contained measurable levels of PCBs. The main problem with the water samples from the wells is that they are not always clear and some are very cloudy. Clearly, given the level of PCBs in the nearby soil, any soil contamination in the water is likely to give measurable PCB levels. The water cannot be filtered since this process would remove the PCBs from the water. In the laboratory, the samples were allowed to stand for at least 24 hours and then the water to be analysed was carefully decanted. Results for well 1A which is above the landfill, all gave values of < 0.02 ppb. For wells MW 2 and MW 3A only one sample from each was found to give measurable levels and only at 0.03 ppb. For the wells MW 4, MW 5B and MW 6, one high result of 0.54, 0.16 and 0.55 ppb respectively was found in each. The six water samples collected from MW 5A showed <0.02 ppb in three of the samples but 0.33, 0.39 and 0.05 ppb in the other three. The monitoring wells will again be sampled several times during the 2005 season. It is hoped that wells will have stabilized and that less particulate and colloidal material will be present. The PCB results are particularly important since these monitoring wells are to be used to confirm that no PCBs are escaping from the Tier II landfill over the period of many years.

#### c) TPH

TPH was detected both as lubricating oil and as fuel oil in some of the soil samples. Of the fifteen soil samples analysed, only five were found to contain TPH above the 40 ppm level. Two contained lubricating oil (820 and 240 ppm) while three contained fuel oil (160, 80 and 85 ppm). Two of these samples were from MW 1A which is above the landfill. Clearly this site has been contaminated with various fuel and lubricating oils and levels of these can be found in soils near to the summit. Water samples obtained from the monitoring wells contained low levels of TPH. TPH was only detected in 7 of the 37 samples analysed. The fuel in these samples was found to be a mixture of gasoline and diesel fuel; in 2003, gasoline was found in MW3. These results are in some ways surprising given that gasoline was not detected in the soil samples. A likely explanation is that there is a slow movement of the petroleum products in the sub-surface water layer and the water samples collected represent the contaminant front where the lighter hydrocarbons have moved faster than the heavier, larger molecules.

The hydrocarbon contamination in the monitoring wells as well as the soil samples can be expected to vary over the monitoring period. Dissolved hydrocarbons and solutes in groundwater will be excluded during the freezing process, resulting in a redistribution of contamination in the subsurface. During thawing, the soluble

components will "redissolve" in the groundwater, as a function of time and temperature. The cyclic redistribution of hydrocarbons and solutes complicates the interpretation of groundwater and soil monitoring results, as it is difficult to establish baseline concentrations. If hydrocarbon levels rise over time in the water from the monitoring wells, it will be difficult to determine whether their source is the landfill or the surrounding soil. The removal of the TPH contaminated soil from below the landfill will have significantly reduced this as a source of TPH. It is hoped that the ground water flow in the area will be better understood by continuing to obtain monitoring well data and that any changes in TPH levels can be attributed to sources external to the Tier II landfill.

## E. Airstrip Landfill Monitoring Program

The remediation of the airstrip dump was completed in 2003 and three monitoring well sites partially developed. Only soil was collected last year from these three locations. The three monitoring wells MW 11, MW 12 and MW 13 were fully installed this year and a fourth, MW 14 added. Their positions relative to the landfill are shown on Map III-3. Results for the water samples from the 4 wells are given in Table III-7. All are very low especially when compared to the water results for the Tier II landfill. No PCBs or TPH were detected and only copper, nickel and zinc were detected at low concentrations. The soil sample locations were slightly different than in 2003. As a result the analytical results are different. For the eight elements of the DEW Line Cleanup criteria, results were similar to those obtained in 2003. However, no TPH was detected this year in the 4 soil samples and only trace amounts of PCBs. This is likely due to the fact that the soil samples were taken from outside of the narrow drainage channels this year. This will be further investigated in 2005.

Map III-3: Monitoring Well and Soil Monitoring Sample Locations at the Airstrip Landfill 40m Visible Drainage Pathway MW12 MW14 Approximate Location of MW13 Road to Pit 9 Former Dump Covered with Clean Fill MW11 Road to Camp **⊗**<sub>+</sub> 6934 Soil Monitoring Point + Locations Monitoring Well Black Numbers Tag or Sample Number Road Road to Beach

Table III-7: Results of Analyses of Water Samples Taken From the Monitoring Wells at the Airstrip Dump

| Location          | Units | MW 11   | MW 12  | MW 13   | MW 14   |
|-------------------|-------|---------|--------|---------|---------|
| Sample Prefix RI0 | 4-    | 037W    | 033W   | 034W    | 036W    |
| Arsenic           | ppm   | < 0.003 | <0.003 | < 0.003 | < 0.003 |
| Cadmium           | ppm   | <0.001  | <0.001 | < 0.001 | < 0.001 |
| Cobalt            | ppm   | < 0.003 | <0.003 | < 0.003 | < 0.003 |
| Chromium          | ppm   | <0.005  | <0.005 | < 0.005 | < 0.005 |
| Copper            | ppm   | 0.005   | <0.005 | 0.005   | < 0.005 |
| Nickel            | ppm   | 0.012   | <0.005 | 0.014   | < 0.005 |
| Lead              | ppm   | <0.010  | <0.010 | < 0.010 | < 0.010 |
| Zinc              | ppm   | 0.012   | <0.010 | < 0.010 | < 0.010 |
| PCBs              | ppb   | -       | <0.02  | < 0.02  | <0.02   |
| TPH (total)       | ppm   | <1.0    | <1.0   | <1.0    | <1.0    |

Table III-8: Results of Analyses of Soil Samples Taken From Close to the Monitoring Wells at the Airstrip Dump

| Location          | Units | MW 11   | MW 12   | MW 13   | MW 14   |
|-------------------|-------|---------|---------|---------|---------|
| Sample Prefix RI0 | 4-    | 201/517 | 202/343 | 203/525 | 206/515 |
| Arsenic           | ppm   | <1.0    | <1.0    | <1.0    | <1.0    |
| Cadmium           | ppm   | <1.0    | <1.0    | <1.0    | <1.0    |
| Cobalt            | ppm   | 23      | 21      | 24      | 22      |
| Chromium          | ppm   | 53      | 51      | 56      | 46      |
| Copper            | ppm   | 92      | 82      | 91      | 82      |
| Nickel            | ppm   | 93      | 109     | 132     | 100     |
| Lead              | ppm   | 114     | <10     | <10     | <10     |
| Zinc              | ppm   | 108     | 109     | 156     | 75      |
| PCBs              | ppb   | <3      | 4       | .5      | <3      |
| TPH (fuel)        | ppm   | <40     | <40     | <40     | <40     |
| TPH (lube)        | ppm   | <40     | <40     | <40     | <40     |

## F. Monitoring of 1994 Barrier Performance

In 1994, barriers were constructed across the drainage pathways where PCB-contaminated soils were found to be present. These pathways comprise the large contaminated area originating at the S1/S4 building complex and extending through the S1/S4 valley to the S1/S4 beach area and the smaller leachate pathway from the furniture dump. A soil monitoring system was instituted at three of the six barriers in 1994 in order to assess their effectiveness. This consisted of a clean cell and a series of soil monitoring points on either side of the barrier. The clean cells were installed on the lower side of the barriers, using PCB-free sand and sphagsorb. As a result, any PCBs passing through the barriers could be detected. Soil monitoring points were positioned on either side of the barriers so that levels of PCBs could be monitored and compared to levels found in the previous years. The full details of barrier construction, clean cells and monitoring points are described elsewhere. The barriers have been inspected and monitored each year since their installation.

The upper furniture dump barrier was removed in 2000 during the excavation of the furniture dump and its drainage pathway; the lower barrier was left in place. The lower barrier was not inspected or tested by ASU in 2004 as a new barrier was installed adjacent to it in 2003 (see chapter VI).

Both barriers in the S1/S4 valley were excavated this year as described in Chapter II. Prior to this the soil points below the northern barrier were sampled. Results obtained are given in Table III-9 and shown on Map III-4. The results fit the pattern shown in previous years.

Table III-9: PCB Concentrations in Soil at the Barrier Monitoring Points

| Location                              | Sample    | PCB Concentration (ppm) |
|---------------------------------------|-----------|-------------------------|
| S1/S4 Valley – below northern barrier | RI04-BES5 | 0.8                     |
| S1/S4 Valley – below northern barrier | RI04-BES6 | 6.1                     |
| S1/S4 Valley – below northern barrier | RI04-BES7 | 3.7                     |
| S1/S4 Valley – below northern barrier | RI04-BES8 | 4.1                     |

III-23

Analytical Services Unit (1995) Environmental Study of a Military Installation at Resolution Island, BAF-5: Volume Two. Prepared for Indian and Northern Affairs Canada.

