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Regional Geology

Note:
a) Regional geology of the Slave 
Structural Province (Craton).  

b) Simplified geology of the Hope Bay 
Volcanic Belt (greenstone belt), from 
Mvondo et al.  (2012).
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Schematic Cross West-East 
Section of the Boston Mineralization

Source: Roscoe Postle Associates Inc., 2015
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Location Map of the 
Hydrogeological Data at Boston
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Statistical Summary of 
the K Measurements
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K vs Depth
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K vs Geological Units

Source: KvsLithoFF_Rev02.xlsx
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Correlation K vs Fracture 
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TDS Concentrations with Depth 
in Canada’s North

Source: Compilation of TDS data Versus Depth_20151130.GF.xlsx
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Observed Profile of Chloride 
Concentration with Depth
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TDS versus Chloride
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Potential Through Taliks 
at Boston and Madrid 
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3D Sections Showing the Permafrost 
and the Boston Mine 

(Looking North)
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3D Sections Showing the Permafrost 
and the Madrid North Mine 

(Looking North)
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3D Sections Showing the Permafrost 
and the Madrid South Mine 

(Looking North)
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Conceptual Groundwater System
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Model Domains and Boundary 
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Trsf = fluid-transfer boundary condition
Href = Reference water level 
dref = Distance from the model to the reference water level
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Prefeasibility mine plan shown,
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3D Views of the Madrid North 
Numerical Model
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3D Views of the Madrid South 
Numerical Model
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Madrid North Predicted Heads 
at Current Conditions
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Madrid South Predicted Heads 
at Current Conditions
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Predicted Mine Inflows

Source: !MADRID_upd-oct2016_v13.0-V15.0_BASECASE_Inflow_&_Conc_Predictions_20161107_rev2.xlsx
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Predicted Infiltrations of Water 
from Lakes
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Predicted Chloride Concentrations 
of Mine Inflows

Source: MADRID_v3_BASECASE_Inflow_&_Conc_Predictions.xlsx
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Sensitivity Model Results
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Memo 
To: John Roberts, PEng, Vice President 

Environment  
Client: TMAC Resources Inc. 

From: Christopher W. Stevens, PhD Project No: 1CT022.004 

Reviewed By: Maritz Rykaart, PhD, PEng Date: December 9, 2016 

Subject: Hope Bay Project, Lake Talik Configuration  

1 Introduction 
The Hope Bay Project (the Project) is a gold mining and milling undertaking of TMAC Resources 
Ltd (TMAC). The Project is located 705 km northeast of Yellowknife and 153 km southwest of 
Cambridge Bay in Nunavut Territory, and is situated east of Bathurst Inlet. The Project comprises 
three distinct areas of known mineralization plus extensive exploration potential and targets. The 
three areas that host mineral resources are Doris, Madrid, and Boston. 

The Project consists of two phases; Phase 1 (Doris Project), which is currently being carried out 
under an existing Water Licence, and Phase 2 which is in the environmental assessment stage. 
Phase 1 includes mining and infrastructure at Doris only, while Phase 2 includes mining and 
infrastructure at Madrid and Boston located approximately 10 and 60 km due south from Doris 
respectively. 

Although the Project is located in the continuous permafrost region of Canada, an evaluation is 
necessary to determine if the proposed underground mines will intercept talik zones. Where these 
talik zones are intercepted by the mine, groundwater inflow may be encountered, requiring 
appropriate management. Since the extent of these talik zones cannot be completely 
characterized through field verification, it is best practice to model the talik configuration. This 
memo provides a description of the modeling and presents the predicted talik configuration for 
use in subsequent mine inflow modeling. 

2 Lake Taliks  
2.1 Definition 

A talik is defined as “a layer or body of unfrozen ground occurring in a permafrost area due to 

local anomalies in thermal, hydrological, hydrogeological or hydrochemical conditions” (van 
Everdingen 2005). In most cases, taliks are formed by lakes and other water bodies which cause 
a local departure in terrestrial ground temperature (Smith and Hwang 1973; Burn 2002).  
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In this memo, reference is made to both closed and open (or through) taliks. A closed talik is an 
unfrozen zone beneath a water body that is enclosed at the base and the surrounding sides by 
permafrost (Figure 1). An open talik is an unfrozen zone beneath a water body that penetrates 
the permafrost completely and may connect suprapermafrost (i.e. the layer of ground above 
permafrost) and subpermafrost (i.e. the unfrozen ground below the permafrost) groundwater. 

