

AGNICO EAGLE

HOPE BAY MINE

Doris-Madrid Interim Closure and Reclamation Plan

**JANUARY 2026
VERSION 8**

TABLE OF CONTENTS

Table of Contents.....	i
List of Tables	iii
List of Figures	iii
Document Control.....	iv
Section 1 • Introduction	1
1.1 Overview.....	1
1.2 Background.....	1
1.3 Closure and Reclamation Plan History	3
1.4 Regulatory Context.....	6
1.4.1 Legislation Applicable to Mine Closure	6
1.4.2 Applicable Guidelines Related to Mine Closure.....	7
1.5 Closure Objectives and Criteria	7
Section 2 • Mine Environment.....	8
2.1 Climate.....	8
2.2 Physical Environment	8
2.3 Biological Environment.....	9
Section 3 • Mine Overview.....	10
3.1 Mine Timeline.....	10
3.2 Geochemical Characterization	10
3.3 Tailings Management	11
3.4 Waste Rock and Ore Storage.....	13
3.5 Water Management	13
3.6 Ancillary Facilities	13
Section 4 • Permanent Closure and Reclamation	14
4.1 Definition of Permanent Closure.....	14
4.2 Decision to Close	14
4.3 Overview and Schedule	14
4.4 Description of Mine Facilities	14
4.4.1 Underground Mine Workings.....	19

4.4.2	Waste Rock Dumps, Ore stockpiles, and Overburden Piles	19
4.4.3	Tailings Impoundment Area.....	20
4.4.4	Buildings and Equipment.....	20
4.4.5	Mine Infrastructure.....	22
4.4.6	Quarry #2 Landfill	22
4.4.7	Water Management Systems.....	23
4.5	Permanent Closure and Reclamation Requirements	23
4.5.1	Underground Mine Workings.....	23
4.5.2	Waste Rock Dumps, Ore Stockpiles, and Overburden Piles	24
4.5.3	Tailings Impoundment Area.....	25
4.5.4	Buildings and Equipment.....	26
4.5.5	Mine Infrastructure.....	28
4.5.6	Quarry #2 Landfill	30
4.5.7	Water Management Systems.....	30
4.6	Closure Uncertainties	31
4.7	Post-Closure Monitoring and Maintenance	32
4.8	Contingencies	33
4.8.1	Water Quality.....	33
4.8.2	Tailings.....	33
4.8.3	Climate Change Effects	33
Section 5 • Progressive Reclamation.....	34	
5.1	Definition of Progressive Reclamation	34
5.2	Candidate Facilities/Areas and Reclamation Activities	34
5.3	Reclamation Studies	34
5.4	Progressive Reclamation Schedule.....	35
Section 6 • Temporary Mine Closure	36	
6.1	Definition of Temporary Closure	36
6.2	Temporary Closure Principals and Goals.....	36
6.3	Temporary Closure Management and Accountability Structure	36
6.4	Temporary Closure Activities	36
6.5	Monitoring and Reporting During Temporary Closure	37

6.6	Temporary Closure Schedule	38
Section 7 • Cost Estimate	39	
Section 8 • Schedule	40	
References	41	
Appendix A • Facilities Listing.....	44	

List of Tables

Table 1.2-1: Major Hope Bay Mine Components	3
Table 1.3-1: Closure and Remediation Plan Revision History.....	4
Table 3.5-1: Water Classification, Management and Discharge Approach	13

List of Figures

Figure 1.2-1: Location of the Hope Bay Mine	2
Figure 3.3-1: Tailings Impoundment Area - Transition to Filtered Tailings Placement)	12
Figure 4.4-1: Hope Bay Operational Update Mine Development Area – Roberts Bay.....	15
Figure 4.4-2: Hope Bay Operational Update Mine Development Area – Doris.....	16
Figure 4.4-3: Hope Bay Operational Update Mine Development Area – Madrid Area	17
Figure 4.4-4: Hope Bay Operational Update Mine Development Area – Madrid-TIA Road.....	18

DOCUMENT CONTROL

Version	Date	Section	Page	Revision	Author
0	October 2005	Entire Document		Initial version of plan submitted in support of Final Environmental Impact Statement Report	Miramar Hope Bay Ltd. (Written by AMEC)
1	April 2007	Entire Document		Submitted in support of Water Licence Application	Miramar Hope Bay Ltd.
2	August 2012	Entire Document		Project entered Care and Maintenance phase. Closure and Reclamation of existing advanced exploration facilities (no operating mine was constructed) in accordance with Type A Water Licence 2AM-DOH0713	Newmont, Hope Bay Mining Ltd. (Written by SRK)
3	March 2014	Entire Document		Transfer of ownership and re-activation of construction activities. Revised Plan in accordance with Type A Water Licence 2AM-DOH1323	TMAC Resources Inc. (Written by SRK)
4	June 2015	Entire Document		Updated Mine Development Plan and Revised Interim Plan in accordance with Type A Water Licence 2AM-DOH1323 Amendment 1	TMAC Resources Inc. (Written by SRK)
5	September 2016	Addendum		Addendum to Interim Closure and Reclamation Plan related to ponding water along rock fill structures	TMAC Resources Inc. (Written by SRK)
6	November 2017	Entire Document		Updated Mine Development Plan and Revised Interim Plan in accordance with Type A Water Licence 2AM-DOH1323 Amendment 1	TMAC Resources Inc. (Written by SRK)
7	January 2024	Entire Document		Updated dates to support rebrand to Agnico Eagle and revision to security	Agnico Eagle Limited (Permitting Department)
7.1	September 2024	Document footers and cover page	v7.1	Updates are shown with indicator, where applicable	Agnico Eagle Limited (Permitting Department)
			Throughout	Water Licence updated to 2AM-DOH1335 throughout document; not marked with indicator	Agnico Eagle Limited (Permitting Department)
7.1	September 2024	Document footers and cover page	All	Revised date of document to reflect when updates (as noted in document control) were made. These updates were a result of comments received from parties on February 20, 2024.	
			1.1, 1.2	Sections revised to modify current files, project status, and ownership	
		1.3, Table 1	3-4	Provided clarity to history of closure plan revisions	
		Table 2	5-6	Entire table updated to reflect conditions of licence 2AM-DOH1335	
		3.3	13	To address CIRNAC-R-02 from February 20, 2024 comments	

Version	Date	Section	Page	Revision	Author
7.1 (cont.)		4.5.4	25	To address CIRNAC-R-03 from February 20, 2024 comments	
		4.5.5	26	To address TC-R-01 from February 20, 2024 comments	
		4.7	28-29	To address CIRNC-R-04, ECCC-R-03, ECCC-R-04 from February 20, 2024 comments	
		7	36	Security updated as agreed with KitIA and CIRNAC on November 15, 2023.	
8	January 2026	V8		Updates are shown with indicator, where applicable	Agnico Eagle Mines Limited (Permitting Department)
		Throughout	Throughout	Updated to reflect accurate nomenclature ('the Mine' instead of 'the Project'); not marked with indicator	
		1.2	1-3	Updated section to reflect components in table format rather than bulleted list	
		1.3	3-6	Reorganization of content and inclusion of 2024 and 2026 plan revisions	
		Removal of section "Water Licence Requirements" as this section was a copy/paste of the Licence conditions that are unnecessary to have within the ICRP			
		3.1, 4.4.4, 7.0, Appendix A	Throughout	Revised to reflect updates of 2026 Water Licence Amendment	
		3.2, 3.3, 4.4.3, 4.5.3, 4.8.2	Throughout	Revised section to reflect tailings management as part of 2026 Water Licence Amendment	
		3.4, 4.4.2, 4.5.2, 4.8.3	Throughout	Revised section to reflect waste rock management as part of 2026 Water Licence Amendment	
		Table 3.5.1	13	Revisions to management approach based on 2025 Modification approval of Saline Ponds	
		4.4.1	16	Updated inflows based on 2026 Water Licence Amendment	
		4.5.1	21	Updated estimated reflooding years based on 2026 Water Licence Amendment	
		4.7	29	Additional text provided on closure and post-closure monitoring	
		Appendix B		Removal of Phase I – Phase 2 Comparison Table as not required as part of an ICRP	

SECTION 1 • INTRODUCTION

1.1 Overview

The Hope Bay Mine (the Mine) is a gold mining and milling undertaking of Agnico Eagle Mines Limited (Agnico Eagle). The Mine is located approximately 700 km northeast of Yellowknife and approximately 150 km southwest of Cambridge Bay in Nunavut Territory, and is situated east of Bathurst Inlet. The Mine comprises of three distinct areas of known mineralization plus extensive exploration potential and targets. The three areas that host mineral resources are Doris, Madrid, and Boston.

The Hope Bay Mine has two Type A Water Licenses 1) 2AM-DOH for the Doris and Madrid sites; and 2) 2AM-BOS for the Boston site, this Interim Closure and Reclamation Plan (ICRP) pertains to the Doris and Madrid sites and was written in accordance with the applicable guidelines as described in Section 1.4.2.

A separate plan pertaining to closure and reclamation of the Boston Site has been developed and approved with associated security.

1.2 Background

The Mine is located on Inuit Owned Land administered by the Kitikmeot Inuit Association (KitIA), in the West Kitikmeot Region of Nunavut (Figure 1.2-1).

The Hope Bay Mine currently focuses on mining of the Doris and Madrid deposits by utilizing and expanding upon the Doris infrastructure for the integrated development of the Hope Bay Belt. The Operational Update (2026 Water Licence Amendment) will continue with construction activities at Doris and Madrid, and will overlap with the operation activities at the Doris Site. The proximity of the Madrid area to the Doris Site, process plant, and TIA means that the Mine can utilize existing infrastructure at Doris. This will minimize the footprint, and minimize the time required to develop the Madrid deposits. Roberts Bay will continue to provide laydown areas, fuel storage, and receive vessel shipments for the Hope Bay Mine.

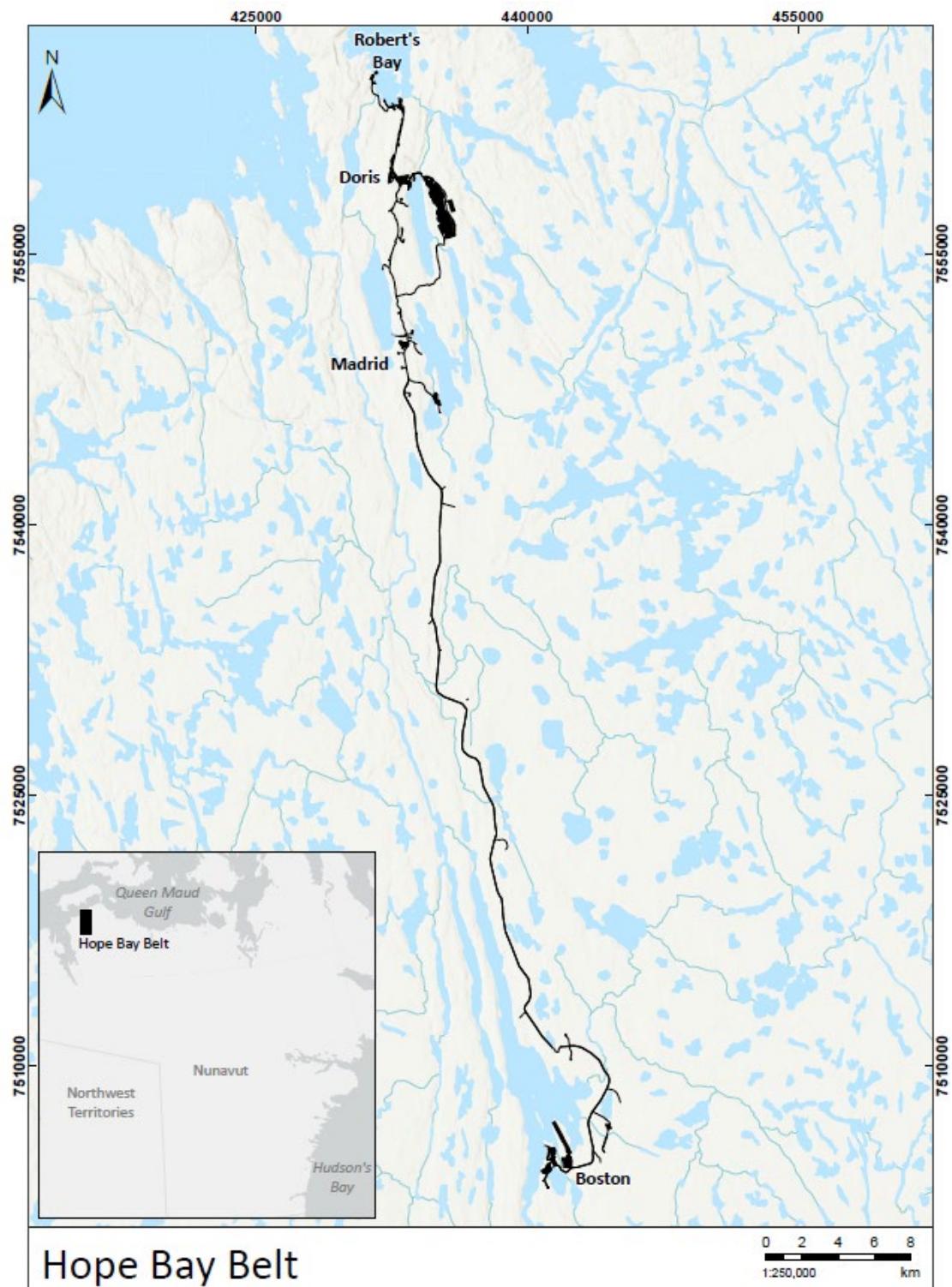

Figure 1.2-1: Location of the Hope Bay Mine

Table 1.2-1 presents major components of the Hope Bay Mine. A listing of facilities, both approved and proposed, is provided in Appendix A.

Table 1.2-1: Major Hope Bay Mine Components

Roberts Bay	Doris		Madrid
Jetty	Milling facilities	Power plant	Underground portals
Bulk fuel storage facilities	Worker camp	Industrial pad	Water management infrastructures
Jet-A fuel storage facilities	Doris underground portal	Water treatment	Waste management infrastructures
Laydown area	Water management infrastructures	Domestic waste management infrastructure	Stockpiles
Fuel transfer line	Waste management infrastructures	Freshwater intake	Quarries
Roberts Bay-Doris AWR	Tailings storage facility	Fuel Storage facilities	Freshwater intake
Airstrip	Stockpiles	Quarries	Fuel Storage facilities
Quarries	Windy AWR (Doris-Madrid)	Landfarm	Emulsion plant
			Madrid-TIA road

Since the issuance of the project's initial Type A Water Licence (2AM-DOH0713), in September 2007, the ownership of the Project has changed four times.

