Analysis to your Project Manager.

Keshani Vijh, Project Manager Email: KVijh@maxxam.ca Phone# (613) 274-0573

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

<sup>(1)</sup> This test was performed by Maxxam Analytics Mississauga



**Decommissioning Consulting Services Limited** 

Client Project #: 350600-515

Site Location: FOX-5 BROUGHTON ISLAND

Sampler Initials: SB

## **ELEMENTS BY ATOMIC SPECTROSCOPY (WATER)**

| Maxxam ID           |       | XG6978      | XG6979      | XG6980      |      |          |
|---------------------|-------|-------------|-------------|-------------|------|----------|
| Sampling Date       |       | 2014/08/20  | 2014/08/20  | 2014/08/20  |      |          |
| COC Number          |       | na          | na          | na          |      |          |
|                     | Units | F5-MN-MW-13 | F5-MN-MW-14 | F5-SA-MW-19 | RDL  | QC Batch |
|                     |       |             |             |             |      |          |
| Metals              |       |             |             |             |      |          |
| Metals Mercury (Hg) | ug/L  | 0.01        | <0.01       | <0.01       | 0.01 | 3726373  |
|                     |       | 0.01        | <0.01       | <0.01       | 0.01 | 3726373  |



**Decommissioning Consulting Services Limited** 

Client Project #: 350600-515

Site Location: FOX-5 BROUGHTON ISLAND

Sampler Initials: SB

## PETROLEUM HYDROCARBONS (CCME)

| Maxxam ID                    |       | XG6978      | XG6979      | XG6980      |      |          |
|------------------------------|-------|-------------|-------------|-------------|------|----------|
| Sampling Date                |       | 2014/08/20  | 2014/08/20  | 2014/08/20  |      |          |
| COC Number                   |       | na          | na          | na          |      |          |
|                              | Units | F5-MN-MW-13 | F5-MN-MW-14 | F5-SA-MW-19 | RDL  | QC Batch |
| BTEX & F1 Hydrocarbons       |       |             |             |             |      |          |
| Benzene                      | ug/L  | <0.20       | <0.20       | <0.20       | 0.20 | 3724349  |
| Toluene                      | ug/L  | <0.20       | <0.20       | <0.20       | 0.20 | 3724349  |
| Ethylbenzene                 | ug/L  | <0.20       | <0.20       | <0.20       | 0.20 | 3724349  |
| o-Xylene                     | ug/L  | <0.20       | <0.20       | <0.20       | 0.20 | 3724349  |
| p+m-Xylene                   | ug/L  | <0.40       | <0.40       | <0.40       | 0.40 | 3724349  |
| Total Xylenes                | ug/L  | <0.40       | <0.40       | <0.40       | 0.40 | 3724349  |
| F1 (C6-C10)                  | ug/L  | <25         | <25         | <25         | 25   | 3724349  |
| F1 (C6-C10) - BTEX           | ug/L  | <25         | <25         | <25         | 25   | 3724349  |
| F2-F4 Hydrocarbons           |       |             |             |             |      |          |
| F2 (C10-C16 Hydrocarbons)    | ug/L  | <100        | <100        | <100        | 100  | 3726412  |
| F3 (C16-C34 Hydrocarbons)    | ug/L  | <100        | <100        | <100        | 100  | 3726412  |
| F4 (C34-C50 Hydrocarbons)    | ug/L  | <100        | <100        | <100        | 100  | 3726412  |
| Reached Baseline at C50      | ug/L  | Yes         | Yes         | Yes         |      | 3726412  |
| Surrogate Recovery (%)       | *     |             |             |             |      | •        |
| 1,4-Difluorobenzene          | %     | 110         | 111         | 110         |      | 3724349  |
| 4-Bromofluorobenzene         | %     | 85          | 88          | 88          |      | 3724349  |
| D10-Ethylbenzene             | %     | 80          | 89          | 93          |      | 3724349  |
| D4-1,2-Dichloroethane        | %     | 109         | 102         | 101         |      | 3724349  |
| o-Terphenyl                  | %     | 97          | 99          | 99          |      | 3726412  |
| RDL = Reportable Detection I | imit  |             |             |             | •    |          |
| QC Batch = Quality Control B | atch  |             |             |             |      |          |



**Decommissioning Consulting Services Limited** 

Client Project #: 350600-515

Site Location: FOX-5 BROUGHTON ISLAND

Sampler Initials: SB

## POLYCHLORINATED BIPHENYLS BY GC-ECD (WATER)

| Maxxam ID                     |       | XG6978      | XG6979      | XG6980      |      |          |
|-------------------------------|-------|-------------|-------------|-------------|------|----------|
|                               |       |             |             |             |      |          |
| Sampling Date                 |       | 2014/08/20  | 2014/08/20  | 2014/08/20  |      |          |
| COC Number                    |       | na          | na          | na          |      |          |
|                               | Units | F5-MN-MW-13 | F5-MN-MW-14 | F5-SA-MW-19 | RDL  | QC Batch |
| PCBs                          |       |             |             |             |      |          |
| Aroclor 1016                  | ug/L  | <0.05       | <0.05       | <0.05       | 0.05 | 3725649  |
| Aroclor 1221                  | ug/L  | <0.05       | <0.05       | <0.05       | 0.05 | 3725649  |
| Aroclor 1232                  | ug/L  | <0.05       | <0.05       | <0.05       | 0.05 | 3725649  |
| Aroclor 1242                  | ug/L  | <0.05       | <0.05       | <0.05       | 0.05 | 3725649  |
| Aroclor 1248                  | ug/L  | <0.05       | <0.05       | <0.05       | 0.05 | 3725649  |
| Aroclor 1254                  | ug/L  | <0.05       | <0.05       | <0.05       | 0.05 | 3725649  |
| Aroclor 1260                  | ug/L  | <0.05       | <0.05       | <0.05       | 0.05 | 3725649  |
| Aroclor 1262                  | ug/L  | <0.05       | <0.05       | <0.05       | 0.05 | 3725649  |
| Aroclor 1268                  | ug/L  | <0.05       | <0.05       | <0.05       | 0.05 | 3725649  |
| Total PCB                     | ug/L  | <0.05       | <0.05       | <0.05       | 0.05 | 3725649  |
| Surrogate Recovery (%)        |       |             |             |             |      |          |
| Decachlorobiphenyl            | %     | 70          | 74          | 73          |      | 3725649  |
| RDL = Reportable Detection L  | imit  |             |             |             | •    |          |
| QC Batch = Quality Control Ba | atch  |             |             |             |      |          |
| l                             |       |             |             |             |      |          |



**Decommissioning Consulting Services Limited** 

Client Project #: 350600-515

Site Location: FOX-5 BROUGHTON ISLAND

Sampler Initials: SB

## **GENERAL COMMENTS**

Results relate only to the items tested.



#### **QUALITY ASSURANCE REPORT**

Decommissioning Consulting Services Lir....

Client Project #: 350600-515

Site Location: FOX-5 BROUGHTON ISLAND

Sampler Initials: SB

|          |                           |            | Matrix     | Spike     | Spiked     | Blank     | Method | Blank | RP        | ,D        |
|----------|---------------------------|------------|------------|-----------|------------|-----------|--------|-------|-----------|-----------|
| QC Batch | Parameter                 | Date       | % Recovery | QC Limits | % Recovery | QC Limits | Value  | Units | Value (%) | QC Limits |
| 3724349  | 1,4-Difluorobenzene       | 2014/08/25 | 124        | 70 - 130  | 115        | 70 - 130  | 112    | %     |           |           |
| 3724349  | 4-Bromofluorobenzene      | 2014/08/25 | 94         | 70 - 130  | 91         | 70 - 130  | 86     | %     |           |           |
| 3724349  | D10-Ethylbenzene          | 2014/08/25 | 100        | 70 - 130  | 82         | 70 - 130  | 83     | %     |           |           |
| 3724349  | D4-1,2-Dichloroethane     | 2014/08/25 | 115        | 70 - 130  | 108        | 70 - 130  | 105    | %     |           |           |
| 3725649  | Decachlorobiphenyl        | 2014/08/27 | 83         | 60 - 130  | 77         | 60 - 130  | 78     | %     |           |           |
| 3726412  | o-Terphenyl               | 2014/08/27 | 104        | 30 - 130  | 101        | 30 - 130  | 94     | %     |           |           |
| 3724349  | Benzene                   | 2014/08/25 | 86         | 70 - 130  | 80         | 70 - 130  | <0.20  | ug/L  | NC        | 40        |
| 3724349  | Ethylbenzene              | 2014/08/25 | 85         | 70 - 130  | 76         | 70 - 130  | <0.20  | ug/L  | NC        | 40        |
| 3724349  | F1 (C6-C10) - BTEX        | 2014/08/25 |            |           |            |           | <25    | ug/L  | NC        | 40        |
| 3724349  | F1 (C6-C10)               | 2014/08/25 | 84         | 70 - 130  | 79         | 70 - 130  | <25    | ug/L  | NC        | 40        |
| 3724349  | o-Xylene                  | 2014/08/25 | 86         | 70 - 130  | 78         | 70 - 130  | <0.20  | ug/L  | NC        | 40        |
| 3724349  | p+m-Xylene                | 2014/08/25 | 83         | 70 - 130  | 75         | 70 - 130  | <0.40  | ug/L  | NC        | 40        |
| 3724349  | Toluene                   | 2014/08/25 | 76         | 70 - 130  | 73         | 70 - 130  | <0.20  | ug/L  | NC        | 40        |
| 3724349  | Total Xylenes             | 2014/08/25 |            |           |            |           | <0.40  | ug/L  | NC        | 40        |
| 3725649  | Aroclor 1016              | 2014/08/27 |            |           |            |           | <0.05  | ug/L  | NC        | 40        |
| 3725649  | Aroclor 1221              | 2014/08/27 |            |           |            |           | <0.05  | ug/L  | NC        | 40        |
| 3725649  | Aroclor 1232              | 2014/08/27 |            |           |            |           | <0.05  | ug/L  | NC        | 40        |
| 3725649  | Aroclor 1242              | 2014/08/27 |            |           |            |           | <0.05  | ug/L  | NC        | 30        |
| 3725649  | Aroclor 1248              | 2014/08/27 |            |           |            |           | <0.05  | ug/L  | NC        | 30        |
| 3725649  | Aroclor 1254              | 2014/08/27 |            |           |            |           | <0.05  | ug/L  | NC        | 30        |
| 3725649  | Aroclor 1260              | 2014/08/27 | 78         | 60 - 130  | 68         | 60 - 130  | <0.05  | ug/L  | NC        | 30        |
| 3725649  | Aroclor 1262              | 2014/08/27 |            |           |            |           | <0.05  | ug/L  | NC        | 40        |
| 3725649  | Aroclor 1268              | 2014/08/27 |            |           |            |           | <0.05  | ug/L  | NC        | 40        |
| 3725649  | Total PCB                 | 2014/08/27 | 78         | 60 - 130  | 68         | 60 - 130  | <0.05  | ug/L  | NC        | 40        |
| 3726373  | Mercury (Hg)              | 2014/08/27 | 102        | 75 - 125  | 100        | 80 - 120  | <0.01  | ug/L  | NC        | 20        |
| 3726412  | F2 (C10-C16 Hydrocarbons) | 2014/08/28 | 86         | 50 - 130  | 85         | 60 - 130  | <100   | ug/L  | NC        | 50        |
| 3726412  | F3 (C16-C34 Hydrocarbons) | 2014/08/28 | 86         | 50 - 130  | 85         | 60 - 130  | <100   | ug/L  | NC        | 50        |
| 3726412  | F4 (C34-C50 Hydrocarbons) | 2014/08/28 | 86         | 50 - 130  | 85         | 60 - 130  | <100   | ug/L  | NC        | 50        |

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.



## QUALITY ASSURANCE REPORT(CONT'D)

Decommissioning Consulting Services Lir....

Client Project #: 350600-515

Site Location: FOX-5 BROUGHTON ISLAND

Sampler Initials: SB

|                    |      | Matrix     | Spike     | Spiked     | Blank     | Method | Blank | RP        | D         |
|--------------------|------|------------|-----------|------------|-----------|--------|-------|-----------|-----------|
| QC Batch Parameter | Date | % Recovery | QC Limits | % Recovery | QC Limits | Value  | Units | Value (%) | QC Limits |

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (one or both samples < 5x RDL).



**Decommissioning Consulting Services Limited** 

Client Project #: 350600-515

Site Location: FOX-5 BROUGHTON ISLAND

Sampler Initials: SB

## **VALIDATION SIGNATURE PAGE**

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

Brad Newman, Scientific Specialist

Steve Roberts, Lab Supervisor, Ottawa

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

## **Chain of Custody Record**

Page /\_ of \_\_.

121 Granton Drive, Unit 11, Richmond Hill, ON Tel: (905) 882-5984 Fax: (905) 882-8962 Email: engineers@dcsltd.ca Website: www.dcsltd.ca

| 1                     | Project              | No.:              | 350600-515 Site | FOX-5                      | Brou         | ighton.        | Island                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            | A-1-0      | 1              | Analy                     | ses Requ | ested      |          | -on    | TCC POCIHOSI               | 25                   |
|-----------------------|----------------------|-------------------|-----------------|----------------------------|--------------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|------------|----------------|---------------------------|----------|------------|----------|--------|----------------------------|----------------------|
| Shipper               | Field E  Date:  Lab: | MAXXA             | S. Boro         | csok/J. Ma Route: Location | Courie       | 2WG            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |            |                | r, Co, Cu, Pb, Ni, Zn, Hg |          |            |          |        | REC'D IN                   | os<br>Dice<br>OTTAWA |
|                       | Quotati              | ion No.:          | SEE ATTACH      |                            | ound:        | STD            | Day(s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | F1         | PHCs F2-F4 |                | mics: As, Cd, Cr,         |          |            |          |        | Field Proc                 | edures               |
| Location/<br>Hole No. | Sample<br>No.        | Depth<br>(m)      | Description     |                            | Label<br>No. | Grab/<br>Comp. | Common Name of the Common Name of the Common Name of the Common Name of the Common Name of the Common Name of the Common Name of the Common Name of the Common Name of the Common Name of the Common Name of the Common Name of the Common Name of the Common Name of the Common Name of the Common Name of the Common Name of the Common Name of the Common Name of the Common Name of the Common Name of the Common Name of the Common Name of the Common Name of the Common Name of the Common Name of the Common Name of the Common Name of the Common Name of the Common Name of the Common Name of the Common Name of the Common Name of the Common Name of the Common Name of the Common Name of the Common Name of the Common Name of the Common Name of the Common Name of the Common Name of the Common Name of the Common Name of the Common Name of the Common Name of the Common Name of the Common Name of the Common Name of the Common Name of the Common Name of the Common Name of the Common Name of the Common Name of the Common Name of the Common Name of the Common Name of the Common Name of the Common Name of the Common Name of the Common Name of the Common Name of the Common Name of the Common Name of the Common Name of the Common Name of the Common Name of the Common Name of the Common Name of the Common Name of the Common Name of the Common Name of the Common Name of the Common Name of the Common Name of the Common Name of the Common Name of the Common Name of the Common Name of the Common Name of the Common Name of the Common Name of the Common Name of the Common Name of the Common Name of the Common Name of the Common Name of the Common Name of the Common Name of the Common Name of the Common Name of the Common Name of the Common Name of the Common Name of the Common Name of the Common Name of the Common Name of the Common Name of the Common Name of the Common Name of the Common Name of the Common Name of the Common Name of the Common Name of the Common Name of the Common Name of the Common Name of the Common Name of the Common Name o | PHCs F1    | PHCs       | PCBs           | Inorganics:               |          |            |          | pН     | Electrical<br>Conductivity | Preservatives        |
| F5-MN                 | -                    | The second second | GROUNDWATER     |                            |              |                | 20/Aus/14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -          | X          | X              | X                         |          |            |          |        |                            |                      |
| F5-MN                 |                      | 14                | GROUNDWATER     |                            |              |                | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | X          | X          | X              | X                         |          | 71         |          |        |                            |                      |
| F5-SA                 |                      |                   | GROUNDWATER     |                            |              |                | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | X          | X          | X              | X                         |          |            |          |        | 7,115                      |                      |
|                       |                      |                   |                 |                            |              |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |            |                |                           |          |            |          |        |                            | 11.1                 |
| -                     |                      |                   |                 |                            |              |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |            |                |                           | in i     |            |          |        |                            |                      |
|                       |                      |                   |                 |                            |              |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |            |                |                           |          |            | n 1      |        | 25-A                       | ug-14 09:40          |
|                       |                      | Title T           |                 |                            |              |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |            |                |                           |          |            |          |        | Keshani Vij                |                      |
|                       |                      |                   |                 |                            |              |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |            |                |                           |          |            |          |        | B4F4066                    |                      |
| E                     |                      |                   |                 |                            |              |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |            |                |                           |          |            |          |        | KP2                        | OTT-001              |
| Relinquish            | ned By:              |                   | Date:           | Time:                      | Recei        | ved By:        | 2014/08/25<br>9:40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ry.        |            | emark<br>LL RI |                           | S ARE TO | BE SENT TO | O THE PI | ROJECT | MANAGER.                   |                      |
| Relinquish            | ned By:              |                   | Date:           | Time:                      | Recef        | ved By:        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Laboratory |            |                |                           |          |            |          |        |                            |                      |
| Relinquish            | ned By:              | . 75              | Date:           | Time:                      | Recei        | ved By:        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | F          |            |                |                           |          |            |          |        |                            |                      |

Project No. and Date

(Revision 1 - 17 May 2012)



Your Project #: MB4F4066 Your C.O.C. #: 1 OF 1

Attention: SUB CONTRACTOR
MAXXAM ANALYTICS
CAMPOBELLO
6740 CAMPOBELLO ROAD
MISSISSAUGA, ON
CANADA L5N 2L8

Report Date: 2014/09/02 Report #: R1634209

Version: 2R

## CERTIFICATE OF ANALYSIS - REVISED REPORT

MAXXAM JOB #: B474706 Received: 2014/08/26, 08:30

Sample Matrix: Water # Samples Received: 3

|                                  |          | Date       | Date       |                   |                   |
|----------------------------------|----------|------------|------------|-------------------|-------------------|
| Analyses                         | Quantity | Extracted  | Analyzed   | Laboratory Method | Analytical Method |
| Cadmium - low level CCME (Total) | 3        | 2014/08/27 | 2014/08/29 | AB SOP-00014 / AB | EPA 200.8 R5.4 m  |
|                                  |          |            |            | SOP-00043         |                   |
| Elements by ICPMS - Total        | 3        | 2014/08/28 | 2014/08/28 | AB SOP-00014 / AB | EPA 200.8 R5.4 m  |
|                                  |          |            |            | SOP-00043         |                   |

<sup>\*</sup> RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

#### **Encryption Key**

Please direct all questions regarding this Certificate of Analysis to your Project Manager.

Joyce Kimani, Project Manager Assistant Email: JKimani@maxxam.ca Phone# (403) 291-3077

\_\_\_\_\_

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.



MAXXAM ANALYTICS Client Project #: MB4F4066

## **RESULTS OF CHEMICAL ANALYSES OF WATER**

| Maxxam ID Sampling Date |       | KL0785<br>2014/08/21        | KL0786<br>2014/08/21        | KL0787<br>2014/08/21        |     |          |
|-------------------------|-------|-----------------------------|-----------------------------|-----------------------------|-----|----------|
| Sampling Date           |       | 13:00                       | 13:00                       | 13:00                       |     |          |
| COC Number              |       | 1 OF 1                      | 1 OF 1                      | 1 OF 1                      |     |          |
|                         | UNITS | F5-MN-MW-13<br>(XG6978-05R) | F5-MN-MW-14<br>(XG6979-05R) | F5-SA-MW-19<br>(XG6980-05R) | RDL | QC Batch |

| Low Level Elements |      |       |       |       |       |         |
|--------------------|------|-------|-------|-------|-------|---------|
| Total Cadmium (Cd) | ug/L | 0.044 | 0.020 | 0.080 | 0.020 | 7616308 |
|                    |      | •     |       | -     |       |         |

RDL = Reportable Detection Limit



MAXXAM ANALYTICS Client Project #: MB4F4066

# ELEMENTS BY ATOMIC SPECTROSCOPY (WATER)

|               | UNITS | F5-MN-MW-13<br>(XG6978-05R) | F5-MN-MW-14<br>(XG6979-05R) | F5-SA-MW-19<br>(XG6980-05R) | RDL | QC Batch |
|---------------|-------|-----------------------------|-----------------------------|-----------------------------|-----|----------|
| COC Number    |       | 1 OF 1                      | 1 OF 1                      | 1 OF 1                      |     |          |
|               |       | 13:00                       | 13:00                       | 13:00                       |     |          |
| Sampling Date |       | 2014/08/21                  | 2014/08/21                  | 2014/08/21                  |     |          |
| Maxxam ID     |       | KL0785                      | KL0786                      | KL0787                      |     |          |

| Elements            |      |        |         |        |         |         |
|---------------------|------|--------|---------|--------|---------|---------|
| Total Arsenic (As)  | mg/L | 0.0014 | 0.00072 | 0.0028 | 0.00020 | 7618345 |
| Total Chromium (Cr) | mg/L | 0.034  | 0.022   | 0.040  | 0.0010  | 7618345 |
| Total Cobalt (Co)   | mg/L | 0.0029 | 0.0011  | 0.0066 | 0.00030 | 7618345 |
| Total Copper (Cu)   | mg/L | 0.015  | 0.0047  | 0.022  | 0.00020 | 7618345 |
| Total Lead (Pb)     | mg/L | 0.0053 | 0.0022  | 0.0075 | 0.00020 | 7618345 |
| Total Nickel (Ni)   | mg/L | 0.014  | 0.0091  | 0.017  | 0.00050 | 7618345 |
| Total Zinc (Zn)     | mg/L | 0.22   | 0.058   | 0.11   | 0.0030  | 7618345 |

RDL = Reportable Detection Limit



## MAXXAM ANALYTICS Client Project #: MB4F4066

Package 1 2.3°C

Each temperature is the average of up to three cooler temperatures taken at receipt

**General Comments** 

Results relate only to the items tested.



P.O. #: Site Location:

#### Quality Assurance Report Maxxam Job Number: CB474706

| QA/QC       |              |                     | Date       |           |          |       |           |
|-------------|--------------|---------------------|------------|-----------|----------|-------|-----------|
| Batch       |              |                     | Analyzed   |           |          |       |           |
| Num Init    | QC Type      | Parameter           | yyyy/mm/dd | Value     | Recovery | UNITS | QC Limits |
| 7618345 HC7 | Matrix Spike | Total Arsenic (As)  | 2014/08/28 |           | 113      | %     | 80 - 120  |
|             |              | Total Chromium (Cr) | 2014/08/28 |           | 111      | %     | 80 - 120  |
|             |              | Total Cobalt (Co)   | 2014/08/28 |           | 113      | %     | 80 - 120  |
|             |              | Total Copper (Cu)   | 2014/08/28 |           | 111      | %     | 80 - 120  |
|             |              | Total Lead (Pb)     | 2014/08/28 |           | 120      | %     | 80 - 120  |
|             |              | Total Nickel (Ni)   | 2014/08/28 |           | 109      | %     | 80 - 120  |
|             |              | Total Zinc (Zn)     | 2014/08/28 |           | 110      | %     | 80 - 120  |
|             | Spiked Blank | Total Arsenic (As)  | 2014/08/29 |           | 106      | %     | 80 - 120  |
|             |              | Total Chromium (Cr) | 2014/08/29 |           | 103      | %     | 80 - 120  |
|             |              | Total Cobalt (Co)   | 2014/08/29 |           | 106      | %     | 80 - 120  |
|             |              | Total Copper (Cu)   | 2014/08/29 |           | 104      | %     | 80 - 120  |
|             |              | Total Lead (Pb)     | 2014/08/29 |           | 101      | %     | 80 - 120  |
|             |              | Total Nickel (Ni)   | 2014/08/29 |           | 100      | %     | 80 - 120  |
|             |              | Total Zinc (Zn)     | 2014/08/29 |           | 104      | %     | 80 - 120  |
|             | Method Blank | Total Arsenic (As)  | 2014/08/28 | < 0.00020 |          | mg/L  |           |
|             |              | Total Chromium (Cr) | 2014/08/28 | < 0.0010  |          | mg/L  |           |
|             |              | Total Cobalt (Co)   | 2014/08/28 | < 0.00030 |          | mg/L  |           |
|             |              | Total Copper (Cu)   | 2014/08/28 | < 0.00020 |          | mg/L  |           |
|             |              | Total Lead (Pb)     | 2014/08/28 | < 0.00020 |          | mg/L  |           |
|             |              | Total Nickel (Ni)   | 2014/08/28 | < 0.00050 |          | mg/L  |           |
|             |              | Total Zinc (Zn)     | 2014/08/28 | < 0.0030  |          | mg/L  |           |
|             | RPD          | Total Arsenic (As)  | 2014/08/28 | NC        |          | %     | 20        |

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (one or both samples < 5x RDL).



## Validation Signature Page

| Maxxam Job #: | B474706 |
|---------------|---------|
|---------------|---------|

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

Michelle Fritz Gatehouse, Senior Analyst

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.



Your Project #: MB4F3737 Your C.O.C. #: 1 OF 1

Attention: SUB CONTRACTOR
MAXXAM ANALYTICS
CAMPOBELLO
6740 CAMPOBELLO ROAD
MISSISSAUGA, ON
CANADA L5N 2L8

Report Date: 2014/09/02 Report #: R1634306

Version: 1

## **CERTIFICATE OF ANALYSIS**

MAXXAM JOB #: B475115 Received: 2014/08/27, 08:30

Sample Matrix: Water # Samples Received: 5

|                                  |          | Date       | Date                                         |
|----------------------------------|----------|------------|----------------------------------------------|
| Analyses                         | Quantity | Extracted  | Analyzed Laboratory Method Analytical Method |
| Cadmium - low level CCME (Total) | 4        | 2014/08/27 | 2014/08/30 AB SOP-00014 / AB                 |
|                                  |          |            | SOP-00043                                    |
| Cadmium - low level CCME (Total) | 1        | 2014/08/27 | 2014/09/02 AB SOP-00014 / AB                 |
| , ,                              |          |            | SOP-00043                                    |
| Elements by ICP - Total          | 5        | 2014/08/29 | 2014/08/29 AB SOP-00014 / AB                 |
| •                                |          |            | SOP-00042                                    |
| Elements by ICPMS - Total        | 5        | 2014/08/29 | 2014/08/29 AB SOP-00014 / AB                 |
| •                                |          |            | SOP-00043                                    |

<sup>\*</sup> RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

#### **Encryption Key**

Please direct all questions regarding this Certificate of Analysis to your Project Manager.

Cynny Hagen, Project Manager Assistant Email: CHagen@maxxam.ca Phone# (403) 291-3077 Ext:5601

\_\_\_\_\_

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.



MAXXAM ANALYTICS Client Project #: MB4F3737

## **REGULATED METALS (CCME/AT1) - TOTAL**

|               | UNITS |            | -          | F5-MID-MW-9(XG4892-03) | RDL | QC Batch |
|---------------|-------|------------|------------|------------------------|-----|----------|
| COC Number    |       | 1 OF 1     | 1 OF 1     | 1 OF 1                 |     |          |
| Sampling Date |       | 2014/08/19 | 2014/08/19 | 2014/08/19             |     |          |
| Maxxam ID     |       | KL3471     | KL3472     | KL3473                 |     |          |

| Low Level Elements    |      |          |          |          |         |         |
|-----------------------|------|----------|----------|----------|---------|---------|
| Total Cadmium (Cd)    | ug/L | 0.041    | 0.024    | 0.028    | 0.020   | 7616308 |
| Elements              |      |          |          |          |         |         |
| Total Aluminum (Al)   | mg/L | 9.0      | 6.0      | 5.5      | 0.0030  | 7619601 |
| Total Antimony (Sb)   | mg/L | 0.00061  | <0.00060 | <0.00060 | 0.00060 | 7619601 |
| Total Arsenic (As)    | mg/L | 0.00081  | 0.00070  | 0.00076  | 0.00020 | 7619601 |
| Total Barium (Ba)     | mg/L | 0.047    | 0.039    | 0.043    | 0.010   | 7619604 |
| Total Beryllium (Be)  | mg/L | <0.0010  | <0.0010  | <0.0010  | 0.0010  | 7619601 |
| Total Boron (B)       | mg/L | <0.020   | <0.020   | <0.020   | 0.020   | 7619604 |
| Total Calcium (Ca)    | mg/L | 1.8      | 1.3      | 1.6      | 0.30    | 7619604 |
| Total Chromium (Cr)   | mg/L | 0.036    | 0.020    | 0.036    | 0.0010  | 7619601 |
| Total Cobalt (Co)     | mg/L | 0.0022   | 0.0019   | 0.0019   | 0.00030 | 7619601 |
| Total Copper (Cu)     | mg/L | 0.0087   | 0.0044   | 0.014    | 0.00020 | 7619601 |
| Total Iron (Fe)       | mg/L | 7.1      | 5.9      | 4.9      | 0.060   | 7619604 |
| Total Lead (Pb)       | mg/L | 0.0036   | 0.0023   | 0.0031   | 0.00020 | 7619601 |
| Total Lithium (Li)    | mg/L | <0.020   | <0.020   | <0.020   | 0.020   | 7619604 |
| Total Magnesium (Mg)  | mg/L | 2.0      | 1.7      | 1.0      | 0.20    | 7619604 |
| Total Manganese (Mn)  | mg/L | 0.11     | 0.048    | 0.049    | 0.0040  | 7619604 |
| Total Molybdenum (Mo) | mg/L | 0.0013   | 0.00077  | 0.0012   | 0.00020 | 7619601 |
| Total Nickel (Ni)     | mg/L | 0.021    | 0.012    | 0.023    | 0.00050 | 7619601 |
| Total Phosphorus (P)  | mg/L | 0.20     | 0.18     | 0.17     | 0.10    | 7619604 |
| Total Potassium (K)   | mg/L | 1.6      | 1.6      | 1.5      | 0.30    | 7619604 |
| Total Selenium (Se)   | mg/L | 0.00022  | <0.00020 | <0.00020 | 0.00020 | 7619601 |
| Total Silicon (Si)    | mg/L | 8.5      | 6.6      | 5.9      | 0.10    | 7619604 |
| Total Silver (Ag)     | mg/L | <0.00010 | <0.00010 | <0.00010 | 0.00010 | 7619601 |
| Total Sodium (Na)     | mg/L | 4.7      | 3.9      | 3.5      | 0.50    | 7619604 |
| Total Strontium (Sr)  | mg/L | <0.020   | <0.020   | <0.020   | 0.020   | 7619604 |
| Total Sulphur (S)     | mg/L | 0.26     | 0.35     | 0.35     | 0.20    | 7619604 |
| Total Thallium (TI)   | mg/L | <0.00020 | <0.00020 | <0.00020 | 0.00020 | 7619601 |
| Total Tin (Sn)        | mg/L | 0.0010   | <0.0010  | 0.0010   | 0.0010  | 7619601 |
| Total Titanium (Ti)   | mg/L | 0.61     | 0.63     | 0.41     | 0.0010  | 7619601 |
| Total Uranium (U)     | mg/L | 0.00084  | 0.00079  | 0.00077  | 0.00010 | 7619601 |
| Total Vanadium (V)    | mg/L | 0.013    | 0.012    | 0.0077   | 0.0010  | 7619601 |
| Total Zinc (Zn)       | mg/L | 0.028    | 0.037    | 0.064    | 0.0030  | 7619601 |

RDL = Reportable Detection Limit



MAXXAM ANALYTICS Client Project #: MB4F3737

## **REGULATED METALS (CCME/AT1) - TOTAL**

| Maxxam ID     |       | KL3474                  |     | KL3475                  |     |          |
|---------------|-------|-------------------------|-----|-------------------------|-----|----------|
| Sampling Date |       | 2014/08/19              |     | 2014/08/19              |     |          |
| COC Number    |       | 1 OF 1                  |     | 1 OF 1                  |     |          |
|               | UNITS | F5-MID-MW-15(XG4893-03) | RDL | F5-MID-MW-16(XG4894-03) | RDL | QC Batch |

| Low Level Elements    |      |          |         |          |         |         |
|-----------------------|------|----------|---------|----------|---------|---------|
| Total Cadmium (Cd)    | ug/L | <0.020   | 0.020   | 0.79     | 0.020   | 7616308 |
| Elements              |      |          |         |          |         |         |
| Total Aluminum (Al)   | mg/L | 0.32     | 0.0030  | 31       | 0.0030  | 7619601 |
| Total Antimony (Sb)   | mg/L | <0.00060 | 0.00060 | <0.00060 | 0.00060 | 7619601 |
| Total Arsenic (As)    | mg/L | <0.00020 | 0.00020 | 0.0037   | 0.00020 | 7619601 |
| Total Barium (Ba)     | mg/L | <0.010   | 0.010   | 0.21     | 0.010   | 7619604 |
| Total Beryllium (Be)  | mg/L | <0.0010  | 0.0010  | 0.0015   | 0.0010  | 7619601 |
| Total Boron (B)       | mg/L | <0.020   | 0.020   | 0.066    | 0.020   | 7619604 |
| Total Calcium (Ca)    | mg/L | 1.1      | 0.30    | 6.1      | 0.30    | 7619604 |
| Total Chromium (Cr)   | mg/L | 0.018    | 0.0010  | 0.052    | 0.0010  | 7619601 |
| Total Cobalt (Co)     | mg/L | 0.00031  | 0.00030 | 0.0086   | 0.00030 | 7619601 |
| Total Copper (Cu)     | mg/L | 0.0011   | 0.00020 | 0.041    | 0.00020 | 7619601 |
| Total Iron (Fe)       | mg/L | 0.35     | 0.060   | 29       | 0.060   | 7619604 |
| Total Lead (Pb)       | mg/L | 0.00022  | 0.00020 | 0.022    | 0.00020 | 7619601 |
| Total Lithium (Li)    | mg/L | <0.020   | 0.020   | 0.036    | 0.020   | 7619604 |
| Total Magnesium (Mg)  | mg/L | 0.43     | 0.20    | 6.5      | 0.20    | 7619604 |
| Total Manganese (Mn)  | mg/L | 0.022    | 0.0040  | 0.44     | 0.0040  | 7619604 |
| Total Molybdenum (Mo) | mg/L | 0.00033  | 0.00020 | 0.0021   | 0.00020 | 7619601 |
| Total Nickel (Ni)     | mg/L | 0.0090   | 0.00050 | 0.020    | 0.00050 | 7619601 |
| Total Phosphorus (P)  | mg/L | <0.10    | 0.10    | 1.1      | 0.10    | 7619604 |
| Total Potassium (K)   | mg/L | 0.31     | 0.30    | 8.0      | 0.30    | 7619604 |
| Total Selenium (Se)   | mg/L | <0.00020 | 0.00020 | 0.00071  | 0.00020 | 7619601 |
| Total Silicon (Si)    | mg/L | 2.3      | 0.10    | 27       | 0.10    | 7619604 |
| Total Silver (Ag)     | mg/L | <0.00010 | 0.00010 | 0.00010  | 0.00010 | 7619601 |
| Total Sodium (Na)     | mg/L | 4.3      | 0.50    | 15       | 0.50    | 7619604 |
| Total Strontium (Sr)  | mg/L | <0.020   | 0.020   | 0.031    | 0.020   | 7619604 |
| Total Sulphur (S)     | mg/L | 1.2      | 0.20    | 1.9      | 0.20    | 7619604 |
| Total Thallium (TI)   | mg/L | <0.00020 | 0.00020 | 0.00072  | 0.00020 | 7619601 |
| Total Tin (Sn)        | mg/L | <0.0010  | 0.0010  | 0.0021   | 0.0010  | 7619601 |
| Total Titanium (Ti)   | mg/L | 0.034    | 0.0010  | 3.3 (1)  | 0.0025  | 7619601 |
| Total Uranium (U)     | mg/L | <0.00010 | 0.00010 | 0.0040   | 0.00010 | 7619601 |
| Total Vanadium (V)    | mg/L | <0.0010  | 0.0010  | 0.061    | 0.0010  | 7619601 |

RDL = Reportable Detection Limit

<sup>(1)</sup> Detection limits raised due to dilution to bring analyte within the calibrated range.



MAXXAM ANALYTICS Client Project #: MB4F3737

## REGULATED METALS (CCME/AT1) - TOTAL

| Maxxam ID     |       | KL3474                  |     | KL3475                  |     |          |
|---------------|-------|-------------------------|-----|-------------------------|-----|----------|
| Sampling Date |       | 2014/08/19              |     | 2014/08/19              |     |          |
| COC Number    |       | 1 OF 1                  |     | 1 OF 1                  |     |          |
|               | UNITS | F5-MID-MW-15(XG4893-03) | RDL | F5-MID-MW-16(XG4894-03) | RDL | QC Batch |

| Total Zinc (Zn)         | mg/L      | 0.020 | 0.0030 | 0.37 | 0.0030 | 7619601 |
|-------------------------|-----------|-------|--------|------|--------|---------|
| RDL = Reportable Detect | ion Limit |       |        |      |        |         |



MAXXAM ANALYTICS Client Project #: MB4F3737

Package 1 -1.0°C

Each temperature is the average of up to three cooler temperatures taken at receipt

**General Comments** 

Results relate only to the items tested.



P.O. #: Site Location:

## Quality Assurance Report Maxxam Job Number: CB475115

| QA/QC Batch Num Init QC Typ 7619601 HC7 Matrix |                                       | Analyzed<br>yyyy/mm/dd |           |           |       |                      |
|------------------------------------------------|---------------------------------------|------------------------|-----------|-----------|-------|----------------------|
|                                                |                                       | \aaa/mm/dd             |           |           |       |                      |
| 7619601 HC7 Matrix                             |                                       | yyyy/iiiii/uu          | Value     | Recovery  | UNITS | QC Limits            |
|                                                | Spike Total Aluminum (Al)             | 2014/08/29             |           | NC        | %     | 80 - 120             |
|                                                | Total Antimony (Sb)                   | 2014/08/29             |           | 98        | %     | 80 - 120             |
|                                                | Total Arsenic (As)                    | 2014/08/29             |           | 97        | %     | 80 - 120             |
|                                                | Total Beryllium (Be)                  | 2014/08/29             |           | 108       | %     | 80 - 120             |
|                                                | Total Chromium (Cr)                   | 2014/08/29             |           | 94        | %     | 80 - 120             |
|                                                | Total Cobalt (Co)                     | 2014/08/29             |           | 93        | %     | 80 - 120             |
|                                                | Total Copper (Cu)                     | 2014/08/29             |           | 90        | %     | 80 - 120             |
|                                                | Total Lead (Pb)                       | 2014/08/29             |           | 92        | %     | 80 - 120             |
|                                                | Total Molybdenum (Mo)                 | 2014/08/29             |           | 111       | %     | 80 - 120             |
|                                                | Total Nickel (Ni)                     | 2014/08/29             |           | 88        | %     | 80 - 120             |
|                                                | Total Selenium (Se)                   | 2014/08/29             |           | 97        | %     | 80 - 120             |
|                                                | Total Silver (Ag)                     | 2014/08/29             |           | 91        | %     | 80 - 120             |
|                                                | Total Thallium (TI)                   | 2014/08/29             |           | 92        | %     | 80 - 120             |
|                                                | Total Tin (Sn)                        | 2014/08/29             |           | 107       | %     | 80 - 120             |
|                                                | Total Titanium (Ti)                   | 2014/08/29             |           | 89        | %     | 80 - 120             |
|                                                | Total Uranium (U)                     | 2014/08/29             |           | 99        | %     | 80 - 120             |
|                                                | Total Vanadium (V)                    | 2014/08/29             |           | 103       | %     | 80 - 120             |
|                                                | Total Variation (V)  Total Zinc (Zn)  | 2014/08/29             |           | NC        | %     | 80 - 120             |
| Spiked                                         |                                       | 2014/08/29             |           | 118       | %     | 80 - 120             |
| Spikeu                                         | ` ,                                   |                        |           | 99        |       | 80 - 120<br>80 - 120 |
|                                                | Total Arragia (As)                    | 2014/08/29             |           |           | %     |                      |
|                                                | Total Arsenic (As)                    | 2014/08/29             |           | 99        | %     | 80 - 120             |
|                                                | Total Beryllium (Be)                  | 2014/08/29             |           | 104       | %     | 80 - 120             |
|                                                | Total Chromium (Cr)                   | 2014/08/29             |           | 97        | %     | 80 - 120             |
|                                                | Total Cobalt (Co)                     | 2014/08/29             |           | 98        | %     | 80 - 120             |
|                                                | Total Copper (Cu)                     | 2014/08/29             |           | 100       | %     | 80 - 120             |
|                                                | Total Lead (Pb)                       | 2014/08/29             |           | 101       | %     | 80 - 120             |
|                                                | Total Molybdenum (Mo)                 | 2014/08/29             |           | 105       | %     | 80 - 120             |
|                                                | Total Nickel (Ni)                     | 2014/08/29             |           | 97        | %     | 80 - 120             |
|                                                | Total Selenium (Se)                   | 2014/08/29             |           | 100       | %     | 80 - 120             |
|                                                | Total Silver (Ag)                     | 2014/08/29             |           | 96        | %     | 80 - 120             |
|                                                | Total Thallium (TI)                   | 2014/08/29             |           | 98        | %     | 80 - 120             |
|                                                | Total Tin (Sn)                        | 2014/08/29             |           | 104       | %     | 80 - 120             |
|                                                | Total Titanium (Ti)                   | 2014/08/29             |           | 94        | %     | 80 - 120             |
|                                                | Total Uranium (U)                     | 2014/08/29             |           | 106       | %     | 80 - 120             |
|                                                | Total Vanadium (V)                    | 2014/08/29             |           | 105       | %     | 80 - 120             |
|                                                | Total Zinc (Zn)                       | 2014/08/29             |           | 98        | %     | 80 - 120             |
| Method                                         | Blank Total Aluminum (AI)             | 2014/08/29             | 0.0030, R | DL=0.0030 | mg/L  |                      |
|                                                | Total Antimony (Sb)                   | 2014/08/29             | < 0.00060 |           | mg/L  |                      |
|                                                | Total Arsenic (As)                    | 2014/08/29             | < 0.00020 |           | mg/L  |                      |
|                                                | Total Beryllium (Be)                  | 2014/08/29             | < 0.0010  |           | mg/L  |                      |
|                                                | Total Chromium (Cr)                   | 2014/08/29             | < 0.0010  |           | mg/L  |                      |
|                                                | Total Cobalt (Co)                     | 2014/08/29             | < 0.00030 |           | mg/L  |                      |
|                                                | Total Copper (Cu)                     | 2014/08/29             | <0.00020  |           | mg/L  |                      |
|                                                | Total Lead (Pb)                       | 2014/08/29             | < 0.00020 |           | mg/L  |                      |
|                                                | Total Molybdenum (Mo)                 | 2014/08/29             | <0.00020  |           | mg/L  |                      |
|                                                | Total Nickel (Ni)                     | 2014/08/29             | <0.00050  |           | mg/L  |                      |
|                                                | Total Selenium (Se)                   | 2014/08/29             | <0.00030  |           | mg/L  |                      |
|                                                | Total Silver (Ag)                     | 2014/08/29             | <0.00020  |           | mg/L  |                      |
|                                                | Total Silver (Ag) Total Thallium (TI) | 2014/08/29             | <0.00010  |           | mg/L  |                      |
|                                                | Total Thailidin (Ti) Total Tin (Sn)   | 2014/08/29             | <0.00020  |           | •     |                      |
|                                                | ` ,                                   |                        |           |           | mg/L  |                      |
|                                                | Total Hranium (Ti)                    | 2014/08/29             | <0.0010   |           | mg/L  |                      |
|                                                | Total Uranium (U)                     | 2014/08/29             | <0.00010  |           | mg/L  |                      |
|                                                | Total Vanadium (V)                    | 2014/08/29             | <0.0010   |           | mg/L  |                      |
| RPD                                            | Total Zinc (Zn)                       | 2014/08/29             | <0.0030   |           | mg/L  |                      |
|                                                | Total Aluminum (AI)                   | 2014/08/29             | 5.4       |           | %     | 20                   |



P.O. #: Site Location:

## **Quality Assurance Report (Continued)**

Maxxam Job Number: CB475115

| QA/QC       |              |                       | Date       |          |                |           |
|-------------|--------------|-----------------------|------------|----------|----------------|-----------|
| Batch       |              |                       | Analyzed   |          |                |           |
| Num Init    | QC Type      | Parameter             | yyyy/mm/dd | Value    | Recovery UNITS | QC Limits |
| 7619601 HC7 | RPD          | Total Antimony (Sb)   | 2014/08/29 | NC       | %              | 20        |
|             |              | Total Arsenic (As)    | 2014/08/29 | 2.8      | %              | 20        |
|             |              | Total Beryllium (Be)  | 2014/08/29 | NC       | %              | 20        |
|             |              | Total Chromium (Cr)   | 2014/08/29 | NC       | %              | 20        |
|             |              | Total Cobalt (Co)     | 2014/08/29 | NC       | %              | 20        |
|             |              | Total Copper (Cu)     | 2014/08/29 | 5.3      | %              | 20        |
|             |              | Total Lead (Pb)       | 2014/08/29 | 2.0      | %              | 20        |
|             |              | Total Molybdenum (Mo) | 2014/08/29 | 2.5      | %              | 20        |
|             |              | Total Nickel (Ni)     | 2014/08/29 | NC       | %              | 20        |
|             |              | Total Selenium (Se)   | 2014/08/29 | NC       | %              | 20        |
|             |              | Total Silver (Ag)     | 2014/08/29 | NC       | %              | 20        |
|             |              | Total Thallium (TI)   | 2014/08/29 | NC       | %              | 20        |
|             |              | Total Tin (Sn)        | 2014/08/29 | NC       | %              | 20        |
|             |              | Total Titanium (Ti)   | 2014/08/29 | NC       | %              | 20        |
|             |              | Total Uranium (U)     | 2014/08/29 | 1.7      | %              | 20        |
|             |              | Total Vanadium (V)    | 2014/08/29 | NC       | %              | 20        |
|             |              | Total Zinc (Zn)       | 2014/08/29 | 5.1      | %              | 20        |
| 7619604 STI | Matrix Spike | Total Barium (Ba)     | 2014/08/29 |          | NC %           | 80 - 120  |
|             |              | Total Boron (B)       | 2014/08/29 |          | 84 %           | 80 - 120  |
|             |              | Total Calcium (Ca)    | 2014/08/29 |          | NC %           | 80 - 120  |
|             |              | Total Iron (Fe)       | 2014/08/29 |          | NC %           | 80 - 120  |
|             |              | Total Lithium (Li)    | 2014/08/29 |          | 85 %           | 80 - 120  |
|             |              | Total Magnesium (Mg)  | 2014/08/29 |          | NC %           | 80 - 120  |
|             |              | Total Manganese (Mn)  | 2014/08/29 |          | NC %           | 80 - 120  |
|             |              | Total Phosphorus (P)  | 2014/08/29 |          | 84 %           | 80 - 120  |
|             |              | Total Potassium (K)   | 2014/08/29 |          | 89 %           | 80 - 120  |
|             |              | Total Silicon (Si)    | 2014/08/29 |          | NC %           | 80 - 120  |
|             |              | Total Sodium (Na)     | 2014/08/29 |          | NC %           | 80 - 120  |
|             |              | Total Strontium (Sr)  | 2014/08/29 |          | 74 (1) %       | 80 - 120  |
|             | Spiked Blank | Total Barium (Ba)     | 2014/08/29 |          | 96 ′ %         | 80 - 120  |
|             | •            | Total Boron (B)       | 2014/08/29 |          | 97 %           | 80 - 120  |
|             |              | Total Calcium (Ca)    | 2014/08/29 |          | 95 %           | 80 - 120  |
|             |              | Total Iron (Fe)       | 2014/08/29 |          | 101 %          | 80 - 120  |
|             |              | Total Lithium (Li)    | 2014/08/29 |          | 99 %           | 80 - 120  |
|             |              | Total Magnesium (Mg)  | 2014/08/29 |          | 96 %           | 80 - 120  |
|             |              | Total Manganese (Mn)  | 2014/08/29 |          | 94 %           | 80 - 120  |
|             |              | Total Phosphorus (P)  | 2014/08/29 |          | 93 %           | 80 - 120  |
|             |              | Total Potassium (K)   | 2014/08/29 |          | 95 %           | 80 - 120  |
|             |              | Total Silicon (Si)    | 2014/08/29 |          | 94 %           | 80 - 120  |
|             |              | Total Sodium (Na)     | 2014/08/29 |          | 96 %           | 80 - 120  |
|             |              | Total Strontium (Sr)  | 2014/08/29 |          | 95 %           | 80 - 120  |
|             | Method Blank | Total Barium (Ba)     | 2014/08/29 | < 0.010  | mg/L           |           |
|             |              | Total Boron (B)       | 2014/08/29 | < 0.020  | mg/L           |           |
|             |              | Total Calcium (Ca)    | 2014/08/29 | < 0.30   | mg/L           |           |
|             |              | Total Iron (Fe)       | 2014/08/29 | < 0.060  | mg/L           |           |
|             |              | Total Lithium (Li)    | 2014/08/29 | < 0.020  | mg/L           |           |
|             |              | Total Magnesium (Mg)  | 2014/08/29 | < 0.20   | mg/L           |           |
|             |              | Total Manganese (Mn)  | 2014/08/29 | < 0.0040 | mg/L           |           |
|             |              | Total Phosphorus (P)  | 2014/08/29 | <0.10    | mg/L           |           |
|             |              | Total Potassium (K)   | 2014/08/29 | < 0.30   | mg/L           |           |
|             |              | Total Silicon (Si)    | 2014/08/29 | <0.10    | mg/L           |           |
|             |              | Total Sodium (Na)     | 2014/08/29 | < 0.50   | mg/L           |           |
|             |              | Total Strontium (Sr)  | 2014/08/29 | < 0.020  | mg/L           |           |
|             |              | Total Sulphur (S)     | 2014/08/29 | < 0.20   | mg/L           |           |
|             | RPD          | Total Barium (Ba)     | 2014/08/29 | 4.2      | %              | 20        |
|             |              |                       |            |          |                |           |



P.O. #: Site Location:

#### **Quality Assurance Report (Continued)**

Maxxam Job Number: CB475115

| QA/QC       |         |                      | Date       |       |          |       |           |
|-------------|---------|----------------------|------------|-------|----------|-------|-----------|
| Batch       |         |                      | Analyzed   |       |          |       |           |
| Num Init    | QC Type | Parameter            | yyyy/mm/dd | Value | Recovery | UNITS | QC Limits |
| 7619604 STI | RPD     | Total Boron (B)      | 2014/08/29 | 5.2   |          | %     | 20        |
|             |         | Total Calcium (Ca)   | 2014/08/29 | 3.0   |          | %     | 20        |
|             |         | Total Iron (Fe)      | 2014/08/29 | 3.7   |          | %     | 20        |
|             |         | Total Lithium (Li)   | 2014/08/29 | NC    |          | %     | 20        |
|             |         | Total Magnesium (Mg) | 2014/08/29 | 4.2   |          | %     | 20        |
|             |         | Total Manganese (Mn) | 2014/08/29 | 4.2   |          | %     | 20        |
|             |         | Total Phosphorus (P) | 2014/08/29 | NC    |          | %     | 20        |
|             |         | Total Potassium (K)  | 2014/08/29 | 4.8   |          | %     | 20        |
|             |         | Total Silicon (Si)   | 2014/08/29 | 4.3   |          | %     | 20        |
|             |         | Total Sodium (Na)    | 2014/08/29 | 4.4   |          | %     | 20        |
|             |         | Total Strontium (Sr) | 2014/08/29 | 4.3   |          | %     | 20        |
|             |         | Total Sulphur (S)    | 2014/08/29 | 3.3   |          | %     | 20        |

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spiked amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than 2x that of the native sample concentration).

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (one or both samples < 5x RDL).

(1) Recovery or RPD for this parameter is outside control limits. The overall quality control for this analysis meets acceptability criteria.



## Validation Signature Page

| Maxxam | Job | #: | <b>B4</b> | 75 | 11 | 5 |
|--------|-----|----|-----------|----|----|---|
|--------|-----|----|-----------|----|----|---|

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

Peng Liang, Analyst II

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.



CLIENT NAME: ARCADIS SENES CANADA INC(DCS) 121 GRANTON DRIVE, UNIT #11, RICHMOND HILL, ON L4B3N4

(905) 882-5984

ATTENTION TO: Steve Borcsok

PROJECT: 350600-515-3

AGAT WORK ORDER: 14Z884834

SOIL ANALYSIS REVIEWED BY: Parvathi Malemath, Data Reviewer

TRACE ORGANICS REVIEWED BY: Oksana Gushyla, Trace Organics Lab Supervisor

DATE REPORTED: Sep 19, 2014

PAGES (INCLUDING COVER): 7

VERSION\*: 1

Should you require any information regarding this analysis please contact your client services representative at (905) 712-5100

| *NOTES |  |  |
|--------|--|--|
|        |  |  |
|        |  |  |
|        |  |  |
|        |  |  |
|        |  |  |
|        |  |  |
|        |  |  |
|        |  |  |
|        |  |  |
|        |  |  |
|        |  |  |
|        |  |  |
|        |  |  |

All samples will be disposed of within 30 days following analysis. Please contact the lab if you require additional sample storage time.



CLIENT NAME: ARCADIS SENES CANADA INC(DCS)

# Certificate of Analysis

AGAT WORK ORDER: 14Z884834

PROJECT: 350600-515-3

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

ATTENTION TO: Steve Borcsok SAMPLED BY:S. Borcsok

Metals Scan (Soil)

|                           |      |            |            |              | wictais oca   | 11 (0011)     |                           |
|---------------------------|------|------------|------------|--------------|---------------|---------------|---------------------------|
| DATE RECEIVED: 2014-09-05 |      |            |            |              |               |               | DATE REPORTED: 2014-09-19 |
|                           | S    | AMPLE DESC | RIPTION: F | 5-SA-MW-18-D | F5-MID-MW-6-S | F5-MN-MW-14-S |                           |
|                           |      | SAMP       | LE TYPE:   | Soil         | Soil          | Soil          |                           |
|                           |      | DATE S     | AMPLED:    | 8/20/2014    | 8/20/2014     | 8/21/2014     |                           |
| Parameter                 | Unit | G/S        | RDL        | 5774868      | 5774886       | 5774888       |                           |
| Arsenic                   | μg/g |            | 1          | 2            | 1             | 2             |                           |
| Cadmium                   | μg/g |            | 0.5        | <0.5         | <0.5          | <0.5          |                           |
| Cobalt                    | μg/g |            | 0.5        | 4.5          | 3.7           | 3.7           |                           |
| Chromium                  | μg/g |            | 2          | 18           | 14            | 11            |                           |
| Copper                    | μg/g |            | 1          | 11           | 8             | 9             |                           |
| Lead                      | μg/g |            | 1          | 7            | 6             | 11            |                           |
| Mercury                   | μg/g |            | 0.10       | <0.10        | <0.10         | <0.10         |                           |
| Nickel                    | μg/g |            | 1          | 6            | 5             | 5             |                           |
| Zinc                      | μg/g |            | 5          | 42           | 34            | 40            |                           |

RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to T1(All) Comments:

5774868-5774888

SAMPLING SITE:

Certified By:

Parvalhi Malenath



Certificate of Analysis

AGAT WORK ORDER: 14Z884834

PROJECT: 350600-515-3

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: ARCADIS SENES CANADA INC(DCS)

SAMPLING SITE:

ATTENTION TO: Steve Borcsok SAMPLED BY:S. Borcsok

| O/ (IVII EII TO OITE.     |      |            |             |              |               |               | OANNI EED DT.G. DOTOGOK   |
|---------------------------|------|------------|-------------|--------------|---------------|---------------|---------------------------|
|                           |      |            |             |              | PCBs (s       | soil)         |                           |
| DATE RECEIVED: 2014-09-05 |      |            |             |              |               |               | DATE REPORTED: 2014-09-19 |
|                           |      | SAMPLE DES | CRIPTION: F | 5-SA-MW-18-D | F5-MID-MW-6-S | F5-MN-MW-14-S |                           |
|                           |      | SAMI       | PLE TYPE:   | Soil         | Soil          | Soil          |                           |
|                           |      | DATE S     | SAMPLED:    | 8/20/2014    | 8/20/2014     | 8/21/2014     |                           |
| Parameter                 | Unit | G/S        | RDL         | 5774868      | 5774886       | 5774888       |                           |
| PCBs                      | μg/g |            | 0.05        | < 0.05       | < 0.05        | < 0.05        |                           |
| Surrogate                 | Unit | Acceptab   | le Limits   |              |               |               |                           |
| Decachlorobiphenyl        | %    | 60-1       | 130         | 84           | 92            | 112           |                           |
|                           |      |            |             |              |               |               |                           |

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard

5774868-5774888 Results are based on the dry weight of soil extracted.

Certified By:





CLIENT NAME: ARCADIS SENES CANADA INC(DCS)

SAMPLING SITE:

Certificate of Analysis

AGAT WORK ORDER: 14Z884834

PROJECT: 350600-515-3

ATTENTION TO: Steve Borcsok

SAMPLED BY:S. Borcsok

PHCs F1 - F4 (Soil)

DATE RECEIVED: 2014-09-05 **DATE REPORTED: 2014-09-19** 

| DATE RECEIVED. 2014-09-03      |      |                       |              |               |               | DATE REFORTED. 2014-09-19 |
|--------------------------------|------|-----------------------|--------------|---------------|---------------|---------------------------|
|                                | 5    | SAMPLE DESCRIPTION: I | 5-SA-MW-18-D | F5-MID-MW-6-S | F5-MN-MW-14-S |                           |
|                                |      | SAMPLE TYPE:          | Soil         | Soil          | Soil          |                           |
|                                |      | DATE SAMPLED:         | 8/20/2014    | 8/20/2014     | 8/21/2014     |                           |
| Parameter                      | Unit | G/S RDL               | 5774868      | 5774886       | 5774888       |                           |
| Benzene                        | μg/g | 0.02                  | <0.02        | <0.02         | <0.02         |                           |
| Toluene                        | μg/g | 0.08                  | <0.08        | <0.08         | <0.08         |                           |
| Ethylbenzene                   | μg/g | 0.05                  | < 0.05       | < 0.05        | <0.05         |                           |
| Xylene Mixture                 | μg/g | 0.05                  | < 0.05       | < 0.05        | < 0.05        |                           |
| F1 (C6 to C10)                 | μg/g | 5                     | <5           | <5            | <5            |                           |
| F1 (C6 to C10) minus BTEX      | μg/g | 5                     | <5           | <5            | <5            |                           |
| F2 (C10 to C16)                | μg/g | 10                    | <10          | <10           | <10           |                           |
| F3 (C16 to C34)                | μg/g | 50                    | <50          | <50           | <50           |                           |
| F4 (C34 to C50)                | μg/g | 50                    | <50          | <50           | <50           |                           |
| Gravimetric Heavy Hydrocarbons | μg/g | 50                    | NA           | NA            | NA            |                           |
| Moisture Content               | %    | 0.1                   | 5.8          | 10.9          | 8.8           |                           |
| Surrogate                      | Unit | Acceptable Limits     |              |               |               |                           |
| Terphenyl                      | %    | 60-140                | 82           | 125           | 100           |                           |

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard

5774868-5774888 The soil sample was prepared in the lab using the Methanol extraction technique. The sample was not field preserved with methanol.

Results are based on sample dry weight.

The C6-C10 fraction is calculated using toluene response factor.

The C10 - C16, C16 - C34, and C34 - C50 fractions are calculated using the average response factor for n-C10, n-C16, and n-C34.

Gravimetric Heavy Hydrocarbons are not included in the Total C16-C50 and are only determined if the chromatogram of the C34 - C50 hydrocarbons indicates that hydrocarbons > C50 are present.

The chromatogram has returned to baseline by the retention time of nC50.

Total C6 - C50 results are corrected for BTEX contributions.

This method complies with the Reference Method for the CWS PHC and is validated for use in the laboratory.

nC6 and nC10 response factors are within 30% of Toluene response factor.

nC10, nC16 and nC34 response factors are within 10% of their average.

C50 response factor is within 70% of nC10 + nC16 + nC34 average.

Linearity is within 15%.

Extraction and holding times were met for this sample.

Fractions 1-4 are quantified with the contribution of PAHs. Under Ontario Regulation 153, results are considered valid without determining the PAH contribution if not requested by the client.

Quality Control Data is available upon request.

