
JERICHO DIAMOND PROJECT AQUATIC STUDIES PROGRAM (1996)

JERICHO DIAMOND PROJECT AQUATIC STUDIES PROGRAM (1996)

Prepared for

CANAMERA GEOLOGICAL LTD.

Suite 540, 220 Cambie Street Vancouver, British Columbia V6B 2M9


Prepared by

R.L. & L. ENVIRONMENTAL SERVICES LTD.

17312 - 106 Avenue Edmonton, Alberta T5S 1H9 Phone: (403) 483-3499

March 1997

ACKNOWLEDGEMENTS

The authors would like to thank Mr. Feisal Somji, Environmental Manager and Mr. Jasen Attew, Assistant Environmental Manager of Canamera Geological Ltd. for initiating the project, and for providing information and guidance during the study. The assistance provided by Mr. Scott Wytrychowski and Denise Burlingame of Canamera Geological Ltd. is also gratefully acknowledged. Special thanks goes to Monica Kapakatoak and Steve Bowman of Canamera Geological Ltd. for their hard, conscientious work during the summer field program.

Timely assistance provided by Dennis Wright (Scientific Licences for Department of Fisheries and Oceans) and Sharon Troke (Research Liaison for the Nunavut Research Institute) in obtaining the necessary collection permits is also appreciated.

We thank Marie Healey and Julia Dale of the Department of Fisheries and Oceans for their comments regarding the design of the 1996 aquatics study program.

The following R.L. & L. Environmental Services Ltd. personnel participated in this program:

Richard Pattenden - Project Manager and Principal Author

Mark Dunnigan - Limnologist and Macroinvertebrate Biologist and Author

Chantal Pattenden
Nancy Elliott
Joanna Fedoruk
Scott Bimson
Rob Stack
Jason O'Donnell
David Tyson

- Field Crew Leader
- Biological Technician

The editorial review was completed by Joan Didriksen, while Tammy Bird and Leanne Akitt were responsible for word processing.

Phytoplankton, chlorophyll *a*, and stream periphyton samples were identified by David Beliveau of Bio-Aquatic Consulting Ltd.; benthic macroinvertebrates were identified by Sherry Beckett (independent contractor, Calgary, AB); and, zooplankton samples were identified by Peter Aku and Mariola Jankowicz of the University of Alberta.

EXECUTIVE SUMMARY

The Jericho Diamond Project is situated 420 km northeast of Yellowknife in the Northwest Territories. In anticipation of possible development of this deposit, Canamera Geological Ltd. of Vancouver initiated a baseline environmental inventory of the area in 1995. R.L. & L. Environmental Services Ltd. was contracted to complete the aquatic biota component of this inventory. This report summarizes the findings made during the second year of the baseline aquatic studies program.

The Jericho study area encompasses lakes and streams in the immediate vicinity of the Jericho Diamond Project Site. Waterbodies were chosen for investigation based on the potential for impacts caused by the development. Four sampling zones were established. The Mine Operation Zone encompassed Carat Lake and waterbodies situated downstream of the proposed mine site. The Borrow Extraction Zone encompassed waterbodies in a small drainage within an esker complex situated immediately north of the proposed mine. The third zone (Tailings Impoundment/DockingFacility Zone), which was situated to the east, encompassed waterbodies that may be used for tailings storage and a small bay of Contwoyto Lake that is the proposed location of the docking facility. The fourth sampling zone included stream crossings along the proposed corridor for the all-weather route to the Lupin Mine Site.

During summer, several of the study lakes exhibited thermal stratification. In the Mine Operation Zone, the deeper basins (>15.5 m) of Carat Lake and Jericho Lake had thermoclines between 10.5 and 15.0 m depth. In the Borrow Extraction Zone, lakes deeper than 10 m in depth had thermoclines (Lakes O1 and O3). In the Tailings Impoundment/Docking Facility Zone, the smaller lakes (Lakes D4 and D5) exhibited thermal stratification (beginning at 8 m depth), while the bay (14 m deep at sampling site) in the much larger Contwoyto Lake exhibited isothermal conditions. These data suggest that deeper waterbodies throughout the Jericho study area stratify during the summer, and therefore, can be classified as dimictic (thoroughly mix twice a year). The shallower basins that do not stratify can be classified as monomictic (continuous mixing).

Dissolved oxygen concentrations during summer were similar among most lakes in the three zones (8.5 to 10 mg/L). Contwoyto Lake was unique in that it had the highest dissolved oxygen concentration (11.4 mg/L). This difference was due principally to lower water temperatures, which allow higher saturation levels. The water transparency levels were high in all waterbodies, which was indicative of low suspended materials and low biological productivity.

The phytoplankton communities were similar among the three zones. They were typical of communities found in subarctic lakes and were indicative of oligotrophic conditions. In general, golden-brown algae (Chrysophyta) and

diatoms (Bacillariophyta) had the greatest biovolumes, while species of cyanobacteria (Cyanophyta) had the greatest densities.

The zooplankton communities in the Jericho study area lakes were also typical of subarctic systems, however, there were differences among the three zones. In general, the zooplankton communities in the Mine Operation and the Borrow Extraction Zones were dominated by water fleas (Cladocera), which accounted for the majority of the community biomass. The zooplankton community of the lakes within the Tailings Impoundment/Docking Facility Zone were dominated by copepods.

Periphyton were sampled from streams in the Mine Operation Zone and the Borrow Extraction Zone. The most abundant periphytic algae in the Mine Operation Zone streams were the cyanobacteria (Cyanophyta) Lyngbya limnetica and Gomphosphaeria naegelianum. The most abundant periphytic algae in the Borrow Extraction Zone stream were the cyanobacterium Microcystis flos-aquae and the diatom Tabellaria flocculosa. The density of periphytic algae in the Borrow Exaction Zone was lower than in the streams in the Mine Operation Zone. The reasons for these differences are unclear, however, the results from both zones are indicative of oligotrophic nutrient conditions.

Benthic macroinvertebrates were sampled from study area lakes and streams. In lakes, mean densities and mean number of taxonomic groups were greater in the littoral zones than in the profundal zones, which was a reflection of the higher productivity of shallow-water habitats. Communities within the three study area zones were similar. Dominant taxa in lakes were chironomids (midges), oligochaetes (aquatic earthworms), and nematodes (roundworms). The benthic macroinvertebratecommunity in streams were dominated by nematodes (roundworms), oligochaetes (aquatic earthworms), and chironomids (midges). These results were indicative of oligotrophic systems with low productivity and short growing seasons.

Fish communities in lakes differed between the three study area zones. Species recorded in lakes in the Mine Operation Zone included lake trout, Arctic char, round whitefish, burbot, and slimy sculpin, but lake trout was the numerically dominant species in all lakes. Round whitefish and Arctic char were generally the second most abundant species, although they were much less numerous. In the Borrow Extraction Zone, seven species of fish were recorded in sampled lakes. They included lake trout, Arctic char, round whitefish, burbot, Arctic grayling, ninespine stickleback, and slimy sculpin. Of these species, only lake trout, Arctic char and round whitefish were numerous. Lake trout dominated fish communities in Lakes O3 and O5. Arctic char was numerically dominant in Lake O1. In Lakes O2 and O4, round whitefish was the most numerous fish. Lakes in the Tailings Impoundment/DockingFacility Zone supported simple species communities; only lake trout and Arctic char were present. Lake trout was the dominant species in Contwoyto Lake, while Arctic char predominated in Lake D5, and both species were equally important in Lake D4.

Seven species of fish were recorded in sampled streams within the Jericho study area. Arctic grayling, Arctic char, ninespine stickleback, and slimy sculpin were the dominant species, followed by lower numbers of lake trout, round whitefish, and burbot. Most fish recorded in streams (all except ninespine stickleback and slimy sculpin) represented younger age classes that utilized the watercourses for rearing purposes. Fish numbers were generally low in streams, although notable exceptions occurred. In the Carat Lake area, Stream C1 supported a diverse assemblage of species and it contained the highest number of Arctic char recorded in the Mine Operation Zone. Likewise, Stream C6 supported the highest density of Arctic grayling in the zone. In the Jericho River area, Arctic grayling numbers were high in both the upper and lower sections of the main river, as well as in Streams O1, O24, and O25. One species, ninespine stickleback, was also numerous in the Mine Operation Zone, but its distribution was restricted to the Jericho River and its tributaries. Arctic grayling, Arctic char, and slimy sculpin tended to be the most widespread and numerous species in Borrow Extraction Zone streams. Fish numbers were highest in Stream O18 in the Lake O1 area, Stream O5 in the Lake O6 area, and Stream O5 in the Lake O5 area. The highest number of Arctic char were recorded in Stream O18, while Arctic grayling were most numerous in Streams O6 and O5. Few fish were recorded in streams in the Tailings Impoundment/DockingFacility Zone. Lake trout, Arctic char, and slimy sculpin were the only species identified.

Fish populations in the three zones of the Jericho study area exhibited similar biological characteristics. Length-frequency distributions for lake populations typically were bimodal with larger individuals dominating the sample. Fish were slow growing and exhibited large variations in length at a given age. Fish populations in the Jericho study area also matured at a late age. Arctic char and lake trout also exhibited evidence of alternate year spawning (i.e., nonfecund individuals); between 15% and 30% of mature fish that were examined would not have spawned in 1996. These biological characteristics were typical of unexploited fish populations residing in subarctic lakes that have low primary productivity.

Feeding habits of fish in all three zones of the Jericho study area were typical of the species examined and was dependant on food availability. The most prevalent food groups consumed by all fish species in each zone were zooplankton and chironomids. Other items consumed were fish, trichopterans, molluscs, and eubranchiopods. The feeding habits of fish were also dependent on species specific food preferences. Lake trout and Arctic char from the larger waterbodies (Carat, Jericho and Contwoyto Lakes) consumed fish as part of their diet. Trichopterans, which are benthic macroinvertebrates, accounted for a large proportion of food items consumed by round whitefish.

Lakes and streams were evaluated to assess their value as habitat for fish populations. This involved surveys of lake shoreline and stream channel characteristics and attempts to document fish use of these areas. Lakes in the Mine Operation Zone tended to be dominated by cobble-boulder substrates. These characteristics provided an abundance of potential spawning areas for species such as lake trout, Arctic char, and round whitefish. Several high quality spawning sites were identified and the presence of high concentrations of lake trout at one of these

locations (north-east corner of Carat Lake) confirmed that it was used for this purpose. The same shoreline characteristics that provided an abundance of spawning habitat also limited the availability of rearing habitat. Shoreline areas of waterbodies in the Borrow Extraction Zone were dominated by smaller substrates consisting of sands and gravels. These characteristics also provided an abundance of potential spawning areas, however, there was a paucity of lake shore rearing habitat. The shoreline areas of lakes in the Tailings Impoundment/Docking Facility Zone were dominated by large substrates consisting of cobbles and boulders; bedrock areas were also identified in some of these lakes. Although not confirmed by concentrations of spawning fish, a shoal situated in the proposed docking facility bay exhibited characteristics of a high quality lake trout spawning site. Overall, the characteristics of lakes in the Jericho study area provided the necessary habitat to support self-sustaining fish populations. Deep-water areas were available as overwintering habitat. Spawning habitat characterized by clean gravel to boulder-sized substrates was widely distributed in areas sufficiently deep enough to avoid freezing. In contrast to the availability of potential spawning areas, rearing habitat was limited in distribution and abundance.

Streams in the Jericho study area generally were small, ephemeral watercourses dominated by ill-defined channels and large substrates. Those that maintained water flow during the entire summer period freeze to the bottom during winter. As a consequence of these characteristics, fish utilized the habitat provided by these systems on an opportunistic basis and use was generally restricted to the lower sections. Spawning, rearing, and feeding habitats were present in varying amounts and were used by fish originating from study area lakes. In the Mine Operation Zone, Stream C1 in the Carat Lake area was used extensively by Arctic char for rearing. Stream C6 provided good quality spawning and rearing habit for Arctic grayling. One larger system in the Interbasin area (Stream C15), was used for rearing and/or feeding purposes by Arctic grayling and lake trout. The Jericho River (both upper and lower sections) contained good habitat. Its large size, well-defined channel, and abundance of smaller substrates created a diverse assemblage of habitats. Deep-water areas in the upper Jericho River may also provide overwintering habitat for fish. A significant feature of the Jericho River was the presence of a cascade area approximately 15 m in height that was located near the outlet of Jericho Lake. Although not an absolute barrier, this area created a significant impediment to fish passage between the Jericho River system and lakes situated farther upstream. Tributary streams associated with the Jericho River were small, but several provided good quality spawning and rearing habitat for Arctic grayling. Tributaries exhibiting these characteristics were Streams O1, O8, O24, O25, and O27.

Streams in the Borrow Extraction Zone provided limited habitat for fish. The primary reasons were their small size and intermittent flow during the summer. Some streams did have good quality habitat. One watercourse in the Lake O1 area (Stream O18) provided high quality spawning habitat for Arctic grayling and rearing habitat for Arctic char. Stream O6, which was the drainage system for Lake O4, was one of the larger watercourses in the Borrow Extraction Zone. It contained good quality spawning and rearing habitat, as well as feeding habitat for adult Arctic grayling. Similarly, Stream O5 in the Lake O5 area provided good quality spawning and rearing habitat.

of fish habitat.	of 12 streams within the Tailings Impoundment/Docking Facility Zone documented the absence The primary reasons for severely limited fish habitat in these streams were their small size, during the summer, poorly defined channels, and steep slopes.
Project and the L	urvey of stream crossings along the proposed all-weather route between the Jericho Diamond upin Mine site identified 36 watercourses that could potentially be traversed by this road. Of these contained habitat and were utilized by fish.

TABLE OF CONTENTS

Page #
ACKNOWLEDGEMENTS
EXECUTIVE SUMMARY iii
LIST OF TABLES
LIST OF FIGURES xix
1.0 INTRODUCTION 1 1.1 BACKGROUND AND PURPOSE 1 1.2 STUDY OBJECTIVES 2 1.3 STUDY AREA 2 1.4 SITE SELECTION, TIMING, AND LOGISTICS 6
2.0 METHODOLOGY 7 2.1 FIELD SAMPLING 7 2.1.1 Limnology 7 2.1.2 Plankton 7 2.1.2.1 Phytoplankton 7 2.1.2.2 Zooplankton 7 2.1.3 Stream Periphyton 8 2.1.4 Benthic Macroinvertebrates 8 2.1.4 Benthic Macroinvertebrates 8 2.1.4.1 Lakes 8 2.1.5.2 Streams 8 2.1.5.3 Fish 8 2.1.5.1 Lakes 8 2.1.5.2 Streams 9 2.1.5.3 All-weather Route Stream Crossings 10 2.1.5.3 Biological Characteristics 10 2.1.6.1 Lakes 10 2.1.6.2 Streams 10 2.1.6.3 All-weather Route Stream Crossings 11
2.1.7 Fish Tissues 11 2.2 LABORATORY ANALYSES 12 2.2.1 Plankton 12 2.2.1.1 Phytoplankton 12 2.2.1.2 Zooplankton 12 2.2.2 Stream Periphyton 13 2.2.3 Benthic Macroinvertebrates 14 2.2.3.1 Lakes 14 2.2.3.2 Streams 15
2.2.4 Fish Ageing 15 2.2.5 Fish Tissues 15 2.2.6 Data Processing 16 3.0 MINE OPERATION ZONE 19
3.0 MINE OPERATION ZONE 19 3.1 LIMNOLOGY 19 3.1.1 Lake Morphology 19

3.1	.2 Temperature and Dissolved Oxygen
3.1	.3 Transparency
3.1	.4 Summary
	3.1.4.1 Lake Morphology
	3.1.4.2 Temperature and Dissolved Oxygen
	3.4.1.3 Transparency
3.2 PL	ANKTON
	2.1 Phytoplankton
J.2	3.2.1.1 Biovolume
	3.2.1.2 Density
3.2	2.2 Zooplankton
5.2	3.2.2.1 Biomass
	3.2.2.2 Density
3.2	3.3 Summary
3.2	•
	3.2.3.1 Phytoplankton
2.2 07	3.2.3.2 Zooplankton
	REAM PERIPHYTON
	1.1 Density
	3.2 Biomass
	3.3 Summary
	ENTHIC MACROINVERTEBRATES
	.1 Lakes
	.2 Streams
3.4	.3 Summary
	3.4.3.1 Lakes
	3.4.3.2 Streams
3.5 FIS	SH
3.5	.1 Species Composition and Abundance
	3.5.1.1 Lakes
	3.5.1.2 Streams
3.5	3.2 Biological Characteristics
	3.5.2.1 Lake trout
	3.5.2.2 Arctic Char
	3.5.2.3 Round Whitefish
	3.5.2.4 Arctic grayling
3.5	.3 Feeding Habits
	3.5.3.1 Lake trout
	3.5.3.2 Arctic char
	3.5.3.3 Round whitefish
3.5	5.4 Fish Movements
	5.5 Resource and Potential Harvest
	6.6 Summary
	1.1 Lakes
3.6	3.6.2.1. Court Labor Streams
	3.6.2.1 Carat Lake Streams
	3.8.2.2 Interbasin Streams
	3.6.2.3 Jericho River Streams
	3.3 Summary
	CKGROUND METAL CONCENTRATIONS IN FISH TISSUE
	.1 Aluminum
3.7	.2 Arsenic
27	.3 Cadmium
3.7	

	3.7.6 Mercury
	3.7.8 Zinc
	5.7.6 Ziiic
СТІО	N 3 - TABLES
стю	N 3 - FIGURES
_	
	ROW EXTRACTION ZONE
	LIMNOLOGY
	4.1.1 Lake Morphology
	4.1.2 Temperature and Dissolved Oxygen
	4.1.3 Transparency
	4.1.4 Summary
	4.1.4.1 Lake Morphology
	4.1.4.2 Temperature and Dissolved Oxygen
	4.1.4.3 Transparency
	PLANKTON
	4.2.1 Phytoplankton
	4.2.1.1 Biovolume
	4.2.1.2 Density
	4.2.2 Zooplankton
	4.2.2.1 Biomass
	4.2.2.2 Density
	4.2.3 Summary
	4.2.3.1 Phytoplankton
	4.2.3.2 Zooplankton
4.3	STREAM PERIPHYTON
	4.3.1 Density
	4.3.2 Biomass
	4.3.3 Summary
4.4	BENTHIC MACROINVERTEBRATES
	4.4.1 Lakes
	4.4.2 Streams
	4.4.3 Summary
	4.4.3.1 Lakes
	4.4.3.2 Streams
4.5	FISH
	4.5.1 Species Composition and Abundance
	4.5.1.1 Lakes
	4.5.1.2 Streams
	4.5.2 Biological Characteristics
	4.5.2.1 Lake trout
	4.5.2.2 Arctic Char
	4.5.2.3 Round Whitefish
	4.5.2.4 Arctic Grayling
	4.5.3 Feeding Habits
	4.5.3.1 Lake trout
	4.5.3.2 Arctic char
	4.5.3.3 Round whitefish
	4.5.3.4 Arctic grayling
	4.5.4 Fish Movements
	4.5.5 Resource and Potential Harvest
	T.J.J Resource and I dictitlat Hai vest

	HABITAT AND HABITAT USE1
	4.6.1 Lakes
4	4.6.2 Streams
	4.6.2.1 Lake O1 Streams
	4.6.2.2 Lake O2 Streams
	4.6.2.3 Lake O3 Streams
	4.6.2.4 Lake O4 Streams
	4.6.2.5 Lake O5 Streams
4	4.6.3 Summary
SECTION	N 4 - TABLES
SECTION	N 4 - FIGURES
. O TAIT	INCS IMPOUNDMENT/DOCKING FACILITY 1
	INGS IMPOUNDMENT/DOCKING FACILITY
	LIMNOLOGY
	5.1.1 Lake Morphology
	5.1.2 Temperature and Dissolved Oxygen
	5.1.3 Transparency
4	5.1.4 Summary
	5.1.4.1 Lake Morphology
	5.1.4.2 Temperature and Dissolved Oxygen
	5.1.4.3 Transparency
5.2	PLANKTON
4	5.2.1 Phytoplankton
	5.2.1.1 Biovolume
	5.2.1.2 Density
4	5.2.2 Zooplankton
-	5.2.2.1 Biomass
	5.2.2.2 Density
4	5.2.3 Summary
-	
	5.2.3.1 Phytoplankton
	5.2.3.2 Zooplankton
	STREAM PERIPHYTON
5.4	BENTHIC MACROINVERTEBRATES1
-	5.4.1 Lakes
	5.4.2 Streams
5	5.4.3 Summary
5.5	FISH
4	5.5.1 Species Composition and Abundance
	5.5.1.1 Lakes
	5.5.1.2 Streams
4	5.5.2 Biological Characteristics
•	5.5.2.1 Lake trout
	5.5.2.2 Arctic char
4	5.5.3 Feeding Habits
-	
	5.5.3.1 Lake trout
	5.5.3.2 Arctic char
	5.5.4 Fish Movements
4	5.5.5 Population Estimates
	5.5.6 Resource and Potential Harvest
	5.5.6 Resource and Potential Harvest
4	5.5.7 Summary
4	

5.6.2 St	reams
	6.2.1 Contwoyto Lake Streams
	6.2.2 Lake D4 Streams
5.	6.2.3 Lake D5 Streams
	ımmary
	ROUND METAL CONCENTRATIONS IN FISH TISSUE
5.7.1 A	luminum
5.7.2 A	rsenic
5.7.3 C	admium
5.7.4 C	opper
5.7.5 L	ead
	Tercury
	ickel
5.7.8 Z	inc
SECTION 5 - TA	ABLES
SECTION 5 - FI	GURES
6.0 PRELIMINA	ARY STREAM CROSSING SURVEY
	M CROSSINGS SURVEYED
	M CROSSINGS CONTAINING FISH HABITAT
7 0 SIIMMARV	DISCUSSION
	LOGY
	emperature
	issolved Oxygen
	ransparency
	TON
	ytoplankton
	ooplankton
	YTON
7.4 BENTH	IC MACROINVERTEBRATES
7.4.1 L	akes
7.4.2 St	treams
	pecies Composition and Abundance
	iological Characteristics
	eeding Habits
	AT AND HABITAT USE
	akes
7.6.2 St	treams
8.0 LITERATUR	RE CITED
APPENDIX A	METHODOLOGY
APPENDIX B	LIMNOLOGY
APPENDIX C	PLANKTON
APPENDIX D	PERIPHYTON
APPENDIX E	BENTHIC MACROINVERTEBRATES
APPENDIX F	FISH
APPENDIX G	FISH HABITAT
APPENDIX H	METALS
APPENDIX I	STREAM CROSSING DATA

LIST OF TABLES

	Page #
Table 2.1	Length-weight regression equations used to calculate zooplankton weights, Jericho study area, 1996
Table 2.2	Detection limits for metal constituents analysed in fish tissue samples, Jericho study area, 1996
Table 3.1.1	Morphometric characteristics of surveyed lakes within the Mine Operation Zone, Jericho study area, 1996
Table 3.1.2	Canadian Water Quality dissolved oxygen guidelines for the protection of freshwater fish.
Table 3.2.1	Phytoplankton biovolume in sampled lakes during summer and fall within the Mine Operation Zone, Jericho study area, 1996
Table 3.2.2	Zooplankton biomass in sampled lakes during summer and fall within the Mine Operation Zone, Jericho study area, 1996
Table 3.4.1	Mean density of benthic macroinvertebrates in the littoral and profundal zones of selected lakes within the Mine Operation Zone, Jericho study area, 1996
Table 3.4.2	Mean density of dominant benthic macroinvertebrates in selected streams within the Mine Operation Zone, Jericho study area, 1996
Table 3.5.1	Overall species composition of fish sampled from lakes within the Mine Operation Zone, Jericho study area, 1996
Table 3.5.2	Species composition of fish sampled from individual lakes within the Mine Operation Zone, Jericho study area, 1996
Table 3.5.3	Overall species composition of fish sampled from streams within the Mine Operation Zone, Jericho study area, 1996
Table 3.5.4	Species composition of fish sampled from streams in four areas within the Mine Operation Zone, Jericho study area, 1996
Table 3.5.5	Length-weight regression equations and mean condition factors for lake trout sampled during summer from lakes within the Mine Operation Zone, Jericho study area, 1996 59
Table 3.5.6	Age-length relationships for Arctic char, Arctic grayling, lake trout, and round whitefish sampled from selected waterbodies within the Mine Operation Zone, Jericho study area, 1996
Table 3.5.7	Length-weight regression equations and mean condition factors for Arctic char sampled during summer from lakes within the Mine Operation Zone, Jericho study area, 1996 61
Table 3.5.8	Number of lake trout and Arctic char marked in lakes within the Mine Operation Zone, Jericho study area during 1995 and 1996

Table 3.5.9	Surface areas and potential annual harvests of lake trout populations in lakes within the Mine Operation Zone, Jericho study area, 1996
Table 3.6.1	Summary of lakeshore habitat characteristics recorded for sampled waterbodies within the Mine Operation Zone, Jericho study area, 1996
Table 3.6.2	Summary of habitat characteristics of inventoried streams within the Mine Operation Zone, Jericho study area, 1996
Table 3.6.3	Number of fish recorded in sampled streams according to age-class within the Mine Operation Zone, Jericho study area 1996
Table 3.6.4	Fish habitat quality ratings for sampled streams within the Mine Operation Zone, Jericho study area, 1996
Table 3.7.1	Number, mean length, and size range of fish collected for kidney, liver, and muscle tissue analyses within the Mine Operation Zone, Jericho study area, 1996 65
Table 3.7.2	Mean concentrations of metals in lake trout tissue samples within the Mine Operation Zone, Jericho study area, 1996
Table 3.7.3	Mean concentrations of metals in round whitefish tissue samples within the Mine Operation Zone, Jericho study area, 1996
Table 4.1.1	Morphometric characteristics of surveyed lakes within the Borrow Extraction Zone, Jericho study area, 1996
Table 4.2.1	Phytoplankton biovolume in sampled lakes during summer and fall within the Borrow Extraction Zone, Jericho study area, 1996
Table 4.2.2	Zooplankton biomass in sampled lakes during summer and fall within the Borrow Extraction Zone, Jericho study area, 1996
Table 4.4.1	Mean density of benthic macroinvertebrates in the littoral and profundal zones of Lake O1 within the Borrow Extraction Zone, Jericho study area, 1996
Table 4.4.2	Mean density of benthic macroinvertebrates in stream O18 within the Borrow Extraction Zone, Jericho study area, 1996
Table 4.5.1	Overall species composition of fish sampled from lakes within the Borrow Extraction Zone, Jericho study area, 1996
Table 4.5.2	Species composition of fish sampled from lakes within the Borrow Extraction Zone, Jericho study area, 1996
Table 4.5.3	Overall species composition of fish sampled from streams within the Borrow Extraction Zone, Jericho study area, 1996
Table 4.5.4	Species composition of fish sampled from streams in five areas within the Borrow Extraction Zone, Jericho study area, 1996
Table 4.5.5	Length-weight regression equations and mean condition factors for lake trout sampled during summer from selected lakes within the Borrow Extraction Zone, Jericho study area, 1996

Table 4.5.6	Age-length relationships for Arctic char, Arctic grayling, lake trout, and round whitefish sampled within the Borrow Extraction Zone, Jericho study area, 1996
Table 4.5.7	Length-weight regression equations and mean condition factors for Arctic char sampled during summer from selected lakes within the Borrow Extraction Zone, Jericho study area, 1996
Table 4.5.8	Number of lake trout, Arctic char, and Arctic grayling marked in lakes within the Borrow Extraction Zone, Jericho study area, 1996
Table 4.5.9	Surface areas and potential annual harvests of lake trout populations in lakes within the Borrow Extraction Zone, Jericho study area, 1996
Table 4.6.1	Summary of lakeshore habitat characteristics recorded for sampled waterbodies within the Borrow Extraction Zone, Jericho study area, 1996
Table 4.6.2	Summary of habitat characteristics of inventoried streams within the Borrow Extraction Zone, Jericho study area, 1996
Table 4.6.3	Number of fish recorded in sampled streams according to age-class within the Borrow Extraction Zone, Jericho study area, 1996
Table 4.6.4	Fish habitat quality ratings for sampled streams within the Borrow Extraction Zone, Jericho study area, 1996
Table 5.1.1	Morphometric characteristics of surveyed lakes within the Borrow Extraction Zone, Jericho study area, 1996
Table 5.2.1	Phytoplankton biovolume in sampled lakes during summer and fall within the Tailings Impoundment/Docking Facility Zone, Jericho study area, 1996 177
Table 5.2.2	Zooplankton biomass in sampled lakes during summer and fall within the Tailings Impoundment/Docking Facility Zone, Jericho study area, 1996
Table 5.4.1	Mean density of benthic macroinvertebrates in the littoral and profundal zones of selected lakes within the Tailings Impoundment/Docking Facility Zone, Jericho study area, 1996.
Table 5.5.1	Overall species composition of fish sampled from lakes within the Tailings Impoundment/Docking Facility Zone lakes, Jericho study area, 1996
Table 5.5.2	Species composition of fish sampled from lakes within the Tailings Impoundment/Docking Facility Zone, Jericho study area, 1996
Table 5.5.3	Overall species composition of fish sampled from streams within the Tailings Impoundment/Docking Facility Zone, Jericho study area, 1996
Table 5.5.4	Species composition of fish sampled from streams in three areas within the Tailings Impoundment/Docking Facility Zone, Jericho study area, 1996
Table 5.5.5	Length-weight regression equations for lake trout sampled during summer from lakes within the Tailings Impoundment/Docking Facility Zone, Jericho study area, 1996 179
Table 5.5.6	Age-length relationships for lake trout within the Tailings Impoundment/Docking Facility Zone, Jericho study area, 1996

Table 5.5.7	Length-weight regression equations for Arctic char sampled during summer from two lakes within the Tailings Impoundment/Docking Facility Zone, Jericho study area, 1996 181
Table 5.5.8	Age-length relationships for Arctic char within the Tailings Impoundment/DockingFacility Zone, Jericho study area, 1996
Table 5.5.9	Number of lake trout and Arctic char marked and recaptured in Lake D4 and Lake D5 within the Tailings Impoundment/Docking Facility Zone, Jericho study area, 1996 181
Table 5.5.10	Surface areas and potential annual harvests of lake trout populations in lakes within the Borrow Extraction Zone, Jericho study area, 1996
Table 5.6.1	Summary of lakeshore habitat characteristics recorded for sampled waterbodies within the Tailings Impoundment/Docking Facility Zone, Jericho study area, 1996 182
Table 5.6.2	Summary of habitat characteristics of inventoried streams within the Tailings Impoundment/Docking Facility Zone, Jericho study area, 1996
Table 5.6.3	Number of fish recorded in sampled streams according to age-class within the Tailings Impoundment/Docking Facility Zone, Jericho study area, 1996
Table 5.6.4	Fish habitat quality ratings for sampled streams within the Tailings Impoundment/Docking Facility Zone, Jericho study area, 1996
Table 5.7.1	Number, mean length, and size range of fish collected for kidney, liver, and muscle tissue analyses within the Tailings Impoundment/Docking Facility Zone, Jericho study area, 1996
Table 5.7.2	Mean concentrations of metals in lake trout tissue samples within the Tailings Impoundment/Docking Facility Zone, Jericho study area, 1996
Table 6.1.1	Summary information for surveyed streams along the proposed all-weather route between the Jericho Diamond Project and the Lupin Mine Site, Jericho study area, 1996 208
Table 6.2.1	Summary of habitat characteristics of stream crossings containing fish habitat along the proposed all-weather route between the Jericho Diamond Project and the Lupin Mine Site, Jericho study area, 1996
Table 6.2.2	Number of fish recorded at surveyed stream crossings according to age-class along the proposed all-weather route between the Jericho Diamond Project and the Lupin Mine Site, Jericho study area, 1996
Table 6.2.3	Fish habitat quality ratings for sampled streams along the proposed all-weather route between the Jericho Diamond Project and the Lupin Mine Site, Jericho study area, 1996.
Table 7.5.1	Occurrence of fish species in sampled lakes in the Jericho study area
Table 7.5.2	Occurrence of fish species in sampled streams in the Jericho study area
Table 7.5.3	Comparison of fish species assemblages identified in subarctic watersheds in the immediate vicinity of the Jericho Diamond Project

LIST OF FIGURES

	Page #
Figure 1.1	Location of Jericho Diamond Project study area, 1996
Figure 1.2	Sampling zones in the immediate vicinity of the Jericho Diamond Project study area, 1996.
Figure 1.3	Stream crossings surveyed along the proposed all-weather route to Lupin, Jericho study area, 1996
Figure 3.1.1	Limnology sampling sites on lakes in the Mine Operation Zone of the Jericho study area, 1996
Figure 3.1.2	Bathymetric map of Carat Lake, Mine Operation Zone, Jericho study area, 1996 72
Figure 3.1.3	Dissolved oxygen and temperature profiles, and Secchi depth in lakes within the Mine Operation Zone, Jericho study area, 3 to 4 August 1996
Figure 3.2.1	Plankton sampling sites within the Mine Operation Zone, Jericho study area, 1996 75
Figure 3.2.2	Density of dominant phytoplankton species in each of six major taxonomic groups during summer and fall in lakes within the Mine Operation Zone, Jericho study area, 1996 76
Figure 3.2.3	Density of major zooplankton species in each of three taxonomic groups during summer and fall in lakes within the Mine Operation Zone, Jericho study area, 1996
Figure 3.3.1	Periphyton sampling sites within the Mine Operation Zone, Jericho study area, 1996 78
Figure 3.3.2	Mean density of the most numerous periphytic algal species among four major taxonomic groups in streams of the Mine Operation Zone, Jericho study area, summer 1996 79
Figure 3.4.1	Benthic macroinvertebrate sampling sites within the Mine Operation Zone, Jericho study area, 1996
Figure 3.5.1	Waterbodies sampled during fisheries program within the Mine Operation Zone, Jericho study area, 1996
Figure 3.5.2	Average catch-per-unit-effort values for fish captured during gill net sampling in lakes during summer and fall within the Mine Operation Zone, Jericho study area, 1996 82
Figure 3.5.3	Comparison of fish numbers recorded in streams within four areas of the Mine Operation Zone, Jericho study area, 1996
Figure 3.5.4	Length-frequency distribution of lake trout in waterbodies within the Mine Operation Zone, Jericho study area, 1996
Figure 3.5.5	Length-frequency distribution of Arctic char in waterbodies within the Mine Operation Zone, Jericho study area, 1996
Figure 3.5.6	Length-frequency distribution of Arctic grayling and round whitefish within the Mine Operation Zone, Jericho study area, 1996

Figure 3.5.7	Frequency of occurrence and percent composition of food items encountered in stomachs of lake trout captured from lakes in the Mine Operation Zone, Jericho study area, 1996 87
Figure 3.5.8	Frequency of occurrence and percent composition of food items encountered in stomachs of Arctic char captured from lakes in the Mine Operation Zone, Jericho study area, 1996.
Figure 3.5.9	Frequency of occurrence and percent composition of food items encountered in stomachs of round whitefish captured from lakes in the Mine Operation Zone, Jericho study area, 1996
Figure 3.6.1	Fish habitat in sampled lakes within the Mine Operation Zone, Jericho study area, 1996.
Figure 3.6.2	Fish habitat in sampled streams within the Mine Operation Zone, Jericho study area, 1996.
Figure 4.1.1	Limnology sampling sites, Borrow Extraction Zone, Jericho study area, 1996 133
Figure 4.1.2	Bathymetric map of Lake O1, Borrow Extraction Zone, Jericho study area, 1996 134
Figure 4.1.3	Bathymetric map of Lake O2, Borrow Extraction Zone, Jericho study area, 1996 135
Figure 4.1.4	Dissolved oxygen and temperature profiles, and Secchi depths in lakes within the Borrow Extraction Zone, Jericho study area, 3 to 4 August 1996
Figure 4.2.1	Plankton sampling sites within the Borrow Extraction Zone, Jericho study area, 1996 138
Figure 4.2.2	Density of the major phytoplankton species in each of six taxonomic groups during summer and fall in Lake O1 within the Borrow Extraction Zone, Jericho study area, 1996 139
Figure 4.2.3	Density of the major zooplankton species in each of three taxonomic groups during summer and fall in Lake O1 within the Borrow Extraction Zone, Jericho study area, 1996 140
Figure 4.3.1	Periphyton sampling sites within the Borrow Extraction Zone, Jericho study area, 1996 141
Figure 4.3.2	Mean density of the most numerous periphytic algal species among four major taxonomic groups in Stream O18 within the Borrow Extraction Zone, Jericho study area, summer 1996
Figure 4.4.1	Benthic macroinvertebrate sampling sites within the Borrow Extraction Zone, Jericho study area, 1996
Figure 4.5.1	Waterbodies sampled during fisheries program within the Borrow Extraction Zone, Jericho study area, 1996
Figure 4.5.2	Average catch-per-unit-effort values for fish captured during gill net sampling in lakes during summer and fall within the Borrow Extraction Zone, Jericho study area, 1996 145
Figure 4.5.3	Comparison of fish numbers recorded in streams within five areas of the Borrow Extraction Zone, Jericho study area, 1996
Figure 4.5.4	Length-frequency distribution of lake trout in waterbodies within the Borrow Extraction Zone, Jericho study area, 1996

Figure 4.5.5	Length-frequency distribution of Arctic char in waterbodies within the Borrow Extraction Zone, Jericho study area, 1996
Figure 4.5.6	Length-frequency distribution of round whitefish and Arctic grayling within the Borrow Extraction Zone, Jericho study area, 1996
Figure 4.5.7	Frequency of occurrence and percent composition of food items encountered in stomachs of lake trout, Arctic char, round whitefish, and Arctic grayling sampled within the Borrow Extraction Zone, Jericho study area, 1996
Figure 4.6.1	Fish habitat in sampled lakes within the Borrow Extraction Zone, Jericho study area, 1996.
Figure 4.6.2	Fish habitat in sampled streams within the Borrow Extraction Zone, Jericho study area, 1996.
Figure 5.1.1	Limnology sampling sites within the Tailings Impoundment/Docking Facility Zone, Jericho study area, 1996
Figure 5.1.2	Bathymetric map of Lake D5, Tailings Impoundment/DockingFacility Zone, Jericho study area, 1996
Figure 5.1.3	Bathymetric map of Lake D4, Tailings Impoundment/Docking Facility Zone, Jericho study area, 1996
Figure 5.1.4	Bathymetric map of Contwoyto Lake bay, Tailings Impoundment/Docking Facility Zone, Jericho study area, 1996
Figure 5.1.5	Dissolved oxygen and temperature profiles, and Secchi depth in lakes within the Tailings Impoundment/Docking Facility Zone, Jericho study area, 3 August 1996 193
Figure 5.2.1	Plankton sampling sites within the Tailings Impoundment/Docking Facility Zone, Jericho study area, 1996
Figure 5.2.2	Density of major phytoplankton species in each of six taxonomic groups during summer and fall in lakes within the Tailings Impoundment/Docking Facility Zone, Jericho study area, 1996
Figure 5.2.3	Density of major zooplankton species in each of three taxonomic groups during summer and fall in lakes within the Tailings Impoundment/Docking Facility Zone, Jericho study area, 1996
Figure 5.4.1	Benthic macroinvertebrate sampling sites within the Tailings Impoundment/Docking Facility Zone, Jericho study area, 1996
Figure 5.5.1	Waterbodies sampled during fisheries program within the Tailings Impoundment/Docking Facility Zone, Jericho study area, 1996
Figure 5.5.2	Average catch-per-unit-effort values for fish captured during gill net sampling in lakes during summer and fall within the Tailings Impoundment/Docking Facility Zone, Jericho study area, 1996
Figure 5.5.3	Comparison of fish numbers recorded in streams within three areas of the Tailings Impoundment/Docking Facility Zone, Jericho study area, 1996

Figure 5.5.4	Length-frequency distribution of lake trout in areas within the Tailings Impoundment/Docking Facility Zone, Jericho study area, 1996
Figure 5.5.5	Length-frequency distribution of Arctic char in areas within the Tailings Impoundment/Docking Facility Zone, Jericho study area, 1996
Figure 5.5.6	Frequency of occurrence and percent composition of food items encountered in stomachs of lake trout captured from lakes within the Tailings Impoundment/Docking Facility Zone, Jericho study area, 1996
Figure 5.5.7	Frequency of occurrence and percent composition of food items encountered in stomachs of Arctic char captured from lakes within the Tailings Impoundment/Docking Facility Zone, Jericho study area, 1996
Figure 5.6.1	Fish habitat in sampled lakes within the Tailings Impoundment/Docking Facility Zone, Jericho study area, 1996
Figure 5.6.2	Fish habitat in sampled streams within the Tailings Impoundment/Docking Facility Zone, Jericho study area, 1996
Figure 6.1.1	Streams surveyed along the all-weather route between the Jericho Diamond Project and the Lupin Mine Site, Jericho study area, 1996
Figure 6.2.1	Stream crossings surveyed along the all-weather route between the Jericho Diamond Project and the Lupin Mine Site, Jericho study area, 1996
Figure 7.5.1	Comparison of length-frequency distributions of lake trout in subarctic waterbodies from three locations

1.0 INTRODUCTION

1.1 BACKGROUND AND PURPOSE

The Jericho Diamond Project was initiated by Lytton Minerals Ltd. in 1995 based on the discovery of a kimberlite pipe adjacent to the southern shore of an unnamed lake (locally known as Carat Lake), which is situated 420 km northeast of Yellowknife in the Northwest Territories. Canamera Geological Ltd. of Vancouver is responsible for coordinating the environmental baseline studies for the Jericho Diamond Project.

In anticipation of possible development of this deposit, Canamera initiated a baseline inventory program in 1995. The program involved collection of data on regional meteorological conditions, water quality, hydrology, wildlife, and aquatic biota. R.L. & L. Environmental Services Ltd. was contracted to complete the aquatic biota component of the baseline inventory program. This component investigated the aquatic community within the Carat Lake drainage in the immediate vicinity of the deposit. The information from the 1995 aquatic baseline inventory was presented in a comprehensive report entitled "Jericho Diamond Project Aquatic Studies, 1995".

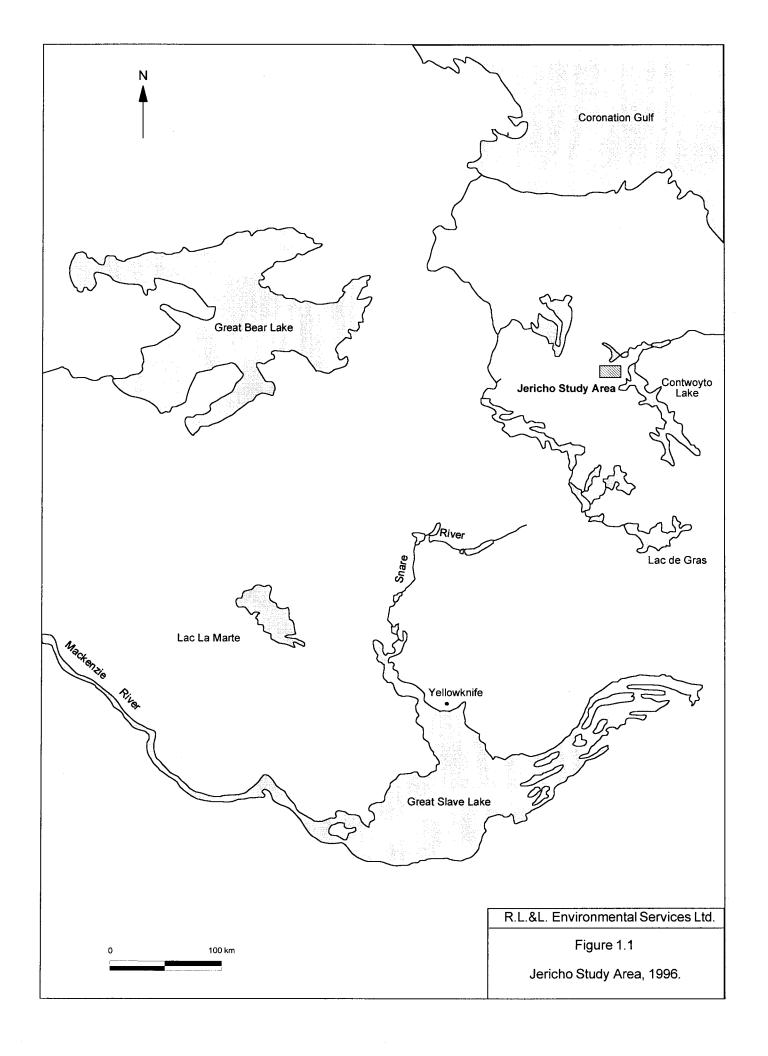
In early 1996, the Jericho Diamond Project progressed to the bulk sampling phase. At the same time, plans were formulated for two development options. These included a stand alone facility (extraction and on-site milling) or an extraction facility (extraction and transportation of ore off-site for milling). This second option involved two transportation scenarios. The first was the transport of ore by barge/winter road to the Lupin mine (i.e., Echo Bay Mines Ltd.) via Contwoyto Lake, while the second required a permanent road to Lupin (approximately 50 km in length).

