

Public Works and Government Services Canada

Phase III Environmental Site Assessment CAM-A, Sturt Point, NU Intermediate DEW Line Site

Prepared by:

AECOM

17007 – 107th Avenue 780 486 7000 tel Edmonton, AB, Canada T5S 1G3 780 486 7070 fax

www.aecom.com

Project Number:

60156118

Date:

November, 2010

Statement of Qualifications and Limitations

The attached Report (the "Report") has been prepared by AECOM Canada Ltd. ("Consultant") for the benefit of the client ("Client") in accordance with the agreement between Consultant and Client, including the scope of work detailed therein (the "Agreement").

The information, data, recommendations and conclusions contained in the Report (collectively, the "Information"):

- is subject to the scope, schedule, and other constraints and limitations in the Agreement and the qualifications contained in the Report (the "Limitations")
- represents Consultant's professional judgement in light of the Limitations and industry standards for the preparation of similar reports
- may be based on information provided to Consultant which has not been independently verified
- has not been updated since the date of issuance of the Report and its accuracy is limited to the time period and circumstances in which it was collected, processed, made or issued
- must be read as a whole and sections thereof should not be read out of such context
- was prepared for the specific purposes described in the Report and the Agreement
- in the case of subsurface, environmental or geotechnical conditions, may be based on limited testing and on the assumption that such conditions are uniform and not variable either geographically or over time

Consultant shall be entitled to rely upon the accuracy and completeness of information that was provided to it and has no obligation to update such information. Consultant accepts no responsibility for any events or circumstances that may have occurred since the date on which the Report was prepared and, in the case of subsurface, environmental or geotechnical conditions, is not responsible for any variability in such conditions, geographically or over time.

Consultant agrees that the Report represents its professional judgement as described above and that the Information has been prepared for the specific purpose and use described in the Report and the Agreement, but Consultant makes no other representations, or any guarantees or warranties whatsoever, whether express or implied, with respect to the Report, the Information or any part thereof.

The Report is to be treated as confidential and may not be used or relied upon by third parties, except:

- as agreed in writing by Consultant and Client
- as required by law
- for use by governmental reviewing agencies

Consultant accepts no responsibility, and denies any liability whatsoever, to parties other than Client who may obtain access to the Report or the Information for any injury, loss or damage suffered by such parties arising from their use of, reliance upon, or decisions or actions based on the Report or any of the Information ("improper use of the Report"), except to the extent those parties have obtained the prior written consent of Consultant to use and rely upon the Report and the Information. Any damages arising from improper use of the Report or parts thereof shall be borne by the party making such use.

This Statement of Qualifications and Limitations is attached to and forms part of the Report and any use of the Report is subject to the terms hereof.

780 486 7000 tel 780 486 7070 fax

November 22, 2010

Matt McElwaine, P.Eng.
Environmental Engineer
Public Works and Government Services Canada
Northern Contaminated Sites
5th Floor, 10025 Jasper Avenue
Edmonton, Alberta T5J 1S6

Dear Matthew:

Project No:

60156118

Regarding:

Phase III Environmental Site Assessment

CAM-A, Sturt Point, NU Intermediate DEW Line Site

AECOM Canada Ltd. is pleased to submit our report outlining the results of the Phase III Site Investigation conducted at the CAM-A, Sturt Point Intermediate DEW Line Site. We thank you for the opportunity to complete this work on behalf of Public Works and Government Services Canada. We trust that this report is consistent with your expectations.

Should you have any questions or require additional information, please do not hesitate to contact the undersigned at 780.486.7057.

Sincerely,

AECOM Canada Ltd.

Nick Oke, M.Sc., P.Chem. (Alberta)

Project Manager

nick.oke@aecom.com

NO:nh Encl. cc:

Distribution List

# of Hard Copies	PDF Required	Association / Company Name
	1	Public Works and Government Services Canada
6	1	Public Works and Government Services Canada

Revision Log

Revision #	Revised By	Date	Issue / Revision Description	
1	NO/DAS	22-Oct-10	DRAFT - Phase III ESA, CAM-A, Sturt Point,	
2	NO/DAS	22-Nov-10	FINAL - Phase III ESA, CAM-A, Sturt Point,	

AECOM Signatures

Report Prepared By:

Dara Schmidt, B.Sc.

Environmental Scientist

Anwar Majid, M.Sc., P.Eng. (NT, NU)

Senior Geotechnical Engineer

Report Reviewed By:

Eva Schulz, P.Ag. (AB)

Senior Environmental Scientist

Rob Armstrong, P.Eng.

Senior Geotechnical Engineer

Report Reviewed By:

Nick Oke, P.Chem. (AB)

Senior Environmental Scientist

PERMIT TO PRACTICE AECOM CANADA LTD.

NWT/NU Association of Professional Engineers and Geoscientists

Executive Summary

CAM-A was reserved by the Department of National Defence (DND) in 1956 for use as a DEW Line Site and was constructed in 1957. The station was typical of all intermediate sites with infrastructure consisting of a module train, a warehouse, a garage, an Inuit house, POL tanks, and a continuous wave radar tower. In addition to the main site, a beach POL area and beach landing area were also constructed approximately 900 m from the station. The airstrip is approximately 1200 m long and runs in a northwest-southeast orientation. A fresh water lake is located approximately 600 m northwest of the airstrip. Gravel roads were built linking the airstrips, beach areas and fresh water lake to the station facilities. An overall site plan showing the site infrastructure is shown on Figures 1 and 2, Appendix A.

The site was abandoned as part of the DEW Line system in October 1963, and the responsibility for the site was assumed by Indian and Northern Affairs Canada (INAC). Since that time, the POL tanks at both the station and the beach have been removed. The warehouse, garage and module train structures have also been dismantled and removed from the station area leaving behind the concrete and wood foundations with miscellaneous debris. A section of the module train building remains onsite. The fate of the POL tanks and warehouse structure are undetermined. The radar tower has been felled and is lying to the west of the module train foundation.

The objective of AECOM's Phase III Environmental Site Assessment (ESA) at CAM-A was to collect all data necessary to develop a detailed Remedial Action Plan (RAP) in accordance with the Abandoned Military Site Remediation Protocol (INAC 2009). The fieldwork for this assessment was conducted from August 1st to 9th, 2010.

The investigation and delineation of contaminated soil at CAM-A was completed for the contaminants of concern listed in the INAC Abandoned Military Site Remediation Protocol. The contaminants of concern are: arsenic, cadmium, cobalt, copper, lead, nickel, zinc, PCBs and petroleum hydrocarbons. Delineation of petroleum hydrocarbon (PHC) impacts was completed using the INAC Arctic PHC Evaluation Process, which is included in the INAC Abandoned Military Site Protocol (2009). Typical source areas for these contaminants are well documented from previous DEW Line site investigations and were the focus of the 2010 investigation.

Approximate volumes of contaminated soil identified at CAM-A include:

- Type B Hydrocarbon (1,124.8 m³):
 - 425 m³ of Type B hydrocarbon impacted soil was identified at the Beach POL within 30 m of the ocean.
 - 128.8 m³ of Type B impacted soil was identified at the Beach POL Pad.
 - 571 m³ of Type B impacted soil was identified at the module train foundation.
- Tier I (43 m³):
 - 7.9 m³ of Tier I contaminated soil was identified in the module train foundation.
 - 35.1 m³ of Tier I contaminated soil was identified in the sewage outfall area.
- Tier II (75 m³):
 - 9.25 m³ of Tier II contaminated soil was identified at the garage.
 - 0.08 m³ of Tier II contaminated soil was identified in the sumps on the garage foundation.
 - 21.48 m³ of Tier II contaminated soil was identified at the module train foundation.
 - 44.19 m³ of Tier II contaminated soil was identified in the worked area (Lobe J).

The above summary does not include any additional Tier I or Tier II contaminated soil, or PHC impacted soil that may be associated with potential landfill excavations.

Fourteen (14) buried debris lobes were identified onsite during the geophysical investigation. The presence of buried debris was confirmed at Landfill A (Lobes A, B, C, & D) and Landfill B (Lobes F, G & H). All other lobes identified onsite were determined to be localized, partially buried debris and/or surface debris and were assessed as surface debris areas rather than buried debris. Six (6) small anomalies were also identified by Associated Geosciences after the site investigation. The additional lobes identified in the geophysical report, but not identified on-site as buried debris areas (Lobes L, P, Q, R, S & T, Figures 2, 7 & 10), were assessed as part of the surface debris assessment during the field investigation rather than a buried debris assessment. The total area of buried debris between Landfill A and Landfill B at the CAM-A site is approximately 2,331 m². Once the perimeters of buried debris areas were identified, soil samples were taken in the proximity of the buried debris to identify if leaching of contaminants has historically occurred. Based on the location and physical condition of the buried debris areas and contaminant migration results, each Lobe was designated as Class A, B or C in accordance with the INAC Protocol.

Landfills A and B were classified as Class C and can therefore covered in place. For health and safety reasons, excavation was not conducted in the buried debris areas. However, based on AECOM's extensive history with DEW Line Site remediation and information collected regarding the volumes of materials that are typically removed during landfill excavations, the following volumes of material types likely to be encountered in the buried debris areas of Landfill B has been estimated as:

- 36 m³ of Hazardous Soil Materials Lobes A, B, C, D, F, G & H (estimated as 1% of total volume);
- 364 m³ of Tier I Soil Materials Lobes A, B, C, D, F, G & H (estimated as 10% of total volume);
- 364 m³ of Tier II Soil Materials Lobes A, B, C, D, F, G & H (estimated as 10% of total volume); and
- 729 m³ of Non-hazardous Soil Materials Lobes A, B, C, D, F, G & H (estimated as 20% of total volume).

The following is a summary of the estimated volume of contaminated soils identified at the CAM-A site:

Table EX-1 - Summary of Soil Materials at CAM-A

Location	Tier I	Tier II	PHC Type A	PHC Type B	Hazardous Soil Volume (m³)	Non-Haz Soil Volume (m³)	
Contaminated Soil Areas							
Beach POL, Station Area, Sewage Outfall & Worked Area	43 m ³	75 m³	-	1,124.8 m ³	-	-	
Buried Debris Areas (Landfill A & B)	Est. 10%	Est. 10%	-	-	Est. 1%	Est. 20%	
Landfill A, Lobes A, B, C & D and Landfill B, Lobes F, G, & H	364 m³	364 m³	-	-	36.1 m³	729 m³	
Estimated Total	407 m ³	439 m ³	-	1,124.8 m ³	36.1 m ³	729 m ³	

Notes: Volume estimates (est.) as a percentage. (Italicized)

Based on the combined results of the surface debris inventory, buried debris inventory, barrel assessment and demolition inventory, approximately 496 m³ (crushed) of non-hazardous waste was identified. This material is suitable for disposal in a non-hazardous waste landfill. The estimated quantity of hazardous waste at CAM-A is 38.46 m³ (crushed) of hazardous waste. The hazardous materials at CAM-A consist mainly of material coated with PCB amended paint (PAP) and asbestos-containing materials. The following is a summary of the estimated volume of hazardous and non-hazardous debris/materials identified at the CAM-A site:

Table EX-2 - Summary of Demolition Materials at CAM-A

Location	Hazardous Volume (m³) (Crushed)	Non-Hazardous Volume (m³) (Crushed)		
Demolition	37.26 m ³	300.71 m ³		
Alternative Demolition Option (included in separate estimated total)	8.05 m³	329.91 m³		
Surface Debris				
Barrels (approx. 682)	-	136.3 m ³ (682 m ³ uncrushed)		
Debris	1.2 m ³	58.8 m ³ (72 m ³ uncrushed)		
Estimated Total (Crushed)	38.46 m ³	495.81 m ³		
Alternative Estimated Total (Crushed)	9.25 m³	522.01 m³		

Notes: Volume estimates are given in both non-crushed and crushed.

Seventeen (17) potential borrow areas were identified and investigated at CAM-A. It is estimated that there is 321,900 m³ of granular materials available from these borrow areas. The most predominant soil type in the vicinity of work areas is sandy gravel. Most areas contain oversize material (cobbles and boulders) but this is generally well below 10% (trace) of the overall soil matrix. It is anticipated that sufficient volumes have been identified for construction purposes although additional borrow sourcing during construction can be carried out if necessary.

Depending on the remedial options selected, a combination of non-hazardous waste landfills, secure soil disposal facilities for disposal of contaminated soil and landfarms for the treatment of hydrocarbon-contaminated soils may be constructed at CAM-A. Four (4) proposed landfill/landfarm locations were investigated and identified as suitable locations.

The site access roads are in generally good condition for heavy equipment although regular grading will be required. Based on the information collected, all the noted aircraft would be able to use the existing runway during dry conditions at CAM-A. The Hercules C130 should not land with a full load during times when the airstrip may be saturated.

Table of Contents

Statement of Qualifications and Limitations Letter of Transmittal Distribution List Executive Summary

	1.1	Scope	of Work		1
2.	Back	ground			2
	2.1	•			
	2.2		•	ions	
	2.3		•	Environment	
		2.3.1			
		2.3.2			
		2.3.3	_		
		2.3.4	•		
		2.3.5			
		2.3.6	•		
3.	Inve	stigation	1		4
	3.1	•		Delineation	
		3.1.1	Methodolo	gy	4
		3.1.2	Results		5
			3.1.2.1	Airstrip	
			3.1.2.2	Barrel Area A & B	
			3.1.2.3	Beach POL	
			3.1.2.4	End of POL Pipe and/or Pipe Break	
			3.1.2.5	Garage	
			3.1.2.6 3.1.2.7	Module Train	
			3.1.2.7	Station POL	
			3.1.2.9	Warehouse	
			3.1.2.10	Worked Areas	
	3.2	Assess	sment of Exis	sting Buried Debris Areas (Dumps)	
		3.2.1		gy	
		3.2.2		al Results	
			3.2.2.1	Analytical Results - Landfill A	
			3.2.2.2	Analytical Results - Landfill B	15
	3.3	Assess	ment of Sur	face Debris and Barrels	15
		3.3.1	Surface De	ebris Assessment	15
		3.3.2	Barrel Asse	essment	15
	3.4	Demol	ition Assessi	ment	17
		3.4.1	Methodolog	gy	17
		3.4.2	Demolition	Assessment Results	
			3.4.2.1	Alternative Summary of Demolition Assessment	
	3.5	Hazard		n-Hazardous Waste Assessment Summary	
		3.5.1		Hazardous and Non-hazardous Waste Assessment Summary	
	3.6	Sedim	ent and Surfa	ace Water Assessment	24

	3.6.1	Methodolo	ogy	24
	3.6.2	Results		24
		3.6.2.1	Surface Water	24
		3.6.2.2	Sediment	25
3.7	Assess	ment of Gr	anular Borrow Sources	25
	3.7.1	Methodolo	ogy	25
	3.7.2		Material Types and Specifications	
		3.7.2.1	Type 1 Granular Fill	
		3.7.2.2	Type 2 Granular Fill	
		3.7.2.3	Type 2A Granular Fill	
		3.7.2.4	Type 3 Granular Fill	
		3.7.2.5	Type 4 Granular Fill	
		3.7.2.6	Type 5 Granular Fill	
		3.7.2.7	Type 6 Granular Fill	
	3.7.3	Borrow Ar	rea Locations	
		3.7.3.1	Borrow Area 1 (BA-1)	
		3.7.3.2	Borrow Area 2 (BA-2)	
		3.7.3.3	Borrow Area 3 (BA-3)	
		3.7.3.4	Borrow Area 4 (BA-4)	
		3.7.3.5	Borrow Area 5 (BA-5)	
		3.7.3.6	Borrow Area 5A (BA-5A)	
		3.7.3.7	Borrow Area 6 (BA-6)	
		3.7.3.8	Borrow Area 6A (BA-6A)	
		3.7.3.9	Borrow Area 7 (BA-7)	
		3.7.3.10	Borrow Area 8 (BA-8)	
		3.7.3.11	Borrow Area 9 (BA-9)	31
		3.7.3.12	Borrow Area 10 (BA-10)	32
		3.7.3.13	Borrow Area 11 (BA-11)	
		3.7.3.14	Borrow Area 12 (BA-12)	
		3.7.3.15	Borrow Area 13 (BA-13)	
		3.7.3.16	Borrow Area 15 (BA-15)	
	3.7.4	Summary	of Borrow Materials	33
3.8	Assess	ment of Pro	oposed Landfill Locations	34
	3.8.1	Methodolo	ogy	34
	3.8.2	Non-Haza	ardous Waste Landfill	35
		3.8.2.1	Design Considerations	
	3.8.3	Secure So	oil Disposal Facility	
		3.8.3.1	Design Considerations	
	3.8.4	Landfarm.		37
		3.8.4.1	Design Considerations	
	3.8.5	Recomme	ended Landfill/Landfarm Locations	
		3.8.5.1	LF-5 (Proposed NHWLF and Landfarm Location)	
		3.8.5.2	LF-6 (Proposed NHWLF, SSDF or Landfarm Location)	
		3.8.5.3	LF-2 (Proposed SSDF or NHWLF Location)	
		3.8.5.4	LF-3 (Proposed SSDF Location)	
3.9	Assess		te Access	
= =	3.9.1		valuation	
	0.0.1	3.9.1.1	General	
		3.9.1.2	Site Investigation	
		3.9.1.3	Overall Airstrip Load Capacity	
	3.9.2		Evaluation	
	-	3.9.2.1		

			3.9.2.2	Road Section 2	42
			3.9.2.3	Road Section 3	
			3.9.2.4	Road Section 4	
			3.9.2.5	Road Section 5	
			3.9.2.6 3.9.2.7	Road Section 6Road Section 7	
			3.9.2.7	Road Section 8	
		3.9.3		nding Area	
		3.9.4		or Camp and Laydown Area	
	3.10	Tradition		Jse	
	3.11			ata Quality Assurance and Quality Control (QA/QC) Procedures	
				rocedures and Evaluation	
		3.11.2	Summary	of AECOM QA/QC Program & Results	44
			3.11.2.1	·	
			3.11.2.2	Laboratory QA/QC	45
4.	Conc	lusions	·		47
5.	Refer	ancas			40
٥.	110101	C110CO			·····
List	of Tabl	es			
Table	2-1 - Me	teorolog	y, Precipita	tion and Temperature profiles at CAM-M, Cambridge Bay	3
Table	3-1 - Su	mmary o	of Contamin	ated Soil Areas at CAM-A	6
Table	3-2 - Ex	isting Bu	ried Debris	Area Assessment Summary	13
		_		Debris Areas	
		•		nts	
			-	Requirements	
Table	3-6 - Gr	ain Size	Distribution	Limits - Type 1 Granular Fill	26
Table	3-7 - Gr	ain Size	Distribution	Limits - Type 2 Granular Fill	26
				Limits - Type 2A Granular Fill	
Table	3-9 - Gr	ain Size	Distribution	Limits - Type 4 Granular Fill	27
				n Limits - Type 5 Granular Fill	
				r Borrow Sources	
Table	3-12 - V	ariation o	of CBR with	n Depth	41
				R Classification	

Appendices

Appendix A - Figures

Appendix B – Data Summary Tables

Appendix C - Photographs

Appendix D – Laboratory Reports

Appendix E - Geophysics Report

Appendix F – Geotechnical Testpit Logs

Appendix G - Heritage Report

Appendix H – FCSAP Scoring Sheets

Appendix I – Site Video (DVD)

1. Introduction

CAM-A Sturt Point is located on Victoria Island, Nunavut (68° 47' N, 103° 20' W). The site is located along the coast and overlooks the Queen Maud Gulf. The site is located approximately 80 km east of Cambridge Bay. The terrain of the area is relatively flat with several ponds and lakes and an average elevation of 50 m above sea level.

CAM-A was reserved by the Department of National Defence (DND) in 1956 for use as a DEW Line Site and was constructed in 1959. The radar facility was typical of all intermediate sites and consisted of a module train, warehouse, garage, a POL storage facility, a radar tower, an airstrip and a beach cargo landing area. In addition to the main site, a beach landing area was constructed along with gravel roads linking the various facilities. Access to the site is provided by airstrips and the beach cargo area. The main airstrip (~1,200 m long) is located north of the station facilities with an approximate northwest-southeast orientation.

The site was abandoned as part of the DEW Line system in 1963, and the responsibility of the site was taken over by Indian and Northern Affairs Canada (INAC).

1.1 Scope of Work

The objective of the Phase III Environmental Site Assessment at CAM-A was to collect all data necessary to develop a detailed Remedial Action Plan (RAP), in accordance with the Abandoned Military Site Remediation Protocol (INAC 2009). Therefore, the tasks included in the scope of work for the Phase III ESA included the following:

- Identification, characterization and quantification of all hazardous and non-hazardous materials;
- Identification and delineation of contaminated areas;
- Evaluation of the potential impacts to the sediments and water in the Freshwater Lake and other significant water bodies;
- Completion of a detailed topographic and geophysical survey;
- Documentation of flora and fauna based on literature and professional experience;
- Identification of potential locations for an engineered landfill(s) and/or landfarm;
- Identification of borrow sources that may be used for the potential repair of site roads, airstrip, and barge landing
 areas as well as for the construction of a potential landfill(s) and/or landfarm;
- Evaluation of the condition of site access roads, barge/beach landing areas, and airstrip;
- Evaluation of the logistical challenges associated with mobilization, site remediation and demobilization activities;
- Provision for an increase in local community and Inuit involvement in the program;
- Obtain traditional knowledge regarding past and present land use of the site from the elders of the nearby communities; and
- Conduct an Archaeological Impact Assessment (AIA).

The site is represented on the Figures in Appendix A, which are referenced throughout the report. Data tables summarizing the environmental analytical results received from AGAT Laboratories and Maxxam Analytics are in Appendix B. Selected photographs of the site are in Appendix C. Copies of the environmental and geotechnical laboratory reports are included in Appendix D. The results of the geophysical survey are presented in a report prepared by Associated Geosciences Ltd. in Appendix E. The test pit logs are presented in Appendix F. The archaeological report prepared by Golder and Associates Ltd. is included in Appendix G; the Federal Contaminated Sites Action Plan scoring sheets are presented in Appendix H; and a DVD of site video is included in Appendix I.

2. Background

2.1 Site Description

CAM-A was reserved by the Department of National Defence (DND) in 1956 for use as a DEW Line Site and was constructed in 1957. The station was typical of all intermediate sites with infrastructure consisting of a module train, a warehouse, a garage, an Inuit house, POL tanks and a continuous wave radar tower. In addition to the main site, a beach POL area and beach landing areas were also constructed approximately 900 m south of the station. An airstrip was constructed at this site, which is approximately 1,200 m long in a northwest-southeast orientation. A fresh water lake is located approximately 600 m northwest of the airstrip. Gravel roads were built linking the airstrip, beach areas and fresh water lake to the station facilities. An overall site plan showing the site infrastructure is shown on Figures 1 and 2, Appendix A.

The site was abandoned as part of the DEW Line system in October 1963, and the responsibility for the site was assumed by Indian and Northern Affairs Canada (INAC). Since that time, the POL tanks at both the station and the beach have been removed. The warehouse, garage and module train structures have also been dismantled and removed from the station area leaving behind the concrete and wood foundations with miscellaneous debris. A section of the module train building (powerhouse section) remains onsite. The fate of the POL tanks and removed structures are undetermined. The radar tower has been felled and is lying to the west of the module train.

2.2 Previous Investigations

A Phase II ESA was completed at CAM-A Sturt Point, in 1994 by the Environmental Sciences Group (ESG 1995). This investigation was part of a large assessment program looking at multiple DEW Line sites. This study formed the basis for planning the 2010 Phase III ESA. The following report was available for review:

 Environmental Sciences Group. 1995. Environmental Study of Abandoned DEW Line Sites III: Six Intermediate Sites in the Canadian Arctic. Volumes I, II and III.

Two other reports were identified by PWGSC; however, they were not provided for review by AECOM as it was noted they had been substantially summarized in the ESG report. The two other reports were completed by Andzans and Associates (1984) and Environmental Protection, Western and Northern Region (1986).

2.3 Description of the Environment

A review of the historical aerial photography for the site was completed as part of the site investigation planning. The historical aerial photography available for the site was from 1964 at a scale of approximately 1:20,000, and can be found in Appendix A. The air photo review provided evidence of past land use, operational practices, and site development, all of which give insight into the potential environmental impacts. The air photos also allowed the evaluation of terrain types, and previous borrow sources.

2.3.1 Climate

The climate at CAM-A includes long cold winters and short mild summers. Average monthly and annual weather data has been measured at a nearby station (Cambridge Bay, Nunavut, 69° 6.483' N, 105° 8.300' W, elevation 27.40 m, data from 1971 to 2000, Canadian Climate Normals, Environment Canada) and summarized in the following table.

Table 2-1 - Meteorology, Precipitation and Temperature profiles at CAM-M, Cambridge Bay

Month	Daily Maximum (°C)	Daily Minimum (°C)	Daily Mean (°C)	Extreme Maximum (°C)	Extreme Minimum (°C)	Rainfall (mm)	Snowfall (cm)	Snow at Month- end (cm)
January	-29.3	-36.3	-32.8	7.8	-52.8	0	5.6	22
February	-29.3	-36.6	-33.0	-9.4	-50.6	0	6.4	26
March	-25.7	-33.7	-29.7	-6.1	-48.3	0	7.4	30
April	-16.7	-26.0	-21.4	6.2	-42.8	0.1	7.5	32
May	-5.3	-13.0	-9.2	13.0	-35.0	1.6	9.3	22
June	5.6	-0.8	2.4	23.3	-17.8	9.8	2.8	0
July	12.3	4.6	8.4	28.9	-1.7	21.7	0	0
August	9.4	3.4	6.4	26.1	-8.9	24.5	2.2	0
September	1.9	-2.5	-0.3	15.6	-17.2	11.4	8.9	2
October	-8.1	-14.9	-11.5	6.9	-33.0	0.4	16.2	12
November	-19.3	-26.5	-23.0	0	-42.2	0	9.3	16
December	-26.1	-33.0	-29.6	-4.8	-49.4	0	6.3	20

2.3.2 Ecoregion

The CAM-A site is part of the Northern Arctic ecozone, and specifically, the Amundsen Gulf Lowlands. This ecoregion occurs predominantly on southern Victoria Island, and to a minor extent on the mainland.

2.3.3 Geology

The site is characterized by hummocks, low rolling hills and raised beaches composed of coarse-grained gravel over bedrock.

2.3.4 Land Use

Current land use is limited to hunting and occasional trapping.

2.3.5 Vegetation

Vegetation in the Amundsen Gulf Lowlands ecoregion is characterized by a nearly continuous cover of dwarf tundra vegetation, consisting of dwarf birch, willow, northern Labrador tea, dryas spp., and vaccinium spp. Tall dwarf birch, willow, and alder occur on warm sites; wet sites are dominated by willow and sedge.

As noted in the 1995 ESG report, there is very little soil to support vegetation at the station area plateau; however, in undisturbed areas on the site a fairly continuous vegetation cover was present. Species present include grasses (poa spp.), willows (salix spp.) and sedges (carex spp.). A detailed list of all vegetation species present is provided in the 1995 ESG report.

2.3.6 Wildlife

Characteristic wildlife of the region includes muskox, caribou, arctic hare, arctic fox, snowy owl, raptors, polar bear, seal, seabirds, and waterfowl. Specific wildlife identified during the 2010 site investigation included arctic hare, muskox and geese. Muskox, hare and caribou droppings were also noted around the site.

3. Investigation

3.1 Contaminated Soil Delineation

3.1.1 Methodology

The investigation and delineation of contaminated soil at CAM-A was completed for the contaminants of concern identified under the INAC Abandoned Military Site Remediation Protocol: arsenic, cadmium, cobalt, copper, lead, nickel, zinc, and PCBs (INAC 2009). PCB and metal soil contamination at DEW Line sites tends to be restricted to surface or shallow depth. Typical source areas for these contaminants are well documented from previous DEW Line site investigations and were the focus of the 1995 investigation by ESG.

Delineation of petroleum hydrocarbon (PHC) impacts was completed using the INAC Arctic PHC Evaluation Process, which is a component of the INAC Abandoned Military Site Remediation Protocol (2009). The methodology is based on total petroleum hydrocarbon (TPH) criteria. TPH identity is broken down according to two types: Type A and Type B. Type A is comprised of heavier, less mobile hydrocarbons (such as lubricating oil) and includes the F3 and F4 hydrocarbon fractions, while Type B is comprised of the lighter, more mobile fractions such as those encountered in fuel oil and includes the F1, F2 and F3 hydrocarbon fractions. The dominant hydrocarbon type is defined by the percentage of the sum of F3 and F4, relative to the sum of F1 to F4 (total TPH). For Type A contaminated soil, the sum of F3 plus F4 must be greater than 70% of the total TPH concentration and the F2 concentration must be less than the F4 concentration.

Soil samples were collected in shallow test pits excavated by hand or in deeper test pits excavated using a small backhoe attachment mounted on an ATV (quadivator). A tag with a numerical identifier was placed where samples were taken to allow the position to be surveyed, and to allow location of the samples during the eventual site cleanup. The identifier on each tag corresponds to the individual sample number. Sequential tags were placed where more than one sample was taken at any particular location.

Samples were collected with a metal shovel or trowel that was cleaned between samples with a "soil wash" or wiped, as required. Samples were generally collected over a 0.3 m depth below ground surface (bgs) interval and the soil placed in jars provided by the laboratory. The jars were completely filled (no headspace) and the samples kept cool until shipment to the laboratory. Field duplicates were collected for approximately 10% of samples, given a separate numerical label and submitted blind to the laboratory. Typically, field duplicate pairs were collected at sample numbers 0/1 (e.g. 10/11). A review of quality assurance and quality control (QA/QC) for field and laboratory methodologies is provided in Section 3.11 and Table B8 in Appendix B.

Where the contaminant levels from the 1994 investigation were close to the remedial criteria, a surficial soil sample was collected at these locations in 2010 to confirm the contaminant levels. During the course of the 2010 investigation, additional areas where contamination was suspected were investigated.

The manner in which the investigation of PHC impacts was completed depended on whether the expected impacts were Type A (F3-F4 fraction), such as at lubricating oil stains, or fuel oil impacts Type B (F1, F2 and F3 fractions). Type A PHC impacts can often be defined by the limits of visual staining. Surficial and shallow depth soil samples

were collected within the most heavily impacted area of the stain to identify maximum contaminant concentrations and the depth to which impacts persisted.

Type B (fuel oil) impacts were investigated with the collection of surface and depth samples. Initial sample locations were targeted to source areas such as POL pads. If impacts were identified in the source areas, then additional test pits were completed surrounding the source, targeted to intercept expected migration pathways. Although the excavation equipment did not generally allow for excavation of the full active layer depth, samples were collected as deep as could be achieved. The presence of staining or odour was also noted. Test pits were logged to identify soil types and saturation levels to assist in interpretation of data and contaminant migration pathways. Bulk soil samples were collected to determine grain size distribution in the primary hydrocarbon-impacted areas.

Contaminated soils that are regulated should be remediated and/or disposed of in compliance with the applicable regulations. Contaminated soils that are not regulated or deemed hazardous should be remediated to meet the DEW Line Clean Up Criteria (DCC) for Soil. Hydrocarbon impacted soils will be evaluated using the Remedial Objectives – Hydrocarbon Contaminated Soil – INAC Abandoned Military Sites included in the 2009 Protocol. Where multiple contaminants are present in the soils, the most conservative remedial option that addresses both contaminant types will be applied.

All soils with PCB concentrations of 50 parts per million (ppm) or higher are classified as PCB Waste under the Canadian Environmental Protection Act (CEPA 1999). Their handling and disposal are governed by the regulations, with a requirement for off-site disposal at a licensed facility. All soil with metal or PCB concentrations exceeding the DCC (but with PCB concentrations below CEPA) will be either disposed of off-site or encapsulated on-site.

Soil sampling around lobes of buried debris was carried out by targeting locations both upgradient and downgradient of the lobe. Downgradient sample locations were typically about 2 and 10 m from the edge of the lobe along the same pathway. Generally, samples were collected near surface and 0.3 m depth.

3.1.2 Results

The results of the contaminated soil delineation are described in the following sections, specifically where exceedances were detected. The contaminant perimeters (and estimated depths) were generated by assuming a linear rate of contaminant concentration decline between adjacent samples (i.e. the concentration difference between adjacent samples was divided by the distance between them to derive a rate of concentration decline/metre and determine the point at which the concentration would be equivalent to the criterion).

Complete summaries of the analytical results for the sample locations shown on the site drawings can be found in Tables B1 to B7 in Appendix B. An overall summary of the contaminated soil areas identified at CAM-A is presented in Table 3-1.

			Tier I			Tier II		PHC Type B				
Location	Figure	Contaminants	Area (m²)	Depth (m)	Volume (m³)	Area (m²)	Depth (m)	Volume (m³)	Area (m²)	Depth (m)	Volume (m³)	Comments
Beach		Type B PHCs	-	-	-	-	-	-	257.6	0.5	128.8	Delineated
POL	10	Type B PHCs	-	-	-	-	-	-	850	0.5-1.0	425	Not delineated
Garage	4	Tier II PCBs	-	-	-	18.5	0.5	9.25	-	-	-	Delineated laterally not vertically (assumed max depth of 0.5 m bgs)
			-	-	-	0.5	0.15	0.08	-	-	-	Delineated (contents of sump)
Mod Train	4	Tier I PCBs	39.5	0.2 (0.3-0.5)	7.9	-	-	-	-	-	-	Delineated laterally not vertically (assumed max depth of 0.5 m bgs)
Irain		Tier II PCBs; Type B PHCs	-	-	-	71.6	0.3	21.48	571	1.0	571	Delineated
Sewage			41	0.3	12.3	-	-	-	-	-	-	
Outfall	6	Tier I PCBs	45	0.3	13.5	-	-	-	-	-	-	Delineated
Julian			31	0.3	9.3	-	-	-	-	-	-	
Worked Area: Lobe J	7	Tier II Lead (Pb)	-	-	-	147.3	0.3	44.19	-	-	-	Delineated
	То	tal Volumes (m³)		43 m ³			75 m ³		1	1,124.8 m	3	1,242.8 m ³ (Site total)

Table 3-1 - Summary of Contaminated Soil Areas at CAM-A

3.1.2.1 Airstrip

The airstrip is located approximately 500 m north of the station area and in 1994 was noted to be in good condition with a few minor pieces of debris located near the east end (a few barrels, bolts, wood). Four (4) samples were collected in the airstrip area in 1994. Three (3) were on or adjacent to the airstrip and one (1) was in a drainage path away from the airstrip. No contamination was identified.

In 2010, the airstrip area was reviewed on site and there were no indications of surficial hydrocarbon impacts. Therefore, no samples were specifically collected in this area.

3.1.2.2 Barrel Area A & B

Two (2) barrel piles and one (1) former vehicle storage area were identified at the site in 1994. Barrel Pile A and associated vehicle storage area were located in the vicinity of Landfill A at the end of the access road, southwest of the station area. There were twenty-seven (27) barrels identified in Barrel Pile A, some of which were leaking. Associated with Barrel Pile A were such items as wooden pallets, a barrel stove heater, scrap metal, and a USAF truck box. In 1994, three (3) soil samples were taken from Barrel Pile A, one (1) amongst the barrels and two (2) in drainage paths from the pile.

Barrel Pile B was located at the beach, west of the beach POL area and consisted of about 285 barrels, some of which contained liquid. Other debris associated with the Barrel Pile B included scrap metal caps and a large wooden cable spool. In 1994, two (2) soil samples were collected from Barrel Pile B, one adjacent to the pile and one (1) in a drainage path from the pile.

A former vehicle/equipment storage area was located adjacent to the Barrel Pile B, some barrels that had been buried and were partially exposed. In 1994, two (2) soil samples were taken in the former vehicle/equipment storage area; one (1) was taken near the buried drums.

In the 2010 investigation, Barrel Areas A and B were reviewed on site and there were no indications of surficial hydrocarbon impacts, as most of the areas had grown over with vegetation. No barrels were noted to contain contents or to be leaking. Therefore, no samples were specifically collected in these areas. The locations of both areas have been identified in Figure 2.

3.1.2.3 Beach POL

The beach POL area, located approximately 800 m southeast of the station was relatively free of debris. The POL tanks were removed, but the concrete foundations for the tanks and the pipeline barrel markers were still in place. In 1994, approximately thirty (30) barrels were noted in this area.

In 1994, three (3) soil samples were taken in this area; one (1) was adjacent to the tank pads and two (2) were collected along drainage paths away from the POL area. It was noted that one of the samples had a distinct hydrocarbon odour, although no metal or PCB contamination was detected.

In the 2010 investigation, fifty-five (55) samples were collected from the Beach POL area for PHC analysis. Of those 55 samples; twenty-nine (29) were collected at a depth of 0.1 m bgs; four (4) were collected between depths of 0.3 m and 0.4 m bgs; thirteen (13) were collected at a depth of 0.5 m bgs; four (4) were collected between depths of 0.7 m and 0.9 m bgs; and fourteen were collected at a depth of 1.0 m bgs.

The PHC results indicate there are both Type A and Type B hydrocarbons around the beach POL, however only two (2) of the samples collected exceeded criteria. Sample 867 collected on the pad at a depth of 0.1 m bgs had a Type B PHC result of 2,538 ppm which exceeds criteria. It is not anticipated that this impact would extend off the pad as the pad is elevated from natural ground surface. The estimated aerial extent of the Type B PHC contamination on the Beach POL pad is approximately 257.6 m² at a depth of 0.5 m bgs. (Refer to Figure 10) The estimated volume of Type B PHCs is 128.8 m³.

Sample 904, collected downgradient of the POL pad, did not exceed the criteria for Type B PHCs (result of 1,268 ppm), however due to its proximity to the ocean (within 30 m), it does exceed the criteria for F2 (result 1,160 ppm). The estimated aerial extent of the PHC contamination downgradient of the Beach POL pad is approximately 850 m² at a depth of 1.0 m bgs. It should be noted that the top 0.5 m of material in this area did not exceed criteria. The depth of contaminated soil is calculated as 0.5 m, assuming that the top 0.5 m layer of non-contaminated material may be stripped and replaced. (Refer to Figure 10) The estimated volume of Type B PHCs is 425 m³.

In this area, permafrost was noted to range from 0.7 m to approximately 1.0 m below ground surface, with the Type B contamination typically extending down to permafrost. The result for bulk grain size sample collected with sample 960 indicated that 98.8% of the soil was greater than 75 microns in size, indicating the soils in the beach POL area are coarse grained. A summary of the analytical results is presented in Table B1 in Appendix B.

3.1.2.4 End of POL Pipe and/or Pipe Break

During the 2010 investigation, the length of the POL line was assessed to determine if there were any surficial stain areas, or locations where the pipe was broken, resulting in a potential spill. No locations were noted where the POL pipe appeared to have been cut. Contamination was not suspected along the POL pipe line.

3.1.2.5 Garage

In 1994, four (4) samples collected in the station proximity focused on the garage area. Although no metal contamination was noted, two (2) of the samples were noted to have a distinct hydrocarbon odour and one (1) of the two (2) samples had PCB concentrations that exceeded DCC Tier I. Of the samples analyzed in this area, one (1)

sample taken from the east end of the garage foundation (G5109) contained PCBs that exceeded DCC Tier I (1.1 ppm).

As part of the 2010 investigation, forty-eight (48) soil samples were collected for PHCs, PCBs, and metals. One (1) of the samples was placed on hold. Of the forty-seven (47) samples analyzed, thirty-seven (37) were for PHCs only; twelve (12) were for PCBs only; and two (2) samples were analyzed for both PHCs and PCBs. Eleven (11) samples were analyzed for metals.

Of the twelve (12) samples analyzed for PCBs, seven (7) of the samples were surface samples taken at 0.1 m bgs; three (3) of the samples were subsurface samples taken at a depth of 0.3 m bgs; and two (2) of the samples were subsurface samples taken at a depth of 0.4 m bgs. All of the samples analyzed for metals were taken at a depth of 0.1 m bgs.

Of the thirty-eight (38) samples analyzed for PHCs, twelve (12) samples were surface taken at 0.1 m bgs; two (2) of the samples were subsurface samples taken at a depth of 0.3 m bgs; eleven (11) of the subsurface samples were taken at a depth of 0.4 m bgs; and twelve (12) of the subsurface sample were taken at a depth of 1.0 m bgs.

PCBs were detected at one sample location on the north side of the concrete garage pad. The results for sample 806 at a depth of 0.1 m was 17.7 ppm, which exceeds Tier II criteria and sample 807 (0.4 m) had a result of 5.19 ppm, also exceeding the Tier II criteria. This sample point is delineated laterally, but not vertically. It is assumed that the depth of contamination will not exceed 0.5 m bgs. The estimated aerial extent of the PCB contamination at the north end of the garage pad is approximately 18.5 m² at a depth of 0.5 m bgs. (Refer to Figure 4) The estimated volume of Tier II PCBs is 9.25 m³.

Tier II metals and PCBs were detected on one sample location taken from material found in the sump on concrete garage pad. Sample 839 had concentrations that exceeded the criteria for cadmium (8.4 ppm); lead (840 ppm); zinc (2,870 ppm) and PCBs (18.4 ppm). There were two sumps located on the garage pad, the sumps were approximately 0.25 m² in size and 0.3 m deep. The layer of impacted material inside the sump was approximately 0.15 m in depth. The estimated volume of Tier II material for both sumps is 0.08 m³.

Both Type A and Type B PHCs were detected around the garage; however, the results were all below the INAC Criteria. The analytical results for metals analysis did not indicate any concentrations that were elevated above INAC Criteria. A summary of the analytical results is presented in Table B3 in Appendix B.

3.1.2.6 Module Train

In 1994, six (6) soil samples were collected in the module train area. Although no metals or hydrocarbon odours were noted, one (1) sample exceeded DCC-II criteria for PCBs.

In 2010, samples were collected at surface and shallow depth to delineate PCBs. Test pitting over the full depth of the active layer was completed at the powerhouse end of the building to investigate hydrocarbon impacts. In the 2010 investigation, forty-seven (47) samples were submitted for PHCs, PCBs and metals analysis from the former module train area (Refer to Figure 4). Of the 47 soil samples submitted for analysis; thirty-seven (37) were submitted for PHCs; fourteen (14) were submitted for PCBs and eleven (11) were submitted for metals. Nineteen (19) of the samples were collected at a depth of 0.1 m bgs; eight (8) samples were between depths of 0.3 m to 0.4 m bgs; ten (10) samples were collected between depths of 0.5 m to 0.6 m bgs; and ten (10) samples were collected between depths of 0.9 m to 1.0 m bgs.

PCBs were detected in two (2) testpit locations. The results for samples 1310, 1311 and 1313 taken at a depth of 0.1 m bgs were above Tier II criteria (6.88 ppm, 6.89 ppm, and 8.21 ppm respectively). The results for sample 1312, collected at 0.3 m bgs was above Tier I criteria (2.26 ppm). All other results for PCBs were below the INAC Criteria.

The impacts in this area are delineated laterally, but not vertically. It is assumed that the depth of contamination will not exceed 0.5 m bgs. The estimated aerial extent of the Tier II PCB contamination at the west end of the module train foundation is approximately 71.6 m² at a depth of 0.3 m bgs. The estimated volume of Tier II PCBs is 21.48 m³. The estimated aerial extent of the Tier I PCB contamination at the west end of the module train foundation is approximately 39.5 m² at a depth of 0.2 m bgs (between 0.3 m and 0.5 m bgs). The estimated volume of Tier I PCBs is 7.9 m³.

PHCs were detected in some of the testpits surrounding the module train foundation. The exceedance of PHCs criteria was noted in two (2) testpit locations in three (3) samples analyzed. The results for sample 1297 collected at 0.1 m bgs was 5670 ppm for Type B PHCs. The results for sample 1295 and 1298, collected at 0.5 m bgs were 4503 ppm and 6630 ppm Type B PHCs respectively. This hydrocarbon plume is not anticipated to extend off the pad, as noted in the adjacent testpitting program completed for the nearby station POL. The estimated aerial extent of the PHC contamination at the east end of the module train foundation is approximately 571 m² at a depth of 1.0 m bgs. The estimated volume of Type B PHCs is 571 m³.

The analytical results for metals analysis did not indicate any concentrations that were elevated above INAC Criteria. A summary of the analytical results is presented in Table B3 in Appendix B.

3.1.2.7 Sewage Outfall

The sewage outfall area is located to the northwest of the module train. The barrel markers, portions of the pipeline, and wooden supports were still in the channel area. The outfall path was identified as a distinct, well defined channel extending approximately 300 m to a lagoon area. Six (6) samples were collected from the outfall area during the 1994 site investigation. Two (2) samples contained concentrations of PCBs that exceeded DCC Tier I Criteria. O5100, a sample from the beginning of the outfall and O5103, a sample from near the end of the outfall contained PCBs (1.9 and 1.4 ppm respectively) in excess of DCC Tier I. Remaining samples in the area were noted to be less than DCC Criteria but considerably higher than background.

In 2010, a total of one hundred and eleven (111) soil samples were taken in the outfall area, of those eighty-two (82) soil samples were placed on hold at the laboratory. Of the twenty-nine (29) samples analyzed twenty-one (21) were surface samples taken at a depth of 0.1 m bgs and eight (8) were subsurface samples collected at a depth of 0.3 m bgs. In an effort to obtain delineation, the sampling grid included sampling of the centre of the channel; the toe of the channel slope; top of channel slope; and an approximate five (5) metre setback from the top of the channel slope. The 2010 investigation focused on the assessment of PCB and inorganics (metal) impacts.

The results of the 2010 investigation identified Tier I PCBs in three (3) locations along the length of the sewage outfall channel. The Tier I impacts were limited to exceedances in three (3) surficial soil samples, and are delineated. The estimated aerial extent of the contamination at the south end of the channel is approximately 31 m² at a depth of 0.3 m bgs (volume of 9.3 m³). The estimated aerial extent of the contamination located in the middle of the channel is approximately 45 m² at a depth of 0.3 m bgs (volume of 13.5 m³). The estimated aerial extent of the contamination near the north end of the channel is approximately 41 m² at a depth of 0.3 m bgs (volume of 12.3 m³). (Refer to Figure 6) The total estimated volume of Tier I PCBs is 35.1 m³.

The result for grain size taken with sample 348 indicated that 96.2% of the soil was greater than 75 microns in size, which indicates the grain size is coarse. The analytical results for metals analysis did not indicate any concentrations that were elevated above INAC Criteria. A summary of the analytical results is presented in Table B2 in Appendix B.

3.1.2.8 Station POL

All four (4) previous POL tanks have been removed from the site. The pumphouse and pipeline have also been removed; however the foundations are still in place. In 1994 three (3) samples collected in the station proximity

focused on the POL area. Although no metal or PCB contamination was noted, two (2) of the samples were noted to have a distinct hydrocarbon odour. The potential for hydrocarbon impacts specifically and DCC Criteria in this area was assessed in 2010.

In the 2010 assessment, sixty-five (65) samples were submitted for PHC analysis. Of the 65 samples submitted; twenty-four (24) were collected at depth of 0.1 m bgs; two (2) were collected at a depth of 0.25 m bgs; seven (7) were collected at a depth of 0.4 m bgs; fourteen (14) were collected at a depth of 0.5 m bgs; eight (8) samples were collected between depths of 0.6 m to 0.8 m bgs; and ten (10) subsurface soil samples were collected at a depth of 1.0 m bgs. (Refer to Figure 5)

The PHC results indicate there were both Type A and Type B hydrocarbons noted in the area; however, none of the samples exceeded the criteria for PHCs. The depth of samples varied in the area, as groundwater was noted to be very shallow in some testpit locations. Permafrost was typically found in the range of 0.7 to 1.0 m below grade. A summary of the analytical results is presented in Table B3 in Appendix B.

The result for grain size taken with sample 978 indicated that 87.5% of the soil was greater than 75 microns in size, which indicates the soils in the station POL area are coarse grained.

3.1.2.9 Warehouse

Two (2) samples were collected in the warehouse vicinity in 1994; no contamination was detected. Hydrocarbon impacts were expected to be primarily Type B, and expected to have been on the side of the warehouse where the diesel supply tanks would have been located.

In the 2010 investigation, a total of thirty-four (34) soil samples were collected in a halo pattern surrounding the warehouse foundation. All of the 34 soil samples collected were submitted for PHCs and surface samples were submitted for metals. Of those 34 samples; thirteen (13) were collected from a depth of 0.1 m bgs; seven (7) were collected from a depth of 0.4 m bgs; five (5) were collected from a depth of 0.5 m bgs; and nine subsurface samples were collected from a depth of 1.0 m bgs.

The testpitting surrounded the entire warehouse foundation, with additional testpitting completed near the northwest corner of the pad near the former diesel fuel ASTs. The results indicate that there were both Type and A and Type B PHCs within the area, however none of the samples exceeded the INAC criteria for PHCs. (Refer to Figure 4) The analytical results for metals analysis did not indicate any concentrations that were elevated above INAC Criteria. A summary of the analytical results is presented in Table B3 in Appendix B.

The result for grain size taken with sample 859 indicated that 95.3% of the soil was greater than 75 microns in size, which indicate the soils in the warehouse area are coarse grained.

3.1.2.10 Worked Areas

Lobe I, Figure 7

In 2010, a sampling program was completed in the surface debris area identified as Lobe I. In 1994, a sample taken in this area indicated an exceedance of cadmium. In 2010, fourteen (14) soil samples were collected in a halo pattern surrounding the debris area. Two (2) of the samples were analyzed. The results indicate that there were no metals exceedances. A summary of the analytical results is presented in Table B4 in Appendix B.

Lobe J, Figure 7

In 2010, a sampling program was completed in the surface debris area identified as Lobe J. A total of twelve (12) soil samples were collected in a halo pattern surrounding the debris area. Nine (9) of the samples were analyzed. The results indicate that there was Tier II exceedances of lead in the center of the area (sample 1354, 543 ppm). The

Tier II exceedance has been delineated. The estimated aerial extent of the contamination is approximately 147.3 m² at a depth of 0.3 m bgs. The estimated volume of Tier II soil is 44.19 m³. A summary of the analytical results is presented in Table B4 in Appendix B.

Lobe M (northwest of Station Area), Figure 11

In 2010, a sampling program was completed in the surface debris area identified as Lobe M. A total of ten (10) soil samples were collected in a halo pattern surrounding the debris area. Two (2) of the samples were analyzed. The results indicate that there were no exceedance metals or PCBs. A summary of the analytical results is presented in Table B4 in Appendix B.

3.2 Assessment of Existing Buried Debris Areas (Dumps)

The assessment of dumps at CAM-A was completed with the goal of classifying the buried debris areas according to the three categories specified under the INAC Abandoned Military Site Remediation Protocol, which are:

Class A: Waste disposal area (WDA or buried debris) is located in an unstable, high erosion location. Remediation will involve relocation of buried debris to an engineered landfill. A WDA located at an elevation of less than two (2) metres above mean sea level will be removed.

Class B: The WDA is in a suitable, stable location, but there is evidence of contaminant migration. Remedial solutions include the installation of an engineered containment system, or relocation, whichever is deemed more cost effective.

Class C: The WDA is in a suitable, stable location, and there is no evidence of contaminant migration. In such cases, the debris may be left in place, with the placement of additional granular cover to ensure erosion protection and proper drainage.

3.2.1 Methodology

Prior to the field investigation, historical air photos taken during site operation in 1964 were reviewed to identify potential buried debris locations in addition to those previously identified. In general, these areas are associated with disturbed ground not associated with borrow extraction. The identification and limits of these areas were used to target areas for geophysical surveys, and were referred to in the site investigation plan as 'areas to be investigated'.

Upon arrival on site, each of the potential buried debris locations was ground-truthed to confirm that geophysical surveys were required, and if so, the geophysical survey boundaries were laid out on the ground with pin flags. The geophysical survey was completed using a GSM-19 Overhauser Effect Gradiometer with integrated GPS. The total field and vertical magnetic gradient survey data were collected at 1 second intervals as the operator walked over areas suspected of containing buried metallic debris. The magnetic survey data was used to identify the size and configuration of the buried debris. The magnetic anomaly perimeters were laid out in the field with pin-flags and the lobes identified alphabetically, i.e., Lobe A, prior to the commencement of the intrusive investigations. Each anomaly perimeter was modified as required to omit areas where metallic surface debris was situated within the surveyed area. The locations of the pin flags were surveyed before their removal upon completion of the site investigation.

To investigate a buried debris location as a potential contaminant source, soil samples were collected up and downgradient of the anomalies. Downgradient concentrations of naturally occurring inorganic elements (inorganics), were compared with upgradient concentrations, as well as average concentrations for all buried debris assessment samples at the site to identify potential contaminant migration away from the lobes. Where a downgradient concentration was three times the concentration of the average, it was flagged as potential evidence of contaminant

migration and further investigated in terms of its location, whether there was continued evidence of contaminant migration further downgradient, and whether there were multiple elevated contaminants. If any anthropogenic contaminants were detected in downgradient samples, this was considered evidence of contaminant migration, unless there was an upgradient source (whose inputs would be captured by the upgradient sample).

Where potential contamination was suspected based on staining or specific debris exposure, samples were also collected to identify and delineate contamination. To help in establishing the environmental risk a particular buried debris area poses, information regarding downgradient aquatic and terrestrial habitat was noted, as well as physical characteristics that affect the potential for contaminant migration. The geotechnical stability of the buried debris location was also assessed. Evidence of, or potential for, erosion or slope failure was assessed at each location.

3.2.2 Geophysical Results

There were fourteen (14) buried debris areas identified on site in the 2010 field investigation at CAM-A. Each of these is described below:

Airstrip

 No buried debris areas were identified in this location during the geophysical field investigation. The area was assessed as a surface debris area.

Beach POL (Lobes S & T, Figure 10)

- No buried debris areas were identified in this area during the geophysical field investigation. The area was assessed for surface debris.
- During the post-field data processing, Associated Geosciences identified two (2) lobes with a relatively low
 magnetic response. The lobes are identified in Figure 10 as Lobes S and T. Based on the results of the
 investigation for surface debris, these lobes are considered to be surface debris areas and were assessed as
 such during the field program.

East of Station Area (Lobes N & O, Figure 2)

Two (2) buried debris lobes were identified in this location during the geophysical field investigation, however, it
was determined that these areas of localized partially buried debris and surface debris would be assessed as a
surface debris area rather than a buried debris area.

Landfill A (Lobes A, B, C, D & E, Figure 8)

- Five (5) lobes of buried debris were identified in this area during the geophysical field investigation.
- Lobes A through D were clustered in a central location on a mound of material elevated from the surrounding topography. These four (4) lobes were assessed as part of the WDA assessment for Landfill A.
- Lobe E was identified in the field, however, it was determined that this area of localized partially buried debris and surface debris would be assessed as a surface debris area rather than a buried debris area.

Landfill B (Lobes F, G & H, Figure 9)

- Three (3) lobes of buried debris were identified in this area during the geophysical field investigation.
- Lobes F through H were identified as three separate lobes which appeared mounded from the surrounding topography. These three (3) lobes were assessed as apart of the WDA assessment for Landfill B.

Northwest of Station Area (Lobe M, Figure 11)

• One (1) lobe of buried debris was identified in this location during the geophysical field investigation, however, it was determined that this area of localized partially buried debris and surface debris would be assessed as a surface debris area rather than a buried debris area.

 Based on the staining noted near empty barrels in this area, surface and subsurface sampling was completed for Lobe M.

South of Station Area, Former Inuit Pad (Lobes P, Q & R, Figure 2)

 No buried debris areas were identified in this location during the investigation. The area was assessed as a surface debris area rather than a buried debris area.

Worked Area (Lobes I, J, K, L, Figure 7)

- Three (3) lobes were identified in this location during the geophysical field investigation, however, it was
 determined that these areas of localized, partially buried debris and surface debris would be assessed as a
 surface debris area rather than a buried debris area.
- The fourth lobe, Lobe L, was identified during post-field data processing by Associated Geosciences. Based on the results of the investigation for surface debris, this lobe has been assessed as surface debris areas rather than a buried debris areas.
- Surface and subsurface sampling was completed for Lobes I and J.

The results of the dump assessments and estimates of material volumes assumed to be associated with the waste component breakdowns are summarized in Table 3-2. Sampling for landfill lobes was completed with one testpit immediately at the toe of the lobe (approximately 2 m downgradient, when toe is well defined); and downgradient sampling with two (2) rows surrounding the lobe in a "halo" pattern. The first row of testpits was located approx. 6 to 8 m downgradient, with ten (10) m spacing between testpit locations. Three (3) testpits were also completed upgradient of the landfill lobes. The results of the assessment and the specific volumes associated with the waste component breakdowns are summarized in Table 3-2.

Table 3-2 - Existing Buried Debris Area Assessment Summary

Area	Landfill A	Landfill B			
Lobes	Four (4) lobes within one mound (Lobes A, B, C, D)	Three (3) distinct lobes (F, G & H)			
Reference Figure	Figure 8	Figure 9			
Reference Photo	E-101, E-107, E-108, E-109	E-95, E-96, E-97, E-98, E-99, E-100			
Estimated Aerial Extent	1,500 m ² (30 m x 50 m) Landfill is a mounded, well defined and covered.	Landfill lobes are mounded, well defined and mostly covered. F: 208 m² (8 m x 26 m); G: 495 m² (33 m x 15 m); and H: 128 m² (4 m x 32 m)			
Estimated Depth	Lobe is raised from surrounding land. Approximately 1.5 to 2.0 m above existing ground. (2,625 m ³)	Lobes are raised from the surrounding land. Approx. depth above existing ground: Lobe F: 1.0 m (208 m³); Lobe G: 1.5 m (743 m³); and Lobe H: 0.5 m (64 m³)			
Estimated Volume of Hazardous Material (1%)	26 m ³	Lobe F: 2.1 m ³ ; Lobe G: 7.4 m ³ ; Lobe H: 0.6 m ³			
Estimated Volume of Non- Hazardous Material (20%)	525 m ³	Lobe F: 42 m ³ ; Lobe G: 149 m ³ ; Lobe H: 13 m ³			
Estimated Volume of Tier I Contaminated Soils (10%)	263 m ³	Lobe F: 21 m ³ ; Lobe G: 74 m ³ ; Lobe H: 6 m ³			
Estimated Volume of Tier II Contaminated Soils (10%)	263 m ³	Lobe F: 21 m³; Lobe G: 74 m³; Lobe H: 6 m³;			
Estimated Volume of Clean Fill	1,811 m ³	Lobe F: 123 m ³ ; Lobe G: 439 m ³ ; Lobe H: 38 m ³			
Evidence of contaminate migration	No	No			
Potential barriers to contaminant migration	No Topography d/g is slightly hummocky	No Topography d/g is slightly hummocky			

Presence of Exposed Debris	Yes, both surface and partially buried (metal, barrels, domestic glass & tin cans)	Yes, both surface and partially buried (metals noted)		
Slope of area (Topography)	Gentle slope towards south towards the ocean	Gentle slope towards south and west towards the ocean		
Soil/sediment type (Cover Material)	Large cobbles on surface, mostly coarse sand. Some gravel and organics	Large cobbles on surface, mostly coarse sand. Some gravel and organics		
Evidence of Erosion	No	No		
Distance to drainage course	No distinct drainage channels noted.	No distinct drainage courses were noted; however, small drainage pattern noted approximately 25 m d of Lobe G.		
Drainage (Active or Dry)	Dry	Dry		
Distance to standing freshwater body	Surface water body to south (~90 m). Surface water to west (~175 m).	One surface water body to the west (~90 m from Lobe G).		
Approximate size of standing freshwater body	Range in size from approx. 400 m ² to 5,000 m ² . (Both are shallow.)	Approximately 900 m ² (shallow)		
Description of significant aquatic life in standing freshwater body	No aquatic life noted.	No aquatic life noted.		
Distance to marine environment	Approx. 600 m	>750 m		
Percent Vegetation Cover downgradient (d/g) and distance to vegetation cover	First 20 m d/g: approx. 50% vegetation coverage. Greater than 20 m d/g from toe of lobe, veg. coverage is >90%. It should be noted that the surface area d/g was scraped for material to cover the landfill.	Approx. vegetation coverage: 60% for Lobe F; 90% for Lobe G; 90% for Lobe H Distance to vegetation coverage: 20 m d/g for Lobe F; at the toe for Lobe G; and at the toe for Lobe H. It should be noted that the surface area d/g of Lobe F was scraped for material to cover the landfill.		
Type of vegetation	Typical for site (willows, sedges, moss)	Typical for site (willows, sedges, moss)		
Evidence of stressed vegetation	No (n/a)	No (n/a)		
Description of burrowing animals in contaminated area.	No burrows noted (n/a)	No burrows noted (n/a)		
Description of birds and animals at the site.	Birds (snow buntings). Muskox and hare droppings were noted.	Birds (snow buntings). Muskox and hare droppings were noted.		
Evidence of human presence.	No	No		
Distance to permanent community	n/a	n/a		
Distance to temporary community	n/a	n/a		
Comments	Class C: The WDA is in a stable location, and there is no evidence of contaminant migration. In such cases, the debris may be left in place, with the placement of additional granular cover to ensure erosion protection and proper drainage.	Class C: The WDA is in a stable location, and there is no evidence of contaminant migration. In such cases, the debris may be left in place, with the placement of additional granular cover to ensure erosion protection and proper drainage.		

3.2.2.1 Analytical Results - Landfill A

Two (2) landfill areas were identified on site in 1994. Landfill A, the main landfill is located at the west end of the access road, southwest of the station area. Six (6) soil samples were collected from Landfill A; four (4) around the toe and two in drainage areas. The samples collected in 1994 for this landfill contained levels of PCB and inorganic elements that were compatible with background levels.

In total sixty-one (61) soil samples were taken in the Landfill A area, of those forty-two (42) soil samples were placed on hold at the laboratory. All of the nineteen (19) samples analyzed were surface samples taken at a depth of 0.1 m bgs. In an effort to obtain delineation, the sampling grid was completed in a halo pattern downgradient of the lobe identified. Six (6) surface and subsurface samples were taken upgradient of the lobe at three (3) testpit locations. Of the six (6) samples taken upgradient, only the three (3) surface samples were analyzed. The 2010 investigation focused on the assessment of inorganics and PCBs. There were no staining or odours noted during the investigation, there was no reason to suspect hydrocarbon impacts in the sampling program. The results of the 2010 investigation did not identify any impacts or exceedances above criteria for either inorganics or PCBs. (Refer to Figure 8). A summary of the analytical results is presented in Table B5 in Appendix B.

The bulk sample result from Landfill A indicates the grain size is coarse. The result for grain size taken with sample 378 indicated that 99.3% of the soil was greater than 75 microns in size.

3.2.2.2 Analytical Results - Landfill B

Landfill B was located west of the station area and north of Landfill A. There are three (3) lobes to this landfill. Some debris is exposed in the landfills including treads, cables, barrels, metal straps, wood, bed frames, tin cans, and piping. Seven (7) soil samples were collected from Landfill B, four (4) around the lobes of the landfills and three (3) in the drainage area. In 1996, there were three lobes identified with Landfill B. The samples collected in 1994 for this landfill contained levels of PCB and inorganic elements that were compatible with background levels.

In total seventy-four (74) soil samples were taken in the Landfill B area, of those forty-seven (47) soil samples were placed on hold at the laboratory. All of the twenty-seven (27) samples analyzed were surface samples taken at a depth of 0.1 m bgs. In an effort to obtain delineation, the sampling grid was completed in a halo pattern downgradient of the three (3) lobes identified. Six (6) surface and subsurface samples were taken upgradient of the lobes at three (3) testpit locations. Of the six (6) samples taken upgradient; three (3) surface samples were analyzed. The 2010 investigation focused on the assessment of inorganics and PCBs. There were no staining or odours noted during the investigation, there was no reason to suspect hydrocarbon impacts in the sampling program. The results of the 2010 investigation did not identify any impacts or exceedances above criteria for either inorganics or PCBs. (Refer to Figure 9) A summary of the analytical results is presented in Table B5 in Appendix B.

3.3 Assessment of Surface Debris and Barrels

3.3.1 Surface Debris Assessment

In 1994, scattered debris observed onsite consisted mainly of building materials (mainly in the station area) and the felled radar antenna. Existing information also indicated that there were a couple of dilapidated houses located on the beach northeast of the station with associated debris.

A surface debris inventory was completed by collecting hand-held GPS waypoints where debris was visible or where debris fields appeared to terminate. At CAM-A, there are essentially two large scattered debris areas, one which encompasses the station pad, surrounding area and beach area; and the other debris area is northeast of the site near the former Inuit houses. A total volume and description of debris types was recorded for each debris area. Photos were taken for all major areas of surface debris. Where debris was identified sporadically within a large area, an individual description will be provided on the drawings as a reference to aid in locating these locations during site clean-up.

Table 3-3 presents an inventory of surface debris by location. It should be noted that the surface debris covered extensive areas, in particular in the vicinity of the station area. While there is always the potential to miss debris during the investigation, it is felt that the majority of the areas containing debris have been identified. The extent of debris in some locations, however, prevented a detailed inventory from being completed. In many areas, extensive hand picking of small debris will be required during site clean-up.

3.3.2 Barrel Assessment

Approximately 680 barrels were identified and checked at CAM-A during the 2010 assessment. Most of the barrels were concentrated within Barrel Storage Areas A and B; along the POL Line, (which were used as markers); and

within the extents of the debris area. All of the barrels identified at CAM-A were empty, including those located at the Barrel Storage Areas. No barrel samples were collected.

Table 3-3 - Summary of Surface Debris Areas

Figure	Location	Description	Photos	Waypoint	Estimated Areal Extent (m²)	Estimated Uncrushed Volume (m³)	Estimated Crushed Volume (m³)	Estimated Crushed Hazardous Volume (m³)
2	Marker Barrels	POL markers (39) or conduit markers (29)	E-66	-	-	68 m³	13.6 m ³	-
8	Barrel Area A	Barrels (35)	E-102- E-106	-	-	35 m ³	7 m ³	-
2	Barrel Area B	Barrels (284)	E-82, E-83	W-005	-	284 m ³	56.8 m ³	-
Dahaia	Barrel Area B	Large wooden cable spool	E-84	W-006	2 m ²	6 m ³	3.1 m ³	-
Debris	Area 	One (1) light standard	l				<u> </u>	
2	Airstrip threshold Lights	(threshold light) consisting of one (1) 15 m steel channel, two (2) 5 m long round pipes, galvanized cables, and a wood marker.	E-66	W-232, W-234	2 m²	1 m³	1 m³	-
	Debris - Beach	Barrels (63)	-	-	-	63 m ³	12.6 m ³	-
	Debris - Beach	Wood debris	E-80	W-301	2 m ²	$0.5~\mathrm{m}^3$	0.25 m ³	-
2	Debris - Beach	Scrap metal	-	W-302	0.5 m ²	0.25 m ³	< 0.25 m ³	-
	Debris - Beach	Wood pallet	E-81	W-303	1 m ²	0.5 m ³	0.25 m ³	-
	Debris - Beach	Angle iron (metal stand)	E-79	W-328	3 m ²	1 m ³	0.25 m ³	-
	Debris – Landfill A	Barrels (6)	-	-	-	6 m ³	1.2 m ³	-
8	Debris – Landfill A	Metal garbage can	E-108	W-133	0.5 m ²	0.5 m ³	0.25 m ³	-
	Debris – Barrel Area A	Vehicle debris & scrap metal	E-105	-	2 m ²	0.6	0.6	-
	Debris - Landfill B	Barrels (10.5)	-	-	-	10.5 m ³	2.1 m ³	-
9	Debris – Landfill B	Partially buried cat track	E-95	W-166	3 m ²	4 m ³	2 m ³	-
	Debris – Landfill B	Partially buried/crushed 5 gal metal pails (30)	E-97	W-169	5 m ²	3 m ³	0.6 m ³	-
2	Debris – Station & Worked Area	Barrels (113)	E-87	W-067, W-073 to W-075	-	113 m ³	22.6 m ³	-
	Debris - Station	Wood pallets (3)	E-63	W-253	9 m ²	0.6 m ³	0.5 m ³	-
	Debris - Station	Wood cable roll; scrap iron, tire (1); wood and steel debris	E-64	W-255	2 m²	0.5 m ³	0.25 m ³	-
	Debris - Station	Concrete debris	E-65	W-257	0.5 m ²	0.25 m ³	0.25 m ³	-
	Debris - Station	Channel iron; steel pipe	E-19	W-263	1 m ²	0.5 m ³	0.25 m ³	-
	Debris - Station	Tin cladding; scrap iron	E-20	W-264	2 m ²	4.3 m ³	3.5 m ³	-
	Debris - Station	Steel pipe; angle iron	E-21	W-267	1 m ²	0.5 m ³	0.25 m ³	-
	Debris - Station	Wood & metal debris	E-62	W-198	18 m ²	3 m ³	2 m ³	-
	Debris - Station	Concrete antenna anchor pad x 6 pads; (3.6 m x 3.2 m x 0.6 m)	E-78	W-179	69 m²	42 m³	42 m³	-
	Debris - Station	Metal post 0.55 m stick- up	E-88	W-089	-	0.25 m ³	< 0.25 m ³	-
	Debris - Station	Steel pipe	E-90	W-098	4.2 m ²	1 m ³	0.5 m ³	-
2	Debris – Worked Area	Steel pipe	E-76	W-187	1.6 m ²	0.5 m ³	0.25 m ³	-

Figure	Location	Description	Photos	Waypoint	Estimated Areal Extent (m²)	Estimated Uncrushed Volume (m³)	Estimated Crushed Volume (m³)	Estimated Crushed Hazardous Volume (m³)
	Debris – Worked Area	Steel pipe	E-75	W-188	0.25 m ²	0.25 m ³	< 0.25 m ³	-
7	Debris – Worked Area	Steel Debris/battery cells (4)	E-71, E-72 to E-74	W-189	4 m ²	1.5 m ³	-	1.2 m ³
Inuit Ho	Inuit House Area							
13	Inuit House Area	Barrels (102)	E-112- E119	-	-	102 m ³	20.4 m ³	-
					TOTALS	754 m³	195.1 m ³	1.2 m ³

3.4 Demolition Assessment

With the exception of one portion of the module train, no buildings remain standing on the site. Only the concrete and wood timber foundations of the former buildings remain at CAM-A. Facilities that were inventoried at the CAM-A site in 2010, include the remaining module train section, foundations, the sewage outfall pipe and markers, and any miscellaneous remaining structures.

Non-hazardous materials can be landfilled on-site, while hazardous materials should be containerized and shipped off-site for disposal at a licensed facility, or in the case of asbestos, double-wrapped in plastic and buried in an on-site, engineered facility. Typical hazardous materials that can be expected at the site include batteries, waste oil, residual sludge, PCB oil containing equipment, fire extinguishers, substrates painted with PCB amended paint, concrete contaminated by PCB oil, mercury (switches), and substrates painted with leachable lead paint. Asbestos coated with PCB amended paint will be identified as a separate item during the assessment as it requires separate disposal from other PCB waste.

The INAC Protocol states that PCB painted materials are considered regulated under CEPA when the component (paint and substrate) contains greater than 50 ppm total. However, PCB Regulations (SOR/2008-273) that came into effect on September 17, 2008 in Part 1 Section 1(2) state that, "For the purposes of these Regulations, if a solid or a liquid containing PCBs is composed of several matrices, the concentration of PCBs is based on the mass of the matrix in which the PCBs are located." This means that for classification of waste painted with PCB amended paint, the mass of the substrate cannot be factored in with the mass of the paint to determine a total PCB concentration for the painted item as a whole, as has been done in previous assessments.

AECOM understands that Environment Canada will be coming out with a guidance document that states that the mass of the substrate can be used as a factor in the mass calculations for the total PCB concentration, as stated in the INAC Protocol in the near future. It is anticipated that the amendment may be available by the end of 2010 and may be included in the Remediation Action Plan. However, until such time when the official guidance document is available and for the purpose of this document, the substrate has not been factored in for PCB containing materials.

3.4.1 Methodology

The demolition investigation conducted an inventory of the site facilities that would require dismantling for disposal. The investigation noted the construction, and any anticipated special disposal requirements, with the collection of samples for applicable analysis to confirm disposal requirements. The following lists the components of the completed demolition assessment:

Inventory existing buildings; confirm size, foundation and construction material.

- Identify and estimate quantity of hazardous and non-hazardous materials.
- Confirm the identity of potentially contaminated PCB amended painted materials (PAP) with collection of paint samples and note the amount of paint coverage.
- Identify all asbestos-containing material; note where asbestos material is painted with PAP.
- Confirm the identity of potentially leachable lead material with collection of painted substrate samples.
- Confirm number, size, and construction material of roadway culverts.

3.4.2 Demolition Assessment Results

There was one facility remaining at the CAM-A site which was identified for demolition, the powerhouse module from the module train. In addition, the tower and remaining sections of the POL line and communication cables will need to be removed. Twelve (12) paint samples were collected at CAM-A to assess PCB and lead concentrations; two (2) from the tower, two (2) from the warehouse and eight (8) from within the powerhouse module. The location, colour, substrate and percent coverage were also noted.

In 1994 one of three swab samples taken from the remaining section of the module train was analyzed for PCBs. The PCB concentrations were well below the guideline value. Also in 1994, one (1) floor tile was sampled from the module train section and analyzed for asbestos. The percentage of chrysotile asbestos detected was in the range of 1-5%. Four (4) insulation pieces were sampled and analyzed for asbestos content. Chrysotile asbestos was detected in the range of 25-50% for two samples: door insulation material from the module train section and a wall board material taken from around the warehouse foundation. Two (2) samples consisting of insulation around the boiler on the garage foundation and pipe insulation from the module train section were both found to contain more than 75% chrysotile asbestos.

Eight (8) concrete samples were collected, two (2) from the warehouse foundation, four (4) from the garage foundation and one (1) from the section of the module train floor. Eight (8) asbestos samples were collected, four (4) from debris associated with the warehouse, two (2) from the boiler on the garage pad, and two (2) from insulation in the section of the module train. Table 3-4 presents a summary of the demolition requirements at CAM-A.

Table 3-4 - Demolition Requirements

Material/ Structure	Photo	Description	Hazardous Material	Estimated Hazmat (m³) (crushed)	Estimated Non-Haz (m³) (crushed)	Comments
Radar Tower						
Painted surface	E-56, E-57	Painted steel pipe and triangular cross beam construction antenna. Cross section is approx. 66 m x 5 m x 5 m. Samples MAT-01 & MAT-02.	No	n/a	Steel: 165 m ³ (1650 m ³ uncrushed)	Paint samples were non-detect for PCBs and below 5 mg/L for leachable lead.
Module Train	l					
Section of Module Train building	E-22 to E-43 MAT-23 (E-38)	Module train section is L: 12 m x W: 8 m (96m²) x H: 4.6 m. Paint – exterior (MAT-23 & MAT-24) Building had a Timber crib foundation. Exterior is metal cladding. Plywood walls (both interior and exterior.	Yes, PCB paint, both adhered and flaked on the walls.	PCBs: Plywood: 7.1 m³; Metal: 0.7 m³ (2.9 m³ uncrushed)	Insulation: 28 m ³ (57 m ³ uncrushed) Misc. 3.3 m ³	Exterior paint exceeds CEPA, 763 ppm (MAT-23) and 190 ppm (MAT-24). Paint is below 5 mg/L for leachable lead.

Material/				Estimated	Estimated	
Structure	Photo	Description	Hazardous Material	Hazmat (m³) (crushed)	Non-Haz (m³) (crushed)	Comments
		Approx. 0.15 m thick walls are insulated.				
		Miscellaneous ducting, cables, structural steel for equipment, wiring, light fixtures (no bulbs) and wood doors.				
	E-39 to E-43, E-37	The building contained electrical cabinets; three (3) CO² tanks; two (2) generators; two (2) furnace fans two (2) diesel tanks. Paint – interior (MAT-17, MAT-18, MAT-19, MAT-20, MAT-21, MAT-22)	Yes, PCB paint, both adhered and flaked on the walls, ceiling, interior structures such as tanks and generators.	PCBs: Walls: 11.3 m³; Tanks: 0.7 m³ (3 m³ uncrushed) Generator 1 m³ (2 m³ uncrushed)	ACM: 1.8 m ³	PCB paint exceeds CEPA (261,100 ppm, 1,310 ppm, 11,100 ppm, 162 ppm, 1,280 ppm, and 11,100 ppm respectively) Paint is below 5 mg/L for leachable lead.
		Asbestos (ACM) pipe wrap & tank insulation.	Yes, Asbestos (ACM).	Tanks: 0.24 m ³ (2.4 m ³ uncrushed)		ACM: MAT-27, MAT-28, MAT-29, MAT-90
	E-43, E-35, E-36	Concrete 0.1 m thick (MAT-17, MAT-25 & MAT-26)	Yes, PCB concrete	PCBs: 9.6 m ³		PCB concrete exceeds CEPA (261,000 ppm, 250 ppm, 473 ppm respectively)
Module Train Foundation	E-12	Eighteen (18) 9x9 timber beams, 11 m in length. Foundation covers an area of L: 24.6 m x W: 8.6 m (211.6 m ²)	No, creosote levels were not of a concern (MAT-31).	n/a	10.35 m ³	
	E-58	Four (4) 9x9 timber beams, 2 m in length; fourteen (14) 2x4 timbers, 2 m in length.	No	n/a	0.56 m ³	
Associated debris	E-60	Plywood, entrance to module train 4 m x 1.5 m hollow wooden entrance with 2x4 wood frame (10 cm thick). Three (3) support beams (9x9 timbers) of 3 m length are associated with the entrance.	No	n/a	3.7 m ³ (4 m ³ uncrushed)	
	E-62	Four (4) 9x9 timbers of 9 m length; metal basin 0.65 m x 70 cm x 30 cm (0.04 m thick)	No	n/a	1.9 m ³ (2 m ³ uncrushed)	
Garage	1					_
Foundation	E-13, E-14, E-15, E-47, E-46, E-45, E-44	12.5 m x 10.2 m pad, 0.1 m thick, (12.75 m³) concrete floor with two grates on the pad Four (4) concrete samples were taken on the pad. ½ of the concrete (MAT-14) exceeded Tier I PCBs, 1.02 ppm; ½ the pad (MAT-15, MAT-16) exceeded Tier II PCBs, 116, 126 ppm respectively.	PCB concrete (approx. ¾ of the pad, 9.56 m³)	Tier II: 6.38 m ³	Tier I: 3.19 m ³ 3.19 m ³	PCB concrete exceeds CEPA (MAT-15, MAT-16) exceeded Tier II PCBs, 116, 126 ppm respectively.
Associated	E-52	Boiler – paper insulation (MAT-06)	Asbestos wrap on boiler, >75% Asbestos	n/a	ACM: 1.1 m ³	
Debris	E-52	Boiler – plaster (trowel) insulation (MAT-07)	Asbestos wrap on boiler, 30-50% Asbestos	n/a		

Care	Material/ Structure	Photo	Description	Hazardous Material	Estimated Hazmat (m³) (crushed)	Estimated Non-Haz (m³) (crushed)	Comments
Concrete base. There are lease. There are lease. There are lease. There are lease. So the lease of the lease. The lease of the lease of the lease. So the lease of the lease of the lease. So the lease of the lease of the lease. So the lease of the lease of the lease. So the lease of the lease of the lease. So the lease of the lease of the lease. So the lease of the lease of the lease. So the lease of the lease of the lease. So the lease of the lease of the lease. So the lease of the lease of the lease. So the lease of the lease of the lease of the lease of the lease. So the lease of the lease of the lease of the lease of the lease. So the lease of the lease. So the lease of	Warehouse						
Tanks: 0.24 m³ Tank		E-47, E-48, E-53, E-54, E-55 MAT-08 E-16,	concrete base. There are eight (8) 0.75 m x 0.75 m x 0.25 m footings and eight (8) 0.45 m x 0.45 m x 1.0 m footings. Concrete pad is 12.5 m x 9 m (112.5 m²) and 0.4 m thick. Paint on wooden stairs (MAT-08)	wooden staircase exceeds Tier I	n/a		There is an area of extensive debris surrounding the foundation. Debris includes asbestos wallboard, painted diesel tanks (2), plywood, 5-
E-17, E-39 Painted AST tanks Sased on the results of the paint sample from the AST within the module train section, PCB impacts are assumed to be comparable.		E-49,	to warehouse (MAT-09) 3.6 m x 2.5 m hollow wooden entrance with 2x4 frame. Three (3) support beams (9x9 timbers) of 3 m length are associated with	No	n/a		
E-17, Concrete pad for ASTs (1.6 E-18 m x 2 m (3.2 m²), 0.1m thick E-55		E-39	Painted AST tanks	CEPA. Based on the results of the paint sample from the AST within the module train section, PCB impacts are assumed to be			
E-54 Cement board (MAT-04) 15-30% Asbestos ACM: 0.5 m³		E-18	m x 2 m (3.2 m ²), 0.1m thick				
E-54		E-55	• • • • • • • • • • • • • • • • • • • •	No	n/a	0.5 m ³	
POL Pad Piping and Associated Infrastructure POL Pad (Beach & Station POLs) E-110 Concrete associated with former POL pads. No n/a 7.6 m³ Inuit Houses House #1 (northern bouse) E-112, (28 m²), 2x4 wood frame with plywood walls No n/a 7.5 m³ House #2 (southern bouse) E-112, (28 m²), 2x4 wood frame with plywood walls No n/a 10.5 m³ House) E-118 with plywood walls No n/a 10.5 m³			(MAT-04)				
POL Pad (Beach & Station POLs) E-110 Concrete associated with former POL pads. No n/a 7.6 m³ Inuit Houses House #1 (northern house) E-112, (28 m²), 2x4 wood frame with plywood walls No n/a 7.5 m³ House #2 (southern E-115 to house) E-115 to (38 m²), 2x4 wood frame with plywood walls No n/a 10.5 m³	DOL B. J.B.			No	n/a	1.0 m [×]	
Concrete associated with former POL pads. No							
House #1 (northern bluse) E-112, (28 m²), 2x4 wood frame house) Degraded house (28 m²), 2x4 wood frame house) No n/a 7.5 m³ House #2 (southern house) E-112, (38 m²), 2x4 wood frame house No n/a 10.5 m³	(Beach & Station	E-110		No	n/a	7.6 m ³	
(northern house) E113, E- (28 m²), 2x4 wood frame with plywood walls No n/a 7.5 m³ House #2 (southern house) E-112, 0 (38 m²), 2x4 wood frame with plywood walls No n/a 10.5 m³							
(southern house) E-115 to (38 m²), 2x4 wood frame No n/a 10.5 m³	(northern	E113, E-	(28 m ²), 2x4 wood frame	No	n/a	7.5 m ³	
	House #2 (southern	E-115 to	Degraded house (38 m²), 2x4 wood frame	No	n/a	10.5 m ³	
TOTALS 37.26 m ³ 300.71 m ³ (Total crushed volumes)				TOTALS	37.26 m ³	300.71 m ³	(Total crushed volumes)

3.4.2.1 Alternative Summary of Demolition Assessment

As previously discussed, with regards to the INAC Protocol for PCB painted materials regulated, it is anticipated that a guidance document from Environment Canada is being prepared that will allow for the mass of the substrate to be factored in the mass calculations for the total PCB concentration will be issued. In anticipation of the guidance document, an alternate summary of demolition assessment disposal requirements has been prepared.

The alternate demolition assessment disposal requirements outlined in Table 3-5 calculated the mass of the substrate into the total PCB concentrations. However, until such time when the official guidance document is available, the summary provided in Table 3-5 where the substrate has not been factored in for PCB containing materials should be utilized.

Table 3-5 – Alternate Demolition Requirements

Material/ Structure	Photo Reference	Description	Hazardous Material	Estimated Hazmat (m³) (crushed)	Estimated Non-Haz (m³) (crushed)	Comments
Radar Tower	ı	ı	ı	ı	ı	
Painted surface	E-56, E-57	Painted steel pipe and triangular cross beam construction antenna. Cross section is approx. 66 m x 5 m x 5 m. Samples MAT-01 & MAT-02.	No	n/a	Steel: 165 m³ (1650 m³ uncrushed)	Paint samples were non-detect for PCBs and below 5 mg/L for leachable lead.
Module Train						
Section of Module Train building	E-22 to E-43 MAT-23 (E- 38)	cladding. Plywood walls (both interior and exterior. Approx. 0.15 m thick walls are insulated. Miscellaneous ducting, cables, structural steel for equipment, wiring, light fixtures (no bulbs) and wood doors.	Yes, PCB paint, both adhered and flaked on the walls.	PCB: Plywood: 7.1 m ³	Insulation: 28 m³ (57 m³ uncrushed) Metal: 0.7 m³ (2.9 m³ uncrushed) Misc. 3.3 m³	Exterior paint after substrate calculation exceeds CEPA, 86.5 ppm (MAT-23).
	E-39 to E-43, E-37 E-43, E-35, E-36	The building contained electrical cabinets; three (3) CO² tanks; two (2) generators; two (2) furnace fans two (2) diesel tanks. Paint – interior (MAT-17, MAT-18, MAT-19, MAT-20, MAT-21, MAT-22) Asbestos (ACM) pipe wrap & tank insulation. Concrete 0.1 m thick (MAT-17, MAT-25 & MAT-26)	Yes, PCB paint, both adhered and flaked on the walls, ceiling, interior structures such as tanks and generators. Yes, Asbestos (ACM). Yes, PCB paint No, PCB concrete	PCBs: Tanks: 0.7 m³ (3 m³ uncrushed) PCBs: 0.25 m³	ACM: 1.8 m³ Walls: 11.3 m³ Tanks: 0.24 m³ (2.4 m³ uncrushed) Generator: 1 m³ (2 m³ uncrushed)	PCB paint after substrate calculation exceeds CEPA, 1,258 ppm (MAT-22). ACM: MAT-27, MAT-28, MAT-29, MAT-90 PCB concrete after substrate calculation does not exceed CEPA. Paint should be
Module Train Foundation	E-12	Eighteen (18) 9x9 timber beams, 11 m in length.	No, creosote levels were not of a concern.	n/a	10.35 m ³	scraped off the concrete.

Material/ Structure	Photo Reference	Description	Hazardous Material	Estimated Hazmat (m³)	Estimated Non-Haz (m³)	Comments
	E-58	Four (4) 9x9 timber beams, 2 m in length; fourteen (14) 2x4 timbers, 2 m in length.	No	(crushed) n/a	(crushed) 0.56 m ³	
Associated debris	E-60	Plywood, entrance to module train 4 m x 1.5 m hollow wooden entrance with 2x4 wood frame (10 cm thick). Three (3) support beams (9x9 timbers) of 3 m length are associated with the entrance.	No	n/a	3.7 m ³ (4 m ³ uncrushed)	
	E-62	Four (4) 9x9 timbers of 9 m length; metal basin 0.65 m x 70 cm x 30 cm (0.04 m thick)	No	n/a	1.9 m ³ (2 m ³ uncrushed)	
Garage						
Foundation	E-13, E-14, E-15, E-47, E-46, E-45, E-44	12.5 m x 10.2 m pad, 0.1 m thick, (12.75 m³) concrete floor with two grates on the pad Four (4) concrete samples were taken on the pad. ¼ of the concrete (MAT-14) exceeded Tier I PCBs, 1.02 ppm; ½ the pad (MAT- 15, MAT-16) exceeded Tier II PCBs, 116, 126 ppm respectively.	PCB concrete (approx. % of the pad, 9.56 m³)	n/a	12.75 m ³	PCB concrete after substrate calculation does not exceed CEPA.
	E-52	Boiler – paper insulation (MAT-06)	Asbestos wrap on boiler, >75% Asbestos	n/a		
Associated Debris	E-52	Boiler – plaster (trowel) insulation (MAT-07)	Asbestos wrap on boiler, 30-50% Asbestos	n/a	ACM: 1.1 m ³	
Warehouse						
Warehouse foundation	E-18,E-47, E-48, E-53, E-54, E-55 E-16, E-51	Concrete Floor elevated on concrete base. There are eight (8) 0.75 m x 0.75 m x 0.25 m footings and eight (8) 0.45 m x 0.45 m x 1.0 m footings. Concrete pad is 12.5 m x 9 m (112.5 m²) and 0.4 m thick. Paint on wooden stairs (MAT-08). PCB Paint exceeds Tier I criteria (1.89 ppm)	None	n/a	45 m ³ Tier I: 2 m ³	The concrete pad and footing remains intact. There is an area of extensive debris surrounding the foundation. Debris includes asbestos wallboard, painted diesel tanks (2), plywood, 5-step wood staircase.
	E-16, E-49, E-50	Painted plywood, entrance to warehouse (MAT-09) 3.6 m x 2.5 m hollow wooden entrance with 2x4 wood frame. Three (3) support	No	n/a	3.7 m ³ (4 m ³ uncrushed)	

Material/ Structure	Photo Reference	Description	Hazardous Material	Estimated Hazmat (m³) (crushed)	Estimated Non-Haz (m³) (crushed)	Comments
		beams (9x9 timbers) of 3 m length are associated with the entrance.				
Associated	E-17, E-39 (MAT-21)	Painted AST tanks	Based on the results of the paint sample from the AST within the module train section, PCB impacts are assumed to be comparable.	n/a	Tanks: 0.24 m³ (2.4 m³ uncrushed)	PCB concrete after substrate calculation does not exceed CEPA
Debris	E-17, E-18	Concrete pad for ASTs (1.6 m x 2 m (3.2 m ²), 0.1m thick	None	n/a	0.32 m ³	
	E-55	Vinyl tile (MAT-03)	No	n/a	0.5 m ³	
	E-54	Cement board (MAT-04)	15-30% Asbestos		0.5 m ³	
	E-53	Press board (MAT-05)	No	n/a	1.0 m ³	
POL Pad Pipi	ing and Asso	ciated Infrastructure				
POL Pad (Beach & Station POLs)	E-110	Concrete associated with former POL pads.	No	n/a	7.6 m ³	
Inuit Houses						
House #1 (northern house)	E-112, E113, E-114	Degraded house (28 m²), 2x4 wood frame with plywood walls	No	n/a	7.5 m ³	
House #2 (southern house)	E-112, E- 115 to E118	Degraded house (38 m²), 2x4 wood frame with plywood walls	No	n/a	10.5 m ³	
			TOTALS	8.05 m ³	329.91 m ³	(Total crushed volumes)

3.5 Hazardous and Non-Hazardous Waste Assessment Summary

Based on the combined volumes of surface debris inventory, buried debris inventory, barrel assessment, and demolition inventory, the anticipated breakdown of hazardous versus non-hazardous debris at the CAM-A site is as follows:

- The total volume of non-hazardous waste is estimated to be 495.81 m³ (crushed).
- The total volume of hazardous waste is estimated to be 38.46 m³ (crushed).

3.5.1 Alternative Hazardous and Non-hazardous Waste Assessment Summary

Based on the combined volumes of surface debris inventory, buried debris inventory, barrel assessment, and demolition inventory, the anticipated breakdown of hazardous versus non-hazardous debris at the CAM-A site is as follows:

- The total volume of non-hazardous waste is estimated to be 525.01 m³ (crushed).
- The total volume of hazardous waste is estimated to be 9.25 m³ (crushed).

3.6 Sediment and Surface Water Assessment

3.6.1 Methodology

The water supply lake for the site is located approximately 1.2 km northwest of the station. In 1994 one (1) sediment sample and one (1) water sample were collected near the turn-around point of the access road.

In 2010, three (3) surface water samples were collected from two (2) locations and one (1) sediment sample was collected to assess potential contaminant levels. Results from the 2010 sampling will be used to assess the potential for impact on aquatic life caused by PCBs, PHCs and metals as a result of site activities. Samples were collected at the freshwater lake and the outfall (sample numbers include duplicates (W-001, W-002) and a trip blank (W-003). The samples from the freshwater lake were analyzed to determine whether it can be used as a potable water supply during construction.

Where soft depositional sediment exists along the shoreline(s), a sample was collected (within wading depth) as a grab sample. Water samples were collected from the freshwater lakes by inverting a pre-cleaned and rinsed sampling container and slowly tilting upright at a depth of about 30 cm below the water surface. The sediment sample was collected from the water sample location. Because of the coarse grain size of the sediments, the samples were collected as grab samples using a shovel.

3.6.2 Results

3.6.2.1 Surface Water

Freshwater Lake

Hydrocarbons and PCBs were non-detect in all surface water samples collected. Of the dissolved metal parameters, only barium, boron, copper, manganese, sodium and zinc were detected, although not an exceedance of the Guidelines for Canadian Drinking Water Quality (May 2008). The results for the remaining parameters were below the detection limit. The criteria for the Guidelines for Canadian Drinking Water Quality (CDWQ) (May 2008) were exceeded for chloride, and total dissolved solids (TDS) for the samples taken at the freshwater Lake. The chloride results for the two (2) water samples taken at the freshwater lake W-001 and W-002 were 256 and 260 mg/L respectively. The reported results for TDS were 514 and 511 respectively. This site does not appear to have been negatively impacted by former site activities.

Surface water near former Outfall

The sample, taken from the surface water near the north end of the outfall, had an aluminum concentration of 0.24 mg/L; a cadmium concentration of 0.000053 mg/L; and a copper concentration of 0.005 mg/L which exceed the CCME Protection of Aquatic Life Guideline - Freshwater of 0.1 mg/L (aluminum); 0.000017 mg/L (cadmium); and 0.002 mg/L (copper), respectively. None of the parameters were above the criteria for drinking water (CDWQ).

Testpit water samples

Two (2) monitoring wells were installed in the area of the Beach POL. One well was installed upgradient (MW-01) of the pad and the other was installed downgradient (MW-02). MW-01 had an arsenic concentration of 0.81 mg/L; a cadmium concentration of 0.00227 mg/L; and a chromium concentration of 0.147 mg/L. MW-02 had an arsenic concentration of 0.029 mg/L; a cadmium concentration of 0.00297 mg/L; and a chromium concentration of 0.084 mg/L. Both wells had parameters which exceed the CCME Protection of Aquatic Life Guideline - Freshwater of 0.0125 mg/L (arsenic); 0.00012 mg/L (cadmium); and 0.056 mg/L (copper). It appears likely that there have been some impacts to the water collected in the testpits surrounding the POL pads from previous site activities. A summary of the freshwater results is presented Table B6 in Appendix B.

3.6.2.2 Sediment

The results from the sediment sample collected from the lake northwest of the airstrip had no results that exceeded the INAC criteria and concentrations did not appear to be elevated as a result of the previous site activities. Neither hydrocarbons or PCBs were detected. A summary of the sediment results is presented in Table B6 in Appendix B.

3.7 Assessment of Granular Borrow Sources

Granular fill is required for construction of new landfills, remediation/re-grading of existing dumps and debris areas, as general backfill for excavation areas, and for landfarm construction. To minimize environmental impacts associated with clean-up construction existing disturbed areas will be utilized before exploiting undeveloped areas, where possible.

