

Royal Military College, Dept. Of Chem. and Chem. Eng., P.O. Box 17000 Stn. Forces, Kingston, ON, K7K 7B4 (613) 541-6000 ext 6684 / Fax: (613) 545-8341

ASU Client:

School of Environmental Studies

Queen's University Kingston, Ontario K7L 3N6

(613) 533-2656 Fax: (613) 533-2897 ASG Login No: 7164

Site: Res. Island

ASU No: 5247

Samples Received: 31-Jul-02 Date of analysis: 07-Aug-02

Method No: ASG 014 Date Reported: 07-Aug-02

Sheet: 1 of 1

RESULTS OF MERCURY IN SOIL ANALYSIS

Sample I.D.	Unit	Mercury
BRI02-001*	µg/g	< 0.1
BRI02-002	рд/д	< 0.1
BRI02-004	µg/g	< 0.1
BRI02-005	µg/g	< 0.1
BRI02-006	µg/g	< 0.1
BRI02-007	µg/g	< 0.1
BRI02-008	µg/g	< 0.1
BRI02-010	нд/д	< 0.1
BRI02-011	µg/g	< 0.1
BRI02-012	нд/д	< 0.1
BRI02-013	µg/g	< 0.1
BRI02-014	µg/g	< 0.1
BRI02-015	µg/g	< 0.1
BRI02-016	µg/g	< 0.1

LABORATORY QA/QC

Duplicate; BRI02-001	µg/g	< 0.1; < 0.1
Blank	µg/g	< 0.1
Control Target	µg/g	6.25
Control	µg/g	4.40

* Averaged result of duplicates

Prepared By: Nelson Melo; Analyst

Authorization:

Steve White; Senior Analyst

Test Report I.D: Hgs7164r1

Analytical Services Unit School of Environmental Studies Biosciences Complex Queen's University, Kingston, Ontario, Canada K7L 3N6 Tel 613 533-2642 Fax 613 533-2897

REPORT OF ANALYSIS

ASU #: 5247 Report I.D.: Bennett ASU5247 PCBTPH

Client: DIAND Date Submitted: 25-Jul-02

Date Analyses Initiated: 12-Aug-02 Date Reported: 16-Aug-02

Matrix: soil

Method: PCB = Extraction/GC/ECD; TPH = Extraction/GC/FID

Results

	Units	BRI 02-001	BRI 02-002	BRI 02-004	BRI 02-005	BRI 02-006
Total PCBs	ug/g	260	370	180	230	2310
Total C ₁₀ -C ₅₀	ug/g	1000	1400	2000	2000	3800

	Units	BRI 02-007	BRI 02-008	BRI 02-010	BRI 02-011	BRI 02-012
Total PCBs	ug/g	95	140	340	640	170
Total C ₁₀ -C ₅₀	ug/g	750	1300	1200	360	<100

	Units	BRI 02-013	BRI 02-014	BRI 02-015	BRI 02-016
Total PCBs	ug/g	210	20	32	330
Total C ₁₀ -C ₅₀	ug/g	8100	<100	110	1500

Laboratory QA/QC:

	Units	Blank	BRI02-010	BRI02-010 Duplicate
Total PCBs	ug/g	<0.5	444	245
Total C10-C50	ug/g	<100	1142	1254

John S. Poland, D. Phil Director

Prepared by:

Authorization:

Bennett ASU5247 PCBTPH

Pagel of 1

PREPARING LEADERS AND CITIZENS FOR A GLOBAL SOCIETY

Royal Military College, Dept. Of Chem. and Chem. Eng., P.O. Box 17000 Stn. Forces, Kingston, ON, K7K 7B4 (613) 541-6000 ext 6684 / Fax: (613) 545-8341

Client: ASU

School of Environmental Studies Queen's University Kingston, Ontario K7L 3N6 (613) 533-2656 ASG Login No:

7164

Site:

Page:

Res Island

Samples Received: Date of Analysis: 31-Jul-02 08-Aug-02

Method No: Date Reported: ASG032 21-Aug-02

1 of 19

Chlorinated Dioxins and Furans in Soil and Sediment

Sample i.d.:	Blank #1 Dioxins as 2,3,7,8-TCDD equivalent (FTEQ)	Detected FTEQ. (pg/g)1	0.1	Max Possible FTEQ (pg/g)2	0.4
	Furans as 2,3,7,8-TCDD equivalent (I-TEQ)	Detected FTEQ. (pg/g)*	0.0	Max Possible FTEQ (pg/g)2	0.4

Chlorinated Dioxins	Conc.3	Toxic Equ. Conc.4	Detection
Congener	PG/9	PQ/Q	pg/g
2,3,7,8-TCDD	ND	<0.2	0.2
1,2,3,7,8-PeCDD	ND	< 0.3	0.6
1,2,3,4,7,8-HxCDD	ND	<0.07	0.7
1,2,3,6,7,8-HxCDD	0.9	0.09	0.8
1,2,3,7,8,9-HxCDD	NDR	<0.08	0.8
1,2,3,4,6,7,8-HpCDD	ND	<0.005	0.5
OCDO	NDR	< 0.0007	0.7

International Toxic Equivalency Factors	TEQ	
Congener	(FTEF)	
2,3,7,8-TCDD	1	
1,2,3,7,8-PeCDD	0.5	
1,2,3,4,7,8-HxCDD	0.1	
1,2,3,6,7,8-HxCDD	0.1	
1,2,3,7,8,9-HxCDD	0.1	
1,2,3,4,6,7,8-HpCDD	0.01	
OCDD	0.001	

Chlorinated Furans	Conc.3	Toxic Equ. Conc.	Detection
Congener	P0/0	PQ/Q	pg/g
2,3,7,8-TCDF	ND	< 0.02	0.2
1,2,3,7,8-PeCDF	ND	< 0.035	0.7
2,3,4,7,8-PeCDF	ND	< 0.35	0.7
1,2,3,4,7,8-HxCDF	ND	<0.09	0.9
1.2,3,6,7,8-HxCDF	ND	<0.09	0.9
1,2,3,7,8,9-HxCDF	ND	<0.09	0.9
2,3,4,7,8,9-HxCDF	ND	< 0.07	0.7
1,2,3,4,6,7,8-HpCDF	ND	< 0.007	0.7
1,2,3,4,7,8,9-HpCDF	NOR	<0.006	0.6
OCDF	0.8	0.0008	0.6

International Toxic Equivalency Factors	TEQ
Congener	(FTEF)
2.3.7,8-TCDF	0.1
1.2,3,7,8-PeCDF	0.05
2,3,4,7,8-PeCDF	0.5
1.2,3,4,7,8-HxCDF	0.1
1,2,3,6,7,8-HxCDF	0.1
1,2,3,7,8,9-HxCDF	0.1
2,3,4,7,8,9-HxCDF	0.1
1.2,3,4,6,7,8-HpCDF	0.01
1,2,3,4,7,8,9-HpCDF	0.01
OCDF	0.001

Dioxin Surrogate Extraction Recovery	Recovery
¹³ C ₁₂ Congener	%
¹³ C ₁₂ -2.3.7.8-TCDD	97
¹³ C ₁₂ -1,2,3,7,8-PeCDD	96
13C12-1,2,3,4,7,8-HxCDD	99
13C12-1,2,3,6,7,8-HxCDD	102
13C12-1,2,3,4,6,7,8-HpCDD	126
13C,2-OCDD	80

Furan Surrogate Extraction Recovery	Recovery
¹³ C ₁₂ Congener	*
13C12-2,3,7,8-TCDF	83
¹³ C ₁₂ -2,3,4,7,8-PeCDF	89
¹³ C ₁₂ -1.2,3,4,7,8-HxCDF	74
¹³ C ₁₂ -1,2,3,6,7,8-HxCDF	96
¹³ C ₁₂ -2,3,4,6,7,8-HxCDF	102
13C ₁₂ -1,2,3,4,6,7,8-HpCDF	95
13C ₁₂ -OCDF	86

Reported as ND/NDR = 0°DL	³ Results reported on dry weight basis	NDR = Detected peak with isotope ratio outside quantitation criteria
² Reported as ND/NDR = 0.5*DL	* NATO 1988	ND = Not detected
		DL = Detection limit

The results reported here relate only to the items tested.

Authorization:

Royal Military College, Dept. Of Chem. and Chem. Eng., B.O. Box 17000 Sm. Forces, Kingston, ON, K7K 7B4 (613) 541-6000 ext 6684 / Fax: (613) 545-8341

Client: ASU

School of Environmental Studies Queen's University Kingston, Ontario K7L 3N6 (613) 533-2656 ASG Login No:

Site:

7164 Res Island 31-Jul-02

Samples Received: Date of Analysis: Method No: Date Reported; Page: 31-Jul-02 08-Aug-02 ASG032 21-Aug-02 2 of 19

Chlorinated Dioxins and Furans in Soil and Sediment

Sample I.d.:	Blank #2 Dioxins as 2,3,7,8-TCDD equivalent (LTEQ)	Detected FTEQ. (pg/g)1	0.1	Max Possible FTEQ (pg/g) ²	1.0
	Furans as 2,3,7,8-TCDD equivalent (I-TEQ)	Detected FTEQ. (pg/g)1	0.0	Max Possible I-TEQ (pg/g)2	0.8

Chlorinated Dioxins	Conc.3	Toxic Equ. Conc.4	Detection
Congener	P9/9	P9/9	pg/g
2,3,7,8-TCDD	ND	<0.5	0.5
1,2,3,7,8-PeCDD	ND	< 0.75	1.5
1,2,3,4,7,8-HxCDD	1.3	0.13	1.1
1,2,3,8,7,8-HxCDD	ND	<0.28	2.8
1,2,3,7,8,9-HxCDD	ND	<0.28	2.8
1,2,3,4,6,7,8-HpCDD	ND	<0.026	2.6
OCDD	ND	< 0.0015	1.5

International Toxic Equivalency Factors	TEQ	
Congener	(FTEF)	
2,3,7,8-TCDD	. 1	
1,2,3,7,8-PeCDD	0.5	
1,2,3,4,7,8-HxCDD	0.1	
1,2,3,6,7,8-HxCDD	0.1	
1,2,3,7,8,9-HxCDD	0.1	
1,2,3,4,6,7,8-HpCDD	0.01	
OCDD	0.001	

Chlorinated Furans	Conc.3	Toxic Equ. Conc.4	Detection	
Congener	PQ/Q	pg/g	pg/g	
2,3,7,8-TCDF	ND	<0.07	0.7	
1,2,3,7,8-PeCDF	ND	< 0.055	1.1	
2,3,4,7,8-PeCDF	ND	<0.55	1.1	
1,2,3,4,7,8-HxCDF	ND	<0.26	2.6	
1,2,3,6,7,8-HxCDF	ND	< 0.26	2.6	
1,2,3,7,8,9-HxCDF	ND	<0.26	2.6	
2,3,4,7,8,9-HxCDF	ND	< 0.19	1.9	
1,2,3,4,6,7,8-HpCDF	ND	< 0.019	1.9	
1,2,3,4,7,8,9-HpCDF	ND	< 0.013	1.3	
OCDF	ND	< 0.0013	1.3	

International Toxic Equivalency Factors	TEQ
Congener	(FTEF)
2,3,7,8-TCDF	0.1
1,2,3,7,8-PeCDF	0.05
2.3,4,7,8-PeCDF	0.5
1.2.3.4.7.8-HxCDF	0.1
1,2,3,6,7,8-HxCDF	0.1
1,2,3,7,8,9-HxCDF	0.1
2,3,4,7,8,9-HxCDF	0.1
1,2,3,4,6,7,8-HpCDF	0.01
1.2,3.4,7,8,9-HpCDF	0.01
OCDF	0.001

Dioxin Surrogate Extraction Recovery	Recovery
¹³ C ₁₂ Congener	%
¹³ C ₁₂ -2,3,7,8-TCDD	71
¹³ C ₁₂ -1,2,3,7,8-PeCDD	73
¹³ C ₁₂ -1,2,3,4,7,8-HxCDD	75
¹³ C ₁₂ -1,2,3,6,7,8-HxCDD	81
¹³ C ₁₂ -1,2,3,4,6,7,8-HpCDD	94
13C,2-OCDD	133

Furan Surrogate Extraction Recovery	Recovery
¹³ C ₁₂ Congener	%
¹³ C ₁₂ -2,3,7,8-TCDF	52
¹³ C ₁₂ -2,3,4,7,8-PeCDF	102
13C ₁₂ -1,2,3,4,7,8-HxCDF	97
¹³ C ₁₂ -1,2,3,6,7,8-HxCDF	82
¹³ C ₁₂ -2,3,4,5,7,8-HxCDF	79
¹³ C ₁₂ -1,2,3,4,6,7,8-HpCDF	128
13C12-OCDF	153

Reported as ND/NDR = 0°DL	3 Results reported on dry weight basis	NDR = Detected peak with isotope ratio outside quantitation criteria
Reported as ND/NDR = 0.5*DL	* NATO 1988	ND = Not detected
		DL = Detection limit

The results reported here relate only to the items tested

Prepared by: Dr. D. Kelly, Assistant Director

Authorization:

Royal Military College, Dept. Of Chem. and Chem. Eng., P.O. Box 17000 Stn. Forces, Kingston, ON, K7K 7B4 (613) 541-6000 ext 6684 / Fax: (613) 545-8341

Client: ASU

School of Environmental Studies Queen's University Kingston, Ontario K7L 3N6 (613) 533-2656 ASG Login No: Site: 7164

Samples Received: Date of Analysis: Method No: Res Island 31-Jul-02 08-Aug-02 ASG032

Date Reported: Page: 21-Aug-02 3 of 19

Chlorinated Dioxins and Furans in Soil and Sediment

Sample i.d.:	BRI02-001 Dioxins as 2,3,7,8-TCDD equivalent (FTEQ)	Detected FTEQ. (pg/g) ¹	28	Max Possible FTEQ (pg/g)2	28
	Furans as 2,3,7,8-TCDD equivalent (FTEQ)	Detected I-TEQ. (pg/g)*	230	Max Possible FTEQ (pg/g)2	230