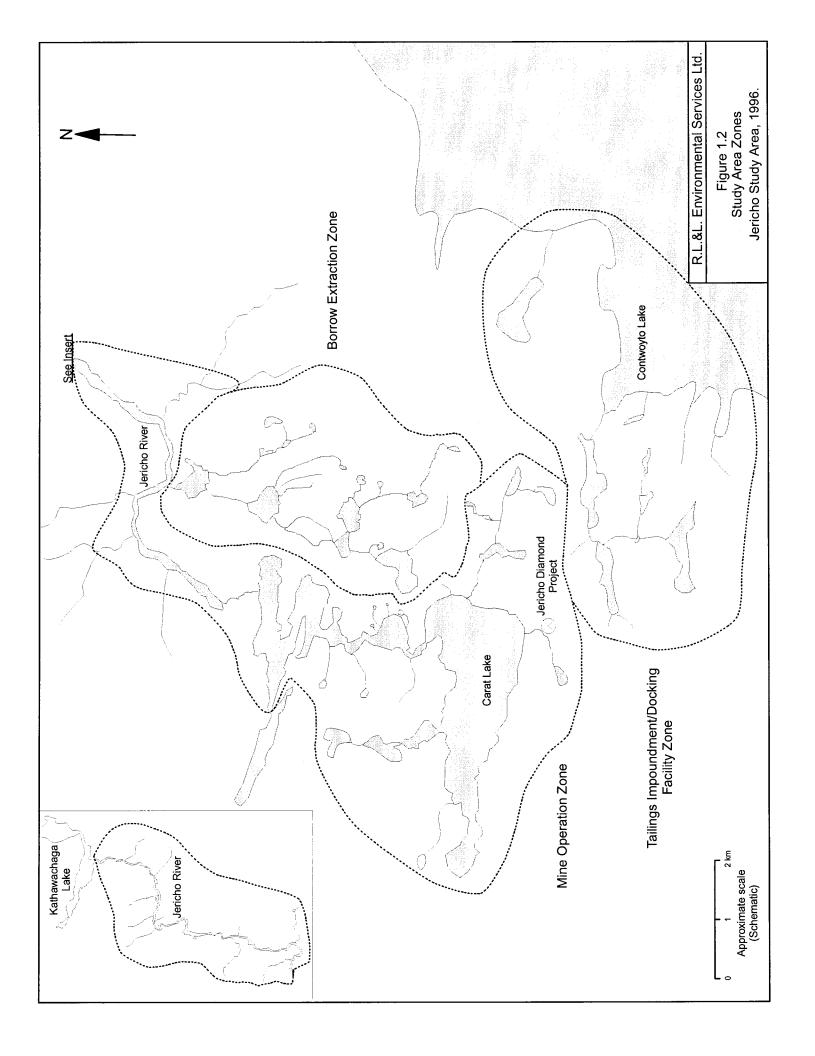
As part of the continuing baseline inventory program for the Jericho Diamond Project, R.L. & L. Environmental Services Ltd. was contracted to complete the aquatic biota component of the study. The purpose of the 1996 program was fourfold:

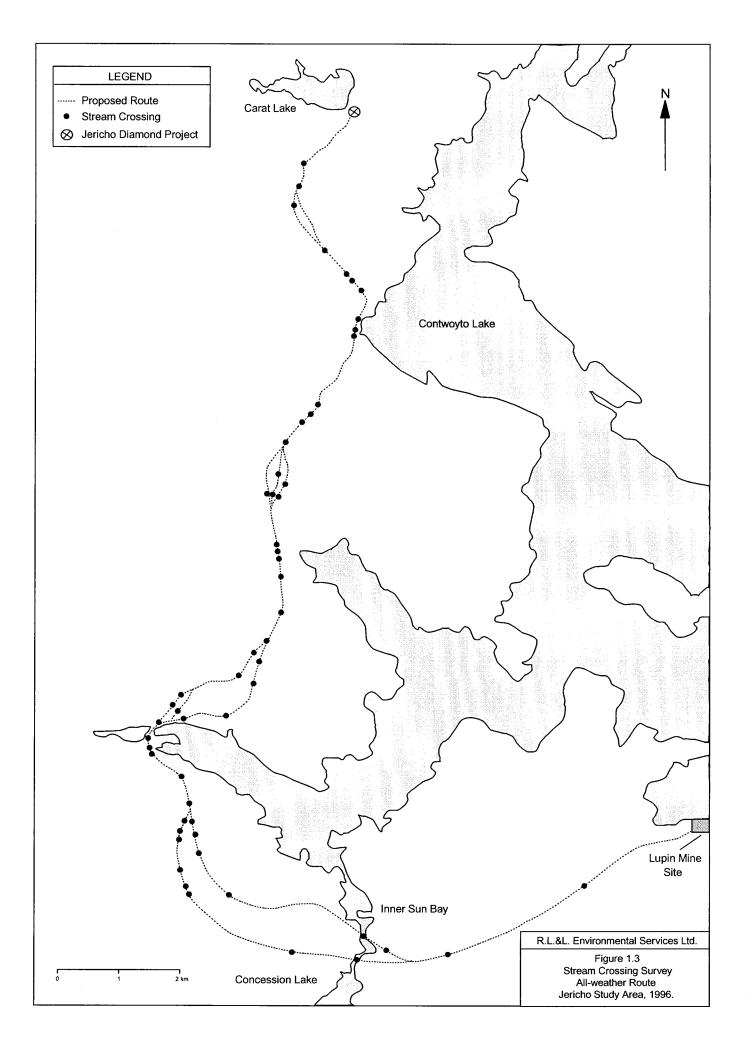
- to address data gaps associated with baseline information collected in the Carat Lake drainage during 1995;
- to collect baseline information from aquatic biological communities in other drainages that may be directly or indirectly impacted by the proposed development;
- to collect preliminary baseline fisheries information at stream crossings along the proposed all-weather route to Lupin; and,
- to summarize this information in a comprehensive report to be used as the basis for an Environmental Impact Assessment.

1.2 STUDY OBJECTIVES

The specific objectives of the 1996 program were as follows:


- to describe the seasonal abundance, distribution, and biological characteristics of nonvertebrate communities (benthic macroinvertebrates, zooplankton, phytoplankton, and periphyton) found in waterbodies in the project area;
- to describe the seasonal abundance, distribution, and biological characteristics of fish species found in waterbodies in the project area, as well as the habitat used by these fish;
- to document background concentrations of metals occurring in fish tissues collected from selected waterbodies in the project area, and;
- to assess the importance of waterbodies that may be impacted by development to fish populations residing within, immediately downstream, and upstream of the development.


1.3 STUDY AREA


The Jericho Diamond Project is located adjacent to the northwest arm of Contwoyto Lake, Northwest Territories, approximately 420 km northeast of Yellowknife at 65° 59' north latitude and 111° 28' west longitude (Figure 1.1).

The study area (hereafter referred to as Jericho study area) encompassed lakes and streams in the immediate vicinity of the Jericho Diamond Project Site (Figure 1.2 and Appendix G3). Waterbodies were chosen for investigation based on the potential for impacts caused by development. Four sampling zones were established. The Mine Operation Zone encompassed Carat Lake and waterbodies situated downstream of the proposed mine site. The Borrow Extraction Zone encompassed waterbodies in a small drainage within an esker complex situated immediately north of the proposed mine. The esker material in this area may be used for construction purposes during project development. The third zone (Tailings Impoundment/Docking Facility Zone), which was situated to the east, encompassed waterbodies that may be used for tailings storage and a small bay of Contwoyto Lake that is the proposed location of the docking facility. The fourth sampling zone included stream crossings along the proposed corridor for the all-weather route to the Lupin Mine Site (Figure 1.3 and Appendix I1).

One additional lake was included in Jericho study area. Fish collections were undertaken at a control lake, located outside of the proposed development area (i.e., 6 km west). This waterbody was used for collections of fish for assessment of background metal concentrations in tissues.

1.4 SITE SELECTION, TIMING, AND LOGISTICS

Site selection was based two criteria: the characteristics of the site should be representative of the area and where appropriate, sites previously sampled in 1995 were resampled in 1996.

The 1996 aquatic biota field sampling program was conducted during three periods. The spring session was completed between 11 and 25 June. This study component was designed to investigate fish use of streams for spawning and rearing, and to establish sampling sites for the summer and fall sessions.

The second field period commenced on 22 July and was completed on 6 August. The sampling program during this period involved several components. Tributary investigations included collection of fish and habitat data from streams previously sampled in the spring, as well as collection of periphyton and benthic macroinvertebrate samples from selected stream locations. The lake sampling program involved collection of limnological data, and samples of phytoplankton, zooplankton, and benthic macroinvertebrates. Fish species distribution and abundance were investigated and a tagging program was undertaken in an attempt to assess fish movements between waterbodies. Tagged fish were also used to develop estimates of fish population size in selected lakes. In addition to these programs, tissue samples were collected from fish in selected lakes within the study area to document background concentrations of trace metals.

The third field period (3-10 September) involved documentation of fall fish distribution and abundance in lakes, and identification of potential spawning areas. Fish tissue samples were also collected in waterbodies where adequate sample sizes were not obtained during summer. Limnological data and plankton samples were also collected during this period.

Access to the site was by fixed-wing aircraft from Yellowknife. Accommodations were at the Canamera Geological Ltd. exploration camp located on the east shore of Carat Lake. Transportation of personnel and equipment to sampling sites was provided by helicopter.

2.0 METHODOLOGY

2.1 FIELD SAMPLING

2.1.1 Limnology

Temperature and dissolved oxygen were measured using an Oxyguard Handy Mark II dissolved oxygen-temperature meter. Measurements were taken at 0.5 m intervals to within 0.5 m of the lake bottom (to avoid contamination of the probe with sediment). Water transparency was measured to the nearest 0.1 m using a standard Secchi disk (20 cm diameter).

At each site, two additional measurements were taken from the water surface. Conductivity was measured using a Hanna HI 8033 conductivity meter and pH was measured using a Fisher Accumet 1001 pH meter.

2.1.2 Plankton

2.1.2.1 Phytoplankton

Phytoplankton were collected during the summer and fall periods. Samples were taken from the euphotic zone of the lake. This zone is equal to the depth of 1% light penetration (approximately two times the Secchi depth). Vertical collections were made using a weighted plastic tube. A sample consisted of a composite of three discrete vertical collections within this zone. In lakes that were shallower than two times the Secchi depth, phytoplankton hauls encompassed the entire water column to 1 m above the lake bottom (to avoid contamination of the sample with sediment). Samples were placed in labelled 500 ml glass containers, preserved with 5% acid-Lugol's solution, and stored in the dark. Three drops of 100% formalin were added to each sample to prevent growth of bacteria and fungi during storage.

2.1.2.2 Zooplankton

Zooplankton samples were collected during summer and fall periods. A sample consisted of a composite of three vertical hauls at a particular site. The depth of each haul was equal to two times the Secchi depth. In lakes that were shallower than two times the Secchi depth, zooplankton hauls encompassed the entire water column to 1 m above the lake bottom (to avoid contamination of the sample with sediment). Zooplankton collections were made with a Wisconsin plankton net constructed with Nitex® mesh (net mouth diameter 13.34 cm). Two zooplankton nets with differing mesh sizes were used during the study; one employed a 0.064 x 0.064 mm mesh, while the other used a 0.355 x 0.355 mm mesh. To account for differences in sampling efficiency (i.e., smaller organisms escaping through the larger mesh size), correction factors were used (see Section 2.2.1.2). To prevent predation by cyclopoid copepods, each sample was immediately preserved in 5% formalin and stored in labelled 500 ml polyethylene bottles. Equipment was thoroughly rinsed after sampling at each site to prevent contamination.

2.1.3 Stream Periphyton

The periphytic community in streams was sampled during the summer period to assess the algal community composition and to measure chlorophyll *a* and ash-free dry mass (AFDM). At each site, three replicates were collected following the methods described in Charlton et al. (1981) and Hickman et al. (1982). Each replicate consisted of scrapings from the surface (5 cm²) of three stones, selected at random, from the stream bottom. Samples used for algal identification and enumeration were placed in individually labelled 250 ml opaque containers and preserved with acid-Lugol's solution. Shortly after collection, two drops of 100% formalin were added to each of these samples to prevent growth of bacteria and fungi. Samples destined for chlorophyll *a* analysis were filtered onto Whatman GF/C filter paper, covered with anhydrous MgCO₃, and frozen. Samples for AFDM were subsampled in the laboratory, from the acid-Lugol's preserved samples.

2.1.4 Benthic Macroinvertebrates

2.1.4.1 Lakes

Benthic macroinvertebrates were sampled from sites located in littoral (<5.0 m depth) and profundal (>5.0 m depth) zones of selected lakes during summer. Three replicate samples were collected at each site using an Ekman grab sampler (area equal to 0.023 m²). Samples were then sieved through a 0.243 mm mesh to remove excess sediments, placed in labelled polyethylene sample bags, and preserved in 10% formalin. Water depth and substrate type were recorded for each sample location.

2.1.4.2 Streams

Benthic macroinvertebrates were collected from stream sites during summer. Three replicate samples were collected at each site. The apparatus used for this purpose was a modified (0.243 mm mesh) Surber sampler (area equal to 0.093 m²). The substrate within the area enclosed by the sampler was thoroughly stirred by hand to a 5 cm depth to dislodge the invertebrates (larger stones were individually cleaned and rinsed). The sample was then preserved with 10% formalin and stored in a labelled bottle. Substrate type was recorded at each site.

2.1.5 Fish

2.1.5.1 Lakes

Fish sampling in lakes focussed on determining species composition and relative abundance, as well as providing samples for analyses of background concentrations of metals in the tissues of selected fish species. In addition, captured fish of selected species not required for other aspects of the program were tagged using numbered Floy anchor tags.

Fish sampling in lakes was undertaken during summer and fall. The primary fish capture method used was standard gang gillnetting. Each gang consisted of six panels (15.2 m x 2.4 m each) of sinking monofilament nylon netting of the following mesh sizes (stretched measure): 1.9 cm, 3.8 cm, 6.4 cm, 8.9 cm, 10.2 cm, and 12.7 cm.

In summer, a variety of habitats were sampled using bottom and surface sets. During fall, sampling sites were chosen based on their potential as spawning habitat for species such as lake trout and Arctic char. This approach was taken in an attempt to identify important spawning sites. Pertinent data recorded at each gill net site included set/pull time, set location/orientation, water depth, and substrate type. Catch rates were assessed by using a net-unit approach (i.e., 100 m² surface area of net fished for the equivalent of a 12-hour period constitutes one net-unit of effort). Catch-per-unit-effort (CPUE) was expressed as the number of fish (by species) per net-unit.

Additional capture techniques were employed during lake sampling. For larger size-classes of fish angling with lures was used. To capture smaller size-classes of fish in habitats not effectively sampled by gillnetting, standard gee traps were used in rocky shoreline areas. Deepwater areas were sampled using jumbo gee traps. Dimensions of standard gee traps were 0.4 m length $\times 0.2 \text{ m}$ diameter with an aperture of 0.02 m. Dimensions of the jumbo gee traps were 1.0 m length $\times 0.5 \text{ m}$ diameter with an aperture of 0.06 m. Both types of traps were baited (i.e., cheese or meat).

Attempts were made to document population size (for the larger size-classes) of lake trout and Arctic char in selected waterbodies. This involved marking fish (using numbered Floy anchor tags) during summer and early fall and then returning in late fall to obtain a cohort of marked fish. An estimate of fish population size was estimated using standard mark-recapture methodology (Petersons Single Census Model; Ricker 1975).

2.1.5.2 Streams

During spring and summer sessions, survey level fish sampling was conducted in representative sections of streams to assess fish species composition, relative abundance, and habitat utilization (spawning, rearing, feeding, and movements). During spring, surveys were undertaken on all streams that were associated with study area lakes. During summer, surveys were limited to streams that contained flowing water and that were deemed to have fish habitat. A variety of sampling methods were used to document the presence of fish in streams; these included visual observations, snorkelling, backpack electrofishing, and angling. The specific methods utilized depended on habitat conditions and stream discharge at the time of sampling. The backpack electrofisher employed during sampling was a Smith-Root Type XII, which is specifically designed for use in low conductivity water.

Estimates of population size were generated for streams containing high densities of fish. A multi-pass removal-depletion method described by Zippin (1958) was utilized to develop these population estimates. Sampling methodology involved placement of block nets (0.5 cm stretched measure mesh) across the channel at upstream and downstream ends of the site to prevent fish movement into or out of the area. A backpack electrofisher was then used to thoroughly sample the enclosed area. The multi-pass removal-depletion method requires a minimum of three removal runs to generate an accurate population estimate. Each removal run consisted of an upstream pass through the enclosed area. Captured fish were placed in a holding tank located at the downstream end of the

enclosed section. All fish were identified, enumerated and measured prior to their release downstream of the lower block net.

2.1.5.3 All-weather Route Stream Crossings

During spring and summer sessions, surveys were completed on sections of streams that were crossed by the proposed all-weather route to Lupin. During spring, visual surveys were undertaken at all potential crossings to assess their value as fish habitat. No fish sampling was undertaken during the spring session. During summer, surveys were limited to stream crossings that contained flowing water and that were deemed to have fish habitat. Sampling methods employed included those described in Section 2.1.5.2.

2.1.5.3 Biological Characteristics

All captured fish were identified to species. Data recorded for each fish included fork length (to the nearest 1 mm), weight (to the nearest 5 g), sex, and maturity. An appropriate ageing structure was also collected (Mackay et al. 1990) from a representative sample of captured fish. Data were recorded on standardized record sheets to facilitate data analyses in the laboratory.

To determine feeding habits, stomach contents of fish that succumbed during sampling were analysed in the field using the method described by Thompson (1959), which is a modification of the numerical method used by Hynes (1950). Each stomach was examined and evaluated for fullness and allotted a designated number of fullness points (i.e., 20 points for a full stomach and 0 points for an empty stomach). After points were allocated for the degree of fullness, the stomach was opened and the points allotted to individual food categories based on their volume. To account for the presence of empty stomachs, values of zero were incorporated into the analysis.

2.1.6 Habitat

2.1.6.1 Lakes

The shoreline habitat characteristics of major lakes in the study area were described using a standardized habitat classification system developed by R.L. & L. Environmental Services Ltd. (Appendix A1). The classification system categorized shoreline habitat into discrete habitat types based on two variables: slope and substrate type. Lake habitat assessments were accomplished by circumnavigating each lake by boat. In addition to categorizing lake shoreline into habitat types, important features such as high quality rearing and spawning areas were identified.

2.1.6.2 Streams

The physical habitat available to fish in study area streams was documented during spring and summer. During spring, a reconnaissance level survey was undertaken on the ground to identify streams that provided habitat for fish populations residing in study area waterbodies. Streams containing barriers to fish passage at their confluence,

or those that were ephemeral (water flow only during spring snow melt or high rainfall events), were characterized as having no value to fish and were excluded from more detailed surveys.

Detailed surveys were undertaken during summer using a variety of methods. The physical habitat provided by streams was described using a classification system specifically developed for this purpose by R.L. & L. Environment al Services Ltd. (Appendix A2). The classification system categorizes stream habitat into discrete habitat types (e.g., Run, Pool, Riffle). Once the stream was described using this system, several parameters were quantified within representative sections. Cross-sectional transects across the stream channel were used to measure water depth, water velocity, substrate type, and stream width. For discharge calculations, mean column velocity and depth were measured at ¼, ½, and ¾ of the wetted channel width. Substrate characteristics were recorded according to the Modified Wentworth Classification System (Appendix A3).

2.1.6.3 All-weather Route Stream Crossings

The habitat available at each stream crossing was assessed during spring and summer. The methods employed included those described in Section 2.1.6.2.

2.1.7 Fish Tissues

To document background metal concentrations, fish tissues (i.e., muscle, liver, and kidney) were collected from lake trout and round whitefish in selected lakes in the study area. The tissue sampling procedures included safeguards to prevent contamination. They included the following:

- use of sterile stainless steel instruments;
- tissue cups rinsed in 5% nitric acid solution; and,
- · covering the work area in plastic.

Dorsal musculature (50 to 100 g) was dissected from each fish and sealed in 120 ml sterile, acid-washed specimen containers. Livers and kidneys were dissected from the fish and stored individually in labelled tissue cups. All tissue samples were kept frozen until the time of analysis.

To allow comparison of metal concentrations in fish tissue from the study area waterbodies to those from lakes unaffected by future development, tissue samples also were collected from fish in a control lake located 6 km west of the study area (outside of the influence of the project development).

2.2 LABORATORY ANALYSES

2.2.1 Plankton

2.2.1.1 Phytoplankton

Prior to laboratory analysis, the phytoplankton samples were inverted gently, and 10 to 100 ml subsamples were dispensed into sedimentation chambers (Lund et al. 1958). After a 24 h sedimentation period, samples were processed. To obtain a comprehensive species list, the entire basal area of the chamber was scanned qualitatively with an inverted microscope (Wild M-40). Taxonomic keys used for identification included Prescott (1970), Taft and Taft (1971), and Webber (1971).

Once a comprehensive species list was formed, cell density was assessed. To calculate cell density (cells/ml), individual cells were enumerated within a specified area of the sedimentation chamber. This was accomplished by counting the number of cells along horizontal transects placed across the specified area. To calculate the cell density of each species in the sample, the number of cells within the specified area was extrapolated to the subsample, and then to the entire sample.

Cell biovolume (μ m³/m³) was calculated by first measuring the physical dimensions (length, width, and depth) of between 10 and 30 cells of each species in the sample. Estimates of cell biovolume were then generated by multiplying the mean dimension of cells belonging to a particular species by the number of cells enumerated for that species. The mean cell biovolume estimate for the subsample was then extrapolated to the entire sample. Species that were enumerated during the qualitative assessment, but not enumerated (i.e., very low numbers or located outside the enumeration transects), were recorded as present.

For diatom identification and enumeration, a separate subsample was concentrated, dried onto a coverslip, ashed in a muffle furnace to remove organic matter, and mounted in Storax.

2.2.1.2 Zooplankton

Zooplankton counts were conducted using a dissecting stereo-microscope (Wild M-5); identifications were made using a compound microscope equipped with a phase-contrast condenser (Wild M-20). Taxonomic keys used for crustacean plankton were Brooks, Wilson and Yeatman (in Edmondson 1959), supplemented by the keys of Brooks (1957), Smirnov (1971), Brandlova et al. (1972), Flössner (1972), and Kiefer (1978). The taxonomic key used for identification of rotifers was the Voigt revision by Koste (1978), supplemented by keys of Ahlstrom (1943) and Ruttner-Kolisko (1974). Chaoboridae were identified using the keys of Cook (1956) and Saether (1970). Specimens were identified to the lowest taxonomic level possible.

Enumeration of zooplankton in each sample involved different techniques that were dependent on taxonomic group. Cladocerans and copepods (all stages) were enumerated either from three 15 ml subsamples or from the entire

sample using a dissecting microscope at magnifications of $12-50\times$. Subsampling was performed on samples that were subjectively assessed to have large numbers of specimens. Rotifers were enumerated from a subsample: a modified Folsom-style splitter was used to create subsamples. Each 15 ml subsample was allowed to settle for 24 h before processing. An inverted microscope ($100 \text{ or } 200\times$) was used to enumerate rotifers by counting either 6 fields (1 field = 0.02625 cm^2) or the entire counting chamber (4.907 cm^2). Subsamples were continually removed from the original sample until approximately 200 mature or identifiable rotifer organisms were processed. Species encountered, but not enumerated due to low numbers, were recorded as present.

Once numbers of organisms within each sample were established, these values were converted to densities per cubic metre. This was accomplished by determining the total volume filtered (i.e., net mouth area x depth of haul x number of hauls) and multiplying by the number of organisms enumerated. To standardize the density data collected using zooplankton nets equipped with different mesh sizes, correction factors were employed. Samples collected with a 0.355 x 0.355 mm bucket mesh were corrected by multiplying density values for macrozooplankton (cladocerans, calanoids, and cyclopoids) by 6 and densities for microzooplankton (rotifers and copepod nauplii) by 10.

Biomass of major taxonomic groups in each sample was also calculated. To calculate biomass, lengths were measured from the first 30 individuals observed in a sample. Lengths of larger zooplankton were measured directly with a microscope equipped with a calibrated Sigma Scan digitizing tablet. Smaller zooplankton, such as rotifers, were measured using an eyepiece graticule and corrected for magnification. Lengths were measured from the first 10-30 individuals of each species observed in each sample. Using length measurements from individual organisms, weights were calculated from published length-weight regression equations (Table 2.1). For each sample, a mean individual weight was calculated by averaging the estimated weights generated from the length-weight regression equation (it is important to average weights and not lengths; Bird and Prairie (1985)). Biomass for each taxonomic group was calculated by multiplying the number enumerated for that sample by the mean individual weight.

Table 2.1 Length-weight regression equations used to calculate zooplankton weights, Jericho study area, 1996.

Organism	Equation	Reference
Copepods (N1-adults)	$lnW(\mu g) = 1.9526 + 2.399 \cdot lnL(mm)$	Bottrell et al. (1976)
Daphnia spp.	$lnW(\mu g) = 1.6 + 2.84 \cdot lnL(mm)$	Bottrell et al. (1976)
Holopedium spp.	$lnW(\mu g) = 6.4957 + 3.052 \cdot lnL(mm)$	Downing (1984)
Rotifers	$\ln W(\mu g) = -10.3815 + 1.574 \cdot \ln L(\mu g)$	Stemberger and Gilbert (1987)

Zooplankton hauls cannot be considered adequately quantitative for sampling rotifers because coarser mesh sizes, especially those >0.065 mm, may allow small forms to escape, or because clogging of the net may occur. Consequently, numbers derived from zooplankton hauls should be considered as a relative comparison of abundance (Green 1977).

2.2.2 Stream Periphyton

In the laboratory, the periphytic algal samples were processed as outlined in Lund et al. (1958). Samples were first mixed and then subjected to serial dilutions (generally 0 to 1000 fold dilutions depending on algal and organic debris in original sample). Subsequently 1 to 10 ml subsamples were dispensed into sedimentation chambers. After a 12-hour sedimentation period, the basal area of each chamber was scanned qualitatively with an inverted Lietz microscope to identify the best dilution for subsequent quantitative analyses and to obtain a comprehensive species list. Once the appropriate dilution was established, taxonomic groups within the sample were identified and enumerated.

Cell biovolume was not used as for phytoplankton (see Section 2.2.1) because such data were difficult to obtain and most periphyton communities were dominated by a few species of filamentous green algae (Chlorophyta), cyanobacteria (Cyanophyta), or diatoms (Bacillariophyta). Chlorophyll a (an estimate of the amount of live algae) and ash-free-dry-mass (AFDM) (an estimate of organic mass) provided estimates of the amount of periphytic material in lieu of biovolume.

Taxonomic keys of Smith (1950), Prescott (1970), and Webber (1971) were used for species identification. Counts were made at a magnification of approximately 450× along horizontal transects across the diameter of the chamber; a minimum of 200 algal units were examined. Species that were encountered, but not enumerated during routine transect counts, were recorded as present.

To identify and enumerate diatoms, subsamples were treated with a mixture of concentrated sulphuric acid, potassium dichromate and hydrogen peroxide followed by repeated washes in distilled water. The cleaned frustules were then dried on cover glasses and mounted in Storax.

Chlorophyll a analysis was conducted using the spectrophotometric acetone extraction method described by Moss (1967a, 1967b). The AFDM subsamples were removed from the acid-Lugol's preserved samples and filtered onto prewashed and preweighed Whatman GF/C filters. They were subsequently dried (at 105°C for 24 h) and weighed. The dried samples were then ashed in a muffle furnace (at 550°C for 1 h) and cooled in a desiccator. The difference between dry mass and ash mass is ash-free dry mass (APHA 1993).

2.2.3 Benthic Macroinvertebrates

2.2.3.1 Lakes

In the laboratory, samples were first processed to remove all extraneous substrate and organic matter. Individual samples were washed to remove the preservative and repeatedly elutriated to remove silt, sand, and gravel (i.e., inorganic materials). This procedure was continued until invertebrates were no longer observed in the elutriated water. The remaining organic and inorganic material was scanned (without a microscope) in an enamelled tray, and large animals (greater than 0.5 cm) were removed. The sample was then fractionated for ease of sorting (using a series of nested sieves) into: a large fraction containing filamentous algae, macrophyte pieces, and plant material (greater than 4 mm;), a coarse fraction (1 - 4 mm); a medium fraction (0.5 - 1 mm); and, a fine fraction (0.25 - 0.5 mm).

Using a dissecting microscope (6 to 42× magnification), invertebrates were then sorted by major taxonomic group and identified to the lowest practical taxonomic level (genus or species where possible). More difficult groups, such as nematodes, were identified to a higher taxonomic level. Keys used for identification included Baumann et al. (1977), Wiggins (1977), Wiederholm (1983), Merritt and Cummins (1984), Brinkhurst (1986), and Clifford (1991).

2.2.3.2 Streams

Laboratory analyses of benthic macroinvertebrate samples collected from streams were conducted in the same manner as described in Section 2.2.3.1 for the lake samples.

2.2.4 Fish Ageing

Fish ageing followed the protocol outlined in Mackay et al. (1990). Otoliths were used to age lake trout, Arctic char, and round whitefish; scales were used to age Arctic grayling. Otoliths, which had been stored dry in labelled envelopes, were first lightly ground and polished with emery cloth (400 grit) to allow sufficient light transmission. Then a binocular dissecting microscope, equipped with a transmitted light source, was used to obtain an age from each structure. Clean, nonregenerated scales were mounted on a glass slide, and a photocopy was made using a Canon PC Printer 80 microfiche reader/printer. Scales were then aged using this photocopy. Each structure was aged by two independent readers. When discrepancies in the assigned age occurred, the two readers conferred to arrive at a consensus. A third independent reader conducted a random check of selected structures to ensure quality control.

Whenever sample sizes permitted, a minimum of 20 structures were aged. When more than 20 structures were available for analysis, a subsample was aged. To obtain a subsample, structures were first ordered sequentially based on fork length and then random selections were made from each 10 mm length-class interval.

2.2.5 Fish Tissues

Analyses of fish tissue samples for background metal concentrations were conducted by Elemental Research Inc. laboratories in Vancouver (Table 2.2). The following is a description of the methods and instrumentation used.

Tissue samples were stored frozen until analyses were undertaken. Samples were prepared for analyses by first homogenizing the tissue in plastic cups using a "Virtis" shearer equipped with stainless steel blades. Prior to homogenization of each sample, the apparatus was cleaned with $18M\Omega$ deionized water. Approximately 1 g of homogenized tissue was then weighed into a precleaned (triple nitric acid) teflon digestion vessel. High purity "Seastar" nitric acid (4 ml) was added and the vessel was capped before being heated at 150°C. The resulting solution was made up to a volume of 25 ml with $18M\Omega$ deionized water for subsequent analyses by ICPMS at a dilution factor of five.

For each sample, a 26 element trace metal scan was performed using ICPMS (Inductively Coupled Argon Plasma/Mass Spectrometer). The instrumentation used to perform the analysis was a Finnegan MAT SOLA ICPMS. Nominal settings used were 1500 W forward power, <5 W reflected, 15 L/min coolant, 1.1 L/min auxiliary, and 0.96 L/min nebuliser flow. Optimization of the lens settings was carried out daily by maximizing the signal obtained from a 100 ppb Y solution.

QA/QC procedures used included running certified reference materials (including NBS1566A-oyster tissue, DORM-2, and DOLT-2) and sample duplicates at a minimum ratio of 1 per 20. Acceptance criteria for CRM's was within 30% of nominal at > 10 times the LOD. For duplicates, acceptance criteria was that the sample and its duplicate were within $\pm 20\%$ of the average value at > 10 times the LOD.

Table 2.2 Detection limits for metal constituents analysed in fish tissue samples, Jericho study area, 1996.

Metal	Abbreviation	Detection Limit (μg/g on "dry weight" basis)	Metal	Abbreviation	Detection Limit (μg/g on "dry weight" basis)
Aluminum	Al	1	Magnesium	Mg	0.05
Antimony	Sb	0.1	Manganese	Mn	0.05
Arsenic	As	0.05	Mercury	Hg	0.005
Barium	Ва	0.01	Molybdenum	Mo	0.1
Beryllium	Be	0.05	Nickel	Ni	0.1
Boron	В	0.5	Phosphorus	PO4	10
Cadmium	Cd	0.05	Potassium	K	0.5
Calcium	Ca	-	Silver	Ag	0.01
Chromium	Cr	0.5	Sodium	Na	0.5
Cobalt	Co	0.05	Strontium	Sr	0.01
Copper	Cu	0.05	Tin	Sn	0.1
Iron	Fe	1	Vanadium	v	0.5
Lead	Pb	0.05	Zinc	Zn	0.05

Moisture content was measured using 1 g of homogenized tissue. The sample was weighed into a preweighed and tared 10 ml glass beaker. The beaker and sample were then dried overnight at 105°C. After cooling to room temperature, the beaker and sample were transferred to a desiccator for 2 h, after which, the beaker with the sample was re-weighed to obtain the loss in moisture.

All results were reported as micrograms per gram on a "dry weight" basis.

2.2.6 Data Processing

Data processing and summarization was completed using an IBM compatible microcomputer. Data were entered and analysed using a variety of software programs including PC-File (Ver. 5.0), Lotus for Windows (Ver. 4.0), SPSS for Windows (Ver. 6.0), and Microsoft Access for Windows (Ver. 7.0). Report figures and maps were generated using Freelance for Windows (Ver. 2.0).

Quality assurance and quality control were an integral part of all phases of data processing. This involved use of standardized formats for data record forms (used during field collections) and electronic data files (used during data processing). Data were checked visually during all stages of data processing (data entry, summarization, and presentation).

3.0 MINE OPERATION ZONE

3.1 LIMNOLOGY

This section provides summary results for lake morphology, temperature and dissolved oxygen profiles, and water transparency measurements in selected lakes of the Mine Operation Zone. Limnological data were collected from five lakes potentially influenced by the proposed development (Lake C1, Carat Lake, Interbasin Two, Interbasin One, and Jericho Lake): two sites were established in Carat Lake (one on each of the two basins in this waterbody), while one site was located on each of the remaining four lakes (Figure 3.1.1). Specific sampling locations are provided in Appendix B1.

3.1.1 Lake Morphology

The morphological characteristics of the five lakes are variable (Table 3.1.1 and Figure 3.1.1). The smallest waterbody surveyed is Lake C1 (3 ha). This lake is situated immediately west of the Jericho Diamond Project site along the south shore of Carat Lake. A preliminary assessment suggests that Lake C1 consists of a single basin with a maximum water depth of 9.0 m. The low shoreline development ratio (1.19) is an indication that there is limited potential for the presence of a littoral zone in this lake. There are no defined inlet streams to this lake, however, it receives subsurface input from a small isolated basin located to the south. There is one outlet stream to Lake C1, which flows through the Jericho Diamond Project site before entering Carat Lake.

Carat Lake is the largest waterbody in the Mine Operation Zone (269 ha); the Jericho Diamond Project is situated along its southwest shore. Carat Lake consists of three basins; the largest comprises the central portion of the lake, while two smaller basins are situated to the west (Figure 3.1.2). The mean depth of this waterbody is 10.8 m and the maximum recorded depth is 32.0 m. Carat Lake exhibits an irregular shoreline, which contributes to a relatively high shoreline development ratio (2.04). There is one major inlet tributary that enters Carat Lake at its extreme western end, as well as several small ephemeral streams along its northern and southern shores. The one outlet stream to Carat Lake exits at its northeast end before entering Interbasin Two.

Interbasin Two is a small waterbody (19 ha) that is part of the system separating Carat Lake from Jericho Lake. A preliminary investigation indicates that it consists of a single basin with a maximum depth of 11.0 m. Similar to findings for Lake C1, it has a low shoreline development ratio (1.18).

Interbasin One receives its water from Interbasin Two and is immediately south of Jericho Lake. This waterbody is separated from Jericho Lake by a narrow deep channel. This waterbody consists of two smaller basins separated by an island-shoal complex. The surface area of Interbasin One is 58 ha and a preliminary assessment indicates that the maximum depth is 11 m.

Jericho Lake is the second largest waterbody surveyed in the Mine Operation Zone; it has a surface area of 69 ha. Jericho Lake is isolated from another basin situated immediately to the west by a narrow, shallow channel. An initial survey of Jericho Lake indicates that it is comprised of a single elongated basin with a maximum depth of 15.0 m. The irregular shoreline of Jericho Lake contributes to its high shoreline development ratio (1.91).

3.1.2 Temperature and Dissolved Oxygen

Temperature and dissolved oxygen profile data from the Mine Operation Zone of the Jericho study area were collected during summer, while surface water data were collected during the fall. Water column oxygen-temperature profiles are depicted in Figure 3.1.3; all data are presented in Appendix B1.

Water depths recorded at the monitoring sites varied from 9 to 24 m. Site W1-2 of Carat Lake was the deepest and Site W4 of Lake C1 was the shallowest. The remaining sites were 10, 11, and 15 m in depth (Sites W1-1, W5 and W6, and W2, respectively) (Figure 3.1.3; Appendix B1).

In summer (3 to 4 August), the temperature profiles of most basins that were 11 m in depth or less indicated uniform mixing (i.e., they were isothermal); in contrast, dissolved oxygen concentrations at the same sites tended to have greater variation. For example, Site W1-1 had water temperatures that varied between 13.5°C at the surface and 13.9°C at the bottom, a difference of only 0.4°C (Figure 3.1.3). Dissolved oxygen concentrations at this site were 10.0 mg/L at the surface and approximately 6.0 to 8.0 mg/L at the lake bottom. Site W4 had water temperatures that ranged from 14.2°C at the surface to 7.4°C at the bottom, while dissolved oxygen varied little throughout the water column (9.3 to 9.9 mg/L). It is not known why oxygen and temperature profiles exhibited these characteristics in the shallow basins; however, the decreasing oxygen concentrations with depth may have been the result of equipment malfunction and were not representative of actual concentrations. Dissolved oxygen concentrations in the surface waters (i.e., 0-1 m) were at 100% saturation. However, under certain conditions (i.e., improper membrane seal over cathode probe) associated pressure increases with depth may affect the performance of the meter (R. Hirsch, Point Four Systems Inc., Port Moody, BC, pers. comm.). There was a general correlation of decreasing dissolved oxygen concentrations with depth, suggesting that pressure did affect the meter's performance.

At the deep basin sites of Carat Lake (Site W1-2) and Jericho Lake (Site W2) thermoclines were noted between 10 to 14 m and 10 to 12 m, respectively (Figure 3.1.3). A thermocline was also recorded at Site W4 on Lake C1 but the water depth where stratification occurred was between 6 and 8 m. At these sites, water temperatures were approximately 14.0°C above the thermocline and 6.0°C below the thermocline. Below the thermocline, dissolved oxygen concentrations tended to increase with depth at sites W1-2 and W2. This observation was likely a reflection of the effects of temperature on the solubility of oxygen (i.e., colder water can hold greater concentrations of dissolved gases). Anoxic conditions were not identified in any of the Mine Operation Zone study lakes.

The surface water temperature of each lake within the Mine Operation Zone was measured in the fall (4 to 5 September). Temperatures at all sites were above freezing (Appendix B1) and ranged from 6.0°C at Site W6 (Interbasin Two) to 8.0°C at Sites W2 (Jericho Lake) and W5 (Interbasin One). The surface waters in all basins, where recordings were collected, were well oxygenated (10.7 to 11.6 mg/L). Surface temperature and dissolved oxygen were not measured at Site W4 (Lake C1) in the fall.

3.1.3 Transparency

Water transparencies did not vary greatly in the summer (3 to 4 August) or fall (4 to 5 September). Secchi depths ranged from 5.1 m at Site W5 (Interbasin One) to 5.5 m at Site W1-1 (Carat Lake) in the summer and from 3.5 to 4.0 m among all monitoring sites in the fall. Water transparency data (Secchi depths) are presented in Figure 3.1.3 and Appendix B1. Based on Secchi depth readings, the euphotic zones (depth to 1% light penetration where algae can still subsist=2×Secchi depth) were approximately 11 m and 8 m in the summer and fall, respectively.

3.1.4 Summary

3.1.4.1 Lake Morphology

The five surveyed lakes in the Mine Operation Zone range in size from 3 ha (Lake C1) to 269 ha (Carat Lake) and exhibit maximum depths of 9 m or greater. Carat Lake is the deepest waterbody in the zone; the maximum depth is 32 m. Based on a bathymetric survey of Carat Lake, this waterbody contains three basins, with the largest basin encompassing the central portion of the lake. Preliminary surveys of each of the other waterbodies indicates that most consist of a single basin; only Interbasin One is composed of two separate basins. Carat, Interbasin One, and Jericho Lakes have shoreline development ratios greater than 1.8, which is an indication of very irregular shorelines. Lake C1 and Interbasin Two have more uniform shoreline configurations and lower ratios (<1.2).

3.1.4.2 Temperature and Dissolved Oxygen

During the 1996 aquatic studies program in the Mine Operation Zone study area, the deep basins of Carat (Site W1-2) and Jericho lakes (Site W2) exhibited thermoclines, while in general, shallower lakes and basins exhibited isothermal conditions. These data suggest that deeper lakes (i.e., greater than 12 m) in the study area stratify during the summer and can be classified as dimictic (thoroughly mix twice a year). The shallower basins can be classified as monomictic (continuous mixing) throughout the open water season.

In summer, the isothermal basins had water temperatures that ranged from 13.3 to 14°C, while those basins with thermoclines had water temperatures that decreased to 5.2°C. In fall, surface water temperatures among the study sites ranged from 6.0 to 8.0°C. The summer dissolved oxygen concentrations ranged from 4.4 to 10.0 mg/L, while fall surface water concentrations varied from 10.7 to 11.6 mg/L.

In summer, dissolved oxygen concentrations below Canadian Water Quality Guidelines for the protection of early life stages of cold-water biota (≥9.5 mg/L; Table 3.1.2) were recorded at several sites. The low dissolved oxygen concentrations recorded at this time were likely the result of equipment malfunction and were not representative of actual concentrations throughout the water column. Dissolved oxygen concentrations at the surface were at 100% saturation and above the 9.5 mg/L criteria. Because these lakes are nutrient poor (R.L. & L Environmental Services Ltd. 1995; Canamera Geological Ltd., unpublished data), dissolved oxygen concentrations should have remained constant throughout the water column, at least to the thermocline. This was not the case, at several sites the concentration was correlated with water depth, which is an indication of equipment malfunction (R. Hirsch, Technical Engineer, Point Four Systems Inc., Port Moody, BC, pers. comm.). As such, the dissolved oxygen concentrations recorded during the summer should be viewed with caution.

3.4.1.3 Transparency

The water transparency levels recorded in the Mine Operation Zone lakes indicated that the euphotic zone (the water depth to which light levels diminish to 1% and can generally sustain phytoplankton life = 2 × Secchi depth; Wetzel 1983) was about 10 to 11 m during the summer and 7 to 8 m during the fall. The amount of light penetration is dependent upon suspended materials (i.e., sediments and other allochthonous matter) and the biological productivity of a lake (i.e., density and biovolume of phytoplankton). The euphotic zone depths are indicative of oligotrophic lakes (i.e., low nutrient content; Wetzel 1983). The smaller euphotic zone depths recorded in fall are likely due to increased densities of phytoplankton compared to the summer (see Section 6.2).

3.2 PLANKTON

To provide baseline information on the plankton community, samples were collected from the Mine Operation Zone of the Jericho study area during summer and fall of 1996. Three sites were established; Sites PL1-1 and PL1-2 on Carat Lake, and Site PL2 on Jericho Lake (Figure 3.2.1). Relevant data are summarized in the following sections; all data are presented in Appendices C1 to C3.

3.2.1 Phytoplankton

Phytoplankton are microscopic free-floating algae (Smith 1950). Summary results of phytoplankton biovolume (microns cubed per metre cubed or μ m³/m³) and density (No. cells/ml) are both presented in this section because density alone does not provide an accurate assessment of a taxon's importance. For example, taxa that are extremely numerous may have a low biovolume, due principally to the small size of individual organisms. Conversely, those taxa that have large biovolumes (due to large individual organism size), may not be numerically abundant. These large bodied groups can contribute significantly to lake productivity. As such, their numbers can influence the abundance and biomass of herbivores that feed on them (generally zooplankton) and they can modify nutrient availability for competing plants or algae.

3.2.1.1 Biovolume

In total, 135 species of algae were identified from the samples collected in the Mine Operation Zone study area (Appendix C2). Table 3.2.1 summarizes biovolumes of major taxonomic groups encountered. In the summer, golden-brown algae (Chrysophyta) had the greatest biovolumes. In Sites PL1-1 and PL1-2 (Carat Lake), golden-brown algae accounted for 51% and 55% of the total biovolume, respectively. In Jericho Lake (Site PL2) golden-brown algae contributed 65% of the total biovolume. Green algae (Chlorophyta) were the second most dominant algal taxon in Sites PL1-1 of Carat Lake and PL2 of Jericho Lake at 22% and 12%, respectively. Dinoflagellates (Pyrrophyta) were the second most dominant (14%) algal group at Site PL1-2 of Carat Lake.

In fall, golden-brown algae remained dominant at all sites; this major taxonomic group accounted from 49% to 56% of the total algal biovolume. Diatoms (Bacillariophyta) were second in importance (17 to 26% of the total) during this period (Table 3.2.1).

3.2.1.2 Density

The relative importance of the most numerous species within each of the six major taxonomic groups is depicted in Figure 3.2.2. Cyanobacteria (Cyanophyta) were the numerically dominant taxa in all the samples that were collected; *Aphanothece clathrata* densities ranged from 2648 to 6519 cells/ml. The cyanobacterium *Aphanocapsa elachista* was also abundant within the sampling sites. However, cyanobacteria typically have very small cells and do not contribute greatly to biovolume.

In summer, the most abundant golden-brown algae were *Ochromonas* sp. and *Stichogloea doederleinii*. These two taxa ranged in density from 63 to 132 cells/ml and 82 to 128 cell/ml, respectively, among the three monitoring sites (Figure 3.2.2; Appendix C2). There was a change in the dominant species of golden-brown algae in the fall; *Chrysococcus* sp. was the most abundant at Site PL1-1 (Carat Lake) and at Site PL2 (Jericho Lake) while *Chrysosphaerella rodhei* dominated Site PL1-2 (Carat Lake) (138, 443, and 198 cells/ml, respectively).

Except for *Achnanthes minutissima* at Site PL1-2 (Carat Lake) in summer, the most abundant diatoms among all monitoring sites and seasons were *Cyclotella comta*, *C. glomerata*, and *C. ocellata*. In general, the diatom community was more diverse and abundant in fall than in summer (Figure 3.2.2; Appendix C2).

3.2.2 Zooplankton

Zooplankton communities are composed of microscopic animals that live in the water column (Pennak 1978; Wetzel 1983). Information describing seasonal differences in zooplankton biomass is summarized in Table 3.2.2, while seasonal differences in density for the dominant taxa belonging to the three major taxonomic groups (Copepoda, Cladocera, and Rotifera) are presented in Figure 3.2.3. All raw data are presented in Appendix C3. Summary results of zooplankton biomass (micrograms per metre cubed or $\mu g/m^3$) and density (No./m³) are both

presented in this section because, as with phytoplankton, density alone does not provide an accurate assessment of a taxon's importance. Taxa that are extremely numerous may have a low biomass, due principally to the small size of individual organisms. Conversely, those taxa that have large biomass (due to large individual organism size), may not be numerically abundant. These large bodied groups can contribute a significant amount to lake productivity. As such, their numbers can influence the abundance and biomass of predators that feed on them (generally other zooplankton and fish) and they can modify the phytoplankton community.

3.2.2.1 Biomass

In summer, water fleas (Cladocera) contributed 95% (Site PL1-1) and 99% (Site PL1-2) of the biomass in Carat Lake. These percentages represent 1.12 and $1.75 \times 10^6 \ \mu g/m^3$, respectively. Zooplankton biomass at Jericho Lake (Site PL2), was dominated by cyclopoid copepods (3530 $\mu g/m^3$) and water fleas (3311 $\mu g/m^3$), which represented 37% and 40% of the total, respectively. In fall, the two Carat Lake sites were dominated by cyclopoid copepods, while the Jericho Lake site was dominated by water fleas (73%, 55%, and 83% of the total biomass, respectively). For example, *Dicyclops bicuspidatus* accounted for 47 389 $\mu g/m^3$ of the zooplankton biomass at Site PL1-2 of Carat Lake while *Holopedium gibberum* had a biomass of 88 358 $\mu g/m^3$ at Site PL2 of Jericho Lake.