3.7.1 Methodology

During investigation planning air photos of the site were reviewed to identify potential borrow areas and potential landfill/landfarm locations. The air photo scale was too large (1:20,000) to be effective. Therefore, locations of potential borrow areas and landfills were identified during the site investigation. Confirmation of the potential borrow areas as suitable sources of granular fill material, was also completed during the site investigation. Locations of the potential borrow areas and proposed landfills are shown on Figure 2.

The site investigation consisted of excavating shallow testpits using hand tools (pickaxe and shovel) and/or a small backhoe attachment on an excavator (quadivator). Testpit locations are shown on Figure 3. Soil samples were collected from each testpit for laboratory index testing. The testpit depths varied from approximately 0.5 m to 1.2 m, terminating on frozen ground, boulder, due to seepage and sloughing, or due to equipment limitations. The testpits were backfilled with excavated soils after completion.

Photographs were taken of each borrow area, excavated testpits, excavated material and any other feature of note. Selected site photographs are in Appendix C.

Laboratory testing was conducted on selected soil samples to determine soil types encountered in each borrow area. The laboratory testing generally included determination of moisture contents, particle size distribution (sieve and hydrometer analysis), and soil salinity. The laboratory test results are presented in Appendix D and are also shown on testpit logs in Appendix F.

3.7.2 Granular Material Types and Specifications

An assortment of granular fill materials is required for construction of landfills and landfarms, remediation of existing landfill, backfill of excavated areas, and repair of roads and airstrip. Specifications of six granular materials (Type 1 to 6 Granular Fills) required for different applications were developed by EBA Engineering Consultants Ltd. as part of the original DEW Line Clean Up Program for Department of National Defence and Defence Construction Canada. The granular fill types were also adopted by Indian and Northern Affairs Canada for their abandoned military sites. The granular fill types are also used for the current project and are described below.

3.7.2.1 Type 1 Granular Fill

Type 1 Granular Fill typically consists of coarse gravel or cobble size material used for erosion protection on finished slopes or within drainage courses. The gradation requirements of Type 1 Granular Fill may vary significantly depending on the material availability and specific application. Type 1 Granular Fill can be obtained from Borrow

Area 8 and from screening of oversize material from other granular materials on site. If Type 1 granular material is in limited quantity, finished slopes may be flattened by using Type 2 granular material without armouring. The grain size distribution shown in Table 3-6 is recommended:

Table 3-6 - Grain Size Distribution Limits - Type 1 Granular Fill

Particle Size (mm)	% Passing
500	100
200	40-100
100	20-70
50	0-50
10	0-10

3.7.2.2 Type 2 Granular Fill

Type 2 Granular Fill is well graded sand and gravel used for construction of berms and cover. Type 2 Granular Fill should have a grain size distribution within the limits presented on Table 3-7.

Table 3-7 - Grain Size Distribution Limits - Type 2 Granular Fill

Particle Size (mm)	% Passing
150	100
50	60-100
5	25-60
0.425	8-37
0.08	2-25

Type 2 Granular can be obtained from Borrow Areas 1, 2, 3, 4, 5, 6, 6A, 7, 8, 9, 11, and 15.

3.7.2.3 Type 2A Granular Fill

Type 2A material would be suitable for armouring landfills if sufficient quantities of Type 1 material are not available. Typically, the Type 2A would be placed about 0.5 m thick with the requirement to use this material dependent upon the finished slopes. Based on the material available on site, the grain size distribution shown in Table 3-8 is recommended for Type 2A granular fill:

Table 3-8 - Grain Size Distribution Limits - Type 2A Granular Fill

Particle Size (mm)	% Passing
150	100
50	40-100
25	20-65
5	0-25
0.425	0-15
0.08	0-8

3.7.2.4 Type 3 Granular Fill

Type 3 Granular Fill is a select material with a maximum particle size of 200 mm. It is generally obtained from excavations or other approved sources and is used for general site grading and backfilling excavations. At this site Type 2 and Type 4 Granular Fills are acceptable alternatives for Type 3 Granular Fill.

3.7.2.5 Type 4 Granular Fill

Type 4 Granular Fill is a non-saline, well graded sand and silt with some gravel used for construction of containment berms and backfill of key trench excavations for the Tier II Soil Disposal Facility. If used as backfill for the key trench excavations, the water content of Type 4 Granular Fill must be adjusted to achieve a minimum degree of saturation of 90%. Type 4 Granular Fill may be wet and soft at the time of production from the borrow source and it may be necessary to air-dry it, if used for construction of berms, so that it can be placed and compacted to achieve density specification. The material should have a maximum salinity of 5 parts per thousand (5 ppt) and have a grain size distribution within the limits presented on Table 3-9.

Particle Size (mm) % Passing 150 100 50 80-100 55-95 25 12.5 55-90 5 45-90 2 35-85 0.425 25-75

Table 3-9 - Grain Size Distribution Limits - Type 4 Granular Fill

Type 4 Granular Fill was encountered in Borrow Areas 5A, 10, 12, 13, and 14. Minor blending may be required to bring material with the gradation limits of Type 4 Granular Fill.

20-60

3.7.2.6 Type 5 Granular Fill

80.0

Type 5 Granular Fill is used for geomembrane bedding and should consist of rounded particles with a maximum size of 5 mm. This type of fill material should be free from angular particles, stones larger than 25 mm in diameter, waste or other deleterious materials. Type 5 Granular material should have a particle size distribution with the limits presented on Table 3-10.

Table 3-10 - Grain Size Distribution Limits - Type 5 Granular Fill

Particle Size (mm)	% Passing
25	100
5	80-100
1	60-95
0.425	30-90
0.15	0-70
0.08	0-10

3.7.2.7 Type 6 Granular Fill

Type 6 Granular Fill is generally used as an intermediate cover within landfills and is obtained from excavations or other sources generally consisting of gravel or sand in an unfrozen state and free of deleterious material. The maximum particle size of the material should be less than 150 mm with less than 8% of the material, by weight, passing 0.08 mm sieve.

3.7.3 Borrow Area Locations

Seventeen borrow areas were investigated during the site investigation. The borrow areas contained oversized material (boulders); therefore, screening of oversized material may be required. The oversized material may be suitable as Type 1 material for erosion protection of landfill surfaces. The locations of the borrow areas are shown on Figure 2 and locations of testpits are shown on Figure 3. Each of the borrow areas is described in the following sections.

3.7.3.1 Borrow Area 1 (BA-1)

Borrow Area 1 is located south of the Fresh Water Lake on an undisturbed area as shown on Figure 2. The area is adjacent to the road and is easily accessible. Two testpit (TP10-05 and 06) were excavated in this borrow area to characterize the subsurface material and to determine groundwater and permafrost conditions. Subsurface stratigraphy in the borrow area consisted of a layer of peat underlain by sand and gravel. Frozen ground was encountered in TP10-05 at 0.95 m depth. Photos G1 to G8 (Appendix C) show the borrow area, seepage in TP10-05 and excavated material from both testpits.

A sieve analysis was conducted on a combined sample from Testpits 10-05 and 10-06. The sample had 47 % gravel, 49 % sand, and 4% silt/clay indicating that the borrow area contains material generally suitable as Type 2 Granular Fill although minor blending may be required to bring material within Type 2 gradation limits. The particle size results and gradation limits of Type 2 Fill are shown on Figure 14. The average moisture content of the soil samples was approximately 7.7 %.

The identified area is approximately 24,000 m² in size. Assuming an average thickness of 0.5 m of material, the volume of the material that can be obtained from this area is approximately 12,000 m³.

Two testpits (TP10-03 and 04) were excavated near BA-1 as shown on Figure 2. The area had frequent frost boil pattern and was expected to have Type 4 Granular Fill. However, fine-grained soils (silty clay) were encountered in both testpits.

3.7.3.2 Borrow Area 2 (BA-2)

Borrow Area 2 is located south of the Fresh Water Lake on a disturbed area as shown on Figure 2. The area is adjacent to the road and is easily accessible. The area appeared to have been previously used as a borrow source. Two testpits (TP10-07 and 08) were excavated in this area to characterize the subsurface material and to determine groundwater and permafrost conditions. The subsurface stratigraphy in TP10-07 consisted of cobbly gravel and sand. In TP10-08 the subsurface soils consisted of gravel and sand to 0.7 m depth underlain by sand. Seepage or permafrost was not encountered in either testpits. Photos G9 and G10 (Appendix C) show TP10-07, borrow area, and excavated material in TP10-07.

A sieve analysis was conducted on a combined sample of gravel and sand from Testpits 10-07 and 10-08. The sample had 56 % gravel, 42 % sand, and 2% silt/clay indicating that the borrow area contains material generally suitable as Type 2 Granular Fill. The particle size results and gradation limits of Type 2 Fill are shown on Figure 15. The moisture content of the soil sample was approximately 2.7 %.

The identified area is approximately 22,000 m² in size. Assuming an average thickness of 0.7 m of material, the volume of the material that can be obtained is approximately 15,400 m³.

3.7.3.3 Borrow Area 3 (BA-3)

Borrow Area 3 is located north of the airstrip on a disturbed area as shown on Figure 2. The area is at the end of a road and is easily accessible, although minor regrading of the road may be required. The area appeared to have been previously used as a borrow source. Four testpits (TP10-16 to 18 and TP-31) were excavated in this borrow area to characterize the subsurface material and to determine groundwater and permafrost conditions. The subsurface soils in all testpits predominantly consisted of gravel and sand. Frozen ground was encountered in TP10-16 and TP10-17 at approximately 0.95 m depth and seepage was not encountered in any testpit. Photos G11 to G14 (Appendix C) show the borrow area, testpits and excavated material from the area.

A sieve analysis was conducted on a combined sample from Testpits 10-16 to 18. The sample had 58 % gravel, 39 % sand, and 3% silt/clay indicating that the borrow area contains material generally suitable as Type 2 Granular Fill. The particle size results and gradation limits of Type 2 Fill are shown on Figure 16. The moisture content of the soil sample was approximately 3.1 %.

The identified area is approximately 51,000 m² in size. Assuming an average thickness of 0.7 m, the volume of the material that can be obtained is approximately 35,700 m³.

3.7.3.4 Borrow Area 4 (BA-4)

Borrow Area 4 is located near the east end of the airstrip and is divided in 4 sub-areas (BA-4A, 4B, 4C and 4D). The sub-areas are located around a pond and are connected by trails from the airstrip. All the sub-areas are disturbed and appeared to have been used previously as borrow sources. The locations of the sub-areas are shown on Figure 2. Six testpits (TP10-23 to 27 and TP10-53) were excavated in the sub-areas, as shown on Figure 3, to characterize the subsurface material and to determine groundwater and permafrost conditions. The subsurface soils in all testpits predominantly consisted of gravel and sand. Frozen ground was not encountered in any testpits and refusal was encountered at approximately 1 m depth on boulders. Photos G15 to G18 (Appendix C) show the borrow area, testpits and excavated material from the area.

Sieve analyses were conducted on combined sample from TP10-23 and 24, TP-25, TP10-26 and 27, and TP10-53. The samples had 64 to 69 % gravel, 29 to 35 % sand, and 1 to 2 % silt/clay indicating that the borrow area contains material generally suitable as Type 2 Granular Fill. The particle size results and gradation limits of Type 2 Fill are shown on Figures 17 to 20. The moisture content of the soil samples varied from 1.6 to 4.1 %.

The total identified area of all sub-areas is approximately 52,000 m² in size. Assuming an average thickness of 0.7 m, the volume of material that can be obtained from all sub-areas is approximately 36,400 m³.

3.7.3.5 Borrow Area 5 (BA-5)

Borrow Area 5 is located on an undisturbed ground near Borrow Area 3 as shown on Figure 2. The area can be accessed from Borrow Area 3. One testpit (TP10-33) was excavated in this area to characterize the subsurface material and to determine groundwater and permafrost conditions. The subsurface soils in the testpit consisted of gravel and sand. Frozen ground was not encountered in the testpit. Refusal was encountered on a boulder at approximately 0.95 m depth. Photo G18 (Appendix C) show the borrow area, testpits and excavated material from the area.

A sieve analysis was conducted on a combined sample from Testpits 10-31 and 33. The sample had 66 % gravel, 32 % sand, and 2% silt/clay indicating that the borrow area contains material generally suitable as Type 2 Granular Fill. The particle size results and gradation limits of Type 2 Fill are shown on Figure 21.

The identified area is approximately 9,000 m² in size. Assuming an average thickness of 0.7 m, the volume of material that can be obtained from this area is approximately 6,300 m³.

3.7.3.6 Borrow Area 5A (BA-5A)

Borrow Area 5A is located on undisturbed ground near Borrow Area 13 (Landfill 1) and Borrow Area 5, as shown on Figure 2. The area can be accessed from Borrow Areas 3, 5 or 13. The area is characterized by a frost boiled pattern indicating presence of fine-grained soils (sand, silt, clay). Three testpits (TP10-28, 30 and 32) were excavated in the borrow area, as shown on Figure 3, to characterize the subsurface material and to determine groundwater and permafrost conditions. The subsurface soils in testpits consisted of silty sand, sandy silt or silty gravel and sand. Frozen ground was encountered in TP10-30 at 1.1 m depth and refusal was encountered in TP10-32 on boulder/cobbles at 0.9 m depth. Photos G19 to G21 (Appendix C) show the borrow area, testpits and excavated material from the area.

Sieve analyses were conducted on three soil sample from TP10-28, 30 and 32. The samples from TP10-30 and 32 (S-36 and S-38) had 17 to 47 % gravel, 35 to 51 % sand, and 18 to 32 % silt/clay indicating that the soil from these testpits fall within the limits of Type 4 Fill. The soil sample from TP10-28 had 0 % gravel, 23 % sand, 48 % silt and 29 % clay. The grain size analyses results and gradation limits of Type 4 Fill are shown on Figures 22. The moisture content of the soil samples varied from 4.3 to 5.9 % indicating that moisture conditioning of the soil will be required if used for backfill of key trench excavation for the Tier II facility.

The total identified area is approximately 27,000 m² in size. Assuming an average thickness of 0.7 m, the volume of material that can be obtained from this area is approximately 18,900 m³.

3.7.3.7 Borrow Area 6 (BA-6)

Borrow Area 6 is located on disturbed ground as shown on Figure 2. The area is near road (Road Section 5) and is easily accessible. The area appeared to have been used previously as a borrow source. Two testpits (TP10-35 and 36) were excavated in this borrow area to characterize the subsurface material and to determine groundwater and permafrost conditions. The subsurface soils in both testpits predominantly consisted of gravel and sand. Frozen ground was encountered in TP10-36 at 1.1 m depth and refusal was encountered on boulder at 1 m depth in TP10-35. Seepage was not encountered in any of the testpits. Photos G22 to G26 (Appendix C) show the borrow area, seepage above frozen ground, testpits and excavated material from the testpits.

A sieve analysis was conducted on a combined sample from Testpits 10-35 and 36. The sample had 65 % gravel, 33 % sand, and 2 % silt/clay indicating that the borrow area contains material generally suitable as Type 2 Granular Fill. The particle size results and gradation limits of Type 2 Fill are shown on Figure 23.

The identified area is approximately $19,000 \text{ m}^2$ in size. Assuming an average thickness of 0.7 m, the volume of material that can be obtained from this area is approximately $13,300 \text{ m}^3$.

3.7.3.8 Borrow Area 6A (BA-6A)

Borrow Area 6A is located on a partially disturbed ground as shown on Figure 2. The area is near Borrow Area 6 and road (Road Section 5) and is easily accessible. Parts of the area appeared to have been used previously as a borrow source. Four testpits (TP10-37 to 40) were excavated in this area to characterize the subsurface material and to determine groundwater and permafrost conditions. The subsurface soils in the area were variable and consisted

of peat underlain by gravel and sand (TP10-37), peat underlain by sand (TP-38) or peat underlain by sand underlain by gravel and sand (TP10-39 and 40). Frozen ground was not encountered in any of the testpits and testpits were terminated due to seepage and sloughing of sand or refusal on boulders/cobbles. Photos G27 to G30 (Appendix C) show the borrow area, seepage, testpits and excavated material from the testpits.

A sieve analysis was conducted on combined soil samples from TP10-38 and 10-40. The sample had 7 % gravel, 92 % sand and 1 % silt/clay. The sand encountered within this area does not fall within the gradation limits of Type 2 or Type 4. The sand can be used as Type 5 Fill after screening or Type 6 Fill within the landfills.

A sieve analysis was also conducted on a combined sample of gravel and sand from Testpits 10-37, 39 and 40. The sample had 59 % gravel, 40 % sand, and 1 % silt/clay indicating that the borrow area contains material generally suitable as Type 2 Granular Fill. The particle size results and gradation limits of Type 2 Fill are shown on Figure 24.

The identified area is approximately 48,000 m² in size. Assuming an average thickness of 0.7 m, the volume of material that can be obtained from this area is approximately 33,600 m³.

3.7.3.9 Borrow Area 7 (BA-7)

Borrow Area 7 is located near the Station Area and is easily accessible (Figure 2). The area is disturbed and appeared to have been constructed by placing fill from the adjacent areas. Testpits 10-41 and 10-42 were excavated in this area. The soils in TP10-41 predominantly consisted of gravel and sand and in TP10-42 the subsurface stratigraphy consisted of 300 mm thick layer of sand underlain by gravel and sand. Frozen ground was not encountered in any of the testpits and seepage was encountered in TP10-42 at 0.9 m depth.

Sieve analyses were conducted on two samples from the sand and gravel in TP10-41 and 10-42. The samples had 55 to 64 % gravel and 36 to 45 % sand indicating that the borrow area contains material generally suitable as Type 2 Fill although Type 6 or Type 5 Fill (after some screening) may be available at surface. The particle size results and gradation limits of Type 2 Fill are shown on Figure 25.

The identified area is approximately 26,000 m² in size. Assuming an average thickness of 0.7 m, the volume of material that can be obtained from this area is approximately 18,200 m³.

3.7.3.10 Borrow Area 8 (BA-8)

Borrow Area 8 is located near the ocean and contains material that may be suitable as Type 1 Fill (Photos G33 and G34 in Appendix C). The area is disturbed and it is approximately 30,000 m² in size. Assuming an average thickness of 0.3 m, the volume of Type 1 Fill that can be obtained from this area is approximately 9,000 m³.

3.7.3.11 Borrow Area 9 (BA-9)

Borrow Area 9 is on a disturbed area located near the airstrip (Photos G35 to G38 in Appendix C). It appears that the airstrip has been constructed by stripping material from Borrow Area 9. Four testpits (TP10-54 to 57) were excavated in this area. The subsurface soils predominantly consisted of gravel and sand. Frozen ground was not encountered in any of the testpits and seepage was encountered in TP10-56 and 57. Refusal was encountered on boulders in TP10-54 and 55. Photos G35 to G38 in Appendix C show the borrow area, seepage in testpits, excavated material and boulders at the bottom of the testpits.

Sieve analyses were conducted on two combined samples from TP10-54 and 55 and TP10-56 and 57 to characterize the soil. The samples had 56 to 62 % gravel, 36 % sand and 2 to 8 % silt/clay indicating that the borrow area contains material generally suitable as Type 2 Fill. The particle size results and gradation limits of Type 2 Fill are shown on Figure 26.

The identified area of this borrow is approximately 24,000 m² in size. Assuming an average thickness of 0.5 m, the volume of material that can be obtained from this area is approximately 12,000 m³.

3.7.3.12 Borrow Area 10 (BA-10)

Borrow Area 10 is near airstrip on an undisturbed area. Two testpits (TP10-58 and 59) were excavated in this borrow area. The subsurface soils consisted of peat underlain by silty sand in TP10-58 and peat underlain by gravel and sand underlain by silty sand in TP10-59. Frozen ground was not encountered and testpits terminated at 0.8 to 0.9 m depth due to seepage. Photos G39 to G42 in Appendix C show the borrow area, testpits, excavated material and seepage in testpits.

Sieve analyses were conducted on two samples from the sand unit in TP10-58 and 10-59. The samples had 29 to 41 % gravel, 49 to 53 % sand and 10 to 18 % silt/clay. The moisture content of the samples varied from 6.7 to 7.2 % indicating that the soils above the groundwater table are relatively dry. The particle size results and gradation limits of Type 4 material are shown on Figure 27 which indicate that material from this borrow generally falls within the gradation limits of Type 4 Fill but minor blending may be required.

The identified area of this borrow is approximately 24,000 m² in size. Assuming an average thickness of 0.5 m, the volume of material that can be obtained from this area is approximately 12,000 m³.

3.7.3.13 Borrow Area 11 (BA-11)

Borrow Area 11 is located on an undisturbed area and is not connected by any road. One testpit (TP10-60) was excavated in this area. The subsurface soils consisted of gravel and sand. Frozen ground or seepage was not encountered and refusal was encountered on boulder at 0.9 m depth. Photos G43 and G44 in Appendix C show the borrow area, testpit and excavated material.

A sieve analyses was conducted on a soil sample from the testpit. The sample had 68 % gravel, 30 % sand, and 2 % silt/clay. The particle size results generally fall with the gradation limits of Type 2 Fill as shown on Figure 28.

The identified area of this borrow is approximately 7,000 m² in size. Assuming an average thickness of 0.5 m, the volume of material that can be obtained from this area is approximately 3,500 m³.

3.7.3.14 Borrow Area 12 (BA-12)

Borrow Area 12 is on undisturbed area and is not accessible by any road. Two testpits (TP10-61 and 62) were excavated in this area. The subsurface soils consisted of peat underlain by gravel and sand underlain by silty sand in TP10-61. The subsurface soils in TP10-62 consisted of silty and sandy clay. The area is characterized by a frost boiled pattern indicating presence of fine-grained soils (silt, sand, clay). Frozen ground was encountered in TP10-61 at 0.95 m depth.

A sieve analysis was conducted on a soil sample from TP10-61. The sample had 15 % gravel, 43 % sand, and 42 % silt/clay. The particle size results of this sample generally fall with the gradation limits of Type 4 Fill as shown on Figure 29. A hydrometer analysis was conducted on a soil sample from TP10-62. The sample had 10 % gravel, 23 % sand, 36 % silt and 31 % clay. The particle size results of this soil sample fall slightly outside the upper bound of Type 4 Fill gradation limits indicating that the borrow material contains mix of Type 4 and finer material (Figure 29). The moisture content of the soil samples was less than 10 % indicating that the material above groundwater table is relatively dry and moisture conditioning of the soil may be required if used for backfill of key trench of Tier II facility.

The identified area of this borrow is approximately 40,000 m² in size. Assuming an average thickness of 0.5 m, the volume of material that can be obtained from this area is approximately 20,000 m³.

3.7.3.15 Borrow Area 13 (BA-13)

This location was initially identified as potential landfill location (LF-1 on Figures 2 and 3) but site investigation revealed that there are other suitable locations for landfills therefore this location may be considered as a borrow source. The area contains primarily Type 4 Fill but some Type 2 Fill is also available at surface.

The area is located on disturbed ground near the road and is easily accessible (Photos G44 to G48 in Appendix C). Four testpits (TP10-01, 02, 13 and 29) were excavated in this area to characterize subsurface material. The subsurface soils consisted of peat underlain by gravel and sand underlain by sand in TP 10-01 and 10-02. In TP10-13 the subsurface soils consisted of silty and gravely sand and in TP10-29 the subsurface soils consisted of sandy and clayey silt. Seepage was encountered in all but TP10-29 below 0.6 m depth (Photos G45 to G47 in Appendix C) and frozen ground was encountered in TP10-13 at 1.1 m depth below ground.

Sieve analyses were also conducted on silty sand samples from TP10-02 and TP10-13. The samples had 8 to 27 % gravel, 49 to 55 % sand, and 18 to 19 % silt. Particle size of sand generally falls within the gradation limits of Type 4 Fill as shown on Figure 30.

Sieve analysis was conducted on a combined sample from surficial gravel and sand in TP10-01 and 02. The sample had 52 % gravel, 45 % sand and 3 % silt/clay. The particle size results of this soil sample fall within the gradation limits of Type 2 Fill (Figure 31).

The soils encountered in this area are variable and may contain Type 2 near surface and Type 4 at depth. The identified area is approximately 42,000 m² in size. Assuming an average thickness of 0.5 m, the volume of material that can be obtained from this area is approximately 21,000 m³.

3.7.3.16 Borrow Area 15 (BA-15)

This location was identified as potential landfill location (LF-4 on Figure 2 and 3) but site investigation revealed that this area is a suitable source of Type 2 Granular Fill. Also, other suitable locations were found during site investigation for landfill therefore this area can be used as borrow source of Type 2 Fill.

BA-15 is located on partially undisturbed area near the airstrip and is easily accessible by roads (Photos G56 to G59 in Appendix C). The area is also located close to the proposed landfill/landfarm locations. Four testpits (TP10-49 to 51) were excavated in this area to characterize soils. The subsurface soils in the area consisted predominantly of gravel and sand or peat underlain by sand underlain by gravel and sand. Seepage was encountered in TP10-49 and 51 below 0.9 m depth and frozen ground was not encountered in any testpit.

Sieve analyses were conducted on combined samples from TP10-49 to 52. The samples had 58 to 64 % gravel, 30 to 37 % sand and 5 to 6 % silt/clay. The soils encountered within this borrow area fall within gradation limits of Type 2 Fill as shown on Figure 34.

The identified area of this borrow is approximately 45,000 m² in size. Assuming an average thickness of 0.6 m, the volume of material that can be obtained from this area is approximately 27,000 m³.

3.7.4 Summary of Borrow Materials

The soil types encountered in the borrow areas generally comprise Type 2 and Type 4 Granular Fills. A summary of granular material that can be obtained from the potential borrow areas is presented in Table 3-11.

Borrow Area	Available Granular Fill Type	Area (m²)	Depth (m)	Volume (m³)	Comments
BA-1	Type 2, Type 3, Type 6	24,000	0.5	12,000	Undisturbed
BA-2	Type 2, Type 3, Type 6	22,000	0.7	15,400	Disturbed
BA-3	Type 2, Type 3, Type 6	51,000	0.7	35,700	Disturbed
BA-4A	Type 2, Type 3, Type 6	8,000	0.7	5,600	Disturbed
BA-4B	Type 2, Type 3, Type 6	26,000	0.7	18,200	Disturbed
BA-4C	Type 2, Type 3, Type 6	11,000	0.7	7,700	Disturbed
BA-4D	Type 2, Type 3, Type 6	7,000	0.7	4,900	Disturbed
BA-5	Type 2, Type 3, Type 6	9,000	0.7	6,300	Undisturbed
BA-5A	Type 4, Type 3, Type 6	27,000	0.7	18,900	Undisturbed
BA-6	Type 2, Type 3, Type 5,Type 6	19,000	0.7	13,300	Disturbed
BA-6A	Type 2, Type 3, Type 5, Type 6	48,000	0.7	33,600	Partially disturbed
BA-7	Type 2, Type 3, Type 5, Type 6	26,000	0.7	18,200	Disturbed
BA-8	Type 1	30,000	0.3	9,000	Disturbed
BA-9	Type 2, Type 3	24,000	0.5	12,000	Disturbed
BA-10	Type 4, Type 3	24,000	0.5	12,000	Undisturbed
BA-11	Type 2, Type 3	7,000	0.5	3,500	Undisturbed
BA-12	Type 4, Type 3	40,000	0.5	20,000	Undisturbed
BA-13 (LF-1)	Type 4, Type 2, Type 3	42,000	0.5	21,000	Undisturbed
BA-14 (LF-2)	Type 4, Type 2, Type 3	46,000	0.6	27,600	Undisturbed
BA-15 (LF-4)	Type 2, Type 3, Type 6	45,000	0.6	27,000	Partially Undisturbed

Table 3-11 - Summary of Granular Borrow Sources

3.8 Assessment of Proposed Landfill Locations

It is anticipated that the final clean-up of the site will incorporate a non-hazardous waste landfill (NHWLF) for the disposal of demolition material and debris. Depending on the contaminated soil volumes a secure soil disposal facility (SSDF) for Tier II (and potentially hydrocarbon) contaminated soil and/or a landfarm for the treatment of hydrocarbon impacted soils may be required. None of these facilities (SSDF and landfarm) will be permitted to accept hazardous soil or demolition material (other than asbestos).

3.8.1 Methodology

For investigation purposes it was assumed that each of the facilities noted above would be required for site clean-up. During site investigation planning potential locations could not be identified due to the scale of available air photos, therefore landfill locations were identified and investigated during the field program, noting grade, surface hydrology, vegetation cover, and subsurface soil, permafrost and groundwater conditions. Subsurface conditions were observed with the excavation of testpits. The potential landfill areas were assessed on a conceptual basis for the purpose of selecting the preferred location once the final remedial volumes have been defined. While the volume of contaminated soil will dictate the final size of the SSDF and landfarm, it is the requirement for the landfill in the final design that will most greatly influence the location for each facility. For example, based on soil conditions, there may be a preferred location for an SSDF that would preclude the construction of a NHWLF at that particular location.

Information requirements investigated during the 2010 field program considered the following issues:

- Size of the Area the selected area should be of sufficient size based on disposal facilities constructed on similar sites. In this regard, it is anticipated that an SSDF and NHWLF will have footprints in the order of 3,500 m². The footprint for a landfarm may be in the order of 15,000 m².
- **Foundation Conditions** the selected area should have suitable soil, groundwater and permafrost conditions for the facility under consideration. For example, it is important to reach either saturated ground or ice rich permafrost in an area where a perimeter cut-off trench is required, e.g., SSDF.
- **Drainage** the selected area should be in a location with limited surface water run-off or where surface run-off can be redirected away from the facility.
- **Topography** the site should have relatively flat topography. In some cases, a uniformly but gently sloping ground surface may be preferable to achieve adequate drainage on final covers without raising gradient berms.
- Setback Distances the selected area should have an appropriate setback distance from water bodies.
- Previous Contamination The selected location should avoid or minimize the possibility of previously
 contaminated soil or sub-surface migration of contaminants below the facility where it may be detected in postconstruction monitoring.
- **Proximity to Work Areas** The selected area should be in close proximity to work areas (landfill excavation, demolition, contaminated soil excavation, etc.).
- Site Access the selected site should have good access for construction equipment
- Disturbed Areas Preference should generally be given to previously disturbed areas to minimize the impact on the natural environment.

A description of each site under consideration with respect to the design issues identified above is provided in the following sections.

3.8.2 Non-Hazardous Waste Landfill

It is our understanding that a non-hazardous landfill (NHWLF) will be constructed to accept waste that primarily includes material from the demolition of existing structures, surface debris and any debris sorted out from landfill excavations. The majority of the waste would be treated and untreated wood, metal, concrete and empty (cleaned) crushed barrels. Asbestos from demolition of buildings is considered to be non-hazardous if properly packaged and therefore can be disposed of in the NHWLF. Creosote coated timbers (utility poles) would be wrapped in plastic prior to their disposal in the NHWLF.

3.8.2.1 Design Considerations

The landfill should be located in an area where concentrated surface water run-on does not occur, e.g., within the confines of a natural drainage course or where its construction could impede natural drainage. Ponding of water as a result of construction should be avoided as this may impact the thermal stability of the ground leading to post-construction settlement.

The landfill cover and berms can be constructed using the Type 2 Granular Fill available on site. The recommended gradation for Type 2 Granular Fill is provided in Section 3.7.2. All granular fill should be placed in horizontal lifts not exceeding 250 mm and compacted to a minimum of 95 percent of Standard Proctor Dry Density (ASTM D698). The landfill footprint should be graded and any organic material removed prior to fill placement. The extent of grading should be kept to a minimum to avoid disturbance to the permafrost. Below grade cells are not recommended. Any boulders or oversize material should be pushed aside and wasted or saved for final armouring.

The berms should be constructed with exterior side slopes of 3H:1V and interior slopes of 1.5H:1V with a minimum final top width of 2 m. Staging berm construction to achieve the design height may be desirable until waste volumes have been better established towards the end of the clean-up operation. Doing so may allow the overall height of the landfill to be reduced by incorporating the top of the berm into the final cover. Unless the environmental assessment

of the debris material would suggest that the environmental impact from leachate is unacceptable, the landfill cover does not need to be designed for freeze-back and minimum cover thickness of 1.0 m is acceptable. Depending on the final berm height, it should not be necessary to armour the Type 2 granular fill with Type 1 material.

In the case of the NHWLF, leachate is any liquid produced when water comes into contact with the waste contained within the landfill. Because the waste is in a dry condition, leachate contribution from decomposing or compressing debris is negligible. Because the waste material is primarily non-putrescible and the environment within the landfill is non-acidic, the potential for the generation of hazardous leachate is considered very low. The design objectives are therefore to minimize the amount of water coming into contact with the waste by minimizing infiltration by careful site selection and promoting surface water run-off by compacting and properly grading the final cover. Leachate collection is not considered necessary.

Landfill gas generation is not considered to be a significant factor in the design of the NHWLF and gas collection/venting systems are not considered necessary. The rate of decomposition of any biodegradable waste within the landfill cell and any associated gas generation will be extremely slow as compared with landfills in the south. The potential for gas generation and associated odours is best controlled by minimizing infiltration of water into the landfill. Any gas that is generated will dissipate through the permeable cover soils.

Settlement of the landfill surface can lead to ponding and increased infiltration. To minimize this potential, large debris should be reduced in size such that the maximum lift of debris across the landfill cell is 0.5 m. Each lift of debris should be compacted with tracked equipment to reduce void space/size. Free draining intermediate fill (Type 6 Granular Fill) should be placed to a uniform thickness of 0.15 m thick across each lift of debris and worked into the underlying debris using track mounted equipment. The intermediate fill lift should be inspected to confirm that large void spaces have been filled. The intermediate fill should be non-frost susceptible to reduce the potential for seasonal frost jacking of debris. The final thickness of the debris and intermediate fill layers should not exceed 3 m.

3.8.3 Secure Soil Disposal Facility

Soils contaminated with PCBs and heavy metals are known to be present on the site. Unless these soils are removed from the site, a secure soil disposal facility (SSDF) consisting of a lined containment system is recommended. Depending on the final contaminated soil volumes, co-disposal of the Tier II contaminated soil with hydrocarbon impacted soil may be considered. The design objective for this facility would be to encapsulate the contaminated soil with a geomembrane and sufficient granular cover to allow it to freeze-back over time. Additional containment would be provided by a frozen core of saturated soil keyed into permafrost or saturated ground. The design will result in little to no infiltration of moisture into the landfilled soil and as such, leachate generation is not expected in either the short term (before freeze-back) or in the long term. In this regard leachate and gas control measures are not required.

3.8.3.1 Design Considerations

The SSDF should be located in an area where concentrated surface water run-on does not occur, e.g., within the confines of a natural drainage course or where its construction could impede natural drainage. Ponding of water as a result of construction should be avoided as this may impact the thermal stability of the ground leading to post-construction settlement.

The SSDF berms should be constructed with Type 2 granular fill incorporating a core of Type 4 granular fill. Both granular material types are available on site. The core material should have a minimum degree of saturation of 90 percent and be compacted to a minimum of 95 percent of Standard Proctor Maximum Dry Density (SPMDD). All granular fill should be placed in horizontal lifts not exceeding 250 mm and compacted to a minimum of 95 percent of SPMDD (ASTM D698). The berms should be constructed with exterior side slopes of 3H:1V and interior slopes of

1.5H:1V with a minimum final top width of 2 m. If the final berm is limited in height, Type 1 granular fill for armouring the finished slopes may not be required.

The SSDF footprint should be graded and any organic material removed prior to fill placement. The extent of grading should be kept to a minimum to avoid disturbance to the permafrost. Below grade cells are not recommended. Any boulders or oversize material should be pushed aside and wasted or saved for future incorporation as armouring. The Type 4 granular fill needs to be keyed into either saturated ground or ice rich permafrost. In this regard, preferred locations may be in lower lying areas where a shallower depth to the groundwater table or frozen soil is expected.

The geomembrane should be protected using a non-woven geotextile and a sand layer (Type 5 Granular Fill in Section 3.7.2). The bedding sand may be obtained by screening Type 2 Fill or screening of sand encountered in Borrow Areas 6, 6A, and 7 to meet the grading requirements, in particular the maximum particle size. The landfill cover should be constructed using Type 2 granular fill available on site. It is anticipated that the final cover above the contaminated soil will be in the order of 4.0 m thick to maintain the active layer within the cover material. The final cover thickness should be confirmed using thermal modelling during detailed design.

3.8.4 Landfarm

Hydrocarbon impacted soils have been found on site. Depending on the volume of impacted soil a landfarm may be a suitable remedial option for soil treatment.

3.8.4.1 Design Considerations

The landfarm would consist of a containment cell with perimeter berms in the order of 1 to 1.5 m high. Because the total thickness of contaminated soil is generally limited to about 400 mm, the landfarm footprint may be of considerable size. The landfarm footprint should be uniformly graded (reshaped) towards the down-gradient side and any organic material removed prior to fill placement. The extent of grading should be kept to a minimum to avoid disturbance to the permafrost. It is not anticipated that any fill material will be required to achieve the cell floor grades. Any boulders or oversize material should be pushed aside.

The berms should be constructed using granular Type 2 granular fill with exterior side slopes of 3H:1V and interior slopes of 2H:1V with a minimum final top width of 2 m. A hydrocarbon resistant liner is recommended around the perimeter of the cell. The liner should be incorporated into the granular berms and keyed into permafrost. Once land-farming is complete the granular berms should be collapsed and the liner removed for disposal in the NHWLF. It is only necessary to exhume the portion of the liner within the berms, i.e., the portion above existing grade. All granular fill should be placed in horizontal lifts not exceeding 250 mm and compacted to a minimum of 95 percent of SPMDD (ASTM D698). The final landfarm surface should be graded at 2 to 4 percent towards the outside edge(s) and uniformly compacted with the random action of tracked equipment.

3.8.5 Recommended Landfill/Landfarm Locations

Four potential landfill locations (LF-2, LF-3, LF-5 and LF-6) were identified and evaluated during the field program. The locations of landfills are shown on Figure 2.

The preferred locations for an SSDF are LF-3 or LF-6. An alternative location for a SSDF is LF-2 but LF-2 may also be considered as a borrow source of Type 4 Granular Fill.

The preferred locations for a NHWLF are LF-5 or LF-6. An alternative location for NHWLF is LF-2 but LF-2 may also be considered as a borrow source of Type 4 Granular Fill

The preferred location for a landfarm is LF-5. An alternate location for a landfarm is LF-6.

3.8.5.1 LF-5 (Proposed NHWLF and Landfarm Location)

The location of LF-5 is shown on Figures 2 and 3. The site is located on a well drained undisturbed area south of the Station Area (Photos G60 to G66 in Appendix C). The area is adjacent to several borrow areas and a road and is easily accessible. The area slopes at approximately 3 % to the south (towards the ocean). Five testpits (TP10-09 to 12 and TP10-22) were excavated in this area to determine subsurface soil, groundwater and permafrost conditions. The subsurface soils generally consisted of peat underlain by sand underlain by gravel and sand. Seepage was encountered in all testpits below 0.8 m depth (Photos G62, G64 and G66). Frozen ground was also encountered in TP10-10, 11 and 12 below 0.9 m depth. A seepage zone is common in permafrost areas above the permafrost and should be expected in this area during construction.

Grain size analyses were conducted on combined samples from gravel and sand layer in TP10-10 and 11, and TP10-12 and 22. The samples had 63 to 65 % gravel, 33 to 36 % sand, and 1 to 2% silt/clay. A sieve analysis was also conducted on a sand sample from TP10-22. The sample had 3 % gravel, 94 % sand, and 1 % silt/clay. The soils encountered in this area generally fall within the gradation limits of Type 2 Fill (Figure 35).

Salinity was also measured on two soil samples from TP10-10 and 22. Salinity of both samples was less than 1 ppt indicating that the foundation soil is non saline.

Because of the permeability of these soils, the perimeter containment system described in Section 3.8.4 is also recommended for the landfarm. The liner has to be keyed into the permafrost. If at some locations the permafrost is deeper than 1.5 m the liner will have to be keyed into the existing ground by at least 1.5 m in consideration of the freeze-back that will occur during the first season.

The investigated area for LF-5 is approximately 100,000 m², therefore a landfarm or both a landfarm and a NHWLF can be constructed at this site. The east limit of LF-5 can be adjusted to maintain the required separation from the shoreline and high water mark. Considering the size of the area and its proximity to roads and borrow areas, LF-5 is suitable from a geotechnical perspective for construction of a NHWLF; landfarm; or both.

3.8.5.2 LF-6 (Proposed NHWLF, SSDF or Landfarm Location)

The LF-6, as shown on Figures 2 and 3, is on a well drained partially undisturbed area south of the Station Area (Photos G67 to G72 in Appendix C). The area is adjacent to several Borrow Areas, the Station Area and road and is easily accessible. The area slopes at approximately 2 % to the south (towards the ocean).

Three testpits (TP10-19, 20, and 21) were excavated at this location to determine subsurface soil, groundwater and permafrost conditions. The testpits were excavated in the undisturbed area. The subsurface stratigraphy generally consists of a layer of peat, underlain by sand, gravely sand or gravel and sand. Frozen ground was encountered in TP10-19 and 21 at approximately 0.95 m depth and seepage was encountered in all testpits below 0.8 m depth (Photos G70 and G72 in Appendix C).

A sieve analysis was conducted on a combined sample from the gravel and sand or gravely sand layer in TP10-20 and 21. The sample had 61 % gravel, 37 % sand, and 2 % silt/clay. The sample was collected above the seepage zone and its moisture content was approximately 2 %. A sieve analysis was also conducted on a soil sample from sand in TP10-10. The sample had 3 % gravel, 95 % sand, and 2 % silt. The sample was collected above the seepage zone and its moisture content was 1.6 %. The sieve analysis results and gradation limits of Type 2 Fill are shown on Figure 36 which indicate that the subsurface soils in this area are variable consisting of gravel and sand, gravelly sand, and sand.

Salinity testing of a soil sample from TP10-20 was also conducted. The sample had a salinity of less than 1 ppt indicating that the foundation soil is non-saline.

Considering the site topography, seepage below 0.8 m depth and permafrost at approximately 0.95 m depth, access and proximity to work area, LF-6 location is considered suitable for construction of both a NHWLF and SSDF. The location is also considered suitable for a landfarm. Considering the depth of permafrost and groundwater at the site the depth of a key trench may be in the order of 1 to 1.2 m for the SSDF. The investigated area for LF-6 is approximately 43,000 m², with room to extend in north and west directions.

Because of the permeability of the soils encountered at the site, the perimeter containment system described in Section 3.8.4 is recommended if this location is used for construction of a landfarm. The liner has to be keyed into the permafrost. If at some locations the permafrost is deeper than 1.5 m the liner will have to be keyed into the existing ground by at least 1.5 m in consideration of the freeze-back that will occur during the first season.

3.8.5.3 LF-2 (Proposed SSDF or NHWLF Location)

This location can be considered as an alternative location for construction of an SSDF or NHWLF. This location has also been identified as a potential borrow area of Type 4 Fill (BA-14), therefore, it can be used as a borrow source.

Three testpits (TP10-43 to 45) were excavated in this area to determine subsurface soil, permafrost and groundwater conditions and to characterize subsurface material. The subsurface soils encountered in TP10-43 and 44 consist of peat underlain by a layer of gravel and sand underlain by silty and gravely sand. In TP10-45, drilled near a pond, the subsurface soils consisted of peat underlain by a layer of gravel and sand underlain by silty and clayey sand. Seepage was encountered in all testpits below 0.8 m depth (Photos G50 and 51 in Appendix C) and frozen ground was not encountered in any of the testpits. A zone of seepage is common above frozen ground in permafrost areas and should be expected at this location.

A sieve analysis was conducted on a combined soil sample from silty gravely sand in TP10-43 and 44. The sample had 35 % gravel, 45 % sand and 20 % silt/clay. The soils from these two testpits generally fall within the gradation limit of Type 4 Fill (Figure 19 in Appendix A). A hydrometer analysis was also conducted on a soil sample from TP10-45. The sample had 3 % gravel, 44 % sand and 23 % clay. The soil in TP10-45 falls slightly outside the gradation limit of Type 4 Fill (Figure 32) therefore blending with coarse material may be required if this area is used as a borrow source of Type 4 Fill. Moisture conditioning may also be required if soils from this area are used for backfill of key trench excavations for a SSDF.

Soil salinity of a combined soil sample from TP10-43 and 44 was also measured. The sample had a salinity of 1.5 ppt indicating that the foundation soils are non-saline.

The LF-2 location is on a relatively flat undisturbed ground which slopes gently (approximately 0.5 %) towards the south. The investigated area is approximately 46,000 m² which may be sufficient for construction of a SSDF, NHWLF or both. This area may be considered an alternative location for construction of a SSDF or NHWLF considering the foundation conditions (soils and depth to groundwater) proximity to roads, airstrip, borrow areas, and the Station Area.

3.8.5.4 LF-3 (Proposed SSDF Location)

The Landfill 3 (LF-3) location may be considered for construction of a SSDF. The area is bounded by roads to the south, east and west and the airstrip to the north. Most of the area is on undisturbed ground (Photos G52 and 53 in Appendix C). The site is in a low lying area with shallow depth to groundwater table. The area is also near several borrow areas, easily accessible and of reasonable size (45,000 m²).

Three testpits (TP10-46 to 48) were excavated in this area to investigate subsurface soil, groundwater and permafrost conditions. The subsurface soil consisted of a layer of peat underlain predominantly by gravel and sand. Seepage was encountered in all testpits below 0.6 m depth but frozen ground was not encountered in any testpit due to shallow refusal on boulders. However, a seepage zone is common above frozen ground in permafrost areas and should be expected in this area.

A sieve analysis was conducted on a combined sample from all testpits. The sample had 45 % gravel, 45 % sand and 10 % silt and clay. The soil in this area falls within the limits of Type 2 Fill (Figure 33). Salinity of the soil sample was less than 1 ppt indicating that the foundation soils are non-saline.

This area may be considered for construction of a SSDF considering the foundation conditions (soils and depth to groundwater) proximity to roads, airstrip, borrow areas, and the Station Area.

3.9 Assessment of Site Access

3.9.1 Airstrip Evaluation

3.9.1.1 General

The airstrip at CAM-A is approximately 0.9 km long and 28 m wide and is constructed from Type 2 Granular Fill borrowed from the adjacent areas north and south of the airstrip. The airstrip was in good condition during the site investigation and minor grading may be required during remediation (Photos G73 to G76). A 600 mm barrel culvert exists under the airstrip near its west end as shown on Figure 2. The culvert was damaged and appeared to be blocked thus restricting flow through it (Photos G78 and G83). The blocked culvert may result in ponding of water near the airstrip. Ponding may weaken the subgrade of the section of airstrip near the culvert and the culvert may settle. Therefore the culvert should be repaired if this section of the airstrip is to be used.

The aircraft used during the site investigation were Dornier 228 and Shorts Skyvan, both operated by Summit Air. The Summit Air pilots considered the airstrip to be in very good condition. According to the Summit Air pilots, the airstrip in its existing condition is suitable for aircraft like Shorts Skyvan, Dornier 228, Twin Otter DHC6, and Buffalo DHC5.

3.9.1.2 Site Investigation

Two testpits (TP10-14 and TP10-15) were excavated on the airstrip to investigate the fill thickness and subsoil and permafrost conditions. The locations of the testpits are shown on Figure 3. The testpit depths were limited to 1 m due to equipment limitation. Permafrost was encountered in TP10-14 at approximately 1 m depth. The subsurface soils encountered in the testpits consisted of cobbly gravel and sand with trace silt/clay. Sieve analyses were conducted on soil samples collected from both testpits. The samples had 52 to 61 % gravel, 36 to 45 % sand and 3 % silt/clay. The material from which the airstrip was built generally falls within the gradation limits of Type 2 Granular Fill. Two CBR tests were also conducted on the soil samples from TP10-14 and TP10-15. The un-soaked CBR values of samples varied from 37.3 % to 62.1 % and soaked CBR values varied from 33.9 % to 41.3 %.

In addition to the laboratory CBR test Dynamic Cone Penetrometer (DCP) tests were also conducted at six locations to evaluate the airstrip. With DCP it is possible to determine in-situ California Bearing Ratio (CBR) of the gravel airstrip and subgrade. The locations of the DCP tests are shown on Figure 2 and variation of CBR with depth is shown on Figure 3. The test results show that CBR generally increases with depth. The variation of CBR with depth is summarized in Table 3-12.

	CBR (%)			
Depth (m)	Minimum	Maximum	Average	
0.0-0.25	4	60	15	
0.25-0.50	12	100	28	
0.50-0.75	3	80	33	
Below 0.75	5	100	39	

Generally, the average CBR increased with depth. Low CBR values (less than 10 %) were recorded in the upper 0.15 m of the pavement structure. Low CBR values were also recorded at DCP-1 at 0.6 m depth and at DCP-3 at approximately 1.1 m depth. The CBR from the laboratory tests and average CBR values from DCP tests indicate that the pavement consists of a competent granular material even in a saturated condition.

3.9.1.3 Overall Airstrip Load Capacity

Based on the condition of the airstrip and the in-situ CBR values the existing gravel airstrip would have the capacity to support aircraft with an Aircraft Loading Rating (ALR) up to 8. Table 3-13 obtained from Transport Canada (2004) provides an indication of the type of aircraft within each ALR classification, operating weights, Aircraft Classification No. (ACN) and design tire pressure.

Table 3-13 - Typical Aircraft for ALR Classification

Aircraft	ALR Max/Min	Operating Weight (kN) Max/Min	ACN Max/Min	Design Tire Pressure (MPa)
Otter DHC3	1.0/1.0	36/20	N/A	0.20
Twin Otter DHC6	1.0/1.0	56/35	2/2	0.26
Short Skyvan	1.0/1.0	67/35	3/3	0.28
DC-3	4.1/2.3	147/80	7/4	0.31
Buffalo (DHC5)	4.3/4.2	187/115	8/4	0.41
DC-4	6.3/4.2	335/200	15/8	0.53
DC-9	7.8/6.5	404/300	23/16	0.93
Hercules C-130	9.1/6.0	778/360	34/14	0.67

Most of the aircraft in Table 3-13 would be able to use the existing airstrip at CAM-A subject to any repair or regrading that may be required. It should be noted that the CBR values based on DCP can deviate throughout the year (i.e., the surface CBR values may be low when airstrip is wet). Considering the low CBR values (less than 10) in the upper 0.15 m of the airstrip at most of the locations a fully loaded Hercules C-130 should not land on the airstrip during wet conditions.

The DCP testing and subsequent determinations of ALRs consider the entire granular structure with respect to supporting aircraft loads. This analysis does not consider the internal stability of the sand and gravel and its potential for rutting. The successful (and conventional) use of aircraft with wide tires such as the Skyvan and Dornier used for the site investigation suggests that wide tires may be necessary because of the quality of granular material. For this reason, it is recommended that the airstrip be inspected by aircraft crew familiar with necessary gravel surface requirements prior to its use, in particular for aircraft the size and weight of a Hercules C-130.

3.9.2 Roadway Evaluation

There are a number of gravel roads on the site connecting the Station Area with the Airstrip, Beach POL, Barrel Pile B, Landfill A and Fresh Water Lake. A visual inspection was conducted to evaluate the general condition of gravel roads and to assess the maintenance required to make it passable by construction equipment, haul trucks and other passenger vehicles during the remediation activities. Photographs and videos were taken of the roads during the site investigation. Selected photographs are included Appendix C. Site videos are included in Appendix I.

Most of the roads are elevated and are constructed with locally available granular material. The gravel roads at the CAM-A site have been divided in eight sections (Sections 1 to 8) for the purpose of this report as shown on Figure 2. The roads are generally in good condition but may require regular grading during remediation. Small patches of vegetation are typical along some roads but are of no concern with respect to trafficability. The road sections are described below.

3.9.2.1 Road Section 1

Road Section 1 connects the west end of the airstrip with the Fresh Water Lake (Photos G77 to G81). This road section is approximately 5 to 6 m wide and 500 m long. The road section is generally in good condition. The only exception is a 20 m long reach near the airstrip where settlement was noted (Photo G79). The settlement is caused by ponded water on both sides of the road. A turn-around section, approximately 24 m by 14 m, exists at the end of the road (Photo G81). This road section is in good condition for heavy equipment although regular grading will be required during remediation activities. The section where settlement was noted will also need repair.

Pull-out sections do not exist on this section therefore a pull-out section may be required to allow for two way traffic.

3.9.2.2 Road Section 2

Road Section 2 connects the airstrip with the Station Area via Road Section 3 (Photos G82 and G84 to G88). This road section is approximately 5 to 6 m wide and 200 m long. The road is built from granular material and is generally in good condition for heavy equipment. A barrel culvert approximately 600 mm diameter exists on this road section as shown on Figure 2 and Photos G85 to G87. The culvert was damaged at both ends and there is no soil cover above it. The culvert may need replacement during remediation. Soil cover may also be required above the culvert to protect it from any damage due to construction traffic.

3.9.2.3 Road Section 3

Road Section 3 connects the west end of the airstrip with the Station Area (Photos G89 to G95). The road is approximately 5 to 6 m wide and 600 m long. The road is well elevated and is in good condition for heavy construction equipment. A CSP culvert of approximately 600 mm diameter exists on this road section (Photos G91 to G93). The culvert is extended by connecting a barrel with the CSP. The culvert may need minor repair during remediation (i.e., properly extending the CSP culvert, and fill placement above culvert to protect it from damage due to heavy equipment, etc.).

3.9.2.4 Road Section 4

Road Section 4 connects the east end of the airstrip with the Station Area (Photos G96 to G102). This road section is approximately 850 m long and 5 m wide. The road is partly elevated and partly at grade. Small patches of vegetation are typical along this road section but are of no concern with respect to trafficability. A barrel culvert exists on this road section as shown on Figure 2. The culvert is damaged and has no soil cover. The culvert may need replacement and enough soil cover above it to protect it from any damage due to heavy equipment. The road is

generally in good condition for heavy equipment but regular grading will be required during remediation. Pull-out sections may be required along the road to allow two way traffic.

3.9.2.5 Road Section 5

Road Section 5 connects Station Area with Beach POL (Photos G103 to G110). This road section is approximately 850 m long and 4 to 4.5 m wide. The road is elevated and small patches of vegetation are typical on the road surface along this section. A big turn-around section exists at the end of this section. The road is generally in good condition but will require regular grading and some pull-out sections to allow two-way traffic. The turn-around section is on grade; its surface consists of sand and is covered with vegetation. Some fill placement may be required on the turn-around section to raise grade and to facilitate turn-around of vehicles.

3.9.2.6 Road Section 6

Section 6 branches off from Section 5, as shown on Figure 2, and ends at Barrel Pile B. This road section is approximately 120 m long and 4 m wide (Photos G111 and G112). A big turn-around exists at the end of this road section. The road is generally in good condition but regular grading will be required during remediation.

3.9.2.7 Road Section 7

Section 7 branches off from Section 6, as shown on Figure 2, and ends at Landfill A (Photos G113 and G114). This road section is approximately 300 m long and 4 to 5 m wide. The road is covered with patches of vegetation. The road was constructed by placing granular fill and is generally in good condition but regular grading will be required during remediation.

3.9.2.8 Road Section 8

Road Section 8 connects the airstrip with Borrow Area 3 (Photos G115 and G116). The road is mostly on grade and covered with vegetation. The road section is approximately 200 m long and 3 to 3.5 m wide. The road surface may need to be raised by placing fill if this road section is used during remediation activities for borrowing material from Borrow Area 3.

3.9.3 Beach Landing Area

The preferred barge landing area is between Barrel Pile B and the Beach POL as shown on Figure 2 where barges would have historically accessed the site. The area is in good condition with little upgrading required and is connected with roads.

3.9.4 Contractor Camp and Laydown Area

The preferred location for the camp/laydown area is near the airstrip and LF-3 as shown on Figure 2. The area has been used for borrowing material in the past for construction of the airstrip and is relatively flat. Alternatively the contractor's camp can be located on landfill/borrow area locations LF-1 (BA-13) or LF-2 (BA-14).

3.10 Traditional Land Use

While in Cambridge Bay, attempts were made to contact Elders familiar with the sites; however, many of the Elders were out on the land while the team was in Cambridge Bay.

Table 3-14 - Historical Information

Area	Reference Figure	Reference Photo	Waypoint	Comment
Worked Area	2	E-68, E-69, E-70	W-192, W-193	Heritage Point –Cairn dedicated by St. John's Ambulance.

Based on the results of the AIA completed by Golder Associates for AECOM and PWGSC, it is recommended that PWGSC be allowed to proceed with the remediation of the CAM-A DEW Line site area with the condition that no impacts occur within 30 m of six (6) historic sites identified in Figure 2. It is also recommended that the Harrop Cairn, identified in Table 3-14 be avoided and remain intact.

3.11 Environmental Data Quality Assurance and Quality Control (QA/QC) Procedures

3.11.1 QA/QC Procedures and Evaluation

In order to confirm that the sampling and analytical data collected for CAM-A was interpretable, defensible and comparable, a Quality Assurance and Quality Control (QA/QC) program was implemented for the project. QA/QC measures were taken in both the collection and analysis of the environmental sampling program. The following sections outline the QAQC program completed during the investigation.

3.11.2 Summary of AECOM QA/QC Program & Results

Quality Control (QC) measures used in the collection, preservation, shipment, and analysis of samples included the following:

- Sampling techniques were performed in accordance with standard written AECOM protocols;
- Field notes were recorded during the investigation;
- All samples were kept cool prior to shipment to the laboratory;
- Samples were assigned unique sample control numbers and transported under chain of custody procedures; and
- The analytical laboratory has proficiency certification issued by the Canadian Analytical Laboratories Association (CALA) for the specific analyses conducted.

Quality Assurance (QA) measures established for the investigation included collection of duplicate field samples at a rate of approximately 10%. A blind duplicate sample consists of a second aliquot of an individual sample that is submitted to the analytical laboratory under a separate label such that the analytical laboratory has no prior knowledge that it is a duplicate. Duplicate samples from numerous locations were submitted to the laboratory for analysis.

The relative percent difference (RPD) between duplicate results was used to assess overall sampling precision. The RPD is a measure of the variability between two duplicate analyses and is calculated by the following equation:

$$RPD = 100 x ((2 x (x1 - x2))/(x1 + x2))$$

Where x1 is the primary result and x2 is the blind duplicate result.

Table B8 in Appendix B compares sample analysis between the original samples and their duplicates. Acceptable RPD values vary on the analytical parameters, the sample matrix and the concentrations of analytes in the sample.

Acceptable RPD values vary based on the analytical parameters, the sample matrix, and the concentrations of analytes in the samples. For metals in soils acceptable RPD values are 35% and for organics in soils (PHCs and PCBs), the acceptable RPD values are 50%. Only when concentrations are at least ten times the method detection limit are RPD calculations considered valid.

3.11.2.1 Field Duplicate Samples

During this program, forty-three (43) field duplicates for soil samples were collected and twenty-six (26) field duplicates were analyzed to provide an indication of the overall sampling and analytical precision. The blind field duplicates were analyzed for various parameters based on their location and expected contaminant(s) present. Relative percent differences (RPDs) were calculated for all parameters analysed in each sample. For the majority of the parameter results, the RPD values were below 35% for metals and 50% for PHCs and PCBs. The results of these calculations are summarized in Table B8 in Appendix B.

Two (2) of the twenty-six duplicates were found to have exceedances in alert criteria. One (1) set of duplicate samples from the modular train with sample numbers 1310 and 1311 exceeded the recommended alert criteria for mercury and zinc parameters. The resulting RPDs were 57% and 58, respectively. Samples 830 and 831 located around the garage exceeded the PHC F2 alert criteria with a calculated RPD of 108%.

Based on the field notes the material type in these areas was composed of gravels and sands. The coarse nature of this material provides explanation as to why it may have been difficult to obtain a homogeneous sample.

Five (5) other duplicate sets did have calculated RPDs that were above the recommended alert criteria; however, the concentrations of one or both samples in the duplicate set were less than ten times the detection limit. The RPD is therefore not considered to be strictly valid. All other parameters within the duplicate sets had acceptable RPD values.

3.11.2.2 Laboratory QA/QC

AGAT Laboratories (AGAT) was the main analytical laboratory for the 2010 analytical program. (Four samples were sent to Maxxam Analytics). AGAT ran calibration check samples, matrix spike samples, surrogate spike analysis, and standard reference material analysis to determine analytical accuracy. The Quality Assurance (QA) report for the investigation was within acceptable limits for all parameters. The QA program completed by AGAT included duplicated, Method Blank, Method Blank Spikes and Matrix Spikes.

Laboratory duplicates are two aliquots taken from the same sample container, and processed through the entire analytical procedure separately. Measured results are used to compare the analytical precision of the entire analytical process including the sample preparation, digestion/extraction, and instrument measurement. Matrix spike duplicates are used to determine method precision. These samples involve taking two aliquots from a client sample and preparing two matrix spikes from the two aliquots.

Matrix spikes and Method blank spikes measure both the accuracy of the analytical method and the effect a particular sample matrix has on the accuracy of measurement. A Matrix spike is prepared by adding a known amount of the target analyte(s) to a volumetric aliquot of the client sample. The recovery of the matrix spike is then calculated. The percentage recovery of the matrix spike will indicate the accuracy of the analytical method. It will also provide a measure of the suitability of the method used for the samples undergoing analysis. The method blank spike is there to act as a check on the equipment and the analyst technique used to prepare the Matrix Spike.

All results were within acceptable limits. The laboratory also ran laboratory duplicate samples to ascertain analytical precision and again, all results were within acceptable limits. Method blank samples were run to ensure that there

was no carry-over from analysis to analysis, and that analytes were not introduced due to the reagents or methods used. The blank analyses were observed to be less than the method detection limit (MDL).

4. Conclusions

The conclusions included in this report are based on the information and data collected during the Phase III Environmental Assessment at the CAM-A, Sturt Point Intermediate DEW Line site. The following is a summary of the conclusions:

Contaminated Soil Areas

Approximate volumes of contaminated soil identified at CAM-A include:

- Type B Hydrocarbon (1,124.8 m³):
 - 425 m³ of Type B hydrocarbon impacted soil was identified at the Beach POL within 30 m of the ocean.
 - 128.8 m³ of Type B impacted soil was identified at the Beach POL Pad.
 - 571 m³ of Type B impacted soil was identified at the module train foundation.
- Tier I (43 m³):
 - 7.9 m³ of Tier I contaminated soil was identified in the module train foundation.
 - 35.1 m³ of Tier I contaminated soil was identified in the sewage outfall area.
- Tier II (75 m³):
 - 9.25 m³ of Tier II contaminated soil was identified at the garage.
 - 0.08 m³ of Tier II contaminated soil was identified in the sumps on the garage foundation.
 - 21.48 m³ of Tier II contaminated soil was identified at the module train foundation.
 - 44.19 m³ of Tier II contaminated soil was identified in the worked area (Lobe J).
- The above summary does not include any additional Tier I or Tier II contaminated soil, or PHC impacted soil that may be associated with landfill excavations.

Buried and Surface Debris Areas

- There were fourteen (14) lobes of buried debris areas identified onsite during the geophysical investigation. The presence of buried debris was confirmed at Landfill A (Lobes A, B, C, & D) and Landfill B (Lobes F, G & H). All other lobes identified onsite were determined to be localized partially buried debris and/or surface debris and were assessed as surface debris areas. Six (6) small anomalies were also identified by Associated Geosciences during post-field data processing after the site investigation. The areas of the additional lobes not identified onsite (Lobes L, P, Q, R, S & T, identified on Figures 2, 7 & 10), were assessed as part of the surface debris assessment completed onsite rather than a buried debris assessment.
- The results indicate that Landfill A, Lobes A, B, C, D were clustered in a central location on a mound of material elevated from the surrounding topography. These four (4) lobes were assessed as part of the WDA assessment for Landfill A and identified as Class C, as they were considered a low environmental risk.
- Landfills B, Lobes F, G & H were identified as three separate lobes which appeared mounded from the surrounding topography to varying degrees. These three (3) lobes were assessed as apart of the WDA assessment for Landfill B. These three (3) lobes were assessed as apart of the WDA assessment for Landfill B and identified as Class C, as they were considered a low environmental risk.
- Landfills A and B were classified as Class C, and therefore do not require removal from the site. However, if
 these landfills were to be excavated, the volumes of estimated materials expected to be encountered are
 calculated based on AECOM's extensive history with DEW Line Site remediation and years of landfill excavation
 data. The following is a summary of expected material volumes:
 - 36 m³ of Hazardous Soil Materials Lobes A, B, C, D, F, G & H (estimated as 1% of total volume);
 - 364 m³ of Tier I Soil Materials Lobes A, B, C, D, F, G & H (estimated as 10% of total volume);
 - 364 m³ of Tier II Soil Materials Lobes A, B, C, D, F, G & H (estimated as 10% of total volume); and
 - 729 m³ of Non-hazardous Soil Materials Lobes A, B, C, D, F, G & H (estimated as 20% of total volume).

• All other lobes that were identified in the field were determined to be areas of localized partially buried debris and surface debris that would be assessed as a surface debris area rather than a buried debris area.

Demolition & Debris Materials

- Based on the combined results of the surface debris inventory, buried debris inventory, barrel assessment and demolition inventory approximately:
 - 495.81 m³ (crushed) of non-hazardous waste was identified. This material is suitable for disposal in a non-hazardous waste landfill on the CAM-A site.
 - 38.46 m³ (crushed) of hazardous waste was identified. This material consists mainly of material coated with PCB amended paint (PAP), as assessed under the new regulations.

Alternative Summary of Demolition & Debris Materials

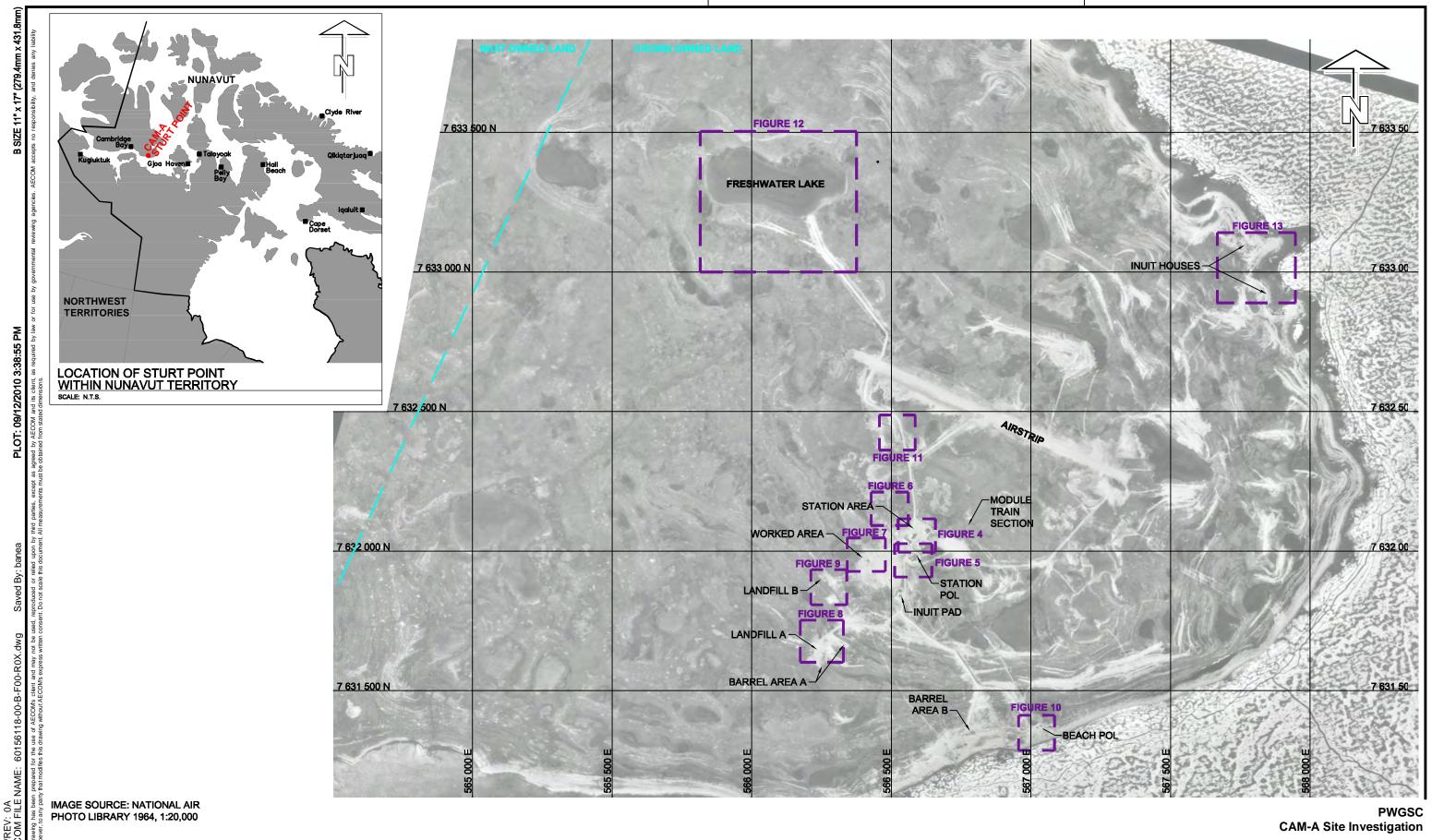
- Based on the combined results of the surface debris inventory, buried debris inventory, barrel assessment and demolition inventory approximately:
 - 525.01 m³ (crushed) of non-hazardous waste was identified. This material is suitable for disposal in a non-hazardous waste landfill on the CAM-A site.
 - 9.25 m³ (crushed) of hazardous waste was identified. This material consists mainly of material coated with PCB amended paint (PAP), as assessed under the new regulations, and asbestos-containing materials.

Geotechnical

- Seventeen (17) potential borrow areas were identified during the site investigation. An estimated 321,900 m³ of granular material is available from these borrow areas.
- Four (4) landfill/landfarm locations were investigated and identified as suitable locations.
- Based on the information collected all of the noted aircraft would be able to use the existing runway during dry
 conditions at CAM-A after minor repairs identified during the airstrip inspection. The Hercules C-130 should not
 land with a full load during times when the airstrip may be wet.
- The roads are in good condition for heavy equipment although regular grading will be required. Pull out sections may be required at some locations to allow two-way traffic.

Archaeological

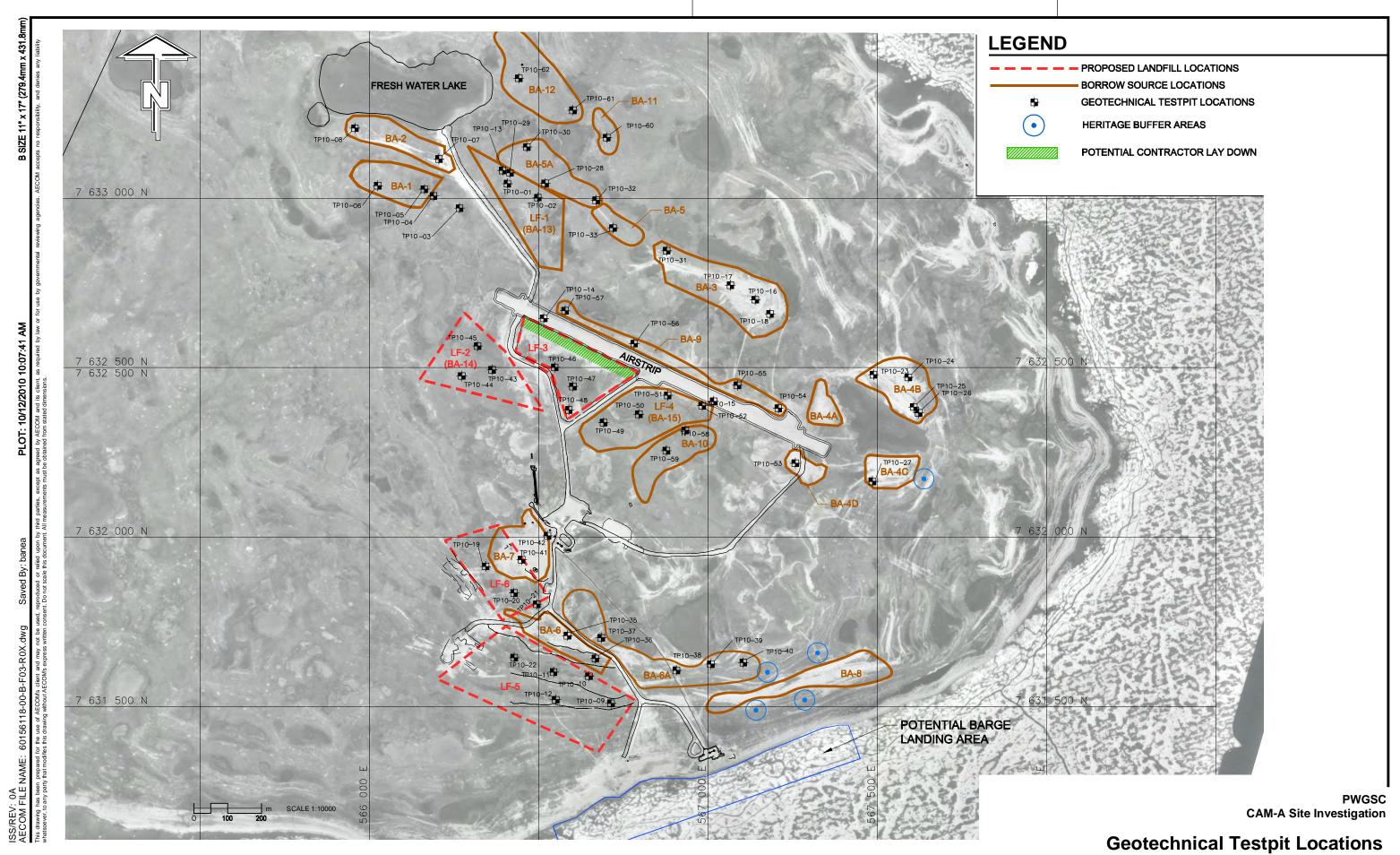
Based on the results of the AIA completed by Golder Associates for AECOM and PWGSC, it is recommended
that PWGSC be allowed to proceed with the remediation of the CAM-A DEW Line site area with the condition
that no impacts occur within 30 m of six (6) historic sites identified in Figure 2. It is also recommended that the
Harrop Cairn be avoided and remain intact.

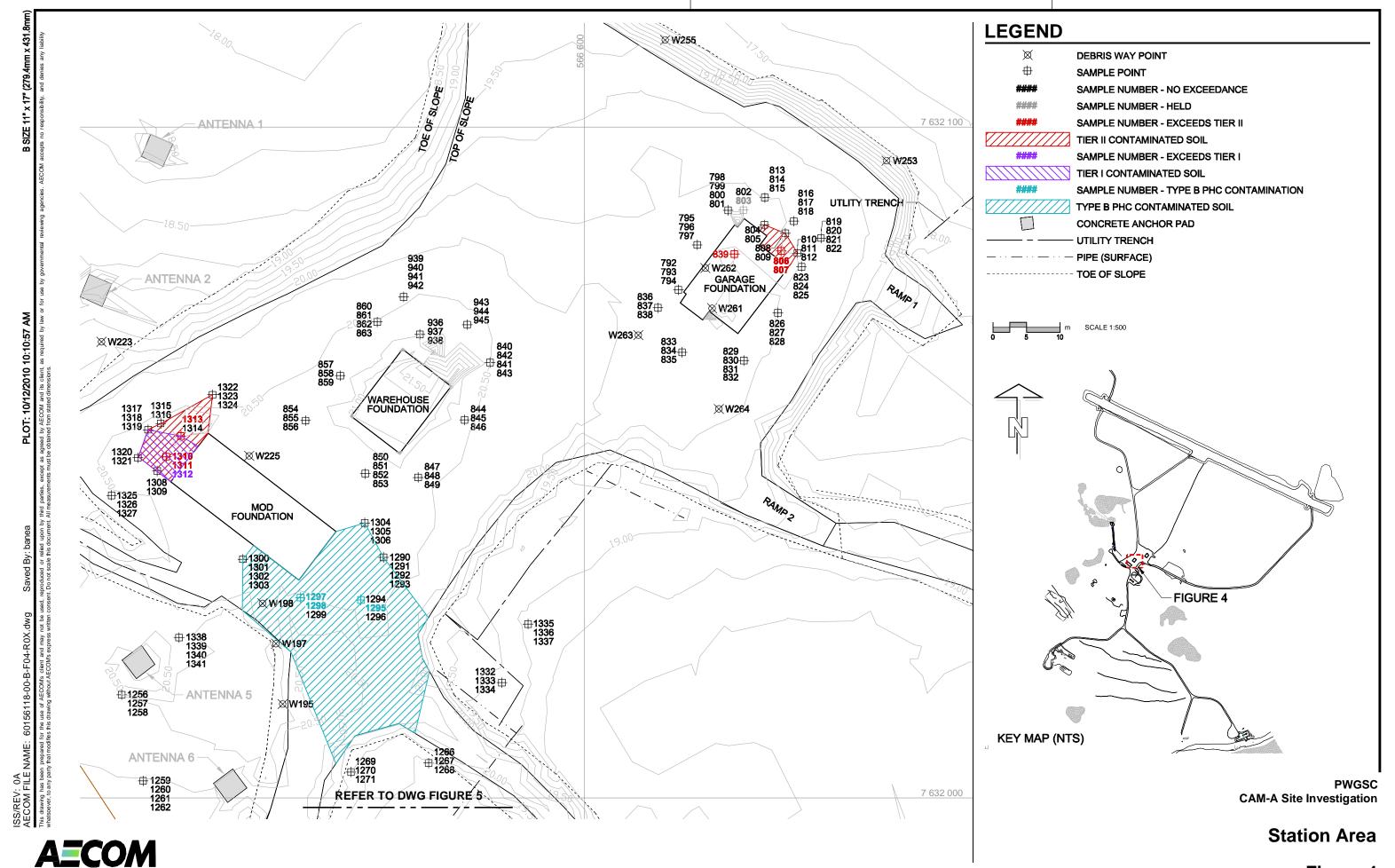

Recommendations regarding preferred remedial options will be completed as part of the development of the Remedial Action Plan (RAP).

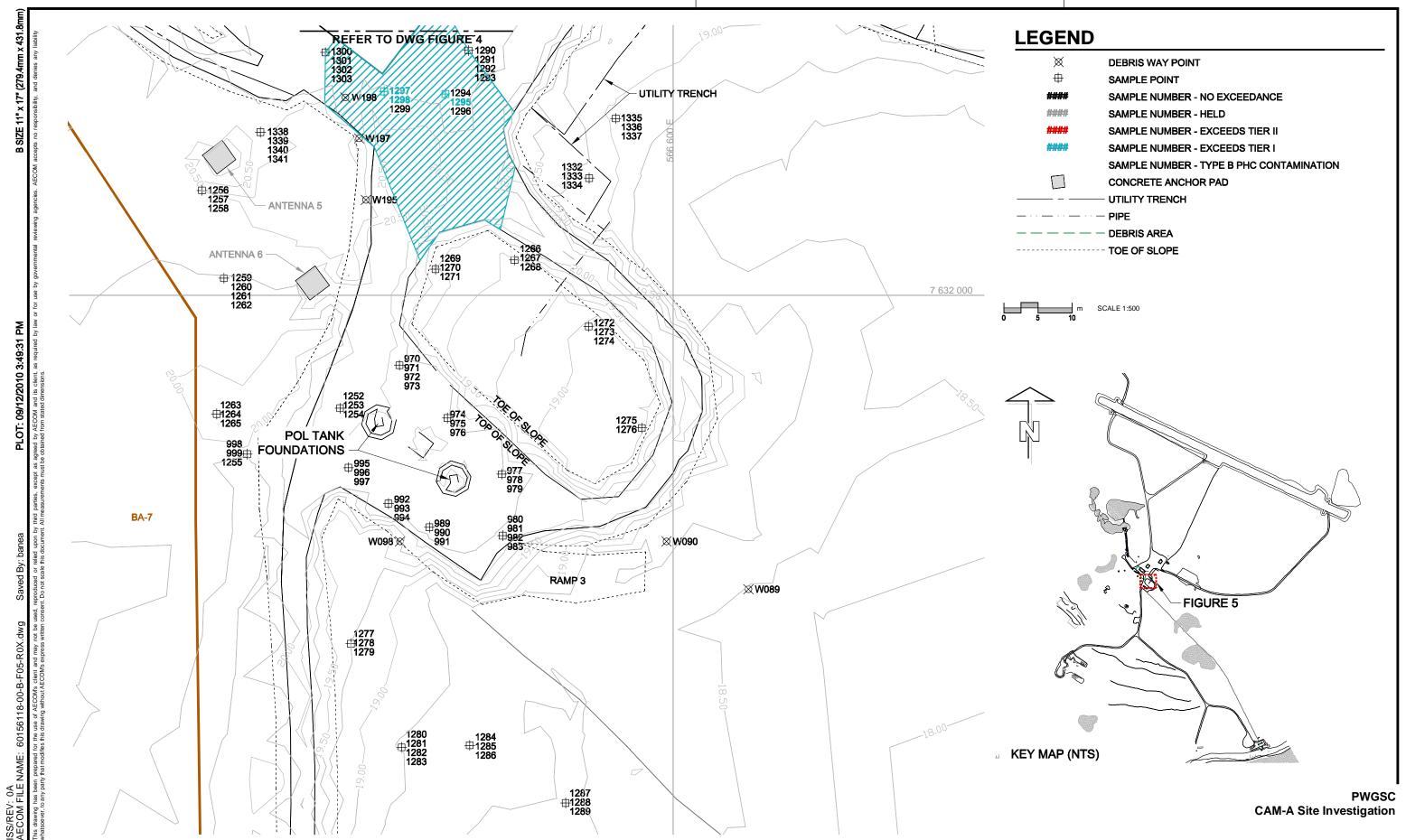
5. References

- Environment Canada, 2008. Canadian Climate Normals 1971-2000 Cambridge Bay Nunavut.
- Environmental Sciences Group, 1995. Environmental Study of Abandoned DEW Line Sites
- One Auxiliary and Eight Intermediate Sites in the Canadian Arctic.
- Indian and Northern Affairs Canada, 2009. Abandoned Military Site Remediation Protocol.
- Environment Canada, 2008. PCB Regulations published in the Canada Gazette, Part II, on September 17, 2008 (Current Regulations as of 22, October, 2010)