The upper barrier at the S1/S4 beach area was excavated this year as described in chapter II. The lower barrier was inspected and found to be in good condition. It will be removed next year and be replaced by a permanent new barrier similar to that constructed at the end of the S1/S4 valley.

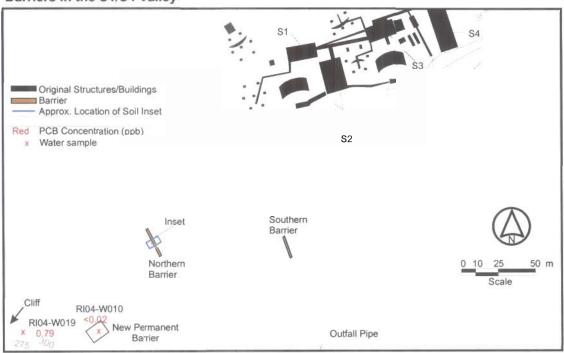
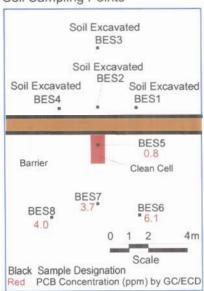

Five water samples were collected from the S1/S4 valley and beach areas this year and analysed for PCBs. Results are given in Table III-10. RI04-019W taken from the top of the cliff contained 0.79 ppb PCBs. This high concentration is likely due to the excavation of Tier II soil nearby. RI04-010W was collected from the funnel of the new barrier when this was full and the low value of 0.07 ppb represents a diluted relatively stagnant sample. The remaining three samples were taken at the S1/S4 beach area and show very low levels in water above the excavation area and a non detectable level as the water drains into the sea.

Table III-10: PCB Concentrations in Water Taken in the S1/S4 Drainage Pathway


| Location                                   | Sample    | PCB Concentration (ppb) |
|--------------------------------------------|-----------|-------------------------|
| S1/S4 valley by cliff                      | RI04-019W | 0.79                    |
| From the funnel of new permanent barrier   | RI04-10W  | 0.07                    |
| S1/S4 beach on cliff above excavation area | RI04-011W | 0.04                    |
| S1/S4 beach on cliff above excavation area | RI04-012W | 0.03                    |
| Beach as drainage enters sea               | RI04-026W | < 0.02                  |

# Map III-4: Sampling Points and PCB Concentrations at the Northern Barrier in the S1/S4 Valley

#### Barriers in the S1/S4 Valley



#### Soil Sampling Points



#### G. Barrels and Their Contents

Eight samples of liquid materials from barrels were analysed early this year. The first two barrels in Table III-11 were filled by draining the generators in S4 prior to its demolition. The samples H012 to H014 came from near the camp generator. The remaining three were from three barrels near the incinerator location. The contents of six of the eight were suitable for on site incineration (Table III-12).

Table III-11: Description of Barrels and Description and Identity of Barrel
Contents

| Number    | Amount   | Description of Contents                                                       | Identity of Barrel Contents                                                                    |
|-----------|----------|-------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|
| RI04-H009 | full     | 2 phases: top brown liquid,<br>bottom clear liquid with brown<br>sediment 1:2 | top: fuel oil: lubricating oil and<br>grease 1:6 bottom: water                                 |
| RI04-H010 | full     | 2 phases: top brown oil, bottom<br>clear liquid 2:1                           | top: fuel oil: lubricating oil and grease 1:6 bottom: water                                    |
| RI04-H012 | ¾ full   | 2 phases 1:4 top orange-tinted liquid, bottom clear liquid                    | top: fuel oil ; bottom: water                                                                  |
| RI04-H013 | ¼ full   | 2 phases 4:1 top clear liquid,<br>bottom clear liquid                         | top: fuel oil; bottom: water                                                                   |
| RI04-H014 | 7/8 full | Clear liquid                                                                  | fuel oil                                                                                       |
| RI04-H016 | -        | 2 phases 1:1 top brown liquid,<br>bottom brown liquid                         | top: lubricating oil and grease;<br>bottom: water                                              |
| RI04-H018 | -        | 2 phases 1:1 top brown liquid,<br>bottom clear liquid                         | top: gasoline; bottom: water                                                                   |
| RI04-H023 | full     | white solid in liquid base                                                    | white solid in an organic solvent<br>primarily toluene, white sample<br>contained toluene 28 % |

Table III-12: PCB, Chlorine, and Metal Concentrations of Barrel Contents

| Barrel #  | PCBs | Chlorine | Chromium         | Lead | Cadmium | Disposal   |
|-----------|------|----------|------------------|------|---------|------------|
|           |      |          | ppm <sup>a</sup> |      |         | Option     |
| RI04-H009 | <2.0 | <1000    | <10              | <100 | <2.0    | incinerate |
| RI04-H010 | <2.0 | <1000    | <10              | <100 | <2.0    | incinerate |
| RI04-H012 | <2.0 | <1000    | <10              | <100 | <2.0    | incinerate |
| RI04-H013 | <2.0 | <1000    | <10              | <100 | <2.0    | incinerate |
| RI04-H014 | <2.0 | <1000    | <10              | <100 | <2.0    | incinerate |
| RI04-H016 | <2.0 | <1000    | <10              | <100 | <2.0    | incinerate |
| RI04-H018 | <2.0 | <1000    | <10              | 2300 | <2.0    | ship south |
| RI04-H023 | <2.0 | 92400    | <10              | 480  | <2.0    | ship south |

<sup>&</sup>lt;sup>a</sup> Top phase where there are two phases present.

## H. Air Sampling for PCBs and Chlorobenzenes

The selection of appropriate personal protective equipment for respiration when working with PCB contaminated materials at the site is important. In the Resolution Island Health and Safety Plan (HASP), Appendix 5, a dust level of 4.4 mg/m<sup>3</sup> is suggested as a trigger for when a dust mask should be worn. This value is calculated using a value of 10 mg/m<sup>3</sup> for an 8 hour day relating to particulates not otherwise classified. A direct reading dust meter is available for use at the site. In practice dust masks must be worn in dusty conditions or at any time workers may wish to do so. Halfface respirators equipped with filters and organic vapour cartridges are worn whenever the odour of chlorobenzenes is encountered. Regulations with respect to PCBs are given in the HASP and these are in the range 0.5 to 2.0 mg/m<sup>3</sup>, that is less than the 4.4 mg/m<sup>3</sup> for dust suppression. However, it should also be noted that NIOSH has set a recommended exposure limit of 0.001 mg/m<sup>3</sup> or about one thousandth of the NWT occupational exposure limits. The situation with PCBs is also complicated by the fact that they were manufactured and sold as mixtures, often referred to as Askarels, which contained not only PCBs but also chlorobenzenes. These more volatile compounds are responsible for the characteristic PCB odour. Regulations respecting Occupational Safety and Health made under Part II of the Canada Labour Code give a ceiling value of 5 ppm or 40 mg/m<sup>3</sup> for chlorobenzenes: NIOSH has the same standard for their time weighted average (TWA) concentration for a 10 hour working day.

In order to determine the levels of PCBs in the air, samples were collected using NIOSH method 5503 with an air pump and ORBO-60 adsorption tubes. The pump was run at a rate of about 170 mL/min for about 3-4 hours. Twenty four air samples have been taken during the last four field seasons and all have given results below the detection limit and NIOSH level of 0.001 mg/m<sup>3</sup>. Three samples were collected this year from the locations specified in Table III-13. Analysis of these samples all gave results of < 0.001 mg/m<sup>3</sup>.

In order to determine the level of chlorobenzenes in the air, samples were collected and analysed using NIOSH method 5517. The XAD-2 tubes and filters were extracted with hexane and the extracts run on a gas chromatograph with a mass spectrometric detector (GC/MS). This year four samples were collected from various locations where CEPA soils were being processed. Samples were analysed for all di-, tri-, tetra-, penta- and hexa- chlorobenzenes.

Results are presented in Tables III-14 and III-15. Sample RI04-159 was from inside B2 while the stored soil was still present, RI04-651 was on the Tier II contaminated road behind the laboratory, and RI04-742 and RI04-744 were taken from beside the screener. In previous years only tri- and tetra- chlorobenzenes were detected. This year no chlorobenzenes were detected. The PCB contaminated soil from the S1/S4 beach area is known to have a much lower chlorobenzene content than soil from the S1/S4 valley. This is likely due to evaporation of the chlorobenzenes as they move down the valley and ultimately cascade over the 300 m cliffs.