- Construction of the project began in June 2007 by the original owner Miramar Mining Corp. (Miramar) under its subsidiary Miramar Hope Bay Mining Ltd. (MHBL).
- In March 2008, Newmont Mining Corporation (NMC) purchased the project and continued construction activities under their wholly owned subsidiary Hope Bay Mining Limited (HBML). NMC however ceased construction in January 2012, and placed the project in temporary closure.
- In January 2013, NMC sold the project to TMAC who subsequently recommenced exploration activities in June 2013, and completed construction with first gold having been poured in February 2017.
- Agnico Eagle acquired TMAC Resources and took over the mining operations in February 2021 where production continued until the end of September 2021. Hope Bay entered into Care and Maintenance in February 2022.

1.3 Closure and Reclamation Plan History

This ICRP (the Plan) presents the closure obligations and the plan for closing all facilities, and demonstrates how the closure obligations will be met.

A chronological account of these revisions is provided in Table 1.3-1.

Table 1.3-1: Closure and Remediation Plan Revision History

Release Date	Document Title	Author	Key Changes
October 2005	<i>Preliminary Mine Closure and Reclamation Plan Doris North Project - Hope Bay Belt Nunavut, Canada</i>	Miramar Hope Bay Ltd. (Written by AMEC)	Initial version of plan submitted in support of Final Environmental Impact Statement Report.
April 2007	<i>Mine Closure and Reclamation Plan Doris North Project, Nunavut</i>	Miramar Hope Bay Ltd.	Submitted in support of Water Licence Application.
August 2012	<i>Doris North Closure and Reclamation Plan</i>	Newmont, Hope Bay Mining Ltd. (Written by SRK)	Project entered Care and Maintenance phase. Closure and Reclamation of existing advanced exploration facilities (no operating mine was constructed) in accordance with Type A Water Licence 2AM-DOH0713.
March 2014	<i>Doris North Mine Closure and Reclamation Plan</i>	TMAC Resources Inc. (Written by SRK)	Transfer of ownership and re-activation of construction activities. Revised Plan in accordance with Type A Water Licence 2AM-DOH1323.
June 2015	<i>Doris North Mine Interim Closure and Reclamation Plan June 2015</i>	TMAC Resources Inc. (Written by SRK)	Updated Mine Development Plan Revised Interim Plan in accordance to Type A Water Licence 2AM-DOH1323 Amendment 1.
September 2016	<i>Doris North Mine Interim Closure and Reclamation Plan September 2016</i>	TMAC Resources Inc. (Written by SRK)	Addendum to Interim Closure and Reclamation Plan related to ponding water along rock fill structures
November 2017	<i>Doris-Madrid Interim Closure and Reclamation Plan November 2017</i>	TMAC Resources (written by SRK)	Updated to include commercial production at Madrid North and Madrid South mines, and other changes to the Phase 2 project. Submitted as supporting document for the Final Environmental Impact Statement Report.
September 2024	<i>Doris-Madrid Interim Closure and Reclamation Plan September 2024</i>	Agnico Eagle Mines Limited	Updated to reflect changes of ownership from TMAC to Agnico Eagle and updated context as approval was received on the Phase 2 project. There were no project changes from the 2017 ICRP to the updated 2024 ICRP.
January 2026	<i>Doris-Madrid Interim Closure and Reclamation Plan January 2026</i>	Agnico Eagle Mines Limited	Updated to incorporate Operational Update (2026 Water Licence Amendment) activities and to reflect minor updates on-site.

2005 to 2007

The first Closure and Reclamation Plan for the site was prepared by AMEC (2005) and submitted as a supporting document for the Final Environmental Impact Statement (FEIS). The 2005 Closure Plan described closure of the Doris North Project had it produced and milled ore in accordance with the 2005 Miramar FEIS (MHBL 2005). Subsequent to this original closure plan, a number of amendments and modifications to the original Type A Water Licence 2AM-DOH0713 were submitted to the Nunavut Water Board for review and approval. These amendments and modifications also required revisions to the project's Closure and Reclamation Plan.

2012 to 2017

In 2012 a new Closure and Reclamation Plan was submitted by the new owners, Hope Bay Mining Ltd., when the site was placed into temporary closure. The 2012 Plan (SRK 2012) was reflective of this status and differed from the 2005 Plan. The 2012 Plan addressed the following key areas:

- The Mine never advanced to the production stage and was only an advanced exploration program including underground bulk sampling and a decline that terminated at the ore face;
- The bulk sampling program produced waste rock and ore which were stored on surface on dedicated rock pads; and
- The mill was not constructed and tailings had not been produced.

After ownership change in 2014, the 2012 Plan was revised to reflect operations based on the intention of advancing the Mine through to production. That Plan focused on the closure of the site in accordance with the existing Type A Water Licence 2AM-DOH1323. The 2014 plan was amended in 2015 and an addendum was issued in 2016 to reflect changes to the Mine and incorporate the new conditions as per Amendment No.1 to Water Licence 2AM-DOH1323.

The 2017 update of the ICRP included the integration of Phase 2 Doris-Madrid development components that are captured under Amendment No. 2 to Water Licence 2AM-DOH. The differences between the current and the immediately preceding revision of the ICRP are detailed below.

The 2017 ICRP addressed the following project changes from the 2015 approved ICRP:

- Increase in waste rock volumes, but all waste rock is returned underground as backfill prior to closure of the mine;
- Increase in tailings volume. Filtered detoxified cyanide leach tailings continues to be mixed with waste rock and used as backfill and floatation tailings are deposited as a low solids content slurry in the existing Doris TIA;
- Raise of the South Dam and construction of the West Dam to accommodate the increased volume of tailings;
- Construction of a concentrator at Madrid North with the associated tailings pipeline along a new all-weather road;
- Development of the Madrid North and Madrid South Mines to full production;
- Construction of an all-weather road to Boston;
- Construction of up to six wind power generation towers;
- Construction of a new Cargo Dock in Roberts Bay and construction of a new fuels storage facilities there; and
- Expansion of Doris Camp to accommodate 400 persons.

2024

The 2024 ICRP was updated to reflect changes of ownership from TMAC to Agnico Eagle. There were no project changes between the 2017 ICRP and the 2024 ICRP; however, the ICRP was updated to reflect approval of the Phase 2 project.

V8.0

2026

Agnico Eagle is proposing the Operational Update (2026 Water Licence Amendment) to enhance and optimize future operations at the Hope Bay Mine. The 2026 ICRP addresses the following updates from the 2024 ICRP:

- Development of the Madrid area;
- Transition to filtered tailings placements over a foundation of slurry tailings;
- Construction of additional water management infrastructure (e.g., contact water ponds, berms), additional waste management infrastructure (e.g., WRSF)
- Additional fuel storage

As Mine development advances, the level of detail contained in this ICRP will undergo further revisions to reflect the progress of the Mine as well as changes in technology and/or standards or legislation, where applicable. As required, the ICRP will include thresholds and identified adaptive management responses.

1.4 Regulatory Context

1.4.1 Legislation Applicable to Mine Closure

Legislation applicable to mine closure and reclamation planning in Nunavut includes:

- Nunavut Land Claims Agreement (Canada 1993);
- Territorial Lands Act (Canada 1985a);
- Territorial Lands Regulations (Canada undated);
- Nunavut Waters and Nunavut Surface Rights Tribunal Act (Canada 2002);
- Nunavut Waters Regulations (Canada 2013);
- Fisheries Act (Canada 1985b), and applicable regulations;
- Arctic Waters Pollution Prevention Act (Canada 1985c);
- Arctic Waters Pollution Prevention Regulations (Canada undated);
- Transportation of Dangerous Goods Act (Canada 1992);
- Transportation of Dangerous Goods Regulations (Canada 2001);
- Environmental Protection Act (Nunavut 1988a);
- Environmental Rights Act (Nunavut 1988b);
- Mine Health and Safety Act (Nunavut 1994); and
- Mine Health and Safety Regulations (Nunavut 1995).

The primary regulatory instruments applicable to mine closure in Nunavut are however land use authorizations and water licenses.

Surface rights for Inuit Owned Land (IOL) are vested in the Kitikmeot Inuit Tapiriit Kanatami (Kitikmeot IOL), which administers the access and management of the IOL for the benefit of the Inuit in the region. This is done through land use permits and lease agreements.

Use of water resources and waste disposal in Nunavut is regulated by the NWB, and the Mine requires a Type A Water Licence for mine development, pursuant to the Nunavut Waters Act. The closure and reclamation plan, including the associated cost estimate, requires approval under the water licence.

1.4.2 Applicable Guidelines Related to Mine Closure

The following guidelines are applicable to mine closure planning in Nunavut:

- Mine Site Reclamation Policy for Nunavut (INAC 2002); and
- Guidelines for the Closure and Reclamation of Advanced Mineral Exploration and Mine Sites in the Northwest Territories (MVLWB and AANDC 2013).

Although the NWT guideline applies outside of the Nunavut jurisdiction, it is considered as current best practice. This ICRP adheres to the content and reporting structure recommended in the NWT guideline, where no contradictions were found with the applicable NU policy.

1.5 Closure Objectives and Criteria

The site has been designed with closure in mind and throughout operations every effort to apply progressive reclamation will be evaluated and implemented where practical to do so. With this in mind, the overall objectives of this Plan are as follows:

- Establish stable chemical and physical conditions; and
- Ensure the future use and aesthetics of the project site following reclamation activities meets the requirements of Aboriginal, Federal and Territorial governments, landowners, local communities and regulatory authorities.

These closure principles and the subordinate objectives, criteria, and strategies presented in this report have been developed in accordance with the Nunavut Mine Site Reclamation Policy (DIAND 2002) and the Northwest Territories mine site reclamation guidelines (MVLWB / AANDC 2013).

In terms of future land use, some surface infrastructure components at the site may be considered a substantial contribution to the development of Nunavut and could be left in place after closure following consultation with all interested parties. For example, the fuel storage, airstrip, jetty, roads and rock pads can be used as a base for other projects in the area. However, for the purposes of this report it has been assumed these structures and facilities will all be removed and/or reclaimed to acceptable standards.

SECTION 2 • MINE ENVIRONMENT

2.1 Climate

The climate in the Hope Bay Mine area is one of extremes. There is relatively little precipitation, and temperatures stay below freezing for most of the year, reaching over 20°C for short periods in the summer. Summer is a season of nearly constant light, while darkness, twilight, and extreme cold dominate winter.

Inuit have noted changes in climate trends (as recorded in a Naonaiyatit Traditional Knowledge Project report), and their observations are supported by historical climate data collected over the last half century. While predicting the effects of climate change is difficult, effects are believed to include higher temperatures and precipitation, which in turn may affect permafrost and snow depth.

Air quality in the Hope Bay Mine area and elsewhere in Nunavut is generally of good quality, reflecting the low amount of air pollution from large populations. Outside of the Hope Bay Mine area, most air emissions are from the use of diesel generators, heaters, vehicles, snowmobiles, all-terrain vehicles and boats. Noise levels are generally low.

Detailed existing environment conditions (i.e., climate and air quality) is provided in the main 2017 FEIS document (TMAC 2017).

2.2 Physical Environment

The Mine is located on the Canadian Shield. Exposed bedrock outcrops are common, and mostly devoid of vegetation. Surface observations and subsurface investigations of the foundation soils found the project area is characterized mostly by marine deposits of silty-clay with trace sand, with small pockets of glaciofluvial deposits of coarse sand and some gravel. Eskers are common in the southern part of the Hope Bay Belt area, but not within the disturbed footprint of the Doris-Madrid sites.

Mine-wide overburden consists of permafrost soils which are mainly marine clays, silty clay, and clayey silt, with pockets of moraine till underlying these deposits. The marine silts and clays contain ground ice ranging from 10 to 30% by volume on average, but occasionally as high as 50%. The till typically contains low to moderate ice contents ranging from 5 to 25%. Overburden soil pore water is typically saline due to past inundation of the land by seawater following deglaciation of the Mine area. Salinity measurements (EBA 1996) range from 3 to 48 parts per thousand, which depresses the freezing point and contributes to higher unfrozen water content at below freezing temperatures.

Permafrost at the Mine area extends to depths of about 565 m, with an average geothermal gradient of 0.021°C/m. Active layer depth in overburden soil averages 0.9 m, with a range from 0.5 to 1.4 m (SRK 2017b).

General foundation conditions, material properties for geotechnical analysis, and development of the overburden isopach surface are described in more detail in SRK (2017b).

2.3 Biological Environment

Where rock outcrops, water, and cliffs are absent on the landscape, trees and summer flowers are numerous and dense in the tundra of the Mine area. Trees are short and stunted forms of dwarf birch, green alder, willow, and white and black spruce can be found in some areas. Sedge meadows and wetlands are common in low-lying moist areas. More than 870 plant species grow in the Mine area, including many species of lichens, mosses, and algae.

Terrestrial animals in the region include barren-ground caribou (of the Dolphin/Union, and Beverly herds), muskox, grizzly bear, wolverine, and grey wolves, as well as several species of raptor, waterfowl, and upland breeding birds. Caribou and caribou hunting are central to Inuit culture, identity, recreation, and kinship and are of economic importance to the Inuit and other residents of Nunavut.

Four species of cliff-nesting raptors (peregrine falcon, gyrfalcon, rough-legged hawk, and golden eagle) and three ground-nesting raptor species (snowy owl, short-eared owl, and northern harrier) may live in the area. Waterbird species in the Mine area include geese, tundra swan, several species of ducks, gulls, Arctic tern, four species of loons, and sandhill crane.

A total of fourteen fish species are found in lakes, ponds, and streams in the Mine area. The most common fish species is the Ninespine Stickleback, followed by Lake Trout, Arctic Char, Arctic Grayling, Slimy Sculpin, Lake Whitefish, Cisco, Least Cisco, Burbot, and Broad Whitefish.

SECTION 3 • MINE OVERVIEW

3.1 Mine Timeline

The Mine involves construction, operation, and closure of underground mines at Doris and Madrid, as well as mineral processing facilities at Doris and marine outfall infrastructures at Roberts Bay. Closure is currently anticipated in 2043. The Doris-Madrid mine plan consists of underground mining of ore with processing at Doris at a maximum rate of 8,000 t/d.