Appendix A

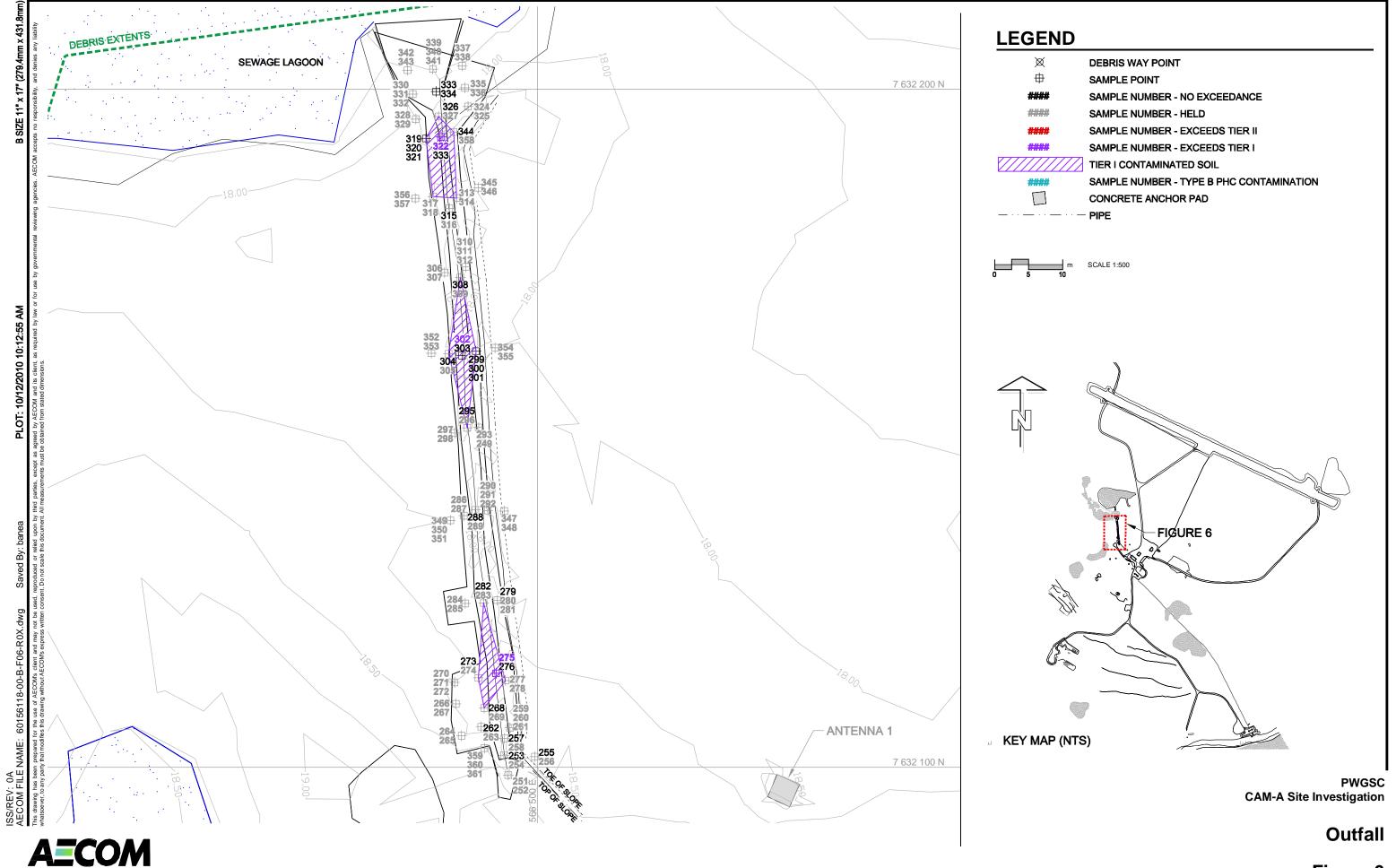

Site Location

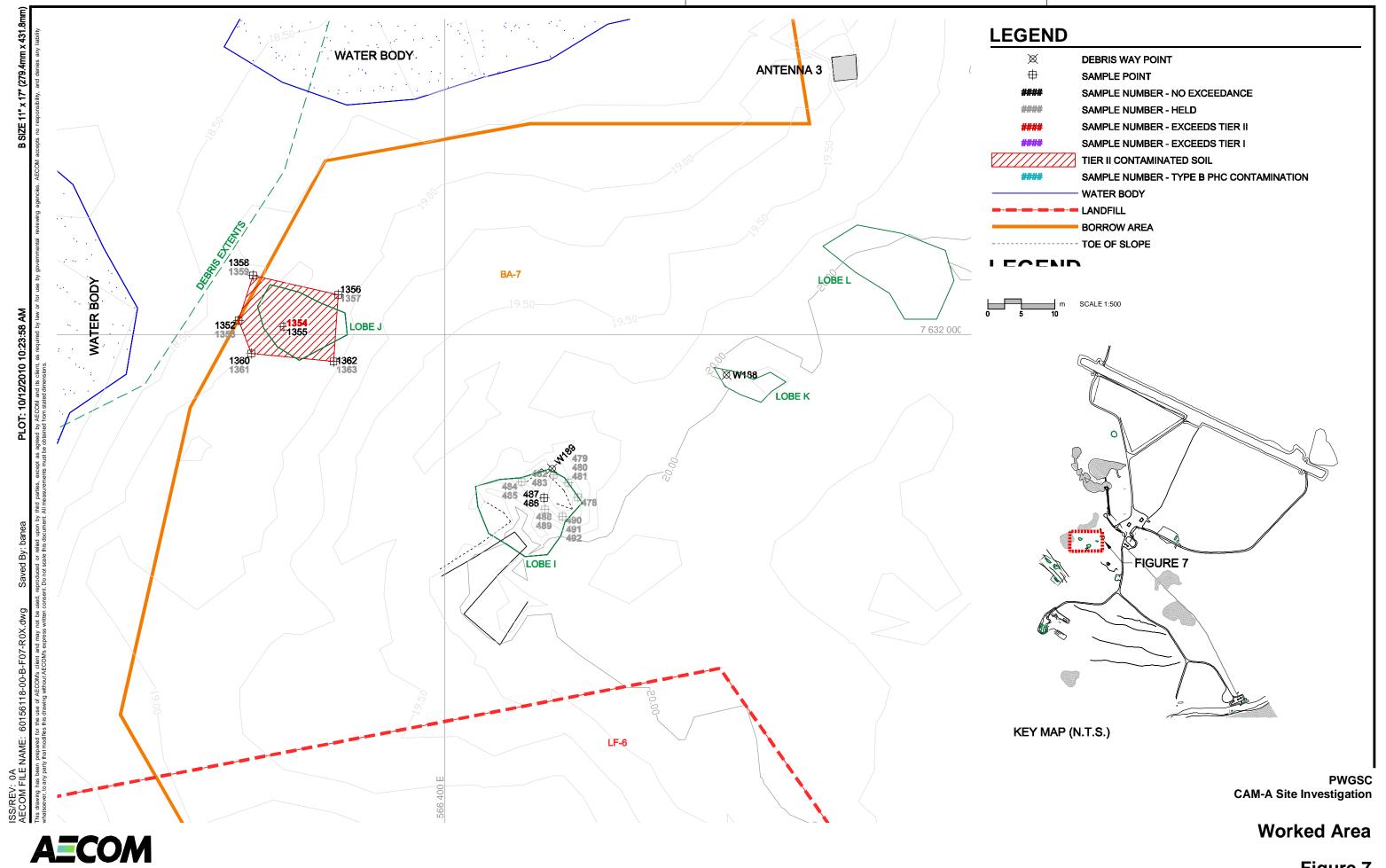

SCALE 1:15000

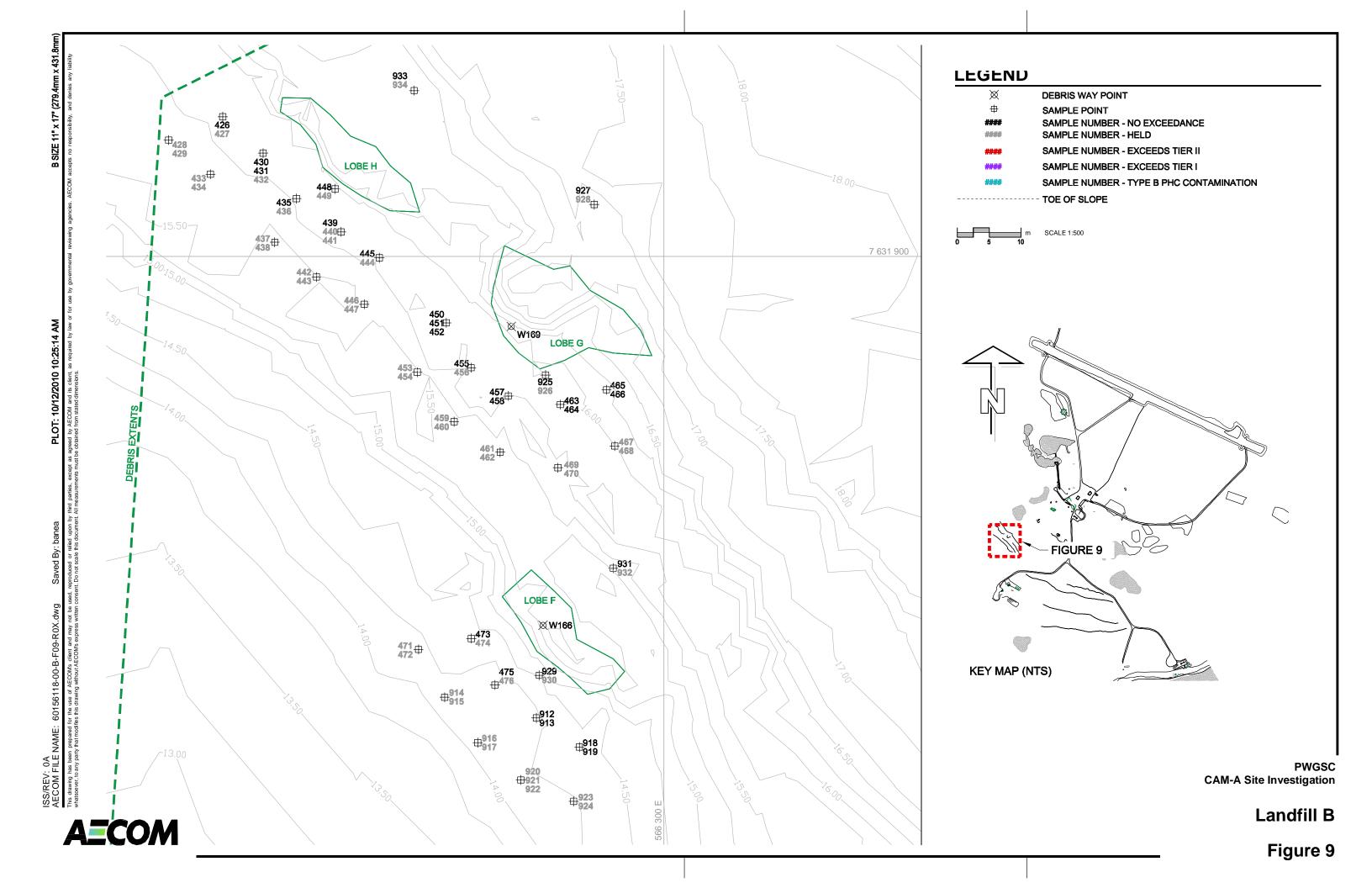


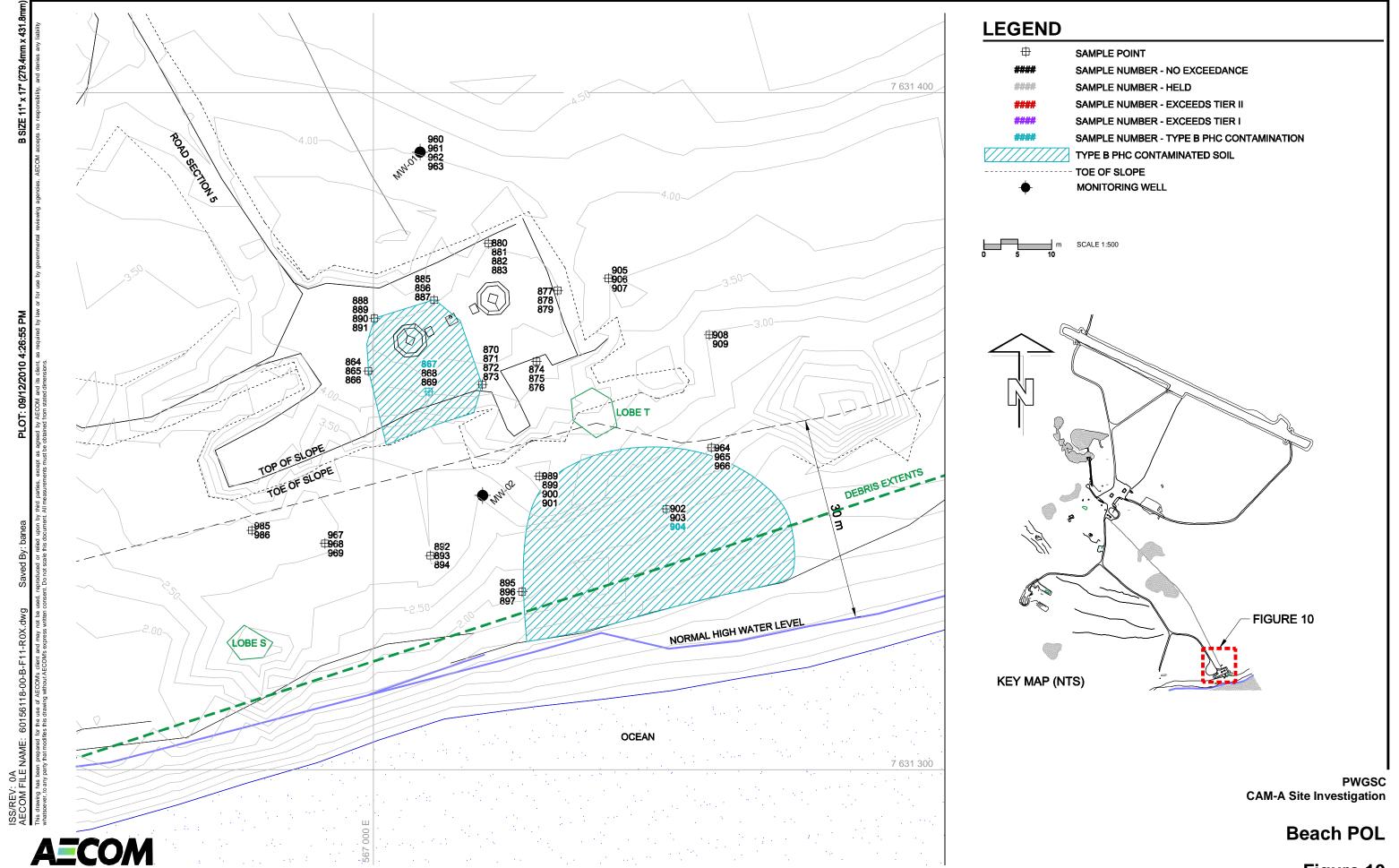
AECOM

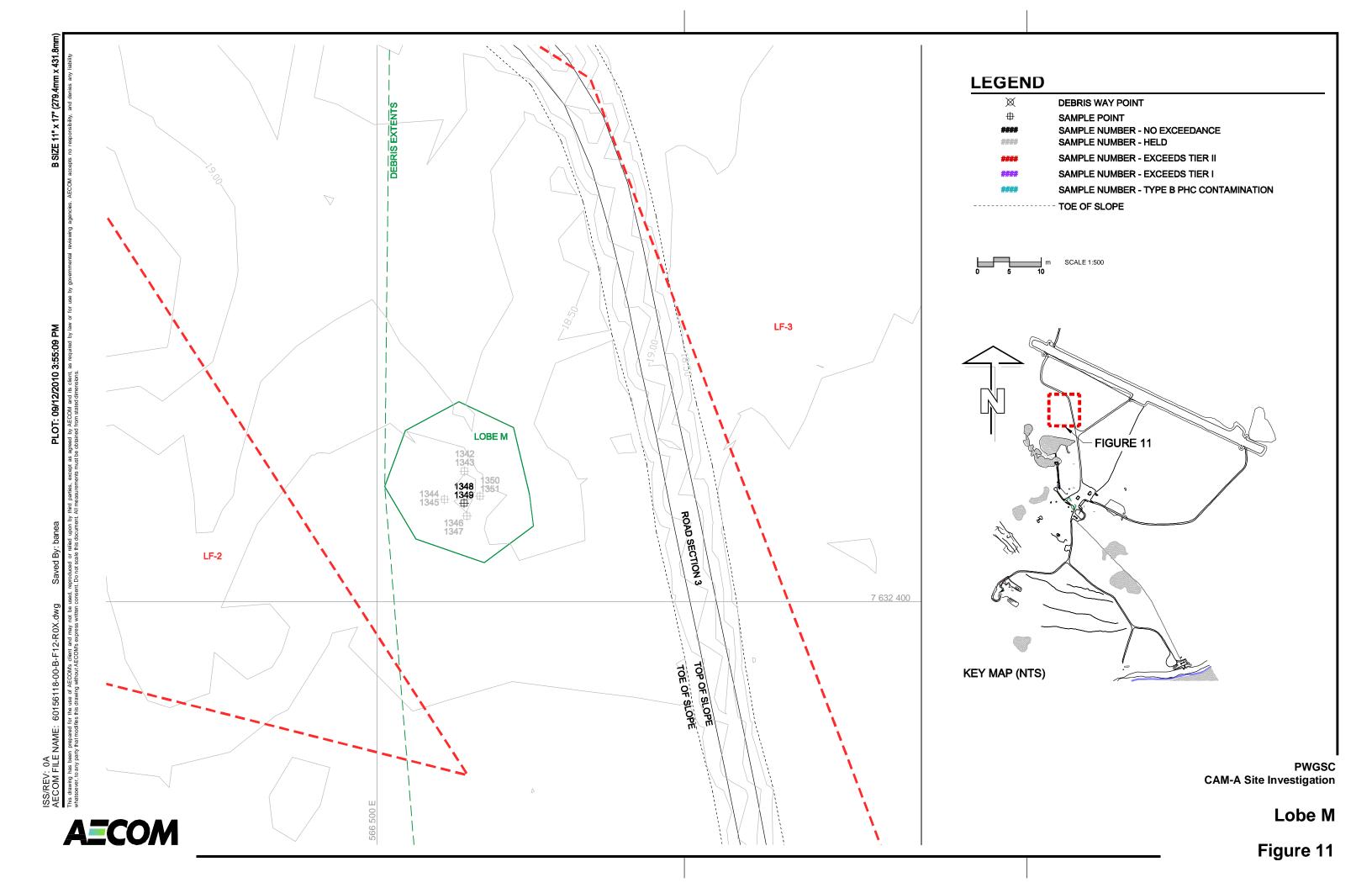
Site Layout

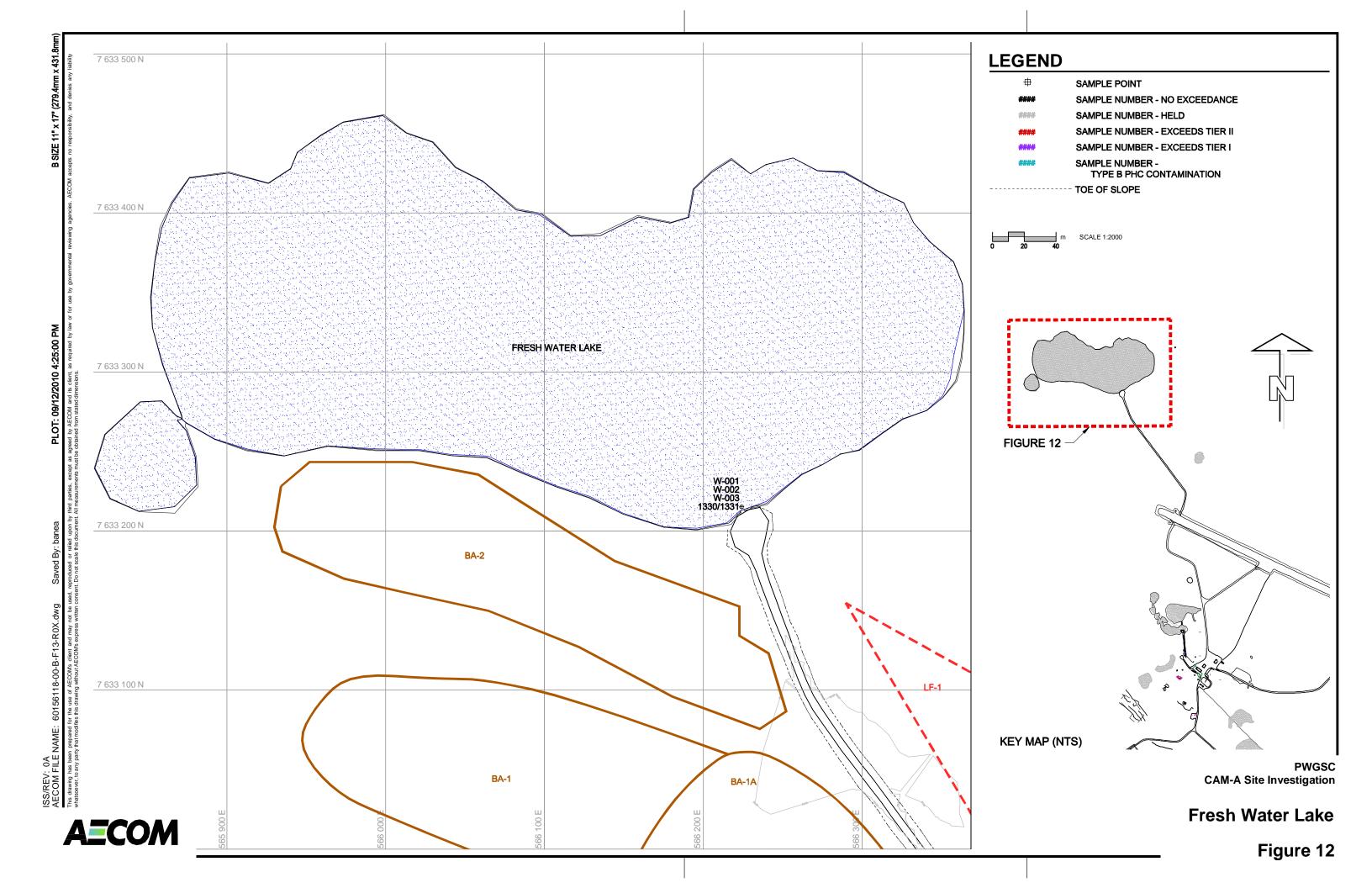


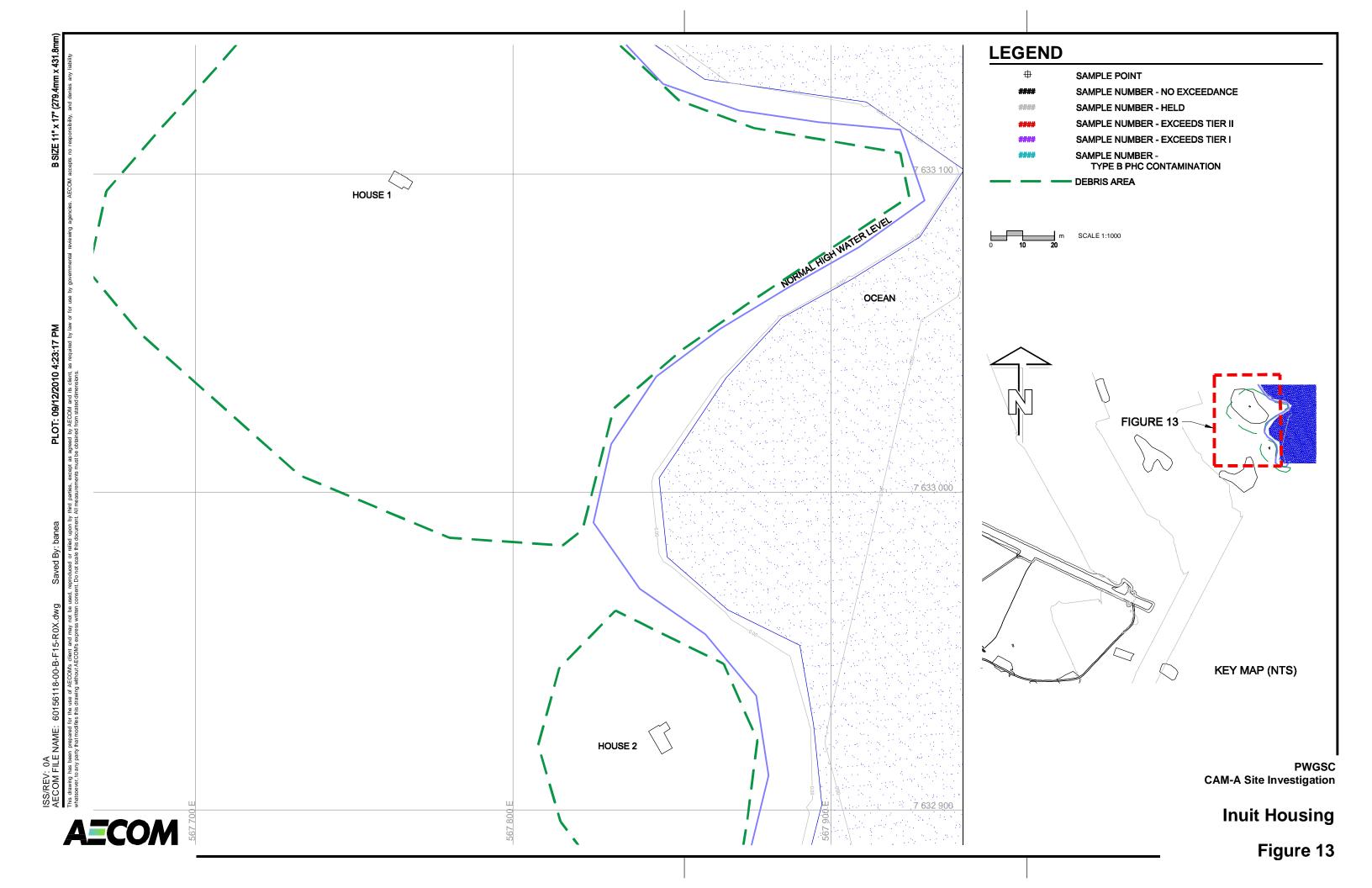



AECOM


Station POL







Appendix B

Data Summary Tables

Table 1: Beach POL Analytical

Sample #	Area	Depth	Purpose	Benzene	Toluene	Ethylbenzene	Xylene	F1 minus	F2	F3	F4		Total	ТРН	
	7 GG.	(m)	p	Jeiii-eiie			,	BTEX	ppm	ppm	ppm				
CEPA												Dominant	TYPE A	TYPE B	TYPE B
Tier II												TPH Type	ppm	(0-0.5 m)	(>0.5 m)
Tier I	Dustastian of Eur		^ti- 1:f-									,,		ppm	ppm
	Protection of Fre		Aquatic Life					1200	220					220	
•	n of water body) Protection of Te		Vildlifo					1290	330					330	
	Human Health	rrestriai v	viidille						11 000	20,000			20,000	2,500	
	Management Lir	mit							11,000	20,000			20,000		5,000
864	BEACH POL	0.1		<0.005	<0.05	<0.01	<0.05	<10	<10	<10	<10	_	_	_	5,000
865	BEACH POL	0.1		<0.005	<0.05	<0.01	<0.05	<10	<10	<10	<10	_		_	
866	BEACH POL	1		<0.005	<0.05	<0.01	<0.05	<10	<10	<10	<10	_		_	
867	BEACH POL	0.1		<0.005	<0.05	<0.01	<0.05	<10	2250	288	<10	Type B	288	2538	
868	BEACH POL	0.1		<0.005	<0.05	<0.01	<0.05	20	1830	214	<10	Туре В	214	2064	
869	BEACH POL	1		<0.005	<0.05	<0.01	<0.05	70	2470	474	<10		474	-	2944
870	BEACH POL	0.1	Duplicate	<0.005	<0.05	<0.01	<0.05	<10	<10	<10	<10	Type B	4/4		ZJ44
	BEACH POL		+	<0.005	<0.05	<0.01		<10	<10	<10	<10	_	-	-	-
871	+	0.1	Duplicate	1			<0.05			<10		-	-	-	-
872	BEACH POL	0.5		<0.005	<0.05	<0.01	<0.05	<10	<10		<10	- T D	161	-	1201
873	BEACH POL	1		<0.005	<0.05	<0.01	<0.05	<10	1130	161	<10	Type B	161	-	1291
874	BEACH POL	0.1		<0.005	<0.05	<0.01	<0.05	<10	61	82	65	Type A	147	-	-
875	BEACH POL	0.5		<0.005	<0.05	<0.01	<0.05	<10	1270	333	40	Type B	373	1603	-
876	BEACH POL	1		<0.005	<0.05	<0.01	<0.05	<10	1360	223	24	Type B	247	-	1607
877	BEACH POL	0.1		<0.005	<0.05	<0.01	<0.05	<10	<10	35	24	Туре А	59	-	-
878	BEACH POL	0.5		<0.005	<0.05	<0.01	<0.05	<10	<10	35	24	Туре А	59	-	-
879	BEACH POL	1		<0.005	<0.05	<0.01	<0.05	10	1800	163	13	Туре В	176	-	1976
880	BEACH POL	0.1	Duplicate	<0.005	<0.05	<0.01	<0.05	<10	<10	24	19	Туре А	43	-	-
881	BEACH POL	0.1	Duplicate	<0.005	<0.05	<0.01	<0.05	<10	<10	24	19	Туре А	43	-	-
882	BEACH POL	0.5		<0.005	<0.05	<0.01	<0.05	<10	10	67	33	Type A	100	-	-
883	BEACH POL	1		<0.005	<0.05	<0.01	<0.05	<10	19	13	22	Type B	35	-	54
885	BEACH POL	0.1		<0.005	<0.05	<0.01	<0.05	<10	27	44	i	Туре В	62	71	-
886	BEACH POL	0.5		<0.005	<0.05	<0.01	<0.05	<10	148	188	32	Type B	220	336	-
887	BEACH POL	1		<0.005	<0.05	<0.01	<0.05	<10	<10	<10	<10	-	-	-	-
888	BEACH POL	0.1		<0.005	<0.05	<0.01	<0.05	<10	<10	36	24	Туре А	60	-	-
889	BEACH POL	0.5		<0.005	<0.05	<0.01	<0.05	<10	<10	71	52	Type A	123	-	-
890	BEACH POL	1	Duplicate	<0.005	<0.05	<0.01	<0.05	<10	<10	21	15	Type A	36	-	-
891	BEACH POL	1	Duplicate	<0.005	<0.05	<0.01	<0.05	<10	<10	26	19	Type A	45	-	-
892	BEACH POL	0.1		<0.005	<0.05	<0.01	<0.05	<10	<10	15	<10	Туре А	15	-	-
893	BEACH POL	0.5		<0.005	<0.05	<0.01	<0.05	<10	<10	19	11	Туре А	30	-	-
894	BEACH POL	1		<0.005	<0.05	<0.01	<0.05	<10	<10	<10	<10	-		-	
895	BEACH POL	0.1		<0.005	<0.05	<0.01	<0.05	<10	<10	30	<10	Туре А	30	-	-
896	BEACH POL	0.5		<0.005	<0.05	<0.01	<0.05	<10	<10	<10	<10	-		-	-
897	BEACH POL	1		<0.005	<0.05	<0.01	<0.05	<10	261	43	14	Туре В	57	-	318
898	BEACH POL	0.1		<0.005	<0.05	<0.01	<0.05	<10	<10	<10	<10	-	-	-	-
899	BEACH POL	0.5		<0.005	<0.05	<0.01	<0.05	<10	<10	26	16	Туре А	42	-	-
900	BEACH POL	1	Duplicate	<0.005	<0.05	<0.01	<0.05	<10	<10	15	<10	Туре А	15	-	-

Sample #	Area	Depth (m)	Purpose	Benzene	Toluene	Ethylbenzene	Xylene	F1 minus BTEX	F2 ppm	F3 ppm	F4 ppm		Total	ТРН	
CEPA Tier II Tier I												Dominant TPH Type	TYPE A ppm	TYPE B (0-0.5 m) ppm	TYPE B (>0.5 m) ppm
(within 30 m	Protection of Fr n of water body Protection of Te	<u>') </u>						1290	330					330 2,500	
	Human Health Management Li	mit							11,000	20,000			20,000		5,000
901	BEACH POL	1	Duplicate	<0.005	<0.05	<0.01	<0.05	<10	<10	<10	<10	-	-	-	-
902	BEACH POL	0.1	,	<0.005	<0.05	<0.01	<0.05	<10	<10	25	15	Type A	40	-	-
903	BEACH POL	0.5		<0.005	<0.05	<0.01	<0.05	<10	148	35	<10	Туре В	35	183	-
904	BEACH POL	0.9		<0.005	<0.05	<0.01	<0.05	<10	1160	108	<10	Туре В	108		1268
905	BEACH POL	0.1		<0.005	<0.05	<0.01	<0.05	<10	<10	<10	<10	-	-	-	-
906	BEACH POL	0.5		<0.005	<0.05	<0.01	<0.05	<10	<10	10	<10	Type A	10	-	-
907	BEACH POL	1		<0.005	<0.05	<0.01	<0.05	<10	<10	24	<10	Type A	24	-	-
908	BEACH POL	0.1		<0.005	<0.05	<0.01	<0.05	<10	<10	10	<10	Type A	10	-	-
909	BEACH POL	0.5		<0.005	<0.05	<0.01	<0.05	<10	<10	11	<10	Type A	11	-	-
960	BEACH POL	0.1	Duplicate	<0.005	<0.05	<0.01	<0.05	<10	<10	<10	10	-	-	-	-
961	BEACH POL	0.1	Duplicate	<0.005	<0.05	<0.01	<0.05	<10	<10	<10	<10	-	-	-	-
962	BEACH POL	0.5		<0.005	<0.05	<0.01	<0.05	<10	<10	<10	<10	-	-	-	-
963	BEACH POL	0.8		<0.005	<0.05	<0.01	<0.05	<10	<10	<10	<10	-	-	-	-
964	BEACH POL	0.1		<0.005	<0.05	<0.01	<0.05	<10	<10	<10	<10	-	-	-	-
965	BEACH POL	0.4		<0.005	<0.05	<0.01	<0.05	<10	<10	<10	<10	-	-	-	-
966	BEACH POL	0.9		<0.005	<0.05	<0.01	<0.05	<10	<10	<10	<10	-	-	-	-
967	BEACH POL	0.1		<0.005	<0.05	<0.01	<0.05	<10	<10	<10	<10	-	-	-	-
968	BEACH POL	0.3		<0.005	<0.05	<0.01	<0.05	<10	<10	<10	<10	-	-	-	-
969	BEACH POL	0.7		<0.005	<0.05	<0.01	<0.05	<10	<10	<10	<10	-	-	-	-

Table 2: Outfall Analytical

Table 2: Outra	ii Anaryticai															
Sample #	Area	Depth (m)	Purpose	As ppm	Cd ppm	Cr ppm	Co ppm	Cu ppm	Pb ppm	Hg ppm	Ni ppm	Zn ppm	Aroclor 1242	Aroclor 1254	Aroclor 1260	PCB Total ppm
СЕРА																50
Tier II				30	5	250	50	100	500	2	100	500				5
Tier I									200							1
253	OUTFALL	0.1		<0.5	<0.5	1.2	<0.5	7.4	1.6	<0.5	0.9	3	<0.05	<0.05	<0.05	<0.05
255	OUTFALL	0.1											<0.05	<0.05	<0.05	<0.05
257	OUTFALL	0.1		<0.5	<0.5	1.5	<0.5	74	2.6	<0.5	0.9	16	<0.05	0.72	<0.05	0.72
262	OUTFALL	0.1		<0.5	<0.5	2.9	0.7	4.4	1.7	<0.5	2.3	4	<0.05	<0.05	<0.05	<0.05
268	OUTFALL	0.1		<0.5	<0.5	3.8	0.8	1.3	1.2	<0.5	1.8	4	<0.05	<0.05	<0.05	<0.05
273	OUTFALL	0.1											<0.05	<0.05	<0.05	<0.05
275	OUTFALL	0.1		<0.5	<0.5	1.8	0.9	1.8	1.8	<0.5	1.7	6	<0.05	1.92	<0.05	1.92
276	OUTFALL	0.3											<0.05	0.31	<0.05	0.31
277	OUTFALL	0.1											<0.05	<0.05	<0.05	<0.05
282	OUTFALL	0.1		0.5	<0.5	1.1	0.7	1.5	0.9	<0.5	1	5	<0.05	<0.05	<0.05	<0.05
288	OUTFALL	0.1		<0.5	<0.5	2.8	0.8	8.3	2	<0.5	2.2	15	<0.05	0.12	<0.05	0.12
295	OUTFALL	0.1		<0.5	<0.5	0.9	<0.5	0.9	0.6	<0.5	0.5	3	<0.05	0.06	<0.05	0.06
299	OUTFALL	0.1											<0.05	<0.05	<0.05	<0.05
302	OUTFALL	0.1		<0.5	<0.5	1	<0.5	6.6	1.4	<0.5	0.8	7	<0.05	2.86	<0.05	2.86
303	OUTFALL	0.3											<0.05	0.05	<0.05	0.05
304	OUTFALL	0.1											<0.05	<0.05	<0.05	<0.05
308	OUTFALL	0.1		<0.5	<0.5	0.9	<0.5	4	1.4	<0.5	<0.5	9	<0.05	0.29	<0.05	0.29
315	OUTFALL	0.1		<0.5	<0.5	1.1	<0.5	2	0.9	<0.5	0.6	3	<0.05	0.06	<0.05	0.06
319	OUTFALL	0.1											<0.05	<0.05	<0.05	<0.05
322	OUTFALL	0.1											<0.05	1.46	<0.05	1.46
323	OUTFALL	0.3											<0.05	0.09	<0.05	0.09
326	OUTFALL	0.1		<0.5	<0.5	1.2	<0.5	7.8	2.5		0.9	14		0.15	<0.05	0.15
333	OUTFALL	0.1		<0.5	<0.5	0.9	<0.5	2.5	0.6	<0.5	<0.5	6	<0.05	0.09	<0.05	0.09
334	OUTFALL	0.3		<0.5	<0.5	1.1	<0.5	2.3	0.6	<0.5	<0.5	5	<0.05	0.12	<0.05	0.12
344	OUTFALL	0.1											<0.05	<0.05	<0.05	<0.05

Martin	Table 3: St	ation Area Analytical																												
Second Column Second Colum			Donth		۸۵	C4	Cr	Co	Cu	Dh	Цα	Ni	7n	Araclar	Araclar	Araclar	PCB					E1	E1 minus	E2	EO	E4				
THE STATE AND ASSESS AS	Sample #	Area	1 1	Purpose							пв	INI					Total	Benzene	Toluene	Ethylbenzene	Xylene								Total TPH	
Second S			(m)		ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	1242	1254	1260	ppm					ppm	BIEX	ppm	ppm	ppm				
Second S	CEPA	•	•														50												TYPE B	TYPE B
Part					30	5	250	50	100	500	2	100	500														Dominant	TYPF A		
March 1997 Marc					30			30	100		_	100	300																	
Mathematical Mat		- Protection of Freshw	zter Agu	atic Life						200							-										ППТУРС	ppiii	ppiii	PPIII
Mary			rater Aqui	acic Liic																			1200	220					220	
March Control Contro	•		L: - NA/: -	:£-																			1290	330						
March Marc			triai wildi	те																				11 000	20.000			20.000	2,500	
Second Conference Conferenc	•		_																					11,000	20,000			20,000		F 000
930 (AMME) 9.4 (AMME) 1				1							2 -	. =									2.2-						_			
MATERIAL 1					0.7	<0.5	4.4	1.4	4.4	12.6	<0.5	4./	9	-				+									Type A	11	-	
Second			0.4															+	_							+	-	-	-	-
PACE	794		1																_		<0.05	<10	_	<10	12		Туре А	12	-	-
Part	795	GARAGE	0.1		0.7	<0.5	3.8	1.3	2.9	5	<0.5	4.9	5					<0.005	<0.05	<0.01	<0.05	<10	<10	<10	<10	<10	-	-	-	-
No. Samada O.	796	GARAGE	0.4															<0.005	<0.05	<0.01	<0.05	<10	<10	<10	<10	<10	-	-	-	-
Page Constant Co	797	GARAGE	1															<0.005	<0.05	<0.01	<0.05	<10	<10	<10	<10	<10	-	-	-	-
Page Constant Co	798	GARAGE	0.1															<0.005	<0.05	<0.01	<0.05	<10	<10	<10	15	<10	Type A	15	-	-
00 00000000000000000000000000000000000	799	GARAGE	0.4															<0.005	<0.05	<0.01	<0.05	<10	<10	<10	<10	<10	-	-	-	-
CARACE 1 Opphes 1 Opp			1	Duplicate																				 		1	_	_	_	<u> </u>
084		1	1	- ·															_							1	_	_	_	+
984 GARAGÉ				Duplicate	0.0	∠0 E	17	1.6	1.6	15 2	∠0 E	Е	12	<0.0E	0.06	<0.0E	0.06	10.003	10.03	10.01	10.03	110	110	110	110	110				+
Second Content of the content of t								_				4.0	+																	++
Marcon M					2.4	<0.5	3.9	1.4	5.0	6.5	<0.5	4.9	10				1													-
MARCINE O. O. O. O. O. O. O. O	000						2.0	_	2.0		0.5		_			_														\vdash
08	806				0.7	<0.5	2.9	1	3.8	5.8	<0.5	4.4	5	-												-				
Section Sect																														\vdash
Section Sect	808														0.17	_	1													
Maria Mari	809	GARAGE	0.3											<0.05	0.1	<0.05	0.1													
82	810	GARAGE	0.1	Duplicate										<0.05	0.42	<0.05	0.42													
834 GARAGE 0.1 V	811	GARAGE	0.1	Duplicate										<0.05	0.26	<0.05	0.26													
SARAGE	812	GARAGE	0.3											<0.05	0.51	< 0.05	0.51													
Section Sect	813	GARAGE	0.1															<0.005	<0.05	<0.01	<0.05	<10	<10	<10	14	<10	Type A	14	-	-
815 GARAGE	814	GARAGE	0.3															<0.005	<0.05	<0.01	<0.05	<10	<10	<10	27	11	Type A	38	-	-
816 GARAGE 0.1	815	GARAGE	1															<0.005							39	13		52	-	-
817 GARAGE 0.3		1	0.1																-						-		· · ·		81	
818 GARAGE 1 1					+														_								, <i>'</i> '			+
SAPAGE							-												_					-		_				+
Section Sect		1																	_					1	1	+	Туре А		_	+
R21 GARAGE				D 1: 1															-		-		+	1	1	+	-		-	+
SEZE GARAGE 1				Duplicate																							-	-	-	
RABAGE 0.1 0.8 0.5 3.1 1.2 3.2 4.5 0.5 4.4 6 0.05 0.0				Duplicate													1						_				-	-	-	-
RARAGE O.4																										-	-	-	-	+
825 GARAGE 1					0.8	<0.5	3.1	1.2	3.2	4.5	<0.5	4.4	6			_										-	-	-	-	 -
826 GARAGE 0.1 0.9 <0.5 4.2 1.4 3.3 8.9 <0.5 5.2 12 <0.005 <0.05 <0.01 <0.05 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <				ļ	1		1		1	1			ļ	<0.05	<0.05	<0.05	<0.05	_									-	-	-	
827 GARAGE 0.4 Image: Control of the	825	GARAGE	1				<u> </u>			<u> </u>								<0.005	<0.05	<0.01	<0.05	<10		<10	<10	<10	-	-	-	-
828 GARAGE 1 0.8 0.5 4 1.5 2.5 3.8 <0.5 5.7 6 <0.005 <0.05 <0.01 <0.05 <10 <10 <10 Type B 128 - 261 829 GARAGE 0.1 Duplicate 0.4 0.005 0.005 0.001 0.005 4.0 410 410 118 59 410 Type B 35 - 832 GARAGE 0.1 0.8 0.5 7.6 2 2.7 3 <0.5	826	GARAGE	0.1		0.9	<0.5	4.2	1.4	3.3	8.9	<0.5	5.2	12					<0.005	<0.05	<0.01	<0.05	<10	<10	<10	64	<10	Type A	64		
828 GARAGE 1 0.8 0.5 4 1.5 2.5 3.8 <0.5 5.7 6 <0.005 <0.05 <0.01 <0.05 <10 <10 <10 Type B 128 - 261 829 GARAGE 0.1 Duplicate 0.4 0.005 0.005 0.001 0.005 4.0 410 410 118 59 410 Type B 35 - 832 GARAGE 0.1 0.8 0.5 7.6 2 2.7 3 <0.5	827	GARAGE	0.4															<0.005	<0.05	< 0.01	<0.05	<10	<10	<10	<10	<10	-	-	-	-
829 GARAGE 0.1 0.8 <0.5 4 1.5 2.5 3.8 <0.5 5.7 6 <0.005 <0.05 <0.01 <0.05 <10 <10 <10 Type A 41 - - 830 GARAGE 0.4 Duplicate <0.005	828	GARAGE	1															<0.005	_	<0.01	<0.05	<10	<10	133	128	<10	Туре В	128	-	261
830 GARAGE 0.4 Duplicate			0.1		0.8	<0.5	4	1.5	2.5	3.8	<0.5	5.7	6																	1 1
831 GARAGE 0.4 Duplicate				Duplicate	1	1	1	1	1	1						1													35	<u> </u>
832 GARAGE 1 0.005 0.00				<u> </u>	1	1	1	1	1	1	1			1			1		_				_					59		
833 GARAGE 0.1 0.8 <0.5 7.6 2 2.7 3 <0.5 4.4 8				Sapincate	+	+	+	+	1	+	+	1	 	+		+	1													+
834 GARAGE 0.4 0.4 0.5 0.5 0.05 0.05 0.05 0.05 0.01 0.05 0.				1	0.8	<0 F	7.6	2	2 7	2	<0 F	1.1	Q	+		1	+													+
835 GARAGE 1					0.8	\U.3	7.0		2.7	3	\0.3	4.4	٥	+		1	1		_				_							+
836 GARAGE 0.1 1.7 < 0.5 4.3 2 4.1 2.7 < 0.5 4 5	-			1	1	+	1	+	1	1	1	1	1	1	1	1	1		_											+
837 GARAGE 0.4 SUMP MAT 22.3 8.4 85.6 10.6 90 840 <0.5 10.5 <0.05 <0.05 <0.05 <0.05 <0.01 <0.05 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10					 	1		-	1	-	 		<u> </u>	1		1	1		_											+
838 GARAGE 1 SUMP MAT 22.3 8.4 85.6 10.6 90 840 <0.5 16.7 2870 <0.05 18.4 <0.05 18.4 <0.05 <0.05 <0.01 <0.05 <10 <10 <10 <10 <10 <10 <10 <-1 1 <-1 <-1 <-1 <-1 <-1 <-1 <-1					1.7	<0.5	4.3	2	4.1	2.7	<0.5	4	5	1		1	1		_										-	+
839 GARAGE 0.1 SUMP MAT 22.3 8.4 85.6 10.6 90 840 <0.5 16.7 2870 <0.05 18.4 <0.005 <0.01 <0.05 <10 <10 <4680 786 Type A 5466 - - 1290 MOD TRAIN 0.1 Duplicate 0.9 <0.5	-			1	ļ		ļ		<u> </u>	ļ		<u> </u>	ļ		<u> </u>	1			_								Type A	37	-	
1290 MOD TRAIN 0.1 Duplicate 0.9 <0.5 3.9 1.5 4.8 3.2 3.7 5 <	838		1		1											1													-	<u> </u>
	839	GARAGE	0.1	SUMP MAT	22.3	~		10.6	90	840	<0.5	16.7	2870	<0.05	18.4	<0.05	18.4	<0.005	<0.05	<0.01	<0.05	<10	<10	41	4680	786	Type A	5466	-	-
	1290	MOD TRAIN	0.1	Duplicate	0.9	<0.5	3.9	1.5	4.8	3.2			5					<0.005	<0.05	<0.01	<0.05	<10	<10	<10	40	<10	Type A	40		
	1291	MOD TRAIN	0.1	Duplicate	1	< 0.5	5.9	1.7	4.2	3.7		4.8	7					<0.005	<0.05	< 0.01	<0.05	<10	<10	<10	48	26		74	-	-

Sample #	Area	Depth (m)	Purpose	As ppm	Cd ppm	Cr ppm	Co ppm	Cu ppm	Pb ppm	Hg ppm	Ni ppm	Zn ppm	Aroclor 1242	Aroclor 1254	Aroclor 1260	PCB Total ppm	Benzene	Toluene	Ethylbenzene	Xylene	F1 ppm	F1 minus BTEX	F2 ppm	F3 ppm	F4 ppm			Total TPH	
CEPA																50												TYPE B	TYPE B
Tier II				30	5	250	50	100	500	2	100	500				5										Dominant	TYPE A	(0-0.5 m)	(>0.5 m)
Tier I									200							1										TPH Type	ppm	ppm	ppm
PHCs/TPH -	Protection of Freshwa	ater Aqua	atic Life																										
•	n of water body)																					1290	330					330	
	Protection of Terresti	rial Wildl	ife																				44.000					2,500	
	Human Health																						11,000	20,000			20,000		F 000
	Management Limit	0.5															۰0.00F	40.0F	*0.01	40.0F	-10	410	-10	25	-10	Turne A	25	_	5,000
	MOD TRAIN	0.5															<0.005	<0.05	<0.01			<10	<10	35	+		35	-	251
	MOD TRAIN	1		1.3	<0.5	16	1.0	3.6	2.1		16	6					<0.005	<0.05	<0.01			<10	105	135 23	+	Type B	146		251
	MOD TRAIN	0.1		1.5	<0.5	4.6	1.9	3.0	3.1		4.6	О					<0.005	<0.05	<0.01			<10 120	<10 3770			Type A	23	4503	-
	MOD TRAIN MOD TRAIN	0.5 1															<0.005 <0.005	<0.05 <0.05	<0.01 <0.01			220	1660	613 356	+	Type B	613 366	4505	2026
	MOD TRAIN	0.1		0.7	<0.5	3.3	1.4	2.6	1.6		3.1	2					<0.005	<0.05	<0.01			160	4410	1		Type B Type B	1115	5670	-
	MOD TRAIN	0.1		0.7	\0.5	3.3	1.4	2.0	1.0		3.1	<u> </u>					<0.005	<0.05	0.02				5130	1140	<10	Туре В	1140	6630	
	MOD TRAIN	1															<0.005	<0.05	<0.01				3490	669		Туре В	669	-	4159
-	MOD TRAIN	0.1	Duplicate	0.9	<0.5	4.1	2.2	4.2	2.9		4.9	1					<0.005	<0.05	<0.01				118	86	+	Туре В	86	204	-
-	MOD TRAIN	0.1	+ ' -	1.1	<0.5	4.2	2.2	1	3.4		4.8	7					<0.005	<0.05	<0.01			<10	131	82	_	Type B	82	213	_
	MOD TRAIN	0.5	Варневсе		10.5	7.2	2.2	-	J.¬		7.0	<u>, </u>					<0.005	<0.05	<0.01	<0.05			1070	109	<10	Туре В	109	1189	_
	MOD TRAIN	1															<0.005	<0.05	<0.01			150	2850	372	<10	Type B	372	-	3222
	MOD TRAIN	0.1		0.7	<0.5	3.5	1.3	3.8	2.8		3.1	5					<0.005	<0.05	<0.01	-		<10	<10	11	<10	Type A	11		-
-	MOD TRAIN	0.5		0.7	10.3	3.3	1.5	3.0	2.0		5.1						<0.005	<0.05	<0.01	<0.05		<10	15	<10	<10	Туре В	0	15	+ - +
	MOD TRAIN	1															<0.005	<0.05	<0.01			<10	<10	<10	<10	-	-	-	_
	MOD TRAIN	0.1		1	<0.5	3.9	1.6	3.8	2.9		3.6	6	<0.05	0.13	<0.05	0.13	10.003	10.03	10.01	10.03	110	110	110	120	120				+
-	MOD TRAIN	0.3		_	10.5	3.3	1.0	3.0	2.3		3.0					<0.05													+
	MOD TRAIN	0.1	Duplicate	1	<0.5	7.2	1.8	6	19.8		3.6	82.4	<0.05		<0.05	6.88												 	+
	MOD TRAIN	0.1	· ·	1.1	<0.5	6.1	1.6	6.1	11			149	<0.05		<0.05	6.89													+
	MOD TRAIN	0.3			1			1					<0.05			2.26													
	MOD TRAIN	0.1		0.6	<0.5	6.4	1.4	28.9	32.7		3.1	264	<0.05		<0.05	8.21													
	MOD TRAIN	0.3											<0.05			0.96													
	MOD TRAIN	0.1											<0.05			<0.05													+
	MOD TRAIN	0.3											<0.05			<0.05													
	MOD TRAIN	0.1											<0.05			<0.05	<0.005	<0.05	<0.01	<0.05	<10	<10	<10	11	<10	Type A	11	-	-
	MOD TRAIN	0.4											<0.05			<0.05	<0.005	<0.05	<0.01			<10	<10	<10	<10	-	-	-	-
1319	MOD TRAIN	1															<0.005	<0.05	<0.01	<0.05	<10	<10	<10	<10	<10	-	-	-	-
1320	MOD TRAIN	0.1											<0.05	<0.05	<0.05	<0.05													
1321	MOD TRAIN	0.3											<0.05	<0.05	<0.05	<0.05													
1322	MOD TRAIN	0.1											<0.05	<0.05	<0.05	<0.05	<0.005	<0.05	<0.01	<0.05	<10	<10	<10	20	<10	Туре А	20	-	
1323	MOD TRAIN	0.5															<0.005	<0.05	<0.01	<0.05	<10	<10	<10	<10	<10	-	-	-	
1324	MOD TRAIN	1															<0.005	<0.05	<0.01	<0.05	<10	<10	<10	<10	<10	-	-	-	
1325	MOD TRAIN	0.1															<0.005	<0.05	<0.01	<0.05	<10	<10	<10	<10	<10	-	-	-	-
1326	MOD TRAIN	0.5															<0.005	<0.05	<0.01	<0.05	<10	<10	<10	<10	<10	-	-	-	-
1327	MOD TRAIN	1															<0.005	<0.05	<0.01	<0.05	<10	<10	10	<10	12	Туре В	12	-	22
1332	MOD TRAIN	0.1															<0.005	<0.05	<0.01	<0.05	<10	<10	<10	183	126	Type A	309	-	-
1333	MOD TRAIN	0.4															<0.005	<0.05	<0.01	<0.05	<10	<10	<10	36	12	Type A	48	-	-
1334	MOD TRAIN	0.6													·		<0.005	<0.05	<0.01	<0.05	<10	<10	<10	18		Type A	18	-	
1335	MOD TRAIN	0.1															<0.005	<0.05	<0.01	<0.05	<10	<10	<10	106	64	Type A	170	-	-
	MOD TRAIN	0.4															<0.005	<0.05	<0.01			<10	<10	59	34	Type A	93	-	-
1337	MOD TRAIN	0.6			1												<0.005	<0.05	<0.01			<10	<10	11	<10	Type A	11	-	-
1338	MOD TRAIN	0.1					ļ										<0.005	<0.05	<0.01			<10	<10	18		Type A	18	-	-
1339	MOD TRAIN	0.5					ļ										<0.005	<0.05	<0.01			<10	<10	24	<10	Type A	24	-	-
-	MOD TRAIN	0.9	Duplicate				<u> </u>	1									<0.005	<0.05	<0.01				1190	287	+		287	-	1477
1341	MOD TRAIN	0.9	Duplicate														<0.005	<0.05	<0.01	<0.05	<10	<10	1060	247	<10	Туре В	247	-	1307

Sample #	Area	Depth	Purpose	As	Cd	Cr	Со	Cu	Pb	Hg	Ni	Zn	Aroclor	Aroclor	Aroclor	PCB Total	Benzene	Toluene	Ethylbenzene	Xylene	F1	F1 minus	F2	F3	F4			Total TPI	4
· · · · · ·		(m)		ppm	1242	1254	1260	ppm					ppm	BTEX	ppm	ppm	ppm												
CEPA					_											50												TYPE B	TYPE B
Tier II				30	5	250	50	100	500	2	100	500				5											TYPE A	(0-0.5 m)	
Tier I	- Protection of Freshw	vater Agua	tic Life						200							1										TPH Type	ppm	ppm	ppm
	m of water body)	rater Aqua	itic Liic																			1290	330					330	
	- Protection of Terrest	trial Wildlif	fe																									2,500	
	- Human Health																						11,000	20,000			20,000		
	- Management Limit	1 1																											5,000
970	STATION POL		Duplicate														<0.005		<0.01			<10			<10	Type A	10	-	-
971 972	STATION POL STATION POL	0.1	Duplicate														<0.005 <0.005	<0.05 <0.05	<0.01 <0.01			<10 <10			<10 <10	Type B	214	- 597	-
973	STATION POL	1															<0.005		<0.01						44		897	597	4077
974	STATION POL	0.1															<0.005					<10			<10	Type A	35	-	-
975	STATION POL	0.5															<0.005								<10		760	1281	-
976	STATION POL	1															<0.005	<0.05	<0.01	<0.05	<10	<10	1900	420	<10	Туре В	420	-	2320
977	STATION POL	0.1															<0.005	<0.05	<0.01	<0.05		<10			<10	Type A	14	-	
978	STATION POL	0.5					ļ										<0.005		<0.01						<10	Type A	50	-	
979	STATION POL	1	D 11 1														<0.005		<0.01			<10			<10	, ,	464	-	908
980	STATION POL		Duplicate														<0.005		<0.01						16	Type A	49	-	-
981 982	STATION POL STATION POL	0.1	Duplicate														<0.005 <0.005		<0.01 <0.01			<10 <10			14 <10	Type A	52	-	-
983	STATION POL	1															<0.005	<0.05		<0.05		<10			16	Type A	57	_	+ -
985	STATION POL	0.1															<0.005	<0.05							<10	Type B	20	34	-
986	STATION POL	0.6															<0.005		<0.01						<10	Туре В	0	15	-
989	STATION POL	0.1															<0.005	<0.05	<0.01	<0.05	<10	<10			<10	Type A	17	-	-
990	STATION POL	0.5															<0.005	<0.05	<0.01	<0.05	<10	<10	219	260	<10	Туре В	260	479	-
991	STATION POL	1															<0.005			<0.05	<10				<10	Type B	364	-	1250
992	STATION POL	0.1															<0.005		<0.01						<10	Type B		415	-
993	STATION POL	0.5															<0.005		<0.01						<10			570	-
994	STATION POL	1															<0.005		<0.01 <0.01						<10	+	592	100	1326
995 996	STATION POL STATION POL	0.1															<0.005 <0.005	<0.05 <0.05	<0.01		<10 <10		_		<10 <10	Type B Type B	44 139	561	-
997	STATION POL	1															<0.005	<0.05	<0.01						<10	Туре В	396	-	4486
998	STATION POL	0.1															<0.005		<0.01						<10	Type A	29	-	-
999	STATION POL	0.5															<0.005		<0.01			<10			<10	-	-	-	-
1252	STATION POL	0.1															<0.005	<0.05	<0.01	<0.05	<10	<10	<10	<10	<10	-	-	-	-
1253	STATION POL	0.5															<0.005	<0.05	<0.01	<0.05			<10	29	<10	Type A	29	-	-
1254	STATION POL	1																							<10	Type B	25	-	45
1255	STATION POL	0.75																							<10	-	-	-	-
1256	STATION POL	0.1															<0.005								<10	-	-	-	-
1257 1258	STATION POL STATION POL	0.5															<0.005 <0.005								<10 <10	-	-	-	+ -
1259	STATION POL	0.1															<0.005								<10	_	_	-	_
1260	STATION POL		Duplicate														<0.005								<10	-	-	-	-
1261	STATION POL	1	Duplicate														<0.005					<10			<10	-	-	-	1 -
1262	STATION POL	1															<0.005	<0.05	<0.01	<0.05	<10	<10	<10	10	<10	Type A	10	-	-
1263	STATION POL	0.1															<0.005	<0.05	<0.01	<0.05	<10	<10	<10	<10	<10	-	-	-	-
	STATION POL	0.4															<0.005	<0.05							10	Type A	25	-	
	STATION POL	0.75																				<10			17	Type A	41	-	
	STATION POL	0.1																							37	· · ·	100	-	-
1267 1268	STATION POL STATION POL	0.25 0.55					1										<0.005 <0.005	<0.05 <0.05				<10 <10			18 <10	Type A	40	-	-
1269	STATION POL	0.55															<0.005	<0.05				<10			<10	-	-	-	+
1270	STATION POL	0.1															<0.005								15	Type A	35	_	+-
1271	STATION POL	0.8																							<10		22	-	-
1272	STATION POL	0.1															<0.005	<0.05							24	Type A	81	-	-
1273	STATION POL	0.25															<0.005	<0.05	<0.01	<0.05	<10	<10	<10	<10	<10	-	-	-	-
1274	STATION POL	0.55															<0.005	<0.05	<0.01	<0.05	<10	<10	<10	<10	<10	-	-	-	-

6 1 "		Depth		As	Cd	Cr	Со	Cu	Pb	Hg	Ni	Zn	Aroclor	Aroclor	Aroclor	PCB		- 1	E.I. II	V 1	F1	F1 minus	F2	F3	F4			T-4-1 TDI	
Sample #	Area	(m)	Purpose	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	1242	1254	1260	Total ppm	Benzene	Toluene	Ethylbenzene	Xylene	ppm	ВТЕХ	ppm	ppm	ppm			Total TPF	1
CEPA																50												TYPE B	TYPE B
Tier II				30	5	250	50	100	500	2	100	500				5										Dominant	TYPE A	(0-0.5 m)	(>0.5 m)
Tier I									200							1										TPH Type	ppm	ppm	ppm
	Protection of Freshwa	ater Aquat	tic Life																										
	n of water body)	. 12401 11:0																				1290	330					330	
	Protection of Terrestr Human Health	riai wildiifi	e									_											11 000	20,000			20,000	2,500	
•	Management Limit											_											11,000	20,000			20,000		5,000
•	STATION POL	0.1															<0.005	<0.05	<0.01	<0.05	<10	<10	<10	108	55	Type A	163	-	-
1276	STATION POL	0.4															<0.005	<0.05	<0.01	<0.05	<10	<10		14	<10	Type A	14	-	-
1277	STATION POL	0.1															<0.005	<0.05	<0.01	<0.05	<10	<10	<10	19	10	Type A	29	-	-
1278	STATION POL	0.4															<0.005	<0.05	<0.01	<0.05	<10	<10	<10	16	<10	Type A	16	-	-
1279	STATION POL	0.7															<0.005	<0.05	<0.01	<0.05	<10	<10	<10	13	<10	Type A	13	-	-
	STATION POL	0.1	Duplicate														<0.005	<0.05	<0.01	<0.05	<10	<10	<10	139	65	Type A	204	-	-
	STATION POL	0.1	Duplicate														<0.005	<0.05	<0.01	<0.05		<10	<10	216	94	Type A	310	-	-
	STATION POL	0.4															<0.005	<0.05	<0.01	<0.05		<10		21	<10	Type A	21	-	-
I	STATION POL	0.7															<0.005	<0.05	<0.01	<0.05		<10		24	<10	Type A	24	-	-
-	STATION POL	0.1															<0.005	<0.05	<0.01	<0.05		<10		22	<10	Type A	22	-	-
	STATION POL	0.4															<0.005	<0.05	<0.01	<0.05		<10		17	<10	Type A	17	-	-
l	STATION POL	0.7															<0.005	<0.05	<0.01 <0.01			<10 <10		10 34	_	Type A	10	-	-
I	STATION POL STATION POL	0.1															<0.005 <0.005	<0.05 <0.05	<0.01	<0.05 <0.05		<10		12	<10 <10	Type A Type A	34 12	-	-
	STATION POL	0.4															<0.005	<0.05	<0.01	<0.05		<10	84	61	<10	Type B	61	145	+ -
	WAREHOUSE		Duplicate	1.8	<0.5	4.3	2.1	3.7	3.5		4.7	6					<0.005	<0.05	<0.01	<0.05		<10	<10	<10	<10	Туре Б	-	-	
H	WAREHOUSE		•	1.4	1	5.1	2.1	_	4.2		5.1	6					<0.005	<0.05	<0.01	<0.05		<10		13	-	Type A	13	_	_
-	WAREHOUSE	0.4	Dapneace		10.5	3.1	_	1			J.1						<0.005	<0.05	<0.01	<0.05		<10		11	21	Type A	32	_	_
-	WAREHOUSE	1															<0.005	<0.05	<0.01			<10		23		Туре В	23	-	33
 	WAREHOUSE	0.1		1.4	<0.5	4.3	2.1	5.1	3		5	9					<0.005	<0.05	<0.01			<10		17		Type A	17	-	-
845	WAREHOUSE	0.4															<0.005	<0.05	<0.01	<0.05		<10	<10	12	<10	Type A	12	-	-
846	WAREHOUSE	1															<0.005	<0.05	<0.01	<0.05	<10	<10	<10	12	<10	Type A	12	-	-
847	WAREHOUSE	0.1		1.4	<0.5	3.9	2.2	6.7	3.3		4.9	6					<0.005	<0.05	<0.01	<0.05	<10	<10	11	17	<10	Туре В	17	28	-
848	WAREHOUSE	0.5															<0.005	<0.05	<0.01	<0.05	<10	<10	14	15	<10	Type B	15	29	-
	WAREHOUSE	1															<0.005	<0.05	<0.01	<0.05		<10	14	24	<10	Type B	24	-	38
	WAREHOUSE	0.1	Duplicate														<0.005	<0.05	<0.01	<0.05		<10	14	26	<10	Type B	26	40	-
l	WAREHOUSE		Duplicate														<0.005	<0.05	<0.01	<0.05		<10	16	18	<10	Type B	18	34	-
	WAREHOUSE	0.4															<0.005	<0.05	<0.01	<0.05		<10	14	36	<10	Type A	36	-	-
	WAREHOUSE	0.4															<0.005	<0.05	<0.01	10.00		<10	15	23		Туре В	23	38	-
	WAREHOUSE	0.1															<0.005	<0.05	<0.01			<10	<10	<10	<10	-	-	-	-
-	WAREHOUSE	0.4															<0.005	<0.05	<0.01			<10		<10	<10	- Tuno A	-	-	-
	WAREHOUSE WAREHOUSE	0.1			+												<0.005 <0.005	<0.05 <0.05	<0.01 <0.01			<10 <10		11 <10	<10 <10	Type A	11	-	-
	WAREHOUSE	0.1			+												<0.005	<0.05	<0.01			<10		<10	<10	-	-	-	-
	WAREHOUSE	1			+												<0.005	<0.05	<0.01			<10		<10	<10	-	-	_	_
-	WAREHOUSE		Duplicate	0.9	<0.5	2.6	1.2	2.1	1.4		2.9	4					<0.005	<0.05	<0.01			<10		<10	<10	-	-	-	-
-	WAREHOUSE		Duplicate								-						<0.005	<0.05	<0.01			<10		<10	<10	-	-	-	-
H + + + + + + + + + + + + + + + + + + +	WAREHOUSE	0.4	,		1												<0.005	<0.05	<0.01			<10	<10	<10	<10	-	-	-	-
	WAREHOUSE	1			1												<0.005	<0.05	<0.01			<10		<10	<10	-	-	-	-
936	WAREHOUSE	0.1															<0.005	<0.05	<0.01			<10		100	<10	Туре В	100	154	
937	WAREHOUSE	0.5															<0.005	<0.05	<0.01	<0.05	30	30			13	Туре В	518	2265	_
938	WAREHOUSE	1															<0.005	<0.05	<0.01	<0.05	40	40	1820	481	11	Туре В	492	-	2312
	WAREHOUSE	0.1		1.1	<0.5	2.8	1.5	3.1	2.3		3.3	4					<0.005	<0.05	<0.01			<10		20		Type A	20	-	-
940	WAREHOUSE	0.5	Duplicate														<0.005	<0.05	<0.01			<10	<10	<10	<10	-	-	-	-
	WAREHOUSE		Duplicate														<0.005	<0.05	<0.01			<10	<10	<10	<10	-	-	-	-
	WAREHOUSE	1			1												<0.005	<0.05	<0.01			<10		11		Type A	11	-	-
	WAREHOUSE	0.1			1												<0.005	<0.05	<0.01			<10	<10	<10	<10	-	-	-	-
	WAREHOUSE	0.5															<0.005	<0.05	<0.01			<10		<10	<10	-	-	-	-
945	WAREHOUSE	1															<0.005	<0.05	<0.01	<0.05	<10	<10	<10	24	36	Type A	60	-	-

Table 4: Worked Area & Debris Areas Analytical

Sample #	Area	Depth (m)	As ppm	Cd ppm	Cr ppm	Co ppm	Cu ppm	Pb ppm	Hg ppm	Ni ppm	Zn ppm	Aroclor 1242	Aroclor 1254	Aroclor 1260	PCB Total ppm
CEPA															50
Tier II			30	5	250	50	100	500	2	100	500				5
Tier I								200							1
486	LOBE I	0.1	<0.5	0.8	2.5	1.1	2.1	1.4		2.6	3.4				
487	LOBE I	0.3	<0.5	0.8	3.3	0.8	1.8	1.3		2.6	2.7				
1348	LOBE M	0.1	1.4	<0.5	9.5	3	6.6	5		7.6	10.5	<0.05	<0.05	<0.05	<0.05
1349	LOBE M	0.3	1.5	<0.5	8.7	3.2	7.2	5.1		7.5	10.5	<0.05	<0.05	<0.05	<0.05
1352	LOBE J	0.1	<0.5	<0.5	1.4	<0.5	0.8	0.8		0.8	2				
1354	LOBE J	0.1	1	<0.5	26.4	3.4	33.9	543		2	177	<0.05	0.54	<0.05	0.54
1355	LOBE J	0.3	0.6	<0.5	4.5	0.9	27.9	94		2.2	27.8	<0.05	0.07	<0.05	0.07
1356	LOBE J	0.1	<0.5	<0.5	1.1	<0.5	1	3.1		0.9	3				
1358	LOBE J	0.1	0.5	<0.5	1.2	0.9	1	0.9		1.2	2				
1360	LOBE J	0.1	<0.5	<0.5	2.4	0.6	4.2	0.8		2.8	3				
1362	LOBE J	0.1	<0.5	<0.5	1.8	0.5	1	1.1		1	3				

Table 5: Landfill A & B Analytical

Table 5: L	andfill A & B Ana	lytical														
Sample		Depth		As	Cd	Cr	Со	Cu	Pb	Hg	Ni	Zn	Aroclor	Aroclor	Aroclor	РСВ
#	Area	(m)	Purpose	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	1242	1254	1260	Total ppm
CEPA																50
Tier II				30	5	250	50	100	500	2	100	500				5
Tier I				30	,	230	30	100	200	_	100	300				1
362	LANDFILL A	0.1		<0.5	<0.5	0.9	<0.5	1.3	1.1	<0.5	0.7	2	<0.05	<0.05	<0.05	<0.05
366	LANDFILL A	0.1		<0.5	<0.5	0.6	<0.5	<0.5	0.5	<0.5		2	<0.05	<0.05	<0.05	<0.05
370	LANDFILL A	0.1	Duplicate	<0.5	<0.5	0.8	<0.5	0.7	0.6	<0.5		2	<0.05	<0.05	<0.05	<0.05
371	LANDFILL A	0.1	· ·	<0.5	<0.5	1.2	0.5	0.7	0.7	<0.5		3	<0.05	<0.05	<0.05	<0.05
			Duplicate					1								
375	LANDFILL A	0.1		<0.5	<0.5	1	<0.5	<0.5	0.5	<0.5	0.6	2	<0.05	<0.05	<0.05	<0.05
379	LANDFILL A	0.1		<0.5	<0.5	0.9	<0.5	<0.5	0.5	<0.5		1	<0.05	<0.05	<0.05	<0.05
384	LANDFILL A	0.1	- u .	<0.5	<0.5	0.7	<0.5	0.6	0.5	<0.5	0.7	2	<0.05	<0.05	<0.05	<0.05
390	LANDFILL A	0.1	Duplicate	<0.5	<0.5	1.1	<0.5	0.5	0.6	<0.5	0.9	6	<0.05	<0.05	<0.05	<0.05
391	LANDFILL A	0.1	Duplicate	<0.5	<0.5	2.2	0.6	1.7	0.6	<0.5		5	<0.05	<0.05	<0.05	<0.05
393	LANDFILL A	0.1		0.8	<0.5	5.8	1.7	2	2.1	<0.5		47	<0.05	<0.05	<0.05	<0.05
407	LANDFILL A	0.1		<0.5	<0.5	0.7	<0.5	0.6	<0.5	<0.5	0.7	2	<0.05	<0.05	<0.05	<0.05
412	LANDFILL A	0.1		<0.5	<0.5	1.1	<0.5	0.8	<0.5	<0.5	0.7	6	<0.05	<0.05	<0.05	<0.05
418	LANDFILL A	0.1		<0.5	<0.5	1	<0.5	0.9	0.7	<0.5	0.9	2	<0.05	<0.05	<0.05	<0.05
420	LANDFILL A	0.1		<0.5	<0.5	1.6	0.5	1.2	1.2	<0.5	1.1	2	<0.05	<0.05	<0.05	<0.05
424	LANDFILL A	0.1		<0.5	<0.5	0.7	<0.5	0.7	2.6	<0.5	0.6	4	<0.05	<0.05	<0.05	<0.05
910	LANDFILL A	0.1		<0.5	<0.5	1.8	0.5	1.1	1		1.1	2	<0.05	<0.05	<0.05	<0.05
935	LANDFILL A	0.1		0.7	<0.5	4.6	1.1	1.9	1.6		1.9	3.4	<0.05	<0.05	<0.05	<0.05
984	LANDFILL A	0.1		0.7	<0.5	6.7	2.1	2	1.8		4.3	8	<0.05	<0.05	<0.05	<0.05
987	LANDFILL A	0.1		<0.5	<0.5	1.3	0.7	3.4	0.6		1.4	2.6	<0.05	<0.05	<0.05	<0.05
426	LANDFILL B	0.1		<0.5	<0.5	1.5	<0.5	0.9	0.6		1	1.4	<0.05	<0.05	<0.05	<0.05
430	LANDFILL B	0.1	Duplicate	<0.5	<0.5	1.5	0.5	1	0.9		0.9	2.2	<0.05	<0.05	<0.05	<0.05
431	LANDFILL B	0.1	Duplicate	<0.5	<0.5	4.5	0.7	0.8	0.9		1.4	2.7	<0.05	<0.05	<0.05	<0.05
435	LANDFILL B	0.1		<0.5	<0.5	1.5	<0.5	1.3	1		0.9	1.6	<0.05	<0.05	<0.05	<0.05
439	LANDFILL B	0.1		<0.5	<0.5	1.3	0.7	0.8	1		1	1.6	<0.05	<0.05	<0.05	<0.05
444	LANDFILL B	0.1		<0.5	<0.5	1.7	<0.5	0.9	0.6		1.1	2.3	<0.05	<0.05	<0.05	<0.05
448	LANDFILL B	0.1		<0.5	<0.5	1.2	<0.5	4.5	0.5		2.3	1.9	<0.05	<0.05	<0.05	<0.05
450	LANDFILL B	0.1	Duplicate	<0.5	<0.5	2.1	1	2.3	1.8		1.9	3	<0.05	<0.05	<0.05	<0.05
451	LANDFILL B	0.1	Duplicate	0.7	<0.5	2.7	0.8	1.9	1.5		1.8	3	<0.05	0.2	<0.05	0.2
452	LANDFILL B	0.3		1.5	<0.5	37.3	8.1	15.9	7.8		23.8	31	<0.05	<0.05	<0.05	<0.05
455	LANDFILL B	0.1		0.6	<0.5	4.7	1.4	1.8	1.9		2.2	3.1	<0.05	<0.05	<0.05	<0.05
457	LANDFILL B	0.1		<0.5	<0.5	2	0.7	1.3	1			2.4	<0.05	<0.05	<0.05	<0.05
463	LANDFILL B	0.1		<0.5	<0.5	1.2	<0.5	2	0.9			2	<0.05	<0.05	<0.05	<0.05
464	LANDFILL B	0.3		0.6	<0.5	2.2	1.1	2.8	1.8			3	<0.05	<0.05	<0.05	<0.05
465	LANDFILL B	0.1		0.5	<0.5		0.8	1.5	1.1			2	<0.05	<0.05	<0.05	<0.05
466	LANDFILL B	0.3		1.1	<0.5	4.2	2	3.2	2			5	<0.05	<0.05	<0.05	<0.05
473	LANDFILL B	0.1		<0.5	<0.5	1.2	<0.5	0.6	0.6			1.7	<0.05	<0.05	<0.05	<0.05
475	LANDFILL B	0.1		<0.5	<0.5		0.6	0.6	0.7			1.6	<0.05	<0.05	<0.05	<0.05
912	LANDFILL B	0.1		<0.5	<0.5	0.6	<0.5	0.7	0.5		0.5	<1	<0.05	<0.05	<0.05	<0.05
913	LANDFILL B	0.1		<0.5	<0.5	<0.5	<0.5	1	0.5		0.6	2	<0.05	<0.05	<0.05	<0.05
918	LANDFILL B	0.3		<0.5	<0.5		0.6	0.6	0.7			2	<0.05	<0.05	<0.05	<0.05
710	LA CONTRICT D	I 0.1	1	1,0.5	10.5	I - T. U	0.0	10.0	10.7	<u> </u>	1 * • ~	_	10.05	10.03	10.03	10.05

Sample #	Area	Depth (m)	Purpose	As ppm	Cd ppm	Cr ppm	Co ppm	Cu ppm	Pb ppm	Hg ppm	Ni ppm	Zn ppm	Aroclor 1242	Aroclor 1254	Aroclor 1260	PCB Total ppm
CEPA																50
Tier II				30	5	250	50	100	500	2	100	500				5
Tier I									200							1
919	LANDFILL B	0.3		<0.5	<0.5	1.3	<0.5	0.7	0.7		0.9	2	<0.05	<0.05	<0.05	<0.05
925	LANDFILL B	0.1		0.8	<0.5	4.2	1.4	2.5	1.8		3	3.8	<0.05	<0.05	<0.05	<0.05
927	LANDFILL B	0.1		1.1	<0.5	2.1	1.4	1.5	1.4		2.1	4	<0.05	<0.05	<0.05	<0.05
929	LANDFILL B	0.1		<0.5	<0.5	1.3	<0.5	0.5	0.6		0.6	0.7	<0.05	<0.05	<0.05	<0.05
931	LANDFILL B	0.1		0.6	<0.5	1.6	0.7	1.2	1		1.5	1.5	<0.05	<0.05	<0.05	<0.05
933	LANDFILL B	0.1	·	<0.5	<0.5	1	<0.5	0.9	<0.5		0.7	1.2	<0.05	<0.05	<0.05	<0.05

Table 6: Water & Sediment Analytical

Table 6: Water & Sec	ument Analytical																															
Sample #	Area	Aroclor 1242	Aroclor 1254	Aroclor 1260	PCB Total ppm	As ppm	Cd	Cr ppm	Co ppm	Cu	Pb ppm	Ni mdd	Zn ppm	Benzene	Toluene	Ethylbenzene	Xylene	F1 ppm	E1 minus RTEX	F2 F2	F3 ppm	F4 ppm	Hd	Aluminum	Antimony	Arsenic	Barium Boron	Cadmium	Chromium	Copper	Iron	Lead
Canadian Water Qua Protection of Aquation	lity Guidelines for the c Life - Freshwater													0.370	0.0020	0.090							6.5-9	0.1(1)		0.0050		0.000017	0.0089 ⁽²⁾	0.002 ⁽³⁾	0.300	0.001 ⁽⁴⁾
(December, 2007)																																
Canadian Water Qua Protection of Aquatio (December, 2007)	lity Guidelines for the c Life - Marine													0.110	0.215	0.025							7.0-8.7			0.0125		0.00012	0.056 ⁽²⁾			
Guidelines for Canad Quality (May, 2008)														5	24	2.4	300						6.5-8.5		0.006	0.010	1 5	0.005	0.05	1.0	0.3	0.01
MW-01	BEACH POL	< 0.01	<0.01	<0.01	<0.01									<0.0005	<0.0005	<0.0005	<0.0005	<0.1	<0.1	<0.1	<0.1	<0.1		64.4	0.002	0.081	0.38 0.14	0.00227	0.147	0.18	218	0.155
MW-02	BEACH POL	< 0.01	<0.01	<0.01	<0.01									<0.0005	<0.0005	<0.0005	<0.0005	0.1	0.1	8.9	1	0.1		30.2	<0.001	0.029	0.2 0.13	0.00097	0.084	0.108	71	0.088
W-001	POTABLE WATER	<0.01	<0.01	<0.01	<0.01									<0.0005	<0.0005	<0.0005	<0.0005	<0.1	<0.1	<0.1	<0.1	<0.1	8.5	0.038	< 0.001	0.002	<0.05 0.02	<0.000016	0.002	0.006	0.1	<0.001
W-002	POTABLE WATER	<0.01	<0.01	<0.01	<0.01									<0.0005	<0.0005	<0.0005	<0.0005	<0.1	<0.1	<0.1	<0.1	<0.1	8.5	0.065	<0.001	0.002	<0.05 0.03	<0.000016	0.002	0.004	0.1	<0.001
W-003	POTABLE WATER	<0.01	<0.01	<0.01	<0.01									<0.0005	0.0018	<0.0005	<0.0005	<0.1	<0.1	<0.1	<0.1	<0.1	7.1	0.002	<0.001	<0.001	<0.05 <0.01	<0.000016	<0.001	<0.002	<0.1	<0.001
W-004	WATER OUTFALL	<0.01	<0.01	<0.01	<0.01									<0.0005	<0.0005	<0.0005	<0.0005	0.1	0.1	19.6	6	0.7	8.6	0.24	<0.001	0.003	<0.05 0.12	0.000053	0.019	0.005	0.3	<0.001
JTP123	POL WATER	<0.01			<0.01									<0.0005	<0.0005	<0.0005	<0.0005	0.1	0.1	19.6	6	0.7		8.27	0.002	0.006	0.06 0.16	0.000544	0.025	0.041	13.8	0.016
1330	SEDIMENT	<0.05	<0.05	<0.05	<0.05	<0.5	<0.5	1.8	<0.5	1.1	0.8	1.4	4	<0.005	<0.05	<0.01	<0.05	<10	<10	<10	<10	<10										
1331	SEDIMENT	<0.05	<0.05	<0.05	<0.05	<0.5	<0.5	1.9	<0.5	1.4	0.7	1.7	2.2	<0.005	<0.05	<0.01	<0.05	<10	<10	<10	16	11										

⁽¹⁾ Aluminum guideline for pH at ≥6.5 chromium (Cr(III))

chromium (Cr(III))

(3) Copper guideline based on hardness most stringent guideline is applied

⁽⁴⁾ Lead guideline based on hardness - most stringent guideline is applied

⁽⁵⁾ Nickel guideline based on hardness - most stringent guideline is applied

Table 6: Water & Sediment Analytical

Table 6: Water &	Sediment Analytical																															
Sample #	Area	Manganese	Molybdenum	Nickel	Selenium	Silver	Sodium	Thallium	Uranium	Zinc	p - Alkalinity (as CaCO3)	T - Alkalinity (as CaCO3)	Bicarbonate	Carbonate	Hydroxide	Electrical Conductivity	Chloride	Fluoride	Nitrate	Sulfate	Dissolved Calcium	Dissolved Magnesium	Dissolved Sodium	Dissolved Potassium	Dissolved Iron	Dissolved Manganese	Hardness	Ion Balance	Calculated TDS	Nitrate + Nitrite-N	Nitrate-N	Nitrite-N
	Quality Guidelines for the atic Life - Freshwater		0.073	0.025 ⁽⁵⁾	0.0010	0.0001				0.030																					2.900	0.060
Canadian Water C Protection of Aqu (December, 2007)																															3.600	
Guidelines for Car Quality (May, 200	nadian Drinking Water 18)	0.05			0.01					5							250			500									500		10	3.2
MW-01	BEACH POL	2.55	0.01	0.14	0.002	0.00122	25.6	0.0024	0.01	0.2																						
MW-02	BEACH POL	1.63	0.003	0.07	< 0.001	0.00081	28.1	0.0015	0.006	0.102																						
W-001	POTABLE WATER	0.005	<0.003	<0.01	< 0.001	<0.00005	117	<0.0005	< 0.001	0.004	<5	106	120	<5	<5	1030	256	0.06	0.6	14	23.3	34.1	116	6.2	<0.1	<0.005	199	96.6	514	0.136	0.136	<0.015
W-002	POTABLE WATER	0.006	<0.003	<0.01	< 0.001	<0.00005	117	<0.0005	< 0.001	0.002	<5	105	121	<5	<5	1030	260	0.06	<0.5	11	22.7	33.3	115	6.1	<0.1	<0.005	194	94.6	511	<0.113	<0.113	<0.015
W-003	POTABLE WATER	<0.005	<0.003	<0.01	< 0.001	<0.00005	<0.6	<0.0005	< 0.001	< 0.001	<5	<5	<5	<5	<5	<1	<1	<0.05	<0.5	<1 •	<0.3	<0.2	<0.6	<0.6	<0.1	<0.005	<1		<1	<0.113	<0.113	<0.015
W-004	WATER OUTFALL	0.028	<0.003			<0.00005						245	273	13	<5	1220	240	0.12	<0.5	31 !	56.2	53.5	104	4.5	<0.1	0.017	361	96.1	636	<0.113	<0.113	<0.015
JTP123	POL WATER	0.874	<0.003	0.02		0.00023		<0.0005		0.037																						
1330	SEDIMENT																															
1331	SEDIMENT						·									•		·		Ī			•									

⁽¹⁾ Aluminum guideline for pH at ≥6.5 chromium (Cr(III))

(3) Copper guideline based on hardness -

most stringent guideline is applied

⁽⁴⁾ Lead guideline based on hardness - most stringent guideline is applied

⁽⁵⁾ Nickel guideline based on hardness - most stringent guideline is applied

Table 7: Debris & Materials Analytical

Table 7:	Debris & Materia	s Analytical														
Sample #	Area	Purpose	% Coverage	Aroclor 1242	Aroclor 1254	Aroclor 1260	PCB Total	Asbestos (bulk) %	Asbestos (bulk) % Phase I	Asbestos (bulk) % Phase II	Lead (Total)	Lead Leachable	Naphthalene	Methyl Naphthalenes	Dimethyl Naphthalenes	Acenaphthylene, Acenaphthene, Fluorene, Phenanthrene, Anthracene, Fluoranthene, Pyrene, Benzo[a]anthracene, Chrysene, Benzo(b+j)fluoranthene, Benzo(k)fluoranthene, Benzo[a]pyrene, Indeno[1,2,3-cd]pyrene, Dibenzofuran, Dibenz[ah]anthracene, Benzo[ghi]perylene, Pentachlorophenol, Carbazole, Methyl Anthracenes, 3-Methylcholanthrene
CEPA						50										
	Tier II						5									
Tier I	T						1									
		Paint - Antenna (orange)	70	<0.05		<0.05	<0.05				150000	1.4				
		Paint - Antenna (white)	60	<0.05	<0.05	<0.05	<0.05				18000	<0.5				
		Vinyl tile - Warehouse	1					ND								
	MAIN STATION	Cement board - Warehouse	-					15-30								
MAT05	MAIN STATION	Press board - Warehouse	-					ND								
		Boiler paper insulation - Garage	1					>75								
		Boiler trowel insulation - Garage	-	<0.05		<0.05	0.28	30-50								
MAT08	MAIN STATION	Paint - Warehouse (off-white)	60	<0.05	1	1.85	1.89				410	<0.5				
		Paint/plywood - Warehouse (white)	100	<0.05	0.58	<0.05	0.58				615	<0.5				
	MAIN STATION	Cement board - Warehouse	1					15-30								
		Concrete - Warehouse	1	<0.05		<0.05	0.49									
		Concrete - Warehouse	-	<0.05		<0.05	<0.05									
		Concrete - Garage Pad -		<0.05		<0.05	0.79									
	MAIN STATION	Concrete - Garage Pad	1	<0.05	1.02	<0.05	1.02									
MAT15	MAIN STATION	Concrete - Garage Pad (stain)	-	<0.05	116	<0.05	116									
MAT16	MAIN STATION	Concrete - Garage Pad	-	<0.05	126	<0.05	126									
MAT17	MAIN STATION	Paint Interior (floor) - Module Train (grey)	100	<0.05	261000	<0.05	261000				2530					
MAT18	MAIN STATION	Paint Interior (generator) - Module Train (grey)	75	<0.05	1310	<0.05	1310				486	<0.5				
MAT19	MAIN STATION	Paint Interior (walls) - Module Train (grey)	90	<0.05	8750	2400	11100				2540					
MAT20	MAIN STATION	Paint Interior (fan blades) - Module Train (red)	60	<0.05	162	<0.05	162				10,000					
MAT21	MAIN STATION	Paint Interior (ASTs) - Module Train (grey)	60	<0.05	1280	<0.05	1280				2380	<0.5				
MAT22	MAIN STATION	Paint Interior (water tank) - Module Train (grey & red)	85	<0.05	11100	<0.05	11100				2000	<0.5				
MAT23	MAIN STATION	Paint Exterior - Module Train (off-white)	60	<0.05	<0.05	763	763				1300	<0.5				
MAT24	MAIN STATION	Paint Interior (entrance) - Module Train (red & white)	40	<0.05	190	<0.05	190				3560					
MAT25	MAIN STATION	Concrete - Module Train	-	<0.05	250	<0.05	250									
MAT26	MAIN STATION	Concrete - Module Train	-	<0.05	473	<0.05	473									
		Pipe insulation - Module Train -						30-50								
		Pipe insulation - Module Train	-						ND	>75						
MAT29		Tank insulation - Module Train	-					15-30								
		Tank insulation - Module Train	-						50-75	30-50	1					
MAT31	MAIN STATION	Wood - Module Train Foundation	-	<0.05	0.17	<0.05	0.17]			<0.5	0.02	0.089	0.065	<0.01

Table 8: Analytical QA/QC																								
					Metals							PC	Bs			BTEX, F1-F4 PHC								
Parameter											Aroclor	Aroclor	Aroclor	Total			Ethylbenz		F1	F1-minus	F2	F3	F4	
	As Method Detection Limit 0.5		Cd	Со	Cr	Cu	Hg	Ni	Pb	Zn	1242	1254	1260	PCBs	Benzene	Toluene	ene	Xylenes	ppm	BTEX	ppm	ppm	ppm	
		0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	1	0.05	0.05	0.05	0.05	0.005	0.05	0.01	0.05	10	10	10	10	10	
Units		ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
Sample	Area	0.5	0.5	0.0	0.5	0.7	0.6	0.5	0.7		0.05	0.05	0.05	0.05										
370	LANDFILL A	<0.5 <0.5	<0.5	0.8	<0.5	0.7	0.6	<0.5	0.7	2	<0.05	<0.05	<0.05	<0.05										
3/1	371 LANDFILL A RPD		<0.5	1.2 40 *	0.5 0 *	0.8 13*	0.7 15 *	<0.5 0	1.3 60 *	3 40 *	<0.05	<0.05 0	<0.05	<0.05 0										
390	LANDFILL A	<0.5	<0.5	1.1	<0.5	0.5	0.6	<0.5	0.9	6	<0.05	<0.05	<0.05	<0.05										
391	LANDFILL A	<0.5	<0.5	2.2	0.6	1.7	0.6	<0.5	2.1	5	<0.05	<0.05	<0.05	<0.05										
331	RPD	0.5	0	67*	18*	109*	0.0	0	80*	18	0	0	0	0										
430	LANDFILL B	<0.5	<0.5	1.5	0.5	1	0.9	-	0.9	2.2	<0.05	<0.05	<0.05	<0.05										
431	LANDFILL B	<0.5	<0.5	4.5	0.7	0.8	0.9		1.4	2.7	<0.05	<0.05	<0.05	<0.05										
	RPD	0	0	100*	33*	22*	0*		43*	20*	0	0	0	0										
450	LANDFILL B	<0.5	<0.5	2.1	1	2.3	1.8		1.9	3	<0.05	<0.05	<0.05	<0.05										
451	LANDFILL B	0.7	<0.5	2.7	0.8	1.9	1.5		1.8	3	<0.05	0.2	<0.05	0.2										
	RPD	33	0	25*	22*	19*	18*		5*	0*	0	120*	0	120*										
800	GARAGE														<0.005	<0.05	<0.01	<0.05	<10	<10	<10	<10	<10	
801	GARAGE														<0.005	<0.05	<0.01	<0.05	<10	<10	<10	<10	<10	
	RPD														0	0	0	0	0	0	0	0	0	
810	GARAGE										<0.05	0.42	<0.05	0.42										
811	GARAGE										<0.05	0.26	<0.05	0.26										
	RPD										0	47	0	47										
820	GARAGE														<0.005	<0.05	<0.01	<0.05	<10	<10	<10	<10	<10	
821	GARAGE														<0.005	<0.05	<0.01	<0.05	<10	<10	<10	<10	<10	
020	GARAGE														0	0	0	0	0	0	0	110	0	
830 831	GARAGE														<0.005 <0.005	<0.05 <0.05	<0.01 <0.01	<0.05 <0.05	<10 <10	<10 <10	35 118	<10 59	<10 <10	
031	RPD														0	0.03	0.01	0.03	0	0	108	142*	0	
840	WAREHOUSE														<0.005	<0.05	<0.01	<0.05	<10	<10	<10	<10	<10	
841	WAREHOUSE														<0.005	<0.05	<0.01	<0.05	<10	<10	<10	13	<10	
0.11	RPD														0	0	0	0	0	0	0	26*	0	
850	WAREHOUSE														<0.005	<0.05	<0.01	<0.05	<10	<10	14	26	<10	
851	WAREHOUSE														<0.005	<0.05	<0.01	<0.05	<10	<10	16	18	<10	
	RPD														0	0	0	0	0	0	13*	36*	0	
860	WAREHOUSE														<0.005	<0.05	<0.01	<0.05	<10	<10	<10	<10	<10	
861	WAREHOUSE														<0.005	<0.05	<0.01	< 0.05	<10	<10	<10	<10	<10	
	RPD														0	0	0	0	0	0	0	0	0	
870	BEACH POL														<0.005	<0.05	<0.01	<0.05	<10	<10	<10	<10	<10	
871	BEACH POL														<0.005	<0.05	<0.01	<0.05	<10	<10	<10	<10	<10	
200	RPD														0	0	0	0	0	0	0	0	0	
880	BEACH POL														<0.005	<0.05	<0.01	<0.05	<10	<10	<10	24	19	
881	BEACH POL														<0.005	<0.05	<0.01	<0.05	<10	<10	<10	24	19	
900	RPD BEACH POL														0	0	0	0	0	0	0	0*	0 *	
890 891	BEACH POL		1			-	-	-			 				<0.005	<0.05	<0.01	<0.05 <0.05	<10	<10	<10	21 26	15	
071	RPD RPD														<0.005	<0.05	<0.01	<0.05 0	<10 0	<10	<10 0	26 21 *	19 24 *	
900	BEACH POL														<0.005	<0.05	<0.01	<0.05	<10	<10	<10	15	<10	
901	BEACH POL		1								 				<0.005	<0.05	<0.01	<0.05	<10	<10	<10	<10	<10	
301	RPD														0.003	0.03	0.01	0.03	0	0	0	40*	0	
940	WAREHOUSE														<0.005	<0.05	<0.01	<0.05	<10	<10	<10	<10	<10	
941	WAREHOUSE														<0.005	<0.05	<0.01	<0.05	<10	<10	<10	<10	<10	
	RPD														0	0	0	0	0	0	0	0	0	
960	BEACH POL														<0.005	<0.05	<0.01	<0.05	<10	<10	<10	<10	10	
[*	1		1	I		L		L		1				I	3.505	0.00	0.01	0.00						

		Metals											Bs		BTEX, F1-F4 PHC										
Parameter											Aroclor	Aroclor	Aroclor	Total			Ethylbenz		F1	F1-minus	F2	F3	F4		
	As	Cd	Со	Cr	Cu	Hg	Ni	Pb	Zn	1242	1254	1260	PCBs	Benzene	Toluene	ene	Xylenes	ppm	BTEX	ppm	ppm	ppm			
Method Detection	Limit	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	1	0.05	0.05	0.05	0.05	0.005	0.05	0.01	0.05	10	10	10	10	10		
Units		ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm		
Sample	Area																								
961	BEACH POL														<0.005	<0.05	<0.01	<0.05	<10	<10	<10	<10	<10		
	RPD														0	0	0	0	0	0	0	0	0*		
970	STATION POL														<0.005	<0.05	< 0.01	<0.05	<10	<10	<10	10	<10		
971	STATION POL														<0.005	<0.05	< 0.01	<0.05	<10	<10	<10	<10	<10		
	RPD														0	0	0	0	0	0	0	0*	0		
980	STATION POL														<0.005	<0.05	<0.01	<0.05	<10	<10	<10	33	16		
981	STATION POL														<0.005	<0.05	<0.01	<0.05	<10	<10	<10	38	14		
	RPD														0	0	0	0	0	0	0	14*	13*		
1260	STATION POL														<0.005	<0.05	<0.01	<0.05	<10	<10	<10	<10	<10		
1261	STATION POL														<0.005	<0.05	<0.01	<0.05	<10	<10	<10	<10	<10		
	RPD														0	0	0	0	0	0	0	0	0		
1280	STATION POL														<0.005	<0.05	< 0.01	<0.05	<10	<10	<10	139	65		
1281	STATION POL														<0.005	<0.05	< 0.01	<0.05	<10	<10	<10	216	94		
RPD															0	0	0	0	0	0	0	43	36*		
1290	MOD TRAIN														<0.005	<0.05	<0.01	<0.05	<10	<10	<10	40	<10		
1291	MOD TRAIN														<0.005	<0.05	< 0.01	<0.05	<10	<10	<10	48	26		
	RPD														0	0	0	0	0	0	0	18*	89*		
1300	MOD TRAIN														<0.005	<0.05	< 0.01	<0.05	<10	<10	118	86	<10		
1301	MOD TRAIN														<0.005	<0.05	< 0.01	<0.05	<10	<10	131	82	<10		
	RPD														0	0	0	0	0	0	10	5*	0		
1310	MOD TRAIN	1	<0.5	7.2	1.8	6	19.8		3.6	82.4	<0.05	6.88	<0.05	6.88											
1311	MOD TRAIN	1.1	<0.5	6.1	1.6	6.1	11		4	149	<0.05	6.89	<0.05	6.89											
	RPD	10*	0	17	12*	2	57		11*	58	0	0	0	0											
1330	SEDIMENT	<0.5	<0.5	1.8	<0.5	1.1	0.8		1.4	4	<0.05	<0.05	<0.05	<0.05											
1331	SEDIMENT	<0.5	<0.5	1.9	<0.5	1.4	0.7	·	1.7	2.2	<0.05	<0.05	<0.05	<0.05							· ·				
	RPD	0	0	1*	0	6*	3*		5*	15*	0	0	0	0											
1340	MOD TRAIN	<0.005	<0.05	<0.01	<0.05	<10	<10	1190	287	<10															
1341	MOD TRAIN	<0.005	<0.05	<0.01	<0.05	<10	<10	1060	247	<10															
	RPD	0	0	0	0	0	0	12	15	0															
Average	RPD for the site	2	0	37	3	25	13	4	36	25	0	8	0	8	0	0	0	0	0	0	7	19	9		
Notes:																									
Acceptable RPD values vary based on the analytical parameters, the sample matrix, and the concentrations of analytes in the samples.																									
Acceptable RPD values belo	w 35% for metals	s and 50% f	for PHCs	and PCBs																					
BOLD	indicates the RI	OP exceede	ed the rec	commended	d alert criteri	a (only whe	n the conce	ntrations ar	e at least te	n times the	method det	ection limit a	are RPD cal	culations c	onsidered va	alid.)									
BOLD*	indicates that co	oncentration	ns are <1	0 times the	detection lin	mit, therefor	e the calcul	ated RDP v	alue is not s	strictly valid															

Appendix C

Photographs

- (E) Environmental Photos
- (G) Geotechnical Photos

Site Name:Site Location:Project No.CAM-A, Sturt PointSite Overview60156118

Photo No. E-1 **Date:** 9-Aug-10

Direction Photo Taken:

View north-northeast

Description:

Site overview (taken from airplane)

Photo No. E-2 **Date:** 9-Aug-10

Direction Photo Taken:

View north-northeast

Description:

Site overview (taken from airplane)

AECOM

Site Name:

CAM-A, Sturt Point

Site Location: Sewage Outfall Project No. 60156118

Photo No. E-3

Date: 6-Aug-10

Direction Photo Taken:

View northwest

Description:

Sewage pipeline from main station pad towards outfall.

Fallen antenna noted to the south of the outfall

Photo No. E-4

Date:

6-Aug-10

Direction Photo Taken:

View southeast

Description:

Sewage pipeline from main station.

Mod Train foundation noted in background.

AECOM

Site Name:

CAM-A, Sturt Point

Site Location: Sewage Outfall **Project No.** 60156118

Photo No. E-5 **Date:** 6-Aug-10

Direction Photo Taken:

View southeast

Description:

Sewage pipeline towards main station.

Photo No. E-6 Date: 6-Aug-10

Direction Photo Taken:

View northwest

Description:

Former sewage pipeline from main station to outfall.

Site Name:

CAM-A, Sturt Point

Site Location: Sewage Outfall Project No. 60156118

Photo No. E-7 **Date:** 6-Aug-10

Direction Photo Taken:

View northeast

Description:

End of former sewage pipeline (south end of outfall channel).

Warehouse foundation is noted to the northeast.

Photo No. E-8 **Date:** 6-Aug-10

Direction Photo Taken:

View north

Description:

South end of sewage outfall channel.

Site Name:

CAM-A, Sturt Point

Site Location: Sewage Outfall Project No. 60156118

Photo No. E-9

Date: 6-Aug-10

Direction Photo Taken:

View south

Description:

North end of sewage outfall channel.

Fallen antenna noted south of the channel.

Photo No. E-10 **Date:** 6-Aug-10

Direction Photo Taken:

View north

Description:

North end of sewage outfall channel.

Site Name:

CAM-A, Sturt Point

Site Location: Station Area Project No. 60156118

Photo No. E-11

Date: 9-Aug-10

Direction Photo Taken:

View southeast

Description:

Mod train foundation.

Photo No. E-12 Date: 9-Aug-10

Direction Photo Taken:

View west

Description:

Mod train foundation.

AECOM

Site Name:

CAM-A, Sturt Point

Site Location: Station Area Project No. 60156118

Photo No. E-13 **Date:** 9-Aug-10

Direction Photo Taken:

View north

Description:

Garage foundation,

Photo No. E-14 Date: 9-Aug-10

Direction Photo Taken:

View north

Description:

Garage foundation.

Two sumps noted on concrete pad.

Airstrip to the north.

Site Name: CAM-A, Sturt Point Site Location: Station Area Project No. 60156118

Photo No. E-15 **Date:** 9-Aug-10

Direction Photo Taken:

View southeast

Description:

Garage foundation.

Former boiler remaining on pad.

Photo No. E-16 Date: 9-Aug-10

Direction Photo Taken:

View southwest

Description:

Warehouse foundation.

Wooden debris.

AECOM

Site Name:

CAM-A, Sturt Point

Site Location: Station Area Project No. 60156118

Photo No. E-17 **Date:** 9-Aug-10

Direction Photo Taken:

View east

Description:

Warehouse foundation.

Empty ASTs.

Photo No. E-18 Date: 9-Aug-10

Direction Photo Taken:

View southeast.

Description:

Warehouse foundation.

Site Name: CAM-A, Sturt Point Site Location: Station Area Project No. 60156118

Photo No. E-19 **Date:** 9-Aug-10

Direction Photo Taken:

View southwest

Description:

Wood & metal debris on station pad.

Warehouse foundation and fallen antenna noted in background.

Photo No. E-20 **Date:** 9-Aug-10

Direction Photo Taken:

View west

Description:

Metal debris on station pad.

AECOM

Site Name: CAM-A, Sturt Point Site Location: Station Area **Project No.** 60156118

Photo No. E-21 **Date:** 9-Aug-10

Direction Photo Taken:

View northeast

Description:

Metal debris on station pad.

Section of mod train noted in background.

Photo No. E-22 **Date:** 9-Aug-10

Direction Photo Taken:

View northeast

Description:

Section of former mod train.

AECOM

Site Name:

CAM-A, Sturt Point

Site Location:

Station Area - Module Train Section

Project No. 60156118

Photo No. E-23 **Date:** 9-Aug-10

Direction Photo Taken:

View northwest

Description:

Section of former mod train.

Photo No. E-24 **Date:** 9-Aug-10

Direction Photo Taken:

View southwest

Description:

Section of former mod train.

Site Name:

CAM-A, Sturt Point

Site Location:

Station Area - Module Train Section

Project No. 60156118

Photo No. E-25 **Date:** 9-Aug-10

Direction Photo Taken:

Inside module train section

Description:

North side of building

Photo No. E-26 **Date:** 9-Aug-10

Direction Photo Taken:

Inside module train section

Description:

North side of building

AECOM

Site Name:

CAM-A, Sturt Point

Site Location:

Station Area - Module Train Section

Project No. 60156118

Photo No. E-27 **Date:** 9-Aug-10

Direction Photo Taken:

Inside module train section

Description:

Southwest corner of building

Photo No. E-28 **Date:** 9-Aug-10

Direction Photo Taken:

Inside module train section

Description:

Two (2) former diesel fuel ASTs

Site Name:

CAM-A, Sturt Point

Site Location:

Station Area - Module Train Section

Project No. 60156118

Photo No. E-29 **Date:** 9-Aug-10

Direction Photo Taken:

Inside module train section

Description:

Piping along ceiling.

Photo No. E-30 **Date:** 7-Aug-10

Direction Photo Taken:

Inside module train section

Description:

Location of material sample MAT-30

Site Name:

CAM-A, Sturt Point

Site Location:

Station Area - Module Train Section

Project No. 60156118

Photo No. E-31 **Date:** 7-Aug-10

Direction Photo Taken:

Inside module train section

Description:

Location of material sample MAT-30.

Photo No. E-32

Date: 7-Aug-10

Direction Photo Taken:

Inside module train section

Description:

Location of material sample MAT-29.

Site Name:

CAM-A, Sturt Point

Site Location:

Station Area - Module Train Section

Project No. 60156118

Photo No. E-33

Date: 7-Aug-10

Direction Photo Taken:

Inside module train section

Description:

Location of material sample MAT-29.

Photo No. E-34 **Date:** 7-Aug-10

Direction Photo Taken:

Inside module train section

Description:

Location of material sample MAT-27 & MAT-28.

