MADRID-BOSTON PROJECT FINAL ENVIRONMENTAL IMPACT STATEMENT

Volume 1 Annex V1-7 Type A Water Licence Applications

Package P5-14

Hope Bay Project: Roberts Bay Cargo Dock Access Road

Preliminary Design

SRK Consulting (Canada) Inc. 2200–1066 West Hastings Street Vancouver, BC V6E 3X2

T: +1.604.681.4196 F: +1.604.687.5532

vancouver@srk.com www.srk.com

Memo

To: John Roberts, PEng, Vice President Environment

Oliver Curran, MSc, Director Environmental Affairs

Client: TMAC Resources Inc.

From: Kaitlyn Kooy, EIT

Project No: 1CT022.013

Reviewed By: Maritz Rykaart, PhD, PEng

Date: November 30, 2017

Subject: Hope Bay Project: Roberts Bay Cargo Dock Access Road Preliminary Design

Change Log

The following table provides an overview of material changes to this report from the previous version issued as Appendix V3-3C as part of the DEIS for Phase 2 of the Hope Bay Project dated December 2016.

Changes by Section

Information Request, Technical Comment, or Other Change	Section	Comments
INAC-IR32 (a)	3.1.2	Provided justification for road surface design
INAC-IR32 (b)	4	Provided road inspection and maintenance schedule
Other	3.2	Inclusion of cargo dock laydown area within Quarry AE.

1 Introduction

1.1 General

The Hope Bay Project (the Project) is a gold mining and milling undertaking of TMAC Resources Inc. The Project is located 705 km northeast of Yellowknife and 153 km southwest of Cambridge Bay in Nunavut Territory, and is situated east of Bathurst Inlet. The Project comprises of three distinct areas of known mineralization plus extensive exploration potential and targets. The three areas that host mineral resources are Doris, Madrid, and Boston.

The Project consists of two phases; Phase 1 (Doris project), which is currently being carried out under an existing Water Licence, and Phase 2 (Madrid-Boston project) which is in the environmental assessment and regulatory stage. Phase 1 includes mining and infrastructure at Doris, while Phase 2 includes mining and infrastructure at Madrid and Boston located approximately 10 and 60 km due south from Doris, respectively.

Phase 2 includes the design and construction of a 3 km long all-weather road connecting the Roberts Bay cargo dock and existing Roberts Bay infrastructure. The primary function of the road is to link the Roberts Bay cargo dock to the existing Roberts Bay infrastructure area to allow transport of supplies and equipment shipped to the project site by cargo vessels. A cargo dock laydown area will be established within the footprint of Quarry AE adjacent to the access road.

1.2 Objective

This memo provides the preliminary design details for the Roberts Bay cargo dock access road and cargo dock laydown area.

2 Design Concept

2.1 Approach

The overall design concepts for the Roberts Bay cargo dock access road is based on the same principles used for existing roads at Doris. Road alignments will be designed to minimize crossings and unfavorable foundation conditions. The cargo dock and access road will be administered and controlled entirely by TMAC.

2.2 Components

The Roberts Bay cargo dock access road will consist of the road, turnouts to allow for passing, and stream crossings.

2.3 Topographic data

Design of the all-weather road is based on topographic contour maps with 1.0 m vertical resolution, and aerial photography produced from 2012 satellite imagery supplied by Hope Bay Mining Limited. Detailed ground surveys have not been completed along the road alignment and are not planned prior to construction as this has been the adopted practice of all road construction in the Project.

2.4 Foundation Conditions

Detailed studies and site inspections have not been performed along the entire length of the proposed all-weather road. The Doris, Madrid and Boston areas; however, have been well studied, and it is expected that foundation conditions and geology along the road length are similar. No further foundation studies along the proposed road alignment, with exception of the bridge abutments, are planned prior to construction. The detailed aerial photography has been proven to be accurate to define the different design road zones (Section 3.1.2), and this has been the adopted and proven practice of all road construction on the Project. For details on the foundation conditions refer to SRK (2017b).

Permafrost at the Project area extends to depths of about 570 m and are absent beneath some large lakes. The ground temperature near the depth of zero annual amplitude ranges from -9.8 to -5.6°C, with an average of -7.6°C. Active layer depth based on ground temperatures measured in overburden soil averages 0.9 m with a range from 0.5 to 1.4 m. The average geothermal gradient is 0.021°C/m.

Permafrost soils are comprised mainly of marine clays, silty clay and clayey silt, with pockets of moraine till underlying these deposits. The most prevalent rock type on site with surface exposure is mafic volcanics, predominantly basalt. The marine silts and clays contain ground ice on average ranging from 10 to 30% by volume, but occasionally as high as 50%. The till typically contains low to moderate ice contents ranging from 5 to 25%.

Overburden soil pore water is typically saline due to past inundation of the land by seawater following deglaciation of the Project area. The salinity typically ranges from 37 to 47 parts per thousand which depresses the freezing point and contributes to higher unfrozen water content at below freezing temperatures.

2.5 Environmental Setbacks

The following environmental setbacks have been applied when selecting the location of the road:

- Minimum 31 m setback from waterbodies, 51 m setback where ever possible;
- Minimum 30 m buffer zone from known rare plants; and
- Minimum 30 m buffer zone from known archeological sites.

While priority was given to avoid these areas, in some cases the minimum buffer around archeological sites could not be maintained. In these instances, the archeological site will be mitigated in accordance with the approved Heritage Resources Protection Plan (TMAC, 2016).

3 Design

3.1 Road Design

3.1.1 Design Criteria

The road is designed to be a single lane haul road with turnouts to allow for passing. It will be designed to the haul road standards set out in the Nunavut Mine Health and Safety Regulations (2015), with an understanding that an exemption would be pursued from the Mines Inspector to allow the road to be a single lane road due to the low frequency of trucks travelling the road. The road design criteria are as follows:

- The design vehicles will be crew cab trucks, personnel transfer busses, Super B-fuel trucks, Super B-trucks, and lowbed trucks. In addition, construction equipment will periodically travel the road, which is expected to include CAT 988 loaders, CAT 16H graders, CAT 730, and CAT 773 haul trucks;
- The maximum design speed for any vehicle will be 50 km/hr:
- The minimum allowable radius of curvature for the road is 100 m; however, at this radius the
 maximum speed is reduced to 35 km/hr. The maximum radius of curvature while maintaining
 a maximum speed of 50 km/hr is 231 m. Wherever possible, corners with wider radii of
 curvature should be targeted;
- Minimum fill thickness of 1 m over permafrost soils and 0.3 m over bedrock;
- The minimum crest road width will be 8 m;
- The maximum allowable grade is 10%; however, wherever possible, grades less than 4% should be targeted;
- Turnouts shall be included at a frequency of at least one per kilometer. Each turnout shall be at least 30 m long and 4 m wide;
- The road shall be crowned at 0.5% to allow for water drainage;
- The road side slopes shall be 1.5H:1V when the road is less than 2 m thick and 2H:1V when the road is greater than 2 m thick; and

• Where road thickness is greater than or equal to 3 m safety berms or barriers will be placed along the road edge, and the road crest will be widened to accommodate the berms.