Table III-13: PCB Concentrations in Air Samples Collected at Resolution Island

| Sample   | Location                                                                  | PCB per<br>tube (µg) | PCB Concentration.<br>in air (mg/m³) |
|----------|---------------------------------------------------------------------------|----------------------|--------------------------------------|
| RI04-198 | Outside building B2, on the N side close to filling of conical containers | <0.05                | <0.001                               |
| RI04-735 | 10 m from screener in operation on soils<br>from the S1/S4 beach area     | <0.05                | <0.001                               |
| RI04-748 | 10 m from screener on windy dry day<br>during operation                   | <0.05                | <0.001                               |

Table III-14: Chlorobenzene Compounds Found in Air Samples Collected at Resolution Island (ug per tube plus filter)

| Sample                             | RI04-159 | RI04-651 | RI04-742 | RI04-744 |
|------------------------------------|----------|----------|----------|----------|
| 1,2- dichlorobenzene               | <0.01    | <0.01    | <0.01    | <0.01    |
| 1,3- dichlorobenzene               | <0.01    | <0.01    | <0.01    | <0.01    |
| 1,4- dichlorobenzene               | < 0.01   | <0.01    | < 0.01   | <0.01    |
| 1,2,3 trichlorobenzene             | < 0.01   | <0.01    | <0.01    | < 0.01   |
| 1,2,4 trichlorobenzene             | < 0.01   | <0.01    | <0.01    | < 0.01   |
| 1235, 1245- tetra<br>chlorobenzene | <0.01    | <0.01    | <0.01    | <0.01    |
| 1,2,3,4 tetrachlorobenzene         | < 0.01   | < 0.01   | < 0.01   | < 0.01   |
| pentachlorobenzene                 | < 0.01   | <0.01    | <0.01    | <0.01    |
| hexachlorobenzene                  | < 0.01   | <0.01    | <0.01    | <0.01    |

Table III-15: Chlorobenzene Concentrations in Air Samples Collected at Resolution Island (mg per m³)

| Sample                              | RI04-159 | RI04-651 | RI04-742 | RI04-744 |
|-------------------------------------|----------|----------|----------|----------|
| 1,2- dichlorobenzene                | < 0.001  | <0.001   | <0.001   | < 0.001  |
| 1,3- dichlorobenzene                | <0.001   | <0.001   | <0.001   | < 0.001  |
| 1,4- dichlorobenzene                | < 0.001  | <0.001   | <0.001   | < 0.001  |
| 1,2,3 trichlorobenzene              | < 0.001  | <0.001   | <0.001   | < 0.001  |
| 1,2,4 trichlorobenzene              | < 0.001  | <0.001   | <0.001   | < 0.001  |
| 1235, 1245 - tetra<br>chlorobenzene | <0.001   | <0.001   | <0.001   | <0.001   |
| 1,2,3,4 - tetrachlorobenzene        | < 0.001  | < 0.001  | <0.001   | < 0.001  |
| pentachlorobenzene                  | <0.001   | <0.001   | <0.001   | < 0.001  |
| hexachlorobenzene                   | <0.001   | < 0.001  | < 0.001  | < 0.001  |

## I. Drinking Water

#### Analysis

A thorough testing of the drinking water at Resolution Island was performed three times during the summer. In addition, the new drinking water lake was sampled and analyzed to comply with the water board requirements.

#### 2. Methods

Water samples were collected in one litre polyethylene bottles for general water quality parameters and inorganic elements analysis and in one litre Teflon bottles for PCB analysis. For the analysis of phenols, a bottle containing an aliquot of phosphoric acid was used, for mercury, a bottle with an aliquot of sodium dichromate solution was used and, for bacteriological measurements, a sterile bottle was employed. Upon receipt in the laboratory, all samples were stored at 4 °C. Tests were performed using standard laboratory procedures

## 3. Drinking Water

Analytical results are shown in Table III-16. None of the parameters measured, with the exception of the pH levels were outside of the OME guidelines. The water at Resolution Island contains no buffering capacity and is quite acidic. Addition of sodium carbonate was undertaken this year and pH values given in Table III-17 were measured daily. The pH values ranged from 4.7 to 8.9 with a mean value of 6.5.

Table III-16: Drinking Water Results and Guidelines

| Parameter    | Units | 7 July<br>2004 | 23 July<br>2004 | 4 Sept<br>2004 | OME<br>Guidelines |
|--------------|-------|----------------|-----------------|----------------|-------------------|
| Alkalinity   | mg/L  | 2              | 1               | 7              | 30-500            |
| Ammonia      | mg/L  | <0.1           | <0.1            | <0.1           | -                 |
| Calcium      | mg/L  | 3.0            | 5.7             | 8.0            | -                 |
| COD          | mg/L  | <3             | 21              | <3             | -                 |
| Conductivity | uS/cm | 38             | 102             | 102            | -                 |
| Copper       | mg/L  | 0.045          | 0.213           | 0.041          | <1.0              |
| Hardness     | mg/L  | 14             | 26              | 36             | 80-100            |

| Parameter                 | Units      | 7 July<br>2004 | 23 July<br>2004 | 4 Sept<br>2004 | OME<br>Guidelines |
|---------------------------|------------|----------------|-----------------|----------------|-------------------|
| Iron                      | mg/L       | < 0.05         | < 0.05          | < 0.05         | < 0.30            |
| Lead                      | mg/L       | < 0.010        | < 0.010         | < 0.010        | < 0.010           |
| Magnesium                 | mg/L       | 1.6            | 2.8             | 4.0            | -                 |
| PCB                       | ug/L       | <3.0           | <3.0            | <3.0           | < 3.0             |
| pH                        | -          | 6.0            | 5.1             | 5.7            | 6.5-8.5           |
| Phenols                   | ug/L       | <1.0           | <1.0            | <1.0           |                   |
| Potassium                 | mg/L       | <0.2           | 0.32            | 0.34           | -                 |
| Sodium                    | mg/L       | 5.7            | 4.0             | 12.8           | <200              |
| Sulphate                  | mg/L       | 19.3           | 35              | 52             | <500              |
| Nitrate                   | mg/L       | 0.11           | < 0.05          | < 0.05         | <10               |
| Nitrite                   | mg/L       | < 0.05         | < 0.05          | < 0.05         | <1.0              |
| Chloride                  | mg/L       | 6.5            | 4.4             | 4.7            | <250              |
| TDS                       | mg/L       | 55             | 96              | 100            | <500              |
| TKN                       | mg/L       | 0.51           | < 0.03          | 0.10           | 141               |
| TSS                       | mg/L       | <4.0           | <4.0            | <4.0           | < 500             |
| Zinc                      | mg/L       | 0.037          | 0.072           | 0.061          | 5                 |
| Total Coliforms           | Cts/100 mL | 0              | 0               | 1              | 5                 |
| Faecal Coliforms          | Cts/100 mL | 0              | 0               | 0              | 0                 |
| Faecal Streptococci       | Cts/100 mL | 0              | 0               | 0              | 0                 |
| E coli                    | Cts/100 mL | 0              | 0               | 0              | 0                 |
| Standard Plate Ct (48hrs) | Cts/1 mL   | 0              | 1               | 1              | 500               |
| Background Count          | Cts/100 mL | 0              | 0               | 17             | 250               |

Table III-17: Drinking Water pH Results

| Date/Time | pН   | Date/Time | pH   |
|-----------|------|-----------|------|
| 1-July-04 | 8.72 | 2-Aug-04  | 5.71 |
| 2-July-04 | 8.82 | 3-Aug-04  | 4.95 |
| 3-July-04 | 8.36 | 4-Aug-04  | 7.05 |

| Date/Time  | pН   | Date/Time      | pH   |
|------------|------|----------------|------|
| 4-July-04  | 7.71 | 5-Aug-04       | 6.67 |
| 5-July-04  | 5.77 | 6-Aug-04       | 7.09 |
| 6-July-04  | 6.51 | 8-Aug-04       | 5.02 |
| 7-July-04  | 6.73 | 9-Aug-04       | 6.90 |
| 9-July-04  | 6.36 | 10-Aug-04      | 7.05 |
| 10-July-04 | 5.73 | 12-Aug-04      | 7.02 |
| 11-July-04 | 5.89 | 13-Aug-04      | 6.78 |
| 12-July-04 | 4.97 | 15-Aug-04      | 6.69 |
| 13-July-04 | 6.30 | 17-Aug-04      | 7.43 |
| 14-July-04 | 6.80 | 18-Aug-04      | 6.63 |
| 15-July-04 | 7.36 | 19-Aug-04      | 6.59 |
| 16-July-04 | 7.06 | 20-Aug-04      | 6.67 |
| 17-July-04 | 6.59 | 22-Aug-04      | 5.61 |
| 18-July-04 | 6.35 | 24-Aug-04      | 7.41 |
| 19-July-04 | 6.82 | 26-Aug-04      | 5.63 |
| 22-July-04 | 4.73 | 27-Aug-04      | 5.49 |
| 23-July-04 | 4.89 | 30-Aug 04      | 5.95 |
| 24-July-04 | 5.17 | 1-Sept-04      | 6.82 |
| 25-July-04 | 7.30 | 3-Sept-04      | 5.94 |
| 26-July-04 | 7.20 | 4-Sept-04      | 6.06 |
| 27-July-04 | 8.93 | 5-Sept-04      | 4.84 |
| 29-July-04 | 7.01 | 6-Sept-04      | 5.30 |
| 30-July-04 | 7.03 | 8-Sept-04      | 5.24 |
| 31-July-04 | 7.00 | 9-Sept-04      | 5.63 |
| 1-Aug-04   | 6.83 | Season Average | 6.49 |

#### J. Lake Water

In order to comply with the water board licence, water samples were required to be collected from the water lake and runoff from the new non-hazardous landfills. However, there was no runoff from the two non-hazardous landfills so only results from the water lake are presented here. A sample of lake water was collected on 16 August 2004 and analyzed to give the results presented in Table III-18. The value of 0.13 ppm for manganese and those for other metals are consistent with the results from previous years. The manganese value is greater than the drinking water criterion but this is an aesthetic guideline.

