Appendix A - Reports

DFO 3.4.1 - 1 Proposed Access Road Fisheries Assessments, Doris North Project, 2015

Memorandum

November 24, 2015

Refer to File: C.1 - 0298923-0038 (Proposed Access Road Fisheries Assessment Memo 2015).docx

Date:

To: John Roberts, VP Environmental Affairs

Katsky Venter, Environmental Advisor Sharleen Hamm, Project Manager

From: Fraser Ross (B.Sc., R.P.Bio.)

Cc: April Hayward (Ph.D.), Project Manager

Marc Wen (M.Sc., R.P.Bio.), Partner in Charge

Subject: Proposed Access Road Fisheries Assessments, Doris North Project, 2015

GLOSSARY AND ABBREVIATIONS

Terminology used in this document is defined where it is first used. The following list will assist readers who may choose to review only portions of the document.

CPUE Catch-per-unit-effort

DELTs Deformities, Erosion, Lesions, or Tumors

ERM Consultants Canada Ltd.

FHAP Fish Habitat Assessment Procedures

FL Fork Length

SHIM Sensitive Habitat Inventory Mapping

TMAC TMAC Resources Inc.

1. INTRODUCTION

ERM Consultants Canada Ltd. (ERM) conducted fisheries assessments along proposed access roads at the request of TMAC Resources Inc. (TMAC) during the open-water season of 2015. The three proposed road routes are:

- Doris Connector Vent Raise Access Road;
- Doris Central Vent Raise Access Road; and
- Roberts Bay Discharge Access Road (Figure 1-1).

The objectives of the 2015 Proposed Access Road Fisheries Assessments were as follows:

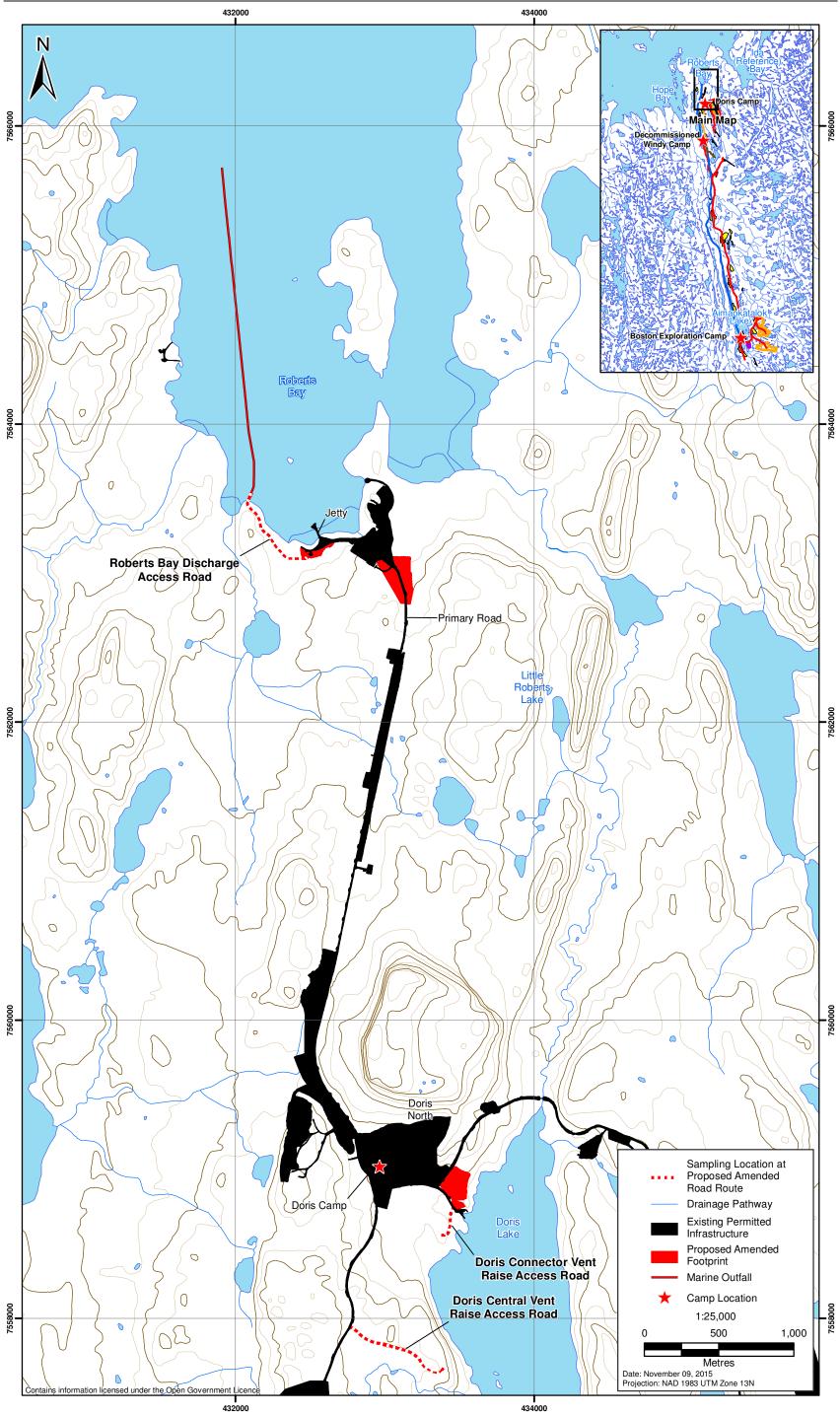
- to determine the locations of waterbodies along each of three proposed road routes;
- to sample the fish communities in all waterbodies along each road route;
- to assess the habitat value of each waterbody; and
- to assess the surface connectivity of these waterbodies to other fish-bearing waterbodies.

This memorandum presents the results of these assessments.

A rainfall event in the latter half of July 2015 caused unseasonably high flow conditions in streams around the Doris North Project (the Project) area. At the Doris Creek hydrology station, located downstream of Doris Lake, discharge was greater at that time than during spring freshet (3.24 m³/s on July 29th whereas the freshet peak on June 15 was 2.92 m³/s; ERM 2015 in progress). In 2015, the average discharge in Doris Creek between July 15 and September 15 was 1.54 m³/s, whereas during the same period in previous years (2009 to 2014) discharge was 0.60 m³/s. Although none of the sample sites reported herein are located on Doris Creek downstream of the lake, the hydrograph data substantiates field observations that discharge levels at the sample sites and in the general Project area were more typical of peak freshet conditions than what would be expected in mid-August.

2. METHODOLOGY

2.1 Desktop Assessment


Prior to fieldwork, the proposed roads were plotted on topographic maps to identify locations where the routes bisect waterbodies. The fisheries values of these locations would later be assessed in the field.

Historical fish community and habitat data were reviewed for waterbodies along and surrounding each road route to determine the proximity of known fish-bearing waterbodies to potential crossing sites.

2.2 Fish Habitat Assessment

Fish habitat was assessed along each road route on August 13 and 14, 2015. A preliminary assessment was completed to determine whether locations identified during the desktop mapping exercise contained habitats that could support fish (e.g., defined stream channels, ponds). Locations were categorized as "potential fish habitat" or as "not fish habitat" (e.g., subsurface flow, surface water with no defined channel). Sites that did not contain fish habitat were not considered further in the assessment.

TMAC RESOURCES INC Proj # 0236820-0001 | GIS # HB-06-205

For sites categorized as potential fish habitat, additional habitat data were collected to determine its value. Habitats were surveyed using methods based on the Fish Habitat Assessment Procedures (FHAP; Johnston and Slaney 1996). Representative sections of each reach were chosen for assessment and individual habitat units were measured with respect to length, bankfull and wetted width, depth, substrate composition, residual pool depth, bank stability, bank height, and instream cover. Stream attributes were marked using a handheld GPS unit and representative photographs were taken. Barriers or seasonal restrictions to fish migration were also noted and measured, where appropriate. Habitat suitability for spawning, rearing, and overwintering was described and an overall habitat quality ranking was applied (Table 2-1).

Table 2-1. Overall Habitat Quality Rankings and Criteria

		Habitat Quality Ranking	
	High	Medium	Low
Definition	Habitat that is necessary to sustain an Aboriginal, commercial, or recreational fishery, any species at risk*, or because of the habitat's relative rareness, productivity, and/or sensitivity.	Habitat that is used by fish for feeding, growth, and migration but is not deemed to be essential. This category of habitat usually contains a large amount of similar habitat that is readily available to the fishery.	Habitat that has low productive capacity and contributes marginally to fish production.
Indicators	The presence of high-value spawning or rearing habitat (e.g., locations with an abundance of suitably sized spawning gravels, deep pools, undercut banks, or stable debris, which are necessary to the population), or the presence of any species at risk*, its residence, or its critical habitat.	Migration corridors, the presence of suitable spawning habitat, habitat with moderate rearing potential for the fish species present.	The absence of suitable spawning habitat, and habitat with low rearing potential (e.g., locations with a distinct absence of deep pools, undercut banks, or stable debris, and with little or no suitably sized spawning gravels for the fish species present).

Notes: * those designated by the Committee on the Status of Endangered Wildlife in Canada, or species listed on Schedule 1 of the Species At Risk Act (2002).

The connectivity of each stream to other fish-bearing waterbodies was assessed to help determine whether the stream might provide seasonal habitat to fish. Small Arctic streams flow seasonally; some flow only during freshet then become dry later in the summer, while others flow throughout the ice-free period but freeze to the substrate in winter. These seasonal streams are only of value to fish if they are connected to other habitat types where fish can overwinter, such as lakes or deep ponds.

2.3 Fish Community Assessment

Backpack electrofishing was the primary method used to sample stream fish communities on August 13 and 14, 2015. Figures 2.3-1 and 2.3-2 show the stream sections sampled by electrofishing in an unnamed tributary to Doris Lake and an unnamed tributary to Roberts Bay respectively. A crew leader operated a Smith-Root LR-24 and was accompanied by one dip netter. Anode ring diameter was 28 cm and dip net diameter was 21 cm with 3.2 mm mesh.

A systematic sweep sampling approach was conducted moving in an upstream direction that covered the entire wetted width of the stream, including all channels where flow was braided. Electrofishing effort was not pre-determined because the primary objective was to determine whether fish were present in the stream and, if so, determine fish community composition. Electrofisher voltage (V), duty cycle (%) and frequency (Hz) settings were adapted at each site to maximize catch efficacy.

All captured fish were identified to species and given a unique sample number. Fork Length (FL) was measured to the nearest 1 mm with a measuring board and wet weight was measured to the nearest 0.1 g using an electronic scale for each fish. Where parasites or deformities, erosions, lesions, or tumors (DELTs) were observed, this information was recorded for each fish. In addition, all observations of fish that were seen but not captured were noted.

All captured fish were placed immediately in a holding tank for species identification, enumeration, and biological processing and then released back into the site once collection was complete. Electrofishing effort was standardised as Catch Per Unit Effort (CPUE), which was calculated as the number of fish captured per 100 s.

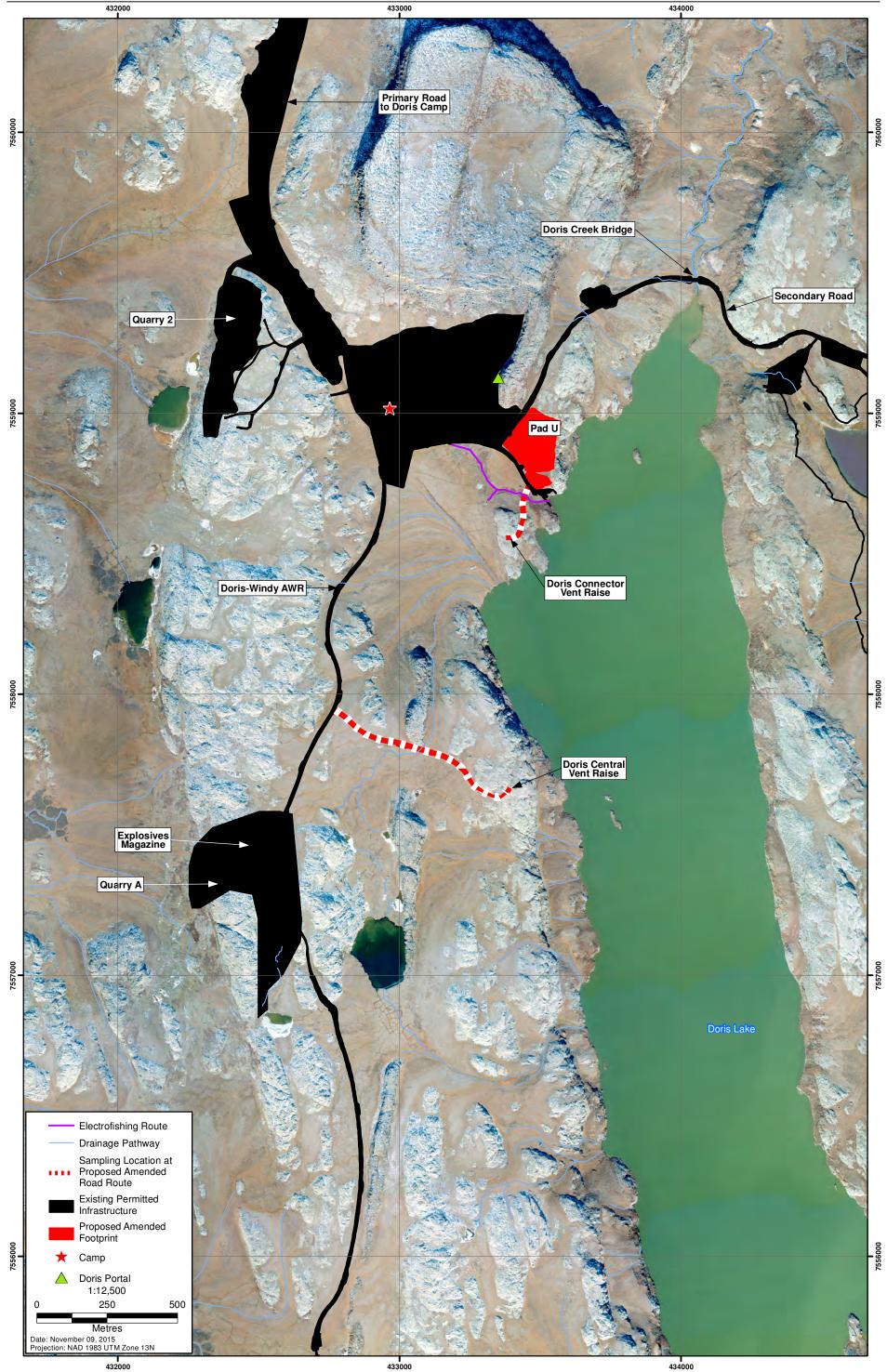
CPUE = number of fish caught * [100/(electrofishing effort in seconds)]

Field crews intended to set minnow traps as a second method of sampling fish communities; however, insufficient water depths prevented their use.

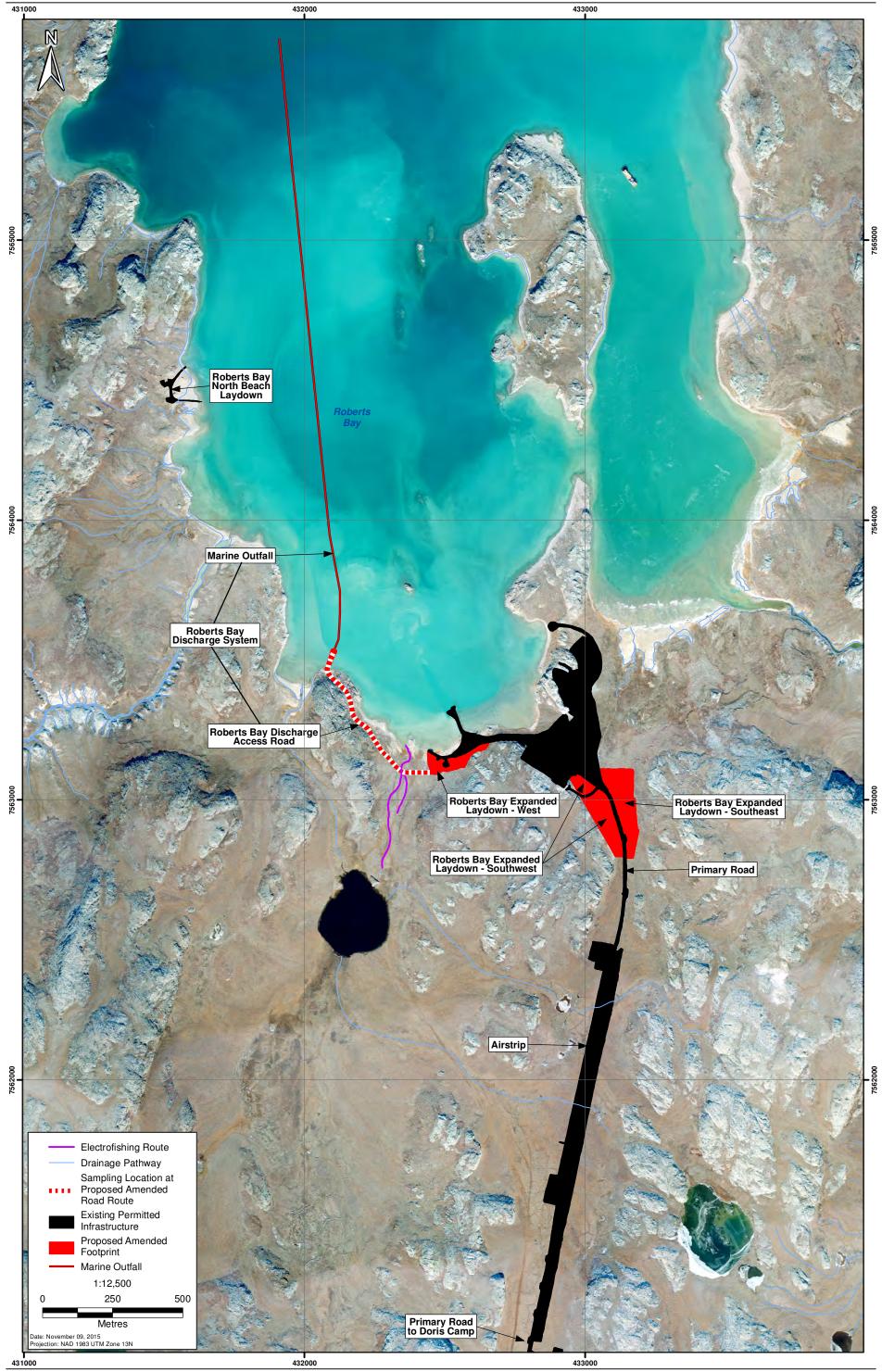
3. RESULTS AND DISCUSSION

3.1 Desktop Assessment

The review of topographic maps identified locations where both the proposed Doris Connector Vent Raise Access Road and the Roberts Bay Discharge Access Road bisect drainages. Conflicting data exists for a third drainage under the proposed Doris Central Vent Raise Access Road; 1:50,000 map data indicates that the drainage turns south and away from the road route before they cross (e.g. Figure 1-1), whereas more recent, site plan map data indicates that this road would cross a drainage (e.g. Figure 2.3-1). Given this uncertainty, the drainage routes would later be assessed in the field.


3.2 Historical Fisheries Data Review

Historical fisheries data are summarized below for waterbodies along and surrounding each road route.


3.2.1 Doris Connector Vent Raise Access Road

Topographic mapping indicates that the Doris Connector Vent Raise Access Road bisects one small unnamed surface drainage that discharges directly into Doris Lake. No historical fisheries data exists for this waterbody. Doris Lake has been extensively sampled; the fish community consists of Lake Trout (*Salvelinus namaycush*), Lake Whitefish (*Coregonus clupeiformis*), Cisco (*Coregonus artedii*), and Ninespine Stickleback (*Pungitius pungitius*; Rescan 2010).

3.2.2 Doris Central Vent Raise Access Road

A review of historical fisheries data found that Sensitive Habitat Inventory Mapping (SHIM) was completed on a drainage that crosses the proposed Doris Central Vent Raise Access Road in 2010 (Rescan 2011). SHIM is a field-based method used to collect reliable, high quality, current and spatially accurate information about freshwater habitats and watercourses (Mason and Knight 2001). SHIM found that the general direction of drainage does cross the proposed access road (despite what 1:50,000 topographic mapping suggested), but there is no defined stream channel in the area; instead the area is covered with terrestrial vegetation that seeps towards Doris Lake through poorly defined pathways. When the SHIM sampling was completed, no fish community sampling could be completed as there was not a defined waterbody to sample.

3.2.3 Roberts Bay Discharge Access Road

The proposed Roberts Bay Discharge Access Road crosses one small, unnamed stream that drains into the southern end of Roberts Bay. This stream was sampled on one previous occasion; in August 2009 fish community and fish habitat were sampled (Rescan 2010). In 4,455 seconds of electrofishing effort, 12 Ninespine Sticklebacks were captured (CPUE = 0.27). On August 1, 2009 the lowest 100 m of the stream was flowing; above this section were isolated pockets of water and seepage through terrestrial vegetation. In the flowing section of the creek, the mean wetted depth was 0.2 m and wetted width was 0.3 m. Spawning habitat was rated as fair due to the presence of riffles with gravel substrate that could be used by spawning salmonids and wetted vegetation that could be used by spawning coarse fish species. Overall, fine sediment was the dominant substrate type (90%) and gravels comprised the remainder. Rearing, adult feeding, and migration quality were all rated as poor, and no overwintering habitat was observed.

A small, unnamed pond located in the headwaters of the stream's watershed had not been sampled previously.

3.3 Fish Habitat Assessment

3.3.1 Doris Connector Vent Raise Access Road

The desktop assessment identified one location where the Doris Connector Vent Raise Access Road intersects a waterbody; the proposed route crosses a small, unnamed tributary to Doris Lake. The field assessment of the road route completed on August 13, 2015 confirmed that this was the only location where the road bisects a drainage.

The stream is approximately 500 m in length, draining land to the south and east of the existing Float Plane Dock Access Road. Its headwaters consist of a series of discontinuous channel braids, which converge into a poorly connected channel in the vicinity of the proposed stream crossing. From there, the stream flows intermittently in a channel to a culvert under the Float Plane Dock Access Road and into Doris Lake.

The upper section of the watershed provides poor quality fish habitat. The braided channels are poorly defined, narrow (mean width 0.28 m), shallow (mean depth 0.11 m), and have poor connectivity with each other and with the lower section of the creek (Plate 3.2-1). Dense in-channel terrestrial vegetation and low discharge even during peak periods limit fish

movement and the habitat value in this section. Where the proposed road route crosses the stream, the stream channel is poorly defined and is dominated by terrestrial vegetation, suggesting that it contains flow for a short period during most years (Plate 3.2-2). This area did contain a small amount of flow during August 2015 due to anomalous weather conditions; however, it is expected that this area would cease flowing soon after freshet in most years. Habitat throughout this section is of poor quality.

Plate 3.2-1. The upper stream section consists of small, braided channels with poor connectivity to the lower section of the stream, August 13, 2015.

Just upstream of Doris Lake the stream flows through a single 6" diameter culvert under the Doris Lake boat launch ramp. Just upstream of the culvert there is a 3 m section of creek that has a defined channel that could provide some rearing habitat to coarse fish. During the site visit, the channel downstream of the culvert was poorly defined and contained little flow; the majority of water discharging from the culvert percolated subsurface through loose gravels before entering Doris Lake (Plate 3.2-3).

Access to the entire stream for fish in Doris Lake is limited; subsurface flow downstream of the culvert and heavy instream vegetation will restrict fish movement during most flow conditions.

Plate 3.2-2. The stream section upstream of the culvert is poorly defined due to heavy in-channel vegetation, August 13, 2015.

Plate 3.2-3. Discharge from the Doris Lake boat launch culvert percolates into loose gravels, August 13, 2015.

3.3.2 Doris Central Vent Raise Access Road

A field crew walked the full length of the proposed Doris Central Vent Raise Access Road but no waterbodies were identified. Similar to results from historical SHIM mapping, the field assessment found that the proposed road route does cross the drainage pathway, but there is no defined stream channel. Instead, the area is covered with terrestrial vegetation and the land drains towards Doris Lake through poorly defined pathways. As no fish habitat exists along this route, no additional habitat data were collected.

3.3.3 Roberts Bay Discharge Access Road

The desktop assessment identified one location where the Roberts Bay Discharge Access Road intersects a waterbody; the proposed route crosses a small, unnamed tributary to Roberts Bay. The field assessment of the road route completed on August 13, 2015 confirmed that this was the only location where the road bisects a drainage.

The stream is approximately 500 m in length, draining land at the southern end of Roberts Bay. The stream can be divided into two sections; the upper section has a poorly defined channel and is dominated by terrestrial vegetation, and the lower section contains a well-defined channel that discharges into Roberts Bay.

Marginal fish habitat exists in the upstream section of the stream. No salmonid spawning, rearing, migration, or overwintering habitat exists, but it may provide limited rearing habitat to coarse fish. This section is approximately 400 m in length and has a poorly defined channel where water seeps downslope primarily through dense terrestrial vegetation. Some surface water was flowing through grasses in this section of the stream during the August 2015 fieldwork, but this is likely atypical for this time of year based on the aforementioned high flows observed locally in 2015. Dense terrestrial vegetation indicates that this area typically flows for only a brief period during spring snow melt.

There was poor, but existing, connectivity between the upper reaches of the stream and an unnamed pond during the site visit on August 13, 2015. The dominant outflow of this pond flows to the northwest, but some water does seep through a heavily vegetated area and into the creek when water levels are high. This connection is weak, but small bodied fish may occasionally pass through this avenue.

The downstream section of the stream is approximately 100 m in length, containing multiple braided, well defined channels that gradually merge and provide good connectivity between the creek and Roberts Bay. The proposed road route intersects with the upstream portion of this section of the creek. Similar to the habitat assessment completed in 2009, fine sediments dominated the streambed substrate with lesser amounts of gravel also. The overall value of the creek was rated as poor as the stream has low quality rearing, adult feeding, and migration habitat and has no overwintering habitat; however, the downstream section may provide fair spawning and juvenile rearing habitat.

3.4 Fish Community Assessment

3.4.1 Doris Connector Vent Raise Access Road

Fish do inhabit the stream that intersects with the Doris Connector Vent Raise Access Road, but fish density and diversity are both low. In 1962 seconds of electrofishing, four Ninespine Sticklebacks were captured (CPUE = 0.20) and two additional fish were observed but not captured. All of these fish were caught or observed in a 3 m section of stream just upstream of the existing culvert, confirming that fish are able to pass from the lake upstream through the culvert during freshet (Figure 3.4-1). Fish use appears to be restricted to this small section of the stream; no fish were captured or observed in the remainder of the stream, including where the stream and the road intersect, despite a high level of effort. Upstream of this small fish-bearing section of the creek, the channel is poorly defined and is dominated by dense terrestrial vegetation that limits fish passage. The fish-bearing section of stream is approximately 50 m downstream of the intersection of the stream and the proposed road route.

In 2015, stream flow conditions were unusual due to a large rainfall event in July. Channel morphology and an abundance of terrestrial vegetation suggest that this stream typically flows for a far shorter period than was observed in 2015. This stream provides a small amount of poor quality rearing habitat for a short duration to coarse fish in Doris Lake.

3.4.2 Doris Central Vent Raise Access Road

No waterbodies exist along the route of the proposed Doris Central Vent Raise Access Road, so no community sampling was completed in this area. Terrestrial drainage passes under the proposed access road, but there is no defined stream channel; instead the area is covered with terrestrial vegetation that seeps towards Doris Lake through poorly defined pathways.

3.4.3 Roberts Bay Discharge Access Road

A total of four Ninespine Sticklebacks were captured in the stream that flows under the proposed Roberts Bay Discharge Access Road in 4,284 seconds of electrofishing (CPUE = 0.01). This finding is similar to 2009, where only Ninespine Sticklebacks were captured. All fish were captured in the lower section of the stream downstream of the location where the proposed road intersects (Figure 3.4-2). This indicates that poor habitat conditions and dense vegetation prelimit upstream movement of fish from Roberts Bay beyond the lower 100 m section of the stream.

Figure 3.4-1
Fish-bearing Reach of an Unnamed Stream that Intersects the Doris
Connector Vent Raise Access Road on August 13 2015, Doris North Project FRM

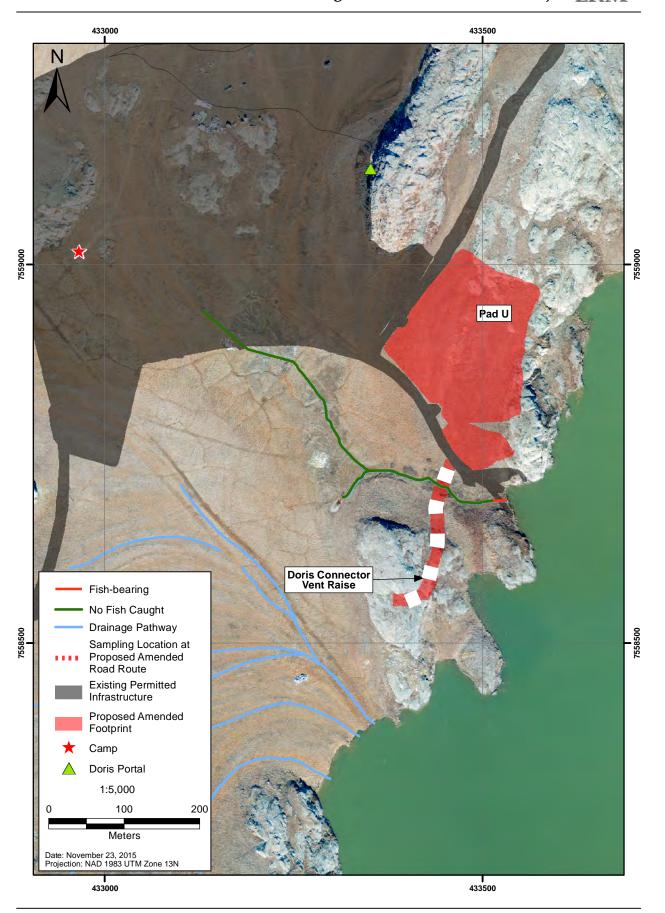
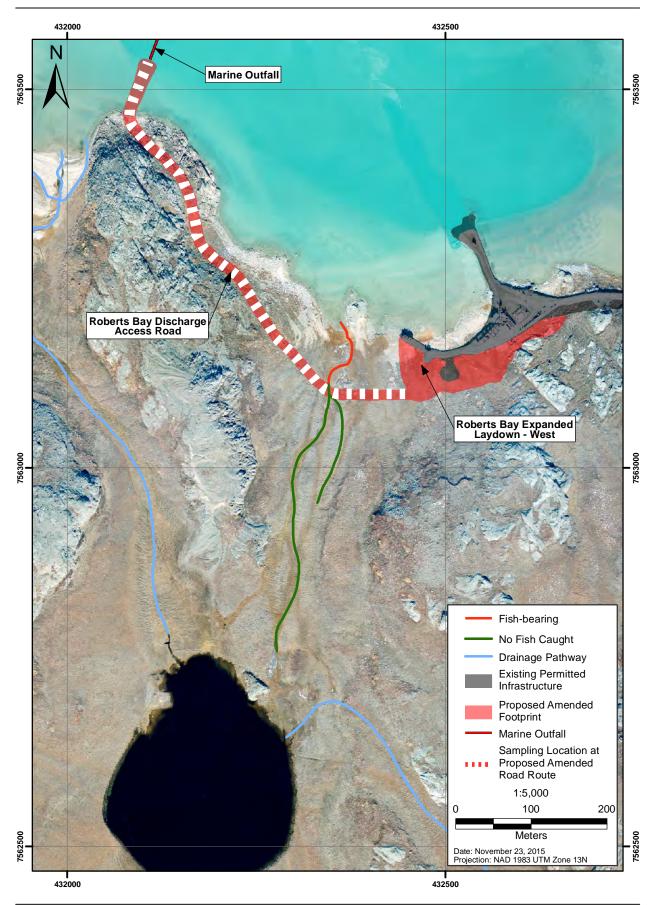



Figure 3.4-2
Fish-bearing Reach of an Unnamed Stream that intersects the Roberts Bay Discharge Access Road on August 13 2015, Doris North Project

4. SUMMARY

4.1.1 Doris Connector Vent Raise Access Road

One short stream that contains poor quality fish habitat intersects the proposed Doris Connector Vent Raise Access Road. The stream channel throughout is poorly defined and fish movement within the stream is limited by a culvert, dense vegetation growth, and shallow water depths.

Ninespine Sticklebacks inhabit the stream in low densities. Their distribution appears to be restricted to the lowest few metres of the creek just upstream of Doris Lake and approximately 50 m downstream of the proposed road crossing. It appears that fish from Doris Lake can access this section of the creek during peak discharge events, but movement beyond this section is limited as the stream channel is poorly defined and it is dominated by dense terrestrial vegetation.

4.1.2 Doris Central Vent Raise Access Road

No fish habitat exists along the proposed route for the Doris Central Vent Raise Access Road. Terrestrial drainage passes under the proposed access road, but there is no defined stream channel; instead the area is covered with terrestrial vegetation that seeps towards Doris Lake through poorly defined pathways.

4.1.3 Roberts Bay Discharge Access Road

A single stream intersects the proposed route of the Roberts Bay Discharge Access Road. Upstream of the crossing the stream channel is poorly defined, where dense terrestrial vegetation and shallow water depths limit fish passage and use even during peak flow periods. No fish were captured in this section of the creek during the current sampling program or during the one previous sampling event.

The stream does provide some fish habitat adjacent to and downstream of the location where it intersects with the proposed road route. This section of creek (approximately 100 m in length) has a clearly defined channel and provides some rearing habitat for coarse fish that can access the creek from Roberts Bay. In two years of sampling, Ninespine Stickleback is the only species that has been captured in this stream.

Prepared by:

Fraser Ross, B.Sc., R.P.Bio.

Consultant, Fisheries, ERM

Reviewed by:

April Hayward, Ph.D. Project Manager, ERM

REFERENCES

- 2002. Species at Risk Act, S.C. 2002, C. 29.
- ERM. In progress. *Doris North Project: 2015 Hydrology Compliance Monitoring Program Memorandum*. Prepared for TMAC Resources Inc. by ERM Rescan: Yellowknife, Northwest Territories.
- Johnston, N. T., and P. A. Slaney. 1996. *Fish habitat assessment procedures*. Watershed Restoration Technical Circular No. 8. Vancouver, BC: British Columbia Ministry of Environment, Lands and Parks.
- Mason, B., and R. Knight. 2001. *Sensitive Habitat Inventory and Mapping*. Community Mapping Network, Vancouver, British Columbia. 315pp + viii. M. Johannes, Editor.
- Rescan. 2010. 2009 Freshwater fish and fish habitat baseline report, Hope Bay Belt Project. Prepared for Newmont Mining Corporation by Rescan Environmental Services Ltd.: Vancouver, BC.
- Rescan. 2011. 2010 Freshwater fish and fish habitat baseline report, Hope Bay Belt Project. Prepared for Newmont Mining Corporation by Rescan Environmental Services Ltd.: Vancouver, BC.

- EC-7 1 Threespine Stickleback Toxicity Testing
- EC-7 2 Groundwater Results QA/QC
- EC-7 3 Groundwater Analytical Results

Suite 160, 14480 River Road Richmond, BC, Canada V6V 1L4 Tel. 604-278-7714 Fax 604-278-7741 info@ircintegratedresource.com

FILE:GOLDER/1011034.STB

DATE:

15 November 2010

TO:

Peter Chapman

Golder Associates Ltd. 500-4260 Still Creek Drive

Burnaby, B.C. V5C 6C6

REPORT ON: THREESPINE STICKLEBACK TOXICITY TESTING

SAMPLE DESCRIPTION:

IRC Sample ID No.:	1011034	
Sample Name:	10WBW001 Zone 6	
Date collected:	31 October 2010; 1400 hrs	
Date received:	2 November 2010; 1630 hrs	
Amount, Container:	4 x 20L plastic containers	
Physical description:	Opaque, yellow-orange liquid	
Date, time tested:	3 November 2010; 0945 hrs	

96 HR TEST RESULTS:	
The 96 hour (static) LC ₅₀ was greater than 100% (v/v sample).	
30% stickleback mortality in 100% concentration.	

The LC_{50} is defined as the median lethal concentration or the concentration at which there is 50% fish mortality. Results are calculated using the method described by Stephan (Methods for calculating an LC_{50} in: <u>Aquatic Toxicology and Hazard Evaluation</u>, American Society for Testing and Materials, 1977).

The method used for this test was as per the "Biological Test Method: Acute Lethality Test Using Threespine Stickleback (Gasterosteus aculeatus)" EPS 1/RM/10, July 1990. Test volume was 20 litres with 10 fish exposed in each test vessel. Aeration was by forced air through airstones at a rate of approximately 6.5 ± 1 ml/L/min. The sample was not pH adjusted or filtered prior to testing.

The initial dissolved oxygen level was 8.5 mg/L at 14.5°C, the conductivity was 49.0 mS/cm and the initial pH was 7.5. Sample salinity was 31.3 ppt. After pre-aerating the sample for 30 minutes, the dissolved oxygen level was 8.8 mg/L. As the dissolved oxygen level was greater than 70% saturation and less than 100% saturation the test was initiated at this time. The test set up technician was KA.

Please call should you have any questions.

IRC Integrated Resource Consultants Inc.

Carolyn Wilson Laboratory Biologist enclosure

FILE;GOLDER/1011034.STB

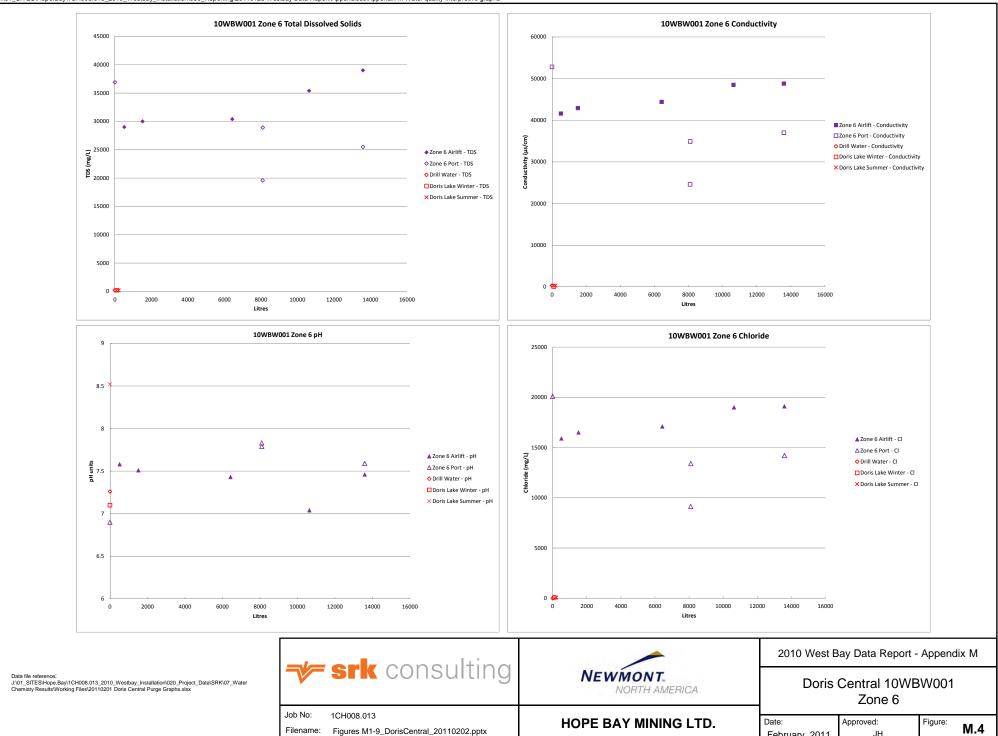
RAW DATA:

TEST			но	URS		
ONCENTRATION		0	24	48	72	96
	Percent Survival	100%	100%	80%	70%	70%
	Dissolved Oxygen (mg/L)					
	Temperature (°C)					
100%	pH					
777.77	Conductivity (mS/cm)					
	Salinity (ppt)		31.5	31.6	31.9	
	Symptoms	1				1.7.
	Loading Density (g/L)	0.30	0.30	0.24	0.21	
	Percent Survival	100%	100%	00%	00%	000
	Dissolved Oxygen (mg/L)					
	Temperature (°C)					
50%	pH					
30 70	Conductivity (mS/cm)		1.9	1.9	1.9	
	Salinity (ppt)		30.0	21.1	21.1	
	Symptoms				70% 70 8.3 8. 15.0 15 7.8 7. 50 31.9 31.9 31 2 2 0.21 0.2 90% 90 8.3 8. 15.0 15 7.9 7. 49 31.1 31.1 31 2 2 0.27 0.2 80% 80 8.4 8. 15.0 15 8.0 8. 30.9 31 1,2 1, 0.24 0.2 100% 100 8.4 8. 15.0 15 8.2 8. 30.7 30 1,2 1, 0,30 0.3 15.0 14 8.1 8. 47 30.4 30.4 30. </td <td></td>	
	Loading Density (g/L)					
	Percent Survival					
	Dissolved Oxygen (mg/L)				8.4	8.4
	Temperature (°C)					15.0
25%	pH		8.0	8.0	8.0	8.0
	Conductivity (mS/cm)				15.0 7.8 31.9 2 0.21 90% 8.3 15.0 7.9 31.1 2 0.27 80% 8.4 15.0 8.0 30.9 1,2 0.24 100% 1,2 0.30 100% 1,2 0.30 100% 1,2 0.30 15.0 8.1	48.3
	Salinity (ppt)	30.5	30.7	30.7	30.9	% 70% 8 8.3 0 15.0 3 7.8 50.0 9 31.9 2 1 0.21 % 90% 8 8.2 0 15.0 0 7.9 49.1 31.3 2 7 6 80% 4 8.4 0 15.0 2 4.3 9 31.0 2 4.3 9 31.0 2 4.3 3 0 4 0.24 6 8.3 9 31.0 8 8.2 4 0.30 8 8.2 4 10.3 8 8.2 9 31.0 8 8.2 9 31.0 8 8.2 9 31.0 8 8.2 9 10.
	Symptoms	1	1,2	1,2	1,2	
	Loading Density (g/L)	0.30	0.30	0.24	0.24	0.24
	Percent Survival	100%	100%	100%	100%	1009
	Dissolved Oxygen (mg/L)	8.8	8.4	8.5	8.4	
	Temperature (°C)	14.5	15.0			
12.5%	рН		8.2			
	Conductivity (mS/cm)					
	Salinity (ppt)		30.4	30.6	30.7	
	Symptoms	1			2.12.2	
	Loading Density (g/L)	0.30	0.30	0.30		
	Percent Survival	100%	100%	100%	100%	1000
	Dissolved Oxygen (mg/L)				- 100 0 p. 100 p. 100 p.	
	Temperature (°C)					
6.2%	pH					
012 /U	Conductivity (mS/cm)		0.2	0.1	0.1	
	Salinity (ppt)		30.3	30.3	30.4	
	Symptoms	100% 100% 80% 70% 14.5 14.5 15.0 15.0 7.6 7.7 7.8 7.8 14.5 14.5 15.0 15.0 1				
	Loading Density (g/L)	0.30				709 8.3 15. 7.8 50. 31. 2 0.2 909 8.2 15. 7.9 49. 31. 2 0.2 809 8.4 15. 8.0 48. 31. 1,2 0.2 100 8.3 15. 8.1 47. 30. 100 7.9 15. 8.1 47. 30. 100 7.9 15. 8.1
		1000	1000			
	Percent Survival					_
	Dissolved Oxygen (mg/L)					
001	Temperature (°C)					
CONTROL	pH		8.2	8.1	8.1	
	Conductivity (mS/cm)		00.	40.7		
	Salinity (ppt)			30.2	30.1	
	Symptoms Loading Density (g/L)			0.30	0.30	-
		0.30	0.30	0.30	0.30	0.30
	Technician	KA	LH	LH	LH	LH

KEY TO SYMPTOMS:

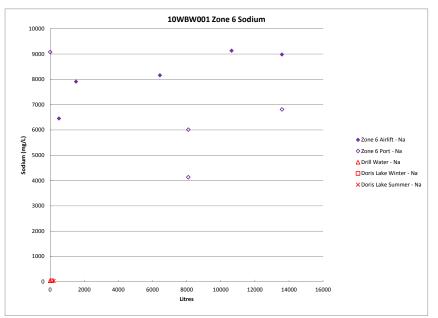
1 = no apparent effect 2 = fish showing signs of stress 3 = loss of equilibrium

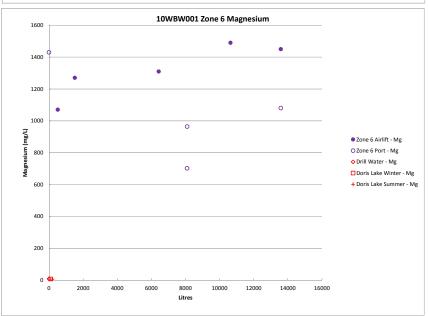
TEST FISH STOCK INFORMATION

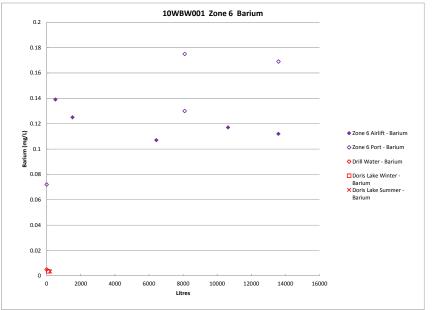

FILE:GOLDER/1011034.STB	

Date received:	20 October	r 2010						
Source:	Ladner Tru	unk Road						
Species:	Gasteroste	eus aculeatus (Threespine Stickleback)						
Fork Length:	Mean:	38.4 mm ± 5.8 mm						
	Range:	30.0 mm – 45.0 mm						
Wet weight:	Mean:	$0.59 \text{ g} \pm 0.17 \text{ g}$						
	Range:	0.29 g - 0.80 g						
Condition Factor (100xWt/length ³ cm):	1.04							

Acclimation History								
Acclimation temperature:	14.0 to 15.0 ° CELSIUS							
Treatments:	None							
Water:	Dechlorinated tap water, adjusted to 30.0ppt using dry ocean salts							
Feeding:	Freeze-dried brine shrimp							
Salinity:	1.0 to 26.1 ppt							
Mortality:	0.92% in week prior to testing							


THREESPINE STICKLEBACK REFERENCE TOXICANT DATA


Stock Arrival Date (y/m/d)	Test Date (y/m/d)	Toxicant	Log LC ₅₀ (mg/L)				
05.03.01	05.03.30	Phenol	1.33				
05.06.02	05.06.17	"	1.26				
05.08.16	05.09.07	16	1.21				
05.11.10	05.12.02	"	1.30				
06.02.22	06.03.15	**	1.16				
06.06.02	06.06.26	"	1.36				
06.08.18	06.08.31	"	1.10				
06.12.08	06.12.20	"	1.03				
07.02.14	07.02.14	**	1.02				
07.04.24	07.05.16	"	1.14				
07.07.17	07.08.08	"	1.23				
07.11.02	07.11.16	66	1.11				
08.01.23	08.02.08	- "	1,13				
08.05.10	08.05.24		1.22				
08.08.19	08.09.05	66	1.16				
08.12.04	08.12.16		1.29				
09.03.04	09.03.19	66	1.10				
09.06.05	09.06.18	- 11	1.30				
09.09.21	09.09.30		1.29				
10.02.27	10.03.19	**	1.10				
10.06.03	10.07.06		1.28				
10.09.09	10.09.24	166	1.19				
10.10.20	10.11.09	16	1.11				
AB GEOMETRIC MEAN (LO	G) ± 2 standard d	eviations:	1.19 mg/L ± 0.19				
/arning Limits (Log Values):			1.01 mg/L to 1.38 mg/L				



February 2011

Data ine rereiente.

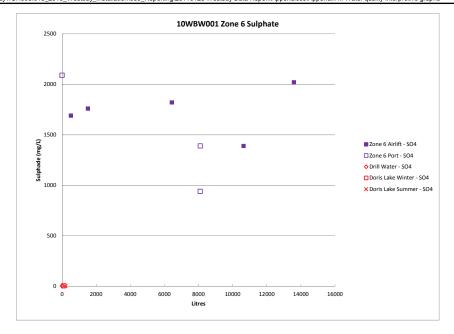
3/\01_SITES\Hope.Bay\1CH008.013_2010_Westbay_Installation\020_Project_Data\SRK\07_Water
Chemisty Results\Working Files\20110201 Doris Central Purge Graphs.xlsx

srk consulting

NEWMONT. NORTH AMERICA 2010 West Bay Data Report - Appendix M

Doris Central 10WBW001 Zone 6

Job No: 1CH008.013


ilename: Figures M1-9_DorisCentral_20110202.pptx

HOPE BAY MINING LTD.

Date: Approved: JH

Figure: M.5

J:\01_SITES\Hope.Bay\1CH008.013_2010_Westbay_Installation\080_Reporting\20110125 Westbay Data Report\Appendices\Appendix M Water quality interpretive graphs

Data file reference: \1\01_SITES\Hope.Bay\1CH008.013_2010_Westbay_Installation\020_Project_Data\SRK\07_Water Chemisty Results\Working Files\20110201 Doris Central Purge Graphs.xisx

Filename: Figures M1-9_DorisCentral_20110202.pptx

2010 West Bay Data Report - Appendix M

Doris Central 10WBW001 Zone 6

Job No: 1CH008.013

HOPE BAY MINING LTD.