3.2.2.2 Density

In summer, two copepod species (*Dicyclops bicuspidatus* and *Leptodiaptomus sicilis*) co-dominated the zooplankton community (Figure 3.2.3). In Site PL1-1 of Carat Lake, *D. bicuspidatus* (1760/m³) was slightly more abundant than *L. sicilis* (1456/m³), while Site PL1-2 of Carat Lake and Site PL2 of Jericho Lake had greater densities of *L. sicilis* (609 and 221/m³, respectively) than *D. bicuspidatus* (152 and 166/m³, respectively). In the fall, *D. bicuspidatus* was the most abundant copepod in Carat Lake (1631 and 3832/m³, at Sites PL1-1 and PL1-2, respectively), while *L. sicilis* was the most abundant copepod in Jericho Lake (1603/m³ at Site PL2). Overall, copepod densities were much greater in the fall than in the summer.

Among the water fleas (Cladocera), *Holopedium gibberum* was the dominant species in Carat Lake; up to 2437/m³ in the summer (Site PL1-2). Water fleas were not numerous in samples collected during fall (29/m³ at Site PL1-2 and 0/m³ at Site PL1-1). Only two water flea species were collected in Jericho Lake and these were not abundant; *Daphnia middendorffiana* (55/m³) during summer, and *H. gibberum* during fall (123/m³)(Figure 3.2.3).

In summer, wheel animal (Rotifera) communities in all three sampling sites were dominated by *Conochilus unicornis* (26 824, 3136, and 1336/m³ at Sites PL1-1, PL1-2, and PL2, respectively). In the fall, *C. unicornis* was second or third most abundant in the two Carat Lake sites (PL1-1 and PL1-2); *Keratella cochlearis* was the most abundant rotifer at these sites (8745 and 7003/m³, respectively). At Site PL2 of Jericho Lake *C. unicornis* remained the dominant wheel animal, while *Kellicottia longispina* was second in abundance (Figure 3.2.3; Appendix C3).

3.2.3 Summary

3.2.3.1 Phytoplankton

The phytoplankton assemblage in lakes within the Mine Operation Zone study area during 1996 was indicative of oligotrophic waterbodies (Wetzel 1983). Golden-brown algae (Chrysophyta) had the greatest biovolumes during summer and fall. Green algae (Chlorophyta), dinoflagellates (Pyrrophyta), and diatoms (Bacillariophyta) were second in importance during summer. In fall, diatoms were second in importance in terms of biovolume.

Due to their small size relative to other taxa, the cyanobacteria (Cyanophyta) *Aphanothece clathrata* and *Aphanocapsa elachista* were the most abundant (up to 6500 and 3000 cells/ml, respectively) algal species identified from all sites in both seasons. In summer, the most abundant golden-brown algae were *Ochromonas* sp. and *Stichogloea doederleinii*. In fall, the dominant species of golden-brown algae changed; *Chrysococcus* sp. was the most abundant taxon at two of the three monitoring sites, while *Chrysosphaerella rodhei* dominated the third site. In general, the diatom community was more diverse and abundant in fall than in summer.

3.2.3.2 Zooplankton

In general, the zooplankton community in the Mine Operation Zone study area exhibited variations in community structure among lakes and seasons. Cladocera was the dominant taxonomic group in all lakes in terms of biomass. Within this group, *Holopedium gibberum* was the most important species. Other taxonomic groups, such as cyclopoid copepods, also accounted for a considerable amount of the zooplankton biomass at some sites. For example, *Dicyclops bicuspidatus* accounted for 47 389 μ g/m³ of the zooplankton biomass at Site PL1-2 of Carat Lake during the fall. *Leptodiaptomus sicilis* and *D. bicuspidatus* accounted for the majority of the calanoid and cyclopoid copepod biomass, respectively. The wheel animals, *Conochilus unicornis* and *Keratella cochlearis* tended to be the most abundant zooplankton species at all monitoring sites during both seasons; however, due to the relatively small size of these animals, they did not have large contributions to the community biomass.

3.3 STREAM PERIPHYTON

Periphyton refers to the community of algae, bacteria, fungi, and their secretions that grow on substrates in freshwater systems (Lock et al. 1984). In addition to having an important role in aquatic trophic relationships (i.e., invertebrates and fish use it as a source of food and shelter), the periphyton community is well suited for use as a biological indicator of environmental conditions, including those imposed by anthropogenic activities. Summary results of periphyton density (No. cells/ml), chlorophyll a concentration (μ g/cm²), and ash-free-dry-mass (AFDM) concentration (μ g/cm²) are presented in this section.

A limited periphyton sampling program was conducted in the summer of 1996. Three replicate periphyton samples were collected from each of three streams in the Mine Operation Zone of the Jericho study area; Site B1 in Stream C1, Site B2 in Stream C15, and Site B4 in the Jericho River (Site O7) (Figure 3.3.1). Data are presented as means

 $(n=3, \pm 1 \text{ standard error})$. Relevant information are summarized in this section; all data are presented in Appendices D1 and D2.

3.3.1 Density

In total, 130 periphytic algal species were identified in the samples collected from the three study streams. Each of the streams tended to have a unique periphytic algal community. Stream C1 (Site B1) was dominated by the cyanobacterium (Cyanophyta) *Lyngbya limnetica* (792 082±111 828 cells/cm²) and the diatom (Bacillariophyta) *Tabellaria flocculosa* (263 649±9336 cells/cm²). Stream C15 (Site B2) had three dominant species of cyanobacteria (*Aphanocapsa elachista*, *Gomphosphaeria naegelianum*, and *Phormidium* sp.) and one diatom (*Achnanthes minutissima*) that were between 92 000 and 118 000 cells/cm² (mean densities). The Jericho River (Site B4) had 428 221±217 399 cells/cm² of *G. naegelianum*; no other species approached this density at this site (Figure 3.3.2; Appendix D2).

3.3.2 Biomass

Mean chlorophyll a concentrations in the three Mine Operation Zone streams (C1, C15, and Jericho River) ranged from $0.007 \pm 0.006 \ \mu g/cm^2$ at Site B2 of Stream C15 to $1.289 \pm 0.430 \ \mu g/cm^2$ at Site B1 of Stream C1 (Appendix D1). AFDM concentrations did not vary as much as chlorophyll a estimates; means ranged from 24.1 to 34.6 mg/cm².

3.3.3 Summary

Each of the three study streams (C1, C15, and Jericho River) of the Mine Operation Zone tended to have a unique periphytic algal community. The most abundant periphytic algae were the cyanobacteria *L. limnetica* and *G. naegelianum*. Among the diatoms, *A. minutissima* and *T. flocculosa* tended to be the most abundant.

The chlorophyll a and AFDM estimates were low at all stream sites. Stream C15 had very low levels of live algae relative to the organic content of periphyton (i.e., live algae was almost non-existent). Stream C1 and the Jericho River had larger amounts of chlorophyll a than did Stream C15. Stream C15 was also unique in that three species of algae were co-dominant, while Stream C1 and the Jericho River had one or two algal species that dominated the periphyton community. The low levels of live algae (i.e., chlorophyll a concentration) and the absence of a single dominant species in Stream C15 indicated that some physical or chemical factor may have affected periphyton at this site. Some variables that could account for these data include: low light penetration, low or no flow velocities, limiting concentrations of essential nutrients, and the presence of a toxic substance.

The amount of chlorophyll a and AFDM found in periphytic communities is controlled primarily by light quality and quantity, water velocity, and nutrient concentrations (Horner and Welch 1981). Moderate current velocities (20 to 100 cm/s) and increasing phosphorus concentrations (to 50 μ g/L total phosphorus) promote periphytic

growth. The locations sampled in the present study were not shaded by riparian vegetation, exhibited current velocities within the range reported by Horner and Welch, and were not exposed to a known toxic substance. Therefore, it is likely that nutrient concentrations were low. Indeed, in 1995 and 1996 total phosphorus concentrations (the nutrient most often limiting algal growth) were below 0.010 and 0.005 mg/L in Carat Lake and the Jericho River, respectively (R.L. & L. Environmental Services Ltd. 1995). In both study years, periphytic biomass estimates (i.e., chlorophyll a and AFDM) in the streams of the Mine Operation Zone were also low and characteristic of oligotrophic conditions.

3.4 BENTHIC MACROINVERTEBRATES

Benthic (bottom-dwelling) macroinvertebrates are an important link in aquatic food webs. Most benthic invertebrates are herbivorous, detrivorous, or filter feeders and derive much of their energy from aquatic plants and algae or organic materials. Some benthic macroinvertebrate species are predactious, generally feeding upon other invertebrates. Many fish species, including early life history stages of piscivorus species, feed upon benthic macroinvertebrates.

3.4.1 Lakes

The lake sampling program was designed to obtain baseline information on benthic macroinvertebrate communities in selected lakes within the Mine Operation Zone of the Jericho study area. In the summer, three replicate samples were collected from the littoral and profundal zones of Carat and Jericho Lakes (Figure 3.4.1). In total, 27 taxonomic groups were identified. The number of taxa in each sample ranged from 4 to 21. Summary data are provided Table 3.4.1 and site specific sampling information is summarized in Appendices E1 and E2.

The mean (±1 standard error) total number of benthic macroinvertebrates in the littoral zone ranged from 3319±1254/m² at Site L1-1 of Carat Lake to 12 420±1803/m² at Site L2 of Jericho Lake (Table 3.4.1). Nematode (roundworms) dominated; densities ranged from 928±331/m² to 2725±1243/m² (Sites L1-1 and L1-2 of Carat Lake, respectively). Chironomidae larvae (midges) as a group (i.e., sum of five subfamilies and tribes) and harpactico id copepods also dominated the littoral benthic community. Jericho Lake (Site L2) had the highest chironomid densities, (6782±3037/m²) while Carat Lake (Site L1-1) had the lowest (767±725/m²); there was about an eight-fold difference in the total number of midges between these sites. Oligochaetes (aquatic earthworms) had greater densities in Carat Lake (Site L1-2) than in Jericho Lake; however, Site L1-1 of Carat Lake had the lowest densities of this taxon. Ostracods (seed shrimps) were identified in samples collected from Jericho Lake but were not found in the Carat Lake samples. Sphaeriids (fingernail clams) were not identified in any of the littoral zone samples.

The mean (± 1 standard error) total number of benthic macroinvertebrates in the profundal zone ranged from $275\pm129/\text{m}^2$ at Site P1-2 of Carat Lake to $2536\pm318/\text{m}^2$ at Site P2 of Jericho Lake (Table 3.4.1). Midge larvae

of the tribe Chironomini was the most abundant taxon of the profundal benthos; Jericho Lake had a mean of 1507/m², while Carat Lake had 0 and 29/m² at Sites P1-1 and P1-2, respectively. Indeed, Jericho Lake had five-fold more chironomid larvae than did Carat Lake. Jericho Lake also had more oligochaetes in the profundal zone than did Carat Lake. Ostracods were only identified in the samples collected from Jericho Lake. Nematodes were only found at Site PL1-1 of Carat Lake.

Mean overall densities of benthic macroinvertebrates were much greater in the littoral zone than in the profundal zone (Table 3.4.1) and, the number of taxonomic groups identified in the littoral zone was greater than the number identified in the profundal zone.

3.4.2 Streams

A benthic macroinvertebrate sampling program was conducted on three streams within the Mine Operation Zone in the summer of 1996 (Figure 3.4.1). One sampling site was established on each of the three study streams; the outlet stream of Lake C1 (Stream C1, Site B1), the outlet stream of Carat Lake (Stream C15, Site B2), and the Jericho River (Site B4). In total, 36 different taxonomic groups were identified. The number of taxa in a given sample ranged from 4 to 22. Site specific sampling information is summarized in Appendix E3, while raw data are presented in Appendix E4.

The benthic macroinvertebrate community in the three study area streams was dominated by oligochaetes, nematodes, chironomids, and hydroids (Coelenterata) (Table 3.4.2). These taxonomic groups tended to have sporadic distributions within each sample site (i.e., large standard errors). The overall mean density (± 1 standard error) of benthic macroinvertebrates in the three study streams ranged from $1387 \pm 526/m^2$ in the Jericho River to $2104 \pm 1337/m^2$ in Stream C1; these densities are low considering that stream environments can be found with densities approaching $10^7/m^2$ (Hynes 1970; Resh and Rosenberg 1984; Rosenberg and Resh 1993).

The benthic macroinvertebrate community structure differed among the three study streams (Table 3.4.2). The mean number of taxonomic groups identified in each stream were 7, 20, and 24 taxa/m², in Streams C1, C15, and the Jericho River, respectively. Stream C1 had large numbers of nematodes and low numbers of chironomids relative to Stream C15 and the Jericho River. In addition, hydroids, ostracods, and stoneflies (Plecoptera) were not identified in samples collected from Stream C1, but were found in Stream C15 and the Jericho River. Water mites (Hydrachnidia) were not found in Stream C15, but were in Stream C1 and the Jericho River. Microturbellarians (microflatworms) and the caddisfly *Gresnia* (Trichoptera) were only found in Stream C15. Differences in the community structure among the three study streams may be attributed, in part, to natural variation and differences in the physical habitat that was sampled (i.e., water depth, flow velocity, substrate composition; Appendix E3).

3.4.3 Summary

3.4.3.1 Lakes

Overall mean densities and number of taxonomic groups of benthic macroinvertebrates were greater in the littoral zones than in the profundal zones of the Mine Operation Zone study lakes. This reflects the higher productivity of shallow-water habitats because of higher water temperatures and greater light penetration. Anoxia of the profundal zone was not recorded during the 1996 open water season (see Section 3.1) and probably was not a factor in benthic macroinvertebrate production. Taxonomic composition was indicative of a short growing season and a homogenous substrate dominated by fine sediments.

In terms of taxonomic composition, the benthic macroinvertebrate communities in the two study lakes were dominated by a few taxa: chironomids, nematodes, oligochaetes, and harpacticoid copepods. Some taxa (e.g., nematodes) were nearly exclusive to the littoral zone, while other taxa (e.g., sphaeriids) were only found in the profundal zone. Jericho Lake had much greater densities of benthic macroinvertebratesthan Carat Lake, suggesting that Jericho Lake is more productive.

3.4.3.2 Streams

Three streams were sampled for benthic macroinvertebrates in the Mine Operation Zone. The benthic communities in these systems were dominated by nematodes, oligochaetes, and chironomids. The species composition and low densities were typical of nutrient poor systems. There were some notable differences in the benthic macroinvertebrate community structure among the three study streams; Stream C1 differed from the other two streams. It had the lowest number of taxonomic groups, largest number of nematodes, and the lowest numbers of chironomids relative to Stream C15 and the Jericho River. In addition, hydroids (Coelenterata), ostracods (seed shrimps), and stoneflies (Plecoptera) were not identified in samples collected from Stream C1, but were found in the other two streams. Differences in physical characteristics among the sampling sites and natural variation may account for some of these differences.

3.5 FISH

3.5.1 Species Composition and Abundance

The 1996 aquatic studies fish sampling program was designed to provide information on species composition and abundance in the Mine Operation Zone. Sampling was conducted during spring, summer, and fall in a variety of habitats using several inventory techniques. In lakes, these techniques included gillnetting, angling, and the use of gee traps. In streams, fish were inventoried using backpack electrofishing and snorkelling. The following section provides summary information for fish communities in selected lakes and streams; all raw data are presented in Appendices F1 to F5.

3.5.1.1 Lakes

During the 1996 fisheries program, five lakes were sampled (Figure 3.5.1). These included Lake C1, Carat Lake, Interbasin Two, Interbasin One, and Jericho Lake. Carat Lake and Jericho Lake were previously sampled during the 1995 program; but, one waterbody (Lake C3), was not included in the present study. This lake was located upstream of the potential impact area and was not used extensively by fish populations residing in Carat Lake (R.L. & L. Environmental Services Ltd. 1995).

In total, 348 fish representing five species were recorded from sampled lakes in the Mine Operation Zone (Table 3.5.1). In order of numerical importance, they were lake trout (235), Arctic char (67), round whitefish (42), slimy sculpin (3), and burbot (1). The relative importance of a particular species within each lake was not constant (Table 3.5.2). In the small headwater lake adjacent to the proposed mine site (Lake C1), lake trout was the only species encountered. In Carat Lake, lake trout dominated the sample (71%), but species such as round whitefish (18%) and Arctic char (11%) were also present. The species composition and relative importance of fish sampled in Interbasin One were very similar to that of Carat Lake. Lake trout dominated the sample (53%), followed by lower numbers of round whitefish (20%) and Arctic char (23%). In Interbasin Two, lake trout was again the most abundant species (89%) followed by round whitefish (9%), however, no Arctic char were captured. In contrast to these waterbodies, the Jericho Lake sample was equally represented by lake trout (55%) and Arctic char (44%); no round whitefish were encountered.

To assess the relative abundance of fish in each of the sampled lakes, gill net catch data were summarized. These data were used for comparison purposes because they were based on a standardized sampling effort and the majority of fish were captured using this technique (341 of 348 fish).

The relative abundance (catch-per-unit-effort or CPUE) values generated for fish captured in each lake (Figure 3.5.2) were generally consistent with the percent composition information. However, the relative abundance of fish varied between seasons and between lakes. Catch rates for most species tended to be higher in fall than in summer (a notable exception was the absence of fish in Interbasin Two during fall).

A number of reasons may explain the higher catch rates recorded during fall. Seasonal differences existed in the sampling strategy employed. In summer, a variety of habitats and locations were sampled to assess fish distribution patterns. In an effort to identify spawning areas, fall sampling was restricted to sites thought to contain suitable spawning habitat. Some of these locations contained high concentrations of fish (e.g., 35 fish/100 m² · 12 h at Site 1 in Carat Lake; Appendix F2). Higher catch rates during fall may also have reflected greater movement by fish, which would have increased their vulnerability to capture by gill nets (i.e., cooler water temperatures in fall may have induced feeding and/or spawning activity). Given these factors, CPUE values recorded during fall may not be indicative of real changes in fish abundance. As such, the following discussion will concentrate on findings made during the summer period.

The data suggested that overall fish numbers differed among groups of lakes; combined CPUE values during summer were 10 fish/100 $\text{m}^2 \cdot 12 \text{ h}$ in Carat, Interbasin Two and Jericho Lakes, compared to 5 fish/100 $\text{m}^2 \cdot 12 \text{ h}$. in Lake C1 and Interbasin One. It is unclear why catch rates differed among these groups of lakes. It is possible that they were related to differences in lake size and productivity.

Catch rates for specific species also varied among lakes. Lake trout was the dominant species in each waterbody during summer, however, CPUE values were highest in Interbasin Two (9 fish/100 m $^2 \cdot 12$ h), moderately high in Lake C1, Carat Lake, and Jericho Lake (approximately 6 fish/100 m $^2 \cdot 12$ h), and lowest in Interbasin One (4 fish/100 m $^2 \cdot 12$ h). Arctic char exhibited a similar catch rate to lake trout in Jericho Lake (6 fish/100 m $^2 \cdot 12$ h), but were much less abundant in other sampled waterbodies. In contrast, round whitefish exhibited relatively low CPUE values in all lakes where they were encountered (0.1 to 3 fish/100 m $^2 \cdot 12$ h).

3.5.1.2 Streams

Fish were encountered in 21 of the 27 sampled streams within the Mine Operation Zone (Figure 3.5.1). These streams were located in four general areas: Carat Lake (5), Interbasin (4), upper Jericho River (5 tributaries and mainstem Jericho River), and lower Jericho River (5 tributaries and mainstem Jericho River). Most of these watercourses were investigated during the 1995 fisheries program. Exceptions included the lower section of the Jericho River and five of its tributaries. This area of the Jericho River was included in the current fisheries program to ascertain its importance to fish populations that may also utilize upstream areas of the Jericho River.

In total, 693 fish representing seven species were enumerated (Table 3.5.3). Arctic grayling dominated the sample (329), followed in decreasing order of abundance by, ninespine stickleback (126), Arctic char (75), slimy sculpin (74), burbot (47), lake trout (25), and round whitefish (17). The number of fish recorded varied depending on sampling area (Table 3.5.4). Most fish were recorded from streams in the Carat Lake area (275). In the Jericho River area, 213 fish were encountered in the upper section, while 188 fish were recorded in the lower section. Only seventeen fish were encountered within the Interbasin streams.

The number of species encountered varied depending on sampling area (Table 3.5.4). Highest diversity occurred in the upper Jericho River area where seven species were recorded; four species occurred in the lower Jericho River area. Six species were identified in the Carat Lake area streams (all except ninespine stickleback), while five species were found within the Interbasin area (all except ninespine stickleback and round whitefish). It should be noted that ninespine stickleback were not encountered in any waterbody upstream of the cascade on the Jericho River (situated immediately downstream of Jericho Lake).

The relative importance of each species in the Mine Operation Zone differed among areas. In Carat Lake area streams, Arctic grayling dominated the sample (38%), followed by Arctic char (25%) and slimy sculpin (24%). Species such as burbot, lake trout, and round whitefish were also present, but were much less important (<7%).

Although the number of fish in the Interbasin area streams was low (<15 fish), the relative importance of each species was generally similar to that of the Carat Lake area; Arctic grayling (59%) and slimy sculpin (24%) accounted for most of the sample. In the upper Jericho River area, ninespine stickleback was the most numerous fish (41%), although Arctic grayling also accounted for a large percentage of the sample (32%). In the lower section of the Jericho River area, Arctic grayling was much more important relative to ninespine stickleback (77% compared to 20%, respectively).

The number of fish and species composition varied between individual streams within each area (Figure 3.5.3). Of the five streams inventoried in the Carat Lake area, species diversity was highest in Stream C1 (4). The majority of fish recorded in this stream were Arctic char (48). Stream C6 contained the highest number of fish of any stream in the area and these were dominated by Arctic grayling (105). It should be noted that this high number was related to the large amount of sampling effort expended on this particular stream (Appendix F3). Fish numbers were lower in all other systems in the Carat Lake area. Arctic char was the dominant species in Streams C2 and C2A (10 and 9 fish, respectively), while slimy sculpin was the dominant species in Stream C4 (23 fish).

There were a paucity of fish in most streams within the Interbasin area. Very few fish were encountered in Streams C10, C12, and C13. The species encountered in these tributaries were Arctic char, burbot, and slimy sculpin. Stream C15, which represented the main channel connecting Carat Lake to Interbasin Two, contained the highest number of fish (11). Ten Arctic grayling and one lake trout were recorded in this system.

In total, 11 systems were inventoried in the Jericho River area. These included 5 tributaries situated in the upper reach of Jericho River (Streams O1 to O4 and O8), 5 tributaries in the lower reach of Jericho River (Streams O23 to O27), and the mainstem Jericho River (Sections O7A [upper] and O7B [lower]).

In the upper reach of Jericho River the highest species diversity (5) and fish number (114) occurred in Stream O1. Ninespine stickleback was the dominant species in this system (74 fish). Stream O7A contained the same number of species (5) and the next highest number of fish (57); Arctic grayling dominated in this stream (40 fish). Lower numbers of fish were recorded in all other tributaries of the upper Jericho River (<25 fish).

In the lower Jericho River, diversity was lower (between one and three species). In this area, Arctic grayling was the numerically dominant species in most sampled tributaries. Numbers were highest in Streams O7B (54), O24 (33), O25 (40), and O26 (15). Ninespine stickleback were also relatively abundant in Stream O25 (13) and O26 (24).

3.5.2 Biological Characteristics

An important component of the 1996 fisheries program was to describe the biological characteristics of fish species encountered in the Mine Operation Zone. Characteristics described in this section include: length-frequency distributions, length-weight relationships, mean condition factors, age-at-maturity, mean length-at-age, and mean weight-at-age. Because much of this information was collected from fish that succumbed during sampling, and mortality rates were generally low, sample sizes were small. Unless otherwise stated, data from all sampling sessions and sampling methods have been combined for the analyses. Raw data used for these analyses are presented in Appendix F5.

3.5.2.1 Lake trout

Lake trout captured in the Mine Operation Zone ranged in fork length from 85 to 960 mm, however, few individuals were less than 160 mm or greater than 660 mm in length (Figure 3.5.4). Length-frequency distributions of fish sampled from the Carat Lake, Interbasin (data for Interbasin One and Interbasin Two combined), and Jericho Lake systems were similar and tended to exhibit bimodal distributions. These groupings occurred between 160 and 260 mm and between 400 and 600 mm. Length data were also collected from lake trout captured in Lake C1, however, the sample was too small to establish an accurate assessment of the length-frequency distribution (n=12). Lengths of lake trout in this small waterbody ranged from 176 to 429 mm fork length (Appendix F5).

Length-weight regression equations and mean condition factors for lake trout sampled from lakes within the Mine Operation Zone during summer are presented in Table 3.5.5.

Age-at-length and age-at-weight information for a sample of lake trout captured in Carat Lake during summer are provided in Table 3.5.6. Fish in this sample ranged in age from 1 to 29 years. Caution should be used when interpreting this information. The sample used for ageing was small (n=21) and there was variation inherent to this type of data (subarctic fish populations typically exhibit a great range in age for fish of a given length [Johnson 1972]). As such, this information provides only a representative cross-section of the population and should not be interpreted as an accurate description of growth rate. As such, it should not be used for comparison of growth curves among different fish populations.

Limited data were available to assess age-at-maturity for lake trout in the Mine Operation Zone. Information for lake trout in Carat Lake suggested that these fish became sexually mature at approximately 15 years of age. The smallest sexually mature lake trout encountered was 421 mm fork length. This fish was a ripe male captured from Carat Lake. Nonfecund lake trout were identified during the present study (i.e., mature fish that did not spawn that year). The percentage of nonfecund individuals in the sample that could be assessed for sexual maturity was 23% (n=98).

3.5.2.2 Arctic Char

The fork length of Arctic char sampled from waterbodies in the Mine Operation Zone ranged from 34 to 639 mm (Figure 3.5.5). However, the length-frequency distributions of fish sampled from each system differed. In the Carat Lake system, fish less than 120 mm in length dominated the sample. These individuals represented young-of-the-year and yearling fish captured from tributary streams. In the other two systems (Interbasin and Jericho Lake), distributions were dominated by fish greater than 160 mm fork length; these larger individuals were encountered in lakes. The Jericho Lake sample exhibited a bimodal length-frequency distribution that was typical of lake dwelling fish populations in the study area. Groupings occurred between 160 and 280 mm and between 480 and 660 mm.

Length-weight regression equations and mean condition factors for Arctic char sampled from lakes within the Mine Operation Zone during summer are presented in Table 3.5.7.

Age-at-length and age-at-weight information for a sample of Arctic char captured from the Carat Lake system during summer are presented in Table 3.5.6. Fish in this sample ranged in age from 0 to 12 years. As for lake trout, caution should be used when interpreting these data. The sample used for ageing was small (n=21) and there was variation inherent to this type of data (subarctic fish populations typically exhibit a great range in age for fish of a given length [Johnson 1972]). As such, this information provides only a representative cross-section of the population and should not be interpreted as an accurate description of growth rate. As such, it should not be used for comparison of growth curves among different fish populations.

Limited age-at-maturity data for Arctic char captured in the Mine Operation Zone suggests that fish became sexually mature at 10 years of age. The smallest sexually mature Arctic char was 407 mm fork length. This fish was a ripe female captured from Jericho Lake. Nonfecund Arctic char were also recorded during the study. The percentage of nonfecund individuals in the sample of mature fish that could be assessed for sexual maturity was 27% (n=22).

3.5.2.3 Round Whitefish

The fork length of round whitefish sampled from waterbodies in the Mine Operation Zone ranged from 53 to 532 mm (Figure 3.5.6); the majority of fish were greater than 300 mm fork length. The limited number of fish less than 100 mm in fork length were captured from study area streams. The median length of sampled fish was 424 mm.

The length-weight regression equation and mean condition for round whitefish sampled from the Mine Operation Zone waterbodies during summer was:

Weight (g) = $1.432 * 10^{-5} *$ Fork Length (mm)^{2.968} where: n=27 and $r^2=0.998$; and,

Mean Condition Factor = 1.195 ± 0.033 (SE).

Age-at-length and age-at-weight information for a sample of round whitefish captured from the Carat Lake system during summer and fall are presented in Table 3.5.6. Fish in this sample ranged in age from 1 to 29 years. Past investigations of subarctic round whitefish populations have not documented the existence of fish 15 years of age and older (Kennedy 1949 and Mackay 1989). However, several individuals in the Carat Lake sample did exceed this age. This discrepancy can be explained by use of different ageing structures; past studies have employed scales, whereas the present study utilized otoliths. It is now commonly accepted that otoliths allow a more accurate assessment of fish age than scales, particularly for older fish (Jessop 1972 and Mackay et al. 1990).

Limited data were available to assess the age-at-maturity data for round whitefish captured in the Mine Operation Zone. These data suggest that fish became sexually mature at 7 years of age. The smallest sexually mature round whitefish encountered during the study was 316 mm in fork length. This fish was a ripe female captured from Carat Lake. Nonfecund round whitefish were not recorded during the study.

3.5.2.4 Arctic grayling

The fork length of Arctic grayling sampled from waterbodies within the Mine Operation Zone ranged from 29 to 258 mm (Figure 3.5.6). The majority of these fish were less than 70 mm fork length (median length=49 mm). All sampled fish were captured from study area streams and represented either young-of-the-year (modal peak of 40 mm), juvenile (modal peak of 120 mm), or adult fish (258 mm fork length).

The length-weight regression equation and mean condition factor for Arctic grayling sampled from the Mine Operation Zone (all seasons combined) was:

Weight (g) = $1.713 * 10^{-6} *$ Fork Length (mm)^{3.347} where: n=34 and $r^2=0.869$; and,

Mean Condition Factor = 0.996 ± 0.039 (SE).

Ages were assessed for Arctic grayling sampled from the Mine Operation Zone waterbodies using summer and fall data combined (Table 3.5.6). Fish in this sample ranged in age from 0 to 4 years. No age-at-maturity data were available for this species.

3.5.3 Feeding Habits

Stomach contents of three species (lake trout, Arctic char, and round whitefish) were analysed to assess feeding habits (all seasons combined). Data were collected from fish that succumbed during capture or that were sacrificed

for collection of tissue samples. The information is presented as frequency of occurrence and percent composition of food items by volume. The raw data used for these analyses can be found in Appendix F5.

3.5.3.1 Lake trout

The diet of lake trout consisted principally of zooplankton (Figure 3.5.7). This was the dominant food item in fish stomachs from Carat, Interbasin, and Jericho Lakes, where it exceeded 50% occurrence and 60% composition by volume. Other food items consumed were fish, chironomids (midges), trichopterans (caddis flies), pelecypods (clams), and gastropods (snails). Only in the Jericho Lake sample did one of these food items (fish) exceed 15% occurrence and 20% composition by volume.

3.5.3.2 Arctic char

The diet of Arctic char was very similar to that of lake trout; it consisted primarily of zooplankton (Figure 3.5.8). This was the dominant food item in all three lakes; it exceeded 60% occurrence and 70% composition by volume. Other food items consumed were fish, chironomids, and pelecypods, however, none of these categories exceeded 10% occurrence or 20% composition by volume.

3.5.3.3 Round whitefish

Food habits were assessed for round whitefish sampled from Carat and Interbasin Lakes. In Carat Lake, this species consumed a variety of food items, which included zooplankton, fish, trichopterans, chironomids, and pelecypods (Figure 3.5.9). The dominant food consumed was trichopterans (67% occurrence and 55% composition by volume). Other food items did not exceed 21% occurrence or 17% composition by volume. Similarly, trichopterans were also an important component in the diet of round whitefish in the Interbasin Lakes sample (50% occurrence and 57% composition by volume). In this area, zooplankton was the only other food item consumed and was of equal importance to trichopterans (50% occurrence and 43% composition by volume).

3.5.4 Fish Movements

The Mine Operation Zone of the Jericho study area contains several lakes that are interconnected by large streams. As such, the potential exists for fish to undertake movements between waterbodies. To assess movement patterns of fish, a tagging program was initiated in 1995 and continued during the present study. Lake trout, Arctic char, and Arctic grayling in good physical condition were tagged and released. Round whitefish were not included in this study component because captured individuals of this species generally were in poor physical condition.

During the present study, 59 lake trout and 19 Arctic char were tagged and released in four lakes (Table 3.5.8). These marked fish were in addition to the 57 lake trout, 15 Arctic char, and 1 Arctic grayling originally tagged in 1995 (R.L. & L. Environmental Services Ltd. (1995). Of these tagged fish, only seven individuals were recaptured (two lake trout and five Arctic char); three of these fish had been tagged and released in 1995. These

results suggest that the tag return rate was low for both species (2% for lake trout and 15% for Arctic char). Probable reasons for low recapture rates were the small number of marked fish released into the population, loss of tags from marked fish, and removal of marked fish from the population. There is evidence that mortality caused by predation may be a significant factor in removal of marked fish from the population. Three tags were recovered from the stomachs of fish during assessments of feeding habits; if these tags are included in the recapture data set, they represent 30% of all recaptures. The size of tagged fish was apparently not a deterrent to predation. Two of these tags were placed fish greater than 320 mm in fork length; a 342 mm lake trout and a 440 mm Arctic char.

The limited recapture results suggest that there is little movement of fish between waterbodies. Only two of the seven marked fish were recaptured outside of their waterbody of origin. The two fish that did move were Arctic char that were originally tagged in Jericho Lake. Both fish were subsequently recaptured in Interbasin One during the fall sampling period; a waterbody that is connected to Jericho Lake via a narrow, deep channel. These results indicate that Arctic char do move between these two waterbodies. One possible reason for movement of Arctic char between Jericho Lake and Interbasin One could be spawning related activity; both fish were sexually mature and ready to spawn at the time of recapture.

These limited results make it difficult to assess movement patterns of fish in the Mine Operation Zone. However, characteristics of the major watercourses in the area and fish enumeration data can also be used to predict whether movements of large numbers of fish occur between waterbodies.

Two main watercourses exist in the Mine Operation Zone. Stream C15 connects Carat Lake to the Interbasin Lakes. This watercourse is a narrowing of the basin between these two waterbodies. It is shallow and is dominated by sand substrates. These characteristics would hamper, but not prevent, movement of large adult fish between these waterbodies.

The second main watercourse is the outlet system to Jericho Lake (Jericho River). This stream flows from Jericho Lake in a northward direction to connect with the Burnside River drainage system (Kathawachaga Lake). Because Jericho River is relatively large (see Section 3.6) and is connected to the larger Burnside River system, there is the potential for annual movements of fish into and through the study area. However, the presence of a cascade area at the outlet of Jericho Lake, (caused by a decrease in elevation of 15 m) creates a major, but not impassable, barrier to fish passage. The presence of this barrier severely limits movements of fish into study area lakes.

To establish whether fish attempted to move into the study area via the outlet system, snorkel surveys were undertaken in Jericho River during spring, summer, and fall. The surveys were used to count any large fish that may have been staging immediately downstream of the cascade area. The three surveys identified no fish concentrations at the base of the cascade; results that are similar to findings made in 1995. As such, large numbers of fish do not undertake annual upstream migrations from the Burnside system into the Jericho Lake area.

3.5.5 Resource and Potential Harvest

Based on available information, waterbodies in the Mine Operation Zone were not used extensively for commercial or domestic fisheries. However, recreational use by personnel associated with exploration activity did occur. Personnel housed in the Canamera Geological Ltd. exploration camp actively fished Carat Lake during the 1996 study period. No anglers were observed using other lakes or any streams in the Mine Operation Zone.

The relatively small size of study area lakes and their low productivity make their sport fish populations susceptible to over harvest. To estimate the annual sport fish harvest a waterbody can support, an equation that employs a lake's surface area, was developed by Evans et al. (1990) for Northern Ontario. This equation has been recommended to calculate potential annual harvest of lake trout in inland lakes (Oliver et al. 1991) and is as follows:

$$\log_{10} H = 0.60 = 0.72 \log_{10} A$$

Where: H = potential annual harvest of lake trout (kg).

A = surface area (ha) of lake (lake surface areas based on 1:50 000 scale N.T.S. maps).

Using this formula, the potential annual harvest of lake trout ranged from 8 kg in Lake C1 to 224 kg in Carat Lake, with the larger lakes having the highest values (Table 3.5.9). This information indicates that lake trout are susceptible to over harvest. It should also be noted that these values may be biassed upward due to a number of environmental differences between subarctic lakes and waterbodies in northern Ontario. Lower nutrient levels, a colder water temperature regime, and a shorter open water period in the subarctic region would significantly lower the potential harvest available in these lakes compared to those in northern Ontario.

3.5.6 Summary

Sampled lakes in the Mine Operation Zone supported populations of lake trout, round whitefish, and Arctic char. Lake trout was the predominant species with Arctic char and round whitefish being less numerous in most lakes. Notable exceptions were the absence of round whitefish in Jericho Lake and the presence of only lake trout in Lake C1. Based on abundance indices (catch rates using standardized gill net sets), overall fish densities in summer were similar among Carat Lake, Interbasin Two and Jericho Lake (10 fish/100 $m^2 \cdot 12$ h) and among Lake C1 and Interbasin Two (5 fish/100 $m^2 \cdot 12$ h). It is unclear why catch rates differed between lakes. It is possible that they were related to differences in lake size and productivity.

Several fish species were encountered in sampled streams. Arctic grayling, Arctic char, and slimy sculpin tended to be the most numerous species, followed by lower numbers of lake trout, round whitefish, and burbot. One species, ninespine stickleback, was also relatively abundant, but was present only in the Jericho River system below the cascade. With the possible exception of the Jericho River, sampled streams provided habitat to fish only during the open water period (most likely froze to the channel bottom in winter). Therefore, the presence of

species such as Arctic grayling and burbot in sampled streams indicated that adults of these species were present in the lakes, even though they were not encountered during lake sampling.

Overall, low numbers of fish were recorded in sampled streams. However, in the Carat Lake area, Stream C1 supported a diverse assemblage of species and it contained the highest number of Arctic char recorded in the Mine Operation Zone. Likewise, Stream C6 supported the highest number of Arctic grayling. With the exception of Stream C15, which is the connecting watercourse between two lakes, streams in the Interbasin area contained very few fish. In the Jericho River area, high fish numbers were recorded in the Sections O7A and OB, as well as in several tributary streams. These were Streams O1, O24, and O25, which all contained high numbers of Arctic grayling.

The biological characteristics of fish populations in the Mine Operation Zone indicated that they were slow growing, late maturing, and dominated by older age-classes. Lake dwelling species (lake trout, Arctic char, and round whitefish) tended to exhibit bimodal length-frequency distributions and were dominated by larger older fish. To some extent, this reflected the sampling methodology employed (smaller size-classes were not effectively sampled using gill nets), however, these data are typical of subarctic fish populations residing in cold, oligotrophic waterbodies. It has been suggested that these characteristics are indicative of unexploited fish populations in a state of equilibrium with their environment (Johnson 1976).

The feeding habits of fish in the Mine Operation Zone were related to a species feeding habits and the most abundant food item available. Zooplankton was the dominant food group identified in lake trout and Arctic char stomachs, although fish was also consumed. In contrast, aquatic insects (predominantly trichopterans) were present in round whitefish stomachs. Other food items consumed by this species were pelecypods and zooplankton.

Limited recapture data for tagged fish made it difficult to assess movement patterns of fish in the Mine Operation Zone. However, characteristics of the major watercourses in the area and fish enumeration data indicated that large numbers of fish did not undertake movements between waterbodies. Survey data also indicated that, annual movements of fish into and through the study area lakes from downstream areas of the Burnside River system does not occur. This is likely due to the presence of a cascade immediately downstream of Jericho Lake on the Jericho River, which is a significant barrier to fish passage.

Based on available information, waterbodies in the Mine Operation Zone were not used extensively for commercial or domestic fisheries. However, recreational use by personnel associated with exploration activity did occur. The biological characteristics of fish populations in these waterbodies (i.e., slow growing and late maturing), the relatively small size of these lakes, and their low productivity make their sport fish populations susceptible to over harvest.

3.6 HABITAT AND HABITAT USE

This study component was designed to describe aquatic habitat in lakes and streams in the Mine Operation Zone and to assess its value to fish communities. The 1996 program was a continuation of work undertaken in 1995 (R.L. & L. Environmental Services Ltd. 1995). This section provides information for waterbodies not previously investigated, as well as additional data for waterbodies that were surveyed in 1995. Raw data collected during the present study are provided in Appendices G1 and G2.

3.6.1 Lakes

The shoreline habitat characteristics of five waterbodies in the Mine Operation Zone were surveyed: Carat Lake, Jericho Lake, Interbasin One, Interbasin Two, and Lake C1 (Figure 3.6.1). Surveys were designed to provide a general assessment of the shoreline characteristics of each lake and to identify potential high quality spawning and rearing habitats.

Surveys indicated that the shorelines of Carat Lake, Lake C1, and Jericho Lake were dominated by cobble-boulder substrates (Table 3.6.1). The Carat Lake shoreline was dominated by cobble-boulder substrates of low (56%) or moderate slopes (31%). These characteristics were also recorded for Lake C1; 100% of the shoreline was composed of cobble-boulder substrates. Although cobble-boulder substrates were important in Jericho Lake, bedrock substrates were equally important (50%). In Carat and Jericho Lakes, substrates consisting of fine substrates (sand and gravels) accounted for less than 15% of the shoreline and were limited in distribution to the eastern basins of both waterbodies.

In contrast to the aforementioned lakes, shoreline areas of Interbasin One and Interbasin Two contained extensive areas dominated by fine substrates consisting of sands and gravels. In Interbasin One, these areas accounted for 35% (low slope) and 12% (moderate slope) of the shoreline. In Interbasin Two fine substrates and low slopes dominated the shoreline (64%).

Potential spawning habitats were also identified during the shoreline habitat surveys. Spawning habitat required by lake dwelling species such as lake trout, Arctic char, and round whitefish is characterized by the presence of clean gravel to boulder-sized substrate in areas sufficiently deep to avoid freezing (Scott and Crossman 1973). Areas with these characteristics were widely distributed in all surveyed waterbodies, which suggests that spawning habitat was not limited in any of the lakes surveyed.

A number of sites exhibiting characteristics of high quality spawning habitat were located (i.e., contained an abundance of clean substrates, exhibited moderate shoreline slope into deep water, and were positioned in areas that promote water movement) (Figure 3.6.1). Concentrations of spawning lake trout recorded at one of these sites (i.e., northeast shore of Carat Lake) confirmed these findings.

Shoreline habitat surveys did not identify extensive areas containing potential rearing habitat. Rearing habitat suitable for lake dwelling fish species is characterized by shallow-water zones exhibiting low slopes and fine substrates that support the growth of aquatic macrophytes (Randall et al. 1996). These features provide shelter (i.e., protection from predators and source of food) to younger age-classes of fish. In addition, they provide habitat for forage fish species such as slimy sculpin and ninespine stickleback. Shallow water areas with fine substrates were present (see preceding paragraphs), however, aquatic macrophytes were sparsely distributed. Emergent species included sedges (*Carex* spp.) and aquatic grasses (*Glyceria* spp.). Only one area contained an extensive zone of these plants (southwest corner of Carat Lake). Submergent vegetation that could be observed from the water's surface was also limited in abundance. The only species encountered was coontail (*Ceratophyllum demersum*), and it was restricted to the channel connecting Carat Lake to Interbasin Two.

Areas exhibiting high quality rearing habitat were sparsely distributed in surveyed lakes within the Mine Operation Zone. Two small areas were identified in each of the western basin of Carat Lake, the Interbasins area, and the north shore of Jericho Lake.

3.6.2 Streams

Similar to methodologies used in 1995, investigations of streams in the study area were undertaken during spring and summer. During spring, a reconnaissance level survey was conducted to identify streams that provided some habitat for fish communities and to assess their potential as spawning habitat (i.e., use by spring spawning Arctic grayling). Surveys during summer were used to provide a more detailed description of stream characteristics and to assess their overall potential as fish habitat.

Streams chosen for investigation during the present study included most systems examined in 1995; Streams C3, C7, C8, and C9 (R.L. & L. Environmental Services Ltd. 1995) were not sampled because they either had little value for fish or they were outside the present study area. Several new streams were surveyed in 1996; they included tributaries in the Interbasin area and tributaries to the lower Jericho River area.

In total, 27 watercourses were examined during the 1996 sampling program (Figure 3.6.2). Of these, six contained no fish during spring sampling and were ephemeral (contained water only during the snow melt period or during rainfall events). These streams were deemed to have no value to fish communities, and therefore, did not receive more extensive investigation. The 21 streams (including two river sections) that had some potential as fish habitat were located in four general areas: Carat Lake (5), Interbasin area (4), the upper Jericho River (5 tributaries and mainstem river), the lower Jericho River (5 tributaries and mainstem river). The majority of these systems were small (18) and exhibited intermittent flow during the summer sampling period. The three remaining streams were part of the main drainage system. They were Stream C15, which was the connecting channel between Carat Lake and Interbasin Two, and Jericho River (Sections O7A and O7B); the outlet system for the study area lakes.

3.6.2.1 Carat Lake Streams

Stream C1

Stream C1 is a small watercourse within the Jericho Diamond Project area that drains a headwater lake situated to the south of Carat Lake. The habitat survey during 1995 indicates that the lowermost 200 m of this stream consists of a series of small channels, which amalgamate into a single channel further upstream. A small cascade occurs immediately below the headwater lake; this cascade is likely a barrier to fish passage during low flow periods. Although small, this stream maintains water flow throughout the open water period. The stream contains varying amounts of gravel, cobble, and boulder substrates, and the channel is dominated by RIFFLE and RUN habitat (Table 3.6.2).

A diverse assemblage of fish was recorded in Stream C1 during the 1996 sampling program (Table 3.6.3). Species recorded were Arctic char, lake trout, round whitefish, and slimy sculpin. All of these fish were encountered in the lowermost 200 m of the stream. The presence of young-of-the-year and juvenile age-classes suggested that this system provided good rearing habitat (Table 3.6.4), particularly for Arctic char.

Streams C2 and C2A

Streams C2 and C2A are very small, ephemeral watercourses that have extremely limited value to fish; however, because they are located within the Jericho Diamond Project Area they are discussed in this section. Stream C2 drains a shallow headwater lake situated immediately east of Carat Lake, while Stream C2A drains a small pond adjacent to Carat Lake. Both streams exhibit minimal flow during dry periods.

Fish were present in both streams during 1996 sampling, but were restricted to the lowermost 20 m. Arctic char was the dominant species, although lake trout and slimy sculpin were also present. The small size of both streams severely limits their value as fish habitat.