2.2 Talik Configuration 

Lake taliks are transient features in permafrost environments. Key factors influencing talik 
configuration include water bottom temperature, lake size (half width or radius), present and past 
ground thermal regime, and long-term changes to the landscape. Present-day water bathymetry 
can also effect talik configuration where shallow water allows for ice to seasonally freeze to the 
bottom (bottom-fast ice) and conduct heat from the ground (Burn 2002; 2005; Stevens et al. 
2010a; 2010b).  

The long-term thermal and physical evolution of the landscape is a factor in the present-day 
configuration of taliks that extend hundreds of metres below the surface. Lunardini (1995) showed 
temperature at depths up to 600 metres below ground surface (mbgs) can be influenced by 
surface temperatures as far back as 100,000 years. 

Kerr (1994a) provides radiocarbon dating and stratigraphic interpretation of glacial and post-
glacial deposits from Perry Peninsula and Queen Maud Gulf, and south of the Bathurst Inlet. His 
work suggests that deglaciation near the Madrid and Boston mining areas was between 9 ka and 
8.7 ka (Kerr 1994a). Retreating ice may have been at or near the mining areas at around 9 ka, 
followed by a period of rapid ice retreat and ice-free conditions by 8.7 ka. Deglaciation was 
accompanied by synchronous marine incursion of the isostatically depressed terrain. Sea level 
curves constructed for the southern Bathurst Inlet suggest drainage of the marine water by at 
least 5 ka years BP (Kerr 1994b).  

The sub-aerial exposure of land following drainage of marine water and cold air temperatures 
would have led to permafrost aggradation. Over time newly formed lakes and changes in water 
level of existing lakes due to changes in surface hydrology and climate would result in adjustment 
of lake taliks to a new equilibrium. 

Open taliks are expected to be present beneath some lakes at the Property. Open taliks have 
been inferred from ground temperature measurements collected beneath Doris, Patch, and 
Aimaokatalok Lakes (SRK 2011a; Appendix A). Previous thermal modeling also supports the 
inference of open taliks beneath Doris and Tail Lakes, which are elongated lakes with a half-width 
of about 475 m and 390 m, respectively (SRK 2005a). 

3 Ground Conditions 
3.1 Permafrost 

SRK (2016) provides detailed information on the baseline ground temperature and permafrost 
characteristics located in the Doris Mine, and the Madrid and Boston mining areas. The average 
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present-day temperature of permafrost is -7.6°C at the Property, with a range from -5.6°C to -
9.8°C (SRK 2016). The baseline ground temperature sites do not permit for separate assessment 
of permafrost temperatures at each of the three mining areas. 

The base of permafrost has been estimated from ten sites to be 78 to 570 metres below ground 
surface(mbgs) based on the 0°C isotherm. Ground temperature sites removed from the thermal 
effects of nearby lakes indicate the base of permafrost extends to 570 mbgs (Site 08PMD669) at 
the Madrid mining area and 565 mbgs (Site 08SBD380) at the Boston mining area (Table 1). At 
Doris, the base of permafrost extent up to 511 mbgs at Site 10WB002. The geothermal gradient 
calculated from the deeper extent of permafrost averages 0.021°C m-1, with a range of 
0.014°C m-1 to 0.029°C m-1 (Table 1). 

Table 1: Summary of Base of Permafrost and Geothermal Gradient 

Thermistor 
Site ID Northing Easting Location Location 

Reference 
Geothermal 

Gradient 
(°C/m) 

Base of 
Permafrost 

(mbgs) 

SRK-50 7,559,177 433,807 Doris Mining Area Fig. 18 0.019 394 
08TDD632 7,559,370 433,915 Doris Mining Area Fig. 18 0.024 445 
10WBW002 7,559,375 433,913 Doris Mining Area Fig. 18 0.014 511 
08PMD669 7,550,955 433,300 Madrid North Mining Area Fig. 13+16 0.018 570 
TM00141 7,546,691 435,141 Madrid South Mining Area Fig. 13+17 0.023 346 

08PSD144 7,548,990 435,178 Patch Lake Island Fig. 13+15 - 78 
08SBD380 7,504,780 441,080 Boston Mining Area Fig. 5 0.017 565 

08SBD381A 7,504,814 441,070 Boston Mining Area Fig. 5 0.029 281 
08SBD382 7,505,141 441,026 Boston Mining Area Fig. 5 0.027 302 
10WBW004 7,505,665 441,018 Boston Mining Area Fig. 5 0.018 326 
97NOD176 7,504,962 441,481 Boston Mining Area Fig. 5 0.019 556 

All Sites 

Average 0.021 398 
Minimum 0.014 78 
Maximum 0.029 570 

Count 10 11 
 

Water quality data collected from the Doris Central Westbay well (Site 10WBW001) indicates 
saline connate groundwater which is comparable to quality measurements observed at the 
Boston mining area. The lowest freezing point depression calculated from the concentration of 
dominate components of the groundwater was estimated to be -1.9°C (SRK 2011b). For the 
purpose of modeling talik extent, ground temperatures warmer than -2°C are expected to be 
unfrozen. 

