Water Licence Application
Supplementary Questionnaire
for Exploratory Drilling

.

SECTION 1:
GENERAL
SECTION 2:
GEOLOGY AND MINERALOGY 9
SECTION 3
EXPLORATION OPERATION
SECTION 4:
THE MILL OR PROCESSING PLANT
SECTION 5
THE CONTAINMENT AREAS
SECTION 6:
WATER TREATMENT
SECTION 7:
ENVIRONMENTAL MONITORING PROGRAM
SECTION 8:
ENVIRONMENTAL ASSESSMENT AND MONITORING 21

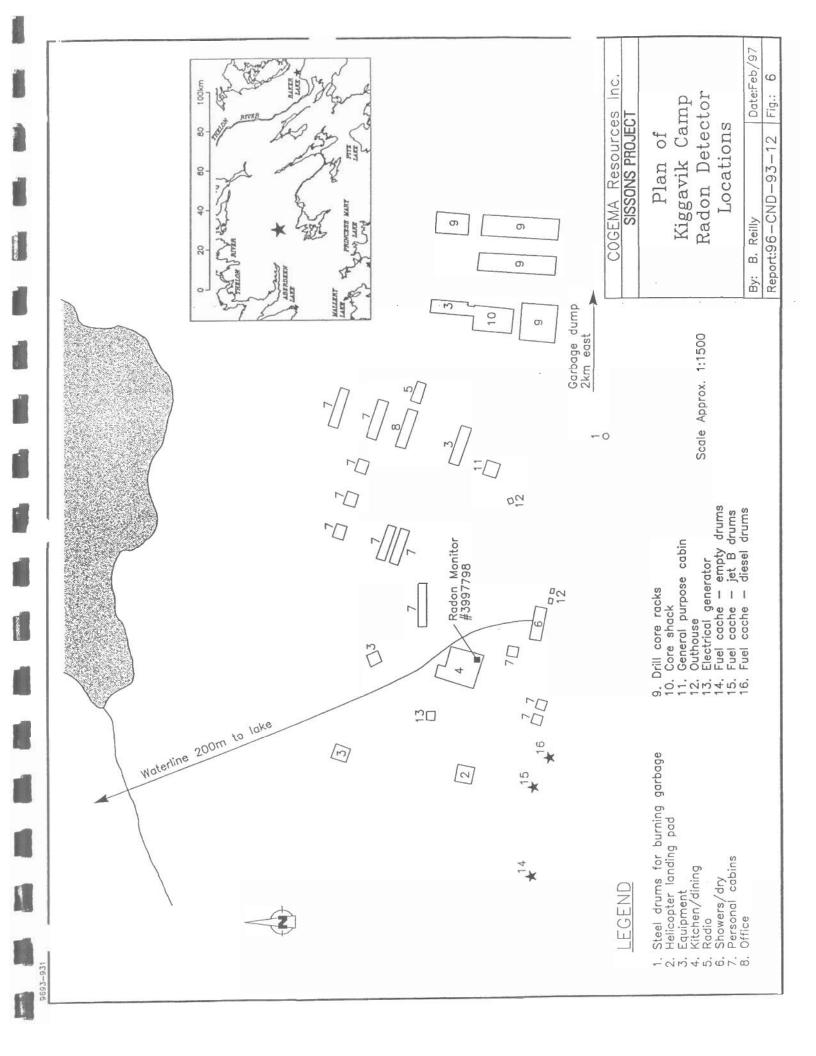
:

C7 1177	177	14,44	1	BT	-10	
SE			6 3			•
	U 1		v	T.A	4	•

G	F	V	L.	D	A	T
4	Li.	14	E.	L/	13	

1.	Applicant	COGEMA RESOURCES INC.
	**	(Company, corporation, owner) P.O. Box 9204, Saskatoon, SK S7K 3X5
		(Postal address)
		(306) 244-2554 (306) 343-4632
		(Telephone number) (Fax)
		(E-Mail)
	Corporate Ac	Idress (If different from above)
		(Corporate Office Address)
		(Telephone number) (Fax)
		(E-Mail)
	Project Name	SISSONS
	Location	80 KM West of Baker Lake
	Closest Comm	Baker Lake nunity
	Latitude/Long	
	Show the local	tion of the project on a general location map.
2.	Environmental	Manager Liz Quarshie (306) 244-2554 (Name) (Telephone No.)
>	or Project Man	ager Brian Reilly (Title)

8. -


so, list them. If not, why not?