3.2 Geochemical Characterization

Extensive geochemical testing and characterization have been completed on the Mine (SRK 2017c, 2017d, 2017e, 2024a, 2024b). This includes characterization of ore, tailings, waste rock and quarry material that will be used in construction.

Waste rock and ore from Doris and Madrid areas have a low risk of acid rock drainage (ARD). The primary geochemical concern with respect to waste rock and ore is neutral metal leaching, specifically arsenic. Only quarry or waste rock with low risk of ARD and metal leaching will be used to construct permanent surface infrastructure.

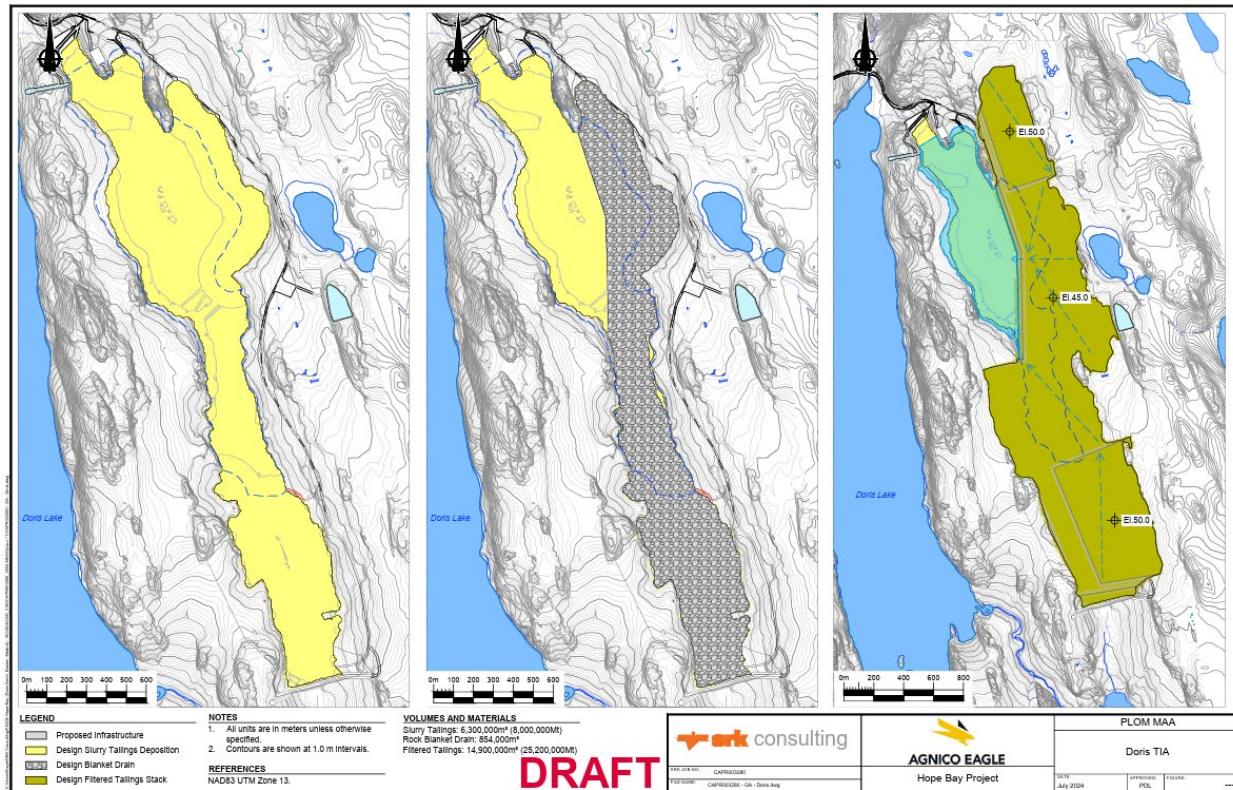
Historically, detoxified tailings solids were placed underground as backfill, while flotation tailings were discharged to the Doris Tailings Impoundment Area (TIA). Flotation tailings are classified as non-potentially acid generating (non-PAG), with potential for leaching of arsenic under neutral pH conditions. The detoxified tailings are classified as potentially acid generating (PAG), with dissolved metal concentrations expected to increase under acidic conditions. However, based on humidity cell testing, these tailings are expected to remain neutral for decades, with potential for arsenic leaching under neutral conditions like the flotation tailings. Under the current Hope Bay Operational Update (2026 Water Licence Amendment), the concentrate is reground after flotation and recombined with flotation tailings; gold is extracted from this combined stream, which is detoxified before being pumped to the Doris TIA for surface disposal.

V8.0

All material used for reclamation will be sourced from approved quarries or existing stockpiles. Where overburden soils will be used for reclamation, a sampling and testing program will be carried out to ensure no chemical or hydrocarbon contamination exists within the stockpiles. The CCME soil quality guidelines (CCME 2015) and the Nunavut Environmental Guidelines, Industrial Land Use, Coarse-Grained Soils (Government of Nunavut 2009) will provide guidance to the acceptability of these materials.

3.3 Tailings Management

During operations, concentrate is reground after flotation and recombined with flotation tailings. Gold is then extracted from this combined stream, which is detoxified before being pumped to the Doris TIA for surface disposal. Tailings will be deposited in the Doris TIA using a phased approach:


- 1) Slurry tailings will be placed until the current dam capacity is reached.
- 2) Transition to filtered tailings placement over a foundation of slurry tailings and overburden, supported by a progressively installed rock fill trafficability layer during winter (Figure 3.3-1).

This approach is designed to maintain frozen conditions in underlying tailings and ensure stable placement of filtered tailings. Filtered tailings will be compacted in thin lifts, with placement strategies minimizing thermal disturbance and porewater pressure. The final stack will reach approximately 15 m in height, forming a broad, flat landform integrated with surrounding terrain to facilitate surface water management.

In the southern section, filtered tailings will be placed upstream of the South Dam, a frozen foundation tailings-retaining structure constructed with quarry rock and incorporating an internal Geosynthetic Clay Liner (GCL) as the water-retaining element. The South Dam will form part of the toe of the final landform. A temporary rock erosion cover will be applied to the south slope until the closure cover is installed.

At closure, a portion of tailings may be repurposed as paste backfill and transferred underground to enhance ground stability and reduce surface tailings volumes. Design details will be refined as operational requirements and site-specific conditions evolve.

Figure 3.3-1: Tailings Impoundment Area - Transition to Filtered Tailings Placement)

3.4 Waste Rock and Ore Storage

Waste rock generated from mining at Doris and Madrid areas are stored on surface stockpiles. Prior to closure, the majority of this material is expected to be hauled underground for use as backfill. The final volume of waste rock placed underground will depend on the proportion of paste tailings used for backfilling. Any remaining surface stockpiles will be subject to geochemical testing and handling as per the approved Waste Rock, Ore and Mine Backfill Management Plan. In the unlikely event of a shortfall in backfill material, quarry rock will be used to supplement underground backfilling needs.

In the event localized ARD is produced, it is anticipated that the high carbonate content in the overall waste rock stockpiles would provide sufficient buffering capacity that the overall drainage from the stockpile would remain neutral to alkaline. During operations, all runoff from the waste rock piles and ore stockpiles will be collected in contact water ponds.

3.5 Water Management

Water encountered at the Doris and Madrid is classified into five categories based on the contact surface (Table 3.5-1). Each type of water is managed separately to achieve the water management goals.

Table 2.5-1: Water Classification, Management and Discharge Approach

Type	Contact Surface	Management Approach	Discharge Approach
Non-Contact Water	Undisturbed runoff, runoff from access roads overburden piles, quarries, fuel facilities, and landfills	Manage sediment where required according to Best Management Practice (BMPs). Use diversion berms and structures to redirect water away from mine infrastructure. Grade surfaces to direct flow appropriately.	Discharge to natural catchment downstream of sediment controls (if required)
Mine Water	Water which enters the underground workings	Doris Mine Water is collected in underground sumps and pumped to surface for treatment (if required). Madrid Mine Water is generally stored in Saline Pond 2 for short periods of time and transferred to Saline Pond 1.	Discharged to Roberts Bay, either directly or via Saline Pond 1.
Contact Water	Runoff in contact with waste rock, ore stockpiles, and tailings	Contained in diversion channels and storage ponds, transferred via pumped pipelines.	Used in processing as make-up water or pumped to the TIA
Freshwater	Freshwater from lake	Pumped from Doris Lake, Windy Lake, or Patch Lake from existing or proposed intake systems for mining, milling, industrial, or domestic use.	Not applicable
Treated Sewage water	Domestic sewage	Treated on-site	Discharged to the TIA or the tundra

3.6 Ancillary Facilities

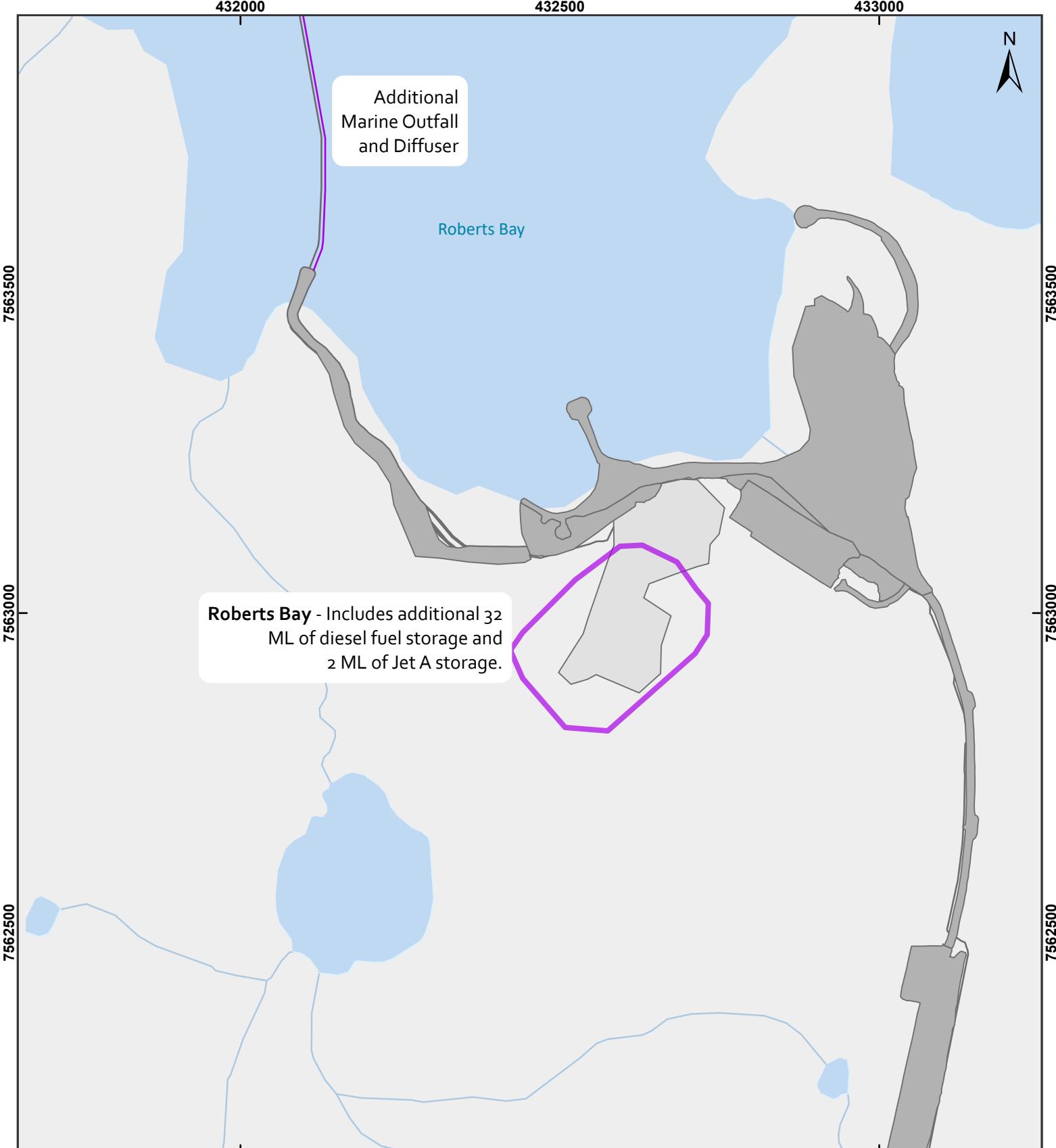
Appendix A provides a list of ancillary facilities at the Mine site which includes facilities such as the process plant, power generation, worker accommodations, administration offices, etc.

SECTION 4 • PERMANENT CLOSURE AND RECLAMATION

4.1 Definition of Permanent Closure

According to the MVLWB and AADNC (2013) “*Permanent closure is the final closure of a mine site with no foreseeable intent by the existing proponent to return to either active exploration or mining*”. This indicates that once closure activities on the site are complete, the site is anticipated to have no activity except post-closure monitoring and maintenance. Permanent closure does not preclude future exploration and mining activities.

4.2 Decision to Close


Permanent mine closure will occur when either all mineable and economic mineral reserves have been exhausted, or if for other reasons, over a sustained period of time, the Mine is no longer a viable economic proposition. Since permanent closure will affect mine employees, suppliers and the public, careful consideration will be taken in any decision to close.

4.3 Overview and Schedule

Some mine infrastructure may stay in place should the local communities, KitIA, government or other bodies choose to take ownership of it. Additionally, some mining infrastructure could be reclaimed prior to closure. The closure schedule assumes that all infrastructure associated with the Mine will be removed during the final closure stage. Based on the current forecast, closure is expected to take three years.

4.4 Description of Mine Facilities

Figures 4.4-1 to 4.4-4 shows the overall components of the Mine by location; descriptions of each area are provided in the following sections.