Table III-18: Lake Water Results

| Parameter        | Unit       | Lake Water |
|------------------|------------|------------|
| Copper           | mg/L       | 0.017      |
| Iron             | mg/L       | < 0.05     |
| Lead             | mg/L       | < 0.005    |
| Manganese        | mg/L       | 0.13       |
| Mercury          | mg/L       | < 0.0005   |
| Cadmium          | mg/L       | < 0.001    |
| Nickel           | mg/L       | 0.086      |
| Chromium         | mg/L       | < 0.005    |
| Cobalt           | mg/L       | 0.021      |
| Zinc             | mg/L       | 0.045      |
| Phenols          | ug/L       | <1.0       |
| pH               | -          | 4.5        |
| TSS              | mg/L       | <4.0       |
| Nitrate          | mg/L       | 0.07       |
| Nitrite          | mg/L       | < 0.05     |
| Oil and Grease   | mg/L       | 2.0        |
| BOD              | mg/L       | <3         |
| Faecal Coliforms | Cts/100 mL | . 0        |

## K. Background Water Samples

In order to establish background data, water samples were again collected this year from several locations and analysed for PCBs, and the eight elements of the DEW Line Clean Up Criteria. Analytical procedures were used to give low detection limits; metals are for the dissolved fraction. Results are given in Tables III-19 and III-20.

Results for eight elements in the DLCU criteria given in Table III-20. These show that for arsenic, cadmium, chromium and lead all results were below the method detection limits as has been found in previous years. Copper, cobalt, nickel and zinc levels are relatively constant and similar to data from previous years except in the two cases discussed in the next paragraph. Data collected from the 1993 assessment report and for the last seven years for lake water and surface waters have been pooled together to give the results given in Table III-21. These background levels are very similar for the lake and surface run off except for zinc where the runoff levels are twice the lake levels.

Water from the furniture dump runoff was collected for the first time this year; there is no water generally flowing from mid-July onwards. The results for the four metals fall within the normal ranges given in Table III-21 except for copper which at 0.088 ppm is well above the normal range of 0.007-0.020 ppm. Also collected, for the first time this year was water from the stream that flows from a pond below the cliff near the S1/S4 beach area to the sea. A road was constructed across this stream this year in order to access the CEPA soil at the S1/S4 beach area. Water was taken from the stream below the crossing point after road construction was complete. Results for this sample show levels for cobalt, copper and nickel above the normal background levels. This could be due to the construction activity or the fact that the water could be described as glacial in that it flows from the old water lake over the cliff area that is covered with permanent snow to a lake whose colour, on occasion, resembles that of alpine glacial lakes. Water should be collected above the road and in the pond next year.

The PCB levels in two water samples taken from near the old officer's mess both gave slightly elevated results. PCBs were also detected this year in the stream by the beach dump but again at only slightly elevated levels. PCB levels in the furniture dump drainage pathway were found at a higher level of 0.69 ppb. This is consistent with results reported in Chapter VI related to the barrier constructed there.

Table III-19: Sampling Locations and Collection Dates of Background Water Samples

| Sample Number                                |                                                                       |              |
|----------------------------------------------|-----------------------------------------------------------------------|--------------|
| RI04-W005                                    |                                                                       |              |
| RI04-W009                                    | Water flowing from the maintenance dump                               | 30 June 2004 |
| RI04-W025                                    | Water flowing in the beach dump stream                                | 12 July 2004 |
| RI04-W027                                    | Water flowing in stream below the S1/S4<br>Beach, now crossed by Road | 13 July 2004 |
| RI04-W032                                    | Water flowing by the old officer's mess                               | 14 July 2004 |
| RI04-W075                                    | Water flowing by the old officer's mess                               | 02 Sept 2004 |
| RI04-W076 Water flowing behind imploded tank |                                                                       | 02 Sept 2004 |

Table III-20: Analytical Results Obtained from Background Water Samples

| Element | Unit | RI04-W005         | RI04-W009      | RI04-W025     | RI04-W027                | RI04-W032      | RI04-W075      | RI04-W076     |
|---------|------|-------------------|----------------|---------------|--------------------------|----------------|----------------|---------------|
|         |      | Furniture<br>dump | Maint.<br>dump | Beach<br>dump | Stream by<br>S1/S4 beach | Officer's mess | Officer's mess | Imploded tank |
| PCBs    | ppb  | 0.69              | -              | 0.08          | <0.02                    | 0.04           | 0.03           | < 0.02        |
| As      | ppm  | < 0.003           | < 0.003        | < 0.003       | < 0.003                  | <0.003         | -              | < 0.003       |
| Cd      | ppm  | < 0.001           | < 0.001        | < 0.001       | <0.001                   | < 0.001        | -              | < 0.001       |
| Cr      | ppm  | < 0.005           | < 0.005        | < 0.005       | < 0.005                  | < 0.005        | -              | < 0.005       |
| Co      | ppm  | 0.014             | 0.003          | 0.017         | 0.030                    | 0.009          | -              | 0.023         |
| Cu      | ppm  | 0.088             | <0.005         | 0.016         | 0.037                    | 0.007          | -              | 0.027         |
| Pb      | ppm  | < 0.010           | <0.010         | <0.010        | < 0.010                  | <0.010         | -              | < 0.010       |
| Ni      | ppm  | 0.078             | 0.008          | 0.065         | 0.142                    | 0.058          | -              | 0.063         |
| Zn      | ppm  | 0.048             | 0.095          | 0.032         | 0.077                    | 0.082          | -              | 0.049         |

Table III-21: Analytical Results Obtained from Background Water Samples

|                    | Cobalt      | Copper      | Nickel      | Zinc        |
|--------------------|-------------|-------------|-------------|-------------|
| Surface Runoff     | ppm         | ppm         | ppm         | ppm         |
| Mean               | 0.016       | 0.015       | 0.057       | 0.059       |
| Standard Deviation | 0.004       | 0.005       | 0.021       | 0.026       |
| Range              | 0.010-0.023 | 0.007-0.020 | 0.021-0.082 | 0.031-0.122 |
| Lake Water         |             |             |             |             |
| Mean               | 0.014       | 0.015       | 0.059       | 0.032       |
| Standard Deviation | 0.004       | 0.004       | 0.023       | 0.007       |
| Range              | 0.010-0.022 | 0.011-0.022 | 0.033-0.095 | 0.023-0.040 |

