ENVIRONMENTAL MONITORING PROGRAM RESOLUTE BAY AIRPORT LANDFILLS, RESOLUTE BAY, NUNAVUT

PSPC PROJECT R125284.001 CUSTODIAN: TRANSPORT CANADA

Prepared for:

Public Services and Procurement Canada

Services publics et Approvisionnement Canada

Public Services and Procurement Canada

Environmental Services – Western Region, on behalf of

Transport Canada

220 4th Ave SE Calgary, Alberta, T2G 4X3

Prepared by:

BLM-KEL-60 Corporation

30b Mitik St.

Cambridge Bay, Nunavut, X0B 0C0

Internal Project Number: 230427

December 13, 2023

EXECUTIVE SUMMARY

The BLM-KEL-60 Corporation (JV-60) joint venture was retained by Public Services and Procurement Canada (PSPC), on behalf of Transport Canada (TC), to complete the third year (2023-2024) Post-Remediation Environmental Monitoring Program (EMP) at the Resolute Bay Airport Landfills (the "Site"). The project was completed in accordance with the Nunavut Water Board (NWB) Amended Renewal Water Licence (WL) 1BR-RBL1929. JV-60 is comprised of BluMetric Environmental Inc (BLM), AccuTech Consulting Group and Kitkmeot Environmental Ltd. (KEL) with BLM acting as the Administrative Lead for the joint venture. For the purposes of this contract, BLM delivered environmental services with KEL (partner) providing logistical support and TREK Geotechnical Inc. (TREK, subcontractor) providing geotechnical expertise.

The Site is located adjacent to the Resolute Bay airport, approximately five kilometres (km) to the northwest of Resolute, in the Qikiqtaaluk Region on Cornwallis Island, Nunavut. Three Areas of Concern (AECs) are identified for the Site, as follows:

- AEC 1 Solid Waste Landfill
- AEC 2 Historical Landfill
- AEC 3 Former Vehicle and Waste Metal Storage Area

The program consisted of a preliminary (at freshet) and comprehensive visual inspection of the three historical landfills at AEC 1, AEC 2, and AEC 3, inspection of and downloading data from three thermistors at AEC 1, monitoring and attempted sampling of groundwater at 15 monitoring wells throughout the three landfill areas, and surface water sampling at downgradient locations from the three landfill areas. Field work for the freshet monitoring event was conducted by Ms. Doreen MacDonald (local staff) on July 7 and 8, 2023, and the comprehensive monitoring/sampling event was conducted by Ms. Kim Carlton (BLM) between July 20 and 24, 2023 with support from Mr. Peter Noah (local field assistant/wildlife monitor).

The overall conclusion is that the landfills appear to be functioning as designed. Visual inspections indicated a rating of "acceptable" for all three landfills. Details are discussed below.

AEC 1

In general, AEC 1 was observed to have similar (not worsening) conditions compared to 2022. Small amounts of surficial metal debris (possibly litter) and possible exposed metal debris were observed at the top of the mound, and there was pooling water at the toe of the landfill (i.e., wet around RBL-2 and RBL-3). Evidence of historic overflow from the municipal sewage ponds was noted off-site and southeast of AEC 1.

Thermistor data at AEC 1 indicates that the temperatures recorded at depth correlate to the rise and fall of atmospheric temperatures in Resolute, which is similar to previous observations. As expected, and as seen in previous monitoring events (Dillon Outcome Joint Venture [DOJV], 2023), temperatures near surface fluctuate the most as the probe is physically closer to, and therefore more exposed to, atmospheric temperatures, while deeper temperatures vary less annually. Permafrost appears to have aggregated from 1.5 to 2.75 m over the first and second winter after thermistor installation, and the active layer is between 1.25 and 1.50 m, as inferred from plotted thermistor data.

Groundwater could only be collected from three of the four monitoring wells at AEC 1. Analytical results indicate that the concentrations of the chemical parameters analyzed at AEC 1 were below the Ontario Ministry of the Environment, Conservation and Parks (MECP) Table 3 Site Condition Standards (SCS) and the Maximum Allowable Effluent Discharge Concentration as per the DOJV 2023 report and the Nunavut Water Board (NWB) Water Licence letter approving the use of the SCS. It was noted that at RBL-3 and AEC-GW1, the concentrations of F2 were less than the detection limit for the 2023 sampling event, lower than the exceeding concentrations for the previous sampling event. The concentration of total suspended solids (TSS) at AEC-GW1 also did not exceed for 2023, as it did for the previous sampling event.

Surface water was collected from one location downgradient of AEC 1 at RBL-4. The concentration of hexavalent chromium and total copper exceeded the CCME guidelines in this sample. Copper has not exceeded guidelines for previous sampling events. The concentrations of all other analyzed parameters were below the CCME guidelines and the Maximum Allowable Effluent Discharge concentrations as per the NWB Water Licence.

AEC 2

The conditions along the western edge of the AEC 2 landfill were observed to be similar to observations made during the previous year (2022). The isolated stress fractures caused by settlement, the depressions and the exposed metal debris do not appear to have degraded further. The approximate 20 m by 30 m disturbed area with uneven ground and potential gravel removal observed in 2022 appears similar to 2022 but the possible vehicle tracks noted in the 2022 observations were not present in 2023.

All six monitoring wells at AEC 2 were dry and no groundwater samples could be collected.

For surface water, one sample was collected at a similar downgradient location (RBL-8) to the previous event (2022). The concentrations of all analyzed parameters were below applicable guidelines. Comparing 2023 results to previous sampling events, the concentrations of total aluminum, total iron, total lead, ammonia and TSS were significantly lower than the 2022 event.

AEC 3

At AEC 3, the isolated slope failure adjacent to the river valley at the north edge of the landfill area remains mostly unchanged since the 2022 and 2021 observations, with the addition of drainage channels that were observed on the slope during the 2023 Site visit.

All five monitoring wells at AEC 3 were dry and no groundwater samples could be collected.

Two surface water samples were collected from the McMaster River at locations downgradient of AEC 3 similar to the 2022 event. The locations were different for the 2021 event, when the samples were collected from ponded water to the south of AEC 3 due to the presence of polar bears in the river valley. The concentrations of all analyzed parameters were below applicable guidelines. At RBL-13, the concentrations of ammonia, total aluminum and total iron were similar to the previous monitoring event and were significantly lower than the exceedances observed in the 2021 monitoring event. At RBL-16, the concentrations of ammonia and total aluminum were similar to the previous monitoring event and were significantly lower than the exceedances observed in the 2021 monitoring event.

The following is recommended by JV-60:

- No repairs to the landfills are recommended at this time. The recent observations of minor exposed debris at AEC 2 and AEC 3 are acceptable and do not currently require action. Visual inspections should continue per the Post-Closure Monitoring Plan, and consideration should be given to repairs in the event of new or different observations that suggest the severity rating has progressed from "acceptable" to "marginal" for any feature. Any observations considered in the severity rating to be "significant" should be flagged for immediate action.
- The monitoring wells and thermistors remain in good condition. Staff inspected the monitoring well identified in 2022 as being damaged and did not identify any damage or blockage requiring action. No repairs to the monitoring wells or thermistors are recommended at this time.
- While challenges remain with securing adequate groundwater samples from the wells, this is attributed to Site and climatic conditions and are unlikely to be addressed through any changes to the monitoring wells or sampling protocols. No changes to the monitoring program are recommended at this time.
- Continued monitoring of the landfills consistent with the Post-Closure Monitoring Program is recommended, including a freshet monitoring event, and a second monitoring event, approximately one month later that also includes surface water and groundwater monitoring.
- Following the 2024 sampling event, some sampling locations will have the minimum four data
 points required for Mann Kendall trend analysis and should be considered in 2024 where
 applicable. Trend analysis may be able to modify or eliminate some or all of the monitoring
 program going forward, depending on the availability of data and the observed trends.

TABLE OF CONTENTS

EXECL	JTIVE S	UMMARY	i
1.	INTR	ODUCTION	1
1.1	Овје	CTIVES OF THE ENVIRONMENTAL MONITORING PROGRAM	1
1.2	SCOP	E OF WORK	1
2.	BACI	KGROUND INFORMATION	2
2.1	SITE [DESCRIPTION	2
2.2	Histo	DRICAL CONTEXT	4
2.3	Sumi	MARY OF PREVIOUS MONITORING EVENTS	5
	2.3.1 2.3.2	Confirmatory Sampling Program for the Resolute Bay Airport Landfill, Resolute Bay, Nunavut. DOJV, March 2022 Environmental Monitoring Program for the Resolute Bay Airport Landfills, Resolute Bay, Nunavut, Final Report. DOJV, March 2023	,
3.	REGI	ULATORY GUIDELINES	7
3.1	GUID	ANCE DOCUMENTS	7
3.2	Appli	CABLE GUIDELINES – OVERVIEW	7
3.3	Appli	CABLE GUIDELINES - GROUNDWATER	8
3.4	Appli	CABLE GUIDELINES - SURFACE WATER	8
4.	SITE	INVESTIGATION METHODOLOGY	9
4.1	SCHE	DULE AND PERSONNEL	9
4.2	IMPE	DIMENTS AND DEVIATIONS FROM THE WORK PLAN	. 10
4.3	VISUA	AL INSPECTION	. 10
۷	4.3.1	Landfill Integrity	
	1.3.2	Natural Environment Monitoring	
	1.3.3	Post Visual Inspection Changes	
		MAL MONITORING	
4.5		JNDWATER MONITORING AND SAMPLING	
4.6		ACE WATER SAMPLING	
4.7		ITY ASSURANCE AND QUALITY CONTROL	
	4.7.1 4.7.2	Field Methods	
	4.7.2 4.7.3	Data Validation	
		3.1 Field Duplicates	

	4.8	LABOR	ATORY ANALYTICAL PROGRAM	17
5.		SUMI	MARY OF AEC 1 CONDITIONS	18
	5.1	AEC 1	Overview	18
	5.2	VISUA	L INSPECTION EVALUATION AND STABILITY ASSESSMENT	18
	5	5.2.1	Vegetation	20
	5	5.2.2	Wildlife	20
	5	5.2.3	Seepage / Ponded Water	21
	5	5.2.4	Summary	21
	5.3	THERN	MAL MONITORING DATA	21
	5.4	AEC 1	GROUNDWATER ANALYTICAL RESULTS	22
	5.5	AEC 1	SURFACE WATER ANALYTICAL RESULTS	23
6.		SUMI	MARY OF AEC 2 CONDITIONS	24
	6.1	AEC 2	Overview	24
	6.2	VISUA	L INSPECTION EVALUATION AND STABILITY ASSESSMENT	24
	6	5.2.1	Settlement	27
	6	5.2.2	Disturbed Areas	27
	6	5.2.3	Vegetation	27
	6	5.2.4	Wildlife	
		5.2.5	Seepage / Ponded Water	
	6	5.2.6	Summary	27
	6.3	AEC 2	GROUNDWATER RESULTS	28
	6.4	AEC 2	SURFACE WATER RESULTS	28
7.		SUMI	MARY OF AEC 3 CONDITIONS	28
	7.1	AREA S	SUMMARY	28
	7.2	VISUA	L Inspection Evaluation and Stability Assessment	29
	7	7.2.1	Settlement	31
	7	7.2.2	Staining / Burn Pits	31
	7	7.2.3	Seepage / Ponded Water	31
	7	7.2.4	Summary	32
	7.3	AEC 3	GROUNDWATER RESULTS	32
	7.4	AEC 3	Surface Water Results	32
8.		QA/C	C RESULTS	33
	8.1	Sampl	E MANAGEMENT AND QUALITY CONTROL	33
	22	FIELD	DUBLICATES	22

8.3 F	IELD/TRIP BLANKS	34
8.4 L	ABORATORY QA/QC	35
9. 0	ONCLUSIONS AND RECOMMENDATIONS	35
10. C	LOSURE	38
11. R	EFERENCES	40
	LIST OF TABLES	
Table 1:	Summary of COCs and Impacted Media	3
Table 2:	Summary of Maximum Allowable Effluent Discharge Concentrations and CCME CEQG	
Table 3:	Visual Inspection Report Definitions	11
Table 4:	AEC 1 Thermistor Locations	12
Table 5:	Monitoring Well Locations	13
Table 6:	Surface Water/Seep Locations	15
Table 7:	Visual Inspection Results for AEC 1	18
Table 8:	Thermistor Results (August 29, 2021 – July 21, 2023)	21
Table 9:	Visual Inspection Results for AEC 2	24
Table 10:	Visual Inspection Results for AEC 3	29
	LIST OF FIGURES	
Figure 1:	Site Location Map	
Figure 2:	AEC 1 - Inactive Solid Waste Landfill	
Figure 3:	AEC 2 - Historical Landfill	
Figure 4:	AFC 3 - Former Vehicle and Waste Metal Storage Area	

AEC 1 - Inactive Solid Waste Landfill Photolog Locations

AEC 3 - Former Vehicle and Waste Metal Storage Area Photolog Locations

AEC 2 - Historical Landfill Photolog Locations

Cambridge Bay, NU

XOB OCO

Figure 5:

Figure 6:

Figure 7:

LIST OF APPENDICES

Appendix A: **Figures**

Appendix B: **NWB Amended Water Licence**

Appendix C: **Analytical Results Tables**

Appendix D: **Field Notes**

Appendix E: Laboratory Certificates of Analyses, Chain of Custody Forms and Lab Letter of Approval

for BluMetric's QA/QC

Site Photograph Logs and Photograph Location Figures Appendix F:

Appendix G: **Thermistor Results**

Page vii

1. INTRODUCTION

The BLM-KEL-60 Corp. (JV-60) joint venture was retained by Public Services and Procurement Canada (PSPC) Western Region, on behalf of Transport Canada (TC), to conduct the 2023-2024 Post-Remediation Environmental Monitoring Program (EMP) at the Resolute Bay Airport Landfills (the "Site") in accordance with the Nunavut Water Board (NWB) Amended Renewal Water Licence (WL) 1BR-RBL1929. The JV-60 is comprised of BluMetric Environmental Inc (BLM), AccuTech Consulting Group (Accutech) and Kitkmeot Environmental Ltd. (KEL) with BLM acting as the Administrative Lead for the joint venture. For the purposes of this contract, BLM is delivering environmental services with KEL (partner) providing logistical support and TREK Geotechnical Inc. (TREK, subcontractor) providing geotechnical expertise.

The work was completed in accordance with the Terms of Reference (TOR) entitled "Environmental Monitoring Program at the Resolute Bay Airport Landfills, Risk Management and Remediation, Resolute Bay, NU" dated May 2023, Standing Offer Agreement (SOA) EW699-220414, and in accordance with the Nunavut Water Board (NWB) Water Licence 1BR-RBL1929 and the Post Closure Monitoring Plan (Dillon-Outcome Joint Venture [DOJV], 2020).

This report describes the results of the 2023-2024 EMP.

1.1 OBJECTIVES OF THE ENVIRONMENTAL MONITORING PROGRAM

The objective of the EMP for the 2023-2024 fiscal year is to meet the annual monitoring and reporting requirements of the NWB Water Licence 1BR-RBL1929. The EMP program follows the requirements of the Post-Closure Monitoring Plan (DOJV, 2020).

JV-60 understands that PSPC may be eligible to modify or terminate the environmental monitoring program based on findings of the Site's environmental conditions.

1.2 SCOPE OF WORK

The scope of work was outlined in the TOR provided to JV60 by PSPC dated May 16, 2023 and is comprised of the following:

Pre Field Work

- Review of available reports, files and historical information for project related field activities and reporting including the NWB Water Licence No. 1BR-RB1929
- Obtain all applicable permits

XOB OCO

- Submit a Site-specific health and safety plan (SSHASP) to address and mitigate Site-specific hazards as well as define the daily communication procedure (a reduced scope SSHASP was prepared for the freshet monitoring event)
- Submit a detailed Work Plan
- Submit a Letter of Approval from the laboratory for review and approval of the Quality Assurance/Quality Control plan

Field Work

- Conduct a general Site reconnaissance and natural environment monitoring to assess trends in the use of the Site by wildlife
- Complete visual integrity monitoring and inspection of landfill cover to assess performance and identify signs of instability or potential risk of failure (once at freshet and once during the main field visit)
- Complete monitoring and sampling of groundwater at monitoring wells at AEC-1, AEC-2 and AEC-3 to address potential groundwater impacts from landfills
- Conduct surface water/seep monitoring to address the potential for surface water impacts from landfills
- Complete thermal monitoring at AEC 1 landfill cap to confirm and track permafrost aggradation
- Document areas of concern with photographs and/or videos
- Survey sampling locations using a handheld GPS device

Post Field Work

- Document the field program in an EMP report
- Develop a stand-alone Class B cost estimate associated with recommendations

2. BACKGROUND INFORMATION

2.1 SITE DESCRIPTION

Background information was largely obtained from the DOJV 2023 report and is summarized below.

The legal description for the Site is Lot 1001, Quad 58 F/11, Plan 77590 (Public Works and Government Services Canada, 1994) and has a total area of 2,025 hectares. It is located on Cornwallis Island in the Qikitaaluk Region of Nunavut, approximately five kilometers northwest of the Inuit Hamlet of Resolute.

The Site consists of three Areas of Concern (AECs) at the Resolute Bay Airport property (see Table 1 for details). The airport has been in operation since 1949 and is currently owned by the Government of Nunavut (GN). The Site location is provided on Figure 1 in **Appendix A**.

The Terms of Reference indicated that historical environmental investigations at the Site since 2009 identified geotechnical and stability issues for the landfills, and identified contaminants of concern (COCs) above applicable guidelines for soil, sediment, and/or water. A summary of the historical COCs and impacted media is provided in Table 1 below.

Table 1: Summary of COCs and Impacted Media

AECs	Location	Years in Operation	COCs	Impacted Media
AEC 1	Located on airport	Developed between the	Metals, petroleum	Soil, sediment,
Solid Waste	property	1960s and 1970s and	hydrocarbons (PHCs),	surface water
Landfill	approximately 1.8	operated officially until	Polycyclic aromatic	
(Landfill 1)	kilometres (km)	1995	hydrocarbons	
	northwest of the		(PAHs), benzene,	
	north end of the		toluene	
	airstrip			
AEC 2	Located	Operated from 1947 to	Metals, PHCs, PAHs,	Soil, groundwater,
Historical	approximately 0.5	1996 and used by	benzene, toluene,	surface water
Landfill	km west of the	Canadian and American	ethylbenzene	
(Landfill 2)	airstrip	military, Transport		
		Canada, and various		
		airport tenants		
AEC 3 Waste	Located	Operated between the	Metals, PHCs, PAHs	Soil, waste metal
metal	approximately 2.75	late 1970s to mid-1980s;		
storage area	km northwest of the	however, evidence of		
(WMSA)	airstrip and on the	subsequent waste		
	northern perimeter	dumping was found in		
	of the airport	2009		
	property			

To the southeast of AEC 1 is an operating municipal sewage lagoon (owned by the Government of Nunavut) that is reportedly operating beyond design capacity and experiences chronic overflow, as per discussion with the local wildlife monitor during the 2023 event and previous reports. Although the sewage lagoon is outside the Site area and therefore outside the scope of work, overflow has the potential to impact the performance of the landfill drainage and contribute to leachate production and evidence of historic overflows were observed while at the Site.

Detailed information on landfill design, environmental investigation and remediation work completed at the AECs, and monitoring activities is provided in the DOJV 2022-2023 EMP report and is not duplicated here.

2.2 HISTORICAL CONTEXT

The historical context in the following paragraphs is summarized from the Terms of Reference, Environmental Monitoring Program, Resolute Bay Airport Landfills, Risk Management and Remediation, Resolute Bay, Nunavut, May 16, 2023 and the EMP report completed by DOJV in 2023.

The airport began operations in 1949, and several landfills were developed over time to handle solid waste generated by the airport operations and the development of the Hamlet of Resolute. The three AECs on Site are the result of these landfill operations and include the following:

- AEC 1: A solid waste landfill opened in the 1960s to 1970s and closed in 1995
- AEC 2: An historical landfill operated from 1947 to 1996 by the Canadian and American military,
 Transport Canada and airport tenants
- AEC 3: An above-ground, waste metal storage area consisting of three areas officially used in the 1970s and 1980s, although there is evidence of use into the 2000s

Various environmental audits and environmental site assessments have occurred at the Site since 1993. In 2009, TC engaged PSPC to assist with remediation of the landfills. Franz Environmental (Franz) completed a Phase I/II ESA in 2010 which was the basis for the Remedial Action Plan (RAP) developed by TC and PSPC in consultation with Franz in 2011-2012. This involved the capping of AEC 1 and 2 with aggregate and without geomembrane materials. Franz completed a data gap analysis and developed design specifications in 2013-14, but execution did not immediately follow. Arcadis Canada (formerly Franz) and then DOJV were engaged to revisit and revise the remediation specifications and oversee the remedial work undertaken in 2018 by Kudlik Construction Ltd. The remedial work included the following:

- Removing surface hazardous and non-hazardous waste from AEC 1, AEC 2 and AEC 3
- Shipping hazardous materials to a licenced, off-Site waste disposal facility
- Consolidating non-hazardous waste from AEC 2 and AEC 3 at AEC 1
- Grading of AEC 1
- Capping of the landfills at AEC 1 and AEC 2
- Construction of swales to promote surface water drainage

DOJV completed a post remediation monitoring report for 2021 and 2022 that were submitted to the NWB to fulfill licence requirements. A copy of the NWB licence is included in **Appendix B**.

2.3 SUMMARY OF PREVIOUS MONITORING EVENTS

Site monitoring was not conducted in 2020 as planned due to COVID-19 restrictions. Year 1 of the environmental monitoring activities was completed in 2021 and Year 2 was completed in 2022, both by DOJV. Previous EMP results are summarized below.

2.3.1 Confirmatory Sampling Program for the Resolute Bay Airport Landfill, Resolute Bay, Nunavut. DOJV, March 2022.

The objective of this confirmatory sampling plan was to evaluate the effectiveness of the recently conducted Site remediation, and was considered Year 1 of the post-remediation EMP.

Field activities were conducted between August 24 and August 29, 2021, and included the following activities:

- Installation of three thermistors at AEC 1
- Monitoring and sampling of 11 groundwater monitoring wells:
 - o only six of the 11 wells had enough water to sample
- Sampling at six surface water seep locations
- Visual inspection of AEC 1, AEC 2 and AEC 3

DOJV concluded that the landfills appeared to be functioning as designed, and performance at all three landfills was rated as "acceptable". It was noted that isolated stress fractures were observed at AEC 2, parallel to the western edge of the landfill, that were attributed to possible sloughing. Isolated slope failure was observed at the northwest side of AEC 3 but was likely attributable to natural sloughing.

Groundwater analytical results indicated exceedances of applicable groundwater guidelines at two monitoring wells for AEC 1 (RBL-3 for PHC F2 and total suspended solids [TSS] and RBL-1 for TSS); at one monitoring well for AEC 2 (RBL-7 for cadmium, lead and TSS); and at one monitoring well for AEC 3 (RBL-14 for TSS).

Surface water analytical results indicated exceedances of applicable water guidelines at AEC 1 (RBL-4 for hexavalent chromium and ammonia), at AEC 2 (RBL-8 for ammonia), and at AEC 3 (RBL-13 for aluminum, iron and ammonia and at RBL-16 for ammonia).

DOJV recommended adjusting the NWB licence requirement to sampling once per year in mid-summer, due to the short field season.

XOB OCO

2.3.2 Environmental Monitoring Program for the Resolute Bay Airport Landfills, Resolute Bay, Nunavut, Final Report. DOJV, March 2023.

The Monitoring Program (EMP) followed the Post-Closure Monitoring Plan (DOJV 2020) and the NWB Water Licence 1BR-RB1929. The work involved included monitoring and sampling of groundwater and surface water, visual inspections of the three AECs and monitoring of three thermistors previously installed at AEC 1. Water samples were analyzed in accordance with the NWB Water Licence.

Visual inspections confirmed that the landfills were generally functioning as intended and their performance was rated as "acceptable". There were some concerns noted at AEC 2 including deterioration of conditions along its western edge, isolated evidence of settling (e.g., stress fractures, depressions, exposed debris) and evidence of some removal of gravel and a 20 X 30 metre (m) disturbed area. An isolated area of slope failure was also noted on the northwest side of AEC 3.

Thermistor monitoring showed that the rise and fall of temperatures within the landfill mirrored the ambient temperatures in Resolute Bay.

Of the fifteen monitoring wells, six wells were dry and only nine could be sampled. All parameters measured were below applicable standards and guidelines except for the following:

- At AEC 1, water collected from two wells (RBL-3 and AEC1-GW1) contained PHC F2 concentrations
 that exceeded applicable guidelines. Total suspended solids (TSS) at RBL-1 also exceeded the NWB
 Water Licence effluent guideline.
- At AEC 2, water from three monitoring wells (RBL-7, FL-MW-7/DUP A, 2-MW-8) had PHC F2 concentrations exceeding applicable guidelines. TSS concentrations also exceeded the NWB Water Licence effluent guideline at RBL-7.
- At AEC 3, the concentrations of lead and zinc and exceeded the applicable guidelines at RBL-14.

Recommendations included planning for potential earthworks to repair the issues observed at AEC 2, repairs/unblocking or possible re-drilling of RBL-5, and removing surface water sampling from AEC 3 if surface water was not observed in future sampling events.

3. **REGULATORY GUIDELINES**

3.1 **GUIDANCE DOCUMENTS**

BLM conducted the monitoring and reporting requirements associated with the Site in accordance with the NWB licence and the DOJV Post-Closure Monitoring Plan referred to herein as the long-term monitoring plan (LTMP) with support from KBL and TREK.

Guidance documents and background documents applicable to the Site are listed as follows:

- Terms of Reference (TOR) entitled "Environmental Monitoring Program at the Resolute Bay Airport Landfills, Risk Management and Remediation, Resolute Bay, NU" (May 2023)
- Nunavut Water Board Water Licence 1BR-RBL1929
- Dillon/Outcome Environmental Monitoring Program for Resolute Bay Airport Landfills, Resolute Bay, NU (March 2023)
- Dillon/Outcome Post-Closure Monitoring Plan for Resolute Bay Airport Landfills, Resolute Bay, NU (December 2020)
- CSA Z769-00 Phase II Environmental Site Assessment, Canadian Standards Association (revised 2018)
- Guidance Manual on Sampling, Analysis and Data Management for Contaminated Sites, Volumes I and II, Canadian Council of Ministers of the Environment (CCME, 1993)

3.2 **APPLICABLE GUIDELINES – OVERVIEW**

As per the LTMP, data was compared to the following guidelines and standards to determine if and where exceedances exist at the Site:

 Canadian Environmental Quality Guidelines (EQG). Canadian Water Quality Guidelines (CWQG) for the protection of Aquatic Life (freshwater), CCME, 2007 with updates

The CCME Canadian Environmental Quality Guidelines apply to the Site, as approved by the NWB. Further categories for the chosen water quality guidelines were based on the following factors:

- Marine Life guidelines were considered, however the ocean is located more than 675 m to the west of the Site and there are freshwater bodies in close proximity to the Site, therefore freshwater guidelines were used
- Land use is industrial based on historical landfilling activities
- Grain size for soil is coarse, based on historical soil data

• Groundwater is not used as drinking water, as the town obtains drinking water from Char Lake, located more than 2 km east of AEC 2

As directed by NWB, and as applied during previous monitoring events, the Ontario provincial guidelines were also used for comparison for groundwater parameters where federal guidelines do not exist, and are referenced as follows:

• Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the *Environmental Protection Act*. Ontario Ministry of the Environment, April 15, 2015, Table 3 (Full Depth Generic Site Condition Standards in a Non-Potable Groundwater Condition)

The use of Ontario guidelines was previously approved by the NWB due to the absence of guidelines for groundwater in the Water Licence, and a letter indicating this approval is provided in the previous EMP report (DOJV, 2023).

3.3 APPLICABLE GUIDELINES - GROUNDWATER

Approval was granted by the NWB to use the Ontario Ministry of Environment, Conservation and Parks (MECP) 2011 Site Condition Standards (SCS, referenced in the previous section) in absence of groundwater guidelines in the Water Licence (DOJV, 2023). Table 3 of the MECP SCS refers to full depth generic site condition standards in a non-potable groundwater environment and are designed to protect the groundwater to surface water pathway. They are considered to be applicable to the Site due to the following:

- Municipal drinking water is supplied to the town by a drinking water system, i.e., drinking water for Resolute is obtained from Char Lake, located more than 2 km east of AEC 2
- There are no potable water wells located within 250 m of the Site boundary.

3.4 APPLICABLE GUIDELINES - SURFACE WATER

Maximum Allowable Effluent Discharge Concentrations (Table 2, summarized below) are provided in the NWB Water Licence No. 1BR-RBL1929 for the following parameters. Where values were not available, the results were compared to the Canadian Council for Ministers of the Environment (CCME) Canadian Environmental Quality Guidelines for the protection of Freshwater Aquatic Life (FWAL, Short Term/Long Term).

Table 2: Summary of Maximum Allowable Effluent Discharge Concentrations and CCME CEQG

Parameter	Maximum Allowable Effluent Discharge Concentrations	CCME CEQG FWAL (Short Term/Long Term)
рН	6 to 9	6.5 to 9
Total suspended solids	50 mg/L	NV
Oil and Grease	15 mg/L and no visible sheen	NV
Benzene	0.37 mg/L	NV
Toluene	0.002 mg/L	NV
Ethylbenzene	0.090 mg/L	NV/0.090 mg/L
Total Chromium (VI)	NV	NV/0.001 mg/L
Total Copper	NV	0.00232 – 0.00257 mg/L ^(a)
Total Iron	NV	NV/0.300 mg/L
Total Lead	0.001 mg/L	0.0031 to 0.0053 mg/L ^(b)
Ammonia	NV	NV/0.089 - 0.343 mg/L ^(c)

^{*}NV - No Value

Where no effluent guidelines are provided, as was previously noted, the CCME Water Quality Guidelines for the Protection of Freshwater Aquatic Life were used for comparison due to the proximity of freshwater bodies to the Site. Marine guidelines were not considered to be applicable due to the distance of the nearest marine water body from the Site (Resolute Bay, which is approximately 675 m to the west of the Site).

4. SITE INVESTIGATION METHODOLOGY

4.1 SCHEDULE AND PERSONNEL

The Site was accessed by vehicle and by foot for the freshet visual monitoring that took place July 7 and July 8, 2023. The assessment team for the freshet visit consisted of one Resolute based field assistant/wildlife monitor (Ms. McDonald), who carried out Site observations and photographs. Ms. McDonald received guidance from community members to ensure that the information gathered from the Site was relevant and comprehensive.

a) value is determined using sample hardness, all 2023 samples had a hardness between 92 mg/L and 180 mg/L, therefore the equation was used. The guideline used for the 2022 monitoring event of 0.004 mg/L applies only to hardness above 180 mg/L. See https://ccme.ca/en/chemical/71# agl fresh concentration for more information.

b) value is determined using sample hardness, all 2023 sample had a hardness between 60 mg/L and 180 mg/L, therefore the equation was used. The guideline used for the 2022 monitoring event of 0.007 mg/L applies only to hardness above 180 mg/L. See https://ccme.ca/en/chemical/124# agl fresh concentration for more information.

c) value is determined from a table matrix using the pH and the temperature of the sample at the time of sample collection and rounded down to the nearest value (to be conservative). The guideline used for the 2022 monitoring event of 0.0231 mg/L applies only to samples with a pH of 7 and a temperature of 0 degrees Celsius. See https://ccme.ca/en/chemical/5# agl fresh concentration for more information.

The Site was accessed by vehicle for the on-Site comprehensive monitoring that took place between July 20 and 24, 2023). The assessment team consisted of one BLM staff member (Ms. Carlton), and one locally sourced based field assistant/wildlife monitor (Mr. Noah). The main Site visit included a visual inspection of the landfill covers (written observations, photographs, measurements, and survey features where needed), as well as an inspection of wells and thermistors, groundwater and surface water sampling and downloading data from thermistors. Ms. Carlton was supported by engineers in the south and any required training regarding the thermistors was provided to Ms. Carlton prior to the Site visit.

4.2 IMPEDIMENTS AND DEVIATIONS FROM THE WORK PLAN

The work plan included visual inspection and natural environment monitoring of the landfill areas during freshet and during the comprehensive Site visit, and monitoring/sampling of 15 existing groundwater monitoring wells and four previously identified surface water locations during the comprehensive Site visit only.

The following deviations from the proposed work plan occurred during the sampling events based on site-specific observations:

- Site photographs were not completed for AEC 2 for the freshet event due to miscommunication with the local field assistant
- 12 of the 15 monitoring wells were dry, so only 3 monitoring wells were sampled. All the groundwater samples collected were from AEC 1

4.3 VISUAL INSPECTION

4.3.1 Landfill Integrity

The intent of the inspection was to assess the physical integrity of the landfills by observing parameters such as evidence of settlement, erosion, frost action, vegetation, and ponding/seepage of the AECs and surrounding areas. The checklist from the Post-Closure Monitoring Plan (DOJV, 2020) was used as guidance for the visual inspection of the landfills. Photographs and notes of the observations were collected.

The results of the visual inspection were compared to observations from 2021 and 2022 and are presented in Section 5. Table 3 below lists the definitions of landfill descriptors as provided in the DOJV EMP reports dated 2022 and 2023, for reference.

Table 3: Visual Inspection Report Definitions

Performance/Severity Rating	Description
Acceptable	Noted features are of little consequence. The landfill is performing as designed. Minor deviations in environmental or physical performance may be observed, such as isolated areas of erosion or settlement.
Marginal	Physical/environmental performance appears to be deteriorating with time. Observations may include an increase in size or number of features of note, such as differential settlement, erosion, or cracking. No significant impact on landfill stability to date, but potential for failure is assessed as low or moderate.
Significant	Significant or potentially significant changes affecting landfill stability, such as significant changes in slope geometry, significant erosion, or differential settlement; scarp development. The potential for failure is assessed as imminent.
Unacceptable	Stability of landfill is compromised to the extent that ability to contain waste materials is compromised. Examples may include: • Debris exposed in erosion channels or areas of differential settlement. • Liner exposed. • Slope failure.
Extent	Description
Isolated	Singular feature
Occasional	Features of note occurring at irregular intervals/locations
Numerous	Many features of note, impacted less than 50% of the surface area of the landfill
Extensive	Impacting greater than 50% of the surface area of the landfill

4.3.2 Natural Environment Monitoring

Doreen McDonald and Peter Noah, in consultation with other residents of Resolute Bay, provided insight into the natural environment and wildlife activity at the Site. Anecdotal information provided was related to the following Site-specific data:

- Wildlife sightings (species, number, general, juveniles, health)
- Other evidence of recent wildlife presence (dropping, tracks, feathers/fur, carcass remains etc.)
- Wildlife activity (summering/nesting/denning, migratory/passing through)
- Qualitative assessments of relative numbers or health vs previous years (more, same, less)
- Revegetation of disturbed areas vs previous years (more, same, less)

Natural environment monitoring observations are provided for the specific AECs in Sections 5 and 6 and on the checklists in **Appendix D**.

4.3.3 Post Visual Inspection Changes

After reviewing the visual inspection sheets, clarification was provided to define the types of debris found onsite. In historical reports all debris found onsite was referred to as debris. Post inspection, the debris onsite was defined further into two categories: "exposed debris" if it originated from the landfill and "foreign debris" if it was offsite garbage that migrated onto Site. Foreign debris is not a sign of landfill failure, whereas significant exposed debris could be.

4.4 THERMAL MONITORING

Thermal monitoring was conducted at the AEC 1 landfill to track and confirm permafrost aggradation in the landfill cap. The three existing thermistors on-Site were located, surveyed, batteries checked, and inspected for any damage prior to downloading the data. This task was undertaken by BLM personnel with support from TREK, who provided training for BLM personnel prior to the Site visit, were available via phone for assistance and troubleshooting as required. The software used for the downloading the logger data was ProLog4.

The locations for the thermistors are detailed in Table 4 below and are shown on Figure 2 in Appendix A.

Table 4: AEC 1 Thermistor Locations

Thermistor ID	Northing	Easting	Depth (m bgs)
THRMS-01	8295590	440985	3
THRMS-02	8295607	441055	3
THRMS-03	8295577	441014	3

4.5 GROUNDWATER MONITORING AND SAMPLING

15 monitoring wells were monitored as per the TOR. Only three of the four monitoring wells at AEC 1 contained enough water to collect a groundwater sample. All the monitoring wells at AEC 2 and AEC 3 were dry. The details of the well locations are provided in Table 5 below (as summarized from the previous EMP report, DOJV, 2023) and shown on Figure 2 (AEC 1), Figure 3 (AEC 2) and Figure 4 (AEC 3) in **Appendix A**.

Table 5: Monitoring Well Locations

AEC	Well ID	Northing	Easting	Elevation (m asl)	Description
	RBL-1	8295630	441147	66.2	up-gradient of the landfill area
4504	RBL-2*	8295551	440943	52.2	down-gradient of the landfill area
AEC 1	RBL-3*	8295608	440901	51.5	down-gradient of the landfill area
	AEC1-GW1*	8295526	441063	NA	down-gradient of the sewage lagoons
	RBL-5	8292509	441662	53.1	up-gradient of the landfill area
	RBL-6	8292566	441420	42.7	down-gradient of the landfill area
AEC 2	RBL-7	8292634	441384	43.2	down-gradient of the landfill area
AEC 2	FL-MW-6	8292485	441484	NA	down-gradient of the landfill area
	FL-MW-7	8292468	441452	NA	down-gradient of the landfill area
	2-MW-8	8292499	441451	NA	down-gradient of the landfill area
	RBL-10	8296242	440493	43.8	up-gradient of the historical waste storage area
	RBL-11	8296265	440383	41.6	down-gradient of the historical waste storage area
AEC 3	RBL-12	8296335	440450	42.6	down-gradient of the historical waste storage area
	RBL-14	8296449	440682	55.4	down-gradient of the historical waste storage area
	RBL-15	8296468	440635	52.7	down-gradient of the historical waste storage area

Notes:

Coordinates are UTM Zone 15N

Prior to purging, depth to groundwater and presence of light non-aqueous phase liquids (LNAPL) if observed were measured. The condition of the monitoring wells was inspected and if damaged, repairs were attempted.

Groundwater sampling was conducted following U.S. EPA Region 1 Low Stress (low flow) Purging and Sampling Procedures for the Collection of Groundwater Samples from Monitoring Wells (revised September 19, 2017), which minimizes the disturbance of sediment for sample collection and analysis. Because available groundwater has been limited for previous sampling events, purging until stabilization of parameters was considered to be of lower priority than collection of samples. Therefore, for monitoring wells with insufficient recharge or volume to purge, samples would be collected without purging: however, 12 of the 15 monitoring wells had insufficient volume to purge and were identified as dry. At

^{*} indicates a groundwater sample was collected at this location. The remainder of monitoring wells were dry.

monitoring wells with sufficient volume to purge (RBL-2, RBL-3, AEC-GW1), samples were collected following parameter stabilization to ensure samples were representative of subsurface conditions. Field forms for the groundwater sampling are provided in **Appendix D**.

Where sufficient water was available, monitoring wells were sampled with dedicated ¼ inch outside diameter (OD) LDPE tubing, a short section of dedicated ¼ inch inside diameter (ID) silicone tubing for the pump head, and a peristaltic pump. The outlet of the peristaltic pump was connected to a multi-parameter water quality instrument via an in-line flow-through cell system for monitoring. This permits for pH, conductivity, temperature, oxygen reduction potential (ORP), dissolved oxygen, and turbidity to be monitored and assessed. Based on previous year's recommendations, and with prior approvals from Airport Operations and Transport Canada, the purged water was collected into a 5-gallon pail and disposed of at the Resolute Landfill Airport Land Treatment Unit.

In addition to groundwater levels and water sampling data, the following items were recorded:

- Information that would assist in interpreting analytical results (such as sediment in monitoring wells, sheen, odours, etc.)
- Changes since previous sampling events
- Anomalies
- Immediate hazards
- Damaged, destroyed or otherwise inaccessible wells
- Field observations indicating the possible presence of contaminants of concern other than those included in the analytical program (to be communicated immediately to the PSPC project manager)

Groundwater samples which were able to be collected were analyzed for the Water Licence parameters listed in Section 4.8. Groundwater analytical results are presented in Section 5.4.

4.6 SURFACE WATER SAMPLING

Samples were collected from four surface water locations in close proximity to those sampled in previous reports. Details are provided in Table 6 below. Samples collected from these locations were analyzed for the NWB Water Licence parameters listed in Section 4.8.

Table 6: Surface Water/Seep Locations

AEC	Surface Water Location ID	Northing	Easting	Description	Notes
AEC 1	RBL-4	8295627	440884	Discharge from the Solid Waste Landfill	
AEC 2	RBL-8	8292688	441366	Discharge from the Historic Landfill	Further downgradient from 2022 location
AEC 3	RBL-13	8296454	440478	Discharge from Former Vehicle and Waste Metal Storage Area (Site 1)	Collected from McMaster River Valley (downgradient)
AEC 3	RBL-16	8296336	440340	Discharge from the Former Vehicle and Waste Metal Storage Area (Site 2)	

Note:

Coordinates are UTM Zone 15N

Surface water samples were collected manually by dipping a clean, collection bottle without preservative, into the water without disturbing the sediments or vegetation. The water was then decanted into clean, pre-labeled sample bottles prepared by the laboratory. A clean pair of nitrile gloves was used for each sampling location to minimize cross contamination during sample collection.

During sampling, water quality parameters including pH, conductivity, temperature, oxygen reduction potential (ORP), dissolved oxygen and turbidity was monitored using a multi-parameter water quality instrument. Relevant Site observations and field readings were recorded by BLM personnel on a Field Data Form and in their field book, and photographs taken of any notable observations. All surface water samples were placed in a cooler at approximately 4°C for transport to the laboratory.

Surface water sampling locations are presented on Figure 2 (AEC 1), Figure 3 (AEC 2) and Figure 4 in **Appendix A**, and field sampling sheets are presented in **Appendix D**.

4.7 QUALITY ASSURANCE AND QUALITY CONTROL

The QA/QC plan included the use of trip blanks, field blanks and collection of field duplicates, and proper sampling containment, preservation, handling, and transportation. Bureau Veritas (BV), a Standards Council of Canada accredited laboratory, was used for all sample analyses. BLM requested that the lab select method detection limits appropriate to the guidelines specified for the Site assessment. For direct measurements of parameters during the Field Investigation, QA/QC procedures included calibration of measuring devices. Following this QA/QC plan ensured that all collected data, and the decisions based on these data, were technically sound and statistically valid. Detailed information on the QA/QC procedures is discussed below.

The QA/QC approval letter from BV confirming that the QA/QC Program meets CCME requirements for field quality control is provided in **Appendix E**.

4.7.1 Field Methods

- Clean, disposable, powder-free nitrile gloves were donned prior to the collection of each groundwater and surface water sample. This was done to prevent cross-contamination between samples during collection and handling
- Samples were collected into clean, laboratory-supplied sample containers
- For direct measurements of parameters during field work, equipment was calibrated prior to use.
- Samples were individually, clearly labelled with a unique identification number
- Following collection, samples were stored in coolers with ice packs and shipped to the laboratory as soon as possible. Chain of custody documentation was included with each shipment.
- Approximately 40% of samples were collected as duplicates and analyzed by BV. The relative
 percent difference (RPD) for sample pairs offers a measure of precision/repeatability of the
 sampling procedure and analytical technique, heterogeneity of the sample, and
 representativeness of the sampling location
- Two field blanks were prepared on site by using clean de-ionized or distilled water from sealed, sterile containers provided by BV
- One trip blank was included in the sampling program, supplied by BV, that accompanied the sample shipment and was used to check for background contamination, contamination from transport and handling, and for the presence of container or preservative contamination

4.7.2 Laboratory Methods

Laboratory quality control consisted of the following methods:

- Analytical method blanks were used at a frequency of one blank per batch of samples
- Analytical duplicates were prepared by BV and included with each batch of samples analyzed by an instrument. Precision is evaluated by calculating an RPD for these samples
- Control spikes were utilized to detect analytical interference associated with the sample matrix.
 Analytical spikes were generated via the addition of a known quantity of target analyte to a sample of clean matrix or through the use of a known reference standard

4.7.3 Data Validation

Review of internal laboratory QA/QC reporting was conducted, and a discussion regarding the acceptability (or lack thereof) of the laboratory's QA/QC procedures and results, including any possible impacts to the reliability of, or the interpretation of, the data, is included in Section 8.

The results of field duplicates, field and trip blanks, analytical duplicates, analytical blanks, and control/analytical spikes are also provided in Section 8.

4.7.3.1 Field Duplicates

The collection of duplicate samples provides a measure of precision/repeatability of the sampling procedure and analytical technique, heterogeneity of the sample, and representativeness of the sampling location. Approximately 40% of samples were collected and analyzed as duplicates.

The relative percent difference (RPD) for sample pairs is used to evaluate field duplicate precision:

RPD (%) =
$$[(Dup1 - Dup2)/(average of Dup1+Dup2)] x100$$

An RPD is calculated for duplicate samples with concentrations greater than 5 times the method detection limit (MDL). Concentrations less than 5 times the MDL become increasingly imprecise, and, in these cases, the results are not considered sufficiently reliable and an RPD is not reviewed. When the analytical result for one or both of a duplicate pair are less than the RDL (i.e., non-detect), an RPD cannot be calculated.

If duplicates are not within control limits, then they should be reanalyzed because there may be a problem with sample homogeneity. However, in many cases, reanalysis may not be necessary if the outcome of the decision rule is consistent (e.g., if both results are above or below criteria), or if another parameter drives the decision rule. If this is the case, a non-conforming field duplicate can be accepted, but it must be recorded in the appropriate spreadsheet and reported. The calculated RPDs for the data set are discussed in Section 8.2.

4.8 LABORATORY ANALYTICAL PROGRAM

Groundwater and surface water samples were submitted for laboratory analyses for the following parameters as specified in the Water Licence:

- General chemistry/routine water parameters: pH, conductivity, total suspended solids, ammonia nitrogen, nitrate-nitrite, oil and grease, total phenols, sulfate, total hardness, alkalinity, sodium, potassium, magnesium, calcium, chloride, phosphorus
- Total metals: aluminum, arsenic, cadmium, chromium, cobalt, copper, iron, lead, manganese, mercury, nickel, zinc
- Petroleum hydrocarbons (PHC): PHC F1-F4, polycyclic aromatic hydrocarbons (PAH), benzene, toluene, ethylbenzene, and xylenes (BTEX), visual oil & grease

XOB OCO

5. SUMMARY OF AEC 1 CONDITIONS

5.1 AEC 1 OVERVIEW

The historical landfill at AEC 1 was inspected to assess its physical integrity by looking for evidence of settlement, erosion, frost action, exposed debris, evidence of animal use (e.g., burrows) and seepage and/or ponded water. Other features of interest could include staining, vegetation stress, and/or runoff.

Groundwater samples were collected from monitoring wells RBL-2, RBL-3 and AEC1-GW1. A groundwater sample could not be collected from RBL-1 as it was dry. Surface water sample RBL-4 was collected downgradient of AEC 1, at a similar location to the previous monitoring event for consistency and comparability. Thermistors were also inspected and the data downloaded.

The location of AEC 1 and associated sampling locations is provided on Figure 2 of Appendix A.

5.2 VISUAL INSPECTION EVALUATION AND STABILITY ASSESSMENT

Ms. Macdonald conducted the freshet visual inspection of AEC 1 and surrounding area on July 7 and 8, 2023. The comprehensive monitoring event was conducted between July 20 and 24, 2023 by Ms. Carlton with support from Mr. Noah. The visual monitoring checklist from the Post Closure Monitoring Plan (Dillon Outcome 2020) was completed and is summarized in Table 7 below and includes observations from 2021 and 2022 for comparison.

Completed field forms for the visual inspections (both freshet and comprehensive Site visits) are provided in **Appendix D**. Definitions for the terminology used in the visual inspection are provided in Section 4.3.1.

Table 7: Visual Inspection Results for AEC 1

Feature	Presence (Y/N)	Severity Rating / Extent (2021)	Severity Rating / Extent (2022)	Severity Rating / Extent (2023)
Settlement	N	Not Observed	Not Observed	Not Observed
Erosion	N	Not Observed	Not Observed	Not Observed
Frost Action	N	Not Observed	Not Observed	Not Observed
Animal Borrows	N	Not Observed	Not Observed	Not Observed
Vegetation	Y	Acceptable / Isolated. Near toe of landfill only. No vegetation on landfill cap.	Acceptable / Isolated. Near toe of landfill only. No vegetation on landfill cap.	Acceptable. Near toe of landfill. None observed on the top (landfill cap) or slopes.
Staining	N	Not Observed	Not Observed	Not Observed

Feature	Presence (Y/N)	Severity Rating / Extent (2021)	Severity Rating / Extent (2022)	Severity Rating / Extent (2023)
Vegetation Stress	Y	Not Observed	Not Observed	Acceptable. Some dead plants observed at the toe of the landfill in ponded areas.
Seepage / Ponded Water	Y	Acceptable / Occasional Pooling proximal to the toe landfill in small features and along swale near sewage ponds.	Acceptable / Occasional Pooling proximal to the toe landfill in small features and along swale near sewage ponds.	Acceptable. Some pooling observed at the toe of the landfill.
Exposed Debris	Υ	Not Observed	Not Observed	Acceptable / Isolated. Possible exposed metal debris.
Grades/Topography	Υ	Acceptable, as per landfill design.	Acceptable, as per landfill design.	Acceptable, as per landfill design.
Distance to downgradient surface water bodies	Y	Occasional. Surface water mapped as previously reported. No new surface water bodies.	Occasional. Surface water as previously reported. No new surface water bodies.	Occasional. Surface water pooling near toe of the landfill (wet around RBL-2 and RBL-3).
Distance to freshwater/marine habitat and habitat usage	Y	Acceptable. Set back from marine discharge.	Acceptable. Set back from marine discharge.	Acceptable. Set back from marine discharge.
Terrestrial Habitat	N	Acceptable. Canadian Geese and scat observed near surface water ponds approximately 200 m south of monitoring well RBL-2.	Not observed	Not observed
Land use	Y	Acceptable. Industrial (non- operational, open, unrestricted Airport property)	Acceptable. Industrial (non-operational, open, unrestricted Airport property)	Acceptable. ATV tracks on top of mound.
Debris	Y	Acceptable. None observed on-site	Not observed	Acceptable. Some evidence of foreign metal debris observed on top of the mound.
Landfill cover	Y	Acceptable, as per landfill design.	Acceptable, as per landfill design.	Acceptable, as per landfill design.
Snow, Sun Exposure, Surface Temperature, Wind effects	N	Not observed. No significant weather-related conditions.	Not observed. No significant weather-related conditions.	Not observed. No significant weather-related conditions.

Feature	Presence (Y/N)	Severity Rating / Extent (2021)	Severity Rating / Extent (2022)	Severity Rating / Extent (2023)
Surface Drainage	Y	Acceptable as per landfill design - drainage via swale system.	Acceptable as per landfill design.	Acceptable. Swale system appears to function properly, no drainage channels on slope.
Sewage Overflow	N	Acceptable, as per landfill design, no sewage overflow was observed on-site.	Acceptable, as per landfill design, no sewage overflow was observed onsite.	Acceptable, as per landfill design, no sewage overflow was observed on-site. Signs of historic overflow was noted offsite and should be monitored to ensure it does not flow on-site.
Potential Percolation into Landfill Cap	Y	Acceptable, as per landfill design, no pooling of water on landfill cap.	Acceptable, as per landfill design, no water pooling on landfill cap.	Acceptable, as per landfill design, no water pooling on landfill cap.
Runoff Diversion	Y	Acceptable. Swales/channels functioning as per landfill design.	Acceptable, as per landfill design.	Acceptable, as per landfill design.
Monitoring Well Condition	Y	Acceptable. Minor repairs to RBL-3 (sand and bentonite added to base to solidify casing).	Acceptable. AEC1-GW1 casing slightly bent. J plug added.	Acceptable. No new items.
Overall Landfill Performance		Acceptable		

Photographs for AEC 1 and a figure indicating the photographs locations and viewpoint directions are provided in **Appendix F**.

5.2.1 Vegetation

An area of vegetation growth corresponding to the approximately 75 m by 75 m area as described in the previous monitoring report (DOJV, 2023) was observed near the toe of the landfill and along the southern edge of the landfill, off-Site and downgradient from the sewage ponds. This is consistent with previous observations. Photographs 13, 14 and 15 showing the area are provided in **Appendix F**.

5.2.2 Wildlife

Wildlife was not directly observed at AEC 1. Mr. Noah, the local Wildlife Monitor, commented that there were not many animals on-Site, only birds and the occasional fox. Other evidence of wildlife within the confines of the Site (for example, tracks, scat, fur/feathers, carcass remains) was not observed at AEC 1.

Mr. Noah was also commented that the sewage smell from the adjacent sewage lagoons causes locals to avoid the area around AEC 1.

5.2.3 Seepage / Ponded Water

Similar to the previous monitoring event (DOJV, 2023), areas of ponded water were observed near the west toe of the landfill. Ground conditions in the ponded areas were wet to the touch and contained mossy vegetation but did not contain sufficient water for sampling. Evidence of staining or product seepage from the landfill was not observed. Photographs 13 and 14 showing the ponded areas are provided in **Appendix F**.

5.2.4 Summary

Based on the Site observations, the rating assigned to the AEC 1 landfill was "acceptable". In addition to the general visual inspection, the following items are recommended for observation in subsequent monitoring events:

- Metal surficial debris found at the top of the mound and possible exposed metal debris
- Pooling water at the toe of the landfill (i.e., wet around RBL-2 and RBL-3)

5.3 THERMAL MONITORING DATA

Results for the first three years of thermistor monitoring are provided in Table 8 below.

Table 8: Thermistor Results (August 29, 2021 – July 21, 2023)

Location	Reported permafrost depth (m bgs)	Depth (Month) with Average Monthly Temperatures above 0°C (m bgs)			
		2021	2022	2023	
Thermistor 1	1.7		10 5 0 75 1 0 1 75 (Δμσ 2022)	0.5 (June 2023) 0.5, 0.75, 1.0 (July 2023)	
Thermistor 2	1.3	I(1 5 1) /5 (Δ110 /11/11	0.5, 0.75 (July 2022) 0.5, 0.75, and 1.0 (Aug 2022)	0.5, 0.75 (July 2023)	
Thermistor 3	1.4	1050/5101/5	10 5 0 75 1 0 1 75 (Aug 2022)	0.5 (June 2023) 0.5, 0.75, 1.0 (July 2023)	

The data collected from the thermistors in 2023 (and for previous monitoring events) indicates that the temperatures recorded at depth correlate to the rise and fall of atmospheric temperatures in Resolute. Graphs 1a, 1b, 1c and 1d showing the thermistor data in graphical form are provided in Appendix G. As expected, and as seen in previous monitoring events (DOJV, 2023), temperatures near surface fluctuate the most as the probe is physically closer to, and therefore more exposed to, atmospheric temperatures, while deeper temperatures vary less annually.

Based on the thermistor monitoring data, permafrost appears to have aggregated from 1.5 to 2.75 m over the first and second winter after thermistor installation. The data also indicates the active layer (seasonal depth of freeze-thaw) is between 1.25 and 1.50 m. Assessing permafrost aggregation deeper than this is not possible as the thermistor sensors do not extend below 2.75 m.

5.4 **AEC 1 GROUNDWATER ANALYTICAL RESULTS**

At AEC 1, three groundwater samples (RBL-2, RBL-3 and AEC1-GW1) and one duplicate sample (DUP A) were collected and analyzed by Bureau Veritas in Ottawa, Ontario for the parameters specified in the NWB Water Licence (listed in Section 4.8). The fourth groundwater well (RBL-1) was dry and no sample was collected.

Concentrations of the chemical parameters analyzed at AEC 1 were below the MECP Table 3 Full Depth Generic Site Condition Standards (SCS) in a Non-Potable Groundwater Condition (Table 3 SCS). In addition, all parameters analyzed were below the Maximum Allowable Effluent Discharge Concentration as per the NWB Water Licence.

The concentrations of benzene, toluene, ethylbenzene, xylenes (BTEX) and PHC fractions F1 to F4 were less than the reported detection limits and none of the measured concentrations exceeded applicable guidelines.

PAH concentrations were detected at RBL-3/RBL-DUPA, for 1-methylnapthene (0.84 μg/L and 0.61 μg/L, respectively), 2-methylnapthene (1.40 µg/L and 0.99 µg/L respectively) and naphthalene (0.23 µg/L to 0.17 µg/L), though concentrations were three to four orders of magnitude below the applicable guidelines (1,800 μ g/L, 1,800 μ g/L and 1,400 μ g/L respectively).

The concentrations of total metals, nutrients, routine water parameters, phenols and/or oil and grease were also detectable, with concentrations ranging from zero to three orders of magnitude below the applicable guidelines.

The locations and exceedances for monitoring wells at AEC 1 are presented on Figure 2 in **Appendix A**. Analytical results are provided in Table 2a in **Appendix C** and in laboratory Certificates of Analysis reports in **Appendix E**.

5.5 AEC 1 SURFACE WATER ANALYTICAL RESULTS

At AEC 1, one surface water sample was collected at RBL-4, which is anticipated to be hydraulically downgradient of the AEC. The concentrations of BTEX, PHCs, PAHs, oil and grease and phenols were all below the reported detection limits and were therefore below the applicable guidelines. Routine water and/or nutrient parameters also did not exceed applicable guidelines, and concentrations ranged from zero to two orders of magnitude below the applicable guidelines. For total metals, the concentration of hexavalent chromium (1.6 μ g/L) exceeded the CCME guideline of 1 μ g/L, and the concentration of total copper (2.9 μ g/L) exceeded the CCME guideline of 2.57 μ g/L. Note that the CEQG total copper guideline is calculated with an equation when the hardness of the water sample is between 92 mg/L and 180 mg/L; water hardness for RBL-4 was 110 mg/L. The concentrations of all other analyzed parameters were below the CCME guidelines and the Maximum Allowable Effluent Discharge concentrations as per the NWB Water Licence.

The concentration of ammonia at RBL-4 in 2021 was 0.33 mg/L and exceeded the CCME guideline. In the following year, the concentration of ammonia was below the reported detection limit and therefore below the guideline. For the 2023 sampling event, the concentration of ammonia was <0.05 μ g/L, does not exceed the CCME guideline of 0.089 μ g/L, and was consistent with the 2022 monitoring event. Note that the CEQG guideline for ammonia is determined from a table matrix using the pH and the temperature of the sample at the time of sample collection; the field notes indicate that pH for RBL-4 was 8.93 and the temperature was 15.92 degrees Celsius.

The sample locations and exceedances for AEC 1 are presented on Figure 2. The analytical results are presented in Table 2b in **Appendix C** and in the laboratory Certificates of Analysis in **Appendix E**.

6. SUMMARY OF AEC 2 CONDITIONS

6.1 AEC 2 OVERVIEW

The historical landfill at AEC 2 was inspected to assess its physical integrity by looking for evidence of settlement, erosion, frost action, exposed debris, evidence of animal use (e.g., burrows) and seepage and/or ponded water. Other features of interest could include staining, vegetation stress, and/or runoff. Groundwater samples were not collected from AEC 2 as all monitoring wells were found to be dry. Surface water sample RBL-8 was collected hydraulically downgradient of AEC 2, at a similar location to the previous monitoring event. See Figure 3 of **Appendix A** for the location of Site features and sampling locations.

6.2 VISUAL INSPECTION EVALUATION AND STABILITY ASSESSMENT

Ms. Macdonald conducted the freshet visual inspection of AEC 2 and surrounding area on July 7 and 8, 2023. Ms. Carlton conducted the comprehensive monitoring event was between July 20 and 24, 2023 supported by Mr. Noah. The visual monitoring checklist from the Post Closure Monitoring Plan (Dillon Outcome 2020) was completed and is summarized in Table 9 below and includes observations from 2021 and 2022 for comparison.

Completed field forms for the visual inspections (both freshet and comprehensive site visits) are provided in **Appendix D**. Definitions for the terminology used in the visual inspection are provided in Section 4.3.1.

Table 9: Visual Inspection Results for AEC 2

Feature	Presence (Y/N)	Severity Rating / Extent (2021 Observations)	Severity Rating / Extent (2022 Observations)	Severity Rating / Extent (2023 Observations)
Settlement	Y	fracture approx. 15 -20 m in	Marginal / Isolated - stress fractures, cracking, and depressions ~ 30 m in length along west crest of landfill. Appeared to be more degraded than previous year (2021).	Acceptable / Isolated - Stress fracture along western edge of landfill, minor cracking observed.
Erosion	N	Not Observed	Not Observed	Not Observed
Frost Action	N	Not Observed	Not Observed	Not Observed
Animal Borrows	N	Not Observed	Not Observed	Not Observed
Vegetation	Y	toe of landfill only. No	Acceptable / Isolated. Near toe of landfill only. No vegetation on landfill cap.	Acceptable - isolated, near toe of landfill.
Staining	N	Not Observed	Not Observed	Not Observed

Feature	Presence (Y/N)	Severity Rating / Extent (2021 Observations)	Severity Rating / Extent (2022 Observations)	Severity Rating / Extent (2023 Observations)
Vegetation Stress	Y	Not Observed. Vegetation downgradient from the toe of landfill	Not Observed. Vegetation downgradient from the toe of landfill	Acceptable. Some vegetation downgradient from the toe of landfill was dead
Seepage / Ponded Water	N	Acceptable. Occasional and pooling at toe landfill in small features consistent with previous observations.	Acceptable. Occasional and pooling at toe landfill in small features consistent with previous observations.	Not Observed
Exposed Debris	Y	Acceptable/ Isolated. Domestic debris (very minor) on cap of landfill. Not considered as dumping, possibly windblown debris from community use from surrounding area.	Acceptable / Isolated. A small piece of exposed metal debris was observed in the disturbed area on the west crest of the landfill.	Acceptable / Isolated. Small pieces of exposed metal debris observed in the disturbed area on the west crest/slope of the landfill.
Grades/Topography	Y	Acceptable, as per landfill design.	Acceptable / Isolated. A disturbed area (~20 x ~30 m) with less and uneven gravel (possible vehicle tracks) was noted on west slope of the landfill.	Acceptable. Less gravel on west slope. Disturbed area/possible vehicle tracks noted previously were not present.
Distance to downgradient surface water bodies	N	Occasional. No surface water at toe of landfill. Small pond as previously mapped. No new surface water bodies	Occasional. No surface water at toe of landfill. Small pond as previously mapped. No new surface water bodies	Acceptable. Far enough distance.
Distance to freshwater/marine habitat and habitat usage	Y	Acceptable. Set back from marine discharge	Acceptable. Set back from marine discharge.	Acceptable
Terrestrial Habitat	Y	Acceptable. Arctic fox observed at toe of landfill along access road. Canadian Geese and scat observed near surface water ponds.	None observed	Acceptable. Lemmings observed.
Land use	Y	Acceptable. Industrial (non- operational, open, unrestricted Airport property).	Acceptable. Industrial (non- operational, open, unrestricted Airport property).	Acceptable. Some evidence of tire marks from vehicles around the Site.
Debris	Υ	Acceptable. None observed.	None observed	Acceptable. Some foreign debris on west side of the Site.

Feature	Presence (Y/N)	Severity Rating / Extent (2021 Observations)	Severity Rating / Extent (2022 Observations)	Severity Rating / Extent (2023 Observations)	
Landfill cover Y		Acceptable, as per landfill design.	Acceptable / Isolated. A disturbed area (~20 x ~30 m) with less and uneven gravel (possible vehicle tracks) was noted on west slope of the landfill.	Acceptable, as per landfill design. Disturbed area/possible vehicle tracks noted previously were not present.	
Snow, Sun Exposure, Surface Temperature, Wind	Υ	Acceptable. No significant weather-related conditions	Acceptable. No significant weather-related conditions	Acceptable	
Surface Drainage	Y	Acceptable, as per landfill design. Drainage within swale systems, drainage acting as designed	Acceptable, as per landfill design.	Acceptable, as per landfill design.	
Surface Water Drainage, Runoff Diversion and Potential Percolation into Landfill Cap	Υ	Acceptable. Swales and drainage system operating as designed	Acceptable. Swales and drainage system operating as designed	Acceptable. Swales and drainage system operating as designed	
Permafrost Degradation	N	Acceptable. None observed	None observed	Acceptable	
Monitoring Well Condition	N	Acceptable. Minor repairs to RBL-6 (sand and bentonite added at base to solidify well casing)	Marginal / Isolated. RBL-5 was broken at surface (likely from snow removal activities), repaired, however, depth is shallow, possibly blocked with soil. The well most likely will not yield water moving forward. Existing well FL-MW-6 was dry and the PVC is loose within the well casing.	Acceptable.	
Overall Landfill	Acceptable but with discrete isolated areas and concerns of settlement, cracking, landfill				
Performance	cover and exposed debris				

Photographs for AEC 2 and a figure indicating the photographs locations and viewpoint directions are provided in **Appendix F**.

6.2.1 Settlement

The cracking and settlement observed in 2022 at the central area along the western edge of the landfill, resulting in depressions and exposed debris, does not appear to have further deteriorated. This feature is not expected to impact the integrity of the landfill or cover, however further monitoring of this area is recommended. Additional areas of settlement at AEC 2 were not observed.

6.2.2 Disturbed Areas

For the 2022 observations, an area of less gravel and uneven topography of approximately 20 m by 30 m was observed along the western slope of the landfill. No significant changes were noted from the 2022 observations.

6.2.3 Vegetation

Similar to the previous year observations, one area of vegetation growth was observed near toe of the landfill. While close to the landfill, this area is located south of the access road and downgradient of the landfill area and is technically outside of the Site boundary. As observations from the previous year indicate, the vegetation growth is likely natural and not associated with landfill performance.

6.2.4 Wildlife

A direct wildlife observation was made on July 21, 2023, when a lemming was observed on-Site (see July 20, 2023 – General AEC 2 Visual Inspection Matrix in **Appendix D**). Mr. Noah, the Wildlife Monitor, commented that there were not many animals on-Site, only birds and the occasional fox. Other evidence of wildlife at the Site (for example, tracks, scat, fur/feathers, carcass remains) was limited to bones observed near AEC 2.

6.2.5 Seepage / Ponded Water

There was no evidence of staining or product seepage from the landfill. Areas of ponded water were observed from the west toe of the landfill as reported in the 2022 observations.

6.2.6 Summary

The rating assigned to the AEC 2 landfill was "acceptable" based on the 2023 observations. Isolated areas of exposed debris did not appear to have deteriorated further since the previous monitoring event in 2022. Further monitoring of depressions and partially exposed debris at the central area along the western edge of the landfill should be conducted during future Site visits.

BLM-KEL-60 Corporation 30b Mitik Street Cambridge Bay, NU X0B 0C0

230427 December 13, 2023

6.3 AEC 2 GROUNDWATER RESULTS

All six wells at AEC 2 were dry and no groundwater samples were collected. The locations for monitoring wells at AEC 2 are presented on Figure 3 in **Appendix A**.

6.4 AEC 2 SURFACE WATER RESULTS

At AEC 2, surface water sample (RBL-8) and a duplicate (DUP B) were collected at an anticipated hydraulically downgradient location. The concentrations of BTEX, PHCs, PAH, oil and grease and phenols were all below reported detection limits and were therefore also below guidelines. The concentrations of total metals parameters, routine water, and/or nutrient parameters were detected above reported detection limits but were below applicable guidelines.

Comparing 2023 results to previous sampling events, the concentrations of the following parameters were significantly lower: total aluminum (50 μ g/L, previously was 180 μ g/L), total iron (<100 μ g/L, previously was 2,200 μ g/L), total lead (<0.5 μ g/L, previously was 4.7 μ g/L), and TSS (<10 μ g/L, previously was 160 μ g/L).

The sample locations for surface water at AEC 2 are presented on Figure 3 in **Appendix A**. Analytical results are provided in Table 2b in **Appendix C** and in laboratory Certificates of Analysis reports in **Appendix E**.

7. SUMMARY OF AEC 3 CONDITIONS

7.1 AREA SUMMARY

The historical landfill at AEC 3 was inspected to assess its physical integrity by looking for evidence of settlement, erosion, frost action, exposed debris, evidence of animal use (e.g., burrows) and seepage and/or ponded water. Other features of interest could include staining, vegetation stress, and/or runoff. Groundwater samples could not be collected from AEC 3 as all five monitoring wells were dry. Surface water samples were collected from RBL-13 and RBL-14, downgradient of AEC 3 and within the McMaster River Valley. The surface water samples were similar in location to the locations from 2022 (sample locations from 2021 were moved due to polar bear observations in the river valley).

See Figure 4 of **Appendix A** for Site details and associated sampling locations.

XOB OCO

7.2 VISUAL INSPECTION EVALUATION AND STABILITY ASSESSMENT

Ms. Macdonald conducted the freshet visual inspection of AEC 3 and surrounding area on July 7 and 8, 2023. Ms. Carlton conducted the comprehensive monitoring event was between July 20 and 24, 2023 supported by Mr. Noah. The visual monitoring checklist from the Post Closure Monitoring Plan (Dillon Outcome 2020) was completed and is summarized in Table 10 below and includes observations from 2021 and 2022 for comparison.

Completed field forms for the visual inspections (both freshet and comprehensive Site visits) are provided in **Appendix D**. Definitions for the terminology used in the visual inspection are provided in Section 4.3.1.

Table 10: Visual Inspection Results for AEC 3

Feature	Presence (Y/N)	Severity Rating / Extent (2021 Observations)	Severity Rating / Extent (2022 Observations)	Severity Rating / Extent (2023 Observations)
Settlement		Acceptable / Isolated. Settlement and slope failure approximately 15 m in length along northern edge of remedial area, with evidence of a minor shallow earth slide. This may have been natural due to proximity to the local valley and stream.	Acceptable / Isolated. Same slope slide as last year. No apparent change.	Acceptable / Isolated. Same slope slide as identified previously, no apparent change.
Erosion	N	Not Observed	Not Observed	Not Observed
Frost Action	N	Not Observed	Not Observed	Not Observed
Animal Borrows	N	Not Observed	Not Observed	Not Observed
Vegetation	N	Not Observed	Not Observed	Not Observed
Staining Y Not Observed		Acceptable / isolated. Two small burn pit areas were noted at central area of Site (southwest of RBL-12).	Acceptable / isolated. Two small burn pit areas were noted at central area of Site (southwest of RBL-12).	
Vegetation Stress	N	Not Observed	Not Observed	Not Observed
Seepage / Ponded Water N Acceptable. No water pooling in remedial area. Occasional and pooling south of the remedial area, consistent with previous observations.		Acceptable. No pooling on-Site.	Acceptable. No pooling on-Site.	

Feature	Presence (Y/N)	Severity Rating / Extent (2021 Observations)	Severity Rating / Extent (2022 Observations)	Severity Rating / Extent (2023 Observations)
Exposed Debris	Y	Not Observed	Not Observed	Acceptable. Minor presence of metal debris near RBL-14, likely litter.
Grades/Topography	Y	Acceptable, as per landfill design.	Acceptable, as per landfill design.	Acceptable, as per landfill design.
Distance to downgradient surface water bodies	Y	Occasional. No surface water noted downgradient.	Occasional. Surface water within McMaster River Valley sampled to verify.	Occasional. Drainage channels near RBL-14 and RBL-15 to McMaster River.
Distance to freshwater/marine habitat and habitat usage	Y	Acceptable. No flow to valley stream to the North.	Acceptable. Surface water within McMaster River Valley sampled to verify.	Occasional. Valley to McMaster River.
Terrestrial Habitat	Y	Acceptable. Polar bear observed to the northwest of the AEC. Presence of the bear limited taking of observations in valley/stream to north.	Acceptable. No wildlife observed.	Acceptable. No wildlife observed.
Land use	Y	Acceptable. Wildlands.	Acceptable / Isolated. Evidence of burn pits on Site.	Acceptable / Isolated. Evidence of burn pits on Site.
Debris	N	Not Observed	Not Observed	Acceptable. Isolated area of broken glass noted.
Permafrost Degradation	N	Acceptable. None observed.	Acceptable. None observed.	Acceptable. None observed.
Landfill cover	Υ	Acceptable, as per landfill design.	Acceptable, as per landfill design.	Acceptable, as per landfill design.
Snow, Sun Exposure, Surface Temperature, Wind	Y	Acceptable. No significant weather-related conditions.	Acceptable. No significant weather-related conditions.	Acceptable. No significant weather-related conditions.
Surface Water Drainage and Potential Percolation into Remedial Excavations	N	Acceptable as per landfill design. No pooling of water on remedial areas or north side of access road.	Acceptable as per landfill design. No pooling of water on remedial areas or north side of access road.	Acceptable as per landfill design. No pooling of water on remedial areas or north side of access road. Evidence of drainage channels near RBL-14 and RBL-15.
Runoff Diversion	Y	Acceptable. No runoff from remedial area.	Acceptable. No runoff from remedial area.	Acceptable. No runoff from remedial area.
Monitoring Well Condition	Y	Good condition – Acceptable. Minor repairs to RBL-10 (sand and	Acceptable. No issues flagged.	Acceptable. No issues noted.

Feature	Presence (Y/N)	Severity Rating / Extent (2021 Observations)	Severity Rating / Extent (2022 Observations)	Severity Rating / Extent (2023 Observations)	
		bentonite added to base to solidify well casing)			
Overall Landfill Performance	Acceptable				

Photographs for AEC 3 and a figure indicating the photographs locations and viewpoint directions are provided in **Appendix F**.

7.2.1 Settlement

In 2021, an area of natural settlement/slope slide was observed along the central western edge of the remedial area. This area does not appear to have deteriorated compared to observations made in 2022 and remains approximately 15 m in length. In 2023, evidence of drainage channels were observed near monitoring well locations RBL-14 and RBL-15. This natural settlement feature is not anticipated to impact the performance of the landfill cover or remedial work but is recommended for continued monitoring during future sampling events.

7.2.2 Staining / Burn Pits

Similar to previous observations (2022), soot and ash were observed as evidence of two small burn pits at the central area of the AEC and southwest of monitoring well RBL-12. An example of the burn pit observation is shown in Photograph 6 in **Appendix F**.

7.2.3 Seepage / Ponded Water

Ponded water was not observed within the remediated area of AEC 3 or to the south of the access road. This is consistent with the 2022 observations, although ponded water was observed in 2021. Surface water samples were collected from the McMaster River (downgradient of AEC 3).

XOB OCO

230427 December 13, 2023

7.2.4 Summary

The rating assigned to the AEC 3 landfill was "acceptable" based on the 2023 observations. Isolated areas of settlement did not appear to have deteriorated further since the previous monitoring event in 2022. Metal debris (likely litter) and broken glass was noted. Further monitoring of minor metal debris, settlement areas and burn pits should be conducted for future Site visits.

7.3 **AEC 3 GROUNDWATER RESULTS**

All five wells at AEC 3 were dry and no groundwater samples were collected. The locations for monitoring wells at AEC 3 are presented on Figure 4 in Appendix A.

7.4 **AEC 3 SURFACE WATER RESULTS**

At AEC 3, two surface water samples (RBL-13/RBL-DUPC and RBL-16) were collected from the McMaster River, at locations that are anticipated to be hydraulically downgradient of AEC 3. Similar to the 2022 results, the concentrations of BTEX, PHCs, PAHs, oil and grease and phenols were below the reported detection limits and were therefore also below applicable guidelines. Total metals parameters, routine water and/or nutrient parameters had detectable concentrations and did not exceed applicable guidelines.

At RBL-13, the concentrations of ammonia (<0.05 μg/L), total aluminum (14 μg/L) and total iron (<100 μg/L) were similar to the previous monitoring event (<0.015 μg/L, 10 μg/L, and <60 μg/L, respectively) and were significantly lower than the exceedances observed in the 2021 monitoring event $(0.53 \mu g/L, 399 \mu g/L, and 507 \mu g/L, respectively).$

At RBL-16, the concentration of ammonia (<0.05 µg/L) was similar to the previous monitoring event (<0.015 μg/L), and total aluminum (5.6 mg/L) was lower than the previous monitoring event (34 μg/L). Both were significantly lower than the exceedances observed in the 2021 monitoring event (0.85 μ g/L and 147 μg/L).

The sample locations for surface water at AEC 3 are presented on Figure 4 in Appendix A. Analytical results are provided in Table 2b in Appendix C and in laboratory Certificates of Analysis reports in Appendix E.

8. QA/QC RESULTS

The QA/QC plan included the use of field blanks, trip blanks and collection of blind field duplicate (BFD) samples, proper sampling containment, preservation, handling, and transportation. BV Laboratories, a Standards Council of Canada accredited laboratory, was used for all sample analyses. BLM requested that the lab select method detection limits appropriate to the guidelines specified for the site assessment. For direct measurements of parameters during the Field Investigation, QA/QC procedures included calibration of measuring devices. Following this QA/QC plan ensured that all collected data, and the decisions based on these data, are technically sound and statistically valid. Detailed information on the QA/QC procedures is discussed below.

8.1 SAMPLE MANAGEMENT AND QUALITY CONTROL

Samples were collected into clean sample containers provided by the laboratory. Each sample was clearly labeled with a unique identification number. Once collected, samples were stored in coolers with ice packs and shipped to the laboratory as soon as possible. Chain of custody documentation was completed for each shipment, and is attached in **Appendix E.**

Reported detection limits for total selenium and total mercury were above applicable guidelines for all samples; the analysis was re-run to lower detection limits. Sample AEC1-GW1 was also re-run for PAH, and the required re-extraction was analyzed past the recommended hold times. As reported by the laboratory on the Certificate of Analyses, "Exceedance of hold times increases the uncertainty of the test results but does not necessarily imply that results are compromised". Also of note was that nitrite/nitrate samples required dilution due to colour interferences and detection limits were adjusted accordingly, and coolers were measured above the recommended temperatures of 10 degrees Celsius.

Further details on laboratory QA/QC is provided in Section 8.4.

8.2 FIELD DUPLICATES

Blind field duplicate (BFD) samples were collected to demonstrate that the field sampling techniques utilized by JV-60 personnel are capable of yielding reproducible results. BFDs were collected from the same location and at the same time as the original sample and submitted to the laboratory under a "blind label" for the same analyses as the original sample. A collection frequency of 33.3% of samples was achieved for groundwater and 50% for surface water, greater than the ten percent (10%) as recommended by CCME 2016.

One groundwater BFD was collected (RBL-DUPA, matching sample RBL-3 at AEC 1). The RPD value calculated for total copper was 67%, above the CCME recommendation of 40%, and indicating potential heterogeneity in the groundwater sample. This is possibly due to greater sediment content in the sample, due to limited water supply in the wells. There was no exceedance for total copper in this sample or the duplicate pair, and this result is not expected to change the interpretation of the groundwater sampling results for AEC 1. The RPD values calculated for this duplicate pair were below the CCME recommendation of 40% for all remaining parameters.

Two surface water BFDs were collected (RBL-DUPB, matching sample RBL-8 at AEC 2 and RBL-DUPC, matching sample RBL-13 at AEC 3). For RBL-DUPB, the RPD value calculated for ionic balance was 58%, above the CCME recommendation of 40%. Ionic balance is a calculated parameter and RPD methodology is not considered to be applicable to this parameter, and the individual ions contributing to this calculation did not have RPDs above 40%. The RPD values calculated for these duplicate pairs were below the CCME recommended 40% for all remaining parameters.

Groundwater RPD results are presented in Table 2a and surface water RPD results are presented in Table 2b in **Appendix C**.

8.3 FIELD/TRIP BLANKS

JV-60 personnel prepared two field blank samples in the field to provide a measure of how "clean" the water sampling techniques are, and whether cross-contamination or contamination from exposure to the air has occurred. Field blanks were prepared by filling laboratory supplied bottles using deionized water also supplied by the laboratory. The field blanks were labelled appropriately, and submitted for analysis of BTEX, PHC F1-F4 and PAHs. Laboratory analytical results indicated the reported concentrations of BTEX, PHC F1-F4 and PAH parameters were below the reported detection limits, indicating that sample handling and sampling equipment did not influence the analytical results in the program.

The laboratory supplied one trip blank that accompanied the shipment to and from the Site, to check for background contamination, contamination from transport and handling, or for the presence of container or preservative contamination. The trip blank was submitted for analysis of BTEX and PHC F1-F4, and analytical results indicated the reported concentrations of BTEX and PHC parameters were below the reported detection limits. The trip blank results indicate that shipping and handling of the samples after sampling did not influence the analytical results.

The laboratory analytical results for the field and trip blanks are provided in Table 2a in Appendix C.

8.4 LABORATORY QA/QC

Delays in shipping were anticipated due to the remoteness of the Site, therefore the holding times for some parameters were expected to be exceeded. For volatile constituents, exceeding hold times can bias a result low as VOCs have more time to degrade. JV-60 reviewed the laboratory QA/QC contained in the Certificates of Analysis and the following was noted:

• Job Number C3M6596:

- o Detection limits for nitrate and nitrite at RBL-2 were raised due to colour interference
- Detection limits for total mercury and total selenium were lowered by request, indicating higher uncertainty for measurements between MDL and RDL
- o Benzo(a)pyrene at AEC-GW1 was re-analyzed past hold time due to required re-extraction.
- o Temperatures of the coolers were above 10°C upon receipt by the laboratory; this was due to shipping time from the remote site and warm summer temperatures
- Method blanks or RPDs were outside control limits at RBL-2, RBL-3 and RBL-4, RBL-DUPB,
 RBL-DUPC and FIELD BLANK 1, however the overall quality control met acceptability criteria

Overall, the laboratory QA/QC indicates that there may be an increase in the uncertainty for the samples and analyses mentioned in the list above; however, this does not necessarily mean that the analytical results are compromised. The laboratory analytical results are considered to be acceptable since the overall quality control for the analyses met the laboratory acceptability criteria.

The analytical results are included in the laboratory certificates of analysis provided in Appendix E.

9. CONCLUSIONS AND RECOMMENDATIONS

JV-60 was retained by PSPC, on behalf of TC, to complete the third year (2023-2024) Post-Remediation EMP) at the Resolute Bay Airport Landfills Site.

The program consisted of a preliminary and comprehensive visual inspection of the three historical landfills at AEC 1, AEC 2, and AEC 3, the inspection and downloading data from three thermistors at AEC 1, the monitoring and attempted sampling of groundwater at 15 monitoring wells and surface water sampling at downgradient locations from the three landfill areas. Field work for the preliminary (freshet) monitoring event was conducted by Ms. MacDonald (local staff) on July 7 and 8, 2023, and the comprehensive monitoring event and associated sampling was conducted by Ms. Carlton (BLM) with support from Mr. Noah between July 20 and 24, 2023.

The overall conclusion is that the landfills appear to be functioning as designed. Visual inspections indicated a rating of "acceptable" for all three landfills. Details are discussed below.

AEC 1

In general, AEC 1 was observed to have similar (not worsening) conditions compared to 2022 . Small amounts of surficial metal debris (possibly litter) and possible exposed metal debris were observed at the top of the mound, and there was pooling water at the toe of the landfill (i.e., wet around RBL-2 and RBL-3). Evidence of historic overflow from the municipal sewage ponds was noted off-site and southeast of AEC 1.

Thermistor data at AEC 1 indicates that the temperatures recorded at depth correlate to the rise and fall of atmospheric temperatures in Resolute, which is similar to previous observations. As expected, and as seen in previous monitoring events (Dillon Outcome Joint Venture [DOJV], 2023), temperatures near surface fluctuate the most as the probe is physically closer to, and therefore more exposed to, atmospheric temperatures, while deeper temperatures vary less annually. Permafrost appears to have aggregated from 1.5 to 2.75 m over the first and second winter after thermistor installation, and the active layer is between 1.25 and 1.50 m, as inferred from plotted thermistor data.

Groundwater could only be collected from three of the four monitoring wells at AEC 1. Analytical results indicate that the concentrations of the chemical parameters analyzed at AEC 1 were below the Ontario Ministry of the Environment, Conservation and Parks (MECP) Table 3 Site Condition Standards (SCS) and the Maximum Allowable Effluent Discharge Concentration as per the DOJV 2023 report and the Nunavut Water Board (NWB) Water Licence letter approving the use of the SCS. It was noted that at RBL-3 and AEC-GW1, the concentrations of F2 were less than the detection limit for the 2023 sampling event, lower than the exceeding concentrations for the previous sampling event. The concentration of total suspended solids (TSS) at AEC-GW1 also did not exceed for 2023, as it did for the previous sampling event.

Surface water was collected from one location downgradient of AEC 1 at RBL-4. The concentration of hexavalent chromium and total copper exceeded the CCME guidelines in this sample. Copper has not exceeded guidelines for previous sampling events. The concentrations of all other analyzed parameters were below the CCME guidelines and the Maximum Allowable Effluent Discharge concentrations as per the NWB Water Licence.

AEC 2

The conditions along the western edge of the AEC 2 landfill were observed to be similar to observations made during the previous year (2022). The isolated stress fractures caused by settlement, the depressions and the exposed metal debris do not appear to have degraded further. The approximate 20 m by 30 m disturbed area with uneven ground and potential gravel removal observed in 2022 appears similar to 2022 but the possible vehicle tracks noted in the 2022 observations were not present in 2023.

BLM-KEL-60 Corporation 30b Mitik Street Cambridge Bay, NU X0B 0C0 All six monitoring wells at AEC 2 were dry and no groundwater samples could be collected.

For surface water, one sample was collected at a similar downgradient location (RBL-8) to the previous event (2022). The concentrations of all analyzed parameters were below applicable guidelines. Comparing 2023 results to previous sampling events, the concentrations of total aluminum, total iron, total lead, ammonia and TSS were significantly lower than the 2022 event.

AEC 3

At AEC 3, the isolated slope failure adjacent to the river valley at the north edge of the landfill area remains mostly unchanged since the 2022 and 2021 observations, with the addition of drainage channels that were observed on the slope during the 2023 Site visit.

All five monitoring wells at AEC 3 were dry and no groundwater samples could be collected.

Two surface water samples were collected from the McMaster River at locations downgradient of AEC 3 similar to the 2022 event. The locations were different for the 2021 event, when the samples were collected from ponded water to the south of AEC 3 due to the presence of polar bears in the river valley. The concentrations of all analyzed parameters were below applicable guidelines. At RBL-13, the concentrations of ammonia, total aluminum and total iron were similar to the previous monitoring event and were significantly lower than the exceedances observed in the 2021 monitoring event. At RBL-16, the concentrations of ammonia and total aluminum were similar to the previous monitoring event and were significantly lower than the exceedances observed in the 2021 monitoring event.

The following is recommended by JV-60:

- No repairs to the landfills are recommended at this time. The recent observations of minor exposed debris at AEC 2 and AEC 3 are acceptable and do not currently require action. Visual inspections should continue per the Post-Closure Monitoring Plan, and consideration should be given to repairs in the event of new or different observations that suggest the severity rating has progressed from "acceptable" to "marginal" for any feature. Any observations considered in the severity rating to be "significant" should be flagged for immediate action.
- The monitoring wells and thermistors remain in good condition. Staff inspected the monitoring
 well identified in 2022 as being damaged and did not identify any damage or blockage requiring
 action. No repairs to the monitoring wells or thermistors are recommended at this time.
- While challenges remain with securing adequate groundwater samples from the wells, this is attributed to Site and climatic conditions and are unlikely to be addressed through any changes to the monitoring wells or sampling protocols. No changes to the monitoring program are recommended at this time.

XOB OCO

- Continued monitoring of the landfills consistent with the Post-Closure Monitoring Program is recommended, including a freshet monitoring event, and a second monitoring event, approximately one month later that also includes surface water and groundwater monitoring.
- Following the 2024 sampling event, some sampling locations will have the minimum four data
 points required for Mann Kendall trend analysis and should be considered in 2024 where
 applicable. Trend analysis may be able to modify or eliminate some or all of the monitoring
 program going forward, depending on the availability of data and the observed trends.

10. CLOSURE

The conditions that BLM-KEL-60 Corporation interprets to exist at, between, and beyond sampling points may differ from those that actually exist. The statements made in this report are based solely on the information obtained to date as part of the above referenced investigation. BLM-KEL-60 Corporation has used its professional judgment in analyzing this information and formulating its conclusions. No other warranty or representation expressed or implied, as to the accuracy of the information or recommendations is included or intended in this report.

BLM-KEL-60 Corporation makes no warranty as to the accuracy or completeness of the information provided by others, or of conclusions and recommendations predicated on the accuracy of that information.

This report has been prepared for Transport Canada and Public Services and Procurement Canada. Any use a third party makes of this report, any reliance on the report, or decisions based upon the report, are the responsibility of those third parties unless authorization is received by BLM-KEL-60 Corporation in writing.

BLM-KEL-60 Corporation accepts no responsibility for any loss or damages suffered by any unauthorized third party as a result of decisions made or actions taken based on this report.

Respectfully submitted,

Environmental Scientist

Jaclyn Kalesnikoff, B.Sc., P.Geo. (NAPEG)

Senior Environmental Scientist

Mark Somers, M.Eng., P.Eng. (NAPEG)

Senior Engineer, Manager Environmental Engineering and Compliance

Wayne Ingham, HED, Ph.D.

Manager, Director and Vice President

BLM-KEL-60 Corporation

11. REFERENCES

CCME (1993). Guidance Manual on Sampling, Analysis and Data Management for Contaminated Sites, Volumes I and II.

CCME (2007). Canadian Water Quality Guidelines for the Protection of Aquatic Life. Retrieved from Canadian Council of Ministers of the Environment:

http://cegg-rcqe.ccme.ca/download/en/220?redir=1579714589

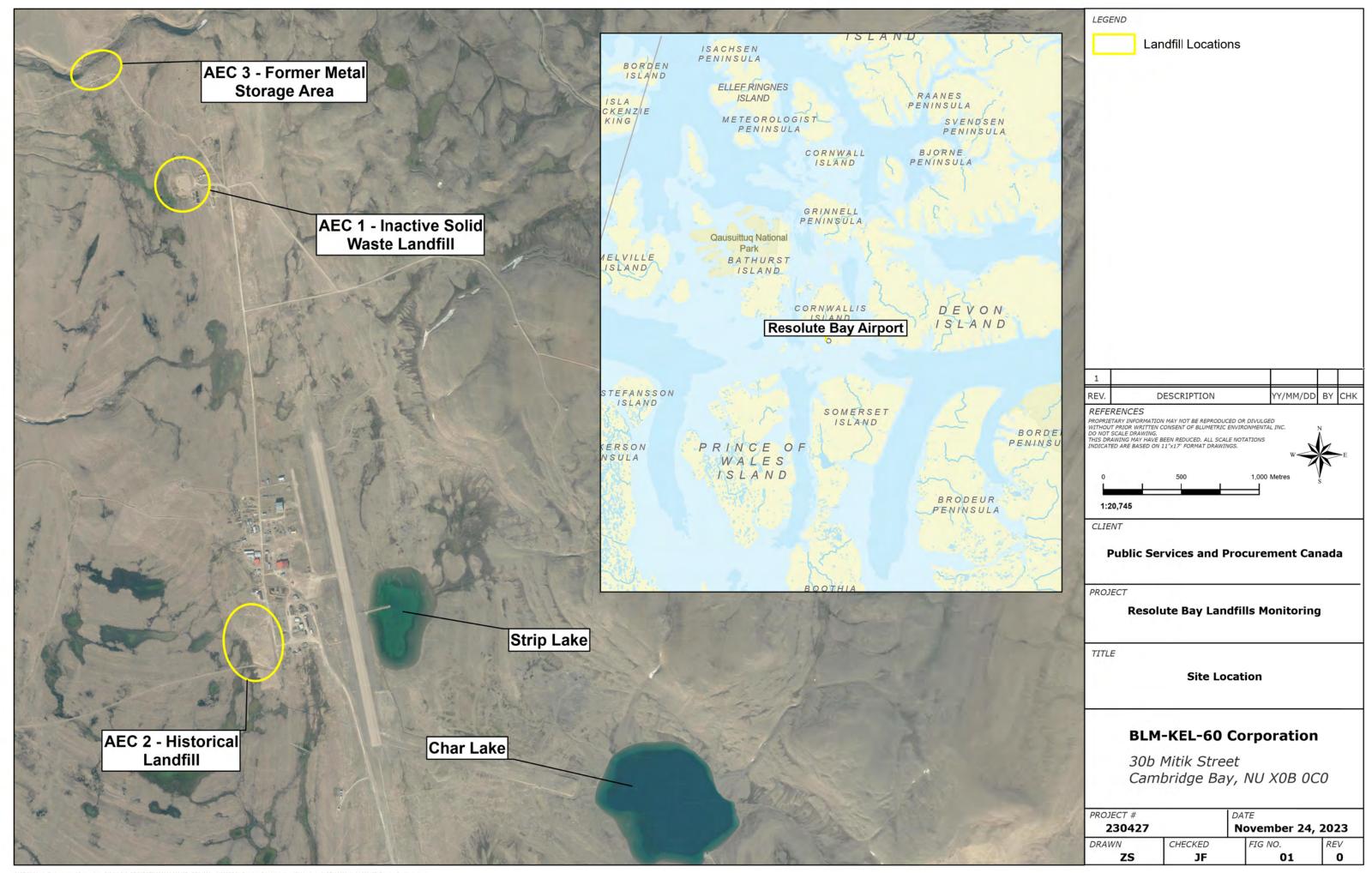
CCME (2016). Guidance Manual for Environmental Site Characterization in Support of Environmental and Human Health Risk Assessment. Volume 1 Guidance Manual and Volume 4 Analytical Methods.

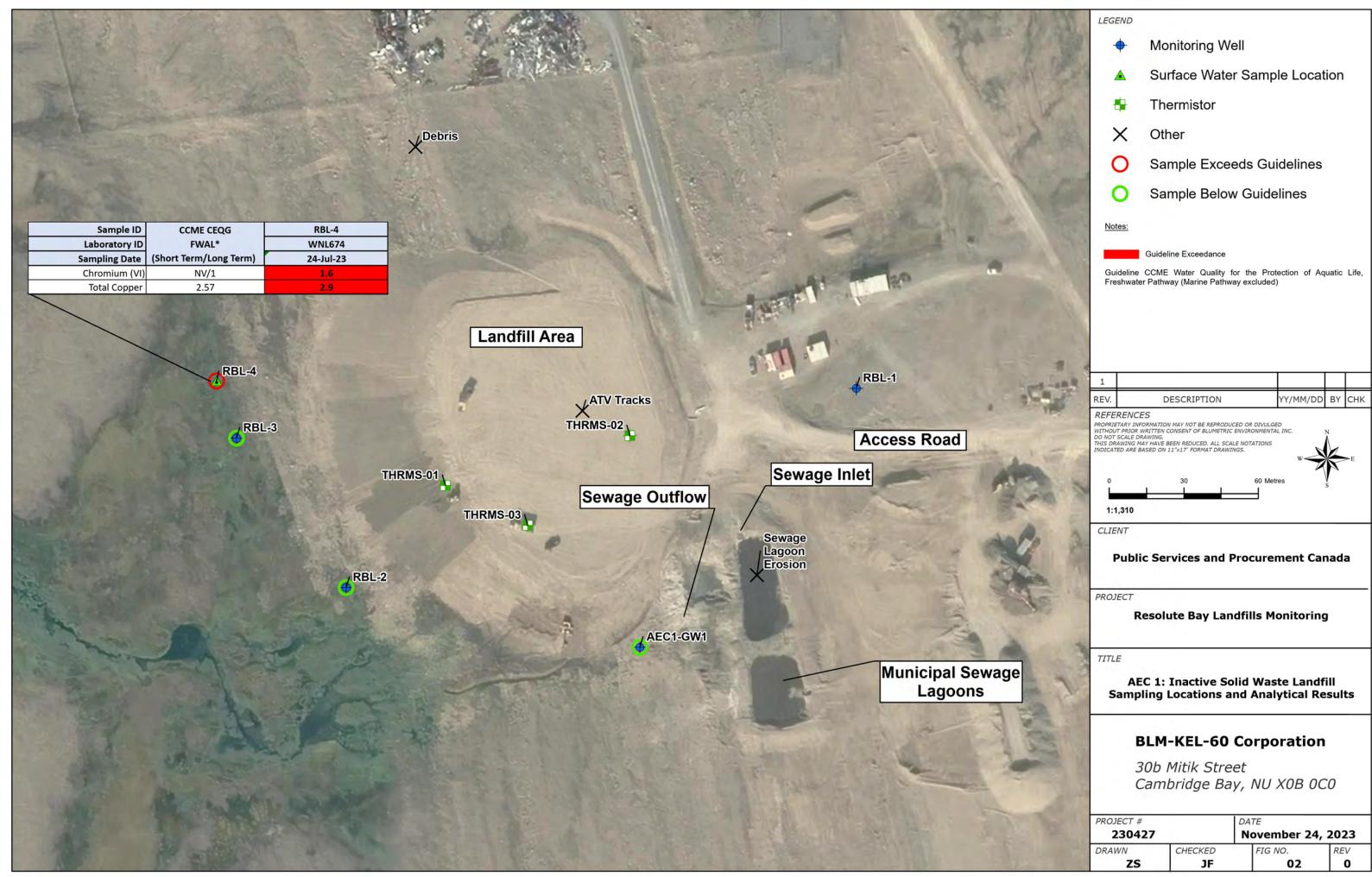
Dillon Consulting Ltd. and Outcome Consultants Inc in joint venture (DOJV). (2020). Post-Closure Monitoring Plan for the Resolute Bay Airport Landfill, Resolute Bay, Nunavut.

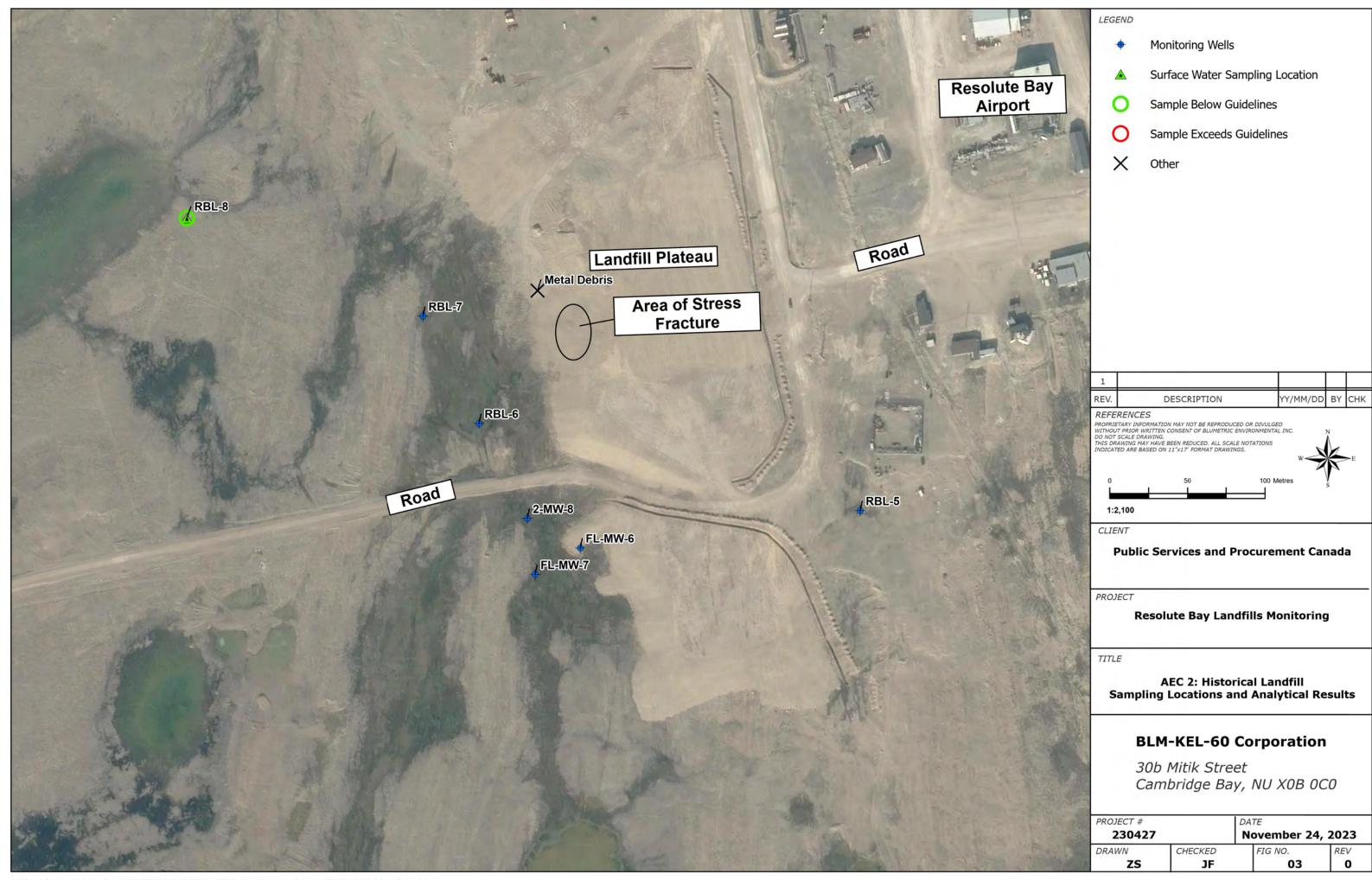
Dillon Consulting Ltd. and Outcome Consultants Inc in joint venture (DOJV). (2022). Confirmatory Sampling Program for the Resolute Bay Airport Landfill, Resolute Bay, Nunavut.

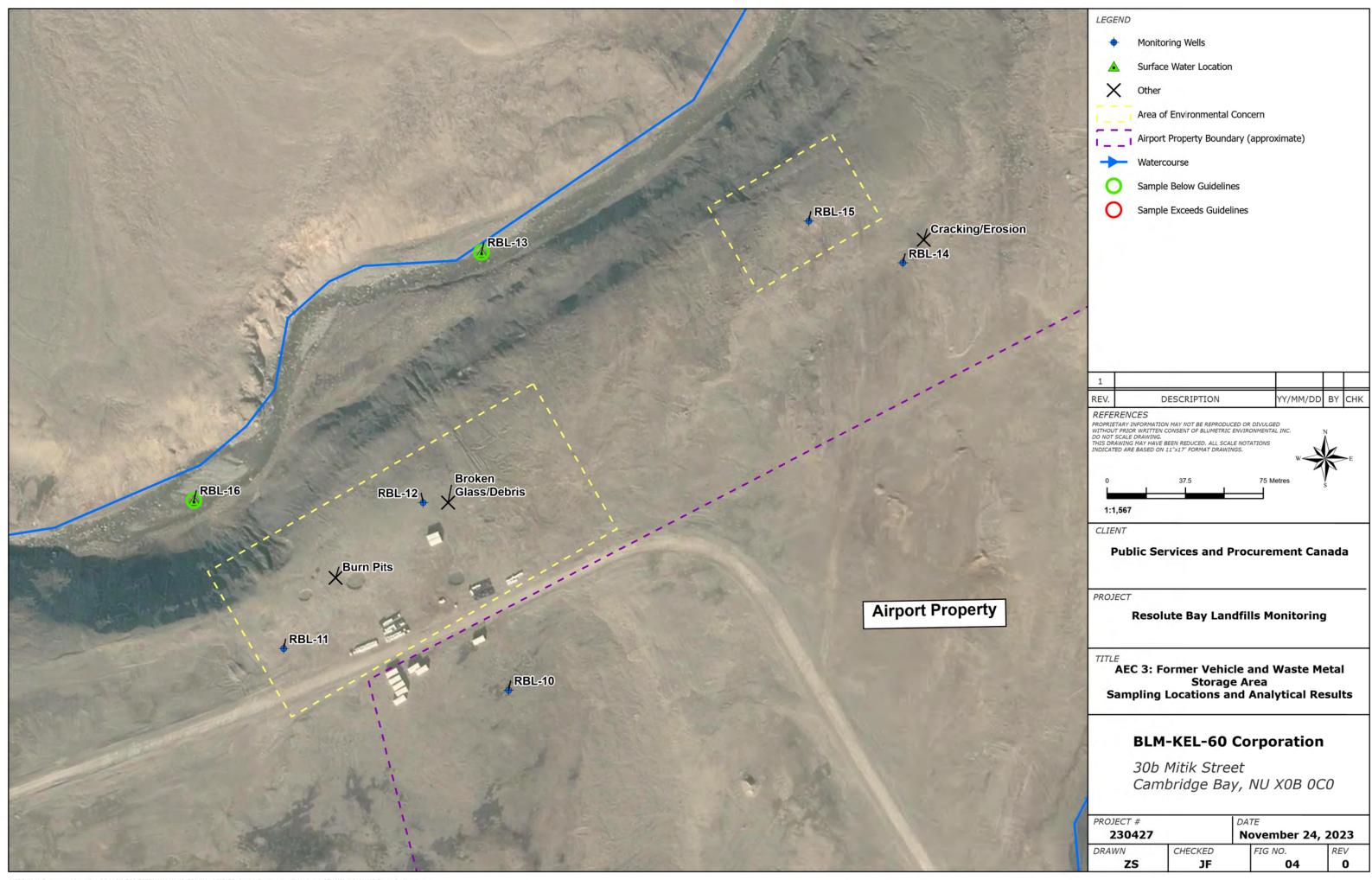
Dillon Consulting Ltd. and Outcome Consultants Inc in joint venture (DOJV). (2023). Confirmatory Sampling Program for the Resolute Bay Airport Landfill, Resolute Bay, Nunavut.

Ministry of the Environment Conservation and Parks (2011). Soil, Groundwater, and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act.


Nunavut Water Board (May 13, 2019). Water Licence Renewal. Licence 1BR RBL1929.


Public Services and Procurement Canada (May 16, 2023). Terms of Reference for Environmental Program,
Resolute Bay Airport Landfills, Risk Management and Remediation, Resolute Bay, Nunavut.
Canada.


US Environmental Protection Agency (2017). Low stress (low flow) purging and sampling procedure for the collection of groundwater samples from monitoring wells. Published July 1996 and revised September 2017.


APPENDIX A

Figures

APPENDIX B

NWB Amended Water Licence

File No.: 1BR-RBL1929

May 13, 2019

Holly Poklitar Kelly Hunnie Transport Canada 344 Edmonton St Winnipeg, MB R3C 0P6

Email: <u>holly.poklitar@tc.gc.ca</u>

kelly.hunnie@tc.gc.ca

RE: NWB Amended Renewal Water Licence No. 1BR-RBL1929

Dear Holly Poklitar, Kellie Hunnie:

Please find attached Licence No. 1BR-RBL1929 issued to Transport Canada by the Nunavut Water Board (NWB) pursuant to its authority under Article 13 of the Agreement between the Inuit of the Nunavut Settlement Area and Her Majesty the Queen in Right of Canada (Nunavut Agreement). The terms and conditions of the attached Licence related to the use of Water and the deposit of Waste are an integral part of this approval.

If the Licensee contemplates the continuing of this Undertaking after the Water Licence expires, it is the responsibility of the Licensee to apply to the NWB for a renewal water licence. The past performance of the Licensee, new documentation and information, and issues raised during a public hearing, if the NWB is required to hold one, will be used to determine the terms and conditions of the renewal Water Licence. Note that if the Licence expires before the NWB issues a new one, then the use of Water and the deposit of Waste must cease, or the Licensee may be in contravention of the *Nunavut Agreement* and the *Nunavut Waters and Nunavut Surface Rights Tribunal Act (NWNSRTA)*. However, the expiry or cancellation of a licence does not relieve the holder from any obligations imposed by the licence. The NWB recommends that an application for the renewal of this Licence be filed at least three (3) months prior to the Licence expiry date. It should be noted that in accordance with s. 75(1)(a) of the *Nunavut Planning and Project Assessment Act (NuPPAA)*, the Board is not allowed to issue a permit or authorization for any project proposal that has not been submitted to the Nunavut Planning Commission (NPC) in accordance with s. 76 of *NuPPAA*.

If the Licensee contemplates or requires an amendment to this licence, the NWB may decide, in the public's interest, to hold a public hearing. The Licensee should submit applications for

amendment as soon as possible to give the NWB sufficient time to go through the amendment process. The process and timing may vary depending on the scope of the amendment, however, a minimum of <u>sixty (60) days</u> is required from time of acceptance by the NWB. It is the responsibility of the Licensee to ensure that all application materials have been received and are acknowledged by the Manager of Licensing.

The NWB strongly recommends that the Licensee consult the comments received by CIRNAC on issues identified. This information is attached for your consideration.¹

Sincerely,

Lootie Toomasie Nunavut Water Board, Chair

LT/ak/rqd

Enclosure: Renewal Licence No. 1BR-RBL1929

Comments - CIRNAC

Cc: Distribution List – Qikiqtani

¹ Crown-Indigenous and Northern Affairs Canada (CIRNAC), March 8, 2019.

TABLE OF CONTENTS

DECISIO	N_{11}	
INTRODU	JCTION	iv
PROCED	URAL HISTORY	iv
GENERA	L CONSIDERATIONS	v
A.	Term of the Licence	
B.	Annual Report	
C.	Water Use	
D.	Deposit of Waste	
	te Sources	
Е.	Camps, Access Infrastructures and Operations	
F. G.	Drilling Operations	V1
О. Н.	Spill Contingency Planning	
I.	Closure and Reclamation or Temporary Closure	vii
J.	Monitoring Program	
WATER I	LICENCE AMENDMENT	1
PART A:	SCOPE, DEFINITIONS AND ENFORCEMENT	2
1.	Scope	
2.	Definitions	
3.	Enforcement	4
PART B:	GENERAL CONDITIONS	
PART C:	CONDITIONS APPLYING TO WATER USE	6
PART D:	CONDITIONS APPLYING TO WASTE DISPOSAL	7
PART E:	CONDITIONS FOR CAMPS, ACCESS INFRASTRUCTURES AND	
	OPERATIONS	9
PART F:	CONDITIONS APPLYING TO DRILLING OPERATIONS	11
PART G:	CONDITIONS APPLYING TO CONSTRUCTION AND MODIFICATIONS	. 11
PART H:	CONDITIONS APPLYING TO SPILL CONTINGENCY PLANNING	
PART I:	CONDITIONS APPLYING TO CLOSURE AND RECLAMATION OR	
	TEMPORARY CLOSURE	. 12
PART J:	CONDITIONS APPLYING TO THE MONITORING PROGRAM	

DECISION

LICENCE NUMBER: 1BR-RBL1929

This is the decision of the Nunavut Water Board (NWB) with respect to an application dated January 31, 2019 for a renewal of a Water Licence made by:

TRANSPORT CANADA

to allow for the deposit of Waste associated with the Resolute Bay Landfill Remediation Project located within the Qikiqtani Region, Nunavut, generally located at the geographical coordinates as follows:

Project Extents:

Latitude: 74° 44' 44.77" N
Latitude: 74° 44' 52.46" N
Latitude: 74° 42' 48.04" N
Latitude: 74° 42' 45.01" N
Longitude: 94° 01' 55.13" W
Longitude: 95° 01' 20.17" W
Longitude: 94° 58' 40.22" W
Longitude: 95° 00' 09.30" W

DECISION

After having been satisfied that the Application is for a proposal that is in conformity with the North Baffin Regional Land Use Plan subject to the attached requirements as determined by the Nunavut Planning Commission (NPC)¹ and as determined by the Nunavut Impact Review Board (NIRB)², a review of the Project is not required in accordance with s. 92(1)(a) of *NuPPAA*, subject to the terms and conditions recommended by NIRB's Screening Decision Report, the NWB decided that the application could proceed through the regulatory process. In accordance with s. 55.1 of the *Nunavut Waters and Nunavut Surface Rights Tribunal Act (NWNSRTA* or *Act*) and Article 13 of the *Nunavut Agreement*, public notice of the Application was given and interested persons were invited to make representations to the NWB.

