

PIN-D Ross Point Long-Term Monitoring Report

Year 10

Crown-Indigenous Relations and Northern Affairs Canada

Project number: 60686962

February 14, 2023

Statement of Qualifications and Limitations

The attached Report (the "Report") has been prepared by AECOM Canada Ltd. ("AECOM") for the benefit of the Client ("Client") in accordance with the agreement between AECOM and Client, including the scope of work detailed therein (the "Agreement").

The information, data, recommendations and conclusions contained in the Report (collectively, the "Information"):

- is subject to the scope, schedule, and other constraints and limitations in the Agreement and the qualifications contained in the Report (the "Limitations");
- represents AECOM's professional judgement in light of the Limitations and industry standards for the preparation of similar reports;
- may be based on information provided to AECOM which has not been independently verified;
- has not been updated since the date of issuance of the Report and its accuracy is limited to the time period and circumstances in which it was collected, processed, made or issued;
- must be read as a whole and sections thereof should not be read out of such context;
- was prepared for the specific purposes described in the Report and the Agreement; and
- in the case of subsurface, environmental or geotechnical conditions, may be based on limited testing and on the assumption that such conditions are uniform and not variable either geographically or over time..

AECOM shall be entitled to rely upon the accuracy and completeness of information that was provided to it and has no obligation to update such information. AECOM accepts no responsibility for any events or circumstances that may have occurred since the date on which the Report was prepared and, in the case of subsurface, environmental or geotechnical conditions, is not responsible for any variability in such conditions, geographically or over time.

AECOM agrees that the Report represents its professional judgement as described above and that the Information has been prepared for the specific purpose and use described in the Report and the Agreement, but AECOM makes no other representations, or any guarantees or warranties whatsoever, whether express or implied, with respect to the Report, the Information or any part thereof.

Without in any way limiting the generality of the foregoing, any estimates or opinions regarding probable construction costs or construction schedule provided by AECOM represent AECOM's professional judgement in light of its experience and the knowledge and information available to it at the time of preparation. Since AECOM has no control over market or economic conditions, prices for construction labour, equipment or materials or bidding procedures, AECOM, its directors, officers and employees are not able to, nor do they, make any representations, warranties or guarantees whatsoever, whether express or implied, with respect to such estimates or opinions, or their variance from actual construction costs or schedules, and accept no responsibility for any loss or damage arising therefrom or in any way related thereto. Persons relying on such estimates or opinions do so at their own risk.

Except (1) as agreed to in writing by AECOM and Client; (2) as required by-law; or (3) to the extent used by governmental reviewing agencies for the purpose of obtaining permits or approvals, the Report and the Information may be used and relied upon only by Client.

AECOM accepts no responsibility, and denies any liability whatsoever, to parties other than Client who may obtain access to the Report or the Information for any injury, loss or damage suffered by such parties arising from their use of, reliance upon, or decisions or actions based on the Report or any of the Information ("improper use of the Report"), except to the extent those parties have obtained the prior written consent of AECOM to use and rely upon the Report and the Information. Any injury, loss or damages arising from improper use of the Report shall be borne by the party making such use.

This Statement of Qualifications and Limitations is attached to and forms part of the Report and any use of the Report is subject to the terms hereof.

AECOM: 2015-04-13

© 2009-2015 AECOM Canada Ltd. All Rights Reserved.

Quality information

Prepared by Prepared by

Checked by

Sanine Morris

Environmental Professional

Alysha Selinger

B.Sc. Environmental Engineering

David Bugden

Senior Environmental Professional

Reviewed by

Approved by

2023-02-16

Gordon Woollett, P.Eng. Senior Engineer

Jessica Stepney, P.Eng.

Senior Engineer

Revision History

Revision	Revision date	Details	Name
Rev 0	Dec. 2, 2022	Draft	Alysha Selinger
Rev 1	Feb. 8, 2023	Final	Alysha Selinger
Rev 2	Feb. 14, 2023	Final – Revised	Alysha Selinger

Distribution List

# Hard Copies	PDF Required	Association / Company Name
1	Х	CIRNAC

Prepared for:

Crown-Indigenous Relations and Northern Affairs Canada

Prepared by:

AECOM Canada Ltd. 101 – 18817 Stony Plain Road NW Edmonton, AB T5S 0C2 Canada

T: 780.486.7000 F: 780.486.7070 aecom.com

© 2023 AECOM Canada Ltd.. All Rights Reserved.

This document has been prepared by AECOM Canada Ltd. ("AECOM") for sole use of our client (the "Client") in accordance with generally accepted consultancy principles, the budget for fees and the terms of reference agreed between AECOM and the Client. Any information provided by third parties and referred to herein has not been checked or verified by AECOM, unless otherwise expressly stated in the document. No third party may rely upon this document without the prior and express written agreement of AECOM.

Executive Summary

The PIN-D Site is a former intermediate Distant Early Warning (DEW) Line site constructed by the Department of National Defence (DND) in 1959 and deactivated in 1963. In 1985, a program conducted by DND, Environment Canada (currently Environment and Climate Change Canada, ECCC), and Indian and Northern Affairs Canada (INAC; currently CIRNAC) cleaned up surface contaminants on site. Remediation of the site was conducted between 2011 and 2012, which involved the demolition and disposal of buildings, structures, and other debris, and the cleanup of hazardous materials and contaminated soil. A Non-Hazardous Waste Landfill (NHWL) was constructed during this time and completed in August 2012. Non-hazardous items from PIN-E Cape Peel were transported from PIN-E to PIN-D in August 2012 and disposed of in the PIN-D NHWL.

The field program was conducted on August 4, 2022, to complete Year 10 monitoring activities as described in the PIN-D Ross Point Long-Term Monitoring Plan (AANDC, 2013; LTMP), The program included visual monitoring of the NHWL, visual inspection of general site conditions, collection and analysis of groundwater samples, and surface water or soil samples, if identified. The visual and environmental monitoring inspection was documented via checklist along with a photographic record.

The Site was accessed via Twin Otter aircraft, with take off and landing on the northeast-southwest airstrip. Overall, the access roads and northeast-southwest airstrip were in good condition. Some sparce vegetation was noted around the airstrip, but the charter airline staff deemed the strip to be in good landing condition. The east-west airstrip was not inspected during the 2022 field activities due to limited time onsite. A fuel barrel was found at the intersection of the northeast-southwest airstrip and the access road. The access roads on Site, specifically between the northeast-southwest airstrip and the NHWL, were in good condition and easily traversed with a tundra wagon.

All four groundwater monitoring wells located around the NHWL were inspected and sampled as active layer groundwater was present. Groundwater samples collected from the landfill did exhibit ULA exceedances for several metal parameters, however they are not cause for concern at this time. The exceedances are not successive with previous years, are not within the contaminants of concern (COC) outlined in the Abandoned Military Sites Remediation Protocol (AMSRP), and therefore appear anomalous to historical data. The metals exceedances noted in the 2019 Year 7 report were not repeated in the results of the Year 10 monitoring, however continued observation is recommended to determine if any potential trends are established.

The overall performance condition of the NHWL is rated as acceptable in 2022 based on the severity ratings presented in AMSRP Volume II (INAC, 2009). Settlement features identified on Site do not appear to be notably changing or affecting the stability or performance of the landfill.

Based on the results of the 2022 Year 10 activities, the remediation strategy for PIN-D appears to be meeting the objectives expected for this phase of the LTMP. Geotechnical monitoring and visual inspection rate the NHWL as acceptable as per the AMSRP, consistent with the Year 7 results. The landfill condition combined with the analytical groundwater results and lack of cause for surface water or soil samples indicates little to no risk associated with contaminant migration from the landfill. Concentrations of polychlorinated biphenyls (PCBs) and petroleum hydrocarbons (PHCs) have not been detected in any of the long-term monitoring events, which began in 2013. It is recommended that sample collection and analyses for PCBs and PHCs could be discontinued and removed from the scope of future monitoring events on Site. The same recommendation was made in the Year 5 monitoring report by Arcadis.

Continuation of the monitoring schedule as written in the LTMP is recommended, with the next monitoring event being Year 15 in 2027.

Table of Contents

1.	Introd	fuction	1
	1.1	Objectives	1
	1.2	Scope of Work	1
2.	Back	ground Information	2
	2.1	Site Description	2
	2.2	Previous Reports and Monitoring Programs	2
3.	Refer	ence Guidelines	4
	3.1	Groundwater	4
	3.2	Surface Water	4
	3.3	Soil	4
4.	2022	Monitoring Program Methodologies	6
	4.1	Health and Safety Plan	6
	4.2	Geotechnical Monitoring and Visual Inspection	6
	4.3	Groundwater Sampling Methodology	6
	4.4	Surface Water Sampling Methodology	7
	4.5	Soil Sampling Methodology	7
	4.6	Quality Assurance and Quality Control	7
5.	Resu	lts	9
	5.1	Non-Hazardous Waste Landfill	9
	5.1.1	Geotechnical Monitoring and Visual Inspection	9
	5.1.2	Groundwater Monitoring	9
	5.1.3	Surface Water Monitoring	11
	5.1.4	Soil Monitoring	11
	5.1.5	Landfill Performance	11
	5.2	Site Condition	11
	5.3	QA/QC Discussion	11
	5.3.1	Duplicate Samples	11
	5.3.2	Relative Percent Difference	12
	5.3.3	Analytical QA/QC	12
6.	Conc	lusion and Recommendations	13
7.	Refer	ences	14
Tak	oles		
Table	5-1: PI	N-D Ross Point Groundwater Well Locations	10
Table	5-2: Sı	ummary of ULA Exceedances in Groundwater at the NHWL	10

Appendices

Appendix A	Drawings
Appendix B	Photographic Record
Appendic C	Monitoring Checklist and Daily Field Report
Appendix D	Groundwater Tables
Appendix E	Historical Soil Sample Tables
Appendix F	Laboratory Certificate of Analysis

Acronyms and Abbreviations

ACM Asbestos Containing Materials

AECOM Canada Ltd.

ALS Environmental Laboratories

AMSRP Abandoned Military Site Remediation Protocol
CALA Canadian Association for Laboratory Accreditation
CCME Canadian Council of Ministers of the Environment

COC Contaminant of Concern

CIRNAC Crown-Indigenous Relations and Northern Affairs Canada

DEW Intermediate Distant Early Warning

DLCC DEW Line Cleanup Criteria

DND Department of National Defense

DO Dissolved Oxygen

ECCC Environment and Climate Change Canada

ESG Environmental Sciences Group of the Royal Military College of Canada (RCM)

FIGQGs Federal Interim Groundwater Quality Guidelines

GPS Global Positioning System
HASP Health and Safety Plan

INAC Indigenous and Northern Affairs Canada (formerly AANDC)

LDPE Low Density Polyethylene

LTM Long-Term Monitoring

LTMP Long-Term Monitoring Plan

NHWL Non-Hazardous Waste Landfill

NU Nunavut

ORP Oxidative-Reduction Potential
PCBs Polychlorinated Biphenyls
PHCs Petroleum Hydrocarbons

POL Petroleum, Oil, and Lubricants

QA Quality Assurance QC Quality Control

QA/QC Quality Assurance/Quality Control

RDL Reported Detection Limit

RPD Relative Percent Difference

ULA Upper Limit of Acceptability

UTM Universal Transverse Mercator

1. Introduction

AECOM Canada Ltd. (AECOM) was retained by Crown-Indigenous Relations and Northern Affairs Canada (CIRNAC) to conduct the long-term monitoring (LTM) activities at former Distant Early Warning (DEW) Line site PIN-D Ross Point (herein referred to as "the Site"). PIN-D is located at 68° 35′ 48.74″ N, 111° 07′ 3.47″ W in the Kitikmeot Region of Nunavut (NU), approximately 250 kilometres (km) west of Cambridge Bay on Victoria Island, NU.

1.1 Objectives

The objective of the long-term monitoring event was to complete Year 10 monitoring activities as described in the *PIN-D Ross Point Long-Term Monitoring Plan* (INAC, 2013; LTMP). The program included visual monitoring of the Non-Hazardous Waste Landfill (NHWL), visual inspection of general site conditions and the natural environment, and collection and analysis of groundwater samples. Analysis of field data and visual observations were conducted to satisfy the requirements of the *Abandoned Military Site Remediation Protocol* (INAC, 2009; AMSRP).

1.2 Scope of Work

The scope of work for the 2022 long-term monitoring activities included the following:

- Prepare and submit a Logistics Plan detailing the work schedule.
- Prepare and submit a Work Plan detailing the work methodologies.
- Prepare and submit a detailed Health and Safety Plan (HASP).
- Mobilize to and from PIN-D Ross Point via chartered Twin Otter aircraft, with one field day on site.
- Provision of a wildlife monitor (with firearm).
- Monitoring of general site conditions (i.e., access roads and airstrip, etc.) and natural environment as outlined in Section 2.1 of the LTMP.
- Visual inspection of the NHWL in accordance with Appendix C of the LTMP. Observations will be documented via a photographic record, visual monitoring checklist, and a site map.
- Purge monitoring wells, collect in-situ field parameters, and collect groundwater samples from four (4) monitoring wells around the NHWL.
- Collect soil samples if seepage or staining is identified during visual inspection. Parameters to be analysed include: polychlorinated biphenyls (PCBs), petroleum hydrocarbons, and metals (As, Cd, Co, Cr, Pb, Ni, and Zn).
- Collect and analyse blind duplicates from at least 20% of samples.
- Submit water samples to a Canadian Association for Laboratory Accreditation (CALA) accredited laboratory for analysis of petroleum hydrocarbon (PHC) fractions (F1 and F2), total and dissolved metals, major ions, hardness, total dissolved solids, total suspended solids, pH, conductivity, and polychlorinated biphenyls (PCBs).
- Prepare a field report summarizing LTM activities within two weeks of fieldwork completion.
- Submit draft and final copies of the PIN-D Ross Point Long Term Monitoring (Year 10) Report to CIRNAC.

This report presents the results of the monitoring event completed in August 2022. Sections 2 and 3 provide background information on the Site and reference guideline information, respectively. Details regarding specific methodologies of each task are included in Section 4, while monitoring results are presented in Section 5. Recommendations and conclusions are available in Section 6.

2. Background Information

2.1 Site Description

PIN-D Ross Point is located approximately 250 (km) west of Cambridge Bay, NU, and 185 km east of Kugluktuk, NU, at 68° 35′ 48.74″ N, 111° 07′ 3.47″ W. Figure 1 in **Appendix A** shows the general site location. The PIN-D site was an intermediate DEW Line site constructed by the Department of National Defence (DND) in 1959 and deactivated in 1963.

The main site consisted of a module train, warehouse, garage, Inuit house, petroleum, oil and lubricant (POL) tanks, and a doppler antenna. A beach landing area was constructed with gravel roads connecting to the main site. Two airstrips were constructed: one closest to the beach, oriented east to west approximately 500 m long; and a second oriented northeast to southwest approximately 300 m long.

In 1985, a program conducted by DND, Environment Canada (currently Environment and Climate Change Canada, ECCC), and Indian and Northern Affairs Canada (INAC; currently CIRNAC) cleaned up surface contaminants on site. An investigation in 1994 observed the following:

- Damage from prolonged weathering at the module train and garage;
- Warehouse dismantled to the concrete foundation;
- Four POL tanks removed: two from the beach, and two from the main station;
- Station pumphouse remained intact with the pump removed;
- The pipeline connecting the beach and station tanks was mostly intact and marked with barrels; and
- The refueling pipeline at the beach was mostly removed with some pieces remaining.

Remediation of the site was conducted between 2011 and 2012, which involved the demolition and disposal of buildings, structures, and other debris, and the clean-up of hazardous materials and contaminated soil. A NHWL was constructed during this time and completed in August 2012 (Figure 2 in **Appendix A**). The NHWL consists of four perimeter berms constructed of granular material with 0.5 m lifts covered by 0.15 m of granular fill and a minimum 1.0 m cover of granular fill.

The NHWL contents contains the following:

- Tier I contaminated soil (i.e., soil with lead concentrations up to 500 parts per million (ppm) and PCB concentrations up to 5 ppm;
- Type A PHC contaminated soil;
- Non-hazardous site debris such as scrap metal and wood; and
- Asbestos containing materials (ACMs).

Items detailed above from PIN-E Cape Peel were transported from PIN-E to PIN-D in August 2012 and disposed of in the PIN-D NHWL.

2.2 Previous Reports and Monitoring Programs

AECOM reviewed the following reports prior to the field program:

- PIN-D Ross Point Long Term Monitoring Event Kitikmeot Region, Nunavut (SLR, 2020)
- Long Term Monitoring, 2017 PIN-D, Ross Point, Nunavut (Arcadis, 2017)
- PIN-D Ross Point Long-Term Monitoring Plan (AANDC, 2013)
- Abandoned Military Site Remediation Protocol (AMSRP) (INAC, 2009)

The requirements for long-term monitoring as laid out in the AMSRP include:

- Phase I: Years 1, 3, and 5
- Phase II: Years 7, 10, 15, and 25
- Phase III: Beyond Year 25, if required

The monitoring plan at PIN-D Ross Point began in 2013 and was scheduled every other year for the first seven years, decreasing frequency to Years 10, 15, 20 and 25. The program will be reviewed at the end of Year 25 to assess the need for continued monitoring.

3. Reference Guidelines

Review of the PIN-D LTMP and AMSRP identified the applicable guidelines for use in the LTM program. The following sections describe the reference guidelines selected for each type of sample collected at the Site.

3.1 Groundwater

Four monitoring wells, MW-1 – MW-4, were installed in 2012 at the Site surrounding the NHWL: one upgradient (MW-2), and three downgradient (MW-1, MW-3, MW-4). Due to the absence of Regulatory groundwater criteria, AECOM applied Upper Limits of Acceptability (ULAs), as per the AMSRP, instead of Canadian Council of Ministers of the Environment (CCME) Federal Interim Groundwater Quality Guidelines (FIGQGs) which have receptor and land use scenarios that do not apply to PIN-D. As such, the analytical data for groundwater were compared to available historical data from the Site. According to the AMSRP, if the analytical results are within the average +/- three (3) standard deviations, the landfill is deemed acceptable and performing as expected. If the analytical results do not meet these criteria, further measures are recommended ranging from increasing monitoring frequency to development of a new remedial plan. Further, due to the presence of permafrost, shallow groundwater depth, and a lack of nearby communities, it is assumed that groundwater will not be used as drinking water in this area.

As per the AMSRP, ULAs were calculated using the average + three (3) standard deviations of all available data from 2015 to 2019. ULAs were only calculated for a limited number of parameters since baseline data is sparse, and concentrations for many parameters are below detectable limits. Duplicates were omitted from the calculations as to not over-represent results from one well in the ULA calculation. Tables D-7 to D-10 in **Appendix D** summarize the available historical groundwater data and the calculated ULAs (where available). Due to the nature of the ULA calculation, inclusion of new historical data for each monitoring event results in increasing ULA values when previous exceedances are included in the data set. As a result, the elevated metals concentrations from Year 7 have influenced the ULA calculation and therefore raised the ULA values for Year 10 analyses.

For PIN-D, no groundwater data is available from the year of installation. Groundwater samples were collected from monitoring wells in 2013, 2015, 2017, and 2019, which represent Years 1, 3, 5, and 7 of the LTMP, however, limited data is available from previous monitoring events as wells were either frozen or dry within the active layer.

For the purposes of the 2017 Year 5 LTM Report, Arcadis considered baseline data to be 2013 and 2015 so that ULA criteria could be calculated for total and dissolved metals, and inorganic parameters. There is insufficient historical and baseline information to calculate ULAs for other parameters including PCBs and PHCs.

3.2 Surface Water

Due to the absence of appropriate surface water criteria, the analytical data for surface water was compared to available historical data from the Site. According to the AMSRP, if the analytical results are within +/- three (3) standard deviations, the landfill is deemed acceptable and performing as expected. If the analytical results do not meet criteria, further measures are recommended ranging from increasing monitoring frequency to development of a new remedial plan.

No baseline surface water samples exist for the Site. Given the absence of appropriate reference guidelines or baseline reference data, the CCME guidelines for Protection of Aquatic Life are used purely as a point of reference and are not meant to be interpreted as criteria. The CCME guidelines are a conservative reference as the closest permanent surface water body is approximately 840 m from the NHWL.

3.3 **Soil**

In 2009, Environmental Science Group (ESG) of the Royal Military College of Canada (RMC) conducted a background geochemical assessment at PIN-D Ross Point. This assessment established the natural levels of inorganic parameters in the surrounding environment. As a result of the analysis, it was recommended that the DEW Line Cleanup Criteria (DLCC) be used for lead, cadmium, arsenic, cobalt, chromium, nickel, and zinc. Background concentrations of copper were found to be elevated with outlier values of 254 ppm and 221 ppm in various geologic units.

Baseline soil samples were collected in 2011 by AECOM at the NHWL footprint prior to construction and tested for PHCs, PCBs, and metals; results of which showed no exceedance of the DLCC Tier I and II in soils (Tables E-1 to E-5 in **Appendix E**).

Soil samples have not been collected during the previous three monitoring events (including the 2022 LTM monitoring event) as no seepage or staining has been observed. Should samples be collected in future programs, analytical results will be compared to the background results collected by ESG and baseline collected by AECOM with calculated ULAs as the guideline per the AMSRP.

4. 2022 Monitoring Program Methodologies

The Site investigation for the 2022 PIN-D Long-Term Monitoring Program was completed on August 4, 2022, by AECOM personnel David Bugden and Alysha Selinger, accompanied by CIRNAC representative Melanie Netser, wildlife monitor Noah Alookie, and field technician Max Dubeau from Nunatta Environmental. The Site was accessed by Twin-Otter aircraft chartered by Kenn Borek Air Ltd. mobilizing from Kugluktuk, NU. Logistics for the Site visit were carried out as per the Logistics Plan provided under a separate cover. A summary of the activities, field notes, and analyses can be found in **Appendices C** through **E**.

4.1 Health and Safety Plan

In preparation for the field program, a site-specific HASP was produced and submitted to CIRNAC previously under a separate cover. The HASP identified risks and suspected hazards associated with work on the Site. It specifically addressed any known or suspected hazards and provided mitigative measures including protocols for COVID-19. Included in the HASP were emergency contacts and procedures for medical, mechanical, or weather emergencies. Prior to the start of work, a review of the HASP was completed with all personnel involved in the field program.

4.2 Geotechnical Monitoring and Visual Inspection

The physical integrity of the NHWL was inspected at the PIN-D site during the 2022 long-term monitoring event. The visual inspection looked for evidence of:

- Erosion, ponding, frost action, settlement, and lateral movement;
- Animal burrows, vegetation, vegetation stresses; and
- Staining or seepage.

These features were documented by use of the visual monitoring checklist and through site photographs. Site features documented in the previous monitoring event were specifically inspected for any observed changes, and new features observed during the 2022 visual monitoring were added to the figure markup.

4.3 Groundwater Sampling Methodology

The following outlines the methodology prepared for this program. Water level and depth to bottom were recorded, and an approximate well volume calculated. Samples were collected from all four groundwater wells using a peristaltic pump and dedicated disposable polyethylene tubing to purge and sample using low-flow methodology. The following recordings were taken prior to sampling; water level, total depth of water, height of well casing above surface (stick-up), presence of hydrocarbons, and hydrocarbon thickness (if applicable). Prior to the collection of representative groundwater samples, the monitoring wells were purged until water quality parameters stabilized, including dissolved oxygen (DO), oxidative-reduction potential (ORP), temperature, pH, conductivity, and turbidity. All field parameters were recorded prior to sampling. Parameter readings during the purging process were recorded every 3-5 minutes, aiming for three consecutive readings within 5% prior to sampling. If stabilization could not be achieved before depletion of the water column, purging would stop, and sample collection would begin. Laboratory supplied containers were filled, packed in coolers, and shipped with ice to CALA accredited ALS Environmental Laboratories (ALS) in Edmonton, AB, for analysis.

Samples were analyzed for:

- Total and dissolved metals;
- Major ions, hardness, total dissolved solids, total suspended solids; and
- pH, conductivity.

4.4 Surface Water Sampling Methodology

The following outlines the methodology prepared for this program in the event surface water was identified on site.

Following the collection of each water sample, temperature, pH, dissolved oxygen, and conductivity were recorded using a YSI 6920 V2 probe. Observations such as turbidity, evidence of groundwater indicators (surface sheen, vegetation), presence or evidence of aquatic life, and human and/or animal presence on site were also to be noted.

All collected surface water samples were placed in appropriate laboratory-supplied clean sample bottles, placed in insulated coolers (provided by ALS Laboratory) to be maintained between 0 and 10°C, and shipped to the laboratory under a Chain of Custody. Global Positioning System (GPS) UTM coordinates were to be documented for surface water sampling locations.

Samples were to be analyzed by a CALA accredited laboratory for:

- PHC Fractions F1 and F2 (C6-C16);
- Total and dissolved metals:
- PCBs; and
- Total suspended solids, total dissolved solids, and routine parameters including major ions and hardness.

4.5 Soil Sampling Methodology

In the event visual inspection identified the need for soil samples collection, samples were to be collected with a small trowel decontaminated with a laboratory-grade biodegradable cleaner (Alconox®) and rinsed between sampling locations. Soil samples were to be collected to a maximum depth of 30 cm and packed into laboratory supplied jars with minimal to no headspace. Samples were to be kept cool and packed on ice for shipment to the receiving laboratory.

The following parameters were to be analysed:

- PHC Fractions F1-F4;
- PCBs; and
- Metals.

4.6 Quality Assurance and Quality Control

A Quality Assurance/Quality Control (QA/QC) program was followed during the monitoring event to verify sampling and analytical data collected are interpretable, defensible, and comparable. This involved following QA/QC measures in both the collection and analysis of environmental samples.

Quality Control (QC) measures used in the collection, preservation, shipment, and analysis of samples included the following:

- Sampling techniques were performed in accordance with standard written AECOM protocols;
- Thorough field notes taken during the site visit;
- All samples collected in laboratory provided sample containers, and kept cool prior to shipment;
- Samples assigned unique sample control numbers and transported under chain of custody procedures; and
- The analytical laboratory chosen had proficiency certification issued by CALA.

Quality Assurance (QA) measures established for the investigation included collection of field duplicate samples at a rate of at least 20%. A blind duplicate sample consists of a second aliquot of an individual sample submitted to the analytical laboratory under a separate label such that the analytical laboratory has no prior knowledge that it is a duplicate.

The relative percent difference (RPD) between duplicate results was used to assess overall sampling precision. The RPD is a measure of the variability between two duplicate analyses and is calculated by the following equation:

RPD =
$$100 \times ((2 \times (x_1 - x_2))/(x_1 + x_2))$$

Where x_1 is the primary results and x_2 is the blind duplicate result.

Acceptable RPD values vary on the analytical parameters, the sample matrix, and concentrations of analytes in the sample. For metals in soils acceptable RPD values are 35%, and 50% for organics in soils (PHCs and PCBs). Only when concentrations are at least 10 times the method detection limit are RPD calculations considered valid.

5. Results

This section presents a summary of the analytical results and observations collected during the 2022 Year 10 monitoring activities. Drawings, with inspection feature markups, are provided in **Appendix A**. Photographs of the Site taken during the Site monitoring program are presented in **Appendix B**. The Visual Inspection Checklist can be found in **Appendix C**.

5.1 Non-Hazardous Waste Landfill

5.1.1 Geotechnical Monitoring and Visual Inspection

During the ground inspection, the perimeter of the landfill was walked. Any defects found on the top cap, slopes, and extending area from the base of the landfill was recorded. The following subsections describe the results of the geotechnical monitoring visual inspection completed at the landfill and immediate surrounding area.

5.1.1.1 Frost and Settlement

Some small areas of settlement were noted on the northwest corner and the east side of the landfill cover (see Photographs 2, 9 and 10 in **Appendix B**). Additional settlement was noted on the toe of the south slope near a poorly graded area, as well as near the toe of the slope on the east side (see Photographs 4 and 8 in **Appendix B**). These areas of settlement were previously identified in the 2019 inspection report (SLR, 2020) and do not appear to have worsened.

5.1.1.2 Erosion

No signs of erosion were observed during the investigation. It was recorded that the north and south sides of the landfill were poorly graded near the toe with large marks left over by grading equipment from landfill construction (see Photographs 3 and 4 in **Appendix B**). This observation was also previously identified in the 2019 inspection (SLR, 2020) and the condition remains consistent.

5.1.1.3 Animal Presence

No evidence of wildlife activity was noted at the NHWL; no animals were sighted, nor burrows noted during the investigation.

5.1.1.4 Debris

No exposed debris was noted around the landfill cell; however, a few pieces of scattered wood and asphalt shingles were noted around site (see Photographs 25 through 27 in **Appendix B**). Scattered debris was noted in the previous 2017 and 2019 inspections.

5.1.1.5 Staining

During the inspection no observations of staining were observed.

5.1.1.6 Vegetation Stress

No significant vegetation was noted around the NHWL, some sparce vegetation was beginning to develop on the landfill slopes (see Photographs 12 and 13 in **Appendix B**).

5.1.1.7 Seepage and Ponding

During the inspection, no indication of seepage or active seepage points were observed.

5.1.1.8 Monitoring Instruments

All four (4) monitoring wells MW-1, MW-2, MW-3 and MW-4 installed around the perimeter of the NHWL, were found to be in good condition.

5.1.2 Groundwater Monitoring

During the inspection, all 4 groundwater monitoring wells located around the NHWL were inspected and sampled. At the time of assessment, the well locks were removed and replaced with Guard 111 keys. The well casings appeared in good condition. Active layer groundwater was present during the 2022 monitoring event and as a result, all monitoring wells were sampled during the inspection. During the inspection, a blind field duplicate was also collected from MW-1. A slow recharge at MW-4 resulted in eight recharges to fill all sample bottles. Well locations are provided in **Table 5-1** and shown in Figure 2 of **Appendix A**.

Table 5-1: PIN-D Ross Point Groundwater Well Locations

Well	UTM83-12 Northing	UTM83-12 Easting
MW-1	7609254.26	495370.94
MW-2	7609139.94	495415.21
MW-3	7609277.60	495409.70
MW-4	7609295.18	495443.20

The AMSRP suggests analytical results be compared to previous data, and if the groundwater concentrations are within range of the average +/- three standard deviations, the landfill is performing acceptably. The average + three standard deviations of all available historical data form the ULA, which was applied to the present data as reference criteria.

Field parameters for the groundwater monitoring wells are summarized in Table D-1 in **Appendix D**. Analytical results from the Year 10 monitoring event can be found in Tables D-2 to D-6 of **Appendix D**. Tabulation of all historical groundwater results collected since 2013 are presented in Tables D-7 to D-10 of **Appendix D** for trend evaluation.

Table 5-2 summarizes the exceedances of calculated ULAs for groundwater samples analyzed at the NHWL during the 2022 long-term monitoring event.

Table 5-2: Summary of ULA Exceedances in Groundwater at the NHWL

Parameter	Result	ULA		
MW-1				
General Chemistry				
Nitrate	6.83 mg/L	2.45 mg/L		
Metals				
Thallium, Dissolved	0.000067 mg/L	0.000055 mg/L		
MW-1 – DUP				
General Chemistry				
Nitrate	6.56 mg/L	2.45 mg/L		
Metals				
Thallium, Dissolved	0.000071 mg/L	0.000055 mg/L		
MW-3				
General Chemistry				
Nitrate	4.53 mg/L	2.45 mg/L		
Metals				
Thallium, Dissolved	0.000083 mg/L	0.000055 mg/L		
MW-4				
Metals				
Silicon, Dissolved	2.64 mg/L	1.54 mg/L		
Strontium, Dissolved	0.0866 mg/L	0.0823 mg/L		

Several metal exceedances were identified in the Year 7 monitoring event, none of which were repeated in the Year 10 data. Dissolved Thallium exceeded the ULA at MW-1, MW-1-DUP, and MW-3 in 2022, however based on the historical data set, 2022 was the first monitoring event that Thallium exceeded the ULA. It should be noted the

laboratory reported detection limits (RDLs) for iron and vanadium were higher than the calculated ULA for these two parameters; therefore, it is unknown if the concentrations for these parameters exceeded the ULA. Overall, the Year 10 ULA exceedances in the analytical data were not observed in successive sampling events (2019 and 2022), therefore as defined by the LTMP, the exceedances reported in 2022 appear anomalous to historical data (see Table D-8 in **Appendix D** for historical data). Further discussion on the nitrate exceedances is provided in **Section 5.3.3** pertaining to analytical QA/QC.