,-

3	Indicate the status of the exploration activity on the date of application: (Check the appropriate space.)
	Design Under construction In operation Suspended Care and Maintenance Abandoned
4.	If a change in the status of the exploration activity is expected, indicate the nature and anticipated date of such change. No change in status expected.
_	
_	
5.	Indicate the present (or purposed) schedule for the exploration activity.
	Hours per week Days per week Weeks per year Number of employees Number of Inuit employees 168 (drilling) 7 7
6.	Estimate the term (life) of the exploration activity.
	Unknown (Months / Year)
	.·
7.	How will the project effect the traditional uses on Inuit Owned Lands?
	Drilling will be conducted on BL-22/66A for approximately
	two weeks in July. Hunting, fishing, and other traditional
	uses which may take place on this parcel of land are believed
	to be minimally affected.

Have the Elders been consulted on effects to the traditional use on Inuit Owned Land? If

Wi	lliam Noah - Baker Lake
Ja	cob Ikinilik - Baker Lake
Ва	rnabas Peryour - Baker Lake
-	
9. KI	Has the proponent consulted Inuit Organizations in the area? If so, list them.
NT	T
(90	
10.	Has the proponent consulted surrounding communities on traditional water use areas? If so, list them. If not, why not?
Ва	ker Lake
11.	Attach a detailed map drawn to scale showing the relative locations (or proposed locations) of the exploration activity, Sewage and solid waste facilities, and containment areas. The plan should include the water intake and pumphouse, fuel and chemical storage facilities. Ore and waste rock storage piles, piping distribution systems, and transportation access routes around the site. The map also should include elevation contours, water bodies and an indication of drainage patterns for the area.
12.	If applicable, provide a brief history of property development which took place before the present company gained control of the site. Include shafts, audits, mills (give rated capacity, etc.) waste dumps, chemical storage areas, tailings disposal areas and effluent discharge locations. Make references to the detailed map.
N/	A
	·

13. Give a short description of the proposed or current freshwater intake facility, the type and operating capacity of the pumps used, and the intake screen size.
Fresh Water:

Camp Facilities:	Beam pump with Peter, 1 cylindre Diesel Motor	. 100
4,1,	Output 750 litres/hour, 24 hours/day	3/
	Intake screen size: 2mm	m /0
Drilling:	Beam pump with Peter, 1 cylinder, Diesel Motor	
	Output 1700 litres/hour, 24 hours/day	:2
10.	Intake screen size: 2mm	Will
	al set b	
	TO! AP!	

14. At the rate of intended water usage for the exploration activity, explain water balance inputs and outputs in terms of estimated maximum draw down and recharge capability of the water source from fresh water will be drawn.

For Camp Facilities:	Past years of usage of water showed r
no effect	on water level from intake source.
For drilling purpose:	The volume of water used in drilling wed imbalance of inputs and outputs
terms.	wed imbarance of inputs and outputs
Based on previous explorati	on activity in the area, minimal draw

down of surface water sources is anticipated at the rate of the anticipated water usage.

15. Will any work be done that penetrates regions of permafrost?

Yes

- 16. If "YES" above, is the permafrost continuous or discontinuous?
 Continuous
- 17. Were (or will) any old workings or water bodies (be) dewatered in order to conduct the exploration activity?

No.