Date:

Site Name:

CAM-A, Sturt Point

Site Location:

Station Area - Module Train Section

Project No. 60156118

Photo No. E-35 7-Aug-10 **Direction Photo**

Taken:

Inside module train section

Description:

Location of material sample MAT-26.

MAT-26

Photo No. E-36

Date: 7-Aug-10

Direction Photo Taken:

Inside module train section

Description:

Location of material sample MAT-25.

AECOM

Site Name:

CAM-A, Sturt Point

Site Location:

Station Area - Module Train Section

Project No. 60156118

Photo No. E-37 **Date:** 7-Aug-10

Direction Photo Taken:

Inside module train section

Description:

Location of material sample MAT-24.

Photo No. E-38 **Date:** 7-Aug-10

Direction Photo Taken:

View south

Description:

Location of material sample MAT-23.

Site Name:

CAM-A, Sturt Point

Site Location:

Station Area – Module Train Section

Project No. 60156118

Photo No. E-39 **Date:** 7-Aug-10

Direction Photo Taken:

Inside module train section

Description:

Location of material sample MAT-21 and MAT-22.

Photo No. E-40 **Date:** 7-Aug-10

Direction Photo Taken:

Inside module train section

Description:

Location of material sample MAT-20.

AECOM

Site Name:

CAM-A, Sturt Point

Site Location:

Station Area – Module Train Section

Project No. 60156118

Photo No. E-41 **Date:** 7-Aug-10

Direction Photo Taken:

Inside module train section

Description:

Location of material sample MAT-19.

Photo No. E-42 **Date:** 7-Aug-10

Direction Photo Taken:

Inside module train section

Description:

Location of material sample MAT-18.

Date:

AECOM

Site Name:

Photo No.

CAM-A, Sturt Point

Site Location: Station Area Project No. 60156118

E-43 7-Aug-10 Direction Photo

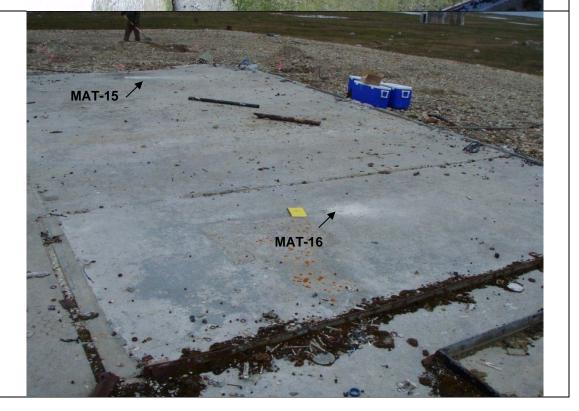
Direction Photo Taken:

Inside module train section

Description:

Location of material sample MAT-17.

MAT-17


Photo No. E-44 **Date:** 7-Aug-10

Direction Photo Taken:

View northeast

Description:

Garage foundation. Location of material sample MAT-15 and MAT-16.

Site Name: CAM-A, Sturt Point Site Location: Station Area Project No. 60156118

Photo No. E-45 **Date:** 7-Aug-10

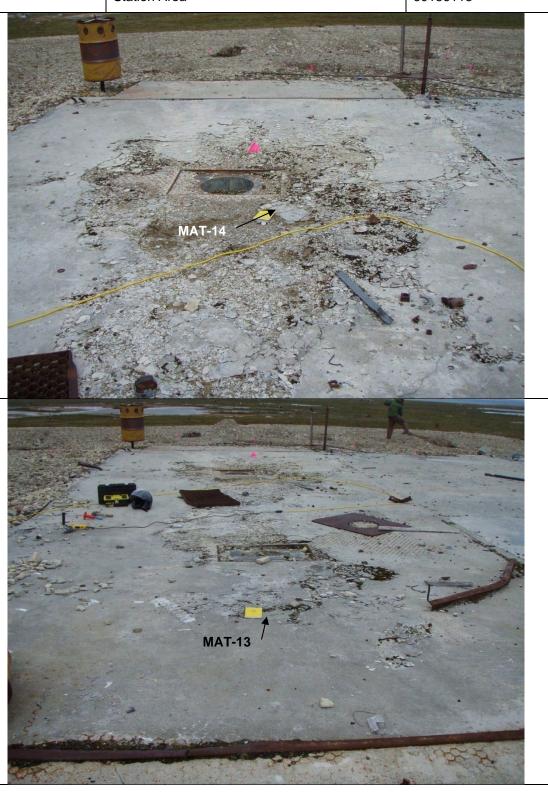
Direction Photo Taken:

View north

Description:

Garage foundation. Location of material sample MAT-14.

Photo No. E-46


Date: 7-Aug-10

Direction Photo Taken:

View north

Description:

Garage foundation. Location of material sample MAT-13.

Site Name:

CAM-A, Sturt Point

Site Location: Station Area Project No. 60156118

Photo No. E-47 **Date:** 7-Aug-10

Direction Photo Taken:

View northeast

Description:

Warehouse foundation. Location of material sample MAT-12.

Photo No. E-48 **Date:** 7-Aug-10

Direction Photo Taken:

View north

Description:

Warehouse foundation. Location of material sample MAT-11.

AECOM

Site Name: CAM-A, Sturt Point Site Location: Station Area Project No. 60156118

Photo No. E-49 **Date:** 6-Aug-10

Direction Photo Taken:

View southwest

Description:

Warehouse foundation. Location of material sample MAT-10.

Photo No. E-50 **Date:** 6-Aug-10

Direction Photo Taken:

View south

Description:

Warehouse foundation. Location of material sample MAT-9.

AECOM

Site Name: CAM-A, Sturt Point Site Location: Station Area Project No. 60156118

Photo No. E-51 **Date:** 6-Aug-10

Direction Photo Taken:

View west

Description:

Warehouse foundation. Location of material sample MAT-8.

Photo No. E-52 **Date:** 6-Aug-10

Direction Photo Taken:

View north

Description:

Boiler on garage foundation. Location of material samples MAT-6 and MAT-7.

Site Name:

CAM-A, Sturt Point

Site Location: Station Area Project No. 60156118

Photo No. E-53 **Date:** 6-Aug-10

Direction Photo Taken:

View south

Description:

Debris adjacent to warehouse foundation. Location of material sample MAT-5.

Photo No. E-54 **Date:** 6-Aug-10

Direction Photo Taken:

View southeast

Description:

Debris adjacent to warehouse foundation. Location of material sample MAT-4.

AECOM

Site Name: CAM-A, Sturt Point Site Location: Station Area Project No. 60156118

Photo No. E-55 **Date:** 6-Aug-10

Direction Photo Taken:

View southeast

Description:

Debris adjacent to warehouse foundation. Location of material sample MAT-3.

Photo No. E-56 **Date:** 6-Aug-10

Direction Photo Taken:

View north

Description:

Fallen antenna. Location of material sample MAT-2.

AECOM

Site Name:

CAM-A, Sturt Point

Site Location: Station Area Project No. 60156118

Photo No. E-57 **Date:** 6-Aug-10

Direction Photo Taken:

View northeast

Description:

Fallen antenna. Location of material sample MAT-1.

Photo No. E-58 **Date:** 9-Aug-10

Direction Photo Taken:

View north

Description:

Debris southeast of module train foundation.

Site Name: CAM-A, Sturt Point Site Location: Station Area Project No. 60156118

Photo No. E-59 **Date:** 9-Aug-10

Direction Photo Taken:

View north

Description:

Debris adjacent to module train foundation.

Waypoint W-197

Photo No. E-60 **Date:** 9-Aug-10

Direction Photo Taken:

View west

Description:

Hollow entrance section of former module train. The section is open on one side. It appears as though it has been used as a cache or den for possibly a fox.

Site Name: Site Location: Station Area

Project No. 60156118

Photo No. Date: 9-Aug-10
Direction Photo

Taken:

View north

Description:

Debris adjacent to module train foundation.

Photo No. Date: 9-Aug-10
Direction Photo

Taken:

View west

Description:

Debris adjacent to module train foundation.

AECOM

Site Name:

CAM-A, Sturt Point

Site Location: Station Area Project No. 60156118

Photo No. E-63 **Date:** 9-Aug-10

Direction Photo Taken:

View south

Description:

Three wooden pallets.

Waypoint W-253

Photo No. E-64 Date: 9-Aug-10

Direction Photo Taken:

View northwest.

Description:

Wood & scrap iron debris.

Site Name:

CAM-A, Sturt Point

Site Location:

Station Area to Airstrip Area

Project No. 60156118

Photo No. E-65 **Date:** 9-Aug-10

Direction Photo Taken:

View south

Description:

Concrete & metal cable debris.

Waypoint W-257

Photo No. E-66 **Date:** 9-Aug-10

Direction Photo Taken:

View southwest

Description:

Light stand for airstrip, concrete & metal debris.

AECOM

Site Name:

CAM-A, Sturt Point

Site Location: Station Area Project No. 60156118

Photo No. E-67 **Date:** 9-Aug-10

Direction Photo Taken:

View north

Description:

Marker barrels from station to airstrip; electrical lines (4 1/2" diameter) from station to airstrip.

Photo No. E-68 **Date:** 8-Aug-10

Direction Photo Taken:

View north

Description:

Heritage point.

Site Name: CAM-A, Sturt Point Site Location: Worked area Project No. 60156118

Photo No. E-69 **Date:** 8-Aug-10

Direction Photo Taken:

View north

Description:

Heritage point.

Waypoint W-192

Photo No. E-70 Date: 8-Aug-10

Direction Photo Taken:

View north

Description:

Heritage point.

Site Name: CAM-A, Sturt Point Site Location: Worked area Project No. 60156118

Photo No. E-71 **Date:** 8-Aug-10

Direction Photo Taken:

View south

Description:

Lobe I with four (4) battery cells.

Waypoint W-189

Photo No. E-72 **Date:** 6-Aug-10

Direction Photo Taken:

View south

Description:

Lobe I with four (4) battery cells.

AECOM

Site Name:

CAM-A, Sturt Point

Site Location: Worked area Project No. 60156118

Photo No. E-73 **Date:** 6-Aug-10

Direction Photo Taken:

View east

Description:

Lobe I with four (4) battery cells.

Waypoint W-189

Photo No. E-74 Date: 6-Aug-10

Direction Photo Taken:

View east

Description:

Lobe I with four (4) battery cells.

Site Name: CAM-A, Sturt Point Site Location: Worked area Project No. 60156118

Photo No. E-75 **Date:** 8-Aug-10

Direction Photo Taken:

View southeast

Description:

Lobe K. Metal piping debris.

Waypoint W-188

Photo No. E-76 Date:

Direction Photo Taken:

View southeast

Description:

Lobe K. Metal piping debris.

Site Name:

CAM-A, Sturt Point

Site Location: Worked area Project No. 60156118

Photo No. E-77 **Date:** 8-Aug-10

Direction Photo Taken:

View east

Description:

Lobe J (Figure 7)

Photo No. E-78 Date: 8-Aug-10

Direction Photo Taken:

View northeast

Description:

Concrete antenna anchor pad and marker empty barrels.

Site Name: CAM-A, Sturt Point Site Location: Beach area Project No. 60156118

Photo No. E-79 **Date:** 6-Aug-10

Direction Photo Taken:

View east

Description:

Metal debris.

Waypoint W-328

Photo No. E-80 **Date:** 6-Aug-10

Direction Photo Taken:

View north

Description:

Extend of debris on west beach, wooden stakes in ground.

Site Name: CAM-A, Sturt Point Site Location: Beach area Project No. 60156118

Photo No. E-81 **Date:** 6-Aug-10

Direction Photo Taken:

View south

Description:

Barrel & wood debris.

Waypoint W-303

Photo No. E-82 **Date:** 6-Aug-10

Direction Photo

Taken:

View south

Description:

Barrel Area B

AECOM

Site Name:

CAM-A, Sturt Point

Site Location:

Beach Area (Barrel Area A)

Project No. 60156118

Photo No. E-83 **Date:** 6-Aug-10

Direction Photo

Taken:

View south

Description:

Barrel Area B

Photo No. E-84 Date: 6-Aug-10

Direction Photo

Taken:

View northeast

Description:

Barrel Area B

AECOM

Site Name:

CAM-A, Sturt Point

Site Location: Beach Area (Barrel Area B) Project No. 60156118

Photo No. E-85 **Date:** 6-Aug-10

Direction Photo Taken:

View south

Description:

Small burn area south of Barrel Area B.

Waypoint W-007

Photo No. E-86 **Date:** 6-Aug-10

Direction Photo Taken:

View east

Description:

Northwestern extent of debris at beach area.

Barrel Area B is noted in the background.

AECOM

Site Name:

CAM-A, Sturt Point

Site Location: Station Area Project No. 60156118

Photo No. E-87 **Date:** 6-Aug-10

Direction Photo Taken:

View west

Description:

Submerged barrel (debris) adjacent to POL marker line.

Waypoint W-087

Photo No. E-88 **Date:** 6-Aug-10

Direction Photo Taken:

View southeast

Description:

Metal debris.

Site Name:Site Location:Project No.CAM-A, Sturt PointStation Area60156118

Photo No. E-89 **Date:** 6-Aug-10

Direction Photo Taken:

View northwest

Description:

Steel pipe debris.

Waypoint W-090

Photo No. E-90 **Date:** 6-Aug-10

Direction Photo Taken:

View east

Description:

Steel pipe debris.

AECOM

Site Name:

CAM-A, Sturt Point

Site Location:

Station Area to Freshwater Lake

Project No. 60156118

Photo No. E-91 Date: 8-Aug-10

Direction Photo Taken:

View northeast

Description:

Wood & concrete board debris.

Waypoint W-158

Photo No. E-92 **Date:** 8-Aug-10

Direction Photo Taken:

View southeast

Description:

Access road to freshwater

AECOM

Site Name:

CAM-A, Sturt Point

Site Location: Freshwater Lake Project No. 60156118

Photo No. E-93 **Date:** 8-Aug-10

Direction Photo Taken:

Northwest

Description:

Freshwater Lake, near access road

Photo No. E-94 Date: 8-Aug-10

Direction Photo Taken:

Northeast

Description:

Freshwater Lake, near access road

Site Name: CAM-A, Sturt Point Site Location: Landfill B **Project No.** 60156118

Photo No. E-95 **Date:** 7-Aug-10

Direction Photo Taken:

View southeast

Description:

Lobe F, debris

Waypoint W-166

Photo No. E-96 **Date:** 7-Aug-10

Direction Photo Taken:

View north

Description:

Three lobes are noted (down gradient noted in foreground)

AECOM

Site Name:

CAM-A, Sturt Point

Site Location: Landfill B Project No. 60156118

Photo No. E-97 **Date:** 7-Aug-10

Direction Photo Taken:

View northeast

Description:

Debris down gradient of Lobe G.

Photo No. E-98 Date: 7-Aug-10

Direction Photo Taken:

View south

Description:

Lobe H

Project No. 60156118

Site Name: Site Location:
CAM-A, Sturt Point Landfill B

Photo No. E-99 **Date:** 7-Aug-10

Direction Photo Taken:

View south

Description:

Lobe H

Photo No. E-100 **Date:** 7-Aug-10

Direction Photo

Taken:

View west

Description:

Lobe H

AECOM

Site Name:

CAM-A, Sturt Point

Site Location: Barrel Area A Project No. 60156118

Photo No. E-101 **Date:** 6-Aug-10

Direction Photo

Taken:

View east

Description:

Barrel Area A

Photo No. E-102 Date: 8-Aug-10

Direction Photo

Taken:

View southwest

Description:

Barrel Area A

AECOM

Site Name:

CAM-A, Sturt Point

Site Location: Barrel Area A Project No. 60156118

Photo No. E-103 **Date:** 8-Aug-10

Direction Photo Taken:

View north

Description:

Barrel Area A

Photo No. E-104 Date: 8-Aug-10

Direction Photo

Taken:

View south

Description:

Barrel Area A

Site Name:Site Location:Project No.CAM-A, Sturt PointBarrel Area A60156118

Photo No. E-105 Date: 8-Aug-10

Direction Photo Taken:

View southeast

Description:

Barrel Area A (vehicle debris)

Photo No. E-106 Date:

Direction Photo Taken:

View north

Description:

Barrel Area A

AECOM

Site Name:

CAM-A, Sturt Point

Site Location: Landfill A Project No. 60156118

Photo No. E-107 Date: 8-Aug-10

Direction Photo

Taken:

View east

Description:

Landfill A

Photo No. E-108 Date: 8-Aug-10

Direction Photo Taken:

View north east

Description:

Landfill A

AECOM

Site Name: **CAM-A, Sturt Point**

Site Location: Landfill A and Beach POL **Project No.** 60156118

Photo No. E-109

Date:

Direction Photo

Taken:

View northwest

Description:

Landfill A

Photo No. E-110

Date: 9-Aug-10

Direction Photo

Taken:

View west

Description:

Beach POL

AECOM

Site Name:

CAM-A, Sturt Point

Site Location:

Beach POL and Inuit House Area

Project No. 60156118

Photo No. E-111

Date: 9-Aug-10

Direction Photo

Taken:

View southwest

Description:

Beach POL

Photo No. E-112

Date: 7-Aug-10

Direction Photo Taken:

View east

Description:

Two houses along beach (northeast of the CAM-A site)

AECOM

Site Name:

CAM-A, Sturt Point

Site Location: Inuit Houses Project No. 60156118

Photo No. E-113 **Date:** 7-Aug-10

Direction Photo Taken:

View east

Description:

House 1 (northern house)

Photo No. E-114 **Date:** 7-Aug-10

Direction Photo Taken:

View north east

Description:

Debris/barrels adjacent to House 1.

Site Name: CAM-A, Sturt Point Site Location: Inuit Houses Project No. 60156118

 Photo No.
 Date:

 E-115
 7-Aug-10

Direction Photo Taken:

View north

Description:

House 1

Photo No. E-116 **Date:** 7-Aug-10

Direction Photo

Taken:

View east

Description:

House 2

AECOM

Site Name:

CAM-A, Sturt Point

Site Location: Inuit Houses Project No. 60156118

Photo No. E-117 **Date:** 7-Aug-10

Direction Photo Taken:

View north

Description:

House 2

Photo No. E-118 Date: 7-Aug-10

Direction Photo

Taken:

View west

Description:

House 2

Site Name:

CAM-A, Sturt Point

Site Location: Inuit Houses **Project No.** 60156118

Photo No. Date: 7-Aug-10

Direction Photo Taken:

View north

Description:

Debris area adjacent to Inuit houses.

Project No. 60156118 Site Name: CAM-A Site Location: Sturt Point, Nunavut

Photo No. G-1

Date: 4-Aug-10

Direction Photo

Taken:

Description:Borrow Area 1 (BA-1)

Photo No. G-2

Date: 4-Aug-10

Direction Photo

Taken:

Description:

Borrow Area 1(BA-1)

AECOM

Site Name: CAM A Site Location: Sturt Point, Nunavut Project No. 60156118

Photo No. G-3 **Date:** 4-Aug-10

Direction Photo

Taken:

Description:

Borrow Area 1 (BA-1) TP10-05

Photo No. G-4 Date: 4-Aug-10

Direction Photo

Taken:

Description:

Borrow Area 1 (BA-1) TP10-05

AECOM

Project No. 60156118 Site Name: CAM-A Site Location: Sturt Point, Nunavut

Photo No. G-5

Date: 4-Aug-10

Direction Photo Taken:

Description:Borrow Area 1 (BA-1)
TP10-06

Photo No. G-6

Date: 4-Aug-10

Direction Photo

Taken:

Description:

Borrow Area 1 (BA-1) TP10-06

AECOM

Site Name: CAM - A Site Location: Sturt Point, Nunavut Project No. 60156118

Photo No. G-7 Date: 4-Aug-10

Direction Photo Taken:

Description:Borrow Area 1 (BA-1)
TP10-06

Photo No. G-8 Date: 4-Aug-10

Direction Photo Taken:

Description:Borrow Area 1 (BA-1)

TP10-06

Site Name: CAM - A **Site Location: Sturt Point, Nunavut** **Project No.** 60156118

Photo No. G-9

Date: 4-Aug-10

Direction Photo Taken:

Description: Borrow Area 2 (BA-2)

Photo No. G-10

Date: 4-Aug-10

Direction Photo

Taken:

Description: Borrow Area 2 (BA-2)

Project No. 60156118 Site Name: CAM - A Site Location: Sturt Point, Nunavut

Photo No. G-11

Date: 5-Aug-10

Direction Photo

Taken:

Description:Borrow Area 3 (BA-3)

Photo No. G-12

Date: 4-Aug-10

Direction Photo

Taken:

Description:

Borrow Area 3 (BA-3)

AECOM

Site Name: CAM - A

Site Location: Sturt Point, Nunavut

Project No. 60156118

Photo No. G-13

Date: 5-Aug-10

Direction Photo

Taken:

Description:Borrow Area 3 (BA-3)
TP10-18

Photo No. G-14

Date: 6-Aug-10

Direction Photo

Taken:

Description:

Borrow Area 3 (BA-3) TP10-31

Project No. 60156118 Site Name: CAM-A Site Location: Sturt Point

Photo No. G-15

Date: 6-Aug-10

Direction Photo

Taken:

Description:Borrow Area 4A (BA-4A)

Photo No. G-16

Date: 6-Aug-10

Direction Photo

Taken:

Description:

Borrow Area 4B (BA-4B) TP10-24

Site Name: CAM - A Site Location: Sturt Point, Nunavut Project No. 60156118

Photo No. G-17 **Date:** 6-Aug-10

Direction Photo

Taken:

Description:

Borrow Area 4B (BA-4B) TP10-26

Photo No. G-18 **Date:** 6-Aug-10

Direction Photo

Taken:

Description:

Borrow Area 5 (BA-5) TP10-33

Site Name: CAM - A **Site Location: Sturt Point, Nunavut**

Project No. 60156118

Photo No. G-19

Date: 6-Aug-10

Direction Photo

Taken:

Description:Borrow Area 5A (BA-5A)

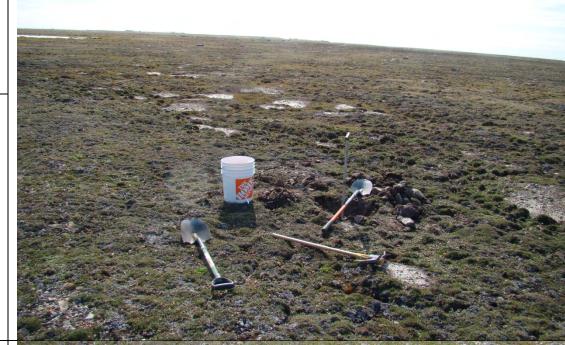


Photo No. G-20

Date: 6-Aug-10

Direction Photo

Taken:

Description:Borrow Area 5A (BA-5A)
TP10- 28

Site Name: CAM - A Site Location: Sturt Point, Nunavut Project No. 60156118

Photo No. G-21

Date: 6-Aug-10

Direction Photo

Taken:

Description:Borrow Area 5A (BA-5A)
TP10-30

Photo No. G-22

Date: 6-Aug-10

Direction Photo

Taken:

Description:

Borrow Area 6 (BA-6)

Site Name: CAM - A Site Location: Sturt Point, Nunavut Project No. 60156118

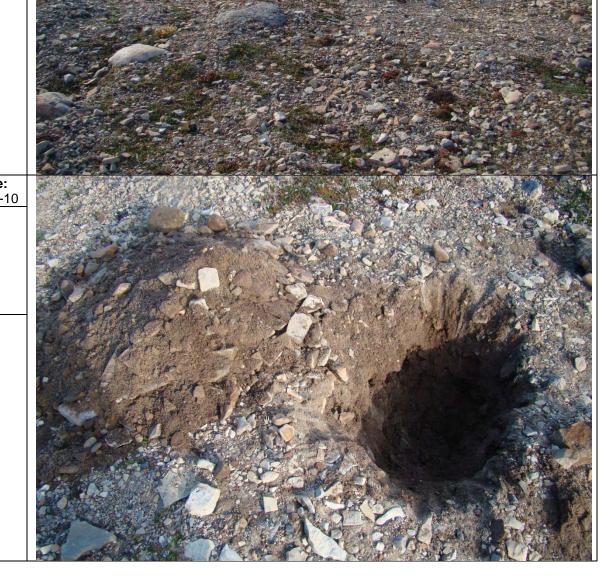
Photo No. G-23 **Date:** 6-Aug-10

Direction Photo

Taken:

Description:

Borrow Area 6 (BA-6)


Photo No. Date: 6-Aug-10

Direction Photo

Taken:

Description:

Borrow Area 6 (BA-6) TP10-35

Site Name: CAM - A
Site Location: Sturt Point, Nunavut
Project No.
60156118

Photo No. G-25 **Date:** 7-Aug-10

Direction Photo Taken:

Description:Borrow Area 6 (BA-6)
TP10-36

Photo No. G-26 **Date:** 6-Aug-10

Direction Photo

Taken:

Description:Borrow Area 6 (BA-6)
TP10-36

Site Name: CAM-A Site Location: Sturt Point, Nunavut Project No. 60156118

Photo No. G-27 **Date:** 7-Aug-10

Direction Photo

Taken:

Description:

Borrow Area 6A (BA-6A)

Photo No. G-28 **Date:** 7-Aug-10

Direction Photo

Taken:

Description:

Borrow Area 6A (BA-6A)

Site Name: CAM-A Site Location: Sturt Point, Nunavut Project No. 60156118

Photo No. G-29 **Date:** 7-Aug-10

Direction Photo

Taken:

Description:

Borrow Area 6A (BA-6A) TP10-40

Photo No. G-30 **Date:** 7-Aug-10

Direction Photo Taken:

Description:

Borrow Area 6A (BA-6A) TP10-40

Project No. 60156118 Site Name: CAM-A Site Location: Sturt Point, Nunavut

Photo No. G-31

Date: 7-Aug-10

Direction Photo

Taken:

Description:Borrow Area 7 (BA-7)
TP10-41

Photo No. G-32

Date: 7-Aug-10

Direction Photo

Taken:

Description:

Borrow Area 7 (BA-7) TP10-41

Project No. 60156118 Site Name: CAM-A Site Location: Sturt Point, Nunavut

Photo No. G-33

Date: 8-Aug-10

Direction Photo

Taken:

Description:Borrow Area 8 (BA-8)

Photo No. G-34

Date: 8-Aug-10

Direction Photo

Taken:

Description:

Borrow Area 8 (BA-8)

Site Name: CAM-A Site Location: Sturt Point, Nunavut Project No. 60156118

Photo No. G-35 **Date:** 8-Aug-10

Direction Photo Taken:

Description:Borrow Area 9 (BA-9)
TP10-54

Photo No. G-36 **Date:** 8-Aug-10

Direction Photo

Taken:

Description:Borrow Area 9 (BA-9)
TP10-54

AECOM

Site Name: CAM-A Site Location: Sturt Point, Nunavut

Project No. 60156118

Photo No. G-37

Date: 8-Aug-10

Direction Photo Taken:

Description:Borrow Area 9 (BA-9)
TP10-55 Boulder at the bottom of testpit

Photo No. G-38

Date: 8-Aug-10

Direction Photo Taken:

Description:

Borrow Area 9 (BA-9) TP10-57

Site Name: CAM-A Site Location: Sturt Point, Nunavut Project No. 60156118

Photo No. G-39 **Date:** 8-Aug-10

Direction Photo

Taken:

Description:

Borrow Area 10 (BA-10)

Photo No. G-40 **Date:** 8-Aug-10

Direction Photo Taken:

Description:

Borrow Area 10 (BA-10) TP10-58

Project No. 60156118 Site Name: CAM-A **Site Location: Sturt Point, Nunavut**

Photo No. G-41

Date: 8-Aug-10

Direction Photo Taken:

Description:Borrow Area 10 (BA-10)

Photo No. G-42

Date: 8-Aug-10

Direction Photo Taken:

Description:

Borrow Area 10 (BA-10) TP10-59

Project No. 60156118 Site Name: CAM-A **Site Location: Sturt Point, Nunavut**

Photo No. G-43

Date: 9-Aug-10

Direction Photo

Taken:

Description:Borrow Area 11 (BA-11)

Photo No. G-44

Date: 9-Aug-10

Direction Photo

Taken:

Description:Borrow Area 11 (BA-11) TP10-60

Project No. 60156118 Site Name: CAM-A Site Location: Sturt Point, Nunavut

Photo No. G-44

Date: 4-Aug-10

Direction Photo

Taken:

Description: Landfill 1 (LF-1, BA-13)

Photo No. G-45

Date: 4-Aug-10

Direction Photo

Taken:

Description:

Landfill 1 (LF-1, BA-13) TP10-01

AECOM

Site Name: CAM-A Site Location: Sturt Point, Nunavut **Project No.** 60156118

Photo No. G-46

Date: 4-Aug-10

Direction Photo

Taken:

Description: Landfill 1 (LF-1, BA-13) TP10-02

Photo No. G-47

Date: 6-Aug-10

Direction Photo

Taken:

Description:

Landfill 1 (LF-1, BA-13)

TP10-13

Site Name: CAM-A Site Location: Sturt Point, Nunavut Project No. 60156118

Photo No. G-48

Date: 6-Aug-10

Direction Photo Taken:

Description: Landfill 1 (LF-1, BA-13) TP10-29

Photo No. G-49

Date: 7-Aug-10

Direction Photo

Taken:

Description:

Landfill 2 (LF-2, BA-14)

AECOM

Project No. 60156118 Site Name: CAM-A Site Location: Sturt Point, Nunavut

Photo No. G-50

Date: 7-Aug-10

Direction Photo Taken:

Description: Landfill 2 (LF-2, BA-14) TP10-43

Photo No. G-51

Date: 7-Aug-10

Direction Photo Taken:

Description:

Landfill 2 (LF-2, BA-14) TP10-43 – excavated soil

Site Name: CAM-A Site Location: Sturt Point, Nunavut Pro

Project No. 60156118

Photo No. G-52 **Date:** 7-Aug-10

Direction Photo Taken:

Description: Landfill 3 (LF-3)

Photo No. G-53 Date: 7-Aug-10

Direction Photo

Taken:

Description: Landfill 3 (LF-3)

Project No. 60156118 Site Name: CAM-A Site Location: Sturt Point, Nunavut

Photo No. G-54

Date: 7-Aug-10

Direction Photo Taken:

Description: Landfill 3 (LF-3) TP10-47

Photo No. Date: G-55 7-Aug-10

Direction Photo Taken:

Description: Landfill 3 (LF-3) TP10-48

Project No. 60156118 Site Name: CAM-A Site Location: Sturt Point, Nunavut

Photo No. G-56

Date: 7-Aug-10

Direction Photo

Taken:

Description: Landfill 4 (LF-4, BA-15)

Photo No. G-57

Date: 7-Aug-10

Direction Photo Taken:

Description:

Landfill 4 (LF-4, BA-15) TP10- 49

Site Name: CAM-A **Site Location: Sturt Point, Nunavut** **Project No.** 60156118

Photo No. G-58

Date: 7-Aug-10

Direction Photo Taken:

Description: Landfill 4 (LF-4, BA-15) TP10-50

Photo No. G-59

Date: 8-Aug-10

Direction Photo Taken:

Description: Landfill 4 (LF-4, BA-15) TP10-51

Site Name: CAM-A Site Location: Sturt Point, Nunavut Project No. 60156118

Photo No. G-60 **Date:** 4-Aug-10

Direction Photo

Taken:

Description: Landfill 5 (LF-5)

Photo No. G-60 Date: 4-Aug-10

Direction Photo

Taken:

Description: Landfill 5 (LF-5)

Project No. 60156118 Site Name: CAM-A **Site Location: Sturt Point, Nunavut**

Photo No. G-61

Date: 4-Aug-10

Direction Photo

Taken:

Description: Landfill 5 (LF-5)

Photo No. G-62

Date: 4-Aug-10

Direction Photo

Taken:

Description: Landfill 5 (LF-5) TP10-09

Project No. 60156118 Site Name: CAM-A Site Location: Sturt Point, Nunavut

Photo No. G-63

Date: 4-Aug-10

Direction Photo Taken:

Description: Landfill 5 (LF-5) TP10-12

Photo No. G-64

Date: 4-Aug-10

Direction Photo Taken:

Description: Landfill 5 (LF-5) TP10-12

Project No. 60156118 Site Name: CAM-A Site Location: Sturt Point, Nunavut

Photo No. G-65

Date: 4-Aug-10

Direction Photo

Taken:

Description: Landfill 5 (LF-5) TP10-11

Photo No. G-66

Date: 5-Aug-10

Direction Photo

Taken:

Description:

Landfill 5 (LF-5) TP10-22

Site Name: CAM-A Site Location: Sturt Point, Nunavut Project No. 60156118

Photo No. G-67 **Date:** 5-Aug-10

Direction Photo

Taken:

Description: Landfill 6 (LF-6)

Photo No. G-68 **Date:** 5-Aug-10

Direction Photo

Taken:

Description: Landfill 6 (LF-6)

Site Name: CAM-A Site Location: Sturt Point, Nunavut Project No. 60156118

Photo No. G-69

Date: 5-Aug-10

Direction Photo

Taken:

Description: Landfill 6 (LF-6) TP10-19

Photo No. G-70

Date: 4-Aug-10

Direction Photo

Taken:

Description:

Landfill 6 (LF-6) TP10-19

Project No. 60156118 Site Name: CAM-A **Site Location: Sturt Point, Nunavut**

Photo No. G-71

Date: 5-Aug-10

Direction Photo Taken:

Description: Landfill 6 (LF-6) TP10-20

Photo No. G-72

Date: 5-Aug-10

Direction Photo Taken:

Description: Landfill 6 (LF-6) TP10-20

Site Name: CAM-A Site Location: Sturt Point, Nunavut Project No. 60156118

Photo No. G-73 **Date:** 9-Aug-10

Direction Photo

Taken:

Looking E from W end

Description:

Airstrip

Photo No. G-74 Date: 9-Aug-10

Direction Photo

Taken:

Looking W

Description:Airstrip – W End

Site Name: CAM-A Site Location: Sturt Point, Nunavut Project No. 60156118

Photo No.

Date:

G-75 9-Aug-10 Direction Photo

Taken:

Looking E from middle of the airstrip

Description:

Airstrip

Photo No. G-76 Date: 9-Aug-10

Direction Photo

Taken:

Looking W from E end

Description:Airstrip Surface

Site Name: CAM-A Site Location: Sturt Point, Nunavut Project No. 60156118

Photo No. G-77

Date: 8-Aug-10

Direction Photo

Taken:

Description:

Road Section 1 - Starts from Airstrip

Photo No. G-78 Date: 8-Aug-10

Direction Photo Taken:

N side of airstrip

Description:

Road Section 1 - barrel culvert under airstrip at start of Section 1
See Figure 2 for culvert location
Culvert Entrance

AECOM

Project No. 60156118 Site Name: CAM-A Site Location: Sturt Point, Nunavut

Photo No. G-79

Date: 8-Aug-10

Direction Photo Taken:

Description:Road Section 1

settlement

Photo No. G-80

Date: 8-Aug-10

Direction Photo

Taken:

Looking towards airstrip

Description:

Road Section 1 - ends

Project No. 60156118 Site Name: CAM-A Site Location: Sturt Point, Nunavut

Photo No. G-81

Date: 8-Aug-10

Direction Photo Taken:

Looking towards Drinking Water Lake

Description:Road Section 1 - ends

Photo No. G-82

Date: 8-Aug-10

Direction Photo

Taken:

Description:

Road Section 2 – starts from airstrip

Site Name: CAM-A Site Location: Sturt Point, Nunavut Project No. 60156118

Photo No. G-83 **Date:** 8-Aug-10

Direction Photo Taken:

S side of airstrip

Description:

Road Section 3 – culvert under W end of airstrip at start of Road Section 3 See Figure 2 for culvert location Culvert Egress

Photo No. G-84 Date: 8-Aug-10

Direction Photo

Taken:

Looking towards airstrip

Description:

Road Section 2 - starts

Project No. 60156118 Site Name: CAM-A Site Location: Sturt Point, Nunavut

Photo No. G-85

Date: 8-Aug-10

Direction Photo Taken: Looking S

Description:Road Section 2 – barrel culvert under road midway from beginning of See Figure 2 for culvert location

Photo No. G-86

Date: 8-Aug-10

Direction Photo Taken:

Description:

Road Section 2 - culvert entrance See Figure 2 for culvert location

Site Name: CAM-A Site Location: Sturt Point, Nunavut Project No. 60156118

Photo No. G-87 **Date:** 8-Aug-10

Direction Photo Taken:

Description:

Road Section 2 – culvert egress See Figure 2 for culvert location

Photo No. G-88 Date: 8-Aug-10

Direction Photo Taken:

Description:

Road Section 2 – ends at its intersection with Road Section 3

Project No. 60156118 Site Name: CAM-A Site Location: Sturt Point, Nunavut

Photo No. G-89

Date: 8-Aug-10

Direction Photo

Taken: Looking S

Description:Road Section 3 – starts from airstrip

Photo No. G-90

Date: 8-Aug-10

Direction Photo

Taken:

Looking towards airstrip

Description:

Road Section 3 - start

Site Name: CAM-A Site Location: Sturt Point, Nunavut **Project No.** 60156118

Photo No. G-91

Date: 8-Aug-10

Direction Photo Taken:

Looking N towards intersection of S-2 and S-

Description:Road Section 3 – culvert
See Figure 2 for culvert location

Photo No. G-92

Date: 8-Aug-10

Direction Photo

Taken: Looking W

Description:

Road Section 3 – culvert entrance See Figure 2 for culvert location

Site Name: CAM-A Site Location: Sturt Point, Nunavut Project No. 60156118

Photo No. G-93 Date: 8-Aug-10

Direction Photo

Taken: Looking E

Description:

Road Section 3 – culvert egress See Figure 2 for culvert location

Photo No. G-94 Date: 8-Aug-10

Direction Photo

Taken:

Looking N from Station Area

Description:

Road Section 3 – ends

Site Name: CAM-A Site Location: Sturt Point, Nunavut

Site Location: Sturt Point, Nunavut **Project No.** 60156118 Site Name: CAM-A

Photo No. G-95

Date: 8-Aug-10

Direction Photo

Taken:

Looking S towards Station Area

Description:Road Section 3 - ends

Photo No. G-96

Date: 8-Aug-10

Direction Photo Taken:

Looking towards airstrip from culvert

Description:

Road Section 4 See Figure 2 for culvert location

Site Name: CAM-A Site Location: Sturt Point, Nunavut Project No. 60156118

Photo No. G-97 **Date:** 8-Aug-10

Direction Photo Taken:

Looking S from culvert location

Description:

Road Section 4 See Figure 2 for culvert location

Photo No. G-98 Date: 8-Aug-10

Direction Photo Taken:

Road Surface

Description:

Road Section 4
See Figure 2 for culvert location
Culvert damaged in the middle of road, no soil cover

Site Name: CAM-A Site Location: Sturt Point, Nunavut Project No. 60156118

Photo No. G-99 **Date:** 8-Aug-10

Direction Photo Taken:

Looking W from culvert location

Description:

Road Section 4
See Figure 2 for culvert location
Culvert entrance damaged

Photo No. G-100 Date: 8-Aug-10

Direction Photo Taken:

Culvert egress

Description:

Road Section 4
See Figure 2 for culvert location

Site Name: CAM-A **Site Location: Sturt Point, Nunavut** **Project No.** 60156118

Photo No. G-101

Date: 8-Aug-10

Direction Photo Taken:

Looking towards station area

Description:Road Section 4 - ends

Photo No. G-102

Date: 8-Aug-10

Direction Photo Taken:

Looking E from station area

Description:

Road Section 4 - ends

Project No. 60156118 Site Name: CAM-A **Site Location: Sturt Point, Nunavut**

Photo No. G-103

Date: 8-Aug-10

Direction Photo

Taken:

Looking S from station area

Description:Road Section 5 - starts

Photo No. G-104

Date: 8-Aug-10

Direction Photo Taken:

Looking towards station area

Description:Road Section 5 - starts

Site Name: CAM-A Site Location: Sturt Point, Nunavut Project No. 60156118

Photo No. G-105 **Date:** 8-Aug-10

Direction Photo

Taken: Looking S

Description:

Road Section 5 – intersection with Road Section 7

Photo No. G-106 Date: 8-Aug-10

Direction Photo

Taken:

Looking N towards station area

Description:

Road Section 5 – intersection with Road Section 7

Site Name: CAM-A Site Location: Sturt Point, Nunavut Project No. 60156118

Photo No. G-107 **Date:** 8-Aug-10

Direction Photo

Taken:

Looking S from intersection

Description:

Road Section 5 – intersection with Road Section 6

Photo No. G-108 Date: 8-Aug-10

Direction Photo

Taken:

Looking S towards Beach POL

Description:

Road Section 6 – at intersection with Road Section 5

Site Name: CAM-A Site Location: Sturt Point, Nunavut Project No. 60156118

Photo No. G-109 **Date:** 8-Aug-10

Direction Photo Taken:

Looking W from intersection with Road Section 6

Description:

Road Section 5 – intersection with Road Section 6

Photo No. G-110 Date: 8-Aug-10

Direction Photo

Taken: Looking S

Description:Road Section 5 – ends
near Beach POL

Site Name: CAM-A Site Location: Sturt Point, Nunavut Project No. 60156118

Photo No. G-111 **Date:** 8-Aug-10

Direction Photo

Taken: Looking S

Description:

Section 6 - starts

Photo No. G-112 Date: 8-Aug-10

Direction Photo

Taken: Looking S

Description:

Road Section 6 – ends near Barrel Pile B

Project No. 60156118 Site Name: CAM-A Site Location: Sturt Point, Nunavut

Photo No. G-113

Date: 8-Aug-10

Direction Photo Taken:

Looking approximately S

Description: Section 7 - starts

Photo No. G-114

Date: 8-Aug-10

Direction Photo

Taken: Looking S

Description:

Road Section 7 – ends near Landfill A

Site Name: CAM-A **Site Location: Sturt Point, Nunavut** **Project No.** 60156118

Photo No. G-115

Date: 8-Aug-10

Direction Photo

Taken:

Looking approximately N from airstrip

Description: Section 8 - starts

Photo No. G-116

Date: 8-Aug-10

Direction Photo

Taken:

Looking S towards airstrip

Description:Road Section 8 – ends

Appendix D

Laboratory Reports

2910 12TH STREET NE CALGARY, ALBERTA CANADA T2E 7P7 TEL (403)735-2005 FAX (403)735-2771 http://www.agatlabs.com

CLIENT NAME: AECOM CANADA LTD

SUITE 500, 13111 MERIDIAN ST NE

EDMONTON, AB T6S1G9

ATTENTION TO: Dara Schmidt

PROJECT NO: CAM- A

AGAT WORK ORDER: 10E426723

OCCUPATIONAL HYGIENE REVIEWED BY: Elizabeth Polakowska, MSc (Animal Sci), PhD (Agri Sci), Inorganic Lab

Supervisor

SOIL ANALYSIS REVIEWED BY: Loan Nguyen, Analyst

TRACE ORGANICS REVIEWED BY: Ron Brockbank, Trace Organics Supervisor

WATER ANALYSIS REVIEWED BY: Krystyna Krauze, Analyst

DATE REPORTED: Oct 27, 2010

PAGES (INCLUDING COVER): 48

VERSION*: 4

Should you require any information regarding this analysis please contact your client services representative at (403) 735-2005, or at 1-866-764-7554

*NOTES

VERSION 4:Aug 19 - BTEX/F1-F4 added to samples 840 to 853, 985 to 986

- PCB added to samples 984, MAT01 to MAT02, MAT07 to MAT09, MAT11 to MAT26, MAT314, 51 to 452
- Metals added to samples 984, 451 to 452
- Asbestos added to samples MAT03 to MAT07, MAT10, MAT27 to MAT30
- Leachable Lead added to samples MAT08 to MAT09, MAT17 to MAT24, MAT31
- Creosote added to MAT31

Aug 27 - PCB added to samples 1308, 1312, 1313, 1315, 1317, and 1320

- Metals added to samples 1352, 1356, 1358, 1360, and 1362
- Lead added to samples MAT08, MAT09, MAT17, MAT18

Sept 1 – Lead added to samples MAT19, MAT20, MAT24

Sept 16 - PCB added to samples 1309, 1314, 1316, 1318, 1321, and 1322

Sept 17 – PCB added to samples 450, 463, 464 to 466, 912, 913, 918, 919

- Metals added to samples 450, 463, 464 to 466, 912, 913, 918, 919

Oct 12-Metals added to samples 840, 841, 844, 847, 860, 939, 1290, 1291, 1294, 1297, 1300, 1301, 1304, 1308, 1310, 1311, and 1313, 1310, 13111, 13111, 1311, 1311, 13111, 1311, 1311, 1311, 1311, 1311, 1311

All samples will be disposed of within 30 days following analysis. Please contact the lab if you require additional sample storage time.

AGAT Laboratories (V4)

Page 1 of 48

Certificate of Analysis

AGAT WORK ORDER: 10E426723

PROJECT NO: CAM-A

2910 12TH STREET NE CALGARY, ALBERTA CANADA T2E 7P7 TEL (403)735-2005 FAX (403)735-2771 http://www.agatlabs.com

CLIENT NAME: AECOM CANADA LTD ATTENTION TO: Dara Schmidt

	Asbestos (Bulk)											
DATE SAMPLED: Aug 08, 2010			DATE RE	CEIVED: Aug 1	12, 2010	DATE	REPORTED: 0	Oct 27, 2010	SAM	IPLE TYPE: Sol	lid	
				MAT03	MAT04	MAT05	MAT06	MAT07	MAT10	MAT27	MAT29	
Parameter	Unit	G/S	RDL	1925684	1925685	1925686	1925687	1925688	1925691	1925710	1925712	
Asbestos (Bulk)	%		0.5	ND	15-30	ND	>75	30-50	15-30	30-50	15-30	

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard

1925684 Condition of sample was satisfactory at time of arrival in laboratory.

"ND" - Not Detected

1925685 Condition of sample was satisfactory at time of arrival in laboratory.

Asbestos present - Chrysotile 15-30 Amosite 5-15

1925686 Condition of sample was satisfactory at time of arrival in laboratory.

"ND" - Not Detected

1925687-1925712 Condition of sample was satisfactory at time of arrival in laboratory.

Asbestos present - Chrysotile

Certified By:

Elizabeth Rolakowska

Certificate of Analysis

AGAT WORK ORDER: 10E426723

PROJECT NO: CAM- A

CALGARY, ALBERTA CANADA T2E 7P7 TEL (403)735-2005 FAX (403)735-2771 http://www.agatlabs.com

2910 12TH STREET NE

ATTENTION TO: Dara Schmidt

	Asbestos (Bulk)											
DATE SAMPLED: Aug 08, 2010			DATE RE	CEIVED: Aug	12, 2010	DATE REPORTED: Oct 27, 2010	SAMPLE TYPE: Solid					
				MAT28	MAT30							
Parameter	Unit	G/S	RDL	1925711	1925718							
Asbestos (Bulk) Phase 1	%		0.5	ND	50-75							
Asbestos (Bulk) Phase 2	%		0.5	>75	30-50							

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard

1925711 Condition of sample was satisfactory at time of arrival in laboratory.

Asbestos present - Chrysotile

"ND" - Not Detected

CLIENT NAME: AECOM CANADA LTD

Phase 1 - Wrap Phase 2 - Insulation

1925718 Condition of sample was satisfactory at time of arrival in laboratory.

Asbestos present - Chrysotile

Phase 1 - Paper Phase 2 - Insulation

Certified By:

Elizabeth Rolokowska

Certificate of Analysis

AGAT WORK ORDER: 10E426723

PROJECT NO: CAM- A

2910 12TH STREET NE CALGARY, ALBERTA CANADA T2E 7P7 TEL (403)735-2005 FAX (403)735-2771 http://www.agatlabs.com

ATTENTION TO: Dara Schmidt

Lead in Paint										
DATE SAMPLED: Aug 08, 2010			DATE RE	CEIVED: Aug 1	2, 2010	DATE	REPORTED: Oct 27, 2010	SAMPLE TYPE: Solid		
				MAT19		MAT20	MAT24			
Parameter	Unit	G/S	RDL	1925700	RDL	1925701	1925706			
Lead in Paint	mg/kg		1	2540	10	10000	3560			

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard

1925700-1925706 Result is based on the dry weight of the sample.

CLIENT NAME: AECOM CANADA LTD

Certified By:

CLIENT NAME: AECOM CANADA LTD

Certificate of Analysis

AGAT WORK ORDER: 10E426723

PROJECT NO: CAM- A

2910 12TH STREET NE CALGARY, ALBERTA CANADA T2E 7P7 TEL (403)735-2005 FAX (403)735-2771 http://www.agatlabs.com

ATTENTION TO: Dara Schmidt

Particle Size by Sieve										
DATE SAMPLED: Aug 05, 2010			DATE RE	CEIVED: Aug 1	2, 2010	DATE	E REPORTED: Oct 27, 2010	SAMPLE TYPE: Soil		
				859	960	978				
Parameter	Unit	G/S	RDL	1925380	1925505	1925523				
Sieve Analysis - 75 microns (wet)	%		N/A	95.3	98.8	87.5				
Sieve Texture				Coarse	Coarse	Coarse				

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard

1925380-1925523 Value reported is amount of sample retained on sieve after wash with water and represents proportion by weight particles larger than indicated sieve size.

Certified By:

CLIENT NAME: AECOM CANADA LTD

Certificate of Analysis

AGAT WORK ORDER: 10E426723

PROJECT NO: CAM- A

ATTENTION TO: Dara Schmidt

2910 12TH STREET NE CALGARY, ALBERTA CANADA T2E 7P7 TEL (403)735-2005 FAX (403)735-2771 http://www.agatlabs.com

	,						, , , , _ , , , , ,	O			
				S	oil Analysis	s - Metals					
DATE SAMPLED: Aug 04, 20	10		DATE RECEIVED: Aug 12, 2010		DATE REPORTED: Oct 27, 2010			SAMPLE TYPE: Soil			
				426	430	431	435	439	444	448	455
Parameter	Unit	G/S	RDL	1925243	1925257	1925258	1925263	1925268	1925283	1925294	1925299
Arsenic	mg/kg		0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	0.6
Cadmium	mg/kg		0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Chromium	mg/kg		0.5	1.5	1.5	4.5	1.5	1.3	1.7	1.2	4.7
Cobalt	mg/kg		0.5	<0.5	0.5	0.7	<0.5	0.7	<0.5	<0.5	1.4
Copper	mg/kg		0.5	0.9	1.0	0.8	1.3	0.8	0.9	4.5	1.8
Lead	mg/kg		0.5	0.6	0.9	0.9	1.0	1.0	0.6	0.5	1.9
Nickel	mg/kg		0.5	1.0	0.9	1.4	0.9	1.0	1.1	2.3	2.2
Zinc	mg/kg		1	1.4	2.2	2.7	1.6	1.6	2.3	1.9	3.1
				457	470	475	400	407	200	040	005
Parameter	Unit	G/S	RDL	457 1925325	473 1925337	475 1925340	486 1925352	487 1925353	860 1925381	910 1925462	925 1925466
Arsenic		6/3	0.5	<0.5	<0.5	<0.5			0.9		
Cadmium	mg/kg		0.5	<0.5			<0.5	<0.5		<0.5	0.8 <0.5
Chromium	mg/kg		0.5	2.0	<0.5 1.2	<0.5 1.9	0.8 2.5	0.8 3.3	<0.5 2.6	<0.5 1.8	4.2
	mg/kg			0.7	<0.5	0.6	2.5 1.1	0.8	1.2	0.5	1.4
Cobalt	mg/kg		0.5 0.5				2.1		2.1	1.1	
Copper	mg/kg		0.5	1.3 1.0	0.6 0.6	0.6 0.7	2.1 1.4	1.8 1.3	1.4	1.0	2.5 1.8
Lead Nickel	mg/kg		0.5		0.6	0.7	2.6	2.6	2.9	1.1	3.0
	mg/kg		0.5	1.4 2.4	1.7		3.4		2.9		3.8
Zinc	mg/kg		1	2.4	1.7	1.6	3.4	2.7	4	2.0	3.8
				927	929	931	933	935	939	984	987
Parameter	Unit	G/S	RDL	1925468	1925470	1925472	1925487	1925493	1925497	1925529	1925530
Arsenic	mg/kg		0.5	1.1	<0.5	0.6	<0.5	0.7	1.1	0.7	<0.5
Cadmium	mg/kg		0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Chromium	mg/kg		0.5	2.1	1.3	1.6	1.0	4.6	2.8	6.7	1.3
Cobalt	mg/kg		0.5	1.4	<0.5	0.7	<0.5	1.1	1.5	2.1	0.7
Copper	mg/kg		0.5	1.5	0.5	1.2	0.9	1.9	3.1	2.0	3.4
Lead	mg/kg		0.5	1.4	0.6	1.0	<0.5	1.6	2.3	1.8	0.6
Nickel	mg/kg		0.5	2.1	0.6	1.5	0.7	1.9	3.3	4.3	1.4
Zinc	mg/kg		1	4.0	1	1.5	1.2	3.4	4	8	2.6

Certified By:

Certificate of Analysis

AGAT WORK ORDER: 10E426723

PROJECT NO: CAM- A

ATTENTION TO: Dara Schmidt

2910 12TH STREET NE CALGARY, ALBERTA CANADA T2E 7P7 TEL (403)735-2005 FAX (403)735-2771 http://www.agatlabs.com

				S	oil Analysis	s - Metals					
DATE SAMPLED: Aug 04,	2010		DATE RE	CEIVED: Aug 1	12, 2010	DATE	REPORTED: 0	Oct 27, 2010	SAN	IPLE TYPE: Soi	ı
Parameter	Unit	G/S	RDL	1290 1925594	1291 1925595	1294 1925598	1297 1925601	1300 1925604	1301 1925605	1304 1925608	1308 1925611
Arsenic	mg/kg		0.5	0.9	1.0	1.3	0.7	0.9	1.1	0.7	1.0
Cadmium	mg/kg		0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Chromium	mg/kg		0.5	3.9	5.9	4.6	3.3	4.1	4.2	3.5	3.9
Cobalt	mg/kg		0.5	1.5	1.7	1.9	1.4	2.2	2.2	1.3	1.6
Copper	mg/kg		0.5	4.8	4.2	3.6	2.6	4.2	4.0	3.8	3.8
Lead	mg/kg		0.5	3.2	3.7	3.1	1.6	2.9	3.4	2.8	2.9
Nickel	mg/kg		0.5	3.7	4.8	4.6	3.1	4.9	4.8	3.1	3.6
Zinc	mg/kg		1	5	7	6	3	4	7	5	6
Parameter	Unit	G/S	RDL	1310 1925613	1311 1925614	1313 1925617	1330 1925637	1331 1925638	1348 1925655	1349 1925656	1352 1925659
Arsenic	mg/kg		0.5	1.0	1.1	0.6	<0.5	<0.5	1.4	1.5	<0.5
Cadmium	mg/kg		0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Chromium	mg/kg		0.5	7.2	6.1	6.4	1.8	1.9	9.5	8.7	1.4
Cobalt	mg/kg		0.5	1.8	1.6	1.4	<0.5	<0.5	3.0	3.2	<0.5
Copper	mg/kg		0.5	6.0	6.1	28.9	1.1	1.4	6.6	7.2	0.8
Lead	mg/kg		0.5	19.8	11.0	32.7	0.8	0.7	5.0	5.1	0.8
Nickel	mg/kg		0.5	3.6	4.0	3.1	1.4	1.7	7.6	7.5	0.8
Zinc	mg/kg		1	82.4	149	264	4.0	2.2	10.5	10.5	2
Parameter	Unit	G/S	RDL	1354 1925661	1355 1925662	1356 1925663	1358 1925668	1360 1925670	1362 1925672	840 1927467	841 1927495
Arsenic	mg/kg		0.5	1.0	0.6	<0.5	0.5	<0.5	<0.5	1.8	1.4
Cadmium	mg/kg		0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Chromium	mg/kg		0.5	26.4	4.5	1.1	1.2	2.4	1.8	4.3	5.1
Cobalt	mg/kg		0.5	3.4	0.9	<0.5	0.9	0.6	0.5	2.1	2.0
Copper	mg/kg		0.5	33.9	27.9	1.0	1.0	4.2	1.0	3.7	4.2
Lead	mg/kg		0.5	543	94	3.1	0.9	0.8	1.1	3.5	4.2
Nickel	mg/kg		0.5	2.0	2.2	0.9	1.2	2.8	1.0	4.7	5.1
Zinc	mg/kg		1	177	27.8	3	2	3	3	6	6

Certificate of Analysis

AGAT WORK ORDER: 10E426723

PROJECT NO: CAM- A

2910 12TH STREET NE CALGARY, ALBERTA CANADA T2E 7P7 TEL (403)735-2005 FAX (403)735-2771 http://www.agatlabs.com

ATTENTION TO: Dara Schmidt

0.7

0.9

2

				S	oil Analysis	s - Metals					
DATE SAMPLED: Aug 04, 201	10		DATE RE	CEIVED: Aug 1	2, 2010	DATE	REPORTED: 0	Oct 27, 2010	SAN	IPLE TYPE: Soi	ı
Parameter	Unit	G/S	RDL	844 1927499	847 1927503	451 1927513	452 1927514	450 1946794	463 1946799	464 1946800	465 1946801
Arsenic	mg/kg		0.5	1.4	1.4	0.7	1.5	<0.5	<0.5	0.6	0.5
Cadmium	mg/kg		0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Chromium	mg/kg		0.5	4.3	3.9	2.7	37.3	2.1	1.2	2.2	1.2
Cobalt	mg/kg		0.5	2.1	2.2	0.8	8.1	1.0	<0.5	1.1	0.8
Copper	mg/kg		0.5	5.1	6.7	1.9	15.9	2.3	2.0	2.8	1.5
Lead	mg/kg		0.5	3.0	3.3	1.5	7.8	1.8	0.9	1.8	1.1
Nickel	mg/kg		0.5	5.0	4.9	1.8	23.8	1.9	1.3	2.5	1.6
Zinc	mg/kg		1	9	6	3	31	3	2	3	2
				466	912	913	918	919			
Parameter	Unit	G/S	RDL	1946802	1946806	1946809	1946812	1946825			
Arsenic	mg/kg		0.5	1.1	<0.5	<0.5	<0.5	<0.5			
Cadmium	mg/kg		0.5	<0.5	<0.5	<0.5	<0.5	<0.5			
Chromium	mg/kg		0.5	4.2	0.6	<0.5	4.8	1.3			
Cobalt	mg/kg		0.5	2.0	<0.5	<0.5	0.6	<0.5			
Copper	mg/kg		0.5	3.2	0.7	1.0	0.6	0.7			

0.5

0.5

<1

0.5

0.6

2

0.7

1.2

2

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard

mg/kg

mg/kg

mg/kg

0.5

0.5

2.0

4.2

5

1925529 Results are based on the dry weight of the sample.1927513-1946825 Results are based on the dry weight of the sample.

Lead

Zinc

Nickel

AGAT WORK ORDER: 10E426723

PROJECT NO: CAM- A

2910 12TH STREET NE CALGARY, ALBERTA CANADA T2E 7P7 TEL (403)735-2005 FAX (403)735-2771 http://www.agatlabs.com

CLIENT NAME: AECOM CANADA LTD

ATTENTION TO: Dara Schmidt

					Soil Analys	sis - Pb			
DATE SAMPLED: Aug 08, 2010)		DATE RE	CEIVED: Aug 1	12, 2010	DATE	REPORTED: 0	Oct 27, 2010	SAMPLE TYPE: Solid
				MAT08	MAT09	MAT17	MAT18	MAT21	
Parameter	Unit	G/S	RDL	1925689	1925690	1925698	1925699	1925702	
Lead	mg/kg		0.5	410	615	2530	486	2380	

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard

AGAT WORK ORDER: 10E426723

PROJECT NO: CAM- A

2910 12TH STREET NE CALGARY, ALBERTA CANADA T2E 7P7 TEL (403)735-2005 FAX (403)735-2771 http://www.agatlabs.com

CLIENT NAME: AECOM CANADA LTD ATTENTION TO: Dara Schmidt

				Soil A	nalysis- Le	achable Lea	ad				
DATE SAMPLED: Aug 08, 2010			DATE RE	CEIVED: Aug	12, 2010	DATE	REPORTED: 0	Oct 27, 2010	SAM	IPLE TYPE: So	id
Parameter	Unit	G/S	RDL	MAT01 1925682	MAT02 1925683	MAT08 1925689	MAT09 1925690	MAT17 1925698	MAT18 1925699	MAT19 1925700	MAT20 1925701
Lead - Leachate	mg/L		0.5	NSQ	NSQ	<0.5	<0.5	NSQ	<0.5	NSQ	NSQ
Parameter	Unit	G/S	RDL	MAT21 1925702	MAT22 1925704	MAT23 1925705	MAT24 1925706	MAT31 1925722			
Lead - Leachate	mg/L		0.5	<0.5	NSQ	NSQ	NSQ	<0.5			

RDL - Reported Detection Limit; G / S - Guideline / Standard Comments: 1925682

NSQ - Not Sufficient Quantity of sample for analysis.

AGAT WORK ORDER: 10E426723

PROJECT NO: CAM- A

ATTENTION TO: Dara Schmidt

2910 12TH STREET NE CALGARY, ALBERTA CANADA T2E 7P7 TEL (403)735-2005 FAX (403)735-2771 http://www.agatlabs.com

CLIENT NAME: AECOM CAN	IADA LTD						ATTENTI	ON TO: Dara S	Schmidt		
			Petrole	eum Hydro	carbons (B	TEX/F1-F4)	in Soil (CW	S)			
DATE SAMPLED: Aug 05, 2010			DATE RE	CEIVED: Aug 1	12, 2010	DATE	E REPORTED: 0	Oct 27, 2010	SAN	IPLE TYPE: So	il
Parameter	Unit	G/S	RDL	854 1925375	855 1925376	856 1925377	857 1925378	858 1925379	859 1925380	860 1925381	861 1925382
Benzene	mg/kg		0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Toluene	mg/kg		0.05	< 0.05	<0.05	< 0.05	<0.05	< 0.05	< 0.05	<0.05	< 0.05
Ethylbenzene	mg/kg		0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Xylenes	mg/kg		0.05	<0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
C6 - C10 (F1)	mg/kg		10	<10	<10	<10	<10	<10	<10	<10	<10
C6 - C10 (F1 minus BTEX)	mg/kg		10	<10	<10	<10	<10	<10	<10	<10	<10
C10 - C16 (F2)	mg/kg		10	<10	<10	<10	<10	<10	<10	<10	<10
C16 - C34 (F3)	mg/kg		10	<10	<10	11	<10	<10	<10	<10	<10
C34 - C50 (F4)	mg/kg		10	<10	<10	<10	<10	<10	<10	<10	<10
Gravimetric Heavy Hydrocarbons	mg/kg		1000	N/A							
Moisture Content	%		1	6.1	7.7	10	3.5	4.8	6.3	2.8	2.8
Surrogate	Unit	Acceptab	le Limits								
Toluene-d8 (BTEX)	%	50-1	50	99	100	100	99	100	100	101	102
Ethylbenzene-d10 (BTEX)	%	50-1	50	86	82	87	85	90	85	84	84
o-Terphenyl (F2-F4)	%	50-1	50	107	104	108	103	110	106	107	108
				000	202	204	205	200	207	000	200
Parameter	Unit	G/S	RDL	862 1925383	863 1925385	864 1925387	865 1925391	866 1925392	867 1925394	868 1925395	869 1925396
Benzene	mg/kg	G/3	0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Toluene			0.005	<0.005	<0.005	<0.05	<0.05	<0.005	<0.05	<0.005	<0.005
Ethylbenzene	mg/kg mg/kg		0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Xylenes	mg/kg		0.05	<0.01	<0.01	<0.05	<0.05	<0.01	<0.05	<0.01	<0.05
C6 - C10 (F1)	mg/kg		10	<0.05	<10	<10	<10	<10	<10	20	70
C6 - C10 (F1 minus BTEX)	mg/kg		10	<10	<10	<10	<10	<10	<10	20	70
C10 - C16 (F2)	mg/kg		10	<10	<10	<10	<10	<10	2250	1830	2470
C16 - C34 (F3)	mg/kg		10	<10	<10	<10	<10	<10	288	214	474
C34 - C50 (F4)	mg/kg		10	<10	<10	<10	<10	<10	<10	<10	<10
Gravimetric Heavy Hydrocarbons	mg/kg		1000	N/A							
Moisture Content	//////////////////////////////////////		1	3.5	5.2	4.9	8.2	12	4.5	8	12
Surrogate	70 Unit	Acceptab	•	3.5	5.2	4.9	0.2	12	4.5	0	12
Toluene-d8 (BTEX)	%	50-1		101	101	100	99	102	99	102	101
Ethylbenzene-d10 (BTEX)	%	50-1		85	84	83	86	90	85	85	84
o-Terphenyl (F2-F4)	%	50-1		114	111	107	104	102	109	106	108
o-respondings (1 2-1 4)	/0	30-1	00	114	111	107	104	102	103	100	100

Certified By:

AGAT WORK ORDER: 10E426723

PROJECT NO: CAM- A

ATTENTION TO: Dara Schmidt

2910 12TH STREET NE CALGARY, ALBERTA CANADA T2E 7P7 TEL (403)735-2005 FAX (403)735-2771 http://www.agatlabs.com

CLIENT NAME: AECOM CANADA LTD Petroleum Hydrocarbons (BTEX/F1-F4) in Soil (CWS) DATE SAMPLED: Aug 05, 2010 DATE RECEIVED: Aug 12, 2010 DATE REPORTED: Oct 27, 2010 **SAMPLE TYPE: Soil** 870 872 873 874 875 876 877 871 G/S **RDL** 1925397 1925398 1925400 1925401 1925402 1925403 1925404 1925406 Unit Parameter Benzene mg/kg 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 Toluene 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 mg/kg Ethylbenzene 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 mg/kg **Xylenes** mg/kg 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 C6 - C10 (F1) 10 <10 <10 <10 <10 <10 <10 <10 <10 mg/kg C6 - C10 (F1 minus BTEX) mg/kg 10 <10 <10 <10 <10 <10 <10 <10 <10 C10 - C16 (F2) mg/kg 10 <10 <10 <10 1130 61 1270 1360 <10 C16 - C34 (F3) 10 <10 <10 <10 161 82 333 223 35 mg/kg 10 <10 65 40 24 C34 - C50 (F4) mg/kg <10 <10 <10 24 N/A Gravimetric Heavy Hydrocarbons 1000 N/A N/A N/A N/A N/A mg/kg N/A N/A Moisture Content % 2.7 2.8 6.1 6.7 6.7 4.4 11 4.3 **Acceptable Limits** Surrogate Unit Toluene-d8 (BTEX) % 50-150 100 102 103 100 99 99 99 100 Ethylbenzene-d10 (BTEX) % 50-150 82 85 91 83 90 92 95 91 % 50-150 103 107 104 110 o-Terphenyl (F2-F4) 105 112 110 105 878 879 880 881 882 883 885 886 Parameter Unit G/S **RDL** 1925412 1925425 1925426 1925427 1925428 1925429 1925430 1925431 Benzene mg/kg 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 Toluene mg/kg 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 Ethylbenzene mg/kg 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 **Xylenes** 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 mg/kg C6 - C10 (F1) 10 10 <10 <10 <10 mg/kg <10 <10 <10 <10 C6 - C10 (F1 minus BTEX) mg/kg 10 <10 10 <10 <10 <10 <10 <10 <10 C10 - C16 (F2) mg/kg 10 1490 1800 <10 <10 10 19 27 148 C16 - C34 (F3) 10 325 24 67 44 mg/kg 163 31 13 188 C34 - C50 (F4) mg/kg 10 30 13 19 19 33 22 18 32 Gravimetric Heavy Hydrocarbons mg/kg 1000 N/A N/A N/A N/A N/A N/A N/A N/A Moisture Content % 1 8.5 5.9 7.3 5.4 24 16 6 7.9 Unit **Acceptable Limits** Surrogate Toluene-d8 (BTEX) % 50-150 99 101 102 98 100 102 102 99 Ethylbenzene-d10 (BTEX) % 50-150 96 95 100 90 104 103 95 95 % 50-150 107 107 105 o-Terphenyl (F2-F4) 106 105 110 105 109

Certified By:

AGAT WORK ORDER: 10E426723

PROJECT NO: CAM- A

ATTENTION TO: Dara Schmidt

2910 12TH STREET NE CALGARY, ALBERTA CANADA T2E 7P7 TEL (403)735-2005 FAX (403)735-2771 http://www.agatlabs.com

CLIENT NAME: AECOM CANADA LTD Petroleum Hydrocarbons (BTEX/F1-F4) in Soil (CWS) DATE SAMPLED: Aug 05, 2010 DATE RECEIVED: Aug 12, 2010 DATE REPORTED: Oct 27, 2010 **SAMPLE TYPE: Soil** 887 889 892 893 888 890 891 894 G/S **RDL** 1925432 1925433 1925434 1925435 1925436 1925437 1925438 1925440 Unit Parameter Benzene mg/kg 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 Toluene 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 mg/kg Ethylbenzene 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 mg/kg **Xylenes** mg/kg 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 C6 - C10 (F1) 10 <10 <10 <10 <10 <10 <10 <10 <10 mg/kg C6 - C10 (F1 minus BTEX) mg/kg 10 <10 <10 <10 <10 <10 <10 <10 <10 C10 - C16 (F2) mg/kg 10 <10 <10 <10 <10 <10 <10 <10 <10 C16 - C34 (F3) 10 <10 36 71 26 19 mg/kg 21 15 <10 10 24 52 15 19 11 C34 - C50 (F4) mg/kg <10 <10 <10 N/A Gravimetric Heavy Hydrocarbons 1000 N/A N/A N/A N/A N/A N/A mg/kg N/A Moisture Content % 17 5.1 22 11 7.4 2.6 1.1 4.1 **Acceptable Limits** Surrogate Unit Toluene-d8 (BTEX) % 50-150 102 101 100 100 99 97 97 99 Ethylbenzene-d10 (BTEX) % 50-150 104 95 110 94 90 87 91 95 % 50-150 107 109 108 108 109 110 o-Terphenyl (F2-F4) 116 108 895 896 897 898 899 900 901 902 Parameter Unit G/S **RDL** 1925441 1925442 1925443 1925444 1925445 1925446 1925449 1925454 Benzene mg/kg 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 Toluene mg/kg 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 Ethylbenzene mg/kg 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 **Xylenes** 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 mg/kg C6 - C10 (F1) 10 <10 <10 <10 mg/kg <10 <10 <10 <10 <10 C6 - C10 (F1 minus BTEX) mg/kg 10 <10 <10 <10 <10 <10 <10 <10 <10 C10 - C16 (F2) mg/kg 10 <10 <10 261 <10 <10 <10 <10 <10 C16 - C34 (F3) 10 30 43 26 <10 mg/kg <10 <10 15 25 C34 - C50 (F4) mg/kg 10 <10 <10 14 <10 16 <10 <10 15 Gravimetric Heavy Hydrocarbons mg/kg 1000 N/A N/A N/A N/A N/A N/A N/A N/A Moisture Content % 1 6.2 3.8 5.3 2.5 5.4 5 4.7 3.5 Unit **Acceptable Limits** Surrogate Toluene-d8 (BTEX) % 50-150 97 97 95 96 95 95 96 99 Ethylbenzene-d10 (BTEX) % 50-150 77 77 78 81 81 82 80 83 % 50-150 97 100 96 100 99 98 98 o-Terphenyl (F2-F4) 99

Certified By:

for brown

AGAT WORK ORDER: 10E426723

PROJECT NO: CAM- A

2910 12TH STREET NE CALGARY, ALBERTA CANADA T2E 7P7 TEL (403)735-2005 FAX (403)735-2771 http://www.agatlabs.com

CLIENT NAME: AECOM CAN	ADA LTD					ATTENTI	ON TO: Dara	Schmidt	тир.,	/www.agatiabs.co
		Petro	oleum Hydro	carbons (B	TEX/F1-F4)	in Soil (CW	S)			
DATE SAMPLED: Aug 05, 2010		DATE I	RECEIVED: Aug	12, 2010	DATI	E REPORTED: (Oct 27, 2010	SAN	MPLE TYPE: So	il
Parameter	Unit	G/S RDL	903 1925455	904 1925456	905 1925457	906 1925458	907 1925459	908 1925460	909 1925461	936 1925494
Benzene	mg/kg	0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Toluene	mg/kg	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Ethylbenzene	mg/kg	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Xylenes	mg/kg	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
C6 - C10 (F1)	mg/kg	10	<10	<10	<10	<10	<10	<10	<10	<10
C6 - C10 (F1 minus BTEX)	mg/kg	10	<10	<10	<10	<10	<10	<10	<10	<10
C10 - C16 (F2)	mg/kg	10	148	1160	<10	<10	<10	<10	<10	54
C16 - C34 (F3)	mg/kg	10	35	108	<10	10	24	10	11	100
C34 - C50 (F4)	mg/kg	10	<10	<10	<10	<10	<10	<10	<10	<10
Gravimetric Heavy Hydrocarbons	mg/kg	1000	N/A							
Moisture Content	%	1	6.8	16	3	4	16	13	16	4.2
Surrogate	Unit	Acceptable Limits								
Toluene-d8 (BTEX)	%	50-150	95	96	97	96	97	96	96	97
Ethylbenzene-d10 (BTEX)	%	50-150	80	86	80	79	86	81	86	80
o-Terphenyl (F2-F4)	%	50-150	100	99	106	101	99	103	100	97
			937	938	939	940	941	942	943	944
Parameter	Unit	G/S RDL	1925495	1925496	1925497	1925498	1925499	1925501	1925502	1925503
Benzene	mg/kg	0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Toluene	mg/kg	0.05	< 0.05	< 0.05	< 0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Ethylbenzene	mg/kg	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Xylenes	mg/kg	0.05	< 0.05	< 0.05	< 0.05	< 0.05	<0.05	<0.05	<0.05	< 0.05
C6 - C10 (F1)	mg/kg	10	<10	40	<10	<10	<10	<10	<10	<10
C6 - C10 (F1 minus BTEX)	mg/kg	10	<10	40	<10	<10	<10	<10	<10	<10
C10 - C16 (F2)	mg/kg	10	1730	1820	<10	<10	<10	<10	<10	<10
C16 - C34 (F3)	mg/kg	10	505	481	20	<10	14	11	<10	<10
C34 - C50 (F4)	mg/kg	10	13	11	<10	<10	<10	<10	<10	<10
Gravimetric Heavy Hydrocarbons	mg/kg	1000	N/A							
Moisture Content	%	1	8.3	8.4	4.8	2.9	4.7	6.8	3.3	5.6
Surrogate	Unit	Acceptable Limits	i							
Toluene-d8 (BTEX)	%	50-150	96	96	97	96	102	103	101	100
Ethylbenzene-d10 (BTEX)	%	50-150	80	85	80	78	84	82	83	101
o-Terphenyl (F2-F4)	%	50-150	98	99	99	110	101	98	108	108
i										

Certified By:

Certificate of Analysis

AGAT WORK ORDER: 10E426723

PROJECT NO: CAM- A

ATTENTION TO: Dara Schmidt

2910 12TH STREET NE CALGARY, ALBERTA CANADA T2E 7P7 TEL (403)735-2005 FAX (403)735-2771 http://www.agatlabs.com

Petroleum Hydrocarbons (BTEX/F1-F4) in Soil (CWS) DATE SAMPLED: Aug 05, 2010 DATE RECEIVED: Aug 12, 2010 DATE REPORTED: Oct 27, 2010 **SAMPLE TYPE: Soil** 945 963 964 965 960 961 962 966 G/S **RDL** 1925504 1925505 1925506 1925507 1925508 1925509 1925510 1925511 Unit Parameter Benzene mg/kg 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 Toluene 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 mg/kg Ethylbenzene 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 mg/kg **Xylenes** mg/kg 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 C6 - C10 (F1) 10 <10 <10 <10 <10 <10 <10 <10 <10 mg/kg C6 - C10 (F1 minus BTEX) mg/kg 10 <10 <10 <10 <10 <10 <10 <10 <10 C10 - C16 (F2) mg/kg 10 <10 <10 <10 <10 <10 <10 <10 <10 C16 - C34 (F3) 10 24 <10 <10 <10 <10 mg/kg <10 <10 <10 10 36 10 <10 <10 C34 - C50 (F4) mg/kg <10 <10 <10 <10 N/A Gravimetric Heavy Hydrocarbons 1000 N/A N/A N/A N/A N/A mg/kg N/A N/A Moisture Content % 12 5.1 5.7 14 14 6.3 9 12 **Acceptable Limits** Surrogate Unit Toluene-d8 (BTEX) % 50-150 102 101 100 103 100 101 100 102 Ethylbenzene-d10 (BTEX) % 50-150 85 111 89 97 99 95 113 92 % 50-150 105 102 98 100 102 o-Terphenyl (F2-F4) 100 102 114 967 968 969 970 971 972 973 974 Parameter Unit G/S **RDL** 1925512 1925513 1925514 1925515 1925516 1925517 1925518 1925519 Benzene mg/kg 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 Toluene mg/kg 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 Ethylbenzene mg/kg 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 **Xylenes** 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 mg/kg C6 - C10 (F1) 10 <10 <10 mg/kg <10 <10 <10 <10 10 <10 C6 - C10 (F1 minus BTEX) mg/kg 10 <10 <10 <10 <10 <10 <10 10 <10 C10 - C16 (F2) mg/kg 10 <10 <10 <10 <10 <10 383 3180 <10 C16 - C34 (F3) 10 <10 853 mg/kg <10 <10 10 <10 214 35 C34 - C50 (F4) 44 mg/kg 10 <10 <10 <10 <10 <10 <10 <10 Gravimetric Heavy Hydrocarbons mg/kg 1000 N/A N/A N/A N/A N/A N/A N/A N/A Moisture Content % 1 3.8 12 12 8.1 7.4 9.6 19 12 Unit **Acceptable Limits** Surrogate Toluene-d8 (BTEX) % 50-150 101 100 100 101 102 102 100 101 Ethylbenzene-d10 (BTEX) % 50-150 97 93 104 111 90 105 92 91

Certified By:

98

99

107

for broken

100

99

o-Terphenyl (F2-F4)

%

50-150

98

100

98

Certificate of Analysis

AGAT WORK ORDER: 10E426723

PROJECT NO: CAM- A

ATTENTION TO: Dara Schmidt

2910 12TH STREET NE CALGARY, ALBERTA CANADA T2E 7P7 TEL (403)735-2005 FAX (403)735-2771 http://www.agatlabs.com

			Petrole	eum Hydro	carbons (B	ΓEX/F1-F4)	in Soil (CW	S)			
DATE SAMPLED: Aug 05, 2010		ı	DATE RE	CEIVED: Aug 1	2, 2010	DATE	REPORTED: 0	Oct 27, 2010	SAN	IPLE TYPE: So	il
Parameter	Unit	G/S	RDL	975 1925520	976 1925521	977 1925522	978 1925523	979 1925524	980 1925525	981 1925526	982 1925527
Benzene	mg/kg		0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Toluene	mg/kg		0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	< 0.05
Ethylbenzene	mg/kg		0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Xylenes	mg/kg		0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
C6 - C10 (F1)	mg/kg		10	<10	<10	<10	<10	<10	<10	<10	<10
C6 - C10 (F1 minus BTEX)	mg/kg		10	<10	<10	<10	<10	<10	<10	<10	<10
C10 - C16 (F2)	mg/kg		10	521	1900	<10	14	444	<10	<10	<10
C16 - C34 (F3)	mg/kg		10	760	420	14	50	464	33	38	<10
C34 - C50 (F4)	mg/kg		10	<10	<10	<10	<10	<10	16	14	<10
Gravimetric Heavy Hydrocarbons	mg/kg		1000	N/A							
Moisture Content	%		1	16	9.8	6.4	7.7	14	8.5	8.9	17
Surrogate	Unit	Acceptable	Limits								
Toluene-d8 (BTEX)	%	50-15	50	101	100	100	102	100	101	100	101
Ethylbenzene-d10 (BTEX)	%	50-15	50	114	86	116	88	88	87	91	115
o-Terphenyl (F2-F4)	%	50-15	50	98	100	99	96	99	114	115	111
				983	989	990	991	992	993	994	995
Parameter	Unit	G/S	RDL	1925528	1925532	1925533	1925534	1925535	1925536	1925537	1925538
Benzene	mg/kg		0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Toluene	mg/kg		0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Ethylbenzene	mg/kg		0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Xylenes	mg/kg		0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
C6 - C10 (F1)	mg/kg		10	<10	<10	<10	<10	<10	<10	<10	<10
C6 - C10 (F1 minus BTEX)	mg/kg		10	<10	<10	<10	<10	<10	<10	<10	<10
C10 - C16 (F2)	mg/kg		10	<10	<10	219	886	179	244	734	56
C16 - C34 (F3)	mg/kg		10	41	17	260	364	236	326	592	44
C34 - C50 (F4)	mg/kg		10	16	<10	<10	<10	<10	<10	<10	<10
Gravimetric Heavy Hydrocarbons	mg/kg		1000	N/A							
Moisture Content	%		1	11	4.1	7.6	7.6	3.6	9.4	6.4	3.3
Surrogate	Unit	Acceptable									
Toluene-d8 (BTEX)	%	50-15		99	99	101	100	101	101	101	101
Ethylbenzene-d10 (BTEX)	%	50-15		84	85	87	84	85	89	90	82
o-Terphenyl (F2-F4)	%	50-15	60	107	112	119	110	118	114	111	112

Certified By:

Certificate of Analysis

AGAT WORK ORDER: 10E426723

PROJECT NO: CAM- A

ATTENTION TO: Dara Schmidt

2910 12TH STREET NE CALGARY, ALBERTA CANADA T2E 7P7 TEL (403)735-2005 FAX (403)735-2771 http://www.agatlabs.com

			Petrole	eum Hydro	carbons (B	TEX/F1-F4)	in Soil (CW	S)			
DATE SAMPLED: Aug 05, 2010			DATE RE	CEIVED: Aug 1	12, 2010	DATE	E REPORTED: 0	Oct 27, 2010	SAN	IPLE TYPE: Soi	il
Parameter	Unit	G/S	RDL	996 1925539	997 1925540	998 1925541	999 1925542	1252 1925543	1253 1925544	1254 1925545	1255 1925546
Benzene	mg/kg		0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Toluene	mg/kg		0.05	< 0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	< 0.05
Ethylbenzene	mg/kg		0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Xylenes	mg/kg		0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
C6 - C10 (F1)	mg/kg		10	<10	<10	<10	<10	<10	<10	<10	<10
C6 - C10 (F1 minus BTEX)	mg/kg		10	<10	<10	<10	<10	<10	<10	<10	<10
C10 - C16 (F2)	mg/kg		10	422	4090	<10	<10	<10	<10	20	<10
C16 - C34 (F3)	mg/kg		10	139	396	29	<10	<10	29	25	<10
C34 - C50 (F4)	mg/kg		10	<10	<10	<10	<10	<10	<10	<10	<10
Gravimetric Heavy Hydrocarbons	mg/kg		1000	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Moisture Content	%		1	6.5	12	6	3.7	4.1	13	16	8.2
Surrogate	Unit	Acceptabl	e Limits								
Toluene-d8 (BTEX)	%	50-1	50	102	100	101	100	101	101	101	102
Ethylbenzene-d10 (BTEX)	%	50-1	50	88	87	88	81	105	81	80	105
o-Terphenyl (F2-F4)	%	50-1	50	122	116	110	110	108	122	111	116
_				1256	1257	1258	1259	1260	1261	1262	1263
Parameter	Unit	G/S	RDL	1925547	1925548	1925549	1925550	1925551	1925552	1925553	1925554
Benzene 	mg/kg		0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Toluene	mg/kg		0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Ethylbenzene	mg/kg		0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Xylenes	mg/kg		0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
C6 - C10 (F1)	mg/kg		10	<10	<10	<10	<10	<10	<10	<10	<10
C6 - C10 (F1 minus BTEX)	mg/kg		10	<10	<10	<10	<10	<10	<10	<10	<10
C10 - C16 (F2)	mg/kg		10	<10	<10	<10	<10	<10	<10	<10	<10
C16 - C34 (F3)	mg/kg		10	<10	<10	<10	<10	<10	<10	10	<10
C34 - C50 (F4)	mg/kg		10	<10	<10	<10	<10	<10	<10	<10	<10
Gravimetric Heavy Hydrocarbons	mg/kg		1000	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Moisture Content	%		1	3.8	4.3	14.1	2.7	5.1	3.7	15.3	3.2
Surrogate	Unit	Acceptabl									
Toluene-d8 (BTEX)	%	50-1		100	94	96	97	95	96	96	98
Ethylbenzene-d10 (BTEX)	%	50-1		86	82	88	85	86	87	86	94
o-Terphenyl (F2-F4)	%	50-1	50	116	101	101	103	104	104	103	103

Certified By:

Certificate of Analysis

AGAT WORK ORDER: 10E426723

PROJECT NO: CAM- A

ATTENTION TO: Dara Schmidt

2910 12TH STREET NE CALGARY, ALBERTA CANADA T2E 7P7 TEL (403)735-2005 FAX (403)735-2771 http://www.agatlabs.com

							/ / / / / /	Oit 10. Daia t	Jonnac		
			Petrole	eum Hydro	carbons (B	TEX/F1-F4)	in Soil (CW	S)			
DATE SAMPLED: Aug 05, 2010			DATE RE	CEIVED: Aug 1	12, 2010	DATE	REPORTED: 0	Oct 27, 2010	SAN	IPLE TYPE: So	il
Parameter	Unit	G/S	RDL	1264 1925555	1265 1925556	1266 1925557	1267 1925558	1268 1925559	1269 1925560	1270 1925563	1271 1925565
Benzene	mg/kg		0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Toluene	mg/kg		0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	<0.05
Ethylbenzene	mg/kg		0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Xylenes	mg/kg		0.05	< 0.05	< 0.05	<0.05	<0.05	<0.05	<0.05	< 0.05	< 0.05
C6 - C10 (F1)	mg/kg		10	<10	<10	<10	<10	<10	<10	<10	<10
C6 - C10 (F1 minus BTEX)	mg/kg		10	<10	<10	<10	<10	<10	<10	<10	<10
C10 - C16 (F2)	mg/kg		10	<10	<10	<10	<10	<10	<10	<10	<10
C16 - C34 (F3)	mg/kg		10	15	24	63	22	<10	<10	20	22
C34 - C50 (F4)	mg/kg		10	10	17	37	18	<10	<10	15	<10
Gravimetric Heavy Hydrocarbons	mg/kg		1000	N/A							
Moisture Content	%		1	3.6	14.6	16.6	4.8	17.5	5.2	3.3	11
Surrogate	Unit	Acceptabl	e Limits								
Toluene-d8 (BTEX)	%	50-1	50	97	96	97	97	97	97	96	96
Ethylbenzene-d10 (BTEX)	%	50-1	50	81	88	90	84	92	82	82	87
o-Terphenyl (F2-F4)	%	50-1	50	107	105	105	105	104	102	101	104
				1272	1273	1274	1275	1276	1277	1278	1279
Parameter	Unit	G/S	RDL	1925569	1925570	1925572	1925573	1925575	1925576	1925578	1925579
Benzene	mg/kg		0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Toluene	mg/kg		0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Ethylbenzene	mg/kg		0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Xylenes	mg/kg		0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
C6 - C10 (F1)	mg/kg		10	<10	<10	<10	<10	<10	<10	<10	<10
C6 - C10 (F1 minus BTEX)	mg/kg		10	<10	<10	<10	<10	<10	<10	<10	<10
C10 - C16 (F2)	mg/kg		10	23	<10	<10	<10	<10	<10	<10	<10
C16 - C34 (F3)	mg/kg		10	57	<10	<10	108	14	19	16	13
C34 - C50 (F4)	mg/kg		10	24	<10	<10	55	<10	10	<10	<10
Gravimetric Heavy Hydrocarbons	mg/kg		1000	N/A							
Moisture Content	%		1	37.7	16	4.9	32.7	8.2	5.7	10	15
Surrogate	Unit	Acceptabl									
Toluene-d8 (BTEX)	%	50-1		96	96	94	94	98	93	95	94
Ethylbenzene-d10 (BTEX)	%	50-1		97	88	82	98	88	83	80	81
o-Terphenyl (F2-F4)	%	50-1	50	101	105	103	106	104	83.7	79.9	84.1

Certified By:

AGAT WORK ORDER: 10E426723

PROJECT NO: CAM- A

ATTENTION TO: Dara Schmidt

2910 12TH STREET NE CALGARY, ALBERTA CANADA T2E 7P7 TEL (403)735-2005 FAX (403)735-2771 http://www.agatlabs.com

CLIENT NAME: AECOM CANADA LTD Petroleum Hydrocarbons (BTEX/F1-F4) in Soil (CWS) DATE SAMPLED: Aug 05, 2010 DATE RECEIVED: Aug 12, 2010 DATE REPORTED: Oct 27, 2010 **SAMPLE TYPE: Soil** 1280 1282 1283 1285 1286 1281 1284 1287 G/S **RDL** 1925582 1925585 1925586 1925587 1925588 1925589 1925590 1925591 Unit Parameter Benzene mg/kg 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 Toluene 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 mg/kg Ethylbenzene 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 mg/kg < 0.01 **Xylenes** mg/kg 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 C6 - C10 (F1) 10 <10 <10 <10 <10 <10 <10 <10 <10 mg/kg C6 - C10 (F1 minus BTEX) mg/kg 10 <10 <10 <10 <10 <10 <10 <10 <10 C10 - C16 (F2) mg/kg 10 <10 <10 <10 <10 <10 <10 <10 <10 C16 - C34 (F3) 10 139 216 21 24 22 10 34 mg/kg 17 10 65 94 <10 <10 C34 - C50 (F4) mg/kg <10 <10 <10 <10 N/A Gravimetric Heavy Hydrocarbons 1000 N/A N/A N/A N/A N/A N/A mg/kg N/A Moisture Content % 30 32 11 12 8.2 6.6 11 16 **Acceptable Limits** Surrogate Unit Toluene-d8 (BTEX) % 50-150 92 94 93 94 94 94 95 96 Ethylbenzene-d10 (BTEX) % 50-150 87 90 83 82 84 81 79 121 % 50-150 79.2 84.9 81.5 86.0 96.9 94.6 o-Terphenyl (F2-F4) 96.0 93.2 1288 1289 1290 1291 1292 1293 1294 1295 **Parameter** Unit G/S **RDL** 1925592 1925593 1925594 1925595 1925596 1925597 1925598 1925599 Benzene mg/kg 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 Toluene mg/kg 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 Ethylbenzene mg/kg 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 **Xylenes** 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 mg/kg C6 - C10 (F1) 10 <10 <10 <10 mg/kg <10 <10 <10 <10 120 C6 - C10 (F1 minus BTEX) mg/kg 10 <10 <10 <10 <10 <10 <10 <10 120 C10 - C16 (F2) mg/kg 10 <10 84 <10 <10 <10 105 <10 3770 C16 - C34 (F3) 10 12 40 48 35 23 mg/kg 61 135 613 C34 - C50 (F4) mg/kg 10 <10 <10 <10 26 <10 11 <10 <10 Gravimetric Heavy Hydrocarbons mg/kg 1000 N/A N/A N/A N/A N/A N/A N/A N/A Moisture Content % 1 11 5.3 3.8 4 3.3 18 3.1 3.8 Unit **Acceptable Limits** Surrogate Toluene-d8 (BTEX) % 50-150 95 95 96 95 94 95 97 95 Ethylbenzene-d10 (BTEX) % 50-150 126 128 128 81 119 143 149 125

Certified By:

96.9

87.1

95.5

for brown

90.6

88.3

o-Terphenyl (F2-F4)

%

50-150

87.3

92.4

94.3

AGAT WORK ORDER: 10E426723

PROJECT NO: CAM- A

2910 12TH STREET NE CALGARY, ALBERTA CANADA T2E 7P7 TEL (403)735-2005 FAX (403)735-2771 http://www.agatlabs.com

CLIENT NAME: AECOM CAN	ADA LTD						ATTENTI	ON TO: Dara	Schmidt	nup./	/www.agatiabs.co
			Petrole	eum Hydro	carbons (B	TEX/F1-F4)	in Soil (CW	S)			
DATE SAMPLED: Aug 05, 2010			DATE RE	CEIVED: Aug 1	12, 2010	DATE	E REPORTED: (Oct 27, 2010	SAN	IPLE TYPE: So	il
Parameter	Unit	G/S	RDL	1296 1925600	1297 1925601	1298 1925602	1299 1925603	1300 1925604	1301 1925605	1302 1925606	1303 1925607
Benzene	mg/kg		0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Toluene	mg/kg		0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Ethylbenzene	mg/kg		0.01	<0.01	<0.01	0.02	<0.01	<0.01	<0.01	<0.01	<0.01
Xylenes	mg/kg		0.05	< 0.05	< 0.05	0.06	0.18	< 0.05	< 0.05	< 0.05	< 0.05
C6 - C10 (F1)	mg/kg		10	220	160	360	290	<10	<10	10	150
C6 - C10 (F1 minus BTEX)	mg/kg		10	220	160	360	290	<10	<10	10	150
C10 - C16 (F2)	mg/kg		10	1660	4410	5130	3490	118	131	1070	2850
C16 - C34 (F3)	mg/kg		10	356	1100	1140	669	86	82	109	372
C34 - C50 (F4)	mg/kg		10	10	15	<10	<10	<10	<10	<10	<10
Gravimetric Heavy Hydrocarbons	mg/kg		1000	N/A							
Moisture Content	%		1	10	8.3	9.7	14	2.9	3.8	3.3	9.6
Surrogate	Unit	Acceptab	le Limits								
Toluene-d8 (BTEX)	%	50-	150	95	97	99	97	96	95	95	94
Ethylbenzene-d10 (BTEX)	%	50-	150	137	88	102	98	84	82	84	83
o-Terphenyl (F2-F4)	%	50-	150	89.3	116	106	115	99	99	98	105
				1304	1305	1306	1317	1318	1319	1322	1323
Parameter	Unit	G/S	RDL	1925608	1925609	1925610	1925621	1925622	1925623	1925631	1925632
Benzene	mg/kg		0.005	< 0.005	<0.005	<0.005	< 0.005	<0.005	< 0.005	< 0.005	< 0.005
Toluene	mg/kg		0.05	<0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Ethylbenzene	mg/kg		0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Xylenes	mg/kg		0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
C6 - C10 (F1)	mg/kg		10	<10	<10	<10	<10	<10	<10	<10	<10
C6 - C10 (F1 minus BTEX)	mg/kg		10	<10	<10	<10	<10	<10	<10	<10	<10
C10 - C16 (F2)	mg/kg		10	<10	15	<10	<10	<10	<10	<10	<10
C16 - C34 (F3)	mg/kg		10	11	<10	<10	11	<10	<10	20	<10
C34 - C50 (F4)	mg/kg		10	<10	<10	<10	<10	<10	<10	<10	<10
Gravimetric Heavy Hydrocarbons	mg/kg		1000	N/A							
Moisture Content	%		1	3.8	4	14	2.8	9.2	4.7	3.2	5.2
Surrogate	Unit	Acceptab	le Limits								
Toluene-d8 (BTEX)	%	50-	150	104	96	96	95	95	96	95	95
Ethylbenzene-d10 (BTEX)	%	50-		90	85	87	84	96	86	85	86
o-Terphenyl (F2-F4)	%	50-		109	97	108	99	106	113	105	99
. , , ,					-						

Certified By:

Certificate of Analysis

AGAT WORK ORDER: 10E426723

PROJECT NO: CAM- A

ATTENTION TO: Dara Schmidt

2910 12TH STREET NE CALGARY, ALBERTA CANADA T2E 7P7 TEL (403)735-2005 FAX (403)735-2771 http://www.agatlabs.com

Petroleum Hydrocarbons (BTEX/F1-F4) in Soil (CWS) DATE SAMPLED: Aug 05, 2010 DATE RECEIVED: Aug 12, 2010 DATE REPORTED: Oct 27, 2010 **SAMPLE TYPE: Soil** 1324 1325 1326 1327 1331 1332 1330 1333 G/S **RDL** 1925633 1925634 1925635 1925636 1925637 1925638 1925639 1925640 Unit Parameter Benzene mg/kg 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 Toluene 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 mg/kg Ethylbenzene 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 mg/kg **Xylenes** mg/kg 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 C6 - C10 (F1) 10 <10 <10 <10 <10 <10 <10 <10 <10 mg/kg C6 - C10 (F1 minus BTEX) mg/kg 10 <10 <10 <10 <10 <10 <10 <10 <10 C10 - C16 (F2) mg/kg 10 <10 <10 <10 10 <10 <10 <10 <10 C16 - C34 (F3) 10 <10 <10 <10 <10 <10 183 mg/kg 16 36 C34 - C50 (F4) 10 <10 12 126 12 mg/kg <10 <10 <10 11 N/A Gravimetric Heavy Hydrocarbons 1000 N/A N/A N/A N/A N/A N/A N/A mg/kg Moisture Content % 11 2.3 3.3 2.5 15 15 31 16 **Acceptable Limits** Surrogate Unit Toluene-d8 (BTEX) % 50-150 95 96 97 96 94 92 103 94 Ethylbenzene-d10 (BTEX) % 50-150 89 83 88 80 86 80 93 89 % 50-150 104 96 101 101 o-Terphenyl (F2-F4) 105 106 100 106 1334 1335 1336 1337 1338 1339 1340 1341 **Parameter** Unit G/S **RDL** 1925641 1925642 1925643 1925644 1925645 1925646 1925647 1925648 Benzene mg/kg 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 Toluene mg/kg 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 Ethylbenzene mg/kg 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 **Xylenes** 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 mg/kg C6 - C10 (F1) 10 <10 <10 <10 mg/kg <10 <10 <10 <10 <10 C6 - C10 (F1 minus BTEX) mg/kg 10 <10 <10 <10 <10 <10 <10 <10 <10 C10 - C16 (F2) mg/kg 10 <10 <10 <10 <10 <10 <10 1190 1060 C16 - C34 (F3) 10 18 59 18 287 mg/kg 106 11 24 247 C34 - C50 (F4) 10 34 mg/kg <10 64 <10 <10 <10 <10 <10 Gravimetric Heavy Hydrocarbons mg/kg 1000 N/A N/A N/A N/A N/A N/A N/A N/A Moisture Content % 1 12 22 20 35 14 4.6 13 13 Unit **Acceptable Limits** Surrogate Toluene-d8 (BTEX) % 50-150 94 95 92 94 103 101 92 92 Ethylbenzene-d10 (BTEX) % 50-150 86 85 85 96 92 85 79 87 % 50-150 104 106 104 102 109 o-Terphenyl (F2-F4) 109 103 105

Certified By:

AGAT WORK ORDER: 10E426723

PROJECT NO: CAM- A

2910 12TH STREET NE CALGARY, ALBERTA CANADA T2E 7P7 TEL (403)735-2005 FAX (403)735-2771 http://www.agatlabs.com

ATTENTION TO: Dara Schmidt

Petroleum Hydrocarbons (BTEX/F1-F4) in Soil (CWS)

DATE SAMPLED: Aug 05, 2010 DATE RECEIVED: Aug 12, 2010 DATE REPORTED: Oct 27, 2010 SAMPLE TYPE: Soil

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to ABTier1 (Ag,F)

1925375-1925648 Results are based on the dry weight of the sample.