Date: Approved: February 2011 JH

Figure: M.6

Table N1: Comparison of Repeated Samples from the Same Port, Over Time

Table N1: Comparison of Repeated Samples from the Same Port, Over Time																			
		Repeated p		RPD	Repeated pover		RPD	Repeated p	ort samples time	RPD	Repeated p		RPD	Repeated p over		RPD	Repeated p	ort samples time	RPD
Field Sample ID / Unique ID	Units	10WBW001- 35	10WBW001- 100		10WBW001- 100	10WBW001- 106		10WBW001-	10WBW001- 101		10WBW001-	10WBW001- 108		10WBW001- 37	10WBW001- 102		10WBW001-	10WBW001- 105	
Sample From		Westbay Port	Westbay Port		Westbay Port	Westbay Port		Westbay Port	Westbay Port		Westbay Port	Westbay Port		Westbay Port	Westbay Port		Westbay Port	Westbay Port	
Sample label for graph		10WBW001- Zone 1-Port	10WBW001- Zone 1-Port		10WBW001- Zone 1-Port	10WBW001- Zone 1-Port		10WBW001 Zone 6-Port	10WBW001- Zone 6-Port		10WBW001- Zone 6-Port	10WBW001- Zone 6-Port		10WBW001- Zone 10-	10WBW001- Zone 10-		10WBW001 Zone 10-	10WBW001- Zone 10-	1
		Final-S35	after 2mths- S100		after 2mths- S100	after bulk- S106		Final-S36	after 2mths- S101		after 2mths- S101	after bulk- S108		Port Final- S37	Port after 2mths-S102		Port after 2mths-S102	Port after bulk-S105	
Sample Zone Location of port in zone Zone port drillhole depth		1 Top 548.0	1 Top 548.0		1 Top 548.0	1 Top 548.0		6 Top 246.0	6 Top 246.0		6 Top 246.0	6 Top 246.0		10 Top 63.5	10 Top 63.5		10 Top 63.5	10 Top 63.5	1
Total Litres purged from zone before sample was		3186	3189		3189	3192		8096	8099		8099	13592		3008	3011		3011	3014	1
taken Zone volumes purged before sample was taken		27.4	27.4		27.4	27.5		46.6	46.6		46.6	79.3		11.0	11.0		11.0	11.0	1
ALS DATA ALS Date Sampled		04-AUG-10	19-OCT-10		19-OCT-10	30-OCT-10		05-AUG-10	19-OCT-10		19-OCT-10	01-NOV-10		05-AUG-10	20-OCT-10		20-OCT-10	29-OCT-10	1
ALS Time Sampled Matrix		13:42 Seawater	12:00 Seawater		12:00 Seawater	13:00 Seawater		09:00 Seawater	15:00 Seawater		15:00 Seawater	15:00 BOTH		11:40 Seawater	11:00 Seawater		11:00 Seawater	15:00 Seawater]
Physical Tests Conductivity (EC)	uS/cm	46600	46700	0%	46700	46900	0%	24600	34900	-35%	34900	37000	-6%	30300	33800	-11%	33800	43300	-25%
Density Hardness (as CaCO3)	mg/L	12700	1.01 12600	1%	1.01 12600	1.03 12100	-2% 4%	4760	1.01 6720	-34%	1.01 6720	1.03 7340	-2% -9%	6030	1.01 6360	-5%	1.01 6360	1.01 8900	0% -33%
pH Salinity (EC) Total Dissolved Solids	g/L mg/L	7.43 47800	7.38 30.50 42300	1% 12%	7.38 30.50 42300	7.69 31.2 47500	-4% -2% -12%	7.83	7.79 22.10 28900	1% -38%	7.79 22.10 28900	7.59 23.5 25500	3% -6% 13%	7.47	7.46	0% -20%	7.46	7.44 28.5 34500	-20%
Anions and Nutrients																			
Alkalinity, Bicarbonate (as CaCO3) Alkalinity, Carbonate (as	mg/L mg/L	<2	<2 <2		<2	<2			44.2 <2		44.2 <2	43.7	1%		77.3		77.3	106	-31%
CaCO3) Alkalinity, Hydroxide (as	mg/L		<2		<2	<2			<2		<2	<2			<1		<1	<2	1
CaCO3) Alkalinity, Total (as CaCO3)	mg/L		<2		<2	<2		44.2	44.2	0%	44.2	43.7	1%	49.7	77.3	-43%	77.3	106	-31%
Ammonia as N Bromide (Br) Chloride (CI)	mg/L mg/L mg/L	100 19000	101 19000	-1% 0%	101 19000	0.0631 101 18400	0% 3%	21.2 09130	38.1 13400	-57% -38%	38.1 13400	2.32 41.3 14200	-8% -6%	27.6 11500	36.4 13100	-28% -13%	36.4 13100	3.46 41 16500	-12% -23%
Fluoride (F) Nitrate (as N)	mg/L mg/L	<0.75 <0.5	<0.75 0.96	-70	<0.75 0.96	<0.75 <0.5	- 70	<0.75 <0.5	<0.75 <0.5	2370	<0.75 <0.5	<0.75 <0.5	-79	<0.75 <0.5	<0.75 <0.5	. 370	<0.75 <0.5	<0.75 <1	
Nitrite (as N) Ortho Phosphate as P Total Phosphate as P	mg/L mg/L mg/L	<0.1	<0.1 0.0264		<0.1 0.0264	<0.1 0.0086 0.0163	102%	<0.1	<0.1 0.0017		<0.1 0.0017	<0.1 <0.001 0.0162		<0.1	<0.1 <0.001		<0.1 <0.001	<0.2 <0.001 0.0389	
Silicate (as SIO2) Sulfate (SO4)	mg/L mg/L	0981	7.8 980	0%	7.8 980	<10 935	5%	0940	5.0 1390	-39%	5.0 1390	5.8 1500	-15% -8%	1160	3.8 1230	-6%	3.8 1230	7.5 1580	-65% -25%
Total Metals Aluminum (Al)-Total	mg/L	0.0992	0.0136	152%	0.0136	0.0086	45%	0.0281	0.0052	138%	0.0052	0.0059	-13%	0.0146	<0.005		<0.005	<0.005	
Antimony (Sb)-Total Arsenic (As)-Total Barium (Ba)-Total	mg/L mg/L	<0.0005 <0.002	<0.0005 <0.002	-3%	<0.0005 <0.002	<0.0005 <0.002	1%	0.00745	0.005 <0.002	39%	0.005 <0.002	<0.00461	8%	<0.00349	<0.0099	112%	0.00099 <0.002	<0.0054	59% 31%
Beryllium (Be)-Total Bismuth (Bi)-Total	mg/L mg/L mg/L	0.051 <0.0005 <0.0005	0.053 <0.0005 <0.0005		0.053 <0.0005 <0.0005	0.0521 <0.0005 <0.0005		0.130 <0.0005 <0.0005	0.175 <0.0005 <0.0005		0.175 <0.0005 <0.0005	0.169 <0.0005 <0.0005		0.179 <0.0005 <0.0005	0.177 <0.0005 <0.0005		0.177 <0.0005 <0.0005	0.129 <0.0005 <0.0005	
Boron (B)-Total Cadmium (Cd)-Total Calcium (Ca)-Total	mg/L mg/L mg/L	2.93 <0.00012 5070	2.89 0.000066 4960	1% 2%	2.89 0.000066 4960	3.25 0.000085 4700	-12% -25% 5%	1.04 <0.00012 0805	1.38 <0.00005 1140	-28% -34%	1.38 <0.00005 1140	1.50 <0.00005 1170	-8%	1.51 <0.00012 1020	1.53 <0.00005 1080	-1%	1.53 <0.00005 1080	2.8 <0.00005 1540	-59% -35%
Cesium (Cs)-Total Chromium (Cr)-Total	mg/L mg/L	0000 0.01	0.00102 0.0006	3% 160%	0.00102 0.0006	0.0011 0.0002	-8% 104%	0.00	0000	-23% 139%	0.00	0.00095 <0.0005	-4%	0.00097 0.0030	0.001	-3% 186%	0.001	0.00151 0.00016	-41% -37%
Cobalt (Co)-Total Copper (Cu)-Total Gallium (Ga)-Total	mg/L mg/L mg/L	<0.0005 0.0018 <0.0005	0.000073 0.00059 <0.0005	101%	0.000073 0.00059 <0.0005	0.000051 0.00102 <0.0005	35% -53%	<0.0005 <0.001 <0.0005	0.000092 <0.0005 <0.0005		<0.00092 <0.0005 <0.0005	0.000103 0.00061 <0.0005	-11%	<0.0005 <0.001 <0.0005	<0.00084 <0.0005 <0.0005		0.000084 <0.0005 <0.0005	0.000132 <0.0005 <0.0005	-44%
Iron (Fe)-Total Lead (Pb)-Total	mg/L mg/L	0.46 0.0013	0.24 <0.0003	62% 7%	0.24 <0.0003	0.197 <0.0003	20%	1.60 <0.001	2.94 0.00035	-59% -23%	2.94 0.00035	2.28 <0.0003	25%	3.95 <0.001	4.31 <0.0003	-9% 0%	4.31 <0.0003	11 <0.0003	-87% -44%
Lithium (Li)-Total Magnesium (Mg)-Total Manganese (Mn)-Total	mg/L mg/L mg/L	0.37 0071 0.72	0.346 064 0.72	10% -1%	0.346 064 0.72	0.381 67.8 0.712	-10% -5% 1%	0.093 0739 0.56	0.117 1010 0.95	-23% -31% -52%	0.117 1010 0.95	0.131 1080 0.892	-11% -7% 6%	0.128 867 1.09	0.128 797 1.15	8% -5%	0.128 797 1.15	0.2 1230 1.73	-44% -43% -40%
Mercury (Hg)-Total Molybdenum (Mo)-Total Nickel (Ni)-Total	mg/L mg/L	0.0136 0.00437	<0.00001 0.0089 0.00075	42% 141%	<0.00001 0.0089 0.00075	<0.00001 0.0088 0.00265	1% -112%	0.0403 0.00159	<0.00001 0.037 0.00059	9% 92%	<0.00001 0.037 0.00059	0.0361 0.00120	2% -68%	0.0225 0.00237	<0.00001 0.0244 <0.0005	-8%	<0.00001 0.0244 <0.0005	<0.00001 0.0072 <0.0005	109%
Phosphorus (P)-Total Potassium (K)-Total	mg/L mg/L mg/L	<1 040	<1 040	0%	<1 040	<1 39	3%	<1 125	<1 171	-31%	<1 171	<1 172	-1%	<1 166	<1 166	0%	<1 166	<1 262	-45%
Rhenium (Re)-Total Rubidium (Rb)-Total Selenium (Se)-Total	mg/L mg/L mg/L	<0.0005 000 <0.002	<0.0005 0.0526 <0.002	-5%	<0.0005 0.0526 <0.002	<0.0005 0.0531 <0.002	-1%	<0.0005 000 <0.002	<0.0005 000 <0.002	-30%	<0.0005 000 <0.002	<0.0005 0.102 <0.002	2%	<0.0005 0.0816 <0.002	<0.0005 0.0842 <0.002	-3%	<0.0005 0.0842 <0.002	<0.0005 0.104 <0.002	-21%
Silicon (Si)-Total Silver (Ag)-Total	mg/L mg/L	2.61 <0.0002	2.79 <0.0001	-7%	2.79 <0.0001	2.47 <0.0001	12%	2.88 <0.0002	3.5 <0.0001	-19%	3.5 <0.0001	3.82 0.00018	-9%	2.12 <0.0002	2.42 <0.0001	-13%	2.42 <0.0001	3.51 <0.0001	-37%
Sodium (Na)-Total Strontium (Sr)-Total Tellurium (Te)-Total	mg/L mg/L mg/L	7470 0060 <0.0005	7200 57.2 <0.0005	4% 5%	7200 57.2 <0.0005	6850 54.6 <0.0005	5% 5%	4460 0010 <0.0005	6410 0014 <0.0005	-36% -35%	6410 0014 <0.0005	6790 14.6 <0.0005	-6% -5%	5590 11.7 <0.0005	5530 11.1 <0.0005	1% 5%	5530 11.1 <0.0005	8990 16.4 <0.0005	-48% -39%
Thallium (TI)-Total Thorium (Th)-Total	mg/L mg/L	<0.0005 <0.0005	<0.0005 <0.0005		<0.00005 <0.0005	<0.0005 <0.0005		<0.0005 <0.0005	<0.0005 <0.0005		<0.00005 <0.0005	<0.0005 <0.0005		<0.0005 <0.0005	<0.00005 <0.0005		<0.0005	<0.0005 <0.0005	
Tin (Sn)-Total Titanium (Ti)-Total Tungsten (W)-Total	mg/L mg/L mg/L	<0.001 0.0082 <0.001	<0.001 <0.005 0.0014		<0.001 <0.005 0.0014	<0.001 <0.005 0.0016	-13%	<0.001 <0.005 0.0334	<0.001 <0.005 0.0247	30%	<0.001 <0.005 0.0247	<0.001 <0.005 0.0227	8%	<0.001 <0.005 0.0067	<0.001 <0.005 0.0051	27%	<0.001 <0.005 0.0051	<0.001 <0.005 0.0059	-15%
Uranium (U)-Total Vanadium (V)-Total Yttrium (Y)-Total	mg/L mg/L mg/L	<0.0005 0.00 <0.0005	<0.0005 <0.0005 0.00052		<0.0005 <0.0005 0.00052	<0.0005 <0.0005 0.00057	-9%	<0.0005 <0.0005 <0.0005	<0.0005 <0.0005 <0.0005		<0.00005 <0.0005 <0.0005	0.000059 <0.0005 <0.0005		<0.0005 <0.0005 <0.0005	0.000057 <0.0005 <0.0005		0.000057 <0.0005 <0.0005	<0.0005 <0.0005 <0.0005	1
Zinc (Zn)-Total Zirconium (Zr)-Total	mg/L mg/L	0.503	0.279	57%	0.279	0.285	-2%	0.195	0.236	-19%	0.236	0.115	69%	0.261	0.173	41%	0.173	0.107	47%
Dissolved Metals Aluminum (Al)-Dissolved	mg/L	<0.005	<0.005		<0.005	0.005		<0.005	<0.005		<0.005	<0.005		<0.005	<0.005		<0.005	<0.005	1
Antimony (Sb)-Dissolved Arsenic (As)-Dissolved Barium (Ba)-Dissolved	mg/L mg/L mg/L	<0.0005 <0.002 0.052	<0.0005 <0.002 0.053	-2%	<0.0005 <0.002 0.053	<0.0005 <0.002 0.0526	1%	0.00703 <0.002 0.120	0.0048 <0.002 0.178	38%	0.0048 <0.002 0.178	0.00393 <0.002 0.169	20%	0.00306 <0.002 0.169	0.00097 <0.002 0.178	104%	0.00097 <0.002 0.178	0.00053 <0.002 0.122	59% 37%
Beryllium (Be)-Dissolved Bismuth (Bi)-Dissolved	mg/L mg/L	<0.0005 <0.0005	<0.0005 <0.0005		<0.0005 <0.0005	<0.0005 <0.0005		<0.0005 <0.0005	<0.0005 <0.0005		<0.0005 <0.0005	<0.0005 <0.0005		<0.0005 <0.0005	<0.0005 <0.0005		<0.0005 <0.0005	<0.0005 <0.0005	
Boron (B)-Dissolved Cadmium (Cd)-Dissolved Calcium (Ca)-Dissolved	mg/L mg/L mg/L	2.99 <0.00012 4960	2.92 0.000083 4920	2% 1%	2.92 0.000083 4920	3.3 0.000097 4730	-12% -16% 4%	0.94 <0.00012 0749	1.38 <0.00005 1100	-38%	1.38 <0.00005 1100	1.48 <0.00005 1160	-7% -5%	1.42 <0.00012 1010	1.54 <0.00005 1110	-8% -9%	1.54 <0.00005 1110	2.86 <0.00005 1560	-60% -34%
Cesium (Cs)-Dissolved Chromium (Cr)-Dissolved	mg/L mg/L	0000 <0.001	0.00102 <0.0001	3%	0.00102 <0.0001	0.0011 <0.0001	-8%	0000 <0.001	0000 <0.0001	-31%	0000 <0.0001	0.00097 <0.0005	-3%	0.00092 <0.001	0.00104 <0.0001	-12%	0.00104 <0.0001	0.00148 <0.0001	-35%
Cobalt (Co)-Dissolved Copper (Cu)-Dissolved Gallium (Ga)-Dissolved	mg/L mg/L mg/L	<0.0005 <0.001 <0.0005	<0.0005 <0.0005 <0.0005		<0.0005 <0.0005 <0.0005	<0.00005 0.00067 <0.0005		<0.0005 <0.001 <0.0005	0.000087 <0.0005 <0.0005		0.000087 <0.0005 <0.0005	0.000091 <0.0005 <0.0005	-4%	<0.0005 <0.001 <0.0005	0.000102 <0.0005 <0.0005		0.000102 <0.0005 <0.0005	0.000187 0.00296 <0.0005	-59%
Iron (Fe)-Dissolved Lead (Pb)-Dissolved	mg/L mg/L	<0.05 <0.001	0.06 <0.0003	6%	0.06 <0.0003	0.075 <0.0003	-29% -11%	0.06 <0.001	0.13 <0.0003	-73% -32%	0.13 <0.0003	0.503 <0.0003	-119% -6%	2.68 <0.001 0.121	3.15 <0.0003	-16% -7%	3.15 <0.0003	8.94 <0.0003	-96% -43%
Lithium (Li)-Dissolved Magnesium (Mg)-Dissolved	mg/L mg/L	0.37	0.350	8%	0.350	0.39 68.1	-11%	0.087	0.12 0964	-32%	0.12	0.127 1080	-11%	0.121 849	0.13 869	-2%	0.13 869	0.201 1250	-45%
Manganese (Mn)-Dissolved Mercury (Hg)-Dissolved	mg/L mg/L	0.69	0.71	-2%	0.71	0.725	-2%	0.53	0.94	-57%	0.94	0.888	6%	1.04	1.17	-12%	1.17	1.69	-36%
Molybdenum (Mo)- Dissolved	mg/L	0.0128	0.0092	33%	0.0092	0.009	2%	0.0379	0.037	2%	0.037	0.0345	7%	0.0211	0.0259	-20%	0.0259	0.0044	142%
Nickel (Ni)-Dissolved Phosphorus (P)-Dissolved	mg/L mg/L	<0.0005	<0.0005		<0.0005 <1	0.00237 <1		0.00076	<0.0005 <1		<0.0005	0.00158		<0.0005	<0.0005		<0.0005	0.0006 <1	
Potassium (K)-Dissolved Rhenium (Re)-Dissolved	mg/L mg/L	039 <0.0005	039 <0.0005	0% -5%	039 <0.0005	40 <0.0005	-3% -1%	117 <0.0005	160 <0.0005	-31% -40%	160 <0.0005	172 <0.0005	-7%	160 <0.0005	173 <0.0005	-8% -10%	173 <0.0005	249 <0.0005	-36% -23%
Rubidium (Rb)-Dissolved Selenium (Se)-Dissolved Silicon (Si)-Dissolved	mg/L mg/L mg/L	000 <0.002 2.3	0.0528 <0.002 2.42	-5% -5%	0.0528 <0.002 2.42	0.0532 <0.002 2.43	-1%	000 <0.002 2.48	000 <0.002 2.88	-40%	000 <0.002 2.88	0.106 <0.002 3.33	3% -14%	0.0766 <0.002 1.99	0.085 <0.002 2.38	-10%	0.085 <0.002 2.38	0.107 <0.002 3.3	-23%
Silver (Ag)-Dissolved Sodium (Na)-Dissolved Strontium (Sr)-Dissolved	mg/L mg/L	<0.0002 7290	<0.0001 7200	1% 4%	<0.0001 7200	<0.0001 6910	4% 3%	<0.0002 4130	<0.0001 6010	-37% -37%	<0.0001 6010	<0.0001 6810	-12% -11%	<0.0002 5400	<0.0001 5780	-7% -3%	<0.0001 5780	<0.0001 8700	-40% -36%
Tellurium (Te)-Dissolved Thallium (TI)-Dissolved	mg/L mg/L mg/L	0059 <0.0005 <0.0005	56.7 <0.0005 <0.00005	497b	56.7 <0.0005 <0.00005	55.1 <0.0005 <0.00005	376	<0.0005 <0.0005	0013 <0.0005 <0.00005	-31%	0013 <0.0005 <0.00005	14.6 <0.0005 <0.00005	-1176	11.3 <0.0005 <0.0005	11.7 <0.0005 <0.00005	-3%	11.7 <0.0005 <0.00005	16.8 <0.0005 <0.00005	-30%
Thorium (Th)-Dissolved Tin (Sn)-Dissolved Titanium (Ti)-Dissolved	mg/L mg/L mg/L	<0.0005 <0.001 <0.005	<0.0005 <0.001 <0.005		<0.0005 <0.001 <0.005	<0.0005 <0.001 <0.005		<0.0005 <0.001 <0.005	<0.0005 <0.001 <0.005		<0.0005 <0.001 <0.005	<0.0005 <0.001 <0.005		<0.0005 <0.001 <0.005	<0.0005 <0.001 <0.005		<0.0005 <0.001 <0.005	<0.0005 <0.001 <0.005	
Tungsten (W)-Dissolved Uranium (U)-Dissolved	mg/L mg/L	<0.001 <0.0005	0.0014 <0.00005		0.0014 <0.00005	0.0015 <0.00005	-7%	0.0316 <0.0005	0.0246 <0.00005	25%	0.0246 <0.00005	0.0231 0.000058	6%	0.0059 <0.0005	0.005 0.000059	17%	0.005 0.000059	0.006 <0.00005	-18%
Vanadium (V)-Dissolved Yttrium (Y)-Dissolved Zinc (Zn)-Dissolved	mg/L mg/L mg/L	<0.0005 <0.0005 0.0897	<0.0005 0.00051 0.1130	-23%	<0.0005 0.00051 0.1130	<0.0005 0.00054 0.137	-6% -19%	<0.0005 <0.0005 0.02	<0.0005 <0.0005 0.0705	-116%	<0.0005 <0.0005 0.0705	<0.0005 <0.0005 0.0295	82%	<0.0005 <0.0005 0.0504	<0.0005 <0.0005 0.061	-19%	<0.0005 <0.0005 0.061	<0.0005 <0.0005 0.0851	-33%
Zirconium (Zr)-Dissolved	mg/L mg/L	<0.0005	<0.0005	20/6	<0.0005	<0.0005	1 07 70	<0.0005	<0.0005	710%	<0.0005	<0.0005	J2 /6	<0.0005	<0.0005	10/0	<0.0005	<0.0005	3376

RPDs greater than 20% are highlighted, to show parameters with the greatest variation between samples.

Table N2: Comparison of Duplicate Samples

Table N2: Comparison of	Duplica	te Samples Dupl	icato	RPD	Dun	licate	RPD	Dun	licate	RPD	Dun	icate	RPD
Field Sample ID / Unique ID	Units	10WBW001- 03b	10WBW001- 04b	RPD	10WBW001- 15	10WBW001- 16	ערא	10WBW001- 25	10WBW001- 26	KPD	10WBW001- 02a	10WBW001- 04a	RPD
Sample From		Westbay Port	Westbay Port		Westbay airlift	Westbay airlift		Westbay airlift	Westbay airlift		Other	Other	
Sample Label		10WBW001- Zone 10-Port	10WBW001- Zone 10-Port		10WBW001- Zone 10-Airlift	10WBW001- Zone 10-Airlift		10WBW001- Zone 1-Airlift	10WBW001- Zone 1-Airlift Final-S26D		10WBW001 Drill Tank	10WBW001 Drill Tank Dup	
Sample Zone		Initial-S03b	InitialD-S04b		Purge-S15	Final-S16D 10		Final-S25	1 1		n/a	n/a	
Location of port in zone		Тор	Тор		Bottom	Bottom		Middle	Middle		n/a	n/a	
Zone port drillhole depth Total Litres purged from zone		63.5	63.5		107.50 3008	107.50 3008		554.00 3065	554.00 3065		n/a n/a	n/a n/a	
before sample was taken Zone volumes purged before													
sample was taken ALS DATA		0.0	0.3		11.0	11.0		26.2	26.2		n/a	n/a	
ALS Date Sampled ALS Time Sampled		09-JUL-10 14:00	09-JUL-10 14:00		21-JUL-10 16:28	21-JUL-10 17:28		25-JUL-10 12:37	25-JUL-10 12:37		25-APR-10 16:00	25-APR-10 16:00	
Matrix		Water	Water		Water	Water		Water	Water		Water	Water	
Physical Tests													
Conductivity (EC) Density	uS/cm	27600 1.00	27500 1.01	0% -1%	46500	46600	0%	47600	47600	0%	335	339	-1%
Hardness (as CaCO3)	mg/L pH	4960 7.37	5060 7.42	-2% -1%	8360 7.35	9250 7.39	-10% -1%	11500 7.65	11100 7.72	4% -1%	57.8 7.20	59.8 7.26	-3% -1%
Total Dissolved Solids	mg/L	18700	18500	1%	32200	32700	-2%	33300	32400	3%	197	202	-3%
Anions and Nutrients		00.0	04.0	2%	00.0	04.7	1%				25.0	05.0	1%
Alkalinity, Total (as CaCO3) Chloride (CI)	mg/L mg/L	66.3 9650	64.8 9610	0%	82.3 17700	81.7 18200	-3%	18700	18800	-1%	35.6 83.4	35.2 82.5	1%
Fluoride (F) Nitrate (as N)	mg/L mg/L	<5 <5	<5 <5		<1 <1	<1 <1		<1 <1	<1 <1		0.069 0.053	0.069 <0.050	0%
Nitrite (as N) Sulfate (SO4)	mg/L mg/L	<5 995	<5 991	0%	<1 1750	<1 1790	-2%	<1 0960	<1 0964	0%	<0.050 4.05	<0.050 3.70	9%
Additional Anions and		-50										2.70	
Nutrients		00.5	70.0	001	400	00.0	001	0.10	0/10	F01	40.1	40.0	401
Bicarbonate (HCO3) Carbonate (CO3)	mg/L mg/L	80.9 <5	79.0 <5	2%	100 <5	99.6 <5	0%	010 <5	010 <5	5%	43.4 <5.0	43.0 <5.0	1%
Hydroxide (OH) Ion Balance	mg/L %	<5 101	<5 103	-2%	<5 96.6	<5 109	-12%	<5 95.5	<5 89.8	6%	<5.0 93.7	<5.0 99.3	-6%
Nitrate and Nitrite as N TDS (Calculated)	mg/L mg/L	<7.1 16800	<7.1 16900	-1%	<1.4 30300	<1.4 32600	-7%	<1.4 31000	<1.4 30500	2%	<0.071 170	<0.071 171	-1%
	IIIg/L	10000	10900	-170	30300	32000	-770	31000	30300	270	170	171	-170
Total Metals Aluminum (Al)-Total Antimony (Sb)-Total	mg/L	<0.2	<0.2		<2	<2		<2	<2		0.014	0.021	-40%
Antimony (Sb)-Total Arsenic (As)-Total	mg/L mg/L	<0.008	<0.008		<0.08	<0.08	-8%	<0.08	<0.08	98%	<0.00040 0.00076	<0.00040 0.00067	13%
Barium (Ba)-Total Beryllium (Be)-Total	mg/L mg/L	0.187 <0.02	0.185 <0.02	1%	0.102 <0.2	0.113 <0.2	-10%	0.054 <0.2	0.059 <0.2	-9%	0.0050 <0.0010	0.0057 <0.0010	-13%
Boron (B)-Total	mg/L	1.34	1.37	-2%	2.32	2.31	0%	2.56	2.50	2%	< 0.050	< 0.050	
Cadmium (Cd)-Total Calcium (Ca)-Total	mg/L mg/L	<0.001 851	<0.001 867	-2%	<0.01 1590	<0.01 1580	1%	<0.01 4430	<0.01 4380	1%	<0.000050 10.5	<0.000050 10.8	-3%
Chromium (Cr)-Total Cobalt (Co)-Total	mg/L mg/L	<0.016 <0.004	0.024 <0.004		0.61 <0.04	0.66 <0.04	-8%	0.62 <0.04	0.74 <0.04	-18%	<0.0050 <0.0020	<0.0050 <0.0020	
Copper (Cu)-Total Iron (Fe)-Total	mg/L mg/L	<0.02 3.53	<0.02 3.65	-3%	<0.2 7.15	<0.2 7.14	0%	<0.2 0.15	<0.2 0.16	-6%	0.0040 0.118	0.0054 0.149	-30% -23%
Lead (Pb)-Total	mg/L	< 0.002	< 0.002		< 0.02	< 0.02	070	< 0.02	< 0.02	-070	0.00063	0.00018	111%
Lithium (Li)-Total Magnesium (Mg)-Total	mg/L mg/L	0.13 726	0.14 736	-7% -1%	<1.2 1290	<1.2 1290	0%	<1.2 0051	<1.2 0053	-4%	<0.010 8.59	<0.010 8.73	-2%
Manganese (Mn)-Total Mercury (Hg)-Total	mg/L mg/L	1.04 <0.0001	1.06 <0.0001	-2%	1.73 <0.0001	1.76 <0.0001	-2%	0.62 <0.0001	0.64 <0.0001	-4%	0.0066 <0.00010	0.0072 <0.00010	-9%
Molybdenum (Mo)-Total Nickel (Ni)-Total	mg/L mg/L	0.0244 0.0138	0.0237 0.0144	3% -4%	<0.02 <0.04	<0.02 <0.04		<0.02 0.068	<0.02 0.074	-8%	<0.0050 <0.0020	<0.0050 <0.0020	
Potassium (K)-Total	mg/L	114	116	-2%	294	292	1%	044	045	-3%	3.13	3.14	0%
Selenium (Se)-Total Silver (Ag)-Total	mg/L mg/L	<0.4 <0.002	<0.4 <0.002		<0.4 <0.02	<0.4 <0.02		<0.4 <0.02	<0.4 <0.02		0.00058 <0.00050	0.00057 <0.00050	2%
Sodium (Na)-Total Thallium (TI)-Total	mg/L mg/L	4860 <0.002	4930 <0.002	-1%	9260 <0.02	9580 <0.02	-3%	7420 <0.02	7870 <0.02	-6%	43.0 <0.00010	43.9 <0.00010	-2%
Tin (Sn)-Total Titanium (Ti)-Total	mg/L mg/L	<0.05 <0.012	<0.05 <0.012		<0.08 <0.12	<0.08 <0.12		<0.08 <0.12	<0.08 <0.12		<0.050 <0.0010	<0.050 <0.0010	
Uranium (U)-Total	mg/L	<0.002	<0.002		<0.02	<0.02	-10%	<0.02	<0.02	-9%	< 0.00010	< 0.00010	
Vanadium (V)-Total Zinc (Zn)-Total	mg/L mg/L	<0.08	<0.08		<0.8	<0.8	-10%	<0.8	<0.8	-976	<0.0010 0.0131	<0.0010 0.0252	-63%
Dissolved Metals											<u> </u>		
Aluminum (Al)-Dissolved Antimony (Sb)-Dissolved	mg/L mg/L	0.13 <0.008	<0.1 <0.008		<1 <0.08	<1 <0.08		<1 <0.08	<1 <0.08		<0.010 <0.00040	<0.010 <0.00040	
Arsenic (As)-Dissolved	mg/L	<0.08 0.186	<0.08 0.188	-1%	0.091 0.100	0.097 0.097	-6% 3%	<0.08 0.051	0.090 0.052	-2%	0.00066 0.0040	0.00068 0.0042	-3% -5%
Barium (Ba)-Dissolved Beryllium (Be)-Dissolved	mg/L mg/L	< 0.01	<0.01		<0.1	<0.1		<0.1	<0.1		< 0.0010	< 0.0010	-5%
Boron (B)-Dissolved Cadmium (Cd)-Dissolved	mg/L mg/L	1.31 <0.001	1.38 <0.001	-5%	2.23 <0.01	2.32 <0.01	-4%	2.87 <0.01	2.74 <0.01	5%	<0.050 <0.00050	<0.050 <0.000050	
Calcium (Ca)-Dissolved Chromium (Cr)-Dissolved	mg/L mg/L	822 0.0178	837 0.0264	-2% -39%	1420 0.747	1560 0.874	-9% -16%	4520 0.351	4360 0.532	4% -41%	10.1 <0.0050	10.3 <0.0050	-2%
Cobalt (Co)-Dissolved	mg/L	<0.002 <0.012	<0.002 <0.002 <0.012		<0.02 0.19	<0.02 <0.12		<0.02 <0.12	<0.02 <0.12		<0.0020 0.0028	<0.0020 0.0028	0%
Copper (Cu)-Dissolved Iron (Fe)-Dissolved	mg/L mg/L	1.88	1.63	14%	5.77	6.25	-8%	<0.15	<0.15		0.072	0.075	-4%
Lead (Pb)-Dissolved Lithium (Li)-Dissolved	mg/L mg/L	<0.002 0.128	<0.002 0.136	-6%	<0.02 <0.6	<0.02 <0.6		<0.02 <0.6	<0.02 <0.6		0.00015 0.0034	0.00012 <0.0030	22%
Magnesium (Mg)-Dissolved Manganese (Mn)-Dissolved	mg/L mg/L	707 1.01	721 1.01	-2% 0%	1170 1.56	1300 1.72	-11% -10%	0046 0.544	0045 0.53	2% 2%	7.90 0.0054	8.28 0.0056	-5% -4%
Mercury (Hg)-Dissolved	mg/L mg/L	<0.0001 0.0240	<0.0001 0.0239	0%	<0.0001 <0.02	<0.0001 <0.02		<0.0001 <0.02	<0.0001 <0.02		<0.00010 <0.0050	<0.00010 <0.0050	
Molybdenum (Mo)-Dissolved Nickel (Ni)-Dissolved	mg/L	0.0146	0.0159	-9%	< 0.02	< 0.02	0701	0.061	0.066	-8%	< 0.0020	< 0.0020	001
Potassium (K)-Dissolved Selenium (Se)-Dissolved	mg/L mg/L	129 <0.4	131 <0.4	-2%	206 <0.4	294 <0.4	-35%	039 <0.4	037 <0.4	4%	2.47 0.00044	2.67 0.00060	-8% -31%
Silver (Ag)-Dissolved Sodium (Na)-Dissolved	mg/L mg/L	<0.002 4470	<0.002 4540	-2%	<0.02 7970	<0.02 9450	-17%	<0.02 6730	<0.02 6260	7%	<0.00010 40.0	<0.00010 42.0	-5%
Thallium (TI)-Dissolved	mg/L	<0.001 <0.05	<0.001 <0.05		<0.01 <0.05	0.010 <0.05		<0.01 <0.05	<0.01	**	<0.00010 <0.050	<0.00010 <0.050	
Tin (Sn)-Dissolved Titanium (Ti)-Dissolved	mg/L mg/L	0.0135	0.0081	50%	<0.06	< 0.06		<0.06	<0.05 <0.06		< 0.0010	<0.0010	
Uranium (U)-Dissolved Vanadium (V)-Dissolved	mg/L mg/L	<0.002 0.077	<0.002 0.099	-25%	<0.02 0.259	<0.02 0.292	-12%	<0.02 0.122	<0.02 0.174	-35%	<0.00010 <0.0010	<0.00010 <0.0010	
Zinc (Zn)-Dissolved	mg/L	0.026	0.022	17%	0.22	<0.2		<0.2	<0.2		0.0032	0.0038	-17%
Isotope Chemistry Delta 2H x 1000		-110.12	-109.57	1%	-77.72	-77.67	0%	-138.13	-138.57	0%	? -19.16	? -19.25	0%
Delta 180 x 1000		-110.12 -14	-13.96	0%	-11.72	-10.18	-2%	-138.13	-138.57	0%	-15.10	-15.20	070

RPDs greater than 20% are highlighted, to show parameters above the recommended duplicate limits.

Table N3: Ion Balance Assessment

Table N3: Ion Balance Assessment										
	Alkalinitu			Calcium	Magnasium	Datassium	Codium			
	Alkalinity,	Chlorida	Sulfate	(Ca)-	Magnesium	Potassium	Sodium (Na)-	Cation	Anion	lon
Samula labal	Total (as	Chloride		Dissolved	(Mg)- Dissolved	(K)-	` ,		Anion	lon
Sample label	CaCO3)	(CI)	(SO4)			Dissolved	Dissolved	Balance	Balance	Balance
Units	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	meq/L	meq/L	% diff
Doris Lake Winter	34.4	76.6	3.44	9.3	7.37	2.31	38	2.78	2.92	2.38
10WBW001 Drill Tank	35.6	83.4	4.05	10.1	7.9	2.47	40	2.96	3.15	3.10
10WBW001 Casing Flow	52.9	1960	195	111	140	34.2	1110	66.19	60.33	4.63
10WBW001 Drill Tank Dup	35.2	82.5	3.7	10.3	8.28	2.67	42	3.09	3.10	0.25
equipment blank DI										
10WBW001-Zone 1-Port Initial-S01b		18200	1020	4390	172	54	6840	531.98	533.91	0.18
10WBW001-Zone 6-Port Initial-S02b	87.3	20100	2090	1640	1430	251	9080	600.69	611.46	0.89
10WBW001-Zone 10-Port Initial-S03b	66.3	9650	995	822	707	129	4470	296.83	293.87	0.50
10WBW001-Zone 10-Port InitialD-S04b	64.8	9610	991	837	721	131	4540	301.83	292.63	1.55
Doris Lake Summer	31.8	60.3	2.42	9.7	5.96	2.11	29.6	2.32	2.38	1.48
10WBW001-Zone 10-Airlift Purge-S12	90.6	15200	1490	1230	990	225	7130	458.58	461.00	0.26
10WBW001-Zone 10-Airlift Purge-S14	83.3	17100	1700	1340	1070	245	7840	502.03	518.75	1.64
10WBW001-Zone 10-Airlift Purge-S15	82.3	17700	1750	1420	1170	206	7970	518.91	536.67	1.68
10WBW001-Zone 10-Airlift Final-S16D	81.7	18200	1790	1560	1300	294	9450	603.18	551.58	4.47
10WBW001-Zone 1-Port Purge-S17		19100	1010	4480	80.3	42.5	6810	527.33	559.06	2.92
10WBW001-Zone 1-Airlift Purge - S20		19000	997	4260	65.6	39.1	6480	500.71	555.97	5.23
RO Water	<5	0.65	<0.5	0.75	0.12	<0.5	1.4			
10WBW001-Zone 1-Airlift Final-S25		18700	960	4520	46.1	38.5	6730	522.93	546.75	2.23
10WBW001-Zone 1-Airlift Final-S26D		18800	964	4360	45	37	6260	494.39	549.65	5.29
10WBW001-Zone 6-Airlift Purge -S28	63.4	15900	1690	1150	1070	170	6450	430.20	484.34	5.92
10WBW001-Zone 6-Airlift Purge-S31	67.7	16500	1760	1330	1270	186	7910	519.52	502.79	1.64
10WBW001-Zone 6-Airlift Final-S33	70.8	17100	1820	1390	1310	194	8160	536.88	521.00	1.50
Westbay Sampler Bottles Equipment blank	<5	7.03	<0.5	<0.5	0.24	<0.5	1.4			
10WBW001-Zone 1-Port Final-S35		19000	981	4960	69.5	39	7290	571.18	555.64	1.38
10WBW001-Zone 6-Port Final-S36	44.2	9130	940	749	702	117	4130	277.69	277.64	0.01
10WBW001-Zone 10-Port Final-S37	49.7	11500	1160	1010	849	160	5400	359.12	349.09	1.42
10WBW001-Zone 1-Port after 2mths-S100	<2	19000	980	4920	64.1	39	7200			
10WBW001-Zone 6-Port after 2mths-S101	44.2	13400	1390	1100	964	160	6010	399.60	407.29	0.95
10WBW001-Zone 10-Port after 2mths-S102	77.3	13100	1230	1110	869	173	5780	382.61	396.17	1.74
10WBW001-Zone 6-Airlift 160L sample-S103	72.4	19000	2020	1550	1490	233	9130	602.84	578.72	2.04
Gas Can Rinsate blank	<2	<0.5	<0.5	0.224	<0.1	<2	<2			
10WBW001-Zone 10-Port after bulk-S105	106	16500	1580	1560	1250	249	8700	565.31	499.80	6.15
10WBW001-Zone 1-Port after bulk-S106	<2	18400	935	4730	68.1	40	6910			
10WBW001-Zone 6-Airlift 80L sample-S107	76.5	19100	2000	1520	1450	229	8980	591.43	581.20	0.87
10WBW001-Zone 6-Port after bulk-S108	43.7	14200	1500	1160	1080	172	6810	447.22	432.10	1.72
10WBW002-Zone 1-Port Initial-S01	56	114000	<100	72100	113	39	655		.52.10	
10WBW002-Zone 1-Port Purge-S02	59.5	123000	<100	79800	124	52	300			
10WBW002-Zone 1-Port Purge-S109a	33.3	123000	100	74700	110	<200	1680			
10WBW002-Zone 1-Port Purge-S109b				74700	110	1200	1000			
Glycol & water mix from inside Westbay 10WBW002	42.8	46800	<500	29400	65	<200	<200			
10WBW002-Zone 1-Port Purge-S121	59	133000	<2500	73100	113	<200	490			
Glycol & water mix prepared at camp	46.1	53	<50	8.55	5.9	31	30			
, , , , , ,	7.9	7.58	1.63	3	1.42	0.72	3.8	0.45	0.41	5.23
Spyder Lake								0.45		
10WBW004 - Drill Tank Beginning	41.9	16400	50	8320	84.7	83 12.6	439	443.35	463.85	2.26
10WBW004 - Drill Tank End	13	7530	5.28	4330	18.7	12.6	62.7	220.65	212.48	1.89
10WBW004 - Zone 6-Port Initial-S123	35.8	12100	244	5050	311	47	1820	357.91	346.64	1.60
10WBW004 - Zone 6-Port Purge-S124	35.5	12400	264	4630	312	47	1820	337.04	355.50	2.67
10WBW004 - Zone 6-Port Purge-S125	35.3	12400	260	4580	309	47	1790	332.99	355.41	3.26
10WBW004 - Zone 6-Port Purge-S126	40	13700	336	4180	404	48	2410	347.83	393.71	6.19
10WBW004 - Zone 6-Port Purge-S128	48.7	12600	322	4230	365	48	2200	337.99	362.61	3.51
10WBW004 - Zone 6-Port Purge-S129	50.5	13400	349	4350	425	50	2510	362.44	385.74	3.11
10WBW004 - Zone 6-Port Purge-S130	53	13400	347	4620	432	53	2600	380.48	385.75	0.69
10WBW004 - Zone 6-Port Purge Final Dec-S131	53.5	12800	330	4080	387	49	2330	337.99	368.50	4.32

Table N4: Evaluation of Blank Samples

Table N4: Evaluation of Blank Samp	les											
Sample label	Units	10WBW001-Zone 6-Port Final-S36	equipment blank DI	% of ground water sample	RO Water	% of ground water sample	Westbay Sampler Bottles Equipment blank	% of ground water sample	Gas Can Rinsate blank	% of ground water sample	10WBW004 Rinsate blank	% of ground water sample
Field Sample ID		10WBW001-36	10WBW001-05	·	10WBW001-22		10WBW001-34		10WBW001-104		10WBW004-127	
Tielu Sample ID		Groundwater	1044544001-03		100000001-22							
Sample Comments		sample for comparison with	Equipment blank DI water		RO blank		Rinse blank of Westbay sampler probe bottles		DI water rinsate of gas cans used in bulk samples.		Rinsate blank of Westbay sample probe	
ALS DATA		blank samples										
ALS File No.		L917645	L880950		L915201		L915201		L948685		L960194	
Date Lab Received		09-Aug-10 09:10	27-Apr-10 15:23		01-Aug-10 11:24		01-Aug-10 11:24		29-Oct-10 10:28		03-Dec-10 17:00	
ALS Report Date		20-Aug-10	06-May-10		13-Aug-10		13-Aug-10		22-Nov-10		22-Dec-10	
RESULTS OF ANALYSIS ALS SRK Sample ID		10WBW001-36	10WBW001-05		10WBW001-22		10WBW001-34		10WBW001-104		10WBW004-127	-
ALS Date Sampled		05-AUG-10	25-APR-10		26-JUL-10		28-JUL-10		25-OCT-10		26-NOV-10	
ALS Time Sampled		09:00	00:00		09:10		11:00		00:00		18:00	
ALS Sample ID		L917645-2	L880950-5		L915201-8		L915201-22		L948685-1		L960194-8	
Matrix		Seawater	Water		Water		Water		Water		Water	
Physical Tests												-
Conductivity (EC)	uS/cm	24600			5.97	0.0%	24.7	0.1%	<2		28.3	0.1%
Density									1.00		1.01	
Hardness (as CaCO3)	mg/L	4760			2.4	0.1%	<1		0.56	0.0%	0.04	1
pH Salinity (EC)	pH g/L	7.83			6.38	1	6.11		7.29	1	6.34	
Total Dissolved Solids	mg/L	19600			10.0	0.1%	18.0	0.1%	<10	1	12	0.1%
									-			
Anions and Nutrients						ļ				ļ		<u> </u>
Alkalinity, Bicarbonate (as CaCO3)	mg/L					1	1		<2		<1.0	
Alkalinity, Carbonate (as CaCO3)	mg/L					 	+		<2	 	<1.0	
Alkalinity, Hydroxide (as CaCO3)	mg/L								<2		<1.0	
Alkalinity, Total (as CaCO3)	mg/L	44.2			<5		<5		<2		<1.0	ļ
Ammonia as N	mg/L	21.2				!	 		<0.005 <0.05	 	<0.050	
Bromide (Br) Chloride (CI)	mg/L mg/L	9130			0.65	0.0%	7.03	0.1%	<0.05	 	<0.050 6.33	0.1%
Fluoride (F)	mg/L	<0.75			<0.05	0.070	<0.05	0.170	<0.02		<0.020	0.170
Nitrate (as N)	mg/L	<0.5			< 0.05		< 0.05		<0.005		< 0.0050	
Nitrite (as N)	mg/L	<0.1			<0.05		<0.05		<0.001		<0.0010	
Ortho Phosphate as P Total Phosphate as P	mg/L mg/L								0.0052			
Silicate (as SIO2)	mg/L								<1			
Sulfate (SO4)	mg/L	940			<0.5		<0.5		<0.5		<0.50	
Additional Anions and Nutrients Bicarbonate (HCO3)	mg/L				<5		<5					-
Carbonate (CO3)	mg/L				<5		<5					
Hydroxide (OH)	mg/L				<5		<5					
Ion Balance	%				Low EC		Low EC					
Nitrate and Nitrite as N TDS (Calculated)	mg/L mg/L				<0.071 2.9		<0.071 8.7					<u> </u>
1 D3 (Calculateu)	IIIg/L				2.5		0.7					1
Total Metals												
Aluminum (Al)-Total	mg/L	0.0281	<0.010		<0.01		<0.01		0.0086	30.6%		
Antimony (Sb)-Total Arsenic (As)-Total	mg/L mg/L	0.00745 0.003	<0.00040 <0.00040		<0.0004 <0.0004		<0.0004 <0.0004		<0.00001 <0.00005			
Barium (Ba)-Total	mg/L	0.130	<0.0030		<0.003		<0.003		0.00017	0.1%		
Beryllium (Be)-Total	mg/L	< 0.0005	<0.0010		<0.001		<0.001		< 0.000005			
Bismuth (Bi)-Total	mg/L	<0.0005							<0.00005	0.00/		
Boron (B)-Total Cadmium (Cd)-Total	mg/L mg/L	1.04 <0.00012	<0.050 <0.00050		<0.05 <0.0005		<0.05 0.000190		0.0097 <0.00005	0.9%		+
Calcium (Ca)-Total	mg/L	0805	<0.50		<0.5		<0.5		<0.05			
Cesium (Cs)-Total	mg/L	0000							< 0.000005			
Chromium (Cr)-Total	mg/L	0.00 <0.0005	<0.0050 <0.0020		<0.005 <0.002	 	<0.005 <0.002		<0.0005 <0.0005	 		
Cobalt (Co)-Total Copper (Cu)-Total	mg/L mg/L	<0.0005	<0.0020		<0.002 0.0807	 	<0.002		<0.00005 0.0161	 		
Gallium (Ga)-Total	mg/L	<0.0005							< 0.00005			
Iron (Fe)-Total	mg/L	1.60	<0.010		<0.01		0.037	2.3%	<0.03			
Lead (Pb)-Total Lithium (Li)-Total	mg/L mg/L	<0.001 0.093	<0.00010 <0.010		0.00244 <0.01	 	0.00067 <0.01		0.00114 <0.0002	 	 	├──
Magnesium (Mg)-Total	mg/L	0739	<0.00		<0.01	1	<0.01		<0.002	1		
Manganese (Mn)-Total	mg/L	0.56	< 0.0020		< 0.002		0.0023	0.4%	< 0.0002			
Mercury (Hg)-Total	mg/L	0.0100	<0.00010		<0.0001		<0.0001		<0.00005			
Molybdenum (Mo)-Total Nickel (Ni)-Total	mg/L mg/L	0.0403 0.00159	<0.0050 <0.0020		<0.005 <0.002	 	<0.005 <0.002		<0.0005 <0.0002	 	 	├──
Phosphorus (P)-Total	mg/L	<1	~0.002U		\U.UUZ	1	\U.UUZ		<0.0002	1		
Potassium (K)-Total	mg/L	125	<0.10		<0.1		<0.1		<2			
Rhenium (Re)-Total	mg/L	<0.0005							<0.000005			
Rubidium (Rb)-Total Selenium (Se)-Total	mg/L mg/L	000 <0.002	<0.00040		<0.0004	 	<0.0004		<0.00002 <0.0002	 	-	
Silicon (Si)-Total	mg/L	2.88	~J.UUU4U		\U.UUU4	1	~U.UUU4		<0.002	1		
Silver (Ag)-Total	mg/L	< 0.0002	<0.00050		<0.0001		<0.0001		0.0000058			
Sodium (Na)-Total	mg/L	4460	<1.0		<1		<1		<2			
Strontium (Sr)-Total Tellurium (Te)-Total	mg/L mg/l	0010 <0.0005				 	_		<0.005 <0.00001	 		
Thallium (TI)-Total	mg/L mg/L	<0.0005	<0.00010		<0.0001	 	<0.0001		<0.00001	 		
Thorium (Th)-Total	mg/L	<0.0005	10.00010		10.0001		10.0001		<0.000002			
Tin (Sn)-Total	mg/L	<0.001	<0.050		<0.05		<0.05		<0.0002			
Titanium (Ti)-Total	mg/L	<0.005	<0.0010		<0.001	ļ	<0.001		<0.0002	ļ		<u> </u>
Tungsten (W)-Total Uranium (U)-Total	mg/L mg/L	0.0334 <0.0005	<0.00010		<0.0001	1	<0.0001		<0.00001 0.0000020	-		
Vanadium (V)-Total	mg/L	<0.0005	<0.0010		<0.001	1	<0.001		<0.00005	1		
Yttrium (Y)-Total	mg/L	< 0.0005							< 0.000005			
Zinc (Zn)-Total	mg/L	0.195	<0.0040		0.0408	20.9%	0.0300	15.4%	0.0056	2.9%		<u> </u>
Zirconium (Zr)-Total	mg/L	<0.0005			 	 	-		<0.00005	 	-	+
					L	l	1		L	l	L	

Sample label	Units	10WBW001-Zone 6-Port Final-S36	equipment blank DI	% of ground water sample	RO Water	% of ground water sample	Westbay Sampler Bottles Equipment blank	% of ground water sample	Gas Can Rinsate blank	% of ground water sample	10WBW004 Rinsate blank	% of ground water sample
Field Sample ID		10WBW001-36	10WBW001-05		10WBW001-22		10WBW001-34		10WBW001-104		10WBW004-127	
Sample Comments		Groundwater sample for comparison with blank samples	Equipment blank DI water		RO blank		Rinse blank of Westbay sampler probe bottles		DI water rinsate of gas cans used in bulk samples.		Rinsate blank of Westbay sample probe	
Dissolved Metals												
Aluminum (Al)-Dissolved	mg/L	< 0.005	<0.010		<0.01		<0.01		< 0.003			
Antimony (Sb)-Dissolved	mg/L	0.00703	<0.00040		< 0.0004		< 0.0004		0.000021	0.3%		
Arsenic (As)-Dissolved	mg/L	< 0.002	<0.00040		<0.0004		< 0.0004		< 0.00005			
Barium (Ba)-Dissolved	mg/L	0.120	< 0.0030		< 0.003		< 0.003		0.00044	0.4%		
Beryllium (Be)-Dissolved	mg/L	<0.0005	<0.0010		<0.001		<0.001		<0.00005			
Bismuth (Bi)-Dissolved	mg/L	<0.0005							<0.00005			
Boron (B)-Dissolved	mg/L	0.94	<0.050		< 0.05		<0.05		<0.005			
Cadmium (Cd)-Dissolved	mg/L	<0.00012	<0.000050		<0.00005		<0.00005		0.0000102			<u> </u>
Calcium (Ca)-Dissolved	mg/L	749			0.75	0.1%	<0.5		0.224	0.0%		
Cesium (Cs)-Dissolved	mg/L	0.00069							<0.00005			
Chromium (Cr)-Dissolved	mg/L	<0.001	<0.0050		< 0.005		<0.005		<0.0005			
Cobalt (Co)-Dissolved	mg/L	<0.0005	<0.0020		<0.002		< 0.002		<0.00005			
Copper (Cu)-Dissolved	mg/L	<0.001	<0.0010		0.0031		<0.001		0.0123			Ļ
Gallium (Ga)-Dissolved	mg/L	<0.0005							<0.0005			
Iron (Fe)-Dissolved	mg/L	0.06			< 0.03		< 0.03		< 0.03			
Lead (Pb)-Dissolved	mg/L	<0.001	<0.00010		<0.0001		<0.0001		0.00114			
Lithium (Li)-Dissolved	mg/L	0.087	<0.0030		<0.003	0.00/	<0.003	0.00/	<0.0002			
Magnesium (Mg)-Dissolved	mg/L	702			0.12	0.0%	0.24	0.0%	<0.1			
Manganese (Mn)-Dissolved	mg/L	0.53	0.00040		<0.005 <0.0001	1	<0.005 <0.0001		<0.0002			
Mercury (Hg)-Dissolved	mg/L mg/L	0.0379	<0.00010 <0.0050		<0.0001		<0.0001		<0.00005 <0.00005			
Molybdenum (Mo)-Dissolved Nickel (Ni)-Dissolved	mg/L mg/L	0.0076	<0.0050		<0.005		<0.005		<0.0005			
Phosphorus (P)-Dissolved	mg/L	<1	<0.0020		<0.002		<0.002		<0.0002			
Potassium (K)-Dissolved	mg/L	117			<0.5		<0.5		<0.3			
Rhenium (Re)-Dissolved	mg/L	<0.0005			V0.5		Q0.5		<0.00005			
Rubidium (Rb)-Dissolved	mg/L	000							<0.00003			
Selenium (Se)-Dissolved	mg/L	<0.002	<0.00040		<0.0004		<0.0004		<0.0002			
Silicon (Si)-Dissolved	mg/L	2.48	Q0.00040		Q0.0004		Q0.0004		<0.05			
Silver (Ag)-Dissolved	mg/L	<0.0002	<0.00010		<0.0001		<0.0001		<0.000005			+
Sodium (Na)-Dissolved	mg/L	4130	30.000.0		1.4	0.0%	1.4	0.0%	<2			
Strontium (Sr)-Dissolved	mg/L	0009				2.070		2.370	< 0.005			
Tellurium (Te)-Dissolved	mg/L	<0.0005							<0.0001			
Thallium (TI)-Dissolved	mg/L	<0.0005	<0.00010		<0.0001		<0.0001		<0.000002			
Thorium (Th)-Dissolved	mg/L	<0.0005							<0.00005			
Tin (Sn)-Dissolved	mg/L	<0.001	< 0.050		< 0.05		< 0.05		<0.0002			1
Titanium (Ti)-Dissolved	mg/L	< 0.005	<0.0010		<0.001		<0.001		<0.0002			1
Tungsten (W)-Dissolved	mg/L	0.0316							<0.00001			1
Uranium (U)-Dissolved	mg/L	< 0.0005	<0.00010		< 0.0001		<0.0001		< 0.000002			
Vanadium (V)-Dissolved	mg/L	< 0.0005	<0.0010		<0.001		<0.001		< 0.00005			
Yttrium (Y)-Dissolved	mg/L	< 0.0005					İ		< 0.000005			
Zinc (Zn)-Dissolved	mg/L	0.02	<0.0020		0.0030	16.1%	0.0031	16.7%	0.0109	58.6%		
Zirconium (Zr)-Dissolved	mg/L	< 0.0005							< 0.00005			
Delta 2H x 1000		-117.72	-144.31		-149.55							
Delta 180 x 1000		-15.00	-15.60		-18.97		İ					
Parameters with detectable concent	trations in b	lanks are higlighted	d.									