#### L. Background Plant Samples

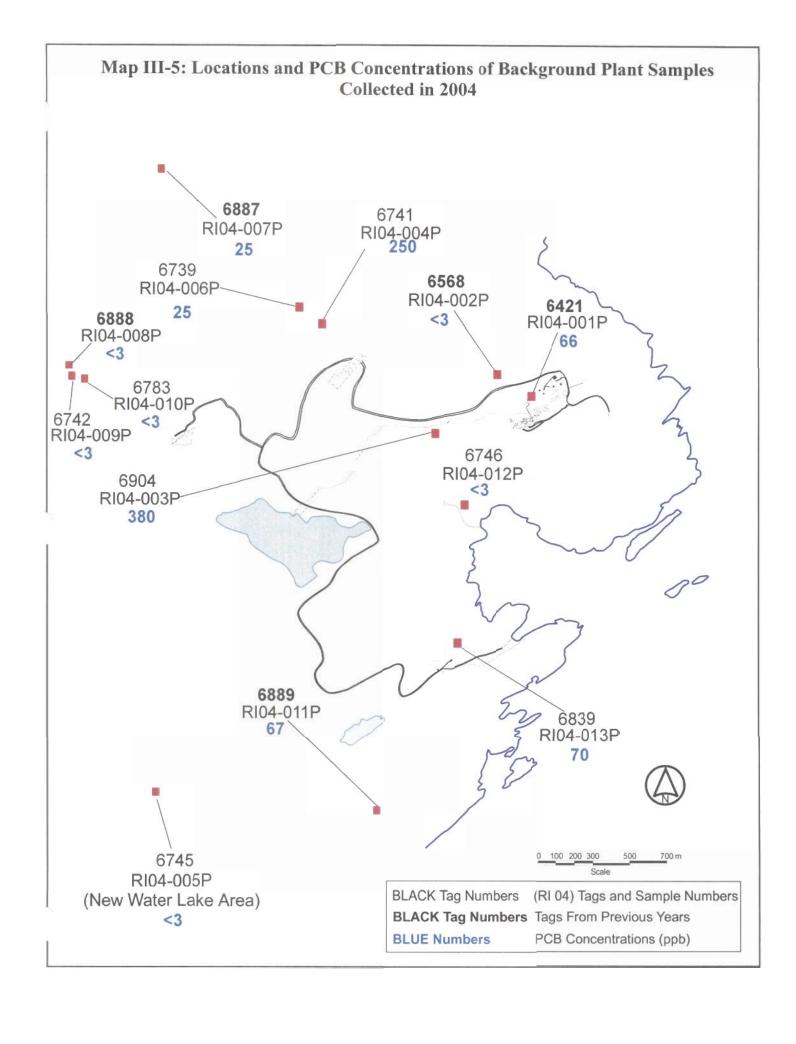
Background plant samples were collected and analysed for PCBs again this year. The locations as shown on Map III-5 (RI04 numbers) were sampled this year on 31 August 2004. The results for the 13 samples are given in Table III-22.

#### 1. Analytical Method

Plant samples were wrapped in foil and placed in ziplock bags. Samples were not washed and were kept frozen prior to analysis. Samples were air dried in the laboratory. Once dried 0.5 g of dried sample was accurately weighed and then ground in a mortar and pestle with sodium sulphate and Ottawa sand. The ground sample was transferred to a thimble, spiked with DCBP, and extracted by soxhlet for 4 hours at 4 - 6 cycles per hour using 250 mL of dichloromethane. The extract was then concentrated to approximately 10 mL, passed through a 0.45 um filter and then further concentrated to 1.0 mL. This concentrated extract was applied to a GPC column to separate the PCBs from the lipids. The PCB fraction was rotoevaporated, the solvent exchanged to hexane and the extract applied to a Florisil column for cleanup. This final extract was concentrated to 0.5 mL and run by GC/ECD. Values are reported on a dry weight basis.

#### 2. Plant Analysis Results

Plants are thought to be a good biological indicator of airborne PCBs. Results obtained over the past three seasons therefore represent the scenario during the active remediation of the site. PCB levels are expected to be higher at present than in future years when the cleanup is over. At that time nearly all the PCBs will have been removed from the site or buried and therefore much less airborne PCBs is expected to be present. Willow samples were taken in all locations except at the new water lake where willow could not be found this year.


All PCBs showed the Aroclor 1260 pattern. Results indicate that the level of PCBs in the plants in many of the areas has already dropped. Generally this year's results are similar to last year's with respect to which areas are higher, however, in most locations levels have lower concentrations. This year all plants collected contained levels below 1 ppm. This is in contrast to last year where plants near to PCB contaminated areas contained Tier I and Tier II levels of PCBs. For example the sample near the imploded tank was 3300 ppb last year but only 380 ppb this year. At the officers mess this year the

concentration in the plant sample was 66 ppb as compared to 1700 ppb last year. Three samples were taken at Radio Hill because of the anomalously high value there last year. These samples all contained <3 ppb PCBs.

It is difficult to obtain samples in exactly the same location each year and therefore a few more years of sampling will be necessary to clearly demonstrate that the levels are decreasing, however, the substantive decrease this year is promising.

Table III-22: Results of Analyses of Background Plant Samples

| Sample    | Tag  | PCBs (ng/g) | Location                                  |  |
|-----------|------|-------------|-------------------------------------------|--|
| RI04-001P | 6421 | 66          | Officer's Mess                            |  |
| RI04-002P | 6568 | <3          | NE of Tier II Landfill                    |  |
| RI04-003P | 6904 | 380         | Imploded tank (TPH drainage pathway)      |  |
| RI04-004P | 6741 | 250         | Airstrip dump drainage pathway            |  |
| RI04-005P | 6745 | <3          | New water lake                            |  |
| RI04-006P | 6739 | 25          | 100 m N of airstrip dump drainage pathway |  |
| RI04-007P | 6887 | 25          | 1000 m NE of airstrip                     |  |
| RI04-008P | 6888 | <3          | Radio Hill                                |  |
| RI04-009P | 6742 | <3          | Radio Hill                                |  |
| RI04-010P | 6783 | <3          | Radio Hill                                |  |
| RI04-011P | 6889 | 67          | 1000 m S of Barrel Cache Valley           |  |
| RI04-012P | 6746 | <3          | S1/S4 beach                               |  |
| RI04-013P | 6839 | 70          | Lead beach dump                           |  |



#### M. Miscellaneous Activities

Fuel was observed to be seeping from ground into ocean below the location of the beach dump which has been removed. The seepage area was below the high water line from a fracture in the rock cliff face. The hydrocarbon was identified as gasoline. It is suggested that an investigation by excavation inland from the fracture be undertaken in an attempt to find the source of the hydrocarbon.

Several containers were analysed from the PCB storage area after they were emptied in order to determine their fate. Four pieces of plastic were cut from the blue barrels that contained soil from the Iqaluit cleanup; the soil had been previously emptied on to the stock pile of CEPA soil from around the site. Results of the analysis given in Table III-23 show that this material contained levels between 6 and 290 ppm. As a result the empty barrels where crushed and containerized and are now awaiting disposal to a southern facility. The lids from the other blue barrels that contained concrete from Iqaluit were similarly tested. Their PCB levels ranged from 2.6 to 10.4 ppm. Given their small volume they were treated as the blue barrels that contained the Iqaluit soils. The concrete and the blue barrels minus their lids were packaged for southern disposal as described in Chapter IV. Six red vaults, which had previously contained wood and debris, were swabbed and the swabs analysed for PCBs. Results are given in Table III-24. The swabs were from a 10 cm by 10 cm area. The concentration of PCBs on the steel can be calculated from these results using the thickness of the vaults, the density of steel and assuming the surface layer thickness is very much smaller than the thickness of the steel. From this calculation the concentration of PCBs in the vaults is < 1.0 ppm. Sample RI04-604 and RI04-384 were from swabbing of two of the small conical steel containers that previously stored PCB contaminated materials. Again using a similar calculation, the concentration of PCBs is < 1.0 ppm. Similarly sample RI04-521 is from one of the three large conical steel containers that previously stored PCB contaminated wood. Again the calculated concentration is <1.0 ppm. All these containers can therefore be buried in the non-hazardous landfills on site. The swab sample RI04-524 was found to contain 3800 ug of PCBs. This was from a single unique barrel which was filled from the furniture dump with soil than had surrounded a transformer which contained pure Askarel.

A soil sample was collected from about 10 m in front of the door to building B2 where soil had previously been transferred to the large conical steel containers. The PCB

in this sample was found to be <1.0 ppm indicating that no further cleanup in this area is required.

Table III-23: PCB Concentrations of PCB Containers

| Container Material                                                           | Sample Number | PCB Concentration (ppm) |  |
|------------------------------------------------------------------------------|---------------|-------------------------|--|
| Sample from blue barrel previously containing CEPA soil from Iqaluit         | RI04-435      | 6.0                     |  |
| Sample from blue barrel previously containing CEPA soil from Iqaluit         | RI04-436      | 160                     |  |
| Sample from blue barrel previously containing CEPA soil from Iqaluit         | RI04-437      | 210                     |  |
| Sample from blue barrel previously containing CEPA soil from Iqaluit         | RI04-438      | 290                     |  |
| Sample from blue barrel lid previously containing CEPA concrete from Iqaluit | RI04-439      | 10.4                    |  |
| Sample from blue barrel lid previously containing CEPA concrete from Iqaluit | RI04-440      | 10.3                    |  |
| Sample from blue barrel lid previously containing CEPA concrete from Iqaluit | RI04-440D     | 10.1                    |  |
| Sample from blue barrel lid previously containing CEPA concrete from Iqaluit | RI04-547      | 2.6                     |  |

Table III-24: PCB from Swabbing PCB Storage Containers

| Container                          | Sample Number | PCB ug/swab |
|------------------------------------|---------------|-------------|
| Red vault                          | RI04-520      | 290         |
| Red vault                          | RI04-520D     | 280         |
| Red vault                          | RI04-523      | 130         |
| Red vault                          | RI04-526      | 7.4         |
| Red vault                          | RI04-527      | 62          |
| Red vault                          | RI04-529      | 5.2         |
| Small conical steel container      | RI04-604      | < 0.1       |
| Small conical steel container      | RI04-384      | < 0.1       |
| Large conical steel container      | RI04-521      | 32          |
| Barrel of soil from Furniture dump | RI04-524      | 3800        |

## N. Quality Control Data

The ASU is accredited by the Standards Council of Canada (SCC), in cooperation with the Canadian Association for Environmental and Analytical Laboratories (CAEAL), for specific tests listed in the scope of accreditation approved by the SCC. Quality control was maintained through the analysis of standards, duplicates, and blanks. Most tables are self explanatory and show good control of the quality of results. Results presented here are for all the analyses presented in this report's seven chapters. The results for PCBs and TPH, for which a large number of analyses were conducted, are discussed below. The ASU report for the lake water analysis is also given at the end of this chapter.