After reviewing the submission of the Applicant and considering the representations made by interested persons, the NWB, having given due regard to the facts and circumstances, the merits of the submissions made to it and to the purpose, scope and intent of the *Nunavut Agreement* and of the *Act*, waived the requirement to hold a public hearing, and determined that:

Amended Renewal Licence No. 1BR-RBL1929 be issued subject to the terms and conditions contained therein (Motion #: 2019-B1-004).

¹ Nunavut Planning Commission, Conformity Determination, March 27, 2018.

² Nunavut Impact Review Board (NIRB) Screening Decision, June 22, 2018.

Signed this 13 th	day of _	May, 2019	at Gjoa Haven,	NU.
------------------------------	----------	-----------	----------------	-----

Lootie Toomasie Nunavut Water Board, Chair

LT/ak/rqd

INTRODUCTION

The Resolute Bay Landfill Remediation Project (Project) involves the implementation of remediation activities planned for the Waste Disposal Facilities comprised of a Solid Waste Landfill (AEC 1), a Historical Landfill (AEC 2), and a Vehicle Storage Area (AEC 3), all of which are located proximal to the Resolute Bay Airport on Cornwallis Island, approximately 5 kilometres northwest of the current Resolute Bay Airport in the Qikiqtani Region of Nunavut.

Part of the preparatory work carried out for the project involved a Phase II/III Environmental Site Assessment (ESA) that took into consideration previous environmental studies and/or assessments carried out for the site. The following is a summary of the activities/undertakings proposed by the Licensee to achieve the Project's remediation objectives:

- Ship the remaining collected hazardous waste materials to a licensed hazardous waste disposal facility;
- Collect and consolidate the steel from AEC 2 into AEC 1;
- Develop one or more borrow sites on the airport property to create the gravel required for the landfill capping;
- Stabilize the landfill slopes at AEC 2 and AEC 1, along with grading and construction of drainage swales at both locations;
- Excavate approximately 125 m³ of contaminated soil from AEC 3 and dispose at an approved facility;
- Cap both landfills with a layer of gravel to minimize water infiltration; and
- Install sampling wells for groundwater monitoring.

After the completion of above stated activities, the Licensee will undertake site monitoring.

PROCEDURAL HISTORY

On July 11, 2014, the Nunavut Water Board issued a type "B" Water Licence 1BR-RBL1419 to Transport Canada to allow for the deposit of waste during the remediation activities at the Resolute Bay Landfill Remediation located proximal to the Resolute Bay Airport in the Qikiqtani Region, Nunavut. The Licence was set to expire on July 10, 2019.

The NWB acknowledged receipt on February 8, 2019 of the following documents as part of the water licence renewal application (Application) by Transport Canada for the Project:

- Water Licence Renewal Application;
- Nunavut Airports aggregate approval (July 5, 2018);
- Plan of Construction Operations (PCO) (July 5, 2018);
- Nav Canada approval in principle (June 21, 2018);
- Executive Summaries in English and Inuktitut;
- Topographical Map;
- NPC Determination dated March 2018;
- NPC Determination dated May 2011;
- NIRB Screening Decision dated February 2012;

- NIRB Screening Decision dated June 2018; and
- Health and Safety Plan.

On March 27, 2018, the Nunavut Planning Commission (NPC) issued correspondence indicating that the project proposal conforms to the North Baffin Regional Land Use Plan. On June 22, 2018, the Nunavut Impact Review Board issued its Screening Decision notifying that a review of the project is not required in accordance with paragraph 92(1)(a) of the Nunavut Planning and Project Assessment Act (NuPPAA). The Screening Decision was issued with recommendations.

GENERAL CONSIDERATIONS

A. Term of the Licence

In accordance with the *Nunavut Waters and Nunavut Surface Rights Tribunal Act* S. 45, the NWB may issue a licence for a term not exceeding twenty-five years. The applicant requested a tenyear term for the licence, which the NWB believes is consistent with and appropriate for the type of undertaking and schedule of activities proposed in the application. The Board has therefore granted the requested term.

B. Annual Report

Part B of the Licence addresses the general terms and conditions that apply to the undertaking, such as annual report submission, protocols for handling documents related to the Licence, posting of signage at sites associated with the undertaking, and more.

C. Water Use

No water use is authorized under this Licence except for the purposes of groundwater monitoring and sampling.

D. Deposit of Waste

Aggregate Sources

Information contained in the Phase II/III Environmental Site Assessment Report accompanying Application indicates that aggregate will be required to cap the landfills being remediated irrespective of the remediation option being chosen and implemented by the proponent. Conditions have been included under Part E in the Licence to ensure that aggregates used for any facilities associated with the project do not possess acid generating and/or metal leaching characteristics. In cases where it is determined that the materials are suitable for use, the Licensee is required to implement appropriate drainage control measures to prevent sediment loading into nearby water bodies. The NWB has included conditions under Part D and Part J to ensure that quality of effluent from borrow pits and quarries is monitored.

Solid Waste Landfill (AEC 1)

The Solid Waste Landfill, which has a surface area of approximately 40,000 m² and located proximal to the Resolute Bay Airport's Sewage Lagoon Facility, was used as a dump during the 1960s and 1970s, mainly. A new landfill was constructed southeast of the Hamlet in 1995; however, the information provided suggests that the Solid Waste Landfill had continued to be used unofficially as a dump up to 2005. The environmental assessment and audit carried out on the site identified a variety of waste types including drums, scrap metals and plastic scattered

near the site. Pools of standing water near the landfill, evidence of leachate containing petroleum hydrocarbons and metals, and significant vegetative growth were also observed near the landfill during the ESA. Drainage from the landfill discharges towards the west into Allen Bay while the area behind the toe of the landfill drains into a small unnamed creek and several small ponds. The NWB has included terms and conditions under Part D and Part J in the Licence requiring the Licensee to monitor this facility during and after remediation.

Historic Landfill (AEC 2)

The Historical Landfill covers an area of approximately 145,000 m² and is located southwest of the airport terminal building. The site was used from the period 1947 to 1996. The Canadian and American Military Forces used the site from 1947 to 1964 while Transport Canada and various airport tenants used the site from 1964 to 1995. Information provided as part of the application indicates that although disposal activities had ended in the early 1970s, the use of the landfill did not officially cease until 1996. The environmental assessment carried out on the site identified significant vegetative growth proximal to the landfill. The community water supply, Strip Lake, is located several kilometres to the south of the landfill and a hotel project is currently being developed along the northeast boundary of the Historic Landfill. Drainage from historical Historic Landfill is described as a complex of interconnected lakes and drainage channels that ultimately discharge towards the south into Resolute Bay. Three small lakes west of the landfill capture runoff and drainage from the landfill and eventually drain into Meretta Lake onto Resolute Lake and finally into Resolute Bay. A patchy, discontinuous wetland has developed at the toe of the Historic Landfill along its southern extents. Conditions have been included under Part D and Part J in the Licence to ensure that this facility is monitored before, during and after remediation activities.

Vehicle Storage Area (AEC 3)

The Vehicle Storage Area consists of two sites with areas of 3750 m² and 900 m², respectively, and that are located 1 to 3 kilometers northwest of the airport terminal. The site has been used as an area for the disposal of vehicles and other equipment including drums, tires, tanks, glass, etc. Although the site was identified in an audit conducted in 1993, it was not included in the investigation carried out for the Solid Waste Landfill and Historic Landfill. Drainage from the Vehicle Storage Area discharges towards the west into Allen Bay and surficial flow drains into McMaster River Valley. The NWB has included conditions under Part D and Part J to ensure that potential runoff or leachate from this facility is monitored before, during and after remediation activities.

E. Camps, Access Infrastructures and Operations

The Licensee is required to submit to the Board for approval within sixty (60) days following the completion of remediation of the Waste Disposal Facilities, an Operation and Maintenance (O&M) Manual for the Waste Disposal Facilities.

F. Drilling Operations

The Licensee is authorized to drill for the purposes of installing monitoring wells and/or

thermistors, and other instrumentation required for the monitoring of the Waste Disposal Facilities.

G. Construction and Modifications

The Applicant is required to obtain permission from the NWB for modifications that do not meet the definition of modifications or the criteria of Part G, Item 1 of the Licence. Without written consent from the NWB, the Licensee is not allowed to carry out any modifications. Changes that do not meet the definition of modification under the Licence or the requirements of Part G may be considered amendments to the Licence.

H. Spill Contingency Planning

The Licensee shall implement the updated Plan submitted as additional information in section 10 "Spill Contingency Plan" of the Plan entitled "Specific Health and Safety Plan" dated June 2018.

I. Closure and Reclamation or Temporary Closure

Under Part I, the Licensee is required to submit to the Board for review, within sixty (60) days following the completion of remediation activities, an updated stand-alone Remedial Action Plan that reflects documented remediation options implemented for the Resolute Bay Landfill Remediation Project.

J. Monitoring Program

The Licensee shall submit to the Board for approval, at least sixty (60) days prior to initiating Long-Term Monitoring for the Project, a Post-closure Monitoring Plan for the site that includes information on Long-Term Monitoring of the Waste Disposal Facilities and that addresses water quality monitoring, site stability and the need for thermal monitoring and ground water monitoring. Conditions have been included that require the Licensee to monitor water quality upgradient and down-gradient of the Solid Waste Landfill, Historic Landfill and proximal to the Vehicle Storage Area, as well as runoff from borrow pits and quarries. In addition, the Licensee is required to submit to the Board for review sixty (60) days prior to the first release of any effluent, a Quality Assurance/Quality Control (QA/QC) Plan. The Plan must receive approval from an analyst confirming Plan's acceptability. All of the monitoring results, along with analyses carried out on the results, are to be provided to the NWB as part of the annual reporting requirements.

NUNAVUT WATER BOARD WATER LICENCE AMENDMENT

Licence No. 1BR-RBL1929

Pursuant to the *Nunavut Waters and Nunavut Surface Rights Tribunal Act* and the *Agreement Between the Inuit of the Nunavut Settlement Area and Her Majesty the Queen in right of Canada*, the Nunavut Water Board, hereinafter referred to as the Board, hereby grants to

TRANSPORT CANADA

(Licensee)

344 EDMONTON ST, WINNIPEG, MB R3C 0P6

(Mailing Address)

hereinafter called the Licensee, the right to alter, divert or otherwise use water or dispose of Waste for a period subject to restrictions and conditions contained within this Licence Amendment:

Licence Number/Type: 1BR-RBL1929 / TYPE "B"

Water Management Area: BATHURST AND CORNWALLIS ISLANDS WATERSHED

(55)

Location: QIKIQTANI REGION, NUNAVUT

Classification: MINING UNDERTAKING

Purpose: WATER USE FOR MONITORING AND DEPOSIT OF

WASTE

Quantity of Water use not

to Exceed: USE OF WATER IS NOT AUTHORIZED

Date of Licence Issuance: MAY 13, 2019

Expiry of Licence: MAY 12, 2029

This Licence amendment, issued and recorded at Gjoa Haven, Nunavut, includes and is subject to the annexed conditions.

Lootie Toomasie

Nunavut Water Board, Chair

PART A: SCOPE, DEFINITIONS AND ENFORCEMENT

1. Scope

This Licence allows for the use of Water and deposit of Waste for an Industrial undertaking classified as per Schedule 1 of the *Regulations* at the Resolute Bay Landfill Remediation Project, located approximately 5 kilometres northwest of the Hamlet of Resolute Bay within the Qikiqtani Region, Nunavut.

- a. This Licence is issued subject to the conditions contained herein with respect to the taking of Water and the deposit of Waste of any type in any Waters or in any place under any conditions where such Waste or any other Waste that results from the deposits of such Waste may enter any Waters. Whenever new Regulations are made or existing *Regulations* are amended by the Governor in Council under the *Nunavut Waters and Nunavut Surface Rights Tribunal Act*, or other statutes imposing more stringent conditions relating to the quantity or type of Waste that may be so deposited or under which any such Waste may be so deposited, this Licence shall be deemed, upon promulgation of such Regulations, to be subject to such requirements; and
- b. Compliance with the terms and conditions of this Licence does not absolve the Licensee from responsibility for compliance with the requirements of all applicable Federal, Territorial and Municipal legislation.

2. **Definitions**

"Act" means the Nunavut Waters and Nunavut Surface Rights Tribunal Act;

"Addendum" means the supplemental text that is added to a full plan or report usually included at the end of the document and is not intended to require a full resubmission of the revised report;

"<u>Amendment</u>" means a change to original terms and conditions of this Licence requiring correction, addition or deletion of specific terms and conditions of the Licence; modifications inconsistent with the terms of the set terms and conditions of the Licence:

"Applicant" means the Licensee;

"<u>Appurtenant Undertaking</u>" means an undertaking in relation to which a use of water or a deposit of Waste is permitted by a licence issued by the Board;

"Board" means the Nunavut Water Board established under the *Nunavut Agreement* and the *Nunavut Waters and Nunavut Surface Rights Tribunal Act*;

"Borrow Pits" means sites for which materials, such as gravel or sand, are excavated for the purposes of constructing site infrastructure and facilities;

- "Closure and Reclamation Plan" means a Plan developed to reach the closure goal and taking in account the "Guidelines for the Closure and Reclamation of Advanced Mineral Exploration and Mine Sites in the Northwest Territories" 2013;
- "<u>Effluent</u>" means treated or untreated liquid Waste material that is discharged into the environment from a structure such as a settling pond, landfarm or a treatment plant;
- "Engineer" means a professional engineer registered to practice in Nunavut in accordance with the Consolidation of Engineers and Geoscientists Act S. Nu 2008, c.2 and the Engineering and Geoscience Professions Act S.N.W.T. 2006, c.16 Amended by S.N.W.T. 2009, c.12;
- "<u>Final Discharge Point</u>" means the point at which the Licensee no longer exerts care and/or control over the quality and/or quantity of the effluent from a treatment process;
- "Greywater" means all liquid Wastes from showers, baths, sinks, kitchens and domestic washing facilities, but does not include toilet Wastes;
- "Hazardous waste" means waste classified as "hazardous" by Nunavut Territorial or Federal Legislation, or as "dangerous goods" under the *Transportation of Dangerous Goods Act* at the time of clean-up;
- "<u>High Water Mark</u>" means the usual or average level to which a body of water rises at its highest point and remains for sufficient time so as to change the characteristics of the land (ref. Department of Fisheries and Oceans Canada, Operational Statement: Mineral Exploration Activities);
- "Inspector" means an Inspector designated by the Minister under Section 85 (1) of the *Act*;
- "Licensee" means the holder of this Licence;
- "<u>Modification</u>" means an alteration to a physical work that introduces a new structure or eliminates an existing structure and does not alter the purpose or function of the work, but does not include an expansion;
- "Nunavut Agreement" means the "Agreement Between the Inuit of the Nunavut Settlement Area and Her Majesty the Queen in right of Canada", including its preamble and schedules, and any amendments to that agreement made pursuant to it;
- "<u>Quarry or Quarries</u>" means the areas of surface excavation for extracting rock material for use as construction materials in the development of infrastructure and facilities for the Resolute Bay Landfill Remediation Project;
- "Regulations" means the Nunavut Waters Regulations SOR/2013-69 18th April, 2013;
- "Secondary Containment" means an impermeable structure, external to and separate from primary containment, which prevents unplanned spills of hazardous materials and

provides a minimum capacity of 110% of the original vessel. Where multiple vessels are stored within the containment, it must provide a minimum capacity equal to the sum of the largest vessel and 10% of the aggregate volume of all other vessels located in the containment. This structure shall also provide containment and control of hoses and nozzles;

"Sewage" means all toilet Wastes and greywater;

"Spill Contingency Plan" means a Plan developed to deal with unforeseen petroleum and hazardous materials events that may occur during the operations conducted under the Licence:

"Sump or Sumps" A structure or depression that collects, controls, and filters liquid Waste before it is released to the environment. This structure should be designed to prevent erosion while allowing percolation of liquid Waste;

"<u>Toilet Wastes</u>" means all human excreta and associated products, but does not include greywater;

"<u>Type A Soil</u>" means soil contaminated with hydrocarbons in which the primary petroleum product present in the soil as determined by laboratory analysis consists of lubricating oil and grease (F3 – F4 Fractions);

"<u>Type B Soil</u>" means soil contaminated with hydrocarbons in which the primary petroleum product present in the soil as determined by laboratory analysis consists of fuel oil and/or diesel fuel and /or gasoline (F1 – F2 Fractions);

"Waste" means, as defined in s. 4 of the *Act*, any substance that, by itself or in combination with other substances found in water, would have the effect of altering the quality of any water to which the substance is added to an extent that is detrimental to its use by people or by any animal, fish or plant, or any water that would have that effect because of the quantity or concentration of the substances contained in it or because it has been treated or changed, by heat or other means;

"Waste Disposal Facilities" means all facilities designated for the purpose of disposing and/or treating waste including the Solid Waste Landfill, Historical Landfill and the Vehicle Storage Area as described in the original Application, which the NWB acknowledged receiving on June 23, 2011;

"Water" or "Waters" means waters as defined in section 4 of the Act.

3. **Enforcement**

- a. Failure to comply with this Licence will be a violation of the *Act*, subjecting the Licensee to the enforcement measures and the penalties provided for in the *Act*;
- b. All inspection and enforcement services regarding this Licence will be provided by Inspectors appointed under the *Act*; and

c. For the purpose of enforcing this Licence and with respect to the use of water and deposit or discharge of Waste by the Licensee, Inspectors appointed under the *Act*, hold all powers, privileges and protections that are conferred upon them by the *Act* or by other applicable law.

PART B: GENERAL CONDITIONS

- 1. The Licensee shall file an Annual Report on the Appurtenant Undertaking with the Board no later than March 31st of the year following the calendar year being reported, containing the following information:
 - a. A summary report of Water use and Waste disposal activities;
 - b. Quantity of Waste disposed of on on-site Waste disposal facility;
 - c. Quantity of Waste backhauled to approved facility for disposal;
 - d. A list of unauthorized discharges and a summary of follow-up actions taken;
 - e. Any revisions to the management plans, as required by Part B, Item 6, submitted in the form of an Addendum;
 - f. A description of all progressive and or final reclamation work undertaken, including photographic records of site conditions before, during and after completion of operations;
 - g. A summary of all information requested and results of the Monitoring Program;
 - h. A summary, including photographic records before, during and after any relevant construction activities or Modifications and/or major maintenance work carried out on facilities under this Licence and an outline of any work anticipated for the next year;
 - i. If applicable, a description of any trenches and sumps excavated, including but not limited to the following: GPS coordinates, dimensions, depth below active layer, and secondary containment features;
 - j. A summary of public consultation/participation, describing consultation with local organizations and residents of the nearby communities, if any were conducted;
 - k. A summary of work done to address concerns or deficiencies listed in inspection reports and/or compliance reports prepared by an Inspector;
 - 1. An executive summary in English and Inuktitut of all plans, reports, or studies conducted under this Licence; and
 - m. Any other details on Waste disposal requested by the Board by the 1st November of the year being reported.
- 2. The Licensee shall notify the NWB of any changes in operating plans or conditions associated with this project at least thirty (30) days prior to any such change.
- 3. The Licensee shall, for all Plans submitted under this Licence, include a proposed timetable for implementation. Plans submitted, cannot be undertaken without subsequent written Board approval and direction. The Board may alter or modify a Plan if necessary to achieve the legislative objectives and will notify the Licensee in writing of acceptance, rejection or alteration of the Plan.

- 4. The Licensee shall, for all Plans submitted under this Licence, implement the Plan as approved by the Board in writing.
- 5. The Licensee shall review the Plans referred to in this Licence, as required by changes in operation and/or technology, and modify the Plan accordingly. Revisions to the Plans shall be submitted in the form of an Addendum to be included with the Annual Report.
- 6. Every Plan to be carried out pursuant to the terms and conditions of this Licence shall become a part of this Licence, and any additional terms and conditions imposed upon approval of a Plan by the Board become part of this Licence. All terms and conditions of the Licence should be contemplated in the development of a Plan where appropriate.
- 7. The Licensee shall ensure a copy of this Licence is maintained at the site of operations at all times. Any communication with respect to this Licence shall be made in writing to the attention of:

(a) Manager of Licensing:

Nunavut Water Board P.O. Box 119 Gjoa Haven, NU X0B 1J0 Telephone: (867) 360-6338

Fax: (867) 360-6369

Email: <u>licensing@nwb-oen.ca</u>

(b) Inspector Contact:

Manager of Field Operations, CIRNAC Nunavut District, Nunavut Region P.O. Box 100 Iqaluit, NU X0A 0H0

Telephone: (867) 975-4295 Fax: (867) 979-6445

- 8. The Licensee shall submit an electronic copy of all reports, studies, and plans to the Board. Reports or studies submitted to the Board by the Licensee shall include a detailed executive summary in Inuktitut.
- 9. The Licensee shall ensure that all documents or correspondence submitted by the Licensee to the NWB are received and acknowledged by the Manager of Licensing.
- 10. This Licence is assignable as provided for in Section 44 of the *Act*.
- 11. The expiry or cancellation of this Licence does not relieve the Licensee from any obligation imposed by the Licence, or any other regulatory requirement.

PART C: CONDITIONS APPLYING TO WATER USE

- 1. Water use is not authorized under this Licence except for the purposes of groundwater sampling.
- 2. The Licensee shall not conduct any work below the ordinary High Water Mark of any water body unless approved by the Board in writing.
- 3. The Licensee shall not cause erosion to the banks of any body of Water and shall provide necessary controls to prevent such erosion.
- 4. Sediment and erosion control measures shall be implemented prior to and maintained during the undertaking to prevent entry of sediment into Water.

PART D: CONDITIONS APPLYING TO WASTE DISPOSAL

- 1. The Licensee shall locate areas designated for Waste disposal at a minimum distance of thirty-one (31) metres from the ordinary High Water Mark of any water body such that the quality, quantity or flow of Water is not impaired, unless otherwise approved by the Board in writing.
- 2. The Licensee shall not practice on-site land filling of domestic Waste, unless otherwise approved by the Board in writing.
- 3. The Licensee is authorized to dispose of all acceptable food Waste, paper Waste and untreated wood products in an incinerator.
- 4. The Licensee shall not open burn plastics, wood treated with preservatives, electric wire, Styrofoam, asbestos or painted wood to prevent the deposition of Waste materials of incomplete combustion and/or leachate from contaminated ash residual, from impacting any surrounding Waters, unless otherwise approved by the Board in writing.
- 5. The Licensee shall direct appropriate Waste originating from the Resolute Bay Landfill Remediation Project to the Waste Disposal Facilities authorized under this Licence or as otherwise approved by the Board in writing.
- 6. The Licensee shall provide to the Board documented authorization from all communities in Nunavut receiving Waste from the Resolute Bay Landfill Remediation Project prior to any backhauling and disposal of Wastes to those communities.
- 7. The Licensee shall backhaul and dispose of all hazardous Waste, Waste oil and non-combustible Waste generated through the course of the operation at a licensed Waste disposal site.
- 8. The Licensee shall maintain records of all Waste backhauled and records of confirmation of proper disposal of backhauled Waste and include this information within the Annual Report, under Part B, Item 1. These records shall be made available to an Inspector upon request. The Licensee shall not transport hazardous wastes prior to registering with the

Government of Nunavut as a waste generator and utilizing the prescribed manifests.

- 9. The Licensee shall dispose of any hazardous materials including Polychlorinated Biphenyl (PCB) amended paints or lead painted products, and Petroleum Hydrocarbon Contaminated Soils that do not meet incineration criteria, off site at a currently approved treatment facility.
- 10. The Licensee shall provide notice to an Inspector at least ten (10) days prior to initiating any decant or discharge from the Waste Disposal Facilities.
- 11. All contact water associated with the Waste Disposal Facilities including seepage from Monitoring Program Stations shall meet the following Effluent quality limits prior to being released onto land at a location that is at least thirty-one (31) metres away from the ordinary High Water Mark of any adjacent water body, where direct flow into a water body is not possible and no additional impacts are created:

Parameter	Maximum Allowable Concentration (mg/L)
рН	6 to 9 (pH units)
TSS	50
Oil and Grease	15 and no visible sheen
Total Lead	0.001
Benzene	0.37
Toluene	0.002
Ethylbenzene	0.090

- 12. If the effluent associated with Part D, Item 11 does not meet the Effluent limits under Part D, Item 11, it shall be considered hazardous waste and disposed off-site at an approved facility or as otherwise approved by the Board in writing.
- 13. All surface runoff and/or discharge from borrow pits and quarries, and drainage management systems, during the construction of any facilities and infrastructure associated with this project, where flow may directly or indirectly enter a water body, at Monitoring Program Station(s) RBL-X shall not exceed the following Effluent quality limits:

Parameter		Maximum Average Concentration (mg/L)	Maximum Concentration o Any Grab Sample (mg/L)	
Total Su Solids	spended	50.0	100	
Oil and Grease		15,000 and no visible sheen	15,000 and no visible sheen	
рН		Between 6.5 and 9.5	Between 6.0 and 9.5	

14. All water being pumped from excavated areas and borrow pits shall be contained at holding facility and shall be treated if necessary, to meet Effluent quality limits set in Part D, Item 13, prior to being released.

15. The Licensee shall dispose of all scrap metal, discarded machinery and parts, and other bulky material in a manner that conforms to the remedial option selected in the "Conceptual Remedial or Risk Management Action Plan" Section of the Phase II/III Environmental Site Assessment Final Report, Resolute Bay Airport Landfill Sites, Resolute Bay Nunavut, dated March 2010.

PART E: CONDITIONS FOR CAMPS, ACCESS INFRASTRUCTURES AND OPERATIONS

- 1. No camp activities are authorized under the provisions of this Licence.
- 2. The Licensee may use aggregates for the purposes specified in the "Conceptual Remedial or Risk Management Action Plan" Section of the Phase II/III Environmental Site Assessment Final Report, Resolute Bay Airport Landfill Sites, Resolute Bay Nunavut, dated March 2010, provided that the aggregate sources are approved by an Inspector, free of contaminants.
- 3. The Licensee shall submit to the Board for approval, within sixty (60) days following the completion of remediation of the Waste Disposal Facilities, an Operation and Maintenance Manual for all facilities operated at the Resolute Bay Landfill Remediation Project. The manual shall be prepared in accordance with the "Guidelines for the Preparation of an Operation and Maintenance Manual for Sewage and Solid Waste Disposal Facilities in the Northwest Territories; 1996".
- 4. The Operations and Maintenance Manual referred to in Part E, Item 3 shall address the following items:
 - a. As-built construction drawings of the facility (stamped by a professional Engineer registered in Nunavut);
 - b. Feasibility of alternative disposal methods and sites;
 - c. Operation and maintenance procedures for each facility;
 - d. Runoff diversion and management;
 - e. Monitoring Program for both water and soil.
- 5. The Licensee shall, upon the failure of any constructed facilities, repair such facilities immediately to the appropriate standards as recommended by an Engineer.
- 6. The Licensee shall implement proper handling, storage and transportation procedures for hazardous materials during remediation activities.
- 7. The Licensee shall minimize disturbance to terrain, permafrost and drainage during extraction of granular material, development and closure of landfills, movement of contractor's equipment and personnel around the site and removal of site debris.
- 8. The Licensee shall not cause erosion to the banks of any body of water and shall provide and implement necessary controls prior to and maintained during the activities to prevent such erosion and entry of sediment into Water.

- 9. The Licensee shall design and construct all stream crossings to minimize erosion and/or deposition of Waste into water.
- 10. The Licensee shall ensure that existing creek channels are maintained at their normal width and depth to the extent possible, during and after construction.
- 11. Granular materials and rock rip-rap used for any temporary stream crossings, approaches or required for bank stabilization must be obtained from a source that is approved by an Inspector, and is clean and free of contaminants as outlined in Part E, Item 2. Such material must not be removed or gathered from below the ordinary High Water Mark of any water body.
- 12. All sites affected by construction or removal activities shall be stabilized, landscaped as necessary, and suitable erosion control measures implemented to minimize sediment deposition into watercourses located on or adjacent to the site.
- 13. The Licensee shall restore and stabilize all areas affected by the undertaking upon completion of the work.
- 14. The Licensee shall not deposit Waste in any water body, or on the banks thereof, which may impair the quality, quantity, or flow of water.
- 15. The Licensee shall not store material on the surface of frozen streams or lakes including the immediate banks except what is for immediate use.
- 16. The Licensee shall conduct all activities in such a way as to minimize impacts on surface drainage and the Licensee shall immediately undertake corrective measures in the event of any impacts on surface drainage.
- 17. The Licensee shall construct all winter lake and stream crossings, including ice bridges, entirely of Water, ice or snow. The Licensee shall minimize disturbance by locating ice bridges in an area that requires the minimum approach grading and the shortest crossing route. Stream crossings shall be removed or the ice notched prior to spring break-up.
- 18. Stream crossing shall be a minimum of five hundred (500) meters from spawning areas.
- 19. With respect to access road, pad construction or other earthworks, the deposition of debris or sediment into or onto any water body is prohibited. These materials shall be disposed a distance of at least thirty-one (31) metres from the ordinary High Water Mark in such a fashion that they do not enter the Water.
- 20. The Licensee shall not mobilize heavy equipment or vehicles for trenching or other activities unless the ground surface is capable of fully supporting the equipment or vehicles without rutting or gouging. Overland travel of equipment or vehicles shall be suspended if rutting occurs.
- 21. The Licensee shall conduct quarrying activities in accordance with all applicable legislation, guidelines, and industry standards including the *Northern Land Use*

- *Guidelines Pits and Quarries* (2009).
- 22. The Licensee shall maintain a minimum of thirty-one (31) metres large undisturbed buffer zone between the periphery of quarry sites and the ordinary High Water Mark of any water body.
- 23. The Licensee shall not excavate and/or remove material from the quarry/borrow area beyond a depth of one (1) metre above the ordinary High Water Mark or above the groundwater table, to prevent contamination of groundwater.

PART F: CONDITIONS APPLYING TO DRILLING OPERATIONS

1. The Licensee is authorized to drill for the purposes of installing monitoring wells and/or thermistors, and other instrumentation required for the monitoring of the Waste Disposal Facilities.

<u>PART G: CONDITIONS APPLYING TO CONSTRUCTION AND MODIFICATIONS</u>

- 1. The Licensee may, without written consent from the Board, carry out Modifications to the Water Supply Facilities and Waste Disposal Facilities provided that such Modifications are consistent with the terms of this Licence and the following requirements are met:
 - a. the Licensee has notified the Board in writing of such proposed Modifications at least sixty (60) days prior to beginning the Modifications;
 - b. such Modifications do not place the Licensee in contravention of the Licence or the *Act*:
 - c. such Modifications are consistent with the NIRB Screening Decision;
 - d. the Board has not, during the sixty (60) days following notification of the proposed Modifications, informed the Licensee that review of the proposal will require more than sixty (60) days; and
 - e. the Board has not rejected the proposed Modifications.
- 2. Modifications for which all of the conditions referred to in Part G, Item 1 have not been met can be carried out only with written approval from the Board.
- 3. The Licensee shall provide as-built plans and drawings of the Modifications referred to in this Licensee within ninety (90) days of completion of the Modification. These plans and drawings shall be stamped by an Engineer.

PART H: CONDITIONS APPLYING TO SPILL CONTINGENCY PLANNING

1. The Licensee shall implement the updated Plan submitted as additional information in section 10 "Spill Contingency Plan" of the Plan entitled "Specific Health and Safety Plan"

dated June 2018.

- 2. The Licensee shall prevent any chemicals, petroleum products or Wastes associated with the project from entering Water. All Sumps and fuel caches shall be located at a distance of at least thirty-one (31) metres from the ordinary High Water Mark of any adjacent water body and inspected on a regular basis.
- 3. The Licensee shall conduct any equipment maintenance and servicing in designated areas and shall implement special procedures (such as the use of drip pans) to manage motor fluids and other Waste and contain potential spills.
- 4. If during the term of this Licence, an unauthorized discharge of Waste occurs, or if such a discharge is foreseeable, the Licensee shall:
 - a. Employ the approved Spill Contingency Plan;
 - b. Report the spill immediately to the 24-Hour Spill Line at (867) 920-8130 and to the Inspector at (867) 975-4295; and
 - c. For each spill occurrence, submit to the Inspector, no later than thirty (30) days after initially reporting the event, a detailed report that will include the amount and type of spilled product, the GPS location of the spill, and the measures taken to contain and clean up the spill site.
- 5. The Licensee shall, in addition to Part H, Item 4, regardless of the quantity of releases of harmful substances, report to the NWT/NU Spill Line if the release is near or into a Water body.

PART I: CONDITIONS APPLYING TO CLOSURE AND RECLAMATION OR TEMPORARY CLOSURE

- 1. The Licensee shall carry out remediation activities on the Waste Disposal Facilities in accordance with the option selected under the "Conceptual Remedial or Risk Management Action Plan" Section of the Phase II/III Environmental Site Assessment Final Report, Resolute Bay Airport Landfill Sites, Resolute Bay Nunavut, dated March 2010. The Licensee is required to submit to the Board for review within sixty (60) days following the completion of remediation activities an updated stand-alone Remedial Action Plan that reflects the actual remedial options implemented for the Resolute Bay Landfill Remediation Project.
- 2. The Licensee shall complete all restoration work prior to the expiry of this Licence.
- 3. The Licensee shall carry out progressive reclamation of any components of the project no longer required for the Licensee's operations.
- 4. The Licensee shall remove from the site, all infrastructure and site materials, including all fuel caches, drums, barrels, buildings and contents, docks, water intakes, pumps and lines, material and equipment prior to the expiry of this Licence.

- 5. All roads, if any, shall be re-graded to match natural contour to reduce erosion.
- 6. Areas that have been contaminated by hydrocarbons from normal fuel transfer procedures shall be reclaimed to meet objectives as outlined in the Government of Nunavut's Environmental Guideline for Site Remediation, 2010. The use of reclaimed soils for the purpose of back fill or general site grading may be carried out only upon consultation and approval by the Government of Nunavut, Department of Environment and an Inspector.
- 7. The Licensee shall contour and stabilize all disturbed areas to reduce erosion and sedimentation to Water, upon completion of the undertaking.
- 8. All disturbed areas shall be stabilized and re-vegetated as required, upon completion of work, and restored as practically as possible to a pre-disturbed state.

PART J: CONDITIONS APPLYING TO THE MONITORING PROGRAM

- 1. The Licensee shall submit to the Board for approval, at least sixty (60) days prior to initiating Long-Term Monitoring for the Project, a Post-closure Monitoring Plan for the site that includes information on Long-Term Monitoring of the Waste Disposal Facilities and that addresses water quality monitoring, site stability and the need for thermal monitoring and ground water monitoring.
- 2. The Licensee shall maintain Monitoring Program Stations at the following locations:

Monitoring Program Station Number	Description	Status
RBL-1	Monitoring Well installed up-gradient of the Solid Waste Landfill	Active (Water Quality)
RBL-2	Monitoring Well installed down-gradient of the Solid Waste Landfill	Active (Water Quality)
RBL-3	Monitoring Well installed down-gradient of the Solid Waste Landfill	Active (Water Quality
RBL-4	Discharge from the Solid Waste Landfill	Active (Water Quality
RBL-5	Monitoring Well installed up-gradient of the Historic Landfill	Active (Water Quality)
RBL-6	Monitoring Well installed down-gradient of the Historic Landfill	Active (Water Quality)
RBL-7	Monitoring Well installed down-gradient of the Historic Landfill	Active (Water Quality)
RBL-8	Discharge from the Historic Landfill	Active (Water Quality)
RBL-10	Monitoring Well installed up-gradient of the Vehicle Storage Area (Site 1)	Active (Water Quality)
RBL-11	Monitoring Well installed down-gradient of the Vehicle Storage Area (Site 1)	Active (Water Quality)

RBL-12	Monitoring Well installed down-gradient of the Vehicle Storage Area (Site 1)	Active (Water Quality)
RBL-13	Discharge from the Vehicle Storage Area (Site 1)	Active (Water Quality)
RBL-14	Monitoring Well installed up-gradient of the Vehicle Storage Area (Site 2)	Active (Water Quality)
RBL-15	Monitoring Well installed down-gradient of the Vehicle Storage Area (Site 2)	Active (Water Quality)
RBL-15	Monitoring Well installed down-gradient of the Vehicle Storage Area (Site 2)	Active (Water Quality)
RBL-16	Discharge from the Vehicle Storage Area (Site 2)	Active (Water Quality)
RBL-X where X refers to a number of a Station	Discharge from quarries and/or borrow pits	Active (Water Quality)

- 3. The Licensee shall measure and record, in cubic metres, the daily quantities of Effluent discharged from the Waste Disposal Facilities at Monitoring Program Stations RBL-4, RBL-8, RBL-13, RBL-16 and RBL-X.
- 4. The Licensee shall sample the Effluent, prior to discharge, at Monitoring Program Stations RBL-4, RBL-8, RBL-13, RBL-16 and RBL-X analyze for the following parameters:

Conductivity рH Total Suspended Solids (TSS) Ammonia Nitrogen Nitrate – Nitrite Oil and Grease (visual) **Total Phenols** Sulphate Total Hardness **Total Alkalinity** Sodium Potassium Calcium Magnesium Chloride Total Cadmium Total Copper **Total Chromium** Total Lead Total Iron **Total Mercury** Total Nickel **Total Phosphorous** Total Zinc Total Aluminum Total Manganese Total Arsenic **Total Cobalt** Polycyclic Aromatic Hydrocarbons Total Petroleum Hydrocarbons (PAH) (TPH) Benzene, Toluene, Ethylbenzene,

5. The Licensee shall sample twice per year (once during spring freshet and once during mid-summer) water at Monitoring Program Stations RBL-1, RBL-2, RBL-3, RBL-5, RBL-6, RBL-7, RBL-9, RBL-10, RBL-11, RBL-12, RBL-14 and RBL-15 for the purpose of analyzing samples for the parameters listed under Part J Item 4.

Xylene (BTEX)

- 6. The Licensee shall determine the GPS co-ordinates (in degrees, minutes and seconds of latitude and longitude) of all locations where wastes associated with the project operations are deposited.
- 7. The Licensee shall monitor compliance with respect to Part D Item 11, by collecting a representative sample once at the beginning of discharge, upon initial release and prior to the end of discharge, from the Final Discharge Points of the Waste Disposal Facilities at Monitoring Program Stations RBL-4, RBL-8, RBL-13, RBL-16, and with respect to Part D, Item 13 at the Monitoring Stations RBL-X.
- 8. The Licensee shall monitor compliance with respect to Part D Items 11 and 13 by collecting a representative composite sample from the total volume to be released from the Final Discharge Points identified in Part J, Item 2 of this Licence.
- 9. The Licensee shall assess and record, when carrying out the project, the concentration of F1 F4 fractions in petroleum hydrocarbon contaminated soil, according to the *CCME Canada-Wide Standard for Petroleum Hydrocarbons (PHC) in Soil*, from all sources and excavations associated with the project.
- 10. All sampling, sample preservation and analyses shall be conducted in accordance with methods prescribed in the current edition of *Standard Methods for the Examination of Water and Wastewater*, or by such other methods approved by the Board in writing.
- 11. All analyses shall be performed in a laboratory accredited according to ISO/IEC Standard 17025. The accreditation shall be current and in good standing.
- 12. The Licensee shall submit to the Board for review, at least sixty (60) days prior to the first release of any effluent, a Quality Assurance/Quality Control Plan that conforms to the guidance document "Quality Assurance (QA) and Quality Control (QC) Guidelines For Use by Class "B" Licensees in Collecting Representative Water Samples in the Field and for Submission of a QAQC Plan" INAC (1996). The Plan shall be acceptable to an accredited laboratory and include a covering letter from the accredited laboratory confirming acceptance of the Plan for analyses to be performed under the Licence.
- 13. The Licensee shall include in the Annual Report required under Part B, Item 1 all data, monitoring results and information required by this Part.

APPENDIX C

Analytical Results Tables

Table 1 - Groundwater Monitoring Resolute Airport Landfills EMP, Resolute, Nunavut

Location (AEC)	Date Sampled	3TM Northing	3TM Easting	Groundwater Depth (mbTOP)	Total Well Depth (mbTOP)	рН	Conductivity (uS/cm)	Turbidity (NTU)	Temperature (°C)	Notes
Monitoring Wells							•	•	•	
RBL-1 (AEC 1)	23-Jul-23	8295630	441147	1.30	1.32	NA	NA	NA	NA	Lock was cut; well was dry; acceptable well condition
RBL-2 (AEC 1)	23-Jul-23	8295551	440943	1.27	1.44	7.34	729	4.70	6.91	Lock was cut; acceptable well condition
RBL-3 (AEC 1)	23-Jul-23	8295608	440901	0.86	1.62	7.91	427	9.30	5.53	Lock was cut; acceptable well condition; RBL-DUPA @15:50, Field Blank 1 @15:40
AEC1-GW1 (AEC 1)	23-Jul-23	8295526	441063	1.30	1.74	7.86	1170	14.70	6.55	Lock was cut; acceptable well condition
RBL-5 (AEC 2)	23-Jul-23	8292509	441662	Dry	0.99	NA	NA	NA	NA	Did not appear to be damaged or blocked; acceptable well condition, dry at 0.99 mbTOP
RBL-6 (AEC 2)	23-Jul-23	8292566	441420	Dry	0.88	NA	NA	NA	n/a	Acceptable well condition; dry at 0.88 mbTOP
RBL-7 (AEC 2)	23-Jul-23	8292634	441384	Dry	1.34	NA	NA	NA	n/a	Acceptable well condition; dry at 1.34 mbTOP
FL-MW-6 (AEC 2)	23-Jul-23	8292485	441484	Dry	0.96	NA	NA	NA	n/a	Acceptable well condition; dry at 0.96 mbTOP
FL-MW-7 (AEC 2)	23-Jul-23	8292468	441452	Dry	1.49	NA	NA	NA	n/a	Acceptable well condition; dry at 1.49 mbTOP
2-MW-8 (AEC 2)	23-Jul-23	8292499	441451	Dry	1.06	NA	NA	NA	n/a	Acceptable well condition; dry at 1.06 mbTOP
RBL-10 (AEC 3)	23-Jul-23	8296242	440493	Dry	1.28	NA	NA	NA	n/a	Acceptable well condition; dry at 1.28 mbTOP
RBL-11 (AEC 3)	23-Jul-23	8296265	440383	Dry	1.30	NA	NA	NA	n/a	Acceptable well condition; dry at 1.30 mbTOP
RBL-12 (AEC 3)	23-Jul-23	8296335	440450	Dry	1.48	NA	NA	NA	n/a	Acceptable well condition; dry at 1.48 mbTOP
RBL-14 (AEC 3)	23-Jul-23	8296449	440682	Dry	1.42	NA	NA	NA	n/a	Acceptable well condition; dry at 1.42 mbTOP
RBL-15 (AEC 3)	23-Jul-23	8296468	440635	Dry	1.41	NA	NA	NA	n/a	Acceptable well condition; dry at 1.41 mbTOP
Surface Water Locations										
RBL-4 (AEC 1)	24-Jul-23	8295627	440884	n/a	n/a	8.93	307	0	15.92	collected at scheduled location @ 13:00
RBL-8 (AEC 2)	24-Jul-23	8292688	441366	n/a	n/a	8.54	384	6	11.57	collected at downgradient pond, RBL-DUPB @ 11:55
RBL-13 (AEC 3)	24-Jul-23	8296454	440478	n/a	n/a	8.27	216	0	9.37	collected at 2022 location, RBL-DUPC @ 11:20
RBL-16 (AEC 3)	24-Jul-23	8296336	440340	n/a	n/a	8.54	216	0	9.22	collected at 2022 locations, Field Blank 2 @ 10:40

Notes:

RBL monitoring wells were installed in 2019
Coordinates are expressed in 3TM, Zone 15N, NAD83 datum.

°C - degree celsius

NA - not available

mbTOP - metres below top of pipe. NTU - nephelometric turbidity unit

uS/cm - microsiemens per centimeter n/a - not applicable

Table 2a - Groundwater Analtyical Results Resolute Airport Landfills EMP, Resolute, Nunavut BTEX, PHCs, Oil and Grease, Total Metals, Routine parameters, PAHs and Phenol Analysis

Column											AEC 1 - Inac	tive Solid Waste	Landfill										AEC	2 - Historical La	andfill			
The column			Max. Allowable			RBL-1			RBL-2	RBL-2	RBL-2	RBL-3	GW DUP 1	RBL-3	RBL-3		pap 443											
THE COLOR STATE OF THE COLOR STA	Sampling Date	MECP Table 3	Discharge	KDL	Units												KPD (%)											
Tree Man																												
Service 1400 150 150 150 150 150 150 150 150 150 1			370		μg/L	<0.40	<0.40	Dry	<0.40	<0.40		<0.40	<0.40	< 0.40			I - I	<0.40		<0.40	Dry	<0.40	< 0.40	Dry	0.77	Dry	1.6	1.6
The series of the control of the con			2		μg/L	<0.40	<0.40	Dry	< 0.40	< 0.40		< 0.40	< 0.40	< 0.40			-	1.1		0.63	Dry	1.6	< 0.40	Dry	0.46	Dry	6.8	6.7
STATEMEN STA																	- 1										30	29
TRANSPORT OF THE PROPERTY OF T				0.2	μg/L												-											75
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Petroleum Hydrocarbons	4,200	NV.	0.4	µg/L	<0.89	<0.89	Dity	<0.89	<0.89	<0.4	<0.89	<0.89	<0.89	<0.4	<0.4		<u.89< td=""><td><u.4< td=""><td><u.89< td=""><td>DIY</td><td>4.8</td><td><0.89</td><td>Dry</td><td>44</td><td>DIY</td><td>110</td><td>100</td></u.89<></td></u.4<></td></u.89<>	<u.4< td=""><td><u.89< td=""><td>DIY</td><td>4.8</td><td><0.89</td><td>Dry</td><td>44</td><td>DIY</td><td>110</td><td>100</td></u.89<></td></u.4<>	<u.89< td=""><td>DIY</td><td>4.8</td><td><0.89</td><td>Dry</td><td>44</td><td>DIY</td><td>110</td><td>100</td></u.89<>	DIY	4.8	<0.89	Dry	44	DIY	110	100
Column				25													-											
Charles					µg/L			Dry									- :				Dry			Dry		Dry		
Second Column	F3 (C16-C34)	500	NV	200		<100	<100	Dry	<100	<100	<200	<100	<100	<100	<200	<200	-	160	<200	<100	Dry	<100	<100	Dry	270	Dry	280	290
The column		500	NV	200	μg/L	<200	<200	Dry	<200	<200	<200	<200	<200	<200	<200	<200	-	<200	<200	<200	Dry	<200	<200	Dry	<200	Dry	<200	<200
American Service 1	Oil And Grease	NV	15,000	0.5	μg/L	<500	<2,000	Dry	<500	<2,000	<0.5	<500	<500	<2,000	<0.5	<0.5	- 1		<0.5		Dry	<500	2,000	Dry	40,000	Dry	7,700	6,500
Section 1.						4 330	1 2000		7.0			40.0		120				34		4 000		24.400	520		350		400	200
Tree Control 1989 198			NV NV	0.5						0.77							- 1		<0.50									
The March 19 10 10 10 10 10 10 10 10 10 10 10 10 10		1,900		1	μg/L	0.58	1.2	Dry	0.67	1.9	1.3	0.48	0.37	0.61	1.5	1.6	-	3.9	8.8	1.9	Dry	11.8	0.56	Dry	1.5	Dry	5.4	5.7
See		29,000															1					454 2.4					91 <1.0	<2.0
Teners 150 W 15	Boron (Total)	45,000	NV	10		<50	39	Dry	157	160	130	80	76	95	81	80	1	450	430	<20	Dry	<500	<20	Dry	<20	Dry	45	54
Transmitter 160 W				0.09			0.28		0.145		<0.090		<0.010		0.17 <5.0		1				Dry		0.035	Dry	0.045	Dry	0.09	0.16
Garden 66 N 61 N 61 AN 61 AN 62 AN 6	Chromium (VI)	140	NV	0.5	μg/L	< 0.99	< 0.99	Dry	< 0.99	< 0.99	<0.50	< 0.99	< 0.99	< 0.99	< 0.50	<0.50	- 1	< 0.99	<0.50		Dry	< 0.99	< 0.99	Dry	< 0.99	Dry	< 0.99	<0.99
March Marc				0.5	μg/L	1.03	2.5	Dry	0.32	1.9	0.51			0.63	1.3	1.2	-		8.5	1.5	Dry	19.8	0.42	Dry	0.82	Dry	5.7	6.5
Lander S. J. 1. 1. 2. 3. 4. 4. 1. 1. 1. 5. 5. 4. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	Iron	NV		100				Dry	25		<100					870			7500		Dry			Dry		Dry		
Series Se			1	0.5	μg/L	3.17	9.1	Dry	0.34	0.98		0.34	0.21	0.74	2		-	1.8		5.1	Dry	186	2.1	Dry	1.8	Dry	6.0	9.7
Second S																			440	720								
Marchanell (19) (19) (19) (19) (19) (19) (19) (19)	Molybdenum	9,200	NV	0.5	μg/L	<1.0	0.7	Dry	2.6	1.3	2.9	<1.0	<1.0	1.3	2.8	2.8	0	1.4			Dry	<10	0.99	Dry	0.38	Dry	0.94	1
Selection of all W. 2 2 96, 24, 24, 25 25 25 25 25 25 25 25 25 25 25 25 25							5.2	Dry	2.2	5.8			1.1				5			4.7	Dry					Dry	13	
Liebe W. 10 97 190 195 196 197 190 197 190 197 190 190 190 190 190 190 190 190 190 190		63	NV	2	μg/L	0.24	0.22	Dry	0.22	0.25	<1.0 (3)	0.14	0.17	0.25	<1.0 (3)	<1.0 (3)	-	0.63	<1.0 (3)		Dry	2.7	0.45	Dry	0.3	Dry	0.73	1.2
The Park No. 120 No. 1																	-											
Tamen M. W. W. T. I. Met. 688 199 M. W. S. I. Met. 688 199 M. M. M. W. S. I. M. M. W. W. M. W. M																												
Treatment 120 W 13 styl 150 st					μg/L		110		<5.0								-						16 (1)		22		57	
Tech 1, 100 W S 1, 101 17 17 17 19 19 10 11 17 17 17 18 18 19 19 19 19 19 19 19 19 19 19 19 19 19					μg/L ug/L												-											
Part	Zinc	1,100	NV	5		12.7	27	Dry	43.5	16	25	<5.0	<5.0	8.9	15	15	-	17	6.7	20	Dry	421	64 (1)	Dry	93	Dry	14	170 (2)
Texecal contention by No. 1, 2000 1,500 1,	pH Routine Water	NV	6.0 - 9.0	NV	pН	8.21	7.62	Dry	7.99	7.18	7.83	7.63	7.70	7.14	7.81	7.8	0.1	7.24	7.46		Dry	8.13	8.17	Dry	7.64	Dry	7.30	7.33
Harden W								Dry		930				420			-					620			290			790
Tree Machadory W W IV I 1 mg/s 140 130 077 120 140 150 150 150 150 150 150 150 170 170 1.0 077 130 150 077 130 150 077 130 150 077 130 150 150 150 150 150 150 150 150 150 15					mg/L mg/l			Dry												245	Dry			Dry	160	Dry		
Carbount M. W. 1 1 mgA C1 20 120 07 420 120 131 420 120 120 120 130 130 130 130 130 130 130 130 130 13	Total Alkalinity	NV	NV	1	mg/L	140	130	Dry	220	240	180	190	180	170	170	170		410	410		Dry	190	170	Dry	120	Dry	380	370
Highester W																	-			-								
Magestam NV		NV		1							<1				<1		-		<1									
Procession No No No 0.5 mg/L 2 1.1 by 17 18 13 5 4 4 5 5 43 4.1 23 22 2 . by 10 4 7 No 17 18 19 13 by 13 by 13 by 15 by		NV NV															5.7			-								120
Clience 2, 2,00 NV 1 mg/L 68 16 DV 61 17 mg/L 68 16 DV 61 17 mg/L 68 17 DV 61 17 mg/L 69 18 DV 61 17 mg/L 69 18 DV 61 18 DV		NV NV												4	5					- :							6.7	5.8
Subject COL No				0.5							24								51	-								
Second Second No. No																				- : -								
Amenosis NV NV 0.015 mg/h 0.33 c.0.15 DV 1.3 5.3 1.5 1	Ionic Balance				%				- 1-10			- :-	· ·					5										
Nicate N NV NV 0.01 mg/L 0.21 1.4 Dry 1.2 0.010 0.78 0.010 0.72 0.01 0.010 0.12 0.01 0.01 0.01 0.01 0.	Nutrients	NB/	ADV	0.015		0.00		Day.	4.0		1.0				1 22	21			40	0.45	De:	0.46	0.045	De:		Day.	4.6	4.5
Niction N N N 0.01 mg/L d. 0.010 0.02 mg/L d. 0.010		NV	NV	0.01			1.4		1.3		0.78		<0.010		< 0.1	< 0.1	- 1		< 0.10	0.15			<u.015 0.46</u.015 			Dry		
Project Remark Hymore	Nitrite - N	NV		0.01	mg/L	< 0.010	<0.010	Dry	0.028	< 0.010	<0.05	< 0.010	< 0.010	0.32			- 1			-	Dry	< 0.010	< 0.010		< 0.010	Dry		< 0.010
Secretary Secr		NV	ΝV	U.01	mg/L	2.1	1.4	⊔ry	1.2	<0.010	U.81	<0.010	<0.010	U.54	<0.1	<0.1		<u.010< td=""><td><0.10</td><td>-</td><td>DIY</td><td>U.47</td><td>U.46</td><td>ΰry</td><td>U.098</td><td>Ury</td><td><u.u50 (1)<="" td=""><td><u.010< td=""></u.010<></td></u.u50></td></u.010<>	<0.10	-	DIY	U.47	U.46	ΰry	U.098	Ury	<u.u50 (1)<="" td=""><td><u.010< td=""></u.010<></td></u.u50>	<u.010< td=""></u.010<>
According No No 1, 1967, 40.00 40.10 07, 40.10 40.10 07, 40.10 40.10 07, 40.10 40.10 40.10 40.10 40.10 40.10 40.10 40.10 40.10 07, 40.10 4	Specific Parameters																											
Accrisione NV NV 0.04 w/L 0.050 0.004 0.07 0.000 0.004 0.004 0.004 0.005						<0.10	<0.10	Dry	<0.10	<0.10		<0.10	<0.10	<0.10			⊢ : ∃	<0.10	<0.1	<0.10		<0.10	<0.10		<0.10	Dry	<0.10	<0.10
Anthreamene 4.7 NV 0.015 μg/L 0.0050	Acridine	NV	NV	0.04	μg/L	<0.040	< 0.040	Dry	< 0.040	< 0.040	<0.04	< 0.040	< 0.040	< 0.040	<0.04	<0.04	- 1	<0.040	<0.04	< 0.040	Dry	< 0.040	< 0.040	Dry	< 0.040	Dry	< 0.040	<0.040
Bernotyliphromethene 0.75 NV 0.0085 .ug/L .d. 0.0085 .d.								Dry									- 1									Dry		
Berney Demonstrate Demon																										Dry		
Bernetic playment N					μg/L	< 0.0085	< 0.0085	Dry	< 0.0085	< 0.0085		<0.0085	< 0.0085	<0.0085				<0.0085		< 0.0085	Dry	<0.0085	<0.0085	Dry	< 0.0085	Dry	<0.0085	< 0.0085
Remote/prefere O.8.1 NV 0.0075 yg/L 0.0085 0.0075																	-:-											
Emerciolpreme N	Benzo(a)pyrene	0.81	NV	0.0075	μg/L	<0.0085	<0.0075	Dry	<0.0085	<0.0075	<0.0075	<0.0085	<0.0085	<0.0075	<0.0075	<0.0075		<0.0075	<0.0075	<0.0075	Dry	<0.0085	<0.0075	Dry	<0.0075	Dry	<0.0075	< 0.0075
Chyperic 1 N 0.005 usight d.0005 d.0								Dry									$\vdash : \top$				Dry			Dry		Dry	<0.050	
Disentable plane of the property of the prope				0.0085							<0.0085					<0.0085	:		<0.0085									
Fluoreme 400 NV 0.05 yg/L					μg/L																							
Intermetal plane 1,00		400															:											
148eth/spinghtwiser 1,800 NV 0.1 ug/L 0.10 0.23 Dry 0.10 0.10 0.1 0.10 0.1 0.10 0.1 0.10 0.1 0.10 0.1 0.10 0.1 0.10 0.1 0.10 0.1 0.10 0.1 0.10 0.1	Indeno(1,2,3-c,d)pyrene	0.2	NV	0.0085	μg/L	<0.0085	<0.0085	Dry	<0.0085	<0.0085	<0.0085	<0.0085	<0.0085	<0.0085	<0.0085	< 0.0085	-	<0.0085	< 0.0085	<0.0085	Dry	<0.0085	<0.0085	Dry	<0.0085	Dry	<0.0085	<0.0085
Ngothslinee 1,400 NV 0.1 μg/L 0.10 0.10 Ory 0.10 Ory 0.10 0.10 Ory					μg/L																							
Plenanthrene S80 NV 0.05 yg/L 40,50 40,50 0.05 40,50		1,400	NV	0.1							<0.1				0.23	0.17			0.12									
Primer 68 NV 0.02 kg/L d.0.00 d.0.02 Dry d.0.02 d.0.02 Dry d.0.02		580			μg/L						<0.05				<0.05		- 1											
Quinoline N N 0.2 µg/L 0.20 0.20 0.79 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.2								Dry									:											
	Quinoline							Dry													Dry			Dry		Dry		
rinous 12,000 NV 1.3 Mg/L 1.3 CL3 UV/ 5.3 51 U.084 13 64 15 U.055 U.055 - 0.50 U.5 - UV/ CL3 - UV/ CL3 - UV/ - DV/ - DV/ DV/	Misc. Organics	12.000	l MV	1.5		-15			2.5	21	0.0064	10	24		0.020	0.020		620 1	0.2		De:					Day.		
	Notes:	12,000	ΝV	1.5	μg/L	<1.5	<1.5	IJry	3.5	- 31	U.U064	19	24	13	0.038	U.038		630	U.3		DIY	<1.5	-	Dry	<u> </u>	Ury	-	-

Phenois 1.2,000 NV 1.5 µgg/.
Notes:

**Ontains Ministry of the Environment 2011 Soil, Groundwater, and be definent Standards for use under

**Part X V.1 of the Environmental Protection Act (MECP, 2011). I bide 3: Yull Depth Generic Size Condition

Standards in a Non-Potable Condition

**Maximum Allowable (Effent) Dischage Concentration as per Water Licence No. 18R-RB1929

RDL: Reportable detection limits

**POP On calculated if one or more of the analytical results are less than detection limits or within 5 times the detection limits.

times the detection limits.

ugik - microgram per litre
mgk - militgram per litre
mgk - militgram per litre
jk/Orn - microstemps per certifinette
NV - No value
(J) Rider to DOD/2023
(J) Rider to DOD/2023
(J) Rider to DOD/2023
(J) Rider to DOD/2023
(J) Rider to DOM/2023
(J) Rider to Rider to

uncertainty

<u>BOLD and underlined</u>- RPD value greater than 40%

Guideline Exceedance

RDL exceeds guideline value

Table 2a - Groundwater Analtyical Results Resolute Airport Landfills EMP, Resolute, Nunavut BTEX, PHCs, Oil and Grease, Total Metals, Routine parameters, PAHs and Phenol Analysis

Sample ID Laboratory ID Sampling Date PARAMETERS STEX Benzene Toluene					RBL-10	RBL-10	Former Vehicle	RBL-14	DUP B	RBL-14	FIELD BLANK	FIELD BLANK	FEILD BLANK 1	FEILD BLANK 2	TRIP BLANK	TRIP BLA
ARAMETERS TEX enzene oliuene thylibenzene	MECP Table 3	Max. Allowable Discharge	RDL	Units	AFW848	NV	AFW850	AZA455	AZA456	NV	AFW911	AZA192	WNL681 23-Jul-2023	WNL683 24-Jul-2023	AZA193	WNLE 23-Jul-2
enzene oluene hylbenzene					27-Aug-2021	23-Jul-2023	27-Aug-2021	3-Aug-2022	3-Aug-2022	23-Jul-2023	27-Aug-2021	4-Aug-2022	23-Jul-2023	24-Jul-2023	4-Aug-2022	23-Jul-
luene hylbenzene		370	0.2			Dry	-0.40	-0.40	-0.40	Dry		0.40	<0.2	<0.2	0.40	<0.3
	18,000	2	0.2	μg/L μg/L	<0.40 <0.40 <0.40	Dry Dry	<0.40 <0.40 <0.40	<0.40 <0.40 <0.40	<0.40 <0.40 <0.40	Dry Dry	<0.40 <0.40 <0.40	<0.40 <0.40 <0.40	< 0.2	< 0.2	<0.40 <0.40 <0.40	<0.3
	2,300	90	0.2	μg/L	<0.40	Dry	<0.40	< 0.40	<0.40	Dry	<0.40	<0.40	<0.2	<0.2	<0.40	<0.
Xylene & p-Xylene Kylene	NV NV	NV NV	0.4	μg/L μg/L	<0.80 <0.40	Dry Dry	<0.80 <0.40	<0.80 <0.40	<0.80 <0.40	Dry Dry	<0.80 <0.40	<0.80 <0.40	<0.4 <0.2	<0.4 <0.2	<0.80 <0.40	<0. <0.
otal Xylenes	4,200	NV	0.4	μg/L	<0.89	Dry	<0.89	<0.89	<0.89	Dry	<0.89	<0.89	<0.4	<0.4	<0.89	<0.
etroleum Hydrocarbons (C6-C10)					<100		<100				<100	<100		<25	<100	<2
. (C6-C10) . (C6-C10) - BTEX	750 750	NV NV	25 25	μg/L μg/L	<100 <100	Dry Dry	<100 <100	<100 <100	<100 <100	Dry Dry	<100 <100	<100 <100	<25 <25	<25 <25	<100 <100	<2
(C10-C16)	150	NV	100	μg/L μg/L	<100	Dry Dry	<100	<100	<100	Dry Dry	<100	<100	<100	<100	<100	<10
(C16-C34)	500	NV	200	μg/L	<100	Dry	<100	<100	<100	Dry	<100	<100	<200	<200	<100	<20
(C34-C50) tractable Hydrocarbons	500	NV	200	μg/L	<200	Dry	<200	<200	<200	Dry	<200	<200	<200	<200	<200	<20
I And Grease	NV	15,000	0.5	μg/L	<1300	Dry	<500	<2,000	<2,000	Dry	<500	-			-	
tal Metals																
uminium timony	NV 20,000	NV NV	0.5	μg/L μg/L	271 <0.50	Dry Dry	3,110 <0.50	21,000 <12	10,000	Dry Dry	4.4 <0.50	-	-		-	-
senic	1,900	NV	1	ug/L	0.62	Dry	1.62	14	7	Dry	<0.50	- :	- :	- :	- :	
rium	29,000	NV	2	μg/L μg/L	72.1	Dry	32.3	210	190	Dry	< 0.50	-	-	-	-	-
ryllium ron (Total)	67 45,000	NV NV	0.4 10	μg/L μg/L	<0.10 203	Dry Dry	0.19 <50	<20 48	<2.0 34	Dry Dry	<0.50 <0.50	- :		- :	- :	-
dmium	2.7	NV	0.09	μg/L μg/L	0.034	Dry	0.11	1.8	1.8	Dry	<0.50			- :		
romium	2.7 810	NV	5	μg/L	<1.0	Dry	6	40	20	Dry	< 0.50		-	-		
romium (VI)	140	NV	0.5	μg/L	<0.99	Dry	<5 (2)	<0.99	<0.99	Dry	<0.50	-	-		-	
balt pper	66 87	NV NV	0.5	μg/L μg/L	0.21 1.15	Dry Dry	1.84 4.43	20 47	11 25	Dry Dry	<0.50 <0.50			H :		
n	NV	NV	100	μg/L	310	Dry Dry	4.040	39,000	16,000	Dry Dry	<0.50		-			
ad and and a second	25 NV	1 NV	0.5	μg/L	0.49 13.7	Dry Dry	7.82 127	93	55	Dry Dry	<0.50					<u> </u>
inganese	NV 0.29	NV NV	0.1	μg/L μg/L	13.7 0.0023	Dry	0.0041	1,400 0.0047	1,300 <0.0019	Dry	<0.50	- : -	- :	- : -	- : -	-
lybdenum	9,200	NV	0.5	μg/L μg/L	<1.0	Dry	<1.0	<4.0	0.62	Dry Dry	< 0.50		-			
kel	490	NV	1	μg/L	1.7	Dry	5.3	54	27	Dry	<0.50	-			-	
osphorus enium	NV 63	NV NV	100 2	ug/L	15 0.85	Dry Dry	110 1.36	1,000	720 0.66	Dry Dry	<0.50 <0.50	- :	- :	H :	- :	-
er	1.5	NV	0.09	μg/L μg/L	<0.020	Dry	0.024	<2.0	<0.20	Dry	<0.50	- :	-		- :	
fur	NV	NV	200	μg/L	67,700	Dry	<3,000	2,500	2,100	Dry	<0.50					
allium	510 NV	NV NV	0.05	μg/L μg/L	<0.010 12.6	Dry Dry	0.027 83.7	<4.0 560	<0.40 280	Dry Dry	<0.50 <0.50	-	-		-	-
inium	420	NV	0.1	μg/L μg/L	2.02	Dry	0.47	<2.0		Dry	<0.50	- :		- :	- :	
nadium	250	NV	0.5	μg/L	<5.0	Dry	7.7	67	1.1 32	Dry	< 0.50	-	-	-	-	
c	1,100	NV	5	μg/L	<5.0	Dry	19	1,500	240	Dry	<5.0		-			
utine Water	NV	6.0 - 9.0	NV	pH	7.92	Dry	8.13	7.82	7.67	Dry	4.4					
ctrical Conductivity	NV	NV	2,000	μS/cm	3000	Dry	340	350	350	Dry	< 0.50	- :	- :	- :	- :	
al Suspended Solids	NV	50	10	mg/L	20	Dry	560 (1)	170 (1)	110 (1)	Dry	<0.50	-	-	-	-	
dness al Alkalinity	NV NV	NV NV	0.5	mg/L	938	Dry	279 160	2,120	2,230 170	Dry	<0.50		-	-		
arbonate	NV	NV	1	mg/L mg/L	390 480	Dry Dry	200	170 210	210	Dry Dry	<0.50 <0.50	- :		- :	- :	
rbonate	NV	NV	1	mg/L	<1.0	Dry	<1.0	<1.0	<1.0	Dry	<0.50	-	-	-	-	
droxide	NV NV	NV NV	0.5	mg/L	<1.0	Dry	<1.0	<1.0 47	<1.0 48	Dry	<0.50	-	-	-	-	
ignesium	NV NV	NV NV	0.5	mg/L mg/L	217 96	Dry Dry	73 23	13	13	Dry Dry	<0.50	- :	- :	- :	- :	
tassium	NV	NV	0.5	mg/L	96 10	Dry	2	0.54	0.59	Dry	< 0.50	-	-	-	-	
dium Iloride	2,300	NV NV	0.5	mg/L	269 630	Dry	9	7.4 9.3	7.5 9.1	Dry	<0.50 <0.50	-	-		-	
Iphate (SO4)	2,300 NV	NV NV	1	mg/L mg/L	190	Dry Dry	3	2.8	2.1	Dry Dry	<0.50	- :	- :	- :	- :	
nic Balance	NV	NV	NV	%		Dry		0.91	0.15	Dry	<5.0	-	-	-	-	
trients	NV	NV	0.015			De:	0.49	0.074	0.069	Da.	4.4					_
rate - N	NV	NV	0.01	mg/L mg/L	1.2 1.6	Dry Dry	0.25	0.071	0.18	Dry Dry	< 0.50	- :	- :	- :	- :	
trite - N	NV	NV	0.01	mg/L	< 0.010	Dry	<0.010	<0.010	<0.010	Dry	<0.50		-	-		
rate and Nitrite - N lycyclic Aromatic Hydrocarbons	NV	NV	0.01	mg/L	1.6	Dry	0.25	0.19	0.18	Dry	<5.0	-		-	-	
cific Parameters					-											
enaphthene	600	NV	0.1	μg/L	< 0.10	Dry	< 0.10	<0.10	<0.10	Dry	<0.10	<0.10	<0.1	<0.1	<0.10	
enaphthylene ridine	1.8 NV	NV NV	0.1	μg/L μg/L	< 0.10	Dry	< 0.10	< 0.10	< 0.10	Dry	< 0.10	< 0.10	<0.1	<0.1	< 0.10	_
ridine thracene	NV 2.4	NV NV	0.04	μg/L μg/L	<0.040 <0.010	Dry Dry	<0.040 <0.010	<0.040 <0.010	<0.040 <0.010	Dry	<0.040 <0.010	<0.040 <0.010	<0.04	<0.04	<0.040 <0.010	-
nzo(a)anthracene	4.7	NV	0.0085	μg/L	<0.0085	Dry	<0.0085	<0.0085	<0.0085	Dry	<0.0085	<0.0085	< 0.0085	<0.0085	<0.0085	
nzo(b/j)fluoranthene nzo(k)fluoranthene	0.75	NV NV	0.0085	μg/L	<0.0085	Dry	<0.0085	<0.0085	<0.0085	Dry	<0.0085	<0.0085	<0.0085	<0.0085	<0.0085	_
nzo(k)fluoranthene nzo(g,h,i)perylene	0.4	NV NV	0.0085	μg/L μg/L	<0.0085 <0.050	Dry Dry	<0.0085 <0.050	<0.0085	<0.0085 <0.0085	Dry Dry	<0.0085 <0.050	<0.0085 <0.0085	<0.0085	<0.0085	<0.0085 <0.0085	-
nzo(c)phenanthrene	NV	NV	0.0075	μg/L μg/L	<0.0075	Dry	<0.0075	< 0.050	<0.050	Dry	< 0.0075	<0.050	< 0.05	<0.05	< 0.050	
	0.81	NV	0.0075	μg/L	<0.0085	Dry	<0.0085	<0.0075	<0.0075	Drv	<0.0085	<0.0075	<0.0075	<0.0075	<0.0075	
	NV NV	NV NV	0.05 0.0075	μg/L μg/L	<0.050 <0.010	Dry Dry	<0.050 <0.010	<0.050 <0.010	<0.050 <0.010	Dry Dry	<0.050 <0.010	<0.050 <0.010	<0.05 <0.0075	<0.05 <0.0075	<0.050 <0.010	-
zo(e)pyrene	1	NV	0.0085	μg/L μg/L	< 0.0085	Dry	< 0.0085	< 0.0085	< 0.0085	Dry	< 0.0085	< 0.0085	< 0.0085	< 0.0085	< 0.0085	
nzo(e)pyrene nzo(a)pyrene (TPE - calculated) nysene	0.52	NV	0.0075	µg/L	<0.0075	Dry	<0.0075	<0.0075	<0.0075	Dry	<0.0075	<0.0075	<0.0075	<0.0075	<0.0075	
nzo(e)pyrene nzo(a)pyrene (TPE - calculated) nysene enzo(a,h)anthracene		NV	0.01 0.05	μg/L	<0.010	Dry Dry	<0.010	<0.010	<0.010	Dry Dry	<0.010	<0.010	<0.01 <0.05	<0.01 <0.05	<0.010	_
nzo(e)pyrene nzo(a)pyrene (TPE - calculated) nysene penzo(a,h)anthracene pranthene	130		U.U5	μg/L μg/L	<0.050 <0.0085	Dry	<0.050 <0.0085	<0.050	<0.050	Dry	<0.050 <0.0085	<0.050 <0.0085	< 0.0085	< 0.0085	<0.050 <0.0085	
nzo(e)pyrene (TPE - calculated) yosene (TPE - calculated) yosene (TPE - calculated) yosene (TPE - calculated) oranthene (TPE - calculated)	400 0.2	NV NV	0.0085			Dry							<0.1	< 0.1		
nzo(e)pyrene (TPE - calculated) yosene (TPE - calculated) yosene enzo(a,h)anthracene oranthene orene eno(1,2,3-c,d)pyrene Methylnaphthalene	400 0.2 1,800	NV NV	0.0085	μg/L	< 0.10		< 0.10	0.23	0.27	Dry	< 0.10	<0.10			<0.10	
nzo(e)pyrene nzo(a)pyrene (TPE - calculated) nysene penzo(a,h)anthracene oranthene orene elno(1,2,3-c,d)pyrene dethylnaphthalene dethylnaphthalene	400 0.2 1,800 1,800	NV NV	0.0085 0.1 0.1	μg/L μg/L	< 0.10	Dry	< 0.10	0.42	0.49	Dry	< 0.10	< 0.10	<0.1	<0.1	< 0.10	
noso(a)prene noso(e)prene noso(a)prene (TPE - calculated) nyane enros(a),hanthracene ooranthene ooranthene deno(1,2,3-c,d)pyrene dethylnaphthalene dethylnaphthalene phthalene enanthrene	400 0.2 1,800 1,800 1,400 580	NV NV NV NV	0.0085 0.1 0.1 0.1 0.05	µg/L µg/L µg/L	<0.10 <0.10 <0.10 <0.050	Dry Dry	<0.10 <0.10 <0.050	0.23 0.42 <0.10 <0.050	0.49 0.1 <0.050	Dry Dry	<0.10 <0.10 <0.10 <0.050	<0.10 <0.10 <0.10 <0.050	<0.1 <0.05	<0.1 <0.05	<0.10 <0.10 <0.10 <0.050	
nzo(e)prene nzo(a)prene (TPE - calculated) nysene enzo(a), hanthracene oranthene oranthene oranthene deno(1,2)<,djprene dethylnaphthalene Methylnaphthalene phthalene enanthrene nystene	400 0.2 1,800 1,800 1,400 580	NV NV NV NV NV	0.0085 0.1 0.1 0.1 0.05	ия/L ия/L ия/L ия/L ия/L	<0.10 <0.10 <0.050 <0.050	Dry Dry	<0.10 <0.10 <0.050 <0.050	0.42 <0.10 <0.050 <0.050	0.49 0.1 <0.050 <0.050	Dry Dry	<0.10 <0.10 <0.050 <0.050	<0.10 <0.10 <0.050 <0.050	<0.1 <0.05 <0.05	<0.1 <0.05 <0.05	<0.10 <0.10 <0.050 <0.050	
nzo(e)pyrene nzo(a)pyrene (TPE - calculated) nysene nysene perucia h)anthracene oranthene orene orene enco(12,3<,dipyrene etethyknaphthalene etethyknaphthalene phthalene enranthrene rykene renee	400 0.2 1,800 1,800 1,400 580 NV 68	NV NV NV NV NV NV	0.0085 0.1 0.1 0.1 0.05 0.05 0.05	ид/L ид/L ид/L ид/L ид/L ид/L	<0.10 <0.10 <0.050 <0.050 <0.020	Dry Dry Dry Dry Dry	<0.10 <0.10 <0.050 <0.050 <0.020	0.42 <0.10 <0.050 <0.050 <0.020	0.49 0.1 <0.050 <0.050 <0.020	Dry Dry Dry Dry Dry	<0.10 <0.10 <0.050 <0.050 <0.020	<0.10 <0.10 <0.050 <0.050 <0.020	<0.1 <0.05 <0.05 <0.02	<0.1 <0.05 <0.05 <0.02	<0.10 <0.10 <0.050 <0.050 <0.020	
nzo(e)pyrene nzo(a)pyrene (TPE - calculated) nysene enrzo(a,h)anthracene oranthene oranthene orene enen(1,2,3-c,d)pyrene etethy/napsthalene etethy/napsthalene phthalene phthalene enanthrene pyrene	400 0.2 1,800 1,800 1,400 580	NV NV NV NV NV	0.0085 0.1 0.1 0.1 0.05	ия/L ия/L ия/L ия/L ия/L	<0.10 <0.10 <0.050 <0.050	Dry Dry	<0.10 <0.10 <0.050 <0.050	0.42 <0.10 <0.050 <0.050	0.49 0.1 <0.050 <0.050	Dry Dry	<0.10 <0.10 <0.050 <0.050	<0.10 <0.10 <0.050 <0.050	<0.1 <0.05 <0.05	<0.1 <0.05 <0.05	<0.10 <0.10 <0.050 <0.050	

BOLD and underlined- RPD value greater than 40%
Guideline Exceedance
RDL exceeds guideline value

Table 2b Surface Water Analytical Results Resolute Airport Landfills EMP: Resolute, Nunavut BTEX, PHCs, Oil and Grease, Total Metals, Routine parameters, PAHs and Phenols Analysis

													Danalista.	Bay EMP									
						AEC 1	- Inactive Solid Waste Land	fill				AEC 2 - Historical Landf		вау ЕМР					AEC 3 - Former Vehicle & Met	al Storage Area	a		
	ample ID			1					1					RBL-DUPB (Dup of RBL-8)	RPD (%)		RBL-13	RBL-13	RBL-DUPC (Dup of RBL-13)	RPD (%)		1	
	oratory ID	CCME CEQG FWAL*	Max. Allowable Discharge**	RDL	Units	RBL-4 AFW844	RBL-4 AZA428	DUP C AZA429	RBL-4 WNL674	RBL-8 AFW846	FIELD DUP 2 AFW847	RBL-8 AZA191	RBL-8 WNL675	WNL679	RPD (%)	RBL-13 AFW849	AZA457	WNL676	WNL680	KPD (%)	RBL-16 AFW909	RBL-16 AZA458	RBL-16 WNL677
Sampl	ling Date	Short Term/Long Term)	District			27-Aug-2021	3-Aug-2022	3-Aug-2022	24-Jul-2023	27-Aug-2021	27-Aug-2021	2-Aug-2022	24-Jul-2023	24-Jul-2023		27-Aug-2021	3-Aug-2022	24-Jul-2023	24-Jul-2023		27-Aug-2021	3-Aug-2022	24-Jul-2023
BTEX Benzene		NV/370	370	0.2	ug/l	<0.40	<0.40	<0.40	<0.2	<0.40	<0.40	<0.40	<0.2	<0.2		<0.40	<0.40	<0.2	<0.20		<0.40	<0.40	<0.20
Toluene Ethylbenzene		NV/2 NV/90	2	0.2 0.2	μg/L μg/L	<0.40	<0.40	<0.40	<0.2 <0.2 <0.2	<0.40	<0.40	<0.40	<0.2 <0.2	<0.2 <0.2 <0.2	-	<0.40	< 0.40	<0.2 <0.2 <0.2	<0.20 <0.20 <0.20	-	<0.40	<0.40	<0.20 <0.20
m-Xylene & p-Xylene		NV	NV	0.4	μg/L μg/L	<0.40 <0.80	<0.40 <0.80	<0.40 <0.80	<0.4	<0.40 <0.80	<0.40 <0.80	<0.40 <0.80	< 0.4	<0.4	-	<0.40 <0.80	<0.40 <0.80	< 0.4	<0.40	-	<0.40 <0.80	<0.40 <0.80	<0.40
o-Xylene Total Xylenes		NV NV	NV NV	0.2 0.4	μg/L μg/L	<0.40 <0.89	<0.40 <0.89	<0.40 <0.89	<0.2 <0.4	<0.40 <0.89	<0.40 <0.89	<0.40 <0.89	<0.2 <0.4	<0.2 <0.4	-	<0.40 <0.89	<0.40 <0.89	<0.2 <0.4	<0.20 <0.40	-	<0.40 <0.89	<0.40 <0.89	<0.20 <0.40
Petroleum Hydrocarbons F1 (C6-C10)		NV	NV	25	μg/L	<100	<100	<100	<25	<100	<100	<100	<25	<25		<100	<100	<25	<25	-	<100	<100	<25
F1 (C6-C10) - BTEX F2 (C10-C16)		NV NV	NV NV	25 100	μg/L	<100 <100 <100	<100 <100 <100	<100 <100	<25 <100	<100 <100	<100 <100 <100	<100 320	<25 <100	<25 <100	-	<100 <100	<100 <100	<25 <100	<25 <100	-	<100 <100 <100	<100 <100	<25 <100
F3 (C16-C34)		NV	NV NV	200	μg/L μg/L μg/L	<100	<100	<100	<200	<100	<100	260	<200	<200	-	<100	<100	<200	<200	-	<100	<100	<200
F4 (C34-C50) Extractable Hydrocarbons		NV		200		<200	<200	<200	<200	<200	<200	<200	<200	<200	-	<200	<200	<200	<200	-	<200	<200	<200
Oil And Grease Total Metals		NV	15,000	0.5	μg/L	<500	<2,000	<2,000	<0.50	<500	500	2,500	<0.50	<0.50	-	<500	<2,000	<0.50	<0.50	-	<500	<2,000	<0.50
Aluminium Antimony		100 NV	NV NV	3 0.5	μg/L μg/L	13.1	51 <0.60	7.8 <0.60	23 <0.50	7 <0.50	6.1	180 <0.60	50 <0.50	42 <0.50	17	399 <0.50	10	14 <0.50	14 <0.50	-	147 <0.50	34 <0.60	5.6 <0.50
Arsenic		NV/5	NV	1	μg/L	0.26	0.36	0.26	<1.0	0.21	0.23	0.9	<1.0	<1.0	-	0.27	<0.20	<1.0	<1.0	-	0.18	<0.20	<1.0
Barium Beryllium		NV NV	NV NV	0.4	μg/L μg/L	72.9 <0.10	84 <1.0	82 <1.0	84 <0.40	121 <0.10	121 <0.10	140 <1.0	56 <0.40	57 <0.40	- 2	17.2 <0.10	<10 <1.0	4.5 <0.40	5 <0.40	-	15.5 <0.10	<10 <1.0	4.7 <0.40
Boron (Total) Cadmium		29,000/1500 2.1-3.2 ⁽³⁾	NV NV	10 0.09	μg/L μg/L	56 0.033	59 0.1	72 0.054	45 0.091	74 0.013	69 0.014	110 0.048	40 <0.09	38 <0.090	5	115 0.018	21 <0.020	19 <0.090	19 <0.090	0	131 0.016	23 <0.020	19 <0.090
Chromium Chromium (VI)		NV NV/1	NV NV	5	μg/L	1.5 1.3	2.5	1.8	<5.0 1.6	<1.0 <0.99	<1.0 <0.99	<1.0 <0.99	<5.0 0.51	<5.0 0.51	-	1 <0.99	<1.0 <0.99	<5.0 <0.50	<5.0 <0.50	-	<1.0 <0.99	<1.0	<5.0 <0.50
Cobalt		NV	NV NV	0.5	μg/L μg/L	<0.20	1.6 <0.30	1.5 <0.30	<0.50	<0.20	<0.20	<0.30	<0.5	<0.50		0.23	< 0.30	<0.50	<0.50	-	<0.20	<0.99 <0.30	<0.50
Copper Iron		2.32 - 2.57 ⁽³⁾ 300	NV NV	0.9 100	μg/L μg/L	1.72 49	2.2 80	1.7	2.9 <100	0.7 26	0.59	1.3 2,200	<0.9 <100	<0.90 <100	-	0.86 507	<1.0 <60	<0.90 <100	<0.90 <100	-	1.87 177	<1.0 72	<0.90 <100
Lead Manganese		3.1 - 5.3 ⁽³⁾ 380-1081 ⁽³⁾	1 NV	0.5	μg/L μg/L	0.49 2.3	0.93 <4.0	0.36	1.3 3.7	<0.20 1.8	<0.20 2.1	4.7 40	<0.5 2.6	<0.50 2.9	-	0.51 12.3	<0.20 <4.0	<0.50 <2.0	<0.50 <2.0	-	0.51 5.3	<0.20 <4.0	<0.50 <2.0
Mercury Molybdenum		NV/0.026 NV/73	NV	0.026 0.5	μg/L μg/L	0.0022	0.0025 0.92	0.0029	<0.026 (5) 0.74	< 0.0019	0.0023	0.0103 0.67	<0.026 (5) 0.53	<0.026 (5) 0.57		< 0.0019	<0.0019 <0.20	<0.026 (5) <0.50	<0.026 (5) <0.50	-	<0.0019 <1	< 0.0019	<0.026 (5) <0.50
Nickel		NV/94.12-130.07 ⁽³⁾	NV NV	1	μg/L	<1	0.62	1.2 0.61	<1.0	<1.0 <1	<1.0 <1	1.3	<1	<1.0	-	<1.0 <1	< 0.50	<1.0	<1.0	-	<1	<0.20 <0.50	<1.0
Phosphorus Selenium		NV NV/1	NV NV	100 1	μg/L μg/L	90	100 <0.20	6.6 0.2	40 0.08	3 0.21	3.4 0.25	70 <0.20	10 0.06	9.00	-	18 0.1	<100 <0.20	<4 <0.05	<4 <0.05	-	4.2 <0.10	<100 <0.20	<4 <0.05
Silver Sulfur		NV/0.25 NV	NV NV	0.09 200	μg/L	<0.020 5.500	<0.10 5.800	<0.10 5.700	<0.090 NV	<0.020 7,700	<0.020 9.200	<0.10 5.900	<0.090 NV	<0.090 NV	-	<0.020 16.200	<0.10 6200	<0.090 NV	<0.090 NV	-	<0.020 20.700	<0.10 6.300	<0.090 NV
Thallium		NV/0.8	NV	0.05	μg/L μg/L	<0.010	<0.20	<0.20	<0.050	<0.010	<0.010	<0.20	< 0.050	<0.050	-	<0.010	<0.20	< 0.050	<0.050	-	< 0.010	< 0.20	<0.050
Titanium Uranium		NV 33/15	NV NV	0.1	μg/L μg/L	<5.0 0.31	1.1 0.27	<1.0 0.33	<5.0 0.17	<5.0 0.34	<5.0 0.34	0.36	<5.0 0.17	<5.0 0.16	- 6	11.9 0.55	<1.0 0.22	<5.0 0.19	<5.0 0.2	-	<5.0 0.63	1.4 0.24	<5.0 0.19
Vanadium Zinc		NV 37/7 ⁽⁴⁾	NV NV	0.5 5	μg/L μg/L	<5.0 7.6	<1.0 17	<1.0 8.1	<0.50 11.00	<5.0 <5.0	<5.0 <5.0	4.7	<0.50 <5	<0.50 <5.0	-	<5.0 <5.0	<1.0 <3.0	<0.50 <5.0	<0.50 <5.0	-	<5.0 <5.0	<1.0 <3.0	<0.50 <5.0
Routine Water		65-90	60-90	NV	nH	8.11	7.76	7.80	8.72	8.10	8.06	8.00	8.29	8.29		8.15	7.47	8.15	8.08	1	8.22	7.48	8.12
Electrical Conductivity		NV	NV	2,000	uS/cm	380	360	370	270	690	680	620	360	370	3	680	230	210	210		750	230	210.0
Total Suspended Solids Hardness		NV NV	50/100 ⁽²⁾ NV	10 0.5	mg/L mg/L	9 144	18 134	19 132	<10 110	0.61 285	<0.40 286	160 (1) ⁽²⁾ 276	<10 150	<10 140	7	46 253	0.45 105	15 99	<10 99	-	18 220	107	98.0
Total Alkalinity Bicarbonate		NV NV	NV NV	1	mg/L mg/L	120 150	120 140	120 150	96 91	250 300	250 300	230 280	120 120	120 110	9	130 160	83 100	81 80	79 78	3	140 180	86 100	80.0 79.0
Carbonate Hydroxide		NV NV	NV NV	1	mg/L mg/L	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	4.5 <1	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	2.1	2.1	-	<1.0 <1.0	<1.0 <1.0	1.10	<1 <1	-	<1.0 <1.0	<1.0 <1.0	<1
Calcium		NV NV	NV	0.5	mg/L	36	35	35	33	80	80	69	37	38	3	64	34	31 4.50	30 4.60	3	55	33 4.8	32.00 4.70
Magnesium Potassium		NV	NV NV	0.5	mg/L mg/L	13 2	12 1.9	11	1.10	21	21	18 2	1.50	1.60	6	23 3	4.9 0.6	0.65	0.67	3	20 4	0.6	0.65
Sodium Chloride		NV 640/120	NV 120	0.5	mg/L mg/L	22 33	21 32	21 31	15 18	37 62	37 63	35 56	20 39	22 39	10	64 100	5.2 6.3	5.20 4.20	5.10 4.60	9	75 120	5.4 6.4	5.00 3.90
Sulphate (SO4) Ionic Balance		NV NV	NV NV	1 NV	mg/L %	16	19 0.073	19 1.6	11 6.22	24	24	18 0.2	11 1.47	11 2.67	- 58	52	20 1.3	16.00 NV	11.00 NV	37	60	20 0.95	16.0 NV
Nutrients Ammonia						444																	
Nitrate - N		NV/0.089 - 0.343 ⁽³⁾ 13	NV NV	0.05 0.01	mg/L mg/L	0.33 1.2	<0.015 0.87	<0.015 0.86	<0.05 <0.1	0.76 0.038	0.15 0.034	0.053 <0.050	<0.05 <0.1	<0.05 <0.1	-	0.53 0.071	<0.015 0.27	<0.05 0.12	<0.05 0.12	-	0.85 0.014	<0.015 0.26	<0.05 0.12
Nitrite - N Nitrate and Nitrite - N		0.197 NV	NV NV	0.01 0.01	mg/L mg/L	0.019 1.3	<0.010 0.87	<0.010 0.86	<0.01 <0.1	<0.010 0.038	<0.010 0.034	<0.010 <0.050 (1)	<0.01 <0.1	<0.01 <0.1		<0.010 0.071	<0.010 0.27	<0.01 0.12	<0.01 0.12	-	<0.010 0.014	<0.010 0.26	<0.01 0.12
Polycyclic Aromatic Hydrocarbons Calculated Paramters	\exists											-	-										\vdash
Benzo(a)pyrene (TPE) Specific Parameters	_	NV	NV	0.0075	μg/L	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	-	<0.010	<0.010	<0.010	<0.010	-	<0.010	<0.010	<0.010
Acenaphthene		NV/5.8	NV	0.1	μg/L	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	-	<0.10	<0.10	<0.10	<0.1	-	<0.10	<0.10	<0.1
Acenaphthylene Acridine		NV NV/4.4	NV NV	0.1 0.04	μg/L μg/L	<0.10 <0.10	<0.10 <0.040	<0.10 <0.040	<0.10 <0.040	<0.10 <0.10	<0.10 <0.10	<0.10 <0.040	<0.10 <0.040	<0.10 <0.040	-	<0.10 <0.10	<0.10 <0.040	<0.10 <0.040	<0.1 <0.04	-	<0.10 <0.10	<0.10 <0.040	<0.1 <0.04
Anthracene Benzo(a)anthracene		NV/0.012 NV/0.018	NV NV	0.01 0.0085	μg/L μg/L	<0.040 <0.010	<0.010 <0.0085	<0.010 <0.0085	<0.010 <0.0085	<0.040 <0.010	<0.040 <0.010	<0.010 <0.0085	<0.010 <0.0085	<0.010 <0.0085	-	<0.040 <0.010	<0.010 <0.0085	<0.010 <0.0085	<0.01 <0.0085	-	<0.040 <0.010	<0.010 <0.0085	<0.01 <0.0085
Benzo(b/j)fluoranthene Benzo(k)fluoranthene		NV NV	NV NV	0.0085 0.0085	μg/L	<0.0085 <0.0085	<0.0085 <0.0085	<0.0085	<0.0085 <0.0085	<0.0085 <0.0085	<0.0085 <0.0085	<0.0085 <0.0085	<0.0085 <0.0085	<0.0085 <0.0085	-	<0.0085 <0.0085	<0.0085 <0.0085	<0.0085 <0.0085	<0.0085 <0.0085	-	<0.0085 <0.0085	<0.0085 <0.0085	<0.0085 <0.0085
Benzo(g,h,i)perylene		NV	NV	0.0085	μg/L μg/L	<0.0085	<0.0085	<0.0085	<0.0085	<0.0085	<0.0085	<0.0085	<0.0085	<0.0085	-	< 0.0085	<0.0085	< 0.0085	<0.0085	-	<0.0085	<0.0085	<0.0085
Benzo(c)phenanthrene Benzo(a)pyrene		NV NV/0.015	NV NV	0.05 0.0085	μg/L μg/L	<0.050 <0.0085	<0.050 <0.0075	<0.050 <0.0075	<0.050 <0.0075	<0.050 <0.0085	<0.050 <0.0085	<0.050 <0.0075	<0.050 <0.0075	<0.050 <0.0075	-	<0.050 <0.0085	<0.050 <0.0075	<0.050 <0.0075	<0.05 <0.0075	-	<0.050 <0.0085	<0.050 <0.0075	<0.05 <0.0075
Benzo(e)pyrene Chrysene	-	NV NV	NV NV	0.05 0.0085	μg/L μg/L	<0.0075 <0.050	<0.050 <0.0085	<0.050 <0.0085	<0.050 <0.0085	<0.0075 <0.050	<0.0075 <0.050	<0.050 <0.0085	<0.050 <0.0085	<0.050 <0.0085	-	<0.0075 <0.050	<0.050 <0.0085	<0.050 <0.0085	<0.05 <0.0085	-	<0.0075 <0.050	<0.050 <0.0085	<0.05 <0.0085
Dibenzo(a,h)anthracene Fluoranthene		NV NV/0.04	NV NV	0.0075	μg/L	<0.0085 <0.0075	<0.0055 <0.0075 <0.010	<0.0075 <0.010	<0.0075 <0.010	<0.0085 <0.0075	<0.0085 <0.0075	<0.0085 <0.0075 <0.010	<0.0075 <0.010	<0.0075 <0.010	-	<0.0085 <0.0075	<0.0075 <0.010	<0.0075 <0.010	<0.0075 <0.01	-	<0.0085 <0.0075	<0.0085 <0.0075 <0.010	<0.0075 <0.01
Fluorene		NV/3	NV NV	0.05	μg/L μg/L	<0.010	<0.050	<0.050	<0.050	<0.010	<0.010	<0.050	< 0.050	< 0.050	-	<0.010	< 0.050	< 0.050	<0.05	-	<0.010	<0.050	< 0.05
Indeno(1,2,3-c,d)pyrene 1-Methylnaphthalene	+	NV NV	NV NV	0.0085 0.1	μg/L μg/L	<0.050 <0.0085	<0.0085 <0.10	<0.0085 <0.10	<0.0085 <0.10	<0.050 <0.0085	<0.050 <0.0085	<0.0085 <0.10	<0.0085 <0.10	<0.0085 <0.10	-	<0.050 <0.0085	<0.0085 <0.10	<0.0085 <0.10	<0.0085 <0.1	-	<0.050 <0.0085	<0.0085 <0.10	<0.0085 <0.1
2-Methylnaphthalene Naphthalene		NV NV/1.1	NV NV	0.1 0.1	μg/L μg/L	<0.10 <0.10	<0.10 <0.10	<0.10 <0.10	<0.10 <0.10	<0.10 <0.10	<0.10 <0.10	<0.10 <0.10	<0.10 <0.10	<0.10 <0.10	-	<0.10 <0.10	<0.10 <0.10	<0.10 <0.10	<0.1 <0.1	-	<0.10 <0.10	<0.10 <0.10	<0.1 <0.1
Phenanthrene		NV/0.4	NV	0.05	μg/L	<0.10	<0.050	<0.050	<0.050 <0.050	<0.10	<0.10	<0.050	<0.050	<0.050	-	<0.10	<0.050	<0.050 <0.050	<0.05 <0.05	-	<0.10	<0.050	<0.05 <0.05
Perylene Pyrene		NV NV/0.025	NV NV	0.02	μg/L μg/L	<0.050 <0.050	<0.050 <0.020	<0.050 <0.020	<0.020	<0.050 <0.050	<0.050 <0.050	<0.050 <0.020	<0.050 <0.020	<0.050 <0.020	-	<0.050 <0.050	<0.050 <0.020	<0.020	<0.02	-	<0.050 <0.050	<0.050 <0.020	< 0.02
Quinoline Misc. Organics	-	NV/3.4	NV	0.2	μg/L	<0.020	<0.20	<0.20	<0.20	<0.020	<0.020	<0.20	<0.20	<0.20	-	<0.020	<0.20	<0.20	<0.2	-	<0.020	<0.20	<0.2
Phenols		NV/4	NV	1.5	μg/L	<0.20	<1.5	<1.5	< 0.0015	<0.20	<0.20	-	<0.0015	< 0.0015	-	< 0.20	<1.5	<0.0015	<0.0015	-	<0.20	<1.5	< 0.0015

Prierios NV4 NV 1.5 IJE/L
Notes:

*Canadian Council for Ministers of the Environment (CCME) Canadian Environmental Quality Guidelines for the protection of Freshwater
Aquatic Life (Short Term/Long Term)

**Maximum Allowable Effluent Discharge Concentration as per Water Licence No. 1BR-RBL1929 RDL - Reportable detection limit RPD - Relative percent difference calculated as (abs(C1-C2)/average(C1+C2))*100

RPU - neconser.

"-" RPD not calculated if one or more of the analytical resuns and a pure of the analytical resuns and a pure of the analytical resuns and a pure of the mg/L - milcrogram per litre mg/L - milcrogram per litre pis/em - microgram per "-" RPD not calculated if one or more of the analytical results are less than detection limits or within 5 times the detection limits.