Certified By:



5835 COOPERS AVENUE

MISSISSAUGA, ONTARIO CANADA L4Z 1Y2

http://www.agatlabs.com

TEL (905)712-5100 FAX (905)712-5122



# **Quality Assurance**

CLIENT NAME: ARCADIS SENES CANADA INC(DCS)

AGAT WORK ORDER: 14Z884834

PROJECT: 350600-515-3

ATTENTION TO: Steve Borcsok

SAMPLING SITE:

SAMPLED BY:S. Borcsok

|                        |       |         |        | Soi     | l Ana | alysis          | 3                 |        |                |          |       |                |          |             |                |
|------------------------|-------|---------|--------|---------|-------|-----------------|-------------------|--------|----------------|----------|-------|----------------|----------|-------------|----------------|
| RPT Date: Sep 19, 2014 |       |         |        | UPLICAT | E     |                 | REFEREN           | NCE MA | TERIAL         | METHOD   | BLANK | SPIKE          | MAT      | RIX SPI     | KE             |
| PARAMETER              | Batch | Sample  | Dup #1 | Dup #2  | RPD   | Method<br>Blank | Measured<br>Value |        | ptable<br>nits | Recovery | Lin   | ptable<br>nits | Recovery | 1 1 1 1 1 1 | ptable<br>nits |
|                        |       | ld      | ·      |         |       |                 | value             | Lower  | Upper          | ,        | Lower | Upper          | ,        | l .         | Upper          |
| Metals Scan (Soil)     |       |         |        |         |       |                 |                   |        |                |          |       |                |          |             |                |
| Arsenic                | 1     | 5774888 | 2      | 2       | 0.0%  | < 1             | 105%              | 70%    | 130%           | 99%      | 80%   | 120%           | 102%     | 70%         | 130%           |
| Cadmium                | 1     | 5774888 | < 0.5  | < 0.5   | 0.0%  | < 0.5           | 98%               | 70%    | 130%           | 116%     | 80%   | 120%           | 107%     | 70%         | 130%           |
| Cobalt                 | 1     | 5774888 | 3.7    | 3.8     | 2.7%  | < 0.5           | 98%               | 70%    | 130%           | 104%     | 80%   | 120%           | 101%     | 70%         | 130%           |
| Chromium               | 1     | 5774888 | 11     | 11      | 0.0%  | < 2             | 84%               | 70%    | 130%           | 104%     | 80%   | 120%           | 103%     | 70%         | 130%           |
| Copper                 | 1     | 5774888 | 9      | 9       | 0.0%  | < 1             | 104%              | 70%    | 130%           | 105%     | 80%   | 120%           | 102%     | 70%         | 130%           |
| Lead                   | 1     | 5774888 | 11     | 11      | 0.0%  | < 1             | 98%               | 70%    | 130%           | 102%     | 80%   | 120%           | 96%      | 70%         | 130%           |
| Mercury                | 1     | 5774888 | < 0.10 | < 0.10  | 0.0%  | < 0.10          | 106%              | 70%    | 130%           | 95%      | 80%   | 120%           | 104%     | 70%         | 130%           |
| Nickel                 | 1     | 5774888 | 5      | 5       | 0.0%  | < 1             | 87%               | 70%    | 130%           | 98%      | 80%   | 120%           | 98%      | 70%         | 130%           |
| Zinc                   | 1     | 5774888 | 40     | 41      | 2.5%  | < 5             | 101%              | 70%    | 130%           | 102%     | 80%   | 120%           | 102%     | 70%         | 130%           |

Comments: NA signifies Not Applicable

Certified By:

Parvathi Malenath



# **Quality Assurance**

CLIENT NAME: ARCADIS SENES CANADA INC(DCS)

AGAT WORK ORDER: 14Z884834

PROJECT: 350600-515-3

ATTENTION TO: Steve Borcsok

SAMPLING SITE:

SAMPLED BY:S. Borcsok

|                        |       |        | Trac   | e Orç     | ganio    | s An            | alysi             | is     |                 |          |       |                |          |         |                 |
|------------------------|-------|--------|--------|-----------|----------|-----------------|-------------------|--------|-----------------|----------|-------|----------------|----------|---------|-----------------|
| RPT Date: Sep 19, 2014 |       |        | С      | DUPLICATI | <u> </u> |                 | REFERE            | NCE MA | TERIAL          | METHOD   | BLANK | SPIKE          | MAT      | RIX SPI | KE              |
| PARAMETER              | Batch | Sample | Dup #1 | Dup #2    | RPD      | Method<br>Blank | Measured<br>Value |        | eptable<br>mits | Recovery | منا ا | ptable<br>nits | Recovery | 1 1 1 1 | eptable<br>nits |
|                        |       | la la  | ·      |           |          |                 | value             | Lower  | Upper           |          | Lower | Upper          |          | Lower   | Upper           |
| PHCs F1 - F4 (Soil)    |       | ·      |        |           |          | ·               |                   |        |                 | ·        |       |                |          |         |                 |
| Benzene                | 1     |        | < 0.02 | < 0.02    | 0.0%     | < 0.02          | 82%               | 50%    | 140%            | 107%     | 60%   | 130%           | 88%      | 50%     | 140%            |
| Toluene                | 1     |        | < 0.08 | < 0.08    | 0.0%     | < 0.08          | 79%               | 50%    | 140%            | 108%     | 60%   | 130%           | 91%      | 50%     | 140%            |
| Ethylbenzene           | 1     |        | < 0.05 | < 0.05    | 0.0%     | < 0.05          | 82%               | 50%    | 140%            | 107%     | 60%   | 130%           | 85%      | 50%     | 140%            |
| Xylene Mixture         | 1     |        | < 0.05 | < 0.05    | 0.0%     | < 0.05          | 86%               | 50%    | 140%            | 109%     | 60%   | 130%           | 94%      | 50%     | 140%            |
| F1 (C6 to C10)         | 1     |        | < 5    | < 5       | 0.0%     | < 5             | 121%              | 60%    | 140%            | 96%      | 80%   | 120%           | 80%      | 60%     | 140%            |
| F2 (C10 to C16)        | 1     |        | < 10   | < 10      | 0.0%     | < 10            | 100%              | 60%    | 140%            | 104%     | 80%   | 120%           | 75%      | 60%     | 140%            |
| F3 (C16 to C34)        | 1     |        | < 50   | < 50      | 0.0%     | < 50            | 103%              | 60%    | 140%            | 101%     | 80%   | 120%           | 85%      | 60%     | 140%            |
| F4 (C34 to C50)        | 1     |        | < 50   | < 50      | 0.0%     | < 50            | 99%               | 60%    | 140%            | 107%     | 80%   | 120%           | 102%     | 60%     | 140%            |
| PCBs (soil)            |       |        |        |           |          |                 |                   |        |                 |          |       |                |          |         |                 |
| PCBs                   | 1     |        | < 0.1  | < 0.1     | 0.0%     | < 0.1           | 79%               | 60%    | 140%            | 74%      | 60%   | 140%           | 121%     | 60%     | 140%            |

Certified By:

Juz



# **Method Summary**

CLIENT NAME: ARCADIS SENES CANADA INC(DCS)

AGAT WORK ORDER: 14Z884834

PROJECT: 350600-515-3

ATTENTION TO: Steve Borcsok

SAMPLING SITE:

SAMPLED BY:S. Borcsok

| PARAMETER                      | AGAT S.O.P  | LITERATURE REFERENCE                  | ANALYTICAL TECHNIQUE |
|--------------------------------|-------------|---------------------------------------|----------------------|
| Soil Analysis                  | •           | •                                     | •                    |
| Arsenic                        | MET-93-6103 | EPA SW-846 3050B & 6020A              | ICP-MS               |
| Cadmium                        | MET-93-6103 | EPA SW-846 3050B & 6020A              | ICP-MS               |
| Cobalt                         | MET-93-6103 | EPA SW-846 3050B & 6020A              | ICP-MS               |
| Chromium                       | MET-93-6103 | EPA SW-846 3050B & 6020A              | ICP-MS               |
| Copper                         | MET-93-6103 | EPA SW-846 3050B & 6020A              | ICP-MS               |
| Lead                           | MET-93-6103 | EPA SW-846 3050B & 6020A              | ICP-MS               |
| Mercury                        | MET-93-6103 | EPA SW-846 3050B & 6020A              | ICP-MS               |
| Nickel                         | MET-93-6103 | EPA SW-846 3050B & 6020A              | ICP-MS               |
| Zinc                           | MET-93-6103 | EPA SW-846 3050B & 6020A              | ICP-MS               |
| Trace Organics Analysis        |             |                                       |                      |
| PCBs                           | ORG-91-5113 | EPA SW-846 3541 & 8082                | GC/ECD               |
| Decachlorobiphenyl             | ORG-91-5113 | EPA SW-846 3541 & 8082                | GC/ECD               |
| Benzene                        | VOL-91-5009 | EPA SW-846 5035 & 8260                | P & T GC/MS          |
| Toluene                        | VOL-91-5009 | EPA SW-846 5035 & 8260                | P & T GC/MS          |
| Ethylbenzene                   | VOL-91-5009 | EPA SW-846 5035 & 8260                | P & T GC/MS          |
| Xylene Mixture                 | VOL-91-5009 | EPA SW-846 5035 & 8260                | P & T GC/MS          |
| F1 (C6 to C10)                 | VOL-91-5009 | CCME Tier 1 Method                    | P & T GC/FID         |
| F1 (C6 to C10) minus BTEX      | VOL-91-5009 | CCME Tier 1 Method                    | P & T GC/FID         |
| F2 (C10 to C16)                | VOL-91-5009 | CCME Tier 1 Method, EPA SW846<br>8015 | GC / FID             |
| F3 (C16 to C34)                | VOL-91-5009 | CCME Tier 1 Method, EPA SW846<br>8015 | GC / FID             |
| F4 (C34 to C50)                | VOL-91-5009 | CCME Tier 1 Method, EPA SW846<br>8015 | GC / FID             |
| Gravimetric Heavy Hydrocarbons | VOL-91-5009 | CCME Tier 1 Method                    | BALANCE              |
| Moisture Content               | VOL-91-5009 | CCME Tier 1 Method                    | BALANCE              |
| Terphenyl                      | VOL-91-5009 |                                       | GC/FID               |

6.3/6.8/54

121 Granton Drive, Unit 11, Richmond Hill, ON
Tel: (905) 882-5984 Fax: (905) 882-8962
Email: engineers@dcsltd.ca Website: www.dcsltd.ca

# **Chain of Custody Record**

Page of 1.

| Relinquished By: | Relinquished By: | S. Borcsok                                         | Dellamide |   |   |   |   |   |   |   | FS-MN                       | F5-MID-  | F5-SA     | Location/<br>Hole No.      |                             |                |                | Sł              | nip       | per     |                                   |                  |                       |
|------------------|------------------|----------------------------------------------------|-----------|---|---|---|---|---|---|---|-----------------------------|----------|-----------|----------------------------|-----------------------------|----------------|----------------|-----------------|-----------|---------|-----------------------------------|------------------|-----------------------|
| ed By:           | ed By:           | ok                                                 | D.        |   |   |   |   |   |   |   | 1-MW                        | -MW      | -MM-      | Sample<br>No.              | MDL's                       | Quotation No.: | Require        | Lab:            | Ī         | Date:   | Field E                           | Project          | Project No.:          |
|                  |                  |                                                    |           |   |   |   |   |   |   |   | -14-5                       | -6-5     | 18-1      | Depth<br>(m)               | To Meet                     | on No.:        | Required Date: | Non             | ACA       | 28 Aus, | ngineer/7                         | Project Manager: | No.:                  |
| Date:            | Date:            | 28 Aug 119                                         | Data      |   |   |   |   |   |   |   | 5012                        | 5016     | 5016      | Description                | MDL's To Meet: SCE ATTREAGD | ,              |                |                 |           | 15/14   | Field Engineer/Techician: S. Borc | S. Borcsok       | 350600-515-3 Site:    |
| Time:            | Time:            | т ше.                                              | Time.     |   |   |   |   |   |   |   |                             |          |           |                            | HED                         |                | Turnaround:    | Location Olonwo | T continu | Route:  | S. Borcsok/J. Mauchan             | sok              | Site: FOX-5           |
| Received By:     | Received By:     | Shazn                                              | Donail    |   |   |   |   |   |   |   |                             |          |           | Label No.                  |                             |                | 1              | 0101            | 7         | Courier | uchan                             |                  | Broughton             |
| 1 By:            | ed By:           | MCGZIMI                                            | - a -     |   |   |   |   |   |   |   | 2                           | 2        | N .       | Grab/<br>Comp. (           |                             |                | STD Day(s)     | the             |           |         |                                   |                  | ho                    |
| an               | hil              | £ (                                                | ١         |   |   |   |   |   |   |   | 1 Aus/14                    | 20Aus//4 | 20 Aug/19 | Date<br>Collected          | Ì                           |                | ay(s)          |                 |           |         |                                   |                  | Island                |
| La               | borato           | гу                                                 | 1         |   |   |   |   |   |   |   | X                           | X        | X         | PHCs                       | F1                          |                |                | 76              |           |         |                                   | 1/               |                       |
|                  |                  | b> 5                                               | 1         | 1 |   |   |   |   |   |   | ×                           | X        | X         | PHCs                       | F2-F                        | 4              |                |                 |           |         |                                   |                  | П                     |
|                  |                  | ALL RES                                            |           |   |   |   |   | _ |   |   | $\stackrel{\wedge}{\times}$ | Ź        |           | PCBs                       | 3                           |                |                |                 |           |         |                                   |                  | Н                     |
|                  |                  | ESUL                                               | -         |   |   |   |   |   |   |   | X                           | X        | X         | Inorg                      | anics:                      | As,            | Cd, Cı         | , Co            | , Cu      | , Pb, 1 | Ni, Zr                            | ı, Hg            | Ana                   |
|                  |                  | TS AI                                              | ľ         |   |   |   |   |   |   |   |                             |          |           |                            |                             |                |                |                 |           |         |                                   |                  | lyses                 |
|                  |                  | RE TO                                              | ŀ         | 7 |   |   |   |   |   |   |                             |          |           |                            |                             |                |                |                 |           |         |                                   |                  | Analyses Req          |
|                  |                  | ) BE S                                             | ŀ         |   |   |   |   |   |   |   |                             |          |           |                            |                             |                |                |                 |           |         |                                   |                  | quested               |
|                  |                  | ENT                                                | Ì         | 1 |   |   |   |   |   | _ |                             |          |           |                            |                             |                |                |                 |           |         |                                   |                  |                       |
|                  |                  | гот                                                | İ         |   |   |   |   |   |   |   |                             |          |           |                            |                             |                |                |                 |           |         |                                   |                  |                       |
|                  |                  | E PR                                               | İ         |   |   |   |   |   |   |   |                             |          |           |                            |                             |                |                |                 |           |         |                                   |                  |                       |
|                  |                  | OJEC                                               | ľ         |   |   |   |   |   |   |   |                             |          |           | pН                         |                             |                |                |                 |           |         |                                   |                  | -                     |
|                  |                  | T MA                                               | ŀ         | - | _ | - | - | _ | - | - |                             | _        | -         | -                          |                             |                |                |                 |           |         |                                   |                  | 力                     |
|                  |                  | ALL RESULTS ARE TO BE SENT TO THE PROJECT MANAGER. |           |   |   |   |   |   |   |   |                             |          |           | Electrical<br>Conductivity | Field Procedures            |                |                |                 |           |         |                                   |                  | 14284834<br>142884834 |
|                  |                  |                                                    |           |   |   |   |   |   |   |   |                             |          |           | Preservatives              | edures                      |                |                |                 |           |         |                                   |                  | hs                    |

## Landfill Monitoring Detection Limits

| Groundwater | lioS     | Parameter |
|-------------|----------|-----------|
| (¬/6w)      | (աმ\หติ) |           |
| 900.0>      | 63.0     | Copper    |
| 010.0>      | <2.0     | Nickel    |
| 900.0>      | <2.0     | Cobalt    |
| r00.0>      | 0.f>     | muimbsO   |
| 10.0>       | 01>      | Гезд      |
| <0.005      | <۱2      | Zinc      |
| <0.005      | <50      | Chromium  |
| <0.05       | 2.0>     | Arsenic   |
| 100.0>      | ۲.0>     | Mercury   |
| <0.003      | <0.05    | PCBs      |
| <b>\</b> >  | 07>      | HdT       |



Your Project #: 350600-515-3

Site Location: FOX 5 BROUGHTON ISLAND

Your C.O.C. #: na

#### **Attention:Stephen Borcsok**

Decommissioning Consulting Services Limited 121 Granton Dr Unit 11 Richmond Hill, ON L4B 3N4

Report Date: 2014/10/09

Report #: R3184273 Version: 1 - Final

## **CERTIFICATE OF ANALYSIS**

MAXXAM JOB #: B4I3499 Received: 2014/08/28, 16:35

Sample Matrix: Soil # Samples Received: 24

|                                             |          | Date       | Date       |                          |                      |
|---------------------------------------------|----------|------------|------------|--------------------------|----------------------|
| Analyses                                    | Quantity | Extracted  | Analyzed   | <b>Laboratory Method</b> | Reference            |
| Petroleum Hydro. CCME F1 & BTEX in Soil (1) | 4        | 2014/10/03 | 2014/10/05 | CAM SOP-00315            | CCME PHC-CWS m       |
| Petroleum Hydro. CCME F1 & BTEX in Soil (1) | 20       | 2014/10/03 | 2014/10/06 | CAM SOP-00315            | CCME PHC-CWS m       |
| Petroleum Hydrocarbons F2-F4 in Soil (1)    | 2        | 2014/10/03 | 2014/10/03 | CAM SOP-00316            | CCME CWS m           |
| Petroleum Hydrocarbons F2-F4 in Soil (1)    | 22       | 2014/10/03 | 2014/10/04 | CAM SOP-00316            | CCME CWS m           |
| Strong Acid Leachable Metals by ICPMS (1)   | 24       | 2014/10/06 | 2014/10/07 | CAM SOP-00447            | EPA 6020A m          |
| Moisture (1)                                | 24       | N/A        | 2014/10/06 | CAM SOP-00445            | Carter 2nd ed 51.2 m |
| Polychlorinated Biphenyl in Soil (1)        | 20       | 2014/10/06 | 2014/10/06 | CAM SOP-00309            | EPA 8082 m           |
| Polychlorinated Biphenyl in Soil (1)        | 4        | 2014/10/06 | 2014/10/07 | CAM SOP-00309            | EPA 8082 m           |

<sup>\*</sup> RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

#### **Encryption Key**

 $\label{thm:please} \textit{Please direct all questions regarding this Certificate of Analysis to your Project Manager.}$ 

Keshani Vijh, Project Manager Email: KVijh@maxxam.ca Phone# (613) 274-0573

\_\_\_\_\_

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

<sup>(1)</sup> This test was performed by Maxxam Analytics Mississauga



Maxxam Job #: B4I3499 Report Date: 2014/10/09 Decommissioning Consulting Services Limited

Client Project #: 350600-515-3

Site Location: FOX 5 BROUGHTON ISLAND

## **RESULTS OF ANALYSES OF SOIL**

| Maxxam ID              |       | XV4996        | XV4997        | XV4998        | XV4999        | XV5000        |     |          |
|------------------------|-------|---------------|---------------|---------------|---------------|---------------|-----|----------|
| Sampling Date          |       | 2014/08/20    | 2014/08/20    | 2014/08/20    | 2014/08/20    | 2014/08/20    |     |          |
| COC Number             |       | na            | na            | na            | na            | na            |     |          |
|                        | Units | F5-SA-MW-18-S | F5-SA-MW-18-D | F5-SA-MW-19-S | F5-SA-MW-19-D | F5-MID-MW-5-S | RDL | QC Batch |
|                        |       |               |               |               |               |               |     |          |
| Inorganics             |       |               |               |               |               |               |     |          |
| Inorganics<br>Moisture | %     | 7.0           | 6.4           | 7.7           | 6.5           | 13            | 1.0 | 3775595  |
|                        |       | 7.0           | 6.4           | 7.7           | 6.5           | 13            | 1.0 | 3775595  |

| Maxxam ID              |       | XV5001        | XV5002        | XV5003        | XV5004        | XV5005        |     |          |
|------------------------|-------|---------------|---------------|---------------|---------------|---------------|-----|----------|
| Sampling Date          |       | 2014/08/20    | 2014/08/20    | 2014/08/20    | 2014/08/20    | 2014/08/20    |     |          |
| COC Number             |       | na            | na            | na            | na            | na            |     |          |
|                        | Units | F5-MID-MW-5-D | F5-MID-MW-6-S | F5-MID-MW-6-D | F5-MID-MW-7-S | F5-MID-MW-7-D | RDL | QC Batch |
|                        |       |               |               |               |               |               |     |          |
| Inorganics             |       |               |               |               |               |               |     |          |
| Inorganics<br>Moisture | %     | 11            | 13            | 12            | 7.6           | 15            | 1.0 | 3775595  |
|                        |       | 11            | 13            | 12            | 7.6           | 15            | 1.0 | 3775595  |

|            | XV5006        | XV5007                                  | XV5008                                                        | XV5009                                                                                    | XV5010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                       |                                                                |  |  |  |  |
|------------|---------------|-----------------------------------------|---------------------------------------------------------------|-------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|----------------------------------------------------------------|--|--|--|--|
|            | 2014/08/20    | 2014/08/20                              | 2014/08/20                                                    | 2014/08/20                                                                                | 2014/08/21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                       |                                                                |  |  |  |  |
|            | na            | na                                      | na                                                            | na                                                                                        | na                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                       |                                                                |  |  |  |  |
| Units      | F5-MID-MW-8-S | F5-MID-MW-8-D                           | F5-MID-MW-9-S                                                 | F5-MID-MW-9-D                                                                             | F5-MN-MW-10-S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | RDL                                                                   | QC Batch                                                       |  |  |  |  |
| Inorganics |               |                                         |                                                               |                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                       |                                                                |  |  |  |  |
| %          | 12            | 14                                      | 9.5                                                           | 7.4                                                                                       | 6.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.0                                                                   | 3775595                                                        |  |  |  |  |
|            |               | 2014/08/20<br>na<br>Units F5-MID-MW-8-S | 2014/08/20 2014/08/20 na na Units F5-MID-MW-8-S F5-MID-MW-8-D | 2014/08/20 2014/08/20 2014/08/20 na na na Units F5-MID-MW-8-S F5-MID-MW-8-D F5-MID-MW-9-S | 2014/08/20   2014/08/20   2014/08/20   2014/08/20   2014/08/20   2014/08/20   2014/08/20   2014/08/20   2014/08/20   2014/08/20   2014/08/20   2014/08/20   2014/08/20   2014/08/20   2014/08/20   2014/08/20   2014/08/20   2014/08/20   2014/08/20   2014/08/20   2014/08/20   2014/08/20   2014/08/20   2014/08/20   2014/08/20   2014/08/20   2014/08/20   2014/08/20   2014/08/20   2014/08/20   2014/08/20   2014/08/20   2014/08/20   2014/08/20   2014/08/20   2014/08/20   2014/08/20   2014/08/20   2014/08/20   2014/08/20   2014/08/20   2014/08/20   2014/08/20   2014/08/20   2014/08/20   2014/08/20   2014/08/20   2014/08/20   2014/08/20   2014/08/20   2014/08/20   2014/08/20   2014/08/20   2014/08/20   2014/08/20   2014/08/20   2014/08/20   2014/08/20   2014/08/20   2014/08/20   2014/08/20   2014/08/20   2014/08/20   2014/08/20   2014/08/20   2014/08/20   2014/08/20   2014/08/20   2014/08/20   2014/08/20   2014/08/20   2014/08/20   2014/08/20   2014/08/20   2014/08/20   2014/08/20   2014/08/20   2014/08/20   2014/08/20   2014/08/20   2014/08/20   2014/08/20   2014/08/20   2014/08/20   2014/08/20   2014/08/20   2014/08/20   2014/08/20   2014/08/20   2014/08/20   2014/08/20   2014/08/20   2014/08/20   2014/08/20   2014/08/20   2014/08/20   2014/08/20   2014/08/20   2014/08/20   2014/08/20   2014/08/20   2014/08/20   2014/08/20   2014/08/20   2014/08/20   2014/08/20   2014/08/20   2014/08/20   2014/08/20   2014/08/20   2014/08/20   2014/08/20   2014/08/20   2014/08/20   2014/08/20   2014/08/20   2014/08/20   2014/08/20   2014/08/20   2014/08/20   2014/08/20   2014/08/20   2014/08/20   2014/08/20   2014/08/20   2014/08/20   2014/08/20   2014/08/20   2014/08/20   2014/08/20   2014/08/20   2014/08/20   2014/08/20   2014/08/20   2014/08/20   2014/08/20   2014/08/20   2014/08/20   2014/08/20   2014/08/20   2014/08/20   2014/08/20   2014/08/20   2014/08/20   2014/08/20   2014/08/20   2014/08/20   2014/08/20   2014/08/20   2014/08/20   2014/08/20   2014/08/20   2014/08/20   2014/08/20   2014/08/20   2014/08/20   2014/08/20   201 | 2014/08/20   2014/08/20   2014/08/20   2014/08/20   2014/08/21     na | 2014/08/20   2014/08/20   2014/08/20   2014/08/20   2014/08/21 |  |  |  |  |

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

| Maxxam ID              |       | XV5011        | XV5012        |          | XV5013        | XV5014        |     |          |  |  |
|------------------------|-------|---------------|---------------|----------|---------------|---------------|-----|----------|--|--|
| Sampling Date          |       | 2014/08/21    | 2014/08/21    |          | 2014/08/21    | 2014/08/21    |     |          |  |  |
| COC Number             |       | na            | na            |          | na            | na            |     |          |  |  |
|                        | Units | F5-MN-MW-10-D | F5-MN-MW-11-S | QC Batch | F5-MN-MW-11-D | F5-MN-MW-12-S | RDL | QC Batch |  |  |
| Inorganics             |       |               |               |          |               |               |     |          |  |  |
| Inorganics             |       |               |               |          |               |               |     |          |  |  |
| Inorganics<br>Moisture | %     | 7.5           | 9.3           | 3775595  | 6.4           | 4.5           | 1.0 | 3775644  |  |  |
|                        |       | 7.5           | 9.3           | 3775595  | 6.4           | 4.5           | 1.0 | 3775644  |  |  |

| Maxxam ID     |       | XV5015        | XV5016        | XV5017        | XV5018        | XV5019        |     |          |  |  |
|---------------|-------|---------------|---------------|---------------|---------------|---------------|-----|----------|--|--|
| Sampling Date |       | 2014/08/21    | 2014/08/21    | 2014/08/21    | 2014/08/21    | 2014/08/21    |     |          |  |  |
| COC Number    |       | na            | na            | na            | na            | na            |     |          |  |  |
|               | Units | F5-MN-MW-12-D | F5-MN-MW-13-S | F5-MN-MW-13-D | F5-MN-MW-14-S | F5-MN-MW-14-D | RDL | QC Batch |  |  |
| Inorganics    |       |               |               |               |               |               |     |          |  |  |
| - 0           |       |               |               |               |               |               |     |          |  |  |
| Moisture      | %     | 5.2           | 6.0           | 4.7           | 14            | 7.1           | 1.0 | 3775644  |  |  |

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch



Maxxam Job #: B4I3499 Report Date: 2014/10/09 **Decommissioning Consulting Services Limited** 

Client Project #: 350600-515-3

Site Location: FOX 5 BROUGHTON ISLAND

## **ELEMENTS BY ATOMIC SPECTROSCOPY (SOIL)**

| Maxxam ID                      |       |          | XV4996        |          | XV4997        |          | XV4998        |       |          |
|--------------------------------|-------|----------|---------------|----------|---------------|----------|---------------|-------|----------|
| Sampling Date                  |       |          | 2014/08/20    |          | 2014/08/20    |          | 2014/08/20    |       |          |
| COC Number                     |       |          | na            |          | na            |          | na            |       |          |
|                                | Units | Criteria | F5-SA-MW-18-S | QC Batch | F5-SA-MW-18-D | QC Batch | F5-SA-MW-19-S | RDL   | QC Batch |
| Metals                         |       |          |               |          |               |          |               |       |          |
| Acid Extractable Arsenic (As)  | ug/g  | 12       | 1.2           | 3774997  | 1.2           | 3775002  | 2.0           | 1.0   | 3774997  |
| Acid Extractable Cadmium (Cd)  | ug/g  | 22       | <0.10         | 3774997  | <0.10         | 3775002  | <0.10         | 0.10  | 3774997  |
| Acid Extractable Chromium (Cr) | ug/g  | 87       | 17            | 3774997  | 17            | 3775002  | 14            | 1.0   | 3774997  |
| Acid Extractable Cobalt (Co)   | ug/g  | -        | 4.5           | 3774997  | 4.4           | 3775002  | 3.6           | 0.10  | 3774997  |
| Acid Extractable Copper (Cu)   | ug/g  | 91       | 9.9           | 3774997  | 9.2           | 3775002  | 8.2           | 0.50  | 3774997  |
| Acid Extractable Lead (Pb)     | ug/g  | 600      | 6.8           | 3774997  | 5.9           | 3775002  | 6.2           | 1.0   | 3774997  |
| Acid Extractable Nickel (Ni)   | ug/g  | 50       | 7.9           | 3774997  | 7.1           | 3775002  | 6.2           | 0.50  | 3774997  |
| Acid Extractable Zinc (Zn)     | ug/g  | 360      | 43            | 3774997  | 39            | 3775002  | 36            | 5.0   | 3774997  |
| Acid Extractable Mercury (Hg)  | ug/g  | 50       | <0.050        | 3774997  | <0.050        | 3775002  | <0.050        | 0.050 | 3774997  |

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Criteria: CCME Industrial

Canadian Environmental Quality Guidelines for Soil 1998-1999

| Maxxam ID                      |       |          | XV4999        | XV5000        | XV5001        | XV5002        |       |          |
|--------------------------------|-------|----------|---------------|---------------|---------------|---------------|-------|----------|
| Sampling Date                  |       |          | 2014/08/20    | 2014/08/20    | 2014/08/20    | 2014/08/20    |       |          |
| COC Number                     |       |          | na            | na            | na            | na            |       |          |
|                                | Units | Criteria | F5-SA-MW-19-D | F5-MID-MW-5-S | F5-MID-MW-5-D | F5-MID-MW-6-S | RDL   | QC Batch |
| Metals                         |       |          |               |               |               |               |       |          |
| Acid Extractable Arsenic (As)  | ug/g  | 12       | 1.6           | <1.0          | 1.1           | <1.0          | 1.0   | 3774997  |
| Acid Extractable Cadmium (Cd)  | ug/g  | 22       | <0.10         | <0.10         | <0.10         | <0.10         | 0.10  | 3774997  |
| Acid Extractable Chromium (Cr) | ug/g  | 87       | 15            | 17            | 19            | 12            | 1.0   | 3774997  |
| Acid Extractable Cobalt (Co)   | ug/g  | -        | 3.8           | 4.5           | 4.9           | 3.4           | 0.10  | 3774997  |
| Acid Extractable Copper (Cu)   | ug/g  | 91       | 8.4           | 8.1           | 9.7           | 6.4           | 0.50  | 3774997  |
| Acid Extractable Lead (Pb)     | ug/g  | 600      | 5.8           | 7.0           | 8.0           | 6.2           | 1.0   | 3774997  |
| Acid Extractable Nickel (Ni)   | ug/g  | 50       | 6.7           | 6.7           | 8.1           | 5.6           | 0.50  | 3774997  |
| Acid Extractable Zinc (Zn)     | ug/g  | 360      | 36            | 41            | 45            | 31            | 5.0   | 3774997  |
| Acid Extractable Mercury (Hg)  | ug/g  | 50       | <0.050        | <0.050        | <0.050        | <0.050        | 0.050 | 3774997  |

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Criteria: CCME Industrial

Canadian Environmental Quality Guidelines for Soil 1998-1999



Maxxam Job #: B4I3499 Report Date: 2014/10/09 **Decommissioning Consulting Services Limited** 

Client Project #: 350600-515-3

Site Location: FOX 5 BROUGHTON ISLAND

## **ELEMENTS BY ATOMIC SPECTROSCOPY (SOIL)**

| Maxxam ID                      |       |          | XV5003        | XV5004        | XV5005        |          | XV5006        |       |          |
|--------------------------------|-------|----------|---------------|---------------|---------------|----------|---------------|-------|----------|
| Sampling Date                  |       |          | 2014/08/20    | 2014/08/20    | 2014/08/20    |          | 2014/08/20    |       |          |
| COC Number                     |       |          | na            | na            | na            |          | na            |       |          |
|                                | Units | Criteria | F5-MID-MW-6-D | F5-MID-MW-7-S | F5-MID-MW-7-D | QC Batch | F5-MID-MW-8-S | RDL   | QC Batch |
| Metals                         |       |          |               |               |               |          |               |       |          |
| Acid Extractable Arsenic (As)  | ug/g  | 12       | <1.0          | <1.0          | <1.0          | 3774997  | 1.0           | 1.0   | 3775002  |
| Acid Extractable Cadmium (Cd)  | ug/g  | 22       | <0.10         | <0.10         | <0.10         | 3774997  | <0.10         | 0.10  | 3775002  |
| Acid Extractable Chromium (Cr) | ug/g  | 87       | 16            | 13            | 17            | 3774997  | 12            | 1.0   | 3775002  |
| Acid Extractable Cobalt (Co)   | ug/g  | -        | 4.4           | 3.7           | 4.6           | 3774997  | 3.0           | 0.10  | 3775002  |
| Acid Extractable Copper (Cu)   | ug/g  | 91       | 8.0           | 10            | 9.2           | 3774997  | 7.1           | 0.50  | 3775002  |
| Acid Extractable Lead (Pb)     | ug/g  | 600      | 7.6           | 6.0           | 7.6           | 3774997  | 6.8           | 1.0   | 3775002  |
| Acid Extractable Nickel (Ni)   | ug/g  | 50       | 6.9           | 6.0           | 7.5           | 3774997  | 5.1           | 0.50  | 3775002  |
| Acid Extractable Zinc (Zn)     | ug/g  | 360      | 40            | 56            | 45            | 3774997  | 27            | 5.0   | 3775002  |
| Acid Extractable Mercury (Hg)  | ug/g  | 50       | <0.050        | <0.050        | <0.050        | 3774997  | <0.050        | 0.050 | 3775002  |

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Criteria: CCME Industrial

Canadian Environmental Quality Guidelines for Soil 1998-1999

| Maxxam ID                      |       |          | XV5007        | XV5008        | XV5009        | XV5010        |       |          |
|--------------------------------|-------|----------|---------------|---------------|---------------|---------------|-------|----------|
| Sampling Date                  |       |          | 2014/08/20    | 2014/08/20    | 2014/08/20    | 2014/08/21    |       |          |
| COC Number                     |       |          | na            | na            | na            | na            |       |          |
|                                | Units | Criteria | F5-MID-MW-8-D | F5-MID-MW-9-S | F5-MID-MW-9-D | F5-MN-MW-10-S | RDL   | QC Batch |
| Metals                         |       |          |               |               |               |               |       |          |
| Acid Extractable Arsenic (As)  | ug/g  | 12       | 1.1           | 1.4           | 1.3           | <1.0          | 1.0   | 3774997  |
| Acid Extractable Cadmium (Cd)  | ug/g  | 22       | <0.10         | <0.10         | <0.10         | <0.10         | 0.10  | 3774997  |
| Acid Extractable Chromium (Cr) | ug/g  | 87       | 14            | 11            | 12            | 13            | 1.0   | 3774997  |
| Acid Extractable Cobalt (Co)   | ug/g  | -        | 3.9           | 2.9           | 3.0           | 3.5           | 0.10  | 3774997  |
| Acid Extractable Copper (Cu)   | ug/g  | 91       | 7.0           | 5.6           | 5.6           | 6.7           | 0.50  | 3774997  |
| Acid Extractable Lead (Pb)     | ug/g  | 600      | 7.2           | 5.9           | 7.0           | 7.6           | 1.0   | 3774997  |
| Acid Extractable Nickel (Ni)   | ug/g  | 50       | 5.9           | 4.5           | 5.1           | 5.6           | 0.50  | 3774997  |
| Acid Extractable Zinc (Zn)     | ug/g  | 360      | 33            | 26            | 26            | 37            | 5.0   | 3774997  |
| Acid Extractable Mercury (Hg)  | ug/g  | 50       | <0.050        | <0.050        | <0.050        | <0.050        | 0.050 | 3774997  |

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Criteria: CCME Industrial

Canadian Environmental Quality Guidelines for Soil 1998-1999



**Decommissioning Consulting Services Limited** 

Client Project #: 350600-515-3

Site Location: FOX 5 BROUGHTON ISLAND

# **ELEMENTS BY ATOMIC SPECTROSCOPY (SOIL)**

|                                | ā     |          | <u> </u>      | <u> </u>      |               | <u> </u>      |       |          |
|--------------------------------|-------|----------|---------------|---------------|---------------|---------------|-------|----------|
| Maxxam ID                      |       |          | XV5011        | XV5012        | XV5013        | XV5014        |       |          |
| Sampling Date                  |       |          | 2014/08/21    | 2014/08/21    | 2014/08/21    | 2014/08/21    |       |          |
| COC Number                     |       |          | na            | na            | na            | na            |       |          |
|                                | Units | Criteria | F5-MN-MW-10-D | F5-MN-MW-11-S | F5-MN-MW-11-D | F5-MN-MW-12-S | RDL   | QC Batch |
| Metals                         |       |          |               |               |               |               |       |          |
| Acid Extractable Arsenic (As)  | ug/g  | 12       | <1.0          | 1.2           | 1.2           | <1.0          | 1.0   | 3774997  |
| Acid Extractable Cadmium (Cd)  | ug/g  | 22       | <0.10         | <0.10         | <0.10         | <0.10         | 0.10  | 3774997  |
| Acid Extractable Chromium (Cr) | ug/g  | 87       | 15            | 14            | 15            | 5.7           | 1.0   | 3774997  |
| Acid Extractable Cobalt (Co)   | ug/g  | -        | 4.4           | 3.8           | 3.7           | 1.7           | 0.10  | 3774997  |
| Acid Extractable Copper (Cu)   | ug/g  | 91       | 8.0           | 8.0           | 8.6           | 5.0           | 0.50  | 3774997  |
| Acid Extractable Lead (Pb)     | ug/g  | 600      | 8.7           | 14            | 14            | 7.7           | 1.0   | 3774997  |
| Acid Extractable Nickel (Ni)   | ug/g  | 50       | 6.5           | 6.4           | 6.5           | 2.8           | 0.50  | 3774997  |
| Acid Extractable Zinc (Zn)     | ug/g  | 360      | 43            | 40            | 34            | 26            | 5.0   | 3774997  |
| Acid Extractable Mercury (Hg)  | ug/g  | 50       | <0.050        | <0.050        | <0.050        | <0.050        | 0.050 | 3774997  |

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Criteria: CCME Industrial

Canadian Environmental Quality Guidelines for Soil 1998-1999

| Maxxam ID                      |       |          | XV5015        |          | XV5016        |          | XV5017        |       |          |
|--------------------------------|-------|----------|---------------|----------|---------------|----------|---------------|-------|----------|
| Sampling Date                  |       |          | 2014/08/21    |          | 2014/08/21    |          | 2014/08/21    |       |          |
| COC Number                     |       |          | na            |          | na            |          | na            |       |          |
|                                | Units | Criteria | F5-MN-MW-12-D | QC Batch | F5-MN-MW-13-S | QC Batch | F5-MN-MW-13-D | RDL   | QC Batch |
| Metals                         |       |          |               |          |               |          |               |       |          |
| Acid Extractable Arsenic (As)  | ug/g  | 12       | <1.0          | 3775002  | <1.0          | 3774997  | <1.0          | 1.0   | 3775002  |
| Acid Extractable Cadmium (Cd)  | ug/g  | 22       | 0.12          | 3775002  | <0.10         | 3774997  | <0.10         | 0.10  | 3775002  |
| Acid Extractable Chromium (Cr) | ug/g  | 87       | 7.7           | 3775002  | 9.3           | 3774997  | 8.1           | 1.0   | 3775002  |
| Acid Extractable Cobalt (Co)   | ug/g  | -        | 2.1           | 3775002  | 3.0           | 3774997  | 2.5           | 0.10  | 3775002  |
| Acid Extractable Copper (Cu)   | ug/g  | 91       | 8.5           | 3775002  | 5.9           | 3774997  | 5.5           | 0.50  | 3775002  |
| Acid Extractable Lead (Pb)     | ug/g  | 600      | 13            | 3775002  | 7.8           | 3774997  | 9.4           | 1.0   | 3775002  |
| Acid Extractable Nickel (Ni)   | ug/g  | 50       | 3.6           | 3775002  | 4.3           | 3774997  | 3.9           | 0.50  | 3775002  |
| Acid Extractable Zinc (Zn)     | ug/g  | 360      | 38            | 3775002  | 34            | 3774997  | 31            | 5.0   | 3775002  |
| Acid Extractable Mercury (Hg)  | ug/g  | 50       | <0.050        | 3775002  | <0.050        | 3774997  | <0.050        | 0.050 | 3775002  |

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Criteria: CCME Industrial



**Decommissioning Consulting Services Limited** 

Client Project #: 350600-515-3

Site Location: FOX 5 BROUGHTON ISLAND

## **ELEMENTS BY ATOMIC SPECTROSCOPY (SOIL)**

| Maxxam ID                      |       |          | XV5018        | XV5019        |       |          |
|--------------------------------|-------|----------|---------------|---------------|-------|----------|
| Sampling Date                  |       |          | 2014/08/21    | 2014/08/21    |       |          |
| COC Number                     |       |          | na            | na            |       |          |
|                                | Units | Criteria | F5-MN-MW-14-S | F5-MN-MW-14-D | RDL   | QC Batch |
| Metals                         |       |          |               |               |       |          |
| Acid Extractable Arsenic (As)  | ug/g  | 12       | <1.0          | <1.0          | 1.0   | 3774997  |
| Acid Extractable Cadmium (Cd)  | ug/g  | 22       | <0.10         | <0.10         | 0.10  | 3774997  |
| Acid Extractable Chromium (Cr) | ug/g  | 87       | 8.8           | 7.7           | 1.0   | 3774997  |
| Acid Extractable Cobalt (Co)   | ug/g  | -        | 3.1           | 2.8           | 0.10  | 3774997  |
| Acid Extractable Copper (Cu)   | ug/g  | 91       | 6.1           | 5.0           | 0.50  | 3774997  |
| Acid Extractable Lead (Pb)     | ug/g  | 600      | 9.1           | 7.2           | 1.0   | 3774997  |
| Acid Extractable Nickel (Ni)   | ug/g  | 50       | 4.4           | 3.5           | 0.50  | 3774997  |
| Acid Extractable Zinc (Zn)     | ug/g  | 360      | 32            | 30            | 5.0   | 3774997  |
| Acid Extractable Mercury (Hg)  | ug/g  | 50       | <0.050        | <0.050        | 0.050 | 3774997  |

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Criteria: CCME Industrial



Decommissioning Consulting Services Limited

Client Project #: 350600-515-3

Site Location: FOX 5 BROUGHTON ISLAND

# PETROLEUM HYDROCARBONS (CCME)

| Maxxam ID                 |       |          | XV4996        | XV4997        | XV4998        | XV4999        | XV5000        |       |          |
|---------------------------|-------|----------|---------------|---------------|---------------|---------------|---------------|-------|----------|
| Sampling Date             |       |          | 2014/08/20    | 2014/08/20    | 2014/08/20    | 2014/08/20    | 2014/08/20    |       |          |
| COC Number                |       |          | na            | na            | na            | na            | na            |       |          |
|                           | Units | Criteria | F5-SA-MW-18-S | F5-SA-MW-18-D | F5-SA-MW-19-S | F5-SA-MW-19-D | F5-MID-MW-5-S | RDL   | QC Batch |
| BTEX & F1 Hydrocarbons    |       |          |               |               |               |               |               |       |          |
| Benzene                   | ug/g  | 5        | <0.005        | <0.005        | <0.005        | <0.005        | <0.005        | 0.005 | 3773163  |
| Toluene                   | ug/g  | 0.8      | <0.02         | <0.02         | <0.02         | <0.02         | <0.02         | 0.02  | 3773163  |
| Ethylbenzene              | ug/g  | 20       | <0.01         | <0.01         | <0.01         | <0.01         | <0.01         | 0.01  | 3773163  |
| o-Xylene                  | ug/g  | -        | <0.02         | <0.02         | <0.02         | <0.02         | <0.02         | 0.02  | 3773163  |
| p+m-Xylene                | ug/g  | -        | <0.04         | <0.04         | <0.04         | <0.04         | <0.04         | 0.04  | 3773163  |
| Total Xylenes             | ug/g  | -        | <0.04         | <0.04         | <0.04         | <0.04         | <0.04         | 0.04  | 3773163  |
| F1 (C6-C10)               | ug/g  | -        | <10           | <10           | <10           | <10           | <10           | 10    | 3773163  |
| F1 (C6-C10) - BTEX        | ug/g  | -        | <10           | <10           | <10           | <10           | <10           | 10    | 3773163  |
| F2-F4 Hydrocarbons        | •     | •        | •             | •             | •             | •             | •             | -     |          |
| F2 (C10-C16 Hydrocarbons) | ug/g  | -        | <10           | <10           | <10           | <10           | <10           | 10    | 3773247  |
| F3 (C16-C34 Hydrocarbons) | ug/g  | -        | <50           | <50           | <50           | <50           | <50           | 50    | 3773247  |
| F4 (C34-C50 Hydrocarbons) | ug/g  | -        | <50           | <50           | <50           | <50           | <50           | 50    | 3773247  |
| Reached Baseline at C50   | ug/g  | -        | Yes           | Yes           | Yes           | Yes           | Yes           |       | 3773247  |
| Surrogate Recovery (%)    |       |          |               |               |               |               |               |       |          |
| 1,4-Difluorobenzene       | %     | -        | 91            | 90            | 90            | 90            | 90            |       | 3773163  |
| 4-Bromofluorobenzene      | %     | -        | 103           | 103           | 103           | 102           | 103           |       | 3773163  |
| D10-Ethylbenzene          | %     | -        | 87            | 83            | 93            | 92            | 94            |       | 3773163  |
| D4-1,2-Dichloroethane     | %     | -        | 99            | 98            | 102           | 101           | 102           |       | 3773163  |
| o-Terphenyl               | %     | -        | 84            | 82            | 81            | 81            | 87            |       | 3773247  |

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Criteria: CCME Industrial



Decommissioning Consulting Services Limited

Client Project #: 350600-515-3

Site Location: FOX 5 BROUGHTON ISLAND

# PETROLEUM HYDROCARBONS (CCME)

|       |                                         | XV5001                                                                                                                                                                                   | XV5002        | XV5003                                                                                                     | XV5004                                                                                                                           |       |                                                                                                                                                                    |
|-------|-----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|       |                                         | 2014/08/20                                                                                                                                                                               | 2014/08/20    | 2014/08/20                                                                                                 | 2014/08/20                                                                                                                       |       |                                                                                                                                                                    |
|       |                                         | na                                                                                                                                                                                       | na            | na                                                                                                         | na                                                                                                                               |       |                                                                                                                                                                    |
| Units | Criteria                                | F5-MID-MW-5-D                                                                                                                                                                            | F5-MID-MW-6-S | F5-MID-MW-6-D                                                                                              | F5-MID-MW-7-S                                                                                                                    | RDL   | QC Batch                                                                                                                                                           |
|       |                                         |                                                                                                                                                                                          |               |                                                                                                            |                                                                                                                                  |       |                                                                                                                                                                    |
| ug/g  | 5                                       | <0.005                                                                                                                                                                                   | <0.005        | <0.005                                                                                                     | <0.005                                                                                                                           | 0.005 | 3773163                                                                                                                                                            |
| ug/g  | 0.8                                     | <0.02                                                                                                                                                                                    | <0.02         | <0.02                                                                                                      | <0.02                                                                                                                            | 0.02  | 3773163                                                                                                                                                            |
| ug/g  | 20                                      | <0.01                                                                                                                                                                                    | <0.01         | <0.01                                                                                                      | <0.01                                                                                                                            | 0.01  | 3773163                                                                                                                                                            |
| ug/g  | -                                       | <0.02                                                                                                                                                                                    | <0.02         | <0.02                                                                                                      | <0.02                                                                                                                            | 0.02  | 3773163                                                                                                                                                            |
| ug/g  | -                                       | <0.04                                                                                                                                                                                    | <0.04         | <0.04                                                                                                      | <0.04                                                                                                                            | 0.04  | 3773163                                                                                                                                                            |
| ug/g  | -                                       | <0.04                                                                                                                                                                                    | <0.04         | <0.04                                                                                                      | <0.04                                                                                                                            | 0.04  | 3773163                                                                                                                                                            |
| ug/g  | -                                       | <10                                                                                                                                                                                      | <10           | <10                                                                                                        | <10                                                                                                                              | 10    | 3773163                                                                                                                                                            |
| ug/g  | -                                       | <10                                                                                                                                                                                      | <10           | <10                                                                                                        | <10                                                                                                                              | 10    | 3773163                                                                                                                                                            |
| •     |                                         |                                                                                                                                                                                          |               |                                                                                                            |                                                                                                                                  |       |                                                                                                                                                                    |
| ug/g  | -                                       | <10                                                                                                                                                                                      | <10           | <10                                                                                                        | <10                                                                                                                              | 10    | 3773247                                                                                                                                                            |
| ug/g  |                                         | <50                                                                                                                                                                                      | <50           | <50                                                                                                        | <50                                                                                                                              | 50    | 3773247                                                                                                                                                            |
| ug/g  | -                                       | <50                                                                                                                                                                                      | <50           | <50                                                                                                        | <50                                                                                                                              | 50    | 3773247                                                                                                                                                            |
| ug/g  | -                                       | Yes                                                                                                                                                                                      | Yes           | Yes                                                                                                        | Yes                                                                                                                              |       | 3773247                                                                                                                                                            |
|       |                                         |                                                                                                                                                                                          |               |                                                                                                            |                                                                                                                                  |       |                                                                                                                                                                    |
| %     | -                                       | 90                                                                                                                                                                                       | 90            | 92                                                                                                         | 91                                                                                                                               |       | 3773163                                                                                                                                                            |
| %     | -                                       | 103                                                                                                                                                                                      | 103           | 103                                                                                                        | 102                                                                                                                              |       | 3773163                                                                                                                                                            |
| %     | -                                       | 87                                                                                                                                                                                       | 85            | 89                                                                                                         | 89                                                                                                                               |       | 3773163                                                                                                                                                            |
| %     | -                                       | 102                                                                                                                                                                                      | 101           | 101                                                                                                        | 100                                                                                                                              |       | 3773163                                                                                                                                                            |
| %     | -                                       | 90                                                                                                                                                                                       | 86            | 85                                                                                                         | 90                                                                                                                               | ,     | 3773247                                                                                                                                                            |
|       | ug/g ug/g ug/g ug/g ug/g ug/g ug/g ug/g | ug/g 5 ug/g 0.8 ug/g 20 ug/g - ug/g - ug/g - ug/g - ug/g - ug/g - ug/g - ug/g - ug/g - ug/g - ug/g - ug/g - ug/g - ug/g - ug/g - ug/g - ug/g - ug/g - ug/g - ug/g - ug/g - ug/g - ug/g - |               | Units         Criteria         F5-MID-MW-5-D         F5-MID-MW-6-S           ug/g         5         <0.005 | Units         Criteria         F5-MID-MW-5-D         F5-MID-MW-6-S         F5-MID-MW-6-D           ug/g         5         <0.005 |       | Units         Criteria         F5-MID-MW-5-D         F5-MID-MW-6-S         F5-MID-MW-6-D         F5-MID-MW-7-S         RDL           ug/g         5         <0.005 |

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Criteria: CCME Industrial



Decommissioning Consulting Services Limited

Client Project #: 350600-515-3

Site Location: FOX 5 BROUGHTON ISLAND

# PETROLEUM HYDROCARBONS (CCME)

|       |                                         | XV5005                                                                                                                                                                                                 | XV5006                                                                               | XV5007                                                                                                     | XV5008                                                                                                                           |                                                                                                                                                        |                                                                                                                                                                    |
|-------|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|       |                                         |                                                                                                                                                                                                        |                                                                                      |                                                                                                            |                                                                                                                                  |                                                                                                                                                        |                                                                                                                                                                    |
|       |                                         | 2014/08/20                                                                                                                                                                                             | 2014/08/20                                                                           | 2014/08/20                                                                                                 | 2014/08/20                                                                                                                       |                                                                                                                                                        |                                                                                                                                                                    |
|       |                                         | na                                                                                                                                                                                                     | na                                                                                   | na                                                                                                         | na                                                                                                                               |                                                                                                                                                        |                                                                                                                                                                    |
| Units | Criteria                                | F5-MID-MW-7-D                                                                                                                                                                                          | F5-MID-MW-8-S                                                                        | F5-MID-MW-8-D                                                                                              | F5-MID-MW-9-S                                                                                                                    | RDL                                                                                                                                                    | QC Batch                                                                                                                                                           |
|       |                                         |                                                                                                                                                                                                        |                                                                                      |                                                                                                            |                                                                                                                                  |                                                                                                                                                        |                                                                                                                                                                    |
| ug/g  | 5                                       | <0.005                                                                                                                                                                                                 | <0.005                                                                               | <0.005                                                                                                     | <0.005                                                                                                                           | 0.005                                                                                                                                                  | 3773163                                                                                                                                                            |
| ug/g  | 0.8                                     | <0.02                                                                                                                                                                                                  | <0.02                                                                                | <0.02                                                                                                      | <0.02                                                                                                                            | 0.02                                                                                                                                                   | 3773163                                                                                                                                                            |
| ug/g  | 20                                      | <0.01                                                                                                                                                                                                  | <0.01                                                                                | <0.01                                                                                                      | <0.01                                                                                                                            | 0.01                                                                                                                                                   | 3773163                                                                                                                                                            |
| ug/g  | -                                       | <0.02                                                                                                                                                                                                  | <0.02                                                                                | <0.02                                                                                                      | <0.02                                                                                                                            | 0.02                                                                                                                                                   | 3773163                                                                                                                                                            |
| ug/g  | -                                       | <0.04                                                                                                                                                                                                  | <0.04                                                                                | <0.04                                                                                                      | <0.04                                                                                                                            | 0.04                                                                                                                                                   | 3773163                                                                                                                                                            |
| ug/g  | -                                       | <0.04                                                                                                                                                                                                  | <0.04                                                                                | <0.04                                                                                                      | <0.04                                                                                                                            | 0.04                                                                                                                                                   | 3773163                                                                                                                                                            |
| ug/g  | -                                       | <10                                                                                                                                                                                                    | <10                                                                                  | <10                                                                                                        | <10                                                                                                                              | 10                                                                                                                                                     | 3773163                                                                                                                                                            |
| ug/g  | -                                       | <10                                                                                                                                                                                                    | <10                                                                                  | <10                                                                                                        | <10                                                                                                                              | 10                                                                                                                                                     | 3773163                                                                                                                                                            |
| -     | •                                       |                                                                                                                                                                                                        |                                                                                      |                                                                                                            |                                                                                                                                  | •                                                                                                                                                      |                                                                                                                                                                    |
| ug/g  | -                                       | <10                                                                                                                                                                                                    | <10                                                                                  | <10                                                                                                        | <10                                                                                                                              | 10                                                                                                                                                     | 3773247                                                                                                                                                            |
| ug/g  | -                                       | <50                                                                                                                                                                                                    | 71                                                                                   | <50                                                                                                        | <50                                                                                                                              | 50                                                                                                                                                     | 3773247                                                                                                                                                            |
| ug/g  | -                                       | <50                                                                                                                                                                                                    | <50                                                                                  | <50                                                                                                        | <50                                                                                                                              | 50                                                                                                                                                     | 3773247                                                                                                                                                            |
| ug/g  | -                                       | Yes                                                                                                                                                                                                    | Yes                                                                                  | Yes                                                                                                        | Yes                                                                                                                              |                                                                                                                                                        | 3773247                                                                                                                                                            |
|       |                                         |                                                                                                                                                                                                        |                                                                                      |                                                                                                            |                                                                                                                                  |                                                                                                                                                        |                                                                                                                                                                    |
| %     | -                                       | 90                                                                                                                                                                                                     | 90                                                                                   | 91                                                                                                         | 91                                                                                                                               |                                                                                                                                                        | 3773163                                                                                                                                                            |
| %     | -                                       | 103                                                                                                                                                                                                    | 102                                                                                  | 102                                                                                                        | 102                                                                                                                              |                                                                                                                                                        | 3773163                                                                                                                                                            |
| %     | -                                       | 92                                                                                                                                                                                                     | 95                                                                                   | 95                                                                                                         | 89                                                                                                                               |                                                                                                                                                        | 3773163                                                                                                                                                            |
| %     | -                                       | 100                                                                                                                                                                                                    | 103                                                                                  | 101                                                                                                        | 102                                                                                                                              |                                                                                                                                                        | 3773163                                                                                                                                                            |
| %     | -                                       | 92                                                                                                                                                                                                     | 89                                                                                   | 89                                                                                                         | 91                                                                                                                               |                                                                                                                                                        | 3773247                                                                                                                                                            |
|       | ug/g ug/g ug/g ug/g ug/g ug/g ug/g ug/g | ug/g 5 ug/g 0.8 ug/g 20 ug/g - ug/g - ug/g - ug/g - ug/g - ug/g - ug/g - ug/g - ug/g - ug/g - ug/g - ug/g - ug/g - ug/g - ug/g - ug/g - ug/g - ug/g - ug/g - ug/g - ug/g - ug/g - ug/g - ug/g - ug/g - | Units         Criteria         F5-MID-MW-7-D           ug/g         5         <0.005 | Units         Criteria         F5-MID-MW-7-D         F5-MID-MW-8-S           ug/g         5         <0.005 | Units         Criteria         F5-MID-MW-7-D         F5-MID-MW-8-S         F5-MID-MW-8-D           ug/g         5         <0.005 | Units         Criteria         F5-MID-MW-7-D         F5-MID-MW-8-S         F5-MID-MW-8-D         F5-MID-MW-9-S           ug/g         5         <0.005 | Units         Criteria         F5-MID-MW-7-D         F5-MID-MW-8-S         F5-MID-MW-8-D         F5-MID-MW-9-S         RDL           ug/g         5         <0.005 |

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Criteria: CCME Industrial



**Decommissioning Consulting Services Limited** 

Client Project #: 350600-515-3

Site Location: FOX 5 BROUGHTON ISLAND

# PETROLEUM HYDROCARBONS (CCME)

| Maxxam ID                 |       |          | XV5009        | XV5010        | XV5011        | XV5012        |       |          |
|---------------------------|-------|----------|---------------|---------------|---------------|---------------|-------|----------|
| Sampling Date             |       |          | 2014/08/20    | 2014/08/21    | 2014/08/21    | 2014/08/21    |       |          |
| COC Number                |       |          | na            | na            | na            | na            |       |          |
|                           | Units | Criteria | F5-MID-MW-9-D | F5-MN-MW-10-S | F5-MN-MW-10-D | F5-MN-MW-11-S | RDL   | QC Batch |
| BTEX & F1 Hydrocarbons    |       |          |               |               |               |               |       |          |
| Benzene                   | ug/g  | 5        | <0.005        | <0.005        | <0.005        | <0.005        | 0.005 | 3773163  |
| Toluene                   | ug/g  | 0.8      | <0.02         | <0.02         | <0.02         | <0.02         | 0.02  | 3773163  |
| Ethylbenzene              | ug/g  | 20       | <0.01         | <0.01         | <0.01         | <0.01         | 0.01  | 3773163  |
| o-Xylene                  | ug/g  | -        | <0.02         | <0.02         | <0.02         | <0.02         | 0.02  | 3773163  |
| p+m-Xylene                | ug/g  | -        | <0.04         | <0.04         | <0.04         | <0.04         | 0.04  | 3773163  |
| Total Xylenes             | ug/g  | -        | <0.04         | <0.04         | <0.04         | <0.04         | 0.04  | 3773163  |
| F1 (C6-C10)               | ug/g  | -        | <10           | <10           | <10           | <10           | 10    | 3773163  |
| F1 (C6-C10) - BTEX        | ug/g  | -        | <10           | <10           | <10           | <10           | 10    | 3773163  |
| F2-F4 Hydrocarbons        | 3     | •        | •             | •             | •             | •             |       |          |
| F2 (C10-C16 Hydrocarbons) | ug/g  | -        | <10           | <10           | <10           | <10           | 10    | 3773247  |
| F3 (C16-C34 Hydrocarbons) | ug/g  | -        | <50           | <50           | <50           | <50           | 50    | 3773247  |
| F4 (C34-C50 Hydrocarbons) | ug/g  | -        | <50           | <50           | <50           | <50           | 50    | 3773247  |
| Reached Baseline at C50   | ug/g  | -        | Yes           | Yes           | Yes           | Yes           |       | 3773247  |
| Surrogate Recovery (%)    |       |          |               |               |               |               |       |          |
| 1,4-Difluorobenzene       | %     | -        | 90            | 91            | 90            | 91            |       | 3773163  |
| 4-Bromofluorobenzene      | %     | -        | 102           | 102           | 103           | 102           |       | 3773163  |
| D10-Ethylbenzene          | %     | -        | 85            | 92            | 89            | 92            |       | 3773163  |
| D4-1,2-Dichloroethane     | %     | -        | 102           | 102           | 103           | 103           |       | 3773163  |
| o-Terphenyl               | %     | -        | 88            | 92            | 92            | 92            |       | 3773247  |

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Criteria: CCME Industrial



**Decommissioning Consulting Services Limited** 

Client Project #: 350600-515-3

Site Location: FOX 5 BROUGHTON ISLAND

# PETROLEUM HYDROCARBONS (CCME)

| Maxxam ID                 |       |          | XV5013        | XV5014        | XV5015        |          | XV5016        |       |          |
|---------------------------|-------|----------|---------------|---------------|---------------|----------|---------------|-------|----------|
| Sampling Date             |       |          | 2014/08/21    | 2014/08/21    | 2014/08/21    |          | 2014/08/21    |       |          |
| COC Number                |       |          | na            | na            | na            |          | na            |       |          |
|                           | Units | Criteria | F5-MN-MW-11-D | F5-MN-MW-12-S | F5-MN-MW-12-D | QC Batch | F5-MN-MW-13-S | RDL   | QC Batch |
| BTEX & F1 Hydrocarbons    |       |          |               |               |               |          |               |       |          |
| Benzene                   | ug/g  | 5        | <0.005        | <0.005        | <0.005        | 3773163  | <0.005        | 0.005 | 3773162  |
| Toluene                   | ug/g  | 0.8      | <0.02         | <0.02         | <0.02         | 3773163  | <0.02         | 0.02  | 3773162  |
| Ethylbenzene              | ug/g  | 20       | <0.01         | <0.01         | <0.01         | 3773163  | <0.01         | 0.01  | 3773162  |
| o-Xylene                  | ug/g  | 1        | <0.02         | <0.02         | <0.02         | 3773163  | <0.02         | 0.02  | 3773162  |
| p+m-Xylene                | ug/g  | -        | <0.04         | <0.04         | <0.04         | 3773163  | <0.04         | 0.04  | 3773162  |
| Total Xylenes             | ug/g  | -        | <0.04         | <0.04         | <0.04         | 3773163  | <0.04         | 0.04  | 3773162  |
| F1 (C6-C10)               | ug/g  | -        | <10           | <10           | <10           | 3773163  | <10           | 10    | 3773162  |
| F1 (C6-C10) - BTEX        | ug/g  | -        | <10           | <10           | <10           | 3773163  | <10           | 10    | 3773162  |
| F2-F4 Hydrocarbons        |       |          | •             | •             | •             |          | •             | 3     |          |
| F2 (C10-C16 Hydrocarbons) | ug/g  | 1        | <10           | <10           | <10           | 3773247  | <10           | 10    | 3773269  |
| F3 (C16-C34 Hydrocarbons) | ug/g  | 1        | <50           | <50           | 110           | 3773247  | <50           | 50    | 3773269  |
| F4 (C34-C50 Hydrocarbons) | ug/g  | 1        | <50           | <50           | 56            | 3773247  | <50           | 50    | 3773269  |
| Reached Baseline at C50   | ug/g  | 1        | Yes           | Yes           | Yes           | 3773247  | Yes           |       | 3773269  |
| Surrogate Recovery (%)    |       |          |               |               |               |          |               |       |          |
| 1,4-Difluorobenzene       | %     | 1        | 90            | 91            | 91            | 3773163  | 90            |       | 3773162  |
| 4-Bromofluorobenzene      | %     | 1        | 102           | 101           | 101           | 3773163  | 102           |       | 3773162  |
| D10-Ethylbenzene          | %     | 1        | 92            | 91            | 90            | 3773163  | 94            |       | 3773162  |
| D4-1,2-Dichloroethane     | %     | 1        | 102           | 102           | 102           | 3773163  | 99            |       | 3773162  |
| o-Terphenyl               | %     | -        | 92            | 82            | 90            | 3773247  | 86            |       | 3773269  |

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Criteria: CCME Industrial



**Decommissioning Consulting Services Limited** 

Client Project #: 350600-515-3

Site Location: FOX 5 BROUGHTON ISLAND

# PETROLEUM HYDROCARBONS (CCME)

| Maxxam ID                 |       |          | XV5017        | XV5018        | XV5019        |       |          |
|---------------------------|-------|----------|---------------|---------------|---------------|-------|----------|
| Sampling Date             |       |          | 2014/08/21    | 2014/08/21    | 2014/08/21    |       |          |
| COC Number                |       |          | na            | na            | na            |       |          |
|                           | Units | Criteria | F5-MN-MW-13-D | F5-MN-MW-14-S | F5-MN-MW-14-D | RDL   | QC Batch |
| BTEX & F1 Hydrocarbons    |       |          |               |               |               |       |          |
| Benzene                   | ug/g  | 5        | <0.005        | <0.005        | <0.005        | 0.005 | 3773162  |
| Toluene                   | ug/g  | 0.8      | <0.02         | <0.02         | <0.02         | 0.02  | 3773162  |
| Ethylbenzene              | ug/g  | 20       | <0.01         | <0.01         | <0.01         | 0.01  | 3773162  |
| o-Xylene                  | ug/g  | -        | <0.02         | <0.02         | <0.02         | 0.02  | 3773162  |
| p+m-Xylene                | ug/g  | -        | <0.04         | <0.04         | <0.04         | 0.04  | 3773162  |
| Total Xylenes             | ug/g  | -        | <0.04         | <0.04         | <0.04         | 0.04  | 3773162  |
| F1 (C6-C10)               | ug/g  | -        | <10           | <10           | <10           | 10    | 3773162  |
| F1 (C6-C10) - BTEX        | ug/g  | -        | <10           | <10           | <10           | 10    | 3773162  |
| F2-F4 Hydrocarbons        | -     | •        |               |               |               |       |          |
| F2 (C10-C16 Hydrocarbons) | ug/g  | -        | <10           | <10           | <10           | 10    | 3773269  |
| F3 (C16-C34 Hydrocarbons) | ug/g  | -        | <50           | <50           | <50           | 50    | 3773269  |
| F4 (C34-C50 Hydrocarbons) | ug/g  | -        | <50           | <50           | <50           | 50    | 3773269  |
| Reached Baseline at C50   | ug/g  | -        | Yes           | Yes           | Yes           |       | 3773269  |
| Surrogate Recovery (%)    |       |          |               |               |               |       |          |
| 1,4-Difluorobenzene       | %     | -        | 90            | 90            | 90            |       | 3773162  |
| 4-Bromofluorobenzene      | %     | -        | 102           | 102           | 102           |       | 3773162  |
| D10-Ethylbenzene          | %     | -        | 86            | 83            | 79            |       | 3773162  |
| D4-1,2-Dichloroethane     | %     | -        | 97            | 98            | 98            |       | 3773162  |
| o-Terphenyl               | %     | -        | 86            | 89            | 87            |       | 3773269  |

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Criteria: CCME Industrial



**Decommissioning Consulting Services Limited** 

Client Project #: 350600-515-3

Site Location: FOX 5 BROUGHTON ISLAND

## POLYCHLORINATED BIPHENYLS BY GC-ECD (SOIL)

| Maxxam ID              |       |          | XV4996        |          | XV4997        | XV4998        | XV4999        |       |          |
|------------------------|-------|----------|---------------|----------|---------------|---------------|---------------|-------|----------|
| Sampling Date          |       |          | 2014/08/20    |          | 2014/08/20    | 2014/08/20    | 2014/08/20    |       |          |
| COC Number             |       |          | na            |          | na            | na            | na            |       |          |
|                        | Units | Criteria | F5-SA-MW-18-S | QC Batch | F5-SA-MW-18-D | F5-SA-MW-19-S | F5-SA-MW-19-D | RDL   | QC Batch |
| PCBs                   |       |          |               |          |               |               |               |       |          |
| Aroclor 1016           | ug/g  | -        | <0.010        | 3775200  | <0.010        | <0.010        | <0.010        | 0.010 | 3774370  |
| Aroclor 1221           | ug/g  | -        | <0.010        | 3775200  | <0.010        | <0.010        | <0.010        | 0.010 | 3774370  |
| Aroclor 1232           | ug/g  | -        | <0.010        | 3775200  | <0.010        | <0.010        | <0.010        | 0.010 | 3774370  |
| Aroclor 1242           | ug/g  | -        | <0.010        | 3775200  | <0.010        | <0.010        | <0.010        | 0.010 | 3774370  |
| Aroclor 1248           | ug/g  | -        | <0.010        | 3775200  | <0.010        | <0.010        | <0.010        | 0.010 | 3774370  |
| Aroclor 1254           | ug/g  | -        | <0.010        | 3775200  | <0.010        | <0.010        | <0.010        | 0.010 | 3774370  |
| Aroclor 1260           | ug/g  | -        | <0.010        | 3775200  | <0.010        | <0.010        | <0.010        | 0.010 | 3774370  |
| Aroclor 1262           | ug/g  | -        | <0.010        | 3775200  | <0.010        | <0.010        | <0.010        | 0.010 | 3774370  |
| Aroclor 1268           | ug/g  | -        | <0.010        | 3775200  | <0.010        | <0.010        | <0.010        | 0.010 | 3774370  |
| Total PCB              | ug/g  | 33       | <0.010        | 3775200  | <0.010        | <0.010        | <0.010        | 0.010 | 3774370  |
| Surrogate Recovery (%) |       |          |               |          |               |               |               |       |          |
| Decachlorobiphenyl     | %     | -        | 84            | 3775200  | 76            | 76            | 76            |       | 3774370  |

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Criteria: CCME Industrial

Canadian Environmental Quality Guidelines for Soil 1998-1999

|                        |       |          |               |          | 1             |               |       |          |
|------------------------|-------|----------|---------------|----------|---------------|---------------|-------|----------|
| Maxxam ID              |       |          | XV5000        |          | XV5001        | XV5002        |       |          |
| Sampling Date          |       |          | 2014/08/20    |          | 2014/08/20    | 2014/08/20    |       |          |
| COC Number             |       |          | na            |          | na            | na            |       |          |
|                        | Units | Criteria | F5-MID-MW-5-S | QC Batch | F5-MID-MW-5-D | F5-MID-MW-6-S | RDL   | QC Batch |
| PCBs                   |       |          |               |          |               |               |       |          |
| Aroclor 1016           | ug/g  | -        | <0.010        | 3774370  | <0.010        | <0.010        | 0.010 | 3775200  |
| Aroclor 1221           | ug/g  | -        | <0.010        | 3774370  | <0.010        | <0.010        | 0.010 | 3775200  |
| Aroclor 1232           | ug/g  | -        | <0.010        | 3774370  | <0.010        | <0.010        | 0.010 | 3775200  |
| Aroclor 1242           | ug/g  | -        | <0.010        | 3774370  | <0.010        | <0.010        | 0.010 | 3775200  |
| Aroclor 1248           | ug/g  | -        | <0.010        | 3774370  | <0.010        | <0.010        | 0.010 | 3775200  |
| Aroclor 1254           | ug/g  | -        | <0.010        | 3774370  | <0.010        | <0.010        | 0.010 | 3775200  |
| Aroclor 1260           | ug/g  | -        | <0.010        | 3774370  | <0.010        | <0.010        | 0.010 | 3775200  |
| Aroclor 1262           | ug/g  | -        | <0.010        | 3774370  | <0.010        | <0.010        | 0.010 | 3775200  |
| Aroclor 1268           | ug/g  | -        | <0.010        | 3774370  | <0.010        | <0.010        | 0.010 | 3775200  |
| Total PCB              | ug/g  | 33       | <0.010        | 3774370  | <0.010        | <0.010        | 0.010 | 3775200  |
| Surrogate Recovery (%) | •     | -        |               |          |               |               | •     |          |
| Decachlorobiphenyl     | %     | -        | 75            | 3774370  | 84            | 83            |       | 3775200  |
| ' '                    |       |          |               | 5        | _ ·           |               |       | 0.70=0   |