Table N5: Comparison	of Airlift	and Port S	Samples										
		Airlift \	s Port	RPD	Airlift	s Port	RPD	Airlift	vs Port	RPD	Airlift	vs Port	RPD
Field Sample ID / Unique ID	Units	10WBW001-	10WBW001-		10WBW001	10WBW001-		10WBW00	10WBW001-		10WBW001	10WBW001-	
rieid Sample ID / Onique ID	Units	33 Westbay	36 Westbay		26 Westbay	35 Westbay		1-16 Westbay	37 Westbay		103 Westbay	108 Westbay	
Sample From		airlift	Port		airlift	Port		airlift	Port		airlift	Port	
		10WBW001-	10WBW001-		10WBW001	10WBW001-		10WBW00	10WBW001-		10WBW001 Zone 6-	10WBW001	
Sample label for graph		Zone 6-	Zone 6-Port		Zone 1-	Zone 1-Port		1-Zone 10-	Zone 10-		Airlift 160L	Zone 6-Port	
		Airlift Final- S33	Final-S36		Airlift Final- S26D	Final-S35		Airlift Final- S16D	Port Final- S37		sample-	after bulk- S108	
Sample Zone		6	6		1	1		10	10		S103 6	6	
Location of port in zone		Bottom	Top		Middle	Top		Bottom	Top		Bottom	Top	
Zone port drillhole depth		274.00	246.0		554.00	548.0		107.50	63.5		274.00	246.0	
Total Litres purged from zone before sample was taken		6433	8096		3065	3186		3008	3008		10639	13592	
Zone volumes purged before sample was taken		36.7	46.6		26.2	27.4		11.0	11.0		61.7	79.3	
ALS DATA ALS Date Sampled		27-JUL-10	05-AUG-10		25-JUL-10	04-AUG-10		21-JUL-10	05-AUG-10		25-OCT-10	01-NOV-10	
ALS Time Sampled		15:21	09:00		12:37	13:42		17:28	11:40		00:00	15:00	
Matrix		Water	Seawater		Water	Seawater		Water	Seawater		Water	BOTH	
Physical Tests													
Conductivity (EC) Density	uS/cm	44400	24600	57%	47600	46600	2%	46600	30300	42%	48500	37000 1.03	27%
Hardness (as CaCO3)	mg/L	8870	4760	60%	11100	12700	-13%	9250	6030	42%	10000	7340	31%
pH Salinity (EC)	pН	7.43	7.83	-5%	7.72	7.43	4%	7.39	7.47	-1%	7.04 32.4	7.59 23.5	-8% 32%
Total Dissolved Solids	g/L mg/L	30400	19600	43%	32400	47800	-38%	32700	23100	34%	32.4 35400	25500	33%
Anions and Nutrients													
Alkalinity, Total (as CaCO3)	mg/L	70.8	44.2	46%				81.7	49.7	49%	72.4	43.7	49%
Ammonia as N	mg/L					100					3.14	2.32	30%
Bromide (Br) Chloride (CI)	mg/L mg/L	17100	21.2 09130	61%	18800	100 19000	-1%	18200	27.6 11500	45%	49.1 19000	41.3 14200	17% 29%
Fluoride (F)	mg/L	<1	<0.75		<1	<0.75		<1	<0.75		0.091	< 0.75	
Nitrate (as N) Nitrite (as N)	mg/L mg/L	<1 <1	<0.5 <0.1		<1 <1	<0.5 <0.1		<1 <1	<0.5 <0.1		<0.5 <0.1	<0.5 <0.1	
Total Phosphate as P	mg/L										0.0262	0.0162	47%
Silicate (as SIO2) Sulfate (SO4)	mg/L mg/L	1820	0940	64%	0964	0981	-2%	1790	1160	43%	6.1 2020	5.8 1500	5% 30%
	g/2	1020	00.0			0001			1100		2020	1000	
Total Metals Aluminum (Al)-Total	mg/L	<2	0.0281		<2	0.0992		<2	0.0146		0.0318	0.0059	137%
Antimony (Sb)-Total	mg/L	<0.08	0.00745		<0.08	<0.0005		<0.08	0.00349		0.00127	0.00461	-114%
Arsenic (As)-Total Barium (Ba)-Total	mg/L	0.121 0.107	0.003 0.130	192% -19%	0.101 0.059	<0.002 0.051	14%	0.090	<0.002 0.179	-45%	0.007 0.117	<0.002 0.169	-36%
Beryllium (Be)-Total	mg/L mg/L	<0.2	<0.0005	-1370	<0.2	<0.0005	1470	<0.2	<0.0005	-4370	<0.0005	<0.0005	-3078
Bismuth (Bi)-Total	mg/L	1.91	<0.0005 1.04	59%	2.50	<0.0005 2.93	-16%	2.31	<0.0005 1.51	42%	<0.0005 2.65	<0.0005 1.50	55%
Boron (B)-Total Cadmium (Cd)-Total	mg/L mg/L	<0.01	<0.00012	3370	<0.01	<0.00012	-1070	<0.01	<0.00012	42 /0	<0.00005	<0.00005	3376
Calcium (Ca)-Total	mg/L	1280	805	46%	4380	5070	-15%	1580	1020	43%	1600	1170	31% 48%
Cesium (Cs)-Total Chromium (Cr)-Total	mg/L mg/L	0.86	0.00072 0.00	199%	0.74	0.00105 0.01	197%	0.66	0.00097 0.0030	198%	0.00155 <0.0005	0.00095 <0.0005	40%
Cobalt (Co)-Total	mg/L	<0.04	<0.0005		<0.04	<0.0005		<0.04	<0.0005		0.000381	0.000103	115%
Copper (Cu)-Total Gallium (Ga)-Total	mg/L mg/L	<0.2	<0.001 <0.0005		<0.2	0.0018 <0.0005		<0.2	<0.001 <0.0005		<0.0005 <0.0005	0.00061 <0.0005	
Iron (Fe)-Total	mg/L	3.54	1.60	75%	0.16	0.46	-96%	7.14	3.95	58%	4.53	2.28	66%
Lead (Pb)-Total Lithium (Li)-Total	mg/L mg/L	<0.02 <1.2	<0.001 0.093		<0.02 <1.2	0.0013 0.37		<0.02 <1.2	<0.001 0.128		<0.0003 0.228	<0.0003 0.131	54%
Magnesium (Mg)-Total	mg/L	1210	739	48%	53	71	-29%	1290	867	39%	1510	1080	33%
Manganese (Mn)-Total Mercury (Hg)-Total	mg/L mg/L	1.81	0.56	106%	0.64 <0.0001	0.72	-11%	1.76 <0.0001	1.09	47%	2.08 <0.00005	0.892	80%
Molybdenum (Mo)-Total	mg/L	<0.02	0.0403		< 0.02	0.0136		< 0.02	0.0225		0.0140	0.0361	-88%
Nickel (Ni)-Total Phosphorus (P)-Total	mg/L mg/L	<0.04	0.00159 <1		0.074	0.00437 <1	178%	<0.04	0.00237 <1		0.00095 <1	0.00120 <1	-23%
Potassium (K)-Total	mg/L	203	125	48%	045	040	12%	292	166	55%	240	172	33%
Rhenium (Re)-Total	mg/L		<0.0005			<0.0005			<0.0005		<0.0005	<0.0005	33%
Rubidium (Rb)-Total Selenium (Se)-Total	mg/L mg/L	<0.4	0.0765 <0.002		<0.4	0.0500 <0.002		<0.4	0.0816 <0.002		0.1420 <0.002	0.102 <0.002	33/0
Silicon (Si)-Total	mg/L		2.88			2.61			2.12		3.68	3.82	-4%
Silver (Ag)-Total Sodium (Na)-Total	mg/L mg/L	<0.02 7450	<0.0002 4460	50%	<0.02 7870	<0.0002 7470	5%	<0.02 9580	<0.0002 5590	53%	<0.0001 9350	0.00018 6790	32%
Strontium (Sr)-Total	mg/L		10			60			11.7		21.2	14.6	37%
Tellurium (Te)-Total Thallium (TI)-Total	mg/L mg/L	<0.02	<0.0005 <0.0005		<0.02	<0.0005 <0.0005		<0.02	<0.0005 <0.0005		<0.0005 <0.00005	<0.0005 <0.00005	
Thorium (Th)-Total	mg/L		< 0.0005			< 0.0005			< 0.0005		<0.0005	<0.0005	
Tin (Sn)-Total Titanium (Ti)-Total	mg/L mg/L	<0.08 <0.12	<0.001 <0.005		<0.08	<0.001 0.0082		<0.08	<0.001 <0.005		<0.001 <0.005	<0.001 <0.005	
Tungsten (W)-Total	mg/L		0.0334			<0.001			0.0067		0.0056	0.0227	-121%
Uranium (U)-Total Vanadium (V)-Total	mg/L mg/L	<0.02 0.27	<0.0005 <0.0005		<0.02	<0.0005 0.001	199%	<0.02 0.22	<0.0005 <0.0005		0.00023 0.00054	0.000059 <0.0005	118%
Yttrium (Y)-Total	mg/L		< 0.0005			< 0.0005	10070		< 0.0005		< 0.0005	< 0.0005	
Zinc (Zn)-Total	mg/L	<0.8	0.195		<0.8	0.503		<0.8	0.261		0.046	0.115	-86%
Zirconium (Zr)-Total	mg/L		<0.0005			<0.0005			<0.0005		<0.0005	<0.0005	
Dissolved Metals			0.05=			0.00-			0.05-		0.00=	0.00-	
Aluminum (Al)-Dissolved Antimony (Sb)-Dissolved	mg/L mg/L	<0.08	<0.005 0.00703		<1 <0.08	<0.005 <0.0005		<1 <0.08	<0.005 0.00306		<0.005 0.00121	<0.005 0.00393	-106%
Arsenic (As)-Dissolved	mg/L	0.102	<0.002	001	0.090	<0.002	001	0.097	< 0.002	E 404	0.0066	< 0.002	
Barium (Ba)-Dissolved Beryllium (Be)-Dissolved	mg/L mg/L	0.120 <0.1	0.120 <0.0005	0%	0.052 <0.1	0.052 <0.0005	0%	0.097 <0.1	0.169 <0.0005	-54%	0.113 <0.0005	0.169 <0.0005	-40%
Bismuth (Bi)-Dissolved	mg/L	.5	<0.0005		.3	<0.0005		.3	<0.0005		<0.0005	<0.0005	
·			_			_			_				

Field Sample ID / Unique ID Units	10WBW001- 33 1.97 <0.01 1390 0.682 <0.02 <0.12	10WBW001- 36 0.94 <0.00012 749 0.00069 <0.001 <0.0005	71% 60%	26 2.74 <0.01 4360	10WBW001- 35 2.99 <0.00012 4960	-9%	10WBW00 1-16 2.32	10WBW001- 37		10WBW001-	10WBW001- 108	
Boron (B)-Dissolved mg/L	33 1.97 <0.01 1390 0.682 <0.02	36 0.94 <0.00012 749 0.00069 <0.001 <0.0005		26 2.74 <0.01 4360	35 2.99 <0.00012	-9%	1-16	37				!
Cadmium (Cd)-Dissolved mg/L Calcium (Ca)-Dissolved mg/L Cesium (Cs)-Dissolved mg/L Chromium (Cr)-Dissolved mg/L Cobalt (Co)-Dissolved mg/L Copper (Cu)-Dissolved mg/L	<0.01 1390 0.682 <0.02	<0.00012 749 0.00069 <0.001 <0.0005		<0.01 4360	<0.00012	-9%	2 22					
Calcium (Ca)-Dissolved mg/L Cesium (Cs)-Dissolved mg/L Chromium (Cr)-Dissolved mg/L Cobalt (Co)-Dissolved mg/L Copper (Cu)-Dissolved mg/L	0.682 <0.02	749 0.00069 <0.001 <0.0005	60%	4360			2.32	1.42	48%	2.64	1.48	56%
Cesium (Cs)-Dissolved mg/L Chromium (Cr)-Dissolved mg/L Cobalt (Co)-Dissolved mg/L Copper (Cu)-Dissolved mg/L	0.682 <0.02	0.00069 <0.001 <0.0005	60%		4960		<0.01	< 0.00012		< 0.00005	<0.00005	
Chromium (Cr)-Dissolved mg/L Cobalt (Co)-Dissolved mg/L Copper (Cu)-Dissolved mg/L	<0.02	<0.001 <0.0005				-13%	1560	1010	43%	1550	1160	29%
Cobalt (Co)-Dissolved mg/L Copper (Cu)-Dissolved mg/L	<0.02	<0.0005			0.00105			0.00092		0.00154	0.00097	45%
Copper (Cu)-Dissolved mg/L				0.532	< 0.001		0.874	< 0.001		< 0.0005	< 0.0005	
	<0.12			< 0.02	< 0.0005		< 0.02	< 0.0005		0.000315	0.000091	110%
Gallium (Ga)-Dissolved mg/l		< 0.001		<0.12	< 0.001		< 0.12	< 0.001		< 0.0005	< 0.0005	
		< 0.0005			< 0.0005			< 0.0005		< 0.0005	< 0.0005	
Iron (Fe)-Dissolved mg/L	3.32	0.06	193%	<0.15	< 0.05		6.25	2.68	80%	4.31	0.503	158%
Lead (Pb)-Dissolved mg/L	<0.02	<0.001		< 0.02	<0.001		< 0.02	<0.001		<0.003	<0.0003	
Lithium (Li)-Dissolved mg/L	<0.6	0.087		<0.6	0.37		<0.6	0.121		0.223	0.127	55%
Magnesium (Mg)-Dissolved mg/L	1310	0702	60%	0045	0070	-43%	1300	849	42%	1490	1080	32%
Manganese (Mn)-Dissolved mg/L	1.96	0.53	115%	0.53	0.69	-26%	1.72	1.04	49%	2.03	0.888	78%
Mercury (Hg)-Dissolved mg/L	<0.0001			<0.0001			<0.0001			<0.00005		
Molybdenum (Mo)-Dissolved mg/L	<0.02	0.0379		<0.02	0.0128		<0.02	0.0211		0.0138	0.0345	-86%
Nickel (Ni)-Dissolved mg/L	<0.02	0.00076		0.066	< 0.0005		< 0.02	< 0.0005		0.00101	0.00158	-44%
Phosphorus (P)-Dissolved mg/L		<1			<1			<1		<1	<1	
Potassium (K)-Dissolved mg/L	194	117	50%	037	039	-5%	294	160	59%	233	172	30%
Rhenium (Re)-Dissolved mg/L		< 0.0005			< 0.0005			< 0.0005		< 0.0005	< 0.0005	
Rubidium (Rb)-Dissolved mg/L		0.0725			0.0504			0.0766		0.1400	0.106	28%
Selenium (Se)-Dissolved mg/L	<0.4	<0.002		<0.4	<0.002		<0.4	<0.002		< 0.002	< 0.002	
Silicon (Si)-Dissolved mg/L		2.48			2.3			1.99		3.49	3.33	5%
Silver (Ag)-Dissolved mg/L	<0.02	< 0.0002		< 0.02	< 0.0002		< 0.02	<0.0002		<0.0001	<0.0001	
Sodium (Na)-Dissolved mg/L	8160	4130	66%	6260	7290	-15%	9450	5400	55%	9130	6810	29%
Strontium (Sr)-Dissolved mg/L		9.0			58.9			11.3		21.1	14.6	36%
Tellurium (Te)-Dissolved mg/L		<0.0005			< 0.0005			<0.0005		< 0.0005	<0.0005	
Thallium (TI)-Dissolved mg/L	<0.01	<0.0005		<0.01	<0.0005		0.010	<0.0005		<0.00005	<0.00005	
Thorium (Th)-Dissolved mg/L		<0.0005			< 0.0005			< 0.0005		< 0.0005	< 0.0005	
Tin (Sn)-Dissolved mg/L	<0.05	<0.001		<0.05	<0.001		< 0.05	<0.001		<0.001	<0.001	
Titanium (Ti)-Dissolved mg/L	<0.06	< 0.005		<0.06	<0.005		<0.06	< 0.005		<0.005	<0.005	1050/
Tungsten (W)-Dissolved mg/L		0.0316			<0.001			0.0059		0.0053	0.0231	-125%
Uranium (U)-Dissolved mg/L	<0.02	<0.0005		<0.02	<0.0005		<0.02	<0.0005		0.000231	0.000058	120%
Vanadium (V)-Dissolved mg/L	0.229	<0.0005		0.174	<0.0005		0.292	<0.0005		<0.0005	<0.0005	
Yttrium (Y)-Dissolved mg/L	0.0	<0.0005			<0.0005			<0.0005		<0.0005	<0.0005	26%
Zinc (Zn)-Dissolved mg/L	<0.2	0.02		<0.2	0.0897		<0.2	0.0504		0.0384	0.0295	20%
Zirconium (Zr)-Dissolved mg/L		<0.0005		<u> </u>	<0.0005		l	<0.0005		<0.0005	<0.0005	
Isotope Chemistry												
Delta 2H x 1000	-85.71	-117.72	-31%	-138.57	-138	0%	-77.67	-106.52	-31%			
Delta 180 x 1000	-10.9	-117.72	-32%	-19.07	-18.83	1%	-10.18	-13.49	-28%			
RPDs greater than 20% are highlighted, to							-10.10	*13.48	2070			

SRK CONSULTING (CANADA) INC.

ATTN: MELISSA PITZ

SUITE 205

2100 AIRPORT DRIVE

SASKATOON SK S7L 6M6

Phone: 306-955-4732

Date Received: 29-OCT-10

Report Date: 22-NOV-10 09:12 (MT)

Version: FINAL

Certificate of Analysis

Lab Work Order #: L948685

Project P.O. #: NOT SUBMITTED

Job Reference: Legal Site Desc: C of C Numbers:

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 75 Con Road, PO. Box 2801, Yellowknife, NT, X1A 2R2 Canada | Phone: +1 867 873 5593 | Fax: +1 867 920 4238 ALS CANADA LIMITED | Part of the ALS Group | A Campbell Brothers Limited Company

ALS LABORATORY GROUP ANALYTICAL REPORT

	Sample ID Description Sampled Date Sampled Time Client ID	L948685-1 WATER 25-OCT-10 10WBW001-104	L948685-2 WATER 25-OCT-10 10WBW001-103	
Grouping	Analyte			
WATER				
Physical Tests	Conductivity (uS/cm)	<2.0	48500	
	Hardness (as CaCO3) (mg/L)	0.56	10000	
	pH (pH)	7.29	7.04	
	Total Dissolved Solids (mg/L)	<10	35400	
Leachable Anions & Nutrients	Anion Sum (meq/L)	<0.10	580	
	Cation Sum (meq/L)	<0.10	603	
	Cation - Anion Balance (%)	0.0	2.0	
Anions and Nutrients	Alkalinity, Bicarbonate (as CaCO3) (mg/L)	<2.0		
	Alkalinity, Carbonate (as CaCO3) (mg/L)	<2.0		
	Alkalinity, Hydroxide (as CaCO3) (mg/L)	<2.0		
	Alkalinity, Total (as CaCO3) (mg/L)	<2.0	72.4	
	Ammonia as N (mg/L)	<0.0050	3.14	
	Bromide (Br) (mg/L)	<0.050	49.1	
	Chloride (CI) (mg/L)	<0.50	19000	
	Fluoride (F) (mg/L)	<0.020	0.091	
	Nitrate (as N) (mg/L)	<0.0050	<0.50	
	Nitrite (as N) (mg/L)	<0.0010	<0.10	
	Total Phosphate as P (mg/L)	0.0052	0.0262	
	Silicate (as SIO2) (mg/L)	<1.0	6.1	
	Sulfate (SO4) (mg/L)	<0.50	2020	
Total Metals	Aluminum (Al)-Total (mg/L)	0.0086	0.0318	
	Antimony (Sb)-Total (mg/L)	<0.000010	0.00127	
	Arsenic (As)-Total (mg/L)	<0.000050	0.0070	
	Barium (Ba)-Total (mg/L)	0.00017	0.117	
	Beryllium (Be)-Total (mg/L)	<0.000050	<0.00050	
	Bismuth (Bi)-Total (mg/L)	<0.000050	<0.00050	
	Boron (B)-Total (mg/L)	0.0097	2.65	
	Cadmium (Cd)-Total (mg/L)	<0.000050	<0.000050	
	Calcium (Ca)-Total (mg/L)	<0.050	1600	
	Cesium (Cs)-Total (mg/L)	<0.000050	0.00155	
	Chromium (Cr)-Total (mg/L)	<0.00050	<0.00050	
	Cobalt (Co)-Total (mg/L)	<0.000050	0.000381	
	Copper (Cu)-Total (mg/L)	0.0161	<0.00050	
	Gallium (Ga)-Total (mg/L)	<0.000050	<0.00050	
	Iron (Fe)-Total (mg/L)	<0.030	4.53	
	Lead (Pb)-Total (mg/L)	0.00114	<0.00030	

ALS LABORATORY GROUP ANALYTICAL REPORT

	Sample ID Description Sampled Date Sampled Time Client ID	L948685-1 WATER 25-OCT-10 10WBW001-104	L948685-2 WATER 25-OCT-10 10WBW001-103		
Grouping	Analyte				
WATER					
Total Metals	Lithium (Li)-Total (mg/L)	<0.00020	0.228		
	Magnesium (Mg)-Total (mg/L)	<0.10	1510		
	Manganese (Mn)-Total (mg/L)	<0.00020	2.08		
	Mercury (Hg)-Total (mg/L)	<0.000050	<0.000050		
	Molybdenum (Mo)-Total (mg/L)	<0.000050	0.0140		
	Nickel (Ni)-Total (mg/L)	<0.00020	0.00095		
	Phosphorus (P)-Total (mg/L)	<0.30	<1.0		
	Potassium (K)-Total (mg/L)	<2.0	240		
	Rhenium (Re)-Total (mg/L)	<0.0000050	<0.00050		
	Rubidium (Rb)-Total (mg/L)	<0.000020	0.142		
	Selenium (Se)-Total (mg/L)	<0.00020	<0.0020		
	Silicon (Si)-Total (mg/L)	<0.050	3.68		
	Silver (Ag)-Total (mg/L)	0.0000058	<0.00010		
	Sodium (Na)-Total (mg/L)	<2.0	9350		
	Strontium (Sr)-Total (mg/L)	<0.0050	21.2		
	Tellurium (Te)-Total (mg/L)	<0.000010	<0.00050		
	Thallium (TI)-Total (mg/L)	<0.0000020	<0.000050		
	Thorium (Th)-Total (mg/L)	<0.0000050	<0.00050		
	Tin (Sn)-Total (mg/L)	<0.00020	<0.0010		
	Titanium (Ti)-Total (mg/L)	<0.00020	<0.0050		
	Tungsten (W)-Total (mg/L)	<0.000010	0.0056		
	Uranium (U)-Total (mg/L)	0.0000020	0.000230		
	Vanadium (V)-Total (mg/L)	<0.000050	0.00054		
	Yttrium (Y)-Total (mg/L)	<0.0000050	<0.00050		
	Zinc (Zn)-Total (mg/L)	0.0056	0.0456		
	Zirconium (Zr)-Total (mg/L)	<0.000050	<0.00050		
Dissolved Metals	Aluminum (Al)-Dissolved (mg/L)	<0.0030	<0.0050		
	Antimony (Sb)-Dissolved (mg/L)	0.000021	0.00121		
	Arsenic (As)-Dissolved (mg/L)	<0.000050	0.0066		
	Barium (Ba)-Dissolved (mg/L)	0.00044	0.113		
	Beryllium (Be)-Dissolved (mg/L)	<0.0000050	<0.00050		
	Bismuth (Bi)-Dissolved (mg/L)	<0.000050	<0.00050		
	Boron (B)-Dissolved (mg/L)	<0.0050	2.64		
	Cadmium (Cd)-Dissolved (mg/L)	0.0000102	<0.000050		
	Calcium (Ca)-Dissolved (mg/L)	0.224	1550		
	Cesium (Cs)-Dissolved (mg/L)	<0.0000050	0.00154		
	Chromium (Cr)-Dissolved (mg/L)	<0.00050	<0.00050		

ALS LABORATORY GROUP ANALYTICAL REPORT

	Sample ID Description Sampled Date Sampled Time Client ID	L948685-1 WATER 25-OCT-10 10WBW001-104	L948685-2 WATER 25-OCT-10 10WBW001-103		
Grouping	Analyte				
WATER					
Dissolved Metals	Cobalt (Co)-Dissolved (mg/L)	<0.000050	0.000315		
	Copper (Cu)-Dissolved (mg/L)	0.0123	<0.00050		
	Gallium (Ga)-Dissolved (mg/L)	<0.000050	<0.00050		
	Iron (Fe)-Dissolved (mg/L)	<0.030	4.31		
	Lead (Pb)-Dissolved (mg/L)	0.00114	<0.0030		
	Lithium (Li)-Dissolved (mg/L)	<0.00020	0.223		
	Lithium (Li)-Dissolved (mg/L)	<0.00020	0.223		
	Magnesium (Mg)-Dissolved (mg/L)	<0.10	1490		
	Manganese (Mn)-Dissolved (mg/L)	<0.00020	2.03		
	Mercury (Hg)-Dissolved (mg/L)	<0.000050	<0.000050		
	Molybdenum (Mo)-Dissolved (mg/L)	<0.000050	0.0138		
	Nickel (Ni)-Dissolved (mg/L)	<0.00020	0.00101		
	Phosphorus (P)-Dissolved (mg/L)	<0.30	<1.0		
	Potassium (K)-Dissolved (mg/L)	<2.0	233		
	Rhenium (Re)-Dissolved (mg/L)	<0.000050	<0.00050		
	Rubidium (Rb)-Dissolved (mg/L)	<0.000020	0.140		
	Selenium (Se)-Dissolved (mg/L)	<0.00020	<0.0020		
	Silicon (Si)-Dissolved (mg/L)	<0.050	3.49		
	Silicon (Si)-Dissolved (mg/L)	<0.050	3.49		
	Silver (Ag)-Dissolved (mg/L)	<0.000050	<0.00010		
	Sodium (Na)-Dissolved (mg/L)	<2.0	9130		
	Strontium (Sr)-Dissolved (mg/L)	<0.0050	21.1		
	Tellurium (Te)-Dissolved (mg/L)	<0.000010	<0.00050		
	Thallium (TI)-Dissolved (mg/L)	<0.0000020	<0.000050		
	Thorium (Th)-Dissolved (mg/L)	<0.0000050	<0.00050		
	Thorium (Th)-Dissolved (mg/L)	<0.000050	<0.00050		
	Tin (Sn)-Dissolved (mg/L)	<0.00020	<0.0010		
	Titanium (Ti)-Dissolved (mg/L)	<0.00020	<0.0050		
	Tungsten (W)-Dissolved (mg/L)	<0.000010	0.0053		
	Uranium (U)-Dissolved (mg/L)	<0.0000020	0.000231		
	Vanadium (V)-Dissolved (mg/L)	<0.000050	<0.00050		
	Yttrium (Y)-Dissolved (mg/L)	<0.0000050	<0.00050		
	Zinc (Zn)-Dissolved (mg/L)	0.0109	0.0384		
	Zirconium (Zr)-Dissolved (mg/L)	<0.000050	<0.00050		

Reference Information

Test Method References:

ALS Test Code Matrix Method Reference** **Test Description ALK-PCT-VA** Water Alkalinity by Auto. Titration APHA 2320 "Alkalinity" This analysis is carried out using procedures adapted from APHA Method 2320 "Alkalinity". Total alkalinity is determined by potentiometric titration to a pH 4.5 endpoint. Bicarbonate, carbonate and hydroxide alkalinity are calculated from phenolphthalein alkalinity and total alkalinity values. ALK-PCT-VA Water Alkalinity by Auto. Titration APHA 2320 Alkalinity This analysis is carried out using procedures adapted from APHA Method 2320 "Alkalinity". Total alkalinity is determined by potentiometric titration to a pH 4.5 endpoint. Bicarbonate, carbonate and hydroxide alkalinity are calculated from phenolphthalein alkalinity and total alkalinity values. **ALK-SCR-VA** Water Alkalinity by colour or titration EPA 310.2 OR APHA 2320 This analysis is carried out using procedures adapted from EPA Method 310.2 "Alkalinity". Total Alkalinity is determined using the methyl orange colourimetric method. This analysis is carried out using procedures adapted from APHA Method 2320 "Alkalinity". Total alkalinity is determined by potentiometric titration to a pH 4.5 endpoint. Bicarbonate, carbonate and hydroxide alkalinity are calculated from phenolphthalein alkalinity and total alkalinity values. ANIONS-BR-IC-VA Water Bromide by Ion Chromatography APHA 4110 B. This analysis is carried out using procedures adapted from APHA Method 4110 B. "Ion Chromatography with Chemical Suppression of Eluent Conductivity" and EPA Method 300.0 "Determination of Inorganic Anions by Ion Chromatography". Chloride by Ion Chromatography APHA 4110 B. This analysis is carried out using procedures adapted from APHA Method 4110 B. "Ion Chromatography with Chemical Suppression of Eluent Conductivity" and EPA Method 300.0 "Determination of Inorganic Anions by Ion Chromatography" ANIONS-F-IC-VA Fluoride by Ion Chromatography This analysis is carried out using procedures adapted from APHA Method 4110 B. "Ion Chromatography with Chemical Suppression of Eluent Conductivity" and EPA Method 300.0 "Determination of Inorganic Anions by Ion Chromatography". ANIONS-NO2-IC-VA Water Nitrite by Ion Chromatography APHA 4110 B. This analysis is carried out using procedures adapted from APHA Method 4110 B. "Ion Chromatography with Chemical Suppression of Eluent Conductivity" and EPA Method 300.0 "Determination of Inorganic Anions by Ion Chromatography". Specifically, the nitrite detection is by UV absorbance and not conductivity. ANIONS-NO3-IC-VA Water Nitrate by Ion Chromatography APHA 4110 B. This analysis is carried out using procedures adapted from APHA Method 4110 B. "Ion Chromatography with Chemical Suppression of Eluent Conductivity" and EPA Method 300.0 "Determination of Inorganic Anions by Ion Chromatography". Specifically, the nitrate detection is by UV absorance and not conductivity. ANIONS-SO4-IC-VA Sulfate by Ion Chromatography APHA 4110 B. This analysis is carried out using procedures adapted from APHA Method 4110 B. "Ion Chromatography with Chemical Suppression of Eluent Conductivity" and EPA Method 300.0 "Determination of Inorganic Anions by Ion Chromatography". Water Conductivity (Automated) APHA 2510 Auto. Conduc. **EC-PCT-VA** This analysis is carried out using procedures adapted from APHA Method 2510 "Conductivity". Conductivity is determined using a conductivity electrode. Fluoride by SIE APHA 4500-F "Fluoride" This analysis is carried out using procedures adapted from APHA Method 4500-F "Fluoride". Fluoride is determined using a selective ion electrode. This method has a significant negative interference (i.e. results could be biased low) when Al3+ is present in the sample at a concentration greater than 2.5 mg/L. Fluoride by SIE APHA 4500-F Fluoride This analysis is carried out using procedures adapted from APHA Method 4500-F "Fluoride". Fluoride is determined using a selective ion electrode. This method has a significant negative interference (i.e. results could be biased low) when Al3+ is present in the sample at a concentration greater than 2.5 mg/L. HARDNESS-CALC-VA Water Hardness **APHA 2340B** Hardness is calculated from Calcium and Magnesium concentrations, and is expressed as calcium carbonate equivalents. **HG-DIS-CVAFS-VA** Water Dissolved Mercury in Water by CVAFS EPA SW-846 3005A & EPA 245.7 This analysis is carried out using procedures adapted from "Standard Methods for the Examination of Water and Wastewater" published by the American Public Health Association, and with procedures adapted from "Test Methods for Evaluating Solid Waste" SW-846 published by the United States Environmental Protection Agency (EPA). The procedures may involve preliminary sample treatment by filtration (EPA Method 3005A) and involves a cold-oxidation of the acidified sample using bromine monochloride prior to reduction of the sample with stannous chloride. Instrumental

Total Mercury in Water by CVAFS **HG-TOT-CVAFS-VA** Water FPA 245 7

analysis is by cold vapour atomic fluorescence spectrophotometry (EPA Method 245.7).

This analysis is carried out using procedures adapted from "Standard Methods for the Examination of Water and Wastewater" published by the American Public Health Association, and with procedures adapted from "Test Methods for Evaluating Solid Waste" SW-846 published by the United States Environmental Protection Agency (EPA). The procedure involves a cold-oxidation of the acidified sample using bromine monochloride prior to reduction of the sample with stannous chloride. Instrumental analysis is by cold vapour atomic fluorescence spectrophotometry (EPA Method 245.7).

IONBALANCE-VA Water Ion Balance Calculation **APHA 1030E**

Reference Information

Cation Sum, Anion Sum, and Ion Balance (as % difference) are calculated based on guidance from APHA Standard Methods (1030E Checking Correctness of Analysis). Because all aqueous solutions are electrically neutral, the calculated ion balance (% difference of cations minus anions) should be near-zero.

Cation and Anion Sums are the total meq/L concentration of major cations and anions. Dissolved species are used where available. Minor ions are included where data is present. Ion Balance is calculated as:

Ion Balance (%) = [Cation Sum-Anion Sum] / [Cation Sum+Anion Sum]

MET-D-L-HRMS-VA

Water

Diss. Metals in Water by HR-ICPMS

EPA 200.8

Trace metals in water are analyzed by high resolution inductively coupled plasma mass spectrometry (HR-ICPMS) modified from US EPA Method 200.8, (Revision 5.5). The procedures may involve laboratory sample filtration modified from APHA Method 3030B.

MET-DIS-ICP-VA

Water

Dissolved Metals in Water by ICPOES

EPA SW-846 3005A/6010B

This analysis is carried out using procedures adapted from "Standard Methods for the Examination of Water and Wastewater" published by the American Public Health Association, and with procedures adapted from "Test Methods for Evaluating Solid Waste" SW-846 published by the United States Environmental Protection Agency (EPA). The procedure involves filtration (EPA Method 3005A) and analysis by inductively coupled plasma optical emission spectrophotometry (EPA Method 6010B).

MET-T-L-HRMS-VA

Water

Total Metals in Water by HR-ICPMS

EPA 200.8

Trace metals in water are analyzed by high resolution inductively coupled plasma mass spectrometry (HR-ICPMS) modified from US EPA Method 200.8, (Revision 5.5). The procedures may involve preliminary sample treatment by acid digestion modified from APHA Method 3030E.

MET-TOT-ICP-VA

Water

Total Metals in Water by ICPOES

EPA SW-846 3005A/6010B

This analysis is carried out using procedures adapted from "Standard Methods for the Examination of Water and Wastewater" published by the American Public Health Association, and with procedures adapted from "Test Methods for Evaluating Solid Waste" SW-846 published by the United States Environmental Protection Agency (EPA). The procedures may involve preliminary sample treatment by acid digestion, using either hotblock or microwave oven (EPA Method 3005A). Instrumental analysis is by inductively coupled plasma - optical emission spectrophotometry (EPA Method 6010B).

NH3-F-VA

Water

Ammonia by Fluorescence

J. ENVIRON. MONIT., 2005, 7, 37-42, RSC

This analysis is carried out, on sulphuric acid preserved samples, using procedures modified from J. Environ. Monit., 2005, 7, 37 - 42, The Royal Society of Chemistry, "Flow-injection analysis with fluorescence detection for the determination of trace levels of ammonium in seawater", Roslyn J. Waston et al.

PH-MAN-VA

Water

pH by Manual Meter

APHA 4500-H "pH Value"

This analysis is carried out using procedures adapted from APHA Method 4500-H "pH Value". The pH is determined in the laboratory using a pH electrode.

It is recommended that this analysis be conducted in the field.

PH-MAN-VA

Water

pH by Manual Meter

APHA 4500-H pH Value

This analysis is carried out using procedures adapted from APHA Method 4500-H "pH Value". The pH is determined in the laboratory using a pH electrode.

It is recommended that this analysis be conducted in the field.

PO4-T-COL-VA

Water

Total Phosphate P by Color

APHA 4500-P "Phosphorous"

This analysis is carried out using procedures adapted from APHA Method 4500-P "Phosphorus". All forms of phosphate are determined by the ascorbic acid colourimetric method. Dissolved ortho-phosphate (dissolved reactive phosphorous) is determined by direct measurement. Total phosphate (total phosphorous) is determined after persulphate digestion of a sample. Total dissolved phosphate (total dissolved phosphorous) is determined by filtering a sample through a 0.45 micron membrane filter followed by persulfate digestion of the filtrate.

PO4-T-COL-VA

Water

Total Phosphate P by Color

APHA 4500-P Phosphorous

This analysis is carried out using procedures adapted from APHA Method 4500-P "Phosphorus". All forms of phosphate are determined by the ascorbic acid colourimetric method. Dissolved ortho-phosphate (dissolved reactive phosphorous) is determined by direct measurement. Total phosphate (total phosphorous) is determined after persulphate digestion of a sample. Total dissolved phosphate (total dissolved phosphorous) is determined by filtering a sample through a 0.45 micron membrane filter followed by persulfate digestion of the filtrate.

SILICATE-COL-VA

Water

Silicate by Colourimetric analysis

APHA 4500-SIO2 D.

This analysis is carried out using procedures adapted from APHA Method 4500-SiO2 D. "Silica". Silicate (molybdate-reactive silica) is determined by the molybdosilicate-heteropoly blue colourimetric method.

TDS-VA

Water

Total Dissolved Solids by Gravimetric

APHA 2540 C - GRAVIMETRIC

This analysis is carried out using procedures adapted from APHA Method 2540 "Solids". Solids are determined gravimetrically. Total Dissolved Solids (TDS) are determined by filtering a sample through a glass fibre filter, TDS is determined by evaporating the filtrate to dryness at 180 degrees celsius.

** ALS test methods may incorporate modifications from specified reference methods to improve performance.

The last two letters of the above test code(s) indicate the laboratory that performed analytical analysis for that test. Refer to the list below:

Laboratory Definition Code

Laboratory Location

L948685 CONTD....
PAGE 7 of 7
22-NOV-10 09:12 (MT)

Reference Information

ALS LABORATORY GROUP - VANCOUVER, BC, CANADA

Chain of Custody Numbers:

GLOSSARY OF REPORT TERMS

Surrogate A compound that is similar in behaviour to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery.

mg/kg milligrams per kilogram based on dry weight of sample.

mg/kg wwt milligrams per kilogram based on wet weight of sample.

mg/kg lwt milligrams per kilogram based on lipid-adjusted weight of sample.

mg/L milligrams per litre.

< - Less than.

VA

D.L. The reported Detection Limit, also known as the Limit of Reporting (LOR).

N/A Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

KIA-8 - 1 Response Memo to Kitikmeot Inuit Association (KIA) for Technical Comment KIA-8

Memorandum

Date: December 8, 2015

To: John Roberts, TMAC Resources Inc.

From: Mike Henry, ERM

CC: Jim Chan, ERM and Derek Chubb, ERM

Subject: TMAC Resources Inc. - Response to KIA - 8 (formally Information Request (KIA-29 IR)

INTRODUCTION

This memorandum responds to the Information Request (KIA-29) provided by the Kitikmeot Inuit Association (KIA) in September 2015 with respect to TMAC Resources Inc.'s (TMAC) amendment application for the Doris North Project Certificate No.003 and the Type A Water Licence (2AM-DOH1323). Provided below is the initial and follow-up responses to the KIA-29 IR.

KIA COMMENT:

What is the distance from the diffuser at which CCME water quality guidelines will be met in Roberts Bay (i.e.: what is the size of the mixing zone)? Please demonstrate how the 20:1dilution will be achieved. Please provide modeling results for all three discharge scenarios (groundwater only, groundwater and TIA, TIA only) in both the open water season when full exchange with Melville Sound is expected and under ice when the water exchange is negligible. We note these seasonal differences specifically as they were highlighted by TMAC in Package 2.

INITIAL TMAC RESPONSE:

The initial TMAC response to the KIA-29 IR submitted in October 2015 follows:

Dilution will be achieved rapidly given the pumping and small portals. Of the Canadian Council of Ministers of the Environment (CCME) metals in effluent, maximum predicted chromium concentrations (0.0062 mg/L; Table 4.5-3, document P4-1) will require the greatest dilution to meet CCME guideline levels (0.0015 mg/L; Table 4.5-1, document P4-1) in the receiving environment of Roberts Bay (baseline: 0.001 mg/L; Table 4.5-2, document P4-1), in this case a 9.2:1 dilution. This will be reached within 1 m of the diffuser portals, and given this parameter requires the greatest dilution, the 'CCME mixing zone' will be 1 m. Modelling results for the 3 requested scenarios during summer and winter can be provided during the technical review portion of the Amendment review process.

FOLLOW-UP TMAC RESPONSE:

This response provides additional modelling results for the three requested discharge scenarios of discharge of TIA and groundwater combined, TIA water only, and groundwater only. With respect to the mixing zone and simulation results for achievable effluent dilutions within Roberts Bay, additional information can be found in *Doris North Gold Mine Project: Discharge of Treated Water to Roberts Bay* (Rescan 2011).

The objective of this exercise was to estimate the water quality concentrations in Roberts Bay for those parameters with Canadian Council of Ministers of the Environment (CCME) marine water quality guidelines for the protection of aquatic life (PAL) based on the three discharge scenarios. The data used in model calculations and the model assumptions are the same as listed in Section 4.5.2.2 of Package 4, with the following additional information:

- For each of the three modelled scenarios, maximum predicted water quality concentrations for the TIA and groundwater, groundwater only, and TIA only discharge were obtained from Table 6-3 of the *Doris North Project Water and Load Balance* (Package 6 document 10; SRK 2015);
- Combined TIA and groundwater are discharged at a constant rate of 80 L/s during the summer months (June to September), TIA effluent is discharged at 45 L/s during the summer months only, and groundwater is discharged at 35 L/s continuously over the year.

Table 1 presents the background water quality for Roberts Bay, the predicted water quality concentrations in each of the potential discharge scenarios into Roberts Bay (i.e., TIA and groundwater combined, groundwater only, and TIA effluent only), and the associated CCME water quality guidelines for the protection of marine life. These guidelines are conservative empirical thresholds that are meant to be protective of all forms of aquatic life and all aspects of aquatic cycles, including the most sensitive species over the long term. In the case of the marine CCME metals (arsenic, cadmium, chromium, and mercury), each guideline concentration includes a safety factor that is 10× lower than the toxic threshold concentration for the most sensitive species. For conservatism, the *maximum* predicted concentrations that would be discharged from the three effluent streams were used in the modelling exercise.