18.			of the water body, the total vo- cteristics of the water.	lume of water to be
	Water body (if unnar Total volume Receiving Watercour		ude/Longitude)cubic metres	
			cubic metres / sec	
	Chemical characteris	tics of dischar	ge:	•
19.	3	mg/Lmg/Lmg/Lmg/Lmg/Lmg/Lmg/Lmg/Lmg/Lmg/Lmg/L	Total Ammonia Suspended solids Specific conductivity pH be) treated chemically ?	mg/L mg/L uhmo/cm
20.	If "YES" above, description	ribe the applied		·
		y water) ru	uns fromthe kitchen, w	
ar (s	ea and is allowed	to seep a	and evaporate, Water runs south to a small	from the dry swampy area
	No. of the second secon		age from the camp area	

heavy plastic/rubber garbage bins. These bins are flown to the dump area 10 km to the east and burned with diesel fuel. Sewage from the outhouse at Andrew Lake is buried as required.

SECTION 2:

GEOLOGY AND MINERALOGY

22.	Briefly describe the phy	sical nature of the	e mineraliz	ration, inclu	iding know	n dime	nsions
Two	and approximate shape. ore deposits are	located on t	he Siss	ons prop	erty. 1	The A	ndrew
	e deposit consists roximately 450 m l						
ral	ization is interse	cted at appr	oximate	1у 100 п	depth.	The	End
gri	d deposit is chief	ly composed	of two	ore lens	ses. The	nor	th pod
dime	ensions are approx sures 20m x 15m x	imately 40m 40m. Minera	x 15m x lizatio	150m ar n is int	ersected	u k h lat	the En
	d deposit at appro osits is predomina						
str	uctures.						
23. Meta	Briefly describe the host surface to the mineralize a Grey Wacke is th	d zone.)					
	End grid deposits						
1-10-0-17-0-	agreywacke at the			-			
_	nd at the base of						
	ious depths throug		200			neis	SIC
rocl	ks, and granitoid	rocks host m	inerali	zation.			
		to the total					
	Provide a geological desc percentage of metals.)				ssible, inclu	ide the	
And	rew Lake Deposit:	4.335 Mt	0.47%	Uranium			-
End	Grid Deposit:	6.767 Mt	0.23%	Uranium			

_		
25.	rock, and waste rock to dete	ests which have been (or will be) performed on the ore, host ermine their relative acid generation and contaminant leaching used (or to be used) and provide test results in an attached tic tests.)
N/	' A	
		7.
26.	Estimate the percentage of s	ulphide in the mineralization:
	pyrite pyrrhotite	~ 1%
	pyrite / pyrrhotite mixture arsenopyrite	

 Outline the water usage (or proposed water usage) in the exploration activity, in source and volume of water for each use. 				
		Source	Use	Volume (m ³ / day)
	1.	Lake 200m N of camp	camp	18,000 1.18.0
	2.	Nearby lake/stream	drilling	40,800 140.8
31.		icable, indicate or estimate the to the mine workings.	e volume of natura	al ground water presently gaining
	N/A	m ³ / day		•
32.	flow. (I	cable, outline methods used to For example: recycling)	inderground or on	surface to decrease mine water
N/A	1			
		brand names and constituent		ives to be used. Bradley Bros. Ltd. of
Rou	yn-No OBC	randa, QC) consists o	of a half and	half mixture of 133X s of Calgary, Alberta, or
				ct manufactured by West
Coa	st Dr	illing Supplies of Va	ancouver. BC.	The drilling mud is a n to be harmful to acquation
lif	e at	low concentrations.		