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Criteria: CCME Industrial



Decommissioning Consulting Services Limited

Client Project #: 350600-515-3

Site Location: FOX 5 BROUGHTON ISLAND

## POLYCHLORINATED BIPHENYLS BY GC-ECD (SOIL)

|       |                                         | XV5003                                                                                                          | XV5004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | XV5005                                                                                                     | XV5006                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |
|-------|-----------------------------------------|-----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
|       |                                         | 2014/08/20                                                                                                      | 2014/08/20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2014/08/20                                                                                                 | 2014/08/20                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |
|       |                                         | na                                                                                                              | na                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | na                                                                                                         | na                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |
| Units | Criteria                                | F5-MID-MW-6-D                                                                                                   | F5-MID-MW-7-S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | F5-MID-MW-7-D                                                                                              | F5-MID-MW-8-S                                                                                                                    | RDL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | QC Batch |
|       |                                         |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                            |                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |
| ug/g  | -                                       | <0.010                                                                                                          | <0.010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <0.010                                                                                                     | <0.010                                                                                                                           | 0.010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3774370  |
| ug/g  | -                                       | <0.010                                                                                                          | <0.010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <0.010                                                                                                     | <0.010                                                                                                                           | 0.010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3774370  |
| ug/g  | -                                       | <0.010                                                                                                          | <0.010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <0.010                                                                                                     | <0.010                                                                                                                           | 0.010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3774370  |
| ug/g  | -                                       | <0.010                                                                                                          | <0.010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <0.010                                                                                                     | <0.010                                                                                                                           | 0.010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3774370  |
| ug/g  | -                                       | <0.010                                                                                                          | <0.010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <0.010                                                                                                     | <0.010                                                                                                                           | 0.010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3774370  |
| ug/g  | -                                       | <0.010                                                                                                          | <0.010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <0.010                                                                                                     | <0.010                                                                                                                           | 0.010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3774370  |
| ug/g  | -                                       | <0.010                                                                                                          | <0.010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <0.010                                                                                                     | <0.010                                                                                                                           | 0.010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3774370  |
| ug/g  | -                                       | <0.010                                                                                                          | <0.010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <0.010                                                                                                     | <0.010                                                                                                                           | 0.010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3774370  |
| ug/g  | -                                       | <0.010                                                                                                          | <0.010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <0.010                                                                                                     | <0.010                                                                                                                           | 0.010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3774370  |
| ug/g  | 33                                      | <0.010                                                                                                          | <0.010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <0.010                                                                                                     | <0.010                                                                                                                           | 0.010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3774370  |
|       |                                         |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                            |                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |
| %     | -                                       | 82                                                                                                              | 82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 81                                                                                                         | 75                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3774370  |
|       | ug/g ug/g ug/g ug/g ug/g ug/g ug/g ug/g | ug/g - ug/g - ug/g - ug/g - ug/g - ug/g - ug/g - ug/g - ug/g - ug/g - ug/g - ug/g - ug/g - ug/g - ug/g - ug/g - | Contact   Contact   Contact   Contact   Contact   Contact   Contact   Contact   Contact   Contact   Contact   Contact   Contact   Contact   Contact   Contact   Contact   Contact   Contact   Contact   Contact   Contact   Contact   Contact   Contact   Contact   Contact   Contact   Contact   Contact   Contact   Contact   Contact   Contact   Contact   Contact   Contact   Contact   Contact   Contact   Contact   Contact   Contact   Contact   Contact   Contact   Contact   Contact   Contact   Contact   Contact   Contact   Contact   Contact   Contact   Contact   Contact   Contact   Contact   Contact   Contact   Contact   Contact   Contact   Contact   Contact   Contact   Contact   Contact   Contact   Contact   Contact   Contact   Contact   Contact   Contact   Contact   Contact   Contact   Contact   Contact   Contact   Contact   Contact   Contact   Contact   Contact   Contact   Contact   Contact   Contact   Contact   Contact   Contact   Contact   Contact   Contact   Contact   Contact   Contact   Contact   Contact   Contact   Contact   Contact   Contact   Contact   Contact   Contact   Contact   Contact   Contact   Contact   Contact   Contact   Contact   Contact   Contact   Contact   Contact   Contact   Contact   Contact   Contact   Contact   Contact   Contact   Contact   Contact   Contact   Contact   Contact   Contact   Contact   Contact   Contact   Contact   Contact   Contact   Contact   Contact   Contact   Contact   Contact   Contact   Contact   Contact   Contact   Contact   Contact   Contact   Contact   Contact   Contact   Contact   Contact   Contact   Contact   Contact   Contact   Contact   Contact   Contact   Contact   Contact   Contact   Contact   Contact   Contact   Contact   Contact   Contact   Contact   Contact   Contact   Contact   Contact   Contact   Contact   Contact   Contact   Contact   Contact   Contact   Contact   Contact   Contact   Contact   Contact   Contact   Contact   Contact   Contact   Contact   Contact   Contact   Contact   Contact   Contact   Contact   Contact   Contact   Contact   Contact   Cont | Units         Criteria         F5-MID-MW-6-D         F5-MID-MW-7-S           ug/g         -         <0.010 | Units         Criteria         F5-MID-MW-6-D         F5-MID-MW-7-S         F5-MID-MW-7-D           ug/g         -         <0.010 | 2014/08/20   2014/08/20   2014/08/20   2014/08/20   2014/08/20   2014/08/20   2014/08/20   2014/08/20   2014/08/20   2014/08/20   2014/08/20   2014/08/20   2014/08/20   2014/08/20   2014/08/20   2014/08/20   2014/08/20   2014/08/20   2014/08/20   2014/08/20   2014/08/20   2014/08/20   2014/08/20   2014/08/20   2014/08/20   2014/08/20   2014/08/20   2014/08/20   2014/08/20   2014/08/20   2014/08/20   2014/08/20   2014/08/20   2014/08/20   2014/08/20   2014/08/20   2014/08/20   2014/08/20   2014/08/20   2014/08/20   2014/08/20   2014/08/20   2014/08/20   2014/08/20   2014/08/20   2014/08/20   2014/08/20   2014/08/20   2014/08/20   2014/08/20   2014/08/20   2014/08/20   2014/08/20   2014/08/20   2014/08/20   2014/08/20   2014/08/20   2014/08/20   2014/08/20   2014/08/20   2014/08/20   2014/08/20   2014/08/20   2014/08/20   2014/08/20   2014/08/20   2014/08/20   2014/08/20   2014/08/20   2014/08/20   2014/08/20   2014/08/20   2014/08/20   2014/08/20   2014/08/20   2014/08/20   2014/08/20   2014/08/20   2014/08/20   2014/08/20   2014/08/20   2014/08/20   2014/08/20   2014/08/20   2014/08/20   2014/08/20   2014/08/20   2014/08/20   2010/08/20   2010/08/20   2010/08/20   2010/08/20   2010/08/20   2010/08/20   2014/08/20   2014/08/20   2014/08/20   2010/08/20   2010/08/20   2010/08/20   2010/08/20   2010/08/20   2010/08/20   2010/08/20   2010/08/20   2010/08/20   2010/08/20   2010/08/20   2010/08/20   2010/08/20   2010/08/20   2010/08/20   2010/08/20   2010/08/20   2010/08/20   2010/08/20   2010/08/20   2010/08/20   2010/08/20   2010/08/20   2010/08/20   2010/08/20   2010/08/20   2010/08/20   2010/08/20   2010/08/20   2010/08/20   2010/08/20   2010/08/20   2010/08/20   2010/08/20   2010/08/20   2010/08/20   2010/08/20   2010/08/20   2010/08/20   2010/08/20   2010/08/20   2010/08/20   2010/08/20   2010/08/20   2010/08/20   2010/08/20   2010/08/20   2010/08/20   2010/08/20   2010/08/20   2010/08/20   2010/08/20   2010/08/20   2014/08/20   2014/08/20   2014/08/20   2014/08/20   2014/08/20   2014/08/20   2014/08/20   201 |          |

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Criteria: CCME Industrial

Canadian Environmental Quality Guidelines for Soil 1998-1999

| Maxxam ID              |       |          | XV5007        | XV5008        | XV5009        | XV5010        |       |          |
|------------------------|-------|----------|---------------|---------------|---------------|---------------|-------|----------|
| Sampling Date          |       |          | 2014/08/20    | 2014/08/20    | 2014/08/20    | 2014/08/21    |       |          |
| COC Number             |       |          | na            | na            | na            | na            |       |          |
|                        | Units | Criteria | F5-MID-MW-8-D | F5-MID-MW-9-S | F5-MID-MW-9-D | F5-MN-MW-10-S | RDL   | QC Batch |
| PCBs                   |       |          |               |               |               |               |       |          |
| Aroclor 1016           | ug/g  | -        | <0.010        | <0.010        | <0.010        | <0.010        | 0.010 | 3774370  |
| Aroclor 1221           | ug/g  | -        | <0.010        | <0.010        | <0.010        | <0.010        | 0.010 | 3774370  |
| Aroclor 1232           | ug/g  | -        | <0.010        | <0.010        | <0.010        | <0.010        | 0.010 | 3774370  |
| Aroclor 1242           | ug/g  | -        | <0.010        | <0.010        | <0.010        | <0.010        | 0.010 | 3774370  |
| Aroclor 1248           | ug/g  | -        | <0.010        | <0.010        | <0.010        | <0.010        | 0.010 | 3774370  |
| Aroclor 1254           | ug/g  | -        | <0.010        | <0.010        | <0.010        | <0.010        | 0.010 | 3774370  |
| Aroclor 1260           | ug/g  | -        | <0.010        | <0.010        | <0.010        | <0.010        | 0.010 | 3774370  |
| Aroclor 1262           | ug/g  | -        | <0.010        | <0.010        | <0.010        | <0.010        | 0.010 | 3774370  |
| Aroclor 1268           | ug/g  | -        | <0.010        | <0.010        | <0.010        | <0.010        | 0.010 | 3774370  |
| Total PCB              | ug/g  | 33       | <0.010        | <0.010        | <0.010        | <0.010        | 0.010 | 3774370  |
| Surrogate Recovery (%) |       |          |               |               |               |               |       |          |
| Decachlorobiphenyl     | %     | -        | 79            | 84            | 81            | 85            |       | 3774370  |

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Criteria: CCME Industrial



**Decommissioning Consulting Services Limited** 

Client Project #: 350600-515-3

Site Location: FOX 5 BROUGHTON ISLAND

## POLYCHLORINATED BIPHENYLS BY GC-ECD (SOIL)

| Maxxam ID              |       |          | XV5011        | XV5012        |          | XV5013        |       |          |
|------------------------|-------|----------|---------------|---------------|----------|---------------|-------|----------|
| Sampling Date          |       |          | 2014/08/21    | 2014/08/21    |          | 2014/08/21    |       |          |
| COC Number             |       |          | na            | na            |          | na            |       |          |
|                        | Units | Criteria | F5-MN-MW-10-D | F5-MN-MW-11-S | QC Batch | F5-MN-MW-11-D | RDL   | QC Batch |
| PCBs                   |       |          |               |               |          |               |       |          |
| Aroclor 1016           | ug/g  | -        | <0.010        | <0.010        | 3774370  | <0.010        | 0.010 | 3775200  |
| Aroclor 1221           | ug/g  | -        | <0.010        | <0.010        | 3774370  | <0.010        | 0.010 | 3775200  |
| Aroclor 1232           | ug/g  | -        | <0.010        | <0.010        | 3774370  | <0.010        | 0.010 | 3775200  |
| Aroclor 1242           | ug/g  | -        | <0.010        | <0.010        | 3774370  | <0.010        | 0.010 | 3775200  |
| Aroclor 1248           | ug/g  | -        | <0.010        | <0.010        | 3774370  | <0.010        | 0.010 | 3775200  |
| Aroclor 1254           | ug/g  | -        | <0.010        | <0.010        | 3774370  | <0.010        | 0.010 | 3775200  |
| Aroclor 1260           | ug/g  | -        | <0.010        | <0.010        | 3774370  | <0.010        | 0.010 | 3775200  |
| Aroclor 1262           | ug/g  | -        | <0.010        | <0.010        | 3774370  | <0.010        | 0.010 | 3775200  |
| Aroclor 1268           | ug/g  | -        | <0.010        | <0.010        | 3774370  | <0.010        | 0.010 | 3775200  |
| Total PCB              | ug/g  | 33       | <0.010        | <0.010        | 3774370  | <0.010        | 0.010 | 3775200  |
| Surrogate Recovery (%) |       |          |               |               |          |               |       |          |
| Decachlorobiphenyl     | %     | -        | 76            | 86            | 3774370  | 83            |       | 3775200  |
|                        |       |          |               |               |          |               |       |          |

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Criteria: CCME Industrial

Canadian Environmental Quality Guidelines for Soil 1998-1999

| Maxxam ID              |       |          | XV5014        | XV5015        | XV5016        | XV5017        |       |          |
|------------------------|-------|----------|---------------|---------------|---------------|---------------|-------|----------|
| Sampling Date          |       |          | 2014/08/21    | 2014/08/21    | 2014/08/21    | 2014/08/21    |       |          |
| COC Number             |       |          | na            | na            | na            | na            |       |          |
|                        | Units | Criteria | F5-MN-MW-12-S | F5-MN-MW-12-D | F5-MN-MW-13-S | F5-MN-MW-13-D | RDL   | QC Batch |
| PCBs                   |       |          |               |               |               |               |       |          |
| Aroclor 1016           | ug/g  | -        | <0.010        | <0.010        | <0.010        | <0.010        | 0.010 | 3774370  |
| Aroclor 1221           | ug/g  | -        | <0.010        | <0.010        | <0.010        | <0.010        | 0.010 | 3774370  |
| Aroclor 1232           | ug/g  | -        | <0.010        | <0.010        | <0.010        | <0.010        | 0.010 | 3774370  |
| Aroclor 1242           | ug/g  | -        | <0.010        | <0.010        | <0.010        | <0.010        | 0.010 | 3774370  |
| Aroclor 1248           | ug/g  | -        | <0.010        | <0.010        | <0.010        | <0.010        | 0.010 | 3774370  |
| Aroclor 1254           | ug/g  | -        | 0.013         | 0.085         | <0.010        | <0.010        | 0.010 | 3774370  |
| Aroclor 1260           | ug/g  | -        | <0.010        | <0.010        | <0.010        | <0.010        | 0.010 | 3774370  |
| Aroclor 1262           | ug/g  | -        | <0.010        | <0.010        | <0.010        | <0.010        | 0.010 | 3774370  |
| Aroclor 1268           | ug/g  | -        | <0.010        | <0.010        | <0.010        | <0.010        | 0.010 | 3774370  |
| Total PCB              | ug/g  | 33       | 0.013         | 0.085         | <0.010        | <0.010        | 0.010 | 3774370  |
| Surrogate Recovery (%) |       |          |               |               |               |               |       |          |
| Decachlorobiphenyl     | %     | -        | 83            | 74            | 80            | 81            |       | 3774370  |

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Criteria: CCME Industrial



**Decommissioning Consulting Services Limited** 

Client Project #: 350600-515-3

Site Location: FOX 5 BROUGHTON ISLAND

# POLYCHLORINATED BIPHENYLS BY GC-ECD (SOIL)

| Maxxam ID                    |       |          | XV5018        | XV5019        |       |          |
|------------------------------|-------|----------|---------------|---------------|-------|----------|
| Sampling Date                |       |          | 2014/08/21    | 2014/08/21    |       |          |
| COC Number                   |       |          | na            | na            |       |          |
|                              | Units | Criteria | F5-MN-MW-14-S | F5-MN-MW-14-D | RDL   | QC Batch |
| PCBs                         |       |          |               |               |       |          |
| Aroclor 1016                 | ug/g  | -        | <0.010        | <0.010        | 0.010 | 3774370  |
| Aroclor 1221                 | ug/g  | -        | <0.010        | <0.010        | 0.010 | 3774370  |
| Aroclor 1232                 | ug/g  | -        | <0.010        | <0.010        | 0.010 | 3774370  |
| Aroclor 1242                 | ug/g  | -        | <0.010        | <0.010        | 0.010 | 3774370  |
| Aroclor 1248                 | ug/g  | -        | <0.010        | <0.010        | 0.010 | 3774370  |
| Aroclor 1254                 | ug/g  | -        | <0.010        | <0.010        | 0.010 | 3774370  |
| Aroclor 1260                 | ug/g  | -        | <0.010        | <0.010        | 0.010 | 3774370  |
| Aroclor 1262                 | ug/g  | -        | <0.010        | <0.010        | 0.010 | 3774370  |
| Aroclor 1268                 | ug/g  | -        | <0.010        | <0.010        | 0.010 | 3774370  |
| Total PCB                    | ug/g  | 33       | <0.010        | <0.010        | 0.010 | 3774370  |
| Surrogate Recovery (%)       |       |          |               |               |       |          |
| Decachlorobiphenyl           | %     | -        | 81            | 83            |       | 3774370  |
| RDL = Reportable Detection I | Limit |          |               |               |       |          |

QC Batch = Quality Control Batch

Criteria: CCME Industrial



Decommissioning Consulting Services Limited

Client Project #: 350600-515-3

Site Location: FOX 5 BROUGHTON ISLAND

#### **GENERAL COMMENTS**

F1/BTXLOW and F24FID Analyses: Analysis was performed past sample holding time. This may increase the variability associated with these results.

Results relate only to the items tested.



#### **QUALITY ASSURANCE REPORT**

Decommissioning Consulting Services Lir....

Client Project #: 350600-515-3

Site Location: FOX 5 BROUGHTON ISLAND

|          |                           |            | Matrix     | Spike     | Spiked     | Blank     | Method  | Blank | RP        | סי        |
|----------|---------------------------|------------|------------|-----------|------------|-----------|---------|-------|-----------|-----------|
| QC Batch | Parameter                 | Date       | % Recovery | QC Limits | % Recovery | QC Limits | Value   | Units | Value (%) | QC Limits |
| 3773162  | 1,4-Difluorobenzene       | 2014/10/05 | 90         | 60 - 140  | 90         | 60 - 140  | 92      | %     |           |           |
| 3773162  | 4-Bromofluorobenzene      | 2014/10/05 | 102        | 60 - 140  | 102        | 60 - 140  | 103     | %     |           |           |
| 3773162  | D10-Ethylbenzene          | 2014/10/05 | 80         | 60 - 140  | 88         | 60 - 140  | 82      | %     |           |           |
| 3773162  | D4-1,2-Dichloroethane     | 2014/10/05 | 99         | 60 - 140  | 100        | 60 - 140  | 97      | %     |           |           |
| 3773163  | 1,4-Difluorobenzene       | 2014/10/06 | 90         | 60 - 140  | 90         | 60 - 140  | 90      | %     |           |           |
| 3773163  | 4-Bromofluorobenzene      | 2014/10/06 | 103        | 60 - 140  | 103        | 60 - 140  | 103     | %     |           |           |
| 3773163  | D10-Ethylbenzene          | 2014/10/06 | 91         | 60 - 140  | 84         | 60 - 140  | 90      | %     |           |           |
| 3773163  | D4-1,2-Dichloroethane     | 2014/10/06 | 100        | 60 - 140  | 99         | 60 - 140  | 100     | %     |           |           |
| 3773247  | o-Terphenyl               | 2014/10/03 | 93         | 60 - 130  | 89         | 60 - 130  | 82      | %     |           |           |
| 3773269  | o-Terphenyl               | 2014/10/04 | 82         | 60 - 130  | 88         | 60 - 130  | 87      | %     |           |           |
| 3774370  | Decachlorobiphenyl        | 2014/10/06 | 81         | 60 - 130  | 72         | 60 - 130  | 73      | %     |           |           |
| 3775200  | Decachlorobiphenyl        | 2014/10/07 | 82         | 60 - 130  | 86         | 60 - 130  | 83      | %     |           |           |
| 3773162  | Benzene                   | 2014/10/05 | 85         | 60 - 140  | 94         | 60 - 140  | <0.005  | ug/g  | NC        | 50        |
| 3773162  | Ethylbenzene              | 2014/10/05 | 88         | 60 - 140  | 92         | 60 - 140  | <0.01   | ug/g  | NC        | 50        |
| 3773162  | F1 (C6-C10) - BTEX        | 2014/10/05 |            |           |            |           | <10     | ug/g  | NC        | 50        |
| 3773162  | F1 (C6-C10)               | 2014/10/05 | 83         | 60 - 140  | 91         | 80 - 120  | <10     | ug/g  | NC        | 50        |
| 3773162  | o-Xylene                  | 2014/10/05 | 89         | 60 - 140  | 93         | 60 - 140  | <0.02   | ug/g  | NC        | 50        |
| 3773162  | p+m-Xylene                | 2014/10/05 | 84         | 60 - 140  | 88         | 60 - 140  | <0.04   | ug/g  | NC        | 50        |
| 3773162  | Toluene                   | 2014/10/05 | 88         | 60 - 140  | 94         | 60 - 140  | <0.02   | ug/g  | NC        | 50        |
| 3773162  | Total Xylenes             | 2014/10/05 |            |           |            |           | <0.04   | ug/g  | NC        | 50        |
| 3773163  | Benzene                   | 2014/10/06 | 97         | 60 - 140  | 94         | 60 - 140  | < 0.005 | ug/g  | NC        | 50        |
| 3773163  | Ethylbenzene              | 2014/10/06 | 99         | 60 - 140  | 92         | 60 - 140  | <0.01   | ug/g  | NC        | 50        |
| 3773163  | F1 (C6-C10) - BTEX        | 2014/10/06 |            |           |            |           | <10     | ug/g  | NC        | 50        |
| 3773163  | F1 (C6-C10)               | 2014/10/06 | 89         | 60 - 140  | 92         | 80 - 120  | <10     | ug/g  | NC        | 50        |
| 3773163  | o-Xylene                  | 2014/10/06 | 101        | 60 - 140  | 94         | 60 - 140  | <0.02   | ug/g  | NC        | 50        |
| 3773163  | p+m-Xylene                | 2014/10/06 | 96         | 60 - 140  | 90         | 60 - 140  | <0.04   | ug/g  | NC        | 50        |
| 3773163  | Toluene                   | 2014/10/06 | 100        | 60 - 140  | 95         | 60 - 140  | <0.02   | ug/g  | NC        | 50        |
| 3773163  | Total Xylenes             | 2014/10/06 |            |           |            |           | <0.04   | ug/g  | NC        | 50        |
| 3773247  | F2 (C10-C16 Hydrocarbons) | 2014/10/04 | 87         | 50 - 130  | 90         | 80 - 120  | <10     | ug/g  | NC        | 30        |
| 3773247  | F3 (C16-C34 Hydrocarbons) | 2014/10/04 | 102        | 50 - 130  | 103        | 80 - 120  | <50     | ug/g  | NC        | 30        |
| 3773247  | F4 (C34-C50 Hydrocarbons) | 2014/10/04 | 114        | 50 - 130  | 111        | 80 - 120  | <50     | ug/g  | NC        | 30        |
| 3773269  | F2 (C10-C16 Hydrocarbons) | 2014/10/04 | 92         | 50 - 130  | 91         | 80 - 120  | <10     | ug/g  | NC        | 30        |



# QUALITY ASSURANCE REPORT(CONT'D)

Decommissioning Consulting Services Lir....

Client Project #: 350600-515-3

Site Location: FOX 5 BROUGHTON ISLAND

|          |                                |            | Matrix Spike |           | Spiked     | Blank     | Method | Blank | RPD       |           |
|----------|--------------------------------|------------|--------------|-----------|------------|-----------|--------|-------|-----------|-----------|
| QC Batch | Parameter                      | Date       | % Recovery   | QC Limits | % Recovery | QC Limits | Value  | Units | Value (%) | QC Limits |
| 3773269  | F3 (C16-C34 Hydrocarbons)      | 2014/10/04 | 102          | 50 - 130  | 100        | 80 - 120  | <50    | ug/g  | NC        | 30        |
| 3773269  | F4 (C34-C50 Hydrocarbons)      | 2014/10/04 | 99           | 50 - 130  | 100        | 80 - 120  | <50    | ug/g  | NC        | 30        |
| 3774370  | Aroclor 1016                   | 2014/10/06 |              |           |            |           | <0.010 | ug/g  | NC        | 50        |
| 3774370  | Aroclor 1221                   | 2014/10/06 |              |           |            |           | <0.010 | ug/g  | NC        | 50        |
| 3774370  | Aroclor 1232                   | 2014/10/06 |              |           |            |           | <0.010 | ug/g  | NC        | 50        |
| 3774370  | Aroclor 1242                   | 2014/10/06 |              |           |            |           | <0.010 | ug/g  | NC        | 50        |
| 3774370  | Aroclor 1248                   | 2014/10/06 |              |           |            |           | <0.010 | ug/g  | NC        | 50        |
| 3774370  | Aroclor 1254                   | 2014/10/06 |              |           |            |           | <0.010 | ug/g  | NC        | 50        |
| 3774370  | Aroclor 1260                   | 2014/10/06 | 105          | 60 - 130  | 98         | 60 - 130  | <0.010 | ug/g  | NC        | 50        |
| 3774370  | Aroclor 1262                   | 2014/10/06 |              |           |            |           | <0.010 | ug/g  | NC        | 50        |
| 3774370  | Aroclor 1268                   | 2014/10/06 |              |           |            |           | <0.010 | ug/g  | NC        | 50        |
| 3774370  | Total PCB                      | 2014/10/06 | 105          | 60 - 130  | 98         | 60 - 130  | <0.010 | ug/g  | NC        | 50        |
| 3774997  | Acid Extractable Arsenic (As)  | 2014/10/07 | 99           | 75 - 125  | 100        | 80 - 120  | <1.0   | ug/g  | NC        | 30        |
| 3774997  | Acid Extractable Cadmium (Cd)  | 2014/10/07 | 103          | 75 - 125  | 101        | 80 - 120  | <0.10  | ug/g  | NC        | 30        |
| 3774997  | Acid Extractable Chromium (Cr) | 2014/10/07 | NC           | 75 - 125  | 101        | 80 - 120  | <1.0   | ug/g  | 3.8       | 30        |
| 3774997  | Acid Extractable Cobalt (Co)   | 2014/10/07 | 101          | 75 - 125  | 103        | 80 - 120  | <0.10  | ug/g  | 1.3       | 30        |
| 3774997  | Acid Extractable Copper (Cu)   | 2014/10/07 | 100          | 75 - 125  | 101        | 80 - 120  | <0.50  | ug/g  | 6.3       | 30        |
| 3774997  | Acid Extractable Lead (Pb)     | 2014/10/07 | 101          | 75 - 125  | 101        | 80 - 120  | <1.0   | ug/g  | 8.7       | 30        |
| 3774997  | Acid Extractable Mercury (Hg)  | 2014/10/07 | 100          | 75 - 125  | 98         | 80 - 120  | <0.050 | ug/g  | NC        | 30        |
| 3774997  | Acid Extractable Nickel (Ni)   | 2014/10/07 | 100          | 75 - 125  | 99         | 80 - 120  | <0.50  | ug/g  | 7.0       | 30        |
| 3774997  | Acid Extractable Zinc (Zn)     | 2014/10/07 | NC           | 75 - 125  | 101        | 80 - 120  | <5.0   | ug/g  | 0.63      | 30        |
| 3775002  | Acid Extractable Arsenic (As)  | 2014/10/07 | 102          | 75 - 125  | 99         | 80 - 120  | <1.0   | ug/g  | NC        | 30        |
| 3775002  | Acid Extractable Cadmium (Cd)  | 2014/10/07 | 103          | 75 - 125  | 99         | 80 - 120  | <0.10  | ug/g  | NC        | 30        |
| 3775002  | Acid Extractable Chromium (Cr) | 2014/10/07 | 105          | 75 - 125  | 101        | 80 - 120  | <1.0   | ug/g  | 3.0       | 30        |
| 3775002  | Acid Extractable Cobalt (Co)   | 2014/10/07 | 103          | 75 - 125  | 100        | 80 - 120  | <0.10  | ug/g  | 9.4       | 30        |
| 3775002  | Acid Extractable Copper (Cu)   | 2014/10/07 | 100          | 75 - 125  | 101        | 80 - 120  | <0.50  | ug/g  | 4.7       | 30        |
| 3775002  | Acid Extractable Lead (Pb)     | 2014/10/07 | NC           | 75 - 125  | 101        | 80 - 120  | <1.0   | ug/g  | 2.0       | 30        |
| 3775002  | Acid Extractable Mercury (Hg)  | 2014/10/07 | 102          | 75 - 125  | 98         | 80 - 120  | <0.050 | ug/g  | NC        | 30        |
| 3775002  | Acid Extractable Nickel (Ni)   | 2014/10/07 | 104          | 75 - 125  | 100        | 80 - 120  | <0.50  | ug/g  | 6.0       | 30        |
| 3775002  | Acid Extractable Zinc (Zn)     | 2014/10/07 | NC           | 75 - 125  | 100        | 80 - 120  | <5.0   | ug/g  | 5.5       | 30        |
| 3775200  | Aroclor 1016                   | 2014/10/07 |              |           |            |           | <0.010 | ug/g  |           |           |
| 3775200  | Aroclor 1221                   | 2014/10/07 |              |           |            |           | <0.010 | ug/g  |           |           |



#### QUALITY ASSURANCE REPORT(CONT'D)

Decommissioning Consulting Services Lir....

Client Project #: 350600-515-3

Site Location: FOX 5 BROUGHTON ISLAND

|          |              | _          | Matrix     | Spike     | Spiked     | Blank     | Method | Blank | RP        | D         |
|----------|--------------|------------|------------|-----------|------------|-----------|--------|-------|-----------|-----------|
| QC Batch | Parameter    | Date       | % Recovery | QC Limits | % Recovery | QC Limits | Value  | Units | Value (%) | QC Limits |
| 3775200  | Aroclor 1232 | 2014/10/07 |            |           |            |           | <0.010 | ug/g  |           |           |
| 3775200  | Aroclor 1242 | 2014/10/07 |            |           |            |           | <0.010 | ug/g  | NC        | 50        |
| 3775200  | Aroclor 1248 | 2014/10/07 |            |           |            |           | <0.010 | ug/g  | NC        | 50        |
| 3775200  | Aroclor 1254 | 2014/10/07 |            |           |            |           | <0.010 | ug/g  | NC        | 50        |
| 3775200  | Aroclor 1260 | 2014/10/07 | 89         | 60 - 130  | 97         | 60 - 130  | <0.010 | ug/g  | NC        | 50        |
| 3775200  | Aroclor 1262 | 2014/10/07 |            |           |            |           | <0.010 | ug/g  |           |           |
| 3775200  | Aroclor 1268 | 2014/10/07 |            |           |            |           | <0.010 | ug/g  |           |           |
| 3775200  | Total PCB    | 2014/10/07 | 89         | 60 - 130  | 97         | 60 - 130  | <0.010 | ug/g  | NC        | 50        |
| 3775595  | Moisture     | 2014/10/06 |            |           |            |           |        |       | NC        | 20        |
| 3775644  | Moisture     | 2014/10/06 |            |           |            |           |        |       | 2.4       | 20        |

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spiked amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than 2x that of the native sample concentration).

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (one or both samples < 5x RDL).



Decommissioning Consulting Services Limited

Client Project #: 350600-515-3

Site Location: FOX 5 BROUGHTON ISLAND

## **VALIDATION SIGNATURE PAGE**

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

| Cuistina (        | <u>Caurel</u>         |  |
|-------------------|-----------------------|--|
| Cristina Carriere | , Scientific Services |  |
|                   |                       |  |
| Juzana            | Popumi                |  |

Suzana Popovic, Supervisor, Hydrocarbons

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

| Shipper's Name<br>Nom et adresse        |                                                |                   | Shipi<br>No d                 | pers Account Numb<br>e compte de l'expec | er<br>titeur                                                                                                                                                               | (AIR CON                                                                                                                                                               | NEGOTIABLE<br>R WAYBILL<br>SIGNMENT NOTE)                                                                                                                                                                                                                                                                                                                                                                           | (SSUED BY                                                                    | € FII                                                                                 | RST AIR                                                                                        |  |  |  |  |  |  |  |
|-----------------------------------------|------------------------------------------------|-------------------|-------------------------------|------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| JASON MA                                | UCHAN.                                         |                   |                               |                                          |                                                                                                                                                                            | LETTRE                                                                                                                                                                 | NÉGOTIABLE<br>DE TRANSPORT<br>AÉRIEN                                                                                                                                                                                                                                                                                                                                                                                | ÉMISE PAR                                                                    |                                                                                       | irtine of the North                                                                            |  |  |  |  |  |  |  |
| IQALUIT<br>NUNAVUT                      | , CANADA<br>19-923-683                         | n                 |                               |                                          |                                                                                                                                                                            | Incorporate                                                                                                                                                            | ed in Canada with limited                                                                                                                                                                                                                                                                                                                                                                                           | d liability - Compag<br>vir Waybill and ong<br>cette lettre de tran          | nie Canadienne a respi<br>inals and have the sam<br>sport aerien sont origin          | onsabilite limitee<br>e validity<br>aux et ont la même validité<br>et and condition (except as |  |  |  |  |  |  |  |
| Consignee Nam                           |                                                | -                 | Cons                          | ignee Name and A                         | dress                                                                                                                                                                      | noted) for ca                                                                                                                                                          | mage: SUBJECT TO TH                                                                                                                                                                                                                                                                                                                                                                                                 | herein are accepte<br>E CONDITIONS A                                         | d in apparent good orde<br>VAILABLE AT https://fi                                     | er and condition (except as<br>rstair ca/cargo/cargo-                                          |  |  |  |  |  |  |  |
| lom et adresse                          | du destinataire                                | 5                 | Nom                           | et adresse du desti                      | nataire                                                                                                                                                                    | THE SHIPPE<br>LIABILITY S                                                                                                                                              | THE SHIPPERS ATTENTION IS DRAWN TO THE NOTICE CONCERNING CARRIERS LIMITATION OF<br>LABILITY Disper may increase such immation of lability by declaring a higher value for carriage and<br>paying a supplemental if required. If the paying the paying the paying and paying the particular required<br>it est convenie up less marchandises decribes dans le présent document sont acceptibles poor le transport en |                                                                              |                                                                                       |                                                                                                |  |  |  |  |  |  |  |
| OTTAWA                                  |                                                | D SOU             | TH, UNIT 1000                 |                                          |                                                                                                                                                                            | Il est convention étal app.<br>CONTRAT D                                                                                                                               | u que les marchandises<br>arent (sauf annotation co<br>HSPONIBLES AU https:/                                                                                                                                                                                                                                                                                                                                        | decrites dans le prontraire) et que le tr<br>//firstair.ce/casgo/ca          | esent document sont ac<br>ransport est SOUMIS A<br>argo-conditions-of-conti           | ceptées pour le transport en<br>UX CONDITIONS DU<br>acti                                       |  |  |  |  |  |  |  |
| ONTARIO.<br>K2E7J6                      | 6132740                                        | )573              |                               |                                          |                                                                                                                                                                            | L'ATTENTIO<br>RESPONSA                                                                                                                                                 | E L'AGENT CARGO.<br>N DE L'EXPÉDITEUR E<br>BILITÉ DU TRANSPOR                                                                                                                                                                                                                                                                                                                                                       | TEUR L'expéditeu                                                             | r peut augmenter cette                                                                | limitation de responsabilité                                                                   |  |  |  |  |  |  |  |
| ssuing Camer's                          | Agent Name ar                                  | nd City / No      | m et ville de l'agent d       | u transporteur emel                      | Beur                                                                                                                                                                       | Accounting in                                                                                                                                                          | une valeur pour le trans<br>formation / Renseignen<br>I ANALYTICS INT                                                                                                                                                                                                                                                                                                                                               | ients comptables                                                             |                                                                                       | plementaires silvy a lieu<br>56232                                                             |  |  |  |  |  |  |  |
| Agent's IATA Ci                         | ode / Code (ATA                                | de l'agent        | A                             | count Number / Nu                        | mero de compte                                                                                                                                                             | MISSISS                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                     | COURT                                                                        |                                                                                       |                                                                                                |  |  |  |  |  |  |  |
| Airport of Depar                        | ture / Aeroport o                              | te depart         |                               |                                          |                                                                                                                                                                            | L5N0C9                                                                                                                                                                 | 0                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                              |                                                                                       |                                                                                                |  |  |  |  |  |  |  |
| Routing and d                           | ÝFΒ                                            |                   |                               |                                          |                                                                                                                                                                            |                                                                                                                                                                        | Service and the service and                                                                                                                                                                                                                                                                                                                                                                                         |                                                                              | un processo unidos dos                                                                | Declaced value for Customs                                                                     |  |  |  |  |  |  |  |
| YOW                                     | First carrier / pro                            | emier trans<br>7F | port To / a                   | by / par                                 | To / a by / c                                                                                                                                                              | CDN                                                                                                                                                                    | CHGS WT / Prids Val<br>Code Frais PPD COLL<br>CX page DO<br>X                                                                                                                                                                                                                                                                                                                                                       | PPD COLL VMeuro                                                              | d Value for Carriage<br>Historiae pour la transport<br>NDV                            | NCV                                                                                            |  |  |  |  |  |  |  |
| YOW                                     | uation / Aeroport                              | de destina        | tion                          | Fligh                                    | Date / Vol Date                                                                                                                                                            | Cielliery Compan                                                                                                                                                       | *                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                              | Pick up Company                                                                       |                                                                                                |  |  |  |  |  |  |  |
| 100000000000000000000000000000000000000 | nation / Renseig                               | nements po        | our le traitement de l'e      | xpedition                                |                                                                                                                                                                            | FREEZ                                                                                                                                                                  | ER                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                              | 1                                                                                     |                                                                                                |  |  |  |  |  |  |  |
|                                         |                                                |                   |                               |                                          |                                                                                                                                                                            |                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                              |                                                                                       |                                                                                                |  |  |  |  |  |  |  |
|                                         |                                                |                   |                               |                                          |                                                                                                                                                                            |                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                              |                                                                                       |                                                                                                |  |  |  |  |  |  |  |
| No of<br>Pieces<br>rup                  | Gross<br>Weight                                | kg Ri             | Commodity<br>Item No.         | Chargeable<br>Weight                     | Rate                                                                                                                                                                       | Total                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                              | tore and Quantity of Go<br>sc. Dimensions or Volume                                   |                                                                                                |  |  |  |  |  |  |  |
| 1                                       | 20                                             | K G               |                               | 20                                       | 4.84                                                                                                                                                                       | 96.80                                                                                                                                                                  | SAMPLE (SF                                                                                                                                                                                                                                                                                                                                                                                                          | PECIFY)-FR                                                                   | EEZER SAMP                                                                            | LE                                                                                             |  |  |  |  |  |  |  |
|                                         |                                                |                   |                               |                                          |                                                                                                                                                                            |                                                                                                                                                                        | *                                                                                                                                                                                                                                                                                                                                                                                                                   | *                                                                            |                                                                                       |                                                                                                |  |  |  |  |  |  |  |
|                                         |                                                |                   |                               |                                          |                                                                                                                                                                            |                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                              |                                                                                       |                                                                                                |  |  |  |  |  |  |  |
|                                         |                                                |                   |                               |                                          | ¥.                                                                                                                                                                         | •                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                              |                                                                                       | 7                                                                                              |  |  |  |  |  |  |  |
|                                         |                                                |                   |                               |                                          |                                                                                                                                                                            |                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                              |                                                                                       |                                                                                                |  |  |  |  |  |  |  |
|                                         |                                                |                   |                               |                                          |                                                                                                                                                                            |                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                              |                                                                                       |                                                                                                |  |  |  |  |  |  |  |
|                                         |                                                |                   |                               |                                          | 2                                                                                                                                                                          |                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                              |                                                                                       |                                                                                                |  |  |  |  |  |  |  |
|                                         |                                                |                   |                               |                                          |                                                                                                                                                                            |                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                              |                                                                                       | .181                                                                                           |  |  |  |  |  |  |  |
|                                         |                                                |                   |                               |                                          |                                                                                                                                                                            |                                                                                                                                                                        | 4.                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                              |                                                                                       |                                                                                                |  |  |  |  |  |  |  |
| 1                                       | 20                                             |                   |                               |                                          |                                                                                                                                                                            | 96.80                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                              |                                                                                       |                                                                                                |  |  |  |  |  |  |  |
| Prepaid / Porti                         | - page                                         | ght Charge: To    | 96.                           | 80                                       | FUEL SURCHAF                                                                                                                                                               | RGE = 22.26, N                                                                                                                                                         | IAV SURCHAR                                                                                                                                                                                                                                                                                                                                                                                                         | GE = 6.29,                                                                   | HST = 16.30                                                                           |                                                                                                |  |  |  |  |  |  |  |
| 190                                     | Author Charge                                  |                   | Texation e la                 | valeur                                   | į.                                                                                                                                                                         |                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                              |                                                                                       | *                                                                                              |  |  |  |  |  |  |  |
|                                         | Tax                                            | -                 | 16.                           |                                          |                                                                                                                                                                            |                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                              |                                                                                       |                                                                                                |  |  |  |  |  |  |  |
|                                         | e Charges Due Ager                             |                   | Total des autres frais        |                                          | ripper certifies that the particulars or<br>and tion for certifie governs indicature<br>expedition certifie governs indicature<br>stile partie de d'expédition est correct | n the face hereof are correct an<br>to the approache (Isogetolia Gi<br>pictière sur le présent docum<br>enent dénominée et tien préor<br>enent dénominée et tien préor | d the matter as any part of the soods Regulations<br>and sort exactes of que dains la<br>area (out le transport par an con-                                                                                                                                                                                                                                                                                         | consignment comains da<br>mesure iss une pette qui<br>Mornament à la régleme | mgerous goods, such perf is pr<br>econque de l'expéditori conte<br>restoo applicable. | operty describéd by name and is in proper<br>in this marchandhes dangereuses.                  |  |  |  |  |  |  |  |
| Total othe                              | r Charges Due Cam                              |                   | Total des autres frais du 28. |                                          |                                                                                                                                                                            | •                                                                                                                                                                      | 9(20))                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                              |                                                                                       |                                                                                                |  |  |  |  |  |  |  |
| Total Pro                               | epaid Total port pay                           |                   | Total cortect / Ta            | te port du                               | f<br>Print Name (Shipper) - Nom er                                                                                                                                         | letires moulées (Expéditeur)                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                              | 1                                                                                     | Signature                                                                                      |  |  |  |  |  |  |  |
|                                         |                                                |                   | 141                           | .65                                      | 08/29/2014                                                                                                                                                                 | Ottawa<br>Place (Leu                                                                                                                                                   | *******                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                              | 615500<br>Nam De Cagent l'Agents                                                      |                                                                                                |  |  |  |  |  |  |  |
| For Carrier I.<br>Reser is No.          | Jean Online at Destin<br>transporteur e destin | effor<br>effor    | Charges at Desmatton          | Frais à l'airivee                        | Executed on / Fail le Date Total Collect Charges / Total                                                                                                                   |                                                                                                                                                                        | Signature                                                                                                                                                                                                                                                                                                                                                                                                           | of Issuing Carrier or 4s A                                                   | Qent - Signature du Hansporte                                                         | u enerthius ou die son agent<br>15-YFB-3898657                                                 |  |  |  |  |  |  |  |
|                                         |                                                |                   | ORĮGINA                       | L NO.5 -                                 | CONSIGNE                                                                                                                                                                   | E'S COPY                                                                                                                                                               | - COPIE D                                                                                                                                                                                                                                                                                                                                                                                                           | U DEST                                                                       |                                                                                       | 12-1 LD-20a0001                                                                                |  |  |  |  |  |  |  |
|                                         |                                                |                   |                               |                                          |                                                                                                                                                                            |                                                                                                                                                                        | 12                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                              |                                                                                       |                                                                                                |  |  |  |  |  |  |  |
|                                         |                                                |                   |                               |                                          |                                                                                                                                                                            |                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                              |                                                                                       |                                                                                                |  |  |  |  |  |  |  |
|                                         |                                                |                   |                               |                                          |                                                                                                                                                                            |                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                              |                                                                                       |                                                                                                |  |  |  |  |  |  |  |
|                                         | *:                                             |                   |                               | *                                        | •                                                                                                                                                                          |                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                              |                                                                                       |                                                                                                |  |  |  |  |  |  |  |
| J.                                      |                                                |                   |                               |                                          |                                                                                                                                                                            |                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                              |                                                                                       | 1:                                                                                             |  |  |  |  |  |  |  |
|                                         |                                                |                   |                               | ň.                                       |                                                                                                                                                                            |                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                              |                                                                                       |                                                                                                |  |  |  |  |  |  |  |
|                                         |                                                |                   |                               |                                          |                                                                                                                                                                            |                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                              |                                                                                       |                                                                                                |  |  |  |  |  |  |  |
|                                         |                                                |                   | (4.7                          | 1.8                                      |                                                                                                                                                                            |                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                              |                                                                                       | ×.                                                                                             |  |  |  |  |  |  |  |
|                                         |                                                |                   |                               |                                          |                                                                                                                                                                            |                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                              |                                                                                       |                                                                                                |  |  |  |  |  |  |  |
|                                         |                                                |                   |                               |                                          |                                                                                                                                                                            |                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                              |                                                                                       |                                                                                                |  |  |  |  |  |  |  |

Department of National Defence DEW Line Monitoring Program FOX-M, FOX-4 & FOX-5

#### TERMS OF REFERENCE ANNEX D

DLCLFMP2(QIKIQ14) June, 2014

#### **Landfill Monitoring Detection Limits**

| Parameter | Soil<br>(mg/kg) | Groundwater<br>(mg/L) |
|-----------|-----------------|-----------------------|
| Copper    | <3.0            | < 0.005               |
| Nickel    | <5.0            | < 0.010               |
| Cobalt    | <5.0            | < 0.005               |
| Cadmium   | <1.0            | <0.001                |
| Lead      | <10             | <0.01                 |
| Zinc      | <15             | * <0.005              |
| Chromium  | <20             | < 0.005               |
| Arsenic   | <0.2            | <0.05                 |
| Mercury   | <0.1            | < 0.001               |
| PCBs      | < 0.05          | < 0.003               |
| TPH       | <40             | <1                    |

# IMMEDIATE TEST

121 Granton Drive Unit 11

121 Granton Drive, Unit 11, Richmond Hill, ON Tel: (905) 882-5984 Fax: (905) 882-8962 Email: engineers@dcsltd.ca Website: www.dcsltd.ca

# **Chain of Custody Record**

Page 1 of 2.

|                                                     | Project                                       | t No.:                                                | 350600-51                          | 5-3 Site:  | : FOX-5           | Brow         | shton          | Island            | Г                                       |        |               | Anal        | vses R | eques                                         | ted | To   | MD.                                   |
|-----------------------------------------------------|-----------------------------------------------|-------------------------------------------------------|------------------------------------|------------|-------------------|--------------|----------------|-------------------|-----------------------------------------|--------|---------------|-------------|--------|-----------------------------------------------|-----|------|---------------------------------------|
| Shipper                                             | Field E<br>Date:<br>Lab:<br>Requir<br>Quotati | t Manager Engineer/I  28 A  MAXXA  red Date: ion No.: |                                    | S. Boro    |                   |              | F2-F4          | וק                | ics: As, Cd, Cr, Co, Cu, Pb, Ni, Zn, Hg |        |               |             | -      | mp: 8/-11/-9 Itedy seal was esent U ICE Pack. |     |      |                                       |
| Location/<br>Hole No.                               | 11070-4                                       | Depth (m)                                             | D                                  | escription | 1.                | Label<br>No. | Grab/<br>Comp. | Date<br>Collected | PHCs F                                  | PHCs F | PCBs          | Inorganics: |        |                                               | \$  | pН   | Electrical Conductivity Preservatives |
| -5-5A                                               |                                               |                                                       | 5                                  | 1016       |                   |              |                | 20 Aug/14         | ×                                       | X      | X             | X           |        |                                               | ,   |      |                                       |
| 5-SA-                                               |                                               | -                                                     |                                    | 1          |                   |              |                |                   | X                                       | X      | X             | X           |        |                                               |     | _    |                                       |
| 5-5A                                                |                                               |                                                       |                                    |            |                   |              |                |                   | X                                       | X      | X             | X           |        |                                               |     | 4    | 28-Aug-14 16:35                       |
| -5-5A.                                              | -MW-                                          | 19-D                                                  |                                    |            |                   |              |                |                   | X                                       | X      | X             | X           |        |                                               |     | - 10 | Keshani Vijh                          |
|                                                     |                                               | -5-5                                                  |                                    |            |                   |              |                |                   | X                                       | X      | X             | X           |        |                                               |     | 4    |                                       |
|                                                     |                                               | -5-D                                                  |                                    |            |                   |              |                |                   | X                                       | X      | X             | X           |        |                                               |     | 4    | B4I3499                               |
| F5-MID                                              |                                               |                                                       | ě.                                 | _          |                   |              |                |                   | X                                       | X      | X             | X           |        |                                               |     | 4    | M_P ENV-631                           |
| 5-MID                                               |                                               |                                                       |                                    | _          |                   |              |                |                   | X                                       | X      | X             | X           |        |                                               | 1   |      | 11                                    |
| F5-1710                                             |                                               | -7-5                                                  |                                    |            |                   |              |                |                   | X                                       | X      | X             | X           |        |                                               | 1   | _    |                                       |
| F5-MID                                              |                                               |                                                       |                                    |            |                   |              |                |                   | ×                                       | X      | X             | X           |        |                                               |     | _    |                                       |
| F5-MID                                              |                                               |                                                       |                                    | 1          |                   |              |                | N                 | X                                       | X      | X             | X           |        |                                               |     |      |                                       |
| F5-1410                                             | -                                             |                                                       |                                    | V          | Town              |              |                |                   | X                                       | X      | X             | X           |        |                                               |     | 2011 |                                       |
| Relinquisho<br>S-Boro<br>Relinquisho<br>Relinquisho | ed By:                                        |                                                       | Date: 28 Augu Date: 2014/101 Date: | 40         | Time: 10:05 Time: | Receiv       | ed By:         | atement assured   | Laboratory                              | 5335   | mark<br>.L RE |             | S ARE  |                                               |     | OTT  | emanager.<br>AWA                      |



121 Granton Drive, Unit 11, Richmond Hill, ON Tel: (905) 882-5984 Fax: (905) 882-8962 Email: engineers@dcsltd.ca Website: www.dcsltd.ca

# **Chain of Custody Record**

(Revision 1 - 17 May 2012)

|                                                      | Projec                             | t No.:              | 350600-515                                        | -3 Site   | e: FOX-5                                    | Brow            | 15 hton  | Island         | I          |         | 71   | Ana                                   | lyses | Requ     | iest     | ed       |   | Te            | emp        |                    |                |
|------------------------------------------------------|------------------------------------|---------------------|---------------------------------------------------|-----------|---------------------------------------------|-----------------|----------|----------------|------------|---------|------|---------------------------------------|-------|----------|----------|----------|---|---------------|------------|--------------------|----------------|
| Shipper                                              | Field I<br>Date:<br>Lab:<br>Requir | 28 / MAXX red Date: | Techician:<br>Aug ust //<br>AM                    | •         | Route: _Locatio _Turnare                    | Couri<br>n O to | tawa     |                |            | F2-F4   |      | s: As, Cd, Cr, Co, Cu, Pb, Ni, Zn, Hg |       |          | 3        |          |   | -<br>Cu<br>P  | .8/<br>uto | -11/-9<br>dy sert. |                |
| Location/<br>Hole No.                                | Sample<br>No.                      | Depth               |                                                   | scription |                                             | Label           | Grab/    |                | PHCs F1    | PHCs F2 | PCBs | Inorganics;                           |       |          | \$       |          |   | рН            | . 1        | Electrical         | Preservatives  |
| F5-MID                                               |                                    | (m)                 | 50                                                | VI Z      | _                                           | No.             | Comp.    | 20 Aus/        | -          |         | P    | E                                     |       | -        | -        | $\vdash$ | - | Pi            |            | onductivity        | rreservatives  |
| F5-MIL                                               |                                    |                     | , ,                                               | 110       |                                             | +-              |          | 1/201103       | 10         | ~       | 1    | X                                     |       | -        |          |          | - | +             | +          |                    |                |
| =5-MN                                                |                                    |                     |                                                   |           |                                             | -               |          | 21 Aus/19      | V          | 10      | -    | X                                     |       | +        | -        |          | + | ╁             | +          |                    |                |
|                                                      |                                    | -10 - D             |                                                   |           |                                             |                 |          | LINGILI        | X          | X       | 1    | X                                     |       | -        |          | $\vdash$ | + | +             | +          | ,                  |                |
| 5-MN                                                 | -MW                                | -11-5               |                                                   |           |                                             |                 |          |                | X          | V       | X    | Y                                     |       | $\dashv$ | -        | -        | + | -             | +          | -                  |                |
| F5-MN                                                |                                    |                     |                                                   |           |                                             |                 |          |                | X          | ×       | X    | X                                     | -     |          | -        | -        | + | +             | +          |                    |                |
| -5-MA                                                |                                    |                     |                                                   |           |                                             |                 |          |                | X          | X       | X    | X                                     |       |          |          |          | + | +             | +          |                    |                |
| -5-MN                                                |                                    |                     |                                                   |           |                                             |                 |          |                | X          | X       | V    | X                                     |       |          |          |          | + | +             | +          |                    | 2              |
| F5-MN                                                |                                    |                     |                                                   |           |                                             |                 |          |                | X          | X       | X    | X                                     |       |          |          |          | _ | +             | +          |                    |                |
| F5-MN                                                |                                    |                     |                                                   |           |                                             |                 |          |                | X          | X       | X    | V                                     |       |          | -        | _        |   | +             | +          |                    |                |
| -5-MM                                                |                                    |                     |                                                   |           |                                             |                 |          |                | ×          | X       | X    | X                                     |       | -        | $\dashv$ | -        | + | ╁             | +          |                    |                |
| 5-MN                                                 | -MW                                | -14-D               |                                                   | U         |                                             |                 |          | V              | X          | X       | X    | V                                     |       | _        | _        | -        | + | +             | +          |                    |                |
| Relinquishe<br>S. Boro<br>Relinquishe<br>Relinquishe | ed By:                             |                     | Date:<br>28 August<br>Date:<br>2014/10/1<br>Date: | 114       | Time:<br> 6:35<br> Time:<br> 0:05<br> Time: | Receiv          | ed By: 2 | atemen<br>spar | Laboratory |         | mark |                                       | SARE  |          |          |          |   | rojec<br>TTAV |            | NAGER.             | <b>न</b><br>:- |

Page 25 of 25



Your Project #: 350600-515

Site Location: FOX-5 BROUGHTON ISLAND

Your C.O.C. #: na

#### **Attention:Stephen Borcsok**

Decommissioning Consulting Services Limited 121 Granton Dr Unit 11 Richmond Hill, ON L4B 3N4

Report Date: 2014/09/03

Report #: R3142679

Version: 1

## **CERTIFICATE OF ANALYSIS**

MAXXAM JOB #: B4F3737 Received: 2014/08/22, 10:50

Sample Matrix: Soil # Samples Received: 6

|                                         |          | Date       | Date       |                          |                |
|-----------------------------------------|----------|------------|------------|--------------------------|----------------|
| Analyses                                | Quantity | Extracted  | Analyzed   | <b>Laboratory Method</b> | Reference      |
| Petroleum Hydro. CCME F1 & BTEX in Soil | 6        | 2014/08/26 | 2014/08/27 | CAM SOP-00315            | CCME PHC-CWS m |
| Petroleum Hydrocarbons F2-F4 in Soil    | 6        | 2014/08/27 | 2014/08/28 | CAM SOP-00316            | CCME CWS       |
| Strong Acid Leachable Metals by ICPMS   | 6        | 2014/08/28 | 2014/08/28 | CAM SOP-00447            | EPA 6020 m     |
| Moisture                                | 6        | N/A        | 2014/08/26 | CAM SOP-00445            | R.Carter,1993  |
| Polychlorinated Biphenyl in Soil        | 6        | 2014/08/29 | 2014/08/29 | CAM SOP-00309            | EPA 8082 m     |

Sample Matrix: Water # Samples Received: 5

|                                          |          | Date       | Date       |                   |                |
|------------------------------------------|----------|------------|------------|-------------------|----------------|
| Analyses                                 | Quantity | Extracted  | Analyzed   | Laboratory Method | Reference      |
| Petroleum Hydro. CCME F1 & BTEX in Water | 5        | N/A        | 2014/08/27 | CAM SOP-00315     | CCME PHC-CWS m |
| Petroleum Hydrocarbons F2-F4 in Water    | 5        | 2014/08/27 | 2014/08/28 | CAM SOP-00316     | CCME PHC-CWS m |
| Mercury (low level)                      | 5        | 2014/08/27 | 2014/08/27 | CAM SOP-00453     | EPA 7470 m     |
| Polychlorinated Biphenyl in Water        | 5        | 2014/08/26 | 2014/08/27 | CAM SOP-00309     | EPA 8082 m     |

<sup>\*</sup> RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

#### **Encryption Key**

 $\label{lem:please direct all questions regarding this Certificate of Analysis to your Project Manager.$ 

Keshani Vijh, Project Manager Email: KVijh@maxxam.ca Phone# (905) 817-5700

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.