Stream C4

Stream C4 is a small well-defined tributary that drains a headwater lake at the northwest corner of Carat Lake. The stream channel exhibits a low slope for much of its surveyed length; however, the gradient increases dramatically and the flow becomes subsurface approximately 600 m upstream from its confluence. This area is a barrier to fish passage. The stream contains multiple POOL-RUN habitat complexes and an abundance of sand substrate. Small pockets of gravel substrates are also present in the numerous small pools.

One Arctic char and five lake trout were recorded in this stream as well as numerous sculpin. This information suggested that Stream C4 was used for rearing purposes by these species, although habitat quality was low.

Stream C6

This tributary is a short watercourse that connects the north basin of Carat Lake to several headwater lakes. In its lower section, the stream is dominated by boulder substrates and RUN habitat. As the channel approaches the headwater lake, it becomes less well-defined and contains small patches of gravel substrate.

Three fish species were recorded in this stream during 1996 sampling; Arctic grayling, burbot, and slimy sculpin. Of these three species young-of-the-year Arctic grayling were particularly abundant. In fact, this stream contained the highest number of Arctic grayling in the study area. Using a density estimate sampling technique (see Section 2.1.7) the density of young-of-the-year Arctic grayling in Stream C6 was calculated to be 135 fish per 100 m±3.3 fish (based on 95% Confidence Intervals). In addition to a high density of fish, egg sweeps during spring located Arctic grayling eggs in the stream. These data confirmed that Arctic grayling used Stream C6 for spawning and rearing purposes. However, it is unclear whether these fish originated from Carat Lake or the headwater system.

3.8.2.2 Interbasin Streams

Streams C10, C12, C13

Due to the similarity in habitat characteristics, these streams will be discussed as a group. These tributaries are very small watercourses that drain the terrain adjacent to the Interbasin lakes. They are dominated by dispersed channels and silt/sand substrates. Zero flows were recorded during periods of low rainfall.

Small numbers of fish (Arctic char, burbot, and slimy sculpin) were present in these systems during spring when water flows were sufficient to support fish. However, their value as rearing habitat was severely limited by the lack of water during the summer period.

Stream C15

Stream C15 is a short outlet system that connects Carat Lake to Interbasin Two. It is a large stream that has water flow during the entire open water period. Its channel is well-defined and is dominated by RUN and FLAT habitats. The substrate consists primarily of sand interspersed by small amounts of gravels, cobbles, and boulders.

Although very short in length, Stream C15 provides good quality fish habitat. Snorkel surveys during summer documented the presence of a single adult lake trout and Arctic grayling indicating that it was used for feeding purposes. Juvenile Arctic grayling also used the stream for rearing. Although Arctic grayling eggs and young-of-the-year fish were not recorded in this system, its characteristics (i.e., gravel substrates) suggests that it could provide spawning habitat for this species.

3.6.2.3 Jericho River Streams

The Jericho River serves as the outlet system to waterbodies in the Jericho study area. It is unique in that it is the largest stream in the study area and several small tributaries drain into the sections investigated. A major barrier to fish passage exists on the Jericho River immediately downstream of Jericho Lake (Figure 3.6.2). Within this 120 m section, the stream drops approximately 15 m. The channel disperses over bedrock and boulders as it falls through a series of cascades. Although this section is a major barrier to fish passage, it is not a complete barrier, particularly during high flow periods.

After the Jericho River completes its descent from Jericho Lake, its channel becomes well-defined. Habitat surveys were completed in two areas. Section O7A encompassed the upper Jericho River and included five tributaries; Section O7B encompassed the lower Jericho River, which also included five tributaries.

Section O7A (Upper Jericho River)

Section O7A of the Jericho River is dominated by deep long FLAT habitats interspersed by short RAPID sections. Water depth varied within this portion of the Jericho River, but observations during snorkelling suggested that depths greater than 3.0 m are not uncommon. The substrate varies between sand in FLAT habitats, to boulder and cobble in RAPID habitats.

Due to its large size and habitat diversity, Section O7A of the Jericho River provides good quality fish habitat. Because of its depth, it provides feeding areas for adult fish and possibly overwintering areas. Surveys documented the presence of adult Arctic char, Arctic grayling, and lake trout. The presence of numerous juvenile Arctic grayling also suggested that this species reared within the Jericho River. The absence of gravel substrates in the section investigated indicated that the watercourse was not used for spawning by Arctic grayling, however, conditions (RAPID habitats) were suitable for spawning by species such as lake trout.

Streams O1, O2, O3, O4 (Upper Jericho River)

Due to the similarity in habitat characteristics, these streams will be discussed as a group. These tributaries to the upper Jericho River are small and are dominated by small substrates (sand, gravel, and cobble), and have very low water flows during periods of low rainfall. All contain an abundance of RUN habitat. The presence of smaller substrates in these streams, in combination with moderate to low gradients, creates rearing and spawning habitat for species such as Arctic grayling.

The streams' value as rearing habitat was confirmed by the presence of Arctic char and Arctic grayling in all four streams. Although adult Arctic grayling were not encountered during spring sampling, habitat conditions suggest that these streams were also used for spawning purposes by this species. Other species encountered were burbot, ninespine stickleback, and slimy sculpin.

Stream O8 (Upper Jericho River)

Habitat characteristics of the surveyed section of Stream O8 are similar to characteristics in Streams O1, O2, O3 and O4. Unlike the smaller watercourses, however, it had stable flows during the summer sampling period. Extensive areas of this stream provide fish habitat. The well-defined channel is characterized by a series of POOL, RUN, and RIFFLE habitats and an abundance of gravel substrates.

During spring sampling, Arctic grayling eggs were collected from Stream O8 and young-of-the-year fish were recorded in this system during summer. The presence of Arctic grayling eggs and fish, combined with an abundance of spawning and rearing habitat strongly suggested that Stream O8 was used for spawning and rearing purposes by this species.

Section O7B (Lower Jericho River)

The habitat characteristics of Section O7B of the lower Jericho River differed from those of the upper Jericho River. The watercourse in this area is shallow and dominated by RUN habitat interspersed by RAPID/POOL complexes. Although FLAT habitat is present, these areas generally exhibit shallow water depths. The substrates in Section O7B are dominated by sand and boulders interspersed with patches of gravels. Due to the lack of deep water areas, this section has limited value as feeding habitat for adult fish. However, these characteristics provide good quality spawning and rearing habitat for species such as Arctic grayling. Not surprisingly, large numbers of young-of-the-year and juvenile Arctic grayling were documented in Section O7B.

Stream O23 (Lower Jericho River)

This tributary to the lower Jericho River is small, exhibits a low slope, and is dominated by sand substrate. Zero flow during the summer period severely limits its value as fish habitat. A small number of young-of-the-year Arctic grayling were recorded in this stream (n=2). The absence of suitable spawning substrate suggests that these fish originated from the Jericho River and not from Stream O23.

Streams O24, O25, O26, and O27 (Lower Jericho River)

Due to the similarity in habitat characteristics, these streams will be discussed as a group. These tributaries to the lower Jericho River varied in size, with Stream O24 exhibiting the lowest discharge and Stream O27 the highest. They are small, exhibit low slopes, and are dominated by sand substrates interspersed with small pockets of gravel (Stream O27 is the exception; gravel was the dominant substrate type). All these streams contain an abundance of RUN habitat. The presence of smaller substrates in these streams, in combination with low gradients, create good quality spawning and rearing habitat for species such as Arctic grayling.

Their value as spawning and rearing habitat was confirmed by the presence of young-of-the-year and juvenile Arctic grayling in all four streams. Other species encountered in these streams were ninespine stickleback (Streams O25, O26, and O27), and slimy sculpin (Stream O27).

3.6.3 Summary

The shoreline areas of lakes in the Mine Operation Zone tended to be dominated by cobble-boulder substrates; this was particularly true for Lake C1, Carat Lake, and Jericho Lake. The two Interbasin lakes also contained rocky shorelines, however, fine substrates (principally sands and gravels) were also present. These shoreline characteristics provided an abundance of potential spawning areas for species such as lake trout, Arctic char, and round whitefish. Therefore, spawning areas were not limited in any of the surveyed lakes. Several high quality spawning sites were identified during the study and the presence of high concentrations of lake trout at one (north-east corner of Carat Lake) confirmed that it was used for this purpose. The same shoreline characteristics that provided an abundance of spawning habitat also severely limited the available rearing habitat for fish. The absence of fine substrates along much of the shoreline areas precluded the development of aquatic macrophytes, features that facilitate development of lake shore rearing habitat.

In total, 27 streams were surveyed in the Mine Operation Zone. In general, these systems provided limited habitat for fish populations originating from study area lakes. This was true for most streams in the Carat Lake and Interbasin areas. The primary reasons for low quality fish habitat in most streams were small size, a preponderance of boulder substrates, and poorly defined channels. Some streams did provide better quality habitat. These included two tributaries in the Carat Lake area (Streams C1 and C6) and one larger system in the Interbasin area (Stream C15). These systems contained spawning and/or rearing habitat that could be used by species such as Arctic grayling.

The upper and lower sections of the Jericho River and several of their tributary streams also contained good quality habitat. The Jericho River, the largest stream in the study area, exhibited a well-defined channel and contained a mixture of slow, deep-water areas and fast shallow water areas. As such, rearing habitat was available for juveniles and feeding habitat was present for use by adult fish. Deep-water areas in the upper Jericho River also suggested that it may provide overwintering habitat for fish. Tributary streams associated with the Jericho River were small, but several had well-defined channels and smaller substrates. As such, these systems provided good quality spawning and rearing habitat for species such as Arctic grayling. Tributaries exhibiting these characteristics were Streams O1, O8, O24, O25, and O27.

A significant feature of the Jericho River was the presence of a cascade area approximately 15 m in height that was located near the outlet of Jericho Lake. Although not an absolute barrier, this area created a significant impediment to fish passage between the Jericho River system and lakes situated farther upstream. This may explain why ninespine stickleback were recorded downstream of the cascade area, but were absent from waterbodies situated upstream.

3.7 BACKGROUND METAL CONCENTRATIONS IN FISH TISSUE

During 1995, a monitoring program was initiated in the Mine Operation Zone to document background metal concentrations in kidney, liver, and muscle tissues of fish (lake trout and round whitefish). Samples were collected from two lakes. These were Jericho Lake, which is situated downstream of the Jericho Diamond Project and Control Lake, which was outside the influence of any potential development (i.e., 6 km west of the Jericho Diamond Project). Results of this program are presented in R.L. & L. Environmental Services Ltd. (1995).

The 1995 study design for the monitoring program included Jericho Lake and not Carat Lake as the monitoring site, because initial development plans of the Jericho Diamond Project required removal of Carat Lake from the aquatic biological system (i.e., drainage of the basin to gain access to the deposit). As such, the waterbody would not have been available for future monitoring. These plans were subsequently modified; it was no longer required to drain Carat Lake for development of the deposit. To account for the changes in the development plan, the monitoring program was modified to include Carat Lake as the monitoring site.

In 1996, fish tissues were collected from lake trout and round whitefish in Carat Lake to document background metal concentrations in kidney, liver, and muscle tissues of fish. To ensure quality control (i.e., remove biases associated with between year sampling) samples were again collected from the Control Lake.

In total, 21 lake trout and 20 round whitefish were sampled for tissue analysis from each of Carat Lake and Control Lake (Table 3.7.1). The size range of fish collected for tissue samples is also provided in Table 3.7.1. The concentrations of 26 metal elements were analysed. Liver and muscle tissue samples were analysed; kidney tissue samples have been stored (frozen at -17°C) pending future analyses. Results of the analyses for all elements are presented in Appendices H1 and H2. For analytical purposes, values below the detection limits were coded as one half the detection limit.

The average concentrations of some of the potentially toxic metals (aluminum, arsenic, cadmium, mercury, lead, nickel, copper, and zinc) in the tissues of study area fish are presented in Tables 3.7.2 to 3.7.3. The results are discussed separately for each of the metals.

3.7.1 Aluminum

The availability of aluminum to aquatic organisms has been correlated with the pH of the aquatic environment (Holtze and Hutchinson 1989); however, it is unclear at what pH threshold, or at what concentration, aluminum becomes toxic to fish. Aluminum can be acutely toxic at high exposure levels, but it does not bioaccumulate in aquatic organisms (Neville 1985).

Detectable concentrations of aluminum (>1 μ g/g) were recorded in 100% of the lake trout liver samples from both lakes (Table 3.7.2). For muscle tissue, however, aluminum concentrations did not exceed the detection limit in either lake. Mean aluminum levels in liver tissue samples were similar in both lakes (21 μ g/g and 20 μ g/g from each of Carat and Control Lakes, respectively). The maximum recorded aluminum concentration was 72 μ g/g (Carat Lake).

Aluminum concentrations in round whitefish tissues were lower than those recorded for lake trout tissues. Detectable concentrations of aluminum were detected in 95% of round whitefish liver samples (Table 3.7.3), but concentrations in muscle tissue did not exceed the detection limit. The mean aluminum level in liver tissue samples from Carat Lake was 9 μ g/g; in Control Lake it was 8 μ g/g. The maximum recorded aluminum concentration in round whitefish from the Mine Operation Zone was 31 μ g/g (Carat Lake).

3.7.2 Arsenic

Arsenic is more common in the earth's crust than mercury or cadmium, and it is more toxic to plants than to animals (Demayo et al. 1979). It does not appear to biomagnify through different trophic levels, and demersal species are more likely to accumulate arsenic than pelagic fish (Demayo et al. 1979). Arsenic concentrates mainly in the liver and is a cumulative toxin (Falk et al. 1973).

Detectable concentrations of arsenic (>0.05 μ g/g) were recorded in 91% of lake trout liver samples, but only 43% of lake trout muscle samples. Mean concentrations of arsenic in liver tissue samples were higher in the Control Lake (0.38 μ g/g and 1.76 μ g/g in Carat Lake and Control Lake, respectively). Arsenic levels in muscle tissue samples were lower than those in livers; mean concentrations were 0.09 μ g/g in the Carat Lake sample and 0.07 μ g/g in the Control Lake sample. The maximum arsenic concentration was recorded from a liver tissue sample collected in Control Lake (7.50 μ g/g).

Arsenic concentrations recorded in round whitefish tissues were also low. Detectable concentrations of arsenic were recorded in 88% of round whitefish liver samples, and in muscle tissues, 31% of samples exceeded the detection limit. Mean arsenic levels in liver tissue samples were highest in Control Lake (2.46 μ g/g versus 0.28 μ g/g). Mean values in muscle tissues were 0.09 μ g/g and 0.03 μ g/g in Carat and Control Lake samples, respectively. The maximum arsenic concentration was recorded in a round whitefish liver tissue sample from Control Lake (8.25 μ g/g).

3.7.3 Cadmium

Cadmium does not bioaccumulate in the food web (Reeder et al. 1979a). The rate of cadmium uptake is generally faster in hard waters, although cadmium toxicity decreases in hard water (Reeder et al. 1979a).

Detectable concentrations of cadmium (greater than 0.05 μ g/g) were recorded in all lake trout liver samples, but were detected in only 6% of lake trout muscle samples. Mean cadmium levels in liver samples were similar among lakes (2.61 μ g/g and 2.65 μ g/g from Carat and Control Lakes, respectively). In muscle samples mean concentrations did not exceed 0.03 μ g/g. The maximum recorded cadmium concentration in lake trout liver samples was 5.99 μ g/g (Carat Lake).

Cadmium concentrations in round whitefish were low. Detectable concentrations of cadmium were recorded in all round whitefish liver samples; detectable levels were not recorded in muscle tissue samples. The mean cadmium level in liver tissue samples were similar in Carat and Control Lakes (0.66 μ g/g and 0.69 μ g/g, respectively). The maximum recorded concentration in round whitefish liver tissue was 2.06 μ g/g (Carat Lake).

3.7.4 Copper

In contrast to the nonessential trace metals (e.g., arsenic, cadmium, mercury, lead), copper is important for biochemical functions; however, excess amounts of copper are toxic to freshwater fish (Förstner and Wittman 1979). The toxicity of copper varies with the species of fish and with ambient water characteristics (e.g., pH and alkalinity). Copper is not considered to be a cumulative systematic poison as most of it is excreted from the body (Falk et al. 1973). The main areas of the body where it concentrates are the liver, muscle, and brain tissues (Demayo and Taylor 1981).

Detectable concentrations of copper (>0.05 μ g/g) were recorded in all of lake trout liver and muscle samples. Mean copper levels in liver tissue samples were highest from Control Lake (89.76 μ g/g versus 81.50 μ g/g), whereas mean copper levels in lake trout muscle tissues were highest in Carat Lake (0.93 μ g/g versus 0.78 μ g/g). The maximum recorded copper concentrations in lake trout tissue were 232.00 μ g/g (liver sample from Control Lake) and 3.78 μ g/g (muscle sample from Control Lake).

Detectable concentrations of copper were recorded in all round whitefish samples. Mean copper levels in liver samples were 7.97 μ g/g (Carat Lake) and 9.89 μ g/g (Control Lake). For muscle tissues, levels were 1.06 μ g/g in the Carat Lake sample and 0.99 μ g/g in the Control Lake sample. Maximum recorded copper concentrations in round whitefish were 25.40 μ g/g (liver sample from Control Lake) and 1.56 μ g/g (muscle sample from Carat Lake).

3.7.5 Lead

Lead tends to deposit in bone as a cumulative toxin (Falk et al. 1973). It is more toxic in soft water than in hard water (Demayo et al. 1980).

Lead concentrations in the lake trout tissue samples were low. Detectable concentrations of lead (>0.05 μ g/g) were recorded in only 31% of lake trout liver samples, and in 24% of the muscle samples. Mean lead levels in liver samples were 0.04 μ g/g in Carat Lake and 0.07 μ g/g in Control Lake. The mean lead level in the Control Lake muscle sample was 0.10 μ g/g; detectable concentrations of lead were not recorded from the Carat Lake muscle tissue sample. The maximum recorded lead concentration in lake trout tissue was 0.41 μ g/g (liver sample from Control Lake).

Detectable concentrations of lead were recorded in 23% of round whitefish liver samples and in 33% of the muscle tissue samples. Highest mean lead levels in liver tissue samples occurred in fish from Control Lake ($0.12 \mu g/g$) versus $0.04 \mu g/g$). Detectable concentrations of lead were not recorded in round whitefish muscle tissues collected from Carat Lake. The mean concentration recorded in Control Lake was $0.14 \mu g/g$. The maximum recorded lead concentrations in round whitefish tissues were $0.71 \mu g/g$ (liver sample from Control Lake) and $0.26 \mu g/g$ (muscle sample from Control Lake).

3.7.6 Mercury

Mercury in fish tissue is most commonly present in the form of methyl mercury. Because there are several types of mercury potentially present in the environment, total mercury is the form recommended for setting guidelines (Reeder et al. 1979b). The maximum allowable level of mercury in muscle tissue of fish sold in Canada for human consumption is $0.5 \mu g/g$ (wet weight), which is comparable to approximately $2.5 \mu g/g$ when expressed on a "dry weight" basis (assuming 80% moisture content).

Mercury concentrations were above the detection limit (>0.005 μ g/g) in all lake trout tissue samples. The mean mercury levels in lake trout liver tissues were 2.803 μ g/g in Carat Lake and 0.501 μ g/g in Control Lake. Mean mercury values in muscle tissue samples were similar (1.074 μ g/g in Carat Lake and 0.925 μ g/g in Control Lake). None of the 42 lake trout muscle samples had mercury levels equal to or higher than allowed for human consumption (2.5 μ g/g). The maximum mercury concentrations documented in individual fish were 4.760 μ g/g in a Carat Lake liver sample and 2.140 μ g/g in a Control Lake muscle sample.

In round whitefish, most tissues contained detectable levels of mercury (95% of liver and 92% of muscle samples), however, concentrations were considerably lower. In liver tissue, mean values were (0.843 μ g/g in Carat Lake and 0.248 μ g/g in Control Lake). Concentrations in muscle tissue were similar (0.501 μ g/g in Carat Lake and 0.278 μ g/g in Control Lake). The highest mercury levels recorded in round whitefish tissues were 1.720 μ g/g (liver sample from Carat Lake) and 0.891 μ g/g (muscle sample from Carat Lake).

3.7.7 Nickel

The toxicity of nickel rises with decreasing water hardness and increasing acidity (CCREM 1987); it also increases when nickel is present with copper, which is likely a result of synergism (Taylor et al. 1979). Nickel has the greatest effect on the early life stages of fish, including fertilized eggs, but it does not biomagnify in the food web (Taylor et al. 1979). Hutchinson et al. (1975) reported that nickel concentrations were highest in plants and lowest in predators situated in the upper levels of the food chain.

The level of nickel in lake trout tissues generally was low. Detectable concentrations of nickel (>0.1 μ g/g) were recorded in 38% of liver samples and 12% of the muscle samples; however, levels were at or near detection limits in both Carat Lake and Control Lake samples. Maximum nickel concentrations in lake trout tissues were 3.2 μ g/g (liver sample from Carat Lake), and 0.6 μ g/g (muscle sample from Carat Lake).

Detectable concentrations of nickel were recorded in 45% of round whitefish liver samples and 3% of muscle tissue samples. Similar to findings for lake trout, mean levels for both lakes and were at detection limits (0.1 μ g/g for liver and muscle tissues). Maximum nickel concentrations in round whitefish tissues were 0.4 μ g/g (liver sample from Carat Lake), and 0.2 μ g/g (muscle sample from Carat Lake).

3.7.8 Zinc

Zinc primarily affects gill epithelial tissues. In excessive amounts, it can cause immediate mortality or it can induce delayed mortality by stressing the animal (Falk et al. 1973). However, zinc is essential for plant and animal health. The toxicity of zinc rises with increasing pH and decreasing water hardness. Zinc concentrations are usually greater in omnivorous than in piscivorus species, and greater in benthic invertebrates than in fish (CCREM 1987).

Zinc concentrations in lake trout tissues were similar among the study lakes. Mean levels in the liver tissues were 152.62 μ g/g in Carat Lake and 151.57 μ g/g in Control Lake samples; mean levels in the muscle tissues were 14.47 μ g/g and 12.15 μ g/g, respectively. Maximum recorded zinc concentrations in lake trout tissues were 226.00 μ g/g (liver sample from Carat Lake), and 19.60 μ g/g (muscle sample from Carat Lake).

Zinc concentrations in round whitefish tissues were lower than levels recorded in lake trout samples. Mean levels in the liver tissues were 82.36 μ g/g in Carat Lake and 95.34 μ g/g in Control Lake; mean levels in muscle tissues were 14.31 μ g/g and 13.17 μ g/g. Maximum recorded zinc concentrations in round whitefish from the Mine Operation Zone were 162.00 μ g/g (liver sample from Control Lake), and 17.50 μ g/g (muscle sample from Carat Lake).

	·		

SECTION 3 - TABLES

Table 3.1.1 Morphometric characteristics^a of surveyed lakes within the Mine Operation Zone, Jericho study area, 1996.

Lake	Surface Area (ha)	Lake Volume (m)	Mean Depth (m)	Maximum Depth (m)	Shoreline Length (m)	Shoreline Development Ratio
Lake C1	2.77	-	-	9.0	700	1.19
Carat Lake ^b	268.99	2.894 x 10 ⁷	10.8	32.0	11850	2.04
Interbasin Two	19.44	-	-	11.0	1850	1.18
Interbasin One	58.33	-	-	11.0	4900	1.81
Jericho Lake	69.44	-	-	15.0	5650	1.91

^a Unless otherwise stated, morphometric characteristics are based on measurements from a 1:50 000 NTS map and field observations.

Table 3.1.2 Canadian Water Quality dissolved oxygen guidelines for the protection of freshwater fish.

Fish Type ^a	Life Stage ^b	Criteria (mg/ml)
Cold Water	early life stage all other life stages	9.5 6.5
Warm Water	early life stage all other life stages	6.0 5.0

^a Cold-water fish are defined as those species that prefer summer water temperatures ranging from 10 to 18°C and Warm-water fish are those species that prefer summer water temperatures of 18 to 26°C (Nelson and Paetz 1992).

species that prefer summer water temperatures of 18 to 26°C (Nelson and Paetz 1992).

b Early life stage encompasses the period from spawning to 30 days after hatching.

Source: CCME (1996).

Table 3.2.1 Phytoplankton biovolume in sampled lakes during summer and fall within the Mine Operation Zone, Jericho study area, 1996.

	Carat Lake (Site PL1-1)				Carat	Lake	(Site PL1-2)		Jericho Lake (Site PL2)			
Taxonomic Group	Summer		Fall		Summer		Fall		Summe	er	Fall	
	Biovolume (μm³/m³)	%	Biovolume (μm³/m³)	%	Biovolume (μm³/m³)	%	Biovolume (μm³/m³)	%	Biovolume (μm³/m³)	%	Biovolume (μm³/m³)	%
Bacillariophyta (diatoms)	19 890	6.9	117 420	26.4	14 395	5.5	105 650	17.7	22 220	10.2	127 329	17.4
Cryptophyta (cryptomonads)	17 989	6.2	24 488	5.5	32 362	12.5	33 761	5.7	233	0.1	27 605	3.8
Chrysophyta (golden-brown algae)	147 820	51.2	225 758	50.8	142 723	55.0	291 937	49.0	140 136	64.6	405 499	55.5
Pyrrophyta (dinoflagellates)	20 247	7.0	4197	0.9	37 363	14.4	92 247	15.5	3684	1.7	29 015	4.0
Euglenophyta (euglenoid)							5262	0.9				
Chlorophyta (green algae)	64 627	22.4	51 908	11.7	22 023	8.5	51 403	8.6	25 307	11.7	114 375	15.7
Cyanophyta (cyanobacteria)	18 346	6.3	20 477	4.6	10 753	4.1	15 533	2.6	25 257	11.6	26 975	3.7
Total Biovolume	288 919	100	444 248	100	259 619	100	595 793	100	216 837	100	730 798	100

b Morphometric characteristics (with the exception of shoreline length) provided by Canamera Geological Ltd.

Table 3.2.2 Zooplankton biomass in sampled lakes during summer and fall within the Mine Operation Zone, Jericho study area, 1996.

	Cara	Lake	(Site PL1-1))	Carat	Carat Lake (Site PL1-2)				Jericho Lake (Site PL2)			
Taxonomic	Summer		Fall		Summer		Fall		Summer		Fall		
Group	Biomass (μg/m³)	%	Biomass (μg/m³)	%	Biomass (μg/m³)	%	Biomass (μg/m³)	%	Biomass (μg/m³)	%	Biomass (μg/m³)	%	
Copepoda Calanoida	33 912	2.9	6436	22.3	15 715	0.9	17 911	19.7	1995	20.8	17 348	16.2	
Cyclopoida	20 788	1.8	21 179	73.3	1800	0.1	50 309	55.3	3530	36.9	1017	1.0	
Cladocera	1 116 251	95.0			1 751 438	99.0	21 430	23.6	3311	34.6	88 358	82.7	
Rotifera	3480	0.3	1278	4.4	697	< 0.1	1317	1.4	734	7.7	147	0.1	
Total Biomass	1 174 432	100	28 892	100	1 769 649	100	90 966	100	9570	100	106 869	100	

Mean density a (± 1 standard error) of benthic macroinvertebrates in the littoral and profundal zones of selected lakes within the Mine Operation Zone, Jericho study area, 1996. Table 3.4.1

		Carat	Lake		Jericho	Lake
Taxonomic Group	Littoral	Profundal	Littoral	Profundal	Littoral	Profundal
	(Site L1-1)	(Site P1-1)	(Site L1-2)	(Site P1-2)	(Site L2)	(Site P2)
ANNELIDA						
OLIGOCHAETA	478 (419)	29 (29)	1232 (653)		638 (583)	348 (326)
ARTHROPODA						
HYDRACHNIDIA	14 (14)	14 (14)	14 (14)		130 (25)	14 (14)
CRUSTACEA						
COPEPODA						
Harpacticoida	1058 (906)	29 (29)	188 (72)	14 (14)	522 (219)	29 (29)
OSTRACODA					377 (210)	130 (109)
INSECTA						
DIPTERA						
Chironomidae ^c	767 (725)	391 (262)	855 (698)	216 (196)	6782 (3037)	1912 (605)
Chironomini			14 (14)	29 (29)	1058 (1036)	1507 (348)
Diamesinae				14 (14)		
Orthocladiinae	565 (523)	348 (219)	319 (304)	145 (125)	3072 (1448)	217 (110)
Tanypodinae	14 (14)	14 (14)		14 (14)		
Tanytarsini	188 (188)	29 (29)	522 (380)	14 (14)	2652 (553)	188 (147)
TRICHOPTERA						
Limnephilidae						
Gresnia			14 (14)			
MICROTURBELLARIA	29 (29)					!
MOLLUSCA						
PELECYPODA						
Sphaeriidae		174 (115)		29 (29)		58 (58)
NEMATODA	928 (331)	43 (25)	2725 (1243)		2391 (489)	
Total No. Benthic Taxa/m²	9 (2)	7 (1)	9 (2)	5 (1)	19 (1)	9 (2)
Total No. of Benthic Invertebrates/m ²	3319 (1254)	710 (258)	5101 (2080)	275 (129)	12 420 (1803)	2536 (318)

 $[^]a$ Mean density (No./m²) value and standard error generated using three replicate samples. b For definition of littoral and profundal zones see Section 2.2.5.

^cSum of all subfamilies and tribes.

Table 3.4.2 Mean density^a (±1 standard error) of dominant benthic macroinvertebrates in selected streams within the Mine Operation Zone, Jericho study area, 1996.

Taxonomic Group	Stream C1 (Site B1)	Stream C15 (Site B2)	Jericho River (Site B4)
COELENTERATA		487 (138)	14 (7)
Hydridae <i>Hydra</i>			
ANNELIDA			
OLIGOCHAETA	573 (377)	602 (173)	222 (127)
ARTHROPODA			
HYDRACHNIDIA	32 (32)		75 (39)
CRUSTACEA			
COPEPODA			
Harpacticoida	36 (26)	29 (7)	29 (29)
OSTRACODA		61 (29)	197 (74)
INSECTA			
DIPTERA			
Chironomidae ^b	54 (39)	215 (126)	490 (289)
Chironomini			104 (68)
Diamesinae		18 (18)	32 (32)
Orthocladiinae	54 (39)	179 (93)	125 (94)
Tanypodinae		7 (4)	118 (53)
Tanytarsini		11 (11)	111 (42)
Empididae	7 (7)	7 (7)	
Simulidae	68 (19)		4 (4)
Tipulidae		151 (44)	29 (4)
PLECOPTERA			
Perlodidae		14 (4)	
Nemouridae			18 (13)
TRICHOPTERA			
Limnephilidae			
Gresnia		4 (4)	
MICROTURBELLARIA		7 (7)	
NEMATODA	1330 (863)	219 (56)	111 (9)
Total No. Benthic Taxa/m²	7 (2)	20 (2)	24 (3)
Total No. of Benthic Invertebrates/m ²	2104 (1337)	1821 (473)	1387 (526)

^aMean density (No./m²) value and standard error generated using three replicate samples.

^bSum of all subfamilies and tribes.

Table 3.5.1 Overall species composition of fish sampled from lakes within the Mine Operation Zone, Jericho study area, 1996 (all sampling methods and periods combined).

	Species	Total			
Common Name	Scientific Name	Number	Percent		
Arctic char	Salvelinus alpinus (Linnaeus)	67 ·	19.3		
Burbot	Lota lota (Linnaeus)	1	0.3		
Lake trout	Salvelinus namaycush (Walbaum)	235	67.5		
Round whitefish	Prosopium cylindraceum (Pallas)	42	12.1		
Slimy sculpin ^a	Cottus cognatus Richardson	3	0.9		
All Species Combined		348	100.0		

^aSpecies designation based on identification of a subsample of preserved individuals (n=2).

Table 3.5.2 Species composition of fish sampled from individual lakes within the Mine Operation Zone, Jericho study area, 1996 (all sampling methods and periods combined).

6 .	Lak	e C1 Carat Lake		Interbasin One		Interbasin Two		Jericho Lake		
Species	No.	%	No.	%	No.	%	No.	%	No.	%
Arctic char			20	11.4	9	22.5			38	44.2
Burbot									1	1.2
Lake trout	12	100.0	124	70.9	21	52.5	31	88.6	47	54.7
Round whitefish			31	17.7	8	20.0	3	8.6		
Slimy sculpin					2	5.0	1	2.9		
Total	12	100.0	175	100.0	40	100.0	35	100.0	86	100.0

Table 3.5.3 Overall species composition of fish sampled from streams within the Mine Operation Zone, Jericho study area, 1996 (all sampling methods and periods combined).

	Species	Total			
Common Name	Scientific Name	Number	Percent		
Arctic char	Salvelinus alpinus (Linnaeus)	75	10.8		
Arctic grayling	Thymallus arcticus (Pallas)	329	47.5		
Burbot	Lota lota (Linnaeus)	47	6.8		
Lake trout	Salvelinus namaycush (Walbaum)	25	3.6		
Ninespine stickleback	Pungitius pungitius (Linnaeus)	126	18.2		
Round whitefish	Prosopium cylindraceum (Pallas)	17	2.5		
Slimy sculpin ^a Cottus cognatus Richardson		74	10.7		
All Species Combined		693	100		

^aSpecies designation based on identification of a subsample of preserved individuals (n=5).

Table 3.5.4 Species composition of fish sampled from streams in four areas within the Mine Operation Zone, Jericho study area, 1996 (all sampling methods and periods combined).

	C4 I -1	Carat Lake Streams		- 64		Jericho River Streams				
Species	Carat Lake Streams		interbasi	n Streams	Up	per	Lower			
	No.	%	No.	%	No.	%	No.	%		
Arctic char	68	24.7	1	5.9	6	2.8				
Arctic grayling	105	38.2	10	58.8	68	31.9	146	77.7		
Burbot	13	4.7	1	5.9	33	15.5				
Lake trout	16	5.8	1	5.9	8	3.8				
Ninespine stickleback					88	41.3	38	20.2		
Round whitefish	8	2.9			. 7	3.3	2	1.1		
Slimy sculpin	65	23.6	4	23.5	3	1.4	2	1.1		
Total	275	100.0	17	100.0	213	100.0	188	100.0		

Table 3.5.5 Length-weight regression equations and mean condition factors for lake trout sampled during summer from lakes within the Mine Operation Zone, Jericho study area, 1996.

Lake	Length-weight Relationship		Condition Factor (+SE)	Sample
Lake	Regression Equation ^a	r² Value	Condition Factor (±3E)	Size
Carat Lake	Weight = 4.375 * 10 ⁻⁶ * Fork Length ^{3.145}	0.968	1.049 ± 0.026	68
Interbasin Lakes	Weight = 7.277 * 10 ⁻⁶ * Fork Length ^{3.068}	0.982	1.093 ± 0.043	42
Jericho Lake	Weight = 8.336 * 10 ⁻⁶ * Fork Length ^{3.034}	0.992	1.026 ± 0.031	21

^aWeight in g; fork length in mm.

Age-length relationships for Arctic char, Arctic grayling, lake trout, and round whitefish sampled from selected waterbodies within the Mine Operation Zone, Jericho study area, 1996. Table 3.5.6

	2		4	7	23	2	1															T										\neg
		-	Ė	-	7	• •																\dashv										\dashv
lg b	Weight (g)	Range		6-20	09-8	54-58																										
Arctic grayling ^b	We	Mean		14	56	99	202																									
Arcti	gth (mm)	Range	29-48	95-123	114-172	171-181																										
	Fork Length (mm)	Mean	41	110	136	176	258																									
		*		2	-				_	-	-		1		_	-		2	7	-				7	-	ю	1	-	-			1
ıc	Weight (g)	Range		4-6														1160-1375	1050-1300					1200-1310	٠	1100-1150						
Round whitefish ^c	Weig	Mean		2	10				490	400	009		940		069	1150		1268	1175	1375				1255	1500	1127	1380	1200	1495			1260
Round	Fork Length (mm)	Range		74-88										-				445-455	455-462					475-484		455-477						
	Fork Le	Mean		81	108				340	316	358		424		396	464		450	459	461				480	485	466	473	469	532			407
	u	*	9	4		2			3			1	2	2	1																	
а	Weight (g)	Range		5-14					335-495				1175-1240	2000-2550																		
Arctic char ^a	We	Mean		10		115			412			1650	1208	2275	1120																	
Ar	Fork Length (mm)	Range	37 - 52	70 - 113		142 - 225			314 - 360				466 - 515	565 - 623																		
	Fork L	Mean	4	91		184			334			547	491	594	460																	
	2	*		-										-		-	7		-				Т	7	S		-	3	-			
	Weight (g)	Range															780-950							1350-1580	1280-1500			1200-2250				
Lake trout ^a	We	Mean		5										940		006	865	056	1480				1160	1465	1399		1960	1700	2300			1200
Lal	Fork Length (mm)	Range									-						410-420							439-488	481-520			475-619				
	Fork L	Mean		85										428		439	415	421	485				465	464	496		546	527	580		-100	488
	Age		0	1	7	8	4	5	9	7	∞	6	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29
													_									_						•				

^aAges generated using fish sampled during summer from Carat Lake and associated streams.

^bAges generated using fish sampled during summer and fall from all lakes and streams within zone.

^cAges generated using fish sampled during summer and fall from Carat Lake.

Table 3.5.7 Length-weight regression equations and mean condition factors for Arctic char sampled during summer from lakes within the Mine Operation Zone, Jericho study area, 1996.

Lake	Length-weight Relationship		Condition Factor (+SE)	Sample
Lake	Regression Equation ^a	r² Value	Condition Factor (±5E)	Size
Carat Lake	Weight = 5.309 * 10 ⁻⁵ * Fork Length ^{2.725}	0.946	1.009 ± 0.047	15
Jericho Lake	Weight = 1.300 * 10 ⁻⁴ * Fork Length ^{2.586}	0.934	1.212 ± 0.091	21

^aWeight in g; fork length in mm.

Table 3.5.8 Number of lake trout and Arctic char marked (and recaptured in 1996) in lakes within the Mine Operation Zone, Jericho study area during 1995 and 1996.

337-413	19	995	19	96	To	otal
Waterbody	Lake trout	Arctic char	Lake trout	Arctic char	Lake trout	Arctic char
Carat Lake	27	7	39 (2)	6 (0)	66 (2)	13 (0)
Jericho Lake	30	8	12 (0)	9 (3)	42 (0)	17 (3)
Interbasin One	-	-	7 (0)	4 (2)	7 (0)	4 (2)
Interbasin Two		-	1 (0)	0 (0)	1 (0)	0 (0)
Total	57	15	59 (2)	19 (5)	116 (2)	34 (5)

Table 3.5.9 Surface areas and potential annual harvests of lake trout populations in lakes within the Mine Operation Zone, Jericho study area, 1996.

Lake	Surface Area (ha) ^a	Potential Harvest of Lake Trout (kg/yr) ^b
Carat Lake	269.0	223.6
Jericho Lake	69.4	84.3
Interbasin One	58.3	74.4
Interbasin Two	19.4	33.7
Lake C1	2.8	8.4

^aLake surface area provided by Canamera Geological Ltd. (Carat Lake) or measured from 1:50 000 scale N.T.S. maps.

^bBased on Evan's formula for harvest.

Table 3.6.1 Summary of lakeshore habitat characteristics recorded for sampled waterbodies within the Mine Operation Zone, Jericho study area, 1996.

Hal	oitat Zone ^a	Carat L	ake	Interbasin	One	Interbasin	Two	Jericho I	.ake	Lake (C1
Slope	Substrate	Length (m)	%								
Low	Fines	914	10.7	992	35.2	2005	64.4	430	10.9		
	Cobble-Boulder	4737	55.5	645	22.9	942	30.3	1184	30.1	137	35.7
	Bedrock										
Moderate	Fines			325	11.6	165	5.3	110	2.8		
	Cobble-Boulder	2652	31	485	17.2					247	64.3
	Bedrock										
High	Fines										
	Cobble-Boulder	238	2.8	370	13.1			265	6.7		
	Bedrock					i		1948	49.5		
	Total	8540	100	2817	100	3112	100	3936	100	384	100

^aFor definition of habitat zones see Appendix A1.

Summary of habitat characteristics^a of inventoried streams within the Mine Operation Zone, Jericho study area, 1996. Table 3.6.2

	77	Π																				
(1	Bed														9		10					
/pe (%	Bo	27	10	7	20	82				15	5	9	10	33	27	6	35	10	20	70	S	5
rate Ty	ల	20	50	14	3	15				10	8	7	30	13	41	33	15	S	S	S	5	10
Substrate Type (%)	Gr	17	40	10	2	3				5	4	7	10	-		42	01		10	S	S	70
	Si/Sa	7		69	72		100	100	100	70	83	96	20	53	26	17	30	85	65	20	85	15
	Dispersed						100	100	100											25		
	Riffle/ Rapid	9/	100							10				25	7	23	20		10			
Habitat Type (%)	Cascade														7							20
Habitat	Flat					23				20					79		30	100	35	S		
	Run	24		70	95	77				99	86	94	100	71	7	75	45		55	9	20	55
	Pool			30	S						2	9		4		2	5			10	20	25
уре (%)	Indistinct	78	100	40	27		100	100	100		89	94		96		85				25		
Bank Type (%)	Distinct	22		99	73	100	:			100	32	9	100	4	100	15	100	100	100	75	100	100
Type (%)	Multiple	78	100	20	72		100	100	100		63			96	7		5			25		5
Channel T	Single	22		08	28	100				100	37	100	100	4	93	100	95	100	100	75	100	95
5 m o lo	(%)	2.0	5.0	2.5	1.5	4.0	0.5	0.5	0.5	0.5	1.0	2.0	1.5	4.0	1.5	1.5	1.5	1.0	1.5	1.5	1.5	1.0
q	Unscharge (m³/s)	0.004	0.001	0.001	N/D ^d	0.012	0.000	0.000	0.000	N/D	0.005	0.001	0.000	0.005	N/D	N/D	N/D	0.000	0.016	0.025	0.043	0.054
Average		1.6	0.5	0.5	9.0	0.4	0.3	0.4	0.3	35.0	0.4	6.0	0.4	1.0	37.9	1.7	35.0	9.0	9.0	8.0	2.0	1.5
Surveyed	(m)	454	300	100	800	150	50	20	20	150	369	529	150	347	1715	224	2500	50	350	089	200	100
ð	Stream	C1,C	$c2^{c}$	C2A	C4°	ر دور	C10	C12	C13	C15	OIC	02°	03°	04°	O7A ^c	380 08c	07B	023	024	025	920	027
•	Area	Carat L.					Interbasin				Jericho R.	(Upper)					Jericho R.	(lower)				

^aFor classification system see Appendix A.

^bDischarge measured during summer

^cHabitat data collected during 1995 study; discharge measured during 1996.

^dN/D = no data.

Table 3.6.3 Number of fish recorded in sampled streams according to age-class within the Mine Operation Zone, Jericho study area 1996 (all sampling methods and periods combined).

				Age-C	lass ^a	
Area	Tributary	Species	Young-of-the-year	Juvenile	Adult	Combined
Carat Lake	C1	Arctic char	41	7		48
		Lake trout		9		9
		Round whitefish		8		8
		Slimy sculpin				9
	C2	Arctic char	3	7		10
		Lake trout		2		2
		Slimy sculpin				4
	C2A	Arctic char	8	1		9
		Slimy sculpin				2
	C4	Arctic char		1		1
		Lake trout		5		5
		Slimy sculpin				23
	C6	Arctic grayling	67	38		105
		Burbot	12	1		13
		Slimy sculpin				27
Interbasin	C10	Arctic char	1			1
	C12	Burbot		1		1
		Slimy sculpin				3
	C13	Slimy sculpin				1
	C15	Arctic grayling		9	1	10
		Lake trout			1	1
Jericho River	O1	Arctic char	1			1
(Upper)		Arctic grayling	2	7		9
`		Burbot	27	2		29
		Ninespine stickleback				74
		Slimy sculpin				1
	O2	Arctic grayling		3	-	3
		Burbot	4			4
		Ninespine stickleback				14
	O3	Arctic char		2		2
		Arctic grayling		1		1
	04	Arctic char		2		2
		Arctic grayling	1	6	1	8
	O7A	Arctic char			1	1
		Arctic grayling	9	26	5	40
		Lake trout		2	6	8
		Round whitefish		7		7
		Slimy sculpin			l	1
	O8	Arctic grayling	5	2		7
	İ	Slimy sculpin				1
Jericho River	О7В	Arctic grayling	23	30	1	54
(Lower)		Round whitefish		2		2
	O23	Arctic grayling	2			2
	O24	Arctic grayling	32		1	33
	O25	Arctic grayling	39	1		40
		Ninespine stickleback				13
	O26	Arctic grayling	14	1		15
		Ninespine stickleback				24
	O27	Arctic grayling	2			2
		Ninespine stickleback				1
		Slimy sculpin			1	2

^aAge-class designations based on size differences of fish for each species.

Table 3.6.4 Fish habitat quality ratings for sampled streams within the Mine Operation Zone, Jericho study area, 1996.

	G.	I	Rating of Habitat Quality	1
Area	Stream	Spawning	Rearing	Feeding
Carat Lake	C1	Low	Moderate	Nil
	C2	Nil	Low	Nil
	C2A	Nil	Low	Nil
	C4	Low	Low	Nil
	C6	Moderate	Moderate	Nil
Interbasin	C10	Nil	Low	Nil
	C12	Nil	Low	Nil
	C13	Nil	Low	Nil
	C15	Moderate	Low	Moderate
Jericho River	01	Moderate	Moderate	Nil
(Upper)	O2	Low	Moderate	Low
	O3	Low	Low	Nil
	O4	Low	Moderate	Nil
	O7A	Low	Moderate	High
	O8	Moderate	Moderate	Low
Jericho River	О7В	Moderate	Moderate	Low
(Lower)	O23	Nil	Low	Nil
	O24	High	Moderate	Low
	O25	Moderate	Moderate	Low
	O26	Low	Moderate	Low
	O27	High	Moderate	Low

^aRating of habitat quality based on qualitative assessment of stream habitat and fish numbers recorded during survey.

Table 3.7.1 Number, mean length, and size range of fish collected for kidney, liver, and muscle tissue analyses within the Mine Operation Zone, Jericho study area, 1996.