Results of Roberts Bay water quality concentrations under the three discharge scenarios are presented in Figures 1a through 1c and in Table 2. Results indicate that the maximum water quality concentrations for all parameters are predicted to occur when combined TIA and groundwater are discharged into Roberts Bay (Table 2). Concentrations of nitrate, arsenic, and cadmium were estimated to increase only slightly over baseline conditions (2.7-13.2%), while increases in chromium and mercury concentrations were projected to be greater, between 30 and 91%. Results for mercury should be interpreted cautiously as the modelling exercise used an undetectable concentration (0.0001 mg/L) as an input and this detection limit was far greater than the typically available ultra-low detection limit of 0.0000005 mg/L. Regardless, the resulting concentrations in Roberts Bay are predicted to be far below CCME guidelines for all water quality parameters, with nitrate, arsenic, chromium, and mercury near or more than an order of magnitude lower than their respective guideline limit. Given these low predicted concentrations and that all marine water quality guidelines have 10× safety factors applied to their limits (CCME

2015), the water quality in Roberts Bay is predicted to be safe for marine life for each of the discharge scenarios.

REFERENCES

CCME. 2015. Canadian Water Quality Guidelines for the Protection of Aquatic Life: Summary Table. http://ceqg-rcqe.ccme.ca/ (accessed November 2015).

Rescan. 2011. *Doris North Gold Mine Project: Discharge of Treated Water to Roberts Bay.* Prepared for Hope Bay Mining Limited by Rescan Environmental Services Ltd.

Table 1. Roberts Bay Background Water Quality and Predicted Maximum Water Quality in Marine Outfall Mixing Box.

WQ Parameter	CCME WQ Guideline Concentration	Roberts Bay Background Concentration	Predicted Maximum Outfall Concentration (Groundwater + TIA) ^a	Predicted Maximum Outfall Concentration (Groundwater Only)a	Predicted Maximum Outfall Concentration (TIA Only) ^a
Nitrate	45	0.067	0.80	0.93	0.40
Salinity	±10% baseline	27.05	26.7	26.7	0
Arsenic	0.0125	0.00094	0.0035	0.0024	0.0092
Cadmium	0.00012	0.000056	0.00018	0.00012	0.00046
Chromium	0.0015	0.001	0.0039	0.00086	0.01
Mercury ^b	0.000016	0.000013	<0.0001	0.000049	<0.0001

Note: all concentrations are in mg/L except salinity which is parts per thousand.

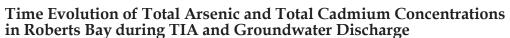
TORONTO, ON, CANADA

^a - all discharge water quality data taken from Table 6-3 of the Doris North project - Water and Load Balance Report (Package 6, Volume 10)

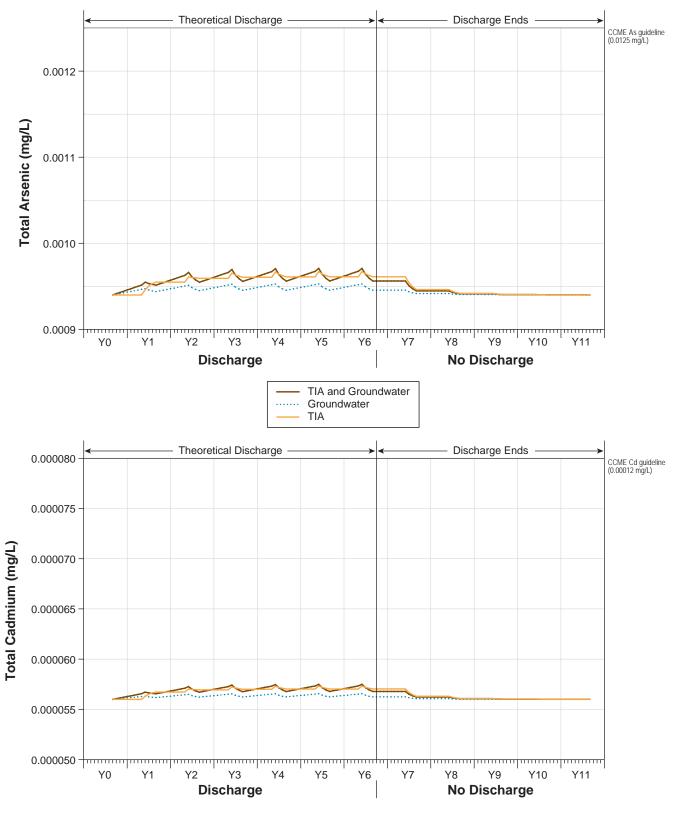
b - mercury concentrations for TIA discharge were not available because of poor detection limits for the mill effluent (0.0001 mg/L).

Table 2. Predicted Roberts Bay Water Quality Concentrations based on TIA-Groundwater Combined, Groundwater Only, and TIA Only Discharge.

WQ Parameter	Predicted Roberts Bay Concentration using Maximum Predicted Outfall Levels (TIA + Groundwater)	Predicted Roberts Bay Concentration using Maximum Predicted Outfall Levels (Groundwater Only)	Predicted Roberts Bay Concentration using Maximum Predicted Outfall Levels (TIA Only)	Maximum Allowable Concentrations in Discharge to Meet CCME in Roberts Bay ^a	% Increase over Roberts Bay Background Concentration (TIA and Groundwater)	% Increase over Roberts Bay Background Concentration (Groundwater only)	% Increase over Roberts Bay Background Concentrations (TIA only)
Nitrate	0.076	0.075	0.068	3,730	13.2	11.3	1.6
Salinity	27.046	27.047	27.049	0-260	-0.02	-0.01	0.00
Arsenic	0.00097	0.00095	0.00097	0.96	3.3	1.4	2.9
Cadmium	0.000058	0.000057	0.000057	0.0053	2.7	1.0	2.4
Chromium	0.00015	0.00011	0.00013	0.0425	45.8	6.7	32.6
Mercury ^b	0.0000025	0.0000017	0.0000016	0.0013	91.4	32.3	25.0

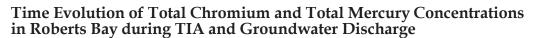

Note: all concentrations are in mg/L except salinity which is parts per thousand.

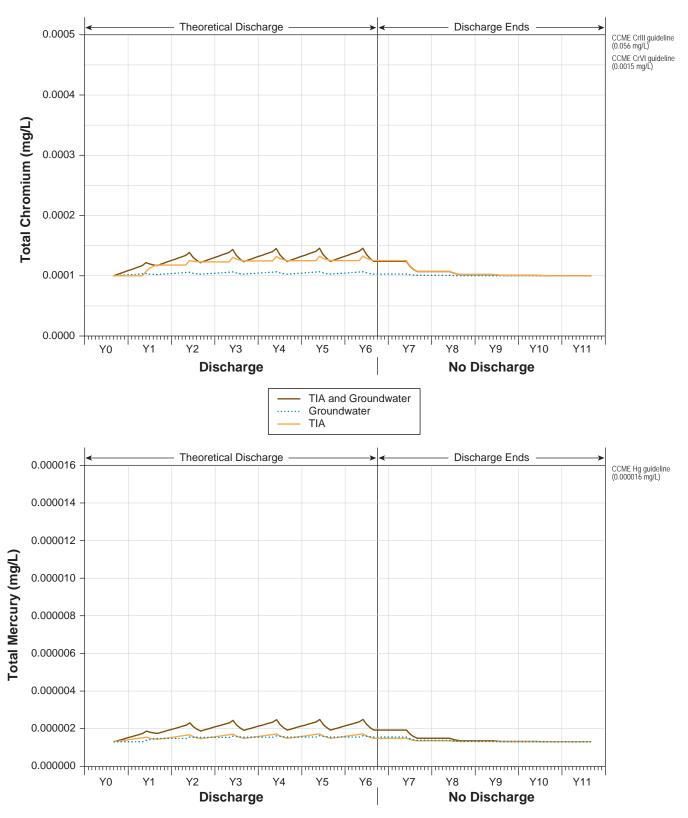
TORONTO, ON, CANADA


^a – concentrations taken from Package 4, Table 4.5-3.

^b - mercury concentrations for TIA discharge were not available because of poor detection limits for the mill effluent (0.0001 mg/L) . The detection limit was used for modelling purposes.

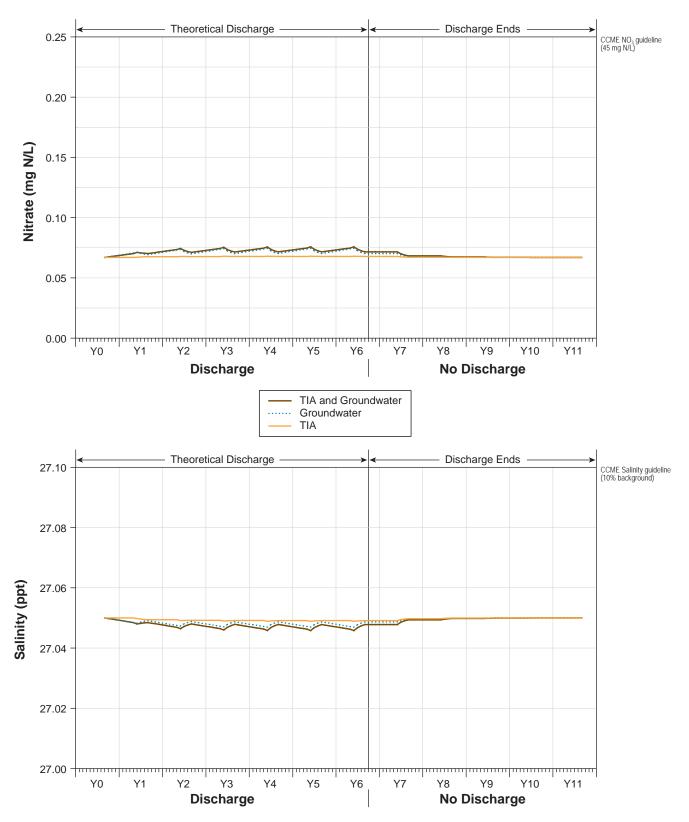
Figure 1a





Note: Allowable effluent concentrations are based on continuous 80 L/s of TIA and groundwater discharge during the open-water season, 45 L/s of TIA discharge during the open-water season, and 35 L/s of groundwater discharged over the year.

Figure 1b



Note: Allowable effluent concentrations are based on continuous 80 L/s of TIA and groundwater discharge during the open-water season, 45 L/s of TIA discharge during the open-water season, and 35 L/s of groundwater discharge over the year. Mercury concentrations for TIA and TIA and Groundwater discharge were unavailable because of poor detection limits for the mill effluent.

Figure 1c

Note: Allowable effluent concentrations are based on continuous 80 L/s of TIA and groundwater discharge during the open-water season, 45 L/s of TIA discharge during the open-water season, and 35 L/s of groundwater discharged over the year.

AANDC TC-3 — SRK Technical Memo Estimation of the Time Required for the Underground Mine to Fill

SRK Consulting (Canada) Inc. 2200–1066 West Hastings Street Vancouver, BC V6E 3X2

T: +1.604.681.4196 F: +1.604.687.5532

vancouver@srk.com www.srk.com

Memo

To: John Roberts, PEng Client: TMAC Resources Inc.

From: Gregory Fagerlund, MSc Project No: 1CT022.002

Reviewed By: Maritz Rykaart, PhD, PEng Date: December 4, 2015

Subject: Response to NRCan IR-3 & AANDC IR#13: Estimation of the Time Required for the Underground

Mine to Fill

1 NRCan Information Request 3 (NRCan IR-3)

1.1.1 Subject

Post-mining groundwater flow regime around the underground mine.

1.1.2 Reference

Package 5 (P5-2), Package 6 (P6-3)

1.1.3 Rationale

NRCan requests clarification as to how groundwater flow into the underground mine will change once mining has ceased. NRCan requests clarification on how groundwater inflow rates will change and an approximate time frame for when the groundwater system will reach a post-mining state of equilibrium. This information will assist in confirming that the long-term potential contaminants in the underground mine (resulting from disposal of waste) do not have an effect on local groundwater that surrounds the underground mine. Such contamination could potentially occur if there is a groundwater flow reversal once a mine has filled with surface water and groundwater.

1.1.4 Information Request

- Please provide clarification on the post-mining groundwater flow regime in the vicinity of the underground mine.
- Please provide information on the time required for the underground mine to fill and clarification on post-mining groundwater regime (flow directions and rates) and potential impacts to the groundwater quality.

1.2 AANDC IR#13 - Tailings Management Plan

1.2.1 References

2.2 New Tailings Storage Requirements

Package 6, Part 7, Page 4 (PDF page 104)

Geochemical Characterization of Tailings from the Doris Deposits, Hope Bay 5 Summary and Conclusions

Package 6, Part 7, Page 30 (PDF page 91)

1.2.2 Issue/Concern or Information Deficiency

Concern that the strategy proposed by the proponent will accumulate a large volume of potentially acid generating (PAG) material and detoxified tailings underground. The detoxified tailings with acidic pH and elevated concentration of Cd, Co, Cu, Fe, Mn, Ni, Pb, and Zn can contaminate underground water.

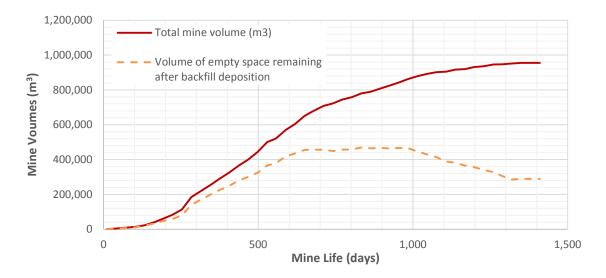
1.2.3 Rationale

About 6% (i.e. 150,000 tonnes or 116,000 m³) of the tailings are comprised of detoxified cyanide leach tailings, and this tailings stream will be sent underground where it will be mixed with underground waste rock for use as structural mine backfill.

The proponent states, that 'The detoxified tailings also showed a propensity for leaching of several metals in the humidity cell tests. In addition to arsenic, neutral pH metal leaching of ammonia, cadmium, copper, iron, selenium and silver was reported in the Doris North detoxified tailings, and cadmium and selenium in the Doris Central detoxified tailings. Acidic conditions developed in the Doris Central detoxified tailings after 202 weeks of testing. At acidic pH, increased metal leaching of Cd, Co, Cu, Fe, Mn, Ni, Pb, and Zn was noted.' The potential leaching of contaminates under low pH conditions can be a significant source of underground water contamination.

1.2.4 Information Request

Please provide an analysis of the combined impact of detoxified tailings and backfilled PAG waste rock on groundwater.


2 TMAC Response

This response relates directly to item b. in NRCanIR-3 and follows on the response to AANDC-IR#13 which both required an estimate of the time for reflooding the Doris underground mine.

Once mining at Doris ceases, and the mine workings have been prepared for closure, mine dewatering pumps will be switched off and the mine will reflood. Figure 1 shows a plot of the mine volumes over time for the portions of Doris Central and Connector zones which are below the

elevation of Doris Lake, including both talik and non talik zones, which is the maximum level to which the mine would flood. Two curves are represented: one curve corresponds to the total mine volume and the other, the volume of empty space remaining after backfill is deposited. Figure 2 shows a plot of the predicted inflow versus mine level elevation (in mine grid elevations).

The reflood time was estimated using a simplified step-wise approach that uses the groundwater inflow numerical predictions and the planned volume of mine workings. The time to reflood each mine level was calculated based on inflow rate predictions presented in Document P6-3, Groundwater Inflow and Quality Model at the respective mine levels and the planned mine volumes.

Note: A 30% porosity is assumed for tailings and waste rock backfill.

Figure 1: Estimated volume of the mine over time for the Doris Central and Connector Zones

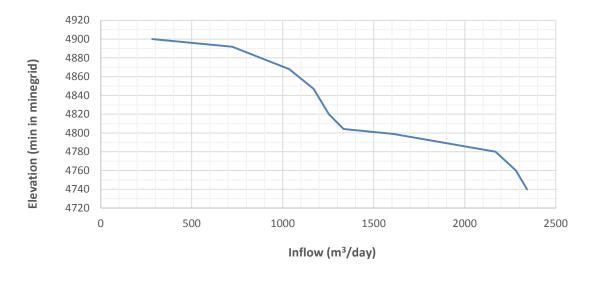


Figure 2: Predicted mine inflow in the Doris Central and Connector Zones versus elevation

The estimated groundwater reflood time at different times throughout the mine life is shown in Figure 3. Three reflood time curves are presented as follows:

- The base case reflood time estimation based on the inflow rates presented in Document P6-3. This corresponds to a mine inflow rate of about 1,450 m³/day when mining ceases;
- A hypothetical case with a constant reflood inflow rate of 500 m³/day for all mine levels. This
 rate corresponds to the lower end of the predicted inflow rates, when the mine begins to
 receive groundwater inflow; and
- A hypothetical case with a constant reflood inflow rate of 2,650 m³/day for all mine levels. This rate corresponds to the maximum inflow rate predicted by the numerical model.

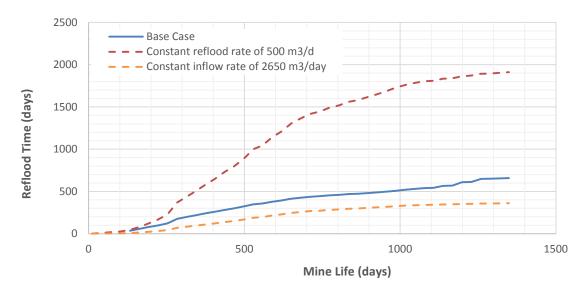


Figure 3: Reflood time estimates at different times throughout the mine life of Doris Central and Connector Zones

When the mine has been fully developed, the total reflood time is estimated to be about 2 years (660 days) for the base case. For the two hypothetical reflood scenarios presented in Figure 3, minimum and maximum reflood times of 1 and 5 years respectively can be observed.

It should be noted that these reflood estimates do not account for backfill being placed as mining progress. Over the life of mine approximately 810,000 m³ of backfill is placed. This backfill consists of mine waste rock and filtered tailings. This material will reduce the volume of the mine and as a result the reflood values as presented are conservative, i.e. reflooding would occur much faster. If the two hypothetical scenarios account for backfill deposition, the minimum and maximum reflood times are reduced to 4 months and 1.7 years respectively.

Disclaimer—SRK Consulting (Canada) Inc. has prepared this document for TMAC Resources Inc.. Any use or decisions by which a third party makes of this document are the responsibility of such third parties. In no circumstance does SRK accept any consequential liability arising from commercial decisions or actions resulting from the use of this report by a third party.

The opinions expressed in this report have been based on the information available to SRK at the time of preparation. SRK has exercised all due care in reviewing information supplied by others for use on this project. Whilst SRK has compared key supplied data with expected values, the accuracy of the results and conclusions from the review are entirely reliant on the accuracy and completeness of the supplied data. SRK does not accept responsibility for any errors or omissions in the supplied information, except to the extent that SRK was hired to verify the data.

AANDC TC 9 — SRK Technical Memo Filtering Requirements

SRK Consulting (Canada) Inc. 2200–1066 West Hastings Street Vancouver, BC V6E 3X2

T: +1.604.681.4196 F: +1.604.687.5532

vancouver@srk.com www.srk.com

Memo

To: John Roberts, PEng Client: TMAC Resources Inc.

From: Emma Helmers, EIT Project No: 1CT022.002

Arcesio Lizcano, PhD

Reviewed By: Maritz Rykaart, PhD, PEng **Date:** December 4, 2015

Subject: Response to AANDC-NIRB IR#22: TIA Interim Dike – Filtering Requirements

1 AANDC-NIRB IR #22

1.1 Issue

The filtering requirements of the TIA Interim Dike require clarification to determine if the impacts predicted (or lack thereof) are valid.

1.2 Reference

Package 6 Engineering and Design Documents, P6-13 Tailings Management System: Section 1.1 Paragraph 4 "The remaining portion of the TIA between the Interim Dike and the existing North Dam (completed in 2012, SRK (2012)) will not contain any tailings, and will act as a Reclaim Pond."

P6-13 Tailings Management System: Section 4.2 Paragraph 1 "Tailings will be retained between the South Dam and the Interim Dike"; P6-13 Tailings Management System: Section 4.4.2 Paragraph 1; P6-13 Tailings Management System: Appendix A, Drawing DN-TIA-04.

1.3 Concern

There are statements in the text which describe the purpose of the Interim Dike is to impound tailings between the South Dam and the Interim Dike. Therefore, it is inferred that the Interim Dike is actually a filter dike; retaining the tailings on the upstream side while allowing the supernatant water to flow through the dike to the downstream reclaim pond. However, the drawings show the Interim Dike to be mainly constructed with Run of Quarry material. The concern is if the Run of Quarry material will be a suitable filter material to retain the tailings upstream of the Interim Dike while allowing the water to filter through to the downstream reclaim pond.

It is also noted that P6-13 Tailings Management System: Section 4.4.2 Paragraph 1, does mention "The upstream face of the Interim Dike will, if required be clad with a layer of graded rock that would act as a filter to ensure tailings solids does not migrate through the Dike. Alternately,

the upstream slope will be clad with a geotextile to serve this filtering function." However, these mitigations may not be practical to employ if the Run of Quarry design does not work, since the tailings facility will already be in operation, and could have tailings and turbid supernatant water encroaching on the upstream face of the Dike. Given the importance of the Interim Dike, it is prudent to implement best practice, and design and construct the Dike in a way that does not require post-construction retrofitting from the onset.

If the Run of Quarry material does not act as a filter it may result in reclaim water turbidity and silting up of the downstream reclaim pond.

1.4 Information Request

Please comment on the rational for the design process and the proposed mitigation strategy.

Please provide supporting design calculations to show that the Interim Dike constructed of Run of Quarry material will in fact be a suitable filter matrix for retaining the tailings on the upstream side while allowing the supernatant water to flow through the dike to the downstream reclaim pond.

If the Run of Quarry material becomes clogged, how will tailings supernatant water be transferred from the Tailings Management Pond to the downstream Reclaim Pond? Consequently, describe potential effects of possible buildup of hydrostatic head on the upstream side of the Interim Dike, on the dike's stability.

1.5 Importance of Issue

It is important that the Interim Dike function properly to retain tailings on the upstream side of the TIA while allowing filtered tailings water to flow through the dike to the downstream reclaim pond for the proposed TIA to function properly and avoid unpredicted impacts to the environment. This information will assist AANDC in the subsequent technical review of this component of the Project.

2 TMAC Response

2.1 Context

As described in Document P6-13 Tailings Management System, the Interim Dike will retain tailings on the upstream side and allow water flow through its body to the downstream Reclaim Pond. The upstream face of the Interim Dike will, if required, be clad with a layer of graded rock that would act as a filter to ensure tailings solids do not migrate through the Dike. Alternately, the upstream slope may be clad with a geotextile to serve this filtering function.

This memo presents a filter design for the Interim Dike and discusses the performance of the Interim Dike itself as a filter. The memo also includes the alternative design option involving the installation of a geotextile along the upstream face of the Interim Dike.

2.2 Filter Design

2.2.1 Design Considerations

The following six aspects have been considered in the design of the suitable filter material for retaining tailings while allowing the flow of water through it:

- Filter ability;
- Internal stability;
- Self-healing;
- Material segregation; and
- Permeability and Drainage capacity.

The filter has been designed based on the particle size distribution of the Doris North tailings (SRK 2006; Pocock 2009; Knight Piesold 2009) and is presented in Figure 1.

2.2.2 Filter Ability

In order for a coarser material to appropriately retain a finer material, the pore size of the coarser material must be small enough such that grains of the finer material cannot freely pass through. Best practice filter criteria have been developed based on laboratory testing and failure investigations since 1940 (Bertram 1940, Terzaghi and Peck 1948, Sherard and Dunnigan 1989). Table 1 lists these criteria.

Table 1: Filter Criteria (Messerklinger 2013)

Soil Group	Fines Content <0.075 mm	Filter Criteria Determined by Tests after Sherard and Dunnigan (1989)	State-of-the-Art Criteria in Dam Engineering			
1	85-100	$D_{15f}^1 = 7d_{85b}^2$ to $12d_{85b}$	D _{15f} ≤ 9d _{85b}			
2	40-80	D_{15f} = 0.7 to 1.5 mm	D _{15f} ≤ 0.7 mm			
3	0-15	$D_{15f} = 7d_{85b} \text{ to } 10d_{85b}^3$	$D_{15f} \le 4 \text{ to } 5 \text{ d}_{85b}^4$			
4	15-40	Intermediate between group 2 and 3	Intermediate between group 2 and 3			

Notes:

Figure 1 shows three grain size distribution curves for the Doris North tailings. The average fines content (material finer than 0.075 mm) is approximately 50%, which puts the tailings in the Soil Group 2 of Table 1. Based on the state-of-the-art criteria in dam engineering shown in Table 1, the D_{15f} of the filter (the diameter at which 15% of the filter material is finer) must be less than or equal to 0.7 mm. Therefore, the coarse D_{15f} limit of the filter material was set to 0.7 mm and the fine D_{15f} limit of the filter material to 0.48 mm. The latter was calculated by multiplying the d_{85b} of

¹ Diameter at which 15% of the filter material is finer

² Diameter at which 85% of the tailings material is finer

³ 7 For subrounded grain shape and 10 for angular grain shape

⁴ Incorporates a factor of safety of 2

the finest tailings specimen by 4 following the piping criterion of Terzaghi (Terzaghi and Peck 1948).

2.2.3 Internal Stability

Filter materials must be internally stable, meaning the finest particles in the filter do not migrate through their coarse particles, even at high hydraulic gradients. Experimental investigations have led to the criteria that the coefficient of uniformity (C_u , which is equal to D_{60} divided by D_{10}) of the filter material should not be greater than 12 (Kenney and Lau 1986).

For the filter design, D_{10f} was calculated by multiplying the d_{10b} of the tailings material by the ratio of the D_{15f} of the filter material to the d_{15b} of tailings in order to get a filter curve of similar shape to the tailings curve. This was done for both the fine and coarse limits of the filter to get an envelope. The D_{60f} was then chosen by applying a coefficient of uniformity of 12.

2.2.4 Self-Healing

A filter material must have less than 5% non-plastic fines (I_P<5%) so that cracks that open due to e.g. differential settlement (or strains) can close again easily (Messerklinger 2013). However, the Bulletin 141 of the International Commission of Large Dams (ICOLD 2011) Bulletin on CFRD's, No. 141 allows 7% of fines. The maximum fines percentage in the filter design shown in Figure 1 is approximately 7%.

2.2.5 Material Segregation

When a material segregates from itself, meaning that the coarser materials separate from the finer particles, the filter can no longer fulfill its purpose of preventing fine particles moving from the tailings to the filter or within the filter itself (Messerklinger 2013). Based on observations and laboratory investigations, Milligan (2003) presented a segregation criterion shown in Figure 1 as a "coarse limit" for a filter material.

2.2.6 Permeability and Drainage Capacity

In order to ensure that the filter will be several times more permeable than the tailings, thereby avoiding the buildup of excess pore pressure, the filter design followed the Terzaghi permeability criterion $D_{15f}/d_{15b} \ge 4$. The filter also fulfills the Terzaghi criterion $D_{15f}/d_{85b} \ge 4$ and the Sherard recommendation that $D_{15f} \ge 0.2$ mm (Messerklinger 2013), both designed to increase drainage capacity.

2.3 Interim Dike as a Filter

Based on experience with Run-of-Quarry (ROQ) rock during design of the tailings containment area (SRK 2006), the expected D₅₀ of the Interim Dike ROQ rock is 114 mm for the coarse fraction, and 2.45 mm for the fine fraction. The ROQ envelopes are shown in Figure 1. The ROQ rock of the Interim Dike will therefore not act as a filter for the tailings material and a specific, filter material as shown in Figure 1 and described in Section 2.2 is required.

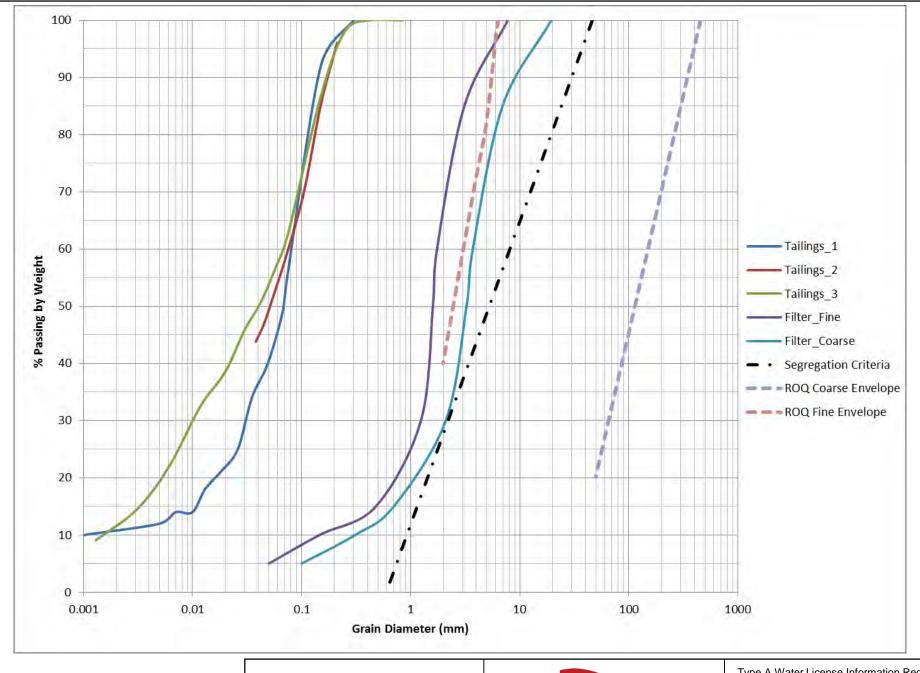
2.4 Alternative Design Option

There are no borrow material at site that satisfied the filter criteria and therefore the filter material will be manufactured through crushing and screening. A cost trade-off will be completed at the detailed engineering stage and if the designed filter is difficult and/or expensive to attain by crushing and screening, a geotextile may be installed on the upstream face of the Interim Dike. The geotextile should have a maximum apparent opening size (AOS) of less than 0.7 mm (determined maximum D_{85f}). Subaqueous geotextile installations have been carried out at other mines and remediation sites in Canada such as the Seabee Mine (SRK 2012) and the Lorado Mill Tailings Remediation Project (SRK 2014). A common technique is to attach steel pipe to the end of the geotextile and lower this pipe to the toe of the constructed dam from a boat or with an excavator that has an extended reach. The geotextile is then tied into the crest of the dam, as pictured in Figure 2.

2.5 Filter Clogging

The ROQ material of the Interim Dike will not clog if the filter design as presented is constructed. Consequently, no buildup of hydrostatic head on the upstream side of the Interim Dike is expected.

Disclaimer—SRK Consulting (Canada) Inc. has prepared this document for TMAC Resources Inc.. Any use or decisions by which a third party makes of this document are the responsibility of such third parties. In no circumstance does SRK accept any consequential liability arising from commercial decisions or actions resulting from the use of this report by a third party.


The opinions expressed in this report have been based on the information available to SRK at the time of preparation. SRK has exercised all due care in reviewing information supplied by others for use on this project. Whilst SRK has compared key supplied data with expected values, the accuracy of the results and conclusions from the review are entirely reliant on the accuracy and completeness of the supplied data. SRK does not accept responsibility for any errors or omissions in the supplied information, except to the extent that SRK was hired to verify the data.

3 References

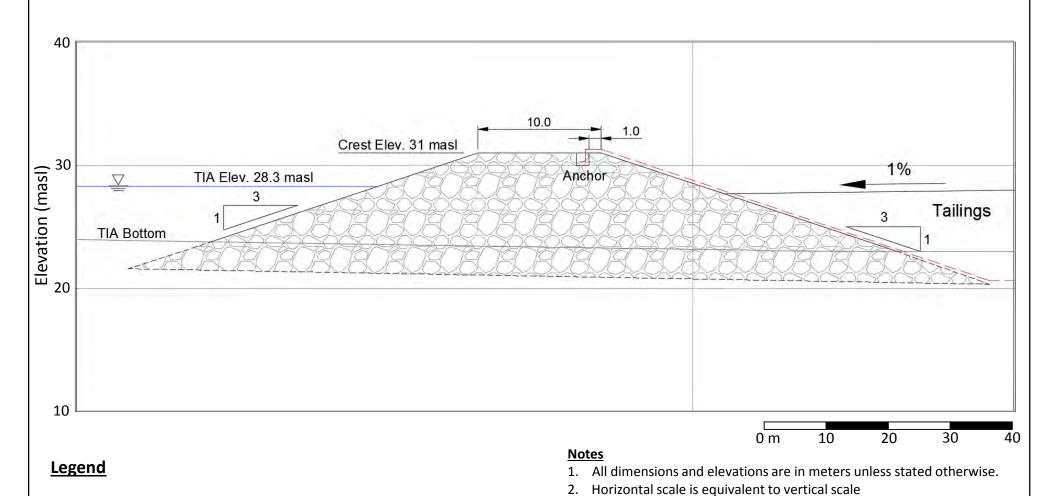
Bertram, G. E. (1940). *An Experimental Investigation of Protective Filters*. Harvard Soil Mechanics Series No. 7.

- International Commission of Large Dams (ICOLD) (2011). Concrete Face Rockfill Dams Concepts for Design and Construction, Bulletin 141.
- Kenney, T. C. and Lau, D. (1986). *Internal Stability of Granular Filters*. Canadian Geotechnical Journal. (23): 420-423.
- Knight Piesold Consulting (2009). Hope Bay Project Geotechnical Laboratory Test Results.
 Report submitted to Newmont Metallurgical Services June, 2009. Knight Piesold Project No. DV108-00147.04.
- Messerklinger, S. (2013). *The Design of Filter Materials and their Importance in Geotechnical Engineering*. Proceedings of the 18th International Conference on Soil Mechanics and Geotechnical Engineering. Paris, 2013.
- Milligan, V. (2003). Some Uncertainties in Embankment Dam Engineering. ASCE. 129(9): 785-797.
- Pocock Industrial, Inc (Pocock). (2009). Flocculant Screening, Gravity Sedimentation, Pulp Rheology, Pressure Filtration and Vacuum Filtration Studies Conducted for Newmont Mining Corporation, Hope Bay Project. Report submitted to Newmont Mining Corporation February, 2009.
- Sherard, J. L. and Dunnigan, L. P. (1989). *Filters and Leakage Control in Embankment Dams*. Proceedings of the Symposium on Seepage and Leakage from Dams and Impoundments, American Society of Civil Engineers. New York: 1-29.
- SRK Consulting (Canada) Inc (SRK). (2006). *Design of the Tailings Containment Area Doris North Project, Hope Bay, Nunavut, Canada*. Report submitted to Miramar Hope Bay Ltd October, 2006. SRK Project No. 1CM014.008.165.
- SRK Consulting (Canada) Inc (SRK). (2012). Seabee Mine East Lake TMF Expansion Geotechnical Design UPDATED. Report submitted to Claude Resources Inc. June, 2012. SRK Project No. 4CC005.010.
- SRK Consulting (Canada) Inc (SRK). (2014). *Detailed Cover Design Report for the Lorado Mill Site Tailings and Peripheral Areas*. Report submitted to Saskatchewan Research Council June, 2014. SRK Project No. 4CS008.003.
- Terzaghi, K. and Peck, R. B. (1948). *Soil Mechanics in Engineering Practice*. John Wiley & Sons. New York.

Filename: AANDC_IR22_Figures_FilterDesign_EH_TS_al_20151204.pptx

WAC

Type A Water License Information Requests


Interim Dike Filter Design

Job No: 1CT022.002

Hope Bay Project

Date: Approved: December 2015 El

Figure:

srk consulting

Filename: AANDC_IR22_Figures_FilterDesign_EH_TS_al_20151204.pptx

Job No:

1CT022.002

3. Cross section modified from DN-TIA-03 in SRK (2015).

Hope Bay Project

Type A Water License Information Requests

Typical Interim Dike Cross Section

Sketch with Geotextile Filter

Figure:

Approved:

December 2015

Reclaim Pond Surface

Geotextile Filter

ROQ Fill Material

AANDC TC 10 - SRK Technical Memo Closure Cost Estimate Analysis

Client:

SRK Consulting (Canada) Inc. 2200–1066 West Hastings Street Vancouver, BC V6E 3X2

T: +1.604.681.4196 F: +1.604.687.5532

vancouver@srk.com www.srk.com

Memo

To: John Roberts, PEng

From: lozsef Miskolczi, PEng Project No: 1CT022.002

Reviewed by: Maritz Rykaart, PhD, PEng **Date:** December 18, 2015

Subject: Response to IR AANDC TC10 - Closure Cost Estimate

1 Introduction

As part of the supporting documents for Amendment #1 to the Water License No. 2AM-DOH1323, TMAC Resources Inc. submitted an Interim Closure and Reclamation Plan (Document P5-2) and the associated closure cost estimate (Document P6-5).

During the technical review process, Aboriginal Affairs and Northern Development Canada (AANDC) reviewed both documents and provided comments. AANDC also retained Amec Foster Wheeler (AMEC) to provide an Independent Closure Cost Estimate based on the same Document P5-2. This estimate has been calculated using the RECLAIM 7.0 Model for Reclamation and Closure Security Estimate and is based on a geotechnical site inspection that was conducted this past August and a review of TMAC Resources Inc.'s (TMAC) licence amendment application. A total closure cost estimate of \$47,818,382 was calculated, compared to \$25,061,000 estimated by TMAC.

This memorandum presents an analysis of the AANDC cost estimate and provides a summary of the differences between what AANDC is proposing and what TMAC has provided. A complete list of the changes and corrections made to the AANDC estimate is provided in Attachment 1.

2 Review of the AANDC Cost Estimate

The independent cost estimate was summarised in a technical memorandum (AANDC 2015) and details of the estimates for each work area were provided as appendices while select assumptions used to derive the costs were summarised in the body of the memo.

The AANDC cost estimate was completed using the RECLAIM version 7.0 cost model (Brodie 2014), and considerable effort was made to retain as much as possible the functional structure of the TMAC estimate, which was based on a work breakdown structure detailed in Document P5-2. This was achieved by grouping similar activities from the various work areas into the functional sheets provided in the RECLAIM template, and some of those sheets were

renamed or repurposed as necessary. This made it relatively easy to complete a direct comparison of the costs estimated for the similar activities comprising the two cost models.

In general the AANDC estimate follows the structure of the TMAC estimate. Most quantities and many of the task unit rates are the same but in some instances new unit rates or new quantities were introduced in the AANDC estimate; however the assumptions or calculations supporting these new values were not included in the cost model provided for review.

3 Basis for Comparison

3.1 Model Structure

Taking as basis for comparison the AANDC estimate, the main differences in the cost models are as follows:

Direct Costs

- A new cost category was introduced representing Interim Care and Maintenance activities.
- The cost category for off-site disposal of hazardous waste and hydrocarbon contaminated soils was omitted.

Indirect Costs

- Some of the costs are calculated as percentage of the direct costs, as opposed to being a first principles approach.
- An "Engineering" cost category was introduced.
- The "Hydrocarbon Decontamination" category was omitted.
- A new category was introduced named "Health & Safety Plans, Monitoring, and QA/QC".
- The "General Administration" category was omitted.

To make a direct comparison possible, the cost categories not used under either of the costing models were added as blank lines, such that both estimates have the same number of categories. Except for the omitted cost categories (e.g. hydrocarbon decontamination) all activities and tasks as presented in Document P5-2 are accounted for in the AANDC model.

3.2 Cost Comparison Basis

A detailed reviewed of the AANDC cost estimate was completed by SRK on behalf of TMAC and the findings are summarised in Section 4. The review process was structured in a way that provides a systematic breakdown of the discrepancies between the two cost estimates and detailed notes were prepared documenting each of the changes made to the AANDC estimate (Attachment 1). The analysis was completed in three steps, as follows:

1. Remove obvious "typographical type" errors related to quantities and/or unit rates applied;

2. Correct assumptions made in the AANDC cost estimate to reflect the actual site conditions and the existing Interim Closure Plan (Document P5-2); and

3. Where necessary, replace the unsupported AANDC unit rates with the well-documented TMAC unit rates.

A few general observations were made with regards to the cost discrepancy between the two models, which are summarised in the sub-sections following below.

Direct Costs

 The main source of discrepancy between the costs is the Interim Care and Maintenance category, which was not included in the original TMAC estimate.

Indirect costs

- The AANDC memo states that the main difference in overall costs is partly originating from
 the fact that the TMAC reclamation costs are based on equipment existing on site at time of
 closure. This is not accurate, and the Mobilization/Demobilization cost category in the TMAC
 estimate (Document P6-5) provided detailed costs for shipping the equipment to and from
 site by barge.
- In the AANDC estimate, owner's costs with camp rental and camp operations are included in the Mobilization/Demobilization category. The TMAC model (Document P6-5) assumed that existing camp facilities will be used for closure; however, this was revised to include an allowance for camp rental cost during the 2.5 years required for active water management post-closure.
- Some of the indirect cost categories were calculated as percentages of the direct costs. This
 practice is common for interim closure cost estimates, where final closure task definitions are
 somewhat vague or uncertain. The original TMAC estimate provided an itemised description
 and costing for these indirect cost items, based on unit rates where appropriate. For
 compatibility and ease of comparison with the AANDC cost estimate, the percentage method
 was adopted by TMAC for these categories, but percentages were adjusted as necessary to
 produce a more realistic cost.

4 Cost Comparison

Once the obvious errors were corrected in the AANDC cost estimate model, the overall cost was reduced from \$47.8 M to \$43.8 M, which we believe represents the true cost as intended by AANDC.

As a next step, the assumptions made in the AANDC estimate were adjusted or corrected to reflect the site conditions and the closure activities detailed in Document P5-2, while the unit rates remained the same as in the previous step. In this step the cost for Interim Care and Maintenance and the camp rental cost for the active water management period were also included. Due to the large amounts removed by eliminating the winter road and the commuter flights, the overall cost was further reduced to \$26.2 M.

In the final step of this analysis, the unit rates used in the AANDC estimate were replaced with the equivalent unit rates in the TMAC estimate. This was done because none of the AANDC unit rates were supported by productivity calculations or third-party quotations and, although these units may be reasonable, cannot be assessed on their merits. The overall closure cost in this case became \$28.9 M. This is about \$3.9 M higher than the original TMAC cost, due to the increase from the Interim Care and Maintenance and mobile camp rental costs.

Table 1 provides a summary of the cost categories as included in the two cost estimate models. The costs are broken out by the three analysis steps detailed in Section 3.2. The detailed cost estimate model is provided in Attachment 2.

Table 1: Summary of Cost Categories

AANDC Cost Categories (RECLAIM V. 7 Model)	TMAC Cost Categories (SRK Model)	AANDC Estimate		TMAC Estimate (Absolute) ¹		TMAC Estimate (Rounded) ²		AANDC Estimate with Errors Corrected		AANDC Estimate with Assumptions Corrected		Revised TMAC Estimate corrected with Select AANDC Assumptions	
DIRECT COSTS													
Open Pit	Roberts Bay Area / Airstrip	\$	947,269	\$	762,129	\$	763,000	\$	919,329	\$	919,329	\$	768,158
UG Mine	U/G Workings and Reagent Pads	\$	255,351	\$	144,618	\$	145,000	\$	246,351	\$	239,726	\$	144,561
Tailings	North and South Dams / Interim Dyke	\$	8,341,610	\$	8,655,952	\$	8,656,000	\$	8,341,610	\$	8,341,610	\$	8,655,951
Rock Pile	Doris Windy Road / Secondary Road	\$	786,873	\$	547,408	\$	549,000	\$	783,581	\$	783,581	\$	547,927
Doris Camp	Doris Camp	\$	4,369,083	\$	2,996,539	\$	2,997,000	\$	4,082,823	\$	4,182,275	\$	2,996,446
Chemicals	Quarry #2 / Doris Mtn / Quarry #3 Waste Area / Ocean Discharge System	\$	900,502	\$	372,859	\$	376,000	\$	895,502	\$	622,002	\$	372,923
Surface and Groundwater Management	Surface Water Management	\$	1,015,000	\$	3,361,200	\$	3,361,000	\$	1,015,000	\$	507,507	\$	3,361,200
Interim Care and Maintainance	Not Included	\$	4,192,002	\$	-	\$	-	\$	4,173,252	\$	1,991,028	\$	2,408,390
Not Inlcuded	Off-site Disposal	\$	-	\$	491,960	\$	492,000	\$	-	\$	-	\$	491,960
	SUBTOTAL: DIRECT COSTS	\$	20,807,690	\$	17,332,665	\$	17,339,000	\$	20,457,448	\$	17,587,059	\$	19,747,514
			INDIRECT CO			_			10.000.100				
Mobilization/Demobilization	Mobilization & Demobilization	\$	17,289,163	\$	1,037,786	\$	1,038,000	\$	16,209,163	\$	3,331,424	\$	2,865,058
Post-Closure Monitoring & Maintenance	Post-Closure Monitoring	\$	1,814,608	\$	884,000	\$	884,000	\$	1,814,608	\$	868,500	\$	868,500
Engineering (8%, reduced to 1%)	Not Included	\$	1,664,615	\$	-	\$	-	\$	204,574	\$	175,871	\$	197,475
Not Included	Hydrocarbon Decontamination	\$		\$	150,000	\$	150,000	\$	-	\$	-	\$	-
Project Management (7%, reduced to 2%)	Field Support	\$	1,456,538	\$	347,003	\$	347,000	\$	409,149	\$	351,741	\$	394,950
Health & Safety Plans/Monitoring & QA/QC (2%)	Not Included	\$	416,154	\$	-	\$	-	\$	409,149	\$	351,741	\$	394,950
Not Included	General Administration ³	\$	-	\$	1,935,021	\$	1,935,000	\$	-	\$	-	\$	618,571
Bonding/Insurance (1%)	Not Included	\$	208,077	\$	-	\$	-	\$	208,077	\$	-	\$	-
Contingency (20%)	Contingency (20%) ⁴	\$	4,161,538	\$	3,368,141	\$	3,368,000	\$	4,091,490	\$	3,517,412	\$	3,851,111
Market Price Factor Adjustment (0%)	Not Included	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-
	SUBTOTAL: INDIRECT COSTS	\$	27,010,693	\$	7,721,951	\$	7,722,000	\$	23,346,210	\$	8,596,688	\$	9,190,615
	TOTAL COSTS	\$	47,818,383	\$	25,054,616	\$	25,061,000	\$	43,803,657	\$	26,183,747	\$	28,938,129

NOTES:

- 1. The TMAC cost estimate is based on precise numbers, but the presented numbers in the supporting documents are rounded (see Note 2 below).
- 2. The TMAC numbers as shown in the supporting documents are rounded numbers. The rounding occurs at two levels; all line items are rounded to the nearest \$1,000 or a minimum of \$1,000.
- 3. The TMAC General Administration cost was reduced by an amount equal to H&S Plans/Monitoring & QA/QC, as these tasks are assumed to be part of the camp administrator's duties.
- 4. The cost of off-site disposal was subtracted from Direct Costs when calculating the Contingency.

5 References

AANDC (2015). Reclamation Cost Estimate Amendment No. 1 to Nunavut Water Board License No. 2AM-DOH1323 Doris North Project Kitikmeot Region, Nunavut. Technical Memorandum Prepared by Amec Foster Wheeler Environment & Infrastructure a Division of Amec Foster Wheeler Americas Limited, Project No. TV154011, December 8, 2015.

Brodie Consulting Ltd., 2014. RECLAIM Version 7.0 User Manual. MS Excel Workbook and User Manual prepared for Aboriginal Affairs and Northern Development Canada – Water Resources Division. March 2014.

Disclaimer—SRK Consulting (Canada) Inc. has prepared this document for John Roberts. Any use or decisions by which a third party makes of this document are the responsibility of such third parties. In no circumstance does SRK accept any consequential liability arising from commercial decisions or actions resulting from the use of this report by a third party.

The opinions expressed in this report have been based on the information available to SRK at the time of preparation. SRK has exercised all due care in reviewing information supplied by others for use on this project. Whilst SRK has compared key supplied data with expected values, the accuracy of the results and conclusions from the review are entirely reliant on the accuracy and completeness of the supplied data. SRK does not accept responsibility for any errors or omissions in the supplied information, except to the extent that SRK was hired to verify the data.

1 Listing of Errors and Assumptions Corrected

This list of notes should be read in conjunction with the complete sheets of the cost analysis provided in Attachment 2. The cells highlighted in each of the cost category sheets represent changes made to the AANDC cost model. The following notes describe the changes that were made for each of the highlighted cells.

1.1 Errors corrected

Each of the estimate sheets were reviewed and compared to the original TMAC estimate. In a few cases quantities or unit rates values were obviously erroneous. These include order-of-magnitude differences, mismatch with the referenced unit of measurement, or values not representing the actual site conditions.

These errors were corrected and the notes are summarised below following the AANDC estimate structure.

1_Open Pit

- Roberts Bay Tank Farm: Number of tanks in this tank farm were miscounted (one tank by AANDC instead of four). Quantities were adjusted accordingly for "wash tanks" and dismantle tanks..." tasks.
- Quarry #1 Tank Farm: Number of tanks in this farm was miscounted (four tanks instead of
 one). Quantities were adjusted to show one 5ML tank for "drain tanks..." and dismantle 5ML
 diesel..." tasks. Quantity was adjusted to 2 for "Disconnect piping and controls" task.

4_Rock Pile

 Explosives Facility: "Load all waste and debris into containers": AANDC used the facility surface area as metric for loading waste, which is inappropriate and results in very high cost. Unit rate is also inconsistent with the rate used for the same task in other places. The quantity of waste was revised.