**Decommissioning Consulting Services Limited** 

Client Project #: 350600-515

Site Location: FOX-5 BROUGHTON ISLAND

# **RESULTS OF ANALYSES OF SOIL**

| Maxxam ID                     |       | XG4895        | XG4896        | XG4897        | XG4898        | XG4899        |     |          |
|-------------------------------|-------|---------------|---------------|---------------|---------------|---------------|-----|----------|
| Sampling Date                 |       | 2014/08/19    | 2014/08/19    | 2014/08/19    | 2014/08/19    | 2014/08/19    |     |          |
| COC Number                    |       | na            | na            | na            | na            | na            |     |          |
|                               | Units | F5-SA-MW-15-S | F5-SA-MW-15-D | F5-SA-MW-16-S | F5-SA-MW-16-D | F5-SA-MW-17-S | RDL | QC Batch |
| Inorganics                    |       |               |               |               |               |               |     |          |
| Moisture                      | %     | 12            | 10            | 7.7           | 8.4           | 6.6           | 1.0 | 3725691  |
| RDL = Reportable Detection L  | imit  |               |               |               |               |               |     |          |
| QC Batch = Quality Control Ba | -4-1- |               |               |               |               |               |     |          |

| Maxxam ID           |       | XG4900        |     |          |  |  |  |  |
|---------------------|-------|---------------|-----|----------|--|--|--|--|
| Sampling Date       |       | 2014/08/19    |     |          |  |  |  |  |
| COC Number          |       | na            |     |          |  |  |  |  |
|                     | Units | F5-SA-MW-17-D | RDL | QC Batch |  |  |  |  |
|                     |       |               |     |          |  |  |  |  |
| Inorganics          |       |               |     |          |  |  |  |  |
| Inorganics Moisture | %     | 7.8           | 1.0 | 3725691  |  |  |  |  |
|                     |       | 7.8           | 1.0 | 3725691  |  |  |  |  |



**Decommissioning Consulting Services Limited** 

Client Project #: 350600-515

Site Location: FOX-5 BROUGHTON ISLAND

# **ELEMENTS BY ATOMIC SPECTROSCOPY (SOIL)**

|                                |       |          |               |               |               | İ             |       |          |
|--------------------------------|-------|----------|---------------|---------------|---------------|---------------|-------|----------|
| Maxxam ID                      |       |          | XG4895        | XG4896        | XG4897        | XG4898        |       |          |
| Sampling Date                  |       |          | 2014/08/19    | 2014/08/19    | 2014/08/19    | 2014/08/19    |       |          |
| COC Number                     |       |          | na            | na            | na            | na            |       |          |
|                                | Units | Criteria | F5-SA-MW-15-S | F5-SA-MW-15-D | F5-SA-MW-16-S | F5-SA-MW-16-D | RDL   | QC Batch |
| Metals                         |       |          |               |               |               |               |       |          |
| Acid Extractable Arsenic (As)  | ug/g  | 12       | 3.1           | 2.7           | 2.2           | 3.3           | 1.0   | 3728208  |
| Acid Extractable Cadmium (Cd)  | ug/g  | 22       | <0.10         | <0.10         | 0.11          | 0.14          | 0.10  | 3728208  |
| Acid Extractable Chromium (Cr) | ug/g  | 87       | 38            | 33            | 12            | 23            | 1.0   | 3728208  |
| Acid Extractable Cobalt (Co)   | ug/g  | -        | 9.3           | 8.2           | 3.3           | 6.0           | 0.10  | 3728208  |
| Acid Extractable Copper (Cu)   | ug/g  | 91       | 22            | 20            | 16            | 21            | 0.50  | 3728208  |
| Acid Extractable Lead (Pb)     | ug/g  | 600      | 7.7           | 6.1           | 11            | 14            | 1.0   | 3728208  |
| Acid Extractable Nickel (Ni)   | ug/g  | 50       | 18            | 16            | 5.4           | 9.8           | 0.50  | 3728208  |
| Acid Extractable Zinc (Zn)     | ug/g  | 360      | 58            | 51            | 67            | 87            | 5.0   | 3728208  |
| Acid Extractable Mercury (Hg)  | ug/g  | 50       | <0.050        | <0.050        | <0.050        | <0.050        | 0.050 | 3728208  |

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Criteria: CCME Industrial

Canadian Environmental Quality Guidelines for Soil 1998-1999

| Maxxam ID                      |       |          | XG4899        | XG4900        |       |          |
|--------------------------------|-------|----------|---------------|---------------|-------|----------|
| Sampling Date                  |       |          | 2014/08/19    | 2014/08/19    |       |          |
| COC Number                     |       |          | na            | na            |       |          |
|                                | Units | Criteria | F5-SA-MW-17-S | F5-SA-MW-17-D | RDL   | QC Batch |
| Metals                         |       |          |               |               |       |          |
| Acid Extractable Arsenic (As)  | ug/g  | 12       | 2.6           | 2.9           | 1.0   | 3728208  |
| Acid Extractable Cadmium (Cd)  | ug/g  | 22       | <0.10         | <0.10         | 0.10  | 3728208  |
| Acid Extractable Chromium (Cr) | ug/g  | 87       | 12            | 14            | 1.0   | 3728208  |
| Acid Extractable Cobalt (Co)   | ug/g  | -        | 3.2           | 4.0           | 0.10  | 3728208  |
| Acid Extractable Copper (Cu)   | ug/g  | 91       | 9.1           | 8.2           | 0.50  | 3728208  |
| Acid Extractable Lead (Pb)     | ug/g  | 600      | 13            | 7.3           | 1.0   | 3728208  |
| Acid Extractable Nickel (Ni)   | ug/g  | 50       | 5.0           | 6.2           | 0.50  | 3728208  |
| Acid Extractable Zinc (Zn)     | ug/g  | 360      | 43            | 41            | 5.0   | 3728208  |
| Acid Extractable Mercury (Hg)  | ug/g  | 50       | <0.050        | <0.050        | 0.050 | 3728208  |

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Criteria: CCME Industrial



**Decommissioning Consulting Services Limited** 

Client Project #: 350600-515

Site Location: FOX-5 BROUGHTON ISLAND

# PETROLEUM HYDROCARBONS (CCME)

| Maxxam ID                 |       |          | XG4895        | XG4896        | XG4897        | XG4898        | XG4899        |       |          |
|---------------------------|-------|----------|---------------|---------------|---------------|---------------|---------------|-------|----------|
| Sampling Date             |       |          | 2014/08/19    | 2014/08/19    | 2014/08/19    | 2014/08/19    | 2014/08/19    |       |          |
| COC Number                |       |          | na            | na            | na            | na            | na            |       |          |
|                           | Units | Criteria | F5-SA-MW-15-S | F5-SA-MW-15-D | F5-SA-MW-16-S | F5-SA-MW-16-D | F5-SA-MW-17-S | RDL   | QC Batch |
| BTEX & F1 Hydrocarbons    |       |          |               |               |               |               |               |       |          |
| Benzene                   | ug/g  | 5        | <0.005        | <0.005        | <0.005        | <0.005        | <0.005        | 0.005 | 3726101  |
| Toluene                   | ug/g  | 0.8      | <0.02         | <0.02         | <0.02         | <0.02         | <0.02         | 0.02  | 3726101  |
| Ethylbenzene              | ug/g  | 20       | <0.01         | <0.01         | <0.01         | <0.01         | <0.01         | 0.01  | 3726101  |
| o-Xylene                  | ug/g  | -        | <0.02         | <0.02         | <0.02         | <0.02         | <0.02         | 0.02  | 3726101  |
| p+m-Xylene                | ug/g  | -        | <0.04         | <0.04         | <0.04         | <0.04         | <0.04         | 0.04  | 3726101  |
| Total Xylenes             | ug/g  | -        | <0.04         | <0.04         | <0.04         | <0.04         | <0.04         | 0.04  | 3726101  |
| F1 (C6-C10)               | ug/g  | -        | <10           | <10           | <10           | <10           | <10           | 10    | 3726101  |
| F1 (C6-C10) - BTEX        | ug/g  | -        | <10           | <10           | <10           | <10           | <10           | 10    | 3726101  |
| F2-F4 Hydrocarbons        |       | •        | •             | •             | •             | •             |               | -     | •        |
| F2 (C10-C16 Hydrocarbons) | ug/g  | -        | <10           | <10           | <10           | 23            | <10           | 10    | 3727425  |
| F3 (C16-C34 Hydrocarbons) | ug/g  | -        | <50           | <50           | <50           | 51            | 120           | 50    | 3727425  |
| F4 (C34-C50 Hydrocarbons) | ug/g  | -        | <50           | <50           | <50           | <50           | <50           | 50    | 3727425  |
| Reached Baseline at C50   | ug/g  | -        | Yes           | Yes           | Yes           | Yes           | Yes           |       | 3727425  |
| Surrogate Recovery (%)    |       |          |               |               |               |               |               |       |          |
| 1,4-Difluorobenzene       | %     | -        | 90            | 92            | 92            | 92            | 92            |       | 3726101  |
| 4-Bromofluorobenzene      | %     | -        | 103           | 102           | 101           | 102           | 102           |       | 3726101  |
| D10-Ethylbenzene          | %     | -        | 79            | 78            | 76            | 73            | 79            |       | 3726101  |
| D4-1,2-Dichloroethane     | %     | -        | 96            | 101           | 99            | 99            | 100           |       | 3726101  |
| o-Terphenyl               | %     | -        | 84            | 88            | 85            | 86            | 92            |       | 3727425  |

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Criteria: CCME Industrial



**Decommissioning Consulting Services Limited** 

Client Project #: 350600-515

Site Location: FOX-5 BROUGHTON ISLAND

# PETROLEUM HYDROCARBONS (CCME)

| Maxxam ID                    |       |          | XG4900        |       |          |
|------------------------------|-------|----------|---------------|-------|----------|
| Sampling Date                |       |          | 2014/08/19    |       |          |
| COC Number                   |       |          | na            |       |          |
|                              | Units | Criteria | F5-SA-MW-17-D | RDL   | QC Batch |
| BTEX & F1 Hydrocarbons       |       |          |               |       |          |
| Benzene                      | ug/g  | 5        | <0.005        | 0.005 | 3726101  |
| Toluene                      | ug/g  | 0.8      | <0.02         | 0.02  | 3726101  |
| Ethylbenzene                 | ug/g  | 20       | <0.01         | 0.01  | 3726101  |
| o-Xylene                     | ug/g  | -        | <0.02         | 0.02  | 3726101  |
| p+m-Xylene                   | ug/g  | -        | <0.04         | 0.04  | 3726101  |
| Total Xylenes                | ug/g  | -        | <0.04         | 0.04  | 3726101  |
| F1 (C6-C10)                  | ug/g  | -        | <10           | 10    | 3726101  |
| F1 (C6-C10) - BTEX           | ug/g  | -        | <10           | 10    | 3726101  |
| F2-F4 Hydrocarbons           |       | •        |               |       | -        |
| F2 (C10-C16 Hydrocarbons)    | ug/g  | -        | <10           | 10    | 3727425  |
| F3 (C16-C34 Hydrocarbons)    | ug/g  | -        | <50           | 50    | 3727425  |
| F4 (C34-C50 Hydrocarbons)    | ug/g  | -        | <50           | 50    | 3727425  |
| Reached Baseline at C50      | ug/g  | -        | Yes           |       | 3727425  |
| Surrogate Recovery (%)       |       |          |               |       |          |
| 1,4-Difluorobenzene          | %     | -        | 92            |       | 3726101  |
| 4-Bromofluorobenzene         | %     | -        | 101           |       | 3726101  |
| D10-Ethylbenzene             | %     | -        | 74            |       | 3726101  |
| D4-1,2-Dichloroethane        | %     | -        | 99            |       | 3726101  |
| o-Terphenyl                  | %     | -        | 90            |       | 3727425  |
| RDL = Reportable Detection I | imit  |          |               |       |          |
| OC Patch - Quality Control P | atch  |          |               |       |          |

QC Batch = Quality Control Batch

Criteria: CCME Industrial



**Decommissioning Consulting Services Limited** 

Client Project #: 350600-515

Site Location: FOX-5 BROUGHTON ISLAND

## POLYCHLORINATED BIPHENYLS BY GC-ECD (SOIL)

| Maxxam ID              |       |          | XG4895        | XG4896        | XG4897        | XG4898        | XG4899        |       |          |
|------------------------|-------|----------|---------------|---------------|---------------|---------------|---------------|-------|----------|
| Sampling Date          |       |          | 2014/08/19    | 2014/08/19    | 2014/08/19    | 2014/08/19    | 2014/08/19    |       |          |
| COC Number             |       |          | na            | na            | na            | na            | na            |       |          |
|                        | Units | Criteria | F5-SA-MW-15-S | F5-SA-MW-15-D | F5-SA-MW-16-S | F5-SA-MW-16-D | F5-SA-MW-17-S | RDL   | QC Batch |
| PCBs                   |       |          |               |               |               |               |               |       |          |
| Aroclor 1242           | ug/g  | -        | <0.010        | <0.010        | <0.010        | <0.010        | <0.010        | 0.010 | 3729735  |
| Aroclor 1248           | ug/g  | -        | <0.010        | <0.010        | <0.010        | <0.010        | <0.010        | 0.010 | 3729735  |
| Aroclor 1254           | ug/g  | -        | <0.010        | <0.010        | 0.022         | <0.010        | <0.010        | 0.010 | 3729735  |
| Aroclor 1260           | ug/g  | -        | <0.010        | <0.010        | <0.010        | <0.010        | <0.010        | 0.010 | 3729735  |
| Total PCB              | ug/g  | 33       | <0.010        | <0.010        | 0.022         | <0.010        | <0.010        | 0.010 | 3729735  |
| Surrogate Recovery (%) |       | •        |               |               |               |               |               |       | •        |
| Decachlorobiphenyl     | %     | -        | 88            | 94            | 83            | 85            | 82            |       | 3729735  |
|                        | •     |          |               |               |               | <u> </u>      |               |       |          |

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Criteria: CCME Industrial

Canadian Environmental Quality Guidelines for Soil 1998-1999

| Maxxam ID              |       |          | XG4900        |       |          |
|------------------------|-------|----------|---------------|-------|----------|
| Sampling Date          |       |          | 2014/08/19    |       |          |
| COC Number             |       |          | na            |       |          |
|                        | Units | Criteria | F5-SA-MW-17-D | RDL   | QC Batch |
| PCBs                   |       |          |               |       |          |
| Aroclor 1242           | ug/g  | -        | <0.010        | 0.010 | 3729735  |
| Aroclor 1248           | ug/g  | -        | <0.010        | 0.010 | 3729735  |
| Aroclor 1254           | ug/g  | -        | <0.010        | 0.010 | 3729735  |
| Aroclor 1260           | ug/g  | -        | <0.010        | 0.010 | 3729735  |
| Total PCB              | ug/g  | 33       | <0.010        | 0.010 | 3729735  |
| Surrogate Recovery (%) | •     |          |               | •     |          |
| Decachlorobiphenyl     | %     | -        | 92            |       | 3729735  |

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Criteria: CCME Industrial



**Decommissioning Consulting Services Limited** 

Client Project #: 350600-515

Site Location: FOX-5 BROUGHTON ISLAND

# **ELEMENTS BY ATOMIC SPECTROSCOPY (WATER)**

| Maxxam ID           |       | XG4890      | XG4891      | XG4892      | XG4893      | XG4894      |      |          |  |  |  |  |
|---------------------|-------|-------------|-------------|-------------|-------------|-------------|------|----------|--|--|--|--|
| Sampling Date       |       | 2014/08/19  | 2014/08/19  | 2014/08/19  | 2014/08/19  | 2014/08/19  |      |          |  |  |  |  |
| COC Number          |       | na          | na          | na          | na          | na          |      |          |  |  |  |  |
|                     | Units | F5-MID-MW-5 | F5-MID-MW-8 | F5-MID-MW-9 | F5-SA-MW-15 | F5-SA-MW-16 | RDL  | QC Batch |  |  |  |  |
| Metals              |       |             |             |             |             |             |      |          |  |  |  |  |
| Metals              |       |             |             |             |             |             |      |          |  |  |  |  |
| Metals Mercury (Hg) | ug/L  | <0.01       | <0.01       | <0.01       | <0.01       | 0.02        | 0.01 | 3726373  |  |  |  |  |



**Decommissioning Consulting Services Limited** 

Client Project #: 350600-515

Site Location: FOX-5 BROUGHTON ISLAND

# PETROLEUM HYDROCARBONS (CCME)

| Maxxam ID                     |       | XG4890      | XG4891      | XG4892      | XG4893      | XG4894      |      |          |
|-------------------------------|-------|-------------|-------------|-------------|-------------|-------------|------|----------|
| Sampling Date                 |       | 2014/08/19  | 2014/08/19  | 2014/08/19  | 2014/08/19  | 2014/08/19  |      |          |
| COC Number                    |       | na          | na          | na          | na          | na          |      |          |
|                               | Units | F5-MID-MW-5 | F5-MID-MW-8 | F5-MID-MW-9 | F5-SA-MW-15 | F5-SA-MW-16 | RDL  | QC Batch |
| BTEX & F1 Hydrocarbons        |       |             |             |             |             |             |      |          |
| Benzene                       | ug/L  | <0.20       | <0.20       | <0.20       | <0.20       | <0.20       | 0.20 | 3726586  |
| Toluene                       | ug/L  | <0.20       | <0.20       | <0.20       | <0.20       | <0.20       | 0.20 | 3726586  |
| Ethylbenzene                  | ug/L  | <0.20       | <0.20       | <0.20       | <0.20       | <0.20       | 0.20 | 3726586  |
| o-Xylene                      | ug/L  | <0.20       | <0.20       | <0.20       | <0.20       | <0.20       | 0.20 | 3726586  |
| p+m-Xylene                    | ug/L  | <0.40       | <0.40       | <0.40       | <0.40       | <0.40       | 0.40 | 3726586  |
| Total Xylenes                 | ug/L  | <0.40       | <0.40       | <0.40       | <0.40       | <0.40       | 0.40 | 3726586  |
| F1 (C6-C10)                   | ug/L  | <25         | <25         | <25         | <25         | <25         | 25   | 3726586  |
| F1 (C6-C10) - BTEX            | ug/L  | <25         | <25         | <25         | <25         | <25         | 25   | 3726586  |
| F2-F4 Hydrocarbons            |       |             |             |             |             |             |      |          |
| F2 (C10-C16 Hydrocarbons)     | ug/L  | <100        | <100        | <100        | <100        | 450         | 100  | 3727264  |
| F3 (C16-C34 Hydrocarbons)     | ug/L  | <200        | <200        | <200        | <200        | <200        | 200  | 3727264  |
| F4 (C34-C50 Hydrocarbons)     | ug/L  | <200        | <200        | <200        | <200        | <200        | 200  | 3727264  |
| Reached Baseline at C50       | ug/L  | Yes         | Yes         | Yes         | Yes         | Yes         |      | 3727264  |
| Surrogate Recovery (%)        |       |             |             |             |             |             |      |          |
| 1,4-Difluorobenzene           | %     | 107         | 104         | 103         | 108         | 108         |      | 3726586  |
| 4-Bromofluorobenzene          | %     | 98          | 98          | 99          | 97          | 100         |      | 3726586  |
| D10-Ethylbenzene              | %     | 103         | 98          | 96          | 102         | 102         |      | 3726586  |
| D4-1,2-Dichloroethane         | %     | 94          | 95          | 95          | 93          | 96          |      | 3726586  |
| o-Terphenyl                   | %     | 100         | 102         | 101         | 103         | 100         |      | 3727264  |
| RDL = Reportable Detection L  | imit  |             |             |             |             |             |      |          |
| QC Batch = Quality Control Ba | atch  |             |             |             |             |             |      |          |



**Decommissioning Consulting Services Limited** 

Client Project #: 350600-515

Site Location: FOX-5 BROUGHTON ISLAND

# POLYCHLORINATED BIPHENYLS BY GC-ECD (WATER)

| Maxxam ID                  |       | XG4890      | XG4891      | XG4892      | XG4893      | XG4894      |      |          |
|----------------------------|-------|-------------|-------------|-------------|-------------|-------------|------|----------|
| Sampling Date              |       | 2014/08/19  | 2014/08/19  | 2014/08/19  | 2014/08/19  | 2014/08/19  |      |          |
| COC Number                 |       | na          | na          | na          | na          | na          |      |          |
|                            | Units | F5-MID-MW-5 | F5-MID-MW-8 | F5-MID-MW-9 | F5-SA-MW-15 | F5-SA-MW-16 | RDL  | QC Batch |
| PCBs                       |       |             |             |             |             |             |      |          |
| Aroclor 1016               | ug/L  | <0.05       | <0.05       | <0.05       | <0.05       | <0.05       | 0.05 | 3725649  |
| Aroclor 1221               | ug/L  | <0.05       | <0.05       | <0.05       | <0.05       | <0.05       | 0.05 | 3725649  |
| Aroclor 1232               | ug/L  | <0.05       | <0.05       | <0.05       | <0.05       | <0.05       | 0.05 | 3725649  |
| Aroclor 1242               | ug/L  | <0.05       | <0.05       | <0.05       | <0.05       | <0.05       | 0.05 | 3725649  |
| Aroclor 1248               | ug/L  | <0.05       | <0.05       | <0.05       | <0.05       | <0.05       | 0.05 | 3725649  |
| Aroclor 1254               | ug/L  | <0.05       | <0.05       | <0.05       | <0.05       | <0.05       | 0.05 | 3725649  |
| Aroclor 1260               | ug/L  | <0.05       | <0.05       | <0.05       | <0.05       | <0.05       | 0.05 | 3725649  |
| Aroclor 1262               | ug/L  | <0.05       | <0.05       | <0.05       | <0.05       | <0.05       | 0.05 | 3725649  |
| Aroclor 1268               | ug/L  | <0.05       | <0.05       | <0.05       | <0.05       | <0.05       | 0.05 | 3725649  |
| Total PCB                  | ug/L  | <0.05       | <0.05       | <0.05       | <0.05       | <0.05       | 0.05 | 3725649  |
| Surrogate Recovery (%)     | •     |             |             |             |             |             |      |          |
| Decachlorobiphenyl         | %     | 77          | 72          | 70          | 66          | 66          |      | 3725649  |
| RDL = Reportable Detection |       |             |             |             |             |             |      |          |

QC Batch = Quality Control Batch



**Decommissioning Consulting Services Limited** 

Client Project #: 350600-515

Site Location: FOX-5 BROUGHTON ISLAND

## **GENERAL COMMENTS**

Results relate only to the items tested.



## **QUALITY ASSURANCE REPORT**

Decommissioning Consulting Services Lir....

Client Project #: 350600-515

Site Location: FOX-5 BROUGHTON ISLAND

|          |                       |            | Matrix     | Spike     | Spiked     | Blank     | Method | Blank | RP        | 'D        |
|----------|-----------------------|------------|------------|-----------|------------|-----------|--------|-------|-----------|-----------|
| QC Batch | Parameter             | Date       | % Recovery | QC Limits | % Recovery | QC Limits | Value  | Units | Value (%) | QC Limits |
| 3725649  | Decachlorobiphenyl    | 2014/08/27 | 83         | 60 - 130  | 77         | 60 - 130  | 78     | %     |           |           |
| 3726101  | 1,4-Difluorobenzene   | 2014/08/27 | 92         | 60 - 140  | 91         | 60 - 140  | 90     | %     |           |           |
| 3726101  | 4-Bromofluorobenzene  | 2014/08/27 | 102        | 60 - 140  | 105        | 60 - 140  | 102    | %     |           |           |
| 3726101  | D10-Ethylbenzene      | 2014/08/27 | 80         | 60 - 140  | 87         | 60 - 140  | 72     | %     |           |           |
| 3726101  | D4-1,2-Dichloroethane | 2014/08/27 | 103        | 60 - 140  | 95         | 60 - 140  | 98     | %     |           |           |
| 3726586  | 1,4-Difluorobenzene   | 2014/08/27 | 104        | 70 - 130  | 101        | 70 - 130  | 103    | %     |           |           |
| 3726586  | 4-Bromofluorobenzene  | 2014/08/27 | 100        | 70 - 130  | 100        | 70 - 130  | 98     | %     |           |           |
| 3726586  | D10-Ethylbenzene      | 2014/08/27 | 102        | 70 - 130  | 98         | 70 - 130  | 97     | %     |           |           |
| 3726586  | D4-1,2-Dichloroethane | 2014/08/27 | 87         | 70 - 130  | 89         | 70 - 130  | 97     | %     |           |           |
| 3727264  | o-Terphenyl           | 2014/08/27 | 103        | 60 - 130  | 105        | 60 - 130  | 101    | %     |           |           |
| 3727425  | o-Terphenyl           | 2014/08/28 | 83         | 60 - 130  | 83         | 60 - 130  | 91     | %     |           |           |
| 3729735  | Decachlorobiphenyl    | 2014/08/29 | 90         | 60 - 130  | 90         | 60 - 130  | 87     | %     |           |           |
| 3725649  | Aroclor 1016          | 2014/08/27 |            |           |            |           | <0.05  | ug/L  | NC        | 40        |
| 3725649  | Aroclor 1221          | 2014/08/27 |            |           |            |           | <0.05  | ug/L  | NC        | 40        |
| 3725649  | Aroclor 1232          | 2014/08/27 |            |           |            |           | <0.05  | ug/L  | NC        | 40        |
| 3725649  | Aroclor 1242          | 2014/08/27 |            |           |            |           | <0.05  | ug/L  | NC        | 30        |
| 3725649  | Aroclor 1248          | 2014/08/27 |            |           |            |           | <0.05  | ug/L  | NC        | 30        |
| 3725649  | Aroclor 1254          | 2014/08/27 |            |           |            |           | <0.05  | ug/L  | NC        | 30        |
| 3725649  | Aroclor 1260          | 2014/08/27 | 78         | 60 - 130  | 68         | 60 - 130  | <0.05  | ug/L  | NC        | 30        |
| 3725649  | Aroclor 1262          | 2014/08/27 |            |           |            |           | <0.05  | ug/L  | NC        | 40        |
| 3725649  | Aroclor 1268          | 2014/08/27 |            |           |            |           | <0.05  | ug/L  | NC        | 40        |
| 3725649  | Total PCB             | 2014/08/27 | 78         | 60 - 130  | 68         | 60 - 130  | <0.05  | ug/L  | NC        | 40        |
| 3725691  | Moisture              | 2014/08/26 |            |           |            |           |        |       | 2.8       | 20        |
| 3726101  | Benzene               | 2014/08/27 | 82         | 60 - 140  | 97         | 60 - 140  | <0.005 | ug/g  | NC        | 50        |
| 3726101  | Ethylbenzene          | 2014/08/27 | 85         | 60 - 140  | 100        | 60 - 140  | <0.01  | ug/g  | NC        | 50        |
| 3726101  | F1 (C6-C10) - BTEX    | 2014/08/27 |            |           |            |           | <10    | ug/g  | NC        | 50        |
| 3726101  | F1 (C6-C10)           | 2014/08/27 | 73         | 60 - 140  | 88         | 80 - 120  | <10    | ug/g  | NC        | 50        |
| 3726101  | o-Xylene              | 2014/08/27 | 83         | 60 - 140  | 97         | 60 - 140  | <0.02  | ug/g  | NC        | 50        |
| 3726101  | p+m-Xylene            | 2014/08/27 | 79         | 60 - 140  | 94         | 60 - 140  | <0.04  | ug/g  | NC        | 50        |
| 3726101  | Toluene               | 2014/08/27 | 81         | 60 - 140  | 97         | 60 - 140  | <0.02  | ug/g  | NC        | 50        |
| 3726101  | Total Xylenes         | 2014/08/27 |            |           |            |           | <0.04  | ug/g  | NC        | 50        |
| 3726373  | Mercury (Hg)          | 2014/08/27 | 102        | 75 - 125  | 100        | 80 - 120  | <0.01  | ug/L  | NC        | 20        |



# QUALITY ASSURANCE REPORT(CONT'D)

Decommissioning Consulting Services Lir....

Client Project #: 350600-515

Site Location: FOX-5 BROUGHTON ISLAND

|          |                                |            | Matrix     | Spike     | Spiked     | Blank     | Method | Blank | RP        | סי        |
|----------|--------------------------------|------------|------------|-----------|------------|-----------|--------|-------|-----------|-----------|
| QC Batch | Parameter                      | Date       | % Recovery | QC Limits | % Recovery | QC Limits | Value  | Units | Value (%) | QC Limits |
| 3726586  | Benzene                        | 2014/08/27 | 117        | 70 - 130  | 116        | 70 - 130  | <0.20  | ug/L  | NC        | 30        |
| 3726586  | Ethylbenzene                   | 2014/08/27 | 125        | 70 - 130  | 120        | 70 - 130  | <0.20  | ug/L  | NC        | 30        |
| 3726586  | F1 (C6-C10) - BTEX             | 2014/08/27 |            |           |            |           | <25    | ug/L  | NC        | 30        |
| 3726586  | F1 (C6-C10)                    | 2014/08/27 | 104        | 70 - 130  | 97         | 70 - 130  | <25    | ug/L  | NC        | 30        |
| 3726586  | o-Xylene                       | 2014/08/27 | 129        | 70 - 130  | 127        | 70 - 130  | <0.20  | ug/L  | NC        | 30        |
| 3726586  | p+m-Xylene                     | 2014/08/27 | 110        | 70 - 130  | 104        | 70 - 130  | <0.40  | ug/L  | NC        | 30        |
| 3726586  | Toluene                        | 2014/08/27 | 97         | 70 - 130  | 93         | 70 - 130  | <0.20  | ug/L  | NC        | 30        |
| 3726586  | Total Xylenes                  | 2014/08/27 |            |           |            |           | <0.40  | ug/L  | NC        | 30        |
| 3727264  | F2 (C10-C16 Hydrocarbons)      | 2014/08/28 | 81         | 50 - 130  | 95         | 60 - 130  | <100   | ug/L  | NC        | 30        |
| 3727264  | F3 (C16-C34 Hydrocarbons)      | 2014/08/28 | 88         | 50 - 130  | 97         | 60 - 130  | <200   | ug/L  | NC        | 30        |
| 3727264  | F4 (C34-C50 Hydrocarbons)      | 2014/08/28 | 99         | 50 - 130  | 105        | 60 - 130  | <200   | ug/L  | NC        | 30        |
| 3727425  | F2 (C10-C16 Hydrocarbons)      | 2014/08/28 | 88         | 50 - 130  | 88         | 80 - 120  | <10    | ug/g  | NC        | 30        |
| 3727425  | F3 (C16-C34 Hydrocarbons)      | 2014/08/28 | 89         | 50 - 130  | 89         | 80 - 120  | <50    | ug/g  | NC        | 30        |
| 3727425  | F4 (C34-C50 Hydrocarbons)      | 2014/08/28 | 94         | 50 - 130  | 95         | 80 - 120  | <50    | ug/g  | NC        | 30        |
| 3728208  | Acid Extractable Arsenic (As)  | 2014/08/28 | 106        | 75 - 125  | 104        | 80 - 120  | <1.0   | ug/g  | NC        | 30        |
| 3728208  | Acid Extractable Cadmium (Cd)  | 2014/08/28 | 107        | 75 - 125  | 104        | 80 - 120  | <0.10  | ug/g  | NC        | 30        |
| 3728208  | Acid Extractable Chromium (Cr) | 2014/08/28 | 108        | 75 - 125  | 106        | 80 - 120  | <1.0   | ug/g  | NC        | 30        |
| 3728208  | Acid Extractable Cobalt (Co)   | 2014/08/28 | 107        | 75 - 125  | 108        | 80 - 120  | <0.10  | ug/g  | 9.9       | 30        |
| 3728208  | Acid Extractable Copper (Cu)   | 2014/08/28 | 102        | 75 - 125  | 105        | 80 - 120  | <0.50  | ug/g  | 1.2       | 30        |
| 3728208  | Acid Extractable Lead (Pb)     | 2014/08/28 | 106        | 75 - 125  | 105        | 80 - 120  | <1.0   | ug/g  | NC        | 30        |
| 3728208  | Acid Extractable Mercury (Hg)  | 2014/08/28 | 108        | 75 - 125  | 103        | 80 - 120  | <0.050 | ug/g  | NC        | 30        |
| 3728208  | Acid Extractable Nickel (Ni)   | 2014/08/28 | 107        | 75 - 125  | 105        | 80 - 120  | <0.50  | ug/g  | 7.4       | 30        |
| 3728208  | Acid Extractable Zinc (Zn)     | 2014/08/28 | 105        | 75 - 125  | 104        | 80 - 120  | <5.0   | ug/g  | NC        | 30        |
| 3729735  | Aroclor 1242                   | 2014/08/29 |            |           |            |           | <0.010 | ug/g  | NC        | 50        |
| 3729735  | Aroclor 1248                   | 2014/08/29 |            |           |            |           | <0.010 | ug/g  | NC        | 50        |
| 3729735  | Aroclor 1254                   | 2014/08/29 |            |           |            |           | <0.010 | ug/g  | NC        | 50        |
| 3729735  | Aroclor 1260                   | 2014/08/29 | 103        | 60 - 130  | 99         | 60 - 130  | <0.010 | ug/g  | NC        | 50        |
| 3729735  | Total PCB                      | 2014/08/29 | 103        | 60 - 130  | 99         | 60 - 130  | <0.010 | ug/g  | NC        | 50        |

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.



# QUALITY ASSURANCE REPORT(CONT'D)

Decommissioning Consulting Services Lir....

Client Project #: 350600-515

Site Location: FOX-5 BROUGHTON ISLAND

|                    |      | Matrix     | Spike     | Spiked     | Blank     | Method | Blank | RP        |           |
|--------------------|------|------------|-----------|------------|-----------|--------|-------|-----------|-----------|
| QC Batch Parameter | Date | % Recovery | QC Limits | % Recovery | QC Limits | Value  | Units | Value (%) | QC Limits |

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (one or both samples < 5x RDL).



**Decommissioning Consulting Services Limited** 

Client Project #: 350600-515

Site Location: FOX-5 BROUGHTON ISLAND

## **VALIDATION SIGNATURE PAGE**

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).



Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

| Mauchan Sen Del<br>DIKIQTAR<br>NUNAVUT<br>KOA 0B0 |                                                            | 00000    | )                                   | No de compt                     | count Numbi<br>e de l'exped | teur                                                                              |                                                | (AIR CON<br>NON<br>LETTRE<br>Incorporat<br>Copies 1, 2,<br>Les exemple                      | NEGOTIABLE<br>R WAYBILL<br>VISIGNMENT NOTE<br>NÉGOTIABLE<br>DE TRANSPOR<br>AÉRIEN<br>ed in Canada with is<br>3 and faximilies of<br>lines 1 2 3 et faximi                  | ÉMIS<br>mited liability - C<br>this Air Waybill ar<br>lie de cette lettre e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | nd originals<br>de transport                                                                   | anadienne a resp<br>and have the sam<br>aerien sont origin                                                        | RST AIR irrline of the North  consabilite limitee  e validity, sace et ont is même validité er and condition (except as                              |
|---------------------------------------------------|------------------------------------------------------------|----------|-------------------------------------|---------------------------------|-----------------------------|-----------------------------------------------------------------------------------|------------------------------------------------|---------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|
| onsignee Nam                                      | ne and Address<br>e du destinataire                        |          | _                                   | Consignee N<br>Nom et adre      | lame and Ad                 | dress<br>lataire                                                                  |                                                | noted) for ca<br>conditions-o<br>FROM THE                                                   | rriage, SUBJECT T<br>f-contract/<br>CARGO AGENT.                                                                                                                           | O THE CONDITI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | IONS AVAIL                                                                                     | ABLE AT https://f                                                                                                 | irstair.ca/cargo/cargo-                                                                                                                              |
| AXXAM .<br>2 COLON                                | ANALYTICS<br>NNADE ROAD<br>, CANADA<br>61327405            |          | UTH, UNIT                           | 1000                            | 7000                        |                                                                                   |                                                | LIABILITY, s paying a sup Il est conver bon état app CONTRAT s AUPRÈS D L'ATTENTIC RESPONSA | Shipper may increas<br>optemental if require<br>ou que les marchano<br>arent (sauf annotati<br>DISPONIBLES AU N<br>E L'AĞENT CARGO<br>ON DE L'EXPÉDITE<br>BILITÉ DU TRANSI | e such limitation<br>d.<br>dises décrites dan<br>on contraire) et q<br>ttps://firstair.ca/c<br>D.<br>UR EST ATTIRÉ!<br>PORTEUR. L'exp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | of liability by<br>as le présent<br>que le transp<br>argo/cargo-<br>E SUR L'AV<br>béditeur peu | declaring a high<br>document sont a<br>pirt est SOUMIS A<br>conditions-of-cont<br>IS CONCERNAN<br>augmenter cette | ARRIERS LIMITATION OF er value for carriage and coeptées pour le transport en UX CONDITIONS DU rate/ T LA LIMITATION DE limitation de responsabilité |
| ing Camers                                        | s Agent Name and                                           | City / f | Nom es ville de l                   | l'agent du transp               | orteur ameti                | eur                                                                               |                                                | Accounting to<br>YVMCAS                                                                     | une valeur pour le<br>nformation / Rensei                                                                                                                                  | transport plus éle-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | vée et en pa                                                                                   | yant des frais su                                                                                                 | oplémentaires s'il y a l'eu.<br>YVMCASH                                                                                                              |
| jent's IATA C                                     | ode / Code IATA de                                         | e l'age  | nt                                  | Account N                       | lumber / Nor                | néro de compte                                                                    |                                                | QIKIQTA                                                                                     | RJUAK TOTARLE                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                | 77.                                                                                                               | TAR                                                                                                                                                  |
|                                                   | YVM                                                        | depart   |                                     |                                 |                             |                                                                                   |                                                | PO:                                                                                         |                                                                                                                                                                            | midselvit i C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                | MATERIAL PROPERTY.                                                                                                |                                                                                                                                                      |
| YOW                                               | First carrier / prem                                       | 7F       |                                     | To/a                            | by / par                    | To/à                                                                              | by / par                                       | CDN<br>CDN                                                                                  | PX PRA D                                                                                                                                                                   | p-Val Other Autres OLL PPD COLL D paye D0 X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                | for Carriage<br>pour la transport<br>NDV<br>Pick-up Company                                                       | Declared value for Customs<br>Valeur déclarée pour la douane<br>NCV                                                                                  |
| YOW                                               | nation / Aeroport de<br>mation / Renseigner                |          | I<br>NEH UNIT                       |                                 |                             | Date / Vol Date                                                                   |                                                | Delvery Compar                                                                              | - service                                                                                                                                                                  | Section to the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the sectio |                                                                                                | And Conjuny                                                                                                       |                                                                                                                                                      |
| monty and                                         | nanon i romangio                                           | menta j  | pour la crandina                    | iii de rexpedito                |                             |                                                                                   |                                                | hold for                                                                                    | pick up                                                                                                                                                                    | encontraction of the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second se |                                                                                                |                                                                                                                   | ٠,                                                                                                                                                   |
|                                                   | .45                                                        |          | 186                                 | * * 1                           | 19                          |                                                                                   |                                                | r e                                                                                         | 1-10                                                                                                                                                                       | 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Mahana                                                                                         | nd Quantity of Go                                                                                                 | 7550000                                                                                                                                              |
| No of<br>Pieces<br>rop                            | Weight                                                     | kg<br>Ib | Rate Class<br>Commodity<br>Item No. | y We                            | ight.                       | Rate                                                                              |                                                | Total                                                                                       | WOODER L                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (inc, Di                                                                                       | nensions or Volum                                                                                                 |                                                                                                                                                      |
| 1                                                 | 28                                                         | K        | G GEN                               | 1                               | 28                          | 10.6                                                                              |                                                | 298.76<br>298.76                                                                            | SAMPLE                                                                                                                                                                     | (SPECIFY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ')-soil sa                                                                                     | imple SAM                                                                                                         | PLE (SPECIFY)-soil san                                                                                                                               |
|                                                   |                                                            |          |                                     |                                 | -1                          |                                                                                   |                                                |                                                                                             | X X                                                                                                                                                                        | X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                | r - 1/                                                                                                            | NCV                                                                                                                                                  |
|                                                   | Marie Bergli                                               | h        | Ar Juli                             |                                 |                             |                                                                                   |                                                |                                                                                             |                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                |                                                                                                                   |                                                                                                                                                      |
|                                                   |                                                            |          | 157                                 |                                 | 32                          |                                                                                   |                                                |                                                                                             | 10                                                                                                                                                                         | 227                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                |                                                                                                                   |                                                                                                                                                      |
|                                                   |                                                            |          |                                     |                                 |                             |                                                                                   |                                                |                                                                                             | PARTICIA<br>PROPERTY<br>THE EXCELLE                                                                                                                                        | encout's                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                |                                                                                                                   |                                                                                                                                                      |
| 1                                                 | 28                                                         |          |                                     | 4                               |                             |                                                                                   | 7                                              | 298.76                                                                                      | 11151                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                | 2                                                                                                                 |                                                                                                                                                      |
| Prepaid / Port                                    | te paye Weight                                             | Charge   | Taxation au poids                   | Collect o                       |                             | UEL SUR                                                                           |                                                | = 68.71, N                                                                                  | IAV SURCH                                                                                                                                                                  | ARGE = 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 9.42, GS                                                                                       | T = 50.30                                                                                                         |                                                                                                                                                      |
|                                                   | Tax<br>50.30<br>or Charges Due Agent                       |          | 1.0180                              | Taxa<br>autres freis dus e l'eg | ert Shi                     | per certifies that the pa                                                         | infoulars on the face i                        | hereof are correct as                                                                       | d the insofar as any part of                                                                                                                                               | If the consignment con                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ritains dangerous                                                                              | goods, such piid is pr                                                                                            | openy described by name and is in proper                                                                                                             |
| Total offer                                       | er Charges Due Carrier<br>88.13                            |          | Total des sutr                      | nes frais dus su transp         | £'ex                        | átion for cartage by air<br>péditeur certifie que les<br>expartie de d'expédition | indications porties is<br>est correctament dén | ur le présent docum<br>omnée et bien prép                                                   | ert sont éractes et que di<br>mée pour le transport par                                                                                                                    | ins la mesure ou une p<br>air conformément à la i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | pertie quelconqui<br>réglementation à                                                          | de l'expédition confier<br>policable.                                                                             | t des marchandises dangareuses.                                                                                                                      |
| Total Pr                                          | 437.19                                                     |          | Total o                             | collect / Total port du         |                             | Prot Name (Shippe<br>08/20/2014                                                   |                                                | Qikiqta                                                                                     | rjuaq                                                                                                                                                                      | Tone no.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                | 521415                                                                                                            | Signature                                                                                                                                            |
| For Carrier<br>Reserve au                         | User Online at Dijstinatio<br>u transporteur a discination | n<br>n   | Charges at C                        | Desiration / Frain & Fa         | D01803                      | Executed on / Fall le<br>Total Collect Cha                                        |                                                | Place / Lieu                                                                                | Sy                                                                                                                                                                         | eture of leasing Carrie                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                |                                                                                                                   | ame<br>or emetheur to the son agent<br>5-YVM-3558340                                                                                                 |
| p3y                                               | vin                                                        |          | ORIG                                | INAL N                          | 0.5 -                       | CONSIC                                                                            | NEE'S                                          | COPY                                                                                        | - COPIE                                                                                                                                                                    | DU DE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | STIN                                                                                           |                                                                                                                   | NO.                                                                                                                                                  |

Department of National Defence DEW Line Monitoring Program FOX-M, FOX-4 & FOX-5 TERMS OF REFERENCE ANNEX D DLCLFMP2(QIKIQ14) June, 2014

#### Landfill Monitoring Detection Limits

| Parameter | Soil<br>(mg/kg) | Groundwater<br>(mg/L). |
|-----------|-----------------|------------------------|
| Copper    | <3.0            | < 0.005                |
| Nickel    | <5.0            | <0.010                 |
| Cobalt    | <5.0            | < 0.005                |
| Cadmium   | <1.0            | <0.001                 |
| Lead      | <10             | < 0.01                 |
| Zinc      | <15             | < 0.005                |
| Chromium  | <20             | <0.005                 |
| Arsenic   | <0.2            | < 0.05                 |
| Mercury   | <0.1            | <0.001                 |
| PCBs      | <0.05           | < 0.003                |
| TPH       | <40             | <1                     |

Tel: (905) 882-5984 Fax: (905) 882-8962
Email: engineers@dcsltd.ca Website: www.dcsltd.ca

Project No. and Date

# Chain of Custody Record

Page  $\underline{/}$  of  $\underline{/}$ .

(Revision 1 - 17 May 2012)

|            | Project                                 | No.:     | 350600-515         | Site: FOX-5    | Bro   | ughto  | n Istand.         |              |            |       | Anal                   | yses l        | Requ | iested |       |       |      | -,70                       | 7             |
|------------|-----------------------------------------|----------|--------------------|----------------|-------|--------|-------------------|--------------|------------|-------|------------------------|---------------|------|--------|-------|-------|------|----------------------------|---------------|
|            | Project                                 | Manage   |                    | Borcsok        |       |        | 19                |              |            |       | 0.0<br>H               |               |      |        |       |       | ferr | p:7,9,7                    |               |
| a          | Field F                                 | ngineer/ | Fechician: S.      | Borcsok/J. Mai | ichan |        |                   |              |            |       | Co, Cu, Pb, Ni, Zn, Hg |               | +    |        |       |       | 01   | 7 100                      |               |
|            | 100000000000000000000000000000000000000 | 1000     |                    |                |       |        |                   |              |            |       | o, Ni,                 |               |      |        |       |       |      |                            |               |
| Shipper    |                                         |          |                    | Route:         |       |        |                   |              |            |       | 'n, Pl                 |               |      |        |       |       | *    |                            |               |
| Shij       | Lab:                                    | MAXX     | AM                 | Location       | Oto   | tawa   |                   |              |            |       | Zo, C                  | •             |      | •      |       | 121   |      |                            |               |
|            | Requir                                  | ed Date: |                    | Turnaro        | und:  | STD    | Day(s)            |              |            |       | Ġ.                     |               |      |        |       |       | F    | REC'D IN                   | OTTAWA        |
| ì          | Quotati                                 | on No.:  |                    |                |       |        |                   |              |            |       | s, Cd,                 |               |      |        |       |       |      |                            |               |
| 16         | MDL's                                   | To Meet  | See Attac          | hed            |       |        |                   |              | 15         |       | cs: As,                |               |      |        |       | ŀ     |      |                            |               |
| Location/  | Sample                                  |          |                    |                | Label | Grab/  | Dot-              | PHCs F1      | PHCs F2-F4 | SS    | Inorganics:            |               |      | ž      |       | ı     |      | Field Proc                 | edures        |
| Hole No.   | No.                                     | (m)      | Descri             | ption          | No.   | Comp.  | Date<br>Collected | SIL          | PHC        | PCBs  | Inor                   |               |      | 20     |       |       | pН   | Electrical<br>Conductivity | Preservatives |
| F5-MID     |                                         |          | GROUNI             | DWATER         |       |        | 19 Aug/14         | X            | X          | X     | X                      |               |      |        |       |       |      |                            |               |
| F5-MID     |                                         |          |                    |                |       |        | - (-              | X            | X          | X     | ×                      |               |      |        |       |       |      | 22-Aug-                    | 14 10:50      |
| F5-MIL     |                                         |          |                    |                |       |        |                   | X            | X          | X     | ×                      |               |      |        |       |       |      | hani Vijh                  |               |
| FS-SA      |                                         |          |                    | /              |       |        | 2                 | X            | ×          | X     | ×                      |               |      |        |       |       |      |                            |               |
| F5-SA      |                                         |          |                    |                |       |        | -                 | X            | X          | X     | X                      |               |      |        |       |       | E    | 34F3737                    |               |
| F5-SA      |                                         |          | 5016               |                |       |        |                   | X            | X          | X     | X                      |               |      | -      | -     |       | AF   | ENV-7                      | 53 -          |
| F5-SA-     |                                         |          |                    |                |       |        |                   | $\frac{1}{}$ | X          | X     | Ŷ                      |               |      |        | -     | -     | -    |                            |               |
| PS-SA.     |                                         |          |                    |                |       |        |                   | X            | ×          | 0     | ~                      |               |      |        |       |       |      |                            |               |
| F5-SA      |                                         |          |                    |                |       |        |                   | X            | ×          | X     | X                      |               |      |        |       |       |      |                            |               |
| F5-SA      |                                         |          | V                  |                | e.,   |        | V                 | X            | X          | X     | X                      |               |      |        |       |       |      |                            |               |
|            |                                         |          |                    |                |       |        |                   |              |            |       |                        |               |      |        |       |       |      |                            |               |
| Relinquish |                                         |          | Date:              | Time:          |       |        | 2014/08/22        |              | 175000     | mark  |                        | to the second |      |        |       |       |      |                            | 31            |
| S. Boro    |                                         |          | 20 Aus/14<br>Date: | Time:          |       | ed By: | n 10:50           | ory          | Al         | LL RE | SULT                   | 'S ARE        | TO   | BE SEN | ТТОТН | E PRC | JECT | MANAGER.                   | 6.5           |
| Keiinquish | eu by:                                  |          | 2014/08/23         |                |       |        | WALG              | aboratory    |            |       |                        |               |      |        |       |       |      |                            |               |
| Relinquish | ed By:                                  |          | Date:              | Time:          |       | ed By: |                   | Lal          |            |       |                        |               |      |        |       |       |      |                            |               |
|            |                                         |          |                    |                |       |        |                   |              |            |       |                        |               |      |        |       |       |      |                            | *             |

5/5/62 6/6/62

# APPENDIX D THERMISTOR REPORTS

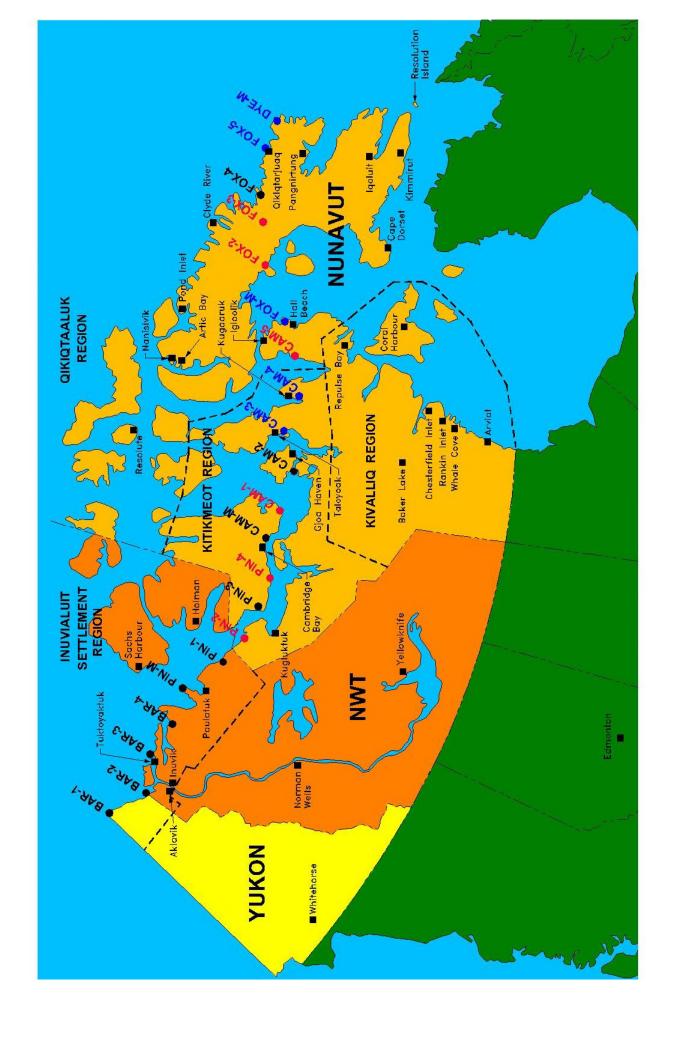
Site: FOX-5 Broughton Island

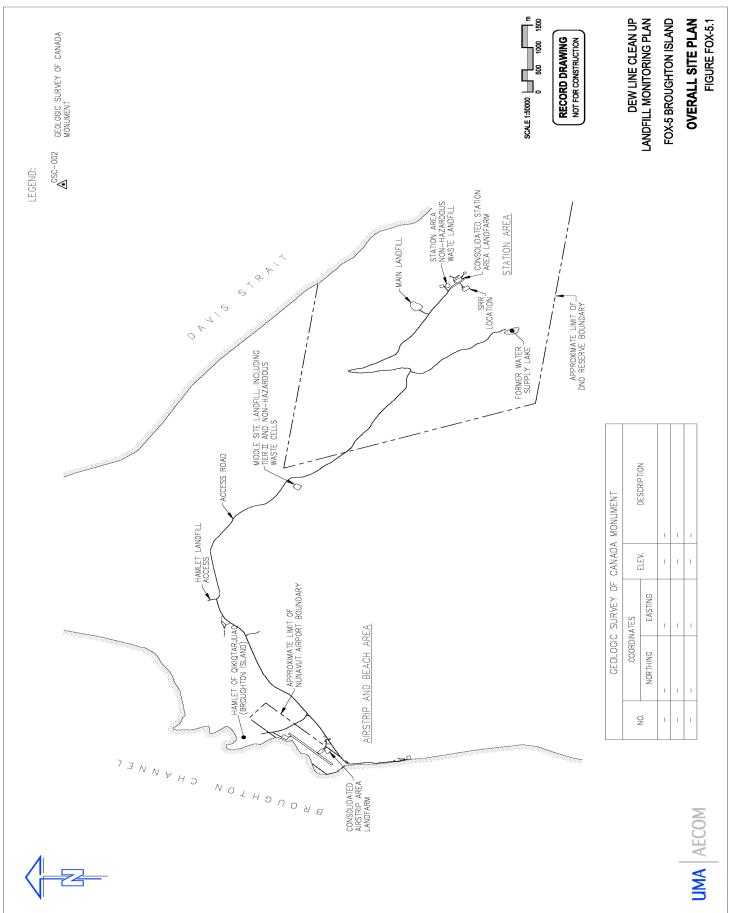
Landfill: Middle Site Tier II Soil Disposal Facility

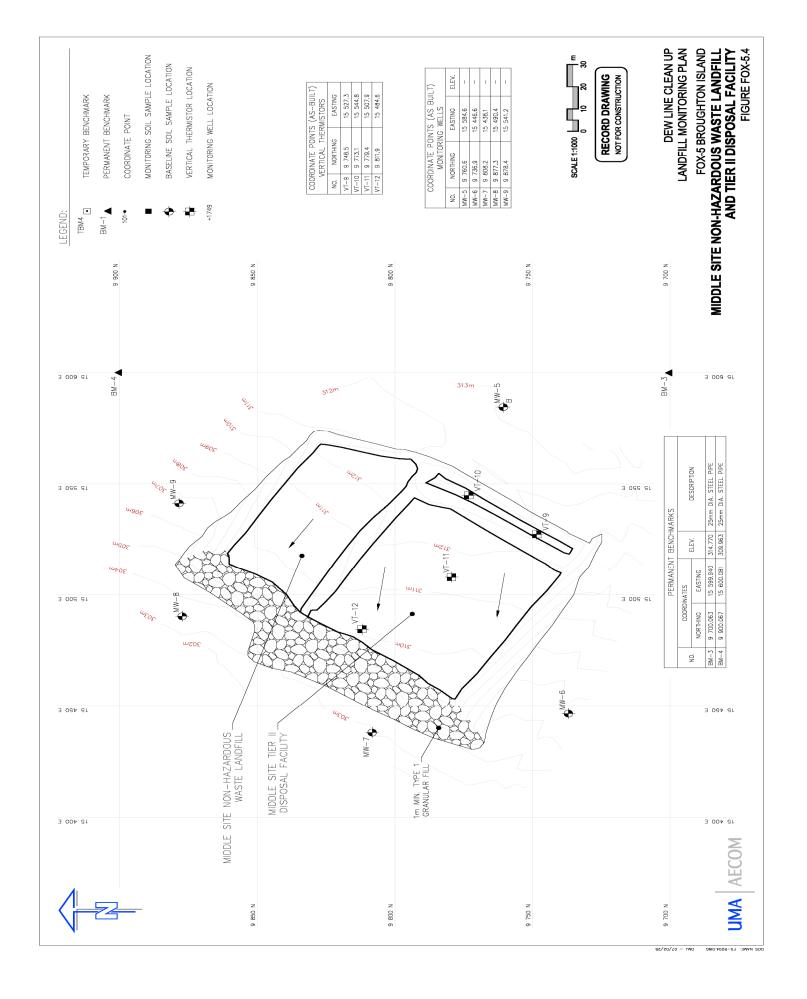
#### Design Infomation:

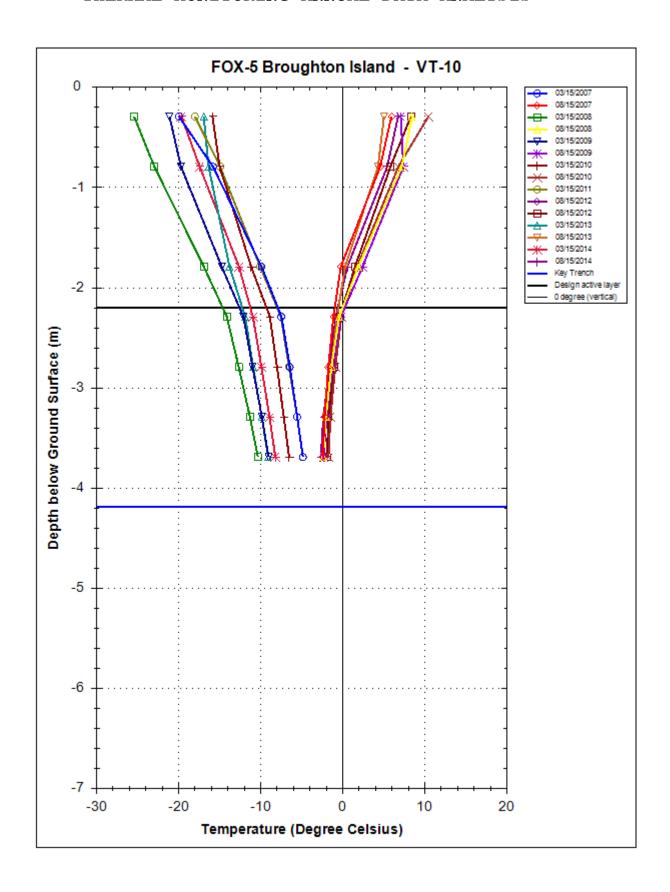
| Design Active Layer (m):              | -2.20   |
|---------------------------------------|---------|
| Mean Active Layer (m):                | -1.60   |
| 1:100 Year Active Layer (m):          | -2.00   |
| Mean Thawing Index (degC Days):       | 245.00  |
| Mean Freezing Index (degC Days):      | 4380.00 |
| 1:100 Year Thawing Index (degC Days): | 490.00  |

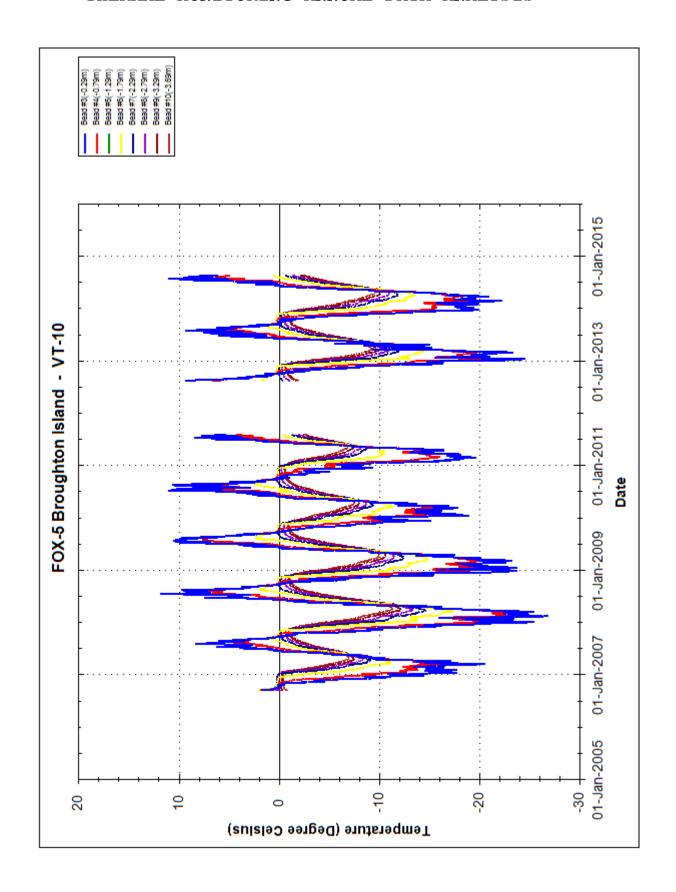
# Maximum Active Layer (m):

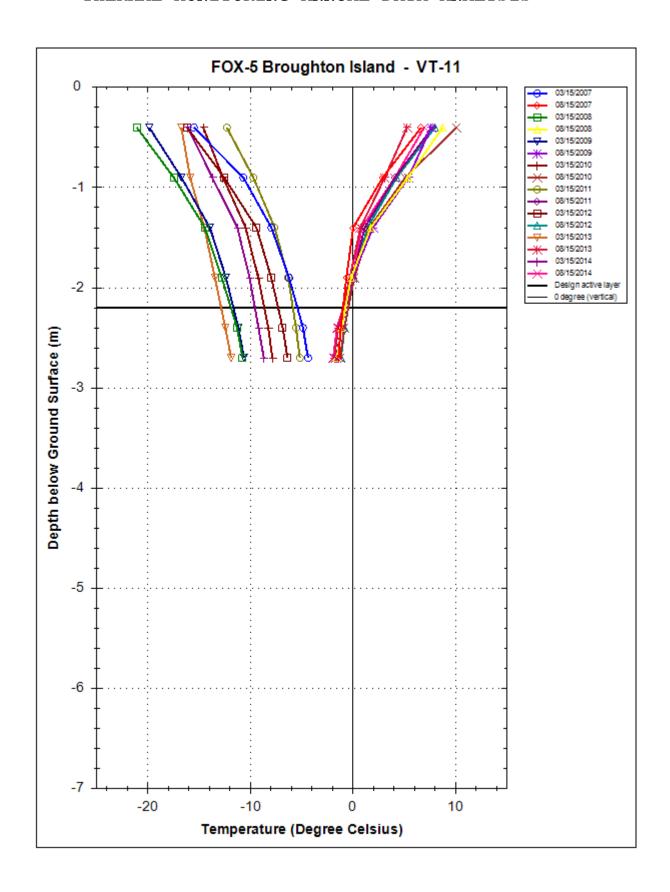

|      | VT-10 | VT-11 | VT-12 | VT-9  |
|------|-------|-------|-------|-------|
| 2006 | NaN   | NaN   | NaN   | NaN   |
| 2007 | -2.78 | -2.63 | -2.36 | -2.59 |
| 2008 | -2.30 | -2.05 | -1.77 | -1.99 |
| 2009 | -2.40 | -2.16 | -1.85 | -2.13 |
| 2010 | -2.55 | -2.24 | -2.00 | -2.37 |
| 2011 | NaN   | -2.15 | NaN   | -2.12 |
| 2012 | -2.42 | -2.19 | NaN   | -2.28 |
| 2013 | -2.21 | -1.92 | NaN   | -2.01 |
| 2014 | NaN   | NaN   | NaN   | NaN   |

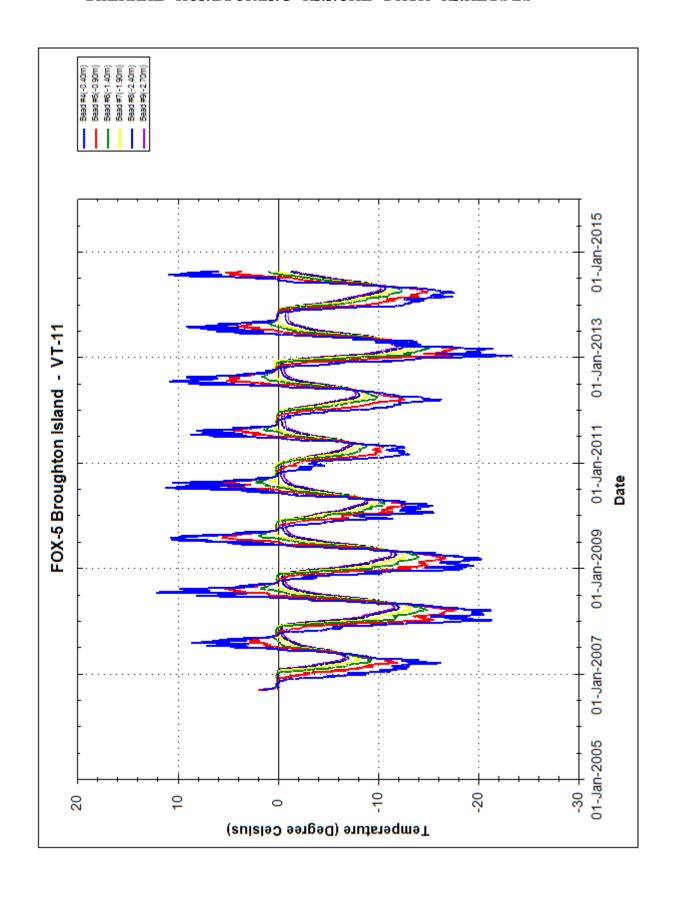

# Thawing Index and Freezing Index:

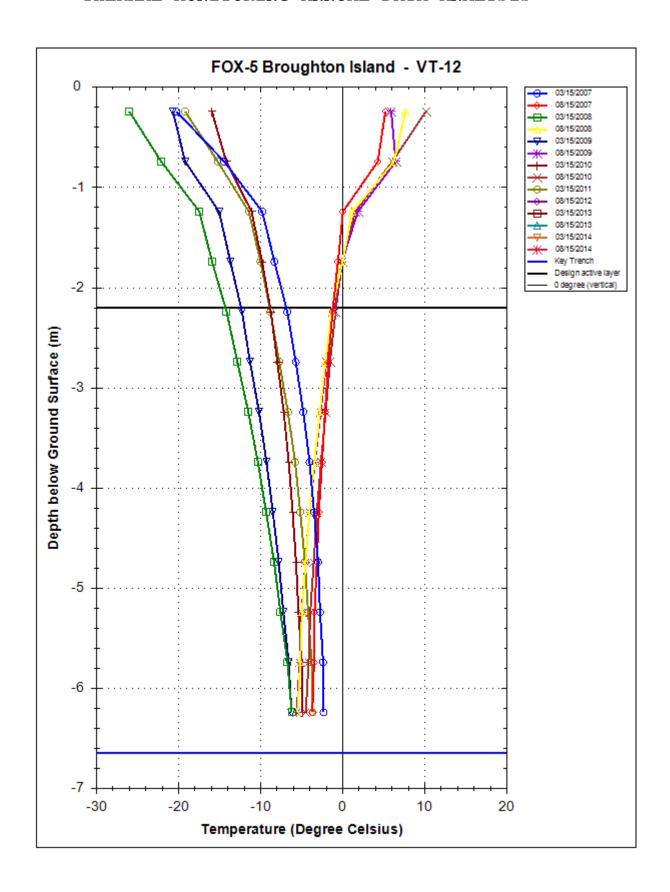

|      | TI     | FI      | max AL | min AL | average AL |
|------|--------|---------|--------|--------|------------|
| 2006 | 439.00 | 3798.00 | NaN    | NaN    | NaN        |
| 2007 | 298.00 | 3876.00 | -2.78  | -2.36  | -2.59      |
| 2008 | 504.00 | 4192.00 | -2.30  | -1.77  | -2.03      |
| 2009 | 494.00 | 4083.00 | -2.40  | -1.85  | -2.13      |
| 2010 | 484.00 | 3222.00 | -2.55  | -2.00  | -2.29      |
| 2011 | 374.00 | 3668.00 | -2.15  | -2.12  | -2.14      |
| 2012 | 616.00 | 4104.00 | -2.42  | -2.19  | -2.24      |
| 2013 | 361.00 | 3660.00 | -2.21  | -1.92  | -2.05      |
| 2014 | 437.00 | 4172.00 | NaN    | NaN    | NaN        |

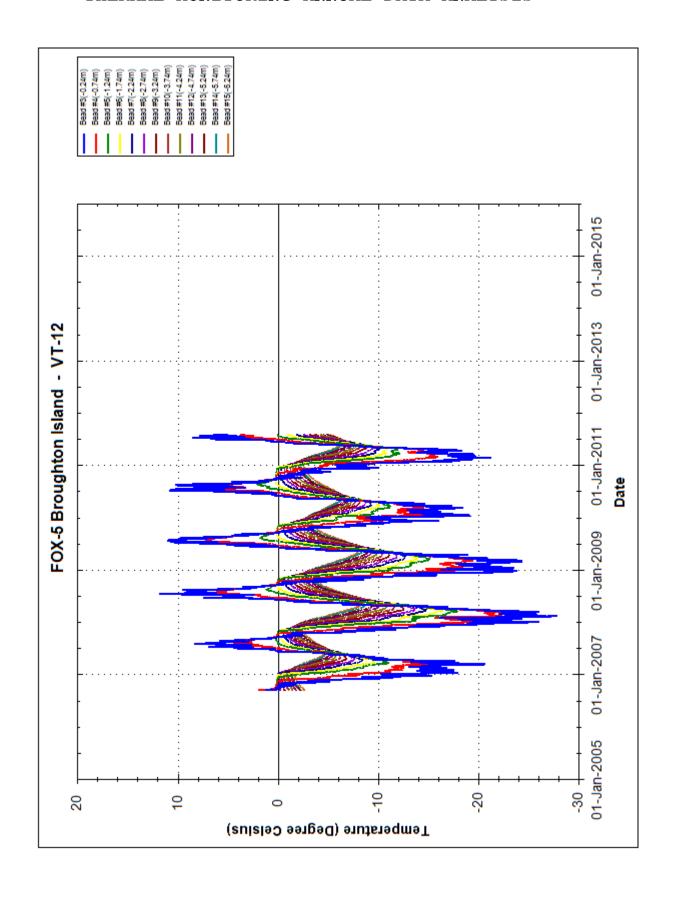

# Deepest Bead Average Temperature:

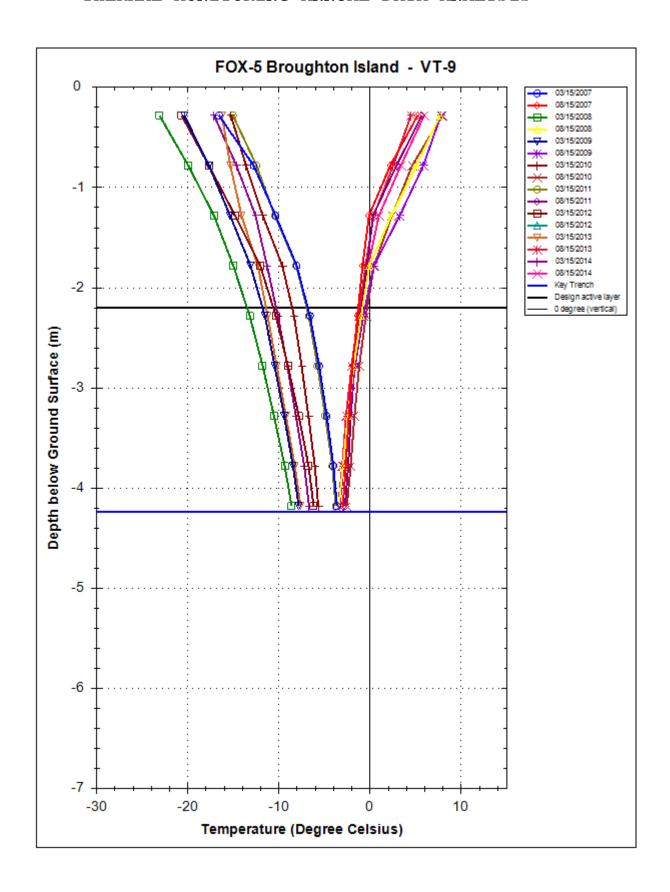

|      | VT-10 | VT-11 | VT-12 | VT-9  | AVG   |
|------|-------|-------|-------|-------|-------|
| 2006 | NaN   | NaN   | NaN   | NaN   | NaN   |
| 2007 | -3.36 | -2.61 | -3.02 | -3.17 | -3.04 |
| 2008 | -5.49 | -5.41 | -5.42 | -5.30 | -5.41 |
| 2009 | -5.00 | -5.36 | -5.48 | -4.96 | -5.20 |
| 2010 | -3.51 | -3.79 | -4.40 | -3.63 | -3.83 |
| 2011 | NaN   | -2.97 | NaN   | -3.02 | -3.00 |
| 2012 | NaN   | -3.40 | NaN   | -4.02 | -3.71 |
| 2013 | -4.57 | -5.50 | NaN   | -4.57 | -4.88 |
| 2014 | NaN   | NaN   | NaN   | NaN   | NaN   |

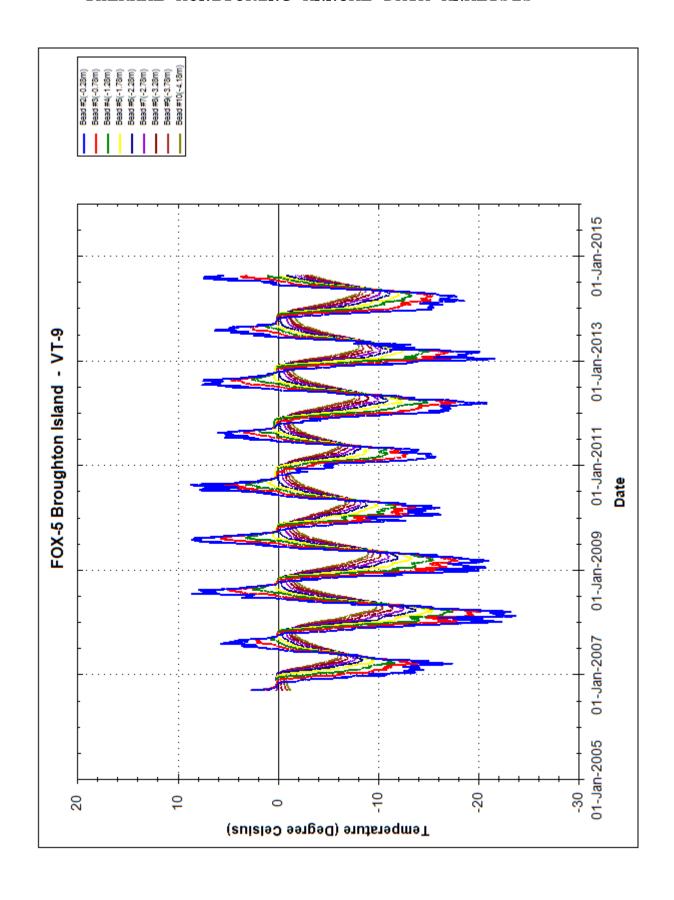













# FOX-5 Broughton Island

Middle Site Tier II DF (Comment by Renata Klassen, Tetra Tech EBA, October 2014)

Four ground temperature cables were installed in the FOX-5 Middle Site Tier II Disposal Facility in 2006 (VT-9 through VT-11). 2014 thermal data is complete except for VT-12.