Chlorinated Dioxins	Conc. ³ Toxic Equ. Conc. ⁴		Detection	
Congener	pg/g	pg/g	PQ/Q	
2,3,7,8-TCDD	15	15	0.1	
1,2,3,7,8-PeCDD	0.4	0.2	0.3	
1,2,3,4,7,8-HxCDD	4.1	0.41	0.5	
1,2,3,6,7,8-HxCDD	19	1.9	0.7	
1,2,3,7,8,9-HxCDD	15	1.5	0.7	
1,2,3,4,6,7,8-HpCDD	670	6.7	0.5	
OCDD	2700	2.7	0.3	

Dioxin Homologues	Number Peaks	Conc.	Detection Limit
Group		pg/g	pg/g
TCDD	1	15	0.1
PeCDD	2	5.1	0.3
HxCDD	6	87	0.7
HpCDD	2	1100	0.5
OCDD	1	2700	0.3

International Toxic Equivalency Factors	TEQ
Congener	(FTEF)
2,3,7,8-TCDD	1
1,2,3,7,8-PeCDD	0.5
1,2,3,4,7,8-HxCDD	0.1
1,2,3,6,7,8-HxCDD	0.1
1,2,3,7,8,9-HxCDD	0.1
1,2,3,4,5,7,8-HpCDD	0.01
OCDD	0.001

Dioxin Surrogate Extraction Recovery	Recovery
13C12 Congener	%
13C12-2,3,7,8-TCDD	93
¹³ C ₁₂ -1,2,3,7,8-PeCDD	110
¹³ C ₁₂ -1.2,3,4,7,8-HxCDD	85
13C ₁₂ -1.2,3,6,7,8-HxCDD	92
¹³ C ₁₂ -1,2,3,4,6,7,8-HpCDD	133
13C12-OCDD	169

Chlorinated Furans	Conc.3	Toxic Equ. Conc.	Detection Limit	
Congener	P9/9	PG/9	pg/g	
2,3,7,8-TCDF	54	5.4	0.1	
1,2,3,7,8-PeCDF	27	1.35	0.5	
2,3,4,7,8-PeCDF	130	65	0.5	
1,2,3,4,7,8-HxCDF	1000	100	0.7	
1,2,3,6,7,8-HxCDF	190	19	0.7	
1,2,3,7,8,9-HxCDF	110	11	0.7	
2,3,4,7,8,9-HxCDF	71	7.1	0.5	
1,2,3,4,6,7,8-HpCDF	1300	13	0.5	
1,2,3,4,7,8,9-HpCDF	590	5.9	0.4	
OCDF	5200	5.2	0.4	

Furan Homologues	Number Peaks	Conc.	Detection Limit
Group		PO/g	P9/9
TCDF	9	89	0.1
PeCDF	16	480	0.5
HxCDF	12	3100	0.7
HpCDF	3	4200	0.5
OCDF	1	5200	0.4

International Toxic Equivalency Factors	TEQ
Congener	(FTEF)
2,3,7,8-TCDF	0.1
1,2,3,7,8-PeCDF	0.05
2,3,4,7,8-PeCDF	0.5
1,2,3,4,7,8-HxCDF	0.1
1,2,3,6,7,8-HxCDF	0.1
1,2,3,7,8,9-HxCDF	0.1
2,3.4,7.8,9-HxCDF	0.1
1,2.3,4,6,7,8-HpCDF	0.01
1,2,3,4,7,8,9-HpCDF	0.01
OCDF	0.001

Furan Surrogate Extraction Recovery	Recovery	
¹³ C ₁₂ Congener		
13C12-2,3,7,8-TCDF	102	
¹³ C ₁₂ -2.3,4,7,8-PeCDF	70	
¹³ C ₁₂ -1,2,3,4,7,8-HxCDF	91	
13C ₁₂ -1,2,3,6,7,8-HxCDF	97	
¹³ C ₁₂ -2,3,4,6,7,8-HxCDF	89	
13C ₁₂ -1,2,3,4,6,7,8-HpCD.F	122	
13C 32-OCDF	142	

Reported as ND/NDR = 0°DL	3 Results reported on dry weight basis	NDR = Detected peak with isotope ratio outside quantitation criteria	
Reported as ND/NDR = 0.5°DL	4 NATO 1988	ND = Not detected	
	-11	DL = Detection limit	

The results reported here relate only to the items tested.

Authorization:

Royal Milirary College, Dept. Of Chem. and Chem. Eng., P.O. Box 17000 Sm. Forces, Kingston, ON, K7K 7B4 (613) 541-6000 ext 6684 / Fax: (613) 545-8341

Client: ASU

School of Environmental Studies Queen's University Kingston, Ontario K7L 3N6

(613) 533-2656

ASG Login No: Site:

7164 Res Island Samples Received: 31-Jul-02

4 of 19

Date of Analysis: Method No: Date Reported: Page:

08-Aug-02 ASG032 21-Aug-02

Chlorinated Dioxins and Furans in Soil and Sediment

-		2-1-1-11750 1-1-1		Man Bassible LTEO (as-fex)	
Sample I.d. :	BRi02-002 Dioxins as 2,3,7,8-TCDD equivalent (I-TEQ)	Detected I-TEQ. (pg/g)	28	Max Possible FTEQ (pg/g) ²	28
	Furans as 2,3,7,8-TCDD equivalent (I-TEQ)	Detected I-TEQ. (pg/g)*	94	Max Possible LTEQ (pg/g)2	94

Chlorinated Dioxins	Conc.3	Toxic Equ. Conc.4	Detection Limit pg/g	
Congener	P0/9	PQ/Q		
2,3,7,8-TCDD	10	10	0.1	
1,2,3,7.8-PeCDD	8,6	4.3	0.3	
1,2,3,4,7,8-HxCDD	12	1.2	0.4	
1,2,3,6,7,8-HxCDD	24	2.4	0.6	
1,2,3,7,8,9-HxCDD	37	3.7	0.6	
1,2,3,4,6,7,8-HpCDD	500	5	0.5	
OCDD	1400	1.4	0.5	

Dioxin Homologues	Number Peaks	Conc.	Detection Limit
Group		P9/0	pg/g
TCDD	2	16	0.1
PeCDD	7	15	0.3
HxCDD	6	110	0.6
HpCDD	2	800	0.5
OCDD	1	1400	0.5

International Toxic Equivalency Factors	TEQ	
Congener	(FTEF)	
2,3,7,8-TCDD	1	
1,2,3,7,8-PeCDD	0.5	
1,2,3,4,7,8-HxCDD	0.1	
1,2,3,6,7,8-HxCDD	0.1	
1,2,3,7,8,9-HxCDD	0.1	
1,2,3,4,6,7,8-HpCDD	0.01	
OCDD	0.001	

Dioxin Surrogate Extraction Recovery	Recovery	
¹³ C ₁₂ Congener	%	
¹³ C ₁₂ -2.3,7,8-TCDD	93	
¹³ C ₁₂ -1,2,3,7,8-PeCDD	110	
13C12-1,2,3,4,7,8-HxCDD	85	
¹³ C ₁₂ -1,2,3,6,7,8-HxCDD	92	
¹³ C ₁₂ -1,2,3,4,8,7,8-HpCDD	133	
13C12-OCDD	169	

Chlorinated Furans	Conc.3	Toxic Equ. Conc.4	Detection	
Congener	PG/G	PG/G	pg/g	
2,3,7,8-TCDF	48	4.8	0.1	
1.2,3,7,8-PeCDF	130	6.5	0.4	
2,3,4,7,8-PeCDF	71	35.5	0.4	
1,2,3,4,7,8-HxCDF	210	21	0.9	
1.2,3,6,7,8-HxCDF	40	4	0.9	
1,2,3,7,8,9-HxCDF	76	7.6	0.9	
2,3,4,7,8,9-HxCDF	79	7.9	1.1	
1,2,3,4,6,7,8-HpCDF	190	1.9	1.1	
1,2,3,4,7,8,9-HpCDF	470	4.7	0.6	
OCDF	520	0.52	0.6	

Furan Homologues	Number Peaks	Conc.	Detection Limit
Group		P9/9	P9/9
TCDF	8	170	0.1
PeCDF	9	320	0.4
HxCDF	9	810	1.1
HpCDF	3	2000	1.1
OCDF	1	520	0.6

International Toxic Equivalency Factors	TEQ
Congener	(FTEF)
2,3,7,8-TCDF	0.1
1,2.3,7,8-PeCDF	0.05
2,3,4,7,8-PeCDF	0.5
1,2,3,4,7,8-HxCDF	0.1
1,2,3,6,7,8-HxCDF	0.1
1.2,3,7,8,9-HxCDF	0.1
2,3,4,7,8,9-HxCDF	0.1
1,2,3,4,6,7,8-HpCDF	0.01
1.2,3.4,7,8,9-HpCDF	0.01
OCDF	0.001

Furan Surrogate Extraction Recovery	Recovery	
¹³ C ₁₇ Congener	%	
¹³ C ₁₂ -2,3,7,8-TCDF	110	
¹³ C ₁₇ -2,3,4,7,8-PeCDF	120	
¹³ C ₁₂ -1,2,3,4,7,8-HxCDF	66	
¹³ C ₁₂ -1,2,3,6,7,8-HxCDF	71	
13C ₁₂ -2,3,4,6,7,8-HxCDF	109	
13C ₁₂ -1,2,3,4,6,7,8-HpCDF	74	
13C12*OCDF	120	

Reported as ND/NDR = 0*DL

3 Results reported on dry weight basis

NDR = Detected peak with isotope ratio outside quantitation criteria

Reported as ND/NDR = 0.5*DL * NATO 1988 ND = Not detected DL = Detection limit

The results reported here relate only to the items tested

Dr. D. Kelly, Assistant Director

Prepared by:

Authorization:

RMC ANALYTICAL SERVICES GROUP * GROUP DES SERVICES ANALYTIQUES CMR
Royal Military Collège, Dept. Of Chem. and Chem. Eng., P.O. Box 17000 Sm. Forces, Kingston, ON, K7K 7B4

[613] 541-6000 ext 6684 / Fax: [613] 545-8341

Client: ASU

School of Environmental Studies Queen's University Kingston, Ontario K7L 3N6 (613) 533-2656

ASG Login No:

7164

Site: Samples Received:

Page:

Res Island 31-Jul-02 08-Aug-02

Date of Analysis: Method No: Date Reported:

ASG032 21-Aug-02

5 of 19

Chlorinated Dioxins and Furans in Soil and Sediment

Sample I.d. :	BRi02-004 Dioxins as 2,3,7,8-TCDD equivalent (FTEQ)	Detected FTEQ. (pg/g) ¹	5.7	Max Possible FTEQ (pg/g)2	5.9
	Furans as 2,3,7,8-TCDD equivalent (I-TEQ)	Detected I-TEQ. (pg/g)1	120	Max Possible LTEQ (pg/g)2	120

Chlorinated Dioxins	Conc.3	Toxic Equ. Conc.4	Detection
Congener	pg/g	pg/g	P9/9
2,3,7,8-TCDD	ND	<0.5	0.5
1,2,3,7,8-PeCDD	2	t.	1.0
1,2,3,4,7,8-HxCDD	4.2	0.42	1.0
1,2,3,6,7,8-HxCDD	3.8	0.38	1.8
1,2,3,7,8,9-HxCDD	6.8	0.68	1.8
1,2,3,4,6,7,8-HpCDD	210	2.1	1.2
OCDD	1100	1.1	0.8

Dioxin Homologues	Number Peaks	Conc.	Detection Limit
Group		P9/9	P9/9
TCDD	0	<0.5	0,5
PeCDD	9	46	1.0
HxCDD	4	26	1.8
HpCDD	2	350	1.2
OCDD	1	1100	0.8

International Toxic Equivalency Factors*	TEQ
Congener	(FTEF
2,3,7,8-TCDD	1
1,2,3,7,8-PeCDD	0.5
1,2,3,4,7,8-HxCDD	0.1
1,2,3,6,7,8-HxCDD	0.1
1,2,3,7,8,9-HxCDD	0.1
1,2,3,4,6,7,8-HpCDD	0.01
OCDD	0.001

Dioxin Surrogate Extraction Recovery	Recovery
¹³ C ₁₂ Congener	%
13C ₁₂ -2,3,7,8-TCDD	83
13C ₁₂ -1,2,3,7,8-PeCDD	121
13C ₁₂ -1,2,3,4,7,8-HxCDD	92
13C ₁₂ -1,2,3,6,7,8-HxCDD	111
13C12-1,2,3,4,6,7,8-HpCDD	137
12C12-OCDD	170

Chlorinated Furans	Conc.*	Toxic Equ. Cone.	Detection Limit	
Congener	P9/9	pg/g	pg/g	
2,3,7.8-TCDF	88	8.8	0.5	
1,2,3,7,8-PeCDF	92	4.6	1.0	
2,3,4,7,8-PeCDF	27	13.5	1.0	
1,2,3,4,7,8-HxCDF	540	54	2.2	
1,2,3,6,7,8-HxCDF	100	10	2.2	
1,2,3,7,8,9-HxCDF	79	7.9	2.2	
2,3,4,7,8,9-HxCDF	51	5.1	1.6	
1,2,3,4,6,7,8-HpCDF	760	7.6	1.6	
1,2,3,4,7,8,9-HpCDF	400	4	0.9	
OCDF	2500	2.5	0.9	

Furan Homologues	Number Peaks	Conc.	Detection Limit
Group		pg/g	pg/g
TCDF	13	360	0.5
PeCDF	18	240	1.0
HxCDF	9	1200	2.2
HpCDF	3	2300	1.6
OCDF	1	2500	0.9

International Toxic Equivalency Factors	TEQ
Congener	(FTEF)
2,3,7,8-TCDF	0.1
1,2,3,7,8-PeCDF	0.05
2,3,4,7,8-PeCDF	0.5
1,2,3,4,7,8-HxCDF	0.1
1,2,3,6,7,8-HxCDF	0.1
1.2,3,7,8,9-HxCDF	0.1
2,3,4,7,8,9-HxCDF	0.1
1,2,3,4,6,7,8-HpCDF	0.01
1,2,3,4,7,8,9-HpCDF	0.01
OCDF	0.001

Furan Surrogate Extraction Recovery	Recovery	
¹³ C ₁₂ Congener	%	
¹³ C ₁₂ -2,3,7,8-TCDF	89	
12C ₁₂ -2,3,4,7,8-PeCDF	121	
12C ₁₂ -1,2,3,4,7,8-HxCDF	83	
13C ₁₂ -1,2,3,6,7,8-HxCDF	85	
13C 13-2,3.4,8,7,8-HxCDF	91	
13C ₁₂ -1,2,3,4,6,7,8-HpCDF	108	
13C ₁₂ OCDF	155	

Reported as ND/NDR = 0*DL	3 Results reported on dry weight basis	NDR = Detected peak with isotope ratio outside quantitation criteria
² Reported as ND/NDR = 0.5*DL	* NATO 1988	ND = Not detected
		DL = Detection limit

The results reported here relate only to the items tested.