5 Doris Camp

- Accommodation Complex: the number of trailer units in AANDC estimate is 283; we believe
 this to be a typo, as the actual number is 83. Quantity was revised.
- Tank Farm: the quantities for the tasks "Decommission Fuel Transfer Facility" and "Wash Tanks" were switched in the AANDC estimate. The quantities were revised to reflect the actual task. Unit rates were correct.
- Tank Farm: the unit and quantity for the "prepare pieces for transportation" were erroneous and were corrected to be consistent with the immediately following task.
- Sewage Treatment Plant: the quantity for "Load debris into containers for transport (to Roberts Bay)" was erroneous and inconsistent with the following task. The quantity was revised.

• Fire Water Storage Tank: the last 5 lines in the quantities column were translated, resulting in erroneous task costs. Quantities were corrected to match the TMAC estimate.

• Expanded Laydown Area (Pad U): the unit rate used for the "LHD remaining ore to TIA" task was \$16.35, although RECLAIM rate code SBSH was used, which is \$6.30. The unit rate was corrected to reflect the RECLAIM unit rate.

6_Chemicals

 Communications Tower: AANDC used 11 m³ of waste to be removed from the top of Doris Mountain. This is inconsistent with the other quantities for the same activity, and it was replaced with a value of 9.

8_Interim Care and Maintenance

 Geotechnical Assessment: a quantity of 1.5 was used for the yearly unit rate. This was corrected to 1.

9_Mobilization / Demobilization

Worker Accommodations: The total number of months for camp operations during active
water management was set to 60 (i.e. 5 years). Since 18 months were accounted for under
the closure activities, these months were removed from the total and the quantity was revised
to the balance of 42.

1.2 Revised Assumptions

Some of the assumptions made to derive the units, quantities, and task unit rates did not represent the existing site conditions and/or were inconsistent with the reclamation tasks described in the Interim Closure and Reclamation Plan (Document P5-2). Where encountered, these assumptions were adjusted or corrected to align with the Plan.

2_UG Mine

Doris North Vent Raise: the unit rate for the "Prepare units for shipping off-site" was intended
as an aggregate rate for preparing all parts at once. The AANDC estimate used multiples of
these rates matching the number of equipment parts removed. This was corrected to the unit
quantity. This same correction was done for the Doris Connector and Doris Central vent
raises.

5_Doris Camp

- Tank Farm: AANDC used a quantity of 5 for the "Dismantle tanks and cut into manageable pieces" task. While this is correct for the tank farm, two more tanks of similar size exist on site (the Fire Water Tank and the water tank for Boston) for which dismantling costs were not accounted for under the AANDC assumption. The quantity was adjusted to 7.
- Tank Farm: the 60 m3 quantity for the waste resulting from the dismantling of the tanks is too high, especially when the selected unit rates are used to calculate the task cost. The quantities were corrected to be equal to the volumes calculated by TMAC.

Office and Mine Dry Complex: the unit rate for "collect all debris" (C310L) is appropriate for
collecting loose debris from pad surface opposed to actual volume of debris, as presented in
the AANDC estimate. The quantity was corrected to match the selected unit rate.

6_Chemicals

Roberts Bay Discharge System: a much higher unit rate was used for the task of "Cut pipelines into manageable pieces" compared to the tailings line at the TIA. As this pipeline is 10 inch HDPE, similar to the tailings lines, it was considered that a similar unit rate is more appropriate. Unit rate was corrected to \$22.

7_Surface and Groundwater Management

 Operate / Maintain Water Management System: AANDC assumed 5 years for the two tasks under this category, and used a quantity of 60 monthly rates for the cost. Given the plan for the water management detailed in the Closure Plan, only 29 months of active water management will be required, with 22 months for direct support (the balance is supported under general closure activities). The quantities were adjusted accordingly.

8_Interim Care and Maintenance

- On-site care-taker: AANDC assumed 5 months per year, which is inconsistent with the other assumptions for this activity (6 months for camp operations). The quantity was increased to 6.
- Mobile camp rental: the AANDC estimate includes camp rental cost, however the existing camp is still functional at this time. The rental allowance was removed.
- Technician: the site caretaker is normally in charge of operating the pumping system. This
 position was removed.
- Mobilization / Excavator: The AANDC assumptions list articulates the need for a small excavator, yet a 36.1 t (operating weight) machine is specified for mobilization. This was reduced to a 20 t (operating weight) machine.
- Winter Road: AANDC estimate assumed 116 km of winter road will be constructed for mobilization. Since Hope Bay has a barge off-loading facility and all-weather road access to all site facilities, no winter roads will be necessary.

9 Mobilization / Demobilization

- Mobilize Heavy Equipment / Excavators: AANDC assumed 2 excavator to be mobilized, and a third one under the Interim Care and Maintenance activities. This was reduced to 1, for a total of two machines available for closure.
- Mobilize Heavy Equipment / Dozers: AANDC assumed 2 dozers to be mobilized, and a third
 one under the Interim Care and Maintenance activities. This was reduced to 0, for a total of
 one machine available for closure.

Mobilize Heavy Equipment / Loaders: AANDC assumed 2 loaders to be mobilized, and a third
one under the Interim Care and Maintenance activities. This was reduced to 1, for a total of
two machines available for closure.

- Mobilize Heavy Equipment / Light Duty Vehicles: AANDC assumed 6 vehicles to be mobilized, and 2 more under the Interim Care and Maintenance activities. This was reduced to 2, for a total of 4 vehicles available for closure.
- Mobilize Camp: AANDC estimate assumes 5 seasons for mobile camp rentals. This was reduced to 2.5, representing the time required to complete active water management and breaching the North Dam.
- Mobilize workers: For both winter and summer flights from Yellowknife to Cambridge Bay, the quantities were reduced to 0 as cost of transportation is included in camp operations cost.
- Worker Accommodations: AANDC estimate assumes 18 months of large camp (>25 persons) for 18 months and 60 months of the smaller camp (<10 person) for completion of decommissioning/reclamation and water treatment activities respectively. Based on the AANDC calculations, water discharge from TIA will be completed in 29 months. With decommissioning/reclamation activities completed in 12 months (i.e. larger camp) the water management personnel will spend the balance of 17 months in the smaller camp. The quantities were adjusted accordingly.</p>
- Winter Road: AANDC estimate assumed 116 km of winter road will be constructed for mobilization. Since Hope Bay has a barge off-loading facility and all-weather road access to all site facilities, no winter roads will be necessary.
- Demobilize Heavy Equipment / Excavators: AANDC estimate assumes 3 excavators were on site for completion of the works. This was reduced to 2 to match the total number of equipment mobilized.
- Demobilize Heavy Equipment / Dozers: AANDC estimate assumes 2 dozers were on site for completion of the works. This was reduced to 1 to match the total number of equipment mobilized.
- Demobilize Heavy Equipment / Loaders: AANDC estimate assumes 3 loaders were on site for completion of the works. This was reduced to 2 to match the total number of equipment mobilized.
- Demobilize Heavy Equipment / Light Duty Vehicles: AANDC estimate assumes 6 vehicles
 were on site for completion of the works. This was reduced to 4 to match the total number of
 equipment mobilized.
- Demobilize Heavy Equipment / Standard 20' Container: AANDC estimate assumes 10 containers need to be demobilized. This was increased to 12 to account for the 2 containers mobilized under Interim Care and Maintenance activities.

10_Post-Closure Monitoring and Maintenance

The AANDC estimate was calculated by assuming fractions of each task to compute a yearly amalgamated cost of \$235,000. It included a task for vegetation monitoring and a task for decommissioning the water management structures.

This amalgamated yearly rate was applied to each of the 10 years duration of post-closure monitoring, and then the Net Present Value was calculated using a discount rate of 5%. This method results in inaccuracies when estimating the NPV, because in reality different costs will be incurred each year, and the NPV should reflect that.

To correct these assumptions the vegetation monitoring task was removed (no revegetation completed at closure), together with the decommissioning of water management structure task (accounted for under direct costs). The actual yearly expenditures were then computed and the NPV calculated based on these yearly values.

1.3 Revised Unit Rates

The AANDC cost estimate did not detail the methodology for determining the unit rates used in the estimate. By comparison, most of the TMAC task unit rates were calculated from first principles based on contractor's quotations for equipment and labor as well as productivity factors applied for each task or activity. In some instances lump sum rates were used, and these were based on SRK's experience with similar projects.

In most instances the AANDC made use of the TMAC unit rates, and these were left as is. In instances where new unit rates were proposed for certain tasks, these were replaced with the TMAC rates due to the fact that no supporting documentation was provided to provide a base for the evaluation of the suitability of the new unit rate.

Although the quantities and the unit rates from the AANDC estimate were essentially restored to the original TMAC values in the analysis process, the totals for the various cost categories are slightly different. This is because some of the decimal points and fractions of units were lost in the transfer process and could not be restored to their original values.

1.4 Indirect Costs

Engineering

This task category was omitted from the original TMAC cost, due to the fact that no major earthworks will be required under the general closure plan. Therefore the cost representing 8% of the direct costs was considered excessive, and was reduced to 2% of direct costs.

Cost of final tailings covers design was considered as part of separate obligations under the Water License.

Hydrocarbon Decontamination

The engineering and sampling/testing cost for this category in the original TMAC estimate was assumed to be accounted for under the AANDC Engineering cost category, and was therefore removed from this updated estimate.

Project Management

This category is equivalent to the "Field Support" category in the original TMAC estimate; however the 7% of the direct costs was considered excessive. This percentage was reduced to 2% of the direct costs, to match the cost calculated by TMAC from first principles.

General Administration

This category was omitted from the AANDC estimate. The total presented in the original TMAC estimate was split into three parts, to match the AANDC structure and assumptions. The camp operations portion was accounted for under the Mob/Demob activities, while the category cost presented in this revised estimate is the balance between the remainder (after camp operations removed) and the H&S Plans/Monitoring & QA/QC. This was done under the assumption that these H&S tasks will be part of the duties of camp management.

Contingency

The costs of off-site disposal was subtracted from the Direct Costs when calculating the Contingency. This was done because the cost for shipping and disposal is based on contractor quotations, thus the uncertainty in this cost is greatly reduced.

ACTIVITY/MATERIAL	Units	Quantity	Cost Code Un	nit Cost Cost	Errors Corrected	Assumptions Corrected	Unit Rates Corrected
		•			Quantity Unit Cost Cost	Quantity Unit Cost Cost	Quantity AANDC AANDC Cost SRK SRK Cost
							Unit Cost Unit Cost
JETTY							
Remove rock fill to 0.3 m below LLWL, place in surrounding water	m3	1013.8	SSC3L \$	8.90 \$ 9,023	1013.8 \$ 8.90 \$ 9,022.82 \$ 13,750.82	1013.8 \$ 8.90 \$ 9,022.82 \$ 13,750.82	1013.8 \$ 8.90 \$ 9,022.82 \$ 13,750.82 \$ 1.23 \$ 1,244.29 \$ 7,276.25
Remove on-shore mooring points	LS LS	1	OSHRL \$ FSHRL	1,500.00 \$ 1,500	1 \$ 1,500.00 \$ 1,500.00	1 \$ 1,500.00 \$ 1,500.00	1 \$ 1,500.00 \$ 1,500.00 \$ 1,200.00 \$ 1,200.00
Remove mooring buoy	m2	1900	c518I	3,000.00 \$ 3,000	1 \$ 3,000.00 \$ 3,000.00	1 \$ 3,000.00 \$ 3,000.00	1 \$ 3,000.00 \$ 3,000.00 \$ 2,500.00 \$ 2,500.00
Crown jetty for positive drainage ROBERTS BAY TANK FARM - 20ML Drain tanks into portable fuel storage			\$	0.12 \$ 228	1900 \$ 0.12 \$ 228.00	1900 \$ 0.12 \$ 228.00	1900 \$ 0.12 \$ 228.00 \$ 1.23 \$ 2,331.97
(EnviroTanks)	each	4	C203L \$	10,000.00 \$ 40,000	4 \$ 10,000.00 \$ 40,000.00 \$ 491,345.07	4 \$ 10,000.00 \$ 40,000.00 \$ 491,345.07	4 \$ 10,000.00 \$ 40,000.00 \$ 491,345.07 \$ 256.75 \$ 1,027.01 \$ 435,805.97
Decomission fuel transfer facilities	each	1	C102L \$	550.00 \$ 550	1 \$ 550.00 \$ 550.00	1 \$ 550.00 \$ 550.00	1 \$ 550.00 \$ 550.00 \$ 1,288.18 \$ 1,288.18
Wash tanks	each	1	C204L \$	1,420.00 \$ 1,420	miscounted 4 \$ 1,420.00 \$ 5,680.00 tanks	4 \$ 1,420.00 \$ 5,680.00	4 \$ 1,420.00 \$ 5,680.00 \$ 1,123.28 \$ 4,493.14
Operate oil/water separator	m3	50	C208L \$	30.00 \$ 1,500	50 \$ 30.00 \$ 1,500.00	50 \$ 30.00 \$ 1,500.00	50 \$ 30.00 \$ 1,500.00 \$ 31.00 \$ 1,549.99
Disconnect piping and controls	each	1	C102L \$	550.00 \$ 550	1 \$ 550.00 \$ 550.00	1 \$ 550.00 \$ 550.00	1 \$ 550.00 \$ 550.00 \$ 448.37 \$ 448.37
Dismantle tanks and cut into manageable pieces	each	1	CUT5L \$	100,000.00 \$ 100,000	4 \$ 100,000.00 \$ 400,000.00 miscounted tanks	4 \$ 100,000.00 \$ 400,000.00	4 \$ 100,000.00 \$ 400,000.00 \$ 100,000.00 \$ 400,000.00
Load pieces for transportation	m3	43.5	C401L \$	13.13 \$ 571	43.5 \$ 13.13 \$ 571.16	43.5 \$ 13.13 \$ 571.16	43.5 \$ 13.13 \$ 571.16 \$ 10.23 \$ 444.91
Haul cut metal to Landfill	m3	51.4	C415L \$	6.34 \$ 326	51.4 \$ 6.34 \$ 325.88	51.4 \$ 6.34 \$ 325.88	51.4 \$ 6.34 \$ 325.88 \$ 5.99 \$ 308.06
Remove and stockpile liner protection cover	m3	5455	SB1L \$	4.30 \$ 23,457	5455 \$ 4.30 \$ 23,456.50	5455 \$ 4.30 \$ 23,456.50	5455 \$ 4.30 \$ 23,456.50 \$ 2.75 \$ 14,994.13
Load contained contaminated soils into megabags for shipping off-site	m3	50	C412L \$	100.25 \$ 5,013	50 \$ 100.25 \$ 5,012.50	50 \$ 100.25 \$ 5,012.50	50 \$ 100.25 \$ 5,012.50 \$ 70.75 \$ 3,537.45
Haul contaminated material to	0	50.0	04041 6	0.04 @ 000	500.6. 004.6. 00044	500.6 0.04.6 0.0044	FOO. 6
Roberts Bay laydown Clean liner	m3 m2	56.8 10300	C404L \$ C210L \$	6.34 \$ 360 0.39 \$ 4,017	56.8 \$ 6.34 \$ 360.11 10300 \$ 0.39 \$ 4,017.00	56.8 \$ 6.34 \$ 360.11 10300 \$ 0.39 \$ 4,017.00	56.8 \$ 6.34 \$ 360.11 \$ 2.52 \$ 143.09 10300 \$ 0.39 \$ 4,017.00 \$ 0.39 \$ 4,017.30
Remove and cut liner into manageable pieces	m2	10300	C302L \$	0.56 \$ 5,768	10300 \$ 0.56 \$ 5,768.00	10300 \$ 0.56 \$ 5,768.00	10300 \$ 0.56 \$ 5,768.00 \$ 0.16 \$ 1,652.84
Load Debris into Waste Trucks	m3	92.7	C401L \$	13.13 \$ 1,217	92.7 \$ 13.13 \$ 1,217.15	92.7 \$ 13.13 \$ 1,217.15	92.7 \$ 13.13 \$ 1,217.15 \$ 10.23 \$ 948.13
Haul containers to Quarry 3	m3	92.7	C415L \$	6.34 \$ 588	92.7 \$ 6.34 \$ 587.72	92.7 \$ 6.34 \$ 587.72	92.7 \$ 6.34 \$ 587.72 \$ 5.99 \$ 555.58
Landfill Level containment berms	m2	231.3	C505L \$	1.58 \$ 365	231.3 \$ 1.58 \$ 365.45	231.3 \$ 1.58 \$ 365.45	231.3 \$ 1.58 \$ 365.45 \$ 1.23 \$ 283.89
Regrade area for positive drainage QUARRY 1 TANK FARM	m2	11530	C518L \$	0.12 \$ 1,384	11530 \$ 0.12 \$ 1,383.60	11530 \$ 0.12 \$ 1,383.60	11530 \$ 0.12 \$ 1,383.60 \$ 0.01 \$ 113.91
5ML Drain tanks into portable fuel					miscounted		
storage (EnviroTanks)	each	4	C203L \$	10,000.00 \$ 40,000	1 \$ 10,000.00 \$ 10,000.00 \$ 221,347.93 tanks	1 \$ 10,000.00 \$ 10,000.00 \$ 221,347.93	1 \$ 10,000.00 \$ 10,000.00 \$ 221,347.93 \$ 256.75 \$ 256.75 \$ 183,822.79
1ML Drain Tanks into portable fuel storage (EnviroTanks)	each	1	C203L \$	10,000.00 \$ 10,000	1 \$ 10,000.00 \$ 10,000.00	1 \$ 10,000.00 \$ 10,000.00	1 \$ 10,000.00 \$ 10,000.00 \$ 256.75 \$ 256.75
Decommission fuel transfer facilities	each	1	C102L \$	550.00 \$ 550 1,420.00 \$ 2,840	1 \$ 550.00 \$ 550.00 2 \$ 1.420.00 \$ 2.840.00	1 \$ 550.00 \$ 550.00 2 \$ 1420.00 \$ 2,840.00	1 \$ 550.00 \$ 550.00 \$ 448.37 \$ 448.37 2 \$ 1,420.00 \$ 2,840.00 \$ 1,123.28 \$ 2,246.57
Wash tanks	each m3	2 220	C204L \$		2 \$ 1,420.00 \$ 2,840.00 220 \$ 30.00 \$ 6,600.00	- v ., .= v =,	
Operate oil/water separator	III3	220	C206L \$	30.00 \$ 6,600	miscounted	220 \$ 30.00 \$ 6,600.00	220 \$ 30.00 \$ 6,600.00 \$ 31.00 \$ 6,819.95
Disconnect piping and controls	each	5	C102L \$	550.00 \$ 2,750	controls and 1 \$ 550.00 \$ 550.00 piping	1 \$ 550.00 \$ 550.00	1 \$ 550.00 \$ 550.00 \$ 448.37 \$ 448.37
Dismantle 5ML diesel fuel tank and cut into manageable pieces	each	4	CUT5L \$		1 \$ 550.00 \$ 550.00 piping miscounted 1 \$ 100,000.00 \$ 100,000.00 tanks	1 \$ 100,000.00 \$ 100,000.00	1 \$ 100,000.00 \$ 100,000.00 \$ 100,000.00
Dismantle 1ML jet fuel tank and cut	Cacii	7	0013E ψ	100,000.00 ψ 400,000	1 \$ 100,000.00 \$ 100,000.00 talks	1 \$ 100,000.00 \$ 100,000.00	1 \$ 100,000.00 \$ 100,000.00 \$ 100,000.00
into manageable pieces	each	1	CUT1L \$		1 \$ 50,000.00 \$ 50,000.00	1 \$ 50,000.00 \$ 50,000.00	1 \$ 50,000.00 \$ 50,000.00 \$ 50,000.00
Prepare pieces for transportation	m3	174	C401L \$	13.13 \$ 2,285	174 \$ 13.13 \$ 2,284.62	174 \$ 13.13 \$ 2,284.62	174 \$ 13.13 \$ 2,284.62 \$ 10.23 \$ 1,779.66
Haul cut metal to Landfill Remove and stockpile liner	m3	174	C415L \$	6.34 \$ 1,103	174 \$ 6.34 \$ 1,103.16	174 \$ 6.34 \$ 1,103.16	174 \$ 6.34 \$ 1,103.16 \$ 5.99 \$ 1,042.84
protection cover	m3	2190	SB1L \$	4.30 \$ 9,417	2190 \$ 4.30 \$ 9,417.00	2190 \$ 4.30 \$ 9,417.00	2190 \$ 4.30 \$ 9,417.00 \$ 2.75 \$ 6,019.64
Load contained contaminated soils into megabags for shipping off-site Haul megabags to Roberts Bay	m3	50	C412L \$	100.25 \$ 5,013	50 \$ 100.25 \$ 5,012.50	50 \$ 100.25 \$ 5,012.50	50 \$ 100.25 \$ 5,012.50 \$ 70.75 \$ 3,537.45
laydown	m3	53.4	C404L \$	6.34 \$ 339	53.4 \$ 6.34 \$ 338.56	53.4 \$ 6.34 \$ 338.56	53.4 \$ 6.34 \$ 338.56 \$ 2.52 \$ 134.52
Clean liner	m2	6521	C210L \$	0.39 \$ 2,543	6521 \$ 0.39 \$ 2,543.19	6521 \$ 0.39 \$ 2,543.19	6521 \$ 0.39 \$ 2,543.19 \$ 0.39 \$ 2,543.38
Remove and cut liner into manageable pieces	m2	6521	C302L \$	0.56 \$ 3,652	6521 \$ 0.56 \$ 3,651.76	6521 \$ 0.56 \$ 3,651.76	6521 \$ 0.56 \$ 3,651.76 \$ 0.16 \$ 1,046.42
Drain and wash empty fuel drums	each	150	C205L \$	60.00 \$ 9,000	150 \$ 60.00 \$ 9,000.00	150 \$ 60.00 \$ 9,000.00	150 \$ 60.00 \$ 9,000.00 \$ 17.74 \$ 2,661.01
Crush empty fuel drums	each	150	C301L \$	35.00 \$ 5,250	150 \$ 35.00 \$ 5,250.00	150 \$ 35.00 \$ 5,250.00	150 \$ 35.00 \$ 5,250.00 \$ 20.64 \$ 3,095.96
Load debris for transport to landfill	m3	68.2	C401L \$	13.13 \$ 895	68.2 \$ 13.13 \$ 895.47	68.2 \$ 13.13 \$ 895.47	68.2 \$ 13.13 \$ 895.47 \$ 10.23 \$ 697.54
Haul waste to Landfill	m3	68.2	C415L \$	6.34 \$ 432	68.2 \$ 6.34 \$ 432.39	68.2 \$ 6.34 \$ 432.39	68.2 \$ 6.34 \$ 432.39 \$ 5.99 \$ 408.74
Level containment berms	m2	279.3	C505L \$	1.58 \$ 441	279.3 \$ 1.58 \$ 441.29	279.3 \$ 1.58 \$ 441.29	279.3 \$ 1.58 \$ 441.29 \$ 1.23 \$ 342.80
Regrade area for positive drainage	m2	3650	C5018L \$	0.12 \$ 438	3650 \$ 0.12 \$ 438.00	3650 \$ 0.12 \$ 438.00	3650 \$ 0.12 \$ 438.00 \$ 0.01 \$ 36.06

Page 2 of 22

ACTIVITY/MATERIAL	Units	Quantity	Cost Code Unit	Cost Cost		Errors Corrected			Assumption	s Corrected			Ur	it Rates Corrected	i		
		•			Quantity Unit	Cost Cost		Quantity Unit	Cost Cos		Quantity AAN		NDC Cost	SRK	SRI	Cost	
MECHANICAL SHOP COMPLEX											Unit	Cost		Unit	Cost		
Decommission electrical, mechanical, heating (including connections to generator house &	each	7	C105L \$	640.00 \$ 4,480	7 \$	640.00 \$ 4,480.00 \$	77,495.98	7 \$	640.00 \$	4,480.00 \$ 77,495.98	7 \$	640.00 \$	4,480.00 \$	77,495.98 \$	639.99 \$	4,479.94 \$	56,681.16
Demolish (steel modular structure)	m3	2204.4	C305L \$	19.00 \$ 41,884	2204.4 \$	19.00 \$ 41,883.60		2204.4 \$	19.00 \$	41,883.60	2204.4 \$	19.00 \$	41,883.60	\$	12.90 \$	28,428.61	
Demolish wood structures (warehouse roof, crew lounge)	m3	283.2	C305L \$	19.00 \$ 5,381	283.2 \$	19.00 \$ 5,380.80		283.2 \$	19.00 \$	5,380.80	283.2 \$	19.00 \$	5,380.80	\$	12.90 \$	3,652.23	
Demolish tent structure (light vehicle shop)	m3	460.3	C305L \$	19.00 \$ 8,746	460.3 \$	19.00 \$ 8,745.70		460.3 \$	19.00 \$	8,745.70	460.3 \$	19.00 \$	8,745.70	\$	12.90 \$	5,936.17	
Collect Debris	m2	685.8	C310L \$	0.18 \$ 123	685.8 \$	0.18 \$ 123.44		685.8 \$	0.18 \$	123.44	685.8 \$	0.18 \$	123.44	\$	0.17 \$	118.78	
Load debris for transport to landfill	m3	867.1	C401L \$	13.13 \$ 11,385	867.1 \$	13.13 \$ 11,385.02		867.1 \$	13.13 \$	11,385.02	867.1 \$	13.13 \$	11,385.02	\$	10.23 \$	8,868.63	
Haul debris to Landfill	m3	867.1	C415L \$	6.34 \$ 5,497	867.1 \$	6.34 \$ 5,497.41		867.1 \$	6.34 \$	5,497.41	867.1 \$	6.34 \$	5,497.41	\$	5.99 \$	5,196.80	
WASTE MANAGEMENT FACILITY																	
Collect ashes and place in containers	m3	0.5	C207L \$	13.13 \$ 7	0.5 \$	13.13 \$ 6.57 \$	22,021.71	0.5 \$	13.13 \$	6.57 \$ 22,021.71	0.5 \$	13.13 \$	6.57 \$	22,021.71 \$	747.69 \$	373.85 \$	19,409.63
Dismantle (welding crew)	each	2	C308L \$	1,500.00 \$ 3,000	2 \$	1,500.00 \$ 3,000.00		2 \$	1,500.00 \$	3,000.00	2 \$	1,500.00 \$	3,000.00	\$	511.00 \$	1,022.00	
Demolish wood structures (roof, entryway, etc.)	m3	76.2	C305L \$	19.00 \$ 1,448	76.2 \$	19.00 \$ 1,447.80		76.2 \$	19.00 \$	1,447.80	76.2 \$	19.00 \$	1,447.80	\$	12.90 \$	982.70	
Disconnect containers and prep for shipping off-site	each	11	C108L \$	1,325.00 \$ 14,575	11 \$	1,325.00 \$ 14,575.00		11 S	1,325.00 \$	14,575.00	11 \$	1,325.00 \$	14,575.00	s	1,321.37 \$	14,535.06	
Collect all debris	m2	128.7	C310L \$	0.18 \$ 23	128.7 \$	0.18 \$ 23.17		128.7 \$	0.18 \$	23.17	128.7 \$	0.18 \$	23.17	•	0.17 \$	22.29	
														a a			
Load debris for transport to landfill	m3	152.5	C401L \$	13.13 \$ 2,002	152.5 \$	13.13 \$ 2,002.33		152.5 \$	13.13 \$	2,002.33	152.5 \$	13.13 \$	2,002.33	\$	10.23 \$	1,559.76	
Haul debris to Landfill LAYDOWN AREA	m3	152.5	C415L \$	6.34 \$ 967	152.5 \$	6.34 \$ 966.85		152.5 \$	6.34 \$	966.85	152.5 \$	6.34 \$	966.85	\$	5.99 \$	913.98	
Decommission vehicle plug system	each	1	C105L \$	640.00 \$ 640	1 \$	640.00 \$ 640.00 \$	21,216.88	1 \$	640.00 \$	640.00 \$ 21,216.88	1 \$	640.00 \$	640.00 \$	21,216.88 \$	639.99 \$	639.99 \$	15,778.06
Remove cables and posts	each	8	C314L \$	150.00 \$ 1,200	8 \$	150.00 \$ 1,200.00		8 \$	150.00 \$	1,200.00	8 \$	150.00 \$	1,200.00	\$	403.25 \$	3,225.96	
Collect all debris	m2	24491.6	C310L \$	0.18 \$ 4,408	24491.6 \$	0.18 \$ 4,408.49		24491.6 \$	0.18 \$	4,408.49	24491.6 \$	0.18 \$	4,408.49	\$	0.17 \$	4,242.05	
Load debris for transport to landfill	m3	10	C401L \$	13.13 \$ 131	10 \$	13.13 \$ 131.30		10 \$	13.13 \$	131.30	10 \$	13.13 \$	131.30	\$	10.23 \$	102.28	
Haul debris to Landfill	m3	10	C415L \$	6.34 \$ 63	10 \$	6.34 \$ 63.40		10 \$	6.34 \$	63.40	10 \$	6.34 \$	63.40	\$	5.99 \$	59.93	
Regrade area for positive drainage Laydown Area Expansion Collect all	m2	24491.6	C518L \$	0.12 \$ 2,939	24491.6 \$	0.12 \$ 2,938.99		24491.6 \$	0.12 \$	2,938.99	24491.6 \$	0.12 \$	2,938.99	\$	0.01 \$	241.97	
debris	m2	38800	C310L \$	0.18 \$ 6,984	38800 \$	0.18 \$ 6,984.00		38800 \$	0.18 \$	6,984.00	38800 \$	0.18 \$	6,984.00	\$	0.17 \$	6,720.33	
Load waste into containers for shipping off-site	m3	10	C401L \$	13.13 \$ 131	10 \$	13.13 \$ 131.30		10 \$	13.13 \$	131.30	10 \$	13.13 \$	131.30	\$	10.23 \$	102.28	
Haul debris to Landfill	m3	10	C415L \$	6.34 \$ 63	10 \$	6.34 \$ 63.40		10 \$	6.34 \$	63.40	10 \$	6.34 \$	63.40	\$	5.99 \$	59.93	
Breach safety berms and Regrade area for positive drainage OVERBURDEN DUMP	m2	38800	C518L \$	0.12 \$ 4,656	38800 \$	0.12 \$ 4,656.00		38800 \$	0.12 \$	4,656.00	38800 \$	0.12 \$	4,656.00	\$	0.01 \$	383.33	
Collect all debris	m2	10448	C310L \$	0.18 \$ 1,881	10448 \$	0.18 \$ 1,880.64 \$	19,180.42	10448 \$	0.18 \$	1,880.64 \$ 19,180.42	10448 \$	0.18 \$	1,880.64 \$	19,180.42 \$	0.17 \$	1,809.64 \$	15,259.14
Load waste into containers for shipping off-site	m3	10	C401L \$	13.13 \$ 131	10 \$	13.13 \$ 131.30		10 \$	13.13 \$	131.30	10 \$	13.13 \$	131.30	\$	10.23 \$	102.28	
Haul debris to Landfill	m3	10	C415L \$	6.34 \$ 63	10 \$	6.34 \$ 63.40		10 \$	6.34 \$	63.40	10 \$	6.34 \$	63.40	\$	5.99 \$	59.93	
Grade for positive drainage	m2	10448	C505L \$	1.58 \$ 16,508	10448 \$	1.58 \$ 16,507.84		10448 \$	1.58 \$	16,507.84	10448 \$	1.58 \$	16,507.84	\$	1.23 \$	12,823.35	
Breach the berm to original ground in several locations (4 locations) to																	
restore natural flow path ROBERTS BAY ACCESS ROAD	m2	378	C505L \$	1.58 \$ 597	378 \$	1.58 \$ 597.24		378 \$ 0 \$	1.58 \$	597.24	378 \$	1.58 \$	597.24	\$	1.23 \$	463.94	
Crown road for positive drainage	m2	3378	C518L \$	0.12 \$ 405	3378 \$	0.12 \$ 405.36 \$	405.36	3378 \$	0.12 \$	405.36 \$ 405.36	3378 \$	0.12 \$	405.36 \$	405.36 \$	0.01 \$	33.37 \$	33.37

ACTIVITY/MATERIAL	Units	Quantity	Cost Code	Unit Cost	C	ost
COMMUNICATIONS TOWER						
Decommission Tower	each	1	C105L	\$ 640.00	\$	640
Remove communication equipment	each	4	C107L	\$ 350.00	\$	1,400
Dismantle towers	each	1	C311L	\$ 15,500.00	\$	15,500
Prep tower sections for shipping off- site	m	8	C312L	\$ 1,500.00	\$	12,000
Collect all debris	m2	1.4	C310L	\$ 0.18	\$	-
Load waste into containers for shipping off-site Haul hazardous waste to Roberts	m3	10.5	C401L	\$ 13.13	\$	138
Bay	m3	5	C404L	\$ 6.34	\$	32
Haul debris to Landfill ALL WEATHER AIRSTRIP	m2	5.5	C415L	\$ 6.34	\$	35
Decommission Airstrip	each	1	C109L	\$ 1,500.00	\$	1,500
Remove lighting fixtures (airstrip lighting, approach lights)	each	70	C110L	\$ 100.00	\$	7,000
Collect all debris	m2	2850	C310L	\$ 0.18	\$	513
Load waste for transport to landfill	m3	1.2	C401L	\$ 13.13	\$	16
Haul debris to Landfill Crown airstrip and airstrip expansion	m3	1.2	C416L	\$ 6.34	\$	8
for positive drainage Other	m2	42000	C518L #N/A		\$ \$	5,040
SOUTH APRON						
Crown for positive drainage	m2	4500	C518L	•	\$	540
Other NORTH APRON			#N/A	\$ -	\$	-
Decommission electrical, and heating from traffic control tower	each	1	C107L	\$ 350.00	\$	350
Demolish control tower structure (wood shack)	m3	11.7	C305L	\$ 19.00	\$	222
Disconnect containers and prep for shipping off-site	each	5	C108L	\$ 1,325.00	\$	6,625
Collect all debris	m2	12.2	C310L		\$	2
Load waste for transport to landfill	m3	17.6	C401L	\$ 13.13	\$	231
Haul debris to landfill	m3	17.6	C416L	\$ 6.34	\$	112
Crown for positive drainage	m2	5517.2	C518L	\$ 0.12	\$	662
Other			#N/A	\$ -	\$	-
Number of years of pump flooding	years	Annual	pumping costs		\$	-
	,00.0	Total	pumping costs		\$	947.269
			lotal % of Total		Þ	947,209

Quantity	Ur	nit Cost	ors Correcte st	ed		
1	\$	640.00	\$ 640.00	\$	29,744.69	
4	\$	350.00	\$ 1,400.00			
1	\$	15,500.00	\$ 15,500.00			
8	\$	1,500.00	\$ 12,000.00			
1.4	\$	0.18	\$ 0.25			
10.5	\$	13.13	\$ 137.87			
5	\$	6.34	\$ 31.70			
5.5	\$	6.34	\$ 34.87			
1	\$	1,500.00	\$ 1,500.00	\$	14,076.36	
70	\$	100.00	\$ 7,000.00			
2850	\$	0.18	\$ 513.00			
1.2	\$	13.13	\$ 15.76			
1.2	\$	6.34	\$ 7.61			
42000 0	\$	0.12	\$ 5,040.00			
4500	\$	0.12	\$ 540.00	\$	540.00	
0	\$	-	\$ -			
1	\$	350.00	\$ 350.00	\$	8,204.23	
11.7	\$	19.00	\$ 222.30			
5	\$	1,325.00	\$ 6,625.00			
12.2	\$	0.18	\$ 2.20			
17.6		13.13	231.09			
17.6		6.34	111.58			
5517.2	\$	0.12	\$ 662.06			
0	\$	-	\$ -			
				\$	919,329.45	

29,744.6	\$	1,400.00 15,500.00	\$	640.00 350.00		1
		15,500.00 12,000.00	\$		\$	
		12,000.00		15 500 00		4
			e	15,500.00	\$	1
		0.25	φ	1,500.00	\$	8
		0.25	\$	0.18	\$	1.4
		137.87	\$	13.13	\$	10.5
		31.70	\$	6.34	\$	5
		34.87	\$	6.34	\$	5.5
14,076.3	\$	1,500.00	\$	1,500.00	\$	1
		7,000.00	\$	100.00	\$	70
		513.00	\$	0.18	\$	2850
		15.76	\$	13.13	\$	1.2
		7.61	\$	6.34	\$	1.2
		5,040.00	\$ \$	0.12	\$	42000 0
540.0	\$	540.00	\$	0.12	\$	4500
		-	\$	-	\$	0
8,204.2	\$	350.00	\$	350.00	\$	1
		222.30	\$	19.00	\$	11.7
		6,625.00	\$	1,325.00	\$	5
		2.20	\$	0.18	\$	12.2
		231.09	\$	13.13	\$	17.6
		111.58	\$	6.34	\$	17.6
		662.06	\$	0.12	\$	5517.2
		-	\$	-	\$	0
	e					
		350.00 222.30 6,625.00 2.20 231.09 111.58	\$ \$ \$ \$ \$ \$ \$	350.00 19.00 1,325.00 0.18 13.13 6.34 0.12	\$ \$ \$ \$ \$ \$ \$	0 11.7 5 12.2 17.6 17.6 5517.2

	AANDC Unit Cost	AA	NDC Cost	Ur	it Rates Cor	SR		SRI	K Cost			
1	\$ 640.00	\$	640.00	\$	29,744.69	\$	639.99	\$	639.99	\$	22,571.56	
4	\$ 350.00	\$	1,400.00			\$	352.56	\$	1,410.25			
1	\$ 15,500.00	\$	15,500.00			\$	15,417.42	\$	15,417.42			
8	\$ 1,500.00	\$	12,000.00			\$	619.32	\$	4,954.53			
1.4	\$ 0.18	\$	0.25			\$	0.17	\$	0.24			
10.5	\$ 13.13	\$	137.87			\$	10.23	\$	107.39			
5	\$ 6.34	\$	31.70			\$	1.75	\$	8.77			
5.5	\$ 6.34	\$	34.87			\$	5.99	\$	32.96			
1	\$ 1,500.00	\$	1,500.00	\$	14,076.36	\$	306.75	\$	306.75	\$	4,033.9	
70	\$ 100.00	\$	7,000.00			\$	40.00	\$	2,799.96			
2850	\$ 0.18	\$	513.00			\$	0.17	\$	493.63			
1.2	\$ 13.13	\$	15.76			\$	10.23	\$	12.27			
1.2	\$ 6.34	\$	7.61			\$	5.36	\$	6.43			
42000 0		\$	5,040.00			\$	0.01	\$	414.94			
4500	\$ 0.12	\$	540.00	\$	540.00	\$	0.01	\$	44.46	\$	44.4	
0	\$ -	\$	-					\$	-			
1	\$ 350.00	\$	350.00	\$	8,204.23	\$	352.56	\$	352.56	\$	7,441.2	
11.7	\$ 19.00	\$	222.30			\$	12.90	\$	150.89			
5	\$ 1,325.00	\$	6,625.00			\$	1,321.37	\$	6,606.84			
12.2	\$ 0.18	\$	2.20			\$	0.17	\$	2.11			
17.6	\$ 13.13	\$	231.09			\$	10.23	\$	180.01			
17.6	\$ 6.34	\$	111.58			\$	5.36	\$	94.33			
5517.2	\$ 0.12	\$	662.06			\$	0.01	\$	54.51			
0	\$ -	\$	-									
				e	919.329.45					\$	768,157.6	

Page 3 of 22

ACTIVITY/MATERIAL	Unit	Qty	Code	Unit Cost	Cost		Quantity	Unit Cost	Errors	S Corrected	
DORIS NORTH DECLINE PORTAL											
Remove ducts, pipes, electrical cables	In	n 100	C316L	\$113.00	\$ 1	1,300.00	100	\$113.	00 \$	11,300.00	9
onstruct portal plug	m3	3 707	C503L	\$24.53	\$ 1	7,343.00	707	\$24.	53 \$	17,342.71	
grade area for positive drainage RIS NORTH VENT RAISE	m2	2 1446	C518L	\$0.12	\$	174.00	1446	\$0.	12 \$	173.52	
											\$
move ducts, pipes, and cables	Im	n 100	C316L	\$113.00	\$ 1	1,300.00	100	\$113.	00 \$	11,300.00	
instruct a concrete cap (0.5 m thick reinforced concrete) seal the top	each	n 1	C603L	\$40,000.00	\$ 4	0,000.00	1	\$40,000.	00 \$	40,000.00	
ecommission and dismantle all ventilation and heating cilities	each	ո 4	C105L	\$640.00		2,560.00	4	\$640.	00 \$	2,560.00	
epare units for shipping off-site	each	ո 4	C108L	\$1,325.00	\$	5,300.00	4	\$1,325.	00 \$	5,300.00	
aul units to Roberts Bay	hrs	s 3	C404AL	\$155.00	\$	465.00	3	\$155.	00 \$	465.00	
egrade pads for positive drainage	m2	2 4150	C518L	\$0.12	\$	498.00	4150	\$0.	12 \$	498.00	
ain and decommission Enviro Tank	each	ո 1	C203L	\$10,000.00	\$ 1	0,000.00	1	\$1,000.	00 \$	1,000.00	
ul Enviro Tank to Roberts Bay	hrs	s 1.5	C404AL	\$155.00	\$	233.00	1.5	\$155.	00 \$	232.50	
move liner and cut into manageable pieces	m2	2 1230	C302L	\$0.56	\$	689.00	1230	\$0.	56 \$	688.80	
ad waste for transport to landfill aul waste to landfill	m3 m3					144.00 70.00	11 11		13 \$ 34 \$	144.43 69.74	
ckfill area to prevent permanent ponding	m2	2 4150	C505L	\$1.58	\$	6,557.00	4150	\$1.	58 \$	6,557.00	
INIS CONNECTOR VENT RAISE											\$
move ducts, pipes, and cables	Im	n 100	C316L	\$113.00	\$ 1	1,300.00	100	\$113.	00 \$	11,300.00	
commission and dismantle all ventilation facilities	each	ո 2	C105L	\$640.00	\$	1,280.00	2	\$640.	00 \$	1,280.00	
epare units for shipping off-site ul units to Roberts Bay	each hrs			\$1,325.00 \$6.34		2,650.00 10.00	2 1.5	\$1,325. \$6.	00 \$ 34 \$	2,650.00 9.51	
onstruct a concrete cap (0.5 m thick reinforced concrete) seal the top	each	n 1	C603L	\$40,000.00	\$ 4	0,000.00	1	\$40,000.	00 \$	40,000.00	
emove culvert	each	n 1	RCULL	\$2,625.00	\$	2,625.00	1	\$2,625.	00 \$	2,625.00	
own road for positive drainage	kn	n 0.2	CRWNL	\$1,190.00	\$	238.00	0.2	\$1,190.	00 \$	238.00	
DRSI CENTRAL VENT RAISE											\$
emove ducts, pipes, and cables	Im	n 100	C316L	\$113.00	\$ 1	1,300.00	100	\$113.	00 \$	11,300.00	
commission and dismantle all ventilation facilities	each	ո 2	C105L	\$640.00	\$	1,280.00	2	\$640.	00 \$	1,280.00	
repare units for shipping off-site aul units to Roberts Bay	each hrs			\$1,325.00 \$6.34		2,650.00 10.00	2 1.5	\$1,325. \$6.	00 \$ 34 \$	2,650.00 9.51	

SR		AAI Cos	AANDC Unit Cost	Quantity		ns Corrected st	Cos		Quantity I
					28,816.23	\$			
\$	11,300.00	\$	\$113.00	100		11,300.00	\$	\$113.00	100
	17,342.71	\$	\$24.53	707		17,342.71	\$	\$24.53	707
	173.52	\$	\$0.12	1446		173.52	\$	\$0.12	1446
\$					64,840.47	\$			
	11,300.00	\$	\$113.00	100		11,300.00	\$	\$113.00	100
	40,000.00	\$	\$40,000.00	1		40,000.00	\$	\$40,000.00	1
	2,560.00	\$	\$640.00	4		2,560.00	\$	\$640.00	4
	1,325.00	\$	\$1,325.00	1		1,325.00	\$	\$1,325.00	1
	5,146.00	\$	\$155.00	33.2		465.00	\$	\$155.00	3
	498.00	\$	\$0.12	4150		498.00	\$	\$0.12	4150
	1,000.00	\$	\$1,000.00	1		1,000.00	\$	\$1,000.00	1
	5,146.00	\$	\$155.00	33.2		232.50	\$	\$155.00	1.5
	688.80	\$	\$0.56	1230		688.80	\$	\$0.56	1230
	144.43 69.74	\$	\$13.13 \$6.34	11 11		144.43 69.74	\$	\$13.13 \$6.34	11 11
	6,557.00	\$	\$1.58	4150		6,557.00	\$	\$1.58	4150
\$					56,777.51	\$			
	11,300.00	\$	\$113.00	100		11,300.00	\$	\$113.00	100
	1,280.00	\$	\$640.00	2		1,280.00	\$	\$640.00	2
	1,325.00 210.49		\$1,325.00 \$6.34	1 33.2		1,325.00 9.51		\$1,325.00 \$6.34	1 1.5
	40,000.00	\$	\$40,000.00	1		40,000.00	\$	\$40,000.00	1
	2,625.00	\$	\$2,625.00	1		2,625.00	\$	\$2,625.00	1
	238.00	\$	\$1,190.00	0.2		238.00	\$	\$1,190.00	0.2
\$					57,372.51	\$			
	11,300.00	\$	\$113.00	100		11,300.00	\$	\$113.00	100
	1,280.00	\$	\$640.00	2		1,280.00	\$	\$640.00	2
	1,325.00 210.49		\$1,325.00 \$6.34	1 33.2		1,325.00 9.51		\$1,325.00 \$6.34	1 1.5

			ted	ates Correc	Unit R				
	K Cost	SRI	SRK Unit Cost		SRK Cost	NDC it	C	AANDC Unit Cost	Quantity
28,565.8	\$ 11,209.30	\$	\$112.09	28,816.23	\$	11,300.00	\$	\$113.00	100
	17,342.23	\$	\$24.53			17,342.71	\$	\$24.53	707
	14.29	\$	\$0.01			173.52	\$	\$0.12	1446
35,012.2	\$			74,434.97	\$				
	11,209.30	\$	\$112.09			11,300.00	\$	\$113.00	100
	14,007.27	\$	\$14,007.27			40,000.00	\$	\$40,000.00	1
	2,559.97	\$	\$639.99			2,560.00	\$	\$640.00	4
	1,321.37	\$	\$1,321.37			1,325.00	\$	\$1,325.00	1
	83.64	\$	\$2.52			5,146.00	\$	\$155.00	33.2
	41.00	\$	\$0.01			498.00	\$	\$0.12	4150
	256.75	\$	\$256.75			1,000.00	\$	\$1,000.00	1
	83.64	: \$	\$2.52			5,146.00	\$	\$155.00	33.2
	197.38	\$	\$0.16			688.80	\$	\$0.56	1230
			\$10.23 \$4.17			144.43 69.74		\$13.13 \$6.34	11 11
	5,093.50	\$	\$1.23			6,557.00	\$	\$1.58	4150
30,074.8	\$ 11,209.30	\$	\$112.09	56,978.49	\$	11,300.00	\$	\$113.00	100
	1,279.98	\$	\$639.99			1,280.00	\$	\$640.00	2
	1,321.37	\$	\$1,321.37			1,325.00	\$		1
	83.64	! \$	\$2.52			210.49	\$	\$6.34	33.2
	14,007.27	\$	\$14,007.27			40,000.00	\$	\$40,000.00	1
	2,000.00	\$	\$2,000.00			2,625.00	\$	\$2,625.00	1
30,507.9	\$ 173.24	\$	\$866.22	57,573.49	\$	238.00	\$	\$1,190.00	0.2
30,507.9	11,209.30	\$	\$112.09			11,300.00	\$	\$113.00	100
	1,279.98	\$	\$639.99			1,280.00	\$	\$640.00	2
	1 321 37	S	\$1.321.37			1.325.00	s	\$1.325.00	1

Construct a concrete cap (0.5 m thick reinforced concrete) to seal the top	each	1	C603L	\$40,000.00	\$ 40,	000.00		1	\$40,000.00 \$	40,000.00		
Remove culvert	each	1	RCULL	\$2,625.00	\$ 2,	625.00		1	\$2,625.00 \$	2,625.00		
Crown road for positive drainage	km	0.7	CRWNL	\$1,190.00	\$	833.00		0.7	\$1,190.00 \$	833.00		
Other EQUIPMENT LAYDOWN AREA			#N/A	\$0.00	\$	-		0	\$0.00 \$	-	\$	6,950.40
Collect all debris	m2	21870 C3	10L	\$0.18 \$	\$ 3,	937.00		21870	\$0.18 \$	3,936.60	·	-,
Load waste for transport to landfill	m3	20 C4	01L	\$13.13	\$	263.00		20	\$13.13 \$	262.60		
Regrade area for positive drainage	m2	21870 C5	18L	\$0.12	\$ 2,	624.00		21870	\$0.12 \$	2,624.40		
Haul waste to Landfill	m3	20 C4	17L	\$6.34	\$	127.00		20	\$6.34 \$	126.80		
Other MATERIALS LAYDOWN AREA			#N/A	\$0.00	\$	-		0	\$0.00 \$	-		
Collect all debris	m2	33399 C3	10L	\$0.18 \$	\$ 6,	012.00		33399	\$0.18 \$	6,011.82	\$	10,409.10
Load waste to ship to Landfill	m3	20 C4	01L	\$13.13	\$	263.00		20	\$13.13 \$	262.60		
Regrade area for positive drainage	m2	33399 C5	18L	\$0.12	\$ 4,	008.00		33399	\$0.12 \$	4,007.88		
Haul waste to Landfill	m3	20 C4	17L	\$6.34	\$	127.00		20	\$6.34 \$	126.80		
Other AMMONIUM NITARATE STORAGE BUILDING			#N/A	\$0.00	\$	-		0	\$0.00 \$	-		40.405.00
Remove and stockpile liner protection cover	m3	1505 SE	1L	\$4.30 \$	\$ 6,	472.00		1505	\$4.30 \$	6,471.50	\$	10,135.66
Clean liner	m2	2800 C2	10L	\$0.39	\$ 1,	092.00		2800	\$0.39 \$	1,092.00		
Remove and cut liner into manageable pieces	m2	2800 C3	02L	\$0.56	\$ 1,	568.00		2800	\$0.56 \$	1,568.00		
Load waste for transport to landfill	m3	25.2 C4	01L	\$13.13	\$	331.00		25.2	\$13.13 \$	330.88		
Haul waste to Landfill	m3	25.2 C4	17L	\$6.34	\$	160.00		25.2	\$6.34 \$	159.77		
Level containment berms	m2	32 C5	05L	\$1.58	\$	51.00		32	\$1.58 \$	50.56		
Regrade area for positive drainage	m2	3858 C5	18L	\$0.12 \$	\$	463.00		3858	\$0.12 \$	462.96		
Other EXPLORATION DRILLING SUPPORT BUILDING			#N/A	\$0.00	\$	-		0	\$0.00 \$	-		
Decommission electrical, mechanical, heating	each	2	C105L	\$640.00	s 1	280.00		2	\$640.00 \$	1,280.00	\$	4,424.13
Demolish building (tent structure)	m3	149.6	C305L	\$19.00		842.00		149.6	\$19.00 \$	2,842.40		
,									, ,	,		
Collect all debris	m2	335	C310L	\$0.18	\$	60.00		335	\$0.18 \$	60.30		
Load waste for transport to landfill	m3	12.4	C401L	\$13.13	\$	163.00		12.4	\$13.13 \$	162.81		
Haul waste to Landfill	m3	12.4		\$6.34 \$ Total \$ % of Total		79.00 351.00		12.4	\$6.34 \$	78.62	\$	246,351.01
							L					