All PCB and PHC concentrations were below laboratory detection limits, consistent with previous monitoring years.

5.1.3 Surface Water Monitoring

Surface water ponding or seepage was not observed; this is consistent with baseline and previous monitoring events. No samples were collected during the 2022 long-term monitoring event.

5.1.4 Soil Monitoring

No soil samples were collected at the time of the 2022 long-term monitoring event as there was no evidence of seepage or staining.

5.1.5 Landfill Performance

The overall performance condition of the NHWL is rated as acceptable in 2022 based on the severity ratings presented in AMSRP Volume II (INAC, 2009). This is consistent with the previous condition documented in Year 7 (SLR, 2020). Settlement features identified on Site do not appear to be notably changing or affecting the stability or performance of the landfill. The landfill condition combined with the analytical groundwater results and lack of cause for surface water or soil samples indicates little to no risk associated with contaminant migration from the landfill.

5.2 Site Condition

Overall, the access roads and northeast-southwest airstrip were in good condition. The east-west airstrip was not inspected during the 2022 field activities due to limited time onsite. A fuel barrel was found at the intersection of the northeast-southwest airstrip and the access road (see Figure 1 in **Appendix A** and Photograph 15 in **Appendix B**). Some sparce vegetation was noted around the airstrip, but the Kenn Borek staff deemed the strip to be in good landing condition (see Photographs 18 and 19 in **Appendix B**). The access roads on Site, specifically between the northeast-southwest airstrip and the NHWL, were in good condition and easily traversed with a tundra wagon (see Photographs 22-24 in **Appendix B**).

5.3 QA/QC Discussion

Field procedures were implemented to minimize the potential of cross contamination between sampling locations. Sample handling protocols were established to track and maintain the integrity of the samples. Field handling of samples was minimized by transferring samples directly into containers, when possible. Where handling is required, disposable nitrile gloves were used at all times and changed between samples. All monitoring equipment was decontaminated prior to initial use and between each sample location. During groundwater sampling, disposable low-density polyethylene (LDPE) and master flex tubing was dedicated to the individual wells and during all sampling activities, a new pair of disposable nitrile gloves was used between each sample. Photographs were taken of all areas of interest; location and directional viewpoint was recorded.

5.3.1 Duplicate Samples

A duplicate sample is a sequential sample taken immediately following the collection of a regular sample. The duplicate samples were collected for approximately 25 percent (%) of the samples collected as part of the QA/QC sampling program. This equates to one duplicate per four wells sampled. Duplicate samples provide a rough estimate of the overall variability of the field technique and laboratory analysis.

5.3.2 Relative Percent Difference

The relative percent difference (RPD) is the absolute difference between the duplicate analysis values divided by the mean and is used to evaluate the variability of sample results. Where the concentration of a parameter is less than five times the laboratory reportable detection limit (RDL), the results are less precise and the RPD is not calculated. The guidance manual for *Environmental Site Characterization in Support of Human Health Risk Assessment, Volume I* (CCME, 2016) acknowledges added variability introduced by matrix variability and sampling and handling procedures, therefore quantifying acceptable precision is a matter of judgement. Given the Site considerations and literature, a RPD of 50% for parameters of duplicate groundwater samples was selected for this assessment. The guide also recommends RPDs for laboratory duplicates not exceed 20%. Should either of these limits be exceeded, a potential problem may be indicated such as compromised sample collection, equipment malfunction, or handling errors.

5.3.3 Analytical QA/QC

Both samples were analyzed by ALS Environmental Laboratories which is accredited by CALA for the parameters proposed for analysis and uses recognized methods to conduct laboratory analyses. As conveyed by the laboratory, method blanks, certified reference materials, method spikes, duplicates, surrogates, and laboratory control samples are routinely analyzed as part of their QA/QC programs. Analytical QA/QC was completed by ALS by way of analytical method blanks, analytical control spikes and analytical duplicates.

Hold times for pH, nitrate, and nitrite were exceeded. The hold time exceedances were in part due to logistical constraints of shipment from the Site to ALS in Edmonton, AB, for analysis. As stated in ALS laboratories guidance document, "Hold Times: General Information of Exceedances (2017), hold times are established and intended as best-practice to protect the integrity of the test samples and minimize the potential for significant changes to samples prior to analysis" (ALS, 2017). If exceeded, it is common practice to apply professional judgement to assess whether the results may still be useable and fit-for-purpose. It was expected that the hold time for pH would exceed, and as a standard procedure, field measurements were collected to represent conditions at the time of sampling (see Appendix D). Based on recommendations from ALS, test results with hold time exceedances less than 50% of the recommended hold time may be considered valid and defensible, with the caveat that the measurement uncertainty associated with those tests may be higher than usual.

For significant hold time exceedances such as samples for nitrate and nitrite, the environmental stability characteristics for the specific sample should be considered prior to determining whether the test results are fit-for-purpose. ALS recommends that consistency with historical, expected, or available test results from related or similar samples be considered. Results for nitrite were below the detectable limit. Results for nitrate were significantly higher than previous years by approximately 116% - 140% and are not considered fit-for-purpose as defined by ALS.

Logistical challenges were expected working in remote locations, and some hold time exceedances were anticipated. For future monitoring programs, implementing methods to expedite sample delivery would help to reduce uncertainty related to the results.

The complete analytical quality control report can be found as part of the certificate of analyses in Appendix F.

6. Conclusion and Recommendations

Based on the results of the 2022 Year 10 activities, the remediation strategy for PIN-D appears to be meeting the objectives expected for this phase of the LTMP. Geotechnical monitoring and visual inspection rate the NHWL as acceptable per the severity ratings presented in AMSRP Volume II, consistent with the Year 7 results. Settlement features identified on Site do not appear to be notably changing or affecting the stability or performance of the landfill. The landfill condition combined with the analytical groundwater results and lack of cause for surface water or soil samples indicates little to no risk associated with contaminant migration from the landfill. It is recommended that monitoring continue for Year 15 as per the schedule in the LTMP.

Groundwater samples collected from the landfill did exhibit ULA exceedances for several metal parameters, however they are not cause for concern at this time. The exceedances are not successive with previous years, are not within the contaminants of concern (COC) outlined in the AMSRP, and therefore appear anomalous to historical data. The metals exceedances noted in the Year 7 report were not repeated in the results of the Year 10 monitoring, however continued observation is recommended to determine if any potential trends are established. Concentrations of PCBs and PHCs have not been detected in any of the long-term monitoring events, which began in 2013. It is recommended that sample collection and analyses for PCBs and PHCs could be discontinued and removed from the scope of future monitoring events on Site. The same recommendation was made in the Year 5 LTM report by Arcadis (Arcadis, 2018).

Groundwater wells were locked with Guard Key 111 and additional keys sets were left with a CIRNAC representative. It is recommended keys are provided for the next monitoring event to avoid cutting and replacement of locks on site. Further, it is recommended additional locks are brought to site during the future visits in the event locks are found missing or damaged.

The Site was accessed via Twin Otter aircraft, with take off and landing on the northeast-southwest airstrip, which was deemed to be in good condition by the charter airline staff. It is understood that a helicopter was used in the previous monitoring event, mobilizing from Cambridge Bay. Currently both methods of transport are acceptable for Site access.

7. References

- Arcadis Canada Inc. (Arcadis). 2018. Long Term Monitoring, 2017 PIN-D, Ross Point, Nunavut. Prepared for Indigenous and Northern Affairs Canada. January 18, 2018.
- Canadian Council of Ministers of the Environment (CCME). 2016. Environmental Site Characterization in Support of Human Health Risk Assessment, Volume I.
- Indigenous and Northern Affairs Canada (INAC). 2013. PIN-D Ross Point Long-Term Monitoring Plan. March 28, 2013.
- INAC. 2009. Abandoned Military Site Remediation Protocol.
- SLR Consulting Canada Ltd. (SLR). 2020. PIN-D Ross Point Long Term Monitoring Event Kitikmeot Region, Nunavut. Prepared for Crown-Indigenous Relations and Northern Affairs Canada. January 8, 2020.

Appendix A

Drawings

NON-HAZARDOUS WASTE LANDFILL -SEE FIGURE 2 NOTES:

LEGEND

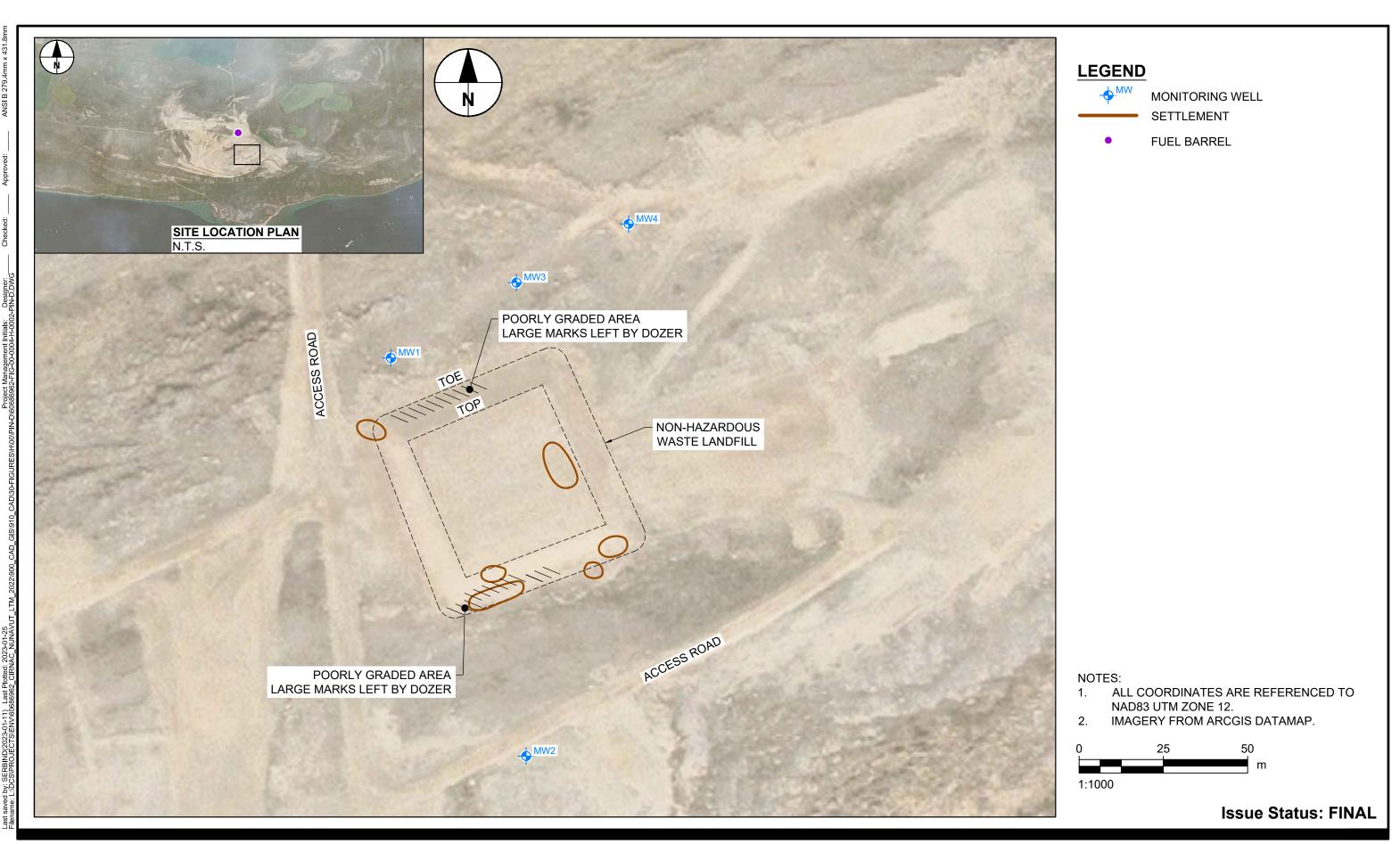
FUEL BARREL

0 250 500 1:10000

Issue Status: FINAL

2022 Nunavut Sites Long-Term Monitoring PIN-D Ross Point (Year 10)

Crown-Indigenous Relations and Northern Affairs Canada Project No.: 60686962 Date: 2023-01-11


IMAGERY FROM ARCGIS DATAMAP.

ALL COORDINATES ARE REFERENCED TO NAD83 UTM ZONE 12.

NON-HAZARDOUS WASTE LANDFILL LOCATION PLAN

Figure 1

2022 Nunavut Sites Long-Term Monitoring
PIN-D Ross Point (Year 10)
Crown-Indigenous Relations and Northern Affairs Canada
Project No.: 60686962 Date: 2023-01-11

NON-HAZARDOUS WASTE LANDFILL VISUAL INSPECTION

Appendix B

Photographic Record

 Site Name:
 Site Location
 Project No.

 PIN-D Long-Term Monitoring – Year 10
 Ross Point, NU
 60686962

Photo No.

Date

8/4/2022

Direction Photo Taken

Northeast

Area

NHWL

Description

West slope of NHWL in good condition.

Photo No.

Date

8/4/2022

Direction Photo Taken

East/Southeast

Area

NHWL

Description

Northwest corner of NHWL. Settlement at corner toe (circled).

Photographic Record - PIN-D.Docx
Page 1 of 14

 Site Name:
 Site Location
 Project No.

 PIN-D Long-Term Monitoring – Year 10
 Ross Point, NU
 60686962

 Photo No.
 Date

 3
 8/4/2022

 Direction Photo Taken

on conton i noto i ano

East

Area

NHWL

Description

North slope of NHWL. Poor dozer grading on lower portion of slope (cricled).

Photo No.

Date

8/4/2022

Direction Photo Taken

South

Area

NHWL

Description

South Slope of NHWL. Poor dozer grading on west portion of slope (circled).

Photographic Record - PIN-D.Docx
Page 2 of 14

Site Name:Site LocationProject No.PIN-D Long-Term Monitoring – Year 10Ross Point, NU60686962

Photo No. Date

5 8/4/2022

Direction Photo Taken

Southwest

Area

NHWL

Description

Northeast corner of NHWL in good condition.

Photo No.

Date

8/4/2022

Direction Photo Taken

West

Area

NHWL

Description

East slope of NHWL in good condition.

Photographic Record - PIN-D.Docx
Page 3 of 14

 Site Name:
 Site Location
 Project No.

 PIN-D Long-Term Monitoring – Year 10
 Ross Point, NU
 60686962

Photo No.

Date

7

8/4/2022

Direction Photo Taken

Northwest

Area

NHWL

Description

Southeast corner of NHWL. Area of settlement on south slope partially visible (circled).

Photo No.

Date

8/4/2022

Direction Photo Taken

Northeast

Area

NHWL

Description

South slope of NHWL. Area of settlement near base of slope (circled).

Photographic Record - PIN-D.Docx Page 4 of 14

 Site Name:
 Site Location
 Project No.

 PIN-D Long-Term Monitoring – Year 10
 Ross Point, NU
 60686962

Photo No. Date

9

8/4/2022

Direction Photo Taken

Northeast

Area

NHWL

Description

NHWL cover in good condition overall. Area of minimal settlement along east side (circled).

Photo No.

Date

10 8/4/2022

Direction Photo Taken

North-Northeast

Area

NHWL

Description

NHWL cover in good condition. Area of settlement from Photograph 9 partially visible (circled).

Photographic Record - PIN-D.Docx Page 5 of 14

 Site Name:
 Site Location
 Project No.

 PIN-D Long-Term Monitoring – Year 10
 Ross Point, NU
 60686962

Photo No.

Date

11

8/4/2022

Direction Photo Taken

Northwest

Area

NHWL

Description

NHWL cover in good condition.

Photo No.

Date

8/4/2022

Direction Photo Taken

Northwest

Area

NHWL

Description

NHWL cover and northern portion of west slope. Sparse revegetation of slope.

Photographic Record - PIN-D.Docx
Page 6 of 14

 Site Name:
 Site Location
 Project No.

 PIN-D Long-Term Monitoring – Year 10
 Ross Point, NU
 60686962

Photo No.

Date

13

8/4/2022

Direction Photo Taken

Northeast

Area

NHWL

Description

NHWL cover and eastern portion of north slope. Sparse revegetation of cover and lower slope.

Photo No.

14

Date 8/4/2022

Direction Photo Taken

West

Area

Site Condition

Description

Access road in good condition.

Photographic Record - PIN-D.Docx
Page 7 of 14

AECOM

PHOTOGRAPHIC LOG

 Site Name:
 Site Location
 Project No.

 PIN-D Long-Term Monitoring – Year 10
 Ross Point, NU
 60686962

Photo No.

Date

15

8/4/2022

Direction Photo Taken

Northeast

Area

Site Condition

Description

Fuel drum located at intersection of airstrip and access road. Estimated to be approximately 2/3 full. Sealed, but bungs are rusted.

See Figure 1 in Appendix A.

Photo No.

16

8/4/2022

Date

Direction Photo Taken

South

Area

Site Condition

Description

Access road to PIN-D main station from airstrips, NHWL in background (circled).

Photographic Record - PIN-D.Docx Page 8 of 14

 Site Name:
 Site Location
 Project No.

 PIN-D Long-Term Monitoring – Year 10
 Ross Point, NU
 60686962

Photo No.

Date

17

8/4/2022

Direction Photo Taken

North

Area

Site Condition

Description

Access road from NHWL back down towards the airstrips.

Photo No.

Date

18

8/4/2022

Direction Photo Taken

Northeast

Area

Site Condition

Description

Northeast-Southwest airstrip in good condition. Sparce vegetation on surface and slopes.

Photographic Record - PIN-D.Docx
Page 9 of 14

 Site Name:
 Site Location
 Project No.

 PIN-D Long-Term Monitoring – Year 10
 Ross Point, NU
 60686962

Photo No.

Date

19

8/4/2022

Direction Photo Taken

Southwest

Area

Site Condition

Description

Northeast-Southwest airstrip in good condition. Sparce vegetation on surface and slopes.

Photo No.

Date

20

8/4/2022

Direction Photo Taken

North

Area

Site Condition

Description

Groundwater sampling at MW-4.

Photographic Record - PIN-D.Docx
Page 10 of 14

Site Location Project No. PIN-D Long-Term Monitoring - Year 10 Ross Point, NU 60686962

Photo No. Date 21 8/4/2022 Direction Photo Taken

N/A

Site Condition

Description

MW-3 in good condition.

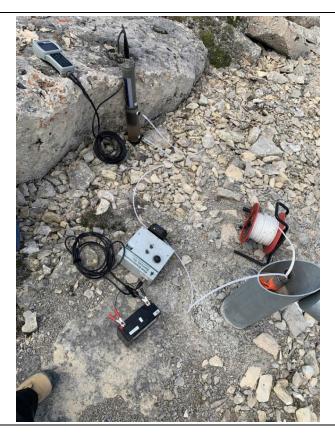


Photo No. Date **22** 8/4/2022

Direction Photo Taken

East

Area

Site Condition

Description

Access road in good condition.

Page 11 of 14 Photographic Record - PIN-D.Docx

 Site Name:
 Site Location
 Project No.

 PIN-D Long-Term Monitoring – Year 10
 Ross Point, NU
 60686962

Photo No. Date 8/4/2022

Direction Photo Taken

North

Area

Site Condition

Description

Access road in good condition.

Photo No.

Date

8/4/2022

Direction Photo Taken

North

Area

Site Condition

Description

Access road facing Airstrip in good condition.

Photographic Record - PIN-D.Docx
Page 12 of 14

 Site Name:
 Site Location
 Project No.

 PIN-D Long-Term Monitoring – Year 10
 Ross Point, NU
 60686962

Photo No. Date
25 8/4/2022

Direction Photo Taken

N/A

Area

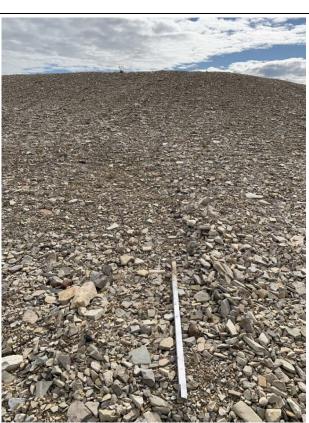
Site Condition

Description

Scattered debris across site.

Photo No. Date
26 8/4/2022

Direction Photo Taken


N/A

Area

Site Condition

Description

Scattered debris across site.

Photographic Record - PIN-D.Docx
Page 13 of 14

 Site Name:
 Site Location
 Project No.

 PIN-D Long-Term Monitoring – Year 10
 Ross Point, NU
 60686962

Photo No.	Date	
27	8/4/2022	
	Photo Taken	
١	I/A	
	rea	
Site C	ondition	The second of th
Desc	ription	A TABLE OF THE STATE OF THE STA
Scattered d site.	ebris across	
		美女工程
		是一个人的人。 第一个人的人的人的人的人的人的人的人的人的人的人的人的人的人的人的人的人的人的人的
		の場合は、大学の大学の大学の大学の大学の大学の大学の大学の大学の大学の大学の大学の大学の大

Photographic Record - PIN-D.Docx Page 14 of 14

Appendix C

Monitoring Checklist and Daily Field Report

VISUAL MONITORING CHECKLIST

ITEM	PRESENCE / ABSENCE	EXTENT	DESCRIPTION / PHOTOGRAPHIC REFERENCE
Settlement	Yes	Small areas on northwest corner and east side of landfill cover, also on south slope and near toe on east side	Areas were previously identified in 2019 inspection [Photographs 2, 4, 8, 9, 10 in Appendix B]
Erosion	No	-	-
Frost Action	No	-	-
Animal Burrows	No	-	-
Vegetation	Yes	Some sparse clumps of vegetation	Vegetation beginning to develop on landfill cover and slopes [Photographs 12, 13, 18, 19 in Appendix B]
Staining	No	-	-
Vegetation Stress	No	-	-
Seepage Points	No	-	-
Exposed Debris	Yes	No exposed debris from landfill cell. Couple of pieces of scattered wood and shingles	Very little debris [Photographs 25, 26, 27 in Appendix B]
Condition of Monitoring Instruments	N/A	All groundwater wells	Good condition
Other Features of Note	N/A	-	-

NATURAL ENVIRONMENT CHECKLIST

ITEM	PRESENCE / ABSENCE	EXTENT	DESCRIPTION / PHOTOGRAPHIC REFERENCE
Wildlife Sightings	No	-	-
Evidence of Wildlife	No	-	-
Wildlife Activity	No	-	-
Relative Number	N/A	-	-
Evidence of Revegetation	Yes	Sparse	Some vegetation on northeast- southwest airstrip [Photograph 18 in Appendix B]

Groundwater Sampling Field Data

PIN-D Year 10 2022

					Aquatic	s Monitorii	ng	
Time	Temperature (°C)	Conductivity (µS/cm)	рН	ORP (mV)	NTU	ODO (mg/L)	Water Level (mTOC)	Note(s)
MW-1								
11:50	4.11	620	6.42	194.0	6.2	9.41	-	
11:52	3.01	588	7.02	172.0	5.4	9.55	-	
11:55	3.40	501	7.13	164.2	4.9	9.34	-	
11:58	3.53	497	7.21	159.0	6.1	9.63	-	Duplicate
12:01	3.61	499	7.26	157.2	8.6	9.67	-	Duplicate
12:03	3.30	506	7.27	155.3	7.7	9.80	-	No odour and clear
12:06	3.14	504	7.30	154.1	7.3	9.81	-	no odour and clear
12:09	3.14	501	7.31	153.1	7.5	9.82	2.910	
12:12	2.98	501	7.33	152.0	7.8	9.81	2.910	
12:15	2.96	497	7.34	151.3	7.4	9.82	-	
MW-2								
2:57	8.81	356	8.05	107.2	25.2	10.86	2.780	
3:00	4.72	314	8.23	105.1	10.7	11.46	2.720	
3:03	4.07	303	8.22	106.3	6.1	11.65	2.780	
3:06	3.80	297	8.20	108.5	4.2	11.44	2.780	No odour and clear
3:09	3.50	356	8.19	110.2	7.3	11.70	2.780	no ododi and cleai
3:12	3.35	293	8.20	111.1	8.6	11.63	2.780	
3:15	3.50	292	8.19	111.6	5.9	11.54	2.780	
3:18	3.50	293	8.20	113.0	1.5	11.54	2.780	
MW-3								
12:45	3.17	444	7.54	141.7	6.2	8.64	2.075	
12:48	2.88	432	7.57	139.6	2.8	8.50	2.075	
12:51	2.97	425	7.56	139.7	3.3	8.65	2.075	
12:54	2.92	423	7.55	139.6	2.4	8.70	2.073	No odour and clear
12:57	2.95	422	7.58	139.4	1.8	8.67	-	
1:00	3.03	421	7.58	139.3	1.7	8.62	2.077	
1:03	3.00	420	7.58	139.5	1.6	8.60	2.082	
MW-4								
1:20	5.39	453	7.83	141.0	48.8	9.02	-	Well pumped dry. Turned off to recharge after initial 4 min pump. After 28 min water level was 1.875 then pumped dry in
1:48	8.77	467	8.77	139.7	42.3	9.10	1.875	3 minutes. Recharged 8 times to fill all sample bottles.
Notoe:								

Notes: ORP - Oxidative-Reduction Potential

NTU - Nephelometric Turbidity Units

ODO - Optical Dissolved Oxygen mTOC - Distance (metres) from top of casing (TOC) down into well

Depth to Water (mTOC)	Depth to Bottom (mTOC)	Stick Up (mTOC)
MW-1		
2.881	2.957	0.62
MW-2		
2.764	2.805	0.60
MW-3		
2.048	2.278	0.53
MW-4		
1.825	1.977	0.37

Notes:

mTOC - Distance (metres) from top of casing (TOC) down into well

Depth to Water - Depth from top of casing to top of

water surface

Depth to Bottom - Depth from top of casing to

bottom of well

Stick Up - Height of well casing from ground

surface to top of casing

Project Daily Re	port		
Client:	CIRNAC	Date:	4-Aug-22
Project:	Nunavut Sites LTM	Weather:	9°C light rain at
Project No.:	60686962		takeoff
Location:	Kugluktuk / PIN-D	Number of Personnel On-Site :	7
Departure Time:	9:30 AM MST	Return Time:	6:45 PM MST
Company			Total # Workers
AECOM	David Bugden	Alysha Selinger	2
CIRNAC	Melanie Netser		1
Nunatta	Max Dubeau	Noah Alookie	2
Kenn Borek	Brian Good	Travis Fawcett	2
Total			7

Health and Safety

Observations/Near Misses/Incidents/H&S Issues

Observation: David confirmed no members of the field team had peanut allergies prior to opening his trail mix. This then sparked a discussion as to whether any team members had allergies the group should be aware of (no one declared any).

Technical Scope

Geotechnical Inspection

Visual inspection of the landfill, air strip, and overall site. The site was in very good condition, no signs of erosion or seepage, minor settlement features (observed in previous monitoring event). Pilots were impressed with the air stip conditions. Area showed signs of revegetation and naturalization.

Aquatic Monitoring

Low-flow sampled all four (4) wells on site. MW-4 had a very slow recharge and required eight recharge periods (10-40 min each) to fill the sample bottles. Well casings were in good condition. Locks had to be cut and replaced - now keyed with Guard 111 keys.

Temperature Monitoring

N/A

Communications or Deviation from Work Plan

Departure from Kugluktuk was delayed approx. 30 min due to refuelling delays. Field team was able to land and perform required activities at PIN-D as planned.

Other:

A single fuel drum was found on site near the air strip. No signs of leakage. Estimaed to be approx. two thirds full. Bung was rusted shut. Labels indicate ownership is Department of Environment - Polar Bear Division circa 2015.

Project Daily Photo Record

Photograph 1: Low-Flow Sampling at MW-3

Photograph 2: Fuel Drum found at Air Strip

S. Sather, Department of Environment, Gov't of Nunavut Box 91, Cambridge Bay NU X0B 0C0, 867-983-4167 PO # 154045 Gross Weight 781 KG, Width 1.21M, Length 1.21M, Height 1.21M

Photograph 3: Fuel Drum Details

Appendix D

Groundwater Tables

PIN-D Year 10 2022

In-situ Field Parameters of Groundwater Monitoring Wells

Parameter	Units	MW-1	MW-2	MW-3	MW-4
		4-Aug-2022	4-Aug-2022	4-Aug-2022	4-Aug-2022
Field Parameters		Year 10	Year 10	Year 10	Year 10
Depth to Water	mTOC	2.881	2.764	2.048	1.825
Depth to Bottom	mTOC	2.957	2.805	2.278	1.977
Stick Up	mTOC	0.62	0.6	0.53	0.37
Temperature *	°C	2.96	3.5	3	8.77
Conductivity *	μS/cm	497	293	420	467
pH *	-	7.34	8.2	7.58	8.77
ORP *	mV	151.3	113	139.5	139.7
NTU *	NTU	7.4	1.5	1.6	42.3
Dissolved Oxygen *	mg/L	9.82	11.54	8.6	9.1
Water Level **	mTOC	2.91	2.78	2.082	1.875

Notes:

MW-4 continuously went dry during sampling; sampled with 8 recharges.

mTOC - Distance (metres) from top of casing (TOC) down into well

Depth to Water - Depth from top of casing to top of water surface

Depth to Bottom - Depth from top of casing to bottom of well

Stick Up - Height of well casing from ground surface to top of casing

^{* -} Last recorded YSI probe flow-though cell parameters prior to sampling

^{** -} Water level recorded in conjunction with YSI probe parameters, measured as per Depth to Water

General Chemistry of Groundwater Monitoring Wells

PIN-D Year 10 2022

Parameter	Units	RDL	Reference Criteria (ULA)	MW-1 4-Aug-2022	MW-1 - DUP 4-Aug-2022	MW-2 4-Aug-2022	MW-3 4-Aug-2022	MW-4 4-Aug-2022
General Chem	istrv			Year 10	Year 10	Year 10	Year 10	Year 10
Physical Tests					1000		100	
Conductivity	μS/cm	2	924	479	476	281	408	544
Hardness (as CaCO3), dissolved	mg/L	0.5	491	264	262	151	212	277
pH	pH units	0.1	9.07	7.85	7.95	8.13	7.96	8.02
Total Suspended Solids (TSS)	mg/L	3	504	<3.0	<3.0	<3.0	<3.0	<3.0
Total Dissolved Solids (TDS)	mg/L	10	709	296	300	154	226	362
Total Dissolved Solids (TDS), calculated	mg/L	1	-	285	282	157	241	328
Anions and Nutrients								
Chloride	mg/L	0.5	28.78	8.45	7.99	6.09	6.4	8.71
Fluoride	mg/L	0.02	0.071	<0.020	<0.020	<0.020	<0.020	0.067
Nitrate (as N)	mg/L	0.02	2.45	6.83	6.56	0.442	4.53	2.43
Nitrate + Nitrite (as N)	mg/L	0.05	-	6.83	6.56	0.442	4.53	2.43
Nitrite (as N)	mg/L	0.01	3.047	<0.010	<0.010	<0.010	<0.010	<0.010
Sulfate (as SO4)	mg/L	0.3	285.2	28.7	27.7	20.2	48	96.9
Alkalinity								
Bicarbonate (as HCO3)	mg/L	1	-	256	254	161	188	222
Carbonate (as CO3)	mg/L	1	-	<1.0	<1.0	<1.0	<1.0	<1.0
Hydroxide (as OH)	mg/L	1	-	<1.0	<1.0	<1.0	<1.0	<1.0
Total (as CaCO3)	mg/L	2	-	210	209	132	154	182
Ion Balance								
Anion Sum	meq/L	0.1	-	5.52	5.45	3.26	4.58	6.08
Cation Sum	meq/L	0.1	-	5.47	5.44	3.18	4.43	5.78
Ion Balance (APHA)	%	0.01	-	0.455	0.092	1.24	1.66	2.53
Ion Balance (cations/anions)	%	0.01	-	99.10	99.80	97.50	96.70	95.10

Notes:

Reference Criteria - Site-specific Upper Limit of Acceptability (ULA)

ULA - Upper Limit of Acceptability; calculated using the average + three times (x3) standard deviations of all available data. Only calculated for parameters with three or more data points of detectable concentrations.