#### 1. PCB Quality Control/Quality Assurance

Samples were analyzed for PCBs by the GC/ECD method in the laboratories at Resolution Island and Queen's University. Table III-25 gives the results for blanks and spiked QA/QC soil samples. The relative standard deviations given in Table III-26 for laboratory duplicates demonstrate that the analyses were effective. The average of 15 %, as would be expected, is lower than for the average of 30 % for the field duplicate results given in Table III-27. This high value for the field duplicates illustrates the difficulty in obtaining representative samples from heterogeneously contaminated soil. Table III-28 gives the results for blanks and spiked QA/QC water samples; duplicate data was not obtained since the sample volumes required for these analyses (800 mL) are large. Table III-29 gives the results for blanks and spiked QA/QC plant samples.

#### 2. TPH Quality Control/Quality Assurance

The corresponding tables for TPH follow those for PCBs. Table III-30 presents the results for blanks and spiked QA/QC soil samples. The relative standard deviations given in Tables III-31 and III-32 for laboratory duplicates demonstrate that the analyses were successful. The averages of 13 % and 10 % are lower than for the average of 16 % and 21 % for the field duplicate results given in Tables III-33 and II-34 respectively. Table III-35 gives the gives the results for blanks and spiked QA/QC water samples and Table III-36 for duplicate water samples.

Table III-25: PCB Concentrations in Blank and Spiked QA/QC Soil Samples

| Sample         | Units | PCB Concentrations (ppm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
|----------------|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Blank μg/g     |       | <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, <1.0, |  |  |
| Control        | μg/g  | 4.6, 4.7, 4.8, 5.4, 5.4, 4.5, 5.0, 5.5, 5.5, 5.3, 5.5, 5.8, 5.1, 5.5, 5.4, 5.7, 5.6, 4.9, 5.5, 7.2, 6.1, 6.5, 7.0, 6.6, 5.5, 7.7, 7.1, 4.8, 4.8, 6.1, 5.7, 5.2, 5.8, 5.8, 3.7, 5.4, 4.3, 5.5, 4.8, 4.7, 4.9, 4.9, 5.6, 3.8, 5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
| Control Target | μg/g  | 5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |

Table III-26: PCB Concentrations in Laboratory Duplicate Soil Analysis

| Sample Number (prefix: RI04-) | PCB Concentrations (ppm) | Standard<br>Deviation | Relative Standard<br>Deviation (RSD) (%) |
|-------------------------------|--------------------------|-----------------------|------------------------------------------|
| 373                           | 3.4; 3.2                 | 0.1                   | 4                                        |
| 377                           | <1.0; <1.0               | 0                     | 0                                        |
| 327                           | <1.0; <1.0               | 0                     | 0                                        |
| BES8                          | 4.1; 4.0                 | 0.1                   | 2                                        |
| 435                           | 5.9; 6.1                 | 0.1                   | 2                                        |
| 011                           | 16; 17                   | 0.7                   | 4                                        |
| 016                           | 17; 18                   | 0.7                   | 4                                        |
| 022                           | 36; 31                   | 3.5                   | 11                                       |
| 041                           | 19; 16                   | 2.1                   | 12                                       |
| 743                           | 21; 28                   | 4.9                   | 20                                       |
| 116                           | 4.5; 6.1                 | 1.1                   | 21                                       |
| 109                           | 2.5; 1.0                 | 1.1                   | 61                                       |
| 197                           | 1.6; 1.5                 | 0.1                   | 5                                        |
| 212                           | 14; 17                   | 2.1                   | 14                                       |
| 214                           | 1.2; 1.2                 | 0                     | 0                                        |
| 215 31; 30                    |                          | 0.7                   | 2                                        |

| Sample Number (prefix: RI04-) | PCB Concentrations (ppm) | Standard<br>Deviation | Relative Standard<br>Deviation (RSD) (%) |
|-------------------------------|--------------------------|-----------------------|------------------------------------------|
| 216                           | 1.5; 2.3                 | 0.6                   | 30                                       |
| 232                           | 1.6; 1.2                 | 0.3                   | 20                                       |
| 235                           | 70; 83                   | 9.2                   | 12                                       |
| 239                           | 40; 48                   | 5.7                   | 13                                       |
| 249                           | 1.3; 5.6                 | 3.0                   | 88                                       |
| 253                           | 4.7; 4.4                 | 0.2                   | 5                                        |
| 255                           | 26; 26                   | 0                     | 0                                        |
| 259                           | <1.0; <1.0               | 0                     | . 0                                      |
| 267                           | 18; 11                   | 4.9                   | 34                                       |
| 269                           | 2.3; 2.0                 | 0.2                   | 10                                       |
| 271                           | 13; 17                   | 2.8                   | 19                                       |
| 292                           | 2.6; 2.8                 | 0.1                   | 5                                        |
| 424 6.9; 3.7                  |                          | 2.3                   | 43                                       |
| 442                           | 2.8; 3.1                 | 0.2                   | 7                                        |
| Average RSD                   | -                        | -                     | 15                                       |

**Table III-27: PCB Concentrations in Field Duplicate Soil Analysis** 

| Sample Number (prefix: RI04-) | PCB Concentrations (ppm) | Standard<br>Deviation | Relative Standard<br>Deviation (RSD) (% |  |
|-------------------------------|--------------------------|-----------------------|-----------------------------------------|--|
| 480                           | 0.6; 1.0                 | 0.3                   | 35                                      |  |
| 010                           | <1.0; 2.6                | 1.1                   | 63                                      |  |
| 020                           | 9.1; 9.2                 | 0.1                   | 1                                       |  |
| 050                           | 3.4; 5.0                 | 1.1                   | 27                                      |  |
| 560                           | 22; 19                   | 2.1                   | 10                                      |  |
| 630                           | 1.7; 2.6                 | 0.6                   | 30                                      |  |
| 640                           | 6.0; 4.0                 | 1.4                   | 28                                      |  |
| 030                           | 1.2; 0.9                 | 0.2                   | 20                                      |  |
| 100                           | 5.6; 3.4                 | 1.6                   | 35                                      |  |

| 110         | <1.0; <1.0 | 0   | 0  |
|-------------|------------|-----|----|
| 190         | 9.7; 11.0  | 0.9 | 9  |
| 210         | 11; 20     | 6.4 | 41 |
| 220         | 18; 15     | 2.1 | 13 |
| 200         | 132; 267   | 95  | 48 |
| 240         | 1.8; 2.3   | 0.4 | 17 |
| 250         | <1.0; <1.0 | 0   | 0  |
| 290         | 25; 26     | 0.7 | 3  |
| 300         | 14; 3.9    | 7.1 | 80 |
| 450         | 6.6; 17    | 7.4 | 62 |
| 460         | 5.6; 3.5   | 1.5 | 33 |
| 150         | 11.2; 2.9  | 5.9 | 83 |
| Average RSD | -          | -   | 30 |

Table III-28: PCB Concentrations in Blank and Spiked QA/QC Water Samples

| Sample Units  Blank μg/L | Units  |        |        | P      | CB Con | centrati | ons (ppl | ) .   |        |      |
|--------------------------|--------|--------|--------|--------|--------|----------|----------|-------|--------|------|
|                          | < 0.02 | < 0.02 | < 0.02 | < 0.02 | < 0.02 | < 0.02   | < 0.02   | <0.02 | < 0.02 |      |
| Control                  | μg/L   | 0.045  | 0.054  | 0.08   | 0.08   | 0.10     | 0.09     | 0.10  | 0.10   | 0.08 |
| Control<br>Target        | μg/L   | 0.063  | 0.063  | 0.10   | 0.10   | 0.10     | 0.10     | 0.10  | 0.10   | 0.10 |

Table III-29: PCB Concentrations in Blank and Spiked QA/QC Plant Samples

| Sample         | Units | PCB C | oncentrations | (ppb) |
|----------------|-------|-------|---------------|-------|
| Blank          | μg/L  | <3    | <3            | <3    |
| Control        | μg/L  | 15    | 19            | 13    |
| Control Target | μg/L  | 20    | 20            | 20    |