3.1.2 Design

The cargo dock access road extends from the Roberts Bay discharge system access road and roughly follows the coastline before terminating at the cargo dock. Drawing CDR-02 (Attachment 1) shows the alignment and profile of the cargo dock access road.

Thermal modelling was completed to determine fill thickness required to preserve permafrost under infrastructure. Thermal modelling details can be found in SRK (2017a). Four typical fill thicknesses (Bedrock Zone, Zone 1, Zone 2, and Zone 3), ranging from 0.3 to 2.0 m were identified based on observed performance of roads previously constructed on site and supported by conclusions drawn from thermal modelling. Fill zones are assigned based on site specific ground conditions, identified through air photo interpretation:

- Bedrock Zone is exposed bedrock outcrop that may be blasted if necessary and has a minimum fill thickness of 0.3 m;
- Zone 1 is even, un-patterned ground and in this zone the road has a minimum fill thickness of 1 m;
- Zone 2 is transitional, un-patterned ground with indications of drainage areas, but no frost polygons. This zone has a minimum fill thickness of 1.5 m; and
- Zone 3 is patterned ground with observable frost polygons or wet areas. This zone has a minimum fill thickness of 2 m.

The road will consist of 0.15 m of surfacing material overlying a layer of run-of-quarry (ROQ) material of varying thickness depending on the zone classification. Typical cross sections can be seen in Drawing CDR-07 (Attachment 1). Material specifications are consistent with existing road infrastructure at the Project and have been proven to be effective and require minimum maintenance.

Animal crossings will be constructed as required in consultation with the Inuit Environmental Advisory Group as part of TMAC's ongoing consultation. Animal crossings will consist of 10 m wide sections of the roadway where the shoulders are flattened to 5H:1V and topped with surfacing material. Typical plans and cross sections can be seen in Drawing CDR-08 (Attachment 1).

3.2 Laydown Area

3.2.1 Design Criteria

A cargo dock laydown area will be established within the footprint of Quarry AE. The laydown area will allow efficient loading and off-loading of cargo from berthed vessels to minimise mooring time.

- The laydown area will have a minimum area of 10,000 m²;
- The laydown area shall be graded at 1 % to allow for water drainage;

 The laydown area shall be constructed entirely within bedrock cut within the boundary of Quarry AE;

- A collection sump shall be included at the low point for surface water recovery; and
- A minimum 0.15 m surfacing layer shall be placed on the bedrock cut surface across the laydown area footprint.

3.2.2 Design

Quarry AE will be developed to produce a floor with a slope of approximately 1% within the designated laydown area towards a sump located in the northeast corner. Surfacing material of a minimum 0.15 m thick will be spread across the laydown area footprint. The laydown area is approximately 30,000 m² and the design can be seen in Drawing CDR-03 (Attachment 1).

The sump details are provided on Drawing CDR-03 (Attachment 1). The sump will be a HDPE 900 mm diameter pipe with a plate welded to the bottom set 900 mm below grade. The containment area will have a minimum slope of 1% towards the sump. This is a typical sump design that has been constructed at existing fuel storage facilities at the site and has been proven to function effectively. Any excess water in the containment area will be tested and compared to the existing Doris Water License water quality criteria. If the water meets discharge criteria it will be used as dust suppressant, alternately if it does not meet discharge criteria it will be transported to the Tailings Impoundment Area (TIA). If the water contains hydrocarbons it will first be pumped through a mobile oil-water separator. The sump will only operate during the summer months.

3.3 Stream Crossing

3.3.1 Design Criteria

SRK has defined a stream in this memo as a preferential flow path for surface freshet melt water and rainfall such that it may contain water seasonally or permanently and frequently links permanent water bodies. Crossing locations and features are based on air photo interpretation, topography, available hydrology data, and photos and descriptions from previous studies. Four different crossing types have been identified as culverts, fish bearing culverts, clear span bridges with pile foundations, and clear span bridges with frozen abutment foundations. Geotechnical investigations consisting of drillholes will be carried out at all of the proposed bridge abutments prior to detailed design.

General design criteria for stream crossings are listed below.

- Stream crossings confirmed not to be fish habitat will be spanned using culverts if the peak flow is sufficiently low;
- Large fish-bearing streams will be spanned using clear span bridge structures;
- Fish-bearing streams of very low flow will be spanned using culverts sized for passage of the expected fish species, during normal flow conditions (1:2 year, 24-hour storm event); and
- To be consistent with crossings on the existing road (SRK 2010), crossings will be designed for loaded CAT 773 haul trucks.

Design criteria for clear span crossings are based on the Northwest Territories Clear-Span Bridges Operational Statement prepared by Fisheries and Oceans Canada (2007), and thermal modelling criteria (SRK, 2017a).

The clear span crossing design criteria are listed below:

- The underside of the bridge deck must be a minimum of 2 m above the ordinary high water mark (HWM);
- Abutments must be a minimum of 1.5 m from the HWM on either side of the stream;
- The HWM is defined as the usual or average level to which a body of water rises at its
 highest point and remains at this level long enough to change the land characteristics. For
 rivers and streams, this is the flow generated from a 1:2 year, 24-hour storm;
- For ease of construction and material transportation, all clear-span structures are assumed to have a maximum deck length of 30 m;
- The minimum road fill thickness at the bridge abutments is 2.0 m;
- Bridges should have solid decks to prevent material from falling into the stream; and
- For frozen abutment bridges the abutment shall consist of:
 - A concrete sill (designed by others) sitting on a bridge support pad. The bridge support pad should extend a minimum of 3 m beyond the concrete sill; and
 - Minimum slopes of 1.5H:1V (34°).