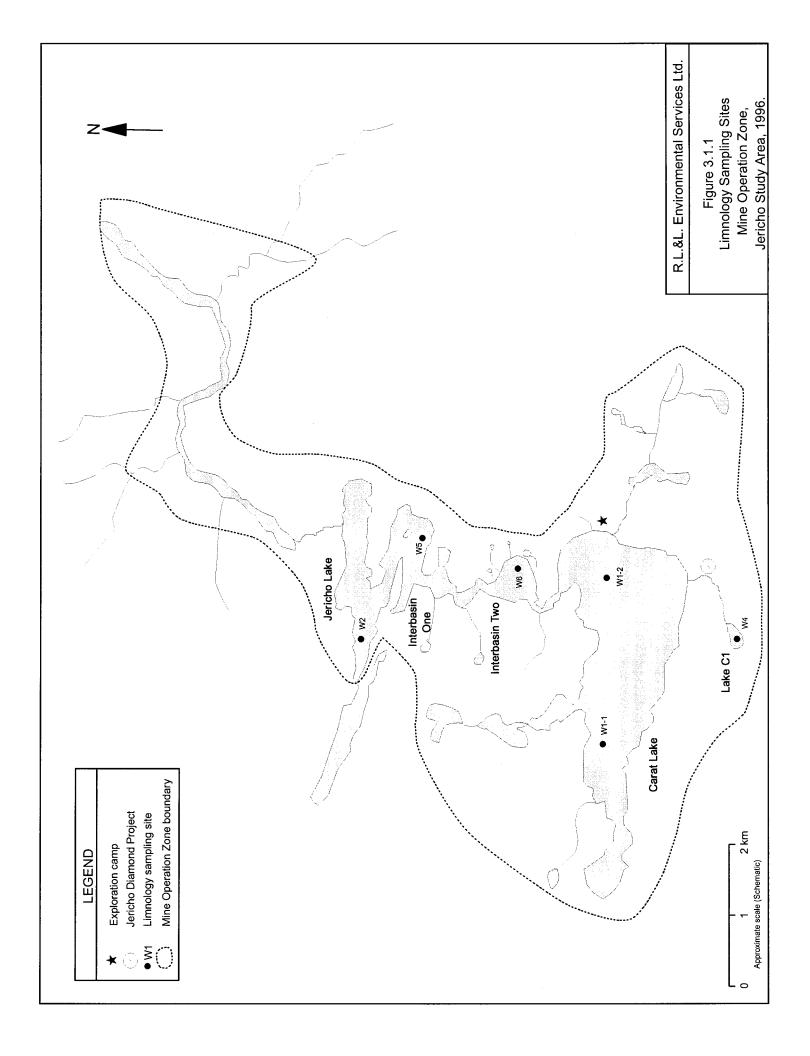
		Campula .		Fork Ler	ngth (mm)	
Lake	Species	Sample Size	Mean	Standard Deviation	Minimum	Maximum
Carat Lake	Lake trout	21	485	52.3	410	619
	Round whitefish	20	449	44.8	340	532
Control Lake	Lake trout	21	427	25.7	400	486
	Round whitefish	20	395	43.9	321	441

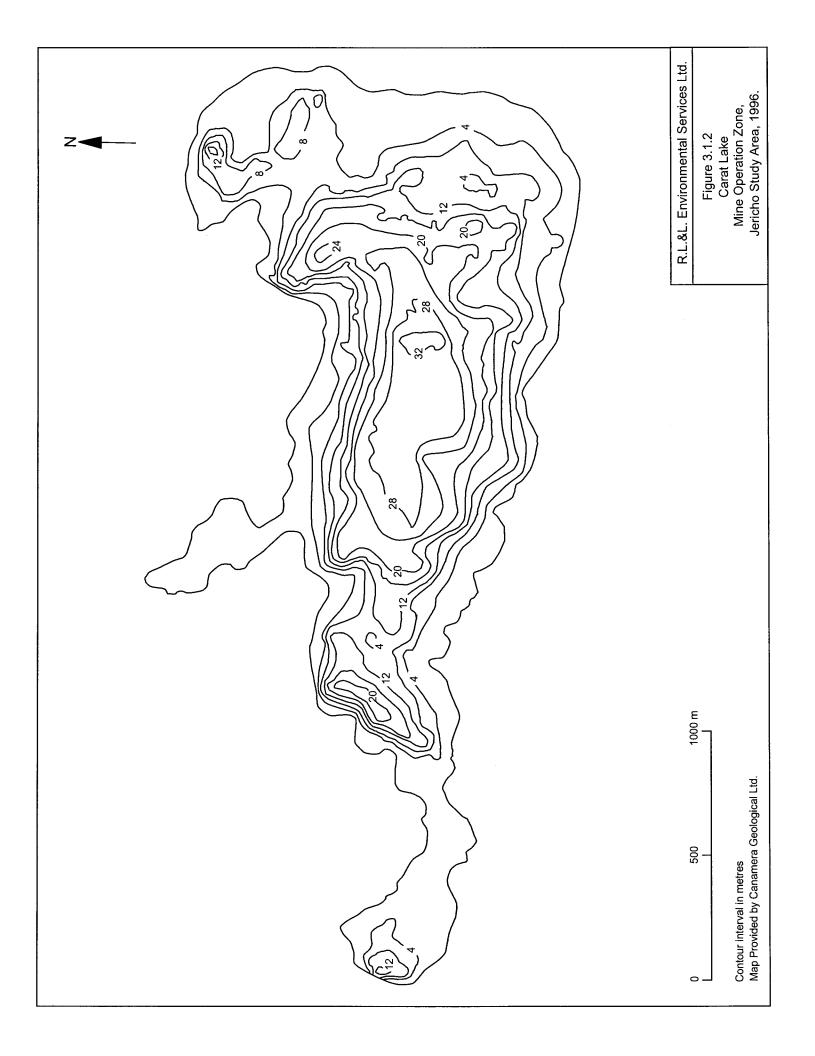
Mean concentrations of metals in lake trout tissue samples within the Mine Operation Zone, Table 3.7.2 Jericho study area, 1996.

					Metal C	Concentration	ns (μg/g of d	ry weight)		
Lake	Tissue	Parameter	Al (1) ^c	As (0.05)	Cd (0.05)	Cu (0.05)	Pb (0.05)	Hg (0.005)	Ni (0.1)	Zn (0.05)
Carat	Liver	n < D.L.ª	0	4	0	0	16	0	14	0
	n=21	Mean (μg/g)	21	0.38	2.61	81.50	0.04	2.803	0.4	152.62
		Sd ^b (µg/g)	17	0.27	1.63	52.15	0.04	1.155	0.7	32.66
		Min. (μg/g)	2	0.03	0.63	11.40	0.03	0.240	0.1	102.00
		Max. (μg/g)	72	0.95	5.99	213.00	0.19	4.760	3.2	226.00
	Muscle	n < D.L.ª	21	9	19	0	21	0	17	0
	n=21	Mean (μg/g)	1	0.09	0.03	0.93	0.03	1.074	0.1	14.47
		Sd ^b (µg/g)	0	0.09	0.02	0.20	0.00	0.486	0.1	1.64
		Min. (μg/g)	1	0.03	0.03	0.62	0.03	0.400	0.1	12.60
		Max. (μg/g)	1	0.40	0.13	1.53	0.03	2.100	0.6	19.60
Control	Liver	n < D.L.ª	0	0	0	0	13	0	12	0
İ	n=21	Mean (μg/g)	20	1.76	2.65	89.76	0.07	0.501	0.1	151.57
		Sd ^b (µg/g)	12	1.68	1.24	56.72	0.10	0.572	0.1	28.99
		Min. (μg/g)	5	0.31	1.26	4.34	0.03	0.070	0.1	99.00
		Max. (μg/g)	47	7.50	6.16	232.00	0.41	2.120	0.6	211.00
	Muscle	n < D.L.ª	21	15	21	0	11	0	20	0
	n=21	Mean (μg/g)	1	0.07	0.03	0.78	0.10	0.925	0.1	12.15
		Sd ^b (µg/g)	0	0.10	0	1.78	0.08	0.341	0.1	1.66
		Min. (μg/g)	1	0.03	0.03	2.78	0.03	0.528	0.1	8.45
		Max . (μ g / g)	1	0.48	0.03	3.78	0.24	2.140	0.4	15.00

^aNumber of samples below detection limit. ^bStandard deviation.

^cDetection limit.


Mean concentrations of metals in round whitefish tissue samples within the Mine Operation Table 3.7.3 Zone, Jericho study area, 1996.


					Metal C	oncentration	ıs (μg/g of d	ry weight)		
Lake	Tissue	Parameter	Al (1) ^c	As (0.05)	Cd (0.05)	Cu (0.05)	Pb (0.05)	Hg (0.005)	Ni (0.1)	Zn (0.05)
Carat	Liver	n < D.L.ª	2	5	0	0	18	1	13	0
	n = 20	Mean (μg/g)	9	0.28	0.66	7.97	0.04	0.843	0.1	82.36
		Sd ^b (μg/g)	9	0.19	0.48	1.64	0.04	0.427	0.1	15.10
	÷	Min. (μg/g)	1	0.03	0.09	4.85	0.03	0.003	0.1	57.40
		Max. (μg/g)	31	0.62	2.06	10.50	0.19	1.720	0.4	112.00
	Muscle	n < D.L.a	15	6	16	0	16	2	15	0
	n=16	Mean (μg/g)	1	0.09	0.03	1.06	0.03	0.501	0.1	14.31
		Sd ^b (μg/g)	0	0.06	0	0.17	0	0.266	0	1.44
		Min. (μg/g)	1	0.03	0.03	0.87	0.03	0.003	0.1	12.20
		Max. (μg/g)	2	0.23	0.03	1.56	0.03	0.891	0.2	17.50
Control	Liver	n < D.L.ª	0	0	0	0	13	1	9	0
:	n = 20	Mean (μg/g)	8	2.46	0.69	9.89	0.12	0.248	0.1	95.34
		Sd ^b (μg/g)	7	2.75	0.44	4.92	0.20	0.241	0.1	24.91
:		Min. (μg/g)	3	0.23	0.13	6.00	0.03	0.003	0.1	68.70
		Max. (μg/g)	29	8.25	1.64	25.40	0.71	0.800	0.3	162.00
	Muscle	n < D.L.ª	20	19	20	0	8	1	20	0
	n=20	Mean (μg/g)	1	0.03	0.03	0.99	0.14	0.278	0.1	13.17
		Sd ^b (μg/g)	0	0.01	0	0.21	0.10	0.124	0	1.38
		Min. (μg/g)	1	0.03	0.03	0.68	0.03	0.003	0.1	10.60
		Max. (μg/g)	1	0.07	0.03	1.30	0.26	0.462	0.1	16.60

^aNumber of samples below detection limit. ^bStandard deviation.

^cDetection limit.

SECTION 3 - FIGURES

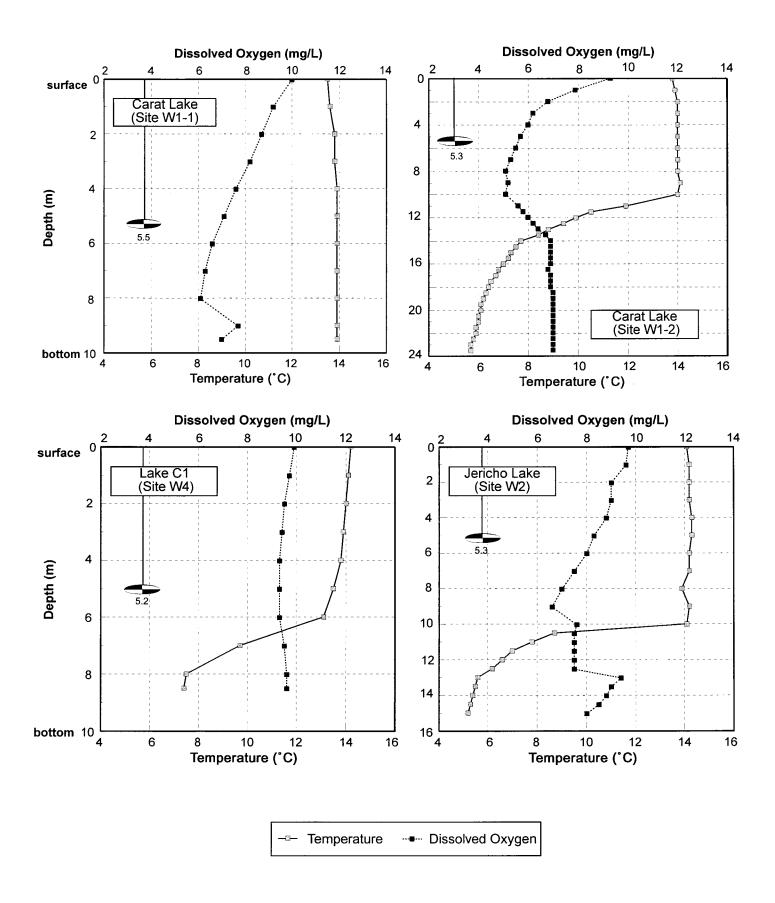


Figure 3.1.3 Dissolved oxygen and temperature profiles, and Secchi depths in lakes within the Mine Operation Zone, Jericho study area, 3 to 4 August 1996.

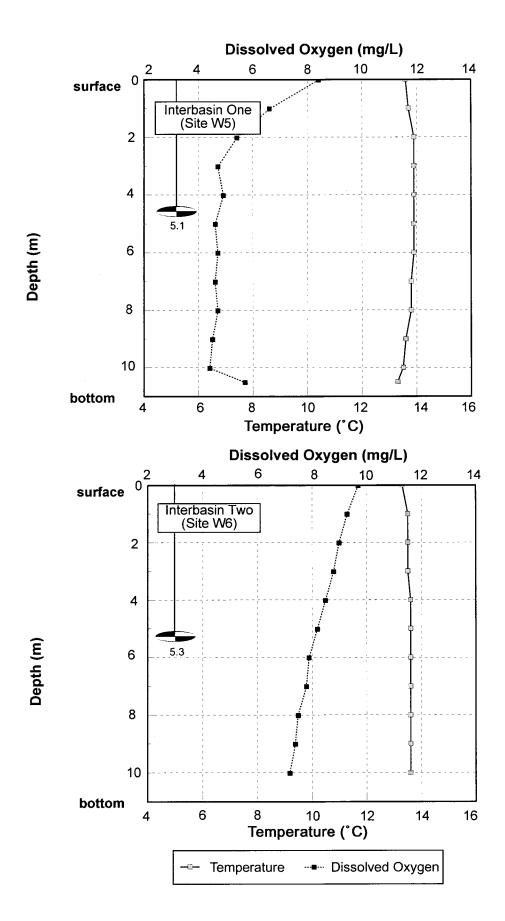
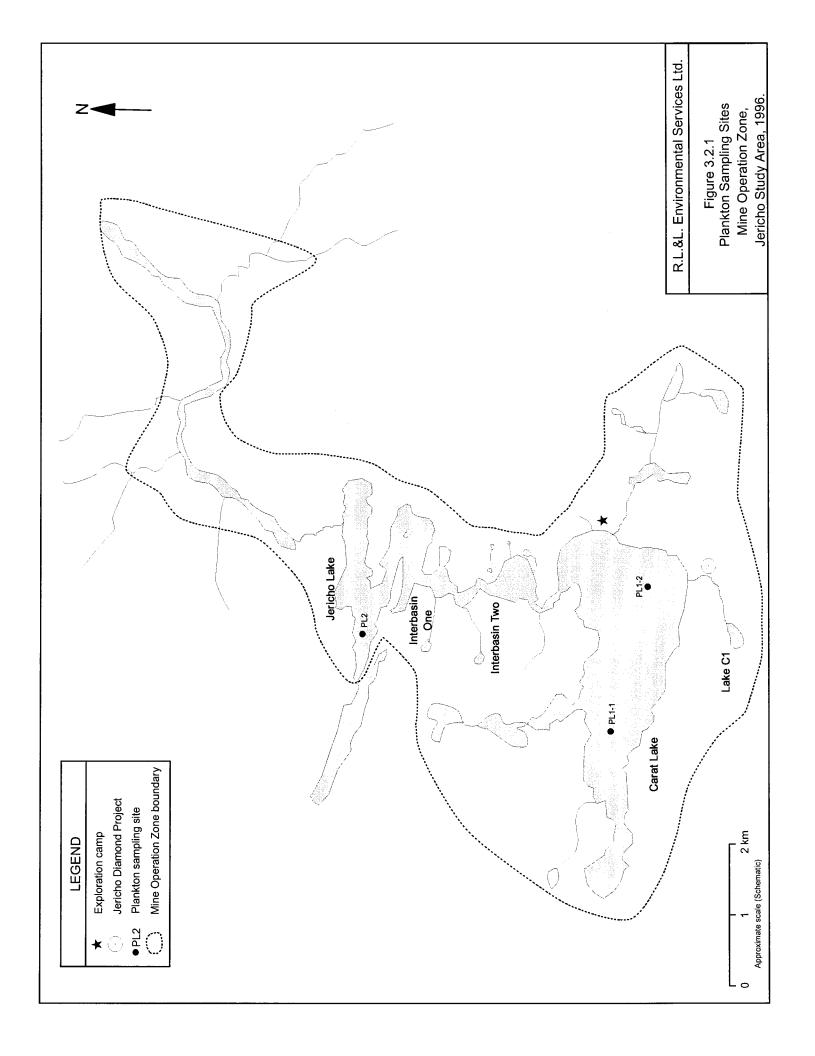



Figure 3.1.3 Concluded.

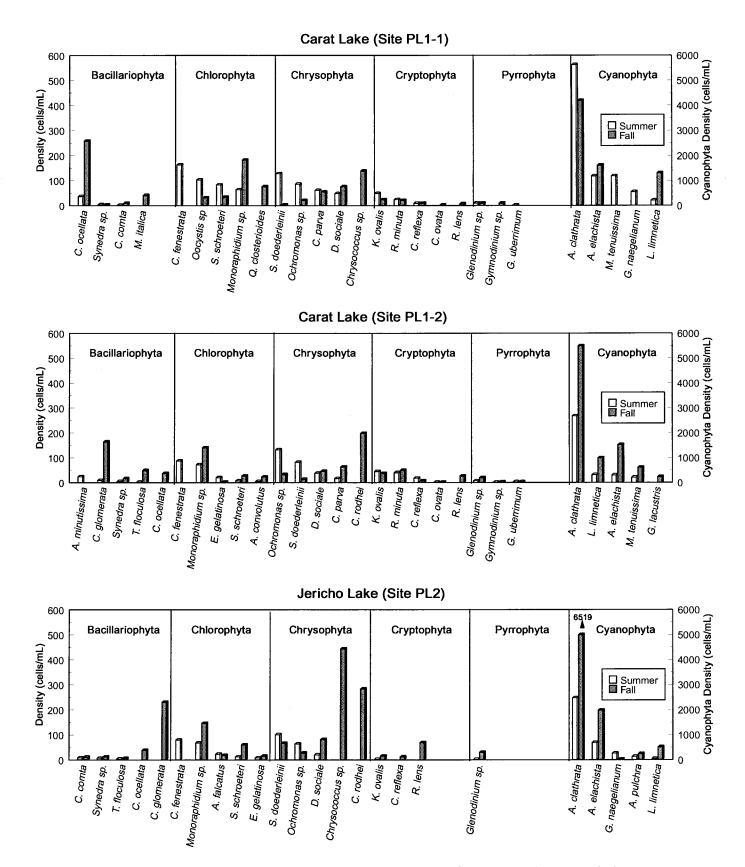


Figure 3.2.2 Density of dominant phytoplankton species in each of six taxonomic groups during summer and fall in lakes within the Mine Operation Zone, Jericho study area, 1996 (note difference in scale for Cyanophyta).

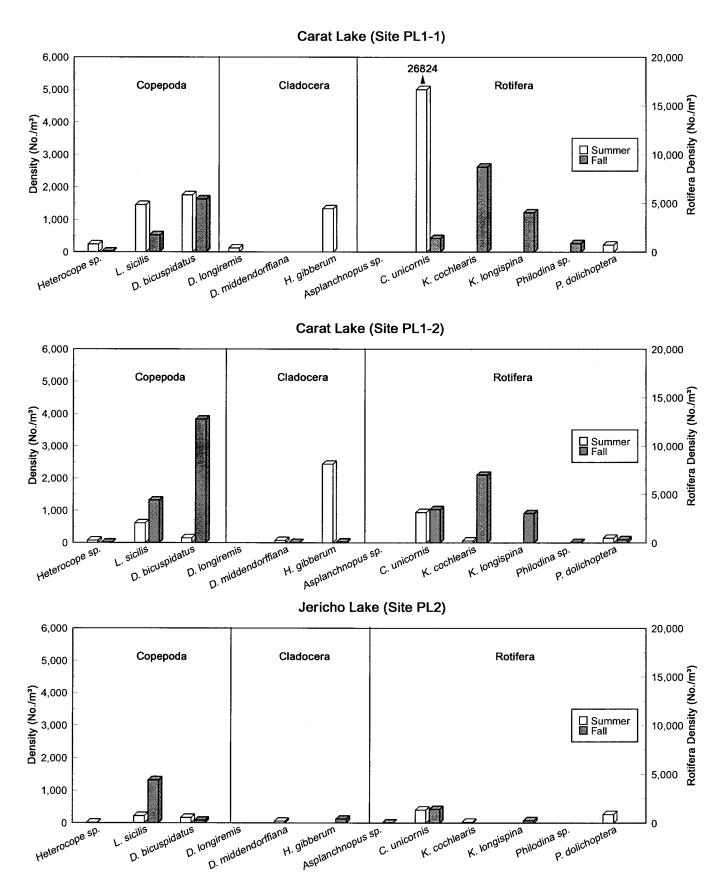
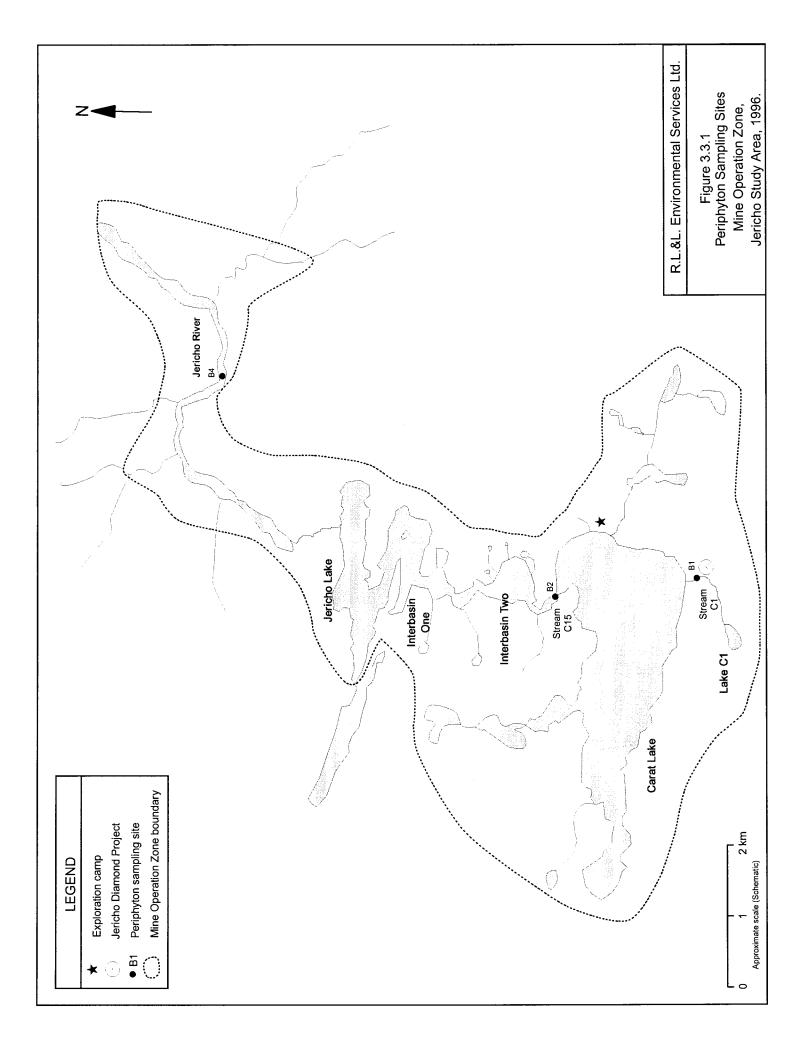



Figure 3.2.3 Density of major zooplankton species in each of three taxonomic groups during summer and fall in lakes within the Mine Operation Zone, Jericho study area, 1996 (note difference in scale for Rotifera).

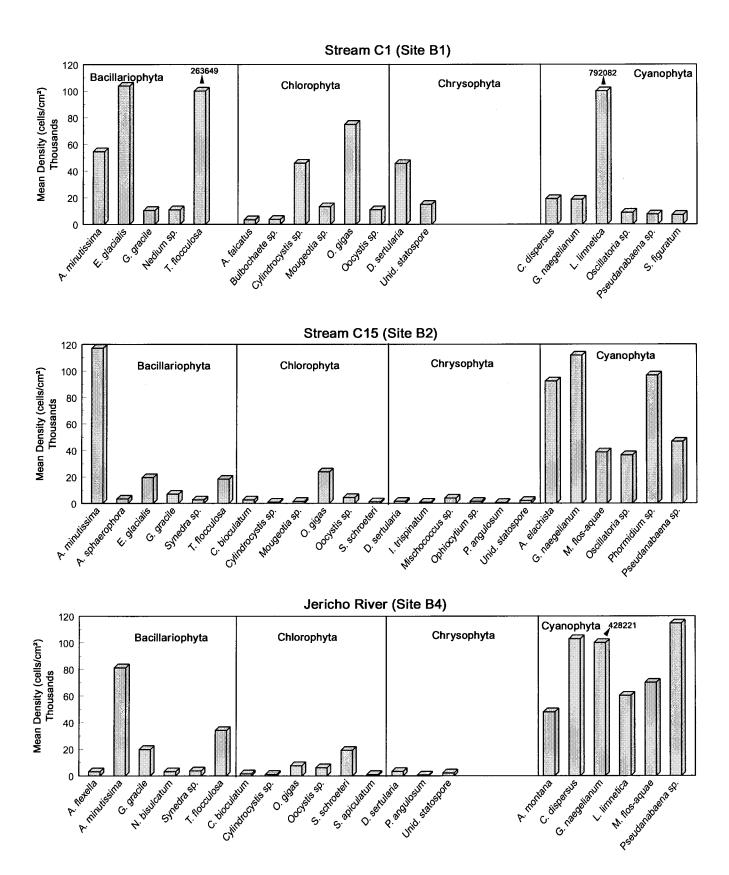
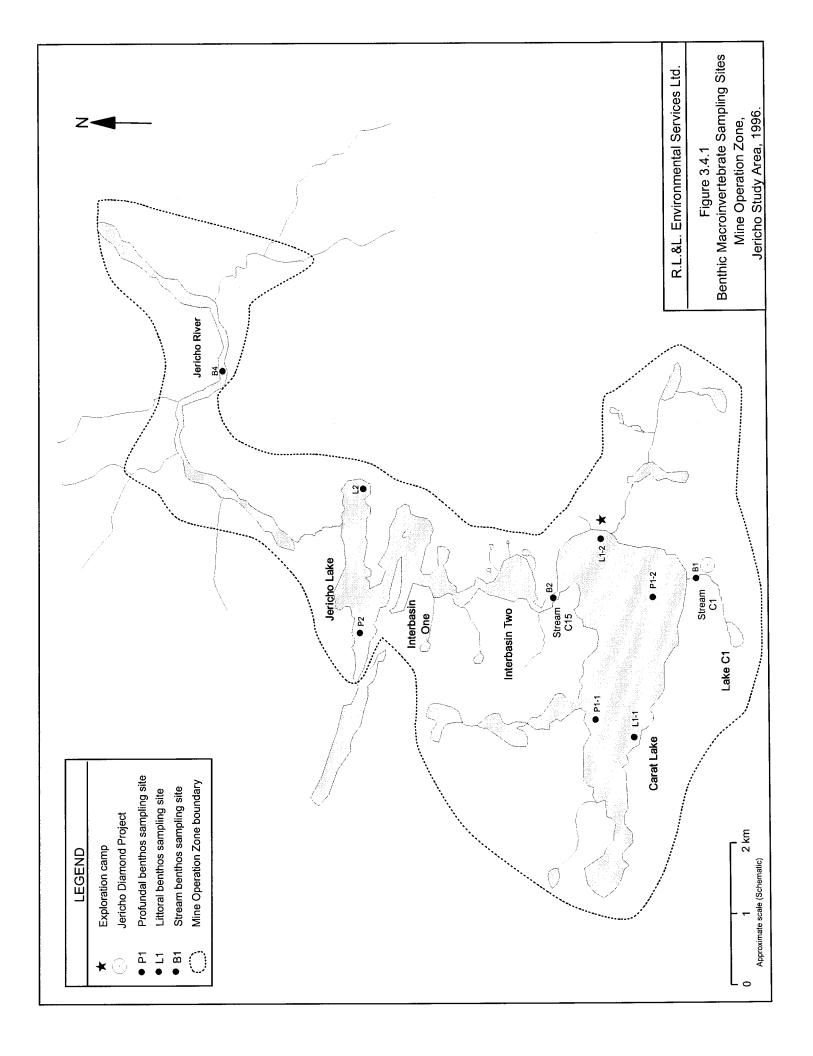
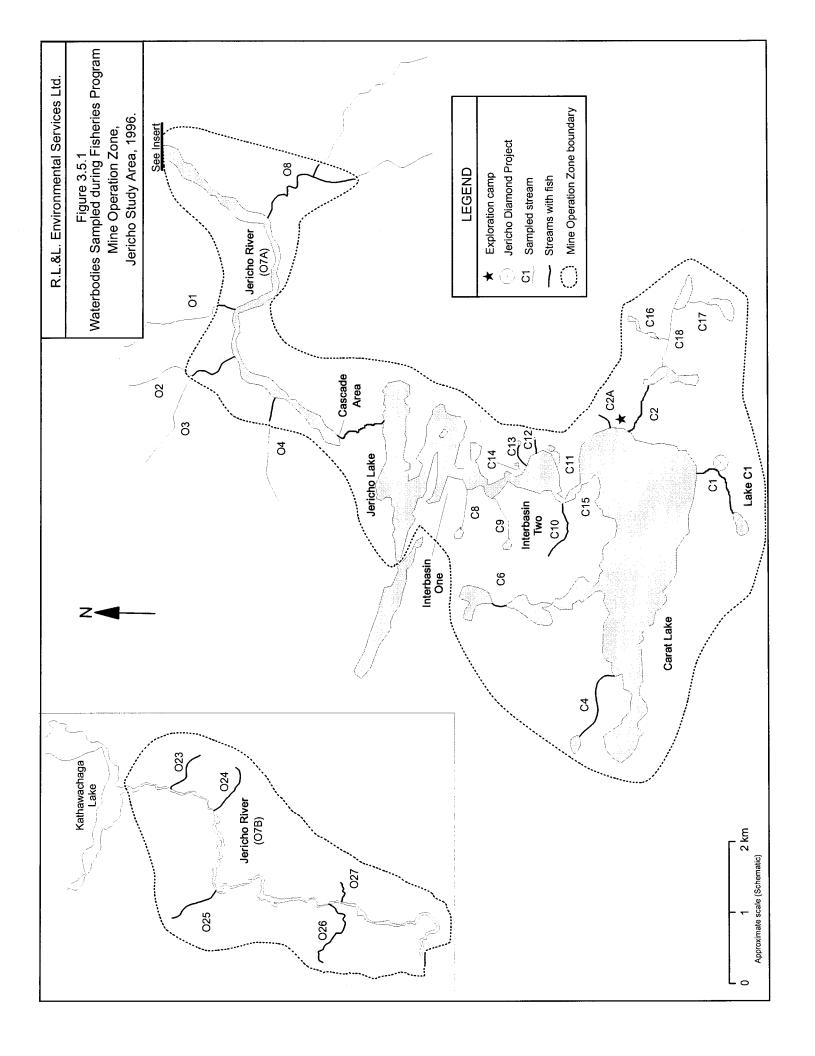
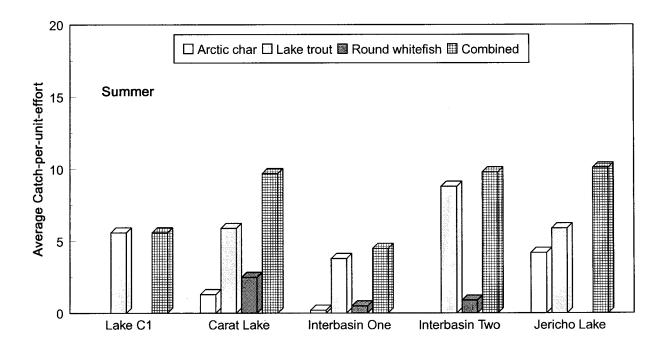





Figure 3.3.2 Mean density (*n*=3) of the most numerous periphytic algal species among the four major taxonomic groups in streams within the Mine Operation Zone, Jericho study area, summer 1996.

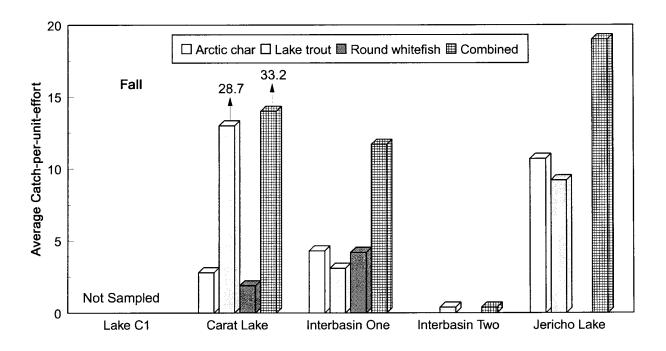


Figure 3.5.2 Average catch-per-unit-effort values (fish/100 m² ·12h) for fish captured during gill net sampling in lakes during summer and fall within the Mine Operation Zone, Jericho study area, 1996.

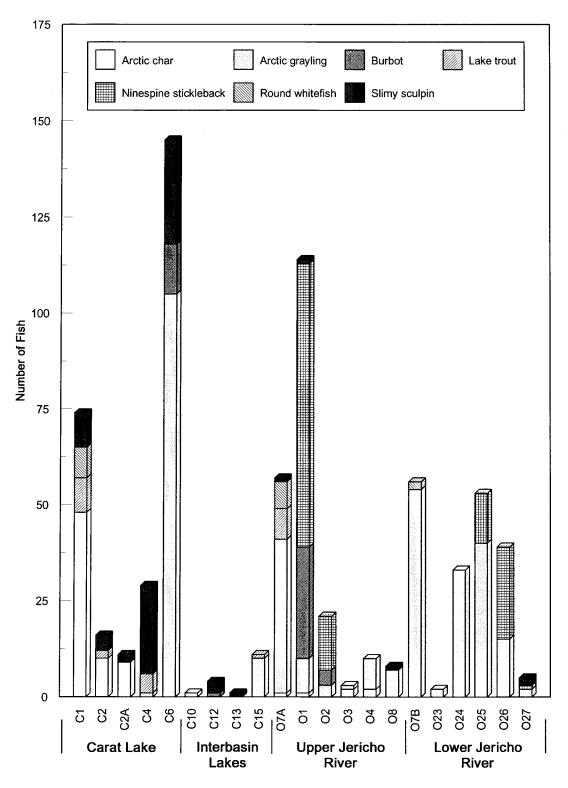
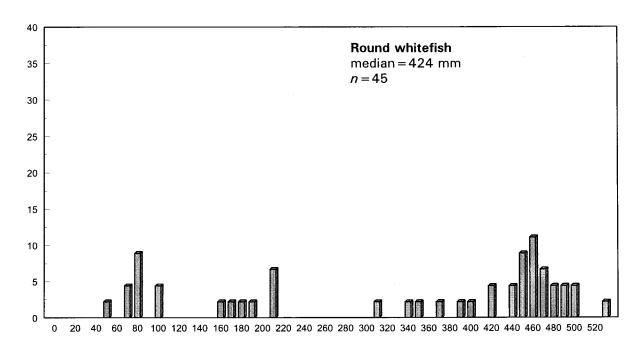


Figure 3.5.3 Comparison of fish numbers recorded in streams within four areas of the Mine Operation Zone, Jericho study area, 1996 (all methods and sampling periods combined).


Figure 3.5.4 Length-frequency distribution of lake trout in waterbodies within the Mine Operation Zone, Jericho study area, 1996 (data for all seasons, sampling methods, lakes and streams combined).

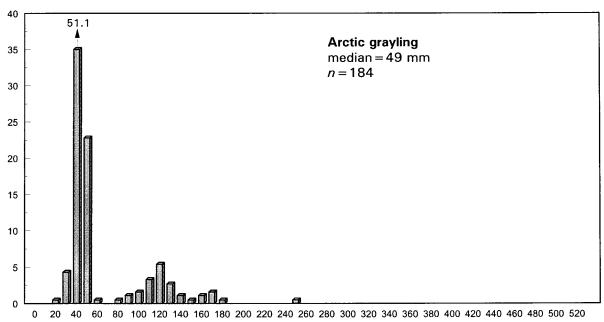
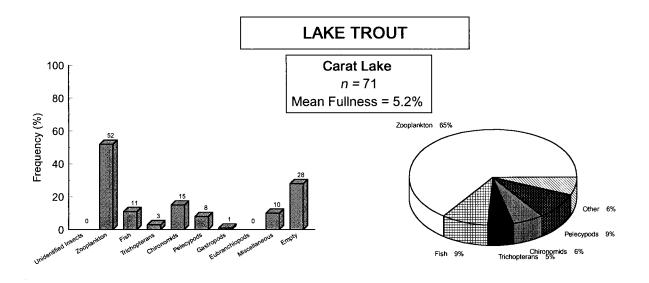
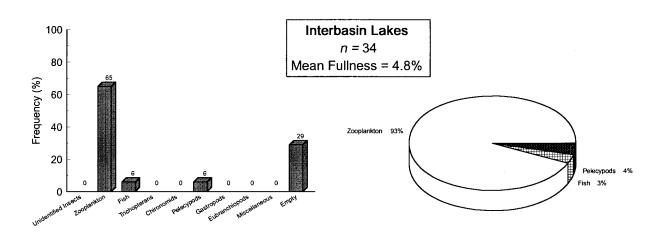

Fork Length (mm)

Figure 3.5.5 Length-frequency distribution of Arctic char in waterbodies within the Mine Operation Zone, Jericho study area, 1996 (data for all seasons, sampling methods, lakes and streams combined).

Fork Length (mm)





Fork Length (mm)

Figure 3.5.6 Length-frequency distribution of Arctic grayling and round whitefish within the Mine Operation Zone, Jericho study area, 1996 (data for all seasons, sampling methods, lakes and streams combined).

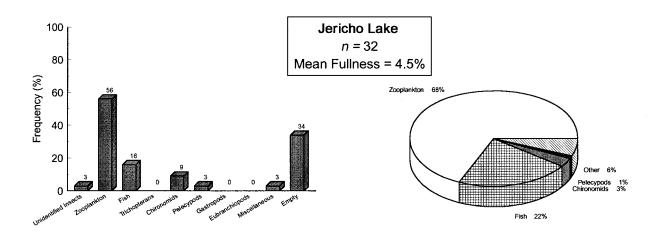
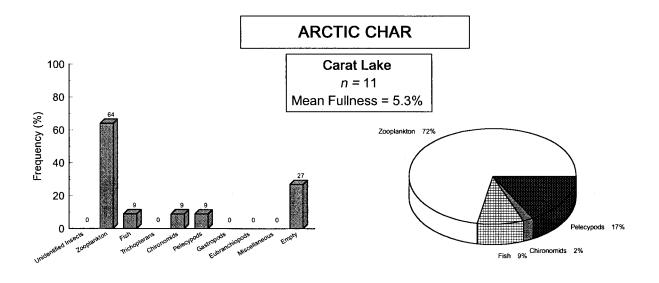
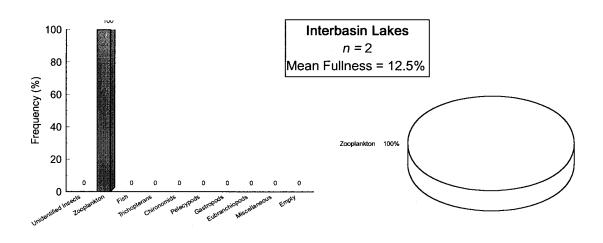




Figure 3.5.7 Frequency of occurrence (bars) and percent composition (pies) of food items encountered in stomachs of lake trout captured from lakes in the Mine Operation Zone, Jericho study area, 1996 (all seasons combined).

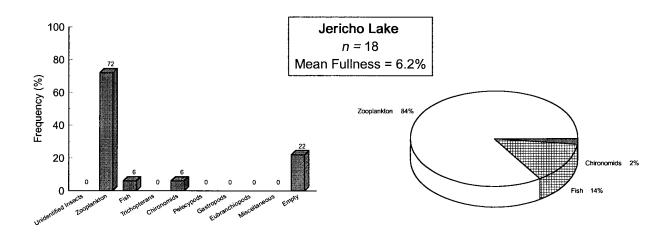
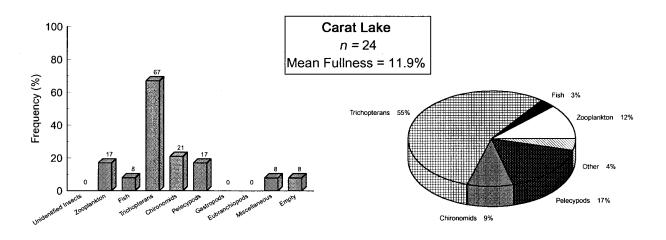



Figure 3.5.8 Frequency of occurrence (bars) and percent composition (pies) of food items encountered in stomachs of Arctic char captured from lakes in the Mine Operation Zone, Jericho study area, 1996 (all seasons combined).

ROUND WHITEFISH

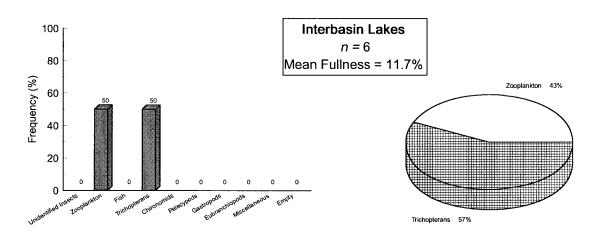
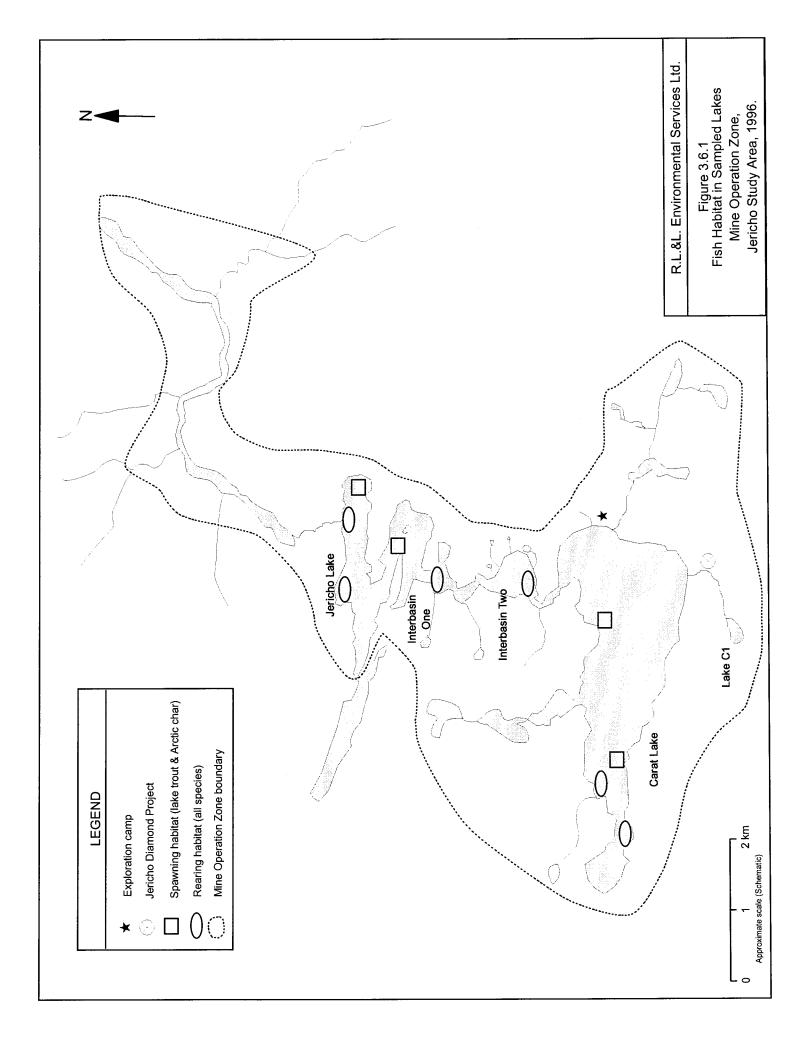
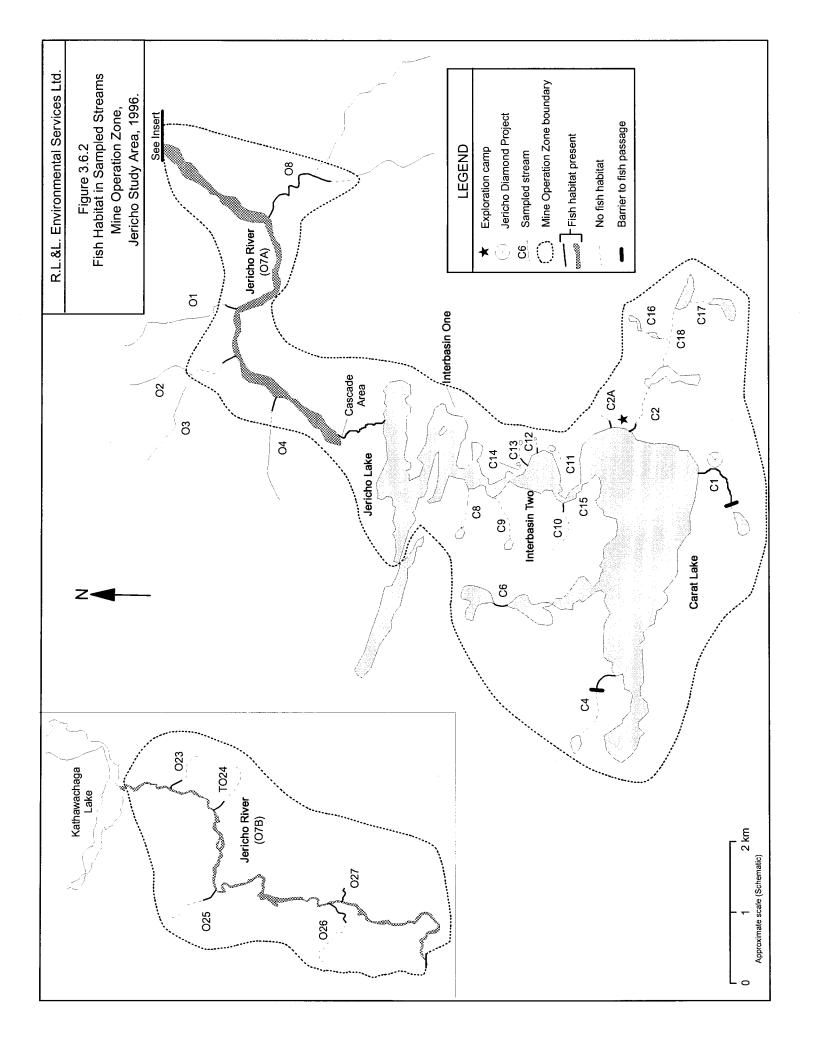




Figure 3.5.9 Frequency of occurrence (bars) and percent composition (pies) of food items encountered in stomachs of round whitefish captured from lakes in the Mine Operation Zone, Jericho study area, 1996 (all seasons combined).