It should be recognized that the connection between surface water, mined structures, and 
subpermafrost groundwater is also a function of the hydraulic properties of the bedrock, the 
geological structures, and the hydraulic gradients that drive water movement; i.e. unfrozen 
ground does not necessarily constitute significant groundwater movement. 
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3.2 Lake Bottom Water Temperature 

Table 2 shows average lake bottom water temperature (LbT) recorded during the month of April, 
July, August, and September for five lake locations over the period of 2010-2014 (ERM 2015; 
ERM 2014; Rescan 2012; Rescan 2011a). The lake bottom water temperatures are based on the 
deepest measurements collected at each site. 

Table 2: Summary of Lake Bottom Water Temperatures 

Location Data Source 
(See notes) 

Temperature (°C) Ice 
Thickness 

(m) April July August September LbT  

Doris Lake North 1,3,4,5,6 1.5 7.8 11.0 6.2 4.7 1.8 
Doris Lake South 1,3,4,5,6 1.0 9.0 10.7 5.7 4.2 1.9 
Reference Lake A 1 1.6 - 4.3 - 2.5 1.8 
Reference Lake B 1,3,4,5,6 2.6 9.1 11.1 3.9 5.5 1.7 
Reference Lake C 2 2.0 - 8.3 - 4.1 1.9 
Reference Lake D 1,3,4,5,6 0.8 11.4 12.1 2.5 4.6 1.9 
Little Roberts Lake 1,3,4,5,6 0.7 10.6 10.9 3.4 4.1 1.9 
Wolverine Lake 1 1.4 - 13.2 - 5.3 1.8 
Patch Lake North 1 1.2 - 10.8 - 4.4 2.1 
Patch Lake South 1 2.1 - 10.3 - 4.8 1.9 
P.O. Lake 1 0.2 - 10.0 - 3.5 1.9 
Ogama Lake 1 1.8 - 10.0 - 4.5 1.8 
Doris Lake North 1 1.1 - 10.0 - 4.1 2.0 
Doris Lake South 1 0.9 - 9.7 - 3.8 2.0 
Naiqunnguut Lake 1 1.4 - 10.2 - 4.3 1.9 
Nkhatok Lake 1 0.4 - 11.7 - 4.2 1.9 
Glenn Lake 1 0.5 - 9.9 - 3.6 2.0 
Imniagut Lake 1 - - 12.2 - - 2.0 
Little Roberts Lake 1 1.3 - 10.0 - 4.2 2.1 
Stickleback Lake 2 1.1 - 11.2 - 4.5 1.8 
Trout Lake 2 0.8 - 12.6 - 4.7 1.8 
Windy Lake 1,2 2.0 - 10.1 - 4.7 1.8 
Aimaokatalok 
Lake: Station 2 2 - - 11.6 - - - 

Aimaokatalok 
Lake: Station 5 2 0.0 - 14.8 - 4.9 1.8 

Aimaokatalok 
Lake: Station 6 2 2.3 - 12.1 - 5.6 1.6 

Aimaokatalok 
Lake: Station 11 2 0.1 - 12.1 - 4.1 1.6 

Aimaokatalok 
Lake: Station 13 2 - - 13.9 - - - 

All Sites 

Average 4.4 1.9 
Minimum 2.5 1.6 
Maximum 5.6 2.1 
Count 24 25 

Notes: 
1. Average monthly temperature collected over the period of 2009- 2014 (see data source) 
2. Annual lake bottom temperature (LbT) calculated using Equation 1 
3. Ice thickness measured from ice auger hole drilled in April 
4. Data source: 1 – Rescan (2010), 2 – Rescan (2011a), 3 – Rescan (2011b), 4 – Rescan (2012), 5 – ERM Rescan 

(2014), 6 – ERM (2015) 
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Mean annual lake bottom water temperature was calculated as a weighted mean of April and 
August temperatures:  

ܾܶܮ ൌ ݎ݌ܣܾܶܮ8 ൅  Eq. 1        ܲ/	݃ݑܣܾܶܮ4

where: 

 mean annual lake bottom water temperature (°C) = ܾܶܮ
 measured lake bottom water temperature in April (°C) = ݎ݌ܣܾܶܮ
 measured lake bottom water temperature in August (°C) = ݃ݑܣܾܶܮ
ܲ = is the period of time 

Based on Equation 1, April water temperature is assumed to be representative of the period of ice 
cover (October to May). August water temperatures represent the warmest measurements and 
likely over-estimate water temperature throughout the ice-free period. Therefore, a conservative 
water temperature is computed using this approach, and allowed for in the thermal models. 