3.3.2 Design

Two potential crossings have been identified along the proposed access road alignment using aerial photography and topography data. Crossing C-CDR-02 as shown on Drawing CDR-04 has a minimum span length of 30 m and will be crossed with an end-bearing pile bridge. The end-bearing pile bridges will consist of end-bearing piles extending to bedrock, and road fill material will be held in place by a gabion wall. Drawing CDR-05 (Attachment 1) provides a typical schematic design.

Crossing C-CDR-01 as shown in Drawing CDR-04, if confirmed to be non-fish bearing, will be spanned using two 1 m diameter culverts. Drawing CDR-06 (Attachment 1) shows a typical section for non-fish bearing crossings. If the stream is found to be fish-bearing, culverts that have been sized to allow fish passage will be used. A typical fish bearing culvert will have a minimum diameter of 1 m and riprap will be placed inside the culvert to dampen the flow velocity to allow the passage of fish. A schematic design is shown in Drawing CDR-06 (Attachment 1). Culvert diameter and riprap size will vary depending on the catchment area reporting to the crossing and the type of fish expected.

For the first few years after construction, silt fences will be installed along the toe of the roadway to minimise sediments entering the streams. The silt fences will start a minimum of 3 m before the abutment of the clear-span structure.

4 Construction

All construction fill materials will be obtained from geochemically suitable permitted quarries or geochemically suitable run of mine rock. Management and monitoring of these quarries will be according to the quarry monitoring plan (TMAC 2017). Surfacing (32 mm minus), bedding (19 mm minus), and transition (150 mm minus) materials will be produced at an on-site crusher located within one of the proposed quarries. The estimated construction quantities are provided in Drawing CDR-08 (Attachment 1).

Based on previous surface infrastructure construction on the Project, it is assumed that the construction fleet will consist of CAT 730 haul trucks, CAT 773 haul trucks, CAT D8 dozers, CAT C330 excavator(s), CAT CS563 compactor and a crusher.

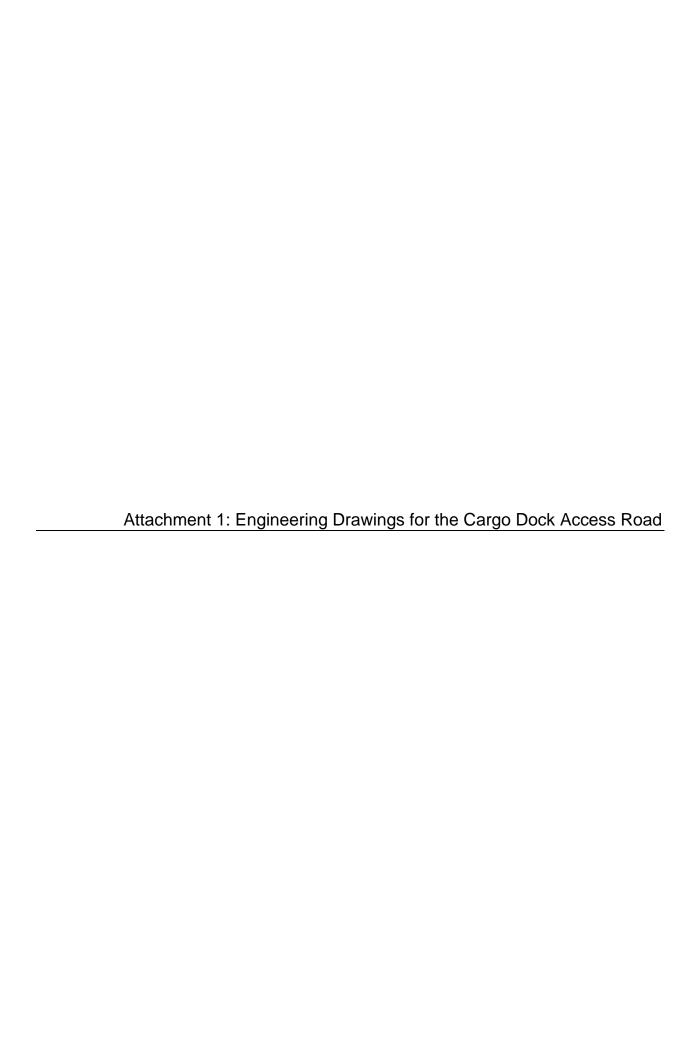
Prior to construction, the road alignments and cargo dock areas should be cleared of snow and ice. At no time will disturbance of the tundra vegetation or soils be allowed outside of the infrastructure footprint, and no permafrost disturbance will be allowed. Construction fill will be placed by end-dumping on the existing road or pad surface and pushing the dumped material with a bulldozer. Surfacing material will not be placed until the ROQ material layer is at design grade and level. All construction should be performed in accordance with the technical specifications (SRK 2011). Where necessary, rock drains will be installed at topographic lows to ensure no standing water is created along the edges of roads or pads. Prior to quarry excavation, all overburden material should be stripped and placed in the overburden pile.

Wherever possible, pads and roads will be constructed in the winter to ensure the foundation materials remain frozen. Summer construction may be required to meet development schedules. Winter and summer construction techniques will be identical; however, summer construction will result in the use of more construction material as greater imbedding of material into the active layer will occur. Summer construction will also require screening of the site for nesting birds, and modifications to the construction schedule may be required to avoid disturbing nesting birds.

Excavation into overburden soils will not be permitted, except where otherwise specified in the design drawings. The excavated overburden materials will be placed in the overburden pile associated with a nearby quarry.

Routine visual inspections of road will be carried out by operational staff and if areas are identified requiring maintenance that will be carried out using similar materials used for initial construction.

Disclaimer—SRK Consulting (Canada) Inc. has prepared this document for TMAC Resources Inc.. Any use or decisions by which a third party makes of this document are the responsibility of such third parties. In no circumstance does SRK accept any consequential liability arising from commercial decisions or actions resulting from the use of this report by a third party.


The opinions expressed in this report have been based on the information available to SRK at the time of preparation. SRK has exercised all due care in reviewing information supplied by others for use on this project. Whilst SRK has compared key supplied data with expected values, the accuracy of the results and conclusions from the review are entirely reliant on the accuracy and completeness of the supplied data. SRK does not accept responsibility for any errors or omissions in the supplied information, except to the extent that SRK was hired to verify the data.