SECTION 3:

EXPLORATION OPERATION

27.		k off the type (or proposed type) of exploration operation that will be used on the erty and briefly describe the method in more detail.
	a) b)	Reverse circulation to obtain bulk sample Trenching
	c) d)	Conventional open pit Decline
	e)	Conventional underground
	f)	Strip mining activity
	g)	Other Exploration activity (please explain) Drilling
The	e dia	mond drill rig functions with a diesel motor, which is
obt	taine	from 205 litre drums by hand pump. Water for drilling is d from a nearby lake or stream using a supply pump, which
is	also	fueled from the 205 litre drums by hand pump. Drill moves
are	e per	formed using a helicopter.
28.	Indica	te the size and number of samples that will be obtained.
		number of samples
	one la	note if smaller samples are to be taken from different areas (note location) to form rge bulk sample.
Spl	it co	ore samples will be taken only from mineralized core to
be	assay	yed. The number of samples depends on the results of the
exp	lorat	ion drilling.
29.		te the <u>present or proposed average</u> rate of exploratory production from all lized sources on the property:
N/A		
- 7		tonnes ore / day

SECTION 4:

111.	E MILL OR PROCESSING PLANT N/A
34.	Is there (or will there be) a portable mill processing plant be operating on the property in conjunction with the exploration activity?
	Yes X No
35.	If "yes" indicate the proposed point of discharge for the mill or process plant water and the volume of the discharge.
	Point of discharge
	Volume of discharge m ³ / da
36.	Attach a copy of the portable mill or processing plant flow sheet. Indicate the points of addition of all the various reagents (chemicals) that are (or will be) used.
37.	Indicate the proposed rate of milling.
	not applicable (check) or tonnes / day
38.	List the types and quantities of all reagents used in the mill or processing plant (in kg/tonne ore milled.)
-	
	Reagent:Amount in kg/tonne ore milled:
39.	If applicable, is the (proposed) milling circuit based on autogenous grinding?
	Yes No Partially

40. Based on present production or bench test results, describe the chemical and physical characteristics of liquid mill or processing plant wastes directed to the tailing deposition area.

T/Cu	mg/L	Total Ammonia		mg/L
T/Pb	mg/L	Suspended solids		mg/L
T/Zn	mg/L	Specific conductivity		uhmo/cr
T/Ag	mg/L	pH	3)	
T/Mn	mg/L	Alkalinity		CaCo ₃ /I
T/Ni	mg/L	Hardness		mg/L
T/Fe	mg/L	Total cyanide		mg/L
T/Hg	mg/L	Oil and Grease		mg/L
T/As	mg/L	The state of the s		
T/Cd	mg/L			
T/Cr	mg/L			
T/Al	mg/L			

41. Provide a geochemical description of the solid fraction of the tailings.

Cu	mg/g
Pb	mg/g
Zn	mg/g
Ag	mg/g
Mn	mg/g
Cr	mg/g
Cd	mg/g

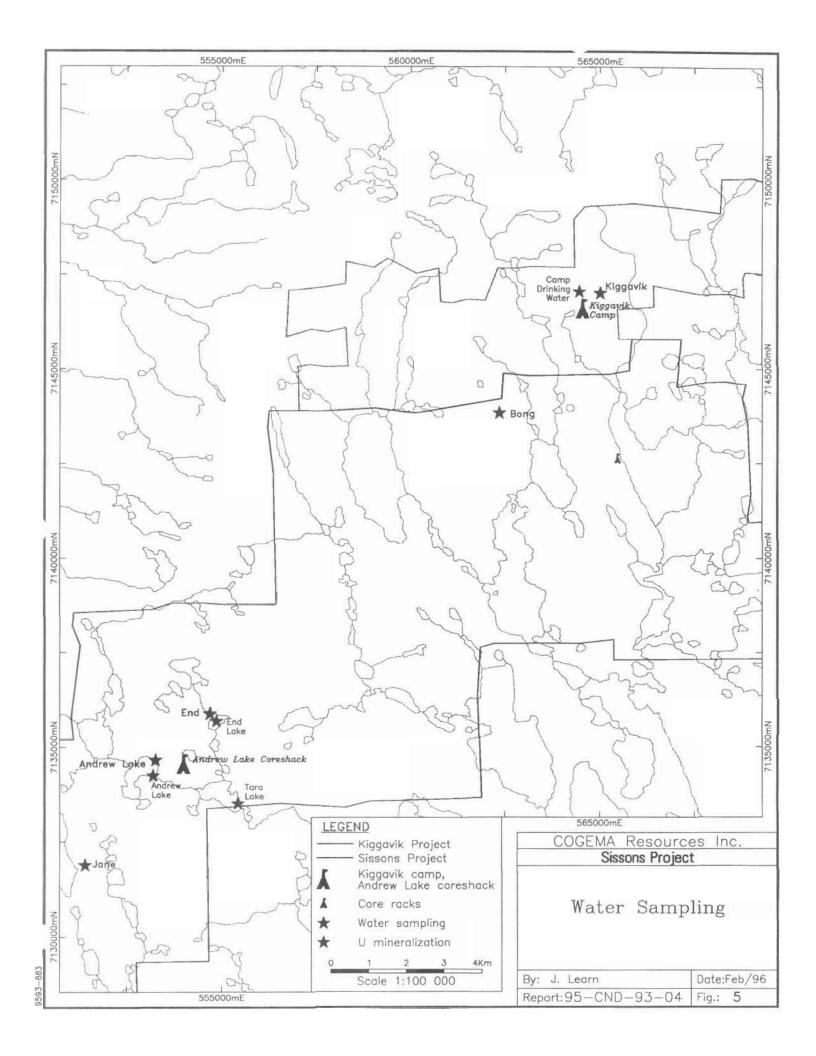
Al	mg/g
Fe	mg/g
Hg	mg/g
Ni	mg/g
As	mg/g
CN	mg/g