The annual lake bottom water temperature is calculated to average of +4.4°C, with a range from 
+2.5°C to +5.6°C (Table 2). A value of +4.4°C is considered to be reasonable for base case 
conditions. 

4 Regional Talik Model 
4.1 Analytical Model 

The critical lake dimension required for open (through) lake taliks was assessed using a one-
dimensional (1D) steady state analytical model for lakes. The regional model was development to 
provide regional context for taliks in the area. The thermal models used for this assessment are 
presented by Mackay (1962), Smith (1976), and Burn (2002) for study sites in the Canadian 
Arctic, and have been used for talik characterization at other proposed mine projects located in 
the continuous permafrost region of mainland Nunavut, including the Back River Project (SRK 
2015), Meliadine (Golder 2013), Kiggavik (Areva Resources Canada 2011), High Lake (Wolfden 
Resources Inc. 2006), Doris (SRK 2005b), and Meadowbank (Cumberland Resources Ltd. 2005) 
projects. 

The temperature profile beneath the centre of a circular lake without terraces has been modeled 
by Mackay (1962) as: 

௭ܶ ൌ ௚ܶ ൅
௭

ூ
൅ ሺܾܶܮ െ ௚ܶሻ ൬1 െ

௭

ඥ௭మାோమ
൰        Eq. 2. 

Where: 
Tz = temperature at depth z (ºC) 
LbT = Average annual lake bottom water temperature (°C) 
Tg = average annual ground temperature (ºC) 
I = inverse of the geothermal gradient (m ºC-1) 
z = depth below bottom of lake (m) 
R = radius of the lake (m) 
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The temperature profile beneath symmetrical elongated lakes without terraces has been modeled 
by Smith (1976) as: 

௭ܶ ൌ ௚ܶ ൅
௭

ூ
൅

௅௕்ି ೒்

గ
ቀ2 tanିଵ

௪

௭
ቁ        Eq. 3. 

Where:  

Tz = Temperature at depth z (ºC) 
LbT = Average annual lake bottom water temperature (°C) 
Tg = Average annual ground temperature (ºC) 
I= inverse of the geothermal gradient (m ºC-1) 
z = depth below bottom of lake (m) 
w = half-width of an elongated lake (m) 

For conservatism, shallow-water terraces (lake terraces) which may be thermally influenced by 
bottom-fast ice were not considered in the analytical model. Table 3 shows the base case and 
sensitivity values using the in the 1D model. Base case values are representative of average 
measurements from the mining areas. 

Table 3: Thermal Modeling Input Values for Analytical Talik Model 

Parameter Value  
(Base Case) 

Value  
(Sensitivity Analysis) 

Ground temperature (Tg) -7.6°C -5°C to -9°C 

Mean annual lake-bottom temperature (LbT) +4.4°C +3°C to +6°C 

Geothermal heat flux (G) 0.021°C m-1 0.014 to 0.029°C m-1 

Notes: 

1. Measured mean annual permafrost temperature is -7.6°C and mean annual lake bottom temperature is +4.4°C 

2. Average geothermal gradient calculated from ground temperature measurements is 0.021°C m-1  

4.2 Model Assumptions 

The modeling, as presented, is based on the following assumptions: 

 Lake geometry is defined in the models as either circular or elongate, and does not account 
for actual lake geometries which can be quite complex. 

 Modeling does not account for the thermal influence of adjacent lakes (lateral heat flow) and 
spatial variability in ground surface temperature. However, the sensitivity to lake-bottom 
temperature (LbT) and permafrost temperature are considered (Table 3). 

 Water depth is assumed to be greater than the maximum thickness of seasonal ice, and the 
thermal influence of bottom-fast ice is not considered, making the results more conservative. 

 Ground thermal properties and complex mechanisms for heat flow such as convection are 
not accounted for in the model.  
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 Geothermal heat flux is based on an average value calculated from ground temperature 
measurements with sensitivity around the range of values collected at the Property (Table 3).  

 Steady-state models are used and therefore the transient effects, such as paleo-climate (i.e. 
long-term changes in ground surface and water temperature) are not considered. 