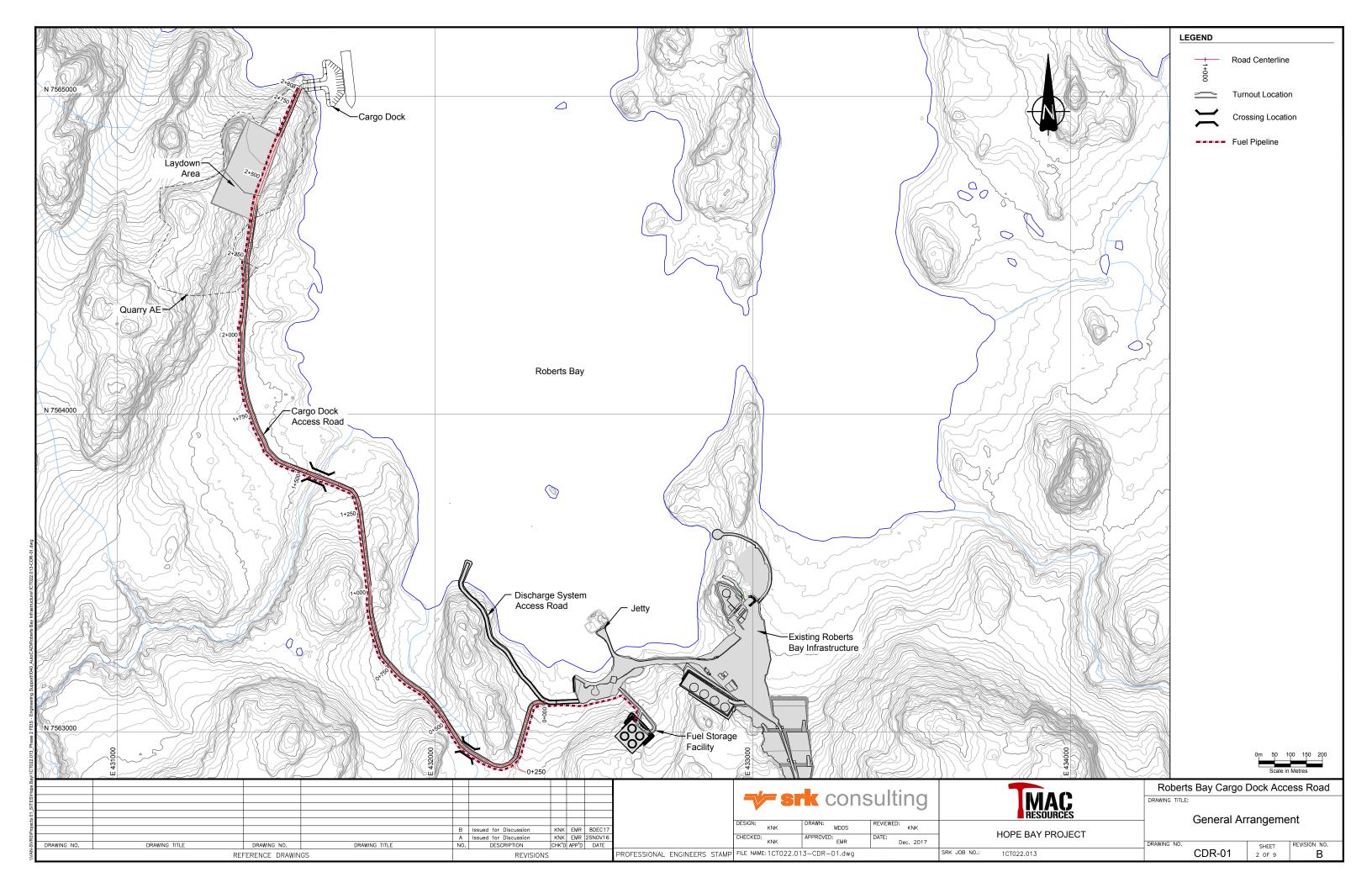
5 References

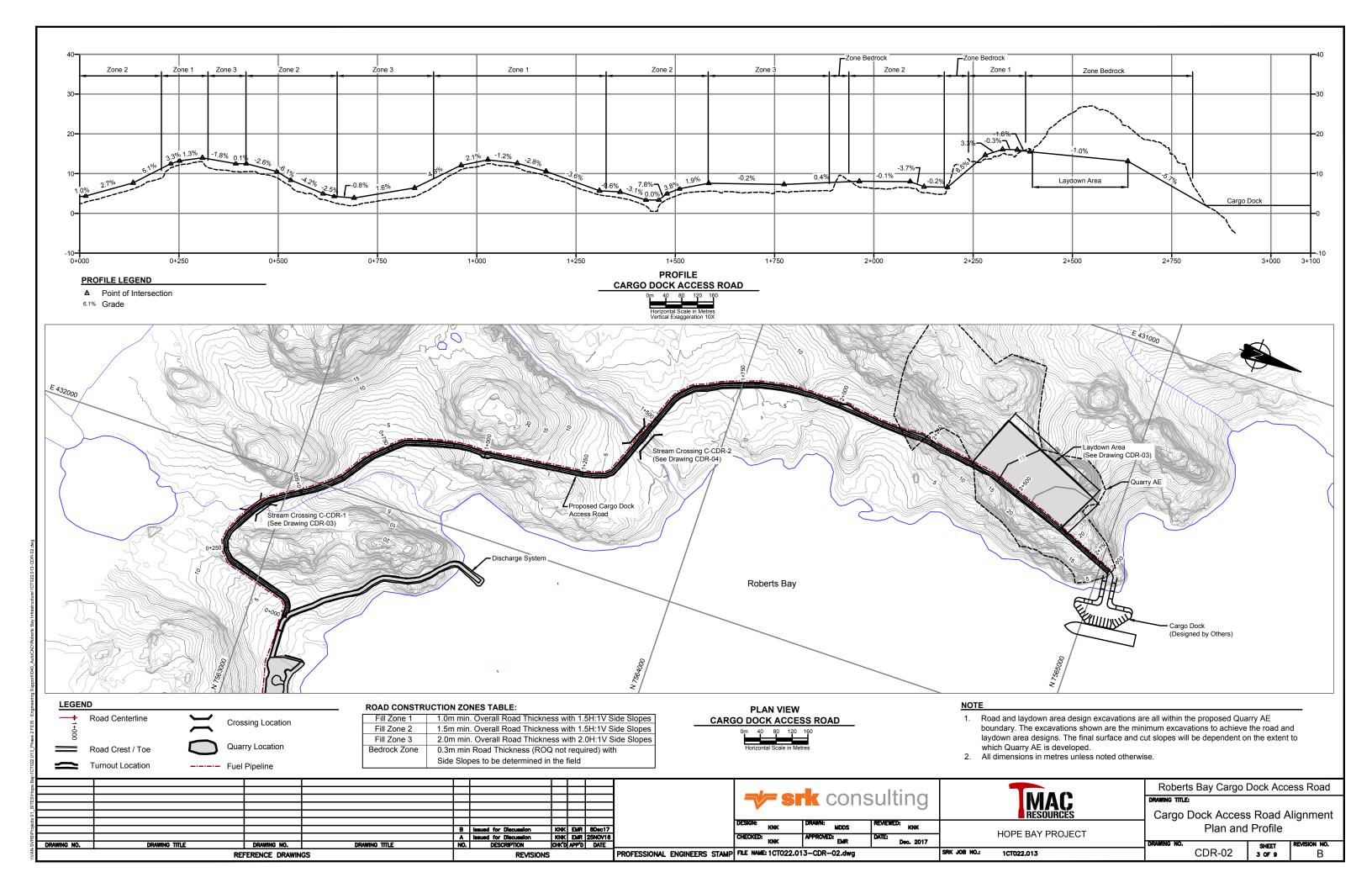
Fisheries and Oceans Canada. 2007, Clear-Span Bridges Northwest Territories Operational Statement. http://www.mvlwb.ca/Boards/mv/Registry/2009/MV2009L8-0008/app/cd/F-DFO%20Operational%20Statement%20on%20Clear-Span%20Bridges.pdf. Accessed on March 10, 2016.

