IZOK CORRIDOR PROJECT

The Izok Corridor Project

September 2012

Members of the Minmetals Resources Limited group of companies (HKEx 1208)

AGENDA

- > Mineral and Metals Group (MMG)
- > The Izok Corridor Project
- > Project status and the next steps

MMG

Minerals and Metals Group

Rembers of the Minmetals Resources Limited group of companies (HKEx 1208)

MMG

- > Created in 2009
- > Acquired Oz Minerals and Zinifex
- > Part of Minmetals Resources Ltd.
- > MMG has an office in Vancouver and in Kugluktuk
- > MMG has more than 8,500 employees worldwide

- > MMG 100% owned by Minmetals Resources
- Minmetals Resources: 71.72% privately held and 28.28% publicly held
- > Minmetals Corporation
 - founded in 1950
 - an international metals and mining corporation
 - primarily engages in exploration, mining, smelting, processing and trading for metals and minerals
- Minmetals Resources' owners voted to change listed name to MMG Limited in August 2012

Public shareholders Minmetals Non-ferrous
28 28% 71.72%

Minmetals

Resources, now MMG

MMG OPERATING MINES: EXAMPLES

Century (Queensland, Australia)

Australia's largest open pit zinc mine.

Golden Grove (Western Australia)

 An underground mine that produces zinc, copper, and lead and precious metals concentrates.

Sepon (Lao PDR)

 A gold and copper operation that produces copper cathode and gold dore.

Rosebery (Tasmania, Australia)

 An underground mine that produces zinc, copper, lead concentrates, and gold dore.

THE IZOK CORRIDOR PROJECT

History
Project Name
Project Description

Members of the Minmetals Resources Limited group of companies (HKEx:1208)

HISTORY

- > Wolfden Resources Inc. started the planning for High Lake and the Grays Bay port and submitted a draft EIS to the NIRB in 2006
- > Zinifex purchased Wolfden's Nunavut project in 2007
- > Zinifex started the work to extend the project to Izok Lake in 2007
- > All work was put on hold in 2008

HISTORY: 2009 to present day

- < Exploration programs continued
- < New cost studies or prefeasibility was completed
 - Design alternatives
 - Transportation options
 - · Port options
 - MMG decided not to finish the environmental assessment for High Lake; NIRB advised in December 2011 and withdrew the project from assessment

HISTORY: 2009 to present day

- > Pre-feasibility for project costs completed. Project is marginally economic
- > Feasibility study underway to confirm costs against resources in the ground
- > Need to develop High Lake and Izok together
- > Zinc concentrate is best transported by truck and ship
 - The road from Izok to High Lake to Grays Bay is the most feasible road option available
 - A port located at Grays Bay is our most feasible option
- > Ulu and Lupin properties sold to Elgin Mining
- > Exploration continued at Izok and High Lake
- > Project proposal submitted to NIRB

HISTORY: 2009 to present day

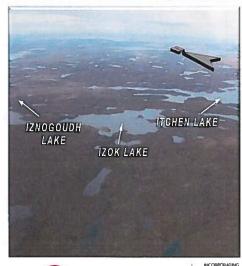
- > Engagement
 - · Community visits
 - open houses
 - targetted information sessions (one-on-one meetings)
 - · RDAG (Igaluit, Yellowknife)
 - Site visits
 - Newsletters
 - Traditional knowledge workshop
- > Sponsorship
 - · trades camp
 - · youth programming

IZOK CORRIDOR PROJECT COMPONENTS

- > Two proposed mine sites: Izok and High Lake
 - Zinc and copper at Izok
 - · Plant and tailings at Izok
 - · Twelve year projected mine life
 - · Copper and zinc at High Lake
 - No plant or tailings at High Lake just a crusher
- > Proposed port at Grays Bay on the Coronation Gulf
- > August to October shipping of concentrate, no year round shipping

- > Proposed all-weather road connecting the mines to the port
 - Ore will be shipped from High Lake to the Izok mine site for processing
 - Concentrate will be trucked to Grays Bay from Izok