SECTION 5:

THE	CONT	AINMENT	AREAS	N/A
-----	------	---------	-------	-----

42.	What is the (Proposed) method of disposal of the mine water, mill or process plant tailings (ie. sump, subaqueous, surface tailings pond, settling pond)?			
43.			iled scale plan drawings of the proposed (or present) containment area. The ust include the following:	
	a.	a.	details of pond size and elevation;	
	a.	a.	details of all retaining structures (length, width, height, meterails of construction, etc.);	
	a.	a.	details of the drainage basin;	
	a.	a.	details of all decant, siphon mechanisms etc., including water treatment plant facilities;	
	a.	a.	details with regard to the direction and route followed by the flow of wastes and / or waste water from the area; and	
	a .	a.	indicate of the distance to nearby major watercourses;	
4.	of oth	her opti eability	choice of location for the containment area design by rationalising rejection ons. Consider the following criteria in your comparisons: subsurface strata, abandonment, recycling/reclaiming waters, and assessment of runoff into the brief summation.	

		ID:4033606369	1
		•	
45.	The average depth of the existing or propose volume of water encountered metres.	d containment area is dependen	t on the
		,	ti .
	,		12
46.	Indicate the total capacity for the existing or balance and stage volume calculations and cuoutputs along with volume calculations.)	rves. (Attach a description of in	
46.	balance and stage volume calculations and cu	rves. (Attach a description of in	
46.	balance and stage volume calculations and cu outputs along with volume calculations.)	rves. (Attach a description of in	nputs and
46.	balance and stage volume calculations and cu outputs along with volume calculations.)	rves. (Attach a description of in	nputs and
47.	balance and stage volume calculations and culoutputs along with volume calculations.) Has any evaporation and/or precipitation data please include the data.	been collected at the site?	if
	balance and stage volume calculations and culoutputs along with volume calculations.) Has any evaporation and/or precipitation data please include the data.	been collected at the site?	if
	balance and stage volume calculations and culoutputs along with volume calculations.) Has any evaporation and/or precipitation data please include the data.	been collected at the site?	if


49.	Will the proposed tailings deposition area engulf or otherwise disturb any existing watercourse?				
50.	If "Yes", attach all pertinent details (Name of watercourse, present average flow, direction of flow, proposed diversions, etc.)				
51.	Describe the proposed or present operation, maintenance and monitoring of the containment area.				