Hope Bay Mine

Operational Update: Roberts Bay

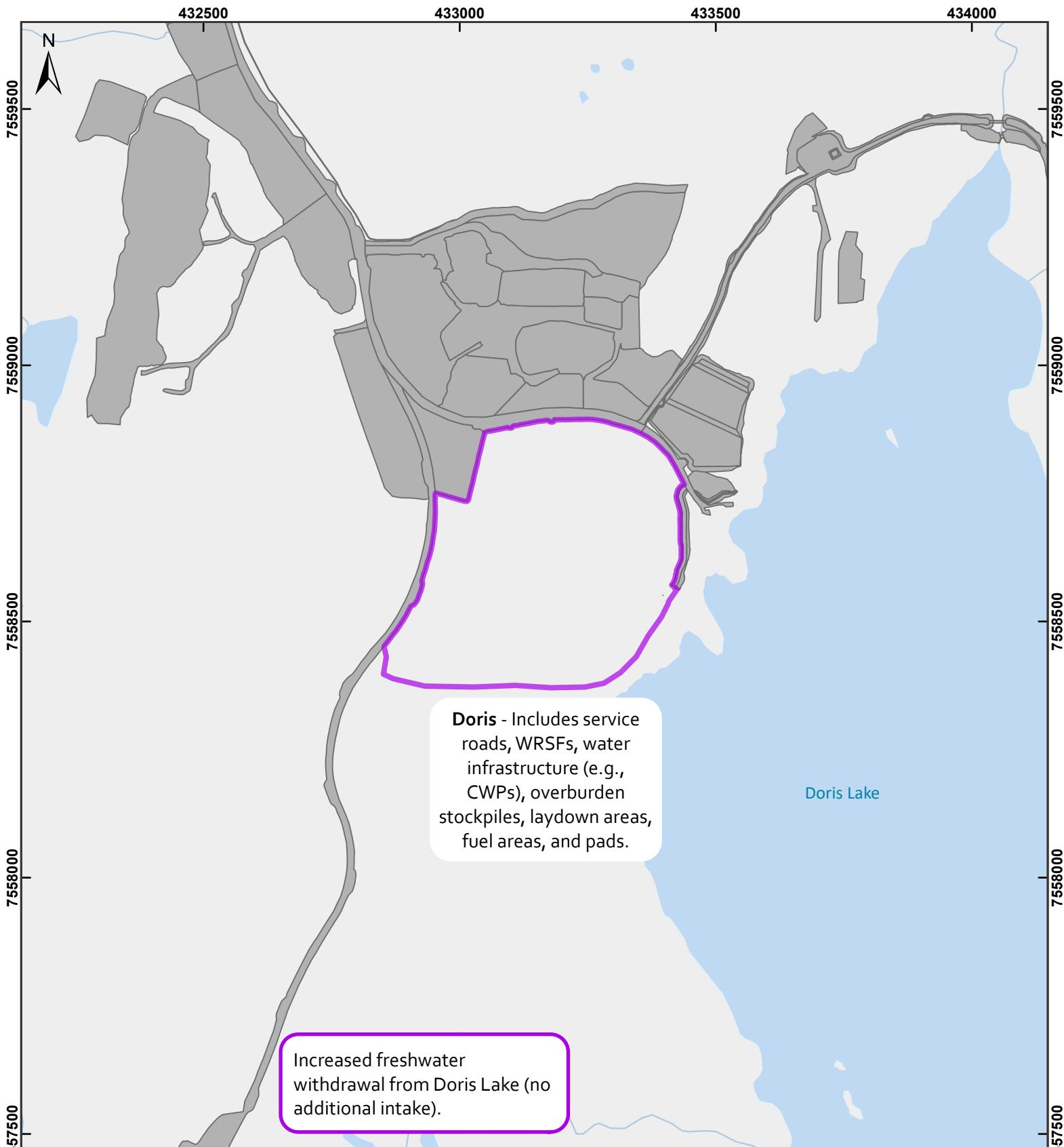
Legend

■ Water Licence Amendment Infrastructure Areas

■ Approved Infrastructure

■ Approved Quarries

■ Lakes


Date: 1/14/2026

Map Number: HOB-022a

Coordinate System: NAD 1983 UTM Zone 13N

Projection: Transverse Mercator

Datum: North American 1983

Hope Bay Mine

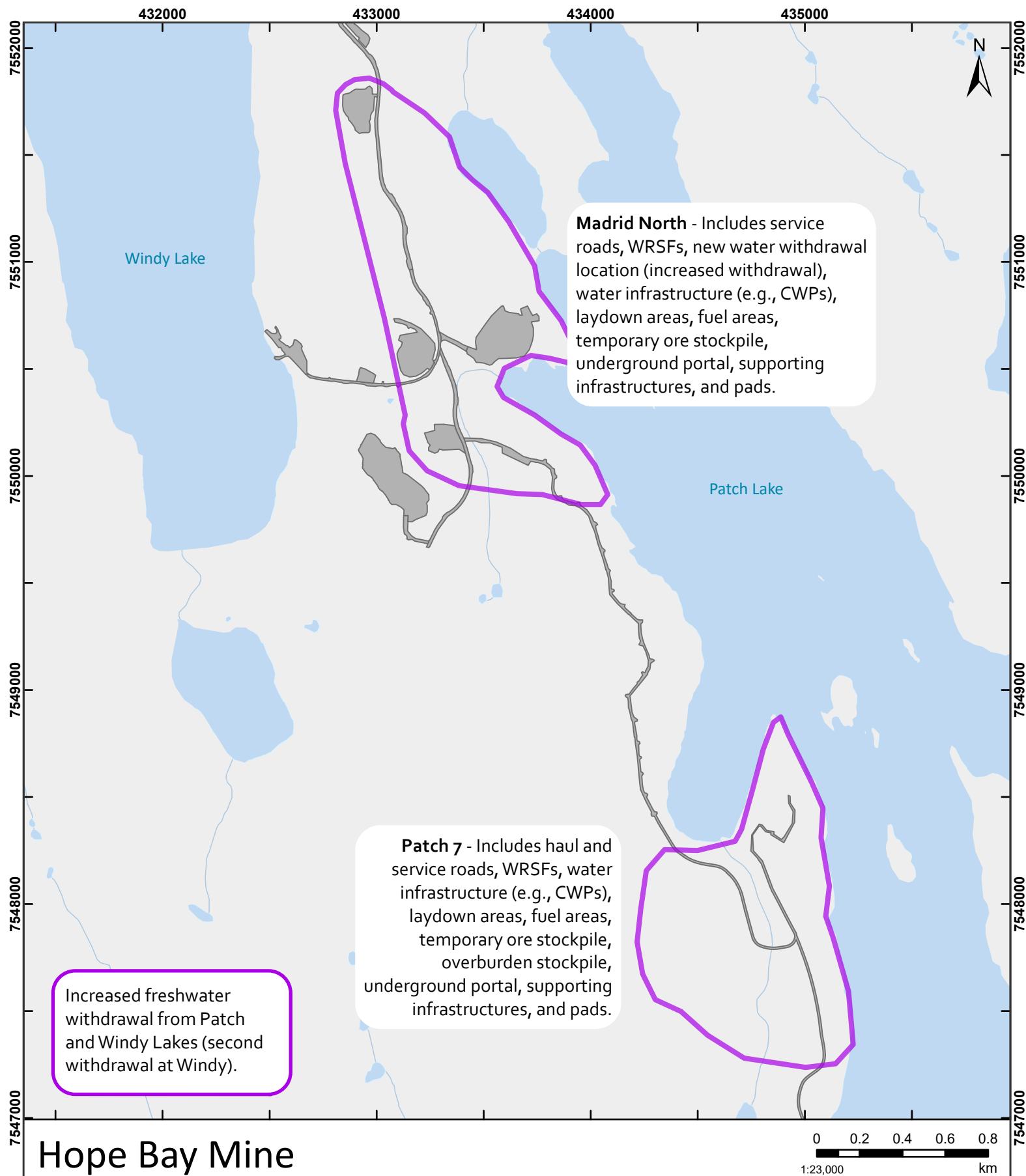
Operational Update: Doris

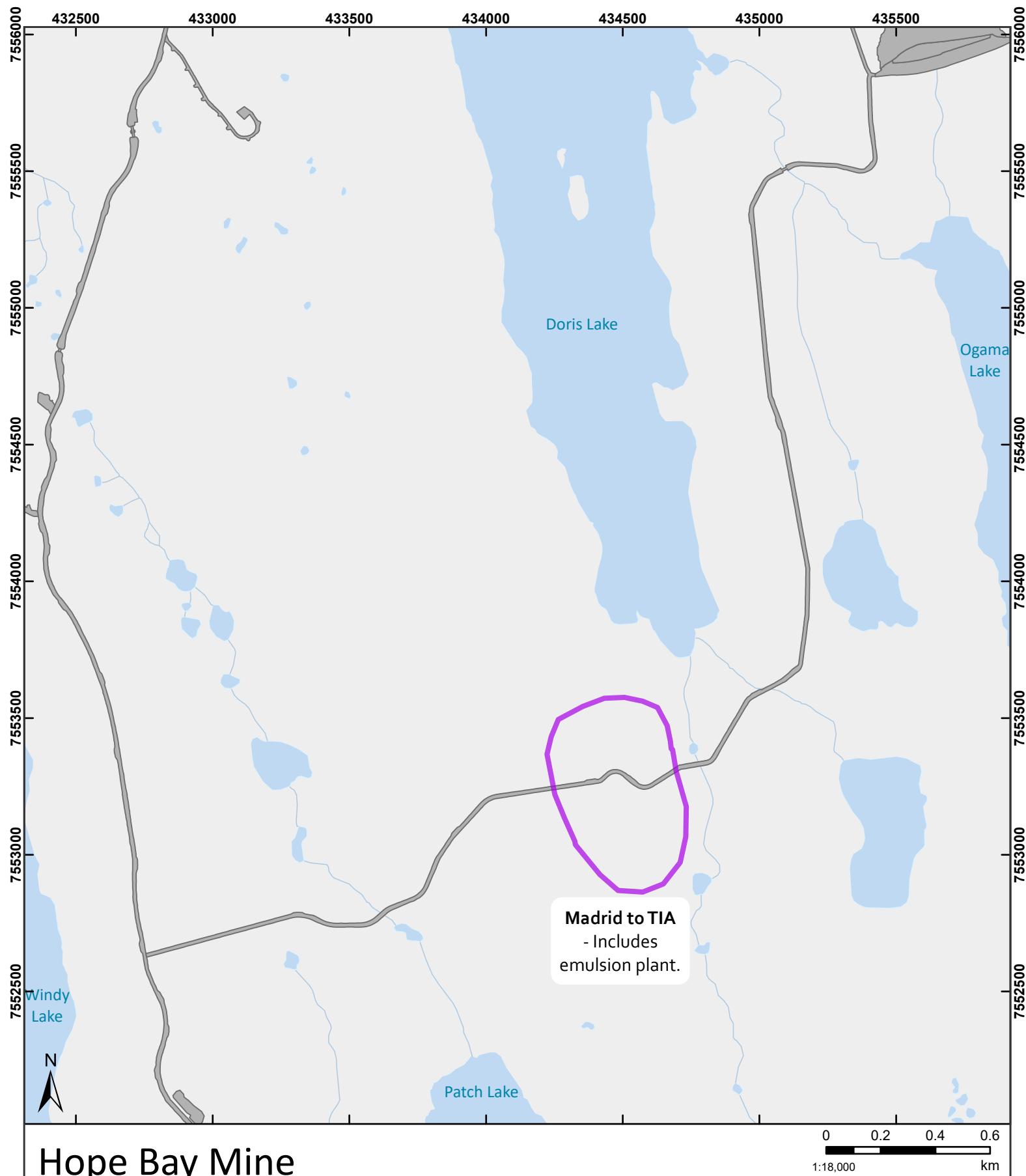
Date: 1/19/2026

Map Number: HOB-022b

Coordinate System: NAD 1983 UTM Zone 13N

Projection: Transverse Mercator


Datum: North American 1983


Legend

■ Water Licence Amendment Infrastructure Areas

■ Approved Infrastructure

■ Lakes

Hope Bay Mine

Operational Update: Madrid to TIA

Date: 1/26/2026

Map Number: HOB-022d

Coordinate System: NAD 1983 UTM Zone 13N

Projection: Transverse Mercator

Datum: North American 1983

Legend

Water Licence Amendment Infrastructure Areas

Approved Infrastructure

Lakes

4.4.1 Underground Mine Workings

Underground workings are located at the Doris and Madrid areas. Each underground workings has a portal(s) with a decline and associated vent raises. Some of the vent raises have various associated facilities like the Mine Air Heating Facility and a fuel tanks, while others have only a plenum and emergency shelter facilities on surface. Access to each of these facilities is through on-site service roads.

The underground mining methods are similar in all areas, with sublevel long hole retreat (SLR) method followed by a combination of waste rock backfill and/or paste tailings backfill. Ore is extracted from sublevel panels and hauled to surface by truck. Once a stope block is finished, backfill can be introduced to fill and stabilize the area. This way a large proportion of the waste rock will be used directly as backfill, without the need of hauling it to surface. Crown pillar recovery trenches (CRT) will be excavated at each of the mines breaking through to the surface, and will be completely backfilled as part of normal operations.

The Doris mine is partially located in permafrost and intercepts the Doris Lake talik (SRK 2015), whereas the Madrid mine will intercept unfrozen ground, either at the edge of the open taliks formed by Wolverine Lake and Patch Lake or in the subpermafrost (SRK 2017f). Results of the groundwater modelling suggest that the maximum mine inflow at the Doris Mine will be in the order of 2,260 m³/day. Maximum predicted inflows at Madrid, including Patch 7, will be in the order of 750 m³/d. The inflows originate mainly from lake infiltration. In all instances, the elevation of the mine openings at surface (portals and vent raises) exceeds the elevation of the nearby lakes, eliminating the possibility of mine water outflow. During operations, mine water is collected in underground sumps and pumped to surface for treatment (if required), and then to the Roberts Bay Discharge System.

V8.0

4.4.2 Waste Rock Dumps, Ore stockpiles, and Overburden Piles

According to the guidelines (MVLWB/AANDC, 2013) this project component category includes waste rock dumps and ore stockpiles. Overburden storage dumps were included into this category for closure cost estimating purposes.

Waste rock dumps and ore stockpiles will be developed at the Doris and Madrid areas. While footprints and shapes vary according to the storage capacity requirements and the local topography, in all instances these facilities will be located on purpose-built rock fill pads. The rock fill will be geochemically suitable ROQ from approved quarries.

Waste rock generated from mining at the Doris and Madrid areas are stored on surface stockpiles. Prior to closure, the majority of this material is expected to be hauled underground for use as backfill.

Overburden dumps are built directly onto the tundra and do not have a rock fill pad as base.