Maintenance reports were not available when the comments were prepared. The 2014 downloaded data indicate that:

- Dataloggers were read on August 22, 2014.
- VT-12 had bad data.

Tetra Tech EBA records from February 2013 indicate that datalogger batteries for VT-9 through VT-12 expire in July 2013.

New batteries should be installed within 3 years of the last battery install date.

The air temperatures in 2013 had a thawing index of 361°C-days compared to a design mean and 1:100 year thawing index of 245°C-days and 490°C-days, respectively. This indicates that the air temperatures were warmer than the average but colder than the 1:100 thawing index. Climate information was taken from Fox Five weather station.

The mean deepest bead average annual temperature was -5.04°C in 2013 for VT-9 and VT-11. The mean deepest bead average annual temperatures cooled by an average of 1.3°C between 2013 and 2012.

The measured maximum and minimum active layers in 2013 were 2.2 m and 1.9 m, respectively. The average measured active layer of 2.1 m in 2013 was greater than estimated mean active layer of 1.6 m, the estimated 1:100 year active layer of 2.0 m and less than the design active layer of 2.2 m.

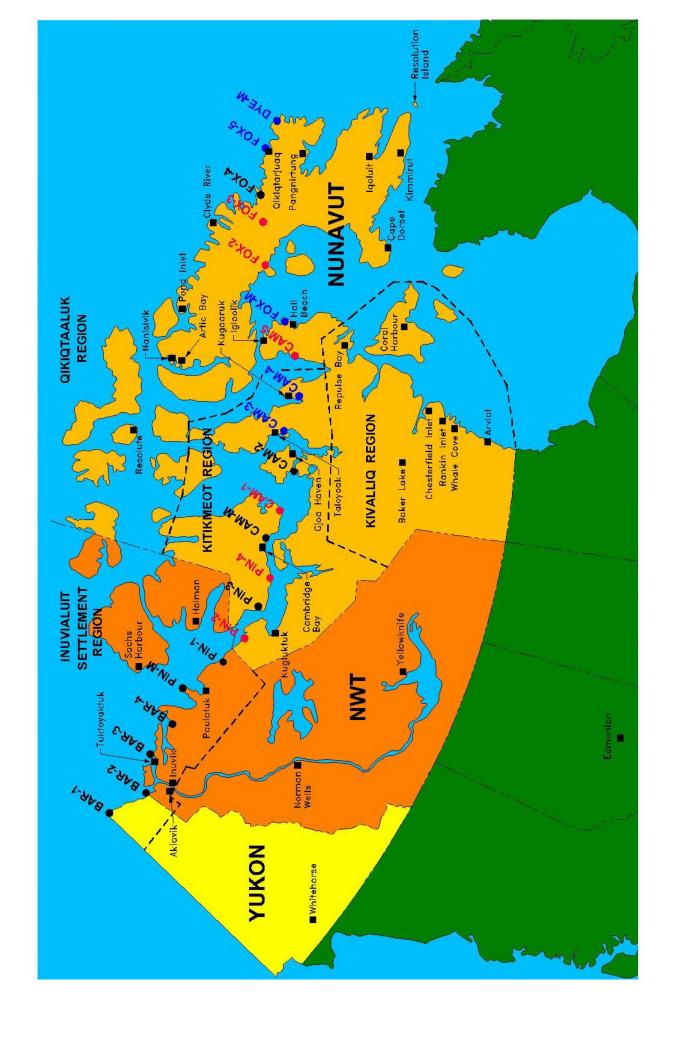
The landfill is stabilizing and performing as expected from a thermal perspective.

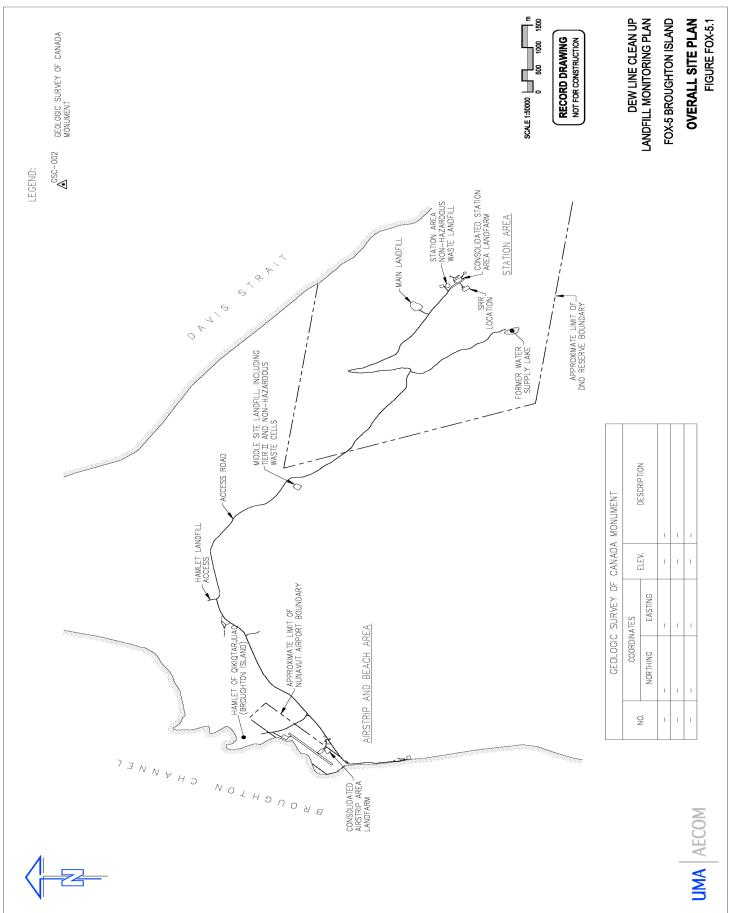
Site: FOX-5 Broughton Island Landfill: Upper Site Main Landfill

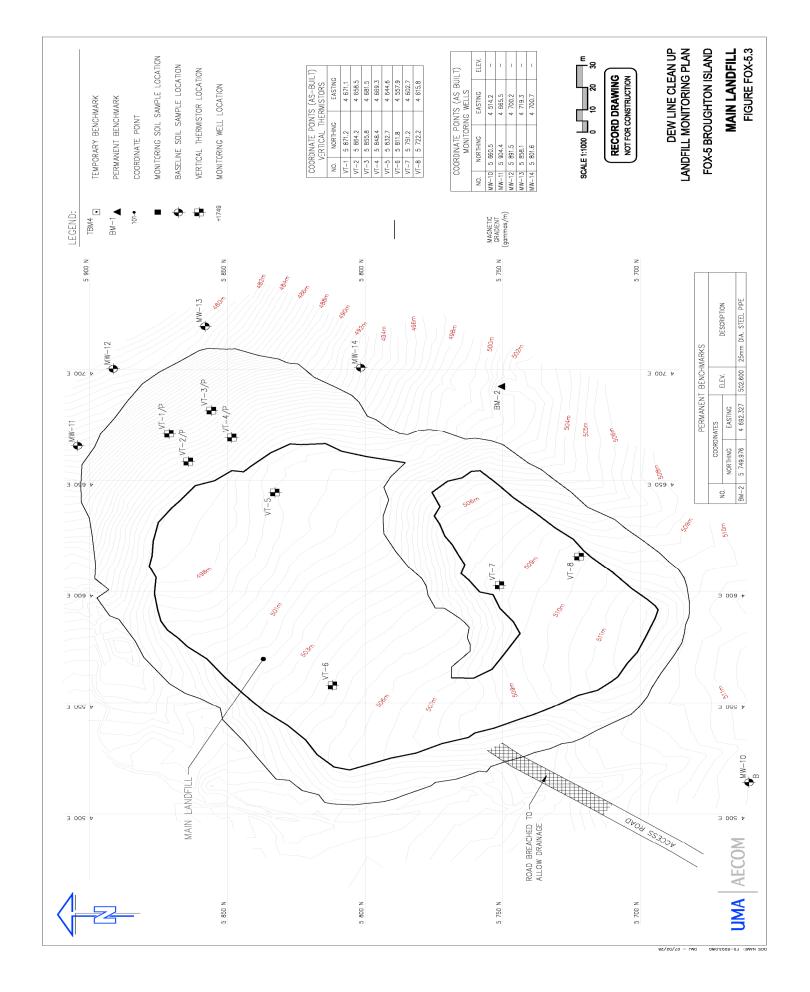
#### Design Infomation:

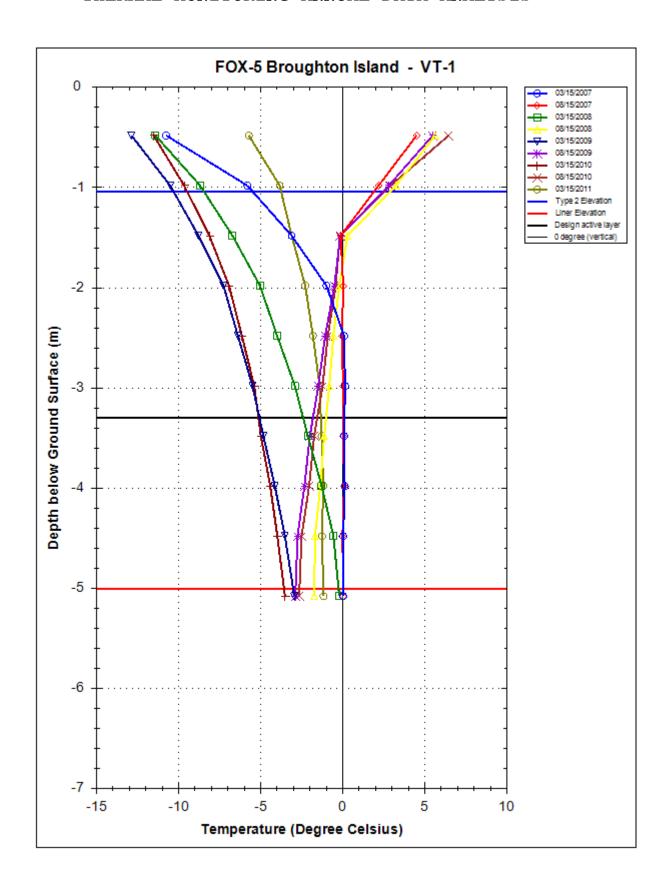
| Design Active Layer (m):              | -3.30   |
|---------------------------------------|---------|
| Mean Active Layer (m):                | -2.40   |
| 1:100 Year Active Layer (m):          | -2.80   |
| Mean Thawing Index (degC Days):       | 245.00  |
| Mean Freezing Index (degC Days):      | 4380.00 |
| 1:100 Year Thawing Index (degC Days): | 490.00  |

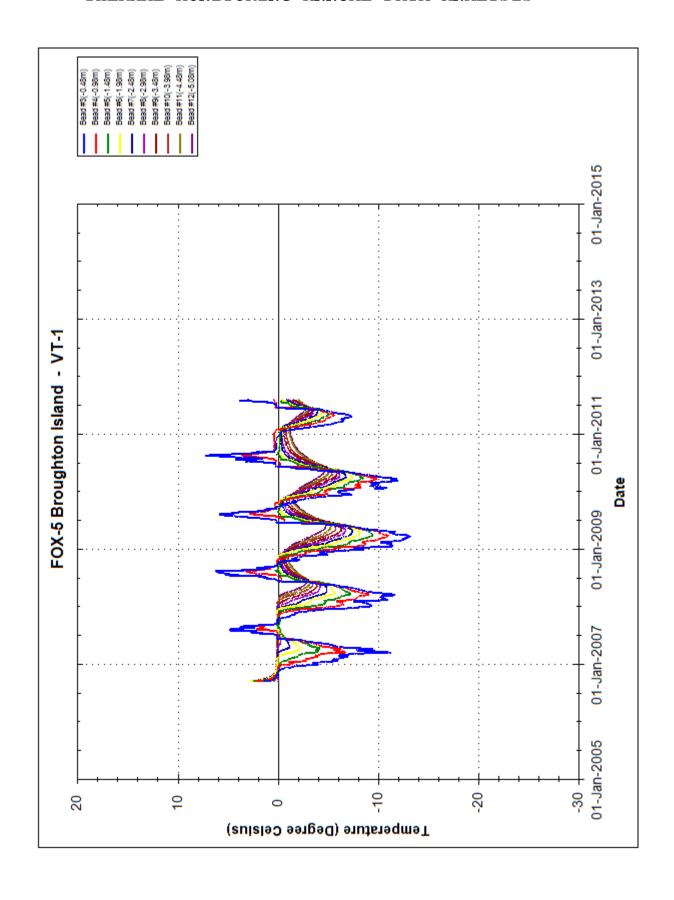
# Maximum Active Layer (m):

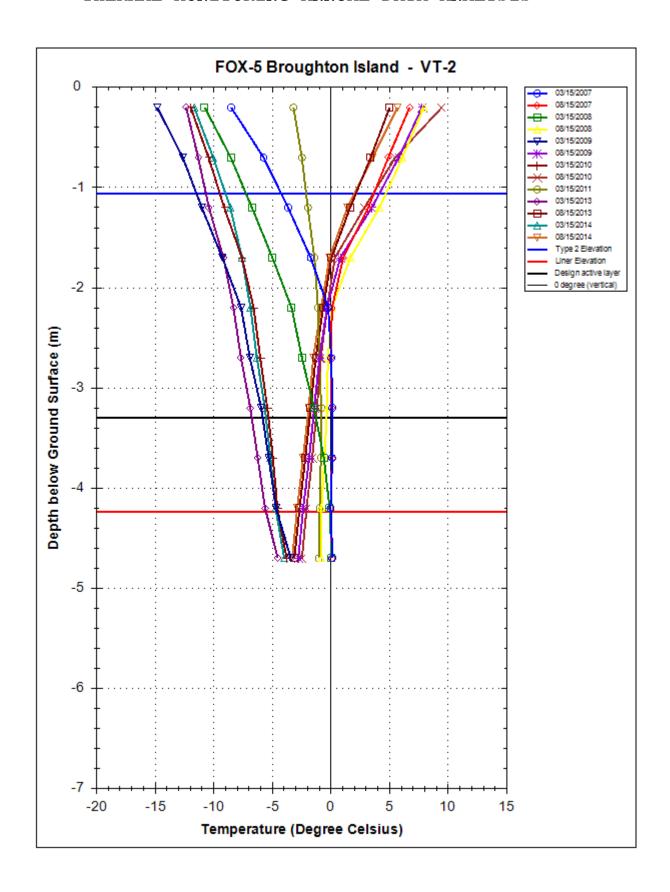

|                                      | VT-1                                      | VT-2                                    | VT-3  | VT-4  | VT-5  | VT-6  |
|--------------------------------------|-------------------------------------------|-----------------------------------------|-------|-------|-------|-------|
| 2006                                 | NaN                                       | NaN                                     | NaN   | NaN   | NaN   | NaN   |
| 2007                                 | -4.42                                     | -4.19                                   | -2.64 | -2.22 | -4.47 | -4.72 |
| 2008                                 | -4.29                                     | -4.19                                   | -2.64 | -4.19 | -2.39 | -2.47 |
| 2009                                 | -1.53                                     | -2.12                                   | -2.44 | -1.94 | -2.39 | -2.33 |
| 2010                                 | -1.69                                     | -2.16                                   | -2.45 | -1.96 | -2.49 | -2.60 |
| 2011                                 | -1.32                                     | NaN                                     | -2.45 | -1.93 | NaN   | NaN   |
| 2012                                 | NaN                                       | NaN                                     | -2.48 | -2.00 | NaN   | NaN   |
| 2013                                 | NaN                                       | -1.80                                   | -1.97 | -1.76 | -2.36 | -2.05 |
| 2014                                 | NaN                                       | NaN                                     | NaN   | NaN   | NaN   | NaN   |
|                                      | VT-7                                      | VT-8                                    |       |       |       |       |
|                                      |                                           |                                         |       |       |       |       |
| 2006                                 | NaN                                       | NaN                                     |       |       |       |       |
| 2006<br>2007                         | NaN<br>-4.66                              | NaN<br>-4.46                            |       |       |       |       |
|                                      |                                           |                                         |       |       |       |       |
| 2007                                 | -4.66                                     | -4.46                                   |       |       |       |       |
| 2007<br>2008                         | -4.66<br>-2.26                            | -4.46<br>-2.05                          |       |       |       |       |
| 2007<br>2008<br>2009                 | -4.66<br>-2.26<br>-2.22                   | -4.46<br>-2.05<br>-2.01                 |       |       |       |       |
| 2007<br>2008<br>2009<br>2010         | -4.66<br>-2.26<br>-2.22<br>-2.24          | -4.46<br>-2.05<br>-2.01<br>-2.08        |       |       |       |       |
| 2007<br>2008<br>2009<br>2010<br>2011 | -4.66<br>-2.26<br>-2.22<br>-2.24<br>-2.15 | -4.46<br>-2.05<br>-2.01<br>-2.08<br>NaN |       |       |       |       |

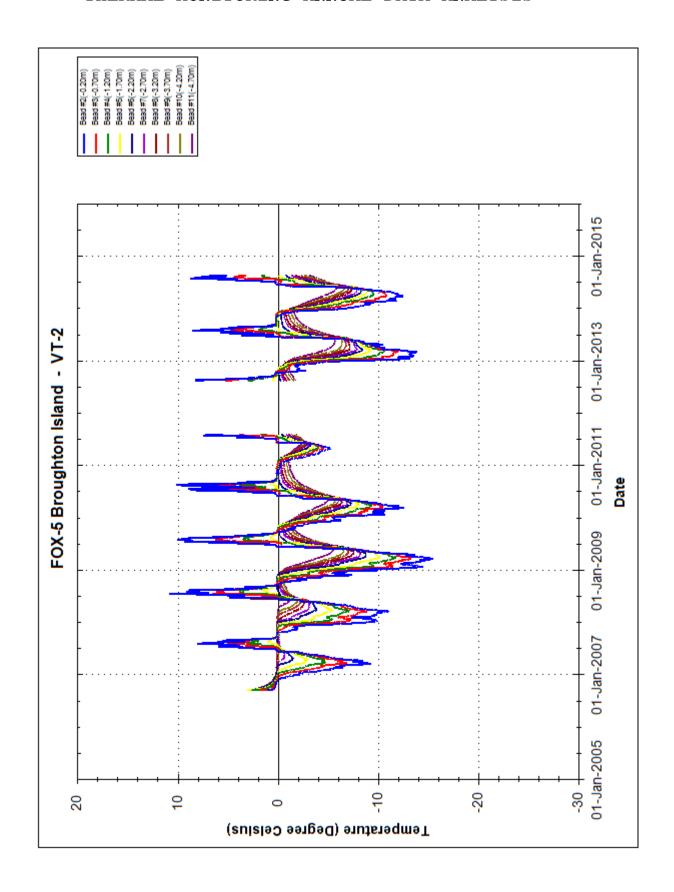

# Thawing Index and Freezing Index:

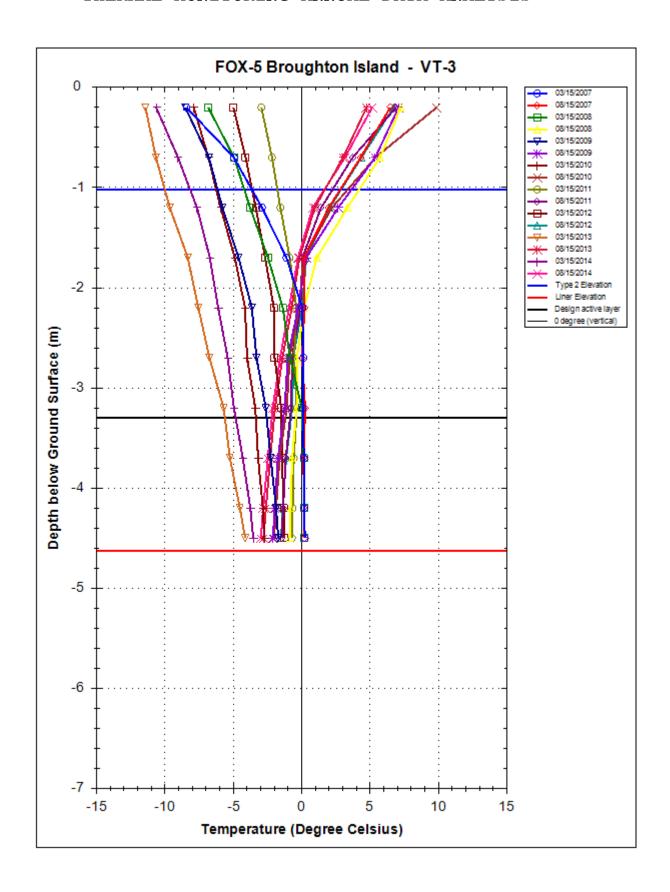

|      | TI     | FI      | max AL | min AL | average AL |
|------|--------|---------|--------|--------|------------|
| 2006 | 439.00 | 3798.00 | NaN    | NaN    | NaN        |
| 2007 | 298.00 | 3930.00 | -4.72  | -2.22  | -3.97      |
| 2008 | 504.00 | 4192.00 | -4.29  | -2.05  | -3.06      |
| 2009 | 494.00 | 4083.00 | -2.44  | -1.53  | -2.12      |
| 2010 | 484.00 | 3222.00 | -2.60  | -1.69  | -2.21      |
| 2011 | 374.00 | 3668.00 | -2.45  | -1.32  | -1.96      |
| 2012 | 616.00 | 4104.00 | -2.48  | -2.00  | -2.27      |
| 2013 | 361.00 | 3660.00 | -2.36  | -1.76  | -1.96      |
| 2014 | 437.00 | 4172.00 | NaN    | NaN    | NaN        |

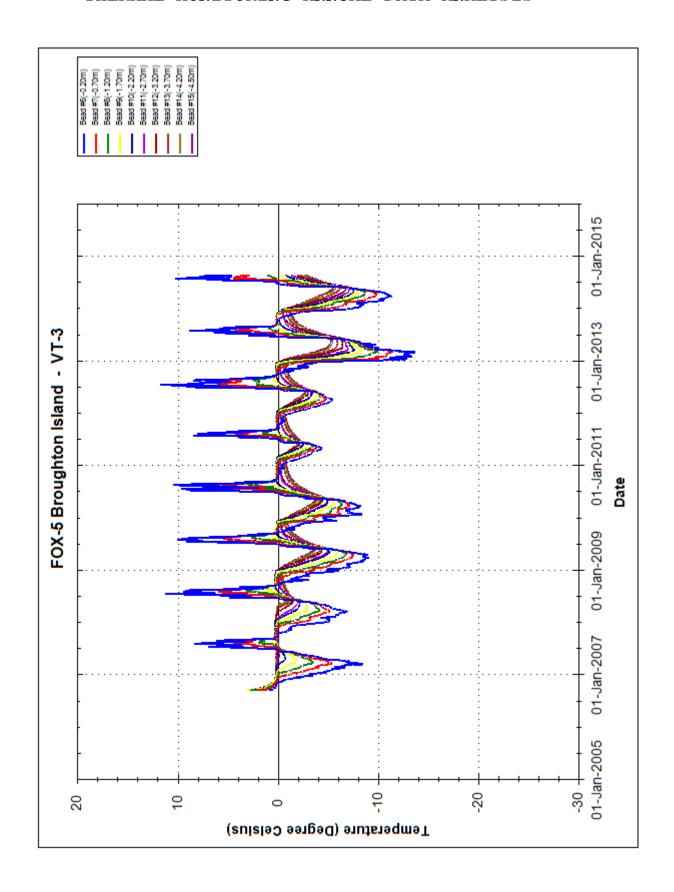

# Deepest Bead Average Temperature:

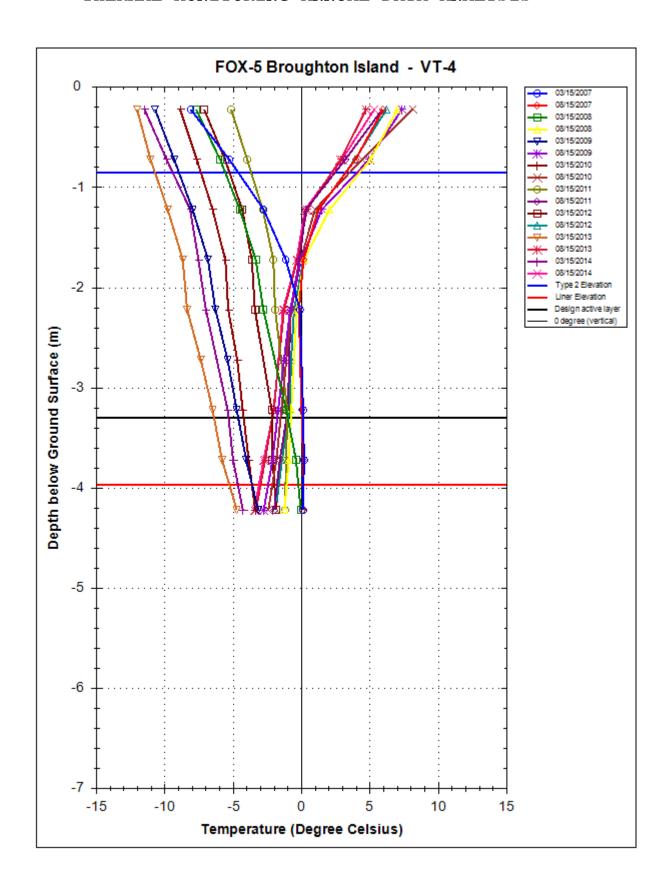

|                                      | VT-1                                             | VT-2                                           | VT-3                                             | VT-4  | VT-5  | VT-6  |
|--------------------------------------|--------------------------------------------------|------------------------------------------------|--------------------------------------------------|-------|-------|-------|
| 2006                                 | NaN                                              | NaN                                            | NaN                                              | NaN   | NaN   | NaN   |
| 2007                                 | 0.00                                             | 0.12                                           | 0.19                                             | 0.08  | -0.10 | -0.18 |
| 2008                                 | -1.29                                            | -0.51                                          | -0.42                                            | -0.93 | -3.54 | -2.99 |
| 2009                                 | -2.75                                            | -2.93                                          | -1.86                                            | -2.81 | -4.46 | -3.92 |
| 2010                                 | -2.84                                            | -2.87                                          | -2.18                                            | -2.71 | -3.41 | -3.31 |
| 2011                                 | NaN                                              | NaN                                            | -1.17                                            | -1.70 | NaN   | NaN   |
| 2012                                 | NaN                                              | NaN                                            | -1.43                                            | -1.91 | NaN   | NaN   |
| 2013                                 | NaN                                              | -3.41                                          | -3.01                                            | -3.54 | -4.46 | -3.87 |
| 2014                                 | NaN                                              | NaN                                            | NaN                                              | NaN   | NaN   | NaN   |
|                                      |                                                  |                                                |                                                  |       |       |       |
|                                      | VT-7                                             | VT-8                                           | AVG                                              |       |       |       |
| 2006                                 | VT-7<br>NaN                                      | VT-8<br>NaN                                    | AVG<br>NaN                                       |       |       |       |
| 2006<br>2007                         |                                                  |                                                |                                                  |       |       |       |
|                                      | NaN                                              | NaN                                            | NaN                                              |       |       |       |
| 2007                                 | NaN<br>-0.22                                     | NaN<br>-0.43                                   | NaN<br>-0.07                                     |       |       |       |
| 2007<br>2008                         | NaN<br>-0.22<br>-3.99                            | NaN<br>-0.43<br>-3.86                          | NaN<br>-0.07<br>-2.19                            |       |       |       |
| 2007<br>2008<br>2009                 | NaN<br>-0.22<br>-3.99<br>-4.55                   | NaN<br>-0.43<br>-3.86<br>-4.48                 | NaN<br>-0.07<br>-2.19<br>-3.47                   |       |       |       |
| 2007<br>2008<br>2009<br>2010         | NaN<br>-0.22<br>-3.99<br>-4.55<br>-3.67          | NaN<br>-0.43<br>-3.86<br>-4.48<br>-3.53        | NaN<br>-0.07<br>-2.19<br>-3.47<br>-3.06          |       |       |       |
| 2007<br>2008<br>2009<br>2010<br>2011 | NaN<br>-0.22<br>-3.99<br>-4.55<br>-3.67<br>-2.41 | NaN<br>-0.43<br>-3.86<br>-4.48<br>-3.53<br>NaN | NaN<br>-0.07<br>-2.19<br>-3.47<br>-3.06<br>-1.76 |       |       |       |

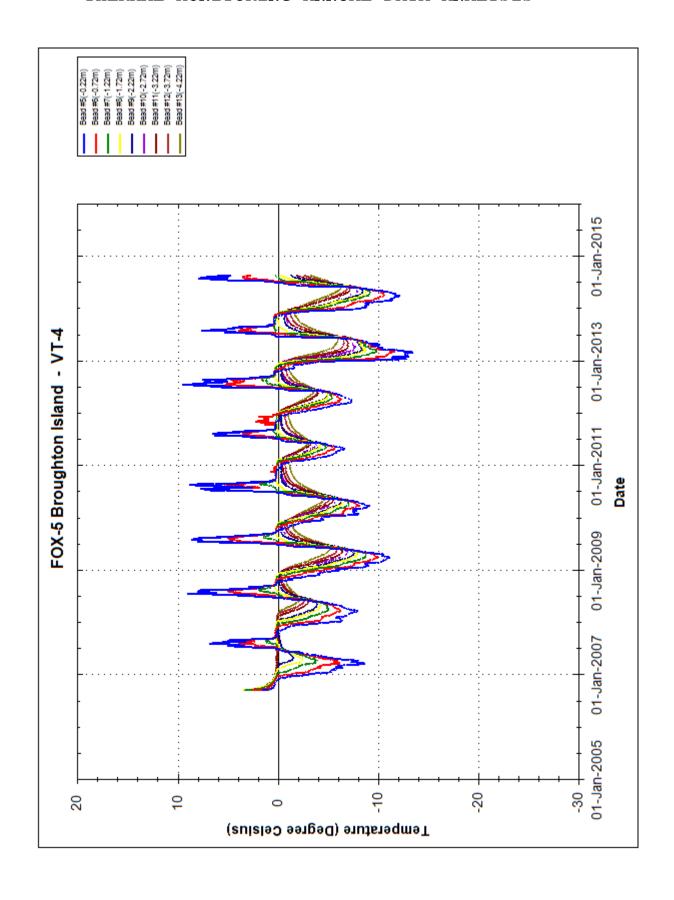


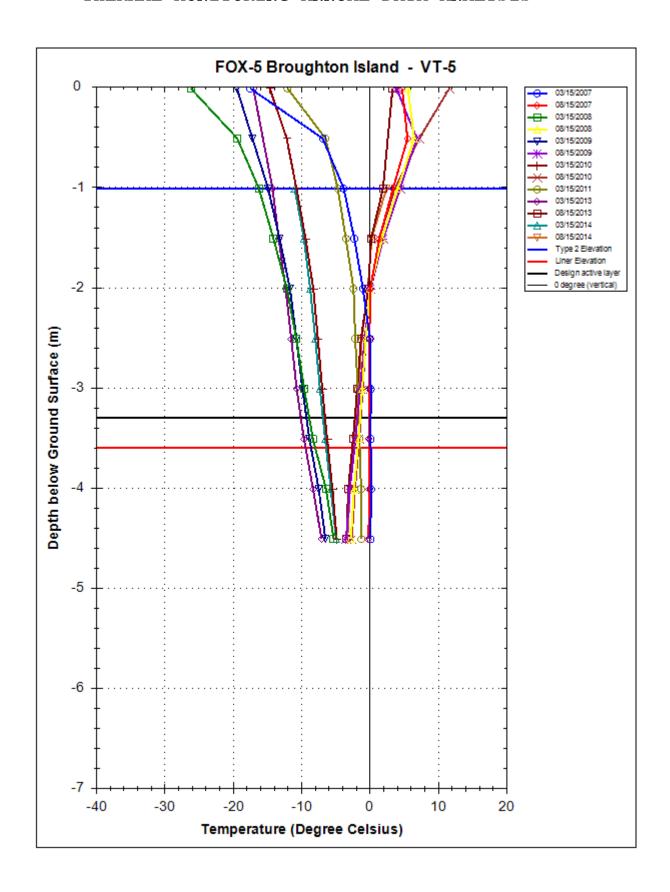



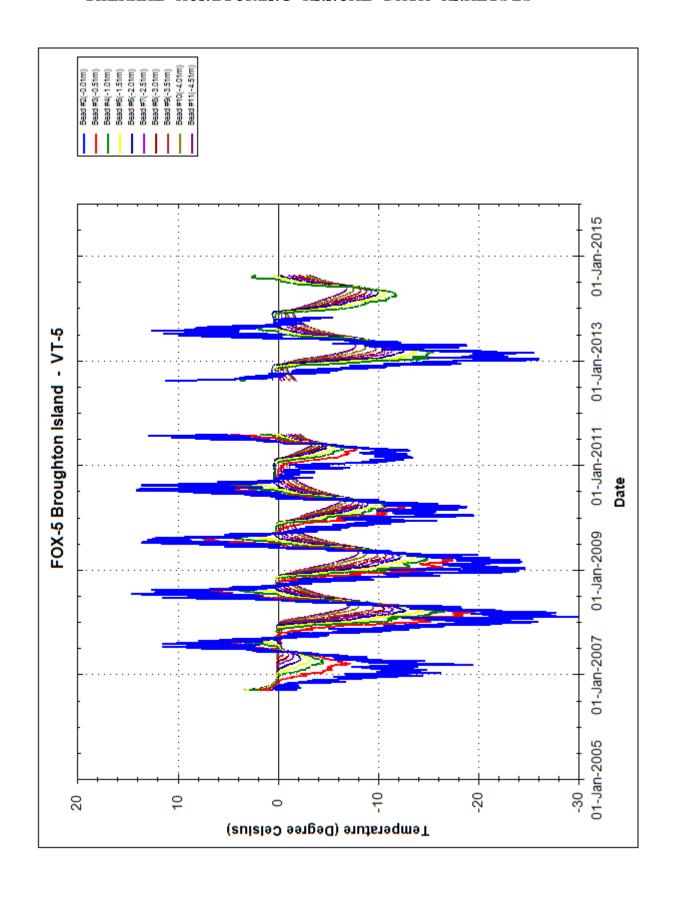



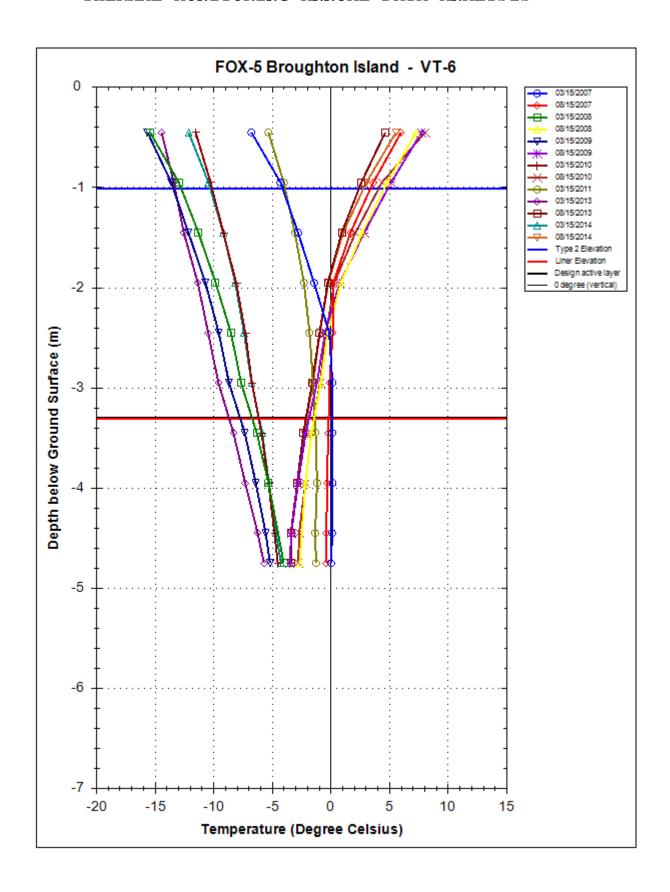



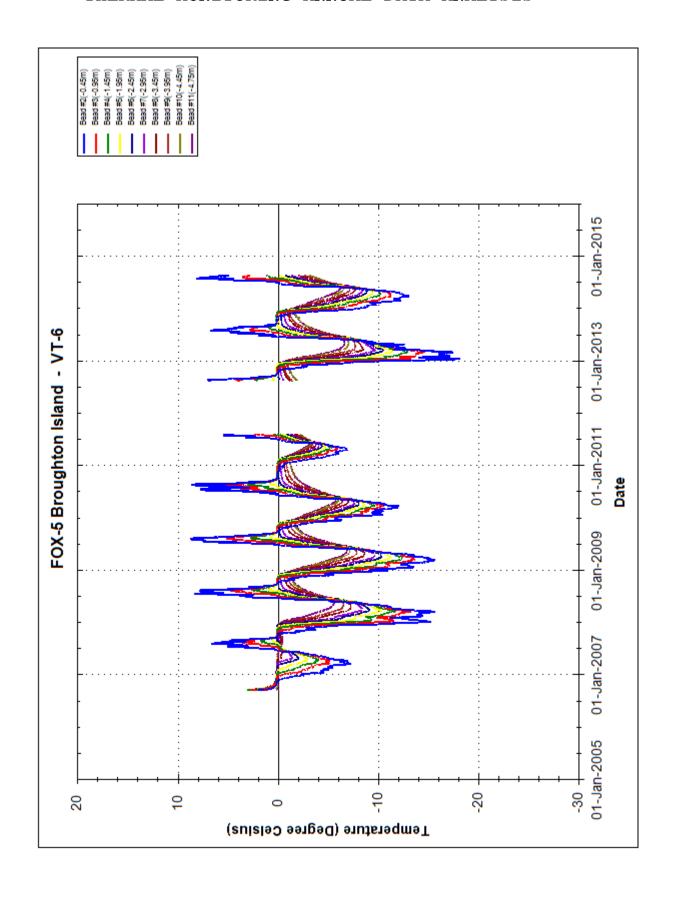



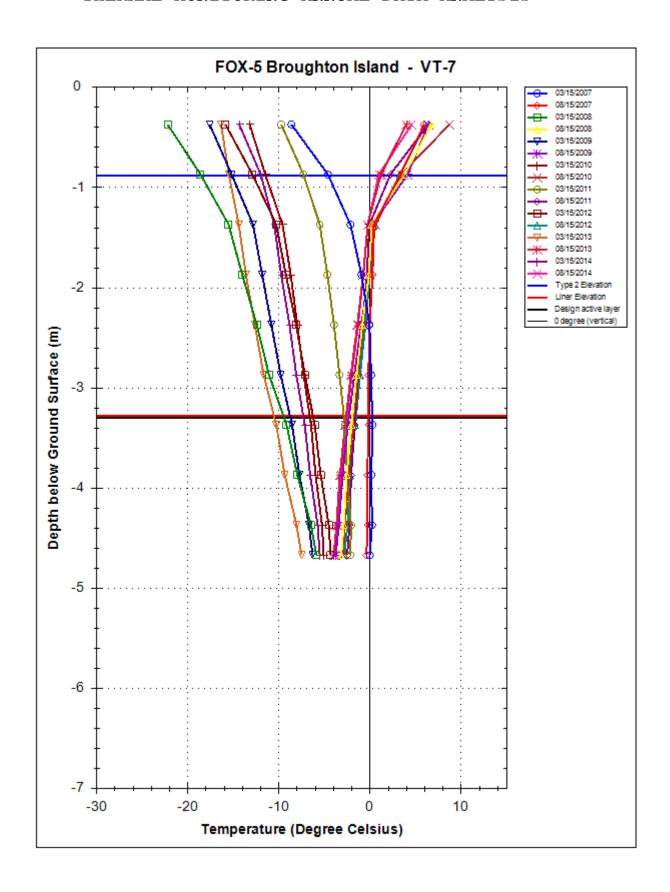



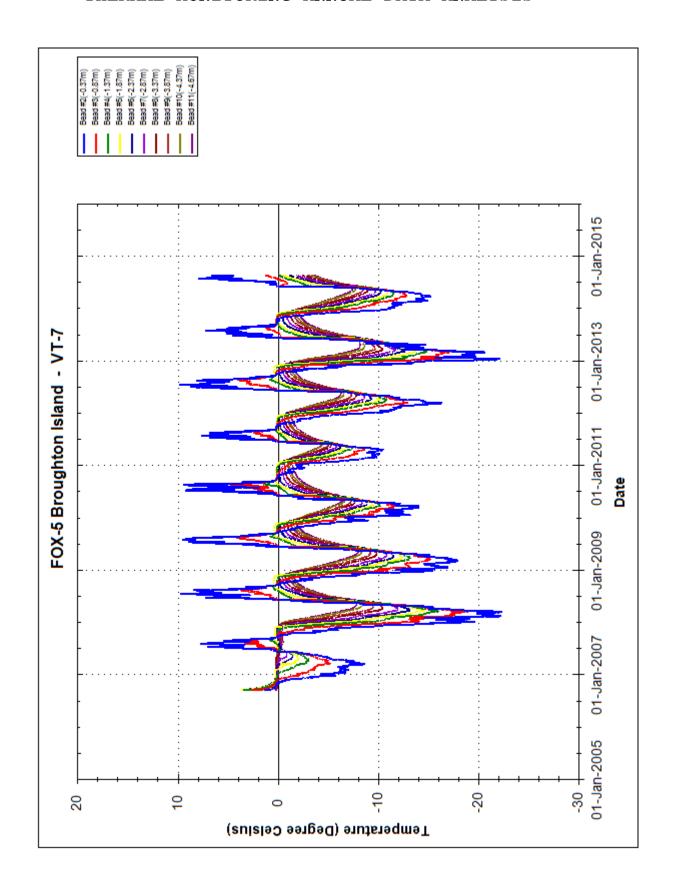



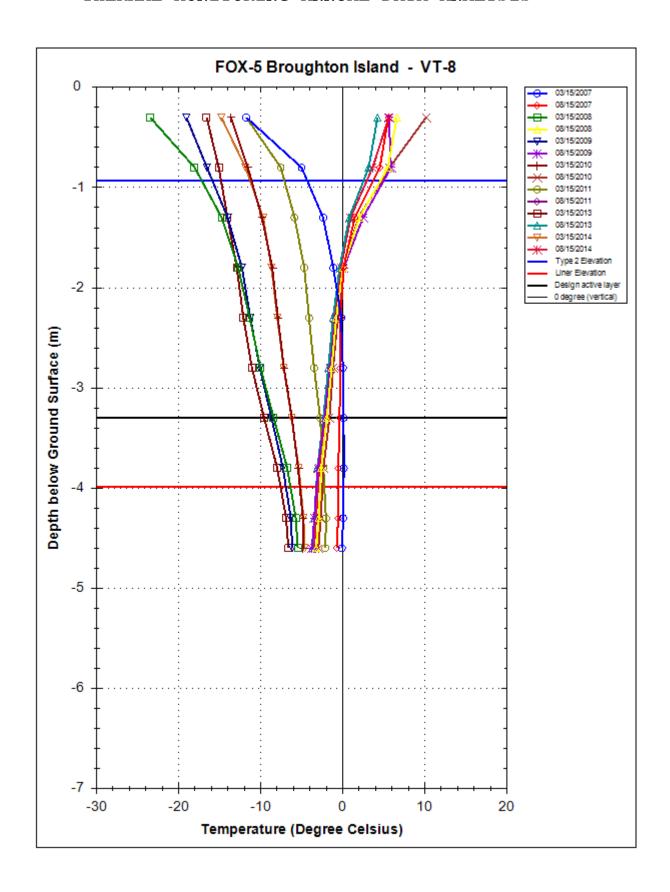



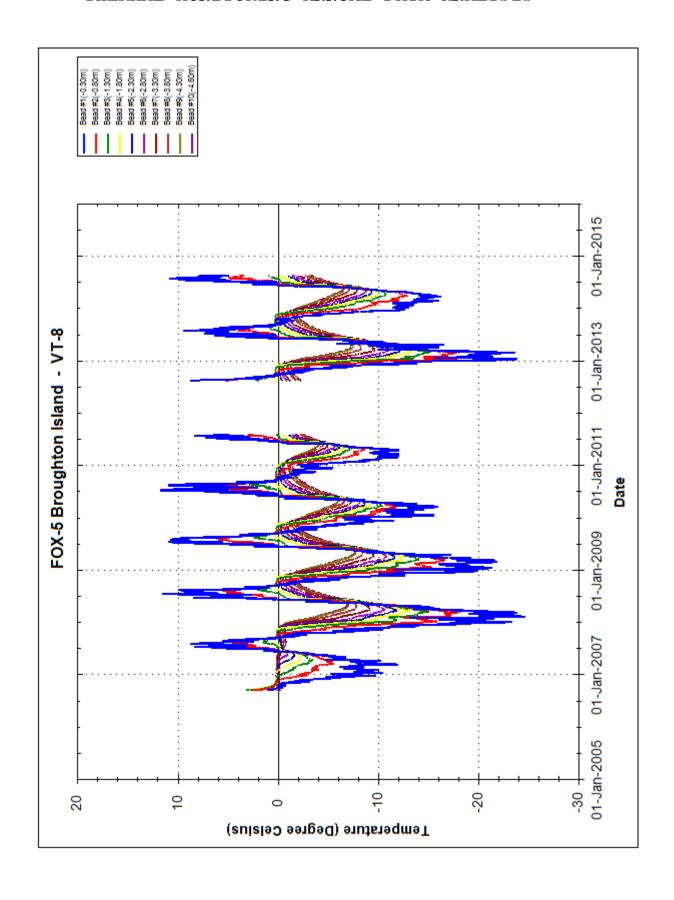














# FOX-5 Broughton Island

*Upper Site Main Landfill (Comment by Renata Klassen, Tetra Tech EBA, October 2014)* 

Eight ground temperature cables were installed in the Upper Site Main Landfill in 2006 (VT-1 through VT-8). 2014 thermal data from VT-2 through VT-8 is complete.

Maintenance reports were not available when the comments were prepared. The 2014 downloaded data indicate that:

- Dataloggers were read on August 22, 2014.
- VT-1 had bad data.

Tetra Tech EBA records from February 2013 indicate that:

- Datalogger batteries were replaced in 2012 for VT-1, VT-2, VT-3, VT-5, VT-6 and VT-8.
- Datalogger batteries expiry date for VT-4 and VT-7 is July 2013.

New batteries should be installed within 3 years of the last battery install date.

The air temperatures in 2013 had a thawing index of 361°C-days compared to a design mean and 1:100 year thawing index of 245°C-days and 490°C -days, respectively. This indicates that the air temperatures were warmer than the average but colder than the 1:100 thawing index. Climate information was taken from Fox Five weather station.

The mean deepest bead average annual temperature was -3.9°C in 2013 for VT-2 through VT-8. The mean deepest bead average annual temperature was -3.8°C in 2013 for VT-3, VT-4 and VT-7. The mean deepest bead average temperature from the same beads in 2012 was -2.2°C. The mean deepest bead average annual temperatures cooled by an average of 1.6C° between 2012 and 2013.

The measured maximum and minimum active layers in 2013 were 2.4 m and 1.8 m, respectively. The average measured active layer of 2.0 m in 2013 was less than estimated mean active layer of 2.4 m, the estimated 1:100 year active layer of 2.8 m and the design active layer of 3.3 m.

The landfill is stabilizing and performing as expected from a thermal perspective.

# APPENDIX E

HISTORICAL CHEMISTRY SUMMARY TABLES (SOIL)

| FUX-5 QIKIQ               | <sub>l</sub> tarjuaq (Brou | ghtor        | i Island)          | l ler II l           | Dispo          | sal Fa           | cility        | and N          | lon-H          | azardo         | ous W           | aste L         | andfi         | II (Mi         | ddle Sit              | e)- Su                                           | ımmar                                             | y of 2007                                         | 7-2024 Soil A                              | Analyt               | ical L                    |
|---------------------------|----------------------------|--------------|--------------------|----------------------|----------------|------------------|---------------|----------------|----------------|----------------|-----------------|----------------|---------------|----------------|-----------------------|--------------------------------------------------|---------------------------------------------------|---------------------------------------------------|--------------------------------------------|----------------------|---------------------------|
| Sample ID                 | Location                   | Year         | Monitoring<br>Year | Monitoring<br>Phase  | Depth<br>(cm)  | Cu<br>[mg/kg]    | Ni<br>[mg/kg] | Co*<br>[mg/kg] | Cd*<br>[mg/kg] | Pb*<br>[mg/kg] | Zn<br>[mg/kg]   | Cr*<br>[mg/kg] | As<br>[mg/kg] | Hg*<br>[mg/kg] | Total PCB*<br>[mg/kg] | F1<br>C <sub>6</sub> -C <sub>10</sub><br>[mg/kg] | F2<br>C <sub>10</sub> -C <sub>16</sub><br>[mg/kg] | F3<br>C <sub>16</sub> -C <sub>34</sub><br>[mg/kg] | Modified TPH^ -<br>Total C6-C34<br>[mg/kg] | TPH<br>% Fuel<br>Oil | Identity<br>% Lube<br>Oil |
| Background Dat            | a - Average                |              |                    |                      |                | <u>10</u>        | 5.3           | 4.0            | 1.0            | 5.0            | <u>46</u>       | <u>19</u>      | 1.93          | 0.5            | 0.001                 |                                                  |                                                   |                                                   | 5.0                                        |                      |                           |
| Baseline Data -           | · Average                  |              |                    |                      |                | 7.6              | 5.2           | 5.0            | 1.0            | 10.0           | 31.7            | 20.0           | 2.0           | 0.1            | 0.003                 |                                                  |                                                   |                                                   | 10                                         |                      |                           |
| Baseline Data - Star      | ndard Deviation            |              |                    |                      |                | 1.4              | 1.8           | 1.6            | 0.0            | 0.0            | 6.2             | 0.0            | 0.6           | 0.00           | 0.000                 |                                                  |                                                   |                                                   | 7.1                                        |                      |                           |
| Baseline Data Avera       | age + 3xSD                 |              |                    |                      |                | 12               | 11            | 9.8            | 1.0            | 10             | 50              | 20             | 3.8           | 0.1            | 0.003                 |                                                  |                                                   |                                                   | 31                                         |                      |                           |
| Detection Limit           |                            |              |                    |                      |                | <3.0             | <5.0          | <5.0           | <1.0           | <10            | <15             | <20            | <1            | <0.1           | < 0.003               |                                                  |                                                   |                                                   | <10                                        |                      |                           |
| * If baseline average     | was below the detect       | tion limit   | t, the average     | has been mo          | dified to      | match th         | e detecti     | on limit v     | alue.          |                |                 |                |               |                |                       |                                                  |                                                   |                                                   |                                            |                      |                           |
| DEW Line Cleanuț          | Tier I Criteria            |              |                    |                      |                |                  |               |                |                | 200            |                 |                |               |                | 1                     |                                                  |                                                   |                                                   |                                            |                      |                           |
| DEW Line Cleanuț          | ง Tier II Criteria & I     | DLCU F       | Lydrocarbon 2      | Action Level         |                | 100              | 100           | 50             | 5              | 500            | 500             | 250            | 30            | 2              | 5                     |                                                  |                                                   |                                                   | 2500                                       |                      |                           |
| Monitoring Da             | ta                         |              |                    |                      |                |                  |               |                |                |                |                 |                |               |                |                       |                                                  |                                                   |                                                   |                                            |                      |                           |
| Upgradient                | _                          |              |                    |                      |                |                  |               |                |                |                |                 |                |               |                |                       |                                                  |                                                   |                                                   |                                            |                      |                           |
|                           | MW-5 Surface               |              |                    |                      |                |                  |               |                |                |                |                 |                |               |                |                       | TPH Sur                                          | m will appe                                       | ar when F1, F2                                    | 2 and F3 fraction re                       | sults are en         | ntered                    |
| 24720/21                  | MW 5                       | 2007         | 1                  | Phase I              | 10             | 5.5              | < 5.0         | < 5.0          | <1.0           | <10            | 30              | <20            | 1.2           | < 0.10         | < 0.0030              | <10                                              | 11                                                | 110                                               | <u>126</u>                                 |                      |                           |
| 210808-146-FOX-5          | MW 5                       | 2008         | 2                  | Phase I              | 0-10           | <u>16</u>        | <u>13</u>     | <u>8.0</u>     | < 0.5          | <u>10</u>      | <u>63</u>       | <u>29</u>      | 2.7           | < 0.1          | < 0.02                | <20                                              | <20                                               | <20                                               | <u>30</u>                                  |                      |                           |
| F509-5WA                  | MW 5                       | 2009         | 3                  | Phase I              | 0-15           | 10               | <u>18</u>     | 9.0            | < 0.5          | 8.0            | <u>47</u>       | <u>37</u>      | 3.6           | < 0.1          | < 0.02                | <20                                              | <20                                               | <20                                               | <u>30</u>                                  |                      |                           |
| F510-5WA                  | MW 5                       | 2010         | 4                  | Phase I              | 0-15           | 10               | <u>15</u>     | 4.0            | < 0.5          | 6.0            | 40              | <u>30</u>      | 1.0           | < 0.1          | < 0.02                | <10                                              | <10                                               | <20                                               | <u>20</u>                                  |                      |                           |
| 12-19560                  | MW-5                       | 2012         | 6                  | Phase I              | 0-10           | 5.3              | 4.4           | 2.4            | < 0.5          | <u>5.6</u>     | 24              | 10             | 1.8           | < 0.010        | < 0.020               | <5.0                                             | <10                                               | <50                                               | 33                                         |                      |                           |
| F5-MID-MW-5-S             | MW-5                       | 2014         | 8                  | Phase II             | 0-15           | 8.1              | <u>6.7</u>    | 4.5            | < 0.10         | 7              | 41              | 17             | <1.0          | < 0.050        | < 0.010               | <10                                              | <10                                               | <50                                               | 35                                         |                      |                           |
|                           |                            | 2016         | 10                 | Phase II             |                |                  |               |                |                |                |                 |                |               |                |                       |                                                  |                                                   |                                                   | #N/A                                       |                      |                           |
|                           |                            | 2021         | 15                 | Phase II             |                |                  |               |                |                |                |                 |                |               |                |                       |                                                  |                                                   |                                                   | #N/A                                       |                      |                           |
|                           |                            | 2031         | 25                 | Phase II             |                |                  |               |                |                |                |                 |                |               |                |                       |                                                  |                                                   |                                                   | #N/A                                       |                      |                           |
|                           |                            |              |                    | Phase III            |                |                  |               |                |                |                |                 |                |               |                |                       |                                                  |                                                   |                                                   | #N/A                                       |                      |                           |
|                           |                            |              |                    |                      |                |                  |               |                |                |                |                 |                |               |                |                       |                                                  |                                                   |                                                   | #N/A                                       |                      |                           |
|                           |                            |              |                    |                      |                |                  |               |                |                |                |                 |                |               |                |                       |                                                  |                                                   |                                                   | #N/A                                       |                      |                           |
|                           |                            |              |                    |                      |                |                  |               |                |                |                |                 |                |               |                |                       |                                                  |                                                   |                                                   | #N/A                                       |                      |                           |
|                           | MW-5 Depth                 |              |                    |                      |                |                  |               |                | -1.0           | -10            | 2=              | .20            | -1.0          | 10.40          | -0.0020               |                                                  |                                                   |                                                   | 25                                         |                      |                           |
| 24722                     | MW 5                       | 2007         | 1                  | Phase I              | 40.50          | 6.4              | 6.2           | 6.2            | <1.0<br><0.5   | <10            | 37              | <20            | <1.0          | <0.10          | <0.0030               | <10                                              | 5.3                                               | 26                                                | 36                                         |                      |                           |
| 210808-147-FOX-5          | MW 5                       | 2008         | 2                  | Phase I              | 40-50          | 16<br>8.0        | 17<br>17      | 7              | <0.5           | <u>11</u>      | <u>59</u><br>41 | 41             | 2.5           | <0.1           | <0.02<br><0.02        | <20                                              | <20                                               | <20                                               | <u>30</u>                                  |                      |                           |
| F509-5WB                  | MW 5                       | 2009         | 3 4                | Phase I              | 40-50<br>40-50 | 8.0<br><u>11</u> | 17<br>12      | 8.0<br>5.0     | <0.5           | 7.0<br>8.0     | 41              | 34<br>26       | 2.7<br>1.0    | <0.1           | <0.02                 | <20<br><10                                       | <20<br><10                                        | <20<br><20                                        | 30<br>20                                   |                      |                           |
| F510-5WB                  | MW 5                       | 2010         |                    | Phase I              | 40-50          | 7.1              | 6.1           | 3.3            | <0.5           | 7.1            | 33              | 14             | 2.4           | <0.010         | <0.02                 | <10<br><5.0                                      | <10                                               |                                                   | 33                                         |                      |                           |
| 12-19562<br>F5-MID-MW-5-D | MW-5<br>MW-5               | 2012<br>2014 | 6                  | Phase I<br>Phase II  | 40-50          | 9.7              | 8.1           | 4.9            | <0.10          | 8              | 45              | 19             | 1.1           | <0.010         | <0.020                | <5.0<br><10                                      | <10                                               | <50<br><50                                        | 35                                         |                      |                           |
| -3-MID-MW-3-D             | 1VI W - 3                  | 2014         | 10                 | Phase II<br>Phase II | 40-30          | 2.1              | <u>U-1</u>    | 4.2            | -0.10          | <u>0</u>       | 43              | 1/             | 1.1           | -0.050         | -0.010                | <u></u>                                          | ×10                                               | <b>\30</b>                                        | #N/A                                       |                      |                           |
|                           |                            | 2021         | 15                 | Phase II             |                |                  |               |                |                |                |                 |                |               |                |                       |                                                  |                                                   |                                                   | #N/A                                       |                      |                           |
|                           |                            | 2031         | 25                 | Phase II             |                |                  |               |                |                |                |                 |                |               |                |                       |                                                  |                                                   |                                                   | #N/A                                       |                      |                           |
|                           |                            | 2031         | 23                 | Phase III            |                |                  |               |                |                |                |                 |                |               |                |                       |                                                  |                                                   |                                                   | #N/A                                       |                      |                           |
|                           |                            |              |                    | 1111100 111          |                |                  |               |                |                |                |                 |                |               |                |                       |                                                  |                                                   |                                                   | #N/A                                       |                      |                           |
|                           |                            |              |                    |                      |                |                  |               |                |                |                |                 |                |               |                |                       |                                                  |                                                   |                                                   | #N/A                                       |                      |                           |
|                           | 1                          | +            |                    | 1                    |                |                  |               |                |                |                |                 |                |               | 1              |                       | 1                                                |                                                   |                                                   | #N/A                                       | 1                    | 1                         |

| TOA-3 QIKI       | iqtarjuaq (Brou | gntor | i isianu           | ) Her H             | Dispo      | Sai 1 a       | ıcınıy        | anu iv         | 011-11         | azaruc                 | jus wa          | asic L         | anun          | 11 (1411       | duic Sit              | <del>c)- 3u</del>                                | mma                                               | y 01 2007                                         | -2024 3011 I                               | Mary                                             | icai i                   |
|------------------|-----------------|-------|--------------------|---------------------|------------|---------------|---------------|----------------|----------------|------------------------|-----------------|----------------|---------------|----------------|-----------------------|--------------------------------------------------|---------------------------------------------------|---------------------------------------------------|--------------------------------------------|--------------------------------------------------|--------------------------|
| Sample ID        | Location        | Year  | Monitoring<br>Year | Monitoring<br>Phase | Depth (cm) | Cu<br>[mg/kg] | Ni<br>[mg/kg] | Co*<br>[mg/kg] | Cd*<br>[mg/kg] | Pb*<br>[mg/kg]         | Zn<br>[mg/kg]   | Cr*<br>[mg/kg] | As<br>[mg/kg] | Hg*<br>[mg/kg] | Total PCB*<br>[mg/kg] | F1<br>C <sub>6</sub> -C <sub>10</sub><br>[mg/kg] | F2<br>C <sub>10</sub> -C <sub>16</sub><br>[mg/kg] | F3<br>C <sub>16</sub> -C <sub>34</sub><br>[mg/kg] | Modified TPH^ -<br>Total C6-C34<br>[mg/kg] | TPH 1                                            | Identity<br>% Lul<br>Oil |
| Downgradient     | '               |       |                    |                     |            |               |               |                |                | U                      |                 |                |               |                | U                     |                                                  | <u>l</u>                                          |                                                   |                                            |                                                  |                          |
| 20 migration     | MW-6 Surface    |       |                    |                     |            |               |               |                |                |                        |                 |                |               |                |                       |                                                  |                                                   |                                                   |                                            | _                                                |                          |
| 24726            | MW 6            | 2007  | 1                  | Phase I             | 10         | 5.1           | 5.3           | 5.0            | <1.0           | <10                    | 29              | <20            | <1.0          | < 0.10         | < 0.0030              | <10                                              | 4.2                                               | 34                                                | 43                                         | +                                                |                          |
| 210808-143-FOX-5 | MW 6            | 2007  | 2                  | Phase I             | 0-10       | 11            | <u>11</u>     | 6.0            | <0.5           | 8.0                    | 44              | 23             | 1.7           | <0.1           | <0.02                 | <20                                              | <20                                               | 30                                                | 50                                         | +                                                |                          |
| F509-6WA         | MW 6            | 2008  | 3                  | Phase I             | 0-10       | 5.0           | 8             | 5.0            | <0.5           | 6.0                    | 27              | 12             | 2.9           | <0.1           | <0.02                 | <20                                              | <20                                               | <20                                               | 30                                         | +                                                |                          |
| F510-6WA         | MW 6            | 2010  | 4                  | Phase I             | 0-15       | 8.0           | 11            | 4.0            | <0.5           | 7.0                    | 38              | 22             | 1.0           | <0.1           | <0.02                 | <10                                              | <10                                               | <20                                               | 20                                         | +                                                |                          |
| 12-19564         | MW 6            | 2010  | 6                  | Phase I             | 0-13       | 7.3           | 6.5           | 3.6            | <0.5           | 7.6                    | 35              | 14             | 2.2           | <0.010         | <0.020                | <5.0                                             | <10                                               | <50                                               | 33                                         | +                                                |                          |
| F5-MID-MW-6-S    | MW-6            | 2012  | 8                  | Phase II            | 0-10       | 7.2           | 5.3           | 3.55           | <0.5           | 6.1                    | 32.5            | 13             | 1             | <0.10          | <0.05                 | <10                                              | <10                                               | <50                                               | 35                                         | +                                                |                          |
| F3-MID-MW-0-3    | IVI W -0        | 2014  | 10                 | Phase II            | 0-13       | 7.2           | 5.5           | 3.33           | 10.5           | 0.1                    | 32.3            | 13             | 1             | 40.10          | 10.03                 | <b>\10</b>                                       | <b>\10</b>                                        | <b>\</b> 30                                       | #N/A                                       | +                                                |                          |
|                  |                 | 2021  | 15                 | Phase II            |            |               |               |                |                |                        |                 |                |               |                |                       |                                                  |                                                   |                                                   | #N/A                                       | +                                                | -                        |
|                  |                 | 2021  | 25                 | Phase II            |            |               | -             |                |                |                        |                 |                |               | -              |                       |                                                  |                                                   |                                                   | #N/A                                       | +                                                |                          |
|                  |                 | 2031  | 23                 | Phase III           |            |               |               |                |                |                        |                 |                |               |                |                       |                                                  |                                                   |                                                   | #N/A                                       | +                                                |                          |
|                  |                 |       |                    | T Hase III          |            |               |               |                |                |                        |                 |                |               |                |                       |                                                  |                                                   |                                                   | #N/A                                       | +                                                | -                        |
|                  |                 |       |                    |                     |            |               |               |                |                |                        |                 |                |               |                |                       |                                                  |                                                   |                                                   | #N/A                                       | +                                                |                          |
|                  |                 |       |                    |                     |            |               |               |                |                |                        |                 |                |               |                |                       |                                                  |                                                   |                                                   | #N/A                                       | +                                                |                          |
|                  | MW-6 Depth      |       |                    |                     |            |               |               |                |                |                        |                 |                |               |                |                       |                                                  |                                                   |                                                   | 771771                                     | +-                                               |                          |
| 24728            | -               | 2007  |                    | FN -                | 40         | 5.7           | 5.4           | 5.3            | <1.0           | <10                    | 32              | <20            | <1.0          | < 0.10         | < 0.0030              | -10                                              |                                                   | 29                                                | 36                                         | +                                                |                          |
|                  | MW 6            |       | 1                  | Phase I             | 40-50      | 10            |               |                | <0.5           |                        | 52<br>52        |                |               | <0.10          | <0.0030               | <10                                              | <4.0                                              |                                                   |                                            | +                                                | -                        |
| 210808-144-FOX-5 | MW 6            | 2008  | 2                  | Phase I             |            | 8.0           | 12<br>12      | 6<br>7.0       | <0.5           | <u>8</u><br><u>7.0</u> | <u>52</u><br>40 | <u>26</u>      | 2.1<br>2.9    | <0.1           | <0.02                 | <20                                              | <20                                               | <20                                               | 30<br>30                                   | +                                                |                          |
| F509-6WB         | MW 6            | 2009  | 3                  | Phase I             | 40-50      | 8.0           |               |                | <0.5           |                        | 37              | <u>19</u>      | <1            | <0.1           | <0.02                 | <20                                              | <20                                               | <20                                               | <u>30</u>                                  | +                                                |                          |
| F510-6WB         | MW 6            | 2010  | 4                  | Phase I             | 40-50      |               | 12            | 4.0            |                | 7.0                    |                 | 23             |               |                |                       | <10                                              | <10                                               | <20                                               |                                            | +                                                |                          |
| 12-19566         | MW 6            | 2012  | 6                  | Phase I             | 40-50      | 6.9           | 6.1           | 3.3            | <0.5           | 7.9                    | 34<br>40        | 14<br>16       | 2.1<br><1.0   | <0.010         | <0.020                | <5.0                                             | <10                                               | <50                                               | 33<br>35                                   | +                                                | -                        |
| F5-MID-MW-6-D    | MW-6            | 2014  | 8                  | Phase II            | 40-50      | 8             | 6.9           | 4.4            | <0.10          | 7.6                    | 40              | 16             | <1.0          | <0.050         | <0.010                | <10                                              | <10                                               | <50                                               | 35<br>#N/A                                 | +                                                | -                        |
|                  |                 | 2016  | 10                 | Phase II            |            |               |               |                |                |                        |                 |                |               |                |                       |                                                  |                                                   |                                                   | #N/A                                       | +                                                | -                        |
|                  |                 | 2021  | 15                 | Phase II            |            |               |               |                |                |                        |                 |                |               |                |                       |                                                  |                                                   |                                                   | #N/A                                       | +                                                |                          |
|                  |                 | 2031  | 25                 | Phase II            |            |               |               |                |                |                        |                 |                |               |                |                       |                                                  |                                                   |                                                   | #N/A<br>#N/A                               | +                                                |                          |
|                  |                 |       |                    | Phase III           |            |               |               |                |                |                        |                 |                |               |                |                       |                                                  |                                                   |                                                   | #N/A                                       | +                                                |                          |
|                  |                 |       |                    |                     |            |               |               |                |                |                        |                 |                |               |                |                       |                                                  |                                                   |                                                   | ,                                          | +                                                |                          |
|                  |                 |       |                    |                     |            |               |               |                |                |                        |                 |                |               |                |                       |                                                  |                                                   |                                                   | #N/A                                       | +'                                               |                          |
|                  | 1 mm = 0 0      |       |                    |                     |            |               |               |                |                |                        |                 |                |               |                |                       |                                                  |                                                   |                                                   | #N/A                                       | +                                                | -                        |
|                  | MW-7 Surface    |       |                    |                     |            |               |               |                |                |                        |                 |                |               |                |                       |                                                  |                                                   |                                                   |                                            |                                                  | <u> </u>                 |
| 24730/31         | MW 7            | 2007  | 1                  | Phase I             | 10         | 6.4           | 6.0           | 5.0            | <1.0           | <10                    | 35              | <20            | <1.0          | < 0.10         | < 0.0030              | <10                                              | 4.1                                               | 63                                                | <u>72</u>                                  |                                                  | <u> </u>                 |
| 210808-139-FOX-5 | MW 7            | 2008  | 2                  | Phase I             | 0-10       | 10            | <u>11</u>     | <u>5</u>       | < 0.5          | 7                      | 40              | 22             | <1.0          | < 0.1          | < 0.02                | <20                                              | <20                                               | <20                                               | 30                                         | <u> </u>                                         | <u> </u>                 |
| 210808-140-FOX-5 | MW 7            | 2008  | 2                  | Phase I             | 0-10       | <u>11</u>     | <u>18</u>     | <u>6</u>       | < 0.5          | 7                      | 48              | <u>37</u>      | 1.5           | < 0.1          | < 0.02                | <20                                              | <20                                               | <20                                               | 30                                         | <u> </u>                                         | <u> </u>                 |
| F509-7WA         | MW 7            | 2009  | 3                  | Phase I             | 0-15       | 8.0           | 22            | 7.0            | < 0.5          | 8.0                    | 45              | 40             | 3.2           | < 0.1          | < 0.02                | <20                                              | <20                                               | <20                                               | 30                                         | <b></b> '                                        | <u> </u>                 |
| F510-7WA         | MW 7            | 2010  | 4                  | Phase I             | 0-15       | 10            | <u>17</u>     | 5.0            | < 0.5          | 9.0                    | <u>49</u>       | <u>35</u>      | 1.0           | < 0.1          | < 0.02                | <10                                              | <10                                               | 25                                                | <u>35</u>                                  | <u> </u>                                         | <u> </u>                 |
| 12-19568         | MW 7            | 2012  | 6                  | Phase I             | 0-10       | 7.2           | 6.1           | 3.3            | < 0.5          | 7.3                    | 34              | 13             | 2.0           | 0.012          | < 0.020               | < 5.0                                            | <10                                               | <50                                               | 33                                         | <u> </u>                                         | <u> </u>                 |
| F5-MID-MW-7-S    | MW-7            | 2014  | 8                  | Phase II            | 0-15       | 10            | <u>6</u>      | 3.7            | < 0.10         | <u>6</u>               | <u>56</u>       | 13             | <1.0          | < 0.050        | < 0.010               | <10                                              | <10                                               | <50                                               | <u>35</u>                                  | <b></b> '                                        | <u> </u>                 |
|                  |                 | 2016  | 10                 | Phase II            |            |               |               |                |                |                        |                 |                |               |                |                       |                                                  |                                                   |                                                   | #N/A                                       | <b></b> '                                        |                          |
|                  |                 | 2021  | 15                 | Phase II            |            |               | -             |                |                |                        |                 |                |               | -              |                       |                                                  |                                                   |                                                   | #N/A                                       | <del>                                     </del> |                          |
|                  |                 | 2031  | 25                 | Phase II            |            |               | -             |                |                |                        |                 |                |               | -              |                       |                                                  |                                                   |                                                   | #N/A                                       | <del>                                     </del> |                          |
|                  |                 |       |                    | Phase III           |            |               |               |                |                |                        |                 |                |               |                |                       |                                                  |                                                   |                                                   | #N/A                                       | +'                                               | -                        |
|                  |                 |       |                    |                     |            |               |               |                |                |                        |                 |                |               |                |                       |                                                  |                                                   |                                                   | #N/A                                       | 4                                                | <u> </u>                 |
|                  |                 |       |                    |                     |            |               |               |                |                |                        |                 |                |               |                |                       |                                                  |                                                   |                                                   | #N/A                                       |                                                  |                          |