Prepared by Dr. D Kelly, Assistant Director

Authorization:

Dr. E. Ma, Research Associate

D&Fs7164r5

Royal Military College, Dept. Of Chem. and Chem. Eng., P.O. Box 17000 Stn. Forces, Kingston, ON, K7K 7B4 (613) 541-6000 ext 6684 / Fax: (613) 545-8341

Client: ASU

School of Environmental Studies Queen's University Kingston, Ontario K7L 3N6 (613) 533-2656 ASG Login No: Site:

Samples Received: Date of Analysis:

Method No: Date Reported: Page: 7164 Res Island 31-Jul-02 08-Aug-02 ASG032 21-Aug-02 6 of 19

Chlorinated Dioxins and Furans in Soil and Sediment

Sample i.d. :	BRI02-005 Dioxins as 2,3,7,8-TCDD equivalent (I-TEQ)	Detected I-TEQ. (pg/g) ¹	4.8	Max Possible FTEQ (pg/g) ²	5.1
	Fursos as 2,3,7,8-TCDD equivalent (I-TEQ)	Detected FTEQ. (pg/g)1	110	Max Possible FTEQ (pg/g)2	110

Chlorinated Dioxins	Conc.3	Toxic Equ. Conc.4	Detection Limit
Congener	P0/0	pg/g	pg/g
2,3,7,8-TCDD	ND	<0.2	0.2
1,2,3,7,8-PeCDD	ND	<0.25	0.5
1,2,3,4,7,8-HxCDD	3.2	0.32	0.5
1,2,3,6,7,8-HxCDD	7.2	0.72	1.0
1,2,3,7,8,9-HxCDD	4.3	0.43	1.0
1,2,3,4,6,7,8-HpCDD	250	2.5	0.9
OCDD	870	0.87	0.6

Dioxin Homologues	Number Peaks	Conc.	Detection Limit
Group		pg/g	pg/g
TCDD	0	<0.2	0.2
PeCDD	0	< 0.25	0.5
HxCDD	4	82	1.0
HpCDD	2	280	0,9
OCDD	1	870	0.6

International Toxic Equivalency Factors ⁴	TEQ
Congener	(FTEF)
2,3,7,8-TCDD	1
1,2,3,7,8-PeCDD	0.5
1,2,3,4,7,8-HxCDD	0.1
1,2,3,6,7,8-HxCDD	0.1
1,2,3,7,8,9-HxCDD	0.1
1,2,3,4,6,7,8-HpCDD	0.01
OCDD	0.001

Dioxin Surrogate Extraction Recovery	Recovery
¹³ C ₁₂ Congener	%
¹³ C ₁₂ -2,3,7,8-TCDD	98
¹³ C ₁₂ -1,2,3,7,8-PeCDD	112
13C12-1,2,3,4,7,8-HxCDD	107
13C12-1,2,3,6,7,8-HxCDD	141
13C ₁₂ -1,2,3,4,6,7,8-HpCDD	107
13C13-OCDD	128

Chlorinated Furans	Conc.3	Toxic Equ. Conc.	Detection
Congener	P0/0	pg/g	pg/g
2,3,7,8-TCDF	58	5.8	0.2
1,2,3,7,8-PeCDF	21	1.05	0.5
2,3,4,7,8-PeCDF	58	29	0.5
1,2,3,4,7,8-HxCDF	420	. 42	1.1
1,2,3,6,7,8-HxCDF	91	9.1	1.1
1,2,3,7,8,9-HxCDF	68	6.6	1.1
2,3,4,7,8,9-HxCDF	27	2.7	1.0
1,2,3,4,6,7,8-HpCDF	650	6.5	1.0
1,2,3,4,7,8,9-HpCDF	400	4	0.7
OCDF	2500	2.5	0.7

Furan Homologues	Number Peaks	Conc.	Detection Limit
Group		pg/g	pg/g
TCDF	9	220	0.2
PeCDF	12	160	0.5
HxCDF	9	970	1.1
HPCDF	4	2200	1.0
OCDF	1	2500	0.7

International Toxic Equivalency Factors	TEQ
Congener	(FTEF)
2,3,7,8-TCDF	0.1
1,2,3,7,8-PeCDF	0.05
2,3,4,7,8-PeCDF	0.5
1,2,3,4,7,8-HxCDF	0.1
1,2,3,6,7,8-HxCDF	0.1
1,2,3,7,8,9-HxCDF	0.1
2,3,4,7,8,9-HxCDF	0.1
1,2,3,4,6,7,8-HpCDF	0.01
1,2,3,4,7,8,9-HpCDF	0.01
OCDF	0.001

Furan Surrogate Extraction Recovery	Recovery
¹³ C ₁₂ Congener	*
¹³ C ₁₂ -2,3,7,8-TCDF	100
¹³ C ₁₂ -2,3,4,7,8-PeCDF	111
¹³ C ₁₂ -1,2,3,4,7,8-HxCDF	99
13C ₁₂ -1,2,3,6,7,8-HxCDF	86
13C12-2.3,4,6,7,8-HxCDF	135
13C ₁₂ -1,2,3,4,6,7,8-HpCDF	95
13C12*OCDF	123

1 Reported as ND/NDR = 0*DL 2 Reported as ND/NDR = 0.5*DL

3 Results reported on dry weight basis

NDR = Detected peak with isotope ratio outside quantitation criteria ND = Not detected

* NATO 1988

DL = Detection limit

The results reported here relate only to the items tested.

Prepared by Dr. D Kelly, Assistant Director

Authorization:

Dr. E. Ma, Research Associate

RMC ANALYTICAL SERVICES GROUP • GROUP DES SERVICES ANALYTIQUES CMR
Royal Military College, Dept. Of Chem. and Chem. Eng., P.O. Box 17000 Stn. Forces, Kingston, ON, K7K 7B4
(613) 541-6000 ext 6684 / Fax: (613) 545-8341

Client: ASU

School of Environmental Studies Queen's University Kingston, Ontario K7L 3N6 (613) 533-2656

ASG Login No: Site:

7164 Res Island

Samples Received: Date of Analysis: Method No: Date Reported:

Page:

31-Jul-02 08-Aug-02 ASG032 21-Aug-02

7 of 19

Chlorinated Dioxins and Furans in Soil and Sediment

Sample I.d.:	BRi02-006 Dioxins as 2,3,7,8-TCDD equivalent (FTEQ)	Detected FTEQ. (pg/g)	70	Max Possible FTEQ (pg/g)2	70
	(Average of duplicate values) Furans as 2,3,7,8-TCDD equivalent (I-TEQ)	Detected I-TEQ. (pg/g)*	1400	Max Possible FTEQ (pg/g)2	1400

Chlorinated Dioxins	Conc.3	Toxic Equ. Conc.4	Detection	
Congener	P0/0	pg/g	PQ/Q	
2,3.7,8-TCDD	7.1	7,1	0.3	
1,2,3,7,8-PeCDD	5.7	2.85	1.1	
1,2,3,4,7,8-HxCDD	21	2.1	1.2	
1,2,3,6,7,8-HxCDD	75	7.5	1.8	
1,2,3,7,8,9-HxCDD	55	5.5	1.8	
1,2,3,4,6,7,8-HpCDD	2900	29	2.0	
OCDD	16000	16	1.4	

International Toxic Equivalency Factors	TEQ
Congener	(FTEF)
2,3,7,8-TCDD	1
1,2,3,7,8-PeCDD	0.5
1,2,3,4,7,8-HxCDD	0.1
1.2.3,6,7,8-HxCDD	0.1
1,2,3,7,8,9-HxCDD	0.1
1,2,3,4,6.7,8-HpCDD	0.01
OCDD	0.001

Chlorinated Furans	Conc.3	Toxic Equ. Conc.	Limit po/o	
Congener	pg/g	PQ/Q		
2,3,7,8-TCDF	360	36	0.4	
1,2,3,7,8-PeCDF	1300	65	1.2	
2,3,4,7,8-PeCDF	400	200	1,2	
1,2,3,4,7,8-HxCDF	7300	730	2.3	
1,2,3,6,7,8-HxCDF	1000	100	2.3	
1,2.3,7,8,9-HxCDF	570	57	2.3	
2,3,4,7,8,9-HxCDF	630	63	1.8	
1,2,3,4,6,7,8-HpCDF	7400	74	1.8	
1,2,3,4,7,8,9-HpCDF	4600	46	0.9	
OCDF	29000	29	0.9	

International Toxic Equivalency Factors	TEQ
Congener	(FTEF)
2,3,7,8-TCDF	0.1
1,2,3,7,8-PeCDF	0.05
2,3,4,7,8-PeCDF	0.5
1,2,3,4,7,8-HxCDF	0.1
1,2,3,6,7,8-HxCDF	0.1
1,2,3,7,8,9-HxCDF	0.1
2,3,4,7,8,9-HxCDF	0.1
1,2,3,4,6,7,8-HpCDF	0.01
1,2,3,4,7,8,9-HpCDF	0.01
OCDF	0.001

Reported as ND/NDR = 0*DL	3 Results reported on dry weight basis	NDR = Detected peak with isotope ratio outside quantitation criteria
Reported as ND/NDR = 0.5*DL	* NATO 1988	ND = Not detected
		DL * Detection limit

The results reported here relate only to the items tested.

Prepared by : Dr. D. Kelly, Assistant Director

Authorization:

Royal Military College, Dept. Of Chem. and Chem. Eng., P.O. Box 17000 Sm. Forces, Kingston, ON, K7K 7B4 (613) 541-6000 ext 6684 / Fax: (613) 545-8341

Client: ASU

School of Environmental Studies

Queen's University Kingston, Ontario K7L 3N6

(613) 533-2656

ASG Login No: Site:

7164 Res Island

Samples Received: Date of Analysis: Method No: 31-Jul-02 08-Aug-02 ASG032

Date Reported: Page: 21-Aug-02 8 of 19

Chlorinated Dioxins and Furans in Soil and Sediment

Sample I.d.:	BRi02-006* Dioxins as 2,3,7,8-TCDD equivalent (I-TEQ)	Detected FTEQ. (pg/g) ¹	70	Max Possible FTEQ (pg/g)2	70
	Furans as 2,3,7,8-TCDD equivalent (I-TEQ)	Detected FTEQ. (pg/g) ¹	1300	Max Possible LTEQ (pg/g)2	1300

Chlorinated Dioxins	Conc. ³	Toxic Equ. Conc.	Detection Limit	
Congener	P9/9	pg/g	pg/g	
2,3,7,8-TCDD	ND	<0.3	0.3	
1,2,3,7,8-PeCDD	7.1	3.55	1.1	
1,2,3,4,7,8-HxCDD	19	1.9	1.2	
1,2,3,6,7,8-HxCDD	75	7.5	1.8	
1,2,3,7,8,9-HxCDD	54	5.4	1.8	
1,2,3,4,6,7,8-HpCDD	3200	32	2.0	
OCDD	15000	15	1.4	

Dioxin Homologues	Number Peaks	Conc.	Detection Limit
Group		pg/g	P9/9
TCDD	0	<0.3	0.3
PeCDD	3	24	1.1
HxCDD	5	3500	1,8
HpCDD	2	2000	2.0
OCDD	1	15000	1.4

International Toxic Equivalency Factors	TEQ	
Congener	(LTEF)	
2,3,7,8-TCDD	1	
1,2,3,7,8-PeCDD	0.5	
1,2,3,4,7,8-HxCDD	0.1	
1,2.3.5,7,8-HxCDD	0.1	
1,2,3,7,8,9-HxCDD	0.1	
1,2,3,4,6,7,8-HpCDD	0.01	
OCDD	0.001	

Dioxin Surrogate Extraction Recovery	Recovery	
¹³ C ₁₂ Congener	%	
13C ₁₂ -2.3,7,8-TCDD	130	
¹³ C ₁₂ -1,2,3,7,8-PeCDD	116	
¹³ C ₁₂ -1,2,3,4,7,8-HxCDD	120	
¹³ C ₁₂ -1,2,3,5,7,8-HxCDD	155	
13C ₃₂ -1,2,3,4,6,7,8-HpCDD	124	
13C12-OCDD	152	

Chlorinated Furans	Conc.3	Toxic Equ. Conc.4	Detection Limit pg/g	
Congener	pg/g	PQ/Q		
2,3,7,8-TCDF	370	37	0.4	
1,2,3,7,8-PeCDF	200	10	1.2	
2,3,4,7,8-PeCDF	380	190	1.2	
1,2,3,4,7,8-HxCDF	7100	710	2.3	
1,2,3,6,7,8-HxCDF	1000	100	2.3	
1,2,3,7,8,9-HxCDF	ND	< 0.23	2.3	
2,3,4,7,8,9-HxCDF	580	58	1.8	
1,2,3,4,6,7,8-HpCDF	7500	75	1.8	
1,2,3,4,7,8,9-HpCDF	4400	44	0.9	
OCDF	27000	27	0.9	

Furan Homologues	Number Peaks	Conc.	Detection Limit
Group		pg/g	pg/g
TCDF	11	2400	0.4
PeCDF	10	1100	1.2
HxCDF	7	1200	2.3
HpCDF	3	24000	1.8
OCDF	1	27000	0.9

International Toxic Equivalency Factors	TEQ	
Congener	(FTEF)	
2,3,7,8-TCDF	0.1	
1,2,3,7,8-PeCDF	0.05	
2,3,4,7,8-PeCDF	0.5	
1,2,3,4,7,8-HxCDF	0.1	
1,2,3,6,7,8-HxCDF	0.1	
1,2,3,7,8,9-HxCDF	0.1	
2,3,4,7,8,9-HxCDF	0.1	
1,2,3,4,6,7,8-HpCDF	0.01	
1.2.3.4.7,8,9-HpCDF	0.01	
OCDF	0.001	

Furan Surrogate Extraction Recovery	Recovery	
C ₁₂ Congener	%	
13C ₁₂ -2,3,7,8-TCDF	116	
¹³ C ₁₂ -2,3,4,7,8-PeCDF	107	
¹³ C ₁₂ -1,2,3,4,7,8-HxCDF	109	
13C ₁₂ -1,2,3,6,7,8-HxCDF	99	
¹³ C ₁₂ -2,3,4,6,7,8-HxCDF	108	
¹³ C ₁₂ -1,2,3,4,6,7,8-HpCDF	138	
13C ₁₂ -OCDF	221	

Reported as ND/NDR = 0*DL 3 Results reported on dry weight basis NDR = Detected peak with isotope ratio outside quantitation criteria

Reported as ND/NDR = 0.5*DL 4 NATO 1988 ND = Not detected

DL = Detection limit

The results reported here relate only to the items tested.