APPENDIX D

Field Notes

Project No.: 230427

Name: PSPC Resolute Bay Airport Landfill

Client: PSPC

Monitoring Well ID	Northing	Easting	AEC	LNAPL Level	Water Level	Well Depth	Sample Date	Sample Time	Dissolved Oxygen	ORP	Temp	рН	Cond	Turbidity	
Well ID				Level	Level	Берип	Date	Time	(mg/L)	(mV)			(us/cm)	(NTU)	Notes
RBL-1	8295630	441147	AEC 1	ND	1.3	1.32			IS	IS	IS	IS	IS	IS	
RBL-2	8295551	440943	AEC 1	ND	1.27	1.44	July 23/23	17:30	3.88	128	6.91	7.34	729	4.7	
RBL-3	8295608	440901	AEC 1	ND	0.86	1.62	July 23/23	15:30	19.81	12	5.53	7.91	427	9.3	RBL-DUPA @ 15:50, Field Blank 2 @ 15:40
AEC1-GW1	8295526	441063	AEC 1	ND	1.3	1.74	July 23/23	16:30	5.55	76	6.55	7.86	1.17	14.7	
RBL-5	8292509	441662	AEC 2	ND	IS	0.99			IS	IS	IS	IS	IS	IS	
RBL-6	8292566	441420	AEC 2	ND	IS	0.88			IS	IS	IS	IS	IS	IS	
RBL-7	8292634	441384	AEC 2	ND	IS	1.34			IS	IS	IS	IS	IS	IS	
FL-MW-6	8292485	441484	AEC 2	ND	IS	0.96			IS	IS	IS	IS	IS	IS	
FL-MW-7	8292468	441452	AEC 2	ND	IS	1.49			IS	IS	IS	IS	IS	IS	
2-MW-8	8292499	441451	AEC 2	ND	IS	1.06			IS	IS	IS	IS	IS	IS	
RBL-10	8296242	440493	AEC 3	ND	IS	1.28			IS	IS	IS	IS	IS	IS	
RBL-11	8296265	440383	AEC 3	ND	IS	1.3			IS	IS	IS	IS	IS	IS	
RBL-12	8296335	440450	AEC 3	ND	IS	1.48			IS	IS	IS	IS	IS	IS	
RBL-14	8296449	440682	AEC 3	ND	IS	1.42			IS	IS	IS	IS	IS	IS	
RBL-15	8296468	440635	AEC 3	ND	IS	1.41			IS	IS	IS	IS	IS	IS	

Notes:

IS - Insufficient Water

ND - Non-Detect

Project No 230427

Name: PSPC Resolute Bay Airport Landfill

Client: PSPC

Location	Northing	Easting	AEC	Sample	Sample	Dissolved Oxygen	ORP	Temp	рН	Cond	Turbidity	
				Date	Time	(mg/L)	(mV)			(us/cm)	(NTU)	Notes
RBL-4	8295627	440884	AEC 1	24-Jul-23	13:00	18.91	160	15.92	8.93	307	0	
RBL-8	8292688	441366	AEC 2	24-Jul-23	11:50	16.47	226	11.57	8.54	384	0	RBL-DUPB @ 11:55
RBL-13	8296454	440478	AEC 3	24-Jul-23	11:15	15.91	242	9.37	8.27	216	0	RBL-DUPC @ 11:20
RBL-16	8296336	440340	AEC 3	24-Jul-23	10:30	19.62	199	9.22	8.45	216	0	Field Blank 2 @ 10:40

Notes:

Historical RBL-8 areas dried, sampled closest water body down gradient

Historical RBL-13 and RBL-16 areas dried, sampled 2022 locations

Project No.: 230427

Name: PSPC Resolute Bay Airport Landfill

Client: PSPC

Thermistor	Northing	Easting	Data Download	Batteries Replaced	Condition and any issue	Accessibility
THRMS-01	8295590	440985	Friday, July 21, 2023	IMonday, July 24, 2023	missing internal USB to Micro USB	Masterlock #1 or #11 Socket
THRMS-02	8295607	441055	Friday, July 21, 2023	Monday, July 24, 2023		Masterlock #1 or #11 Socket
THRMS-03	8295577	441014	Friday, July 21, 2023	Monday, July 24, 2023		Masterlock #1 or #11 Socket

230427

Accessibility:

AEC1: Lock keys are inside THRMS-03

AEC2: Wells are unlocked AEC3: Wells are unlocked

Thermistors: Can be open with Masterlock#1 or #11 socket

TABLE 1: GENERAL AEC 1 (INACTIVE SOLID WASTE LANDFILL) VISUAL INSPECTION MATRIX

Observation Parameter	Operational Feature	Maintenance Feature	Observations from Previous Report (2022)	Current Observations (June 2023)
Settlement	•		Not observed	FAR ENOUGH
Erosion	•		Not observed	EVERY WHORE
Frost Action	10		Not observed	UNKNOWN
Animal Burrows		•	Not observed	FOX & LEMMINUS
Vegetation	•		Acceptable, some isolated at toe	LOTS OF VEGITATION
Staining		•	Not observed	EVERY WHERE BELOW
Vegetation Stress			Not observed	DEAD PLANTS
Seepage Points			Acceptable/occasional pooling at toe of landfill along south swale near sewage lagoon	SHOW! PAST, OVER FLOW! TOWARDS OCEAN
Exposed Debris			Not observed	EVERYWHERE_
Condition of Monitoring Instruments		•	Acceptable - AEC 1 GW1 casing slightly bent, jplug added	STILL OPPERATIONAL
Grades/Topography	L/• ;		Acceptable as per landfill design	FILTHY BELOW
Distance to Downgradient Surface Water Bodies	100		Occasional; southwest mapped as per previous	SENAGE OVER FLOWS
Distance to Freshwater/Marine Habitat and Habitat Usage	•		Acceptable - set back from marine discharge	TOWARDS OCEAN
Terrestrial Habitat		•	Not observed	
Land Uses		•	Acceptable	VERY FILTHY
Debris		•	Not observed	EVERY WHERE
Permafrost Degredation	[e			EVERY WHERE
Ensuring Landfill Cover Thickness			Acceptable as per landfill design	NEEDS CHEANING BELOW
Snow Cover Including Measured Depth	•		Not observed	ALMOST GAURI

TABLE 1: GENERAL AEC 1 (INACTIVE SOLID WASTE LANDFILL) VISUAL INSPECTION MATRIX

Observation Parameter	Operational Feature	Maintenance Feature	Observations from Previous Report (2022)	Current Observations (June 2023)
Sun Exposure	1997		Acceptable	7417
Surface Temperature	F>∳0		Acceptable	COLD
Wind Effects	11.		Acceptable	STRONG
Surface Drainage	•		Acceptable as per landfill design - drainage via swale system	NOT DEEP ENDUGH AND NEED A PLASTIC RENEATH TO PROTECT
Sewage Lagoon Overflow			Acceptable as per landfill design, no overflow	SHOWS OF OVER - FLOWS TOWARDS OCEAN
Potential Percolation into the Landfill Cap		4	Acceptable, no pooling	NEEDS CERANING
Ensuring a Sufficiently High Degree of Saturation of the Barrier Layer Below the Active Zone	4.94		Acceptable	?
Runoff Diversion	•		Acceptable, swales/channels operating as per landfill design	NEEDS CLOSER I'MS PECTIONS

TABLE 1: GENERAL AEC 2 (HISTORICAL LANDFILL) VISUAL INSPECTION MATRIX

Observation Parameter	Operational Feature	Maintenance Feature	Observations from Previous Report (2022)	Current Observations (June 2023)
Settlement	•		Acceptable/Isolated, stress fractures,	
Erosion			cracking depressions, exposed debris noted on west crest	
Frost Action				ACCEPTABLE
Iscan Prov			Not observed	ALLEPTABLE
Animal Burrows		1.8	Not observed	BIRDS & LEMMINGS
Vegetation				COMPLIANCE
			acceptable, isolated at toe	EVERYWHERE NEAR
Staining		•	Not observed	BELOW ONLY
Vegetation Stress	•		Novelessed	
A Adven			Not observed	MANY DEAD BELOW
Seepage Points	-0.		Not observed	ALCEPTABLE
Exposed Debris			Acceptable - isolated, minor debris exposed at surface crest near disturbed area	<
Condition of Monitoring Instruments		•	Marginal - RBL-5 broke at surface (repaired but very shallow), likely won't produce water. FL-MW-6 PVC poor.	NOT OSSETRUER
Grades/Topography	•		Acceptable/isolated, patch of less gravel on west slope	2-
Distance to Downgradient Surface Water Bodies	•		occasional - no new surface water at toe	4-
Distance to Freshwater/Marine Habitat and Habitat Usage	•		acceptable, set back from marine discharge	ACCEPTABLE
Terrestrial Habitat		•	nane observed	NONE
Land Uses			industrial (non-operational, open, unrestricted, airport property)	4
Debris		1.5	Acceptable - isolated, minor debris exposed at surface crest near disturbed area	4-
Permafrost Degredation	LUŞT.		none observed	NAME OBSERVED
Snow Cover Including Measured Depth			none observed	NONE
Sun Exposure			acceptable - no significant weather related conditions	24/7
Surface Temperature	4 P.		acceptable - no significant weather related conditions	COLD /GOOD

TABLE 1: GENERAL AEC 2 (HISTORICAL LANDFILL) VISUAL INSPECTION MATRIX

Observation Parameter	Operational Maintenance Feature Feature		Observations from Previous Report (2022)	Current Observations (June 2023)
Wind Effects	•		acceptable - no significant weather related conditions	2-
Potential Percolation into the Landfill Cap	1.40		acceptable - swale/drainage operating as designed	2-
Runoff Diversion	•	1	acceptable - swale/drainage operating as designed	4

TABLE 1: GENERAL AEC 3 (Former Vehicle and Waste Metal Store Area) VISUAL INSPECTION MATRIX

Observation Parameter	Operational Feature	Maintenance Feature	Observations from Previous Report (2022)	Current Observations (June 2023)
Settlement	•		acceptable, isolated, slope fallure (natural), 15 m length along north edge of EX 1 remedial area	CLEAN
Erosion	•		not observed	None
Frost Action			not observed	NONE OBSERVERED
Animal Burrows		•	not observed	BIRDI NESTS LEMNINGS & FOXES
Vegetation			not observed	EVERY WHERE NEAR
Staining		• 1	acceptable, isolated, two burn areas noted, possible campfires	BROKEN GLASSES
Vegetation Stress	•		not observed	PRETTY GOOD
Seepage Points	•		acceptable, no pooling on site	No Pooling
Exposed Debris		•	none observed	NONE OSSERVED
Condition of Monitoring Instruments		•	acceptable, no issues noted	NO ISSUES NOTED
Grades/Topography	•		acceptable as per design	ACCEPTABLE
Distance to Downgradient Surface Water Bodies	•		acceptable, no flow to valley stream	LAREA HAD RUST OVER FLOW
Distance to Freshwater/Marine Habitat and Habitat Usage	n•1		acceptable, no flow to valley stream	VALLET BELOW
Terrestrial Habitat		• • • • •	not observed	
Land Uses		-	acceptable, isolated, two burn areas noted, possible campfires	<-
Debris		•	not observed	NONE OBSERVED
Permafrost degredation	•		not observed	NONE
Snow Cover duration			acceptable, no significant weather related conditions	2-
Sun Exposure	•		acceptable, no significant weather related conditions	24/7

TABLE 1: GENERAL AEC 3 (Former Vehicle and Waste Metal Store Area) VISUAL INSPECTION MATRIX

Observation Parameter	Operational Feature	Maintenance Feature	Observations from Previous Report (2022)	Current Observations (June 2023)	
Surface Temperature			acceptable, no significant weather related conditions	ACCEPTABLE	
Wind Effects			acceptable, no significant weather related conditions	ACCEPTABLE	
Surface Drainage and percolation into landfill cap	9.		acceptable, no pooling north/south of access road	CLEAN	
Runoff Diversion	2.0		not observed	NOTORSERVED	

Health & Safety Plan

Anticipated Hazards & Control

FIELD H&S HANDBOOK SECTION REF.	HAZARD / FIELD H&S HANDBOOK SECTION	RELEVANT TO PROJECT? (Y/N)	ADDITIONAL CONTROLS SPECIFIC TO PROJECT
6.1	Physical	N	
6.2	Heavy Equipment	N	
6.3	Electrical	N	NONE
6.4	Power Tool	N	
6.5	Lifting	N	
6.6	Noise	N	JUST THE SEWER TRUCK
6.7	Ambient Air Quality	N	SMEUS LIKE SEWER IN ARE
6.8	Open Pit and Confined Space	N	NO BLACK PLASTIC BENEATH, JUST DUMPED TO PITTIES CARTH
6.9	Excavation and Trench	N	NOT DEEP ENOUGH (OVER FLOWS)
6.10	Biological	Y	Wildlife
6.11	Work at Height	N	OVER FLOWS OUT OF PIT
6.12	Heat and UV Exposure	Y	EXPOSED 24/7
6.13	Cold Stress & Severe Weather	Y	MOST TIMES
6.14	Chemical Hazards	N	UNKUTOWN
6.15	Chemical Hazard Indicators	N	UNKNOWN
6.16	Chemical Hazard Prevention	N	UNKNOWN
6.17	Ladder Safety	N	NONE
6.18	Working On or Near Roads - Traffic Control Persons	N	NONE
6.19	Working Alone	Υ	YES
6.20	Violence	N	Not anticipated
6.21	Unforeseen	N	

ADDITIONAL HAZARDS / CONCERNS / CONTROLS

Main health and safety risks are site are:

- Driving
- Wildlife
- Heat/cold exposure
- Slips, trips, falls
- Working alone

- July 20,2023 Kim CARLTON + PETER NOAH

TABLE 1: GENERAL AEC 1 (INACTIVE SOLID WASTE LANDFILL) VISUAL INSPECTION MATRIX

Observation Parameter	Operational Feature	Maintenance Feature	Observations from Previous Report (2022)	Current Observations (July 2023)	
ettlement				not observed	
			Not observed		
rosion	•		Not observed	slopes + top look good	
Frost Action	•		Not observed	not observed	
Animal Burrows	•	•		not observed	
/egetation	retation		none ontop or on slope		
Staining		•	Not observed	not observed	
Vegetation Stress	•		Not observed	some clead plants at bottom	
Seepage Points	•		Acceptable/occasional pooling at toe of landfill along south swale near sewage lagoon	pooling at bottom of hill	
sposed Debris Not observe		Not observed	small metal pieces, nothing		
Condition of Monitoring Instruments		•	Acceptable - AEC 1 GW1 casing slightly a bent, jplug added	that tho new items	
Grades/Topography	•		Acceptable as per landfill design	acceptable	
Distance to Downgradient Surface Water Bodies	•		Occasional; southwest mapped as per previous	wet immediatly below hill (wet around RBL-2+R	
Distance to Freshwater/Marine Habitat and Habitat Usage	•		Acceptable - set back from marine discharge	sewage lagoon beside has is	
Ferrestrial Habitat		•	Not observed	wird poop on thermistors + on well lids, no other signs	
and Uses		•	Acceptable	ATV tracks on top of hill Peter said people avoid area du	
Debris		•	Not observed	-Peter said people avoid area du -small metal pieces on hill -sume blown from adjacent d	
Permafrost Degredation	•				
insuring Landfill Cover hickness	•		Acceptable as per landfill design	assumed acceptable	
now Cover Including Measured Depth	•		Not observed	not observed	

TABLE 1: GENERAL AEC 1 (INACTIVE SOLID WASTE LANDFILL) VISUAL INSPECTION MATRIX

Observation Parameter	Operational Maintena Feature Feature		Observations from Previous Report (2022)	Current Observations (July 2023)		
Sun Exposure	•		Acceptable	24/7		
Surface Temperature	•		Acceptable	cold to the touch		
Wind Effects	•		Acceptable	acceptable		
Surface Drainage	•		Idrainage via swale system	swale system seems to w nodrainage Channels on sl		
Sewage Lagoon Overflow		•	Acceptable as per landfill design, no overflow	evidence of overflow, high amount of vegetation below		
Potential Percolation into the Landfill Cap	•		Acceptable, no pooling	acceptable, no pooling		
Ensuring a Sufficiently High Degree of Saturation of the Barrier Layer Below the Active Zone	•		Acceptable	-not sure		
Runoff Diversion	•		Acceptable, swales/channels operating as per landfill design	acceptable		

July 20, 2023 KIM CARLTON AND PETER NOAH

TABLE 2: GENERAL AEC 2 (HISTORICAL LANDFILL) VISUAL INSPECTION MATRIX

Observation Parameter	Operational Feature	Maintenance Feature	Observations from Previous Report (2022)	Current Observations (July 2023)		
Settlement	•		Acceptable/isolated, stress fractures, cracking depressions, exposed debris noted	acceptable, some debris noted throughout site		
Erosion .	•	on west crest				
Frost Action	•		Not observed	acceptable		
Animal Burrows		•	Not observed	lemmings (seen in area)		
/egetation	•		acceptable, isolated at toe	none on top, some below.		
Staining		•	Not observed	not observed		
Vegetation Stress	•		Not observed	some dead below		
Seepage Points	•		Not observed	not observed		
Exposed Debris		•	Acceptable - isolated, minor debris exposed at surface crest near disturbed area	some little pieces on top		
Condition of Monitoring nstruments			Marginal - RBL-5 broke at surface (repaired but very shallow), likely won't produce water. FL-MW-6 PVC poor.	hot observed		
Grades/Topography	•		Acceptable/isolated, patch of less gravel on west slope	acceptable. less graves on west slope		
Distance to Downgradient Surface Water Bodies	•		occasional - no new surface water at toe	far enough distance		
Distance to Freshwater/Marine Habitat and Habitat Usage	•		acceptable, set back from marine discharge	acceptable		
errestrial Habitat			none observed	lemming s		
and Uses		•	industrial (non-operational, open, unrestricted, airport property)	some roads around area (lutting corners when dri		
Debris		•	Acceptable - isolated, minor debris exposed at surface crest near disturbed area	some exposed on west side -aceptable		
Permafrost Degredation	•		none observed	none observed		
now Cover Including Measured Depth	•		none observed	none observed		
un Exposure	•		acceptable - no significant weather related conditions	2417		

wildlife around AEC2 - maybe birds or a fox - note of bones found on Lysawalemming on site site July 21

TABLE 2: GENERAL AEC 2 (HISTORICAL LANDFILL) VISUAL INSPECTION MATRIX

Observation Parameter	Operational Feature	Maintenance Feature	Observations from Previous Report (2022)	Current Observations (July 2023)
Surface Temperature	•		acceptable - no significant weather related conditions	
Wind Effects	•		acceptable - no significant weather related conditions	±1
Potential Percolation into the Landfill Cap	•		acceptable - swale/drainage operating as designed	← ✓
Runoff Diversion	•		acceptable - swale/drainage operating as designed	

July 20,2023 KIM CARLTON+ PETER NOAH

TABLE 3: GENERAL AEC 3 (Former Vehicle and Waste Metal Store Area) VISUAL INSPECTION MATRIX

Observation Parameter	Operational Feature	Maintenance Feature	Observations from Previous Report (2022)	Current Observations (July 2023)
ettlement	•		acceptable, isolated, slope failure (natural), 15 m length along north edge of EX 1 remedial area	evidence of drainage channel
rosion	•		not observed	none observed
rost Action	•			none observed
nimal Burrows		•	not observed	lemmings
/egetation	•		not observed	a litte on cap, more down slope towards Mc Master River
staining		•	acceptable, isolated, two burn areas noted, possible campfires	2 burn areas
egetation Stress	•		not observed	not observed
Seepage Points	4		acceptable, no pooling on site	no pooling
Exposed Debris		•	none observed	little pieces of metal near RBL-14
Condition of Monitoring nstruments		•	acceptable, no issues noted	no issues noted
Grades/Topography	•		acceptable as per design	acuptable
Distance to Downgradient Surface Water Bodies	•		acceptable, no flow to valley stream	drainage channels near RBL to river
Distance to reshwater/Marine Habitat and Habitat Usage	1		acceptable, no flow to valley stream	valley to McMaster River
errestrial Habitat		•	not observed	wird poop
and Uses		•	acceptable, isolated, two burn areas noted, possible campfires	-2 burn areas some south end
Debris		•	not observed	-glass area -some debis near RBL-14
Permafrost degredation	•		not observed	none
now Cover duration			acceptable, no significant weather related conditions	none noted while onsite
iun Exposure	•		acceptable, no significant weather related conditions	24/7

-not alot of animals, maybe birds in August and the odd fox

TABLE 3: GENERAL AEC 3 (Former Vehicle and Waste Metal Store Area) VISUAL INSPECTION MATRIX

Observation Parameter	Operational Parameter Feature		Observations from Previous Report (2022)	Current Observations (July 2023)		
Surface Temperature			acceptable, no significant weather related conditions	cold to touch		
Wind Effects			acceptable, no significant weather related conditions	acceptable		
Surface Drainage and percolation into landfill cap	•		acceptable, no pooling north/south of access road	drainage from RBL14/15 to valleys		
Runoff Diversion	•		not observed	drainage from RBL-14/15 to Valley S		

Monitoring Well ID	Northing (*.b)	Easting(a,b)	AEC	-Water Level	Well Depth	Dissolved Oxygen (mg/L)	ORP (mV)	Temp	pH	cond (ms/cm) (ms/cm)	Turbidity (NTU
RBL-1 int lock 2"	8295630 ^(a)	441147 ^(a)	AEC 1	1.27 OLNAPL	1.44	}					
RBL-2 cut lock	8295551(a)	440943 ^(a)	AEC 1	1.30	1.32	3.88	128	6.91	7.34	0.729	4.7
RBL-3	8295608 ^(a)	440901 ^(a)	AEC 1	0.86 . LNAPL	1.62	19.81	12	5.53	7.91	0.427	9.3.
AEC1-GW1	8295526 ^(b)	441063 ^(b)	AEC 1	1.30 0 LNAPL	1.74	5.55	76	6.55	7.86	1.17	14.7
RBL-5	8292509 ^(a)	441662 ^(a)	AEC 2	0240 0.99m	-	-				- 10 - 11 - 12 - 12 - 12 - 12 - 12 - 12	
RBL-6	8292566 ^(a)	441420 ^(a)	AEC 2	DR4 9+ 0.88m	_					41 1	4
RBL-7	8292634 ^(a)	441384(*)	AEC 2	DRY 0	-					51	1
FL-MW-6 2" Well	8292485 ^(b)	441484 ^(b)	AEC 2	DM AL 0.96 m	-					W. C.	
FL-MW-7 2" Well	8292468 ^(b)	441452 ^(b)	AEC 2	DRY at	-					The state of the s	
2-MW-8	8292499(b)	441451 ^(b)	AEC 2	DRY at 1.06 m	_	_					1
RBL-10	8296242 ^(a)	440493(*)	AEC 3	DR4 (2)	_						-
RBL-11 2"	8296265 ^(a)	440383 ^(a)	AEC 3	DRY (9)	-						
RBL-12 2"	8296335 ^(a)	440450 ^(a)	AEC 3	1.48m	_					No.	
RBL-14	8296449 ^(a)	440682 ^(a)	AEC 3	DRY@	_	_			3		- 3
RBL-15	8296468 ^(a)	440635(a)	AEC 3	1.41	-	-			1		y A

Dup taken at RBL-3 Field blank taken at RBL-3

Table 1: Surface Water/Seep Locations

Location	Northing (a)	Easting(*)	AEC	Dissolved Oxygen (mg/L)	ORP (mV)	Temp	рН	Cond (us/cm)	Tur (M
RBL-4	8295627	440884	AEC 1	18.91	160	15.92	8.93	307	(
7 RBL-8	8292688	441366-	AEC 2	16.47	226	11.57	8.54	384	6
RBL-13	8296454	440478	AEC 3	15.91	242	9.37	8.27	216	(
RBL-16	8296336	440340	AEC 3	19.62	199	9.22	8.45	216	(

tookat downgradientportd taken at 2022 location

APPENDIX E

Laboratory Certificates of Analyses, Chain of Custody Forms and Lab Letter of Approval for BluMetric's QA/QC

Your Project #: 230427

Site Location: RESOLUTE BAY LANDFILL

Your C.O.C. #: n/a

Attention: Jaclyn Kalesnikoff
BluMetric Environmental Inc
1682 Woodward Drive
Ottawa, ON
CANADA K2C 3R8

Report Date: 2023/08/14

Report #: R7763510 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C3M6596 Received: 2023/07/27, 12:57

Sample Matrix: Water # Samples Received: 13

·		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Alkalinity	10	N/A	2023/08/01	CAM SOP-00448	SM 23 2320 B m
Carbonate, Bicarbonate and Hydroxide	10	N/A	2023/08/02	CAM SOP-00102	APHA 4500-CO2 D
Chloride by Automated Colourimetry	10	N/A	2023/08/02	CAM SOP-00463	SM 23 4500-Cl E m
Conductivity	10	N/A	2023/08/01	CAM SOP-00414	SM 23 2510 m
Chromium (VI) in Water	10	N/A	2023/08/03	CAM SOP-00436	EPA 7199 m
Petroleum Hydro. CCME F1 & BTEX in Water	3	N/A	2023/08/04	CAM SOP-00315	CCME PHC-CWS m
Petroleum Hydro. CCME F1 & BTEX in Water	9	N/A	2023/08/05	CAM SOP-00315	CCME PHC-CWS m
Petroleum Hydro. CCME F1 & BTEX in Water	1	N/A	2023/08/06	CAM SOP-00315	CCME PHC-CWS m
Petroleum Hydrocarbons F2-F4 in Water (2)	13	2023/08/04	2023/08/04	CAM SOP-00316	CCME PHC-CWS m
Hardness (calculated as CaCO3)	10	N/A	2023/08/04	CAM SOP 00102/00408/00447	SM 2340 B
Mercury in Water by CVAA	7	2023/08/01	2023/08/02	CAM SOP-00453	EPA 7470A m
Mercury in Water by CVAA	2	2023/08/02	2023/08/02	CAM SOP-00453	EPA 7470A m
Lab Filtered Metals by ICPMS	8	2023/08/10	2023/08/11	CAM SOP-00447	EPA 6020B m
Lab Filtered Metals by ICPMS	2	2023/08/10	2023/08/14	CAM SOP-00447	EPA 6020B m
Total Metals Analysis by ICPMS	10	2023/08/02	2023/08/02	CAM SOP-00447	EPA 6020B m
Ion Balance (% Difference)	8	N/A	2023/08/11		
Ion Balance (% Difference)	2	N/A	2023/08/14		
Anion and Cation Sum	8	N/A	2023/08/11		
Anion and Cation Sum	2	N/A	2023/08/14		
B[a]P Total Potency Equivalent (1, 3)	11	N/A	2023/08/06		CCME
B[a]P Total Potency Equivalent (1, 3)	1	N/A	2023/08/09		CCME
PAH in Water by GC/MS (1)	11	2023/08/05	2023/08/06	AB SOP-00037/AB SOP- 00003	EPA 3510C/8270E m
PAH in Water by GC/MS (1)	1	2023/08/08	2023/08/08	AB SOP-00037/AB SOP- 00003	EPA 3510C/8270E m
Phenols (4-AAP) (1)	10	N/A	2023/08/08	AB SOP-00088	EPA 9066 R0 m
Total Ammonia-N	10	N/A	2023/08/03	CAM SOP-00441	USGS I-2522-90 m
Nitrate & Nitrite as Nitrogen in Water (4)	10	N/A	2023/08/01	CAM SOP-00440	SM 23 4500-NO3I/NO2B
Total Oil and Grease	10	2023/08/06	2023/08/06	CAM SOP-00326	EPA1664B m,SM5520B m
рН	10	2023/07/31	2023/08/01	CAM SOP-00413	SM 4500H+ B m

Your Project #: 230427

Site Location: RESOLUTE BAY LANDFILL

Your C.O.C. #: n/a

Attention: Jaclyn Kalesnikoff
BluMetric Environmental Inc
1682 Woodward Drive
Ottawa, ON
CANADA K2C 3R8

Report Date: 2023/08/14

Report #: R7763510 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C3M6596 Received: 2023/07/27, 12:57

Sample Matrix: Water # Samples Received: 13

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Sulphate by Automated Turbidimetry	10	N/A	2023/08/02	CAM SOP-00464	SM 23 4500-SO42- E m
Total Phosphorus (Colourimetric)	10	2023/08/01	2023/08/03	CAM SOP-00407	SM 23 4500-P I
Mineral/Synthetic O & G (TPH Heavy Oil) (5)	10	2023/08/06	2023/08/06	CAM SOP-00326	EPA1664B m,SM5520F m
Total Suspended Solids	10	2023/08/01	2023/08/02	CAM SOP-00428	SM 23 2540D m

Remarks:

Bureau Veritas is accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Bureau Veritas are based upon recognized Provincial, Federal or US method compendia such as CCME, MELCCFP, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Bureau Veritas' profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Bureau Veritas in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Bureau Veritas liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Bureau Veritas has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Bureau Veritas, unless otherwise agreed in writing. Bureau Veritas is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by Bureau Veritas, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

 $Reference\ Method\ suffix\ "m"\ indicates\ test\ methods\ incorporate\ validated\ modifications\ from\ specific\ reference\ methods\ to\ improve\ performance.$

- * RPDs calculated using raw data. The rounding of final results may result in the apparent difference.
- (1) This test was performed by Bureau Veritas Calgary (19th), 4000 19th Street NE, Calgary, AB, T2E 6P8
- (2) All CCME PHC results met required criteria unless otherwise stated in the report. The CWS PHC methods employed by Bureau Veritas conform to all prescribed elements of the reference method and performance based elements have been validated. All modifications have been validated and proven equivalent following "Alberta Environment's Interpretation of the Reference Method for the Canada-Wide Standard for Petroleum Hydrocarbons in Soil Validation of Performance-Based Alternative Methods September 2003". Documentation is available upon request. Modifications from Reference Method for the Canada-wide Standard for Petroleum Hydrocarbons in Soil-Tier 1 Method: F2/F3/F4 data reported using validated cold solvent extraction instead of Soxhlet extraction.
- (3) B[a]P TPE is calculated using 1/2 of the RDL for non detect results as per Alberta Environment instructions. This protocol may not apply in other jurisdictions.
- (4) Values for calculated parameters may not appear to add up due to rounding of raw data and significant figures.

Your Project #: 230427

Site Location: RESOLUTE BAY LANDFILL

Your C.O.C. #: n/a

Attention: Jaclyn Kalesnikoff
BluMetric Environmental Inc
1682 Woodward Drive
Ottawa, ON
CANADA K2C 3R8

Report Date: 2023/08/14

Report #: R7763510 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C3M6596 Received: 2023/07/27, 12:57

(5) Note: TPH (Heavy Oil) is equivalent to Mineral / Synthetic Oil & Grease

Encryption Key

Please direct all questions regarding this Certificate of Analysis to: Christine Gripton, Senior Project Manager Email: Christine.Gripton@bureauveritas.com

Phone# (519)652-9444

This report has been generated and distributed using a secure automated process.

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by Rodney Major, General Manager responsible for Ontario Environmental laboratory operations.

BluMetric Environmental Inc Client Project #: 230427

Site Location: RESOLUTE BAY LANDFILL

Sampler Initials: KC

CCME PAHS (WATER)

Bureau Veritas ID		WNL671	WNL672	WNL673	WNL674	WNL675					
Samulina Data		2023/07/23	2023/07/23	2023/07/23	2023/07/24	2023/07/24					
Sampling Date		17:30	15:30	16:30	13:00	11:50					
COC Number		n/a	n/a	n/a	n/a	n/a					
	UNITS	RBL-2	RBL-3	AEC1-GW1	RBL-4	RBL-8	RDL	MDL	QC Batch		
Polyaromatic Hydrocarbons											
Benzo(a)pyrene Total Potency Equiv.	ug/L	<0.010	<0.010	<0.010	<0.010	<0.010	0.010	N/A	8841752		
Acenaphthene	ug/L	<0.10	<0.10	<0.10	<0.10	<0.10	0.10	N/A	8837189		
Acenaphthylene	ug/L	<0.10	<0.10	<0.10	<0.10	<0.10	0.10	N/A	8837189		
Acridine	ug/L	<0.040	<0.040	<0.040	<0.040	<0.040	0.040	N/A	8837189		
Anthracene	ug/L	<0.010	<0.010	<0.010	<0.010	<0.010	0.010	N/A	8837189		
Benzo(a)anthracene	ug/L	<0.0085	<0.0085	<0.0085	<0.0085	<0.0085	0.0085	N/A	8837189		
Benzo(b/j)fluoranthene	ug/L	<0.0085	<0.0085	<0.0085	<0.0085	<0.0085	0.0085	N/A	8837189		
Benzo(k)fluoranthene	ug/L	<0.0085	<0.0085	<0.0085	<0.0085	<0.0085	0.0085	N/A	8837189		
Benzo(g,h,i)perylene	ug/L	<0.0085	<0.0085	<0.0085	<0.0085	<0.0085	0.0085	N/A	8837189		
Benzo(c)phenanthrene	ug/L	<0.050	<0.050	<0.050	<0.050	<0.050	0.050	N/A	8837189		
Benzo(a)pyrene	ug/L	<0.0075	<0.0075	<0.0075	<0.0075	<0.0075	0.0075	N/A	8837189		
Benzo(e)pyrene	ug/L	<0.050	<0.050	<0.050	<0.050	<0.050	0.050	N/A	8837189		
Chrysene	ug/L	<0.0085	<0.0085	<0.0085	<0.0085	<0.0085	0.0085	N/A	8837189		
Dibenzo(a,h)anthracene	ug/L	<0.0075	<0.0075	<0.0075	<0.0075	<0.0075	0.0075	N/A	8837189		
Fluoranthene	ug/L	<0.010	<0.010	<0.010	<0.010	<0.010	0.010	N/A	8837189		
Fluorene	ug/L	<0.050	<0.050	<0.050	<0.050	<0.050	0.050	N/A	8837189		
Indeno(1,2,3-cd)pyrene	ug/L	<0.0085	<0.0085	<0.0085	<0.0085	<0.0085	0.0085	N/A	8837189		
1-Methylnaphthalene	ug/L	<0.10	0.84	<0.10	<0.10	<0.10	0.10	N/A	8837189		
2-Methylnaphthalene	ug/L	<0.10	1.4	0.12	<0.10	<0.10	0.10	N/A	8837189		
Naphthalene	ug/L	<0.10	0.23	0.12	<0.10	<0.10	0.10	N/A	8837189		
Phenanthrene	ug/L	<0.050	<0.050	<0.050	<0.050	<0.050	0.050	N/A	8837189		
Perylene	ug/L	<0.050	<0.050	<0.050	<0.050	<0.050	0.050	N/A	8837189		
Pyrene	ug/L	<0.020	<0.020	<0.020	<0.020	<0.020	0.020	N/A	8837189		
Quinoline	ug/L	<0.20	<0.20	<0.20	<0.20	<0.20	0.20	N/A	8837189		
Surrogate Recovery (%)											
D10-Anthracene	%	127	121	105	117	109			8837189		
D14-Terphenyl	%	156 (1)	129	75	138 (1)	130			8837189		

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

N/A = Not Applicable

(1) Recovery or RPD for this parameter is outside control limits. The overall quality control for this analysis meets acceptability criteria.

BluMetric Environmental Inc Client Project #: 230427

Site Location: RESOLUTE BAY LANDFILL

Sampler Initials: KC

CCME PAHS (WATER)

Bureau Veritas ID		WNL671	WNL672	WNL673	WNL674	WNL675			
Sampling Date		2023/07/23	2023/07/23	2023/07/23	2023/07/24	2023/07/24			
Sampling Date		17:30	15:30	16:30	13:00	11:50			
COC Number		n/a	n/a	n/a	n/a	n/a			
	UNITS	RBL-2	RBL-3	AEC1-GW1	RBL-4	RBL-8	RDL	MDL	QC Batch
D8-Acenaphthylene	%	112	97	85	109	96			8837189
D8-Naphthalene	%	75	45 (1)	59	92	72			8837189

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

(1) Recovery or RPD for this parameter is outside control limits. The overall quality control for this analysis meets acceptability criteria.

Site Location: RESOLUTE BAY LANDFILL

Sampler Initials: KC

CCME PAHS (WATER)

Bureau Veritas ID		WNL676	WNL677	WNL678	WNL679	WNL680			
Sampling Data		2023/07/24	2023/07/24	2023/07/23	2023/07/24	2023/07/24			
Sampling Date		11:15	10:30	15:50	11:20	11:55			
COC Number		n/a	n/a	n/a	n/a	n/a			
	UNITS	RBL-13	RBL-16	RBL-DUPA	RBL-DUPB	RBL-DUPC	RDL	MDL	QC Batch
Polyaromatic Hydrocarbons									
Benzo(a)pyrene Total Potency Equiv.	ug/L	<0.010	<0.010	<0.010	<0.010	<0.010	0.010	N/A	8841752
Acenaphthene	ug/L	<0.10	<0.10	<0.10	<0.10	<0.10	0.10	N/A	8837189
Acenaphthylene	ug/L	<0.10	<0.10	<0.10	<0.10	<0.10	0.10	N/A	8837189
Acridine	ug/L	<0.040	<0.040	<0.040	<0.040	<0.040	0.040	N/A	8837189
Anthracene	ug/L	<0.010	<0.010	<0.010	<0.010	<0.010	0.010	N/A	8837189
Benzo(a)anthracene	ug/L	<0.0085	<0.0085	<0.0085	<0.0085	<0.0085	0.0085	N/A	8837189
Benzo(b/j)fluoranthene	ug/L	<0.0085	<0.0085	<0.0085	<0.0085	<0.0085	0.0085	N/A	8837189
Benzo(k)fluoranthene	ug/L	<0.0085	<0.0085	<0.0085	<0.0085	<0.0085	0.0085	N/A	8837189
Benzo(g,h,i)perylene	ug/L	<0.0085	<0.0085	<0.0085	<0.0085	<0.0085	0.0085	N/A	8837189
Benzo(c)phenanthrene	ug/L	<0.050	<0.050	<0.050	<0.050	<0.050	0.050	N/A	8837189
Benzo(a)pyrene	ug/L	<0.0075	<0.0075	<0.0075	<0.0075	<0.0075	0.0075	N/A	8837189
Benzo(e)pyrene	ug/L	<0.050	<0.050	<0.050	<0.050	<0.050	0.050	N/A	8837189
Chrysene	ug/L	<0.0085	<0.0085	<0.0085	<0.0085	<0.0085	0.0085	N/A	8837189
Dibenzo(a,h)anthracene	ug/L	<0.0075	<0.0075	<0.0075	<0.0075	<0.0075	0.0075	N/A	8837189
Fluoranthene	ug/L	<0.010	<0.010	<0.010	<0.010	<0.010	0.010	N/A	8837189
Fluorene	ug/L	<0.050	<0.050	<0.050	<0.050	<0.050	0.050	N/A	8837189
Indeno(1,2,3-cd)pyrene	ug/L	<0.0085	<0.0085	<0.0085	<0.0085	<0.0085	0.0085	N/A	8837189
1-Methylnaphthalene	ug/L	<0.10	<0.10	0.61	<0.10	<0.10	0.10	N/A	8837189
2-Methylnaphthalene	ug/L	<0.10	<0.10	0.99	<0.10	<0.10	0.10	N/A	8837189
Naphthalene	ug/L	<0.10	<0.10	0.17	<0.10	<0.10	0.10	N/A	8837189
Phenanthrene	ug/L	<0.050	<0.050	<0.050	<0.050	<0.050	0.050	N/A	8837189
Perylene	ug/L	<0.050	<0.050	<0.050	<0.050	<0.050	0.050	N/A	8837189
Pyrene	ug/L	<0.020	<0.020	<0.020	<0.020	<0.020	0.020	N/A	8837189
Quinoline	ug/L	<0.20	<0.20	<0.20	<0.20	<0.20	0.20	N/A	8837189
Surrogate Recovery (%)			· ·	· ·	·				
D10-Anthracene	%	105	106	104	119	124			8837189
D14-Terphenyl	%	124	125	119	144 (1)	141 (1)			8837189

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

N/A = Not Applicable

(1) Recovery or RPD for this parameter is outside control limits. The overall quality control for this analysis meets acceptability criteria.

BluMetric Environmental Inc Client Project #: 230427

Site Location: RESOLUTE BAY LANDFILL

Sampler Initials: KC

CCME PAHS (WATER)

Bureau Veritas ID		WNL676	WNL677	WNL678	WNL679	WNL680			
Sampling Date		2023/07/24	2023/07/24	2023/07/23	2023/07/24	2023/07/24			
Sampling Date		11:15	10:30	15:50	11:20	11:55			
COC Number		n/a	n/a	n/a	n/a	n/a			
	UNITS	RBL-13	RBL-16	RBL-DUPA	RBL-DUPB	RBL-DUPC	RDL	MDL	QC Batch
D8-Acenaphthylene	UNITS %	RBL-13 90	RBL-16 96	RBL-DUPA 92	RBL-DUPB	RBL-DUPC	RDL	MDL	QC Batch 8837189

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Bureau Veritas Job #: C3M6596 Report Date: 2023/08/14 BluMetric Environmental Inc Client Project #: 230427

Site Location: RESOLUTE BAY LANDFILL

Sampler Initials: KC

CCME PAHS (WATER)

Bureau Veritas ID		WNL680				WNL681	WNL683			
Compline Date		2023/07/24				2023/07/23	2023/07/24			
Sampling Date		11:55				15:40	10:40			
COC Number		n/a				n/a	n/a			
	UNITS	RBL-DUPC Lab-Dup	RDL	MDL	QC Batch	FEILD BLANK 1	FEILD BLANK 2	RDL	MDL	QC Batch
Polyaromatic Hydrocarbons										
Benzo(a)pyrene Total Potency Equiv.	ug/L					<0.010	<0.010	0.010	N/A	8841752
Acenaphthene	ug/L	<0.10	0.10	N/A	8837189	<0.10	<0.10	0.10	N/A	8837189
Acenaphthylene	ug/L	<0.10	0.10	N/A	8837189	<0.10	<0.10	0.10	N/A	8837189
Acridine	ug/L	<0.040	0.040	N/A	8837189	<0.040	<0.040	0.040	N/A	8837189
Anthracene	ug/L	<0.010	0.010	N/A	8837189	<0.010	<0.010	0.010	N/A	8837189
Benzo(a)anthracene	ug/L	<0.0085	0.0085	N/A	8837189	<0.0085	<0.0085	0.0085	N/A	8837189
Benzo(b/j)fluoranthene	ug/L	<0.0085	0.0085	N/A	8837189	<0.0085	<0.0085	0.0085	N/A	8837189
Benzo(k)fluoranthene	ug/L	<0.0085	0.0085	N/A	8837189	<0.0085	<0.0085	0.0085	N/A	8837189
Benzo(g,h,i)perylene	ug/L	<0.0085	0.0085	N/A	8837189	<0.0085	<0.0085	0.0085	N/A	8837189
Benzo(c)phenanthrene	ug/L	<0.050	0.050	N/A	8837189	<0.050	<0.050	0.050	N/A	8837189
Benzo(a)pyrene	ug/L	<0.0075	0.0075	N/A	8837189	<0.0075	<0.0075	0.0075	N/A	8837189
Benzo(e)pyrene	ug/L	<0.050	0.050	N/A	8837189	<0.050	<0.050	0.050	N/A	8837189
Chrysene	ug/L	<0.0085	0.0085	N/A	8837189	<0.0085	<0.0085	0.0085	N/A	8837189
Dibenzo(a,h)anthracene	ug/L	<0.0075	0.0075	N/A	8837189	<0.0075	<0.0075	0.0075	N/A	8837189
Fluoranthene	ug/L	<0.010	0.010	N/A	8837189	<0.010	<0.010	0.010	N/A	8837189
Fluorene	ug/L	<0.050	0.050	N/A	8837189	<0.050	<0.050	0.050	N/A	8837189
Indeno(1,2,3-cd)pyrene	ug/L	<0.0085	0.0085	N/A	8837189	<0.0085	<0.0085	0.0085	N/A	8837189
1-Methylnaphthalene	ug/L	<0.10	0.10	N/A	8837189	<0.10	<0.10	0.10	N/A	8837189
2-Methylnaphthalene	ug/L	<0.10	0.10	N/A	8837189	<0.10	<0.10	0.10	N/A	8837189
Naphthalene	ug/L	<0.10	0.10	N/A	8837189	<0.10	<0.10	0.10	N/A	8837189
Phenanthrene	ug/L	<0.050	0.050	N/A	8837189	<0.050	<0.050	0.050	N/A	8837189
Perylene	ug/L	<0.050	0.050	N/A	8837189	<0.050	<0.050	0.050	N/A	8837189
Pyrene	ug/L	<0.020	0.020	N/A	8837189	<0.020	<0.020	0.020	N/A	8837189
Quinoline	ug/L	<0.20	0.20	N/A	8837189	<0.20	<0.20	0.20	N/A	8837189
Surrogate Recovery (%)										
D10-Anthracene	%	120			8837189	118	106			8837189
D14-Terphenyl	%	134 (1)			8837189	139 (1)	126			8837189

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

N/A = Not Applicable

(1) Recovery or RPD for this parameter is outside control limits. The overall quality control for this analysis meets acceptability criteria.

Site Location: RESOLUTE BAY LANDFILL

Sampler Initials: KC

CCME PAHS (WATER)

Bureau Veritas ID		WNL680				WNL681	WNL683			
Sampling Date		2023/07/24				2023/07/23	2023/07/24			
Sampling Date		11:55				15:40	10:40			
COC Number		n/a				n/a	n/a			
	LIMITE	RBL-DUPC	BDI	MDI	OC Patch	FEILD BLANK	FEILD BLANK	BDI	MDI	OC Batch
	UNITS	RBL-DUPC Lab-Dup	RDL	MDL	QC Batch	FEILD BLANK 1	FEILD BLANK 2	RDL	MDL	QC Batch
D8-Acenaphthylene	UNITS		RDL	MDL	QC Batch 8837189	FEILD BLANK 1	FEILD BLANK 2 95	RDL	MDL	QC Batch 8837189

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

Site Location: RESOLUTE BAY LANDFILL

Sampler Initials: KC

CCME PHCS, BTEX/F1-F4 (WATER)

Bureau Veritas ID		WNL671	WNL672				WNL672			
Compling Data		2023/07/23	2023/07/23				2023/07/23			
Sampling Date		17:30	15:30				15:30			
COC Number		n/a	n/a				n/a			
	UNITS	RBL-2	RBL-3	RDL	MDL	QC Batch	RBL-3 Lab-Dup	RDL	MDL	QC Batch
BTEX & F1 Hydrocarbons										
Benzene	ug/L	<0.20	<0.20	0.20	0.040	8833426				
Toluene	ug/L	<0.20	<0.20	0.20	0.040	8833426				
Ethylbenzene	ug/L	<0.20	<0.20	0.20	0.040	8833426				
o-Xylene	ug/L	<0.20	<0.20	0.20	0.040	8833426				
p+m-Xylene	ug/L	<0.40	<0.40	0.40	0.080	8833426				
Total Xylenes	ug/L	<0.40	<0.40	0.40	0.080	8833426				
F1 (C6-C10)	ug/L	<25	<25	25	20	8833426				
F1 (C6-C10) - BTEX	ug/L	<25	<25	25	20	8833426				
F2-F4 Hydrocarbons	•							•		
F2 (C10-C16 Hydrocarbons)	ug/L	<100	<100	100	50	8833643	<100	100	50	8833643
F3 (C16-C34 Hydrocarbons)	ug/L	<200	<200	200	70	8833643	<200	200	70	8833643
F4 (C34-C50 Hydrocarbons)	ug/L	<200	<200	200	50	8833643	<200	200	50	8833643
Reached Baseline at C50	ug/L	Yes	Yes			8833643	Yes			8833643
Surrogate Recovery (%)		•		•		•	•	•	•	
1,4-Difluorobenzene	%	89	88			8833426				
4-Bromofluorobenzene	%	108	105			8833426				
D10-o-Xylene	%	92	88			8833426				
D4-1,2-Dichloroethane	%	100	100			8833426				
o-Terphenyl	%	95	97			8833643	96			8833643
RDL = Reportable Detection I	imit	•		•		•		•		

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

Site Location: RESOLUTE BAY LANDFILL

Sampler Initials: KC

CCME PHCS, BTEX/F1-F4 (WATER)

Bureau Veritas ID		WNL673	WNL674	WNL675	WNL676		WNL677			
Sampling Date		2023/07/23	2023/07/24	2023/07/24	2023/07/24		2023/07/24			
Sampling Date		16:30	13:00	11:50	11:15		10:30			
COC Number		n/a	n/a	n/a	n/a		n/a			
	UNITS	AEC1-GW1	RBL-4	RBL-8	RBL-13	QC Batch	RBL-16	RDL	MDL	QC Batch
BTEX & F1 Hydrocarbons	_					<u> </u>		<u> </u>		<u> </u>
Benzene	ug/L	<0.20	<0.20	<0.20	<0.20	8833426	<0.20	0.20	0.040	8833432
Toluene	ug/L	0.55	<0.20	<0.20	<0.20	8833426	<0.20	0.20	0.040	8833432
Ethylbenzene	ug/L	<0.20	<0.20	<0.20	<0.20	8833426	<0.20	0.20	0.040	8833432
o-Xylene	ug/L	0.26	<0.20	<0.20	<0.20	8833426	<0.20	0.20	0.040	8833432
p+m-Xylene	ug/L	<0.40	<0.40	<0.40	<0.40	8833426	<0.40	0.40	0.080	8833432
Total Xylenes	ug/L	<0.40	<0.40	<0.40	<0.40	8833426	<0.40	0.40	0.080	8833432
F1 (C6-C10)	ug/L	<25	<25	<25	<25	8833426	<25	25	20	8833432
F1 (C6-C10) - BTEX	ug/L	<25	<25	<25	<25	8833426	<25	25	20	8833432
F2-F4 Hydrocarbons										
F2 (C10-C16 Hydrocarbons)	ug/L	<100	<100	<100	<100	8833643	<100	100	50	8833643
F3 (C16-C34 Hydrocarbons)	ug/L	<200	<200	<200	<200	8833643	<200	200	70	8833643
F4 (C34-C50 Hydrocarbons)	ug/L	<200	<200	<200	<200	8833643	<200	200	50	8833643
Reached Baseline at C50	ug/L	Yes	Yes	Yes	Yes	8833643	Yes			8833643
Surrogate Recovery (%)	•			-						
1,4-Difluorobenzene	%	88	91	86	88	8833426	102			8833432
4-Bromofluorobenzene	%	107	109	107	107	8833426	83			8833432
D10-o-Xylene	%	91	89	88	88	8833426	91			8833432
D4-1,2-Dichloroethane	%	99	100	97	99	8833426	95			8833432
o-Terphenyl	%	96	96	94	95	8833643	94			8833643
RDL = Reportable Detection L QC Batch = Quality Control Ba										

QC Batch = Quality Control Batch

Site Location: RESOLUTE BAY LANDFILL

Sampler Initials: KC

CCME PHCS, BTEX/F1-F4 (WATER)

Bureau Veritas ID		WNL678	WNL679	WNL680	WNL681	WNL682	WNL683			
Sampling Date		2023/07/23	2023/07/24	2023/07/24	2023/07/23	2023/07/23	2023/07/24			
Sampling Date		15:50	11:20	11:55	15:40	09:00	10:40			
COC Number		n/a	n/a	n/a	n/a	n/a	n/a			
	UNITS	RBL-DUPA	RBL-DUPB	RBL-DUPC	FEILD BLANK 1	TRIP BLANK 1	FEILD BLANK 2	RDL	MDL	QC Batch
BTEX & F1 Hydrocarbons										
Benzene	ug/L	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	0.20	0.040	8833426
Toluene	ug/L	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	0.20	0.040	8833426
Ethylbenzene	ug/L	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	0.20	0.040	8833426
o-Xylene	ug/L	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	0.20	0.040	8833426
p+m-Xylene	ug/L	<0.40	<0.40	<0.40	<0.40	<0.40	<0.40	0.40	0.080	8833426
Total Xylenes	ug/L	<0.40	<0.40	<0.40	<0.40	<0.40	<0.40	0.40	0.080	8833426
F1 (C6-C10)	ug/L	<25	<25	<25	<25	<25	<25	25	20	8833426
F1 (C6-C10) - BTEX	ug/L	<25	<25	<25	<25	<25	<25	25	20	8833426
F2-F4 Hydrocarbons										
F2 (C10-C16 Hydrocarbons)	ug/L	<100	<100	<100	<100	<100	<100	100	50	8833643
F3 (C16-C34 Hydrocarbons)	ug/L	<200	<200	<200	<200	<200	<200	200	70	8833643
F4 (C34-C50 Hydrocarbons)	ug/L	<200	<200	<200	<200	<200	<200	200	50	8833643
Reached Baseline at C50	ug/L	Yes	Yes	Yes	Yes	Yes	Yes			8833643
Surrogate Recovery (%)										
1,4-Difluorobenzene	%	91	90	89	90	88	89			8833426
4-Bromofluorobenzene	%	108	105	106	102	106	108			8833426
D10-o-Xylene	%	92	90	89	89	88	86			8833426
D4-1,2-Dichloroethane	%	98	99	101	95	96	100			8833426
o-Terphenyl	%	95	96	94	93	94	96			8833643
RDL = Reportable Detection L									_	

QC Batch = Quality Control Batch

Site Location: RESOLUTE BAY LANDFILL

Sampler Initials: KC

RESULTS OF ANALYSES OF WATER

Bureau Veritas ID		WNL671				WNL672			
Sampling Date		2023/07/23 17:30				2023/07/23 15:30			
COC Number		n/a				n/a			
coc Number	UNITS	RBL-2	RDL	MDL	QC Batch	RBL-3	RDL	MDL	QC Batch
Inquagnica	1 0	NDE E			QC Date	11.02.0			QC Date
Inorganics	/1	0.0064	0.0045	0.0045	0044750	0.000	0 0045	0.0045	0044750
Phenois-4AAP	mg/L	0.0064	0.0015	0.0015	8841753	0.038	0.0015	0.0015	8841753
Calculated Parameters						T			
Anion Sum	me/L	7.10	N/A	N/A	8822383	3.94	N/A	N/A	8822383
Bicarb. Alkalinity (calc. as CaCO3)	mg/L	180	1.0	0.20	8822389	170	1.0	0.20	8822389
Carb. Alkalinity (calc. as CaCO3)	mg/L	1.1	1.0	0.20	8822389	1.0	1.0	0.20	8822389
Cation Sum	me/L	7.60	N/A	N/A	8822383	4.83	N/A	N/A	8822383
Hardness (CaCO3)	mg/L	300	1.0	1.0	8822385	200	1.0	1.0	8822385
Hydrox. Alkalinity (calc. as CaCO3)	mg/L	<1.0	1.0	N/A	8822389	<1.0	1.0	N/A	8822389
Ion Balance (% Difference)	%	3.35	N/A	N/A	8822382	10.1	N/A	N/A	8822382
Inorganics			•	•			•		
Total Ammonia-N	mg/L	1.9	0.050	0.0080	8828243	2.2	0.050	0.0080	8828243
Conductivity	umho/cm	690	1.0	0.20	8824108	410	1.0	0.20	8824108
рН	рН	7.83			8824099	7.81			8824099
Total Phosphorus	mg/L	0.26	0.004	0.002	8826856	0.23	0.004	0.002	8826856
Total Suspended Solids	mg/L	<10	10	2.0	8824642	12	10	2.0	8827102
Dissolved Sulphate (SO4)	mg/L	130	1.0	0.10	8823998	9.6	1.0	0.10	8823998
Alkalinity (Total as CaCO3)	mg/L	180	1.0	0.20	8824109	170	1.0	0.20	8824109
Dissolved Chloride (Cl-)	mg/L	26	1.0	0.30	8823994	11	1.0	0.30	8823994
Nitrite (N)	mg/L	<0.050	0.050	0.010	8823978	<0.010	0.010	0.0020	8824309
Nitrate (N)	mg/L	0.78	0.50	0.050	8823978	<0.10	0.10	0.010	8824309
Nitrate + Nitrite (N)	mg/L	0.81	0.50	0.050	8823978	<0.10	0.10	0.010	8824309
Petroleum Hydrocarbons		1				1			
Total Oil & Grease	mg/L	<0.50	0.50	0.10	8836996	<0.50	0.50	0.10	8836996
Total Oil & Grease Mineral/Synthetic	mg/L	<0.50	0.50	0.10	8837000	<0.50	0.50	0.10	8837000
RDL = Reportable Detection Limit	•	•	•	•		•	·		

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Site Location: RESOLUTE BAY LANDFILL

Sampler Initials: KC

RESULTS OF ANALYSES OF WATER

Bureau Veritas ID		WNL673				WNL674			
Sampling Data		2023/07/23				2023/07/24			
Sampling Date		16:30				13:00			
COC Number		n/a				n/a			
	UNITS	AEC1-GW1	RDL	MDL	QC Batch	RBL-4	RDL	MDL	QC Batch
Inorganics									
Phenols-4AAP	mg/L	0.30	0.030	0.030	8841754	<0.0015	0.0015	0.0015	8841753
Calculated Parameters	•								
Anion Sum	me/L	10.5	N/A	N/A	8822383	2.65	N/A	N/A	8822383
Bicarb. Alkalinity (calc. as CaCO3)	mg/L	410	1.0	0.20	8822389	91	1.0	0.20	8822389
Carb. Alkalinity (calc. as CaCO3)	mg/L	1.1	1.0	0.20	8822389	4.5	1.0	0.20	8822389
Cation Sum	me/L	12.5	N/A	N/A	8822383	3.00	N/A	N/A	8822383
Hardness (CaCO3)	mg/L	290	1.0	1.0	8822385	110	1.0	1.0	8822385
Hydrox. Alkalinity (calc. as CaCO3)	mg/L	<1.0	1.0	N/A	8822389	<1.0	1.0	N/A	8822389
Ion Balance (% Difference)	%	8.68	N/A	N/A	8822382	6.22	N/A	N/A	8822382
Inorganics	•		•						
Total Ammonia-N	mg/L	48	1.0	0.16	8828243	<0.050	0.050	0.0080	8828243
Conductivity	umho/cm	1100	1.0	0.20	8824320	270	1.0	0.20	8824320
рН	рН	7.46			8824318	8.72			8824318
Total Phosphorus	mg/L	3.3	0.004	0.002	8826856	0.040	0.004	0.002	8826856
Total Suspended Solids	mg/L	14	10	2.0	8824642	<10	10	2.0	8824642
Dissolved Sulphate (SO4)	mg/L	25	1.0	0.10	8823998	11	1.0	0.10	8823998
Alkalinity (Total as CaCO3)	mg/L	410	1.0	0.20	8824319	96	1.0	0.20	8824319
Dissolved Chloride (Cl-)	mg/L	61	1.0	0.30	8823994	18	1.0	0.30	8823994
Nitrite (N)	mg/L	0.014	0.010	0.0020	8824309	<0.010	0.010	0.0020	8824309
Nitrate (N)	mg/L	<0.10	0.10	0.010	8824309	<0.10	0.10	0.010	8824309
Nitrate + Nitrite (N)	mg/L	<0.10	0.10	0.010	8824309	<0.10	0.10	0.010	8824309
Petroleum Hydrocarbons									
Total Oil & Grease	mg/L	<0.50	0.50	0.10	8836996	<0.50	0.50	0.10	8836996
Total Oil & Grease Mineral/Synthetic	mg/L	<0.50	0.50	0.10	8837000	<0.50	0.50	0.10	8837000
RDL = Reportable Detection Limit									

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Site Location: RESOLUTE BAY LANDFILL

Sampler Initials: KC

RESULTS OF ANALYSES OF WATER

Bureau Veritas ID		WNL675		WNL676		WNL677			
Sampling Data		2023/07/24		2023/07/24		2023/07/24			
Sampling Date		11:50		11:15		10:30			
COC Number		n/a		n/a		n/a			
	UNITS	RBL-8	QC Batch	RBL-13	QC Batch	RBL-16	RDL	MDL	QC Batch
Inorganics									
Phenols-4AAP	mg/L	<0.0015	8841753	<0.0015	8841754	<0.0015	0.0015	0.0015	8841754
Calculated Parameters									
Anion Sum	me/L	3.71	8822383	2.10	8822383	2.05	N/A	N/A	8822383
Bicarb. Alkalinity (calc. as CaCO3)	mg/L	120	8822389	80	8822389	79	1.0	0.20	8822389
Carb. Alkalinity (calc. as CaCO3)	mg/L	2.1	8822389	1.1	8822389	<1.0	1.0	0.20	8822389
Cation Sum	me/L	3.82	8822383	2.22	8822383	2.19	N/A	N/A	8822383
Hardness (CaCO3)	mg/L	150	8822385	99	8822385	98	1.0	1.0	8822385
Hydrox. Alkalinity (calc. as CaCO3)	mg/L	<1.0	8822389	<1.0	8822389	<1.0	1.0	N/A	8822389
Ion Balance (% Difference)	%	1.47	8822382	NC	8822382	NC	N/A	N/A	8822382
Inorganics	•		•		•		•	•	
Total Ammonia-N	mg/L	<0.050	8828243	<0.050	8828243	<0.050	0.050	0.0080	8828243
Conductivity	umho/cm	360	8824108	210	8824320	210	1.0	0.20	8824108
рН	рН	8.29	8824099	8.15	8824318	8.12			8824099
Total Phosphorus	mg/L	0.010	8826856	<0.004	8826856	<0.004	0.004	0.002	8826856
Total Suspended Solids	mg/L	<10	8827102	15	8824642	<10	10	2.0	8824642
Dissolved Sulphate (SO4)	mg/L	11	8823998	16	8823998	16	1.0	0.10	8823998
Alkalinity (Total as CaCO3)	mg/L	120	8824109	81	8824319	80	1.0	0.20	8824109
Dissolved Chloride (Cl-)	mg/L	39	8823994	4.2	8823994	3.9	1.0	0.30	8823994
Nitrite (N)	mg/L	<0.010	8824309	<0.010	8824309	<0.010	0.010	0.0020	8824309
Nitrate (N)	mg/L	<0.10	8824309	0.12	8824309	0.12	0.10	0.010	8824309
Nitrate + Nitrite (N)	mg/L	<0.10	8824309	0.12	8824309	0.12	0.10	0.010	8824309
Petroleum Hydrocarbons									
Total Oil & Grease	mg/L	<0.50	8836996	<0.50	8836996	<0.50	0.50	0.10	8836996
Total Oil & Grease Mineral/Synthetic	mg/L	<0.50	8837000	<0.50	8837000	<0.50	0.50	0.10	8837000
DDI Dementable Detection Limit									

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Site Location: RESOLUTE BAY LANDFILL

Sampler Initials: KC

RESULTS OF ANALYSES OF WATER

Bureau Veritas ID		WNL678				WNL678			
Samulina Data		2023/07/23				2023/07/23			
Sampling Date		15:50				15:50			
COC Number		n/a				n/a			
	UNITS	RBL-DUPA	RDL	MDL	QC Batch	RBL-DUPA Lab-Dup	RDL	MDL	QC Batch
Inorganics									
Phenols-4AAP	mg/L	0.038	0.0015	0.0015	8841753				
Calculated Parameters			•		•				
Anion Sum	me/L	3.84	N/A	N/A	8822383				
Bicarb. Alkalinity (calc. as CaCO3)	mg/L	170	1.0	0.20	8822389				
Carb. Alkalinity (calc. as CaCO3)	mg/L	1.0	1.0	0.20	8822389				
Cation Sum	me/L	4.40	N/A	N/A	8822383				
Hardness (CaCO3)	mg/L	180	1.0	1.0	8822385				
Hydrox. Alkalinity (calc. as CaCO3)	mg/L	<1.0	1.0	N/A	8822389				
Ion Balance (% Difference)	%	6.87	N/A	N/A	8822382				
Inorganics	•		ē		•			•	
Total Ammonia-N	mg/L	2.1	0.050	0.0080	8828243				
Conductivity	umho/cm	410	1.0	0.20	8824108				
рН	рН	7.80			8824099				
Total Phosphorus	mg/L	0.22	0.004	0.002	8826856				
Total Suspended Solids	mg/L	11	10	2.0	8824642				
Dissolved Sulphate (SO4)	mg/L	6.7	1.0	0.10	8823998				
Alkalinity (Total as CaCO3)	mg/L	170	1.0	0.20	8824109				
Dissolved Chloride (Cl-)	mg/L	7.7	1.0	0.30	8823994				
Nitrite (N)	mg/L	<0.010	0.010	0.0020	8824309	<0.010	0.010	0.0020	8824309
Nitrate (N)	mg/L	<0.10	0.10	0.010	8824309	<0.10	0.10	0.010	8824309
Nitrate + Nitrite (N)	mg/L	<0.10	0.10	0.010	8824309	<0.10	0.10	0.010	8824309
Petroleum Hydrocarbons									
Total Oil & Grease	mg/L	<0.50	0.50	0.10	8836996				
Total Oil & Grease Mineral/Synthetic	mg/L	<0.50	0.50	0.10	8837000				

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

Site Location: RESOLUTE BAY LANDFILL

Sampler Initials: KC

RESULTS OF ANALYSES OF WATER

Bureau Veritas ID		WNL679		WNL680			
Sampling Date		2023/07/24		2023/07/24			
Janipinig Date		11:20		11:55			
COC Number		n/a		n/a			
	UNITS	RBL-DUPB	QC Batch	RBL-DUPC	RDL	MDL	QC Batch
Inorganics							
Phenols-4AAP	mg/L	<0.0015	8841754	<0.0015	0.0015	0.0015	8841753
Calculated Parameters					_		
Anion Sum	me/L	3.67	8822383	1.94	N/A	N/A	8822383
Bicarb. Alkalinity (calc. as CaCO3)	mg/L	110	8822389	78	1.0	0.20	8822389
Carb. Alkalinity (calc. as CaCO3)	mg/L	2.1	8822389	<1.0	1.0	0.20	8822389
Cation Sum	me/L	3.87	8822383	2.23	N/A	N/A	8822383
Hardness (CaCO3)	mg/L	140	8822385	99	1.0	1.0	8822385
Hydrox. Alkalinity (calc. as CaCO3)	mg/L	<1.0	8822389	<1.0	1.0	N/A	8822389
Ion Balance (% Difference)	%	2.67	8822382	NC	N/A	N/A	8822382
Inorganics	•		•		•	•	
Total Ammonia-N	mg/L	<0.050	8828243	<0.050	0.050	0.0080	8828243
Conductivity	umho/cm	370	8824108	210	1.0	0.20	8824108
рН	рН	8.29	8824099	8.08			8824099
Total Phosphorus	mg/L	0.009	8826856	<0.004	0.004	0.002	8826856
Total Suspended Solids	mg/L	<10	8824642	<10	10	2.0	8824642
Dissolved Sulphate (SO4)	mg/L	11	8823998	11	1.0	0.10	8823998
Alkalinity (Total as CaCO3)	mg/L	120	8824109	79	1.0	0.20	8824109
Dissolved Chloride (Cl-)	mg/L	39	8823994	4.6	1.0	0.30	8823994
Nitrite (N)	mg/L	<0.010	8823978	<0.010	0.010	0.0020	8823978
Nitrate (N)	mg/L	<0.10	8823978	0.12	0.10	0.010	8823978
Nitrate + Nitrite (N)	mg/L	<0.10	8823978	0.12	0.10	0.010	8823978
Petroleum Hydrocarbons					_		
Total Oil & Grease	mg/L	<0.50	8836996	<0.50	0.50	0.10	8836996
Total Oil & Grease Mineral/Synthetic	mg/L	<0.50	8837000	<0.50	0.50	0.10	8837000
RDL = Reportable Detection Limit					•	•	
QC Batch = Quality Control Batch							
NI/A Nick Amelicable							

Site Location: RESOLUTE BAY LANDFILL

Sampler Initials: KC

ELEMENTS BY ATOMIC SPECTROSCOPY (WATER)

Bureau Veritas ID		WNL671				WNL671			
Sampling Date		2023/07/23				2023/07/23			
Jamping Date		17:30				17:30			
COC Number		n/a				n/a			
	UNITS	RBL-2	RDL	MDL	QC Batch	RBL-2 Lab-Dup	RDL	MDL	QC Batch
Metals									
Chromium (VI)	ug/L	<0.50	0.50	0.30	8825340	<0.50	0.50	0.30	8825340
Mercury (Hg)	mg/L	<0.00010	0.00010	0.000050	8827927				
Dissolved Aluminum (Al)	ug/L	<4.9	4.9	4.9	8843927				
Total Aluminum (Al)	ug/L	6.7	4.9	2.0	8828011				
Dissolved Antimony (Sb)	ug/L	1.8	0.50	N/A	8843927				
Total Antimony (Sb)	ug/L	1.8	0.50	0.30	8828011				
Dissolved Arsenic (As)	ug/L	1.3	1.0	N/A	8843927				
Total Arsenic (As)	ug/L	1.3	1.0	0.50	8828011				
Dissolved Barium (Ba)	ug/L	39	2.0	2.0	8843927				
Total Barium (Ba)	ug/L	43	2.0	0.50	8828011				
Dissolved Beryllium (Be)	ug/L	<0.40	0.40	0.40	8843927				
Total Beryllium (Be)	ug/L	<0.40	0.40	0.10	8828011				
Dissolved Bismuth (Bi)	ug/L	<1.0	1.0	N/A	8843927				
Total Bismuth (Bi)	ug/L	<1.0	1.0	0.070	8828011				
Dissolved Boron (B)	ug/L	130	10	N/A	8843927				
Total Boron (B)	ug/L	130	10	0.30	8828011				
Dissolved Cadmium (Cd)	ug/L	<0.090	0.090	0.081	8843927				
Total Cadmium (Cd)	ug/L	<0.090	0.090	0.090	8828011				
Dissolved Calcium (Ca)	ug/L	98000	200	N/A	8843927				
Total Calcium (Ca)	ug/L	94000	200	50	8828011				
Dissolved Chromium (Cr)	ug/L	<5.0	5.0	N/A	8843927				
Total Chromium (Cr)	ug/L	<5.0	5.0	5.0	8828011				
Dissolved Cobalt (Co)	ug/L	<0.50	0.50	N/A	8843927				
Total Cobalt (Co)	ug/L	0.51	0.50	0.10	8828011				
Dissolved Copper (Cu)	ug/L	1.7	0.90	0.90	8843927				
Total Copper (Cu)	ug/L	2.1	0.90	0.50	8828011				
Dissolved Iron (Fe)	ug/L	<100	100	N/A	8843927				
Total Iron (Fe)	ug/L	<100	100	10	8828011				
Dissolved Lead (Pb)	ug/L	<0.50	0.50	N/A	8843927				
RDL = Reportable Detection	Limit		•	•	•				•

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

Site Location: RESOLUTE BAY LANDFILL

Sampler Initials: KC

ELEMENTS BY ATOMIC SPECTROSCOPY (WATER)

Bureau Veritas ID		WNL671				WNL671			
Campling Data		2023/07/23				2023/07/23			
Sampling Date		17:30				17:30			
COC Number		n/a				n/a			
	UNITS	RBL-2	RDL	MDL	QC Batch	RBL-2 Lab-Dup	RDL	MDL	QC Batch
Total Lead (Pb)	ug/L	0.52	0.50	0.10	8828011				
Dissolved Lithium (Li)	ug/L	6.0	5.0	N/A	8843927				
Total Lithium (Li)	ug/L	6.1	5.0	0.50	8828011				
Dissolved Magnesium (Mg)	ug/L	14000	50	N/A	8843927				
Total Magnesium (Mg)	ug/L	14000	50	20	8828011				
Dissolved Manganese (Mn)	ug/L	<2.0	2.0	N/A	8843927				
Total Manganese (Mn)	ug/L	210	2.0	0.50	8828011				
Dissolved Molybdenum (Mo)	ug/L	2.9	0.50	0.50	8843927				
Total Molybdenum (Mo)	ug/L	2.9	0.50	0.20	8828011				
Dissolved Nickel (Ni)	ug/L	1.6	1.0	N/A	8843927				
Total Nickel (Ni)	ug/L	1.9	1.0	0.50	8828011				
Dissolved Phosphorus (P)	ug/L	270	100	N/A	8843927				
Dissolved Potassium (K)	ug/L	13000	200	N/A	8843927				
Total Potassium (K)	ug/L	13000	200	50	8828011				
Dissolved Selenium (Se)	ug/L	<2.0	2.0	N/A	8843927				
Total Selenium (Se)	ug/L	<2.0	2.0	0.50	8828011				
Dissolved Silicon (Si)	ug/L	1300	50	N/A	8843927				
Total Silicon (Si)	ug/L	1300	50	30	8828011				
Dissolved Silver (Ag)	ug/L	<0.090	0.090	0.081	8843927				
Total Silver (Ag)	ug/L	<0.090	0.090	0.070	8828011				
Dissolved Sodium (Na)	ug/L	26000	100	N/A	8843927				
Total Sodium (Na)	ug/L	24000	100	50	8828011				
Dissolved Strontium (Sr)	ug/L	380	1.0	N/A	8843927				
Total Strontium (Sr)	ug/L	360	1.0	0.50	8828011				
Dissolved Tellurium (Te)	ug/L	<1.0	1.0	N/A	8843927				
Total Tellurium (Te)	ug/L	<1.0	1.0	0.70	8828011				
Dissolved Thallium (TI)	ug/L	<0.050	0.050	N/A	8843927				
Total Thallium (TI)	ug/L	<0.050	0.050	0.020	8828011				
Dissolved Tin (Sn)	ug/L	<1.0	1.0	N/A	8843927				
Total Tin (Sn)	ug/L	<1.0	1.0	0.50	8828011				

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

Site Location: RESOLUTE BAY LANDFILL

Sampler Initials: KC

ELEMENTS BY ATOMIC SPECTROSCOPY (WATER)

Bureau Veritas ID		WNL671				WNL671			
Sampling Date		2023/07/23 17:30				2023/07/23 17:30			
COC Number		n/a				n/a			
	UNITS	RBL-2	RDL	MDL	QC Batch	RBL-2 Lab-Dup	RDL	MDL	QC Batch
Dissolved Titanium (Ti)	ug/L	<5.0	5.0	N/A	8843927				
Total Titanium (Ti)	ug/L	<5.0	5.0	4.0	8828011				
Dissolved Tungsten (W)	ug/L	<1.0	1.0	N/A	8843927				
Total Tungsten (W)	ug/L	<1.0	1.0	0.50	8828011				
Dissolved Uranium (U)	ug/L	0.28	0.10	N/A	8843927				
Total Uranium (U)	ug/L	0.31	0.10	0.050	8828011				
Dissolved Vanadium (V)	ug/L	<0.50	0.50	0.50	8843927				
Total Vanadium (V)	ug/L	<0.50	0.50	0.40	8828011				
Dissolved Zinc (Zn)	ug/L	13	5.0	N/A	8843927				
Total Zinc (Zn)	ug/L	25	5.0	3.0	8828011				
Dissolved Zirconium (Zr)	ug/L	<1.0	1.0	N/A	8843927				
Total Zirconium (Zr)	ug/L	<1.0	1.0	0.50	8828011				

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

Site Location: RESOLUTE BAY LANDFILL

Sampler Initials: KC

ELEMENTS BY ATOMIC SPECTROSCOPY (WATER)

		WNL672				WNL673			
Sampling Date		2023/07/23				2023/07/23			
Sampling Date		15:30				16:30			
COC Number		n/a				n/a			
	UNITS	RBL-3	RDL	MDL	QC Batch	AEC1-GW1	RDL	MDL	QC Batch
Metals									
Chromium (VI)	ug/L	<0.50	0.50	0.30	8825340	<0.50	0.50	0.30	8825340
Mercury (Hg)	mg/L	<0.00010	0.00010	0.000050	8825734				
Dissolved Aluminum (AI)	ug/L	<4.9	4.9	4.9	8843927	<4.9	4.9	4.9	8843927
Total Aluminum (Al)	ug/L	9.8	4.9	2.0	8828011	8.0	4.9	2.0	8828011
Dissolved Antimony (Sb)	ug/L	<0.50	0.50	N/A	8843927	<0.50	0.50	N/A	8843927
Total Antimony (Sb)	ug/L	<0.50	0.50	0.30	8828011	<0.50	0.50	0.30	8828011
Dissolved Arsenic (As)	ug/L	<1.0	1.0	N/A	8843927	7.6	1.0	N/A	8843927
Total Arsenic (As)	ug/L	1.5	1.0	0.50	8828011	8.8	1.0	0.50	8828011
Dissolved Barium (Ba)	ug/L	81	2.0	2.0	8843927	4.5	2.0	2.0	8843927
Total Barium (Ba)	ug/L	96	2.0	0.50	8828011	12	2.0	0.50	8828011
Dissolved Beryllium (Be)	ug/L	<0.40	0.40	0.40	8843927	<0.40	0.40	0.40	8843927
Total Beryllium (Be)	ug/L	<0.40	0.40	0.10	8828011	<0.40	0.40	0.10	8828011
Dissolved Bismuth (Bi)	ug/L	<1.0	1.0	N/A	8843927	<1.0	1.0	N/A	8843927
Total Bismuth (Bi)	ug/L	<1.0	1.0	0.070	8828011	<1.0	1.0	0.070	8828011
Dissolved Boron (B)	ug/L	77	10	N/A	8843927	400	10	N/A	8843927
Total Boron (B)	ug/L	81	10	0.30	8828011	430	10	0.30	8828011
Dissolved Cadmium (Cd)	ug/L	<0.090	0.090	0.081	8843927	<0.090	0.090	0.081	8843927
Total Cadmium (Cd)	ug/L	0.17	0.090	0.090	8828011	<0.090	0.090	0.090	8828011
Dissolved Calcium (Ca)	ug/L	56000	200	N/A	8843927	92000	200	N/A	8843927
Total Calcium (Ca)	ug/L	54000	200	50	8828011	86000	200	50	8828011
Dissolved Chromium (Cr)	ug/L	<5.0	5.0	N/A	8843927	<5.0	5.0	N/A	8843927
Total Chromium (Cr)	ug/L	<5.0	5.0	5.0	8828011	<5.0	5.0	5.0	8828011
Dissolved Cobalt (Co)	ug/L	<0.50	0.50	N/A	8843927	9.2	0.50	N/A	8843927
Total Cobalt (Co)	ug/L	1.3	0.50	0.10	8828011	8.5	0.50	0.10	8828011
Dissolved Copper (Cu)	ug/L	2.2	0.90	0.90	8843927	1.2	0.90	0.90	8843927
Total Copper (Cu)	ug/L	2.5	0.90	0.50	8828011	2.8	0.90	0.50	8828011
Dissolved Iron (Fe)	ug/L	<100	100	N/A	8843927	4400	100	N/A	8843927
Total Iron (Fe)	ug/L	910	100	10	8828011	7500	100	10	8828011
Dissolved Lead (Pb)	ug/L	<0.50	0.50	N/A	8843927	<0.50	0.50	N/A	8843927
Total Lead (Pb)	ug/L	2.0	0.50	0.10	8828011	1.4	0.50	0.10	8828011

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Site Location: RESOLUTE BAY LANDFILL

Sampler Initials: KC

ELEMENTS BY ATOMIC SPECTROSCOPY (WATER)

Bureau Veritas ID		WNL672				WNL673			
Compling Date		2023/07/23				2023/07/23			
Sampling Date		15:30				16:30			
COC Number		n/a				n/a			
	UNITS	RBL-3	RDL	MDL	QC Batch	AEC1-GW1	RDL	MDL	QC Batch
Dissolved Lithium (Li)	ug/L	<5.0	5.0	N/A	8843927	<5.0	5.0	N/A	8843927
Total Lithium (Li)	ug/L	<5.0	5.0	0.50	8828011	<5.0	5.0	0.50	8828011
Dissolved Magnesium (Mg)	ug/L	14000	50	N/A	8843927	14000	50	N/A	8843927
Total Magnesium (Mg)	ug/L	13000	50	20	8828011	13000	50	20	8828011
Dissolved Manganese (Mn)	ug/L	<2.0	2.0	N/A	8843927	470	2.0	N/A	8843927
Total Manganese (Mn)	ug/L	430	2.0	0.50	8828011	440	2.0	0.50	8828011
Dissolved Molybdenum (Mo)	ug/L	2.8	0.50	0.50	8843927	2.4	0.50	0.50	8843927
Total Molybdenum (Mo)	ug/L	2.8	0.50	0.20	8828011	2.7	0.50	0.20	8828011
Dissolved Nickel (Ni)	ug/L	1.4	1.0	N/A	8843927	17	1.0	N/A	8843927
Total Nickel (Ni)	ug/L	1.9	1.0	0.50	8828011	16	1.0	0.50	8828011
Dissolved Phosphorus (P)	ug/L	<100	100	N/A	8843927	1600	100	N/A	8843927
Dissolved Potassium (K)	ug/L	5700	200	N/A	8843927	24000	200	N/A	8843927
Total Potassium (K)	ug/L	5000	200	50	8828011	22000	200	50	8828011
Dissolved Selenium (Se)	ug/L	<2.0	2.0	N/A	8843927	<2.0	2.0	N/A	8843927
Total Selenium (Se)	ug/L	<2.0	2.0	0.50	8828011	<2.0	2.0	0.50	8828011
Dissolved Silicon (Si)	ug/L	880	50	N/A	8843927	2500	50	N/A	8843927
Total Silicon (Si)	ug/L	970	50	30	8828011	2400	50	30	8828011
Dissolved Silver (Ag)	ug/L	<0.090	0.090	0.081	8843927	<0.090	0.090	0.081	8843927
Total Silver (Ag)	ug/L	<0.090	0.090	0.070	8828011	<0.090	0.090	0.070	8828011
Dissolved Sodium (Na)	ug/L	14000	100	N/A	8843927	57000	100	N/A	8843927
Total Sodium (Na)	ug/L	12000	100	50	8828011	51000	100	50	8828011
Dissolved Strontium (Sr)	ug/L	150	1.0	N/A	8843927	200	1.0	N/A	8843927
Total Strontium (Sr)	ug/L	140	1.0	0.50	8828011	180	1.0	0.50	8828011
Dissolved Tellurium (Te)	ug/L	<1.0	1.0	N/A	8843927	<1.0	1.0	N/A	8843927
Total Tellurium (Te)	ug/L	<1.0	1.0	0.70	8828011	<1.0	1.0	0.70	8828011
Dissolved Thallium (TI)	ug/L	<0.050	0.050	N/A	8843927	<0.050	0.050	N/A	8843927
Total Thallium (TI)	ug/L	<0.050	0.050	0.020	8828011	<0.050	0.050	0.020	8828011
Dissolved Tin (Sn)	ug/L	<1.0	1.0	N/A	8843927	<1.0	1.0	N/A	8843927
Total Tin (Sn)	ug/L	<1.0	1.0	0.50	8828011	<1.0	1.0	0.50	8828011
Dissolved Titanium (Ti)	ug/L	<5.0	5.0	N/A	8843927	<5.0	5.0	N/A	8843927
Total Titanium (Ti)	ug/L	<5.0	5.0	4.0	8828011	<5.0	5.0	4.0	8828011

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Site Location: RESOLUTE BAY LANDFILL

Sampler Initials: KC

ELEMENTS BY ATOMIC SPECTROSCOPY (WATER)

Bureau Veritas ID		WNL672				WNL673			
Sampling Date		2023/07/23 15:30				2023/07/23 16:30			
COC Number		n/a				n/a			
	UNITS	RBL-3	RDL	MDL	QC Batch	AEC1-GW1	RDL	MDL	QC Batch
Dissolved Tungsten (W)	ug/L	<1.0	1.0	N/A	8843927	<1.0	1.0	N/A	8843927
Total Tungsten (W)	ug/L	<1.0	1.0	0.50	8828011	<1.0	1.0	0.50	8828011
Dissolved Uranium (U)	ug/L	0.36	0.10	N/A	8843927	0.21	0.10	N/A	8843927
Total Uranium (U)	ug/L	0.33	0.10	0.050	8828011	0.21	0.10	0.050	8828011
Dissolved Vanadium (V)	ug/L	<0.50	0.50	0.50	8843927	2.0	0.50	0.50	8843927
Total Vanadium (V)	ug/L	<0.50	0.50	0.40	8828011	2.4	0.50	0.40	8828011
Dissolved Zinc (Zn)	ug/L	<5.0	5.0	N/A	8843927	<5.0	5.0	N/A	8843927
Total Zinc (Zn)	ug/L	15	5.0	3.0	8828011	6.7	5.0	3.0	8828011
Dissolved Zirconium (Zr)	ug/L	<1.0	1.0	N/A	8843927	<1.0	1.0	N/A	8843927
Total Zirconium (Zr)	ug/L	<1.0	1.0	0.50	8828011	<1.0	1.0	0.50	8828011

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Site Location: RESOLUTE BAY LANDFILL

Sampler Initials: KC

ELEMENTS BY ATOMIC SPECTROSCOPY (WATER)

Bureau Veritas ID		WNL674		WNL675				WNL675			
Campling Date		2023/07/24		2023/07/24				2023/07/24			
Sampling Date		13:00		11:50				11:50			
COC Number		n/a		n/a				n/a			
	UNITS	RBL-4	QC Batch	RBL-8	RDL	MDL	QC Batch	RBL-8 Lab-Dup	RDL	MDL	QC Batch
Metals											
Chromium (VI)	ug/L	1.6	8825340	0.51	0.50	0.30	8825340				
Mercury (Hg)	mg/L	<0.00010	8825734	<0.00010	0.00010	0.000050	8827927				
Dissolved Aluminum (AI)	ug/L	6.5	8843927	<4.9	4.9	4.9	8843936	<4.9	4.9	4.9	8843936
Total Aluminum (AI)	ug/L	23	8828011	50	4.9	2.0	8828011				
Dissolved Antimony (Sb)	ug/L	<0.50	8843927	<0.50	0.50	N/A	8843936	<0.50	0.50	N/A	8843936
Total Antimony (Sb)	ug/L	<0.50	8828011	<0.50	0.50	0.30	8828011				
Dissolved Arsenic (As)	ug/L	<1.0	8843927	<1.0	1.0	N/A	8843936	<1.0	1.0	N/A	8843936
Total Arsenic (As)	ug/L	<1.0	8828011	<1.0	1.0	0.50	8828011				
Dissolved Barium (Ba)	ug/L	72	8843927	56	2.0	2.0	8843936	54	2.0	2.0	8843936
Total Barium (Ba)	ug/L	84	8828011	56	2.0	0.50	8828011				
Dissolved Beryllium (Be)	ug/L	<0.40	8843927	<0.40	0.40	0.40	8843936	<0.40	0.40	0.40	8843936
Total Beryllium (Be)	ug/L	<0.40	8828011	<0.40	0.40	0.10	8828011				
Dissolved Bismuth (Bi)	ug/L	<1.0	8843927	<1.0	1.0	N/A	8843936	<1.0	1.0	N/A	8843936
Total Bismuth (Bi)	ug/L	<1.0	8828011	<1.0	1.0	0.070	8828011				
Dissolved Boron (B)	ug/L	45	8843927	38	10	N/A	8843936	37	10	N/A	8843936
Total Boron (B)	ug/L	45	8828011	40	10	0.30	8828011				
Dissolved Cadmium (Cd)	ug/L	<0.090	8843927	<0.090	0.090	0.081	8843936	<0.090	0.090	0.081	8843936
Total Cadmium (Cd)	ug/L	0.091	8828011	<0.090	0.090	0.090	8828011				
Dissolved Calcium (Ca)	ug/L	29000	8843927	35000	200	N/A	8843936	35000	200	N/A	8843936
Total Calcium (Ca)	ug/L	33000	8828011	37000	200	50	8828011				
Dissolved Chromium (Cr)	ug/L	<5.0	8843927	<5.0	5.0	N/A	8843936	<5.0	5.0	N/A	8843936
Total Chromium (Cr)	ug/L	<5.0	8828011	<5.0	5.0	5.0	8828011				
Dissolved Cobalt (Co)	ug/L	<0.50	8843927	<0.50	0.50	N/A	8843936	<0.50	0.50	N/A	8843936
Total Cobalt (Co)	ug/L	<0.50	8828011	<0.50	0.50	0.10	8828011				
Dissolved Copper (Cu)	ug/L	2.8	8843927	<0.90	0.90	0.90	8843936	<0.90	0.90	0.90	8843936
Total Copper (Cu)	ug/L	2.9	8828011	<0.90	0.90	0.50	8828011				
Dissolved Iron (Fe)	ug/L	<100	8843927	<100	100	N/A	8843936	<100	100	N/A	8843936
Total Iron (Fe)	ug/L	<100	8828011	<100	100	10	8828011				
Dissolved Lead (Pb)	ug/L	<0.50	8843927	<0.50	0.50	N/A	8843936	<0.50	0.50	N/A	8843936
DDI - Panartable Detection	1 1 14										

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

Site Location: RESOLUTE BAY LANDFILL

Sampler Initials: KC

ELEMENTS BY ATOMIC SPECTROSCOPY (WATER)

Total Lead (Pb) Dissolved Lithium (Li) Total Lithium (Li) Dissolved Magnesium (Mg) Total Magnesium (Mg) Dissolved Manganese (Mn) Total Manganese (Mn) Total Manganese (Mn) Dissolved Molybdenum (Mo) Total Molybdenum (Mo)	ug/L ug/L ug/L ug/L ug/L ug/L ug/L	2023/07/24 13:00 n/a RBL-4 1.3 <5.0 <5.0 10000 10000	QC Batch 8828011 8843927 8828011 8843927	2023/07/24 11:50 n/a RBL-8 <0.50 <5.0	RDL 0.50	MDL	QC Batch	2023/07/24 11:50 n/a RBL-8 Lab-Dup	RDL	MDL	QC Batch
Total Lead (Pb) Dissolved Lithium (Li) Total Lithium (Li) Dissolved Magnesium (Mg) Total Magnesium (Mg) Dissolved Manganese (Mn) Total Manganese (Mn) Dissolved Molybdenum (Mo)	ug/L ug/L ug/L ug/L ug/L ug/L ug/L	n/a RBL-4 1.3 <5.0 <5.0 10000 10000	8828011 8843927 8828011 8843927	n/a RBL-8 <0.50 <5.0			QC Batch	n/a RBL-8	RDL	MDL	QC Batch
Total Lead (Pb) Dissolved Lithium (Li) Total Lithium (Li) Dissolved Magnesium (Mg) Total Magnesium (Mg) Dissolved Manganese (Mn) Total Manganese (Mn) Dissolved Molybdenum (Mo)	ug/L ug/L ug/L ug/L ug/L ug/L ug/L	RBL-4 1.3 <5.0 <5.0 10000 10000	8828011 8843927 8828011 8843927	RBL-8 <0.50 <5.0			QC Batch	RBL-8	RDL	MDL	QC Batch
Dissolved Lithium (Li) Total Lithium (Li) Dissolved Magnesium (Mg) Total Magnesium (Mg) Dissolved Manganese (Mn) Total Manganese (Mn) Dissolved Molybdenum (Mo)	ug/L ug/L ug/L ug/L ug/L ug/L ug/L	1.3 <5.0 <5.0 10000	8828011 8843927 8828011 8843927	<0.50 <5.0			QC Batch		RDL	MDL	QC Batch
Dissolved Lithium (Li) Total Lithium (Li) Dissolved Magnesium (Mg) Total Magnesium (Mg) Dissolved Manganese (Mn) Total Manganese (Mn) Dissolved Molybdenum (Mo)	ug/L ug/L ug/L ug/L ug/L ug/L	<5.0 <5.0 10000 10000	8843927 8828011 8843927	<5.0	0.50						<u> </u>
Total Lithium (Li) Dissolved Magnesium (Mg) Total Magnesium (Mg) Dissolved Manganese (Mn) Total Manganese (Mn) Dissolved Molybdenum (Mo)	ug/L ug/L ug/L ug/L	<5.0 10000 10000	8828011 8843927			0.10	8828011				
Dissolved Magnesium (Mg) Total Magnesium (Mg) Dissolved Manganese (Mn) Total Manganese (Mn) Dissolved Molybdenum (Mo)	ug/L ug/L ug/L ug/L	10000 10000	8843927	4F 0	5.0	N/A	8843936	<5.0	5.0	N/A	8843936
Total Magnesium (Mg) Dissolved Manganese (Mn) Total Manganese (Mn) Dissolved Molybdenum (Mo)	ug/L ug/L ug/L	10000		<5.0	5.0	0.50	8828011				
Dissolved Manganese (Mn) Total Manganese (Mn) Dissolved Molybdenum (Mo)	ug/L ug/L		00055:	14000	50	N/A	8843936	13000	50	N/A	8843936
Total Manganese (Mn) Dissolved Molybdenum (Mo)	ug/L	<2.0	8828011	14000	50	20	8828011				
Dissolved Molybdenum (Mo)			8843927	<2.0	2.0	N/A	8843936	<2.0	2.0	N/A	8843936
	ug/L	3.7	8828011	2.6	2.0	0.50	8828011				
Total Molybdenum (Mo)		0.89	8843927	0.54	0.50	0.50	8843936	0.56	0.50	0.50	8843936
	ug/L	0.74	8828011	0.53	0.50	0.20	8828011				
Dissolved Nickel (Ni)	ug/L	<1.0	8843927	<1.0	1.0	N/A	8843936	<1.0	1.0	N/A	8843936
Total Nickel (Ni)	ug/L	<1.0	8828011	<1.0	1.0	0.50	8828011				
Dissolved Phosphorus (P)	ug/L	<100	8843927	<100	100	N/A	8843936	<100	100	N/A	8843936
Dissolved Potassium (K)	ug/L	1400	8843927	1400	200	N/A	8843936	1400	200	N/A	8843936
Total Potassium (K)	ug/L	1100	8828011	1500	200	50	8828011				
Dissolved Selenium (Se)	ug/L	<2.0	8843927	<2.0	2.0	N/A	8843936	<2.0	2.0	N/A	8843936
Total Selenium (Se)	ug/L	<2.0	8828011	<2.0	2.0	0.50	8828011				
Dissolved Silicon (Si)	ug/L	240	8843927	200	50	N/A	8843936	190	50	N/A	8843936
Total Silicon (Si)	ug/L	360	8828011	290	50	30	8828011				
Dissolved Silver (Ag)	ug/L	<0.090	8843927	<0.090	0.090	0.081	8843936	<0.090	0.090	0.081	8843936
Total Silver (Ag)	ug/L	<0.090	8828011	<0.090	0.090	0.070	8828011				
Dissolved Sodium (Na)	ug/L	15000	8843927	20000	100	N/A	8843936	21000	100	N/A	8843936
Total Sodium (Na)	ug/L	15000	8828011	21000	100	50	8828011				
Dissolved Strontium (Sr)	ug/L	87	8843927	170	1.0	N/A	8843936	160	1.0	N/A	8843936
Total Strontium (Sr)	ug/L	88	8828011	150	1.0	0.50	8828011				
Dissolved Tellurium (Te)	ug/L	<1.0	8843927	<1.0	1.0	N/A	8843936	<1.0	1.0	N/A	8843936
Total Tellurium (Te)	ug/L	<1.0	8828011	<1.0	1.0	0.70	8828011				
Dissolved Thallium (TI)	ug/L	<0.050	8843927	<0.050	0.050	N/A	8843936	<0.050	0.050	N/A	8843936
Total Thallium (TI)	ug/L	<0.050	8828011	<0.050	0.050	0.020	8828011				
Dissolved Tin (Sn)	ug/L	<1.0	8843927	<1.0	1.0	N/A	8843936	<1.0	1.0	N/A	8843936
Total Tin (Sn)	ug/L	<1.0	8828011	<1.0	1.0	0.50	8828011				

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

Site Location: RESOLUTE BAY LANDFILL

Sampler Initials: KC

ELEMENTS BY ATOMIC SPECTROSCOPY (WATER)

Bureau Veritas ID		WNL674		WNL675				WNL675			
Sampling Date		2023/07/24		2023/07/24				2023/07/24			
Sampling Date		13:00		11:50				11:50			
COC Number		n/a		n/a				n/a			
	UNITS	RBL-4	QC Batch	RBL-8	RDL	MDL	QC Batch	RBL-8 Lab-Dup	RDL	MDL	QC Batch
Dissolved Titanium (Ti)	ug/L	<5.0	8843927	<5.0	5.0	N/A	8843936	<5.0	5.0	N/A	8843936
Total Titanium (Ti)	ug/L	<5.0	8828011	<5.0	5.0	4.0	8828011				
Dissolved Tungsten (W)	ug/L	<1.0	8843927	<1.0	1.0	N/A	8843936	<1.0	1.0	N/A	8843936
Total Tungsten (W)	ug/L	<1.0	8828011	<1.0	1.0	0.50	8828011				
Dissolved Uranium (U)	ug/L	0.18	8843927	0.21	0.10	N/A	8843936	0.20	0.10	N/A	8843936
Total Uranium (U)	ug/L	0.17	8828011	0.17	0.10	0.050	8828011				
Dissolved Vanadium (V)	ug/L	<0.50	8843927	<0.50	0.50	0.50	8843936	<0.50	0.50	0.50	8843936
Total Vanadium (V)	ug/L	<0.50	8828011	<0.50	0.50	0.40	8828011				
Dissolved Zinc (Zn)	ug/L	<5.0	8843927	<5.0	5.0	N/A	8843936	<5.0	5.0	N/A	8843936
Total Zinc (Zn)	ug/L	11	8828011	<5.0	5.0	3.0	8828011				
Dissolved Zirconium (Zr)	ug/L	<1.0	8843927	<1.0	1.0	N/A	8843936	<1.0	1.0	N/A	8843936
Total Zirconium (Zr)	ug/L	<1.0	8828011	<1.0	1.0	0.50	8828011				

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

Site Location: RESOLUTE BAY LANDFILL

Sampler Initials: KC

ELEMENTS BY ATOMIC SPECTROSCOPY (WATER)

Bureau Veritas ID		WNL676	WNL677		WNL678		WNL679			
		2023/07/24	2023/07/24		2023/07/23		2023/07/24			
Sampling Date		11:15	10:30		15:50		11:20			
COC Number		n/a	n/a		n/a		n/a			
	UNITS	RBL-13	RBL-16	QC Batch	RBL-DUPA	QC Batch	RBL-DUPB	RDL	MDL	QC Batch
Metals						<u> </u>			•	
Chromium (VI)	ug/L	<0.50	<0.50	8825340	<0.50	8825340	0.51	0.50	0.30	8825340
Mercury (Hg)	mg/L	<0.00010	<0.00010	8825734	<0.00010	8827927	<0.00010	0.00010	0.000050	8825734
Dissolved Aluminum (Al)	ug/L	<4.9	<4.9	8843927	<4.9	8843936	<4.9	4.9	4.9	8843927
Total Aluminum (Al)	ug/L	14	5.6	8828011	9.1	8828011	42	4.9	2.0	8828011
Dissolved Antimony (Sb)	ug/L	<0.50	<0.50	8843927	<0.50	8843936	<0.50	0.50	N/A	8843927
Total Antimony (Sb)	ug/L	<0.50	<0.50	8828011	<0.50	8828011	<0.50	0.50	0.30	8828011
Dissolved Arsenic (As)	ug/L	<1.0	<1.0	8843927	<1.0	8843936	<1.0	1.0	N/A	8843927
Total Arsenic (As)	ug/L	<1.0	<1.0	8828011	1.6	8828011	<1.0	1.0	0.50	8828011
Dissolved Barium (Ba)	ug/L	4.3	4.5	8843927	78	8843936	53	2.0	2.0	8843927
Total Barium (Ba)	ug/L	4.5	4.7	8828011	95	8828011	57	2.0	0.50	8828011
Dissolved Beryllium (Be)	ug/L	<0.40	<0.40	8843927	<0.40	8843936	<0.40	0.40	0.40	8843927
Total Beryllium (Be)	ug/L	<0.40	<0.40	8828011	<0.40	8828011	<0.40	0.40	0.10	8828011
Dissolved Bismuth (Bi)	ug/L	<1.0	<1.0	8843927	<1.0	8843936	<1.0	1.0	N/A	8843927
Total Bismuth (Bi)	ug/L	<1.0	<1.0	8828011	<1.0	8828011	<1.0	1.0	0.070	8828011
Dissolved Boron (B)	ug/L	19	21	8843927	82	8843936	37	10	N/A	8843927
Total Boron (B)	ug/L	19	19	8828011	80	8828011	38	10	0.30	8828011
Dissolved Cadmium (Cd)	ug/L	<0.090	<0.090	8843927	<0.090	8843936	<0.090	0.090	0.081	8843927
Total Cadmium (Cd)	ug/L	<0.090	<0.090	8828011	0.18	8828011	<0.090	0.090	0.090	8828011
Dissolved Calcium (Ca)	ug/L	32000	31000	8843927	50000	8843936	35000	200	N/A	8843927
Total Calcium (Ca)	ug/L	31000	32000	8828011	51000	8828011	38000	200	50	8828011
Dissolved Chromium (Cr)	ug/L	<5.0	<5.0	8843927	<5.0	8843936	<5.0	5.0	N/A	8843927
Total Chromium (Cr)	ug/L	<5.0	<5.0	8828011	<5.0	8828011	<5.0	5.0	5.0	8828011
Dissolved Cobalt (Co)	ug/L	<0.50	<0.50	8843927	<0.50	8843936	<0.50	0.50	N/A	8843927
Total Cobalt (Co)	ug/L	<0.50	<0.50	8828011	1.2	8828011	<0.50	0.50	0.10	8828011
Dissolved Copper (Cu)	ug/L	<0.90	<0.90	8843927	1.1	8843936	<0.90	0.90	0.90	8843927
Total Copper (Cu)	ug/L	<0.90	<0.90	8828011	2.5	8828011	<0.90	0.90	0.50	8828011
Dissolved Iron (Fe)	ug/L	<100	<100	8843927	<100	8843936	<100	100	N/A	8843927
Total Iron (Fe)	ug/L	<100	<100	8828011	870	8828011	<100	100	10	8828011
Dissolved Lead (Pb)	ug/L	<0.50	<0.50	8843927	<0.50	8843936	<0.50	0.50	N/A	8843927
Total Lead (Pb)	ug/L	<0.50	<0.50	8828011	1.9	8828011	<0.50	0.50	0.10	8828011
DDI Damantahla Dataatian Li										

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Site Location: RESOLUTE BAY LANDFILL

Sampler Initials: KC

ELEMENTS BY ATOMIC SPECTROSCOPY (WATER)

Bureau Veritas ID		WNL676	WNL677		WNL678		WNL679			
Campling Data		2023/07/24	2023/07/24		2023/07/23		2023/07/24			
Sampling Date		11:15	10:30		15:50		11:20			
COC Number		n/a	n/a		n/a		n/a			
	UNITS	RBL-13	RBL-16	QC Batch	RBL-DUPA	QC Batch	RBL-DUPB	RDL	MDL	QC Batch
Dissolved Lithium (Li)	ug/L	<5.0	<5.0	8843927	<5.0	8843936	<5.0	5.0	N/A	8843927
Total Lithium (Li)	ug/L	<5.0	<5.0	8828011	<5.0	8828011	<5.0	5.0	0.50	8828011
Dissolved Magnesium (Mg)	ug/L	4800	4800	8843927	13000	8843936	14000	50	N/A	8843927
Total Magnesium (Mg)	ug/L	4500	4700	8828011	13000	8828011	15000	50	20	8828011
Dissolved Manganese (Mn)	ug/L	<2.0	<2.0	8843927	<2.0	8843936	<2.0	2.0	N/A	8843927
Total Manganese (Mn)	ug/L	<2.0	<2.0	8828011	440	8828011	2.9	2.0	0.50	8828011
Dissolved Molybdenum (Mo)	ug/L	<0.50	<0.50	8843927	2.6	8843936	0.62	0.50	0.50	8843927
Total Molybdenum (Mo)	ug/L	<0.50	<0.50	8828011	2.8	8828011	0.57	0.50	0.20	8828011
Dissolved Nickel (Ni)	ug/L	<1.0	<1.0	8843927	1.7	8843936	<1.0	1.0	N/A	8843927
Total Nickel (Ni)	ug/L	<1.0	<1.0	8828011	1.8	8828011	<1.0	1.0	0.50	8828011
Dissolved Phosphorus (P)	ug/L	<100	<100	8843927	<100	8843936	<100	100	N/A	8843927
Dissolved Potassium (K)	ug/L	710	680	8843927	4900	8843936	1600	200	N/A	8843927
Total Potassium (K)	ug/L	650	650	8828011	4800	8828011	1600	200	50	8828011
Dissolved Selenium (Se)	ug/L	<2.0	<2.0	8843927	<2.0	8843936	<2.0	2.0	N/A	8843927
Total Selenium (Se)	ug/L	<2.0	<2.0	8828011	<2.0	8828011	<2.0	2.0	0.50	8828011
Dissolved Silicon (Si)	ug/L	270	260	8843927	840	8843936	210	50	N/A	8843927
Total Silicon (Si)	ug/L	300	270	8828011	930	8828011	290	50	30	8828011
Dissolved Silver (Ag)	ug/L	<0.090	<0.090	8843927	<0.090	8843936	<0.090	0.090	0.081	8843927
Total Silver (Ag)	ug/L	<0.090	<0.090	8828011	<0.090	8828011	<0.090	0.090	0.070	8828011
Dissolved Sodium (Na)	ug/L	5200	5000	8843927	13000	8843936	22000	100	N/A	8843927
Total Sodium (Na)	ug/L	5000	5000	8828011	13000	8828011	22000	100	50	8828011
Dissolved Strontium (Sr)	ug/L	84	83	8843927	150	8843936	160	1.0	N/A	8843927
Total Strontium (Sr)	ug/L	78	79	8828011	140	8828011	160	1.0	0.50	8828011
Dissolved Tellurium (Te)	ug/L	<1.0	<1.0	8843927	<1.0	8843936	<1.0	1.0	N/A	8843927
Total Tellurium (Te)	ug/L	<1.0	<1.0	8828011	<1.0	8828011	<1.0	1.0	0.70	8828011
Dissolved Thallium (TI)	ug/L	<0.050	<0.050	8843927	<0.050	8843936	<0.050	0.050	N/A	8843927
Total Thallium (TI)	ug/L	<0.050	<0.050	8828011	<0.050	8828011	<0.050	0.050	0.020	8828011
Dissolved Tin (Sn)	ug/L	<1.0	<1.0	8843927	<1.0	8843936	<1.0	1.0	N/A	8843927
Total Tin (Sn)	ug/L	<1.0	<1.0	8828011	<1.0	8828011	<1.0	1.0	0.50	8828011
Dissolved Titanium (Ti)	ug/L	<5.0	<5.0	8843927	<5.0	8843936	<5.0	5.0	N/A	8843927
Total Titanium (Ti)	ug/L	<5.0	<5.0	8828011	<5.0	8828011	<5.0	5.0	4.0	8828011

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

BluMetric Environmental Inc Client Project #: 230427

Site Location: RESOLUTE BAY LANDFILL

Sampler Initials: KC

ELEMENTS BY ATOMIC SPECTROSCOPY (WATER)

Bureau Veritas ID		WNL676	WNL677		WNL678		WNL679			
Campling Data		2023/07/24	2023/07/24		2023/07/23		2023/07/24			
Sampling Date		11:15	10:30		15:50		11:20			
COC Number		n/a	n/a		n/a		n/a			
	UNITS	RBL-13	RBL-16	QC Batch	RBL-DUPA	QC Batch	RBL-DUPB	RDL	MDL	QC Batch
Dissolved Tungsten (W)	ug/L	<1.0	<1.0	8843927	<1.0	8843936	<1.0	1.0	N/A	8843927
Total Tungsten (W)	ug/L	<1.0	<1.0	8828011	<1.0	8828011	<1.0	1.0	0.50	8828011
Dissolved Uranium (U)	ug/L	0.21	0.21	8843927	0.34	8843936	0.18	0.10	N/A	8843927
Total Uranium (U)	ug/L	0.19	0.19	8828011	0.33	8828011	0.16	0.10	0.050	8828011
Dissolved Vanadium (V)	ug/L	<0.50	<0.50	8843927	<0.50	8843936	<0.50	0.50	0.50	8843927
Total Vanadium (V)	ug/L	<0.50	<0.50	8828011	<0.50	8828011	<0.50	0.50	0.40	8828011
Dissolved Zinc (Zn)	ug/L	<5.0	<5.0	8843927	<5.0	8843936	<5.0	5.0	N/A	8843927
Total Zinc (Zn)	ug/L	<5.0	<5.0	8828011	15	8828011	<5.0	5.0	3.0	8828011
Dissolved Zirconium (Zr)	ug/L	<1.0	<1.0	8843927	<1.0	8843936	<1.0	1.0	N/A	8843927
Total Zirconium (Zr)	ug/L	<1.0	<1.0	8828011	<1.0	8828011	<1.0	1.0	0.50	8828011

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Site Location: RESOLUTE BAY LANDFILL

Sampler Initials: KC

ELEMENTS BY ATOMIC SPECTROSCOPY (WATER)

Metals Chromium (VI) ug/L <0.50	Bureau Veritas ID		WNL680				WNL680			
11:55	Carrallia - Bata		2023/07/24				2023/07/24			
Metals	Sampling Date		11:55				11:55			
Metals	COC Number		n/a				n/a			
Chromium (VI)		UNITS	RBL-DUPC	RDL	MDL	QC Batch		RDL	MDL	QC Batch
Mercury (Hg) mg/L < 0.00010 0.00010 0.000050 8827927 Dissolved Aluminum (AI) ug/L < 4.9 4.9 4.9 8843927 Dissolved Aluminum (AI) ug/L 4.9 4.9 4.9 8843927 Dissolved Arithmony (Sb) ug/L < 0.50 0.50 N/A 8843927 Dissolved Arithmony (Sb) ug/L < 0.50 0.50 N/A 8843927 Dissolved Arithmony (Sb) ug/L < 0.50 0.50 N/A 8843927 Dissolved Arithmony (Sb) ug/L < 0.50 0.50 0.50 N/A 8843927 Dissolved Arithmony (Sb) ug/L < 1.0 1.0 N/A 8843927 Dissolved Arithmony (Sb) ug/L < 1.0 1.0 N/A 8843927 Dissolved Arithmony (Sb) ug/L < 1.0 1.0 N/A 8843927 Dissolved Barium (Ba) ug/L < 1.0 1.0 0.50 8828011 < 1.0 1.0 0.50 8828011 < 1.0 1.0 0.50 8828011 < 1.0 1.0 0.50 8828011 < 0.40 0.40 <td>Metals</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Metals									
Dissolved Aluminum (Al) ug/L <4.9 4.9 4.9 8843927 Total Aluminum (Al) ug/L 14 4.9 2.0 8828011 14 4.9 2.0 882801 Dissolved Antimony (Sb) ug/L <0.50	Chromium (VI)	ug/L	<0.50	0.50	0.30	8825340				
Total Aluminum (AI)	Mercury (Hg)	mg/L	<0.00010	0.00010	0.000050	8827927				
Dissolved Antimony (Sb) ug/L <0.50 0.50 N/A 8843927 Total Antimony (Sb) ug/L <0.50	Dissolved Aluminum (Al)	ug/L	<4.9	4.9	4.9	8843927				
Total Antimony (Sb)	Total Aluminum (Al)	ug/L	14	4.9	2.0	8828011	14	4.9	2.0	8828011
Dissolved Arsenic (As) ug/L <1.0 1.0 N/A 8843927 <	Dissolved Antimony (Sb)	ug/L	<0.50	0.50	N/A	8843927				
Total Arsenic (As) Ug/L 1.0 1.0 0.50 8828011 1.0 1.0 0.50 8828011 1.0 0.50 8828011 Total Barium (Ba) Ug/L 1.0 1.0 0.50 8828011 1.0 0.50 8828011 1.0 0.50 8828011 Total Barium (Ba) Ug/L 1.0 0.50 1.0 0.50 8828011 1.8 1.0 0.50 8828011 1.8 1.0 0.50 8828011 1.8 1.0 0.40	Total Antimony (Sb)	ug/L	<0.50	0.50	0.30	8828011	<0.50	0.50	0.30	8828011
Dissolved Barium (Ba)	Dissolved Arsenic (As)	ug/L	<1.0	1.0	N/A	8843927				
Total Barium (Ba)	Total Arsenic (As)	ug/L	<1.0	1.0	0.50	8828011	<1.0	1.0	0.50	8828011
Dissolved Beryllium (Be) ug/L <0.40 0.40 0.40 8843927 — Total Beryllium (Be) ug/L <0.40	Dissolved Barium (Ba)	ug/L	4.7	2.0	2.0	8843927				
Total Beryllium (Be) ug/L <0.40 0.40 0.10 8828011 <0.40 0.40 0.10 8828011 <0.40 0.40 0.10 8828011 <0.40 0.40 0.10 882801 <0.40 0.40 0.10 882801 <0.40 0.40 0.10 882801 <0.40 0.40 0.10 882801 <0.40 0.40 0.10 882801 <0.40 0.40 0.10 882801 <0.40 0.40 0.10 882801 <0.40 0.40 0.10 0.00	Total Barium (Ba)	ug/L	5.0	2.0	0.50	8828011	4.8	2.0	0.50	8828011
Dissolved Bismuth (Bi) ug/L <1.0 1.0 N/A 8843927	Dissolved Beryllium (Be)	ug/L	<0.40	0.40	0.40	8843927				
Total Bismuth (Bi) ug/L <1.0 1.0 0.070 8828011 <1.0 1.0 0.070 882801 Dissolved Boron (B) ug/L 18 10 N/A 8843927	Total Beryllium (Be)	ug/L	<0.40	0.40	0.10	8828011	<0.40	0.40	0.10	8828011
Dissolved Boron (B) ug/L 18 10 N/A 8843927 — — Total Boron (B) ug/L 19 10 0.30 8828011 19 10 0.30 8828011 19 10 0.30 8828011 Dissolved Cadmium (Cd) ug/L <0.090	Dissolved Bismuth (Bi)	ug/L	<1.0	1.0	N/A	8843927				
Total Boron (B) ug/L 19 10 0.30 8828011 19 10 0.30 8828011 Dissolved Cadmium (Cd) ug/L <0.090	Total Bismuth (Bi)	ug/L	<1.0	1.0	0.070	8828011	<1.0	1.0	0.070	8828011
Dissolved Cadmium (Cd) ug/L <0.090 0.081 8843927	Dissolved Boron (B)	ug/L	18	10	N/A	8843927				
Total Cadmium (Cd) ug/L <0.090 0.090 0.090 8828011 <0.090 0.090<	Total Boron (B)	ug/L	19	10	0.30	8828011	19	10	0.30	8828011
Dissolved Calcium (Ca) ug/L 32000 200 N/A 8843927	Dissolved Cadmium (Cd)	ug/L	<0.090	0.090	0.081	8843927				
Total Calcium (Ca) ug/L 30000 200 50 8828011 32000 200 50 8828011 Dissolved Chromium (Cr) ug/L <5.0	Total Cadmium (Cd)	ug/L	<0.090	0.090	0.090	8828011	<0.090	0.090	0.090	8828011
Dissolved Chromium (Cr) ug/L <5.0 5.0 N/A 8843927 S828011 <5.0 5.0 5.0 8828011 <5.0 5.0	Dissolved Calcium (Ca)	ug/L	32000	200	N/A	8843927				
Total Chromium (Cr) ug/L <5.0 5.0 5.0 8828011 <5.0 5.0 8828012 Dissolved Cobalt (Co) ug/L <0.50	Total Calcium (Ca)	ug/L	30000	200	50	8828011	32000	200	50	8828011
Dissolved Cobalt (Co) ug/L <0.50 0.50 N/A 8843927	Dissolved Chromium (Cr)	ug/L	<5.0	5.0	N/A	8843927				
Total Cobalt (Co) ug/L <0.50 0.50 0.10 8828011 <0.50 0.50 0.10 882801 Dissolved Copper (Cu) ug/L <0.90	Total Chromium (Cr)	ug/L	<5.0	5.0	5.0	8828011	<5.0	5.0	5.0	8828011
Dissolved Copper (Cu) ug/L <0.90 0.90 0.90 8843927	Dissolved Cobalt (Co)	ug/L	<0.50	0.50	N/A	8843927				
Total Copper (Cu) ug/L <0.90 0.90 0.50 8828011 <0.90 0.90 0.50 8828011 Dissolved Iron (Fe) ug/L <100	Total Cobalt (Co)	ug/L	<0.50	0.50	0.10	8828011	<0.50	0.50	0.10	8828011
Dissolved Iron (Fe) ug/L <100 100 N/A 8843927	Dissolved Copper (Cu)	ug/L	<0.90	0.90	0.90	8843927				
Total Iron (Fe) ug/L <100 100 10 8828011 <100 10 882801	Total Copper (Cu)	ug/L	<0.90	0.90	0.50	8828011	<0.90	0.90	0.50	8828011
5,	Dissolved Iron (Fe)	ug/L	<100	100	N/A	8843927				
Dissolved Lead (Pb)	Total Iron (Fe)	ug/L	<100	100	10	8828011	<100	100	10	8828011
	Dissolved Lead (Pb)	ug/L	<0.50	0.50	N/A	8843927				

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

Site Location: RESOLUTE BAY LANDFILL

Sampler Initials: KC

ELEMENTS BY ATOMIC SPECTROSCOPY (WATER)

Bureau Veritas ID		WNL680				WNL680			
Campling Date		2023/07/24				2023/07/24			
Sampling Date		11:55				11:55			
COC Number		n/a				n/a			
	UNITS	RBL-DUPC	RDL	MDL	QC Batch	RBL-DUPC Lab-Dup	RDL	MDL	QC Batch
Total Lead (Pb)	ug/L	<0.50	0.50	0.10	8828011	<0.50	0.50	0.10	8828011
Dissolved Lithium (Li)	ug/L	<5.0	5.0	N/A	8843927				
Total Lithium (Li)	ug/L	<5.0	5.0	0.50	8828011	<5.0	5.0	0.50	8828011
Dissolved Magnesium (Mg)	ug/L	4800	50	N/A	8843927				
Total Magnesium (Mg)	ug/L	4600	50	20	8828011	4500	50	20	8828011
Dissolved Manganese (Mn)	ug/L	<2.0	2.0	N/A	8843927				
Total Manganese (Mn)	ug/L	<2.0	2.0	0.50	8828011	<2.0	2.0	0.50	8828011
Dissolved Molybdenum (Mo)	ug/L	<0.50	0.50	0.50	8843927				
Total Molybdenum (Mo)	ug/L	<0.50	0.50	0.20	8828011	<0.50	0.50	0.20	8828011
Dissolved Nickel (Ni)	ug/L	<1.0	1.0	N/A	8843927				
Total Nickel (Ni)	ug/L	<1.0	1.0	0.50	8828011	<1.0	1.0	0.50	8828011
Dissolved Phosphorus (P)	ug/L	<100	100	N/A	8843927				
Dissolved Potassium (K)	ug/L	700	200	N/A	8843927				
Total Potassium (K)	ug/L	670	200	50	8828011	650	200	50	8828011
Dissolved Selenium (Se)	ug/L	<2.0	2.0	N/A	8843927				
Total Selenium (Se)	ug/L	<2.0	2.0	0.50	8828011	<2.0	2.0	0.50	8828011
Dissolved Silicon (Si)	ug/L	280	50	N/A	8843927				
Total Silicon (Si)	ug/L	290	50	30	8828011	300	50	30	8828011
Dissolved Silver (Ag)	ug/L	<0.090	0.090	0.081	8843927				
Total Silver (Ag)	ug/L	<0.090	0.090	0.070	8828011	<0.090	0.090	0.070	8828011
Dissolved Sodium (Na)	ug/L	5100	100	N/A	8843927				
Total Sodium (Na)	ug/L	5100	100	50	8828011	4900	100	50	8828011
Dissolved Strontium (Sr)	ug/L	85	1.0	N/A	8843927				
Total Strontium (Sr)	ug/L	78	1.0	0.50	8828011	78	1.0	0.50	8828011
Dissolved Tellurium (Te)	ug/L	<1.0	1.0	N/A	8843927				
Total Tellurium (Te)	ug/L	<1.0	1.0	0.70	8828011	<1.0	1.0	0.70	8828011
Dissolved Thallium (TI)	ug/L	<0.050	0.050	N/A	8843927				
Total Thallium (TI)	ug/L	<0.050	0.050	0.020	8828011	<0.050	0.050	0.020	8828011
Dissolved Tin (Sn)	ug/L	<1.0	1.0	N/A	8843927				
Total Tin (Sn)	ug/L	<1.0	1.0	0.50	8828011	<1.0	1.0	0.50	8828011

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

Site Location: RESOLUTE BAY LANDFILL

Sampler Initials: KC

ELEMENTS BY ATOMIC SPECTROSCOPY (WATER)

Bureau Veritas ID		WNL680				WNL680			
Sampling Date		2023/07/24 11:55				2023/07/24 11:55			
COC Number		n/a				n/a			
	UNITS	RBL-DUPC	RDL	MDL	QC Batch	RBL-DUPC Lab-Dup	RDL	MDL	QC Batch
Dissolved Titanium (Ti)	ug/L	<5.0	5.0	N/A	8843927				
Total Titanium (Ti)	ug/L	<5.0	5.0	4.0	8828011	<5.0	5.0	4.0	8828011
Dissolved Tungsten (W)	ug/L	<1.0	1.0	N/A	8843927				
Total Tungsten (W)	ug/L	<1.0	1.0	0.50	8828011	<1.0	1.0	0.50	8828011
Dissolved Uranium (U)	ug/L	0.21	0.10	N/A	8843927				
Total Uranium (U)	ug/L	0.20	0.10	0.050	8828011	0.20	0.10	0.050	8828011
Dissolved Vanadium (V)	ug/L	<0.50	0.50	0.50	8843927				
Total Vanadium (V)	ug/L	<0.50	0.50	0.40	8828011	<0.50	0.50	0.40	8828011
Dissolved Zinc (Zn)	ug/L	<5.0	5.0	N/A	8843927				
Total Zinc (Zn)	ug/L	<5.0	5.0	3.0	8828011	<5.0	5.0	3.0	8828011
Dissolved Zirconium (Zr)	ug/L	<1.0	1.0	N/A	8843927				
Total Zirconium (Zr)	ug/L	<1.0	1.0	0.50	8828011	<1.0	1.0	0.50	8828011

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

BluMetric Environmental Inc Client Project #: 230427

Site Location: RESOLUTE BAY LANDFILL

Sampler Initials: KC

TEST SUMMARY

Bureau Veritas ID: WNL671 Sample ID: RBL-2

Matrix: Water

Collected: 2023/07/23

Shipped:

Received: 2023/07/27

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Alkalinity	AT	8824109	N/A	2023/08/01	Yogesh Patel
Carbonate, Bicarbonate and Hydroxide	CALC	8822389	N/A	2023/08/02	Automated Statchk
Chloride by Automated Colourimetry	KONE	8823994	N/A	2023/08/02	Massarat Jan
Conductivity	AT	8824108	N/A	2023/08/01	Yogesh Patel
Chromium (VI) in Water	IC	8825340	N/A	2023/08/03	Theodora Luck
Petroleum Hydro. CCME F1 & BTEX in Water	HSGC/MSFD	8833426	N/A	2023/08/05	Lincoln Ramdahin
Petroleum Hydrocarbons F2-F4 in Water	GC/FID	8833643	2023/08/04	2023/08/04	Dennis Ngondu
Hardness (calculated as CaCO3)		8822385	N/A	2023/08/04	Automated Statchk
Mercury in Water by CVAA	CV/AA	8827927	2023/08/02	2023/08/02	Jaswinder Kaur
Lab Filtered Metals by ICPMS	ICP/MS	8843927	2023/08/10	2023/08/11	Prempal Bhatti
Total Metals Analysis by ICPMS	ICP/MS	8828011	2023/08/02	2023/08/02	Thuy Linh Nguyen
Ion Balance (% Difference)	CALC	8822382	N/A	2023/08/11	Automated Statchk
Anion and Cation Sum	CALC	8822383	N/A	2023/08/11	Automated Statchk
B[a]P Total Potency Equivalent	GC/MS	8841752	N/A	2023/08/06	Automated Statchk
PAH in Water by GC/MS	GC/MS	8837189	2023/08/05	2023/08/06	Shuang (Jessica) Chen
Phenols (4-AAP)	TECH/PHEN	8841753	N/A	2023/08/08	Taylor Mullings
Total Ammonia-N	LACH/NH4	8828243	N/A	2023/08/03	Prabhjot Kaur
Nitrate & Nitrite as Nitrogen in Water	LACH	8823978	N/A	2023/08/01	Chandra Nandlal
Total Oil and Grease	BAL	8836996	2023/08/06	2023/08/06	Navneet Singh
pH	AT	8824099	2023/07/31	2023/08/01	Yogesh Patel
Sulphate by Automated Turbidimetry	KONE	8823998	N/A	2023/08/02	Massarat Jan
Total Phosphorus (Colourimetric)	SKAL/P	8826856	2023/08/01	2023/08/03	Muskan
Mineral/Synthetic O & G (TPH Heavy Oil)	BAL	8837000	2023/08/06	2023/08/06	Navneet Singh
Total Suspended Solids	BAL	8824642	2023/08/01	2023/08/02	Shaneil Hall

Bureau Veritas ID: WNL671 Dup

Sample ID: RBL-2

Matrix: Water

Collected: 2023/07/23

Shipped:

Received: 2023/07/27

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Chromium (VI) in Water	IC	8825340	N/A	2023/08/03	Theodora Luck