4.0 BORROW EXTRACTION ZONE

4.1 LIMNOLOGY

This section provides summary results for lake morphology, temperature and dissolved oxygen profiles, and water transparency measurements in selected lakes of the Borrow Extraction Zone. Limnological data were collected from five lakes potentially influenced by proposed developments (Lakes O1 to O5). One sampling site was established on each of the lakes (Figure 4.1.1). Specific sampling locations are provided in Appendix B1.

4.1.1 Lake Morphology

The largest waterbody surveyed in the Borrow Extraction Zone was Lake O1 (18.1 ha) (Table 4.1.1 and Figure 4.1.1). This lake is situated immediately north of the Jericho Diamond Project site and is adjacent to the air strip and fuel storage depot. A bathymetric survey of Lake O1 indicates that the waterbody is composed of two basins; a larger, shallower, northern basin and a smaller, deeper, southwestern basin (Figure 4.1.2). This lake is relatively shallow (mean depth=4.1 m) and it exhibits a low shoreline development ratio (1.26). Lake O1 is the headwater lake in the Borrow Extraction Zone drainage; several small intermittent tributaries enter along its southern shore. However, given the nature of the geological material surrounding the lake (i.e., sands and gravels), it is possible that some of its water input originates from subsurface flow. There is one outlet stream to Lake O1, which flows north into Lake O2.

Lake O2 is the smallest waterbody surveyed in the Borrow Extraction Zone (5.3 ha). A bathymetric survey of Lake O2 indicates that it is a simple waterbody composed of one conical shaped basin with a maximum depth of 7.0 m (Figure 4.1.3); its shoreline development ratio is low (1.11). The only outlet stream to this waterbody flows north to Lake O4. Lake O2 receives its surface water input from Lake O1 and Lake O3.

Lake O3 is slightly larger than Lake O2 (8.3 ha) and differs from this waterbody by being deeper (maximum depth = 11.0 m) and by exhibiting a more irregular shoreline (shoreline development ratio = 1.22).

Lake O4 is larger than Lake O3 (16.7 ha), but is not as deep (maximum depth of 8.0 m). This waterbody has a low shoreline development ratio (1.07). Lake O4 receives surface water flow from several small intermittent streams along its south shore and from the outlet stream of Lake O2. Its only outlet stream flows north to Lake O5.

Lake O5 is situated immediately adjacent to the Jericho River and is connected to this watercourse by a short well-defined channel. It is similar in size to Lake O4 (17 ha), but exhibits a more irregular shoreline (shoreline development ratio=1.31). Initial surveys indicate that the lake contains a single basin and is shallow (maximum depth=5.0 m). Two major inlet tributaries enter this lake, one from Lake O4 and another, which

drains a series of headwater systems to the northeast. Each inlet stream exhibits continuous water flow during the open water period.

4.1.2 Temperature and Dissolved Oxygen

Temperature and dissolved oxygen profile data were collected during summer, while only surface water data were collected during the fall. Water column oxygen-temperature profiles are depicted in Figure 4.1.3; all data are presented in Appendix B1.

Water depths recorded at the Borrow Extraction Zone sites varied from 5 to 12.5 m; Site W11 (Lake O5) was the shallowest and Site W7 (Lake O1) was the deepest. Water depth at the remaining sites ranged between 8 and 11.3 m in depth (Figure 4.1.4; Appendix B1).

Surface temperatures at sampling sites during summer (3 to 4 August) were approximately 14°C (Figure 4.1.3). Lakes O1 and O3 were thermally stratified; the thermoclines were located between 10 m and the bottom (13 m) and 6 m and the bottom (11 m), respectively. The remaining lakes (Lakes O2, O4, and O5) were isothermal (i.e., uniform temperatures throughout the water column).

Dissolved oxygen concentrations within the Borrow Extraction Zone lakes were variable (Figure 4.1.4; Appendix B1). Site W7 on Lake O1 had the greatest change in dissolved oxygen concentration; it changed from 9.7 mg/L to 6.6 mg/L between the surface and lake bottom. Lake O5 (Site W11) had the lowest change in oxygen concentration with depth (9.7 mg/L at surface to 9.2 mg/L at the bottom); this was likely due to the shallow depth of the lake at this site (5.0 m). Overall, dissolved oxygen concentrations in the five study lakes varied from 6.6 to 10.0 mg/L.

The surface water temperature in the fall for each Borrow Extraction Zone study lake (6 to 8 September) was above freezing (Appendix B1); temperatures ranged from 4.0°C at Site W11 (Lake O5) to 6.0°C (Site W9) of Lake O3. The surface waters in all study lakes in this zone were well oxygenated (10.1 to 10.7 mg/L) and complied with Canadian Water Quality Guidelines (CCME 1996).

4.1.3 Transparency

In summer (3 and 4 August), water transparency (Secchi depths) did not vary greatly; it ranged from 5.2 m at Sites W10 and W11 to 5.7 m at Site W7 (Figure 4.1.4; Appendix B1). In the fall (6 to 8 September), Secchi depths were lower than in summer, but had a greater range (3.5 m to 5.0 m in Lakes O1 and O4, respectively). The euphotic zone depths (depth to about 1% light penetration and where algae can still subsist = 2 × Secchi depth) were under 12 m in the summer and 10 m or less in the fall.

4.1.4 Summary

4.1.4.1 Lake Morphology

The five surveyed lakes in the Borrow Extraction Zone are small; they range in size from 5 ha (Lake O2) to 18 ha (Lake O1). These waterbodies have maximum depths greater than 5 m. Lake O1 is the deepest waterbody identified in the zone (maximum depth was 14 m). Based on a bathymetric survey of Lake O1, this waterbody contains two basins, with the larger, shallower basin encompassing the northern portion of the lake. A bathymetric survey of Lake O2 indicates that this small waterbody is composed of a single basin. Preliminary surveys of other waterbodies suggest that they also consist of single basins. All surveyed lakes in the Borrow Extraction Zone have shoreline development ratios less than 1.4, which is an indication of uniform shoreline configurations.

4.1.4.2 Temperature and Dissolved Oxygen

During the 1996 aquatic studies program in the Borrow Extraction Zone study area, lakes deeper than 10 m in depth (Lakes O1 and O3) exhibited thermal stratification, while shallower waterbodies (Lakes O2, O4, and O5) exhibited isothermal conditions. Therefore the deeper lakes can be classified as dimictic (thoroughly mix twice a year), while the shallower lakes can be classified as monomictic (continuous mixing).

The lakes within the Borrow Extraction Zone have shallower (approximately 2 m) thermoclines than the lakes of the Mine Operation Zone. This was likely attributed to location (i.e., on the leeward side of an esker and protected from wind exposure) and the smaller size of the lakes in the Borrow Extraction Zone. Lakes with small surface areas generally have a shorter distance for wind exposure (i.e., reduced fetch distance). The amount of wind exposure a lake receives affects the formation and depth of the thermocline; and in general, the lower the wind exposure the shallower the thermocline (Wetzel 1983).

In summer, the isothermal lakes had water temperatures that ranged from 13.3 to 14.1°C, while those lakes that stratified had water temperatures below the thermocline as low as 5.6°C. In fall, water temperatures among the study sites at the surface to a 1 m depth, ranged from 4.0 to 6.0°C. The summer dissolved oxygen concentrations varied from 6.6 to 10.0 mg/L, while fall surface water concentrations ranged from 10.1 to 10.7 mg/L.

During summer, all lakes studied within the Borrow Extraction Zone had dissolved oxygen concentrations that were below the Canadian Water Quality Guideline for the protection of cold-water biota early life stages (9.5 mg/L, Table 3.1.2). The low dissolved oxygen concentrations recorded at this time were likely the result of equipment malfunction and were not representative of actual concentrations throughout the water column. Dissolved oxygen concentrations at the surface were 100% saturation and above the 9.5 mg/L criteria. Because these lakes are nutrient poor (R.L. & L. Environmental Services Ltd. 1995; Canamera Geological Ltd., unpublished data), dissolved oxygen concentrations should have remained constant throughout the water column, at least to the thermocline. This was not the case, at several sites the concentration was correlated with water

depth, which is an indication of equipment malfunction (R. Hirsch, Technical Engineer, Point Four Systems Inc., Post Moody, BC, pers. comm.). As such, the dissolved oxygen concentrations recorded during the summer should be viewed with caution.

4.1.4.3 Transparency

The water transparency levels recorded in the Borrow Extraction Zone lakes indicated that the euphotic zone was between 10 and 12 m during the summer and between 7 and 10 m during the fall. The amount of light penetration is dependent upon suspended materials (i.e., sediments and other allochthonous matter) and the biological productivity of a lake (i.e., density and biovolume of phytoplankton). Transparency levels in these lakes were similar to those measured in the Mine Operation Zone lakes; they are indicative of oligotrophic systems.

4.2 PLANKTON

To provide baseline information on the plankton community, samples were collected from the Borrow Extraction Zone of the Jericho study area during summer and fall of 1996. One site (PL4) was established on Lake O1 (Figure 4.2.1). This site was closest to the region that is projected to have the most activity associated with borrow extraction materials. Relevant data are summarized in the following sections; all data are presented in Appendices C1 to C3.

4.2.1 Phytoplankton

Phytoplankton are microscopic free-floating algae (Smith 1950). Summary results of phytoplankton biovolume (microns cubed per metre cubed $[\mu m^3/m^3]$) and density (No. cells/ml) are both presented in this section because density alone does not provide an accurate assessment of importance. For example, taxa that are extremely numerous may have a low biovolume, due to the small size of individual organisms. Conversely, those taxa that have large biovolumes (due to large individual organism size), may not be numerically abundant. These large bodied groups can contribute significantly to lake productivity. As such, their numbers can influence the abundance and biomass of herbivores that feed on them (generally zooplankton) and they can modify nutrient availability for competing plants or algae.

4.2.1.1 Biovolume

In total, 101 species of algae were identified from the samples collected in the Borrow Extraction Zone study area (Appendix C2). Table 4.2.1 summarizes biovolumes of major taxonomic groups encountered. In the summer, golden-brown algae (Chrysophyta) contributed 56% of total algal biovolumes, while dinoflagellates (Pyrrophyta) accounted for 24%. In fall, golden-brown algae and diatoms (Bacillariophyta) accounted for over 85% of the biovolume (75 and 10%, respectively).

4.2.1.2 Density

The relative importance of the most numerous species within each of the six major taxonomic groups are depicted in Figure 4.2.2. Cyanobacteria (Cyanophyta) were the numerically dominant taxa in all samples; *Aphanothece clathrata* densities ranged from 10 334 cells/ml in summer to 12 183 cells/ml in fall. *Aphanocapsa elachista* had the second highest densities (4456 and 3017 cells/ml in the summer and fall, respectively). Cyanobacteria, however, typically have very small cells and do not contribute greatly to biovolume. Golden-brown algae contributed the most toward total phytoplankton biovolume in each season (refer to Section 4.2.1.1); *Ochromonas* sp. was the most abundant golden-brown algae during summer (572 cells/ml) and *Chrysosphaerella rodhei* dominated during fall (396 cells/ml).

4.2.2 Zooplankton

Zooplankton communities are composed of microscopic animals that live in the water column. The seasonal changes in zooplankton biomass are summarized in Table 4.2.2, while seasonal changes in density for dominant taxa are presented in Figure 4.2.3. All raw data are presented in Appendix C3. Summary results of zooplankton biomass (micrograms per metre cubed $[\mu g/m^3]$) and density (No./m³) are presented in this section because density alone does not provide an accurate assessment of importance. Taxa that are extremely numerous may have a low biomass, due to the small size of individual organisms. Conversely, those taxa that have large biomass (due to large individual organism size), may not be numerically abundant. These large bodied groups can contribute a significant amount to lake productivity. As such, their numbers can influence the abundance and biomass of predators that feed on them (generally other zooplankton and fish) and they can modify the phytoplankton community.

4.2.2.1 Biomass

In summer, water fleas (Cladocera) and calanoid copepods (Calanoida) contributed 99% of total zooplankton biomass in Lake O1 (87 and 12%, respectively). These percentages represented 235 and 31.9 \times 10³ μ g/m³, respectively. In fall, calanoid copepods accounted for the majority of zooplankton biomass (83%) while cyclopoid copepods were second in abundance (8%) and water fleas were third (7%) (Table 4.2.2; Appendix C3).

4.2.2.2 Density

In summer, Lake O1 was dominated by the wheel animal (Rotifera) *Conochilus unicornis* (16 444 individuals/m³) and the calanoid copepod *Leptodiaptomus sicilis* (1337 individuals/m³). In fall, *C. unicornus* was replaced by *Kellicottia longispina* (29 617 individuals/m³) and *L. sicilis* increased in abundance (6698 individuals/m³). Overall, zooplankton densities were greater in the fall than in the summer (Figure 4.2.3; Appendix C3).

4.2.3 Summary

4.2.3.1 Phytoplankton

The phytoplankton assemblage in Lake O1 was indicative of oligotrophic waterbodies (Wetzel 1983). Golden-brown algae (Chrysophyta) had the greatest biovolumes in the summer and fall. Cyanobacteria (Cyanophyta) algae had the greatest densities in both seasons, due to their small cell sizes relative to other taxa.

There was a seasonal shift in the relative importance of the major taxonomic groups. Golden-brown algae contributed 56% to total algal biovolume, while dinoflagellates (Pyrrophyta) accounted for 24% in the summer. During fall, golden-brown algae increased in importance; this group accounted for over 75% of the biovolume. Also the most abundant golden-brown algae species changed from summer to fall (*Ochromonas* spp. versus *Chrysosphaerella rodhei* respectively), while cyanobacteria were dominated by *Aphanothece clathrata* and *Aphanocapsa elachista* in both seasons.

4.2.3.2 Zooplankton

The zooplankton community in Lake O1 exhibited a change in community structure between summer and fall. In general, zooplankton biomass was dominated by the water fleas (primarily *Holopedium gibberum*) in summer and calanoid copepods (primarily *Leptodiaptomus sicilis*) in fall. The most abundant zooplankton were the wheel animals (*Conochilus unicornis* and *Kellicottia longispina* in summer and fall, respectively).

4.3 STREAM PERIPHYTON

Periphyton refers to the community of algae, bacteria, fungi, and their secretions that grow on substrates in freshwater systems (Lock et al. 1984). In addition to having an important role in aquatic trophic relationships (i.e., used by invertebrates and fish as a source of food and shelter), they are well suited for use as a biological indicator of environmental conditions, including those imposed by anthropogenic activities. Summary results of periphyton density (No. cells/ml), chlorophyll a concentration ($\mu g/cm^2$), and ash-free-dry-weight (AFDM) concentration (mg/cm^2) are presented in this section.

A limited periphyton sampling program was conducted in the summer of 1996. Three replicate samples were collected from one stream (Stream O18, Site B3) in the Borrow Extraction Zone (Figure 4.3.1). This stream is situated adjacent to the proposed development. Data are presented as means $(n=3, \pm 1 \text{ standard error})$. Relevant information are summarized in this section; all data are presented in Appendices D1 and D2.

4.3.1 Density

In total, 84 periphytic algal species were identified in the samples from Stream O18 (Appendix D2). The algal community at this site was dominated by the cyanobacterium *Microcystis flos-aquae* (161 402±161 402 cells/cm²) and the diatom *Tabellaria flocculosa* (140 323±47 836 cells/cm²). Other abundant periphytic algal species included the cyanobacteria *Lyngbya limnetica* and *Phormidium* sp.(Figure 4.3.2).

4.3.2 Biomass

Stream O18 had low estimates of mean periphytic chlorophyll a and mean AFDM (0.512 \pm 0.351 μ g/cm² and 23.6 \pm 6.65 μ g/cm², respectively; Appendix D1). These estimates are indicative of oligotrophic conditions (Horner and Welch 1981; Wetzel 1983).

4.3.3 Summary

The most abundant periphytic algae in Stream O18 of the Borrow Extraction Zone were the cyanobacterium *Microcystis flos-aquae* and the diatom *Tabellaria flocculosa*. The overall mean density of algae in Stream O18 (623 886±206 406 cells/cm²) was low.

The amount of chlorophyll a and AFDM (indicators of live algae and periphyton biomass, respectively) is controlled primarily by light quality and quantity, water velocity, and nutrient concentrations (Horner and Welch 1981). Moderate current velocities (20 to 100 cm/s) and increasing phosphorus concentrations (to 50 μ g/L total phosphorus) promote periphytic growth. The sampling location on Stream O18 exhibited light and current velocities within the range reported by Horner and Welch (1981). Therefore, it is likely that phosphorous concentrations were low, which limited periphytic growth.

4.4 BENTHIC MACROINVERTEBRATES

Benthic (bottom-dwelling) macroinvertebrates are an important link in aquatic food webs. Most benthic invertebrates are herbivorous, detrivorous, or filter feeders and derive much of their energy from aquatic plants and algae or organic materials. Some benthic macroinvertebrate species are predactious, generally feeding upon other invertebrates. Many fish species, including early life history stages of piscivorus species, feed upon benthic macroinvertebrates.

4.4.1 Lakes

The lake sampling program was designed to obtain baseline information from benthic macroinvertebrate communities in selected lakes within the Borrow Extraction Zone. In summer, three replicate samples were collected from each of the littoral and profundal zones of Lake O1 (Figure 4.4.1). In total, 12 taxonomic groups were identified. The number of taxa in each sample ranged from 3 to 15 (Appendix E2). Summary data are

provided in Table 4.4.1; site specific sampling information is summarized in Appendix E1 and raw data are presented in Appendix E2.

The total mean density (± 1 standard error) of benthic macroinvertebrates in the littoral zone of Lake O1 was $5696\pm2119/m^2$ (Table 4.4.1). The mean number of taxonomic groups was fourteen. The three most abundant taxa were Chironomidae (midges) ($2797/m^2\pm964$), Sphaeriidae (fingernail clams) ($1275\pm394/m^2$), and Nematoda (roundworms) ($1203\pm988/m^2$). Ostracods (seed shrimps), and oligochaetes (aquatic earthworms) were also present in the littoral benthic community.

The total mean density (± 1 standard error) of benthic macroinvertebrates in the profundal zone of Lake O1 was $2478\pm199/\text{m}^2$ (Table 4.4.1). The mean number of taxonomic groups identified was eight. The three most abundant taxa were midges ($1897\pm283/\text{m}^2$), fingernail clams ($406\pm169/\text{m}^2$), and seed shrimps ($116\pm96/\text{m}^2$). There also were considerable numbers of nematodes, water mites (Hydrachnidia), and oligochaetes.

Mean overall densities of benthic macroinvertebrates were much greater in the littoral zone than in the profundal zone of Lake O1; there was at least a two-fold difference in density (Table 4.4.1). Furthermore, the number of taxonomic groups identified in the littoral zone was greater than the number identified in the profundal zone. Taxon specific differences were also apparent; water mites were only found in profundal zone samples, while microturbellarians (microflatworms) were only found in littoral zone samples. In addition, large differences in densities were observed for nematodes (means of 1203 and $14/m^2$ respectively), fingernail clams (means of 1275 and $406/m^2$ respectively), and midges of the tribe Chironomini (means of 1522 and $130/m^2$ respectively). In contrast, midges of the tribe Tanypodinae were more abundant in the profundal zone $(1420\pm151/m^2)$ than in the littoral zone $(478\pm100/m^2)$.

4.4.2 Streams

A benthic macroinvertebrate sampling program was conducted in Stream O18 (Site B3) of the Borrow Extraction Zone in the summer of 1996 (Figure 4.4.1). Site specific sampling information is summarized in Appendix E3, while raw data are presented in Appendix E4. In total, 25 different taxonomic groups were identified; the number of taxa in each sample ranged from 20 to 28.

The benthic macroinvertebrate community in Stream O18 was dominated by oligochaetes $(1301\pm491/\text{m}^2)$, ostracods $(1240\pm399/\text{m}^2)$, and midges (mean of $1050\pm355/\text{m}^2$). Other taxa with high densities included nematodes, nemourid stoneflies (Plecoptera), and hydroids (Coelenterata). The total mean density of benthic macroinvertebrates and the mean number of taxa in Stream O18 were low $(5470\pm993/\text{m}^2)$ and $25\pm2/\text{m}^2$, respectively) (Table 4.4.2).

4.4.3 Summary

4.4.3.1 Lakes

Overall, mean densities and number of taxonomic groups of benthic macroinvertebrates were greater in the littoral zone than the profundal zone of Lake O1. This reflects the higher productivity of shallow-water habitats due to higher water temperatures and greater light penetration. Anoxia of the profundal zone was not recorded during the 1996 open water season (see Section 4.1) and probably was not a factor in benthic macroinvertebrate production. Taxonomic composition was indicative of a short growing season and a homogenous substrate dominated by fine sediments.

The mean number of taxonomic groups identified in the littoral zone (14) was greater than the number identified in the profundal zone (8) of Lake O1. Taxon specific differences were also apparent; water mites were only identified in samples collected from the profundal zone, while microturbellarians (microflatworms) were only found in littoral zone samples. In addition, there were large differences in densities. Differences were observed for nematodes, fingernail clams, and midges of the tribe Chironomini (littoral zone densities were much greater). Midges of the tribe Tanypodinae exhibited the opposite trend; densities of this taxon were more abundant in the profundal zone than in the littoral zone.

4.4.3.2 Streams

One stream site was sampled for benthic macroinvertebrates within the Borrow Extraction Zone. The benthic macroinvertebrate community in Stream O18, was dominated by oligochaetes (aquatic earthworms), ostracods (seed shrimps), and chironomids (midges). Other taxa with considerable densities included nematodes (roundworms), nemourid stoneflies (Plecoptera), and hydroids (Coelenterata). The species composition and low densities were typical of nutrient poor systems (Hynes 1970; Resh and Rosenberg 1984; Rosenberg and Resh 1993).

4.5 FISH

4.5.1 Species Composition and Abundance

The 1996 aquatic studies fish sampling program was designed to provide information on species composition and abundance in the Borrow Extraction Zone. Sampling was conducted during spring, summer, and fall in a variety of habitats using several inventory techniques. In lakes, these techniques included gillnetting, angling, and the use of gee traps. In streams, fish were inventoried using backpack electrofishing and snorkelling. The following section provides summary information for fish communities in selected lakes and streams; all raw data are presented in Appendices F1 to F5.

4.5.1.1 Lakes

Five lakes were sampled during the 1996 fisheries program (Figure 4.5.1); Lakes O1 to O5. None of these waterbodies were examined during the 1995 investigation.

In total, 214 fish representing seven species were sampled from lakes in the Borrow Extraction Zone (Table 4.5.1). In order of numerical importance, they were Arctic char (85), lake trout (70), round whitefish (28), ninespine stickleback (18), Arctic grayling (10), slimy sculpin (2), and burbot (1). The relative importance of a particular fish species within each lake was not constant (Table 4.5.2). In Lake O1, situated the farthest upstream within the Borrow Extraction Zone drainage, Arctic char dominated the sample (75%). Lake trout was second in importance (23%), followed by low numbers of round whitefish and slimy sculpin (each species accounted for 1% of the sample). In Lakes O2, O3, and O4, Arctic char was also important, but this species did not dominate the sample (<27% in each of the lakes). The dominant species in these lakes were as follows: round whitefish in Lakes O2 and O4 (39% and 45%, respectively) and lake trout in Lake O3 (58%). In Lake O5, lake trout dominated the sample (47%), followed by ninespine stickleback (23%) and Arctic grayling (17%). Other species, such as round whitefish and Arctic char, were not as important as in other waterbodies (9% and 4% of sample, respectively).

To assess the relative abundance of fish in each of the sampled lakes, gill net catch data for each lake were summarized. These data were used for comparison purposes because they were based on a standardized sampling effort and the majority of fish were captured using this technique (193 of 214 fish).

The relative abundance (catch-per-unit-effort or CPUE) values generated for fish captured in each lake (Figure 4.5.2) were consistent with the percent composition information. However, the relative abundance of fish varied between seasons and between lakes. Catch rates for most species tended to be higher during fall than during summer.

A number of reasons may explain the higher catch rates recorded during fall. Seasonal differences existed in the sampling strategy employed. In summer, a variety of habitats and locations were sampled to assess fish distribution patterns. In an effort to identify spawning areas, fall sampling was restricted to sites thought to contain suitable spawning habitat; areas where higher numbers of fish were usually present. Higher catch rates during fall may also have reflected greater movement by fish, which would have increased their vulnerability to capture by gill nets (i.e., cooler water temperatures in fall may have induced feeding and/or spawning activity). Given these factors, CPUE values recorded during fall may not be indicative of real changes in fish abundance. As such, the following discussion will concentrate on findings made during the summer period.

The data suggested that overall fish abundance indices in summer differed among lakes. CPUE values were highest in Lake O1 (11 fish/100 $m^2 \cdot 12$ h, respectively), followed by Lake O5 which exhibited the next highest overall

catch rates (7 fish/100 m 2 · 12 h, respectively). Combined CPUE values for fish in each of the three remaining waterbodies were lower (between 3 and 7 fish/100 m 2 · 12 h). Variation in catch rates among lakes likely was related to differences in lake size and productivity.

Catch rates for specific species also varied among lakes during summer. In general, Arctic char and lake trout exhibited the highest abundance indices. CPUE values for Arctic char were highest in Lake O1 (9 fish/ $100 \,\mathrm{m}^2 \cdot 12 \,\mathrm{h}$), while, CPUE values for lake trout were highest in Lakes O5 and O3 (5 and 4 fish/ $100 \,\mathrm{m}^2 \cdot 12 \,\mathrm{h}$, respectively). For other species, catch rates were much lower. Although round whitefish was the most abundant fish in Lake O2 during summer, CPUE values did not exceed 3 fish/ $100 \,\mathrm{m}^2 \cdot 12 \,\mathrm{h}$. Similarly, catch-per-unit-effort values for Arctic grayling did not exceed 2 fish/ $100 \,\mathrm{m}^2 \cdot 12 \,\mathrm{h}$ in Lake O5, the only waterbody where this species was found.

4.5.1.2 Streams

Of the 17 streams investigated within the Borrow Extraction Zone, 14 contained fish (Figure 4.5.1). These streams were situated within five general areas: Lake O1 (2 tributaries), Lake O2 (2 tributaries), Lake O3 (3 tributaries), Lake O4 (4 tributaries), and Lake O5 (3 tributaries). Two of these watercourses (Streams O5 and O6) were investigated during the 1995 fisheries program.

In total, 687 fish representing seven species were enumerated in the Borrow Extraction Zone (Table 4.5.3). Slimy sculpin dominated the sample (215) followed by Arctic grayling and Arctic char (155 and 151, respectively). Other species encountered were ninespine stickleback (116), burbot (38), round whitefish (10), and lake trout (2). The number of fish recorded varied depending on sampling area (Table 4.5.4). Most fish were recorded from streams in the Lake O4 and Lake O1 areas (199 and 179, respectively), followed by streams located in the Lake O5 area (135 fish). In contrast, fewer than 100 fish were encountered in each of the two remaining areas (Lakes O2 and O3).

The number of species encountered was relatively constant among sampling areas (Table 4.5.4). Seven species were identified in Lake O1 and O2 area streams, while six species were found in the Lake O4 area (all except lake trout), and five species were encountered in Lakes O3 and O5 areas (all except lake trout and round whitefish).

The relative importance of each species in the Borrow Extraction Zone differed among areas. Arctic char was the dominant species in the Lake O1 area (56%) followed by slimy sculpin (24%). In Lake O2 area streams, slimy sculpin dominated the sample (60%), and Arctic grayling was the second most important species (34%). Similarly, slimy sculpin dominated in the Lake O3 area (54%), however, Arctic char replaced Arctic grayling as the second most important species (27%). Ninespine stickleback dominated the sample in the Lake O4 area (35%), while Arctic grayling and slimy sculpin were equal in importance (20%). In the Lake O5 area, Arctic grayling was the dominant species (47%); ninespine stickleback and slimy sculpin were also important (24%).

The species composition and numerical abundance of fish varied between individual streams within each area (Figure 4.5.3). Of the two streams inventoried in the Lake O1 area, Stream O18 exhibited the highest species diversity (7) and fish number (169). The majority of fish recorded in this stream were Arctic char (95). It should be noted that this high number was related to the increased sampling effort expended in this particular system. Stream O19 contained fewer species (3) and much lower numbers of fish (10).

Two streams (O9 and O22) were associated with Lake O2. Both systems were dominated by Arctic grayling and slimy sculpin, however, their numbers were highest in Stream O22 (23 Arctic grayling and 47 slimy sculpin).

The three streams within the Lake O3 area differed in the fish numbers recorded. Stream O21 contained the greatest number of fish (48) and these were dominated almost entirely by slimy sculpin. In total, 29 fish were recorded in Stream 21, of which Arctic char were most important (23). In contrast, few fish were recorded in Stream O16 (4).

Streams in the Lake O4 area also varied in the fish numbers recorded. Most fish were encountered in Stream O6 (119) and these were dominated by ninespine stickleback (49) and Arctic grayling (40). Stream O12 exhibited the second highest number of fish (62), but in this system, slimy sculpin, Arctic char and ninespine stickleback were equal in importance (21, 17, and 14 fish, respectively). The two remaining streams contained few fish (<12).

In the fifth area of the Borrow Extraction Zone (Lake O5), individual stream species assemblages were similar. Streams O5 and O6A contained the highest numbers of fish (72 and 60, respectively). Arctic grayling, ninespine stickleback, and slimy sculpin were also present in these watercourses. Arctic grayling dominated the sample in Stream O5 (47). In Stream O6A, ninespine stickleback were most numerous (25), while only one Arctic char and two Arctic grayling were recorded in Stream O14.

4.5.2 Biological Characteristics

An important component of the 1996 fisheries program was to describe the biological characteristics of fish species encountered in the Borrow Extraction Zone of the Jericho study area. Characteristics described in this section include: length-frequency distributions, length-weight regressions, mean condition factors, age-at-maturity, mean length-at-age, and mean weight-at-age. Because much of this information was collected from fish that succumbed during sampling, and mortality rates were generally low, sample sizes are small. Unless otherwise stated, data from all sampling sessions and sampling methods have been combined for the analyses. Raw data used for these analyses are presented in Appendix F5.

4.5.2.1 Lake trout

The majority of lake trout captured in the Borrow Extraction Zone ranged in fork length from 104 to 620 mm, however, few individuals were less than 160 mm or greater than 620 mm in length (Figure 4.5.4). Samples sizes were sufficiently large enough to generate length-frequency distributions for fish sampled from Lake O1 only; data for other waterbodies were grouped (Lakes O2, O3, O4, and O5 combined). The length-frequency distributions were similar; the majority of fish were between 400 and 600 mm in fork length.

Length-weight regression equations and mean condition factors for lake trout sampled from selected lakes in the Borrow Extraction Zone during summer are presented in Table 4.5.5.

Age-at-length and age-at-weight information for a sample of lake trout collected from all waterbodies during summer and fall combined are provided in Table 4.5.6 (data from individual waterbodies were combined due to insufficient sample sizes). Fish in this sample ranged in age from 1 to 36 years. Caution should be used when interpreting this information. The sample used for ageing was small (n=20) and there was variation inherent to this type of data (subarctic fish populations typically exhibit a great range in age for fish of a given length [Johnson 1972]). As such, this information provides only a representative cross-section of the population and should not be interpreted as an accurate description of growth rate. As such, it should not be used for comparison of growth curves among different fish populations.

Limited data were available to assess age-at-maturity for lake trout. Information collected from all sampled waterbodies suggested that these fish became sexually mature at 10 years of age. The smallest sexually mature lake trout encountered was 447 mm in fork length. This fish was a ripe male captured from Lake O1. Nonfecund lake trout were also identified during the present study (i.e., mature fish that did not spawn that year). The percentage of nonfecund individuals in the combined sample of mature fish that could be assessed for sexual maturity was 17% (n=29).

4.5.2.2 Arctic Char

The fork length of sampled Arctic char ranged from 34 to 620 mm (Figure 4.5.5). Length-frequency distributions of fish sampled from Lake O1 and other waterbodies (data for Lakes O2, O3, O4, and O5 combined due to insufficient sample sizes) were similar; fish less than 100 mm in length dominated the sample. These individuals represented young-of-the-year and yearling fish captured from tributary streams. The other major grouping consisted of fish between 280 and 640 mm fork length.

Length-weight regression equations and mean condition factors for Arctic char sampled from selected lakes within the Borrow Extraction Zone during summer are presented in Table 4.5.7.

Age-at-length and age-at-weight information for the sample of Arctic char captured from Lake O1 during summer and fall combined are provided in Table 4.5.6 (insufficient data were available from other waterbodies). Fish in this sample ranged in age from 0 to 12 years. As for lake trout, caution should be used when interpreting this information. The sample used for ageing was small (n=32) and there was variation inherent to this type of data (subarctic fish populations typically exhibit a great range in age for fish of a given length [Johnson 1972]). As such, this information provides only a representative cross-section of the population and should not be interpreted as an accurate description of growth rate. As such, it should not be used for comparison of growth curves among different fish populations.

Limited age-at-maturity data for Arctic char suggests that fish became sexually mature at 8 years of age. The smallest sexually mature Arctic char was a gravid male 465 mm in fork length captured from Lake O1. Nonfecund Arctic char were also recorded during the study. The percentage of nonfecund individuals in the sample of mature fish that could be assessed for sexual maturity was 31% (n=26).

4.5.2.3 Round Whitefish

The fork length of round whitefish sampled from waterbodies in the Borrow Extraction Zone ranged from 97 to 513 mm (Figure 4.5.6); the median length of sampled fish was 280 mm.

The length-weight regression equation and mean condition factor for round whitefish during summer was:

Weight (g)=
$$3.365 * 10^{-6} *$$
 Fork Length (mm)^{3.208} where: $n=11$ and $r^2=0.998$; and,

Mean Condition Factor = 1.079 ± 0.056 .

Age-at-length and age-at-weight information for a sample of round whitefish from all sampled lakes and all seasons combined are presented in Table 4.5.6. Fish in this sample ranged in age from 1 to 23 years. Past investigations of subarctic round whitefish populations have not documented the existence of fish 15 years of age and older (Kennedy 1949 and Mackay 1989). However, several individuals in the sample did exceed this age. This discrepancy can be explained by use of different ageing structures; past studies have employed scales, whereas the present study utilized otoliths. It is now commonly accepted that otoliths allow a more accurate assessment of fish age than scales, particularly for older aged fish (Jessop 1972 and Mackay et al. 1990).

Limited data were available to assess age-at-maturity of round whitefish. These data suggested that fish became sexually mature at 8 years of age. The smallest sexually mature round whitefish encountered during the study was 388 mm fork length. This fish was a ripe male captured from Lake O2. Nonfecund round whitefish were not recorded during the study.

4.5.2.4 Arctic Grayling

The fork length of Arctic grayling sampled from waterbodies within the Borrow Extraction Zone ranged from 36 to 426 mm (Figure 4.5.6); the majority of fish were less than 180 mm fork length. The median length of sampled fish was 119 mm. Most sampled fish were captured from study area streams and represented either young-of-the-year (modal peak of 60 mm) or juvenile fish (modal peak of 110 mm). The small number of adult fish (n=7), all of which were captured in study area lakes, ranged in fork length from 247 mm to 426 mm.

The length-weight regression equation and mean condition factor for Arctic grayling (all seasons combined) was:

Weight (g) =
$$2.371 * 10^{-6} *$$
 Fork Length (mm)^{3.295} where: $n=61$ and $r^2=0.974$; and,

Mean Condition Factor = 1.054 ± 0.028 .

Ages were assessed for Arctic grayling using data for all lakes and seasons combined (Table 4.5.6). Fish in this sample ranged in age from 0 (52 mm fork length) to 7 years (393 mm fork length). No age-at-maturity data were available for this species.

4.5.3 Feeding Habits

Stomach contents of four species (lake trout, Arctic char, round whitefish, and Arctic grayling) were analysed to assess feeding habits (all seasons and lakes combined). Data were collected from fish that succumbed during capture or that were sacrificed for tissue samples. The information is presented as frequency of occurrence and percent composition of food items by volume. The raw data used for these analyses can be found in Appendix F5.

4.5.3.1 Lake trout

The diet of lake trout was diverse (Figure 4.5.7). Items consumed included zooplankton, fish, trichopterans, chironomids, pelecypods, and eubranchiopods. The most important food groups in the lake trout diet were fish (33% occurrence and 41% composition by volume) and eubranchiopods (tadpole shrimp) (37% occurrence and 37% composition by volume). Zooplankton, which was an important food item for other fish species in the Borrow Extraction Zone, was not a major component of the lake trout diet (22% occurrence and 18% composition by volume).

4.5.3.2 Arctic char

The diet of Arctic char consisted principally of zooplankton. This food item exceeded 23% occurrence and 61% composition by volume. The only other food item of importance was eubranchiopods (7% occurrence and 12% composition by volume). A large percentage of Arctic char stomachs in the sample were empty (70%).

4.5.3.3 Round whitefish

This species consumed a limited variety of food items; these were zooplankton, trichopterans, and pelecypods. The dominant food item consumed was trichopterans (62% occurrence and 52% composition by volume). The only other food item of importance was zooplankton (46% occurrence and 36% composition by volume).

4.5.3.4 Arctic grayling

Similar to findings for other species, the diet of Arctic grayling consisted primarily of zooplankton (83% occurrence and 62% composition by volume). Other food items consumed were chironomids, and eubranchiopods, but these occurred in less than 18% of the stomachs and accounted for less than 28% of the food consumed by volume.

4.5.4 Fish Movements

The Borrow Extraction Zone of the Jericho study area contains several lakes that are interconnected by small streams. Although these streams are small, the potential exists for fish to undertake movements between waterbodies. To assess movement patterns of fish in this area, a tagging program was initiated in 1996. Lake trout, Arctic char, and Arctic grayling in good physical condition were tagged and released. Round whitefish were not included in this study component because captured individuals of this species generally were in poor physical condition.

During the present study, 35 lake trout, 39 Arctic char and 3 Arctic grayling were tagged and released in five lakes (Table 4.5.8). Of these tagged fish, only one individual was recaptured (lake trout in Lake O4). This fish was marked and released on 2 August and subsequently recaptured in the same waterbody on 8 September. These limited results make it difficult to assess movement patterns of fish in the Borrow Extraction Zone. However, characteristics of watercourses in the area can be used to indicate whether movements of fish occur between waterbodies.

Four watercourses provided potential movement corridors for fish in the study area (Streams O6A, O6, O9, and O18). Stream O6A is a small system that allows free movement between Lake O5 and the Jericho River during the open water period. Fish that utilize the shallow Jericho River during summer may move into the deeper Lake O5 to overwinter. Also, species such as Arctic grayling may move from the Jericho River into Lake O5 area streams for spawning purposes.

Stream O6 connects Lake O5 to Lake O4. This small stream has a well-defined channel that would allow unrestricted fish movements during the open water period. Similar to Stream O6A, spawning Arctic grayling may also move from the Jericho River into the Borrow Extraction Zone drainage via Stream O6.

The two remaining watercourses (Stream O9 and O18) are both small, shallow, and at times, poorly-defined channels dominated by boulder substrates. These characteristics would hamper, but not prevent, movement of fish farther upstream into the Borrow Extraction Zone drainage. As such, it is unlikely that large numbers of fish undertake annual movements through these two streams.

4.5.5 Resource and Potential Harvest

Based on available information, waterbodies in the Borrow Extraction Zone were not used extensively for commercial or domestic fisheries. However, recreational use by personnel associated with exploration activity did occur. Personnel housed in the Canamera Geological Ltd. exploration camp fished Lake O1 during the 1996 study period. No anglers were observed using other lakes or any streams in the Borrow Extraction Zone.

The small size of study area lakes and their low productivity make their sport fish populations susceptible to over harvest. To estimate the annual sport fish harvest a waterbody can support, an equation that employs a lake's surface area, was developed by Evans et al. (1990) for Northern Ontario. This equation has been recommended to calculate potential annual harvest of lake trout in inland lakes (Oliver et al. 1991) and is as follows:

$$\log_{10} H$$
 0.60 0.72 $\log_{10} A$

Where: H = potential annual harvest of lake trout (kg).

A = surface area (ha) of lake (lake surface areas based on 1:50 000 scale N.T.S. maps).

Using this formula, the potential annual harvest of lake trout from lakes in the Borrow Extraction Zone ranged between 13 kg in Lake O2 and 32 kg in Lake O1, with the larger lakes having the highest values (Table 4.5.9). This information indicates that trout species residing in the Borrow Extraction Zone waterbodies are susceptible to over harvest. Also, these values may be biassed upward due to a number of environmental differences between subarctic lakes and waterbodies in northern Ontario. Lower nutrient levels, a colder water temperature regime, and a shorter open water period in the subarctic region would significantly lower the potential harvest available in these subarctic lakes compared to those in northern Ontario.

4.5.6 Summary

Sampled lakes in the Borrow Extraction Zone supported populations of lake trout, Arctic char, round whitefish, and Arctic grayling. Arctic char was the dominant species numerically, followed closely by lake trout. All other species were not as numerous. Based on abundance indices (catch rates using standardized gill net sets), overall fish densities were highest in Lake O1 (11 fish/100 m² · 12 h in summer) followed by Lake O5 (7 fish/100 m² · 12 h in summer). CPUE values recorded in the three remaining lakes did not exceed 7 fish/100 m² · 12 h. It is unclear why catch rates differed among lakes. It is possible that they were related to differences in lake size and productivity.

In terms of the species captured, Arctic char was the dominant fish in Lake O1. Lake trout dominated in Lakes O3 and O5. Although, round whitefish were not numerous, it was the most important species in Lakes O2 and O4. Arctic grayling, was captured only in Lake O5.

Several fish species were encountered in sampled streams. Arctic grayling, ninespine stickleback, and slimy sculpin tended to be the most widespread and numerous species; although high numbers of Arctic char were recorded in some streams. Other species, such as lake trout, round whitefish, and burbot were not numerous in any of the Borrow Extraction Zone streams.

Overall, low numbers of fish were recorded in sampled streams. However, Stream O18 in the Lake O1 area supported a diverse assemblage of species and it contained the highest number of Arctic char recorded in the Borrow Extraction Zone. This stream is likely the principal rearing area for the Arctic char population in Lake O1. Likewise, Streams O5 and O6 supported high numbers of Arctic grayling. Both systems are probably spawning and rearing areas for the Arctic grayling population that resides in Lake O5.

The biological characteristics of fish populations indicated that they were slow growing, late maturing, and dominated by older age-classes. Lake dwelling species (lake trout and Arctic char) tended to exhibit bimodal length-frequency distributions and lake samples were dominated by larger, older individuals. To some extent, this reflected the sampling methodology employed (smaller size-classes were not effectively sampled using gill nets), however, these data are typical of subarctic fish populations residing in cold, oligotrophic waterbodies. It has been suggested that these characteristics are indicative of unexploited fish populations in a state of equilibrium with their environment (Johnson 1976).

The feeding habits of fish were related to a species feeding habits and the most abundant food item available. Fish was the dominant food item identified in lake trout stomachs, although nonvertebrates, such as zooplankton and eubranchiopods, were also important. Zooplankton was an important food group identified in Arctic char, round whitefish, and Arctic grayling stomachs. It was the dominant food of Arctic char and Arctic grayling. In contrast, trichopterans (an aquatic insect) was most important in round whitefish stomachs. One other food item consumed by all species were pelecypods.

Limited recapture data from tagged fish made it difficult to assess movement patterns of fish in the Borrow Extraction Zone. However, some watercourses could be used as movement corridors between waterbodies. Two watercourses provided potential movement corridors for fish in the study area (Streams O6A and O6). Stream O6A allows free movement of fish between Lake O5 and the Jericho River, while Stream O6 connects Lake O5 to Lake O4.

Based on available information, waterbodies in the Borrow Extraction Zone were not used extensively for commercial or domestic fisheries. However, recreational use by personnel associated with exploration activity did occur. The biological characteristics of fish populations in these waterbodies (i.e., slow growing and late maturing), the small size of these lakes, and their low productivity make their sport fish populations susceptible to over harvest.

4.6 HABITAT AND HABITAT USE

This study component was designed to describe aquatic habitat in lakes and streams in the Borrow Extraction Zone and to assess its value to fish communities. This section provides information for waterbodies not previously investigated, as well as new data for waterbodies that were surveyed in 1995. All raw data collected during the present study are provided in Appendices G1 and G2.

4.6.1 Lakes

The shoreline habitat characteristics of five waterbodies in the Borrow Extraction Zone were surveyed: Lakes O1 to O5 (Figure 4.6.1). Surveys were designed to provide a general assessment of the shoreline characteristics of each lake and to identify high quality habitats. These high quality habitats were: sheltered shallow-water areas containing aquatic macrophytes (submergent and emergent vegetation) suitable for fish rearing and submerged cobble, gravel, and boulder areas suitable for spawning by lake trout, Arctic char, and round whitefish.

Shoreline characteristics in each of the five lakes were uniform; all contained large amounts of fine substrates, which consisted primarily of sands and gravels (Table 4.6.1). In fact, Lake O3 was the only waterbody with areas consisting of larger substrates; cobble-boulder substrates (47%) and bedrock substrates (7%). Low shoreline slopes also predominated in most of the lakes. One exception included Lake O2 where 51% of the shoreline exhibited a high slope. As well, large sections of the Lake O4 shoreline exhibited moderate or high slopes (38% and 33%, respectively).

Potential spawning and rearing habitats were also identified during the lake surveys. Spawning habitat required by lake dwelling species such as lake trout, Arctic char, and round whitefish is characterized by the presence of clean gravel to boulder-sized substrate in areas sufficiently deep to avoid freezing (Scott and Crossman 1973). Areas with these characteristics were widely distributed in all surveyed waterbodies, therefore, spawning habitat does not appear to be limited in any of these lakes. Two potential high quality spawning sites were identified; one in Lake O3 and one in Lake O1 (Figure 4.6.1).