	40,000.00	\$	\$40,000.00	1
	2,625.00	\$	\$2,625.00	1
	833.00	\$	\$1,190.00	0.7
	_	s	\$0.00	0
6,950.40	\$	•	Q 0.00	Ů
	3,936.60	\$	\$0.18	21870
	262.60	\$	\$13.13	20
	2,624.40	\$	\$0.12	21870
	126.80	\$	\$6.34	20
	-	\$	\$0.00	0
10,409.10	\$ 6,011.82	•	\$0.18	33399
	0,011.62	Þ	\$0.10	33399
	262.60	\$	\$13.13	20
	4,007.88	\$	\$0.12	33399
	126.80	\$	\$6.34	20
		\$	\$0.00	0
10,135.66	\$ 6,471.50	•	\$4.30	1505
			\$0.39	2800
	1,568.00	\$	\$0.56	2800
	330.88	\$	\$13.13	25.2
	159.77	\$	\$6.34	25.2
	50.56	\$	\$1.58	32
	462.96	\$	\$0.12	3858
	-	\$	\$0.00	0
4,424.13	\$			
	1,280.00	\$	\$640.00	2
	2,842.40	\$	\$19.00	149.6
	60.30	\$	\$0.18	335
	162.81	\$	\$13.13	12.4
239,726.01	\$ 78.62	\$	\$6.34	12.4

	14,007.27	\$14,007.27 \$			40,000.00	00 \$	\$40,000.00	1
	2,000.00	\$2,000.00 \$			2,625.00	00 \$	\$2,625.00	1
	606.35	\$866.22 \$			833.00	00 \$	\$1,190.00	0.7
	-	\$0.00 \$			-	00 \$	\$0.00	0
4,328.47	\$		6,950.40	\$				
	3,787.98	\$0.17 \$			3,936.60	18 \$	\$0.18	21870
	204.56	\$10.23 \$			262.60	13 \$	\$13.13	20
	216.07	\$0.01 \$			2,624.40	12 \$	\$0.12	21870
	119.87	\$5.99 \$			126.80	34 \$	\$6.34	20
	-	\$0.00 \$			-	00 \$	\$0.00	0
6,439.25	\$ 5,784.85	\$0.17 \$	10,409.10	·	6,011.82	18 €	\$0.18	33399
	3,764.63	φυ.17 φ			0,011.02	10 	φ0.10	33399
	204.56	\$10.23 \$			262.60	13 \$	\$13.13	20
	329.97	\$0.01 \$			4,007.88	12 \$	\$0.12	33399
	119.87	\$5.99 \$			126.80	34 \$	\$6.34	20
	-	\$0.00 \$			-	00 \$	\$0.00	0
6,164.35	4,136.79	e0.75 e	10,135.66	\$	6,471.50	20.0	£4.20	1505
	1,092.08						\$0.39	2800
	449.32	\$0.16 \$			1,568.00	56 \$	\$0.56	2800
	257.74	\$10.23 \$			330.88	13 \$	\$13.13	25.2
	151.03	\$5.99 \$			159.77	34 \$	\$6.34	25.2
	39.28	\$1.23 \$			50.56	58 \$	\$1.58	32
	38.12	\$0.01 \$			462.96	12 \$	\$0.12	3858
	-	\$0.00 \$			-	00 \$	\$0.00	0
3,468.44	\$		4,424.13	\$				
		\$639.99 \$			1,280.00		\$640.00	2
	1,929.29	\$12.90 \$			2,842.40	00 \$	\$19.00	149.6
	58.02	\$0.17 \$			60.30	18 \$	\$0.18	335
	126.83	\$10.23 \$			162.81	13 \$	\$13.13	12.4
444 504 55	74.32	\$5.99 \$	040 705 17		78.62	34 \$	\$6.34	12.4
144,561.26	\$		249,722.47	\$				

1 Tailings Impoundment Name: North and South Dams / Interim Dyke				Pond			
ACTIVITY/MATERIAL Notes	Units	Quantity	Cost Code	Unit (Cost	Co	st
CONTROL ACCESS							
Fence	r	n	#N/A	\$	-	S	-
Signs	eac	n	#N/A	\$	_	s	_
Berm	m		#N/A		_	Š	-
Block roads	m		#N/A		_	Š	-
Crown Access Roads	kr				1.190.00	Š	238.00
STABILIZE EMBANKMENT(S)		. 0.2	Ortific	•	1,100.00	Ť	200.0
Breach North dam by cutting a 20 m slot down to original ground (drill and blast)	m	3 7028	RB1H	\$	31.99	s	224.826.00
Load and haul material	m.				8.90	s	276,088.00
Clad the cut core faces for thermal protection	m. m.				20.65	s	12.683.00
Vegetate	h.		#N/A		20.03	S	12,003.00
vegetate Raise crest	m.		#N/A			S	-
	m		#N/A			S	-
Flatten slopes	m	3				\$	-
SHORELINE PROTECTION			#N/A				
Install separation geotextile	m:				6.00	\$	326,040.00
Haul and place riprap to prevent erosion	m				20.65	\$	510,055.00
Recontour Interim Dyke Crest	m	3 2000	DRH	\$	2.40	\$	4,800.00
COVER TAILINGS							
Grade/shape tailings surface	m		#N/A		-	\$	-
Liner bedding	m		#N/A		-	\$	-
Grade/shape tailings surface	m:				1.35	\$	594,000.00
Supply geotextile/geosynthetic	m.	2	#N/A	\$	-	\$	-
Install geotextile/geosynthetic	m.	2	#N/A	\$	-	\$	-
Soil cover	m		#N/A	\$	-	\$	-
Produce ROQ (quarry drill and blast	m	3 132000	RB1H	\$	31.99	\$	4,222,680.00
LHDP ROQ (0.3m thick cover	m	3 132000	SBSH	\$	16.35	\$	2,158,200.00
Vegetate	m:	2	#N/A	\$	-	\$	-
Other			#N/A	\$	-	\$	-
SPECIALIZED ITEMS							
Remove thermosyphons radiators and towers	eac	n 12	THRL	\$	1.000.00	\$	12,000.00
Install permanent instrumentation, supply & technican	eac	ı	#N/A	\$	-	s	_
Install permanent instrumentation, drilling	eac	n	#N/A	\$	-	s	-
TREAT SEEPAGE - see "Water Management" and "Water Treatment"							
TREAT SUPERNATANT							
Pump water (to pit, U/G)	m	3	#N/A	\$		s	-
Equipment maintenance and parts	allov		#N/A		_	Š	-
Supply reagents	tonn		#N/A		_	Š	-
supply rougonio	tomi		Annual treatme		ts	S	-
Number of years of treatment	year	e	, unitadi di dadine	000		•	
tumber or yours or additions	year	-	Total			s	
			treatment			φ	-
			costs				
						_	0.044.040.00
			Total % of Total			\$	8,341,610.00

			rs Corrected	
Quantity	Unit Cost	Cos	st	
0 0 0	\$ - \$ - \$ - \$ 1,190.	\$	- - - - 238.00	\$ 238.00
0	\$ 8.	\$	224,825.72 276,087.79 12,683.23 - -	\$ 513,596.74
54340 24700 2000	\$ 20.	00 \$ 65 \$ 40 \$	326,040.00 510,055.00 4,800.00	\$ 840,895.00
0 440000 0 0 0 132000 132000	\$ - \$ 1. \$ - \$ - \$ 31.	35 \$ \$ \$ \$ 99 \$ 35 \$	594,000.00 - - - - 4,222,680.00 2,158,200.00	\$ 6,974,880.00
0	\$ 1,000. \$ - \$ -	\$	12,000.00 - - -	\$ 12,000.00
				\$ 8,341,609.74

	d	tions Correcte				
		st	Со	t Cost	Uni	Quantity
238.00	\$	_	\$	_	\$	0
200.00	Ť	-	\$	-	\$	
		-	\$	-	\$	
		-	\$	-	\$	
		238.00	\$	1,190.00	\$	0.2
513,596.74	\$	224,825.72		31.99		7028
		276,087.79		8.90		31021.1
		12,683.23	\$	20.65	\$	614.2
		-	\$		\$	
			\$		\$	
840,895.00	\$	326,040.00	\$	6.00	\$	54340
		510,055.00	\$	20.65	\$	24700
		4,800.00	\$	2.40	\$	2000
6,974,880.00	\$	-	\$	-	\$	0
		-	\$	-	\$	
		594,000.00	\$	1.35	\$	440000 0
		-	\$		\$	0
			\$		\$	
		4,222,680.00		31.99		132000
		2,158,200.00	\$	16.35	\$	132000
		-	\$	-	\$	0
		-	\$	-	\$	0
12,000.00	\$	12,000.00	\$	1,000.00		12
		-	\$	-	\$	0
		-	\$	-	\$	0
8,341,609.74	s					

				Corrected	Unit Rates						
	K Cost	SRI		SRK Unit Cost	K Cost	SR			NDC it Cost		
173.2	\$:	\$	-	\$	238.00	\$	-	\$	-	\$	0
	-	\$	-	\$			-	\$	-	\$	
	-	\$	-	\$ \$			-	\$	-		0
	173.24	\$	866.22	\$			238.00	\$	1,190.00	\$	0.2
508,604.9	\$		31.99		513,596.74	\$	224,825.72		31.99	\$	7028
			8.82	\$ \$ \$ \$			276,087.79				31021.1
	10,043.94			\$			12,683.23		20.65		614.2
	-	\$	-	\$			-	\$	-	\$	
	-	\$	-	\$			-	\$	-		0
	-	\$	-	\$			-	\$	-	\$	0
1,759,900.5	\$ 1,536,441.23	\$	28.27		840,895.00	\$	326,040.00	\$	6.00	\$	54340
	217,961.91	\$	8.82	\$			510,055.00			\$	24700
	5,497.39	\$	2.75	\$			4,800.00	\$	2.40	\$	2000
6,381,139.9	\$ -	\$	-	\$	6,974,880.00	\$	-	\$	-	\$	
	-	\$	-	\$			-	\$	-		0
	-	\$	-	\$			594,000.00				440000
	-	\$	-	\$			-	\$	-	\$	
	-	\$	-	\$			-	\$	-		0
	4 000 500 00	\$	-	\$			4 000 000 00	\$	-		0
	4,222,560.08			\$ \$ \$ \$ \$			4,222,680.00				132000 132000
	2,158,579.89			5			2,158,200.00				
		\$	-	\$ \$			1	\$		\$	0
	-	Þ	-	Þ			•	Þ	-	Þ	U
6,131.9	\$ 6,131.99		511.00		12,000.00	\$	12,000.00				
		\$		\$ \$			-	\$		\$	
		•		Ť				•		•	
8,655,950.6					8,341,609.74						

ACTIVITY/MATERIAL L	Jnits Q	uantity Co	st Code	UII	it Cost	Со	ડા
ALL WEATHER ROAD							
Remove bridges	each	3	RBRGL	\$	50,000.00	\$	150,000.00
Remove Arched Culvert	each	1	RARCL	\$	100,000.00	\$	100,000.00
Crown road for positive drainage	km	10	CRWNL	\$	1.190.00	s	11,900.00
QUARRY A				Ť	1,100.00	-	11,000.00
No decomm required QUARRY B			#N/A	\$	-	\$	-
No decomm required QUARRY D			#N/A	\$	-	\$	-
Scale vertical walls EXPLOSIVES STORAGE			#N/A	\$	-	\$	-
FACILITY Remove all explosive magazines	m3	66.4	C305L	_			
Demolish entry gates	m3	0.5	C305L	\$	19.00 19.00	\$	1,262.00 10.00
Load all debris for transport to	m3	25.4	C401L	\$	13.13	s	334.00
Haul waste to the landfill	m3	25.4	C414L	\$	6.34	\$	161.00
Regrade area for positive	m3	2805.8	DSL				
drainage Secondary Road				\$	0.95	\$	2,666.00
Remove Doris Creek bridge	Is	1	RBRGL	\$	50,000.00	\$	50,000.00
Cut tailings line running alongside the road into	m	5750	PLRL		,		
manageable pieces Strap together or load pipe sections in containers for	m3	2760	C401L	\$	22.00	\$	126,500.00
transport to landfill				\$	13.13	\$	36,239.00
Haul waste to the landfill Remove pipe culvert east of the	m3 Im	2760 18.8	C404L RCULL	\$	6.34	\$	17,498.00
oridge Failings Discharge And Reclaim				\$	2,625.00	\$	49,350.00
Nater Pipelines							
Cut pipelines into manageable pieces	lm	8125	PLRL	\$	22.00	\$	178.750.00
Decommission electrical (heat	each	4	C105L	Э	22.00	Þ	178,750.00
racing) Collect electrical cables and controllers and prep for shipping	m2	4062.5	C310L	\$	640.00	\$	2,560.00
off-site Load debris for transport to	m3	306.3	C401L	\$	0.18	\$	731.00
andfill Haul waste to the landfill	m3	306.3	C404L	\$	13.13 6.34	\$	4,022.00 1,942.00
TIA Access Road (Chainage 0+725)							
Crown road for positive drainage	km	0.29	CRWNL	\$	1,190.00	\$	345.00
Remove floating dock and oridge	m3	132	C401L	\$	13.13	\$	1,733.00
Load all debris to haul to Landfill	m3	132	C401L	\$	13.13	\$	1,733.00
Haul waste to the landfill Explosives Facility	m3	132	C404L	\$	6.34	\$	837.00
Remove all explosive magazines	m3	265.6	C305L	\$	19.00	\$	5,046.00
Demolish entry gates Remove and stockpile liner protection cover	m3 m3	0.5 3031	C305L SB1L	\$	19.00	\$	10.00
Clean liner Remove and cut liner into	m2 m2	4442 4442	C210L C302L	\$	0.39	\$	1,732.00
manageable pieces Load waste into containers for	m3	200	C401L	\$	0.56	\$	2,488.00
shipping off-site Decommission electrical and	each	2	C105K	\$	13.13	\$	2,626.00
neating from facilities Demolish building (tent	m3	430	C305L	\$	640.00 19.00	\$	1,280.00 8.170.00
structure) Disconnect containers and prep for shipping off-site	each	2	C108L	\$	1,325.00	s	2,650.00
Load waste into containers for shipping off-site	m3	41.5	C401L	\$	13.13	\$	545.00
Collect all debris Load all waste and debris and	m2 m2	18558 18558	C310L C310L	\$	0.18	\$	3,340.00
waste into containers Haul waste to lanfill	m3	245	C404L	\$ \$	0.18 6.34	\$	3,340.00 1,553.00
Regrade pad area for positive	m2	18558	C518L	\$	0.12	\$	2,227.00
Recontour berms to blend in	m2	2166	C518L				
vith topography				\$	0.12	\$	260.00

				Errors	Cor	rected	
Quantity	Un	it Cost	Co				
3	\$	50,000.00 100,000.00	\$	150,000.00 100,000.00	\$	261,900.00	
10	\$	1,190.00	\$	11,900.00			
0	\$	-	\$	-	\$	-	
0	\$	-	\$	-	\$	-	
0	\$	-	\$	-	\$	-	
66.4 0.5		19.00 19.00			\$	4,431.15	
25.4 25.4	\$	13.13 6.34	\$	333.50 161.04			
2805.8	\$	0.95	\$	2,665.51			
1	\$	50,000.00	\$	50,000.00	\$	279,587.20	
5750	\$	22.00	\$	126,500.00			
2760 2760	\$	13.13 6.34	\$	36,238.80 17,498.40			
18.8	\$	2,625.00	\$	49,350.00			
8125	\$	22.00	\$	178,750.00	\$	188,004.91	
4	\$	640.00	\$	2,560.00			
4062.5	\$	0.18	\$	731.25			
306.3 306.3		13.13 6.34					
0.29	\$	1,190.00	\$	345.10	\$	4,648.30	
132	\$	13.13	\$	1,733.16			
132 132	\$	13.13 6.34	\$	1,733.16 836.88			
265.6 0.5	\$	19.00 19.00	\$	5,046.40 9.50	\$	45,009.33	
3031 4442	\$	4.30 0.39		13,033.30 1,732.38			
4442	\$	0.56	\$	2,487.52			
200	\$	13.13	\$	2,626.00			
2	\$	640.00	\$	1,280.00			
430	\$	19.00	\$	8,170.00			
2	\$	1,325.00	\$	2,650.00			
41.5 18558		13.13 0.18		544.90 3,340.44			This quantity and unit rate are
3.71 245		13.13 6.34	\$	48.71 1,553.30			obviously erroneous
18558		0.12					
2166	\$	0.12	\$	259.92	\$	783,580.89	
					-		

0	120			ns Corrected	
Quantity	Un	it Cost	Co	st	
3	\$	50,000.00 100,000.00	\$	150,000.00 100,000.00	\$ 261,900.00
10	\$	1,190.00	\$	11,900.00	
0	\$	-	\$	-	\$ -
0	\$	-	\$	-	\$ -
0	\$	-	\$	-	\$ -
66.4 0.5	\$	19.00 19.00	\$	1,261.60 9.50	\$ 4,431.15
25.4 25.4	\$	13.13 6.34	\$	333.50 161.04	
2805.8	\$	0.95	\$	2,665.51	
1	\$	50,000.00	\$	50,000.00	\$ 279,587.20
5750	\$	22.00	\$	126,500.00	
2760 2760	\$	13.13 6.34	\$	36,238.80 17,498.40	
18.8	\$	2,625.00	\$	49,350.00	
8125	\$	22.00	\$	178,750.00	\$ 188,004.91
4	\$	640.00	\$	2,560.00	
4062.5	\$	0.18	\$	731.25	
306.3 306.3	\$	13.13 6.34	\$	4,021.72 1,941.94	
0.29	\$	1,190.00	\$	345.10	\$ 4,648.30
132	\$	13.13	\$	1,733.16	
132 132	\$	13.13 6.34	\$	1,733.16 836.88	
265.6 0.5	\$	19.00 19.00	\$	5,046.40 9.50	\$ 45,009.33
3031 4442	\$	4.30 0.39	\$	13,033.30 1,732.38	
4442	\$	0.56	\$	2,487.52	
200	\$	13.13	\$	2,487.52	
200	\$		\$	1,280.00	
	-	640.00			
430	\$	19.00	\$	8,170.00	
2	\$	1,325.00	\$	2,650.00	
41.5 18558	\$	13.13 0.18	\$	544.90 3,340.44	
3.71 245	\$	13.13 6.34	\$	48.71 1,553.30	
18558	\$	0.12	\$	2,226.96	
2166	\$	0.12	\$	259.92	

						Uni	it R	ates Correct	ed				
Quantity I		NDC it Cost	AA Co	NDC est			SR			tK Cost			
3 1	\$ \$	50,000.00 100,000.00	\$	150,000.00 100,000.00	\$	261,900.00	\$	50,000.00 100,000.00	\$	150,000.00 100,000.00	\$	258,662.20	
10	\$	1,190.00	\$	11,900.00			\$	866.22	\$	8,662.20			this rate has no backup
0	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	
0	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	
0	\$	-	\$	-	\$	-	\$	-	\$	•	\$	-	
66.4 0.5	\$	19.00 19.00	\$	1,261.60 9.50	\$	4,431.15	\$	2.91 12.90	\$	193.27 6.45	\$	690.96	this rate is inappropriate
25.4 25.4		13.13 6.34	\$	333.50 161.04			\$	10.23 8.02	\$	259.79 203.73			
2805.8	\$	0.95	\$	2,665.51			\$	0.01	\$	27.72			
1	\$	50,000.00	\$	50,000.00	\$	279,587.20	\$	50,000.00	\$	50,000.00	\$	155,508.04	this rate is too high; what is the productivity? Needs
5750	\$	22.00	\$	126,500.00			\$	11.13	\$	63,972.61			backup info
2760 2760		13.13 6.34	\$	36,238.80 17,498.40			\$	10.23 4.17	\$	28,229.05 11,520.70			
18.8	\$	2,625.00	\$	49,350.00			\$	94.98	\$	1,785.68			
													this rate is too high; what is
8125	\$	22.00	\$	178,750.00	\$	188,004.91	\$	11.13	\$	90,396.07	\$	99,249.34	the productivity? Needs backup info
4	\$	640.00	\$	2,560.00			\$	639.99	\$	2,559.97			
4062.5	\$	0.18	\$	731.25			\$	0.17	\$	703.64			
306.3 306.3		13.13 6.34	\$	4,021.72 1,941.94			\$	10.23 8.02	\$	3,132.81 2,456.84			
0.29	\$	1,190.00	\$	345.10	\$	4,648.30	\$	866.22	\$	251.20	\$	3,205.06	
132	\$	13.13	\$	1,733.16			\$	4.13	\$	545.00			
132 132		13.13 6.34	\$	1,733.16 836.88			\$	10.23 8.02	\$	1,350.09 1,058.78			
265.6		19.00	\$	5,046.40	\$	45,009.33	\$	2.91	\$	773.06	\$	30,611.02	this rate is inappropriate
0.5 3031	\$	19.00	\$	9.50			\$	12.90	\$	6.45 8.331.29			
4442		0.39	\$	1,732.38			\$	0.39	\$	1,732.51			
4442	\$	0.56	\$	2,487.52			\$	0.16	\$	712.81			
200	\$	13.13	\$	2,626.00			\$	10.23	\$	2,045.58			
2	\$	640.00	\$	1,280.00			\$	639.99	\$	1,279.98			
430	\$	19.00	\$	8,170.00			\$	12.90	\$	5,545.41			
2	\$	1,325.00	\$	2,650.00			\$	1,321.37	\$	2,642.74			
41.5 18558		13.13 0.18	\$	544.90 3,340.44			\$	10.23 0.17	\$	424.46 3,214.33			
3.71 245	\$	13.13 6.34	\$	48.71 1,553.30			\$	10.23 4.17	\$	37.95 1,022.67			
18558	\$	0.12	\$	2,226.96			\$	0.01	\$	183.34			
2166	\$	0.12	\$	259.92	•	793 500 00	\$	1.23	\$	2,658.44	6	547 00e eo	
					\$	783,580.89					\$	547,926.62	

ACTIVITY/MATERIAL	Units	Quantity	Cost Code	Unit Cost	t	Cos	t					Errors C	orrected		
								Quant	ty U	nit Cost	Cost				
ACCOMODATION COMPLEX				_											
Decommision (electrical, mechanical, plumbing)	each	103	C105L	\$ 64	10.00	\$	65,920.00	1	03 \$	640.00	\$	65,920.00	\$	263,686.46	
Disconnect trailers and prep for moving (remove boards/piping, etc.; wrap in plastic)	each	ı 283	C108L	\$ 1,32	25.00	\$	374,975.00		83 \$	3 1,325.00	\$	109,975.00			counting error; maybe typo
Haul trailers to Roberts Bay for shipping off-site	m3	3 2756	C404L	\$	6.34	\$	17,473.00	27	56 \$	6.34	\$	17,473.04			
Demolish cabins	m3	319.1	C305L	\$ 1	9.00	\$	6,063.00	319	0.1 \$	19.00	\$	6,062.90			
Demolish cribbing, stairs, entryways, etc.	m3	3 250.3	C305L	\$ 1	9.00	\$	4,756.00	250	.3 \$	19.00	\$	4,755.70			
Demolish arctic corridor	m3	132.5	C305L	\$ 1	9.00	\$	2,518.00	133	.5 \$	19.00	\$	2,517.50			
Collect all debris	m2	380.9	C310L	\$	0.18	\$	69.00	380	.9 \$	0.18	\$	68.56			
Load waste for transport to Landfill	m3	623.1	C401L	\$ 1	13.13	\$	8,181.00	62:	.1 \$	13.13	\$	8,181.30			
Haul waste to Landfill	m3	623.1	C414L	\$	6.34	\$	3,950.00	623	.1 \$	6.34	\$	3,950.45			
Regrade area for positive drainage	m2	21050	C518L	\$	0.12	\$	2,526.00	210	50 \$	0.12	\$	2,526.00			
Regrade pad transitions to blend in with topography	m2	2 15200	C505L	\$	1.58	\$	24,016.00	152	00 \$	1.58	\$	24,016.00			
Regrade surface to prevent ponding TANK FARM	m2	152000	C518L	\$	0.12	\$	18,240.00	1520	00 \$	0.12	\$	18,240.00			
															10V for draining a tank
															10K for draining a tank is too high; what does it
Drain tanks into portable fuel storage (EnviroTanks)	each	ı 5	C203L	\$ 10,00	00.00	\$	50,000.00		5 \$	10,000.00	\$	50,000.00	\$	344,633.47	include? It is used as a flat rate, no matter the size of the tank
Decommision Fuel Transfer Facilities	each	ı 5	C102L	\$ 55	50.00	\$	2,750.00		5 \$	550.00	\$	2,750.00			
Wash tanks	m3	3 7.9	C204L	\$ 1,42	20.00	\$	11,218.00		5 \$	1,420.00	\$	7,100.00			rows switched
Operate oil/water separator	each	1 5	C208L	\$ 3	80.00	\$	150.00		.9 \$	30.00	\$	237.00			rows switched
Disconnect piping and controls	each	1 5	C102L	\$ 55	50.00	\$	2,750.00		5 \$	550.00	\$	2,750.00			
Dismantle tanks and cut into manageable pieces	each	ı 5	CUT1L	\$ 50,00	00.00	\$	250,000.00		5 \$	50,000.00	\$	250,000.00			
Prepare pieces for transportation	each	1 5	C401L	\$ 1	3.13	\$	66.00		60 \$	13.13	\$	787.80			
Haul cut metal to landfill	m3	3 60	C414L	\$	6.34	\$	380.00		60 \$	6.34	\$	380.40			
Remove and stockpile liner protection cover	m3	3360	SB1L	\$	4.30	\$	14,448.00	33	60 \$	4.30	\$	14,448.00			
Load contained contaminated soils into megabags for shipping off-site	m3	3 50	C412L	\$ 10	0.25	\$	5,013.00		50 \$	3 100.25	\$	5,012.50			
Haul contaminated material to Roberts Bay laydown	m3	62	C404L	\$	6.34	\$	393.00		62 \$	6.34	\$	393.08			
Clean liner	m2	5500	C210L	\$	0.39	\$	2,145.00	55	00 \$	0.39	\$	2,145.00			
Remove and cut geosynthetics into manageable pieces	m2	5500	C302L	\$	0.56	\$	3,080.00	55	00 \$	0.56	\$	3,080.00			

ī					Accum	tions Co	rrocted	
0	Quantity	Un	it Cost	Cost	Assump	alons co	Trecteu	
	103	\$	640.00	\$	65,920.00	\$	263,686.46	
	83	\$	1,325.00	\$	109,975.00			
	2756	\$	6.34	\$	17,473.04			
	319.1	\$	19.00	\$	6,062.90			
	250.3	\$	19.00	\$	4,755.70			
	132.5	\$	19.00	\$	2,517.50			
	380.9	\$	0.18	\$	68.56			
	623.1	\$	13.13	\$	8,181.30			
	623.1	\$	6.34	\$	3,950.45			
	21050	\$	0.12	\$	2,526.00			
	15200	\$	1.58	\$	24,016.00			
	152000	\$	0.12	\$	18,240.00			
	5	\$	10,000.00	\$	50,000.00	\$	443,909.18	
	5	\$	550.00	s	2,750.00			
		•		•	_,			
	5	\$	1,420.00	\$	7,100.00			
	7.9	\$	30.00	\$	237.00			
	5	\$	550.00	\$	2,750.00			
	7	\$	50,000.00	\$	350,000.00			the fire water and Boston water tanks must be included here
	22.8	\$	13.13	\$	299.36			these quantities are wrong for the units selected
					,			these quantities are wrong for the
l	22.8		6.34		144.55			units selected
	3360	\$	4.30	\$	14,448.00			
	50	\$	100.25	\$	5,012.50			
	ຂາ	\$	6.34	•	393.08			
	5500	\$	0.39	\$	2,145.00			

				Unit Rat	es Corrected			
Quantity	AANDC	AA	NDC		SRK	SR	K Cost	
	Unit Cost	Cos	st		Unit Cost			
103	\$640.00	\$	65,920.00	\$ 263,686.46	\$639.99	\$	65,919.17	\$ 221,320.17
83	\$1,325.00	\$	109,975.00		\$1,321.37	\$	109,673.61	
2756	\$6.34	\$	17,473.04		\$2.52	\$	6,942.73	
319.1	\$19.00	\$	6,062.90		\$12.90	\$	4,115.21	
250.3	\$19.00	\$	4,755.70		\$12.90	\$	3,227.94	
132.5	\$19.00	•	2,517.50		\$12.90	¢	1,708.76	
102.0	ψ13.00		2,517.50		Ψ12.50	Ψ	1,700.70	
380.9	\$0.18	\$	68.56		\$0.17	\$	65.97	
623.1	\$13.13	\$	8,181.30		\$10.23	\$	6,373.01	
623.1	¢e 24		2 050 45		64.70	•	2 020 20	
623.1	\$6.34	ټ	3,950.45		\$4.70	Ф	2,928.38	
04050	60.40		0.500.00		60.04	•	207.00	
21050	\$0.12	\$	2,526.00		\$0.01	\$	207.96	
15200	\$1.58	\$	24,016.00		\$1.23	\$	18,655.72	
450000	00.40		40.040.00		***		4 504 00	
152000	\$0.12	\$	18,240.00		\$0.01	\$	1,501.69	
5	\$10,000.00	\$	50,000.00	\$ 443,909.18	\$256.75	\$	1,283.76	\$ 381,791.75
_			0.750.00					
5	\$550.00	\$	2,750.00		\$448.37	\$	2,241.85	
5	\$1,420.00	\$	7,100.00		\$1,123.28	\$	5,616.42	
7.9	\$30.00		237.00		\$31.00	e	244.90	
7.9	φ30.00	پ	237.00		\$31.00	φ	244.50	
5	\$550.00	s	2,750.00		\$448.37	\$	2,241.86	
7	\$50,000.00	\$	350,000.00		\$50,000.00	\$	350,000.00	
								these quantities
22.8	\$13.13	\$	299.36		\$10.23	\$	233.20	were wrong for the
								_
22.8	\$6.34	\$	144.55		\$4.70	\$	107.15	
0000							0.005.00	
3360	\$4.30	\$	14,448.00		\$2.75	\$	9,235.62	
	6400.05		E 040 F0		670.75		2 507 45	
50	\$100.25	\$	5,012.50		\$70.75	\$	3,537.45	
62	\$6.34	\$	393.08		\$2.52	\$	156.19	
5500	\$0.39	\$	2,145.00		\$0.39	\$	2,145.16	
5500	00.50		0.000.00		60.40	•	000.50	

ACTIVITY/MATERIAL	Units Quantity	Cost Code	e Unit	Cost Cost		Ourantife Had	4.04	Errors Corrected	I			04	Assumptions	S Corrected	0	AANDO	441100	Unit R	ates Corrected	W 0 4	
						Quantity Uni	t Cost Cost	1		Q	uantity Unit	Cost Cost			Quantity	AANDC Unit Cost	AANDC Cost		SRK SR Unit Cost	K Cost	
Load waste into containers for transport to landfill	m3 1	176.6	C401L \$	13.13 \$	2,319.00	176.6 \$	13.13 \$	2,318.76			176.6 \$	13.13 \$	2,318.76		17	6.6 \$13.13	\$ 2,318.76		\$10.23 \$	1,806.25	
Haul waste to landfill	m3 1	76.6	C414L \$	6.34 \$	1,120.00	176.6 \$	6.34 \$	1,119.64			176.6 \$	6.34 \$	1,119.64		17	6.6 \$6.34	\$ 1,119.64		\$4.70 \$	829.97	
Level containment berms	m2	962	C505L \$	1.58 \$	1,520.00	962 \$	1.58 \$	1,519.96			962 \$	1.58 \$	1,519.96			962 \$1.58	\$ 1,519.96		\$1.23 \$	1,180.71	
Regrade area for positive drainage	m2 49)27.7 (C518L \$	0.12 \$	591.00	4927.7 \$	0.12 \$	591.32			4927.7 \$	0.12 \$	591.32		492	7.7 \$0.12	\$ 591.32		\$0.01 \$	48.68	
PERMANAENT POWER GENERATOR																, .			,,,,,		
Decommission (electrical)	each	8 (C106L \$	750.00 \$	6.000.00	8 S	750.00 \$	6,000.00 \$	62,754.20		8 \$	750.00 \$	6,000.00	62754.2044		8 \$750.00	\$ 6,000.00	\$ 60,054.2	\$754.18 \$	6,033.41 \$	47,993.55
				*	-,			*	,				-,				* -,	*	*******	-,··· +	,
Disconnect containers and prep for shipping off-site Haul containers to Roberts Bay	each	8 (C108L \$	1,325.00 \$	10,600.00	8 \$	1,325.00 \$	10,600.00			8 \$	1,325.00 \$	10,600.00			8 \$1,325.00	\$ 10,600.00		\$1,321.37 \$	10,570.95	
laydown	m3 26	65.66	C404L \$	6.34 \$	1,684.00	265.66 \$	6.34 \$	1,684.28			265.66 \$	6.34 \$	1,684.28		265	.66 \$6.34	\$ 1,684.28		\$2.52 \$	669.23	
D: # 1			00401 0		40.000.00			40.000.00					40.000.00			40 000 000 00			*****	5.405.04	unit rate and quantities non-
Dismantle stacks	each				40,000.00		20,000.00 \$					20,000.00 \$	40,000.00			40 \$20,000.00			\$128.38 \$		interchangeable
Prep stacks for shipping off-site	each	2 (C312L \$	1,500.00 \$	3,000.00	2 \$	1,500.00 \$	3,000.00			2 \$	1,500.00 \$	3,000.00			\$1,500.00	\$ 300.00		\$619.32 \$	24,772.64	
Haul stack sections to Roberts Bay laydown	m3	166	C404L \$	6.34 \$	1,052.00	166 \$	6.34 \$	1,052.44			166 \$	6.34 \$	1,052.44			166 \$6.34	\$ 1,052.44		\$2.52 \$	418.18	
Collect all debris	m2 :	2103	C310L \$	0.18 \$	379.00	2103 \$	0.18 \$	378.54			2103 \$	0.18 \$	378.54		2	03 \$0.18	\$ 378.54		\$0.17 \$	364.25	
Load waste for shipping to landfill	m3	2 (C401L \$	13.13 \$	26.00	2 \$	13.13 \$	26.26			2 \$	13.13 \$	26.26			2 \$13.13	\$ 26.26		\$10.23 \$	20.46	
Haul waste to landfill	m3		C414I S	6.34 \$	13.00	2 \$	6.34 \$	12.68			2 \$	6.34 \$	12.68			2 \$6.34			\$4.70 \$	9.40	
BACKUP POWER GENERATOR						- *		.=								- ,			*		
Decommission (electrical) Disconnect generator units and	each	4	c105l \$	640.00 \$	2,560.00	4 \$	640.00 \$	2,560.00 \$	8,706.29		4 \$	640.00 \$	2,560.00	8706.286		4 \$640.00	\$ 2,560.00	\$ 8,706.2	\$639.99 \$		7,324.21
prep for shipping off-site Haul units to Roberts Bay	each		c106l \$	750.00 \$	1,500.00	2 \$		1,500.00			2 \$	750.00 \$	1,500.00			2 \$750.00	, , , , , , , , , , , , , , , , , , , ,		\$754.18 \$		
laydown			C404L \$	6.34 \$	429.00	67.6 \$	6.34 \$	428.58			67.6 \$	6.34 \$	428.58			7.6 \$6.34			\$2.52 \$		
Demolish tent housing structure Collect all debris			C305L \$	19.00 \$ 0.18 \$	1,788.00 47.00	94.1 \$ 259.3 \$	19.00 \$ 0.18 \$	1,787.90 46.67			94.1 \$ 259.3 \$	19.00 \$ 0.18 \$	1,787.90 46.67			4.1 \$19.00 9.3 \$0.18			\$12.90 \$ \$0.17 \$		
Load waste for shipping to landfill Haul waste to landfill			C401L \$	13.13 \$ 6.34 \$	1,607.00 776.00	122.4 \$ 122.4 \$	13.13 \$ 6.34 \$	1,607.11 776.02			122.4 \$ 122.4 \$	13.13 \$ 6.34 \$	1,607.11 776.02			2.4 \$13.13 2.4 \$6.34			\$10.23 \$ \$4.70 \$		
SEWAGE TREATMENT PLANT						·															
Flush and remove sewage plumbing, collect sewage																					
sludge/waste water in 55 gallon drum	each	9 (C206L \$	657.86 \$	5.921.00	9 \$	657.86 \$	5.920.74 \$	27,863.27		9 \$	657.86 \$	5,920.74	27863.274		9 \$657.86	\$ 5,920.74	\$ 27,863.2	\$657.86 \$	5,920.78 \$	25,438.89
				,	.,.				,,,,,			,	.,			. ,	, ,,,,,,	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	, , , , ,	., ,	.,
Decommission (electrical) 9.0 each	each	9 (C105L \$	640.00 \$	5,760.00	9 \$	640.00 \$	5,760.00			9 \$	640.00 \$	5,760.00			9 \$640.00	\$ 5,760.00		\$639.99 \$	5,759.93	
Disconnect containers and prep																					
for shipping off-site	each	9 (C108L \$	1,325.00 \$	11,925.00	9 \$	1,325.00 \$	11,925.00			9 \$	1,325.00 \$	11,925.00			9 \$1,325.00	\$ 11,925.00		\$1,321.37 \$	11,892.32	
Haul containers to Roberts Bay laydown	m3 5	597.6	C404L \$	6.34 \$	3,789.00	597.6 \$	6.34 \$	3,788.78			597.6 \$	6.34 \$	3,788.78		59	7.6 \$6.34	\$ 3,788.78		\$2.52 \$	1,505.43	
ing admit	mo c		J.J4L V	0.0 1	5,700.00	337.3	0.04	5,700.70			331.0 \$	0.0 1 9	3,700.70		38	ν.ο-	5,755.76		Ψ2.02 Φ	1,000.40	
Collect Debris	m2	29.8	C310L \$	0.18 \$	5.00	29.8 \$	0.18 \$	5.36			29.8 \$	0.18 \$	5.36		2	9.8 \$0.18	\$ 5.36		\$0.17 \$	5.16	
Load debris into containers for transport (to Roberts Bay)	m3	2.8	C401L \$	13.13 \$	37.00	23.8 \$	13.13 \$	312.49	typo (?)		23.8 \$	13.13 \$	312.49		2	3.8 \$13.13	\$ 312.49		\$10.23 \$	243.42	
Haul debris to Roberts Bay	m3	23.8	C414L \$	6.34 \$	151.00	23.8 \$	6.34 \$	150.89			23.8 \$	6.34 \$	150.89		2	3.8 \$6.34	\$ 150.89		\$4.70 \$	111.85	
FIRE WATER STORAGE TANK																					
December 1 "																					
Decommission and disconnect electrical and plumbing	each	3 (C105L \$	640.00 \$	1,920.00	3 \$	640.00 \$	1,920.00 \$	42,347.69		3 \$	640.00 \$	1,920.00	42347.691		3 \$640.00	\$ 1,920.00	\$ 42,347.6	\$1,288.18 \$	3,864.54 \$	44,714.10
Disconnect and remove container																					
housing the pumps and controls, and prep for shipping	each	1 (C108L S	1,325.00 \$	1.325.00	1.5	1,325.00 \$	1.325.00			1 \$	1,325.00 \$	1.325.00			1 \$1.325.00	\$ 1,325.00		\$1,321.37 \$	1.321.37	
					, 		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	, , , , ,		' '		,	,			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	.,==:.00		,,,_,,	,,	

ACTIVITY/MATERIAL	Units (Quantity	Cost Code	Unit Cost	Cos	ŧ				Errors C	orrected		
							Quantity	Unit Cost	Cos	it			
Haul container to Roberts Bay													
laydown Remove tank insulation Dismantle tanks and cut into	m3 m3	33.2 53	C404L C315L		\$	210.00 38,160.00	33.2 53		\$	210.49 38,160.00			
manageable pieces (includes water tank for Boston)	m3	2.9	C307L	\$ 19.00	\$	55.00	2.9	\$ 19.00	\$	55.10			
Prepare pieces for transportation (includes water tank for Boston) Haul cut metal to Roberts Bay	m3	2.9	C401L	\$ 13.13	\$	38.00	4.4	\$ 13.13	\$	57.77			one row skipped from original
laydown (includes water tank for Boston)	m3	4.4	C404L	\$ 6.34	\$	28.00	4.4	\$ 6.34	\$	27.90			one row skipped from original one row skipped from
Collect Debris	m3	4.4	C310L	\$ 0.18	\$	1.00	73.2	\$ 0.18	\$	13.18			original one row skipped from
Load debris for transport Landfill	m2	73.2	C401L	\$ 13.13	\$	961.00	29.7	\$ 13.13	\$	389.96			original one row skipped from
Haul debris to landfill Muster Station	m3	29.7	C404L	\$ 6.34	\$	188.00	29.7	\$ 6.34	\$	188.30			original
Demolish tent structure	m3	227.3	C305L		\$	4,319.00	227.3			4,318.70	\$	5,395.20	
Dismantle wood flooring Collect Debris	m3 m2	27.3 90.9	C305L C310L		\$	519.00 16.00	27.3 90.9			518.70 16.36			
Load debris for transport to													
landfill Haul Debris to landfill	m3 m3	42.7 42.7	C404L C414L		\$	271.00 271.00	42.7 42.7		\$	270.72 270.72			
WAREHOUSE / CORE SHACK													
Demolish tent structure Dismantle wood flooring,	m3	269.5	C305L	\$ 19.00	\$	5,125.00	269.5	\$ 19.00	\$	5,120.50	\$	20,659.97	
shelving, and lofts	m3	186.2			\$	3,538.00	186.2			3,537.80			
Collect Debris Load debris for transport to	m2	720.1	C310L		\$	130.00	720.1			129.62			
landfill Haul debris to landfill	m3 m3	350.3 350.3	C401L C414L		\$ \$	4,599.00 2,221.00	350.3 350.3			4,599.44 2,220.90			
Haul all warehouse containers to Roberts Bay	m3	796.8	C404L	\$ 6.34	\$	5,052.00	796.8	\$ 6.34	\$	5,051.71			
OFFICE & MINE DRY COMPLEX Decommission (electrical,													
mechanical, plumbing) Disconnect trailers and prep for	each	3	C105L	\$ 640.00	\$	1,920.00	3	\$ 640.00	\$	1,920.00	\$	97,447.90	
moving (remove boards, cladding, etc.; wrap in plastic) Haul trailers to Roberts Bay for	each	17	C108L	\$ 1,325.00	\$	22,525.00	17	\$ 1,325.00	\$	22,525.00			
shipping off-site Demolish arctic corridor	m3 m3	564.4 219.5	C404L C305L		\$	3,578.00 4,171.00	564.4 219.5		\$	3,578.30 4,170.50			
Demolish cribbing, stairs, entryways, etc.	m3	998.2			\$	18,966.00	998.2			18,965.80			
, ., .,				,	·	.,				.,			
Collect all debris	m3	998.2	C310L	\$ 0.18	\$	180.00	998.2	\$ 0.18	\$	179.68			
Load debris for transport to landfill	m3	2325.6	C401L		\$	30,535.00	2325.6			30,535.13			
Haul debris to landfill Regrade area for positive	m3	2325.6	C414L		\$	14,744.00	2325.6			14,744.30			
drainage CRUSHING, MILLING &	m2	6910	C518L	\$ 0.12	\$	829.00	6910	\$ 0.12	\$	829.20			
PROCESSING PLANT Decommission crusher, milling,													
and process plants Drain chemicals and reagents into containers for shipping off	each	1	PLNT1L	\$ 150,000.00	\$	150,000.00	1	\$ 150,000.00	\$	150,000.00	\$	2,834,547.27	
site Disassemble equipment	m3 each	8.3 1		\$ 100.00 \$ 200,000.00	\$ \$	830.00 200,000.00	8.3 1	\$ 100.00 \$ 200,000.00	\$ \$	830.00 200,000.00			
Prepare equipment for shipping off-site	each	1	PLNT3L	\$ 50,000.00	\$	50,000.00	1	\$ 50,000.00	\$	50,000.00			
Demolish / dismantle mill building Collect Debris	m3 m2	123515 8700			\$:	2,346,785.00 1,566.00	123515 8700			2,346,785.00 1,566.00			
Load waste for transport to													
Landfill Haul debris to landfill	m3 m3	4381.8 4381.8	C401L C414L		\$ \$	57,533.00 27,781.00	4381.8 4381.8			57,533.03 27,780.61			
Rransport drums to Roberts Bay UNDERGROUND WASHBAY	m3	8.3	C404L 0.74	\$ 6.34	\$	53.00	8.3			52.62			
Demolish tent structure Collect Debris	m3 m2	776.9 155.4			\$ \$	14,761.00 28.00	776.9 155.4			14,761.10 27.97	\$	15,090.86	
Load debris for transport to	m3	15.5				204.00	15.5			203.52			
Haul debris to landfill	m3	15.5				98.00	15.5			98.27			
UNDERGROUND DRILLING SUP Demolish tent structure	PORT SHOP m3	859.2	C305L	\$ 19.00	\$	16,325.00	859.2	\$ 19.00	\$	16,324.80	\$	16,710.66	
Collect Debris Load debris for transport to	m2	229.1				41.00	229.1			41.24			
landfill	m3	17.7	C401L			232.00	17.7			232.40			
Haul debris to landfill WATER INTAKE STRUCTURE At	m3 ND PUMPING	17.7 FACILITY	C414L	\$ 6.34	\$	112.00	17.7	\$ 6.34	\$	112.22			

Quantity	Ur	it Cost	Cost		tions Corrected		Quantity	AANDC Unit Cost	AAND Cost	С	
33	5.2 \$ 53 \$	6.34 720.00	\$	210.49 38,160.00			33.2 53	\$6.34 \$720.00	\$ \$	210.49 38,160.00)
2	.9 \$	19.00	\$	55.10			2.9	\$19.00	\$	55.10)
4	.4 \$	13.13	\$	57.77			4.4	\$13.13	\$	57.77	,
4	.4 \$	6.34	\$	27.90			4.4	\$6.34	\$	27.90)
73	.2 \$	0.18	\$	13.18			73.2	\$0.18	\$	13.18	3
29	.7 \$	13.13	\$	389.96			29.7	\$13.13	\$	389.96	3
29	.7 \$	6.34	\$	188.30			29.7	\$6.34	\$	188.30)
	.3 \$.3 \$	19.00 19.00		4,318.70 518.70	5395.198		227.3 27.3	\$19.00 \$19.00		4,318.70 518.70	
90	.9 \$	0.18	\$	16.36			90.9		\$	16.36	5
	.7 \$.7 \$	6.34 6.34	\$ \$	270.72 270.72			42.7 42.7	\$6.34 \$6.34		270.72 270.72	
269	.5 \$	19.00	\$	5,120.50	\$ 20,659.97		269.5	\$19.00	\$	5,120.50)
	i.2 \$	19.00 0.18	\$ \$	3,537.80 129.62			186.2 720.1	\$19.00 \$0.18		3,537.80 129.62	
	.3 \$	13.13 6.34	\$	4,599.44 2,220.90			350.3 350.3			4,599.44 2,220.90	
796	.8 \$	6.34	\$	5,051.71			796.8	\$6.34	\$	5,051.71	ı
	3 \$	640.00	\$	1,920.00	97624.844		3	\$640.00	\$	1,920.00)
	17 \$	1,325.00	\$	22,525.00			17	\$1,325.00	\$	22,525.00)
	.4 \$.5 \$	6.34 19.00	\$ \$	3,578.30 4,170.50			564.4 219.5	\$6.34 \$19.00		3,578.30 4,170.50	
998	.2 \$	19.00	\$	18,965.80			998.2	\$19.00	\$	18,965.80)
1981	.2 \$	0.18	\$	356.62		this unit rate is for collecting loose debris from pad surface; quantity corrected to reflect this	1981.2	\$0.18	\$	356.62	2
2325	.6 \$	13.13	\$	30,535.13			2325.6			30,535.13	3
2325 691	10 \$	6.34 0.12		14,744.30 829.20			2325.6 6910			14,744.30 829.20	
	1 S	150,000.00	\$	150,000.00	2834547.268		1	\$150,000.00	s	150,000.00)
٥	.3 \$	100.00		830.00			8.3			830.00	
	1 \$	200,000.00	\$	200,000.00			1	\$200,000.00	\$	200,000.00)
	1 \$	50,000.00		50,000.00			1	\$50,000.00		50,000.00	
1235° 870	15 \$ 00 \$	19.00 0.18	\$ \$	2,346,785.00 1,566.00			123515 8700	\$19.00 \$0.18	\$ 2, \$	346,785.00 1,566.00	
4381 4381	.8 \$.8 \$	13.13 6.34		57,533.03 27,780.61			4381.8 4381.8	\$13.13 \$6.34	\$ \$	57,533.03 27,780.61	
8	.3 \$	6.34	\$	52.62			8.3	\$6.34	\$	52.62	2
	.9 \$.4 \$	19.00 0.18	\$ \$	14,761.10 27.97	15090.857		776.9 155.4	\$19.00 \$0.18		14,761.10 27.97	
	.5 \$.5 \$	13.13 6.34	\$ \$	203.52 98.27			15.5 15.5			203.52 98.27	
	.2 \$.1 \$	19.00 0.18		16,324.80 41.24	16710.657		859.2 229.1	\$19.00 \$0.18		16,324.80 41.24	
	.7 S	13.13		232.40			17.7	\$13.13		232.40	ĺ