| TOM 5 QIM        | quarjuaq (Brou | 811101 | i Island           | , 1101 11 .         | Dispo | oai i t       | icinty        | and i          | 011-11         | azaru          | Jus W         | asic L    | andn     | 11 (1711       | daic on    | c)- 0u                                |                                                   | y 01 2007                                         | -2024 COII I                               | inary t       | icai i        |
|------------------|----------------|--------|--------------------|---------------------|-------|---------------|---------------|----------------|----------------|----------------|---------------|-----------|----------|----------------|------------|---------------------------------------|---------------------------------------------------|---------------------------------------------------|--------------------------------------------|---------------|---------------|
| Sample ID        | Location       | Year   | Monitoring<br>Year | Monitoring<br>Phase | Depth | Cu<br>[mg/kg] | Ni<br>Ima/kal | Co*<br>[mg/kg] | Cd*<br>[mg/kg] | Pb*<br>[mg/kg] | Zn<br>[mg/kg] | Cr*       | As       | Hg*<br>[mg/kg] | Total PCB* | F1<br>C <sub>6</sub> -C <sub>10</sub> | F2<br>C <sub>10</sub> -C <sub>16</sub><br>[mg/kg] | F3<br>C <sub>16</sub> -C <sub>34</sub><br>[mg/kg] | Modified TPH^ -<br>Total C6-C34<br>[mg/kg] | TPH :         | Identity      |
|                  |                |        |                    |                     | (cm)  | [IIIg/ kg]    | [mg/ kg]      | [Hig/ kg]      | [mg/kg]        | [mg/ kg]       | [Hig/ kg]     | [mg/ kg]  | [mg/ kg] | [IIIg/ kg]     | [Hig/ kg]  | [mg/ kg]                              | [IIIg/ kg]                                        | [mg/ kg]                                          | [Hig/ kg]                                  | % Fuel<br>Oil | % Lube<br>Oil |
|                  | MW-7 Depth     |        |                    |                     |       |               |               |                |                |                |               |           |          |                |            |                                       |                                                   |                                                   |                                            |               |               |
| 24732            | MW 7           | 2007   | 1                  | Phase I             | 40    | 6.9           | 6.5           | 5.8            | <1.0           | <10            | 42            | <20       | <1.0     | < 0.10         | < 0.0030   | <10                                   | 8.7                                               | 30                                                | 44                                         |               |               |
| 210808-141-FOX-5 | MW 7           | 2008   | 2                  | Phase I             | 40-50 | <u>12</u>     | 14            | 7              | < 0.5          | 8.0            | <u>57</u>     | <u>30</u> | 2        | < 0.1          | < 0.02     | <20                                   | <20                                               | <20                                               | <u>30</u>                                  |               |               |
| F509-7WB         | MW 7           | 2009   | 3                  | Phase I             | 40-50 | 9.0           | <u>13</u>     | 8.0            | < 0.5          | 7.0            | <u>51</u>     | 23        | 3.2      | < 0.1          | < 0.02     | <20                                   | <20                                               | <20                                               | <u>30</u>                                  |               |               |
| F510-7WB         | MW 7           | 2010   | 4                  | Phase I             | 40-50 | 11            | 14            | 5.0            | < 0.5          | 8.0            | <u>55</u>     | 27        | 1.0      | < 0.1          | < 0.02     | <10                                   | <10                                               | <20                                               | 20                                         |               |               |
| 12-19570         | MW 7           | 2012   | 6                  | Phase I             | 40-50 | 7.5           | 6.4           | 3.5            | < 0.5          | 6.7            | 37            | 14        | 1.9      | 0.012          | < 0.020    | < 5.0                                 | <10                                               | <50                                               | <u>33</u>                                  |               |               |
| F5-MID-MW-7-D    | MW-7           | 2014   | 8                  | Phase II            | 40-50 | 9.2           | <u>7.5</u>    | 4.6            | < 0.10         | 7.6            | 45            | 17        | <1.0     | < 0.050        | < 0.010    | <10                                   | <10                                               | <50                                               | <u>35</u>                                  |               |               |
|                  |                | 2016   | 10                 | Phase II            |       |               |               |                |                |                |               |           |          |                |            |                                       |                                                   |                                                   | #N/A                                       |               |               |
|                  |                | 2021   | 15                 | Phase II            |       |               |               |                |                |                |               |           |          |                |            |                                       |                                                   |                                                   | #N/A                                       |               |               |
|                  |                | 2031   | 25                 | Phase II            |       |               |               |                |                |                |               |           |          |                |            |                                       |                                                   |                                                   | #N/A                                       |               |               |
|                  |                |        |                    | Phase III           |       |               |               |                |                |                |               |           |          |                |            |                                       |                                                   |                                                   | #N/A                                       |               |               |
|                  |                |        |                    |                     |       |               |               |                |                |                |               |           |          |                |            |                                       |                                                   |                                                   | #N/A                                       |               |               |
|                  |                |        |                    |                     |       |               |               |                |                |                |               |           |          |                |            |                                       |                                                   |                                                   | #N/A                                       |               |               |
|                  |                |        |                    |                     |       |               |               |                |                |                |               |           |          |                |            |                                       |                                                   |                                                   | #N/A                                       |               |               |
|                  | MW-8 Surface   |        |                    |                     |       |               |               |                |                |                |               |           |          |                |            |                                       |                                                   |                                                   |                                            |               |               |
| 24736            | MW 8           | 2007   | 1                  | Phase I             | 10    | 4.9           | < 5.0         | < 5.0          | <1.0           | <10            | 26            | <20       | 1.2      | < 0.10         | < 0.0030   | <10                                   | 6.3                                               | 47                                                | <u>58</u>                                  |               |               |
| 210808-135-FOX-5 | MW 8           | 2008   | 2                  | Phase I             | 0-10  | 9.0           | 7.0           | 5.0            | < 0.5          | 6.0            | 34            | 15        | 3.4      | < 0.1          | < 0.02     | <20                                   | <20                                               | 27                                                | <u>27</u>                                  |               |               |
| F509-8WA         | MW 8           | 2009   | 3                  | Phase I             | 0-15  | 8.0           | <u>15</u>     | 7.0            | < 0.5          | 6.0            | 39            | 30        | 3.8      | < 0.1          | < 0.02     | <20                                   | <20                                               | <20                                               | <u>30</u>                                  |               |               |
| F510-8WA         | MW 8           | 2010   | 4                  | Phase I             | 0-15  | 8.0           | 7.0           | 3.0            | < 0.5          | 7.0            | 33            | 15        | 2        | < 0.1          | < 0.02     | <10                                   | <10                                               | <20                                               | <u>20</u>                                  |               |               |
| 12-19572         | MW 8           | 2012   | 6                  | Phase I             | 0-10  | 5.9           | 5.0           | 2.7            | < 0.5          | 5.9            | 27            | 11        | 2.3      | 0.015          | < 0.020    | < 5.0                                 | <10                                               | 53                                                | <u>61</u>                                  |               |               |
| F5-MID-MW-8-S    | MW-8           | 2014   | 8                  | Phase II            | 0-15  | 7.1           | 5.1           | 3              | < 0.10         | 6.8            | 27            | 12        | 1        | < 0.050        | < 0.010    | <10                                   | <10                                               | 71                                                | <u>81</u>                                  |               |               |
|                  |                | 2016   | 10                 | Phase II            |       |               |               |                |                |                |               |           |          |                |            |                                       |                                                   |                                                   | #N/A                                       |               |               |
|                  |                | 2021   | 15                 | Phase II            |       |               |               |                |                |                |               |           |          |                |            |                                       |                                                   |                                                   | #N/A                                       |               |               |
|                  |                | 2031   | 25                 | Phase II            |       |               |               |                |                |                |               |           |          |                |            |                                       |                                                   |                                                   | #N/A                                       |               |               |
|                  |                |        |                    | Phase III           |       |               |               |                |                |                |               |           |          |                |            |                                       |                                                   |                                                   | #N/A                                       |               |               |
|                  |                |        |                    |                     |       |               |               |                |                |                |               |           |          |                |            |                                       |                                                   |                                                   | #N/A                                       |               |               |
|                  |                |        |                    |                     |       |               |               |                |                |                |               |           |          |                |            |                                       |                                                   |                                                   | #N/A                                       |               |               |
|                  |                |        |                    |                     |       |               |               |                |                |                |               |           |          |                |            |                                       |                                                   |                                                   | #N/A                                       |               |               |
|                  | MW-8 Depth     |        |                    |                     |       |               |               |                |                |                |               |           |          |                |            |                                       |                                                   |                                                   |                                            |               |               |
| 24738            | MW 8           | 2007   | 1                  | Phase I             | 40    | 4.5           | < 5.0         | < 5.0          | <1.0           | <10            | 27            | <20       | <1.0     | < 0.10         | < 0.0030   | <10                                   | 6.0                                               | 37                                                | 48                                         |               |               |
| 210808-136-FOX-5 | MW 8           | 2008   | 2                  | Phase I             | 40-50 | 10            | <u>11</u>     | 5.0            | < 0.5          | 7.0            | 35            | 24        | 2.7      | < 0.1          | < 0.02     | <20                                   | <20                                               | <20                                               | <u>30</u>                                  |               |               |
| F509-8WB         | MW 8           | 2009   | 3                  | Phase I             | 40-50 | 7.0           | <u>15</u>     | 6.0            | < 0.5          | 6.0            | 34            | <u>26</u> | 3.2      | < 0.1          | < 0.02     | <20                                   | <20                                               | <20                                               | <u>30</u>                                  |               |               |
| F510-8WB         | MW 8           | 2010   | 4                  | Phase I             | 40-50 | 9.0           | <u>13</u>     | 4.0            | < 0.5          | 7.0            | 38            | <u>29</u> | 2.0      | < 0.1          | < 0.02     | <10                                   | <10                                               | <20                                               | <u>20</u>                                  |               |               |
| 12-19574         | MW 8           | 2012   | 6                  | Phase I             | 40-50 | 5.1           | 4.5           | 2.3            | < 0.5          | 5.8            | 24            | 10        | 2.4      | 0.012          | < 0.020    | < 5.0                                 | <10                                               | 63                                                | <u>71</u>                                  |               |               |
| F5-MID-MW-8-D    | MW-8           | 2014   | 8                  | Phase II            | 40-50 | 7             | 5.9           | 3.9            | < 0.10         | 7.2            | 33            | 14        | 1.1      | < 0.050        | < 0.010    | <10                                   | <10                                               | <50                                               | <u>35</u>                                  |               |               |
|                  |                | 2016   | 10                 | Phase II            |       |               |               |                |                |                |               |           |          |                |            |                                       |                                                   |                                                   | #N/A                                       |               |               |
|                  |                | 2021   | 15                 | Phase II            |       |               |               |                |                |                |               |           |          |                |            |                                       |                                                   |                                                   | #N/A                                       |               |               |
|                  |                | 2031   | 25                 | Phase II            |       |               |               |                |                |                |               |           |          |                |            |                                       |                                                   |                                                   | #N/A                                       |               |               |
|                  |                |        |                    | Phase III           |       |               |               |                |                |                |               |           |          |                |            |                                       |                                                   |                                                   | #N/A                                       |               |               |
|                  |                |        |                    |                     |       |               |               |                |                |                |               |           |          |                |            |                                       |                                                   |                                                   | #N/A                                       |               |               |
|                  |                |        |                    |                     |       |               |               |                |                |                |               |           |          |                |            |                                       |                                                   |                                                   | #N/A                                       |               |               |
|                  |                |        |                    |                     |       |               |               |                |                |                |               |           |          |                |            |                                       |                                                   |                                                   | #N/A                                       |               |               |

| 1 0 11 0 Q mm    | quarjuaq (Brou | <u> 5</u> | i ioiuiiu          | I ICI II .          | Dispo      | oui i u       | cility        | and i          | 1011 11        | uzui u (       | 746 W         | aote 1         | ani ani       | 11 (1711)      | daic oit              | c) ou                                            | 111111141                                         | y 01 <b>2</b> 007                                 | 202100111                                  | inary c | icai E                    |
|------------------|----------------|-----------|--------------------|---------------------|------------|---------------|---------------|----------------|----------------|----------------|---------------|----------------|---------------|----------------|-----------------------|--------------------------------------------------|---------------------------------------------------|---------------------------------------------------|--------------------------------------------|---------|---------------------------|
| Sample ID        | Location       | Year      | Monitoring<br>Year | Monitoring<br>Phase | Depth (cm) | Cu<br>[mg/kg] | Ni<br>[mg/kg] | Co*<br>[mg/kg] | Cd*<br>[mg/kg] | Pb*<br>[mg/kg] | Zn<br>[mg/kg] | Cr*<br>[mg/kg] | As<br>[mg/kg] | Hg*<br>[mg/kg] | Total PCB*<br>[mg/kg] | F1<br>C <sub>6</sub> -C <sub>10</sub><br>[mg/kg] | F2<br>C <sub>10</sub> -C <sub>16</sub><br>[mg/kg] | F3<br>C <sub>16</sub> -C <sub>34</sub><br>[mg/kg] | Modified TPH^ -<br>Total C6-C34<br>[mg/kg] | TPH 1   | Identity<br>% Lube<br>Oil |
|                  | MW-9 Surface   |           |                    |                     |            |               |               |                |                |                |               |                |               |                |                       |                                                  |                                                   |                                                   |                                            |         |                           |
| 24740/41         | MW 9           | 2007      | 1                  | Phase I             | 10         | 5.2           | 5.2           | < 5.0          | <1.0           | <10            | 31            | <20            | <1.0          | < 0.10         | < 0.0030              | <10                                              | 7.3                                               | 22                                                | <u>34</u>                                  |         |                           |
| 210808-132-FOX-5 | MW 9           | 2008      | 2                  | Phase I             | 0-10       | 9.0           | 9.0           | 5.0            | < 0.5          | 7.0            | 42            | <u>20</u>      | 3.1           | < 0.1          | < 0.02                | <20                                              | <20                                               | <20                                               | <u>30</u>                                  |         |                           |
| F509-9WA         | MW 9           | 2009      | 3                  | Phase I             | 0-15       | 7.0           | <u>15</u>     | 7.0            | < 0.5          | 6.0            | 36            | <u>27</u>      | 3.8           | < 0.1          | < 0.02                | <20                                              | <20                                               | <20                                               | <u>30</u>                                  |         |                           |
| F510-9WA         | MW 9           | 2010      | 4                  | Phase I             | 0-15       | 7.0           | 7.0           | 4.0            | < 0.5          | 8.0            | 33            | 14             | 2.0           | < 0.1          | < 0.02                | <10                                              | <10                                               | <20                                               | <u>20</u>                                  |         |                           |
| 12-19576         | MW 9           | 2012      | 6                  | Phase I             | 0-10       | 6.6           | 5.8           | 3.3            | < 0.5          | 7.5            | 30            | 13             | 3.0           | < 0.010        | < 0.020               | < 5.0                                            | <10                                               | <50                                               | <u>33</u>                                  |         |                           |
| F5-MID-MW-9-S    | MW-9           | 2014      | 8                  | Phase II            | 0-15       | 5.6           | 4.5           | 2.9            | < 0.10         | 5.9            | 26            | 11             | 1.4           | < 0.050        | < 0.010               | <10                                              | <10                                               | <50                                               | <u>35</u>                                  |         |                           |
|                  |                | 2016      | 10                 | Phase II            |            |               |               |                |                |                |               |                |               |                |                       |                                                  |                                                   |                                                   | #N/A                                       |         |                           |
|                  |                | 2021      | 15                 | Phase II            |            |               |               |                |                |                |               |                |               |                |                       |                                                  |                                                   |                                                   | #N/A                                       |         |                           |
|                  |                | 2031      | 25                 | Phase II            |            |               |               |                |                |                |               |                |               |                |                       |                                                  |                                                   |                                                   | #N/A                                       |         |                           |
|                  |                |           |                    | Phase III           |            |               |               |                |                |                |               |                |               |                |                       |                                                  |                                                   |                                                   | #N/A                                       |         |                           |
|                  |                |           |                    |                     |            |               |               |                |                |                |               |                |               |                |                       |                                                  |                                                   |                                                   | #N/A                                       |         |                           |
|                  |                |           |                    |                     |            |               |               |                |                |                |               |                |               |                |                       |                                                  |                                                   |                                                   | #N/A                                       |         |                           |
|                  |                |           |                    |                     |            |               |               |                |                |                |               |                |               |                |                       |                                                  |                                                   |                                                   | #N/A                                       |         |                           |
|                  | MW-9 Depth     |           |                    |                     |            |               |               |                |                |                |               |                |               |                |                       |                                                  |                                                   |                                                   |                                            |         |                           |
| 24742            | MW 9           | 2007      | 1                  | Phase I             | 40         | 4.6           | < 5.0         | < 5.0          | <1.0           | <10            | 28            | <20            | 1.1           | < 0.10         | < 0.0030              | <10                                              | 6.2                                               | 12                                                | <u>23</u>                                  |         |                           |
| 210808-133-FOX-5 | MW 9           | 2008      | 2                  | Phase I             | 40-50      | <u>11</u>     | <u>10</u>     | 5.0            | < 0.5          | 6.0            | 40            | 22             | 3.0           | < 0.1          | < 0.02                | <20                                              | <20                                               | <20                                               | <u>30</u>                                  |         |                           |
| F509-9WB         | MW 9           | 2009      | 3                  | Phase I             | 40-50      | 7.0           | 12            | 6.0            | < 0.5          | 5.0            | 34            | 18             | 3.9           | < 0.1          | < 0.02                | <20                                              | <20                                               | <20                                               | <u>30</u>                                  |         |                           |
| F510-9WB         | MW 9           | 2010      | 4                  | Phase I             | 40-50      | 8.0           | <u>11</u>     | 4.0            | < 0.5          | 7.0            | 35            | 23             | 2.0           | < 0.1          | < 0.02                | <10                                              | <10                                               | <20                                               | <u>20</u>                                  |         |                           |
| 12-19578         | MW 9           | 2012      | 6                  | Phase I             | 40-50      | 7.0           | 6.1           | 3.4            | < 0.5          | 8.2            | 31            | 14             | 3.4           | < 0.010        | < 0.020               | < 5.0                                            | <10                                               | <50                                               | <u>33</u>                                  |         |                           |
| F5-MID-MW-9-D    | MW-9           | 2014      | 8                  | Phase II            | 40-50      | 5.6           | 5.1           | 3              | < 0.10         | 7              | 26            | 12             | 1.3           | < 0.050        | < 0.010               | <10                                              | <10                                               | <50                                               | <u>35</u>                                  |         |                           |
|                  |                | 2016      | 10                 | Phase II            |            |               |               |                |                |                |               |                |               |                |                       |                                                  |                                                   |                                                   | #N/A                                       |         |                           |
|                  |                | 2021      | 15                 | Phase II            |            |               |               |                |                |                |               |                |               |                |                       |                                                  |                                                   |                                                   | #N/A                                       |         |                           |
|                  |                | 2031      | 25                 | Phase II            |            |               |               |                |                |                |               |                |               |                |                       |                                                  |                                                   |                                                   | #N/A                                       |         |                           |
|                  |                |           |                    | Phase III           |            |               |               |                |                |                |               |                |               |                |                       |                                                  |                                                   |                                                   | #N/A                                       |         |                           |
|                  |                |           |                    |                     |            |               |               |                |                |                |               |                |               |                |                       |                                                  |                                                   |                                                   | #N/A                                       |         |                           |
|                  |                |           |                    |                     |            |               |               |                |                |                |               |                |               |                |                       |                                                  |                                                   |                                                   | #N/A                                       |         |                           |
|                  |                |           |                    |                     |            |               |               |                |                |                |               |                |               |                |                       |                                                  |                                                   |                                                   | #N/A                                       |         |                           |

^Note: Total Hydrocarbons (C<sub>6</sub>-C<sub>34</sub>) has been calculated by adding results for F1, F2 and F3.

egend

XX sample exceeds background
 XX sample exceeds baseline

XX sample exceeds DLCU Tier I criteria

XX sample exceeds DLCU Tier II criteria

FOX-5 Qikiqtarjuaq (Broughton Island) Main Landfill - Summary of 2007-2024 Soil Analytical Data  $C_6-C_{10}$ C10-C16 C<sub>16</sub>-C<sub>34</sub> Modified TPH^ Sample ID Cd\* Pb\* Total PCB\* Total C6-C34 Location Year Monitoring Year Monitoring Phase Depth Cu Ni Co\* Zn Cr\* Hg\* TPH Identity [mg/kg] [mg/kg] [mg/kg] [mg/kg] [mg/kg] [mg/kg] [mg/kg] [mg/kg] [mg/kg] [mg/kg] [mg/kg] [mg/kg] [mg/kg] [mg/kg] % Fuel % Lube Oil 11 5.3 5.0 1.0 10 20 1.9 0.5 0.010 5.0 Background Data - Average 46 8.5 5.0 5.0 1.0 10 38 20 2 0.10 0.003 69 n/a Baseline Data - Average 3.9 2.3 0.6 0.10 6.5 27 1.7 1.4 0.00 0.10 182 Baseline Data - Standard Deviation 20 12 6.8 1.3 30 119 25 6 615 Baseline Data Average + 3xSD < 3.0 < 5.0 < 5.0 <1.0 <10 <15 <20 <1 < 0.1 < 0.003 <40 Detection Limit \* If baseline average was below the detection limit, the average has been modified to match the detection limit value. 200 DEW Line Cleanup Tier I Criteria 100 100 50 500 500 250 30 2 2500 DEW Line Cleanup Tier II Criteria & Hydrocarbon Action Level Monitoring Data Upgradient MW-10 Surface TPH Sum will appear when F1-F3 results are entered. 24746 MW 10 2007 1 Phase I 10 4.9 < 5.0 < 5.0 <1.0 <10 32 <20 < 1.0 < 0.10 < 0.0030 <10 4.0 11 20 <u>11</u> <u>14</u> 5.0 < 0.50 <u>10</u> 44 <u>28</u> 2.0 < 0.1 < 0.02 <u>1770</u> 200808-128-FOX5 MW-10 2008 2 Phase I 0-10 <20 <20 1750 6.0 < 0.5 33 17 < 0.02 MW 10 2009 3 <u>14</u> 6.0 9.0 2.7 < 0.1 30 7509-10WA Phase I 0-15 <20 < 20 <20 10 <u>11</u> 4.0 < 0.5 10 49 21 2.0 < 0.1 < 0.02 20 510-10WA MW-10 2010 4 Phase I <10 <10 <20 12-19600 MW-10 2012 6 5.8 3.2 < 0.50 8.6 35 13 2.6 < 0.010 < 0.020 <10 <10 <50 35 Phase I 0-10 37 5-MN-MW-10-S MW-10 2014 8 Phase II 6.7 5.6 3.5 < 0.10 7.6 13 < 1.0 < 0.050 < 0.010 <10 <10 <50 35 #N/A 2016 10 Phase II #N/A 2021 15 Phase II 2031 25 Phase II #N/A #N/A Phase III #N/A #N/A #N/A MW-10 Depth 24748 4.4 < 5.0 < 5.0 <1.0 <10 31 <20 <1.0 < 0.10 < 0.0030 21 MW 10 2007 1 Phase I 40 <10 4.5 11 24 7.0 < 0.5 <u>10</u> 54 2.3 < 0.1 < 0.02 30 200808-129-FOX5 MW-10 2008 2 Phase I 40-50 13 <u>60</u> <20 < 20 <20 6.0 <u>22</u> 7.0 < 0.5 7.0 34 25 2.5 < 0.1 < 0.02 30 F509-10WB MW 10 2009 40-50 <20 <20 Phase I < 20 10 27 4.0 < 0.5 9.0 47 55 1.0 < 0.1 < 0.02 20 510-10WB MW-10 2010 4 Phase I 40-50 <10 <10 <20 2-19602 MW-10 2012 40-50 7.2 6.0 3.2 < 0.50 8.3 37 13 2.5 < 0.010 < 0.020 < 5.0 <50 33 6 Phase I <10 8.7 15 < 0.010 6.5 4.4 < 0.10 43 < 1.0 < 0.050 35 F5-MN-MW-10-D MW-10 2014 8 Phase II 8 <10 <10 < 50 2016 10 Phase II #N/A #N/A 2021 15 Phase II #N/A 2031 25 Phase II #N/A Phase III #N/A #N/A #N/A

FOX-5 Qikiqtarjuaq (Broughton Island) Main Landfill - Summary of 2007-2024 Soil Analytical Data F1  $C_6-C_{10}$ C10-C16 C<sub>16</sub>-C<sub>34</sub> Modified TPH^ Cd\* Pb\* Total PCB\* Total C6-C34 Sample ID Location Year Monitoring Year Monitoring Phase Depth Cu Ni Co\* Zn Cr\* As Hg\* TPH Identity [mg/kg] [mg/kg] [mg/kg] [mg/kg] [mg/kg] [mg/kg] [mg/kg] [mg/kg] [mg/kg] [mg/kg] [mg/kg] [mg/kg] [mg/kg] [mg/kg] % Fuel % Lube Oil (cm) Downgradient MW-11 Surface 6.6 5.8 5.5 <1.0 12 32 <20 3.4 < 0.10 < 0.0030 16 24750/51 MW 11 2007 1 Phase I 10 <10 6.0 < 9.0 53 < 0.1 200808-116-FOX5 MW 11 2008 Phase I 0-10 12 <u>13</u> 6.0 < 0.5 <u>12</u> 28 4.0 < 0.02 <20 <20 <20 30 7509-11WA MW 11 9.0 <u>32</u> 10 < 0.5 13 43 35 5.0 < 0.1 < 0.02 60 2009 0-15 <20 3 Phase I < 20 40 9.0 <u>10</u> 4.0 < 0.5 <u>13</u> 42 19 2.0 < 0.1 < 0.02 20 510-11WA MW 11 2010 4 Phase I 0-15 <10 <10 <20 2.1 7.6 33 12-19616 MW-11 2012 6 5.1 4.0 < 0.50 <u>18</u> 24 5.1 < 0.010 < 0.020 < 5.0 <10 < 50 Phase I 0-10 3.8 40 14 1.2 < 0.010 35 75-MN-MW-11-S MW-11 2014 8 Phase II 0-15 6.4 < 0.10 14.0 < 0.050 <10 <10 < 50 #N/A 2016 Phase II 10 #N/A 2021 15 Phase II #N/A 2031 25 Phase II Phase III #N/A #N/A #N/A #N/A MW-11 Depth 4.7 < 5.0 < 5.0 <1.0 < 0.10 < 0.0030 MW 11 2007 40 <10 20 <20 2.9 <10 8.1 19 32 24752 Phase I 42 27 00808-117-FOX5 MW 11 2008 2 Phase I 40-50 11 12 5.0 < 0.5 16 2.8 < 0.1 < 0.02 <20 <20 <20 30 8.0 <u>19</u> < 0.5 9.0 38 <u>30</u> < 0.1 < 0.02 509-11WB 2009 8.0 5.4 30 MW 11 3 Phase I 40-50 <20 < 20 <20 510-11WB 4 11 13 5.0 < 0.5 13 47 26 3.0 < 0.1 < 0.02 20 MW 11 2010 Phase I 40-50 <10 <10 <20 5.0 2.4 < 0.50 9.4 25 10 3.4 < 0.010 < 0.020 33 12-19618 MW-11 2012 6.1 < 5.0 <50 Phase I 40-50 <10 3.7 5-MN-MW-11-D MW-11 2014 8 Phase II 40-50 8.6 6.5 < 0.10 14.0 34 15 1.2 < 0.050 < 0.010 <10 <10 < 50 35 #N/A 2016 10 Phase II #N/A 2021 15 Phase II #N/A 2031 Phase II Phase III #N/A #N/A #N/A #N/A MW-12 Surface 3.9 < 5.0 < 5.0 MW 12 2007 10 < 1.0 <10 29 <20 1.6 < 0.10 < 0.0030 <10 5.2 35 45 24756 Phase I 200808-119-FOX5 MW 12 2008 2 Phase I 0-10 10 8 4.0 < 0.5 11 57 17 2.2 < 0.1 < 0.02 <20 <20 <20 30 Dup 200808-120-FOX5 10 <u>14</u> 4.0 < 0.5 14 57 31 1.8 < 0.1 < 0.02 MW 12 2008 3 Phase I 0-10 <20 <20 <20 30 9.0 17 6.0 0.6 21 67 28 25 < 0.1 < 0.02 91 509-12WA MW 12 2009 4 0-15 71 Phase I <20 < 20 510-12WA MW-12 2010 22 <u>13</u> 4.0 < 0.5 <u>18</u> <u>76</u> <u>26</u> 2.0 < 0.1 0.43 39 49 6 Phase I 0-15 <10 <10 12-19612 MW-12 2012 Phase II 0-10 8.3 5.9 3.2 < 0.50 13 41 13 3.1 < 0.010 0.06 < 5.0 <10 77 <u>85</u> 8 1.7 7.7 5.7 <1.0 < 0.050 F5-MN-MW-12-S MW-12 2014 10 Phase II 0-15 5 2.8 < 0.10 26 0.013 <10 <10 < 50 35 #N/A 15 2016 Phase II 2021 25 Phase II #N/A #N/A 2031 Phase III

#N/A #N/A #N/A #N/A FOX-5 Qikiqtarjuaq (Broughton Island) Main Landfill - Summary of 2007-2024 Soil Analytical Data

| Sample ID       | Location      | Year | Monitoring Year                                  | Monitoring Phase | Depth (cm) | Cu<br>[mg/kg] | Ni<br>[mg/kg] | Co*<br>[mg/kg] | Cd*<br>[mg/kg] | Pb*<br>[mg/kg]                                   | Zn<br>[mg/kg] | Cr*<br>[mg/kg] | As<br>[mg/kg] | Hg*<br>[mg/kg] | Total PCB*<br>[mg/kg] | F1<br>C <sub>6</sub> -C <sub>10</sub><br>[mg/kg] | F2<br>C <sub>10</sub> -C <sub>16</sub><br>[mg/kg] | F3<br>C <sub>16</sub> -C <sub>34</sub><br>[mg/kg] | Modified TPH^ -<br>Total C6-C34<br>[mg/kg] | TPH<br>% Fuel<br>Oil | Identity % Lub Oil                               |
|-----------------|---------------|------|--------------------------------------------------|------------------|------------|---------------|---------------|----------------|----------------|--------------------------------------------------|---------------|----------------|---------------|----------------|-----------------------|--------------------------------------------------|---------------------------------------------------|---------------------------------------------------|--------------------------------------------|----------------------|--------------------------------------------------|
|                 | MW-12 Depth   |      |                                                  |                  |            |               |               |                |                |                                                  |               |                |               |                |                       |                                                  |                                                   |                                                   |                                            |                      |                                                  |
| 24758           | MW 12         | 2007 | 1                                                | Phase I          | 40         | 3.6           | < 5.0         | < 5.0          | <1.0           | <10                                              | 26            | <20            | 1.1           | < 0.10         | < 0.0030              | <10                                              | 6.3                                               | 17                                                | <u>28</u>                                  |                      |                                                  |
| 200808-121-FOX5 | MW 12         | 2008 | 2                                                | Phase I          | 40-50      | <u>11</u>     | <u>14</u>     | 5.0            | < 0.5          | <u>17</u>                                        | 59            | <u>32</u>      | <u>3</u>      | < 0.1          | < 0.02                | <20                                              | <20                                               | <20                                               | <u>30</u>                                  |                      |                                                  |
| F509-12WB       | MW 12         | 2009 | 3                                                | Phase I          | 40-50      | 6.0           | <u>19</u>     | 6.0            | < 0.5          | 7.0                                              | 40            | 28             | 2.9           | < 0.1          | < 0.02                | <20                                              | <20                                               | <20                                               | <u>30</u>                                  |                      |                                                  |
| F510-12WB       | MW 12         | 2010 | 4                                                | Phase I          | 40-50      | 8.0           | <u>11</u>     | 3.0            | < 0.5          | <u>14</u>                                        | 35            | 22             | 2.0           | < 0.1          | < 0.02                | <10                                              | <10                                               | 33                                                | 43                                         |                      |                                                  |
| 12-19614        | MW-12         | 2012 | 6                                                | Phase I          | 40-50      | 5.2           | 4.4           | 2.4            | < 0.50         | <u>11</u>                                        | 33            | 8.6            | 3.3           | < 0.010        | < 0.020               | < 5.0                                            | <10                                               | <50                                               | 33                                         |                      |                                                  |
| F5-MN-MW-12-D   | MW-12         | 2014 | 8                                                | Phase II         | 40-50      | 8.5           | 3.6           | 2.1            | 0.12           | 13.0                                             | 38            | 7.7            | <1.0          | < 0.050        | 0.085                 | <10                                              | <10                                               | 110                                               | 120                                        |                      |                                                  |
|                 |               | 2016 | 10                                               | Phase II         |            |               |               |                |                |                                                  |               |                |               |                |                       |                                                  |                                                   |                                                   | #N/A                                       |                      |                                                  |
|                 |               | 2021 | 15                                               | Phase II         |            |               |               |                |                |                                                  |               |                |               |                |                       |                                                  |                                                   |                                                   | #N/A                                       |                      |                                                  |
|                 |               | 2031 | 25                                               | Phase II         |            |               |               |                |                |                                                  |               |                |               |                |                       |                                                  |                                                   |                                                   | #N/A                                       |                      | <u> </u>                                         |
|                 |               | 2001 |                                                  | Phase III        |            |               |               |                |                |                                                  |               |                |               |                |                       |                                                  |                                                   |                                                   | #N/A                                       |                      |                                                  |
|                 |               |      |                                                  | 1 Hase III       |            |               |               |                |                |                                                  |               |                |               |                |                       |                                                  |                                                   |                                                   | #N/A                                       |                      | <u> </u>                                         |
|                 |               |      |                                                  |                  |            |               |               |                |                |                                                  |               |                |               |                |                       |                                                  |                                                   |                                                   | #N/A                                       |                      | -                                                |
|                 |               |      |                                                  |                  |            |               |               |                |                |                                                  |               |                |               |                |                       |                                                  |                                                   |                                                   | #N/A                                       |                      | -                                                |
|                 | MW-13 Surface |      |                                                  |                  |            |               |               |                |                |                                                  |               |                |               |                |                       |                                                  |                                                   |                                                   | 711/11                                     |                      | -                                                |
|                 |               |      |                                                  |                  |            | <b>~2.0</b>   | <5.0          | < 5.0          | <1.0           | <10                                              | 24            | <b>~20</b>     | <1.0          | < 0.10         | 0.005                 |                                                  |                                                   |                                                   | 45                                         |                      | <del> </del>                                     |
| 24760/61        | MW 13         | 2007 | 1                                                | Phase I          | 10         | <3.0          |               |                |                |                                                  | 21            | <20            |               |                |                       | <10                                              | 6.8                                               | 33                                                | 45                                         |                      | -                                                |
| 200808-122-FOX5 | MW 13         | 2008 | 2                                                | Phase I          | 0-10       | <u>11</u>     | <u>15</u>     | 5.0            | < 0.5          | 11                                               | <u>52</u>     | 30             | 1.9           | < 0.1          | <0.02                 | <20                                              | <20                                               | 47                                                | 67                                         |                      | <u> </u>                                         |
| F509-13WA       | MW 13         | 2009 | 3                                                | Phase I          | 0-15       | 7.0           | 20            | 7.0            | < 0.5          | 8.0                                              | 39            | <u>20</u>      | 3.3           | < 0.1          | < 0.02                | <20                                              | <20                                               | <20                                               | 30                                         |                      | <u> </u>                                         |
| F510-13WA       | MW 13         | 2010 | 4                                                | Phase I          | 0-15       | <u>11</u>     | 9.0           | 4.0            | < 0.5          | <u>13</u>                                        | <u>54</u>     | 18             | 2.0           | < 0.1          | < 0.02                | <10                                              | <10                                               | 23                                                | 33                                         |                      | ļ                                                |
| 12-19608        | MW-13         | 2012 | 6                                                | Phase I          | 0-10       | 5.0           | 3.7           | 2.3            | < 0.50         | 7.7                                              | 29            | 7.9            | 2.2           | < 0.010        | < 0.020               | < 5.0                                            | <10                                               | <50                                               | 33                                         |                      | <u> </u>                                         |
| F5-MN-MW-13-S   | MW-13         | 2014 | 8                                                | Phase II         | 0-15       | 5.9           | 4.3           | 3.0            | < 0.10         | 7.8                                              | 34            | 9.3            | <1.0          | < 0.050        | < 0.010               | <10                                              | <10                                               | <50                                               | <u>35</u>                                  |                      | <u> </u>                                         |
|                 |               | 2016 | 10                                               | Phase II         |            |               |               |                |                |                                                  |               |                |               |                |                       |                                                  |                                                   |                                                   | #N/A                                       |                      |                                                  |
|                 |               | 2021 | 15                                               | Phase II         |            |               |               |                |                |                                                  |               |                |               |                |                       |                                                  |                                                   |                                                   | #N/A                                       |                      |                                                  |
|                 |               | 2031 | 25                                               | Phase II         |            |               |               |                |                |                                                  |               |                |               |                |                       |                                                  |                                                   |                                                   | #N/A                                       |                      |                                                  |
|                 |               |      |                                                  | Phase III        |            |               |               |                |                |                                                  |               |                |               |                |                       |                                                  |                                                   |                                                   | #N/A                                       |                      |                                                  |
|                 |               |      |                                                  |                  |            |               |               |                |                |                                                  |               |                |               |                |                       |                                                  |                                                   |                                                   | #N/A                                       |                      |                                                  |
|                 |               |      |                                                  |                  |            |               |               |                |                |                                                  |               |                |               |                |                       |                                                  |                                                   |                                                   | #N/A                                       |                      |                                                  |
|                 |               |      |                                                  |                  |            |               |               |                |                |                                                  |               |                |               |                |                       |                                                  |                                                   |                                                   | #N/A                                       |                      |                                                  |
|                 | MW-13 Depth   |      |                                                  |                  |            |               |               |                |                |                                                  |               |                |               |                |                       |                                                  |                                                   |                                                   |                                            |                      |                                                  |
| 24762           | MW 13         | 2007 | 1                                                | Phase I          | 40         | 3.0           | < 5.0         | < 5.0          | <1.0           | <10                                              | 21            | <20            | <1.0          | < 0.10         | < 0.0030              | <10                                              | 5.7                                               | 10                                                | 21                                         |                      |                                                  |
| 200808-123-FOX5 | MW 13         | 2008 | 2                                                | Phase I          | 40-50      | 7             | 25            | 3.0            | < 0.5          | 7.0                                              | 35            | 56             | <1.0          | < 0.1          | < 0.02                | <20                                              | <20                                               | <20                                               | <u>30</u>                                  |                      |                                                  |
| F509-13WB       | MW-13         | 2009 | 3                                                | Phase I          | 40-50      | 5.0           | 21            | 6.0            | < 0.5          | 6.0                                              | 30            | 16             | 1.9           | < 0.1          | < 0.02                | <20                                              | <20                                               | 21                                                | 41                                         |                      |                                                  |
| F510-13WB       | MW 13         | 2010 | 4                                                | Phase I          | 40-50      | 8.0           | 8.0           | 3.0            | < 0.5          | 9.0                                              | 44            | 17             | 1.0           | < 0.1          | < 0.02                | <10                                              | <10                                               | <20                                               | 20                                         |                      |                                                  |
| 12-19610        | MW-13         | 2012 | 6                                                | Phase I          | 40-50      | 5.2           | 3.7           | 2.3            | < 0.50         | 6.4                                              | 29            | 7.4            | 1.7           | < 0.010        | < 0.020               | < 5.0                                            | <10                                               | <50                                               | 33                                         |                      |                                                  |
| F5-MN-MW-13-D   | MW-13         | 2014 | 8                                                | Phase II         | 40-50      | 5.5           | 3.9           | 2.5            | < 0.10         | 9.4                                              | 31            | 8.1            | <1.0          | < 0.050        | < 0.010               | <10                                              | <10                                               | <50                                               | 35                                         |                      | <u> </u>                                         |
|                 | 2007          | 2016 | 10                                               | Phase II         |            |               |               |                |                |                                                  |               |                |               |                |                       |                                                  |                                                   | ***                                               | #N/A                                       |                      | <u> </u>                                         |
|                 |               | 2021 | 15                                               | Phase II         |            |               |               |                |                |                                                  |               |                |               |                |                       |                                                  |                                                   |                                                   | #N/A                                       |                      | <u> </u>                                         |
|                 |               | 2031 | 25                                               | Phase II         |            |               |               |                |                | <del>                                     </del> |               |                |               |                |                       |                                                  |                                                   |                                                   | #N/A                                       |                      | <del> </del>                                     |
|                 |               | 2031 | 23                                               | Phase III        |            |               |               |                |                |                                                  |               |                |               |                |                       |                                                  |                                                   |                                                   | #N/A                                       |                      | -                                                |
|                 |               |      | <del>                                     </del> | rnase III        |            |               |               |                |                |                                                  |               |                |               |                |                       |                                                  |                                                   |                                                   | #N/A                                       |                      | <u> </u>                                         |
|                 |               |      | -                                                |                  |            |               |               |                |                | -                                                |               |                |               |                |                       |                                                  |                                                   |                                                   | #N/A                                       |                      | <del>                                     </del> |
|                 |               | -    |                                                  |                  |            | -             |               |                |                |                                                  |               |                |               |                |                       | -                                                |                                                   |                                                   | #N/A                                       | -                    | <del> </del>                                     |

FOX-5 Qikiqtarjuaq (Broughton Island) Main Landfill - Summary of 2007-2024 Soil Analytical Data

| TOA-3 QIKIC     | jiarjuaq (brou | gnioi | i isianu) iv    | Taili Lailui     | ш - э      | 41111111      | uy or         | <u> </u>       | 1024 30        | )II /\II       | пунса         | 1 Data         | 1             |                |                       |                                                  |                                                   |                                                   |                                            |                        |                           |
|-----------------|----------------|-------|-----------------|------------------|------------|---------------|---------------|----------------|----------------|----------------|---------------|----------------|---------------|----------------|-----------------------|--------------------------------------------------|---------------------------------------------------|---------------------------------------------------|--------------------------------------------|------------------------|---------------------------|
| Sample ID       | Location       | Year  | Monitoring Year | Monitoring Phase | Depth (cm) | Cu<br>[mg/kg] | Ni<br>[mg/kg] | Co*<br>[mg/kg] | Cd*<br>[mg/kg] | Pb*<br>[mg/kg] | Zn<br>[mg/kg] | Cr*<br>[mg/kg] | As<br>[mg/kg] | Hg*<br>[mg/kg] | Total PCB*<br>[mg/kg] | F1<br>C <sub>6</sub> -C <sub>10</sub><br>[mg/kg] | F2<br>C <sub>10</sub> -C <sub>16</sub><br>[mg/kg] | F3<br>C <sub>16</sub> -C <sub>34</sub><br>[mg/kg] | Modified TPH^ -<br>Total C6-C34<br>[mg/kg] | TPH I<br>% Fuel<br>Oil | Identity<br>% Lube<br>Oil |
|                 | MW-14 Surface  |       |                 |                  |            |               |               |                |                |                |               |                |               |                |                       |                                                  |                                                   |                                                   |                                            |                        |                           |
| 24766           | MW 14          | 2007  | 1               | Phase I          | 10         | <3.0          | < 5.0         | < 5.0          | <1.0           | <10            | 19            | <20            | 1.3           | < 0.10         | < 0.0030              | <10                                              | 4.1                                               | 9.2                                               | <u>18</u>                                  |                        |                           |
| 200808-125-FOX5 | MW-14          | 2008  | 2               | Phase I          | 0-10       | 8             | <u>10</u>     | 4.0            | < 0.5          | <u>10</u>      | 41            | <u>20</u>      | 1.1           | < 0.1          | < 0.02                | <20                                              | <20                                               | <20                                               | <u>30</u>                                  |                        |                           |
| F509-14WA       | MW-14          | 2009  | 3               | Phase I          | 0-15       | 4.0           | 4.0           | 3.0            | < 0.5          | 6.0            | 19            | 8.0            | 2.9           | < 0.1          | < 0.02                | <20                                              | <20                                               | <20                                               | 30                                         |                        |                           |
| F510-14WA       | MW-14          | 2010  | 4               | Phase I          | 0-15       | 7.0           | 8.0           | 3.0            | < 0.5          | 10             | 35            | 15             | 1.0           | < 0.1          | < 0.02                | <10                                              | <10                                               | <20                                               | <u>20</u>                                  |                        |                           |
| 12-19604/05abc  | MW-14          | 2012  | 6               | Phase I          | 0-10       | 4.2           | 2.8           | 2.1            | < 0.50         | <u>10</u>      | 23            | 5.7            | 2.7           | < 0.010        | < 0.020               | < 5.0                                            | <10                                               | <50                                               | 33                                         |                        |                           |
| F5-MN-MW-14-S   | MW-14          | 2014  | 8               | Phase II         | 0-15       | 7.55          | 4.7           | 3.4            | < 0.5          | 10.1           | 36            | 9.9            | 2             | < 0.10         | < 0.05                | <10                                              | <10                                               | <50                                               | <u>35</u>                                  |                        |                           |
|                 |                | 2016  | 10              | Phase II         |            |               |               |                |                |                |               |                |               |                |                       |                                                  |                                                   |                                                   | #N/A                                       |                        |                           |
|                 |                | 2021  | 15              | Phase II         |            |               |               |                |                |                |               |                |               |                |                       |                                                  |                                                   |                                                   | #N/A                                       |                        |                           |
|                 |                | 2031  | 25              | Phase II         |            |               |               |                |                |                |               |                |               |                |                       |                                                  |                                                   |                                                   | #N/A                                       |                        |                           |
|                 |                |       |                 | Phase III        |            |               |               |                |                |                |               |                |               |                |                       |                                                  |                                                   |                                                   | #N/A                                       |                        |                           |
|                 |                |       |                 |                  |            |               |               |                |                |                |               |                |               |                |                       |                                                  |                                                   |                                                   | #N/A                                       |                        |                           |
|                 |                |       |                 |                  |            |               |               |                |                |                |               |                |               |                |                       |                                                  |                                                   |                                                   | #N/A                                       |                        |                           |
|                 |                |       |                 |                  |            |               |               |                |                |                |               |                |               |                |                       |                                                  |                                                   |                                                   | #N/A                                       |                        |                           |
|                 | MW-14 Depth    |       |                 |                  |            |               |               |                |                |                |               |                |               |                |                       |                                                  |                                                   |                                                   |                                            |                        |                           |
| 24768           | MW 14          | 2007  | 1               | Phase I          | 40         | 3.8           | < 5.0         | < 5.0          | <1.0           | <10            | 27            | <20            | 1.5           | < 0.10         | < 0.0030              | <10                                              | 6.7                                               | < 9.0                                             | <u>16</u>                                  |                        |                           |
| 200808-126-FOX5 | MW-14          | 2008  | 2               | Phase I          | 40-50      | 9             | <u>12</u>     | 4.0            | < 0.5          | <u>11</u>      | 43            | 24             | 1.3           | < 0.1          | < 0.02                | <20                                              | <20                                               | <20                                               | <u>30</u>                                  |                        |                           |
| F509-14WB       | MW 14          | 2009  | 3               | Phase I          | 40-50      | 5.0           | 9.0           | 6.0            | < 0.5          | 8.0            | 34            | <u>21</u>      | 3.2           | < 0.1          | < 0.02                | <20                                              | <20                                               | <20                                               | <u>30</u>                                  |                        |                           |
| F510-14WB       | MW 14          | 2010  | 4               | Phase I          | 40-50      | 8.0           | 7.0           | 3.0            | < 0.5          | 9.0            | 35            | 14             | 1.0           | < 0.1          | < 0.02                | <10                                              | <10                                               | <20                                               | <u>20</u>                                  |                        |                           |
| 12-19606/07abc  | MW-14          | 2012  | 6               | Phase I          | 40-50      | 5.5           | 3.9           | 3.3            | < 0.50         | 7.8            | 32            | 8.0            | 2.0           | < 0.010        | < 0.020               | < 5.0                                            | <10                                               | <50                                               | 33                                         |                        |                           |
| F5-MN-MW-14-D   | MW-14          | 2014  | 8               | Phase II         | 40-50      | 5             | 3.5           | 2.8            | < 0.10         | 7.2            | 30            | 7.7            | <1.0          | < 0.050        | < 0.010               | <10                                              | <10                                               | <50                                               | <u>35</u>                                  |                        |                           |
|                 |                | 2016  | 10              | Phase II         |            |               |               |                |                |                |               |                |               |                |                       |                                                  |                                                   |                                                   | #N/A                                       |                        |                           |
|                 |                | 2021  | 15              | Phase II         |            |               |               |                |                |                |               |                |               |                |                       |                                                  |                                                   |                                                   | #N/A                                       |                        |                           |
|                 |                | 2031  | 25              | Phase II         |            |               |               |                |                |                |               |                |               |                |                       |                                                  |                                                   |                                                   | #N/A                                       |                        |                           |
|                 |                |       |                 | Phase III        |            |               |               |                |                |                |               |                |               |                |                       |                                                  |                                                   |                                                   | #N/A                                       |                        |                           |
| -               |                |       |                 |                  | -          |               |               |                |                |                |               |                |               |                |                       |                                                  |                                                   |                                                   | #N/A                                       |                        |                           |
|                 |                |       |                 |                  |            |               |               |                |                |                |               |                |               |                |                       |                                                  |                                                   |                                                   | #N/A                                       |                        |                           |
|                 |                |       |                 |                  |            |               |               |                |                |                |               |                |               |                |                       |                                                  |                                                   |                                                   | #N/A                                       |                        |                           |

<sup>^</sup>Note: Total Hydrocarbons ( $C_6$ - $C_{34}$ ) has been calculated by adding results for F1, F2 and F3.

Legend

XX sample exceeds background

XX sample exceeds baseline

XX sample exceeds DLCU Tier II criteria

XX sample exceeds DLCU Tier III criteria

| FUX-5 Qikio           | qtarjuaq (Broug        | gntor    | i Island) Si      | tation Non-          | -Haza         | raous                  | wast          | e Lanc         | amı Sc         | on Ana         | iyticai       | Sum              | mary          | 2007 -         | 2024                  |                                                  | •                                                 |                                                   |                                            | •                      |                           |
|-----------------------|------------------------|----------|-------------------|----------------------|---------------|------------------------|---------------|----------------|----------------|----------------|---------------|------------------|---------------|----------------|-----------------------|--------------------------------------------------|---------------------------------------------------|---------------------------------------------------|--------------------------------------------|------------------------|---------------------------|
| Sample ID             | Location               | Year     | Monitoring Year   | Monitoring Phase     | Depth<br>(cm) | Cu<br>[mg/kg]          | Ni<br>[mg/kg] | Co*<br>[mg/kg] | Cd*<br>[mg/kg] | Pb*<br>[mg/kg] | Zn<br>[mg/kg] | Cr*<br>[mg/kg]   | As<br>[mg/kg] | Hg*<br>[mg/kg] | Total PCB*<br>[mg/kg] | F1<br>C <sub>6</sub> -C <sub>10</sub><br>[mg/kg] | F2<br>C <sub>10</sub> -C <sub>16</sub><br>[mg/kg] | F3<br>C <sub>16</sub> -C <sub>34</sub><br>[mg/kg] | Modified TPH^ -<br>Total C6-C34<br>[mg/kg] | TPH I<br>% Fuel<br>Oil | Identity<br>% Lube<br>Oil |
|                       |                        |          |                   |                      |               |                        |               |                |                |                |               |                  |               |                |                       |                                                  |                                                   |                                                   |                                            |                        |                           |
| Background Da         | <u>ta - Average</u>    |          |                   |                      |               | <u>10</u>              | <u>5.3</u>    | 4.0            | 1.0            | 5.0            | <u>46</u>     | <u>19</u>        | 1.93          | 0.5            | 0.001                 |                                                  |                                                   |                                                   | 5.0                                        |                        |                           |
| Baseline Data         | - Average              |          |                   |                      |               | 8.6                    | 5.0           | 5.0            | 1.0            | 10             | 35            | 20               | 1.8           | 0.10           | 0.003                 |                                                  |                                                   |                                                   | 299                                        |                        |                           |
| Baseline Data - Sta   | ndard Deviation        |          |                   |                      |               | 3.5                    | 2.6           | 1.7            | 0.00           | 20.0           | 15            | 4.0              | 0.6           | 0.00           | 0.20                  |                                                  |                                                   |                                                   | 654                                        |                        |                           |
| Baseline Data Aver    | age + 3xSD             |          |                   |                      |               | 19                     | 13            | 10.1           | 1.0            | 70             | 80            | 32               | 3.6           | 0.10           | 0.60                  |                                                  |                                                   |                                                   | 2261                                       |                        |                           |
| Detection Limit       |                        |          |                   |                      |               | <3.0                   | < 5.0         | <5.0           | <1.0           | <10            | <15           | <20              | <1            | < 0.1          | < 0.003               |                                                  |                                                   |                                                   | <40                                        |                        |                           |
| * If haseline average | e was below the detect | ion limi | t, the average ha | s been modified i    | to match      | the detec              | ction limi    | it value.      |                |                |               |                  |               |                |                       |                                                  |                                                   |                                                   |                                            |                        |                           |
| DEW Line Cleans       |                        |          | ,                 |                      |               |                        |               |                |                | 200            |               |                  |               |                | 1                     |                                                  |                                                   |                                                   |                                            |                        |                           |
|                       | р Tier II Criteria & Н | Iydrocar | bon Action Level  | l                    |               | 100                    | 100           | 50             | 5              | 500            | 500           | 250              | 30            | 2              | 5                     |                                                  |                                                   |                                                   | 2500                                       |                        |                           |
| Monitoring Da         |                        | <i></i>  |                   |                      | II.           |                        |               |                |                | ı              |               |                  | ı             |                |                       |                                                  |                                                   |                                                   |                                            |                        |                           |
| Upgradient            |                        |          |                   |                      |               |                        |               |                |                |                |               |                  |               |                |                       |                                                  |                                                   |                                                   |                                            |                        |                           |
| epgracient            | MW-15 Surface          |          |                   |                      |               |                        |               |                |                |                |               |                  |               |                |                       |                                                  |                                                   |                                                   |                                            |                        |                           |
| 07-24776              | MW 15                  | 2007     | 1                 | Phase I              | 10            | 12                     | 9.0           | 6.5            | <1.0           | <10            | 32            | <20              | 1.5           | < 0.10         | < 0.0030              | <10                                              | 4.4                                               | < 9.0                                             | 14                                         |                        |                           |
| F509-15WA             | MW-15                  | 2007     | 3                 | Phase I              | 0-15          | 18                     | <u>17</u>     | 10             | <0.5           | 7.0            | <u>50</u>     | 38               | 2.4           | <0.10          | <0.02                 | <20                                              | <20                                               |                                                   | 30                                         |                        |                           |
| 12-19580              | MW-15                  | 2009     | 6                 | Phase I              | 0-15          | 18                     | 14            | 6.5            | < 0.50         | 8.0            | 49            | 30               | 2.5           | 0.021          | < 0.020               | <5.0                                             | <10                                               | <20<br><50                                        | 33                                         |                        |                           |
| F5-SA-MW-15-S         | MW-15                  | 2012     | 8                 | Phase II             | 0-10          | 22                     | 18            | 9.3            | < 0.10         | 7.7            | <u>58</u>     | 38               | 3.1           | < 0.050        | < 0.010               | <10                                              | <10                                               | <50                                               | 35                                         |                        |                           |
| 1-3-3A-MW-13-3        | MW-13                  | 2014     | 10                | Phase II             | 0-13          | 22                     | 10            | 2.0            | 10.10          | 141            | 50            | 50               | 5.1           | 10.050         | 40.010                | ×10                                              | <b>\10</b>                                        | <b>\</b> 30                                       | #N/A                                       |                        |                           |
|                       |                        | 2021     | 15                | Phase II             |               |                        |               |                |                |                |               |                  |               |                |                       |                                                  |                                                   |                                                   | #N/A                                       |                        |                           |
|                       |                        | 2021     | 25                | Phase II             |               |                        |               |                |                |                |               |                  |               |                |                       |                                                  |                                                   |                                                   | #N/A                                       |                        |                           |
|                       |                        | 2031     | 25                |                      |               |                        |               |                |                |                |               |                  |               |                |                       |                                                  |                                                   |                                                   | #N/A                                       |                        |                           |
|                       |                        |          |                   | Phase III            |               |                        |               |                |                |                |               |                  |               |                |                       |                                                  |                                                   |                                                   | #N/A                                       |                        |                           |
|                       |                        |          |                   |                      |               |                        |               |                |                |                |               |                  |               |                |                       |                                                  |                                                   |                                                   | #N/A                                       |                        |                           |
|                       |                        |          |                   |                      |               |                        |               |                |                |                |               |                  |               |                |                       |                                                  |                                                   |                                                   | #N/A                                       |                        |                           |
|                       |                        |          |                   |                      |               |                        |               |                |                |                |               |                  |               |                |                       |                                                  |                                                   |                                                   | #N/A                                       |                        |                           |
|                       | MW-15 Depth            |          |                   |                      |               |                        |               |                |                |                |               |                  |               |                |                       |                                                  |                                                   |                                                   | 1114/11                                    |                        |                           |
| 07.24770              | MW-15 Deptn<br>MW 15   | 2007     | 4                 | DI I                 | 40            | <u>11</u>              | 8.2           | 5.9            | <1.0           | <10            | 31            | <20              | 1.1           | < 0.10         | < 0.0030              | r10                                              | 4.5                                               | - 0.0                                             | 14                                         |                        |                           |
| 07-24778<br>F509-15WB | MW 15<br>MW-15         | 2007     | 3                 | Phase I<br>Phase I   | 40-50         | 11<br>15               | 8.2<br>16     | 8.0            | <0.5           | 3.0            | 40            | <20<br><u>35</u> | 1.6           | <0.10          | <0.0030               | <10<br><20                                       | 4.5<br><20                                        | < 9.0<br><20                                      | 30                                         |                        |                           |
| F509-15WB<br>12-19582 | MW-15<br>MW-15         | 2009     | 6                 | Phase I<br>Phase I   | 40-50         | 1 <u>15</u>            | 15<br>15      | 6.9            | <0.50          | 6.7            | 50            | 33               | 2.5           | 0.011          | <0.02                 | <20<br><5.0                                      | <20                                               | <20<br><50                                        | 33                                         |                        |                           |
|                       | MW-15<br>MW-15         | 2012     | 8                 | Phase II             | 40-50         | <u>19</u><br><u>20</u> | 15<br>16      | 8.2            | <0.10          | 6.1            | <u>50</u>     | 33               | 2.7           | <0.050         | <0.020                | <5.0<br><10                                      | <10                                               | <50<br><50                                        | 35                                         |                        |                           |
| F5-SA-MW-15-D         | IVI W-15               | 2014     | 10                | Phase II<br>Phase II | 40-50         | 20                     | 10            | 0.4            | ~0.10          | 0.1            | <u>J1</u>     | <u> </u>         | 4.1           | ~0.030         | ~0.010                | <b>\10</b>                                       | <b>\10</b>                                        | <b>\</b> 50                                       | 33<br>#N/A                                 |                        |                           |
|                       |                        | 2016     | 15                | Phase II Phase II    |               |                        |               |                |                |                |               |                  |               |                |                       |                                                  |                                                   |                                                   | #N/A                                       |                        |                           |
|                       |                        | 2021     | 25                | Phase II             |               |                        |               |                |                |                |               |                  | -             |                |                       |                                                  |                                                   |                                                   | #N/A                                       |                        |                           |
|                       |                        | 2031     | 23                | Phase III            |               |                        |               |                |                |                |               |                  | -             |                |                       |                                                  |                                                   |                                                   | #N/A                                       |                        |                           |
|                       |                        |          |                   | 1 1145€ 111          |               |                        |               |                |                |                |               |                  | -             |                |                       |                                                  |                                                   |                                                   | #N/A                                       |                        |                           |
|                       |                        |          |                   |                      |               |                        |               |                |                |                |               |                  |               |                |                       |                                                  |                                                   |                                                   | #N/A                                       |                        |                           |
|                       |                        |          |                   |                      |               |                        |               |                |                |                |               |                  |               |                |                       |                                                  |                                                   |                                                   | #N/A                                       |                        |                           |
| į –                   |                        | 1        | 1                 |                      |               |                        |               |                |                | 1              |               |                  |               |                |                       |                                                  |                                                   |                                                   | #N/A                                       |                        |                           |