Prepared by Dr. D. Kelly, Assistant Director

Authorization:

Royal Military College, Dept. Of Chem. and Chem. Eng., P.O. Box 17000 Sm. Forces, Kingston, ON, K7K 7B4 (613) 541-6000 ext 6684 / Fax: (613) 545-8341

Client: ASU

School of Environmental Studies Queen's University Kingston, Ontario K7L 3N6 (613) 533-2656 ASG Login No: Site: 7164 Res Island

Samples Received: Date of Analysis: Method No: Date Reported:

Page:

31-Jul-02 08-Aug-02 ASG032 21-Aug-02 9 of 19

Chlorinated Dioxins and Furans in Soil and Sediment

Sample i.d. ;	BRI02-006D Dioxins as 2,3,7,8-TCDD equivalent (FTEQ)	Detected FTEQ. (pg/g)	70	Max Possible FTEQ (pg/g)2	70
	Furans as 2,3,7,8-TCDD equivalent (FTEQ)	Detected FTEQ. (pg/g) ¹	1500	Max Possible FTEQ (pg/g)2	1500

Chlorinated Dioxins	Conc.3	Toxic Equ. Conc.	Detection
Congener	PQ/Q	pg/g	pg/g
2,3,7,8-TCDD	NOR	<0.2	0.2
1,2,3,7,8-PeCDD	4.3	2.15	0.5
1,2,3,4,7,8-HxCDD	22	2.2	0.6
1,2,3,6,7,8-HxCDD	75	7.5	1.3
1,2,3,7,8,9-HxCDD	56	5.6	1.3
1,2,3,4,6,7,8-HpCDD	2500	25	0.9
OCDD	17000	17	0.9

Dioxin Homologues	Number Peaks	Conc.	Detection Limit
Group	- 30 102677900-107	pg/g	P9/9
TCDD	0	<0.2	0.2
PeCDD		110	0.5
HXCDD		440	1.3
HPCDD	3	7400	0.9
OCDD	1	17000	0.9

International Toxic Equivalency Factors	TEQ	
Congener	(FTEF)	
2,3,7,8-TCDD	1	
1,2,3,7,8-PeCDD	0.5	
1,2,3,4,7,8-HxCDD	0.1	
1,2,3,6,7,8-HxCDD	0.1	
1,2,3,7,8,9-HxCDD	0.1	
1.2.3.4.6.7.8-HpCDD	0.01	
OCDD	0.001	

Dioxin Surrogate Extraction Recovery	Recovery	
¹³ C ₁₂ Congener	%	
¹³ C ₁₇ 2,3,7,8-TCDD	113	
¹³ C ₁₂ -1,2,3,7,8-PeCDD	115	
¹³ C ₁₂ -1,2,3,4,7,8-HxCDD	91	
¹³ C ₁₂ -1,2,3,6,7,8-HxCDD	91	
13C ₁₂ -1,2,3,4,6,7,8-HpCDD	130	
"C,1-OCDD	105	

Chlorinated Furans	Conc.	Toxic Equ. Conc.*	Detection Limit	
Congener	P9/9	P9/9	P9/g	
2,3,7,8-TCDF	350	35	0.2	
1,2,3,7,8-PeCDF	2300	115	0.6	
2,3,4,7,8-PeCDF	420	210	0.6	
1,2,3,4,7,8-HxCDF	7500	750	1.2	
1,2,3,6,7,8-HxCDF	1000	100	1.2	
1,2,3,7,8,9-HxCDF	570	57	1.2	
2,3,4,7,8,9-HxCDF	670	67	0.9	
1,2,3.4,5,7,8-HpCDF	7300	73	0.9	
1,2,3,4,7,8,9-HpCDF	4800	48	0.7	
OCDF	30000	30	0.7	

Furan Homologues	Number Peaks	Conc.	Detection Limit
Group		P9/9	pa/q
TCDF	9	1700	0.2
PeCDF	8	4700	0.6
HxCDF	7	14000	1.2
HpCDF	3	20000	0.9
OCDF	1	30000	0.7

International Toxic Equivalency Factors	TEQ
Congener	(FTEF)
2,3,7,8-TCDF	0.1
1,2,3,7,8-PeCDF	0.05
2,3,4,7,8-PeCDF	0.5
1,2,3,4,7,8-HxCDF	0.1
1.2,3,6,7,8-HxCDF	0.1
1,2,3,7,8,9-HxCDF	0.1
2,3,4,7,8,9-HxCDF	0.1
1,2,3,4,6,7,8-HpCDF	0.01
1.2,3,4,7,8,9-HpCDF	0.01
OCDF	3.001

Furan Surrogate Extraction Recovery	Recover	
¹³ C ₁₂ Congener	%	
¹³ C ₁₂ -2,3,7,8-TCDF	106	
¹³ C ₁₂ -2,3,4,7,8-PeCDF	103	
13C ₁₂ -1,2,3,4,7,8-HxCDF	123	
13C ₁₂ -1,2,3,6,7,8-HxCDF	69	
¹³ C ₁₂ -2,3,4,6,7,8-HxCDF	96	
**C ₁₂ -1,2,3,4,6,7,8-HpCDF	125	
13C,2-OCDF	129	

Reported as ND/NDR = 0*DL	Results reported on dry weight basis	NDR = Detected peak with isotope ratio outside quantitation criteria	
Reported as ND/NDR = 0.5*DL	* NATO 1988	ND = Not detected	
		DL = Detection limit	

The results reported here relate only to the items tested.

Prepared by Dr. D. Kelly, Assistant Director

Authorization:

Royal Military College, Dept. Of Chem. and Chem. Eng., P.O. Box 17000 Shn. Forces, Kingston, ON, K7K 714

(613) 541-6000 ext 6684 / Fax: (613) 545-8341

Client: ASU

School of Environmental Studies Queen's University Kingston, Ontario K7L 3N6

(613) 533-2656

ASG Login No: 7164 Site: Res Isl

Res Island 31-Jul-02 08-Aug-02

10 of 19

Samples Received: Date of Analysis: Method No: Date Reported: Page:

08-Aug-02 ASG032 21-Aug-02

Chlorinated Dioxins and Furans in Soil and Sediment

Sample i.d. :	BRI02-007 Dioxins as 2,3,7,8-TCDD equivalent (HTEQ)	Detected FTEQ. (pg/g) ¹	8.9	Max Possible FTEQ (pg/g)2	9.1
THE SALES OF THE S	Furans as 2,3,7,8-TCDD equivalent (LTEQ)	Detected FTEQ. (pg/g) ¹	80	Max Possible FTEQ (pg/g)2	80

Chiorinated Dioxins	Conc.3	Toxic Equ. Conc.4	Detection Limit pg/g	
Congener	pg/g	pg/g		
2,3,7,8-TCDD	ND	<0.2	0.2	
1,2,3,7,8-PeCDD	ND	<0.2	0.4	
1,2,3,4,7,8-HxCDD	7.7	0.77	0.5	
1,2,3,6,7,8-HxCDD	10	1	0.9	
1,2,3,7,8,9-HxCDD	12	1.2	0.9	
1,2,3,4,6,7,8-HpCDD	410	4.1	0.7	
OCDD	1800	1.8	0.5	

Dioxin Homologues	Number Peaks	Conc.	Detection Limit
Group		pg/g	Pg/g
TCDD	0	<0.2	0.2
PeCDD	0	< 0.4	0.4
HxCDD	8	41	0.9
HpCDD	2	630	0.7
OCDD	1 1	1800	0.5

International Toxic Equivalency Factors*	TEQ	
Congener	(FTEF)	
2,3,7,8-TCDD	1	
1,2,3,7,8-PeCDD	0.5	
1,2,3,4,7,8-HxCDD	0.1	
1,2,3,6,7,8-HxCDD	0.1	
1,2,3,7,8,9-HxCDD	0.1	
1,2,3,4,6,7,8-HpCDD	0.01	
OCDD	0.001	

Dioxin Surrogate Extraction Recovery	Recovery
¹³ C ₁₂ Congener	%
"C ₁₂ -2,3,7,8-TCDD	100
13C ₁₂ -1,2,3,7,8-PeCDD	123
¹³ C ₁₂ -1,2,3,4,7,8-HxCDD	98
13C ₁₂ -1,2,3,6,7,8-HxCDD	120
13C ₁₂ -1,2,3,4,6,7,8-HpCDD	119
13C12-OCDD	148

Chlorinated Furans	Conc.3	Toxic Equ. Conc.4	Detection Limit	
Congener	P9/9	pg/g	P9/g	
2,3,7,8-TCDF	29	2.9	0.1	
1,2,3,7,8-PeCDF	49	2.45	0.5	
2.3,4,7,8-PeCDF	52	26	0.5	
1,2,3,4,7,8-HxCDF	270	27	1.1	
1.2,3,6,7,8-HxCDF	56	5.6	1.3	
1,2,3,7,8,9-HxCDF	46	4.6	1.1	
2,3,4,7,8,9-HxCDF	31	3.1	0.9	
1,2,3,4,6,7,8-HpCDF	480	4.8	0.9	
1,2,3,4,7,8,9-HpCDF	200	2	0.6	
OCDF	1800	1.8	0.6	

Furan Homologues	Number Peaks	Conc.	Detection Limit	
Group		pg/g	pg/g	
TCDF	14	110	0.1	
PeCDF	13	1000	0.5	
HxCDF	11	680	1.3	
HpCDF	3	1800	0.6	
OCDF	1	1800	0.6	

International Toxic Equivalency Factors	TEQ
Congener	(FTEF)
2,3,7,8-TCDF	0.1
1.2.3,7,8-PeCDF	0.05
2,3,4,7,8-PeCDF	0.5
1,2,3,4,7,8-HxCDF	0.1
1,2,3,6,7,8-HxCDF	0.1
1,2,3,7,8,9-HxCDF	0.1
2,3,4,7,8,9-HxCDF	0.1
1,2,3,4,6,7,8-HpCDF	0.01
1,2,3,4,7,8,9-HpCDF	0.01
OCDF	0.001

Furan Surrogate Extraction Recovery	Recovery
¹³ C ₁₂ Congener	%
12C ₁₇ 2,3,7,8-TCDF	137
¹³ C ₁₂ -2,3,4,7,8-PeCDF	104
¹³ C ₁₂ -1,2,3,4,7,8-HxCDF	99
¹³ C ₁₂ -1,2,3,6,7,8-HxCDF	74
¹³ C ₁₂ -2,3,4,6,7,8-HxCDF	108
⁵³ C ₁₂ -1,2,3,4,6,7,8-HpCDF	91
13C12-OCDF	130

1 Reported as ND/NDR = 01DL 2 Reported as ND/NDR = 0.51DL 3 Results reported on dry weight basis

NDR = Detected peak with isotope ratio outside quantitation criteria

* NATO 1988

ND = Not detected

DL = Detection limit

The results reported here relate only to the items tested.

Prepared by Dr. D. Kelly, Assistant Director

Authorization:

Royal Military College, Dept. Of Chem. and Chem. Eng., P.O. Box 17000 Sm. Forces, Kingston, ON, K7K 7B4 (613) 541-6000 ext 6084 / Fax: (613) 545-8341

Client: ASU

School of Environmental Studies Queen's University Kingston, Ontario K7L 3N6 (613) 533-2656 ASG Login No: Site:

Samples Received: Date of Analysis: Method No: Res Island 31-Jul-02 08-Aug-02 ASG032 21-Aug-02 11 of 19

7164

Date Reported: Page:

Chlorinated Dioxins and Furans in Soil and Sediment

Sample I.d.:	BRI02-008 Dioxins as 2,3,7,8-TCDD equivalent (I-TEQ)	Detected LTEQ. (pg/g)*	8.3	Max Possible FTEQ (pg/g)2	6.8
	Furans as 2,3,7,8-TCDD equivalent (I-TEQ)	Detected FTEQ. (pg/g) ¹	70	Max Possible FTEQ (pg/g)2	70

Chlorinated Dioxins	Conc.3	Toxic Equ. Conc.4	Detection Limit pg/g	
Congener	P0/0	pg/g		
2,3,7,8-TCDD	ND	<0.5	0.5	
1,2,3,7,8-PeCDD	ND	< 0.55	1.1	
1,2,3,4,7,8-HxCDD	3.2	0.32	1.0	
1,2,3,6,7,8-HxCDD	8.8	0.88	2.3	
1,2,3,7,8,9-HxCDD	7.8	0.78	2.3	
1,2,3,4,6,7,8-HpCDD	300	3	1.9	
OCDD	1300	1.3	1.2	

Dioxin Homologues	Number Peaks	Conc.	Detection Limit
Group		pg/g	pg/g
TCDD	0	<0.5	0.5
PeCDD	0	<1.1	1.1
HxCDD	8	61	2.3
HpCDD	2	480	1.9
OCDD	1	1300	1.2

International Toxic Equivalency Factors	TEQ	
Congener	(FTEF)	
2,3,7,8-TCDD	1	
1,2,3,7,8-PeCDD	0.5	
1,2,3,4,7,8-HxCDD	0.1	
1,2,3,6,7,8-HxCDD	0.1	
1,2,3,7,8,9-HxCDD	0.1	
1.2,3,4,6,7,8-HpCDD	0.01	
OCDD	0.001	