CLIENT NAME: AECOM CANADA LTD

The C6-C10 (F1) fraction is calculated using toluene response factor.

The C10 - C16 (F2), C16 - C34 (F3), and C34 - C50 (F4) fractions are calculated using the average response factor for n-C10, n-C16, and n-C34.

Gravimetric Heavy Hydrocarbons (F4g) are not included in and cannot be added to the Total C6-C50 and are only determined if the chromatogram of the C34 - C50 hydrocarbons indicates that hydrocarbons > C50 are present.

Total C6 - C50 results are corrected for BTEX and PAH contributions (if requested).

Quality control data is available upon request.

Assistance in the interpretation of data is available upon request.

This method complies with the Reference Method for the CWS PHC and is validated for use in the laboratory.

nC6 and nC10 response factors are within 30% of Toluene response factor.

nC10, nC16 and nC34 response factors are within 10% of their average.

C50 response factor is within 70% of nC10 + nC16 + nC34 average.

Linearity is within 15%.

The chromatogram returned to baseline by the retention time of nC50.

Extraction and holding times were met for this sample.

Certified By:

for booking

Certificate of Analysis

AGAT WORK ORDER: 10E426723

PROJECT NO: CAM- A

ATTENTION TO: Dara Schmidt

2910 12TH STREET NE CALGARY, ALBERTA CANADA T2E 7P7 TEL (403)735-2005 FAX (403)735-2771 http://www.agatlabs.com

Petroleum Hydrocarbons (BTEX/F1-F4) in Soil (CWS). DATE SAMPLED: Aug 04, 2010 DATE RECEIVED: Aug 12, 2010 DATE REPORTED: Oct 27, 2010 **SAMPLE TYPE: Soil** 840 842 843 845 846 841 844 847 G/S **RDL** 1927467 1927495 1927497 1927498 1927499 1927500 1927502 1927503 Unit Parameter Benzene mg/kg 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 Toluene 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 mg/kg Ethylbenzene 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 mg/kg **Xylenes** mg/kg 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 C6 - C10 (F1) 10 <10 <10 <10 <10 <10 <10 <10 <10 mg/kg C6 - C10 (F1 minus BTEX) mg/kg 10 <10 <10 <10 <10 <10 <10 <10 <10 C10 - C16 (F2) mg/kg 10 <10 <10 <10 10 <10 <10 <10 11 C16 - C34 (F3) 10 <10 13 11 23 17 12 17 mg/kg 12 10 <10 21 <10 C34 - C50 (F4) mg/kg <10 <10 <10 <10 <10 N/A Gravimetric Heavy Hydrocarbons 1000 N/A N/A N/A N/A N/A N/A mg/kg N/A Moisture Content % 4.5 4.1 5.2 10 5.2 7.8 9.7 5.2 **Acceptable Limits** Surrogate Unit Toluene-d8 (BTEX) % 50-150 101 100 102 101 99 98 102 102 Ethylbenzene-d10 (BTEX) % 50-150 103 109 107 124 87 97 103 104 % 50-150 99 92 97 97 96 o-Terphenyl (F2-F4) 94 98 95 848 849 850 851 852 853 985 986 Parameter Unit G/S **RDL** 1927504 1927505 1927506 1927508 1927510 1927511 1927522 1927525 Benzene mg/kg 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 Toluene mg/kg 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 Ethylbenzene mg/kg 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 **Xylenes** 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 mg/kg C6 - C10 (F1) 10 <10 <10 <10 mg/kg <10 <10 <10 <10 <10 C6 - C10 (F1 minus BTEX) mg/kg 10 <10 <10 <10 <10 <10 <10 <10 <10 C10 - C16 (F2) mg/kg 10 14 14 14 16 14 15 14 15 C16 - C34 (F3) 10 15 24 26 18 36 23 20 mg/kg <10 C34 - C50 (F4) mg/kg 10 <10 <10 <10 <10 <10 <10 <10 <10 Gravimetric Heavy Hydrocarbons mg/kg 1000 N/A N/A N/A N/A N/A N/A N/A N/A Moisture Content % 1 5.1 17 6.4 5.4 7.6 5.8 21 14 Unit **Acceptable Limits** Surrogate Toluene-d8 (BTEX) % 50-150 101 101 100 100 100 102 100 99 Ethylbenzene-d10 (BTEX) % 50-150 102 111 89 99 113 91 116 92 % 50-150 92 92 94 93 95 94 96 o-Terphenyl (F2-F4) 94

Certified By:

AGAT WORK ORDER: 10E426723

PROJECT NO: CAM-A

2910 12TH STREET NE CALGARY, ALBERTA CANADA T2E 7P7 TEL (403)735-2005 FAX (403)735-2771 http://www.aqatlabs.com

ATTENTION TO: Dara Schmidt

Petroleum Hydrocarbons (BTEX/F1-F4) in Soil (CWS).

DATE SAMPLED: Aug 04, 2010 DATE RECEIVED: Aug 12, 2010 DATE REPORTED: Oct 27, 2010 SAMPLE TYPE: Soil

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to ABTier1 (Ag,F)

1927467-1927525 Results are based on the dry weight of the sample.

CLIENT NAME: AECOM CANADA LTD

The C6-C10 (F1) fraction is calculated using toluene response factor.

The C10 - C16 (F2), C16 - C34 (F3), and C34 - C50 (F4) fractions are calculated using the average response factor for n-C10, n-C16, and n-C34.

Gravimetric Heavy Hydrocarbons (F4g) are not included in and cannot be added to the Total C6-C50 and are only determined if the chromatogram of the C34 - C50 hydrocarbons indicates that hydrocarbons >C50 are present.

Total C6 - C50 results are corrected for BTEX and PAH contributions (if requested).

Quality control data is available upon request.

Assistance in the interpretation of data is available upon request.

This method complies with the Reference Method for the CWS PHC and is validated for use in the laboratory.

nC6 and nC10 response factors are within 30% of Toluene response factor.

nC10, nC16 and nC34 response factors are within 10% of their average.

C50 response factor is within 70% of nC10 + nC16 + nC34 average.

Linearity is within 15%.

The chromatogram returned to baseline by the retention time of nC50.

Extraction and holding times were met for this sample.

Certified By:

Certificate of Analysis

AGAT WORK ORDER: 10E426723

PROJECT NO: CAM- A

CANADA T2E 7P7 TEL (403)735-2005 FAX (403)735-2771 http://www.agatlabs.com

2910 12TH STREET NE

CALGARY, ALBERTA

ATTENTION TO: Dara Schmidt

		Petro	oleum Hyd	rocarbons	(BTEX/F1-F	4) in Water			
DATE SAMPLED: Aug 08, 2010)	DATE REC	CEIVED: Aug 1	12, 2010	DATE	REPORTED: C	oct 27, 2010	SAMF	PLE TYPE: Water
Parameter	Unit	G/S RDL	MW01 1925676	MW02 1925677	W-001 1925678	W-002 1925679	W-003 1925680	JPT123 1925723	
Benzene	mg/L	0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	
Toluene	mg/L	0.0005	< 0.0005	< 0.0005	< 0.0005	<0.0005	0.0018	< 0.0005	
Ethylbenzene	mg/L	0.0005	< 0.0005	<0.0005	< 0.0005	<0.0005	<0.0005	<0.0005	
Xylenes	mg/L	0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	
C6 - C10 (F1)	mg/L	0.1	<0.1	0.1	<0.1	<0.1	<0.1	0.1	
C6 - C10 (F1 minus BTEX)	mg/L	0.1	<0.1	0.1	<0.1	<0.1	<0.1	0.1	
C10 - C16 (F2)	mg/L	0.1	<0.1	8.9	<0.1	<0.1	<0.1	19.6	
C16 - C34 (F3)	mg/L	0.1	<0.1	1.0	<0.1	<0.1	<0.1	6.0	
C34 - C50 (F4)	mg/L	0.1	<0.1	0.1	<0.1	<0.1	<0.1	0.7	
Surrogate	Unit	Acceptable Limits							
Toluene-d8 (BTEX)	%	50-150	100	102	101	99	97	93	
o-Terphenyl (F2-F4)	%	50-150	103	105	100	100	102	103	

Comments:

RDL - Reported Detection Limit; G / S - Guideline / Standard

1925676-1925723 The C>6 - C10 fraction is calculated using the toluene response factor.

The C10 - C16 fraction is calculated using the average response factor for nC10, nC16 and nC34.

BTEX has NOT been subtracted from Fraction 1.

Sample is blank corrected.

Certified By:

AGAT WORK ORDER: 10E426723

PROJECT NO: CAM-A

2910 12TH STREET NE CALGARY, ALBERTA CANADA T2E 7P7 TEL (403)735-2005 FAX (403)735-2771 http://www.agatlabs.com

CLIENT NAME: AECOM CANADA LTD ATTENTION TO: Dara Schmidt

DATE CAMPLED. A 00 0	040	DATE	ECEIVED: A.v. 42, 2040	DATE DEDODTED, Oct 07, 0040	CAMPLE TYPE: 0-11-1
DATE SAMPLED: Aug 08, 2	U1U	DATER	ECEIVED: Aug 12, 2010	DATE REPORTED: Oct 27, 2010	SAMPLE TYPE: Solid
Parameter	Unit	G/S RDL	MAT31 1925722		
Naphthalene	mg/kg	0.01	0.020		
Methyl Naphthalenes	mg/kg	0.01	0.089		
Dimethyl Naphthalenes	mg/kg	0.01	0.065		
Acenaphthylene	mg/kg	0.01	<0.01		
Acenaphthene	mg/kg	0.01	<0.01		
Fluorene	mg/kg	0.01	<0.01		
Phenanthrene	mg/kg	0.01	<0.01		
Anthracene	mg/kg	0.01	<0.01		
Fluoranthene	mg/kg	0.01	<0.01		
Pyrene	mg/kg	0.01	<0.01		
Benzo[a]anthracene	mg/kg	0.01	<0.01		
Chrysene	mg/kg	0.01	<0.01		
Benzo(b+j)fluoranthene	mg/kg	0.01	<0.01		
Benzo(k)fluoranthene	mg/kg	0.01	<0.01		
Benzo[a]pyrene	mg/kg	0.01	<0.01		
ndeno[1,2,3-cd]pyrene	mg/kg	0.01	<0.01		
Dibenzofuran	mg/kg	0.01	<0.01		
Dibenz[ah]anthracene	mg/kg	0.01	<0.01		
Benzo[ghi]perylene	mg/kg	0.01	<0.01		
Pentachlorophenol	mg/kg	0.01	<0.01		
Carbazole	mg/kg	0.01	<0.01		
Methyl Anthracenes	mg/kg	0.01	<0.01		
3-Methylcholanthrene	mg/kg	0.01	<0.01		

Comments:

RDL - Reported Detection Limit; G / S - Guideline / Standard

1925722

Analysis was performed by subcontracted laboratory. Nitrobenzene d5 surrogate recovery:%

2-Fluorobiphenyl surrogate recovery:%
2,4,6-Tribromophenol surrogate recovery: %

p-Terphenyl d14 surrogate recovery:%

Results are based on the dry weight of the sample.

Based on GC/MS target ion analysis.

Benzo(b+j)flouranthene are unresolved and reported based on Benzo(b)flouranthene calibration.

Certified By:

Certificate of Analysis

AGAT WORK ORDER: 10E426723

PROJECT NO: CAM- A

ATTENTION TO: Dara Schmidt

2910 12TH STREET NE CALGARY, ALBERTA CANADA T2E 7P7 TEL (403)735-2005 FAX (403)735-2771 http://www.agatlabs.com

			F	Polychlorin	ated Biphe	nyls Analys	sis - Soil				
DATE SAMPLED: Aug 04, 2010			DATE RE	CEIVED: Aug 1	2, 2010	DATE	REPORTED: C	Oct 27, 2010	SAN	IPLE TYPE: So	il
Parameter	Unit	G/S	RDL	426 1925243	430 1925257	431 1925258	435 1925263	439 1925268	444 1925283	448 1925294	455 1925299
Aroclor 1242	mg/kg		0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Aroclor 1254	mg/kg		0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Aroclor 1260	mg/kg		0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Total Polychlorinated Biphenyls	mg/kg		0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	<0.05
Surrogate	Unit	Acceptab									
Decachlorobiphenyl	%	70-1		99	97	97	95	97	99	101	93
Parameter	Unit	G/S	RDL	457 1925325	473 1925337	475 1925340	910 1925462	925 1925466	927 1925468	929 1925470	931 1925472
Aroclor 1242		G/3	0.05	<0.05	< 0.05	<0.05	<0.05	< 0.05	< 0.05	<0.05	<0.05
Aroclor 1254	mg/kg		0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Aroclor 1260	mg/kg		0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Total Polychlorinated Biphenyls	mg/kg		0.05	<0.05		<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Surrogate	mg/kg Unit	Acceptab		<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
	%	70-1		91	98	95	95	96	99	98	97
Decachlorobiphenyl	%	70-1	30	91	98	95	95	90	99	98	97
				933	935	984	987	1308	1309	1310	1311
Parameter	Unit	G/S	RDL	1925487	1925493	1925529	1925530	1925611	1925612	1925613	1925614
Aroclor 1242	mg/kg		0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Aroclor 1254	mg/kg		0.05	< 0.05	< 0.05	< 0.05	< 0.05	0.13	< 0.05	6.88	6.89
Aroclor 1260	mg/kg		0.05	< 0.05	<0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	<0.05
Total Polychlorinated Biphenyls	mg/kg		0.05	< 0.05	< 0.05	< 0.05	< 0.05	0.13	< 0.05	6.88	6.89
Surrogate	Unit	Acceptab	le Limits								
Decachlorobiphenyl	%	70-1	30	101	102	115	98	85	103	94	92
				1312	1313	1314	1315	1316	1317	1318	1320
Parameter	Unit	G/S	RDL	1925615	1925617	1925618	1925619	1925620	1925621	1925622	1925624
Aroclor 1242	mg/kg		0.05	<0.05	<0.05	< 0.05	< 0.05	<0.05	<0.05	<0.05	<0.05
Aroclor 1254	mg/kg		0.05	2.26	8.21	0.96	< 0.05	<0.05	<0.05	<0.05	< 0.05
Aroclor 1260	mg/kg		0.05	< 0.05	<0.05	< 0.05	< 0.05	< 0.05	< 0.05	<0.05	<0.05
Total Polychlorinated Biphenyls	mg/kg		0.05	2.26	8.21	0.96	< 0.05	< 0.05	< 0.05	< 0.05	<0.05
Surrogate	Unit	Acceptab	le Limits								
Decachlorobiphenyl	%	70-1	30	86	78	100	84	102	70	99	110

Certified By:

Certificate of Analysis

AGAT WORK ORDER: 10E426723

PROJECT NO: CAM- A

ATTENTION TO: Dara Schmidt

2910 12TH STREET NE CALGARY, ALBERTA CANADA T2E 7P7 TEL (403)735-2005 FAX (403)735-2771 http://www.agatlabs.com

			F	Polychlorin	ated Biphe	nyls Analys	sis - Soil				
DATE SAMPLED: Aug 04, 2010			DATE RE	CEIVED: Aug 1	12, 2010	DATE	REPORTED: C	Oct 27, 2010	SAN	IPLE TYPE: So	ı
Parameter	Unit	G/S	RDL	1321 1925630	1322 1925631	1330 1925637	1331 1925638	1348 1925655	1349 1925656	1354 1925661	1355 1925662
Aroclor 1242	mg/kg		0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Aroclor 1254	mg/kg		0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	<0.05	0.54	0.07
Aroclor 1260	mg/kg		0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	<0.05	<0.05	< 0.05
Total Polychlorinated Biphenyls	mg/kg		0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	0.54	0.07
Surrogate	Unit	Acceptab	le Limits								
Decachlorobiphenyl	%	70-1	30	105	103	101	109	103	97	94	95
				MAT01	MAT02	MAT07	MAT08	MAT09	MAT11	MAT12	MAT13
Parameter	Unit	G/S	RDL	1925682	1925683	1925688	1925689	1925690	1925692	1925693	1925694
Aroclor 1242	mg/kg		0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Aroclor 1254	mg/kg		0.05	<0.05	<0.05	0.28	<0.05	0.58	0.49	<0.05	0.79
Aroclor 1260	mg/kg		0.05	<0.05	<0.05	<0.05	1.85	<0.05	<0.05	<0.05	<0.05
Total Polychlorinated Biphenyls	mg/kg		0.05	<0.05	<0.05	0.28	1.89	0.58	0.49	<0.05	0.79
Surrogate	Unit	Acceptab									
Decachlorobiphenyl	%	70-1	30	101	94	101	105	100	89	93	84
				MAT14	MAT15	MAT16	MAT17	MAT18	MAT19	MAT20	MAT21
Parameter	Unit	G/S	RDL	1925695	1925696	1925697	1925698	1925699	1925700	1925701	1925702
Aroclor 1242	mg/kg		0.05	<0.05	<0.05	<0.05	<0.05	<0.05	< 0.05	< 0.05	< 0.05
Aroclor 1254	mg/kg		0.05	1.02	116	123	261000	1310	8750	162	1280
Aroclor 1260	mg/kg		0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	2400	< 0.05	< 0.05
Total Polychlorinated Biphenyls	mg/kg		0.05	1.02	116	123	261000	1310	11100	162	1280
Surrogate	Unit	Acceptab	le Limits								
Decachlorobiphenyl	%	70-1	30	81	70	118	100	92	96	122	100
				MAT22	MAT23	MAT24	MAT25	MAT26	MAT31	451	452
Parameter	Unit	G/S	RDL	1925704	1925705	1925706	1925707	1925709	1925722	1927513	1927514
Aroclor 1242	mg/kg		0.05	<0.05	<0.05	<0.05	<0.05	<0.05	< 0.05	< 0.05	< 0.05
Aroclor 1254	mg/kg		0.05	11100	<0.05	190	250	473	0.17	0.2	< 0.05
Aroclor 1260	mg/kg		0.05	<0.05	763	<0.05	<0.05	<0.05	< 0.05	< 0.05	< 0.05
Total Polychlorinated Biphenyls	mg/kg		0.05	11100	763	190	250	473	0.17	0.2	< 0.05
Surrogate	Unit	Acceptab	le Limits								
Decachlorobiphenyl	%	70-1	30	104	106	91	103	123	130	100	87

Certified By:

AGAT WORK ORDER: 10E426723

PROJECT NO: CAM- A

2910 12TH STREET NE CALGARY, ALBERTA CANADA T2E 7P7 TEL (403)735-2005 FAX (403)735-2771 http://www.agatlabs.com

CLIENT NAME: AECOM CANADA LTD ATTENTION TO: Dara Schmidt

			F	Polychlorin	ated Biphe	nyls Analys	is - Soil				
DATE SAMPLED: Aug 04, 2010			DATE REC	CEIVED: Aug 1	2, 2010	DATE	REPORTED: C	Oct 27, 2010	SAN	IPLE TYPE: So	ı
Parameter	Unit	G/S	RDL	450 1946794	463 1946799	464 1946800	465 1946801	466 1946802	912 1946806	913 1946809	918 1946812
Aroclor 1242	mg/kg		0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Aroclor 1254	mg/kg		0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aroclor 1260	mg/kg		0.05	<0.05	< 0.05	< 0.05	< 0.05	<0.05	<0.05	< 0.05	< 0.05
Total Polychlorinated Biphenyls	mg/kg		0.05	< 0.05	< 0.05	< 0.05	< 0.05	<0.05	< 0.05	< 0.05	< 0.05
Surrogate	Unit	Acceptabl	e Limits								
Decachlorobiphenyl	%	70-1	30	101	103	97	99	104	100	103	99
				919							
Parameter	Unit	G/S	RDL	1946825							
Aroclor 1242	mg/kg		0.05	<0.05							
Aroclor 1254	mg/kg		0.05	< 0.05							
Aroclor 1260	mg/kg		0.05	< 0.05							
Total Polychlorinated Biphenyls	mg/kg		0.05	< 0.05							
Surrogate	Unit	Acceptabl	e Limits								
Decachlorobiphenyl	%	70-1	30	100							

Certified By:

AGAT WORK ORDER: 10E426723

PROJECT NO: CAM-A

ATTENTION TO: Dara Schmidt

2910 12TH STREET NE CALGARY, ALBERTA CANADA T2E 7P7 TEL (403)735-2005 FAX (403)735-2771 http://www.agatlabs.com

Polychlorinated Biphenyls Analysis - Soil

DATE SAMPLED: Aug 04, 2010 DATE RECEIVED: Aug 12, 2010 DATE REPORTED: Oct 27, 2010 SAMPLE TYPE: Soil

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard

1925243-1925493 Results are based on the dry weight of the sample.

Recovery of decachlorobiphenyl surrogate added to sample prior to analysis.

1925529 Results are based on the dry weight of the sample.

Recovery of decachlorobiphenyl surrogate added to sample prior to analysis: %

Arochlor Type:

CLIENT NAME: AECOM CANADA LTD

1925530 Results are based on the dry weight of the sample.

Recovery of decachlorobiphenyl surrogate added to sample prior to analysis.

1925611 Results are based on the dry weight of the sample.

Recovery of decachlorobiphenyl surrogate added to sample prior to analysis: %

Arochlor Type:

1925612 Results are based on the dry weight of the sample.

Recovery of decachlorobiphenyl surrogate added to sample prior to analysis.

1925613-1925614 Results are based on the dry weight of the sample.

Recovery of decachlorobiphenyl surrogate added to sample prior to analysis.

Arochlor Type:1254

1925615-1925617 Results are based on the dry weight of the sample.

Recovery of decachlorobiphenyl surrogate added to sample prior to analysis: %

Arochlor Type:

1925618 Results are based on the dry weight of the sample.

Recovery of decachlorobiphenyl surrogate added to sample prior to analysis.

1925619 Results are based on the dry weight of the sample.

Recovery of decachlorobiphenyl surrogate added to sample prior to analysis: %

Arochlor Type:

1925620 Results are based on the dry weight of the sample.

Recovery of decachlorobiphenyl surrogate added to sample prior to analysis.

1925621 Results are based on the dry weight of the sample.

Recovery of decachlorobiphenyl surrogate added to sample prior to analysis: %

Arochlor Type:

1925622 Results are based on the dry weight of the sample.

Recovery of decachlorobiphenyl surrogate added to sample prior to analysis.

1925624 Results are based on the dry weight of the sample.

Recovery of decachlorobiphenyl surrogate added to sample prior to analysis: %

Arochlor Type:

1925630-1925656 Results are based on the dry weight of the sample.

Recovery of decachlorobiphenyl surrogate added to sample prior to analysis.

1925661-1925662 Results are based on the dry weight of the sample.

Recovery of decachlorobiphenyl surrogate added to sample prior to analysis.

Arochlor Type:1254

1925682-1946825 Results are based on the dry weight of the sample.

Certified By:

for booking

Certificate of Analysis

AGAT WORK ORDER: 10E426723

PROJECT NO: CAM- A

2910 12TH STREET NE CALGARY, ALBERTA CANADA T2E 7P7 TEL (403)735-2005 FAX (403)735-2771 http://www.agatlabs.com

ATTENTION TO: Dara Schmidt

Polychlorinated Biphenyls Analysis - Soil

DATE SAMPLED: Aug 04, 2010 DATE RECEIVED: Aug 12, 2010 DATE REPORTED: Oct 27, 2010 SAMPLE TYPE: Soil

Recovery of decachlorobiphenyl surrogate added to sample prior to analysis: % Arochlor Type:

Certified By:

for brown

AGAT WORK ORDER: 10E426723

PROJECT NO: CAM- A

2910 12TH STREET NE CALGARY, ALBERTA CANADA T2E 7P7 TEL (403)735-2005 FAX (403)735-2771 http://www.agatlabs.com

CLIENT NAME: AECOM CANADA LTD ATTENTION TO: Dara Schmidt

		Po	olychlorina	ted Biphen	yls Analysi	s - Water			
DATE SAMPLED: Aug 08, 2010)	DATE REC	CEIVED: Aug	12, 2010	DATE	REPORTED: 0	Oct 27, 2010	SAN	IPLE TYPE: Water
Parameter	Unit	G/S RDL	MW01 1925676	MW02 1925677	W-001 1925678	W-002 1925679	W-003 1925680	W-004 1925681	JPT123 1925723
Aroclor 1242	μg/L	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Aroclor 1254	μg/L	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Aroclor 1260	μg/L	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Polychlorinated Biphenyls	μg/L	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Surrogate	Unit	Acceptable Limits							
Decachlorobiphenyl	%	70-130	115	112	102	105	107	105	109

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard 1925676 Recovery of decachlorobiphenyl surrogate added to sample prior to analysis: 115% 1925677 Recovery of decachlorobiphenyl surrogate added to sample prior to analysis: 112% 1925678 Recovery of decachlorobiphenyl surrogate added to sample prior to analysis: 102% 1925679 Recovery of decachlorobiphenyl surrogate added to sample prior to analysis: 105% 1925680 Recovery of decachlorobiphenyl surrogate added to sample prior to analysis: 107% 1925681 Recovery of decachlorobiphenyl surrogate added to sample prior to analysis: 105% 1925723 Recovery of decachlorobiphenyl surrogate added to sample prior to analysis: 109%

Certified By:

for booking

Certificate of Analysis

AGAT WORK ORDER: 10E426723

PROJECT NO: CAM- A

ATTENTION TO: Dara Schmidt

2910 12TH STREET NE CALGARY, ALBERTA CANADA T2E 7P7 TEL (403)735-2005 FAX (403)735-2771 http://www.agatlabs.com

CCME / Alberta Tier 1 Metals (Total)

DATE SAMPLED: Aug 08, 2010)	DATE REC	EIVED: Aug 1	12, 2010	DATE	REPORTED: 0	Oct 27, 2010	SAN	IPLE TYPE: Wa	ter
			MW01		MW02		W-001	W-002	W-003	W-004
Parameter	Unit	G/S RDL	1925676	RDL	1925677	RDL	1925678	1925679	1925680	1925681
Total Aluminum	mg/L	0.020	64.4	0.020	30.2	0.002	0.038	0.065	0.002	0.240
Total Antimony	mg/L	0.001	0.002	0.001	<0.001	0.001	<0.001	< 0.001	< 0.001	< 0.001
Total Arsenic	mg/L	0.001	0.081	0.001	0.029	0.001	0.002	0.002	< 0.001	0.003
Total Barium	mg/L	0.05	0.38	0.05	0.20	0.05	< 0.05	< 0.05	<0.05	< 0.05
Total Boron	mg/L	0.01	0.14	0.01	0.13	0.01	0.02	0.03	<0.01	0.12
Total Cadmium	mg/L	0.000016	0.00227	0.000016	0.000970	0.000016	<0.000016	<0.00016	<0.000016	0.000053
Total Chromium	mg/L	0.001	0.147	0.001	0.084	0.001	0.002	0.002	< 0.001	0.019
Total Copper	mg/L	0.002	0.180	0.002	0.108	0.002	0.006	0.004	< 0.002	0.005
Total Iron	mg/L	1.0	218	0.1	71.0	0.1	0.1	0.1	<0.1	0.3
Total Lead	mg/L	0.001	0.155	0.001	0.088	0.001	< 0.001	< 0.001	<0.001	< 0.001
Total Manganese	mg/L	0.050	2.55	0.005	1.63	0.005	0.005	0.006	< 0.005	0.028
Total Molybdenum	mg/L	0.003	0.010	0.003	0.003	0.003	< 0.003	< 0.003	< 0.003	< 0.003
Total Nickel	mg/L	0.01	0.14	0.01	0.07	0.01	<0.01	<0.01	<0.01	0.01
Total Selenium	mg/L	0.001	0.002	0.001	<0.001	0.001	<0.001	<0.001	<0.001	<0.001
Total Silver	mg/L	0.00005	0.00122	0.00005	0.00081	0.00005	<0.00005	< 0.00005	< 0.00005	< 0.00005
Total Sodium	mg/L	6.0	25.6	0.6	28.1	0.6	117	117	<0.6	106
Total Thallium	mg/L	0.0005	0.0024	0.0005	0.0015	0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005
Total Uranium	mg/L	0.001	0.010	0.001	0.006	0.001	<0.001	<0.001	<0.001	< 0.001
Total Zinc	mg/L	0.001	0.200	0.001	0.102	0.001	0.004	0.002	< 0.001	0.007

Certificate of Analysis

AGAT WORK ORDER: 10E426723

PROJECT NO: CAM- A

CALGARY, ALBERTA CANADA T2E 7P7 TEL (403)735-2005 FAX (403)735-2771 http://www.agatlabs.com

2910 12TH STREET NE

ATTENTION TO: Dara Schmidt

			CCME / Alberta Tier	1 Metals (Total)	
DATE SAMPLED: Aug 08, 2010		DATE REC	CEIVED: Aug 12, 2010	DATE REPORTED: Oct 27, 2010	SAMPLE TYPE: Water
Parameter	Unit	G/S RDL	JPT123 1925723		
Total Aluminum	mg/L	0.020	8.27		
Total Antimony	mg/L	0.001	0.002		
Total Arsenic	mg/L	0.001	0.006		
Total Barium	mg/L	0.05	0.06		
Total Boron	mg/L	0.01	0.16		
Total Cadmium	mg/L	0.000016	0.000544		
Total Chromium	mg/L	0.001	0.025		
Total Copper	mg/L	0.002	0.041		
Total Iron	mg/L	1.0	13.8		
Total Lead	mg/L	0.001	0.016		
Total Manganese	mg/L	0.050	0.874		
Total Molybdenum	mg/L	0.003	<0.003		
Total Nickel	mg/L	0.01	0.02		
Total Selenium	mg/L	0.001	<0.001		
Total Silver	mg/L	0.00005	0.00023		
Total Sodium	mg/L	6.0	8.7		
Total Thallium	mg/L	0.0005	<0.0005		
Total Uranium	mg/L	0.001	0.003		
Total Zinc	mg/L	0.001	0.037		

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard

1925676-1925723 < - Values refer to Report Detection Limit.

Certificate of Analysis

AGAT WORK ORDER: 10E426723

PROJECT NO: CAM- A

ATTENTION TO: Dara Schmidt

2910 12TH STREET NE CALGARY, ALBERTA CANADA T2E 7P7 TEL (403)735-2005 FAX (403)735-2771 http://www.agatlabs.com

Routine Chemistry Water Analysis

				Moutine	Oncomon y	Traco. / mai	y 0.0	
DATE SAMPLED: Aug 08, 2	010		DATE REC	CEIVED: Aug 1	2, 2010	DATE	REPORTED: Oct 27, 2010	SAMPLE TYPE: Water
Parameter	Unit	G/S	RDL	W-001 1925678	W-002 1925679	W-003 1925680	W-004 1925681	
рН			NA	8.5	8.5	7.1	8.6	
o - Alkalinity (as CaCO3)	mg/L		5	<5	<5	<5	11	
Γ - Alkalinity (as CaCO3)	mg/L		5	106	105	<5	245	
Bicarbonate	mg/L		5	120	121	<5	273	
Carbonate	mg/L		5	<5	<5	<5	13	
Hydroxide	mg/L		5	<5	<5	<5	<5	
Electrical Conductivity	uS/cm		1	1030	1030	<1	1220	
Chloride	mg/L		1	256	260	<1	240	
Fluoride	mg/L		0.05	0.06	0.06	< 0.05	0.12	
Nitrate	mg/L		0.5	0.6	<0.5	<0.5	<0.5	
Sulfate	mg/L		1	14	11	<1	31	
Dissolved Calcium	mg/L		0.3	23.3	22.7	< 0.3	56.2	
Dissolved Magnesium	mg/L		0.2	34.1	33.3	<0.2	53.5	
Dissolved Sodium	mg/L		0.6	116	115	<0.6	104	
Dissolved Potassium	mg/L		0.6	6.2	6.1	<0.6	4.5	
Dissolved Iron	mg/L		0.1	<0.1	<0.1	<0.1	<0.1	
Dissolved Manganese	mg/L		0.005	< 0.005	< 0.005	< 0.005	0.017	
Calculated TDS	mg/L		1	514	511	<1	636	
Hardness	mg CaCO3/L		1	199	194	<1	361	
on Balance	%			96.6	94.6		96.1	
Nitrate + Nitrite-N	mg/L		0.113	0.136	<0.113	<0.113	<0.113	
Nitrate-N	mg/L		0.113	0.136	<0.113	<0.113	<0.113	
Nitrite-N	mg/L		0.015	<0.015	<0.015	<0.015	<0.015	

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard

1925678-1925681 < - Values refer to Report Detection Limits.

CLIENT NAME: AECOM CANADA LTD

AGAT WORK ORDER: 10E426723

PROJECT NO: CAM- A

ATTENTION TO: Dara Schmidt

PROJECT NO. CANIF A								A I I E IV	IION	IO. Dai	a JUII	iiiidt			
				Soi	l Ana	alysis	5								
RPT Date: Oct 27, 2010				DUPLICATI	E		REFERE	NCE MA	TERIAL	METHOD	BLAN	K SPIKE	MAT	RIX SPI	IKE
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured		ptable nits	Recovery	1 1 11	eptable mits	Recovery		eptable mits
		' Id					Value	Lower	Upper	,		Upper	,	Lower	Upper
Soil Analysis - Metals	•	•				•					•				
Arsenic	253	1925493	0.75	0.66	12.8%	< 0.5	99%	90%	110%				102%	75%	125%
Cadmium	253	1925493	< 0.5	< 0.5	0.0%	< 0.5	96%	90%	110%				100%	75%	125%
Chromium	253	1925493	4.5	4.6	2.2%	< 0.5	95%	90%	110%				100%	75%	125%
Cobalt	253	1925493	1.1	1.1	0.0%	< 0.5	95%	90%	110%				101%	75%	125%
Copper	253	1925493	2.0	1.9	5.1%	< 0.5	100%	90%	110%				97%	75%	125%
Lead	253	1925493	83.9	79.3	5.6%	< 0.5	96%	90%	110%				95%	75%	125%
Nickel	253	1925493	2.1	1.9	10.0%	< 0.5	101%		110%				98%	75%	125%
Zinc	253	1925493	3.96	3.40	15.2%	< 0.5	106%		110%				102%	75%	
Soil Analysis - Metals															
Arsenic		1925487	0.258	0.370		< 0.079	101%	90%	110%	97%	90%	110%	93%	75%	125%
Cadmium	1430	1925487	< 0.8	< 0.8	0.0%	< 0.8	103%		110%	103%	90%	110%	103%	75%	125%
Chromium		1925487	0.39	0.66		< 0.05	105%	90%	110%	108%	90%	110%	104%	75%	125%
Cobalt	1430	1925487	0.21	0.29	00.00/	< 0.05	111%	80%	120%	105%	90%	110%	109%	75%	125%
Copper	1430	1925487	0.6	8.0	28.6%	< 0.4	100%	90%	110%	103%	90%	110%	99%	75%	125%
Lead	1430	1925487	< 0.4	0.5		< 0.4	88%	80%	120%	98%	90%	110%	97%	75%	125%
Nickel	1430	1925487	0.4	0.6		< 0.1	113%	80%	120%	103%	90%	110%	114%	75%	125%
Zinc	1430	1925487	< 1	1		< 1	116%	80%	120%	109%	90%	110%	109%	75%	125%
Particle Size by Sieve															
Sieve Analysis - 75 microns (wet)	1189	0222	87.5	86.4	1.3%	N/A	100%	90%	110%						
Soil Analysis - Metals															
Arsenic	256	1940568	8.20	7.94	3.2%	< 0.5	97%	90%	110%				99%	75%	125%
Cadmium	256	1940568	< 0.5	< 0.5	0.0%	< 0.5	95%	90%	110%				93%	75%	125%
Chromium	256	1940568	14.0	13.5	3.6%	< 0.5	95%	90%	110%				107%	75%	125%
Cobalt	256	1940568	8.2	8.2	0.0%	< 0.5	96%	90%	110%				96%	75%	125%
Copper	256	1940568	14.3	14.5	1.4%	< 0.5	97%	90%	110%				97%	75%	125%
Lead	256	1940568	13.4	12.5	6.9%	< 0.5	100%	90%	110%				99%	75%	125%
Nickel	256	1940568	21.5	20.8	3.3%	< 0.5	98%	90%	110%				96%	75%	125%
Zinc	256	1940568	69	70	1.4%	< 1	102%	90%					98%	75%	
Soil Analysis- Leachable Lead															
Lead - Leachate	1265	464	<0.007	<0.007	0.0%	< 0.007	100%	90%	110%		0%	0%	100%	75%	125%
Soil Analysis - Metals															
Arsenic	1391	6849	2.87	2.71	5.7%	< 0.5	84%	80%	120%	90%	90%	110%	87%	75%	125%
Cadmium	1391	6849	< 0.5	< 0.5	0.0%	< 0.5	96%		110%	90%		110%	101%	75%	
Chromium	1391	6849	8.7	7.9	9.6%	< 0.5	105%		110%	94%		110%	118%		125%
Cobalt	1391	6849	3.84	3.54	8.1%	< 0.5	98%		110%	95%		110%	102%	75%	
Copper	1391	6849	6.40	5.81	9.7%	< 0.5	95%		110%	94%	90%	110%	99%	75%	
Lead	1391	6849	4.4	4.4	0.0%	< 0.5	102%	90%	110%	100%	90%	110%	124%	75%	125%
		· -	•												

AGAT QUALITY ASSURANCE REPORT (V4)

Page 36 of 48

2910 12TH STREET NE CALGARY, ALBERTA CANADA T2E 7P7 TEL (403)735-2005 FAX (403)735-2771 http://www.agatlabs.com

Quality Assurance

CLIENT NAME: AECOM CANADA LTD

AGAT WORK ORDER: 10E426723

PROJECT NO: CAM- A

ATTENTION TO: Dara Schmidt

			Soil	Analy	ysis ((Con	tinue	d)							
RPT Date: Oct 27, 2010				UPLICAT	E		REFERE	NCE MA	TERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPI	KE
PARAMETER	Batch	Sample Id	Dup #1	Dup #2	RPD	Method Blank	Measured Value		ptable nits	Recovery		ptable nits	Recovery		eptable nits
		IG					value	Lower	Upper		Lower	Upper		Lower	Upper
Nickel	1391	6849	10.4	9.5	9.0%	< 0.5	102%	90%	110%	91%	90%	110%	108%	75%	125%
Zinc	1391	6849	24	21	13.3%	< 1	95%	90%	110%	98%	90%	110%	102%	75%	125%
Lead in Paint															
Lead in Paint	6658		741	707	4.7%	< 1.0	101%	90%	110%				100%	75%	125%
Soil Analysis - Metals															
Arsenic	277	2000601	3.9	4.2	7.4%	< 0.5	91%	90%	110%	101%	90%	110%	99%	75%	125%
Cadmium	277	2000601	< 0.5	< 0.5	0.0%	< 0.5	104%	90%	110%	102%	90%	110%	100%	75%	125%
Chromium	277	2000601	4.8	4.6	4.3%	< 0.5	103%	90%	110%	99%	90%	110%	98%	75%	125%
Cobalt	277	2000601	3.2	3.1	3.2%	< 0.5	101%	90%	110%	100%	90%	110%	103%	75%	125%
Copper	277	2000601	2.3	2.4	4.3%	< 0.5	96%	90%	110%	102%	90%	110%	104%	75%	125%
Lead	277	2000601	2.8	2.9	3.5%	< 0.5	103%	90%	110%	108%	90%	110%	121%	75%	125%
Nickel	277	2000601	7.8	7.8	0.0%	< 0.5	107%	90%	110%	100%	90%	110%	106%	75%	125%
Zinc	277	2000601	17	17	0.0%	< 1	105%	90%	110%	101%	90%	110%	101%	75%	125%
Soil Analysis - Pb															
Lead	280		13.0	12.1	7.2%	< 0.5	99%	90%	110%				97%	75%	125%
Soil Analysis - Metals															
Arsenic	297	2050964	5.84	5.86	0.3%	< 0.5	93%	90%	110%				96%	75%	125%
Cadmium	297	2050964	< 0.5	< 0.5	0.0%	< 0.5	95%	90%	110%				100%	75%	125%
Chromium	297	2050964	20.7	20.9	1.0%	< 0.5	96%	90%	110%				117%	75%	125%
Cobalt	297	2050964	7.6	7.7	1.3%	< 0.5	94%	90%	110%				106%	75%	125%
Copper	297	2050964	14.6	14.5	0.7%	< 0.5	93%	90%	110%				104%	75%	125%
Lead	297	2050964	8.66	8.52	1.6%	< 0.5	103%	90%	110%				98%	75%	125%
Nickel	297	2050964	22.2	22.0	0.9%	< 0.5	96%	90%	110%				100%	75%	125%
Zinc	297	2050964	53	53	0.0%	< 1	101%	90%	110%				107%	75%	125%
Soil Analysis - Metals															
Arsenic	1430	1925487	< 0.5	< 0.5	0.0%	< 0.5	101%	90%	110%	97%	90%	110%	93%	75%	125%
Cadmium	1430	1925487	< 0.5	< 0.5	0.0%	< 0.5	103%	90%	110%	103%	90%	110%	103%	75%	125%
Chromium	1430	1925487	< 0.5	<0.5	0.0%	< 0.5	105%	90%	110%	108%	90%	110%	104%	75%	125%
Cobalt	1430	1925487	< 0.5	< 0.5	0.0%	< 0.5	111%	80%	120%	105%	90%	110%	109%	75%	125%
Copper		1925487	57.3	57.5	0.3%	< 0.5	100%	90%	110%	103%	90%	110%	99%	75%	125%
Lead	1430	1925487	< 0.5	< 0.5	0.0%	< 0.5	88%	80%	120%	98%	90%	110%	97%	75%	125%
Nickel	1430	1925487	< 0.5	<0.5	0.0%	< 0.5	113%	80%	120%	103%	90%	110%	114%	75%	125%
Zinc	1430	1925487	< 1	<1	0.0%	< 1	116%	80%	120%	109%	90%	110%	109%	75%	125%

Certified By:

AGAT QUALITY ASSURANCE REPORT (V4)

Page 37 of 48

2910 12TH STREET NE CALGARY, ALBERTA CANADA T2E 7P7 TEL (403)735-2005 FAX (403)735-2771 http://www.agatlabs.com

Quality Assurance

CLIENT NAME: AECOM CANADA LTD

AGAT WORK ORDER: 10E426723

PROJECT NO: CAM- A

ATTENTION TO: Dara Schmidt

			Trac	e Org	gani	cs Ar	nalys	is							
RPT Date: Oct 27, 2010				UPLICAT	E		REFERE	NCE MA	ATERIAL	METHOD	BLAN	K SPIKE	МАТ	RIX SP	IKE
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured		eptable mits	Recovery	1 1 11	eptable mits	Recovery	1 1 11	eptable mits
. /		ld					Value	Lower	Upper			Upper		Lower	Uppe
Polychlorinated Biphenyls Analys	sis - Soil														
Aroclor 1242	75	1925257	< 0.05	< 0.05	NA	< 0.05	102%	80%	120%	106%	70%	130%	116%	50%	150%
Aroclor 1254	75	1925257	< 0.05	< 0.05	NA	< 0.05	104%	80%	120%	130%	70%	130%	126%	50%	150%
Aroclor 1260	75	1925257	< 0.05	< 0.05	NA	< 0.05	104%	80%	120%	114%	70%	130%	102%	50%	150%
Total Polychlorinated Biphenyls	75	1925257	< 0.05	< 0.05	NA	< 0.05	103%	80%	120%	117%	70%	130%	115%	50%	150%
Petroleum Hydrocarbons (BTEX/F	F1-F4) in S	Soil (CWS)													
Benzene	450	1925383	< 0.005	< 0.005	NA	< 0.005	101%	80%	120%	93%	80%	120%	102%	60%	140%
Toluene	450	1925383	< 0.05	< 0.05	NA	< 0.05	104%	80%	120%	94%	80%	120%	108%	60%	140%
Ethylbenzene	450	1925383	< 0.01	< 0.01	NA	< 0.01	105%	80%	120%	91%	80%	120%	108%	60%	140%
Xylenes	450	1925383	< 0.05	< 0.05	NA	< 0.05	97%	80%	120%	84%	80%	120%	99%	60%	140%
C6 - C10 (F1)	450	1925383	< 10	< 10	NA	< 10	91%	80%	120%	89%	80%	120%	88%	60%	140%
C6 - C10 (F1 minus BTEX)	450	1925383	< 10	< 10	NA	< 10	91%	80%	120%	89%	80%	120%	88%	60%	140%
C10 - C16 (F2)	501	1925383	<10	<10	NA	< 10	111%	80%	120%	100%	80%	120%	100%	60%	140%
C16 - C34 (F3)	501	1925383	<10	<10	NA	< 10	111%	80%	120%	98%	80%	120%	99%	60%	140%
C34 - C50 (F4)	501	1925383	<10	<10	NA	< 10	111%	80%	120%	96%	80%	120%	99%	60%	140%
Petroleum Hydrocarbons (BTEX/F	F1-F4) in S	Soil (CWS)													
Benzene	449	1925432	< 0.005	< 0.005	NA	< 0.005	101%	80%	120%	101%	80%	120%	115%	60%	140%
Toluene	449	1925432	< 0.05	< 0.05	NA	< 0.05	104%	80%	120%	106%	80%	120%	124%	60%	140%
Ethylbenzene	449	1925432	< 0.01	< 0.01	NA	< 0.01	102%	80%	120%	107%	80%	120%	129%	60%	140%
Xylenes	449	1925432	< 0.05	< 0.05	NA	< 0.05	94%	80%	120%	98%	80%	120%	119%	60%	140%
C6 - C10 (F1)	449	1925432	< 10	< 10	NA	< 10	97%	80%	120%	80%	80%	120%	74%	60%	140%
C6 - C10 (F1 minus BTEX)	449	1925432	< 10	< 10	NA	< 10	97%	80%	120%	80%	80%	120%	74%	60%	140%
C10 - C16 (F2)	501	1925432	<10	<10	NA	< 10	110%	80%	120%	100%	80%	120%	100%	60%	140%
C16 - C34 (F3)	501	1925432	<10	<10	NA	< 10	110%	80%	120%	101%	80%	120%	100%	60%	140%
C34 - C50 (F4)	501	1925432	<10	<10	NA	< 10	110%	80%	120%	96%	80%	120%	98%	60%	140%
Petroleum Hydrocarbons (BTEX/F	F1-F4) in S	Soil (CWS)													
Benzene	2475	1925454	< 0.005	< 0.005	NA	< 0.005	90%	80%	120%	84%	80%	120%	87%	60%	140%
Toluene	2475	1925454	< 0.05	< 0.05	NA	< 0.05	95%	80%	120%	93%	80%	120%	90%	60%	140%
Ethylbenzene	2475	1925454	< 0.01	< 0.01	NA	< 0.01	97%	80%	120%	97%	80%	120%	95%	60%	140%
Xylenes	2475	1925454	< 0.05	< 0.05	NA	< 0.05	100%	80%	120%	100%	80%	120%	97%	60%	140%
C6 - C10 (F1)	2475	1925454	< 10	< 10	NA	< 10	100%	80%	120%	119%	80%	120%	105%	60%	140%
C10 - C16 (F2)	501	1925454	<10	<10	NA	< 10	110%	80%	120%	92%	80%	120%	90%	60%	140%
C16 - C34 (F3)	501	1925454	25	<10	NA	< 10	110%	80%	120%	90%	80%	120%	89%	60%	140%
C34 - C50 (F4)		1925454	15	15	NA	< 10	110%		120%	86%	80%	120%	84%	60%	140%
Petroleum Hydrocarbons (BTEX/F	F1-F4) in S	Soil (CWS)													
C10 - C16 (F2)	•	1925498	<10	<10	NA	< 10	111%	80%	120%	98%	80%	120%	87%	60%	140%
C16 - C34 (F3)		1925498	<10	<10	NA	< 10	111%		120%	91%		120%	82%		140%
C34 - C50 (F4)		1925498	<10	<10	NA	< 10	111%		120%	88%		120%	82%		140%

AGAT QUALITY ASSURANCE REPORT (V4)

Page 38 of 48

CLIENT NAME: AECOM CANADA LTD

AGAT WORK ORDER: 10E426723

PROJECT NO: CAM- A

ATTENTION TO: Dara Schmidt

RPT Date: Oct 27, 2010				UPLICATI	=		REFEREN	NCE MA	TERIAL	METHOD	BLAN	K SPIKE	MAT	RIX SPI	KE
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured		ptable nits	Recovery	Lie	eptable mits	Recovery	Lin	eptable nits
TANAMETER	Batch	ld	Dup#1	Dup #2	III D		Value	Lower	Upper	Recovery		Upper	Recovery	Lower	Uppe
Petroleum Hydrocarbons (BTEX	/F1-F4) in S	Soil (CWS)	'								1				
Benzene	795	1924737	< 0.005	< 0.005	NA	< 0.005	103%	80%	120%	103%	80%	120%	109%	60%	140%
Toluene	795	1924737	< 0.05	< 0.05	NA	< 0.05	103%	80%	120%	104%	80%	120%	111%	60%	140%
Ethylbenzene	795	1924737	< 0.01	< 0.01	NA	< 0.01	101%	80%	120%	103%	80%	120%	111%	60%	140%
Xylenes	795	1924737	< 0.05	< 0.05	NA	< 0.05	102%	80%	120%	106%	80%	120%	115%	60%	140%
C6 - C10 (F1)	795	1924737	<10	<10	NA	< 10	106%	80%	120%	94%	80%	120%	95%	60%	140%
Petroleum Hydrocarbons (BTEX	/F1-F4) in S	Soil (CWS)													
Benzene	•	1925506	< 0.005	<0.005	NA	< 0.005	104%	80%	120%	105%	80%	120%	90%	60%	140%
Toluene	796	1925506	< 0.05	< 0.05	NA	< 0.05	107%	80%	120%	108%	80%	120%	93%	60%	140%
Ethylbenzene	796	1925506	<0.01	< 0.01	NA	< 0.01	104%	80%	120%	108%	80%	120%	94%	60%	140%
Xylenes	796	1925506	< 0.05	< 0.05	NA	< 0.05	106%	80%	120%	113%	80%	120%	98%	60%	140%
C6 - C10 (F1)	796	1925506	<10	<10	NA	< 10	107%	80%	120%	109%	80%	120%	111%	60%	140%
C10 - C16 (F2)	502	1925506	<10	<10	NA	< 10	97%	80%	120%	93%	80%	120%	92%	60%	140%
C16 - C34 (F3)		1925506	<10	<10	NA	< 10	97%	80%	120%	92%	80%	120%	92%	60%	140%
C34 - C50 (F4)		1925506	<10	<10	NA	< 10	97%	80%	120%	91%	80%	120%	94%		140%
Petroleum Hydrocarbons (BTEX	/F1-F4) in S	Soil (CWS)													
Benzene	•	1925545	< 0.005	<0.005	NA	< 0.005	102%	80%	120%	96%	80%	120%	100%	60%	140%
Toluene		1925545	< 0.05	< 0.05	NA	< 0.05	104%	80%	120%	100%	80%	120%	101%	60%	140%
Ethylbenzene		1925545	<0.01	< 0.01	NA	< 0.01	103%	80%	120%	100%	80%	120%	103%	60%	140%
Xylenes	797	1925545	< 0.05	< 0.05	NA	< 0.05	104%	80%	120%	104%	80%	120%	109%	60%	140%
C6 - C10 (F1)	797	1925545	<10	<10	NA	< 10	105%	80%	120%	103%	80%	120%	98%	60%	140%
C10 - C16 (F2)	649	1925545	20	18	11.0%	< 10	104%	80%	120%	101%	80%	120%	114%	60%	140%
C16 - C34 (F3)		1925545	25	27	8.0%	< 10	104%	80%	120%	100%	80%	120%	115%	60%	140%
C34 - C50 (F4)		1925545	<10	<10	NA	< 10	104%	80%	120%	91%	80%	120%	104%		140%
Petroleum Hydrocarbons (BTEX	/F1-F4) in S	Soil (CWS)													
Benzene	•	1925554	< 0.005	< 0.005	NA	< 0.005	94%	80%	120%	96%	80%	120%	96%	60%	140%
Toluene		1925554	< 0.05	< 0.05	NA	< 0.05	98%	80%	120%	101%	80%	120%	105%	60%	140%
Ethylbenzene		1925554	< 0.01	< 0.01	NA	< 0.01	100%	80%	120%	106%	80%	120%	110%	60%	140%
Xylenes		1925554	< 0.05	< 0.05	NA	< 0.05	103%	80%	120%	106%	80%	120%	114%	60%	140%
C6 - C10 (F1)		1925554	< 10	< 10	NA	< 10	103%	80%	120%	93%	80%	120%	114%	60%	140%
C10 - C16 (F2)	502	1925554	<10	<10	NA	< 10	101%	80%	120%	84%	80%	120%	87%	60%	140%
C16 - C34 (F3)		1925554	<10	12	NA	< 10	101%	80%	120%	83%		120%	86%		140%
C34 - C50 (F4)		1925554	<10	<10	NA	< 10	101%		120%	82%		120%	89%		140%
Petroleum Hydrocarbons (BTEX	/F1-F4) in S	Soil (CWS)													
Benzene	•		< 0.005	< 0.005	NA	< 0.005	88%	80%	120%	91%	80%	120%	103%	60%	140%
Toluene		1925595	< 0.05	< 0.05	0.0%	< 0.05	96%	80%	120%	98%		120%	113%		140%
Ethylbenzene		1925595	< 0.01	< 0.01	0.0%	< 0.01	97%			102%		120%	117%		140%
Xylenes		1925595	< 0.05	< 0.05	0.0%	< 0.05	98%	80%	120%	103%		120%	119%		140%
•														•	

AGAT QUALITY ASSURANCE REPORT (V4)

Page 39 of 48

CLIENT NAME: AECOM CANADA LTD

AGAT WORK ORDER: 10E426723

PROJECT NO: CAM- A

ATTENTION TO: Dara Schmidt

		irace	: Orga	anics	Alla	uysis	COL	itin	uea)					
RPT Date: Oct 27, 2010				UPLICATE			REFERE	NCE MA	TERIAL	METHOD	BLAN	(SPIKE	MAT	RIX SPI	KE
PARAMETER	Batch	Sample	Dup #1	Dun #2	RPD	Method Blank	Measured		eptable nits	Recovery		eptable nits	Recovery		eptable nits
PARAMETER	Batch	ld	Dup#1	Dup #2	KFD		Value	Lower	Upper	Recovery	Lower	Upper	Recovery	Lower	Uppe
C10 - C16 (F2)	1093	1925595	<10	10	NA	< 10	84%	80%	120%	82%	80%	120%	82%	60%	140%
C16 - C34 (F3)	1093	1925595	48	58	19.0%	< 10	84%	80%	120%	90%	80%	120%	89%	60%	140%
C34 - C50 (F4)	1093	1925595	26	28	7.0%	< 10	84%	80%	120%	91%	80%	120%	92%	60%	140%
Petroleum Hydrocarbons (BTEX/I	F1-F4) in S	oil (CWS))												
Benzene	2477	1925635	< 0.005	< 0.005	NA	< 0.005	98%	80%	120%	85%	80%	120%	90%	60%	140%
Toluene	2477	1925635	< 0.05	< 0.05	NA	< 0.05	99%	80%	120%	88%	80%	120%	93%	60%	140%
Ethylbenzene	2477	1925635	< 0.01	< 0.01	NA	< 0.01	104%	80%	120%	94%	80%	120%	100%	60%	140%
Xylenes	2477	1925635	< 0.05	< 0.05	NA	< 0.05	106%	80%	120%	95%	80%	120%	102%	60%	140%
C6 - C10 (F1)	2477	1925635	< 10	< 10	NA	< 10	99%	80%	120%	98%	80%	120%	122%	60%	140%
C10 - C16 (F2)	649	1925635	<10	<10	NA	< 10	99%	80%	120%	100%	80%	120%	103%	60%	140%
C16 - C34 (F3)	649	1925635	<10	<10	NA	< 10	99%	80%	120%	102%	80%	120%	103%	60%	140%
C34 - C50 (F4)	649	1925635	<10	<10	NA	< 10	99%	80%	120%	108%	80%	120%	109%	60%	140%
Petroleum Hydrocarbons (BTEX/I	F1-F4) in S	oil (CWS))												
Benzene	2479	1925646	< 0.005	< 0.005	NA	< 0.005	84%	80%	120%	91%	80%	120%	89%	60%	140%
Toluene	2479	1925646	< 0.05	< 0.05	NA	< 0.05	89%	80%	120%	98%	80%	120%	97%	60%	140%
Ethylbenzene	2479	1925646	< 0.01	< 0.01	NA	< 0.01	93%	80%	120%	102%	80%	120%	105%	60%	140%
Xylenes		1925646	< 0.05	< 0.05	NA	< 0.05	90%	80%	120%	103%	80%	120%	105%	60%	140%
C6 - C10 (F1)	2479	1925646	< 10	< 10	NA	< 10	99%	80%	120%	118%	80%	120%	105%	60%	140%
C10 - C16 (F2)	1093	1925646	<10	<10	0.0%	< 10	100%	80%	120%	97%	80%	120%	108%	60%	140%
C16 - C34 (F3)	1093	1925646	24	22	9.0%	< 10	100%	80%	120%	104%	80%	120%	115%	60%	140%
C34 - C50 (F4)	1093	1925646	<10	<10	0.0%	< 10	100%	80%	120%	100%	80%	120%	111%	60%	140%
Polychlorinated Biphenyls Analys	sis - Soil														
Aroclor 1242	75	1925662	< 0.05	< 0.05	NA	< 0.05	108%	80%	120%	112%	70%	130%	105%	50%	150%
Aroclor 1254	75	1925662	0.07	0.06	15.4%	< 0.05	98%	80%	120%	117%	70%	130%	139%	50%	150%
Aroclor 1260	75	1925662	< 0.05	< 0.05	NA	< 0.05	98%	80%	120%	115%	70%	130%	100%	50%	150%
Total Polychlorinated Biphenyls	75	1925662	0.07	0.06	15.4%	< 0.05	101%	80%	120%	115%	70%	130%	115%	50%	150%
Petroleum Hydrocarbons (BTEX/I	F1-F4) in V	Vater													
Benzene	569	1925409	< 0.0005	< 0.0005	NA	< 0.0005	100%	80%	120%	90%	80%	120%	94%	70%	130%
Toluene	569	1925409	< 0.0005	< 0.0005	NA	< 0.0005	109%	80%	120%	93%	80%	120%	100%	70%	130%
Ethylbenzene	569	1925409	< 0.0005	< 0.0005	NA	< 0.0005	111%	80%	120%	93%	80%	120%	98%	70%	130%
Xylenes		1925409		< 0.0005	NA	< 0.0005			120%	97%		120%	102%		130%
C6 - C10 (F1)	569	1925409	< 0.1	< 0.1	NA	< 0.1	102%	80%	120%	90%	80%	120%	102%	70%	130%
C10 - C16 (F2)	139	1925680	<0.1	<0.1	NA	< 0.1	101%	80%	120%	109%	80%	120%	105%	70%	130%
C16 - C34 (F3)	139	1925680	<0.1	<0.1	NA	< 0.1	101%	80%	120%	106%	80%	120%	102%	70%	130%
C34 - C50 (F4)	139	1925680	<0.1	<0.1	NA	< 0.1	101%	80%	120%	106%	80%	120%	102%	70%	130%
Polychlorinated Biphenyls Analys	sis - Wateı														
Aroclor 1242	75	1925677	< 0.01	< 0.01	NA	< 0.01	108%	80%	120%	103%	70%	130%	116%	50%	150%
Aroclor 1254	75	1925677	< 0.01	< 0.01	NA	< 0.01	110%	80%	120%	130%	70%	130%	126%	50%	150%

AGAT QUALITY ASSURANCE REPORT (V4)

Page 40 of 48

CLIENT NAME: AECOM CANADA LTD

AGAT WORK ORDER: 10E426723

PROJECT NO: CAM- A

ATTENTION TO: Dara Schmidt

	•	Trace	Orga	anics	Ana	lysis	(Cor	ntin	ued)						
RPT Date: Oct 27, 2010			DUPLICATE				REFERE	REFERENCE MATERIAL			METHOD BLANK SPIKE			MATRIX SPIKE		
PARAMETER		Sample Id	Dup #1	Dup #2	RPD	Method Blank	Measured	Acceptable Limits			Acceptable Limits			Acceptable Limits		
	Batch						Value	Lower	Upper	Recovery	Lower		Recovery	Lower	Upper	
Aroclor 1260	75	1925677	< 0.01	< 0.01	NA	< 0.01	114%	80%	120%	101%	70%	130%	102%	50%	150%	
Polychlorinated Biphenyls	75	1925677	< 0.01	< 0.01	NA	< 0.01	111%	80%	120%	111%	70%	130%	115%	50%	150%	
Polychlorinated Biphenyls Analys	sis - Soil															
Aroclor 1242	80	1914640	< 0.05	< 0.05	0.0%	< 0.05	106%	80%	120%	109%	70%	130%	128%	50%	150%	
Aroclor 1254	80	1914640	< 0.05	< 0.05	0.0%	< 0.05	120%	80%	120%	88%	70%	130%	119%	50%	150%	
Aroclor 1260	80	1914640	< 0.05	< 0.05	0.0%	< 0.05	118%	80%	120%	77%	70%	130%	99%	50%	150%	
Total Polychlorinated Biphenyls	80	1914640	< 0.05	< 0.05	0.0%	< 0.05	115%	80%	120%	91%	70%	130%	115%	50%	150%	
Polyaromatic Hydrocarbons in So	oil Creaso	te PAHs (I	Extended	List)												
Naphthalene	142	1925722	0.018	0.020	10.5%	< 0.01	105%	70%	130%	88%	70%	130%	89%	70%	130%	
Methyl Naphthalenes	142	1925722	0.080	0.089	10.7%	< 0.01	105%	70%	130%	89%	70%	130%	85%	70%	130%	
Dimethyl Naphthalenes	142	1925722	0.0527	0.0653	21.4%	< 0.01	101%	70%	130%	99%	70%	130%				
Acenaphthylene	142	1925722	< 0.01	< 0.01	0.0%	< 0.01	118%	70%	130%	97%	70%	130%	78%	70%	130%	
Acenaphthene	142	1925722	< 0.01	< 0.01	0.0%	< 0.01	98%	70%	130%	85%	70%	130%	81%	70%	130%	
Fluorene	142	1925722	< 0.01	< 0.01	0.0%	< 0.01	113%	70%	130%	94%	70%	130%	86%	70%	130%	
Phenanthrene	142	1925722	< 0.01	< 0.01	0.0%	< 0.01	96%	70%	130%	84%	70%	130%	81%	70%	130%	
Anthracene	142	1925722	< 0.01	< 0.01	0.0%	< 0.01	120%	70%	130%	77%	70%	130%	78%	70%	130%	
Fluoranthene	142	1925722	< 0.01	< 0.01	0.0%	< 0.01	113%	70%	130%	94%	70%	130%	83%	70%	130%	
Pyrene	142	1925722	< 0.01	< 0.01	0.0%	< 0.01	107%	70%	130%	83%	70%	130%	84%	70%	130%	
Benzo[a]anthracene	142	1925722	< 0.01	< 0.01	0.0%	< 0.01	112%	70%	130%	94%	70%	130%	85%	70%	130%	
Chrysene	142	1925722	< 0.01	< 0.01	0.0%	< 0.01	99%	70%	130%	89%	70%	130%	84%	70%	130%	
Benzo(b+j)fluoranthene	142	1925722	< 0.01	< 0.01	0.0%	< 0.01	107%	70%	130%	94%	70%	130%	81%	70%	130%	
Benzo(k)fluoranthene	142	1925722	< 0.01	< 0.01	0.0%	< 0.01	99%	70%	130%	86%	70%	130%	85%	70%	130%	
Benzo[a]pyrene	142	1925722	< 0.01	< 0.01	0.0%	< 0.01	120%	70%	130%	96%	70%	130%	100%	70%	130%	
Indeno[1,2,3-cd]pyrene		1925722	< 0.01	< 0.01	0.0%	< 0.01	94%	70%	130%	78%	70%	130%	85%	70%	130%	
Dibenzofuran	142	1925722	< 0.01	< 0.01	0.0%	< 0.01	95%	70%	130%	96%	70%	130%				
Dibenz[ah]anthracene	142	1925722	< 0.01	< 0.01	0.0%	< 0.01	98%	70%	130%	79%	70%	130%	86%	70%	130%	
Benzo[ghi]perylene		1925722	< 0.01	< 0.01	0.0%	< 0.01	86%	70%	130%	70%	70%	130%	77%	70%	130%	
Carbazole	142	1925722	< 0.01	< 0.01	0.0%	< 0.01	91%	70%	130%	97%	70%	130%				
Methyl Anthracenes	142	1925722	< 0.01	< 0.01	0.0%	< 0.01	97%	70%	130%	98%	70%	130%		70%	130%	
Petroleum Hydrocarbons (BTEX/I	F1-F4) in S	Soil (CWS).														
Benzene	807	1927503	< 0.005	< 0.005	NA	< 0.005	86%	80%	120%	106%	80%	120%	99%	60%	140%	
Toluene	807	1927503	< 0.05	< 0.05	NA	< 0.05	84%	80%	120%	104%	80%	120%	98%	60%	140%	
Ethylbenzene	807	1927503	< 0.01	< 0.01	NA	< 0.01	81%	80%	120%	101%	80%	120%	98%	60%	140%	
Xylenes	807	1927503	< 0.05	< 0.05	NA	< 0.05	83%	80%	120%	107%	80%	120%	100%	60%	140%	
C6 - C10 (F1)	807	1927503	< 10	< 10	NA	< 10	102%	80%	120%	108%	80%	120%	102%	60%	140%	
C6 - C10 (F1 minus BTEX)		1927503	< 10	< 10	NA	< 10	102%		120%	108%		120%	102%		140%	
C10 - C16 (F2)	510	1927503	< 10	11	NA	< 10	94%	80%	120%	83%	80%		84%	60%	140%	
C16 - C34 (F3)	510	1927503	12	17	34.5%	< 10	94%	80%	120%	81%	80%	120%	84%	60%	140%	
C34 - C50 (F4)	510	1927503	< 10	< 10	NA	< 10	94%	80%	120%	80%	80%	120%	82%	60%	140%	

AGAT QUALITY ASSURANCE REPORT (V4)

Page 41 of 48

2910 12TH STREET NE CALGARY, ALBERTA CANADA T2E 7P7 TEL (403)735-2005 FAX (403)735-2771 http://www.agatlabs.com

Quality Assurance

CLIENT NAME: AECOM CANADA LTD

AGAT WORK ORDER: 10E426723

PROJECT NO: CAM- A

ATTENTION TO: Dara Schmidt

Trace Organics Analysis (Continued)															
RPT Date: Oct 27, 2010			DUPLICATE				REFERENCE MATERIAL			METHOD BLANK SPIKE			MATRIX SPIKE		
PARAMETER	Batcl	Sample Id	Dup #1	Dup #2	RPD	Method Blank	Measured Value	Acceptable Limits		Recovery	Acceptable Limits		Recovery	Acceptable Limits	
								Lower	Upper		Lower	Upper	1 1	Lower	Upper
Polychlorinated Biphenyls Analys	sis - Soil														
Aroclor 1242	84	1925615	< 0.05	< 0.05	NA	< 0.05	104%	80%	120%	107%	70%	130%	123%	50%	150%
Aroclor 1254	84	1925615	2.26	2.17	4.1%	< 0.05	92%	80%	120%	81%	70%	130%	80%	50%	150%
Aroclor 1260	84	1925615	< 0.05	< 0.05	NA	< 0.05	98%	80%	120%	97%	70%	130%	120%	50%	150%
Total Polychlorinated Biphenyls	84	1925615	2.26	2.17	4.1%	< 0.05	98%	80%	120%	95%	70%	130%	108%	50%	150%
Polychlorinated Biphenyls Analys	sis - Soil														
Aroclor 1242	88	1946809	< 0.05	< 0.05	NA	< 0.05	96%	80%	120%	106%	70%	130%	135%	50%	150%
Aroclor 1254	88	1946809	< 0.05	< 0.05	NA	< 0.05	104%	80%	120%	87%	70%	130%	96%	50%	150%
Aroclor 1260	88	1946809	< 0.05	< 0.05	NA	< 0.05	110%	80%	120%	94%	70%	130%	108%	50%	150%
Total Polychlorinated Biphenyls	88	1946809	< 0.05	< 0.05	NA	< 0.05	103%	80%	120%	96%	70%	130%	113%	50%	150%

Certified By:

for booking

Quality Assurance

CLIENT NAME: AECOM CANADA LTD

AGAT WORK ORDER: 10E426723

PROJECT NO: CAM- A

ATTENTION TO: Dara Schmidt

				Wate	r Ar	nalysi	S								
RPT Date: Oct 27, 2010			DUPLICATE			REFERE	FERENCE MATERIAL			METHOD BLANK SPIKE		MAT	MATRIX SPIR		
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured		eptable nits	Recovery		ptable nits	Recovery		ptable
		ld					Value	Lower	Upper	,	Lower	Upper		Lower	Uppe
Routine Chemistry Water Analysis	3														
pH	1894	5106	7.6	7.6	0.0%		101%	90%	110%						
T - Alkalinity (as CaCO3)	1894	5106	612	612	0.0%	< 5	103%	90%	110%						
Electrical Conductivity	1894	5106	1010	1010	0.0%	< 1	104%	90%	110%						
Chloride	724	208	10	10	0.0%	< 1	99%	90%	110%				101%	90%	1109
Fluoride	724	208	0.10	0.10	0.0%	< 0.05	95%	90%	110%				92%	90%	1109
Nitrate	724	208	< 0.5	< 0.5	0.0%	< 0.5	99%	90%	110%				100%	90%	1109
Nitrite	724	208	0.05	0.05	0.0%	< 0.05	97%	90%	110%				96%	90%	1109
Sulfate	724	208	16	16	0.0%	< 1	100%	90%	110%				101%	90%	1109
Dissolved Calcium	6644	0	158	156	1.3%	< 0.3	100%	90%	110%				101%	75%	1259
Dissolved Magnesium	6644	0	51.0	50.9	0.1%	< 0.2	99%	90%	110%				100%	75%	125%
Dissolved Sodium	6644	0	41.0	40.7	0.8%	< 0.6	98%	90%	110%				101%	75%	1259
Dissolved Potassium	6644	0	4.3	4.2	0.6%	< 0.6	97%	90%	110%				101%	75%	1259
Dissolved Iron	6644	0	0.3	0.3	1.7%	< 0.1	102%	90%	110%				101%	75%	1259
Dissolved Manganese	6644	0	0.044	0.045	1.6%	< 0.005	103%	90%	110%				102%	75%	1259
Comments: N/A - Not Available.															
CCME / Alberta Tier 1 Metals (Tota	ıl)														
Total Aluminum	251	761	0.78617	0.75879	3.5%	< 0.002	117%	80%	120%				109%	75%	1259
Total Antimony	251	761	< 0.001	< 0.001	0.0%	< 0.001	101%	80%	120%				101%	75%	1259
Total Arsenic	251	761	0.002	0.002	0.0%	< 0.001	103%	80%	120%				101%	75%	125%
Total Barium	251	761	0.13	0.13	0.0%	< 0.05	105%	90%	110%				96%	75%	125%
Total Boron	251	761	0.04082	0.04095	0.3%	< 0.01	116%	80%	120%				101%	75%	125%
Total Cadmium	251	761	< 0.000025	< 0.000025	0.0%	< 0.000016	104%	80%	120%				104%	75%	125%
Total Chromium	251	761	0.002	0.002	0.0%	< 0.001	119%	80%	120%				112%	75%	1259
Total Copper	251	761	0.002	0.002	0.0%	< 0.002	111%	80%	120%				108%	75%	125%
Total Iron	6645	761	0.4	0.4	0.1%	< 0.1	101%	90%	110%				101%	75%	125%
Total Lead	251	761	< 0.001	< 0.001	0.0%	< 0.001	106%	80%	120%				108%	75%	1259
Total Manganese	6645	761	0.015	0.015	1.3%	< 0.005	103%	90%	110%				102%	75%	1259
Total Molybdenum	251	761	< 0.003	< 0.003	0.0%	< 0.003	104%	90%	110%				104%	75%	1259
Total Nickel	251	761	< 0.003	< 0.003	0.0%	< 0.01	118%	80%	120%				110%	75%	1259
Total Selenium	251	761	< 0.001	< 0.001	0.0%	< 0.001	88%	80%	120%				94%	75%	1259
Total Silver	251	761	< 0.0001	< 0.0001	0.0%	< 0.00005	106%	80%	120%				105%	75%	1259
Total Sodium	6645	761	1.4	1.4	1.2%	< 0.6	100%	90%	110%				100%	75%	1259
Total Thallium	251	761	< 0.0001	< 0.0001	0.0%	< 0.0005	104%	90%	110%				107%	75%	1259
Total Uranium	251	761	0.00046	0.00044	4.4%	< 0.001	109%	90%	110%				108%	75%	1259
Total Zinc	251	761	0.0048	0.00431	10.8%	< 0.001	103%	90%	110%				103%	75%	1259

AGAT QUALITY ASSURANCE REPORT (V4)

Page 43 of 48

Quality Assurance

CLIENT NAME: AECOM CANADA LTD

AGAT WORK ORDER: 10E426723

PROJECT NO: CAM- A

ATTENTION TO: Dara Schmidt

	Water Analysis (Continued)													
RPT Date: Oct 27, 2010 DUPLICATE REFERENCE MATERIAL METHOD BLANK SPIKE MATRIX SPIKE											KE			
PARAMETER	RPD	Method Blank	Measured		ptable nits	Recovery	Lin	ptable nits	Recovery	Lin	ptable nits			
PARAMETER Batch Dup #1 Dup #2 RPD Diality Recovery Limits Recovery Lower Upper Upper Lower Upper Upp												Upper		

Certified By:

Method Summary

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Occupational Hygiene Analysis	'	1	
Asbestos (Bulk)	INORG 93-6010	EPA 600/R-93/116 & NIOSH 9002	PLM
Asbestos (Bulk) Phase 1	INORG 93-6010	EPA 600/R-93/116 & NIOSH 9002	PLM
Asbestos (Bulk) Phase 2	INORG 93-6010	EPA 600/R-93/116 & NIOSH 9002	PLM
Soil Analysis			
Lead in Paint	SOIL 0280 & INST 0140	LEAD IN PAINT 1995	ICP/OES
Sieve Analysis - 75 microns (wet)	SOIL 0540; SOIL 0110	KROETSCH 2007; SHEPPARD 2007	SIEVE
Arsenic	SOIL 0390; SOIL 0110; SOIL 0120; INST 0141	EPA SW 846-3050/6010; SHEPPARD	ICP-MS
Arsenic	SOIL 0390; SOIL 0110; SOIL 0120; INST 0141	EPA SW 846-3050/6010; SHEPPARD	ICP/MS
Cadmium	SOIL 0390; SOIL 0110; SOIL 0120; INST 0141	EPA SW 846-3050/6010; SHEPPARD	ICP-MS
Chromium	SOIL 0390; SOIL 0110; SOIL 0120; INST 0141	EPA SW 846-3050/6010; SHEPPARD	ICP/OES
Cobalt	SOIL 0390; SOIL 0110; SOIL 0120; INST 0141	EPA SW 846-3050/6010; SHEPPARD	ICP-MS
Copper	SOIL 0390; SOIL 0110; SOIL 0120; INST 0141	EPA SW 846-3050/6010; SHEPPARD	ICP-MS
Cadmium	SOIL 0390; SOIL 0110; SOIL 0120; INST 0141	EPA SW 846-3050/6010; SHEPPARD	ICP/MS
Lead	SOIL 0390; SOIL 0110; SOIL 0120; INST 0141	EPA SW 846-3050/6010; SHEPPARD	ICP-MS
Chromium	SOIL 0390; SOIL 0110; SOIL 0120; INST 0141	EPA SW 846-3050/6010, SHEPPARD	ICP/MS
Nickel	SOIL 0390; SOIL 0110; SOIL 0120; INST 0141	EPA SW 846-3050/6010; SHEPPARD	ICP-MS
Zinc	SOIL 0390; SOIL 0110; SOIL 0120; INST 0141	EFA 3W 646-3030/6010, SHEFFARD	ICP-MS
Cobalt	SOIL 0390; SOIL 0110; SOIL 0120; INST 0141	EPA SW 846-3050/6010; SHEPPARD	ICP/MS
Copper	SOIL 0390; SOIL 0110; SOIL 0120; INST 0141	EPA SW 846-3050/6010; SHEPPARD	ICP/MS
Lead	SOIL 0390; SOIL 0110; SOIL 0120; INST 0141	EPA SW 846-3050/6010; SHEPPARD	ICP/MS
Nickel	SOIL 0390; SOIL 0110; SOIL 0120; INST 0141	EPA SW 846-3050/6010; SHEPPARD	ICP/MS
Zinc	SOIL 0390; SOIL 0110; SOIL 0120; INST 0141	EFA 3W 646-3030/6010, SHEFFARD	ICP/MS
Lead	SOIL 0390; SOIL 0110; SOIL 0120; INST 0141	EPA SW 846-3050/6010; SHEPPARD	ICP-MS
Lead - Leachate	SOIL 0420; INST 0140	EPA SW 846-1311; EATON 2005	ICP/OES

Method Summary

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Trace Organics Analysis			
Benzene	TO 0570	EPA SW-846 8260	GC/MS
Toluene	TO 0570	EPA SW-846 8260	GC/MS
Ethylbenzene	TO 0570	EPA SW-846 8260	GC/MS
Xylenes	TO 0570	EPA SW-846 8260	GC/MS
C6 - C10 (F1)	TO 0570	CCME Tier 1 Method	GC/FID
C6 - C10 (F1 minus BTEX)	TO 0570	CCME Tier 1 Method	GC/FID
C10 - C16 (F2)	TO-0560	CCME Tier 1 Method	GC/FID
C16 - C34 (F3)	TO-0560	CCME Tier 1 Method	GC/FID
C34 - C50 (F4)	TO 0560	CCME Tier 1 Method	GC/FID
Gravimetric Heavy Hydrocarbons	TO 0560	CCME Tier 1 Method	GC/FID
Moisture Content	TO 0560	CCME Tier 1 Method	GRAVIMETRIC
Toluene-d8 (BTEX)	TO 0500	EPA SW-846 8260	GC/MS
, ,	TO 0570	EPA SW-846 8260	GC/MS
Ethylbenzene-d10 (BTEX)			
o-Terphenyl (F2-F4)	TO 0560	CCME Tier 1 Method EPA SW-846 8260	GC/FID
Benzene Toluene	TO 0570 TO 0570		GC/MS
		EPA SW-846 8260	GC/MS
Ethylbenzene	TO 0570	EPA SW-846 8260	GC/MS
Xylenes	TO 0570	EPA SW-846 8260	GC/MS
C6 - C10 (F1)	TO 0570	CCME Tier 1 Method	GC/FID
C6 - C10 (F1 minus BTEX)	TO 0570	CCME Tier 1 Method	GC/FID
C10 - C16 (F2)	TO-0560	CCME Tier 1 Method	GC/FID
C16 - C34 (F3)	TO-0560	CCME Tier 1 Method	GC/FID
C34 - C50 (F4)	TO 0560	CCME Tier 1 Method	GC/FID
Gravimetric Heavy Hydrocarbons	TO 0560	CCME Tier 1 Method	GC/FID
Moisture Content	TO 0560	CCME Tier 1 Method	GRAVIMETRIC
Toluene-d8 (BTEX)	TO 0570	EPA SW-846 8260	GC/MS
Ethylbenzene-d10 (BTEX)	TO 0570	EPA SW-846 8260	GC/MS
o-Terphenyl (F2-F4)	TO 0560	CCME Tier 1 Method	GC/FID
Benzene	TO 0540	EPA SW846 8260	GC/MS
Toluene	TO 0540	EPA SW846 8260	GC/MS
Ethylbenzene	TO 0540	EPA SW846 8260	GC/MS
Xylenes	TO 0540	EPA SW846 8260	GC/MS
C6 - C10 (F1)	TO 0540	CCME Tier 1 Method	GC/FID
C6 - C10 (F1 minus BTEX)	TO 0540	CCME Tier 1 Method	GC/FID
C10 - C16 (F2)	TO 0511	CCME Tier 1 Method	GC/FID
C16 - C34 (F3)	TO-0511	CCME Tier 1 Method	GC/FID
C34 - C50 (F4)	TO-0511	CCME Tier 1 Method	GC/FID
Toluene-d8 (BTEX)	TO 0340	EPA SW846 8260	GC/FID
o-Terphenyl (F2-F4)	TO 0511	CCME Tier 1 Method	GC/FID
Naphthalene			
Methyl Naphthalenes			
Dimethyl Naphthalenes			
Acenaphthylene			
Acenaphthene			
Fluorene			
Phenanthrene			
Anthracene			
Fluoranthene			
Pyrene			

Method Summary

	7 <u>-</u>								
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE						
Benzo[a]anthracene	-								
Chrysene									
Benzo(b+j)fluoranthene									
Benzo(k)fluoranthene									
Benzo[a]pyrene									
Indeno[1,2,3-cd]pyrene									
Dibenzofuran									
Dibenz[ah]anthracene									
Benzo[ghi]perylene									
Pentachlorophenol									
Carbazole									
Methyl Anthracenes									
3-Methylcholanthrene									
Aroclor 1242	TO 0410	EPA SW-846 3550 & 8080	GC/ECD						
Aroclor 1254	TO 0410	EPA SW-846 3550 & 8080	GC/ECD						
Aroclor 1260	TO 0410	EPA SW-846 3550 & 8080	GC/ECD						
Total Polychlorinated Biphenyls	TO 0410	EPA SW-846 3550 & 8080	GC/ECD						
Decachlorobiphenyl	TO 0410		GC/ECD						
Decachlorobiphenyl	TO 0410	EPA SW-846 3550 & 8080	GC/ECD						
Aroclor 1242	TO 0400	EPA 608, AEC A106.0	GC/ECD						
Aroclor 1254	TO 0400	EPA 608, AEC A106.0	GC/ECD						
Aroclor 1260	TO 0400	EPA 608, AEC A106.0	GC/ECD						
Polychlorinated Biphenyls	TO 0400	EPA 608, AEC A106.0	GC/ECD						
Decachlorobiphenyl	TO 0400		GC/ECD						

Method Summary

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Water Analysis			
Total Aluminum	WATR 0200; INST 0141	SM 3030 E; SM 3125 B	ICP/MS
Total Antimony	WATR 0200; INST 0141	SM 3030 E; SM 3125 B	ICP-MS
Total Arsenic	WATR 0200; INST 0141	SM 3030 E; SM 3125 B	ICP-MS
Total Barium	WATR 0200; INST 0141	SM 3030 E; SM 3125 B	ICP/MS
Total Boron	WATR 0200; INST 0141	SM 3030 E; SM 3125 B	ICP/MS
Total Cadmium	WATR 0200; INST 0141	SM 3030 E; SM 3125 B	ICP/MS
Total Chromium	WATR 0200; INST 0141	SM 3030 E; SM 3125 B	ICP/MS
Total Copper	WATR 0200; INST 0141	SM 3030 E; SM 3125 B	ICP/MS
Total Iron	WATR 0200; INST 0140	SM 3030 E; SM 3120 B	ICP/OES
Total Lead	WATR 0200; INST 0141	SM 3030 E; SM 3125 B	ICP-MS
Total Manganese	WATR 0200; INST 0140	SM 3030 E; SM 3120 B	ICP/OES
Total Molybdenum	WATR 0200; INST 0141	SM 3030 E; SM 3125 B	ICP/MS
Total Nickel	WATR 0200; INST 0141	SM 3030 E; SM 3125 B	ICP/MS
Total Selenium	WATR 0200; INST 0141	SM 3030 E; SM 3125 B	ICP-MS
Total Silver	WATR 0200; INST 0141	SM 3030 E; SM 3125 B	ICP/MS
Total Sodium	WATR 0200; INST 0140	SM 3030 E; SM 3120 B	ICP/OES
Total Thallium	WATR 0200; INST 0141	SM 3030 E; SM 3125 B	ICP/MS
Total Uranium	WATR 0200; INST 0141	SM 3030 E; SM 3125 B	ICP/MS
Total Zinc	WATR 0200; INST 0141	SM 3030 E; SM 3125 B	ICP/MS
pH	INST 0101	SM 4500 H+	pH METER
p - Alkalinity (as CaCO3)	INST 0101	SM 2320 B	TITRATION
T - Alkalinity (as CaCO3)	INST 0101	SM 2320 B	TITRATION
Bicarbonate	INST 0101	SM 2320 B	TITRATION
Carbonate	INST 0101	SM 2320 B	TITRATION
Hydroxide	INST 0101	SM 2320 B	TITRATION
Electrical Conductivity	INST 0101	SM 2510 B	CONDUCTIVITY METER
Chloride	INST 0150	SM 4110 B	ION CHROMATOGRAPH
Fluoride	INST 0150	SM 4110 B	ION CHROMATOGRAPH
Nitrate	INST 0150	SM 4110 B	ION CHROMATOGRAPH
Sulfate	INST 0150	SM 4110 B	ION CHROMATOGRAPH
Dissolved Calcium	INST 0140	SM 3120 B	ICP/OES
Dissolved Magnesium	INST 0140	SM 3120 B	ICP/OES
Dissolved Sodium	INST 0140	SM 3120 B	ICP/OES
Dissolved Potassium	INST 0140	SM 3120 B	ICP/OES
Dissolved Iron	INST 0140	SM 3120 B	ICP/OES
Dissolved Manganese	INST 0140	SM 3120 B	ICP/OES

CLIENT NAME: AECOM CANADA LTD 2540 KENSINGTON ROAD NW Calgary, AB 403270

ATTENTION TO: Dara Schmidt

PROJECT NO: CAM-A

AGAT WORK ORDER: 10E425435

SOIL ANALYSIS REVIEWED BY: Irina Gankovsky, Analyst

TRACE ORGANICS REVIEWED BY: Ron Brockbank, Trace Organics Supervisor

DATE REPORTED: Oct 27, 2010

PAGES (INCLUDING COVER): 16

VERSION*: 4

Should you require any information regarding this analysis please contact your client services representative at (403) 735-2005, or at 1-866-764-7554

*NOTES

VERSION 4:Aug 19 – PCB added to samples 255, 333 to 334

- Metals added to samples 333 to 334
- Sieve added to samples 348 and 378

Aug 20 - PCB added to samples 268, 273, 276, 277, 299, 303, 304, 319, 323, 344, 807, 810, and 811

Aug 30 - PCB added to samples 805, 809, and 812

Sept 16 - PCB added to samples 823 and 824

Sept 17 - PCB added to sample 839

- Metals added to sample 839

Oct 12 - Metals added to samples 253, 257, 262, 268, 275, 282, 288, 295, 302, 308, 315, 326, 792, 795, 802, 804, 806, 823, 826, 829, 833, and 836

All samples will be disposed of within 30 days following analysis. Please contact the lab if you require additional sample storage time.

AGAT Laboratories (V4)

Page 1 of 16

Member of: Association of Professional Engineers, Geologists and Geophysicists of Alberta (APEGGA)

Western Enviro-Agricultural Laboratory Association (WEALA) Environmental Services Association of Alberta (ESAA) AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation.

Certificate of Analysis

AGAT WORK ORDER: 10E425435

PROJECT NO: CAM-A

ATTENTION TO: Dara Schmidt

2910 12TH STREET NE CALGARY, ALBERTA CANADA T2E 7P7 TEL (403)735-2005 FAX (403)735-2771 http://www.agatlabs.com

	Particle Size by Sieve											
DATE SAMPLED: Aug 02, 2010			DATE RE	CEIVED: Aug (07, 2010	DATE REPORTED: Oct 27, 2010	SAMPLE TYPE: Soil					
				348	378							
Parameter	Unit	G/S	RDL	1914715	1914744							
Sieve Analysis - 75 microns (wet)	%		N/A	96.2	99.3							
Sieve Texture				Coarse	Coarse							

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard

1914715-1914744 Value reported is amount of sample retained on sieve after wash with water and represents proportion by weight particles larger than indicated sieve size.