SECTION 6:

N/A

WATER TREATMENT

52.	If applicable, will the minewater, mill or process plant water be chemically treated before being discharged to the containment area? If so, explain the treatment process (Attach flow sheet if available.
53.	Will (treated) effluent be discharged directly to a natural waterbody or will polishing or settling ponds be employed? Describe location, control structures, and process of water retention and transfer. Attach any relevant design drawings.
4.	Name the first major watercourse the discharge flow enters after it leaves the area of company operations.

SRC Group: 95-3235

SASKATCHEWAN RESEARCH COUNCIL ANALYTICAL SERVICES

Cogema/Cluff Mining

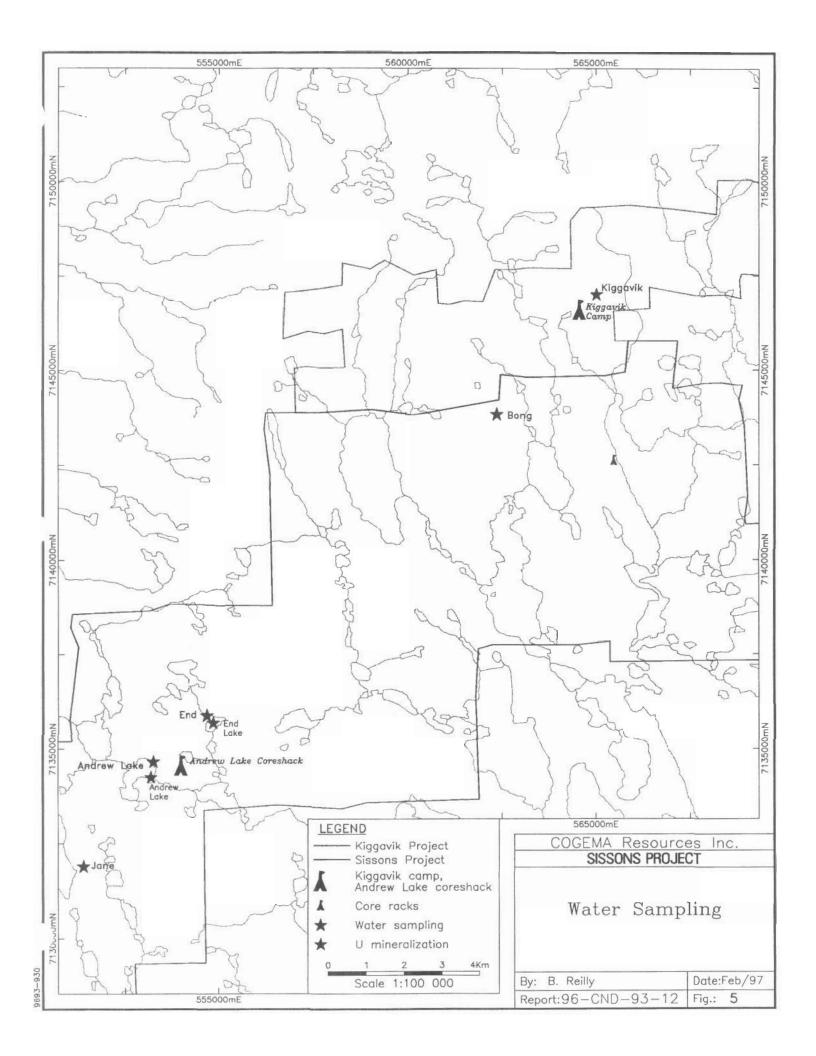
12-Oct-95 09:35

SAMPLE CLIENT DESCRIPTION 14723 ANDREW LAKE AUG 19/95 *WATER* 14724 END LAKE AUG 19/95 *WATER* 14725 TARA LAKE AUG 19/95 *WATER*					
ANALYTE	UNITS	14723	14724	14725	
	25 25-01				
	CONSTITUENTS	621 sgr	2.2	0.00	
Cl, ion chrm	mg/L	1.4	1.3	1.3	
K, flame	mg/L	0.4	0.2	0.2	
Na, flame	mg/L	0.6	1.1	1.0	
504, ion chrm	mg/L	0.4	0.5	0.4	
ot. Alkalinity	mg/L	12	15	13	
TRACE C	CONSTITUENTS				
Ig, by A.A.	ug/L	<0.05	<0.05	<0.05	
e, hydride gen	mg/L	<0.001	<0.001	<0.001	
TRACE M	ETALS				
1, ICP-AES	mg/L	0.37	0.32	0.16	
s, hydride gen	ug/L	<0.5	<0.5	<0.5	
a, ICP-AES	mg/L	0.048	0.035	0.051	
e, ICP-AES	mg/L	<0.001	<0.001	<0.001	
a, ICP-AES unt	mg/L	2.6	3.1	3.4	
d, ICP-AES	mg/L	<0.001	<0.001	<0.001	
o, ICP-AES	mg/L	<0.001	0.001	0.002	
r, ICP-AES	mg/L	0.002	0.002	0.002	
u, ICP-AES	mg/L	0.003	0.002	0.002	
e, ICP-AKS	mg/L	0.41	0.94	0.77	
g, ICP-AES unt	mg/L	0.9	1.1	1.1	