Dioxin Surrogate Extraction Recovery	Recovery
13C+2 Congener	%
13C12-2,3,7,8-TCDD	77
¹³ C ₁₂ -1,2,3,7,8-PeCDD	98
13C ₁₂ -1,2,3,4,7,8-HxCDD	80
13C ₁₂ -1,2,3,6,7,8-HxCDD	81
¹³ C ₁₂ -1,2,3,4,6,7,8-HpCDD	118
13C12-OCDD	156

Chlorinated Furans	Conc.3	Toxic Equ. Conc.	Detection Limit	
Congener	pg/g	pg/g	pg/g	
2,3,7,8-TCDF	20	2	0.4	
1,2,3,7,8-PeCDF	44	2.2	1.0	
2,3,4,7,8-PeCDF	49	24.5	1.0	
1,2,3.4.7,8-HxCDF	270	27	2.3	
1,2,3,6,7,8-HxCDF	43	4.3	2.3	
1,2,3,7,8,9-HxCDF	16	1.6	2.3	
2,3,4,7,8,9-HxCDF	2.1	0.21	2.0	
1,2,3,4,6,7,8-HpCDF	420	4.2	2.0	
1.2,3.4,7,8,9-HpCDF	150	1.5	1.0	
OCDF	1100	1.1	1.0	

Furan Homologues	Number Peaks	Conc.	Detection Limit
Group		Pg/g	pg/g
TCDF	8	60	0.4
PeCDF	10	250	1.0
HXCDF	7	480	2.3
HpCDF	3	1400	2.0
OCDF	1	1100	1.0

International Toxic Equivalency Factors	TEQ	
Congener	(FTEF)	
2,3,7,8-TCDF	0.1	
1,2,3,7,8-PeCDF	0.05	
2,3,4,7,8-PeCDF	0.5	
1,2,3,4,7,8-HxCDF	0.1	
1,2,3,6,7,8-HxCDF	0.1	
1,2,3,7,8,9-HxCDF	0.1	
2,3,4,7,8,9-HxCDF	0.1	
1,2,3.4,6,7,8-HpCDF	0.01	
1.2.3.4.7.8.9-HpCDF	0.01	
OCDF	0.001	

Furan Surrogate Extraction Recovery	Recovery
¹³ C ₁₂ Congener	%
"C12.3,7,8-TCDF	90
¹³ C ₁₂ 2.3,4,7,8-PeCDF	114
¹³ C ₁₂ -1,2,3,4,7,8-HxCDF	79
C ₁₂ -1,2,3,6,7,8-HxCDF	79
C ₁₂ -2,3,4,6,7,8-HxCDF	85
³ C ₁₂ -1,2,3,4,6,7,8-HpCDF	112
°C, rOCDF	188

Reported as ND/NDR = 0°DL Reported as ND/NDR = 0.5°DL 3 Results reported on dry weight basis

NDR = Detected peak with isotope ratio outside quantitation criteria
ND = Not detected

DL = Detection limit

The results reported here relate only to the items tested.

Prepared by : Dr. D. Kelly, Assistant Director

Authorization:

Royal Military College, Dept. Of Chem. and Chem. Eng., P.O. Box 17000 Sm. Forces, Kingston, ON, K7K 7B4 (613) 541-6000 ext 6684 / Fax: (613) 545-8341

Client: ASU

School of Environmental Studies Queen's University Kingston, Onlario K7L 3N6 (613) 533-2656

ASG Login No: Site:

7164 Res Island

Samples Received: Date of Analysis: Method No: Date Reported:

Page:

31-Jul-02 08-Aug-02 ASG032 21-Aug-02 12 of 19

Chlorinated Dioxins and Furans in Soil and Sediment

Sample I.d.:	BRI02-010 Dioxins as 2,3,7,8-TCDD equivalent (I-TEQ)	Detected I-TEQ. (pg/g)1	7.3	Max Possible I-TEQ (pg/g)2	7.8
1.6%	Furans as 2,3,7,8-TCDD equivalent (I-TEQ)	Detected I-TEQ. (pg/g) ¹	140	Max Possible I-TEQ (pg/g)2	140

Chlorinated Dioxins	Conc.3	Toxic Equ. Conc.4	Detection Limit
Congener	pg/g	pg/g	pg/g
2,3,7,8-TCDD	ND	<0.3	0,3
1,2,3,7,8-PeCDD	ND	< 0.55	1.1
1,2,3,4,7,8-HxCDD	5.8	0.58	1.0
1,2,3,6,7,8-HxCDD	ND	< 0.24	2.4
1,2,3,7,8,9-HxCDD	11	1.1	2.4
1,2,3,4,6,7,8-HpCDD	370	3.7	2.3
OCDD	1900	1.9	2.0

Dioxin Homologues	Number Peaks	Conc.	Detection Limit
Group		P9/9	pg/g
TCDD	0	<0.3	1.0
PeCDD	0	<1.1	1.1
HxCDD	4	32	1.0
HpCDD	2	620	1.0
OCDD	1	1900	2.0

International Toxic Equivalency Factors	TEQ
Congener	(HTEF
2,3,7,8-TCDD	1
1,2,3,7,8-PeCDD	0.5
1,2,3,4,7,8-HxCDD	0.1
1,2,3,6,7,8-HxCDD	0.1
1,2,3,7,8,9-HxCDD	0.1
1,2,3,4,6,7,8-HpCDD	0.01
OCDD	0.001

Dioxin Surrogate Extraction Recovery	Recovery	
¹³ C ₁₂ Congener	%	
¹³ C ₁₂ -2,3,7,8-TCDD	118	
¹³ C ₁₂ -1,2,3,7,8-PeCDD	107	
¹³ C ₁₂ -1,2,3,4,7,8-HxCDD	138	
¹³ C ₁₂ -1,2,3,6,7,8-HxCDD	169	
13C ₁₂ -1,2,3,4,6,7,8-HpCDD	110	
13C12-OCDD	109	

Chlorinated Furans	Conc.3	Toxic Equ. Conc.4	Detection Limit
Congener	pg/g	pg/g	pg/g
2,3,7,8-TCDF	59	5.9	0.4
1,2,3,7,8-PeCDF	110	5.5	1.0
2,3,4,7,8-PeCDF	66	33	1.0
1,2,3,4,7,8-HxCDF	600	. 60	2.6
1,2,3,6,7,8-HxCDF	48	4.8	2.6
1,2,3,7,8,9-HxCDF	77	7.7	2.6
2,3,4,7,8,9-HxCDF	3	0.3	2.7
1,2,3,4,6,7,8-HpCDF	870	8.7	2.7
1,2,3,4,7,8,9-HpCDF	560	5.6	1.9
OCDF	3800	3.8	1.9

Furan Homologues	Number Peaks	Conc.	Detection Limit
Group		P9/9	pg/g
TCDF	8	120	0.4
PeCDF	10	350	1.0
HxCDF	6	1100	2.7
HpCDF	3	3400	2.7
OCDF	1	3800	1.9

International Toxic Equivalency Factors	TEQ
Congener	(FTEF)
2,3,7,8-TCDF	0.1
1,2,3,7,8-PeCDF	0.05
2,3,4,7,8-PeCDF	0.5
1,2,3,4,7,8-HxCDF	0.1
1,2,3,6,7,8-HxCDF	0.1
1,2,3,7,8,9-HxCDF	0.1
2,3,4,7,8,9-HxCDF	0.1
1,2,3,4,6,7,8-HpCDF	0.01
1,2,3,4,7,8,9-HpCDF	0.01
OCDF	0.001

Furan Surrogate Extraction Recovery	Recovery
¹³ C ₁₂ Congener	%
13C122,3,7,8-TCDF	108
¹³ C ₁₂ -2,3,4,7,8-PeCDF	114
¹³ C ₁₂ -1,2,3,4,7,8-HxCDF	133
¹³ C ₁₂ -1,2,3,6,7,8-HxCDF	136
¹³ C ₁₂ -2,3,4,6,7,8-HxCDF	162
¹³ C ₁₂ -1,2,3,4,6,7,8-HpCDF	94
13C12-OCDF	109

* Reported as ND/NDR = 0*DL	3 Results reported on dry weight basis	NDR = Detected peak with isotope ratio outside quantitation criteria	
² Reported as ND/NDR = 0.5*DL	* NATO 1988	ND = Not detected	
		DL = Detection limit	

The results reported here relate only to the items tested.

Dr. D. Kelly, Assistant Director

Authorization : ______ Dr. E. Ma, Research Associate D&Fs7164r12

Royal Military College, Dept. Of Chem. and Chem. Eng., P.O. Box 17000 Stn. Forces, Kingston, ON, K7K 7B4 (613) 541-6000 ext 6684 / Eax (613) 545-8341

Client: ASU

School of Environmental Studies Queen's University Kingston, Ontario K7L 3N6 (613) 533-2656

ASG Login No: 7164 Site: Res Island Samples Received: 31-Jul-02 Date of Analysis: Method No: 08-Aug-02 ASG032 Date Reported: 21-Aug-02 13 of 19

Chlorinated Dioxins and Furans in Soil and Sediment

Sample i.d. :	BRi02-011 Dioxins as 2,3,7,8-TCDD equivalent (I-TEQ)	Detected I-TEQ. (pg/g) ¹	90.0	Max Possible FTEQ (pg/g)2	90
	Furans as 2,3,7,8-TCDD equivalent (I-TEQ)	Detected I-TEQ. (pg/g)1	530	Max Possible FTEQ (pg/g)2	530

Chlorinated Dioxins	Conc.3	Toxic Equ. Conc.4	Detection Limit
Congener	pg/g	pg/g	pg/g
2,3,7,8-TCDD	ND	<0.4	0.4
1,2,3,7,8-PeCDD	20	10	1.4
1,2,3,4,7,8-HxCDD	31	3.1	1.4
1,2,3,6,7,8-HxCDD	110	11	3.4
1,2,3,7,8,9-HxCDD	84	8.4	3.4
1,2,3,4,6,7,8-HpCDD	4100	41	3.0
OCDD	17000	17	1.9

Dioxin Homologues	Number Peaks	Conc.	Detection Limit
Group		PG/g	pg/g
TCDD	0	<0.4	0.4
PeCDD	5	77	1:4
HxCDD	6	540	3.4
HpCDD	3	7300	3.0
OCDD	1	17000	1.9

Page:

International Toxic Equivalency Factors	TEQ
Congener	(FTEF)
2,3,7,8-TCDD	1
1,2,3,7,8-PeCDD	0.5
1,2,3,4,7,8-HxCDD	0.1
1,2,3,6,7,8-HxCDD	0.1
1,2,3,7,8,9-HxCDD	0.1
1,2,3,4,6,7,8-HpCDD	0.01
OCDD	0.001

Dioxin Surrogate Extraction Recovery	Recovery
¹³ C ₁₂ Congener	%
13C12-2,3.7,8-TCDD	120
¹³ C ₁₂ -1.2,3,7,8-PeCDD	84
13C ₁₂ -1,2,3,4,7,8-HxCDD	71
13C ₁₂ -1,2,3,6,7,8-HxCDD	99
13C ₁₂ -1,2,3,4,6,7,8-HpCDD	95
13C12-OCDD	128

Chlorinated Furans	Conc.3	Toxic Equ. Conc.	Detection Limit
Congener	pg/g	pg/g	pg/g
2,3,7,8-TCDF	190	19	0.4
1,2,3,7,8-PeCDF	810	40.5	1.4
2,3,4,7,8-PeCDF	210	105	1.4
1,2,3,4,7,8-HxCDF	2400	240	3.1
1,2,3,6,7,8-HxCDF	330	33	3.1
1,2,3,7,8,9-HxCDF	230	23	3.1
2,3,4,7,8,9-HxCDF	4.4	0.44	2.6
1,2,3,4,6,7,8-HpCDF	3400	34	2.6
1,2,3,4,7,8,9-HpCDF	1800	18	1.5
OCDF	15000	15	1.5

Furan Homologues	Number Peaks	Conc.	Detection Limit
Group		pg/g	pg/g
TCDF	6	320	0.4
PeCDF	10	17000	1.4
HxCDF	8	4900	3.1
HpCDF	3	14000	1.0
OCDF	1	15000	1.5

International Toxic Equivalency Factors	TEQ
Congener	(FTEF)
2,3,7,8-TCDF	0.1
1,2,3,7,8-PeCDF	0.05
2,3,4,7,8-PeCDF	0.5
1,2,3,4,7,8-HxCDF	0.1
1,2,3,6,7,8-HxCDF	0.1
1,2,3,7,8,9-HxCDF	0.1
2,3,4,7,8,9-HxCDF	0.1
1,2,3,4,6,7,8-HpCDF	0.01
1,2,3,4,7,8,9-HpCDF	0.01
OCDF	0.001

Furan Surrogate Extraction Recovery	Recovery	
¹³ C ₁₂ Congener	%	
¹³ C ₁₂ -2,3,7,8-TCDF	96	
¹³ C ₁₂ -2,3,4,7,8-PeCDF	84	
¹³ C ₁₂ -1,2,3,4,7,8-HxCDF	103	
¹³ C ₁₂ -1,2,3,6,7,8-HxCDF	83	
¹³ C ₁₂ -2,3,4,6,7,8-HxCDF	92	
¹³ C ₁₂ -1,2,3,4,6,7,8-HpCDF	109	
13C ₁₂ -OCDF	157	

Reported as ND/NDR = 0*DL	3 Results reported on dry weight basis	NDR = Detected peak with isotope ratio outside quantitation criteria
² Reported as ND/NDR = 0.5°DL	4 NATO 1988	ND = Not detected
		DL ≈ Detection limit

The results reported here relate only to the items tested.