Bureau Veritas ID: WNL672

Sample ID: RBL-3

Matrix: Water

Collected: 2023/07/23 **Shipped:**

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Alkalinity	AT	8824109	N/A	2023/08/01	Yogesh Patel
Carbonate, Bicarbonate and Hydroxide	CALC	8822389	N/A	2023/08/02	Automated Statchk
Chloride by Automated Colourimetry	KONE	8823994	N/A	2023/08/02	Massarat Jan
Conductivity	AT	8824108	N/A	2023/08/01	Yogesh Patel
Chromium (VI) in Water	IC	8825340	N/A	2023/08/03	Theodora Luck
Petroleum Hydro. CCME F1 & BTEX in Water	HSGC/MSFD	8833426	N/A	2023/08/05	Lincoln Ramdahin
Petroleum Hydrocarbons F2-F4 in Water	GC/FID	8833643	2023/08/04	2023/08/04	Dennis Ngondu

BluMetric Environmental Inc Client Project #: 230427

Site Location: RESOLUTE BAY LANDFILL

Sampler Initials: KC

TEST SUMMARY

Bureau Veritas ID: WNL672 Sample ID: RBL-3

Collected:

Shipped:

2023/07/23

Matrix: Water

Received: 2023/07/27

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Hardness (calculated as CaCO3)		8822385	N/A	2023/08/04	Automated Statchk
Mercury in Water by CVAA	CV/AA	8825734	2023/08/01	2023/08/02	Jaswinder Kaur
Lab Filtered Metals by ICPMS	ICP/MS	8843927	2023/08/10	2023/08/11	Prempal Bhatti
Total Metals Analysis by ICPMS	ICP/MS	8828011	2023/08/02	2023/08/02	Thuy Linh Nguyen
Ion Balance (% Difference)	CALC	8822382	N/A	2023/08/11	Automated Statchk
Anion and Cation Sum	CALC	8822383	N/A	2023/08/11	Automated Statchk
B[a]P Total Potency Equivalent	GC/MS	8841752	N/A	2023/08/06	Automated Statchk
PAH in Water by GC/MS	GC/MS	8837189	2023/08/05	2023/08/06	Shuang (Jessica) Chen
Phenols (4-AAP)	TECH/PHEN	8841753	N/A	2023/08/08	Taylor Mullings
Total Ammonia-N	LACH/NH4	8828243	N/A	2023/08/03	Prabhjot Kaur
Nitrate & Nitrite as Nitrogen in Water	LACH	8824309	N/A	2023/08/01	Chandra Nandlal
Total Oil and Grease	BAL	8836996	2023/08/06	2023/08/06	Navneet Singh
рН	AT	8824099	2023/07/31	2023/08/01	Yogesh Patel
Sulphate by Automated Turbidimetry	KONE	8823998	N/A	2023/08/02	Massarat Jan
Total Phosphorus (Colourimetric)	SKAL/P	8826856	2023/08/01	2023/08/03	Muskan
Mineral/Synthetic O & G (TPH Heavy Oil)	BAL	8837000	2023/08/06	2023/08/06	Navneet Singh
Total Suspended Solids	BAL	8827102	2023/08/01	2023/08/02	Shaneil Hall

Bureau Veritas ID: WNL672 Dup

Sample ID: RBL-3

Matrix: Water

Collected: Shipped:

2023/07/23

Received: 2023/07/27

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Petroleum Hydrocarbons F2-F4 in Water	GC/FID	8833643	2023/08/04	2023/08/04	Dennis Ngondu

Bureau Veritas ID: WNL673

Sample ID: AEC1-GW1

Matrix: Water

Collected: 2023/07/23

Shipped:

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Alkalinity	AT	8824319	N/A	2023/08/01	Yogesh Patel
Carbonate, Bicarbonate and Hydroxide	CALC	8822389	N/A	2023/08/02	Automated Statchk
Chloride by Automated Colourimetry	KONE	8823994	N/A	2023/08/02	Massarat Jan
Conductivity	AT	8824320	N/A	2023/08/01	Yogesh Patel
Chromium (VI) in Water	IC	8825340	N/A	2023/08/03	Theodora Luck
Petroleum Hydro. CCME F1 & BTEX in Water	HSGC/MSFD	8833426	N/A	2023/08/05	Lincoln Ramdahin
Petroleum Hydrocarbons F2-F4 in Water	GC/FID	8833643	2023/08/04	2023/08/04	Dennis Ngondu
Hardness (calculated as CaCO3)		8822385	N/A	2023/08/04	Automated Statchk
Lab Filtered Metals by ICPMS	ICP/MS	8843927	2023/08/10	2023/08/11	Prempal Bhatti
Total Metals Analysis by ICPMS	ICP/MS	8828011	2023/08/02	2023/08/02	Thuy Linh Nguyen
Ion Balance (% Difference)	CALC	8822382	N/A	2023/08/11	Automated Statchk
Anion and Cation Sum	CALC	8822383	N/A	2023/08/11	Automated Statchk
B[a]P Total Potency Equivalent	GC/MS	8841752	N/A	2023/08/09	Automated Statchk
PAH in Water by GC/MS	GC/MS	8837189	2023/08/08	2023/08/08	Shuang (Jessica) Chen

BluMetric Environmental Inc Client Project #: 230427

Site Location: RESOLUTE BAY LANDFILL

Sampler Initials: KC

TEST SUMMARY

Collected: 2023/07/23 **Bureau Veritas ID:** WNL673

Sample ID: AEC1-GW1 Shipped:

Matrix: Water **Received:** 2023/07/27

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Phenols (4-AAP)	TECH/PHEN	8841754	N/A	2023/08/08	Taylor Mullings
Total Ammonia-N	LACH/NH4	8828243	N/A	2023/08/03	Prabhjot Kaur
Nitrate & Nitrite as Nitrogen in Water	LACH	8824309	N/A	2023/08/01	Chandra Nandlal
Total Oil and Grease	BAL	8836996	2023/08/06	2023/08/06	Navneet Singh
рН	AT	8824318	2023/07/31	2023/08/01	Yogesh Patel
Sulphate by Automated Turbidimetry	KONE	8823998	N/A	2023/08/02	Massarat Jan
Total Phosphorus (Colourimetric)	SKAL/P	8826856	2023/08/01	2023/08/03	Muskan
Mineral/Synthetic O & G (TPH Heavy Oil)	BAL	8837000	2023/08/06	2023/08/06	Navneet Singh
Total Suspended Solids	BAL	8824642	2023/08/01	2023/08/02	Shaneil Hall

Bureau Veritas ID: WNL674 Collected: 2023/07/24

Shipped:

Sample ID: RBL-4 Matrix: Water Received: 2023/07/27

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Alkalinity	AT	8824319	N/A	2023/08/01	Yogesh Patel
Carbonate, Bicarbonate and Hydroxide	CALC	8822389	N/A	2023/08/02	Automated Statchk
Chloride by Automated Colourimetry	KONE	8823994	N/A	2023/08/02	Massarat Jan
Conductivity	AT	8824320	N/A	2023/08/01	Yogesh Patel
Chromium (VI) in Water	IC	8825340	N/A	2023/08/03	Theodora Luck
Petroleum Hydro. CCME F1 & BTEX in Water	HSGC/MSFD	8833426	N/A	2023/08/05	Lincoln Ramdahin
Petroleum Hydrocarbons F2-F4 in Water	GC/FID	8833643	2023/08/04	2023/08/04	Dennis Ngondu
Hardness (calculated as CaCO3)		8822385	N/A	2023/08/04	Automated Statchk
Mercury in Water by CVAA	CV/AA	8825734	2023/08/01	2023/08/02	Jaswinder Kaur
Lab Filtered Metals by ICPMS	ICP/MS	8843927	2023/08/10	2023/08/11	Prempal Bhatti
Total Metals Analysis by ICPMS	ICP/MS	8828011	2023/08/02	2023/08/02	Thuy Linh Nguyen
Ion Balance (% Difference)	CALC	8822382	N/A	2023/08/11	Automated Statchk
Anion and Cation Sum	CALC	8822383	N/A	2023/08/11	Automated Statchk
B[a]P Total Potency Equivalent	GC/MS	8841752	N/A	2023/08/06	Automated Statchk
PAH in Water by GC/MS	GC/MS	8837189	2023/08/05	2023/08/06	Shuang (Jessica) Chen
Phenols (4-AAP)	TECH/PHEN	8841753	N/A	2023/08/08	Taylor Mullings
Total Ammonia-N	LACH/NH4	8828243	N/A	2023/08/03	Prabhjot Kaur
Nitrate & Nitrite as Nitrogen in Water	LACH	8824309	N/A	2023/08/01	Chandra Nandlal
Total Oil and Grease	BAL	8836996	2023/08/06	2023/08/06	Navneet Singh
рН	AT	8824318	2023/07/31	2023/08/01	Yogesh Patel
Sulphate by Automated Turbidimetry	KONE	8823998	N/A	2023/08/02	Massarat Jan
Total Phosphorus (Colourimetric)	SKAL/P	8826856	2023/08/01	2023/08/03	Muskan
Mineral/Synthetic O & G (TPH Heavy Oil)	BAL	8837000	2023/08/06	2023/08/06	Navneet Singh
Total Suspended Solids	BAL	8824642	2023/08/01	2023/08/02	Shaneil Hall

BluMetric Environmental Inc Client Project #: 230427

Site Location: RESOLUTE BAY LANDFILL

Sampler Initials: KC

TEST SUMMARY

Bureau Veritas ID: WNL675 Sample ID: RBL-8

Collected:

2023/07/24

Matrix: Water

Shipped: **Received:** 2023/07/27

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Alkalinity	AT	8824109	N/A	2023/08/01	Yogesh Patel
Carbonate, Bicarbonate and Hydroxide	CALC	8822389	N/A	2023/08/02	Automated Statchk
Chloride by Automated Colourimetry	KONE	8823994	N/A	2023/08/02	Massarat Jan
Conductivity	AT	8824108	N/A	2023/08/01	Yogesh Patel
Chromium (VI) in Water	IC	8825340	N/A	2023/08/03	Theodora Luck
Petroleum Hydro. CCME F1 & BTEX in Water	HSGC/MSFD	8833426	N/A	2023/08/05	Lincoln Ramdahin
Petroleum Hydrocarbons F2-F4 in Water	GC/FID	8833643	2023/08/04	2023/08/04	Dennis Ngondu
Hardness (calculated as CaCO3)		8822385	N/A	2023/08/04	Automated Statchk
Mercury in Water by CVAA	CV/AA	8827927	2023/08/02	2023/08/02	Jaswinder Kaur
Lab Filtered Metals by ICPMS	ICP/MS	8843936	2023/08/10	2023/08/14	Arefa Dabhad
Total Metals Analysis by ICPMS	ICP/MS	8828011	2023/08/02	2023/08/02	Thuy Linh Nguyen
Ion Balance (% Difference)	CALC	8822382	N/A	2023/08/14	Automated Statchk
Anion and Cation Sum	CALC	8822383	N/A	2023/08/14	Automated Statchk
B[a]P Total Potency Equivalent	GC/MS	8841752	N/A	2023/08/06	Automated Statchk
PAH in Water by GC/MS	GC/MS	8837189	2023/08/05	2023/08/06	Shuang (Jessica) Chen
Phenols (4-AAP)	TECH/PHEN	8841753	N/A	2023/08/08	Taylor Mullings
Total Ammonia-N	LACH/NH4	8828243	N/A	2023/08/03	Prabhjot Kaur
Nitrate & Nitrite as Nitrogen in Water	LACH	8824309	N/A	2023/08/01	Chandra Nandlal
Total Oil and Grease	BAL	8836996	2023/08/06	2023/08/06	Navneet Singh
рН	AT	8824099	2023/07/31	2023/08/01	Yogesh Patel
Sulphate by Automated Turbidimetry	KONE	8823998	N/A	2023/08/02	Massarat Jan
Total Phosphorus (Colourimetric)	SKAL/P	8826856	2023/08/01	2023/08/03	Muskan
Mineral/Synthetic O & G (TPH Heavy Oil)	BAL	8837000	2023/08/06	2023/08/06	Navneet Singh
Total Suspended Solids	BAL	8827102	2023/08/01	2023/08/02	Shaneil Hall

Bureau Veritas ID: WNL675 Dup Sample ID: RBL-8

Matrix: Water

2023/07/24

Collected: Shipped:

Received: 2023/07/27

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Lab Filtered Metals by ICPMS	ICP/MS	8843936	2023/08/10	2023/08/14	Arefa Dabhad

Bureau Veritas ID: WNL676 Collected: 2023/07/24

Sample ID: RBL-13 Shipped:

Received: 2023/07/27

Matrix: Water

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Alkalinity	AT	8824319	N/A	2023/08/01	Yogesh Patel
Carbonate, Bicarbonate and Hydroxide	CALC	8822389	N/A	2023/08/02	Automated Statchk
Chloride by Automated Colourimetry	KONE	8823994	N/A	2023/08/02	Massarat Jan
Conductivity	AT	8824320	N/A	2023/08/01	Yogesh Patel
Chromium (VI) in Water	IC	8825340	N/A	2023/08/03	Theodora Luck
Petroleum Hydro. CCME F1 & BTEX in Water	HSGC/MSFD	8833426	N/A	2023/08/05	Lincoln Ramdahin
Petroleum Hydrocarbons F2-F4 in Water	GC/FID	8833643	2023/08/04	2023/08/04	Dennis Ngondu

BluMetric Environmental Inc Report Date: 2023/08/14 Client Project #: 230427

Site Location: RESOLUTE BAY LANDFILL

Sampler Initials: KC

TEST SUMMARY

Bureau Veritas ID: WNL676 Sample ID: RBL-13

Matrix: Water

Collected: 2023/07/24

Shipped:

Received: 2023/07/27

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Hardness (calculated as CaCO3)		8822385	N/A	2023/08/04	Automated Statchk
Mercury in Water by CVAA	CV/AA	8825734	2023/08/01	2023/08/02	Jaswinder Kaur
Lab Filtered Metals by ICPMS	ICP/MS	8843927	2023/08/10	2023/08/11	Prempal Bhatti
Total Metals Analysis by ICPMS	ICP/MS	8828011	2023/08/02	2023/08/02	Thuy Linh Nguyen
Ion Balance (% Difference)	CALC	8822382	N/A	2023/08/11	Automated Statchk
Anion and Cation Sum	CALC	8822383	N/A	2023/08/11	Automated Statchk
B[a]P Total Potency Equivalent	GC/MS	8841752	N/A	2023/08/06	Automated Statchk
PAH in Water by GC/MS	GC/MS	8837189	2023/08/05	2023/08/06	Shuang (Jessica) Chen
Phenols (4-AAP)	TECH/PHEN	8841754	N/A	2023/08/08	Taylor Mullings
Total Ammonia-N	LACH/NH4	8828243	N/A	2023/08/03	Prabhjot Kaur
Nitrate & Nitrite as Nitrogen in Water	LACH	8824309	N/A	2023/08/01	Chandra Nandlal
Total Oil and Grease	BAL	8836996	2023/08/06	2023/08/06	Navneet Singh
pH	AT	8824318	2023/07/31	2023/08/01	Yogesh Patel
Sulphate by Automated Turbidimetry	KONE	8823998	N/A	2023/08/02	Massarat Jan
Total Phosphorus (Colourimetric)	SKAL/P	8826856	2023/08/01	2023/08/03	Muskan
Mineral/Synthetic O & G (TPH Heavy Oil)	BAL	8837000	2023/08/06	2023/08/06	Navneet Singh
Total Suspended Solids	BAL	8824642	2023/08/01	2023/08/02	Shaneil Hall

Bureau Veritas ID: WNL677 Sample ID: RBL-16 Matrix: Water

Collected: 2023/07/24

Shipped:

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Alkalinity	AT	8824109	N/A	2023/08/01	Yogesh Patel
Carbonate, Bicarbonate and Hydroxide	CALC	8822389	N/A	2023/08/02	Automated Statchk
Chloride by Automated Colourimetry	KONE	8823994	N/A	2023/08/02	Massarat Jan
Conductivity	AT	8824108	N/A	2023/08/01	Yogesh Patel
Chromium (VI) in Water	IC	8825340	N/A	2023/08/03	Theodora Luck
Petroleum Hydro. CCME F1 & BTEX in Water	HSGC/MSFD	8833432	N/A	2023/08/06	Haibin Wu
Petroleum Hydrocarbons F2-F4 in Water	GC/FID	8833643	2023/08/04	2023/08/04	Dennis Ngondu
Hardness (calculated as CaCO3)		8822385	N/A	2023/08/04	Automated Statchk
Mercury in Water by CVAA	CV/AA	8825734	2023/08/01	2023/08/02	Jaswinder Kaur
Lab Filtered Metals by ICPMS	ICP/MS	8843927	2023/08/10	2023/08/11	Prempal Bhatti
Total Metals Analysis by ICPMS	ICP/MS	8828011	2023/08/02	2023/08/02	Thuy Linh Nguyen
Ion Balance (% Difference)	CALC	8822382	N/A	2023/08/11	Automated Statchk
Anion and Cation Sum	CALC	8822383	N/A	2023/08/11	Automated Statchk
B[a]P Total Potency Equivalent	GC/MS	8841752	N/A	2023/08/06	Automated Statchk
PAH in Water by GC/MS	GC/MS	8837189	2023/08/05	2023/08/06	Shuang (Jessica) Chen
Phenols (4-AAP)	TECH/PHEN	8841754	N/A	2023/08/08	Taylor Mullings
Total Ammonia-N	LACH/NH4	8828243	N/A	2023/08/03	Prabhjot Kaur
Nitrate & Nitrite as Nitrogen in Water	LACH	8824309	N/A	2023/08/01	Chandra Nandlal
Total Oil and Grease	BAL	8836996	2023/08/06	2023/08/06	Navneet Singh
рН	AT	8824099	2023/07/31	2023/08/01	Yogesh Patel
Sulphate by Automated Turbidimetry	KONE	8823998	N/A	2023/08/02	Massarat Jan

BluMetric Environmental Inc Client Project #: 230427

Site Location: RESOLUTE BAY LANDFILL

Sampler Initials: KC

TEST SUMMARY

Bureau Veritas ID: WNL677

Collected: 2023/07/24

Sample ID: RBL-16 Matrix: Water

Shipped:

Received: 2023/07/27

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Total Phosphorus (Colourimetric)	SKAL/P	8826856	2023/08/01	2023/08/03	Muskan
Mineral/Synthetic O & G (TPH Heavy Oil)	BAL	8837000	2023/08/06	2023/08/06	Navneet Singh
Total Suspended Solids	BAL	8824642	2023/08/01	2023/08/02	Shaneil Hall

Bureau Veritas ID: WNL678

Collected: 2023/07/23

Sample ID: RBL-DUPA Matrix: Water

Shipped:

Received: 2023/07/27

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Alkalinity	AT	8824109	N/A	2023/08/01	Yogesh Patel
Carbonate, Bicarbonate and Hydroxide	CALC	8822389	N/A	2023/08/02	Automated Statchk
Chloride by Automated Colourimetry	KONE	8823994	N/A	2023/08/02	Massarat Jan
Conductivity	AT	8824108	N/A	2023/08/01	Yogesh Patel
Chromium (VI) in Water	IC	8825340	N/A	2023/08/03	Theodora Luck
Petroleum Hydro. CCME F1 & BTEX in Water	HSGC/MSFD	8833426	N/A	2023/08/05	Lincoln Ramdahin
Petroleum Hydrocarbons F2-F4 in Water	GC/FID	8833643	2023/08/04	2023/08/04	Dennis Ngondu
Hardness (calculated as CaCO3)		8822385	N/A	2023/08/04	Automated Statchk
Mercury in Water by CVAA	CV/AA	8827927	2023/08/01	2023/08/02	Jaswinder Kaur
Lab Filtered Metals by ICPMS	ICP/MS	8843936	2023/08/10	2023/08/14	Arefa Dabhad
Total Metals Analysis by ICPMS	ICP/MS	8828011	2023/08/02	2023/08/02	Thuy Linh Nguyen
Ion Balance (% Difference)	CALC	8822382	N/A	2023/08/14	Automated Statchk
Anion and Cation Sum	CALC	8822383	N/A	2023/08/14	Automated Statchk
B[a]P Total Potency Equivalent	GC/MS	8841752	N/A	2023/08/06	Automated Statchk
PAH in Water by GC/MS	GC/MS	8837189	2023/08/05	2023/08/06	Shuang (Jessica) Chen
Phenols (4-AAP)	TECH/PHEN	8841753	N/A	2023/08/08	Taylor Mullings
Total Ammonia-N	LACH/NH4	8828243	N/A	2023/08/03	Prabhjot Kaur
Nitrate & Nitrite as Nitrogen in Water	LACH	8824309	N/A	2023/08/01	Chandra Nandlal
Total Oil and Grease	BAL	8836996	2023/08/06	2023/08/06	Navneet Singh
рН	AT	8824099	2023/07/31	2023/08/01	Yogesh Patel
Sulphate by Automated Turbidimetry	KONE	8823998	N/A	2023/08/02	Massarat Jan
Total Phosphorus (Colourimetric)	SKAL/P	8826856	2023/08/01	2023/08/03	Muskan
Mineral/Synthetic O & G (TPH Heavy Oil)	BAL	8837000	2023/08/06	2023/08/06	Navneet Singh
Total Suspended Solids	BAL	8824642	2023/08/01	2023/08/02	Shaneil Hall

Bureau Veritas ID: WNL678 Dup Sample ID: RBL-DUPA Matrix: Water

Collected: 2023/07/23 Shipped:

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Nitrate & Nitrite as Nitrogen in Water	LACH	8824309	N/A	2023/08/01	Chandra Nandlal

BluMetric Environmental Inc Client Project #: 230427

Site Location: RESOLUTE BAY LANDFILL

Sampler Initials: KC

TEST SUMMARY

Bureau Veritas ID: WNL679 Sample ID: RBL-DUPB Matrix: Water

Collected: 2023/07/24

Shipped:

Received: 2023/07/27

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Alkalinity	AT	8824109	N/A	2023/08/01	Yogesh Patel
Carbonate, Bicarbonate and Hydroxide	CALC	8822389	N/A	2023/08/02	Automated Statchk
Chloride by Automated Colourimetry	KONE	8823994	N/A	2023/08/02	Massarat Jan
Conductivity	AT	8824108	N/A	2023/08/01	Yogesh Patel
Chromium (VI) in Water	IC	8825340	N/A	2023/08/03	Theodora Luck
Petroleum Hydro. CCME F1 & BTEX in Water	HSGC/MSFD	8833426	N/A	2023/08/05	Lincoln Ramdahin
Petroleum Hydrocarbons F2-F4 in Water	GC/FID	8833643	2023/08/04	2023/08/04	Dennis Ngondu
Hardness (calculated as CaCO3)		8822385	N/A	2023/08/04	Automated Statchk
Mercury in Water by CVAA	CV/AA	8825734	2023/08/01	2023/08/02	Jaswinder Kaur
Lab Filtered Metals by ICPMS	ICP/MS	8843927	2023/08/10	2023/08/11	Prempal Bhatti
Total Metals Analysis by ICPMS	ICP/MS	8828011	2023/08/02	2023/08/02	Thuy Linh Nguyen
Ion Balance (% Difference)	CALC	8822382	N/A	2023/08/11	Automated Statchk
Anion and Cation Sum	CALC	8822383	N/A	2023/08/11	Automated Statchk
B[a]P Total Potency Equivalent	GC/MS	8841752	N/A	2023/08/06	Automated Statchk
PAH in Water by GC/MS	GC/MS	8837189	2023/08/05	2023/08/06	Shuang (Jessica) Chen
Phenols (4-AAP)	TECH/PHEN	8841754	N/A	2023/08/08	Taylor Mullings
Total Ammonia-N	LACH/NH4	8828243	N/A	2023/08/03	Prabhjot Kaur
Nitrate & Nitrite as Nitrogen in Water	LACH	8823978	N/A	2023/08/01	Chandra Nandlal
Total Oil and Grease	BAL	8836996	2023/08/06	2023/08/06	Navneet Singh
рН	AT	8824099	2023/07/31	2023/08/01	Yogesh Patel
Sulphate by Automated Turbidimetry	KONE	8823998	N/A	2023/08/02	Massarat Jan
Total Phosphorus (Colourimetric)	SKAL/P	8826856	2023/08/01	2023/08/03	Muskan
Mineral/Synthetic O & G (TPH Heavy Oil)	BAL	8837000	2023/08/06	2023/08/06	Navneet Singh
Total Suspended Solids	BAL	8824642	2023/08/01	2023/08/02	Shaneil Hall

Bureau Veritas ID: WNL680 Sample ID: RBL-DUPC Matrix: Water

Collected: 2023/07/24 Shipped:

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Alkalinity	AT	8824109	N/A	2023/08/01	Yogesh Patel
Carbonate, Bicarbonate and Hydroxide	CALC	8822389	N/A	2023/08/02	Automated Statchk
Chloride by Automated Colourimetry	KONE	8823994	N/A	2023/08/02	Massarat Jan
Conductivity	AT	8824108	N/A	2023/08/01	Yogesh Patel
Chromium (VI) in Water	IC	8825340	N/A	2023/08/03	Theodora Luck
Petroleum Hydro. CCME F1 & BTEX in Water	HSGC/MSFD	8833426	N/A	2023/08/05	Lincoln Ramdahin
Petroleum Hydrocarbons F2-F4 in Water	GC/FID	8833643	2023/08/04	2023/08/04	Dennis Ngondu
Hardness (calculated as CaCO3)		8822385	N/A	2023/08/04	Automated Statchk
Mercury in Water by CVAA	CV/AA	8827927	2023/08/01	2023/08/02	Jaswinder Kaur
Lab Filtered Metals by ICPMS	ICP/MS	8843927	2023/08/10	2023/08/11	Prempal Bhatti
Total Metals Analysis by ICPMS	ICP/MS	8828011	2023/08/02	2023/08/02	Thuy Linh Nguyen
Ion Balance (% Difference)	CALC	8822382	N/A	2023/08/11	Automated Statchk
Anion and Cation Sum	CALC	8822383	N/A	2023/08/11	Automated Statchk
B[a]P Total Potency Equivalent	GC/MS	8841752	N/A	2023/08/06	Automated Statchk

BluMetric Environmental Inc Client Project #: 230427

Site Location: RESOLUTE BAY LANDFILL

Sampler Initials: KC

TEST SUMMARY

Bureau Veritas ID: WNL680

Sample ID: RBL-DUPC Matrix: Water

Collected:

2023/07/24

Shipped:

Received: 2023/07/27

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
PAH in Water by GC/MS	GC/MS	8837189	2023/08/05	2023/08/06	Shuang (Jessica) Chen
Phenols (4-AAP)	TECH/PHEN	8841753	N/A	2023/08/08	Taylor Mullings
Total Ammonia-N	LACH/NH4	8828243	N/A	2023/08/03	Prabhjot Kaur
Nitrate & Nitrite as Nitrogen in Water	LACH	8823978	N/A	2023/08/01	Chandra Nandlal
Total Oil and Grease	BAL	8836996	2023/08/06	2023/08/06	Navneet Singh
pH	AT	8824099	2023/07/31	2023/08/01	Yogesh Patel
Sulphate by Automated Turbidimetry	KONE	8823998	N/A	2023/08/02	Massarat Jan
Total Phosphorus (Colourimetric)	SKAL/P	8826856	2023/08/01	2023/08/03	Muskan
Mineral/Synthetic O & G (TPH Heavy Oil)	BAL	8837000	2023/08/06	2023/08/06	Navneet Singh
Total Suspended Solids	BAL	8824642	2023/08/01	2023/08/02	Shaneil Hall

Bureau Veritas ID: WNL680 Dup

Sample ID: RBL-DUPC

Matrix: Water

Collected: 2023/07/24

Shipped:

Received: 2023/07/27

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Total Metals Analysis by ICPMS	ICP/MS	8828011	2023/08/02	2023/08/02	Thuy Linh Nguyen
PAH in Water by GC/MS	GC/MS	8837189	2023/08/05	2023/08/06	Shuang (Jessica) Chen

Bureau Veritas ID: WNL681

Sample ID: FEILD BLANK 1

Matrix: Water

2023/07/23 Collected: Shipped:

Received: 2023/07/27

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Petroleum Hydro. CCME F1 & BTEX in Water	HSGC/MSFD	8833426	N/A	2023/08/04	Lincoln Ramdahin
Petroleum Hydrocarbons F2-F4 in Water	GC/FID	8833643	2023/08/04	2023/08/04	Dennis Ngondu
B[a]P Total Potency Equivalent	GC/MS	8841752	N/A	2023/08/06	Automated Statchk
PAH in Water by GC/MS	GC/MS	8837189	2023/08/05	2023/08/06	Shuang (Jessica) Chen

Bureau Veritas ID: WNL682

Sample ID: TRIP BLANK 1

Matrix: Water

Collected: 2023/07/23

Shipped:

Received: 2023/07/27

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Petroleum Hydro. CCME F1 & BTEX in Water	HSGC/MSFD	8833426	N/A	2023/08/04	Lincoln Ramdahin
Petroleum Hydrocarbons F2-F4 in Water	GC/FID	8833643	2023/08/04	2023/08/04	Dennis Ngondu

Bureau Veritas ID: WNL683 Collected: 2023/07/24 Shipped:

Sample ID: FEILD BLANK 2

Matrix: Water

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Petroleum Hydro. CCME F1 & BTEX in Water	HSGC/MSFD	8833426	N/A	2023/08/04	Lincoln Ramdahin
Petroleum Hydrocarbons F2-F4 in Water	GC/FID	8833643	2023/08/04	2023/08/04	Dennis Ngondu
B[a]P Total Potency Equivalent	GC/MS	8841752	N/A	2023/08/06	Automated Statchk

Report Date: 2023/08/14

BluMetric Environmental Inc Client Project #: 230427

Site Location: RESOLUTE BAY LANDFILL

Sampler Initials: KC

TEST SUMMARY

Bureau Veritas ID: WNL683

Collected: 2023/07/24 Shipped:

Sample ID: FEILD BLANK 2 Matrix: Water

Received: 2023/07/27

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
PAH in Water by GC/MS	GC/MS	8837189	2023/08/05	2023/08/06	Shuang (Jessica) Chen

Site Location: RESOLUTE BAY LANDFILL

Sampler Initials: KC

GENERAL COMMENTS

Each temperature is the average of up to three cooler temperatures taken at receipt

Package 1	19.0°C
Fackage 1	13.0 C
Package 2	19.0°C
Package 3	18.7°C
Package 4	18.0°C

Sample WNL671 [RBL-2]: Nitrite/Nitrate: Due to colour interferences, sample required dilution. Detection limits were adjusted accordingly.

Sample WNL673 [AEC1-GW1]: Sample was analyzed past method specified hold time for PAH in Water by GC/MS due to required re-extraction. Exceedance of hold time increases the uncertainty of test results but does not necessarily imply that results are compromised.

Results relate only to the items tested.

QUALITY ASSURANCE REPORT

BluMetric Environmental Inc Client Project #: 230427

Site Location: RESOLUTE BAY LANDFILL

			Matrix	Spike	SPIKED	BLANK	Method	Blank	RPD		QC Sta	ndard
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits	% Recovery	QC Limits
8833426	1,4-Difluorobenzene	2023/08/04	88	70 - 130	89	70 - 130	91	%				
8833426	4-Bromofluorobenzene	2023/08/04	108	70 - 130	108	70 - 130	103	%				
8833426	D10-o-Xylene	2023/08/04	85	70 - 130	88	70 - 130	91	%				
8833426	D4-1,2-Dichloroethane	2023/08/04	98	70 - 130	96	70 - 130	93	%				
8833432	1,4-Difluorobenzene	2023/08/06	101	70 - 130	98	70 - 130	102	%				
8833432	4-Bromofluorobenzene	2023/08/06	101	70 - 130	99	70 - 130	83	%				
8833432	D10-o-Xylene	2023/08/06	97	70 - 130	94	70 - 130	87	%				
8833432	D4-1,2-Dichloroethane	2023/08/06	84	70 - 130	84	70 - 130	95	%				
8833643	o-Terphenyl	2023/08/04	100	60 - 130	97	60 - 130	92	%				
8837189	D10-Anthracene	2023/08/06	118	50 - 130	104	50 - 130	111	%				
8837189	D14-Terphenyl	2023/08/06	123	50 - 130	110	50 - 130	125	%				
8837189	D8-Acenaphthylene	2023/08/06	102	50 - 130	86	50 - 130	74	%				
8837189	D8-Naphthalene	2023/08/06	89	50 - 130	59	50 - 130	43 (1)	%				
8823978	Nitrate (N)	2023/08/01	100	80 - 120	101	80 - 120	<0.10	mg/L	1.1	20		
8823978	Nitrite (N)	2023/08/01	105	80 - 120	107	80 - 120	<0.010	mg/L	NC	20		
8823994	Dissolved Chloride (Cl-)	2023/08/02	NC	80 - 120	100	80 - 120	<1.0	mg/L	3.5	20		
8823998	Dissolved Sulphate (SO4)	2023/08/02	NC	75 - 125	104	80 - 120	<1.0	mg/L	0.82	20		
8824099	рН	2023/08/01			102	98 - 103			0.028	N/A		
8824108	Conductivity	2023/08/01			99	85 - 115	<1.0	umho/c m	0.83	10		
8824109	Alkalinity (Total as CaCO3)	2023/08/01			96	85 - 115	<1.0	mg/L	1.1	20		
8824309	Nitrate (N)	2023/08/01	102	80 - 120	101	80 - 120	<0.10	mg/L	NC	20		
8824309	Nitrite (N)	2023/08/01	106	80 - 120	106	80 - 120	<0.010	mg/L	NC	20		
8824318	рН	2023/08/01			102	98 - 103			1.2	N/A		
8824319	Alkalinity (Total as CaCO3)	2023/08/01			97	85 - 115	<1.0	mg/L	1.9	20		
8824320	Conductivity	2023/08/01			101	85 - 115	<1.0	umho/c m	0.25	10		
8824642	Total Suspended Solids	2023/08/02			96	85 - 115	<10	mg/L	3.4	20		
8825340	Chromium (VI)	2023/08/03	99	80 - 120	100	80 - 120	<0.50	ug/L	NC	20		
8825734	Mercury (Hg)	2023/08/02	101	75 - 125	103	80 - 120	<0.00010	mg/L	NC	20		
8826856	Total Phosphorus	2023/08/03	100	80 - 120	105	80 - 120	<0.004	mg/L	0.35	20	111	80 - 120

QUALITY ASSURANCE REPORT(CONT'D)

BluMetric Environmental Inc Client Project #: 230427

Site Location: RESOLUTE BAY LANDFILL

			Matrix Spike		SPIKED	BLANK	Method Blank		RPD		QC Standard	
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits	% Recovery	QC Limits
8827102	Total Suspended Solids	2023/08/02			99	85 - 115	<10	mg/L	9.5	20		
8827927	Mercury (Hg)	2023/08/02	102	75 - 125	103	80 - 120	<0.00010	mg/L	NC	20		
8828011	Total Aluminum (Al)	2023/08/02	102	80 - 120	101	80 - 120	<4.9	ug/L	2.0	20		
8828011	Total Antimony (Sb)	2023/08/02	108	80 - 120	105	80 - 120	<0.50	ug/L	NC	20		
8828011	Total Arsenic (As)	2023/08/02	99	80 - 120	99	80 - 120	<1.0	ug/L	NC	20		
8828011	Total Barium (Ba)	2023/08/02	101	80 - 120	99	80 - 120	<2.0	ug/L	4.1	20		
8828011	Total Beryllium (Be)	2023/08/02	95	80 - 120	94	80 - 120	<0.40	ug/L	NC	20		
8828011	Total Bismuth (Bi)	2023/08/02	96	80 - 120	99	80 - 120	<1.0	ug/L	NC	20		
8828011	Total Boron (B)	2023/08/02	96	80 - 120	96	80 - 120	<10	ug/L	1.1	20		
8828011	Total Cadmium (Cd)	2023/08/02	99	80 - 120	99	80 - 120	<0.090	ug/L	NC	20		
8828011	Total Calcium (Ca)	2023/08/02	NC	80 - 120	99	80 - 120	<200	ug/L	6.1	20		
8828011	Total Chromium (Cr)	2023/08/02	92	80 - 120	92	80 - 120	<5.0	ug/L	NC	20		
8828011	Total Cobalt (Co)	2023/08/02	99	80 - 120	96	80 - 120	<0.50	ug/L	NC	20		
8828011	Total Copper (Cu)	2023/08/02	100	80 - 120	96	80 - 120	<0.90	ug/L	NC	20		
8828011	Total Iron (Fe)	2023/08/02	99	80 - 120	96	80 - 120	<100	ug/L	NC	20		
8828011	Total Lead (Pb)	2023/08/02	100	80 - 120	100	80 - 120	<0.50	ug/L	NC	20		
8828011	Total Lithium (Li)	2023/08/02	92	80 - 120	95	80 - 120	<5.0	ug/L	NC	20		
8828011	Total Magnesium (Mg)	2023/08/02	98	80 - 120	100	80 - 120	<50	ug/L	1.3	20		
8828011	Total Manganese (Mn)	2023/08/02	96	80 - 120	96	80 - 120	<2.0	ug/L	NC	20		
8828011	Total Molybdenum (Mo)	2023/08/02	99	80 - 120	97	80 - 120	<0.50	ug/L	NC	20		
8828011	Total Nickel (Ni)	2023/08/02	95	80 - 120	94	80 - 120	<1.0	ug/L	NC	20		
8828011	Total Potassium (K)	2023/08/02	102	80 - 120	100	80 - 120	<200	ug/L	2.2	20		
8828011	Total Selenium (Se)	2023/08/02	105	80 - 120	103	80 - 120	<2.0	ug/L	NC	20		
8828011	Total Silicon (Si)	2023/08/02	100	80 - 120	97	80 - 120	<50	ug/L	3.4	20		
8828011	Total Silver (Ag)	2023/08/02	94	80 - 120	93	80 - 120	<0.090	ug/L	NC	20		
8828011	Total Sodium (Na)	2023/08/02	100	80 - 120	96	80 - 120	<100	ug/L	3.7	20		
8828011	Total Strontium (Sr)	2023/08/02	95	80 - 120	95	80 - 120	<1.0	ug/L	0.0064	20		
8828011	Total Tellurium (Te)	2023/08/02	106	80 - 120	102	80 - 120	<1.0	ug/L	NC	20		
8828011	Total Thallium (TI)	2023/08/02	97	80 - 120	98	80 - 120	<0.050	ug/L	NC	20		
8828011	Total Tin (Sn)	2023/08/02	103	80 - 120	101	80 - 120	<1.0	ug/L	NC	20		
8828011	Total Titanium (Ti)	2023/08/02	99	80 - 120	99	80 - 120	<5.0	ug/L	NC	20		

QUALITY ASSURANCE REPORT(CONT'D)

BluMetric Environmental Inc Client Project #: 230427

Site Location: RESOLUTE BAY LANDFILL

			Matrix Spike		SPIKED	BLANK	Method Blank		RPD		QC Standard	
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits	% Recovery	QC Limits
8828011	Total Tungsten (W)	2023/08/02	101	80 - 120	100	80 - 120	<1.0	ug/L	NC	20		
8828011	Total Uranium (U)	2023/08/02	100	80 - 120	98	80 - 120	<0.10	ug/L	1.5	20		
8828011	Total Vanadium (V)	2023/08/02	95	80 - 120	93	80 - 120	<0.50	ug/L	NC	20		
8828011	Total Zinc (Zn)	2023/08/02	99	80 - 120	99	80 - 120	<5.0	ug/L	NC	20		
8828011	Total Zirconium (Zr)	2023/08/02	104	80 - 120	100	80 - 120	<1.0	ug/L	NC	20		
8828243	Total Ammonia-N	2023/08/03	97	75 - 125	102	80 - 120	<0.050	mg/L	0.038	20		
8833426	Benzene	2023/08/05	77	50 - 140	77	50 - 140	<0.20	ug/L	7.6	30		
8833426	Ethylbenzene	2023/08/05	83	50 - 140	85	50 - 140	<0.20	ug/L	NC	30		
8833426	F1 (C6-C10) - BTEX	2023/08/05					<25	ug/L	NC	30		
8833426	F1 (C6-C10)	2023/08/05	89	60 - 140	90	60 - 140	<25	ug/L	NC	30		
8833426	o-Xylene	2023/08/05	82	50 - 140	84	50 - 140	<0.20	ug/L	NC	30		
8833426	p+m-Xylene	2023/08/05	80	50 - 140	86	50 - 140	<0.40	ug/L	NC	30		
8833426	Toluene	2023/08/05	74	50 - 140	75	50 - 140	<0.20	ug/L	NC	30		
8833426	Total Xylenes	2023/08/05					<0.40	ug/L	NC	30		
8833432	Benzene	2023/08/08	NC	50 - 140	84	50 - 140	<0.20	ug/L	7.2	30		
8833432	Ethylbenzene	2023/08/08	109	50 - 140	96	50 - 140	<0.20	ug/L	5.3	30		
8833432	F1 (C6-C10) - BTEX	2023/08/08					<25	ug/L	NC	30		
8833432	F1 (C6-C10)	2023/08/08	112	60 - 140	93	60 - 140	<25	ug/L	0.79	30		
8833432	o-Xylene	2023/08/08	102	50 - 140	93	50 - 140	<0.20	ug/L	4.7	30		
8833432	p+m-Xylene	2023/08/08	100	50 - 140	87	50 - 140	<0.40	ug/L	6.8	30		
8833432	Toluene	2023/08/08	90	50 - 140	78	50 - 140	<0.20	ug/L	3.2	30		
8833432	Total Xylenes	2023/08/08					<0.40	ug/L	5.5	30		
8833643	F2 (C10-C16 Hydrocarbons)	2023/08/04	108	60 - 130	102	60 - 130	<100	ug/L	NC	30		
8833643	F3 (C16-C34 Hydrocarbons)	2023/08/04	109	60 - 130	106	60 - 130	<200	ug/L	NC	30		
8833643	F4 (C34-C50 Hydrocarbons)	2023/08/04	107	60 - 130	104	60 - 130	<200	ug/L	NC	30		
8836996	Total Oil & Grease	2023/08/06			99	85 - 115	<0.50	mg/L	0.51	25		
8837000	Total Oil & Grease Mineral/Synthetic	2023/08/06			97	85 - 115	<0.50	mg/L	0.52	25		
8837189	1-Methylnaphthalene	2023/08/06	64	50 - 130	56	50 - 130	<0.10	ug/L	NC	30		<u> </u>
8837189	2-Methylnaphthalene	2023/08/06	79	50 - 130	69	50 - 130	<0.10	ug/L	NC	30		
8837189	Acenaphthene	2023/08/06	93	50 - 130	83	50 - 130	<0.10	ug/L	NC	30		
8837189	Acenaphthylene	2023/08/06	95	50 - 130	82	50 - 130	<0.10	ug/L	NC	30		

QUALITY ASSURANCE REPORT(CONT'D)

BluMetric Environmental Inc Client Project #: 230427

Site Location: RESOLUTE BAY LANDFILL

			Matrix	Spike	SPIKED	BLANK	Method Blank		RP	D	QC Sta	ndard
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits	% Recovery	QC Limits
8837189	Acridine	2023/08/06	98	50 - 130	84	50 - 130	<0.040	ug/L	NC	30		
8837189	Anthracene	2023/08/06	85	50 - 130	74	50 - 130	<0.010	ug/L	NC	30		
8837189	Benzo(a)anthracene	2023/08/06	119	50 - 130	99	50 - 130	<0.0085	ug/L	NC	30		
8837189	Benzo(a)pyrene	2023/08/06	128	50 - 130	110	50 - 130	<0.0075	ug/L	NC	30		
8837189	Benzo(b/j)fluoranthene	2023/08/06	121	50 - 130	103	50 - 130	<0.0085	ug/L	NC	30		
8837189	Benzo(c)phenanthrene	2023/08/06	123	50 - 130	104	50 - 130	<0.050	ug/L	NC	30		
8837189	Benzo(e)pyrene	2023/08/06	106	50 - 130	90	50 - 130	<0.050	ug/L	NC	30		
8837189	Benzo(g,h,i)perylene	2023/08/06	112	50 - 130	91	50 - 130	<0.0085	ug/L	NC	30		
8837189	Benzo(k)fluoranthene	2023/08/06	117	50 - 130	120	50 - 130	<0.0085	ug/L	NC	30		
8837189	Chrysene	2023/08/06	116	50 - 130	100	50 - 130	<0.0085	ug/L	NC	30		
8837189	Dibenzo(a,h)anthracene	2023/08/06	115	50 - 130	89	50 - 130	<0.0075	ug/L	NC	30		
8837189	Fluoranthene	2023/08/06	116	50 - 130	100	50 - 130	<0.010	ug/L	NC	30		
8837189	Fluorene	2023/08/06	103	50 - 130	89	50 - 130	<0.050	ug/L	NC	30		
8837189	Indeno(1,2,3-cd)pyrene	2023/08/06	119	50 - 130	92	50 - 130	<0.0085	ug/L	NC	30		
8837189	Naphthalene	2023/08/06	80	50 - 130	69	50 - 130	<0.10	ug/L	NC	30		
8837189	Perylene	2023/08/06	104	50 - 130	89	50 - 130	<0.050	ug/L	NC	30		
8837189	Phenanthrene	2023/08/06	115	50 - 130	101	50 - 130	<0.050	ug/L	NC	30		
8837189	Pyrene	2023/08/06	115	50 - 130	101	50 - 130	<0.020	ug/L	NC	30		
8837189	Quinoline	2023/08/06	79	50 - 130	79	50 - 130	<0.20	ug/L	NC	30		
8841753	Phenols-4AAP	2023/08/08	99	80 - 120	107	80 - 120	<0.0015	mg/L				
8841754	Phenols-4AAP	2023/08/08	99	80 - 120	108	80 - 120	<0.0015	mg/L				
8843927	Dissolved Aluminum (Al)	2023/08/11	105	80 - 120	99	80 - 120	<4.9	ug/L	NC	20		
8843927	Dissolved Antimony (Sb)	2023/08/11	111	80 - 120	103	80 - 120	<0.50	ug/L	15	20		
8843927	Dissolved Arsenic (As)	2023/08/11	106	80 - 120	100	80 - 120	<1.0	ug/L	0.24	20		
8843927	Dissolved Barium (Ba)	2023/08/11	104	80 - 120	98	80 - 120	<2.0	ug/L	2.6	20		
8843927	Dissolved Beryllium (Be)	2023/08/11	104	80 - 120	96	80 - 120	<0.40	ug/L	NC	20		
8843927	Dissolved Bismuth (Bi)	2023/08/11	103	80 - 120	95	80 - 120	<1.0	ug/L	NC	20		
8843927	Dissolved Boron (B)	2023/08/11	103	80 - 120	96	80 - 120	<10	ug/L	1.3	20		
8843927	Dissolved Cadmium (Cd)	2023/08/11	106	80 - 120	99	80 - 120	<0.090	ug/L	NC	20		
8843927	Dissolved Calcium (Ca)	2023/08/11	NC	80 - 120	101	80 - 120	<200	ug/L	2.0	20		
8843927	Dissolved Chromium (Cr)	2023/08/11	105	80 - 120	98	80 - 120	<5.0	ug/L	NC	20		

QUALITY ASSURANCE REPORT(CONT'D)

BluMetric Environmental Inc Client Project #: 230427

Site Location: RESOLUTE BAY LANDFILL

			Matrix	Matrix Spike		BLANK Method B		Method Blank		RPD		ndard
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits	% Recovery	QC Limits
8843927	Dissolved Cobalt (Co)	2023/08/11	104	80 - 120	99	80 - 120	<0.50	ug/L	NC	20		
8843927	Dissolved Copper (Cu)	2023/08/11	105	80 - 120	98	80 - 120	<0.90	ug/L	0.35	20		
8843927	Dissolved Iron (Fe)	2023/08/11	107	80 - 120	101	80 - 120	<100	ug/L	NC	20		
8843927	Dissolved Lead (Pb)	2023/08/11	104	80 - 120	97	80 - 120	<0.50	ug/L	NC	20		
8843927	Dissolved Lithium (Li)	2023/08/11	109	80 - 120	101	80 - 120	<5.0	ug/L	NC	20		
8843927	Dissolved Magnesium (Mg)	2023/08/11	105	80 - 120	99	80 - 120	<50	ug/L	2.9	20		
8843927	Dissolved Manganese (Mn)	2023/08/11	106	80 - 120	100	80 - 120	<2.0	ug/L	0.0044	20		
8843927	Dissolved Molybdenum (Mo)	2023/08/11	112	80 - 120	103	80 - 120	<0.50	ug/L	2.2	20		
8843927	Dissolved Nickel (Ni)	2023/08/11	104	80 - 120	99	80 - 120	<1.0	ug/L	0.80	20		
8843927	Dissolved Phosphorus (P)	2023/08/11	110	80 - 120	97	80 - 120	<100	ug/L	NC	20		
8843927	Dissolved Potassium (K)	2023/08/11	107	80 - 120	101	80 - 120	<200	ug/L	1.6	20		
8843927	Dissolved Selenium (Se)	2023/08/11	105	80 - 120	101	80 - 120	<2.0	ug/L	NC	20		
8843927	Dissolved Silicon (Si)	2023/08/11	107	80 - 120	101	80 - 120	<50	ug/L	0.11	20		
8843927	Dissolved Silver (Ag)	2023/08/11	107	80 - 120	100	80 - 120	<0.090	ug/L	NC	20		
8843927	Dissolved Sodium (Na)	2023/08/11	105	80 - 120	99	80 - 120	<100	ug/L	1.4	20		
8843927	Dissolved Strontium (Sr)	2023/08/11	107	80 - 120	102	80 - 120	<1.0	ug/L	2.3	20		
8843927	Dissolved Tellurium (Te)	2023/08/11	106	80 - 120	101	80 - 120	<1.0	ug/L	NC	20		
8843927	Dissolved Thallium (TI)	2023/08/11	107	80 - 120	99	80 - 120	<0.050	ug/L	NC	20		
8843927	Dissolved Tin (Sn)	2023/08/11	110	80 - 120	102	80 - 120	<1.0	ug/L	NC	20		
8843927	Dissolved Titanium (Ti)	2023/08/11	105	80 - 120	100	80 - 120	<5.0	ug/L	NC	20		
8843927	Dissolved Tungsten (W)	2023/08/11	109	80 - 120	101	80 - 120	<1.0	ug/L	NC	20		
8843927	Dissolved Uranium (U)	2023/08/11	105	80 - 120	97	80 - 120	<0.10	ug/L	0.62	20		
8843927	Dissolved Vanadium (V)	2023/08/11	107	80 - 120	100	80 - 120	<0.50	ug/L	2.3	20		
8843927	Dissolved Zinc (Zn)	2023/08/11	104	80 - 120	98	80 - 120	<5.0	ug/L	NC	20		
8843927	Dissolved Zirconium (Zr)	2023/08/11	115	80 - 120	107	80 - 120	<1.0	ug/L	NC	20		
8843936	Dissolved Aluminum (Al)	2023/08/14	105	80 - 120	97	80 - 120	<4.9	ug/L	NC	20		
8843936	Dissolved Antimony (Sb)	2023/08/14	108	80 - 120	101	80 - 120	<0.50	ug/L	NC	20		
8843936	Dissolved Arsenic (As)	2023/08/14	107	80 - 120	102	80 - 120	<1.0	ug/L	NC	20		
8843936	Dissolved Barium (Ba)	2023/08/14	105	80 - 120	98	80 - 120	<2.0	ug/L	3.8	20		
8843936	Dissolved Beryllium (Be)	2023/08/14	101	80 - 120	93	80 - 120	<0.40	ug/L	NC	20		
8843936	Dissolved Bismuth (Bi)	2023/08/14	104	80 - 120	102	80 - 120	<1.0	ug/L	NC	20		

QUALITY ASSURANCE REPORT(CONT'D)

BluMetric Environmental Inc Client Project #: 230427

Site Location: RESOLUTE BAY LANDFILL

			Matrix Spike		SPIKED	BLANK	Method Blank		RPD		QC Sta	ndard
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits	% Recovery	QC Limits
8843936	Dissolved Boron (B)	2023/08/14	103	80 - 120	98	80 - 120	<10	ug/L	1.3	20		
8843936	Dissolved Cadmium (Cd)	2023/08/14	105	80 - 120	98	80 - 120	<0.090	ug/L	NC	20		
8843936	Dissolved Calcium (Ca)	2023/08/14	NC	80 - 120	98	80 - 120	<200	ug/L	0.80	20		
8843936	Dissolved Chromium (Cr)	2023/08/14	101	80 - 120	96	80 - 120	<5.0	ug/L	NC	20		
8843936	Dissolved Cobalt (Co)	2023/08/14	104	80 - 120	101	80 - 120	<0.50	ug/L	NC	20		
8843936	Dissolved Copper (Cu)	2023/08/14	107	80 - 120	101	80 - 120	<0.90	ug/L	NC	20		
8843936	Dissolved Iron (Fe)	2023/08/14	106	80 - 120	99	80 - 120	<100	ug/L	NC	20		
8843936	Dissolved Lead (Pb)	2023/08/14	103	80 - 120	96	80 - 120	<0.50	ug/L	NC	20		
8843936	Dissolved Lithium (Li)	2023/08/14	109	80 - 120	108	80 - 120	<5.0	ug/L	NC	20		
8843936	Dissolved Magnesium (Mg)	2023/08/14	101	80 - 120	102	80 - 120	<50	ug/L	5.6	20		
8843936	Dissolved Manganese (Mn)	2023/08/14	105	80 - 120	98	80 - 120	<2.0	ug/L	NC	20		
8843936	Dissolved Molybdenum (Mo)	2023/08/14	106	80 - 120	96	80 - 120	<0.50	ug/L	3.1	20		
8843936	Dissolved Nickel (Ni)	2023/08/14	105	80 - 120	100	80 - 120	<1.0	ug/L	NC	20		
8843936	Dissolved Phosphorus (P)	2023/08/14	112	80 - 120	105	80 - 120	<100	ug/L	NC	20		
8843936	Dissolved Potassium (K)	2023/08/14	107	80 - 120	101	80 - 120	<200	ug/L	0.84	20		
8843936	Dissolved Selenium (Se)	2023/08/14	107	80 - 120	100	80 - 120	<2.0	ug/L	NC	20		
8843936	Dissolved Silicon (Si)	2023/08/14	104	80 - 120	96	80 - 120	<50	ug/L	1.8	20		
8843936	Dissolved Silver (Ag)	2023/08/14	101	80 - 120	96	80 - 120	<0.090	ug/L	NC	20		
8843936	Dissolved Sodium (Na)	2023/08/14	109	80 - 120	98	80 - 120	<100	ug/L	4.6	20		
8843936	Dissolved Strontium (Sr)	2023/08/14	108	80 - 120	101	80 - 120	<1.0	ug/L	0.82	20		
8843936	Dissolved Tellurium (Te)	2023/08/14	107	80 - 120	101	80 - 120	<1.0	ug/L	NC	20		
8843936	Dissolved Thallium (TI)	2023/08/14	105	80 - 120	98	80 - 120	<0.050	ug/L	NC	20		
8843936	Dissolved Tin (Sn)	2023/08/14	110	80 - 120	103	80 - 120	<1.0	ug/L	NC	20		
8843936	Dissolved Titanium (Ti)	2023/08/14	104	80 - 120	98	80 - 120	<5.0	ug/L	NC	20		
8843936	Dissolved Tungsten (W)	2023/08/14	107	80 - 120	97	80 - 120	<1.0	ug/L	NC	20		
8843936	Dissolved Uranium (U)	2023/08/14	106	80 - 120	97	80 - 120	<0.10	ug/L	4.4	20		
8843936	Dissolved Vanadium (V)	2023/08/14	104	80 - 120	97	80 - 120	<0.50	ug/L	NC	20		
8843936	Dissolved Zinc (Zn)	2023/08/14	106	80 - 120	100	80 - 120	<5.0	ug/L	NC	20		

QUALITY ASSURANCE REPORT(CONT'D)

BluMetric Environmental Inc Client Project #: 230427

Site Location: RESOLUTE BAY LANDFILL

Sampler Initials: KC

			Matrix Spike		SPIKED	BLANK	Method Blank		RPI)	QC Standard	
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits	% Recovery	QC Limits
8843936	Dissolved Zirconium (Zr)	2023/08/14	110	80 - 120	104	80 - 120	<1.0	ug/L	NC	20		

N/A = Not Applicable

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

QC Standard: A sample of known concentration prepared by an external agency under stringent conditions. Used as an independent check of method accuracy.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spike amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than the native sample concentration)

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

Site Location: RESOLUTE BAY LANDFILL

Sampler Initials: KC

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by:

Rosemle
Anastassia Hamanov, Scientific Specialist
Cristina Carrière
Cristina Carriere, Senior Scientific Specialist
1/pranica kelk
- Merciación
Veronica Falk, B.Sc., P.Chem., QP, Scientific Specialist, Organics
Saffr
Sandy Yuan, M.Sc., QP, Scientific Specialist

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by {0}, {1} responsible for {2} {3} laboratory operations.

www.BVNA.com

6740 Campobello Road, Mississauga, Ontario L5N 2L8 Phone: 905-817-5700 Fax: 905-817-5779 Toll Free: 800-563-6266

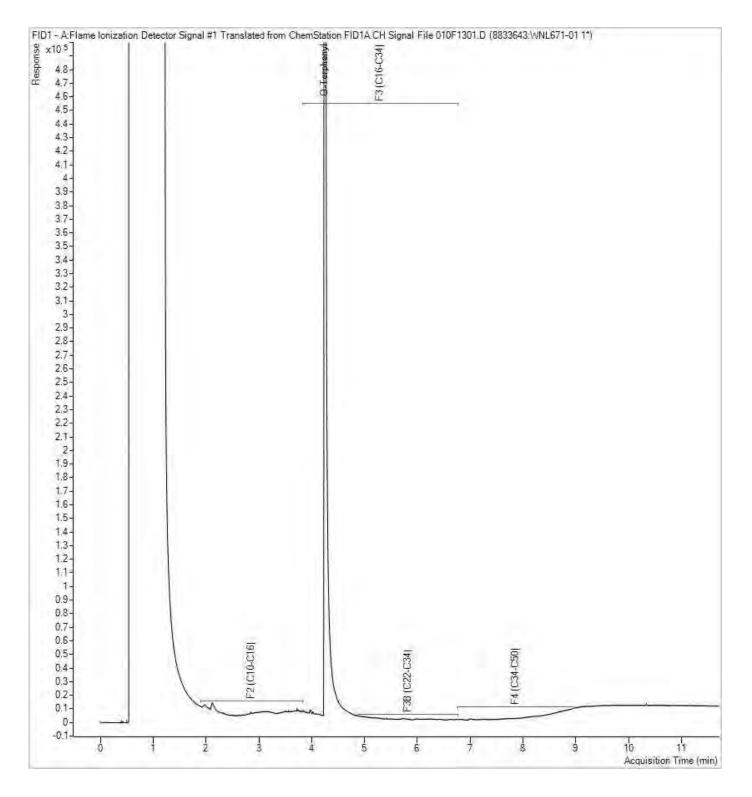
Received in Ottawachain of custody record ENV COC - 00014v3

Page 2 of 2

nvoice Information Report Information (if differs from invoice) **Project Information** Invoice to (requires report) C32559 Company BluMetric Environmental Inc. Company: BluMetric Environmental Inc. Quotation #: Contact Contact Accounts Pavable Jaclyn Kalesnikoff P.O. #/ AFE#: LAB USE ONLY - PLACE STICKER HERE 230427 1682 Woodward Drive 1682 Woodward Drive Project #: Address Address K2C 3R8 ON K2C 3R8 Site #: Ottawa ON Ottawa City: Prov: City: Prov: Rush Confirmation #: 613-839-3053 877-487-8436 x339 ite Location Resolute Bay Landfill hone Site Location ap@blumetric.ca jkalesnikoff@blumetric.ca Email: Province KC jKalesnikoff@blumetric.ca [brown@blumetric.ca Sampled By: Copies Copies: 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 Regular Turnaround Time (TAT) Regulatory Criteria Table 1 Res/Park Med/Fi Reg 406, Table: 5 to 7 Day - 10 Day Ind/Comm Table 2 Course teg 558*
*min 3 day TAT Sanitary Sewer Bylaw Table 3 Agri/other For RSC Storm Sewer Bylaw Rush Turnaround Time (TAT) AISA Table Municipality Surcharges apply # OF CONTAINERS SUBMITTED 'WQO water by GCMS Include Criteria on Certificate of Analysis (check if yes): FILTRATION REQUIRED Same Day 1 Day Total Phosphorus Suspended SAMPLES MUST BE KEPT COOL (<10°C) FROM TIME OF SAMPLING UNTIL DELIVERY TO BUREAU VERITAS _ 3 Day and Grease by IR. HELD PRESERVED and F1-F4 in 14 Day Date Sampled Time (24hr) 0 MM DD PAH in Date Sample Identification Matrix otal Required: MM DD HH MM BTEX Comments 4 **Bottle Substitutions:** FIELD BLANK 2 10 Water - Surface 23 07 24 40 N Y x 1. 250 mL NaSO4 bottles subbed with 100 mL F2 bottles 2. phenol amber bottles subbed with nutrients (120 mL yellow) 3. 2x250 ml. 061R bottles as subbed per 2x1L 061R bottles 10 11 12 *UNLESS OTHERWISE AGREED TO IN WRITING, WORK SUBMITTED ON THIS CHAIN OF CUSTODY IS SUBJECT TO BUREAU VERITAS STANDARD TERMS AND CONDITIONS. SIGNING OF THIS CHAIN OF CUSTODY DOCUMENT IS ACKNOWLEDGMENT AND ACCEPTANCE OF OUR TERMS AND CONDITIONS WHICH ARE AVAILABLE FOR VIEWING AT WWW.BVNA.COM/TERMS: AND CONDITIONS OR BY CALLING THE LABORATORY LISTED ABOVE TO OBTAIN A COPY ce or packs Temperature LAB USE ONLY LAB USE ONLY LAB USE ONLY reading by: Seal present Seal present *C Seal present *C Seal intact Seal Intact Seal Intact ooling media present Cooling media present Cooling media present HH MM Special instructions Relinquished by: (Signature/ Print) Received by: (Signature/ Print) DD MM MM MM See 50 23 07 25 11 0 See Pagel DEMES

ADDITIONAL COOLER TEMPERATURE RECORD

CHAIN-OF-CUSTODY RECORD

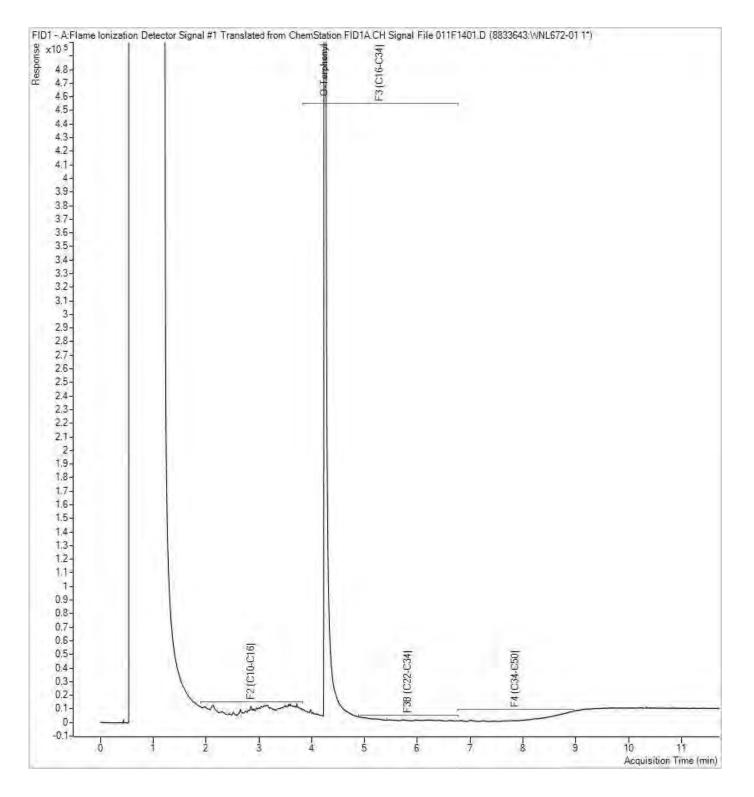

	COOLER OBSER	VATIONS:						BV JOB#:							
CHAIN OF CUSTODY #								C3	M6	3	16				
e	CUSTODY SEAL	YES	NO	COOLER ID	1			CUSTODY	SEAL	YES	NO	COOLER ID)		
of	PRESENT	1			12.71			P	RESENT						
	INTACT	~		TEMP	1)	1	1	NTACT			TEMP		1 S	
of	ICE PRESENT	~			1	2	3	ICE PRESE	NT				1	2	3
	CUSTODY SEAL	YES	NO	COOLER ID	2			CUSTODY	SEAL	YES	NO	COOLERIE)		
of	PRESENT	1					1	P	RESENT	0.00					
	INTACT	~		TEMP	(4	3		NTACT			TEMP		0 00.11	
of	ICE PRESENT	V			1	2	3	ICE PRESE	_				1	2	3
of	CUSTODY SEAL	YES	NO	COOLER ID	9			CUSTOD		YES	NO	COOLER ID)		
	PRESENT	-			1	-			RESENT	1					
of	INTACT	1		TEMP	7	7	9		NTACT			TEMP		1 × 3	
	ICE PRESENT	Nec.	410	COO! #0 !!	1	2	3	ICE PRESI					1	2	- 3
of	CUSTODY SEAL	YES	NO	COOLER ID	1	4		CUSTODY		YES	NO	COOLER II)		
	PRESENT	1			4	4	5		RESENT						
of	ICE PRESENT	12/		TEMP	4				NTACT	_		TEMP		1000	
- VI	CUSTODY SEAL	YES	NO	COOLER ID	-	5	3	ICE PRES		-			1	2	3
of	PRESENT	_	NU	COOLER IL		5	_	CUSTOD		YES	NO	COOLER I		_	_
	INTACT	1	_	Tries	0	2	7		RESENT			500			
of	ICE PRESENT	14.	-	TEMP	2	2	3		NTACT	-	_	TEMP		100	
	CUSTODY SEAL	YES	NO	COOLER ID		- 2	3	ICE PRESI		-	-		1	2	3
of	PRESENT	1.03	no-	COOLER IL			_	CUSTOD		YES	NO	COOLER I	-	_	_
	INTACT	-	-	TEMP					NTACT	-				7	
of	ICE PRESENT	_	_	TEMP	1	2	3	ICE PRESI		-	_	TEMP	1		-
	CUSTODY SEAL	YES	NO	COOLERIE		_	-	CUSTOD		YES	NO	COOLER IS		2	
of	PRESENT			-					RESENT	163	100	COOLERIA			
	INTACT			TEMP			0		NTACT	-	-	TEMP			
of	ICE PRESENT	\neg			1	2	3	ICE PRESI		-	_	· ····	1	2	9
	CUSTODY SEAL	YES	NO	COOLER ID				CUSTOD	-	YES	NO	COOLER II		-	-
of	PRESENT				-				RESENT	1	11.0	COULCENT			
	INTACT			TEMP					NTACT			TEMP			
of	ICE PRESENT				1	2	3	ICE PRES				-	1	2	
	CUSTODY SEAL	YES	NO	COOLER ID)		_	CUSTOD	SEAL	YES	NO	COOLER I	0	_	-
of	PRESENT							P	RESENT						
	INTACT			TEMP					NTACT			TEMP			
of	ICE PRESENT			1	1	2	3	ICE PRES	INT			1	1	2	3
	CUSTODY SEAL	YES	NO	COOLER II)			CUSTOD	SEAL	YES	NO	COOLERIE	0		
of	PRESENT								RESENT						
9	INTACT			TEMP					NTACT			TEMP			
of	ICE PRESENT				1	2	3	ICE PRES	NI				1	2	3
	DECEMES OF	CICN A	ppin	-1					_						
	RECEIVED BY	SIGN &	PKIN	1)	_				DATE	(YYYY)	MM/E	OD)	TIME (HH:MN	1)
	Aneri					An	100	_	200	310	11-	20		Cr.	
	HIVEU					VI)	JER	1	120	910	112	6	(1816	10

BluMetric Environmental Inc Client Project #: 230427

Project name: RESOLUTE BAY LANDFILL

Client ID: RBL-2

Petroleum Hydrocarbons F2-F4 in Water Chromatogram



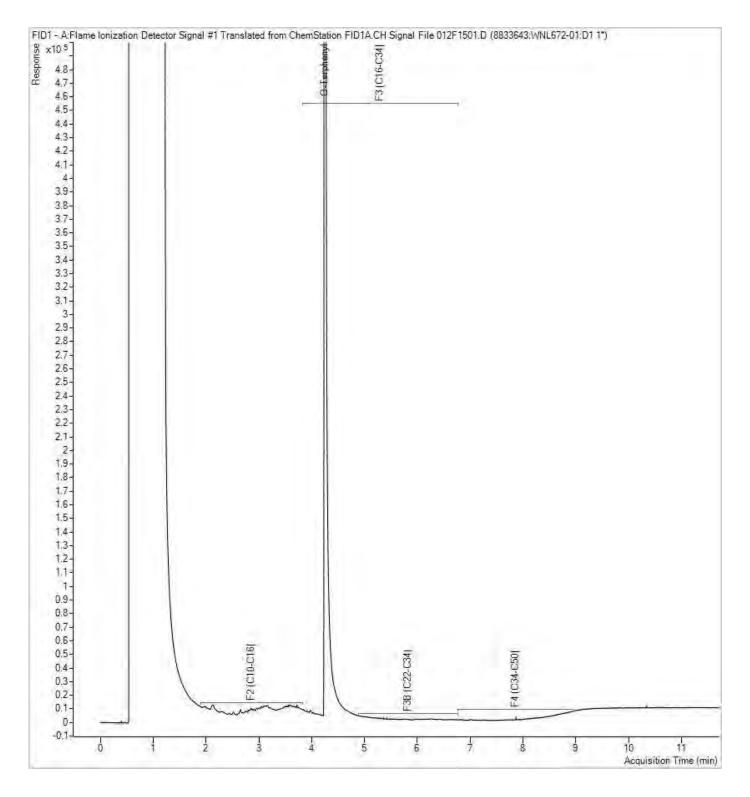
BluMetric Environmental Inc Client Project #: 230427

Project name: RESOLUTE BAY LANDFILL

Client ID: RBL-3

Petroleum Hydrocarbons F2-F4 in Water Chromatogram

Bureau Veritas Sample: WNL672 Lab-

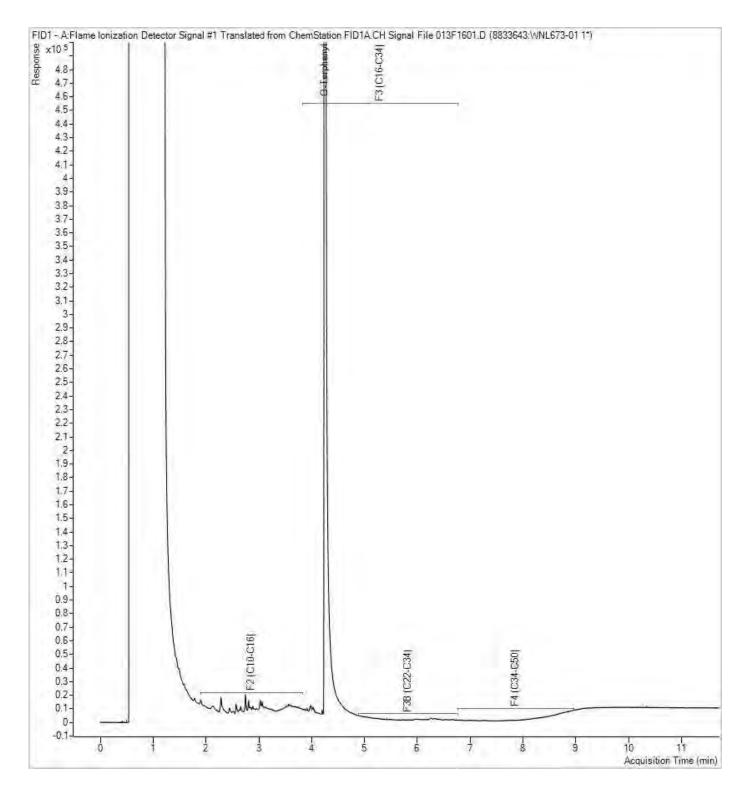

Dup

BluMetric Environmental Inc Client Project #: 230427

Project name: RESOLUTE BAY LANDFILL

Client ID: RBL-3

Petroleum Hydrocarbons F2-F4 in Water Chromatogram

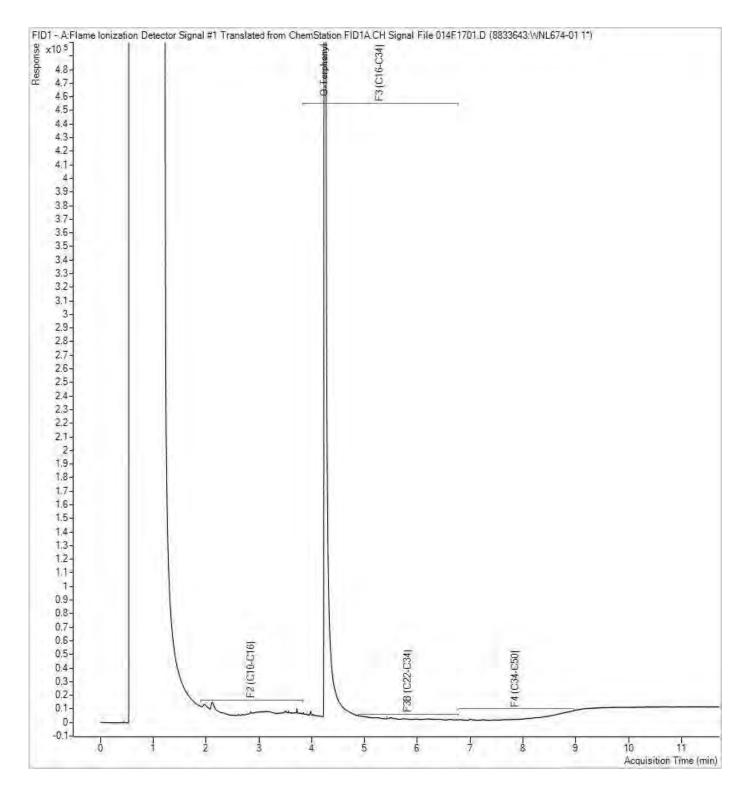


BluMetric Environmental Inc Client Project #: 230427

Project name: RESOLUTE BAY LANDFILL

Client ID: AEC1-GW1

Petroleum Hydrocarbons F2-F4 in Water Chromatogram

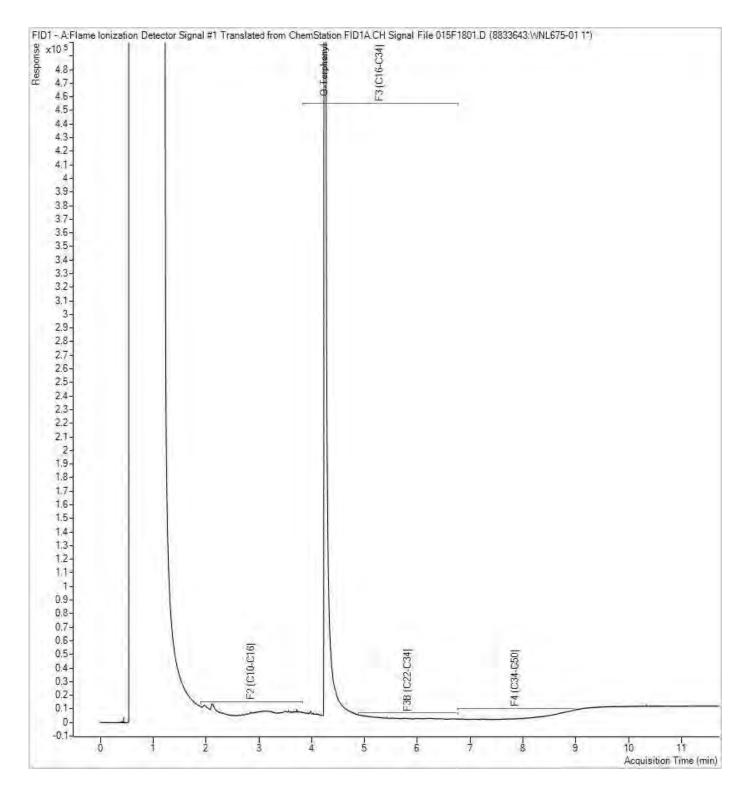


BluMetric Environmental Inc Client Project #: 230427

Project name: RESOLUTE BAY LANDFILL

Client ID: RBL-4

Petroleum Hydrocarbons F2-F4 in Water Chromatogram

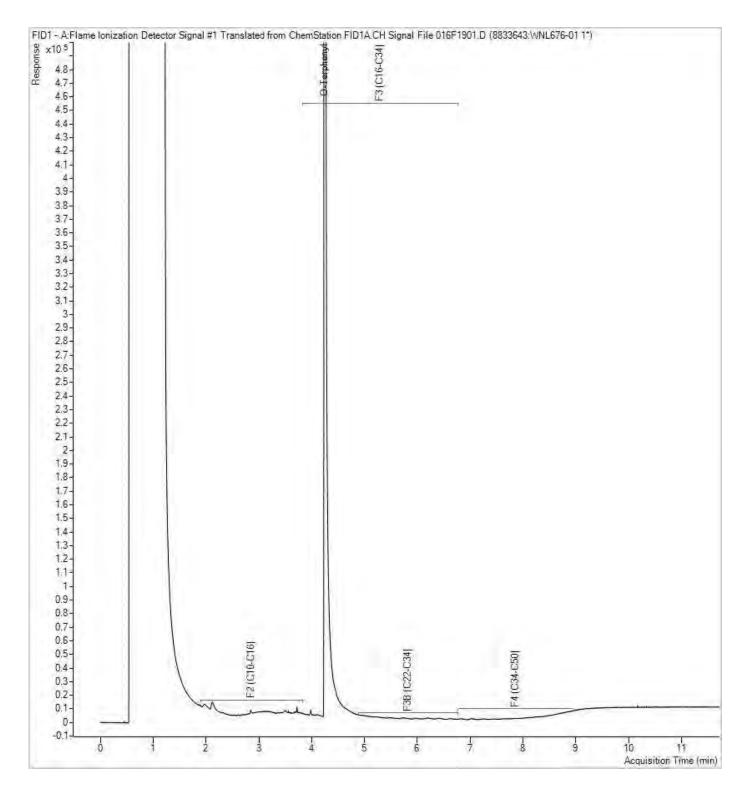


BluMetric Environmental Inc Client Project #: 230427

Project name: RESOLUTE BAY LANDFILL

Client ID: RBL-8

Petroleum Hydrocarbons F2-F4 in Water Chromatogram

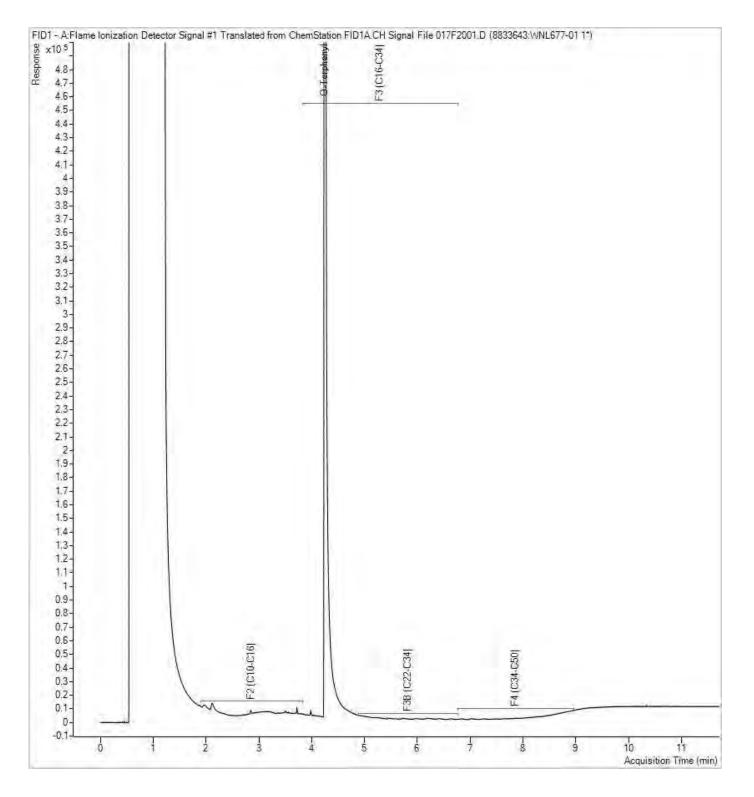


BluMetric Environmental Inc Client Project #: 230427

Project name: RESOLUTE BAY LANDFILL

Client ID: RBL-13

Petroleum Hydrocarbons F2-F4 in Water Chromatogram

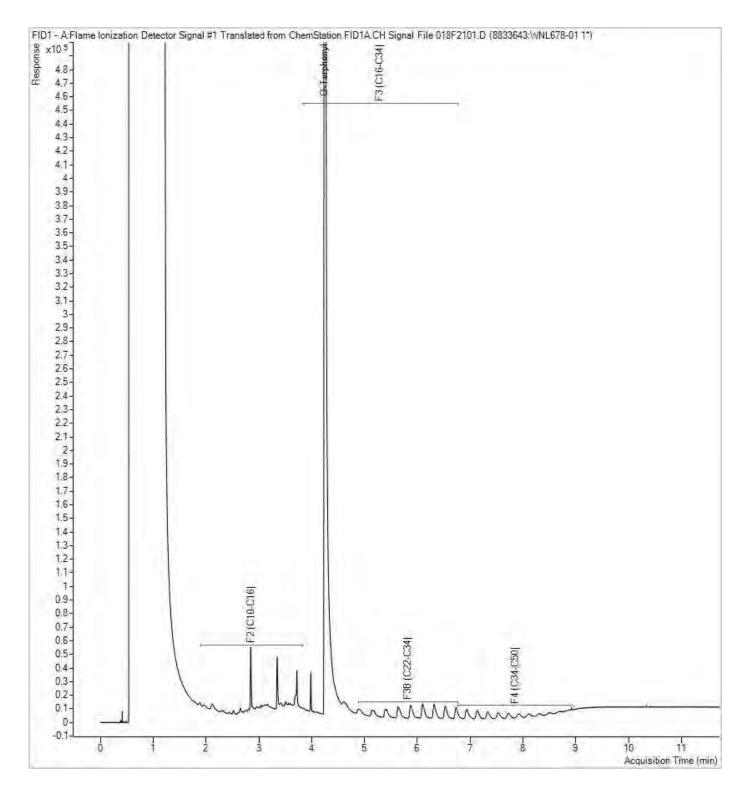


BluMetric Environmental Inc Client Project #: 230427

Project name: RESOLUTE BAY LANDFILL

Client ID: RBL-16

Petroleum Hydrocarbons F2-F4 in Water Chromatogram

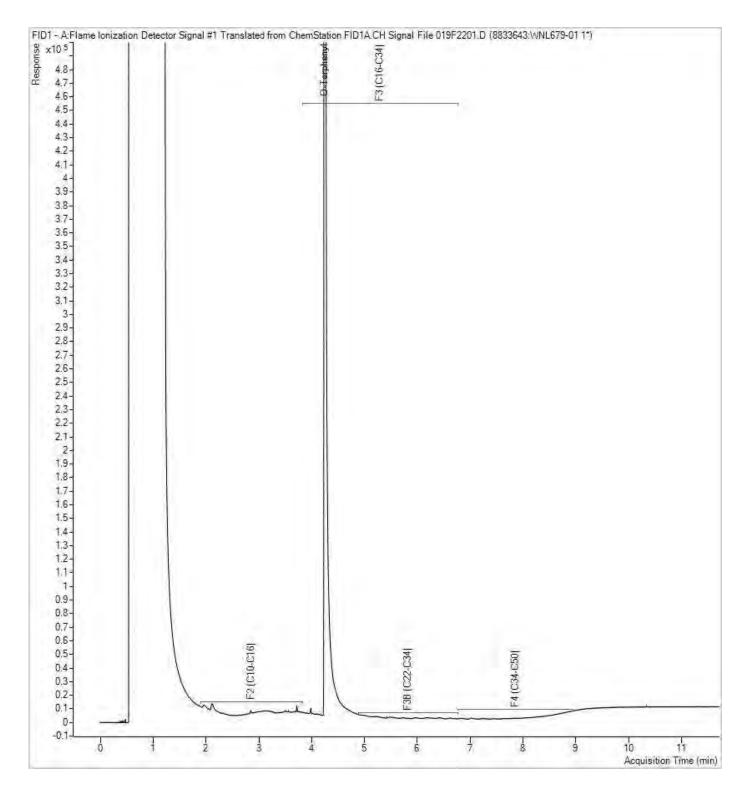


BluMetric Environmental Inc Client Project #: 230427

Project name: RESOLUTE BAY LANDFILL

Client ID: RBL-DUPA

Petroleum Hydrocarbons F2-F4 in Water Chromatogram

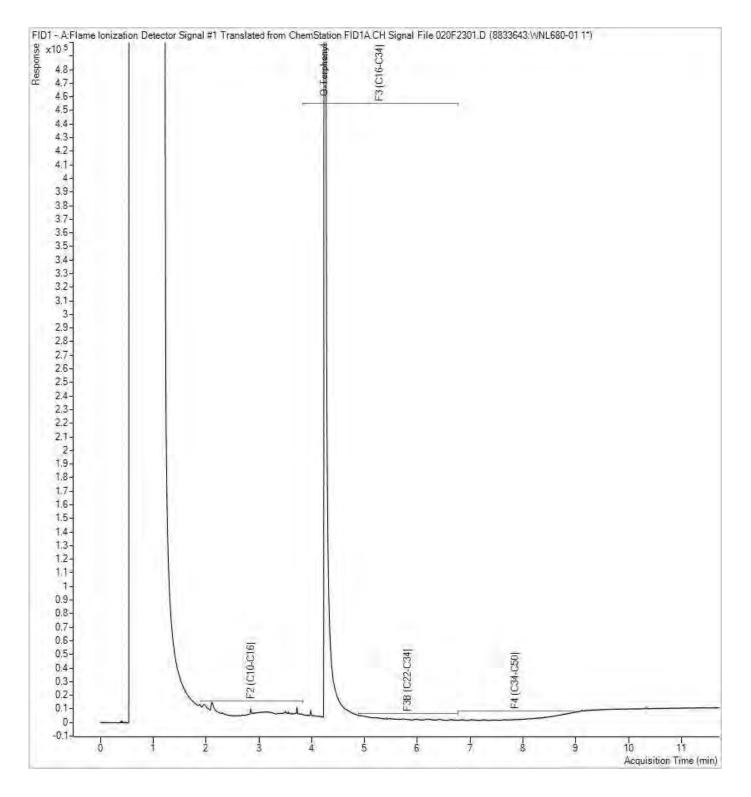


BluMetric Environmental Inc Client Project #: 230427

Project name: RESOLUTE BAY LANDFILL

Client ID: RBL-DUPB

Petroleum Hydrocarbons F2-F4 in Water Chromatogram

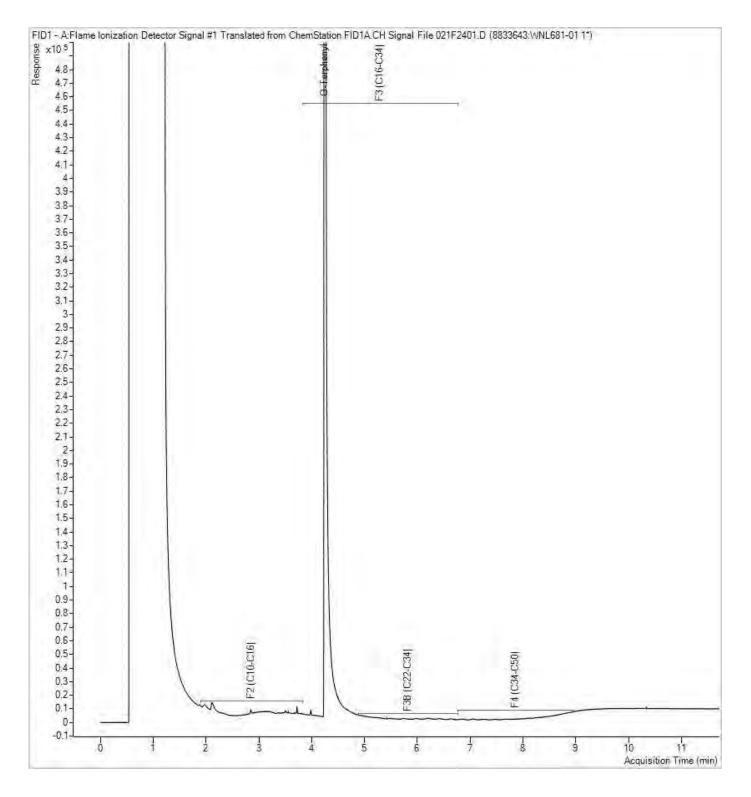


BluMetric Environmental Inc Client Project #: 230427

Project name: RESOLUTE BAY LANDFILL

Client ID: RBL-DUPC

Petroleum Hydrocarbons F2-F4 in Water Chromatogram

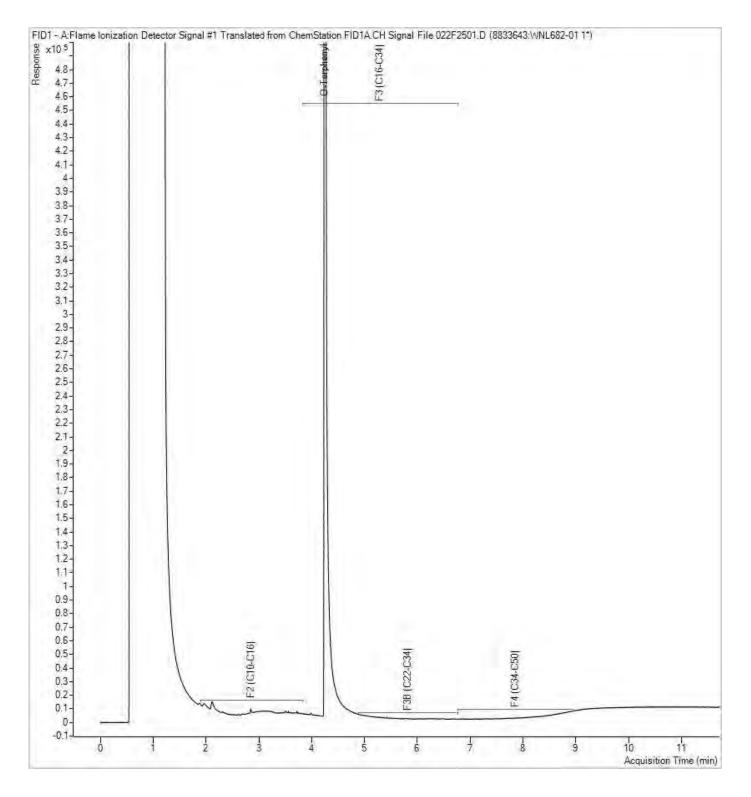


BluMetric Environmental Inc Client Project #: 230427

Project name: RESOLUTE BAY LANDFILL

Client ID: FEILD BLANK 1

Petroleum Hydrocarbons F2-F4 in Water Chromatogram

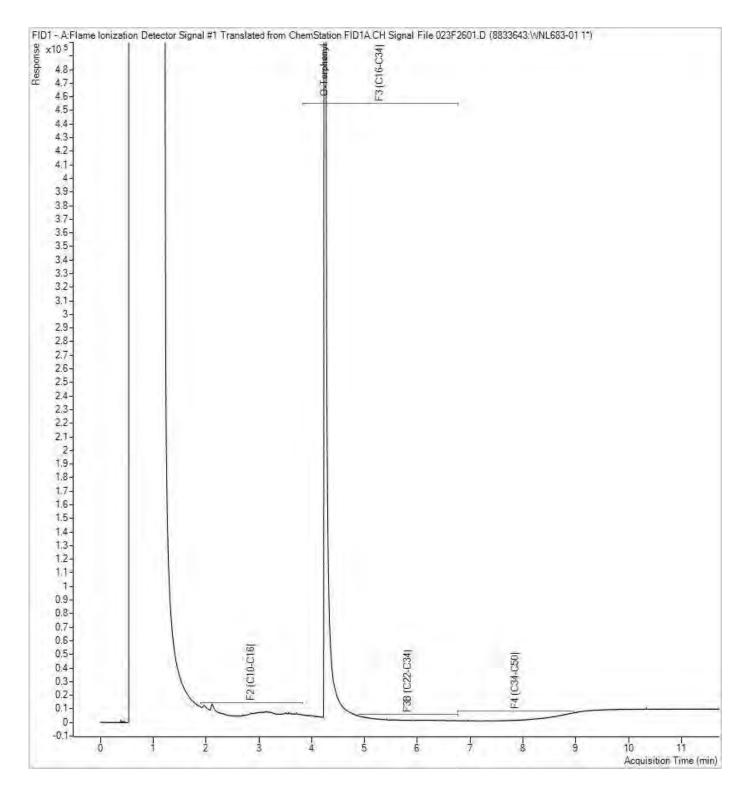


BluMetric Environmental Inc Client Project #: 230427

Project name: RESOLUTE BAY LANDFILL

Client ID: TRIP BLANK 1

Petroleum Hydrocarbons F2-F4 in Water Chromatogram



BluMetric Environmental Inc Client Project #: 230427

Project name: RESOLUTE BAY LANDFILL

Client ID: FEILD BLANK 2

Petroleum Hydrocarbons F2-F4 in Water Chromatogram

Your Project #: 230427

Site Location: RESOLUTE BAY LANDFILL

Your C.O.C. #: n/a

Attention: Jaclyn Kalesnikoff

BluMetric Environmental Inc 1682 Woodward Drive Ottawa, ON CANADA K2C 3R8

Report Date: 2023/08/29

Report #: R7787100 Version: 2 - Revision

CERTIFICATE OF ANALYSIS – REVISED REPORT

BUREAU VERITAS JOB #: C3M6596 Received: 2023/07/27, 12:57

Sample Matrix: Water # Samples Received: 13

Date Date **Analyses Quantity Extracted** Analyzed **Laboratory Method Analytical Method** 2023/08/01 CAM SOP-00448 Alkalinity (1) 10 N/A SM 23 2320 B m Carbonate, Bicarbonate and Hydroxide (1) 10 N/A 2023/08/02 CAM SOP-00102 APHA 4500-CO2 D Chloride by Automated Colourimetry (1) 10 2023/08/02 CAM SOP-00463 N/A SM 23 4500-Cl E m 10 N/A 2023/08/01 CAM SOP-00414 Conductivity (1) SM 23 2510 m 10 Chromium (VI) in Water (1) N/A 2023/08/03 CAM SOP-00436 EPA 7199 m Petroleum Hydro. CCME F1 & BTEX in Water (1) 3 N/A 2023/08/04 CAM SOP-00315 CCME PHC-CWS m Petroleum Hydro. CCME F1 & BTEX in Water (1) 9 2023/08/05 CAM SOP-00315 N/A CCME PHC-CWS m Petroleum Hydro. CCME F1 & BTEX in Water (1) 1 N/A 2023/08/06 CAM SOP-00315 CCME PHC-CWS m Petroleum Hydrocarbons F2-F4 in Water (1, 3) 13 2023/08/04 2023/08/04 CAM SOP-00316 CCME PHC-CWS m 10 2023/08/04 CAM SOP Hardness (calculated as CaCO3) (1) N/A SM 2340 B 00102/00408/00447 7 2023/08/01 2023/08/02 CAM SOP-00453 EPA 7470A m Mercury in Water by CVAA (1) Mercury in Water by CVAA (1) 2 2023/08/02 2023/08/02 CAM SOP-00453 FPA 7470A m Lab Filtered Metals by ICPMS (1) 8 2023/08/10 2023/08/11 CAM SOP-00447 EPA 6020B m 2 2023/08/10 2023/08/14 CAM SOP-00447 Lab Filtered Metals by ICPMS (1) EPA 6020B m Total Metals Analysis by ICPMS (1) 10 2023/08/02 2023/08/02 CAM SOP-00447 EPA 6020B m Ion Balance (% Difference) (1) 8 N/A 2023/08/11 Ion Balance (% Difference) (1) 2 N/A 2023/08/14 Anion and Cation Sum (1) 8 N/A 2023/08/11 2 N/A 2023/08/14 Anion and Cation Sum (1) B[a]P Total Potency Equivalent (2, 4) 11 N/A 2023/08/06 CCME B[a]P Total Potency Equivalent (2, 4) 1 N/A 2023/08/09 **CCME** PAH in Water by GC/MS (2) 2023/08/05 2023/08/06 AB SOP-00037/AB SOP-EPA 3510C/8270E m 11 00003 2023/08/08 2023/08/08 AB SOP-00037/AB SOP-PAH in Water by GC/MS (2) EPA 3510C/8270E m 1 00003 Phenols (4-AAP) (2) 10 N/A 2023/08/08 AB SOP-00088 EPA 9066 R0 m Total Ammonia-N (1) 10 N/A 2023/08/03 CAM SOP-00441 USGS I-2522-90 m Nitrate & Nitrite as Nitrogen in Water (1, 5) 10 N/A 2023/08/01 CAM SOP-00440 SM 23 4500-NO3I/NO2B Total Oil and Grease (1) 10 2023/08/06 2023/08/06 CAM SOP-00326 EPA1664B m,SM5520B m pH (1) 10 2023/07/31 2023/08/01 CAM SOP-00413 SM 4500H+ B m Sulphate by Automated Turbidimetry (1) 10 2023/08/02 CAM SOP-00464 SM 23 4500-SO42- E m N/A

Your Project #: 230427

Site Location: RESOLUTE BAY LANDFILL

Your C.O.C. #: n/a

Attention: Jaclyn Kalesnikoff
BluMetric Environmental Inc
1682 Woodward Drive
Ottawa, ON
CANADA K2C 3R8

Report Date: 2023/08/29

Report #: R7787100 Version: 2 - Revision

CERTIFICATE OF ANALYSIS – REVISED REPORT

BUREAU VERITAS JOB #: C3M6596 Received: 2023/07/27, 12:57

Sample Matrix: Water # Samples Received: 13

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Total Phosphorus (Colourimetric) (1)	10	2023/08/01	2023/08/03	CAM SOP-00407	SM 23 4500-P I
Mineral/Synthetic O & G (TPH Heavy Oil) (1, 6)	10	2023/08/06	2023/08/06	CAM SOP-00326	EPA1664B m,SM5520F m
Total Suspended Solids (1)	10	2023/08/01	2023/08/02	CAM SOP-00428	SM 23 2540D m

Remarks:

Bureau Veritas is accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Bureau Veritas are based upon recognized Provincial, Federal or US method compendia such as CCME, MELCCFP, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Bureau Veritas' profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Bureau Veritas in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Bureau Veritas liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Bureau Veritas has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Bureau Veritas, unless otherwise agreed in writing. Bureau Veritas is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by Bureau Veritas, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

 $Reference\ Method\ suffix\ "m"\ indicates\ test\ methods\ incorporate\ validated\ modifications\ from\ specific\ reference\ methods\ to\ improve\ performance.$

- * RPDs calculated using raw data. The rounding of final results may result in the apparent difference.
- $(1) \ This \ test \ was \ performed \ by \ Bureau \ Veritas \ Mississauga, 6740 \ Campobello \ Rd \ , \ Mississauga, ON, L5N \ 2L8$
- (2) This test was performed by Bureau Veritas Calgary (19th), 4000 19th Street NE , Calgary, AB, T2E 6P8 $\,$
- (3) All CCME PHC results met required criteria unless otherwise stated in the report. The CWS PHC methods employed by Bureau Veritas conform to all prescribed elements of the reference method and performance based elements have been validated. All modifications have been validated and proven equivalent following "Alberta Environment's Interpretation of the Reference Method for the Canada-Wide Standard for Petroleum Hydrocarbons in Soil Validation of Performance-Based Alternative Methods September 2003". Documentation is available upon request. Modifications from Reference Method for the Canada-wide Standard for Petroleum Hydrocarbons in Soil-Tier 1 Method: F2/F3/F4 data reported using validated cold solvent extraction instead of Soxhlet extraction.
- (4) B[a]P TPE is calculated using 1/2 of the RDL for non detect results as per Alberta Environment instructions. This protocol may not apply in other jurisdictions.
- (5) Values for calculated parameters may not appear to add up due to rounding of raw data and significant figures.
- (6) Note: TPH (Heavy Oil) is equivalent to Mineral / Synthetic Oil & Grease

Your Project #: 230427

Site Location: RESOLUTE BAY LANDFILL

Your C.O.C. #: n/a

Attention: Jaclyn Kalesnikoff BluMetric Environmental Inc 1682 Woodward Drive Ottawa, ON

K2C 3R8

Report Date: 2023/08/29

Report #: R7787100 Version: 2 - Revision

CERTIFICATE OF ANALYSIS – REVISED REPORT

BUREAU VERITAS JOB #: C3M6596 Received: 2023/07/27, 12:57

CANADA

Encryption Key

Please direct all questions regarding this Certificate of Analysis to: Christine Gripton, Senior Project Manager Email: Christine.Gripton@bureauveritas.com Phone# (519)652-9444

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by Rodney Major, General Manager responsible

for Ontario Environmental laboratory operations.