| Sample ID           | Location      | Year | Monitoring Year | Monitoring Phase                        | Depth | Cu<br>[mg/kg] | Ni<br>[mg/kg] | Co*<br>[mg/kg] | Cd*<br>[mg/kg] | Pb*<br>[mg/kg] | Zn<br>[mg/kg] | Cr*<br>[mg/kg] | As<br>[mg/kg] | Hg*<br>[mg/kg]                                   | Total PCB*<br>[mg/kg] | F1<br>$C_6$ - $C_{10}$<br>[mg/kg] | F2<br>C <sub>10</sub> -C <sub>16</sub><br>[mg/kg] | F3<br>C <sub>16</sub> -C <sub>34</sub><br>[mg/kg] | Modified TPH^ -<br>Total C6-C34<br>[mg/kg] | TPH | Identity<br>% Lube |
|---------------------|---------------|------|-----------------|-----------------------------------------|-------|---------------|---------------|----------------|----------------|----------------|---------------|----------------|---------------|--------------------------------------------------|-----------------------|-----------------------------------|---------------------------------------------------|---------------------------------------------------|--------------------------------------------|-----|--------------------|
|                     |               |      |                 |                                         | (cm)  |               |               |                |                |                |               |                |               |                                                  |                       |                                   |                                                   |                                                   |                                            | Oil | Oil                |
|                     | MW-16 Surface |      |                 |                                         |       |               |               |                |                |                |               |                |               |                                                  |                       |                                   |                                                   |                                                   |                                            |     |                    |
| 07-24770            | MW 16         | 2007 | 1               | Phase I                                 | 10    | 9.2           | < 5.0         | < 5.0          | <1.0           | <10            | 40            | <20            | 1.4           | < 0.10                                           | < 0.0030              | <10                               | 6.0                                               | 10                                                | <u>21</u>                                  |     |                    |
| F509-16WA           | MW-16         | 2009 | 3               | Phase I                                 | 0-15  | 39            | <u>15</u>     | 7.0            | < 0.5          | 23             | 88            | <u>36</u>      | 3.0           | < 0.1                                            | < 0.02                | <20                               | <20                                               | 34                                                | <u>54</u>                                  |     |                    |
| 12-19584            | MW-16         | 2012 | 6               | Phase I                                 | 0-10  | <u>14</u>     | 9.6           | 4.9            | < 0.50         | <u>16</u>      | <u>63</u>     | 23             | 2.6           | 0.014                                            | 0.03                  | < 5.0                             | 81                                                | 180                                               | <u>264</u>                                 |     |                    |
| F5-SA-MW-16-S       | MW-16         | 2014 | 8               | Phase II                                | 0-15  | <u>16</u>     | 5.4           | 3.3            | 0.11           | 11.0           | <u>67</u>     | 12             | 2.2           | < 0.050                                          | 0.022                 | <10                               | <10                                               | <50                                               | <u>35</u>                                  |     |                    |
|                     |               | 2016 | 10              | Phase II                                |       |               |               |                |                |                |               |                |               |                                                  |                       |                                   |                                                   |                                                   | #N/A                                       |     |                    |
|                     |               | 2021 | 15              | Phase II                                |       |               |               |                |                |                |               |                |               |                                                  |                       |                                   |                                                   |                                                   | #N/A                                       |     |                    |
|                     |               | 2031 | 25              | Phase II                                |       |               |               |                |                |                |               |                |               |                                                  |                       |                                   |                                                   |                                                   | #N/A                                       |     |                    |
|                     |               |      |                 | Phase III                               |       |               |               |                |                |                |               |                |               |                                                  |                       |                                   |                                                   |                                                   | #N/A                                       |     |                    |
|                     |               |      |                 |                                         |       |               |               |                |                |                |               |                |               |                                                  |                       |                                   |                                                   |                                                   | #N/A                                       |     |                    |
|                     |               |      |                 |                                         |       |               |               |                |                |                |               |                |               |                                                  |                       |                                   |                                                   |                                                   | #N/A                                       |     |                    |
|                     |               |      |                 |                                         |       |               |               |                |                |                |               |                |               |                                                  |                       |                                   |                                                   |                                                   | #N/A                                       |     |                    |
|                     |               |      |                 |                                         |       |               |               |                |                |                |               |                |               |                                                  |                       |                                   |                                                   |                                                   | #N/A                                       |     |                    |
|                     | MW-16 Depth   |      |                 |                                         |       |               |               |                |                |                |               |                |               |                                                  |                       |                                   |                                                   |                                                   |                                            |     |                    |
| 07-24772            | MW 16         | 2007 | 1               | Phase I                                 | 40    | 64            | < 5.0         | < 5.0          | <1.0           | <10            | 44            | <20            | <1.0          | < 0.10                                           | < 0.0030              | <10                               | 53                                                | 390                                               | 448                                        |     |                    |
| F509-16WB           | MW-16         | 2009 | 3               | Phase I                                 | 40-50 | <u>17</u>     | <u>19</u>     | <u>10</u>      | < 0.5          | <u>19</u>      | 88            | 43             | 3.1           | < 0.1                                            | < 0.02                | <20                               | 213                                               | 118                                               | <u>341</u>                                 |     |                    |
| 12-19586            | MW-16         | 2012 | 6               | Phase I                                 | 40-50 | <u>15</u>     | 9.8           | 5.2            | 13             | 29             | 78            | 24             | 3.3           | 0.023                                            | 0.12                  | 1200                              | 770                                               | 100                                               | 2070                                       |     |                    |
| F5-SA-MW-16-D       | MW-16         | 2014 | 8               | Phase II                                | 40-50 | 21            | 9.8           | 6.0            | 0.14           | 14.0           | 87            | 23             | 3.3           | < 0.050                                          | < 0.010               | <10                               | 23                                                | 51                                                | 79                                         |     |                    |
|                     |               | 2016 | 10              | Phase II                                |       |               |               |                |                |                |               |                |               |                                                  |                       |                                   |                                                   |                                                   | #N/A                                       |     |                    |
|                     |               | 2021 | 15              | Phase II                                |       |               |               |                |                |                |               |                |               |                                                  |                       |                                   |                                                   |                                                   | #N/A                                       |     |                    |
|                     |               | 2031 | 25              | Phase II                                |       |               |               |                |                |                |               |                |               |                                                  |                       |                                   |                                                   |                                                   | #N/A                                       |     |                    |
|                     |               |      |                 | Phase III                               |       |               |               |                |                |                |               |                |               |                                                  |                       |                                   |                                                   |                                                   | #N/A                                       |     |                    |
|                     |               |      |                 | 2 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 |       |               |               |                |                |                |               |                |               |                                                  |                       |                                   |                                                   |                                                   | #N/A                                       |     |                    |
|                     |               |      |                 |                                         |       |               |               |                |                |                |               |                |               |                                                  |                       |                                   |                                                   |                                                   | #N/A                                       |     |                    |
|                     |               |      |                 |                                         |       |               |               |                |                |                |               |                |               |                                                  |                       |                                   |                                                   |                                                   | #N/A                                       |     |                    |
|                     |               |      |                 |                                         |       |               |               |                |                |                |               |                |               |                                                  |                       |                                   |                                                   |                                                   | #N/A                                       |     |                    |
| Downgradient        |               | 11   | l               | l                                       |       |               |               | l              |                |                |               |                |               |                                                  |                       | l .                               |                                                   |                                                   |                                            | 1   |                    |
|                     | MW-17 Surface |      |                 |                                         |       |               |               |                |                |                |               |                |               |                                                  |                       |                                   |                                                   |                                                   |                                            |     |                    |
| 07-24790/91         | MW 17         | 2007 | 1               | Phase I                                 | 10    | 4.5           | < 5.0         | <5.0           | <1.0           | <10            | 25            | <20            | <1.0          | < 0.10                                           | < 0.0030              | <10                               | 5.6                                               | < 9.0                                             | <u>15</u>                                  |     |                    |
| F509-17WA           | MW 17         | 2009 | 3               | Phase I                                 | 0-15  | 10            | 13            | 8.0            | < 0.5          | 8.0            | 48            | 29             | 4.1           | <0.1                                             | < 0.02                | <20                               | <20                                               | <20                                               | 30                                         |     |                    |
| 12-19588            | MW 17         | 2012 | 6               | Phase I                                 | 0-10  | 5.8           | 4.3           | 2.4            | < 0.50         | 6.1            | 28            | 9.0            | 2.2           | < 0.010                                          | <0.020                | <5.0                              | <10                                               | <50                                               | 33                                         |     |                    |
| F5-SA-MW-17-S       | MW-17         | 2012 | 8               | Phase II                                | 0-10  | 9.1           | 5             | 3.2            | < 0.10         | 13.0           | 43            | 12             | 2.6           | < 0.050                                          | < 0.010               | <10                               | <10                                               | 120                                               | 130                                        |     |                    |
| . J J.1-191 W -17-3 | 111 VV - 1 /  | 2014 | 10              | Phase II                                | 0-15  |               | -             |                |                |                |               |                |               |                                                  |                       | -10                               | *10                                               | 120                                               | #N/A                                       |     |                    |
|                     |               | 2021 | 15              | Phase II                                |       |               |               |                |                |                |               |                |               |                                                  |                       |                                   |                                                   |                                                   | #N/A                                       |     |                    |
|                     |               | 2021 | 25              | Phase II                                |       |               |               |                |                |                |               |                |               |                                                  |                       |                                   |                                                   |                                                   | #N/A                                       |     |                    |
|                     |               | 2031 | 23              | Phase III                               |       |               |               |                |                |                |               |                |               |                                                  |                       |                                   |                                                   |                                                   | #N/A                                       |     |                    |
|                     |               |      |                 | 1 1145C 111                             |       |               |               |                |                |                |               |                |               |                                                  |                       |                                   |                                                   |                                                   | #N/A                                       |     |                    |
|                     |               |      |                 |                                         |       |               |               |                |                |                |               |                |               |                                                  |                       |                                   |                                                   |                                                   | #N/A                                       |     |                    |
|                     |               |      |                 |                                         |       |               |               |                |                |                |               |                |               |                                                  |                       |                                   |                                                   |                                                   | #N/A                                       |     | -                  |
|                     |               |      |                 |                                         |       |               |               |                | 1              | -              | l             | l              | -             | <del>                                     </del> |                       | -                                 |                                                   |                                                   | #N/A                                       | -   | +                  |

| 1 OA-3 QIK       | iqiarjuaq (brou | giitoi | I Island) S     |                  | Haza       | Tuous         | wast          | Lain           | Jim 50         | 711 / 1110     | ily tica      | Juin           | IIIaiy        | <u> 2007 -</u> | 1027                  | 1                                                |                                                   | ı                                                 | 1                                          |                |                    |
|------------------|-----------------|--------|-----------------|------------------|------------|---------------|---------------|----------------|----------------|----------------|---------------|----------------|---------------|----------------|-----------------------|--------------------------------------------------|---------------------------------------------------|---------------------------------------------------|--------------------------------------------|----------------|--------------------|
| Sample ID        | Location        | Year   | Monitoring Year | Monitoring Phase | Depth (cm) | Cu<br>[mg/kg] | Ni<br>[mg/kg] | Co*<br>[mg/kg] | Cd*<br>[mg/kg] | Pb*<br>[mg/kg] | Zn<br>[mg/kg] | Cr*<br>[mg/kg] | As<br>[mg/kg] | Hg*<br>[mg/kg] | Total PCB*<br>[mg/kg] | F1<br>C <sub>6</sub> -C <sub>10</sub><br>[mg/kg] | F2<br>C <sub>10</sub> -C <sub>16</sub><br>[mg/kg] | F3<br>C <sub>16</sub> -C <sub>34</sub><br>[mg/kg] | Modified TPH^ -<br>Total C6-C34<br>[mg/kg] | TPH % Fuel Oil | Identity % Lub Oil |
|                  | MW-17 Depth     |        |                 |                  |            |               |               |                |                |                |               |                |               |                |                       |                                                  |                                                   |                                                   |                                            |                |                    |
| 07-24792         | MW 17           | 2007   | 1               | Phase I          | 40         | <3.0          | < 5.0         | < 5.0          | <1.0           | <10            | 18            | <20            | 1.2           | < 0.10         | < 0.0030              | <10                                              | 5.3                                               | < 9.0                                             | 15                                         |                |                    |
| F509-17WB        | MW 17           | 2009   | 3               | Phase I          | 40-50      | 8.0           | 8.0           | 6.0            | < 0.5          | 7.0            | 41            | 18             | 3.1           | < 0.1          | < 0.02                | <20                                              | <20                                               | <20                                               | 30                                         |                |                    |
| 12-19590         | MW 17           | 2012   | 6               | Phase I          | 40-50      | 6.7           | 5.2           | 3.0            | < 0.50         | 7.4            | 33            | 11             | 2.9           | < 0.010        | < 0.020               | < 5.0                                            | <10                                               | <50                                               | <u>33</u>                                  |                |                    |
| F5-SA-MW-17-D    | MW-17           | 2014   | 8               | Phase II         | 40-50      | 8.2           | 6.2           | 4.0            | < 0.10         | 7.3            | 41            | 14             | 2.9           | < 0.050        | < 0.010               | <10                                              | <10                                               | <50                                               | <u>35</u>                                  |                |                    |
|                  |                 | 2016   | 10              | Phase II         |            |               |               |                |                |                |               |                |               |                |                       |                                                  |                                                   |                                                   | #N/A                                       |                |                    |
|                  |                 | 2021   | 15              | Phase II         |            |               |               |                |                |                |               |                |               |                |                       |                                                  |                                                   |                                                   | #N/A                                       |                |                    |
|                  |                 | 2031   | 25              | Phase II         |            |               |               |                |                |                |               |                |               |                |                       |                                                  |                                                   |                                                   | #N/A                                       |                |                    |
|                  |                 |        |                 | Phase III        |            |               |               |                |                |                |               |                |               |                |                       |                                                  |                                                   |                                                   | #N/A                                       |                |                    |
|                  |                 |        |                 |                  |            |               |               |                |                |                |               |                |               |                |                       |                                                  |                                                   |                                                   | #N/A                                       |                |                    |
|                  |                 |        |                 |                  |            |               |               |                |                |                |               |                |               |                |                       |                                                  |                                                   |                                                   | #N/A                                       |                |                    |
|                  |                 |        |                 |                  |            |               |               |                |                |                |               |                |               |                |                       |                                                  |                                                   |                                                   | #N/A                                       |                |                    |
|                  |                 |        |                 |                  |            |               |               |                |                |                |               |                |               |                |                       |                                                  |                                                   |                                                   | #N/A                                       |                |                    |
|                  | MW-18 Surface   |        |                 |                  |            |               |               |                |                |                |               |                |               |                |                       |                                                  |                                                   |                                                   |                                            |                |                    |
| 07-24786         | MW 18           | 2007   | 1               | Phase I          | 10         | 4.6           | < 5.0         | 5.0            | <1.0           | <10            | 31            | <20            | 1.9           | < 0.10         | < 0.0030              | <10                                              | 5.2                                               | 14                                                | 24                                         |                |                    |
| F509-18WA        | MW 18           | 2009   | 3               | Phase I          | 0-15       | 10            | <u>15</u>     | 8.0            | < 0.5          | 12             | 46            | 33             | 3.8           | <0.1           | < 0.02                | <20                                              | <20                                               | <20                                               | 30                                         |                | +                  |
| 12-19592/93abc   | MW-18           | 2012   | 6               | Phase I          | 0-10       | 6.7           | 5.2           | 2.8            | < 0.50         | 5.9            | 30            | 11             | 2.1           | < 0.010        | < 0.020               | <5.0                                             | <10                                               | <50                                               | 33                                         |                | +                  |
| F5-SA-MW-18-S    | MW-18           | 2014   | 8               | Phase II         | 0-15       | 9.9           | 7.9           | 4.5            | < 0.10         | 6.8            | 43            | 17             | 1.2           | < 0.050        | < 0.010               | <10                                              | <10                                               | <50                                               | 35                                         |                | +                  |
| 1 3-511-M W-10-5 | 111 W - 10      | 2016   | 10              | Phase II         | 0-13       |               |               |                | 0.20           |                |               |                |               |                | 0.020                 | 110                                              | -10                                               | 130                                               | #N/A                                       |                | +                  |
|                  |                 | 2021   | 15              | Phase II         |            |               |               |                |                |                |               |                |               |                |                       |                                                  |                                                   |                                                   | #N/A                                       |                | +                  |
|                  |                 | 2031   | 25              | Phase II         |            |               |               |                |                |                |               |                |               |                |                       |                                                  |                                                   |                                                   | #N/A                                       |                | +                  |
|                  |                 | 2031   | 23              | Phase III        |            |               |               |                |                |                |               |                |               |                |                       |                                                  |                                                   |                                                   | #N/A                                       |                | +                  |
|                  |                 |        |                 |                  |            |               |               |                |                |                |               |                |               |                |                       |                                                  |                                                   |                                                   | #N/A                                       |                |                    |
|                  |                 |        |                 |                  |            |               |               |                |                |                |               |                |               |                |                       |                                                  |                                                   |                                                   | #N/A                                       |                |                    |
|                  |                 |        |                 |                  |            |               |               |                |                |                |               |                |               |                |                       |                                                  |                                                   |                                                   | #N/A                                       |                |                    |
|                  |                 |        |                 |                  |            |               |               |                |                |                |               |                |               |                |                       |                                                  |                                                   |                                                   | #N/A                                       |                |                    |
|                  | MW-18 Depth     |        |                 |                  |            |               |               |                |                |                |               |                |               |                |                       |                                                  |                                                   |                                                   |                                            |                |                    |
| 07-24788         | MW 18           | 2007   | 1               | Phase I          | 40         | 6.1           | < 5.0         | 5.1            | <1.0           | <u>14</u>      | 34            | <20            | 1.8           | < 0.10         | < 0.0030              | <10                                              | 52                                                | 270                                               | 327                                        |                | +                  |
| F509-18WB        | MW 18           | 2009   | 3               | Phase I          | 40-50      | 6             | 9.0           | 6.0            | < 0.5          | 6.0            | 36            | 20             | 3.0           | < 0.1          | < 0.02                | <20                                              | <20                                               | 43                                                | 63                                         |                |                    |
| 12-19594/95abc   | MW-18           | 2012   | 6               | Phase I          | 40-50      | 4.9           | 3.9           | 2.2            | < 0.50         | 6.2            | 27            | 8.2            | 2.0           | < 0.010        | < 0.020               | <10                                              | <50                                               | <50                                               | 55                                         |                |                    |
| F5-SA-MW-18-D    | MW-18           | 2014   | 8               | Phase II         | 40-50      | 10.1          | 6.55          | 4.5            | < 0.5          | 6.5            | 40.5          | 17.5           | 1.6           | < 0.10         | < 0.05                | <10                                              | <10                                               | <50                                               | 35                                         |                | <b>†</b>           |
|                  |                 | 2016   | 10              | Phase II         |            |               |               |                |                |                |               |                |               |                |                       |                                                  |                                                   |                                                   | #N/A                                       |                | †                  |
|                  |                 | 2021   | 15              | Phase II         |            |               |               |                |                |                |               |                |               |                |                       |                                                  |                                                   |                                                   | #N/A                                       |                | †                  |
|                  |                 | 2031   | 25              | Phase II         |            |               |               |                |                |                |               |                |               |                |                       |                                                  |                                                   |                                                   | #N/A                                       |                | +                  |
|                  |                 |        |                 | Phase III        |            |               |               |                |                |                |               |                |               |                |                       |                                                  |                                                   |                                                   | #N/A                                       |                | +                  |
|                  |                 |        |                 | 1 11400 111      |            |               |               |                |                |                |               |                |               |                |                       |                                                  |                                                   |                                                   | #N/A                                       |                | +                  |
|                  |                 |        | 1               |                  |            |               |               |                |                |                |               |                |               |                |                       |                                                  |                                                   |                                                   | #N/A                                       |                | +                  |
|                  |                 |        |                 |                  |            |               |               |                |                |                |               |                |               |                |                       |                                                  |                                                   |                                                   | #N/A                                       |                | +                  |
|                  |                 |        | 1               |                  |            |               |               |                |                |                |               |                |               |                |                       |                                                  |                                                   |                                                   | #N/A                                       |                | +                  |

| T OH O Quint  | itarjuay (Droug | 511001 | i ioiaiia, o    | tation i ton     | IIUZU      | 14046         | W ast         | c Danc         | #IIII O(       | /II / IIII     | iry tica      | I Ouilli       | iiiaiy        | 2001           | 2021                  |                                                  |                                                   |                                                   |                                            |                  |                    |
|---------------|-----------------|--------|-----------------|------------------|------------|---------------|---------------|----------------|----------------|----------------|---------------|----------------|---------------|----------------|-----------------------|--------------------------------------------------|---------------------------------------------------|---------------------------------------------------|--------------------------------------------|------------------|--------------------|
| Sample IID    | Location        | Year   | Monitoring Year | Monitoring Phase | Depth (cm) | Cu<br>[mg/kg] | Ni<br>[mg/kg] | Co*<br>[mg/kg] | Cd*<br>[mg/kg] | Pb*<br>[mg/kg] | Zn<br>[mg/kg] | Cr*<br>[mg/kg] | As<br>[mg/kg] | Hg*<br>[mg/kg] | Total PCB*<br>[mg/kg] | F1<br>C <sub>6</sub> -C <sub>10</sub><br>[mg/kg] | F2<br>C <sub>10</sub> -C <sub>16</sub><br>[mg/kg] | F3<br>C <sub>16</sub> -C <sub>34</sub><br>[mg/kg] | Modified TPH^ -<br>Total C6-C34<br>[mg/kg] | TPH 1 % Fuel Oil | dentity % Lube Oil |
|               | MW-19 Surface   |        |                 |                  |            |               |               |                |                |                |               |                |               |                |                       |                                                  |                                                   | <u> </u>                                          |                                            |                  |                    |
| 07-24780      | MW 19           | 2007   | 1               | Phase I          | 10         | 3.9           | < 5.0         | < 5.0          | <1.0           | <10            | 19            | <20            | 1.4           | < 0.10         | < 0.0030              | <10                                              | 5.5                                               | < 9.0                                             | <u>15</u>                                  |                  |                    |
| F509-19WA     | MW 19           | 2009   | 3               | Phase I          | 0-15       | 10            | 13            | 8.0            | < 0.5          | 6.0            | 45            | 28             | 3.8           | < 0.1          | < 0.02                | <20                                              | <20                                               | <20                                               | <u>30</u>                                  |                  |                    |
| 12-19596      | MW-19           | 2012   | 6               | Phase I          | 0-10       | 6.4           | 5.0           | 2.6            | < 0.50         | 4.8            | 28            | 11             | 2.2           | < 0.010        | < 0.020               | < 5.0                                            | <10                                               | <50                                               | <u>33</u>                                  |                  |                    |
| F5-SA-MW-19-S | MW-19           | 2014   | 8               | Phase II         | 0-15       | 8.2           | 6.2           | 3.6            | < 0.10         | 6.2            | 36            | 14             | 2             | < 0.050        | < 0.010               | <10                                              | <10                                               | <50                                               | <u>35</u>                                  |                  |                    |
|               |                 | 2016   | 10              | Phase II         |            |               |               |                |                |                |               |                |               |                |                       |                                                  |                                                   |                                                   | #N/A                                       |                  |                    |
|               |                 | 2021   | 15              | Phase II         |            |               |               |                |                |                |               |                |               |                |                       |                                                  |                                                   |                                                   | #N/A                                       |                  |                    |
|               |                 | 2031   | 25              | Phase II         |            |               |               |                |                |                |               |                |               |                |                       |                                                  |                                                   |                                                   | #N/A                                       |                  |                    |
|               |                 |        |                 | Phase III        |            |               |               |                |                |                |               |                |               |                |                       |                                                  |                                                   |                                                   | #N/A                                       |                  |                    |
|               |                 |        |                 |                  |            |               |               |                |                |                |               |                |               |                |                       |                                                  |                                                   |                                                   | #N/A                                       |                  |                    |
|               |                 |        |                 |                  |            |               |               |                |                |                |               |                |               |                |                       |                                                  |                                                   |                                                   | #N/A                                       |                  |                    |
|               |                 |        |                 |                  |            |               |               |                |                |                |               |                |               |                |                       |                                                  |                                                   |                                                   | #N/A                                       |                  |                    |
|               |                 |        |                 |                  |            |               |               |                |                |                |               |                |               |                |                       |                                                  |                                                   |                                                   | #N/A                                       |                  |                    |
|               | MW-19 Depth     |        |                 |                  |            |               |               |                |                |                |               |                |               |                |                       |                                                  |                                                   |                                                   |                                            |                  |                    |
| 07-24782      | MW 19           | 2007   | 1               | Phase I          | 40         | 5.4           | < 5.0         | < 5.0          | <1.0           | <10            | 25            | <20            | 2.4           | < 0.10         | < 0.0030              | <10                                              | < 4.0                                             | < 9.0                                             | <u>12</u>                                  |                  |                    |
| F509-19WB     | MW-19           | 2009   | 3               | Phase I          | 40-50      | 9.0           | <u>12</u>     | 7.0            | < 0.5          | 5.0            | 40            | <u>27</u>      | <u>3.6</u>    | < 0.1          | < 0.02                | <20                                              | <20                                               | <20                                               | <u>30</u>                                  |                  |                    |
| 12-19598      | MW-19           | 2012   | 6               | Phase I          | 40-50      | 7.3           | <u>5.7</u>    | 3.1            | < 0.50         | <u>5.4</u>     | 33            | 13             | <u>2.6</u>    | < 0.010        | < 0.020               | < 5.0                                            | <10                                               | <50                                               | <u>33</u>                                  |                  |                    |
| F5-SA-MW-19-D | MW-19           | 2014   | 8               | Phase II         | 40-50      | 8.4           | <u>6.7</u>    | 3.8            | < 0.10         | <u>5.8</u>     | 36            | 15             | 1.6           | < 0.050        | < 0.010               | <10                                              | <10                                               | <50                                               | <u>35</u>                                  |                  |                    |
|               |                 | 2016   | 10              | Phase II         |            |               |               |                |                |                |               |                |               |                |                       |                                                  |                                                   |                                                   | #N/A                                       |                  |                    |
|               |                 | 2021   | 15              | Phase II         |            |               |               |                |                |                |               |                |               |                |                       |                                                  |                                                   |                                                   | #N/A                                       |                  |                    |
|               |                 | 2031   | 25              | Phase II         |            |               |               |                |                |                |               |                |               |                |                       |                                                  |                                                   |                                                   | #N/A                                       |                  |                    |
|               |                 |        |                 | Phase III        |            |               |               |                |                |                |               |                |               |                |                       |                                                  |                                                   |                                                   | #N/A                                       |                  |                    |
|               |                 |        |                 |                  |            |               |               |                |                |                |               |                |               |                |                       |                                                  |                                                   |                                                   | #N/A                                       |                  |                    |
|               |                 |        |                 |                  |            |               |               |                |                |                |               |                |               |                |                       |                                                  |                                                   |                                                   | #N/A                                       |                  |                    |
|               |                 |        |                 |                  |            |               |               |                |                |                |               |                |               |                |                       |                                                  |                                                   |                                                   | #N/A                                       |                  |                    |
|               |                 | 1      |                 |                  |            |               |               |                |                |                |               |                |               |                |                       | Tanand                                           |                                                   |                                                   | #N/A                                       |                  |                    |

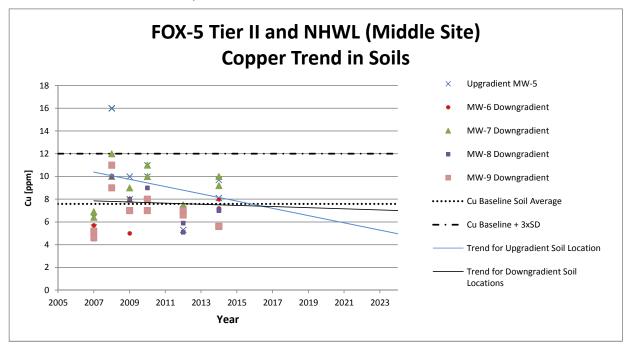
The Station Non-Hazardous Waste Landfill was visually assessed in 2008 and 2010 but soil and groundwater samples were not taken as per the monitoring contract.

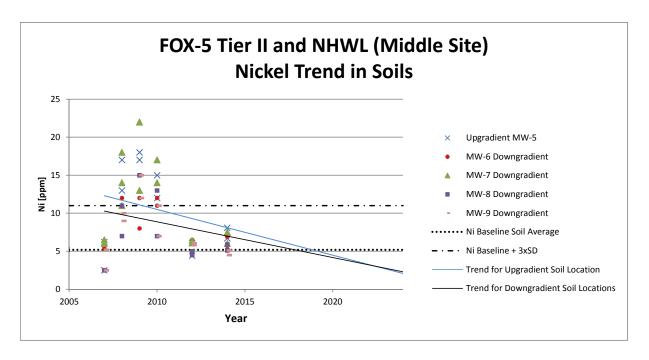
Legend

XX sample exceeds background

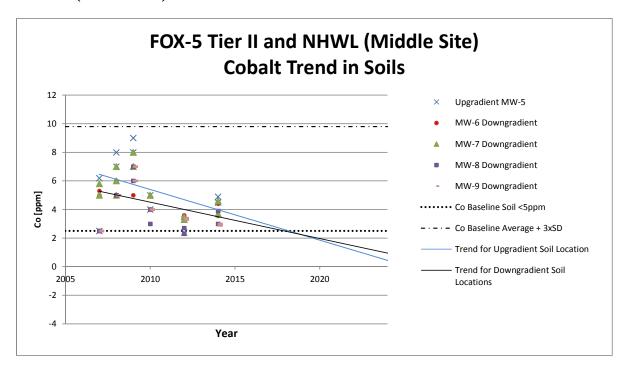
XX sample exceeds baseline

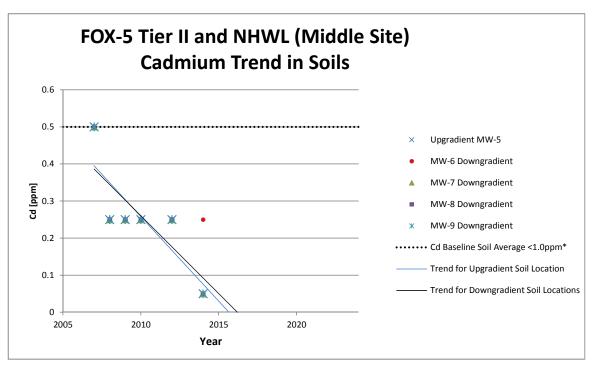
XX sample exceeds DLCU Tier I criteria


XX sample exceeds DLCU Tier II criteria


<sup>^</sup>Note: Total Hydrocarbons (C<sub>6</sub>-C<sub>34</sub>) has been calculated by adding results for F1, F2 and F3.

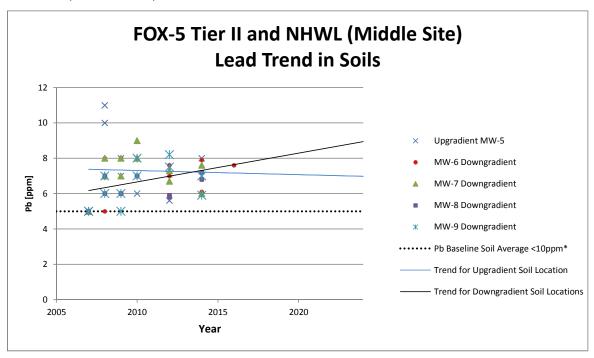
# APPENDIX F CHEMICAL CONCENTRATION TREND GRAPHS (SOIL)


FOX-5 Qikiqtarjuaq (Broughton Island) Tier II Disposal Facility and Non-Hazardous Waste Landfill (Middle Site)- Landfill Trends

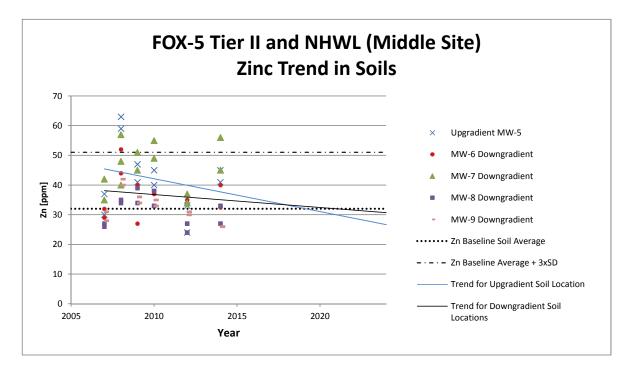

Where results are below detection, half of the detection limit has been used in the charts.



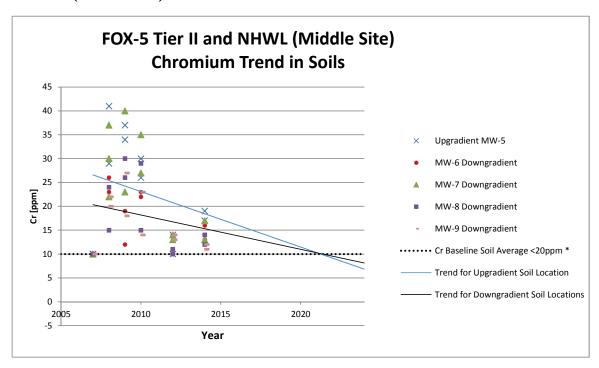



FOX-5 Qikiqtarjuaq (Broughton Island) Tier II Disposal Facility and Non-Hazardous Waste Landfill (Middle Site)- Landfill Trends

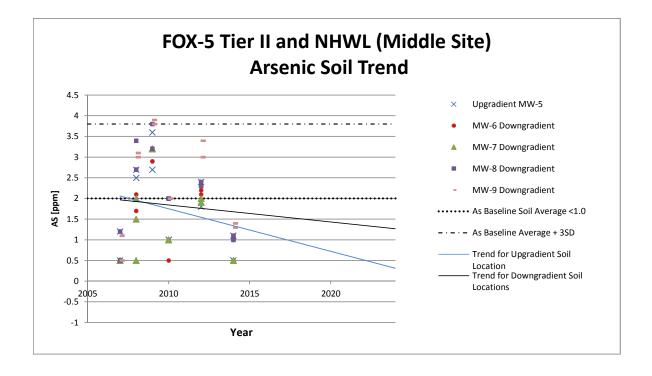




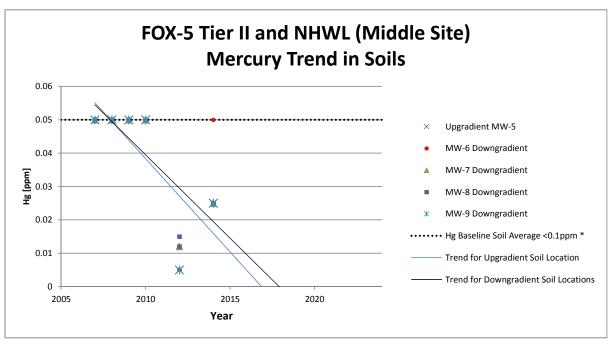

<sup>\*</sup> Cd Baseline SD = 0, all Cd results below detection. Changes in detection limit cause change in trend.


FOX-5 Qikiqtarjuaq (Broughton Island) Tier II Disposal Facility and Non-Hazardous Waste Landfill (Middle Site)- Landfill Trends



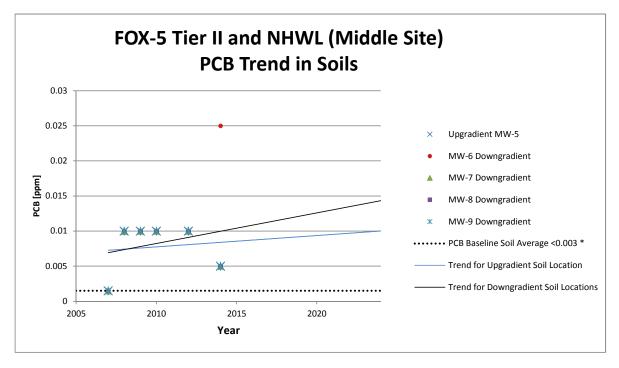

<sup>\*</sup> Pb Baseline Standard Deviation = 0




FOX-5 Qikiqtarjuaq (Broughton Island) Tier II Disposal Facility and Non-Hazardous Waste Landfill (Middle Site)- Landfill Trends

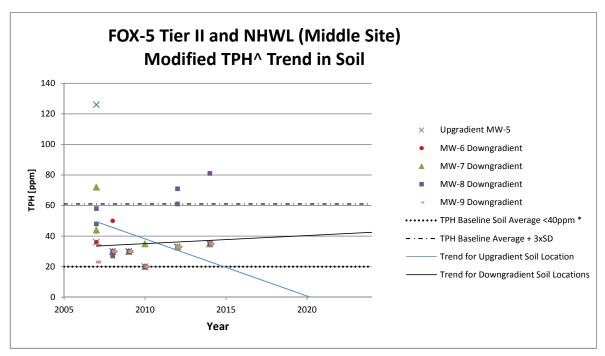


<sup>\*</sup> Cr Baseline Standard Deviation = 0




FOX-5 Qikiqtarjuaq (Broughton Island) Tier II Disposal Facility and Non-Hazardous Waste Landfill (Middle Site)- Landfill Trends

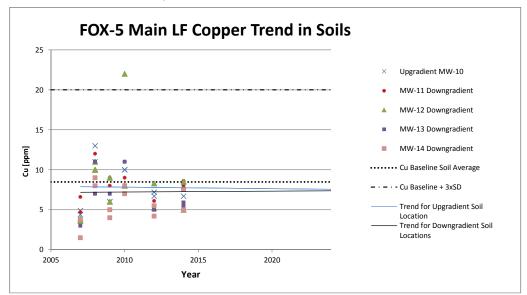


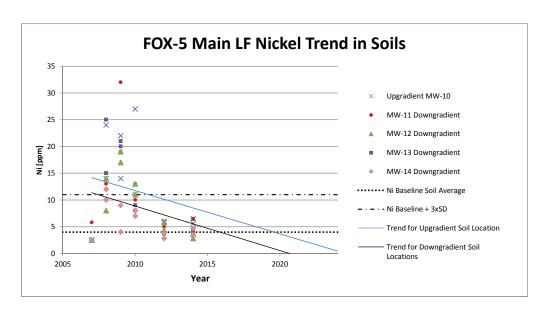

<sup>\*</sup> Hg Baseline SD = 0 Detectable Hg seen in 2012 but at levels lower than detection limits from earlier years.

All previous years showed no detectable Hg

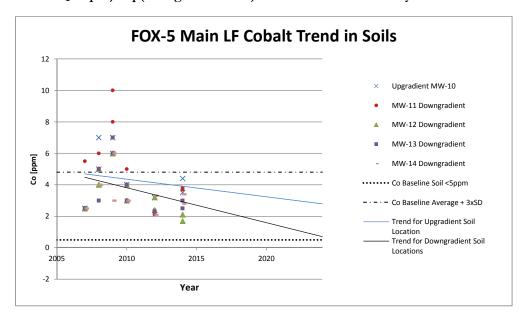


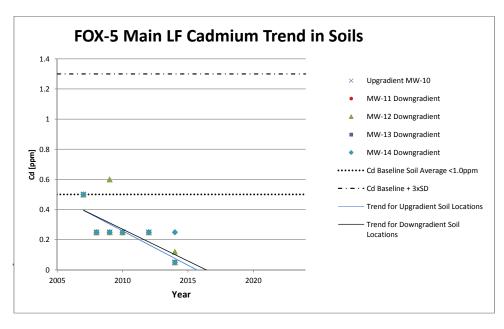
<sup>\*</sup> PCB Baseline SD = 0 All PCB Monitoring Results below detection. Trend reflects changes in detection limits.


FOX-5 Qikiqtarjuaq (Broughton Island) Tier II Disposal Facility and Non-Hazardous Waste Landfill (Middle Site)- Landfill Trends

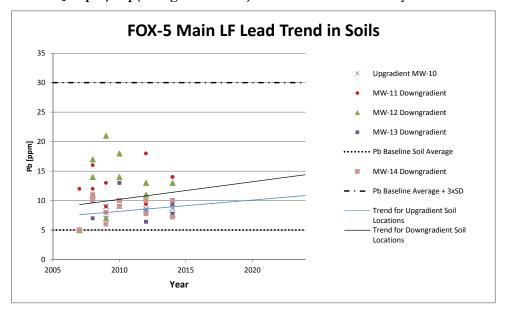


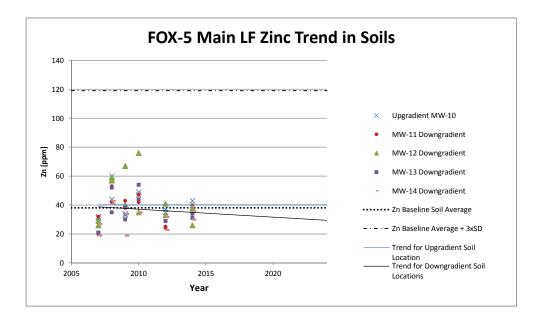

<sup>^</sup> Baseline samples from 2002 were analyzed as TPH, results from 2003 and later are Sum of PHC F1-F3 fractions.


#### FOX-5 Qikiqtarjuaq (Broughton Island) Main Landfill - Summary of 2007-2024 Soil Charts

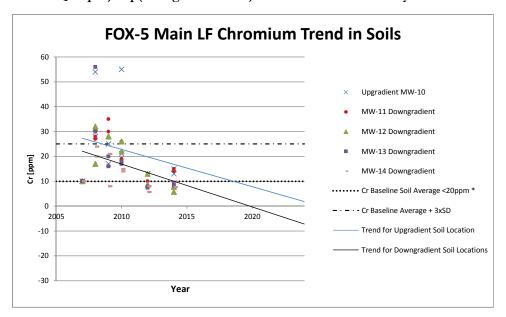

Where results are below detection, half of the detection limit has been used in the charts.

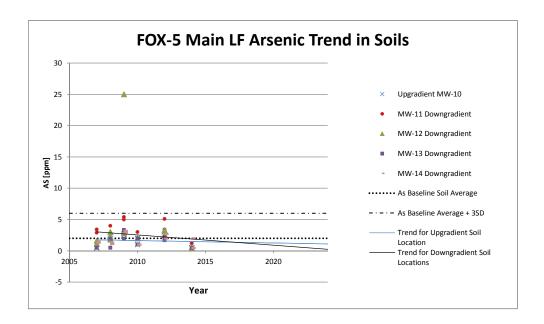




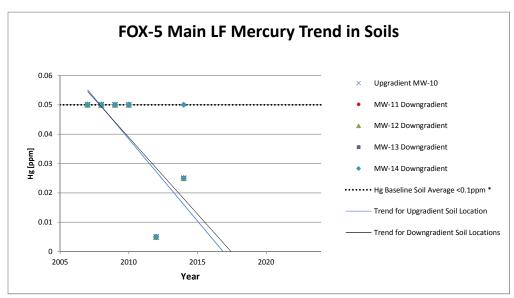


FOX-5 Qikiqtarjuaq (Broughton Island) Main Landfill - Summary of 2007-2024 Soil Charts



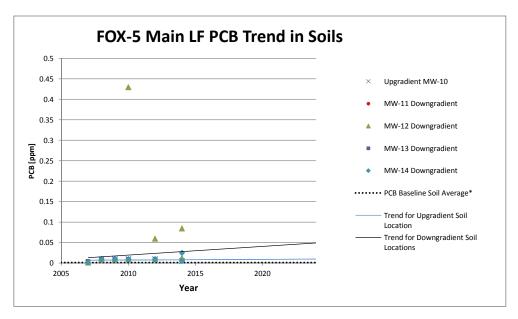




FOX-5 Qikiqtarjuaq (Broughton Island) Main Landfill - Summary of 2007-2024 Soil Charts



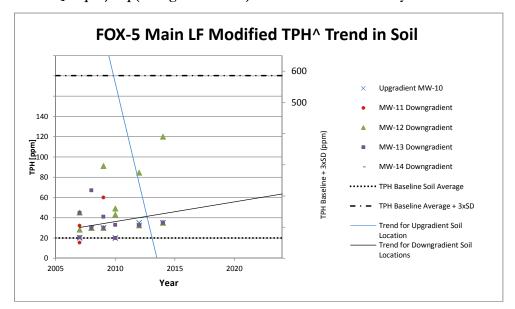



FOX-5 Qikiqtarjuaq (Broughton Island) Main Landfill - Summary of 2007-2024 Soil Charts





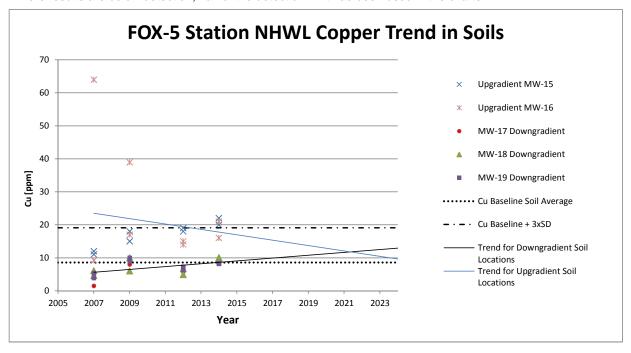

FOX-5 Qikiqtarjuaq (Broughton Island) Main Landfill - Summary of 2007-2024 Soil Charts

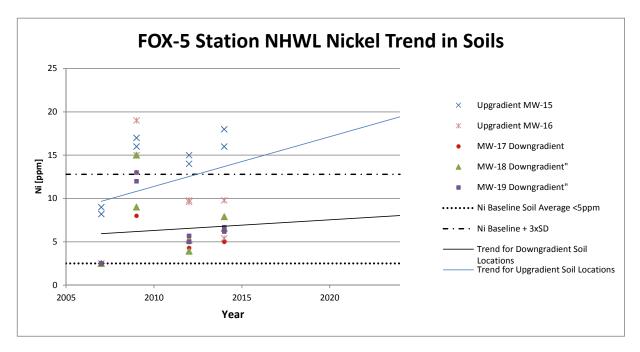



<sup>\*</sup> Hg Baseline SD = 0 All Hg results below detection. Trend reflects changes in detection limits.

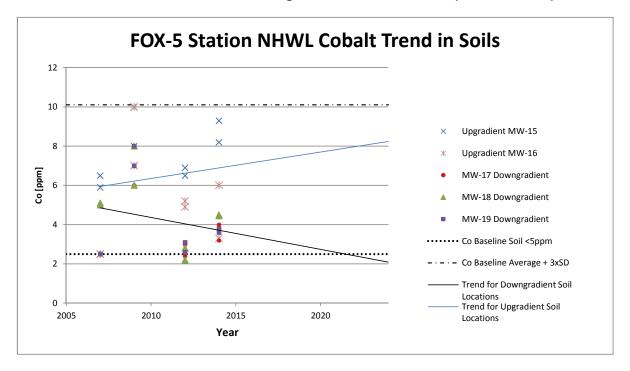


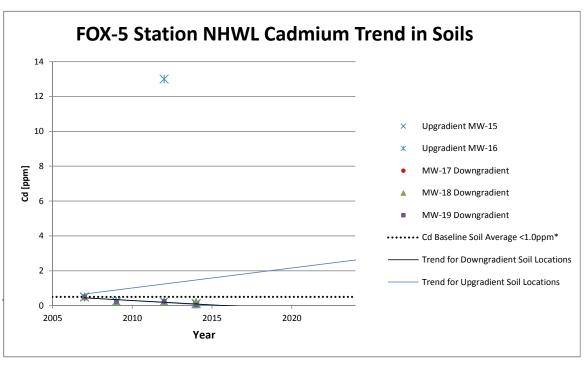
<sup>\*</sup> PCB Baseline SD = 0


FOX-5 Qikiqtarjuaq (Broughton Island) Main Landfill - Summary of 2007-2024 Soil Charts



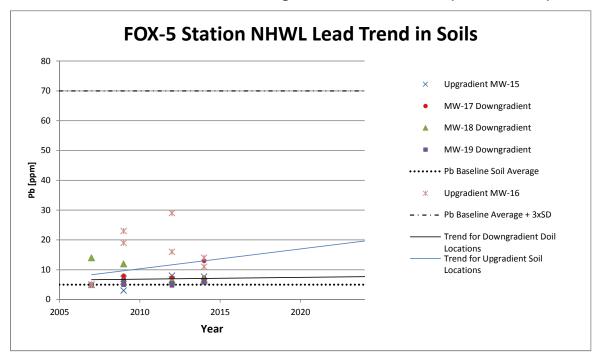

<sup>^</sup> Baseline samples from 2002 and earlier were analyzed as TPH, results from 2003 and later are Sum of PHC F1-F3 fraction

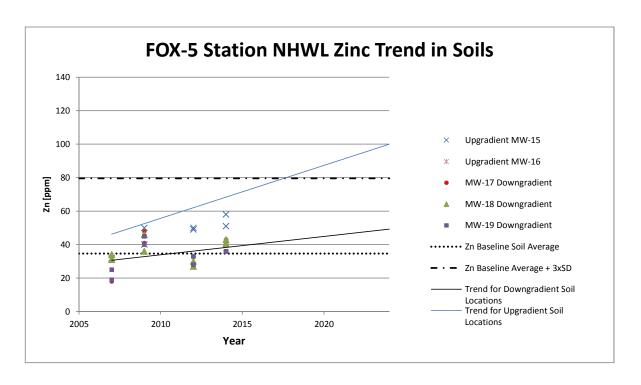

### FOX-5 Station NHWL Trends in Soil Inorganics, PCBs and PHCs (modified TPH)


Where results are below detection, half of the detection limit has been used in the charts.

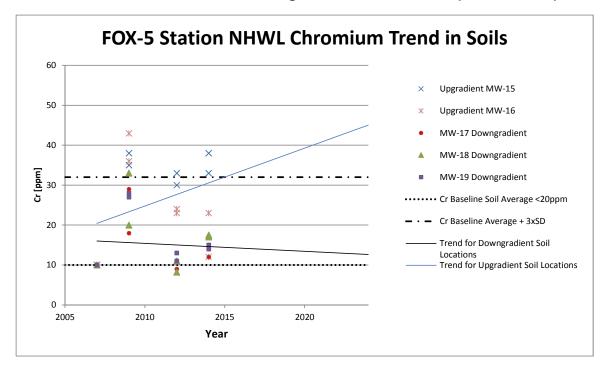


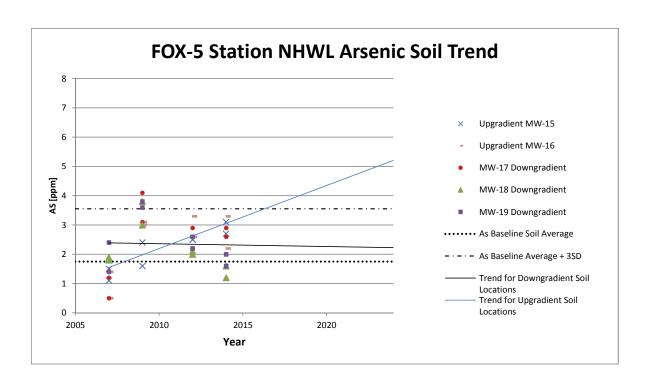



FOX-5 Station NHWL Trends in Soil Inorganics, PCBs and PHCs (modified TPH)

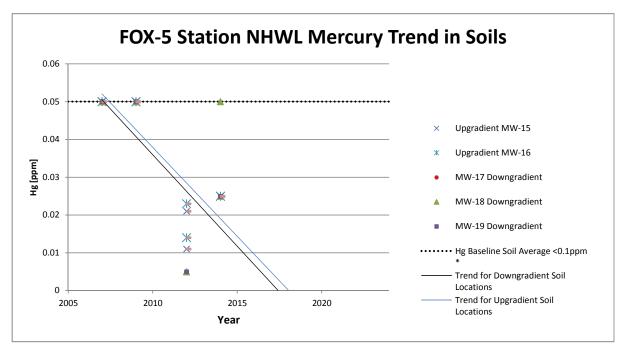




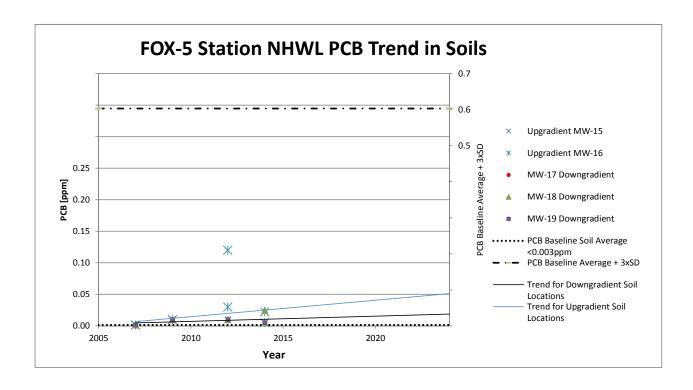


<sup>\*</sup> Cd Baseline SD = 0


FOX-5 Station NHWL Trends in Soil Inorganics, PCBs and PHCs (modified TPH)

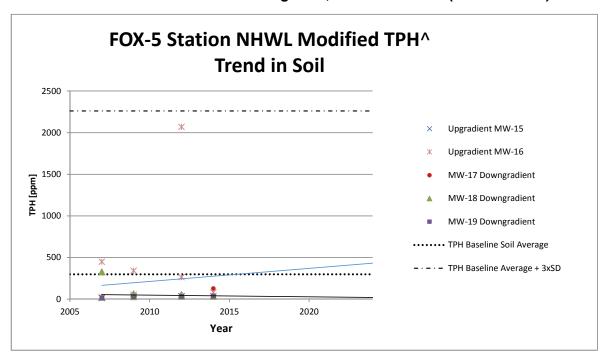




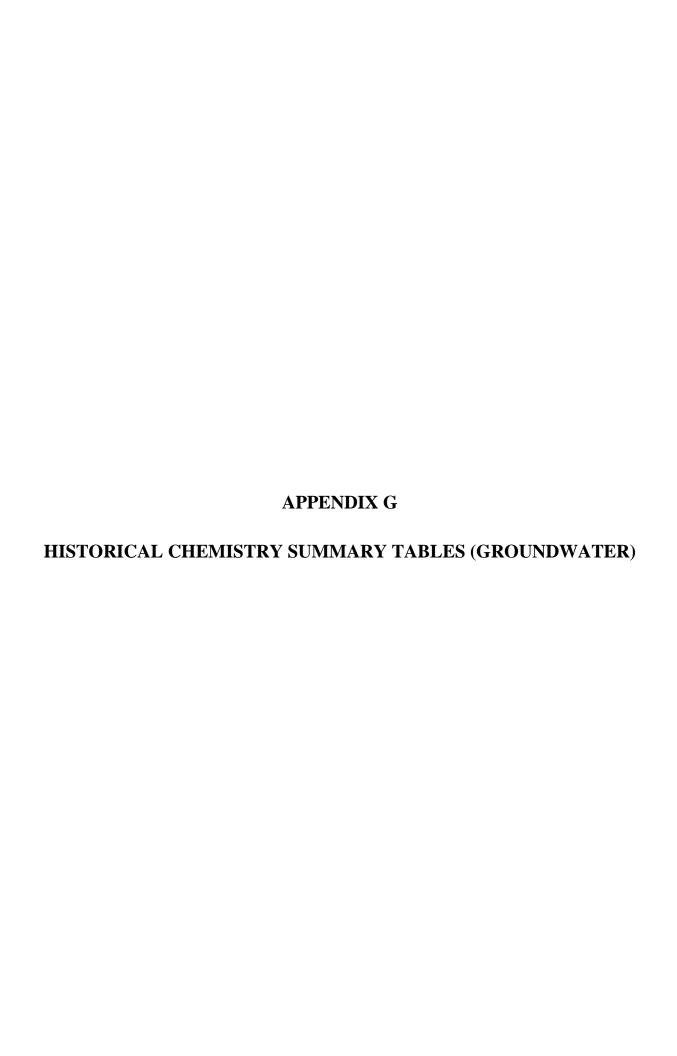

FOX-5 Station NHWL Trends in Soil Inorganics, PCBs and PHCs (modified TPH)







#### FOX-5 Station NHWL Trends in Soil Inorganics, PCBs and PHCs (modified TPH)




<sup>\*</sup> Hg Baseline SD = 0



FOX-5 Station NHWL Trends in Soil Inorganics, PCBs and PHCs (modified TPH)



<sup>^</sup> Baseline samples from 2002 and earlier were analyzed as TPH, results from 2003 and later are Sum of PHC F1-F3 fractions.



FOX-5 Qikiqtarjuaq (Broughton Island) Tier II Facility and NHWL (Middle Site) Groundwater Summary F2  $C_{10}$ C10-C16 C<sub>16</sub>-C<sub>34</sub> Modified TPH Monitoring Monitoring TPH Identity Sample ID Location Year Phase Cu Ni Co\* Cd\* Pb\* Zn Cr As\* Hg\* Total PCBs\* Total C6-C34 Year % Lube [mg/L] [mg/L] % Fuel Oil Oil [mg/L] [mg/L] [mg/L] [mg/L] [mg/L] [mg/L] [mg/L] [mg/L] Baseline Data - Average 0.012 0.043 0.003 0.001 0.01 0.063 0.084 0.003 0.0004 0.00002 1 Baseline Data - Standard Deviation 0.009 0.048 0.001 0.098 0.092 0 0 Baseline Data Average + 3xSD 0.03917 0.18744 0.006 0.001 0.3571 0.003 0.00002 0.01 0.36 0.0004 Detection Limit < 0.0010 < 0.010 < 0.010 < 0.0010 < 0.00040 < 0.000020 <1.0 < 0.0020 < 0.0030 < 0.0030 \* If baseline average was below the detection limit, the average has been modified to match the detection limit value. Monitoring Data Total TPH will appear when F1, F2, F3 fractions are entered MW-5 Upgradient < 0.0030 24724 MW 5 0.012 0.044 < 0.0010 < 0.010 < 0.00040 < 0.000020 < 0.050 < 1.0 2007 Phase I < 0.0030 0.086 0.089 < 0.50 210808-148-FOX-5 MW 5 2008 Phase I 0.011 < 0.005 0.001 < 0.0001 0.002 0.020 0.002 < 0.001 < 0.0001 < 0.0001 0.300 F509-5W MW 5 2009 Phase I 0.002 < 0.005 0.000 0.000 < 0.001 < 0.01 0.002 < 0.001 < 0.0001 < 0.0001 < 0.2 < 0.2 < 0.2 0.300 7510-5W MW 5 2010 Phase I 0.004 < 0.005 0.000 0.000 < 0.001 < 0.001 < 0.001 < 0.0001 < 0.0001 < 0.1 < 0.1 < 0.2 0.200 12-19540/41 Phase I 0.003 0.004 0.001 < 0.00010 0.001 0.013 0.004 < 0.0010 < 0.00010 < 0.000020 < 0.025 < 0.10 < 0.25 0.188 5-MID-MW-5 MW-5 2014 Phase II 0.009 0.021 0.002 0.000 0.004 0.028 0.036 0.001 < 0.00001 < 0.00005 < 0.025 < 0.1 < 0.2 0.163 2016 Phase II #N/A 2031 25 Phase II #N/A Phase III #N/A #N/A #N/A Downgradient MW-6 24729 MW 6 0.018 0.100 0.210 < 0.000020 2007 Phase I < 0.0030 < 0.0010 < 0.010 0.039 < 0.0030 < 0.00040 < 0.050 < 0.50 < 1.0 0.775 210808-145-FOX5 MW 6 2008 Phase I 0.001 < 0.005 < 0.0002 < 0.0001 < 0.001 < 0.01 < 0.001 < 0.001 < 0.0001 < 0.0001 < 0.2 < 0.2 < 0.2 0.300 3509-6W MW 6 2009 3 Phase I 0.001 < 0.005 0.000 0,000 < 0.001 0.070 0.001 < 0.001 < 0.0001 < 0.0001 < 0.2 < 0.2 < 0.2 0.300 MW 6 510-6W 2010 Phase I 0.002 < 0.005 < 0.0002 0.001 < 0.001 0.020 < 0.001 < 0.001 < 0.0001 < 0.0001 < 0.1 < 0.1 < 0.2 0.200 2-19542 MW 6 2012 0.002 0.003 < 0.00050 < 0.00010 0.008 0.003 < 0.0010 < 0.000020 < 0.025 < 0.10 < 0.25 0.188 Phase I < 0.0010 < 0.00010 No sample collected - well was dry 2014 Phase II #N/A Phase II #N/A Phase II 2031 Phase II #N/A Phase III #N/A #N/A #N/A MW-7 MW 7 < 0.000020 < 0.050 0.775 24734 2007 Phase I 0.017 0.076 0.004 < 0.0010 < 0.010 0.032 0.140 < 0.0030 < 0.00040 < 0.50 < 1.0 210808-142-FOX5 MW 7 2008 Phase I 0.006 < 0.0004 < 0.0001 < 0.001 < 0.01 0.002 < 0.001 < 0.0001 < 0.0001 < 0.2 < 0.2 0.300 MW 7 3509-7W 2009 Phase I 0.001 < 0.005 < 0.0002 < 0.0001 < 0.001 < 0.01 0.002 < 0.001 < 0.0001 < 0.0001 < 0.2 < 0.2 0,300 < 0.2 510-7W MW-7 2010 < 0.005 < 0.0002 < 0.0001 < 0.01 0.002 < 0.001 0.7 0.800 Phase I 0.003 < 0.001 < 0.0001 < 0.0001 < 0.1 < 0.1 MW-7 - dry 2012 #N/A Phase I 2014 No sample collected - well was dry Phase II #N/A 2016 Phase II #N/A 2021 Phase II #N/A 2031 Phase II Phase III #N/A

#N/A

FOX-5 Qikiqtarjuaq (Broughton Island) Tier II Facility and NHWL (Middle Site) Groundwater Summary

| FOX-5 Qikiqtarju | aq (Broughton Is | land) I ie | er II Facı         | lity and I          | NHWL    | (Miaa   | ne Site)  | Ground    | awater : | Summa   | ry       |          |           |             |                     |                                        |                                        |                                |              |                   |
|------------------|------------------|------------|--------------------|---------------------|---------|---------|-----------|-----------|----------|---------|----------|----------|-----------|-------------|---------------------|----------------------------------------|----------------------------------------|--------------------------------|--------------|-------------------|
| Sample ID        | Location         | Year       | Monitoring<br>Year | Monitoring<br>Phase | Cu      | Ni      | Co*       | Cd*       | Pb*      | Zn      | Cr       | As*      | Hg*       | Total PCBs* | F1 C <sub>6</sub> - | F2<br>C <sub>10</sub> -C <sub>16</sub> | F3<br>C <sub>16</sub> -C <sub>34</sub> | Modified TPH -<br>Total C6-C34 | ТРН І        | dentity<br>% Lube |
|                  |                  |            |                    |                     | [ma/L]  | [mg/L]  | [mg/L]    | [mg/L]    | [mg/L]   | [mg/L]  | [mg/L]   | [mg/L]   | [mg/L]    | [mg/L]      | [mg/L]              | [mg/L]                                 | [mg/L]                                 | [mg/L]                         | % Fuel Oil   |                   |
|                  | MW-8             |            | 1                  |                     | [mg/L]  | [mg/L]  | [Hig/L]   | [IIIg/L]  | [mg/L]   | [Hig/L] | [HIg/ L] | [HIg/L]  | [mg/L]    | [Hig/L]     | [Hig/L]             | [Hig/L]                                | [IIIg/ L]                              | [IIIg/L]                       | 70 I uci Oli | Oli               |
| 24739            | MW 8             | 2007       | 1                  | Phase I             | 0.015   | 0.062   | < 0.0030  | < 0.0010  | < 0.010  | 0.180   | 0.120    | < 0.0030 | < 0.00040 | < 0.000020  | < 0.050             | < 0.50                                 | < 1.0                                  | 0.775                          |              |                   |
| 210808-137-FOX5  | MW 8             | 2008       | 2                  | Phase I             | 0,003   | < 0.005 | < 0.0002  | 0.000     | < 0.001  | 0.030   | 0.001    | < 0.001  | < 0.0001  | < 0.0001    | <0.2                | < 0.2                                  | <0.2                                   | 0,300                          |              |                   |
| 210808-138-FOX5  | MW 8             | 2008       | 2                  | Phase I             | 0.003   | < 0.005 | < 0.0002  | 0.000     | < 0.001  | 0.010   | < 0.001  | < 0.001  | < 0.0001  | < 0.0001    | < 0.2               | < 0.2                                  | < 0.2                                  | 0.300                          |              |                   |
| F509-8W          | MW 8             | 2009       | 3                  | Phase I             | < 0.001 | < 0.005 | < 0.0002  | 0.000     | < 0.001  | 0.040   | < 0.001  | < 0.001  | < 0.0001  | < 0.0001    | < 0.2               | < 0.2                                  | < 0.2                                  | 0.300                          |              |                   |
| F510-8W          | MW 8             | 2010       | 4                  | Phase I             | 0.009   | < 0.005 | 0.000     | 0.001     | < 0.001  | 0.020   | < 0.001  | < 0.001  | < 0.0001  | < 0.0001    | < 0.1               | < 0.1                                  | < 0.2                                  | 0.200                          |              |                   |
| 12-19543         | MW 8             | 2012       | 6                  | Phase I             | 0.002   | 0.003   | < 0.00050 | < 0.00010 | < 0.0010 | 0.012   | 0.004    | < 0.0010 | < 0.00010 | < 0.000020  | < 0.025             | < 0.10                                 | < 0.25                                 | 0.188                          |              |                   |
| F5-MID-MW-8      | MW-8             | 2014       | 8                  | Phase II            | 0.004   | 0.012   | 0.002     | 0.000     | 0.002    | 0.037   | 0.020    | 0.001    | < 0.00001 | < 0.00005   | < 0.025             | < 0.1                                  | < 0.2                                  | 0.163                          |              |                   |
|                  |                  | 2016       | 10                 | Phase II            |         |         |           |           |          |         |          |          |           |             |                     |                                        |                                        | #N/A                           |              |                   |
|                  |                  | 2021       | 15                 | Phase II            |         |         |           |           |          |         |          |          |           |             |                     |                                        |                                        | #N/A                           |              |                   |
|                  |                  | 2031       | 25                 | Phase II            |         |         |           |           |          |         |          |          |           |             |                     |                                        |                                        | #N/A                           |              |                   |
|                  |                  |            |                    | Phase III           |         |         |           |           |          |         |          |          |           |             |                     |                                        |                                        | #N/A                           |              |                   |
|                  |                  |            |                    |                     |         |         |           |           |          |         |          |          |           |             |                     |                                        |                                        | #N/A                           |              |                   |
|                  |                  |            |                    |                     |         |         |           |           |          |         |          |          |           |             |                     |                                        |                                        | #N/A                           |              |                   |
|                  |                  |            |                    |                     |         |         |           |           |          |         |          |          |           |             |                     |                                        |                                        | #N/A                           |              |                   |
|                  | MW-9             |            |                    |                     |         |         |           |           |          |         |          |          |           |             |                     |                                        |                                        |                                |              |                   |
| 24744            | MW 9             | 2007       | 1                  | Phase I             | 0.029   | 0.100   | < 0.0030  | < 0.0010  | < 0.010  | 0.042   | 0.200    | < 0.0030 | < 0.00040 | < 0.000020  | < 0.050             | < 0.50                                 | < 1.0                                  | 0.775                          |              |                   |
| 210808-134-FOX5  | MW 9             | 2008       | 2                  | Phase I             | 0.007   | < 0.005 | 0.001     | 0.000     | < 0.001  | 0.020   | < 0.001  | < 0.001  | < 0.0001  | < 0.0001    | < 0.2               | < 0.2                                  | < 0.2                                  | 0.300                          |              |                   |
| F509-9W          | MW 9             | 2009       | 3                  | Phase I             | 0.001   | < 0.005 | < 0.0002  | < 0.0001  | < 0.001  | < 0.01  | < 0.001  | < 0.001  | < 0.0001  | < 0.0001    | < 0.2               | < 0.2                                  | < 0.2                                  | 0.300                          |              |                   |
| F510-9W          | MW 9             | 2010       | 4                  | Phase I             | 0.003   | < 0.005 | < 0.0002  | 0.000     | < 0.001  | < 0.01  | < 0.001  | < 0.001  | < 0.0001  | < 0.0001    | < 0.1               | < 0.1                                  | < 0.2                                  | 0.200                          |              |                   |
| 12-19544         | MW 9             | 2012       | 6                  | Phase I             | 0.002   | 0.003   | < 0.00050 | < 0.00010 | < 0.0010 | 0.006   | 0.003    | < 0.0010 | < 0.00010 | < 0.000020  | < 0.025             | < 0.10                                 | < 0.25                                 | 0.188                          |              |                   |
| F5-MID-MW-9      | MW-9             | 2014       | 8                  | Phase II            | 0.014   | 0.023   | 0.002     | 0.000     | 0.003    | 0.064   | 0.036    | 0.001    | < 0.00001 | < 0.00005   | < 0.025             | < 0.1                                  | < 0.2                                  | 0.163                          |              |                   |
|                  |                  | 2016       | 10                 | Phase II            |         |         |           |           |          |         |          |          |           |             |                     |                                        |                                        | #N/A                           |              | <u> </u>          |
|                  |                  | 2021       | 15                 | Phase II            |         |         |           |           |          |         |          |          |           |             |                     |                                        |                                        | #N/A                           |              | <u> </u>          |
|                  |                  | 2031       | 25                 | Phase II            |         |         |           |           |          |         |          |          |           |             |                     |                                        |                                        | #N/A                           |              |                   |
|                  |                  |            |                    | Phase III           |         |         |           |           |          |         |          |          |           |             |                     |                                        |                                        | #N/A                           |              |                   |
|                  |                  |            |                    |                     |         |         |           |           |          |         |          |          |           |             |                     |                                        |                                        | #N/A                           |              |                   |
|                  |                  |            |                    |                     |         |         |           |           |          |         |          |          |           |             |                     |                                        |                                        | #N/A                           |              |                   |
|                  |                  |            |                    |                     |         |         |           |           |          |         |          |          |           |             |                     |                                        |                                        | #N/A                           | 1            |                   |

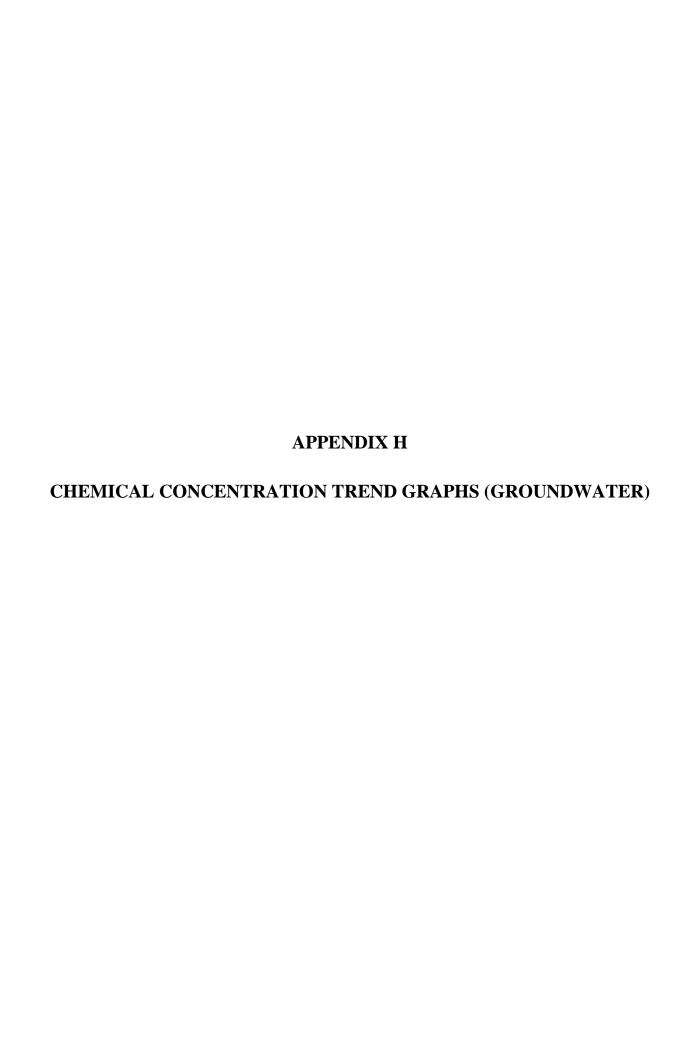
<sup>^</sup>Note: Total Hydrocarbons (C<sub>6</sub>-C<sub>34</sub>) has been calculated by adding results for F1, F2 and F3.