Table III-30: TPH Concentrations in Blank and Spiked QA/QC Soil Samples

| Sample         | Units |     | TPI | H Concentr | rations (pp | m)  |     |
|----------------|-------|-----|-----|------------|-------------|-----|-----|
| Blank          | ppm   | <40 | <40 | <40        | <40         | <40 | <40 |
| Control        | ppm   | 497 | 451 | 511        | 561         | 556 | 511 |
| Control Target | ppm   | 500 | 500 | 500        | 500         | 500 | 500 |

Table III-31: TPH (Fuel) Soil Concentrations in Laboratory Duplicate Analysis

| Sample Number (prefix: RI04-) | TPH Concentrations (ppm) | Standard<br>Deviation | Relative Standard<br>Deviation (RSD) (%) |
|-------------------------------|--------------------------|-----------------------|------------------------------------------|
| 307                           | 1490; 1500               | 7                     | 0                                        |
| 340                           | <40; <40                 | 0                     | 0                                        |
| 360                           | 41; 72                   | 22                    | 39                                       |
| 368                           | 860; 1320                | 325                   | 30                                       |
| 370                           | <40; <40                 | 0                     | 0                                        |
| 372                           | 300; 310                 | 7                     | 2                                        |
| 373                           | 65; 85                   | 14                    | 19                                       |
| 592                           | 2620; 1940               | 480                   | 21                                       |
| 603                           | 750; 1210                | 325                   | 33                                       |
| 676                           | 240; 240                 | 0                     | 0                                        |
| 707                           | 2870; 3090               | 155                   | 5                                        |
| 723                           | 2740; 2880               | 99                    | 4                                        |
| Average RSD                   | -                        | -                     | 13                                       |

Table III-32: TPH (Lubricating Oil and Grease) Soil Concentrations in Laboratory Duplicate Analysis

| Sample Number (prefix: RI04-) | TPH Concentrations (ppm) | Standard<br>Deviation | Relative Standard<br>Deviation (RSD) (%) |
|-------------------------------|--------------------------|-----------------------|------------------------------------------|
| 307                           | 260; 240                 | 14                    | 6                                        |
| 340                           | <40; <40                 | 0                     | 0                                        |
| 360                           | <40; 57                  | 26                    | 68                                       |
| 368                           | <40; <40                 | 0                     | 0                                        |
| 370                           | <40; <40                 | 0                     | 0                                        |
| 372                           | 60; 60                   | 0                     | 0                                        |
| 373                           | 370; 420                 | 35                    | 9                                        |
| 592                           | <40; <40                 | 0                     | 0                                        |
| 603                           | <40; <40                 | 0                     | 0                                        |
| 676                           | 70; 50                   | 14                    | 24                                       |
| 707                           | 200; 220                 | 14                    | 7                                        |
| 723                           | 240; 220                 | 14                    | 6                                        |
| Average RSD                   | -                        | -                     | 10                                       |

Table III-33: TPH (Fuel) Soil Concentrations in Field Duplicate Analysis

| Sample Number (prefix: RI04-) | TPH Concentrations (ppm) | Standard<br>Deviation | Relative Standard<br>Deviation (RSD) (%) |  |
|-------------------------------|--------------------------|-----------------------|------------------------------------------|--|
| 350                           | 840; 1000                | 113                   | 12                                       |  |
| 490                           | 340; 270                 | 49                    | 16                                       |  |
| 590                           | 130; 130                 | 0                     | 0                                        |  |
| 670                           | 1160; 712                | 316                   | 34                                       |  |
| 680                           | 400; 450                 | 35                    | 8                                        |  |
| 700                           | 4160; 2120               | 1442                  | 46                                       |  |
| 710                           | 2940; 3200               | 183                   | 6                                        |  |
| 720                           | 3890; 3670               | 155 4                 |                                          |  |
| Average RSD                   | =::                      | -                     | 16                                       |  |

Table III-34: TPH (Lubricating Oil and Grease) Soil Concentrations in Field Duplicate Analysis

| Sample Number (prefix: RI04-) | TPH Concentrations (ppm) | Standard<br>Deviation | Relative Standard<br>Deviation (RSD) (%) |
|-------------------------------|--------------------------|-----------------------|------------------------------------------|
| 350                           | 170; 170                 | 0                     | 0                                        |
| 490                           | 90; 80                   | 7                     | 8                                        |
| 590                           | <40; <40                 | 0                     | 0                                        |
| 670                           | 290; 110                 | 127                   | 64                                       |
| 680                           | 150; 190                 | 28                    | 17                                       |
| 700                           | 80; 50                   | 21                    | 33                                       |
| 710                           | 170; 300                 | 91                    | 39                                       |
| 720                           | 160; 170                 | 7                     | 4                                        |
| Average RSD                   | -                        | -                     | 21                                       |

Table III-35: TPH Concentrations in Blank and Spiked QA/QC Water Samples

| Sample         | Units | TPH Concentrations (ppm) |      |      |      |      |      |        |        |        |
|----------------|-------|--------------------------|------|------|------|------|------|--------|--------|--------|
| Blank          | μg/mL | <1.0                     | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | < 0.05 | < 0.05 | < 0.05 |
| Control        | μg/mL | 20.3                     | 20.3 | 7.6  | 7.6  | 7.6  | 7.6  | 0.083  | 0.320  | 0.320  |
| Control Target | μg/mL | 20.0                     | 20.0 | 12.4 | 12.4 | 12.4 | 12.4 | 0.081  | 0.310  | 0.316  |

Table III-36: TPH Water Concentrations in Laboratory Duplicate Analysis

| Sample Number (prefix: RI04-) | TPH Concentrations (ppm) | Standard<br>Deviation | Relative Standard<br>Deviation (RSD) (%) |
|-------------------------------|--------------------------|-----------------------|------------------------------------------|
| 045                           | 2.5; 2.5                 | 0                     | 0                                        |
| 057                           | 1.7; 1.2                 | 0.354                 | 24                                       |
| 022                           | <1.0; <1.0               | 0                     | 0                                        |
| 033                           | <1.0; <1.0               | 0                     | 0                                        |
| 070                           | 0.084; 0.138             | 0.038                 | 34                                       |
| 071                           | 0.077; 0.097             | 0.014                 | 16                                       |
| 072                           | 0.079; 0.108             | 0.021                 | 22                                       |
| 703                           | 0.063; 0.108             | 0.032                 | 37                                       |
| Average RSD                   | -                        | -                     | 17                                       |

Table III-37: Metal Water Concentrations in Laboratory Blank Determinations

| Parameter | Units |         |         |         | Blank   |         |         |         |
|-----------|-------|---------|---------|---------|---------|---------|---------|---------|
| Arsenic   | mg/L  | < 0.003 | < 0.003 | < 0.003 | < 0.003 | < 0.003 | < 0.003 | < 0.003 |
| Cadmium   | mg/L  | < 0.001 | < 0.001 | < 0.001 | < 0.001 | < 0.001 | < 0.001 | < 0.001 |
| Chromium  | mg/L  | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 |
| Cobalt    | mg/L  | < 0.003 | < 0.003 | < 0.003 | < 0.003 | < 0.003 | < 0.003 | < 0.003 |
| Copper    | mg/L  | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 |
| Lead      | mg/L  | < 0.010 | < 0.010 | < 0.010 | < 0.010 | <0.010  | <0.010  | < 0.010 |
| Nickel    | mg/L  | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 |
| Zinc      | mg/L  | < 0.010 | < 0.010 | < 0.010 | < 0.010 | < 0.010 | <0.010  | < 0.010 |

Table III-38: Metal Water Concentrations in QC Control Samples

| Parameter | Units |     |     |     | QC  |     |     |     | QC Target |
|-----------|-------|-----|-----|-----|-----|-----|-----|-----|-----------|
| Arsenic   | mg/L  | 1.1 | 1.2 | 1.2 | 1.2 | 1.2 | 1.2 | 1.1 | 1.2       |
| Cadmium   | mg/L  | 0.4 | 0.4 | 0.4 | 0.4 | 0.4 | 0.4 | 0.4 | 0.4       |
| Chromium  | mg/L  | 2.2 | 2.1 | 2.1 | 2.1 | 2.1 | 2.1 | 2.1 | 2.2       |
| Cobalt    | mg/L  | 0.4 | 0.4 | 0.4 | 0.4 | 0.4 | 0.4 | 0.4 | 0.4       |
| Copper    | mg/L  | 2.1 | 2.1 | 2.1 | 2.1 | 2.1 | 2.1 | 2.1 | 2.2       |
| Lead      | mg/L  | 2.2 | 2.1 | 2.1 | 2.1 | 2.1 | 2.1 | 2.2 | 2.2       |
| Nickel    | mg/L  | 2.2 | 2.1 | 2.1 | 2.1 | 2.1 | 2.1 | 2.2 | 2.2       |
| Zinc      | mg/L  | 1.2 | 1.2 | 1.2 | 1.2 | 1.2 | 1.2 | 1.2 | 1.2       |