Contact water ponds are located downstream of each of the waste rock dumps and ore stockpiles. The berms containing these ponds will be constructed based on a common design section, with a frozen foundation and a geomembrane incorporated into the fill as the water retaining element. Downstream of

the overburden piles sedimentation berms are constructed. These are simple structures that aim to slow down and elevate the head of water and allow the sediments to fall out and do not incorporate impermeable geomembranes.

4.4.3 Tailings Impoundment Area

The TIA is located east of the Doris site, within the basin of the former Tail Lake. The TIA is comprised of three containment structures (North, South, and West dams) which collectively contain subaerial tailings and the Reclaim Pond.

The North Dam is designed to retain water, while the South Dam primarily retains solids. During operations, sub-aerial tailings are deposited at the southern end of the TIA. Reclaim water is collected in the Reclaim Pond located at the northern end and pumped back to the mill for reuse.

In 2023, an interim dike was constructed to facilitate the segregation of saline and non-saline water within the TIA. The TIA is operated to ensure adequate water volume is maintained in the non-saline section to meet mill requirements, while not exceeding the full supply level of 33.5 m. The non-saline (contact water) section is located between the interim dike and the North Dam. The current water management strategy directs all mine surface contact water to this non-saline section, ensuring controlled containment and minimizing environmental risk.

Tailings is planned to be deposited in the TIA using a phased approach. Slurry tailings will be deposited within the TIA until the capacity of the current dams is reached, at which point tailings deposition would transition from slurry deposition to filtered tailings placement. The filtered tailings stack is located within the existing TIA, on a foundation of both slurry tailings and surrounding overburden. Prior to placement of filtered tailings, the slurry tailings will be covered with a rock fill trafficability and drainage layer which will form the base of the filtered tailings placement (SRK 2025).

4.4.4 Buildings and Equipment

An itemized list of buildings and facilities is presented Appendix A. The following general categories of buildings exist or will be constructed at Doris-Madrid:

- Worker camp facility at Doris and Madrid, and associated utilities;
- Doris Process Plant;
- Maintenance shops;
- Offices and Mine Dry;
- Warehousing;
- Fuel tank farms;
- Reagent and explosives storage facilities;
- Diesel power generation plants and wind power generators; and
- Air heating facilities for underground ventilation.

Buildings and facilities are constructed in clusters at Roberts Bay, Doris, and Madrid.

Roberts Bay is an area primarily serving as the marine transportation hub for fuel, materials and supplies, with the Jetty located here, in addition to a few buildings. The main bulk diesel fuel tank farm is located here, with a combined storage capacity of 77 million liters. Jet-A fuel is also stored at Roberts Bay with a total capacity of 2.5 million liters.

The Doris Camp is located approximately 5 km south of Roberts Bay. This is the centre of operations for the Mine. It includes the 800-person accommodation complex, an office complex, and a mine dry facility linked by an Arctic corridor. A primary and a backup power plant, together with warehousing and mining operations support buildings and facilities are located here. The Process Plant, including crushing and milling facilities are located at the Doris Camp. Bulk diesel fuel (12.5 million liters) and a firewater tank are also found at Doris.

The Madrid area is located about 14 kilometers from Roberts Bay. The facilities include mine support facilities such as offices, warehousing, and mechanical shop, and includes the potential for a 250-person accommodation complex. The Madrid area is powered by diesel generation and includes diesel fuel with storage capacity of 14.5 million liters. Typical mine support structures are located at the Madrid area.

All buildings and structures are located on bedrock or non-acid generating rock-fill pads. The rock fill pads were constructed to ensure positive drainage and prevent permanent ponding. All areas are accessible by all-weather roads and service roads.

Tall structures like the communication towers consist of steel girders. The largest structures, like the Doris Process Plant, are steel frame buildings with sheet metal siding. Some of the buildings (e.g. the Doris Office and Mine Dry Complex) were assembled from Seacan containers, while other structures like the Doris Coreshack are steel frame tent structures. Each of these buildings were inventoried in the closure cost estimate and the dimensions were obtained from engineering drawings or estimated from site photographs.

Utilities to the buildings are distributed through utility corridors slightly elevated on steel structures. Pipelines, where running water and sewage is provided, are insulated and heat traced.

The wind power generators will be located on bedrock pads along spur roads near the main roads. Three wind turbines will be located around the Doris area and three around the Madrid area.

The main Explosives Storage Facility is currently built along the Secondary Road near the South Dam; however, a new Emulsion Plant is planned for construction along the Madrid-TIA road. The emulsion plant site includes an area for the facilities and a laydown for the raw materials.

4.4.5 Mine Infrastructure

A listing of infrastructure is provided in Appendix A. The following general categories are included:

- Rockfill pads;
- All-weather roads and associated water crossings (bridges and culverts);
- All-weather airstrip;
- Roberts Bay jetty;
- Quarries; and
- Laydown areas.

Nearly all facilities already built or planned to be built at Doris-Madrid have a rock fill pad foundation, with notable exceptions like the overburden dumps, tailings area, and facilities constructed on bedrock outcrops. The purpose of the rock fill pads is to protect the underlying permafrost and ensure the physical stability of the structures and facilities built upon them. Only geochemically suitable run-of-quarry (ROQ) rockfill can be used to build these pads. ROQ is sourced from approved quarries. The top of these pads is in general flat, or slightly sloped towards the edges to promote run-off. The side-slopes are typically 1.5H:1V for fill thicknesses up to 2 m and 2H:1V where fill thickness exceeds 2 m. In some cases, a 0.15 m thick surfacing layer of crushed gravel is placed on top of the pads.

The all-weather roads were built by placing ROQ fill directly on tundra, similarly to the rockfill pads. The road fill thickness was designed to ensure protection of permafrost. Turnouts were built in suitable locations to allow two-way traffic. The typical road width is 8 m, with embankment side slopes of 1.5H:1V where road fill is up to 2 m thick, and 2H:1V where road fill exceeds 2 m thickness. A surfacing layer of crushed rock is placed on the roads. All ROQ and crushed rock was sourced from approved quarry sites.

Similar to roads and rock pads, the all-weather airstrip was built by placing Run-of-Quarry (ROQ) directly on tundra.

The Roberts Bay jetty is a rock fill structure that extends into Roberts Bay at the south end of the bay. An all-weather access road links the jetty to the Roberts Bay laydown areas and fuel tank farms.

A lined landfarm is constructed on the northwest corner of Doris Camp. The purpose of this facility is temporary storage of contaminated soils and water. As most other facilities, it was built on a rock fill pad and has three cells separated by lined berms.

4.4.6 Quarry #2 Landfill

A non-hazardous waste landfill was constructed in the south end of Quarry 2. The landfill contains only inert waste and no leachate will be generated.

4.4.7 Water Management Systems

The water management system at Doris-Madrid consists of pipelines, ponds, and collection sumps (Appendix A).

Tailings and reclaim water pipelines are constructed between the TIA and the Doris Process Plant. The Roberts Bay discharge system conveys the combined groundwater inflow from the underground mine and excess reclaim water from the TIA Reclaim Pond to the undersea diffuser located in Roberts Bay. The pipeline originates in the process building, and consists of a single heat-traced 254 mm HDPE pipe. A second discharge line may be constructed to allow for one line of groundwater and one line of reclaim water from the TIA. This additional line would follow the same path as the current line and discharge location in Roberts Bay. Various other freshwater and sewage discharge pipelines are also be built.

Pipelines are routed along roads and on rock fill pads wherever possible or placed on appropriate supports, if needed, where any sections must be routed on the tundra. Insulation and heat tracing is typical for pipelines in cold environments.

All contact water ponds will be unlined and contained by frozen foundation berms incorporating an impermeable liner. These ponds will be operated as normally empty. The Doris Sedimentation Pond is the only fully lined pond. Other sedimentation ponds are not lined and do not have frozen foundations.

4.5 Permanent Closure and Reclamation Requirements

4.5.1 Underground Mine Workings

The specific closure objectives for the underground mine workings are as follows:

- Prevent access into the workings by humans and animals; and
- Ensure physical stability by stabilizing the workings as necessary to prevent surface expression of underground failures (i.e., surface subsidence).

Chemical stability of the underground workings is not a concern, as the mine openings are in permafrost above the elevation of the surrounding lakes, and thus mine water outflow following closure is not possible.

At closure, all underground utilities and installations will be removed and disposed of as appropriate. As per the mine plan, most workings will be backfilled with waste rock, paste tailings, or quarry rock to ensure stability. All backfilling will be completed as part of regular mine operations, and will therefore occur before closure. The entrance of the underground portals will be sealed with 15 m thick rock fill plugs. The rock fill used for the plugs will be salvaged from rock fill pads, clean quarry rock or geochemically suitable waste rock.

Ducts, pipes, and cables entering the vent raises will be removed and disposed of or salvaged as appropriate. Vent raises will be capped with appropriately sized structural concrete plugs to prevent access, and appropriate signage will be posted to warn of existence of these sealed openings. A detailed

engineering design will be completed prior to closure to determine the risk of subsidence and determine the most suitable cap design.

The areas surrounding the portals and vent raises will be regraded as required to ensure positive drainage away from the openings.

Appurtenant facilities will be demolished or removed and the debris will be collected and disposed of as appropriate. Where present, the fuel tanks will be decommissioned, drained, and hauled to Roberts Bay for shipping off-site. The liner of the secondary containments will be cleaned, removed, cut into pieces, and disposed of as non-hazardous waste. The area will be backfilled and regraded to prevent permanent ponding.

Access roads will be graded to prevent ponding and culverts will be removed to restore the natural flow paths.

Once mining ceases and the mine workings have been prepared for closure, the mine dewatering pumps will be switched off and the mine will reflood. Doris mine will reflood in about 1.4 years and Madrid mine in about 17.1 years.

V8.0

4.5.2 Waste Rock Dumps, Ore Stockpiles, and Overburden Piles

The closure objectives for each of these facilities is to:

- Ensure physical and chemical stability of any residual facilities. Leachate emanating from rock fill pads must be safe for the environment.

While physical stability of side slopes of the rock fill pads is inherent through the design of the pads, the overburden stockpiles will be regraded to a stable landform as required. Leachate quality from the rock fill pads is not expected to be a problem as only geochemically suitable rock is used for construction. Similarly, leachate quality from the overburden dumps is not a concern, as only clean overburden and ice/snow free of contaminants was placed in these piles.

The top layer of the rock fill of the Ore Pads will be removed and disposed of in the TIA or underground. The remaining clean rock will be regraded to prevent permanent ponding.

The final volume of waste rock placed underground will depend on the proportion of paste tailings used for backfilling. It is assumed that all ore will have been processed at the end of the mine life. Any waste rock stockpiles remaining on the surface are anticipated to be non-metal leaching (ML) and non-acid rock drainage (ARD), based on ongoing geochemical characterization programs. These stockpiles will be graded and left in place. Geochemical sampling will continue throughout operations to confirm this classification, as per the Waste Rock, Ore and Mine Backfill Management Plan. Exposed rock fill pads will be regraded to prevent ponding then left in place as described in Section 4.5.5.

V8.0

Overburden dumps will be constructed with closure in mind, and will be closed throughout the operations period when they are no longer necessary. At closure, if not already complete, the side slopes of all overburden dumps will be regraded to no steeper than 3H:1V and the final dump surface will be contoured for drainage control. Erosion protection measures will be installed as appropriate.

Contact water pond berms and any sedimentation berms will be breached to restore the natural drainage path. Pieces of liner removed from the lined berms will be disposed of in the landfill.

4.5.3 Tailings Impoundment Area

V8.0

The specific closure objectives for the TIA can be summarized as follows:

- Ensure long-term physical and geotechnical stability of tailings surface and associated retaining structures; and
- Ensure chemical stability by minimizing release of neutral metal leaching to the receiving environment.

A closure stability analysis was completed based on the current understanding of foundation conditions across the TIA, which have been characterized through geotechnical drilling, thermal monitoring, and other field investigations (SRK 2025).

- **North Section of TIA:** Up to 10 m of slurry tailings overlie 10 m of lakebed sediments, underlain by 3 m of gravelly till atop basalt bedrock. Permafrost is present above the historic shoreline, while sediments within the lakebed are unfrozen due to a closed talik. Freezeback of tailings is expected over time following deposition.
- **South Section of TIA:** Contains 3–4 m of slurry tailings over 5.5 m of marine silt transitioning to silt and clay, underlain by 4–5 m of gravelly till on basalt bedrock. Ice-rich conditions with visible ice lenses are present. Permafrost and freezeback conditions are similar to the northern area.

Tailings deposition follows a phased approach. Initially, slurry tailings are deposited within the permitted TIA until the containment capacity is reached. Filtered tailings will then be placed on a prepared foundation of slurry tailings and overburden. A 1–2 m thick rock fill trafficability and drainage layer will be placed progressively in winter following deposition at each spigot. This approach encapsulates frozen tailings and promotes the aggradation of frozen ground.

Filtered tailings will be placed in compacted lifts of 0.3–0.5 m to minimize thermal disturbance and porewater pressure. The final filtered tailings stack will reach a maximum height of 15 m and tie into the surrounding terrain to form a broad, flat landform. This design minimizes the need for permanent surface water diversion infrastructure and allows runoff to flow into the Reclaim Pond via engineered channels.

In the southern section, filtered tailings will be placed upstream of the South Dam, which is constructed on frozen ground using ROQ material and includes a Geosynthetic Clay Liner (GCL) for water retention. The South Dam will form the toe of the final landform.

To mitigate erosion risks, a 0.3 m thick ROQ cover will be placed over the tailings surface. This cover will prevent wind and water erosion, limit mobilization of tailings into the Reclaim Pond, and act as a barrier to human and wildlife contact. Additional drainage features, such as filter zones or spur roads, may be incorporated into the trafficability layer depending on final design requirements.

The TIA water and load balance (SRK 2025b) confirms that neutral metal leaching does not pose a limitation in ensuring that the water quality from the closed TIA meet the required closure water quality criteria, and therefore no infiltration reduction cover is required over the tailings surface.

It was demonstrated through stability and creep analyses (SRK 2017h) that the South and West dams will remain stable after closure. The north Dam will be breached, and therefore will not perform any long-term post-closure function.

Water quality in TIA will continue to be monitored after completion of the mining and milling activities. According to the water quality model (SRK 2025b) the constituents of concern in the Reclaim Pond originate mainly from the process water. Once active milling operations are concluded, the tailings pore water contribution to the Reclaim Pond is less of a concern with respect to meeting discharge water quality criteria.