RDL - Reported Detection Limit, which may vary between sample locations and events

Exceeds Reference Criteria

Detection Limit Exceeds Reference Criteria

Total and Dissolved Metals of Groundwater Wells

PIN-D Year 10 2022

AECOM

Parameter	Units	RDL	Reference Criteria (ULA)	MW-1	MW-1 - DUP	MW-2	MW-3	MW-4
			(02.9	4-Aug-2022	4-Aug-2022	4-Aug-2022	4-Aug-2022	4-Aug-2022
	Metals			Year 10	Year 10	Year 10	Year 10	Year 10
Total Metals								
Aluminum, Total	mg/L	0.003	5.245	0.01	0.0119	0.0217	0.0124	0.0312
Antimony, Total	mg/L	0.0001	0.0013	0.00026	0.00026	<0.00010	0.00023	0.00051
Arsenic, Total	mg/L	0.0001	0.0043	0.00021	0.00022	0.00034	0.00016	0.00023
Barium, Total	mg/L	0.0001	0.0894	0.0208	0.0209	0.00882	0.0166	0.0378
Beryllium, Total	mg/L	0.00002	0.00054	< 0.000020	<0.000020	<0.000020	< 0.000020	< 0.000020
Bismuth, Total	mg/L	0.00005		< 0.000050	<0.000050	< 0.000050	< 0.000050	< 0.000050
Boron, Total	mg/L	0.01	-	0.014	0.015	0.01	0.033	0.042
Cadmium, Total	mg/L	0.000005	0.000116	< 0.0000050	0.0000099	0.0000138	0.0000188	0.000017
Calcium, Total	mg/L	0.05	87.9	55.1	53	20.2	41.9	55
Cesium, Total	mg/L	0.00001		< 0.000010	< 0.000010	< 0.000010	<0.000010	< 0.000010
Chromium, Total	mg/L	0.0005	0.0158	< 0.00050	< 0.00050	< 0.00050	< 0.00050	0.00174
Cobalt, Total	mg/L	0.0001	0.0041	< 0.00010	< 0.00010	<0.00010	< 0.00010	< 0.00010
Copper, Total	mg/L	0.0005	0.0365	0.00081	0.00095	0.0009	0.00131	0.00283
ron, Total	mg/L	0.01	9.71	0.025	0.039	0.022	0.034	0.035
Lead, Total	mg/L	0.00005	0.01306	0.000147	0.000195	0.000112	0.000176	0.000056
Lithium, Total	mg/L	0.001	0.007	< 0.0010	< 0.0010	< 0.0010	< 0.0010	0.0039
Magnesium, Total	mg/L	0.005	62.9	35.5	35.4	27.8	30.5	35.2
Manganese, Total	ma/L	0.0001	0.2081	0.00074	0.00095	0.00255	0.00088	0.0106
Molybdenum, Total	mg/L	0.00005	0.00442	0.000632	0.000652	0.00125	0.000849	0.00199
Nickel, Total	mg/L	0.0005	0.0127	0.00065	0.00065	0.00065	0.00085	0.00233
Phosphorus, Total	mg/L	0.05		< 0.050	< 0.050	< 0.050	< 0.050	< 0.050
Potassium, Total	mg/L	0.05	4.341	0.777	0.781	0.528	0.963	1.67
Rubidium, Total	mg/L	0.0002		< 0.00020	< 0.00020	< 0.00020	< 0.00020	0.00108
Selenium, Total	mg/L	0.00005	0.00061	0.000147	0.000145	0.000109	0.000117	0.000241
Silicon, Total	mg/L	0.1	16.6	1.04	1.05	0.7	0.93	3.04
Silver, Total	mg/L	0.00001		<0.000010	<0.000010	<0.000010	< 0.000010	< 0.000010
Sodium, Total	mg/L	0.05	36.38	4.27	4.39	3.58	3.91	5.09
Strontium, Total	mg/L	0.0002	0.0852	0.0292	0.0296	0.0174	0.0311	0.0849
Sulfur, Total	mg/L	0.5	115	10.3	10.6	7.36	18	30.5
Tellurium, Total	ma/L	0.0002		< 0.00020	<0.00020	<0.00020	< 0.00020	< 0.00020
Thallium, Total	mg/L	0.00001	0.00034	0.000084	0.000079	0.00004	0.000097	0.000023
Thorium, Total	mg/L	0.0001	-	<0.00010	<0.00010	<0.00010	<0.00010	< 0.00010
Tin. Total	mg/L	0.0001	-	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
Titanium, Total	mg/L	0.0003	0.1501	<0.00010	<0.00010	<0.00030	<0.00030	0.00069
Tungsten, Total	mg/L	0.0001	0.1001	<0.00010	<0.00010	<0.00010	<0.00010	0.00011
Jranium, Total	mg/L	0.00001	0.00901	0.00221	0.00218	0.00173	0.00222	0.00538
/anadium, Total	mg/L	0.0005	0.0162	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
Zinc, Total	mg/L	0.003	0.139	<0.0030	<0.0030	<0.0030	<0.0030	<0.00030
Zirconium. Total	mg/L	0.0002	0.0051	<0.0000	<0.00020	<0.0000	<0.0000	<0.0000

Total and Dissolved Metals of Groundwater Wells

PIN-D Year 10 2022

Parameter	Units	RDL	Reference Criteria	MW-1	MW-1 - DUP	MW-2	MW-3	MW-4
			(ULA)	4-Aug-2022	4-Aug-2022	4-Aug-2022	4-Aug-2022	4-Aug-2022
	Metals			Year 10	Year 10	Year 10	Year 10	Year 10
Dissolved Metals								
Aluminum, Dissolved	mg/L	0.001	0.034	0.0022	0.0019	0.0044	0.0019	0.0022
Antimony, Dissolved	mg/L	0.0001	0.0008	0.00025	0.00026	<0.00010	0.00022	0.0004
Arsenic, Dissolved	mg/L	0.0001	0.0004	0.00016	0.00016	0.00024	0.00011	0.00018
Barium, Dissolved	mg/L	0.0001	0.0514	0.0218	0.0216	0.00895	0.014	0.0423
Beryllium, Dissolved	mg/L	0.00002	-	< 0.000020	< 0.000020	< 0.000020	< 0.000020	< 0.000020
Bismuth, Dissolved	mg/L	0.00005	-	< 0.000050	< 0.000050	< 0.000050	< 0.000050	< 0.000050
Boron, Dissolved	mg/L	0.01	-	0.014	0.014	< 0.010	0.031	0.04
Cadmium, Dissolved	mg/L	0.000005	0.000014	< 0.0000050	< 0.0000050	<0.0000050	<0.0000050	0.0000056
Calcium, Dissolved	mg/L	0.05	90.1	51.5	52.2	19.4	39.8	54.9
Cesium, Dissolved	mg/L	0.00001	-	< 0.000010	<0.000010	< 0.000010	<0.000010	< 0.000010
Chromium, Dissolved	mg/L	0.0005	0.0017	< 0.00050	< 0.00050	<0.00050	< 0.00050	0.0008
Cobalt, Dissolved	mg/L	0.0001	0.0005	< 0.00010	< 0.00010	<0.00010	<0.00010	< 0.00010
Copper, Dissolved	mg/L	0.0002	0.0070	0.00081	0.00079	0.00077	0.00118	0.00178
Iron, Dissolved	mg/L	0.03	0.02	< 0.030	< 0.030	< 0.030	< 0.030	< 0.030
Lead, Dissolved	mg/L	0.00005	0.00056	< 0.000050	< 0.000050	< 0.000050	< 0.000050	< 0.000050
Lithium, Dissolved	mg/L	0.001	0.005	< 0.0010	< 0.0010	<0.0010	<0.0010	0.0038
Magnesium, Dissolved	mg/L	0.005	67.9	32.8	32.1	24.9	27.4	33.9
Manganese, Dissolved	mg/L	0.005	0.075	< 0.00500	< 0.00500	<0.00500	< 0.00500	0.0108
Molybdenum, Dissolved	mg/L	0.00005	0.00391	0.00062	0.000573	0.00116	0.000796	0.0017
Nickel, Dissolved	mg/L	0.0005	0.0054	0.00066	0.00074	0.00055	0.00066	0.0018
Phosphorus, Dissolved	mg/L	0.05	-	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050
Potassium, Dissolved	mg/L	0.05	3.31	0.77	0.781	0.523	0.997	1.79
Rubidium, Dissolved	mg/L	0.0002	-	< 0.00020	< 0.00020	< 0.00020	0.00021	0.00104
Selenium, Dissolved	mg/L	0.00005	0.00057	0.000143	0.000126	0.000118	0.000108	0.000238
Silicon, Dissolved	mg/L	0.05	1.54	0.968	0.962	0.642	0.875	2.64
Silver, Dissolved	mg/L	0.00001	-	< 0.000010	< 0.000010	< 0.000010	< 0.000010	< 0.000010
Sodium, Dissolved	mg/L	0.05	24.5	4.18	4.13	3.42	3.81	4.82
Strontium, Dissolved	mg/L	0.0002	0.0823	0.028	0.0274	0.0164	0.0284	0.0866
Sulfur, Dissolved	mg/L	0.5	114.5	10.2	9.96	7	17	32.2
Tellurium, Dissolved	mg/L	0.0002	-	< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020
Thallium, Dissolved	mg/L	0.00001	0.000055	0.000067	0.000071	0.000022	0.000083	0.000021
Thorium, Dissolved	mg/L	0.0001	-	< 0.00010	<0.00010	<0.00010	< 0.00010	< 0.00010
Tin, Dissolved	mg/L	0.0001	-	< 0.00010	< 0.00010	< 0.00010	< 0.00010	< 0.00010
Titanium, Dissolved	mg/L	0.0003	-	< 0.00030	< 0.00030	<0.00030	< 0.00030	< 0.00030
Tungsten, Dissolved	mg/L	0.0001	-	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
Uranium, Dissolved	mg/L	0.00001	0.00965	0.0019	0.00192	0.00147	0.00202	0.00537
Vanadium, Dissolved	mg/L	0.0005	0.0003	< 0.00050	< 0.00050	< 0.00050	< 0.00050	< 0.00050
Zinc, Dissolved	mg/L	0.001	0.078	0.0012	0.0011	< 0.0010	0.0011	0.0017
Zirconium, Dissolved	mg/L	0.0002	0.0003	< 0.00020	<0.00020	< 0.00020	< 0.00020	< 0.00020

Reference Criteria: Site-specific Upper Limit of Acceptability (ULA)

Lucia - Upper Limit of Acceptability, calculated using the average – three times (x3) standard deviations of all available data. Only calculated for parameters with three or more data points of detectable concentrations.

RDL - Reported detectable concentrations.

PIN-D

Year 10 2022

Petroleum Hydrocarbons of Groundwater Wells

Parameter	Units	RDL	Reference Criteria (ULA)	MW-1	MW-1 - DUP	MW-2	MW-3	MW-4
			(OLA)	4-Aug-2022	4-Aug-2022	4-Aug-2022	4-Aug-2022	4-Aug-2022
Petroleum Hydrocar	bons (PHCs)	and Volatiles	•	Year 10				
Volatile Organic Compounds (VC	Cs) - BTEX							
Benzene	μg/L	0.50	NC	<0.50	<0.50	<0.50	<0.50	<0.50
Ethylbenzene	μg/L	0.50	NC	<0.50	<0.50	<0.50	<0.50	<0.50
Toluene	μg/L	0.50	NC	<0.50	<0.50	<0.50	<0.50	<0.50
Xylene, m+p-	μg/L	0.50	NC	<0.50	<0.50	<0.50	<0.50	<0.50
Xylene, o-	μg/L	0.50	NC	<0.50	<0.50	<0.50	<0.50	<0.50
Xylenes, total	μg/L	0.75	NC	<0.75	<0.75	<0.75	<0.75	<0.75
BTEX, total	μg/L	1.20	NC	<1.2	<1.2	<1.2	<1.2	<1.2
Hydrocarbons								
F1 (C6-C10)	μg/L	100	NC	<100	<100	<100	<100	<100
F1-BTEX	μg/L	100	NC	<100	<100	<100	<100	<100
F2 (C10-C16)	μg/L	100	NC	<100	<100	<100	<100	<100
F3 (C16-C34)	μg/L	250	NC	<250	<250	<250	<250	<250
F4 (C34-C50)	μg/L	250	NC	<250	<250	<250	<250	<250
Hydrocarbons, total (C6-C50)	μg/L	400	NC	<400	<400	<400	<400	<400

Notes:

Reference Criteria: Site-specific Upper Limit of Acceptability (ULA)

RDL - Reported detection limit

NC - Not calculated

Exceeds Reference Criteria

Detection Limit Exceeds Reference Criteria

PIN-D Year 10 2022

Polychlorinated Biphenyls of Groundwater Wells

Parameter	Units	RDL	Reference Criteria	MW-1	MW-1 - DUP	MW-2	MW-3	MW-4
			(ULA)	4-Aug-2022	4-Aug-2022	4-Aug-2022	4-Aug-2022	4-Aug-2022
Polychlorinated I	Biphenyls (P	CBs)		Year 10				
PCBs								
Aroclor 1016	μg/L	1.0	NC	<1.0	<1.0	<1.0	<1.0	<1.0
Aroclor 1221	μg/L	1.0	NC	<1.0	<1.0	<1.0	<1.0	<1.0
Aroclor 1232	μg/L	1.0	NC	<1.0	<1.0	<1.0	<1.0	<1.0
Aroclor 1242	μg/L	1.0	NC	<1.0	<1.0	<1.0	<1.0	<1.0
Aroclor 1248	μg/L	1.0	NC	<1.0	<1.0	<1.0	<1.0	<1.0
Aroclor 1254	μg/L	1.0	NC	<1.0	<1.0	<1.0	<1.0	<1.0
Aroclor 1260	μg/L	1.0	NC	<1.0	<1.0	<1.0	<1.0	<1.0
Aroclor 1262	μg/L	1.0	NC	<1.0	<1.0	<1.0	<1.0	<1.0
Aroclor 1268	μg/L	1.0	NC	<1.0	<1.0	<1.0	<1.0	<1.0
Polychlorinated Biphenyls [PCBs], total	μg/L	1.0	NC	<1.0	<1.0	<1.0	<1.0	<1.0

Notes:

Reference Criteria Site-specific Upper Limit of Acceptability (ULA)

RDL - Reported detection limit

NC - Not calculated

Exceeds Reference Criteria

Detection Limit Exceeds Reference
Criteria

PIN-D Year 10 2022

QA/QC of Groundwater Wells

Parameter	Units	RDL	MW-1	MW-1 - DUP	222
			4-Aug-2022	4-Aug-2022	RPD
QA/QC			Year 10	Year 10	
General Chemis	try				
Physical Tests					
Conductivity	μS/cm	2.0	479	476	0.63%
Hardness (as CaCO3), dissolved	mg/L	0.50	264	262	0.76%
рН	pH units	0.10	7.85	7.95	1.27%
Total Suspended Solids (TSS)	mg/L	3.0	<3.0	<3.0	N/A
Total Dissolved Solids (TDS)	mg/L	10	296	300	1.34%
Total Dissolved Solids (TDS), calculated	mg/L	1.0	285	282	1.06%
Anions and Nutrients					
Chloride	mg/L	0.50	8.45	7.99	5.60%
Fluoride	mg/L	0.020	<0.020	<0.020	N/A
Nitrate (as N)	mg/L	0.020	6.83	6.56	4.03%
Nitrate + Nitrite (as N)	mg/L	0.0500	6.83	6.56	4.03%
Nitrite (as N)	mg/L	0.010	<0.010	<0.010	N/A
Sulfate (as SO4)	mg/L	0.30	28.7	27.7	3.55%
Alkalinity					
Bicarbonate (as HCO3)	mg/L	1.0	256	254	0.78%
Carbonate (as CO3)	mg/L	1.0	<1.0	<1.0	N/A
Hydroxide (as OH)	mg/L	1.0	<1.0	<1.0	N/A
Total (as CaCO3)	mg/L	2.0	210	209	0.48%
Ion Balance					
Anion Sum	meq/L	0.10	5.52	5.45	1.28%
Cation Sum	meq/L	0.10	5.47	5.44	0.55%
Ion Balance (APHA)	%	0.010	0.455	0.092	N/A
Ion Balance (cations/anions)	%	0.010	99.10	99.80	N/A

PIN-D Year 10 2022

QA/QC of Groundwater Wells

Parameter	Units	RDL	MW-1	MW-1 - DUP	RPD
			4-Aug-2022	4-Aug-2022	KPD
QA/QC			Year 10	Year 10	
Metals					
Total Metals					
Aluminum, Total	mg/L	0.003	0.01	0.0119	17.35%
Antimony, Total	mg/L	0.0001	0.00026	0.00026	0.00%
Arsenic, Total	mg/L	0.0001	0.00021	0.00022	4.65%
Barium, Total	mg/L	0.0001	0.0208	0.0209	0.48%
Beryllium, Total	mg/L	0.00002	<0.000020	<0.000020	N/A
Bismuth, Total	mg/L	0.00005	<0.000050	<0.000050	N/A
Boron, Total	mg/L	0.01	0.014	0.015	6.90%
Cadmium, Total	mg/L	0.000005	<0.000050	0.0000099	N/A
Calcium, Total	mg/L	0.05	55.1	53	3.89%
Cesium, Total	mg/L	0.00001	<0.000010	<0.000010	N/A
Chromium, Total	mg/L	0.0005	<0.00050	<0.00050	N/A
Cobalt, Total	mg/L	0.0001	<0.00010	<0.00010	N/A
Copper, Total	mg/L	0.0005	0.00081	0.00095	15.91%
Iron, Total	mg/L	0.01	0.025	0.039	43.75%
Lead, Total	mg/L	0.00005	0.000147	0.000195	28.07%
Lithium, Total	mg/L	0.001	<0.0010	<0.0010	N/A
Magnesium, Total	mg/L	0.005	35.5	35.4	0.28%
Manganese, Total	mg/L	0.0001	0.00074	0.00095	24.85%
Molybdenum, Total	mg/L	0.00005	0.000632	0.000652	3.12%
Nickel, Total	mg/L	0.0005	0.00065	0.00065	0.00%
Phosphorus, Total	mg/L	0.05	<0.050	<0.050	N/A
Potassium, Total	mg/L	0.05	0.777	0.781	0.51%
Rubidium, Total	mg/L	0.0002	<0.00020	<0.00020	N/A
Selenium, Total	mg/L	0.00005	0.000147	0.000145	1.37%
Silicon, Total	mg/L	0.1	1.04	1.05	0.96%
Silver, Total	mg/L	0.00001	<0.000010	<0.000010	N/A
Sodium, Total	mg/L	0.05	4.27	4.39	2.77%
Strontium, Total	mg/L	0.0002	0.0292	0.0296	1.36%
Sulfur, Total	mg/L	0.5	10.3	10.6	2.87%
Tellurium, Total	mg/L	0.0002	<0.00020	<0.00020	N/A
Thallium, Total	mg/L	0.00001	0.000084	0.000079	6.13%
Thorium, Total	mg/L	0.0001	<0.00010	<0.00010	N/A
Tin, Total	mg/L	0.0001	<0.00010	<0.00010	N/A
Titanium, Total	mg/L	0.0003	<0.00030	<0.00030	N/A
Tungsten, Total	mg/L	0.0001	<0.00010	<0.00010	N/A
Uranium, Total	mg/L	0.00001	0.00221	0.00218	1.37%
Vanadium, Total	mg/L	0.0005	<0.00050	<0.00050	N/A
Zinc, Total	mg/L	0.003	< 0.0030	<0.0030	N/A
Zirconium, Total	mg/L	0.0002	<0.00020	<0.00020	N/A

PIN-D Year 10 2022

QA/QC of Groundwater Wells

Parameter	Units	RDL	MW-1	MW-1 - DUP	222
			4-Aug-2022	4-Aug-2022	RPD
QA/QC	-		Year 10	Year 10	
Dissolved Metals					
Aluminum, Dissolved	mg/L	0.001	0.0022	0.0019	14.63%
Antimony, Dissolved	mg/L	0.0001	0.00025	0.00026	3.92%
Arsenic, Dissolved	mg/L	0.0001	0.00016	0.00016	0.00%
Barium, Dissolved	mg/L	0.0001	0.0218	0.0216	0.92%
Beryllium, Dissolved	mg/L	0.00002	<0.000020	<0.000020	N/A
Bismuth, Dissolved	mg/L	0.00005	<0.000050	<0.000050	N/A
Boron, Dissolved	mg/L	0.01	0.014	0.014	0.00%
Cadmium, Dissolved	mg/L	0.000005	<0.000050	<0.000050	N/A
Calcium, Dissolved	mg/L	0.05	51.5	52.2	1.35%
Cesium, Dissolved	mg/L	0.00001	<0.000010	<0.000010	N/A
Chromium, Dissolved	mg/L	0.0005	<0.00050	<0.00050	N/A
Cobalt, Dissolved	mg/L	0.0001	<0.00010	<0.00010	N/A
Copper, Dissolved	mg/L	0.0002	0.00081	0.00079	2.50%
ron, Dissolved	mg/L	0.03	<0.030	<0.030	N/A
_ead, Dissolved	mg/L	0.00005	<0.000050	<0.000050	N/A
_ithium, Dissolved	mg/L	0.001	<0.0010	<0.0010	N/A
Magnesium, Dissolved	mg/L	0.005	32.8	32.1	2.16%
Manganese, Dissolved	mg/L	0.005	<0.00500	<0.00500	N/A
Molybdenum, Dissolved	mg/L	0.00005	0.00062	0.000573	7.88%
Nickel, Dissolved	mg/L	0.0005	0.00066	0.00074	11.43%
Phosphorus, Dissolved	mg/L	0.05	<0.050	<0.050	N/A
Potassium, Dissolved	mg/L	0.05	0.77	0.781	1.42%
Rubidium, Dissolved	mg/L	0.0002	<0.00020	<0.00020	N/A
Selenium, Dissolved	mg/L	0.00005	0.000143	0.000126	12.64%
Silicon, Dissolved	mg/L	0.05	0.968	0.962	0.62%
Silver, Dissolved	mg/L	0.00001	<0.000010	<0.000010	N/A
Sodium, Dissolved	mg/L	0.05	4.18	4.13	1.20%
Strontium, Dissolved	mg/L	0.0002	0.028	0.0274	2.17%
Sulfur, Dissolved	mg/L	0.5	10.2	9.96	2.38%
Tellurium, Dissolved	mg/L	0.0002	<0.00020	<0.00020	N/A
Thallium, Dissolved	mg/L	0.00001	0.000067	0.000071	5.80%
Thorium, Dissolved	mg/L	0.0001	<0.00010	<0.00010	N/A
Fin, Dissolved	mg/L	0.0001	<0.00010	<0.00010	N/A
Fitanium, Dissolved	mg/L	0.0003	<0.00030	<0.00030	N/A
Tungsten, Dissolved	mg/L	0.0001	<0.00010	<0.00010	N/A
Jranium, Dissolved	mg/L	0.00001	0.0019	0.00192	1.05%
Vanadium, Dissolved	mg/L	0.0005	<0.00050	<0.00050	N/A
Zinc, Dissolved	mg/L	0.001	0.0012	0.0011	8.70%
Zirconium, Dissolved	mg/L	0.0002	<0.00020	<0.00020	N/A

PIN-D Year 10 2022

QA/QC of Groundwater Wells

Parameter	Units	RDL	MW-1	MW-1 - DUP	RPD
			4-Aug-2022	4-Aug-2022	I II D
QA/Q0	;		Year 10	Year 10	
PHCs					
Volatile Organic Compounds (VOCs) - BTEX				
Benzene	μg/L	0.5	<0.50	<0.50	N/A
Ethylbenzene	μg/L	0.50	<0.50	<0.50	N/A
Toluene	μg/L	0.5	<0.50	<0.50	N/A
Xylene, m+p-	μg/L	0.50	<0.50	<0.50	N/A
Xylene, o-	μg/L	0.5	<0.50	<0.50	N/A
Xylenes, total	μg/L	0.75	<0.75	<0.75	N/A
BTEX, total	μg/L	1.2	<1.2	<1.2	N/A
Hydrocarbons					
F1 (C6-C10)	μg/L	100	<100	<100	N/A
F2 (C10-C16)	μg/L	100	<100	<100	N/A
F3 (C16-C34)	μg/L	100	<100	<100	N/A
F4 (C34-C50)	μg/L	250	<250	<250	N/A
F1-BTEX	μg/L	250	<250	<250	N/A
Hydrocarbons, total (C6-C50)	μg/L	400	<400	<400	N/A
PCBs				,	
PCBs					
Aroclor 1016	μg/L	1.0	<1.0	<1.0	N/A
Aroclor 1221	μg/L	1.0	<1.0	<1.0	N/A
Aroclor 1232	µg/L	1.0	<1.0	<1.0	N/A
Aroclor 1242	μg/L	1.0	<1.0	<1.0	N/A
Aroclor 1248	μg/L	1.0	<1.0	<1.0	N/A
Aroclor 1254	μg/L	1.0	<1.0	<1.0	N/A
Aroclor 1260	μg/L	1.0	<1.0	<1.0	N/A
Aroclor 1262	μg/L	1.0	<1.0	<1.0	N/A
Aroclor 1268	μg/L	1.0	<1.0	<1.0	N/A
Polychlorinated Biphenyls (PCBs), tota		1.0	<1.0	<1.0	N/A

RDL - Reported detection limit

RPD - Relative percent difference

N/A - Not applicable

RPD > 50%

PIN-D Year 10 2022

AECOM

Historical General Chemistry of Groundwater Wells

			MW-1	MW-1	MW-2	MW-2	MW-2 - Duplicate	MW-2	MW-3	MW-3 - Duplicate	MW-3	MW-3 - Duplicate	MW-4		Standard	
Parameter	Units	RDL	Franz	SLR	Franz	Franz	Franz	SLR	Franz	Franz	Arcadis	Arcadis	SLR	Average	Deviation	ULA
			2015	2019	2013	2015	2015	2019	2013	2013	2017	2017	2019			
Historical Gene	ral Chemistr	у														
Colour	TCU	2	6.8	7	3.6	4.9	39	3	3.8	2.7	-	-	3	8.2	11.7	43.2
Conductivity	μS/cm	1	370	401	520	270	270	289	730	730	380	410	375	431	164	924
Total Dissolved Solids	mg/L	10	190	375	NA	150	140	46	500	490	220	240	220	257	151	709
Fluoride (F)	mg/L	0.1	<0.050	<0.1	0.061	0.066	0.064	<0.1	<0.050	<0.050	-	-	<0.1	0.1	0.0	0.1
Orthophosphate (P)	mg/L	0.01	<0.0030	<0.01	0.003	0.014	0.013	<0.01	<0.0030	0.0032	-	-	<0.01	0.01	0.01	0.03
pН	рН	-	7.79	8.23	8.01	8.69	8.7	8.25	7.99	7.92	8.05	8.05	8.34	8.18	0.30	9.07
Total Suspended Solids	mg/L	10	2.7	289	NA	270	300	120	0.5	0.46	4	3.3	140	113	130	504
Sulfate (SO4)	mg/L	1	8.6	12	130	12	12	14	190	200	56	59	35	66	73	285
Chloride (CI) 1	mg/L	1	5.7	6.1	22	7.1	7.2	8.7	18	19	5.3	6.7	7.2	10.3	6.2	28.8
Nitrate (as N)	mg/L	0.1	<0.010	1.18	<0.0030	<0.010	<0.010	0.46	< 0.0030	0.005	<0.010	<0.010	1.19	0.71	0.58	2.45
Nitrite (as N)	mg/L	0.01	1.6	<0.01	0.31	0.38	0.39	0.014	1	1	1.8	1.9	<0.01	0.93	0.70	3.05
Hardness (as CaCO3)	mg/L	0.5	190	203	260	120	120	150	370	390	210	220	229	224	89	491

Notes:

Reference Criteria - Site-specific Upper Limit of Acceptability (ULA)

RDL - Refers to laboratory detection limit, which may vary between sample locations and event

2019 RDL used. Changes between monitoring events.

¹ 2017 RDL

TCU - True colour unit

ULA - Upper Limits of Acceptability, calculated using the average + three (3) standard deviations of all available data. Only calculated for parameters with three or more data points of detectable concentrations.