Talik will naturally adjust to changes in climate and evolution of the landscape. Over the time 
scale of the Project, the most immediate effects would be an increase in extent of the talik 
beneath the shoreline, and possible subsidence and erosion of the shoreline at locations with ice-
rich permafrost.  A reduction in lake ice growth due to climate change would also be expected to 
widen and deepen existing taliks beneath shallow water bodies which rely on seasonal heat loss 
though the establishment of bottom-fast ice (Burn 2002; 2005; Stevens et al. 2010a; 2010b). The 
natural development of new ponds at the Property would also result in newly formed closed taliks. 
On the time scale of hundreds to thousands of years, open taliks may form as permafrost 
degrades beneath these recently formed water bodies. Natural lowering of lake water level or 
even complete drainage due to climate change may also result in permafrost aggradation 
beneath the former lake basin and long-term freezeback of taliks. 

4.3 Model Results 

The estimated critical dimensions for open (through) taliks beneath lakes at the Property are 
summarized in Table 4 and Table 5. The findings are based on a groundwater freezing point 
depression of -2°C and are graphically depicted in Figure 2 and Figure 3.  

For the base case scenario, open taliks are estimated to occur beneath circular lakes with a 
diameter >224 m (i.e. lake radius of >112 m). For elongated lakes, the critical lake width is 
estimated to be >104 m wide (i.e. lake half-width >52 m). 

Sensitivity of the critical lake dimension to change in the geothermal gradient is shown in Figure 4 
and Figure 5. 

Table 4: Circular Lake Critical Radius for Open (Through) Taliks Based on -2°C Isotherm 

Permafrost Temperature 
Annual Lake Bottom Temperature (LbT)  

 +3.0°C  +4.0°C  +4.4°C  +5.0°C  +6.0°C 
 -9.0°C 169 m 159 m 155 m 151 m 144 m 
 -8.0°C 138 m 129 m 126 m 122 m 117 m 
 -7.6°C 123 m 115 m 112 m 109 m 104 m 
 -7.0°C 108 m 101 m 98 m 95 m 91 m 
 -6.0°C 80 m 74 m 72 m 70 m 67 m 
 -5.0°C 54 m 50 m 49 m 47 m 44 m 
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Table 5: Elongated Lake Critical Half-width for Open (Through) Taliks Based on -2°C Isotherm 

Permafrost Temperature 
Annual Lake Bottom Temperature (LbT)  

 +3.0°C  +4.0°C  +4.4°C  +5.0°C  +6.0°C 
 -9.0°C 83 m 76 m 73 m 70 m 65 m 
 -8.0°C 66 m 60 m 58 m 55m 50 m 
 -7.6°C 60 m 54 m 52 m 49 m 45 m 
 -7.0°C 50 m 45 m 43 m 41 m 38 m 
 -6.0°C 36 m 32 m 30 m 28 m 26 m 
 -5.0°C 23 m 20 m 19 m 17 m 15 m 

 

5 Site-specific Talik Model 
5.1 Approach 

Lake talik configuration adjacent to the Boston and Madrid mining areas was estimated using 2D 
thermal modeling. The model results were fitted to field observations of the -2°C isotherm, and 
therefore use calculated heat flow as a basis for estimating talik geometry. The modeling was 
carried out using a finite element code SVHeat developed by SoilVision Systems Ltd. with the 
FlexPDE solver. 

5.1.1 Model Setup and Inputs 

A long-term mean annual ground surface temperature was applied to the upper model boundary 
over areas of land. Long-term ground surface temperature was based on a projection of the 
thermal gradient from deep ground temperature measurements to the surface. The projected 
ground surface temperature reflects approximate paleo-surface temperature, which is typically 
colder than present day permafrost temperature calculated from the baseline ground temperature 
sites (SRK 2016). At the Madrid and Boston mining areas, the long-term ground surface 
temperature was estimated to be -9.6°C (Site 08PMD669) and -9.2°C (Site 08SBD380), 
respectively. A long-term ground surface temperature was used to more closely estimate talik 
configuration and the base of permafrost which result from paleo conditions. The geothermal 
gradient applied to the lower boundary of the model was based on Site 08PMD669 for Madrid 
Mining Area and Site 08SBD380 for the Boston mining area (Table 1). 