Certified By:

Janearl

Certificate of Analysis

AGAT WORK ORDER: 10E425435

PROJECT NO: CAM-A

ATTENTION TO: Dara Schmidt

2910 12TH STREET NE CALGARY, ALBERTA CANADA T2E 7P7 TEL (403)735-2005 FAX (403)735-2771 http://www.agatlabs.com

					S	oil Analysis	s - Metals						
DATE SAMPL	ED: Aug 02, 2010			DATE RE	CEIVED: Aug (07, 2010	DATE	REPORTED: C	Oct 27, 2010	SAMPLE TYPE: Soil			
Pai	rameter	Unit	G/S	RDL	253 1914624	257 1914626	262 1914628	268 1914634	275 1914642	282 1914649	288 1914656	295 1914663	
Arsenic		mg/kg		0.5	<0.5	<0.5	<0.5	<0.5	<0.5	0.5	<0.5	<0.5	
Cadmium		mg/kg		0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
Chromium		mg/kg		0.5	1.2	1.5	2.9	3.8	1.8	1.1	2.8	0.9	
Cobalt		mg/kg		0.5	<0.5	<0.5	0.7	0.8	0.9	0.7	0.8	<0.5	
Copper		mg/kg		0.5	7.4	74.0	4.4	1.3	1.8	1.5	8.3	0.9	
Lead		mg/kg		0.5	1.6	2.6	1.7	1.2	1.8	0.9	2.0	0.6	
Mercury		mg/kg		0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
Nickel		mg/kg		0.5	0.9	0.9	2.3	1.8	1.7	1.0	2.2	0.5	
Zinc		mg/kg		1	3	16	4	4	6	5	15	3	
					302	308	315	326	362	366	370	371	
Pai	rameter	Unit	G/S	RDL	1914670	1914676	1914683	1914695	1914728	1914732	1914736	191473	
Arsenic		mg/kg		0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
Cadmium		mg/kg		0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
Chromium		mg/kg		0.5	1.0	0.9	1.1	1.2	0.9	0.6	0.8	1.2	
Cobalt		mg/kg		0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	0.5	
Copper		mg/kg		0.5	6.6	4.0	2.0	7.8	1.3	<0.5	0.7	8.0	
Lead		mg/kg		0.5	1.4	1.4	0.9	2.5	1.1	0.5	0.6	0.7	
Mercury		mg/kg		0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
Nickel		mg/kg		0.5	0.8	<0.5	0.6	0.9	0.7	0.5	0.7	1.3	
Zinc		mg/kg		1	7	9	3	14	2	2	2	3	
Pai	rameter	Unit	G/S	RDL	375 1914741	379 1914745	384 1914750	390 1914756	391 1914757	393 1914759	407 1914763	412 191476	
Arsenic		mg/kg		0.5	<0.5	<0.5	<0.5	<0.5	<0.5	0.8	<0.5	<0.5	
Cadmium		mg/kg		0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
Chromium		mg/kg		0.5	1.0	0.9	0.7	1.1	2.2	5.8	0.7	1.1	
Cobalt		mg/kg		0.5	<0.5	<0.5	<0.5	<0.5	0.6	1.7	<0.5	<0.5	
Copper		mg/kg		0.5	<0.5	<0.5	0.6	0.5	1.7	2.0	0.6	0.8	
Lead		mg/kg		0.5	0.5	0.5	0.5	0.6	0.6	2.1	<0.5	<0.5	
Mercury		mg/kg		0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
Nickel		mg/kg		0.5	0.6	0.5	0.7	0.9	2.1	3.6	0.7	0.7	
Zinc		mg/kg		1	2	1	2	6	5	47	2	6	

Certified By:

Jamesel

Certificate of Analysis

AGAT WORK ORDER: 10E425435

PROJECT NO: CAM-A

ATTENTION TO: Dara Schmidt

2910 12TH STREET NE CALGARY, ALBERTA CANADA T2E 7P7 TEL (403)735-2005 FAX (403)735-2771 http://www.agatlabs.com

CHERT WINE. ALCOM CANADA ETD							/(= (OIV TO. Dara C	Johnnat		
				S	oil Analysis	s - Metals					
DATE SAMPLED: Aug 02, 20	010		DATE RE	CEIVED: Aug (07, 2010	DATE	REPORTED: 0	Oct 27, 2010	SAMPLE TYPE: Soil		
Parameter	Unit	G/S	RDL	418 1914774	420 1914776	424 1914780	792 1914782	795 1914785	802 1914793	804 1914795	806 1914797
Arsenic	mg/kg		0.5	<0.5	<0.5	<0.5	0.7	0.7	0.8	2.4	0.7
Cadmium	mg/kg		0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Chromium	mg/kg		0.5	1.0	1.6	0.7	4.4	3.8	4.7	3.9	2.9
Cobalt	mg/kg		0.5	<0.5	0.5	<0.5	1.4	1.3	1.6	1.4	1.0
Copper	mg/kg		0.5	0.9	1.2	0.7	4.4	2.9	4.6	5.6	3.8
Lead	mg/kg		0.5	0.7	1.2	2.6	12.6	5.0	15.3	8.5	5.8
Mercury	mg/kg		0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Nickel	mg/kg		0.5	0.9	1.1	0.6	4.7	4.9	5.0	4.9	4.4
Zinc	mg/kg		1	2	2	4	9	5	13	10	5
Parameter	Unit	G/S	RDL	823 1914814	826 1914817	829 1914820	833 1914826	836 1914829	839 1914832	333 1914951	334 1914952
Arsenic	mg/kg		0.5	0.8	0.9	0.8	0.8	1.7	22.3	<0.5	<0.5
Cadmium	mg/kg		0.5	<0.5	<0.5	<0.5	<0.5	<0.5	8.4	<0.5	<0.5
Chromium	mg/kg		0.5	3.1	4.2	4.0	7.6	4.3	85.6	0.9	1.1
Cobalt	mg/kg		0.5	1.2	1.4	1.5	2.0	2.0	10.6	<0.5	<0.5
Copper	mg/kg		0.5	3.2	3.3	2.5	2.7	4.1	90.0	2.5	2.3
Lead	mg/kg		0.5	4.5	8.9	3.8	3.0	2.7	840	0.6	0.6
Mercury	mg/kg		0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Nickel	mg/kg		0.5	4.4	5.2	5.7	4.4	4.0	16.7	<0.5	<0.5
Zinc	mg/kg		1	6	12	6	8	5	2870	6	5

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard

1914624-1914952 Results are based on the dry weight of the sample.

Certified By:

Janear

Certificate of Analysis

AGAT WORK ORDER: 10E425435

PROJECT NO: CAM-A

ATTENTION TO: Dara Schmidt

2910 12TH STREET NE CALGARY, ALBERTA CANADA T2E 7P7 TEL (403)735-2005 FAX (403)735-2771 http://www.agatlabs.com

CELENT NAME. AECOM CANADA ETD									Schilliat			
			Petrole	eum Hydro	carbons (B	TEX/F1-F4)	in Soil (CW	S)				
DATE SAMPLED: Aug 04, 2010		I	DATE RE	CEIVED: Aug (07, 2010	DATE	REPORTED: (Oct 27, 2010	SAMPLE TYPE: Soil			
Parameter	Unit	G/S	RDL	792 1914782	793 1914783	794 1914784	795 1914785	796 1914786	797 1914787	798 1914788	799 1914789	
Benzene	mg/kg	0,0	0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	
Toluene	mg/kg		0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
Ethylbenzene	mg/kg		0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	
Xylenes	mg/kg		0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
C6 - C10 (F1)	mg/kg		10	<10	<10	<10	<10	<10	<10	<10	<10	
C6 - C10 (F1 minus BTEX)	mg/kg		10	<10	<10	<10	<10	<10	<10	<10	<10	
C10 - C16 (F2)	mg/kg		10	<10	<10	<10	<10	<10	<10	<10	<10	
C16 - C34 (F3)	mg/kg		10	11	<10	12	<10	<10	<10	15	<10	
C34 - C50 (F4)	mg/kg		10	<10	<10	<10	<10	<10	<10	<10	<10	
Gravimetric Heavy Hydrocarbons	mg/kg		1000	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	
Moisture Content	%		1	7	2.9	3.5	3.4	4.7	2.6	3.1	3.6	
Surrogate	Unit	Acceptable	e Limits									
Toluene-d8 (BTEX)	%	50-1	50	86	88	88	86	104	98	90	89	
Ethylbenzene-d10 (BTEX)	%	50-1	50	74	77	85	83	95	96	89	84	
o-Terphenyl (F2-F4)	%	50-1	50	96.2	99.8	95.0	92.4	93.2	95.0	95.6	94.4	
				800	801	813	814	815	816	817	818	
Parameter	Unit	G/S	RDL	1914790	1914792	1914804	1914805	1914806	1914807	1914808	1914809	
Benzene	mg/kg		0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	
Toluene	mg/kg		0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
Ethylbenzene	mg/kg		0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	
Xylenes	mg/kg		0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
C6 - C10 (F1)	mg/kg		10	<10	<10	<10	<10	<10	<10	<10	<10	
C6 - C10 (F1 minus BTEX)	mg/kg		10	<10	<10	<10	<10	<10	<10	<10	<10	
C10 - C16 (F2)	mg/kg		10	<10	<10	<10	<10	<10	35	<10	<10	
C16 - C34 (F3)	mg/kg		10	<10	<10	14	27	39	46	193	46	
C34 - C50 (F4)	mg/kg		10	<10	<10	<10	11	13	<10	20	<10	
Gravimetric Heavy Hydrocarbons	mg/kg		1000	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	
Moisture Content	%		1	2.7	2.8	2.7	2.7	2.6	3.2	4.3	2.9	
Surrogate	Unit	Acceptable										
Toluene-d8 (BTEX)	%	50-1		100	80	87	90	94	99	92	100	
Ethylbenzene-d10 (BTEX)	%	50-1	50	75	72	82	76	78	75	90	78	
o-Terphenyl (F2-F4)	%	50-1	50	98.0	93.1	98.9	98.2	97.6	93.6	96.4	92.8	

Certified By:

Certificate of Analysis

AGAT WORK ORDER: 10E425435

PROJECT NO: CAM-A

ATTENTION TO: Dara Schmidt

2910 12TH STREET NE CALGARY, ALBERTA CANADA T2E 7P7 TEL (403)735-2005 FAX (403)735-2771 http://www.agatlabs.com

CELENT NAME. AECOM CANADA ETD ATTENTION TO: Data Schillid												
			Petrole	eum Hydro	carbons (B	TEX/F1-F4)	in Soil (CW	S)				
DATE SAMPLED: Aug 04, 2010		-	DATE RE	CEIVED: Aug (07, 2010	DATE	REPORTED: (Oct 27, 2010	SAMPLE TYPE: Soil			
Parameter	Unit	G/S	RDL	819 1914810	820 1914811	821 1914812	822 1914813	823 1914814	824 1914815	825 1914816	826 1914817	
Benzene	mg/kg		0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	
Toluene	mg/kg		0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
Ethylbenzene	mg/kg		0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	
Xylenes	mg/kg		0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
C6 - C10 (F1)	mg/kg		10	<10	<10	<10	<10	<10	<10	<10	<10	
C6 - C10 (F1 minus BTEX)	mg/kg		10	<10	<10	<10	<10	<10	<10	<10	<10	
C10 - C16 (F2)	mg/kg		10	<10	<10	<10	<10	<10	<10	<10	<10	
C16 - C34 (F3)	mg/kg		10	<10	<10	<10	<10	<10	<10	<10	64	
C34 - C50 (F4)	mg/kg		10	<10	<10	<10	<10	<10	<10	<10	<10	
Gravimetric Heavy Hydrocarbons	mg/kg		1000	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	
Moisture Content	%		1	9.5	3	3.2	1.9	2.9	2.8	3.1	5.7	
Surrogate	Unit	Acceptable	e Limits									
Toluene-d8 (BTEX)	%	50-1	50	99	100	85	94	98	90	95	100	
Ethylbenzene-d10 (BTEX)	%	50-1	50	88	84	68	77	87	76	87	78	
o-Terphenyl (F2-F4)	%	50-1	50	89.2	89.6	94.0	97.9	106	103	104	103	
				827	828	829	830	831	832	833	834	
Parameter	Unit	G/S	RDL	1914818	1914819	1914820	1914821	1914824	1914825	1914826	1914827	
Benzene	mg/kg		0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	< 0.005	< 0.005	
Toluene	mg/kg		0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
Ethylbenzene	mg/kg		0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	
Xylenes	mg/kg		0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
C6 - C10 (F1)	mg/kg		10	<10	<10	<10	<10	<10	<10	<10	<10	
C6 - C10 (F1 minus BTEX)	mg/kg		10	<10	<10	<10	<10	<10	<10	<10	<10	
C10 - C16 (F2)	mg/kg		10	<10	133	<10	35	118	<10	<10	<10	
C16 - C34 (F3)	mg/kg		10	<10	128	41	<10	59	<10	<10	33	
C34 - C50 (F4)	mg/kg		10	<10	<10	<10	<10	<10	<10	<10	<10	
Gravimetric Heavy Hydrocarbons	mg/kg		1000	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	
Moisture Content	%		1	4.4	4.5	5	4.1	5.4	2.5	3.1	5	
Surrogate	Unit	Acceptable	e Limits									
Toluene-d8 (BTEX)	%	50-1		94	101	97	104	94	103	97	102	
Ethylbenzene-d10 (BTEX)	%	50-1	50	84	84	76	87	85	100	71	86	
o-Terphenyl (F2-F4)	%	50-1	50	97.2	103	99.9	104	102	99.8	97.7	91.5	

Certified By:

Certificate of Analysis

AGAT WORK ORDER: 10E425435

PROJECT NO: CAM-A

2910 12TH STREET NE CALGARY, ALBERTA CANADA T2E 7P7 TEL (403)735-2005 FAX (403)735-2771 http://www.agatlabs.com

CLIENT NAME: AECOM CANADA LTD ATTENTION TO: Dara Schmidt

Petroleum Hydrocarbons (BTEX/F1-F4) in Soil (CWS)											
DATE SAMPLED: Aug 04, 2010		DATE REC	CEIVED: Aug (07, 2010	DATE	REPORTED: (Oct 27, 2010	SAMPLE TYPE: Soil			
			835	836	837	838	839				
Parameter	Unit	G/S RDL	1914828	1914829	1914830	1914831	1914832				
Benzene	mg/kg	0.005	<0.005	< 0.005	< 0.005	<0.005	< 0.005				
Toluene	mg/kg	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05				
Ethylbenzene	mg/kg	0.01	<0.01	<0.01	<0.01	<0.01	<0.01				
Xylenes	mg/kg	0.05	< 0.05	< 0.05	<0.05	< 0.05	<0.05				
C6 - C10 (F1)	mg/kg	10	<10	<10	<10	<10	<10				
C6 - C10 (F1 minus BTEX)	mg/kg	10	<10	<10	<10	<10	<10				
C10 - C16 (F2)	mg/kg	10	<10	<10	<10	<10	41				
C16 - C34 (F3)	mg/kg	10	36	<10	37	<10	4680				
C34 - C50 (F4)	mg/kg	10	11	<10	<10	<10	786				
Gravimetric Heavy Hydrocarbons	mg/kg	1000	N/A	N/A	N/A	N/A	N/A				
Moisture Content	%	1	5	4	6	4	39				
Surrogate	Unit	Acceptable Limits									
Toluene-d8 (BTEX)	%	50-150	97	99	99	98	99				
Ethylbenzene-d10 (BTEX)	%	50-150	85	98	104	86	100				
o-Terphenyl (F2-F4)	%	50-150	100	91.5	105	96.6	102				

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to ABTier1 (Ag,F)

1914782-1914832 Results are based on the dry weight of the sample.

The C6-C10 (F1) fraction is calculated using toluene response factor.

The C10 - C16 (F2), C16 - C34 (F3), and C34 - C50 (F4) fractions are calculated using the average response factor for n-C10, n-C16, and n-C34.

Gravimetric Heavy Hydrocarbons (F4g) are not included in and cannot be added to the Total C6-C50 and are only determined if the chromatogram of the C34 - C50 hydrocarbons indicates that hydrocarbons >C50 are present.

Total C6 - C50 results are corrected for BTEX and PAH contributions (if requested).

Quality control data is available upon request.

Assistance in the interpretation of data is available upon request.

This method complies with the Reference Method for the CWS PHC and is validated for use in the laboratory.

nC6 and nC10 response factors are within 30% of Toluene response factor.

nC10, nC16 and nC34 response factors are within 10% of their average.

C50 response factor is within 70% of nC10 + nC16 + nC34 average.

Linearity is within 15%.

The chromatogram returned to baseline by the retention time of nC50.

Extraction and holding times were met for this sample.

Certified By:

for booking

Certificate of Analysis

AGAT WORK ORDER: 10E425435

PROJECT NO: CAM-A

ATTENTION TO: Dara Schmidt

2910 12TH STREET NE CALGARY, ALBERTA CANADA T2E 7P7 TEL (403)735-2005 FAX (403)735-2771 http://www.agatlabs.com

			F	Polychlorin	ated Biphe	nyls Analys	sis - Soil				
DATE SAMPLED: Aug 02, 2010			DATE RE	CEIVED: Aug (07, 2010	DATE	E REPORTED: (Oct 27, 2010	SAM	IPLE TYPE: So	il
Parameter	Unit	G/S	RDL	253 1914624	257 1914626	262 1914628	268 1914634	273 1914640	275 1914642	276 1914643	277 1914644
Aroclor 1242	mg/kg		0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Aroclor 1254	mg/kg		0.05	<0.05	0.72	<0.05	<0.05	<0.05	1.92	0.31	<0.05
Aroclor 1260	mg/kg		0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Total Polychlorinated Biphenyls	mg/kg		0.05	<0.05	0.72	<0.05	<0.05	<0.05	1.92	0.31	<0.05
Surrogate	Unit	Acceptab									
Decachlorobiphenyl	%	70-1		88	86	91	106	105	96	106	109
Parameter	Unit	G/S	RDL	282 1914649	288 1914656	295 1914663	299 1914667	302 1914670	303 1914671	304 1914672	308 1914676
Aroclor 1242	mg/kg		0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Aroclor 1254	mg/kg		0.05	< 0.05	0.12	0.06	<0.05	2.86	0.05	<0.05	0.29
Aroclor 1260	mg/kg		0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Total Polychlorinated Biphenyls	mg/kg		0.05	< 0.05	0.12	0.06	<0.05	2.86	0.05	<0.05	0.29
Surrogate	Unit	Acceptab									
Decachlorobiphenyl	%	70-1		94	85	88	103	97	111	113	91
				315	319	322	323	326	344	362	366
Parameter	Unit	G/S	RDL	1914683	1914688	1914691	1914692	1914695	1914711	1914728	1914732
Aroclor 1242	mg/kg		0.05	<0.05	< 0.05	< 0.05	< 0.05	<0.05	< 0.05	< 0.05	< 0.05
Aroclor 1254	mg/kg		0.05	0.06	< 0.05	1.46	0.09	0.15	< 0.05	< 0.05	< 0.05
Aroclor 1260	mg/kg		0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Total Polychlorinated Biphenyls	mg/kg		0.05	0.06	< 0.05	1.46	0.09	0.15	< 0.05	< 0.05	< 0.05
Surrogate	Unit	Acceptab	le Limits								
Decachlorobiphenyl	%	70-1	30	89	94	95	99	89	95	91	93
				370	371	375	379	384	390	391	393
Parameter	Unit	G/S	RDL	1914736	1914737	1914741	1914745	1914750	1914756	1914757	1914759
Aroclor 1242	mg/kg		0.05	< 0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Aroclor 1254	mg/kg		0.05	< 0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Aroclor 1260	mg/kg		0.05	< 0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Total Polychlorinated Biphenyls	mg/kg		0.05	<0.05	< 0.05	<0.05	<0.05	<0.05	<0.05	<0.05	< 0.05
Surrogate	Unit	Acceptab	le Limits								
Decachlorobiphenyl	%	70-1	30	88	91	91	94	95	93	96	95

Certified By:

Certificate of Analysis

AGAT WORK ORDER: 10E425435

PROJECT NO: CAM-A

ATTENTION TO: Dara Schmidt

2910 12TH STREET NE CALGARY, ALBERTA CANADA T2E 7P7 TEL (403)735-2005 FAX (403)735-2771 http://www.agatlabs.com

			F	Polychlorin	ated Biphe	nyls Analys	sis - Soil				
DATE SAMPLED: Aug 02, 2010	1		DATE RE	CEIVED: Aug (07, 2010	DATE	REPORTED: 0	Oct 27, 2010	SAM	IPLE TYPE: So	iI.
Parameter	Unit	G/S	RDL	407 1914763	412 1914768	418 1914774	420 1914776	424 1914780	802 1914793	804 1914795	805 1914796
Aroclor 1242	mg/kg		0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	< 0.05
Aroclor 1254	mg/kg		0.05	<0.05	< 0.05	< 0.05	< 0.05	< 0.05	0.06	< 0.05	0.2
Aroclor 1260	mg/kg		0.05	<0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Total Polychlorinated Biphenyls	mg/kg		0.05	<0.05	<0.05	<0.05	< 0.05	< 0.05	0.06	< 0.05	0.2
Surrogate	Unit	Acceptab	le Limits								
Decachlorobiphenyl	%	70-1	30	91	96	93	93	90	92	85	83
Parameter	Unit	G/S	RDL	806 1914797	807 1914798	808 1914799	809 1914800	810 1914801	811 1914802	812 1914803	823 1914814
Aroclor 1242	mg/kg		0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Aroclor 1254	mg/kg		0.05	17.7	5.19	0.17	0.1	0.42	0.26	0.51	< 0.05
Aroclor 1260	mg/kg		0.05	<0.05	< 0.05	< 0.05	< 0.05	< 0.05	<0.05	< 0.05	< 0.05
Total Polychlorinated Biphenyls	mg/kg		0.05	17.7	5.19	0.17	0.1	0.42	0.26	0.51	< 0.05
Surrogate	Unit	Acceptab	le Limits								
Decachlorobiphenyl	%	70-1	30	89	98	90	85	96	104	87	89
Parameter	Unit	G/S	RDL	824 1914815	839 1914832	255 1914946	333 1914951	334 1914952			
Aroclor 1242	mg/kg		0.05	<0.05	<0.05	<0.05	<0.05	<0.05			
Aroclor 1254	mg/kg		0.05	<0.05	18.4	<0.05	0.09	0.12			
Aroclor 1260	mg/kg		0.05	<0.05	<0.05	< 0.05	< 0.05	< 0.05			
Total Polychlorinated Biphenyls	mg/kg		0.05	<0.05	18.4	<0.05	0.09	0.12			
Surrogate	Unit	Acceptab	le Limits								
Decachlorobiphenyl	%	70-1	30	91	100	97	93	98			

Certified By:

Certificate of Analysis

AGAT WORK ORDER: 10E425435

PROJECT NO: CAM-A

ATTENTION TO: Dara Schmidt

2910 12TH STREET NE CALGARY, ALBERTA CANADA T2E 7P7 TEL (403)735-2005 FAX (403)735-2771 http://www.agatlabs.com

Polychlorinated Biphenyls Analysis - Soil

DATE SAMPLED: Aug 02, 2010 DATE RECEIVED: Aug 07, 2010 DATE REPORTED: Oct 27, 2010 SAMPLE TYPE: Soil

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard

1914624-1914643 Results are based on the dry weight of the sample.

Recovery of decachlorobiphenyl surrogate added to sample prior to analysis.

Arochlor Type:1254

CLIENT NAME: AECOM CANADA LTD

1914644 Results are based on the dry weight of the sample.

Recovery of decachlorobiphenyl surrogate added to sample prior to analysis.

1914649-1914663 Results are based on the dry weight of the sample.

Recovery of decachlorobiphenyl surrogate added to sample prior to analysis.

Arochlor Type:1254

1914667 Results are based on the dry weight of the sample.

Recovery of decachlorobiphenyl surrogate added to sample prior to analysis.

1914670-1914671 Results are based on the dry weight of the sample.

Recovery of decachlorobiphenyl surrogate added to sample prior to analysis.

Arochlor Type:1254

1914672 Results are based on the dry weight of the sample.

Recovery of decachlorobiphenyl surrogate added to sample prior to analysis.

1914676-1914683 Results are based on the dry weight of the sample.

Recovery of decachlorobiphenyl surrogate added to sample prior to analysis.

Arochlor Type:1254

1914688 Results are based on the dry weight of the sample.

Recovery of decachlorobiphenyl surrogate added to sample prior to analysis.

1914691-1914695 Results are based on the dry weight of the sample.

Recovery of decachlorobiphenyl surrogate added to sample prior to analysis.

Arochlor Type:1254

1914711 Results are based on the dry weight of the sample.

Recovery of decachlorobiphenyl surrogate added to sample prior to analysis.

1914728-1914774 Results are based on the dry weight of the sample.

Recovery of decachlorobiphenyl surrogate added to sample prior to analysis.

1914776-1914793 Results are based on the dry weight of the sample.

Recovery of decachlorobiphenyl surrogate added to sample prior to analysis.

Arochlor Type:1254

1914795-1914796 Results are based on the dry weight of the sample.

Recovery of decachlorobiphenyl surrogate added to sample prior to analysis.

1914797-1914799 Results are based on the dry weight of the sample.

Recovery of decachlorobiphenyl surrogate added to sample prior to analysis.

Arochlor Type:1254

1914800 Results are based on the dry weight of the sample.

Recovery of decachlorobiphenyl surrogate added to sample prior to analysis.

1914801-1914802 Results are based on the dry weight of the sample.

Recovery of decachlorobiphenyl surrogate added to sample prior to analysis.

Certified By:

Certificate of Analysis

AGAT WORK ORDER: 10E425435

PROJECT NO: CAM-A

2910 12TH STREET NE CALGARY, ALBERTA CANADA T2E 7P7 TEL (403)735-2005 FAX (403)735-2771 http://www.agatlabs.com

CLIENT NAME: AECOM CANADA LTD ATTENTION TO: Dara Schmidt

Polychlorinated Biphenyls Analysis - Soil

DATE SAMPLED: Aug 02, 2010 DATE RECEIVED: Aug 07, 2010 DATE REPORTED: Oct 27, 2010 SAMPLE TYPE: Soil

Arochlor Type:1254

1914803 Results are based on the dry weight of the sample.

Recovery of decachlorobiphenyl surrogate added to sample prior to analysis.

1914814-1914832 Results are based on the dry weight of the sample.

Recovery of decachlorobiphenyl surrogate added to sample prior to analysis: %

Arochlor Type:

1914946-1914952 Results are based on the dry weight of the sample.

Recovery of decachlorobiphenyl surrogate added to sample prior to analysis.

Arochlor Type:

Certified By:

Quality Assurance

CLIENT NAME: AECOM CANADA LTD AGAT WORK ORDER: 10E425435
PROJECT NO: CAM-A ATTENTION TO: Dara Schmidt

				Soi	l Ana	alysis	6								
RPT Date: Oct 27, 2010			Г	DUPLICAT			REFERE	NCE MA	TERIAL	METHOD	BLAN	SPIKE	MAT	RIX SPI	KE
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured		ptable nits	Recovery		eptable nits	Recovery		ptable nits
		ld	.,				Value	Lower	Upper	,	Lower	Upper	,	Lower	Upper
Soil Analysis - Metals		,		,											
Arsenic	249	1854714	5.6	5.6	0.0%	< 0.5	96%	90%	110%				102%	75%	125%
Cadmium	249	1854714	< 0.5	< 0.5	0.0%	< 0.5	97%	90%	110%				109%	75%	125%
Chromium	249	1854714	13.7	13.7	0.0%	< 0.5	94%	90%	110%				115%	75%	125%
Cobalt	249	1854714	7.4	6.5	12.9%	< 0.5	97%	90%	110%				97%	75%	125%
Copper	249	1854714	13.7	13.9	1.4%	< 0.5	97%	90%	110%				98%	75%	125%
Lead	249	1854714	11.0	10.3	6.6%	< 0.5	102%	90%	110%				99%	75%	125%
Mercury	249	1854714	< 0.5	< 0.5	0.0%	< 0.5	99%	90%	110%				102%	75%	125%
Nickel	249	1854714	18.1	18.0	0.6%	< 0.5	100%	90%	110%				100%	75%	125%
Zinc	249	1854714	56	54	3.6%	< 1	104%	90%	110%				104%	75%	125%
Soil Analysis - Metals															
Arsenic	1385	1945914	10.2	10.3	1.0%	< 0.5	99%	90%	110%				109%	75%	125%
Cadmium		1945914	0.6	0.6	0.0%	< 0.5	97%	90%	110%				101%	75%	125%
Chromium		1945914	28.8	27.4	5.0%	< 0.5	98%	90%	110%				97%	75%	125%
Cobalt		1945914	19.0	18.1	4.9%	< 0.5	104%		110%				119%	75%	125%
Copper		1945914	34.9	34.5	1.2%	< 0.5	95%		110%				101%	75%	125%
Lead	1385	1945914	21.6	21.3	1.4%	< 0.5	109%	90%	110%				105%	75%	125%
Mercury		1945914	< 0.5	< 0.5	0.0%	< 0.5	117%	80%	120%		90%	110%	108%	75%	125%
Nickel		1945914	47.4	45.4	4.3%	< 0.5	96%	90%	110%				108%	75%	125%
Zinc		1945914	145	143	1.4%	< 1	116%	80%	120%				111%	75%	125%
Particle Size by Sieve															
Sieve Analysis - 75 microns (wet)	1202	5783	29.3	30.6	4.3%	N/A	100%	90%	110%						
Soil Analysis - Metals															
Arsenic	277	2000601	3.9	4.2	7.4%	< 0.5	91%	90%	110%	101%	90%	110%	99%	75%	125%
Cadmium		2000601	< 0.5	< 0.5	0.0%	< 0.5	104%	90%	110%	102%	90%	110%	100%	75%	125%
Chromium		2000601	4.8	4.6	4.3%	< 0.5	103%	90%	110%	99%	90%	110%	98%	75%	125%
Cobalt		2000601	3.2	3.1	3.2%	< 0.5	101%	90%	110%	100%	90%	110%	103%	75%	125%
Copper		2000601	2.3	2.4	4.3%	< 0.5	96%		110%	102%	90%	110%	104%	75%	125%
Lead	277	2000601	2.8	2.9	3.5%	< 0.5	103%	90%	110%	108%	90%	110%	121%	75%	125%
Mercury		2000601	< 0.5	< 0.5	0.0%	< 0.5	101%		110%	104%	90%		106%	75%	125%
Nickel		2000601	7.8	7.8	0.0%	< 0.5	107%		110%	100%		110%	106%		125%
Zinc		2000601	17	17	0.0%	< 1	105%		110%	101%		110%	101%		125%
Soil Analysis - Metals															
Arsenic	1429	1914826	1.1	1.4	24.0%	< 0.5	95%	90%	110%				80%	75%	125%
Cadmium		1914826	< 0.5	< 0.5	0.0%	< 0.5	96%		110%				96%		125%
Chromium		1914826	8.0	10.2	24.2%	< 0.5	92%		110%				94%		125%
Cobalt		1914826	50.2	48.3	3.9%	< 0.5	92%		110%				102%		125%
Copper		1914826	53.8	52.4	2.6%	< 0.5	93%		110%				93%		125%
Lead	1429	1914826	93.8	95.8	2.1%	< 0.5	93%	90%	110%				102%	60%	140%

AGAT QUALITY ASSURANCE REPORT (V4)

Page 12 of 16

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation.

Quality Assurance

CLIENT NAME: AECOM CANADA LTD AGAT WORK ORDER: 10E425435
PROJECT NO: CAM-A ATTENTION TO: Dara Schmidt

	Soil Analysis (Continued)														
RPT Date: Oct 27, 2010			С	UPLICAT	Έ		REFERE	NCE MA	TERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPI	KE
PARAMETER	Sample		Method Blank	Measured		otable nits	Recovery	Lin	ptable nits	Recovery	Lie	ptable nits			
		Id		·			Value	Lower	Upper		Lower	Upper	Í	Lower	Upper
Mercury	1429	1914826	<0.5	<0.5	0.0%	< 0.5	113%	70%	130%		70%	130%	111%	70%	130%
Nickel	1429	1914826	89.8	87.9	2.1%	< 0.5	92%	90%	110%				106%	75%	125%
Zinc	1/120	101/1826	8	8	0.0%	- 1	108%	00%	1100/				103%	75%	125%

Certified By:

Tancul

Quality Assurance

CLIENT NAME: AECOM CANADA LTD

AGAT WORK ORDER: 10E425435

PROJECT NO: CAM-A

ATTENTION TO: Dara Schmidt

			Trac	e Orç	ganio	s Ar	alysi	is							
RPT Date: Oct 27, 2010				DUPLICATI	E		REFERE	NCE MA	TERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPI	KE
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured		ptable	Recovery	Lin	ptable nits	Recovery		ptable
TATO WILLIAM	Jacon	ld ld	Jup "	Jup2	2		Value	Lower	Upper		Lower	Upper		Lower	Upper
Petroleum Hydrocarbons (BTEX/F	1-F4) in S	Soil (CWS)		,											
Benzene	566	1914811	< 0.005	< 0.005	NA	< 0.005	88%	80%	120%	86%	80%	120%	89%	60%	140%
Toluene	566	1914811	< 0.05	< 0.05	NA	< 0.05	88%	80%	120%	82%	80%	120%	77%	60%	140%
Ethylbenzene	566	1914811	< 0.01	< 0.01	NA	< 0.01	86%	80%	120%	84%	80%	120%	72%	60%	140%
Xylenes	566	1914811	< 0.05	< 0.05	NA	< 0.05	83%	80%	120%	86%	80%	120%	72%	60%	140%
C6 - C10 (F1)	566	1914811	< 10	< 10	NA	< 10	109%	80%	120%	111%	80%	120%	106%	60%	140%
C6 - C10 (F1 minus BTEX)	566	1914811	< 10	< 10	NA	< 10	109%	80%	120%	111%	80%	120%	106%	60%	140%
C10 - C16 (F2)		1914811	<10	<10	NA	< 10	88%	80%	120%	82%	80%	120%	85%	60%	140%
C16 - C34 (F3)		1914811	<10	<10	NA	< 10	88%	80%	120%	86%	80%	120%	90%	60%	140%
C34 - C50 (F4)		1914811	<10	<10	NA	< 10	88%	80%	120%	86%	80%	120%	90%		140%
Petroleum Hydrocarbons (BTEX/F	1_E4\ in 9	Sail (CWS)													
Benzene	566	JUII (UVVO)			0.0%	< 0.005	88%	80%	120%	86%	80%	120%	89%	60%	140%
Toluene	566				0.0%	< 0.05	88%	80%	120%	82%	80%	120%	77%	60%	140%
Ethylbenzene	566				0.0%	< 0.03	86%	80%	120%	84%	80%	120%	72%	60%	140%
Xylenes	566				0.0%	< 0.05	83%	80%	120%	86%	80%	120%	72%	60%	140%
C6 - C10 (F1)	566				0.0%	< 10	109%		120%	111%	80%	120%	106%	60%	140%
, ,															
C6 - C10 (F1 minus BTEX)	566				0.0%	< 10	109%	80%	120%	111%	80%	120%	106%	60%	140%
Toluene-d8 (BTEX)	566				96.0%	< 0.05	97%	50%	150%	99%	50%	150%	99%	50%	150%
Ethylbenzene-d10 (BTEX)	566				83.0%	< 0.03	84%	50%	150%	101%	50%	150%	97%	50%	150%
Petroleum Hydrocarbons (BTEX/F	1-F4) in S	Soil (CWS)													
Benzene	567	1914826	< 0.005	< 0.005	NA	< 0.005	88%	80%	120%	95%	80%	120%	85%	60%	140%
Toluene	567	1914826	< 0.05	< 0.05	NA	< 0.05	91%	80%	120%	88%	80%	120%	80%	60%	140%
Ethylbenzene	567	1914826	< 0.01	< 0.01	NA	< 0.01	93%	80%	120%	91%	80%	120%	78%	60%	140%
Xylenes	567	1914826	< 0.05	< 0.05	NA	< 0.05	90%	80%	120%	90%	80%	120%	75%	60%	140%
C6 - C10 (F1)	567	1914826	< 10	< 10	NA	< 10	89%	80%	120%	111%	80%	120%	72%	60%	140%
C6 - C10 (F1 minus BTEX)	567	1914826	< 10	< 10	NA	< 10	89%	80%	120%	111%	80%	120%	72%	60%	140%
C10 - C16 (F2)		1914826	<10	<10	NA	< 10	109%	80%	120%	109%	80%	120%	110%	60%	140%
C16 - C34 (F3)		1914826	<10	<10	NA	< 10	109%	80%	120%	120%	80%	120%	121%	60%	140%
C34 - C50 (F4)		1914826	<10	<10	NA	< 10	109%	80%	120%	113%	80%	120%	116%	60%	140%
Polyablarinated Pinhanyla Analys	io Coil														
Polychlorinated Biphenyls Analysi Arodor 1242		1014606	- 0 OF	4 O OE	NIA	- 0.05	1100/	000/	1200/	1020/	700/	1200/	059/	E00/	1500/
Aroclor 1242	73 73	1914626 1914626	< 0.05	< 0.05	NA 32.3%	< 0.05	112%		120%	103%		130%	95% 87%		150%
Aroclor 1254	73 73		0.52	0.72	32.3%	< 0.05	100%		120%	105%	70%	130%	87% 106%		150%
Aroclor 1260 Total Polychlorinated Biphenyls	73 73	1914626 1914626	< 0.05 0.52	< 0.05 0.72	NA 32.3%	< 0.05 < 0.05	94% 102%		120% 120%	109% 106%		130% 130%	106% 96%		150% 150%
.,		2.7020	 -		0,0	. 5.55	. 32,3	-3,0	0,0		. 3,3		7 7 0	7 7 0	
Polychlorinated Biphenyls Analys		4044750	. 0. 05	.0.05	N: A	. 0.05	4000/	000/	4000/	4000/	700/	4000/	0.407	F00/	4500/
Aroclor 1242	73	1914759	< 0.05	< 0.05	NA	< 0.05	108%		120%	130%		130%	84%		150%
Arcelor 1254	73	1914759	< 0.05	< 0.05	NA	< 0.05	98%	80%	120%	130%	70%	130%	99%		150%
Aroclor 1260	73	1914759	< 0.05	< 0.05	NA	< 0.05	96%		120%	108%		130%	95%		150%
Total Polychlorinated Biphenyls	73	1914759	< 0.05	< 0.05	NA	< 0.05	101%	80%	120%	124%	70%	130%	93%	50%	150%

AGAT QUALITY ASSURANCE REPORT (V4)

Page 14 of 16

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation.

Quality Assurance

CLIENT NAME: AECOM CANADA LTD AGAT WORK ORDER: 10E425435
PROJECT NO: CAM-A ATTENTION TO: Dara Schmidt

	•	Trace	Orga	anics	Ana	lysis	(Cor	ntin	ued)					
RPT Date: Oct 27, 2010				DUPLICAT	E		REFERE	NCE MA	TERIAL	METHOD	BLAN	K SPIKE	MAT	RIX SPI	KE
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured Value		ptable nits	Recovery	1 1 11	eptable mits	Recovery		eptable mits
		la	·				value	Lower	Upper	·	Lower	Upper		Lower	Upper
Polychlorinated Biphenyls Analys	is - Soil														
Aroclor 1242	79	1914640	< 0.05	< 0.05	NA	< 0.05	110%	80%	120%	125%	70%	130%	118%	50%	150%
Aroclor 1254	79	1914640	< 0.05	< 0.05	NA	< 0.05	96%	80%	120%	94%	70%	130%	125%	50%	150%
Aroclor 1260	79	1914640	< 0.05	< 0.05	NA	< 0.05	96%	80%	120%	83%	70%	130%	100%	50%	150%
Total Polychlorinated Biphenyls	79	1914640	< 0.05	< 0.05	NA	< 0.05	101%	80%	120%	101%	70%	130%	114%	50%	150%
Polychlorinated Biphenyls Analys	is - Soil														
Aroclor 1242	80	1914640	< 0.05	< 0.05	NA	< 0.05	106%	80%	120%	109%	70%	130%	128%	50%	150%
Aroclor 1254	80	1914640	< 0.05	< 0.05	NA	< 0.05	120%	80%	120%	88%	70%	130%	119%	50%	150%
Aroclor 1260	80	1914640	< 0.05	< 0.05	NA	< 0.05	118%	80%	120%	77%	70%	130%	99%	50%	150%
Total Polychlorinated Biphenyls	80	1914640	< 0.05	< 0.05	NA	< 0.05	115%	80%	120%	91%	70%	130%	115%	50%	150%
Polychlorinated Biphenyls Analys	is - Soil														
Aroclor 1242	84	1925615	< 0.05	< 0.05	NA	< 0.05	104%	80%	120%	107%	70%	130%	123%	50%	150%
Aroclor 1254	84	1925615	2.26	2.17	4.1%	< 0.05	92%	80%	120%	81%	70%	130%	80%	50%	150%
Aroclor 1260	84	1925615	< 0.05	< 0.05	NA	< 0.05	98%	80%	120%	97%	70%	130%	120%	50%	150%
Total Polychlorinated Biphenyls	84	1925615	2.26	2.17	4.1%	< 0.05	98%	80%	120%	95%	70%	130%	108%	50%	150%
Polychlorinated Biphenyls Analys	is - Soil														
Aroclor 1242	88	1946809	< 0.05	< 0.05	NA	< 0.05	96%	80%	120%	106%	70%	130%	135%	50%	150%
Aroclor 1254	88	1946809	< 0.05	< 0.05	NA	< 0.05	104%	80%	120%	87%	70%	130%	96%	50%	150%
Aroclor 1260	88	1946809	< 0.05	< 0.05	NA	< 0.05	110%	80%	120%	94%	70%	130%	108%	50%	150%
Total Polychlorinated Biphenyls	88	1946809	< 0.05	< 0.05	NA	< 0.05	103%	80%	120%	96%	70%	130%	113%	50%	150%

Certified By:

for burband

Method Summary

		7	
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Soil Analysis	-		1
Sieve Analysis - 75 microns (wet)	SOIL 0540; SOIL 0110	KROETSCH 2007; SHEPPARD 2007	SIEVE
Arsenic	SOIL 0390; SOIL 0110; SOIL 0120; INST 0141	EPA SW 846-3050/6010; SHEPPARD	ICP/MS
Cadmium	SOIL 0390; SOIL 0110; SOIL 0120; INST 0141	EPA SW 846-3050/6010; SHEPPARD	ICP/MS
Chromium	SOIL 0390; SOIL 0110; SOIL 0120; INST 0141	EPA SW 846-3050/6010; SHEPPARD	ICP/MS
Cobalt	SOIL 0390; SOIL 0110; SOIL 0120; INST 0141	EFA 3W 646-3030/6010, SHEFFARD	
Copper	SOIL 0390; SOIL 0110; SOIL 0120; INST 0141	EPA SW 846-3050/6010; SHEPPARD	ICP/MS
Cadmium	SOIL 0390; SOIL 0110; SOIL 0120; INST 0141	EPA SW 846-3050/6010; SHEPPARD	ICP/MS
Lead	SOIL 0390; SOIL 0110; SOIL 0120; INST 0141	EPA SW 640-3030/6010, SHEPPARD	ICP/MS
Chromium	SOIL 0390; SOIL 0110; SOIL 0120; INST 0141	EPA SW 640-3030/6010, SHEPPARD	ICP/MS
Mercury	SOIL 0390; SOIL 0110; SOIL 0120; INST 0141	EFA 3W 840-3030/0010, SHEFFARD	ICP/MS
Cobalt	SOIL 0390; SOIL 0110; SOIL 0120; INST 0141	EFA 3W 040-3030/0010,3FEFFARD	
Nickel	SOIL 0390; SOIL 0110; SOIL 0120; INST 0141	EPA SW 846-3050/6010; SHEPPARD	ICP/MS
Zinc	SOIL 0390; SOIL 0110; SOIL 0120; INST 0141	EPA SW 846-3050/6010; SHEPPARD	ICP/MS
Trace Organics Analysis			
Benzene	TO 0570	EPA SW-846 8260	GC/MS
Toluene	TO 0570	EPA SW-846 8260	GC/MS
Ethylbenzene	TO 0570	EPA SW-846 8260	GC/MS
Xylenes	TO 0570	EPA SW-846 8260	GC/MS
C6 - C10 (F1)	TO 0570	CCME Tier 1 Method	GC/FID
C6 - C10 (F1 minus BTEX)	TO 0570	CCME Tier 1 Method	GC/FID
C10 - C16 (F2)	TO-0560	CCME Tier 1 Method	GC/FID
C16 - C34 (F3)	TO-0560	CCME Tier 1 Method	GC/FID
C34 - C50 (F4)	TO 0560	CCME Tier 1 Method	GC/FID
Gravimetric Heavy Hydrocarbons	TO 0560	CCME Tier 1 Method	GC/FID
Moisture Content	TO 0560	CCME Tier 1 Method	GRAVIMETRIC
Toluene-d8 (BTEX)	TO 0570	EPA SW-846 8260	GC/MS
Ethylbenzene-d10 (BTEX)	TO 0570	EPA SW-846 8260	GC/MS
o-Terphenyl (F2-F4)	TO 0570	CCME Tier 1 Method	GC/FID
Aroclor 1242	TO 0410	EPA SW-846 3550 & 8080	GC/ECD
Aroclor 1254	TO 0410	EPA SW-646 3550 & 8080	GC/ECD
Aroclor 1260	TO 0410	EPA SW-846 3550 & 8080	GC/ECD
Total Polychlorinated Biphenyls	TO 0410	EPA SW-846 3550 & 8080	GC/ECD
Decachlorobiphenyl	TO 0410	EDA 0144 0 40 0 5 5 0 0 0 0 0 0 0 0 0 0 0 0 0	GC/ECD
Decachlorobiphenyl	TO 0410	EPA SW-846 3550 & 8080	GC/ECD

Attention: DARA SCHMIDT
AECOM
2540 KENSINGTON RD N.W.
CALGARY, AB
CANADA T2N 3S3

Report Date: 2010/09/14

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B081380 Received: 2010/09/03, 14:40

Sample Matrix: Leachate # Samples Received: 4

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
ICPMS Metals on TCLP Leachate	4	2010/09/13	2010/09/13	AB SOP-00043	EPA 200.8

Sample Matrix: Soil # Samples Received: 4

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Elements by ICPMS - Soils	4	2010/09/12	2010/09/13	3 AB SOP-00043	EPA 200.8

^{*} RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager.

LINSAY DAME, Project Manager

Email: linsay.dame@maxxamanalytics.com

Phone# (403) 735-2237 Ext:2237

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Maxxam Job #: B081380 Report Date: 2010/09/14

AECOM

ELEMENTS BY ATOMIC SPECTROSCOPY (LEACHATE)

	W77715	W77717	W77718	W77719		
	2010/08/08	2010/08/08	2010/08/08	2010/08/08		
Units	MAT 01	MAT 02	MAT 22	MAT 23	RDL	QC Batch
mg/L	1.4	<0.5	<0.5	<0.5	0.5	4253799
<u> </u>					1	
	innit					
	mg/L	2010/08/08 Units MAT 01 mg/L 1.4	2010/08/08 2010/08/08 Units MAT 01 MAT 02	2010/08/08 2010/08/08 2010/08/08 Units MAT 01 MAT 02 MAT 22	2010/08/08 201	2010/08/08 201

Maxxam Job #: B081380 Report Date: 2010/09/14

AECOM

ELEMENTS BY ATOMIC SPECTROSCOPY (SOIL)

Maxxam ID		W77715		W77717		W77718	W77719		
Sampling Date		2010/08/08		2010/08/08		2010/08/08	2010/08/08		
	Units	MAT 01	RDL	MAT 02	RDL	MAT 22	MAT 23	RDL	QC Batch

Elements									
Total Lead (Pb)	mg/kg	150000 (1)	1000	18000 (1)	100	2000	1300	20	4253230

RDL = Reportable Detection Limit (1) Detection limits raised due to dilution to bring analyte within the calibrated range.

Maxxam Job #: B081380 Report Date: 2010/09/14

AECOM

Package 1	22 7°C
I ackage I	22.1

Each temperature is the average of up to three cooler temperatures taken at receipt

ELEMENTS BY ATOMIC SPECTROSCOPY (SOIL) Comments

W77715-01 Elements by ICPMS - Soils: Due to the sample matrix, sample required dilution. Detection limit was adjusted accordingly Sample

Sample W77717-01 Elements by ICPMS - Soils: Due to the sample matrix, sample required dilution. Detection limit was adjusted accordingly

Sample W77718-01 Elements by ICPMS - Soils: Due to the sample matrix, sample required dilution. Detection limit was adjusted accordingly

W77719-01 Elements by ICPMS - Soils: Due to the sample matrix, sample required dilution. Detection limit was adjusted accordingly Sample

Results relate only to the items tested.

AECOM

Attention: DARA SCHMIDT

Client Project #:

P.O. #:

Site Reference:

Quality Assurance Report Maxxam Job Number: CB081380

QA/QC			Date				
Batch			Analyzed				
Num Init	QC Type	Parameter	yyyy/mm/dd	Value	Recovery	Units	QC Limits
4253230 TDB	Matrix Spike	Total Lead (Pb)	2010/09/13		100	%	75 - 125
	QC Standard	Total Lead (Pb)	2010/09/12		89	%	54 - 146
	Spiked Blank	Total Lead (Pb)	2010/09/13		104	%	75 - 125
	Method Blank	Total Lead (Pb)	2010/09/13	<1		mg/kg	
	RPD	Total Lead (Pb)	2010/09/13	1.6		%	35
4253799 ST4	Matrix Spike	Leachable Lead (Pb)	2010/09/13		106	%	75 - 125
	Spiked Blank	Leachable Lead (Pb)	2010/09/13		104	%	84 - 113
	Method Blank	Leachable Lead (Pb)	2010/09/13	<0.5		mg/L	
	RPD	Leachable Lead (Pb)	2010/09/13	NC		%	35

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

QC Standard: A blank matrix to which a known amount of the analyte has been added. Used to evaluate analyte recovery.

Spiked Blank: A blank matrix to which a known amount of the analyte has been added. Used to evaluate analyte recovery.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

NC (RPD): The RPD was not calculated. The level of analyte detected in the parent sample and its duplicate was not sufficiently significant to permit a reliable calculation.

Maxxam Analytics International Corporation o/a Maxxam Analytics Calgary: 2021 - 41st Avenue N.E. T2E 6P2 Telephone(403) 291-3077 Fax(403) 291-9468

Validation Signature Page

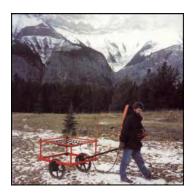
Maxxam	Job	#:	B081	138	0
--------	-----	----	------	-----	---

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

RON VENZI, Sentific Specialist

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

	5	G	La	GAT Laboratories	es	La Arri	Laboratory use Only Arrival Condition: © Go Arrival Temperature:	e Only	☐ Poor (complete 'notes') AGAT Job Number:	'notes	
2910 - 12 Street N.E. Calgary, Alberta, T2E 797 http://webearth.agatlabs.com		Phone: Fax: 40 Toll free www.ag	Phone: 403-735-2005 Fax: 403-735-2771 Toll free: 1-866-764-7554 www.agatlabs.com	5.7554		Notes:	SS				1 1
Report To: Company: AECOM Contact: Dara Schmidt Address: 2540 Kensington Road NW Calgary, Alberta T2N 353	MN P		Report I 1. Name: Email: 2. Name: Email:	Report Information 1. Name: Dara Schmidt Email: dara.schmidt@aecom.com 2. Name: Email:	aecom	com	Report Format Single Sample per		Turnaround Time (TAT) Required Regular TAT: ☐ 5 to 7 working days Rush TAT:	tequir	pə
2 FAX:	olonio	-	Regulatory R Alberta Tier 1 PST (1994)	Regulatory Requirements (Check): Alberta Tier 1 Canadian Drinking Water DRT (1994) PST (2001) Upstream Oil & Gas	(Check nking W □ Upstr	(): later eam Oil & Gas		Date Required:	□ 24 to 48 hours □ 48 to 72 hours Date Required:		
(a./a) amac	5		CCME (Ir	0	pe		Included			(N	
Lontact: Address:				Industrial Commercial Res/Park	aple Le	peəq				/Y) suot	Lab Sample #
Phone: Fax:				Ag FWAL	гезср	IstoT				Hazaro	
SAMPLE IDENTIFICATION	DATE / TIME SAMPLED	SAMPLE	# OF CONTAINERS	COMMENTS - Site/Sample Info, Sample Containment							
4AT 01	8-Aug-10	pilos	1	Paint	×	×					
1AT 02	8-Aug-10	solid	1	Paint	×	×					
AAT 22	8-Aug-10	pilos	1	Paint '	×	×					
1AT 23	8-Aug-10	pilos	1	Paint	×	×				4	
					+					-	
											4
					\mathbf{H}				SEP 0 3 2010		
		-			+	+		7	RI CALL	23	22.
		-						-			1
			Date/Time	Samples Received By (print name and sign)	d By (p	rrint name an	d sign)	Date/Time	Special Instructions		
Sample Relinquished By (print name & sign)	& sign)		Date/Time	Date/Time Samples Received By (print name and sign)	d By (p	rint name an	d sign)	Date/Time		-	
				-					Page	of	



Appendix E

Geophysics Report

Geophysical Investigation at CAM-A Nunavut

Prepared for AECOM Edmonton, Alberta

Submitted by
Associated Geosciences Ltd.
Calgary, Alberta

Associated Geosciences Ltd. Suite 415, 708 – 11th Avenue S.W. Calgary, Alberta, Canada T2R 0E4

TEL: 1.403.264.9496 FAX: 1.403.263.7641

www.associatedgeosciences.ca

File: 2010-CGAA.056

November 15, 2010

AECOM 17007 107th Avenue Edmonton, Alberta T5S 1G3

Attention:

Nick Oke

Dear Nick;

Associated Geosciences Ltd. (AGL) is pleased to submit the following revised report entitled:

Geophysical Investigation at CAM-A Nunavut

We would like to express our thanks to AECOM for the opportunity to provide our services in relation to this project.

If you have any questions, or require any additional information, please do not hesitate to contact our office.

Yours sincerely,

ASSOCIATED GEOSCIENCES LTD.

PERMIT No. P9454

Alm

Jim Henderson, Ph.D., P.Geoph., FEC(H)

Vice President, Geophysical Services

Jeff Unich

Junior Geophysicist

1.0 INTRODUCTION

This report presents the results of a geophysical investigation conducted at former DEW Line Station CAM-A in Nunavut, Canada, between August 1st and 8th, 2010. This survey formed one component of environmental assessments being done on the site during the same time. The objective of the survey was to delineate the extent of buried landfills at the site.

All work was done in accordance with Associated Geosciences Ltd. (AGL) proposal AMP476.

1.1 Site Description

CAM-A is located approximately 75 km southeast of Cambridge Bay, on the southern coast of Victoria Island, Nunavut. The remains of the DEW line station are on a plateau.

There were several areas identified as potential landfills and were primary areas for geophysical investigation. These included the Landfill A, Landfill B, Airstrip Borrow Area, Worked Area and Mod Train Area. Other areas for investigation were determined on-site and included the Beach POL, Inuit House and Borrow Area 1.

2.0 OVERHAUSER MAGNETIC GRADIOMETER METHOD

Total field magnetic intensity is a scalar measurement of the Earth's magnetic field. Anomalies within this field are due to two types of magnetism: induced and remnant. Induced magnetism results in the enhancement of the ambient field causing it to act as a magnet. Resulting magnetism is directly proportional to the intensity of the ambient field, and the ability of the material to enhance the local field (magnetic susceptibility). Remnant magnetism is a permanent magnetism of the material that depends on the metallurgical properties, and the thermal, mechanical and magnetic history of the material. It is independent of the field in which it is measured.

In an Overhauser effect magnetometer, the hydrogen-rich fluid in the magnetometer sensor is mixed with an electron-bearing fluid and is subjected to a strong radio-frequency current that polarizes the protons. Protons are then deflected into their plane of precession by a short duration pulse. After a brief pause to allow transient currents to subside, the slowly decaying proton precession signal remains. The precession frequency is measured and transformed to magnetic field units, i.e. nanoTesla (nT). For each measurement, the time, position and magnetic field values are digitally stored. The Overhauser effect results in a greater polarization of the proton-rich fluid, translating to stronger signals with less power consumption than proton precession instruments.

Vertical gradiometer data are the result of the differential total field response of two vertically displaced magnetometer sensors. As such, diurnal drift corrections are generally not required. The sensor separation distance for the present survey was 0.50 m.

In regions where anomalies are separated laterally (i.e. the magnetic response from the buried objects do not overlap) vertical gradient data is generally more sensitive to the boundaries of buried magnetic objects, offer greater information regarding object orientation, and emphasize shallow-occurring objects in comparison to total field data. These differences are somewhat less evident at landfill sites where an assortment of buried metal generally exists. Magnetic gradiometers tend to enhance signal from near-surface sources by reducing that portion of the signal from deeper, likely geologically-sourced, material.

Variations in the Earth's total magnetic field were measured using the GSM-19 Overhauser Effect Gradiometer with integrated GPS. The internal GPS receiver utilized Canadian Differential GPS (CDGPS) corrections to provide sub-meter accuracy.

The total field and vertical magnetic gradient survey data were collected at 1 second intervals as the operator walked over areas suspected of containing buried metallic debris. These areas were either deemed suspicious ahead of time, or deemed suspicious by their appearance or by the presence of debris sticking out of the ground. Within these areas, only disturbed ground was surveyed, and ground with no grading, piling, or vegetation disturbance was assumed to be free of landfills. In areas where magnetic anomalies were identified, the operator surveyed their extents and subsequently flagged their boundaries so that soil sampling could be done.

Page 3

Part of the output data from the GSM-19 gradiometer is a two-digit QC measure based on the repeatability of each point measured and the length of time each point took to measure. A QC measure of 99 is the highest quality value in this case, and for these data sets, over 95% of the points collected had a QC measure of 99.

The GPS data collected with the magnetic data was also of high quality; there were very few spikes in the locations, which are normally due to moving into areas with less satellite coverage. As a result, very few of the positions had to be re-referenced or removed during processing.

3.0 INTERPRETATION AND DISCUSSION

For this survey, the background gradient was moderate, so the threshold criterion for determining the boundary of potential landfills was chosen to be approximately +/- 50 nT. In many cases, the potential landfill lobes also had surface debris which affected the apparent lobes in the data. Care was taken to note the location of most of the scattered debris, so that the landfill lobes could more easily be identified. The boundaries of all identified lobes were pinned out and surveyed by AECOM personnel as they were surveyed with the gradiometer.

The main areas covered were Landfill A, Landfill B, Airstrip Borrow Area, Worked Area and Mod Train Area. Within these areas, only disturbed ground was surveyed, and ground with no grading, piling, or vegetation disturbance was assumed to be free of landfills. A few other areas were visually identified as potential landfills and were surveyed with the gradiometer.

3.1 Landfill A

The results for the survey from Landfill A are shown in Figure 1. Two (2) areas with significant surface debris were found in this area. Multiple anomalies were found throughout Landfill A. Four (4) lobes were identified for sampling on location. These lobes were labeled Lobe A through Lobe D; each lobe contained multiple anomalies. The lobes identified are likely due to the presence of metallic objects in the subsurface. Other lobes were found in this area but were not flagged for sampling. The lobes were clustered in a central area, which leads to the possibility of this area being a metallic landfill. Lobes A and C show a series of anomalies in a band possibly representing a row of buried metallic objects. Lobe B represents a number of anomalies centralized in a large area, which may represent a landfill site. Lobe D is similar to Lobe B as it appears to be a cluster of anomalies in a central area, possibly due to burial of metallic objects.

3.2 Landfill B

The results for the survey in Landfill B are shown in Figure 2. Much like Landfill A there is multiple anomalies found in two concentrated areas. Two (2) lobes were identified in this area, Lobe E and Lobe F. Lobe E represents a large anomalous body, which may correspond to metallic debris in the subsurface. Lobe F represents an anomalous structure, in relation to Lobe E, which may represent multiple smaller metallic structures in the subsurface. With multiple lobes present, this area might be a possible landfill location.

3.3 Airstrip Borrow Area

The results from the survey at the Airstrip Borrow Area are shown in Figure 3. This area has several smaller lobes labeled as a mass as Lobe G; this lobe was not identified on location. The lobes are clustered in an area in the southeast corner of the survey grid. There is the possibility of this being a deposit site for metallic debris.

3.4 Worked Area

The results from the survey at the Worked Area are shown in Figure 4. The Worked Area has four (4) lobes in total. Three (3) lobes in the area were identified on location, labeled Lobe H, Lobe I and Lobe J. An additional lobe, Lobe K, was not identified on location. Lobe H can be identified as a single anomalous object that may be the result of a small metallic object. Lobe I can be identified as a centre point to an area comprised of small anomalous bodies. The anomalous bodies might be small metallic objects buried in the subsurface and piled in a central location. Lobe J was identified on location and has no significant anomalous structure in the immediate area. Lobe K was not identified on location, but has similar traits to Lobe I. Lobe K can be identified as a central point to a large cluster of anomalous bodies. These anomalous bodies are possibly the results of buried metallic objects centralized in a common area.

3.5 MOD Train Area

The results from the survey at the MOD Train Area are shown in Figure 5. The MOD Train Area has two (2) lobes identified on location, Lobe L and Lobe M. The two lobes are located in the southeast corner of the surveyed area. Lobe L can be identified as an anomalous body approximately 10 m x 10 m. This anomaly can possibly be attributed to buried metallic debris in the subsurface. Lobe M is a smaller anomalous body approximately 5 m x 5 m in size, which maybe the resultant of a small buried metallic object.

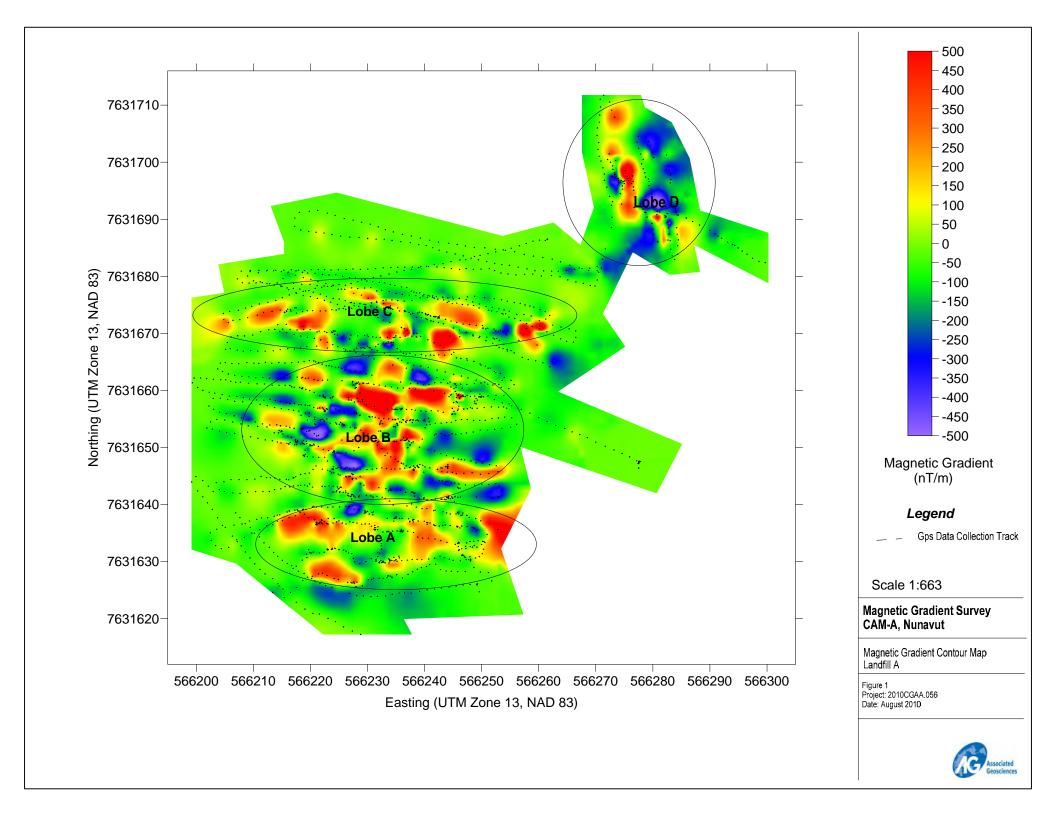
3.6 Beach POL

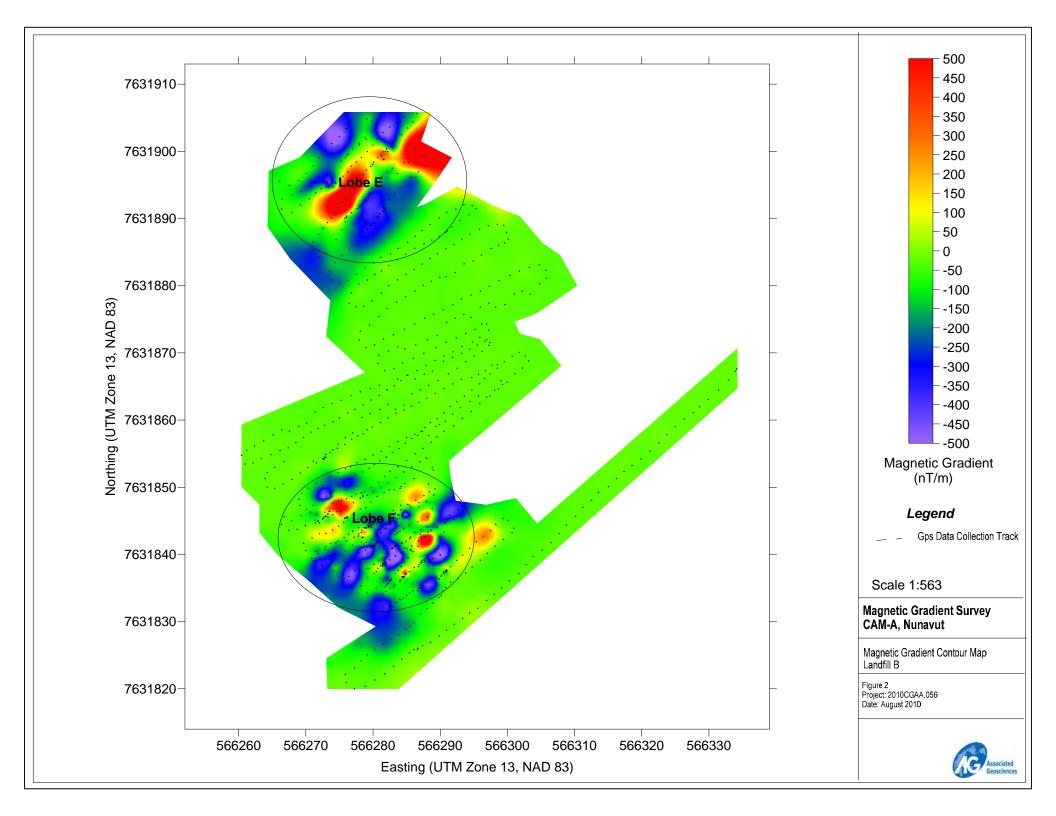
The results from the survey at the Beach POL (Petroleum, Oil and Lubricants) tanks are shown in Figure 6. Two (2) lobes were identified during processing in Calgary, Lobe N and Lobe O. The lobes are approximately 5 m in diameter and have a relatively low magnetic response compared to the other areas at CAM-A. Both lobes have similar characteristics, and are likely to be the results of buried metallic debris.

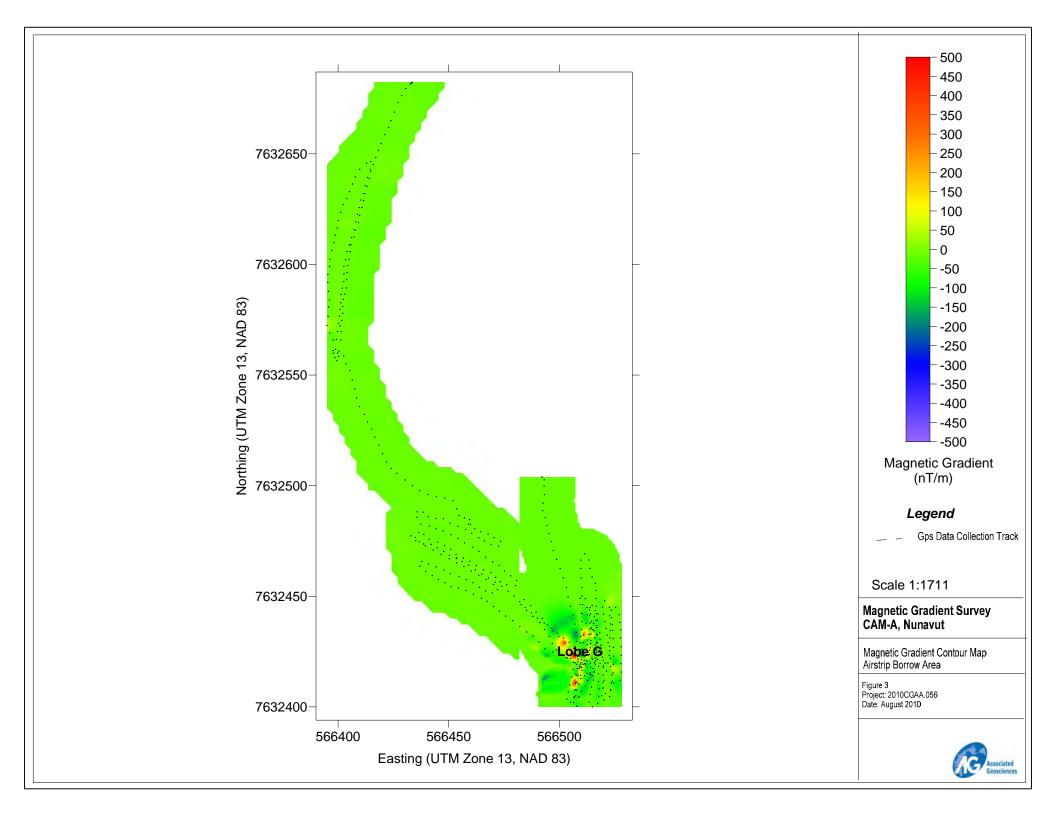
3.7 Inuit House

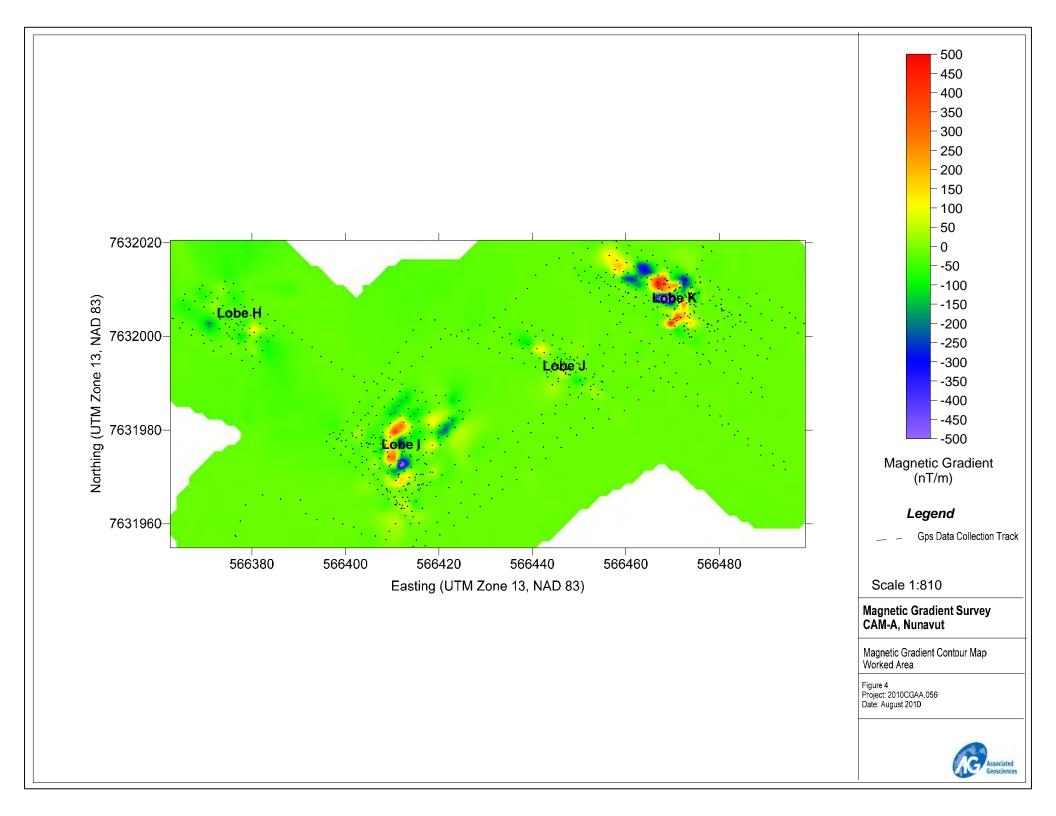
The results from the survey at the Inuit House are shown in Figure 7. There are three (3) lobes identified at the Inuit House in the processing stage in Calgary, Lobe P, Lobe Q and Lobe R. Lobe P is comprised of two smaller anomalies, which possibly represents metallic objects in the subsurface. Lobes Q and R are slightly larger anomalies, approximately 5 m in diameter. These anomalies may be the representation of larger metallic objects in the subsurface.

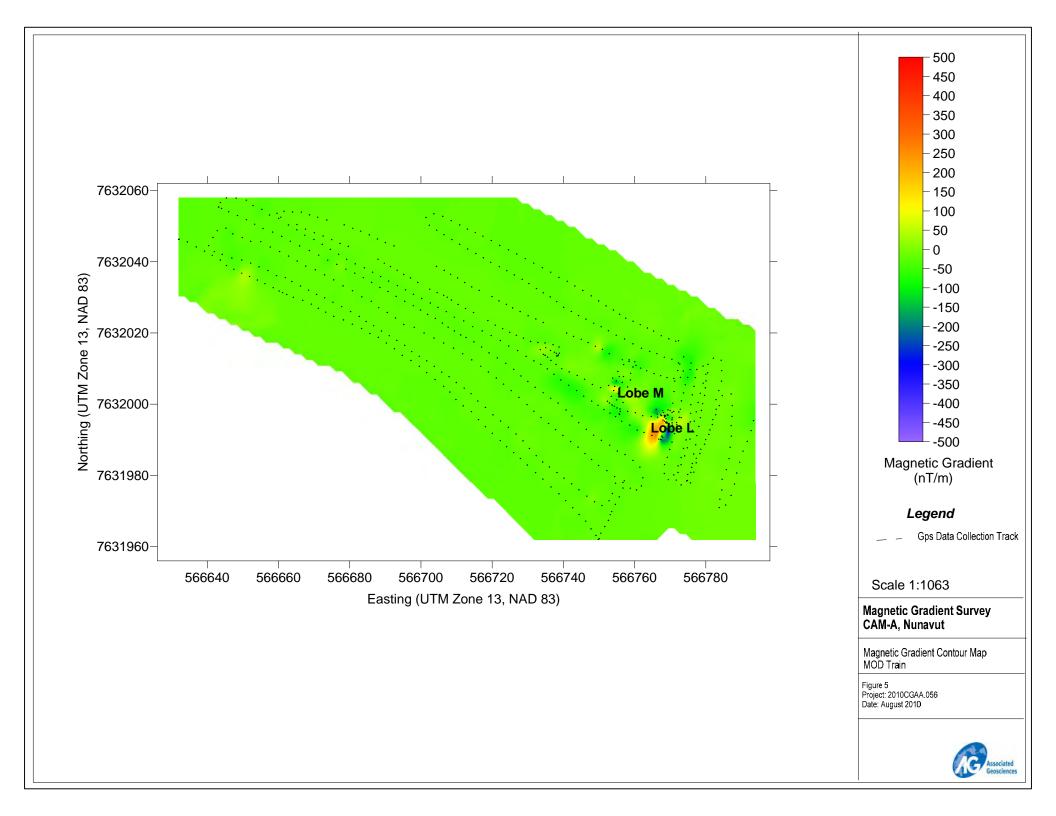
3.8 Borrow Area 1

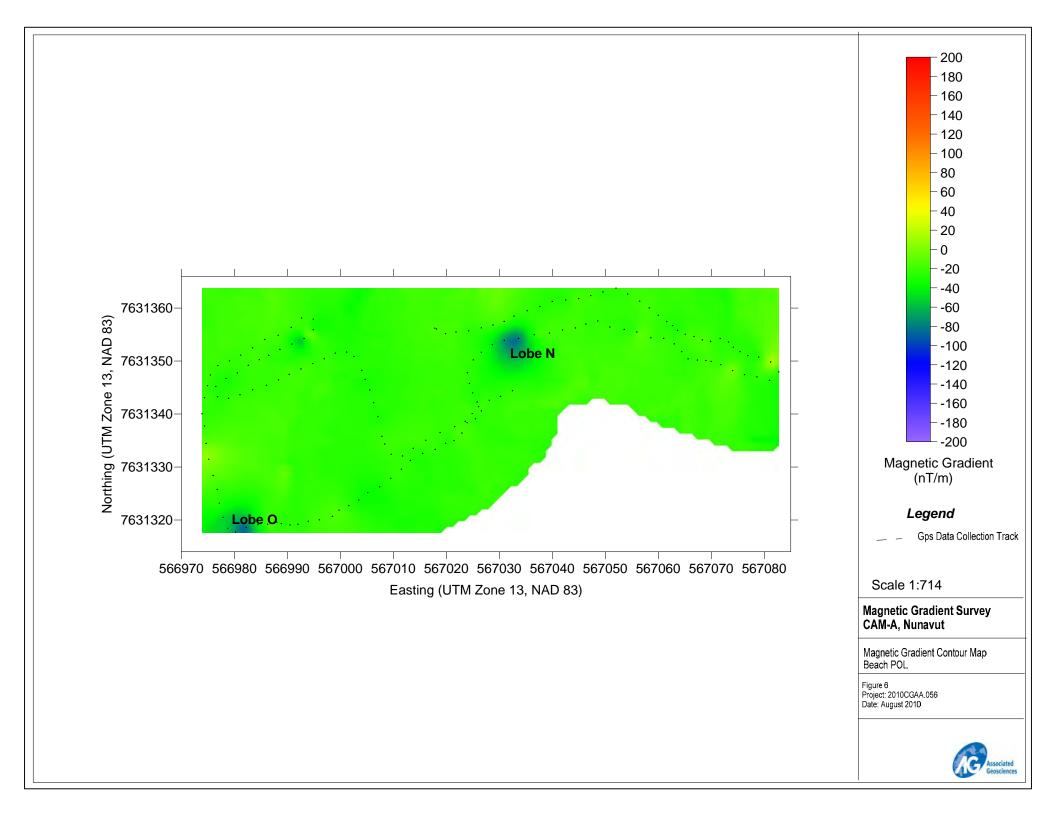

The results from the survey at the Borrow Area 1 are shown in Figure 8. There are no identifiable lobes at this location. The anomalies generated in this area have small magnetic values and are most likely to be attributed to background readings.

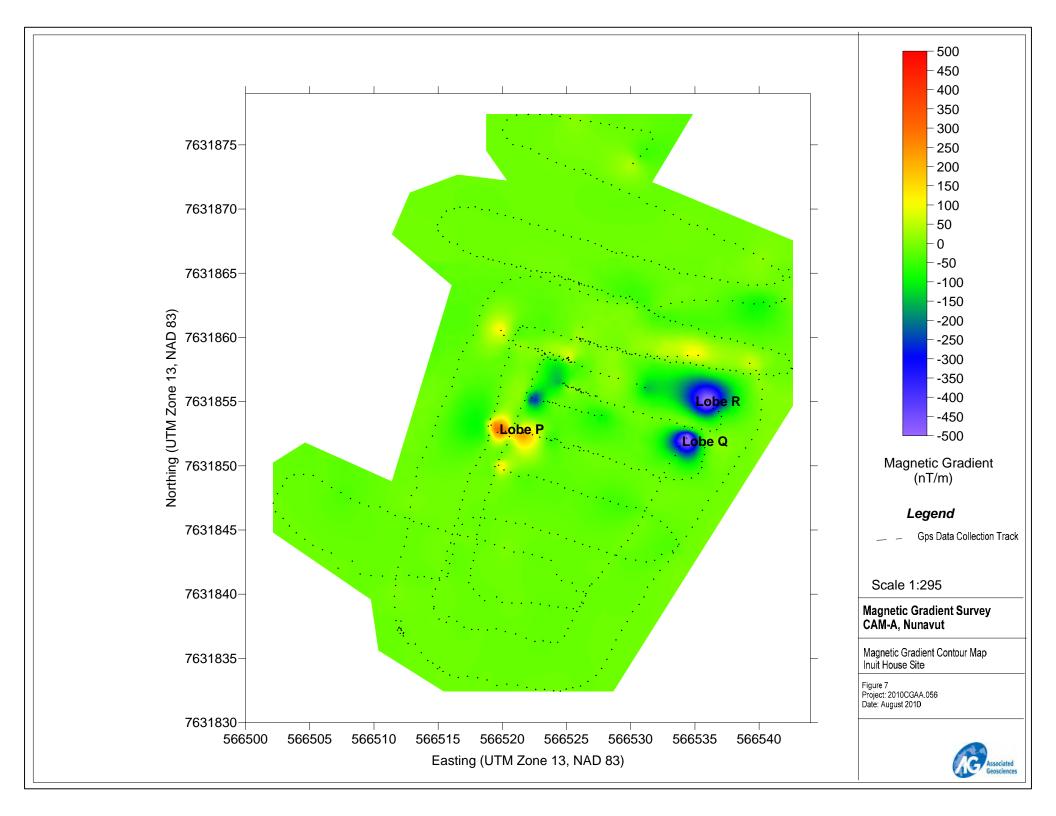


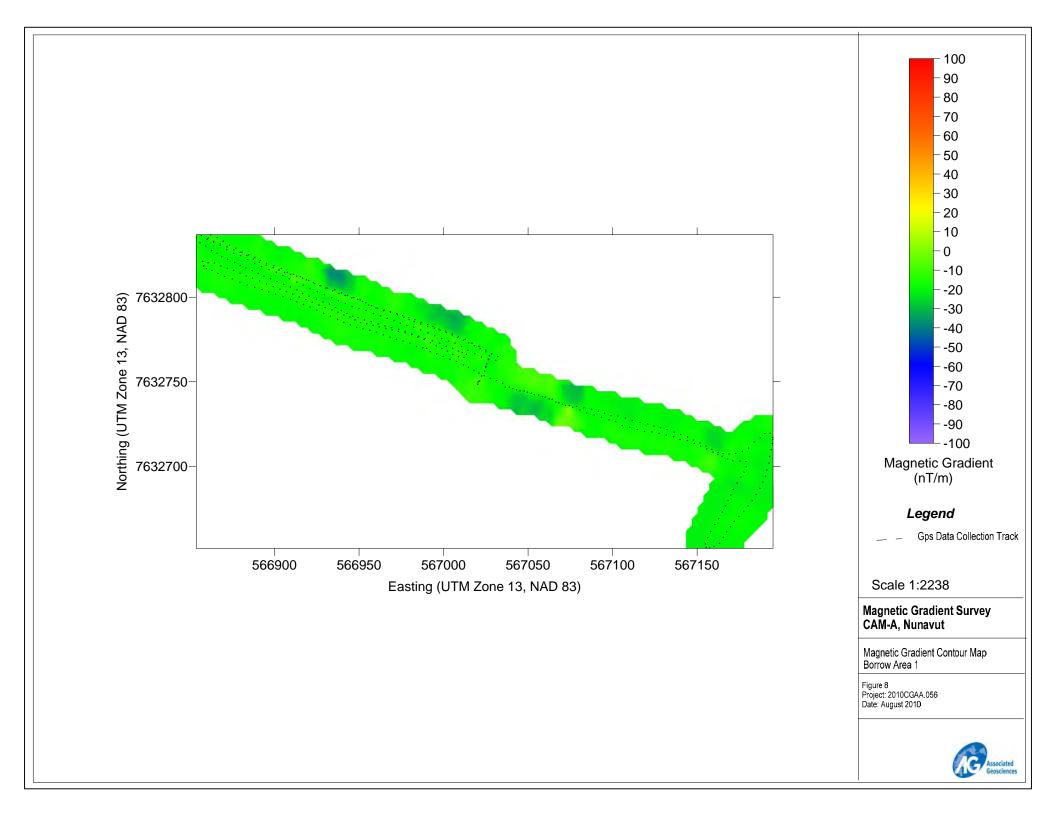

4.0 CONCLUSION


The magnetic gradient survey conducted at CAM-A on Victoria Island, Nunavut, successfully delineated several landfills. Throughout the site, 20 landfill lobes were detected, 14 of which their boundaries were delineated in the field, which allowed AECOM personnel to survey their boundaries, and sample the soil surrounding them. The remaining 6 lobes were identified in the processing stage of the survey in Calgary.