Exceeds Reference
Criteria

Detection Limit Exceeds
Reference Criteria

Historical Metal Concentrations of Groundwater Wells

PIN-D Year 10 2022

Parameter	Units	RDL	MW-1	MW-1	MW-2	MW-2	MW-2 - Duplicate	MW-2	MW-3	MW-3 - Duplicate	MW-3	MW-3 - Duplicate	MW-4	MW-4 - Duplicate	Average	Standard	ULA
			Franz	SLR	Franz	Franz	Franz	SLR	Franz	Franz	Arcadis	Arcadis	SLR	SLR	Average	Deviation	OLA
Historical I	Metals		2015	2019	2013	2015	2015	2019	2013	2013	2017	2017	2019	2019			
Total Metals	/	0.003	0.011	0.291	0.0333	4	3.5	1.98	0.0209	0.0195	0.011	0.037	0.767	0.728	0.950	1.432	5.245
Aluminum, Total Antimony, Total	mg/L mg/L	0.003	< 0.0006	<0.0005	0.000027	<0.0006	0.0006	<0.0005	0.00081	0.000079	<0.0006	<0.0006	0.00064	0.00063	0.00034	0.00031	0.00127
Arsenic, Total	mg/L	0.0003	0.00026	0.00033	0.000027	0.0034	0.0000	0.00132	0.000131	0.000013	0.00057	0.00022	0.00056	0.00079	0.00092	0.00031	0.00435
Barium, Total	mg/L	0.001	0.015	0.0188	0.0394	0.065	0.062	0.0455	0.0305	0.0311	0.016	0.017	0.0487	0.0466	0.036	0.018	0.089
Beryllium, Total	mg/L	0.0001	<0.001	<0.0001	<0.00001	<0.001	<0.001	0.00033	<0.00001	<0.00001	< 0.001	<0.001	0.00014	0.00013	0.00020	0.00011	0.00054
Bismuth, Total	mg/L	0.001	<0.005	<0.001	< 0.000005	< 0.005	< 0.005	<0.001	< 0.000005	0.000005	-		<0.001	< 0.001	-	-	-
Boron, Total	mg/L	0.05	<0.02	< 0.05	< 0.05	<0.02	<0.02	< 0.05	< 0.05	< 0.05	0.033	0.031	<0.05	< 0.05	-	-	-
Cadmium, Total	mg/L	0.00001	<0.00002	0.000069	0.000008	0.000074	0.000061	0.000043	0.000012	0.000009	<0.00002	<0.00002	0.000021	0.000018	0.000035	2.70093E-05	0.000116
Calcium, Total	mg/L	0.00005	40	45.7	23	19	18	24.5	68.9	62.4	37	42	46.6	44.4	39.29166667	16.21898205	87.948613
Chromium, Total	mg/L	0	<0.001	0.0065	0.0015	0.0031	0.0027	0.0134	<0.0001	0.00015	0.0013 <0.0003	0.0035 <0.0003	0.0053	0.0062	0.004365	0.003814013	0.015807
Cobalt, Total Copper, Total	mg/L	0.0002	0.0032	0.00031	0.000364	0.0027	0.0025	0.00183	0.00019	0.000204	0.0027	0.0081	0.0007	0.0007	0.001055333	0.001009434	0.0040836
Iron, Total	mg/L mg/L	0.0005	< 0.06	0.461	0.00729	7.1	6.5	3.23	0.00311	0.00308	0.0027	0.0061	1.3	1.36	1.886690909	2.608435042	9.711996
Lead Total	mg/L	0.0002	0.00026	0.00105	0.000132	0.0098	0.0087	0.0052	0.000101	0.000095	0.0028	0.00051	0.00246	0.00347	0.00288	0.00339	0.01306
Lithium, Total	mg/L	0.002	<0.02	<0.002	0.00165	<0.02	<0.02	0.005	0.00138	0.00163	<0.02	<0.02	0.0032	0.0037	0.00276	0.001449703	0.0071091
Magnesium, Total	mg/L	0.00005	21	21.5	41.1	20	20	21.5	49.2	49.6	28	32	27.3	30.3	30.125	10.9407599	62.94728
Manganese, Total	mg/L	0.001	<0.004	0.0126	0.0629	0.14	0.13	0.118	0.0264	0.0272	0.0082	0.0017	0.0521	0.0521	0.057381818	0.050254867	0.2081464
Molybdenum, Total	mg/L	0.001	0.00052	<0.001	0.0017	0.0017	0.0016	0.0042	0.00079	0.000842	0.00096	0.00099	0.0013	0.0012	0.001436545	0.000995735	0.0044237
Nickel, Total	mg/L	0.001	0.0015	0.0062	0.00598	0.0045	0.004	0.0116	0.00194	0.00202	0.0023	0.0041	0.005	0.0029	0.004336667	0.002778722	0.0126728
Potassium, Total	mg/L	0.05	0.6	0.637	1.54	2.6	2.5	2.62	1.32	1.34	1	3.4	1.21	1.3	1.67225	0.889679628	4.3412889
Selenium, Total	mg/L	0.0001	<0.0002	0.0001	0.000225	0.00038	0.00037	0.00018	0.000355	0.000325	<0.0002	<0.0002	0.00011	<0.0001	0.000255625	0.000116694	0.0006057
Silicon, Total	mg/L	0.1	0.78	-	0.823	11	10	-	1.17	1.04	1	1.1	-	-	3.364125	4.414384488	16.607278
Silver, Total	mg/L	0.00002	<0.0001	<0.00002	<0.000005	<0.0001	<0.0001	<0.00002	<0.000005	<0.000005	<0.0001	<0.0001	<0.00002	<0.00002	-		-
Sodium, Total	mg/L	0.00005	2.8	2.43	8.18	16	16	34.2	8.09	8.21	3.4	6.1	7.01	7.13	9.9625	8.805368326	36.378605
Strontium, Total	mg/L	0.001	<0.02 2.7	0.0203	0.0545 40.2	0.037	0.036 3.1	0.047	0.0599 70.4	0.0587 70.2	0.027 18	0.033 24	0.0539	0.0554	0.043881818 28.9625	0.013786429 28.57606079	0.0852411
Sulfur, Total	mg/L	0.2						0.000128					- 0.000.40	0.000048			
Thallium, Total Tin, Total	mg/L mg/L	0.00001	<0.0002	0.000041 <0.005	0.000014 <0.0002	0.00023	0.00022	< 0.005	<0.00033	<0.00033	<0.0002 <0.001	<0.0002 <0.001	0.000046 <0.005	<0.005	8.81111E-05	8.388E-05	0.0003398
Titanium, Total	mg/L	0.005	<0.001	0.0073	0.00119	0.0011	0.0011	0.0715	<0.0002	<0.0002	0.0032	0.0015	0.0287	0.0234	0.03531	0.038266387	0.1501092
Uranium, Total	mg/L	0.0001	0.00074	0.0073	0.00119	0.0023	0.003	0.0023	0.00694	0.0068	0.0032	0.0013	0.00216	0.00234	0.00287	0.00205	0.00901
Vanadium, Total	mg/L	0.005	<0.001	<0.005	0.00023	0.0078	0.0069	<0.005	<0.0002	0.0002	<0.001	<0.001	<0.005	< 0.005	0.004	0.004	0.016
Zinc, Total	mg/L	0.005	0.0091	0.118	0.00064	0.05	0.042	0.049	0.00095	0.00081	0.037	0.067	0.0146	0.0105	0.0333	0.035095335	0.138586
Zirconium, Total	mg/L	0.0001	< 0.003	0.00046	< 0.0001	< 0.003	0.0035	0.00092	<0.0001	<0.0001		-	0.0006	0.00053	0.00120	0.00130	0.00509
Dissolved Metals																	
Aluminum, Dissolved	mg/L	0.003	0.0043	0.0043	0.0279	0.0073	0.0074	0.0102	0.0173	0.0208	0.0047	0.0044	0.0053	0.004	0.010	0.008	0.034
Antimony, Dissolved	mg/L	0.0005	<0.0006	< 0.0005	0.000025	<0.0006	<0.0006	<0.0005	0.000086	0.000095	<0.0006	<0.0006	0.0005	<0.0005	0.0001765	0.000217897	0.0008302
Arsenic, Dissolved	mg/L	0.0001	<0.0002	0.00023	0.000153	0.00031	0.00027	0.00031	0.000134	0.00013	<0.0002	<0.0002	0.00023	0.00025	0.00022	0.00007	0.00044
Barium, Dissolved	mg/L	0.001	0.015	0.0158	0.0383	0.012	0.012	0.0128	0.0306	0.0306	0.015	0.017	0.0324	0.0317	0.021933333	0.00982523	0.051409
Beryllium, Dissolved	mg/L	0.0001	<0.001	<0.0001	<0.00001	<0.001	<0.001	<0.0001	<0.00001	<0.00001	<0.001	<0.001	<0.0001	<0.0001	-	-	-
Bismuth, Dissolved	mg/L	0.001	<0.005	<0.001	<0.000005	<0.005	<0.005	<0.001	<0.000005	0.000013	-		<0.001	<0.001	-	-	-
Boron, Dissolved Cadmium, Dissolved	mg/L	0.05	<0.02 <0.00002	<0.05 <0.00001	<0.05	<0.02	<0.02 <0.00002	<0.05 <0.00001	<0.05 0.000013	<0.05 0.000012	0.031 <0.00002	0.034 <0.00002	<0.05	<0.05 <0.00001	1.26667E-05	5.7735E-07	0.000014
Cadmium, Dissolved Calcium, Dissolved	mg/L mg/L	0.00001 0.00005	40	43.3	27.1	17	17	11.3	68.5	67.5	38	39	31.8	32	36.04166667	18.02954436	90.1303
Chromium, Dissolved	mg/L	0.00005	<0.001	0.0012	<0.0001	<0.001	<0.001	0.0011	<0.0001	<0.0001	<0.001	<0.001	0.0014	<0.001	0.001	0.00015	0.00169
Cobalt Dissolved	mg/L	0.0002	<0.0003	<0.0002	0.000371	<0.0003	<0.0003	<0.0011	0.000218	0.00024	<0.0003	<0.0003	<0.0014	<0.0002	0.000276333	8.27184E-05	0.0005245
Copper, Dissolved	mg/L	0.0002	0.0015	0.005	0.00202	0.0013	0.00095	0.00596	0.00263	0.0029	0.0016	0.0019	0.00144	0.00175	0.00270333	0.00154	0.0003243
Iron, Dissolved	mg/L	0.01	<0.06	0.0141	0.0016	<0.06	<0.06	<0.005	0.0037	0.0033	<0.06	<0.06	0.0099	<0.005	0.007	0.005	0.022
Lead, Dissolved	mg/L	0.0002	<0.0002	0.00032	0.00002	<0.0002	<0.0002	<0.0002	0.000014	0.000033	<0.0002	<0.0002	0.00024	<0.0002	0.0001254	0.0001441	0.0005577
Lithium, Dissolved	mg/L	0.002	<0.02	<0.002	0.00151	<0.02	< 0.02	0.003	0.0017	0.00147	<0.02	<0.02	0.0031	0.0029	0.00228	0.00079506	0.0046652
Magnesium, Dissolved	mg/L	0.00005	21	21.6	44.1	20	20	13.9	50.3	53.3	28	30	23.8	23.7	29.14166667	12.92583448	67.91917
Manganese, Dissolved	mg/L	0.001	<0.004	0.0019	0.0612	0.0068	0.0066	0.0151	0.0268	0.0286	<0.004	<0.004	0.004	0.0033	0.017144444	0.019315027	0.0750895
Mercury, Dissolved	mg/L	0.00001	-	<0.00001	-	-	-	<0.00001	-	-	-	-	-	-	-	-	-
Molybdenum, Dissolved	mg/L	0.001	0.00046	<0.001	0.00185	0.00085	0.00081	0.0037	0.000772	0.000894	0.00084	0.00077	0.0012	0.0012	0.001213273	0.000899115	0.0039106
Nickel, Dissolved	mg/L	0.001	0.001	0.004	0.00347	<0.0005	<0.0005	0.0017	0.00186	0.00215	0.0016	0.003	0.0029	<0.001	0.002408889	0.000984777	0.0053632
Potassium, Dissolved	mg/L	0.05	0.59	0.594	1.54	0.98	0.94	1.54	1.31	1.36	1.7	3.1	1.12	1.03	1.317	0.664370379	3.3101111
Selenium, Dissolved	mg/L	0.0001	<0.0002	<0.0001	0.000241	<0.0002	<0.0002	0.00011	0.000337	0.000328	<0.0002	<0.0002	<0.0001	<0.0001	0.000254	0.000105309	0.0005699
Silicon, Dissolved Silver, Dissolved	mg/L mg/L	0.1	0.77 <0.0001	<0.00002	0.898	0.64 <0.0001	0.64 <0.0001	<0.0002	1.14	1.11	1 <0.0001	1.1 <0.0001	<0.00002	<0.00002	0.91225	0.20791602	1.5359981
Sodium, Dissolved	mg/L	0.00002	2.6	2.79	8.7	9.1	9.2	23.7	8.25	8.64	4.4	6.3	5.33	4.15	7.763333333	5.588425267	24.528609
Strontium, Dissolved	mg/L	0.0005	<0.02	0.0212	0.0538	0.028	0.028	0.0385	0.0567	0.0576	0.028	0.032	0.0527	0.0517	0.040745455	0.013866677	0.0823455
Sulfur, Dissolved	mg/L	0.001	2.7	0.0212	4.25	2.7	2.7	-	68.2	74.3	20	24	-	-	24.85625	29.86875383	114.46251
Thallium, Dissolved	mg/L	0.00001	<0.0002	0.000027	0.000013	<0.0002	<0.0002	0.000013	0.000033	0.000034	<0.0002	<0.0002	<0.00001	<0.00001	0.000024	1.03923E-05	0.00006
Tin, Dissolved	mg/L	0.005	<0.001	< 0.005	<0.0002	<0.001	<0.001	< 0.005	<0.0002	< 0.000034	<0.001	<0.001	<0.005	<0.005	-	-	-
Titanium, Dissolved	mg/L	0.005	<0.001	<0.005	<0.0005	<0.001	<0.001	<0.005	<0.0005	<0.0005	<0.001	<0.001	<0.005	<0.005			-
Uranium, Dissolved	mg/L	0.0001	0.00065	0.00091	0.00438	0.00063	0.00059	0.00147	0.00709	0.00714	0.0015	0.0019	0.00176	0.00167	0.00247	0.00239	0.00965
Vanadium, Dissolved	mg/L	0.005	<0.001	< 0.005	0.00021	<0.001	<0.001	<0.005	0.00023	0.00022	<0.001	<0.001	<0.005	< 0.005	0.000220	0.000010	0.000250
Zinc, Dissolved	mg/L	0.005	0.008	0.0454	0.0027	<0.003	<0.003	<0.005	0.0021	0.0023	0.033	0.04	<0.005	<0.005	0.019	0.020	0.078
Zirconium, Dissolved	mg/L	0.0001	<0.003	0.00018	<0.0001	<0.003	< 0.003	<0.0001	0.00012	0.0001	-	-	<0.0001	<0.0001	0.000133333	4.16333E-05	0.0002582
Notes:	-																

Notes:
Reference Criteria - Site-specific Upper Limit of Acceptability (ULA)
ULA - Upper Limits of Acceptability, calculated using the average + three (3) standard deviations of all available data. Only calculated for parameters with three or more data points of detectable concentrations.
RDL - Refers to laboratory detection limit, which may vary between sample locations and event. 2020 RDL presented.

Exceeds Respective Reference Criteria Detection Limit Exceeds Reference Criteria

PIN-D Year 10 2022

Hadra.	DDI	MW-1	MW-1	MW-2	MW-2 - Duplicate	MW-2	MW-2 - Duplicate	MW-2	MW-3	MW-3 - Duplicate	MW-3	MW-3 - Duplicate	A	Standard	
Units	KDL	Franz	SLR	Franz	Franz	Franz	Franz	SLR	Franz	Franz	Arcadis	Arcadis	Average	Deviation	ULA
		2015	2019	2013	2013	2015	2015	2019	2013	2013	2017	2017			
and VOCs	i														
μg/L	0.4	<0.40	-	<0.40	<0.40	<0.40	<0.40	-	<0.40	<0.40	<0.40	<0.40	All <rdl< td=""><td>All <rdl< td=""><td>All <rdl< td=""></rdl<></td></rdl<></td></rdl<>	All <rdl< td=""><td>All <rdl< td=""></rdl<></td></rdl<>	All <rdl< td=""></rdl<>
μg/L	0.4	<0.40	-	<0.40	<0.40	<0.40	<0.40	-	<0.40	<0.40	<0.40	<0.40	All <rdl< td=""><td>All <rdl< td=""><td>All <rdl< td=""></rdl<></td></rdl<></td></rdl<>	All <rdl< td=""><td>All <rdl< td=""></rdl<></td></rdl<>	All <rdl< td=""></rdl<>
μg/L	0.4	<0.40	-	<0.40	<0.40	<0.40	<0.40	-	<0.40	<0.40	<0.40	<0.40	All <rdl< td=""><td>All <rdl< td=""><td>All <rdl< td=""></rdl<></td></rdl<></td></rdl<>	All <rdl< td=""><td>All <rdl< td=""></rdl<></td></rdl<>	All <rdl< td=""></rdl<>
μg/L	0.4	<0.40	-	<0.40	<0.40	<0.40	<0.40	-	<0.40	<0.40	<0.40	<0.40	All <rdl< td=""><td>All <rdl< td=""><td>All <rdl< td=""></rdl<></td></rdl<></td></rdl<>	All <rdl< td=""><td>All <rdl< td=""></rdl<></td></rdl<>	All <rdl< td=""></rdl<>
μg/L	8.0	<0.80	-	<0.80	<0.80	<0.80	<0.80	-	<0.80	<0.80	<0.80	<0.80	All <rdl< td=""><td>All <rdl< td=""><td>All <rdl< td=""></rdl<></td></rdl<></td></rdl<>	All <rdl< td=""><td>All <rdl< td=""></rdl<></td></rdl<>	All <rdl< td=""></rdl<>
μg/L	8.0	<0.80	-	<0.80	<0.80	<0.80	<0.80	-	<0.80	<0.80	<0.80	<0.80	All <rdl< td=""><td>All <rdl< td=""><td>All <rdl< td=""></rdl<></td></rdl<></td></rdl<>	All <rdl< td=""><td>All <rdl< td=""></rdl<></td></rdl<>	All <rdl< td=""></rdl<>
μg/L	100	<100	-	<100	<100	<100	<100	-	<100	<100	<100	<100	All <rdl< td=""><td>All <rdl< td=""><td>All <rdl< td=""></rdl<></td></rdl<></td></rdl<>	All <rdl< td=""><td>All <rdl< td=""></rdl<></td></rdl<>	All <rdl< td=""></rdl<>
μg/L	100	<100	<25	<100	<100	<100	<100	<25	<100	<100	<100	<100	All <rdl< td=""><td>All <rdl< td=""><td>All <rdl< td=""></rdl<></td></rdl<></td></rdl<>	All <rdl< td=""><td>All <rdl< td=""></rdl<></td></rdl<>	All <rdl< td=""></rdl<>
μg/L	100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	All <rdl< td=""><td>All <rdl< td=""><td>All <rdl< td=""></rdl<></td></rdl<></td></rdl<>	All <rdl< td=""><td>All <rdl< td=""></rdl<></td></rdl<>	All <rdl< td=""></rdl<>
μg/L	200	-	-	<200	<200	-	-	-	<200	<200	-	-	All <rdl< td=""><td>All <rdl< td=""><td>All <rdl< td=""></rdl<></td></rdl<></td></rdl<>	All <rdl< td=""><td>All <rdl< td=""></rdl<></td></rdl<>	All <rdl< td=""></rdl<>
μg/L	200	-		<200	<200	-	-	-	<200	<200	-	-	All <rdl< td=""><td>All <rdl< td=""><td>All <rdl< td=""></rdl<></td></rdl<></td></rdl<>	All <rdl< td=""><td>All <rdl< td=""></rdl<></td></rdl<>	All <rdl< td=""></rdl<>
	µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L	μg/L 0.4 μg/L 0.4 μg/L 0.4 μg/L 0.4 μg/L 0.4 μg/L 0.8 μg/L 100 μg/L 100 μg/L 100 μg/L 100 μg/L 200	Units RDL Franz 2015 and VOCs μg/L 0.4 <0.40	Units RDL Franz 2015 SLR 2019 and VOCs 2015 2019 μg/L 0.4 < 0.40	Units RDL Franz SLR Franz 2015 2019 2013 and VOCs μg/L 0.4 <0.40	MW-1 MW-2 Duplicate Franz SLR Franz Franz 2015 2019 2013 2013 and VOCs VOCS VOCS VOCS VOCS μg/L 0.4 <0.40	MW-1 MW-2 Duplicate MW-2 Units Franz SLR Franz Franz 2015 2013 2013 2015 and VOCs μg/L 0.4 < 0.40 - < 0.40 < 0.40 < 0.40 < 0.40 < 0.40 < 0.40 < 0.40 < 0.40 < 0.40 < 0.40 < 0.40 < 0.40 < 0.40 < 0.40 < 0.40 < 0.40 < 0.40 < 0.40 < 0.40 < 0.40 < 0.40 < 0.40 < 0.40 < 0.40 < 0.40 < 0.40 < 0.40 < 0.40 < 0.40 < 0.40 < 0.40 < 0.40 < 0.40 < 0.40 < 0.40 < 0.40 < 0.40 < 0.40 < 0.40 < 0.40 < 0.40 < 0.40 < 0.40 < 0.40 < 0.40 < 0.40 < 0.40 < 0.40 < 0.40 < 0.40 < 0.40 < 0.40 < 0.40 < 0.40 < 0.40 < 0.	MW-1 MW-2 Duplicate MW-2 Duplicate Franz SLR Franz Franz Franz Franz 2015 2019 2013 2013 2015 2015 and VOCs μg/L 0.4 <0.40	MW-1 MW-2 Duplicate MW-2<	WW-1 MW-2 Duplicate MW-2 Duplicate MW-3 MW-3 Franz SLR Franz Franz Franz Franz SLR Franz μg/L 0.4 <0.40	WN-1 MW-1 MW-2 Duplicate MW-2 Duplicate MW-3 Duplicate Franz SLR Franz Franz Franz Franz SLR Franz Franz 2015 2019 2013 2013 2015 2015 2019 2013 2013 and VOCs μg/L 0.4 <0.40	Wn-1 MW-1 MW-2 Duplicate MW-2 Duplicate MW-3 Duplicate MW-3 Franz SLR Franz Franz Franz Franz SLR Franz Arcadis 2015 2019 2013 2013 2015 2015 2019 2013 2017 and VOCs μg/L 0.4 <0.40	Units RDL MW-1 principle MW-2 puplicate Duplicate MW-2 puplicate MW-3 puplicate Duplicate Arcadis Arca	Units RDL MW-1 MW-2 Duplicate MW-2 Duplicate MW-3 Duplicate MW-3 Duplicate Arcadis Arcadis <td>Units RDL MW-1 MW-2 Duplicate MW-2 Duplicate MW-2 Duplicate MW-3 Duplicate MW-3 Duplicate Arcadis Arcadis</td>	Units RDL MW-1 MW-2 Duplicate MW-2 Duplicate MW-2 Duplicate MW-3 Duplicate MW-3 Duplicate Arcadis Arcadis

Notes:

Reference Criteria - Site-specific Upper Limit of Acceptability (ULA)

ULA - Upper Limits of Acceptability, calculated using the average + three (3) standard deviations of all available data. Only calculated for parameters with three or more data points of detectable concentrations.

RDL - Refers to laboratory detection limit, which may vary between sample locations and event. 2020 RDL presented.

Exceeds Reference Criteria

Detection Limit Exceeds Reference Criteria

PIN-D Year 10 2022

Historical PCB Concentrations of Groundwater Wells

Parameter	Units	RDL	MW-1	MW-1	MW-2	MW-2	MW-2 - Duplicate	MW-2	MW-3	MW-3 - Duplicate	MW-3	MW-3 - Duplicate	Average	Standard	ULA
Farameter	Units	KDL	Franz	SLR	Franz	Franz	Franz	SLR	Franz	Franz	Arcadis	Arcadis	Average	Deviation	ULA
			2015	2019	2013	2015	2015	2019	2013	2013	2017	2017			
Historical PC	Bs														
Aroclor 1016	mg/L	0.00005	<0.00005	<0.00001	<0.00005	<0.00005	<0.00005	<0.00001	<0.00005	<0.00005	<0.00005	<0.00005	All <rdl< td=""><td>All <rdl< td=""><td>All <rdl< td=""></rdl<></td></rdl<></td></rdl<>	All <rdl< td=""><td>All <rdl< td=""></rdl<></td></rdl<>	All <rdl< td=""></rdl<>
Aroclor 1221	mg/L	0.00005	<0.00005	<0.00001	<0.00005	<0.00005	<0.00005	<0.00001	<0.00005	<0.00005	<0.00005	<0.00005	All <rdl< td=""><td>All <rdl< td=""><td>All <rdl< td=""></rdl<></td></rdl<></td></rdl<>	All <rdl< td=""><td>All <rdl< td=""></rdl<></td></rdl<>	All <rdl< td=""></rdl<>
Aroclor 1232	mg/L	0.00005	<0.00005	<0.00001	<0.00005	<0.00005	<0.00005	<0.00001	<0.00005	<0.00005	<0.00005	<0.00005	All <rdl< td=""><td>All <rdl< td=""><td>All <rdl< td=""></rdl<></td></rdl<></td></rdl<>	All <rdl< td=""><td>All <rdl< td=""></rdl<></td></rdl<>	All <rdl< td=""></rdl<>
Aroclor 1242	mg/L	0.00005	<0.00005	<0.00001	<0.00005	<0.00005	<0.00005	<0.00001	<0.00005	<0.00005	<0.00005	<0.00005	All <rdl< td=""><td>All <rdl< td=""><td>All <rdl< td=""></rdl<></td></rdl<></td></rdl<>	All <rdl< td=""><td>All <rdl< td=""></rdl<></td></rdl<>	All <rdl< td=""></rdl<>
Aroclor 1248	mg/L	0.00005	<0.00005	<0.00001	<0.00005	<0.00005	<0.00005	<0.00001	<0.00005	<0.00005	<0.00005	<0.00005	All <rdl< td=""><td>All <rdl< td=""><td>All <rdl< td=""></rdl<></td></rdl<></td></rdl<>	All <rdl< td=""><td>All <rdl< td=""></rdl<></td></rdl<>	All <rdl< td=""></rdl<>
Aroclor 1254	mg/L	0.00005	<0.00005	<0.00001	<0.00005	<0.00005	<0.00005	<0.00001	<0.00005	<0.00005	<0.00005	<0.00005	All <rdl< td=""><td>All <rdl< td=""><td>All <rdl< td=""></rdl<></td></rdl<></td></rdl<>	All <rdl< td=""><td>All <rdl< td=""></rdl<></td></rdl<>	All <rdl< td=""></rdl<>
Aroclor 1260	mg/L	0.00005	<0.00005	<0.00001	<0.00005	<0.00005	<0.00005	<0.00001	<0.00005	<0.00005	<0.00005	<0.00005	All <rdl< td=""><td>All <rdl< td=""><td>All <rdl< td=""></rdl<></td></rdl<></td></rdl<>	All <rdl< td=""><td>All <rdl< td=""></rdl<></td></rdl<>	All <rdl< td=""></rdl<>
Aroclor 1262	mg/L	0.00005	<0.00005	<0.00001	<0.00005	<0.00005	<0.00005	<0.00001	<0.00005	<0.00005	<0.00005	<0.00005	All <rdl< td=""><td>All <rdl< td=""><td>All <rdl< td=""></rdl<></td></rdl<></td></rdl<>	All <rdl< td=""><td>All <rdl< td=""></rdl<></td></rdl<>	All <rdl< td=""></rdl<>
Aroclor 1268	mg/L	0.00005	<0.00005	<0.00001	<0.00005	<0.00005	<0.00005	<0.00001	<0.00005	<0.00005	<0.00005	<0.00005	All <rdl< td=""><td>All <rdl< td=""><td>All <rdl< td=""></rdl<></td></rdl<></td></rdl<>	All <rdl< td=""><td>All <rdl< td=""></rdl<></td></rdl<>	All <rdl< td=""></rdl<>
Polychlorinated Biphenyls, total	mg/L	0.00005	<0.00005	<0.00001	<0.00005	<0.00005	<0.00005	<0.00001	<0.00005	<0.00005	<0.00005	<0.00005	All <rdl< td=""><td>All <rdl< td=""><td>All <rdl< td=""></rdl<></td></rdl<></td></rdl<>	All <rdl< td=""><td>All <rdl< td=""></rdl<></td></rdl<>	All <rdl< td=""></rdl<>

Notes:

Reference Criteria Site-specific Upper Limit of Acceptability (ULA)

RDL - Refers to laboratory detection limit, which may vary between sample locations and event. 2019 RDL presented.

Exceeds Reference Criteria

Detection Limit Exceeds Reference
Criteria

Appendix **E**

Historical Soil Sample Tables

PIN-D Year 10 2022

AECOM

Baseline Soil Metal Concentrations from NHWL Footprint

Sample ID	Depth (m)	Arsenic	Cadmium	Cobalt	Chromium	Copper	Nickel	Lead	Zinc
Sample ID	Deptii (iii)	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
11-0400	0 - 0.1	3	ND	11	ND	ND	14	7	ND
11-0401	0 - 0.1	3	ND	9	1	ND	15	5	ND
11-0402	0.4 - 0.5	3	ND	32	2	6	12	16	ND
11-0403	0 - 0.1	3	ND	13	2	5	9	8	ND
11-0404	0.4 - 0.5	3	ND	16	3	10	11	11	ND
11-0405	0 - 0.1	1	ND	6	2	8	4	5	ND
11-0406	0.4 - 0.5	2	ND	12	2	8	8	7	ND
11-0407	0 - 0.1	2	ND	19	2	ND	10	11	ND
11-0408	0.4 - 0.5	12	ND	6	3	5	14	7	ND
11-0409	0 - 0.1	3	ND	13	4	8	13	9	ND
11-0410	0.4 - 0.5	6	ND	12	2	ND	14	8	ND
11-0411	0.4 - 0.5	6	ND	7	2	ND	10	5	ND
Notes									
ND - Non-Dete	ect								

Historical ESG ¹ Geochemical Assessment Site-Wide Soil Metal Concentrations

Sample ID	Depth (m)	Arsenic	Cadmium	Cobalt	Chromium	Copper	Nickel	Lead	Zinc
Sample ID	Depth (m)	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
09-30960/61	0.2	2.1	ND	8.3	21	24	14	ND	24
09-30962	0.1	ND	ND	7.6	ND	27	11	ND	20
09-30963	0.1	ND	ND	ND	ND	14	6	ND	ND
09-30964	0	ND	ND	ND	22	34	11	ND	16
09-30965	0	ND	ND	ND	ND	12	ND	ND	ND
09-30966	0.3	ND	ND	7.3	21	26	12	ND	18
09-30967	0.1	1.5	ND	5.9	ND	30	8	ND	ND
09-30968	0.1	1.3	ND	ND	ND	6.5	7.7	ND	ND
09-30969	0	ND	ND	ND	ND	ND	ND	ND	ND
09-30970/71	0.2	ND	ND	ND	ND	20	ND	ND	ND
09-30972	0.1	ND	ND	5.3	ND	21	7.9	ND	ND
09-30973	0.1	1.3	ND	ND	ND	29	6.1	ND	ND
09-30974	0.1	1.4	ND	ND	ND	25	5.1	ND	19
09-30975	0.2	1.5	ND	5.2	ND	19	7.7	ND	ND
09-30976	0.2	1.2	ND	5.1	ND	17	8	ND	ND
09-30977	0.1	ND	ND	5.2	ND	5.9	5.8	ND	17
09-30978	0.1	2.3	ND	5.6	ND	18	7.5	ND	ND
09-30979	0.1	ND	ND	ND	ND	8.5	ND	ND	ND
09-30980/81	0.1	1.4	ND	ND	ND	14	ND	ND	ND
09-30982	0.1	ND	ND	ND	ND	10	5.1	ND	ND
09-30983	0	ND	ND	ND	ND	21	5.4	ND	ND
09-30984	0.1	2	ND	5.7	ND	49	10	ND	17
09-30985	0.1	ND	ND	ND	ND	6.2	ND	ND	ND
09-30986	0.2	ND	ND	ND	ND	8.4	5.3	ND	ND
09-30987	0.1	ND	ND	ND	ND	40	ND	ND	ND
09-30988	0.1	4	ND	5	ND	12	8	ND	ND
09-30989	0	2.4	ND	6.8	ND	24	11	ND	17
09-30990/91	0.1	ND	ND	ND	ND	5.6	ND	ND	ND
09-30992	0.2	1.1	ND	ND	ND	10	ND	ND	ND
09-30993	0.1	ND	ND	ND	ND	5.2	5.2	ND	ND
09-30994	0	ND	ND	ND	ND	16	7.6	ND	ND
09-30995	0.1	ND	ND	ND	ND	ND	ND	ND	ND
09-30996	0	1.1	ND	5.2	ND	26	7.9	ND	ND
09-30997	0	1.6	ND	5.3	ND	26	9.4	ND	ND
09-30998	0	ND	ND	ND	ND	12	5.6	ND	16
09-30999	0	ND	ND ND	ND	ND	ND	ND	ND	ND
09-31000/01	0	2.9	ND ND	8.8	30	26	16	ND	30
09-31002	0.1	3.3	ND ND	ND	ND	16	6.4	ND	ND
09-31003	0.1	2.1	ND ND	5	ND	17	9	ND	ND
09-31004	0.1	1.4	ND ND	ND	ND	16	7.4	ND	ND
09-31037	0	ND	ND ND	ND	ND	ND	ND	ND	ND
09-31038	0.2	2.3	ND	7	24	17	13	ND	22
09-31039	0.1	3	ND	9.1	34	18	13	ND	ND
09-31040/41	0.1	ND	ND ND	ND	ND	17	6.2	ND	ND
09-31040/41	0	ND	ND ND	ND ND	ND ND	11	ND	ND	19
09-31043	0.1	ND	ND ND	5.8	ND	52	7.4	ND	ND
Notes:	· ···			0.0		<u> </u>			

1 Environmental Sciences Group (ESG) of the Royal Military College of Canada (RMC); background geochemical assessment conducted at PIN-D in 2009.