As a first step in the reclamation of this facility all of the remaining inventory of water will be discharged to the ocean through the Roberts Bay Discharge System, at the rate as specified in the Water Licence. The small residual pond area will then be backfilled to prevent ongoing impoundment of water.

Once water quality sampling confirms the established closure criteria to be met, the North Dam will be breached and the natural flow path re-established. The breach will be 20 m wide, cut to the original ground elevation (of 28.3 masl) with 4H:1V side slope. The cut slopes will be covered with ROQ material to ensure physical and thermal stability. The cut in the dam will be clad in rip-rap for erosion protection. Tail Lake outflow will be re-established along the base of the cut and suitable bedding material will be put in place to ensure channel stability.

All instrumentation will be removed and salvaged or disposed of, as appropriate. The thermosyphon radiators will be dismantled, and the support superstructure cut at ground level and removed. The buried evaporator pipes of the thermosyphons and the sub-surface sections of the ad-freeze piles will be left in place.

4.5.4 Buildings and Equipment

The overall objective is to:

- restore areas occupied by buildings to a condition compatible with future land use; and
- ensure that the buildings and facilities are not and will not become a source of contamination to the environment or a safety hazard for human activity or wildlife.

The only practical option is to remove all buildings and structures.

Prior to demolition hazardous wastes and chemicals remaining on-site will be collected and placed in sealed containers suitable for storage and shipping. This includes any remaining fuel, hydraulic oil, antifreeze, batteries, and other lubricating fluids and chemicals. All materials will be packaged and manifested at the Waste Management Facility for transport to a licensed facility in accordance with appropriate Federal, Provincial, Territorial, or Municipal hazardous waste regulations, for reuse or disposal.

Reusable equipment and supplies will be salvaged from the camp buildings and facilities prior to demolition and shipped off-site to a third-party destination, or point of sale. No salvage value was credited in the cost estimate. Where salvage is not possible, or not practical, the equipment will be decontaminated, drained of all fluids, and consolidated underground. An inventory of disposed equipment will be completed, together with a photographic record.

All utilities to structures and facilities will be decommissioned, disconnected, and dismantled while the structures will be emptied prior to demolition. All buildings will be dismantled or demolished and the debris will be placed in the landfill. All other facilities will be decommissioned, demolished, levelled, and the debris placed in the landfill.

Concrete floors will be broken up and covered in place. Concrete wall foundations will be demolished flush with the existing ground and the remnants covered in place. Seacans will be sold to the local community if there is interest. Based on the number of seacans on-site at closure, and shipping economics, seacans may be scrapped and disposed of in the on-site landfill or report to the underground.

The facilities directly associated with the Doris Process Plant will be cleaned of all remaining chemicals and process reagents and the resulting hazardous waste disposed of in licensed off-site facilities. The residual ore and ore dust will be removed by flushing the equipment and/or washing with high pressure water. The collected solids will be slurried and pumped to the TIA. The steel frame buildings will be disassembled and disposed of in the landfill. The concrete bases will be broken up and covered in place using rock fill. The milling and processing equipment will be decommissioned, cleaned, and prepared for shipping off-site. No salvage value is assumed for this equipment.

Underground equipment will be salvaged or placed in underground workings for final disposal. Equipment placed underground will be decontaminated and stripped of any hazardous components such as batteries, and drained of all fluids and lubricants.

The bulk fuel storage facilities will be decommissioned and the tanks dismantled. The tanks will be pressure-washed and the water resulting from pressure washing will be treated through an oil / water separator. The residual fuels from all tank farms and portable fuel storage will be consolidated in one tank at Roberts Bay and then transferred into a fuel barge to be hauled to Cambridge Bay and gifted to the community. The granular protective cover of the tank farms will be tested for the presence of unacceptable levels of hydrocarbons. Remediation options will be determined following the testing, to be appropriate for the type and extent of contamination. If required, this material will be placed in mega-

bags and disposed of underground. The geosynthetic liners will be removed and the containment berms breached to prevent ponding of water and reshaped to conform to the original topography as much as possible.

The wind power generation units will be carefully dismantled and hauled to Roberts Bay in preparation for shipping to a third-party location. The foundation blocks and anchors will be left in place and covered with ROQ. For cost estimation purposes, it was assumed that decommissioning and dismantling costs are equal to initial construction costs. No salvage value was credited in the cost estimate.

The emulsion plant will be dismantled. Following guidance from the manufacturer of the explosives and NRCan, any residual prepared explosives will be disposed of underground to ensure explosives are stored and managed correctly. Typically products are not mixed together until a blast is required, and the associated material is kept separate in storage. Remaining blast caps will be destroyed by a qualified person.

4.5.5 Mine Infrastructure

The reclamation objective for the rock fill pads, roads, and airstrip is to:

- ensure long-term physical and chemical stability and to protect the permafrost. Leachate emanating from rock fill pads must be safe for the environment.

Two broad options were considered: removing the pads or reclaiming them in place. The chosen option was to leave the rock fill in place, for the following reasons:

- All pads were constructed of non-acid generating clean quarry rock, thus leachate quality is not a concern, and
- Since construction the underlying vegetation has died and the permafrost will have aggraded into the rock fill, removal of the pads would therefore accelerate permafrost degradation and erosion due to lack of well-established vegetation.

The closure method is to crown the roads and regrade the pads and airstrip to ensure positive drainage and prevent ponding of water resulting in permafrost degradation. As some of the closure activities could be performed in the winter, the areas to be regraded should be staked during the previous summer to be easily identified during the winter reclamation work. Any depressions where positive drainage cannot be achieved by regrading will be backfilled with clean rock, geochemically stable drill cuttings, overburden soils, or a combination of these materials. Suitable soils from the existing overburden piles will be preferentially used.

Active revegetation of barren rock fill pads is not practical because the rock fill cannot support vegetation; however, it is expected that lichens will colonise the rock surface in time, likely decades.

Culverts and bridges will be removed from the crossings under the roads and natural drainage paths will be restored. Any area, where prolonged ponding has been observed during the operational period, will be excavated to restore drainage and thereby prevent ongoing ponding.

Where contamination of the rock fill pads has been observed or is suspected, field investigations will be completed prior to closure by qualified personnel to define the nature and extent of contamination. An assessment of remediation options will be conducted once the full extent and nature of the contamination is determined. Localized areas with limited contamination could be bioremediated in-situ if appropriate. If large contiguous areas of contamination are found, excavation and underground disposal will be considered. Excavations will be backfilled with rock, overburden, drill cuttings, wood chips and/or a mixture of these to prevent surface water ponding and ensure permafrost preservation.

The Nunavut Environmental Guidelines, Industrial Land Use, Coarse-Grained Soils (Government of Nunavut, 2009) will be used for determining if soil remediation is required.

The partial or complete removal of the jetty will conform to the requirements of the *Canadian Navigable Waters Act*.

The quarries will be decommissioned and reclaimed. All vertical faces in the quarries will be scaled. Safety berms will be left in place. The area of each quarry will be inspected by a qualified inspector, to ensure no loaded holes are remaining on-site.

At the laydown areas all overhead electrical cables, where present, will be decommissioned and the posts removed. All waste and materials will be collected and disposed of as appropriate. The surface will be regraded for positive drainage and to prevent permanent ponding.

The solid waste contained within the landfarm cells will be tested for contaminants. If levels exceed remediation criteria, the soils will be disposed of in the underground workings. Any water contained within the ponds will be tested, treated as appropriate, and discharged when water quality criteria are met, or transferred to the TIA if criteria cannot be met.

The liner of the landfarm will be removed, cleaned, cut in pieces and disposed of as non-hazardous waste. The protective cover layer of crushed rock over the liner will be removed, tested, and if it meets the appropriate reclamation criteria will be used as backfill. If the testing program finds that the cover material is contaminated, it will be placed in mega bags and disposed of underground. The containment berms will be levelled and the area regraded to prevent ponding of water.

Areas where vegetation has died and permafrost degraded at the Sewage Treatment Plant discharge point will be backfilled with a suitable fill material to prevent permanent ponding. The sewage discharge pipeline will be flushed, cut up, and removed. The resulting debris will be disposed of in the landfill.

4.5.6 Quarry #2 Landfill

The objective of the closure for this facility is a structure that:

- will be physically stable, with all waste isolated from human and wildlife contact; and
- will not become a source of contamination to the environment. Surface water run-off and seepage water quality must be safe to humans and wildlife.

At closure, the only solid waste management structure remaining will be the landfill. Release of contaminants will be prevented by placement of only non-hazardous waste in the facility, with all other waste being managed by other appropriate means. The landfill will be located entirely on bedrock, and will be covered with a 0.3 m thick isolation cover built of a single layer of ROQ, which is erosion resistant. The cover will be engineered to accommodate any settlement the waste may have in time. Appropriate drainage pathways are engineered to prevent ponding of water in the facility. The final surface of the landfill will be graded like the foundation base grade, of 1%, to shed water. Permafrost will partially aggrade into the landfill waste over time.

4.5.7 Water Management Systems

The closure objectives for all pipelines is:

- dismantling and removal.

All pipelines will be flushed, drained, and the heat tracing system will be decommissioned. Heat tracing controllers and power cables will be removed and landfilled. The pipeline will be cut into manageable sections which will be placed in the landfill. All pipeline supports will be removed and disposed of as appropriate. The Marine Outfall Pipeline(s) will be left in place. The Marine Outfall Berm will be partially removed, to an elevation below the low water level, similarly to the Jetty. The rock fill will be placed into the surrounding water.

The overarching closure objective for the water management ponds is to:

- restore the natural drainage paths where possible;
- prevent excessive erosion while ensuring that no long-term active care and maintenance is required; and
- in areas where permanent discharges exist, engineered discharge points (spillways) must be physically and geotechnically stable on the long-term for safety of humans and wildlife.

To achieve these objectives, options for decommissioning, breaching, or removing each of these structures will be evaluated on a case-by-case basis. The chosen option however will only be implemented when post-closure water quality objectives are met. Erosion protection and sediment control measures will be installed where necessary.

Existing water management structures will be maintained at the Mine until post-closure water quality objectives are met. Once the runoff water from all areas meets the water quality objectives, the collection sumps and the pipeline to TIA will be decommissioned. The Sedimentation and Contact Water Ponds will be breached to re-establish the natural drainage path.

The sumps will be decommissioned and backfilled with crushed rock or soil from overburden piles.

4.6 Closure Uncertainties

Closure strategies employed in this Plan are based on a set of assumptions and predictions representing the current understanding of the environment at the Mine site and the future behavior of various infrastructure components. The interim nature of this plan indicates that uncertainties still exist with regards to the closure options, which will be clarified once the detailed engineering of closure activities for each area or infrastructure component is completed at the final closure stage.

Throughout operations and into closure the results of the various environmental monitoring programs will be evaluated to confirm the closure assumptions and validate the models used to make those predictions. If monitoring data indicates that certain structures or processes behave in a different manner than anticipated during the closure planning phase, adaptive management will be adhered to and the closure plans will be adjusted to mitigate those unforeseen effects.

At this time, specific uncertainties directly affecting the closure planning were identified regarding the following closure components:

- Discharge water quality from the covered tailings surface carries uncertainty which will only become clear once operational data has been evaluated in the period immediately preceding closure.
- The type and extent of hydrocarbon contamination will not be known until final closure is started.
- Final volume of the landfill is based on a conservative estimate of the volume of demolition debris at closure. While every effort will be made to minimise the voids within the landfill, the final volume is difficult to predict accurately. This translates into uncertainty with regards to the actual footprint of the facility and the volume of rock required for the final cover.

4.7 Post-Closure Monitoring and Maintenance

Guidance on monitoring and maintenance programs for closure and post-closure is provided in the guidelines for closure and reclamation (AANDC/MVLWB, 2013). Post-closure monitoring will be required to confirm the success of the closure objectives once operations cease indefinitely. Closure criteria will assist in the development of post-closure monitoring programs and will provide clear interpretation of monitoring results. If it is determined that closure objectives were not met for individual project components (as demonstrated by the closure criteria not being met), the proponent will need to implement ongoing monitoring, maintenance measures, and possibly contingency plans.

The actual conditions or impact from the operations within the mine footprint will be analyzed and this information will be integrated to modify monitoring plans moving to closure and post-closure. It is anticipated that monitoring and maintenance will be carried out during the active closure stage at frequencies similar to those required during operations. Post-closure monitoring and maintenance will be carried out at a reduced frequency depending on the results of the monitoring and the measures of success selected for closure. As the closure effort is completed and the post-closure period begins, the various monitoring programs will be reviewed and updated again to cover the remaining (post-closure) monitoring period. It is also anticipated that after several years in the post-closure period, monitoring would no longer be required. The monitoring plan for closure and post-closure will be included in the Final Closure and Reclamation Plan.

The review and update of the onsite water quality and soil quality will be done during operations and closure. This information will be used to inform future versions of the ICRP, where applicable, and monitoring programs for closure and post-closure which will be presented in the Final Closure and Reclamation Plan.

It is assumed post-closure monitoring will be required for ten years. This assumes monitoring annually for 10 years, plus years 15, 20, 25, which amounts to 13 years over a 25-year period. However, post-closure monitoring will take place at the Mine site until such time that the objectives of the closure and remediation activities have been met to the satisfaction of the regulatory authorities and all affected parties. Post-closure inspections of all covers will be performed by a Professional Engineer to ensure the physical integrity of the cover is maintained. Maintenance will be performed on areas identified as needing repairs.

Post-closure air quality, wildlife and vegetation monitoring is not planned, as once the Mine site is closed there is not expected to be any activities occurring that would warrant continued monitoring. Consideration with respect to wildlife, vegetation, and air quality will be given when developing the final closure plan.

In addition, the monitoring requirements may again change as a result of the Performance assessment report which will be prepared and submitted to the NWB for their review following the initial post-closure monitoring period which will be defined in consultation with NWB as part of the final closure and remediation plan.

4.8 Contingencies

Specific contingencies were developed for some of the closure elements that have inherent uncertainties that cannot be quantified at this stage in the project. If any of the proposed closure strategies will be ineffective or no longer apply, new strategies will be developed in consultation with stakeholders. The subsections below provide details of these contingencies.

4.8.1 Water Quality

In the case where water quality standards cannot be met by the end of the post-closure period specified in the water management plan, the monitoring time may be extended as required. Alternatively, water treatment options could be explored once the cause of the delay is known and quantified.