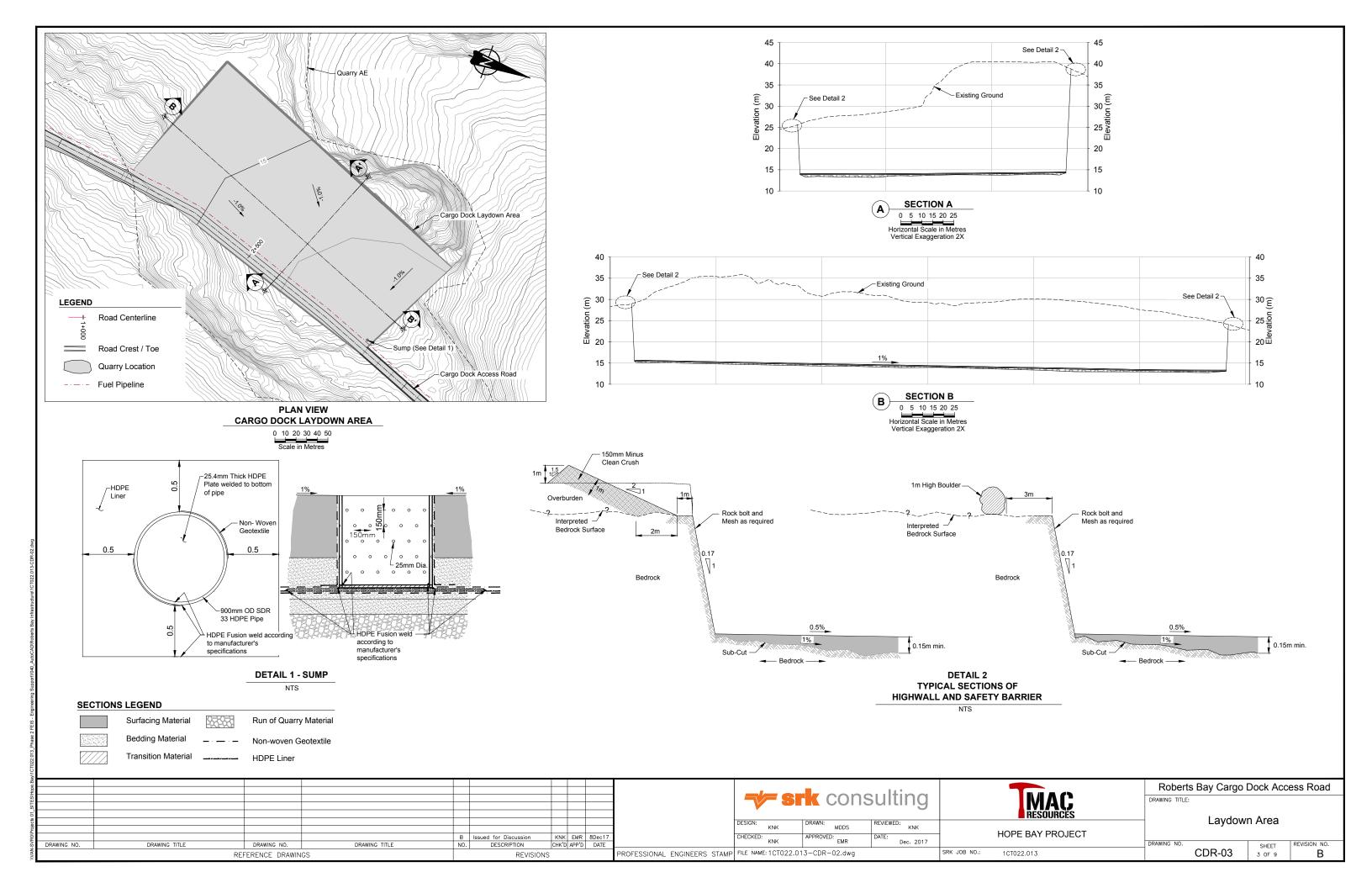
- Nunavut Mine Health and Safety Regulations. 2015. Available at:

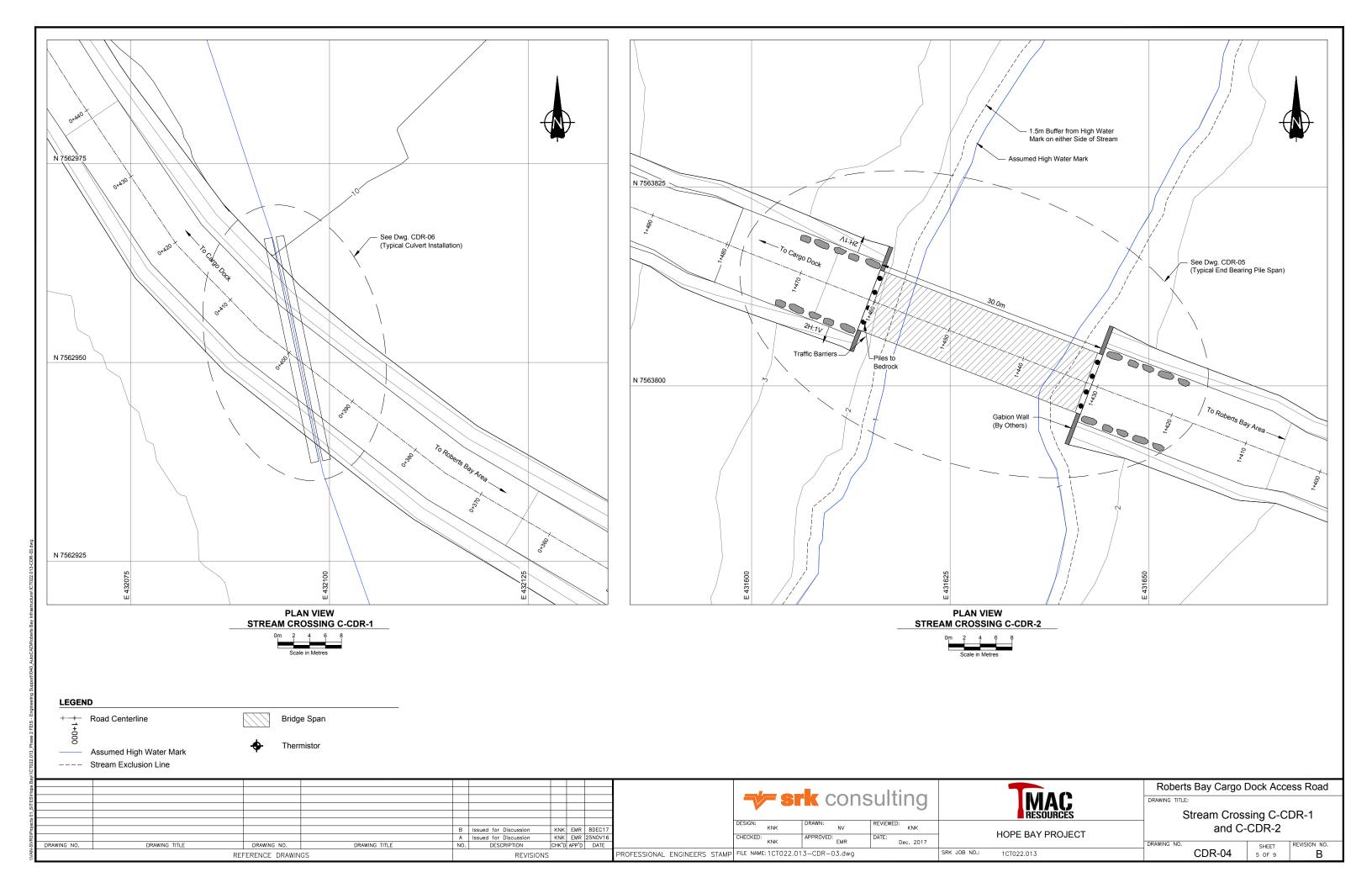
 http://www.wscc.nt.ca/documents/mine-health-and-safety-regulations-english-nu
 (Accessed July 5, 2016).
- SRK Consulting (Canada) Inc. 2010. Doris North Project Bridges for the Doris to Windy All Weather Road. Memo prepared for Hope Bay Mining Limited. Project No.: 1CH008.027. May 4, 2010.
- SRK Consulting (Canada) Inc. 2011. Technical Specifications Earthworks and Geotechnical Engineering, Hope Bay Project Nunavut, Canada, Revision G Issued for Construction. Report Prepared for Hope Bay Mining Limited. Project No.: 1CH008.033. March 2011.
- SRK Consulting (Canada) Inc., 2017a. Hope Bay Project: Thermal Modelling to Support Run-of-Quarry Pad Design. Memo Prepared for TMAC Resources Inc. 1CT022.013. November 2017.
- SRK Consulting (Canada) Inc., 2017b. Geotechnical Design Parameters and Overburden Summary Report, Hope Bay Project. Report Prepared for TMAC Resources Inc. 1CT022.013. November 2017.
- TMAC Resources Inc., 2016. Hope Bay Project, Heritage Resources Protection Plan, Management Report. December 2016.
- TMAC Resources Inc. 2017, Quarry Management and Monitoring Plan, Hope Bay, Nunavut. February 2017.

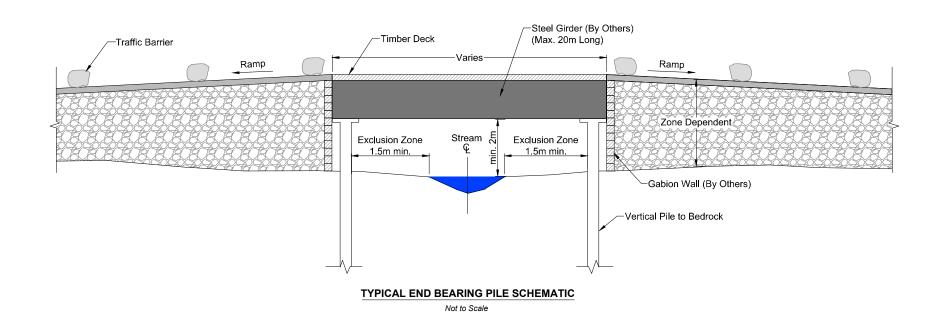
Engineering Drawings for the Roberts Bay Cargo Dock Access Road, Hope Bay Project, Nunavut, Canada