ND - Non-Detect Terrain Unit: Cc

PIN-D Year 10 2022

Historical ESG Geochemical Assessment Site-Wide Soil Metal Concentrations

Sample ID	Depth (m)	Arsenic	Cadmium	Cobalt	Chromium	Copper	Nickel	Lead	Zinc
Sample ID	Deptii (iii)	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
09-31005	0.1	1.7	ND	ND	ND	7.3	6.5	ND	ND
09-31006	0.1	1.6	ND	ND	ND	12	6	ND	ND
09-31007	0.1	1.1	ND	ND	ND	15	5.7	ND	ND
09-31008	0.2	ND	ND	ND	ND	5.5	ND	ND	ND
09-31009	0	ND	ND	ND	ND	ND	ND	ND	ND
09-31010/11	0.1	ND	ND	ND	ND	5.3	ND	ND	ND
09-31012	0	ND	ND	ND	ND	ND	ND	ND	ND
09-31013	0.1	1.7	ND	ND	ND	17	7.9	ND	ND
09-31014	0	1.2	ND	ND	ND	ND	ND	ND	ND
09-31015	0	2.1	ND	5.8	ND	15	8.6	ND	17
09-31016	0.1	2.7	ND	ND	ND	13	7.1	ND	18
09-31017	0	ND	ND	ND	ND	ND	ND	ND	ND
09-31018	0.1	2.1	ND	7	ND	23	9.4	ND	17
09-31019	0.1	1.4	ND	ND	ND	18	7.3	ND	ND
09-31020/21	0	1.2	ND	ND	ND	10	6.2	ND	ND
09-31022	0.1	1.3	ND	ND	ND	11	5.6	ND	ND
09-31023	0	ND	ND	ND	ND	ND	ND	ND	ND
09-31024	0.1	ND	ND	ND	ND	7.8	ND	ND	16
09-31025	0	ND	ND	ND	ND	ND	ND	ND	ND
09-31026	0.1	1.5	ND	ND	ND	18	7.1	ND	ND
09-31027	0	ND	ND	ND	ND	6.2	ND	ND	ND
09-31028	0	ND	ND	ND	ND	8.8	5.7	ND	18
09-31029	0	ND	ND	ND	ND	ND	ND	ND	ND
09-31030/31	0.2	ND	ND	ND	ND	10	ND	ND	ND
09-31032	0.2	ND	ND	ND	ND	21	5	ND	ND
09-31033	0.1	ND	ND	ND	ND	14	ND	ND	ND
09-31034	0	ND	ND	ND	ND	9	5.5	ND	16
09-31035	0	1.1	ND	ND	ND	15	ND	ND	16
09-31036	0	ND	ND	ND	ND	6.4	5.1	ND	ND
09-31044	0	2.6	ND	6.3	ND	27	9.5	ND	28
09-31045	0	1.8	ND	ND	ND	6.5	8.1	ND	ND
09-31046	0	ND	ND	ND	ND	6.5	5.9	ND	ND
09-31047	0.2	ND	ND	ND	ND	ND	ND	ND	ND
09-31048	0	1.4	ND	9.3	27	16	16	ND	26
09-31049	0	ND	ND	ND	ND	ND	5.5	ND	ND
09-31050/51	0	ND	ND	ND	ND	ND	ND	ND	ND
09-31052	0	2.3	ND	ND	ND	21	ND	ND	ND
09-31053	0.1	1.3	ND	5.8	ND	25	8.9	ND	ND
09-31054	0.2	ND	ND	ND	ND	9	ND	ND	ND
09-31055	0.2	ND	ND	ND	ND	12	5.5	ND	ND
09-31056	0.1	ND	ND	ND	ND	5.4	ND	ND	ND
09-31057	0.1	ND	ND	ND	ND	ND	ND	ND	ND
09-31058	0.1	2.9	ND	6.2	ND	23	9.5	ND	ND
09-31059	0.1	1.2	ND	5.9	ND ND	19	10	ND ND	ND
Notes:									

¹ Environmental Sciences Group (ESG) of the Royal Military College of Canada (RMC); background geochemical assessment conducted at PIN-D in 2009.

ND - Non-Detect Terrain Unit: Nnh

TABLE E-4

PIN-D Year 10 2022

Historical Baseline PHC Soil Analytics from NHWL Footprint

Commis ID	Dougth (m)	Double (am)	Benzene	Toluene	Ethylbenzene	Xylenes	F1	F1-BTEX	F2	F3	F4
Sample ID	Depth (m)	Depth (cm)	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
11-0400	0 - 0.1	0-10	ND	ND	ND	ND	ND	ND	ND	ND	ND
11-0401	0 - 0.1	0-10	ND	ND	ND	ND	ND	ND	ND	ND	ND
11-0402	0.4 - 0.5	40-50	ND	ND	ND	ND	ND	ND	ND	ND	ND
11-0403	0 - 0.1	0-10	ND	ND	ND	ND	ND	ND	ND	ND	ND
11-0404	0.4 - 0.5	40-50	ND	ND	ND	ND	ND	ND	62	63	ND
11-0405	0 - 0.1	0-10	ND	ND	ND	ND	ND	ND	ND	ND	ND
11-0406	0.4 - 0.5	40-50	ND	ND	ND	ND	ND	ND	ND	ND	ND
11-0407	0 - 0.1	0-10	ND	ND	ND	ND	ND	ND	ND	ND	ND
11-0408	0.4 - 0.5	40-50	ND	ND	ND	ND	ND	ND	ND	ND	ND
11-0409	0 - 0.1	0-10	ND	ND	ND	ND	ND	ND	30	120	ND
11-0410	0.4 - 0.5	40-50	ND	ND	ND	ND	ND	ND	42	57	ND
11-0411	0.4 - 0.5	40-50	ND	ND	ND	ND	ND	ND	61	62	ND
Mataa.											

Notes:

ND - Non-Detect

TABLE E-5

PIN-D Year 10 2022

Historical Baseline PCB Soil Analytics from NHWL Footprint

Comple ID	Donth (m)	Donth (am)	Total PCBs		
Sample ID	Depth (m)	Depth (cm)	mg/kg		
11-0400	0 - 0.1	0-10	ND		
11-0401	0 - 0.1	0-10	ND		
11-0402	0.4 - 0.5	40-50	ND		
11-0403	0 - 0.1	0-10	ND		
11-0404	0.4 - 0.5	40-50	ND		
11-0405	0 - 0.1	0-10	ND		
11-0406	0.4 - 0.5	40-50	ND		
11-0407	0 - 0.1	0-10	ND		
11-0408	0.4 - 0.5	40-50	ND		
11-0409	0 - 0.1	0-10	ND		
11-0410	0.4 - 0.5	40-50	ND		
11-0411	0.4 - 0.5	40-50	ND		
Notes:					
ND Nam D					

ND - Non-Detect

Appendix F

Laboratory Certificate of Analysis

CERTIFICATE OF ANALYSIS

Work Order : **EO2206342**

Client : AECOM Canada Ltd.

Contact : Jessica Stepney

Address : 101 - 18817 Stony Plain Rd. NW

Edmonton AB Canada T5S 0C2

Telephone : 780-486-5921 Project : 60686962

PO : ----

C-O-C number : 20-1009580

Sampler : ----Site : PIN-D

Quote number : 2022 Price List - Prairies

No. of samples received : 5
No. of samples analysed : 5

Page : 1 of 7

Laboratory : Edmonton - Environmental

Account Manager : Pamela Toledo

Address : 9450 - 17 Avenue NW

Edmonton AB Canada T6N 1M9

Telephone : +1 780 413 5227

Date Samples Received : 10-Aug-2022 17:27

Date Analysis Commenced : 11-Aug-2022

Issue Date : 19-Aug-2022 08:37

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Surrogate Control Limits

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QC Interpretive report to assist with Quality Review and Sample Receipt Notification (SRN).

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories	Position	Laboratory Department	
Alex Drake	Lab Analyst	Inorganics, Edmonton, Alberta	
Austin Wasylyshyn	Lab Analyst	Metals, Edmonton, Alberta	
Dan Nguyen	Team Leader - Inorganics	Inorganics, Edmonton, Alberta	
Dan Nguyen	Team Leader - Inorganics	Metals, Edmonton, Alberta	
Daniel Nguyen	Lab Assistant	Inorganics, Edmonton, Alberta	
Janice Leung	Supervisor - Organics Instrumentation	Organics, Burnaby, British Columbia	
Jessica Maitland	Lab Assistant	Inorganics, Edmonton, Alberta	
Kari Mulroy	Lab Supervisor - Environmental	Organics, Edmonton, Alberta	
Remy Gatabazi	Lab Analyst	Organics, Edmonton, Alberta	
Sobhithan Pillay		Inorganics, Edmonton, Alberta	
Yan Zhang	Lab Analyst	Organics, Edmonton, Alberta	

Page : 2 of 7

Work Order : EO2206342

Client : AECOM Canada Ltd.

Project : 60686962

General Comments

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Refer to the ALS Quality Control Interpretive report (QCI) for applicable references and methodology summaries. Reference methods may incorporate modifications to improve performance.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Please refer to Quality Control Interpretive report (QCI) for information regarding Holding Time compliance.

Key: CAS Number: Chemical Abstracts Services number is a unique identifier assigned to discrete substances

LOR: Limit of Reporting (detection limit).

Unit	Description
-	No Unit
%	percent
μg/L	micrograms per litre
μS/cm	Microsiemens per centimetre
meq/L	milliequivalents per litre
mg/L	milligrams per litre
pH units	pH units
pri unio	P s.me

<: less than.

>: greater than.

Surrogate: An analyte that is similar in behavior to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED on SRN or QCI Report, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Page Work Order : 3 of 7 : EO2206342 Client

: AECOM Canada Ltd.

Project : 60686962

Analytical Results

Sub-Matrix: Water			CI	ient sample ID	MW1	MW2	MW3	MW4	QA/QC
(Matrix: Water)									
			Client samp	ling date / time	04-Aug-2022 11:00	04-Aug-2022 12:30	04-Aug-2022 14:00	04-Aug-2022 16:30	04-Aug-2022
Analyte	CAS Number	Method	LOR	Unit	EO2206342-001	EO2206342-002	EO2206342-003	EO2206342-004	EO2206342-005
					Result	Result	Result	Result	Result
Physical Tests									
hardness (as CaCO3), dissolved		EC100	0.50	mg/L	264	151	212	277	262
solids, total dissolved [TDS]		E162	10	mg/L	296	154	226	362	300
solids, total suspended [TSS]		E160	3.0	mg/L	<3.0	<3.0	<3.0	<3.0	<3.0
conductivity		E100	2.0	μS/cm	479	281	408	544	476
рН		E108	0.10	pH units	7.85	8.13	7.96	8.02	7.95
alkalinity, bicarbonate (as HCO3)	71-52-3	E290	1.0	mg/L	256	161	188	222	254
alkalinity, carbonate (as CO3)	3812-32-6	E290	1.0	mg/L	<1.0	<1.0	<1.0	<1.0	<1.0
alkalinity, hydroxide (as OH)	14280-30-9	E290	1.0	mg/L	<1.0	<1.0	<1.0	<1.0	<1.0
alkalinity, total (as CaCO3)		E290	2.0	mg/L	210	132	154	182	209
solids, total dissolved [TDS], calculated		EC103	1.0	mg/L	285	157	241	328	282
Anions and Nutrients									
chloride	16887-00-6	E235.CI	0.50	mg/L	8.45	6.09	6.40	8.71	7.99
fluoride	16984-48-8	E235.F	0.020	mg/L	<0.020	<0.020	<0.020	0.067	<0.020
nitrate (as N)	14797-55-8	E235.NO3	0.020	mg/L	6.83	0.442	4.53	2.43	6.56
nitrite (as N)	14797-65-0	E235.NO2	0.010	mg/L	<0.010	<0.010	<0.010	<0.010	<0.010
sulfate (as SO4)	14808-79-8	E235.SO4	0.30	mg/L	28.7	20.2	48.0	96.9	27.7
nitrate + nitrite (as N)		EC235.N+N	0.0500	mg/L	6.83	0.442	4.53	2.43	6.56
Ion Balance									
anion sum		EC101	0.10	meq/L	5.52	3.26	4.58	6.08	5.45
cation sum		EC101	0.10	meq/L	5.47	3.18	4.43	5.78	5.44
ion balance (APHA)		EC101	0.010	%	0.455	1.24	1.66	2.53	0.092
ion balance (cations/anions)		EC101	0.010	%	99.1	97.5	96.7	95.1	99.8
Total Metals									
aluminum, total	7429-90-5	E420	0.0030	mg/L	0.0100	0.0217	0.0124	0.0312	0.0119
antimony, total	7440-36-0	E420	0.00010	mg/L	0.00026	<0.00010	0.00023	0.00051	0.00026
arsenic, total	7440-38-2	E420	0.00010	mg/L	0.00021	0.00034	0.00016	0.00023	0.00022
barium, total	7440-39-3	E420	0.00010	mg/L	0.0208	0.00882	0.0166	0.0378	0.0209
beryllium, total	7440-41-7	E420	0.000020	mg/L	<0.000020	<0.000020	<0.000020	<0.000020	<0.000020
bismuth, total	7440-69-9	E420	0.000050	mg/L	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
boron, total	7440-42-8	E420	0.010	mg/L	0.014	0.010	0.033	0.042	0.015
ı	1		I .	1					

Page : 4 of 7 Work Order : EO2206342

Client : AECOM Canada Ltd.

Project : 60686962

ALS

Analytical Results

Sub-Matrix: Water			Cli	ent sample ID	MW1	MW2	MW3	MW4	QA/QC
(Matrix: Water)									
			Client sampl	ing date / time	04-Aug-2022 11:00	04-Aug-2022 12:30	04-Aug-2022 14:00	04-Aug-2022 16:30	04-Aug-2022
Analyte	CAS Number	Method	LOR	Unit	EO2206342-001	EO2206342-002	EO2206342-003	EO2206342-004	EO2206342-005
					Result	Result	Result	Result	Result
Total Metals									
cadmium, total	7440-43-9	E420	0.0000050	mg/L	<0.0000050	0.0000138	0.0000188	0.0000170	0.0000099
calcium, total	7440-70-2	E420	0.050	mg/L	55.1	20.2	41.9	55.0	53.0
cesium, total	7440-46-2	E420	0.000010	mg/L	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010
chromium, total	7440-47-3	E420	0.00050	mg/L	<0.00050	<0.00050	<0.00050	0.00174	<0.00050
cobalt, total	7440-48-4	E420	0.00010	mg/L	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
copper, total	7440-50-8	E420	0.00050	mg/L	0.00081	0.00090	0.00131	0.00283	0.00095
iron, total	7439-89-6	E420	0.010	mg/L	0.025	0.022	0.034	0.035	0.039
lead, total	7439-92-1	E420	0.000050	mg/L	0.000147	0.000112	0.000176	0.000056	0.000195
lithium, total	7439-93-2	E420	0.0010	mg/L	<0.0010	<0.0010	<0.0010	0.0039	<0.0010
magnesium, total	7439-95-4	E420	0.0050	mg/L	35.5	27.8	30.5	35.2	35.4
manganese, total	7439-96-5	E420	0.00010	mg/L	0.00074	0.00255	0.00088	0.0106	0.00095
molybdenum, total	7439-98-7	E420	0.000050	mg/L	0.000632	0.00125	0.000849	0.00199	0.000652
nickel, total	7440-02-0	E420	0.00050	mg/L	0.00065	0.00065	0.00085	0.00233	0.00065
phosphorus, total	7723-14-0	E420	0.050	mg/L	<0.050	<0.050	<0.050	<0.050	<0.050
potassium, total	7440-09-7	E420	0.050	mg/L	0.777	0.528	0.963	1.67	0.781
rubidium, total	7440-17-7	E420	0.00020	mg/L	<0.00020	<0.00020	<0.00020	0.00108	<0.00020
selenium, total	7782-49-2	E420	0.000050	mg/L	0.000147	0.000109	0.000117	0.000241	0.000145
silicon, total	7440-21-3	E420	0.10	mg/L	1.04	0.70	0.93	3.04	1.05
silver, total	7440-22-4	E420	0.000010	mg/L	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010
sodium, total	7440-23-5	E420	0.050	mg/L	4.27	3.58	3.91	5.09	4.39
strontium, total	7440-24-6	E420	0.00020	mg/L	0.0292	0.0174	0.0311	0.0849	0.0296
sulfur, total	7704-34-9	E420	0.50	mg/L	10.3	7.36	18.0	30.5	10.6
tellurium, total	13494-80-9	E420	0.00020	mg/L	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020
thallium, total	7440-28-0	E420	0.000010	mg/L	0.000084	0.000040	0.000097	0.000023	0.000079
thorium, total	7440-29-1	E420	0.00010	mg/L	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
tin, total	7440-31-5	E420	0.00010	mg/L	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
titanium, total	7440-32-6	E420	0.00030	mg/L	<0.00030	<0.00030	<0.00030	0.00069	<0.00030
tungsten, total	7440-33-7	E420	0.00010	mg/L	<0.00010	<0.00010	<0.00010	0.00011	<0.00010
uranium, total	7440-61-1	E420	0.000010	mg/L	0.00221	0.00173	0.00222	0.00538	0.00218
vanadium, total	7440-62-2	E420	0.00050	mg/L	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
zinc, total	7440-66-6	E420	0.0030	mg/L	<0.0030	<0.0030	<0.0030	<0.0030	<0.0030
2, 10	7440-00-0	2.20	0.0000	mg/L	-0.0000	10.0000		1 .0.0000	

Page : 5 of 7 Work Order : EO2206342

Client : AECOM Canada Ltd.

Project : 60686962

ALS

Analytical Results

Sub-Matrix: Water			Cli	ent sample ID	MW1	MW2	MW3	MW4	QA/QC
(Matrix: Water)									
			Client sampl	ling date / time	04-Aug-2022 11:00	04-Aug-2022 12:30	04-Aug-2022 14:00	04-Aug-2022 16:30	04-Aug-2022
Analyte	CAS Number	Method	LOR	Unit	EO2206342-001	EO2206342-002	EO2206342-003	EO2206342-004	EO2206342-005
					Result	Result	Result	Result	Result
Total Metals									
zirconium, total	7440-67-7	E420	0.00020	mg/L	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020
Dissolved Metals									
aluminum, dissolved	7429-90-5	E421	0.0010	mg/L	0.0022	0.0044	0.0019	0.0022	0.0019
antimony, dissolved	7440-36-0	E421	0.00010	mg/L	0.00025	<0.00010	0.00022	0.00040	0.00026
arsenic, dissolved	7440-38-2	E421	0.00010	mg/L	0.00016	0.00024	0.00011	0.00018	0.00016
barium, dissolved	7440-39-3	E421	0.00010	mg/L	0.0218	0.00895	0.0140	0.0423	0.0216
beryllium, dissolved	7440-41-7	E421	0.000020	mg/L	<0.000020	<0.000020	<0.000020	<0.000020	<0.000020
bismuth, dissolved	7440-69-9	E421	0.000050	mg/L	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
boron, dissolved	7440-42-8	E421	0.010	mg/L	0.014	<0.010	0.031	0.040	0.014
cadmium, dissolved	7440-43-9	E421	0.0000050	mg/L	<0.000050	<0.000050	<0.0000050	0.0000056	<0.000050
calcium, dissolved	7440-70-2	E421	0.050	mg/L	51.5	19.4	39.8	54.9	52.2
cesium, dissolved	7440-46-2	E421	0.000010	mg/L	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010
chromium, dissolved	7440-47-3	E421	0.00050	mg/L	<0.00050	<0.00050	<0.00050	0.00080	<0.00050
cobalt, dissolved	7440-48-4	E421	0.00010	mg/L	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
copper, dissolved	7440-50-8	E421	0.00020	mg/L	0.00081	0.00077	0.00118	0.00178	0.00079
iron, dissolved	7439-89-6	E421	0.030	mg/L	<0.030	<0.030	<0.030	<0.030	<0.030
lead, dissolved	7439-92-1	E421	0.000050	mg/L	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
lithium, dissolved	7439-93-2	E421	0.0010	mg/L	<0.0010	<0.0010	<0.0010	0.0038	<0.0010
magnesium, dissolved	7439-95-4	E421	0.0050	mg/L	32.8	24.9	27.4	33.9	32.1
manganese, dissolved	7439-96-5	E421	0.00500	mg/L	<0.00500	<0.00500	<0.00500	0.0108	<0.00500
molybdenum, dissolved	7439-98-7	E421	0.000050	mg/L	0.000620	0.00116	0.000796	0.00170	0.000573
nickel, dissolved	7440-02-0	E421	0.00050	mg/L	0.00066	0.00055	0.00066	0.00180	0.00074
phosphorus, dissolved	7723-14-0	E421	0.050	mg/L	<0.050	<0.050	<0.050	<0.050	<0.050
potassium, dissolved	7440-09-7	E421	0.050	mg/L	0.770	0.523	0.997	1.79	0.781
rubidium, dissolved	7440-17-7	E421	0.00020	mg/L	<0.00020	<0.00020	0.00021	0.00104	<0.00020
selenium, dissolved	7782-49-2	E421	0.000050	mg/L	0.000143	0.000118	0.000108	0.000238	0.000126
silicon, dissolved	7440-21-3	E421	0.050	mg/L	0.968	0.642	0.875	2.64	0.962
silver, dissolved	7440-22-4	E421	0.000010	mg/L	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010
sodium, dissolved	7440-23-5	E421	0.050	mg/L	4.18	3.42	3.81	4.82	4.13
strontium, dissolved	7440-24-6	E421	0.00020	mg/L	0.0280	0.0164	0.0284	0.0866	0.0274
sulfur, dissolved	7704-34-9	E421	0.50	mg/L	10.2	7.00	17.0	32.2	9.96

Page : 6 of 7 Work Order : EO2206342

Client : AECOM Canada Ltd.

Project : 60686962

ALS

Analytical Results

Sub-Matrix: Water			Cli	ient sample ID	MW1	MW2	MW3	MW4	QA/QC
(Matrix: Water)									
			Client samp	ling date / time	04-Aug-2022 11:00	04-Aug-2022 12:30	04-Aug-2022 14:00	04-Aug-2022 16:30	04-Aug-2022
Analyte	CAS Number	Method	LOR	Unit	EO2206342-001	EO2206342-002	EO2206342-003	EO2206342-004	EO2206342-005
					Result	Result	Result	Result	Result
Dissolved Metals									
tellurium, dissolved	13494-80-9	E421	0.00020	mg/L	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020
thallium, dissolved	7440-28-0	E421	0.000010	mg/L	0.000067	0.000022	0.000083	0.000021	0.000071
thorium, dissolved	7440-29-1	E421	0.00010	mg/L	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
tin, dissolved	7440-31-5	E421	0.00010	mg/L	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
titanium, dissolved	7440-32-6	E421	0.00030	mg/L	<0.00030	<0.00030	<0.00030	<0.00030	<0.00030
tungsten, dissolved	7440-33-7	E421	0.00010	mg/L	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
uranium, dissolved	7440-61-1	E421	0.000010	mg/L	0.00190	0.00147	0.00202	0.00537	0.00192
vanadium, dissolved	7440-62-2	E421	0.00050	mg/L	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
zinc, dissolved	7440-66-6	E421	0.0010	mg/L	0.0012	<0.0010	0.0011	0.0017	0.0011
zirconium, dissolved	7440-67-7	E421	0.00020	mg/L	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020
dissolved metals filtration location		EP421	-	-	Field	Field	Field	Field	Field
Volatile Organic Compounds [BTEXS+MTBE]									
benzene	71-43-2	E611A	0.50	μg/L	<0.50	<0.50	<0.50	<0.50	<0.50
ethylbenzene	100-41-4	E611A	0.50	μg/L	<0.50	<0.50	<0.50	<0.50	<0.50
toluene	108-88-3	E611A	0.50	μg/L	<0.50	<0.50	<0.50	<0.50	<0.50
xylene, m+p-	179601-23-1	E611A	0.50	μg/L	<0.50	<0.50	<0.50	<0.50	<0.50
xylene, o-	95-47-6	E611A	0.50	μg/L	<0.50	<0.50	<0.50	<0.50	<0.50
xylenes, total	1330-20-7	E611A	0.75	μg/L	<0.75	<0.75	<0.75	<0.75	<0.75
BTEX, total		E611A	1.2	μg/L	<1.2	<1.2	<1.2	<1.2	<1.2
Volatile Organic Compounds Surrogates									
bromofluorobenzene, 4-	460-00-4	E611A	1.0	%	85.9	83.0	84.8	83.4	83.1
difluorobenzene, 1,4-	540-36-3	E611A	1.0	%	94.5	94.7	94.7	90.3	94.0
Hydrocarbons									
F1 (C6-C10)		E581.F1	100	μg/L	<100	<100	<100	<100	<100
F1-BTEX		EC580	100	μg/L	<100	<100	<100	<100	<100
F2 (C10-C16)		E601	100	μg/L	<100	<100	<100	<100	<100
F3 (C16-C34)		E601	250	μg/L	<250	<250	<250	<250	<250
F4 (C34-C50)		E601	250	μg/L	<250	<250	<250	<250	<250
hydrocarbons, total (C6-C50)		EC581	400	μg/L	<400	<400	<400	<400	<400
Hydrocarbons Surrogates									
bromobenzotrifluoride, 2- (F2-F4 surr)	392-83-6	E601	1.0	%	98.7	99.6	96.9	99.7	94.1
	1		1	1		ı			ı

Page : 7 of 7 Work Order : EO2206342

Client : AECOM Canada Ltd.

Project : 60686962

Analytical Results

Sub-Matrix: Water			C	lient sample ID	MW1	MW2	MW3	MW4	QA/QC
(Matrix: Water)									
			Client sam	oling date / time	04-Aug-2022 11:00	04-Aug-2022 12:30	04-Aug-2022 14:00	04-Aug-2022 16:30	04-Aug-2022
Analyte	CAS Number	Method	LOR	Unit	EO2206342-001	EO2206342-002	EO2206342-003	EO2206342-004	EO2206342-005
					Result	Result	Result	Result	Result
Hydrocarbons Surrogates									
dichlorotoluene, 3,4-	97-75-0	E581.F1	1.0	%	107	105	98.3	99.0	101
Polychlorinated Biphenyls									
Aroclor 1016	12674-11-2	E685	1.0	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
Aroclor 1221	11104-28-2	E685	1.0	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
Aroclor 1232	11141-16-5	E685	1.0	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
Aroclor 1242	53469-21-9	E685	1.0	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
Aroclor 1248	12672-29-6	E685	1.0	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
Aroclor 1254	11097-69-1	E685	1.0	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
Aroclor 1260	11096-82-5	E685	1.0	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
Aroclor 1262	37324-23-5	E685	1.0	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
Aroclor 1268	11100-14-4	E685	1.0	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
polychlorinated biphenyls [PCBs], total		E685	1.0	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
Polychlorinated Biphenyls Surrogates									
decachlorobiphenyl	2051-24-3	E685	1.0	%	91.9	82.3	90.2	81.8	93.6

Please refer to the General Comments section for an explanation of any qualifiers detected.

QUALITY CONTROL INTERPRETIVE REPORT

Work Order : **EO2206342** Page : 1 of 17

Client : AECOM Canada Ltd. Laboratory : Edmonton - Environmental

Contact : Jessica Stepney : Pamela Toledo
Address : 101 - 18817 Stony Plain Rd. NW : Address : 9450 - 17 Avenue NW

Edmonton AB Canada T5S 0C2 Edmonton, Alberta Canada T6N 1M9

Telephone : 780-486-5921 Telephone : +1 780 413 5227

Project : 60686962 Date Samples Received : 10-Aug-2022 17:27

PO : --- Issue Date : 19-Aug-2022 08:38

C-O-C number : 20-1009580

Site : PIN-D

Quote number : 2022 Price List - Prairies

No. of samples received : 5
No. of samples analysed : 5

This report is automatically generated by the ALS LIMS (Laboratory Information Management System) through evaluation of Quality Control (QC) results and other QA parameters associated with this submission, and is intended to facilitate rapid data validation by auditors or reviewers. The report highlights any exceptions and outliers to ALS Data Quality Objectives, provides holding time details and exceptions, summarizes QC sample frequencies, and lists applicable methodology references and summaries.

Key

Sampler

Anonymous: Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number: Chemical Abstracts Service number is a unique identifier assigned to discrete substances.

DQO: Data Quality Objective.

LOR: Limit of Reporting (detection limit).

RPD: Relative Percent Difference.

Workorder Comments

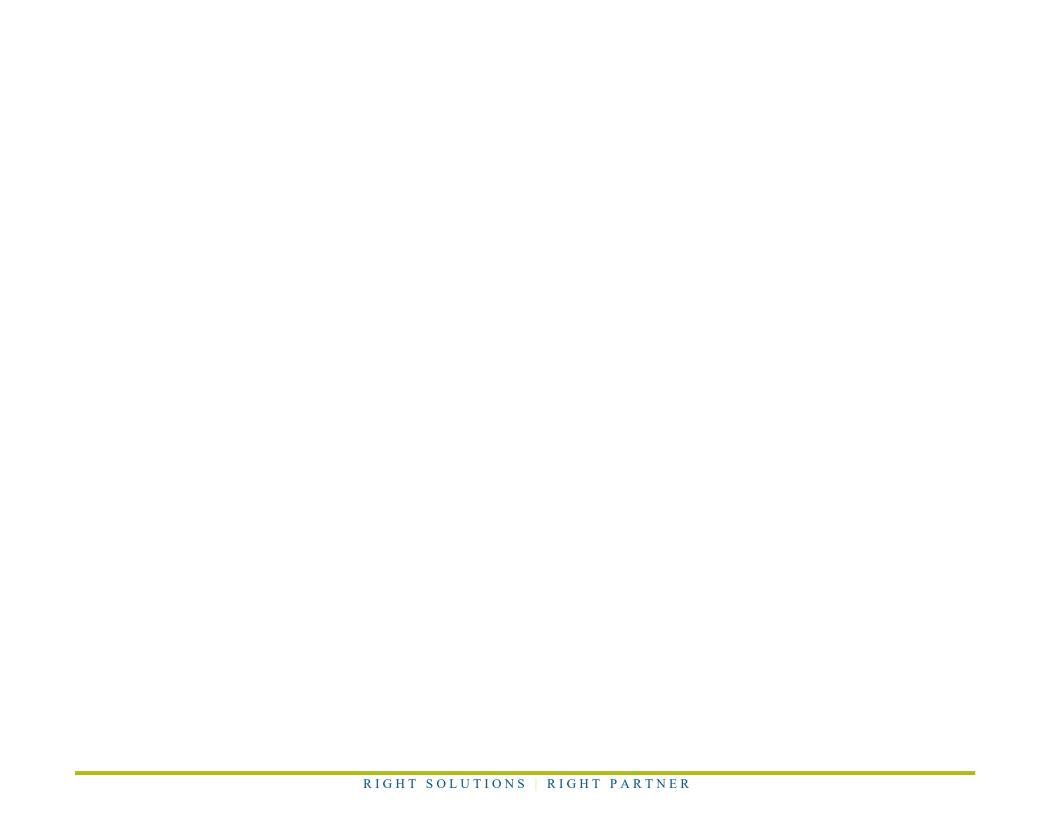
Holding times are displayed as "---" if no guidance exists from CCME, Canadian provinces, or broadly recognized international references.

Summary of Outliers

Outliers: Quality Control Samples

- No Method Blank value outliers occur.
- No Duplicate outliers occur.
- No Laboratory Control Sample (LCS) outliers occur
- No Matrix Spike outliers occur.
- No Test sample Surrogate recovery outliers exist.

Outliers: Reference Material (RM) Samples


• No Reference Material (RM) Sample outliers occur.

Outliers : Analysis Holding Time Compliance (Breaches)

• Analysis Holding Time Outliers exist - please see following pages for full details.

Outliers: Frequency of Quality Control Samples

• No Quality Control Sample Frequency Outliers occur.

Page : 3 of 17 Work Order : EO2206342

Client : AECOM Canada Ltd.

Project : 60686962

Analysis Holding Time Compliance

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times, which are selected to meet known provincial and/or federal requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by organizations such as CCME, US EPA, APHA Standard Methods, ASTM, or Environment Canada (where available). Dates and holding times reported below represent the first dates of extraction or analysis. If subsequent tests or dilutions exceeded holding times, qualifiers are added (refer to COA).

If samples are identified below as having been analyzed or extracted outside of recommended holding times, measurement uncertainties may be increased, and this should be taken into consideration when interpreting results.

Where actual sampling date is not provided on the chain of custody, the date of receipt with time at 00:00 is used for calculation purposes.

Where only the sample date without time is provided on the chain of custody, the sampling date at 00:00 is used for calculation purposes.