4.8.2 Tailings

To mitigate erosion risks, a 0.3 m thick ROQ cover will be placed over the tailings surface. This cover will prevent wind and water erosion, limit mobilization of tailings into the Reclaim Pond, and act as a barrier to human and wildlife contact. Additional drainage features, such as filter zones or spur roads, may be incorporated into the trafficability layer depending on final design requirements.

V8.0

The TIA water and load balance (SRK 2025b) confirms that neutral metal leaching does not pose a limitation in ensuring that the water quality from the closed TIA meet the required closure water quality criteria, and therefore no infiltration reduction cover is required over the tailings surface. In the case that water quality monitoring indicates that tailings will become a source of contaminants exceeding the presently predicted effects, the contingency of a low permeability cover may be considered. The final cover configuration will be determined at later stages of closure planning.

4.8.3 Waste Rock and Ore Stockpiles

Any waste rock stockpiles remaining on the surface are anticipated to be non-metal leaching (ML) and non-acid rock drainage (ARD), based on ongoing geochemical characterization programs. These stockpiles will be graded and left in place. Geochemical sampling will continue throughout operations to confirm this classification, as per the Waste Rock, Ore and Mine Backfill Management Plan.

V8.0

Several contingency options have been considered for any ore and/or mineralized waste rock left on surface. One option is moving the piles to TIA for placement in the tailings area. Another option is consolidating, contouring and covering the piles with an impermeable liner and a 0.3 m thick protective layer of crushed rock. Additional options may also be considered based on site-specific conditions. All above ground storage options are subject to approval by NWB. A design and/or description of the final waste rock disposal or storage alternative, if required, will be included in the application for approval.

4.8.3 Climate Change Effects

Most closure activities considered climate change to the level it is currently understood. Any changes not anticipated will be dealt with at time of closure and monitored as they develop. Financial security will be updated periodically as mandated by the regulations, to consider any changes to the environment or operations.

SECTION 5 • PROGRESSIVE RECLAMATION

5.1 Definition of Progressive Reclamation

Progressive reclamation as outlined by MVLWB and AADNC (2013) is defined as:

"Progressive reclamation takes place prior to permanent closure to reclaim components and/or decommission facilities that no longer serve a purpose. These activities can be completed during operations with the available resources to reduce future reclamation costs, minimize the duration of environmental exposure, and enhance environmental protection. Progressive reclamation may shorten the time for achieving closure objectives and may provide valuable experience on the effectiveness of certain mitigation measures that might be implemented during closure."

5.2 Candidate Facilities/Areas and Reclamation Activities

Based on the mine plan, reclamation of entire mine areas is not expected prior to the end of operations. Opportunities for progressive reclamation of facilities while the facilities are still in operations will be identified whenever possible. Progressive reclamation opportunities that may arise include:

- Regrading and/or cover placement over any area of the TIA that will not be disturbed by future tailings placement;
- Removal, and reclamation of buildings and infrastructure that become unnecessary over the life of the mine;
- Placement of waste rock underground for backfill and the reclamation of the waste rock pile footprint, if additional on-surface storage is no longer required;
- Immediate cleanup of materials (e.g., soil, snow, ice) that may become contaminated during construction and operations due to fuel or other spills; and
- Periodic shipment of hazardous waste off-site to minimize the amount of waste requiring removal at final closure.

5.3 Reclamation Studies

There are no direct research projects currently undertaken at Hope Bay. However, monitoring data gathered as part of the compliance monitoring program is being continuously collected and periodically reviewed by qualified specialist consultants. The data gathered on site includes the following:

- Weather data;
- Seep surveys;
- Water quality;
- Flow monitoring;
- Permafrost monitoring;
- Visual observations of reclaimed areas;
- Vegetation studies;
- Dust monitoring;

- Noise monitoring;
- Wildlife surveys;
- Fish surveys and benthic fauna;
- Annual geotechnical inspections (for rock fill pad stability / road stability / permafrost stability); and
- Physical and Geochemical characterization of waste rock, ore, and tailings samples.

If any of the data is found to be indicative of problematic trends or unforeseen processes, a more detailed evaluation will be undertaken. Where appropriate, dedicated research programs will be undertaken to reduce uncertainty and evaluate the performance of specific closure methods.

5.4 Progressive Reclamation Schedule

Progressive reclamation activities will take place as opportunities arise.

SECTION 6 • TEMPORARY MINE CLOSURE

6.1 Definition of Temporary Closure

The MVLWB and AADNC (2013) define temporary closure, or Care and Maintenance as:

“When an advanced mineral exploration or mining operations ceases with the intent of resuming activities in the near future”.

The duration of temporary closure is to be proposed by the proponent based on the requirements of their operation, and temporary closure could last weeks or years depending on the factors contributing to the temporary closure. Temporary closure could occur due to economic factors such as severely depressed metal prices, late delivery of critical supplies, major mechanical failures, environmental factors, or social factors such as labour conflicts.

Temporary closure could also lead to permanent closure, without the resumption of mining if the factors contributing to temporary closure cannot be resolved. If the mine were in care and maintenance and the decision was made not to resume operations, then Agnico Eagle would need to file the FCRP with the NWB, or notify the NWB that they intend to execute the latest ICRP. Following all required approvals, the final closure and reclamation measures would be executed.

6.2 Temporary Closure Principles and Goals

The temporary closure principals and goals are similar to the overall closure criteria: ensure the site is safe for humans, animals and the environment, by ensuring physical and chemical stability; and protecting the future use of the site by, where practicable, maintaining mine infrastructure in a state that is amenable to recommencement of operations.

6.3 Temporary Closure Management and Accountability Structure

Temporary closure activities will be managed by a core team of Agnico Eagle site personnel. The level of site presence will be established based on the stage of the Mine, expected duration of temporary closure, and level of effort required to reach the temporary closure goals. The site caretakers would report to Agnico Eagle management.

6.4 Temporary Closure Activities

The following temporary closure activities will always occur, and is not dependent on the stage of operations when temporary closure is triggered:

- Secure and restrict access to buildings and structures;
- Lockout and secure mechanical, hydraulic and electrical systems and equipment that are not required to operate during the temporary closure period;
- Park mobile equipment in a no-load condition;
- Guard or block all underground openings and post warning signs;

- Continue all monitoring (physical, chemical, biological) in accordance with the Mine licenses and permits;
- Continue all treatments (physical, chemical, biological) in accordance with the Mine licenses and permits;
- Record fuel levels in all fuel tanks and regularly monitor for leaks or hazards, or alternatively remove fuel from site;
- Collect and inventory hazardous waste (processing chemicals, reagents, and petroleum products) and properly store or remove from site;
- Collect and inventory explosives, and properly store or remove from site;
- Maintain waste rock and ore piles, and tailings facilities so that they are physically stable;
- Continue surface water management measures throughout temporary closure;
- Maintain infrastructure including plowing of roads and airstrip, repairing culverts and employing sediment and erosion control measures; and
- Secure and isolate unused camp facilities.

Other activities may also be required, depending on the stage of the Mine at the time of temporary closure and the expected duration of temporary closure.

6.5 Monitoring and Reporting During Temporary Closure

During temporary closure, programs will be conducted to monitor the physical and chemical stability of mine components and compliance, reclamation and environmental studies would also be continued in accordance with approved license conditions. Monitoring will also occur to maintain site security. Physical inspections will be conducted to ensure that all infrastructure are performing as designed. Monitoring, maintenance, and reporting will include:

- Reclaim Pond water levels;
- Pumping of contact water ponds and TIA Reclaim Pond, and recording of pumping volumes;
- Collection of meteorological and hydrological data;
- Physical inspections of TIA dams, access roads, pipelines, intake structures, and tailings surface;
- Ongoing water quality and environmental effects monitoring (as prescribed in the Water Licence);
- Monthly site inspections by the Environmental Superintendent or designate;
- Annual geotechnical inspections by a qualified geotechnical engineer;
- Ongoing maintenance of access roads;
- Ongoing enforcement of security and access protocols; and
- Detailed site inspections by the Environmental Superintendent or designate following extreme events, including freshet to identify and assess any damage.

All inspections will be formally recorded and provided to Agnico Eagle management. Annual monitoring reports will be prepared to present the findings of the inspections in accordance with licence requirements. Recommendations for maintenance and any suggested modifications to the monitoring program will be included in the reports.

This monitoring and the associated maintenance activities will be conducted until the Mine changes status by either resuming operation or advancing to final closure.

6.6 Temporary Closure Schedule

The temporary closure activities will be carried out immediately following the stoppage of operations and the decision to prepare the site for an indefinite period of care and maintenance. It is expected that several months would be required to complete all the temporary closure activities.

SECTION 7 • COST ESTIMATE

V8.0

Agnico Eagle's current liability held for the Doris and Madrid mines is \$72.9 million (Canadian). These costs were developed using an NWB approved spreadsheet based cost estimating process that is consistent with the principles of RECLAIM version 7.0. That basis of estimate for the closure costs was summarized under a different cover (Nunami Stantec 2023).

Agnico Eagle recognizes a security update will be required for this Water Licence Amendment; however, an update has not been provided at this time. Based on experience, Agnico Eagle appreciates the level of review and discussions on security that are required. Agnico Eagle will work with the KitIA and CIRNAC through the Water Licence Amendment process to review securities to be held under the 2AM-DOH Licence. An agreement with both parties will be in place prior to the Water Licence Final Hearing. Following Water Licence Amendment approval, the ICRP will be updated to reflect the closure liability cost.

SECTION 8 • SCHEDULE

Closure of the Doris-Madrid site will occur upon completion of mining and milling of ore. It is anticipated that all decommissioning and closure activities can be completed in three years. An interim care and maintenance (ICM) period of 18 months was assumed, following which final closure activities will be initiated.

Water management activities will start during the ICM period and will continue until water quality criteria are met.

Year 3 of closure will be the initial year of the post-closure monitoring and maintenance period and as discussed above will require approximately 10 years.

REFERENCES

AMEC 2005. Preliminary Mine Closure and Reclamation Plan Doris North Project - Hope Bay Belt Nunavut, Canada. Report prepared for Miramar Hope Bay Limited, AMEC Project No. VM00259A, October 2005.

Canada. 1985a. Territorial Lands Act. R.S.C., 1985, c. T-7.

Canada. 1985b. Fisheries Act. R.S.C., 1985, c. F-14.

Canada. 1985c. Arctic Waters Pollution Prevention Act. R.S.C., 1985, c. A-12.

Canada. 1992. Transportation of Dangerous Goods Act, 1992. S.C. 1992, c. 34.

Canada. 1993. Nunavut Land Claims Agreement Act. S.C. 1993, c. 29.

Canada. 2001. Transportation of Dangerous Goods Regulations. SOR/2001-286.

Canada. 2002. Nunavut Waters and Nunavut Surface Rights Tribunal Act. S.C. 2002, c. 10.

Canada. 2013. Nunavut Waters Regulations. SOR/2013-69.

Canada. undated. Arctic Waters Pollution Prevention Regulations. C.R.C., c. 354.

Canada. undated. Territorial Lands Regulations. C.R.C., c. 1525.

CCME (Canadian Council of Ministers of the Environment). 2015. Canadian Environmental Quality Guidelines Summary Table. <http://st-ts.ccme.ca/>. Accessed April 2015.

DIAND (Department of Indian Affairs and Northern Development). 2002. Mine Site Reclamation Policy for Nunavut. ISBN 0-662-32073-5.

EBA (EBA Engineering Consultants Ltd.). 1996. Surficial Geology and Permafrost Features. Report prepared for Rescan Environmental Services Ltd. Project No.: 0101-96-12259. December 1996.

Government of Nunavut. 2009. Environmental Guidelines for Contaminated Site Remediation. March 2009. Prepared by the Department of Environment

INAC (Indian and Northern Affairs Canada). 2002. Mine Site Reclamation Policy for Nunavut.

MVLWB / AANDC (Mackenzie Valley Land and Water Board, Aboriginal Affairs and Northern Development Canada). 2013. Guidelines for the Reclamation of Advanced Mineral Exploration and Mine Sites in the Northwest Territories. November 2013.

MHBL (Miramar Hope Bay Ltd.). 2005. Final Environmental Impact Statement Doris North Project, Nunavut, Canada. Prepared by Miramar Hope Bay Limited, October 2005.

Nunavut. 1988a. Environmental Protection Act. RSNWT (Nu) 1988, c E-7.

Nunavut. 1988b. Environmental Rights Act. RSNWT (Nu) 1988, c 83.

Nunavut. 1994. Mine Health and Safety Act. SNWT (Nu) 1994, c 25.

Nunavut. 1995. Mine Health and Safety Regulations. NWT Reg. (Nu) 125-95.

Nunami Stantec (Nunami Stantec Limited). Basis of Estimate Hope Bay Doris-Madrid Project Updated Closure Security Estimate Current Capital Cost Estimate (CAPEX). December 20, 2023.

SRK (SRK Consulting (Canada) Inc.) 2007. Geochemical Characterization of Quarry Materials, Doris North Project, Hope Bay, Nunavut, Canada (Revised March 2007). Report prepared for Miramar Hope Bay Limited. SRK Project Number: 1CM014.008.241. March 2007.

SRK. 2012. Doris North Closure and Reclamation Plan. Report Prepared for Hope bay Mining Ltd. Project Number 1CH008.065. August 2012.

SRK. 2015. Hydrogeological Modeling of the Proposed Doris North Project, Hope Bay, Nunavut. Report prepared for TMAC Resources Inc., Project No. 1CT022.002.200.100, June 2015.

SRK. 2017a. Boston Hope Bay Project, Boston Conceptual Closure and Reclamation Plan, November 2017, Hope Bay, Nunavut. Report Prepared for TMAC Resources Inc.

SRK. 2017b. Geotechnical Design Parameters and Overburden Summary Report, Hope Bay Project. Report Prepared for TMAC Resources Inc. 1CT022.013. November 2017.

SRK. 2017c. Geochemical Characterization of Waste Rock and Ore from the Boston Deposit, Hope Bay Project. Report Prepared for TMAC Resources Inc. 1CT022.013. November 2017.

SRK. 2017d. Geochemical Characterization of Tailings from the Madrid North, Madrid South and Boston Deposits, Hope Bay Project. Report Prepared for TMAC Resources Inc. 1CT022.013. November 2017.

SRK. 2017e. Geochemical Characterization of Madrid-Boston Project Quarries, Hope Bay Project. Report Prepared for TMAC Resources Inc. 1CT022.013. November 2017.