, ICP-AES	mg/L	0.006	0.034	0.022	
, ICP-AES	mg/L	<0.005	<0.005	<0.005	
L, ICP-AES	mg/L	<0.001	<0.001	<0.001	
, ICP-AES	mg/L	<0.005	<0.005	<0.005	
, ICP-AKS	mg/L	0.042	0.021	0.041	
ICP-AES	mg/L	<0.01	<0.01	<0.01	
, ICP-AES	mg/L	0.005	<0.005	0.011	
DUVCTCA	L PROPERTIES				
	mg/L	8	12	42	
olids, T.Susp.	us/cm	31	34	33	
of water	pH units	7.01	7.04	7.02	
RADIONUC		2 22	0.05	-0 02	
210, total	Bq/L	<0.02	0.05	<0.02	
210, total	Bq/L	0.02	0.04	0.02	
226, total	Bq/L	0.02	0.03	0.01	
230, total	Bq/L	0.05	0.04	<0.01	
total	ug/L	2.2±0.7	1.8±0.7	<0.5	

SRC Group: 95-3235

SASKATCHEWAN RESEARCH COUNCIL ANALYTICAL SERVICES

Cogema/Cluff Mining


U, total

12-Oct-95 09:35

SAMPLE CLIENT DESCR		•
14726 DRINKING WAT	TER (NO DATE)	*WATER*
ANALYTE	UNITS	14726
MAJOR CO	NSTITUENTS	
Cl, ion chrm	mg/L	0.3
K, flame	mg/L	0.2
Na, flame	mg/L	0.3
SO4, ion chrm	mg/L	0.8
Tot. Alkalinity	mg/L	11
TRACE CO	NSTITUENTS	
Hg, by A.A.	ug/L	0.38
Se, hydride gen	mg/L	<0.001
TRACE ME	TALS	
Al, ICP-AES	mg/L	0.084
As, hydride gen	ug/L	<0.5
Ba, ICP-AES	mg/L	0.073
Be, ICP-AES	mg/L	<0.001
Ca, ICP-AES unt	mg/L	.2.3
Cd, ICP-AES	mg/L	<0.001
Co, ICP-AES	mg/L	<0.001
Cr, ICP-AES	mg/L	0.002
Cu, ICP-AES	mg/L	0.013
Fe, ICP-AES	mg/L	0.55
Mg, ICP-AES unt	mg/L	0.8
Mn, ICP-AES	mg/L	0.014
Mo, ICP-AES	mg/L	<0.005
Ni, ICP-ARS	mg/L	<0.001
Pb, ICP-AES	mg/L	0.011
Sr, ICP-AES	mg/L	0.021
V, ICP-ARS	mg/L	<0.01
Zn, ICF-AES	mg/L	0.086
PHYSICAL	PROPERTIES	
Solids, T.Susp.	mg/L	2
Sp. Conduct.	uS/cm	23
oH of water	pH units	7.03
RADIONUCL	IDES	
b 210, total	Bq/L	0.02
0 210, total	Bq/L	0.02
a 226, total	Bq/L	0.02
Th 230, total	Bq/L	0.02