Matrix: Water					E۱	/aluation: 🗴 =	Holding time exce	edance ; 🔻	= Within	Holding Tim
Analyte Group	Method	Sampling Date	Ext	raction / Pr	eparation			Analys	is	
Container / Client Sample ID(s)			Preparation	Holding	Times	Eval	Analysis Date	Holding	Times	Eval
			Date	Rec	Actual			Rec	Actual	
Anions and Nutrients : Chloride in Water by IC										
HDPE										
MW1	E235.CI	04-Aug-2022	11-Aug-2022				11-Aug-2022	28 days	7 days	✓
Anions and Nutrients : Chloride in Water by IC										
HDPE										
MW2	E235.CI	04-Aug-2022	11-Aug-2022				11-Aug-2022	28 days	7 days	✓
Anions and Nutrients : Chloride in Water by IC										
HDPE										
MW3	E235.CI	04-Aug-2022	11-Aug-2022				11-Aug-2022	28 days	7 days	✓
Anions and Nutrients : Chloride in Water by IC										
HDPE										
MW4	E235.CI	04-Aug-2022	11-Aug-2022				11-Aug-2022	28 days	7 days	✓
Anions and Nutrients : Chloride in Water by IC										
HDPE										
QA/QC	E235.CI	04-Aug-2022	11-Aug-2022				11-Aug-2022	28 days	8 days	✓
Anions and Nutrients : Fluoride in Water by IC										
HDPE										
MW1	E235.F	04-Aug-2022	11-Aug-2022				11-Aug-2022	28 days	7 days	✓
Anions and Nutrients : Fluoride in Water by IC										
HDPE										
MW2	E235.F	04-Aug-2022	11-Aug-2022				11-Aug-2022	28 days	7 days	✓

Page : 4 of 17 Work Order : EO2206342

Client : AECOM Canada Ltd.

Matrix: Water					Ev	aluation: 🗴 =	Holding time exce	edance ; 🕶	= Within	Holding Time
Analyte Group	Method	Sampling Date	Ext	raction / Pr	eparation			Analys	is	
Container / Client Sample ID(s)			Preparation Date	Holding Rec	g Times Actual	Eval	Analysis Date	Holding Rec	Times Actual	Eval
Anions and Nutrients : Fluoride in Water by IC			Date	7100	Hotaar			7100	Hotaar	
HDPE										
MW3	E235.F	04-Aug-2022	11-Aug-2022				11-Aug-2022	28 days	7 days	✓
Anions and Nutrients : Fluoride in Water by IC										
HDPE										
MW4	E235.F	04-Aug-2022	11-Aug-2022				11-Aug-2022	28 days	7 days	✓
Anions and Nutrients : Fluoride in Water by IC										
HDPE										
QA/QC	E235.F	04-Aug-2022	11-Aug-2022				11-Aug-2022	28 days	8 days	✓
Anions and Nutrients : Nitrate in Water by IC										
HDPE										
MW1	E235.NO3	04-Aug-2022	11-Aug-2022				11-Aug-2022	3 days	7 days	EHTR-FM
Anions and Nutrients : Nitrate in Water by IC										
HDPE										
MW2	E235.NO3	04-Aug-2022	11-Aug-2022				11-Aug-2022	3 days	7 days	EHTR-FM
Anions and Nutrients : Nitrate in Water by IC										
HDPE										
MW3	E235.NO3	04-Aug-2022	11-Aug-2022				11-Aug-2022	3 days	7 days	EHTR-FM
Anions and Nutrients : Nitrate in Water by IC										
HDPE										
MW4	E235.NO3	04-Aug-2022	11-Aug-2022				11-Aug-2022	3 days	7 days	EHTR-FM
Anions and Nutrients : Nitrate in Water by IC										
HDPE	F005 :: 25									
QA/QC	E235.NO3	04-Aug-2022	11-Aug-2022				11-Aug-2022	3 days	8 days	EHTR-FM
Anions and Nutrients : Nitrite in Water by IC										
HDPE	FOOT NO.	04.40000	44 4 0000				44 4 0000	0.1	7	
MW1	E235.NO2	04-Aug-2022	11-Aug-2022				11-Aug-2022	3 days	7 days	EHTR-FM

Page : 5 of 17 Work Order : EO2206342

Client : AECOM Canada Ltd.

Matrix: Water					Ev	aluation: 🗴 =	Holding time exce	edance ; 🔻	= Withir	ι Holding Time
Analyte Group	Method	Sampling Date	Ext	traction / Pr	reparation			Analys	is	
Container / Client Sample ID(s)			Preparation		g Times	Eval	Analysis Date		Times	Eval
			Date	Rec	Actual			Rec	Actual	
Anions and Nutrients : Nitrite in Water by IC										
HDPE										
MW2	E235.NO2	04-Aug-2022	11-Aug-2022				11-Aug-2022	3 days	7 days	*
										EHTR-FM
Anions and Nutrients : Nitrite in Water by IC										
HDPE										
MW3	E235.NO2	04-Aug-2022	11-Aug-2022				11-Aug-2022	3 days	7 days	*
										EHTR-FM
Anions and Nutrients : Nitrite in Water by IC										
HDPE										
MW4	E235.NO2	04-Aug-2022	11-Aug-2022				11-Aug-2022	3 days	7 days	*
										EHTR-FM
Anions and Nutrients : Nitrite in Water by IC										
HDPE										
QA/QC	E235.NO2	04-Aug-2022	11-Aug-2022				11-Aug-2022	3 days	8 days	*
										EHTR-FM
Anions and Nutrients : Sulfate in Water by IC										
HDPE										
MW1	E235.SO4	04-Aug-2022	11-Aug-2022				11-Aug-2022	28 days	7 days	✓
Anions and Nutrients : Sulfate in Water by IC										
HDPE	E005 004	04.4 0000	44.4 0000					20.1		
MW2	E235.SO4	04-Aug-2022	11-Aug-2022				11-Aug-2022	28 days	/ days	✓
Anions and Nutrients : Sulfate in Water by IC										
HDPE	E235.SO4	04 Aug 2022	44 4 2000				44 4 0000	20 4	7 -1	√
MW3	E235.5U4	04-Aug-2022	11-Aug-2022				11-Aug-2022	28 days	7 days	'
Anions and Nutrients : Sulfate in Water by IC										
HDPE	E235.SO4	04 Aug 2020	11 Aug 2022				11-Aug-2022	20 days	7 dov.	✓
MW4	E235.5U4	04-Aug-2022	11-Aug-2022				11-Aug-2022	28 days	7 days	•
Anions and Nutrients : Sulfate in Water by IC										
HDPE QA/QC	E235.SO4	04-Aug-2022	11-Aug-2022				11-Aug-2022	28 days	8 days	✓
UNVIC	E233.3U4	04-Aug-2022	11-Aug-2022				11-Aug-2022	20 uays	o uays	•

Page : 6 of 17 Work Order : EO2206342

Client : AECOM Canada Ltd.

Project : 60686962

Matrix: Water
Evaluation: x = Holding time exceedance; √ = Within Holding Time

Analyte Group
Method
Sampling Date
Extraction / Preparation
Analysis

| Container / Client Sample ID(s) | Preparation |

E421	04-Aug-2022 04-Aug-2022	Preparation Date 15-Aug-2022	Holding Rec	Actual	Eval	Analysis Date 15-Aug-2022	Rec 180	Times Actual	Eval
		Date				15-Aug-2022	180		√
		15-Aug-2022				15-Aug-2022		11 days	✓
		15-Aug-2022				15-Aug-2022		11 days	✓
		15-Aug-2022				15-Aug-2022		11 days	✓
		10-Aug-2022				13-Aug-2022		11 days	*
E421	04-Aug-2022								
E421	04-Aug-2022						days		
E421	04-Aug-2022								
E421	04-Aug-2022								
		15-Aug-2022				15-Aug-2022	180	11 days	✓
							days		
E/121	04-Δug-2022	15-Aug-2022				15-Aug-2022	100	11 days	√
L421	04-Aug-2022	13-Aug-2022				13-Aug-2022		11 uays	•
							days		
E421	04-Aug-2022	15-Aug-2022				15-Aug-2022	180	11 days	✓
							days		
E/121	04-Aug-2022	15 Aug 2022				15 Aug 2022	400	11 days	1
L421	04-Aug-2022	15-Aug-2022				15-Aug-2022		11 uays	•
							days		
581.F1	04-Aug-2022	12-Aug-2022				12-Aug-2022	14 days	8 days	✓
581 F1	04-Aug-2022	12-Aug-2022				12-Aug-2022	14 days	8 days	✓
.001.1	017tag 2022	12-7 ldg-2022				12-7 tag-2022	14 days	o days	•
581.F1	04-Aug-2022	12-Aug-2022				12-Aug-2022	14 days	8 days	✓
					I				
581 F1	04-Δμα-2022	12-Aug-2022				12-Aug-2022	14 daye	8 days	1
.001.11	04-Aug-2022	12-Aug-2022				12-Aug-2022	1-t days	o days	•
	E421 E421 E421 E581.F1 E581.F1	E421 04-Aug-2022 E421 04-Aug-2022 E581.F1 04-Aug-2022 E581.F1 04-Aug-2022	E421 04-Aug-2022 15-Aug-2022 E421 04-Aug-2022 15-Aug-2022 E581.F1 04-Aug-2022 12-Aug-2022 E581.F1 04-Aug-2022 12-Aug-2022	E421 04-Aug-2022 15-Aug-2022 E421 04-Aug-2022 15-Aug-2022 E581.F1 04-Aug-2022 12-Aug-2022 E581.F1 04-Aug-2022 12-Aug-2022	E421 04-Aug-2022 15-Aug-2022 E421 04-Aug-2022 15-Aug-2022 E581.F1 04-Aug-2022 12-Aug-2022 E581.F1 04-Aug-2022 12-Aug-2022 E581.F1 04-Aug-2022 12-Aug-2022	E421 04-Aug-2022 15-Aug-2022 E421 04-Aug-2022 12-Aug-2022 E581.F1 04-Aug-2022 12-Aug-2022 E581.F1 04-Aug-2022 12-Aug-2022 E581.F1 04-Aug-2022 12-Aug-2022	E421 04-Aug-2022 15-Aug-2022 15-Aug-2022 15-Aug-2022 15-Aug-2022 15-Aug-2022 15-Aug-2022 12-Aug-2022	E421 04-Aug-2022 15-Aug-2022 15-Aug-2022 180 days E421 04-Aug-2022 15-Aug-2022 15-Aug-2022 180 days E581.F1 04-Aug-2022 12-Aug-2022 12-Aug-2022 14 days	E421 04-Aug-2022 15-Aug-2022 15-Aug-2022 180 days E421 04-Aug-2022 15-Aug-2022 15-Aug-2022 180 days E581.F1 04-Aug-2022 12-Aug-2022 12-Aug-2022 14 days 8 days E581.F1 04-Aug-2022 12-Aug-2022 12-Aug-2022 14 days 8 days

Page : 7 of 17 Work Order : EO2206342

Client : AECOM Canada Ltd.

Project : 60686962

Matrix: Water Evaluation: x = Holding time exceedance; ✓ = Within Holding Time Analyte Group Extraction / Preparation Method Sampling Date Analysis Container / Client Sample ID(s) Preparation Holding Times Eval Analysis Date Holding Times Eval Rec Actual Rec Actual Date Hydrocarbons: CCME PHC - F1 by Headspace GC-FID Glass vial (sodium bisulfate) QA/QC E581.F1 04-Aug-2022 12-Aug-2022 12-Aug-2022 14 days 9 days ✓ Hydrocarbons: CCME PHCs - F2-F4 by GC-FID Amber glass/Teflon lined cap (sodium bisulfate) 1 ✓ MW1 E601 04-Aug-2022 11-Aug-2022 14 7 days 11-Aug-2022 40 days 0 days days Hydrocarbons: CCME PHCs - F2-F4 by GC-FID Amber glass/Teflon lined cap (sodium bisulfate) MW2 E601 04-Aug-2022 11-Aug-2022 ✓ 11-Aug-2022 40 days 0 days ✓ 7 days 14 days Hydrocarbons: CCME PHCs - F2-F4 by GC-FID Amber glass/Teflon lined cap (sodium bisulfate) E601 11-Aug-2022 ✓ 11-Aug-2022 40 days 0 days MW3 04-Aug-2022 14 7 days days Hydrocarbons: CCME PHCs - F2-F4 by GC-FID Amber glass/Teflon lined cap (sodium bisulfate) E601 04-Aug-2022 11-Aug-2022 7 days 1 11-Aug-2022 40 days 0 days ✓ MW4 14 days Hydrocarbons: CCME PHCs - F2-F4 by GC-FID Amber glass/Teflon lined cap (sodium bisulfate) QA/QC E601 04-Aug-2022 11-Aug-2022 ✓ 11-Aug-2022 ✓ 14 7 days 40 days 0 days days Physical Tests : Alkalinity Species by Titration HDPE MW1 E290 04-Aug-2022 11-Aug-2022 11-Aug-2022 14 days 7 days ✓ Physical Tests: Alkalinity Species by Titration HDPE ✓ MW2 E290 04-Aug-2022 11-Aug-2022 11-Aug-2022 14 days 7 days Physical Tests: Alkalinity Species by Titration HDPE E290 ✓ MW3 04-Aug-2022 11-Aug-2022 11-Aug-2022 14 days 7 days --------

 Page
 : 8 of 17

 Work Order
 : EO2206342

Client : AECOM Canada Ltd.

Physical Tests : pH by Meter HDPE MW3 E108 04-Aug-2022 11-Aug-2022 11-Aug-2022 0.25 3.25 ★	Matrix: Water					E	/aluation: ≭ =	Holding time exce	edance ; •	✓ = Within	Holding Tim
Physical Tests : Alkalinity Species by Tirration	Analyte Group	Method	Sampling Date	Ex	traction / Pr	eparation			Analys	is	
MP	Container / Client Sample ID(s)						Eval	Analysis Date			Eval
MW4	Physical Tests : Alkalinity Species by Titration										
Physical Tests : Alkalinity Species by Titration	HDPE										
No. No.	MW4	E290	04-Aug-2022	11-Aug-2022				11-Aug-2022	14 days	7 days	✓
Physical Tests : Conductivity in Water HDPE MW2 Mag Mag											
Physical Tests : Conductivity in Water HDPE MW1		F200	04 4 2022	44 4 0000				44 4 0000	44 1	0.1	
HDPE MW1	QA/QC	E290	04-Aug-2022	11-Aug-2022				11-Aug-2022	14 days	8 days	
MW1											
Physical Tests : Conductivity in Water			04.4								_
HOPE MW2	MW1	E100	04-Aug-2022	11-Aug-2022				11-Aug-2022	28 days	7 days	√
MW2	Physical Tests : Conductivity in Water										
Physical Tests : Conductivity in Water											
HDPE MW3	MW2	E100	04-Aug-2022	11-Aug-2022				11-Aug-2022	28 days	7 days	~
MW3 E100 04-Aug-2022 11-Aug-2022 11-Aug-2022 28 days 7 days ✓ Physical Tests : Conductivity in Water MW4 E100 04-Aug-2022 11-Aug-2022 11-Aug-2022 28 days 7 days ✓ Physical Tests : Conductivity in Water HDPE QA/QC E100 04-Aug-2022 11-Aug-2022 11-Aug-2022 28 days 8 days ✓ Physical Tests : pH by Meter HDPE MW2 E108 04-Aug-2022 11-Aug-2022 11-Aug-2022 0.25 and selection for the part of	•										
Physical Tests : Conductivity in Water HDPE MW4 E100 04-Aug-2022 11-Aug-2022 Physical Tests : Conductivity in Water HDPE QA/QC E100 04-Aug-2022 11-Aug-2022 11-Aug-2022 28 days 7 days ✓ Physical Tests : pH by Meter HDPE MW2 E108 04-Aug-2022 11-Aug-2022 11-Aug-2022 11-Aug-2022 11-Aug-2022 11-Aug-2022 11-Aug-2022 11-Aug-2022 11-Aug-2022 11-Aug-2022 11-Aug-2022 11-Aug-2022 11-Aug-2022 0.25 Are EHTR-FM Physical Tests : pH by Meter HDPE MW3 E108 04-Aug-2022 11-Aug-2022 11-Aug-2022 0.25 3.25 ★ EHTR-FM Physical Tests : pH by Meter HDPE MW3		F400	04 4 0000	44 4 0000				44 4 0000	00.1	7	
HDPE MW4 MW4 E100 04-Aug-2022 11-Aug-2022 11-Aug-2022 28 days 7 days ✓	MW3	E100	04-Aug-2022	11-Aug-2022				11-Aug-2022	28 days	/ days	,
MW4 E100 04-Aug-2022 11-Aug-2022 11-Aug-2022 28 days 7 days ✓ Physical Tests : Conductivity in Water HDPE QA/QC E100 04-Aug-2022 11-Aug-2022 11-Aug-2022 28 days 8 days ✓ Physical Tests : pH by Meter MW2 E108 04-Aug-2022 11-Aug-2022 11-Aug-2022 0.25 hrs 3.25 hrs EHTR-FM Physical Tests : pH by Meter HOPE MW3 E108 04-Aug-2022 11-Aug-2022 11-Aug-2022 0.25 hrs 3.25 hrs EHTR-FM	Physical Tests : Conductivity in Water										
Physical Tests : Conductivity in Water											
HDPE	MW4	E100	04-Aug-2022	11-Aug-2022				11-Aug-2022	28 days	7 days	~
QA/QC E100 04-Aug-2022 11-Aug-2022 11-Aug-2022 28 days 8 days ✓ Physical Tests : pH by Meter BMW3 E108 04-Aug-2022 11-Aug-2022 11-Aug-2022 0.25 hrs 3.25 hrs ★ EHTR-FM BMW3 E108 04-Aug-2022 11-Aug-2022 11-Aug-2022 0.25 3.25 ★	Physical Tests : Conductivity in Water										
Physical Tests : pH by Meter HDPE MW2 E108 04-Aug-2022 11-Aug-2022 11-Aug-2022 0.25 hrs 3.25 hrs # EHTR-FM Physical Tests : pH by Meter HDPE MW3 E108 04-Aug-2022 11-Aug-2022 11-Aug-2022 0.25 3.25 ★ HDPE MW3 E108 04-Aug-2022 11-Aug-2022 11-Aug-2022 0.25 3.25 ★											
HDPE MW2 E108 04-Aug-2022 11-Aug-2022 11-Aug-2022 0.25 hrs 3.25 hrs ★ EHTR-FM Physical Tests: pH by Meter HDPE MW3 E108 04-Aug-2022 11-Aug-2022 11-Aug-2022 0.25 3.25 ★	QA/QC	E100	04-Aug-2022	11-Aug-2022				11-Aug-2022	28 days	8 days	~
MW2 E108 04-Aug-2022 11-Aug-2022 11-Aug-2022 0.25 hrs 3.25 hrs ★ EHTR-FM Physical Tests : pH by Meter HDPE MW3 E108 04-Aug-2022 11-Aug-2022 11-Aug-2022 0.25 3.25 ★	Physical Tests : pH by Meter										
Physical Tests : pH by Meter HDPE MW3 E108 04-Aug-2022 11-Aug-2022 11-Aug-2022 0.25 3.25 ★											
HDPE E108 04-Aug-2022 11-Aug-2022 11-Aug-2022 0.25 3.25 ★	MW2	E108	04-Aug-2022	11-Aug-2022				11-Aug-2022			EHTR-FM
MW3 E108 04-Aug-2022 11-Aug-2022 11-Aug-2022 0.25 3.25	Physical Tests : pH by Meter										
		F400	04.40000	44 4 0000				44.40000			
	MW3	E108	04-Aug-2022	11-Aug-2022				11-Aug-2022	0.25 hrs	3.25 hrs	EHTR-FM

Page : 9 of 17 Work Order : EO2206342

Client : AECOM Canada Ltd.

Matrix: Water					E۱	/aluation: 🗴 =	Holding time exce	edance ;	✓ = Withir	Holding Tir
Analyte Group	Method	Sampling Date	Ext	traction / Pr	eparation			Analy	sis	
Container / Client Sample ID(s)			Preparation Date	Holding Rec	g Times Actual	Eval	Analysis Date	Holding Rec	g Times Actual	Eval
Physical Tests : pH by Meter										
MW4	E108	04-Aug-2022	11-Aug-2022				11-Aug-2022	0.25 hrs	3.25 hrs	* EHTR-FM
Physical Tests : pH by Meter										
HDPE QA/QC	E108	04-Aug-2022	11-Aug-2022				11-Aug-2022	0.25	3.25	*
W 1 4 4 5		017149 2022	117 Aug 2022				117.tag 2022	hrs	hrs	EHTR-FM
Physical Tests : pH by Meter										
MW1	E108	04-Aug-2022	11-Aug-2022				11-Aug-2022	0.25 hrs	5.25 hrs	* EHTR-FM
Physical Tests : TDS by Gravimetry										
HDPE MW1	E162	04-Aug-2022					11-Aug-2022	7 days	7 days	✓
Physical Tests : TDS by Gravimetry										
HDPE										
MW2	E162	04-Aug-2022					11-Aug-2022	7 days	7 days	✓
Physical Tests : TDS by Gravimetry										
MW3	E162	04-Aug-2022					11-Aug-2022	7 days	7 days	✓
Physical Tests : TDS by Gravimetry										
HDPE										
MW4	E162	04-Aug-2022					11-Aug-2022	7 days	7 days	✓
Physical Tests : TDS by Gravimetry										
HDPE										
QA/QC	E162	04-Aug-2022					11-Aug-2022	7 days	8 days	✓
Physical Tests : TSS by Gravimetry								1		1
MW1	E160	04-Aug-2022					11-Aug-2022	7 days	7 days	✓

Page : 10 of 17 Work Order : EO2206342

Client : AECOM Canada Ltd.

Matrix: Water					E	valuation: × =	Holding time exce	edance ; •	✓ = Within	Holding Tir
Analyte Group	Method	Sampling Date	Ext	traction / Pr	eparation			Analys	sis	
Container / Client Sample ID(s)			Preparation	Holding	g Times	Eval	Analysis Date	Holding	g Times	Eval
			Date	Rec	Actual	-		Rec	Actual	
Physical Tests : TSS by Gravimetry										
HDPE										
MW2	E160	04-Aug-2022					11-Aug-2022	7 days	7 days	✓
Physical Tests : TSS by Gravimetry										
HDPE										
MW3	E160	04-Aug-2022					11-Aug-2022	7 days	7 days	✓
Physical Tests : TSS by Gravimetry										
HDPE										
MW4	E160	04-Aug-2022					11-Aug-2022	7 days	7 days	✓
Physical Tests : TSS by Gravimetry										
HDPE										
QA/QC	E160	04-Aug-2022					11-Aug-2022	7 days	7 days	✓
Polychlorinated Biphenyls : PCB Aroclors by GC-ECD										
Amber glass/Teflon lined cap										
MW1	E685	04-Aug-2022	17-Aug-2022				18-Aug-2022	40 days	1 days	✓
Polychlorinated Biphenyls : PCB Aroclors by GC-ECD										
Amber glass/Teflon lined cap										
MW2	E685	04-Aug-2022	17-Aug-2022				18-Aug-2022	40 days	1 days	✓
Polychlorinated Biphenyls : PCB Aroclors by GC-ECD									ı	
Amber glass/Teflon lined cap	F005	0.4. 4 0000	47.4 0000				40.4 0000	40.1		
MW3	E685	04-Aug-2022	17-Aug-2022				18-Aug-2022	40 days	1 days	✓
Polychlorinated Biphenyls : PCB Aroclors by GC-ECD										
Amber glass/Teflon lined cap	5005	04.40000	47 4 0000				10.40000	40.4	4 4	
MW4	E685	04-Aug-2022	17-Aug-2022				18-Aug-2022	40 days	1 days	✓
Polychlorinated Biphenyls : PCB Aroclors by GC-ECD										
Amber glass/Teflon lined cap	5005	04 4 0000	47 A 0000				40. 4 2000	40 4	4 -1	
QA/QC	E685	04-Aug-2022	17-Aug-2022				18-Aug-2022	40 days	1 days	√

Page : 11 of 17 Work Order : EO2206342

Client : AECOM Canada Ltd.

Project : 60686962

MW4

✓

14 days 8 days

12-Aug-2022

Matrix: Water Evaluation: x = Holding time exceedance; ✓ = Within Holding Time Analyte Group Extraction / Preparation Method Sampling Date Analysis Container / Client Sample ID(s) Preparation Holding Times Eval Analysis Date Holding Times Eval Rec Rec Actual Actual Date Total Metals: Total Metals in Water by CRC ICPMS HDPE total (nitric acid) E420 04-Aug-2022 16-Aug-2022 16-Aug-2022 12 days ✓ MW1 180 days Total Metals: Total Metals in Water by CRC ICPMS HDPE total (nitric acid) ✓ MW2 E420 04-Aug-2022 16-Aug-2022 16-Aug-2022 180 12 days -------days Total Metals : Total Metals in Water by CRC ICPMS HDPE total (nitric acid) MW3 E420 04-Aug-2022 16-Aug-2022 16-Aug-2022 12 days ✓ 180 days Total Metals: Total Metals in Water by CRC ICPMS HDPE total (nitric acid) E420 16-Aug-2022 16-Aug-2022 ✓ MW4 04-Aug-2022 180 12 days days **Total Metals: Total Metals in Water by CRC ICPMS** HDPE total (nitric acid) 13 days QA/QC E420 04-Aug-2022 16-Aug-2022 16-Aug-2022 ✓ 180 days Volatile Organic Compounds [BTEXS+MTBE] : BTEX by Headspace GC-MS Glass vial (sodium bisulfate) E611A 04-Aug-2022 12-Aug-2022 12-Aug-2022 ✓ MW1 14 days 8 davs Volatile Organic Compounds [BTEXS+MTBE] : BTEX by Headspace GC-MS Glass vial (sodium bisulfate) MW2 E611A 04-Aug-2022 12-Aug-2022 12-Aug-2022 14 days 8 days 1 Volatile Organic Compounds [BTEXS+MTBE] : BTEX by Headspace GC-MS Glass vial (sodium bisulfate) E611A ✓ MW3 04-Aug-2022 12-Aug-2022 12-Aug-2022 14 days 8 days Volatile Organic Compounds [BTEXS+MTBE] : BTEX by Headspace GC-MS Glass vial (sodium bisulfate)

04-Aug-2022

12-Aug-2022

E611A

Page : 12 of 17 Work Order : EO2206342

Client : AECOM Canada Ltd.

Project : 60686962

Matrix: Water Evaluation: ▼ = Holding time exceedance; ✓ = Within Holding Time

Analyte Group	Method	Sampling Date	Ext	raction / Pre	eparation			Analys	is	
Container / Client Sample ID(s)			Preparation	Holding	g Times	Eval	Analysis Date	Holding	Times	Eval
			Date	Rec	Actual			Rec	Actual	
Volatile Organic Compounds [BTEXS+MTBE] : BTEX by Headspace GC-MS										
Glass vial (sodium bisulfate) QA/QC	E611A	04-Aug-2022	12-Aug-2022				12-Aug-2022	14 days	9 days	✓

Legend & Qualifier Definitions

Rec. HT: ALS recommended hold time (see units).

Page : 13 of 17 Work Order : EO2206342

Client : AECOM Canada Ltd.

Project : 60686962

Quality Control Parameter Frequency Compliance

The following report summarizes the frequency of laboratory QC samples analyzed within the analytical batches (QC lots) in which the submitted samples were processed. The actual frequency should be greater than or equal to the expected frequency.

Quality Control Sample Type		·	C	ount		Frequency (%))
Analytical Methods	Method	QC Lot #	QC	Regular	Actual	Expected	Evaluation
Laboratory Duplicates (DUP)						-	
Alkalinity Species by Titration	E290	597715	2	34	5.8	5.0	✓
BTEX by Headspace GC-MS	E611A	599507	1	19	5.2	5.0	
CCME PHC - F1 by Headspace GC-FID	E581.F1	599506	1	19	5.2	5.0	
Chloride in Water by IC	E235.CI	598237	1	19	5.2	5.0	
Conductivity in Water	E100	597714	2	38	5.2	5.0	<u> </u>
Dissolved Metals in Water by CRC ICPMS	E421	602827	1	20	5.0	5.0	<u>√</u>
Fluoride in Water by IC	E235.F	598234	1	16	6.2	5.0	<u>√</u>
Nitrate in Water by IC	E235.NO3	598238	1	17	5.8	5.0	<u> </u>
Nitrite in Water by IC	E235.NO2	598235	1	17	5.8	5.0	<u>√</u>
pH by Meter	E108	597713	2	40	5.0	5.0	<u> </u>
Sulfate in Water by IC	E235.SO4	598236	1	19	5.2	5.0	✓
TDS by Gravimetry	E162	598243	2	33	6.0	5.0	√
Total Metals in Water by CRC ICPMS	E420	604213	1	20	5.0	5.0	<u> </u>
TSS by Gravimetry	E160	598070	1	19	5.2	5.0	√
Laboratory Control Samples (LCS)							
Alkalinity Species by Titration	E290	597715	2	34	5.8	5.0	✓
BTEX by Headspace GC-MS	E611A	599507	1	19	5.2	5.0	<u>√</u>
CCME PHC - F1 by Headspace GC-FID	E581.F1	599506	1	19	5.2	5.0	
CCME PHCs - F2-F4 by GC-FID	E601	597880	1	10	10.0	5.0	<u>√</u>
Chloride in Water by IC	E235.Cl	598237	1	19	5.2	5.0	<u>√</u>
Conductivity in Water	E100	597714	2	38	5.2	5.0	<u>√</u>
Dissolved Metals in Water by CRC ICPMS	E421	602827	1	20	5.0	5.0	√
Fluoride in Water by IC	E235.F	598234	1	16	6.2	5.0	√
Nitrate in Water by IC	E235.NO3	598238	1	17	5.8	5.0	√
Nitrite in Water by IC	E235.NO2	598235	1	17	5.8	5.0	√
PCB Aroclors by GC-ECD	E685	606598	1	13	7.6	5.0	√
pH by Meter	E108	597713	2	40	5.0	5.0	✓
Sulfate in Water by IC	E235.SO4	598236	1	19	5.2	5.0	√
TDS by Gravimetry	E162	598243	2	33	6.0	5.0	√
Total Metals in Water by CRC ICPMS	E420	604213	1	20	5.0	5.0	√
TSS by Gravimetry	E160	598070	1	19	5.2	5.0	✓
Method Blanks (MB)							
Alkalinity Species by Titration	E290	597715	2	34	5.8	5.0	✓
BTEX by Headspace GC-MS	E611A	599507	1	19	5.2	5.0	<u> </u>
CCME PHC - F1 by Headspace GC-FID	E581.F1	599506	1	19	5.2	5.0	<u>√</u>
CCME PHCs - F2-F4 by GC-FID	E601	597880	1	10	10.0	5.0	<u> </u>
Chloride in Water by IC	E235.Cl	598237	1	19	5.2	5.0	

Page : 14 of 17
Work Order : EO2206342

Client : AECOM Canada Ltd.

Project : 60686962

Matrix: Water

Evaluation: × = QC frequency outside specification, ✓ = QC frequency within specification.

Quality Control Sample Type

Count Frequency (%)

Quality Control Sample Type			Co	ount		Frequency (%))
Analytical Methods	Method	QC Lot #	QC	Regular	Actual	Expected	Evaluation
Method Blanks (MB) - Continued							
Conductivity in Water	E100	597714	2	38	5.2	5.0	✓
Dissolved Metals in Water by CRC ICPMS	E421	602827	1	20	5.0	5.0	✓
Fluoride in Water by IC	E235.F	598234	1	16	6.2	5.0	✓
Nitrate in Water by IC	E235.NO3	598238	1	17	5.8	5.0	✓
Nitrite in Water by IC	E235.NO2	598235	1	17	5.8	5.0	✓
PCB Aroclors by GC-ECD	E685	606598	1	13	7.6	5.0	✓
Sulfate in Water by IC	E235.SO4	598236	1	19	5.2	5.0	✓
TDS by Gravimetry	E162	598243	2	33	6.0	5.0	✓
Total Metals in Water by CRC ICPMS	E420	604213	1	20	5.0	5.0	✓
TSS by Gravimetry	E160	598070	1	19	5.2	5.0	✓
Matrix Spikes (MS)							
BTEX by Headspace GC-MS	E611A	599507	1	19	5.2	5.0	✓
Chloride in Water by IC	E235.CI	598237	1	19	5.2	5.0	✓
Dissolved Metals in Water by CRC ICPMS	E421	602827	1	20	5.0	5.0	✓
Fluoride in Water by IC	E235.F	598234	1	16	6.2	5.0	✓
Nitrate in Water by IC	E235.NO3	598238	1	17	5.8	5.0	✓
Nitrite in Water by IC	E235.NO2	598235	1	17	5.8	5.0	✓
Sulfate in Water by IC	E235.SO4	598236	1	19	5.2	5.0	✓
Total Metals in Water by CRC ICPMS	E420	604213	1	20	5.0	5.0	√

Page : 15 of 17 Work Order : EO2206342

Client : AECOM Canada Ltd.