SRK. 2017f. Hydrogeological Characterization and Modeling of the Proposed Boston, Madrid South and Madrid North Mines, Hope Bay Project. Report prepared for TMAC Resources Inc., Project No. 1CT022.013, November 2017.

SRK. 2017g. Madrid-Boston Project Water and Load Balance, Hope Bay Project. Report Prepared for TMAC Resources Inc. 1CT022.013. November 2017.

SRK. 2017h. Doris Tailings Management System Phase 2 Design, Hope Bay Project Report Prepared for TMAC Resources Inc. 1CT022.013. November 2017.

SRK. 2024a. Geochemical Characterization of Waste Rock and Ore of Naartok West Metallurgical Tailings, Hope Bay Project. Report Prepared for Agnico Eagle Mines Limited. CAPR002672. January 2024.

SRK. 2024b. Geochemical Characterization of Waste Rock and Ore from Madrid North and Patch 7 Deposits. Report Prepared for Agnico Eagle Mines Limited. CAPR003181. December 2024.

SRK. 2025a. TIA Filtered Tailings Conceptual Design Assessment, Hope Bay Prepared for Agnico Eagle Mines Limited. July 2025.

SRK. 2025b. Mine Plan Operational Update: Water and Load Balance Model. Report Prepared for Agnico Eagle Mines Limited. CAPR003305. July 2025.

TMAC Resources Inc., 2017, Madrid—Boston of the Hope Bay Project, FINAL ENVIRONMENTAL IMPACT STATEMENT, Volume 3, Project Description and Alternatives. December 2017.

APPENDIX A • FACILITIES LISTING

Category	Facility Name	Area
Underground Workings	Portal and Underground Works	Doris
Underground Workings	Primary Vent Raise	Doris
Underground Workings	Connector Vent Raise	Doris
Underground Workings	Central Vent Raise	Doris
Underground Workings	Portal and Underground Works	Madrid North
Underground Workings	Vent Raises	Madrid North
Underground Workings	Vent Raises	Patch 7 Area
Underground Workings	Patch 7 and Underground Works	Patch 7 Area
Underground Workings	Air Heating Facility	Patch 7 Area
Stockpiles and Waste Rock Dumps	Waste Rock Pile (pad T)	Doris Phase 1
Stockpiles and Waste Rock Dumps	Expanded Waste Rock Storage (Pad T)	Doris Phase 2
Stockpiles and Waste Rock Dumps	Ore Pile	Doris
Stockpiles and Waste Rock Dumps	Waste Rock Pile	Doris
Stockpiles and Waste Rock Dumps	Waste Rock Pile	Madrid North
Stockpiles and Waste Rock Dumps	Ore Stockpile	Madrid North
Stockpiles and Waste Rock Dumps	Waste Rock Pile	Madrid
Stockpiles and Waste Rock Dumps	Waste Rock Pile	Patch 7 Area
Stockpiles and Waste Rock Dumps	Ore Stockpile	Patch 7 Area
Stockpiles and Waste Rock Dumps	Overburden Pile	Madrid
Stockpiles and Waste Rock Dumps	PAD U Pad (ore storage)	Doris
Tailings	Subaerial Tailings Area	TIA
Tailings	South Dam	TIA
Tailings	North Dam	TIA
Tailings	West Dam	TIA
Tailings	Shoreline Protection	TIA
Tailings	Interim Dyke	TIA
Tailings	Transition to filtered tailings placements over a foundation of slurry tailings	TIA
Buildings and Facilities	Mechanical Shop Complex	Roberts Bay
Buildings and Facilities	Waste Management Facility	Roberts Bay
Buildings and Facilities	Communications Tower	Roberts Bay
Buildings and Facilities	Accommodation Complex	Doris
Buildings and Facilities	Accommodation Complex	Madrid
Buildings and Facilities	Backup Power generator	Doris
Buildings and Facilities	Communications Tower	Doris
Buildings and Facilities	Fire Water Storage Tank	Doris
Buildings and Facilities	Muster Station	Doris
Buildings and Facilities	Offices & Mine Dry Complex	Doris
Buildings and Facilities	Permanent Power Generator	Doris
Buildings and Facilities	Sewage Treatment Plant	Doris
Buildings and Facilities	Effluent Water Treatment Plant	TIA
Buildings and Facilities	Potable Water Treatment Plant	Doris
Buildings and Facilities	Process Plant	Doris
Buildings and Facilities	Underground Support Mechanical Shop	Doris
Buildings and Facilities	Underground Wash Bay	Doris
Buildings and Facilities	Warehouse / Core Shack	Doris
Buildings and Facilities	Explosives Storage Facility	Doris-Windy All Weather Road
Buildings and Facilities	Turbine Pad #1	Doris-Windy All Weather Road
Buildings and Facilities	Turbine Pad #2	Doris-Windy All Weather Road
Buildings and Facilities	Emergency Shelter	Madrid North
Buildings and Facilities	Office Trailer	Madrid North
Buildings and Facilities	Mine Equipment Shop	Madrid North
Buildings and Facilities	Compressor Building	Madrid North
Buildings and Facilities	Diesel Generator	Madrid North
Buildings and Facilities	Water Storage Tank with Containment	Madrid North
Buildings and Facilities	Turbine Pad #3	Madrid-Boston All Weather Road

Buildings and Facilities	Turbine Pad #4	Madrid-Boston All Weather Road
Buildings and Facilities	Turbine Pad #5	Doris-Windy All Weather Road
Buildings and Facilities	Turbine Pad #6	Madrid-Boston All Weather Road
Buildings and Facilities	Exploration Drilling Support Shop	Reagent Pads
Buildings and Facilities	Potable Water Supply System	Windy
Buildings and Facilities	Waste Incinerator	Doris
Buildings and Facilities	Waste Incinerator	Roberts Bay
Buildings and Facilities	Composter Building	Doris
Fuel Storage Facilities	52ML Tank Farm	Roberts Bay
Fuel Storage Facilities	Tank Farm	Doris
Fuel Storage Facilities	Fuel Storage Facilities	Madrid
Fuel Storage Facilities	Jet-A Fuel Storage	Roberts Bay
Quarry	Quarry A	Doris-Windy All Weather Road
Quarry	Quarry B	Doris-Windy All Weather Road
Quarry	Quarry D / Saline Pond 2	Doris-Windy All Weather Road
Quarry	Quarry G	Madrid-Boston All Weather Road
Quarry	Quarry H	Madrid-Boston All Weather Road
Quarry	Quarry J	Madrid-Boston All Weather Road
Quarry	Quarry L	Madrid-Boston All Weather Road
Quarry	Quarry M	Madrid-Boston All Weather Road
Quarry	Quarry N	Madrid-Boston All Weather Road
Quarry	Quarry O	Madrid-Boston All Weather Road
Quarry	Quarry P	Madrid-Boston All Weather Road
Quarry	Quarry Q	Madrid-Boston All Weather Road
Quarry	Quarry R	Madrid-Boston All Weather Road
Quarry	Quarry S	Madrid-Boston All Weather Road
Quarry	Quarry T	Madrid-Boston All Weather Road
Quarry	Quarry U	Madrid-Boston All Weather Road
Quarry	Quarry V	Madrid-Boston All Weather Road
Quarry	Quarry W	Madrid-Boston All Weather Road
Quarry	Quarry X	Madrid-Boston All Weather Road
Quarry	Quarry Z	Madrid-Boston All Weather Road
Quarry	Quarry AA	Madrid-Boston All Weather Road
Quarry	Quarry AB	Madrid-Boston All Weather Road
Quarry	Quarry AD	Madrid-Boston All Weather Road
Quarry	Quarry AF	Roberts Bay
Quarry	Quarry AG	Madrid North – TIA Road
Quarry	Quarry AJ	Madrid-Boston All Weather Road
Quarry	Quarry 2	Quarry 2
Quarry	Quarry 3 / Saline Pond 1	Quarry 3
Roads and Transportation	Jetty	Roberts Bay
Roads and Transportation	Fuel Transfer Access Road	Roberts Bay
Roads and Transportation	Cargo Dock	Roberts Bay

Roads and Transportation	Fuel Storage Facility Access Road	Roberts Bay
Roads and Transportation	Fuel Storage Facility Access Road Culvert	Roberts Bay
Roads and Transportation	All-Weather Road	Cargo Dock Access Road
Roads and Transportation	Culverts	Cargo Dock Access Road
Roads and Transportation	Bridge Crossing	Cargo Dock Access Road
Roads and Transportation	Helicopter Support Facilities	Doris
Roads and Transportation	Airstrip	Doris
Roads and Transportation	Airstrip Aprons	Doris
Roads and Transportation	Airstrip Lighting	Doris
Roads and Transportation	Primary Road	Doris
Roads and Transportation	All weather road	Doris-Windy All Weather Road
Roads and Transportation	Bridge Clear-span Crossings	Doris
Roads and Transportation	Bridge crossing	Madrid North – TIA Road
Roads and Transportation	Bridge crossings	Doris-Windy All Weather Road
Roads and Transportation	All-Weather Road	Madrid North – TIA Road
Roads and Transportation	Vent Raise Access Road	Madrid North
Roads and Transportation	Fuel Storage Facility Access Road	Madrid North
Roads and Transportation	Fuel Storage Facility Bypass Road	Madrid North
Roads and Transportation	All-Weather Road	Patch 7 All Weather Road
Roads and Transportation	Culvert Crossings	Roberts Bay
Roads and Transportation	Culvert Crossings	Doris
Roads and Transportation	Culvert Crossings	Madrid North – TIA Road
Roads and Transportation	Culvert crossings	Doris-Windy All Weather Road
Roads and Transportation	Arched Culvert	Doris-Windy All Weather Road
Roads and Transportation	Culvert crossings	Patch 7 All Weather Road
Roads and Transportation	Infrastructure Access Road	Patch 7 Area
Roads and Transportation	Portal Haul Road	Patch 7 Area
Roads and Transportation	Vent Raise Pad Access Road	Patch 7 Area
Roads and Transportation	All-Weather Road	Madrid-Boston All Weather Road
Roads and Transportation	Crossing C-MBR-7	Madrid-Boston All Weather Road
Roads and Transportation	Crossing C-MBR-8	Madrid-Boston All Weather Road
Roads and Transportation	Crossing C-MBR-9	Madrid-Boston All Weather Road
Roads and Transportation	Crossing C-MBR-10	Madrid-Boston All Weather Road
Roads and Transportation	Crossing C-MBR-11	Madrid-Boston All Weather Road
Roads and Transportation	Crossing C-MBR-12	Madrid-Boston All Weather Road
Roads and Transportation	Crossing C-MBR-13	Madrid-Boston All Weather Road
Roads and Transportation	Crossing C-MBR-14	Madrid-Boston All Weather Road
Roads and Transportation	Crossing C-MBR-15	Madrid-Boston All Weather Road
Roads and Transportation	Crossing C-MBR-16	Madrid-Boston All Weather Road
Roads and Transportation	Crossing C-MBR-17	Madrid-Boston All Weather Road
Roads and Transportation	Crossing C-MBR-18	Madrid-Boston All Weather Road
Roads and Transportation	Crossing C-MBR-19	Madrid-Boston All Weather Road
Roads and Transportation	Crossing C-MBR-20	Madrid-Boston All Weather Road
Roads and Transportation	Secondary Road	Secondary Road
Roads and Transportation	Tail Lake Access Road	Secondary Road
Roads and Transportation	Access Road	Quarry 4
Roads and Transportation	Roads and Trails	Patch Lake
Rock Fill Pads	Laydown Area	Roberts Bay

Rock Fill Pads	Developed Area (for regrading)	Roberts Bay
Rock Fill Pads	Developed Areas (for regrading)	Doris
Rock Fill Pads	Core Storage Area	Doris-Windy All Weather Road
Rock Fill Pads	Portal Pad	Madrid North
Rock Fill Pads	Laydown Area	Madrid North
Rock Fill Pads	Calcium Chloride Laydown	Madrid North
Rock Fill Pads	Developed Areas (for regrading)	Madrid North
Rock Fill Pads	Laydown Pad	Patch 7 Area
Rock Fill Pads	Calcium Chloride Laydown	Patch 7 Area
Rock Fill Pads	Developed Areas (for regrading)	Patch 7 Area
Rock Fill Pads	Equipment Laydown Area	Reagent Pads
Rock Fill Pads	Materials Laydown Area	Reagent Pads
Rock Fill Pads	Ammonium Nitrate Storage Area	Reagent Pads
Rock Fill Pads	Land Farm	Waste Management Area
Rock Fill Pads	Batch Plant Pad	Waste Management Area
Rock Fill Pads	Burn Pan	Waste Management Area
Rock Fill Pads	Core Storage Area	Waste Management Area
Rock Fill Pads	Developed Areas (for regrading)	Patch Lake
Rock Fill Pads	STP Pad	Doris
Waste and Landfills	Landfill	Quarry 2
Waste and Landfills	Disposal of demolition waste	Patch Lake
Waste and Landfills	Composter Unit	Doris
Marine Environment Reclamation	Roberts Bay Discharge System	Pipeline
Marine Environment Reclamation	Marine Bollards	Roberts Bay
Pipelines	Fuel Transfer Pipeline	Cargo Dock Access Road
Pipelines	Fresh Water Pipelines	Doris
Pipelines	Sewage Discharge Line	Doris
Pipelines	Madrid North Reclaim Pipeline	Pipeline
Pipelines	Patch 7 Area Groundwater Pipeline	Pipeline
Pipelines	Tailings and Reclaim Water Pipelines	Secondary Road
Pipelines	Fuel Transfer Pipeline	Roberts Bay
Water Management	Run-off Diversion Berm	Doris
Water Management	Sedimentation Berm	Doris
Water Management	Sedimentation/Pollution Control Pond	Doris
Water Management	Sumps	Doris
Water Management	Water Intake Structure and Pumping Facility	Doris
Water Management	Water Intake Structure and Pumping Facility	Patch
Water Management	Water Intake Structure and Pumping Facility	Windy
Water Management	Pad U Sedimentation/Pollution Control Pond	Doris
Water Management	Contact Water Pond Berm	Madrid North
Water Management	Diversion Berm	Madrid North
Water Management	Sump	Madrid North
Water Management	Primary Contact Water Pond Berm	Patch 7 Area
Water Management	Haul Road / Secondary Contact Water Pond Berm	Patch 7 Area
Water Management	CPW3	Doris-Windy All Weather Road
Water Management	CPW4	Patch
Water Management	Treated Sewage Discharge Areas	Quarry 4