Rearing habitat suitable for lake dwelling fish species is characterized by shallow-water zones exhibiting low slopes and fine substrates that support the growth of aquatic macrophytes (Randall et al. 1996). These features provide shelter (i.e., protection from predators and source of food) to younger age-classes of lake trout, Arctic char, and

round whitefish. In addition, they provide habitat for forage fish species, such as slimy sculpin and ninespine stickleback. Shoreline areas exhibiting these characteristics were limited in the surveyed waterbodies. Shallow water areas with fine substrates were present, however, aquatic macrophytes were restricted to protected shoreline margins. Aquatic macrophytes in these zones consisted of emergent species (*Carex* spp.) and aquatic grasses (*Glyceria* spp.); no submergent species were recorded during the habitat surveys. Few high quality rearing areas were present in any of these lakes (Figure 4.6.1).

4.6.2 Streams

Investigations of streams in the study area were undertaken during spring and summer. During spring, a reconnaiss ance level survey was conducted to identify streams that provided some habitat for fish communities and to assess their potential as spawning habitat (i.e., use by spring spawning Arctic grayling). Surveys during summer were used to provide a more detailed description of stream characteristics and to assess their overall potential as fish habitat.

Streams chosen for investigation during the present study included two watercourses examined in 1995; these were Streams O5 and O6 (R.L. & L. Environmental Services Ltd. 1995).

In total, 17 watercourses were examined during the 1996 sampling program (Figure 4.6.2). Of these, three contained no fish during spring sampling and were ephemeral (contained water only during the snow melt period or during rainfall events). These streams were deemed to have no value to fish communities, and therefore, did not receive more extensive investigation. The 14 streams that had some potential as fish habitat were associated with each of the five sampled lakes: Lake O1 (2), Lake O2 (2), Lake O3 (3), Lake O4 (4), and Lake O5 (3). Most of these streams were small and exhibited intermittent flow during the summer sampling period.

4.6.2.1 Lake O1 Streams

Stream 018

Stream O18 is a small watercourse that connects Lake O1 to Lake O2. This stream provides good quality fish habitat. It exhibits a well-defined channel with an abundance of RUN habitat interspersed with POOL, RIFFLE, and FLAT complexes (Table 4.6.2). The substrate in this watercourse is equally represented by sand, gravel, cobble, and boulder substrates.

A diverse assemblage of fish were recorded in Stream O18 and included Arctic char, Arctic grayling, burbot, lake trout, ninespine stickleback, round whitefish, and slimy sculpin (Table 4.6.3). Based on the presence of young-of-the-year fish and its habitat characteristics, Stream O18 provided high quality spawning habitat for Arctic grayling (Table 4.6.4). This stream also provided an abundance of rearing habitat for fish, particularly for Arctic char and Arctic grayling. In fact, this watercourse contained the highest number of Arctic char encountered during the 1996

program. Using a density estimate sampling technique (see Section 2.1.5) the density of Arctic char in Stream O18 during summer was 40 fish per 100 m \pm 3.3 (young-of-the-year) and 9 fish per 100 m \pm 0.6 (juveniles).

Stream 019

Stream O19 is an ephemeral watercourse that drains into Lake O1 along its southeast shore. This stream provides limited fish habitat due to the absence of water flow during summer. It exhibits an ill-defined channel that is dominated by RUN habitat and sand substrates. The few fish recorded in this stream (Arctic char, Arctic grayling, and slimy sculpin) were restricted to the lower reach.

4.6.2.2 Lake O2 Streams

Streams O9 and O22

Streams O9 and O22 form the outlet system to Lake O2. During the spring high water period, each stream drains directly in Lake O4, however, during low flow, Stream O22 connects with Stream O9 before entering the lake. These watercourses exhibit similar characteristics. They are both relatively small streams that have well-defined channels over much of their lengths. Stream O9 is dominated by RUN and FLAT habitats, whereas Stream O22 contains principally RUN habitat. Substrates in both systems consist mostly of sand, with smaller amounts of gravels and cobbles. Stream O9 also contains large amounts of boulder substrates (45%).

Species recorded in these streams were Arctic char, Arctic grayling, burbot, lake trout, ninespine stickleback, round whitefish, and slimy sculpin. Of these species, only juvenile Arctic grayling and slimy sculpin were numerous. Both streams contained good quality spawning and rearing habitat. During spring, Arctic grayling eggs were recorded in Stream O22, which suggests that it may be an important spawning area for this species. However, the absence of young-of-the-year Arctic grayling, indicates that factors other than habitat may limit its value as spawning habitat.

4.6.2.3 Lake O3 Streams

Stream 016

Streams O16 is a small, ephemeral stream that drains into Lake O3 along its southeast shore. This stream provides limited fish habitat due to minimal water flow during summer. It exhibits a well-defined channel that is dominated by FLAT habitat and sand substrates. Few fish were recorded in this stream; Arctic char, Arctic grayling, and slimy sculpins were restricted to the lower reach.

Stream 017

Stream O17 is a small watercourse that drains a small headwater lake situated to the southeast of Lake O3. Unlike Stream O16, this watercourse provides good quality fish habitat. It exhibits a well-defined channel with an

abundance of RUN habitat interspersed with POOL, RIFFLE, and FLAT complexes. The substrate in this watercourse is dominated by sand, which is interspersed by pockets of gravel and cobble substrates.

Species recorded in this stream were Arctic char, ninespine stickleback, and slimy sculpin. The characteristics of this stream suggested that it provided good quality spawning habitat, however, spring spawning species such as Arctic grayling were not recorded. Stream O17 provided an abundance of good quality rearing habitat for fish, particularly for Arctic char.

Stream O21

Stream O21 is a very short, shallow watercourse that connects Lake O3 to Lake O2. It exhibits an ill-defined channel that contains an abundance of emergent vegetation. Given the abundance of cover provided by the vegetation, this stream contains good quality rearing habitat, however, its short length limits its value to fish. Species recorded in this stream were Arctic grayling, burbot, ninespine stickleback, and slimy sculpin.

4.6.2.4 Lake O4 Streams

Stream 06

Stream O6 is the drainage system for Lake O4 and connects that waterbody to Lake O5. This stream is one of the larger watercourses in the Borrow Extraction Zone. It exhibits a well-defined channel over its entire length, and its substrates are composed of sands, gravels, cobbles, and boulders. The principle habitat types are RUN and RIFFLE. These characteristics create high quality spawning and rearing habitat. Stream O6 also has sufficient depth to be used as feeding habitat by adult fish.

Six species of fish were recorded in Stream O6: Arctic char, Arctic grayling, burbot, ninespine stickleback, round whitefish, and slimy sculpin; Arctic grayling and ninespine sticklebacks were the most numerous. Both young-of-the-year and juvenile Arctic grayling were present in this stream, which suggests that it is used for spawning and rearing purposes by this species.

Streams 010, 011, 012

Due to the similarity in habitat characteristics, these streams will be discussed as a group. These tributaries are very small watercourses that drain the terrain adjacent to Lake O4. They exhibit low slopes in their lower reaches and are dominated by well-defined channels and sand substrates. The habitat in each stream consists mainly of RUN, although in Stream O11, FLAT habitat type is also important. All exhibited low flows during the summer sampling period. Of the three watercourses, Stream O12 is the largest.

Few fish were encountered in Streams O10 and O11. Small numbers of Arctic char, burbot, ninespine stickleback, and slimy sculpin were present in these systems only during spring, the only time when water flows were sufficient to support fish. As such, their value as rearing habitat was severely limited.

Stream O12 contained more species and higher numbers of fish than the other two streams; Arctic char, Arctic grayling, burbot, ninespine stickleback, and slimy sculpin were present. Due to the lack of suitable substrates, this watercourse provided only limited amounts of spawning habitat, however, good quality rearing habitat was present.

4.6.2.5 Lake O5 Streams

Stream O5

Stream O5 drains several headwater lakes located south of Lake O5. This stream is relatively large and maintains water flows during the entire open water period. This watercourse exhibits a well-defined channel over much of its length, and its substrates are composed of sands, gravels, cobbles, and boulders. The principle habitat types are RUN and RIFFLE. These characteristics provide good quality spawning and rearing habitat and makes this system one of the better streams in the Borrow Extraction Zone for species such as Arctic grayling.

Five species of fish were recorded in Stream O5: Arctic char, Arctic grayling, burbot, ninespine stickleback, and slimy sculpin. Arctic grayling were the most numerous fish and were represented by young-of-the-year and juvenile Arctic grayling. As such, this stream is likely used for both spawning and rearing purposes by this species.

Stream O6A

Stream O6A is a short outlet system that connects Lake O5 to the Jericho River. It is a relatively large stream that has water flow during the entire open water period. Its channel is well-defined and is dominated by RUN and FLAT habitats. The substrate consists primarily of sand interspersed by small amounts of cobbles and boulders.

The absence of suitable substrates limits the potential of Stream O6A as spawning habitat. It is likely that the young-of-the-year Arctic grayling recorded in this stream originated from the Jericho River and not Stream O6A. Although very short in length, Stream O6A provided good quality rearing habitat. Surveys documented the presence of Arctic grayling, burbot, ninespine stickleback, and slimy sculpin. Deep-water areas near its confluence with the Jericho River also created good quality feeding habitat for adult fish.

Streams 014

This watercourse is a small outlet stream in the headwater area of the Stream O5 drainage system. Stream O14 is ephemeral and contained flowing water only during spring. It is characterized by a well-defined channel and cobble substrates. The habitat in this stream consisted mainly of RIFFLE.

Very few fish were encountered in Stream O14 (1 Arctic char and 2 Arctic grayling). Given its small size, its value to fish is severely limited. It should be noted, however, that the presence of fish in a small headwater system such as Stream O14, strongly indicates that the headwater lakes in this area are capable of supporting fish.

4.6.3 Summary

The shoreline areas of lakes in the Borrow Extraction Zone were dominated by fine substrates consisting of sands and gravels. These shoreline characteristics provided an abundance of potential spawning areas for species such as lake trout, Arctic char, and round whitefish. Therefore, spawning areas were not limited in any of the surveyed lakes. In contrast, a paucity of aquatic macrophytes in these lakes severely limited the availability of rearing habitat.

Habitat surveys were undertaken in 17 streams within the Borrow Extraction Zone. In general they provided limited habitat for fish populations originating from study area lakes. The primary reasons for low quality fish habitat in these streams were their small size and intermittent flow during the summer. Some streams did provide better quality habitat.

One watercourse in the Lake O1 area (Stream O18) provided high quality spawning habitat for Arctic grayling and an abundance of rearing habitat for Arctic char. Stream O6 is the drainage system for Lake O4. This stream is one of the larger watercourses in the Borrow Extraction Zone and exhibits a well-defined channel over its entire length. These characteristics created good quality spawning and rearing habitat for Arctic grayling, as well as feeding habitat for adult fish. Similarly, Stream O5 in the Lake O5 area provided good quality spawning and rearing habitat and makes this system one of the better streams in the Borrow Extraction Zone.

SECTION 4 - TABLES

Table 4.1.1 Morphometric characteristics^a of surveyed lakes within the Borrow Extraction Zone, Jericho study area, 1996.

Lake	Surface Area (ha)	Lake Volume (m)	Mean Depth (m)	Maximum Depth (m)	Shoreline Length (m)	Shoreline Development Ratio
Lake O1 ^b	18.1	7.345 x 10 ⁵	4.1	14	1900	1.26
Lake O2 ^b	5.3	1.130 x 10 ⁵	2.5	7	900	1.11
Lake O3	8.3	-	-	11	1250	1.22
Lake O4	16.7	-	-	8	1550	1.07
Lake O5	16.7	-	-	5	1900	1.31

^aUnless otherwise stated, morphometric characteristics are based on measurements from a 1:50 000 NTS map and field observations. ^bMorphometric characteristics (with the exception of shoreline length) provided by Canamera Geological Ltd.

Table 4.2.1 Phytoplankton biovolume in sampled lakes during summer and fall within the Borrow Extraction Zone, Jericho study area, 1996.

	Lake O1 (Site PL4)				
Taxonomic Group	Summer		Fall		
	Biovolume (μm³/m³)	%	Biovolume (μm³/m³)	%	
Bacillariophyta (diatoms)	26 914	4.1	91 525	10.2	
Cryptophyta (cryptomonads)	17 576	2.7	28 391	3.2	
Chrysophyta (golden-brown algae)	368 138 56.0		677 155	75.2	
Pyrrophyta (dinoflagellates)	154 248	23.5	20 145	2.2	
Euglenophyta (euglenoid)					
Chlorophyta (green algae)	64 931	9.9	64 959	7.2	
Cyanophyta (cyanobacteria)	25 429	3.9	18 080	2.0	
Total Biovolume	657 236	100	900 255	100	

Table 4.2.2 Zooplankton biomass in sampled lakes during summer and fall within the Borrow Extraction Zone, Jericho study area, 1996.

	Lake O1 (Site PL4)				
Taxonomic Group	Summer		Fall		
	Biomass (μg/m³)	%	Biomass (μg/m³)	%	
Copepoda Calanoida	31 970	11.9	88 901	83.0	
Cyclopoida			8132	7.6	
Cladocera	234 919	87.2	7386	6.9	
Rotifera	2477	0.9	2751	2.6	
Total Biomass	269 366	100	107 170	100	

Table 4.4.1 Mean density^a (±1 standard error) of benthic macroinvertebrates in the littoral and profundal zones^b of Lake O1 within the Borrow Extraction Zone, Jericho study area, 1996.

	Lake	O1
Taxonomic Group	Littoral	Profundal
	(Site L4)	(Site P4)
ANNELIDA		
OLIGOCHAETA	101 (38)	29 (29)
ARTHROPODA		
HYDRACHNIDIA		14 (14)
CRUSTACEA		
COPEPODA		
Harpacticoida	43 (43)	
OSTRACODA	159 (58)	116 (96)
INSECTA		
DIPTERA		
Chironomidae ^c	2797 (965)	1897(283)
Chironomini	1522 (634)	130 (66)
Diamesinae	217 (116)	14 (14)
Orthocladiinae	580 (115)	333 (52)
Tanypodinae	478 (100)	1420 (151)
Tanytarsini		
TRICHOPTERA		
Limnephilidae		
Gresnia	14 (14)	
MICROTURBELLARIA	14 (14)	
MOLLUSCA	-	
PELECYPODA		
Sphaeriidae	1275 (394)	406 (169)
NEMATODA	1203 (988)	14 (14)
Total No. Benthic Taxa/m²	14 (1)	8 (2)
Total No. of Benthic Invertebrates/m ²	5696 (2119)	2478 (199)

^aMean density (No./m²) value and standard error generated using three replicate samples.

^bFor definition of littoral and profundal zones see Section 2.2.5.

^cSum of all subfamilies and tribes.

Table 4.4.2 Mean density^a (±1 standard error) of benthic macroinvertebrates in Stream O18 within the Borrow Extraction Zone, Jericho study area, 1996.

Taxonomic Group	Stream O18 (Site B3)
COELENTERATA	
Hydridae	
Hydra	179 (64)
ANNELIDA	
OLIGOCHAETA	1301 (491)
ARTHROPODA	* : ***
HYDRACHNIDIA	54 (25)
CRUSTACEA	
COPEPODA	
Harpacticoida	43 (0)
OSTRACODA	1240 (399)
INSECTA	
DIPTERA	
Chironomidae ^b	1050 (355)
Chironomini	72 (36)
Diamesinae	
Orthocladiinae	480 (169)
Tanypodinae	276 (106)
Tanytarsini	222 (44)
Empididae	25 (25)
Simulidae	22 (6)
Tipulidae	394 (79)
PLECOPTERA	
Perlodidae	
Nemouridae	366 (188)
TRICHOPTERA	
Limnephilidae	
Gresnia	129 (22)
MICROTURBELLARIA	72 (38)
NEMATODA	566 (332)
Total No. Aquatic Taxa/m ²	25 (2)
Total No. of Aquatic Invertebrates/m ²	5470 (993)

 $[^]a Mean \ density \ (No./m^2)$ value and standard error generated using three replicate samples. $^b Sum \ of \ all \ subfamilies \ and \ tribes.$

Table 4.5.1 Overall species composition of fish sampled from lakes within the Borrow Extraction Zone, Jericho study area, 1996 (all sampling methods and periods combined).

	Species	To	otal
Common Name	Scientific Name	Number	Percent
Arctic char	Salvelinus alpinus (Linnaeus)	85	39.7
Arctic grayling	Thymallus arcticus (Pallas)	10	4.7
Burbot	Lota lota (Linnaeus)	1	0.5
Lake trout	Salvelinus namaycush (Walbaum)	70	32.7
Ninespine stickleback	Pungitius pungitius (Linnaeus)	18	8.4
Round whitefish	Prosopium cylindraceum (Pallas)	28	13.1
Slimy sculpin ^a	Cottus cognatus Richardson	2	0.9
All Species Combined		214	100.0

^aSpecies designation based on identification of a subsample of preserved individuals (n=1).

Table 4.5.2 Species composition of fish sampled from lakes within the Borrow Extraction Zone, Jericho study area, 1996 (all sampling methods and periods combined).

Sancia	Lak	e O1	Lak	e O2	Lak	e O3	Lak	e O4	Lak	e O5
Species	No.	%								
Arctic char	66	75.0	4	22.2	5	20.8	8	25.8	2	3.8
Arctic grayling				1	1	4.2			9	17.0
Burbot					1	4.2				
Lake trout	20	22.7	3	16.7	14	58.3	8	25.8	25	47.2
Ninespine stickleback			3	16.7	2	8.3	1	3.2	12	22.6
Round whitefish	1	1.1	7	38.9	1	4.2	14	45.2	5	9.4
Slimy sculpin	1	1.1	1	5.6						
Total	88	100.0	18	100.0	24	100.0	31	100.0	53	100.0

Table 4.5.3 Overall species composition of fish sampled from streams within the Borrow Extraction Zone, Jericho study area, 1996 (all sampling methods and periods combined).

	Species	To	tal
Common Name	Scientific Name	Number	Percent
Arctic char	Salvelinus alpinus (Linnaeus)	151	22.0
Arctic grayling	Thymallus arcticus (Pallas)	155	22.6
Burbot	Lota lota (Linnaeus)	38	5.5
Lake trout	Salvelinus namaycush (Walbaum)	2	0.3
Ninespine stickleback	Pungitius pungitius (Linnaeus)	116	16.9
Round whitefish	Prosopium cylindraceum (Pallas)	10	1.5
Slimy sculpin ^a	Cottus cognatus Richardson	215	31.3
All Species Combined		687	100

^aSpecies designation based on identification of a subsample of preserved individuals (n=5).

Table 4.5.4 Species composition of fish sampled from streams in five areas within the Borrow Extraction Zone, Jericho study area, 1996 (all sampling methods and periods combined).

S	Lak	e O1	Lak	e O2	Lak	e O3	Lak	e O 4	Lak	e O5
Species	No.	%	No.	%	No.	%	No.	%	No.	%
Arctic char	101	56.4	1	1.1	22	27.2	25	12.6	2	1.5
Arctic grayling	13	7.3	32	34.4	6	7.4	41	20.6	63	46.7
Burbot	9	5.0	1	1.1	1	1.2	21	10.6	6	4.4
Lake trout	1	0.6	1	1.1						
Ninespine stickleback	5	2.8	1	1.1	8	9.9	70	35.2	32	23.7
Round whitefish	7	3.9	1	1.1			2	1.0		
Slimy sculpin	43	24.0	56	60.2	44	54.3	40	20.1	32	23.7
Total	179	100.0	93	100.0	81	100.0	199	100.0	135	100.0

Table 4.5.5 Length-weight regression equations and mean condition factors for lake trout sampled during summer from selected lakes within the Borrow Extraction Zone, Jericho study area, 1996.

Lake	Length-weight Relationship		Condition Factor (+SE)	Sample	
Lake	Regression Equation ^a	r ² Value	Condition Factor (±512)	Size	
Lake O1	Weight = 5.080 * 10 ⁻⁷ * Fork Length ^{3,497}	0.998	1.105 ± 0.169	6	
Lakes O2, O3, O4, and O5 ^b	Weight = $9.705 * 10^{-6} * Fork Length^{3.042}$	0.984	1.264 ± 0.038	25	

^aWeight in g; fork length in mm.

^bData are combined due to insufficient samples sizes from individual lakes.

Age-length relationships for Arctic char, Arctic grayling, lake trout, and round whitefish sampled within the Borrow Extraction Zone, Jericho study area, 1996. Table 4.5.6

	T				-		Ι					-				Т									Т				Т					Т	\neg
	-	* -		4 ×	· (1 —						_	_			┛,	_							•					_					Ļ	
sh	Weight (g)	Range	Ş	10 - 12	52 - 72	1																													
Round whitefish ^b	We	Mean	;	1 9	2 6	224				784		1330	1240				1580						1650	2											
Rou	Fork Length (mm)	Range		111 - 111	187 - 188	201																							:						
	Fork Le	Mean	,	501	188	271				388		471	476				513						505	P F											
	,	=	-	-			2	1		Э	3	3	-	7												-			Ī			-	-		2
	Weight (g)	Range					45 - 125		,	465 - 805	280 - 1410	890 - 1650		820 - 960															٠						2326 - 3160
Lake trout ^b	W	Mean	,	0			85	190		648	888	1243	950	905												2610						1420	1430		2743
L	Fork Length (mm)	Range					160 - 217			332 - 408	283 - 478	426 - 490		430 - 442														-							594 - 622
	Fork Le	Mean	70,	<u> </u>			189	247		372	366	456	447	436												298						903	930		809
	,	<u>"</u>	6	0 [1,			-	2																									L	
	Weight (g)	Range	9	0 - 10	7				820 - 905																										
Arctic grayling ^b	M	Mean	5	7 15	195	395		006	863																										
Arctic	Fork Length (mm)	Range	45 - 56	0/ - 114	001				385 - 400																										
	Fork L	Mean	52	<u> </u>	247	327		404	393																										
		*	7	<u> </u>	· -		_	_	3	3	3		7	7		4													_					\downarrow	
e	Weight (g)	Range	10	5 - 10 20 - 46	2	78 - 322			424 - 982	400 - 1140	1130 - 1250		1262 - 1646	1322 - 1984																					
Arctic chara	W	Mean	0	° £	378	193	190	126	654	817	1205		1454	1653																					
Aı	Fork Length (mm)	Range	45 - 66	04 - 100		197 - 318			376 - 457	342 - 465	485 - 528		522 - 560	563 - 613																					
		Mean	52	<u> </u>	329	257	273	229	410	417	505		541	288		\downarrow																		\downarrow	
	Age		0 -	· ~	۳ (, 4	S	9	7	∞	6	10	1	12	13	<u> </u>	15	17	18	19	20	71	2 2	2 2	25	26	27	28	29	30	3	32	33	35	36

^aAges generated using fish sampled during summer and fall from Lake O1 and associated streams. ^bAges generated using fish sampled during summer and fall from all lakes and streams within zone.

Table 4.5.7 Length-weight regression equations and mean condition factors for Arctic char sampled during summer from selected lakes within the Borrow Extraction Zone, Jericho study area, 1996.

Lake	Length-weight Relationship		Condition Factor (+SE)	Sample
Lake	Regression Equation ^a	r² Value	Condition Pactor (±312)	Size
Lake O1	Weight = 2.495 * 10 ⁻⁵ * Fork Length ^{2.839}	0.981	0.963 ± 0.021	37
Lakes O2, O3, O4, and O5 ^b	Weight = $3.614 * 10^{-5} * Fork Length^{2.801}$	0.953	1.048 ± 0.038	10

^aWeight in g; fork length in mm.

Table 4.5.8 Number of lake trout, Arctic char, and Arctic grayling marked (and recaptured) in lakes within the Borrow Extraction Zone, Jericho study area, 1996.

Waterbody	Lake Trout	Arctic char	Arctic grayling	Total
Lake O1	15	30	-	45 (0)
Lake O2	1	4	-	5 (0)
Lake O3	7	3	-	10 (0)
Lake O4	4 (1)	2	-	6 (1)
Lake O5	8	-	3	11 (0)
Total	35 (1)	39 (0)	3 (0)	77 (1)

Table 4.5.9 Surface areas and potential annual harvests of lake trout populations in lakes within the Borrow Extraction Zone, Jericho study area, 1996.

Lake	Surface Area (ha) ^a	Potential Harvest of Lake Trout (kg/yr) ^b
Lake O1	18.1	32.0
Lake O2	5.3	13.2
Lake O3	8.3	18.3
Lake O4	16.7	30.2
Lake O5	16.7	30.2

^aLake surface area provided by Canamera Geological Ltd. (Lakes O1 and O2) or measured from 1:50 000 scale N.T.S. maps.

^bData are combined due to insufficient sample sizes from individual lakes.

^bBased on Evan's formula for harvest.

Table 4.6.1 Summary of lakeshore habitat characteristics recorded for sampled waterbodies within the Borrow Extraction Zone, Jericho study area, 1996.

Hab	oitat Zone ^a	Lake C)1	Lake C)2	Lake ()3	Lake ()4	Lake ()5
Slope	Substrate	Length (m)	%	Length (m) %		Length (m)	%	Length (m)	%	Length (m)	%
Low	Fines	1426	100	229	49	279	45.2	260	29.2	1079	78.4
	Cobble-Boulder										
	Bedrock										
Moderate	Fines							340	38.2		
	Cobble-Boulder					293	47.4			297	21.6
	Bedrock										
High	Fines			238	51			290	32.6		
	Cobble-Boulder										
	Bedrock					46	7.4				
	Total	1426	100	466	100	617	100	890	100	1376	100

^aFor definition of habitat zones see Appendix A1.

Summary of habitat characteristics^a of inventoried streams within the Borrow Extraction Zone, Jericho study area, 1996. Table 4.6.2

Substrate Type (%)	Bed														
	Во	24		45					35			5	∞	5	5
rate Ty	ပိ	70	20	16	10		15	15	27	5		5	63	2	80
Substr	Gr	22	10	70	30		20	25	14				10		10
	Si/Sa	33	70	29	09	100	65	99	24	95	100	06	61	8	2
	Dispersed Si/Sa														
	Riffle/ Rapid	10	10	17	5		20		12			10	44	2	8
Habitat Type (%)	Cascade					8						10			
Habita	Flat	13	10	39		100	10	99			50			40	
	Run	99	70	40	95		55	40	88	85	20	20	56	55	
	Pool	13	10	4			15			15		10			10
уре (%)	Distinct Indistinct		50	2				99		10		·	4	20	
Bank Type (%)	Distinct	100	20	86	100	100	100	40	100	8	100	100	99	80	100
Channel Type (%)	Multiple	10	20										4		
Channel	Single	8	20	100	100	100	100	100	100	100	100	100	99	100	100
	(%)	2.0	1.0	1.0	1.0	1.0	2.0	1.0	1.0	2.0	1.0	1.0	2.0	1.0	2.0
Dischorace	(m ³ /s)	0.004	0.000	0.075	0.075	0.000	0.002	0.038	0.079	0.002	0.000	900.0	0.045	0.113	0.000
Average Wetted	Width (m)	9.0	0.5	2.5	0.5	0.5	0.5	5.0	2.8	0.4	6.0	0.4	1.7	2.0	8.0
Surveyed	(III)	450	150	1690	325	30	220	8	800	100	100	300	006	300	40
Ctroom		018	019	60	022	016	017	021	.90	010	011	012	05°	06A	014
Areo		10		02		03			40				90		

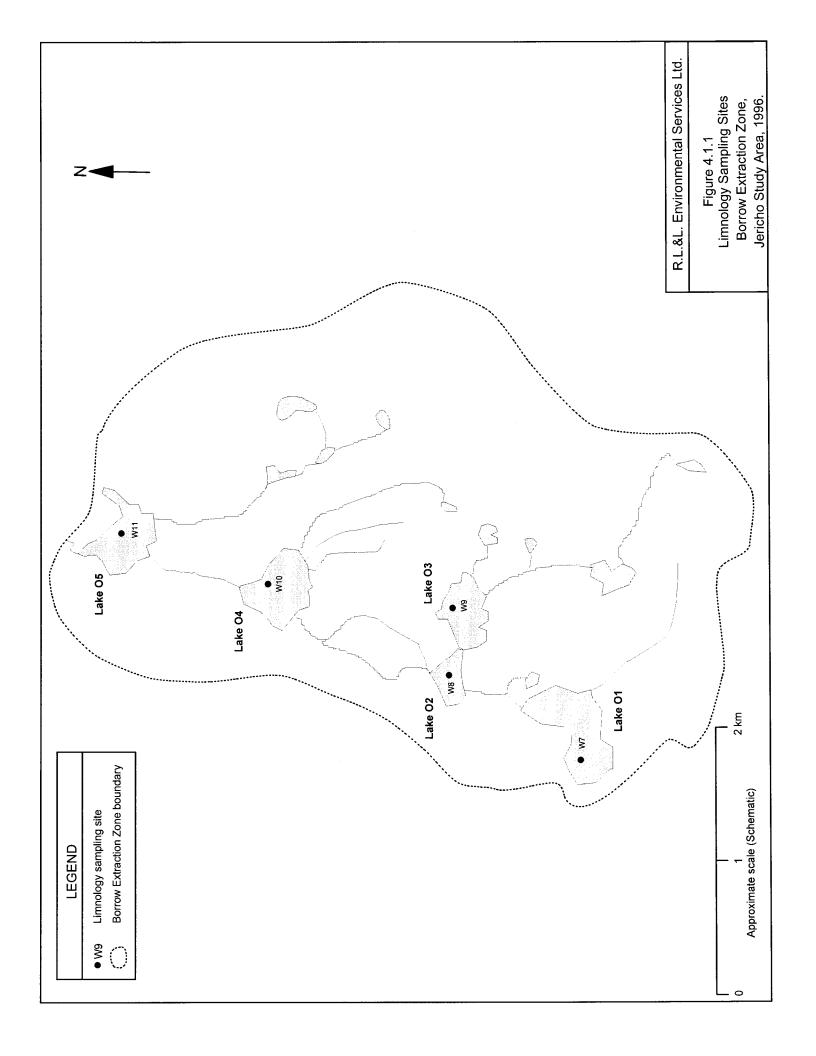
^aFor classification system see Appendix A.

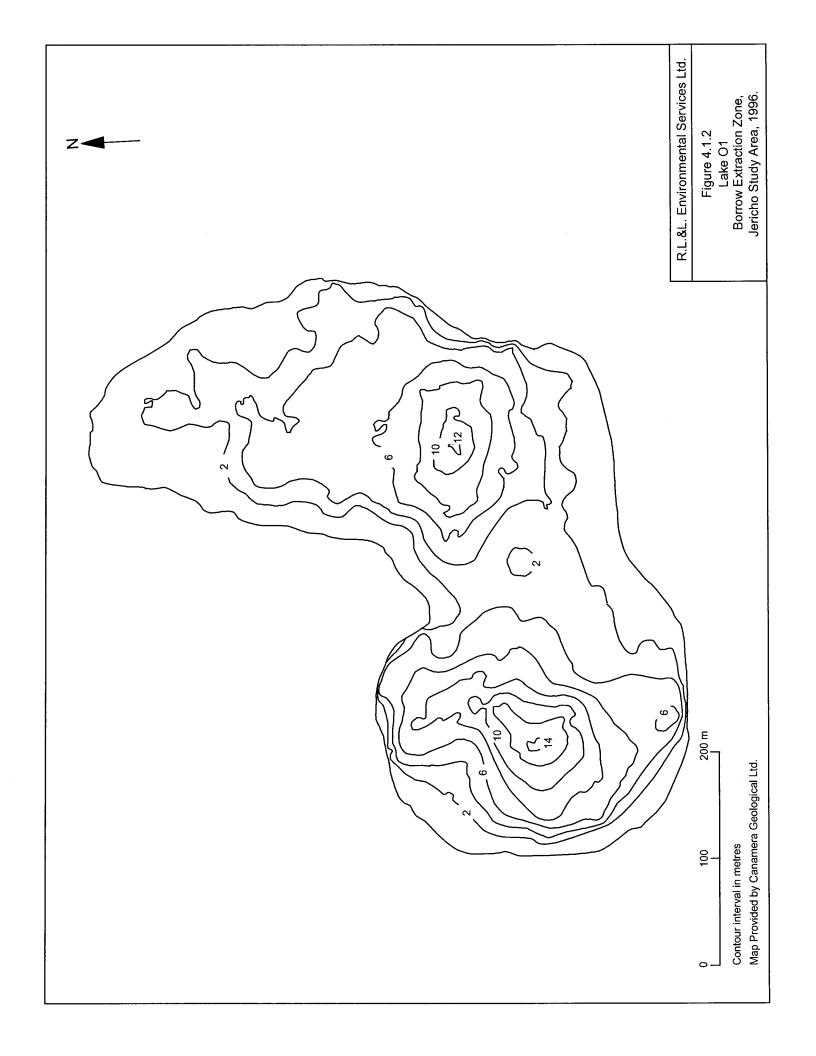
^bDischarge measured during summer base flow period.

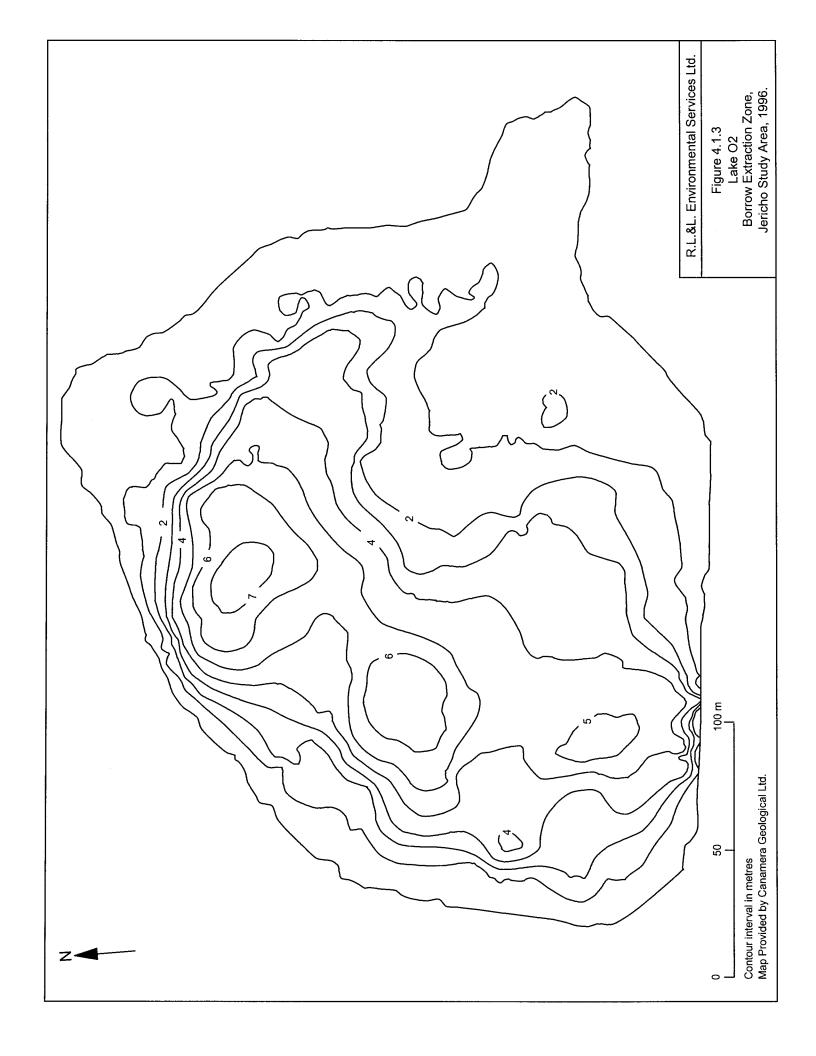
^cHabitat data collected during 1995 study; discharge measured during 1996.

Table 4.6.3 Number of fish recorded in sampled streams according to age-class within the Borrow Extraction Zone, Jericho study area, 1996 (all sampling methods and periods combined).

A	Tributary	Species	Age-Class ^a					
Area		Species	Young-of-the-year	Juvenile	Adult	Combined		
Lake O1	O18	Arctic char	61	33	1	95		
		Arctic grayling	12			12		
		Burbot	8	1		9		
		Lake trout		1		1		
		Ninespine stickleback				5		
		Round whitefish		7		7		
		Slimy sculpin				40		
	O19	Arctic char	2	4		6		
		Arctic grayling		1		1		
		Slimy sculpin				3		
Lake O2	O9	Arctic char	1			1		
		Arctic grayling		9		9		
		Lake trout		1		1		
		Slimy sculpin				9		
	O22	Arctic grayling		23		23		
		Burbot		1		1		
		Ninespine stickleback				1		
		Round whitefish		1		1		
		Slimy sculpin				47		
Lake O3	O16	Arctic char	2			2		
		Arctic grayling		1		1		
		Slimy sculpin				1		
	O17	Arctic char	13	7		20		
		Ninespine stickleback				2		
		Slimy sculpin				7		
	O21	Arctic grayling		5		5		
		Burbot	1			1		
		Ninespine stickleback				6		
		Slimy sculpin				36		
Lake O4	O6	Arctic char	1	3		4		
		Arctic grayling	27	13		40		
		Burbot	8			8		
		Ninespine stickleback]			49		
		Round whitefish	1	2		2		
		Slimy sculpin				16		
	O10	Arctic char	2	2		4		
		Burbot	4			4		
		Slimy sculpin	·			3		
	O11	Ninespine stickleback				7		
	O12	Arctic char	15	2		17		
		Arctic grayling		1		1		
		Burbot		9		9		
		Ninespine stickleback				14		
		Slimy sculpin				21		
Lake O5	O5	Arctic char	1			1		
Lake O5		Arctic grayling	12	34	1	47		
		Burbot	4	54	1	5		
		Ninespine stickleback			•	9		
		Slimy sculpin			ŀ	10		
	O6A	Arctic grayling	3	11		14		
	1004	Burbot	1	11		1		
		Ninespine stickleback				23		
						23 22		
	014	Slimy sculpin	+	1		1		
	O14	Arctic char		1		2		
		Arctic grayling		2	<u>.</u>	<u> </u>		


^aAge-class designations based on size differences of fish for each species.


Table 4.6.4 Fish habitat quality ratings for sampled streams within the Borrow Extraction Zone, Jericho study area, 1996.


	G,	Rating of Habitat Quality ^a					
Area	Stream	Spawning	Rearing	Feeding			
Lake O1	O18	High	High	Low			
	019	Low	Low	Nil			
Lake O2	09	Moderate	High	Low			
	O22	High	High	Low			
Lake O3	O16	Nil	Low	Nil			
	017	Moderate	High	Low			
	O21	Moderate	Moderate	Nil			
Lake O4	O6	High	High	Moderate			
	O10	Low	Low	Nil			
	011	Nil	Low	Nil			
	O12	Nil	Moderate	Nil			
Lake O5	O5	Moderate	High	Moderate			
	O6A	Low	High	High			
	O14	Low	Low	Nil			

^aRating of habitat quality based on qualitative assessment of habitat and fish numbers recorded during survey.

SECTION 4 - FIGURES

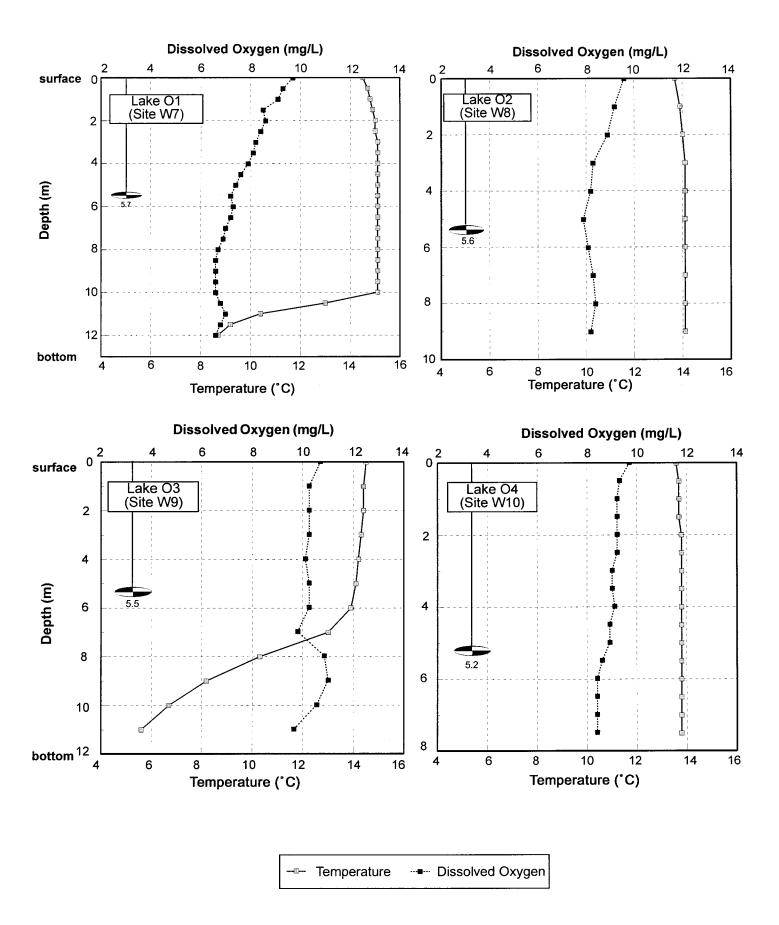


Figure 4.1.4 Dissolved oxygen and temperature profiles, and Secchi depths in lakes within the Borrow Extraction Zone, Jericho study area, 3 to 4 August 1996.

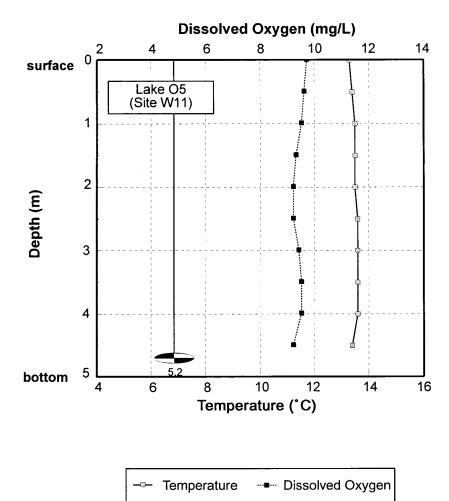
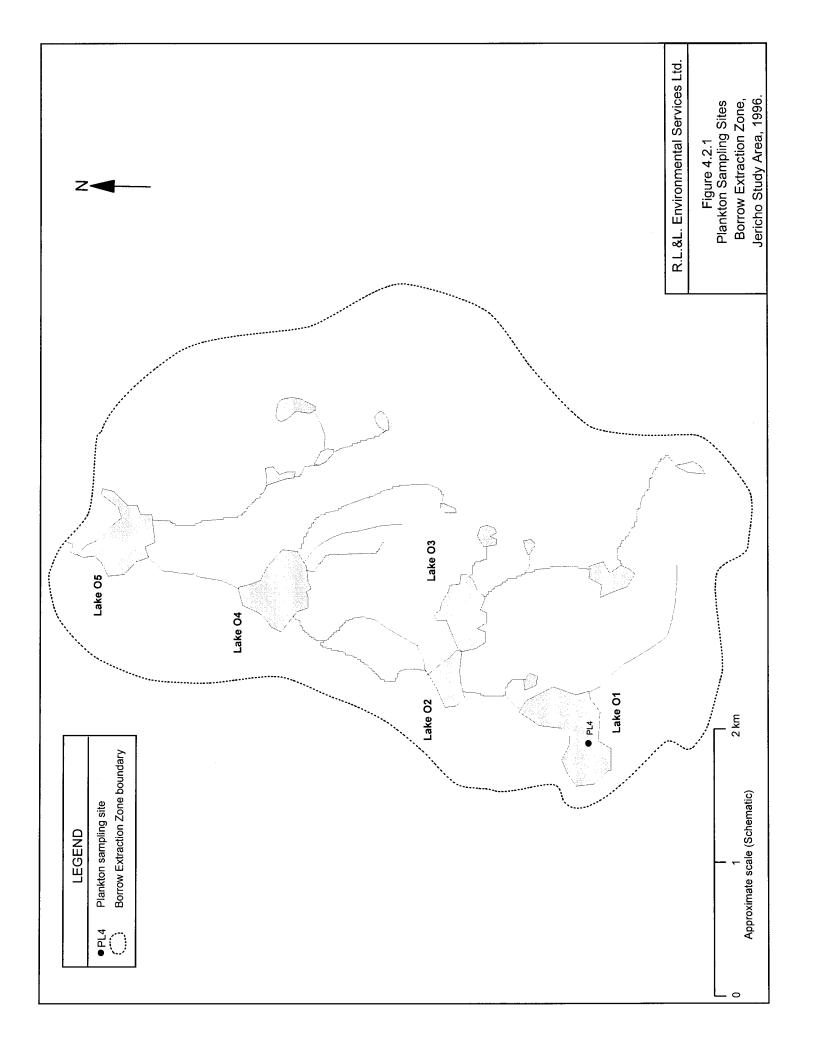



Figure 4.1.4 Concluded.

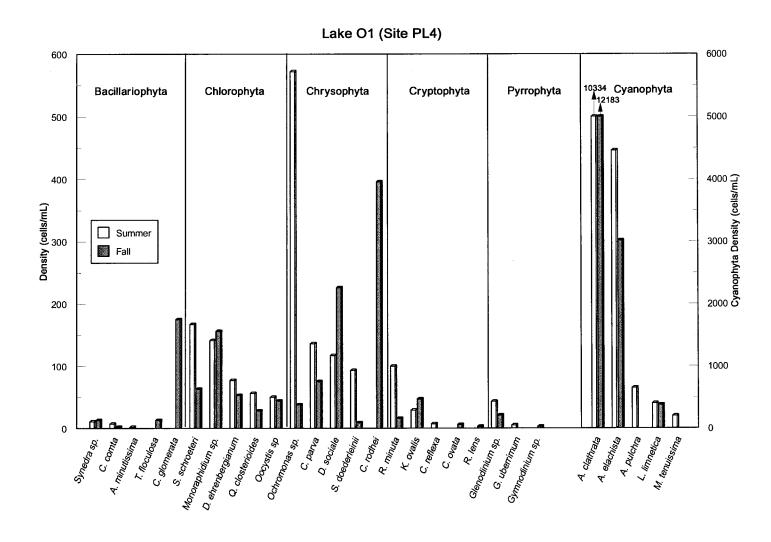


Figure 4.2.2 Density of major phytoplankton species in each of six taxonomic groups during summer and fall in Lake O1 within the Borrow Extraction Zone, Jericho study area, 1996 (note difference in scale for Cyanophyta).