Appendix F

Geotechnical Testpit Logs

			Л-A Site Investigation		CLIENT: PW	GSC				TES	THO	LE N	O: TP10-01	
			-1 (BA-13) N 7,633,043	.2 E 566,407.8).: 60156118	
CON					METHOD: Pi						VATI			
SAME	PLE T	YPE	GRAB	SHELBY TUBE	SPLIT SPOO	N BU	LK		ı	∠ N(O REC	OVER	CORE	1
DEPTH (m)	OSO	SOIL SYMBOL		SOIL DESCRIPTION	ON		SAMPLE TYPE	SAMPLE #	PLASTIC I 10	-	LIQ 30 40	NUID •••	COMMENTS	DEPTH (m)
0	PT		PEAT						:					
	GP		GRAVEL AND SAND - trac maximum size 100 mm, br - gravel = 52 %, sand = 45 - salinity = 0.4 ppt SAND - silty, some clay, trace END OF TESTPIT (0.8 m)	ace gravel, light grey, wet	bangular and subro	unded,		S-1	•					
LOG OF TESTHOLE CAM-A_TESTPIT LOGS_AUGUST 18, 2010.GPJ UMA.GDT 6/10/10														-
STPIT LOGS AUGUST 18														-
STHOLE CAM-A_TE														-
Ĭ				5014		LOGGED BY: A							TION DEPTH: 0.80 m	
000			AΞ	COM		REVIEWED BY: PROJECT ENG			nu 1	Maiid	COI	MPLE	ETION DATE: 4/8/10	1 of 1
۲L						ELONEO I EINO	IIN	∟rt. <i>P</i>	u iwai i\	ıajıu			Page	1 01 1

			/I-A Site Investigation		CLIENT: PW	GSC				Т	ESTH	HOLE	NO: TP10-02	
			1 (BA-13) N 7,633,001.	9 E 566,497.5						_			O.: 60156118	
CON						ckaxe and Sho						ATION		
SAMF	PLE T	YPE	GRAB	SHELBY TUBE	SPLIT SPO	ON B BU	ILK				NO R	RECOVE	RY CORE	
DEPTH (m)	OSU	SOIL SYMBOL		SOIL DESCRIPTI	ON		SAMPLE TYPE	SAMPLE#	PLAST		M.C.	LIQUID 40	COMMENTS	DEPTH (m)
0	PT	***	PEAT						:	:	:	:		
LOG OF TESTHOLE CAM-A_TESTPIT LOGS_AUGUST 18, 2010.GPJ, UMA.GDT 6/10/10 CAM-A_TESTPIT LOGS_AUGUST 18, 2010.GPJ, UMA.GDT 6/10/10 CAM-A_TESTPIT LOGS_AUGUST 18, 2010.GPJ, UMA.GDT 6/10/10	GP SM	STATION TO THE SECOND S		ace gravel, light grey, wet 5, silt = 24 %, clay = 19 %	ibangular and subro	punded,		S-3 S-4						
PIT LOGS_AUGUST														-
STHOLE CAM-A_TESTP														-
LES.	1					LOGGED BY: A	١			<u>:</u>		COMPL	LETION DEPTH: 0.80	m
GOF			AE(COM		REVIEWED BY:	: R(ETION DATE: 4/8/10	
Θĺ						PROJECT ENG	INE	ER: A	nwar	Majid			Р	age 1 of 1

			1-A Site Investigation		CLIENT: PW	/GSC	TESTH	IOL	LE NO	O: TP10-03	
			-1 N 7,632,970.8 E 566,2	266.4						.: 60156118	
	TRAC					ickaxe and Shovel	ELEVA				
SAM	PLE T	YPE	GRAB	SHELBY TUBE	SPLIT SPO	ON B BULK	 ✓ NO R	EC	OVER'	Y CORE	
DEPTH (m)	OSC	SOIL SYMBOL			SCRIPTION	N	TOUT	SAMPLE I YPE	SAMPLE #	COMMENTS	DEPTH (m)
LOG OF TESTHOLE CAM-A_TESTPIT LOGS_AUGUST 18, 2010.GPJ_UMA.GDT_6/10/10 Cama_testpit_Logs_August 18, 2010.GPJ_UMA.GDT_6/10/10 Cama_testpit_Logs_August 18, 2010.GPJ_UMA.GDT_6/10/10	CL-ML		- gravel = 1 %, sand = 19 %, END OF TESTPIT (1.2 m) -		ow plastic				\$-5		1
Ĭ						LOGGED BY: AM				TION DEPTH: 1.20 m	
000			AEC	MO		REVIEWED BY: RCA		COI	MPLE	TION DATE: 4/8/10	4 -5 4
임						PROJECT ENGINEER: Anwar M	ajid			Page	1 of 1

		M-A Site Investigation		CLIENT: PW	/GSC	TESTH	OLE N	NO: TP10-04	
		7,633,006.7 E 566,189.5				-		D.: 60156118	
CONTRA					ickaxe and Shovel	ELEVA			
SAMPLE	TYPE	GRAB	SHELBY TUBE	SPLIT SPO	ON BULK	NO RE	COVE	RY CORE	
DEPTH (m)	SOIL SYMBOL			SCRIPTION	J	SAMDIE TVDE	SAMPLE #	COMMENTS	DEPTH (m)
LOG OF TESTHOLE CAM-A_TESTPIT LOGS_AUGUST 18, 2010.GPJ UMA.GDT 6/10/10 C	ML	- seepage END OF TESTPIT (1.2 m) - at		w plastic			S-5		1
<u> </u>		A = 6	044		LOGGED BY: AM			ETION DEPTH: 1.20 m	
0 90		AEC	UMI		REVIEWED BY: RCA PROJECT ENGINEER: Anwar Ma		UMPL	ETION DATE: 4/8/10	1 of 1
51					I I NOULO I LINOHNELIN. AHWAH MA	ajiu		i aye	1 01 1

PRO	JECT	: CAI	M-A Site Investigation		CLIENT: PW	GSC				TES	THOL	E NC): TP10-05	
			7,633,026.6 E 566,162.3	3									60156118	
	ITRAC			- m		ckaxe and Sho					VATIO		·	
SAM	IPLE 1	TYPE	GRAB	SHELBY TUBE	SPLIT SPOO	ON B BU	LK		I	NC	RECC	VERY	CORE	
DEPTH (m)	nsc	SOIL SYMBOL		SOIL DESCRIPTION	ON		SAMPLE TYPE	SAMPLE #	PLASTIC	M.C.	LIQI 0 40		COMMENTS	DEPTH (m)
0	PT	***	PEAT											
-		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	SAND AND GRAVEL - son mm, light brown, moist to w	ne cobbles, trace silt, platy and su let	ubrounded, maximu	ım size 150		S-7						-
-	SP		- gravel = 47 %, sand = 49	76, SIIVCIAY – 4 76										-
-		000000000000000000000000000000000000000	- seepage) - at refusal on frozen ground/bo	ulder			S-8						-
3, 2010.GPJ UMA.GDT 6/10/10			END OF TESTPTI (0.95 III)	, - at reusal on liozen groundboo	uluei									-
LOG OF TESTHOLE CAM-A_TESTPIT LOGS_AUGUST 18, 2010.GPJ UMA.GDT 6/10/10														-
TES		•		2014		LOGGED BY: A							TON DEPTH: 0.95 m	
0000			AE(COM		PROJECT ENG			Du (0 * 1 A	oiid	CON	/IPLET	TON DATE: 4/8/10	0 1 of 1
\preceq L						TRUJEUT ENG	IIV	∟rt. <i>P</i>	u iwai ivi	ajiu	1		rag	e 1 of 1

			M-A Site Investigation		CLIENT: PW	GSC				Т	ESTH	IOLE N	NO: TP10-06	
			A-1 N 7,633,037.3 E 566	5,025.0						_			O.: 60156118	
	NTRA(ckaxe and Sho						TION	· ·	
SAN	IPLE 7	TYPE	GRAB	SHELBY TUBE	SPLIT SPO	ON B BU	ILK				_NO R	ECOVE	RY CORE	
DEPTH (m)	OSO	SOIL SYMBOL		SOIL DESCRIPTION	ON		SAMPLE TYPE	SAMPLE #	PLAST		M.C.	LIQUID 40	COMMENTS	DEPTH (m)
0	PT	***	PEAT											
LOG OF TESTHOLE CAMA.A_TESTPIT LOGS_AUGUST 18, 2010.GPJ_UMA.GDT_6/10/10 Comparison of the comparison	SP	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	- gravel = 47 %, sand = 49	me cobbles, trace silt, platy and suvet %, silt/clay = 4 % n) - due to seepage and sloughing		im size 150		S-9 ·						
2010.GPJ U														-
SUST 18,														
GS_AUG											:			
TESTPIT LC														-
E CAM-A														-
일 2										į				
TES		•		5044		LOGGED BY: A							ETION DEPTH: 0.95 m	
0000			AE	COM		REVIEWED BY:			\n	Maiid		COMPL	ETION DATE: 4/8/10	1 05 4
\preceq L						PROJECT ENG	⊐וווי		n iwal	iviajiū			Page	1 of 1

PRO	JECT	: CAI	M-A Site Investigation	CLIENT: PWGSC					TES	THO	LE N	IO: TP10-07	
			A-2 N 7,633,115.7 E 566,205.5									D.: 60156118	
	TRAC			METHOD: Pickaxe a						VATI			
SAM	PLE T	YPE	GRAB SHELBY TUBE	SPLIT SPOON	BUL	_K			N	REC	OVEF	RY CORE	1
DEPTH (m)	nsc	SOIL SYMBOL	SOIL DESCRIPTION			SAMPLE TYPE	SAMPLE#	PLASTIC	•	LIC 30 40	QUID H	COMMENTS	DEPTH (m)
0		3/3/	GRAVEL AND SAND - cobbly, maximum size 150 mm, trace	e silt, light brown, dry to dam	ıp		•	· · · · · · · · · · · · · · · · · · ·					
- - - -	GP	マママママママママママママママママ マママママママママママママママママママ	- gravel = 56 %, sand 42 %, silt/clay = 2 % END OF TESTPIT (0.95 m) - at refusal on cobbles/boulder				S-10·						- - - - 1—
LOG OF TESTHOLE CAM-A_TESTPIT LOGS_AUGUST 18, 2010.GPJ_UMA.GDT_6/10/10				Logor								TION DEDTIL 0.05 av	-
비			AECOM		D BY: A VED BY:		^Δ					ETION DEPTH: 0.95 m ETION DATE: 4/8/10	
90			AECO/VI		CT ENGI			nwar M	ajid	100	IVIT LE		1 of 1

PROJECT: C	CAM-A Site Investigation	CLIENT: PWGSC				-	TES	THO	LE N	O: TP10-08	
	BA-2 N 7,633,206.9 E 565,957.5					_				D.: 60156118	
CONTRACTO		METHOD: Pickaxe and Sho					ELE\				
SAMPLE TYP	PE GRAB SHELBY TUBE	SPLIT SPOON BUI	LK				∐NO	REC	OVEF	RY CORE	1
	SOIL DESCRIPTION		SAMPLE TYPE	SAMPLE #	PLAST		M.C.		QUID H 0	COMMENTS	DEPTH (m)
GP - SP 1	- gravel = 56 %, sand 42 %, silt/clay = 2 % SAND - trace gravel, trace silt, coarse grained, light brown, day Solution			S-11 ·				y - 49			1
-06 OF TES:	AECOM	LOGGED BY: A REVIEWED BY: PROJECT ENG	R		nwar	Majio	d			ETION DEPTH: 1.20 m ETION DATE: 4/8/10 Pag	n ge 1 of 1

			M-A Site Investigation		CLIENT: PW	/GSC T	ESTHC	LE N	O: TP10-09	
			-5 N 7,631,509.3 E 566,7	713.7					.: 60156118	
		CTOR			METHOD: C		LEVAT			
SAM	IPLE :	TYPE	GRAB	SHELBY TUBE	SPLIT SPO	ON B BULK	NO REG	OVER	Y CORE	
DEPTH (m)	nsc	SOIL		SOIL DE	SCRIPTION	l	SAMPLE TYPE	SAMPLE#	COMMENTS	DEPTH (m)
LOG OF TESTHOLE CAM-A_TESTPIT LOGS_AUGUST 18, 2010.GPJ UMA.GDT 6/10/10 CAM-A_TESTPIT LOGS_AUGUST 18, 2010.GPJ UMA.GDT 6/10/10 CAM-A_TESTPIT LOGS_AUGUST 18, 2010.GPJ UMA.GDT 6/10/10	GP	************************************	light brown, damp		, occasional subrou	nded/subangular, maximum size 300 mm		S-13		1
프 농			Λ <i>=</i> /	COM		LOGGED BY: AM REVIEWED BY: RCA			TION DEPTH: 1.05 m TION DATE: 4/8/10	
90			AEC	.U/VI		PROJECT ENGINEER: Anwar Majid		ZIVIF LE		1 of 1

PROJECT: CAM-A Site Investigation	CLIENT: PWGSC				_		NO: TP10-10	
LOCATION: LF-5 N 7,631,589.3 E 566,648.8 CONTRACTOR:	METHOD: Our divister						IO.: 60156118	
SAMPLE TYPE GRAB SHELBY TUBE	METHOD: Quadivator SPLIT SPOON ■BU	II K				VATION D RECOV	· ·	
(w) DESCRIPTION SOIL DESCRIPTION		SAMPLE TYPE	SAMPLE#	PLASTIC	C M.C.		COMMENTS	DEРТН (m)
PEAT SAND - trace gravel, trace boulders, maximum size 350 mm, poorly graded, brown, damp SP GRAVEL AND SAND - cobbly, trace boulders, mostly platy, or subrounded/subangular, brown, moist to wet - gravel = 63 %, sand = 36 %, silt/clay = 1 % - salinity = 0.5 ppt - seepage - frozen ground END OF TESTPIT (1.0 m) - at refusal on frozen ground AECOM			S-14 	•				1-
AECOM	LOGGED BY: A REVIEWED BY PROJECT ENG	: R(nwar N	/aiid		LETION DEPTH: 1.00 m LETION DATE: 4/8/10 Page	1 of 1

PROJ	ECT	: CAN	M-A Site Investigation		CLIENT: PW	/GSC					TES1	ГНОІ	LE N	O: TP10-11	
-			-5 N 7,631,601.2 E 566,54	4.1						\rightarrow				D.: 60156118	
CONT					METHOD: Q						ELE\				
SAMF	LE 1	YPE	GRAB	SHELBY TUBE	SPLIT SPO	ON B BU	ILK				∠NO	REC	OVER	RY CORE	
DEPTH (m)	OSO	SOIL SYMBOL		SOIL DESCRIPT	TON		SAMPLE TYPE	SAMPLE#	PLAS F 1		M.C.		QUID H O	COMMENTS	DEPTH (m)
0	PT	\$000 \$000	PEAT SAND - trace gravel, trace bou poorly graded, brown, damp	ılders, maximum size 350 m	m, trace silt, fine to r	medium grained,									
-	SP	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	- gravel = 9 %, sand = 90 %, si	ilt/clay = 1 %				S-16	•						-
-		**	GRAVEL AND SAND - cobbly subrounded/subangular, brow	trace boulders, mostly platy n, moist to wet	, occasional										-
		グググ													-
	GP	シン						S-17	 						-
-	Oi	ママン	- gravel = 63 %, sand = 36 %, - salinity 0.5 ppt	silt/clay = 1 %				0-17							_
-		ングジ													-
-		(1) (1) (1)	- seepage - frozen ground												-
-1			END OF TESTPIT (0.95 m) - a	at refusal on frozen ground											1-
															-
DT 6/10/10															-
3PJ_UMA.G															_
T 18, 2010.(-
LOG OF TESTHOLE CAMA_TESTPIT LOGS_AUGUST 18, 2010.GPJ UMA.GDT 6/10/10															-
ESTPIT LOC															-
CAM-A_T															
키 인 1 2															
	<u> </u>					LOGGED BY: A					<u> </u>			ETION DEPTH: 0.95 i	<u>n</u>
GOF			AEC(DM		REVIEWED BY:								TION DATE: 4/8/10	
9					PROJECT ENG	INE	ER: A	nwa	r Maji	d			Pa	ge 1 of 1	

			M-A Site Investigation		CLIENT: PW				O: TP10-12	
			-5 N 7,631,519.9 E 566,5	550.4					.: 60156118	
	TRAC				METHOD: C		LEVAT			
SAM	PLE T	YPE	GRAB	SHELBY TUBE	SPLIT SPO	ON BULK	NO RE	COVER	Y CORE	
DEPTH (m)	nsc	SOIL SYMBOL		SOIL DE	SCRIPTION	V	SAMPLE TYPE	SAMPLE #	COMMENTS	DEPTH (m)
LOG OF TESTPOLE CAMA, LESTPOL LOGS, AUGUST 18, 2010.6PJ UMA.GDT 6/10/10	GP GP	\[\text{\$\exititt{\$\text{\$\exititt{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\	PEAT GRAVEL AND SAND - cobt light brown, damp - gravel = 65 %, sand = 33 % - salinity = 0.5 ppt - seepage END OF TESTPIT (0.95 m)	%, silt/clay = 2 %	y, occasional subrou	nded/subangular, maximum size 300 mm		S-18		1
<u>-</u>			A = /	COM		LOGGED BY: AM REVIEWED BY: RCA			TION DEPTH: 0.95 m TION DATE: 4/8/10	
000			AEC			PROJECT ENGINEER: Anwar Majid		JIVIF LE		1 of 1

			Л-A Site Investigation		CLIENT: PW	GSC				TE:	STHC	LE N	IO: TP10-13	
			-1 (BA-13) N 7,632,400.7	' E 567,016.9									D.: 60156118	
	ITRAC				METHOD: Q						EVAT			
SAM	IPLE T	YPE	GRAB	SHELBY TUBE	SPLIT SPOO	DN B BU	JLK				IO REC	COVER	RY CORE	
DEPTH (m)	OSN	SOIL SYMBOL		SOIL DESCRIPTION	ON		SAMPLE TYPE	SAMPLE #	PLASTI	•		QUID - 1 40	COMMENTS	DEPTH (m)
0	PT	××	PEAT						:	:	:			
LOG OF TESTHOLE CAM-A_TESTPIT LOGS_AUGUST 18, 2010.GPJ UMA.GDT 6/10/10	SM	\\ \begin{align*} N=0=0=0=0=0=0=0=0=0=0=0=0=0=0=0=0=0=0=0	SAND - silty, some gravel, tr mm, light brown, moist - gravel = 27 %, sand = 55 % - saturated, seepage		ubrounded, maximu	um size 300		S-19						1
						LOGGED BY: A	ΔM	L	<u> </u>		: CC	MPI F	L ETION DEPTH: 1.10 m	1
3 OF			A=C	MO		REVIEWED BY	: R(ETION DATE: 5/8/10	
Ĭ						PROJECT ENG	INE	ER: A	nwar	Majid			Page	1 of 1

PRO	JECT	: CAI	M-A Site Investigation		CLIENT: PW	GSC				Т	ESTH	OLE N	IO: TP10-14	
LOCA	OITA	N: Air	strip N 7,632,645.5 E 5	666,514.8						Р	ROJE	CT NO	D.: 60156118	
CON	TRAC	CTOR	:		METHOD: Q					E	LEVA	TION (
SAMI	PLE 1	YPE	GRAB	SHELBY TUBE	SPLIT SPO	ON BU	JLK				NO RE	COVE	RY CORE	
DEPTH (m)	OSO	SOIL SYMBOL		SOIL DESCRIPT			SAMPLE TYPE	SAMPLE#	PLAS		•	LIQUID — 1 40	COMMENTS	DEPTH (m)
0		44	GRAVEL AND SAND - co subrounded/subangular, r	bbly, trace boulders, trace silt, mo naximum size 200 mm, brown, da	ostly platy, occasion amp to moist	al						:		
LOG OF TESTHOLE CAM-A_TESTPIT LOGS_AUGUST 18, 2010.GPJ_UMA.GDT_6/10/10 The state of the state o	GP	/ ママママママママママママママママママママママママママママママママママママ	- gravel = 52 %, sand = 45 - seepage					S-20	•					1-
STHOLE CAM-A														
<u> </u>						LOGGED BY: A		•					ETION DEPTH: 1.00 m	
G OF			A=	COM		REVIEWED BY:						OMPL	ETION DATE: 5/8/10	
9						PROJECT ENG	INE	ER: /	nwar	Majid			Page	1 of 1

PRO	JECT	: CAN	M-A Site Investigation		CLIENT: PW	/GSC				1	TESTI	HOLE	NO: TP10-15	
LOCA	OITA	N: Air	strip N 7,633,082.1 E 5	66,393.5						_			IO.: 60156118	
CON					METHOD: C							ATION		
SAM	PLE 1	TYPE	GRAB	SHELBY TUBE	SPLIT SPO	ON B BU	ILK				_NO F	RECOV	ERY CORE	
DEPTH (m)	OSU	SOIL SYMBOL		SOIL DESCRIPT			SAMPLE TYPE	SAMPLE #	PLAS I- 1		M.C.	LIQUID —— 1 40	COMMENTS	DEPTH (m)
0		77	GRAVEL AND SAND - co subrounded/subangular, r	obly, trace boulders, trace silt, monaximum size 200 mm, brown, da	ostly platy, occasion amp to moist	al								
LOG OF TESTHOLE CAMA_TESTPIT LOGS_AUGUST 18, 2010.GPJ UMA.GDT 6/10/10	GP		- gravel = 61 %, sand = 36	%, silt/clay = 3 % - at refusal on cobbles/boulder				S-21	•					
STHOLE CAM-A_TES														
		1				LOGGED BY: A	١					COMP	LETION DEPTH: 1.10 m	
P 0			A=	COM		REVIEWED BY:	: R(LETION DATE: 5/8/10	
ğL						PROJECT ENG	INE	ER: A	nwai	Majic	d [Page	e 1 of 1

PROJE	CT:	CAN	/I-A Site Investigation	CLIENT: P\	VGSC				TE	STHO	LE N	IO: TP10-16	
LOCATI	ION	: BA	-3 N 7,632,700.5 E 567,139.6						PR	OJEC	TNC	D.: 60156118	
CONTR				METHOD:						EVAT			
SAMPLI	ΕT	YPE	GRAB SHELBY TUBE	SPLIT SPO	DON B BU	JLK				IO REC	OVE	RY CORE	
DEPTH (m)	OSC	SOIL SYMBOL	SOIL DESCRIF			SAMPLE TYPE	SAMPLE#	PLASTI	•		QUID -1 10	COMMENTS	DEPTH (m)
0		7 7 7 7	GRAVEL AND SAND - cobbly, trace boulders, trace sill subrounded/subangular, maximum size 150 mm, brown	t, mostly platy, occasion, damp to moist	nal								
	GP	ママママママママママママママママママママママママママママママママママママ	- gravel = 58 %, sand = 39 %, silt/clay = 3 %				\$-22 ·	•					
LOG OF TESTHOLE CAM-A TESTPIT LOGS_AUGUST 18, 2010.GPJ UMA.GDT 6/10/10 T			END OF TESTPIT (0.95 m) - at refusal on frozen grounds and the state of the state o	nd									1-
OG OF TEST			AECOM		LOGGED BY: A REVIEWED BY: PROJECT ENG	: R		nwer	Maiid			ETION DEPTH: 0.95 m ETION DATE: 5/8/10	1 of 1

PRO	JECT	: CAN	M-A Site Investigation		CLIENT: PW	/GSC				Т	ESTH	OLE N	NO: TP10-17	
LOCA	OITA	N: BA	-3 N 7,632,745.0 E 567	7,066.5						Р	ROJE	CT NO	D.: 60156118	
		CTOR			METHOD: C						LEVA			
SAMI	PLE 7	ΓΥΡΕ	GRAB	SHELBY TUBE	SPLIT SPO	ON B BU	ILK				NO RE	COVE	RY CORE	
DEPTH (m)	OSO	SOIL SYMBOL		SOIL DESCRIPT			SAMPLE TYPE	SAMPLE #	PLAST		И.С. I	LIQUID — 1 40	COMMENTS	DEPTH (m)
0			GRAVEL AND SAND - col subrounded/subangular, n	obly, trace boulders, trace silt, mo naximum size 200 mm, brown, do	ostly platy, occasion amp to moist	al								
LOG OF TESTHOLE CAM-A_TESTPIT LOGS_AUGUST 18, 2010.GPJ UMA.GDT 6/10/10 The state of the state o	GP	SYSYSYSYSYSYSYS	- gravel = 58 %, sand = 39	%, silt/clay = 3 %				S-23 ·						1-
2 2						LOGGED BY: A	AM				<u> </u>	OMPI	ETION DEPTH: 1.05 m	
5			Δ =0	COM		REVIEWED BY:		CA					ETION DATE: 5/8/10	
5 -			~-			PROJECT ENG			nwar	Majid				e 1 of 1

PRO.	JECT	: CAN	/I-A Site Investigation	CLIENT: PW	GSC				TE	STHO)LE N	IO: TP10-18	
LOC	OITA	N: BA	-3 N 7,632,658.7 E 567,183.3						PF	ROJEC	CT NC	D.: 60156118	
		CTOR		METHOD: Q						EVAT			
SAM	PLE 1	YPE	GRAB SHELBY TUBE	SPLIT SPO	ON B BU	JLK				NO RE	COVE	RY CORE	
DEPTH (m)	nsc	SOIL SYMBOL	SOIL DESCRIPTI			SAMPLE TYPE	SAMPLE #	PLAST ⊩	$\overline{}$)	IQUID — I 40	COMMENTS	DEPTH (m)
0		77	GRAVEL AND SAND - cobbly, trace boulders, trace silt, mo subrounded/subangular, maximum size 200 mm, brown, da	ostly platy, occasion amp to moist	al					:			
-		SSSSSS											
-	GP	NE SEE					S-24 ·	•					
-		公公	- gravel = 58 %, sand = 39 %, silt/clay = 3 %										
-		マスス											
- -1		<u> </u>	END OF TESTPIT (0.9 m) - at refusal on boulder			-							1-
-													
.GDT 6/10/10													
LOG OF TESTHOLE CAM-A_TESTPIT LOGS_AUGUST 18, 2010.GPJ UMA.GDT 6/10/10													
JGUST 18, 2							•		!				
IT LOGS_AL													
M-A_TESTP													
STHOLE CAN										:			
빌			A = COA4		LOGGED BY: A		ο _Λ					ETION DEPTH: 0.90 m	
000			AECOM		PROJECT ENG			hwar	Maiid		JIVIPL	ETION DATE: 5/8/10 Page	1 of 1

PROJEC	CT:	CAN	/I-A Site Investigation		CLIENT: PW	/GSC					TES	THO	LE N	O: TP10-19		
-			6 N 7,631,913.3 E 566,	343.6						_).: 60156118		
CONTRA					METHOD: C						ELE\					
SAMPLE	<u> </u>	PE,	GRAB	SHELBY TUBE	SPLIT SPO	ON BL	JLK		1		NC	REC	OVEF	RY CORE		
DE	DSD.	SOIL SYMBOL		SOIL DESCRIPT	ION		SAMPLE TYPE	SAMPLE#	PLAS I- 1		M.C.		QUID -1 0	COMMENTS	5	DEPTH (m)
LOG OF TESTHOLE CAMA_TESTPIT LOGS_AUGUST 18, 2010.GPJ UMA.GDT 6/10/10 TO OF TESTHOLE CAMA_TESTPIT LOGS_AUGUST 18, 2010.GPJ UMA.GDT 6/10/10 TO OF TESTHOLE CAMA_TESTPIT LOGS_AUGUST 18, 2010.GPJ UMA.GDT 6/10/10 TO OF TESTHOLE CAMA_TESTPIT LOGS_AUGUST 18, 2010.GPJ UMA.GDT 6/10/10 TO OF TESTHOLE CAMA_TESTPIT LOGS_AUGUST 18, 2010.GPJ UMA.GDT 6/10/10 TO OF TESTHOLE CAMA_TESTPIT LOGS_AUGUST 18, 2010.GPJ UMA.GDT 6/10/10 TO OF TESTHOLE CAMA_TESTPIT LOGS_AUGUST 18, 2010.GPJ UMA.GDT 6/10/10 TO OF TESTHOLE CAMA_TESTPIT LOGS_AUGUST 18, 2010.GPJ UMA.GDT 6/10/10 TO OF TESTHOLE CAMA_TESTPIT LOGS_AUGUST 18, 2010.GPJ UMA.GDT 6/10/10 TO OF TESTPIT L	PT	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	PEAT SAND - trace gravel, trace is poorly graded, brown, dam - gravel = 3 %, sand = 95 % - seepage END OF TESTPIT (0.95 m)		m, trace silt, fine-me	rdium grained,		S-25	•	0 2	200 3	0 4	0			1-
일 2																
王 王			A = 4			LOGGED BY: A								ETION DEPTH: 0.9		
000			A=(COM		REVIEWED BY PROJECT ENG			\n\ ₄ \c	r Maii	id	CO	MPLE	ETION DATE: 5/8/		1 of 1
ــــاد						I I KOULO I ENG	AII AI		u iwdl	ıvıaji	u				ı aye	1 10 1

PROJ	IECT	: CAN	M-A Site Investigation	CLIENT: PW	/GSC				TI	STH	OLE N	IO: TP10-20	
LOCA	OIT	N: LF-	-6 N 7,631,835.0 E 566,427.2	•					PI	ROJE	CT NO	D.: 60156118	
CON	ΓRΑC	CTOR:		METHOD: C					El	_EVA1	ΓΙΟN		
SAMF	PLE T	YPE	GRAB SHELBY TUBE	SPLIT SPO	ON B BU	ILK			\square	NO RE	COVE	RY CORE	
DEPTH (m)	nsc	SOIL SYMBOL	SOIL DESCRIPT	ION		SAMPLE TYPE	SAMPLE #	PLAST		•	LIQUID — I 40	COMMENTS	DEPTH (m)
0	PT	**	PEAT	ore mostly platy or	possional								
LOG OF TESTHOLE CAM-A_TESTPIT LOGS_AUGUST 18, 2010.GPJ UMA.GDT 6/10/10 C	GP	FACACACACACACACACACACACACACACACACACACAC	GRAVEL AND SAND - trace cobbles, trace silt, trace bould subrounded/subangular, brown, damp - gravel = 61 %, sand = 37 %, silt/clay = 2 % - salinity = 0.3 ppt - seepage END OF TESTPIT (0.95 m) - due to seepage and sloughin		casional		S-26						1-
STHOLE CAN													-
Ĭ			A = 00.14		LOGGED BY: A							ETION DEPTH: 0.95 m	
0 0 0			AECOM		REVIEWED BY:			. m	Ma::-I	C	OMPL	ETION DATE: 5/8/10	1 -5 1
ΣI					PROJECT ENG	III	.⊏K: <i>F</i>	wwar	iviajia			rage	1 of 1

			л-A Site Investigation		CLIENT: PWGSC								IO: TP10-21	
			-6 N 7,631,801.6 E 566,	494.9	1								D.: 60156118	
CON				TTT	METHOD: Quadivato					ELE\			•	
SAMI	LE 1	YPE	GRAB	SHELBY TUBE	SPLIT SPOON	BULK	(∠NC	REC	OVEF	RY CORE	Τ
O DEPTH (m)	OSO PT	SOIL SYMBOL	PEAT	SOIL DESCRIPTI	ON	SAMPI F TYPF	SAMPIF#	FL/	ASTIC ■ 10	M.C. 20 3		UID •	COMMENTS	DEPTH (m)
-	GP		GRAVEL AND SAND - tra poorly graded, brown, dam - gravel = 61 %, sand = 37		and subrounded, medium gra	ained,	S-2	27 · · · •	•					-
LOG OF TESTHOLE CAM-A_TESTPIT LOGS_AUGUST 18, 2010.GPJ_UMA.GDT_6/10/10 C LOG OF TESTPORT LOGS_AUGUST 18, 2010.GPJ_UMA.GDT_6/10/10 T LOG OF TESTPORT LOGS_AUGUST 18, 2010.GPJ_UMA.GDT_6/10/10		マママ	- seepage END OF TESTPIT (0.95 m) - at refusal on frozen ground										- 1- - - -
9F TE			Δ=0	COM		D BY: AM 'ED BY: F							ETION DEPTH: 0.95 m ETION DATE: 5/8/10	
00			7-1			T ENGIN		: Anw	ar Ma	jid				1 of 1

PROJE	ECT:	CAN	/I-A Site Investigation		CLIENT: PW	/GSC				-	TEST	THOL	ΕN	O: TP10-22		
			5 N 7,631,644.1 E 566,42	7.9						F	PRO.	JECT	NO).: 60156118		
CONT					METHOD: C						ELEV					
SAMPI	LE T	YPE	GRAB	SHELBY TUBE	SPLIT SPO	ON BU	JLK	1			NO	REC	OVER	RY CORE		
DEPTH (m)	OSC	SOIL SYMBOL		SOIL DESCRIP	TION		SAMPLE TYPE	SAMPLE #	PLAST		M.C.	LIQ) 40		COMMENTS	5	DEPTH (m)
LOG OF TESTHOLE CAM-A_TESTPIT LOGS_AUGUST 18, 2010.GPJ UMA.GDT 6/10/10	SP GP	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	PEAT SAND - trace gravel, trace bot poorly grade, brown, damp - gravel = 3 %, sand = 94 %, s GRAVEL AND SAND - cobbly subrounded/subangular, brow - seepage - gravel = 65 %, sand = 33 %, - salinity = 0.5 ppt END OF TESTPIT (0.95 m) - a	itt/clay = 3 % trace boulders, mostly plain, moist to wet silt/clay = 2 %		edium grained,		S-29			o 300) 400				1
						LOGGED BY: A	<u> </u> ДМ		:			: COI	MPI F	ETION DEPTH: 0.9	95 m	
FO.			AEC	OM		REVIEWED BY	: R(TION DATE: 5/8/	10	
00			, •			PROJECT ENG	INE	ER: A	nwar	Majio	t				Page	1 of 1

LOCATION: BA-4B N 7,632,479.2 E 567,489.0 CONTRACTOR: SAMPLE TYPE GRAB GRAB SOIL DESCRIPTION PROJECT NO.: 6015611 ELEVATION (m): SOIL DESCRIPTION PROJECT NO.: 6015611 ELEVATION (m): SOIL DESCRIPTION PROJECT NO.: 6015611 ELEVATION (m): SOIL DESCRIPTION PROJECT NO.: 6015611 COMME	DRE E
SAMPLE TYPE GRAB SHELBY TUBE SPLIT SPOON BULK NO RECOVERY COMME	
SOIL DESCRIPTION SOMME # # AMPLE TYPE SAMPLE TYPE SAM	
SOIL DESCRIPTION SOIL SAMPLE TYPE SAMPLE T	ENTS HAD
10 20 30 40	
GRAVEL AND SAND - cobbly, trace boulders, trace silt, mostly platy, occasional subrounded/subangular, maximum size 200 mm, light brown, damp to moist	
AECOM Completion Detrices Completion Detrices Completion Date:	
LOGGED BY: AM COMPLETION DEPTH	
REVIEWED BY: RCA COMPLETION DATE: PROJECT ENGINEER: Anwar Majid	6/8/10 Page 1 of

PRO	JECT	: CAI	M-A Site Investigation	CLIENT:	PWGSC				TES	OHT	LE N	IO: TP10-24	
			-4B N 7,632,471.4 E 567,592.0									D.: 60156118	
CON					: Pickaxe and Sho					VATI			
SAMI	PLE T	YPE	GRAB SHELBY TUBE	⊠SPLIT S	POON BU	JLK		I	∠N	O REC	OVE	RY CORE	
DEPTH (m)	OSO	SOIL SYMBOL	SOIL DESCRIF			SAMPLE TYPE	SAMPLE #	PLASTIC	•		QUID -I	COMMENTS	DEPTH (m)
0		2721	GRAVEL AND SAND - cobbly, trace boulders, trace silt subrounded/subangular, maximum size 150 mm, light b	, mostly platy, occa prown, damp to moi	sional st				•				
LOG OF TESTHOLE CAMA_TESTPIT LOGS_AUGUST 18, 2010.GPJ UMA.GDT 6/10/10 C		15 45 45 45 45 45 45 45 45 45 45 45 45 45	- gravel = 69 %, sand = 29 %, silt/clay = 2 %		st		S-31 ·						1-
STHOLE CAM-A													-
ES TES	1	1			LOGGED BY: A	ΔM		<u>-</u>				ETION DEPTH: 0.80 m	
P O			AECOM		REVIEWED BY:	: R(ETION DATE: 6/8/10	
ĞΙ					PROJECT ENG	INE	ER: A	nwar N	/lajid			Page	1 of 1

PRO	JECT	: CAI	M-A Site Investigation	/GSC					TESTHOLE NO: TP10-25					
LOC	F					PROJECT NO.: 60156118								
					ETHOD: Pickaxe and Shovel					ELEVATION (m):				
SAM	PLE 1	TYPE	GRAB SHELBY TUBE	SPLIT SPO	T SPOON BULK					NO RECOVERY				
DEPTH (m)	OSO	SOIL SYMBOL		SOIL DESCRIPTION					IC M.0	2. LIQUID 30 40		COMMENTS	DEPTH (m)	
0		77	GRAVEL AND SAND - cobbly, trace boulders, trace silt subrounded/subangular, maximum size 300 mm, light b	al				:	- 11					
_		33								:			-	
-		33								:				
-		3/3/ 3/3/								:				
-		7) 7)								:				
	GP	7 7 7 7					S-31A				<u></u>			
		77 77												
		33	- gravel = 68 %, sand = 31 %, silt/clay = 1 %											
-		*												
-		77											-	
-		33 212												
-1			END OF TESTPIT (0.95 m) - at refusal on cobbles and								•	1-		
-														
										:				
6/10/10										:				
IMA.GDT														
0.GPJ L														
r 18, 201								<u> </u>			·····		-	
AUGUST										:				
- - -										:				
TESTPII										:				
CAM-A														
LOG OF TESTHOLE CAM-A_TESTPIT LOGS_AUGUST 18, 2010.GPJ UMA.GDT 6/10/10														
31-	Loc					LOGGED BY: AM					COMPLETION DEPTH: 0.95 m			
0000	AECOM					REVIEWED BY: RCA PROJECT ENGINEER: Anwar Majid					COMPLETION DATE: 6/8/10 Page 1 of 1			

PRO	JECT	: CAN	M-A Site Investigation		CLIENT: PW	/GSC				Т	ESTH	OLE N	NO: TP10-26	
LOCA	OITA	N: BA	-4B N 7,632,379.5 E 567,61	7.9						Р	ROJE	CT NO	O.: 60156118	
CON	TRAC	CTOR				ickaxe and Sho				Е	LEVA	TION		
SAMI	PLE 7	ΓΥΡΕ	GRAB	SHELBY TUBE	SPLIT SPO	ON B BU	JLK				NO RE	COVE	RY CORE	
DEPTH (m)	OSN	SOIL SYMBOL		OIL DESCRIPT			SAMPLE TYPE	SAMPLE #	PLAST		1.C. — 30	LIQUID — I 40	COMMENTS	DEPTH (m)
0		77	GRAVEL AND SAND - cobbly, tr subrounded/subangular, maximu	ace boulders, trace silt, mount in size 300 mm, light brow	ostly platy, occasion vn, damp to moist	al								
_		33												
_		ママンジ								:				
		रोरो								:				
		77 77								:				
	GP	33												
-		ママンン						S-32 +	•					
-		33	- gravel = 64 %, sand = 35 %, sil	Holay = 1 %										
		ママンン	- graver - 04 70, sand - 33 70, sin	oddy - 1 70										
		33								:				
-		33	END OF TESTPIT (0.8 m) - at re	fusal on cobbles and boul	ders					:				
-										•				
<u>-1</u>														1 -
										:				
-														
0/10														
DT 6/10														
UMA.G														
10.GPJ										:				
18, 20									ļ <u>i</u>		<u>;</u>			
NGUST 1														
LOG OF TESTHOLE CAM-A_TESTPIT LOGS_AUGUST 18, 2010.GPJ UMA.GDT 6/10/10														
STPIT												:		
M-A TE										:				
LE CAI										:	:			
OHLS 2						LOCOED BY	A 1.4					: -OMP!	ETION DEDTIL: 0.00	
			AECO	М		LOGGED BY: A		CA					ETION DEPTH: 0.80 m ETION DATE: 6/8/10	
50			7_0	771		PROJECT ENG			nwar	Majid				1 of 1

PRO	JECT	: CAI	M-A Site Investigation	CLIENT: P	WGSC				TES	THO	LE N	IO: TP10-27	
			-4C N 7,632,164.5 E 567,486.2						PRO	DJEC	TNC	D.: 60156118	
CON					Pickaxe and Sho					VATI			
SAMI	PLE	ΓΥΡΕ	GRAB SHELBY TU	BE SPLIT SF	POON BU	JLK			N	O REC	OVEF	RY CORE	
DEPTH (m)	OSO	SOIL SYMBOL	SOIL DESCR			SAMPLE TYPE	SAMPLE#	PLASTIC	•	LIO 30 4	QUID - I 0	COMMENTS	DEPTH (m)
0		77	GRAVEL AND SAND - cobbly, trace boulders, trace subrounded/subangular, maximum size 200 mm, lig	silt, mostly platy, occasi ht brown, damp to moist	onal								
-		33											
-		3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3											
		33											
		7 7 7 7											
-		33											
-	GP	73 73					S-33 +						
-		33	- gravel = 64 %, sand = 35 %, silt/clay = 1 %										
		33 33	gravor 04 /v, sana - 00 /v, sinuciay - 1 /v										
		13											
-		17							:				
-		33											
<u> </u>		77	END OF TEXTOIT (4.2.)	1111									1-
'			END OF TESTPIT (1.0 m) - at refusal on cobbles ar	id boulders									
									:				
0/10													
)T/9 TQ													
UMA.G													
0.GPJ													
LOG OF TESTHOLE CAMA_TESTPIT LOGS_AUGUST 18, 2010.GPJ UMA.GDT 6/10/10													
JGUST													
JGS At													
TPIT													
4 1ES													
CAM													
THOLE 5										<u>:</u>			
Ä H			A=CO14		LOGGED BY: A		CA					ETION DEPTH: 1.00 m	
900			AECOM		REVIEWED BY: PROJECT ENG			nwar N	//ajid	100	IVIPLE	ETION DATE: 6/8/10 Page	1 of 1

			Л-A Site Investigation		CLIENT: PW	GSC .	TES1	ТНС	LE N	O: TP10-28	
			-5A N 7,633,043.7 E 56	6,519.0						.: 60156118	
	TRAC					ickaxe and Shovel			ION (r		
SAMI	PLE T	YPE	GRAB	SHELBY TUBE	SPLIT SPO	ON BULK	✓NO	REC	OVER	Y CORE	
DEPTH (m)	OSC	SOIL SYMBOL			SCRIPTION	J		SAMPLE TYPE	SAMPLE #	COMMENTS	DEPTH (m)
0			SILT - sandy, clayey, trace of	gravel, trace cobbles, light grey	, moist, low plastic						
-	ML-CLI		- gravel = 0%, sand = 23 %,	silt = 48 %, clay = 29 %					S-34		
-		ихи	END OF TESTPIT (0.9 m) -	in silt							-
-1											1-
10/10											-
LOG OF TESTHOLE CAMA_TESTPIT LOGS_AUGUST 18, 2010.GPJ UMA.GDT 6/10/10											
UMA.C											_
10.GPJ											
18, 20											-
JGUST											-
GS Al											
IPIT LC											-
A TES											-
CAM											-
H P											
<u>2</u>						LOGGED BY: AM		CC	MPLE	TION DEPTH: 0.90 m	
GOF			AEC	COM		REVIEWED BY: RCA				TION DATE: 6/8/10	4 .
9						PROJECT ENGINEER: Anw	ar Majid			Page	1 of 1

			/I-A Site Investigation		CLIENT: PW	/GSC				O: TP10-29	
			-1 (BA-13) N 7,633,074.9	E 566,415.4						.: 60156118	
	TRAC					ickaxe and Shovel	ELEV				
SAM	PLE T	YPE	GRAB	SHELBY TUBE	SPLIT SPO	ON BULK	☑NO F	REC	OVER	Y CORE	
DEPTH (m)	OSO	SOIL SYMBOL			SCRIPTION	1		SAMPLE TYPE	SAMPLE#	COMMENTS	DEPTH (m)
LOG OF TESTHOLE CAM-A_TESTPIT LOGS_AIGUST 18, 2010.GPJ_UMA.GJT_6/10/10	ML-CLI		SILT - sandy, clayey, trace g	ravel, trace cobbles, light grey,	moist, low plastic				S-35		1
2						L0005D DV		0.0	145: 5	TION DEDTIL 4.40	
# 			A=C	M		LOGGED BY: AM REVIEWED BY: RCA				TION DEPTH: 1.10 m TION DATE: 6/8/10	
90			AEC			PROJECT ENGINEER: Anwar N		-	·.v LL		1 of 1

PRO	JECT	: CAI	M-A Site Investigation		CLIENT: PW	GSC				Т	ESTH	OLE N	NO: TP10-30	
LOC	ATIO	N: BA	-5A N 7,633,151.1 E 56	6,465.3						F	ROJE	CT NO	D.: 60156118	
	TRAC					ckaxe and Sho					LEVA			
SAM	PLE 1	YPE	GRAB	SHELBY TUBE	SPLIT SPO	ON B BU	ILK				NO RE	COVE	RY CORE	
DEPTH (m)	OSC	SOIL SYMBOL		SOIL DESCRIPT			SAMPLE TYPE	SAMPLE#	PLAST		•	LIQUID — I 40	COMMENTS	DEPTH (m)
0			SAND - silty, some gravel,	trace to some clay, trace cobble	s, light grey, moist to	wet			:	:	i	:		
1	SM		- gravel = 17 %, sand = 51					S-36	•					1-
LOG OF TESTHOLE CAM-A_TESTPIT LOGS_AUGUST 18, 2010.GPJ, UMA.GDT, 6/10/10 National Company														
STPIT LOGS_AUGU.														
STHOLE CAM-A_TEST														
		1	ı			LOGGED BY: A	١		·		·Tc	OMPL	ETION DEPTH: 1.10 m	1
P P			Δ=0	COM		REVIEWED BY:		CA					ETION DATE: 6/8/10	
00						PROJECT ENG			nwar	Majid				1 of 1

			M-A Site Investigation		CLIENT: PW	/GSC	TESTH	OLE N	IO: TP10-31	
			-3 N 7,632,845.3 E 566,	878.3					D.: 60156118	
CONT						ickaxe and Shovel	ELEVA			
SAMP	LE T	YPE	GRAB	SHELBY TUBE	SPLIT SPO	ON BULK	∠NO RE	COVE	RY CORE	
DEPTH (m)	OSU	SOIL SYMBOL		SOIL DE	SCRIPTION	1	SAMPI F TYPE	SAMPLE #	COMMENTS	DEPTH (m)
LOG OF TESTHOLE CAM-A_TESTHIT LOGS_AUGUST 18, 2010.GPJ_UMA.GDT_6/10/10	GP		- gravel = 66 %, sand = 32 % END OF TESTPIT (0.95 m)	6, silt/clay = 2 %	ostly platy, occasion	al subrounded/subangular, brown, da	mp to	S-37		1-
			A = 4	2014		LOGGED BY: AM			ETION DEPTH: 0.95 m	
000			A=C	.OM		REVIEWED BY: RCA PROJECT ENGINEER: Anwar Ma		OMPLI	ETION DATE: 6/8/10	1 of 1
ᅬ						i enojeo i englineek: Anwar Ma	jiu		rage	ı Of f

PRO	JECT:	: CAN	M-A Site Investigation	CLIENT: PV	VGSC				Т	ESTH	OLE N	NO: TP10-32	
LOCA	ATION	I: BA	-5A N 7,632,994.1 E 566,669.8						F	ROJE	CT NO	D.: 60156118	
CON	TRAC	TOR:			Pickaxe and Sho					LEVA			
SAMI	PLE T	YPE	GRAB SHELBY TUBE	SPLIT SPC	ON B BU	JLK				NO RE	COVE	RY CORE	
DEPTH (m)	nsc	SOIL SYMBOL	SOIL DESCRIP			SAMPLE TYPE	SAMPLE #	PLAS		•	LIQUID — I 40	COMMENTS	DEPTH (m)
LOG OF TESTHOLE CAM-A_TESTPIT LOGS_AUGUST 18, 2010.GPJ_UMA.GDT_6/10/10 The state of the state o	GM		GRAVEL AND SAND - some silt, trace clay, trace cobble light grey, damp to moist - gravel = 47 %, sand = 35 %, silt/clay = 18 % END OF TESTPIT (0.9 m) - at refusal on cobbles/boulded		subrounded,		S-38 ·	•	200	30	40		1
HOLE CAM-A_TESTPIT LOGS_AU													-
	1				LOGGED BY: A	<u> Ц</u>	<u> </u>	<u> </u>	<u>:</u>	: :	OMPI	<u> </u> ETION DEPTH: 0.90 m	
Р			AECOM		REVIEWED BY		CA					ETION DATE: 6/8/10	
၅၀			A=CO//I		PROJECT ENG			nwar	Majid		, <u>-</u>		1 of 1

			M-A Site Investigation		CLIENT: PW	/GSC	TESTH	OLE N	IO: TP10-33	
			-5 N 7,632,912.3 E 566,	719.7					D.: 60156118	
CONT						ickaxe and Shovel	ELEVA			
SAMF	PLE T	YPE	GRAB	SHELBY TUBE	SPLIT SPO	ON BULK	∠ NO RE	COVE	RY CORE	
DEPTH (m)	nsc	SOIL SYMBOL		SOIL DE	SCRIPTION	J	SAMPIETYPE	SAMPLE #	COMMENTS	DEPTH (m)
LOG OF TESTHOLE CAM-A_TESTHIT LOGS_AUGUST 18, 2010.GPJ_UMA.GDT_6/10/10 The state of the state o	GP GP		- gravel = 66 %, sand = 32 %	%, silt/clay = 2 %	ostly platy, occasion	al subrounded/subangular, brown, da	mp to	S-39		1-
			A = 4	3014		LOGGED BY: AM			ETION DEPTH: 0.95 m	
0 90			A=C	COM		REVIEWED BY: RCA PROJECT ENGINEER: Anwar Ma		OMPL	ETION DATE: 6/8/10	1 of 1
۲I						i enojeo i englineek: Anwar Ma	jiu		rage	ı Of f

PRO	JECT	: CAI	M-A Site Investigation		CLIENT: PW	'GSC				TES	THO	LE N	IO: TP10-35	
LOCA	OITA	N: BA	-6 N 7,631,709.1 E 566	6,585.3						_			D.: 60156118	
CON						ickaxe and Sho					VATI			
SAM	PLE 7	YPE	GRAB	SHELBY TUBE	SPLIT SPO	ON B BU	JLK		ı	∠ N	O REC	OVEF	RY CORE	
DEPTH (m)	OSO	SOIL SYMBOL		SOIL DESCRIPT			SAMPLE TYPE	SAMPLE #	PLASTIC	•		QUID - I 0	COMMENTS	DEPTH (m)
0		77	GRAVEL AND SAND - col subrounded/subangular, n	bbly, trace boulders, trace silt, monaximum size 200 mm, brown, da	ostly platy, occasion amp to moist	al								
MA.GDT 6/10/10	GP	、マママママママママママママママ	- gravel = 65 %, sand = 33					S-41 ·						1-
8, 2010.GPJ UM														
GS_AUGUST 18														
LOG OF TESTHOLE CAM-A_TESTPIT LOGS_AUGUST 18, 2010.GPJ UMA.GDT 6/10/10														
HSL.														
1EST 2		1				LOGGED BY: A	AM	<u> </u>	<u> </u>	···	CO	MPLE	ETION DEPTH: 1.00 m	
P S			A=	COM		REVIEWED BY:	: R(ETION DATE: 6/8/10	
ĭL_						PROJECT ENG	SINE	ER: A	nwar N	/lajid			Page	1 of 1

PROJE	CT:	CAN	M-A Site Investigation	CLIENT: PW	GSC				TE	STHC	LE N	IO: TP10-36	
LOCAT	ION	l: BA	-6 N 7,631,641.7 E 566,667.7						PR	OJEC	TNC	D.: 60156118	
CONTR	RAC	TOR		METHOD: Q						EVAT			
SAMPL	EΤ	YPE	GRAB SHELBY TUBE	SPLIT SPOO	ON BU	ILK				IO REC	COVER	RY CORE	
DE	a nsc	SOIL SYMBOL	SOIL DESCRIPTIO	ON		SAMPLE TYPE	SAMPLE #	PLAST ⊩ 10	•		QUID -1 40	COMMENTS	DEPTH (m)
0	PT	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	PEAT SAND - trace silt, trace gravel, medium grained, poorly grade	d, light grey, dam	<u> </u>								
-	GP		GRAVEL AND SAND - cobbly, trace boulders, trace silt, most subrounded/subangular, maximum size 200 mm, brown, dam - gravel = 65 %, sand = 33 %, silt/clay = 2 % - seepage END OF TESTPIT (1.1 m) - at refusal on frozen ground				S-42						1
어딘 2								:		:			
S L					LOGGED BY: A			<u> </u>				ETION DEPTH: 1.10 m	1
0 9			A ECOM		REVIEWED BY:					CC	MPL	ETION DATE: 7/8/10	4
의					PROJECT ENG	INE	EK: A	nwar	iviajid			Page	1 of 1

PROJ	ECT	: CAN	M-A Site Investigation	CLIENT: PV	VGSC					TES	THO	LE N	O: TP10-37	
			-6A N 7,631,702.6 E 566,685.2						_				D.: 60156118	
CONT				METHOD: (ELE\				
SAMF	PLE T	YPE	GRAB SHELBY TUBE	SPLIT SPO	DON BU	JLK	ı	ı		NO	REC	OVEF	RY CORE	1
DEPTH (m)	nsc	SOIL SYMBOL	SOIL DESCRIF	PTION		SAMPLE TYPE	SAMPLE #	PLAS		M.C.		QUID -i	COMMENTS	DEPTH (m)
LOG OF TESTHOLE CAM-A_TESTHIT LOGS_AUGUST 18, 2010.GPJ_UMA.GDT_6/10/10 The state of the state o	GP GP		GRAVEL AND SAND - cobbly, trace boulders, trace silt subrounded/subangular, maximum size 200 mm, brown - gravel = 59 %, sand = 40 %, silt/clay = 1 % - seepage END OF TESTPIT (0.9 m) - due to seepage and slough		nal		S-43			0 3(0)	D 4(0		
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2					1,000====						Tat		-TION DESTINATION OF THE PROPERTY OF THE PROPE	-
# 농			AECOM		LOGGED BY: A		ΩΔ						ETION DEPTH: 0.90 m ETION DATE: 7/8/10	
90			AECOM		PROJECT ENG			nwar	r Maii	d	100	ıvı ML		e 1 of 1

PROJ	JECT	: CAN	Л-A Site Investigation	CLIENT: PV	/GSC				TE	STHC	LE N	IO: TP10-38	
LOCA	ATION	N: BA	-6A N 7,631,606.4 E 566,907.0						PR	OJEC	TNC	D.: 60156118	
CON				METHOD: 0						EVAT			
SAME	PLE T	YPE	GRAB SHELBY TUBE	SPLIT SPO	ON B BU	ILK		1		NO REC	OVE	RY CORE	
DEPTH (m)	OSU	SOIL SYMBOL	SOIL DESCRIPT	ΓΙΟΝ		SAMPLE TYPE	SAMPLE #	PLAST	_		QUID -1 40	COMMENTS	DEPTH (m)
0	PT	000	PEAT SAND - trace platy gravel, trace silt, medium grained, poo	rly graded, light brov	vn, damp				:	:			
LOG OF TESTHOLE CAM-A_TESTPIT LOGS_AUGUST 18, 2010.GPJ UMA.GDT 6/10/10 C	SP	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	- gravel = 7 %, sand = 92 %, silt/clay = 1 % - seepage END OF TESTPIT (1.1 m) - due to seepage and sloughing		vn, damp		S-44 ·						1-
<u> 2</u>					LOGGED BY: A	<u> </u> ΔΝ/Ι		:	<u>:</u>	:	: IOM	ETION DEPTH: 1.10 m	
P.			A ECOM		REVIEWED BY:		CA					ETION DATE: 7/8/10	
9 <u>L</u> _			, 11 3 3 7 7 1		PROJECT ENG			nwar	Majid				1 of 1

PROJ	ECT	: CAN	M-A Site Investigation	CLIENT: PW	GSC				Т	ESTH	OLE N	NO: TP10-39	
LOCA	OIT	I: BA	-6A N 7,631,624.7 E 567,008.5						F	ROJE	CT NO	D.: 60156118	
CONT	TRAC	TOR:		METHOD: Q					E	LEVA	TION		
SAMF	LE T	YPE	GRAB SHELBY TUBE	SPLIT SPO	ON BU	ILK]NO RI	COVE	RY CORE	
DEPTH (m)	nsc	SOIL SYMBOL	SOIL DESCRIPTION	ON		SAMPLE TYPE	SAMPLE#	PLAST		•	LIQUID ————————————————————————————————————	COMMENTS	DEPTH (m)
0	PT	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	PEAT SAND - trace platy gravel trace silt medium grained poorly	graded light brow	n damn				:				
LOG OF TESTHOLE CAM-A_TESTPIT LOGS_AUGUST 18, 2010.GPJ, UMA.GDT 6/10/10 Color of TESTHOLE CAM-A_TESTPIT LOGS_AUGUST 18, 2010.GPJ, UMA.GDT 6/10/10 Color of TESTHOLE CAM-A_TESTPIT LOGS_AUGUST 18, 2010.GPJ, UMA.GDT 6/10/10	SP		SAND - trace platy gravel, trace silt, medium grained, poorly GRAVEL AND SAND - cobbly, trace boulders, trace silt, mos subrounded/subangular, maximum size 200 mm, brown, dan - gravel = 59 %, sand = 40 %, silt/clay = 1 % END OF TESTPIT (0.8 m) - at refusal on boulder				S-45 ·						1-
STHOLE CAM-A_TEST													
TES]	1				LOGGED BY: A	AM	L	<u> </u>	<u>:</u>	·	OMPL	LETION DEPTH: 0.80 m	<u> </u>
P 0			A ≣ C OM		REVIEWED BY:		CA					ETION DATE: 7/8/10	
ပ္ပို			, 110///		PROJECT ENG			nwar	Majid				1 of 1

PROJ	ECT	: CAN	/I-A Site Investigation		CLIENT: PW	/GSC					TES	THO	LE N	O: TP10-40	
			-6A N 7,631,629.1 E 567,	104.5						_).: 60156118	
CONT					METHOD: C						ELE\				
SAMF	LE T	YPE	GRAB	SHELBY TUBE	SPLIT SPO	ON BL	JLK				∠NO	REC	OVER	RY CORE	
DEPTH (m)	OSC	SOIL SYMBOL		SOIL DESCRIPT	ΓΙΟΝ		SAMPLE TYPE	SAMPLE#	PLAS		M.C.		OIUG -	COMMENTS	DEPTH (m)
0	PT	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	PEAT SAND - trace platy gravel, tra	ce silt, medium grained, poo	orly graded, light brow	ın, damp									-
-	35	00000000	- gravel = 7 %, sand = 92 %, s		poethy platy, accession	al.		S-46	•						-
-		なななな	GRAVEL AND SAND - cobbly subrounded/subangular, max - gravel = 59 %, sand = 40 %,		nostry platy, occasion damp to moist	al		S-47	<u> </u>						-
-	GP	なななな													-
- -1 -		\\	END OF TESTPIT (0.9 m) - a	refusal on boulder											1-
AA.GDT 6/10/10															-
LOG OF TESTHOLE CAM-A_TESTPIT LOGS_AUGUST 18, 2010.GPJ UMA.GDT 6/10/10															-
STPIT LOGS AUGI															-
STHOLE CAM-A TE															-
S L	-					LOGGED BY: /					·i			ETION DEPTH: 0.90	
90 06			AEC	OM		REVIEWED BY			\m	r N 4 - ''	4	CO	MPLE	ETION DATE: 7/8/10	
۲ L						PROJECT ENG	בווע⊏	:⊏K: /	₁ıwa	ı ıvıajı	u			Р	age 1 of 1

PRO	JECT	: CAN	M-A Site Investigation	CLIENT: PW	GSC				_ T	ESTH(OLE N	NO: TP10-41	
LOCA	OITA	N: BA	-7 N 7,631,933.1 E 566,450.0						Р	ROJE	CT N	D.: 60156118	
		CTOR		METHOD: Q						LEVA			
SAME	PLE 7	ΓΥΡΕ	GRAB SHELBY TUBE	SPLIT SPOO	DN B BU	LK				NO RE	COVE	RY CORE	
DEPTH (m)	OSO	SOIL SYMBOL	SOIL DESCRIPTI			SAMPLE TYPE	SAMPLE #	PLAST		л.С. L 30	LIQUID — I 40	COMMENTS	DEPTH (m)
0		**************************************	GRAVEL AND SAND - cobbly, occasional boulders, maxim occasional subrounded/subangular, light brown, damp		, , , , , , , , , , , , , , , , , , , ,								
-		SASAS.	- gravel = 64 %, sand = 36 %				S-48 •						
-	GP	ななななな	graver C4 70, saina CC 70										
-1		NY NY NY											1-
-		(XXX)	END OF TESTPIT (1.2 m) - in gravel and sand										
LOG OF TESTHOLE CAM-A_TESTPIT LOGS_AUGUST 18, 2010.GPJ UMA.GDT 6/10/10													
AUGUST 18, 201													
M-A IESIPII LOGS													
TESTHOLE CAN				Ţ	LOGGED BY: A	M					OMPI	ETION DEPTH: 1.20 m	
<u> </u>			AECOM		REVIEWED BY:		CA					ETION DEPTH. 1.20111 ETION DATE: 7/8/10	
ဗို			, 120,71		PROJECT ENG			nwar	Majid				1 of 1

			Л-A Site Investigation		CLIENT: PW	/GSC				TES	STHO	LE N	IO: TP10-42	
-			-7 N 7,632,003.5 E 566,	526.2									D.: 60156118	
CONT				T.	METHOD: C						VAT			
SAMP	LE T	YPE	GRAB	SHELBY TUBE	SPLIT SPO	ON BU	JLK			∠N	O REC	OVE	RY CORE	
DEPTH (m)	OSO	SOIL SYMBOL		SOIL DESCRIPTION			SAMPLE TYPE	SAMPLE #	PLASTI(I— 10	•		QUID -1 140	COMMENTS	DEPTH (m)
0		000	SAND - trace silt, trace grav	vel, medium grained, poorly grade	ed, dry to damp, li	ght brown				:	:			
LOG OF TESTHOLE CAM-A_TESTPIT LOGS_AUGUST 18, 2010.GPJ UMA.GDT 6/10/10	SP		GRAVEL AND SAND - cobi occasional subrounded/sub - gravel = 55 %, sand = 45 %	oly, occasional boulders, maximu angular, light brown, damp				S-49 						1
HOLE CAM-A_TEST														-
<u>2</u>						LOGGED BY: A	AM	<u> </u>		:	: CC	·)MPLF	ETION DEPTH: 0.90 m	L
POE			A=C	COM		REVIEWED BY	: R(ETION DATE: 7/8/10	
ğ			,			PROJECT ENG	SINE	ER: A	nwar I	Majid			Page	1 of 1

			M-A Site Investigation		CLIENT: PW	GSC				TE	STHC)LE N	IO: TP10-43	
			-2 (BA-14) N 7,632,493	.5 E 566,362.7									D.: 60156118	
-	NTRA(METHOD: Q						EVAT			
SAN	IPLE T	TYPE	GRAB	∭SHELBY TUBE	SPLIT SPO	DN B BU	LK			l	NO REC	COVE	RY CORE	
DEPTH (m)		SOIL SYMBOL		SOIL DESCRIPTION	ON		SAMPLE TYPE	SAMPLE #	PLASTI	C M.0		QUID 40	COMMENTS	DEPTH (m)
0	PT	**	PEAT GRAVEL AND SAND - cob	obly, trace boulders, trace silt, mos	stlv platv. occasiona									
18, 2010.GPJ UMA.GDT 6/10/10	SM		subrounded/subangular, m		mp to moist			S-50 ·						
LOG OF TESTHOLE CAM-A_TESTPIT LOGS_AUGUST 18, 2010.GPJ UMA.GDT 6/10/10														-
<u>2</u>						LOGGED BY: A	Ш \M		<u> </u>	<u> </u>	·	 MPI F	ETION DEPTH: 1.10 m	
P.			ΔΞC	COM		REVIEWED BY:		CA					ETION DATE: 7/8/10	
						PROJECT ENG			nwar l	Majid				1 of 1

PRO	JECT	: CAN	/I-A Site Investigation	CLIENT: PWGSC				TES	THOL	E NO:	: TP10-44	
			2 (BA-14) N 7,632,475.5 E 566,273.0								60156118	
CON				METHOD: Quadivator)N (m)		
SAM	PLE T	YPE	GRAB SHELBY TUBE	SPLIT SPOON	BULK			N	RECC	VERY	CORE	
DEPTH (m)	OSO	SOIL SYMBOL	SOIL DESCRIPTION	DN	SAMPLE TYPE	SAMPLE #	PLASTIC	•	LIQU 	JID	COMMENTS	DEPTH (m)
0	PT	**	PEAT GRAVEL AND SAND - cobbly, trace boulders, trace silt, most subrounded/subangular, maximum size 200 mm, brown, dam	ly platy, occasional								
-1	GP	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	SAND - silty, gravelly, trace cobbles, trace clay, platy/subroun - gravel = 35 %, sand = 45 %, silt/clay = 20 % - salinity = 1.5 ppt - seepage		t	S-51	•					1-
LOG OF TESTHOLE CAM-A_TESTPIT LOGS_AUGUST 18, 2010.GPJ UMA.GDT 6/10/10			END OF TESTPIT (1.2 m) - due to seepage and sloughing									
비			A=CO44	LOGGED BY REVIEWED		-CA					ON DEPTH: 1.20 m ON DATE: 7/8/10	
90			AECOM	PROJECT E			nwar M	aiid	1001	nr LE II		1 of 1

			/I-A Site Investigation		CLIENT: PW	/GSC	ESTHO	DLE N	O: TP10-45	
			2 (BA-14) N 7,632,563.6	E 566,319.6).: 60156118	
CON					METHOD: C	L	LEVAT			
SAMF	PLE 1	YPE	GRAB	SHELBY TUBE	SPLIT SPO	ON BULK	NO RE	COVER	CORE	
DEPTH (m)	nsc	SOIL SYMBOL		SOIL DE	SCRIPTION	V	SAMPLE TYPE	SAMPLE #	COMMENTS	DEPTH (m)
0	PT	**	PEAT GRAVEL AND SAND - cobb	ly trace houlders trace silt m	oethy platy, occasion	al subrounded/subangular, maximum siz				
-	GP SC		SAND - clayey, silty, trace gr - gravel = 3 %, sand = 44 %, - cobbly - seepage	silt = 30 %, clay = 23 %				S-53		-
LOG OF TESTHOLE CAM-A, LESTPIT LOGS, AUGUST 18, 2010.6PJ UMA.GDT 6/10/10 T			END OF TESTPIT (0.9 m) -	at refusal on boulder						1
			A=C	·OM		LOGGED BY: AM REVIEWED BY: RCA			TION DEPTH: 0.90 m TION DATE: 7/8/10	
၅			AEC	377 1		PROJECT ENGINEER: Anwar Majid		-1111 LL		1 of 1

PRO	JECT	: CAN	/I-A Site Investigation	CLIENT: PW	/GSC				TE	STHC)LE N	IO: TP10-46	
LOCA	OITA	N: LF-	3 N 7,632,501.0 E 566,547.6						PF	ROJEC	TNC	D.: 60156118	
CON	TRAC	CTOR:		METHOD: C					EL	.EVAT	ION (
SAMI	PLE T	YPE	GRAB SHELBY TUBE	SPLIT SPO	ON B BU	ILK				NO REC	COVER	RY CORE	
DEPTH (m)	OSC	SOIL SYMBOL	SOIL DESCRIPT	ION		SAMPLE TYPE	SAMPLE #	PLAST	$\overline{}$		QUID T	COMMENTS	DEРТН (m)
0	PT	***	PEAT										
LOG OF TESTHOLE CAM-A_TESTPIT LOGS_AUGUST 18, 2010.GPJ_UMA.GDT_6/10/10	GP-GI		SAND AND GRAVEL - some cobbles, some silt, trace clay subrounded/subangular, light brown, wet - gravel = 45 %, sand = 45 %, silt/clay = 10 % - salinity = 0.5 ppt - seepage END OF TESTPIT (0.8 m) - at refusal on cobbles and bould		sional		S-53A .						
<u> 2</u>					LOGGED BY: A	<u> </u> ДМ		<u> </u>	: -	: [cc	: MPI I	ETION DEPTH: 0.80 m	
년			A E COM		REVIEWED BY:		CA					ETION DATE: 7/8/10	
Ö					PROJECT ENG			nwar	Majid				1 of 1

PROJ	IECT	: CAI	M-A Site Investigation		CLIENT: PW	/GSC					TES	THO	LE N	IO: TP10-47	
			-3 N 7,632,444.8 E 56	66,601.3						_				D.: 60156118	
CONT					METHOD: C						ELE,				
SAMF	PLE T	TYPE	GRAB	SHELBY TUBE	SPLIT SPO	ON B BL	JLK			ا	∠NC	REC	OVEF	RY CORE	
DEPTH (m)	OSO	SOIL SYMBOL		SOIL DESCRIPT	ION		SAMPLE TYPE	SAMPLE #	PLAS		M.C.		QUID - I 0	COMMENTS	DEPTH (m)
0	PT	1 ~ ~ .	PEAT												
-	GP-G	4 4 4 4 4 4 4 4	SAND AND GRAVEL - s subrounded/subangular, - gravel = 45 %, sand = 4 - salinity = 0.5 ppt	ome cobbles, some silt, trace clay, light brown, wet to very wet		ional		S-54							1
Q F															
표 <u></u> 2						LOGGED BY:	<u> </u> ΔΝ/Ι						MPI	ETION DEPTH: 0.70	
P			Δ=	СОМ		REVIEWED BY		CA						ETION DEF III. 0.70 ETION DATE: 7/8/10	
Ö			<i>,</i>			PROJECT ENG			\nwa	r Maji	id				age 1 of 1

PROJ	IECT	: CAN	M-A Site Investigation	CLIENT: PW	GSC				TE	STHC	LE N	IO: TP10-48	
LOCA	NOITA	l: LF-	-3 N 7,632,375.1 E 566,589.0	'					PF	ROJEC	TNC	D.: 60156118	
CONT	ΓRΑC	TOR:		METHOD: C					EL	EVAT	ION (
SAMF	PLE T	YPE	GRAB SHELBY TUBE	SPLIT SPO	ON BU	JLK				NO RE	COVER	RY CORE	
DEPTH (m)	nsc	SOIL SYMBOL	SOIL DESCRIPT	ION		SAMPLE TYPE	SAMPLE#	PLAST	-		QUID -1 10	COMMENTS	DEPTH (m)
0	PT	00	PEAT SAND - gravelly some cobbles trace boulders trace silt b	prown moist				:		:			
6/10/10	SP GP-GI	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	SAND - gravelly, some cobbles, trace boulders, trace silt, but subrounded/subangular, light brown, wet to very wet - gravel = 45 %, sand = 45 %, silt/clay = 10 % - salinity = 0.5 ppt - seepage END OF TESTPIT (1.1 m) - due to seepage and sloughing	, mostly platy, occas	ional		S-55 .	•					
LOG OF TESTHOLE CAM-A_TESTPIT LOGS_AUGUST 18, 2010.GPJ UMA.GDT 6/10/10					LOGGED BY: A							ETION DEPTH: 1.10 m	-
PO			AECOM		REVIEWED BY:	: R						ETION DATE: 7/8/10	
ပျ					PROJECT ENG	INE	ER: A	nwar	Majid			Page	1 of 1

PROJE	CT:	CAN	M-A Site Investigation CL	IENT: PWGSC				TES	THOI	E N	O: TP10-49	
LOCAT	ION	l: LF-	-4 (BA-15) N 7,632,338.0 E 566,691.6					PRC	JEC	ГΝО	.: 60156118	
CONTR				THOD: Quadivator					VATI			
SAMPL	ΕT	YPE	GRAB SHELBY TUBE	SPLIT SPOON BU	LK			N	REC	OVER'	Y CORE	
DEPTH (m)	OSC	SOIL SYMBOL	SOIL DESCRIPTION		SAMPLE TYPE	SAMPLE #	PLASTIC	•	LIQ	1	COMMENTS	DEPTH (m)
0	PT		PEAT SAND - trace gravel, trace cobbles, medium grained, poorly grade	ed, light brown, damp to								
-	GP		GRAVEL AND SAND - cobbly, trace boulders, trace silt, mostly pl subrounded/subangular, maximum size 200 mm, brown, damp to - gravel = 58 %, sand = 37 %, silt/clay = 5 % - seepage END OF TESTPIT (1.1 m) - due to seepage and sloughing			S-56	•					1-
STHOLE CAN												
			45044	LOGGED BY: A							TION DEPTH: 1.10 m	
90 0			A ≡COM	REVIEWED BY:				ام::دا	COI	MPLE	TION DATE: 7/8/10	1 -5 4
의				PROJECT ENG	INE	EK: A	ınwar M	ajid			Page	1 of 1

PROJ	ECT:	CAN	M-A Site Investigation	CLIENT: PWGSC					-	TEST	HOLE	NO: TP10-50	
LOCA	TION	I: LF	-4 (BA-15) N 7,632,362.4 E 566,796.0						ı	PROJ	ECTI	NO.: 60156118	
CON	ΓRΑC	TOR		METHOD: Quadiva								N (m):	
SAMF	PLE T	YPE	GRAB SHELBY TUBE	SPLIT SPOON	BUI	LK				_ NO I	RECOV	ERY CORE	
DEPTH (m)	nsc	SOIL SYMBOL	SOIL DESCRIPTIC	Ν		SAMPLE TYPE	SAMPLE#	PLAS		M.C.	LIQUII ——————————————————————————————————	COMMENTS	DEPTH (m)
0	PT	000	PEAT	raded light brown damn	, to					:	:		
			SAND - trace gravel, trace cobbles, medium grained, poorly granist GRAVEL AND SAND - cobbly, trace boulders, trace silt, mostly subrounded/subangular, brown, damp to moist - gravel = 58 %, sand = 37 %, silt/clay = 5 % END OF TESTPIT (0.95 m) - at refusal on boulder/cobbles		o to		S-57	•					-
LOG OF TESTHOLE CAM-A_TESTPIT LOGS_AUGUST 18, 2010.GPJ UMA.GDT 6/10/10 C													1
H TE			A=CO44		SED BY: A		٠,					PLETION DEPTH: 0.95 r	n
0000			AECOM		EWED BY: ECT ENG			nwar	Maiid		COM	PLETION DATE: 7/8/10 Pa	ge 1 of 1

PROJE	СТ	: CAN	M-A Site Investigation	CLIENT: F	PWGSC					TEST	HOL	ΕN	O: TP10-51	
			-4 (BA-15) N 7,632,418.4 E 566,881.1						_	PRO	JECT	NC	D.: 60156118	
CONTI					Quadivator					ELEV				
SAMPL	LE T	YPE	GRAB SHELBY TUB	E SPLIT SF	POON B BU	LK				⊴NΟ	REC	OVER	RY CORE	
DEPTH (m)	OSC	SOIL SYMBOL	SOIL DESCRI			SAMPLE TYPE	SAMPLE #	PLAS		M.C. 0 30	LIQ 40		COMMENTS	DEPTH (m)
0		77	GRAVEL AND SAND - cobbly, trace boulders, trace s subrounded/subangular, brown, damp to moist	ilt, mostly platy, occas	ional					:	:			
	GP	*************************************	- gravel = 64 %, sand = 30 %, silt/clay = 6 % - low plastic clay from 0.5 to 0.6 m - seepage END OF TESTPIT (1.1 m) - due to seepage				S-58	•						1-
LOG OF TESTHOLE CAM-A_LESTPIT LOGS_AUGUST 18, 2010.6PJ UMA.GDT 6/10/10							-							
		1			LOGGED BY: A			L		•			ETION DEPTH: 1.10 m	
5			AECOM		REVIEWED BY:						COI	MPLE	ETION DATE: 7/8/10	4 -5 4
ـــــــــــــــــــــــــــــــــــــ					PROJECT ENG	ııν⊏	:ck: /	www	iviajio	u	I		rage	1 of 1

PROJ	ECT	: CA	M-A Site Investigation		CLIENT: PW	GSC				-	TEST	HOL	ΕN	O: TP10-52		
			-4 (BA-15) N 7,632,38	37.8 E 566,983.1						_).: 60156118		
CONT					METHOD: Q						ELEV					
SAMF	LE 1	TYPE	GRAB	SHELBY TUBE	SPLIT SPO	ON B BU	JLK				NO	REC	OVER	CORE		
DEPTH (m)	OSC	SOIL SYMBOL		SOIL DESCRIPT			SAMPLE TYPE	SAMPLE#	PLAST		M.C. 0 30	LIQ) 40		COMMENT	S	DEPTH (m)
0	GP		- gravel = 64 %, sand = 3	30 %, silt/clay = 6 %	ostry platy, occasion			S-59 ·	•							
LOG OF TESTHOLE CAM-A_TESTPIT LOGS_AUGUST 18, 2010.GPJ UMA.GDT 6/10/10			A =	-COM		LOGGED BY: /								ETION DEPTH: 1.		- - -
000			A=	COM		REVIEWED BY			lnu-	Maii	4	COI	MPLE	ETION DATE: 7/8/		1 of 1
<u>ا</u> ــــــــــا						PROJECT ENG	שווים	EK: P	ınwar	iviaji	J	1			rage	1 of 1

				/I-A Site Investigation		CLIENT: PW	GSC				TE	STHO	DLE N	NO: TP10-53	
				-4D N 7,632,218.0 E 567,258.0							_			D.: 60156118	
			TOR:				ckaxe and Sho					EVAT			
S	AMP	LE T	YPE	GRAB SH	ELBY TUBE	SPLIT SPO	ON BU	ILK				NO RE	COVE	RY CORE	
	DEPTH (m)	OSO	SOIL SYMBOL		ESCRIPTI			SAMPLE TYPE	SAMPLE#	PLASTI ► 10	C M.		IQUID — 1 40	COMMENTS	DEPTH (m)
0			77	GRAVEL AND SAND - cobbly, trace bould subrounded/subangular, maximum size 20	ers, trace silt, mos 0 mm, brown, dar	stly platy, occasion	al			:		:	-		
PJ UMA.GDT 6/10/10		GP	CANAL	- gravel = 68 %, sand = 30 %, silt/clay = 2 9	%				S-60 ·						
3, 2010.0															-
LOG OF TESTHOLE CAM-A_TESTPIT LOGS_AUGUST 18, 2010.GPJ UMA.GDT 6/10/10															-
) E											:				-
OHLS 2												<u>:</u>	<u>:</u>		
비				A=CO44			LOGGED BY: A		٠,					ETION DEPTH: 0.90 m	
90				A=COM			REVIEWED BY: PROJECT ENG			nwar	Maiid		JIVIPL	ETION DATE: 8/8/10 Page	1 of 1

PRO	JECT	: CAI	M-A Site Investigation	CLIENT: PV	/GSC				TE	STHC)LE N	NO: TP10-54	
LOCA	OITA	N: BA	-9 N 7,632,380.0 E 567,208.0						PF	ROJEC	CT NC	D.: 60156118	
CON	TRAC	CTOR			ickaxe and Sho					EVAT			
SAMI	PLE 7	TYPE	GRAB SHELBY TUBE	⊠SPLIT SPO	ON B BU	JLK				NO REC	COVE	RY CORE	
DEPTH (m)	OSO	SOIL SYMBOL	SOIL DESCRIF			SAMPLE TYPE	SAMPLE#	PLAST			QUID —I 40	COMMENTS	DEPTH (m)
0		***	GRAVEL AND SAND - cobbly, trace boulders, trace silt, subrounded/subangular, maximum size 200 mm, light b	, mostly platy, occasion rown, moist	ial								
		77 77											
		77 77											
		77											
	GP	33											
-							•						
-		***	- gravel = 62 %, sand = 36 %, silt/clay = 2 %				S-61	•					
		*** ***											
+		77 77											
-		2121	END OF TESTPIT (0.9 m) - at refusal on cobbles/boulde	er									
-1													1-
-													
10/10													
A.GDT 6/													
GPJ UM,													
18, 2010.													
AUGUST										:			
TLOGS,											:		
LOG OF TESTHOLE CAM-A_TESTPIT LOGS_AUGUST 18, 2010.GPJ UMA.GDT 6/10/10													
E CAM-A										:			
TOHLS:					1,00055 5%					:		ETION DEDTIL A AA	
띰			AECOM		LOGGED BY: A		CA					ETION DEPTH: 0.90 m ETION DATE: 8/8/10	
90			A=COM		PROJECT ENG			nwar	Majid		, 1711 L		1 of 1

PROJ	JECT	: CAN	Л-A Site Investigation		CLIENT: PW	GSC				TI	ESTH	OLE N	IO: TP10-55	
LOCA	OITA	N: BA	-9 N 7,632,448.0 E 567,087.0							Р	ROJE	CT NO	D.: 60156118	
CON	TRAC	TOR			METHOD: Pi					E	LEVA	ΓΙΟN		
SAMF	PLE T	YPE	GRAB SHELBY	TUBE	SPLIT SPOO	N BU	LK			Z	NO RE	COVE	RY CORE	
DEPTH (m)	nsc	SOIL SYMBOL	SOIL DESC				SAMPLE TYPE	SAMPLE#	PLAST		I.C. ● 30	LIQUID — I 40	COMMENTS	DEPTH (m)
0		77	GRAVEL AND SAND - cobbly, trace boulders, tr subrounded/subangular, maximum size 450 mm	ace silt, mo , light brow	stly platy, occasiona n, moist	I		•						
	GP	かかかかかかかか	- gravel = 62 %, sand = 36 %, silt/clay = 2 % END OF TESTPIT (0.6 m) - at refusal on boulde					S-62	•					- - - - 1
LOG OF TESTHOLE CAM-A_TESTPIT LOGS_AUGUST 18, 2010.GPJ UMA.GDT 6/10/10														- - -
3 1 2										:	:			
S L	1	1	450011			LOGGED BY: A			•	•			ETION DEPTH: 0.60 m	
00			AECOM			REVIEWED BY:					С	OMPL	ETION DATE: 8/8/10	4
임						PROJECT ENG	INE	ĿK: A	nwar	Majid			Page	1 of 1

PROJ	IECT	: CAI	M-A Site Investigation		CLIENT: PW	'GSC				TE	STHO)LE N	IO: TP10-56	
LOCA	OIT	N: BA	-9 N 7,632,571.0 E 566	6,782.0						PF	ROJE	CT NO	D.: 60156118	
CON						ckaxe and Sho					EVAT			
SAMF	LE 1	YPE	GRAB	SHELBY TUBE	SPLIT SPO	ON BU	ILK		1		NO RE	COVE	RY CORE	
DEPTH (m)	nsc	SOIL SYMBOL		SOIL DESCRIPT			SAMPLE TYPE	SAMPLE#	PLAST	$\overline{}$	—	IQUID — 1 40	COMMENTS	DEPTH (m)
0		77	GRAVEL AND SAND - col subrounded/subangular, l	bbly, trace boulders, some silt, m light brown, moist	nostly platy, occasion	al								
3) UMA.GDT 6/10/10	GP	マママママママママ	- gravel = 56 %, sand = 36					S-63	•					1-
ST 18, 2010.GI														
OGS_AUGU:														
LOG OF TESTHOLE CAM-A_TESTPIT LOGS_AUGUST 18, 2010.GPJ UMA.GDT 6/10/10														
YLS 2						L 0.0.C== =::				<u>:</u>	· · · · · ·	:		
# - -			Λ=	СОМ		LOGGED BY: A		2Δ					ETION DEPTH: 0.60 m ETION DATE: 8/8/10	
000			A=	COM		PROJECT ENG			nwar	Maiid		JIVIPL		1 of 1

PRO	JECT	: CAN	/I-A Site Investigation		CLIENT: PW	GSC					TESTI	HOLE	NO: TP10-57	
LOCA	1OITA	N: BA	-9 N 7,632,668.0 E 566,578.0							F	PROJ	ECT I	NO.: 60156118	
CON					METHOD: Pi								N (m):	
SAMI	PLE 1	YPE	GRAB SHELBY	/ TUBE	SPLIT SPOO	ON B BU	JLK		1		☑NO F	RECOV	'ERY CORE	
DEPTH (m)	OSO	SOIL SYMBOL	SOIL DES				SAMPLE TYPE	SAMPLE #	PLAS		M.C.	LIQUII —— I 40	COMMENTS	DEPTH (m)
0		77	GRAVEL AND SAND - cobbly, trace boulders, s subrounded/subangular, light brown, moist	some silt, mo	ostly platy, occasion	al					:			
LOG OF TESTHOLE CAM-A_TESTPIT LOGS_AUGUST 18, 2010.GPJ UMA.GDT 6/10/10 The state of the state o	GP	/かかかかかかかかかかかかけ /かかかかかかかかかかかけ	- gravel = 56 %, sand = 36 %, silt/clay = 8 % - seepage END OF TESTPIT (0.9 m) - due to seepage					S-63A	•					1-
STHOLE CAM-A_TESTF														
		1				LOGGED BY: A	ΔM		<u> </u>		·	COMF	PLETION DEPTH: 0.90) m
실			AECOM			REVIEWED BY:	: R(PLETION DATE: 8/8/1	0
<u>ق</u> ا			<i>,</i>			PROJECT ENG	INE	ER: A	nwar	Majio			F	Page 1 of 1

PROJ	IECT:	: CAN	M-A Site Investigation	CLIENT: PWO	GSC				Т	ESTH	DLE N	NO: TP10-58	
LOCA	TION	I: BA	-10 N 7,632,315.0 E 566,933.0						Р	ROJE	CT NO	D.: 60156118	
CON	ΓRΑC	TOR:		METHOD: Pic					Е	LEVAT	ION		
SAMF	PLE T	YPE	GRAB SHELBY TUBE	SPLIT SPOO	N B BU	ILK			\square	NO RE	COVE	RY CORE	
DEPTH (m)	nsc	SOIL SYMBOL	SOIL DESCRIPTI	ON		SAMPLE TYPE	SAMPLE #	PLAS		•	IQUID —1 40	COMMENTS	DEPTH (m)
0	PT	***	PEAT										
-	SM	\$\partial \partial \part	SAND - gravelly, silty, some cobbles, occasional boulders, to subrounded/subangular, light brown, wet - gravel = 29 %, sand = 53 %, silt/clay = 18 % END OF TESTPIT (0.9 m) - due to seepage	race clay, mostly pla	ty, occasional		S-64	•					- - - -
-1 -			, , , .										1-
J UMA.GDT 6/10/10													-
7 18, 2010.GI													-
GS_AUGUST										:			-
LOG OF TESTHOLE CAM-A_TESTPIT LOGS_AUGUST 18, 2010.GPJ UMA.GDT 6/10/10													-
<u> </u>					LOGGED BY: A	<u>Ι</u> ΔΜ		:		:	: OMPL	 ETION DEPTH: 0.90 m	
R			A ECOM		REVIEWED BY:		CA					ETION DEF 111: 0.30111 ETION DATE: 8/8/10	
90			A=50//I		PROJECT ENG			nwar	Majid				1 of 1

PROJE	CT:	CAN	/I-A Site Investigation		CLIENT: PW	/GSC					TES	THO	LE N	IO: TP10-59		
			-10 N 763,255.0 E 566	5,877.0							PRO	JEC	TNC	D.: 60156118		
CONT						ickaxe and Sho					ELE,					
SAMPL	ET	YPE	GRAB	SHELBY TUBE	SPLIT SPO	ON B BU	JLK				NC	REC	OVEF	RY CORE		
DEPTH (m)	OSC	SOIL SYMBOL		SOIL DESCRIPT	TION		SAMPLE TYPE	SAMPLE #	PLAS F		M.C.		QUID - I	COMMENT	S	DEPTH (m)
LOG OF TESTHOLE CAM-A_TESTPIT LOGS_AUGUST 18, 2010.GPJ UMA.GDT 6/10/10	GP GP-SM					al		S-64A	•	0 2	20 3	0 4	0			1
STHOLE CAM-A_TEST																-
S LES						LOGGED BY: /	AM		<u> </u>		<u> </u>	CO	MPLE	ETION DEPTH: 0.8	30 m	
9 OF			A=	COM		REVIEWED BY	: R							ETION DATE: 8/8/	10	
ğ						PROJECT ENG	SINE	ER: /	\nwai	r Maji	id				Page	1 of 1

			M-A Site Investigation		CLIENT: PW	/GSC	TESTHO	DLE N	O: TP10-60	
			A-11 N 7,633,179.0 E 566,7	701.0					.: 60156118	
CON							ELEVAT			
SAMI	PLE T	ΓΥΡΕ	GRAB	SHELBY TUBE	SPLIT SPO	ON BULK	NO RE	COVER	Y CORE	
DEPTH (m)	nsc	SOILSYMBOL			SCRIPTION		SAMPLE TYPE	SAMPLE #	COMMENTS	DEPTH (m)
0		**	GRAVEL AND SAND - cobbly 200 mm, brown, damp to mois	r, trace boulders, trace silt, m st	ostly platy, occasior	al subrounded/subangular, maximum si	ize			_
		X								
-		34								-
		17								
İ		11								-
-										-
	GP	1						S-65		
-		77								-
		33								
		113	- gravel = 68 %, sand = 30 %,	silt/clay = 2 %						
-		33								-
+		4,4								-
		X								_
			END OF TESTPIT (0.9 m) - at	refusal on boulder						
-1										1-
										-
-										-
(01/0)										
Y.GDT										-
Ž										_
LOG OF TESTHOLE CAMA_TESTPIT LOGS_AUGUST 18, 2010.GPJ UMA.GDT 6/10/10										
18, 20										-
SUST										
AUC AUC										
) - -										-
STPI1										
<u>∓</u> 4										-
CAM										_
키 위										
						LOGGED BY: AM	C	<u> </u> DMPLF	TION DEPTH: 0.90 m	
3 OF			AEC	OM		REVIEWED BY: RCA	C		TION DATE: 9/8/10	
ŏ						PROJECT ENGINEER: Anwar Maji	id		Page	1 of 1

			M-A Site Investigation		CLIENT: PW	GSC				TE	STHO	DLE N	IO: TP10-61	
			A-12 N 7,633,260.0 E 56	66,601.0									D.: 60156118	
	NTRA(METHOD: Pi						EVAT			
SAM	IPLE T	TYPE	GRAB	SHELBY TUBE	SPLIT SPOO	ON BU	ILK				NO RE	COVE	RY CORE	
DEPTH (m)	OSN	SOIL		SOIL DESCRIPTI	ON		SAMPLE TYPE	SAMPLE #	PLAST I–		•	IQUID — I 40	COMMENTS	DEPTH (m)
0	PT	**	PEAT						:	:		:		
	GP	N. W.		bbly, trace boulders, trace silt, mos brown, damp to moist	stly platy, occasiona	al								-
			SAND - silty, some clay, s	ome gravel, light grey, moist										
		9090												-
-		00000	- gravel = 15 %, sand = 43	%. silt/clav = 42 %				S-66	•					
-	SM			,,										-
														_
			END OF TESTPIT (0.95 n	n) - at refusal on frozen ground										-
-1			,	,				•						1-
-														-
0/10														_
3DT 6/1														-
U UMA.														_
2010.GF														_
3UST 18,											:			
GS_AUG														
LOG OF TESTHOLE CAM-A_TESTPIT LOGS_AUGUST 18, 2010.GPJ UMA.GDT 6/10/10														-
AM-A_TE														-
HOLE C														-
			_			LOGGED BY: A		<u> </u>	<u>:</u>	<u>:</u> _			LETION DEPTH: 0.95 m	<u> </u>
G 0F			A=	COM		REVIEWED BY:				NA-" !	C	OMPL	ETION DATE: 9/8/10	4 5 1
91						PROJECT ENG	iNE	EK: A	nwar	Majid			Page	1 of 1

			M-A Site Investigation		CLIENT: PW	GSC				D: TP10-62	
			-12 N 7,633,354.0 E 56	6,441.0						.: 60156118	
CON						ckaxe and Shovel			ION (r		
SAME	PLE T	YPE	GRAB	SHELBY TUBE	SPLIT SPO	ON BULK	✓NO	RE(COVER	Y CORE	
DEPTH (m)	OSO	SOIL SYMBOL			SCRIPTION			SAMPLE TYPE	SAMPLE#	COMMENTS	DEPTH (m)
0			CLAY - silty, sandy, some g	gravel, trace cobbles, reddish br	own, moist, low plas	tic					
LOG OF TESTPIT LOGS_AUGUST 18, 2010.6PJ UMA.GDT 6/10/10 The second and a second an	CL		- gravel = 10 %, sand = 23 °C						S-67		1—
2						LOCCED BY: AM		C/	MDIE	TION DEPTH: 0.95 m	
유			Δ=6	COM		LOGGED BY: AM REVIEWED BY: RCA				TION DEPTH: 0.95 m	
50			~-\			PROJECT ENGINEER: Anw	ar Majid				1 of 1

Appendix G

Heritage Report

FINAL REPORT

ARCHAEOLOGICAL IMPACT ASSESSMENT (AIA) OF THE CAM-A INTERMEDIATE DEW LINE SITE, STURT POINT, NUNAVUT

NUNAVUT ARCHAEOLOGIST PERMIT 10-018A

Submitted to:

The Department of Culture, Language, Elders and Youth (CLEY), Nunavut

DISTRIBUTION:

5 Copies AECOM

Edmonton, Alberta

1 Copy Department of Culture, Language, Elders and Youth

Nunavut

1 Copy Inuit Heritage Trust

Nunavut

1 Copy Museum of Civilization

Ottawa

3 Copies Golder Associates Ltd.

Calgary, Alberta

This document contains sensitive information about Cultural Resources that are protected under provisions of the *Nunavut Archaeological and Palaeontological Sites Regulations*. This information is to be used to assist in planning the proposed project only and is not to be disseminated without the consent of the Department of Culture, Language, Elders and Youth, Nunavut.

December 2010 10-1333-0022

CREDITS

Project Director Grant Clarke, M.A.

Project Manager Brent Murphy, M.A.

Permit Holder Sean Webster, Ph.D.

Report Author Sean Webster, Ph.D.

Field Investigators Sean Webster, Ph.D.

Gary Avalak (Cambridge Bay)

Senior Review Grant Clarke, M.A.

Client Contacts Nick Oke, P.Chem.

Senior Environmental Scientist Assessment and Approvals Lead

AECOM

17007 - 107 Avenue

Edmonton, AB. T5S 1G3

Ph. (780) 486-7057 Fax (780) 486-7070

Nick.oke@aecom.com

EXECUTIVE SUMMARY

This report details the results of an Archaeological Impact Assessment completed under Nunavut Archaeologist Permit 10-018A issued by the Department of Culture, Language, Elders and Youth, Nunavut to Sean Webster of Golder Associates Ltd. This study was completed on behalf of AECOM and Public Works and Government Services Canada and included the assessment of the Sturt Point area on Victoria Island, located approximately 85 km east of Cambridge Bay, Nunavut. This Archaeological Impact Assessment was carried out in conjunction with the Phase III Environmental Site Assessment, Hazardous and Non-Hazardous Materials Audit, Geotechnical Evaluation and Remedial Action Plan being conducted in advance of planned reclamation activities at the CAM-A Intermediate Distant Early Warning Line site location.

Procedures employed for this project are considered standard for projects of this nature in the region and entailed pre-field studies, on-ground reconnaissance, site documentation and assessment, reporting and recommendation formulation. Project planning also included provisions for a representative of the local community to accompany the field crew during the field inspection. Gary Avalak of Cambridge Bay accompanied the team during the assessment.

Lack of vegetation and sedimentation enabled surface examination of the facility areas to adequately assess for the presence of cultural materials. In addition, areas adjacent to locations that will be impacted during remediation were also examined. During the study, six sites were identified and documented as per the *Nunavut Archaeological and Palaeontological Sites Regulations*, including NeLv 1, 2 and 3 and NeLw 1, 2 and 3. In addition, several sites representing more recent occupation of the area were also noted during the assessment. These sites are described in this report, however; they do not meet the technical requirements to be considered archaeological sites.

It is recommended that the remediation of the CAM-A site be allowed to proceed with the condition that no impacts occur within 30 m of sites NeLv 1, NeLv 2, NeLv 3, NeLw 1, NeLw 2 and NeLw 3.

TABLE OF CONTENTS

SE	ECTION	PAGE
1.	INTRODUCTION	1
	1.1 Archaeological Resources Defined	
	1.2 Potential Impacts	
2.	OBJECTIVES	5
3.	PHYSICAL AND CULTURAL SETTING	6
	3.1 Environmental Context	6
	3.2 Regional Environment	6
	3.3 Cultural Chronology	
	3.3.1 Arctic Small Tool tradition (4200 B.P. to 2800 B.P.)	
	3.3.2 Dorset Culture (2,500 B.P. to 1,000 B.P.)	
	3.3.3 Thule (800 B.P. to 400 B.P.)	
	3.4 Historic Inhabitants	10
4.	PROCEDURES	12
	4.1 Pre-Field Studies	12
	4.2 In-Field Studies	12
	4.3 Heritage Feature / Structure Evaluation	13
	4.4 Detailed Archaeological Site Investigations / Mitigation	
	4.5 Reporting	14
5.	RESULTS	15
	5.1 Pre-Field Studies	
	5.2 Field Investigations	15
	5.3 Newly Identified Heritage Resource Sites	17
	5.3.1 NeLv 1	17
	5.3.2 NeLw 1	19
	5.3.3 NeLw 2	
	5.3.4 NeLw 3	
	5.3.5 NeLv 2	
	5.3.6 NeLv 3	
	5.4 Additional Cultural Resources	
	5.4.1 Inuit Houses	
	5.4.2 Tent rings (GAL S2 and GAL S5)	
	5.4.3 Harrop Cairn	29
6.	SUMMARY AND RECOMMENDATIONS	30
7.	CLOSURE	31
8.	REFERENCES	32

LIST OF TABLES

Table 1	NeLv-1 Features	17
Table 2	NeLw 1 Features	19
Table 3	NeLw-2 Features	21
Table 4	NeLw-3 Features	22
Table 5	GAL S2 Features	27
Table 6	GAL S5 Features	
Table 7	Site Summary and Recommendations	30
	LIST OF FIGURES	
Figure 1	CAM-A DEW Line Site Location	2
	LIST OF PLATES	
Plate 1	View south of antenna and main facility location CAM-A DEW Line s	site.16
Plate 2	Barrels on the beach near the barge landing at CAM-A.	16
Plate 3	View southeast of cache feature (S1 F5) at NeLv 1	
Plate 4	View southeast of hunting blind at NeLv 1	18
Plate 5	View west of NeLw 1 site area with cache feature (S4 F2) in foreground	nd. 20
Plate 6	View southeast of large cache (S3 F3) at NeLw 1	20
Plate 7	View east of large partially collapsed caches at NeLw 2	21
Plate 8	View north of tent ring (S6 F1) at NeLw 3.	
Plate 9	View west of NeLw 3 site area with tent ring (S6 F3) in foreground	
Plate 10	View southwest of aluminum tripod adjacent to NeLw 3	
Plate 11	View south of cache (left) and cairn (right) at NeLv 2	24
Plate 12	View north of Inuit house on beach at Sturt Point.	26
Plate 13	Partial remains of a boat on beach next to Inuit houses at Sturt Point	
Plate 14	View west of modern tent ring (GAL S2) on beach at Sturt Point	28
Plate 15	View southeast of modern tent ring (GAL S5) on beach at Sturt Point.	
Plate 16	View southwest of Harrop Cairn at CAM-A facility location	29

1. INTRODUCTION

In August of 2010, Golder Associates Ltd. (Golder) conducted an Archaeological Impact Assessment (AIA) of the CAM-A Intermediate Distant Early Warning (DEW) Line Site in conjunction with the Phase III Environmental Site Assessment (ESA), Hazardous and Non-Hazardous Materials Audit, Geotechnical Evaluation, Remedial Action Plan on behalf of AECOM and Public Works and Government Services Canada (PWGSC). The CAM-A Intermediate DEW Line site is located at Sturt Point, Victoria Island, approximately 85 km east of Cambridge Bay, Nunavut (Figure 1). All required fieldwork was completed under an Archaeological Permit (10-018A) issued by the Department of Culture, Language, Elders and Youth (CLEY), Nunavut to Sean Webster of Golder.

The purpose of the AIA was to conduct a pedestrian suvey and subsurface testing within the area of the CAM-A DEW Line site location to assess the potential for previously unrecorded archaeological resources. The intent of this program was not to conduct a full AIA of the entire Sturt point area; however, during traverses of the former DEW Line station some lands outside of proposed impacts were investigated. This report details the nature of the studies conducted, presents their results, and makes recommendations relating to heritage concerns in respect of the proposed remediation program.

1.1 Archaeological Resources Defined

The *Nunavut Archaeological and Palaeontological Sites Regulations* (2001) define an archaeological artifact as "any tangible evidence of human activity that is more than 50 years old and in respect of which an unbroken chain of possession or regular pattern of usage cannot be demonstrated." An archaeological site is defined as "any site where an archaeological artifact is found".

Archaeological sites are non-renewable resources that may be located at or near the ground surface or may be deeply buried. Archaeological sites are typically classified as prehistoric or historic. Prehistoric or precontact archaeological sites are those sites which

TOPOGRAPHIC MAP 67B 4th EDITION OBTAINED FROM Canmatrix. COPYRIGHT 1995 HER MAJESTY THE QUEEN IN RIGHT OF CANADA. DEPARTMENT OF NATURAL RESOURCES: TRANSVERSE MERCATOR DATUM: NAD83 COORDINATE SYSTEM: UTM ZONE 13

FILE NO. 101333002264707	JECT 10.1333.0022.6470		
SCALE AS SHOWN REV.	31/03/10	ВМ	IGN
	06/10/10	SS	OD
FIGURE: 1	10/12/10	SW	CK
	10/10/10	00	LW.

contain features or artifacts that reflect the use of a given land base by people prior to European influences. Prehistoric sites typically include ancient campsites, resource harvesting and processing sites, features, artifact scatters and isolated artifact finds.

Features are non-portable articles that indicate a human modification of the local environment. In prehistoric sites in Nunavut these often include items such as hearths, tent rings, stone cairns, and caches. Artifacts are portable items that have been modified by people at some time in the past. These include such items as projectile points, stone flaking debris, cut and modified bone and ceramics. Historic sites generally represent the remains of 19th and early-20th century non-aboriginal habitation, as well as sites associated with industrial and military development. These sites are typically identified by the presence of buildings or structural remains, but may include any site that has evidence of historic use of the landscape. Although not consistently managed under the legislation another important category of historic sites are the remains of traditional use of the land by Aboriginal peoples.

1.2 Potential Impacts

Heritage resources are fragile, non-renewable resources that are generally situated on or near the ground surface. Alteration of the landscape can result in the damage or complete destruction of all or portions of archaeological sites. These alterations often involve the displacement of artifacts resulting in the loss of valuable contextual information or may involve the destruction of the artifacts and features themselves resulting in complete information loss. Losses are permanent and irreversible. Primary, secondary and tertiary impacts are possible with any development. The approach proposed herein is designed to mitigate any potential impacts to heritage resources that could result from the program.

Primary impacts include those disturbances resulting immediately from activity such as the proposed testing during the Phase III ESA and during planned remediation activities. The primary impact zones within the CAM-A DEW Line Site area will be within the remediation footprint including access roads, temporary work zones, borrow pits and

dumps. During remediation, vegetation in the area will be cleared, soil will be removed during stripping and excavation, structures will be demolished, materials and equipment will be removed, and the weight of heavy equipment will be sufficient to compress soil strata within the work area resulting in impact to any buried artifacts and features. Individual sites are likely to be affected to varying degrees depending upon where they are located within the proposed areas of impact.

Secondary impacts are indirect impacts that occur after the remediation program is complete. Since the project is of limited duration and will not result in the creation of any permanent structures or facilities, there is no operation phase that will have an effect on heritage resources. Secondary impacts related to site revisits are anticipated to be minimal. Erosion of sloping terrain due to alterations in the vegetation and soils composition may affect sites; however, it is anticipated that excavated areas will be backfilled reducing dramatic changes in slope and therefore potential loss of context due to erosion is likely to be minimal.

Tertiary impacts are the results of changes in land use patterns induced by the program. This area has a long history of use by local people, and use of the area is expected to neither increase nor decrease as a result of the remediation program. Intentional and unintentional impacts to heritage resources can result from increased visitation to specific areas within the region. However, the potential for this type of tertiary impact is anticipated to be low.

2. OBJECTIVES

AIA's for projects of this nature are conducted as required by the Government of Nunavut according to requirements set out in the *Nunavut Archaeological and Palaeontological Sites Regulations* (2001) issued by the Department of Culture, Language, Elders and Youth (CLEY). AIA's are conducted in advance of development to ensure that any heritage resources present are identified and properly managed. The primary objectives of this study were to:

- identify and evaluate archaeological and heritage resources within the proposed area of impact;
- assess the significance of any additional sites identified;
- assess potential development impacts to heritage resources;
- recommend viable measures for managing potential adverse impacts; and
- prepare a Final Report for distribution as required, including submission to CLEY.

This report provides a detailed description of the program adopted to achieve these objectives, as well as its results.

3. PHYSICAL AND CULTURAL SETTING

3.1 Environmental Context

An understanding of past environmental conditions and the environmental factors that shape human approaches to subsistence and settlement patterns enable archaeologists to not only locate sites, but also to provide more accurate interpretations of individual sites. The physical aspects of the environs (topography, drainage, climate and soils) as well as resource availability (flora, fauna, lithic materials and water) are prime criteria for the identification of site location and function. Assessments of the universal cultural activities of site location, travel within and through the area, and resource exploitation are key components of any archaeological site analysis.