FOX-5 Broughton Island Main Landfill - Summary of Groundwater Analytical Data

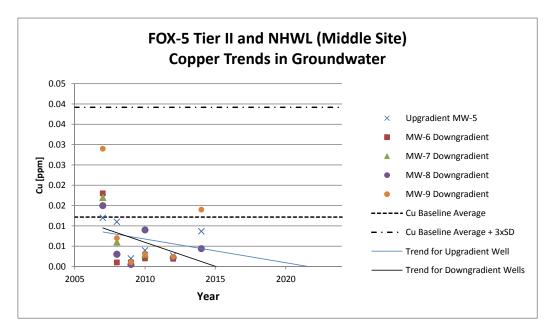
| FUX-5 Broughton Isla                     | and Main Lan           | uiii - Su   | iiiiiaiy o         | Giodila             | water     | amaryu       | Cai Dai   | a         |          |         |          |          |           | 1              |                   |                                        |                                        |                                |            |                                                  |
|------------------------------------------|------------------------|-------------|--------------------|---------------------|-----------|--------------|-----------|-----------|----------|---------|----------|----------|-----------|----------------|-------------------|----------------------------------------|----------------------------------------|--------------------------------|------------|--------------------------------------------------|
| Sample IID                               | Location               | Year        | Monitoring<br>Year | Monitoring<br>Phase | Cu        | Ni           | Co*       | Cd*       | Pb*      | Zn      | Cr       | As*      | Hg*       | Total PCBs*    | F1 C <sub>6</sub> | F2<br>C <sub>10</sub> -C <sub>16</sub> | F3<br>C <sub>16</sub> -C <sub>34</sub> | Modified TPH -<br>Total C6-C34 | ТРН І      | dentity                                          |
|                                          |                        |             |                    |                     | [mg/L]    | [mg/L]       | [mg/L]    | [mg/L]    | [mg/L]   | [mg/L]  | [mg/L]   | [mg/L]   | [mg/L]    | [mg/L]         | [mg/L]            | [mg/L]                                 | [mg/L]                                 | [mg/L]                         | % Fuel Oil | % Lube<br>Oil                                    |
| Baseline Data - Average                  |                        | •           |                    |                     | 0.062     | 0.047        | 0.003     | 0.001     | 0.01     | 0.11    | 0.084    | 0.003    | 0.0004    | 0.00002        |                   |                                        |                                        | 1                              |            |                                                  |
| Baseline Data - Standard Deviation       | n .                    |             |                    |                     | 0.069     | 0.036        | 0.015     | 0.001     | 0        | 0.138   | 0.101    | 0.0046   | 0         | 0              |                   |                                        |                                        | 0                              |            |                                                  |
| Baseline Data Average + 3xSD             | y**                    |             |                    |                     | 0.27      | 0.16         | 0.048     | 0.001     | 0.01     | 0.52    | 0.39     | 0.017    | 0.0004    | 0.00002        |                   |                                        |                                        | 1                              |            |                                                  |
| Detection Limit                          |                        |             |                    |                     | < 0.0010  | <0.0020      | <0.0030   | < 0.001   | < 0.010  | < 0.010 | < 0.0010 | <0.0030  | <0.0004   | <0.00002       |                   |                                        |                                        | <1.0                           |            |                                                  |
| * If baseline average was below th       | he detection limit the | average has | heen modifier      | d to match the      |           |              |           | <0.0010   | <0.010   | <0.010  | <0.0010  | <0.0030  | ×0.00040  | <0.000020      |                   |                                        |                                        | <1.0                           |            |                                                  |
| Monitoring Data                          | ic detection mini, the | average nas | been mounte        | i to maten in       | detection | i inini vana |           |           |          |         |          | l        |           |                |                   |                                        |                                        |                                |            |                                                  |
| Upgradient                               |                        |             |                    |                     |           |              |           |           |          |         |          |          | Total TI  | PH will appear | when F1, F2,      | F3 fractions                           | are entered                            |                                |            |                                                  |
|                                          | MW-10                  |             |                    |                     |           |              |           |           |          |         |          |          |           |                |                   |                                        |                                        |                                |            |                                                  |
| 24749/97                                 | MW 10                  | 2007        | 1                  | Phase I             | 0.014     | 0.067        | 0.004     | < 0.0010  | < 0.010  | 0.026   | 0.13     | < 0.0030 | < 0.00040 | < 0.000020     | < 0.050           | < 0.50                                 | < 1.0                                  | 0.8                            |            |                                                  |
| 200808-130-FOX5                          | MW-10                  | 2007        | 2                  | Phase I             | 0.001     | <0.007       | <0.004    | 0.00010   | < 0.001  | 0.020   | 0.001    | < 0.0030 | < 0.00040 | < 0.000020     | < 0.030           | < 0.2                                  | <0.2                                   | 0.3                            |            |                                                  |
| F509-10W                                 | MW-10<br>MW 10         | 2008        | 3                  | Phase I             | < 0.001   | < 0.005      | <0.0002   | 0.00010   | < 0.001  | 0.01    | < 0.001  | < 0.001  | < 0.0001  | < 0.0001       | <0.2              | <0.2                                   | <0.2                                   | 0.3                            |            | -                                                |
| F510-10W                                 | MW10<br>MW10           | 2010        | 4                  | Phase I             | < 0.001   | < 0.005      | <0.0002   | 0.00010   | < 0.001  | < 0.07  | <0.001   | < 0.001  | < 0.0001  | <0.0001        | <0.2              | <0.2                                   | <0.2                                   | 0.2                            |            | <del>                                     </del> |
| 12-19550/51                              | MW-10                  | 2010        | 6                  |                     | 0.002     |              |           | <0.00020  |          |         | 0.0073   | <0.001   | <0.0001   | <0.0001        |                   | <0.10                                  |                                        | 0.2                            |            |                                                  |
| No sample collected - well was dry       | MW-10                  | 2012        | 8                  | Phase I<br>Phase II | 0.002     | 0.004        | 0.001     | <0.00010  | < 0.0010 | 0.011   | 0.0073   | <0.0010  | < 0.00010 | <0.000020      | < 0.025           | <0.10                                  | < 0.25                                 | 0.2<br>#N/A                    |            |                                                  |
| 140 sample concered - wen was dry        |                        | 2014        | 10                 | Phase II            |           |              |           |           |          |         |          |          |           |                |                   |                                        |                                        | #N/A                           |            |                                                  |
|                                          |                        | 2016        | 15                 | Phase II            |           |              |           |           |          |         |          |          |           |                |                   |                                        |                                        | #N/A                           |            |                                                  |
|                                          |                        | 2021        | 25                 | Phase II            |           |              |           |           |          |         |          |          |           |                |                   |                                        |                                        | #N/A                           |            |                                                  |
|                                          |                        | 2031        | 25                 |                     |           |              |           |           |          |         |          |          |           |                |                   |                                        |                                        | #N/A                           |            |                                                  |
|                                          |                        |             |                    | Phase III           |           |              |           |           |          |         |          |          |           |                |                   |                                        |                                        | #N/A<br>#N/A                   |            |                                                  |
|                                          |                        |             |                    |                     |           |              |           |           |          |         |          |          |           |                |                   |                                        |                                        |                                |            |                                                  |
|                                          |                        |             |                    |                     |           |              |           |           |          |         |          |          |           |                |                   |                                        |                                        | #N/A                           |            |                                                  |
| Ddi                                      |                        |             |                    |                     |           |              |           |           |          |         |          |          |           |                |                   |                                        |                                        | #N/A                           |            |                                                  |
| Downgradient                             | 2.5777.44              | 1           | 1                  |                     |           |              |           |           |          |         |          |          |           |                |                   |                                        |                                        |                                |            |                                                  |
|                                          | MW-11                  |             |                    |                     |           |              |           |           |          |         |          |          |           |                |                   |                                        |                                        |                                |            |                                                  |
| 24754                                    | MW 11                  | 2007        | 1                  | Phase I             | 0.012     | 0.081        | < 0.0030  | < 0.0010  | < 0.010  | 0.012   | 0.16     | < 0.0030 | < 0.00040 | < 0.000020     | < 0.050           | < 0.50                                 | < 1.0                                  | 0.8                            |            |                                                  |
| 200808-118-FOX-5                         | MW-11                  | 2008        | 2                  | Phase I             | 0.002     | 0.006        | 0.000     | 0.0006    | < 0.001  | 0.01    | 0.01     | < 0.001  | < 0.0001  | < 0.0001       | < 0.2             | < 0.2                                  | < 0.2                                  | 0.3                            |            |                                                  |
| F509-11W                                 | MW 11                  | 2009        | 3                  | Phase I             | < 0.001   | < 0.005      | < 0.0002  | 0.001     | < 0.001  | < 0.01  | < 0.001  | < 0.001  | < 0.0001  | < 0.0001       | < 0.2             | < 0.2                                  | < 0.2                                  | 0.3                            |            |                                                  |
| F510-11W                                 | MW-11                  | 2010        | 4                  | Phase I             | 0.001     | < 0.005      | < 0.0002  | 0.0006    | < 0.001  | < 0.01  | < 0.001  | < 0.001  | < 0.0001  | < 0.0001       | < 0.1             | < 0.1                                  | < 0.2                                  | 0.2                            |            |                                                  |
| 12-199554                                | MW-11                  | 2012        | 6                  | Phase I             | 0.001     | 0.006        | < 0.00050 | < 0.00010 | < 0.0010 | 0.0045  | 0.0059   | < 0.0010 | < 0.00010 | < 0.000020     | < 0.025           | < 0.10                                 | < 0.25                                 | 0.2                            |            |                                                  |
| No sample collected - insufficient water |                        | 2014        | 8                  | Phase II            |           |              |           |           |          |         |          |          |           |                |                   |                                        |                                        | #N/A                           |            |                                                  |
|                                          |                        | 2016        | 10                 | Phase II            |           |              |           |           |          |         |          |          |           |                |                   |                                        |                                        | #N/A                           |            |                                                  |
|                                          |                        | 2021        | 15                 | Phase II            |           |              |           |           |          |         |          |          |           |                |                   |                                        |                                        | #N/A                           |            |                                                  |
|                                          |                        | 2031        | 25                 | Phase II            |           |              |           |           |          |         |          |          |           |                |                   |                                        |                                        | #N/A                           |            |                                                  |
|                                          |                        |             |                    | Phase III           |           |              |           |           |          |         |          |          |           |                |                   |                                        |                                        | #N/A                           |            |                                                  |
|                                          |                        |             |                    |                     |           |              |           |           |          |         |          |          |           |                |                   |                                        |                                        | #N/A                           |            | -                                                |
|                                          |                        | -           |                    |                     |           |              |           |           |          |         |          |          |           |                |                   |                                        |                                        | #N/A                           |            | -                                                |
|                                          | 1.5W/ 40               |             |                    |                     |           |              |           |           |          |         |          |          |           |                |                   |                                        |                                        | #N/A                           |            | -                                                |
|                                          | MW-12                  |             |                    |                     |           |              |           |           |          |         |          |          |           |                |                   |                                        |                                        |                                |            | -                                                |
| 24759                                    | MW 12 - dry            | 2007        | 1                  | Phase I             |           |              |           |           |          |         |          |          |           |                |                   |                                        |                                        | #N/A                           |            | -                                                |
|                                          | MW-12 - dry            | 2008        | 2                  | Phase I             |           |              |           |           |          |         |          |          |           |                |                   |                                        |                                        | #N/A                           |            | -                                                |
| F510-12W                                 | MW-12                  | 2010        | 3                  | Phase I             | 0.005     | < 0.005      | < 0.0002  | 0.0004    | < 0.001  | 0.02    | < 0.001  | < 0.001  | < 0.0001  | < 0.0001       |                   |                                        |                                        | #N/A                           |            | -                                                |
| N 1 11 11 11 11 11 11 11 11 11 11 11 11  | MW-12 - frozen         | 2012        | 4                  | Phase I             |           |              |           |           |          |         |          |          |           |                |                   |                                        |                                        | #N/A                           |            | -                                                |
| No sample collected - well was dry       |                        | 2014        | 6                  | Phase I             |           |              |           |           |          |         |          |          |           |                |                   |                                        |                                        | #N/A                           |            |                                                  |
|                                          |                        | 2016        | 8                  | Phase II            |           |              |           |           |          |         |          |          |           |                |                   |                                        |                                        | #N/A                           |            | 1                                                |
|                                          |                        | 2021        | 10                 | Phase II            |           |              |           |           |          |         |          |          |           |                |                   |                                        |                                        | #N/A                           |            | 1                                                |
|                                          |                        | 2031        | 15                 | Phase II            |           |              |           |           |          |         |          |          |           |                |                   |                                        |                                        | #N/A                           |            |                                                  |
|                                          |                        |             | 25                 | Phase II            |           |              |           |           |          |         |          |          |           |                |                   |                                        |                                        | #N/A                           |            | -                                                |
|                                          |                        | -           |                    | Phase III           |           |              |           |           |          |         |          |          |           |                |                   |                                        |                                        | #N/A                           |            | -                                                |
|                                          |                        |             | 1                  |                     |           |              |           |           |          |         |          |          |           |                |                   |                                        |                                        | #N/A                           |            |                                                  |
| 1                                        |                        |             |                    |                     |           |              | l         |           |          |         |          |          |           |                |                   |                                        |                                        | #N/A                           |            | <u> </u>                                         |

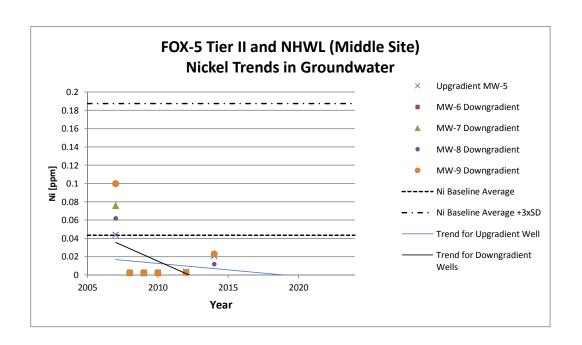
|                  |       |      |    |           |         |         |           |           |         |       |         |          |           |            |         |         |         | #N/A |   |
|------------------|-------|------|----|-----------|---------|---------|-----------|-----------|---------|-------|---------|----------|-----------|------------|---------|---------|---------|------|---|
|                  | MW-13 |      |    |           |         |         |           |           |         |       |         |          |           |            |         |         |         |      |   |
| 4764             | MW 13 | 2007 | 1  | Phase I   | 0.069   | 0.053   | 0.004     | < 0.0010  | < 0.010 | 0.23  | 0.087   | < 0.0030 | < 0.00040 | < 0.000020 | < 0.050 | < 0.50  | < 1.0   | 0.8  |   |
| 200808-124-FOX-5 | MW-13 | 2008 | 2  | Phase I   | 0.075   | 0.023   | 0.001     | 0.0003    | 0.004   | 0.07  | 0.08    | < 0.001  | < 0.0001  | < 0.0001   | < 0.2   | < 0.2   | < 0.2   | 0.3  |   |
| 7509-13W         | MW 13 | 2009 | 3  | Phase I   | 0.001   | < 0.005 | < 0.0002  | 0.0007    | < 0.001 | 0.14  | < 0.001 | < 0.001  | < 0.0001  | < 0.0001   | < 0.2   | < 0.2   | < 0.2   | 0.3  |   |
| F510-13W         | MW-13 | 2010 | 4  | Phase I   | 0.004   | < 0.005 | < 0.0002  | < 0.0001  | < 0.001 | 0.02  | 0.001   | < 0.001  | < 0.0001  | < 0.0001   | < 0.1   | 0.6     | 0.6     | 1.3  |   |
| 12-19553         | MW-13 | 2012 | 6  | Phase I   | 0.025   | < 0.020 | < 0.0050  | < 0.00090 | 0.011   | 0.061 | 0.042   | < 0.010  | < 0.00010 |            |         |         |         | #N/A |   |
| 75-MN-MW-13      | MW-13 | 2014 | 8  | Phase II  | 0.015   | 0.014   | 0.003     | 0.000     | 0.005   | 0.22  | 0.034   | 0.0014   | 0.00001   | < 0.00005  | < 0.025 | < 0.100 | < 0.100 | 0.1  |   |
|                  |       | 2016 | 10 | Phase II  |         |         |           |           |         |       |         |          |           |            |         |         |         | #N/A |   |
|                  |       | 2021 | 15 | Phase II  |         |         |           |           |         |       |         |          |           |            |         |         |         | #N/A |   |
|                  |       | 2031 | 25 | Phase II  |         |         |           |           |         |       |         |          |           |            |         |         |         | #N/A |   |
|                  |       |      |    | Phase III |         |         |           |           |         |       |         |          |           |            |         |         |         | #N/A |   |
|                  |       |      |    |           |         |         |           |           |         |       |         |          |           |            |         |         |         | #N/A |   |
|                  |       |      |    |           |         |         |           |           |         |       |         |          |           |            |         |         |         | #N/A |   |
|                  |       |      |    |           |         |         |           |           |         |       |         |          |           |            |         |         |         | #N/A |   |
|                  | MW-14 |      |    |           |         |         |           |           |         |       |         |          |           |            |         |         |         |      |   |
| 24769            | MW 14 | 2007 | 1  | Phase I   | 0.021   | 0.049   | < 0.0030  | < 0.0010  | < 0.010 | 0.089 | 0.088   | < 0.0030 | < 0.00040 | < 0.000020 | < 0.050 | < 0.50  | < 1.0   | 0.8  |   |
| 200808-127-FOX-5 | MW-14 | 2008 | 2  | Phase I   | 0.010   | 0.005   | 0.000     | 0.001     | 0.001   | 0.02  | 0.012   | < 0.001  | < 0.0001  | < 0.0001   | < 0.2   | < 0.2   | < 0.2   | 0.3  |   |
| F509-14W         | MW 14 | 2009 | 3  | Phase I   | < 0.001 | < 0.005 | < 0.0002  | 0.001     | < 0.001 | 0.2   | 0.001   | < 0.001  | < 0.0001  | < 0.0001   | < 0.2   | < 0.2   | < 0.2   | 0.3  |   |
| F510-14W         | MW-14 | 2010 | 4  | Phase I   | < 0.001 | < 0.005 | < 0.0002  | 0.0002    | < 0.001 | 0.01  | < 0.001 | < 0.001  | < 0.0001  | < 0.0001   | < 0.1   | < 0.2   | ND      | 0.2  |   |
| 2-19552          | MW-14 | 2012 | 6  | Phase I   | 0.006   | 0.006   | < 0.00050 | < 0.00010 | 0.001   | 0.041 | 0.011   | < 0.0010 | < 0.00010 | < 0.000020 | < 0.025 | < 0.10  | < 0.25  | 0.2  |   |
| 75-MN-MW-14      | MW-14 | 2014 | 8  | Phase II  | 0.003   | 0.007   | 0.001     | 0.000     | 0.002   | 0.048 | 0.015   | 0.00072  | < 0.0001  | < 0.0001   | < 0.025 | < 0.1   | < 0.1   | 0.1  |   |
|                  |       | 2016 | 10 | Phase II  |         |         |           |           |         |       |         |          |           |            |         |         |         | #N/A |   |
|                  |       | 2021 | 15 | Phase II  |         |         |           |           |         |       |         |          |           |            |         |         |         | #N/A |   |
|                  |       | 2031 | 25 | Phase II  |         |         |           |           |         |       |         |          |           |            |         |         |         | #N/A |   |
|                  |       |      |    | Phase III |         |         |           |           |         |       |         |          |           |            |         |         |         | #N/A |   |
|                  |       |      |    |           |         |         |           |           |         |       |         |          |           |            |         |         |         | #N/A |   |
|                  |       |      |    |           |         |         |           |           |         |       |         |          |           |            |         |         |         | #N/A |   |
|                  |       |      |    |           |         |         |           |           |         |       |         |          |           |            |         |         |         | #N/A | 1 |

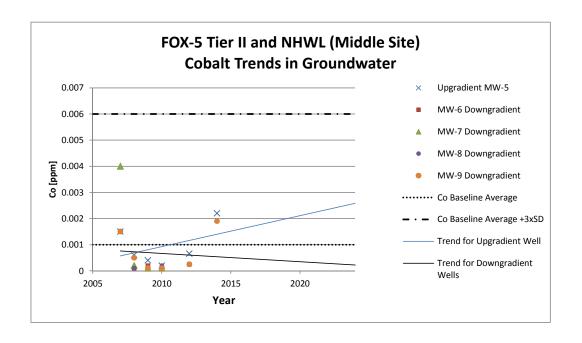
<sup>^</sup>Note: Total Hydrocarbons ( $C_6$ - $C_{34}$ ) has been calculated by adding results for F1, F2 and F3.

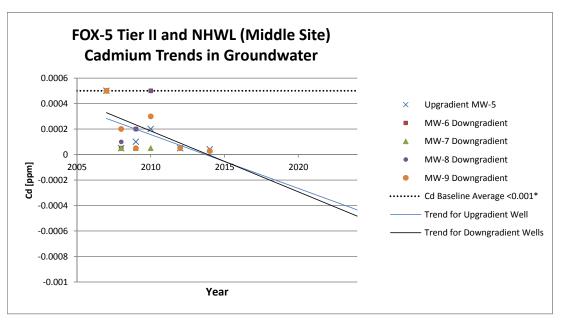

| FOX-5 Qikiqtarjuaq (                     | Broughton Is           | land) Sta     | tion NH            | WL - Sun            | nmary       | of Gro    | undwat     | er Anal    | ytical D | ata         |             |           |           |             |                   |                                        |                                        |                                |            |              |
|------------------------------------------|------------------------|---------------|--------------------|---------------------|-------------|-----------|------------|------------|----------|-------------|-------------|-----------|-----------|-------------|-------------------|----------------------------------------|----------------------------------------|--------------------------------|------------|--------------|
| Sample ID                                | Location               | Date          | Monitoring<br>Year | Monitoring<br>Phase | Cu          | Ni        | Co*        | Cd*        | Pb*      | Zn          | Cr          | As*       | Hg*       | Total PCBs* | F1 C <sub>6</sub> | F2<br>C <sub>10</sub> -C <sub>16</sub> | F3<br>C <sub>16</sub> -C <sub>34</sub> | Modified TPH -<br>Total C6-C34 | ТРН 1      | dentity      |
|                                          |                        |               |                    |                     | [mg/L]      | [mg/L]    | [mg/L]     | [mg/L]     | [mg/L]   | [mg/L]      | [mg/L]      | [mg/L]    | [mg/L]    | [mg/L]      | [mg/L]            | [mg/L]                                 | [mg/L]                                 | [mg/L]                         | % Fuel Oil | % Lub<br>Oil |
| Baseline Data - Average                  | I.                     |               |                    |                     | 0.036       | 0.075     | 0.010      | 0.001      | 0.01     | 0.097       | 0.116       | 0.003     | 0.004     | 0,00002     | 1 0/ 1            | 1.6/ 1                                 | 101                                    | 1                              |            |              |
| Baseline Data - Standard Deviati         | on                     |               |                    |                     | 0.019       | 0.037     | 0.01       | 0          | 0        | 0.075       | 0.084       | 0.002     | 0         | 0           |                   |                                        |                                        | 0                              |            |              |
| Baseline Data Average + 3xSD             | 011                    |               |                    |                     | 0.0929091   | 0.1857273 | 0.04032727 | 0.001      | 0.01     | 0.321529614 | 0.367821705 | 0.002     | 0.004     | 0.00002     |                   |                                        |                                        | 1                              |            |              |
| Detection Limit                          |                        |               |                    |                     | < 0.0010    | <0.0020   | < 0.0030   | < 0.0010   | < 0.010  | < 0.010     | < 0.0010    | < 0.0030  | < 0.00040 | < 0.000020  |                   |                                        |                                        | <1.0                           |            |              |
| * If baseline average was below t        | he detection limit, th | e average has | been modifie       | d to match th       |             |           |            | -0.0010    | -0.010   | -0.010      | -0.0010     | -0.0030   | -0.00010  | *0.000020   |                   |                                        | 1                                      | -1.0                           |            |              |
| Monitoring Data                          | ne detection mini, in  | e average mas | been moune         | u to maten in       | e detection |           | 10,        |            |          |             |             |           |           |             |                   |                                        |                                        |                                |            |              |
| 8                                        |                        |               |                    |                     |             |           |            |            |          |             |             |           |           |             |                   |                                        |                                        |                                |            |              |
| Upgradient                               |                        |               |                    |                     |             |           |            |            |          |             |             |           |           |             | Total TPH         | will appear v                          | when F1, F2,                           | F3 fractions are ent           | ered       |              |
|                                          | MW-15                  |               |                    |                     |             |           |            |            |          |             |             |           |           |             |                   |                                        |                                        |                                |            |              |
| 24779                                    | MW 15                  | 2007          | 1                  | Phase I             | 0.024       | 0.160     | 0.007      | < 0.0010   | < 0.010  | 0.052       | 0.33        | < 0.0030  | < 0.00040 | < 0.000020  | < 0.050           | < 0.50                                 | < 1.0                                  | 0.775                          |            |              |
| F509-15W                                 | MW 15                  | 2009          | 3                  | Phase I             | < 0.001     | < 0.005   | < 0.0002   | 0.001      | < 0.001  | 0.04        | < 0.001     | < 0.001   | < 0.0001  | < 0.0001    | < 0.2             | < 0.2                                  | < 0.2                                  | 0.300                          |            |              |
| 12-19545                                 | MW-15                  | 2012          | 6                  | Phase I             | < 0.010     | < 0.020   | < 0.0050   | < 0.00090  | < 0.010  | 0.032       | 0.03        | < 0.010   | < 0.00010 | < 0.000022  | < 0.025           | < 0.10                                 | 0.56                                   | 0.623                          |            |              |
| F5-SA-MW-15                              | MW-15                  | 2014          | 8                  | Phase II            | 0.001       | 0.009     | 0.000      | < 0.000020 | 0.000    | 0.020       | 0.02        | < 0.00020 | < 0.00001 | < 0.00005   | < 0.025           | < 0.1                                  | < 0.2                                  | 0.163                          |            |              |
|                                          |                        | 2016          | 10                 | Phase II            |             |           |            |            |          |             |             |           |           |             |                   |                                        |                                        | #N/A                           |            |              |
|                                          |                        | 2021          | 15                 | Phase II            |             |           |            |            |          |             |             |           |           |             |                   |                                        |                                        | #N/A                           |            |              |
|                                          |                        | 2031          | 25                 | Phase II            |             |           |            |            |          |             |             |           |           |             |                   |                                        |                                        | #N/A                           |            |              |
|                                          |                        |               |                    | Phase III           |             |           |            |            |          |             |             |           |           |             |                   |                                        |                                        | #N/A                           |            |              |
|                                          |                        |               |                    |                     |             |           |            |            |          |             |             |           |           |             |                   |                                        |                                        | #N/A                           |            |              |
|                                          |                        |               |                    |                     |             |           |            |            |          |             |             |           |           |             |                   |                                        |                                        | #N/A                           |            |              |
|                                          |                        |               |                    |                     |             |           |            |            |          |             |             |           |           |             |                   |                                        |                                        | #N/A                           |            |              |
|                                          | MW-16                  |               |                    |                     |             |           |            |            |          |             |             |           |           |             |                   |                                        |                                        |                                |            |              |
| 24774                                    | MW 16                  | 2007          | 1                  | Phase I             | 0.031       | 0.060     | 0.009      | < 0.0010   | < 0.010  | 0.12        | 0.11        | < 0.0030  | < 0.00040 | < 0.000020  | < 0.050           | < 0.50                                 | < 1.0                                  | 0.775                          |            |              |
| F509-16W                                 | MW 16                  | 2009          | 3                  | Phase I             | 0.003       | < 0.005   | 0.001      | 0.001      | < 0.001  | 0.09        | 0.002       | < 0.001   | < 0.0001  | < 0.0001    | < 0.2             | 0.2                                    | 0.2                                    | 0.500                          |            |              |
| 12-19546                                 | MW-16                  | 2012          | 6                  | Phase I             | 0.031       | 0.024     | 0.006      | < 0.00090  | 0.012    | 0.82        | 0.05        | < 0.010   | < 0.00010 | < 0.000050  | < 0.025           | 0.69                                   | 1.04                                   | 1.743                          |            |              |
| F5-SA-MW-16                              | MW-16                  | 2014          | 8                  | Phase II            | 0.041       | 0.020     | 0.009      | 0.001      | 0.022    | 0.370       | 0.05        | 0.004     | 0.000     | < 0.00005   | < 0.025           | 0.45                                   | < 0.2                                  | 0.563                          |            |              |
|                                          |                        | 2016          | 10                 | Phase II            | 0.011       | 0.020     | 0.002      | 0.001      | 0.022    | 0.570       | 0.05        | 0.001     | 0.000     | -0.00003    | -0.023            | 0.15                                   | -0.2                                   | #N/A                           |            |              |
|                                          |                        | 2021          | 15                 | Phase II            |             |           |            |            |          |             |             |           |           |             |                   |                                        |                                        | #N/A                           |            |              |
|                                          |                        | 2031          | 25                 | Phase II            |             |           |            |            |          |             |             |           |           |             |                   |                                        |                                        | #N/A                           |            |              |
|                                          |                        | 2001          | 23                 | Phase III           |             |           |            |            |          |             |             |           |           |             |                   |                                        |                                        | #N/A                           |            |              |
|                                          |                        |               |                    |                     |             |           |            |            |          |             |             |           |           |             |                   |                                        |                                        | #N/A                           |            |              |
|                                          |                        |               |                    |                     |             |           |            |            |          |             |             |           |           |             |                   |                                        |                                        | #N/A                           |            |              |
|                                          |                        |               |                    |                     |             |           |            |            |          |             |             |           |           |             |                   |                                        |                                        | #N/A                           |            |              |
| Downgradient                             |                        | 1             | 1                  | 1                   | 1           |           |            |            |          |             |             |           |           |             |                   | 1                                      | 1                                      | 771 1/11                       |            |              |
| Donigiaulin                              | MW-17                  |               |                    |                     |             |           |            |            |          |             |             |           |           |             |                   |                                        |                                        |                                |            | -            |
|                                          |                        |               |                    | m -                 |             |           |            |            |          |             |             |           |           |             |                   |                                        |                                        |                                |            |              |
| 24794                                    | MW 17                  | 2007          | 1                  | Phase I             | 0.011       | 0.038     | < 0.0030   | < 0.0010   | < 0.010  | 0.021       | 0.07        | < 0.0030  | < 0.00040 | < 0.000020  | < 0.050           | < 0.50                                 | < 1.0                                  | 0.775                          |            |              |
| F509-17W                                 | MW 17                  | 2009          | 3                  | Phase I             | 0.004       | < 0.005   | 0.000      | 0.003      | < 0.001  | 0.020       | 0.004       | < 0.001   | < 0.0001  | < 0.0001    | < 0.2             | < 0.2                                  | 0.4                                    | 0.600                          |            |              |
| 12-19547                                 | MW-17                  | 2012          | 6                  | Phase I             | 0.005       | 0.012     | 0.001      | < 0.00010  | 0.001    | 0.006       | 0.02        | < 0.0010  | < 0.00010 | < 0.000020  | < 0.025           | < 0.10                                 | < 0.25                                 | 0.188                          |            |              |
| No sample collected - insufficient water |                        | 2014          | 8                  | Phase II            |             |           |            |            |          |             |             |           |           |             |                   |                                        |                                        | #N/A                           |            |              |
|                                          |                        | 2016          | 10                 | Phase II            |             |           |            |            |          |             |             |           |           |             |                   |                                        |                                        | #N/A                           |            |              |
|                                          |                        | 2021          | 15                 | Phase II            |             |           |            |            |          |             |             |           |           |             |                   |                                        |                                        | #N/A                           |            | -            |
|                                          |                        | 2031          | 25                 | Phase II            |             |           |            |            |          |             |             |           |           |             |                   |                                        |                                        | #N/A                           |            |              |
|                                          |                        |               |                    | Phase III           |             |           |            |            |          |             |             |           |           |             |                   |                                        |                                        | #N/A                           |            |              |
|                                          |                        |               |                    |                     |             |           |            |            |          |             |             |           |           |             |                   |                                        |                                        | #N/A                           |            |              |
|                                          |                        |               |                    |                     |             |           |            |            |          |             |             |           |           |             |                   |                                        |                                        | #N/A                           |            |              |
|                                          |                        |               |                    |                     |             |           |            |            |          |             |             |           | 1         | 1           | 1                 |                                        | 1                                      | #N/A                           | 1          |              |
|                                          | MW-18                  |               |                    |                     |             |           |            |            |          |             |             |           |           |             |                   |                                        |                                        |                                | ļ          |              |
| 24789                                    | MW 18                  | 2007          | 1                  | Phase I             | 0.058       | 0.160     | 0.003      | < 0.0010   | < 0.010  | 0.120       | 0.32        | < 0.0030  | < 0.00040 | < 0.000020  | < 0.050           | < 0.50                                 | < 1.0                                  | 0.775                          |            |              |
| F509-18W                                 | MW 18                  | 2009          | 3                  | Phase I             | 0.009       | < 0.005   | 0.000      | 0.0004     | < 0.001  | 0.040       | 0.00        | < 0.001   | < 0.0001  |             | < 0.2             |                                        |                                        | 0.100                          |            |              |
| 12-10948                                 | MW-18                  | 2012          | 6                  | Phase I             | 0.013       | 0.025     | 0.001      | < 0.00010  | 0.001    | 0.026       | 0.05        | < 0.0010  | < 0.00010 | < 0.000023  | < 0.025           | < 0.10                                 | < 0.25                                 | 0.188                          |            | L_           |

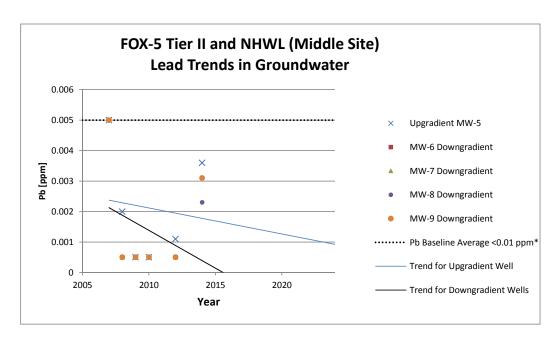
FOX-5 Qikiqtarjuaq (Broughton Island) Station NHWL - Summary of Groundwater Analytical Data


| FOX-5 Qikiqtarjuaq (                     | Diougnion is | ianu) Sta | HOH INII           | w L - Sun           | iiiiaiy | or Gro  | unuwai   | CI Allai  | y ii cai D | ata    |         |          |           |             |                   |                                        |                                        |                                |            |                   |
|------------------------------------------|--------------|-----------|--------------------|---------------------|---------|---------|----------|-----------|------------|--------|---------|----------|-----------|-------------|-------------------|----------------------------------------|----------------------------------------|--------------------------------|------------|-------------------|
| Sample ID                                | Location     | Date      | Monitoring<br>Year | Monitoring<br>Phase | Cu      | Ni      | Co*      | Cd*       | Pb*        | Zn     | Cr      | As*      | Hg*       | Total PCBs* | F1 C <sub>6</sub> | F2<br>C <sub>10</sub> -C <sub>16</sub> | F3<br>C <sub>16</sub> -C <sub>34</sub> | Modified TPH -<br>Total C6-C34 | ТРН І      | dentity<br>% Lube |
|                                          |              |           |                    |                     | [mg/L]  | [mg/L]  | [mg/L]   | [mg/L]    | [mg/L]     | [mg/L] | [mg/L]  | [mg/L]   | [mg/L]    | [mg/L]      | [mg/L]            | [mg/L]                                 | [mg/L]                                 | [mg/L]                         | % Fuel Oil |                   |
| No sample collected - insufficient water |              | 2014      | 8                  | Phase II            |         |         |          |           |            |        |         |          |           |             |                   |                                        |                                        | #N/A                           |            |                   |
|                                          |              | 2016      | 10                 | Phase II            |         |         |          |           |            |        |         |          |           |             |                   |                                        |                                        | #N/A                           |            |                   |
|                                          |              | 2021      | 15                 | Phase II            |         |         |          |           |            |        |         |          |           |             |                   |                                        |                                        | #N/A                           |            |                   |
|                                          |              | 2031      | 25                 | Phase II            |         |         |          |           |            |        |         |          |           |             |                   |                                        |                                        | #N/A                           |            |                   |
|                                          |              |           |                    | Phase III           |         |         |          |           |            |        |         |          |           |             |                   |                                        |                                        | #N/A                           |            |                   |
|                                          |              |           |                    |                     |         |         |          |           |            |        |         |          |           |             |                   |                                        |                                        | #N/A                           |            |                   |
|                                          |              |           |                    |                     |         |         |          |           |            |        |         |          |           |             |                   |                                        |                                        | #N/A                           |            |                   |
|                                          |              |           |                    |                     |         |         |          |           |            |        |         |          |           |             |                   |                                        |                                        | #N/A                           |            |                   |
|                                          | MW-19        |           |                    |                     |         |         |          |           |            |        |         |          |           |             |                   |                                        |                                        |                                |            |                   |
| 24784                                    | MW 19        | 2007      | 1                  | Phase I             | 0.032   | 0.052   | 0.013    | < 0.0010  | < 0.010    | 0.100  | 0.11    | < 0.0030 | < 0.00040 | < 0.000020  | < 0.050           | < 0.50                                 | < 1.0                                  | 0.775                          |            |                   |
| F509-19W                                 | MW-19        | 2009      | 3                  | Phase I             | < 0.001 | < 0.005 | < 0.0002 | 0.004     | < 0.001    | < 0.01 | < 0.001 | < 0.001  | < 0.0001  | < 0.0001    |                   | < 0.2                                  | < 0.2                                  | 0.200                          |            |                   |
| 12-19549                                 | MW-19        | 2012      | 6                  | Phase I             | 0.058   | 0.053   | 0.011    | < 0.00090 | 0.013      | 0.130  | 0.08    | < 0.010  | < 0.00010 | < 0.000020  | < 0.025           | < 0.10                                 | < 0.25                                 | 0.188                          |            |                   |
| F5-SA-MW-19                              | MW-19        | 2014      | 8                  | Phase II            | 0.022   | 0.017   | 0.007    | 0.000     | 0.008      | 0.110  | 0.04    | 0.003    | < 0.00001 | < 0.00005   | < 0.025           | < 0.100                                | < 0.100                                | 0.113                          |            |                   |
|                                          |              | 2016      | 10                 | Phase II            |         |         |          |           |            |        |         |          |           |             |                   |                                        |                                        | #N/A                           |            |                   |
|                                          |              | 2021      | 15                 | Phase II            |         |         |          |           |            |        |         |          |           |             |                   |                                        |                                        | #N/A                           |            |                   |
|                                          |              | 2031      | 25                 | Phase II            |         |         |          |           |            |        |         |          |           |             |                   |                                        |                                        | #N/A                           |            |                   |
|                                          |              |           |                    | Phase III           |         |         |          |           |            |        |         |          |           |             |                   |                                        |                                        | #N/A                           |            |                   |
|                                          |              |           |                    |                     |         |         |          |           |            |        |         |          |           |             |                   |                                        |                                        | #N/A                           |            |                   |
|                                          |              |           |                    |                     |         |         |          |           |            |        |         |          |           |             |                   |                                        |                                        | #N/A                           |            |                   |
|                                          |              |           |                    |                     |         |         |          |           |            |        |         |          |           |             |                   |                                        |                                        | #N/A                           |            |                   |

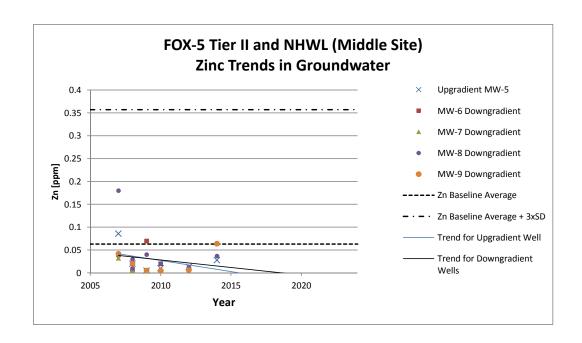

<sup>^</sup>Note: Total Hydrocarbons ( $C_6$ - $C_{34}$ ) has been calculated by adding results for F1, F2 and F3.

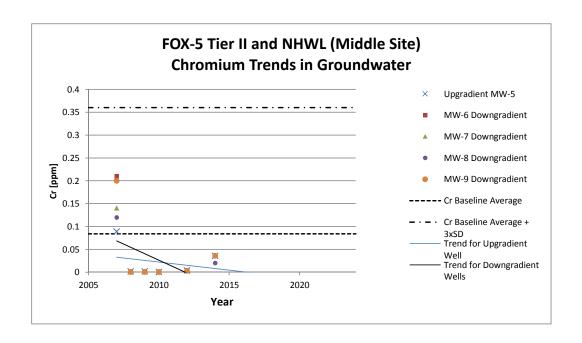

The Station Non-Hazardous Waste Landfill was visually assessed in 2008 and 2010 but soil and groundwater samples were not taken as per the monitoring contract.

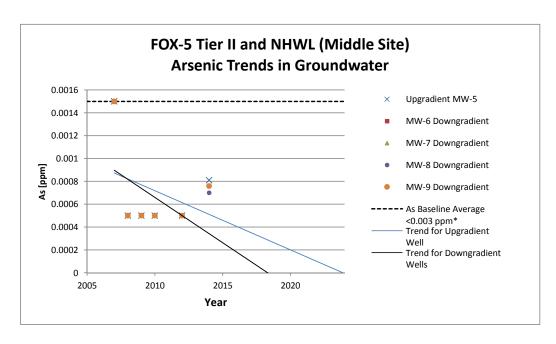




Where results are below detection, half of the detection limit has been used in the charts.

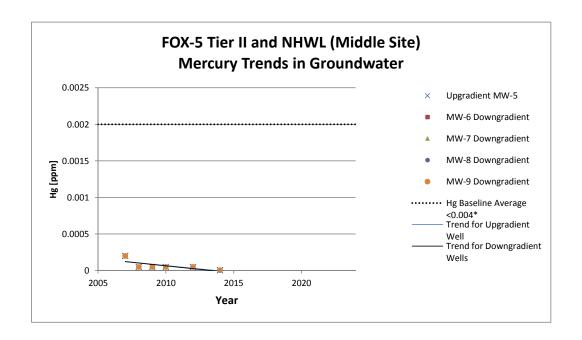




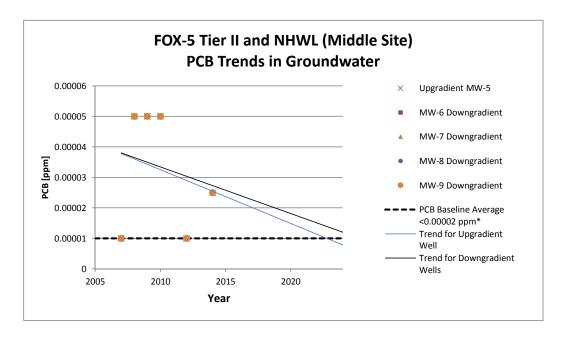



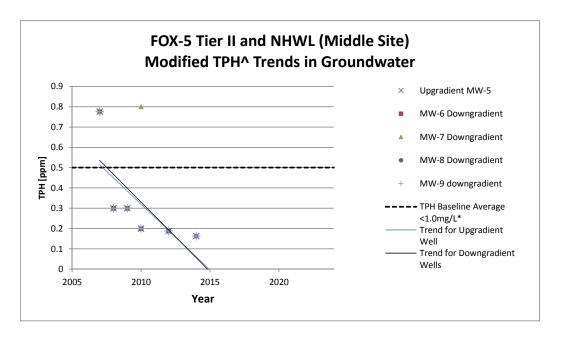




\* Pb Baseline SD = 0







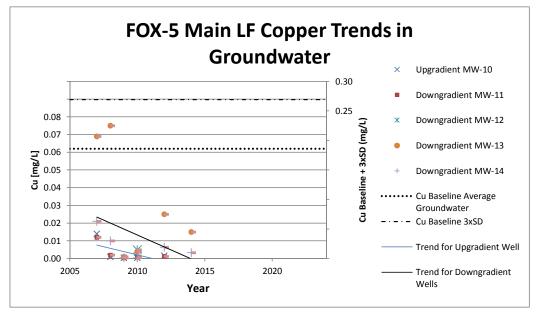


\* As Baseline SD = 0 All As monitoring results below detection. Trend reflects changes in

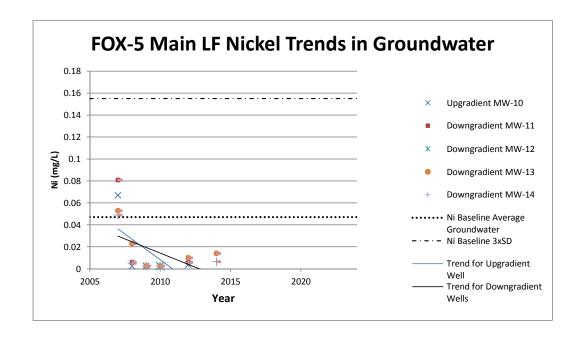


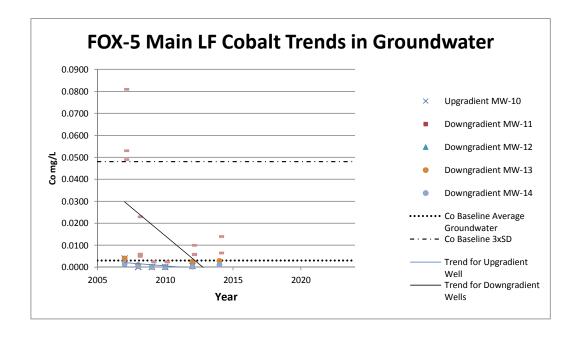
<sup>\*</sup> Hg Baseline SD = 0. All Hg results below detection. Trend reflects changes in detection li

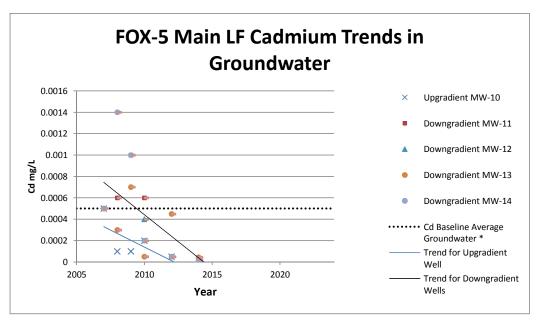


<sup>\*</sup> PCB Baseline SD = 0. All PCB results below detection. Trend reflects changes in detecti



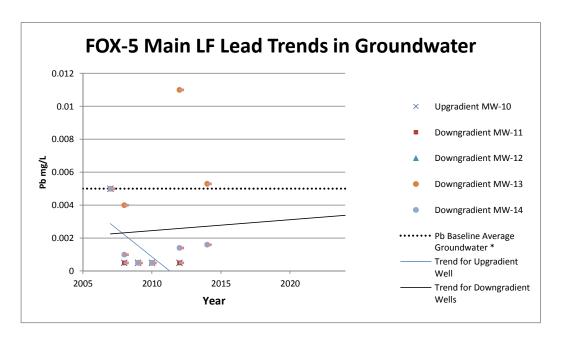


<sup>\*</sup> TPH Baseline SD = 0


Most TPH results below detection. Trend shows changes in detection limits.

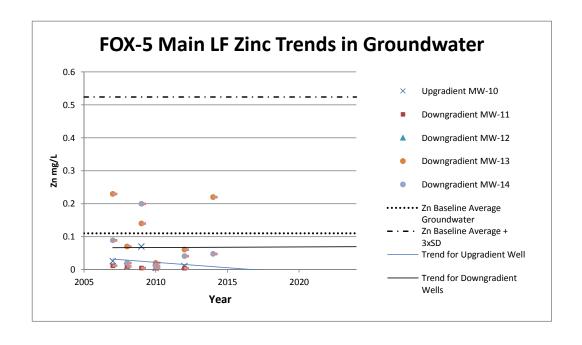

<sup>^</sup> Modified TPH are Sum of PHC F1-F3 fractions.

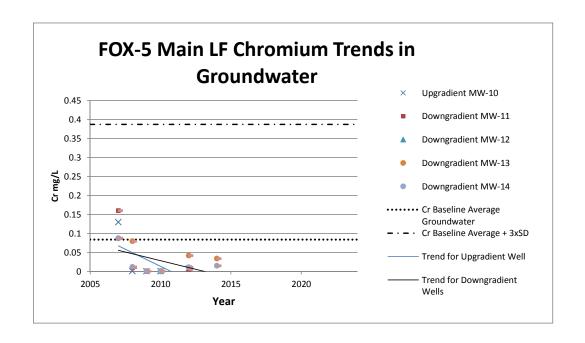
Where results are below detection, half of the detection limit has been used in the charts.

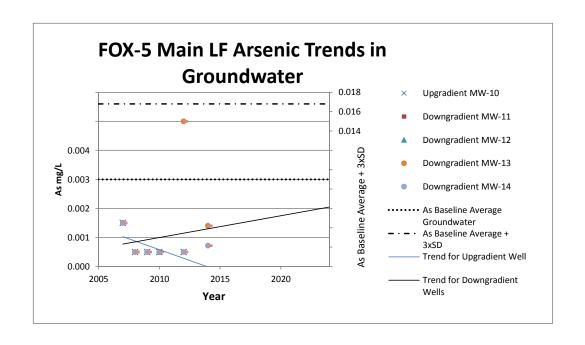


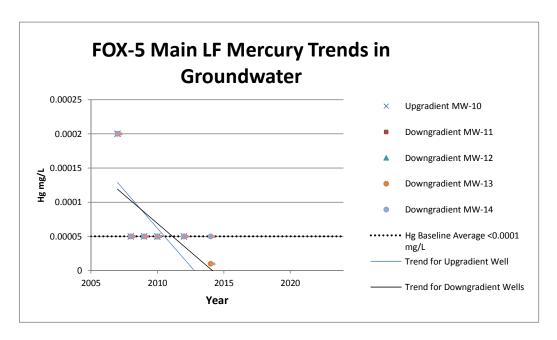




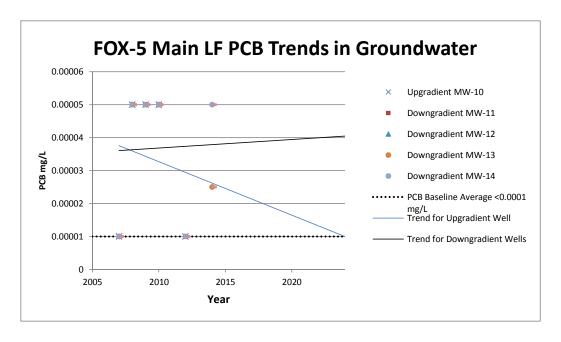





<sup>\*</sup>Cd Baseline SD = 0

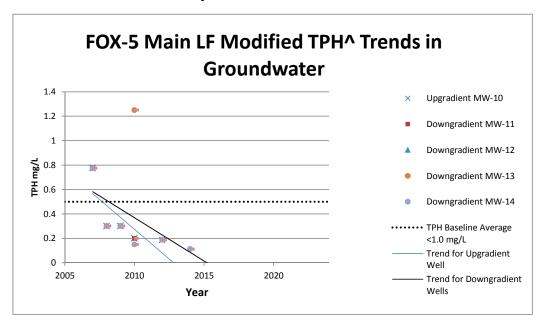

**FOX-5 Main Landfill Graphs of Trends for Inorganic Elements, PCBs and TPH in Groundwater Samples** 




<sup>\*</sup> Pb Baseline SD = 0



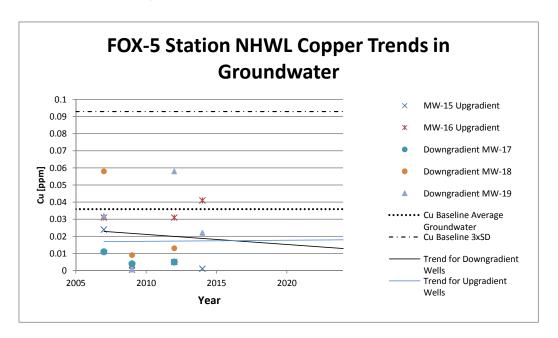


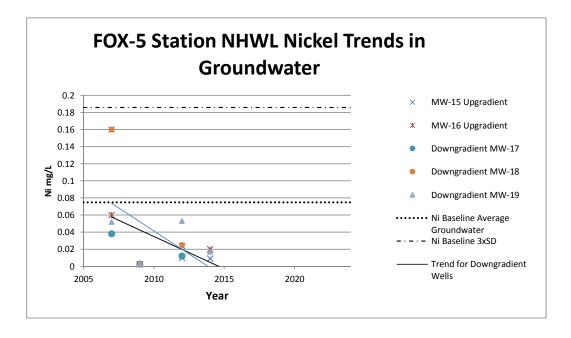



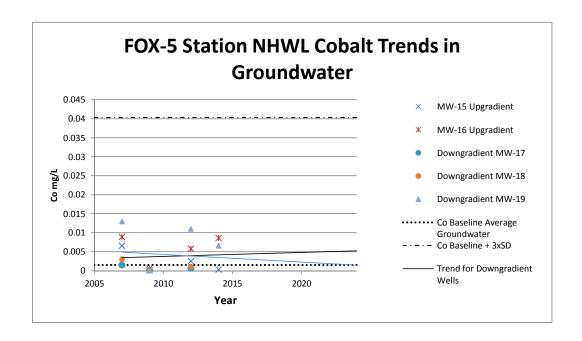


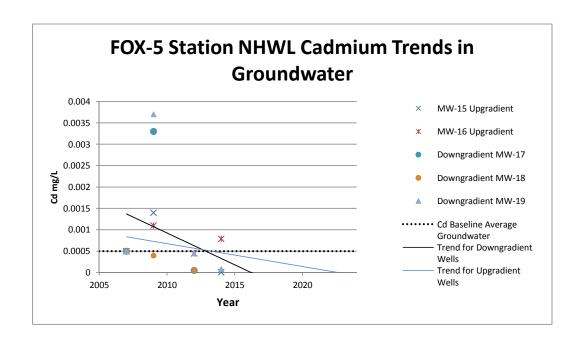

<sup>\*</sup> Hg Baseline Average SD = 0 All Hg results below detection. Trend line reflects changes in detection limits.

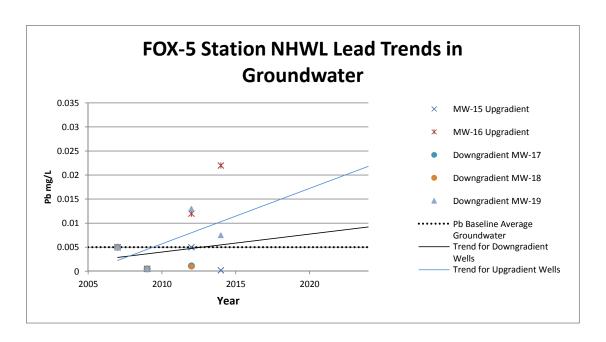



<sup>\*</sup> PCB Baseline Average SD = 0

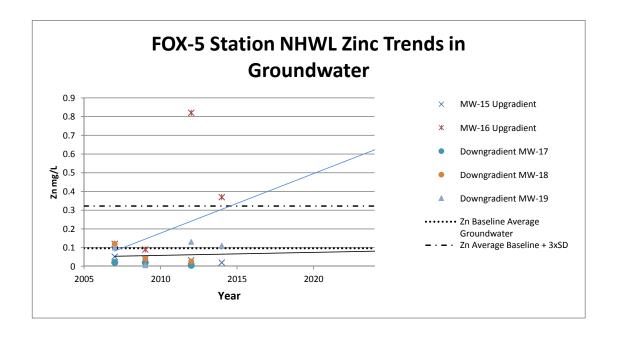




<sup>\*</sup> TPH Baseline Average SD = 0

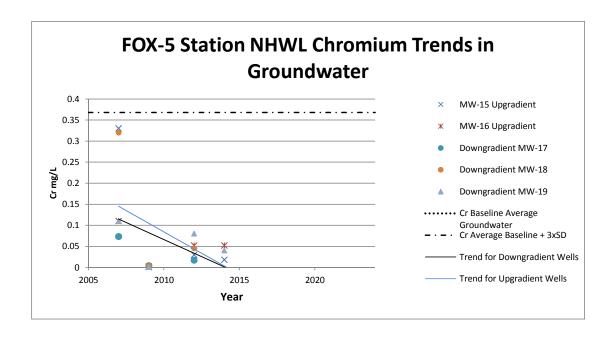

<sup>^</sup> Baseline samples from 2002 were analyzed as TPH, results from 2003 and later are Sum of PHC F1-F3 fractions.

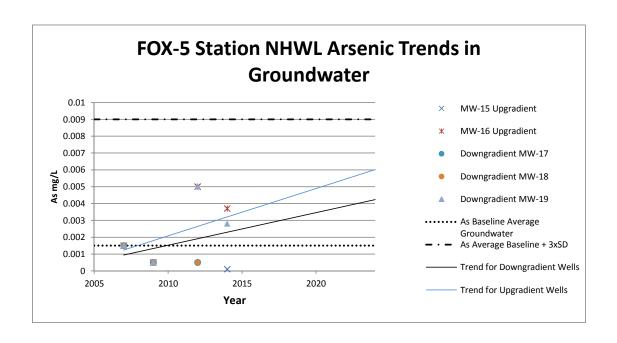

Where results are below detection, half of the detection limit has been used in the charts.



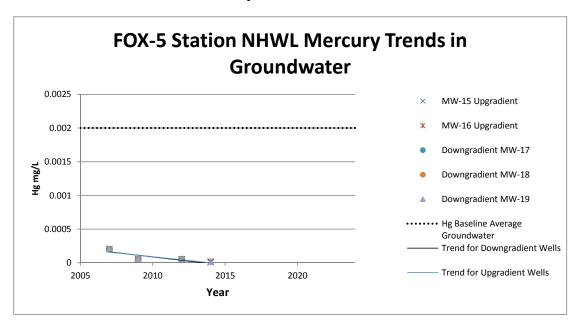




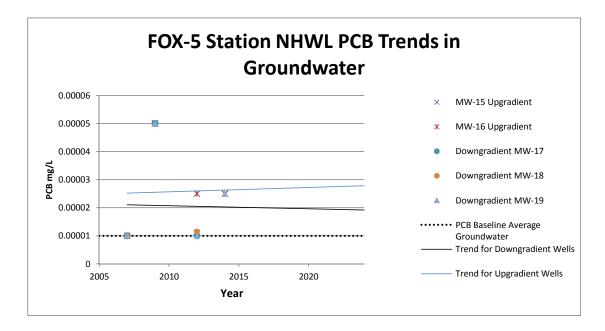



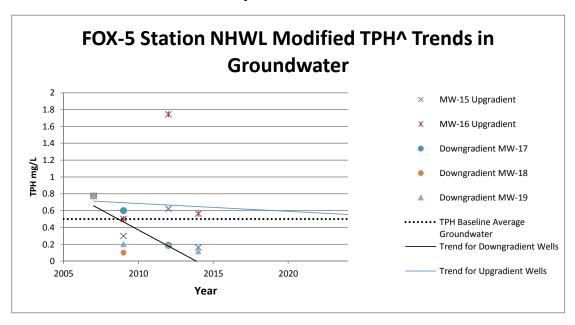

\* Pb Baseline SD = 0




FOX-5 Station NHWL Graphs of Trends for Inorganic Elements, PCBs and TPH in Groundwater Samples







All As results below detection. Trend line reflects changes in detection limits.



<sup>\*</sup> Hg Baseline Average SD = 0 All Hg results below detection. Trend line reflects changes in detection limits.



<sup>\*</sup> PCB Baseline Average SD = 0 AllI PCB results below detection. Trend lines reflect changes in detection limits



<sup>\*</sup> TPH Baseline Average SD = 0

<sup>^</sup> Modified TPH are Sum of PHC F1-F3 fractions.