33.2 \$6.34 \$ 210.49 \$2.52 \$ 83.64 \$ 270.00 \$ 38,160.00 \$720.03 \$ 38,161.68 \$ 2.9 \$19.00 \$ 55.10 \$265.78 \$ 770.76 \$ 4.4 \$13.13 \$ 57.77 \$10.23 \$ 45.00 \$ 4.4 \$63.4 \$ 27.90 \$2.52 \$ 11.08 \$ 73.2 \$0.18 \$ 13.18 \$0.17 \$ 12.68 \$ 29.7 \$13.13 \$ 389.96 \$10.23 \$ 303.77 \$ 29.7 \$6.34 \$ 188.30 \$4.70 \$ 139.58 \$ 2.73 \$19.00 \$4.318.70 \$5.395.20 \$12.90 \$2.931.33 \$3,936.55 \$27.3 \$19.00 \$4.318.70 \$5.395.20 \$12.90 \$2.931.33 \$3,936.55 \$27.3 \$19.00 \$5.18.70 \$10.30 \$5.17 \$15.74 \$ 42.7 \$6.34 \$270.72 \$10.23 \$436.73 \$270.68 \$10.23 \$30.07 \$12.90 \$3.20.78 \$12.90 \$3.20.79 \$12.90 \$3.20.79 \$12.90 \$3.20.79 \$12.90 \$3.20.79 \$12.90 \$3.20.79 \$12.90 \$3.20.79 \$12.90 \$3.20.79 \$12.90 \$3.20.79 \$12.90 \$3.20.79 \$12.90 \$3.20.79 \$12.90 \$3.20.89 \$12.90 \$3.20.79 \$12.90 \$3.20.89 \$12.90 \$3.20.79 \$12.90 \$3.20.89 \$12.90 \$3.20.79 \$12.90 \$3.20.89 \$12.90 \$3.20.79 \$12.90 \$3.20.89 \$12.90 \$3.20.79 \$12.90 \$3.20.89 \$12.90 \$3.20.79 \$12.90 \$3.20.89 \$12.90 \$3.20.79 \$12.90 \$3.20.89 \$12.90 \$3.20.79 \$12.90 \$3.2		K Cost	SRI	es Corrected SRK Unit Cost	Offit Rat		NDC st	AA Cos	AANDC Unit Cost	Quantity
2.9 \$19.00 \$ 55.10 \$265.78 \$ 770.76 4.4 \$13.13 \$ 57.77 \$10.23 \$ 45.00 4.4 \$6.34 \$ 27.90 \$2.52 \$ 11.08 73.2 \$0.18 \$ 13.18 \$0.17 \$ 12.68 29.7 \$13.13 \$ 389.96 \$0.123 \$ 303.77 29.7 \$6.34 \$ 188.30 \$4.70 \$ 139.58 227.3 \$19.00 \$ 4.318.70 \$ 5.395.20 \$12.90 \$ 2931.33 \$ 3.936.55 27.3 \$19.00 \$ 16.36 \$12.90 \$ 2931.33 \$ 3.936.55 27.3 \$19.00 \$ 16.36 \$12.90 \$ 362.07 90.9 \$0.18 \$ 16.36 \$0.17 \$ 15.74 42.7 \$6.34 \$ 270.72 \$10.23 \$ 346.73 42.7 \$6.34 \$ 270.72 \$12.90 \$ 3.475.55			\$	\$2.52			210.49	\$	\$6.34	33.2
4.4 \$13.13 \$ 57.77 \$10.23 \$ 45.00 4.4 \$6.34 \$ 27.90 \$2.52 \$ 11.08 73.2 \$0.18 \$ 13.18 \$0.17 \$ 12.68 29.7 \$13.13 \$ 389.96 \$10.23 \$ 303.77 29.7 \$6.34 \$ 188.30 \$4.70 \$ 139.58 227.3 \$19.00 \$ 4,318.70 \$ 5,395.20 \$12.90 \$ 2,931.33 \$ 3,936.55 27.3 \$19.00 \$ 16.36 \$ 5,395.20 \$12.90 \$ 352.07 90.9 \$0.18 \$ 16.36 \$ 5,395.20 \$12.90 \$ 352.07 42.7 \$6.34 \$ 270.72 \$ 10.23 \$ 436.73 42.7 \$6.34 \$ 270.72 \$ 10.23 \$ 436.73 42.7 \$6.34 \$ 270.72 \$ 47.0 \$ 200.68 269.5 \$19.00 \$ 5,120.50 \$ 20,659.97 \$12.90 \$ 3,475.55 \$ 13,237.96 186.2 \$19.00 \$ 3,537.80 \$ 12.90 \$ 2,401.29 \$ 2,401.29 \$ 2,401.29 \$ 2,401.29 \$ 2,401.29 \$ 2,401.29 \$ 2,401.29 \$ 2,401.29		38,161.68	\$	\$720.03			38,160.00	\$	\$720.00	53
4.4 \$6.34 \$ 27.90 \$2.52 \$ 11.08 73.2 \$0.18 \$ 13.18 \$0.17 \$ 12.68 29.7 \$13.13 \$ 389.96 \$10.23 \$ 303.77 29.7 \$6.34 \$ 188.30 \$4.70 \$ 139.58 227.3 \$19.00 \$ 4.318.70 \$ 5.395.20 \$12.90 \$ 2,931.33 \$ 3,936.55 27.3 \$19.00 \$ 518.70 \$ 12.90 \$ 352.07 \$ 362.07 \$		770.76	\$	\$265.78			55.10	\$	\$19.00	2.9
73.2 \$0.18 \$ 13.18 \$0.17 \$ 12.68 29.7 \$13.13 \$ 389.96 \$10.23 \$ 303.77 29.7 \$6.34 \$ 188.30 \$4.70 \$ 139.58 227.3 \$19.00 \$ 4,318.70 \$ 5,395.20 \$12.90 \$ 2931.33 \$ 3,936.55 27.3 \$19.00 \$ 518.70 \$12.90 \$ 352.07 \$ 362.07 90.9 \$0.18 \$ 16.36 \$0.17 \$ 15.74 42.7 \$6.34 \$ 270.72 \$10.23 \$ 436.73 42.7 \$6.34 \$ 270.72 \$10.23 \$ 436.73 269.5 \$19.00 \$ 5,120.50 \$ 20,659.97 \$12.90 \$ 3,475.55 \$ 13,237.96 186.2 \$19.00 \$ 3,537.80 \$12.90 \$ 2,401.29 \$ 2401.29 \$ 220.17 \$ 20.659.97 \$12.90 \$ 2,401.29 \$ 240.22 \$ 20.07 \$ 20.659.97 \$ 12.90 \$ 2,401.29 \$ 2,401.29 \$ 20.659.97 \$ 12.90 \$ 2,401.29 \$ 2,401.29 \$ 2,401.29 \$ 2,401.29 \$ 2,401.29 \$		45.00	\$	\$10.23			57.77	\$	\$13.13	4.4
29.7 \$13.13 \$ 389.96 \$10.23 \$ 303.77 29.7 \$6.34 \$ 188.30 \$4.70 \$ 139.58 227.3 \$19.00 \$ 4,318.70 \$ 5,395.20 \$12.90 \$ 2,931.33 \$ 3,936.55 27.3 \$19.00 \$ 518.70 \$12.90 \$ 352.07 \$ 362.07 90.9 \$0.18 \$ 16.36 \$0.17 \$ 15.74 42.7 \$6.34 \$ 270.72 \$10.23 \$ 436.73 42.7 \$6.34 \$ 270.72 \$4.70 \$ 200.68 269.5 \$19.00 \$ 5,120.50 \$ 20,659.97 \$12.90 \$ 3,475.55 \$ 13,237.96 186.2 \$19.00 \$ 3,537.80 \$12.90 \$ 2,401.29 \$ 20.17 \$ 124.72 350.3 \$13.13 \$ 4,599.44 \$10.23 \$ 3,582.84 \$ 350.3 \$6.34 \$ 2,220.90 \$ 34.70 \$ 1,646.30 796.8 \$6.34 \$ 5,051.71 \$ 2.52 \$ 2,007.25 \$ 76,635.95 17 \$1,325.00 \$ 22,525.00 \$ 1,321.37 \$ 22		11.08	\$	\$2.52			27.90	\$	\$6.34	4.4
29.7 \$6.34 \$ 188.30 \$4.70 \$ 139.58 227.3 \$19.00 \$ 4,318.70 \$ 5,395.20 \$12.90 \$ 2,931.33 \$ 3,936.55 27.3 \$19.00 \$ 518.70 \$12.90 \$ 352.07 \$ 90.9 \$0.18 \$ 16.36 \$0.17 \$ 15.74 \$ 42.7 \$6.34 \$ 270.72 \$10.23 \$ 436.73 \$ 42.7 \$6.34 \$ 270.72 \$4.70 \$ 200.68 \$ 269.5 \$19.00 \$ 5,120.50 \$ 20,659.97 \$12.90 \$ 3,475.55 \$ 13,237.96 186.2 \$19.00 \$ 3,537.80 \$12.90 \$ 2,401.29 \$ 2,401.29 \$ 2,401.29 \$ 2,401.29 \$ 2,407.2 \$ 3,582.84 \$ 350.3 \$13.13 \$ 4,599.44 \$10.23 \$ 3,582.84 \$ 350.3 \$6.34 \$ 2,220.90 \$4.70 \$		12.68	\$	\$0.17			13.18	\$	\$0.18	73.2
227.3 \$19.00 \$ 4,318.70 \$ 5,395.20 \$12.90 \$ 2,931.33 \$ 3,936.55 27.3 \$19.00 \$ 518.70 \$12.90 \$ 352.07 \$ 3,936.55 \$ 90.9 \$0.18 \$ 16.36 \$12.90 \$ 3,20.77 \$ 15.74 \$ 200.68 \$ 42.7 \$6.34 \$ 270.72 \$10.23 \$ 436.73 \$ 42.7 \$6.34 \$ 270.72 \$4.70 \$ 200.68 \$ 200.68 \$ 200.68 \$ 200.68 \$ 200.68 \$ 200.68 \$ 13,237.96 \$ \$2,007.25 \$ \$ 12,00 \$ 2,401.29 \$ 2,401.29 \$ 2,401.29 \$ 2,401.29 \$ 2,401.29 \$ 2,401.29 \$ 2,407.2 \$ 3,582.84 \$ 350.3 \$13.13 \$ 4,599.44 \$10.23 \$ 3,582.84 \$ 3		303.77	\$	\$10.23			389.96	\$	\$13.13	29.7
27.3 \$19.00 \$ 518.70 \$12.90 \$ 352.07 90.9 \$0.18 \$ 16.36 \$0.17 \$ 15.74 42.7 \$6.34 \$ 270.72 \$10.23 \$ 436.73 42.7 \$6.34 \$ 270.72 \$4.70 \$ 200.68 269.5 \$19.00 \$ 5,120.50 \$ 20,659.97 \$12.90 \$ 3,475.55 \$ 13,237.96 186.2 \$19.00 \$ 3,537.80 \$12.90 \$ 2,401.29 \$ 2,401.29 \$ 2,201.2 \$ 2,20.72 \$ 2,20.72 \$ 3,532.84 \$ 350.3 \$ 13.13 \$ 4,599.44 \$ 10.23 \$ 3,582.84 \$ 350.3 \$ 5,34 \$ 2,220.90 \$ 4,70 \$ 1,646.30 \$ 1,646.30 \$ 76.635.95 \$ 2,007.25 \$ 2,007.25 \$ 2,007.25 \$ 3 \$ 640.00 \$ 1,920.00 \$ 97,624.84 \$ 639.99 \$ 1,919.98 \$ 76,635.95 \$ 76,635.95 \$ 1,321.37 \$ 22,463.27 \$ 264.4 \$ 6.34 \$ 3,578.30 \$ 2.52 \$ 1,421.80 \$ 2,830.74 \$ 2,830.74 \$ 2,830.74 \$ 2,830.74 \$ 2,830.74 \$ 2,830.74 \$ 2,830.74 \$ 2,830.74 \$ 2,830.74 \$ 2,830.74 \$ 2,830.74 \$ 2,830.74 \$ 2,830.7		139.58	\$	\$4.70			188.30	\$	\$6.34	29.7
27.3 \$19.00 \$ 518.70 \$12.90 \$ 352.07 90.9 \$0.18 \$ 16.36 \$0.17 \$ 15.74 42.7 \$6.34 \$ 270.72 \$10.23 \$ 436.73 42.7 \$6.34 \$ 270.72 \$4.70 \$ 200.68 269.5 \$19.00 \$ 5,120.50 \$ 20,659.97 \$12.90 \$ 3,475.55 \$ 13,237.96 186.2 \$19.00 \$ 3,537.80 \$12.90 \$ 2,401.29 \$ 2,401.29 \$ 2,201.2	3.936.55	\$ 2.931.33	\$	\$12.90	5.395.20	s	4.318.70	s	\$19.00	227.3
42.7 \$6.34 \$ 270.72 \$10.23 \$ 436.73 42.7 \$6.34 \$ 270.72 \$4.70 \$ 200.68 269.5 \$19.00 \$ 5,120.50 \$ 20,659.97 \$12.90 \$ 3,475.55 \$ 13,237.96 186.2 \$19.00 \$ 3,537.80 \$12.90 \$ 2,401.29 \$ 2,401.29 \$ 2,201.29 \$ 2,20.72 <		352.07	\$	\$12.90			518.70	\$	\$19.00	27.3
42.7 \$6.34 \$ 270.72 \$4.70 \$ 200.68 269.5 \$19.00 \$ 5,120.50 \$ 20,659.97 \$12.90 \$ 3,475.55 \$ 13,237.96 186.2 \$19.00 \$ 3,537.80 \$12.90 \$ 2,401.29 720.1 \$0.18 \$ 129.62 \$0.17 \$ 124.72 350.3 \$13.13 \$ 4,599.44 \$10.23 \$ 3,582.84 350.3 \$6.34 \$ 2,220.90 \$4.70 \$ 1,646.30 796.8 \$6.34 \$ 5,051.71 \$2.52 \$ 2,007.25 3 \$640.00 \$ 1,920.00 \$ 97,624.84 \$639.99 \$ 1,919.98 \$ 76,635.95 17 \$1,325.00 \$ 22,525.00 \$1,321.37 \$ 22,463.27 564.4 \$6.34 \$ 3,578.30 \$2.52 \$ 1,421.80 219.5 \$19.00 \$ 4,170.50 \$12.90 \$ 2,830.74										
186.2 \$19.00 \$ 3,537.80 \$12.90 \$ 2,401.29 720.1 \$0.18 \$129.62 \$0.17 \$124.72 350.3 \$13.13 \$4,599.44 \$10.23 \$3,582.84 350.3 \$6.34 \$2,220.90 \$4.70 \$1,646.30 796.8 \$6.34 \$5,051.71 \$2.52 \$2,007.25 3 \$640.00 \$1,920.00 \$97,624.84 \$639.99 \$1,919.98 \$76,635.95 17 \$1,325.00 \$22,525.00 \$1,321.37 \$22,463.27 564.4 \$6.34 \$3,578.30 \$2.52 \$1,421.80 219.5 \$19.00 \$4,170.50 \$12.90 \$2,830.74			\$	\$10.23 \$4.70						
720.1 \$0.18 \$ 129.62 \$0.17 \$ 124.72 350.3 \$13.13 \$ 4.599.44 \$10.23 \$ 3.582.84 350.3 \$6.34 \$ 2,220.90 \$4.70 \$ 1,646.30 796.8 \$6.34 \$ 5,051.71 \$2.52 \$ 2,007.25 3 \$640.00 \$ 1,920.00 \$ 97,624.84 \$639.99 \$ 1,919.98 \$ 76,635.95 17 \$1,325.00 \$ 22,525.00 \$1,321.37 \$ 22,463.27 564.4 \$6.34 \$ 3,578.30 \$2.52 \$ 1,421.80 219.5 \$19.00 \$ 4,170.50 \$12.90 \$ 2,830.74	13,237.96	\$ 3,475.55	\$	\$12.90	20,659.97	\$	5,120.50	\$	\$19.00	269.5
350.3 \$6.34 \$ 2,220.90 \$4.70 \$ 1,646.30 796.8 \$6.34 \$ 5,051.71 \$2.52 \$ 2,007.25 3 \$640.00 \$ 1,920.00 \$ 97,624.84 \$639.99 \$ 1,919.98 \$ 76,635.95 17 \$1,325.00 \$ 22,525.00 \$1,321.37 \$ 22,463.27 564.4 \$6.34 \$ 3,578.30 \$2.52 \$ 1,421.80 219.5 \$19.00 \$ 4,170.50 \$12.90 \$ 2,830.74							3,537.80 129.62			
796.8 \$6.34 \$ 5,051.71 \$2.52 \$ 2,007.25 3 \$640.00 \$ 1,920.00 \$ 97,624.84 \$639.99 \$ 1,919.98 \$ 76,635.95 17 \$1,325.00 \$ 22,525.00 \$1,321.37 \$ 22,463.27 564.4 \$6.34 \$ 3,578.30 \$2.52 \$ 1,421.80 219.5 \$19.00 \$ 4,170.50 \$12.90 \$ 2,830.74										
17 \$1,325.00 \$ 22,525.00 \$1,321.37 \$ 22,463.27 564.4 \$6.34 \$ 3,578.30 \$2.52 \$ 1,421.80 219.5 \$19.00 \$ 4,170.50 \$12.90 \$ 2,830.74							,			
564.4 \$6.34 \$ 3,578.30 \$2.52 \$ 1,421.80 219.5 \$19.00 \$ 4,170.50 \$12.90 \$ 2,830.74	76,635.95	\$ 1,919.98	\$	\$639.99	97,624.84	\$	1,920.00	\$	\$640.00	3
219.5 \$19.00 \$ 4,170.50 \$12.90 \$ 2,830.74		22,463.27	\$	\$1,321.37			22,525.00	\$	\$1,325.00	17
		12,873.09	\$	\$12.90				\$	\$19.00	998.2
1981.2 \$0.18 \$ 356.62 \$0.17 \$ 343.15										
2325.6 \$13.13 \$ 30,535.13 \$10.23 \$ 23,786.04 2325.6 \$6.34 \$ 14,744.30 \$4.70 \$ 10,929.62										
6910 \$0.12 \$ 829.20 \$0.01 \$ 68.27		68.27	\$	\$0.01			829.20	\$	\$0.12	6910
1 \$150,000.00 \$ 150,000.00 \$ 2,834,547.27 \$100,000.00 \$ 100,000.00 \$ 2,031,638.40	2,031,638.40	\$ 100,000.00	\$	\$100,000.00	2,834,547.27	\$	150,000.00	\$	\$150,000.00	1
8.3 \$100.00 \$ 830.00 \$2,628.20 \$ 21,814.09 1 \$200,000.00 \$ 200,000.00 \$200,000.00 \$								\$	\$100.00 \$200,000.00	
1 \$50,000.00 \$ 50,000.00 \$50,000.00 \$ 50,000.00										1
123515 \$19.00 \$ 2,346,785.00 \$12.90 \$ 1,592,886.70 8700 \$0.18 \$ 1,566.00 \$0.17 \$ 1,506.88										
4381.8 \$13.13 \$ 57,533.03 \$10.23 \$ 44,816.69 4381.8 \$6.34 \$ 27,780.61 \$4.70 \$ 20,593.13		44,816.69	\$	\$10.23			57,533.03	\$	\$13.13	
8.3 \$6.34 \$ 52.62 \$2.52 \$ 20.92										
776.9 \$19.00 \$ 14,761.10 \$ 15,090.86 \$12.90 \$ 10,019.14 \$ 10,277.43 155.4 \$0.18 \$ 27.97 \$0.17 \$ 26.92	10,277.43	\$	\$	\$12.90 \$0.17	15,090.86	\$		\$	\$19.00 \$0.18	
15.5 \$13.13 \$ 203.52 \$10.23 \$ 158.53 15.5 \$6.34 \$ 98.27 \$4.70 \$ 72.85		158.53	\$	\$10.23			203.52	\$	\$13.13	15.5
859.2 \$19.00 \$ 16,324.80 \$ 16,710.66 \$12.90 \$ 11,080.50 \$ 11,384.40 229.1 \$0.18 \$ 41.24 \$0.17 \$ 39.68	11,384.40	\$ 11,080.50	\$	\$12.90	16,710.66	\$	16,324.80	\$	\$19.00	859.2
17.7 \$13.13 \$ 232.40 \$10.23 \$ 181.03		181.03	\$	\$10.23			232.40	\$	\$13.13	
17.7 \$6.34 \$ 112.22 \$4.70 \$ 83.18		83.18	\$	\$4.70			112.22	\$	\$6.34	17.7

ACTIVITY/MATERIAL	Units	Quantity	Cost Code	Hni	it Cost	Cos						rrore C	orrected		
ACTIVITIMATERIAL	Units	Quantity	Cost Code	Oili	ii Cosi	CUS	•	Quantity	Unit Cost	c	Cost	11015 0	Jirecteu		
								Quantity							
Remove water intake line from															
Doris Lake	lm	25	PLRH	1 \$	72.00	\$	1,800.00	25	\$ 72	.00	\$ 1,8	800.00	\$	10,416.09	
Decommission pumping facility			04051		040.00		4 000 00			00		200.00			
(remove electrical) Prep containers for shipping off-	each	2	C105L	. \$	640.00	\$	1,280.00	2	\$ 640	00	\$ 1,2	280.00			
site	each	2	C108L	s	1,325.00	s	2,650.00	2	\$ 1,325	00 :	\$ 26	650.00			
Disconnect and remove generator		-	0.002		1,020.00	•	2,000.00	-	,,020		Ψ _,,	000.00			
fuel tank (place in Doris tank farm															
for cleaning)	each	1	C105L	. \$	640.00	\$	640.00	1	\$ 640	.00	\$ (640.00			
Clean TidyTank and prep for						_									
shipping off-site	each		C204L		1,420.00	\$	1,420.00	1				420.00 90.00			
Run oil-water separator Prep generator container for	m3	3	C208L	. >	30.00	\$	90.00	3	\$ 30	.00	Þ	90.00			
shipping off-site	each	1	C108L	s	1,325.00	\$	1,325.00	1	\$ 1,325	00 :	s 1:	325.00			
Haul containers to Roberts Bay		•			.,	-	.,	•	.,		• .,.				
laydown	m3		C404L		6.34	\$	421.00	66.4		34		420.98			
Collect Debris	m2	2226.2	C310L	. \$	0.18	\$	401.00	2226.2	\$ 0	18	\$ 4	400.72			
Load debris for transport to	0	20	04041		40.40		000.00	20	e 40	40		262.60			
landfill Haul debris to landfill	m3 m3		C401L C414L		13.13 6.34	\$ \$	263.00 127.00	20		13 34		126.80			
SEDIMENTATION / POLLUTION (C4 14L		0.54	φ	127.00	20	φ	.54	φ	120.00			
CEDIMENT/THORY CEED HOLY	0011111021	0.1.5													
Disconnect piping and electrical															
wiring, remove sump pumps	each	2	C105L	. \$	640.00	\$	1,280.00	2	\$ 640	00	\$ 1,2	280.00	\$	21,406.74	
Remove and cut liner into															
manageable pieces (Sedimentation Pond only)	m2	14110	C302L		0.56	\$	7,902.00	14110		56	. 7	901.60			
Load waste for transport to	m2	14110	C302L	. >	0.56	Þ	7,902.00	14110	\$ 0	.00	\$ /,S	901.60			
Landfill	m3	42.3	C401L	s	13.13	\$	555.00	42.3	s 13	13	\$	555.40			
Haul Debris to landfill	m3		C414L		6.34	\$	268.00	42.3		34		268.18			
Breach Pollution Control pond															
and Sedimentation Pond															
containment berms	m3	2608.2	SB1L	. \$	4.30	\$	11,215.00	2608.2	\$ 4	30	\$ 11,2	215.26			
Rip-rap breach for erosion protection	0	40.0	DD4I		40.50		400.00	40.0			•	400.00			
UNDERGROUND SUPPORT MED	m3		RR1L	. >	13.50	Þ	186.00	13.8	\$ 13	50	þ.	186.30			
Decommission electrical,	J. I. II 1107 IL	51101													
mechanical (including															
connections to generator house &															
transf	each		C105L		640.00	\$	1,920.00	3		00		920.00	\$	55,821.55	
Demolish building Collect Debris	m3		C305L		19.00 0.18	\$	43,350.00 82.00	2281.6 456.3		00		350.40 82.13			
Load waste for transport to	m2	456.3	C310L	. >	0.18	\$	82.00	456.3	\$ 0	18	Þ	82.13			
I andfill	m3	504.5	C401L	s	13.13	\$	6.624.00	504.5	\$ 13	13	\$ 6.0	624.09			
Haul debris to landfill	m3		C414L		6.34	\$	3,199.00	504.5		34		198.53			
Load hazardous waste into															
container for transport off site	m3	33.2	C401L	. \$	13.13	\$	436.00	33.2	\$ 13	13	\$ 4	435.92			
Haul Waste container to Roberts Bay	m3	33.2	C414L		6.34		210.00	33.2		34		210.49			
FRESH WATER PIPELINES	IIIo	33.2	C4 14L		0.34	ð	210.00	33.2	\$.34	Φ.	210.49			
Cut pipelines into manageable															
pieces	lm	830	PLRL	. \$	22.00	\$	18,260.00	830	\$ 22	.00	\$ 18,2	260.00	\$	21,465.58	
Decommission electrical (heat															
tracing)	each	4	C105L	. \$	640.00	\$	2,560.00	4	\$ 640	00	\$ 2,	560.00			
Collect electrical cables and controllers and prep for shipping															
off-site	m2	1600	C310L	•	0.18	•	288.00	1600	s 0	18	٠ ،	288.00			
Load debris for transport to		1000	00.02		0.10	•	200.00	1000	•		,	200.00			
landfill	m3	28.2	C404L	. \$	6.34	\$	179.00	28.2	\$ 6	34	\$	178.79			
Haul debris to landfill	m3	28.2	C414L	. \$	6.34	\$	179.00	28.2	\$ 6	34	\$	178.79			
HELECOPTER SUPPORT															
FACILITIES Dismantle helicopter pads and															
walkway	m3	15	C305L	s	19.00	\$	285.00	15	s 19	.00	s :	285.00	s	7,150.71	
Demolish helishack	m3		C305L		19.00	\$	530.00	27.9		00		530.10	•	7,100.71	
Demolish washcar and other															
facilities	m3		C305L		19.00	\$	1,554.00	81.8		.00		554.20			
Collect Debris	m2	154.2	C310L	. \$	0.18	\$	28.00	154.2	\$ 0	18	\$	27.76			
Load debris for transport to	_ ^	004.4	0464		40.40		2 070 00	004.4		12		077.07			
landfill Haul debris to landfill	m3 m3		C401L C414L		13.13 6.34	\$ \$	3,078.00 1,486.00	234.4 234.4		13 34		077.67 486.10			
Regrade surface for positive	1113	204.4	C4 14L	. φ	0.34	φ	1,400.00	254.4	Ψ		Ψ 1,4	100.10			
drainage	m2	1582.4	C518L	. \$	0.12	\$	190.00	1582.4	\$ 0	12	\$	189.89			
WASTE ROCK PAD															
No decomm required	m2	11500	#N/A	\$	-	\$	-	11500	\$		\$	-	\$	-	

				Assumptio	ns Corrected
Quantity	Un	it Cost	Cost		
2	5 \$	72.00	\$	1,800.00	10416.092
:	2 \$	640.00	\$	1,280.00	
:	2 \$	1,325.00	\$	2,650.00	
	1 \$	640.00	\$	640.00	
	1 \$ 3 \$	1,420.00 30.00		1,420.00 90.00	
	1 \$	1,325.00	\$	1,325.00	
66.4 2226.2		6.34 0.18		420.98 400.72	
	0 \$ 0 \$	13.13 6.34		262.60 126.80	
:	2 \$	640.00	\$	1,280.00	21406.741
14110) \$	0.56	\$	7,901.60	
42.: 42.:		13.13 6.34		555.40 268.18	
2608.2	2 \$	4.30	\$	11,215.26	local excavation, rate too high
13.8	3 \$	13.50	\$	186.30	
2281. 456.:	3 \$ 6 \$ 3 \$	19.00	\$	1,920.00 43,350.40 82.13	55821.553
504.5 504.5		13.13 6.34		6,624.09 3,198.53	
33.	2 \$	13.13	\$	435.92	
33.	2 \$	6.34	\$	210.49	
83	0 \$	22.00	\$	18,260.00	21465.576
	4 \$	640.00	\$	2,560.00	
160	\$	0.18	\$	288.00	
28.2 28.2		6.34 6.34		178.79 178.79	
1: 27.	5 \$ 9 \$	19.00 19.00		285.00 530.10	7150.712
81.i 154.i		19.00 0.18		1,554.20 27.76	
234.4 234.4		13.13 6.34	\$	3,077.67 1,486.10	
1582.4		0.12		189.89	

11500 \$ - \$ - 0

					Unit Rates Corrected			
Quantity			Cost	3	SRK Unit Cost	S	SRK Cost	
	25	\$72.00	\$	1,800.00	\$ 10,416.09 \$11.13	3 :	\$ 278.14	\$ 7,879.88
	2	\$640.00	\$	1,280.00	\$1,288.18	3 :	\$ 2,576.36	
	2	\$1,325.00	\$	2,650.00	\$1,321.37	7 ;	\$ 2,642.74	
	1	\$640.00	\$	640.00	\$93.46	3 ;	\$ 93.46	
	1 3	\$1,420.00 \$30.00		1,420.00 90.00	\$23.40 \$31.00			
	1	\$1,325.00	\$	1,325.00	\$1,321.37	,	\$ 1,321.37	
	66.4 26.2	\$6.34 \$0.18		420.98 400.72	\$2.52 \$0.17			
	20 20	\$13.13 \$6.34		262.60 126.80	\$10.23 \$4.70			
	2	\$640.00	\$	1,280.00	\$ 21,406.74 \$639.99) ;	\$ 1,279.98	\$ 7,715.33
14	110	\$0.56	\$	7,901.60	\$0.16	6 :	\$ 2,264.23	
	42.3	\$13.13		555.40	\$10.23			
	42.3	\$6.34	\$	268.18	\$4.70) ;	\$ 198.80	
26	08.2	\$4.30	\$	11,215.26	\$1.23	3 :	\$ 3,201.17	
	13.8	\$13.50	\$	186.30	\$24.53	3 ;	\$ 338.50	
	3 81.6 56.3	\$640.00 \$19.00 \$0.18	\$	1,920.00 43,350.40 82.13	\$ 55,821.55 \$639.99 \$12.90 \$0.17) ;	\$ 29,424.20	\$ 39,377.39
	04.5 04.5	\$13.13 \$6.34		6,624.09 3,198.53	\$10.23 \$4.70			
	33.2	\$13.13	\$	435.92	\$10.23	3 :	\$ 339.57	
:	33.2	\$6.34	\$	210.49	\$2.52	2 :	\$ 83.64	
	830	\$22.00	\$	18,260.00	\$ 21,465.58 \$11.13	3 ;	\$ 9,234.31	\$ 12,492.36
	4	\$640.00	\$	2,560.00	\$639.99) ;	\$ 2,559.97	
1	1600	\$0.18	\$	288.00	\$0.17	7 :	\$ 277.13	
	28.2 28.2	\$6.34 \$6.34	\$ \$	178.79 178.79	\$10.23 \$4.70			
	15 27.9	\$19.00 \$19.00		285.00 530.10	\$ 7,150.71 \$4.13 \$12.90			\$ 5,018.03
	81.8 54.2	\$19.00 \$0.18		1,554.20 27.76	\$12.90 \$0.17			
	34.4 34.4	\$13.13 \$6.34		3,077.67 1,486.10	\$10.23 \$4.70			
15	82.4	\$0.12	\$	189.89	\$0.01	1 :	\$ 15.63	
11	500	\$0.00	\$	-	\$ - \$0.00) ;	\$ -	\$ -

ACTIVITY/MATERIAL	Units	Quantity	Cost Code	Un	t Cost	Cos	st
RUN-OFF DIVERSION BERM							
Breach the berm to original ground in several locations (4 locations) to restore natural flo	m3	378	SB1L	\$	4.30	\$	1,625.00
Remove cut liners and load for transport to landfill	m3	0.3	C302L	\$	0.56	\$	-
Haul debris to landfill SEWAGE DISCHARGE LINE	m3	0.3	C414L	\$	6.34	\$	2.00
Flush pipeline prior to decommissioning	each	1	SEWL	\$	770.00	\$	770.00
Cut pipelines into manageable pieces and place in containers for shipping off-site	lm	1190	PLRL	\$	22.00	\$	26,180.00
Remove electrical cables and controllers	each	1	C105L	\$	640.00	\$	640.00
Load debris into containers for shipping off-site	m3	90.8	C412L	\$	100.25	\$	9,103.00
Haul debris to landfill SEDIMENTATION BERM	m3	90.8	C414L	\$	6.34	\$	576.00
Breach the berm to restore a free drainage path Rip-rap breach for erosion	m2	24	SB1L	\$	4.30	\$	103.00
protection	m3	3.6	RR1L	\$	13.50	\$	49.00
SUMPS							
Decommision sumps Remove pumps, pipes, cables, culverts	each	2	C102L RPPCL		550.00 2,000.00	\$	1,100.00 4,000.00
Backfill sump excavation EXPANDED WASTE ROCK STOR	m3	28.3	SBSL		3.20	\$	91.00
Regrade Stockpile Load waste for transport to	m2	50400	SBSL	\$	3.20	\$	161,280.00
landfill	m3	10	C401L	\$	13.13	\$	131.00
Haul debris to landfill EXPANDED LAYDOWN AREA (PA	m3 AD U)	10	C404L	\$	6.34	\$	63.00
Remove pumps, pipes, cables, culverts	Is	1	RPPCL	\$	2,000.00	\$	2,000.00
Breach Sedimentation Pond containment berms	m3	120	SB1L	\$	4.30	\$	516.00
Collect all debris	m2	35200	C310L	\$	0.18	\$	6,336.00
LHD remaining ore to TIA Load waste into containers for	m3	1760	SBSH	\$	16.35	\$	28,776.00
shipping off-site	m3	10	C412L	\$	100.25	\$	1,003.00
Haul containers to landfill	m3	10	C414L	Tot	6.34 al of Total	\$	63.00 4,369,083.00

ı					Errors C	orre	cted	
	Quantity	Un	it Cost	Cost		5116		
	378	s	4.30	s	1,625.40	s	1,627.47	
		Ť		•	.,	Ť	.,	
	0.3	\$	0.56	\$	0.17			
	0.3	\$	6.34	\$	1.90			
	1	\$	770.00	\$	770.00	\$	37,268.37	
	1190	\$	22.00	\$	26,180.00			
	1	\$	640.00	\$	640.00			
	90.8	ę	100.25	¢	9,102.70			
	90.8		6.34		575.67			
	30.0	پ	0.54	φ	373.07			
	24	ę	4.30	¢	103.20	•	151.80	
							101.00	
	3.6	\$	13.50	\$	48.60			
	2	\$	550.00	s	1,100.00	s	5,190.56	
						•	0,100.00	
		\$	2,000.00		4,000.00 90.56			
	28.3	Э	3.20	Þ	90.56			
	50400	\$	3.20	\$	161,280.00	\$	161,474.70	
	10	s	13.13	s	131.30			
	10		6.34		63.40			
	10	Ψ	0.04	Ÿ	55.40			
		\$	2,000.00	•	2,000.00	•	21,005.90	
	'	Ф	2,000.00	φ	2,000.00	Ф	21,005.90	
	120	\$	4.30	\$	516.00			
	35200	\$	0.18	\$	6,336.00			CDOLLie Desleies is
	1760	\$	6.30	\$	11,088.00			SBSH in Reclaim is 6.30, not 16.35
	10		100.25	•				
	10		6.34		1,002.50 63.40			
	10	Ф	0.34	Ф	03.40			
ı						\$	4,082,822.71	

				Assumption	s Corrected
Quantity	Uni	t Cost	Cost		
270	\$	4.30	e	1,625.40	1627.47
370	φ	4.30	φ	1,023.40	1027.47
0.3	\$	0.56	\$	0.17	
0.3	\$	6.34	\$	1.90	
1	\$	770.00	\$	770.00	37268.372
1190	\$	22.00	\$	26,180.00	
1	\$	640.00	\$	640.00	
90.8	\$	100.25	\$	9,102.70	
90.8	\$	6.34	\$	575.67	
24	\$	4.30	\$	103.20	151.8
3.6	\$	13.50	\$	48.60	
9	2 \$	550.00	•	1,100.00	5190.56
					3130.30
28.3	\$	2,000.00 3.20		4,000.00 90.56	
20.3	, φ	3.20	Þ	90.56	
50400	\$	3.20	\$	161,280.00	161474.7
10	\$	13.13	\$	131.30	
10	\$	6.34	\$	63.40	
1	\$	2,000.00	\$	2,000.00	21005.9
120	\$	4.30	\$	516.00	
35200	\$	0.18	\$	6,336.00	
1760	\$	6.30	\$	11,088.00	
10	\$	100.25	\$	1,002.50	
10	\$	6.34	\$	63.40	

\$ 4,182,275.37

							Corrected				
Quantity		AANDC Unit Cost	AANI				RK nit Cost	SR	Cost		
		J 3551	-			·	5550				
	378	\$4.30	\$	1,625.40	\$	1,627.47	\$1.23	\$	463.94	\$	468.42
	0.3	\$0.56	\$	0.17			\$10.23	\$	3.07		
	0.3	\$6.34	\$	1.90			\$4.70	\$	1.41		
	1	\$770.00	\$	770.00	\$	37,268.37	\$657.86	\$	657.86	\$	15,892.83
	1190	\$22.00	\$	26,180.00			\$11.13	\$	13,239.55		
	1	\$640.00	\$	640.00			\$639.99	\$	639.99		
	90.8	\$100.25	\$	9,102.70			\$10.23	\$	928.69		
	90.8	\$6.34	\$	575.67			\$4.70	\$	426.73		
	24	\$4.30	\$	103.20	\$	151.80	\$1.23	\$	29.46	\$	117.76
	3.6	\$13.50	\$	48.60			\$24.53	\$	88.31		
	2	\$550.00	\$	1,100.00	\$	5,190.56	\$639.99	\$	1,279.98	\$	6,742.77
	2	\$2,000.00	\$	4,000.00			\$2,500.00	\$	5,000.00		
	28.3	\$3.20	\$	90.56			\$16.35	\$	462.79		
50	0400	\$3.20	\$	161,280.00	\$	161,474.70	\$0.12	\$	6,185.84	\$	6,335.12
	10	\$13.13	\$	131.30			\$10.23	\$	102.28		
	10	\$6.34	\$	63.40			\$4.70	\$	47.00		
	1	\$2,000.00	\$	2,000.00	\$	21,005.90	\$2,000.00	\$	2,000.00	\$	18,712.30
	120	\$4.30	\$	516.00			\$2.75	\$	329.84		
3	5200	\$0.18	\$	6,336.00			\$0.17	\$	6,096.80		
	1760	\$6.30	\$	11,088.00			\$5.76	\$	10,136.38		
	10	\$100.25	\$	1,002.50			\$10.23	\$	102.28		
	10	\$6.34	\$	63.40			\$4.70	\$	47.00		
					s	4.179.575.37				s	2.996.445.57

ACTIVITY/MATERIAL	Units	Quantity	Cost Code	Unit Cost			Cost	
QUARRY #2 No decomm required			#N/A	•		\$		
OVERBURDEN DUMP			#IN/A	φ		φ	-	
Reslope to 3H:1V	m3	8781.3	SC1L	\$	6.80	\$	59,713.00	
Grade top for positive drainage	m2	18441	C505L	\$	1.58	\$	29,137.00	
Install erosion protection measures (coconut matting)	m2	2634	GSTH	\$	6.00	\$	15,804.00	
Remove culvert	Is	1	RCULL	\$	2,625.00	\$	2,625.00	
Other			#N/A	\$		\$		
TREATED SEWAGE DISCHARGE AREAS								
Fill in low-lying areas (assumed sourced within 0.5km)	m3	69.1	SB4H	\$	11.00	\$	760.00	
Erosion protection: Supply and place cocoa matting	m2	53.2	GSTH	\$	6.00	\$	319.00	
Other Quarry #3 -			#N/A	\$		\$		
No decomm required Q#3 Access Road			#N/A	\$	-	\$	-	
Crown road for positive drainage	km	0.2	CRWNL	s	1,190.00	\$	238.00	
Quarry #3 Landfill	MII	J.E	31	Ť	.,.55.50	Ť	200.00	
LHDP ROQ to construct 1m landfill cap COMMUNICATIONS TOWER	m3	19520	RB4L	\$	12.50	\$	244,000.00	
Remove communications equipment	each	12	C107L	\$	350.00	\$	4,200.00	
Dismantle the communications towers and prepare for shipping off-site	each	2	C311L	\$	15,500.00	\$	31,000.00	
Demolish equipment housing shack	m3	9	C305L	\$	19.00	\$	171.00	
Remove electrical and fiber optics cables	each	12	C105L	\$	640.00	\$	7,680.00	
Remove all equipment, material, and waste from Doris Mountain (helicopter)	m3	11	DEB1L	\$	2,500.00	\$	27,500.00	
Load waste into trucks for transport to landfill	m3	9	C401L	\$	13.13	\$	118.00	
Transport Waste to Landfill	m3	9	C415L	\$	6.34	\$	57.00	
Transport Communications tower equipment to Roberts Bay	m3	33.2	C404L	\$	6.34	\$	210.00	
LAND FARM								
Load contained contaminated soils into megabags for shipping off-site	m3	100	C412L	\$	100.25	\$	10,025.00	
Haul megabags to Roberts Bay laydown	m3	100	C404L	\$	6.34	\$	634.00	
Treat contained water and discharge	Is	1	TRTL	\$	6,500.00	\$	6,500.00	
Remove and stockpile liner protection cover Clean liner	m3 m2							
Remove and cut liner into manageable pieces	m2	13152	C302L	\$	0.56	\$	7,365.00	
Load waste for transport to landfill	m3	118.4	C401L	\$	13.13	\$	1,555.00	
Haul Material to Landfill	m3	118.4	C414L	\$	6.34	\$	751.00	
Level containment berms	m2	3134.8	C505L	\$	1.58	\$	4,953.00	
Regrade area for positive drainage	m2	4384	C518L	\$	0.12	\$	526.00	

			E	ors Corrected	_		
Quantity	Un				,		
0	\$	-	\$	-	\$	-	
8781.3	\$	6.80	\$	59,712.84	\$	107,278.62	
18441	\$	1.58	\$	29,136.78			
2634	\$	6.00	\$	15,804.00			
1	\$	2,625.00	\$	2,625.00			
0	\$	-	\$	-			
69.1	\$	11.00	\$	760.10	\$	1,079.30	
53.2	\$	6.00	\$	319.20			
0	\$	-	\$	-			
0	\$	-	\$	-	\$	-	
0.2	\$	1,190.00	\$	238.00	\$	238.00	
19520	\$	12.50	\$	244,000.00	\$	244,000.00	
12	\$	350.00	\$	4,200.00	\$	65,936.72	
2	\$	15,500.00	\$	31,000.00			
9	\$	19.00	\$	171.00			
12	\$	640.00	\$	7,680.00			
9	\$	2,500.00	\$	22,500.00			
9	\$	13.13	\$	118.17			
9	\$	6.34	\$	57.06			
33.2	\$	6.34	\$	210.49			
100	\$	100.25	\$	10,025.00	\$	45,159.49	
100	\$	6.34	\$	634.00			
1	\$	6,500.00	\$	6,500.00			
2591 4384		4.30 0.39		11,141.30 1,709.76			
13152	\$	0.56	\$	7,365.12			
118.4	\$	13.13	\$	1,554.59			
118.4	\$	6.34	\$	750.66			
3134.8	\$	1.58	\$	4,952.98			
4384	\$	0.12	\$	526.08			

Quantity	Ur	nit Cost		ssumptions st	Cor	rected	
0	\$	-	\$	-	\$	-	
8781.3	\$	6.80	\$	59,712.84	\$	107,278.62	
18441	\$	1.58	\$	29,136.78			
2634	\$	6.00	\$	15,804.00			
1	s	2 625 00	s	2,625.00			
	Ť	_,	Ť	_,			
	_	44.00	_	700.40	_	4.070.00	
69.1	\$	11.00	\$	760.10	\$	1,079.30	
53.2	\$		\$	319.20			
Ū	Ψ		Ψ				
0	\$	-	\$	-	\$	-	
0.2	\$	1.190.00	s	238.00	\$	238.00	
19520	\$	12.50	\$	244,000.00	\$	244,000.00	
12	\$	350.00	\$	4,200.00	\$	65,936.72	
2	\$	15,500.00	\$	31,000.00			
9	\$	19.00	\$	171.00			
12	\$	640.00	\$	7,680.00			
				22,500.00			
	\$						
	\$			57.06			
33.2	\$	6.34	\$	210.49			
100	\$	100.25	\$	10,025.00	\$	45,159.49	
100	\$	6.34	\$	634.00			
1	\$	6,500.00	\$	6,500.00			
2591 4384	\$	4.30 0.39		11,141.30 1,709.76			
4004	φ	0.09	φ	1,703.70			
13152	\$	0.56	\$	7,365.12			
118.4	\$	13.13	\$	1,554.59			
118.4	\$	6.34	\$	750.66			
3134.8	\$	1.58	\$	4,952.98			
4384	\$	0.12	\$	526.08			

Quantity	AAN	DC	AA	NDC	Unit Rates C	orrected SRK	i	SR	K Cost	
_	Unit	Cost	Co	st		Unit Co	ost			
0	\$	-	\$	-	\$ -	\$	-	\$	-	\$ -
8781.3	\$	6.80	\$	59,712.84	\$ 107,278.62	\$	3.27	\$	28,740.61	\$ 65,978.37
18441	\$	1.58	\$	29,136.78		\$	1.23	\$	22,633.56	
2634	\$	6.00	\$	15,804.00		\$	4.79	\$	12,604.20	
1	\$	2,625.00	\$	2,625.00		\$	2,000.00	\$	2,000.00	
69.1	\$	11.00	\$	760.10	\$ 1,079.30	\$	16.35	\$	1,129.98	\$ 1,384.56
53.2	\$	6.00	\$	319.20		\$	4.79	\$	254.57	
0	\$	-	\$	-						
0	\$	-	\$	-	\$ -	\$	-	\$	-	\$ -
0.2	\$	1,190.00	\$	238.00	\$ 238.00	\$	866.22	\$	173.24	\$ 173.24
19520	\$	12.50	\$	244,000.00	\$ 244,000.00	\$	6.28	\$	122,573.28	\$ 122,573.28
12	\$	350.00	\$	4,200.00	\$ 65,936.72	\$	352.56	\$	4,230.74	\$ 65,592.17
2	\$	15,500.00	\$	31,000.00		\$	15,417.42	\$	30,834.85	
9	\$	19.00	\$	171.00		\$	12.90	\$	116.07	
12	\$	640.00	\$	7,680.00		\$	639.99	\$	7,679.90	
9	\$	2,500.00	\$	22,500.00		\$	2,501.40	\$	22,512.63	
9	\$	13.13	\$	118.17		\$	10.23	\$	92.05	
9	\$	6.34	\$	57.06		\$	4.70	\$	42.30	
33.2	\$	6.34	\$	210.49		\$	2.52	\$	83.64	
100	\$	100.25	\$	10,025.00	\$ 45,159.49	\$	70.75	\$	7,074.89	\$ 28,927.30
100	\$	6.34	\$	634.00		\$	2.52	\$	251.91	
1	\$	6,500.00	\$	6,500.00		\$	5,000.00	\$	5,000.00	
2591 4384	\$	4.30 0.39	\$	11,141.30 1,709.76		\$ \$	2.75 0.39	\$	7,121.87 1,709.89	
13152		0.56		7,365.12		\$	0.16		2,110.50	
118.4		13.13		1,554.59		\$	10.23		1,210.99	
118.4		6.34		750.66		\$	4.70		556.44	
3134.8		1.58		4,952.98		\$	1.23		3,847.50	
4384		0.12		526.08		\$	0.01		43.31	