Site Location: RESOLUTE BAY LANDFILL

Sampler Initials: KC

CCME PAHS (WATER)

Bureau Veritas ID		WNL671	WNL672	WNL673	WNL674	WNL675			
		2023/07/23	2023/07/23	2023/07/23	2023/07/24	2023/07/24			
Sampling Date		17:30	15:30	16:30	13:00	11:50			
COC Number		n/a	n/a	n/a	n/a	n/a			
	UNITS	RBL-2	RBL-3	AEC1-GW1	RBL-4	RBL-8	RDL	MDL	QC Batch
Polyaromatic Hydrocarbons									
Benzo(a)pyrene Total Potency Equiv.	ug/L	<0.010	<0.010	<0.010	<0.010	<0.010	0.010	N/A	8841752
Acenaphthene	ug/L	<0.10	<0.10	<0.10	<0.10	<0.10	0.10	N/A	8837189
Acenaphthylene	ug/L	<0.10	<0.10	<0.10	<0.10	<0.10	0.10	N/A	8837189
Acridine	ug/L	<0.040	<0.040	<0.040	<0.040	<0.040	0.040	N/A	8837189
Anthracene	ug/L	<0.010	<0.010	<0.010	<0.010	<0.010	0.010	N/A	8837189
Benzo(a)anthracene	ug/L	<0.0085	<0.0085	<0.0085	<0.0085	<0.0085	0.0085	N/A	8837189
Benzo(b/j)fluoranthene	ug/L	<0.0085	<0.0085	<0.0085	<0.0085	<0.0085	0.0085	N/A	8837189
Benzo(k)fluoranthene	ug/L	<0.0085	<0.0085	<0.0085	<0.0085	<0.0085	0.0085	N/A	8837189
Benzo(g,h,i)perylene	ug/L	<0.0085	<0.0085	<0.0085	<0.0085	<0.0085	0.0085	N/A	8837189
Benzo(c)phenanthrene	ug/L	<0.050	<0.050	<0.050	<0.050	<0.050	0.050	N/A	8837189
Benzo(a)pyrene	ug/L	<0.0075	<0.0075	<0.0075	<0.0075	<0.0075	0.0075	N/A	8837189
Benzo(e)pyrene	ug/L	<0.050	<0.050	<0.050	<0.050	<0.050	0.050	N/A	8837189
Chrysene	ug/L	<0.0085	<0.0085	<0.0085	<0.0085	<0.0085	0.0085	N/A	8837189
Dibenzo(a,h)anthracene	ug/L	<0.0075	<0.0075	<0.0075	<0.0075	<0.0075	0.0075	N/A	8837189
Fluoranthene	ug/L	<0.010	<0.010	<0.010	<0.010	<0.010	0.010	N/A	8837189
Fluorene	ug/L	<0.050	<0.050	<0.050	<0.050	<0.050	0.050	N/A	8837189
Indeno(1,2,3-cd)pyrene	ug/L	<0.0085	<0.0085	<0.0085	<0.0085	<0.0085	0.0085	N/A	8837189
1-Methylnaphthalene	ug/L	<0.10	0.84	<0.10	<0.10	<0.10	0.10	N/A	8837189
2-Methylnaphthalene	ug/L	<0.10	1.4	0.12	<0.10	<0.10	0.10	N/A	8837189
Naphthalene	ug/L	<0.10	0.23	0.12	<0.10	<0.10	0.10	N/A	8837189
Phenanthrene	ug/L	<0.050	<0.050	<0.050	<0.050	<0.050	0.050	N/A	8837189
Perylene	ug/L	<0.050	<0.050	<0.050	<0.050	<0.050	0.050	N/A	8837189
Pyrene	ug/L	<0.020	<0.020	<0.020	<0.020	<0.020	0.020	N/A	8837189
Quinoline	ug/L	<0.20	<0.20	<0.20	<0.20	<0.20	0.20	N/A	8837189
Surrogate Recovery (%)	•						•	•	
D10-Anthracene	%	127	121	105	117	109			8837189
D14-Terphenyl	%	156 (1)	129	75	138 (1)	130			8837189

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

N/A = Not Applicable

Report Date: 2023/08/29

BluMetric Environmental Inc Client Project #: 230427

Site Location: RESOLUTE BAY LANDFILL

Sampler Initials: KC

CCME PAHS (WATER)

Bureau Veritas ID		WNL671	WNL672	WNL673	WNL674	WNL675			
Sampling Date		2023/07/23	2023/07/23	2023/07/23	2023/07/24	2023/07/24			
Sampling Date		17:30	15:30	16:30	13:00	11:50			
COC Number		n/a	n/a	n/a	n/a	n/a			
	UNITS	RBL-2	RBL-3	AEC1-GW1	RBL-4	RBL-8	RDL	MDL	QC Batch
D8-Acenaphthylene	%	112	97	85	109	96			8837189
D8-Naphthalene	%	75	45 (1)	59	92	72			8837189

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Site Location: RESOLUTE BAY LANDFILL

Sampler Initials: KC

CCME PAHS (WATER)

Bureau Veritas ID		WNL676	WNL677	WNL678	WNL679	WNL680			
Samulina Data		2023/07/24	2023/07/24	2023/07/23	2023/07/24	2023/07/24			
Sampling Date		11:15	10:30	15:50	11:20	11:55			
COC Number		n/a	n/a	n/a	n/a	n/a			
	UNITS	RBL-13	RBL-16	RBL-DUPA	RBL-DUPB	RBL-DUPC	RDL	MDL	QC Batch
Polyaromatic Hydrocarbons									
Benzo(a)pyrene Total Potency Equiv.	ug/L	<0.010	<0.010	<0.010	<0.010	<0.010	0.010	N/A	8841752
Acenaphthene	ug/L	<0.10	<0.10	<0.10	<0.10	<0.10	0.10	N/A	8837189
Acenaphthylene	ug/L	<0.10	<0.10	<0.10	<0.10	<0.10	0.10	N/A	8837189
Acridine	ug/L	<0.040	<0.040	<0.040	<0.040	<0.040	0.040	N/A	8837189
Anthracene	ug/L	<0.010	<0.010	<0.010	<0.010	<0.010	0.010	N/A	8837189
Benzo(a)anthracene	ug/L	<0.0085	<0.0085	<0.0085	<0.0085	<0.0085	0.0085	N/A	8837189
Benzo(b/j)fluoranthene	ug/L	<0.0085	<0.0085	<0.0085	<0.0085	<0.0085	0.0085	N/A	8837189
Benzo(k)fluoranthene	ug/L	<0.0085	<0.0085	<0.0085	<0.0085	<0.0085	0.0085	N/A	8837189
Benzo(g,h,i)perylene	ug/L	<0.0085	<0.0085	<0.0085	<0.0085	<0.0085	0.0085	N/A	8837189
Benzo(c)phenanthrene	ug/L	<0.050	<0.050	<0.050	<0.050	<0.050	0.050	N/A	8837189
Benzo(a)pyrene	ug/L	<0.0075	<0.0075	<0.0075	<0.0075	<0.0075	0.0075	N/A	8837189
Benzo(e)pyrene	ug/L	<0.050	<0.050	<0.050	<0.050	<0.050	0.050	N/A	8837189
Chrysene	ug/L	<0.0085	<0.0085	<0.0085	<0.0085	<0.0085	0.0085	N/A	8837189
Dibenzo(a,h)anthracene	ug/L	<0.0075	<0.0075	<0.0075	<0.0075	<0.0075	0.0075	N/A	8837189
Fluoranthene	ug/L	<0.010	<0.010	<0.010	<0.010	<0.010	0.010	N/A	8837189
Fluorene	ug/L	<0.050	<0.050	<0.050	<0.050	<0.050	0.050	N/A	8837189
Indeno(1,2,3-cd)pyrene	ug/L	<0.0085	<0.0085	<0.0085	<0.0085	<0.0085	0.0085	N/A	8837189
1-Methylnaphthalene	ug/L	<0.10	<0.10	0.61	<0.10	<0.10	0.10	N/A	8837189
2-Methylnaphthalene	ug/L	<0.10	<0.10	0.99	<0.10	<0.10	0.10	N/A	8837189
Naphthalene	ug/L	<0.10	<0.10	0.17	<0.10	<0.10	0.10	N/A	8837189
Phenanthrene	ug/L	<0.050	<0.050	<0.050	<0.050	<0.050	0.050	N/A	8837189
Perylene	ug/L	<0.050	<0.050	<0.050	<0.050	<0.050	0.050	N/A	8837189
Pyrene	ug/L	<0.020	<0.020	<0.020	<0.020	<0.020	0.020	N/A	8837189
Quinoline	ug/L	<0.20	<0.20	<0.20	<0.20	<0.20	0.20	N/A	8837189
Surrogate Recovery (%)									
D10-Anthracene	%	105	106	104	119	124			8837189
D14-Terphenyl	%	124	125	119	144 (1)	141 (1)			8837189

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

N/A = Not Applicable

Site Location: RESOLUTE BAY LANDFILL

Sampler Initials: KC

CCME PAHS (WATER)

Bureau Veritas ID		WNL676	WNL677	WNL678	WNL679	WNL680			
Sampling Date		2023/07/24	2023/07/24	2023/07/23	2023/07/24	2023/07/24			
Sampling Date		11:15	10:30	15:50	11:20	11:55			
COC Number		n/a	n/a	n/a	n/a	n/a			
	UNITS	RBL-13	RBL-16	RBL-DUPA	RBL-DUPB	RBL-DUPC	RDL	MDL	QC Batch
D8-Acenaphthylene	%	90	96	92	113	110			8837189

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Site Location: RESOLUTE BAY LANDFILL

Sampler Initials: KC

CCME PAHS (WATER)

Bureau Veritas ID		WNL680				WNL681	WNL683			
Committee Date		2023/07/24				2023/07/23	2023/07/24			
Sampling Date		11:55				15:40	10:40			
COC Number		n/a				n/a	n/a			
	UNITS	RBL-DUPC Lab-Dup	RDL	MDL	QC Batch	FEILD BLANK 1	FEILD BLANK 2	RDL	MDL	QC Batch
Polyaromatic Hydrocarbons										
Benzo(a)pyrene Total Potency Equiv.	ug/L					<0.010	<0.010	0.010	N/A	8841752
Acenaphthene	ug/L	<0.10	0.10	N/A	8837189	<0.10	<0.10	0.10	N/A	8837189
Acenaphthylene	ug/L	<0.10	0.10	N/A	8837189	<0.10	<0.10	0.10	N/A	8837189
Acridine	ug/L	<0.040	0.040	N/A	8837189	<0.040	<0.040	0.040	N/A	8837189
Anthracene	ug/L	<0.010	0.010	N/A	8837189	<0.010	<0.010	0.010	N/A	8837189
Benzo(a)anthracene	ug/L	<0.0085	0.0085	N/A	8837189	<0.0085	<0.0085	0.0085	N/A	8837189
Benzo(b/j)fluoranthene	ug/L	<0.0085	0.0085	N/A	8837189	<0.0085	<0.0085	0.0085	N/A	8837189
Benzo(k)fluoranthene	ug/L	<0.0085	0.0085	N/A	8837189	<0.0085	<0.0085	0.0085	N/A	8837189
Benzo(g,h,i)perylene	ug/L	<0.0085	0.0085	N/A	8837189	<0.0085	<0.0085	0.0085	N/A	8837189
Benzo(c)phenanthrene	ug/L	<0.050	0.050	N/A	8837189	<0.050	<0.050	0.050	N/A	8837189
Benzo(a)pyrene	ug/L	<0.0075	0.0075	N/A	8837189	<0.0075	<0.0075	0.0075	N/A	8837189
Benzo(e)pyrene	ug/L	<0.050	0.050	N/A	8837189	<0.050	<0.050	0.050	N/A	8837189
Chrysene	ug/L	<0.0085	0.0085	N/A	8837189	<0.0085	<0.0085	0.0085	N/A	8837189
Dibenzo(a,h)anthracene	ug/L	<0.0075	0.0075	N/A	8837189	<0.0075	<0.0075	0.0075	N/A	8837189
Fluoranthene	ug/L	<0.010	0.010	N/A	8837189	<0.010	<0.010	0.010	N/A	8837189
Fluorene	ug/L	<0.050	0.050	N/A	8837189	<0.050	<0.050	0.050	N/A	8837189
Indeno(1,2,3-cd)pyrene	ug/L	<0.0085	0.0085	N/A	8837189	<0.0085	<0.0085	0.0085	N/A	8837189
1-Methylnaphthalene	ug/L	<0.10	0.10	N/A	8837189	<0.10	<0.10	0.10	N/A	8837189
2-Methylnaphthalene	ug/L	<0.10	0.10	N/A	8837189	<0.10	<0.10	0.10	N/A	8837189
Naphthalene	ug/L	<0.10	0.10	N/A	8837189	<0.10	<0.10	0.10	N/A	8837189
Phenanthrene	ug/L	<0.050	0.050	N/A	8837189	<0.050	<0.050	0.050	N/A	8837189
Perylene	ug/L	<0.050	0.050	N/A	8837189	<0.050	<0.050	0.050	N/A	8837189
Pyrene	ug/L	<0.020	0.020	N/A	8837189	<0.020	<0.020	0.020	N/A	8837189
Quinoline	ug/L	<0.20	0.20	N/A	8837189	<0.20	<0.20	0.20	N/A	8837189
Surrogate Recovery (%)										
D10-Anthracene	%	120			8837189	118	106			8837189
D14-Terphenyl	%	134 (1)			8837189	139 (1)	126			8837189
DDI D	,									

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

N/A = Not Applicable

Site Location: RESOLUTE BAY LANDFILL

Sampler Initials: KC

CCME PAHS (WATER)

Bureau Veritas ID		WNL680				WNL681	WNL683			
Sampling Date		2023/07/24				2023/07/23	2023/07/24			
Sampling Date		11:55				15:40	10:40			
COC Number		n/a				n/a	n/a			
	LINITE	RBL-DUPC	BDI	MDI	OC Patch	FEILD BLANK	FEILD BLANK	BDI	MDI	OC Batch
	UNITS	RBL-DUPC Lab-Dup	RDL	MDL	QC Batch	FEILD BLANK 1	FEILD BLANK 2	RDL	MDL	QC Batch
D8-Acenaphthylene	UNITS		RDL	MDL	QC Batch 8837189	FEILD BLANK 1 106	FEILD BLANK 2 95	RDL	MDL	QC Batch 8837189

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

Site Location: RESOLUTE BAY LANDFILL

Sampler Initials: KC

CCME PHCS, BTEX/F1-F4 (WATER)

Bureau Veritas ID		WNL671	WNL672				WNL672			
Campling Data		2023/07/23	2023/07/23				2023/07/23			
Sampling Date		17:30	15:30				15:30			
COC Number		n/a	n/a				n/a			
	UNITS	RBL-2	RBL-3	RDL	MDL	QC Batch	RBL-3 Lab-Dup	RDL	MDL	QC Batch
BTEX & F1 Hydrocarbons										
Benzene	ug/L	<0.20	<0.20	0.20	0.040	8833426				
Toluene	ug/L	<0.20	<0.20	0.20	0.040	8833426				
Ethylbenzene	ug/L	<0.20	<0.20	0.20	0.040	8833426				
o-Xylene	ug/L	<0.20	<0.20	0.20	0.040	8833426				
p+m-Xylene	ug/L	<0.40	<0.40	0.40	0.080	8833426				
Total Xylenes	ug/L	<0.40	<0.40	0.40	0.080	8833426				
F1 (C6-C10)	ug/L	<25	<25	25	20	8833426				
F1 (C6-C10) - BTEX	ug/L	<25	<25	25	20	8833426				
F2-F4 Hydrocarbons	•						•			
F2 (C10-C16 Hydrocarbons)	ug/L	<100	<100	100	50	8833643	<100	100	50	8833643
F3 (C16-C34 Hydrocarbons)	ug/L	<200	<200	200	70	8833643	<200	200	70	8833643
F4 (C34-C50 Hydrocarbons)	ug/L	<200	<200	200	50	8833643	<200	200	50	8833643
Reached Baseline at C50	ug/L	Yes	Yes			8833643	Yes			8833643
Surrogate Recovery (%)										
1,4-Difluorobenzene	%	89	88			8833426				
4-Bromofluorobenzene	%	108	105			8833426				
D10-o-Xylene	%	92	88			8833426				
D4-1,2-Dichloroethane	%	100	100			8833426				
o-Terphenyl	%	95	97			8833643	96			8833643
RDL = Reportable Detection L	imit									

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

Site Location: RESOLUTE BAY LANDFILL

Sampler Initials: KC

CCME PHCS, BTEX/F1-F4 (WATER)

Bureau Veritas ID		WNL673	WNL674	WNL675	WNL676		WNL677			
Sampling Date		2023/07/23	2023/07/24	2023/07/24	2023/07/24		2023/07/24			
Sampling Date		16:30	13:00	11:50	11:15		10:30			
COC Number		n/a	n/a	n/a	n/a		n/a			
	UNITS	AEC1-GW1	RBL-4	RBL-8	RBL-13	QC Batch	RBL-16	RDL	MDL	QC Batch
BTEX & F1 Hydrocarbons	_					<u> </u>		<u> </u>		<u> </u>
Benzene	ug/L	<0.20	<0.20	<0.20	<0.20	8833426	<0.20	0.20	0.040	8833432
Toluene	ug/L	0.55	<0.20	<0.20	<0.20	8833426	<0.20	0.20	0.040	8833432
Ethylbenzene	ug/L	<0.20	<0.20	<0.20	<0.20	8833426	<0.20	0.20	0.040	8833432
o-Xylene	ug/L	0.26	<0.20	<0.20	<0.20	8833426	<0.20	0.20	0.040	8833432
p+m-Xylene	ug/L	<0.40	<0.40	<0.40	<0.40	8833426	<0.40	0.40	0.080	8833432
Total Xylenes	ug/L	<0.40	<0.40	<0.40	<0.40	8833426	<0.40	0.40	0.080	8833432
F1 (C6-C10)	ug/L	<25	<25	<25	<25	8833426	<25	25	20	8833432
F1 (C6-C10) - BTEX	ug/L	<25	<25	<25	<25	8833426	<25	25	20	8833432
F2-F4 Hydrocarbons										
F2 (C10-C16 Hydrocarbons)	ug/L	<100	<100	<100	<100	8833643	<100	100	50	8833643
F3 (C16-C34 Hydrocarbons)	ug/L	<200	<200	<200	<200	8833643	<200	200	70	8833643
F4 (C34-C50 Hydrocarbons)	ug/L	<200	<200	<200	<200	8833643	<200	200	50	8833643
Reached Baseline at C50	ug/L	Yes	Yes	Yes	Yes	8833643	Yes			8833643
Surrogate Recovery (%)	•			-						
1,4-Difluorobenzene	%	88	91	86	88	8833426	102			8833432
4-Bromofluorobenzene	%	107	109	107	107	8833426	83			8833432
D10-o-Xylene	%	91	89	88	88	8833426	91			8833432
D4-1,2-Dichloroethane	%	99	100	97	99	8833426	95			8833432
o-Terphenyl	%	96	96	94	95	8833643	94			8833643
RDL = Reportable Detection L QC Batch = Quality Control Ba										

QC Batch = Quality Control Batch

Site Location: RESOLUTE BAY LANDFILL

Sampler Initials: KC

CCME PHCS, BTEX/F1-F4 (WATER)

Bureau Veritas ID		WNL678	WNL679	WNL680	WNL681	WNL682	WNL683			
Sampling Date		2023/07/23	2023/07/24	2023/07/24	2023/07/23	2023/07/23	2023/07/24			
Jamping Date		15:50	11:20	11:55	15:40	09:00	10:40			
COC Number		n/a	n/a	n/a	n/a	n/a	n/a			
	UNITS	RBL-DUPA	RBL-DUPB	RBL-DUPC	FEILD BLANK 1	TRIP BLANK 1	FEILD BLANK 2	RDL	MDL	QC Batch
BTEX & F1 Hydrocarbons										
Benzene	ug/L	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	0.20	0.040	8833426
Toluene	ug/L	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	0.20	0.040	8833426
Ethylbenzene	ug/L	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	0.20	0.040	8833426
o-Xylene	ug/L	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	0.20	0.040	8833426
p+m-Xylene	ug/L	<0.40	<0.40	<0.40	<0.40	<0.40	<0.40	0.40	0.080	8833426
Total Xylenes	ug/L	<0.40	<0.40	<0.40	<0.40	<0.40	<0.40	0.40	0.080	8833426
F1 (C6-C10)	ug/L	<25	<25	<25	<25	<25	<25	25	20	8833426
F1 (C6-C10) - BTEX	ug/L	<25	<25	<25	<25	<25	<25	25	20	8833426
F2-F4 Hydrocarbons										
F2 (C10-C16 Hydrocarbons)	ug/L	<100	<100	<100	<100	<100	<100	100	50	8833643
F3 (C16-C34 Hydrocarbons)	ug/L	<200	<200	<200	<200	<200	<200	200	70	8833643
F4 (C34-C50 Hydrocarbons)	ug/L	<200	<200	<200	<200	<200	<200	200	50	8833643
Reached Baseline at C50	ug/L	Yes	Yes	Yes	Yes	Yes	Yes			8833643
Surrogate Recovery (%)										
1,4-Difluorobenzene	%	91	90	89	90	88	89			8833426
4-Bromofluorobenzene	%	108	105	106	102	106	108			8833426
D10-o-Xylene	%	92	90	89	89	88	86			8833426
D4-1,2-Dichloroethane	%	98	99	101	95	96	100			8833426
o-Terphenyl	%	95	96	94	93	94	96			8833643
RDL = Reportable Detection L										

QC Batch = Quality Control Batch

Site Location: RESOLUTE BAY LANDFILL

Sampler Initials: KC

RESULTS OF ANALYSES OF WATER

Bureau Veritas ID		WNL671				WNL672			
Samuling Data		2023/07/23				2023/07/23			
Sampling Date		17:30				15:30			
COC Number		n/a				n/a			
	UNITS	RBL-2	RDL	MDL	QC Batch	RBL-3	RDL	MDL	QC Batch
Inorganics									
Phenols-4AAP	mg/L	0.0064	0.0015	0.0015	8841753	0.038	0.0015	0.0015	8841753
Calculated Parameters									
Anion Sum	me/L	7.10	N/A	N/A	8822383	3.94	N/A	N/A	8822383
Bicarb. Alkalinity (calc. as CaCO3)	mg/L	180	1.0	0.20	8822389	170	1.0	0.20	8822389
Carb. Alkalinity (calc. as CaCO3)	mg/L	1.1	1.0	0.20	8822389	1.0	1.0	0.20	8822389
Cation Sum	me/L	7.60	N/A	N/A	8822383	4.83	N/A	N/A	8822383
Hardness (CaCO3)	mg/L	300	1.0	1.0	8822385	200	1.0	1.0	8822385
Hydrox. Alkalinity (calc. as CaCO3)	mg/L	<1.0	1.0	N/A	8822389	<1.0	1.0	N/A	8822389
Ion Balance (% Difference)	%	3.35	N/A	N/A	8822382	10.1	N/A	N/A	8822382
Inorganics	•	-	•	•					
Total Ammonia-N	mg/L	1.9	0.050	0.0080	8828243	2.2	0.050	0.0080	8828243
Conductivity	umho/cm	690	1.0	0.20	8824108	410	1.0	0.20	8824108
рН	рН	7.83			8824099	7.81			8824099
Total Phosphorus	mg/L	0.26	0.004	0.002	8826856	0.23	0.004	0.002	8826856
Total Suspended Solids	mg/L	<10	10	2.0	8824642	12	10	2.0	8827102
Dissolved Sulphate (SO4)	mg/L	130	1.0	0.10	8823998	9.6	1.0	0.10	8823998
Alkalinity (Total as CaCO3)	mg/L	180	1.0	0.20	8824109	170	1.0	0.20	8824109
Dissolved Chloride (CI-)	mg/L	26	1.0	0.30	8823994	11	1.0	0.30	8823994
Nitrite (N)	mg/L	<0.050	0.050	0.010	8823978	<0.010	0.010	0.0020	8824309
Nitrate (N)	mg/L	0.78	0.50	0.050	8823978	<0.10	0.10	0.010	8824309
Nitrate + Nitrite (N)	mg/L	0.81	0.50	0.050	8823978	<0.10	0.10	0.010	8824309
Petroleum Hydrocarbons									
Total Oil & Grease	mg/L	<0.50	0.50	0.10	8836996	<0.50	0.50	0.10	8836996
Total Oil & Grease Mineral/Synthetic	mg/L	<0.50	0.50	0.10	8837000	<0.50	0.50	0.10	8837000
RDL = Reportable Detection Limit									

QC Batch = Quality Control Batch

Site Location: RESOLUTE BAY LANDFILL

Sampler Initials: KC

RESULTS OF ANALYSES OF WATER

Bureau Veritas ID		WNL673				WNL674			
Samuling Data		2023/07/23				2023/07/24			
Sampling Date		16:30				13:00			
COC Number		n/a				n/a			
	UNITS	AEC1-GW1	RDL	MDL	QC Batch	RBL-4	RDL	MDL	QC Batch
Inorganics									
Phenols-4AAP	mg/L	0.30	0.030	0.030	8841754	<0.0015	0.0015	0.0015	8841753
Calculated Parameters							•		•
Anion Sum	me/L	10.5	N/A	N/A	8822383	2.65	N/A	N/A	8822383
Bicarb. Alkalinity (calc. as CaCO3)	mg/L	410	1.0	0.20	8822389	91	1.0	0.20	8822389
Carb. Alkalinity (calc. as CaCO3)	mg/L	1.1	1.0	0.20	8822389	4.5	1.0	0.20	8822389
Cation Sum	me/L	12.5	N/A	N/A	8822383	3.00	N/A	N/A	8822383
Hardness (CaCO3)	mg/L	290	1.0	1.0	8822385	110	1.0	1.0	8822385
Hydrox. Alkalinity (calc. as CaCO3)	mg/L	<1.0	1.0	N/A	8822389	<1.0	1.0	N/A	8822389
Ion Balance (% Difference)	%	8.68	N/A	N/A	8822382	6.22	N/A	N/A	8822382
Inorganics	•		•						
Total Ammonia-N	mg/L	48	1.0	0.16	8828243	<0.050	0.050	0.0080	8828243
Conductivity	umho/cm	1100	1.0	0.20	8824320	270	1.0	0.20	8824320
рН	рН	7.46			8824318	8.72			8824318
Total Phosphorus	mg/L	3.3	0.004	0.002	8826856	0.040	0.004	0.002	8826856
Total Suspended Solids	mg/L	14	10	2.0	8824642	<10	10	2.0	8824642
Dissolved Sulphate (SO4)	mg/L	25	1.0	0.10	8823998	11	1.0	0.10	8823998
Alkalinity (Total as CaCO3)	mg/L	410	1.0	0.20	8824319	96	1.0	0.20	8824319
Dissolved Chloride (Cl-)	mg/L	61	1.0	0.30	8823994	18	1.0	0.30	8823994
Nitrite (N)	mg/L	0.014	0.010	0.0020	8824309	<0.010	0.010	0.0020	8824309
Nitrate (N)	mg/L	<0.10	0.10	0.010	8824309	<0.10	0.10	0.010	8824309
Nitrate + Nitrite (N)	mg/L	<0.10	0.10	0.010	8824309	<0.10	0.10	0.010	8824309
Petroleum Hydrocarbons									
Total Oil & Grease	mg/L	<0.50	0.50	0.10	8836996	<0.50	0.50	0.10	8836996
Total Oil & Grease Mineral/Synthetic	mg/L	<0.50	0.50	0.10	8837000	<0.50	0.50	0.10	8837000
RDL = Reportable Detection Limit					<u></u>				
OC Datah Ovality Cantual Datah									

QC Batch = Quality Control Batch

Site Location: RESOLUTE BAY LANDFILL

Sampler Initials: KC

RESULTS OF ANALYSES OF WATER

Bureau Veritas ID		WNL675		WNL676		WNL677			
Sampling Data		2023/07/24		2023/07/24		2023/07/24			
Sampling Date		11:50		11:15		10:30			
COC Number		n/a		n/a		n/a			
	UNITS	RBL-8	QC Batch	RBL-13	QC Batch	RBL-16	RDL	MDL	QC Batch
Inorganics									
Phenols-4AAP	mg/L	<0.0015	8841753	<0.0015	8841754	<0.0015	0.0015	0.0015	8841754
Calculated Parameters									
Anion Sum	me/L	3.71	8822383	2.10	8822383	2.05	N/A	N/A	8822383
Bicarb. Alkalinity (calc. as CaCO3)	mg/L	120	8822389	80	8822389	79	1.0	0.20	8822389
Carb. Alkalinity (calc. as CaCO3)	mg/L	2.1	8822389	1.1	8822389	<1.0	1.0	0.20	8822389
Cation Sum	me/L	3.82	8822383	2.22	8822383	2.19	N/A	N/A	8822383
Hardness (CaCO3)	mg/L	150	8822385	99	8822385	98	1.0	1.0	8822385
Hydrox. Alkalinity (calc. as CaCO3)	mg/L	<1.0	8822389	<1.0	8822389	<1.0	1.0	N/A	8822389
Ion Balance (% Difference)	%	1.47	8822382	NC	8822382	NC	N/A	N/A	8822382
Inorganics	•		•		•		•	•	
Total Ammonia-N	mg/L	<0.050	8828243	<0.050	8828243	<0.050	0.050	0.0080	8828243
Conductivity	umho/cm	360	8824108	210	8824320	210	1.0	0.20	8824108
рН	рН	8.29	8824099	8.15	8824318	8.12			8824099
Total Phosphorus	mg/L	0.010	8826856	<0.004	8826856	<0.004	0.004	0.002	8826856
Total Suspended Solids	mg/L	<10	8827102	15	8824642	<10	10	2.0	8824642
Dissolved Sulphate (SO4)	mg/L	11	8823998	16	8823998	16	1.0	0.10	8823998
Alkalinity (Total as CaCO3)	mg/L	120	8824109	81	8824319	80	1.0	0.20	8824109
Dissolved Chloride (Cl-)	mg/L	39	8823994	4.2	8823994	3.9	1.0	0.30	8823994
Nitrite (N)	mg/L	<0.010	8824309	<0.010	8824309	<0.010	0.010	0.0020	8824309
Nitrate (N)	mg/L	<0.10	8824309	0.12	8824309	0.12	0.10	0.010	8824309
Nitrate + Nitrite (N)	mg/L	<0.10	8824309	0.12	8824309	0.12	0.10	0.010	8824309
Petroleum Hydrocarbons									
Total Oil & Grease	mg/L	<0.50	8836996	<0.50	8836996	<0.50	0.50	0.10	8836996
Total Oil & Grease Mineral/Synthetic	mg/L	<0.50	8837000	<0.50	8837000	<0.50	0.50	0.10	8837000
DDI Dementable Detection Limit									

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Site Location: RESOLUTE BAY LANDFILL

Sampler Initials: KC

RESULTS OF ANALYSES OF WATER

Bureau Veritas ID		WNL678				WNL678			
Sampling Date		2023/07/23				2023/07/23			
Sampling Date		15:50				15:50			
COC Number		n/a				n/a			
	UNITS	RBL-DUPA	RDL	MDL	QC Batch	RBL-DUPA Lab-Dup	RDL	MDL	QC Batch
Inorganics									
Phenols-4AAP	mg/L	0.038	0.0015	0.0015	8841753				
Calculated Parameters			•						•
Anion Sum	me/L	3.84	N/A	N/A	8822383				
Bicarb. Alkalinity (calc. as CaCO3)	mg/L	170	1.0	0.20	8822389				
Carb. Alkalinity (calc. as CaCO3)	mg/L	1.0	1.0	0.20	8822389				
Cation Sum	me/L	4.40	N/A	N/A	8822383				
Hardness (CaCO3)	mg/L	180	1.0	1.0	8822385				
Hydrox. Alkalinity (calc. as CaCO3)	mg/L	<1.0	1.0	N/A	8822389				
Ion Balance (% Difference)	%	6.87	N/A	N/A	8822382				
Inorganics	•	-	ē						•
Total Ammonia-N	mg/L	2.1	0.050	0.0080	8828243				
Conductivity	umho/cm	410	1.0	0.20	8824108				
рН	рН	7.80			8824099				
Total Phosphorus	mg/L	0.22	0.004	0.002	8826856				
Total Suspended Solids	mg/L	11	10	2.0	8824642				
Dissolved Sulphate (SO4)	mg/L	6.7	1.0	0.10	8823998				
Alkalinity (Total as CaCO3)	mg/L	170	1.0	0.20	8824109				
Dissolved Chloride (Cl-)	mg/L	7.7	1.0	0.30	8823994				
Nitrite (N)	mg/L	<0.010	0.010	0.0020	8824309	<0.010	0.010	0.0020	8824309
Nitrate (N)	mg/L	<0.10	0.10	0.010	8824309	<0.10	0.10	0.010	8824309
Nitrate + Nitrite (N)	mg/L	<0.10	0.10	0.010	8824309	<0.10	0.10	0.010	8824309
Petroleum Hydrocarbons									
Total Oil & Grease	mg/L	<0.50	0.50	0.10	8836996				
Total Oil & Grease Mineral/Synthetic	mg/L	<0.50	0.50	0.10	8837000				

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

Site Location: RESOLUTE BAY LANDFILL

Sampler Initials: KC

RESULTS OF ANALYSES OF WATER

Bureau Veritas ID		WNL679		WNL680	<u> </u>		
Sampling Date		2023/07/24		2023/07/24			
Sampling Date		11:20		11:55			
COC Number		n/a		n/a			
	UNITS	RBL-DUPB	QC Batch	RBL-DUPC	RDL	MDL	QC Batch
Inorganics							
Phenols-4AAP	mg/L	<0.0015	8841754	<0.0015	0.0015	0.0015	8841753
Calculated Parameters							•
Anion Sum	me/L	3.67	8822383	1.94	N/A	N/A	8822383
Bicarb. Alkalinity (calc. as CaCO3)	mg/L	110	8822389	78	1.0	0.20	8822389
Carb. Alkalinity (calc. as CaCO3)	mg/L	2.1	8822389	<1.0	1.0	0.20	8822389
Cation Sum	me/L	3.87	8822383	2.23	N/A	N/A	8822383
Hardness (CaCO3)	mg/L	140	8822385	99	1.0	1.0	8822385
Hydrox. Alkalinity (calc. as CaCO3)	mg/L	<1.0	8822389	<1.0	1.0	N/A	8822389
Ion Balance (% Difference)	%	2.67	8822382	NC	N/A	N/A	8822382
Inorganics			•				•
Total Ammonia-N	mg/L	<0.050	8828243	<0.050	0.050	0.0080	8828243
Conductivity	umho/cm	370	8824108	210	1.0	0.20	8824108
рН	рН	8.29	8824099	8.08			8824099
Total Phosphorus	mg/L	0.009	8826856	<0.004	0.004	0.002	8826856
Total Suspended Solids	mg/L	<10	8824642	<10	10	2.0	8824642
Dissolved Sulphate (SO4)	mg/L	11	8823998	11	1.0	0.10	8823998
Alkalinity (Total as CaCO3)	mg/L	120	8824109	79	1.0	0.20	8824109
Dissolved Chloride (Cl-)	mg/L	39	8823994	4.6	1.0	0.30	8823994
Nitrite (N)	mg/L	<0.010	8823978	<0.010	0.010	0.0020	8823978
Nitrate (N)	mg/L	<0.10	8823978	0.12	0.10	0.010	8823978
Nitrate + Nitrite (N)	mg/L	<0.10	8823978	0.12	0.10	0.010	8823978
Petroleum Hydrocarbons							•
Total Oil & Grease	mg/L	<0.50	8836996	<0.50	0.50	0.10	8836996
Total Oil & Grease Mineral/Synthetic	mg/L	<0.50	8837000	<0.50	0.50	0.10	8837000
RDL = Reportable Detection Limit	•	•	•	•	•	•	
QC Batch = Quality Control Batch							

Site Location: RESOLUTE BAY LANDFILL

Sampler Initials: KC

ELEMENTS BY ATOMIC SPECTROSCOPY (WATER)

Bureau Veritas ID		WNL671				WNL671			
Compling Date		2023/07/23				2023/07/23			
Sampling Date		17:30				17:30			
COC Number		n/a				n/a			
	UNITS	RBL-2	RDL	MDL	QC Batch	RBL-2 Lab-Dup	RDL	MDL	QC Batch
Metals									
Chromium (VI)	ug/L	<0.50	0.50	0.30	8825340	<0.50	0.50	0.30	8825340
Mercury (Hg)	mg/L	<0.000026 (1)	0.000026	0.000013	8827927				
Dissolved Aluminum (Al)	ug/L	<4.9	4.9	4.9	8843927				
Total Aluminum (AI)	ug/L	6.7	4.9	2.0	8828011				
Dissolved Antimony (Sb)	ug/L	1.8	0.50	N/A	8843927				
Total Antimony (Sb)	ug/L	1.8	0.50	0.30	8828011				
Dissolved Arsenic (As)	ug/L	1.3	1.0	N/A	8843927				
Total Arsenic (As)	ug/L	1.3	1.0	0.50	8828011				
Dissolved Barium (Ba)	ug/L	39	2.0	2.0	8843927				
Total Barium (Ba)	ug/L	43	2.0	0.50	8828011				
Dissolved Beryllium (Be)	ug/L	<0.40	0.40	0.40	8843927				
Total Beryllium (Be)	ug/L	<0.40	0.40	0.10	8828011				
Dissolved Bismuth (Bi)	ug/L	<1.0	1.0	N/A	8843927				
Total Bismuth (Bi)	ug/L	<1.0	1.0	0.070	8828011				
Dissolved Boron (B)	ug/L	130	10	N/A	8843927				
Total Boron (B)	ug/L	130	10	0.30	8828011				
Dissolved Cadmium (Cd)	ug/L	<0.090	0.090	0.081	8843927				
Total Cadmium (Cd)	ug/L	<0.090	0.090	0.090	8828011				
Dissolved Calcium (Ca)	ug/L	98000	200	N/A	8843927				
Total Calcium (Ca)	ug/L	94000	200	50	8828011				
Dissolved Chromium (Cr)	ug/L	<5.0	5.0	N/A	8843927				
Total Chromium (Cr)	ug/L	<5.0	5.0	5.0	8828011				
Dissolved Cobalt (Co)	ug/L	<0.50	0.50	N/A	8843927				
Total Cobalt (Co)	ug/L	0.51	0.50	0.10	8828011				
Dissolved Copper (Cu)	ug/L	1.7	0.90	0.90	8843927				
Total Copper (Cu)	ug/L	2.1	0.90	0.50	8828011				
Dissolved Iron (Fe)	ug/L	<100	100	N/A	8843927				
Total Iron (Fe)	ug/L	<100	100	10	8828011				

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

N/A = Not Applicable

Site Location: RESOLUTE BAY LANDFILL

Sampler Initials: KC

ELEMENTS BY ATOMIC SPECTROSCOPY (WATER)

Bureau Veritas ID		WNL671				WNL671			
Campling Data		2023/07/23				2023/07/23			
Sampling Date		17:30				17:30			
COC Number		n/a				n/a			
	UNITS	RBL-2	RDL	MDL	QC Batch	RBL-2 Lab-Dup	RDL	MDL	QC Batch
Dissolved Lead (Pb)	ug/L	<0.50	0.50	N/A	8843927				
Total Lead (Pb)	ug/L	0.52	0.50	0.10	8828011				
Dissolved Lithium (Li)	ug/L	6.0	5.0	N/A	8843927				
Total Lithium (Li)	ug/L	6.1	5.0	0.50	8828011				
Dissolved Magnesium (Mg)	ug/L	14000	50	N/A	8843927				
Total Magnesium (Mg)	ug/L	14000	50	20	8828011				
Dissolved Manganese (Mn)	ug/L	<2.0	2.0	N/A	8843927				
Total Manganese (Mn)	ug/L	210	2.0	0.50	8828011				
Dissolved Molybdenum (Mo)	ug/L	2.9	0.50	0.50	8843927				
Total Molybdenum (Mo)	ug/L	2.9	0.50	0.20	8828011				
Dissolved Nickel (Ni)	ug/L	1.6	1.0	N/A	8843927				
Total Nickel (Ni)	ug/L	1.9	1.0	0.50	8828011				
Dissolved Phosphorus (P)	ug/L	270	100	N/A	8843927				
Dissolved Potassium (K)	ug/L	13000	200	N/A	8843927				
Total Potassium (K)	ug/L	13000	200	50	8828011				
Dissolved Selenium (Se)	ug/L	<1.0 (1)	1.0	N/A	8843927				
Total Selenium (Se)	ug/L	<1.0 (1)	1.0	0.25	8828011				
Dissolved Silicon (Si)	ug/L	1300	50	N/A	8843927				
Total Silicon (Si)	ug/L	1300	50	30	8828011				
Dissolved Silver (Ag)	ug/L	<0.090	0.090	0.081	8843927				
Total Silver (Ag)	ug/L	<0.090	0.090	0.070	8828011				
Dissolved Sodium (Na)	ug/L	26000	100	N/A	8843927				
Total Sodium (Na)	ug/L	24000	100	50	8828011				
Dissolved Strontium (Sr)	ug/L	380	1.0	N/A	8843927				
Total Strontium (Sr)	ug/L	360	1.0	0.50	8828011				
Dissolved Tellurium (Te)	ug/L	<1.0	1.0	N/A	8843927				
Total Tellurium (Te)	ug/L	<1.0	1.0	0.70	8828011				
Dissolved Thallium (TI)	ug/L	<0.050	0.050	N/A	8843927				
Total Thallium (TI)	ug/L	<0.050	0.050	0.020	8828011				

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

N/A = Not Applicable

Site Location: RESOLUTE BAY LANDFILL

Sampler Initials: KC

ELEMENTS BY ATOMIC SPECTROSCOPY (WATER)

Bureau Veritas ID		WNL671				WNL671			
Campling Data		2023/07/23				2023/07/23			
Sampling Date		17:30				17:30			
COC Number		n/a				n/a			
	UNITS	RBL-2	RDL	MDL	QC Batch	RBL-2 Lab-Dup	RDL	MDL	QC Batch
Dissolved Tin (Sn)	ug/L	<1.0	1.0	N/A	8843927				
Total Tin (Sn)	ug/L	<1.0	1.0	0.50	8828011				
Dissolved Titanium (Ti)	ug/L	<5.0	5.0	N/A	8843927				
Total Titanium (Ti)	ug/L	<5.0	5.0	4.0	8828011				
Dissolved Tungsten (W)	ug/L	<1.0	1.0	N/A	8843927				
Total Tungsten (W)	ug/L	<1.0	1.0	0.50	8828011				
Dissolved Uranium (U)	ug/L	0.28	0.10	N/A	8843927				
Total Uranium (U)	ug/L	0.31	0.10	0.050	8828011				
Dissolved Vanadium (V)	ug/L	<0.50	0.50	0.50	8843927				
Total Vanadium (V)	ug/L	<0.50	0.50	0.40	8828011				
Dissolved Zinc (Zn)	ug/L	13	5.0	N/A	8843927				
Total Zinc (Zn)	ug/L	25	5.0	3.0	8828011				
Dissolved Zirconium (Zr)	ug/L	<1.0	1.0	N/A	8843927				
Total Zirconium (Zr)	ug/L	<1.0	1.0	0.50	8828011				

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

Site Location: RESOLUTE BAY LANDFILL

Sampler Initials: KC

ELEMENTS BY ATOMIC SPECTROSCOPY (WATER)

Sampling Date COC Number UNITS RBL Metals Chromium (VI) Mercury (Hg) Dissolved Aluminum (Al) Dissolved Antimony (Sb) Dissolved Arsenic (As) Dissolved Barium (Ba) Total Barium (Ba) Dissolved Bismuth (Bi) Total Bismuth (Bi) Dissolved Cadmium (Cd) Dissolved Cabalt (Co) Dissolved Copper (Cu) Dissolved Conduct (Co) Dissolved Copper (Cu) Dissolved Copper (Cu) Dissolved Conduct (Co) Dissolved Copper (Cu) Dissolved Copper (Cu) Dissolved Conduct (Co) Dissolved Copper (Cu) Dissolved Copper (Cu)	30 a RDL 50 0.50 026 (1) 0.0000 9 4.9		DL QC Batch	2023/07/23 16:30 n/a			
Metals Chromium (VI) ug/L <0.5	Fig. 1.50 a		DL QC Batch	l			
Metals Chromium (VI)	50 0.50 026 (1) 0.0000 9 4.9		DL QC Batch	n/a			
MetalsChromium (VI)ug/L<0.5Mercury (Hg)mg/L<0.0000Dissolved Aluminum (Al)ug/L<4.5Total Aluminum (Al)ug/L9.8Dissolved Antimony (Sb)ug/L<0.5Total Antimony (Sb)ug/L<0.5Dissolved Arsenic (As)ug/L<1.6Dissolved Barium (Ba)ug/L81Total Barium (Ba)ug/L<0.4Dissolved Beryllium (Be)ug/L<0.4Total Beryllium (Be)ug/L<0.4Dissolved Bismuth (Bi)ug/L<1.6Dissolved Boron (B)ug/L<1.6Dissolved Cadmium (Cd)ug/L<0.0Total Cadmium (Cd)ug/L<0.0Total Calcium (Ca)ug/L<5.0Total Calcium (Ca)ug/L<5.0Dissolved Chromium (Cr)ug/L<5.0Total Chromium (Cr)ug/L<5.0Dissolved Cobalt (Co)ug/L<5.0Total Cobalt (Co)ug/L<5.0	50 0.50 026 (1) 0.0000 9 4.9		DL QC Batch				
Chromium (VI)	9 4.9			AEC1-GW1	RDL	MDL	QC Batch
Mercury (Hg) mg/L <0.0000 Dissolved Aluminum (Al) ug/L <4.9 Total Aluminum (Al) ug/L 9.8 Dissolved Antimony (Sb) ug/L <0.5 Total Antimony (Sb) ug/L <0.5 Dissolved Arsenic (As) ug/L <1.9 Dissolved Barium (Ba) ug/L 81 Total Barium (Ba) ug/L 96 Dissolved Beryllium (Be) ug/L <0.4 Total Beryllium (Be) ug/L <0.4 Total Beryllium (Be) ug/L <1.9 Dissolved Bismuth (Bi) ug/L <1.9 Dissolved Boron (B) ug/L <1.9 Dissolved Cadmium (Cd) ug/L <0.0 Total Cadmium (Ca) ug/L <0.1 Dissolved Calcium (Ca) ug/L 5400 Dissolved Chromium (Cr) ug/L <5.9 Total Chromium (Cr) ug/L <5.9 Dissolved Cobalt (Co) ug/L <0.5 Total Cobalt (Co) ug/L <0.5	9 4.9						
Dissolved Aluminum (AI) ug/L	9 4.9	0.50 0.3	30 8825340	<0.50	0.50	0.30	8825340
Total Aluminum (AI) ug/L 9.8 Dissolved Antimony (Sb) ug/L <0.5 Total Antimony (Sb) ug/L <0.5 Dissolved Arsenic (As) ug/L <1.1 Total Arsenic (As) ug/L 1.5 Dissolved Barium (Ba) ug/L 81 Total Barium (Ba) ug/L 96 Dissolved Beryllium (Be) ug/L <0.4 Total Beryllium (Be) ug/L <0.4 Dissolved Bismuth (Bi) ug/L <1.1 Total Bismuth (Bi) ug/L <1.1 Dissolved Boron (B) ug/L 77 Total Boron (B) ug/L 77 Total Cadmium (Cd) ug/L <0.0 Dissolved Calcium (Ca) ug/L 0.1 Dissolved Calcium (Ca) ug/L 5400 Dissolved Chromium (Cr) ug/L <5.1 Total Chromium (Cr) ug/L <5.1 Dissolved Cobalt (Co) ug/L <0.5 Total Chromium (Cr) ug/L <5.1 Dissolved Cobalt (Co) ug/L <0.5 Total Cobalt (Co) ug/L <0.5 Total Cobalt (Co) ug/L <0.5		0.000026 0.000	0013 8825734				
Dissolved Antimony (Sb) ug/L <0.5 Total Antimony (Sb) ug/L <0.5 Dissolved Arsenic (As) ug/L <1.1 Total Arsenic (As) ug/L 1.5 Dissolved Barium (Ba) ug/L 96 Dissolved Beryllium (Be) ug/L <0.4 Total Beryllium (Be) ug/L <0.4 Dissolved Bismuth (Bi) ug/L <1.1 Total Bismuth (Bi) ug/L <1.1 Dissolved Boron (B) ug/L <1.1 Dissolved Cadmium (Cd) ug/L <0.0 Total Cadmium (Cd) ug/L <0.1 Dissolved Calcium (Ca) ug/L 5600 Total Calcium (Ca) ug/L 55.0 Total Chromium (Cr) ug/L <5.1 Dissolved Cobalt (Co) ug/L <0.5 Total Cobalt (Co) ug/L <0.5 Total Cobalt (Co) ug/L <0.5 Total Cobalt (Co) ug/L <0.5	i	4.9 4.	.9 8843927	<4.9	4.9	4.9	8843927
Total Antimony (Sb) ug/L <0.5 Dissolved Arsenic (As) ug/L 1.5 Total Arsenic (As) ug/L 1.5 Dissolved Barium (Ba) ug/L 81 Total Barium (Ba) ug/L 96 Dissolved Beryllium (Be) ug/L <0.4 Total Beryllium (Be) ug/L <0.4 Dissolved Bismuth (Bi) ug/L <1.6 Dissolved Bismuth (Bi) ug/L <1.6 Dissolved Boron (B) ug/L 77 Total Boron (B) ug/L 77 Total Boron (B) ug/L 81 Dissolved Cadmium (Cd) ug/L <0.0 Dissolved Cadmium (Cd) ug/L 5600 Total Calcium (Ca) ug/L 5400 Dissolved Chromium (Cr) ug/L <5.6 Total Chromium (Cr) ug/L <5.7 Total Cobalt (Co) ug/L 1.3	3 4.9	4.9 2.	.0 8828011	8.0	4.9	2.0	8828011
Dissolved Arsenic (As) ug/L <1.1 Total Arsenic (As) ug/L 1.5 Dissolved Barium (Ba) ug/L 96 Dissolved Beryllium (Be) ug/L <0.4 Total Beryllium (Be) ug/L <0.4 Dissolved Bismuth (Bi) ug/L <1.1 Total Bismuth (Bi) ug/L <1.1 Dissolved Boron (B) ug/L 77 Total Boron (B) ug/L 77 Total Cadmium (Cd) ug/L <0.0 Dissolved Calcium (Ca) ug/L 0.1 Dissolved Calcium (Ca) ug/L 5400 Dissolved Chromium (Cr) ug/L <5.1 Total Chromium (Cr) ug/L <5.1 Dissolved Cobalt (Co) ug/L <0.5 Total Chromium (Cr) ug/L <5.1 Dissolved Cobalt (Co) ug/L <0.5 Total Cobalt (Co) ug/L <0.5	0.50	0.50 N,	/A 8843927	<0.50	0.50	N/A	8843927
Total Arsenic (As) ug/L 1.5 Dissolved Barium (Ba) ug/L 96 Dissolved Beryllium (Be) ug/L <0.4 Total Barium (Be) ug/L <0.4 Total Beryllium (Be) ug/L <0.4 Dissolved Bismuth (Bi) ug/L <1.6 Total Bismuth (Bi) ug/L <1.6 Dissolved Boron (B) ug/L 77 Total Boron (B) ug/L 81 Dissolved Cadmium (Cd) ug/L <0.0 Total Cadmium (Cd) ug/L <0.0 Total Cadmium (Cd) ug/L 5600 Total Calcium (Ca) ug/L 5400 Dissolved Chromium (Cr) ug/L <5.6 Total Chromium (Cr) ug/L <5.6 Dissolved Cobalt (Co) ug/L <0.5 Total Cobalt (Co) ug/L <0.5 Total Cobalt (Co) ug/L <0.5	0.50	0.50 0.3	30 8828011	<0.50	0.50	0.30	8828011
Dissolved Barium (Ba) ug/L 96 Dissolved Beryllium (Be) ug/L <0.4 Total Barium (Be) ug/L <0.4 Total Beryllium (Be) ug/L <0.4 Dissolved Bismuth (Bi) ug/L <1.4 Total Bismuth (Bi) ug/L <1.4 Dissolved Boron (B) ug/L 77 Total Boron (B) ug/L 81 Dissolved Cadmium (Cd) ug/L <0.0 Total Cadmium (Cd) ug/L 0.1 Dissolved Calcium (Ca) ug/L 5600 Total Calcium (Ca) ug/L 5400 Dissolved Chromium (Cr) ug/L <5.4 Total Chromium (Cr) ug/L <5.5 Total Chromium (Cr) ug/L <5.6 Dissolved Cobalt (Co) ug/L <0.5 Total Cobalt (Co) ug/L <0.5 Total Cobalt (Co) ug/L <0.5	0 1.0	1.0 N,	/A 8843927	7.6	1.0	N/A	8843927
Total Barium (Ba) ug/L 96 Dissolved Beryllium (Be) ug/L <0.4 Total Beryllium (Be) ug/L <0.4 Dissolved Bismuth (Bi) ug/L <1.1 Total Bismuth (Bi) ug/L 77 Total Bismuth (Bi) ug/L 77 Total Boron (B) ug/L 77 Total Boron (B) ug/L 81 Dissolved Cadmium (Cd) ug/L <0.0 Total Cadmium (Cd) ug/L 0.1 Dissolved Calcium (Ca) ug/L 5600 Total Calcium (Ca) ug/L 5400 Dissolved Chromium (Cr) ug/L <5.1 Total Chromium (Cr) ug/L <5.1	5 1.0	1.0 0.	50 8828011	8.8	1.0	0.50	8828011
Dissolved Beryllium (Be) ug/L <0.4 Total Beryllium (Be) ug/L <0.4 Dissolved Bismuth (Bi) ug/L <1.4 Total Bismuth (Bi) ug/L <1.4 Dissolved Boron (B) ug/L 77 Total Boron (B) ug/L 81 Dissolved Cadmium (Cd) ug/L <0.0 Total Cadmium (Cd) ug/L 0.1 Dissolved Calcium (Ca) ug/L 5600 Total Calcium (Ca) ug/L 5400 Dissolved Chromium (Cr) ug/L <5.4 Total Chromium (Cr) ug/L <5.6 Total Cobalt (Co) ug/L <0.5	. 2.0	2.0 2.	.0 8843927	4.5	2.0	2.0	8843927
Total Beryllium (Be) ug/L <0.4 Dissolved Bismuth (Bi) ug/L <1.1 Total Bismuth (Bi) ug/L <1.1 Dissolved Boron (B) ug/L 77 Total Boron (B) ug/L 81 Dissolved Cadmium (Cd) ug/L <0.0 Total Cadmium (Cd) ug/L 0.1 Dissolved Calcium (Ca) ug/L 5600 Total Calcium (Ca) ug/L 5400 Dissolved Chromium (Cr) ug/L <5.1 Total Chromium (Cr) ug/L <5.1	2.0	2.0 0.	50 8828011	12	2.0	0.50	8828011
Dissolved Bismuth (Bi) ug/L <1.1 Total Bismuth (Bi) ug/L <1.1 Dissolved Boron (B) ug/L 77 Total Boron (B) ug/L 81 Dissolved Cadmium (Cd) ug/L <0.0 Total Cadmium (Cd) ug/L 0.1 Dissolved Calcium (Ca) ug/L 5600 Total Calcium (Ca) ug/L 5400 Dissolved Chromium (Cr) ug/L <5.1 Total Chromium (Cr) ug/L <5.1 Dissolved Cobalt (Co) ug/L <0.5	10 0.40	0.40 0.4	40 8843927	<0.40	0.40	0.40	8843927
Total Bismuth (Bi) ug/L <1.1 Dissolved Boron (B) ug/L 77 Total Boron (B) ug/L 81 Dissolved Cadmium (Cd) ug/L <0.0 Total Cadmium (Cd) ug/L 0.1 Dissolved Calcium (Ca) ug/L 5600 Total Calcium (Ca) ug/L 5400 Dissolved Chromium (Cr) ug/L <5.0 Total Chromium (Cr) ug/L <5.0 Total Chromium (Cr) ug/L <0.5 Total Chromium (Cr) ug/L <0.5 Total Chromium (Co) ug/L <0.5 Total Cobalt (Co) ug/L 1.3	10 0.40	0.40 0.	10 8828011	<0.40	0.40	0.10	8828011
Dissolved Boron (B) ug/L 77 Total Boron (B) ug/L 81 Dissolved Cadmium (Cd) ug/L <0.0 Total Cadmium (Cd) ug/L 0.1 Dissolved Calcium (Ca) ug/L 5600 Total Calcium (Ca) ug/L 5400 Dissolved Chromium (Cr) ug/L <5.0 Total Chromium (Cr) ug/L <5.0 Total Chromium (Cr) ug/L <0.5 Total Chromium (Co) ug/L <0.5 Total Cobalt (Co) ug/L 1.3	0 1.0	1.0 N,	/A 8843927	<1.0	1.0	N/A	8843927
Total Boron (B) ug/L 81 Dissolved Cadmium (Cd) ug/L <0.0	0 1.0	1.0 0.0	070 8828011	<1.0	1.0	0.070	8828011
Dissolved Cadmium (Cd) ug/L <0.00 Total Cadmium (Cd) ug/L 0.1 Dissolved Calcium (Ca) ug/L 5600 Total Calcium (Ca) ug/L 5400 Dissolved Chromium (Cr) ug/L <5.0 Total Chromium (Cr) ug/L <5.0 Dissolved Cobalt (Co) ug/L <0.5 Total Cobalt (Co) ug/L 1.3	10	10 N,	/A 8843927	400	10	N/A	8843927
Total Cadmium (Cd) ug/L 0.1 Dissolved Calcium (Ca) ug/L 5600 Total Calcium (Ca) ug/L 5400 Dissolved Chromium (Cr) ug/L <5.0	. 10	10 0.3	30 8828011	430	10	0.30	8828011
Dissolved Calcium (Ca) ug/L 5600 Total Calcium (Ca) ug/L 5400 Dissolved Chromium (Cr) ug/L <5.0	90 0.090	0.090 0.0	8843927	<0.090	0.090	0.081	8843927
Total Calcium (Ca) ug/L 5400 Dissolved Chromium (Cr) ug/L <5.0	7 0.090	0.090 0.0	90 8828011	<0.090	0.090	0.090	8828011
Dissolved Chromium (Cr) ug/L <5. Total Chromium (Cr) ug/L <5.	00 200	200 N,	/A 8843927	92000	200	N/A	8843927
Total Chromium (Cr) ug/L <5.0 Dissolved Cobalt (Co) ug/L <0.5	200	200 5	8828011	86000	200	50	8828011
Dissolved Cobalt (Co) ug/L <0.5 Total Cobalt (Co) ug/L 1.3	0 5.0	5.0 N,	/A 8843927	<5.0	5.0	N/A	8843927
Total Cobalt (Co) ug/L 1.3	0 5.0	5.0 5.	.0 8828011	<5.0	5.0	5.0	8828011
. ,	0.50	0.50 N	/A 8843927	9.2	0.50	N/A	8843927
Dissolved Copper (Cu) ug/L 2.2	0.50	0.50 0.:	10 8828011	8.5	0.50	0.10	8828011
	0.50	0.90 0.9	90 8843927	1.2	0.90	0.90	8843927
Total Copper (Cu) ug/L 2.5		0.90 0.	50 8828011	2.8	0.90	0.50	8828011
Dissolved Iron (Fe) ug/L <10	2 0.90	100 N,	/A 8843927	4400	100	N/A	8843927
Total Iron (Fe) ug/L 910	0.90 0.90	100 1	.0 8828011	7500	100	10	8828011
Dissolved Lead (Pb) ug/L <0.5	0.90 0.90 0.90	100 1	/A 8843927	<0.50	0.50	N/A	8843927

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

N/A = Not Applicable

Site Location: RESOLUTE BAY LANDFILL

Sampler Initials: KC

ELEMENTS BY ATOMIC SPECTROSCOPY (WATER)

Bureau Veritas ID		WNL672				WNL673			
Sampling Date		2023/07/23				2023/07/23			
. 0		15:30				16:30			
COC Number		n/a				n/a			
	UNITS	RBL-3	RDL	MDL	QC Batch	AEC1-GW1	RDL	MDL	QC Batch
Total Lead (Pb)	ug/L	2.0	0.50	0.10	8828011	1.4	0.50	0.10	8828011
Dissolved Lithium (Li)	ug/L	<5.0	5.0	N/A	8843927	<5.0	5.0	N/A	8843927
Total Lithium (Li)	ug/L	<5.0	5.0	0.50	8828011	<5.0	5.0	0.50	8828011
Dissolved Magnesium (Mg)	ug/L	14000	50	N/A	8843927	14000	50	N/A	8843927
Total Magnesium (Mg)	ug/L	13000	50	20	8828011	13000	50	20	8828011
Dissolved Manganese (Mn)	ug/L	<2.0	2.0	N/A	8843927	470	2.0	N/A	8843927
Total Manganese (Mn)	ug/L	430	2.0	0.50	8828011	440	2.0	0.50	8828011
Dissolved Molybdenum (Mo)	ug/L	2.8	0.50	0.50	8843927	2.4	0.50	0.50	8843927
Total Molybdenum (Mo)	ug/L	2.8	0.50	0.20	8828011	2.7	0.50	0.20	8828011
Dissolved Nickel (Ni)	ug/L	1.4	1.0	N/A	8843927	17	1.0	N/A	8843927
Total Nickel (Ni)	ug/L	1.9	1.0	0.50	8828011	16	1.0	0.50	8828011
Dissolved Phosphorus (P)	ug/L	<100	100	N/A	8843927	1600	100	N/A	8843927
Dissolved Potassium (K)	ug/L	5700	200	N/A	8843927	24000	200	N/A	8843927
Total Potassium (K)	ug/L	5000	200	50	8828011	22000	200	50	8828011
Dissolved Selenium (Se)	ug/L	<1.0 (1)	1.0	N/A	8843927	<1.0 (1)	1.0	N/A	8843927
Total Selenium (Se)	ug/L	<1.0 (1)	1.0	0.25	8828011	<1.0 (1)	1.0	0.25	8828011
Dissolved Silicon (Si)	ug/L	880	50	N/A	8843927	2500	50	N/A	8843927
Total Silicon (Si)	ug/L	970	50	30	8828011	2400	50	30	8828011
Dissolved Silver (Ag)	ug/L	<0.090	0.090	0.081	8843927	<0.090	0.090	0.081	8843927
Total Silver (Ag)	ug/L	<0.090	0.090	0.070	8828011	<0.090	0.090	0.070	8828011
Dissolved Sodium (Na)	ug/L	14000	100	N/A	8843927	57000	100	N/A	8843927
Total Sodium (Na)	ug/L	12000	100	50	8828011	51000	100	50	8828011
Dissolved Strontium (Sr)	ug/L	150	1.0	N/A	8843927	200	1.0	N/A	8843927
Total Strontium (Sr)	ug/L	140	1.0	0.50	8828011	180	1.0	0.50	8828011
Dissolved Tellurium (Te)	ug/L	<1.0	1.0	N/A	8843927	<1.0	1.0	N/A	8843927
Total Tellurium (Te)	ug/L	<1.0	1.0	0.70	8828011	<1.0	1.0	0.70	8828011
Dissolved Thallium (TI)	ug/L	<0.050	0.050	N/A	8843927	<0.050	0.050	N/A	8843927
Total Thallium (TI)	ug/L	<0.050	0.050	0.020	8828011	<0.050	0.050	0.020	8828011
Dissolved Tin (Sn)	ug/L	<1.0	1.0	N/A	8843927	<1.0	1.0	N/A	8843927
Total Tin (Sn)	ug/L	<1.0	1.0	0.50	8828011	<1.0	1.0	0.50	8828011

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

N/A = Not Applicable

Site Location: RESOLUTE BAY LANDFILL

Sampler Initials: KC

ELEMENTS BY ATOMIC SPECTROSCOPY (WATER)

Bureau Veritas ID		WNL672				WNL673			
Compling Data		2023/07/23				2023/07/23			
Sampling Date		15:30				16:30			
COC Number		n/a				n/a			
	UNITS	RBL-3	RDL	MDL	QC Batch	AEC1-GW1	RDL	MDL	QC Batch
Dissolved Titanium (Ti)	ug/L	<5.0	5.0	N/A	8843927	<5.0	5.0	N/A	8843927
Total Titanium (Ti)	ug/L	<5.0	5.0	4.0	8828011	<5.0	5.0	4.0	8828011
Dissolved Tungsten (W)	ug/L	<1.0	1.0	N/A	8843927	<1.0	1.0	N/A	8843927
Total Tungsten (W)	ug/L	<1.0	1.0	0.50	8828011	<1.0	1.0	0.50	8828011
Dissolved Uranium (U)	ug/L	0.36	0.10	N/A	8843927	0.21	0.10	N/A	8843927
Total Uranium (U)	ug/L	0.33	0.10	0.050	8828011	0.21	0.10	0.050	8828011
Dissolved Vanadium (V)	ug/L	<0.50	0.50	0.50	8843927	2.0	0.50	0.50	8843927
Total Vanadium (V)	ug/L	<0.50	0.50	0.40	8828011	2.4	0.50	0.40	8828011
Dissolved Zinc (Zn)	ug/L	<5.0	5.0	N/A	8843927	<5.0	5.0	N/A	8843927
Total Zinc (Zn)	ug/L	15	5.0	3.0	8828011	6.7	5.0	3.0	8828011
Dissolved Zirconium (Zr)	ug/L	<1.0	1.0	N/A	8843927	<1.0	1.0	N/A	8843927
Total Zirconium (Zr)	ug/L	<1.0	1.0	0.50	8828011	<1.0	1.0	0.50	8828011

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Site Location: RESOLUTE BAY LANDFILL

Sampler Initials: KC

ELEMENTS BY ATOMIC SPECTROSCOPY (WATER)

Bureau Veritas ID		WNL674		WNL675				WNL675			
Sampling Date		2023/07/24		2023/07/24				2023/07/24			
Sampling Date		13:00		11:50				11:50			
COC Number		n/a		n/a				n/a			
	UNITS	RBL-4	QC Batch	RBL-8	RDL	MDL	QC Batch	RBL-8 Lab-Dup	RDL	MDL	QC Batch
Metals											
Chromium (VI)	ug/L	1.6	8825340	0.51	0.50	0.30	8825340				
Mercury (Hg)	mg/L	<0.000026 (1)	8825734	<0.000026 (1)	0.000026	0.000013	8827927				
Dissolved Aluminum (AI)	ug/L	6.5	8843927	<4.9	4.9	4.9	8843936	<4.9	4.9	4.9	8843936
Total Aluminum (AI)	ug/L	23	8828011	50	4.9	2.0	8828011				
Dissolved Antimony (Sb)	ug/L	<0.50	8843927	<0.50	0.50	N/A	8843936	<0.50	0.50	N/A	8843936
Total Antimony (Sb)	ug/L	<0.50	8828011	<0.50	0.50	0.30	8828011				
Dissolved Arsenic (As)	ug/L	<1.0	8843927	<1.0	1.0	N/A	8843936	<1.0	1.0	N/A	8843936
Total Arsenic (As)	ug/L	<1.0	8828011	<1.0	1.0	0.50	8828011				
Dissolved Barium (Ba)	ug/L	72	8843927	56	2.0	2.0	8843936	54	2.0	2.0	8843936
Total Barium (Ba)	ug/L	84	8828011	56	2.0	0.50	8828011				
Dissolved Beryllium (Be)	ug/L	<0.40	8843927	<0.40	0.40	0.40	8843936	<0.40	0.40	0.40	8843936
Total Beryllium (Be)	ug/L	<0.40	8828011	<0.40	0.40	0.10	8828011				
Dissolved Bismuth (Bi)	ug/L	<1.0	8843927	<1.0	1.0	N/A	8843936	<1.0	1.0	N/A	8843936
Total Bismuth (Bi)	ug/L	<1.0	8828011	<1.0	1.0	0.070	8828011				
Dissolved Boron (B)	ug/L	45	8843927	38	10	N/A	8843936	37	10	N/A	8843936
Total Boron (B)	ug/L	45	8828011	40	10	0.30	8828011				
Dissolved Cadmium (Cd)	ug/L	<0.090	8843927	<0.090	0.090	0.081	8843936	<0.090	0.090	0.081	8843936
Total Cadmium (Cd)	ug/L	0.091	8828011	<0.090	0.090	0.090	8828011				
Dissolved Calcium (Ca)	ug/L	29000	8843927	35000	200	N/A	8843936	35000	200	N/A	8843936
Total Calcium (Ca)	ug/L	33000	8828011	37000	200	50	8828011				
Dissolved Chromium (Cr)	ug/L	<5.0	8843927	<5.0	5.0	N/A	8843936	<5.0	5.0	N/A	8843936
Total Chromium (Cr)	ug/L	<5.0	8828011	<5.0	5.0	5.0	8828011				
Dissolved Cobalt (Co)	ug/L	<0.50	8843927	<0.50	0.50	N/A	8843936	<0.50	0.50	N/A	8843936
Total Cobalt (Co)	ug/L	<0.50	8828011	<0.50	0.50	0.10	8828011				
Dissolved Copper (Cu)	ug/L	2.8	8843927	<0.90	0.90	0.90	8843936	<0.90	0.90	0.90	8843936
Total Copper (Cu)	ug/L	2.9	8828011	<0.90	0.90	0.50	8828011				
Dissolved Iron (Fe)	ug/L	<100	8843927	<100	100	N/A	8843936	<100	100	N/A	8843936
Total Iron (Fe)	ug/L	<100	8828011	<100	100	10	8828011				

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

N/A = Not Applicable

Site Location: RESOLUTE BAY LANDFILL

Sampler Initials: KC

ELEMENTS BY ATOMIC SPECTROSCOPY (WATER)

Bureau Veritas ID		WNL674		WNL675				WNL675			
Sampling Date		2023/07/24		2023/07/24				2023/07/24			
Sampling Date		13:00		11:50				11:50			
COC Number		n/a		n/a				n/a			
	UNITS	RBL-4	QC Batch	RBL-8	RDL	MDL	QC Batch	RBL-8 Lab-Dup	RDL	MDL	QC Batch
Dissolved Lead (Pb)	ug/L	<0.50	8843927	<0.50	0.50	N/A	8843936	<0.50	0.50	N/A	8843936
Total Lead (Pb)	ug/L	1.3	8828011	<0.50	0.50	0.10	8828011				
Dissolved Lithium (Li)	ug/L	<5.0	8843927	<5.0	5.0	N/A	8843936	<5.0	5.0	N/A	8843936
Total Lithium (Li)	ug/L	<5.0	8828011	<5.0	5.0	0.50	8828011				
Dissolved Magnesium (Mg)	ug/L	10000	8843927	14000	50	N/A	8843936	13000	50	N/A	8843936
Total Magnesium (Mg)	ug/L	10000	8828011	14000	50	20	8828011				
Dissolved Manganese (Mn)	ug/L	<2.0	8843927	<2.0	2.0	N/A	8843936	<2.0	2.0	N/A	8843936
Total Manganese (Mn)	ug/L	3.7	8828011	2.6	2.0	0.50	8828011				
Dissolved Molybdenum (Mo)	ug/L	0.89	8843927	0.54	0.50	0.50	8843936	0.56	0.50	0.50	8843936
Total Molybdenum (Mo)	ug/L	0.74	8828011	0.53	0.50	0.20	8828011				
Dissolved Nickel (Ni)	ug/L	<1.0	8843927	<1.0	1.0	N/A	8843936	<1.0	1.0	N/A	8843936
Total Nickel (Ni)	ug/L	<1.0	8828011	<1.0	1.0	0.50	8828011				
Dissolved Phosphorus (P)	ug/L	<100	8843927	<100	100	N/A	8843936	<100	100	N/A	8843936
Dissolved Potassium (K)	ug/L	1400	8843927	1400	200	N/A	8843936	1400	200	N/A	8843936
Total Potassium (K)	ug/L	1100	8828011	1500	200	50	8828011				
Dissolved Selenium (Se)	ug/L	<1.0 (1)	8843927	<1.0	1.0	N/A	8843936	<1.0	1.0	N/A	8843936
Total Selenium (Se)	ug/L	<1.0 (1)	8828011	<1.0 (1)	1.0	0.25	8828011				
Dissolved Silicon (Si)	ug/L	240	8843927	200	50	N/A	8843936	190	50	N/A	8843936
Total Silicon (Si)	ug/L	360	8828011	290	50	30	8828011				
Dissolved Silver (Ag)	ug/L	<0.090	8843927	<0.090	0.090	0.081	8843936	<0.090	0.090	0.081	8843936
Total Silver (Ag)	ug/L	<0.090	8828011	<0.090	0.090	0.070	8828011				
Dissolved Sodium (Na)	ug/L	15000	8843927	20000	100	N/A	8843936	21000	100	N/A	8843936
Total Sodium (Na)	ug/L	15000	8828011	21000	100	50	8828011				
Dissolved Strontium (Sr)	ug/L	87	8843927	170	1.0	N/A	8843936	160	1.0	N/A	8843936
Total Strontium (Sr)	ug/L	88	8828011	150	1.0	0.50	8828011				
Dissolved Tellurium (Te)	ug/L	<1.0	8843927	<1.0	1.0	N/A	8843936	<1.0	1.0	N/A	8843936
Total Tellurium (Te)	ug/L	<1.0	8828011	<1.0	1.0	0.70	8828011				
Dissolved Thallium (TI)	ug/L	<0.050	8843927	<0.050	0.050	N/A	8843936	<0.050	0.050	N/A	8843936
Total Thallium (TI)	ug/L	<0.050	8828011	<0.050	0.050	0.020	8828011				

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

N/A = Not Applicable

Site Location: RESOLUTE BAY LANDFILL

Sampler Initials: KC

ELEMENTS BY ATOMIC SPECTROSCOPY (WATER)

Bureau Veritas ID		WNL674		WNL675				WNL675			
Sampling Data		2023/07/24		2023/07/24				2023/07/24			
Sampling Date		13:00		11:50				11:50			
COC Number		n/a		n/a				n/a			
	UNITS	RBL-4	QC Batch	RBL-8	RDL	MDL	QC Batch	RBL-8 Lab-Dup	RDL	MDL	QC Batch
Dissolved Tin (Sn)	ug/L	<1.0	8843927	<1.0	1.0	N/A	8843936	<1.0	1.0	N/A	8843936
Total Tin (Sn)	ug/L	<1.0	8828011	<1.0	1.0	0.50	8828011				
Dissolved Titanium (Ti)	ug/L	<5.0	8843927	<5.0	5.0	N/A	8843936	<5.0	5.0	N/A	8843936
Total Titanium (Ti)	ug/L	<5.0	8828011	<5.0	5.0	4.0	8828011				
Dissolved Tungsten (W)	ug/L	<1.0	8843927	<1.0	1.0	N/A	8843936	<1.0	1.0	N/A	8843936
Total Tungsten (W)	ug/L	<1.0	8828011	<1.0	1.0	0.50	8828011				
Dissolved Uranium (U)	ug/L	0.18	8843927	0.21	0.10	N/A	8843936	0.20	0.10	N/A	8843936
Total Uranium (U)	ug/L	0.17	8828011	0.17	0.10	0.050	8828011				
Dissolved Vanadium (V)	ug/L	<0.50	8843927	<0.50	0.50	0.50	8843936	<0.50	0.50	0.50	8843936
Total Vanadium (V)	ug/L	<0.50	8828011	<0.50	0.50	0.40	8828011				
Dissolved Zinc (Zn)	ug/L	<5.0	8843927	<5.0	5.0	N/A	8843936	<5.0	5.0	N/A	8843936
Total Zinc (Zn)	ug/L	11	8828011	<5.0	5.0	3.0	8828011				
Dissolved Zirconium (Zr)	ug/L	<1.0	8843927	<1.0	1.0	N/A	8843936	<1.0	1.0	N/A	8843936
Total Zirconium (Zr)	ug/L	<1.0	8828011	<1.0	1.0	0.50	8828011				

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

Site Location: RESOLUTE BAY LANDFILL

Sampler Initials: KC

ELEMENTS BY ATOMIC SPECTROSCOPY (WATER)

Sampling Date						1	1	
		2023/07/24	2023/07/24		2023/07/23			
Sampling Bute		11:15	10:30		15:50			
COC Number		n/a	n/a		n/a			
	UNITS	RBL-13	RBL-16	QC Batch	RBL-DUPA	RDL	MDL	QC Batch
Metals								
Chromium (VI)	ug/L	<0.50	<0.50	8825340	<0.50	0.50	0.30	8825340
Mercury (Hg)	mg/L	<0.000026 (1)	<0.000026 (1)	8825734	<0.000026 (1)	0.000026	0.000013	8827927
Dissolved Aluminum (Al)	ug/L	<4.9	<4.9	8843927	<4.9	4.9	4.9	8843936
Total Aluminum (Al)	ug/L	14	5.6	8828011	9.1	4.9	2.0	8828011
Dissolved Antimony (Sb)	ug/L	<0.50	<0.50	8843927	<0.50	0.50	N/A	8843936
Total Antimony (Sb)	ug/L	<0.50	<0.50	8828011	<0.50	0.50	0.30	8828011
Dissolved Arsenic (As)	ug/L	<1.0	<1.0	8843927	<1.0	1.0	N/A	8843936
Total Arsenic (As)	ug/L	<1.0	<1.0	8828011	1.6	1.0	0.50	8828011
Dissolved Barium (Ba)	ug/L	4.3	4.5	8843927	78	2.0	2.0	8843936
Total Barium (Ba)	ug/L	4.5	4.7	8828011	95	2.0	0.50	8828011
Dissolved Beryllium (Be)	ug/L	<0.40	<0.40	8843927	<0.40	0.40	0.40	8843936
Total Beryllium (Be)	ug/L	<0.40	<0.40	8828011	<0.40	0.40	0.10	8828011
Dissolved Bismuth (Bi)	ug/L	<1.0	<1.0	8843927	<1.0	1.0	N/A	8843936
Total Bismuth (Bi)	ug/L	<1.0	<1.0	8828011	<1.0	1.0	0.070	8828011
Dissolved Boron (B)	ug/L	19	21	8843927	82	10	N/A	8843936
Total Boron (B)	ug/L	19	19	8828011	80	10	0.30	8828011
Dissolved Cadmium (Cd)	ug/L	<0.090	<0.090	8843927	<0.090	0.090	0.081	8843936
Total Cadmium (Cd)	ug/L	<0.090	<0.090	8828011	0.18	0.090	0.090	8828011
Dissolved Calcium (Ca)	ug/L	32000	31000	8843927	50000	200	N/A	8843936
Total Calcium (Ca)	ug/L	31000	32000	8828011	51000	200	50	8828011
Dissolved Chromium (Cr)	ug/L	<5.0	<5.0	8843927	<5.0	5.0	N/A	8843936
Total Chromium (Cr)	ug/L	<5.0	<5.0	8828011	<5.0	5.0	5.0	8828011
Dissolved Cobalt (Co)	ug/L	<0.50	<0.50	8843927	<0.50	0.50	N/A	8843936
Total Cobalt (Co)	ug/L	<0.50	<0.50	8828011	1.2	0.50	0.10	8828011
Dissolved Copper (Cu)	ug/L	<0.90	<0.90	8843927	1.1	0.90	0.90	8843936
Total Copper (Cu)	ug/L	<0.90	<0.90	8828011	2.5	0.90	0.50	8828011
Dissolved Iron (Fe)	ug/L	<100	<100	8843927	<100	100	N/A	8843936
Total Iron (Fe)	ug/L	<100	<100	8828011	870	100	10	8828011
Dissolved Lead (Pb)	ug/L	<0.50	<0.50	8843927	<0.50	0.50	N/A	8843936

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

N/A = Not Applicable

Site Location: RESOLUTE BAY LANDFILL

Sampler Initials: KC

ELEMENTS BY ATOMIC SPECTROSCOPY (WATER)

COC Number Total Lead (Pb) Dissolved Lithium (Li) Usylt Dissolved Magnesium (Mg) Usylt Dissolved Magnesium (Mg) Ug/L Dissolved Manganese (Mn) Dissolved Manganese (Mn) Ug/L Dissolved Molybdenum (Mo) Ug/L Dissolved Molybdenum (Mo) Ug/L Dissolved Nickel (Ni) Ug/L Dissolved Nickel (Ni) Ug/L Dissolved Phosphorus (P) Dissolved Potassium (K) Ug/L Dissolved Selenium (Se) Ug/L Dissolved Silicon (Si) Ug/L Dissolved Silicon (Si) Ug/L Dissolved Silver (Ag) Ug/L Dissolved Sodium (Na) Ug/L Dissolved Strontium (Sr) Ug/L Dissolved Strontium (Te) Ug/L Dissolved Tellurium (Te) Ug/L Total Tellurium (Te) Ug/L	2023/07/24 11:15 n/a RBL-13	2023/07/24 10:30 n/a		2023/07/23			
COC Number UNITS Total Lead (Pb) Dissolved Lithium (Li) Total Lithium (Li) Dissolved Magnesium (Mg) Total Magnesium (Mg) Dissolved Manganese (Mn) Ug/L Dissolved Manganese (Mn) Dissolved Molybdenum (Mo) Total Molybdenum (Mo) Dissolved Nickel (Ni) Total Nickel (Ni) Ug/L Dissolved Potassium (K) Dissolved Potassium (K) Ug/L Dissolved Selenium (Se) Ug/L Dissolved Silicon (Si) Ug/L Dissolved Silver (Ag) Dissolved Sodium (Na) Ug/L Total Silver (Ag) Dissolved Strontium (Sr) Ug/L Total Strontium (Sr) Ug/L Ug/L	n/a RBL-13						
Total Lead (Pb) ug/L Dissolved Lithium (Li) ug/L Total Lithium (Li) ug/L Dissolved Magnesium (Mg) ug/L Total Magnesium (Mg) ug/L Total Magnesium (Mg) ug/L Total Manganese (Mn) ug/L Dissolved Manganese (Mn) ug/L Total Manganese (Mn) ug/L Total Molybdenum (Mo) ug/L Total Molybdenum (Mo) ug/L Total Molybdenum (Mo) ug/L Total Nickel (Ni) ug/L Dissolved Nickel (Ni) ug/L Dissolved Phosphorus (P) ug/L Dissolved Potassium (K) ug/L Total Potassium (K) ug/L Total Selenium (Se) ug/L Total Selenium (Se) ug/L Total Silicon (Si) ug/L Total Silicon (Si) ug/L Total Silver (Ag) ug/L Total Silver (Ag) ug/L Total Sodium (Na) ug/L Total Sodium (Na) ug/L Total Sodium (Na) ug/L Total Strontium (Sr) ug/L Total Strontium (Sr) ug/L Total Strontium (Sr) ug/L	RBL-13	n/a		15:50			
Total Lead (Pb) ug/L Dissolved Lithium (Li) ug/L Total Lithium (Li) ug/L Dissolved Magnesium (Mg) ug/L Total Magnesium (Mg) ug/L Dissolved Manganese (Mn) ug/L Dissolved Molybdenum (Mo) ug/L Dissolved Molybdenum (Mo) ug/L Total Molybdenum (Mo) ug/L Dissolved Nickel (Ni) ug/L Dissolved Nickel (Ni) ug/L Dissolved Potassium (K) ug/L Dissolved Potassium (K) ug/L Dissolved Selenium (Se) ug/L Dissolved Silicon (Si) ug/L Dissolved Silicon (Si) ug/L Total Silver (Ag) ug/L Dissolved Sodium (Na) ug/L Dissolved Sodium (Na) ug/L Total Sodium (Na) ug/L Total Sodium (Na) ug/L Total Sodium (Na) ug/L Dissolved Strontium (Sr) ug/L Total Strontium (Sr) ug/L Total Strontium (Sr) ug/L				n/a			
Dissolved Lithium (Li) ug/L Total Lithium (Li) ug/L Dissolved Magnesium (Mg) ug/L Total Magnesium (Mg) ug/L Total Magnesium (Mg) ug/L Dissolved Manganese (Mn) ug/L Dissolved Molybdenum (Mo) ug/L Dissolved Molybdenum (Mo) ug/L Total Molybdenum (Mo) ug/L Total Molybdenum (Mo) ug/L Dissolved Nickel (Ni) ug/L Dissolved Phosphorus (P) ug/L Dissolved Potassium (K) ug/L Total Potassium (K) ug/L Total Selenium (Se) ug/L Total Selenium (Se) ug/L Total Silicon (Si) ug/L Total Silicon (Si) ug/L Total Silver (Ag) ug/L Total Sodium (Na) ug/L Dissolved Sodium (Na) ug/L Total Sodium (Na) ug/L Total Sodium (Na) ug/L Dissolved Strontium (Sr) ug/L Total Strontium (Sr) ug/L Dissolved Tellurium (Te) ug/L	<0.50	RBL-16	QC Batch	RBL-DUPA	RDL	MDL	QC Batch
Total Lithium (Li) ug/L Dissolved Magnesium (Mg) ug/L Total Magnesium (Mg) ug/L Dissolved Manganese (Mn) ug/L Total Manganese (Mn) ug/L Total Manganese (Mn) ug/L Dissolved Molybdenum (Mo) ug/L Total Molybdenum (Mo) ug/L Total Molybdenum (Mo) ug/L Dissolved Nickel (Ni) ug/L Dissolved Potassium (K) ug/L Dissolved Potassium (K) ug/L Total Potassium (K) ug/L Dissolved Selenium (Se) ug/L Total Selenium (Se) ug/L Dissolved Silicon (Si) ug/L Total Silicon (Si) ug/L Total Silver (Ag) ug/L Total Silver (Ag) ug/L Total Sodium (Na) ug/L Total Sodium (Na) ug/L Total Sodium (Na) ug/L Total Strontium (Sr) ug/L Total Strontium (Sr) ug/L Total Strontium (Sr) ug/L		<0.50	8828011	1.9	0.50	0.10	8828011
Dissolved Magnesium (Mg) ug/L Total Magnesium (Mg) ug/L Dissolved Manganese (Mn) ug/L Total Manganese (Mn) ug/L Total Manganese (Mn) ug/L Dissolved Molybdenum (Mo) ug/L Total Molybdenum (Mo) ug/L Dissolved Nickel (Ni) ug/L Total Nickel (Ni) ug/L Dissolved Phosphorus (P) ug/L Dissolved Potassium (K) ug/L Total Potassium (K) ug/L Dissolved Selenium (Se) ug/L Dissolved Silicon (Si) ug/L Dissolved Silicon (Si) ug/L Total Silicon (Si) ug/L Total Silicon (Si) ug/L Total Silver (Ag) ug/L Total Sodium (Na) ug/L Total Sodium (Na) ug/L Total Strontium (Sr) ug/L Total Strontium (Sr) ug/L	<5.0	<5.0	8843927	<5.0	5.0	N/A	8843936
Total Magnesium (Mg) ug/L Dissolved Manganese (Mn) ug/L Total Manganese (Mn) ug/L Dissolved Molybdenum (Mo) ug/L Total Molybdenum (Mo) ug/L Dissolved Nickel (Ni) ug/L Total Nickel (Ni) ug/L Dissolved Phosphorus (P) ug/L Dissolved Potassium (K) ug/L Total Potassium (K) ug/L Total Selenium (Se) ug/L Total Selenium (Se) ug/L Total Silicon (Si) ug/L Total Silicon (Si) ug/L Dissolved Silver (Ag) ug/L Total Silver (Ag) ug/L Total Sodium (Na) ug/L Dissolved Sodium (Na) ug/L Total Sodium (Na) ug/L Dissolved Strontium (Sr) ug/L Total Strontium (Sr) ug/L Total Strontium (Sr) ug/L	<5.0	<5.0	8828011	<5.0	5.0	0.50	8828011
Dissolved Manganese (Mn) ug/L Total Manganese (Mn) ug/L Dissolved Molybdenum (Mo) ug/L Total Molybdenum (Mo) ug/L Total Molybdenum (Mo) ug/L Total Mickel (Ni) ug/L Total Nickel (Ni) ug/L Dissolved Phosphorus (P) ug/L Dissolved Potassium (K) ug/L Total Potassium (K) ug/L Total Selenium (Se) ug/L Total Selenium (Se) ug/L Total Silicon (Si) ug/L Total Silicon (Si) ug/L Total Silver (Ag) ug/L Total Silver (Ag) ug/L Total Silver (Ag) ug/L Total Sodium (Na) ug/L Total Sodium (Na) ug/L Total Sodium (Na) ug/L Total Strontium (Sr) ug/L Total Strontium (Sr) ug/L	4800	4800	8843927	13000	50	N/A	8843936
Total Manganese (Mn) ug/L Dissolved Molybdenum (Mo) ug/L Total Molybdenum (Mo) ug/L Dissolved Nickel (Ni) ug/L Total Nickel (Ni) ug/L Dissolved Potassium (K) ug/L Dissolved Potassium (K) ug/L Total Potassium (K) ug/L Dissolved Selenium (Se) ug/L Dissolved Silicon (Si) ug/L Total Silicon (Si) ug/L Total Silicon (Si) ug/L Dissolved Silver (Ag) ug/L Total Silver (Ag) ug/L Total Sodium (Na) ug/L Dissolved Strontium (Sr) ug/L Total Strontium (Sr) ug/L Dissolved Tellurium (Te) ug/L	4500	4700	8828011	13000	50	20	8828011
Dissolved Molybdenum (Mo) ug/L Total Molybdenum (Mo) ug/L Dissolved Nickel (Ni) ug/L Total Nickel (Ni) ug/L Dissolved Phosphorus (P) ug/L Dissolved Potassium (K) ug/L Total Potassium (K) ug/L Total Selenium (Se) ug/L Dissolved Silicon (Si) ug/L Total Silicon (Si) ug/L Total Silicon (Si) ug/L Dissolved Silver (Ag) ug/L Total Silver (Ag) ug/L Dissolved Sodium (Na) ug/L Total Strontium (Sr) ug/L Total Strontium (Sr) ug/L	<2.0	<2.0	8843927	<2.0	2.0	N/A	8843936
Total Molybdenum (Mo) ug/L Dissolved Nickel (Ni) ug/L Total Nickel (Ni) ug/L Dissolved Phosphorus (P) ug/L Dissolved Potassium (K) ug/L Total Potassium (K) ug/L Total Selenium (Se) ug/L Total Selenium (Se) ug/L Total Silicon (Si) ug/L Total Silicon (Si) ug/L Dissolved Silver (Ag) ug/L Total Silver (Ag) ug/L Total Silver (Ag) ug/L Dissolved Sodium (Na) ug/L Dissolved Sodium (Na) ug/L Total Sodium (Na) ug/L Dissolved Strontium (Sr) ug/L Total Strontium (Sr) ug/L Dissolved Tellurium (Te) ug/L	<2.0	<2.0	8828011	440	2.0	0.50	8828011
Dissolved Nickel (Ni) ug/L Total Nickel (Ni) ug/L Dissolved Phosphorus (P) ug/L Dissolved Potassium (K) ug/L Total Potassium (K) ug/L Total Selenium (Se) ug/L Dissolved Silicon (Si) ug/L Total Silicon (Si) ug/L Total Silver (Ag) ug/L Dissolved Sodium (Na) ug/L Total Sodium (Na) ug/L Total Sodium (Na) ug/L Dissolved Strontium (Sr) ug/L Total Strontium (Sr) ug/L Dissolved Tellurium (Te) ug/L	<0.50	<0.50	8843927	2.6	0.50	0.50	8843936
Total Nickel (Ni) ug/L Dissolved Phosphorus (P) ug/L Dissolved Potassium (K) ug/L Total Potassium (K) ug/L Total Selenium (Se) ug/L Dissolved Silicon (Si) ug/L Total Silicon (Si) ug/L Total Silicon (Si) ug/L Total Silver (Ag) ug/L Dissolved Silver (Ag) ug/L Total Silver (Ag) ug/L Total Silver (Ag) ug/L Dissolved Sodium (Na) ug/L Total Sodium (Na) ug/L Total Sodium (Na) ug/L Dissolved Strontium (Sr) ug/L Total Strontium (Sr) ug/L Dissolved Tellurium (Te) ug/L	<0.50	<0.50	8828011	2.8	0.50	0.20	8828011
Dissolved Phosphorus (P) ug/L Dissolved Potassium (K) ug/L Total Potassium (K) ug/L Dissolved Selenium (Se) ug/L Total Selenium (Se) ug/L Dissolved Silicon (Si) ug/L Total Silicon (Si) ug/L Total Silicon (Si) ug/L Dissolved Silver (Ag) ug/L Dissolved Sodium (Na) ug/L Dissolved Sodium (Na) ug/L Total Sodium (Na) ug/L Total Sodium (Na) ug/L Dissolved Strontium (Sr) ug/L Total Strontium (Sr) ug/L Dissolved Tellurium (Te) ug/L	<1.0	<1.0	8843927	1.7	1.0	N/A	8843936
Dissolved Potassium (K) ug/L Total Potassium (K) ug/L Dissolved Selenium (Se) ug/L Total Selenium (Se) ug/L Total Silicon (Si) ug/L Total Silicon (Si) ug/L Dissolved Silver (Ag) ug/L Total Silver (Ag) ug/L Total Silver (Ag) ug/L Total Silver (Ag) ug/L Dissolved Sodium (Na) ug/L Total Sodium (Na) ug/L Total Sodium (Si) ug/L Dissolved Strontium (Sr) ug/L Total Strontium (Sr) ug/L Dissolved Tellurium (Te) ug/L	<1.0	<1.0	8828011	1.8	1.0	0.50	8828011
Total Potassium (K) ug/L Dissolved Selenium (Se) ug/L Total Selenium (Se) ug/L Dissolved Silicon (Si) ug/L Total Silicon (Si) ug/L Dissolved Silver (Ag) ug/L Total Silver (Ag) ug/L Total Silver (Ag) ug/L Dissolved Sodium (Na) ug/L Total Sodium (Na) ug/L Total Sodium (Na) ug/L Dissolved Strontium (Sr) ug/L Total Strontium (Sr) ug/L Dissolved Tellurium (Te) ug/L	<100	<100	8843927	<100	100	N/A	8843936
Dissolved Selenium (Se) ug/L Total Selenium (Se) ug/L Dissolved Silicon (Si) ug/L Total Silicon (Si) ug/L Dissolved Silver (Ag) ug/L Total Silver (Ag) ug/L Dissolved Sodium (Na) ug/L Total Sodium (Na) ug/L Dissolved Strontium (Sr) ug/L Total Strontium (Sr) ug/L Dissolved Tellurium (Te) ug/L	710	680	8843927	4900	200	N/A	8843936
Total Selenium (Se) ug/L Dissolved Silicon (Si) ug/L Total Silicon (Si) ug/L Dissolved Silver (Ag) ug/L Total Silver (Ag) ug/L Dissolved Sodium (Na) ug/L Total Sodium (Na) ug/L Total Sodium (Na) ug/L Total Sodium (Sr) ug/L Dissolved Strontium (Sr) ug/L Total Strontium (Sr) ug/L Dissolved Tellurium (Te) ug/L	650	650	8828011	4800	200	50	8828011
Dissolved Silicon (Si) ug/L Total Silicon (Si) ug/L Dissolved Silver (Ag) ug/L Total Silver (Ag) ug/L Dissolved Sodium (Na) ug/L Total Sodium (Na) ug/L Dissolved Strontium (Sr) ug/L Total Strontium (Sr) ug/L Dissolved Tellurium (Te) ug/L	<1.0 (1)	<1.0 (1)	8843927	<1.0	1.0	N/A	8843936
Total Silicon (Si) ug/L Dissolved Silver (Ag) ug/L Total Silver (Ag) ug/L Dissolved Sodium (Na) ug/L Total Sodium (Na) ug/L Total Sodium (Sr) ug/L Total Strontium (Sr) ug/L Total Strontium (Sr) ug/L Dissolved Tellurium (Te) ug/L	<1.0 (1)	<1.0 (1)	8828011	<1.0 (1)	1.0	0.25	8828011
Dissolved Silver (Ag) ug/L Total Silver (Ag) ug/L Dissolved Sodium (Na) ug/L Total Sodium (Na) ug/L Dissolved Strontium (Sr) ug/L Total Strontium (Sr) ug/L Dissolved Tellurium (Te) ug/L	270	260	8843927	840	50	N/A	8843936
Total Silver (Ag) ug/L Dissolved Sodium (Na) ug/L Total Sodium (Na) ug/L Dissolved Strontium (Sr) ug/L Total Strontium (Sr) ug/L Dissolved Tellurium (Te) ug/L	300	270	8828011	930	50	30	8828011
Dissolved Sodium (Na) ug/L Total Sodium (Na) ug/L Dissolved Strontium (Sr) ug/L Total Strontium (Sr) ug/L Dissolved Tellurium (Te) ug/L	<0.090	<0.090	8843927	<0.090	0.090	0.081	8843936
Total Sodium (Na) ug/L Dissolved Strontium (Sr) ug/L Total Strontium (Sr) ug/L Dissolved Tellurium (Te) ug/L	<0.090	<0.090	8828011	<0.090	0.090	0.070	8828011
Dissolved Strontium (Sr) ug/L Total Strontium (Sr) ug/L Dissolved Tellurium (Te) ug/L	5200	5000	8843927	13000	100	N/A	8843936
Total Strontium (Sr) ug/L Dissolved Tellurium (Te) ug/L	5000	5000	8828011	13000	100	50	8828011
Dissolved Tellurium (Te) ug/L	84	83	8843927	150	1.0	N/A	8843936
` , ' ' ' ' ' '	78	79	8828011	140	1.0	0.50	8828011
Total Tellurium (Te) ug/l	<1.0	<1.0	8843927	<1.0	1.0	N/A	8843936
Total Tellariani (Te)	<1.0	<1.0	8828011	<1.0	1.0	0.70	8828011
Dissolved Thallium (TI) ug/L	<0.050	<0.050	8843927	<0.050	0.050	N/A	8843936
Total Thallium (TI) ug/L	<0.050	<0.050	8828011	<0.050	0.050	0.020	8828011
Dissolved Tin (Sn) ug/L	<1.0	<1.0	8843927	<1.0	1.0	N/A	8843936
Total Tin (Sn) ug/L	<1.0	<1.0	8828011	<1.0	1.0	0.50	8828011

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

N/A = Not Applicable

Site Location: RESOLUTE BAY LANDFILL

Sampler Initials: KC

ELEMENTS BY ATOMIC SPECTROSCOPY (WATER)

Bureau Veritas ID		WNL676	WNL677		WNL678			
Sampling Date		2023/07/24	2023/07/24		2023/07/23			
Jamping Date		11:15	10:30		15:50			
COC Number		n/a	n/a		n/a			
	UNITS	RBL-13	RBL-16	QC Batch	RBL-DUPA	RDL	MDL	QC Batch
Dissolved Titanium (Ti)	ug/L	<5.0	<5.0	8843927	<5.0	5.0	N/A	8843936
Total Titanium (Ti)	ug/L	<5.0	<5.0	8828011	<5.0	5.0	4.0	8828011
Dissolved Tungsten (W)	ug/L	<1.0	<1.0	8843927	<1.0	1.0	N/A	8843936
Total Tungsten (W)	ug/L	<1.0	<1.0	8828011	<1.0	1.0	0.50	8828011
Dissolved Uranium (U)	ug/L	0.21	0.21	8843927	0.34	0.10	N/A	8843936
Total Uranium (U)	ug/L	0.19	0.19	8828011	0.33	0.10	0.050	8828011
Dissolved Vanadium (V)	ug/L	<0.50	<0.50	8843927	<0.50	0.50	0.50	8843936
Total Vanadium (V)	ug/L	<0.50	<0.50	8828011	<0.50	0.50	0.40	8828011
Dissolved Zinc (Zn)	ug/L	<5.0	<5.0	8843927	<5.0	5.0	N/A	8843936
Total Zinc (Zn)	ug/L	<5.0	<5.0	8828011	15	5.0	3.0	8828011
Dissolved Zirconium (Zr)	ug/L	<1.0	<1.0	8843927	<1.0	1.0	N/A	8843936
Total Zirconium (Zr)	ug/L	<1.0	<1.0	8828011	<1.0	1.0	0.50	8828011

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Site Location: RESOLUTE BAY LANDFILL

Sampler Initials: KC

ELEMENTS BY ATOMIC SPECTROSCOPY (WATER)

Bureau Veritas ID		WNL679		WNL680				WNL680			
Sampling Date		2023/07/24		2023/07/24				2023/07/24			
Jamping Date		11:20		11:55				11:55			
COC Number		n/a		n/a				n/a			
	UNITS	RBL-DUPB	QC Batch	RBL-DUPC	RDL	MDL	QC Batch	RBL-DUPC Lab-Dup	RDL	MDL	QC Batch
Metals											
Chromium (VI)	ug/L	0.51	8825340	<0.50	0.50	0.30	8825340				
Mercury (Hg)	mg/L	<0.000026 (1)	8825734	<0.000026 (1)	0.000026	0.000013	8827927				
Dissolved Aluminum (AI)	ug/L	<4.9	8843927	<4.9	4.9	4.9	8843927				
Total Aluminum (AI)	ug/L	42	8828011	14	4.9	2.0	8828011	14	4.9	2.0	8828011
Dissolved Antimony (Sb)	ug/L	<0.50	8843927	<0.50	0.50	N/A	8843927				
Total Antimony (Sb)	ug/L	<0.50	8828011	<0.50	0.50	0.30	8828011	<0.50	0.50	0.30	8828011
Dissolved Arsenic (As)	ug/L	<1.0	8843927	<1.0	1.0	N/A	8843927				
Total Arsenic (As)	ug/L	<1.0	8828011	<1.0	1.0	0.50	8828011	<1.0	1.0	0.50	8828011
Dissolved Barium (Ba)	ug/L	53	8843927	4.7	2.0	2.0	8843927				
Total Barium (Ba)	ug/L	57	8828011	5.0	2.0	0.50	8828011	4.8	2.0	0.50	8828011
Dissolved Beryllium (Be)	ug/L	<0.40	8843927	<0.40	0.40	0.40	8843927				
Total Beryllium (Be)	ug/L	<0.40	8828011	<0.40	0.40	0.10	8828011	<0.40	0.40	0.10	8828011
Dissolved Bismuth (Bi)	ug/L	<1.0	8843927	<1.0	1.0	N/A	8843927				
Total Bismuth (Bi)	ug/L	<1.0	8828011	<1.0	1.0	0.070	8828011	<1.0	1.0	0.070	8828011
Dissolved Boron (B)	ug/L	37	8843927	18	10	N/A	8843927				
Total Boron (B)	ug/L	38	8828011	19	10	0.30	8828011	19	10	0.30	8828011
Dissolved Cadmium (Cd)	ug/L	<0.090	8843927	<0.090	0.090	0.081	8843927				
Total Cadmium (Cd)	ug/L	<0.090	8828011	<0.090	0.090	0.090	8828011	<0.090	0.090	0.090	8828011
Dissolved Calcium (Ca)	ug/L	35000	8843927	32000	200	N/A	8843927				
Total Calcium (Ca)	ug/L	38000	8828011	30000	200	50	8828011	32000	200	50	8828011
Dissolved Chromium (Cr)	ug/L	<5.0	8843927	<5.0	5.0	N/A	8843927				
Total Chromium (Cr)	ug/L	<5.0	8828011	<5.0	5.0	5.0	8828011	<5.0	5.0	5.0	8828011
Dissolved Cobalt (Co)	ug/L	<0.50	8843927	<0.50	0.50	N/A	8843927				
Total Cobalt (Co)	ug/L	<0.50	8828011	<0.50	0.50	0.10	8828011	<0.50	0.50	0.10	8828011
Dissolved Copper (Cu)	ug/L	<0.90	8843927	<0.90	0.90	0.90	8843927				
Total Copper (Cu)	ug/L	<0.90	8828011	<0.90	0.90	0.50	8828011	<0.90	0.90	0.50	8828011
Dissolved Iron (Fe)	ug/L	<100	8843927	<100	100	N/A	8843927				
Total Iron (Fe)	ug/L	<100	8828011	<100	100	10	8828011	<100	100	10	8828011

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

N/A = Not Applicable

Site Location: RESOLUTE BAY LANDFILL

Sampler Initials: KC

ELEMENTS BY ATOMIC SPECTROSCOPY (WATER)

Bureau Veritas ID		WNL679		WNL680				WNL680			
Sampling Date		2023/07/24		2023/07/24				2023/07/24			
Sampling Date		11:20		11:55				11:55			
COC Number		n/a		n/a				n/a			
	UNITS	RBL-DUPB	QC Batch	RBL-DUPC	RDL	MDL	QC Batch	RBL-DUPC Lab-Dup	RDL	MDL	QC Batch
Dissolved Lead (Pb)	ug/L	<0.50	8843927	<0.50	0.50	N/A	8843927				
Total Lead (Pb)	ug/L	<0.50	8828011	<0.50	0.50	0.10	8828011	<0.50	0.50	0.10	8828011
Dissolved Lithium (Li)	ug/L	<5.0	8843927	<5.0	5.0	N/A	8843927				
Total Lithium (Li)	ug/L	<5.0	8828011	<5.0	5.0	0.50	8828011	<5.0	5.0	0.50	8828011
Dissolved Magnesium (Mg)	ug/L	14000	8843927	4800	50	N/A	8843927				
Total Magnesium (Mg)	ug/L	15000	8828011	4600	50	20	8828011	4500	50	20	8828011
Dissolved Manganese (Mn)	ug/L	<2.0	8843927	<2.0	2.0	N/A	8843927				
Total Manganese (Mn)	ug/L	2.9	8828011	<2.0	2.0	0.50	8828011	<2.0	2.0	0.50	8828011
Dissolved Molybdenum (Mo)	ug/L	0.62	8843927	<0.50	0.50	0.50	8843927				
Total Molybdenum (Mo)	ug/L	0.57	8828011	<0.50	0.50	0.20	8828011	<0.50	0.50	0.20	8828011
Dissolved Nickel (Ni)	ug/L	<1.0	8843927	<1.0	1.0	N/A	8843927				
Total Nickel (Ni)	ug/L	<1.0	8828011	<1.0	1.0	0.50	8828011	<1.0	1.0	0.50	8828011
Dissolved Phosphorus (P)	ug/L	<100	8843927	<100	100	N/A	8843927				
Dissolved Potassium (K)	ug/L	1600	8843927	700	200	N/A	8843927				
Total Potassium (K)	ug/L	1600	8828011	670	200	50	8828011	650	200	50	8828011
Dissolved Selenium (Se)	ug/L	<1.0 (1)	8843927	<1.0 (1)	1.0	N/A	8843927				
Total Selenium (Se)	ug/L	<1.0 (1)	8828011	<1.0 (1)	1.0	0.25	8828011	<1.0	1.0	0.25	8828011
Dissolved Silicon (Si)	ug/L	210	8843927	280	50	N/A	8843927				
Total Silicon (Si)	ug/L	290	8828011	290	50	30	8828011	300	50	30	8828011
Dissolved Silver (Ag)	ug/L	<0.090	8843927	<0.090	0.090	0.081	8843927				
Total Silver (Ag)	ug/L	<0.090	8828011	<0.090	0.090	0.070	8828011	<0.090	0.090	0.070	8828011
Dissolved Sodium (Na)	ug/L	22000	8843927	5100	100	N/A	8843927				
Total Sodium (Na)	ug/L	22000	8828011	5100	100	50	8828011	4900	100	50	8828011
Dissolved Strontium (Sr)	ug/L	160	8843927	85	1.0	N/A	8843927				
Total Strontium (Sr)	ug/L	160	8828011	78	1.0	0.50	8828011	78	1.0	0.50	8828011
Dissolved Tellurium (Te)	ug/L	<1.0	8843927	<1.0	1.0	N/A	8843927				
Total Tellurium (Te)	ug/L	<1.0	8828011	<1.0	1.0	0.70	8828011	<1.0	1.0	0.70	8828011
Dissolved Thallium (TI)	ug/L	<0.050	8843927	<0.050	0.050	N/A	8843927				
Total Thallium (TI)	ug/L	<0.050	8828011	<0.050	0.050	0.020	8828011	<0.050	0.050	0.020	8828011

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

N/A = Not Applicable

Site Location: RESOLUTE BAY LANDFILL

Sampler Initials: KC

ELEMENTS BY ATOMIC SPECTROSCOPY (WATER)

Bureau Veritas ID		WNL679		WNL680				WNL680			
Carrallia - Data		2023/07/24		2023/07/24				2023/07/24			
Sampling Date		11:20		11:55				11:55			
COC Number		n/a		n/a				n/a			
	UNITS	RBL-DUPB	QC Batch	RBL-DUPC	RDL	MDL	QC Batch	RBL-DUPC Lab-Dup	RDL	MDL	QC Batch
Dissolved Tin (Sn)	ug/L	<1.0	8843927	<1.0	1.0	N/A	8843927				
Total Tin (Sn)	ug/L	<1.0	8828011	<1.0	1.0	0.50	8828011	<1.0	1.0	0.50	8828011
Dissolved Titanium (Ti)	ug/L	<5.0	8843927	<5.0	5.0	N/A	8843927				
Total Titanium (Ti)	ug/L	<5.0	8828011	<5.0	5.0	4.0	8828011	<5.0	5.0	4.0	8828011
Dissolved Tungsten (W)	ug/L	<1.0	8843927	<1.0	1.0	N/A	8843927				
Total Tungsten (W)	ug/L	<1.0	8828011	<1.0	1.0	0.50	8828011	<1.0	1.0	0.50	8828011
Dissolved Uranium (U)	ug/L	0.18	8843927	0.21	0.10	N/A	8843927				
Total Uranium (U)	ug/L	0.16	8828011	0.20	0.10	0.050	8828011	0.20	0.10	0.050	8828011
Dissolved Vanadium (V)	ug/L	<0.50	8843927	<0.50	0.50	0.50	8843927				
Total Vanadium (V)	ug/L	<0.50	8828011	<0.50	0.50	0.40	8828011	<0.50	0.50	0.40	8828011
Dissolved Zinc (Zn)	ug/L	<5.0	8843927	<5.0	5.0	N/A	8843927				
Total Zinc (Zn)	ug/L	<5.0	8828011	<5.0	5.0	3.0	8828011	<5.0	5.0	3.0	8828011
Dissolved Zirconium (Zr)	ug/L	<1.0	8843927	<1.0	1.0	N/A	8843927				
Total Zirconium (Zr)	ug/L	<1.0	8828011	<1.0	1.0	0.50	8828011	<1.0	1.0	0.50	8828011

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

BluMetric Environmental Inc Client Project #: 230427

Site Location: RESOLUTE BAY LANDFILL

Sampler Initials: KC

TEST SUMMARY

Bureau Veritas ID: WNL671 Sample ID: RBL-2

Collected: Shipped:

2023/07/23

Matrix: Water

Received: 2023/07/27

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Alkalinity	AT	8824109	N/A	2023/08/01	Yogesh Patel
Carbonate, Bicarbonate and Hydroxide	CALC	8822389	N/A	2023/08/02	Automated Statchk
Chloride by Automated Colourimetry	KONE	8823994	N/A	2023/08/02	Massarat Jan
Conductivity	AT	8824108	N/A	2023/08/01	Yogesh Patel
Chromium (VI) in Water	IC	8825340	N/A	2023/08/03	Theodora Luck
Petroleum Hydro. CCME F1 & BTEX in Water	HSGC/MSFD	8833426	N/A	2023/08/05	Lincoln Ramdahin
Petroleum Hydrocarbons F2-F4 in Water	GC/FID	8833643	2023/08/04	2023/08/04	Dennis Ngondu
Hardness (calculated as CaCO3)		8822385	N/A	2023/08/04	Automated Statchk
Mercury in Water by CVAA	CV/AA	8827927	2023/08/02	2023/08/02	Jaswinder Kaur
Lab Filtered Metals by ICPMS	ICP/MS	8843927	2023/08/10	2023/08/11	Prempal Bhatti
Total Metals Analysis by ICPMS	ICP/MS	8828011	2023/08/02	2023/08/02	Thuy Linh Nguyen
Ion Balance (% Difference)	CALC	8822382	N/A	2023/08/11	Automated Statchk
Anion and Cation Sum	CALC	8822383	N/A	2023/08/11	Automated Statchk
B[a]P Total Potency Equivalent	GC/MS	8841752	N/A	2023/08/06	Automated Statchk
PAH in Water by GC/MS	GC/MS	8837189	2023/08/05	2023/08/06	Shuang (Jessica) Chen
Phenols (4-AAP)	TECH/PHEN	8841753	N/A	2023/08/08	Taylor Mullings
Total Ammonia-N	LACH/NH4	8828243	N/A	2023/08/03	Prabhjot Kaur
Nitrate & Nitrite as Nitrogen in Water	LACH	8823978	N/A	2023/08/01	Chandra Nandlal
Total Oil and Grease	BAL	8836996	2023/08/06	2023/08/06	Navneet Singh
рН	AT	8824099	2023/07/31	2023/08/01	Yogesh Patel
Sulphate by Automated Turbidimetry	KONE	8823998	N/A	2023/08/02	Massarat Jan
Total Phosphorus (Colourimetric)	SKAL/P	8826856	2023/08/01	2023/08/03	Muskan
Mineral/Synthetic O & G (TPH Heavy Oil)	BAL	8837000	2023/08/06	2023/08/06	Navneet Singh
Total Suspended Solids	BAL	8824642	2023/08/01	2023/08/02	Shaneil Hall

Bureau Veritas ID: WNL671 Dup

Sample ID: RBL-2

Matrix: Water

Collected: Shipped: 2023/07/23

Received: 2023/07/27

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Chromium (VI) in Water	IC	8825340	N/A	2023/08/03	Theodora Luck

Bureau Veritas ID: WNL672

Sample ID: RBL-3

Matrix: Water

Collected: 2023/07/23 Shipped:

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Alkalinity	AT	8824109	N/A	2023/08/01	Yogesh Patel
Carbonate, Bicarbonate and Hydroxide	CALC	8822389	N/A	2023/08/02	Automated Statchk
Chloride by Automated Colourimetry	KONE	8823994	N/A	2023/08/02	Massarat Jan
Conductivity	AT	8824108	N/A	2023/08/01	Yogesh Patel
Chromium (VI) in Water	IC	8825340	N/A	2023/08/03	Theodora Luck
Petroleum Hydro. CCME F1 & BTEX in Water	HSGC/MSFD	8833426	N/A	2023/08/05	Lincoln Ramdahin
Petroleum Hydrocarbons F2-F4 in Water	GC/FID	8833643	2023/08/04	2023/08/04	Dennis Ngondu
Hardness (calculated as CaCO3)		8822385	N/A	2023/08/04	Automated Statchk

BluMetric Environmental Inc Client Project #: 230427

Site Location: RESOLUTE BAY LANDFILL

Sampler Initials: KC

TEST SUMMARY

Bureau Veritas ID: WNL672 Sample ID: RBL-3

Collected: Shipped:

2023/07/23

Matrix: Water

Received: 2023/07/27

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Mercury in Water by CVAA	CV/AA	8825734	2023/08/01	2023/08/02	Jaswinder Kaur
Lab Filtered Metals by ICPMS	ICP/MS	8843927	2023/08/10	2023/08/11	Prempal Bhatti
Total Metals Analysis by ICPMS	ICP/MS	8828011	2023/08/02	2023/08/02	Thuy Linh Nguyen
Ion Balance (% Difference)	CALC	8822382	N/A	2023/08/11	Automated Statchk
Anion and Cation Sum	CALC	8822383	N/A	2023/08/11	Automated Statchk
B[a]P Total Potency Equivalent	GC/MS	8841752	N/A	2023/08/06	Automated Statchk
PAH in Water by GC/MS	GC/MS	8837189	2023/08/05	2023/08/06	Shuang (Jessica) Chen
Phenols (4-AAP)	TECH/PHEN	8841753	N/A	2023/08/08	Taylor Mullings
Total Ammonia-N	LACH/NH4	8828243	N/A	2023/08/03	Prabhjot Kaur
Nitrate & Nitrite as Nitrogen in Water	LACH	8824309	N/A	2023/08/01	Chandra Nandlal
Total Oil and Grease	BAL	8836996	2023/08/06	2023/08/06	Navneet Singh
рН	AT	8824099	2023/07/31	2023/08/01	Yogesh Patel
Sulphate by Automated Turbidimetry	KONE	8823998	N/A	2023/08/02	Massarat Jan
Total Phosphorus (Colourimetric)	SKAL/P	8826856	2023/08/01	2023/08/03	Muskan
Mineral/Synthetic O & G (TPH Heavy Oil)	BAL	8837000	2023/08/06	2023/08/06	Navneet Singh
Total Suspended Solids	BAL	8827102	2023/08/01	2023/08/02	Shaneil Hall

Bureau Veritas ID: WNL672 Dup

Collected: 2023/07/23

Sample ID: RBL-3 Matrix: Water Shipped:

2023/07/27 Received:

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Petroleum Hydrocarbons F2-F4 in Water	GC/FID	8833643	2023/08/04	2023/08/04	Dennis Ngondu

Bureau Veritas ID: WNL673 Sample ID: AEC1-GW1

Matrix: Water

Collected: Shipped:

2023/07/23

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Alkalinity	AT	8824319	N/A	2023/08/01	Yogesh Patel
Carbonate, Bicarbonate and Hydroxide	CALC	8822389	N/A	2023/08/02	Automated Statchk
Chloride by Automated Colourimetry	KONE	8823994	N/A	2023/08/02	Massarat Jan
Conductivity	AT	8824320	N/A	2023/08/01	Yogesh Patel
Chromium (VI) in Water	IC	8825340	N/A	2023/08/03	Theodora Luck
Petroleum Hydro. CCME F1 & BTEX in Water	HSGC/MSFD	8833426	N/A	2023/08/05	Lincoln Ramdahin
Petroleum Hydrocarbons F2-F4 in Water	GC/FID	8833643	2023/08/04	2023/08/04	Dennis Ngondu
Hardness (calculated as CaCO3)		8822385	N/A	2023/08/04	Automated Statchk
Lab Filtered Metals by ICPMS	ICP/MS	8843927	2023/08/10	2023/08/11	Prempal Bhatti
Total Metals Analysis by ICPMS	ICP/MS	8828011	2023/08/02	2023/08/02	Thuy Linh Nguyen
Ion Balance (% Difference)	CALC	8822382	N/A	2023/08/11	Automated Statchk
Anion and Cation Sum	CALC	8822383	N/A	2023/08/11	Automated Statchk
B[a]P Total Potency Equivalent	GC/MS	8841752	N/A	2023/08/09	Automated Statchk
PAH in Water by GC/MS	GC/MS	8837189	2023/08/08	2023/08/08	Shuang (Jessica) Chen
Phenols (4-AAP)	TECH/PHEN	8841754	N/A	2023/08/08	Taylor Mullings
Total Ammonia-N	LACH/NH4	8828243	N/A	2023/08/03	Prabhjot Kaur

BluMetric Environmental Inc Client Project #: 230427

Site Location: RESOLUTE BAY LANDFILL

Sampler Initials: KC

TEST SUMMARY

Bureau Veritas ID: WNL673

Collected: 2023/07/23

Sample ID: AEC1-GW1 Matrix: Water

Shipped:

Received: 2023/07/27

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Nitrate & Nitrite as Nitrogen in Water	LACH	8824309	N/A	2023/08/01	Chandra Nandlal
Total Oil and Grease	BAL	8836996	2023/08/06	2023/08/06	Navneet Singh
рН	AT	8824318	2023/07/31	2023/08/01	Yogesh Patel
Sulphate by Automated Turbidimetry	KONE	8823998	N/A	2023/08/02	Massarat Jan
Total Phosphorus (Colourimetric)	SKAL/P	8826856	2023/08/01	2023/08/03	Muskan
Mineral/Synthetic O & G (TPH Heavy Oil)	BAL	8837000	2023/08/06	2023/08/06	Navneet Singh
Total Suspended Solids	BAL	8824642	2023/08/01	2023/08/02	Shaneil Hall

Bureau Veritas ID: WNL674 Sample ID: RBL-4

Collected: Shipped:

2023/07/24

Matrix: Water

Received: 2023/07/27

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Alkalinity	AT	8824319	N/A	2023/08/01	Yogesh Patel
Carbonate, Bicarbonate and Hydroxide	CALC	8822389	N/A	2023/08/02	Automated Statchk
Chloride by Automated Colourimetry	KONE	8823994	N/A	2023/08/02	Massarat Jan
Conductivity	AT	8824320	N/A	2023/08/01	Yogesh Patel
Chromium (VI) in Water	IC	8825340	N/A	2023/08/03	Theodora Luck
Petroleum Hydro. CCME F1 & BTEX in Water	HSGC/MSFD	8833426	N/A	2023/08/05	Lincoln Ramdahin
Petroleum Hydrocarbons F2-F4 in Water	GC/FID	8833643	2023/08/04	2023/08/04	Dennis Ngondu
Hardness (calculated as CaCO3)		8822385	N/A	2023/08/04	Automated Statchk
Mercury in Water by CVAA	CV/AA	8825734	2023/08/01	2023/08/02	Jaswinder Kaur
Lab Filtered Metals by ICPMS	ICP/MS	8843927	2023/08/10	2023/08/11	Prempal Bhatti
Total Metals Analysis by ICPMS	ICP/MS	8828011	2023/08/02	2023/08/02	Thuy Linh Nguyen
Ion Balance (% Difference)	CALC	8822382	N/A	2023/08/11	Automated Statchk
Anion and Cation Sum	CALC	8822383	N/A	2023/08/11	Automated Statchk
B[a]P Total Potency Equivalent	GC/MS	8841752	N/A	2023/08/06	Automated Statchk
PAH in Water by GC/MS	GC/MS	8837189	2023/08/05	2023/08/06	Shuang (Jessica) Chen
Phenols (4-AAP)	TECH/PHEN	8841753	N/A	2023/08/08	Taylor Mullings
Total Ammonia-N	LACH/NH4	8828243	N/A	2023/08/03	Prabhjot Kaur
Nitrate & Nitrite as Nitrogen in Water	LACH	8824309	N/A	2023/08/01	Chandra Nandlal
Total Oil and Grease	BAL	8836996	2023/08/06	2023/08/06	Navneet Singh
рН	AT	8824318	2023/07/31	2023/08/01	Yogesh Patel
Sulphate by Automated Turbidimetry	KONE	8823998	N/A	2023/08/02	Massarat Jan
Total Phosphorus (Colourimetric)	SKAL/P	8826856	2023/08/01	2023/08/03	Muskan
Mineral/Synthetic O & G (TPH Heavy Oil)	BAL	8837000	2023/08/06	2023/08/06	Navneet Singh
Total Suspended Solids	BAL	8824642	2023/08/01	2023/08/02	Shaneil Hall