Overview of the proposed Izok and High Lake Mine Sites

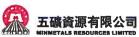


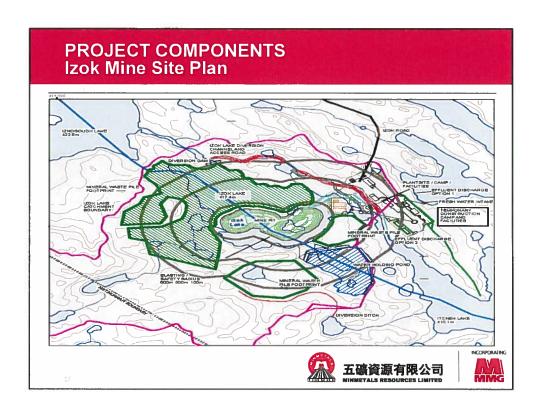
PROJECT COMPONENTS

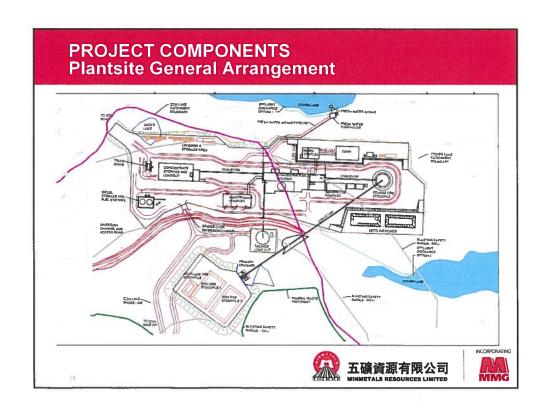
Izok Mine

- > 1 Open Pit, mined in 3 main phases
 - High tonnage, high grade, mainly Zn but also Cu rich
 - The deposit is under Izok Lake
- > 1 Underground Mine
 - Lower grade, low tonnage, more expensive to develop

Izok General Design Features


- > Diversion channel connecting Iznogoudh and Itchen
- > Izok Lake drained to access resource
 - · open pit mine
- > Tailings Containment
 - dry-stacking
 - · waste rock piles
- > Water Containment
 - · Contact water captured and treated
 - · Dams to contain water
 - · Polishing ponds




PROJECT COMPONENTS Diversion Channel Options Overview

PROJECT COMPONENTS Tailings Management Strategy Dry Stack Tailings Waste Rock Cover to Dry Stack Tailings

PROJECT COMPONENTS

Example: Minto Mine, Yukon

High Lake General Design Features

- > 2 Open Pits
- > 1 Underground Mine, mined by decline from surface
- > Crusher

五礦資源有限公司

High Lake camp site

Common features to both

- > Haul roads linking pits and portal to dumps and ore stockpile area
- Smaller access roads to ventilation, explosives storage, and water intake
- > Mobile equipment workshop
- > Water supply
- > Water treatment

- > Electric power
- > Communications
- > Explosives storage
- > Warehousing
- > Fuel supply
- > Accommodations, office and dry
- > Emergency response
- > Airstrips and fuel storage

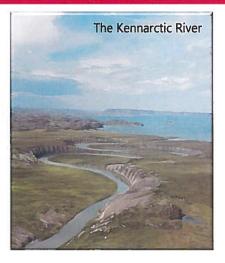
Environmental Considerations

- > Water Management
 - surface water treatment (cleaning the water before it goes back into a lake or river)
 - polishing ponds (where the water sits while it is cleaned)
 - · sewage (cleaned before release)
 - · drinking water
- > Waste Management
 - · location of mine waste so it does not create a pollution problem
- > Diversion Channel
 - diversion channel created linking Iznogoudh and Itchen may be good fish habitat
 - · water flow being measured to limit impact on Itchen

23

PROJECT COMPONENTS

Environmental Considerations – continued...


- > Compensation for the loss of Izok lake
- > Tailings
 - · potentially acid generating
 - handled and contained so that they will not create a pollution problem
- > Project foot print
- > Closure of the site

Proposed Infrastructure

- > All-weather road
- > Winter roads
- > Port

PROJECT COMPONENTS

All Weather

- > 350 km all weather road
- > Variation under consideration

Winter Roads (Construction)

- > 100 km winter road from Izok to Jericho
- > 80 km winter road from Izok to Lupin
- > 50 km winter road from High Lake to Grays Bay

North of Contwoyto Lake – A particularly rugged section, weave between outcropping rock, following well vegetated surface

PROJECT COMPONENTS

Burnside River crossing: 100 km south of Ulu, 70 m multi-span bridge

Hood River crossing: 17 km south of Ulu, 35 m single span bridge depending on crossing location