The regional environment influences where specific activities and occupation are located in a pattern of seasonal movements according to the availability of resources: a seasonal round. The variables of archaeological site distribution can be identified and combined into useful criteria for suggesting the potential of an environment to hold heritage resources that includes a wide variety of landforms frequently associated with coastlines and lake shores, river banks, eskers and kames, and bedrock knolls in Arctic environs. Distribution patterns partially reflect environmental opportunities presented to human groups as well as cultural preferences demonstrated by site location. Topography influences much human activity including travel, communication, resource catchments, dwelling locations and eventually constrains human activity areas to defined localities. Based on existing heritage resources, the environment is a key factor in human settlement patterns.

3.2 Regional Environment

Prior to contact with Europeans, the environment in which the people of North America lived strongly influenced their culture and economy. The people who inhabited the North took advantage of the seasons and all the resources that were available.

Victoria Island is mainly moraine covered low-lands and drumlin fields, with many raised beaches (Collignon 2005). The vegetation is typical of a tundra environment and consists of arctic willows, marshy lowlands and lichen on rocky outcrops. Inland small herds of musk-oxen and caribou as well as white foxes, wolves, ptarmigans and Arctic owls are found on the island; while seals and polar bears inhabit the coastal areas.

The CAM-A site area is characterized by hummocks, rolling hills and raised beaches compost of coarse grained gravel. The station facilities were constructed on the highest beach ridge at Sturt Point. During the study the only wildlife observed were several musk-oxen. Vegetation is limited to low lying, wet areas which are typically covered in moss. Exposed beach ridges are sparsely covered in moss and lichen.

3.3 Cultural Chronology

Many of the archaeological materials in the project area represent human activity after the ice sheet receded between 10,000 to 8,000 years ago. Most heritage resources sites have been located on eskers in this regional environment (Noble 1981: 97) and Wright (1995: 121) refers to this early period, 10,000 to 6,000 B.P., as the Early Shield culture and suggests a direct development out of eastern and northern predecessors based on technological characteristics and trends.

Between approximately 6,000 and 3,000 B.P. lanceolate projectile points are seen as horizon markers. The Shield Archaic is replaced by the Arctic Small Tool tradition (ASTt) components, attributable to *Palaeo-Eskimo* peoples.

3.3.1 Arctic Small Tool tradition (4200 B.P. to 2800 B.P.)

There is presently little evidence to link Palaeo-Arctic tradition occupations to the Arctic Small Tool tradition (ASTt) occupations that succeed them. The ASTt represents a widespread cultural manifestation that covers all of the Canadian Arctic as well as parts of Alaska and Greenland. The ASTt is typically thought to date between approximately

4,200 and 2,800 B.P. (McGhee 1990). It includes the Denbigh Flint complex in northern Alaska, the Independence I culture of the Canadian High Arctic, the Inuvik Phase and the Pre-Dorset culture in Arctic Canada, and the Sarqaq culture in Greenland. It is thought that the ASTt relates to a separate migration of peoples from Siberia and does not appear to be related to the preceding Palaeo-Arctic tradition. As the name implies, the toolkit of the ASTt is comprised of lithic artifacts that are finely made and smaller than tools of similar function and age from elsewhere in North America. These include microblades and microcores, burins, gravers, small side and end scrapers, side and end blades, and bipointed (arrow) and triangular (harpoon) projectile points (Wright 1995). In Alaska it appears to have developed into the cultures of the Norton tradition while in Canada it developed into the Dorset culture.

The Canadian Tundra Tradition (3,300 – 2,600 B.P.) has been described as a local variant of the ASTt which focused on caribou exploitation (Noble 1981). Sites of this cultural tradition are widespread, being represented in sites on Great Slave and Great Bear Lakes eastward to North Henik Lake near Hudson Bay. Characterized by large lenticular and oval bifaces, small triangular and side notched points, side blades, burin and microblade technology, these assemblages are most commonly associated with orange/pink and white quartzites. Native copper appears in some sites toward the end of this period.

Following the ASTt is the Taltheilei Shale Tradition (2,500 B.P. to 100 B.P.), seen as ancestral to development of the Athapaskan people (Noble 1981). Artifacts of siliceous shale originating on the eastern arm of Great Slave Lake are characteristic; although Taltheilei artifacts have also been identified in the Barrens south of Kugluktuk at Itchen Lake (Blower 2003). Lanceolate projectile points continue to be important in the tool assemblage but small corner and side notched points occur in the latter half of the tradition. The prominent biface and burin and microblade technologies of the preceding phase are notably absent.

3.3.2 Dorset Culture (2,500 B.P. to 1,000 B.P.)

The Dorset culture occupied the Canadian Arctic from 2,500 BP until at least 1,000 BP. (McGhee 1990). Best known for miniature carvings, Dorset appears to have been a more successful adaptation to the conditions of the north than the preceding ASTt cultures from which it developed. This is demonstrated by the huge area occupied by Dorset groups and by evidence that they had perfected winter hunting on the sea ice. Cooler conditions in the northern hemisphere around 3,000 years ago resulted in expansion of the sea ice and a shift away from terrestrial hunting of caribou and hunting of sea mammals from boats in open water to a procurement of sea mammals from coastal edges and sea ice. This is evidenced in the archaeological record with a shift away from bow hunting to harpoon and spear hunting (McGhee 1990). Artifacts recovered from sites representing this period are more diverse and "reflect a richer and more secure way of life than that of earlier Palaeo-Eskimos." including the establishment of permanent winter villages (McGhee 1990).

However, when the people of the Thule culture arrived in the Canadian Arctic approximately 1,000 years ago, the Dorset culture had largely or entirely disappeared for reasons that are not well understood (McGhee 2001; Wright 1999).

3.3.3 Thule (800 B.P. to 400 B.P.)

The Thule tradition dates from approximately 800 to 400 B.P. and is derived from the Norton tradition in northern Alaska. More specifically, Thule grows out of the Old Bering Sea and Punuk traditions, which have numerous similarities to Thule cultural assemblages. These assemblages suggest subsistence based on maritime resources such as seals and whales that were hunted from kayaks or umiaks as identified by harpoon floats. Thule represented a new kind of adaptation to the Arctic environment, based on the hunting of large sea mammals in open water through the use of drag floats attached to the harpoon line. Large skin boats and the use of dogs to pull large sleds were other Thule innovations. Winters were spent in sometimes large communities of semi-subterranean

houses, subsisting on a stored surplus obtained most typically by hunting bowhead whales. The introduction of Thule into the Canadian Arctic is noted by a distinct change in a number of cultural markers from the Dorset culture. The earliest Thule occupations currently recognized are on islands in the Bering Strait and exhibit an almost complete reliance on maritime resources; however, later sites demonstrate that both maritime and terrestrial resources were utilized (McGhee 1990). Climatic changes following the thirteenth century likely caused the Thule to modify their way of life into that of the various historic Inuit groups.

3.4 Historic Inhabitants

Historic use of the project area is identified with the 'Copper Inuit'. The traditional territory of the Copper Inuit extends from the Coppermine River east to the Perry River and the south coast of Banks Island south to Great Bear Lake (Damas 1984). The subsistence, economy and settlement pattern of the Copper Inuit was greatly influenced by seasonal fluctuations. In the spring they would leave their more sedentary villages along the coast to hunt and fish inland. Subsistence from late May until November was reliant on caribou, fish, fowl and small game common on the interior tundra. In the fall during the caribou migration hunting caribou was often the most dominant form of subsistence. The Copper Inuit would return to the coast in the fall to build villages for the winter; breathing-hole sealing was the most prevalent activity during the winter months. This method involved specialty trained dogs to locate the seals' breathing holes; each hunter would station themselves at a hole and quietly wait for a seal to come up to breathe (Damas 1984). Other resources that were occasionally used include polar bears in the winter and musk-oxen in the summer.

The largest grouping of Copper Inuit was during the winter months when they would gather in villages along the coast (more people was beneficial for breathing-hole sealing). Over the summer they split up into smaller groups and even individual nuclear families when subsistence was based on fishing, hunting small animals and foraging. In the late

autumn many of these groups would reunite for the sewing period, when sewing their winter garments was the most important task (Damas 1984).

Although many of the characteristics described are similar with other Inuit groups there are some distinguishing characteristics that the Copper Inuit have. According to Damas (1984) aside form the territory that they inhabited, the Copper Inuit were also known for their wide use of copper; their distinctively tailored clothing; and their social and familial organization.

4. PROCEDURES

4.1 Pre-Field Studies

To identify areas of possible archaeological concern, several data sources were reviewed before fieldwork began. Archaeological site records maintained by the Archaeological Survey of Canada in Ottawa were examined as part of the background to the study. A review of general environmental information for the region was conducted to provide a context for the field work that followed and National Topographic Series (NTS) maps of the project area were also examined to determine the nature of landforms in the region. Previously conducted archaeological studies for the region were also consulted, such as both past and more recent documents and reports produced for the proposed Mackenzie Valley Pipeline.

Some of this information was incorporated into the permit application for review by the CLEY. A permit to conduct the AIA was issued by CLEY to Sean Webster of Golder on June 7th, 2010.

4.2 In-Field Studies

All of the potential areas of impact within the proposed Phase III ESA and remediation areas were examined using a combination of pedestrian traverses, visual examination and judgmental shovel tests. Pedestrian traverses and visual inspections were used to identify surface evidence of heritage resources such as historic buildings, depressions and other artifacts. All subsurface exposures present within the area, including natural exposures, were examined to determine the potential for buried cultural components. Existing disturbances such as eroding slopes were also examined if it appeared that they might aid in the identification of buried cultural components within the proposed areas of impact. In areas where there were no existing exposures and/or where dense vegetation was present, judgmental shovel tests were excavated to determine the potential for buried heritage resources.

4.3 Heritage Feature / Structure Evaluation

Evaluations of heritage features and standing structures were to be completed for features/structures that are observed during the investigations. These evaluations would consider perceived heritage resource value and community cultural value as well as the predicted impact from the proposed program. In general, disturbed sites with limited cultural remains would be assigned lower archaeological resource values than undisturbed sites, large sites with large amounts of cultural material, complex sites, and multicomponent sites. Undisturbed multicomponent sites would generally be assigned the highest heritage resource value.

4.4 Detailed Archaeological Site Investigations / Mitigation

If required, mitigation of significant heritage resources sites may include a number of different options. Prior to evaluation of these mitigative options, the perceived value of the identified archaeological sites will be discussed with the AECOM and PWGSC Project team to determine the feasibility of avoiding important sites. Only if site avoidance is not possible, will other mitigative measures such as collection and documentation, and controlled mapping/excavation be considered. In areas of no sediment deposition surface collection and mapping of artifacts and features may satisfy regulatory requirements for mitigation. Recommendations for excavation may include a controlled excavation mitigative plan and will specify the number of square metres and suggest locations for excavation units/blocks.

Overall mitigative options are summarized below:

- collection and documentation undertaken at the time of the field assessment at all sites with low archaeological resource value;
- avoidance if feasible at all sites assigned high archaeological resource value;

- mitigative excavations which will be recommended at those sites assigned high archaeological resource value that could not be avoided by borrow source relocation; and
- a management plan for required mitigation relative to the proposed construction schedule will be discussed with the site project team.

4.5 Reporting

The final permit report outlining the results of the archaeological studies, submitted in October of 2010 to CLEY, which summarizes the results of the AIA that was conducted under Nunavut Permit #10-018A, issued to Sean Webster of Golder. This report includes a project description, the environmental setting, the historical and archaeological context for the project area, field methodology, and the results of the field reconnaissance. The report includes both descriptive, as well as mapped data on the sites, artifacts, and features identified, as well as detailed information on the nature, content, and significance of the artifacts and features identified. Cultural material recovered has been inventoried, described, and discussed within the report text to aid in evaluation of scientific and interpretive value. All identified sites have been documented on appropriate site inventory forms.

5. RESULTS

5.1 Pre-Field Studies

A pre-field record review of the site files maintained at the Canadian Museum of Civilization was conducted to determine whether any previously recorded sites might be affected by the Phase III ESA and proposed remediation activities and to gain an appreciation of the distribution and nature of sites in the region prior to conducting the AIA. The search yielded no information on previously recorded heritage resources sites in the Sturt Point area prior to conducting the AIA. As such, no revisits or information updates to existing sites were required.

5.2 Field Investigations

The AIA assessment included examination of all of the areas of moderate to high archaeological potential that has been disturbed by the CAM-A DEW Line site as well as areas identified as having potential for future borrow sources or dumps. The disturbed areas that were surveyed included the station area, airstrip, beach, barrel dumps, landfills and all the existing roads and anywhere there was evidence of a bull dozer push or any other disturbance (Plate 1 and 2). Previously undisturbed areas that were examined included the periphery of all the impacted areas as well as several areas that were identified as potential borrow areas, landfills and landfarms for remediation activities.

During the survey six heritage resource sites were identified and recorded. In addition, several land use sites consisting of the remains of two Inuit houses, two areas with modern tent rings, a recent cairn and a burial were also observed. All of these sites are described in greater detail below.

Plate 1 View south of antenna and main facility location CAM-A DEW Line site.

Plate 2 Barrels on the beach near the barge landing at CAM-A.

5.3 Newly Identified Heritage Resource Sites

5.3.1 NeLv 1

NeLv 1 is located approximately 280 southeast of the south end of the airstrip at CAM-A. The site is situated on an elevated beach ridge located 500 m northwest of the current coastline. The area immediately north and northwest of the site has been disturbed as a result of construction of the DEW Line Site, but the site itself remains undisturbed. The site consists of four caches and a rectangular feature identified by Gary Avalak as a hunting blind (Table 1). All of the features were found in an area roughly 45 m by 65 m E-W in size. The caches are aligned with the beach ridge, roughly running east-west with the hunting blind along the eastern edge of the site (Plate 3 and 4). No artifacts were noted in the vicinity of the features. The pattern of lichen growth suggests that the site predates the construction of the DEW Line Site. This site is considered to have moderate potential and it is recommended that the site be avoided.

Table 1 NeLv-1 Features

Feature No.	Feature Type	Measurements (m)	Notes
S1 F1	Cache	3.0 N-S x 4.0 E-W	Large partially collapsed cache. Interior compartment 1 x 0.5 m. Heavy lichen growth.
S1 F2	Cache	4.0 N-S x 3.0 E-W	Intact cache approximately 1 m high. Interior is box shaped and 1.5 x 0.5 m in size and 0.5 m deep.
S1 F3	Hunting Blind	2.0 N-S x 2.0 E-W	Three walls in a rectangular shape, with the open wall the the north. Walls have collapsed slightly, with the south wall being the highest at 0.7 m.
S1 F4	Cache	2.5 N-S x 3.0 E-W	Partially collapsed cache with an interior compartment roughly 0.7 x 0.7 m.
S1 F5	Cache	2.0 N-S x 2.0 E-W	Open cache, interior compartment 0.5 x 1.0 m.

Plate 3 View southeast of cache feature (S1 F5) at NeLv 1.

Plate 4 View southeast of hunting blind at NeLv 1.

5.3.2 NeLw 1

This is a newly recorded site consisting of four caches (Table 2; Plate 5 and 6). The caches are aligned with the beach ridge, roughly running east-west. The site is located on the fourth beach ridge, approximately 350 east of the barge landing at CAM-A and 100 m north of the current coastline. All of the caches have partially or completely collapsed. A caribou innominate and a fox cranium are located on the tundra immediately adjacent to one of the caches (S3 F4). No other artifacts were noted in the vicinity of the features. The pattern of lichen growth suggests that the site predates the construction of the DEW Line Site. This site is considered to have moderate potential and it is recommended that the site be avoided.

Table 2NeLw 1 Features

Feature No.	Feature Type	Measurements (m)	Notes
S3 F1	Cache	1.0 N-S x 2.0 E-W	Large partially collapsed cache. Interior compartment 1 x 0.5 m. Heavy lichen growth.
S3 F2	Cache	2.0 N-S x 2.0 E-W	Collapsed cache located approximately 10 m northeast of Cache S3 F1.
S3 F3	Cache	2.5 N-S x 3.0 E-W	Large partially collapsed cache. Interior compartment 1.25 x 0.5 m and 0.75 m high.
S3 F4	Cache	2.0 N-S x 3.5 E-W	Large collapsed cache with an interior compartment roughly 1.0 x 0.75 m. Associated with faunal remains outside of cache.

5.3.3 NeLw 2

This is a newly recorded site consisting of two caches (Table 3). Both of the caches have been constructed using large boulders to form the northeast wall of the feature (Plate 7). Several unidentified faunal remains were noted in the sod around the surface of one of the caches (S4 F2). No other artifacts were noted. The pattern of lichen growth suggests that the site predates the construction of the DEW Line Site. This site is considered to have moderate potential and it is recommended that the site be avoided.

Plate 5 View west of NeLw 1 site area with cache feature (S4 F2) in foreground.

Plate 6 View southeast of large cache (S3 F3) at NeLw 1.

Table 3	NeLw-2 Features
Table 3	Net w=2 realities

Feature No.	Feature Type	Measurements (m)	Notes
S4 F1	Cache	4.0 N-S x 3.0 E-W	Large partially collapsed cache. Interior compartment 1 x 0.75 m. Heavy lichen growth.
S4 F2	Cache	3.5 N-S x 3.0 E-W	Large partially collapsed cache located 2 m south of Cache S4 F1. Interior compartment 1.5 x 0.75 m.

Plate 7 View east of large partially collapsed caches at NeLw 2.

5.3.4 NeLw 3

NeLw 3 is a newly recorded site consisting of three historic tent rings (Table 4). Two of the features are rectangular in shape while the third is roughly circular (Plate 8 and 9). A weathered vertebrae from an unidentified mammal is present within the second ring (S6 F2) and a humerus, radius and ulna from a seal were identified just outside of the third feature (S6 F3). An aluminum A-Frame tripod structure is located 9 metres south of the third ring (Plate 10). Rocks supporting the base of the A-Frame show a similar pattern of vegetation and lichen growth as the rocks in the rings and, as such, they are assumed to

be historic rings possibly associated with the construction of the DEW Line Site. No other artifacts were noted in the immediate vicinity of the rings and therefore exact age is difficult to determine. This site is considered to have moderate potential and it is recommended that the site be avoided.

Table 4	Not w 2 Feetumes	
Table 4	NeLw-3 Features	

Feature No.	Feature Type	Measurements (m)	Notes
S6 F1	Tent Ring	3.0 N-S x 2.0 E-W	Rectangular in shape, opening in north wall. Feature includes 19 exposed stones.
S6 F2	Tent Ring	3.0 N-S x 2.0 E-W	Rectangular in shape, consisting of 18 stones. South wall completely open. Vertebrae within feature.
S6 F3	Tent Ring	4.0 N-S x 3.5 E-W	Roughly circular in shape, consisting of 35 stones. There is a small (1 m) opening in the south wall. Limb elements from seal outside of feature.

Plate 8 View north of tent ring (S6 F1) at NeLw 3.

Plate 9 View west of NeLw 3 site area with tent ring (S6 F3) in foreground.

Plate 10 View southwest of aluminum tripod adjacent to NeLw 3.

5.3.5 NeLv 2

This is a newly recorded site consisting of a collapsed cache and a linear cairn (Plate 11). The cairn is approximately 4 m long and 0.75 m high, is oriented north-south and extends down a the slope to the next beach ridge. The function of the cairn is unknown. The cache is roughly 3.0 m north-south by 3.0 m east-west and is located immediately east of the cairn. The cairn has collapsed and there were no artifacts noted in the vicinity of the features. This site is considered to have moderate potential and it is recommended that the site be avoided.

Plate 11 View south of cache (left) and cairn (right) at NeLv 2.

5.3.6 NeLv 3

NeLv 3 is a newly recorded burial recorded after the completion of the AIA. The site was discovered by members of the Project management team from AECOM while conduicting a reconnaissance of the beach areas northwest of the CAM-A site. The

burial is located approximately 600 m northwest of two Inuit houses associated with the DEW Line Site (described below). The site is situated above the active beach ridge, approximately 55 m west of the current coastline. Human remains, including a cranium, humerus, scapula, vertebrae and several ribs are scattered along the beach within a 4.0 x 5.0 m area along with the remains of a collapsed wooden box (possibly a makeshift coffin); pieces of the box may have been collected from the houses to the south. The site is outside of the archaeological study area associated with the DEW Line Site remediation project and will not be impacted by planned remediation activities.

5.4 Additional Cultural Resources

Several other cultural resources sites were identified during the AIA that were noted but not officially recorded as they do not meet the criteria to be designated as archaeological sites under the *Nunavut Archaeological and Palaeontological Sites Regulations* (2001). These sites include several Inuit houses, two sets of recent tent rings, and a dedicated cairn. These sites are described in further detail below.

5.4.1 Inuit Houses

The remains of two Inuit houses were recorded on the beach, approximately 850 m northeast of the CAM-A airstrip. Both of the houses have partially collapsed (Plate 12). A third structure, that may have been another house, has burned to the ground and only the framing from the floor remains. The area surrounding the houses includes numerous barrels, wire, broken boards, snowmobile parts, glass and a ladder. A circular tent ring is located to the south of one of the houses. Fragments of glass, several tin cans and some broken wood were recorded within the ring. In addition, the partial remains of a wooden boat are situated east of the tent ring, adjacent to the coastline (Plate 13).

Plate 12 View north of Inuit house on beach at Sturt Point.

Plate 13 Partial remains of a boat on beach next to Inuit houses at Sturt Point.

5.4.2 Tent rings (GAL S2 and GAL S5)

Two sets of recent tent rings were noted during the AIA. The first set (GAL S2) is located on the second beach ridge, approximately 75 m from the current coastline. The site includes three rings, all on the same ridge, across an area roughly 40 m long (Table 5; Plate 14). Many of the stones used to construct the rings have little to no lichen growth on the top surface suggesting recent use. In addition a shotgun shell, plastic, a zipper fragment and a tin can lid were associated with the rings.

Table 5 GAL S2 Features

Feature No.	Feature Type	Measurements (m)	Notes
S2 F1	Tent Ring	3.0 N-S x 2.0 E-W	Rectangular in shape, opening in south wall. Feature includes 14 stones, with a sandstone platform in the southwest corner. Associated with shotgun shell and plastic.
S2 F2	Tent Ring	2.0 N-S x 2.0 E-W	Square in shape, consisting of 50 stones. Slight opening in east wall. Numerous stones with no lichen growth.
S2 F3	Tent Ring	3.0 N-S x 2.0 E-W	Roughly circular in shape, consisting of 55 stones. There is a small (1 m) opening in the south wall. A zipper fragment and tin can lid are present inside the feature.

Site GAL S5 is located 65 m southwest of NeLw 3 on the same ridge line. The site includes two tent rings located approximately 20 m apart (Table 6; Plate 15). Areas to the west of the site have been impacted by previous development, likely as a granular source for the DEW line site. Materials associated with the rings include a tin can, a shotgun shell, wood fragments, and a heavily weathered fragment from a caribou antler.

Table 6 GAL S5 Features

Feature No.	Feature Type	Measurements (m)	Notes
S5 F1	Tent Ring	3.0 N-S x 3.0 E-W	Circular in shape, opening in north wall. Comprised of 20 stones. Associated with shotgun shell and a tin can.
S5 F2	Tent Ring	2.0 N-S x 2.0 E-W	Circular in shape with openings in the south and north wall. Wood and antler associated with feature.

Plate 14 View west of modern tent ring (GAL S2) on beach at Sturt Point.

Plate 15 View southeast of modern tent ring (GAL S5) on beach at Sturt Point.

5.4.3 Harrop Cairn

This site includes a cairn constructed on the top of an in-ground storage area at the west end of the main facilities location at CAM-A. The cairn was erected and dedicated on August 17, 1976 by Dr. A.H. Harrop and family. Dr. Harrop was the Chief Commissioner of the Order of St. John and the cairn includes a plaque indicating that the cairn was erected "in commemoration of the many Arctic explorers whose lives were lost in these vast Territories, in hope that it may some day be used to save lives." The cairn contains a survival kit, visible through the stones of the cairn. The cairn does not appear to have been opened since construction (Plate 16). Although not designated as a heritage resource, it is recommended that the site be avoided during remediation, in keeping with the intent of the dedication.

Plate 16 View southwest of Harrop Cairn at CAM-A facility location.

6. SUMMARY AND RECOMMENDATIONS

The AIA of the CAM-A Intermediate DEW Line site conducted under Nunavut Permit 10-018A led to the discovery of six new archaeological sites (NeLv 1, 2 and 3 and NeLw 1, 2 and 3) and a number of more contemporary sites including several tent rings, Inuit houses and a cairn. The disturbed nature of CAM-A area and the lack of vegetation and sedimentation enabled a high visibility surface examination of the facility areas to adequately assess for the presence of cultural materials.

Table 7 Site Summary and Recommendations

Site	Туре	Significance	Recommendations
NeLv 1	Caches and blind	Moderate	Avoidance is recommended
NeLw 1	Caches	Moderate	Avoidance is recommended
NeLw 2	Caches	Moderate	Avoidance is recommended
NeLw 3	Historic tent rings	Low	Avoidance is recommended
NeLv 2	Cache and cairn	Moderate	Avoidance is recommended
NeLv 3	Burial	High	Avoidance is recommended; site will not be impacted.
Inuit Houses*	Cabins	Low	No further work recommended
GAL S2*	Tent rings	Low	No further work recommended
GAL S5*	Tent rings	Low	No further work recommended
Harrop Cairn*	Cairn	Moderate	Avoidance is recommended

^{*} Sites not officially recorded as archaeological resources.

Based on the results of the AIA, AECOM and PWGSC have fulfilled the requirements to indentify the potential for impact to heritage resources during the proposed remediation/reclamation of the CAM-A DEW Line site at Sturt Point. As a result, it is recommended that PWGSC be allowed to proceed with the remediation of the CAM-A DEW Line site area with the condition that no impacts occur within 30 m of sites NeLv 1, 2, 3, NeLw 1, 2, and 3. In addition, it is also recommended that the Harrop Cairn be avoided, if possible.

7. CLOSURE

We trust the above meets your present requirements. If you have any questions or require additional details, please contact the undersigned.

GOLDER ASSOCIATES LTD.

Report prepared by:

Report reviewed by:

Sean Webster, Ph.D.

Associate, Senior Archaeologist

Grant Clarke, M.A.

Managing Associate, Senior Archaeologist

8. REFERENCES

Blower, David

2003 Heritage Resources Studies Mitigation and Assessment 2002, Bathurst Inlet Port and Road Project, Nunavut Permit 02-035A. Department of Culture, Language, Elders and Youth, Iqaluit.

Collignon, Beatrice

2005 Encyclopedia of the Arctic, Volume 3 O-Z Index. Ed. by, Mark Nutall, pp 2130-2131. Routledge, New York.

Damas, David

1984 Copper Eskimo. In, In, Handbook of North American Indians, Pp 391 – 396. Smithsonian Institution, Washington.

Government of Nunavut

Nunavut Archaeological and Paleontological Sites Regulations.Department of Culture, Language, Elders and Youth, Iqaluit.

McGhee, Robert

1990 Canadian Arctic Prehistory. Canadian Museum of Civilization, Hull. Noble, William. C.

1981 Prehistory of the Great Slave Lake and Great Bear Lake Region. In,Handbook of North American Indians Volume 6, Subarctic. Pp. 97-129.Smithsonian Institution. Washington.

Wright, J. V.

- 1995 A History of the Native People of Canada, Volume I (10,000 1,000 B.C.) Mercury Series, Archaeological Survey of Canada, Paper 152.
 Canadian Museum of Civilization, Hull.
- A History of the Native People of Canada, Volume II (1,000 B.C. –
 A.D. 500.) Mercury Series, Archaeological Survey of Canada, Paper 152.
 Canadian Museum of Civilization, Hull.

Appendix H

FCSAP Scoring Sheets

CCME National Classification System for Contaminated Sites (2008, 2010 v 1.2) Pre-Screening Checklist

		Response	
	Question	(yes / no)	Comment
1.	Are Radioactive material, Bacterial contamination or Biological hazards likely to be present at the site?	No	If yes, do not proceed through the NCSCS. Contact applicable regulatory agency immediately.
2.	Are there no contamination exceedances (known or suspected)? Determination of exceedances may be based on: 1) CCME environmental quality guidelines; 2) equivalent provincial guidelines/standards if no CCME guideline exists for a specific chemical in a relevant medium; or 3) toxicity benchmarks derived from the literature for chemicals not covered by CCME or provincial guidelines/standards.	No	If yes (i.e., there are no exceedances), do not proceed through the NCSCS.
3.	Have partial/incompleted or no environmental site investigations been conducted for the Site?	No	If yes, do not proceed through the NCSCS.
4.	Is there direct and signficant evidence of impacts to humans at the site, or off-site due to migration of contaminants from the site?	No	If yes, automatically rate the site as Class 1, a priority for remediation or risk management, regardless of the total score obtained should one be calculated (e.g., for comparison with other Class 1 sites).
5.	Is there direct and significant evidence of impacts to ecological receptors at the site, or off-site due to migration of contaminants from the site?	No	Some low levels of impact to ecological receptors are considered acceptable, particularly on commercial and industrial land uses. However, if ecological effects are considered to be severe, the site may be categorized as Class 1, regardless of the numerical total NCSCS score. For the purpose of application of the NCSCS, effects that would be considered severe include observed effects on survival, growth or reproduction which could threaten the viability of a population of ecological receptors at the site. Other evidence that qualifies as severe adverse effects may be determined based on professional judgement and in consultation with the relevant jurisdiction.
6.	Are there indicators of significant adverse effects in the exposure zone (i.e., the zone in which receptors may come into contact with contaminants)? Some examples are as follows: -Hydrocarbon sheen or NAPL in the exposure zone -Severely stressed biota or devoid of biota; -Presence of material at ground surface or sediment with suspected high concentration of contaminants such as ore tailings, sandblasting grit, slag, and coal tar.		If yes, automatically rate the site as Class 1, a priority for remediation or risk management, regardless of the total score obtained should one be calculated (e.g., for comparison with other Class 1 sites).
7.	Do measured concentrations of volatiles or unexploded ordnances represent an explosion hazard ?	No	If yes, automatically rate the site as Class 1, a priority for remediation or risk management, and do not continue until the safety risks have been addressed. Consult your jurisdiction's occupational health and safety guidance or legislation on exposive hazards and measurement of lower explosive limits.

If none of the above applies, proceed with the NCSCS scoring.

CCME National Classification System for Contaminated Sites (2008, 2010 v 1.2) Summary of Site Conditions

Subject Site:	CAM-A, Sturt Point, Nunavut			
Civic Address: (or other description of location)	CAM-A, Sturt Point, Nunavut			
Site Common Name : (if applicable)	CAM-A Intermediate DEW Line Site			
Site Owner or Custodian: (Organization and Contact Person)		Indian and Northern Affairs Canada (INAC)		
Legal description <i>or</i> metes and bounds:		CAM-A Sturt Point is located on Victoria Island, Nunavut (68 ^o 47' N, 103 ^o 20' W).		
Approximate Site area:		86 Ha		
PID(s): (or Parcel Identification Numbers [PIN] if untitled Crown land)		Canada Survey Records 88569, Canada Lands		
Centre of site: (provide latitude/longitude or UTM coordinates)	Latitude: Longitude:	degrees min secs degrees min secs		
	UTM Coordinate:	Northing 7632073 Easting 566596		
Site Land Use:	Current:	Not used. Abandoned Intermediate DEW Line Site		
	Proposed:	Remediation to eliminate exposure to physical and chemical hazards.		
Site Plan	To delineate the bounds of the Site a site plan MUST be attached. The plan must be drawn to indicating the boundaries in relation to well-defined reference points and/or legal description. Delineation of the contamination should also be indicated on the site plan.			
Provide a brief description of the Site: Affected media and	art Point is located on Victoria Island, Nunavut (68° 47′ N, 103° 20′ W). The site is located along and overlooks the Queen Maud Gulf. The site is located approximately 80 km east of Cambridge errain of the area is relatively flat with several ponds and lakes and an average elevation of 50 ea level. It is reserved by the Department of National Defence (DND) in 1956 for use as a DEW Line Site constructed in 1959. The radar facility was typical of all intermediate sites and consisted of a in, warehouse, garage, a POL storage facility, a radar tower, an airstrip and a beach cargo ia. In addition to the main site, a beach landing area was constructed along with gavel roads various facilities. Access to the site is provided by airstrips and the beach cargo area. The p (~1,200 m long) is located north of the station facilities with an approximate northwest-orientation. As abandoned as part of the DEW Line system in 1963, and the responsibility of the site was by Indian and Northern Affairs Canada (INAC).			
Affected media and Contaminants of Potential Concern (COPC):	concern lis are: arsenion of petroleur	gation and delineation of contaminated soil at CAM-A was completed for the contaminants of ted in the INAC Abandoned Military Site Remediation Protocol. The contaminants of concern c, cadmium, cobalt, copper, lead, nickel, zinc, PCBs and petroleum hydrocarbons. Delineation m hydrocarbon (PHC) impacts was completed using the INAC Arctic PHC Evaluation Process, cluded in the INAC Abandoned Military Site Protocol (2009).		

Please fill in the "le	etter" that best describe	es the level of informati	on available for the sit	e being assessed:
				•

Site Letter Grade

C

If letter grade is F, do not continue, you must have a minimum of a Phase I Environmental Site Assessment or equivalent.

Scoring Completed By:	Dara Schmidt
Date Scoring Completed:	16-Nov-10

CAM-A, Sturt Point, Nunavut				
Definition	Score	Rationale for Score (document any assumptions, reports, or site-specific information; provide references)	Method of Evaluation	Notes
Residency Media (replaces physical state)				
Which of the following residency media are known (or strongly suspected) to have one or more exceedances of the applicable CCME guidelines? yes = has an exceedance or strongly suspected to have an exceedance no = does not have an exceedance or strongly suspected not to have an exceedance		Soil concentrations have been compared to the DEW Line Cleanup Criteria outlined in the Abandoned Military Site Remediation Protocol published by INAC (2009). Exceedances for lead, Type B PHC (F1+F2+F3) and PCBs were identified. Two (2) monitoring wells were installed in the area of the Beach POL. Both wells had parameters which exceed the CCME Protection of Aquatic Life Guideline - Freshwater for arsenic, cadmium, and copper. The criteria for the Guidelines for Canadian Drinking	The overall score is calculated by adding the individual scores from each residency media (having one or more exceedance of the most conservative media specific and land-use appropriate CCME guideline). Summary tables of the Canadian Environmental Quality Guidelines for soil, water (aquatic life, non-potable groundwater environments, and agricultural water uses) and sediment are available on the CCME website at http://www.ccme.ca/publications/ceqg_rcqe.html?category_id=124	An increasing number of residency media containing chemical exceedances often equates to a greater potential risk due to an increase in the number of potential exposure pathways.
A. Soil	Yes	Water Quality (May 2008) were exceeded for chloride, and total dissolved solids (TDS) for the samples taken at the freshwater	For potable groundwater environments, guidelines for Canadian Drinking Water Quality (for	
Yes No Do Not Know		Lake. The sample, taken from the surface water near the north end of the outfall had concentrations of aluminum, cadmium, and copper which exceed the CCME Protection of Aquatic Life	comparison with groundwater monitoring data) are available on the Health Canada website at http://www.hc-sc.gc.ca/ewh-semt/pubs/water-eau/doc_sup-appui/sum_quide-res_recom/index_e.html.	
B. Groundwater Yes No Do Not Know	Yes	Guideline - Freshwater. Hydrocarbons and PCBs were non-detect in all surface water samples collected. The results from the sediment sample collected from the freshwater lake had no results that exceeded the INAC criteria. Hydrocarbons were not detected		
C. Surface water Yes No Do Not Know	Yes	and PCBs were reported as non-detect. These results are summarized in the Phase III ESA (AECOM 2010)		
D. Sediment Yes No	No			
Do Not Know "Known" -score	6			
"Potential" - score				
2. Chemical Hazard				
What is the relative degree of chemical hazard of the contaminant in the list of hazard rankings proposed by the Federal Contaminated Sites Action Plan (FCSAP)?	High	CEPA PCB soil and material impacts were detected onsite. (AECOM, 2010)	The relative degree of chemical hazard should be selected based on the most hazardous contaminant known or suspected to be present at the site. The degree of hazard has been defined by the Federal Contaminated Sites Action Plan	Hazard as defined in the revised NCS pertains to the physical properties of a chemical which can cause harm. Properties can include toxic potency, propensity to biomagnify, persistence in the environment, etc. Although
High Medium Low Do Not Know			(FCSAP) and a list of substances with their associated hazard (Low, Medium and High) has been provided as a separate sheet in this file.	
"Known" -score "Potential" - score	8		See Attached Reference Material for Contaminant Hazard Rankings.	which have a designated chemical hazard designation, but don't have a CCME guideline. The purpose of this category is to avoid missing a measure of toxic potential.
3. Contaminant Exceedence Factor				
What is the ratio between the measured contaminant concentration and the applicable CCME guidelines (or other "standards")? Mobile NAPL	High (>100x)	PCB soil and material impacts detected onsite. (AECOM, 2010)	Ranking of contaminant "exceedance" is determined by comparing contaminant concentrations with the <i>most conservative media-specific and land-use appropriate CCME</i> environmental quality guidelines. Ranking should be based on contaminant with greatest exceedance of CCME guidelines.	In the event that elevated levels of a material with no associated CCME guidelines are present, check provincial and USEPA environmental criteria.
High (>100x) Medium (10x to 100x) Low (1x to 10x) Do Not Know "Known" -score "Potential" - score	6		Ranking of contaminant hazard as high, medium and low is as follows: High = One or more measured contaminant concentration is greater than 100 X appropriate CCME guidelines Medium = One or more measured contaminant concentration is 10 - 99.99 X appropriate CCME guidelines Low = One or more measured contaminant concentration is 1 - 9.99 X appropriate CCME	concentration to the concentration believed to be the threshold for toxicity. A similar calculation is used here to determine the contaminant exceedance factor (CEF). Concentrations greater than one times the applicable
			guidelines Mobile NAPL = Contaminant is a non-aqueous phase liquid (i.e., due to its low solubility, it does not dissolve in water, but remains as a separate liquid) and is present at a sufficiently high saturation (i.e., greater than residual NAPL saturation) such that there is significant potential for mobility either downwards or laterally. Other standards may include local background concentration or published toxicity benchmarks.	CCME guideline (i.e., CEF=>1) indicate that risks are possible. Mobile NAPL has the highest associated score (8) because of its highly concentrated nature and potential for increase in the size of the impacted zone.
			Results of toxicity testing with site samples can be used as an alternative. This approach is only relevant for contaminants that do not biomagnify in the food web, since toxicity tests would not indicate potential effects at higher trophic levels. High = lethality observed. Medium = no lethality, but sub lethal effects observed. Low = neither lethal nor sub lethal effects observed.	

CANI-A, Sturt Point, Nunavut				
Definition	Score	Rationale for Score (document any assumptions, reports, or site-specific information; provide references)	Method of Evaluation	Notes
4. Contaminant Quantity (known or strongly suspected)				
What is the known or strongly suspected quantity of all contaminants? >10 hectare (ha) or 5000 m³ 2 to 10 ha or 1000 to 5000 m³ <2 ha or 1000 m³ Do Not Know	2 to 10 ha or 1000 to 5000 m3	1,242.8 m3, impacted soil (AECOM, 2010)	Measure or estimate the area or quantity of total contamination (i.e, all contaminants known or strongly suspected to be present on the site). The "Area of Contamination" is defined as the area or volume of contaminated media (soil, sediment, groundwater, surface water) exceeding appropriate environmental criteria.	in a larger frequency of exposure as well as a greater
"Known" -score "Potential" - score	6			
5. Modifying Factors				
		PCB soil and material impacts were detected onsite. (AECOM,	Persistent chemicals, e.g., PCBs, chlorinated pesticides etc. either do not degrade or take	
Does the chemical fall in the class of persistent chemicals based on its behavior in the environment? Yes No Do Not Know	Yes	2010)	longer to degrade, and therefore may be available to cause effects for a longer period of time. Canadian Environmental Protection Act (CEPA) classifies a chemical as persistent when it has at least one of the following characteristics: (a) in air, (i) its half-life is equal to or greater than 2 days, or (ii) it is subject to atmospheric transport from its source to a remote area; (b) in water, its half-life is equal to or greater than 182 days; (c) in sediments, its half-life is equal to or greater than 365 days; or (d) in soil, its half-life is equal to or greater than 182 days. This list does not include metals or metalloids, which in their elemental form do not degrade. However metals and metalloids form chemical species in the environment, many of which are not readily bioavailable.	Examples of Persistent Substances are provided in attached Reference Materials
Are there contaminants present that could cause damage to utilities and infrastructure, either now or in the future, given their location? Yes No Do Not Know	No	With the exeption of one portion of the former module train, there is currently no infrastructure remaining on the site.		Some contaminants may react or absorb into underground utilities and infrastructure. For example, organic solvents may degrade some plastics, and salts could cause corrosion of metal.
How many different contaminant classes have representative CCME guideline exceedances? one two to four five or more Do Not Know	two to four	Chlorinated hydrocarbons, inorganics (metals), light extractable PHCs, and heavy extractable PHCs	For the purposes of the revised NCS ranking system, the following chemicals represent distinct chemical "classes": inorganic substances (including metals), volatile petroleum hydrocarbons, light extractable petroleum hydrocarbons, heavy extractable petroleum hydrocarbons, PAHs, phenolic substances, chlorinated hydrocarbons, halogenated methanes, phthalate esters, pesticides.	Refer to the Reference Material sheet for a list of example substances that fall under the various chemical classes.
"Known" - Score	4		1	
"Potential" - Score				

Contaminant Characteristic Total

Raw Total Scores- "Known"	30
Raw Total Scores- "Potential"	0
Raw Combined Total Scores	30
Total Score (Raw Combined / 40 * 33)	24.8

CAM-A, Sturt Point, Nunavut			Method Of Evaluation	Notes			
Definition	Score	Rationale for Score					
		(document any assumptions, reports, or site-specific information; provide references)					
. Groundwater Movement							
A. Known COPC exceedances and an operable groundwater pathway							
within and/or beyond the property boundary.		The groundwater in the at this site is not meant to be notable. The groundwater concentrations	Review chemical data and evaluate groundwater quality	The 1992 NCS rationale evaluated the off-site migration as a regulatory issue. The			
i) For potable groundwater environments, 1) groundwater concentrations exceed background concentrations and 1X the Guideline for Canadian Drinking Water Quality (GCDWQ) or 2) there is known contact of contaminants with groundwater, based on physical evidence of groundwater contamination. For non-potable environments (typically urban environments with municipal services), 1) groundwater concentrations exceed 1X the applicable non potable guidelines or modified generic guidelines (which exclude ingestion of drinking water pathway) or 2) there is known contact of contaminants with groundwater, based on physical evidence of groundwater impacts. iii) Same as (i) except the information is not known but strongly suspected based on indirect observations. iii) Meets GCDWQ for potable environments; meets non-potable criteria or modified generic criteria (excludes ingestion of drinking water pathway) for non-potable environments or Absence of groundwater exposure pathway (i.e., there is no aquifer (see definition at right) at the site or there is an adequate isolating layer between the aquifer and the contamination, and within 5 km of the site there are no aquatic receiving environments and the groundwater does not daylight).	9 0	The groundwater in the at this site is not meant to be potable. The groundwater concentrations exceed the relevant guidelines (Canadian Water Quality Guidelines for the Protection of Aquatic Life - Freshwater). There is no known contact of contaminants with the groundwater (i.e. buried debris). There is no identified aquifer at this site however the site is within 30 m of a marine environment.	Review chemical data and evaluate groundwater quality. The evaluation method concentrates on 1) a potable or non-potable groundwater environment; 2) the groundwater flow system and its potential to be an exposure pathway to known or potential receptors An aquifer is defined as a geologic unit that yields groundwater in usable quantities and drinking water quality. The aquifer can currently be used as a potable water supply or could have the potential for use in the future. Non-potable groundwater environments are defined as areas that are serviced with a reliable alternative water supply (most commonly provided in urban areas). The evaluation of a non-potable environment will be based on a site specific basis. Physical evidence includes significant sheens, liquid phase contamination, or contaminant saturated soils. Seeps and springs are considered part of the groundwater pathway. In Arctic environments, the potability and evaluation of the seasonal active layer (above the permafrost) as a groundwater exposure pathway will be considered on a site-specific basis.	The 1992 NCS rationale evaluated the off-site migration as a regulatory issue. The exposure assessment and classification of hazards should be evaluated regardless of the property boundaries. Someone experienced must provide a thorough description of the sources researched to determine the presence/absence of a groundwater supply source in the vicinity of the contaminated site. This information must be documented in the NCS Site Classification Worksheet including contact names, phone numbers, e-mail correspondence and/or reference maps/reports and other resources such as internet links. Note that for potable groundwater that also daylights into a nearby surface water body, the more stringent guidelines for both drinking water and protection of aquatic life should be considered. Selected References Potable Environments Guidelines for Canadian Drinking Water Quality: www.hc-sc.gc.ca/ewh-semt/pubs/water-eau/doc_sup-appui/sum_quide-res_recom/index_e.html Non-Potable Environments Canadian Water Quality Guidelines for Protection of Aquatic Life. CCME. 1999 www.ccme.ca Compilation and Review of Canadian Remediation Guidelines, Standards and Regulations. Science Applications International Corporation (SAIC Canada), report to Environment Canada, January 4, 2002.			
OTE: If a score is assigned here for Known COPC Exceedances, the kip Part B (Potential for groundwater pathway) and go to Section 2 (S		athway)					
a. Relative Mobility			Organics Metals with higher mobility Metals with higher mobility	Reference: US EPA Soil Screening Guidance (Part 5 - Table 39)			
High Moderate Low Insignificant Do Not Know	High 4		$ \begin{array}{llllllllllllllllllllllllllllllllllll$	If a score of zero is assigned for relative mobility, it is still recommended that the following sections on potential for groundwater pathway be evaluated and scored. Although the Ko of an individual contaminant may suggest that it will be relatively immobile, it is possible that, with complex mixtures, there could be enhanced mobility due to co-solvent effects. Therefore, the Koc cannot be relied on solely as a measure of mobility. An evaluation of other factors such as containment, thickness of confining layer, hydraulic conductivities a precipitation infiltration rate are still useful in predicting potential for groundwater migratio even if a contaminant is expected to have insignificant mobility based on its chemistry alone.			
b. Presence of engineered sub-surface containment? No containment Partial containment Full containment Do Not Know	No containment 3		if full or partial containment is achieved. Full containment is defined as an engineered system or natural attenuation processes, monitored as being effective, which provide for full capture and/or treatment of contaminants. All chemicals of concern must be contained for "Full Containment" scoring. Natural attenuation must have sufficient data, and reports cited with monitoring data to support steady state conditions and the attenuation processes. If there is no containment or insufficient natural attenuation process, this category is evaluated as high. If there is less than full containment or if uncertain, then evaluate as medium. In Arctic environments, permafrost will be evaluated, as appropriate, based on detailed evaluations, effectiveness and reliability to contain/control contaminant migration.	Someone experienced must provide a thorough description of the sources researched to determine the containment of the source at the contaminated site. This information must be documented in the NCS Site Classification Worksheet including contact names, phone numbers, e-mail correspondence and/or reference maps, geotechnical reports or natural attenuation studies and other resources such as internet links. Selected Resources: United States Environmental Protection Agency (USEPA) 1998. Technical Protocol for Evaluating Natural Attenuation of Chlorinated Solvents in Groundwater. EPA/600/R-98/128. Environment Canada – Ontario Region – Natural Attenuation Technical Assistance Bulletins (TABS) Number 19 –21.			
c. Thickness of confining layer over aquifer of concern or groundwater exposure pathway 3 m or less including no confining layer or discontinuous confining layer 3 to 10 m > 10 m Do Not Know			The term "confining layer" refers to geologic material with little or no permeability or hydraulic conductivity (such as unfractured clay); water does not pass through this layer or the rate of movement is extremely slow. Measure the thickness and extent of materials that will impede the migration of contaminants to the groundwater exposure pathway. The evaluation of this category is based on:				

Rationale for Score Rationale for Score (document any assumptions, reports, or site-specific information; provide references) 1	s
Score Score Score of contaminants to lower aquifer units which can or are used as drinking water sources or 2) The presence and thickness of unsaturated subsurface materials that impede the vertical migration of contaminants from the source location to the saturated zone (e.g., water table aquifer, first hydrostratigraphic unit or other groundwater pathway). d. Hydraulic conductivity of confining layer >10 ⁻⁴ cm/s or no confining laver 10 ⁻⁴ to 10 ⁻⁶ cm/s <10 ⁻⁶ cm/s Do Not Know Do Not Know of contaminants to lower aquifer units which can or are used as drinking water sources or 2) The presence and permeability ("k") of unsaturated subsurface materials that impede the vertical of contaminants to lower aquifer units which can or are used as drinking water sources or 2) The presence and permeability ("k") of unsaturated subsurface materials that impede the vertical of contaminants to lower aquifer units which can or are used as a drinking water source or 2) The presence and permeability ("k") of unsaturated subsurface materials that impede the vertical	
>10 ⁻⁴ cm/s or no confining laver 10 ⁻⁴ to 10 ⁻⁶ cm/s 10 0 Not Know material (or use "Range of Values of Hydraulic Conductivity and Permeability" figure in the Reference Material sheet). Unfractured clays should be scored low. Silts should be scored medium. Sand, gravel should be scored high. The evaluation of this category is based on: 1) The presence and hydraulic conductivity ("K.") of saturated subsurface materials that impede the vertical migration of contaminants to lower aquifer units which can or are used as a drinking water source, groundwater exposure pathway or 2) The presence and permeability ("k") of unsaturated subsurface materials that impede the vertical	
>10-4 cm/s migration of contaminants from the source location to the saturated water table aquifer, first hydrostratigraphic unit or other groundwater pathway.	
B. Potential for groundwater pathway.	
e. Precipitation infiltration rate (Annual precipitation = 151.4 mm (AECOM, 2010) Precipitation factor x surface soil relative permeability factor) High Moderate Low Very Low None Do Not Know Annual precipitation = 151.4 mm (AECOM, 2010) Precipitation = 151.4 mm (AECOM, 2010) Precipitation factor = 0.15 Permeability factor = 0.09 (assuming sand) Precipitation factor x surface soil relative permeability factor = 0.7 score). Permeability For surface soil relative permeability (i.e., infiltration) assume: gravel (1), sand (0.6), loam (0.3) and pavement or clay (0). Multiply the surface soil relative permeability factor with precipitation factor to obtain the score for precipitation infiltration rate.	
Score Very Low 0.2	
f. Hydraulic conductivity of aquifer >10° cm/s 10° to 10° 4 cm/s >10° to 10° 4 cm/s Determine the nature of geologic materials and estimate hydraulic conductivity of all aquifers of concern from published material (refer to "Range of Values of Hydraulic Conductivity and Permeability" in the Reference Material sheet). **The Reference Material sheet** On Not Know** Determine the nature of geologic materials and estimate hydraulic conductivity of all aquifers of concern from published material (refer to "Range of Values of Hydraulic Conductivity and Permeability" in the Reference Material sheet).	
1 <mark>0-2 to 10-4 cm/s</mark> Score 1	
Potential groundwater pathway total Allowed Potential score Groundwater pathway total 10.2 Note: If a "known" score is provided, the "potential" score is disallowed.	
2. Surface Water Movement	
A. Demonstrated migration of COPC in surface water above background conditions	
Surface water in the Freshwater Lake exceeds the guideline for chloride and TDS. The sample, taken from the surface water near the north end of the outfall had exceedances for aluminum, cadmium and copperfor the the CCME Protection of Aquatic Life Guideline - Freshwater. i) Concentrations exceed background concentrations and exceed CCME CWQG for protection of aquatic life, irrigation, livestock water, and/or recreation (whichever uses are applicable at the site) by >1 X; Surface water in the Freshwater Lake exceeds the guideline for chloride and TDS. The sample, taken from the surface water near to site. Evaluate available information on quality of surface water near to site. Evaluate available information on quality of surface water near to site. Evaluate available information on quality of surface water near to site. Evaluate available information on quality of surface water near to site. Evaluate available information on quality of surface water near to site. Evaluate available information on quality of surface water near to site. Evaluate available information on quality of surface water near to site. Evaluate available data against Canadian Water Quality Guidelines (select appropriate guidelines based on local water use, cadmium and copperfor the the CCME Protection of Aquatic Life Guideline - Freshwater. (AECOM, 2010) Surface water in the Freshwater near to site. Evaluate available information on quality of surface water sole, select appropriate guidelines based on local water use, caminum, irrigation, aquatic life, livestock watering, etc.). The evaluation method concentrates on the surface water body in the vicinity of to the surface water flow system and its potential to be an exposure pathway. Contamination is present on the surface water body in the vicinity of to the surface water body in the vicinity of to the surface water flow system and its potential to be an exposure pathway. Contamination is present on the surface water body in the vicinity of to the surface water body in the vicinity of t	he contaminated site. This information ion Worksheet including contact names,
or There is known contact of contaminants with surface water based on site observations. CCME. 1999. Canadian Water Quality Guideline.	us for the Protection of Aquatic Life
or In the absence of CWQG, chemicals have been proven to be toxic based on site specific testing (e.g. toxicity testing; or other indicator testing of exposure). CCME. 1999. Canadian Water Quality Guideline Uses (Irrigation and Livestock Water) www.ccme.ca	·
ii) Same as (i) except the information is not known but strongly suspected based on indirect observations. Health and Welfare Canada. 1992. Guidelines for suspected based on indirect observations.	r Canadian Recreational Water Quality.
iii) Meets CWQG or absence of surface water exposure pathway (i.e., Distance to nearest surface water is > 5 km.)	

(II) Migration Potential (Evaluation of contaminant migration pathways)

Recording Section 1 Sectio	CAM-A, Sturt Point, Nunavut			Method Of Evaluation	Notes
Set 1 a same an august famour to form control and part and part of the position of the control of part of the position of the positi	Definition	Score		Wethod of Evaluation	Notes
The contract of the contract o	Score				
2 Suggestions with the control of growing states and the growing states and the growing states and the growi					
Post professional Professiona	B. Potential for migration of COPCs in surface water				
Control to find and value	No containment Partial containment Full containment Do Not Know			to surface water and determine if full containment is achieved: score low if there is full containment such as capping, berms, dikes; score medium if there is partial containment such as natural barriers, trees, ditches, sedimentation ponds; score high if there are no intervening barriers between the site and nearby surface water. Full containment must include containment of all	
Some	b. Distance to Surface Water 0 to <100 m 100 - 300 m >300 m				
E. Footcomercy greated each of sold services of the complete of the contractive of the co	Score				
Sum of proteining of the control proteins of the con	c. Topography Contaminants above ground level and slope is steep Contaminants at or below ground level and slope is steep Contaminants above ground level and slope is intermediate Contaminants at or below ground level and slope is intermediate Contaminants above ground level and slope is flat Contaminants at or below ground level and slope is flat Do Not Know			Steep slope = >50% Intermediate slope = between 5 and 50% Flat slope = < 5%	
High partial su-cert across 0-3 (a) Moderate (a) Control across 0-3 (b) Moderate (a) Control across 0-3 (b) Moderate (a) Control across 0-4 (b) Moderate (a) Control across 0-					
Score High (rainfall run-off score > 0.6) Moderate (0.4 < rainfall run-off score <0.6) Low (0.2 < rainfall run-off score <0.4) Very Low (0 < rainfall run-off score < 0.2) None (rainfall run-off score = 0)		Precipitation factor = 0.15	Refer to Environment Canada precipitation records for relevant areas. Divide rainfall by 1000 and round to nearest tenth (e.g., 667 mm = 0.7 score). The former definition of "annual rainfall" did not include the precipitation as snow. This minor adjustment has been made. The second modification was the inclusion of permeability of	Environment Canada web page link: www.msc.ec.gc.ca	
In 10 years 1 in 10 years 2 in	Score			For infiltration assume: gravel (0), sand (0.3), loam (0.6) and pavement or clay (1).	
Score Potential surface water pathway total 9.7 Allowed Potential score 2.5 Allowed Potential score 3.5 Surface water pathway total 12 3. Surface Soils (potential for dust, dermal and ingestion exposure) A Demonstrated concentrations of COPC in surface soils (top 1.5 m) COPCs measured in surface soils exceed the CCME soil quality guideline 5 roin of present (i.e., bedrock). COPCs in surface soils exceed the CCME soil quality guideline or is not present (i.e., bedrock). Score 12 NOTE: If a score is assigned here for Demonstrated Concentrations in Surface Soils, then you can	1 in 2 years 1 in 10 years 1 in 50 years Not in floodplain			off) and Conservation Authority records to evaluate flood potential of nearby water courses both up	
Potential surface water pathway total Allowed Potentials core Surface water pathway total 12 Surface Soils (potential for dust, dermal and ingestion exposure) A Demonstrated concentrations of COPC in surface soils (pot 1.5 m) COPCs measured in surface soils exceed the CCME soil quality guidelines or is not present (i.e., bedrock). Score 12 NOTE: If a 'known' score is provided, the 'potential' score is disallowed. Surface Water pathway total 12 COPCs measured in surface soils (potential for dust, dermal and ingestion exposure) COPCs measured in surface soils exceed the CCME soil quality guidelines 12 Strongly suspected that soils exceed guidelines 0 score 12 Score 12 NOTE: If a score is assigned here for Demonstrated Concentrations in Surface Soils, then you can					
3. Surface Soils (potential for dust, dermal and ingestion exposure) A. Demonstrated concentrations of COPC in surface soils (top 1.5 m) COPCs measured in surface soils exceed the CCME soil quality guideline. 12 Strongly suspected that soils exceed guidelines COPCs in surface soils does not exceed the CCME soil quality guideline or is not present (i.e., bedrock). Score 12 NOTE: If a score is assigned here for Demonstrated Concentrations in Surface Soils, then you can	Potential surface water pathway total Allowed Potential score	9.7 	Note: If a "known" score is provided, the "potential" score is disallowed.		
COPCs measured in surface soils exceed the CCME soil quality guidelines. Strongly suspected that soils exceed guidelines COPCs in surface soils does not exceed the CCME soil quality guideline or in other present (i.e., bedrock). Score 12 12 13 14 15 15 16 17 17 18 18 18 19 19 19 10 10 10 10 10 10 10		12			
COPCs measured in surface soils exceed the CCME soil quality guidelines. Strongly suspected that soils exceed guidelines COPCs in surface soils does not exceed the CCME soil quality guideline or in other present (i.e., bedrock). Score 12 12 13 14 15 15 16 17 17 18 18 18 19 19 19 10 10 10 10 10 10 10	A Demonstrated concentrations of COPC in surface soils (top 1.5 m)				
Strongly suspected that soils exceed guidelines COPCs in surface soils does not exceed the CCME soil quality guideline or is not present (i.e., bedrock). Score 12 NOTE: If a score is assigned here for Demonstrated Concentrations in Surface Soils, then you can	COPCs measured in surface soils exceed the CCME soil quality	12		available data against Canadian Soil Quality Guidelines. Select appropriate guidelines based on current (or proposed future) land use (i.e, agricultural, residential/parkland, commercial, or	CCME. 1999. Canadian Soil Quality Guidelines for the Protection of Environmental and Human Health
Score 12 NOTE: If a score is assigned here for Demonstrated Concentrations in Surface Soils, then you can	COPCs in surface soils does not exceed the CCME soil quality guideling	0 0		indeating, and son texture it applicable (i.e., coarse of fille).	THE STATE OF THE S
	Score				
anip rait to (rotatitual tot a autrace soils migration patriway) and go to section 4 (vapour)	NOTE: If a score is assigned here for Demonstrated Concentratio skip Part B (Potential for a surface soils migration pathway) and g				
B. Potential for a surface soils (top 1.5 m) migration pathway	B. Potential for a surface soils (top 1.5 m) migration pathway				

(II) Migration Potential (Evaluation of contaminant migration pathways)

CAM-A, Sturt Point, Nunavut	1			
Definition	Score	Rationale for Score (document any assumptions, reports, or site-specific information; provide references)	Method Of Evaluation	Notes
a. Are the soils in question covered?		Soils are exposed both covered with moss and vegetation and exposed in some areas.		The possibility of contaminants in blowing snow have not been included in the revised NCS as it is difficult to assess what constitutes an unacceptable concentration and secondly,
Exposed Vegetated Landscaped			Landscaped surface soils must include a minimum of 0.5 m of topsoil.	spills to snow or ice are most efficiently mitigated while freezing conditions remain.
Paved Do Not Know				
Score	Exposed 6			
b. For what proportion of the year does the site remain covered by snow?		The value of this selection should score a 2 not a zero. The potential surface soil pathway total is actually 8.	Consult climatic information for the site. The increments represent the full span from soils which are always wet or covered with snow (and therefore less likely to generate dust) to those soils which are	
0 to 10% of the year 10 to 30% of the year More than 30% of the year Do Not Know			predominantly dry and not covered by snow (and therefore are more likely to generate dust).	
Score	>30% of year			
Potential surface soil pathway total	6			
Allowed Potential score Soil pathway total	12	Note: If a "known" score is provided, the "potential" score is disallowed.		
4. Vapour				
A. Demonstrated COPCs in vapour.	<u> </u>			
Vapour has been measured (indoor or outdoor) in concentrations exceeding risk based concentrations.	12	VOCs were measured in some soil samples and were found to be below risk based concentrations. (AECOM, 2010)	Consult previous investigations, including human health risk assessments, for reports of vapours detected.	
Strongly suspected (based on observations and/or modelling)	9			
Vapour has not been measured and volatile hydrocarbons have not been found in site soils or groundwater.	0			
Score	Go to Potential			
NOTE: If a score is assigned here for Demonstrated COPCs in Vapouskip Part B (Potential for COPCs in vapour) and go to Section 5 (Sedi				
B. Potential for COPCs in vapour a. Relative Volatility based on Henry's Law Constant, H'	I	Low volatility has been applied because there are minimal detectable BTEXs.		If the Henry's Law Constant for a substance indicates that it is not volatile, and a score of
(dimensionless) High (H' > 1.0E-1)		Most contaminants of concern (i.e. Metals and PCBs) have no volatility.		zero is assigned here for relative volatility, then the other three questions in this section on Potential for COPCs will be automatically assigned scores of zero and you can skip to
Moderate (H' = 1.0E-1 to 1.0E-3) Low (H' < 1.0E-3) Not Volatile			Provided in Attached Reference Materials	section 5.
Do Not Know Score	Low			
b. What is the soil grain size? Fine	1	Bulk sampling completed for soil samples indicate coarse grained material onsite. (AECOM 2010	(i) Review soil permeability data in engineering reports. The greater the permeability of soils, the greater the possible movement of vapours.	
Coarse Do Not Know	Coarse		Fine-grained soils are defined as those which contain greater than 50% by mass particles less than 75 µm mean diameter (D50 < 75 µm). Coarse-grained soils are defined as those which contain	
Score	4		greater than 50% by mass particles greater than 75 μm mean diameter (D50 > 75 μm).	
c. Is the depth to the source less than 10m? Yes			Review groundwater depths below grade for the site.	
No Do Not Know				
Score	Yes 2			
d. Are there any preferential pathways?			Visit the site during dry summer conditions and/or review available photographs.	Preferential pathways refer to areas where vapour migration is more likely to occur because there is lower resistance to flow than in the surrounding materials. For example,
Yes No Do Not Know			where bedrock is present, fractures would likely act as preferential pathyways.	underground conduits such as sewer and utility lines, drains, or septic systems may serve as preferential pathways. Features of the building itself that may also be preferential
Score	No 0			pathways include earthen floors, expansion joints, wall cracks, or foundation perforations for subsurface features such as utility pipes, sumps, and drains.
Potential vapour pathway total Allowed Potential score Vapour pathway total	7 7 7	Note: If a "known" score is provided, the "potential" score is disallowed.		
- Proceedings of the second se		·	•	

(II) Migration Potential (Evaluation of contaminant migration pathways)

CAM-A, Sturt Point, Nunavut					
Definition	Score	Rationale for Score (document any assumptions, reports, or site-specific information; provide references)	Method Of Evaluation	Notes	
5. Sediment Movement					
A. Demonstrated migration of sediments containing COPCs					
		Sediments in the Freshwater Lake do not contain COPCs. (AECOM, 2010)	Review sediment assessment reports. Evidence of migration of contaminants in sediments must	Usually not considered a significant concern in lakes/marine environments, but could be	
There is evidence to suggest that sediments originally deposited to the site (exceeding the CCME sediment quality guidelines) have migrated.	12		be reported by someone experienced in this area.	very important in rivers where transport downstream could be significant.	
Strongly suspected (based on observations and/or modelling)	9				
Sediments have been contained and there is no indication that sediments will migrate in future. or	0				
Absence of sediment exposure pathway (i.e., within 5 km of the site there are no aquatic receiving environments, and therefore no sediments).					
Score	0				
NOTE: If a score is assigned here for Demonstrated Migration of Sed skip Part B (Potential for Sediment Migration) and go to Section 6 (Mo					
B. Potential for sediment migration					
a. Are the sediments having COPC exceedances capped with sediments having no exceedances ("clean sediments")? Yes	Do Not Know		Review existing sediment assessments. If sediment coring has been completed, it may indicate that historically contaminated sediments have been covered over by newer "clean" sediments. This assessment will require that cores collected demonstrate a low concentration near the top and higher concentration with sediment depth.		
No Do Not Know	2		ingrier concentration with securite trappin.		
b. For lakes and marine habitats, are the contaminated sediments in shallow water and therefore likely to be affected by tidal action, wave action or propeller wash?	Do Not Know		Review existing sediment assessments. If the sediments present at the site are in a river, select "no" for this question.		
Yes No	DO NOT KNOW				
Do Not Know	2				
c. For rivers, are the contaminated sediments in an area prone to sediment scouring? Yes No	Do Not Know		Review existing sediment assessments. It is important that the assessment is made under worst case flows (high yearly flows). Under high yearly flows, areas which are commonly depositional may		
Do Not Know	2				
Potential sediment pathway total Allowed Potential score	6 	Note: If a "known" score is provided, the "potential" score is disallowed.			
Sediment pathway total	0				
6. Modifying Factors					
Are there subsurface utility conduits in the area affected by contamination? Yes No	No		Consult existing engineering reports. Subsurface utilities can act as conduits for contaminant migration.		
Do Not Know Known Potential					

Migration Potential Total		_
Raw "known" total	36	7
Raw "potential" total	7.0	
Raw combined total	43.0	Note: If "Known" and "Potential" scores are provided, the checklist defaults to known. Therefore,
Total (may 33)	22.2	total "Potential" Score may not reflect the sum of the individual "Potential" scores

(III) Exposure (Demonstrates the presence of an exposure pathway and receptors)

Definition	Score	Rationale for Score (document any assumptions, reports, or site-specific information; provide references)	Method Of Evaluation	Notes
Human				
A. Known exposure				
Ocumented adverse impact or high quantified exposure which has or vill result in an adverse effect, injury or harm or impairment of the affect to humans as a result of the contaminated site. (Class 1 Site*)	22	Site is not frequented by humans.	"Where adverse effects on humans are documented, the site should be automatically designated as a Class 1 site (i.e., action required). There is no need to proceed through the NCS in this case. However, a scoring guideline (22) is provided in case a numerical score for the site is still desired (e.g., for comparison with other Class 1 sites).	Known adverse impact includes domestic and traditional food sources. Adverse effects based on food chain transfer to humans and/or animals can be scored in this category. However, the weight of evidence must show a direct link of a contaminated food source/supply and subsequent ingestion/transfer to humans. Any associated adverse effects to the environment are scored separately later in this worksheet. Someone experienced must provide a thorough description of the sources researched to evaluate and determine the
Same as above, but "Strongly Suspected" based on observations or ndirect evidence.	10		This category can be based on the outcomes of risk assessments and applies to studies which have reported Hazard Quotients >1 for noncarcinogenic chemicals and incremental cancer risks that exceed acceptable levels defined by the jurisdiction for carcinogenic chemicals (for most jurisdictions this is typically either >10 ⁻⁵ or >10 ⁻⁶). Known impacts can also be evaluated based on blood testing	quantified exposure/impact (adverse effect) in the vicinity of the contaminated site. Selected References: Health Canada – Federal Contaminated Site Risk Assessment in Canada Parts 1 and 2 Guidance on Human Heath
No quantified or suspected exposures/impacts in humans.	O to Potential		(e.g. blood lead >10 ug/dL) or other health based testing.	Screening Level Risk Assessments (www.hc-sc.gc.ca/ewh-semt/pubs/contamsite/index_e.html) United States Environmental Protection Agency, Integrated Risk Information System (IRIS) – http://toxnet.nml.nih.gov
Score	Go to Potential		This category can be based on the outcomes of risk assessments and applies to studies which have reported Hazard Quotients of less than 0.2 for non-carcinogenic chemicals and incremental lifetime cancer risks for carcinogenic chemicals that are within acceptable levels as defined by the jurisdiction (for most jurisdictions this is less than either 10 ⁻⁶ or 10 ⁻⁵).	
NOTE: If a score is assigned here for Known Exposure, then you can		Total and		
skip Part B (Potential for Human Exposure) and go to Section 2 (Huma B. Potential for human exposure	an Exposure Modifyin	g Factors)		
a) Land use (provides an indication of potential human exposure scenarios)		The site is accesible by boat in the summer. This site fits the CCME definition for Agricultural.	Review zoning and land use maps over the distances indicated. If the proposed future land use is more "sensitive" than the current land use, evaluate this factor assuming the proposed future use is in place. Agricultural land use is defined as uses of land where the activities are related to the	This is the main "receptor" factor used in site scoring. A higher score implies a greater exposure and/or exposure of more sensitive human receptors (e.g., children).
Agricultural Residential / Parkland Commercial Industrial			productive capability of the land or facility (e.g., greenhouse) and are agricultural in nature, or activities related to the feeding and housing of animals as livestock. Residential/Parkland land uses are defined as uses of land on which dwelling on a permanent, temporary, or seasonal basis is the activity (residential), as well as uses on which the activities are recreational in nature and require the natural or human designed capability of the land to sustain that activity (parkland).	
Do Not Know	Agricultural		Commercial/Industrial land uses are defined as land on which the activities are related to the buying, selling, or trading of merchandise or services (commercial), as well as land uses which are related to the production, manufacture, or storage of materials (industrial).	
Score b. Indicate the level of accessibility to the contaminated portion of the site (e.g., the potential for coming in contact with contamination)	3	Site is remote but not controlled and the contaminants are not covered. (AECOM, 2010)	Review location, manufacture, or storage or materials (moustrar). Review location and structures and contaminants at the site and determine if there are intervening barriers between the site and humans. A low rating should be assigned to a (covered) site surrounded by a fence or in a remote location, whereas a high score should be assigned to a site that has no	
Limited barriers to prevent site access; contamination not covered Moderate access or no intervening barriers, contaminants are covered.			cover, fence, natural barriers or buffer.	
Remote locations in which contaminants not covered. Controlled access or remote location and contaminants are covered				
Do Not Know				
Score	Mod. access, covered			
3. Potential for human exposure				
c) Potential for intake of contaminated soil, water, sediment or foods for operable or potentially operable pathways, as identified in Worksheet II (Migration Potential). i) direct contact Is dermal contact with contaminated surface water, groundwater, sediments or soils anticipated? Yes		Soils exceed the CCME guidelines at the site, therefore dermal contact is possible. (AECOM, 2010)	If soils or potable groundwater are present exceeding their respective CCME guidelines, dermal contact is assumed. Exposure to surface water, non-potable groundwater or sediments exceeding their respective CCME guidelines will depend on the site. Select "Yes" if dermal exposure to surface water, non-potable groundwater or sediments is expected. For instance, dermal contact with sediments would not be expected in an active port. Only soils in the top 1.5 m are defined by CCME (2003) as surface soils. If contaminated soils are only located deeper than 1.5 m, direct contact with soils is not anticipated to be an operable contaminant exposure pathway.	Exposure via the skin is generally believed to be a minor exposure route. However for some organic contaminants, s exposure can play a very important component of overall exposure. Dermal exposure can occur while swimming in contaminated waters, bathing with contaminated surface water/groundwater and digging in contaminated dirt, etc.
No Do Not Know	Yes			
Score ii) inhalation (i.e., inhalation of dust, vapour)	3		If inhabitable buildings are on the site within 30 m of soils or groundwater exceeding their respective	Exposure via the lungs (inhalation) can be a very important exposure pathway. Inhalation can be via both particulates (dust) and gas (vapours). Vapours can be a problem where buildings have been built on former industrial sites or wholatile contaminants have migrated below buildings resulting in the potential for vapour intrusion.
Vapour - Are there inhabitable buildings on the site within 30 m of soils or groundwater with volatile contamination as determined in Worksheet II (Migration Potential)?			guidelines for volatile chemicals, there is a potential of risk to human health (Health Canada, 2004). Review site investigations for location of soil samples (having exceedances of volatile substances) relative to buildings. Refer to (II) Migration Potential worksheet, 4B.a), Potential for COPCs in Vapour for a definition of volatility.	Assesses the potential for humans to be exposed to vapours originating from site soils. The closer the receptor is to a source of volatile chemicals in soil, the greater the potential of exposure. Also, coarser-grained soil will convey vapou much more efficiently in the soil than finer grained material such as clays and silts.
Yes No				General Notes;
Do Not Know Score	No 0	Bulk sampling completed for soil samples indicate coarse grained material	Consult grain size data for the site. If soils (containing exceedances of the CCME soil quality	Someone experienced must provide a thorough description of the sources researched to determine the presence/absence of a vapour migration and/or dust generation in the vicinity of the contaminated site. This information must be documented in the NCS Site Classification Worksheet including cont names, phone numbers, e-mail correspondence and/or reference
Dust - If there is contaminated surface soil (e.g. top 1.5 m), indicate whether the soil is fine or coarse textured. If it is known that surface soil is not contaminated, enter a score of zero. Fine Coarse		onsite. (AECOM 2010)	guidelines) predominantly consist of fine material (having a median grain size of 75 microns; as defined by CCME (2006)) then these soils are more likely to generate dusts.	maps/reports and other resource such as internet links. Selected References; Canadian Council of Ministers of the Environment (CCME). 2006. Protocol for the Derivation of Environmental and Human Health Soil Quality Guidelines. PN 1332. www.ccme.ca
Surface soil is not contaminated or absent (bedrock) Do Not Know Texture Score	Coarse			Golder, 2004. Soil Vapour Intrusion Guidance for Health Canada Screening Level Risk Assessment (SLRA) Submitted to Health Canada, Burnaby, BC
	1			
inhalation total	1			
B. Potential for human exposure		There is debris within 100 m of the Freshwater Lake on site, however most		Selected References:
iii) Ingestion (i.e., ingestion of food items, water and soils [for children]), including traditional foods.		debris is centered around the Main Station which is more than a kilometre	Review available site data to determine if drinking water (groundwater, surface water, private,	Guidelines for Canadian Drinking Water Quality: www.hc-sc.gc.ca/hecs-

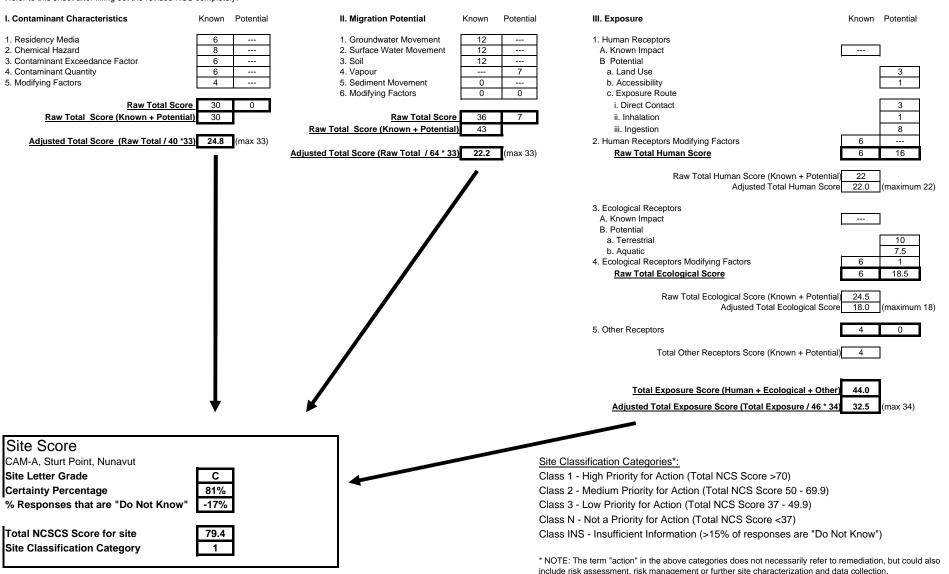
(III) Exposure (Demonstrates the presence of an exposure pathway and receptors)

CAM-A, Sturt Point, Nunavut

CAM-A, Sturt Point, Nunavut	T			
Dofinister	Sec	Rationale for Score	Method Of Fundamen	Netes
Definition	Score	(document any assumptions, reports, or site-specific information; provide references)	Method Of Evaluation	Notes
Drinking Water: Choose a score based on the proximity to a drinking		and, non-in-bine, p-12-0-m; 20-10)	Canadian Drinking Water Quality. If drinking water supply is known to be contaminated, some	DODG HAGO / PADILIDARION INTERNITY WARTER - QUARTER CONTROL - QUAR
water supply, to indicate the potential for contamination (present or future).			immediate action (e.g., provision of alternate drinking water supply) should be initiated to reduce or eliminate exposure.	Drinking water can be an extremely important exposure pathway to humans. If site groundwater or surface water is not used for drinking, then this pathway is considered to be inoperable.
0 to 100 m			ommute exposure.	lased for diffiking, then this pathway is considered to be inoperable.
100 to 300 m 300 m to 1 km			The evaluation of significant potential for exceedances of the water supply in the future may be based	Consider both wild foods such as salmon, venison, caribou, as well as agricultural sources of food items if the
1 to 5 km			on the capture zones of the drinking water wells; contaminant travel times; computer modelling of flow and contaminant transport.	contaminated site is on or adjacent to agricultural land uses.
No drinking water present				
Do Not Know	0 to 100 m			
Score				
	3	-		
Is an alternative water supply readily available?				
Yes No				
Do Not Know	No			
Score	1			
Is human ingestion of contaminated soils possible?]	If contaminated soils are located within the top 1.5 m, it is assumed that ingestion of soils is an	
			operable exposure pathway. Exposure to soils deeper than 1.5 m is possible, but less likely, and the duration is shorter. Refer to human health risk assessment reports for the site in question.	
Yes No			adiation to shorter. Note: to human health risk assessment reports for the site in question.	
Do Not Know	Yes			
Score	3			
Are food items consumed by people, such as plants, domestic		There is potential the site is used for hunting purposes.	Use human health risk assessment reports (or others) to determine if there is significant reliance on traditional food sources associated with the site. Is the food item in question going to spend a large	
animals or wildlife harvested from the contaminated land and its			proportion of its time at the site (e.g., large mammals may spend a very small amount of time at a	
surroundings?			small contaminated site)? Human health risk assessment reports for the site in question will also	
Yes No			provide information on potential bioaccumulation of the COPC in question.	
Do Not Know	Yes			
Score	1]		
Ingestion total	8]		
Human Health Total "Potential" Score	16	Note if a "Known" Human Health score is provided, the "Potential" score is		
Allowed "Potential" Score	16	disallowed.		
Human Exposure Modifying Factors	10			
, , ,		Locals may use the area for hunting		
Strong reliance of local people on natural resources for survival (i.e., food, water, shelter, etc.)	Yes	2000.0 may doo are area for numbers		
Yes No				
Do Not Know				
Known Potential	6	4		
Raw Human "known" total	6	†		
Raw Human "potential" total	16	1		
Raw Human Exposure Total Score	22			
Human Health Total (max 22)	22.0			
3. Ecological				
A. Known exposure				
			Some low levels of impact to ecological receptors are considered acceptable, particularly on	CCME, 1999: Canadian Water Quality Guidelines for the Protection of Aquatic Life. www.ccme.ca
		concentrations below applicable guidelines so it is assumed that aquatic	commercial and industrial land uses. However, if ecological effects are deemed to be severe, the site may be categorized as class one (i.e., a priority for remediation or risk management), regardless of	CCME, 1999: Canadian Water Quality Guidelines for the Protection of Agricultural Water Uses. www.ccme.ca Sensitive receptors- review: Canadian Council on Ecological Areas; www.ccea.org .
		organisms are not affected.	the numerical total NCS score. For the purpose of application of the NCS, effects that would be	
Documented adverse impact or high quantified exposure which has or			considered severe include observed effects on survival, growth or reproduction which could threaten the viability of a population of ecological receptors at the site. Other evidence that qualifies as severe	Ecological effects should be evaluated at a population or community level, as opposed to at the level of individuals. For
will result in an adverse effect, injury or harm or impairment of the safety to terrestrial or aquatic organisms as a result of the contaminated	18		adverse effects may be determined based on professional judgement and in consultation with the	example, population-level effects could include reduced reproduction, growth or survival in a species. Community-level effects could include reduced species diversity or relative abundances. Further discussion of ecological assessment
site.			relevant jurisdiction. If ecological effects are determined to be severe and an automatic Class 1 is	endpoints is provided in A Framework for Ecological Risk Assessment: General Guidance (CCME 1996).
			assigned, there is no need to proceed through the NCS. However, a scoring guideline (18) is provided in case a numerical score for the site is still desired (e.g., for comparison with other Class 1	Notes:
			sites).	Someone experienced must provide a thorough description of the sources researched to classify the environmental
				receptors in the vicinity of the contaminated site. This information must be documented in the NCS Site Classification
			This category can be based on the outcomes of risk assessments and applies to studies which have reported Hazard Quotients >1. Alternatively, known impacts can also be evaluated based on a weight	Worksheet including contact names, phone numbers, e-mail correspondence and/or reference maps/reports and other resource such as internet links.
			of evidence assessment involving a combination of site observations, tissue testing, toxicity testing	
Same as above, but "Strongly Suspected" based on observations or indirect evidence.	12		and quantitative community assessments. Scoring of adverse effects on individual rare or	
			endangered species will be completed on a case-by-case basis with full scientific justification.	
			This category can be based on the outcomes of risk assessments and applies to studies which have	
No quantified or suspected exposures/impacts in terrestrial or aquatic	0		reported Hazard Quotients of less than 1 and no other observable or measurable sign of impacts. Alternatively, it can be based on a combination of other lines of evidence showing no adverse effects,	
organisms			Alternatively, it can be based on a combination of other lines of evidence showing no adverse effects, such as site observations, tissue testing, toxicity testing and quantitative community assessments.	
	Go to Potential	-		
Score				
NOTE: If a score is assigned here for Known Exposure, then you can				
skip Part B (Potential for Ecological Exposure) and go to Section 4 (Ed	cological Exposure M	Modifying Factors)		
B. Potential for ecological exposure (for the contaminated portion of the site)				
a) Terrestrial		The site is located in the wilderness and is a habitat for species of special	Review zoning and land use maps. If the proposed future land use is more "sensitive" than the current	
i) Land use		concern (i.e. barren ground caribou and polar bears) under Committee on the Status of Endangered Wildlife in Canada (COSEWIC).	land use, evaluate this factor assuming the proposed future use is in place (indicate in the worksheet that future land use is the consideration).	
Agricultural (or Wild lands)		ute Status of Eridangered vylidine in Callada (COSEVIC).	anaciatare iana doe io trie coriolaerationi.	

(III) Exposure (Demonstrates the presence of an exposure pathway and receptors)
CAM-A, Sturt Point, Nunavut

CAM-A, Sturt Point, Nunavut	1	1		
Definition	Score	Rationale for Score (document any assumptions, reports, or site-specific information; provide references)	Method Of Evaluation	Notes
Residential/Parkland Commercial Industrial Do Not Know A Score	g <mark>ricultural (or Wild Iar</mark> a 3	ids	Agricultural land use is defined as uses of land where the activities are related to the productive capability of the land or facility (e.g., greenhouse) and are agricultural in nature, or activities related to the feeding and housing of animals as livestock. Wild lands are grouped with agricultural land due to the similarities in receptors that would be expected to occur there (e.g., herbivorous mammals and birds) and the similar need for a high level of protection to ensure ecological functioning. Residential/Parkland land uses are defined as uses of land on which dwelling on a permanent, temporary, or seasonal basis is the activity (residential), as well as uses on which the activities are recreational in nature and require the natural or human designed capability of the land to sustain that activity (parkland). Commercial/Industrial land uses are defined as land on which the activities are related to the buying, selling, or trading of merchandise or services (commercial), as well as land uses which are related to the production, manufacture, or storage of materials (industrial).	
ii) Uptake potential		Impacted soils are located within the upper 1.5 m of the site. (AECOM, 2010)		
Direct Contact - Are plants and/or soil invertebrates likely exposed to contaminated soils at the site? Yes No Do Not Know	Yes		plants and soil invertebrates is an operable exposure pathway. Exposure to soils deeper than 1.5 m is possible, but less likely.	
Score iii) Ingestion (i.e., wildlife or domestic animals ingesting contaminated	1	Surface water samples taken from the outfall area exceed the CCME		
in) ingestion (i.e., within a contestic animals ingesting contaminated food items, soils or water) Are terrestrial animals likely to be ingesting contaminated water at the site? Yes No Do Not Know	Yes	Protection of Aquatic Life Guideline - Freshwater for of aluminum, cadmium, and copper. It is possible that terrestrial animals could ingest contaminated water at the site. (AECOM, 2010)	Refer to an Ecological Risk Assessment for the site. If there is contaminated surface water at the site, assume that terrestrial organisms will ingest it.	
Score Are terrestrial animals likely to be ingesting contaminated soils at the site? Yes No	1	Terrestrial animals could ingest contaminated PCB and lead impacted soils at the site.	Refer to an Ecological Risk Assessment report. Most animals will co-ingest some soil while eating plant matter or soil invertebrates.	
Do Not Know Score Can the contamination identified bioaccumulate? Yes No Do Not Know	Yes 1	The site is located in the wilderness and is a habitat for species of special concern (i.e. barren ground caribou and polar bears) under Committee on the Status of Endangered Wildlife in Canada (COSEWIC).	Bioaccumulation of contaminants within food items is considered possible if: 1) The Log(Kow) of the contaminant is greater than 4 (as per the chemical characteristics work sheet) and concentrations in soils exceed the most conservative CCME soil quality guideline for the intended land use, or 2) The contaminant in collected tissue samples exceeds the Canadian Tissue Residue	
Score Distance to sensitive terrestrial ecological area 0 to 300 m 300 m to 1 km 1 to 5 km > 5 km Do Not Know	1		Guidelines. It is considered that within 300 m of a site, there is a concern for contamination. Therefore an environmental receptor located within this area of the site will be subject to further evaluations. It is also considered that any environmental receptor located greater than 5 km will not be a concern for evaluation. Review Conservation Authority mapping and literature including Canadian Council on Ecological Areas link: www.ccea.org .	Environmental receptors include: local, regional or provincial species of interest or significance; arctic environments (or a site specific basis); nature preserves, habitats for species at risk, sensitive forests, natural parks or forests.
Score	0 to 300 m 3			
Raw Terrestrial Total Potential Allowed Terrestrial Total Potential	10	Note if a "Known" Ecological Effects score is provided, the "Potential" score is disallowed.		
Potential for ecological exposure (for the contaminated portion of the	10			
b) Aquatic i) Classification of aquatic environment Sensitive Typical		The primary aquatic environment at the site is the Queen Maud Gulf Area which is considered a sensitive aqualtic environment.	"Sensitive aquatic environments" include those in or adjacent to shellfish or fish harvesting areas, marine parks, ecological reserves and fish migration paths. Also includes those areas deemed to have ecological significance such as for fish food resources, spawning areas or having rare or endangered species.	
Not Applicable (no aquatic environment present) Do Not Know Score	Sensitive 3		"Typical aquatic environments" include those in areas other than those listed above.	
ii) Uptake potential Does groundwater daylighting to an aquatic environment exceed the CCME water quality guidelines for the protection of aquatic life at the point of contact? Yes No (or Not Applicable) Do Not Know Score	Do Not Know		Groundwater concentrations of contaminants at the point of contact with an aquatic receiving environment can be estimated in three ways: 1) by comparing collected nearshore groundwater concentrations to the CCME water quality guidelines (this will be a conservative comparison, as contaminant concentrations in groundwater often decrease between nearshore wells and the point of discharge). 2) by conducting groundwater modeling to estimate the concentration of groundwater immediately before discharge. 3) by installing water samplers, "peepers", in the sediments in the area of daylighting groundwater.	
Distance from the contaminated site to an important surface water resource 0 to 300 m 300 m to 1 km 1 to 5 km > 5 km Do Not Know	0 to 300 m	Impacted soils have been identified within 30 m of the marine habitat.	It is considered that within 300 m of a site, there is a concern for contamination. Therefore an environmental receptor or important water resource located within this area of the site will be subject to further evaluation. It is also considered that any environmental receptor located greater than 5 km away will not be a concern for evaluation. Review Conservation Authority mapping and literature including Canadian Council on Ecological Areas link: www.ccea.org .	Environmental receptors include: local, regional or provincial species of interest or significance, sensitive wetlands and fens and other aquatic environments.
Are aquatic species (i.e., forage fish, invertebrates or plants) that are consumed by predatory fish or wildlife consumers, such as mammals and birds, likely to accumulate contaminants in their tissues? Yes No Do Not Know Score			Bioaccumulation of food items is possible if: 1) The Log(Kow) of the contaminant is greater than 4 (as per the chemical characteristics work sheet) and concentrations in sediments exceed the CCME ISQGs. 2) The contaminant in collected tissue samples exceeds the CCME tissue quality guidelines.	
Raw Aquatic Total Potential	7.5	Note if a "Known" Ecological Effects score is provided, the "Potential" score is	I	I


(III) Exposure (Demonstrates the presence of an exposure pathway and receptors)
CAM-A, Sturt Point, Nunavut

Exposure Total (max 34) 37.3

		Rationale for Score		
Definition	Score	(document any assumptions, reports, or site-specific information; provide references)	Method Of Evaluation	Notes
Allowed Aquatic Total Potential	7.5	disallowed.		
Ecological Exposure Modifying Factors				
	I	The site is located in the wilderness and is a habitat for species of special	Consult any ecological risk assessment reports. If information is not present, utilize on-line databases	Species at risk include those that are extirpated, endangered, threatened, or of special concern. For a list of species
Known occurrence of a species at risk.		concern (i.e. barren ground caribou and polar bears) under Committee on	such as Eco Explorer. Regional, Provincial (Environment Ministries), or Federal staff (Fisheries and	risk, consult Schedule 1 of the federal Species at Risk Act
Is there a potential for a species at risk to be present at the site?		the Status of Endangered Wildlife in Canada (COSEWIC).	Oceans or Environment Canada) should be able to provide some guidance.	(http://www.sararegistry.gc.ca/species/schedules_e.cfm?id=1). Many provincial governments may also provide regionally applicable lists of species at risk. For example, in British Columbia, consult:
Yes				BCMWLAP. 2005. Endangered Species and Ecosystems in British Columbia. Provincial red and blue lists. Ministry
No Do Not Know	Yes			Sustainable Resource Management and Water, Land and Air Protection. http://srmwww.gov.bc.ca/atrisk/red-blue.h
BO NOT MIOW	2			
Score				
Potential impact of aesthetics (e.g., enrichment of a lake or tainting of				
d flavor).				
Is there evidence of aesthetic impact to receiving water bodies?	Yes		Documentation may consist of environmental investigation reports, press articles, petitions or other records.	This Item will require some level of documentation by user, including contact names, addresses, phone numbers, e- addresses. Evidence of changes must be documented, please attach copy of report containing relevant information.
Yes			noordo.	auditions. Evidence of changes must be documented, please attach copy of report containing felevant information.
No	2			
Do Not Know		In some group, the soil has a slight hydrocerbon oder (AECOM 2010)	Examples of alfactory change can include the small of a CODC or an increase in the artist of decrees	
Is there evidence of olfactory impact (i.e., unpleasant smell)?	Yes	In some areas, the soil has a slight hydrocarbon odor. (AECOM, 2010)	Examples of olfactory change can include the smell of a COPC or an increase in the rate of decay in an aquatic habitat.	
Yes No	2			
Do Not Know				
Is there evidence of increase in plant growth in the lake or water body?	No		A distinct increase of plant growth in an aquatic environment may suggest enrichment. Nutrients e.g., nitrogen or phosphorous releases to an aquatic body can act as a fertilizer.	
Yes		_	minogen of phosphorous releases to an aquatic body can act as a fertilizer.	
No	0			
Do Not Know Is there evidence that fish or meat taken from or adjacent to the site			Some contaminants can result in a distinctive change in the way food gathered from the site tastes or	
smells or tastes different?	Do Not Know		smells.	
Yes No	1			
Do Not Know	'			
Ecological Modifying Factors Total - Known	6			
Ecological Modifying Factors Total - Potential Raw Ecological Total - Known	<u>1</u>	4		
Raw Ecological Total - Potential	18.5			
Raw Ecological Total Ecological Total (Max 18)	24.5 18.0	4		
Other Potential Contaminant Receptors	16.0			
Other Fotential Contaminant Neceptors	T			
Exposure of permafrost (leading to erosion and structural concerns)				Plants and lichens provide a natural insulating layer which will help prevent thawing of the permafrost during the summer. Plants and lichens may also absorb less solar radiation. Solar radiation is turned into heat which can also cause underlying permafrost to melt.
				1
Are there improvements (roads, buildings) at the site dependant upon	Yes		Consult engineering reports, site plans or air photos of the site. When permafrost melts, the stability of the soil decreases, leading to erosion. Human structures, such as roads and/or buildings are often	
the permafrost for structural integrity?			dependent on the stability that the permafrost provides.	
Yes No	4			
Do Not Know		₫		
Is there a physical pathway which can transport soils released by			Melting permafrost leads to a decreased stability of underlying soils. Wind or surface run-off erosion	
damaged permafrost to a nearby aquatic environment?	No		can carry soils into nearby aquatic habitats. The increased soil loadings into a river can cause an	
Yes No	0	-	increase in total dissolved solids and a resulting decrease in aquatic habitat quality. In addition, the erosion can bring contaminants from soils to aquatic environments.	
Do Not Know				
Other Potential Receptors Total - Known	4	┪		
Other Potential Receptors Total - Potential	0	†		
•		•	1	1
Exposure Total		٦		
Raw Human Health + Ecological Total - Known	16	Only includes "Allowed potential" if a "Known" seers was sweet at the		
Raw Human Health + Ecological Total - Potential	34.5	Only includes "Allowed potential" - if a "Known" score was supplied under a given category then the "Potential" score was not included.		
Raw Total	50.5			
F T. 111 00	07.0	1		

CCME National Classification System (2008, 2010 v 1.2) Score Summary

Scores from individual worksheets are tallied in this worksheet. Refer to this sheet after filling out the revised NCS completely.

Appendix I

Site Video (DVD)