Bureau Veritas ID: WNL675 Sample ID: RBL-8

Collected: Shipped:

2023/07/24

Matrix: Water

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Alkalinity	AT	8824109	N/A	2023/08/01	Yogesh Patel
Carbonate, Bicarbonate and Hydroxide	CALC	8822389	N/A	2023/08/02	Automated Statchk

BluMetric Environmental Inc Client Project #: 230427

Site Location: RESOLUTE BAY LANDFILL

Sampler Initials: KC

TEST SUMMARY

Bureau Veritas ID: WNL675 Sample ID: RBL-8

Collected: Shipped:

2023/07/24

Matrix: Water

Received: 2023/07/27

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Chloride by Automated Colourimetry	KONE	8823994	N/A	2023/08/02	Massarat Jan
Conductivity	AT	8824108	N/A	2023/08/01	Yogesh Patel
Chromium (VI) in Water	IC	8825340	N/A	2023/08/03	Theodora Luck
Petroleum Hydro. CCME F1 & BTEX in Water	HSGC/MSFD	8833426	N/A	2023/08/05	Lincoln Ramdahin
Petroleum Hydrocarbons F2-F4 in Water	GC/FID	8833643	2023/08/04	2023/08/04	Dennis Ngondu
Hardness (calculated as CaCO3)		8822385	N/A	2023/08/04	Automated Statchk
Mercury in Water by CVAA	CV/AA	8827927	2023/08/02	2023/08/02	Jaswinder Kaur
Lab Filtered Metals by ICPMS	ICP/MS	8843936	2023/08/10	2023/08/14	Arefa Dabhad
Total Metals Analysis by ICPMS	ICP/MS	8828011	2023/08/02	2023/08/02	Thuy Linh Nguyen
Ion Balance (% Difference)	CALC	8822382	N/A	2023/08/14	Automated Statchk
Anion and Cation Sum	CALC	8822383	N/A	2023/08/14	Automated Statchk
B[a]P Total Potency Equivalent	GC/MS	8841752	N/A	2023/08/06	Automated Statchk
PAH in Water by GC/MS	GC/MS	8837189	2023/08/05	2023/08/06	Shuang (Jessica) Chen
Phenols (4-AAP)	TECH/PHEN	8841753	N/A	2023/08/08	Taylor Mullings
Total Ammonia-N	LACH/NH4	8828243	N/A	2023/08/03	Prabhjot Kaur
Nitrate & Nitrite as Nitrogen in Water	LACH	8824309	N/A	2023/08/01	Chandra Nandlal
Total Oil and Grease	BAL	8836996	2023/08/06	2023/08/06	Navneet Singh
рН	AT	8824099	2023/07/31	2023/08/01	Yogesh Patel
Sulphate by Automated Turbidimetry	KONE	8823998	N/A	2023/08/02	Massarat Jan
Total Phosphorus (Colourimetric)	SKAL/P	8826856	2023/08/01	2023/08/03	Muskan
Mineral/Synthetic O & G (TPH Heavy Oil)	BAL	8837000	2023/08/06	2023/08/06	Navneet Singh
Total Suspended Solids	BAL	8827102	2023/08/01	2023/08/02	Shaneil Hall

Bureau Veritas ID: WNL675 Dup

Sample ID: RBL-8

Matrix: Water

Collected: Shipped:

2023/07/24

Received: 2023/07/27

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Lab Filtered Metals by ICPMS	ICP/MS	8843936	2023/08/10	2023/08/14	Arefa Dabhad

Bureau Veritas ID: WNL676

Sample ID: RBL-13 Matrix:

Water

Collected: Shipped:

2023/07/24

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Alkalinity	AT	8824319	N/A	2023/08/01	Yogesh Patel
Carbonate, Bicarbonate and Hydroxide	CALC	8822389	N/A	2023/08/02	Automated Statchk
Chloride by Automated Colourimetry	KONE	8823994	N/A	2023/08/02	Massarat Jan
Conductivity	AT	8824320	N/A	2023/08/01	Yogesh Patel
Chromium (VI) in Water	IC	8825340	N/A	2023/08/03	Theodora Luck
Petroleum Hydro. CCME F1 & BTEX in Water	HSGC/MSFD	8833426	N/A	2023/08/05	Lincoln Ramdahin
Petroleum Hydrocarbons F2-F4 in Water	GC/FID	8833643	2023/08/04	2023/08/04	Dennis Ngondu
Hardness (calculated as CaCO3)		8822385	N/A	2023/08/04	Automated Statchk
Mercury in Water by CVAA	CV/AA	8825734	2023/08/01	2023/08/02	Jaswinder Kaur
Lab Filtered Metals by ICPMS	ICP/MS	8843927	2023/08/10	2023/08/11	Prempal Bhatti

Site Location: RESOLUTE BAY LANDFILL

Sampler Initials: KC

TEST SUMMARY

Bureau Veritas ID: WNL676 Sample ID: RBL-13 Matrix: Water Collected: 2023/07/24

Shipped:

Received: 2023/07/27

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Total Metals Analysis by ICPMS	ICP/MS	8828011	2023/08/02	2023/08/02	Thuy Linh Nguyen
Ion Balance (% Difference)	CALC	8822382	N/A	2023/08/11	Automated Statchk
Anion and Cation Sum	CALC	8822383	N/A	2023/08/11	Automated Statchk
B[a]P Total Potency Equivalent	GC/MS	8841752	N/A	2023/08/06	Automated Statchk
PAH in Water by GC/MS	GC/MS	8837189	2023/08/05	2023/08/06	Shuang (Jessica) Chen
Phenols (4-AAP)	TECH/PHEN	8841754	N/A	2023/08/08	Taylor Mullings
Total Ammonia-N	LACH/NH4	8828243	N/A	2023/08/03	Prabhjot Kaur
Nitrate & Nitrite as Nitrogen in Water	LACH	8824309	N/A	2023/08/01	Chandra Nandlal
Total Oil and Grease	BAL	8836996	2023/08/06	2023/08/06	Navneet Singh
рН	AT	8824318	2023/07/31	2023/08/01	Yogesh Patel
Sulphate by Automated Turbidimetry	KONE	8823998	N/A	2023/08/02	Massarat Jan
Total Phosphorus (Colourimetric)	SKAL/P	8826856	2023/08/01	2023/08/03	Muskan
Mineral/Synthetic O & G (TPH Heavy Oil)	BAL	8837000	2023/08/06	2023/08/06	Navneet Singh
Total Suspended Solids	BAL	8824642	2023/08/01	2023/08/02	Shaneil Hall

Bureau Veritas ID: WNL677 Sample ID: RBL-16 Matrix: Water **Collected:** 2023/07/24

Shipped:

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Alkalinity	AT	8824109	N/A	2023/08/01	Yogesh Patel
Carbonate, Bicarbonate and Hydroxide	CALC	8822389	N/A	2023/08/02	Automated Statchk
Chloride by Automated Colourimetry	KONE	8823994	N/A	2023/08/02	Massarat Jan
Conductivity	AT	8824108	N/A	2023/08/01	Yogesh Patel
Chromium (VI) in Water	IC	8825340	N/A	2023/08/03	Theodora Luck
Petroleum Hydro. CCME F1 & BTEX in Water	HSGC/MSFD	8833432	N/A	2023/08/06	Haibin Wu
Petroleum Hydrocarbons F2-F4 in Water	GC/FID	8833643	2023/08/04	2023/08/04	Dennis Ngondu
Hardness (calculated as CaCO3)		8822385	N/A	2023/08/04	Automated Statchk
Mercury in Water by CVAA	CV/AA	8825734	2023/08/01	2023/08/02	Jaswinder Kaur
Lab Filtered Metals by ICPMS	ICP/MS	8843927	2023/08/10	2023/08/11	Prempal Bhatti
Total Metals Analysis by ICPMS	ICP/MS	8828011	2023/08/02	2023/08/02	Thuy Linh Nguyen
Ion Balance (% Difference)	CALC	8822382	N/A	2023/08/11	Automated Statchk
Anion and Cation Sum	CALC	8822383	N/A	2023/08/11	Automated Statchk
B[a]P Total Potency Equivalent	GC/MS	8841752	N/A	2023/08/06	Automated Statchk
PAH in Water by GC/MS	GC/MS	8837189	2023/08/05	2023/08/06	Shuang (Jessica) Chen
Phenols (4-AAP)	TECH/PHEN	8841754	N/A	2023/08/08	Taylor Mullings
Total Ammonia-N	LACH/NH4	8828243	N/A	2023/08/03	Prabhjot Kaur
Nitrate & Nitrite as Nitrogen in Water	LACH	8824309	N/A	2023/08/01	Chandra Nandlal
Total Oil and Grease	BAL	8836996	2023/08/06	2023/08/06	Navneet Singh
pH	AT	8824099	2023/07/31	2023/08/01	Yogesh Patel
Sulphate by Automated Turbidimetry	KONE	8823998	N/A	2023/08/02	Massarat Jan
Total Phosphorus (Colourimetric)	SKAL/P	8826856	2023/08/01	2023/08/03	Muskan
Mineral/Synthetic O & G (TPH Heavy Oil)	BAL	8837000	2023/08/06	2023/08/06	Navneet Singh
Total Suspended Solids	BAL	8824642	2023/08/01	2023/08/02	Shaneil Hall

BluMetric Environmental Inc Client Project #: 230427

Site Location: RESOLUTE BAY LANDFILL

Sampler Initials: KC

TEST SUMMARY

Bureau Veritas ID: WNL678 Sample ID: RBL-DUPA Collected:

2023/07/23

Matrix: Water

Shipped:

Received: 2023/07/27

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Alkalinity	AT	8824109	N/A	2023/08/01	Yogesh Patel
Carbonate, Bicarbonate and Hydroxide	CALC	8822389	N/A	2023/08/02	Automated Statchk
Chloride by Automated Colourimetry	KONE	8823994	N/A	2023/08/02	Massarat Jan
Conductivity	AT	8824108	N/A	2023/08/01	Yogesh Patel
Chromium (VI) in Water	IC	8825340	N/A	2023/08/03	Theodora Luck
Petroleum Hydro. CCME F1 & BTEX in Water	HSGC/MSFD	8833426	N/A	2023/08/05	Lincoln Ramdahin
Petroleum Hydrocarbons F2-F4 in Water	GC/FID	8833643	2023/08/04	2023/08/04	Dennis Ngondu
Hardness (calculated as CaCO3)		8822385	N/A	2023/08/04	Automated Statchk
Mercury in Water by CVAA	CV/AA	8827927	2023/08/01	2023/08/02	Jaswinder Kaur
Lab Filtered Metals by ICPMS	ICP/MS	8843936	2023/08/10	2023/08/14	Arefa Dabhad
Total Metals Analysis by ICPMS	ICP/MS	8828011	2023/08/02	2023/08/02	Thuy Linh Nguyen
Ion Balance (% Difference)	CALC	8822382	N/A	2023/08/14	Automated Statchk
Anion and Cation Sum	CALC	8822383	N/A	2023/08/14	Automated Statchk
B[a]P Total Potency Equivalent	GC/MS	8841752	N/A	2023/08/06	Automated Statchk
PAH in Water by GC/MS	GC/MS	8837189	2023/08/05	2023/08/06	Shuang (Jessica) Chen
Phenols (4-AAP)	TECH/PHEN	8841753	N/A	2023/08/08	Taylor Mullings
Total Ammonia-N	LACH/NH4	8828243	N/A	2023/08/03	Prabhjot Kaur
Nitrate & Nitrite as Nitrogen in Water	LACH	8824309	N/A	2023/08/01	Chandra Nandlal
Total Oil and Grease	BAL	8836996	2023/08/06	2023/08/06	Navneet Singh
рН	AT	8824099	2023/07/31	2023/08/01	Yogesh Patel
Sulphate by Automated Turbidimetry	KONE	8823998	N/A	2023/08/02	Massarat Jan
Total Phosphorus (Colourimetric)	SKAL/P	8826856	2023/08/01	2023/08/03	Muskan
Mineral/Synthetic O & G (TPH Heavy Oil)	BAL	8837000	2023/08/06	2023/08/06	Navneet Singh
Total Suspended Solids	BAL	8824642	2023/08/01	2023/08/02	Shaneil Hall

Bureau Veritas ID: WNL678 Dup Sample ID: RBL-DUPA

Collected: Shipped:

2023/07/23

Matrix: Water

Received: 2023/07/27

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Nitrate & Nitrite as Nitrogen in Water	LACH	8824309	N/A	2023/08/01	Chandra Nandlal

Bureau Veritas ID: WNL679

Collected: Shipped:

2023/07/24

Sample ID: RBL-DUPB Matrix: Water

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Alkalinity	AT	8824109	N/A	2023/08/01	Yogesh Patel
Carbonate, Bicarbonate and Hydroxide	CALC	8822389	N/A	2023/08/02	Automated Statchk
Chloride by Automated Colourimetry	KONE	8823994	N/A	2023/08/02	Massarat Jan
Conductivity	AT	8824108	N/A	2023/08/01	Yogesh Patel
Chromium (VI) in Water	IC	8825340	N/A	2023/08/03	Theodora Luck
Petroleum Hydro. CCME F1 & BTEX in Water	HSGC/MSFD	8833426	N/A	2023/08/05	Lincoln Ramdahin
Petroleum Hydrocarbons F2-F4 in Water	GC/FID	8833643	2023/08/04	2023/08/04	Dennis Ngondu
Hardness (calculated as CaCO3)		8822385	N/A	2023/08/04	Automated Statchk

BluMetric Environmental Inc Report Date: 2023/08/29 Client Project #: 230427

Site Location: RESOLUTE BAY LANDFILL

Sampler Initials: KC

TEST SUMMARY

Bureau Veritas ID: WNL679 Sample ID: RBL-DUPB

Matrix: Water

Collected: 2023/07/24

Shipped:

Received: 2023/07/27

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Mercury in Water by CVAA	CV/AA	8825734	2023/08/01	2023/08/02	Jaswinder Kaur
Lab Filtered Metals by ICPMS	ICP/MS	8843927	2023/08/10	2023/08/11	Prempal Bhatti
Total Metals Analysis by ICPMS	ICP/MS	8828011	2023/08/02	2023/08/02	Thuy Linh Nguyen
Ion Balance (% Difference)	CALC	8822382	N/A	2023/08/11	Automated Statchk
Anion and Cation Sum	CALC	8822383	N/A	2023/08/11	Automated Statchk
B[a]P Total Potency Equivalent	GC/MS	8841752	N/A	2023/08/06	Automated Statchk
PAH in Water by GC/MS	GC/MS	8837189	2023/08/05	2023/08/06	Shuang (Jessica) Chen
Phenols (4-AAP)	TECH/PHEN	8841754	N/A	2023/08/08	Taylor Mullings
Total Ammonia-N	LACH/NH4	8828243	N/A	2023/08/03	Prabhjot Kaur
Nitrate & Nitrite as Nitrogen in Water	LACH	8823978	N/A	2023/08/01	Chandra Nandlal
Total Oil and Grease	BAL	8836996	2023/08/06	2023/08/06	Navneet Singh
рН	AT	8824099	2023/07/31	2023/08/01	Yogesh Patel
Sulphate by Automated Turbidimetry	KONE	8823998	N/A	2023/08/02	Massarat Jan
Total Phosphorus (Colourimetric)	SKAL/P	8826856	2023/08/01	2023/08/03	Muskan
Mineral/Synthetic O & G (TPH Heavy Oil)	BAL	8837000	2023/08/06	2023/08/06	Navneet Singh
Total Suspended Solids	BAL	8824642	2023/08/01	2023/08/02	Shaneil Hall

Bureau Veritas ID: WNL680 Sample ID: RBL-DUPC

Matrix: Water

Shipped:

Collected: 2023/07/24

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Alkalinity	AT	8824109	N/A	2023/08/01	Yogesh Patel
Carbonate, Bicarbonate and Hydroxide	CALC	8822389	N/A	2023/08/02	Automated Statchk
Chloride by Automated Colourimetry	KONE	8823994	N/A	2023/08/02	Massarat Jan
Conductivity	AT	8824108	N/A	2023/08/01	Yogesh Patel
Chromium (VI) in Water	IC	8825340	N/A	2023/08/03	Theodora Luck
Petroleum Hydro. CCME F1 & BTEX in Water	HSGC/MSFD	8833426	N/A	2023/08/05	Lincoln Ramdahin
Petroleum Hydrocarbons F2-F4 in Water	GC/FID	8833643	2023/08/04	2023/08/04	Dennis Ngondu
Hardness (calculated as CaCO3)		8822385	N/A	2023/08/04	Automated Statchk
Mercury in Water by CVAA	CV/AA	8827927	2023/08/01	2023/08/02	Jaswinder Kaur
Lab Filtered Metals by ICPMS	ICP/MS	8843927	2023/08/10	2023/08/11	Prempal Bhatti
Total Metals Analysis by ICPMS	ICP/MS	8828011	2023/08/02	2023/08/02	Thuy Linh Nguyen
Ion Balance (% Difference)	CALC	8822382	N/A	2023/08/11	Automated Statchk
Anion and Cation Sum	CALC	8822383	N/A	2023/08/11	Automated Statchk
B[a]P Total Potency Equivalent	GC/MS	8841752	N/A	2023/08/06	Automated Statchk
PAH in Water by GC/MS	GC/MS	8837189	2023/08/05	2023/08/06	Shuang (Jessica) Chen
Phenols (4-AAP)	TECH/PHEN	8841753	N/A	2023/08/08	Taylor Mullings
Total Ammonia-N	LACH/NH4	8828243	N/A	2023/08/03	Prabhjot Kaur
Nitrate & Nitrite as Nitrogen in Water	LACH	8823978	N/A	2023/08/01	Chandra Nandlal
Total Oil and Grease	BAL	8836996	2023/08/06	2023/08/06	Navneet Singh
рН	AT	8824099	2023/07/31	2023/08/01	Yogesh Patel
Sulphate by Automated Turbidimetry	KONE	8823998	N/A	2023/08/02	Massarat Jan
Total Phosphorus (Colourimetric)	SKAL/P	8826856	2023/08/01	2023/08/03	Muskan
Mineral/Synthetic O & G (TPH Heavy Oil)	BAL	8837000	2023/08/06	2023/08/06	Navneet Singh

Site Location: RESOLUTE BAY LANDFILL

Sampler Initials: KC

TEST SUMMARY

Bureau Veritas ID: WNL680

Sample ID: RBL-DUPC

Matrix: Water

Collected: 2023/07/24 Shipped:

Received: 2023/07/27

Test DescriptionInstrumentationBatchExtractedDate AnalyzedAnalystTotal Suspended SolidsBAL88246422023/08/012023/08/02Shaneil Hall

Bureau Veritas ID: WNL680 Dup

Sample ID: RBL-DUPC

Matrix: Water

Collected: 2023/07/24 Shipped:

Received: 2023/07/27

Instrumentation **Date Analyzed Test Description** Batch **Extracted** Analyst Total Metals Analysis by ICPMS 2023/08/02 2023/08/02 Thuy Linh Nguyen ICP/MS 8828011 PAH in Water by GC/MS 2023/08/06 GC/MS 8837189 2023/08/05 Shuang (Jessica) Chen

Bureau Veritas ID: WNL681

Sample ID: FEILD BLANK 1

Matrix: Water

Collected: 2023/07/23 Shipped:

Received: 2023/07/27

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Petroleum Hydro. CCME F1 & BTEX in Water	HSGC/MSFD	8833426	N/A	2023/08/04	Lincoln Ramdahin
Petroleum Hydrocarbons F2-F4 in Water	GC/FID	8833643	2023/08/04	2023/08/04	Dennis Ngondu
B[a]P Total Potency Equivalent	GC/MS	8841752	N/A	2023/08/06	Automated Statchk
PAH in Water by GC/MS	GC/MS	8837189	2023/08/05	2023/08/06	Shuang (Jessica) Chen

Bureau Veritas ID: WNL682

Sample ID: TRIP BLANK 1

Matrix: Water

Collected: 2023/07/23 Shipped:

Received: 2023/07/27

Date Analyzed Test Description Instrumentation **Extracted** Analyst **Batch** Petroleum Hydro. CCME F1 & BTEX in Water HSGC/MSFD 2023/08/04 Lincoln Ramdahin 8833426 N/A Petroleum Hydrocarbons F2-F4 in Water GC/FID 8833643 2023/08/04 2023/08/04 Dennis Ngondu

Bureau Veritas ID: WNL683

Sample ID: FEILD BLANK 2

Matrix: Water

Collected: 2023/07/24 Shipped:

Received: 2023/07/27

Test Description Instrumentation Batch Extracted **Date Analyzed** Analyst Petroleum Hydro. CCME F1 & BTEX in Water HSGC/MSFD 8833426 N/A 2023/08/04 Lincoln Ramdahin Petroleum Hydrocarbons F2-F4 in Water GC/FID 8833643 2023/08/04 2023/08/04 Dennis Ngondu B[a]P Total Potency Equivalent GC/MS 8841752 2023/08/06 N/A Automated Statchk PAH in Water by GC/MS GC/MS 8837189 2023/08/05 2023/08/06 Shuang (Jessica) Chen

Site Location: RESOLUTE BAY LANDFILL

Sampler Initials: KC

GENERAL COMMENTS

Each temperature is the average of up to three cooler temperatures taken at receipt

Package 1	19.0°C
Fackage 1	13.0 C
Package 2	19.0°C
Package 3	18.7°C
Package 4	18.0°C

Sample WNL671 [RBL-2]: Nitrite/Nitrate: Due to colour interferences, sample required dilution. Detection limits were adjusted accordingly.

Sample WNL673 [AEC1-GW1]: Sample was analyzed past method specified hold time for PAH in Water by GC/MS due to required re-extraction. Exceedance of hold time increases the uncertainty of test results but does not necessarily imply that results are compromised.

Results relate only to the items tested.

Bureau Veritas Job #: C3M6596 Report Date: 2023/08/29

QUALITY ASSURANCE REPORT

BluMetric Environmental Inc Client Project #: 230427

Site Location: RESOLUTE BAY LANDFILL

			Matrix	Spike	SPIKED	BLANK	Method	Blank	RP	D	QC Standard	
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits	% Recovery	QC Limits
8833426	1,4-Difluorobenzene	2023/08/04	88	70 - 130	89	70 - 130	91	%				
8833426	4-Bromofluorobenzene	2023/08/04	108	70 - 130	108	70 - 130	103	%				
8833426	D10-o-Xylene	2023/08/04	85	70 - 130	88	70 - 130	91	%				
8833426	D4-1,2-Dichloroethane	2023/08/04	98	70 - 130	96	70 - 130	93	%				
8833432	1,4-Difluorobenzene	2023/08/06	101	70 - 130	98	70 - 130	102	%				
8833432	4-Bromofluorobenzene	2023/08/06	101	70 - 130	99	70 - 130	83	%				
8833432	D10-o-Xylene	2023/08/06	97	70 - 130	94	70 - 130	87	%				
8833432	D4-1,2-Dichloroethane	2023/08/06	84	70 - 130	84	70 - 130	95	%				
8833643	o-Terphenyl	2023/08/04	100	60 - 130	97	60 - 130	92	%				
8837189	D10-Anthracene	2023/08/06	118	50 - 130	104	50 - 130	111	%				
8837189	D14-Terphenyl	2023/08/06	123	50 - 130	110	50 - 130	125	%				
8837189	D8-Acenaphthylene	2023/08/06	102	50 - 130	86	50 - 130	74	%				
8837189	D8-Naphthalene	2023/08/06	89	50 - 130	59	50 - 130	43 (1)	%				
8823978	Nitrate (N)	2023/08/01	100	80 - 120	101	80 - 120	<0.10	mg/L	1.1	20		
8823978	Nitrite (N)	2023/08/01	105	80 - 120	107	80 - 120	<0.010	mg/L	NC	20		
8823994	Dissolved Chloride (Cl-)	2023/08/02	NC	80 - 120	100	80 - 120	<1.0	mg/L	3.5	20		
8823998	Dissolved Sulphate (SO4)	2023/08/02	NC	75 - 125	104	80 - 120	<1.0	mg/L	0.82	20		
8824099	рН	2023/08/01			102	98 - 103			0.028	N/A		
8824108	Conductivity	2023/08/01			99	85 - 115	<1.0	umho/c m	0.83	10		
8824109	Alkalinity (Total as CaCO3)	2023/08/01			96	85 - 115	<1.0	mg/L	1.1	20		
8824309	Nitrate (N)	2023/08/01	102	80 - 120	101	80 - 120	<0.10	mg/L	NC	20		
8824309	Nitrite (N)	2023/08/01	106	80 - 120	106	80 - 120	<0.010	mg/L	NC	20		
8824318	рН	2023/08/01			102	98 - 103			1.2	N/A		
8824319	Alkalinity (Total as CaCO3)	2023/08/01			97	85 - 115	<1.0	mg/L	1.9	20		
8824320	Conductivity	2023/08/01			101	85 - 115	<1.0	umho/c m	0.25	10		
8824642	Total Suspended Solids	2023/08/02			96	85 - 115	<10	mg/L	3.4	20		
8825340	Chromium (VI)	2023/08/03	99	80 - 120	100	80 - 120	<0.50	ug/L	NC	20		
8825734	Mercury (Hg)	2023/08/02	101	75 - 125	103	80 - 120	<0.000026	mg/L	NC	20		
8826856	Total Phosphorus	2023/08/03	100	80 - 120	105	80 - 120	<0.004	mg/L	0.35	20	111	80 - 120
8827102	Total Suspended Solids	2023/08/02			99	85 - 115	<10	mg/L	9.5	20		

QUALITY ASSURANCE REPORT(CONT'D)

BluMetric Environmental Inc Client Project #: 230427

Site Location: RESOLUTE BAY LANDFILL

			Matrix	Spike	SPIKED	BLANK	Method E	Blank	RP	D	QC Standard	
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits	% Recovery	QC Limits
8827927	Mercury (Hg)	2023/08/02	102	75 - 125	103	80 - 120	<0.000026	mg/L	NC	20		
8828011	Total Aluminum (AI)	2023/08/02	102	80 - 120	101	80 - 120	<4.9	ug/L	2.0	20		
8828011	Total Antimony (Sb)	2023/08/02	108	80 - 120	105	80 - 120	<0.50	ug/L	NC	20		
8828011	Total Arsenic (As)	2023/08/02	99	80 - 120	99	80 - 120	<1.0	ug/L	NC	20		
8828011	Total Barium (Ba)	2023/08/02	101	80 - 120	99	80 - 120	<2.0	ug/L	4.1	20		
8828011	Total Beryllium (Be)	2023/08/02	95	80 - 120	94	80 - 120	<0.40	ug/L	NC	20		
8828011	Total Bismuth (Bi)	2023/08/02	96	80 - 120	99	80 - 120	<1.0	ug/L	NC	20		
8828011	Total Boron (B)	2023/08/02	96	80 - 120	96	80 - 120	<10	ug/L	1.1	20		
8828011	Total Cadmium (Cd)	2023/08/02	99	80 - 120	99	80 - 120	<0.090	ug/L	NC	20		
8828011	Total Calcium (Ca)	2023/08/02	NC	80 - 120	99	80 - 120	<200	ug/L	6.1	20		
8828011	Total Chromium (Cr)	2023/08/02	92	80 - 120	92	80 - 120	<5.0	ug/L	NC	20		
8828011	Total Cobalt (Co)	2023/08/02	99	80 - 120	96	80 - 120	<0.50	ug/L	NC	20		
8828011	Total Copper (Cu)	2023/08/02	100	80 - 120	96	80 - 120	<0.90	ug/L	NC	20		
8828011	Total Iron (Fe)	2023/08/02	99	80 - 120	96	80 - 120	<100	ug/L	NC	20		
8828011	Total Lead (Pb)	2023/08/02	100	80 - 120	100	80 - 120	<0.50	ug/L	NC	20		
8828011	Total Lithium (Li)	2023/08/02	92	80 - 120	95	80 - 120	<5.0	ug/L	NC	20		
8828011	Total Magnesium (Mg)	2023/08/02	98	80 - 120	100	80 - 120	<50	ug/L	1.3	20		
8828011	Total Manganese (Mn)	2023/08/02	96	80 - 120	96	80 - 120	<2.0	ug/L	NC	20		
8828011	Total Molybdenum (Mo)	2023/08/02	99	80 - 120	97	80 - 120	<0.50	ug/L	NC	20		
8828011	Total Nickel (Ni)	2023/08/02	95	80 - 120	94	80 - 120	<1.0	ug/L	NC	20		
8828011	Total Potassium (K)	2023/08/02	102	80 - 120	100	80 - 120	<200	ug/L	2.2	20		
8828011	Total Selenium (Se)	2023/08/02	105	80 - 120	103	80 - 120	<1.0	ug/L	NC	20		
8828011	Total Silicon (Si)	2023/08/02	100	80 - 120	97	80 - 120	<50	ug/L	3.4	20		
8828011	Total Silver (Ag)	2023/08/02	94	80 - 120	93	80 - 120	<0.090	ug/L	NC	20		
8828011	Total Sodium (Na)	2023/08/02	100	80 - 120	96	80 - 120	<100	ug/L	3.7	20		
8828011	Total Strontium (Sr)	2023/08/02	95	80 - 120	95	80 - 120	<1.0	ug/L	0.0064	20		
8828011	Total Tellurium (Te)	2023/08/02	106	80 - 120	102	80 - 120	<1.0	ug/L	NC	20		
8828011	Total Thallium (TI)	2023/08/02	97	80 - 120	98	80 - 120	<0.050	ug/L	NC	20		
8828011	Total Tin (Sn)	2023/08/02	103	80 - 120	101	80 - 120	<1.0	ug/L	NC	20		
8828011	Total Titanium (Ti)	2023/08/02	99	80 - 120	99	80 - 120	<5.0	ug/L	NC	20		<u> </u>
8828011	Total Tungsten (W)	2023/08/02	101	80 - 120	100	80 - 120	<1.0	ug/L	NC	20		
8828011	Total Uranium (U)	2023/08/02	100	80 - 120	98	80 - 120	<0.10	ug/L	1.5	20		

Bureau Veritas Job #: C3M6596 Report Date: 2023/08/29

QUALITY ASSURANCE REPORT(CONT'D)

BluMetric Environmental Inc Client Project #: 230427

Site Location: RESOLUTE BAY LANDFILL

			Matrix	Spike	SPIKED	BLANK	Method E	Blank	RP	D	QC Sta	ndard
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits	% Recovery	QC Limits
8828011	Total Vanadium (V)	2023/08/02	95	80 - 120	93	80 - 120	<0.50	ug/L	NC	20		
8828011	Total Zinc (Zn)	2023/08/02	99	80 - 120	99	80 - 120	<5.0	ug/L	NC	20		
8828011	Total Zirconium (Zr)	2023/08/02	104	80 - 120	100	80 - 120	<1.0	ug/L	NC	20		
8828243	Total Ammonia-N	2023/08/03	97	75 - 125	102	80 - 120	<0.050	mg/L	0.038	20		
8833426	Benzene	2023/08/05	77	50 - 140	77	50 - 140	<0.20	ug/L	7.6	30		
8833426	Ethylbenzene	2023/08/05	83	50 - 140	85	50 - 140	<0.20	ug/L	NC	30		
8833426	F1 (C6-C10) - BTEX	2023/08/05					<25	ug/L	NC	30		
8833426	F1 (C6-C10)	2023/08/05	89	60 - 140	90	60 - 140	<25	ug/L	NC	30		
8833426	o-Xylene	2023/08/05	82	50 - 140	84	50 - 140	<0.20	ug/L	NC	30		
8833426	p+m-Xylene	2023/08/05	80	50 - 140	86	50 - 140	<0.40	ug/L	NC	30		
8833426	Toluene	2023/08/05	74	50 - 140	75	50 - 140	<0.20	ug/L	NC	30		
8833426	Total Xylenes	2023/08/05					<0.40	ug/L	NC	30		
8833432	Benzene	2023/08/08	NC	50 - 140	84	50 - 140	<0.20	ug/L	7.2	30		
8833432	Ethylbenzene	2023/08/08	109	50 - 140	96	50 - 140	<0.20	ug/L	5.3	30		
8833432	F1 (C6-C10) - BTEX	2023/08/08					<25	ug/L	NC	30		
8833432	F1 (C6-C10)	2023/08/08	112	60 - 140	93	60 - 140	<25	ug/L	0.79	30		
8833432	o-Xylene	2023/08/08	102	50 - 140	93	50 - 140	<0.20	ug/L	4.7	30		
8833432	p+m-Xylene	2023/08/08	100	50 - 140	87	50 - 140	<0.40	ug/L	6.8	30		
8833432	Toluene	2023/08/08	90	50 - 140	78	50 - 140	<0.20	ug/L	3.2	30		
8833432	Total Xylenes	2023/08/08					<0.40	ug/L	5.5	30		
8833643	F2 (C10-C16 Hydrocarbons)	2023/08/04	108	60 - 130	102	60 - 130	<100	ug/L	NC	30		
8833643	F3 (C16-C34 Hydrocarbons)	2023/08/04	109	60 - 130	106	60 - 130	<200	ug/L	NC	30		
8833643	F4 (C34-C50 Hydrocarbons)	2023/08/04	107	60 - 130	104	60 - 130	<200	ug/L	NC	30		
8836996	Total Oil & Grease	2023/08/06			99	85 - 115	<0.50	mg/L	0.51	25		
8837000	Total Oil & Grease Mineral/Synthetic	2023/08/06			97	85 - 115	<0.50	mg/L	0.52	25		
8837189	1-Methylnaphthalene	2023/08/06	64	50 - 130	56	50 - 130	<0.10	ug/L	NC	30		
8837189	2-Methylnaphthalene	2023/08/06	79	50 - 130	69	50 - 130	<0.10	ug/L	NC	30		
8837189	Acenaphthene	2023/08/06	93	50 - 130	83	50 - 130	<0.10	ug/L	NC	30		
8837189	Acenaphthylene	2023/08/06	95	50 - 130	82	50 - 130	<0.10	ug/L	NC	30		<u></u>
8837189	Acridine	2023/08/06	98	50 - 130	84	50 - 130	<0.040	ug/L	NC	30		
8837189	Anthracene	2023/08/06	85	50 - 130	74	50 - 130	<0.010	ug/L	NC	30		
8837189	Benzo(a)anthracene	2023/08/06	119	50 - 130	99	50 - 130	<0.0085	ug/L	NC	30		<u> </u>

Bureau Veritas Job #: C3M6596 Report Date: 2023/08/29

QUALITY ASSURANCE REPORT(CONT'D)

BluMetric Environmental Inc Client Project #: 230427

Site Location: RESOLUTE BAY LANDFILL

			Matrix	Spike	SPIKED	BLANK	Method I	Blank	RP	D	QC Standard	
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits	% Recovery	QC Limits
8837189	Benzo(a)pyrene	2023/08/06	128	50 - 130	110	50 - 130	<0.0075	ug/L	NC	30		
8837189	Benzo(b/j)fluoranthene	2023/08/06	121	50 - 130	103	50 - 130	<0.0085	ug/L	NC	30		
8837189	Benzo(c)phenanthrene	2023/08/06	123	50 - 130	104	50 - 130	<0.050	ug/L	NC	30		
8837189	Benzo(e)pyrene	2023/08/06	106	50 - 130	90	50 - 130	<0.050	ug/L	NC	30		
8837189	Benzo(g,h,i)perylene	2023/08/06	112	50 - 130	91	50 - 130	<0.0085	ug/L	NC	30		
8837189	Benzo(k)fluoranthene	2023/08/06	117	50 - 130	120	50 - 130	<0.0085	ug/L	NC	30		
8837189	Chrysene	2023/08/06	116	50 - 130	100	50 - 130	<0.0085	ug/L	NC	30		
8837189	Dibenzo(a,h)anthracene	2023/08/06	115	50 - 130	89	50 - 130	<0.0075	ug/L	NC	30		
8837189	Fluoranthene	2023/08/06	116	50 - 130	100	50 - 130	<0.010	ug/L	NC	30		
8837189	Fluorene	2023/08/06	103	50 - 130	89	50 - 130	<0.050	ug/L	NC	30		
8837189	Indeno(1,2,3-cd)pyrene	2023/08/06	119	50 - 130	92	50 - 130	<0.0085	ug/L	NC	30		
8837189	Naphthalene	2023/08/06	80	50 - 130	69	50 - 130	<0.10	ug/L	NC	30		
8837189	Perylene	2023/08/06	104	50 - 130	89	50 - 130	<0.050	ug/L	NC	30		
8837189	Phenanthrene	2023/08/06	115	50 - 130	101	50 - 130	<0.050	ug/L	NC	30		
8837189	Pyrene	2023/08/06	115	50 - 130	101	50 - 130	<0.020	ug/L	NC	30		
8837189	Quinoline	2023/08/06	79	50 - 130	79	50 - 130	<0.20	ug/L	NC	30		
8841753	Phenols-4AAP	2023/08/08	99	80 - 120	107	80 - 120	<0.0015	mg/L				
8841754	Phenols-4AAP	2023/08/08	99	80 - 120	108	80 - 120	<0.0015	mg/L				
8843927	Dissolved Aluminum (AI)	2023/08/11	105	80 - 120	99	80 - 120	<4.9	ug/L	NC	20		
8843927	Dissolved Antimony (Sb)	2023/08/11	111	80 - 120	103	80 - 120	<0.50	ug/L	15	20		
8843927	Dissolved Arsenic (As)	2023/08/11	106	80 - 120	100	80 - 120	<1.0	ug/L	0.24	20		
8843927	Dissolved Barium (Ba)	2023/08/11	104	80 - 120	98	80 - 120	<2.0	ug/L	2.6	20		
8843927	Dissolved Beryllium (Be)	2023/08/11	104	80 - 120	96	80 - 120	<0.40	ug/L	NC	20		
8843927	Dissolved Bismuth (Bi)	2023/08/11	103	80 - 120	95	80 - 120	<1.0	ug/L	NC	20		
8843927	Dissolved Boron (B)	2023/08/11	103	80 - 120	96	80 - 120	<10	ug/L	1.3	20		
8843927	Dissolved Cadmium (Cd)	2023/08/11	106	80 - 120	99	80 - 120	<0.090	ug/L	NC	20		
8843927	Dissolved Calcium (Ca)	2023/08/11	NC	80 - 120	101	80 - 120	<200	ug/L	2.0	20		
8843927	Dissolved Chromium (Cr)	2023/08/11	105	80 - 120	98	80 - 120	<5.0	ug/L	NC	20		
8843927	Dissolved Cobalt (Co)	2023/08/11	104	80 - 120	99	80 - 120	<0.50	ug/L	NC	20		
8843927	Dissolved Copper (Cu)	2023/08/11	105	80 - 120	98	80 - 120	<0.90	ug/L	0.35	20		
8843927	Dissolved Iron (Fe)	2023/08/11	107	80 - 120	101	80 - 120	<100	ug/L	NC	20		
8843927	Dissolved Lead (Pb)	2023/08/11	104	80 - 120	97	80 - 120	<0.50	ug/L	NC	20		

QUALITY ASSURANCE REPORT(CONT'D)

BluMetric Environmental Inc Client Project #: 230427

Site Location: RESOLUTE BAY LANDFILL

Sampler Initials: KC

			Matrix	Spike	SPIKED	BLANK	Method E	Blank	RP	D	QC Sta	ndard
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits	% Recovery	QC Limits
8843927	Dissolved Lithium (Li)	2023/08/11	109	80 - 120	101	80 - 120	<5.0	ug/L	NC	20		
8843927	Dissolved Magnesium (Mg)	2023/08/11	105	80 - 120	99	80 - 120	<50	ug/L	2.9	20		
8843927	Dissolved Manganese (Mn)	2023/08/11	106	80 - 120	100	80 - 120	<2.0	ug/L	0.0044	20		
8843927	Dissolved Molybdenum (Mo)	2023/08/11	112	80 - 120	103	80 - 120	<0.50	ug/L	2.2	20		
8843927	Dissolved Nickel (Ni)	2023/08/11	104	80 - 120	99	80 - 120	<1.0	ug/L	0.80	20		
8843927	Dissolved Phosphorus (P)	2023/08/11	110	80 - 120	97	80 - 120	<100	ug/L	NC	20		
8843927	Dissolved Potassium (K)	2023/08/11	107	80 - 120	101	80 - 120	<200	ug/L	1.6	20		
8843927	Dissolved Selenium (Se)	2023/08/11	105	80 - 120	101	80 - 120	<1.0	ug/L	NC	20		
8843927	Dissolved Silicon (Si)	2023/08/11	107	80 - 120	101	80 - 120	<50	ug/L	0.11	20		
8843927	Dissolved Silver (Ag)	2023/08/11	107	80 - 120	100	80 - 120	<0.090	ug/L	NC	20		
8843927	Dissolved Sodium (Na)	2023/08/11	105	80 - 120	99	80 - 120	<100	ug/L	1.4	20		
8843927	Dissolved Strontium (Sr)	2023/08/11	107	80 - 120	102	80 - 120	<1.0	ug/L	2.3	20		
8843927	Dissolved Tellurium (Te)	2023/08/11	106	80 - 120	101	80 - 120	<1.0	ug/L	NC	20		
8843927	Dissolved Thallium (TI)	2023/08/11	107	80 - 120	99	80 - 120	<0.050	ug/L	NC	20		
8843927	Dissolved Tin (Sn)	2023/08/11	110	80 - 120	102	80 - 120	<1.0	ug/L	NC	20		
8843927	Dissolved Titanium (Ti)	2023/08/11	105	80 - 120	100	80 - 120	<5.0	ug/L	NC	20		
8843927	Dissolved Tungsten (W)	2023/08/11	109	80 - 120	101	80 - 120	<1.0	ug/L	NC	20		
8843927	Dissolved Uranium (U)	2023/08/11	105	80 - 120	97	80 - 120	<0.10	ug/L	0.62	20		
8843927	Dissolved Vanadium (V)	2023/08/11	107	80 - 120	100	80 - 120	<0.50	ug/L	2.3	20		
8843927	Dissolved Zinc (Zn)	2023/08/11	104	80 - 120	98	80 - 120	<5.0	ug/L	NC	20		
8843927	Dissolved Zirconium (Zr)	2023/08/11	115	80 - 120	107	80 - 120	<1.0	ug/L	NC	20		
8843936	Dissolved Aluminum (Al)	2023/08/14	105	80 - 120	97	80 - 120	<4.9	ug/L	NC	20		
8843936	Dissolved Antimony (Sb)	2023/08/14	108	80 - 120	101	80 - 120	<0.50	ug/L	NC	20		
8843936	Dissolved Arsenic (As)	2023/08/14	107	80 - 120	102	80 - 120	<1.0	ug/L	NC	20		
8843936	Dissolved Barium (Ba)	2023/08/14	105	80 - 120	98	80 - 120	<2.0	ug/L	3.8	20		
8843936	Dissolved Beryllium (Be)	2023/08/14	101	80 - 120	93	80 - 120	<0.40	ug/L	NC	20		
8843936	Dissolved Bismuth (Bi)	2023/08/14	104	80 - 120	102	80 - 120	<1.0	ug/L	NC	20		
8843936	Dissolved Boron (B)	2023/08/14	103	80 - 120	98	80 - 120	<10	ug/L	1.3	20		
8843936	Dissolved Cadmium (Cd)	2023/08/14	105	80 - 120	98	80 - 120	<0.090	ug/L	NC	20		
8843936	Dissolved Calcium (Ca)	2023/08/14	NC	80 - 120	98	80 - 120	<200	ug/L	0.80	20		
8843936	Dissolved Chromium (Cr)	2023/08/14	101	80 - 120	96	80 - 120	<5.0	ug/L	NC	20		
8843936	Dissolved Cobalt (Co)	2023/08/14	104	80 - 120	101	80 - 120	<0.50	ug/L	NC	20		

Bureau Veritas Job #: C3M6596 Report Date: 2023/08/29

QUALITY ASSURANCE REPORT(CONT'D)

BluMetric Environmental Inc Client Project #: 230427

Site Location: RESOLUTE BAY LANDFILL

Sampler Initials: KC

			Matrix	Spike	SPIKED	BLANK	Method I	Blank	RP	D	QC Sta	ndard
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits	% Recovery	QC Limits
8843936	Dissolved Copper (Cu)	2023/08/14	107	80 - 120	101	80 - 120	<0.90	ug/L	NC	20		
8843936	Dissolved Iron (Fe)	2023/08/14	106	80 - 120	99	80 - 120	<100	ug/L	NC	20		
8843936	Dissolved Lead (Pb)	2023/08/14	103	80 - 120	96	80 - 120	<0.50	ug/L	NC	20		
8843936	Dissolved Lithium (Li)	2023/08/14	109	80 - 120	108	80 - 120	<5.0	ug/L	NC	20		
8843936	Dissolved Magnesium (Mg)	2023/08/14	101	80 - 120	102	80 - 120	<50	ug/L	5.6	20		
8843936	Dissolved Manganese (Mn)	2023/08/14	105	80 - 120	98	80 - 120	<2.0	ug/L	NC	20		
8843936	Dissolved Molybdenum (Mo)	2023/08/14	106	80 - 120	96	80 - 120	<0.50	ug/L	3.1	20		
8843936	Dissolved Nickel (Ni)	2023/08/14	105	80 - 120	100	80 - 120	<1.0	ug/L	NC	20		
8843936	Dissolved Phosphorus (P)	2023/08/14	112	80 - 120	105	80 - 120	<100	ug/L	NC	20		
8843936	Dissolved Potassium (K)	2023/08/14	107	80 - 120	101	80 - 120	<200	ug/L	0.84	20		
8843936	Dissolved Selenium (Se)	2023/08/14	107	80 - 120	100	80 - 120	<1.0	ug/L	NC	20		
8843936	Dissolved Silicon (Si)	2023/08/14	104	80 - 120	96	80 - 120	<50	ug/L	1.8	20		
8843936	Dissolved Silver (Ag)	2023/08/14	101	80 - 120	96	80 - 120	<0.090	ug/L	NC	20		
8843936	Dissolved Sodium (Na)	2023/08/14	109	80 - 120	98	80 - 120	<100	ug/L	4.6	20		
8843936	Dissolved Strontium (Sr)	2023/08/14	108	80 - 120	101	80 - 120	<1.0	ug/L	0.82	20		
8843936	Dissolved Tellurium (Te)	2023/08/14	107	80 - 120	101	80 - 120	<1.0	ug/L	NC	20		
8843936	Dissolved Thallium (TI)	2023/08/14	105	80 - 120	98	80 - 120	<0.050	ug/L	NC	20		
8843936	Dissolved Tin (Sn)	2023/08/14	110	80 - 120	103	80 - 120	<1.0	ug/L	NC	20		
8843936	Dissolved Titanium (Ti)	2023/08/14	104	80 - 120	98	80 - 120	<5.0	ug/L	NC	20		
8843936	Dissolved Tungsten (W)	2023/08/14	107	80 - 120	97	80 - 120	<1.0	ug/L	NC	20		
8843936	Dissolved Uranium (U)	2023/08/14	106	80 - 120	97	80 - 120	<0.10	ug/L	4.4	20		
8843936	Dissolved Vanadium (V)	2023/08/14	104	80 - 120	97	80 - 120	<0.50	ug/L	NC	20		
8843936	Dissolved Zinc (Zn)	2023/08/14	106	80 - 120	100	80 - 120	<5.0	ug/L	NC	20		•

Bureau Veritas Job #: C3M6596 Report Date: 2023/08/29

QUALITY ASSURANCE REPORT(CONT'D)

BluMetric Environmental Inc Client Project #: 230427

Site Location: RESOLUTE BAY LANDFILL

Sampler Initials: KC

			Matrix	Spike	SPIKED	BLANK	Method E	Blank	RPI)	QC Sta	ndard
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits	% Recovery	QC Limits
8843936	Dissolved Zirconium (Zr)	2023/08/14	110	80 - 120	104	80 - 120	<1.0	ug/L	NC	20		

N/A = Not Applicable

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

QC Standard: A sample of known concentration prepared by an external agency under stringent conditions. Used as an independent check of method accuracy.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spike amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than the native sample concentration)

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

Site Location: RESOLUTE BAY LANDFILL

Sampler Initials: KC

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by:

Auceule
Anastassia Hamanov, Scientific Specialist
-54
Brad Newman, B.Sc., C.Chem., Scientific Service Specialist
Cuistin Camere
Cristina Carriere, Senior Scientific Specialist
1/ermicatelk
Veronica Falk, B.Sc., P.Chem., QP, Scientific Specialist, Organics

Sandy Yuan, M.Sc., QP, Scientific Specialist

for $\{2\}$ $\{3\}$ laboratory operations.

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by {0}, {1} responsible

www.BVNA.com

6740 Campobello Road, Mississauga, Ontario L5N 2L8 Phone: 905-817-5700 Fax: 905-817-5779 Toll Free: 800-563-6266

Received in Ottawa CHAIN OF CUSTODY RECORD

ENV COC - 00014v3

Invoice In	formation	Invoice to (r	requires report)				Report Ir	aformat	ion (if a	liffers from invo	ice)					_		p	roject Ir	nform:	tion				T						
Company		BluMetric En	vironmental	Inc	Compan	y:		BluM	etric E	nvironment	al Inc			Quot	ation #	1				C	32559)			_	2	7-Ju	ul-23 1	2:57	7	
Contact		Accoun	ts Payable		Contact Name:				Jaclyr	Kalesnikoff				P.O. I	n/ AFE	e:									Chr			riptor			
Name: Street		1682 Woo	dward Drive		Street Address	310		16	82 W	oodward Dri	ve			Proje	ct #:	1				2	3042	7			IIIII		IIII		1111		
Address: City:	Ottawa	Prov:	ON Postal	K2C 3R8	_	_	Ottawa		Prov:	ON	Postal	K2	3R8	-		1							_	_	-111	C31	16	596			
Phone:			Code:		Phone:			- 8	377-48	37-8436 x339	Code:	1		-	ocatio	n:			Res	olute	Bay	Landf	U								
Email:		ap@blu	umetric.ca		Email:			jkale	sniko	ff@blumetri	c.ca				ocatio	n									WP		E	NV-1	04		
Copies:			@blumetric.	ca	Copies:			jb	rown	@blumetric.	ca			Provi	oled By	g I					KC				7						
6 153	able 1 able 2 able 3 able	Res/Park Ind/Comm Agri/other	Med/Fi Course For RSC	ОТНЕК	teg 558 min 3 d JAISA WQO	ay TAT	Store Othe	106, Tab ary Sev m Sewe Munic r:	er Byla		1	2 3	4	including Total Hg us	6	TDS	8	9 1	Soilds		13	14 1	5 16	17	8 19			_ 5 to	7 Day tush Turr	naround T	
	SAMPLES MIL	ST BE KEPT COOL						REALLV	FRITAS			QUIRE		total)	Vater	BTKN	tromit		ed Sc	by GC					11	SIIRM	ALYZE	20			3 Day
	JAMP 123 MO.			IIIIE OF SAIII		Date San			(24hr)		TERED	HELD PRESERVED	Water	Regulated Metals (total)	BTEX and F1-F4 in V	V, PHEN, ABTKN-T,	Total Hexavalent Ch	Oil and Grease by IR	Total Suspended	PAH in water b						OF CONTAINERS SURMITTED	DO NOT AMALYZE	J4 D		YY	MM. DD
		Sample Identif	ication		Y	M	OO N	нн	мм	Matrix	FIELD FILTERED	LAB FILT	Routine	Regulate	BTEX and	NH4AC-W,	Total He	Oll and G	Total S	PAH in						WOE CO	HOLD - E			Comment	
1		RBL	-2		2	3 07	7 23	17	30	Water - Ground	N	Y N	x	x	x	x	x	x :	x x	x						1	6		Bottle	Substit	utions:**
2		RBL	-3		2.	3 07	7 23	15	30	Water - Ground	N	Y N	x	x	x	x	x	x x	×	x						1	6	1. 25	mL N	aSO4 bo	ttles subbed
3		AEC1-0	GW1		2	3 07	7 23	16	30	Water - Ground	N	YN	x	x	x	x	x	x x	×	x						1	6		vith 10	0 mL F2	bottles
4		RBL	-4		2	3 07	7 24	13	00	Water - Surface	N	YN	x	x	x	x	х	x x	x	X						1	6	2. ph	enol ar	nber bo	ttles subbed
5		RBL	-8		2	3 07	7 24	11	50	Water - Surface	N	YN	x	x	x	x	x	x x	x	X						1	6	with	nutrie	nts (120	mL yellow)
6		RBL-	13		2	3 07	7 24	11	15	Water - Surface	N	Y N	x	x	x	x	х	x x	x	X						1	6	3. 2	x250 n	nL 061R	bottles as
7		RBL-	16		2.	3 07	7 24	10	30	Water - Surface	N	YN	x	x	x	x	x	x x	x	X						1	6	sub	ed pe	r 2x1L 0	61R bottles
8		RBL-D	UPA		2.	3 07	7 23	15	50	Water - Ground	N	YN	x	x	x	x	X	x x	x	X						1	6				
9		RBL-D	UPB		2	3 07	7 24	11	20	Water - Surface	N	YN	×	x	х	x	x	x x	×	X						1	6				
10		RBL-D	UPC		2.	3 07	7 24	11	55	Water - Surface	N	YN	x	x	x	x	x	x x	x	X						1	6				
11		FIELD BL	ANK 1		2	3 07	7 23	15	40	Water - Ground	N	YN			x					X							4				
12		TRIP BL	ANK 1		2	3 07	7 23	9	00	Water - Ground	N	YN			x											1	4				
*UNLESS	OTHERWISE AG	REED TO IN WRIT	ING, WORK SUBI	MITTED ON TH						VERITAS STAN															GMENT	AND ACC	EPTAI	NCE OF OUR	TERMS A	ND CONDI	TIONS WHICH ARE
Seal pres		Yes N	-	See A	ACTI	Seal	LAB US present intact	E ONLY			ło	·c			rt		5	res	eal pres	LA!	USEO	NLY		Yes		lo	·c				Temperature reading by:
Cooming I		y: (Signature/ Pr	rint)	YY I	ate MM	DD	ing media	Time	iM		Receiv	ed by:	(Signat	ture/	Print)	_	3	-	ooling r		Da			DD	T)	me	T	Į.	Specia	instructio	ns
. Bl.	all	KIM C	ARCTON	23	07		11:	5	_	· Samuel	Du	-	1	800	mul RI	1	mo		202		0	7		7	12	57	-				0

www.BVNA.com

6740 Campobello Road, Mississauga, Ontario L5N 2L8 Phone: 905-817-5700 Fax: 905-817-5779 Toll Free: 800-563-6266

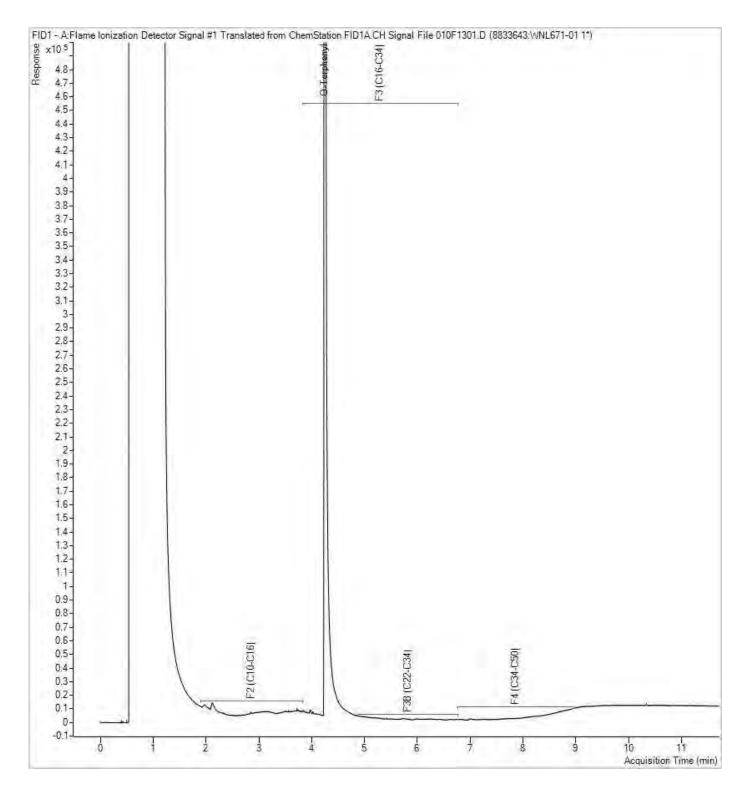
Received in Ottawa CHAIN OF CUSTODY RECORD

Page 2 of 2

Invoice	Informa	ation	Invoice to (r	requires	report)	5		1	Report In	forma	tion (if d	iffers from invol	ice)			T					Pr	oject li	nforma	tion													
Compa	ny:	- 1	BluMetric En	vironn	nental	Inc	Compan	y:		BluM	etric E	nvironmenta	al Inc			Q	uotal	tion#:					C	3255	9												
Contac			Accoun	ts Pay	able		Contact Name:				Jaclyn	Kalesnikoff				P	.0.#/	AFE#													LA	BUS	E ONLY -	PLACE 5	TICKER H	RE	
Name: Street Addres			1682 Woo	odward	d Drive		Street Address			16	82 W	oodward Driv	/e			p	roject	t#:					2	3042	7												
City:		Ottawa	Prov:	ON	Postal Code:	K2C 3R8			tawa		Prov:	ON	Posta Code		(2C	3R8s	ite#:																				
Phone			613-8	339-30	1 - 10 -		Phone:			- 3	877-48	7-8436 x339	Luce					cation				Res	solute	Bay	Land	Ifill							Rush Co	firmati	on #:		
Email:			ap@bli	umetri	ic.ca		Email:			jkal	esniko	ff@blumetri	c.ca				ite Lo rovin	cation																			
Copies			jKalesnikoff	@blur	netric.	ca	Copies:			jt	rown(@blumetric.c	_			s	ampl	ed By:						KC													
REG 153	Table 1 Table 2 Table 3 Table	2	Res/Park Ind/Comm Agri/other		Med/Fir Course For RSC	OTHER	Leg 558 Teg 558	TAT VA	Stor	m Sew	ble: wer Byla er Bylaw cipality		1	2	1		ncluding Total Hglw		7, 705	8	9 1			13	14	15 1	6 17	18	19				_ 5 to	7 Day Ush Tur Su	naround charges a	200	
		unier sur		. 1		Certificate of					I COUT A				JUIRE		otal) ii	/ater	BTKN	romin		og po	y 6C							in a single	Color	ALYZE	2 Da	e Day		1 Day	
	SAN	WPLES MUS	ST BE KEPT COOL	(<10°C)	FROM T	IME OF SAMP		Date Samp	7		(24hr)		TERED	ESERVED	LAB FILTRATION REQUIRED	Nater	Regulated Metals (total)	BTEX and F1-F4 in Wate	NH4AC-W, PHEN, ABTKN-T,	Total Hexavalent Chromi	Oil and Grease by IR	Total Suspended Soilds	PAH in water by							COTTINUES SESSION AND SESSION	NI AINERS S	DO NOT ANALYZE	4 Da		YY	3 Day	00
			Sample Identif	fication			Y	MM	DD	нн	MM	Matrix	FIELD FILTERED	FIELD PRESERVED	LAB FILTS	Routine Water	Regulate	BTEX and	NHAAC-V	Total He	Total D	Total S	PAH in							***************************************	# OF COR	HOLD - D	Required:	_	Commen		
1			FIELD BL	ANK 2			2	3 07	24	10	40	Water - Surface	N	Y	N			x					x								4		***	Bottle	Substi	utions:	
2														1																		1	1. 250	mL N	a504 b	ottles su	bbed
3																			1				1								1		1	vith 10	00 mLF	2 bottles	s
4										-										1	1	1	1							1	1		2. ph	enol a	mber b	ottles su	bbed
5										-			1		7				1	1		1									1		with	nutrie	nts (12	mL yel	low)
6										-										1	1										1	7	3. 2	x250 r	nl. 061F	bottles	as
7												1								1	1					1					1		sub	ed pe	r 2x1L (61R bot	ttles
8							1		1											1	1	1									1						
9							+		+	+									1	+	+	1				1					1						
10		_					+		+	+	1								1	+	+	+	+	+		+	1	+		+	+			_			
11	_			-		-	+	+	+	+	-			-			- 2		+	+	+	+	+	-		+	-	-		+	+						
-				_	_		-	+	-	+				-					+	+	+	+	+	-		+	-	+		-	+		-	_		_	-
12	to basin	Marine and a second			Same													Tile .	100				- Day	N. S. S. S.			-				Acres	****	r of our	rentar	NO COM	Tions w	industry 2
UNLE	SS OTHE	ERWISE AGI	REED TO IN WRIT	TING, W	ORK SUBI	MITTED ON T	HIS CHAIN	AVAILABLE	DV IS SU FOR VI	BIECT EWING	TO BURE	AU VERITAS STAI W:BVNA.COM/TE	RMS	D TERM	OND	TIONS	OR B	Y CALL	IGNIN ING TI	E LAB	ORATI	DRY LIS	TED A	ODY D	OCUMI O OBT/	AIN A C	OPY	VLEDGI	MENTA	ND AC	LEFT	ANC	EDFOUR	TERMS (IND CONE	ITIONS WI	IICH ARE
Seal pr		EONLY	Yes N	1	Vo.	See	bod.		LAB U	SE ONL	Y	Yes	No		c						-	eal pre	esent	B USE	ONLY			Yes	No	,	*0						perature fing by:
Coolin	_	present	U		1	2	3 Date	15000	ng medi	a prese	nt			1_		1		2	1	1	c	ooling	media		ate			1	Tim	10	_	6.	1	2 Specia	3 Instructi	ons	
50	Relin	nquished by	y: (Signature/ P	-		YY	MM	DD	нн	-	MM	-	Rec	ceived	by: (Signat	ure/F	Print)	_		+	Y	Y	F	MM	-	DD	P	нн	MN	1						
100	m/	and	KIM	care	CTEV	23	07	25	11	5	0	See	P	9.	5	e	2	Po	LO.	21		-		-	_	+		+									

ADDITIONAL COOLER TEMPERATURE RECORD

CHAIN-OF-CUSTODY RECORD

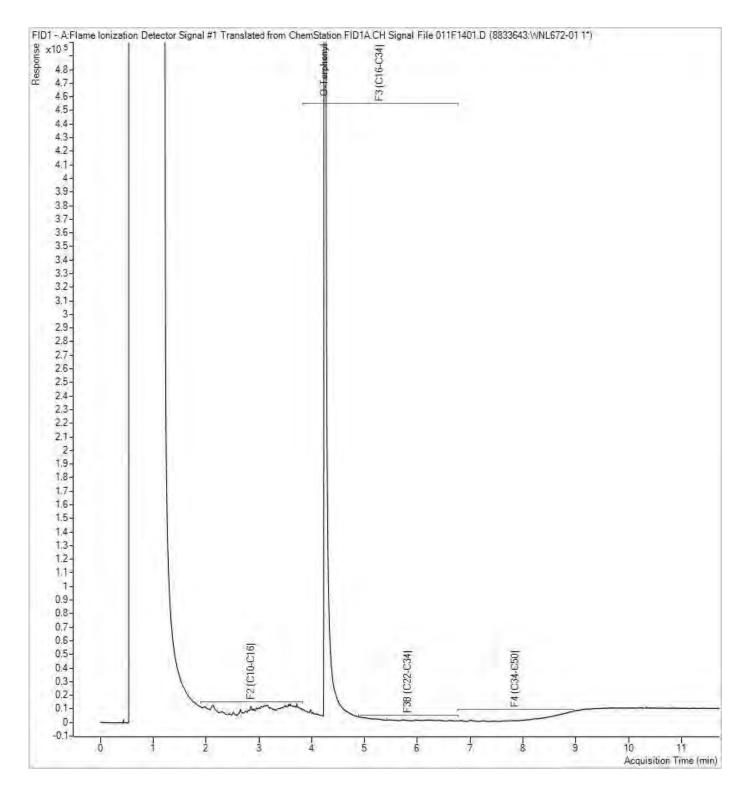

	COOLER OBSER	VATIONS:						BV JOB#:							
CHAIN OF CUSTODY #								C3	M6	3	16				
e	CUSTODY SEAL	YES	NO	COOLER ID	1			CUSTODY	SEAL	YES	NO	COOLER ID)		
of	PRESENT	1			12.71			P	RESENT						
	INTACT	~		TEMP	1)	1	1	NTACT			TEMP		1 S	
of	ICE PRESENT	~			1	2	3	ICE PRESE	NT				1	2	3
	CUSTODY SEAL	YES	NO	COOLER ID	2			CUSTODY	SEAL	YES	NO	COOLERIE)		
of	PRESENT	1					1	P	RESENT	0.00					
	INTACT	~		TEMP	(4	3		NTACT			TEMP		0 00.11	
of	ICE PRESENT	V			1	2	3	ICE PRESE	_				1	2	3
of	CUSTODY SEAL	YES	NO	COOLER ID	9			CUSTOD		YES	NO	COOLER ID)		
	PRESENT	-			1	-			RESENT	1					
of	INTACT	1		TEMP	7	7	9		NTACT			TEMP		1 × 3	
	ICE PRESENT	Nec.	410	COO! #0 !!	1	2	3	ICE PRESI					1	2	- 3
of	CUSTODY SEAL	YES	NO	COOLER ID	1	4		CUSTODY		YES	NO	COOLER II)		
	PRESENT	1			4	4	5		RESENT						
of	ICE PRESENT	12/		TEMP	4				NTACT	_		TEMP		1000	
- VI	CUSTODY SEAL	YES	NO	COOLER ID	-	5	3	ICE PRES		-			1	2	3
of	PRESENT	_	NU	COOLER IL		5	_	CUSTOD		YES	NO	COOLER I		_	_
	INTACT	1	_	Tries	0	2	7		RESENT			500			
of	ICE PRESENT	14.	-	TEMP	2	2	3		NTACT	-	_	TEMP		100	
	CUSTODY SEAL	YES	NO	COOLER ID			3	ICE PRESI		-	-		1	2	3
of	PRESENT	1.03	no-	COOLER IL			_	CUSTOD		YES	NO	COOLER I	-	_	_
	INTACT	-	-	TEMP					NTACT	-				7	
of	ICE PRESENT	_	_	TEMP	1	2	3	ICE PRESI		-	_	TEMP	1		-
	CUSTODY SEAL	YES	NO	COOLERIE		_	-	CUSTOD		YES	NO	COOLER IS		2	
of	PRESENT			-					RESENT	163	100	COOLERIA			
	INTACT			TEMP			0		NTACT	-	-	TEMP			
of	ICE PRESENT	\neg			1	2	3	ICE PRESI		-	_	· ····	1	2	9
	CUSTODY SEAL	YES	NO	COOLER ID				CUSTOD	-	YES	NO	COOLER II		-	-
of	PRESENT				-				RESENT	1	11.0	COULCENT			
	INTACT			TEMP					NTACT			TEMP			
of	ICE PRESENT				1	2	3	ICE PRES				-	1	2	
	CUSTODY SEAL	YES	NO	COOLER ID)		_	CUSTOD	SEAL	YES	NO	COOLER I	0	_	
of	PRESENT							P	RESENT						
	INTACT			TEMP					NTACT			TEMP			
of	ICE PRESENT			1	1	2	3	ICE PRES	INT			1	1	2	3
	CUSTODY SEAL	YES	NO	COOLER II)			CUSTOD	SEAL	YES	NO	COOLERIE	0		
of	PRESENT								RESENT						
9	INTACT			TEMP					NTACT			TEMP			
of	ICE PRESENT				1	2	3	ICE PRES	NI				1	2	3
	DECEMES OF	CICN A	ppin	-1											
	RECEIVED BY	SIGN &	PKIN	1)	_				DATE	(YYYY)	MM/E	OD)	TIME (HH:MN	1)
	Aneri			An	100	_	200	310	11-	20		Cr.			
	HIVEU					VI)	JER	1	120	910	112	6	(1816	10

BluMetric Environmental Inc Client Project #: 230427

Project name: RESOLUTE BAY LANDFILL

Client ID: RBL-2

Petroleum Hydrocarbons F2-F4 in Water Chromatogram

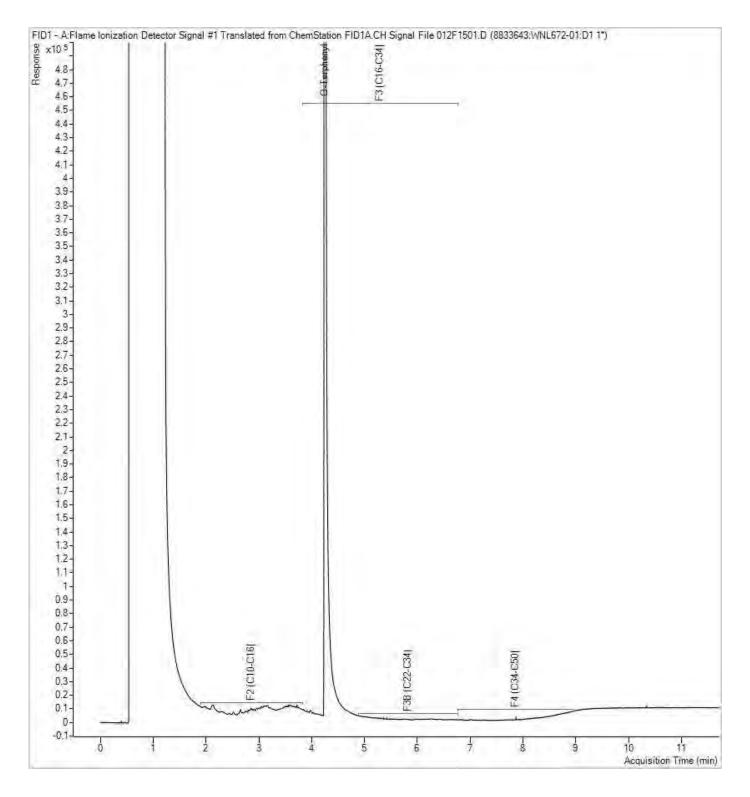


BluMetric Environmental Inc Client Project #: 230427

Project name: RESOLUTE BAY LANDFILL

Client ID: RBL-3

Petroleum Hydrocarbons F2-F4 in Water Chromatogram

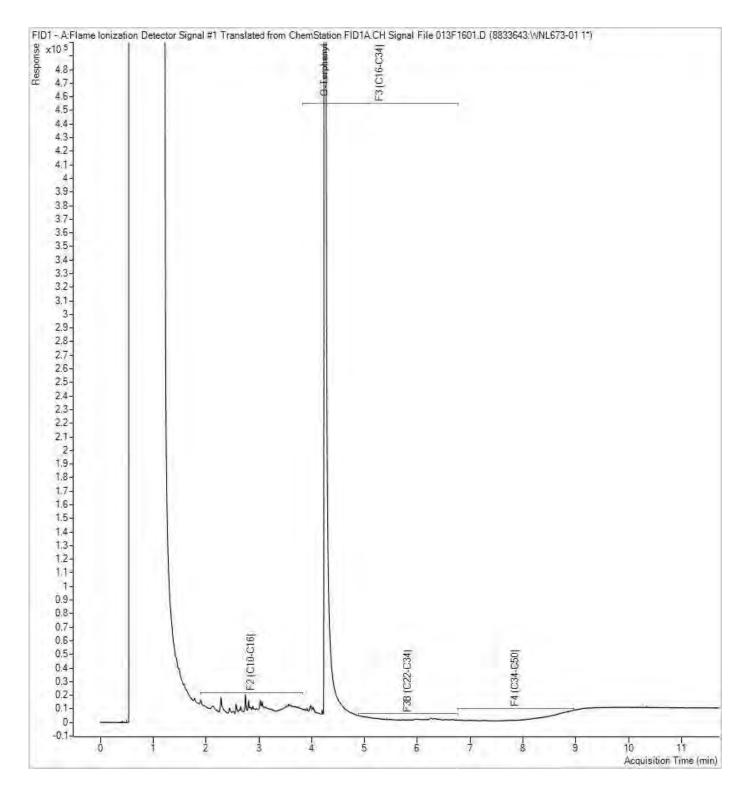

Dup

BluMetric Environmental Inc Client Project #: 230427

Project name: RESOLUTE BAY LANDFILL

Client ID: RBL-3

Petroleum Hydrocarbons F2-F4 in Water Chromatogram

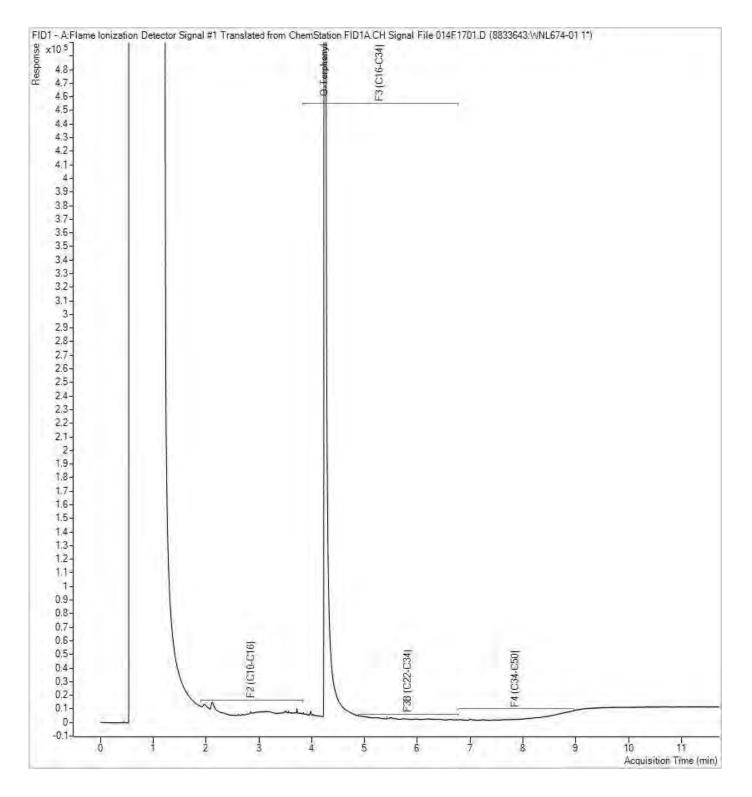


BluMetric Environmental Inc Client Project #: 230427

Project name: RESOLUTE BAY LANDFILL

Client ID: AEC1-GW1

Petroleum Hydrocarbons F2-F4 in Water Chromatogram

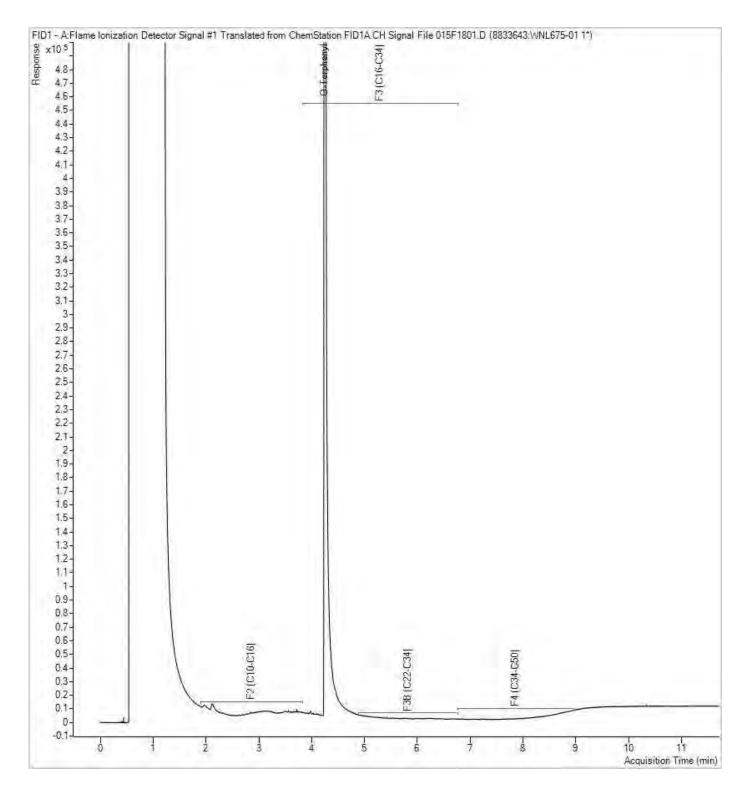


BluMetric Environmental Inc Client Project #: 230427

Project name: RESOLUTE BAY LANDFILL

Client ID: RBL-4

Petroleum Hydrocarbons F2-F4 in Water Chromatogram

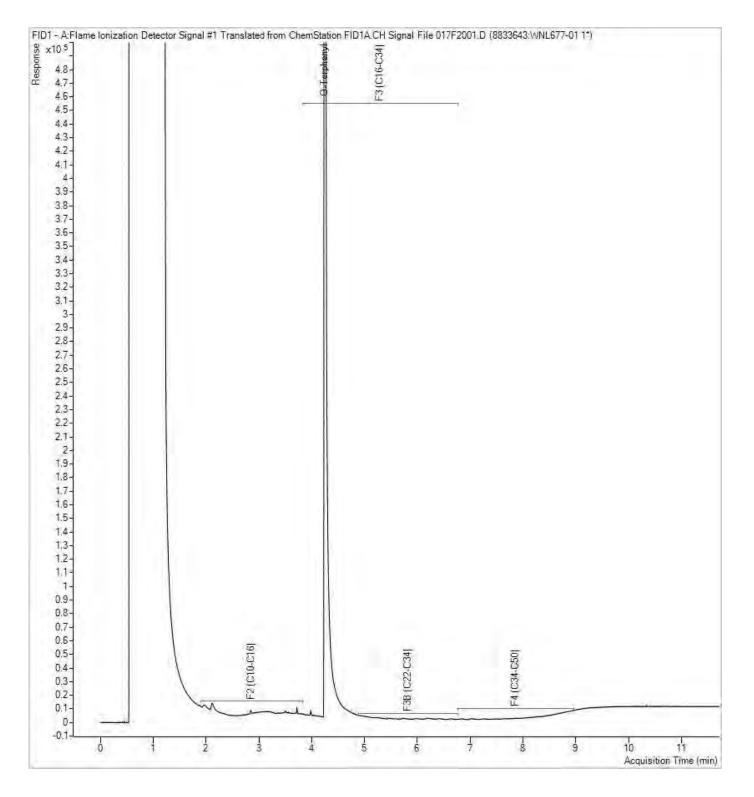


BluMetric Environmental Inc Client Project #: 230427

Project name: RESOLUTE BAY LANDFILL

Client ID: RBL-8

Petroleum Hydrocarbons F2-F4 in Water Chromatogram

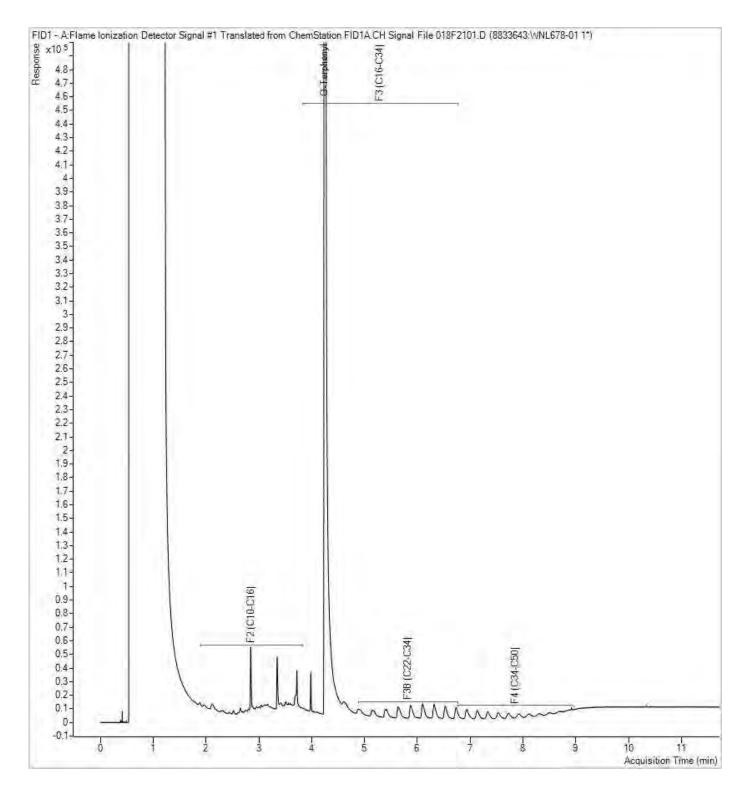


BluMetric Environmental Inc Client Project #: 230427

Project name: RESOLUTE BAY LANDFILL

Client ID: RBL-16

Petroleum Hydrocarbons F2-F4 in Water Chromatogram

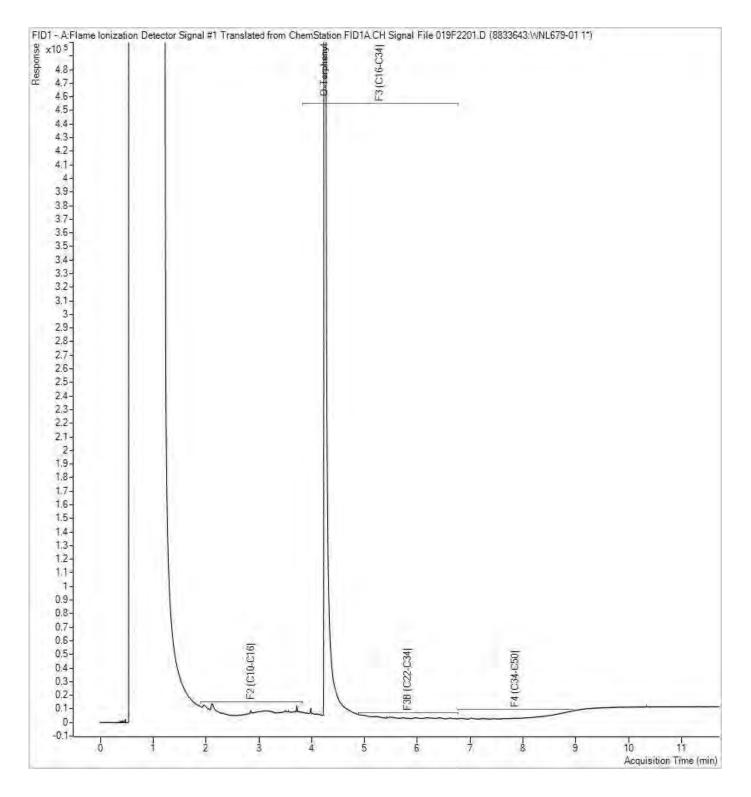


BluMetric Environmental Inc Client Project #: 230427

Project name: RESOLUTE BAY LANDFILL

Client ID: RBL-DUPA

Petroleum Hydrocarbons F2-F4 in Water Chromatogram

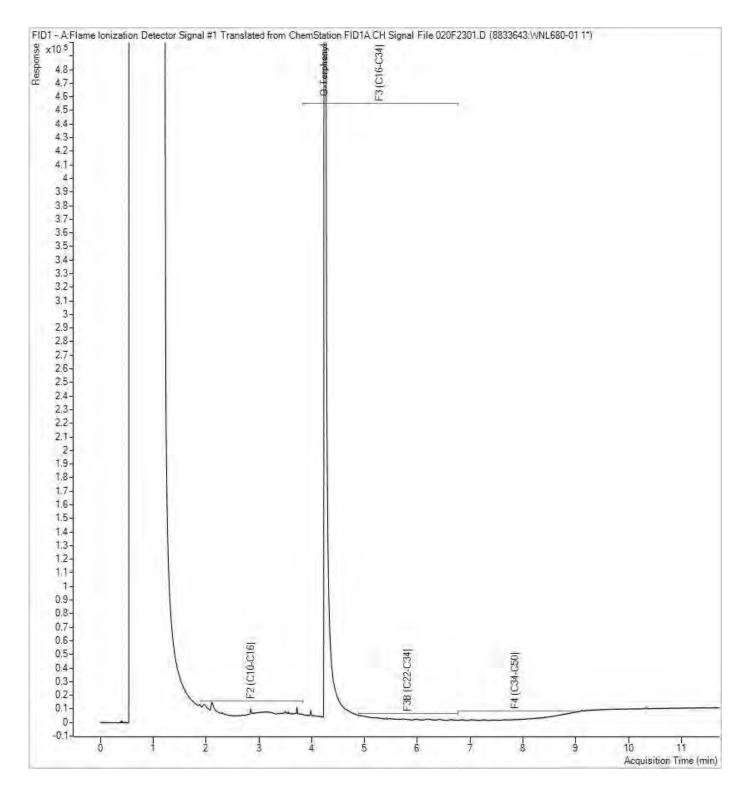


BluMetric Environmental Inc Client Project #: 230427

Project name: RESOLUTE BAY LANDFILL

Client ID: RBL-DUPB

Petroleum Hydrocarbons F2-F4 in Water Chromatogram



BluMetric Environmental Inc Client Project #: 230427

Project name: RESOLUTE BAY LANDFILL

Client ID: RBL-DUPC

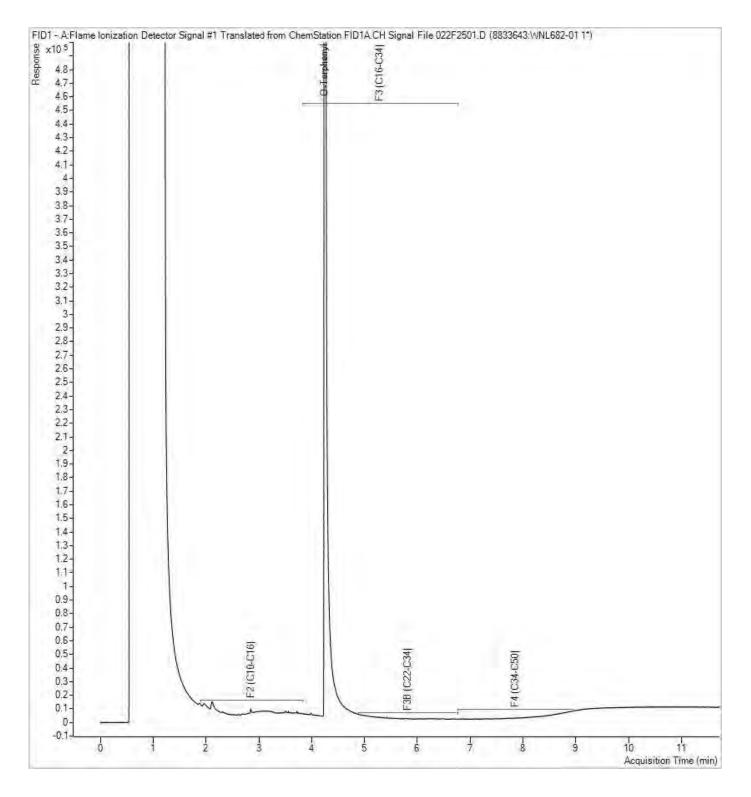
Petroleum Hydrocarbons F2-F4 in Water Chromatogram

BluMetric Environmental Inc Client Project #: 230427

Project name: RESOLUTE BAY LANDFILL

Client ID: FEILD BLANK 1

Petroleum Hydrocarbons F2-F4 in Water Chromatogram

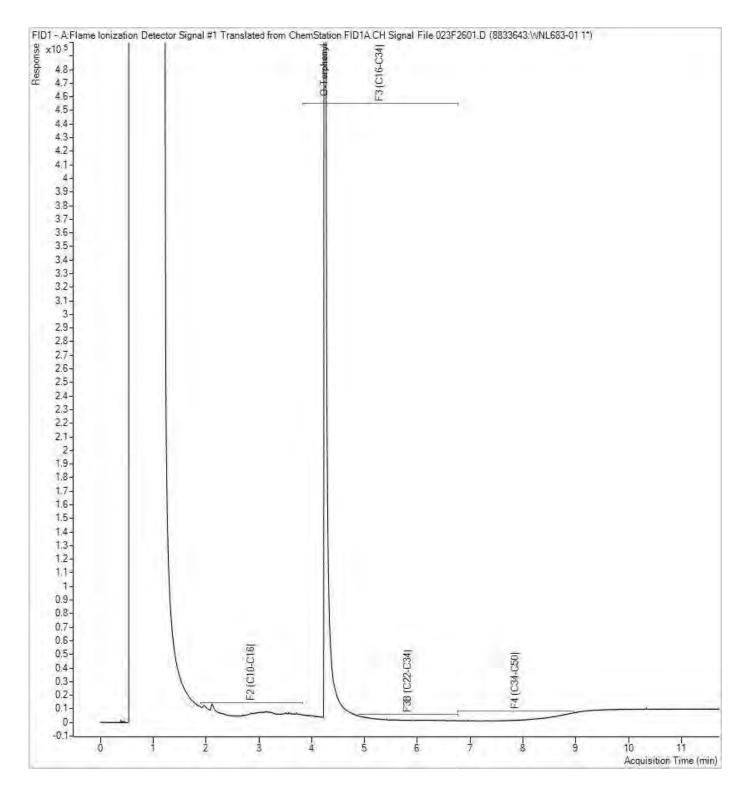


BluMetric Environmental Inc Client Project #: 230427

Project name: RESOLUTE BAY LANDFILL

Client ID: TRIP BLANK 1

Petroleum Hydrocarbons F2-F4 in Water Chromatogram



BluMetric Environmental Inc Client Project #: 230427

Project name: RESOLUTE BAY LANDFILL

Client ID: FEILD BLANK 2

Petroleum Hydrocarbons F2-F4 in Water Chromatogram

Your Project #: 230427

Site Location: RESOLUTE BAY LANDFILL

Your C.O.C. #: n/a

Attention: Jaclyn Kalesnikoff BluMetric Environmental Inc 1682 Woodward Drive

Ottawa, ON

CANADA K2C 3R8

Report Date: 2023/09/01

Report #: R7794117 Version: 3 - Revision

CERTIFICATE OF ANALYSIS – REVISED REPORT

BUREAU VERITAS JOB #: C3M6596 Received: 2023/07/27, 12:57

Sample Matrix: Water # Samples Received: 13

		Date	Date		
analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
ılkalinity (1)	10	N/A	2023/08/01	CAM SOP-00448	SM 23 2320 B m
Carbonate, Bicarbonate and Hydroxide (1)	10	N/A	2023/08/02	CAM SOP-00102	APHA 4500-CO2 D
Chloride by Automated Colourimetry (1)	10	N/A	2023/08/02	CAM SOP-00463	SM 23 4500-Cl E m
Conductivity (1)	10	N/A	2023/08/01	CAM SOP-00414	SM 23 2510 m
Chromium (VI) in Water (1)	10	N/A	2023/08/03	CAM SOP-00436	EPA 7199 m
etroleum Hydro. CCME F1 & BTEX in Water (1)	3	N/A	2023/08/04	CAM SOP-00315	CCME PHC-CWS m
etroleum Hydro. CCME F1 & BTEX in Water (1)	9	N/A	2023/08/05	CAM SOP-00315	CCME PHC-CWS m
etroleum Hydro. CCME F1 & BTEX in Water (1)	1	N/A	2023/08/06	CAM SOP-00315	CCME PHC-CWS m
etroleum Hydrocarbons F2-F4 in Water (1, 3)	13	2023/08/04	2023/08/04	CAM SOP-00316	CCME PHC-CWS m
lardness (calculated as CaCO3) (1)	10	N/A	2023/08/04	CAM SOP 00102/00408/00447	SM 2340 B
Mercury in Water by CVAA (1)	7	2023/08/01	2023/08/02	CAM SOP-00453	EPA 7470A m
Mercury in Water by CVAA (1)	2			CAM SOP-00453	EPA 7470A m
Mercury (low level) (1)	5			CAM SOP-00453	EPA 7470 m
ab Filtered Metals by ICPMS (1)	8			CAM SOP-00447	EPA 6020B m
ab Filtered Metals by ICPMS (1)	2			CAM SOP-00447	EPA 6020B m
ow Level Total Metals in Water by ICPMS (1)	5			CAM SOP-00447	EPA 6020B m
otal Metals Analysis by ICPMS (1)	10			CAM SOP-00447	EPA 6020B m
on Balance (% Difference) (1)	8	N/A	2023/08/11		
on Balance (% Difference) (1)	2	N/A	2023/08/14		
nion and Cation Sum (1)	8	N/A	2023/08/11		
nion and Cation Sum (1)	2	N/A	2023/08/14		
[a]P Total Potency Equivalent (2, 4)	11	N/A	2023/08/06		CCME
[a]P Total Potency Equivalent (2, 4)	1	N/A	2023/08/09		CCME
AH in Water by GC/MS (2)	11	2023/08/05	2023/08/06	AB SOP-00037/AB SOP- 00003	EPA 3510C/8270E m
AH in Water by GC/MS (2)	1	2023/08/08	2023/08/08	AB SOP-00037/AB SOP- 00003	EPA 3510C/8270E m
henols (4-AAP) (2)	10	N/A	2023/08/08	AB SOP-00088	EPA 9066 R0 m
otal Ammonia-N (1)	10	N/A		CAM SOP-00441	USGS I-2522-90 m
litrate & Nitrite as Nitrogen in Water (1, 5)	10	N/A		CAM SOP-00440	SM 23 4500-NO3I/NO2
otal Oil and Grease (1)	10			CAM SOP-00326	EPA1664B m,SM5520E

Your Project #: 230427

Site Location: RESOLUTE BAY LANDFILL

Your C.O.C. #: n/a

Attention: Jaclyn Kalesnikoff
BluMetric Environmental Inc
1682 Woodward Drive
Ottawa, ON
CANADA K2C 3R8

Report Date: 2023/09/01

Report #: R7794117 Version: 3 - Revision

CERTIFICATE OF ANALYSIS – REVISED REPORT

BUREAU VERITAS JOB #: C3M6596 Received: 2023/07/27, 12:57

Sample Matrix: Water # Samples Received: 13

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
pH (1)	10	2023/07/31	2023/08/01	CAM SOP-00413	SM 4500H+ B m
Sulphate by Automated Turbidimetry (1)	10	N/A	2023/08/02	CAM SOP-00464	SM 23 4500-SO42- E m
Total Phosphorus (Colourimetric) (1)	10	2023/08/01	2023/08/03	CAM SOP-00407	SM 23 4500-P I
Mineral/Synthetic O & G (TPH Heavy Oil) (1, 6)	10	2023/08/06	2023/08/06	CAM SOP-00326	EPA1664B m,SM5520F m
Total Suspended Solids (1)	10	2023/08/01	2023/08/02	CAM SOP-00428	SM 23 2540D m

Remarks:

Bureau Veritas is accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Bureau Veritas are based upon recognized Provincial, Federal or US method compendia such as CCME, MELCCFP, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Bureau Veritas' profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Bureau Veritas in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Bureau Veritas liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Bureau Veritas has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Bureau Veritas, unless otherwise agreed in writing. Bureau Veritas is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by Bureau Veritas, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

- * RPDs calculated using raw data. The rounding of final results may result in the apparent difference.
- $(1) This test was performed by Bureau Veritas Mississauga, 6740 Campobello \ Rd \ , Mississauga, ON, L5N \ 2L8$
- (2) This test was performed by Bureau Veritas Calgary (19th), 4000 19th Street NE , Calgary, AB, T2E 6P8 $\,$
- (3) All CCME PHC results met required criteria unless otherwise stated in the report. The CWS PHC methods employed by Bureau Veritas conform to all prescribed elements of the reference method and performance based elements have been validated. All modifications have been validated and proven equivalent following "Alberta Environment's Interpretation of the Reference Method for the Canada-Wide Standard for Petroleum Hydrocarbons in Soil Validation of Performance-Based Alternative Methods September 2003". Documentation is available upon request. Modifications from Reference Method for the Canada-wide Standard for Petroleum Hydrocarbons in Soil-Tier 1 Method: F2/F3/F4 data reported using validated cold solvent extraction instead of Soxhlet extraction.
- (4) B[a]P TPE is calculated using 1/2 of the RDL for non detect results as per Alberta Environment instructions. This protocol may not apply in other jurisdictions.

Your Project #: 230427

Site Location: RESOLUTE BAY LANDFILL

Your C.O.C. #: n/a

Attention: Jaclyn Kalesnikoff

BluMetric Environmental Inc 1682 Woodward Drive Ottawa, ON CANADA K2C 3R8

Report Date: 2023/09/01

Report #: R7794117 Version: 3 - Revision

CERTIFICATE OF ANALYSIS – REVISED REPORT

BUREAU VERITAS JOB #: C3M6596 Received: 2023/07/27, 12:57

(5) Values for calculated parameters may not appear to add up due to rounding of raw data and significant figures.

(6) Note: TPH (Heavy Oil) is equivalent to Mineral / Synthetic Oil & Grease

Encryption Key

Please direct all questions regarding this Certificate of Analysis to: Christine Gripton, Senior Project Manager Email: Christine.Gripton@bureauveritas.com Phone# (519)652-9444

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by Rodney Major, General Manager responsible for Ontario Environmental laboratory operations.