Project : 60686962

Methodology References and Summaries

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Reference methods may incorporate modifications to improve performance (indicated by "mod").

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Conductivity in Water	E100	Water	APHA 2510 (mod)	Conductivity, also known as Electrical Conductivity (EC) or Specific Conductance, is measured by immersion of a conductivity cell with platinum electrodes into a water sample. Conductivity measurements are temperature-compensated to 25°C.
	Environmental			sample. Conductivity measurements are temperature-compensated to 25 C.
pH by Meter	E108 Edmonton -	Water	APHA 4500-H (mod)	pH is determined by potentiometric measurement with a pH electrode, and is conducted at ambient laboratory temperature (normally $20 \pm 5^{\circ}$ C). For high accuracy test results, pH should be measured in the field within the recommended 15 minute hold time.
TSS by Gravimetry	Environmental E160 Edmonton - Environmental	Water	APHA 2540 D (mod)	Total Suspended Solids (TSS) are determined by filtering a sample through a glass fibre filter, following by drying of the filter at 104 ± 1°C, with gravimetric measurement of the filtered solids. Samples containing very high dissolved solid content (i.e. seawaters, brackish waters) may produce a positive bias by this method. Alternate analysis methods are available for these types of samples.
TDS by Gravimetry	E162 Edmonton - Environmental	Water	APHA 2540 C (mod)	Total Dissolved Solids (TDS) are determined by filtering a sample through a glass fibre filter, with evaporation of the filtrate at 180 ± 2°C for 16 hours or to constant weight, with gravimetric measurement of the residue.
Chloride in Water by IC	E235.Cl Edmonton - Environmental	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection.
Fluoride in Water by IC	E235.F Edmonton - Environmental	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection.
Nitrite in Water by IC	E235.NO2 Edmonton - Environmental	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and /or UV detection.
Nitrate in Water by IC	E235.NO3 Edmonton - Environmental	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and /or UV detection.
Sulfate in Water by IC	E235.SO4 Edmonton - Environmental	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and /or UV detection.
Alkalinity Species by Titration	E290 Edmonton - Environmental	Water	APHA 2320 B (mod)	Total alkalinity is determined by potentiometric titration to a pH 4.5 endpoint. Bicarbonate, carbonate and hydroxide alkalinity are calculated from phenolphthalein alkalinity and total alkalinity values.

 Page
 : 16 of 17

 Work Order
 : EO2206342

Client : AECOM Canada Ltd.

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Total Metals in Water by CRC ICPMS	E420 Edmonton - Environmental	Water	EPA 200.2/6020B (mod)	Water samples are digested with nitric and hydrochloric acids, and analyzed by Collision/Reaction Cell ICPMS. Method Limitation (re: Sulfur): Sulfide and volatile sulfur species may not be recovered by this method.
Dissolved Metals in Water by CRC ICPMS	E421 Edmonton - Environmental	Water	APHA 3030B/EPA 6020B (mod)	Water samples are filtered (0.45 um), preserved with nitric acid, and analyzed by Collision/Reaction Cell ICPMS. Method Limitation (re: Sulfur): Sulfide and volatile sulfur species may not be recovered by this method.
CCME PHC - F1 by Headspace GC-FID	E581.F1 Edmonton - Environmental	Water	CCME PHC in Soil - Tier 1	
CCME PHCs - F2-F4 by GC-FID	E601 Edmonton - Environmental	Water	CCME PHC in Soil - Tier 1	Sample extracts are analyzed by GC-FID for CCME hydrocarbon fractions (F2-F4).
BTEX by Headspace GC-MS	E611A Edmonton - Environmental	Water	EPA 8260D (mod)	Volatile Organic Compounds (VOCs) are analyzed by static headspace GC-MS. Samples are prepared in headspace vials and are heated and agitated on the headspace autosampler, causing VOCs to partition between the aqueous phase and the headspace in accordance with Henry's law.
PCB Aroclors by GC-ECD	E685 Vancouver - Environmental	Water	EPA 8082A (mod)	PCB Aroclors are analyzed by GC-ECD
Dissolved Hardness (Calculated)	EC100 Edmonton - Environmental	Water	АРНА 2340В	"Hardness (as CaCO3), dissolved" is calculated from the sum of dissolved Calcium and Magnesium concentrations, expressed in CaCO3 equivalents. "Total Hardness" refers to the sum of Calcium and Magnesium Hardness. Hardness is normally or preferentially calculated from dissolved Calcium and Magnesium concentrations, because it is a property of water due to dissolved divalent cations.
Ion Balance using Dissolved Metals	EC101 Edmonton - Environmental	Water	APHA 1030E	Cation Sum, Anion Sum, and Ion Balance are calculated based on guidance from APHA Standard Methods (1030E Checking Correctness of Analysis). Dissolved species are used where available. Minor ions are included where data is present. Ion Balance cannot be calculated accurately for waters with very low electrical conductivity (EC).
TDS in Water (Calculation)	EC103 Edmonton - Environmental	Water	APHA 1030E (mod)	Total Dissolved Solids is calculated based on guidance from APHA Standard Methods (1030E Checking Correctness of Analysis). Dissolved species are used where available. Minor ions are included where data is present.
Nitrate and Nitrite (as N) (Calculation)	EC235.N+N Edmonton - Environmental	Water	EPA 300.0	Nitrate and Nitrite (as N) is a calculated parameter. Nitrate and Nitrite (as N) = Nitrite (as N) + Nitrate (as N).

Page : 17 of 17 : EO2206342 Work Order

Client : AECOM Canada Ltd. : 60686962

Project

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
F1-BTEX	EC580	Water	CCME PHC in Soil - Tier	F1-BTEX is calculated as follows: F1-BTEX = F1 (C6-C10) minus benzene, toluene, ethylbenzene and xylenes (BTEX).
	Edmonton -			
	Environmental			
Sum F1 to F4 (C6-C50)	EC581	Water	CCME PHC in Soil - Tier	Hydrocarbons, total (C6-C50) is the sum of CCME Fractions F1(C6-C10), F2(C10-C16), F3(C16-C34), and F4(C34-C50). F4G-sq is not used within this calculation due to
	Edmonton -		·	overlap with other fractions.
	Environmental			'
Preparation Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Dissolved Metals Water Filtration	EP421	Water	APHA 3030B	Water samples are filtered (0.45 um), and preserved with HNO3.
	Edmonton -			
	Environmental			
VOCs Preparation for Headspace Analysis	EP581	Water	EPA 5021A (mod)	Samples are prepared in headspace vials and are heated and agitated on the headspace autosampler. An aliquot of the headspace is then injected into the
	Edmonton -			GC/MS-FID system.
	Environmental			
PHCs and PAHs Hexane Extraction	EP601	Water	EPA 3511 (mod)	Petroleum Hydrocarbons (PHCs) and Polycyclic Aromatic Hydrocarbons (PAHs) are extracted using a hexane liquid-liquid extraction.
	Edmonton -			
	Environmental			
PCB Aroclors Extraction	EP685	Water	EPA 3510C (mod)	PCBs are extracted using an organic solvent liquid-liquid extraction. The hexane extract undergoes one or more of the following clean-up procedures (if required): florisil
	Vancouver -			clean-up, silica gel clean-up, sulphur clean-up and/or sulphuric acid clean-up.
	Environmental			

QUALITY CONTROL REPORT

Work Order EO2206342

Client : AECOM Canada Ltd. Contact : Jessica Stepney

Address : 101 - 18817 Stony Plain Rd. NW

Edmonton AB Canada T5S 0C2

Telephone :780-486-5921 Project :60686962

PO

C-O-C number :20-1009580

Sampler Site : PIN-D

Quote number : 2022 Price List - Prairies

No. of samples received : 5 No. of samples analysed : 5 Page : 1 of 18

Laboratory : Edmonton - Environmental

Account Manager : Pamela Toledo

Address :9450 - 17 Avenue NW

Edmonton, Alberta Canada T6N 1M9

Telephone :+1 780 413 5227 Date Samples Received : 10-Aug-2022 17:27

Date Analysis Commenced :11-Aug-2022

: 19-Aug-2022 08:38 Issue Date

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Quality Control Report contains the following information:

Laboratory Duplicate (DUP) Report; Relative Percent Difference (RPD) and Data Quality Objectives

- Matrix Spike (MS) Report; Recovery and Data Quality Objectives
- Method Blank (MB) Report; Recovery and Data Quality Objectives
- Laboratory Control Sample (LCS) Report; Recovery and Data Quality Objectives

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories	Position	Laboratory Department
Alex Drake	Lab Analyst	Edmonton Inorganics, Edmonton, Alberta
Austin Wasylyshyn	Lab Analyst	Edmonton Metals, Edmonton, Alberta
Dan Nguyen	Team Leader - Inorganics	Edmonton Inorganics, Edmonton, Alberta
Dan Nguyen	Team Leader - Inorganics	Edmonton Metals, Edmonton, Alberta
Daniel Nguyen	Lab Assistant	Edmonton Inorganics, Edmonton, Alberta
Janice Leung	Supervisor - Organics Instrumentation	Vancouver Organics, Burnaby, British Columbia
Jessica Maitland	Lab Assistant	Edmonton Inorganics, Edmonton, Alberta
Kari Mulroy	Lab Supervisor - Environmental	Edmonton Organics, Edmonton, Alberta
Remy Gatabazi	Lab Analyst	Edmonton Organics, Edmonton, Alberta
Sobhithan Pillay		Edmonton Inorganics, Edmonton, Alberta
Yan Zhang	Lab Analyst	Edmonton Organics, Edmonton, Alberta

Page : 2 of 18 Work Order : EO2206342

Client : AECOM Canada Ltd.

Project : 60686962

General Comments

The ALS Quality Control (QC) report is optionally provided to ALS clients upon request. ALS test methods include comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined Data Quality Objectives (DQOs) to provide confidence in the accuracy of associated test results. This report contains detailed results for all QC results applicable to this sample submission. Please refer to the ALS Quality Control Interpretation report (QCI) for applicable method references and methodology summaries.

Key:

Anonymous = Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number = Chemical Abstracts Service number is a unique identifier assigned to discrete substances.

DQO = Data Quality Objective.

LOR = Limit of Reporting (detection limit).

RPD = Relative Percent Difference

= Indicates a QC result that did not meet the ALS DQO.

Workorder Comments

Holding times are displayed as "---" if no guidance exists from CCME, Canadian provinces, or broadly recognized international references.

 Page
 : 3 of 18

 Work Order
 : EO2206342

 Client
 : AECOM Canada Ltd.

Project : 60686962

Laboratory Duplicate (DUP) Report

A Laboratory Duplicate (DUP) is a randomly selected intralaboratory replicate sample. Laboratory Duplicates provide information regarding method precision and sample heterogeneity. ALS DQOs for Laboratory Duplicates are expressed as test-specific limits for Relative Percent Difference (RPD), or as an absolute difference limit of 2 times the LOR for low concentration duplicates within ~ 4-10 times the LOR (cut-off is test-specific).

Sub-Matrix: Water							Labora	ntory Duplicate (D	UP) Report		
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifie
Physical Tests (QC	Lot: 597713)										
EO2206309-010	Anonymous	рН		E108	0.10	pH units	5.11	5.07	0.04	Diff <2x LOR	
Physical Tests (QC	Lot: 597714)										
EO2206309-010	Anonymous	conductivity		E100	1.0	μS/cm	1.3	1.3	0.01	Diff <2x LOR	
Physical Tests (QC	Lot: 597715)										
EO2206309-010	Anonymous	alkalinity, total (as CaCO3)		E290	1.0	mg/L	<1.0	<1.0	0	Diff <2x LOR	
Physical Tests (QC	Lot: 598070)							1			
EO2206342-001	MW1	solids, total suspended [TSS]		E160	3.0	mg/L	<3.0	<3.0	0	Diff <2x LOR	
Physical Tests (QC	Lot: 598213)										
EO2206342-002	MW2	рН		E108	0.10	pH units	8.13	8.12	0.123%	3%	
Physical Tests (QC	Lot: 598214)										
EO2206342-002	MW2	conductivity		E100	2.0	μS/cm	281	281	0.00%	10%	
Physical Tests (QC	Lot: 598215)										
EO2206342-002	MW2	alkalinity, total (as CaCO3)		E290	2.0	mg/L	132	130	1.91%	20%	
Physical Tests (QC	Lot: 598243)					-					
EO2206296-001	Anonymous	solids, total dissolved [TDS]		E162	20	mg/L	564	576	2.11%	20%	
Physical Tests (QC	` Lot: 600896)					-					
E02206342-003	MW3	solids, total dissolved [TDS]		E162	20	mg/L	226	228	0.879%	20%	
Aniono and Nutrion	ts (QC Lot: 598234)	,				-					
EO2206346-005	Anonymous	fluoride	16984-48-8	E235.F	0.020	mg/L	0.586	0.617	5.15%	20%	
	,	indo.ius			11020	g					
EO2206346-005	ts (QC Lot: 598235) Anonymous	nitrite (as N)	14797-65-0	E235.NO2	0.010	mg/L	<0.010	<0.010	0	Diff <2x LOR	
	,	marice (do 11)	11101 00 0	2233132	3.0.0	9/2	0.0.0	0.010		Jiii ZX ZOIX	
Anions and Nutrien EO2206346-005	Anonymous	sulfate (as SO4)	14808-79-8	E235.SO4	0.30	mg/L	690	694	0.612%	20%	
	,	suilate (as 304)	14000-73-0	L233.004	0.00	mg/L	030	004	0.01270	2070	
Anions and Nutrien EO2206346-005	ts (QC Lot: 598237) Anonymous	philosida	16887-00-6	E235.CI	0.50	mg/L	114	112	1.27%	20%	
	,	chloride	10007-00-0	E235.CI	0.50	IIIg/L	114	112	1.2770	2070	
	its (QC Lot: 598238)		44707.55.0	Eggs NO3	0.000	/I	0.007	0.007	0.4450/	000/	
EO2206346-005	Anonymous	nitrate (as N)	14797-55-8	E235.NO3	0.020	mg/L	0.207	0.207	0.145%	20%	
Total Metals (QC L	<u> </u>		_								
EO2206342-001	MW1	aluminum, total	7429-90-5	E420	0.0030	mg/L	0.0100	0.0103	0.0003	Diff <2x LOR	
		antimony, total	7440-36-0	E420	0.00010	mg/L	0.00026	0.00026	0.000009	Diff <2x LOR	
		arsenic, total	7440-38-2	E420	0.00010	mg/L	0.00021	0.00020	0.000007	Diff <2x LOR	

 Page
 : 4 of 18

 Work Order
 : EO2206342

 Client
 : AECOM Canada Ltd.

ALS

ub-Matrix: Water							Labora	tory Duplicate (D	UP) Report		
aboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifie
otal Metals (QC Lo	ot: 604213) - continued										
O2206342-001	MW1	barium, total	7440-39-3	E420	0.00010	mg/L	0.0208	0.0208	0.248%	20%	
		beryllium, total	7440-41-7	E420	0.000020	mg/L	<0.000020	<0.000020	0	Diff <2x LOR	
		bismuth, total	7440-69-9	E420	0.000050	mg/L	<0.000050	<0.000050	0	Diff <2x LOR	
		boron, total	7440-42-8	E420	0.010	mg/L	0.014	0.015	0.0006	Diff <2x LOR	
		cadmium, total	7440-43-9	E420	0.0000050	mg/L	<0.0000050	0.0000060	0.0000010	Diff <2x LOR	
		calcium, total	7440-70-2	E420	0.050	mg/L	55.1	53.1	3.74%	20%	
		cesium, total	7440-46-2	E420	0.000010	mg/L	<0.000010	<0.000010	0	Diff <2x LOR	
		chromium, total	7440-47-3	E420	0.00050	mg/L	<0.00050	<0.00050	0	Diff <2x LOR	
		cobalt, total	7440-48-4	E420	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR	
		copper, total	7440-50-8	E420	0.00050	mg/L	0.00081	0.00080	0.00001	Diff <2x LOR	
		iron, total	7439-89-6	E420	0.010	mg/L	0.025	0.025	0.0005	Diff <2x LOR	
		lead, total	7439-92-1	E420	0.000050	mg/L	0.000147	0.000145	0.000003	Diff <2x LOR	
		lithium, total	7439-93-2	E420	0.0010	mg/L	<0.0010	<0.0010	0	Diff <2x LOR	
		magnesium, total	7439-95-4	E420	0.0050	mg/L	35.5	35.7	0.459%	20%	
		manganese, total	7439-96-5	E420	0.00010	mg/L	0.00074	0.00077	0.00004	Diff <2x LOR	
		molybdenum, total	7439-98-7	E420	0.000050	mg/L	0.000632	0.000656	3.65%	20%	
		nickel, total	7440-02-0	E420	0.00050	mg/L	0.00065	0.00083	0.00018	Diff <2x LOR	
		phosphorus, total	7723-14-0	E420	0.050	mg/L	<0.050	<0.050	0	Diff <2x LOR	
		potassium, total	7440-09-7	E420	0.050	mg/L	0.777	0.778	0.136%	20%	
		rubidium, total	7440-17-7	E420	0.00020	mg/L	<0.00020	<0.00020	0	Diff <2x LOR	
		selenium, total	7782-49-2	E420	0.000050	mg/L	0.000147	0.000158	0.000011	Diff <2x LOR	
		silicon, total	7440-21-3	E420	0.10	mg/L	1.04	1.05	1.20%	20%	
		silver, total	7440-22-4	E420	0.000010	mg/L	<0.000010	<0.000010	0	Diff <2x LOR	
		sodium, total	7440-23-5	E420	0.050	mg/L	4.27	4.36	2.02%	20%	
		strontium, total	7440-24-6	E420	0.00020	mg/L	0.0292	0.0299	2.36%	20%	
		sulfur, total	7704-34-9	E420	0.50	mg/L	10.3	10.7	3.34%	20%	
		tellurium, total	13494-80-9	E420	0.00020	mg/L	<0.00020	<0.00020	0	Diff <2x LOR	
		thallium, total	7440-28-0	E420	0.000010	mg/L	0.000084	0.000075	0.000009	Diff <2x LOR	
		thorium, total	7440-29-1	E420	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR	
		tin, total	7440-31-5	E420	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR	
		titanium, total	7440-32-6	E420	0.00030	mg/L	<0.00030	<0.00030	0	Diff <2x LOR	
		tungsten, total	7440-33-7	E420	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR	
		uranium, total	7440-61-1	E420	0.000010	mg/L	0.00221	0.00218	1.26%	20%	
		vanadium, total	7440-62-2	E420	0.00050	mg/L	<0.00050	<0.00050	0	Diff <2x LOR	
		zinc, total	7440-66-6	E420	0.0030	mg/L	<0.0030	<0.0030	0	Diff <2x LOR	

Page : 5 of 18
Work Order : EO2206342
Client : AECOM Canada Ltd.

ub-Matrix: Water							Labora	tory Duplicate (D	UP) Report		
aboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifie
otal Metals (QC Lo	ot: 604213) - continued										
O2206342-001	MW1	zirconium, total	7440-67-7	E420	0.00020	mg/L	<0.00020	<0.00020	0	Diff <2x LOR	
issolved Metals ((QC Lot: 602827)										
O2206332-009	Anonymous	aluminum, dissolved	7429-90-5	E421	0.0010	mg/L	0.388	0.388	0.0201%	20%	
		antimony, dissolved	7440-36-0	E421	0.00010	mg/L	0.00017	0.00015	0.00002	Diff <2x LOR	
		arsenic, dissolved	7440-38-2	E421	0.00010	mg/L	0.00070	0.00070	0.0000003	Diff <2x LOR	
		barium, dissolved	7440-39-3	E421	0.00010	mg/L	0.0555	0.0570	2.70%	20%	
		beryllium, dissolved	7440-41-7	E421	0.000020	mg/L	0.000038	0.000030	0.000008	Diff <2x LOR	
		bismuth, dissolved	7440-69-9	E421	0.000050	mg/L	<0.000050	<0.000050	0	Diff <2x LOR	
		boron, dissolved	7440-42-8	E421	0.010	mg/L	0.023	0.023	0.0006	Diff <2x LOR	
		cadmium, dissolved	7440-43-9	E421	0.0000050	mg/L	0.0000380	0.0000339	0.0000041	Diff <2x LOR	
		calcium, dissolved	7440-70-2	E421	0.050	mg/L	19.4	18.9	2.55%	20%	
		cesium, dissolved	7440-46-2	E421	0.000010	mg/L	<0.000010	<0.000010	0	Diff <2x LOR	
		chromium, dissolved	7440-47-3	E421	0.00050	mg/L	0.00088	0.00091	0.00002	Diff <2x LOR	
		cobalt, dissolved	7440-48-4	E421	0.00010	mg/L	0.0121	0.0122	0.852%	20%	
		copper, dissolved	7440-50-8	E421	0.00020	mg/L	0.00437	0.00443	1.48%	20%	
		iron, dissolved	7439-89-6	E421	0.030	mg/L	0.605	0.614	1.46%	20%	
		lead, dissolved	7439-92-1	E421	0.000050	mg/L	0.000308	0.000317	0.000009	Diff <2x LOR	
		lithium, dissolved	7439-93-2	E421	0.0010	mg/L	<0.0010	<0.0010	0	Diff <2x LOR	
		magnesium, dissolved	7439-95-4	E421	0.0050	mg/L	3.90	3.93	0.728%	20%	
		manganese, dissolved	7439-96-5	E421	0.00500	mg/L	1.02	1.01	0.184%	20%	
		molybdenum, dissolved	7439-98-7	E421	0.000050	mg/L	0.000332	0.000332	0.00000006	Diff <2x LOR	
		nickel, dissolved	7440-02-0	E421	0.00050	mg/L	0.00474	0.00483	0.00009	Diff <2x LOR	
		phosphorus, dissolved	7723-14-0	E421	0.050	mg/L	0.210	0.203	0.006	Diff <2x LOR	
		potassium, dissolved	7440-09-7	E421	0.050	mg/L	10.8	10.7	0.654%	20%	
		rubidium, dissolved	7440-17-7	E421	0.00020	mg/L	0.00262	0.00255	2.88%	20%	
		selenium, dissolved	7782-49-2	E421	0.000050	mg/L	0.000459	0.000500	0.000041	Diff <2x LOR	
		silicon, dissolved	7440-21-3	E421	0.050	mg/L	4.01	4.11	2.44%	20%	
		silver, dissolved	7440-22-4	E421	0.000010	mg/L	0.000014	0.000012	0.000001	Diff <2x LOR	
		sodium, dissolved	7440-23-5	E421	0.050	mg/L	3.47	3.45	0.705%	20%	
		strontium, dissolved	7440-24-6	E421	0.00020	mg/L	0.0440	0.0452	2.83%	20%	
		sulfur, dissolved	7704-34-9	E421	0.50	mg/L	2.29	2.28	0.01	Diff <2x LOR	
		tellurium, dissolved	13494-80-9	E421	0.00020	mg/L	<0.00020	<0.00020	0	Diff <2x LOR	
		thallium, dissolved	7440-28-0	E421	0.000010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR	
		thorium, dissolved	7440-29-1	E421	0.00010	mg/L	0.00044	0.00044	0.000002	Diff <2x LOR	
		tin. dissolved	7440-29-1	E421	0.00010	mg/L	0.00044	0.00869	3.47%	20%	

 Page
 : 6 of 18

 Work Order
 : EO2206342

 Client
 : AECOM Canada Ltd.

Sub-Matrix: Water					Laboratory Duplicate (DUP) Report						
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier
Dissolved Metals (QC Lot: 602827) - contin	ued									
EO2206332-009	Anonymous	titanium, dissolved	7440-32-6	E421	0.00030	mg/L	0.0300	0.0311	3.75%	20%	
		tungsten, dissolved	7440-33-7	E421	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR	
		uranium, dissolved	7440-61-1	E421	0.000010	mg/L	0.000118	0.000119	0.757%	20%	
		vanadium, dissolved	7440-62-2	E421	0.00050	mg/L	0.00186	0.00198	0.00012	Diff <2x LOR	
		zinc, dissolved	7440-66-6	E421	0.0010	mg/L	0.0034	0.0033	0.0001	Diff <2x LOR	
		zirconium, dissolved	7440-67-7	E421	0.00020	mg/L	0.00251	0.00250	0.592%	20%	
Volatile Organic Co	mpounds (QC Lot: 5995	07)									
EO2206342-001	MW1	benzene	71-43-2	E611A	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR	
		ethylbenzene	100-41-4	E611A	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR	
		toluene	108-88-3	E611A	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR	
		xylene, m+p-	179601-23-1	E611A	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR	
		xylene, o-	95-47-6	E611A	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR	
Hydrocarbons (QC	Lot: 599506)										
EO2206342-001	MW1	F1 (C6-C10)		E581.F1	100	μg/L	<100	<100	0	Diff <2x LOR	

 Page
 : 7 of 18

 Work Order
 : EO2206342

Client : AECOM Canada Ltd.

Project : 60686962

Method Blank (MB) Report

A Method Blank is an analyte-free matrix that undergoes sample processing identical to that carried out for test samples. Method Blank results are used to monitor and control for potential contamination from the laboratory environment and reagents. For most tests, the DQO for Method Blanks is for the result to be < LOR.

					
Analyte	CAS Number Method	LOR	Unit	Result	Qualifier
Physical Tests (QCLot: 597714)					
onductivity	E100	1	μS/cm	1.3	
Physical Tests (QCLot: 597715)					
ılkalinity, total (as CaCO3)	E290	1	mg/L	<1.0	
Physical Tests (QCLot: 598070)					
solids, total suspended [TSS]	E160	3	mg/L	<3.0	
Physical Tests (QCLot: 598214)					
onductivity	E100	1	μS/cm	1.3	
Physical Tests (QCLot: 598215)					
lkalinity, total (as CaCO3)	E290	1	mg/L	<1.0	
Physical Tests (QCLot: 598243)					
solids, total dissolved [TDS]	E162	10	mg/L	<10	
Physical Tests (QCLot: 600896)					
olids, total dissolved [TDS]	E162	10	mg/L	<10	
Anions and Nutrients (QCLot: 598234)					
uoride	16984-48-8 E235.F	0.02	mg/L	<0.020	
Anions and Nutrients (QCLot: 598235)					
itrite (as N)	14797-65-0 E235.NO2	0.01	mg/L	<0.010	
Anions and Nutrients (QCLot: 598236)					
ulfate (as SO4)	14808-79-8 E235.SO4	0.3	mg/L	<0.30	
Anions and Nutrients (QCLot: 598237)					
hloride	16887-00-6 E235.CI	0.5	mg/L	<0.50	
Anions and Nutrients (QCLot: 598238)					
itrate (as N)	14797-55-8 E235.NO3	0.02	mg/L	<0.020	
otal Metals (QCLot: 604213)					
luminum, total	7429-90-5 E420	0.003	mg/L	<0.0030	
ntimony, total	7440-36-0 E420	0.0001	mg/L	<0.00010	
rsenic, total	7440-38-2 E420	0.0001	mg/L	<0.00010	
arium, total	7440-39-3 E420	0.0001	mg/L	<0.00010	
eryllium, total	7440-41-7 E420	0.00002	mg/L	<0.000020	
ismuth, total	7440-69-9 E420	0.00005	mg/L	<0.000050	
oron, total	7440-42-8 E420	0.01	mg/L	<0.010	
admium, total	7440-43-9 E420	0.000005	mg/L	<0.000050	
alcium, total	7440-70-2 E420	0.05	mg/L	<0.050	

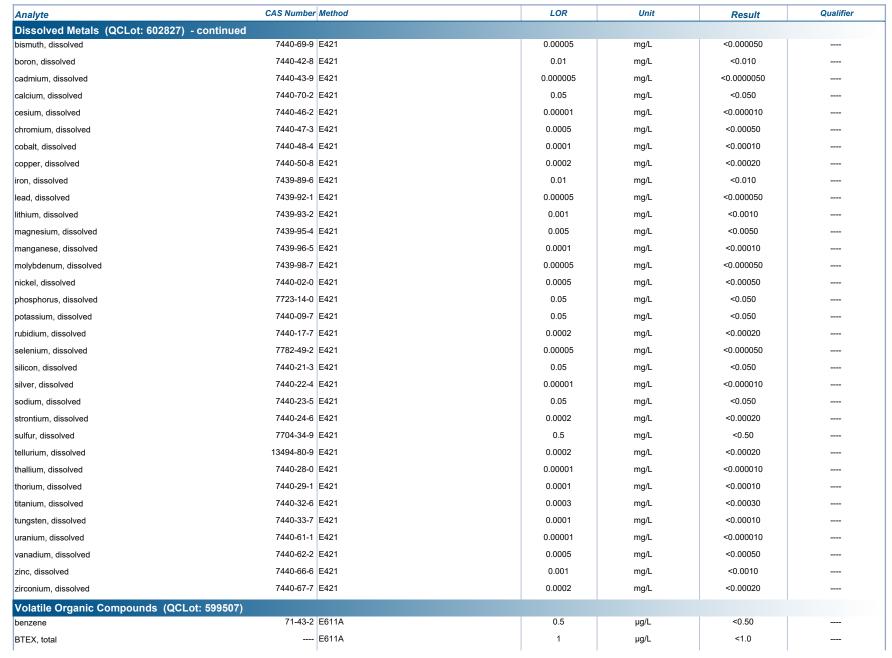
 Page
 : 8 of 18

 Work Order
 : EO2206342

 Client
 : AECOM Canada Ltd.

Project : 60686962

ALS

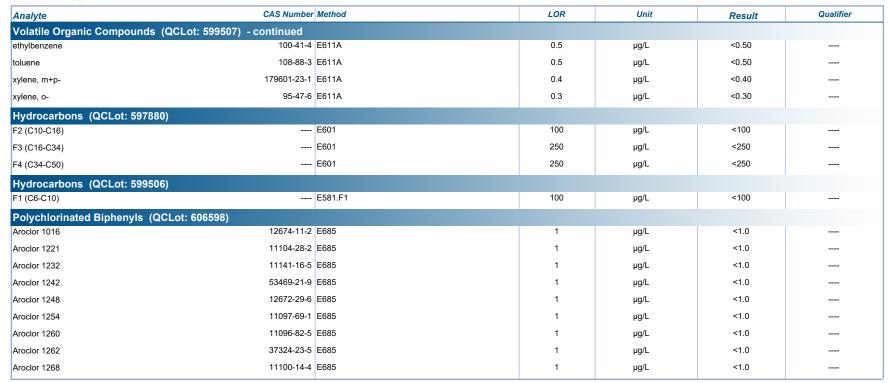

Analyte	CAS Number	Method	LOR	Unit	Result	Qualifier
Total Metals (QCLot: 604213) - c						
cesium, total	7440-46-2	E420	0.00001	mg/L	<0.000010	
chromium, total	7440-47-3	E420	0.0005	mg/L	<0.00050	
cobalt, total	7440-48-4	E420	0.0001	mg/L	<0.00010	
copper, total	7440-50-8	E420	0.0005	mg/L	<0.00050	
iron, total	7439-89-6	E420	0.01	mg/L	<0.010	
ead, total	7439-92-1	E420	0.00005	mg/L	<0.000050	
lithium, total	7439-93-2	E420	0.001	mg/L	<0.0010	
magnesium, total	7439-95-4	E420	0.005	mg/L	<0.0050	
manganese, total	7439-96-5	E420	0.0001	mg/L	<0.00010	
molybdenum, total	7439-98-7	E420	0.00005	mg/L	<0.000050	
nickel, total	7440-02-0	E420	0.0005	mg/L	<0.00050	
phosphorus, total	7723-14-0	E420	0.05	mg/L	<0.050	
ootassium, total	7440-09-7	E420	0.05	mg/L	<0.050	
rubidium, total	7440-17-7	E420	0.0002	mg/L	<0.00020	
selenium, total	7782-49-2	E420	0.00005	mg/L	<0.000050	
silicon, total	7440-21-3	E420	0.1	mg/L	<0.10	
silver, total	7440-22-4	E420	0.00001	mg/L	<0.000010	
sodium, total	7440-23-5	E420	0.05	mg/L	<0.050	
strontium, total	7440-24-6	E420	0.0002	mg/L	<0.00020	
sulfur, total	7704-34-9	E420	0.5	mg/L	<0.50	
ellurium, total	13494-80-9	E420	0.0002	mg/L	<0.00020	
hallium, total	7440-28-0	E420	0.00001	mg/L	<0.000010	
horium, total	7440-29-1	E420	0.0001	mg/L	<0.00010	
in, total	7440-31-5	E420	0.0001	mg/L	<0.00010	
itanium, total	7440-32-6	E420	0.0003	mg/L	<0.00030	
ungsten, total	7440-33-7	E420	0.0001	mg/L	<0.00010	
ıranium, total	7440-61-1	E420	0.00001	mg/L	<0.000010	
vanadium, total	7440-62-2	E420	0.0005	mg/L	<0.00050	
zinc, total	7440-66-6	E420	0.003	mg/L	<0.0030	
zirconium, total	7440-67-7	E420	0.0002	mg/L	<0.00020	
Dissolved Metals (QCLot: 60282	7)					I
aluminum, dissolved	7429-90-5	E421	0.001	mg/L	<0.0010	
antimony, dissolved	7440-36-0	E421	0.0001	mg/L	<0.00010	
arsenic, dissolved	7440-38-2	E421	0.0001	mg/L	<0.00010	
barium, dissolved	7440-39-3	E421	0.0001	mg/L	<0.00010	
beryllium, dissolved	7440-41-7		0.00002	mg/L	<0.000020	

 Page
 : 9 of 18

 Work Order
 : EO2206342

 Client
 : AECOM Canada Ltd.