Prepared by:
Dr. D. Kelly, Assistant Director

Authorization:

Royal Military College, Dept. Of Chem. and Chem. Eng., P.O. Box 17000 Stn. Forces, Kingston, ON, K7K 7B4 (613) 541-6000 ext 6684 / Fax: (613) 545-8341

Client: ASU

School of Environmental Studies Queen's University Kingston, Ontario K7L 3N6 (613) 533-2656

ASG Login No:

7164

Site: Samples Received: Date of Analysis: Method No:

Res Island 31-Jul-02 08-Aug-02 ASG032

Page:

Date Reported: 21-Aug-02 14 of 19

Chlorinated Dioxins and Furans in Soil and Sediment

Sample I.d. :	BRI02-012 Dioxins as 2,3,7,8-TCDD equivalent (I-TEQ)	Detected FTEQ. (pg/g)1	0.9	Max Possible I-TEQ (pg/g) ²	1.1
	Furans as 2,3,7,8-TCDD equivalent (I-TEQ)	Detected FTEQ. (pg/g)*	73	Max Possible I-TEQ (pg/g)2	73

Chlorinated Dioxins	Conc.3	Toxic Equ. Conc.4	Detection Limit
Congener	P9/9	pg/g	pg/g
2,3,7,8-TCDD	ND	<0.5	0.5
1,2,3,7,8-PeCDD	ND	< 0.5	1.0
1,2,3,4,7,8-HxCDD	ND	<0.1	1.0
1,2,3,6,7,8-HxCDD	ND	< 0.22	2.2
1,2,3,7,8,9-HxCDD	ND	<0.22	2.2
1,2,3,4,6,7,8-HpCDD	20	0.2	1.4
OCDD	110	0.11	0.9

Dioxin Homologues	Number Peaks	Conc.	Detection Limit
Group		P9/9	pg/g
TCDD	0	<0.5	0.5
PeCDD	0	<1.0	1.0
HxCDD	0	<2.2	2.2
HpCDD	2	46	1.4
OCDD	1	110	0.9

International Toxic Equivalency Factors	TEQ	
Congener	(LTEF)	
2,3,7,8-TCDD	1	
1,2,3,7,8-PeCDD	0.5	
1,2,3,4,7,8-HxCDD	0.1	
1,2,3,6,7,8-HxCDD	0.1	
1,2,3,7,8,9-HxCDD	0.1	
1,2,3,4,6,7,8-HpCDD	0.01	
OCDD	0.001	

Dioxin Surrogate Extraction Recovery	Recovery
¹³ C ₁₂ Congener	%
¹³ C ₁₂ -2,3,7,8-TCDD	60
¹³ C ₁₂ -1,2,3,7,8-PeCDD	86
¹³ C ₁₂ -1,2,3,4,7,8-HxCDD	87
¹³ C ₁₂ -1.2,3,6,7,8-HxCDD	112
¹³ C ₁₂ -1,2,3,4,6,7,8-HpCDD	115
13C12-OCDD	143

Chlorinated Furans	Conc.3	Toxic Equ. Conc.4	Detection
Congener	pg/g	pg/g	pg/g
2,3,7,8-TCDF	48	4.8	0.4
1,2,3,7,8-PeCDF	6.2	0.31	1.0
2,3,4,7,8-PeCDF	44	22	1.0
1,2,3,4,7,8-HxCDF	270	27	2.0
1,2,3,6,7,8-HxCDF	74	7.4	2.0
1,2,3,7,8,9-HxCDF	37	3.7	2.0
2,3,4,7,8,9-HxCDF	ND	< 0.17	1.7
1,2,3,4,6,7,8-HpCDF	560	5.8	1.7
1,2,3,4,7,8,9-HpCDF	150	1.5	1.3
OCDF	920	0.92	1.3

Furan Homologues	Number Peaks	Conc.	Detection Limit
Group		pg/g	pg/g
TCDF	8	140	0.4
PeCDF	8	120	1.0
HxCDF	5	600	2.0
HpCDF	3	1000	1.7
OCDF	1	920	1,3

International Toxic Equivalency Factors ⁴	TEQ
Congener	(FTEF)
2,3,7,8-TCDF	0.1
1,2,3,7,8-PeCDF	0.05
2,3,4,7,8-PeCDF	0.5
1,2,3,4,7,8-HxCDF	0.1
1,2,3,6,7,8-HxCDF	0.1
1,2,3,7,8,9-HxCDF	0.1
2,3,4,7,8,9-HxCDF	0.1
1,2,3,4,6,7,8-HpCDF	0.01
1,2,3,4,7,8,9-HpCDF	0.01
OCDF	0.001

Furan Surrogate Extraction Recovery	Recovery
13C ₁₂ Congener	%
¹³ C ₁₂ -2,3,7,8-TGDF	78
¹³ C ₁₂ -2,3,4,7,8-PeCDF	85
13C ₁₂ -1,2,3,4,7,8-HxCDF	93
¹³ C ₁₂ -1.2,3,6,7,8-HxCDF	92
13C ₁₂ -2,3,4,6,7,8-HxCDF	148
¹³ C ₁₂ -1,2,3,4,6,7,8-HpCDF	97
13C12-OCDF	104

Reported as ND/NDR = 0*DL	3 Results reported on dry weight basis	NDR = Detected peak with isotope ratio outside quantitation criteria
² Reported as ND/NDR = 0.5*DL	* NATO 1988	ND = Not detected
		DL = Detection limit

The results reported here relate only to the items tested

Prepared by:
Dr. D. Kelly, Assistant Director

Authorization:

Royal Military College, Dept. Of Chem. and Chem. Erg., B.O. Box 17000 Stn. Forces, Kingston, ON, K7K 7B4 (613) 541-6000 est 6684 / Fax: (613) 545-8341

Client: ASU

School of Environmental Studies

Queen's University Kingston, Ontario K7L 3N6 (613) 533-2656 ASG Login No: Site: 7164

Samples Received: Date of Analysis: Method No: Res Island 31-Jul-02 08-Aug-02 ASG032

Date Reported: Page: 21-Aug-02 15 of 19

Chlorinated Dioxins and Furans in Soil and Sediment

Sample i.d.:	BRI02-013 Dioxins as 2,3,7,8-TCDD equivalent (I-TEQ)	Detected I-TEQ. (pg/g) ¹	0.9	Max Possible I-TEQ (pg/g)2	1.4
	Furans as 2,3,7,8-TCDD equivalent (I-TEQ)	Detected I-TEQ. (pg/g) ¹	13	Max Possible FTEQ (pg/g)2	13

Chlorinated Dioxins	Conc.1	Toxic Equ. Conc.	Detection Limit pg/g	
Congener	pg/g	pg/g		
2,3,7,8-TCDD	ND	<0.3	0.3	
1,2,3,7,8-PeCDD	ND	< 0.35	0.7	
1,2,3,4,7,8-HxCDD	1.8	0.18	0.6	
1,2,3,6,7,8-HxCDD	ND	< 0.13	1.3	
1,2,3,7,8,9-HxCDD	ND	< 0.13	1.3	
1,2,3,4,6,7,8-HpCDD	49	0.49	0.9	
OCDD	230	0.23	1.0	

Dioxin Homologues	Number Peaks	Conc.	Detection Limit
Group		pg/g	pg/g
TCDD	0	<0.3	0.3
PeCDD	0	< 0.7	0.7
HxCDD	1	1.8	1.3
HpCDD	3	130	0.9
OCDD	1	230	1.0

International Toxic Equivalency Factors ⁴	TEQ
Congener	(FTEF)
2,3,7,8-TCDD	1
1,2,3,7,8-PeCDD	0.5
1,2,3,4,7,8-HxCDD	0.1
1,2,3,6,7,8-HxCDD	0.1
1,2,3,7,8,9-HxCDD	0.1
1,2,3,4,6,7,8-HpCDD	0.01
OCDD	0.001

Dioxin Surrogate Extraction Recovery	Recovery
¹³ C ₁₂ Congener	%
13C12-2,3,7,8-TCDD	56
¹³ C ₁₂ -1,2,3,7,8-PeCDD	69
13C ₁₂ -1,2,3,4,7,8-HxCDD	90
13C12-1,2,3,6,7,8-HxCDD	83
13C ₁₂ -1,2,3,4,6,7,8-HpCDD	73
13C13-OCDD	55

Chlorinated Furans	Conc.3	Toxic Equ. Conc.4	Detection	
Congener	pg/g	pg/g	pg/g	
2,3,7,8-TCDF	11	1.1	0.3	
1,2,3,7,8-PeCDF	9.3	0.465	0.6	
2,3,4,7,8-PeCDF	9.1	4.55	0.6	
1,2,3,4,7,8-HxCDF	40	4	1.0	
1,2,3,6,7,8-HxCDF	7.7	0.77	1.0	
1,2,3,7,8,9-HxCDF	2.2	0.22	1.0	
2,3,4,7,8,9-HxCDF	ND	< 0.14	1.4	
1,2,3,4,6,7,8-HpCDF	130	1.3	1.4	
1,2,3,4,7,8,9-HpCDF	51	0.51	1.1	
OCDF	310	0.31	1.1	

Furan Homologues	Number Peaks	Conc.	Detection Limit	
Group		pg/g	pg/g	
TCDF	11	58	0.3	
PeCDF	11	99	0.6	
HxCDF	5	99	1.4	
HpCDF	3	350	1.4	
OCDF	1	310	1.1	

International Toxic Equivalency Factors	TEQ
Congener	(FTEF)
2,3,7,8-TCDF	0.1
1,2,3,7,8-PeCDF	0.05
2,3,4,7,8-PeCDF	0.5
1,2,3,4,7,8-HxCDF	0.1
1,2,3,6,7,8-HxCDF	0.1
1,2,3,7,8,9-HxCDF	0.1
2,3,4,7,8,9-HxCDF	0.1
1,2,3,4,6,7,8-HpCDF	0.01
1,2,3,4,7,8,9-HpCDF	0.01
OCDF	0.001

Furan Surrogate Extraction Recovery	Recovery
¹³ C ₁₂ Congener	%
¹³ C ₁₂ -2,3,7,8-TCDF	57
¹³ C ₁₂ -2,3,4,7,8-PeCDF	81
¹³ C ₁₂ -1,2,3,4,7,8-HxCDF	82
¹³ C ₁₂ -1,2,3,6,7,8-HxCDF	76
13C ₁₂ -2,3,4,6,7,8-HxCDF	200
13C ₁₂ -1,2,3,4,6,7,8-HpCDF	50
C12-OCDF	53

Reported as ND/NDR = 0*DL	3 Results reported on dry weight basis	NDR = Detected peak with isotope ratio outside quantitation criteria	
Reported as ND/NDR = 0.5°DL	* NATO 1988	ND = Not detected	
		DL = Detection limit	

The results reported here relate only to the items tested.

Prepared by:
Dr. D. Kelly, Assistant Director

Authorization:

RMC ANALYTICAL SERVICES GROUP • GROUP DES SERVICES ANALYTIQUES CMR
Royal Military Collège, Dept. Of Chem. and Chem. Eng., PO. Box 17000 Sto. Forces, Kingston, ON, K7K 7B4
(613) 541-6000 ext 6684 / Fax: (613) 545-8341

Client: ASU

School of Environmental Studies Queen's University Kingston, Ontario K7L 3N6 (613) 533-2656

ASG Login No: Site:

Samples Received: Date of Analysis: Method No: Date Reported:

Page:

7164 Res Island 31-Jul-02 08-Aug-02 ASG032 21-Aug-02 16of 19

Chlorinated Dioxins and Furans in Soil and Sediment

Sample i.d. :	BRI02-014 Dioxins as 2,3,7,8-TCDD equivalent (I-TEQ)	Detected I-TEQ. (pg/g) ¹	1.4	Max Possible FTEQ (pg/g)2	1.8
24 MG NOV	Furans as 2,3,7,8-TCDD equivalent (I-TEQ)	Detected I-TEQ. (pg/g) ¹	13	Max Possible FTEQ (pg/g) ²	14

Chlorinated Dioxins	Conc.3	Toxic Equ. Conc.	Detection Limit
Congener	P9/9	P9/9	pg/g
2,3,7,8-TCDD	ND	<0.4	0.4
1,2,3,7,8-PeCDD	ND	< 0.55	1.1
1,2,3,4,7,8-HxCDD	3.4	0.34	1.0
1,2,3,6,7,8-HxCDD	2.1	0.21	2.0
1,2,3,7,8,9-HxCDD	2.7	0.27	2.0
1,2,3,4,6,7,8-HpCDD	41	0.41	1.3
OCDD	130	0.13	1.4

Diaxin Homologues	Number Peaks	Conc.	Detection Limit
Group		pg/g	pg/g
TCDD	0	<0.4	0.4
PeCDD	0	<1.1	1.1
HxCDD	3	8.1	2.0
HpCDD	2	72	1.3
OCDD	1	130	1.4

International Toxic Equivalency Factors	TEQ
Congener	(I-TEF)
2,3,7,8-TCDD	1
1,2,3,7,8-PeCDD	0.5
1,2,3,4,7,8-HxCDD	0.1
1,2,3,6,7,8-HxCDD	0.1
1,2,3,7,8,9-HxCDD	0.1
1,2,3,4,6,7,8-HpCDD	0.01
OCDD	0.001

Dioxin Surrogate Extraction Recovery	Recovery
¹³ C ₁₂ Congener	%
¹³ C ₁₂ -2,3,7,8-TCDD	101
¹³ C ₁₂ -1,2,3,7,8-PeCDD	112
¹³ C ₁₂ -1,2,3,4,7,8-HxCDD	95
¹³ C ₁₂ -1,2,3,6,7,8-HxCDD	113
13C ₁₂ -1,2,3,4,6,7,8-HpCDD	131
13C12-OCDD	107

Chlorinated Furans	Conc.3	Toxic Equ. Conc.	Detection
Congener	P9/9	pg/g	pg/g
2,3,7,8-TCDF	12	1.2	0.5
1,2,3,7,8-PeCDF	ND	< 0.05	1.0
2,3,4,7,8-PeCDF	15	7.5	1.0
1,2,3,4,7,8-HxCDF	23	2.3	2.1
1,2,3,6,7,8-HxCDF	8	0.8	2.1
1,2,3,7,8,9-HxCDF	8.8	0.88	2,1
2,3,4,7,8,9-HxCDF	ND	<0.17	1.7
1,2,3,4,6,7,8-HpCDF	48	0.48	1.7
1,2,3,4,7,8,9-HpCDF	10	0.1	1.5
OCDF	110	0.11	1.5

Furan Homologues	Number Peaks	Conc.	Detection Limit
Group		pg/g	pg/g
TCDF	8	55	0.5
PeCDF	2	70	1.0
HxCDF	4	160	2.1
HpCDF	3	110	1.7
OCDF	1	110	1.5

International Toxic Equivalency Factors ⁶	TEQ	
Congener	(i-TEF)	
2,3,7,8-TCDF	0.1	
1,2,3,7,8-PeCDF	0.05	
2,3,4,7,8-PeCDF	0.5	
1,2,3,4,7,8-HxCDF	0.1	
1,2,3,6,7,8-HxCDF	0.1	
1,2,3,7,8,9-HxCDF	0.1	
2,3,4,7,8,9-HxCDF	0.1	
1,2,3,4,6,7,8-HpCDF	0.01	
1,2,3,4,7,8,9-HpCDF	0.01	
OCDF	0.001	

Furan Surrogate Extraction Recovery	Recovery	
¹³ C ₁₂ Congener	%	
¹³ C ₁₂ -2,3,7,8-TCDF	80	
¹³ C ₁₂ -2,3,4,7,8-PeCDF	120	
¹³ C ₁₂ -1,2,3,4,7,8-HxCDF	102	
¹³ C ₁₂ -1,2,3,6,7,8-HxCDF	87	
13C ₁₂ -2,3,4,6,7,8-HxCDF	112	
¹³ C ₁₂ -1,2,3,4,6,7,8-HpCDF	104	
13C12-OCDF	101	

Reported as ND/NDR = 0°DL	3 Results reported on dry weight basis	NDR = Detected peak with isotope ratio outside quantitation criteria	
² Reported as ND/NDR = 0.5*DL	* NATO 1988	ND = Not detected	
The state of the s		DL = Detection limit	-

The results reported here relate only to the items tested.