Site Location: RESOLUTE BAY LANDFILL

Sampler Initials: KC

CCME PAHS (WATER)

Bureau Veritas ID		WNL671	WNL672	WNL673	WNL674	WNL675			
Samulina Data		2023/07/23	2023/07/23	2023/07/23	2023/07/24	2023/07/24			
Sampling Date		17:30	15:30	16:30	13:00	11:50			
COC Number		n/a	n/a	n/a	n/a	n/a			
	UNITS	RBL-2	RBL-3	AEC1-GW1	RBL-4	RBL-8	RDL	MDL	QC Batch
Polyaromatic Hydrocarbons									
Benzo(a)pyrene Total Potency Equiv.	ug/L	<0.010	<0.010	<0.010	<0.010	<0.010	0.010	N/A	8841752
Acenaphthene	ug/L	<0.10	<0.10	<0.10	<0.10	<0.10	0.10	N/A	8837189
Acenaphthylene	ug/L	<0.10	<0.10	<0.10	<0.10	<0.10	0.10	N/A	8837189
Acridine	ug/L	<0.040	<0.040	<0.040	<0.040	<0.040	0.040	N/A	8837189
Anthracene	ug/L	<0.010	<0.010	<0.010	<0.010	<0.010	0.010	N/A	8837189
Benzo(a)anthracene	ug/L	<0.0085	<0.0085	<0.0085	<0.0085	<0.0085	0.0085	N/A	8837189
Benzo(b/j)fluoranthene	ug/L	<0.0085	<0.0085	<0.0085	<0.0085	<0.0085	0.0085	N/A	8837189
Benzo(k)fluoranthene	ug/L	<0.0085	<0.0085	<0.0085	<0.0085	<0.0085	0.0085	N/A	8837189
Benzo(g,h,i)perylene	ug/L	<0.0085	<0.0085	<0.0085	<0.0085	<0.0085	0.0085	N/A	8837189
Benzo(c)phenanthrene	ug/L	<0.050	<0.050	<0.050	<0.050	<0.050	0.050	N/A	8837189
Benzo(a)pyrene	ug/L	<0.0075	<0.0075	<0.0075	<0.0075	<0.0075	0.0075	N/A	8837189
Benzo(e)pyrene	ug/L	<0.050	<0.050	<0.050	<0.050	<0.050	0.050	N/A	8837189
Chrysene	ug/L	<0.0085	<0.0085	<0.0085	<0.0085	<0.0085	0.0085	N/A	8837189
Dibenzo(a,h)anthracene	ug/L	<0.0075	<0.0075	<0.0075	<0.0075	<0.0075	0.0075	N/A	8837189
Fluoranthene	ug/L	<0.010	<0.010	<0.010	<0.010	<0.010	0.010	N/A	8837189
Fluorene	ug/L	<0.050	<0.050	<0.050	<0.050	<0.050	0.050	N/A	8837189
Indeno(1,2,3-cd)pyrene	ug/L	<0.0085	<0.0085	<0.0085	<0.0085	<0.0085	0.0085	N/A	8837189
1-Methylnaphthalene	ug/L	<0.10	0.84	<0.10	<0.10	<0.10	0.10	N/A	8837189
2-Methylnaphthalene	ug/L	<0.10	1.4	0.12	<0.10	<0.10	0.10	N/A	8837189
Naphthalene	ug/L	<0.10	0.23	0.12	<0.10	<0.10	0.10	N/A	8837189
Phenanthrene	ug/L	<0.050	<0.050	<0.050	<0.050	<0.050	0.050	N/A	8837189
Perylene	ug/L	<0.050	<0.050	<0.050	<0.050	<0.050	0.050	N/A	8837189
Pyrene	ug/L	<0.020	<0.020	<0.020	<0.020	<0.020	0.020	N/A	8837189
Quinoline	ug/L	<0.20	<0.20	<0.20	<0.20	<0.20	0.20	N/A	8837189
Surrogate Recovery (%)									
D10-Anthracene	%	127	121	105	117	109			8837189
D14-Terphenyl	%	156 (1)	129	75	138 (1)	130			8837189

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

N/A = Not Applicable

Report Date: 2023/09/01

BluMetric Environmental Inc Client Project #: 230427

Site Location: RESOLUTE BAY LANDFILL

Sampler Initials: KC

CCME PAHS (WATER)

Bureau Veritas ID		WNL671	WNL672	WNL673	WNL674	WNL675			
Sampling Date		2023/07/23	2023/07/23	2023/07/23	2023/07/24	2023/07/24			
Sampling Date		17:30	15:30	16:30	13:00	11:50			
COC Number		n/a	n/a	n/a	n/a	n/a			
	UNITS	RBL-2	RBL-3	AEC1-GW1	RBL-4	RBL-8	RDL	MDL	QC Batch
D8-Acenaphthylene	%	112	97	85	109	96			8837189
D8-Naphthalene	%	75	45 (1)	59	92	72			8837189

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Site Location: RESOLUTE BAY LANDFILL

Sampler Initials: KC

CCME PAHS (WATER)

Bureau Veritas ID		WNL676	WNL677	WNL678	WNL679	WNL680			
		2023/07/24	2023/07/24	2023/07/23	2023/07/24	2023/07/24			
Sampling Date		11:15	10:30	15:50	11:20	11:55			
COC Number		n/a	n/a	n/a	n/a	n/a			
	UNITS	RBL-13	RBL-16	RBL-DUPA	RBL-DUPB	RBL-DUPC	RDL	MDL	QC Batch
Polyaromatic Hydrocarbons									
Benzo(a)pyrene Total Potency Equiv.	ug/L	<0.010	<0.010	<0.010	<0.010	<0.010	0.010	N/A	8841752
Acenaphthene	ug/L	<0.10	<0.10	<0.10	<0.10	<0.10	0.10	N/A	8837189
Acenaphthylene	ug/L	<0.10	<0.10	<0.10	<0.10	<0.10	0.10	N/A	8837189
Acridine	ug/L	<0.040	<0.040	<0.040	<0.040	<0.040	0.040	N/A	8837189
Anthracene	ug/L	<0.010	<0.010	<0.010	<0.010	<0.010	0.010	N/A	8837189
Benzo(a)anthracene	ug/L	<0.0085	<0.0085	<0.0085	<0.0085	<0.0085	0.0085	N/A	8837189
Benzo(b/j)fluoranthene	ug/L	<0.0085	<0.0085	<0.0085	<0.0085	<0.0085	0.0085	N/A	8837189
Benzo(k)fluoranthene	ug/L	<0.0085	<0.0085	<0.0085	<0.0085	<0.0085	0.0085	N/A	8837189
Benzo(g,h,i)perylene	ug/L	<0.0085	<0.0085	<0.0085	<0.0085	<0.0085	0.0085	N/A	8837189
Benzo(c)phenanthrene	ug/L	<0.050	<0.050	<0.050	<0.050	<0.050	0.050	N/A	8837189
Benzo(a)pyrene	ug/L	<0.0075	<0.0075	<0.0075	<0.0075	<0.0075	0.0075	N/A	8837189
Benzo(e)pyrene	ug/L	<0.050	<0.050	<0.050	<0.050	<0.050	0.050	N/A	8837189
Chrysene	ug/L	<0.0085	<0.0085	<0.0085	<0.0085	<0.0085	0.0085	N/A	8837189
Dibenzo(a,h)anthracene	ug/L	<0.0075	<0.0075	<0.0075	<0.0075	<0.0075	0.0075	N/A	8837189
Fluoranthene	ug/L	<0.010	<0.010	<0.010	<0.010	<0.010	0.010	N/A	8837189
Fluorene	ug/L	<0.050	<0.050	<0.050	<0.050	<0.050	0.050	N/A	8837189
Indeno(1,2,3-cd)pyrene	ug/L	<0.0085	<0.0085	<0.0085	<0.0085	<0.0085	0.0085	N/A	8837189
1-Methylnaphthalene	ug/L	<0.10	<0.10	0.61	<0.10	<0.10	0.10	N/A	8837189
2-Methylnaphthalene	ug/L	<0.10	<0.10	0.99	<0.10	<0.10	0.10	N/A	8837189
Naphthalene	ug/L	<0.10	<0.10	0.17	<0.10	<0.10	0.10	N/A	8837189
Phenanthrene	ug/L	<0.050	<0.050	<0.050	<0.050	<0.050	0.050	N/A	8837189
Perylene	ug/L	<0.050	<0.050	<0.050	<0.050	<0.050	0.050	N/A	8837189
Pyrene	ug/L	<0.020	<0.020	<0.020	<0.020	<0.020	0.020	N/A	8837189
Quinoline	ug/L	<0.20	<0.20	<0.20	<0.20	<0.20	0.20	N/A	8837189
Surrogate Recovery (%)	•						٠	•	
D10-Anthracene	%	105	106	104	119	124			8837189
D14-Terphenyl	%	124	125	119	144 (1)	141 (1)			8837189

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

N/A = Not Applicable

Site Location: RESOLUTE BAY LANDFILL

Sampler Initials: KC

CCME PAHS (WATER)

Bureau Veritas ID		WNL676	WNL677	WNL678	WNL679	WNL680			
Sampling Date		2023/07/24	2023/07/24	2023/07/23	2023/07/24	2023/07/24			
Sampling Date		11:15	10:30	15:50	11:20	11:55			
COC Number		n/a	n/a	n/a	n/a	n/a			
	UNITS	RBL-13	RBL-16	RBL-DUPA	RBL-DUPB	RBL-DUPC	RDL	MDL	QC Batch
D8-Acenaphthylene	UNITS %	RBL-13 90	RBL-16 96	RBL-DUPA 92	RBL-DUPB	RBL-DUPC	RDL	MDL	QC Batch 8837189

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Site Location: RESOLUTE BAY LANDFILL

Sampler Initials: KC

CCME PAHS (WATER)

Polyaromatic Hydrocarbons Benzo(a) pyrene Total Potency Equiv. ug/L		Ī		WNL683	WNL681				WNL680		Bureau Veritas ID
13:35				2023/07/24	2023/07/23				2023/07/24		
Note				10:40	15:40				11:55		Sampling Date
Polyaromatic Hydrocarbons Benzo(a)pyrene Total Potency Equiv. ug/L				n/a	n/a				n/a		COC Number
Benzo(a)pyrene Total Potency Equiv. ug/L	QC Batch	MDL	RDL			QC Batch	MDL	RDL		UNITS	
Acenaphthene ug/L < 0.10 0.10 N/A 8837189 < 0.10 < 0.10 0.10 N/A 8 837189 < 0.010 < 0.040 < 0.040 < 0.040 < 0.040 < 0.040 < 0.040 < 0.040 < 0.040 < 0.040 < 0.040 < 0.040 < 0.040 < 0.040 < 0.040 < 0.040 < 0.040 < 0.040 < 0.040 < 0.040 < 0.040 < 0.040 < 0.040 < 0.040 < 0.040 < 0.040 < 0.040 < 0.040 < 0.040 < 0.040 < 0.040 < 0.040 < 0.040 < 0.040 < 0.040 < 0.040 < 0.040 < 0.040 < 0.040 < 0.040 < 0.040 < 0.040 < 0.040 < 0.040 < 0.040 < 0.040 < 0.040 < 0.040 < 0.040 < 0.040 < 0.040 < 0.040 < 0.040 < 0.040 < 0.040 < 0.040 < 0.010 <td></td> <td>Polyaromatic Hydrocarbons</td>											Polyaromatic Hydrocarbons
Acenaphthylene ug/L <0.10 0.10 N/A 8837189 <0.10 <0.10 N/A 8Acridine Acridine ug/L <0.040	8841752	N/A	0.010	<0.010	<0.010					ug/L	Benzo(a)pyrene Total Potency Equiv.
Acridine	8837189	N/A	0.10	<0.10	<0.10	8837189	N/A	0.10	<0.10	ug/L	Acenaphthene
Anthracene	8837189	N/A	0.10	<0.10	<0.10	8837189	N/A	0.10	<0.10	ug/L	Acenaphthylene
Benzo(a)anthracene ug/L <0.0085 0.0085 N/A 8837189 <0.0085 <0.0085 0.0085 N/A 8 Benzo(b/j)fluoranthene ug/L <0.0085	8837189	N/A	0.040	<0.040	<0.040	8837189	N/A	0.040	<0.040	ug/L	Acridine
Benzo(b/j)fluoranthene ug/L <0.0085 0.0085 N/A 8837189 <0.0085 0.0085 0.0085 N/A 8 Benzo(k)fluoranthene ug/L <0.0085	8837189	N/A	0.010	<0.010	<0.010	8837189	N/A	0.010	<0.010	ug/L	Anthracene
Benzo(k)fluoranthene ug/L <0.0085 0.0085 N/A 8837189 <0.0085 <0.0085 N/A 8837189 <0.050 <0.050 N/A 8837189 <0.050 <0.050 N/A 8837189 <0.0075 <0.0075 N/A 8837189 <0.0075 <0.0075 <0.0075 N/A 8837189 <0.050 <0.050 N/A 8837189 <0.050 <0.050 N/A 8837189 <0.050 <0.050 N/A 8837189 <0.050 <0.050 N/A 8837189 <0.0085 <0.0085 N/A 8837189 <0.0075 <0.0075 N/A 8837189 <0.0075 <0.0075 N/A 8837189 <0.0075 <0.0075 N/A 8837189 <0.010 <0.010 N/A 8837189 <0.010 <0.010 <td>8837189</td> <td>N/A</td> <td>0.0085</td> <td><0.0085</td> <td><0.0085</td> <td>8837189</td> <td>N/A</td> <td>0.0085</td> <td><0.0085</td> <td>ug/L</td> <td>Benzo(a)anthracene</td>	8837189	N/A	0.0085	<0.0085	<0.0085	8837189	N/A	0.0085	<0.0085	ug/L	Benzo(a)anthracene
Benzo(g,h,i)perylene ug/L <0.0085 0.0085 N/A 8837189 <0.0085 <0.0085 N/A 8837189 <0.0085 <0.0085 N/A 8837189 <0.0075 <0.050 <0.050 N/A 8837189 <0.050 <0.050 N/A 8837189 <0.0075 <0.0075 N/A 8837189 <0.0075 <0.0075 N/A 8837189 <0.0075 <0.0075 N/A 8837189 <0.050 <0.050 N/A 8837189 <0.050 <0.050 N/A 8837189 <0.050 <0.050 N/A 8837189 <0.050 <0.050 N/A 8837189 <0.0085 <0.0085 <0.0085 N/A 8837189 <0.0085 <0.0085 N/A 8837189 <0.0075 <0.0075 N/A 8837189 <0.0075 <0.0075 N/A 8837189 <0.0010 <0.010 N/A 8837189 <0.010 <0.010 N/A 8837189 <0.010 <0.010 N/A 8837189 <0.050 <0.050 N/A 8837189 <0.050	8837189	N/A	0.0085	<0.0085	<0.0085	8837189	N/A	0.0085	<0.0085	ug/L	Benzo(b/j)fluoranthene
Benzo(c)phenanthrene ug/L <0.050 0.050 N/A 8837189 <0.050 <0.050 N/A 8 Benzo(a)pyrene ug/L <0.0075	8837189	N/A	0.0085	<0.0085	<0.0085	8837189	N/A	0.0085	<0.0085	ug/L	Benzo(k)fluoranthene
Benzo(a)pyrene ug/L <0.0075 0.0075 N/A 8837189 <0.0075 <0.0075 N/A 8 Benzo(e)pyrene ug/L <0.050	8837189	N/A	0.0085	<0.0085	<0.0085	8837189	N/A	0.0085	<0.0085	ug/L	Benzo(g,h,i)perylene
Benzo(e)pyrene ug/L <0.050 0.050 N/A 8837189 <0.050 <0.050 N/A 8 Chrysene ug/L <0.0085	8837189	N/A	0.050	<0.050	<0.050	8837189	N/A	0.050	<0.050	ug/L	Benzo(c)phenanthrene
Chrysene ug/L <0.0085 0.0085 N/A 8837189 <0.0085 0.0085 N/A 8 Dibenzo(a,h)anthracene ug/L <0.0075	8837189	N/A	0.0075	<0.0075	<0.0075	8837189	N/A	0.0075	<0.0075	ug/L	Benzo(a)pyrene
Dibenzo(a,h)anthracene ug/L <0.0075 0.0075 N/A 8837189 <0.0075 0.0075 N/A 8817189 <0.0075 0.0075 N/A 8837189 <0.010 <0.010 0.010 N/A 8837189 <0.010 <0.010 0.010 N/A 8837189 <0.050 <0.050 0.050 N/A 8837189 <0.050 <0.050 0.050 N/A 8837189 <0.0085 <0.0085 N/A 8837189 <0.0085 <0.0085 N/A 8837189 <0.0085 <0.0085 N/A 8837189 <0.010 <0.10 N/A 8837189 <0.010 <0.010 N/A 8837189 <0.050 <0.050 N/A 8837189 <0.050 <0.050 N/A 8837189 <0.050 <0.050 N/A 8837189 <0.050 <0.050 N/A 883718	8837189	N/A	0.050	<0.050	<0.050	8837189	N/A	0.050	<0.050	ug/L	Benzo(e)pyrene
Fluoranthene ug/L <0.010 0.010 N/A 8837189 <0.010 <0.010 0.010 N/A 8 Fluorene ug/L <0.050	8837189	N/A	0.0085	<0.0085	<0.0085	8837189	N/A	0.0085	<0.0085	ug/L	Chrysene
Fluorene ug/L <0.050 0.050 N/A 8837189 <0.050 <0.050 0.050 N/A 8837189 Indeno(1,2,3-cd)pyrene ug/L <0.0085	8837189	N/A	0.0075	<0.0075	<0.0075	8837189	N/A	0.0075	<0.0075	ug/L	Dibenzo(a,h)anthracene
Indeno(1,2,3-cd)pyrene ug/L <0.0085 0.0085 N/A 8837189 <0.0085 <0.0085 N/A 8 1-Methylnaphthalene ug/L <0.10	8837189	N/A	0.010	<0.010	<0.010	8837189	N/A	0.010	<0.010	ug/L	Fluoranthene
1-Methylnaphthalene ug/L <0.10 0.10 N/A 8837189 <0.10 <0.10 0.10 N/A 8 2-Methylnaphthalene ug/L <0.10	8837189	N/A	0.050	<0.050	<0.050	8837189	N/A	0.050	<0.050	ug/L	Fluorene
2-Methylnaphthalene ug/L <0.10 0.10 N/A 8837189 <0.10 <0.10 0.10 N/A 8 Naphthalene ug/L <0.10	8837189	N/A	0.0085	<0.0085	<0.0085	8837189	N/A	0.0085	<0.0085	ug/L	Indeno(1,2,3-cd)pyrene
Naphthalene ug/L <0.10 0.10 N/A 8837189 <0.10 <0.10 0.10 N/A 8837189 Phenanthrene ug/L <0.050	8837189	N/A	0.10	<0.10	<0.10	8837189	N/A	0.10	<0.10	ug/L	1-Methylnaphthalene
Phenanthrene ug/L <0.050 0.050 N/A 8837189 <0.050 <0.050 0.050 N/A 8837189 Perylene ug/L <0.050	8837189	N/A	0.10	<0.10	<0.10	8837189	N/A	0.10	<0.10	ug/L	2-Methylnaphthalene
Perylene ug/L <0.050 0.050 N/A 8837189 <0.050 <0.050 0.050 N/A 8	8837189	N/A	0.10	<0.10	<0.10	8837189	N/A	0.10	<0.10	ug/L	Naphthalene
	8837189	N/A	0.050	<0.050	<0.050	8837189	N/A	0.050	<0.050	ug/L	Phenanthrene
Pyrene ug/L <0.020 0.020 N/A 8837189 <0.020 <0.020 0.020 N/A 8	8837189	N/A	0.050	<0.050	<0.050	8837189	N/A	0.050	<0.050	ug/L	Perylene
	8837189	N/A	0.020	<0.020	<0.020	8837189	N/A	0.020	<0.020	ug/L	Pyrene
Quinoline	8837189	N/A	0.20	<0.20	<0.20	8837189	N/A	0.20	<0.20	ug/L	Quinoline
Surrogate Recovery (%)											Surrogate Recovery (%)
D10-Anthracene % 120 8837189 118 106 8	8837189			106	118	8837189			120	%	D10-Anthracene
D14-Terphenyl % 134 (1) 8837189 139 (1) 126 8	8837189			126	139 (1)	8837189			134 (1)	%	D14-Terphenyl

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

N/A = Not Applicable

Site Location: RESOLUTE BAY LANDFILL

Sampler Initials: KC

CCME PAHS (WATER)

Bureau Veritas ID		WNL680				WNL681	WNL683			
Sampling Date		2023/07/24				2023/07/23	2023/07/24			
Sampling Date		11:55				15:40	10:40			
COC Number		n/a				n/a	n/a			
	LIMITE	RBL-DUPC	BDI	MDI	OC Patch	FEILD BLANK	FEILD BLANK	BDI	MDI	OC Batch
	UNITS	RBL-DUPC Lab-Dup	RDL	MDL	QC Batch	FEILD BLANK 1	FEILD BLANK 2	RDL	MDL	QC Batch
D8-Acenaphthylene	UNITS		RDL	MDL	QC Batch 8837189	FEILD BLANK 1 106	FEILD BLANK 2 95	RDL	MDL	QC Batch 8837189

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

Site Location: RESOLUTE BAY LANDFILL

Sampler Initials: KC

CCME PHCS, BTEX/F1-F4 (WATER)

Bureau Veritas ID		WNL671	WNL672				WNL672			
		2023/07/23	2023/07/23				2023/07/23			
Sampling Date		17:30	15:30				15:30			
COC Number		n/a	n/a				n/a			
	UNITS	RBL-2	RBL-3	RDL	MDL	QC Batch	RBL-3 Lab-Dup	RDL	MDL	QC Batch
BTEX & F1 Hydrocarbons										
Benzene	ug/L	<0.20	<0.20	0.20	0.040	8833426				
Toluene	ug/L	<0.20	<0.20	0.20	0.040	8833426				
Ethylbenzene	ug/L	<0.20	<0.20	0.20	0.040	8833426				
o-Xylene	ug/L	<0.20	<0.20	0.20	0.040	8833426				
p+m-Xylene	ug/L	<0.40	<0.40	0.40	0.080	8833426				
Total Xylenes	ug/L	<0.40	<0.40	0.40	0.080	8833426				
F1 (C6-C10)	ug/L	<25	<25	25	20	8833426				
F1 (C6-C10) - BTEX	ug/L	<25	<25	25	20	8833426				
F2-F4 Hydrocarbons	-	-					•	•		
F2 (C10-C16 Hydrocarbons)	ug/L	<100	<100	100	50	8833643	<100	100	50	8833643
F3 (C16-C34 Hydrocarbons)	ug/L	<200	<200	200	70	8833643	<200	200	70	8833643
F4 (C34-C50 Hydrocarbons)	ug/L	<200	<200	200	50	8833643	<200	200	50	8833643
Reached Baseline at C50	ug/L	Yes	Yes			8833643	Yes			8833643
Surrogate Recovery (%)										
1,4-Difluorobenzene	%	89	88			8833426				
4-Bromofluorobenzene	%	108	105			8833426				_
D10-o-Xylene	%	92	88			8833426				
D4-1,2-Dichloroethane	%	100	100			8833426				
o-Terphenyl	%	95	97			8833643	96			8833643
RDL = Reportable Detection L	imit									

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

Site Location: RESOLUTE BAY LANDFILL

Sampler Initials: KC

CCME PHCS, BTEX/F1-F4 (WATER)

Bureau Veritas ID		WNL673	WNL674	WNL675	WNL676		WNL677			
Compling Data		2023/07/23	2023/07/24	2023/07/24	2023/07/24		2023/07/24			
Sampling Date		16:30	13:00	11:50	11:15		10:30			
COC Number		n/a	n/a	n/a	n/a		n/a			
	UNITS	AEC1-GW1	RBL-4	RBL-8	RBL-13	QC Batch	RBL-16	RDL	MDL	QC Batch
BTEX & F1 Hydrocarbons										
Benzene	ug/L	<0.20	<0.20	<0.20	<0.20	8833426	<0.20	0.20	0.040	8833432
Toluene	ug/L	0.55	<0.20	<0.20	<0.20	8833426	<0.20	0.20	0.040	8833432
Ethylbenzene	ug/L	<0.20	<0.20	<0.20	<0.20	8833426	<0.20	0.20	0.040	8833432
o-Xylene	ug/L	0.26	<0.20	<0.20	<0.20	8833426	<0.20	0.20	0.040	8833432
p+m-Xylene	ug/L	<0.40	<0.40	<0.40	<0.40	8833426	<0.40	0.40	0.080	8833432
Total Xylenes	ug/L	<0.40	<0.40	<0.40	<0.40	8833426	<0.40	0.40	0.080	8833432
F1 (C6-C10)	ug/L	<25	<25	<25	<25	8833426	<25	25	20	8833432
F1 (C6-C10) - BTEX	ug/L	<25	<25	<25	<25	8833426	<25	25	20	8833432
F2-F4 Hydrocarbons										
F2 (C10-C16 Hydrocarbons)	ug/L	<100	<100	<100	<100	8833643	<100	100	50	8833643
F3 (C16-C34 Hydrocarbons)	ug/L	<200	<200	<200	<200	8833643	<200	200	70	8833643
F4 (C34-C50 Hydrocarbons)	ug/L	<200	<200	<200	<200	8833643	<200	200	50	8833643
Reached Baseline at C50	ug/L	Yes	Yes	Yes	Yes	8833643	Yes			8833643
Surrogate Recovery (%)	•	3		•	-	•	-			•
1,4-Difluorobenzene	%	88	91	86	88	8833426	102			8833432
4-Bromofluorobenzene	%	107	109	107	107	8833426	83			8833432
D10-o-Xylene	%	91	89	88	88	8833426	91			8833432
D4-1,2-Dichloroethane	%	99	100	97	99	8833426	95			8833432
o-Terphenyl	%	96	96	94	95	8833643	94			8833643
RDL = Reportable Detection L	imit							•	•	
QC Batch = Quality Control Ba	atch									

Site Location: RESOLUTE BAY LANDFILL

Sampler Initials: KC

CCME PHCS, BTEX/F1-F4 (WATER)

Bureau Veritas ID		WNL678	WNL679	WNL680	WNL681	WNL682	WNL683			
Sampling Date		2023/07/23	2023/07/24	2023/07/24	2023/07/23	2023/07/23	2023/07/24			
Jamping Date		15:50	11:20	11:55	15:40	09:00	10:40			
COC Number		n/a	n/a	n/a	n/a	n/a	n/a			
	UNITS	RBL-DUPA	RBL-DUPB	RBL-DUPC	FEILD BLANK 1	TRIP BLANK 1	FEILD BLANK 2	RDL	MDL	QC Batch
BTEX & F1 Hydrocarbons										
Benzene	ug/L	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	0.20	0.040	8833426
Toluene	ug/L	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	0.20	0.040	8833426
Ethylbenzene	ug/L	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	0.20	0.040	8833426
o-Xylene	ug/L	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	0.20	0.040	8833426
p+m-Xylene	ug/L	<0.40	<0.40	<0.40	<0.40	<0.40	<0.40	0.40	0.080	8833426
Total Xylenes	ug/L	<0.40	<0.40	<0.40	<0.40	<0.40	<0.40	0.40	0.080	8833426
F1 (C6-C10)	ug/L	<25	<25	<25	<25	<25	<25	25	20	8833426
F1 (C6-C10) - BTEX	ug/L	<25	<25	<25	<25	<25	<25	25	20	8833426
F2-F4 Hydrocarbons										
F2 (C10-C16 Hydrocarbons)	ug/L	<100	<100	<100	<100	<100	<100	100	50	8833643
F3 (C16-C34 Hydrocarbons)	ug/L	<200	<200	<200	<200	<200	<200	200	70	8833643
F4 (C34-C50 Hydrocarbons)	ug/L	<200	<200	<200	<200	<200	<200	200	50	8833643
Reached Baseline at C50	ug/L	Yes	Yes	Yes	Yes	Yes	Yes			8833643
Surrogate Recovery (%)										
1,4-Difluorobenzene	%	91	90	89	90	88	89			8833426
4-Bromofluorobenzene	%	108	105	106	102	106	108			8833426
D10-o-Xylene	%	92	90	89	89	88	86			8833426
D4-1,2-Dichloroethane	%	98	99	101	95	96	100			8833426
o-Terphenyl	%	95	96	94	93	94	96			8833643
RDL = Reportable Detection L										

QC Batch = Quality Control Batch

Site Location: RESOLUTE BAY LANDFILL

Sampler Initials: KC

RESULTS OF ANALYSES OF WATER

Bureau Veritas ID		WNL671				WNL672			
Samuling Data		2023/07/23				2023/07/23			
Sampling Date		17:30				15:30			
COC Number		n/a				n/a			
	UNITS	RBL-2	RDL	MDL	QC Batch	RBL-3	RDL	MDL	QC Batch
Inorganics									
Phenols-4AAP	mg/L	0.0064	0.0015	0.0015	8841753	0.038	0.0015	0.0015	8841753
Calculated Parameters									
Anion Sum	me/L	7.10	N/A	N/A	8822383	3.94	N/A	N/A	8822383
Bicarb. Alkalinity (calc. as CaCO3)	mg/L	180	1.0	0.20	8822389	170	1.0	0.20	8822389
Carb. Alkalinity (calc. as CaCO3)	mg/L	1.1	1.0	0.20	8822389	1.0	1.0	0.20	8822389
Cation Sum	me/L	7.60	N/A	N/A	8822383	4.83	N/A	N/A	8822383
Hardness (CaCO3)	mg/L	300	1.0	1.0	8822385	200	1.0	1.0	8822385
Hydrox. Alkalinity (calc. as CaCO3)	mg/L	<1.0	1.0	N/A	8822389	<1.0	1.0	N/A	8822389
Ion Balance (% Difference)	%	3.35	N/A	N/A	8822382	10.1	N/A	N/A	8822382
Inorganics	•	-	-	•			-		
Total Ammonia-N	mg/L	1.9	0.050	0.0080	8828243	2.2	0.050	0.0080	8828243
Conductivity	umho/cm	690	1.0	0.20	8824108	410	1.0	0.20	8824108
рН	рН	7.83			8824099	7.81			8824099
Total Phosphorus	mg/L	0.26	0.004	0.002	8826856	0.23	0.004	0.002	8826856
Total Suspended Solids	mg/L	<10	10	2.0	8824642	12	10	2.0	8827102
Dissolved Sulphate (SO4)	mg/L	130	1.0	0.10	8823998	9.6	1.0	0.10	8823998
Alkalinity (Total as CaCO3)	mg/L	180	1.0	0.20	8824109	170	1.0	0.20	8824109
Dissolved Chloride (CI-)	mg/L	26	1.0	0.30	8823994	11	1.0	0.30	8823994
Nitrite (N)	mg/L	<0.050	0.050	0.010	8823978	<0.010	0.010	0.0020	8824309
Nitrate (N)	mg/L	0.78	0.50	0.050	8823978	<0.10	0.10	0.010	8824309
Nitrate + Nitrite (N)	mg/L	0.81	0.50	0.050	8823978	<0.10	0.10	0.010	8824309
Petroleum Hydrocarbons									
Total Oil & Grease	mg/L	<0.50	0.50	0.10	8836996	<0.50	0.50	0.10	8836996
Total Oil & Grease Mineral/Synthetic	mg/L	<0.50	0.50	0.10	8837000	<0.50	0.50	0.10	8837000
RDL = Reportable Detection Limit									

QC Batch = Quality Control Batch

N/A = Not Applicable

Site Location: RESOLUTE BAY LANDFILL

Sampler Initials: KC

RESULTS OF ANALYSES OF WATER

Bureau Veritas ID		WNL673				WNL674			
Sampling Date		2023/07/23				2023/07/24			
Sampling Date		16:30				13:00			
COC Number		n/a				n/a			
	UNITS	AEC1-GW1	RDL	MDL	QC Batch	RBL-4	RDL	MDL	QC Batch
Inorganics									
Phenols-4AAP	mg/L	0.30	0.030	0.030	8841754	<0.0015	0.0015	0.0015	8841753
Calculated Parameters							•		
Anion Sum	me/L	10.5	N/A	N/A	8822383	2.65	N/A	N/A	8822383
Bicarb. Alkalinity (calc. as CaCO3)	mg/L	410	1.0	0.20	8822389	91	1.0	0.20	8822389
Carb. Alkalinity (calc. as CaCO3)	mg/L	1.1	1.0	0.20	8822389	4.5	1.0	0.20	8822389
Cation Sum	me/L	12.5	N/A	N/A	8822383	3.00	N/A	N/A	8822383
Hardness (CaCO3)	mg/L	290	1.0	1.0	8822385	110	1.0	1.0	8822385
Hydrox. Alkalinity (calc. as CaCO3)	mg/L	<1.0	1.0	N/A	8822389	<1.0	1.0	N/A	8822389
Ion Balance (% Difference)	%	8.68	N/A	N/A	8822382	6.22	N/A	N/A	8822382
Inorganics	•			-			ē	•	
Total Ammonia-N	mg/L	48	1.0	0.16	8828243	<0.050	0.050	0.0080	8828243
Conductivity	umho/cm	1100	1.0	0.20	8824320	270	1.0	0.20	8824320
рН	рН	7.46			8824318	8.72			8824318
Total Phosphorus	mg/L	3.3	0.004	0.002	8826856	0.040	0.004	0.002	8826856
Total Suspended Solids	mg/L	14	10	2.0	8824642	<10	10	2.0	8824642
Dissolved Sulphate (SO4)	mg/L	25	1.0	0.10	8823998	11	1.0	0.10	8823998
Alkalinity (Total as CaCO3)	mg/L	410	1.0	0.20	8824319	96	1.0	0.20	8824319
Dissolved Chloride (Cl-)	mg/L	61	1.0	0.30	8823994	18	1.0	0.30	8823994
Nitrite (N)	mg/L	0.014	0.010	0.0020	8824309	<0.010	0.010	0.0020	8824309
Nitrate (N)	mg/L	<0.10	0.10	0.010	8824309	<0.10	0.10	0.010	8824309
Nitrate + Nitrite (N)	mg/L	<0.10	0.10	0.010	8824309	<0.10	0.10	0.010	8824309
Petroleum Hydrocarbons									
Total Oil & Grease	mg/L	<0.50	0.50	0.10	8836996	<0.50	0.50	0.10	8836996
Total Oil & Grease Mineral/Synthetic	mg/L	<0.50	0.50	0.10	8837000	<0.50	0.50	0.10	8837000
RDL = Reportable Detection Limit									

QC Batch = Quality Control Batch

N/A = Not Applicable

Site Location: RESOLUTE BAY LANDFILL

Sampler Initials: KC

RESULTS OF ANALYSES OF WATER

Bureau Veritas ID		WNL675		WNL676		WNL677			
Sampling Data		2023/07/24		2023/07/24		2023/07/24			
Sampling Date		11:50		11:15		10:30			
COC Number		n/a		n/a		n/a			
	UNITS	RBL-8	QC Batch	RBL-13	QC Batch	RBL-16	RDL	MDL	QC Batch
Inorganics									
Phenols-4AAP	mg/L	<0.0015	8841753	<0.0015	8841754	<0.0015	0.0015	0.0015	8841754
Calculated Parameters					•				
Anion Sum	me/L	3.71	8822383	2.10	8822383	2.05	N/A	N/A	8822383
Bicarb. Alkalinity (calc. as CaCO3)	mg/L	120	8822389	80	8822389	79	1.0	0.20	8822389
Carb. Alkalinity (calc. as CaCO3)	mg/L	2.1	8822389	1.1	8822389	<1.0	1.0	0.20	8822389
Cation Sum	me/L	3.82	8822383	2.22	8822383	2.19	N/A	N/A	8822383
Hardness (CaCO3)	mg/L	150	8822385	99	8822385	98	1.0	1.0	8822385
Hydrox. Alkalinity (calc. as CaCO3)	mg/L	<1.0	8822389	<1.0	8822389	<1.0	1.0	N/A	8822389
Ion Balance (% Difference)	%	1.47	8822382	NC	8822382	NC	N/A	N/A	8822382
Inorganics	•		•				•		
Total Ammonia-N	mg/L	<0.050	8828243	<0.050	8828243	<0.050	0.050	0.0080	8828243
Conductivity	umho/cm	360	8824108	210	8824320	210	1.0	0.20	8824108
рН	рН	8.29	8824099	8.15	8824318	8.12			8824099
Total Phosphorus	mg/L	0.010	8826856	<0.004	8826856	<0.004	0.004	0.002	8826856
Total Suspended Solids	mg/L	<10	8827102	15	8824642	<10	10	2.0	8824642
Dissolved Sulphate (SO4)	mg/L	11	8823998	16	8823998	16	1.0	0.10	8823998
Alkalinity (Total as CaCO3)	mg/L	120	8824109	81	8824319	80	1.0	0.20	8824109
Dissolved Chloride (Cl-)	mg/L	39	8823994	4.2	8823994	3.9	1.0	0.30	8823994
Nitrite (N)	mg/L	<0.010	8824309	<0.010	8824309	<0.010	0.010	0.0020	8824309
Nitrate (N)	mg/L	<0.10	8824309	0.12	8824309	0.12	0.10	0.010	8824309
Nitrate + Nitrite (N)	mg/L	<0.10	8824309	0.12	8824309	0.12	0.10	0.010	8824309
Petroleum Hydrocarbons									
Total Oil & Grease	mg/L	<0.50	8836996	<0.50	8836996	<0.50	0.50	0.10	8836996
Total Oil & Grease Mineral/Synthetic	mg/L	<0.50	8837000	<0.50	8837000	<0.50	0.50	0.10	8837000
DDI Damantable Datastian Lincit									

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

N/A = Not Applicable

Site Location: RESOLUTE BAY LANDFILL

Sampler Initials: KC

RESULTS OF ANALYSES OF WATER

Bureau Veritas ID		WNL678				WNL678			
Samulina Data		2023/07/23				2023/07/23			
Sampling Date		15:50				15:50			
COC Number		n/a				n/a			
	UNITS	RBL-DUPA	RDL	MDL	QC Batch	RBL-DUPA Lab-Dup	RDL	MDL	QC Batch
Inorganics									
Phenols-4AAP	mg/L	0.038	0.0015	0.0015	8841753				
Calculated Parameters			•		•				
Anion Sum	me/L	3.84	N/A	N/A	8822383				
Bicarb. Alkalinity (calc. as CaCO3)	mg/L	170	1.0	0.20	8822389				
Carb. Alkalinity (calc. as CaCO3)	mg/L	1.0	1.0	0.20	8822389				
Cation Sum	me/L	4.40	N/A	N/A	8822383				
Hardness (CaCO3)	mg/L	180	1.0	1.0	8822385				
Hydrox. Alkalinity (calc. as CaCO3)	mg/L	<1.0	1.0	N/A	8822389				
Ion Balance (% Difference)	%	6.87	N/A	N/A	8822382				
Inorganics	•		ē	-	•			•	
Total Ammonia-N	mg/L	2.1	0.050	0.0080	8828243				
Conductivity	umho/cm	410	1.0	0.20	8824108				
рН	рН	7.80			8824099				
Total Phosphorus	mg/L	0.22	0.004	0.002	8826856				
Total Suspended Solids	mg/L	11	10	2.0	8824642				
Dissolved Sulphate (SO4)	mg/L	6.7	1.0	0.10	8823998				
Alkalinity (Total as CaCO3)	mg/L	170	1.0	0.20	8824109				
Dissolved Chloride (Cl-)	mg/L	7.7	1.0	0.30	8823994				
Nitrite (N)	mg/L	<0.010	0.010	0.0020	8824309	<0.010	0.010	0.0020	8824309
Nitrate (N)	mg/L	<0.10	0.10	0.010	8824309	<0.10	0.10	0.010	8824309
Nitrate + Nitrite (N)	mg/L	<0.10	0.10	0.010	8824309	<0.10	0.10	0.010	8824309
Petroleum Hydrocarbons									
Total Oil & Grease	mg/L	<0.50	0.50	0.10	8836996				
Total Oil & Grease Mineral/Synthetic	mg/L	<0.50	0.50	0.10	8837000				

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

Site Location: RESOLUTE BAY LANDFILL

Sampler Initials: KC

RESULTS OF ANALYSES OF WATER

	2023/07/24		2023/07/24			
	11:20		11:55			
	n/a		n/a			
UNITS	RBL-DUPB	QC Batch	RBL-DUPC	RDL	MDL	QC Batch
mg/L	<0.0015	8841754	<0.0015	0.0015	0.0015	8841753
me/L	3.67	8822383	1.94	N/A	N/A	8822383
mg/L	110	8822389	78	1.0	0.20	8822389
mg/L	2.1	8822389	<1.0	1.0	0.20	8822389
me/L	3.87	8822383	2.23	N/A	N/A	8822383
mg/L	140	8822385	99	1.0	1.0	8822385
mg/L	<1.0	8822389	<1.0	1.0	N/A	8822389
%	2.67	8822382	NC	N/A	N/A	8822382
•		-		•	•	
mg/L	<0.050	8828243	<0.050	0.050	0.0080	8828243
umho/cm	370	8824108	210	1.0	0.20	8824108
рН	8.29	8824099	8.08			8824099
mg/L	0.009	8826856	<0.004	0.004	0.002	8826856
mg/L	<10	8824642	<10	10	2.0	8824642
mg/L	11	8823998	11	1.0	0.10	8823998
mg/L	120	8824109	79	1.0	0.20	8824109
mg/L	39	8823994	4.6	1.0	0.30	8823994
mg/L	<0.010	8823978	<0.010	0.010	0.0020	8823978
mg/L	<0.10	8823978	0.12	0.10	0.010	8823978
mg/L	<0.10	8823978	0.12	0.10	0.010	8823978
mg/L	<0.50	8836996	<0.50	0.50	0.10	8836996
mg/L	<0.50	8837000	<0.50	0.50	0.10	8837000
	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	mg/L <0.050 mg/L <10 mg/L <10.0015 me/L 3.67 mg/L 110 mg/L 2.1 me/L 3.87 mg/L 140 mg/L <1.0 % 2.67 mg/L <0.050 umho/cm 370 pH 8.29 mg/L 0.009 mg/L <10 mg/L 11 mg/L 120 mg/L 120 mg/L 39 mg/L <0.010 mg/L <0.10 mg/L <0.10 mg/L <0.10 mg/L <0.10	mg/L <0.0015 8841754 mg/L 3.67 8822383 mg/L 110 8822389 mg/L 2.1 8822389 mg/L 3.87 8822383 mg/L 140 8822385 mg/L 41.0 8822389 % 2.67 8822382 mg/L <0.050	n/a n/a UNITS RBL-DUPB QC Batch RBL-DUPC mg/L <0.0015	m/a n/a n/a UNITS RBL-DUPB QC Batch RBL-DUPC RDL mg/L <0.0015	n/a n/a n/a MDL UNITS RBL-DUPB QC Batch RBL-DUPC RDL MDL mg/L <0.0015

Site Location: RESOLUTE BAY LANDFILL

Sampler Initials: KC

ELEMENTS BY ATOMIC SPECTROSCOPY (WATER)

Bureau Veritas ID		WNL671				WNL671			
Compling Date		2023/07/23				2023/07/23			
Sampling Date		17:30				17:30			
COC Number		n/a				n/a			
	UNITS	RBL-2	RDL	MDL	QC Batch	RBL-2 Lab-Dup	RDL	MDL	QC Batch
Metals									
Chromium (VI)	ug/L	<0.50	0.50	0.30	8825340	<0.50	0.50	0.30	8825340
Mercury (Hg)	mg/L	<0.000026 (1)	0.000026	0.000013	8827927				
Total Selenium (Se)	ug/L	<1.0 (1)	1.0	0.25	8828011				
Dissolved Aluminum (Al)	ug/L	<4.9	4.9	4.9	8843927				
Total Aluminum (AI)	ug/L	6.7	4.9	2.0	8828011				
Dissolved Antimony (Sb)	ug/L	1.8	0.50	N/A	8843927				
Total Antimony (Sb)	ug/L	1.8	0.50	0.30	8828011				
Dissolved Arsenic (As)	ug/L	1.3	1.0	N/A	8843927				
Total Arsenic (As)	ug/L	1.3	1.0	0.50	8828011				
Dissolved Barium (Ba)	ug/L	39	2.0	2.0	8843927				
Total Barium (Ba)	ug/L	43	2.0	0.50	8828011				
Dissolved Beryllium (Be)	ug/L	<0.40	0.40	0.40	8843927				
Total Beryllium (Be)	ug/L	<0.40	0.40	0.10	8828011				
Dissolved Bismuth (Bi)	ug/L	<1.0	1.0	N/A	8843927				
Total Bismuth (Bi)	ug/L	<1.0	1.0	0.070	8828011				
Dissolved Boron (B)	ug/L	130	10	N/A	8843927				
Total Boron (B)	ug/L	130	10	0.30	8828011				
Dissolved Cadmium (Cd)	ug/L	<0.090	0.090	0.081	8843927				
Total Cadmium (Cd)	ug/L	<0.090	0.090	0.090	8828011				
Dissolved Calcium (Ca)	ug/L	98000	200	N/A	8843927				
Total Calcium (Ca)	ug/L	94000	200	50	8828011				
Dissolved Chromium (Cr)	ug/L	<5.0	5.0	N/A	8843927				
Total Chromium (Cr)	ug/L	<5.0	5.0	5.0	8828011				
Dissolved Cobalt (Co)	ug/L	<0.50	0.50	N/A	8843927				
Total Cobalt (Co)	ug/L	0.51	0.50	0.10	8828011				
Dissolved Copper (Cu)	ug/L	1.7	0.90	0.90	8843927				
Total Copper (Cu)	ug/L	2.1	0.90	0.50	8828011				
Dissolved Iron (Fe)	ug/L	<100	100	N/A	8843927				

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

N/A = Not Applicable

Site Location: RESOLUTE BAY LANDFILL

Sampler Initials: KC

ELEMENTS BY ATOMIC SPECTROSCOPY (WATER)

Bureau Veritas ID		WNL671				WNL671			
Compling Date		2023/07/23				2023/07/23			
Sampling Date		17:30				17:30			
COC Number		n/a				n/a			
	UNITS	RBL-2	RDL	MDL	QC Batch	RBL-2 Lab-Dup	RDL	MDL	QC Batch
Total Iron (Fe)	ug/L	<100	100	10	8828011				
Dissolved Lead (Pb)	ug/L	<0.50	0.50	N/A	8843927				
Total Lead (Pb)	ug/L	0.52	0.50	0.10	8828011				
Dissolved Lithium (Li)	ug/L	6.0	5.0	N/A	8843927				
Total Lithium (Li)	ug/L	6.1	5.0	0.50	8828011				
Dissolved Magnesium (Mg)	ug/L	14000	50	N/A	8843927				
Total Magnesium (Mg)	ug/L	14000	50	20	8828011				
Dissolved Manganese (Mn)	ug/L	<2.0	2.0	N/A	8843927				
Total Manganese (Mn)	ug/L	210	2.0	0.50	8828011				
Dissolved Molybdenum (Mo)	ug/L	2.9	0.50	0.50	8843927				
Total Molybdenum (Mo)	ug/L	2.9	0.50	0.20	8828011				
Dissolved Nickel (Ni)	ug/L	1.6	1.0	N/A	8843927				
Total Nickel (Ni)	ug/L	1.9	1.0	0.50	8828011				
Dissolved Phosphorus (P)	ug/L	270	100	N/A	8843927				
Dissolved Potassium (K)	ug/L	13000	200	N/A	8843927				
Total Potassium (K)	ug/L	13000	200	50	8828011				
Dissolved Selenium (Se)	ug/L	<1.0 (1)	1.0	N/A	8843927				
Dissolved Silicon (Si)	ug/L	1300	50	N/A	8843927				
Total Silicon (Si)	ug/L	1300	50	30	8828011				
Dissolved Silver (Ag)	ug/L	<0.090	0.090	0.081	8843927				
Total Silver (Ag)	ug/L	<0.090	0.090	0.070	8828011				
Dissolved Sodium (Na)	ug/L	26000	100	N/A	8843927				
Total Sodium (Na)	ug/L	24000	100	50	8828011				
Dissolved Strontium (Sr)	ug/L	380	1.0	N/A	8843927				
Total Strontium (Sr)	ug/L	360	1.0	0.50	8828011				
Dissolved Tellurium (Te)	ug/L	<1.0	1.0	N/A	8843927				
Total Tellurium (Te)	ug/L	<1.0	1.0	0.70	8828011				
Dissolved Thallium (TI)	ug/L	<0.050	0.050	N/A	8843927				
Total Thallium (TI)	ug/L	<0.050	0.050	0.020	8828011	_			

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

N/A = Not Applicable

Site Location: RESOLUTE BAY LANDFILL

Sampler Initials: KC

ELEMENTS BY ATOMIC SPECTROSCOPY (WATER)

Bureau Veritas ID		WNL671				WNL671			
Campling Data		2023/07/23				2023/07/23			
Sampling Date		17:30				17:30			
COC Number		n/a				n/a			
	UNITS	RBL-2	RDL	MDL	QC Batch	RBL-2 Lab-Dup	RDL	MDL	QC Batch
Dissolved Tin (Sn)	ug/L	<1.0	1.0	N/A	8843927				
Total Tin (Sn)	ug/L	<1.0	1.0	0.50	8828011				
Dissolved Titanium (Ti)	ug/L	<5.0	5.0	N/A	8843927				
Total Titanium (Ti)	ug/L	<5.0	5.0	4.0	8828011				
Dissolved Tungsten (W)	ug/L	<1.0	1.0	N/A	8843927				
Total Tungsten (W)	ug/L	<1.0	1.0	0.50	8828011				
Dissolved Uranium (U)	ug/L	0.28	0.10	N/A	8843927				
Total Uranium (U)	ug/L	0.31	0.10	0.050	8828011				
Dissolved Vanadium (V)	ug/L	<0.50	0.50	0.50	8843927				
Total Vanadium (V)	ug/L	<0.50	0.50	0.40	8828011				
Dissolved Zinc (Zn)	ug/L	13	5.0	N/A	8843927				
Total Zinc (Zn)	ug/L	25	5.0	3.0	8828011				
Dissolved Zirconium (Zr)	ug/L	<1.0	1.0	N/A	8843927				
Total Zirconium (Zr)	ug/L	<1.0	1.0	0.50	8828011				

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

Site Location: RESOLUTE BAY LANDFILL

Sampler Initials: KC

ELEMENTS BY ATOMIC SPECTROSCOPY (WATER)

Bureau Veritas ID		WNL672				WNL673			
Carrallian Baka		2023/07/23				2023/07/23			
Sampling Date		15:30				16:30			
COC Number		n/a				n/a			
	UNITS	RBL-3	RDL	MDL	QC Batch	AEC1-GW1	RDL	MDL	QC Batch
Metals									
Chromium (VI)	ug/L	<0.50	0.50	0.30	8825340	<0.50	0.50	0.30	8825340
Mercury (Hg)	mg/L	<0.000026 (1)	0.000026	0.000013	8825734				
Total Selenium (Se)	ug/L	<1.0 (1)	1.0	0.25	8828011	<1.0 (1)	1.0	0.25	8828011
Dissolved Aluminum (Al)	ug/L	<4.9	4.9	4.9	8843927	<4.9	4.9	4.9	8843927
Total Aluminum (Al)	ug/L	9.8	4.9	2.0	8828011	8.0	4.9	2.0	8828011
Dissolved Antimony (Sb)	ug/L	<0.50	0.50	N/A	8843927	<0.50	0.50	N/A	8843927
Total Antimony (Sb)	ug/L	<0.50	0.50	0.30	8828011	<0.50	0.50	0.30	8828011
Dissolved Arsenic (As)	ug/L	<1.0	1.0	N/A	8843927	7.6	1.0	N/A	8843927
Total Arsenic (As)	ug/L	1.5	1.0	0.50	8828011	8.8	1.0	0.50	8828011
Dissolved Barium (Ba)	ug/L	81	2.0	2.0	8843927	4.5	2.0	2.0	8843927
Total Barium (Ba)	ug/L	96	2.0	0.50	8828011	12	2.0	0.50	8828011
Dissolved Beryllium (Be)	ug/L	<0.40	0.40	0.40	8843927	<0.40	0.40	0.40	8843927
Total Beryllium (Be)	ug/L	<0.40	0.40	0.10	8828011	<0.40	0.40	0.10	8828011
Dissolved Bismuth (Bi)	ug/L	<1.0	1.0	N/A	8843927	<1.0	1.0	N/A	8843927
Total Bismuth (Bi)	ug/L	<1.0	1.0	0.070	8828011	<1.0	1.0	0.070	8828011
Dissolved Boron (B)	ug/L	77	10	N/A	8843927	400	10	N/A	8843927
Total Boron (B)	ug/L	81	10	0.30	8828011	430	10	0.30	8828011
Dissolved Cadmium (Cd)	ug/L	<0.090	0.090	0.081	8843927	<0.090	0.090	0.081	8843927
Total Cadmium (Cd)	ug/L	0.17	0.090	0.090	8828011	<0.090	0.090	0.090	8828011
Dissolved Calcium (Ca)	ug/L	56000	200	N/A	8843927	92000	200	N/A	8843927
Total Calcium (Ca)	ug/L	54000	200	50	8828011	86000	200	50	8828011
Dissolved Chromium (Cr)	ug/L	<5.0	5.0	N/A	8843927	<5.0	5.0	N/A	8843927
Total Chromium (Cr)	ug/L	<5.0	5.0	5.0	8828011	<5.0	5.0	5.0	8828011
Dissolved Cobalt (Co)	ug/L	<0.50	0.50	N/A	8843927	9.2	0.50	N/A	8843927
Total Cobalt (Co)	ug/L	1.3	0.50	0.10	8828011	8.5	0.50	0.10	8828011
Dissolved Copper (Cu)	ug/L	2.2	0.90	0.90	8843927	1.2	0.90	0.90	8843927
Total Copper (Cu)	ug/L	2.5	0.90	0.50	8828011	2.8	0.90	0.50	8828011
Dissolved Iron (Fe)	ug/L	<100	100	N/A	8843927	4400	100	N/A	8843927
Total Iron (Fe)	ug/L	910	100	10	8828011	7500	100	10	8828011

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

N/A = Not Applicable

Site Location: RESOLUTE BAY LANDFILL

Sampler Initials: KC

ELEMENTS BY ATOMIC SPECTROSCOPY (WATER)

Bureau Veritas ID		WNL672				WNL673			
Campling Data		2023/07/23				2023/07/23			
Sampling Date		15:30				16:30			
COC Number		n/a				n/a			
	UNITS	RBL-3	RDL	MDL	QC Batch	AEC1-GW1	RDL	MDL	QC Batch
Dissolved Lead (Pb)	ug/L	<0.50	0.50	N/A	8843927	<0.50	0.50	N/A	8843927
Total Lead (Pb)	ug/L	2.0	0.50	0.10	8828011	1.4	0.50	0.10	8828011
Dissolved Lithium (Li)	ug/L	<5.0	5.0	N/A	8843927	<5.0	5.0	N/A	8843927
Total Lithium (Li)	ug/L	<5.0	5.0	0.50	8828011	<5.0	5.0	0.50	8828011
Dissolved Magnesium (Mg)	ug/L	14000	50	N/A	8843927	14000	50	N/A	8843927
Total Magnesium (Mg)	ug/L	13000	50	20	8828011	13000	50	20	8828011
Dissolved Manganese (Mn)	ug/L	<2.0	2.0	N/A	8843927	470	2.0	N/A	8843927
Total Manganese (Mn)	ug/L	430	2.0	0.50	8828011	440	2.0	0.50	8828011
Dissolved Molybdenum (Mo)	ug/L	2.8	0.50	0.50	8843927	2.4	0.50	0.50	8843927
Total Molybdenum (Mo)	ug/L	2.8	0.50	0.20	8828011	2.7	0.50	0.20	8828011
Dissolved Nickel (Ni)	ug/L	1.4	1.0	N/A	8843927	17	1.0	N/A	8843927
Total Nickel (Ni)	ug/L	1.9	1.0	0.50	8828011	16	1.0	0.50	8828011
Dissolved Phosphorus (P)	ug/L	<100	100	N/A	8843927	1600	100	N/A	8843927
Dissolved Potassium (K)	ug/L	5700	200	N/A	8843927	24000	200	N/A	8843927
Total Potassium (K)	ug/L	5000	200	50	8828011	22000	200	50	8828011
Dissolved Selenium (Se)	ug/L	<1.0 (1)	1.0	N/A	8843927	<1.0 (1)	1.0	N/A	8843927
Dissolved Silicon (Si)	ug/L	880	50	N/A	8843927	2500	50	N/A	8843927
Total Silicon (Si)	ug/L	970	50	30	8828011	2400	50	30	8828011
Dissolved Silver (Ag)	ug/L	<0.090	0.090	0.081	8843927	<0.090	0.090	0.081	8843927
Total Silver (Ag)	ug/L	<0.090	0.090	0.070	8828011	<0.090	0.090	0.070	8828011
Dissolved Sodium (Na)	ug/L	14000	100	N/A	8843927	57000	100	N/A	8843927
Total Sodium (Na)	ug/L	12000	100	50	8828011	51000	100	50	8828011
Dissolved Strontium (Sr)	ug/L	150	1.0	N/A	8843927	200	1.0	N/A	8843927
Total Strontium (Sr)	ug/L	140	1.0	0.50	8828011	180	1.0	0.50	8828011
Dissolved Tellurium (Te)	ug/L	<1.0	1.0	N/A	8843927	<1.0	1.0	N/A	8843927
Total Tellurium (Te)	ug/L	<1.0	1.0	0.70	8828011	<1.0	1.0	0.70	8828011
Dissolved Thallium (TI)	ug/L	<0.050	0.050	N/A	8843927	<0.050	0.050	N/A	8843927
Total Thallium (TI)	ug/L	<0.050	0.050	0.020	8828011	<0.050	0.050	0.020	8828011
Dissolved Tin (Sn)	ug/L	<1.0	1.0	N/A	8843927	<1.0	1.0	N/A	8843927
Total Tin (Sn)	ug/L	<1.0	1.0	0.50	8828011	<1.0	1.0	0.50	8828011

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

N/A = Not Applicable

Site Location: RESOLUTE BAY LANDFILL

Sampler Initials: KC

ELEMENTS BY ATOMIC SPECTROSCOPY (WATER)

Bureau Veritas ID		WNL672				WNL673			
Sampling Date		2023/07/23 15:30				2023/07/23 16:30			
COC Number		n/a				n/a			
	UNITS	RBL-3	RDL	MDL	QC Batch	AEC1-GW1	RDL	MDL	QC Batch
Dissolved Titanium (Ti)	ug/L	<5.0	5.0	N/A	8843927	<5.0	5.0	N/A	8843927
Total Titanium (Ti)	ug/L	<5.0	5.0	4.0	8828011	<5.0	5.0	4.0	8828011
Dissolved Tungsten (W)	ug/L	<1.0	1.0	N/A	8843927	<1.0	1.0	N/A	8843927
Total Tungsten (W)	ug/L	<1.0	1.0	0.50	8828011	<1.0	1.0	0.50	8828011
Dissolved Uranium (U)	ug/L	0.36	0.10	N/A	8843927	0.21	0.10	N/A	8843927
Total Uranium (U)	ug/L	0.33	0.10	0.050	8828011	0.21	0.10	0.050	8828011
Dissolved Vanadium (V)	ug/L	<0.50	0.50	0.50	8843927	2.0	0.50	0.50	8843927
Total Vanadium (V)	ug/L	<0.50	0.50	0.40	8828011	2.4	0.50	0.40	8828011
Dissolved Zinc (Zn)	ug/L	<5.0	5.0	N/A	8843927	<5.0	5.0	N/A	8843927
Total Zinc (Zn)	ug/L	15	5.0	3.0	8828011	6.7	5.0	3.0	8828011
Dissolved Zirconium (Zr)	ug/L	<1.0	1.0	N/A	8843927	<1.0	1.0	N/A	8843927
Total Zirconium (Zr)	ug/L	<1.0	1.0	0.50	8828011	<1.0	1.0	0.50	8828011

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Site Location: RESOLUTE BAY LANDFILL

Sampler Initials: KC

ELEMENTS BY ATOMIC SPECTROSCOPY (WATER)

Bureau Veritas ID		WNL674				WNL674			
Compling Date		2023/07/24				2023/07/24			
Sampling Date		13:00				13:00			
COC Number		n/a				n/a			
	UNITS	RBL-4	RDL	MDL	QC Batch	RBL-4 Lab-Dup	RDL	MDL	QC Batch
Metals									
Chromium (VI)	ug/L	1.6	0.50	0.30	8825340				
Mercury (Hg)	mg/L	<0.000026 (1)	0.000026	0.000013	8825734				
Mercury (Hg)	ug/L	<0.01	0.01	0.004	8887279				
Total Selenium (Se)	ug/L	0.08	0.05	0.04	8888725	0.07	0.05	0.04	8888725
Dissolved Aluminum (Al)	ug/L	6.5	4.9	4.9	8843927				
Total Aluminum (AI)	ug/L	23	4.9	2.0	8828011				
Dissolved Antimony (Sb)	ug/L	<0.50	0.50	N/A	8843927				
Total Antimony (Sb)	ug/L	<0.50	0.50	0.30	8828011				
Dissolved Arsenic (As)	ug/L	<1.0	1.0	N/A	8843927				
Total Arsenic (As)	ug/L	<1.0	1.0	0.50	8828011				
Dissolved Barium (Ba)	ug/L	72	2.0	2.0	8843927				
Total Barium (Ba)	ug/L	84	2.0	0.50	8828011				
Dissolved Beryllium (Be)	ug/L	<0.40	0.40	0.40	8843927				
Total Beryllium (Be)	ug/L	<0.40	0.40	0.10	8828011				
Dissolved Bismuth (Bi)	ug/L	<1.0	1.0	N/A	8843927				
Total Bismuth (Bi)	ug/L	<1.0	1.0	0.070	8828011				
Dissolved Boron (B)	ug/L	45	10	N/A	8843927				
Total Boron (B)	ug/L	45	10	0.30	8828011				
Dissolved Cadmium (Cd)	ug/L	<0.090	0.090	0.081	8843927				
Total Cadmium (Cd)	ug/L	0.091	0.090	0.090	8828011				
Dissolved Calcium (Ca)	ug/L	29000	200	N/A	8843927				
Total Calcium (Ca)	ug/L	33000	200	50	8828011				
Dissolved Chromium (Cr)	ug/L	<5.0	5.0	N/A	8843927				
Total Chromium (Cr)	ug/L	<5.0	5.0	5.0	8828011				
Dissolved Cobalt (Co)	ug/L	<0.50	0.50	N/A	8843927				
Total Cobalt (Co)	ug/L	<0.50	0.50	0.10	8828011				
Dissolved Copper (Cu)	ug/L	2.8	0.90	0.90	8843927				
Total Copper (Cu)	ug/L	2.9	0.90	0.50	8828011				

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

N/A = Not Applicable

Site Location: RESOLUTE BAY LANDFILL

Sampler Initials: KC

ELEMENTS BY ATOMIC SPECTROSCOPY (WATER)

Bureau Veritas ID		WNL674				WNL674			
Compling Date		2023/07/24				2023/07/24			
Sampling Date		13:00				13:00			
COC Number		n/a				n/a			
	UNITS	RBL-4	RDL	MDL	QC Batch	RBL-4 Lab-Dup	RDL	MDL	QC Batch
Dissolved Iron (Fe)	ug/L	<100	100	N/A	8843927				
Total Iron (Fe)	ug/L	<100	100	10	8828011				
Dissolved Lead (Pb)	ug/L	<0.50	0.50	N/A	8843927				
Total Lead (Pb)	ug/L	1.3	0.50	0.10	8828011				
Dissolved Lithium (Li)	ug/L	<5.0	5.0	N/A	8843927				
Total Lithium (Li)	ug/L	<5.0	5.0	0.50	8828011				
Dissolved Magnesium (Mg)	ug/L	10000	50	N/A	8843927				
Total Magnesium (Mg)	ug/L	10000	50	20	8828011				
Dissolved Manganese (Mn)	ug/L	<2.0	2.0	N/A	8843927				
Total Manganese (Mn)	ug/L	3.7	2.0	0.50	8828011				
Dissolved Molybdenum (Mo)	ug/L	0.89	0.50	0.50	8843927				
Total Molybdenum (Mo)	ug/L	0.74	0.50	0.20	8828011				
Dissolved Nickel (Ni)	ug/L	<1.0	1.0	N/A	8843927				
Total Nickel (Ni)	ug/L	<1.0	1.0	0.50	8828011				
Dissolved Phosphorus (P)	ug/L	<100	100	N/A	8843927				
Dissolved Potassium (K)	ug/L	1400	200	N/A	8843927				
Total Potassium (K)	ug/L	1100	200	50	8828011				
Dissolved Selenium (Se)	ug/L	<1.0 (1)	1.0	N/A	8843927				
Dissolved Silicon (Si)	ug/L	240	50	N/A	8843927				
Total Silicon (Si)	ug/L	360	50	30	8828011				
Dissolved Silver (Ag)	ug/L	<0.090	0.090	0.081	8843927				
Total Silver (Ag)	ug/L	<0.090	0.090	0.070	8828011				
Dissolved Sodium (Na)	ug/L	15000	100	N/A	8843927				
Total Sodium (Na)	ug/L	15000	100	50	8828011				
Dissolved Strontium (Sr)	ug/L	87	1.0	N/A	8843927				
Total Strontium (Sr)	ug/L	88	1.0	0.50	8828011				
Dissolved Tellurium (Te)	ug/L	<1.0	1.0	N/A	8843927				
Total Tellurium (Te)	ug/L	<1.0	1.0	0.70	8828011				
Dissolved Thallium (TI)	ug/L	<0.050	0.050	N/A	8843927				

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

N/A = Not Applicable

Site Location: RESOLUTE BAY LANDFILL

Sampler Initials: KC

ELEMENTS BY ATOMIC SPECTROSCOPY (WATER)

Bureau Veritas ID		WNL674				WNL674			
Sampling Date		2023/07/24 13:00				2023/07/24 13:00			
COC Number		n/a				n/a			
	UNITS	RBL-4	RDL	MDL	QC Batch	RBL-4 Lab-Dup	RDL	MDL	QC Batch
Total Thallium (TI)	ug/L	<0.050	0.050	0.020	8828011				
Dissolved Tin (Sn)	ug/L	<1.0	1.0	N/A	8843927				
Total Tin (Sn)	ug/L	<1.0	1.0	0.50	8828011				
Dissolved Titanium (Ti)	ug/L	<5.0	5.0	N/A	8843927				
Total Titanium (Ti)	ug/L	<5.0	5.0	4.0	8828011				
Dissolved Tungsten (W)	ug/L	<1.0	1.0	N/A	8843927				
Total Tungsten (W)	ug/L	<1.0	1.0	0.50	8828011				
Dissolved Uranium (U)	ug/L	0.18	0.10	N/A	8843927				
Total Uranium (U)	ug/L	0.17	0.10	0.050	8828011				
Dissolved Vanadium (V)	ug/L	<0.50	0.50	0.50	8843927				
Total Vanadium (V)	ug/L	<0.50	0.50	0.40	8828011				
Dissolved Zinc (Zn)	ug/L	<5.0	5.0	N/A	8843927				
Total Zinc (Zn)	ug/L	11	5.0	3.0	8828011				
Dissolved Zirconium (Zr)	ug/L	<1.0	1.0	N/A	8843927				
Total Zirconium (Zr)	ug/L	<1.0	1.0	0.50	8828011				

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

Site Location: RESOLUTE BAY LANDFILL

Sampler Initials: KC

ELEMENTS BY ATOMIC SPECTROSCOPY (WATER)

Bureau Veritas ID		WNL675				WNL675			
Compling Date		2023/07/24				2023/07/24			
Sampling Date		11:50				11:50			
COC Number		n/a				n/a			
	UNITS	RBL-8	RDL	MDL	QC Batch	RBL-8 Lab-Dup	RDL	MDL	QC Batch
Metals									
Chromium (VI)	ug/L	0.51	0.50	0.30	8825340				
Mercury (Hg)	mg/L	<0.000026 (1)	0.000026	0.000013	8827927				
Mercury (Hg)	ug/L	<0.01	0.01	0.004	8887279				
Total Selenium (Se)	ug/L	0.06	0.05	0.04	8888725				
Dissolved Aluminum (Al)	ug/L	<4.9	4.9	4.9	8843936	<4.9	4.9	4.9	8843936
Total Aluminum (Al)	ug/L	50	4.9	2.0	8828011				
Dissolved Antimony (Sb)	ug/L	<0.50	0.50	N/A	8843936	<0.50	0.50	N/A	8843936
Total Antimony (Sb)	ug/L	<0.50	0.50	0.30	8828011				
Dissolved Arsenic (As)	ug/L	<1.0	1.0	N/A	8843936	<1.0	1.0	N/A	8843936
Total Arsenic (As)	ug/L	<1.0	1.0	0.50	8828011				
Dissolved Barium (Ba)	ug/L	56	2.0	2.0	8843936	54	2.0	2.0	8843936
Total Barium (Ba)	ug/L	56	2.0	0.50	8828011				
Dissolved Beryllium (Be)	ug/L	<0.40	0.40	0.40	8843936	<0.40	0.40	0.40	8843936
Total Beryllium (Be)	ug/L	<0.40	0.40	0.10	8828011				
Dissolved Bismuth (Bi)	ug/L	<1.0	1.0	N/A	8843936	<1.0	1.0	N/A	8843936
Total Bismuth (Bi)	ug/L	<1.0	1.0	0.070	8828011				
Dissolved Boron (B)	ug/L	38	10	N/A	8843936	37	10	N/A	8843936
Total Boron (B)	ug/L	40	10	0.30	8828011				
Dissolved Cadmium (Cd)	ug/L	<0.090	0.090	0.081	8843936	<0.090	0.090	0.081	8843936
Total Cadmium (Cd)	ug/L	<0.090	0.090	0.090	8828011				
Dissolved Calcium (Ca)	ug/L	35000	200	N/A	8843936	35000	200	N/A	8843936
Total Calcium (Ca)	ug/L	37000	200	50	8828011				
Dissolved Chromium (Cr)	ug/L	<5.0	5.0	N/A	8843936	<5.0	5.0	N/A	8843936
Total Chromium (Cr)	ug/L	<5.0	5.0	5.0	8828011				
Dissolved Cobalt (Co)	ug/L	<0.50	0.50	N/A	8843936	<0.50	0.50	N/A	8843936
Total Cobalt (Co)	ug/L	<0.50	0.50	0.10	8828011				
Dissolved Copper (Cu)	ug/L	<0.90	0.90	0.90	8843936	<0.90	0.90	0.90	8843936
Total Copper (Cu)	ug/L	<0.90	0.90	0.50	8828011				
DDI Damantalila Dataatian									

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

N/A = Not Applicable

Site Location: RESOLUTE BAY LANDFILL

Sampler Initials: KC

ELEMENTS BY ATOMIC SPECTROSCOPY (WATER)

UNITS RBL-8 RDL MDL QC Batch RBL-8 RDL RBL-9 RDL RBL-9 RDL RBL-9 RDL RBL-9 RBL-9 RDL RBL-9 RDL RBL-9 RDL RBL-9 RDL RBL-9 RBL-9 RDL RBL-9 RDL RBL-9 RDL RBL-9 RDL RBL-9 RBL-9 RDL RBL-9 RDL RBL-9 RBL-9	Bureau Veritas ID		WNL675				WNL675			
11:50	Carrallia a Data		2023/07/24				2023/07/24			
UNITS RBL-8 RDL MDL QC Batch RBL-8 RDL MDL QC Batch RBL-8 Lab-Dup RDL MDL QC Batch Call-Dup RDL Call-Dup R	Sampling Date		11:50				11:50			
Dissolved Iron (Fe) Ug/L <100 100 N/A 8843936 <100 0.50 8828011 <100 0.50 0.50 8828011 <100 0.50 0.50 0.50 8828011 <100 0.50 0.50 0.50 8828011 <100 0.50	COC Number		n/a				n/a			
Total Iron (Fe)		UNITS	RBL-8	RDL	MDL	QC Batch		RDL	MDL	QC Batch
Dissolved Lead (Pb)	Dissolved Iron (Fe)	ug/L	<100	100	N/A	8843936	<100	100	N/A	8843936
Total Lead (Pb)	Total Iron (Fe)	ug/L	<100	100	10	8828011				
Dissolved Lithium (Li)	Dissolved Lead (Pb)	ug/L	<0.50	0.50	N/A	8843936	<0.50	0.50	N/A	8843936
Total Lithium (Li)	Total Lead (Pb)	ug/L	<0.50	0.50	0.10	8828011				
Dissolved Magnesium (Mg)	Dissolved Lithium (Li)	ug/L	<5.0	5.0	N/A	8843936	<5.0	5.0	N/A	8843936
Total Magnesium (Mg)	Total Lithium (Li)	ug/L	<5.0	5.0	0.50	8828011				
Dissolved Manganese (Mn) Ug/L <2.0 2.0 N/A 8843936 <2.0 0.50 0.50 0.50 8843936 <2.0 0.50 0.50 0.50 8843936 <2.0 0.50 0.	Dissolved Magnesium (Mg)	ug/L	14000	50	N/A	8843936	13000	50	N/A	8843936
Total Manganese (Mn)	Total Magnesium (Mg)	ug/L	14000	50	20	8828011				
Dissolved Molybdenum (Mo) ug/L 0.54 0.50 0.50 8843936 0.56 0.50 0.50 8843936 Total Molybdenum (Mo) ug/L 0.53 0.50 0.20 8828011 8843936 0.50	Dissolved Manganese (Mn)	ug/L	<2.0	2.0	N/A	8843936	<2.0	2.0	N/A	8843936
Total Molybdenum (Mo)	Total Manganese (Mn)	ug/L	2.6	2.0	0.50	8828011				
Dissolved Nickel (Ni)	Dissolved Molybdenum (Mo)	ug/L	0.54	0.50	0.50	8843936	0.56	0.50	0.50	8843936
Total Nickel (Ni)	Total Molybdenum (Mo)	ug/L	0.53	0.50	0.20	8828011				
Dissolved Phosphorus (P)	Dissolved Nickel (Ni)	ug/L	<1.0	1.0	N/A	8843936	<1.0	1.0	N/A	8843936
Dissolved Potassium (K)	Total Nickel (Ni)	ug/L	<1.0	1.0	0.50	8828011				
Total Potassium (K) ug/L 1500 200 50 8828011 Beliasolved Selenium (Se) Ug/L 4.0 1.0 N/A 8843936 4.0 1.0 <td>Dissolved Phosphorus (P)</td> <td>ug/L</td> <td><100</td> <td>100</td> <td>N/A</td> <td>8843936</td> <td><100</td> <td>100</td> <td>N/A</td> <td>8843936</td>	Dissolved Phosphorus (P)	ug/L	<100	100	N/A	8843936	<100	100	N/A	8843936
Dissolved Selenium (Se)	Dissolved Potassium (K)	ug/L	1400	200	N/A	8843936	1400	200	N/A	8843936
Dissolved Silicon (Si)	Total Potassium (K)	ug/L	1500	200	50	8828011				
Total Silicon (Si)	Dissolved Selenium (Se)	ug/L	<1.0	1.0	N/A	8843936	<1.0	1.0	N/A	8843936
Dissolved Silver (Ag)	Dissolved Silicon (Si)	ug/L	200	50	N/A	8843936	190	50	N/A	8843936
Total Silver (Ag) ug/L <0.090 0.090 0.070 8828011 Dissolved Sodium (Na) Ug/L 20000 100 N/A 8843936 21000 100 N/A 8843936 21000 100 N/A 8843936 21000 100 N/A 8843936 160 1.0 N/A 8843936 10 1.0 N/A 8843936 1.0 1.0 N/A <td>Total Silicon (Si)</td> <td>ug/L</td> <td>290</td> <td>50</td> <td>30</td> <td>8828011</td> <td></td> <td></td> <td></td> <td></td>	Total Silicon (Si)	ug/L	290	50	30	8828011				
Dissolved Sodium (Na)	Dissolved Silver (Ag)	ug/L	<0.090	0.090	0.081	8843936	<0.090	0.090	0.081	8843936
Total Sodium (Na) ug/L 21000 100 50 8828011 Section (Na) Material (Na)	Total Silver (Ag)	ug/L	<0.090	0.090	0.070	8828011				
Dissolved Strontium (Sr) ug/L 170 1.0 N/A 8843936 160 1.0 N/A 8843936 Total Strontium (Sr) ug/L 150 1.0 0.50 8828011 Dissolved Tellurium (Te) ug/L <1.0 1.0 N/A 8843936 <1.0 1.0 N/A 8843936 Total Tellurium (Te) ug/L <1.0 1.0 0.70 8828011 Dissolved Thallium (TI) ug/L <0.050 0.050 N/A 8843936 <0.050 0.050 N/A 8843936	Dissolved Sodium (Na)	ug/L	20000	100	N/A	8843936	21000	100	N/A	8843936
Total Strontium (Sr) ug/L 150 1.0 0.50 8828011 Section 1.0 N/A 8843936 1.0 1.0 N/A 8843936 1.0 1.0 N/A 1.0<	Total Sodium (Na)	ug/L	21000	100	50	8828011				
Dissolved Tellurium (Te)	Dissolved Strontium (Sr)	ug/L	170	1.0	N/A	8843936	160	1.0	N/A	8843936
Total Tellurium (Te)	Total Strontium (Sr)	ug/L	150	1.0	0.50	8828011				
Dissolved Thallium (TI) ug/L <0.050 0.050 N/A 8843936 <0.050 0.050 N/A 8843936	Dissolved Tellurium (Te)	ug/L	<1.0	1.0	N/A	8843936	<1.0	1.0	N/A	8843936
	Total Tellurium (Te)	ug/L	<1.0	1.0	0.70	8828011				
Total Thallium (TI)	Dissolved Thallium (TI)	ug/L	<0.050	0.050	N/A	8843936	<0.050	0.050	N/A	8843936
	Total Thallium (TI)	ug/L	<0.050	0.050	0.020	8828011				

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

Site Location: RESOLUTE BAY LANDFILL

Sampler Initials: KC

ELEMENTS BY ATOMIC SPECTROSCOPY (WATER)

Bureau Veritas ID		WNL675				WNL675			
Campling Data		2023/07/24				2023/07/24			
Sampling Date		11:50				11:50			
COC Number		n/a				n/a			
	UNITS	RBL-8	RDL	MDL	QC Batch	RBL-8 Lab-Dup	RDL	MDL	QC Batch
Dissolved Tin (Sn)	ug/L	<1.0	1.0	N/A	8843936	<1.0	1.0	N/A	8843936
Total Tin (Sn)	ug/L	<1.0	1.0	0.50	8828011				
Dissolved Titanium (Ti)	ug/L	<5.0	5.0	N/A	8843936	<5.0	5.0	N/A	8843936
Total Titanium (Ti)	ug/L	<5.0	5.0	4.0	8828011				
Dissolved Tungsten (W)	ug/L	<1.0	1.0	N/A	8843936	<1.0	1.0	N/A	8843936
Total Tungsten (W)	ug/L	<1.0	1.0	0.50	8828011				
Dissolved Uranium (U)	ug/L	0.21	0.10	N/A	8843936	0.20	0.10	N/A	8843936
Total Uranium (U)	ug/L	0.17	0.10	0.050	8828011				
Dissolved Vanadium (V)	ug/L	<0.50	0.50	0.50	8843936	<0.50	0.50	0.50	8843936
Total Vanadium (V)	ug/L	<0.50	0.50	0.40	8828011				
Dissolved Zinc (Zn)	ug/L	<5.0	5.0	N/A	8843936	<5.0	5.0	N/A	8843936
Total Zinc (Zn)	ug/L	<5.0	5.0	3.0	8828011				
Dissolved Zirconium (Zr)	ug/L	<1.0	1.0	N/A	8843936	<1.0	1.0	N/A	8843936
Total Zirconium (Zr)	ug/L	<1.0	1.0	0.50	8828011				

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

Site Location: RESOLUTE BAY LANDFILL

Sampler Initials: KC

ELEMENTS BY ATOMIC SPECTROSCOPY (WATER)

Bureau Veritas ID		WNL676	WNL677				WNL678			
Campling Data		2023/07/24	2023/07/24				2023/07/23			
Sampling Date		11:15	10:30				15:50			
COC Number		n/a	n/a				n/a			
	UNITS	RBL-13	RBL-16	RDL	MDL	QC Batch	RBL-DUPA	RDL	MDL	QC Batch
Metals										
Chromium (VI)	ug/L	<0.50	<0.50	0.50	0.30	8825340	<0.50	0.50	0.30	8825340
Mercury (Hg)	mg/L	<0.000026 (1)	<0.000026 (1)	0.000026	0.000013	8825734	<0.000026 (1)	0.000026	0.000013	8827927
Mercury (Hg)	ug/L	<0.01	<0.01	0.01	0.004	8887279				
Total Selenium (Se)	ug/L	<0.05	<0.05	0.05	0.04	8888725	<1.0 (1)	1.0	0.25	8828011
Dissolved Aluminum (AI)	ug/L	<4.9	<4.9	4.9	4.9	8843927	<4.9	4.9	4.9	8843936
Total Aluminum (AI)	ug/L	14	5.6	4.9	2.0	8828011	9.1	4.9	2.0	8828011
Dissolved Antimony (Sb)	ug/L	<0.50	<0.50	0.50	N/A	8843927	<0.50	0.50	N/A	8843936
Total Antimony (Sb)	ug/L	<0.50	<0.50	0.50	0.30	8828011	<0.50	0.50	0.30	8828011
Dissolved Arsenic (As)	ug/L	<1.0	<1.0	1.0	N/A	8843927	<1.0	1.0	N/A	8843936
Total Arsenic (As)	ug/L	<1.0	<1.0	1.0	0.50	8828011	1.6	1.0	0.50	8828011
Dissolved Barium (Ba)	ug/L	4.3	4.5	2.0	2.0	8843927	78	2.0	2.0	8843936
Total Barium (Ba)	ug/L	4.5	4.7	2.0	0.50	8828011	95	2.0	0.50	8828011
Dissolved Beryllium (Be)	ug/L	<0.40	<0.40	0.40	0.40	8843927	<0.40	0.40	0.40	8843936
Total Beryllium (Be)	ug/L	<0.40	<0.40	0.40	0.10	8828011	<0.40	0.40	0.10	8828011
Dissolved Bismuth (Bi)	ug/L	<1.0	<1.0	1.0	N/A	8843927	<1.0	1.0	N/A	8843936
Total Bismuth (Bi)	ug/L	<1.0	<1.0	1.0	0.070	8828011	<1.0	1.0	0.070	8828011
Dissolved Boron (B)	ug/L	19	21	10	N/A	8843927	82	10	N/A	8843936
Total Boron (B)	ug/L	19	19	10	0.30	8828011	80	10	0.30	8828011
Dissolved Cadmium (Cd)	ug/L	<0.090	<0.090	0.090	0.081	8843927	<0.090	0.090	0.081	8843936
Total Cadmium (Cd)	ug/L	<0.090	<0.090	0.090	0.090	8828011	0.18	0.090	0.090	8828011
Dissolved Calcium (Ca)	ug/L	32000	31000	200	N/A	8843927	50000	200	N/A	8843936
Total Calcium (Ca)	ug/L	31000	32000	200	50	8828011	51000	200	50	8828011
Dissolved Chromium (Cr)	ug/L	<5.0	<5.0	5.0	N/A	8843927	<5.0	5.0	N/A	8843936
Total Chromium (Cr)	ug/L	<5.0	<5.0	5.0	5.0	8828011	<5.0	5.0	5.0	8828011
Dissolved Cobalt (Co)	ug/L	<0.50	<0.50	0.50	N/A	8843927	<0.50	0.50	N/A	8843936
Total Cobalt (Co)	ug/L	<0.50	<0.50	0.50	0.10	8828011	1.2	0.50	0.10	8828011
Dissolved Copper (Cu)	ug/L	<0.90	<0.90	0.90	0.90	8843927	1.1	0.90	0.90	8843936
Total Copper (Cu)	ug/L	<0.90	<0.90	0.90	0.50	8828011	2.5	0.90	0.50	8828011
Dissolved Iron (Fe)	ug/L	<100	<100	100	N/A	8843927	<100	100	N/A	8843936

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

N/A = Not Applicable

Site Location: RESOLUTE BAY LANDFILL

Sampler Initials: KC

ELEMENTS BY ATOMIC SPECTROSCOPY (WATER)

Total Iron (Fe) Dissolved Lead (Pb) Total Lead (Pb) Dissolved Lithium (Li)	ug/L ug/L ug/L ug/L ug/L ug/L	2023/07/24 11:15 n/a RBL-13 <100 <0.50 <0.50	2023/07/24 10:30 n/a RBL-16 <100 <0.50	RDL 100 0.50	MDL 10	QC Batch	2023/07/23 15:50 n/a RBL-DUPA	RDL	MDL	QC Batch
Total Iron (Fe) Dissolved Lead (Pb) Total Lead (Pb) Dissolved Lithium (Li)	ug/L ug/L ug/L ug/L ug/L	n/a RBL-13 <100 <0.50 <0.50 <5.0	n/a RBL-16 <100 <0.50	100		, ·	n/a	RDL	MDL	QC Batch
Total Iron (Fe) Dissolved Lead (Pb) Total Lead (Pb) Dissolved Lithium (Li)	ug/L ug/L ug/L ug/L ug/L	RBL-13 <100 <0.50 <0.50 <5.0	RBL-16 <100 <0.50	100		, ·	-	RDL	MDL	QC Batch
Total Iron (Fe) Dissolved Lead (Pb) Total Lead (Pb) Dissolved Lithium (Li)	ug/L ug/L ug/L ug/L ug/L	<100 <0.50 <0.50 <5.0	<100 <0.50	100		, ·	RBL-DUPA	RDL	MDL	QC Batch
Dissolved Lead (Pb) Total Lead (Pb) Dissolved Lithium (Li)	ug/L ug/L ug/L ug/L	<0.50 <0.50 <5.0	<0.50		10	0000011				
Total Lead (Pb) Dissolved Lithium (Li)	ug/L ug/L ug/L	<0.50 <5.0		0.50		8828011	870	100	10	8828011
Dissolved Lithium (Li)	ug/L ug/L	<5.0	<0.50	0.50	N/A	8843927	<0.50	0.50	N/A	8843936
. ,	ug/L			0.50	0.10	8828011	1.9	0.50	0.10	8828011
Total Lithium (Li)	_	4F 0	<5.0	5.0	N/A	8843927	<5.0	5.0	N/A	8843936
	πσ/Ι	<5.0	<5.0	5.0	0.50	8828011	<5.0	5.0	0.50	8828011
Dissolved Magnesium (Mg)	48/ L	4800	4800	50	N/A	8843927	13000	50	N/A	8843936
Total Magnesium (Mg)	ug/L	4500	4700	50	20	8828011	13000	50	20	8828011
Dissolved Manganese (Mn)	ug/L	<2.0	<2.0	2.0	N/A	8843927	<2.0	2.0	N/A	8843936
Total Manganese (Mn)	ug/L	<2.0	<2.0	2.0	0.50	8828011	440	2.0	0.50	8828011
Dissolved Molybdenum (Mo)	ug/L	<0.50	<0.50	0.50	0.50	8843927	2.6	0.50	0.50	8843936
Total Molybdenum (Mo)	ug/L	<0.50	<0.50	0.50	0.20	8828011	2.8	0.50	0.20	8828011
Dissolved Nickel (Ni)	ug/L	<1.0	<1.0	1.0	N/A	8843927	1.7	1.0	N/A	8843936
Total Nickel (Ni)	ug/L	<1.0	<1.0	1.0	0.50	8828011	1.8	1.0	0.50	8828011
Dissolved Phosphorus (P)	ug/L	<100	<100	100	N/A	8843927	<100	100	N/A	8843936
Dissolved Potassium (K)	ug/L	710	680	200	N/A	8843927	4900	200	N/A	8843936
Total Potassium (K)	ug/L	650	650	200	50	8828011	4800	200	50	8828011
Dissolved Selenium (Se)	ug/L	<1.0 (1)	<1.0 (1)	1.0	N/A	8843927	<1.0	1.0	N/A	8843936
Dissolved Silicon (Si)	ug/L	270	260	50	N/A	8843927	840	50	N/A	8843936
Total Silicon (Si)	ug/L	300	270	50	30	8828011	930	50	30	8828011
Dissolved Silver (Ag)	ug/L	<0.090	<0.090	0.090	0.081	8843927	<0.090	0.090	0.081	8843936
Total Silver (Ag)	ug/L	<0.090	<0.090	0.090	0.070	8828011	<0.090	0.090	0.070	8828011
Dissolved Sodium (Na)	ug/L	5200	5000	100	N/A	8843927	13000	100	N/A	8843936
Total Sodium (Na)	ug/L	5000	5000	100	50	8828011	13000	100	50	8828011
Dissolved Strontium (Sr)	ug/L	84	83	1.0	N/A	8843927	150	1.0	N/A	8843936
Total Strontium (Sr)	ug/L	78	79	1.0	0.50	8828011	140	1.0	0.50	8828011
Dissolved Tellurium (Te)	ug/L	<1.0	<1.0	1.0	N/A	8843927	<1.0	1.0	N/A	8843936
Total Tellurium (Te)	ug/L	<1.0	<1.0	1.0	0.70	8828011	<1.0	1.0	0.70	8828011
Dissolved Thallium (TI)	ug/L	<0.050	<0.050	0.050	N/A	8843927	<0.050	0.050	N/A	8843936
Total Thallium (TI)	ug/L	<0.050	<0.050	0.050	0.020	8828011	<0.050	0.050	0.020	8828011
Dissolved Tin (Sn)	ug/L	<1.0	<1.0	1.0	N/A	8843927	<1.0	1.0	N/A	8843936

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

N/A = Not Applicable

Site Location: RESOLUTE BAY LANDFILL

Sampler Initials: KC

ELEMENTS BY ATOMIC SPECTROSCOPY (WATER)

Bureau Veritas ID		WNL676	WNL677				WNL678			
Sampling Date		2023/07/24 11:15	2023/07/24 10:30				2023/07/23 15:50			
COC Number		n/a	n/a				n/a			
	UNITS	RBL-13	RBL-16	RDL	MDL	QC Batch	RBL-DUPA	RDL	MDL	QC Batch
Total Tin (Sn)	ug/L	<1.0	<1.0	1.0	0.50	8828011	<1.0	1.0	0.50	8828011
Dissolved Titanium (Ti)	ug/L	<5.0	<5.0	5.0	N/A	8843927	<5.0	5.0	N/A	8843936
Total Titanium (Ti)	ug/L	<5.0	<5.0	5.0	4.0	8828011	<5.0	5.0	4.0	8828011
Dissolved Tungsten (W)	ug/L	<1.0	<1.0	1.0	N/A	8843927	<1.0	1.0	N/A	8843936
Total Tungsten (W)	ug/L	<1.0	<1.0	1.0	0.50	8828011	<1.0	1.0	0.50	8828011
Dissolved Uranium (U)	ug/L	0.21	0.21	0.10	N/A	8843927	0.34	0.10	N/A	8843936
Total Uranium (U)	ug/L	0.19	0.19	0.10	0.050	8828011	0.33	0.10	0.050	8828011
Dissolved Vanadium (V)	ug/L	<0.50	<0.50	0.50	0.50	8843927	<0.50	0.50	0.50	8843936
Total Vanadium (V)	ug/L	<0.50	<0.50	0.50	0.40	8828011	<0.50	0.50	0.40	8828011
Dissolved Zinc (Zn)	ug/L	<5.0	<5.0	5.0	N/A	8843927	<5.0	5.0	N/A	8843936
Total Zinc (Zn)	ug/L	<5.0	<5.0	5.0	3.0	8828011	15	5.0	3.0	8828011
Dissolved Zirconium (Zr)	ug/L	<1.0	<1.0	1.0	N/A	8843927	<1.0	1.0	N/A	8843936
Total Zirconium (Zr)	ug/L	<1.0	<1.0	1.0	0.50	8828011	<1.0	1.0	0.50	8828011

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Site Location: RESOLUTE BAY LANDFILL

Sampler Initials: KC

ELEMENTS BY ATOMIC SPECTROSCOPY (WATER)

Bureau Veritas ID		WNL679				WNL680			
Compline Date		2023/07/24				2023/07/24			
Sampling Date		11:20				11:55			
COC Number		n/a				n/a			
	UNITS	RBL-DUPB	RDL	MDL	QC Batch	RBL-DUPC	RDL	MDL	QC Batch
Metals									
Chromium (VI)	ug/L	0.51	0.50	0.30	8825340	<0.50	0.50	0.30	8825340
Mercury (Hg)	mg/L	<0.000026 (1)	0.000026	0.000013	8825734	<0.000026 (1)	0.000026	0.000013	8827927
Mercury (Hg)	ug/L					<0.01	0.01	0.004	8887279
Total Selenium (Se)	ug/L	<1.0 (1)	1.0	0.25	8828011	<0.05	0.05	0.04	8888725
Dissolved Aluminum (Al)	ug/L	<4.9	4.9	4.9	8843927	<4.9	4.9	4.9	8843927
Total Aluminum (AI)	ug/L	42	4.9	2.0	8828011	14	4.9	2.0	8828011
Dissolved Antimony (Sb)	ug/L	<0.50	0.50	N/A	8843927	<0.50	0.50	N/A	8843927
Total Antimony (Sb)	ug/L	<0.50	0.50	0.30	8828011	<0.50	0.50	0.30	8828011
Dissolved Arsenic (As)	ug/L	<1.0	1.0	N/A	8843927	<1.0	1.0	N/A	8843927
Total Arsenic (As)	ug/L	<1.0	1.0	0.50	8828011	<1.0	1.0	0.50	8828011
Dissolved Barium (Ba)	ug/L	53	2.0	2.0	8843927	4.7	2.0	2.0	8843927
Total Barium (Ba)	ug/L	57	2.0	0.50	8828011	5.0	2.0	0.50	8828011
Dissolved Beryllium (Be)	ug/L	<0.40	0.40	0.40	8843927	<0.40	0.40	0.40	8843927
Total Beryllium (Be)	ug/L	<0.40	0.40	0.10	8828011	<0.40	0.40	0.10	8828011
Dissolved Bismuth (Bi)	ug/L	<1.0	1.0	N/A	8843927	<1.0	1.0	N/A	8843927
Total Bismuth (Bi)	ug/L	<1.0	1.0	0.070	8828011	<1.0	1.0	0.070	8828011
Dissolved Boron (B)	ug/L	37	10	N/A	8843927	18	10	N/A	8843927
Total Boron (B)	ug/L	38	10	0.30	8828011	19	10	0.30	8828011
Dissolved Cadmium (Cd)	ug/L	<0.090	0.090	0.081	8843927	<0.090	0.090	0.081	8843927
Total Cadmium (Cd)	ug/L	<0.090	0.090	0.090	8828011	<0.090	0.090	0.090	8828011
Dissolved Calcium (Ca)	ug/L	35000	200	N/A	8843927	32000	200	N/A	8843927
Total Calcium (Ca)	ug/L	38000	200	50	8828011	30000	200	50	8828011
Dissolved Chromium (Cr)	ug/L	<5.0	5.0	N/A	8843927	<5.0	5.0	N/A	8843927
Total Chromium (Cr)	ug/L	<5.0	5.0	5.0	8828011	<5.0	5.0	5.0	8828011
Dissolved Cobalt (Co)	ug/L	<0.50	0.50	N/A	8843927	<0.50	0.50	N/A	8843927
Total Cobalt (Co)	ug/L	<0.50	0.50	0.10	8828011	<0.50	0.50	0.10	8828011
Dissolved Copper (Cu)	ug/L	<0.90	0.90	0.90	8843927	<0.90	0.90	0.90	8843927
Total Copper (Cu)	ug/L	<0.90	0.90	0.50	8828011	<0.90	0.90	0.50	8828011
Dissolved Iron (Fe)	ug/L	<100	100	N/A	8843927	<100	100	N/A	8843927
		<u> </u>							

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

N/A = Not Applicable

Site Location: RESOLUTE BAY LANDFILL

Sampler Initials: KC

ELEMENTS BY ATOMIC SPECTROSCOPY (WATER)

Bureau Veritas ID		WNL679				WNL680			
Campling Data		2023/07/24				2023/07/24			
Sampling Date		11:20				11:55			
COC Number		n/a				n/a			
	UNITS	RBL-DUPB	RDL	MDL	QC Batch	RBL-DUPC	RDL	MDL	QC Batch
Total Iron (Fe)	ug/L	<100	100	10	8828011	<100	100	10	8828011
Dissolved Lead (Pb)	ug/L	<0.50	0.50	N/A	8843927	<0.50	0.50	N/A	8843927
Total Lead (Pb)	ug/L	<0.50	0.50	0.10	8828011	<0.50	0.50	0.10	8828011
Dissolved Lithium (Li)	ug/L	<5.0	5.0	N/A	8843927	<5.0	5.0	N/A	8843927
Total Lithium (Li)	ug/L	<5.0	5.0	0.50	8828011	<5.0	5.0	0.50	8828011
Dissolved Magnesium (Mg)	ug/L	14000	50	N/A	8843927	4800	50	N/A	8843927
Total Magnesium (Mg)	ug/L	15000	50	20	8828011	4600	50	20	8828011
Dissolved Manganese (Mn)	ug/L	<2.0	2.0	N/A	8843927	<2.0	2.0	N/A	8843927
Total Manganese (Mn)	ug/L	2.9	2.0	0.50	8828011	<2.0	2.0	0.50	8828011
Dissolved Molybdenum (Mo)	ug/L	0.62	0.50	0.50	8843927	<0.50	0.50	0.50	8843927
Total Molybdenum (Mo)	ug/L	0.57	0.50	0.20	8828011	<0.50	0.50	0.20	8828011
Dissolved Nickel (Ni)	ug/L	<1.0	1.0	N/A	8843927	<1.0	1.0	N/A	8843927
Total Nickel (Ni)	ug/L	<1.0	1.0	0.50	8828011	<1.0	1.0	0.50	8828011
Dissolved Phosphorus (P)	ug/L	<100	100	N/A	8843927	<100	100	N/A	8843927
Dissolved Potassium (K)	ug/L	1600	200	N/A	8843927	700	200	N/A	8843927
Total Potassium (K)	ug/L	1600	200	50	8828011	670	200	50	8828011
Dissolved Selenium (Se)	ug/L	<1.0 (1)	1.0	N/A	8843927	<1.0 (1)	1.0	N/A	8843927
Dissolved Silicon (Si)	ug/L	210	50	N/A	8843927	280	50	N/A	8843927
Total Silicon (Si)	ug/L	290	50	30	8828011	290	50	30	8828011
Dissolved Silver (Ag)	ug/L	<0.090	0.090	0.081	8843927	<0.090	0.090	0.081	8843927
Total Silver (Ag)	ug/L	<0.090	0.090	0.070	8828011	<0.090	0.090	0.070	8828011
Dissolved Sodium (Na)	ug/L	22000	100	N/A	8843927	5100	100	N/A	8843927
Total Sodium (Na)	ug/L	22000	100	50	8828011	5100	100	50	8828011
Dissolved Strontium (Sr)	ug/L	160	1.0	N/A	8843927	85	1.0	N/A	8843927
Total Strontium (Sr)	ug/L	160	1.0	0.50	8828011	78	1.0	0.50	8828011
Dissolved Tellurium (Te)	ug/L	<1.0	1.0	N/A	8843927	<1.0	1.0	N/A	8843927
Total Tellurium (Te)	ug/L	<1.0	1.0	0.70	8828011	<1.0	1.0	0.70	8828011
Dissolved Thallium (TI)	ug/L	<0.050	0.050	N/A	8843927	<0.050	0.050	N/A	8843927
Total Thallium (TI)	ug/L	<0.050	0.050	0.020	8828011	<0.050	0.050	0.020	8828011
Dissolved Tin (Sn)	ug/L	<1.0	1.0	N/A	8843927	<1.0	1.0	N/A	8843927

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

N/A = Not Applicable

Site Location: RESOLUTE BAY LANDFILL

Sampler Initials: KC

ELEMENTS BY ATOMIC SPECTROSCOPY (WATER)

Bureau Veritas ID		WNL679				WNL680			
Sampling Date		2023/07/24 11:20				2023/07/24 11:55			
COC Number		n/a				n/a			
	UNITS	RBL-DUPB	RDL	MDL	QC Batch	RBL-DUPC	RDL	MDL	QC Batch
Total Tin (Sn)	ug/L	<1.0	1.0	0.50	8828011	<1.0	1.0	0.50	8828011
Dissolved Titanium (Ti)	ug/L	<5.0	5.0	N/A	8843927	<5.0	5.0	N/A	8843927
Total Titanium (Ti)	ug/L	<5.0	5.0	4.0	8828011	<5.0	5.0	4.0	8828011
Dissolved Tungsten (W)	ug/L	<1.0	1.0	N/A	8843927	<1.0	1.0	N/A	8843927
Total Tungsten (W)	ug/L	<1.0	1.0	0.50	8828011	<1.0	1.0	0.50	8828011
Dissolved Uranium (U)	ug/L	0.18	0.10	N/A	8843927	0.21	0.10	N/A	8843927
Total Uranium (U)	ug/L	0.16	0.10	0.050	8828011	0.20	0.10	0.050	8828011
Dissolved Vanadium (V)	ug/L	<0.50	0.50	0.50	8843927	<0.50	0.50	0.50	8843927
Total Vanadium (V)	ug/L	<0.50	0.50	0.40	8828011	<0.50	0.50	0.40	8828011
Dissolved Zinc (Zn)	ug/L	<5.0	5.0	N/A	8843927	<5.0	5.0	N/A	8843927
Total Zinc (Zn)	ug/L	<5.0	5.0	3.0	8828011	<5.0	5.0	3.0	8828011
Dissolved Zirconium (Zr)	ug/L	<1.0	1.0	N/A	8843927	<1.0	1.0	N/A	8843927
Total Zirconium (Zr)	ug/L	<1.0	1.0	0.50	8828011	<1.0	1.0	0.50	8828011

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Site Location: RESOLUTE BAY LANDFILL

Sampler Initials: KC

ELEMENTS BY ATOMIC SPECTROSCOPY (WATER)

Bureau Veritas ID		WNL680			
Sampling Date		2023/07/24			
		11:55			
COC Number		n/a			
	UNITS	RBL-DUPC Lab-Dup	RDL	MDL	QC Batch
Metals					
Total Selenium (Se)	ug/L	<1.0	1.0	0.25	8828011
Total Aluminum (Al)	ug/L	14	4.9	2.0	8828011
Total Antimony (Sb)	ug/L	<0.50	0.50	0.30	8828011
Total Arsenic (As)	ug/L	<1.0	1.0	0.50	8828011
Total Barium (Ba)	ug/L	4.8	2.0	0.50	8828011
Total Beryllium (Be)	ug/L	<0.40	0.40	0.10	8828011
Total Bismuth (Bi)	ug/L	<1.0	1.0	0.070	8828011
Total Boron (B)	ug/L	19	10	0.30	8828011
Total Cadmium (Cd)	ug/L	<0.090	0.090	0.090	8828011
Total Calcium (Ca)	ug/L	32000	200	50	8828011
Total Chromium (Cr)	ug/L	<5.0	5.0	5.0	8828011
Total Cobalt (Co)	ug/L	<0.50	0.50	0.10	8828011
Total Copper (Cu)	ug/L	<0.90	0.90	0.50	8828011
Total Iron (Fe)	ug/L	<100	100	10	8828011
Total Lead (Pb)	ug/L	<0.50	0.50	0.10	8828011
Total Lithium (Li)	ug/L	<5.0	5.0	0.50	8828011
Total Magnesium (Mg)	ug/L	4500	50	20	8828011
Total Manganese (Mn)	ug/L	<2.0	2.0	0.50	8828011
Total Molybdenum (Mo)	ug/L	<0.50	0.50	0.20	8828011
Total Nickel (Ni)	ug/L	<1.0	1.0	0.50	8828011
Total Potassium (K)	ug/L	650	200	50	8828011
Total Silicon (Si)	ug/L	300	50	30	8828011
Total Silver (Ag)	ug/L	<0.090	0.090	0.070	8828011
Total Sodium (Na)	ug/L	4900	100	50	8828011
Total Strontium (Sr)	ug/L	78	1.0	0.50	8828011
Total Tellurium (Te)	ug/L	<1.0	1.0	0.70	8828011
Total Thallium (TI)	ug/L	<0.050	0.050	0.020	8828011
Total Tin (Sn)	ug/L	<1.0	1.0	0.50	8828011
Total Titanium (Ti)	ug/L	<5.0	5.0	4.0	8828011
Total Tungsten (W)	ug/L	<1.0	1.0	0.50	8828011

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

Site Location: RESOLUTE BAY LANDFILL

Sampler Initials: KC

ELEMENTS BY ATOMIC SPECTROSCOPY (WATER)

Bureau Veritas ID		WNL680			
Sampling Date		2023/07/24			
Sampling Date		11:55			
COC Number		n/a			
	UNITS	RBL-DUPC Lab-Dup	RDL	MDL	QC Batch
Total Uranium (U)	ug/L	0.20	0.10	0.050	8828011
Total Uranium (U) Total Vanadium (V)	ug/L ug/L	0.20 <0.50	0.10	0.050	8828011 8828011
. ,	<u> </u>	0.00			

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

Report Date: 2023/09/01

BluMetric Environmental Inc Client Project #: 230427

Site Location: RESOLUTE BAY LANDFILL

Sampler Initials: KC

TEST SUMMARY

Bureau Veritas ID: WNL671 Sample ID: RBL-2

Collected:

2023/07/23

Shipped: Matrix: Water **Received:** 2023/07/27

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Alkalinity	AT	8824109	N/A	2023/08/01	Yogesh Patel
Carbonate, Bicarbonate and Hydroxide	CALC	8822389	N/A	2023/08/02	Automated Statchk
Chloride by Automated Colourimetry	KONE	8823994	N/A	2023/08/02	Massarat Jan
Conductivity	AT	8824108	N/A	2023/08/01	Yogesh Patel
Chromium (VI) in Water	IC	8825340	N/A	2023/08/03	Theodora Luck
Petroleum Hydro. CCME F1 & BTEX in Water	HSGC/MSFD	8833426	N/A	2023/08/05	Lincoln Ramdahin
Petroleum Hydrocarbons F2-F4 in Water	GC/FID	8833643	2023/08/04	2023/08/04	Dennis Ngondu
Hardness (calculated as CaCO3)		8822385	N/A	2023/08/04	Automated Statchk
Mercury in Water by CVAA	CV/AA	8827927	2023/08/02	2023/08/02	Jaswinder Kaur
Lab Filtered Metals by ICPMS	ICP/MS	8843927	2023/08/10	2023/08/11	Prempal Bhatti
Total Metals Analysis by ICPMS	ICP/MS	8828011	2023/08/02	2023/08/02	Thuy Linh Nguyen
Ion Balance (% Difference)	CALC	8822382	N/A	2023/08/11	Automated Statchk
Anion and Cation Sum	CALC	8822383	N/A	2023/08/11	Automated Statchk
B[a]P Total Potency Equivalent	GC/MS	8841752	N/A	2023/08/06	Automated Statchk
PAH in Water by GC/MS	GC/MS	8837189	2023/08/05	2023/08/06	Shuang (Jessica) Chen
Phenols (4-AAP)	TECH/PHEN	8841753	N/A	2023/08/08	Taylor Mullings
Total Ammonia-N	LACH/NH4	8828243	N/A	2023/08/03	Prabhjot Kaur
Nitrate & Nitrite as Nitrogen in Water	LACH	8823978	N/A	2023/08/01	Chandra Nandlal
Total Oil and Grease	BAL	8836996	2023/08/06	2023/08/06	Navneet Singh
рН	AT	8824099	2023/07/31	2023/08/01	Yogesh Patel
Sulphate by Automated Turbidimetry	KONE	8823998	N/A	2023/08/02	Massarat Jan
Total Phosphorus (Colourimetric)	SKAL/P	8826856	2023/08/01	2023/08/03	Muskan
Mineral/Synthetic O & G (TPH Heavy Oil)	BAL	8837000	2023/08/06	2023/08/06	Navneet Singh
Total Suspended Solids	BAL	8824642	2023/08/01	2023/08/02	Shaneil Hall

Bureau Veritas ID: WNL671 Dup

Sample ID: RBL-2 Matrix: Water Collected: Shipped:

2023/07/23 Received: 2023/07/27

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Chromium (VI) in Water	IC	8825340	N/A	2023/08/03	Theodora Luck

Bureau Veritas ID: WNL672

Sample ID: RBL-3

Matrix: Water

Collected: 2023/07/23 Shipped:

Received: 2023/07/27

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Alkalinity	AT	8824109	N/A	2023/08/01	Yogesh Patel
Carbonate, Bicarbonate and Hydroxide	CALC	8822389	N/A	2023/08/02	Automated Statchk
Chloride by Automated Colourimetry	KONE	8823994	N/A	2023/08/02	Massarat Jan
Conductivity	AT	8824108	N/A	2023/08/01	Yogesh Patel
Chromium (VI) in Water	IC	8825340	N/A	2023/08/03	Theodora Luck
Petroleum Hydro. CCME F1 & BTEX in Water	HSGC/MSFD	8833426	N/A	2023/08/05	Lincoln Ramdahin
Petroleum Hydrocarbons F2-F4 in Water	GC/FID	8833643	2023/08/04	2023/08/04	Dennis Ngondu
Hardness (calculated as CaCO3)		8822385	N/A	2023/08/04	Automated Statchk

Report Date: 2023/09/01

BluMetric Environmental Inc Client Project #: 230427

Site Location: RESOLUTE BAY LANDFILL

Sampler Initials: KC

TEST SUMMARY

Bureau Veritas ID: WNL672 Sample ID: RBL-3

Collected:

2023/07/23

Matrix: Water

Shipped:

Received: 2023/07/27

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Mercury in Water by CVAA	CV/AA	8825734	2023/08/01	2023/08/02	Jaswinder Kaur
Lab Filtered Metals by ICPMS	ICP/MS	8843927	2023/08/10	2023/08/11	Prempal Bhatti
Total Metals Analysis by ICPMS	ICP/MS	8828011	2023/08/02	2023/08/02	Thuy Linh Nguyen
Ion Balance (% Difference)	CALC	8822382	N/A	2023/08/11	Automated Statchk
Anion and Cation Sum	CALC	8822383	N/A	2023/08/11	Automated Statchk
B[a]P Total Potency Equivalent	GC/MS	8841752	N/A	2023/08/06	Automated Statchk
PAH in Water by GC/MS	GC/MS	8837189	2023/08/05	2023/08/06	Shuang (Jessica) Chen
Phenols (4-AAP)	TECH/PHEN	8841753	N/A	2023/08/08	Taylor Mullings
Total Ammonia-N	LACH/NH4	8828243	N/A	2023/08/03	Prabhjot Kaur
Nitrate & Nitrite as Nitrogen in Water	LACH	8824309	N/A	2023/08/01	Chandra Nandlal
Total Oil and Grease	BAL	8836996	2023/08/06	2023/08/06	Navneet Singh
pH	AT	8824099	2023/07/31	2023/08/01	Yogesh Patel
Sulphate by Automated Turbidimetry	KONE	8823998	N/A	2023/08/02	Massarat Jan
Total Phosphorus (Colourimetric)	SKAL/P	8826856	2023/08/01	2023/08/03	Muskan
Mineral/Synthetic O & G (TPH Heavy Oil)	BAL	8837000	2023/08/06	2023/08/06	Navneet Singh
Total Suspended Solids	BAL	8827102	2023/08/01	2023/08/02	Shaneil Hall

Bureau Veritas ID: WNL672 Dup

RBL-3

Sample ID: Water Matrix:

Collected: Shipped:

Received:

2023/07/23

2023/07/23

2023/07/27

2023/07/27 Received:

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Petroleum Hydrocarbons F2-F4 in Water	GC/FID	8833643	2023/08/04	2023/08/04	Dennis Ngondu

Bureau Veritas ID: WNL673 Sample ID: Matrix:

AEC1-GW1 Water

Collected: Shipped:

Test Description Instrumentation Batch **Extracted Date Analyzed** Analyst Alkalinity ΑT 8824319 N/A 2023/08/01 Yogesh Patel Carbonate, Bicarbonate and Hydroxide CALC 8822389 N/A 2023/08/02 **Automated Statchk** KONE Chloride by Automated Colourimetry 8823994 N/A 2023/08/02 Massarat Jan Conductivity ΑТ 8824320 N/A 2023/08/01 Yogesh Patel Chromium (VI) in Water IC N/A 2023/08/03 Theodora Luck 8825340 Petroleum Hydro. CCME F1 & BTEX in Water HSGC/MSFD N/A 2023/08/05 Lincoln Ramdahin 8833426 Petroleum Hydrocarbons F2-F4 in Water GC/FID 8833643 2023/08/04 2023/08/04 Dennis Ngondu Hardness (calculated as CaCO3) 8822385 N/A 2023/08/04 **Automated Statchk** 2023/08/10 ICP/MS Lab Filtered Metals by ICPMS 8843927 2023/08/11 Prempal Bhatti 2023/08/02 Total Metals Analysis by ICPMS ICP/MS 8828011 2023/08/02 Thuy Linh Nguyen Ion Balance (% Difference) CALC 8822382 N/A 2023/08/11 Automated Statchk Anion and Cation Sum CALC N/A 2023/08/11 8822383 Automated Statchk B[a]P Total Potency Equivalent GC/MS 8841752 N/A 2023/08/09 **Automated Statchk** PAH in Water by GC/MS GC/MS 2023/08/08 8837189 2023/08/08 Shuang (Jessica) Chen Phenols (4-AAP) TECH/PHEN 8841754 N/A 2023/08/08 **Taylor Mullings** Total Ammonia-N LACH/NH4 8828243 N/A 2023/08/03 Prabhjot Kaur

Site Location: RESOLUTE BAY LANDFILL

Sampler Initials: KC

TEST SUMMARY

Bureau Veritas ID: WNL673

Sample ID: AEC1-GW1 Matrix: Water

Collected: 2023/07/23

Shipped:

Received: 2023/07/27

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Nitrate & Nitrite as Nitrogen in Water	LACH	8824309	N/A	2023/08/01	Chandra Nandlal
Total Oil and Grease	BAL	8836996	2023/08/06	2023/08/06	Navneet Singh
pH	AT	8824318	2023/07/31	2023/08/01	Yogesh Patel
Sulphate by Automated Turbidimetry	KONE	8823998	N/A	2023/08/02	Massarat Jan
Total Phosphorus (Colourimetric)	SKAL/P	8826856	2023/08/01	2023/08/03	Muskan
Mineral/Synthetic O & G (TPH Heavy Oil)	BAL	8837000	2023/08/06	2023/08/06	Navneet Singh
Total Suspended Solids	BAL	8824642	2023/08/01	2023/08/02	Shaneil Hall

Bureau Veritas ID: WNL674 Sample ID: RBL-4

Matrix: Water

Collected:

2023/07/24

Shipped: Received: 2023/07/27

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Alkalinity	AT	8824319	N/A	2023/08/01	Yogesh Patel
Carbonate, Bicarbonate and Hydroxide	CALC	8822389	N/A	2023/08/02	Automated Statchk
Chloride by Automated Colourimetry	KONE	8823994	N/A	2023/08/02	Massarat Jan
Conductivity	AT	8824320	N/A	2023/08/01	Yogesh Patel
Chromium (VI) in Water	IC	8825340	N/A	2023/08/03	Theodora Luck
Petroleum Hydro. CCME F1 & BTEX in Water	HSGC/MSFD	8833426	N/A	2023/08/05	Lincoln Ramdahin
Petroleum Hydrocarbons F2-F4 in Water	GC/FID	8833643	2023/08/04	2023/08/04	Dennis Ngondu
Hardness (calculated as CaCO3)		8822385	N/A	2023/08/04	Automated Statchk
Mercury in Water by CVAA	CV/AA	8825734	2023/08/01	2023/08/02	Jaswinder Kaur
Mercury (low level)	CV/AA	8887279	2023/08/30	2023/08/30	Gagandeep Rai
Lab Filtered Metals by ICPMS	ICP/MS	8843927	2023/08/10	2023/08/11	Prempal Bhatti
Low Level Total Metals in Water by ICPMS	ICP1/MS	8888725	2023/08/31	2023/08/31	Thuy Linh Nguyen
Total Metals Analysis by ICPMS	ICP/MS	8828011	2023/08/02	2023/08/02	Thuy Linh Nguyen
Ion Balance (% Difference)	CALC	8822382	N/A	2023/08/11	Automated Statchk
Anion and Cation Sum	CALC	8822383	N/A	2023/08/11	Automated Statchk
B[a]P Total Potency Equivalent	GC/MS	8841752	N/A	2023/08/06	Automated Statchk
PAH in Water by GC/MS	GC/MS	8837189	2023/08/05	2023/08/06	Shuang (Jessica) Chen
Phenols (4-AAP)	TECH/PHEN	8841753	N/A	2023/08/08	Taylor Mullings
Total Ammonia-N	LACH/NH4	8828243	N/A	2023/08/03	Prabhjot Kaur
Nitrate & Nitrite as Nitrogen in Water	LACH	8824309	N/A	2023/08/01	Chandra Nandlal
Total Oil and Grease	BAL	8836996	2023/08/06	2023/08/06	Navneet Singh
рН	AT	8824318	2023/07/31	2023/08/01	Yogesh Patel
Sulphate by Automated Turbidimetry	KONE	8823998	N/A	2023/08/02	Massarat Jan
Total Phosphorus (Colourimetric)	SKAL/P	8826856	2023/08/01	2023/08/03	Muskan
Mineral/Synthetic O & G (TPH Heavy Oil)	BAL	8837000	2023/08/06	2023/08/06	Navneet Singh
Total Suspended Solids	BAL	8824642	2023/08/01	2023/08/02	Shaneil Hall

Site Location: RESOLUTE BAY LANDFILL

Sampler Initials: KC

TEST SUMMARY

Bureau Veritas ID: WNL674 Dup

Sample ID: RBL-4 Matrix: Water **Collected:** 2023/07/24

Shipped:

Received: 2023/07/27

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Low Level Total Metals in Water by ICPMS	ICP1/MS	8888725	2023/08/31	2023/08/31	Thuy Linh Nguyen

Bureau Veritas ID: WNL675

Sample ID: RBL-8 Matrix: Water **Collected:** 2023/07/24

Shipped:

Received: 2023/07/27

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Alkalinity	AT	8824109	N/A	2023/08/01	Yogesh Patel
Carbonate, Bicarbonate and Hydroxide	CALC	8822389	N/A	2023/08/02	Automated Statchk
Chloride by Automated Colourimetry	KONE	8823994	N/A	2023/08/02	Massarat Jan
Conductivity	AT	8824108	N/A	2023/08/01	Yogesh Patel
Chromium (VI) in Water	IC	8825340	N/A	2023/08/03	Theodora Luck
Petroleum Hydro. CCME F1 & BTEX in Water	HSGC/MSFD	8833426	N/A	2023/08/05	Lincoln Ramdahin
Petroleum Hydrocarbons F2-F4 in Water	GC/FID	8833643	2023/08/04	2023/08/04	Dennis Ngondu
Hardness (calculated as CaCO3)		8822385	N/A	2023/08/04	Automated Statchk
Mercury in Water by CVAA	CV/AA	8827927	2023/08/02	2023/08/02	Jaswinder Kaur
Mercury (low level)	CV/AA	8887279	2023/08/30	2023/08/30	Gagandeep Rai
Lab Filtered Metals by ICPMS	ICP/MS	8843936	2023/08/10	2023/08/14	Arefa Dabhad
Low Level Total Metals in Water by ICPMS	ICP1/MS	8888725	2023/08/31	2023/08/31	Thuy Linh Nguyen
Total Metals Analysis by ICPMS	ICP/MS	8828011	2023/08/02	2023/08/02	Thuy Linh Nguyen
Ion Balance (% Difference)	CALC	8822382	N/A	2023/08/14	Automated Statchk
Anion and Cation Sum	CALC	8822383	N/A	2023/08/14	Automated Statchk
B[a]P Total Potency Equivalent	GC/MS	8841752	N/A	2023/08/06	Automated Statchk
PAH in Water by GC/MS	GC/MS	8837189	2023/08/05	2023/08/06	Shuang (Jessica) Chen
Phenols (4-AAP)	TECH/PHEN	8841753	N/A	2023/08/08	Taylor Mullings
Total Ammonia-N	LACH/NH4	8828243	N/A	2023/08/03	Prabhjot Kaur
Nitrate & Nitrite as Nitrogen in Water	LACH	8824309	N/A	2023/08/01	Chandra Nandlal
Total Oil and Grease	BAL	8836996	2023/08/06	2023/08/06	Navneet Singh
рН	AT	8824099	2023/07/31	2023/08/01	Yogesh Patel
Sulphate by Automated Turbidimetry	KONE	8823998	N/A	2023/08/02	Massarat Jan
Total Phosphorus (Colourimetric)	SKAL/P	8826856	2023/08/01	2023/08/03	Muskan
Mineral/Synthetic O & G (TPH Heavy Oil)	BAL	8837000	2023/08/06	2023/08/06	Navneet Singh
Total Suspended Solids	BAL	8827102	2023/08/01	2023/08/02	Shaneil Hall

Bureau Veritas ID: WNL675 Dup Sample ID: RBL-8

Matrix: Water

Shipped: Received:

Received: 2023/07/27

2023/07/24

Collected:

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Lab Filtered Metals by ICPMS	ICP/MS	8843936	2023/08/10	2023/08/14	Arefa Dabhad

Site Location: RESOLUTE BAY LANDFILL

Sampler Initials: KC

TEST SUMMARY

Bureau Veritas ID: WNL676 Sample ID: RBL-13 Matrix: Water

Collected: 2023/07/24

Shipped:

Received: 2023/07/27

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Alkalinity	AT	8824319	N/A	2023/08/01	Yogesh Patel
Carbonate, Bicarbonate and Hydroxide	CALC	8822389	N/A	2023/08/02	Automated Statchk
Chloride by Automated Colourimetry	KONE	8823994	N/A	2023/08/02	Massarat Jan
Conductivity	AT	8824320	N/A	2023/08/01	Yogesh Patel
Chromium (VI) in Water	IC	8825340	N/A	2023/08/03	Theodora Luck
Petroleum Hydro. CCME F1 & BTEX in Water	HSGC/MSFD	8833426	N/A	2023/08/05	Lincoln Ramdahin
Petroleum Hydrocarbons F2-F4 in Water	GC/FID	8833643	2023/08/04	2023/08/04	Dennis Ngondu
Hardness (calculated as CaCO3)		8822385	N/A	2023/08/04	Automated Statchk
Mercury in Water by CVAA	CV/AA	8825734	2023/08/01	2023/08/02	Jaswinder Kaur
Mercury (low level)	CV/AA	8887279	2023/08/30	2023/08/30	Gagandeep Rai
Lab Filtered Metals by ICPMS	ICP/MS	8843927	2023/08/10	2023/08/11	Prempal Bhatti
Low Level Total Metals in Water by ICPMS	ICP1/MS	8888725	2023/08/31	2023/08/31	Thuy Linh Nguyen
Total Metals Analysis by ICPMS	ICP/MS	8828011	2023/08/02	2023/08/02	Thuy Linh Nguyen
Ion Balance (% Difference)	CALC	8822382	N/A	2023/08/11	Automated Statchk
Anion and Cation Sum	CALC	8822383	N/A	2023/08/11	Automated Statchk
B[a]P Total Potency Equivalent	GC/MS	8841752	N/A	2023/08/06	Automated Statchk
PAH in Water by GC/MS	GC/MS	8837189	2023/08/05	2023/08/06	Shuang (Jessica) Chen
Phenols (4-AAP)	TECH/PHEN	8841754	N/A	2023/08/08	Taylor Mullings
Total Ammonia-N	LACH/NH4	8828243	N/A	2023/08/03	Prabhjot Kaur
Nitrate & Nitrite as Nitrogen in Water	LACH	8824309	N/A	2023/08/01	Chandra Nandlal
Total Oil and Grease	BAL	8836996	2023/08/06	2023/08/06	Navneet Singh
рН	AT	8824318	2023/07/31	2023/08/01	Yogesh Patel
Sulphate by Automated Turbidimetry	KONE	8823998	N/A	2023/08/02	Massarat Jan
Total Phosphorus (Colourimetric)	SKAL/P	8826856	2023/08/01	2023/08/03	Muskan
Mineral/Synthetic O & G (TPH Heavy Oil)	BAL	8837000	2023/08/06	2023/08/06	Navneet Singh
Total Suspended Solids	BAL	8824642	2023/08/01	2023/08/02	Shaneil Hall

Bureau Veritas ID: WNL677 Sample ID: RBL-16

Matrix: Water

Collected: 2023/07/24 **Shipped:**

Received: 2023/07/27

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Alkalinity	AT	8824109	N/A	2023/08/01	Yogesh Patel
Carbonate, Bicarbonate and Hydroxide	CALC	8822389	N/A	2023/08/02	Automated Statchk
Chloride by Automated Colourimetry	KONE	8823994	N/A	2023/08/02	Massarat Jan
Conductivity	AT	8824108	N/A	2023/08/01	Yogesh Patel
Chromium (VI) in Water	IC	8825340	N/A	2023/08/03	Theodora Luck
Petroleum Hydro. CCME F1 & BTEX in Water	HSGC/MSFD	8833432	N/A	2023/08/06	Haibin Wu
Petroleum Hydrocarbons F2-F4 in Water	GC/FID	8833643	2023/08/04	2023/08/04	Dennis Ngondu
Hardness (calculated as CaCO3)		8822385	N/A	2023/08/04	Automated Statchk
Mercury in Water by CVAA	CV/AA	8825734	2023/08/01	2023/08/02	Jaswinder Kaur
Mercury (low level)	CV/AA	8887279	2023/08/30	2023/08/30	Gagandeep Rai
Lab Filtered Metals by ICPMS	ICP/MS	8843927	2023/08/10	2023/08/11	Prempal Bhatti
Low Level Total Metals in Water by ICPMS	ICP1/MS	8888725	2023/08/31	2023/08/31	Thuy Linh Nguyen
Total Metals Analysis by ICPMS	ICP/MS	8828011	2023/08/02	2023/08/02	Thuy Linh Nguyen

Site Location: RESOLUTE BAY LANDFILL

Sampler Initials: KC

TEST SUMMARY

Bureau Veritas ID: WNL677 Sample ID: RBL-16 Matrix: Water **Collected:** 2023/07/24

Shipped:

Received: 2023/07/27

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Ion Balance (% Difference)	CALC	8822382	N/A	2023/08/11	Automated Statchk
Anion and Cation Sum	CALC	8822383	N/A	2023/08/11	Automated Statchk
B[a]P Total Potency Equivalent	GC/MS	8841752	N/A	2023/08/06	Automated Statchk
PAH in Water by GC/MS	GC/MS	8837189	2023/08/05	2023/08/06	Shuang (Jessica) Chen
Phenols (4-AAP)	TECH/PHEN	8841754	N/A	2023/08/08	Taylor Mullings
Total Ammonia-N	LACH/NH4	8828243	N/A	2023/08/03	Prabhjot Kaur
Nitrate & Nitrite as Nitrogen in Water	LACH	8824309	N/A	2023/08/01	Chandra Nandlal
Total Oil and Grease	BAL	8836996	2023/08/06	2023/08/06	Navneet Singh
рН	AT	8824099	2023/07/31	2023/08/01	Yogesh Patel
Sulphate by Automated Turbidimetry	KONE	8823998	N/A	2023/08/02	Massarat Jan
Total Phosphorus (Colourimetric)	SKAL/P	8826856	2023/08/01	2023/08/03	Muskan
Mineral/Synthetic O & G (TPH Heavy Oil)	BAL	8837000	2023/08/06	2023/08/06	Navneet Singh
Total Suspended Solids	BAL	8824642	2023/08/01	2023/08/02	Shaneil Hall

Bureau Veritas ID: WNL678
Sample ID: RBL-DUPA
Matrix: Water

Collected: 2023/07/23

Shipped:

Received: 2023/07/27

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Alkalinity	AT	8824109	N/A	2023/08/01	Yogesh Patel
Carbonate, Bicarbonate and Hydroxide	CALC	8822389	N/A	2023/08/02	Automated Statchk
Chloride by Automated Colourimetry	KONE	8823994	N/A	2023/08/02	Massarat Jan
Conductivity	AT	8824108	N/A	2023/08/01	Yogesh Patel
Chromium (VI) in Water	IC	8825340	N/A	2023/08/03	Theodora Luck
Petroleum Hydro. CCME F1 & BTEX in Water	HSGC/MSFD	8833426	N/A	2023/08/05	Lincoln Ramdahin
Petroleum Hydrocarbons F2-F4 in Water	GC/FID	8833643	2023/08/04	2023/08/04	Dennis Ngondu
Hardness (calculated as CaCO3)		8822385	N/A	2023/08/04	Automated Statchk
Mercury in Water by CVAA	CV/AA	8827927	2023/08/01	2023/08/02	Jaswinder Kaur
Lab Filtered Metals by ICPMS	ICP/MS	8843936	2023/08/10	2023/08/14	Arefa Dabhad
Total Metals Analysis by ICPMS	ICP/MS	8828011	2023/08/02	2023/08/02	Thuy Linh Nguyen
Ion Balance (% Difference)	CALC	8822382	N/A	2023/08/14	Automated Statchk
Anion and Cation Sum	CALC	8822383	N/A	2023/08/14	Automated Statchk
B[a]P Total Potency Equivalent	GC/MS	8841752	N/A	2023/08/06	Automated Statchk
PAH in Water by GC/MS	GC/MS	8837189	2023/08/05	2023/08/06	Shuang (Jessica) Chen
Phenols (4-AAP)	TECH/PHEN	8841753	N/A	2023/08/08	Taylor Mullings
Total Ammonia-N	LACH/NH4	8828243	N/A	2023/08/03	Prabhjot Kaur
Nitrate & Nitrite as Nitrogen in Water	LACH	8824309	N/A	2023/08/01	Chandra Nandlal
Total Oil and Grease	BAL	8836996	2023/08/06	2023/08/06	Navneet Singh
рН	AT	8824099	2023/07/31	2023/08/01	Yogesh Patel
Sulphate by Automated Turbidimetry	KONE	8823998	N/A	2023/08/02	Massarat Jan
Total Phosphorus (Colourimetric)	SKAL/P	8826856	2023/08/01	2023/08/03	Muskan
Mineral/Synthetic O & G (TPH Heavy Oil)	BAL	8837000	2023/08/06	2023/08/06	Navneet Singh
Total Suspended Solids	BAL	8824642	2023/08/01	2023/08/02	Shaneil Hall

Site Location: RESOLUTE BAY LANDFILL

Sampler Initials: KC

TEST SUMMARY

Bureau Veritas ID: WNL678 Dup

Sample ID: RBL-DUPA

Matrix: Water

Collected: 2023/07/23

Shipped:

Received: 2023/07/27

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Nitrate & Nitrite as Nitrogen in Water	LACH	8824309	N/A	2023/08/01	Chandra Nandlal

Bureau Veritas ID: WNL679 Sample ID:

RBL-DUPB Matrix: Water

Collected: 2023/07/24 Shipped:

Received: 2023/07/27

est Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Alkalinity	AT	8824109	N/A	2023/08/01	Yogesh Patel
Carbonate, Bicarbonate and Hydroxide	CALC	8822389	N/A	2023/08/02	Automated Statchk
Chloride by Automated Colourimetry	KONE	8823994	N/A	2023/08/02	Massarat Jan
Conductivity	AT	8824108	N/A	2023/08/01	Yogesh Patel
Chromium (VI) in Water	IC	8825340	N/A	2023/08/03	Theodora Luck
Petroleum Hydro. CCME F1 & BTEX in Water	HSGC/MSFD	8833426	N/A	2023/08/05	Lincoln Ramdahin
Petroleum Hydrocarbons F2-F4 in Water	GC/FID	8833643	2023/08/04	2023/08/04	Dennis Ngondu
Hardness (calculated as CaCO3)		8822385	N/A	2023/08/04	Automated Statchk
Mercury in Water by CVAA	CV/AA	8825734	2023/08/01	2023/08/02	Jaswinder Kaur
ab Filtered Metals by ICPMS	ICP/MS	8843927	2023/08/10	2023/08/11	Prempal Bhatti
otal Metals Analysis by ICPMS	ICP/MS	8828011	2023/08/02	2023/08/02	Thuy Linh Nguyen
on Balance (% Difference)	CALC	8822382	N/A	2023/08/11	Automated Statchk
Anion and Cation Sum	CALC	8822383	N/A	2023/08/11	Automated Statchk
B[a]P Total Potency Equivalent	GC/MS	8841752	N/A	2023/08/06	Automated Statchk
PAH in Water by GC/MS	GC/MS	8837189	2023/08/05	2023/08/06	Shuang (Jessica) Chen
Phenols (4-AAP)	TECH/PHEN	8841754	N/A	2023/08/08	Taylor Mullings
otal Ammonia-N	LACH/NH4	8828243	N/A	2023/08/03	Prabhjot Kaur
litrate & Nitrite as Nitrogen in Water	LACH	8823978	N/A	2023/08/01	Chandra Nandlal
otal Oil and Grease	BAL	8836996	2023/08/06	2023/08/06	Navneet Singh
ρΗ	AT	8824099	2023/07/31	2023/08/01	Yogesh Patel
sulphate by Automated Turbidimetry	KONE	8823998	N/A	2023/08/02	Massarat Jan
otal Phosphorus (Colourimetric)	SKAL/P	8826856	2023/08/01	2023/08/03	Muskan
Mineral/Synthetic O & G (TPH Heavy Oil)	BAL	8837000	2023/08/06	2023/08/06	Navneet Singh
otal Suspended Solids	BAL	8824642	2023/08/01	2023/08/02	Shaneil Hall

Bureau Veritas ID: WNL680 Sample ID: RBL-DUPC

Matrix: Water

Collected: 2023/07/24

Shipped:

Received: 2023/07/27

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Alkalinity	AT	8824109	N/A	2023/08/01	Yogesh Patel
Carbonate, Bicarbonate and Hydroxide	CALC	8822389	N/A	2023/08/02	Automated Statchk
Chloride by Automated Colourimetry	KONE	8823994	N/A	2023/08/02	Massarat Jan
Conductivity	AT	8824108	N/A	2023/08/01	Yogesh Patel
Chromium (VI) in Water	IC	8825340	N/A	2023/08/03	Theodora Luck
Petroleum Hydro. CCME F1 & BTEX in Water	HSGC/MSFD	8833426	N/A	2023/08/05	Lincoln Ramdahin
Petroleum Hydrocarbons F2-F4 in Water	GC/FID	8833643	2023/08/04	2023/08/04	Dennis Ngondu
Hardness (calculated as CaCO3)		8822385	N/A	2023/08/04	Automated Statchk

Report Date: 2023/09/01

BluMetric Environmental Inc Client Project #: 230427

Site Location: RESOLUTE BAY LANDFILL

Sampler Initials: KC

TEST SUMMARY

Bureau Veritas ID: WNL680

Sample ID: RBL-DUPC Matrix: Water

Collected: 2023/07/24

Shipped:

Received: 2023/07/27

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Mercury in Water by CVAA	CV/AA	8827927	2023/08/01	2023/08/02	Jaswinder Kaur
Mercury (low level)	CV/AA	8887279	2023/08/30	2023/08/30	Gagandeep Rai
Lab Filtered Metals by ICPMS	ICP/MS	8843927	2023/08/10	2023/08/11	Prempal Bhatti
Low Level Total Metals in Water by ICPMS	ICP1/MS	8888725	2023/08/31	2023/08/31	Thuy Linh Nguyen
Total Metals Analysis by ICPMS	ICP/MS	8828011	2023/08/02	2023/08/02	Thuy Linh Nguyen
Ion Balance (% Difference)	CALC	8822382	N/A	2023/08/11	Automated Statchk
Anion and Cation Sum	CALC	8822383	N/A	2023/08/11	Automated Statchk
B[a]P Total Potency Equivalent	GC/MS	8841752	N/A	2023/08/06	Automated Statchk
PAH in Water by GC/MS	GC/MS	8837189	2023/08/05	2023/08/06	Shuang (Jessica) Chen
Phenols (4-AAP)	TECH/PHEN	8841753	N/A	2023/08/08	Taylor Mullings
Total Ammonia-N	LACH/NH4	8828243	N/A	2023/08/03	Prabhjot Kaur
Nitrate & Nitrite as Nitrogen in Water	LACH	8823978	N/A	2023/08/01	Chandra Nandlal
Total Oil and Grease	BAL	8836996	2023/08/06	2023/08/06	Navneet Singh
рН	AT	8824099	2023/07/31	2023/08/01	Yogesh Patel
Sulphate by Automated Turbidimetry	KONE	8823998	N/A	2023/08/02	Massarat Jan
Total Phosphorus (Colourimetric)	SKAL/P	8826856	2023/08/01	2023/08/03	Muskan
Mineral/Synthetic O & G (TPH Heavy Oil)	BAL	8837000	2023/08/06	2023/08/06	Navneet Singh
Total Suspended Solids	BAL	8824642	2023/08/01	2023/08/02	Shaneil Hall

Bureau Veritas ID: WNL680 Dup

Sample ID: RBL-DUPC

Matrix: Water

Collected: 2023/07/24 Shipped:

Received: 2023/07/27

Test Description	Instrumentation	umentation Batch Extracted		Date Analyzed	Analyst
Total Metals Analysis by ICPMS	ICP/MS	8828011	2023/08/02	2023/08/02	Thuy Linh Nguyen
PAH in Water by GC/MS	GC/MS	8837189	2023/08/05	2023/08/06	Shuang (Jessica) Chen

Bureau Veritas ID: WNL681

Sample ID: FEILD BLANK 1

Matrix: Water

Collected: 2023/07/23

Shipped:

Received: 2023/07/27

Test Description	Instrumentation Batch		Extracted	Date Analyzed	Analyst
Petroleum Hydro. CCME F1 & BTEX in Water	HSGC/MSFD	8833426	N/A	2023/08/04	Lincoln Ramdahin
Petroleum Hydrocarbons F2-F4 in Water	GC/FID	8833643	2023/08/04	2023/08/04	Dennis Ngondu
B[a]P Total Potency Equivalent	GC/MS	8841752	N/A	2023/08/06	Automated Statchk
PAH in Water by GC/MS	GC/MS	8837189	2023/08/05	2023/08/06	Shuang (Jessica) Chen

Bureau Veritas ID: WNL682

Sample ID: TRIP BLANK 1

Matrix: Water

Collected: 2023/07/23 Shipped:

Received: 2023/07/27

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Petroleum Hydro. CCME F1 & BTEX in Water	HSGC/MSFD	8833426	N/A	2023/08/04	Lincoln Ramdahin
Petroleum Hydrocarbons F2-F4 in Water	GC/FID	8833643	2023/08/04	2023/08/04	Dennis Ngondu

Bureau Veritas Job #: C3M6596 Report Date: 2023/09/01

BluMetric Environmental Inc Client Project #: 230427

Site Location: RESOLUTE BAY LANDFILL

Sampler Initials: KC

TEST SUMMARY

Bureau Veritas ID: WNL683

Collected: 2023/07/24

Sample ID: FEILD BLANK 2 Matrix: Water

Shipped: Received: 2023/07/27

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Petroleum Hydro. CCME F1 & BTEX in Water	HSGC/MSFD	8833426	N/A	2023/08/04	Lincoln Ramdahin
Petroleum Hydrocarbons F2-F4 in Water	GC/FID	8833643	2023/08/04	2023/08/04	Dennis Ngondu
B[a]P Total Potency Equivalent	GC/MS	8841752	N/A	2023/08/06	Automated Statchk
PAH in Water by GC/MS	GC/MS	8837189	2023/08/05	2023/08/06	Shuang (Jessica) Chen

Site Location: RESOLUTE BAY LANDFILL

Sampler Initials: KC

GENERAL COMMENTS

Each temperature is the average of up to three cooler temperatures taken at receipt

Package 1	19.0°C
Package 2	19.0°C
Package 3	18.7°C
Package 4	18.0°C

Revised report (2023/08/31): Includes Se and Hg run by low level methods.