A mean annual lake bottom water temperature of +4.4°C was applied to the upper boundary for 
lakes (Table 2). Lake width was based on current extent of water bodies at the underground 
mining areas. At Aimaokatalok Lake adjacent to the Boston mining area, an annual temperature 
of -2°C was also applied to lake areas with a water depth less than 1.3 m (i.e. water depth that is 
two-thirds of the mean annual ice thickness). A value of -2°C was applied to the shallow water 
lake terrace based on measured temperatures from similar environments (Burn 2002; 2005).The 
ice across these shallow water lake terraces freezes to the bottom with sufficient heat loss from 
the lake bottom to sustain permafrost beneath the shallow water terraces of Arctic lakes (Mackay 
1992; Burn 2002).  The thermal regime of shallow water was not considered at the Madrid 
underground mining areas due to the relatively rapid increase in water depth from shore. 
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Model simulations were based on a time step of one year. Table 5 summarises the thermal 
properties used in the transient lake talik model. The frozen and unfrozen thermal conductivity 
and heat capacity for bedrock (basalt) was based on previous thermal modeling at Hope Bay 
(SRK 2005; SRK 2011a). 

Table 5: Bedrock Thermal Properties 2D Lake Talik Model 

Material  
 Degree of 
Saturation 

(%) 
 Porosity 

 Thermal Conductivity 
(kJ m-1 day -1 °C-1) 

 Volumetric Heat Capacity 
(kJ m-3 °C-1)  

Unfrozen Frozen Unfrozen Frozen 

Basalt Bedrock 100 0.05 260 260 2,380 2,133 

 

5.1.2 Model Assumptions 

The 2D thermal modeling, as presented, is based on the following assumptions: 

 Lake geometry is defined by current lake extent and does not account for historic lake 
configuration which can be complex. 

 Lake-bottom geometry is not directly considered in the model sections. The relatively shallow 
lake depths would have limited impact on talik configuration deep below the ground surface. 

 Surface topography is not considered in the model sections due to low relatively relief across 
the Property and its limited influence on talik configuration.  

 Long-term paleo ground surface temperatures are based on values projected from deep 
ground temperature measurements, and do not capture more recent variability in surface 
temperature. 

 Ground thermal properties and complex mechanisms for heat flow such as convection are 
not accounted for in the model.  

5.2 Boston Mine Area 

The Boston underground mine will be located on the east side of Aimaokatalok Lake (Figure 6). A 
total of four sections were used to model the lake talik. 

5.2.1 Ground Temperature Measurements 

Deep ground temperature measurements have been collected from three deep inclined wells 
which extend beneath Aimaokatalok Lake; well 08SBD381A, 08SBD382, and 10WBW004 
(Figure 7). Well 08SBD380 and 97NOD176 are two additional deep wells that have been drilled 
inland near the Boston mine workings. 

Table 6 summarizes the position of the 0°C and -2°C isotherms for the Boston mining area. At 
08SBD380 and 97NOD176, the ground temperature has been measured to a maximum depth of 
241 mbgs and 247 mbgs, respectively. The base of permafrost is not directly incepted by these 
wells and the lowermost thermistors nodes indicate relatively cold permafrost temperatures 
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(-5.1°C at 08SBD380 and -5.5°C at 97NOD176). The projected base of permafrost based on the 
0°C isotherm is 565 mbgs at 08SBD380 and 556 mbgs at 97NOD176 (Table 6). The -2°C 
isotherm is projected to be 430 mbgs at 08SBD380 and 449 mbgs at 97NOD176. 

Ground temperatures measured at three sites beneath Aimaokatalok Lake provide information on 
the extent of the lake talik adjacent to the shoreline (Figure 6 and Figure 7). Figure 8 shows the 
depth of the -2°C isotherm and its distance from shore for these sites. The water bathymetry for 
the three areas with ground temperatures beneath the lake are shown in Figure 9.  At site 
08SBD382, the -2°C isotherm is up to 115 m from the lake shoreline and located at a depth of 
224 mbgs. At site 08SBD381A and 10WBW004, the -2°C isotherm is 17 and 42 metres from 
shore and located between 202 and 209 mbgs (Table 6).  

Table 6: Boston Mining Area Depth of 0°C and -2°C Isotherm from Ground Temperature Data 

Site Location Maximum Instrumented 
Depth (mbgs) 

-2°C 
Isotherm 
(mbgs) 

0°C 
Isotherm 
(mbgs) 

08SBD380 Near Underground Mine 241 430 565 
97NOD176 Near Underground Mine 247 449 556 
08SBD381A Extends Beneath Lake 291 202 281 
08SBD382 Extends Beneath Lake 313 224 302 
10WBW004 Extends Beneath Lake 399 209 326 

Notes: 