PROJECT COMPONENTS

Example of the trucks that will be used

Concentrate and Ore Hauling

Sea Container Transport

Fuel Resupply

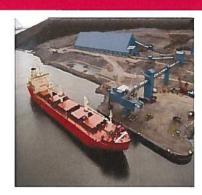
14

Environmental Considerations: Road

- > Provisions for caribou crossing
- > Road closure during calving season
- > Water crossings to protect fish habitat

PROJECT COMPONENTS

Air Transport Infrastructure


- >Izok: runway capable of handling Boeing 737, Hercules
- > High Lake: runway capable of handling Dash 8, Twin Otter
- > Grays Bay: runway capable of handling Dash 8, Twin Otter

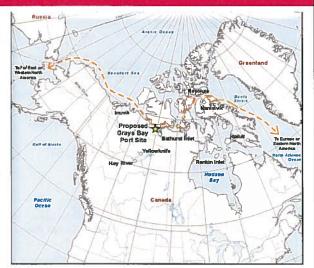
Grays Bay Port

- > Concentrate
 - An average of 500,000 WMT at 8% moisture per year from Izok Lake to Grays Bay over the 12-year production phase
 - Zinc and copper con bulk in B-Train Trucks (100 – 120 t tare)
 - Lead con in 20 ft containers (to be confirmed)
- > Resupply
 - 25,000 tpa, generally in 2,500 20 ft containers from Grays Bay to High Lake and Izok Lake, and returned to Grays Bay
- > Diesel
 - 45 Mt in road tankers from Grays Bay to Izok Lake and High Lake

Example: Voisey's Bay

PROJECT COMPONENTS

Proposed port location: Grays Bay


- > Concentrate shed for 10 months production (420m long, 90m wide)
- > 50 M litres fuel storage
- > Wharf and ship loader facility to accommodate 50 k t ships
- > Lay down area for ship unloading
- > 2,500 containers (20 ft) in and out annually
- > Camp, administration and maintenance facilities

Shipping

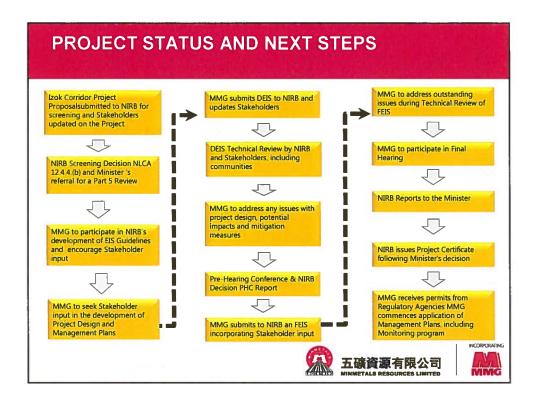
- > 10 to 15 ship-trips per year (80 day window from July to October)
- > All passages to the east except for last run of the season
- Each passage takes
 2-3 days (one way once inside Nunavut waters)

PROJECT COMPONENTS

Environmental Considerations: Shipping

- > No year round ice breaking
 - Dolphin and Union caribou migration not affected
 - Shipping between mid-July to October
- > Ship traffic impact on marine life
 - Avoid unnecessary ship acceleration to limit noise
 - Maintain consistent course to the extent possible
 - · Maintain minimum distance from shore

- > Construction
 - average on-site workforce of 670 (based on Pre Feasibility Study and is to be confirmed)
- > Operation
 - Average on-site workforce of 400 (based on Pre Feasibility Study and is to be confirmed)
- > Fly-in/fly-out rotational schedule



PROJECT STATUS AND NEXT STEPS

- > MMG submitted the Izok Corridor Project Proposal to the Nunavut Impact Review Board (NIRB) in late August, 2012
- NIRB will screen the Project Proposal to determine need for a review based on potential for significant impacts
- > MMG anticipates that the Project will undergo further, and a more detailed, review by the NIRB

PROJECT STATUS AND NEXT STEPS

- > MMG will continue to collaborate with reviewers of the Project
- > MMG will continue environmental baseline studies needed to better understand the environment in the Project area
- > MMG will continue to provide project updates to, and gather feedback from, communities
- MMG plans to establish Advisory Groups to focus on Terrestrial and Marine Environments, and Socio-economic development and well-being
- MMG will incorporate input from communities, Inuit organizations, regulators and other stakeholders into the development of management plans to mitigate potentially adverse impacts of the Project

MMG Izok Corridor Project

THANK YOU KOANA