Page 13 of 22

ACTIVITY/MATERIAL	Units	Quantity	Cost Code	Un	it Cost	Co	st
BATCH PLANT PAD							
DATOTT PART I AD				Г			
Collect all debris	m2	740.3	C310L	\$	0.18	\$	133.00
Load waste for transport to landfill	m3	3	C401L	\$	13.13	\$	39.00
Haul waste to Landfill	m3	3	C414L	\$	6.34	\$	19.00
Regrade area for positive drainage	m2	740.3	C518L	\$	0.12	\$	89.00
Other BURN PAD			#N/A	\$		\$	-
Collect ashes and place in containers	m3	0.1	C207L	\$	13.13	\$	1.00
Dismantle (welding crew)	each	1	C308L	\$	1,500.00	\$	1,500.00
Load waste into containers for shipping off- site	m3	0.2	C401L	\$	13.13	\$	3.00
Haul containers to Roberts Bay laydown	m3	0.2	C404L	\$	6.34	\$	1.00
Regrade area for positive drainage	m2	400	C518L	\$	0.12	\$	48.00
Other			#N/A	\$		\$	
ROBERTS BAY DISCHARGE SYSTEM							
Cut pipelines into manageable pieces	lm	5470	PLRH	\$	72.00	\$	393,840.00
Decommission electrical (heat tracing)	each	11	C106L	\$	750.00	\$	8,250.00
Collect electrical cables and controllers and prep for shipping off-site	m2	5470	C310L	\$	0.18	\$	985.00
Load debris for transport to landfill	m3	1160	C401L	\$	13.13	\$	15,231.00
Haul debris to landfill	m3	1160	C404L	\$	6.34	\$	7,354.00
naur debris to iaridiii							

	_					
				ors Corrected	Ė	
Quantity	Un	it Cost	Со	st		
740 3	e	0.18	¢	133.25	•	280.50
140.5	Ψ	0.10	Ψ	100.20	۳	200.50
3	\$	13.13	\$	39.39		
	\$	6.34		19.02		
	Ψ	0.54	Ψ	15.02		
	_		_			
740.3	\$	0.12	\$	88.84		
0.1	\$	13.13	\$	1.31	\$	1,553.21
		1 500 00		1,500.00		
1	Ф	1,500.00	ф	1,500.00		
0.2	\$	13.13	\$	2.63		
0.2	\$	6.34	\$	1.27		
400		0.12		48.00		
400	Ф	0.12	ф	48.00		
5470	e	72.00	¢	393,840.00	•	420 076 30
3470	Ψ	12.00	Ψ	000,040.00	۳	420,010.00
11	\$	750.00	\$	8,250.00		
5470	\$	0.18	\$	984.60		
4400		40.40		45 000 00		
1160	Ф	13.13	Э	15,230.80		
1160	\$	6.34	\$	7,354.40		
485	\$	8.90	\$	4,316.50		
						005 500 44
					\$	895,502.14

				ssumptions	Cor	rected	
Quantity	Un	it Cost	Co	st			
740.3	\$	0.18	\$	133.25	\$	280.50	
3	\$	13.13	\$	39.39			
3	\$	6.34	\$	19.02			
740.3	\$	0.12	\$	88.84			
0.1	\$	13.13	\$	1.31	\$	1,553.21	
1	\$	1,500.00	\$	1,500.00			
0.2	s	13.13	s	2.63			
	\$						
400				48.00			
400	Ψ	0.12	Ψ	40.00			
							this pipeline is no different than the
5470	s	22.00	s	120.340.00	s	156.476.30	tailings line; same unit rate should apply
	•			,	•	,	
11	\$	750.00	\$	8,250.00			
5.470		0.40					
5470	\$	0.18	\$	984.60			
1160	\$	13.13	\$	15,230.80			
1160	\$	6.34	\$	7,354.40			
485	\$	8.90	\$	4,316.50			

ſ	Unit Rates Correct								cted					
I	Quantity	ΑA			NDC			SRK			K Cost			
I		Un	it Cost	Со	st			Unit Cost						
l														
l	740.3	s	0.18	s	133.25	s	280.50	s	0.17	s	128.22	s	180.32	
l		Ť		Ť		•		•		Ť		Ť		
l	3	\$	13.13	\$	39.39			\$	10.23	\$	30.68			
l	3	\$	6.34	\$	19.02			\$	4.70	\$	14.10			
l	740.3	\$	0.12	\$	88.84			\$	0.01	\$	7.31			
l														
	0.1	\$	13.13	\$	1.31	\$	1,553.21	\$	747.69	\$	74.77	\$	592.27	
l	1	\$	1,500.00	\$	1,500.00			\$	511.00	\$	511.00			
l		Ť	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Ť	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			•		Ť				
l	0.2	\$	13.13	\$	2.63			\$	10.23	\$	2.05			
l	0.2	\$	6.34	\$	1.27			\$	2.52	\$	0.50			
l	400	\$	0.12	\$	48.00			\$	0.01	\$	3.95			
I														
l														
l														
l	5470	\$	22.00	\$	120,340.00	\$	156,476.30	\$	11.13	\$	60,857.42	\$	87,521.35	
l														
l	11	\$	750.00	\$	8,250.00			\$	639.99	\$	7,039.91			
l														
	5470	\$	0.18	\$	984.60			\$	0.17	\$	947.43			
	1160	\$	13.13	\$	15,230.80			\$	10.23	\$	11,864.38			
	1100	6	604		7 254 40				E 20		6 216 05			
	1160	Þ	6.34	Э	7,354.40			\$	5.36	Þ	6,216.95			
l	485	\$	8.90	\$	4,316.50			\$	1.23	\$	595.26			
ļ						\$	622,002.14					\$	372,922.87	

Page 14 of 22

Attachment 2 Water Treatment

1 Capital Expenditures and Short Term Water	Treatment	identified in 'lı	nstructions' w	orksheet	
ACTIVITY/MATERIAL	Units	Quantity	Cost Code	Unit Cost	Cost

BREACH DYKE EMBANKMENT							
Remove fill	m3		#N/A		-	\$	-
Contour water intake area	m3		#N/A	\$	-	\$	-
INSPECT AND MAINTAIN W ATER							
Inspect and maintain water management		_		_			400.000.00
structures	ls	5	WIR3L	\$	20,000.00	\$	100,000.00
OPERATE / MAINTAIN W ATER MANAGEMENT S'	YSIEM						
Technician (camp support incl under Mob)	month	60	WTR1L	\$	9,450.00	\$	567,000.00
Site support, consumables CONSTRUCT PASSIVE TREATMENT SYSTEM (e.g. Constructed Wetland)	month	60	WTR2L	\$	5,800.00	\$	348,000.00
Construct access roads	km		#N/A	s		\$	
Install HDPE piping system from collection pond	m		#N/A		-	\$	-
Inter-cell flow structures	allow		#N/A	\$	-	\$	
Install liners	m2		#N/A	\$	-	\$	_
Install growth media	m3		#N/A	\$	-	\$	-
Wetland vegetation	ha		#N/A	\$	-	\$	_
CONSTRUCT WATER TREATMENT PLANT							
Build treatment plant	LS		#N/A	\$	-	\$	-
Build sludge containment facility	LS		#N/A	\$	_	\$	_
				To	tal	6 .	1,015,000.0

				s Corrected	
Quantity	Un	it Cost	Со	st	
5	\$	20,000.00	\$	100,000.00	\$ 100,000.00
60	\$	9,450.00	\$	567,000.00	\$ 915,000.00
60	\$	5,800.00	\$	348,000.00	
					\$ 1,015,000.00

			Assumption	s Corre	ected	
	Quantity	Unit Cost	Cost			
	5	\$ 20,000.00	\$ 100,000.00	\$	100,000.00	3 years of WM after closure + one season when North Dam breached
	29.3333333	\$ 9,450.00	\$ 277,200.00	\$	407,506.67	water management for 3 years only+ one season for dam breach; variable duration for each of the 3 years
	22.4666667	\$ 5,800.00	\$ 130,306.67			part of the first year support is provided by demolition works
ļ				\$	507,506.67	

			Unit	Rate	es Correcte	d			
Quantity	NDC it Cost	AANDC Cost		SR Un	tK iit Cost	SR	K Cost		
5	\$ 20,000.00	\$ 100,000.00	\$ 100,000.00	\$	70,000.00	\$	350,000.00	\$ 350,000.00	
29.333333	\$ 9,450.00	\$ 277,200.00	\$ 407,506.67	\$	56,700.00	\$	1,663,200.00	\$ 3,011,200.00	SRK daily rates extrapolated to Monthly to match AANDC quantities
22.466667	\$ 5,800.00	\$ 130,306.67		\$	60,000.00	\$	1,348,000.00		SRK daily rates extrapolated to Monthly to match AANDC quantities
			\$ 507,506.67					\$ 3,361,200.00	

AL I	Units Qu	antity Cost Code Unit	Cost Cost	Errors Corrected		Assumptions Corrected	d	Unit Rates Corrected					
<u></u>		,					-	AANDC	AANDC	SRK			
INTERIM CARE & MA	MINITENIANICE			Quantity Unit Cost Cost	Qua	ntity Unit Cost Cost		Quantity Unit Cost	Cost	Unit Cost SRK Cost			
INTERIIVI CARE & IVIA	AINTENANCE												
							summer						
on-site caretaker	manmonths	5 MM1L \$	17,550.00 \$ 87,750.00	5 \$17,550.00 \$ 87,750.00 \$ 1,784,250.00		6 \$ 17,550.00 \$ 105,300.00 \$	1,228,300.00 months	6 \$ 17,550.00	\$ 105,300.00 \$	1,228,300.00 \$ 56,700.00 \$ 340,200.00 \$	1,524,940.78		
extra personnel	manmonths		\$ -	0 \$0.00 \$ -									
-electrician	manmonths	5 MM2L \$	25,650.00 \$ 128,250.00	5 \$25,650.00 \$ 128,250.00		3 \$ 25,650.00 \$ 76,950.00	half the time on site	3 \$ 25,650,00	\$ 76,950.00	\$ 34,491.60 \$ 103,474.80			
-cicotrolari	mammonuis	O WIWIZE W	20,000.00 ψ 120,200.00	5		5 ¢ 25,050.00 ¢ 70,550.00	unic on site	ο ψ 25,000.00	7 0,550.00	Ψ 54,451.00 Ψ 100,474.00			
							half the						
-mechanic	manmonths	5 MM3L \$	20,250.00 \$ 101,250.00	5 \$20,250.00 \$ 101,250.00		3 \$ 20,250.00 \$ 60,750.00	time on site	3 \$ 20,250.00	\$ 60,750.00	\$ 32,706.00 \$ 98,118.00			
flights (yellowknife -		00 5174 6		00 00 0		0.0		0.0	•				
cambridge bay)		20 FLT1 \$	- \$ -	20 \$0.00 \$ -		0 \$ - \$ -		0 \$ -	\$ -	\$ - \$ -			
							existing						
							camp still						
mobile camp rental	allow	1 CPRTL \$	425,000.00 \$ 425,000.00	1 \$425,000.00 \$ 425,000.00		0 \$ 425,000.00 \$ -	functional	0 \$ 425,000.00) \$ -	\$ 424,703.00 \$ -			
annual fuel	litre	22500 FCGH \$	1.40 \$ 31,500.00	22500 \$1.40 \$ 31,500.00	22,	500 \$ 1.40 \$ 31,500.00		22500 \$ 1.40	\$ 31,500.00	\$ 1.44 \$ 32,400.00			
misc. supplies	allow	#N/A \$	- \$ -	0 \$0.00 \$ -		0 \$ - \$ -		0 \$ -	\$ -	\$ - \$ -			
pick-up truck	month	24 EQP1L \$	2,000.00 \$ 48,000.00	24 \$2,000.00 \$ 48,000.00		24 \$ 2,000.00 \$ 48,000.00		24 \$ 2,000.00	\$ 48,000.00	\$ 3,688.00 \$ 88,512.00			
small dozer	month	12 EQP2L \$	8,000.00 \$ 96,000.00	12 \$8,000.00 \$ 96,000.00		12 \$ 8,000.00 \$ 96,000.00		12 \$ 9,000,00	\$ 96,000.00	\$ 8,000.00 \$ 96,000.00			
Siliali uozei	monun	12 EQP2L \$	8,000.00 \$ 96,000.00	12 \$8,000.00 \$ 96,000.00		12 \$ 8,000.00 \$ 96,000.00		12 \$ 0,000.00	\$ 90,000.00	\$ 8,000.00 \$ 96,000.00			
small excavator	month	12 EQP3L \$	10,000.00 \$ 120,000.00	12 \$10,000.00 \$ 120,000.00		12 \$ 10,000.00 \$ 120,000.00		12 \$ 10,000.00	\$ 120,000.00	\$ 10,000.00 \$ 120,000.00			
snow machine	month	12 EQP4L \$	10,000.00 \$ 120,000.00	12 \$10,000.00 \$ 120,000.00		12 \$ 10,000.00 \$ 120,000.00		12 \$ 10,000.00	\$ 120,000.00	\$ 7,103.00 \$ 85,236.00			
articulated dump	manth	12 FODEL *	10,000,00 \$ 120,000,00	12 \$10,000,00 \$ 120,000,00		12 \$ 10,000,00 \$ 120,000,00		10 6 40 000 00	e 120.000.00	\$ 10,000.00 \$ 120,000.00			
truck	month	12 EQP5L \$	10,000.00 \$ 120,000.00	12 \$10,000.00 \$ 120,000.00		12 \$ 10,000.00 \$ 120,000.00		12 \$ 10,000.00	φ 120,000.00	\$ 10,000.00 \$ 120,000.00			
communications	month	#N/A \$	- \$ -	0 \$0.00 \$ -		0 \$ - \$ -		0 \$ -	\$ -	\$ - \$ -			
camp operations	month	6 CPOPL \$	60,000.00 \$ 360,000.00	6 \$60,000.00 \$ 360,000.00		6 \$ 60,000.00 \$ 360,000.00		6 6 60 000 00	\$ 360,000.00	\$ 61,000,00 \$ 366,000,00			
(<10 persons)	month	0 CPOPL \$	ου,υυυ.υυ φ ου,υυυ.υυ	5		0 \$ 00,000.00 \$ 300,000.00		0 \$ 60,000.00	, \$ 300,000.00	\$ 61,000.00 \$ 366,000.00			
SNP/AEMP water sampling &													
reporting &	each	1 WSH \$	10,000.00 \$ 10,000.00	1 \$10,000.00 \$ 10,000.00		1 \$ 10,000.00 \$ 10,000.00		1 \$ 10,000.00	\$ 10,000.00	\$ 10,000.00 \$ 10,000.00			
			•										
geotechnical assessment	each	1.5 GEOIL \$	25,000.00 \$ 37,500.00	one inspection per year		1 \$ 25,000.00 \$ 25,000.00		1 \$ 25,000.00	\$ 25,000.00	\$ 25,000.00 \$ 25,000.00			
assessment	EdUII	1.0 GEUIL D	Σ0,000.00 φ 07,000.00	per year		. \$ 20,000.00 \$ 20,000.00		1 \$ 25,000.00	20,000.00	φ 23,000.00 φ 23,000.00			

AL Unit	ts Quantity Cost Code Unit Cost Cost	Errors Corrected	Assumptions Corrected		Unit Rates Corrected
7.2	duminity 5000 5000 5111 5000			AANDC AANDC	SRK
		Quantity Unit Cost Cost	Quantity Unit Cost Cost	Quantity Unit Cost Cost	Unit Cost SRK Cost
Water Management					
Inspect and maintain water management structures	ls 1 WTR3L \$ 20,000.00 \$ 20,000.00	1 \$20,000.00 \$ 20,000.00	1 \$ 20,000.00 \$ 20,000.00	1 \$ 20,000.00 \$ 20,000.00	\$ 20,000.00 \$ 20,000.00
Operate / maintain pumping system					
technician (camp support incl under Mob)	month 6 WTR1L \$ 9,450.00 \$ 56,700.00	6 \$9,450.00 \$ 56,700.00	care taker would operate 0 \$ 9,450.00 \$ - pumps	0 \$ 9,450.00 \$ -	\$ 57,645.00 \$ -
site support, consumables	month 6 WTR2L \$ 5,800.00 \$ 34,800.00	6 \$5,800.00 \$ 34,800.00	6 \$ 5,800.00 \$ 34,800.00	6 \$ 5,800.00 \$ 34,800.00	\$ 3,333.33 \$ 19,999.98
interim water					
treatment equipment mob /	#N/A \$ - \$ -				
demob (see below)	each 1 \$ - Annual Interim C&M Cost \$ 1,796,750.00	1 \$0.00 \$ -	1 \$ - \$ -	1 \$ - \$ -	s - s -
Number of years of ICM EQUIPMENT MOBILIZA	years 1.5 Total \$ 4,192,001.64	1.5 \$ 2,676,375.00	1.5 \$ 1,842,450.00	1.5	\$1,842,450.00 \$ 2,287,411.17
Excavators					
	tonne 36.1 MOB1L \$ 443.00 \$ 15,992.00	36.1 \$443.00 \$ 15,992.30 \$ 162,843.00	switched to small excavator (CAT 318) consistent with rental cost 20 \$ 443.00 \$ 8,860.00 \$ 148,578.40 assumption switched to small excavator (CAT 318) consistent with rental with rental with rental with rental with rental with rental small excavator (CAT 318) consistent with rental	20 \$ 443.00 \$ 8,860.00 \$	148,578.40 \$ 443.00 \$ 8,860.00 \$ 120,978.40
	tonne 36.1 MOB1L \$ 443.00 \$ 15,992.00	36.1 \$443.00 \$ 15,992.30	cost 20 \$ 443.00 \$ 8,860.00 assumption	20 \$ 443.00 \$ 8,860.00	\$ 443.00 \$ 8,860.00
Dump trucks					· · · · · · · · · · · · · · · · · · ·
	tonne 34.4 MOB1L \$ 443.00 \$ 15,239.00	34.4 \$443.00 \$ 15,239.20	34.4 \$ 443.00 \$ 15,239.20	34.4 \$ 443.00 \$ 15,239.20	\$ 443.00 \$ 15,239.20
Loaders	tonne 34.4 MOB1L \$ 443.00 \$ 15,239.00	34.4 \$443.00 \$ 15,239.20	34.4 \$ 443.00 \$ 15,239.20	34.4 \$ 443.00 \$ 15,239.20	\$ 443.00 \$ 15,239.20
	tonne 30 MOB1L \$ 443.00 \$ 13,290.00	30 \$443.00 \$ 13,290.00	30 \$ 443.00 \$ 13,290.00	30 \$ 443.00 \$ 13,290.00	\$ 443.00 \$ 13,290.00
	tonne 30 MOB1L \$ 443.00 \$ 13,290.00	30 \$443.00 \$ 13,290.00	30 \$ 443.00 \$ 13,290.00	30 \$ 443.00 \$ 13,290.00	\$ 443.00 \$ 13,290.00

Attachment 2 Interim Care and Maintenance Page 18 of 22

AL	Units	Quantit	ty C	Cost Code	Unit Cost		Cos	st
ight duty vehicles								
		each	2	MOB3L	\$	5,050.00	\$	10,100.00
		each	2	MOB3L	\$	5,050.00	\$	10,100.00
Standard 20'								
containers								
			_		_			
		each	2	MOB2L	\$	13,400.00	\$	26,800.00
		each	2	MOB2L	•	13,400.00	s	26,800.00
WINTER ROAD		Cacii		WODEL	V	10,400.00	Ψ	20,000.00
Construction and operation		km	116	WRCH	\$	11,500.00	\$	1,334,000.00
_imited winter use		km	116	WRUL	\$	0.29	\$	34.00
				Total Equ	ipment Mo	bilization	\$	1,496,877.00

			Errors Corr	ect	ed	
uantity	Unit Cost	Cos	st			
2	\$5,050.00	\$	10,100.00			
2	\$5,050.00	\$	10,100.00			
2	\$13,400.00	\$	26,800.00			
2	\$13,400.00	\$	26,800.00			
116	\$11 500 00	•	1 334 000 00	ç	1,334,033.64	
110	\$11,000.00	Ÿ	.,55 .,500.00	Ψ	1,001,000.01	
116	\$0.29	\$	33.64			
					\$4,173,252	

Quantity Unit Cost Cost

		4	ssui	mptions Cor	rected		
Quantity	Unit	t Cost	Cos	ŧ			
2	\$	5,050.00	\$	10,100.00			
2	\$	5,050.00	\$	10,100.00			
2	\$	13,400.00	\$	26,800.00			
2	•	13,400.00		26 900 00			
-	Ů	10,400.00		20,000.00			
							no winter
		44 500 00					road is
0	\$	11,500.00	\$	-	\$	-	necessary
0	\$	0.29	\$	-			
					\$	1,991,028.40	

					Unit Rates Corre	ctec				
		NDC t Cost		NDC st		SRK	Cost	SRI	C Cost	
2	\$	5,050.00	\$	10,100.00		\$	5,050.00	\$	10,100.00	
2	\$	5,050.00	\$	10,100.00		\$	5,050.00	\$	10,100.00	
2	\$	13,400.00	\$	26,800.00		\$	6,500.00	\$	13,000.00	
2	s	13 400 00	s	26,800.00		\$	6 500 00	s	13,000.00	
	•	,	Ť				-,	•	,	
0	\$	11,500.00	\$	-	0	\$	18,236.00	\$	-	\$ -
0	•	0.29	•			\$	_	\$		
U	φ	0.29	ې	-		φ	-	ψ	-	

Attachment 2 Page 19 of 22

ACTIVITY/MATERIAL N	Notes	Units	Quantity	Cost Code	Unit Cost	Cost	
MOBILIZE HEAVY EQUIPMENT							
Excavators							
	Edmonton to Hay River (2 x 36.1 tonnes)	tonne	72.2	MOB1L	\$443.00	\$31,985	\$596,528
Dump trucks	Hay River to Roberts Bay (2 x 36.1 tonnes)	tonne	72.2	MOB1L	\$443.00	\$31,985	
. ,	Edmonton to Hay River (3 x 34.4 tonnes)	tonne	103.2	MOB1L	\$443.00	\$45,718	
	Hay River to Roberts Bay (3 x 34.4 tonnes)	tonne	103.2	MOB1L	\$443.00	\$45,718	
Dozers							
	Edmonton to Hay River (2 x 33.5 tonnes)	tonne	67	MOB1L	\$443.00	\$29,681	
	Hay River to Roberts Bay (2 x 33.5 tonnes)	tonne	67	MOB1L	\$443.00	\$29,681	
Loaders							
	Edmonton to Hay River (2 x 30 tonnes)	tonne	60	MOB1L	\$443.00	\$26,580	
	Hay River to Roberts Bay (2 x 30 tonnes)	tonne	60	MOB1L	\$443.00	\$26,580	
Light duty vehicles							
		each	6	MOB3L	\$5,050.00	\$30,300	
Standard 20' containers		each	6	MOB3L	\$5,050.00	\$30,300	
	Educates to Use Divis		10	MOB2L	640 400 00	0404000	
	Edmonton to Hay River	each	10	MOBZL	\$13,400.00	\$134,000	
MODILIZE MICO FOLIDATAIT	Hay River to Roberts Bay	each	10	MOB2L	\$13,400.00	\$134,000	
MOBILIZE MISC. EQUIPMENT Pump shipping		each		#N/A #N/A	\$0.00 \$0.00	\$0	\$0
Pipe shipping Minor tools and equipment		m allow		#N/A	\$0.00	\$0 \$0	
Truck tires Other		allow		#N/A #N/A	\$0.00 \$0.00	\$0 \$0	
MOBILIZE CAMP							\$2,125,000
Reclamation activities		year	5	CPRTL	\$425,000.00	\$2,125,000	
Long term reclamation activities (eg pump flooding)		allow		#N/A	\$0.00	\$0	
MOBILIZE WORKERS							\$3,672,000
flights from Yellowknife to Cambridge	a Ray						
in summer months	е вау	month	9	FLT1L	\$340,000.00	\$3,060,000	
flights from Yellowknife to Cambridge	a Rav						
in winter months Long term reclamation activities (eg	- Day	month	9	FLT2L	\$68,000.00	\$612,000	
pump flooding) - transport Long term reclamation activities (eg		each		#N/A	\$0.00	\$0	
pump flooding) - travel time Monitoring airfare		each each		#N/A #N/A	\$0.00 \$0.00	\$0 \$0	
MONITORING ARRANGE		caun		#19/7	90.00	ψυ	

		F=	rors Corrected	
0	U-14 O4			
Quantity	Unit Cost	Co	st	
72.2	\$443.00	\$	31,984.60	\$ 596,526.40
72.2	\$443.00	\$	31,984.60	
103.2	\$443.00		45,717.60	
103.2	\$443.00	\$	45,717.60	
67 67	\$443.00 \$443.00		29,681.00 29,681.00	
67	\$44 3.00	Ф	29,001.00	
60	\$443.00	e	26,580.00	
60	\$443.00	\$	26,580.00	
6	\$5,050,00	•	30,300.00	
6	\$5,050.00 \$5,050.00	\$	30,300.00	
10	\$13,400.00	\$	134,000.00	
10	\$13,400.00	\$	134,000.00	
0	\$0.00	\$	-	\$
0	\$0.00 \$0.00	\$	- :	
0	\$0.00 \$0.00		-	
5	\$425,000.00	\$	2,125,000.00	\$ 2,125,000.00
0	\$0.00	\$	-	
9	\$340,000.00	\$	3,060,000.00	\$ 3,672,000.00
9	\$68,000.00	\$	612,000.00	
0	\$0.00	\$	-	
0	\$0.00 \$0.00		-	

			Assump	LIOIIS	Corrected			
Quantity		Un	it Cost	Cos	st			
								one excavator
	36.1	\$	443.00	\$	15,992.30	\$	438,199.80	mobilized
	36.1		443.00	\$	15,992.30			
	103.2		443.00	\$	45,717.60			
	103.2	\$	443.00	\$	45,717.60			
								on dozer mobilized
	0		443.00	\$	-			under ICN
	0	\$	443.00	\$	-			
		•	440.00	•	40.000.00			one loade mobilized
	30		443.00	\$	13,290.00			under ICN
	30	\$	443.00	\$	13,290.00			
								two pickup already mobilized
								under ICN
	2	\$	5,050.00	\$	10,100.00			considerer
	2 2	\$	5,050.00	\$	10,100.00			
	10	\$	13,400.00	\$	134,000.00			
	10	\$	13,400.00	\$	134,000.00			
	0		-	\$	-	\$0		
	0	\$		\$	-			
	0	\$	-	\$				
						\$1,	062,500	accounted for under
	2.5	\$	425,000.00	\$	1,062,500.00			WM
						\$0		flights cos included in
								camp
	0	\$	340,000.00	\$	-			cost
								there are r
								reclamation activities in
	0		68,000.00	\$	-			the winter
	0	\$	-	\$	-			

						Unit R	ates Corrected					
Quantity		NDC it Cost					SRK Unit Cost	SR	K Cost			
36.1	\$	443.00	\$	15,992.30	\$	438,199.80	\$443.00	\$	15,992.30	\$	300,199.80	
36.1	\$	443.00	\$	15,992.30			\$443.00		15,992.30			
103.2	\$	443.00	\$	45,717.60			\$443.00	\$	45,717.60			
103.2		443.00		45,717.60			\$443.00		45,717.60			
	•	440.00	•				\$443.00	•				
	\$	443.00 443.00					\$443.00 \$443.00		-			
	Ť		Ť				*	•				
30	\$	443.00	\$	13,290.00			\$443.00	\$	13,290.00			
30	\$	443.00	\$	13,290.00			\$443.00	\$	13,290.00			
2 2	\$	5,050.00 5,050.00	\$	10,100.00 10,100.00			\$5,050.00 \$5,050.00	\$	10,100.00 10,100.00			
10	\$	13,400.00	s	134,000.00			\$6,500.00	\$	65,000.00			NTCL rate for shipping containers is lower
												NTCL rate for shipping
	\$	13,400.00	\$	134,000.00	\$		\$6,500.00 \$0.00		65,000.00	\$		containers is lower
0	\$		\$		φ		\$0.00 \$0.00	\$		φ		
0	\$	-	\$:			\$0.00 \$0.00	\$:			
									•			existing camp facilities
2.5	\$	425,000.00	\$	1,062,500.00	\$	1,062,500.00	\$424,703.00	\$	1,061,757.50	\$	1,061,757.50	wil be used
0	¢	340,000.00	ę			0	\$17,800.00	•		\$		
0	Ψ	,	•			0	Ų,ooo.do	Ų		•		
0	\$	68,000.00	\$	_			\$17,800.00	\$				
0	\$	-	\$									
	\$	-	\$	-								

Attachment 2 Page 20 of 22

ACTIVITY/MATERIAL No.	tes	Units	Quantity	Cost Code	Unit Cost	Cost	
WORKER ACCOMODATIONS							\$3,870,000
camp operations (winter months, <10 full years for water management perso incl food, maintenance, air travel) activites		month	60	CPOPL	\$60,000.00	\$3,600,000	
camp operations (winter months, >25 persons, incl food, maintenance, air travel) activities Long term reclamation activities (eg pump flooding)		month manmonths	18	CPOPAL #N/A	\$15,000.00 \$0.00	\$270,000 \$0	
MOBILIZE FUEL Fuel freight - reclamation activities		litre		#N/A	\$0.00	\$0	\$0
Fuel freight - long term reclamation activities Fuel freight accomodations		litre litre		#N/A #N/A	\$0.00 \$0.00	\$0 \$0	
WINTER ROAD							\$1,334,034
Construction and operation		km	116	WRCH	\$11,500.00	\$1,334,000	
Limited winter use Winter road tarriff		km km km	116 116	WRCH WRUL #N/A	\$11,500.00 \$0.29 \$0.00	\$1,334,000 \$34 \$0	
Limited winter use		km		WRUL	\$0.29	\$34	\$685,570
Limited winter use Winter road tarriff DEMOBILIZE HEAVY EQUIPMENT	Edmonton to Hay River (3 x 36.1 tonnes)	km		WRUL	\$0.29	\$34	\$685,570
Limited winter use Winter road tarriff DEMOBILIZE HEAVY EQUIPMENT	Edmonton to Hay River (3 x 36.1 tonnes) Hay River to Roberts Bay (3 x 36.1 tonnes)	km km	116	WRUL #N/A	\$0.29 \$0.00	\$34 \$0	\$685,570
Limited winter use Winter road tarriff DEMOBILIZE HEAVY EQUIPMENT Excavators		km km	108.3	WRUL #N/A	\$0.29 \$0.00	\$34 \$0 \$47,977	\$685,570
Limited winter use Winter road tarriff DEMOBILIZE HEAVY EQUIPMENT Excavators	Hay River to Roberts Bay (3 x 36.1 tonnes)	tonne tonne	108.3	WRUL #N/A MOB1L MOB1L	\$0.29 \$0.00 \$443.00 \$443.00	\$47,977 \$47,977	\$685,570
Limited winter use Winter road tarriff DEMOBILIZE HEAVY EQUIPMENT Excavators Dump trucks	Hay River to Roberts Bay (3 x 36.1 tonnes) Edmonton to Hay River (4 x 34.4 tonnes)	tonne tonne	108.3 108.3 137.6	MOB1L MOB1L	\$0.29 \$0.00 \$443.00 \$443.00	\$47,977 \$47,977 \$60,957	\$685,570

		Eri	ors Corrected						Assumptions Corrected					
Quantity	Unit Cost	Co	st				Quantity		Uni	t Cost	Cos	st		
													64 000 000	
													\$1,200,000	water discharge from TIA completed in 29 months, out of which 12 are in the
42	\$60,000.00	\$	2,520,000.00	\$ 2,790,000.00	18 out of	60 month:		17	\$	60,000.00	\$	1,020,000.00		larger camp camp demolition
18	\$15,000.00	\$	270,000.00					12	\$	15,000.00	\$	180,000.00		completd in one year
0	\$0.00	\$	-					0	\$	-	\$	-		
0	\$0.00	\$	-	\$ -				0	\$	-	\$	-	\$0	
0	\$0.00 \$0.00		-						\$:	\$			
Ū	ψ0.00	Ψ						U	Ψ		Ψ		\$0	
116 116 0	\$0.29	\$	1,334,000.00 33.64 -	\$ 1,334,033.64				0 0		11,500.00 0.29	\$ \$ \$	<u>:</u>		all-weather road access everywhere on site; no winter road required
				\$ 685,569.40									\$630,724	
108.3	\$443.00	\$	47,976.90					72.2	\$	443.00	\$	31,984.60		
108.3	\$443.00	\$	47,976.90					72.2	\$	443.00	\$	31,984.60		
137.6	\$443.00	\$	60,956.80				,	137.6	\$	443.00	\$	60,956.80		
137.6	\$443.00	\$	60,956.80					137.6	\$	443.00	\$	60,956.80		
67	\$443.00	\$	29,681.00					33.5	\$	443.00	\$	14,840.50		
67	\$443.00	\$	29,681.00					33.5	\$	443.00	\$	14,840.50		

	Unit Rates Corrected												
Quantity AANDC Unit Cost		AA Co	NDC st			SRK Unit Cost							
17	\$	60,000.00	\$	1,020,000.00	\$	1,200,000.00	\$60,000.00	\$	1,020,000.00	\$	1,200,000.00		
12	\$	15,000.00	\$	180,000.00			\$15,000.00	\$	180,000.00				
0	\$		\$				\$0.00	\$					
0	\$	-	\$	-		0	\$0.00	\$	-	\$	-		
	\$:	\$	Ξ			\$0.00 \$0.00		-				
0	\$ \$	11,500.00 0.29		:		0	\$18,236.00 \$0.00 \$0.00	\$:	\$	-		
72.2	\$	443.00	\$	31,984.60	\$	630,723.80	\$288.00	\$	20,793.60	\$	303,100.80	return NTCL rates at lower for both equipment and containers return NTCL rates at	
72.2	\$	443.00	\$	31,984.60			\$288.00	\$	20,793.60			lower for both equipment and containers	
137.6 137.6		443.00 443.00		60,956.80 60,956.80			\$288.00 \$288.00		39,628.80 39,628.80			return NTCL rates at lower for both equipment and containers return NTCL rates at lower for both equipment and containers	
33.5		443.00		14,840.50			\$288.00		9,648.00			return NTCL rates at lower for both equipment and containers return NTCL rates at lower for both	
	\$	443.00		14,840.50			\$288.00		9,648.00			equipment and containers	

Attachment 2 Page 21 of 22

ACTIVITY/MATERIAL No	tes	Units	Quantity	Cost Code	Unit Cost	Cost	
Loaders							
	Edmonton to Hay River (3 x 30 tonnes)	tonne	90	MOB1L	\$443.00	\$39,870	
Light duty vehicles	Hay River to Roberts Bay (3 x 30 tonnes)	tonne	90	MOB1L	\$443.00	\$39,870	
	Edmonton to Hay River	each	6	MOB3L	\$5,050.00	\$30,300	
Standard 20' containers	Hay River to Roberts Bay	each	6	MOB3L	\$5,050.00	\$30,300	
	Edmonton to Hay River	each	10	MOB2L	\$13,400.00	\$134,000	
DEMOBILIZE CAMP	Hay River to Roberts Bay	each	10	MOB2L	\$13,400.00	\$134,000	
DEMOBILIZE WORKERS		allow		#N/A	0	0	
DEMODIEIZE WORKENG							
flights from Yellowknife to Cambridge E	Bay in summer months	month	9	FLT1L	\$340,000.00	\$3,060,000	
flights from Yellowknife to Cambridge E	Bay in winter months	month	9	FLT2L	\$68,000.00	\$612,000	
							\$1,334,034
Construction and operation Limited winter use Winter road tarriff		km km km	116 116	WRCH WRUL #N/A	\$11,500.00 \$0.29 \$0.00	\$1,334,000 \$34 \$0 \$17,289,163	\$13,617,166

Ī			En	rors Corrected		
l	Quantity	Unit Cost	Co	st		
l						
l						
l	90	\$443.00	\$	39,870.00		
l						
	90	\$443.00	s	39.870.00		
l		\$110.00	•	00,010.00		
l						
l	6	\$5,050.00	\$	30,300.00		
	6	\$5,050.00	\$	30,300.00		
l						
l						
	10	\$13,400.00	\$	134,000.00		
l						
	10	\$13,400.00	\$	134,000.00		
l	0	\$0.00	\$	-	0	
l						
l						
l	9	\$340,000.00	\$	3,060,000.00	\$	3,672,000.00
l	9	\$68,000.00	\$	612,000.00		
	116 116			1,334,000.00 33.64	\$	1,334,033.64
	0	\$0.29		-		000 400
1					\$1 (6,209,163

·			Assump	tion	s Corrected		·
Quantity		Ur	it Cost	Cos	st		
	60	s	443.00	s	26,580.00		
	00	•	110.00	•	20,000.00		
	60	\$	443.00	\$	26,580.00		
	4	\$	5,050.00	\$	20,200.00		
	4	\$	5,050.00	\$	20,200.00		
	12	\$	13,400.00	\$	160,800.00		
	12	\$	13,400.00	\$	160,800.00		
	0	\$	-	\$	-	\$ -	
							already included in camp
			340,000.00		-		operating no winter reclamation
	0	\$	68,000.00	\$	-	\$0	work
							all-weather road access everywhere on site; no winter road
	0	\$			-		required
						\$3,331,424	

_											
						Unit Rat	es Corrected				
	Quantity	AA	NDC	AAN	IDC	s	RK	SR	Cost		
		Un	it Cost	Cos	t	U	Init Cost				
	60	\$	443.00	\$	26,580.00		\$288.00	\$	17,280.00		return NTCL rates are lower for both equipment and containers return NTCL rates are lower for both
	60	\$	443.00	\$	26,580.00		\$288.00	\$	17,280.00		equipment and containers
	4	\$	5,050.00	\$	20,200.00		\$3,300.00	\$	13,200.00		return NTCL rates are lower for both equipment and containers return NTCL rates are lower for both equipment and
	4	\$	5,050.00	\$	20,200.00		\$3,300.00	\$	13,200.00		containers
	12	\$	13,400.00	\$	160,800.00		\$4,250.00	\$	51,000.00		return NTCL rates are lower for both equipment and containers return NTCL rates are lower for both equipment and
	12	\$	13,400.00	\$	160,800.00		\$4,250.00	\$	51,000.00		containers
	0	\$		\$	-	\$ -	\$0.00	\$	-	\$ -	
						\$ -					
	0	\$	340,000.00	\$			\$17,800.00	\$		\$ -	
	0	\$	68,000.00	\$	-		\$17,800.00	\$	-		
	0	\$	11,500.00 0.29	\$	- :	0	\$18,236.00 \$0.00	\$:	\$ -	
	0	\$	•	\$	•	\$ 3,331,423.60	\$0.00	\$	•	\$ 2,865,058.10	

Attachment 2 Post Closure Monitoring and Maintenan

ACTIVITY/MATERIAL	Notes	Units	Quantity	Code		Unit C	ost	Cost	
MONITORING & INSPECTIONS									
Annual geotechnical inspection	(for first 5 years)	each		0.5	GEOI2L	\$	70,000.00	\$	35,000.00
Cover monitoring	every 2 years	each		0.5	GEOI2L	\$	70,000.00	\$	35,000.00
Regulatory costs*		each	ı	1	RPTL	\$	20,000.00	\$	20,000.00
Water sampling and testing		each	1	1	WTR4L	\$	60,000.00	\$	60,000.00
Vegetation Monitoring	(every 2 years)	each		0.5	GEOI2L	\$	70,000.00	\$	35,000.00
Decommission water management structures				0.1	DITCL	\$	500,000.00	\$	50,000.00
SPILLWAY MAINTENANCE									
Repair erosion		m3			#N/A	\$	-	\$	-
Clear spillway		each			#N/A	\$	-	\$	-
CWTS MAINTENANCE									
Maintain flow, restore vegetation		allow			#N/A	\$	-	\$	-
POST-CLOSURE WATER TREATMENT									
Annual water treatment cost, from "Water Treatment"								\$	-
Subtotal, Annual post-closure costs								\$	235,000.00
Discount rate for calculation of net present value of post-closure				5.00%					
cost %									
Number of years of post-closure activity				10 yea	rs				
Number of years of post-closure activity				10 yea	rs				
Present Value of Payment Stream								\$ 1	1,814,608.00
*Regulatory costs - annual reporting management plans progress									

*Regulatory costs - annual reporting, management plans, progress

reports etc.

Post Closure Monitoring and Maintenance

			Assı	umptions Co	orrecte	ed	
Quantity	Unit	t Cost	Cost				
1	\$	70,000.00	\$	70,000.00	\$	270,000.00	
1	\$	70,000.00	\$	70,000.00			
1	\$	20,000.00	\$	20,000.00			
1	\$	60,000.00	\$	60,000.00			
							no revegetation w
0	\$	70,000.00	\$	-			be completed
							included under
0.1	\$	500,000.00	\$	50,000.00			direct tasks
		5%					
		570					
		10					
					\$	868,499.66	

	cost	per event	Year	·1 Y	ear 2	Ye	ar 3	Year 4		Year 5	Yea	ır 6 Ye	ar 7	Year 8	Year 9	Yea	ar 10	
Annual																		
geotechnical																		
inspection	\$	70,000.00		1		1	1		0		0	0	0		0	0	0	
Cover																		
monitoring	\$	70,000.00		0		1	0		1		0	1	0		1	0	1	
Regulatory costs																		
	\$	20,000.00		1		1	1		1		1	1	1		1	1	1	
Water sampling																		
and testing																		
	\$	60,000.00		1		1	1		1		1	0	0		0	0	0	
	undis	counted	\$ 1	150,000.00	220,000.0	0 \$	150,000.00	\$	150,000.00	\$ 80,000	.00 \$	90,000.00 \$	20,000.00	\$ 90,	000.00 \$	20,000.00 \$	90,000.00 \$	1,060,000.00
	npv		\$1	142,857.14	\$199,546.4	9	\$129,575.64		\$123,405.37	\$62,682	.09	\$67,159.39	\$14,213.63	\$60,	915.54	\$12,892.18	\$55,252.19	\$868,499.66

AANDC TC 11 - Particle Size Analysis

A Division of AMEC Engineering Pty Limited ABN 73 003 066 715 13 Collingwood Street, Osborne Park WA 60 17 Telephone: (08) 9244 1199 Facsimile: (08) 9244 1457 E-mail: arc@ smecaust.com.au

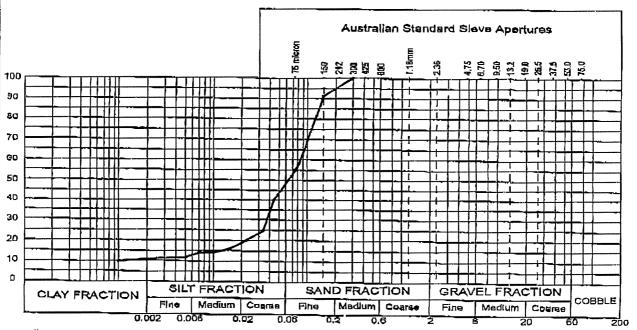
TEST CERTIFICATE

Client: MIRAMAR HOPE BAY LIMITED

Project: DORIS NORTH COMBINED FINAL MILL TAILING

Sheet No.: 2 OF 10

Job No.: \$9645


Date Tested: 25.08.03

Sample ID: TAILS

Particle Size Distribution of a Soil

AS 1289.3.6.2: Sieving with Hydrometer

	Sie	ving			Hyd	lrometer	
Sieve Size	% Passing	Sieve Size	% Passing	Diameter	% Passing	Diameter	% Passing
75.0mm	ę.	1.18 mm		67 micron	49	10 micron	14
37.5 mm		600 micron		49 micron	40	7 micron	14
19.0 mm		425 micron		35 micron	34	5 micron	12
9.50 mm		300 micron	100	26 micron	25	1 micron	10
4.75 mm		150 micron	92	18 micron	21		
2.36mm		75 пістоц	56	13 micron	18		

Remarks:

Sampling Method/s - Submitted by Client.

This laboratory is accredited by the National Association of Testing Authorities. Assentia: The test(s) reported herein have been performed in accordance with its terms of accreditation. This document shall not be reproduced except in full.

Approved:

W Rozmianico

Date: 17.09.03

POCOCK INDUSTRIAL, INC. PARTICLE SIZE ANALYSIS DATA SHEET

Company: Newmont Mining Corporation Table No.: BB

Project: Hope Bay Test Date: 12/30/08

By: GDW/NNN Location: P.I. Lab

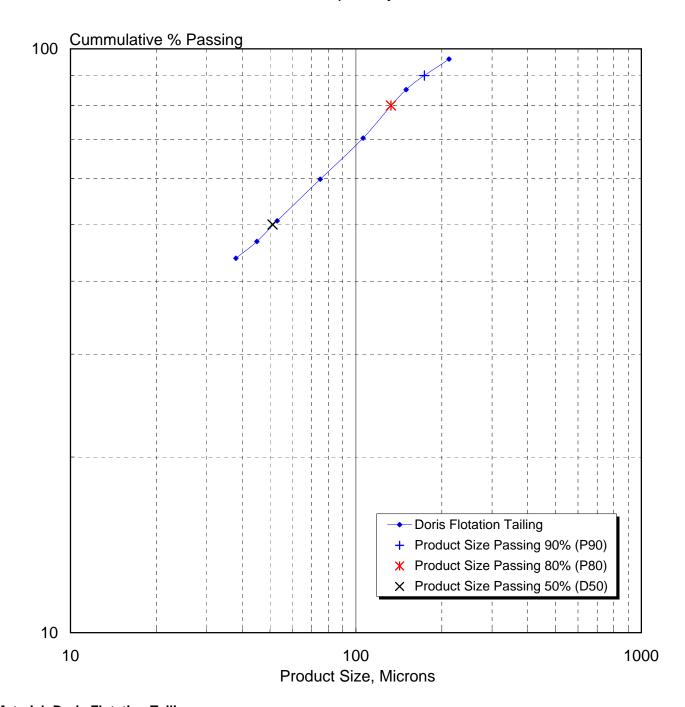
Material: **Doris Flotation Tailing**

Purpose: To determine the particle size distribution of the sample.

Procedure: The sample was wet screened at 400 mesh and the oversize fraction

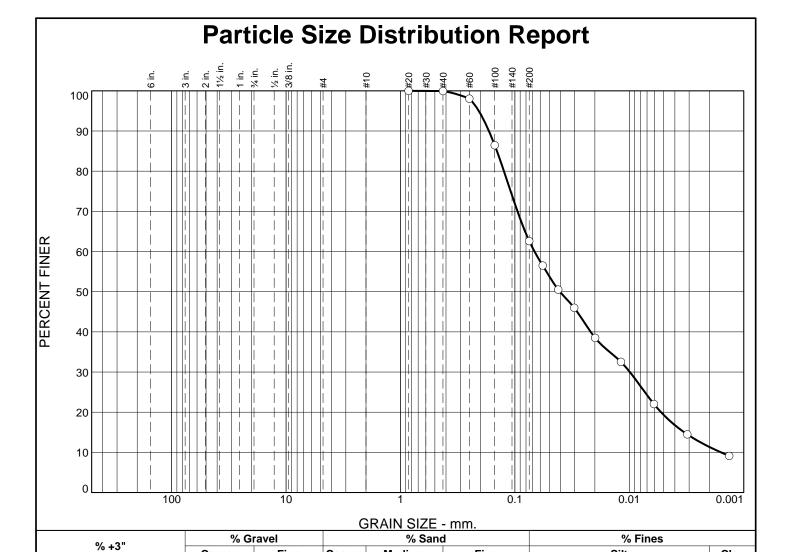
dry screened on a Ro-tap.

Results: Screen Size Sample Weights


	U.S.	Grams	Wt. %	Cumulati	ve Wt. %
micron	mesh	Retained	Retained	Passing	Retained
212	70	46.85	3.95	96.05	3.95
150	100	129.26	10.90	85.15	14.85
106	140	175.64	14.81	70.33	29.67
75	200	125.04	10.55	59.79	40.21
53	270	107.16	9.04	50.75	49.25
45	325	47.00	3.96	46.79	53.21
38	400	35.50	2.99	43.79	56.21
-38	-400	519.25	43.79		

Totals: 1185.70 100%

Product Size Passing 90% (P_{90}) 174 microns Product Size Passing 80% (P_{80}) 133 microns Product Size Passing 50% (D_{50}) 51 microns


FIGURE BB: PARTICLE SIZE DISTRIBUTION

Newmont Mining Corporation Hope Bay

Material: Doris Flotation Tailing

Product Size Passing 90% (P90) 174 microns Product Size Passing 80% (P80) 133 microns Product Size Passing 50% (D50) 51 microns See Table BB For Parameters

Medium

0.0

Fine

37.4

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
#20	100.0		
#40	100.0		
#60	98.1		
#100	86.5		
#200	62.6		
0.0571 mm.	56.5		
0.0418 mm.	50.5		
0.0303 mm.	46.0		
0.0199 mm.	38.5		
0.0118 mm.	32.5		
0.0061 mm.	22.0		
0.0031 mm.	14.5		
0.0013 mm.	9.1		

Coarse

0.0

Fine

0.0

Coarse

0.0

sandy silt	Soil Description	1
PL= NP	Atterberg Limits	S PI= NP
D ₈₅ = 0.1435 D ₃₀ = 0.0099 C _U = 42.69	Coefficients D ₆₀ = 0.0674 D ₁₅ = 0.0033 C _C = 0.92	D ₅₀ = 0.0404 D ₁₀ = 0.0016
USCS= ML	Classification AASHT	ΓO= A-4(0)
	<u>Remarks</u>	

Silt

51.2

Date: 3/3/09

Elev./Depth:

Clay

11.4

(no specification provided)

0.0

Sample No.: 9 Source of Sample:

Location: Doris Central Flotation Tailings

Client: Newmont Metallurgical Services

Project: Hope Bay

Project No: 108-147.03 **Fig.**

Knight Piésold