Table III-39: Metal Soil Concentrations in Blank and Reference Material (ppm)

| Parameter | Blank |      |      |      |      | MESS-3 |      |      |      |      | Target    |
|-----------|-------|------|------|------|------|--------|------|------|------|------|-----------|
| As        | <1.0  | <1.0 | <1.0 | <1.0 | <1.0 | 15.6   | 15.9 | 17.0 | 17.3 | 16.2 | 14.6-21.4 |
| Cd        | <1.0  | <1.0 | <1.0 | <1.0 | <1.0 | <1.0   | <1.0 | <1.0 | <1.0 | <1.0 | -         |
| Co        | <5.0  | <5.0 | <5.0 | <5.0 | <5.0 | 11.7   | 12.2 | 10.9 | 13.0 | 11.5 | 9.9-13.3  |
| Cr        | <20   | <20  | <20  | <20  | <20  | 39     | 34   | 41   | 40   | 49   | 36-50     |
| Cu        | <3.0  | <3.0 | <3.0 | <3.0 | <3.0 | 34     | 35   | 35   | 37   | 35   | 26.9-35.1 |
| Ni        | <5.0  | <5.0 | <5.0 | <5.0 | <5.0 | 34     | 37   | 35   | 37   | 38   | 33-41     |
| Pb        | <10   | <10  | <10  | <10  | <10  | 17     | 18   | 16   | 19   | 17   | 14.7-20.4 |
| Zn        | <15   | <15  | <15  | <15  | <15  | 131    | 140  | 132  | 133  | 125  | 114-157   |

Table III-40: Metal Soil Concentrations in Laboratory Duplicate Analysis (ppm)

| Parameter | RI04-518 |      | RI04-550 |      | RI04-152 |      | RI04-157 |      | RI04-323 |      |
|-----------|----------|------|----------|------|----------|------|----------|------|----------|------|
| Arsenic   | 1.8      | 1.9  | 2.1      | 1.6  | 1.3      | 1.1  | 1.3      | 1.1  | 1.9      | 2.0  |
| Cadmium   | <1.0     | <1.0 | <1.0     | <1.0 | <1.0     | <1.0 | <1.0     | <1.0 | <1.0     | <1.0 |
| Chromium  | 61       | 61   | 36       | 43   | 36       | 31   | 36       | 31   | 39       | 38   |
| Cobalt    | 12.4     | 11.5 | 11.0     | 11.7 | 8.8      | 7.8  | 6.1      | 5.4  | 12.5     | 12.3 |
| Copper    | 67       | 61   | 76       | 84   | 59       | 51   | 52       | 53   | 76       | 76   |
| Lead      | 56       | 70   | <10      | <10  | <10      | <10  | <10      | <10  | <10      | <10  |
| Nickel    | 55       | 50   | 46       | 47   | 39       | 33   | 26       | 26   | 59       | 59   |
| Zinc      | 79       | 75   | 51       | 62   | 53       | 47   | 40       | 39   | 55       | 55   |

Table III-41: Data for Barrel Blank and Quality Control Samples

|                | PCB              | Chlorine         |
|----------------|------------------|------------------|
|                | ug/g             | ug/g             |
| Blank          | <2.0; <2.0; <2.0 | <100; <100; <100 |
| Control        | 44; 50; 47       | 1024; 1020; 1020 |
| Control Target | 50               | 1022             |

Table III-42: Replicate Analysis Results for Barrel Contents

| Sample    | PCBs       | Chlorine     | Chromium | Lead       | Cadmium    |
|-----------|------------|--------------|----------|------------|------------|
|           | (ppm)      | (ppm)        | (ppm)    | (ppm)      | (ppm)      |
| RI04-H010 | <2.0; <2.0 | <1000; <1000 | -        | 0+         | -          |
| RI04-H013 | -          | <1000; <1000 | <10; <10 | <100; <100 | <2.0; <2.0 |
| RI04-H018 | <2.0; <2.0 | -            | -        | -          | -          |
| RI04-H023 | Ter        | 95300; 89500 | -        | -          | -          |

#### Annex A

## Resolution Island: Removal of CEPA PCB Contaminated Concrete from the Floor of the S4 Building

The S4 building structure has been demolished and the debris removed to a non-hazardous landfill. Multiple samples taken across the concrete foundation determined that in one small section, the concrete was contaminated above the 50ppm level (260ppm). Excavation to a depth of 10cm (where applicable) should be sufficient to bring the area to compliance but this must be confirmed by analysis. Organizational responsibilities are the same as for other excavations at Resolution Island.

#### Personal Protective Equipment (PPE)

Removing the concrete will require a concrete cutting or pneumatic drilling device and significant quantities of concrete dust may be released. The major exposure route is therefore expected to be through inhalation. Personnel taking part in the excavation will have to wear respirators (Resolution Island Health and Safety Plan, Appendix 5, P4). Activities related to the testing and removal of PCB saturated wood flooring have been safely carried out at this site: *Resolution Island 1998 Scientific Investigations*, Analytical Services Unit, Queens University. It is expected that the same types of PPE as was used for workers removing CEPA contaminated wood will be more than sufficient in this instance where, the contamination levels are much lower and where the expected exposure time to the contaminated concrete will be much less, due to the low area of material to be excavated.

### Required Protective Clothing

Rubber safety boots, safety glasses with side shields (to minimize impact risks from grinding and chipping of masonry), hard hats, Saranex coated disposable suit, nitrile gloves (inside) and work gloves (outside). Workers must use half-face respirators with particulate filters and organic vapor cartridges. Enhanced levels of respiratory protection may be afforded by the use of a full-face respirator if available and should be worn if deemed necessary by the on-site Health and Safety Representative. The Saranex suits should be taped shut to minimize the infiltration of PCB containing concrete dust onto the skin.

#### Dust Suppression and Contamination Confinement

To further minimize any contamination risk, the area to be excavated can be wetted down using a suitable water source. As the concrete is removed larger pieces can be picked up and placed in a suitable container such as a blue plastic barrel. Finer material can be swept up and added to this or a vacuum truck may be used. Any personnel operating the vacuum hose will be in close proximity and should be wearing half face respirators with particulate filters and organic vapor cartridges as well as the usual protective equipment for working in CEPA contaminated areas. The CEPA concrete should be added to the similar material shipped from Iqaluit and subsequently transported and disposed of appropriately.



ASU #; 7358 Report I.D. RI Lake Water ASU7358

Client: DIAND Date Submitted: 18-Aug-04
Date Analysis Initiated: 18-Aug-04

Date Reported: 20 Sept 04

Method: Standard Methods Matrix: Water

| Parameter           | Units      | RI04-<br>W003 | BLANK          | QC     | QC TARGET |
|---------------------|------------|---------------|----------------|--------|-----------|
| Copper              | mg/L       | 0.017         | < 0.005        | 2.20   | 2.20      |
| Iron                | mg/L       | < 0.05        | < 0.05         | 14.8   | 16.0      |
| Lead                | mg/L       | < 0.005       | < 0.005        | 2.25   | 2.20      |
| Manganese           | mg/L       | 0.13          | < 0.05         | 2.26   | 2.20      |
| Mercury             | mg/L       | <0.0005       | < 0.0005       | 0.0022 | 0.0020    |
| Cadmium             | mg/L       | < 0.001       | < 0.001        | 0.42   | 0.40      |
| Nickel              | mg/L       | 0.086         | < 0.005        | 2.21   | 2.20      |
| Chromium            | mg/L       | < 0.005       | < 0.005        | 0.42   | 0.40      |
| Cobalt              | mg/L       | 0.021         | < 0.005        | 2.22   | 2.20      |
| Zinc                | mg/L       | 0.045         | < 0.010        | 1.24   | 1.20      |
| Phenols             | ug/L       | <1.0          | <1.0           | 10.0   | 10.0      |
| рН                  | -          | 4.5           | 7 <del>-</del> |        | 1-        |
| TSS                 | mg/L       | <4.0          | <2.0           | (+.)   | 15        |
| Nitrate             | mg/L       | 0.07          | <0.05          | 1.03   | 1.00      |
| Nitrite             | mg/L       | <0.05         | < 0.05         | 0.97   | 1.00      |
| Oil and Grease      | mg/L       | 2.0           | <1.0           | 14.8   | 15.6      |
| BOD                 | mg/L       | <3            | <3             | 166    | 200       |
| Faecal<br>Coliforms | Cts/100 mL | 0             | 0              | 41     | 50        |

Prepared by: A. Malle

Authorization:

Page 1 of 1 RI lake water ASU7358