1. Digital data not available for 97NOD176, depth and temperature determined from graphical form of data 

2. Thermistor node depth corrected for vertical depth using downhole well survey and surface elevation 

3. Depth shown as vertical metres below ground surface (mbgs) 

For sites 08SBD381A and 08SBD382, the -2°C is located beneath water depths which are not 
expected to seasonally freeze to the bottom and therefore do not experience thermal conduction 
of heat through bottom-fast ice cover. The presence of floating ice at these locations implies that 
there is no significant means to vertically remove heat gained from the water and the lake bottom. 
At site 10WBW004, the -2°C isotherm is located beneath water depths that are about two-thirds 
the maximum ice thickness (i.e. an ice thickness of 1.3 m). It has been suggested that water 
depth less than two-thirds the maximum later winter ice thickness is required to sustain 
permafrost beneath shallow water margins of Arctic lakes impacted by bottom-fast ice (Mackay 
1992; Burn 2002). This finding was also in agreement with shallow-water permafrost located 
within the nearshore zone of the Beaufort Sea (Stevens et al. 2010b). 

Therefore, under present-day lake configuration the offshore position of the -2°C isotherm cannot 
be explained by heat loss from seasonal bottom-fast ice. Lateral heat flow from the adjacent land 
also does not explain the current talik extent beneath the lake. Significantly colder ground surface 
temperatures and lake bottom-temperatures would be required for the talik to extend beneath the 
Aimaokatalok Lake. Figure 8 shows the expected configuration of the Aimaokatalok Lake talik for 
steady state compared to the position of the measured position of the -2°C isotherm. For steady 
state talik configuration to meet the field observations, the mean annual ground surface 
temperatures would need to be around -20°C. 
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We postulate that the lateral extent of permafrost beneath Aimaokatalok Lake is a direct physical 
consequence of the rise in lake level through time.  Over time, permafrost formed through 
terrestrial exposure to cold air temperatures has been submerged with lake expansion. The talik 
is currently responding to the thermal forcing from the current lake and the talik will adjust to new 
conditions and evolve with the lake. The talik would be expected to adjust to equilibrium 
conditions on the time scale of hundreds to thousands of years. 

5.2.2 Model Results 

The 2D model sections were setup to simulate possible expansion of Aimaokatalok Lake and to 
allow for talik adjustment to meet ground temperature measured at the site. The model was run 
for 5,000 years which is estimated to be the approximate duration of time since drainage of the 
post-glacial marine incursion. The following major periods were included in the thermal model:  

 From model year 0 to 4.5 ka, the lake was assumed to occupy a smaller area defined by 
current water depths greater than 5 m deep.  This water depth represents the approximate 
transition from a relatively shallow to steep gradient in the water depth profile; i.e. the change 
in water depth verses distance (Figure 9). It was thus assumed that lake expansion would be 
most rapid across areas with a water depth less than 5 m deep where the gradient is shallow. 

 From model year 4.5 to 5.0 ka, the lake was allowed to expand and flood the existing 
permafrost. This step was included in the model to allow for the interpreted adjustment of the 
talik over time. The position of the -2°C isotherm modeled was then selected to closely fit to 
the equivalent isotherm measured at sites 08SBD381A, 08SBD382, and 10WBW004.  

Figures 10 to 13 show the model results for the Boston mining area. Table 7 shows a comparison 
between the model fit and the ground temperatures for the -2°C isotherm which represents the 
transition from frozen to unfrozen conditions at the three sites. In all cases, the model fit is 
conservative and underestimates the measured depth of the talik. 

Table 7: Measured and Model Fit for Talik Surface 

Model Section Thermistor Site ID Model (-2°C Isotherm) Measured (-2°C 
Isotherm) 

T1 10WBW004 192 209 
T2 08SBD382 215 224 
T3 08SBD381A 196 202 

Notes: 

1. Model position of the -2C isotherm based on manual fit to field data 

5.3 Madrid Mining Area 

The Madrid mining area consist of two distinct mines along the west side of Patch Lake. The 
northern mine (Madrid North) will be located between Windy Lake and Patch Lake, and the 
southern mine (Madrid South) will be located between Wolverine Lake and Patch Lake. 

The 2D models included five sections for Madrid North and four sections for Madrid South 
(Figure 14). The model sections extend across the underground mining areas with an orientation 
that is approximately perpendicular to the long axis of the adjacent lakes. The modeled data was 
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fit to the position of the -2°C isotherm measured at Madrid North. At Madrid South, the -2°C 
isotherm is located beyond the instrumented depth of the ground temperature cable. At this site, 
the modeled data was fit to the lowermost thermistor sensor (node).  

5.3.1 Ground Temperature Measurements 

Deep ground temperature measurements have been collected from three inclined wells; 
08PMD669, 08PSD144, and TM00141 at the Madrid mining areas (Figure 14 and Figure 15).  