Sample WNL671 [RBL-2]: Nitrite/Nitrate: Due to colour interferences, sample required dilution. Detection limits were adjusted accordingly.

Sample WNL673 [AEC1-GW1]: Sample was analyzed past method specified hold time for PAH in Water by GC/MS due to required re-extraction. Exceedance of hold time increases the uncertainty of test results but does not necessarily imply that results are compromised.

Results relate only to the items tested.

Bureau Veritas Job #: C3M6596 Report Date: 2023/09/01

QUALITY ASSURANCE REPORT

BluMetric Environmental Inc Client Project #: 230427

Site Location: RESOLUTE BAY LANDFILL

			Matrix	Spike	SPIKED	BLANK	Method	Blank	RPD		QC Standard	
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits	% Recovery	QC Limits
8833426	1,4-Difluorobenzene	2023/08/04	88	70 - 130	89	70 - 130	91	%				
8833426	4-Bromofluorobenzene	2023/08/04	108	70 - 130	108	70 - 130	103	%				
8833426	D10-o-Xylene	2023/08/04	85	70 - 130	88	70 - 130	91	%				
8833426	D4-1,2-Dichloroethane	2023/08/04	98	70 - 130	96	70 - 130	93	%				
8833432	1,4-Difluorobenzene	2023/08/06	101	70 - 130	98	70 - 130	102	%				
8833432	4-Bromofluorobenzene	2023/08/06	101	70 - 130	99	70 - 130	83	%				
8833432	D10-o-Xylene	2023/08/06	97	70 - 130	94	70 - 130	87	%				
8833432	D4-1,2-Dichloroethane	2023/08/06	84	70 - 130	84	70 - 130	95	%				
8833643	o-Terphenyl	2023/08/04	100	60 - 130	97	60 - 130	92	%				
8837189	D10-Anthracene	2023/08/06	118	50 - 130	104	50 - 130	111	%				
8837189	D14-Terphenyl	2023/08/06	123	50 - 130	110	50 - 130	125	%				
8837189	D8-Acenaphthylene	2023/08/06	102	50 - 130	86	50 - 130	74	%				
8837189	D8-Naphthalene	2023/08/06	89	50 - 130	59	50 - 130	43 (1)	%				
8823978	Nitrate (N)	2023/08/01	100	80 - 120	101	80 - 120	<0.10	mg/L	1.1	20		
8823978	Nitrite (N)	2023/08/01	105	80 - 120	107	80 - 120	<0.010	mg/L	NC	20		
8823994	Dissolved Chloride (Cl-)	2023/08/02	NC	80 - 120	100	80 - 120	<1.0	mg/L	3.5	20		
8823998	Dissolved Sulphate (SO4)	2023/08/02	NC	75 - 125	104	80 - 120	<1.0	mg/L	0.82	20		
8824099	рН	2023/08/01			102	98 - 103			0.028	N/A		
8824108	Conductivity	2023/08/01			99	85 - 115	<1.0	umho/c m	0.83	10		
8824109	Alkalinity (Total as CaCO3)	2023/08/01			96	85 - 115	<1.0	mg/L	1.1	20		
8824309	Nitrate (N)	2023/08/01	102	80 - 120	101	80 - 120	<0.10	mg/L	NC	20		
8824309	Nitrite (N)	2023/08/01	106	80 - 120	106	80 - 120	<0.010	mg/L	NC	20		
8824318	рН	2023/08/01			102	98 - 103			1.2	N/A		
8824319	Alkalinity (Total as CaCO3)	2023/08/01			97	85 - 115	<1.0	mg/L	1.9	20		
8824320	Conductivity	2023/08/01			101	85 - 115	<1.0	umho/c m	0.25	10		
8824642	Total Suspended Solids	2023/08/02			96	85 - 115	<10	mg/L	3.4	20		
8825340	Chromium (VI)	2023/08/03	99	80 - 120	100	80 - 120	<0.50	ug/L	NC	20		
8825734	Mercury (Hg)	2023/08/02	101	75 - 125	103	80 - 120	<0.000026	mg/L	NC	20		
8826856	Total Phosphorus	2023/08/03	100	80 - 120	105	80 - 120	<0.004	mg/L	0.35	20	111	80 - 120
8827102	Total Suspended Solids	2023/08/02			99	85 - 115	<10	mg/L	9.5	20		

QUALITY ASSURANCE REPORT(CONT'D)

BluMetric Environmental Inc Client Project #: 230427

Site Location: RESOLUTE BAY LANDFILL

			Matrix	Spike	SPIKED	BLANK	Method E	Blank	RP	D	QC Sta	andard
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits	% Recovery	QC Limits
8827927	Mercury (Hg)	2023/08/02	102	75 - 125	103	80 - 120	<0.000026	mg/L	NC	20		
8828011	Total Aluminum (Al)	2023/08/02	102	80 - 120	101	80 - 120	<4.9	ug/L	2.0	20		
8828011	Total Antimony (Sb)	2023/08/02	108	80 - 120	105	80 - 120	<0.50	ug/L	NC	20		
8828011	Total Arsenic (As)	2023/08/02	99	80 - 120	99	80 - 120	<1.0	ug/L	NC	20		
8828011	Total Barium (Ba)	2023/08/02	101	80 - 120	99	80 - 120	<2.0	ug/L	4.1	20		
8828011	Total Beryllium (Be)	2023/08/02	95	80 - 120	94	80 - 120	<0.40	ug/L	NC	20		
8828011	Total Bismuth (Bi)	2023/08/02	96	80 - 120	99	80 - 120	<1.0	ug/L	NC	20		
8828011	Total Boron (B)	2023/08/02	96	80 - 120	96	80 - 120	<10	ug/L	1.1	20		
8828011	Total Cadmium (Cd)	2023/08/02	99	80 - 120	99	80 - 120	<0.090	ug/L	NC	20		
8828011	Total Calcium (Ca)	2023/08/02	NC	80 - 120	99	80 - 120	<200	ug/L	6.1	20		
8828011	Total Chromium (Cr)	2023/08/02	92	80 - 120	92	80 - 120	<5.0	ug/L	NC	20		
8828011	Total Cobalt (Co)	2023/08/02	99	80 - 120	96	80 - 120	<0.50	ug/L	NC	20		
8828011	Total Copper (Cu)	2023/08/02	100	80 - 120	96	80 - 120	<0.90	ug/L	NC	20		
8828011	Total Iron (Fe)	2023/08/02	99	80 - 120	96	80 - 120	<100	ug/L	NC	20		
8828011	Total Lead (Pb)	2023/08/02	100	80 - 120	100	80 - 120	<0.50	ug/L	NC	20		
8828011	Total Lithium (Li)	2023/08/02	92	80 - 120	95	80 - 120	<5.0	ug/L	NC	20		
8828011	Total Magnesium (Mg)	2023/08/02	98	80 - 120	100	80 - 120	<50	ug/L	1.3	20		
8828011	Total Manganese (Mn)	2023/08/02	96	80 - 120	96	80 - 120	<2.0	ug/L	NC	20		
8828011	Total Molybdenum (Mo)	2023/08/02	99	80 - 120	97	80 - 120	<0.50	ug/L	NC	20		
8828011	Total Nickel (Ni)	2023/08/02	95	80 - 120	94	80 - 120	<1.0	ug/L	NC	20		
8828011	Total Potassium (K)	2023/08/02	102	80 - 120	100	80 - 120	<200	ug/L	2.2	20		
8828011	Total Selenium (Se)	2023/08/02	105	80 - 120	103	80 - 120	<1.0	ug/L	NC	20		
8828011	Total Silicon (Si)	2023/08/02	100	80 - 120	97	80 - 120	<50	ug/L	3.4	20		
8828011	Total Silver (Ag)	2023/08/02	94	80 - 120	93	80 - 120	<0.090	ug/L	NC	20		
8828011	Total Sodium (Na)	2023/08/02	100	80 - 120	96	80 - 120	<100	ug/L	3.7	20		
8828011	Total Strontium (Sr)	2023/08/02	95	80 - 120	95	80 - 120	<1.0	ug/L	0.0064	20		
8828011	Total Tellurium (Te)	2023/08/02	106	80 - 120	102	80 - 120	<1.0	ug/L	NC	20		
8828011	Total Thallium (TI)	2023/08/02	97	80 - 120	98	80 - 120	<0.050	ug/L	NC	20		
8828011	Total Tin (Sn)	2023/08/02	103	80 - 120	101	80 - 120	<1.0	ug/L	NC	20		
8828011	Total Titanium (Ti)	2023/08/02	99	80 - 120	99	80 - 120	<5.0	ug/L	NC	20		
8828011	Total Tungsten (W)	2023/08/02	101	80 - 120	100	80 - 120	<1.0	ug/L	NC	20		
8828011	Total Uranium (U)	2023/08/02	100	80 - 120	98	80 - 120	<0.10	ug/L	1.5	20		

QUALITY ASSURANCE REPORT(CONT'D)

BluMetric Environmental Inc Client Project #: 230427

Site Location: RESOLUTE BAY LANDFILL

			Matrix	Matrix Spike		BLANK	Method E	Blank	RPD		QC Standard	
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits	% Recovery	QC Limits
8828011	Total Vanadium (V)	2023/08/02	95	80 - 120	93	80 - 120	<0.50	ug/L	NC	20		
8828011	Total Zinc (Zn)	2023/08/02	99	80 - 120	99	80 - 120	<5.0	ug/L	NC	20		
8828011	Total Zirconium (Zr)	2023/08/02	104	80 - 120	100	80 - 120	<1.0	ug/L	NC	20		
8828243	Total Ammonia-N	2023/08/03	97	75 - 125	102	80 - 120	<0.050	mg/L	0.038	20		
8833426	Benzene	2023/08/05	77	50 - 140	77	50 - 140	<0.20	ug/L	7.6	30		
8833426	Ethylbenzene	2023/08/05	83	50 - 140	85	50 - 140	<0.20	ug/L	NC	30		
8833426	F1 (C6-C10) - BTEX	2023/08/05					<25	ug/L	NC	30		
8833426	F1 (C6-C10)	2023/08/05	89	60 - 140	90	60 - 140	<25	ug/L	NC	30		
8833426	o-Xylene	2023/08/05	82	50 - 140	84	50 - 140	<0.20	ug/L	NC	30		
8833426	p+m-Xylene	2023/08/05	80	50 - 140	86	50 - 140	<0.40	ug/L	NC	30		
8833426	Toluene	2023/08/05	74	50 - 140	75	50 - 140	<0.20	ug/L	NC	30		
8833426	Total Xylenes	2023/08/05					<0.40	ug/L	NC	30		
8833432	Benzene	2023/08/08	NC	50 - 140	84	50 - 140	<0.20	ug/L	7.2	30		
8833432	Ethylbenzene	2023/08/08	109	50 - 140	96	50 - 140	<0.20	ug/L	5.3	30		
8833432	F1 (C6-C10) - BTEX	2023/08/08					<25	ug/L	NC	30		
8833432	F1 (C6-C10)	2023/08/08	112	60 - 140	93	60 - 140	<25	ug/L	0.79	30		
8833432	o-Xylene	2023/08/08	102	50 - 140	93	50 - 140	<0.20	ug/L	4.7	30		
8833432	p+m-Xylene	2023/08/08	100	50 - 140	87	50 - 140	<0.40	ug/L	6.8	30		
8833432	Toluene	2023/08/08	90	50 - 140	78	50 - 140	<0.20	ug/L	3.2	30		
8833432	Total Xylenes	2023/08/08					<0.40	ug/L	5.5	30		
8833643	F2 (C10-C16 Hydrocarbons)	2023/08/04	108	60 - 130	102	60 - 130	<100	ug/L	NC	30		
8833643	F3 (C16-C34 Hydrocarbons)	2023/08/04	109	60 - 130	106	60 - 130	<200	ug/L	NC	30		
8833643	F4 (C34-C50 Hydrocarbons)	2023/08/04	107	60 - 130	104	60 - 130	<200	ug/L	NC	30		
8836996	Total Oil & Grease	2023/08/06			99	85 - 115	<0.50	mg/L	0.51	25		
8837000	Total Oil & Grease Mineral/Synthetic	2023/08/06			97	85 - 115	<0.50	mg/L	0.52	25		
8837189	1-Methylnaphthalene	2023/08/06	64	50 - 130	56	50 - 130	<0.10	ug/L	NC	30		
8837189	2-Methylnaphthalene	2023/08/06	79	50 - 130	69	50 - 130	<0.10	ug/L	NC	30		
8837189	Acenaphthene	2023/08/06	93	50 - 130	83	50 - 130	<0.10	ug/L	NC	30		
8837189	Acenaphthylene	2023/08/06	95	50 - 130	82	50 - 130	<0.10	ug/L	NC	30		<u></u>
8837189	Acridine	2023/08/06	98	50 - 130	84	50 - 130	<0.040	ug/L	NC	30		
8837189	Anthracene	2023/08/06	85	50 - 130	74	50 - 130	<0.010	ug/L	NC	30		
8837189	Benzo(a)anthracene	2023/08/06	119	50 - 130	99	50 - 130	<0.0085	ug/L	NC	30		<u> </u>

Bureau Veritas Job #: C3M6596 Report Date: 2023/09/01

QUALITY ASSURANCE REPORT(CONT'D)

BluMetric Environmental Inc Client Project #: 230427

Site Location: RESOLUTE BAY LANDFILL

			Matrix Spike		SPIKED BLANK		Method Blank		RPD		QC Standard	
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits	% Recovery	QC Limits
8837189	Benzo(a)pyrene	2023/08/06	128	50 - 130	110	50 - 130	<0.0075	ug/L	NC	30		
8837189	Benzo(b/j)fluoranthene	2023/08/06	121	50 - 130	103	50 - 130	<0.0085	ug/L	NC	30		
8837189	Benzo(c)phenanthrene	2023/08/06	123	50 - 130	104	50 - 130	<0.050	ug/L	NC	30		
8837189	Benzo(e)pyrene	2023/08/06	106	50 - 130	90	50 - 130	<0.050	ug/L	NC	30		
8837189	Benzo(g,h,i)perylene	2023/08/06	112	50 - 130	91	50 - 130	<0.0085	ug/L	NC	30		
8837189	Benzo(k)fluoranthene	2023/08/06	117	50 - 130	120	50 - 130	<0.0085	ug/L	NC	30		
8837189	Chrysene	2023/08/06	116	50 - 130	100	50 - 130	<0.0085	ug/L	NC	30		
8837189	Dibenzo(a,h)anthracene	2023/08/06	115	50 - 130	89	50 - 130	<0.0075	ug/L	NC	30		
8837189	Fluoranthene	2023/08/06	116	50 - 130	100	50 - 130	<0.010	ug/L	NC	30		
8837189	Fluorene	2023/08/06	103	50 - 130	89	50 - 130	<0.050	ug/L	NC	30		
8837189	Indeno(1,2,3-cd)pyrene	2023/08/06	119	50 - 130	92	50 - 130	<0.0085	ug/L	NC	30		
8837189	Naphthalene	2023/08/06	80	50 - 130	69	50 - 130	<0.10	ug/L	NC	30		
8837189	Perylene	2023/08/06	104	50 - 130	89	50 - 130	<0.050	ug/L	NC	30		
8837189	Phenanthrene	2023/08/06	115	50 - 130	101	50 - 130	<0.050	ug/L	NC	30		
8837189	Pyrene	2023/08/06	115	50 - 130	101	50 - 130	<0.020	ug/L	NC	30		
8837189	Quinoline	2023/08/06	79	50 - 130	79	50 - 130	<0.20	ug/L	NC	30		
8841753	Phenols-4AAP	2023/08/08	99	80 - 120	107	80 - 120	<0.0015	mg/L				
8841754	Phenols-4AAP	2023/08/08	99	80 - 120	108	80 - 120	<0.0015	mg/L				
8843927	Dissolved Aluminum (AI)	2023/08/11	105	80 - 120	99	80 - 120	<4.9	ug/L	NC	20		
8843927	Dissolved Antimony (Sb)	2023/08/11	111	80 - 120	103	80 - 120	<0.50	ug/L	15	20		
8843927	Dissolved Arsenic (As)	2023/08/11	106	80 - 120	100	80 - 120	<1.0	ug/L	0.24	20		
8843927	Dissolved Barium (Ba)	2023/08/11	104	80 - 120	98	80 - 120	<2.0	ug/L	2.6	20		
8843927	Dissolved Beryllium (Be)	2023/08/11	104	80 - 120	96	80 - 120	<0.40	ug/L	NC	20		
8843927	Dissolved Bismuth (Bi)	2023/08/11	103	80 - 120	95	80 - 120	<1.0	ug/L	NC	20		
8843927	Dissolved Boron (B)	2023/08/11	103	80 - 120	96	80 - 120	<10	ug/L	1.3	20		
8843927	Dissolved Cadmium (Cd)	2023/08/11	106	80 - 120	99	80 - 120	<0.090	ug/L	NC	20		
8843927	Dissolved Calcium (Ca)	2023/08/11	NC	80 - 120	101	80 - 120	<200	ug/L	2.0	20		
8843927	Dissolved Chromium (Cr)	2023/08/11	105	80 - 120	98	80 - 120	<5.0	ug/L	NC	20		
8843927	Dissolved Cobalt (Co)	2023/08/11	104	80 - 120	99	80 - 120	<0.50	ug/L	NC	20		
8843927	Dissolved Copper (Cu)	2023/08/11	105	80 - 120	98	80 - 120	<0.90	ug/L	0.35	20		
8843927	Dissolved Iron (Fe)	2023/08/11	107	80 - 120	101	80 - 120	<100	ug/L	NC	20		
8843927	Dissolved Lead (Pb)	2023/08/11	104	80 - 120	97	80 - 120	<0.50	ug/L	NC	20		

QUALITY ASSURANCE REPORT(CONT'D)

BluMetric Environmental Inc Client Project #: 230427

Site Location: RESOLUTE BAY LANDFILL

Sampler Initials: KC

			Matrix	Spike	SPIKED	BLANK	Method E	Blank	RP	D	QC Sta	ndard
QC Batch	Parameter	Date	% Recovery QC Limits		% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits	% Recovery	QC Limits
8843927	Dissolved Lithium (Li)	2023/08/11	109	80 - 120	101	80 - 120	<5.0	ug/L	NC	20		
8843927	Dissolved Magnesium (Mg)	2023/08/11	105	80 - 120	99	80 - 120	<50	ug/L	2.9	20		
8843927	Dissolved Manganese (Mn)	2023/08/11	106	80 - 120	100	80 - 120	<2.0	ug/L	0.0044	20		
8843927	Dissolved Molybdenum (Mo)	2023/08/11	112	80 - 120	103	80 - 120	<0.50	ug/L	2.2	20		
8843927	Dissolved Nickel (Ni)	2023/08/11	104	80 - 120	99	80 - 120	<1.0	ug/L	0.80	20		
8843927	Dissolved Phosphorus (P)	2023/08/11	110	80 - 120	97	80 - 120	<100	ug/L	NC	20		
8843927	Dissolved Potassium (K)	2023/08/11	107	80 - 120	101	80 - 120	<200	ug/L	1.6	20		
8843927	Dissolved Selenium (Se)	2023/08/11	105	80 - 120	101	80 - 120	<1.0	ug/L	NC	20		
8843927	Dissolved Silicon (Si)	2023/08/11	107	80 - 120	101	80 - 120	<50	ug/L	0.11	20		
8843927	Dissolved Silver (Ag)	2023/08/11	107	80 - 120	100	80 - 120	<0.090	ug/L	NC	20		
8843927	Dissolved Sodium (Na)	2023/08/11	105	80 - 120	99	80 - 120	<100	ug/L	1.4	20		
8843927	Dissolved Strontium (Sr)	2023/08/11	107	80 - 120	102	80 - 120	<1.0	ug/L	2.3	20		
8843927	Dissolved Tellurium (Te)	2023/08/11	106	80 - 120	101	80 - 120	<1.0	ug/L	NC	20		
8843927	Dissolved Thallium (TI)	2023/08/11	107	80 - 120	99	80 - 120	<0.050	ug/L	NC	20		
8843927	Dissolved Tin (Sn)	2023/08/11	110	80 - 120	102	80 - 120	<1.0	ug/L	NC	20		
8843927	Dissolved Titanium (Ti)	2023/08/11	105	80 - 120	100	80 - 120	<5.0	ug/L	NC	20		
8843927	Dissolved Tungsten (W)	2023/08/11	109	80 - 120	101	80 - 120	<1.0	ug/L	NC	20		
8843927	Dissolved Uranium (U)	2023/08/11	105	80 - 120	97	80 - 120	<0.10	ug/L	0.62	20		
8843927	Dissolved Vanadium (V)	2023/08/11	107	80 - 120	100	80 - 120	<0.50	ug/L	2.3	20		
8843927	Dissolved Zinc (Zn)	2023/08/11	104	80 - 120	98	80 - 120	<5.0	ug/L	NC	20		
8843927	Dissolved Zirconium (Zr)	2023/08/11	115	80 - 120	107	80 - 120	<1.0	ug/L	NC	20		
8843936	Dissolved Aluminum (Al)	2023/08/14	105	80 - 120	97	80 - 120	<4.9	ug/L	NC	20		
8843936	Dissolved Antimony (Sb)	2023/08/14	108	80 - 120	101	80 - 120	<0.50	ug/L	NC	20		
8843936	Dissolved Arsenic (As)	2023/08/14	107	80 - 120	102	80 - 120	<1.0	ug/L	NC	20		
8843936	Dissolved Barium (Ba)	2023/08/14	105	80 - 120	98	80 - 120	<2.0	ug/L	3.8	20		
8843936	Dissolved Beryllium (Be)	2023/08/14	101	80 - 120	93	80 - 120	<0.40	ug/L	NC	20		
8843936	Dissolved Bismuth (Bi)	2023/08/14	104	80 - 120	102	80 - 120	<1.0	ug/L	NC	20		
8843936	Dissolved Boron (B)	2023/08/14	103	80 - 120	98	80 - 120	<10	ug/L	1.3	20		
8843936	Dissolved Cadmium (Cd)	2023/08/14	105	80 - 120	98	80 - 120	<0.090	ug/L	NC	20		
8843936	Dissolved Calcium (Ca)	2023/08/14	NC	80 - 120	98	80 - 120	<200	ug/L	0.80	20		
8843936	Dissolved Chromium (Cr)	2023/08/14	101	80 - 120	96	80 - 120	<5.0	ug/L	NC	20		
8843936	Dissolved Cobalt (Co)	2023/08/14	104	80 - 120	101	80 - 120	<0.50	ug/L	NC	20		

Bureau Veritas Job #: C3M6596 Report Date: 2023/09/01

QUALITY ASSURANCE REPORT(CONT'D)

BluMetric Environmental Inc Client Project #: 230427

Site Location: RESOLUTE BAY LANDFILL

Sampler Initials: KC

			Matrix	Spike	SPIKED	BLANK	Method I	Blank	RP	D	QC Sta	ndard
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits	% Recovery	QC Limits
8843936	Dissolved Copper (Cu)	2023/08/14	107	80 - 120	101	80 - 120	<0.90	ug/L	NC	20		
8843936	Dissolved Iron (Fe)	2023/08/14	106	80 - 120	99	80 - 120	<100	ug/L	NC	20		
8843936	Dissolved Lead (Pb)	2023/08/14	103	80 - 120	96	80 - 120	<0.50	ug/L	NC	20		
8843936	Dissolved Lithium (Li)	2023/08/14	109	80 - 120	108	80 - 120	<5.0	ug/L	NC	20		
8843936	Dissolved Magnesium (Mg)	2023/08/14	101	80 - 120	102	80 - 120	<50	ug/L	5.6	20		
8843936	Dissolved Manganese (Mn)	2023/08/14	105	80 - 120	98	80 - 120	<2.0	ug/L	NC	20		
8843936	Dissolved Molybdenum (Mo)	2023/08/14	106	80 - 120	96	80 - 120	<0.50	ug/L	3.1	20		
8843936	Dissolved Nickel (Ni)	2023/08/14	105	80 - 120	100	80 - 120	<1.0	ug/L	NC	20		
8843936	Dissolved Phosphorus (P)	2023/08/14	112	80 - 120	105	80 - 120	<100	ug/L	NC	20		
8843936	Dissolved Potassium (K)	2023/08/14	107	80 - 120	101	80 - 120	<200	ug/L	0.84	20		
8843936	Dissolved Selenium (Se)	2023/08/14	107	80 - 120	100	80 - 120	<1.0	ug/L	NC	20		
8843936	Dissolved Silicon (Si)	2023/08/14	104	80 - 120	96	80 - 120	<50	ug/L	1.8	20		
8843936	Dissolved Silver (Ag)	2023/08/14	101	80 - 120	96	80 - 120	<0.090	ug/L	NC	20		
8843936	Dissolved Sodium (Na)	2023/08/14	109	80 - 120	98	80 - 120	<100	ug/L	4.6	20		
8843936	Dissolved Strontium (Sr)	2023/08/14	108	80 - 120	101	80 - 120	<1.0	ug/L	0.82	20		
8843936	Dissolved Tellurium (Te)	2023/08/14	107	80 - 120	101	80 - 120	<1.0	ug/L	NC	20		
8843936	Dissolved Thallium (TI)	2023/08/14	105	80 - 120	98	80 - 120	<0.050	ug/L	NC	20		
8843936	Dissolved Tin (Sn)	2023/08/14	110	80 - 120	103	80 - 120	<1.0	ug/L	NC	20		
8843936	Dissolved Titanium (Ti)	2023/08/14	104	80 - 120	98	80 - 120	<5.0	ug/L	NC	20		
8843936	Dissolved Tungsten (W)	2023/08/14	107	80 - 120	97	80 - 120	<1.0	ug/L	NC	20		
8843936	Dissolved Uranium (U)	2023/08/14	106	80 - 120	97	80 - 120	<0.10	ug/L	4.4	20		
8843936	Dissolved Vanadium (V)	2023/08/14	104	80 - 120	97	80 - 120	<0.50	ug/L	NC	20		
8843936	Dissolved Zinc (Zn)	2023/08/14	106	80 - 120	100	80 - 120	<5.0	ug/L	NC	20		
8843936	Dissolved Zirconium (Zr)	2023/08/14	110	80 - 120	104	80 - 120	<1.0	ug/L	NC	20		
8887279	Mercury (Hg)	2023/08/30	109	75 - 125	109	80 - 120	<0.01	ug/L	NC	20		

Bureau Veritas Job #: C3M6596 Report Date: 2023/09/01

QUALITY ASSURANCE REPORT(CONT'D)

BluMetric Environmental Inc Client Project #: 230427

Site Location: RESOLUTE BAY LANDFILL

Sampler Initials: KC

			Matrix	Spike	SPIKED	BLANK	Method E	Blank	RPI)	QC Standard		
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits	% Recovery	QC Limits	
8888725	Total Selenium (Se)	2023/08/31	93	80 - 120	95	80 - 120	<0.05	ug/L	11	20			

N/A = Not Applicable

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

QC Standard: A sample of known concentration prepared by an external agency under stringent conditions. Used as an independent check of method accuracy.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spike amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than the native sample concentration)

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

(1) Recovery or RPD for this parameter is outside control limits. The overall quality control for this analysis meets acceptability criteria.

BluMetric Environmental Inc Client Project #: 230427

Site Location: RESOLUTE BAY LANDFILL

Sampler Initials: KC

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by:

Chrone
Anastassia Hamanov, Scientific Specialist
-5/
Brad Newman, B.Sc., C.Chem., Scientific Service Specialist
Cristin Camere
Cristina Carriere, Senior Scientific Specialist
Mercarafelk
Veronica Falk, B.Sc., P.Chem., QP, Scientific Specialist, Organics

Sandy Yuan, M.Sc., QP, Scientific Specialist

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by {0}, {1} responsible for {2} {3} laboratory operations.

www.BVNA.com

6740 Campobello Road, Mississauga, Ontario L5N 2L8 Phone: 905-817-5700 Fax: 905-817-5779 Toll Free: 800-563-6266

Received in Ottawa CHAIN OF CUSTODY RECORD
ENV COC - 00014v3

Page 1 of 2

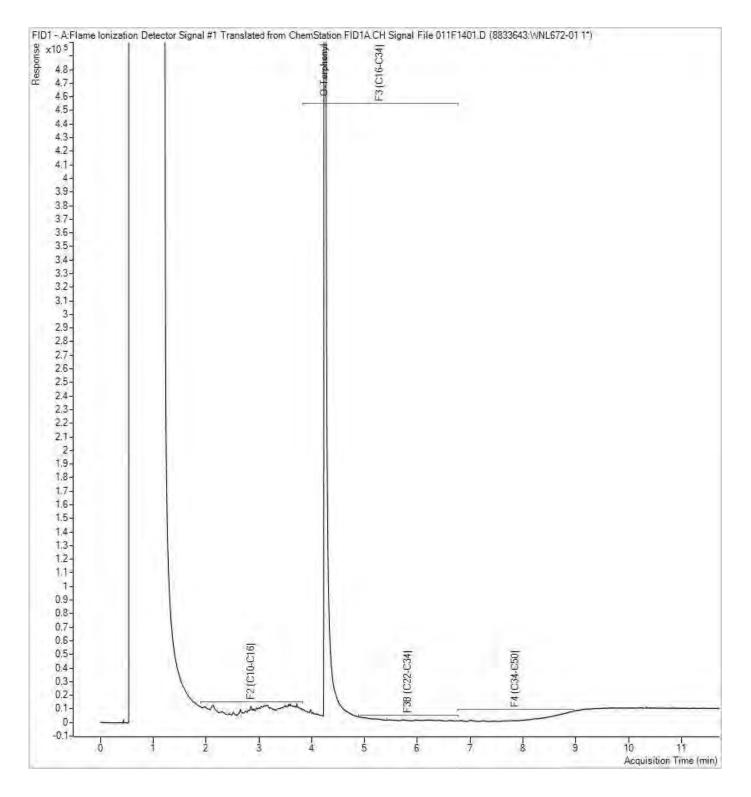
		_	_			- mi		200	_	_	-	_	_	_	_				_	_	_	-	_	_	_	_	_						
	Information Invoice to (requires report)			Report Information (if differs from invoice)								Project Information									27 14 22 12:57												
Compar		Compa	-	BluMetric Environmental Inc									Quotation #:					C32559							27-Jul-23 12:57								
Name:	Accounts Payable	Name:			n Kalesnikoff				P.O.	. #/ AF	E#:					_				_ C	_ Christine Gripton												
Street Address		Addres	5:		168	32 W	Voodward Drive				Proj	ject #:		230427								111	C3M6596										
City:	Ottawa Prov: ON Postal K2C	3R8 City:	C	Ittawa	F	Prov:	ON	Postal Code:	K	2C 3R	8 Site #:												C:	3M	165	96							
Phone:	613-839-3053	Phone:			8	77-48	87-8436 x339	8436 x339				Site Location:				Re	solut	e Bay	Land	fill		-11	/P		EN	IV-17	04						
Email:	ap@blumetric.ca	Email:			jkale	sniko	ff@blumetri	ic.ca				Site Location Province:											P		Li	. 4 - 1 1							
Coples:	Transformer Street, St	Copies			jbr	own(@blumetric.		-	3 4		npled E			A 1 -	A I 1		KC	** 1 **	F 46			19 20	1 31	1 33 1								
REG 153	Regulatory Table 1 Res/Park Med/Fine Ind/Comm Course Table 3 Agri/other For RSC Table Include Criteria on Certificat	teg 550 min 3 d MISA WQO	day TAT	Store Dthe	noo, Tabl ary Sewer Munici	er Byla Bylaw		1			including Total Hglw			ш	3	Soilds			14	15 10	10	16	19 20			5 to :	Day ush Turn Sure	naround Ti	ylq				
	SAMPLES MUST BE KEPT COOL (<10°C) FROM TIME OF S				REAU VE	RITAS			To To	KEQUINED	total) ir	Water	ABTKN-T, TDS	Chromiu	Œ	rus ad So	by GC							SUBMITTED	MIYZE	Same 2 Da			1 Day 3 Day				
			Date San		Time (FILTERED	FIELD PRESERVED	Water	d Metals (total)		PHEN,	Total Hexavalent C	à .	Phosphorus	PAH in water t					1		CONTAINERS	DO NOT ANALYZE	4 Da		YY	MM DD				
	Sample Identification	Y	Y MN	A DD	нн	мм	Matrix	FIELD FIL	FIELD PR	Routine Water	Regulated	BTEX and	NH4AC-W,	Total He	Oil and Grease	Total	PAH in							# OF CO	HOLD - I	Required:	1,	Comments					
1	RBL-2	2	3 07	23	17	30	Water - Ground	N	y 1	N X		15	x	x		x >								16		••	Bottle	Substitu	utions:**				
2	RBL-3	2	23 07	23	15	30	Water - Ground	N	Y 1	N	X	x	x	x	x	x	x							16		1. 250	mL Na	SO4 bo	ttles subbed				
3	AEC1-GW1	2	23 07	23	16	30	Water - Ground	N	Y 1	N X	X	x	x	x	x	×	X							16		V	ith 10	0 mL F2	bottles				
4	RBL-4	2	23 07	24	13	00	Water - Surface	N	Y	N X	X	x	X	х	x	X	X							16		2. phe	nol an	nber bo	ttles subbed				
5	RBL-8	2	23 07	24	11	50	Water - Surface	N	Y	N >	X	X	X	x	XX	X	X							16		with	nutrie	nts (120	mL yellow)				
6	RBL-13	2	23 07	24	11	15	Water - Surface	N	Y	N >	X	x	x	x	x x	X	X							16		3. 2	(250 m	L 061R	bottles as				
7	RBL-16	2	23 07	24	10	30	Water - Surface	N	Y	N >	X	X	x	X	X	x	X							16		subb	ed per	2x1L 0	51R bottles				
8	RBL-DUPA	2	23 07	23	15	50	Water - Ground	N	Y	N >	X	x	x	X	X	X	X							16									
9	RBL-DUPB	2	23 07	24	11	20	Water - Surface	N	Y 1	N X	×	×	x	X	X	x	X							16									
10	RBL-DUPC	2	23 07	24	11	55	Water - Surface	N	Y	N >	X	X	x	X	x >	X	X							16									
11	FIELD BLANK 1	2	23 07	23	15	40	Water - Ground	N	Y	N		X					X							4									
12	TRIP BLANK 1	2	23 07	23	9	00	Water - Ground	N	Y 1	N		x												4									
*UNLE	SS OTHERWISE AGREED TO IN WRITING, WORK SUBMITTED O						U VERITAS STAM BVNA COM/TE															EDGMI	ENT AND	ACCE	PTANC	E OF OUR 1	ERMS AI	ND CONDI	TIONS WHICH ARE				
Seal pr		ACT,	Seal	LAB US present intact ing media	present		Yes /	Vo	·c	R	efe	2	ю	A	-	eal int	sent	B USE	it		Ye	15	No		°C	1	2	3	Temperature reading by:				
	Relinquished by: (Signature/ Print) YY	Date	DD	нн	ime MI	M		Receiv	ved by	: (Sign	ature,	/ Print)			Y	Y	I	MM		DD	HH	Time	мм	-		Special	instruction	ns				
1 B	h Cube KIM CAPILTON 23	07	25	117	50)	Samuel		ranc					mil	1	202		C	7	_	27	13		7	-				0				
2			- 4				2 Au	M		P	N	ER:	1		1	20	123	10	7	12	18	0	8 6	10					SEASON				

www.BVNA.com

6740 Campobello Road, Mississauga, Ontario L5N 2L8 Phone: 905-817-5700 Fax: 905-817-5779 Toll Free: 800-563-6266

Received in Ottawa CHAIN OF CUSTODY RECORD ENV COC - 00014v3

Page 2 of 2


nvoice Information Report Information (if differs from invoice) **Project Information** Invoice to (requires report) C32559 Company BluMetric Environmental Inc. Company: BluMetric Environmental Inc. Quotation #: Contact Contact Accounts Pavable Jaclyn Kalesnikoff P.O. #/ AFE#: LAB USE ONLY - PLACE STICKER HERE 230427 1682 Woodward Drive 1682 Woodward Drive Project #: Address Address ON K2C 3R8 ON K2C 3R8 Site #: Ottawa Ottawa City: Prov: City: Prov: Rush Confirmation #: 613-839-3053 877-487-8436 x339 ite Location Resolute Bay Landfill hone Site Location ap@blumetric.ca jkalesnikoff@blumetric.ca Email: Province KC jKalesnikoff@blumetric.ca [brown@blumetric.ca Sampled By: Copies Copies: 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 Regular Turnaround Time (TAT) Regulatory Criteria Table 1 Res/Park Med/Fi Reg 406, Table: 5 to 7 Day - 10 Day Ind/Comm Table 2 Course teg 558*
*min 3 day TAT Sanitary Sewer Bylaw Table 3 Agri/other For RSC Storm Sewer Bylaw Rush Turnaround Time (TAT) MISA Table Municipality Surcharges apply # OF CONTAINERS SUBMITTED 'WQO water by GCMS Include Criteria on Certificate of Analysis (check if yes): FILTRATION REQUIRED Same Day 1 Day Total Phosphorus Suspended SAMPLES MUST BE KEPT COOL (<10°C) FROM TIME OF SAMPLING UNTIL DELIVERY TO BUREAU VERITAS _ 3 Day and Grease by IR. HELD PRESERVED and F1-F4 in 14 Day Date Sampled Time (24hr) 0 MM DD PAH in Date Sample Identification Matrix otal Required: MM DD HH MM BTEX Comments 4 **Bottle Substitutions:** FIELD BLANK 2 10 Water - Surface 23 07 24 40 N Y x 1. 250 mL NaSO4 bottles subbed with 100 mL F2 bottles 2. phenol amber bottles subbed with nutrients (120 mL yellow) 3. 2x250 mt. 061R bottles as subbed per 2x1L 061R bottles 10 11 12 *UNLESS OTHERWISE AGREED TO IN WRITING, WORK SUBMITTED ON THIS CHAIN OF CUSTODY IS SUBJECT TO BUREAU VERITAS STANDARD TERMS AND CONDITIONS. SIGNING OF THIS CHAIN OF CUSTODY DOCUMENT IS ACKNOWLEDGMENT AND ACCEPTANCE OF OUR TERMS AND CONDITIONS WHICH ARE AVAILABLE FOR VIEWING AT WWW.BVNA.COM/TERMS: AND CONDITIONS OR BY CALLING THE LABORATORY LISTED ABOVE TO OBTAIN A COPY ce or packs Temperature LAB USE ONLY LAB USE ONLY LAB USE ONLY reading by: Seal present Seal present *C Seal present *C Seal intact Seal Intact Seal Intact ooling media present Cooling media present Cooling media present HH MM Special instructions Relinquished by: (Signature/ Print) Received by: (Signature/ Print) DD MM MM MM See 50 23 07 25 11 0 See Pagel DEMES

BluMetric Environmental Inc Client Project #: 230427

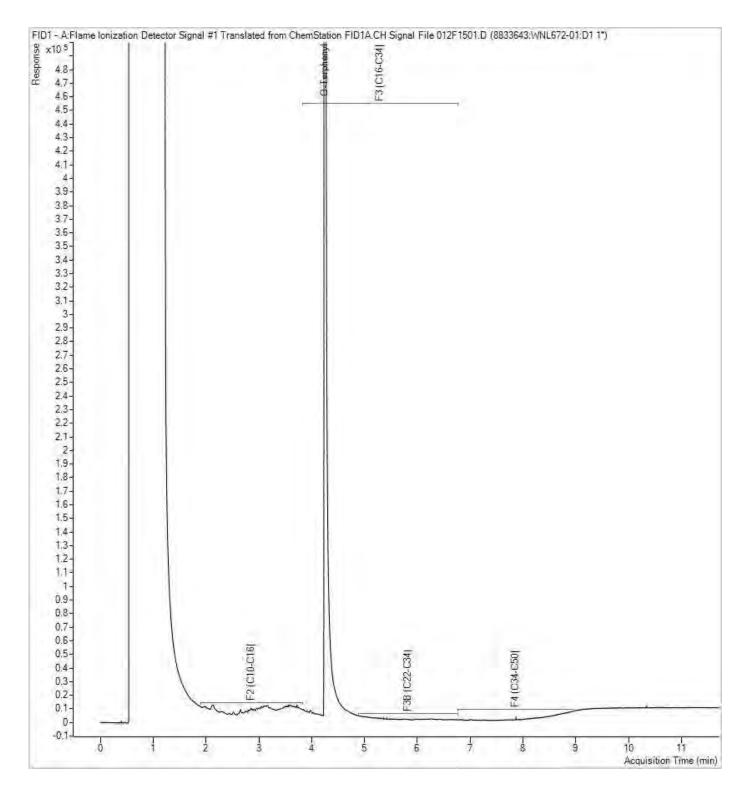
Project name: RESOLUTE BAY LANDFILL

Client ID: RBL-3

Petroleum Hydrocarbons F2-F4 in Water Chromatogram

Bureau Veritas Job #: C3M6596 Report Date: 2023/09/01

Bureau Veritas Sample: WNL672 Lab-

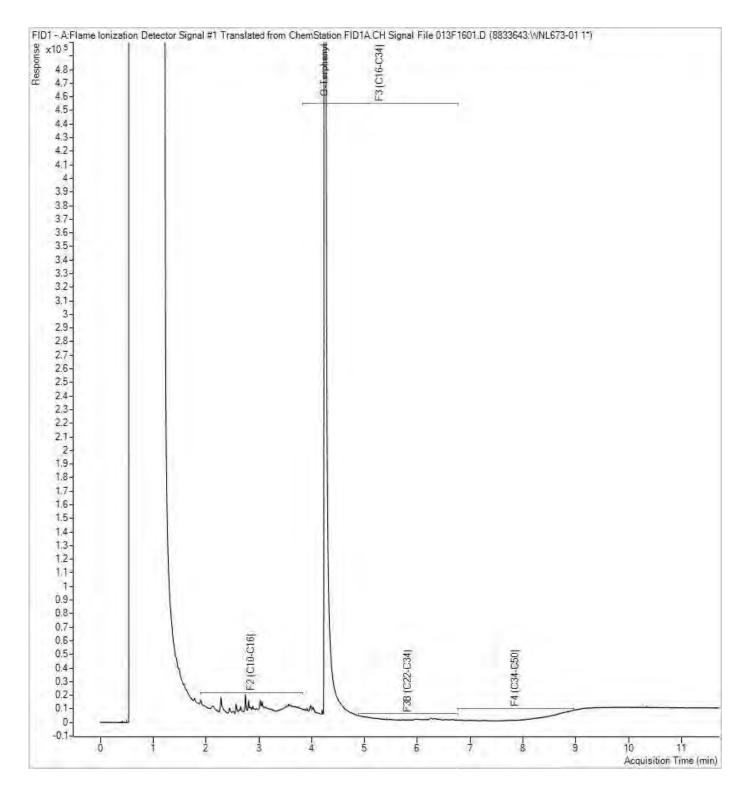

Dup

BluMetric Environmental Inc Client Project #: 230427

Project name: RESOLUTE BAY LANDFILL

Client ID: RBL-3

Petroleum Hydrocarbons F2-F4 in Water Chromatogram

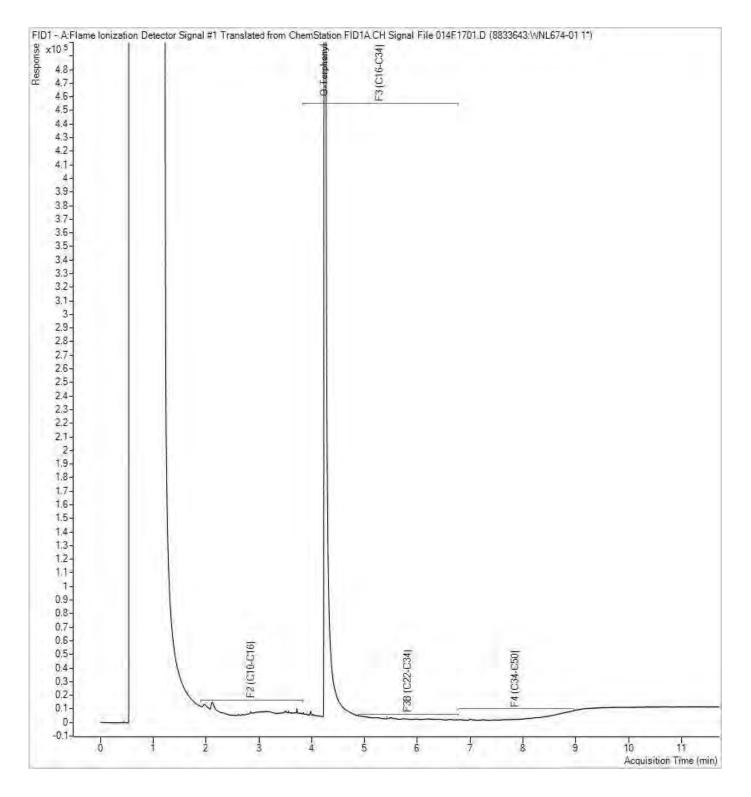


BluMetric Environmental Inc Client Project #: 230427

Project name: RESOLUTE BAY LANDFILL

Client ID: AEC1-GW1

Petroleum Hydrocarbons F2-F4 in Water Chromatogram

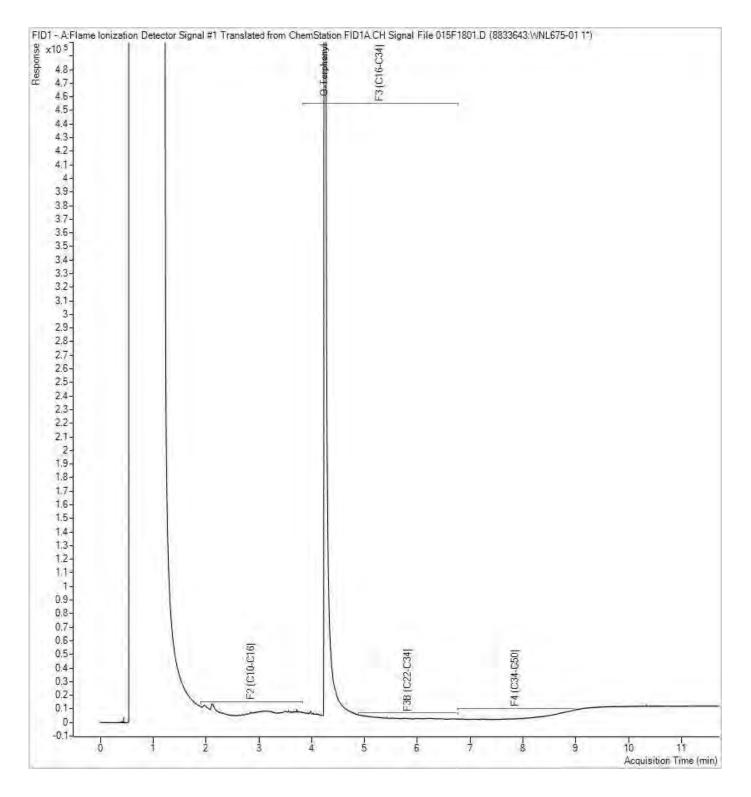


BluMetric Environmental Inc Client Project #: 230427

Project name: RESOLUTE BAY LANDFILL

Client ID: RBL-4

Petroleum Hydrocarbons F2-F4 in Water Chromatogram

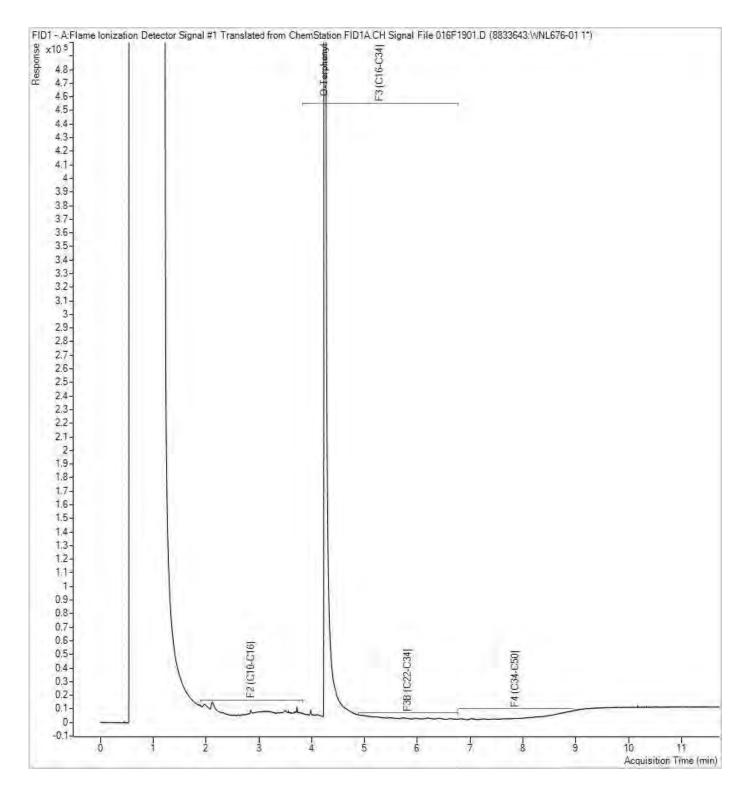


BluMetric Environmental Inc Client Project #: 230427

Project name: RESOLUTE BAY LANDFILL

Client ID: RBL-8

Petroleum Hydrocarbons F2-F4 in Water Chromatogram

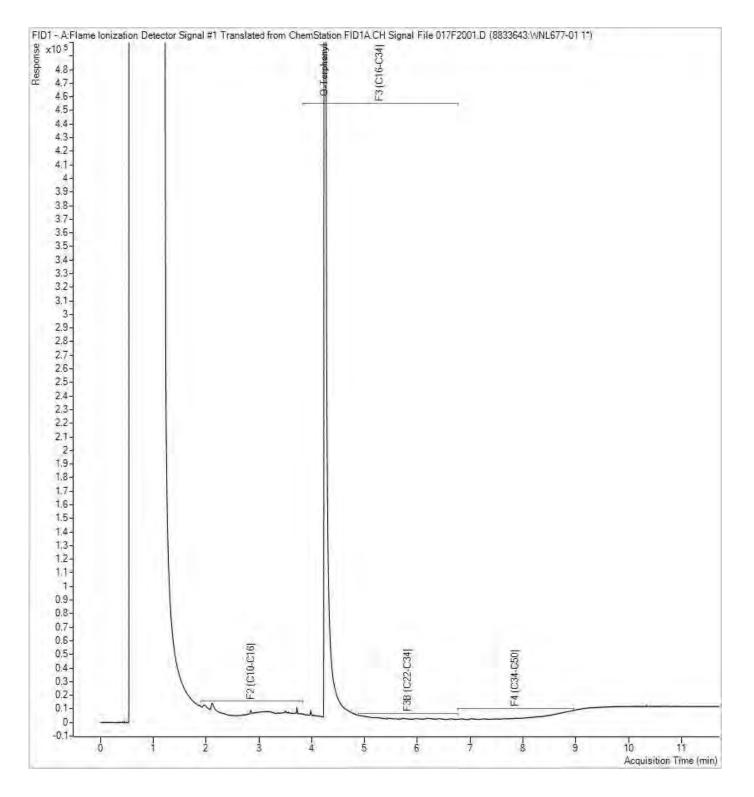


BluMetric Environmental Inc Client Project #: 230427

Project name: RESOLUTE BAY LANDFILL

Client ID: RBL-13

Petroleum Hydrocarbons F2-F4 in Water Chromatogram

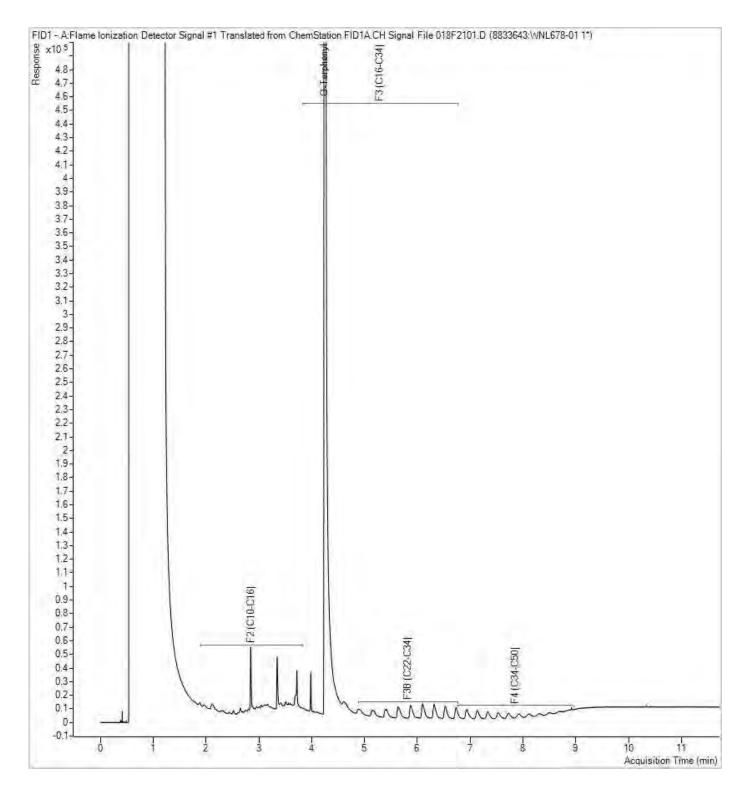


BluMetric Environmental Inc Client Project #: 230427

Project name: RESOLUTE BAY LANDFILL

Client ID: RBL-16

Petroleum Hydrocarbons F2-F4 in Water Chromatogram

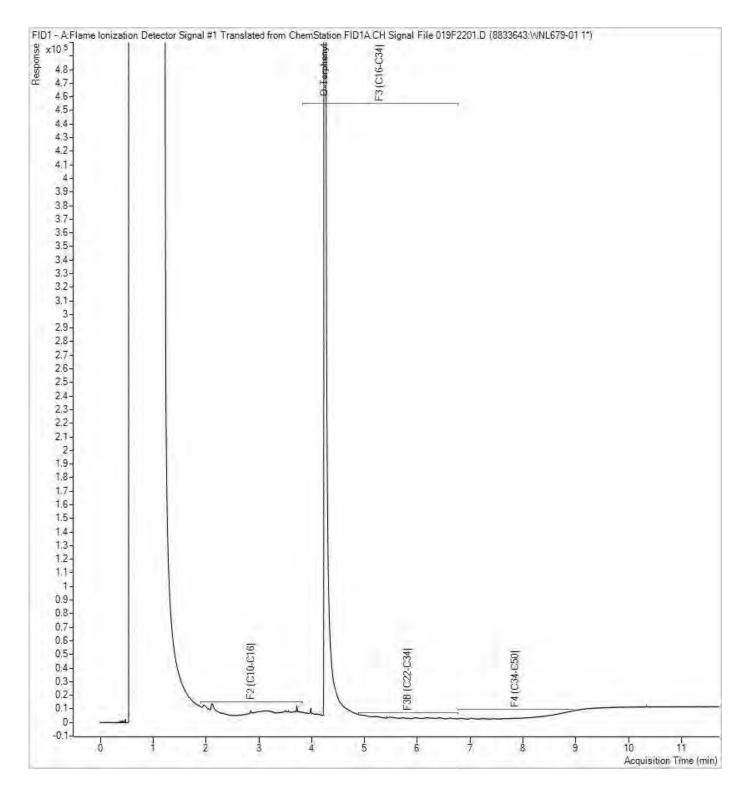


BluMetric Environmental Inc Client Project #: 230427

Project name: RESOLUTE BAY LANDFILL

Client ID: RBL-DUPA

Petroleum Hydrocarbons F2-F4 in Water Chromatogram

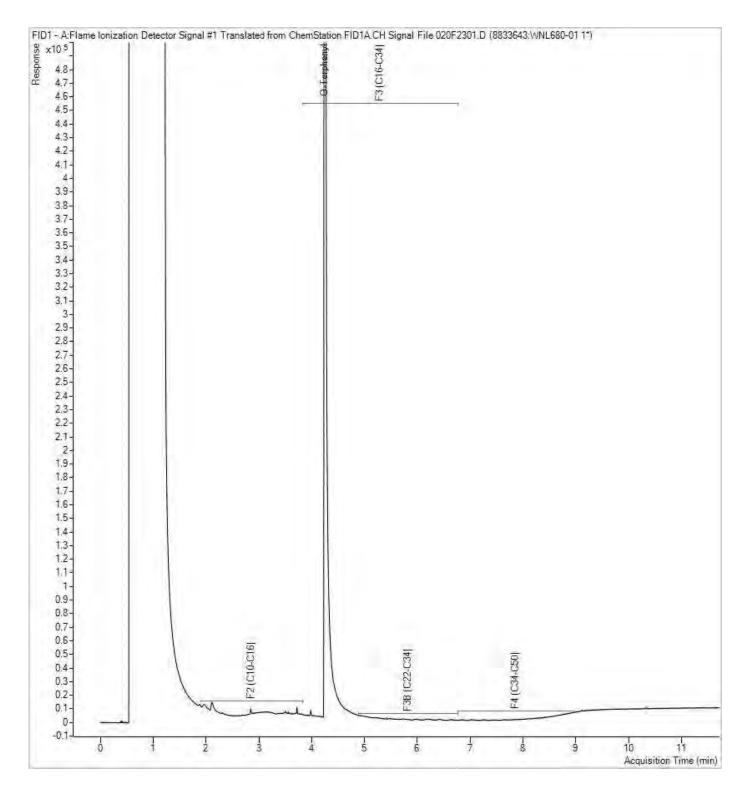


BluMetric Environmental Inc Client Project #: 230427

Project name: RESOLUTE BAY LANDFILL

Client ID: RBL-DUPB

Petroleum Hydrocarbons F2-F4 in Water Chromatogram

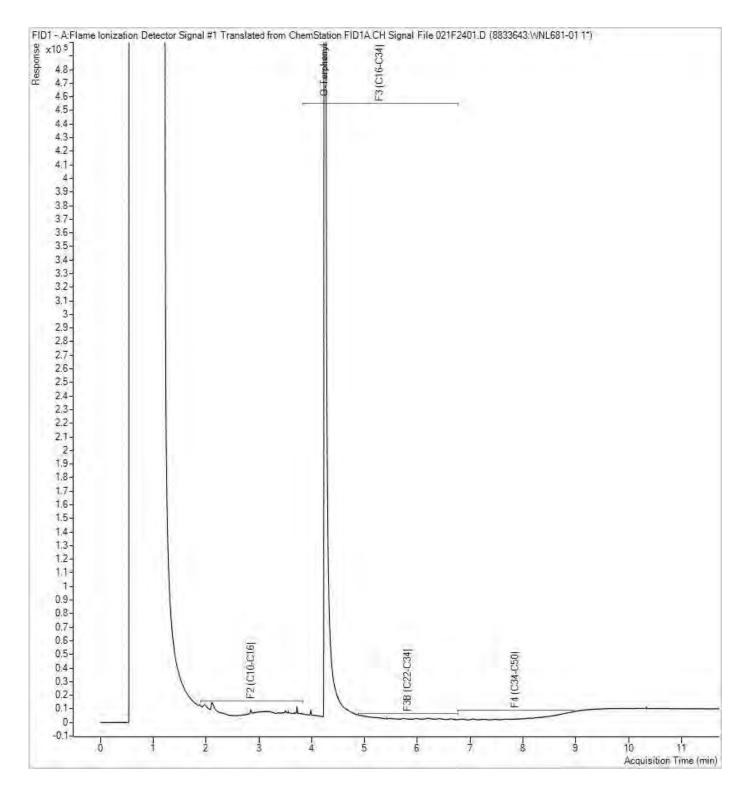


BluMetric Environmental Inc Client Project #: 230427

Project name: RESOLUTE BAY LANDFILL

Client ID: RBL-DUPC

Petroleum Hydrocarbons F2-F4 in Water Chromatogram

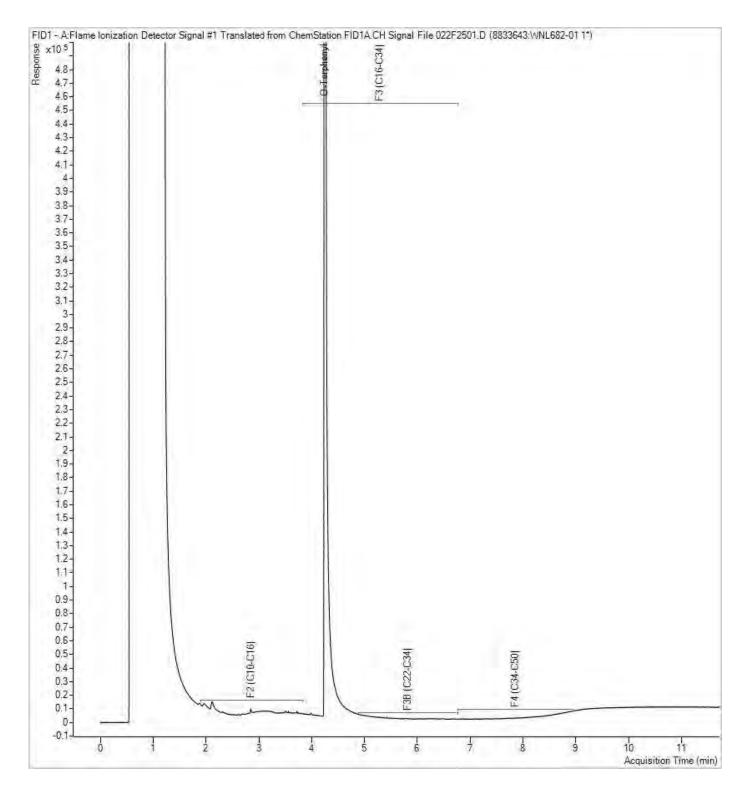


BluMetric Environmental Inc Client Project #: 230427

Project name: RESOLUTE BAY LANDFILL

Client ID: FEILD BLANK 1

Petroleum Hydrocarbons F2-F4 in Water Chromatogram

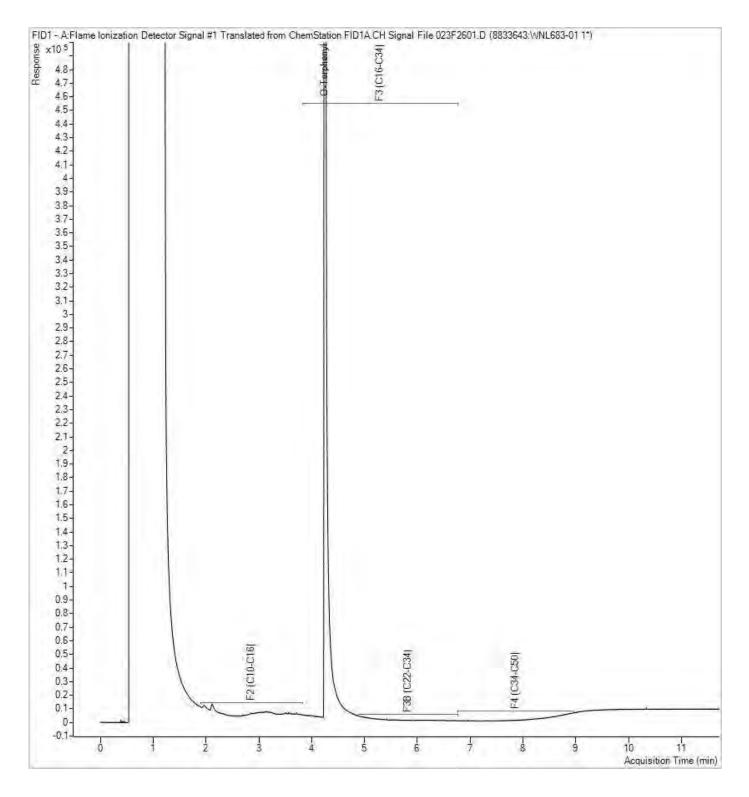


BluMetric Environmental Inc Client Project #: 230427

Project name: RESOLUTE BAY LANDFILL

Client ID: TRIP BLANK 1

Petroleum Hydrocarbons F2-F4 in Water Chromatogram



BluMetric Environmental Inc Client Project #: 230427

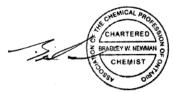
Project name: RESOLUTE BAY LANDFILL

Client ID: FEILD BLANK 2

Petroleum Hydrocarbons F2-F4 in Water Chromatogram

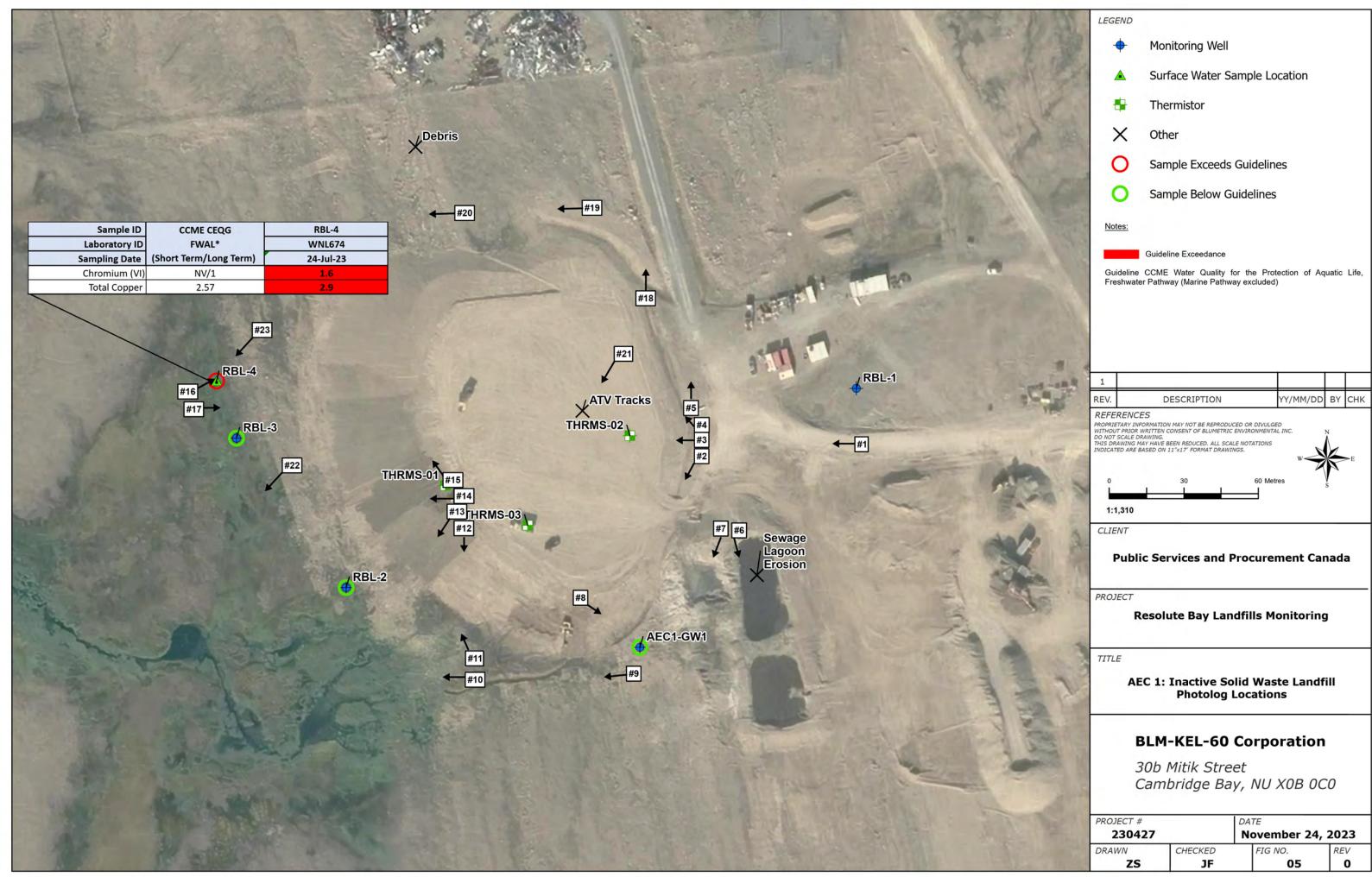
BluMetric Environmental July 17, 2023

Attention: Jaclyn Kalesnikoff


Re: Resolute Bay Airport Landfill Sampling Program

Dear Ms. Kalesnikoff,

As requested, Bureau Veritas Laboratories has reviewed the 2023 / 2024 Resolute Bay Airport Landfill Sampling Program. In our opinion, the Program meets the CCME requirements for field quality control.


I trust this meets your needs. If anything further is required, please do not hesitate to contact me directly. brad.newmna@bureauveritas.com 416 528-9778.

Sincerely,

Brad Newman, B.Sc., C.Chem. Consulting Scientist, Site Assessment & Remediation Environmental Services

APPENDIX F Site Photograph Logs and Photograph Location Figures **BLM-KEL-60 Corporation**

Photo 1

Viewing Direction:

Facing West

Description:

AEC 1 Overview from behind RBL-1

Photo 2

Viewing Direction:

Facing Southwest

Description:

View of Drainage swale and landfill plateau.

Photo 3

Viewing Direction:

Facing West

Description:

View of Drainage swale and landfill plateau. Thermistor 1 in background.

Photo 4

Viewing Direction:

Facing Northeest

Description:

View of Drainage swale and landfill plateau.

Photo 5

Viewing Direction:

Facing North

Description:

View of drainage swale and adjacent Metal waste depot in background.

Photo 6

Viewing Direction:

Facing South

Description:

View of sewage lagoons. Evidence of overflow along west edge.

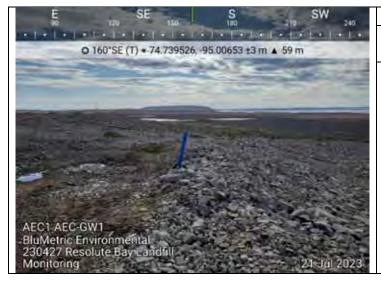
Photo 7

Viewing Direction:

Facing Southwest

Description:

View of sewage lagoons. Evidence of overflow along west edge.


Photo 8

Viewing Direction:

Facing Southeast

Description:

View of monitoring well AEC1-GW1 (downgradient from sewage lagoons)

Photo 9

Viewing Direction:

Facing west

Description:

View from AEC1-GW1 showing drainage swale and landfill slope

Photo 10

Viewing Direction:

Facing West

Description:

Viewing of south drainage swale end point at toe of landfill

Photo 11

Viewing Direction: Facing Northwest

Description:

View of landfill toe/slope at south drainage swale

Photo 12

Viewing Direction:

Facing South

Description:

View of south drainage swale/landfill toe taken from landfill crest. Thermistor 1 in foreground.

230427 Photo Log AEC1

Viewing Direction:

Facing Southwest

Description:

View of wetlands at toe of landfill, taken from landfill crest. Thermistor 1 in foreground.

Photo taken July 21, 2023.

Photo 14

Viewing Direction:

West

Description:

View of wetlands at toe of landfill, taken from landfill crest. Thermistor 1 in foreground.

Photo 15

Viewing Direction:

Northwest

Description:

View of wetlands at toe of landfill, taken from landfill crest. Thermistor 1 in foreground.

Photo 16

Viewing Direction:

Facing Northeast

Description:

RBL-4 surface water location with Metal Waste depot in background

Photo 17

Viewing Direction:

East

Description:

RBL-4 surface water location with landfill in background

Photo 18

Viewing Direction:

North

Description:

View of drainage swale and northern limits of landfill. Metal waste depot in background.

230427 Photo Log AEC1

Viewing Direction:

West

Description:

View of landfill toe/slope at north drainage swale

Photo 20

Viewing Direction:

Southwest

Description:

Viewing of south drainage swale end point at toe of landfill

Photo 21

Viewing Direction:

Southwest

Description:

Viewing of top of landfill. ATV tracks observed demonstrating human uses of landfill.

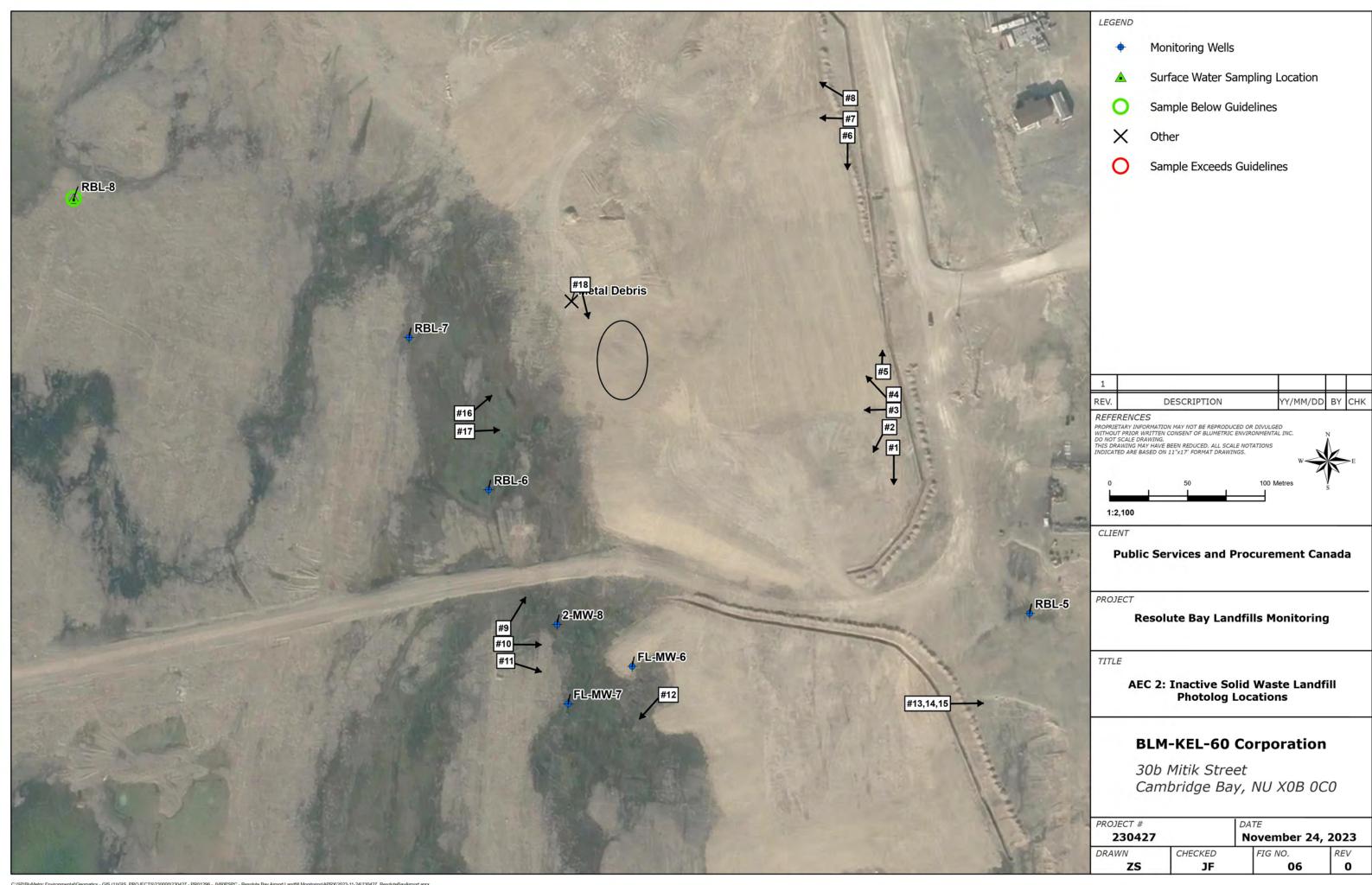
230427 Photo Log AEC1

Viewing Direction:

South

Description:

Exposed plastic debris along landfill toe.


Photo 23

Viewing Direction:

Southeast

Description:

Dead vegetation in pond area at RBL-4 location.

230427 Photo Log AEC2

Viewing Direction:

From roadway facing South

Description:

View of drainage swale and landfill plateau.

Photo 2

Viewing Direction:

From roadway facing Southwest

Description:

View of drainage swale and landfill plateau.

Photo 3

Viewing Direction:

From roadway facing West

Description:

View of landfill plateau.

*Note: AEC2 photos were taken in the incorrect location during Freshnet monitoring.

Public Services and Procurement Canada Environmental Monitoring at Resolute Bay Landfills, Cornwallis Island, NU

230427 Photo Log AEC2

Viewing Direction:

From roadway facing Northwest

Description:

View of drainage swale and landfill plateau.

Photo 5

Viewing Direction:

From roadway facing North

Description:

View of drainage swale and culvert.

Photo 6

Viewing Direction:

South

Description:

View of drainage swale in North portion of landfill.

230427 Photo Log AEC2

Viewing Direction:

West

Description:

View of drainage swale in North portion of landfill.

Photo 8

Viewing Direction:

Northwest

Description:

View of drainage swale in North portion of landfill.

Photo 9

Viewing Direction:

North-northeast

Description:

South end of landfill near drainage swale.

230427 Photo Log AEC2

Viewing Direction:

East

Description:

Toe of main landfill, with slope of the landfill and drainage swale.

Photo 11

Viewing Direction:

East-southeast

Description:

Two drainage swales on opposite side of East-West Road.

Photo 12

Viewing Direction:

Southwest

Description:

From south most drainage swale. View of monitoring wells 2-MW-8 and FL-MW-7.

230427 Photo Log AEC2

Viewing Direction:

Facing Northeast

Description:

Area northeast of monitoring well RBL-5.

Photo 14

Viewing Direction:

East

Description:

Monitoring well east of RBL-5.

Photo 15

Viewing Direction:

Southeast

Description:

Area southeast of monitoring well RBL-5.

230427 Photo Log AEC2

Viewing Direction:

Facing Northeast

Description:

From RBL-7, view of rock armor condition

from toe of landfill.

Photo 17

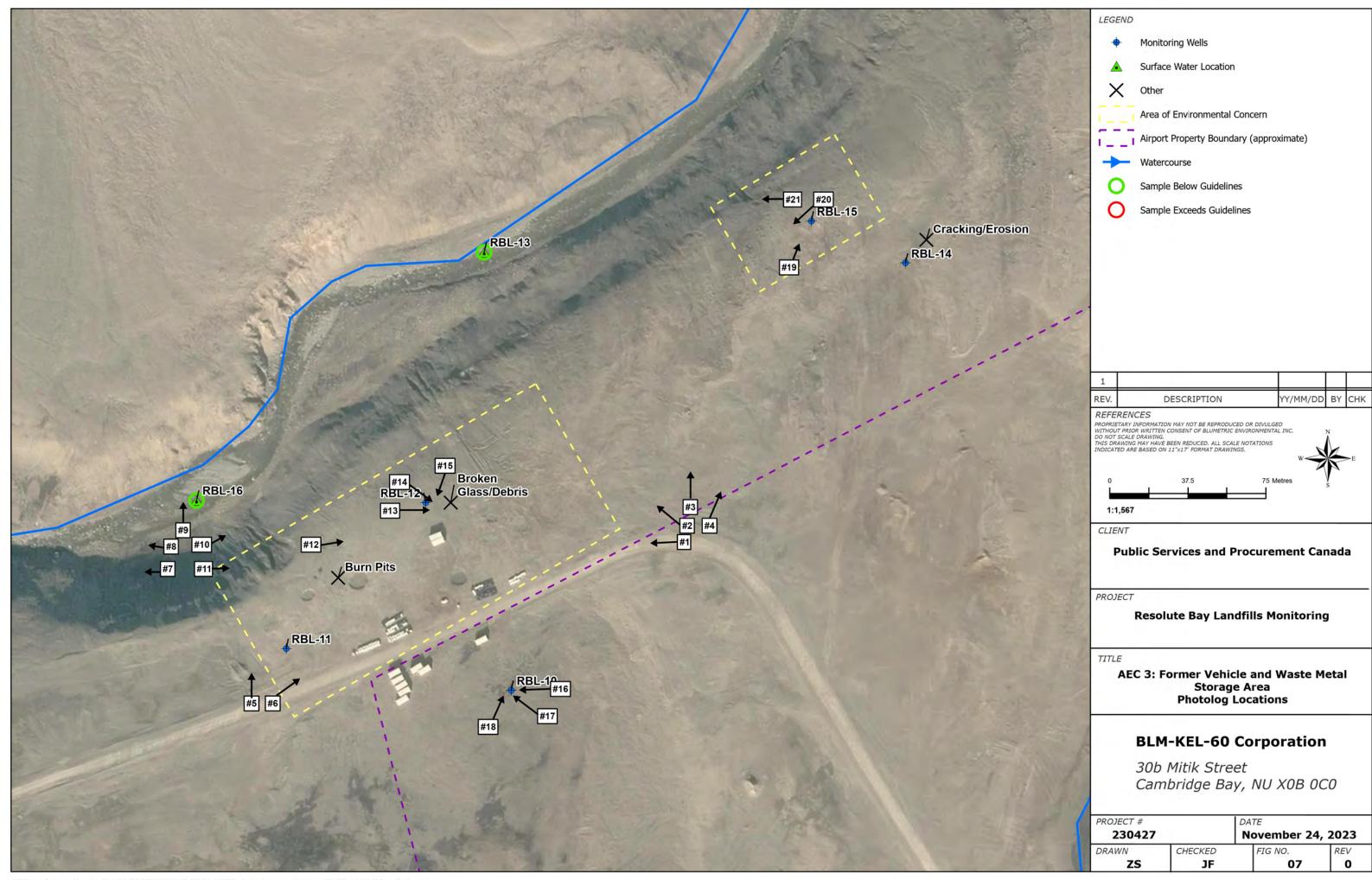
Viewing Direction:

Facing East

Description:

From RBL-7, view of rock armor condition

from toe of landfill


Photo 18

Viewing Direction:

Facing East

Description:

Scrap metal debris exposed along landfill slope.

230427 Photo Log AEC3

Photo 1

Viewing Direction:

Facing West

Description:

AEC 3 Overview from roadway

Photo 2

Viewing Direction:

Facing Northwest

Description:

AEC 3 Overview from roadway

Photo 3

Viewing Direction:

Facing North

Description:

AEC 3 Overview from roadway

230427 Photo Log AEC3

Viewing Direction:

Facing Northeast

Description:

AEC3 overview from roadway

Photo 5

Viewing Direction:

Facing North

Description:

From SW corner, monitoring well RBL-11 in foreground

Photo 6

Viewing Direction:

Facing South

Description:

From SW corner, view across site of former excavations 2, 3, 4, and 6. Burn pit evidence noted as human activity onsite.

230427 Photo Log AEC3

Viewing Direction:

Facing West

Description:

From NW corner, view of McMaster River Valley

Photo 8

Viewing Direction: Facing Northwest

Description:

From NW corner, view of McMaster River Valley

Photo 9

Viewing Direction:

Facing west

Description:

From NW corner, view of McMaster River Valley, Looking down at RBL-16 surface water sampling location

Viewing Direction: Facing Northeast

Description:

From NW corner, view of McMaster River Valley, slope failure noted in 2022 report.

Photo 11

Viewing Direction: Facing Northwest

Description:

View of landfill toe/slope at south drainage swale

Photo 12

Viewing Direction:

Facing East

Description:

Two locations of ash and soot noted at surface from local bonfire

230427 Photo Log AEC3

Photo 13

Viewing Direction:

Facing West

Description:

From excavation 4 area. Monitoring well RBL-12 in background.

Photo 14

Viewing Direction:

Facing Southeast

Description:

From monitoring well RBL-12. Looking towards excavation 4 and 3 area.

Photo 15

Viewing Direction:

Northwest

Description:

From monitoring well RBL-12. Looking towards excavation 4 and 3 area.

230427 Photo Log AEC3

Viewing Direction:

Facing West

Description:

From Monitoring well RBL-10.

Photo 17

Viewing Direction:

Facing Northwest

Description:

From Monitoring well RBL-10.

Photo 18

Viewing Direction:

Northeast

Description:

From Monitoring well RBL-10.

230427 Photo Log AEC3

Photo 19

Viewing Direction:

Northeast

Description:

From monitoring well RBL-15 looking towards excavation 5 area

Photo 20

Viewing Direction:

Facing Southwest

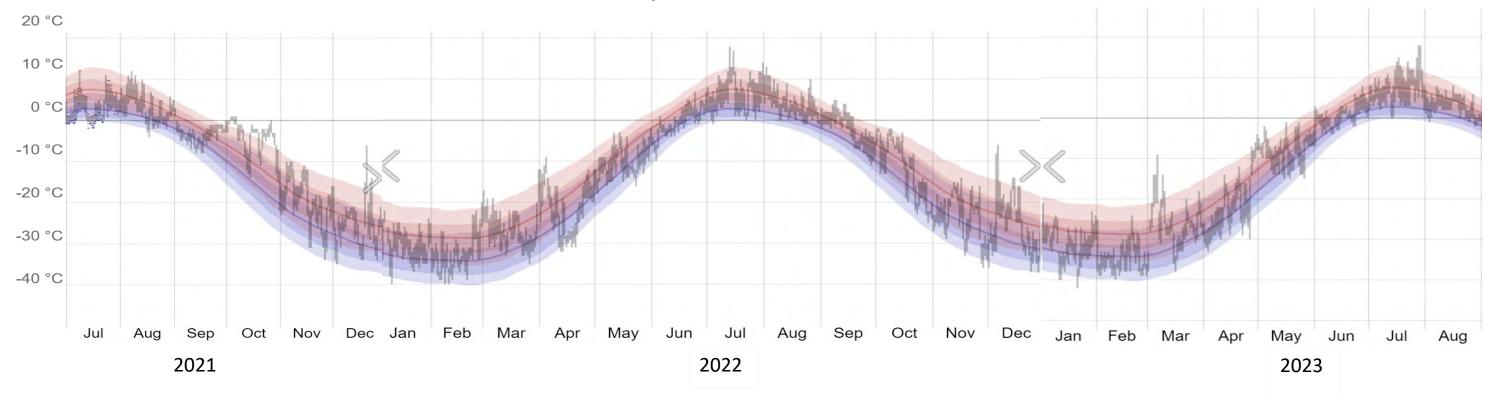
Description:

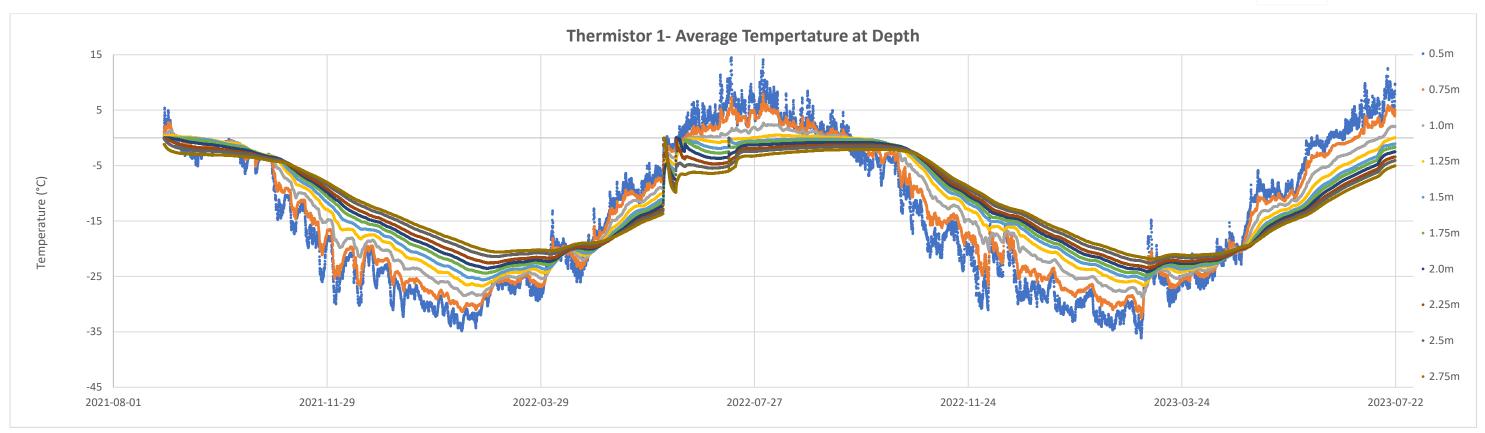
From monitoring well RBL-15 looking towards excavation 5 area

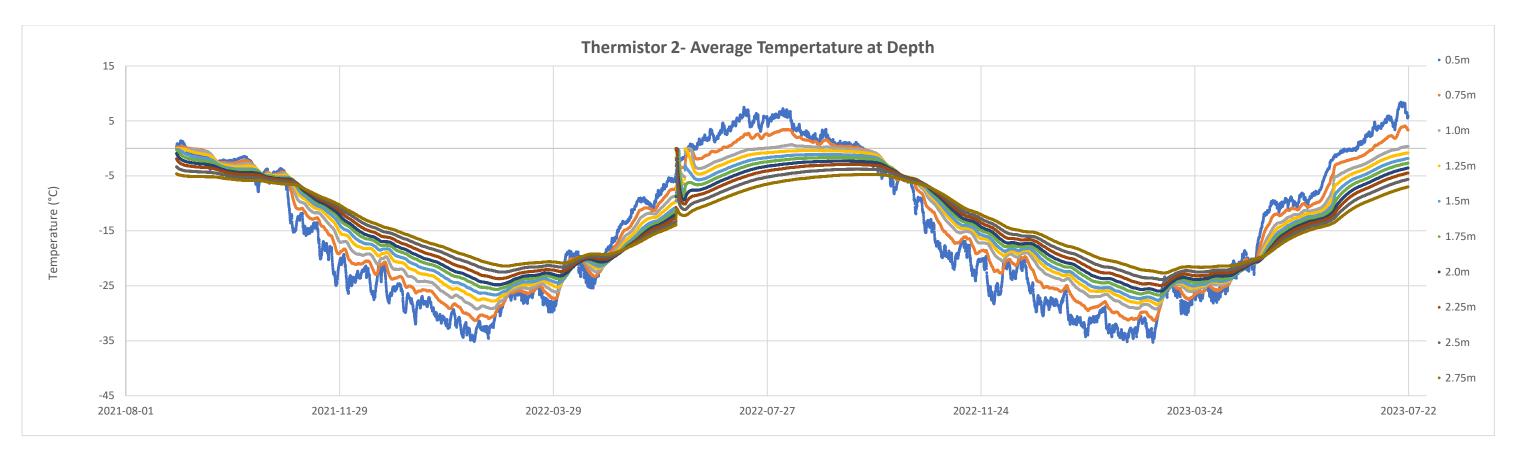
Photo 21

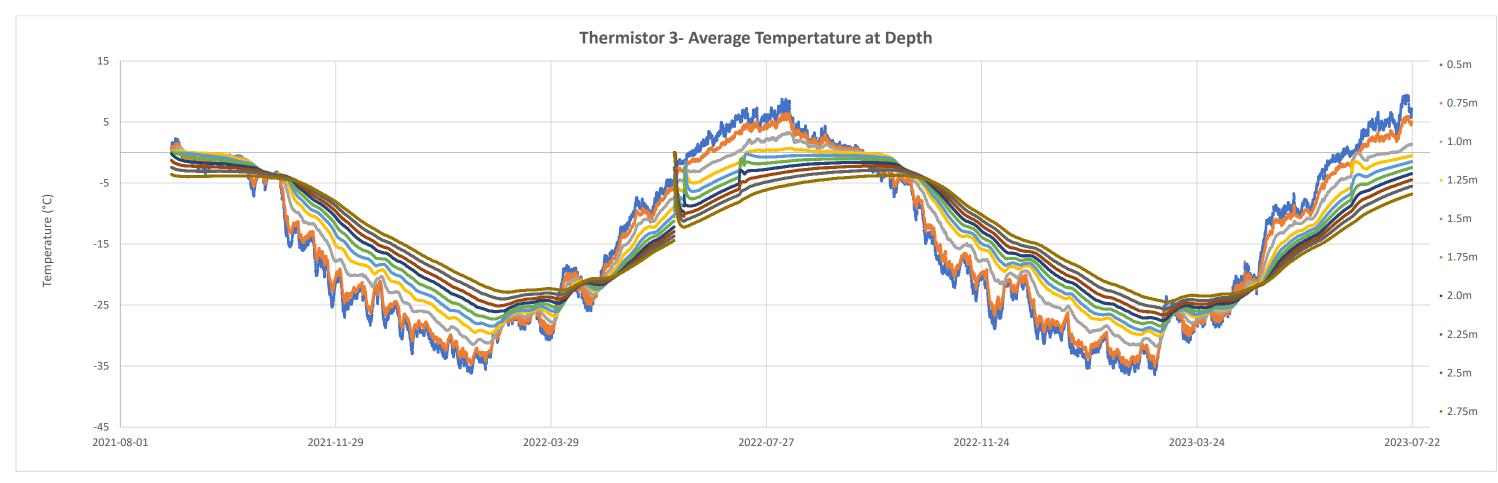
Viewing Direction:

Facing Northwest


Description:


From monitoring well RBL-14 looking towards excavation 5 area. RBL-15 can be seen in background.


APPENDIX G


Thermistor Results

outcome CONSULTANTS ME		Project No: Project: Client:	P2021-09 Resolute Bay Landfill CSP	_	THRMS-01		
			PSPC	Logged by:	S. Livingstone		
		Location:	AEC 1	Engineer:			
		STIRSTIDEACE I	DRUE!! E	WELL INSTALL DETAILS			
SUBSURFACE PROFILE WELL INSTALL DETAILS							
Depth (m) Symbol		Description		Thermistor String (nodes) within 2 " PVC	Well Cross Section		
0 m		Ground Surface		0			
		Fill - gravel, recent fill from remedial work					
0.5		Fill - gravel with	n some sand and silt, moist to dry, brown to grey	0.5			
2 ~		cobbles. Signif domestic	brown to dark brown, moist with icant metal (crushed drums) and waste debris encountered (ice layer - top of active layer) @1.7mbgs*	2			
2.5		Fill - sand/silt	, gravel. Some minor metal and domestic waste	2.5			
Sample Type		n/a					
Excavation Method		Excavator		Ch! !!			
Date:		26-Aug-21		Checked by:			
UTM N: UTM E:		8295590 440985	-				
OTIVI E.		440303	_				

outc me		Project No:	P2021-09	=	THRMS-02		
		Project:	Resolute Bay Landfill CSP	,.			
		Client:	PSPC AFG 1	Logged by:	S. Livingstone		
		Location:	AEC 1	Engineer:			
SUBSURFACE PROFILE WELL INSTALL DE							
Depth (m) Symbol		Description		Thermistor String (nodes) within 2 " PVC	Well Cross Section		
		Ground Surface		0			
0		Fill - recent gra	vel, brown, dry				
0.5		Fill - gravel, coa	rse grained, brown, moist	0.5			
1.5		domestic waste	orown to grey, moist . Metal and e encountered st (ice layer - top of active layer) @1.3mbgs*	1.5			
2		Minor to trace (metal wires, ru	domestic/construction waste debris ubber)	2			
2.5		Fill - sand/sil	t, gravel, grey. No waste observed	2.5			
III							
Sample Type	a d l a a d	n/a					
Excavation Method		Excavator 27-Aug-21 8295607		Chacked by:			
Date: UTM N:				Checked by:			
UTM E:		8295607 441055					
OTIVI E.		7-11000	_				

outc me		Project No: P2021-09 Project: Resolute Bay Landfill CSP				THRMS-03 S. Livingstone	
		Client: PSPC		Logged by:			
		Location:	AEC 1	_Logged L Engineer		J. LIVIIIgsto	TIC .
SUBSURFACE PROFILE WELL INSTALL DETAILS							AILS
Depth (m) Symbol		Description		Thermistor String (nodes) within 2 " PVC		Well Cross Section	
0		Ground Surface		0			
0		Fill - grave	l, recent fill from remedial work	0			
0.5		Fill - gravel wi	th some sand and silt, moist to dry, brown to light grey	0.5			
1.5		domestic wast	brown to grey. Debris and e encountered ice layer - top of active layer) @1.4 mbgs*	1.5			
2		Minor waste e tubing)	ncountered (wood, wire, rubber	2			
2.5		Fill - sand/silt,	gravel. Some minor to trace metal and domestic waste	2.5			
Sample Type Excavation Method Date: UTM N: UTM E:		n/a Excavator 26-Aug-21 8295577 441014		Checked	by:		