Authorization:

Royal Military College, Dept. Of Chem. and Chem. Erg., P.O. Box 17000 Sm. Forces, Kingston, ON, K7K 7B4 (613) 541-6000 ext 6684 / Fax: (613) 545-8341

Client: ASU

School of Environmental Studies Queen's University Kingston, Ontario K7L 3N6 (613) 533-2656

ASG Login No: Site:

Date Reported:

Page:

7164

Res Island Samples Received: Date of Analysis: Method No:

31-Jul-02 08-Aug-02 ASG032 21-Aug-02

17 of 19

Chlorinated Dioxins and Furans in Soil and Sediment

Detected FTEQ. (pg/g)*
Detected FTEQ. (pg/g)* Max Possible FTEQ (pg/g)2 BRI02-015 Dioxins as 2,3,7,8-TCDD equivalent (I-TEQ) Sample I.d.: 34 34 44 44 Max Possible FTEQ (pg/g)2 Furans as 2,3,7,8-TCDD equivalent (I-TEQ)

Chlorinated Dioxins	Conc.3	Toxic Equ. Conc.	Detection Limit
Congener	pg/g	pg/g	pg/g
2,3,7,8-TCDD	1.5	1.5	0.2
1,2,3,7,8-PeCDD	21	10.5	0.5
1,2,3,4,7,8-HxCDD	24	2.4	0.5
1,2,3,6,7,8-HxCDD	33	3.3	0.9
1,2,3,7,8,9-HxCDD	29	2.9	0.9
1,2,3,4,6,7,8-HpCDD	900	9	0.7
OCDD	4200	4.2	0.4

Dioxin Homologues	Number Peaks	Conc.	Detection Limit
Group		P9/9	pg/g
TCDD	1	1.5	0.2
PeCDD	1	21	0.5
HxCDD	6	180	0.9
HpCDD	2	1400	0.7
OCDD	1	4200	0.4

International Toxic Equivalency Factors	TEQ	
Congener	(I-TEF)	
2,3,7,8-TCDD	1	
1,2,3,7,8-PeCDD	0.5	
1,2,3,4,7,8-HxCDD	0.1	
1,2,3,6,7,8-HxCDD	0.1	
1,2,3,7,8,9-HxCDD	0.1	
1,2,3,4,6,7,8-HpCDD	0.01	
OCDD	0.001	

Dioxin Surrogate Extraction Recovery	Recovery	
C ₁₂ Congener	%	
¹³ C ₁₂ -2,3,7,8-TCDD	92	
¹³ C ₁₂ -1,2,3,7,8-PeCDD	88	
¹³ C ₁₂ -1,2,3,4,7,8-HxCDD	109	
13C ₁₂ -1,2,3,6,7,8-HxCDD	102	
¹³ C ₁₂ -1,2,3,4,6,7,8-HpCDD	120	
13C12-OCDD	162	

Chlorinated Furans	Conc.3	Toxic Equ. Conc.	Detection Limit	
Congener	pg/g	pg/g	pg/g	
2,3,7,8-TCDF	15	1,5	0.2	
1,2,3,7,8-PeCDF	30	1.5	0.5	
2,3,4,7,8-PeCDF	38	19	0.5	
1,2,3,4,7,8-HxCDF	78	7.8	1.0	
1,2,3,6,7,8-HxCDF	31	3.1	1.0	
1,2,3,7,8,9-HxCDF	40	4	1.0	
2,3,4,7,8,9-HxCDF	24	2.4	0.9	
1,2,3,4,6,7,8-HpCDF	280	2.8	0.9	
1,2,3,4,7,8,9-HpCDF	72	0.72	0.6	
OCDF	1500	1.5	0.6	

Furan Homologues	Number Peaks	Conc.	Detection Limit
Group		pg/g	pg/g
TCDF	7	48	0.2
PeCDF	8	150	0.5
HxCDF	8	490	1.0
HpCDF	3	1300	0.9
OCDF	1	1500	0.6

International Toxic Equivalency Factors	TEQ
Congener	(FTEF)
2,3,7,8-TCDF	0.1
1,2,3,7,8-PeCDF	0.05
2,3,4,7,8-PeCDF	0.5
1,2,3,4,7,8-HxCDF	0.1
1,2,3,6,7,8-HxCDF	0.1
1,2,3,7,8,9-HxCDF	0.1
2,3,4,7,8,9-HxCDF	0.1
1,2,3,4,6,7,8-HpCDF	0.01
1,2,3,4,7,8,9-HpCDF	0.01
OCDF	0.001

Furan Surrogate Extraction Recovery	Recovery
¹³ C ₁₂ Congener	%
¹³ C ₊₂ -2,3,7,8-TCDF	68
¹³ C _{1,7} -2,3,4,7,8-PeCDF	98
¹³ C ₁₂ -1,2,3,4,7,8-HxCDF	77
¹³ C ₁₂ -1,2,3,6,7,8-HxCDF	87
13C ₁₂ -2,3,4,6,7,8-HxCDF	112
13C ₁₂ -1,2,3,4,6,7,8-HpCDF	96
13C12-OCDF	116

Reported as ND/NDR = 0*DL	3 Results reported on dry weight basis	NDR = Detected peak with isotope ratio outside quantitation criteria
² Reported as ND/NDR = 0.5*DL	* NATO 1988	ND = Not detected
		DL = Detection limit

The results reported here relate only to the items tested.

Prepared by Dr. D. Kelly, Assistant Director Authorization:

RMC ANALYTICAL SERVICES GROUP • GROUP DES SERVICES ANALYTIQUES CMR
Royal Military College, Dept. Of Chem. and Chem. Eng., P.O. Box 17000 Sm. Forces, Kingston, ON, K7K 7B4
(613) 541-6000 ext 6684 / Fax: (613) 545-8341

Client: ASU

School of Environmental Studies Queen's University Kingston, Ontario K7L 3N6 (613) 533-2656

ASG Login No: 7164 Res Island Site: Samples Received: 31-Jul-02 Date of Analysis: Method No:

Date Reported:

Page:

08-Aug-02 ASG032 21-Aug-02 18 of 19

Chlorinated Dioxins and Furans in Soil and Sediment

Sample I.d. :	BRI02-016	Dioxins as 2,3,7,8-TCDD equivalent (I-TEQ)	Detected FTEQ. (pg/g) ¹	34	Max Possible FTEQ (pg/g)2	34
		Furans as 2,3,7,8-TCDD equivalent (I-TEQ)	Detected I-TEQ. (pg/g) ¹	180	Max Possible FTEQ (pg/g)2	180

Chlorinated Dioxins	Conc.3	Toxic Equ. Conc.4	Detection Limit
Congener	P9/9	pg/g	pg/g
2,3,7,8-TCDD	0.3	0.3	0.2
1,2,3,7,8-PeCDD	10	5	0.4
1,2,3,4,7,8-HxCDD	20	2	0.4
1,2,3,6,7,8-HxCDD	43	4.3	8.0
1,2,3,7,8,9-HxCDD	39	3.9	0.8
1,2,3,4,6,7,8-HpCDD	1400	14	0.8
OCDD	4100	4.1	0.5

Dioxin Homologues	Number Peaks	Conc.	Detection Limit
Group		pg/g	pg/g
TCDD	1	0.3	0.2
PeCDD	9	70	0.4
HxCDD	8	260	0.8
HpCDD	3	2500	0.8
OCDD	1	4100	0.5

International Toxic Equivalency Factors*	TEQ	
Congener	(FTEF)	
2,3,7,8-TCDD	1	
1,2,3,7,8-PeCDD	0.5	
1,2,3,4,7,8-HxCDD	0.1	
1,2,3,6,7,8-HxCDD	0.1	
1,2,3,7,8,9-HxCDD	0.1	
1,2,3,4,6,7,8-HpCDD	0.01	
OCDD	0.001	

Dioxin Surrogate Extraction Recovery	Recovery
¹³ C ₁₂ Congener	%
13C ₁₂ -2,3,7,8-TCDD	96
¹³ C ₁₂ -1,2,3,7,8-PeCDD	96
¹³ C ₁₂ -1,2,3,4,7,8-HxCDD	86
¹³ C ₁₂ -1,2,3,6,7,8-HxCDD	83
¹³ C ₁₂ -1,2,3,4,6,7,8-HpCDD	110
13C12-OCDD	137

Chlorinated Furans	Conc.3	Toxic Equ. Conc.	Detection	
Congener	pg/g	pg/g	pg/g	
2,3,7,8-TCDF	180	18	0.2	
1,2,3,7,8-PeCDF	34	1.7	0.4	
2,3,4,7,8-PeCDF	160	80	0.4	
1,2,3,4,7,8-HxCDF	420	42	0.9	
1,2,3,6,7,8-HxCDF	120	12	0.9	
1,2,3,7,8,9-HxCDF	100	10	0.9	
2,3,4,7,8,9-HxCDF	2.3	0.23	0.8	
1,2,3,4,6,7,8-HpCDF	1300	13	0.8	
1,2,3,4,7,8,9-HpCDF	180	1.8	0.7	
OCDF	2200	2.2	0.7	

Furan Homologues	Number Peaks	Conc.	Detection Limit
Group		pg/g	PG/g
TCDF	10	660	0.2
PeCDF	15	950	0.4
HxCDF	7	1700	0.9
HpCDF	3	3000	0.8
OCDF	1	2200	0.7

International Toxic Equivalency Factors	TEQ
Congener	(HTEF)
2,3,7,8-TCDF	0.1
1,2,3,7,8-PeCDF	0.05
2,3,4,7,8-PeCDF	0.5
1,2,3,4,7,8-HxCDF	0.1
1,2,3,6,7,8-HxCDF	0.1
1,2,3,7,8,9-HxCDF	0.1
2,3,4,7,8,9-HxCDF	0.1
1,2,3,4,6,7,8-HpCDF	0.01
1,2,3,4,7,8,9-HpCDF	0.01
OCDF	0.001

Furan Surrogate Extraction Recovery	Recovery
¹³ C ₁₂ Congener	%
¹³ C ₁₂ -2,3,7,8-TCDF	86
¹³ C ₁₂ -2,3,4,7,8-PeCDF	115
¹³ C ₁₂ -1,2,3,4,7,8-HxCDF	77
¹³ C ₁₂ -1,2,3,6,7,8-HxCDF	70
¹³ C ₁₂ -2,3,4,6,7,8-HxCDF	100
¹³ C ₁₂ -1,2,3,4,6,7,8-HpCDF	109
13C12-OCDF	114

1 Reported as ND/NDR = 0*DL	3 Results reported on dry weight basis	NDR = Detected peak with isotope ratio outside quantitation criteria	
² Reported as ND/NDR = 0.5*DL	4 NATO 1988	ND = Not detected	
		DL = Detection limit	

The results reported here relate only to the items tested.