ACTIVE DRAWING STATUS


DWG NUMBER	DRAWING TITLE	REVISION	DATE	STATUS
CDR-00	Engineering Drawings for the Roberts Bay Cargo Dock Access Road, Hope Bay Project, Nunavut, Canada	В	Dec. 8, 2017	Issued for Discussion
CDR-01	General Arrangement	В	Dec. 8, 2017	Issued for Discussion
CDR-02	Cargo Dock Access Road Alignment Plan and Profile	В	Dec. 8, 2017	Issued for Discussion
CDR-03	Laydown Area	В	Dec. 8, 2017	Issued for Discussion
CDR-04	Stream Crossing C-CDR-1 and C-CDR-2	В	Dec. 8, 2017	Issued for Discussion
CDR-05	Typical End Bearing Pile Section	В	Dec. 8, 2017	Issued for Discussion
CDR-06	Culvert Crossing Typical Sections	В	Dec. 8, 2017	Issued for Discussion
CDR-07	Typical Road Plan and Sections	В	Dec. 8, 2017	Issued for Discussion
CDR-08	Animal Crossing Plan and Section and Material List and Quantity Estimates	В	Dec. 8, 2017	Issued for Discussion






PROJECT NO: 1CT022.013 Revision B December 8, 2017 Drawing CDR-00

LEGEND

Boulder

Run of Quarry

Timber

Surfacing Material

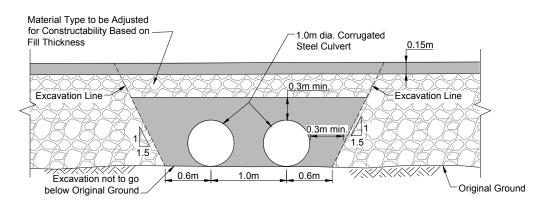
NOTES

- All dimensions in meters unless noted otherwise.
- Construction of the bridge will follow the manufacturer's drawings.
- The toe of the abutment must be a minimum 1.5m away from the stream high water mark.
- The Contractor shall take all necessary precautions to ensure that flow is not affected in 4. any way, either during or after construction.
- 5. The road crest width is to be widened by 1.0m on each side of the road where fill height is greater than 3.0m to allow for placement of traffic barriers.
- The Thermistors shall be RST Instruments (or equivalent approved by the Engineer) Standard Precision Thermistor Strings with 7 beads and single readout box.
- The locations of the Thermistors can be adjusted within limits of the cable lengths with approval by the Engineer.
- Bridge span dimensions and details to be determined once each crossing site has been inspected by a qualified engineer.

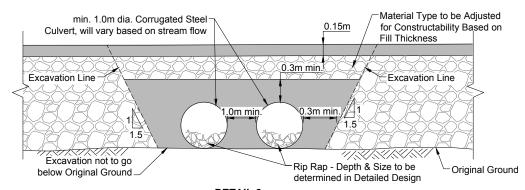
٤L												
Ē												
2												
á												CON!
5.												
5											· ·	
2											DESIGN:	DRAWN:
5					В	Issued for Discussion	KNK	EMR	8Dec17		KNK	MDDS
5					Α	Issued for Discussion	KNK	EMR	25N0V16		CHECKED:	APPROVED:
5	DRAWING NO.	DRAWING TITLE	DRAWING NO.	DRAWING TITLE	NO.	DESCRIPTION	CHK'D	APP'D	DATE		KNK	EMR
	REFERENCE DRAWINGS								•	PROFESSIONAL ENGINEER'S STAMP	FILE NAME: 1CT022.C)13-CDR-04.dwg

₹	= Si	k cons	0
DESIGN:	KNK	DRAWN: MDDS	REVIEWED: KNK
CHECKED:	KNK	APPROVED:	DATE:

TWAC RESOURCES
HOPE BAY PROJECT


1CT022.013

SRK JOB NO.:


Roberts Bay Cargo Dock Access Road
DRAWING TITLE:

Typical End Bearing Pile Section

DRAWING NO.		SHEET	REVISION NO.
	CDR-05	6 OF 9	В

DETAIL 1
TYPICAL CROSS SECTION OF
NON-FISH-BEARING STREAM CULVERT CROSSING
NOT TO SCALE

DETAIL 2
TYPICAL CROSS SECTION OF
FISH-BEARING STREAM CULVERT CROSSING
NOT TO SCALE

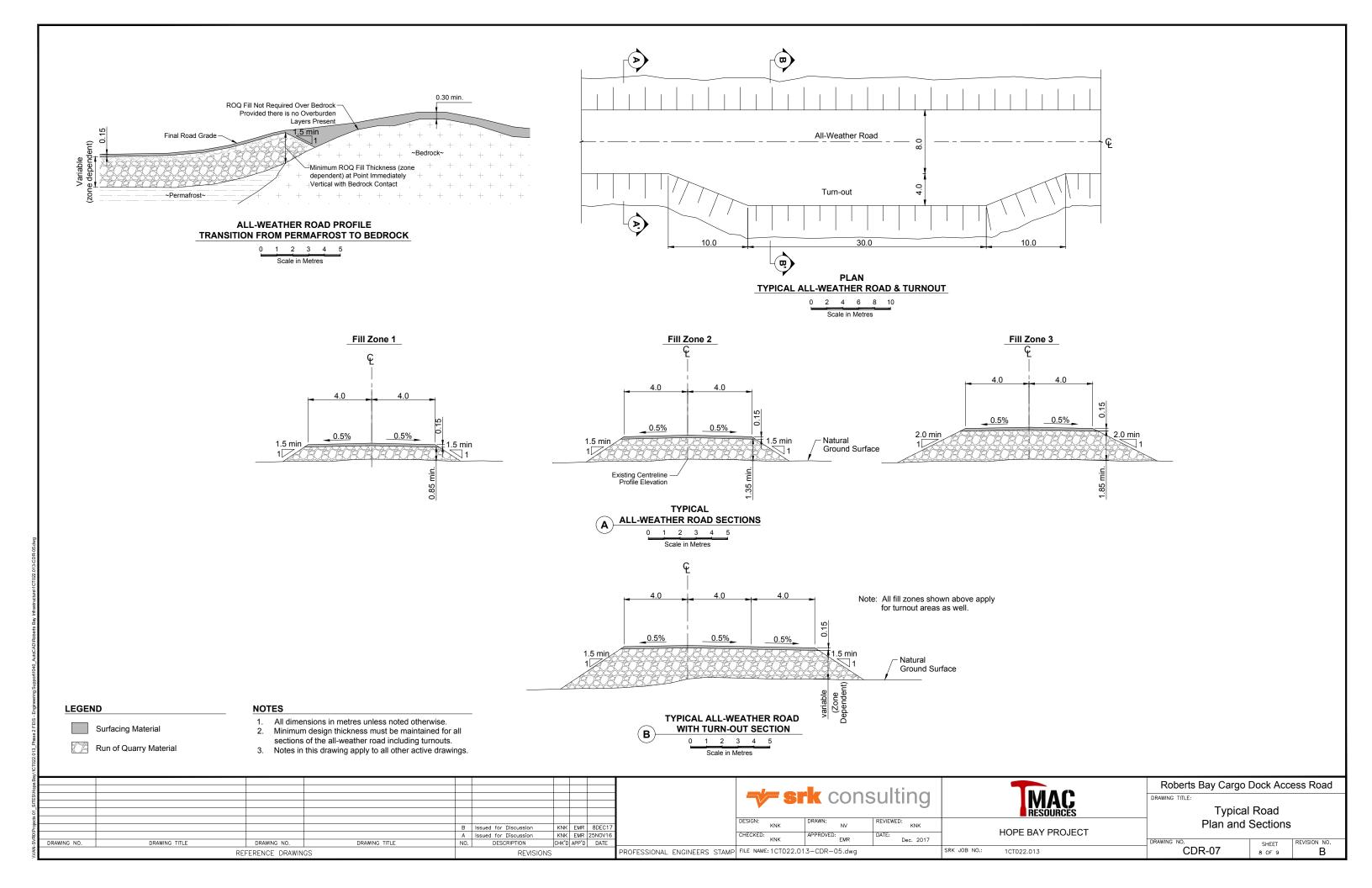
LEGEND

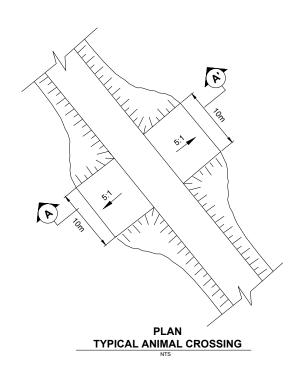
Surfacing Material

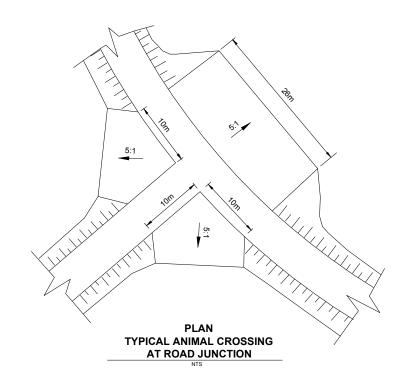
Run of Quarry Material

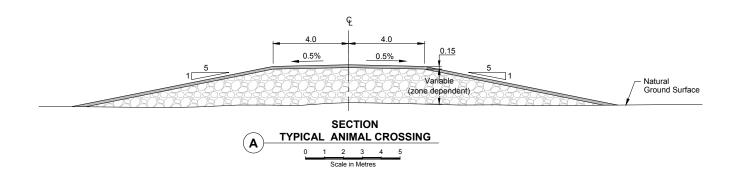
NOTES

- 1. All dimensions in metres unless noted otherwise.
- Minimum design thickness must be maintained for all sections of the all-weather road including turnouts.
- 3. Notes in this drawing apply to all other active drawings.


				В	Issued for Discussion	KNK	EMR	8DEC17
				Α	Issued for Discussion	KNK	EMR	25N0V16
DRAWING NO.	DRAWING TITLE	DRAWING NO.	DRAWING TITLE	NO.	DESCRIPTION	CHK'D	APP'D	DATE
		REVISIONS						


	7	srk consulting							
	DESIGN:	KNK	DRAWN: NV	REVIEWE	D: KNK				
	CHECKED:	KNK	APPROVED: EMR	DATE:	Dec. 2017				
PROFESSIONAL ENGINEERS STAMP	FILE NAME	:: 1CT022.01	3-CDR-05.dwg			SRK JOB NO.:			


Roberts Bay Cargo Dock Access Road


DRAWING TITLE:

Culvert Crossings Typical Sections

LEGEND

Surfacing Material

Run of Quarry Material

- All dimensions in metres unless noted otherwise. Locations for animal crossings will be identified by Land Owner and Elders once road construction is
- completed.

 Notes in this drawing apply to all other active drawings.

Materials List and Quantity Estimates

Item	Quantity / Area / Volume	Description
1. Culverts	2 (Estimated)	All Corrugated Steel Pipe 68x13 corrugated profile
	(Dependant Final Crossing Selected)	varying diameter
2. Run of Quarry Material	Road: 40,000m ³	Approximate In-Place Neat-line Volume (3D volume based on Civil 3D surfaces - no allowance has been made for losses and/or tundra embedment)
3. Surfacing Material	Road: 3,400m ³ Laydown Area: 7,400m ³	Approximate In-Place Neat-line Volume
4. Bedrock Cut	Road: 15,000m ³ Laydown Area: 583,000m ³	Approximate Only (Bedrock Outcrop) Dependent of final elevation of Quarry AE
5. Thermistors	2 (Estimated) (Dependent Final Crossing Selected)	The Thermistors shall be RST Instruments (or equivalent approved by the Engineer) Standard Precision Thermistor Strings with 7 beads and single readout box.

									Г
									ı
									ı
									ı
									ı
				В	Issued for Discussion	KNK	EMR	8DEC17	i
				Α	Issued for Discussion	KNK	EMR	25N0V16	ı
DRAWING NO.	DRAWING TITLE	DRAWING NO.	DRAWING TITLE	NO.	DESCRIPTION	CHK'D	APP'D	DATE	L
	REF		REVISIONS				Ρ		
•									

		₹					
7		DESIGN:	KNK	DRAWN: NV	REVIEWE	D: KNK	
		CHECKED:	KNK	APPROVED: EMR	DATE:	Dec. 2017	
	PROFESSIONAL ENGINEERS STAMP	FILE NAME	:1CT022.01	3-CDR-05.dwg	•		SRK JOB NO.:

TWAC RESOURCES	Roberts Bay 0
	DRAWING TITLE:
	Animal Crossi
OPE BAY PROJECT	Material List

1CT022.013

Cargo Dock Access Road

sing Plan and Section and and Quantity Estimates

CDR-08