Well 08PSD144 is located beneath an island centred within Patch Lake (Figure 16). Ground 
temperature measurements at the site indicate relatively shallow permafrost beneath the island 
(base of permafrost 78 mbgs) due to the surrounding heat from the lake. 

Well 08PMD669 is located within the area of the Madrid North underground mine workings 
(Figure 17) and is instrumented to a maximum depth of 474 mbgs. The base of permafrost is 
570 mbgs at this location. 

Well TM00141 is located within the Madrid South underground mine between Wolverine Lake 
and Patch Lake (Figure 18). The well extends toward Patch Lake. Ground temperature measured 
from lowermost thermistors node is -2.6°C at 225 mbgs. The projected base of permafrost is 
346 mbgs, intercepting the talik at the edge of the Patch Lake. The range in depth to the base of 
permafrost at Madrid North and Madrid South is similar to comparable measurements made at 
the Doris Mining Area (Table 1; Figure 19).  

Table 8: Madrid Mining Area Depth of 0°C and -2°C Isotherm from Ground Temperature Data 

Site ID Location 
Maximum 

Instrumented Depth 
(mbgs) 

-2°C 
Isotherm 
(mbgs) 

0°C 
Isotherm 
(mbgs) 

08PMD669 Madrid North 474 438 570 
08PSD144 Patch Lake Island 275 50 78 
TM00141 Madrid South 225 303 346 

Notes: 

1. Thermistor node depth corrected for vertical depth using downhole well survey and surface elevation 

2. Depth shown as vertical metres below ground surface (mbgs) 

5.3.2 Model Results 

Figures 20 to 24 show the model results for the Madrid North mining area. Lake expansion was 
not considered in the 2D thermal models since it is not supported by ground temperature data 
collected at the Madrid mining areas. Table 9 shows a comparison between site ground 
temperature measurements and the model fit. In all cases, the model fit is conservative and 
underestimates the depth of the talik  
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Table 9: Measured and Model Fit for Talik Surface 

Model Section Thermistor Site ID Model (-2°C Isotherm) Measured (-2°C 
Isotherm) 

T2 (Madrid North) 08PMD669 412 438 

T2* (Madrid South) TM00141 258 303 

Notes: 

1. Asterisk indicates model fit with lowermost thermistor sensor. 

At Madrid North, the model was fit to the -2°C isotherm at site 08PMD669. At this site, the 
lowermost sensor (node) measures -1.3°C at 474 mbgs. The equivalent isotherm estimated by 
the model is located at 453 mbgs or 21 m less than the measured depth. 

Figures 25 to 28 show the model result for the Madrid South mining area. At Madrid South, the 
model was fit to the lowermost thermistor sensor (node) at site TM00141 which measures -2.6°C. 
The projected depth of the -2°C isotherm is 303 mbgs at the site. The equivalent isotherm 
estimated by the fitted model is located 258 mbgs. The model underestimates the position of 
the -2°C by 45 m. 

Disclaimer—SRK Consulting (U.S.), Inc. has prepared this document for TMAC Resources Inc.. Any use or decisions by 
which a third party makes of this document are the responsibility of such third parties. In no circumstance does SRK accept 
any consequential liability arising from commercial decisions or actions resulting from the use of this document by a third 
party.  

The opinions expressed in this document have been based on the information available to SRK at the time of preparation. 
SRK has exercised all due care in reviewing information supplied by others for use on this project. While SRK has compared 
key supplied data with expected values, the accuracy of the results and conclusions from the review are entirely reliant on 
the accuracy and completeness of the supplied data. SRK does not accept responsibility for any errors or omissions in the 
supplied information, except to the extent that SRK was hired to verify the data. 
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Boston Mining Area –
2D Model Section T3 
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Boston Mining Area –
2D Model Section T4 

2/12/2016
HOPE BAY PROJECT

Lake Talik Configuration

cws

Job No:        1CT022.004

Filename:    BostonDeepGroundTemperatures.pptx

Notes:
1. -2°C isotherm indicated with solid black line
2. Model section extends from west to east

Water
Land



Figure: 14Date: Approved:

Madrid North and South 
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3. Underground Workings based on PFS Design
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Patch Island –
Thermistor Site ID 08PSD144
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Madrid North Mining Area –
Thermistor Site ID 08PMD669
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Madrid South Mining Area –
Thermistor Site ID TM00141 
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2. Basemap Credits: ERSI, DeLorme, TomTom, 
Intermap, NRCAN, GeoBase
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Madrid South Mining Area –
Thermistor Site ID TM00141 
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Madrid North Mining Area –
2D Model Section T1 
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