Prepared by Dr. D. Kelly, Assistant Director

Authorization:

Royal Military College, Dept. Of Chem. and Chem. Eng., P.O. Box 17000 Stn. Forces, Kingston, ON, K7K 7B4 (613) 541-6000 ext 6684 / Fax: (613) 545-8341

Client: ASU

School of Environmental Studies Queen's University Kingston, Ontario K7L 3N6 (613) 533-2656 ASG Login No: 7164 Site: Res Island

 Samples Received:
 31-Jul-02

 Date of Analysis:
 08-Aug-02

 Method No:
 ASG032

 Date Reported:
 21-Aug-02

 Page:
 19 of 19

Chlorinated Dioxins and Furans in Soil and Sediment

Sample i.d.: Control Sample

Chlorinated Dioxins and Furans as 2,3,7,8-TCDD equivalent (I-TEQ)

Chlorinated Dioxins	Conc.3	Control Target	Detection Limit
Congener	pg/g	pg/g	pg/g
2,3,7,8-TCDD	25	40	0.3
1,2,3,7,8-PeCDD	1.7	40	0.8
1,2,3,4,7,8-HxCDD	2.3	40	0.9
1,2,3,6,7,8-HxCDD	2.1	40	2.0
1,2,3,7,8,9-HxCDD	6	160	2.0
1,2,3,4,6,7,8-HpCDD	52	80	1.4
OCDD	140	80	1.1

International Toxic Equivalency Factors	TEQ	
Congener	(FTEF)	
2,3,7,8-TCDD	1	
1,2,3,7,8-PeCDD	0.5	
1,2,3,4,7,8-HxCDD	0.1	
1,2,3,6,7,8-HxCDD	0.1	
1,2,3,7,8,9-HxCDD	0.1	
1,2,3,4,6,7,8-HpCDD	0.01	
OCDD	0.001	

Chlorinated Furans	Conc.3	Control Target	Detection
Congener	pg/g	pg/g	P9/9
2,3,7,8-TCDF	26	40	0.5
1,2,3,7,8-PeCDF	11	40	0.9
2,3,4,7,8-PeCDF	21	40	0.9
1,2,3,4,7,8-HxCDF	36	- 40	2.0
1,2,3,6,7,8-HxCDF	10	40	2.0
1,2,3,7,8,9-HxCDF	10	40	2.0
2,3,4,7,8,9-HxCDF	3.3	40	1.3
1,2,3,4,6,7,8-HpCDF	47	80	1.3
1,2,3,4,7,8,9-HpCDF	15	80	1.3
OCDF	110	80	1.3

international Toxic Equivalency Factors	TEQ	
Congener	(HTEF)	
2,3,7,8-TCDF	0.1	
1,2,3,7,8-PeCDF	0.05	
2,3,4,7,8-PeCDF	0.5	
1,2,3,4,7,8-HxCDF	0.1	
1,2,3,6,7,8-HxCDF	0.1	
1,2,3,7,8,9-HxCDF	0.1	
2,3,4,7,8,9-HxCDF	0.1	
1,2,3,4,6,7,8-HpCDF	0.01	
1,2,3,4,7,8,9-HpCDF	0.01	
OCDF	0.001	

Dioxin Surrogate Extraction Recovery	Recovery
¹³ C ₁₂ Congener	%
13C,2-2,3,7,8-TCDD	69
¹³ C ₁₂ -1,2,3,7,8-PeCDD	79
13C12-1,2,3,4,7,8-HxCDD	72
¹³ C ₁₂ -1,2,3,6,7,8-HxCDD	91
¹³ C ₁₂ -1,2,3,4,6,7,8-HpCDD	143
13C12-OCDD	151

Furan Surrogate Extraction Recovery	Recovery
¹³ C ₁₂ Congener	%
¹³ C ₁₂ -2,3,7,8-TCDF	49
¹³ C ₁₂ -2,3,4,7,8-PeCDF	70
¹³ C ₁₂ -1,2,3,4,7,8-HxCDF	81
¹³ C _{1z} -1,2,3,6,7,8-HxCDF	85
13C ₁₂ -2.3.4,6,7,8-HxCDF	86
¹³ C ₁₂ -1,2,3,4,6,7,8-HpCDF	162
13C,2-OCDF	134

Reported as ND/NDR = 0*DL	³ Results reported on dry weight basis	NDR * Detected peak with isotope ratio outside quantitation criteria	
² Reported as ND/NDR = 0.5°DL	* NATO 1988	ND = Not detected	
		DL = Detection limit	

The results reported here relate only to the items tested.

Prepared by Dr. D. Kelly, Assistant Director

Authorization:

01 August 2002

Natalie Plato Indian and Northern Affairs Canada P.O.Box 2200 Iqaluit, NU X0A 0H0

RESOLUTION ISLAND 2002 – PROGRESS REPORT #1

Dear Natalie,

Four members of the Queens Analytical Services Unit team arrived in Iqaluit on 15 July and were on site on 16 July. The laboratory was set up ahead of schedule and was ready to receive samples by 18 July. The mobile laboratory and equipment therein were in excellent shape and the only significant items requiring repair were the water pump and piping. They were repaired rapidly with the assistance of an on-site plumber. To date, we are fully functional and capable of analyzing PCBs in soil, water and oil and TPH as required. The analysis of PCBs in soil by GC/ECD is proceeding smoothly and efficiently.

Excavation of CEPA Soils

A major priority of the ASU was to extend the grid (set up in 2001) to encompass the remainder of the PCB CEPA locations in the S1/S4 buildings and valley area. The GPS work was completed 4 days after arrival on site. Approximately 25 grids were marked on the ground with flags indicating the bottom right hand corner of each and several grid markers were repaired. Grid locations were recorded on each flag and also sprayed on debris/rock etc so as to provide a convenient reference point for the workers and provide the scientific team with an accurate method of documenting the cleanup process.

Confirmatory samples were taken in the S1/S4 area (grid ref K16-K17) shortly after arrival on site. Results showed that the area, which was excavated and in the process of being vacuumed at the end of the 2001 season, was now TIER II. Runoff from the spring melt had presumably washed the remaining CEPA into a lower grid. The berm constructed at the end of the 2001 season worked well and helped prevent the migration of CEPA from grids J15-K15 into the adjoining areas.

A member of the ASU has been overseeing the excavation work in the valley at all times. Progress in the S1/S4 valley has been steady so far and has been aided by the

relatively fog free weather. Several CEPA areas in grids K14, 15, 16, 17 and L17 have been brought into compliance by the excavation to a depth of 30 cm of soil. This often resulted in excavation to bedrock. Vacuuming was required all along the ridge (grids K15, 16 and 17) and access was provided by the construction of new roads. Containerization of the > 2000 ppm soil (from grids K14 -15 and J14) was essentially complete at the time of writing this report and 29, 3.1 m³ flowerpots had been filled and labelled.

Thirty centimeters of CEPA soil was excavated from the PCL dump and the remaining soil tested as TIER II. The area was easily accessible to the excavator and excavation was undertaken from a clean location, which meant that only the bucket had to be decontaminated afterwards. The volume of soil excavated (12m³) agreed with the ASU estimate for this area.

Sampling and Analysis of Barrel Contents

Fifty DND barrels were opened and sampled from the incinerator area. This resulted in 36 samples (after taking composite samples for several of the barrels). These samples were sent south for analysis on the 12 July. To date, 4 barrels stored in the Non-PCB Hazardous Waste Facility were sampled, as were 2 barrels in the location of the Beach Dump. These 2 barrels were filled from spill palettes used to contain the oil from leaky barrels excavated during the debris cleanup from the dump opposite the Beach Dump. Results for all but the last two samples are now available and have been provided to QC personnel at Resolution Island.

Other Activities

Sixteen samples were taken of CEPA contaminated soil for analysis in order to provide data for the Waste Profile Questionnaire for Bennett Environmental. These samples were taken from soil stored in the Main PCB Storage Facility, from containerized >2000 ppm CEPA soil, directly from a delineated >2000 ppm PCB CEPA area and from a 50-2000 ppm PCB CEPA area. The samples were containerized and stored according to the requested tests and shipped south on 22 July for analyses of a detailed series of analytical parameters. Fourteen of the samples will be analysed initially.

Six samples were taken from the oily/greasy soil areas behind the collapsed tank, at the cotton grass area and at the former barrel cache valley. Sampling locations were photographed, tagged and positions recorded by GPS. Samples were sent south for analysis of degreasers.

The entire perimeter of the contaminated Airstrip Dump has been roped off, as has the smaller CEPA area located within. The positioning of the ropes has been recorded by GPS, photographed and maps will be updated in this year's report.

The PCB (non-soil) registered facility at the beach was reorganized and all the red DND vaults were moved closer to the westerly POL tank and away from the facility. The

new location of the vaults and the position of existing PCB contaminated material containers will be recorded at the end of the 2002 season and a map provided to DIAND.

Plant samples were taken from the officers mess, the imploded tank, near to the beach dump stream, the drinking water lakeside, beside the airstrip dump and 100 m distant along the drainage path and on the north-east slope near the main PCB storage facility. These samples will be analysed for PCBs and may provide an estimate on how aerial transport is affecting vegetation away from the main contaminated areas.

The camp water was sampled on 31 July and is currently being analyzed. pH is being tested daily and the pH adjustment as mediated by the engineering component of the project, monitored.

Air monitoring samples have, to date, been collected for chlorobenzenes and for PCB in the valley (close to where equipment is working) and also in the main PCB storage facility.

Dr. Graham Cairns

G. Causs.

Analytical Services Unit School of Environmental Studies Biosciences Complex Queen's University, Kingston, Ontario, Canada K7L 3N6 Tel 613 533-2642 Fax 613 533-2897

16 August 2002

Natalie Plato Indian and Northern Affairs Canada P.O.Box 2200 Iqaluit, NU X0A 0H0

RESOLUTION ISLAND 2002 - PROGRESS REPORT #2

Dear Natalie,

Good progress has been made on all our tasks due to the better than average weather at Resolution Island and the fact that all our equipment in the mobile laboratory is functioning well.

Excavation of CEPA Soils

Our main task continues to be the confirmatory testing, marking areas, and maintaining the grid paperwork for the excavation in the S1/S4 valley. Steady progress has been made in the valley. Grids L14, L15, L16, K16 and K17 have been signed off. Excavation and vacuuming are ongoing in quadrants J14, J15, K15 and K14. The entire area with PCB concentrations greater than 2000 ppm (K14, K15) has required vacuuming which is very time consuming. A clean road is gradually being constructed in grids K14 and K15 as the vacuuming is completed to allow further access for the vacuum truck. Excavation has started in grid J13 on the final area with PCB concentrations greater than 2000 ppm. The small CEPA area in I9 and I10 has been removed and Tier II rocks from the screener will be used to construct an access road into the valley at this point.

The filling of the flowerpots is going well with 15 to 20 pots being filled each day at the Main PCB Storage Facility. To date, 121 pots have been filled and labelled with both RI numbers and PCB labels and are at the staging area in the vicinity of the Hazardous Waste Facility. Approximately 150 containers in total are filled.

Sampling and Analysis of Barrel Contents

The 36 samples from the DND barrels and the 4 barrels from the Hazardous Waste Facility have been reported. A further 15 DND barrel samples and 4 samples from the Hazardous Waste Facility have been completed. Analysis is ongoing on two barrels pumped from leaky barrels from the small dump opposite the Lead Beach Dump, the final barrel sample from the Hazardous waste facility which previously could not be

opened and three barrel samples from unlabelled containers found in a barrel in the Hazardous Waste Facility.

Other Activities

The camp water was sampled again on 12 August and the lake water was sampled on 11 August. Background water samples, which will be analyzed for metals and PCBs were taken from the officers mess, the imploded tank, the Lead Beach dump stream, the stream on the way to the S1/S4 beach. A water samples were taken in the S1/S4 valley and three water samples were taken of water flowing from the S1/S4 beach into the ocean. Samples of Tier II metal and wood were taken. These samples will be used for research into leaching of these materials from the Tier II landfill. At the barrel cache valley, four waste wranglers and two small flower pots full of oily soil from the spill at the incinerator were labelled as oily soil.

The roping of the S1/S4 beach area has started. The west side has been roped off with yellow rope. Confirmatory samples were taken and are being analyzed on site. The ropes will be adjusted if necessary and the rope positions mapped with GPS once all roping is completed in the area. Samples were taken for the environmental assessment of the airstrip dump. A total of 24 samples were taken, 12 depth and 12 surface samples. The sampling locations were recorded by GPS and the samples will be analyzed for low level PCBs. The thermistor tubes in the landfill by the camp were inspected and have been damaged as the landfill was constructed. If possible new tubing will be attached to the broken tubes. Some debris has been excavated in the Lead Beach Dump and this was monitored, however permafrost has now been reached and excavation halted. The analysis of soils, as required for the Bennett contract, has been completed.

allisa Rutte

Dr. Allison Rutter

2 September 2002

Natalie Plato Indian and Northern Affairs Canada P.O.Box 2200 Iqaluit, NU X0A 0H0

RESOLUTION ISLAND 2002 – PROGRESS REPORT #3

Dear Natalie,

The Queen's Analytical Services Unit team departed from the site on 26 August and the camp on Resolution Island was closed on Wednesday 27 August 2002. At this time the ASU had analysed or shipped south for analysis, approximately 200 soil samples, 80 barrel samples, 10 water samples, 8 plant samples, 6 air samples, and 20 samples of miscellaneous materials. The 14 samples taken for characterization of the CEPA soil have been analysed and the results passed to Bennett Environmental.

S1/S4 Valley and Building Area Excavation

This season, soil contaminated with PCBs above the CEPA criteria was completely removed from 15 (20m x 20m) grid locations (G15, I9, I10, J11, J14, J15, K12, K13, K14, K15, K16, K17, L14, L15, L16). This included the remainder of soil contaminated with PCBs at a level > 2000 ppm. Unfortunately the camp closed before the excavation of grids J12, J13 and I12 could be completed. The cleanup process was overseen by a Queen's representative and paperwork presented to the site supervisor, and an engineering representative for co-signing. A table and a map detailing the progression of the excavation process have been created and an updated map showing the locations of this years 'signed off' grids will be provided to DIAND as part of our 2002 report. With the completion of this second year of excavation in the S1/S4 area, 36 grids in total have now been brought into compliance.

In preparation for shipping the PCB contaminated soil off site, 234 3.1 m³ flowerpots were filled by the end of the 2002 season. The containers were individually labelled with an Environment Canada PCB number and also with an RI number. All the containers were moved to the staging area opposite the new beach PCB storage facility and were supported on wooden beams as specified in the EIS. An inventory for all 234 containers was taken.

S1/S4 Beach Area

In preparation for continued excavation in the 2003 season, roping at the S1/S4 beach area was completed and 15 confirmatory samples were taken from the east side of the contaminated area to confirm the CEPA boundary lines. In the several years since the initial assessment, most of the previous sample tags were lost due to the summer runoff down the steep slopes but their positions are accurately known through GPS. In total, approximately 40 samples were taken, sampling positions tagged and the samples were analyzed for PCBs on-site. Autocad work concerning the set-up of a grid system similar to that used successfully in the S1/S4 valley area was also completed.

Barrels

This season 79 barrel samples were taken. Analytical results were quickly obtained for all the samples and all the required tests were completed by 10 August. The results were given to QC personnel and the on-site engineer as they became available.

Registered PCB Storage and Hazardous Waste Facilities

An updated inventory of all the PCB storage facilities and the hazardous waste building was completed. A report will be sent to you within the next two weeks detailing the current status of the PCB storage facilities that should be forwarded to Environment Canada for their records. Unfortunately, their inspector was unable to make it to the site this year.

Other Work

On the 24 August, the two members of the UMA team arrived on site. The Analytical Services Unit provided assistance with the set-up of GPS equipment, surveying and with associated Autocad/Reliance/Surfur data downloads. This work was performed with regard to finding the most suitable site for a TIER II landfill.

Dr. John S. Poland