Project : 60686962



 Page
 : 10 of 18

 Work Order
 : EO2206342

 Client
 : AECOM Canada Ltd.

Project : 60686962

 Page
 : 11 of 18

 Work Order
 : EO2206342

 Client
 : AECOM Canada Ltd.

Project : 60686962

Laboratory Control Sample (LCS) Report

A Laboratory Control Sample (LCS) is an analyte-free matrix that has been fortified (spiked) with test analytes at known concentration and processed in an identical manner to test samples. LCS results are expressed as percent recovery, and are used to monitor and control test method accuracy and precision, independent of test sample matrix.

Sub-Matrix: Water					Laboratory Co.	ntrol Sample (LCS)	Report	
				Spike	Recovery (%)	Recovery	Limits (%)	
Analyte CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier
Physical Tests (QCLot: 597713)								
pH	E108		pH units	6 pH units	102	97.0	103	
Physical Tests (QCLot: 597714)								
conductivity	E100	1	μS/cm	1412 μS/cm	94.5	90.0	110	
Physical Tests (QCLot: 597715)								
alkalinity, total (as CaCO3)	E290	1	mg/L	500 mg/L	108	85.0	115	
Physical Tests (QCLot: 598070)								
solids, total suspended [TSS]	E160	3	mg/L	150 mg/L	108	85.0	115	
Physical Tests (QCLot: 598213)								
	E108		pH units	6 pH units	102	97.0	103	
Physical Tests (QCLot: 598214)								
	E100	1	μS/cm	1412 μS/cm	102	90.0	110	
Physical Tests (QCLot: 598215)								
	E290	1	mg/L	500 mg/L	100	85.0	115	
Physical Tests (QCLot: 598243)								
	E162	10	mg/L	1000 mg/L	97.9	85.0	115	
Physical Tests (QCLot: 600896)								
	E162	10	mg/L	1000 mg/L	100	85.0	115	
Anions and Nutrients (QCLot: 598234)								
fluoride 16984-48-8	E235.F	0.02	mg/L	1 mg/L	101	90.0	110	
Anions and Nutrients (QCLot: 598235)								
	E235.NO2	0.01	mg/L	0.5 mg/L	92.9	90.0	110	
Anions and Nutrients (QCLot: 598236)								
	E235.SO4	0.3	mg/L	100 mg/L	91.8	90.0	110	
Anions and Nutrients (QCLot: 598237)								
chloride 16887-00-6	E235.CI	0.5	mg/L	100 mg/L	94.2	90.0	110	
Anions and Nutrients (QCLot: 598238)								
	E235.NO3	0.02	mg/L	2.5 mg/L	94.8	90.0	110	
Total Metals (QCLot: 604213)								
aluminum, total 7429-90-5	E420	0.003	mg/L	2 mg/L	105	80.0	120	
antimony, total 7440-36-0	E420	0.0001	mg/L	1 mg/L	101	80.0	120	
arsenic, total 7440-38-2	E420	0.0001	mg/L	1 mg/L	102	80.0	120	
barium, total 7440-39-3	E420	0.0001	mg/L	0.25 mg/L	102	80.0	120	

 Page
 : 12 of 18

 Work Order
 : EO2206342

 Client
 : AECOM Canada Ltd.

ALS

Sub-Matrix: Water					Laboratory Co	entrol Sample (LCS)	Report	
				Spike	Recovery (%)	Recovery	Limits (%)	
Analyte CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier
Total Metals (QCLot: 604213) - continued								
beryllium, total 7440-41-7	E420	0.00002	mg/L	0.1 mg/L	108	80.0	120	
bismuth, total 7440-69-9	E420	0.00005	mg/L	1 mg/L	103	80.0	120	
boron, total 7440-42-8	E420	0.01	mg/L	1 mg/L	103	80.0	120	
cadmium, total 7440-43-9	E420	0.000005	mg/L	0.1 mg/L	104	80.0	120	
calcium, total 7440-70-2	E420	0.05	mg/L	50 mg/L	103	80.0	120	
cesium, total 7440-46-2	E420	0.00001	mg/L	0.05 mg/L	101	80.0	120	
chromium, total 7440-47-3	E420	0.0005	mg/L	0.25 mg/L	103	80.0	120	
cobalt, total 7440-48-4	E420	0.0001	mg/L	0.25 mg/L	104	80.0	120	
copper, total 7440-50-8	E420	0.0005	mg/L	0.25 mg/L	104	80.0	120	
iron, total 7439-89-6	E420	0.01	mg/L	1 mg/L	97.2	80.0	120	
lead, total 7439-92-1	E420	0.00005	mg/L	0.5 mg/L	101	80.0	120	
lithium, total 7439-93-2	E420	0.001	mg/L	0.25 mg/L	106	80.0	120	
magnesium, total 7439-95-4	E420	0.005	mg/L	50 mg/L	108	80.0	120	
manganese, total 7439-96-5	E420	0.0001	mg/L	0.25 mg/L	103	80.0	120	
molybdenum, total 7439-98-7	E420	0.00005	mg/L	0.25 mg/L	100	80.0	120	
nickel, total 7440-02-0	E420	0.0005	mg/L	0.5 mg/L	104	80.0	120	
phosphorus, total 7723-14-0	E420	0.05	mg/L	10 mg/L	110	80.0	120	
potassium, total 7440-09-7	E420	0.05	mg/L	50 mg/L	102	80.0	120	
rubidium, total 7440-17-7	E420	0.0002	mg/L	0.1 mg/L	106	80.0	120	
selenium, total 7782-49-2	E420	0.00005	mg/L	1 mg/L	99.4	80.0	120	
silicon, total 7440-21-3	E420	0.1	mg/L	10 mg/L	97.4	80.0	120	
silver, total 7440-22-4	E420	0.00001	mg/L	0.1 mg/L	95.8	80.0	120	
sodium, total 7440-23-5	E420	0.05	mg/L	50 mg/L	103	80.0	120	
strontium, total 7440-24-6	E420	0.0002	mg/L	0.25 mg/L	102	80.0	120	
sulfur, total 7704-34-9	E420	0.5	mg/L	50 mg/L	94.4	80.0	120	
tellurium, total 13494-80-9	E420	0.0002	mg/L	0.1 mg/L	94.4	80.0	120	
thallium, total 7440-28-0	E420	0.00001	mg/L	1 mg/L	99.6	80.0	120	
thorium, total 7440-29-1	E420	0.0001	mg/L	0.1 mg/L	95.3	80.0	120	
tin, total 7440-31-5	E420	0.0001	mg/L	0.5 mg/L	97.5	80.0	120	
titanium, total 7440-32-6	E420	0.0003	mg/L	0.25 mg/L	103	80.0	120	
tungsten, total 7440-33-7	E420	0.0001	mg/L	0.1 mg/L	103	80.0	120	
uranium, total 7440-61-1	E420	0.00001	mg/L	0.005 mg/L	104	80.0	120	
vanadium, total 7440-62-2	E420	0.0005	mg/L	0.5 mg/L	103	80.0	120	
zinc, total 7440-66-6	E420	0.003	mg/L	0.5 mg/L	99.1	80.0	120	
zirconium, total 7440-67-7	E420	0.0002	mg/L	0.1 mg/L	95.9	80.0	120	
Dissolved Metals (QCLot: 602827)								
aluminum, dissolved 7429-90-5	E421	0.001	mg/L	2 mg/L	107	80.0	120	

 Page
 : 13 of 18

 Work Order
 : EO2206342

 Client
 : AECOM Canada Ltd.

Sub-Matrix: Water						Laboratory Cor	ntrol Sample (LCS)	Report	
					Spike	Recovery (%)	Recovery	Limits (%)	
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifie
Dissolved Metals (QCLot: 602827) -	continued								
antimony, dissolved	7440-36-0	E421	0.0001	mg/L	1 mg/L	101	80.0	120	
arsenic, dissolved	7440-38-2	E421	0.0001	mg/L	1 mg/L	103	80.0	120	
barium, dissolved	7440-39-3	E421	0.0001	mg/L	0.25 mg/L	107	80.0	120	
beryllium, dissolved	7440-41-7	E421	0.00002	mg/L	0.1 mg/L	96.6	80.0	120	
bismuth, dissolved	7440-69-9	E421	0.00005	mg/L	1 mg/L	91.1	80.0	120	
boron, dissolved	7440-42-8	E421	0.01	mg/L	1 mg/L	99.1	80.0	120	
cadmium, dissolved	7440-43-9	E421	0.000005	mg/L	0.1 mg/L	102	80.0	120	
calcium, dissolved	7440-70-2	E421	0.05	mg/L	50 mg/L	105	80.0	120	
cesium, dissolved	7440-46-2	E421	0.00001	mg/L	0.05 mg/L	99.2	80.0	120	
chromium, dissolved	7440-47-3	E421	0.0005	mg/L	0.25 mg/L	101	80.0	120	
cobalt, dissolved	7440-48-4	E421	0.0001	mg/L	0.25 mg/L	106	80.0	120	
copper, dissolved	7440-50-8	E421	0.0002	mg/L	0.25 mg/L	106	80.0	120	
ron, dissolved	7439-89-6	E421	0.01	mg/L	1 mg/L	101	80.0	120	
ead, dissolved	7439-92-1	E421	0.00005	mg/L	0.5 mg/L	94.6	80.0	120	
ithium, dissolved	7439-93-2	E421	0.001	mg/L	0.25 mg/L	100	80.0	120	
nagnesium, dissolved	7439-95-4	E421	0.005	mg/L	50 mg/L	101	80.0	120	
nanganese, dissolved	7439-96-5	E421	0.0001	mg/L	0.25 mg/L	106	80.0	120	
nolybdenum, dissolved	7439-98-7	E421	0.00005	mg/L	0.25 mg/L	98.4	80.0	120	
nickel, dissolved	7440-02-0	E421	0.0005	mg/L	0.5 mg/L	106	80.0	120	
phosphorus, dissolved	7723-14-0	E421	0.05	mg/L	10 mg/L	99.7	80.0	120	
ootassium, dissolved	7440-09-7	E421	0.05	mg/L	50 mg/L	104	80.0	120	
ubidium, dissolved	7440-17-7	E421	0.0002	mg/L	0.1 mg/L	107	80.0	120	
selenium, dissolved	7782-49-2	E421	0.00005	mg/L	1 mg/L	103	80.0	120	
silicon, dissolved	7440-21-3	E421	0.05	mg/L	10 mg/L	103	80.0	120	
silver, dissolved	7440-22-4	E421	0.00001	mg/L	0.1 mg/L	86.8	80.0	120	
sodium, dissolved	7440-23-5	E421	0.05	mg/L	50 mg/L	104	80.0	120	
strontium, dissolved	7440-24-6	E421	0.0002	mg/L	0.25 mg/L	99.9	80.0	120	
sulfur, dissolved	7704-34-9	E421	0.5	mg/L	50 mg/L	92.1	80.0	120	
ellurium, dissolved	13494-80-9	E421	0.0002	mg/L	0.1 mg/L	105	80.0	120	
hallium, dissolved	7440-28-0	E421	0.00001	mg/L	1 mg/L	94.0	80.0	120	
horium, dissolved	7440-29-1	E421	0.0001	mg/L	0.1 mg/L	86.2	80.0	120	
in, dissolved	7440-31-5	E421		mg/L	0.5 mg/L	99.0	80.0	120	
itanium, dissolved	7440-32-6	E421	0.0003	mg/L	0.25 mg/L	102	80.0	120	
ungsten, dissolved	7440-33-7	E421	0.0001	mg/L	0.1 mg/L	94.9	80.0	120	
uranium, dissolved	7440-61-1	E421	0.00001	mg/L	0.005 mg/L	94.0	80.0	120	
vanadium, dissolved	7440-62-2	E421	0.0005	mg/L	0.5 mg/L	106	80.0	120	
zinc, dissolved	7440-66-6	E421	0.001	mg/L	0.5 mg/L	96.2	80.0	120	
zirconium, dissolved	7440-67-7	E421	0.0002	mg/L	0.1 mg/L	93.9	80.0	120	

: 14 of 18 : EO2206342 Page Work Order Client : AECOM Canada Ltd.

Sub-Matrix: Water						Laboratory Co	entrol Sample (LCS)	Report	
					Spike	Recovery (%)	Recovery	Limits (%)	
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier
Volatile Organic Compounds (QCLot	: 599507)								
benzene	71-43-2	E611A	0.5	μg/L	100 μg/L	87.1	70.0	130	
ethylbenzene	100-41-4	E611A	0.5	μg/L	100 μg/L	101	70.0	130	
toluene	108-88-3	E611A	0.5	μg/L	100 μg/L	81.1	70.0	130	
xylene, m+p-	179601-23-1	E611A	0.4	μg/L	200 μg/L	107	70.0	130	
xylene, o-	95-47-6	E611A	0.3	μg/L	100 μg/L	101	70.0	130	
Hydrocarbons (QCLot: 597880)									
F2 (C10-C16)		E601	100	μg/L	3260 μg/L	105	70.0	130	
F3 (C16-C34)		E601	250	μg/L	6340 μg/L	108	70.0	130	
F4 (C34-C50)		E601	250	μg/L	4970 μg/L	111	70.0	130	
Hydrocarbons (QCLot: 599506)									1
F1 (C6-C10)		E581.F1	100	μg/L	2750 μg/L	86.8	70.0	130	
Polychlorinated Biphenyls (QCLot: 6	06598)								'
Aroclor 1260	11096-82-5	E685	1	μg/L	5 μg/L	115	65.0	130	

Page : 15 of 18
Work Order : EO2206342

Client : AECOM Canada Ltd.

Project : 60686962

Matrix Spike (MS) Report

A Matrix Spike (MS) is a randomly selected intra-laboratory replicate sample that has been fortified (spiked) with test analytes at known concentration, and processed in an identical manner to test samples. Matrix Spikes provide information regarding analyte recovery and potential matrix effects. MS DQO exceedances due to sample matrix may sometimes be unavoidable; in such cases, test results for the associated sample (or similar samples) may be subject to bias. ND – Recovery not determined, background level >= 1x spike level.

						Matrix Spike	e (MS) Report		
				Spi	ke	Recovery (%)	Recovery	Limits (%)	
Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifie
ents (QCLot: 598234)									
Anonymous	fluoride	16984-48-8	E235.F	0.984 mg/L	1 mg/L	98.4	75.0	125	
ents (QCLot: 598235)									
Anonymous	nitrite (as N)	14797-65-0	E235.NO2	0.469 mg/L	0.5 mg/L	93.8	75.0	125	
ents (QCLot: 598236)									
Anonymous	sulfate (as SO4)	14808-79-8	E235.SO4	ND mg/L	100 mg/L	ND	75.0	125	
ents (QCLot: 598237)									
Anonymous	chloride	16887-00-6	E235.CI	ND mg/L	100 mg/L	ND	75.0	125	
ents (QCLot: 598238)									
Anonymous	nitrate (as N)	14797-55-8	E235.NO3	2.46 mg/L	2.5 mg/L	98.6	75.0	125	
Lot: 604213)				2.13					
	aluminum, total	7/20_00_5	F420	0.192 mg/l	0.2 mg/l	96.0	70.0	130	
					•				
	•				Ŭ				
	· ·				Ŭ				
					•				
				,	•				
	· ·			-	•				
					•				
	,				•				
				,	•				
					•				
	, i				•				
	,				•				
					•				
				, and the second	•				
					Ŭ				
					•				
				,	•				
				,	•				
					-				
	nickel, total	7440-02-0	E420	0.0389 mg/L	0.04 mg/L	97.2	70.0	130	
	ents (QCLot: 598234) Anonymous ents (QCLot: 598235) Anonymous ents (QCLot: 598236) Anonymous ents (QCLot: 598237) Anonymous ents (QCLot: 598238)	ents (QCLot: 598234) Anonymous fluoride ents (QCLot: 598235) Anonymous nitrite (as N) ents (QCLot: 598236) Anonymous sulfate (as SO4) ents (QCLot: 598237) Anonymous chloride ents (QCLot: 598238) Anonymous nitrate (as N) ELot: 604213)	ents (QCLot: 598234) Anonymous fluoride 16984-48-8 ents (QCLot: 598235) Anonymous nitrite (as N) 14797-65-0 ents (QCLot: 598236) Anonymous sulfate (as SO4) 14808-79-8 ents (QCLot: 598237) Anonymous chloride 16887-00-6 ents (QCLot: 598238) Anonymous nitrate (as N) 14797-55-8 ELot: 604213) MW2 aluminum, total 7429-90-5	### Anonymous fluoride 16984-48-8 E235.F	Client sample ID	### Part	Client sample ID	Client sample ID	Client sample ID

 Page
 : 16 of 18

 Work Order
 : EO2206342

 Client
 : AECOM Canada Ltd.

ALS

Sub-Matrix: Water							Matrix Spik	e (MS) Report		
					Spi	ke	Recovery (%)	Recovery	Limits (%)	
Laboratory sample	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifier
	Lot: 604213) - contin	ned								
EO2206342-002	MW2	potassium, total	7440-09-7	E420	3.98 mg/L	4 mg/L	99.4	70.0	130	
		rubidium, total	7440-17-7	E420	0.0198 mg/L	0.02 mg/L	99.0	70.0	130	
		selenium, total	7782-49-2	E420	0.0400 mg/L	0.04 mg/L	100	70.0	130	
		silicon, total	7440-21-3	E420	9.48 mg/L	10 mg/L	94.8	70.0	130	
		silver, total	7440-22-4	E420	0.00409 mg/L	0.004 mg/L	102	70.0	130	
		sodium, total	7440-23-5	E420	ND mg/L	2 mg/L	ND	70.0	130	
		strontium, total	7440-24-6	E420	0.0208 mg/L	0.02 mg/L	104	70.0	130	
		sulfur, total	7704-34-9	E420	19.1 mg/L	20 mg/L	95.6	70.0	130	
		tellurium, total	13494-80-9	E420	0.0380 mg/L	0.04 mg/L	94.9	70.0	130	
		thallium, total	7440-28-0	E420	0.00388 mg/L	0.004 mg/L	96.9	70.0	130	
		thorium, total	7440-29-1	E420	0.0162 mg/L	0.02 mg/L	80.9	70.0	130	
		tin, total	7440-31-5	E420	0.0196 mg/L	0.02 mg/L	98.3	70.0	130	
		titanium, total	7440-32-6	E420	0.0410 mg/L	0.04 mg/L	102	70.0	130	
		tungsten, total	7440-33-7	E420	0.0200 mg/L	0.02 mg/L	100	70.0	130	
		uranium, total	7440-61-1	E420	0.00403 mg/L	0.004 mg/L	101	70.0	130	
		vanadium, total	7440-62-2	E420	0.0990 mg/L	0.1 mg/L	99.0	70.0	130	
		zinc, total	7440-66-6	E420	0.363 mg/L	0.4 mg/L	90.8	70.0	130	
		zirconium, total	7440-67-7	E420	0.0430 mg/L	0.04 mg/L	107	70.0	130	
Dissolved Metals	(QCLot: 602827)									
EO2206332-010	Anonymous	aluminum, dissolved	7429-90-5	E421	0.213 mg/L	0.2 mg/L	106	70.0	130	
		antimony, dissolved	7440-36-0	E421	0.0200 mg/L	0.02 mg/L	99.9	70.0	130	
		arsenic, dissolved	7440-38-2	E421	0.0211 mg/L	0.02 mg/L	106	70.0	130	
		barium, dissolved	7440-39-3	E421	ND mg/L	0.02 mg/L	ND	70.0	130	
		beryllium, dissolved	7440-41-7	E421	0.0394 mg/L	0.04 mg/L	98.6	70.0	130	
		bismuth, dissolved	7440-69-9	E421	0.00861 mg/L	0.01 mg/L	86.1	70.0	130	
		boron, dissolved	7440-42-8	E421	0.110 mg/L	0.1 mg/L	110	70.0	130	
		cadmium, dissolved	7440-43-9	E421	0.00409 mg/L	0.004 mg/L	102	70.0	130	
		calcium, dissolved	7440-70-2	E421	ND mg/L	4 mg/L	ND	70.0	130	
		cesium, dissolved	7440-46-2	E421	0.00984 mg/L	0.01 mg/L	98.4	70.0	130	
		chromium, dissolved	7440-47-3	E421	0.0388 mg/L	0.04 mg/L	97.1	70.0	130	
		cobalt, dissolved	7440-48-4	E421	0.0197 mg/L	0.02 mg/L	98.5	70.0	130	
		copper, dissolved	7440-50-8	E421	0.0197 mg/L	0.02 mg/L	98.3	70.0	130	
		iron, dissolved	7439-89-6	E421	1.93 mg/L	2 mg/L	96.5	70.0	130	
		lead, dissolved	7439-92-1	E421	0.0176 mg/L	0.02 mg/L	87.9	70.0	130	
		lithium, dissolved	7439-93-2	E421	0.0998 mg/L	0.1 mg/L	99.8	70.0	130	
	I	magnesium, dissolved	7439-95-4	E421	ND mg/L	1 mg/L	ND	70.0	130	

: 17 of 18 : EO2206342 Page Work Order Client : AECOM Canada Ltd.

Sub-Matrix: Water							Matrix Spik	e (MS) Report		
					Spi	ke	Recovery (%)	Recovery	Limits (%)	
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifier
Dissolved Metals	(QCLot: 602827) -	continued								
EO2206332-010	Anonymous	manganese, dissolved	7439-96-5	E421	ND mg/L	0.02 mg/L	ND	70.0	130	
		molybdenum, dissolved	7439-98-7	E421	0.0192 mg/L	0.02 mg/L	96.0	70.0	130	
		nickel, dissolved	7440-02-0	E421	0.0387 mg/L	0.04 mg/L	96.6	70.0	130	
		phosphorus, dissolved	7723-14-0	E421	10.4 mg/L	10 mg/L	104	70.0	130	
		potassium, dissolved	7440-09-7	E421	3.78 mg/L	4 mg/L	94.5	70.0	130	
		rubidium, dissolved	7440-17-7	E421	0.0198 mg/L	0.02 mg/L	99.2	70.0	130	
		selenium, dissolved	7782-49-2	E421	0.0463 mg/L	0.04 mg/L	116	70.0	130	
		silicon, dissolved	7440-21-3	E421	8.62 mg/L	10 mg/L	86.2	70.0	130	
		silver, dissolved	7440-22-4	E421	0.00367 mg/L	0.004 mg/L	91.7	70.0	130	
		sodium, dissolved	7440-23-5	E421	ND mg/L	2 mg/L	ND	70.0	130	
		strontium, dissolved	7440-24-6	E421	ND mg/L	0.02 mg/L	ND	70.0	130	
		sulfur, dissolved	7704-34-9	E421	19.6 mg/L	20 mg/L	97.9	70.0	130	
		tellurium, dissolved	13494-80-9	E421	0.0420 mg/L	0.04 mg/L	105	70.0	130	
		thallium, dissolved	7440-28-0	E421	0.00362 mg/L	0.004 mg/L	90.6	70.0	130	
		thorium, dissolved	7440-29-1	E421	0.0177 mg/L	0.02 mg/L	88.6	70.0	130	
		tin, dissolved	7440-31-5	E421	0.0195 mg/L	0.02 mg/L	97.4	70.0	130	
		titanium, dissolved	7440-32-6	E421	0.0403 mg/L	0.04 mg/L	101	70.0	130	
		tungsten, dissolved	7440-33-7	E421	0.0182 mg/L	0.02 mg/L	90.8	70.0	130	
		uranium, dissolved	7440-61-1	E421	ND mg/L	0.004 mg/L	ND	70.0	130	
		vanadium, dissolved	7440-62-2	E421	0.101 mg/L	0.1 mg/L	101	70.0	130	
		zinc, dissolved	7440-66-6	E421	0.356 mg/L	0.4 mg/L	89.0	70.0	130	
		zirconium, dissolved	7440-67-7	E421	0.0387 mg/L	0.04 mg/L	96.7	70.0	130	
Volatile Organic	Compounds (QCLo	t: 599507)								
EO2206342-002	MW2	benzene	71-43-2	E611A	92.7 μg/L	100 μg/L	92.7	50.0	140	
		ethylbenzene	100-41-4	E611A	87.4 μg/L	100 μg/L	87.4	50.0	140	
		toluene	108-88-3	E611A	72.8 µg/L	100 μg/L	72.8	50.0	140	
		xylene, m+p-	179601-23-1	E611A	201 μg/L	200 μg/L	100	50.0	140	
		xylene, o-	95-47-6	E611A	90.9 µg/L	100 μg/L	90.9	50.0	140	

Page : 18 of 18 Work Order : EO2206342

Client : AECOM Canada Ltd.

www.alsglobal.com

Canada Toll Free: 1 800 668 9878

COC NUMBER.	O Ninghan
101	2
-	7
C	0
C	0
U	
C	
0	0
C	

AUG 2020 FRO		Daic.		l by:	Keceived by:		lime:		Ans 10	Date:	K	Received by	Time:	Date: 7/27		Released by
Time:	T (meo dae only)	FINAL SHIPMENT RECENT	FINA			,		only)	INFIAL SHIPMENT RECEPTION (ALS use only)	NT RECE	INITIAL SHIPME			SHIPMENT RELEASE (client use)	girs C	
					1		6-1					0	Site: PIN.D	tion/ use?	naı	Are samples f
7	Telephone: +1 780 413 5227	C NA	INITIAL COOLER TEMPERATURES °C	LER TEM	INITIAL COOLER TE	NIII	Cooler							\	KS O	
	いっていること	E Kecelbr N	ed on Sar	S identin	omment	sion Co	Submis				Guidelines	CCME (ed DW System?	Are samples taken from a Regulated DW System?	Are samples t
	No.	E C ICE PACKS	10E	NONE	Ä	Metho	Cooling Method:			8	(Excel COC only)	(Excel COC only)	Notes / Sp	Drinking Water (DW) Samples ¹ (client use)	king Water (DW) S	Drin
		SAMPLE RECEIPT DETAIL	SAMPLE		H	H			ron-down below	from di	or hy soler					
1 1	FOZZOG					-										
S	Edmonton Work Order Reference	ma														
sion	Environmental Division	E E			+	-										
		1		+	+		-	ON		1	77. Bry 1-0			C	NA/NC	
		-		-	-	-	-	LAN	00.00		D4 PM 2				MW4	
				X		+	+	2			27 AM . 40				MWS	
		×	×	×	×	×		D.W.			24.00				MM	
-		×	XX	×	×	X		GW		_	04 - Aug. 22				LINAL I	
		×	X	×	×	×	0	GW		2 11:00	04 - Aug - 22				1	
EXT	8:	PC	TE	Ma	Dis	1		Sample Type	Time Sam	(hh:	Date (dd-mmm-yy)		nd/or Coordinates bear on the report)	Sample Identification and/or Coordinates (This description will appear on the report)	5.#	ALS Sample #
MPL ENDE		В	Lo	jor	COLVE	al N	MBE) T	Sampler:		ALS Contact:		use only):	ALS Lab Work Order # (ALS use only):	ALS Lab W
ED S				An	d					1		Location:				LSD:
STC				ion	M	ta	_					Requisitioner:				PO / AFE:
RA				2	et:	7	CC		Code:	Routing Code:		Major/Minor Code:		60686963		Job #:
GE					-BI	1	NT			PO#		AFE/Cost Center:		0 89810	# / Quote #	ALS Account # / Quote #
REC					BX.		All		client use)	ed Fields (Oil and Gas Required Fields (client use)	0		Project Information		
_			-	İ	P	P/	VEI	M	Bill dy @ do an is	indu Co	B					Contact:
	(F/P) below	Indicate Filtered (F), Preserved (P) or Filtered and Preserved (F/P) below	(F), Presen	ate Filtered	Indica		₹S	Com	Stephence Accom ton	Looner		Email 1 or Fax		1	Copy of misories	
-		Analysis Request							MAIL FAX	MAIL MAIL	- 1	Select Invoice Distribution:	NO	Report YES	Conv of Invoice with Report	
	AM to confirm availability.	For all tests with rush TATs requested, please contact your AM to comfrm availability.	with rush TA	or all tests	7					ecipi	Invoice F		NO	To X YES 🗆	Same as Report To	Invoice To
	work water Action	98	Date and Time Required for all E&P TATs:	Ired for all	me Requi	te and Ti	Dat		harom com		y Mc Noil	Ro		CILL WATER	63	Postal Code:
		Same Gay [EZ] If received by Judiii Pro - 20079 Ical and the polymer feets may apply to rush requests on weekends, statutory holidays and non-routine tests	inds, statutor	s on weeks	sh request	pply to ru	may a		Accom com	bouch	Jessica Stephen	Email 1 or Fax	Rd	8817 Stery plain	101, 18	Street:
		1 day [E] if received by 3pm M-F - 100% rush surcharge minimum	- 100% rus	3pm M-F	ceived by	[E] if rea	1 day	L		I MAIL	I: MENAIL	Select Distribution:	ort	Company address below will appear on the final report	Company addre	
3	(ALS use only)	2 day [P2] if received by 3pm M-F - 50% rush surcharge minimum	- 50% rus	/ 3pm M-F	eceived by	[P2] if n	2 day		Is below if box check	provide detail	to Criteri	Compare Result		3	1-7	Phone:
ABEL HERE	AFFIX ALS BARCODE LABEL HERE	4 day [P4] If received by 3pm M-F - 20% rush surcharge minimum	 20% rush > 25% rus 	3pm M-F	ceived by	[P4] If re	4 day			☐ YES	orts v	Merge QC/QCI		Stenned	766610	Contact:
		arges apply	Routine [R] if received by 3pm M-F - no surcharges apply	3pm M-F	eceived by	e [R] if n	Routin		DD (DIGITAL)	₩ EXCEL		Select Report Format:		Canada Ltd	A	Company:
		persen	Turnaround Time (TAT) Requested	und Tim	Turnaro					Recipients	Reports / Recipients		the final report	Contact and company name below will appear on the final report	Contact	Dannet To

WHITE - LABORATIOPK COPY YELLOW - CLIENT COPY
REFER TO BACK PAGE FOR ALS LOCATIONS AND AMPLING INFORMATION
REFER TO BACK PAGE FOR ALS LOCATIONS AND AMPLING INFORMATION
Failure to complete all portions of this form may delay analysis. Please fill in this form LEGIBLY. By the use of this form the user acknowledges and agrees with the Terms and Conditions as specified on the back page of the white - report copy.

1. If any water samples are taken from a Regulated Drinking Water (DW) System, please submit using an Authorized DW COC form.

aecom.com