2.2±0.7

ug/L

S. Group: 96-3301

SRC ANALYTICAL

Cogema/Cluff Mining

09-Oct-96 14:21

SAMPLE CLIENT DESCRIPTION

٤ ،

14804 SW-96-109 257 * AUG 12/96 (DRILL RETURN) *WATER*

14805 ANDREW LAKE AUG 17/96 (ORE LAKE) *WATER*
14806 END LAKE AUG 17/96 (ORE LAKE) *WATER*

ANALYTE UNITS 14804 14805 14806 MAJOR CONSTITUENTS 3.9 15 3.8 Calcium mg/L 38 1.6 Chloride mg/L 4.8 2.0 0.6 Potassium mg/L 11 4.2 1.3 Magnesium mg/L 4.4 2.2 1.7 0.6 Sodium mg/L 0.6 0.3 0.5 Sulfate mg/L 8 Total alkalinity mg/L 42 13 TRACE CONSTITUENTS <0.05 <0.05 ug/L 0.10 Mercury Not req <0.001 <0.001 Selenium mg/L TRACE METALS mg/L 750 0.062 0.49 Aluminum 0.026 Not req Not req mg/L Arsenic <0.5 <0.5 ug/L Not req Arsenic 0.20 0.036 mg/L 0.87 Barium 0.038 <0.001 <0.001 Beryllium mg/L <0.001 0.010 <0.001 Cadmium mg/L <0.001 0.56 <0.001 Cobalt mg/L <0.001 0.001 mg/L 1.9 Chromium <0.001 <0.001 0.35 mg/L Copper 0.20 240 0.17 Iron mg/L 0.007 0.97 0.005 Manganese mg/L <0.001 0.004 <0.001 Molybdenum mg/L <0.001 3.0 <0.001 Nickel mg/L <0.002 mg/L 0.43 <0.002 Lead <0.003 Not req Not req mg/L Selenium 0.26 0.024 0.13 Strontium mg/L 0.45 <0.001 <0.001 mg/L Vanadium 0.83 <0.005 <0.005 mg/L Zinc PHYSICAL PROPERTIES 2 8000 6 Total suspended solids mg/L 141 35 84 Specific conductivity uS/cm 7.78 6.49 6.90 pH units pН RADIONUCLIDES 0.06 9.0 <0.02 Bq/L Lead-210 0.005 0.01 7.0 Bq/L Polonium-210 0.01 0.09 18 Bq/L Radium-226 0.04 9.5 <0.01 Thorium-230 Bq/L 2.9±0.7 819±16 <0.5 ug/L Uranium

SECTION 8:

ENVIRONMENTAL ASSESSMENT AND SCREENING

59.	Has this project ever undergone an initial environmental review? If Yes, By whom and when.				
Y	es. NIRB 1997				
60.	Has any baseline data collection and evaluation been undertaken with respect to the various biophysical components of the environment potentially affected by the project (eg. Wildlife, soils, air quality), ie. In addition to water trelated information requested in this questionnaire?				
	Yes No x Unknown				
61.	If "Yes" please attach copies of reports or cite titles, authors and dates.				
52.	If no, are such studies being planned? No				
	Briefly describe the proposals.				

If "No" is such a study being planned? Yes Describe any cumulative impacts the project may create?

66.

-Small accumulation of sand from drill cuttings at each drill site

No x

-D1	sturbance of tundra at Kiggavik camp and Andrew Lake core shack
du	e to presence of tents cabins and walkways.
68.	Does the project alter the quantity or quality or flow of waters through Inuit Owned Lands?
. No	•
69.	If yes, has the applicant entered into an agreement with the Designated Inuit Organization to pay compensation for any loss or damage that may be caused by the alteration.
70.	If no compensation arrangement has been made, how will compensation be determined?