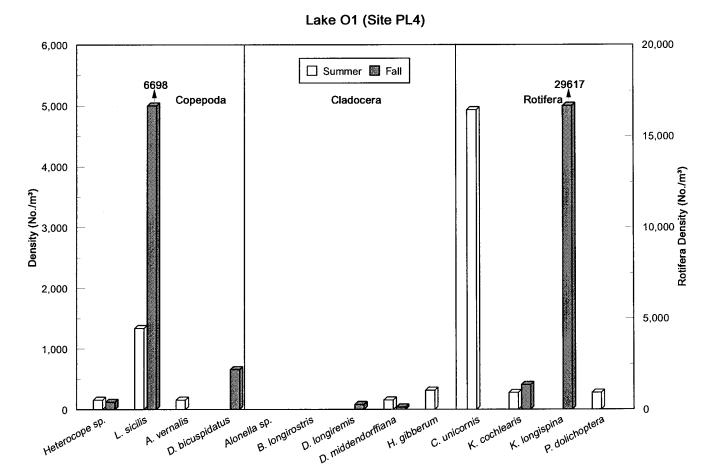
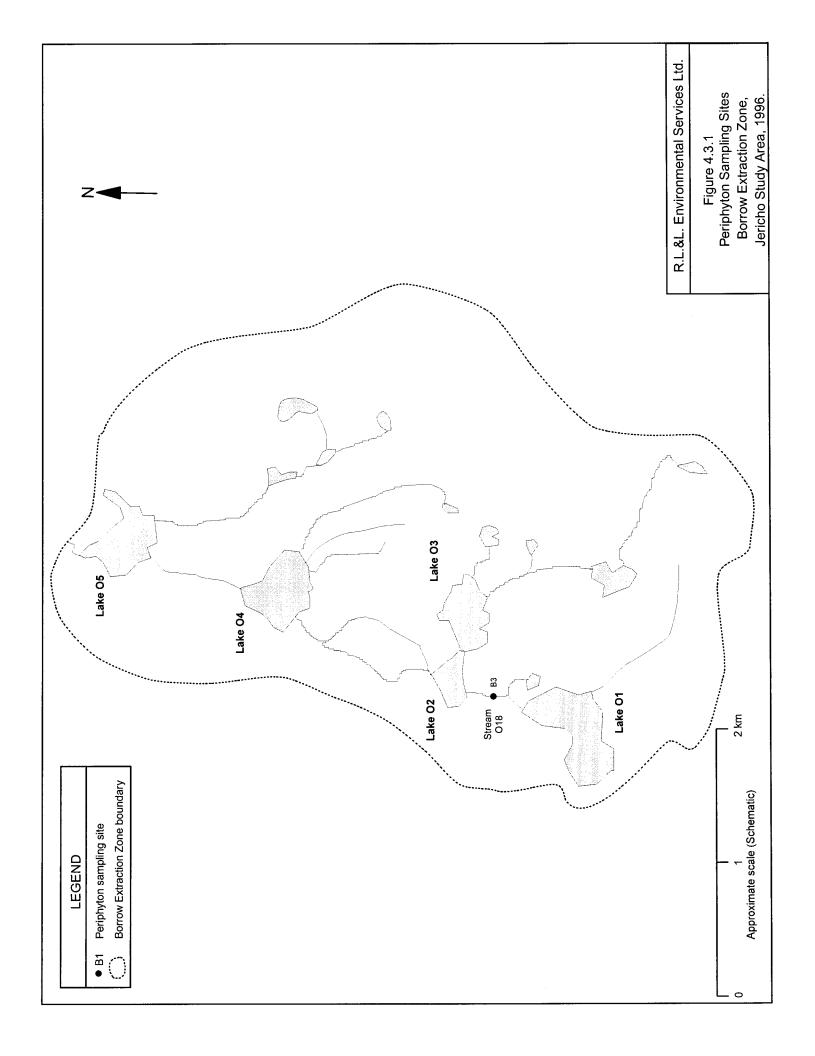



Figure 4.2.3 Density of major zooplankton species in each of three taxonomic groups during summer and fall in Lake O1 within the Borrow Extraction Zone, Jericho study area, 1996 (note difference in scale for Rotifera).

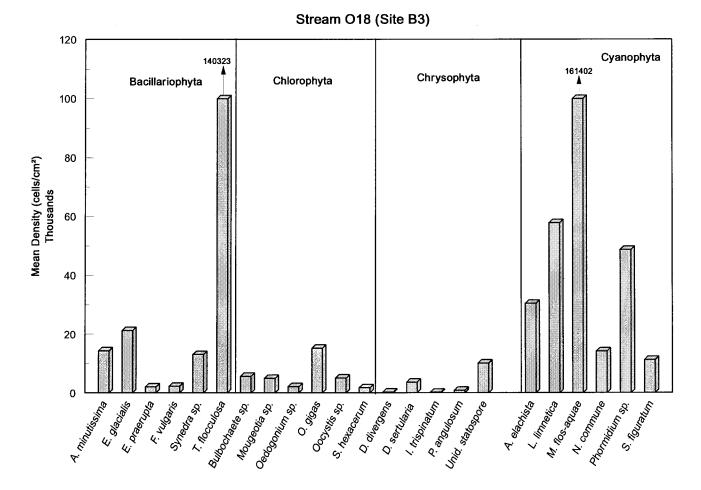
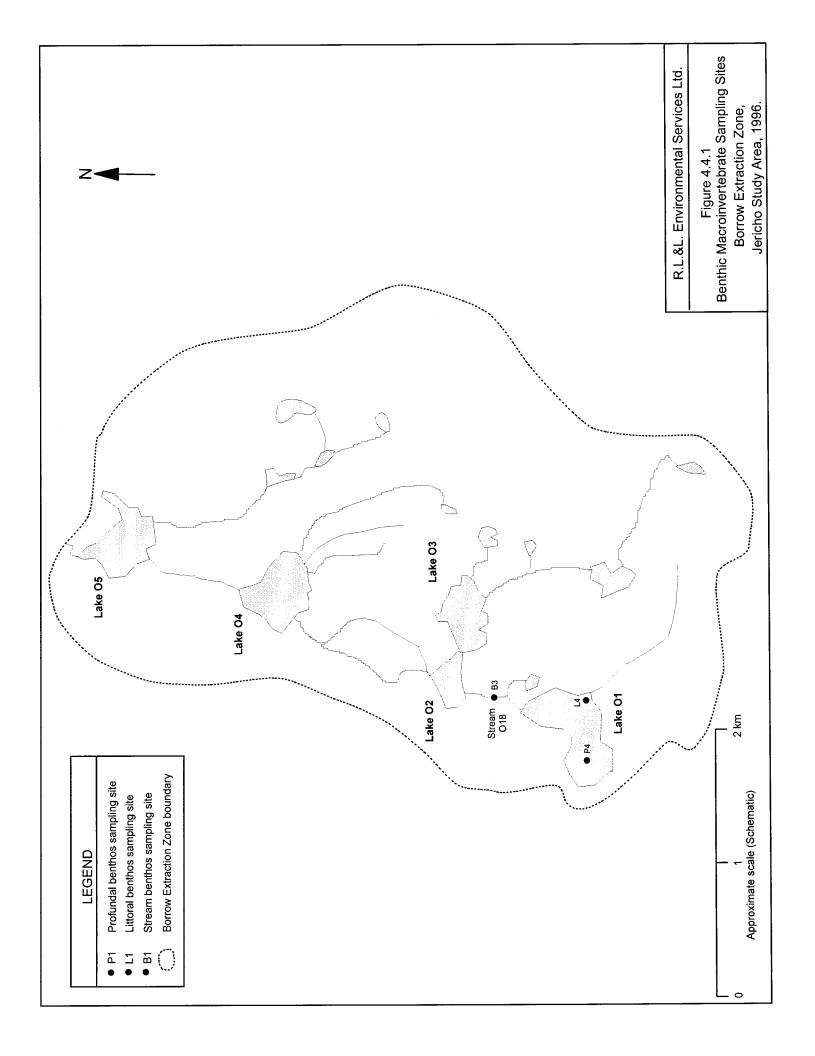
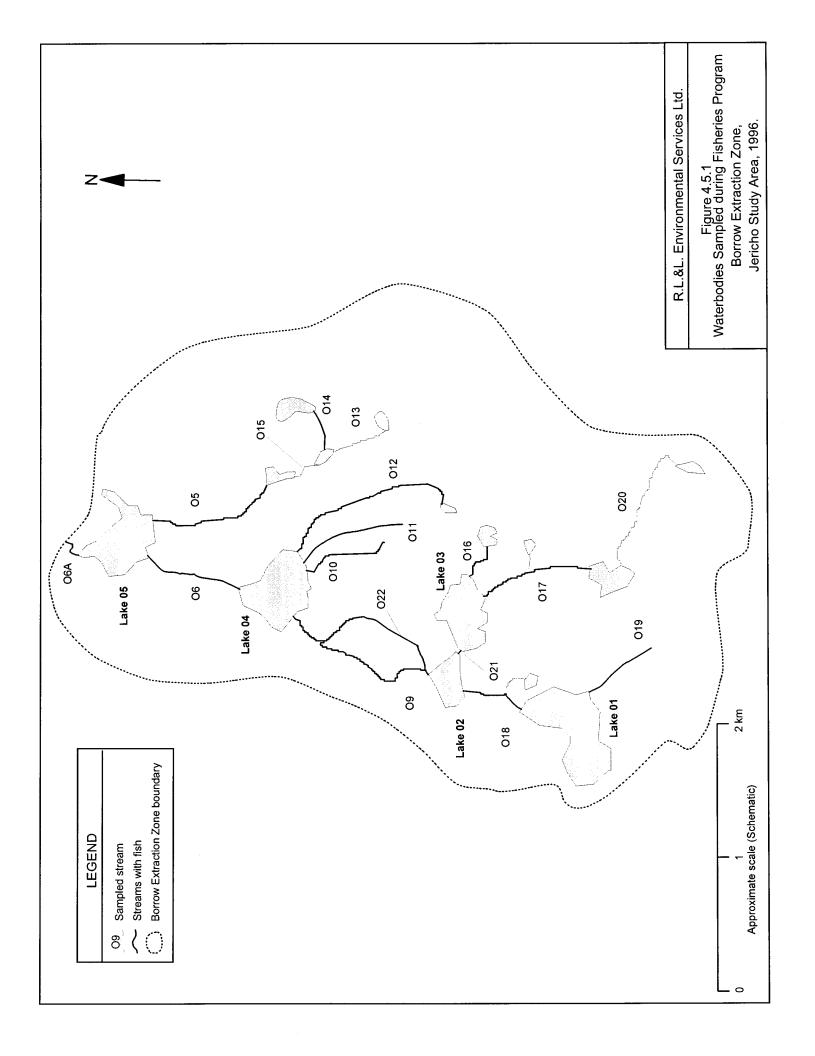
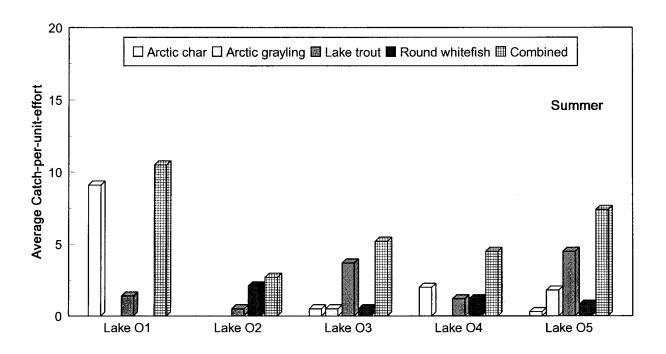





Figure 4.3.2 Mean density (*n*=3) of the most numerous periphytic algal species among the four major taxonomic groups in Stream O18 within the Borrow Extraction Zone, Jericho study area, summer 1996.

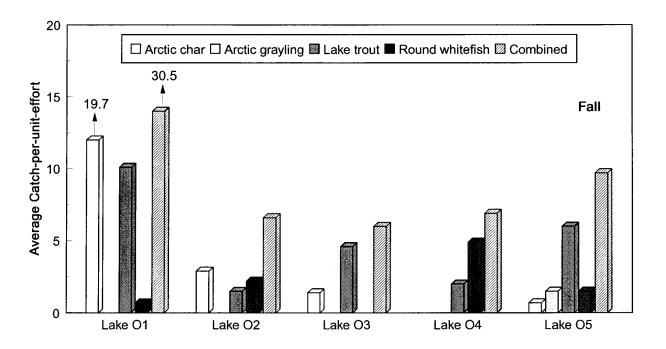


Figure 4.5.2 Average catch-per-unit-effort values (fish/100 m²·12h) for fish captured during gill net sampling in lakes during summer and fall within the Borrow Extraction Zone, Jericho study area, 1996.

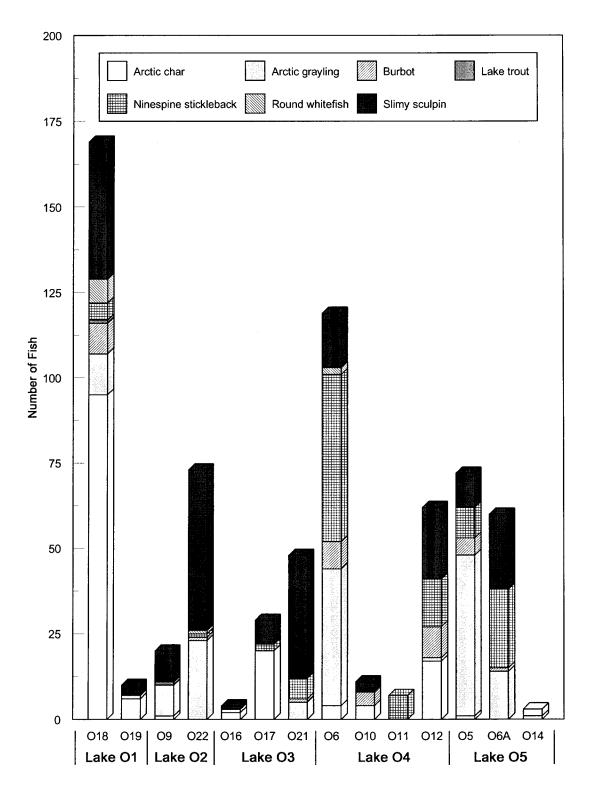
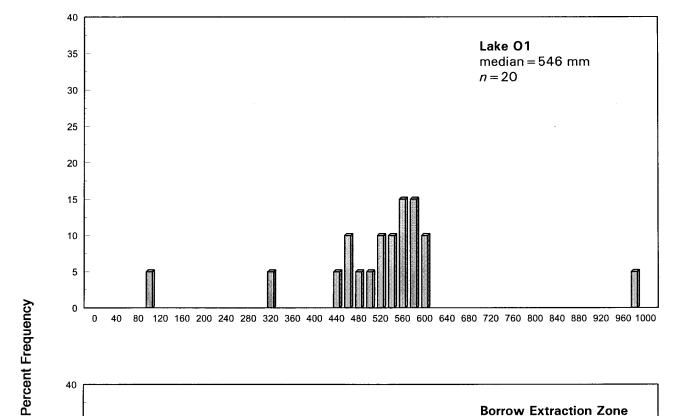



Figure 4.5.3 Comparison of fish numbers recorded in streams within five areas of the Borrow Extraction Zone, Jericho study area, 1996 (all methods and sampling periods combined).

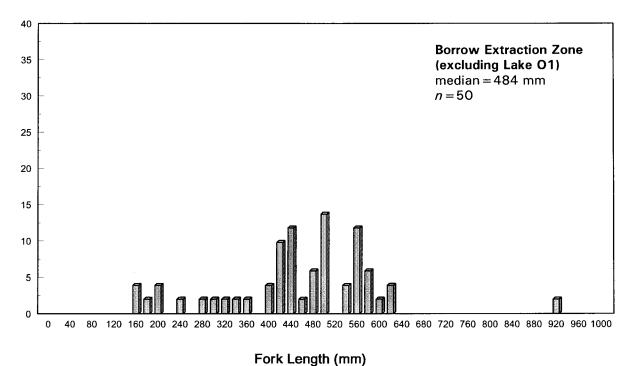
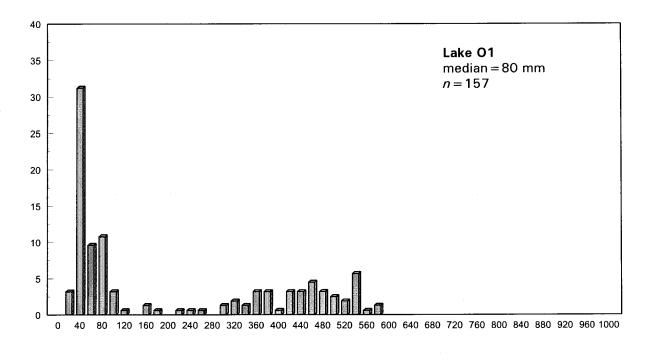



Figure 4.5.4 Length-frequency distribution of lake trout in waterbodies within the Borrow Extraction Zone, Jericho study area, 1996 (data for all seasons, and sampling methods, lakes and streams combined).

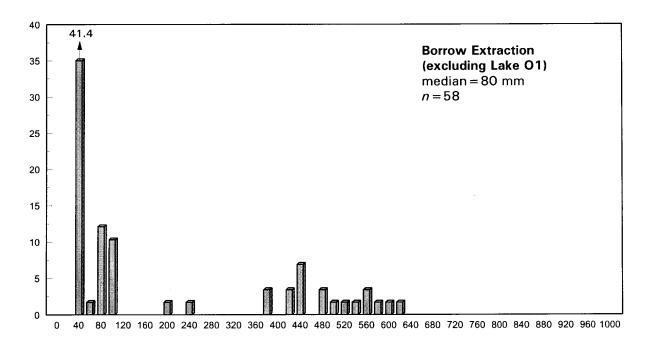
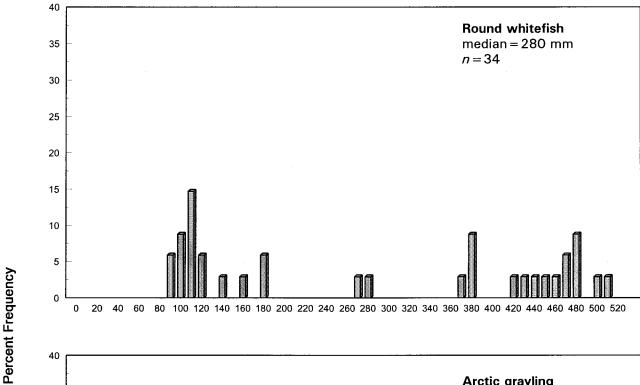



Figure 4.5.5 Length-frequency distribution of Arctic char in waterbodies within the Borrow Extraction Zone, Jericho study area, 1996 (data for all seasons, sampling methods, lakes and streams combined).

Fork Length (mm)

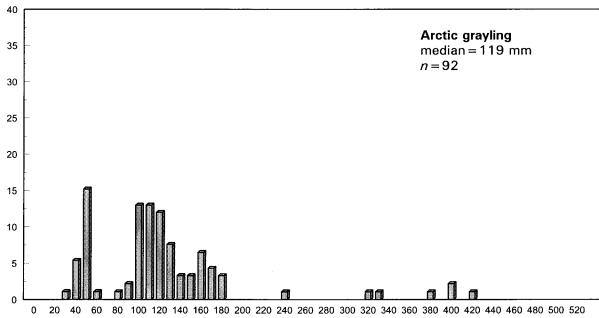


Figure 4.5.6 Length-frequency distribution of Arctic grayling and round whitefish within the Borrow Extraction Zone, Jericho study area, 1996 (data for all seasons, sampling methods, lakes and streams combined).

Fork Length (mm)

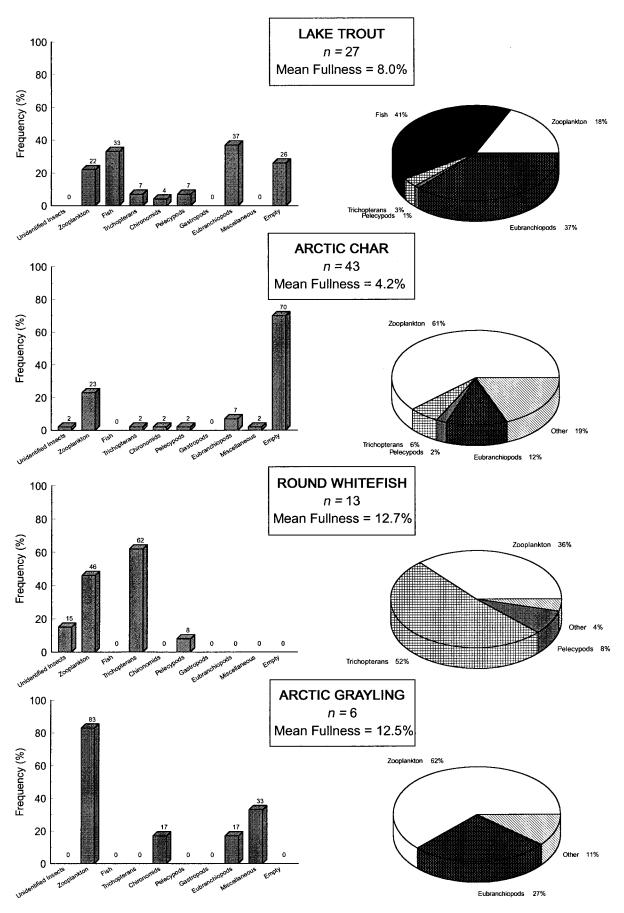
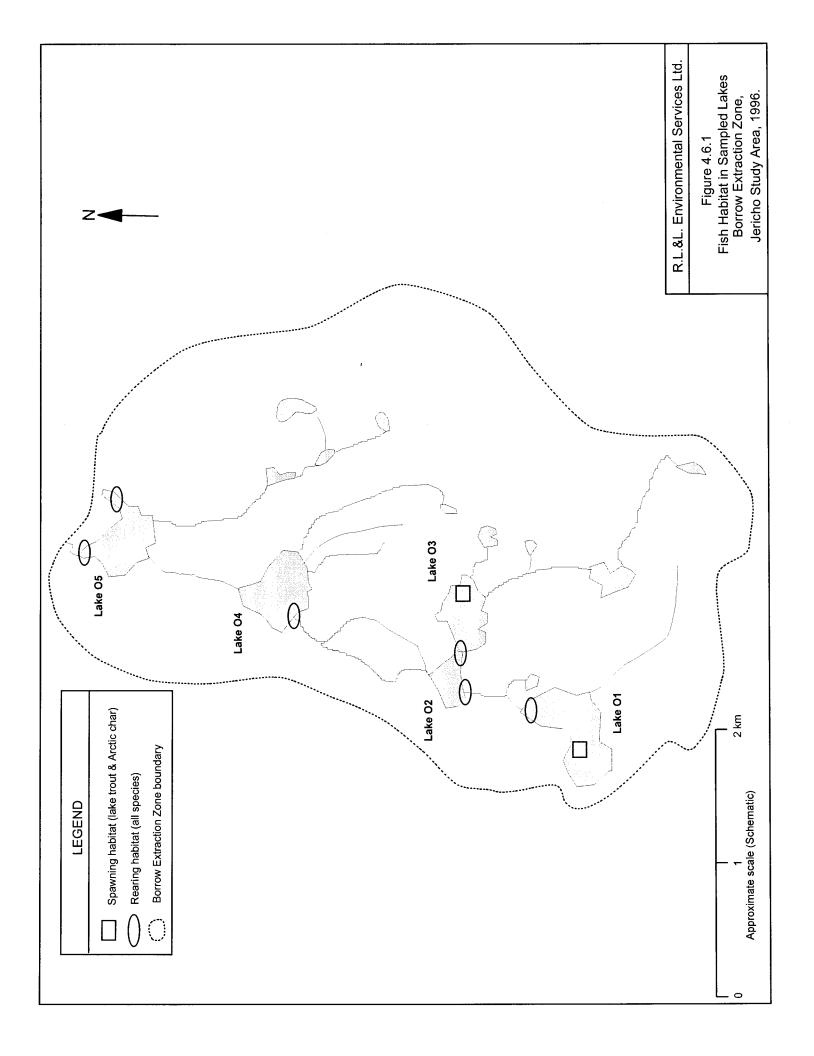
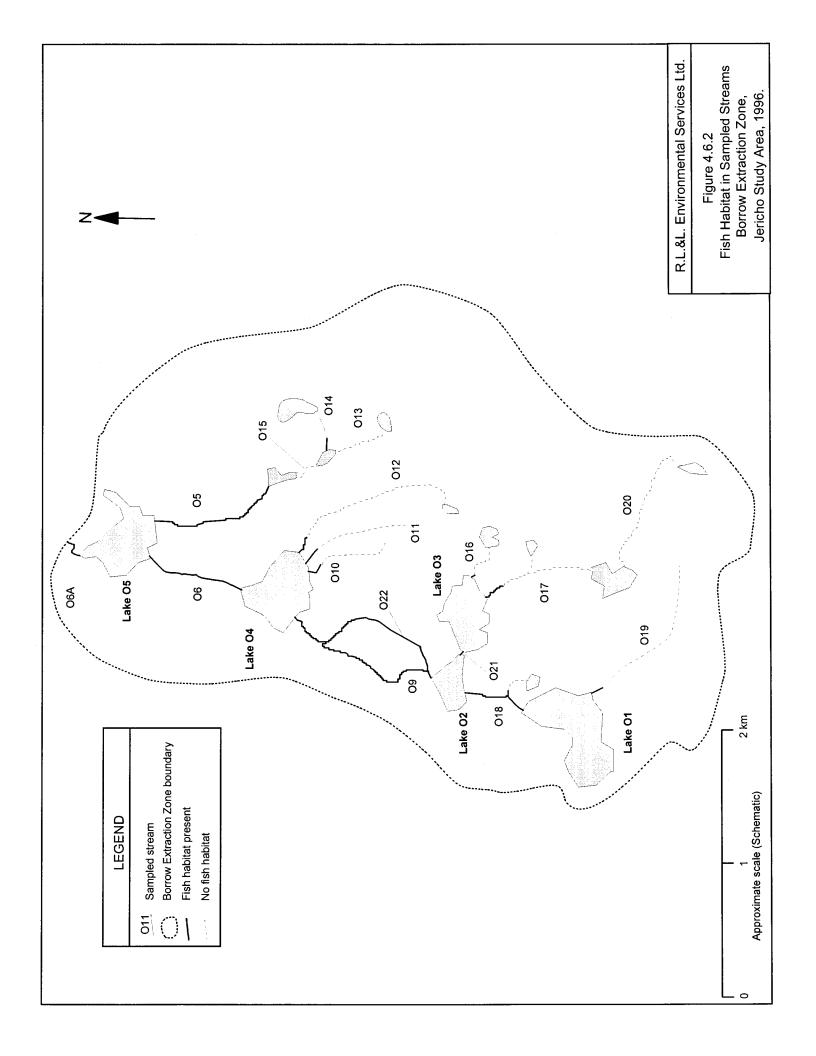




Figure 4.5.7 Frequency of occurrence (bars) and percent composition (pies) of food items encountered in stomachs of lake trout, Arctic char, round whitefish and Arctic grayling sampled within the Borrow Extraction Zone, Jericho study area, 1996 (all seasons and waterbodies combined).

5.0 TAILINGS IMPOUNDMENT/DOCKING FACILITY

5.1 LIMNOLOGY

This section provides summary results for lake morphology, temperature and dissolved oxygen profiles, and water transpare ncy measurements of selected lakes within the Tailings Impoundment/Docking Facility Zone. Limnological data were collected from three lakes potentially influenced by the proposed development (Lake D4, Lake D5, and Contwoyto Lake). One sampling site was established on each of the lakes (Figure 5.1.1). The monitoring site on Contwoyto Lake was located in a small bay where the proposed docking facility is to be established. Specific locations of each sampling site are provided in Appendix B1.

5.1.1 Lake Morphology

In general, the morphological characteristics of Lakes D4 and D5 and the bay of Contwoyto Lake are similar (Table 5.1.1). Lake D5, which is the smaller of the two lakes (8.6 ha) is situated the farthest upstream in the drainage (Figure 5.1.2). A bathymetric survey of Lake D5 indicates that the waterbody is composed of two basins; the larger, deeper, western basin and the smaller, shallower, eastern basin. This lake is relatively shallow (maximum depth=12 m and mean depth=2.7 m) and it exhibits a high shoreline development ratio (1.67). A small number of intermittent tributaries enter this waterbody along its southern and eastern shores. There is one outlet stream that flows into Lake D4.

Lake D4 (16 ha) is entrenched between two steep rock outcrops and is oriented in an east-west direction. The lake is relatively deep (maximum depth=20 m and mean depth=6.9 m) and it exhibits a high shoreline development ratio (1.93). A bathymetric survey of Lake D4 shows that has a single basin with three deep-water depressions (maximum depth=20.0 m) (Figure 5.1.3). There are no defined outlet streams associated with Lake D4. Excess water exists at the eastern end of the lake and connects with Contwoyto Lake via a boulder strewn channel.

Contwoyto Lake is a large waterbody (95752 ha) associated with the Burnside drainage system (Environment Canada 1973). The bay in which the proposed docking facility will be located is situated along the western shore of the northern arm of Contwoyto Lake and is small (67 ha). The area surveyed is deep (maximum depth=20 m) and the shoreline exhibited steep slopes (Figure 5.1.4). The survey also identified a rock shoal situated immediately west of the proposed docking facility.

5.1.2 Temperature and Dissolved Oxygen

Temperature and dissolved oxygen profile data were collected during summer while surface water data were collected during the fall. Water column oxygen-temperature profiles are depicted in Figure 5.1.5; all data are presented in Appendix B1.

Water depths recorded at the sampling sites varied from 10.5 (Site W13 on Lake D5) to 14.5 m (Site W12 on Lake D4). The Contwoyto Lake monitoring site (W14) was 14.2 m in depth.

With the exception of Contwoyto Lake, surface temperatures during summer (3 August) ranged from 14.5 to 14.8°C (Figure 5.1.5). Contwoyto Lake had surface temperatures of about 9.0°C, which were considerably cooler than those recorded in the other lakes. Thermal stratification was evident in Lakes D4 and D5, but not in Contwoyto Lake; the thermoclines were located at 7 m in Lake D4 and 8 m in Lake D5. Contwoyto Lake at Site W14 was isothermal. Contwoyto Lake's large size relative to Lakes D4 and D5 likely accounted for the cooler temperatures and isothermal conditions.

Dissolved oxygen profiles indicated that lakes with lower temperatures had higher oxygen concentrations (Figure 5.1.5). For example, Site W12 on Lake D4 had a dissolved oxygen concentration of 9.0 mg/L at the water surface, which was 14.8°C. In contrast, Contwoyto Lake had a dissolved oxygen concentration of 11.3 mg/L and a surface water temperature of 9.1°C. An increase in dissolved oxygen concentration with lowered water temperature likely reflects the effects of temperature dependent solubility (i.e., colder water can hold greater concentrations of dissolved gases; Wetzel 1983).

Above the thermoclines, Lakes D4 and D5 exhibited decreased dissolved oxygen concentrations with depth. For example, both lakes had a dissolved oxygen concentration of 9.7 mg/L at the surface (0 m). At a depth of 7.0 m oxygen concentrations were 8.9 and 7.8 mg/L, respectively. This correlation with depth, suggested that pressure affected the meter's performance. Under certain conditions, pressure may affect the performance of the meter (R. Hirsch, pers. comm.) and was likely the main reason for these observations (see also Sections 3.1 and 4.1).

In fall (3 to 9 September), surface water temperatures in the lakes ranged from 6.0°C in Lake D5 (Site W13) and Contwoyto Lake (Site W14) to 8.0°C in Lake D4 (Site W12) (Appendix B1). The surface waters within these study lakes were well oxygenated (10.3 to 11.3 mg/L).

5.1.3 Transparency

In summer, water transparencies (Secchi depths) in the smaller waterbodies (Lakes D4 and D5) were low (5.1 and 5.3 m, respectively) relative to the larger Contwoyto Lake (9.3 m). Secchi depths were lower in fall than in summer; 3.8, 3.0, and 4.0 m in Lakes D4, D5, and Contwoyto Lake, respectively. Based on these data, the summer euphotic zone depths (depth to 1% light penetration where phytoplankton can generally subsist = 2 × Secchi depth) were less than 12 m in Lakes D4 and D5 and approximately 18 m in Contwoyto Lake; the fall euphotic zones were less than 8 m in all lakes.

5.1.4 Summary

5.1.4.1 Lake Morphology

The three waterbodies in the Tailings Impoundment/Docking Facility Zone range in size from 67 ha (bay of Contwoyto Lake) to 16 ha (Lake D4) and exhibit maximum depths between 12 and 20 m. Lake D4 is the deepest waterbody identified in the zone; the maximum depth is 20 m. However, basins of Contwoyto Lake that are outside the surveyed area likely are deeper. Based on a bathymetric survey of Lake D5, this waterbody contains two basins, the largest basin encompassing the western portion of the lake. Bathymetric surveys of the other two waterbodies indicate that each is composed of a single basin. The shoreline development ratios of Lakes D4 and D5 are greater than 1.6, which is an indication of very irregular shorelines. No ratio was calculated for Contwoyto Lake, however, the shoreline in the bay area is relatively uniform.

5.1.4.2 Temperature and Dissolved Oxygen

During the 1996 aquatic studies program, the smaller lakes (i.e., Lakes D4 and D5) exhibited thermal stratification, while the much larger Contwoyto Lake exhibited isothermal conditions. These data indicate that small lakes in this study area can stratify during the summer (beginning at about 8 m in depth), and therefore, are dimictic (thoroughly mix twice a year). Contwoyto Lake also stratifies (Moore 1978b), but at depths greater than the 14 m recorded at the site in the present study. Lake size, location, exposure to wind, and depth are all factors that affect the presence and depth of thermoclines (Wetzel 1983).

In the summer, Contwoyto Lake exhibited water temperatures of 8.1 to 9.1°C, while Lakes D4 and D5 had water temperatures that ranged from 6.1 to 14.8°C. In the fall, surface (i.e., 0 - 1 m) water temperatures in the study lakes ranged from 6.0 to 8.0°C. The summer dissolved oxygen concentrations in the lakes ranged from 7.6 to 11.4 mg/L, while fall concentrations varied from 10.3 to 11.3 mg/L.

During summer, Lakes D4 and D5 had dissolved oxygen concentrations that were below the Canadian Water Quality Guideline for the protection of cold-water biota early life stages (9.5 mg/L; Table 3.1.2). The low dissolved oxygen concentrations recorded at this time were likely the result of equipment malfunction and were not representative of actual concentrations throughout the water column. Dissolved oxygen concentrations at the surface were at 100% saturation and above the 9.5 mg/L criteria. Because these lakes are nutrient poor (R.L. & L Environmental Services Ltd. 1995; Canamera Geological Ltd., unpublished data), dissolved oxygen concentrations should have remained constant throughout the water column, at least to the thermocline. This was not the case, at several sites the concentration was correlated with water depth, which is an indication of equipment malfunction (R. Hirsch, Technical Engineer, Point Four Systems Inc., Port Moody, BC, pers. comm.). As such, the dissolved oxygen concentrations recorded during the summer should be viewed with caution.

5.1.4.3 Transparency

The water transparency levels recorded in Lakes D4 and D5 indicated that the euphotic zone depths ranged between 10 to 11 m in the summer and 6 to 8 m in the fall. In Contwoyto Lake the euphotic zone was 19 m in summer and 8 m in fall.

5.2 PLANKTON

To provide baseline information on the plankton community, samples were collected from lakes during summer and fall of 1996. Three sites were established and monitored; Site PL5 (Lake D4), PL6 (Lake D5), and PL7 (Contwoyto Lake) (Figure 5.2.1). Relevant data are summarized in the following sections; site specific sampling data are presented in Appendices C1 to C3.

5.2.1 Phytoplankton

Phytoplankton are microscopic free-floating algae (Smith 1950). Summary results of phytoplankton biovolume (microns cubed per metre cubed or $[\mu m^3/m^3]$) and density (No. cells/ml) are both presented in this section because density alone does not provide an accurate assessment of importance. For example, taxa that are extremely numerous may have a low biovolume, due to the small size of individual organisms. Conversely, those taxa that have large biovolumes (due to large individual organism size), may not be numerically abundant. These large bodied groups can contribute significantly to lake productivity. As such, their numbers can influence the abundance and biomass of herbivores that feed on them (generally zooplankton) and they can modify nutrient availability for competing plants or algae. Raw phytoplankton data are summarized in Appendix C2.

5.2.1.1 Biovolume

In total, 136 species of algae were identified from the samples collected in the Tailings Impoundment/Docking Facility Zone study area (Appendix C2). Table 5.2.1 summarizes biovolumes of major taxonomic groups encountered. In summer, diatoms (Bacillariophyta) and golden-brown algae (Chrysophyta) dominated total algal biovolume (27 and 25%, respectively) in Lake D4. Golden-brown algae accounted for the majority of algal biovolume in Lake D5 (62%) and green algae (Chlorophyta) dominated in Contwoyto Lake (48%).

In fall, golden-brown algae and diatoms continued to account for the majority of algal biovolumes (46 and 31%, respectively) in Lake D4. In Lake D5, the fall phytoplankton community shifted to diatoms as the major taxonomic group (46%); golden-brown algae were second (32%). The fall phytoplankton community of Contwoyto Lake was dominated by golden-brown algae (41%), while green algae accounted for only 11%.

5.2.1.2 Density

The relative importance of the most numerous species within each of the six major taxonomic groups are depicted in Figure 5.2.2. In summer, cyanobacteria (Cyanophyta) were the numerically dominant taxa in Lakes D4 and D5;

Aphanothece clathrata accounted for most of the cyanobacteria at each site (7554 and 5200 cells/ml, respectively). Aphanocapsa elachista was the second most abundant cyanobacterium (2238 and 1823 cells/ml, respectively). The fall phytoplankton community of Lake D4 continued to be dominated by the cyanobacterium A. clathrata (2430 cells/ml), while at Lake D5 the diatom Cyclotella ocellata (924 cells/ml) replaced A. clathrata as the numerically dominant species.

The summer phytoplankton community of Contwoyto Lake was dominated by the diatom *Rhizosolenia longiseta* (6778 cells/ml), while the fall community was dominated by the cyanobacterium *A. clathrata* (609 cells/ml). In fall, the density of *R. longiseta* fell to 5 cells/ml. Among the green algae, *Sphaerocystis schroeteri* was the dominant species during summer and fall (354 and 94 cells/ml, respectively).

Chrysosphaerella rodhei and Chrysococcus sp. were the dominant golden-brown algae species during the two sampling seasons (Figure 5.2.2; Appendix C2).

5.2.2 Zooplankton

Zooplankton communities are composed of microscopic animals that live in the water column. Information describing seasonal differences in zooplankton biomass and density are presented in Table 5.2.2 and Figure 5.2.3, respectively. All raw data are presented in Appendix C3. Results of zooplankton biomass (μ g/m³) and density (No./m³) are both presented in this section because, density alone does not provide an accurate assessment of importance. Taxa that are extremely numerous may have a low biomass, due to the small size of individual organisms. Conversely, those taxa that have large biomass (due to large individual organism size), may not be numerically abundant. These large bodied groups can contribute a significant amount to lake productivity. As such, their numbers can influence the abundance and biomass of predators that feed on them (generally other zooplankton and fish) and they can modify the phytoplankton community.

5.2.2.1 Biomass

In summer and fall, calanoid copepods accounted for most of the biomass in Lakes D4 and D5; summer estimates were 74 and 81%, respectively, while fall estimates were 75 and 49%, respectively (Table 5.2.2; Appendix C3). Zooplankton biomass at Contwoyto Lake, was dominated by cyclopoid copepods in both summer (51%) and fall (55%).

5.2.2.2 Density

Two species (*Dicyclops bicuspidatus* and *Leptodiaptomus sicilis*) co-dominated the copepod community in all three study lakes (Figure 5.2.3; Appendix C3). In the summer, densities of *D. bicuspidatus* ranged from 295 (Lake D4) to 2031/m³ (Contwoyto Lake). In fall, this species had a much greater range in density, 90/m³ in Lake D4 and 9553/m³ in Contwoyto Lake. In summer, *L. sicilis* densities ranged from 1625/m³ in Contwoyto Lake to 4003/m³

in Lake D4. In fall L. sicilis densities ranged from 2125 to 4021/m³. Overall, copepod densities were greater in fall than in summer although some exceptions occurred in Lake D4.

Among the water fleas (Cladocera), *Bosmina longirostris* was the most abundant species (Figure 5.2.3; Appendix C3). This species dominated in Contwoyto Lake in summer and fall (1066 and 2997/m³ respectively). Water flea densities in Lakes D4 and D5 were one order of magnitude lower than in Contwoyto Lake.

The wheel animal (Rotifera) communities tended to be dominated by four species (*Conochilus unicornis*, *Kellicottia longispina*, *Keratella cochlearis*, and *Polyantha dolichoptera*). In the summer, Lakes D4 and D5 were dominated by *C. unicornis* (16 391 and 40 296/m³, respectively) while in Contwoyto Lake *C. unicornis*, *K. longispina*, and *P. dolichoptera* were equal in abundance (169/m³). In fall, *C. unicornis*, *K. longispina*, and *K. cochlearis* were the most abundant wheel animals in all three lakes (Figure 5.2.3; Appendix C3).

5.2.3 Summary

5.2.3.1 Phytoplankton

The phytoplankton assemblages were indicative of oligotrophic waterbodies (Wetzel 1983). In general, goldenbrown algae (Chrysophyta) and diatoms (Bacillariophyta) had the greatest biovolumes. Certain species of cyanobacteria (Cyanophyta; *Aphanothece clathrata* and *Aphanocapsa elachista*) and diatoms (*Cyclotella ocellata* and *Rhizosolenia longiseta*) had the greatest densities. Biovolumes and density estimates varied between summer and fall. For example, Contwoyto Lake's phytoplankton biovolume was dominated by green algae (Chlorophyta) in the summer and by golden-brown algae in the fall. The diatom *R. longiseta* was the most abundant species in the summer, while the cyanobacterium *A. clathrata* was the most abundant species in the fall. The other study lakes followed a similar pattern. This was likely due to physical-chemical differences between lakes as well as seasonal differences in community composition.

5.2.3.2 Zooplankton

The zooplankton community in the Tailings Impoundment/Docking Facility Zone varied between lakes and between seasons. In general, copepods dominated zooplankton biomass in all three lakes during summer and fall. Within this taxonomic group, *Leptodiaptomus sicilis* was the predominant copepod in Lakes D4 and D5, while *Dicyclops bicuspidatus* was the most abundant copepod in Contwoyto Lake. Copepod densities in Lake D5 and Contwoyto Lake were much greater in the fall than in the summer; the reverse was true for Lake D4. Contwoyto Lake had the highest densities of water fleas (Cladocera). In both summer and fall, *Bosmina longirostris* densities were one or two orders of magnitude greater in Contwoyto Lake than in Lakes D4 and D5. Overall, the wheel animals *Conochilus unicornis*, *Kellicottia longispina*, *Keratella cochlearis*, and *Polyantha dolichoptera* tended to be the most abundant zooplankton species in study area lakes.

5.3 STREAM PERIPHYTON

Due to a preponderance of large boulder substrates and subsurface water flow suitable sampling sites were not available to sample periphyton in the Tailings Impoundment/Docking Facility Zone.

5.4 BENTHIC MACROINVERTEBRATES

Benthic (bottom-dwelling) macroinvertebrates are an important link in aquatic food webs. Most benthic invertebrates are herbivorous, detrivorous, or filter feeders and derive much of their energy from aquatic plants and algae or organic materials. Some benthic macroinvertebrate species are predactious, generally feeding upon other invertebrates. Many fish species, including early life history stages of piscivorus species, feed upon benthic macroinvertebrates.

5.4.1 Lakes

The lake sampling program was designed to obtain baseline information from benthic macroinvertebrates communities on selected lakes within the Tailings Impoundment/Docking Facility Zone. During summer, three replicate samples were collected from the littoral and profundal zones of Lakes D4 and D5, and Contwoyto Lake (Figure 5.4.1). Summary data are provided Table 5.4.1. Site specific sampling information is summarized in Appendix E1 and raw data presented in Appendix E2.

In total, 34 taxonomic groups were identified; the number of taxa identified in each sample ranged from 7 to 25.

The mean (±1 standard error) total number of benthic macroinvertebrates in the littoral zone ranged from 9957±3246/m² in Lake D5 to 15 435±8276/m² in Contwoyto Lake; mean number of taxa ranged from 11±2 to 21±3/m² (Table 5.4.1). Overall, chironomid larvae (midges) were the most abundant taxon in the littoral zone; mean densities were 3405±1218/m², 8275±3675/m², and 4985±3797/m² in Lakes D5, D4, and Contwoyto Lake, respectively. Oligochaetes (aquatic earthworms), nematodes (roundworms), and ostracods (seed shrimps) were also present in the littoral benthic community. Contwoyto Lake had higher densities of oligochaetes and nematodes than did Lakes D4 and D5. Ostracods were more abundant in Lake D5 than in Lake D4 and Contwoyto Lake.

The mean (± 1 standard error) total number of benthic macroinvertebrates in the profundal zone ranged from $2000\pm617/\text{m}^2$ in Lake D5 to $4391\pm1931/\text{m}^2$ in Contwoyto Lake; mean number of taxa ranged from 10 ± 1 to $14\pm3/\text{m}^2$ (Table 5.4.1). Midge larvae as a whole were the most abundant taxonomic group in the profundal benthos, Contwoyto Lake had a mean of $2811\pm2006/\text{m}^2$, while Lakes D5 and D4 had 1131 ± 656 and $1594\pm658/\text{m}^2$, respectively. Lake D4 had more ostracods in the profundal zone than did Lake D5 and Contwoyto Lake.

Mean overall densities of benthic macroinvertebrates were much greater in the littoral zone than in the profundal zone; there was at least a three-fold difference in total density (Table 5.4.1). For Lakes D4 and D5, the number of taxonomic groups were greater in the littoral zone than in the profundal zone. The opposite trend was true in Contwoyto Lake; the littoral zone had a mean of 11 ± 2 taxa/m², while the profundal zone had a mean of 14 ± 3 taxa/m². In general, nematodes were more numerous in the littoral zones of each lake. In Contwoyto Lake, sphaeriids were only found in the profundal zone.

5.4.2 Streams

Due to a preponderance of large boulder substrates and subsurface water flow, suitable sites were not available to sample benthic macroinvertebrates in the Tailings Impoundment/Docking Facility Zone.

5.4.3 Summary

In general, total mean densities and mean number of taxonomic groups of benthic macroinvertebrates were greater in the littoral zone than in the profundal zone of lakes in the Tailing Impoundment/Docking Facility Zone. Contwoyto Lake was the only exception, the profundal zone had more taxa than the littoral zone. These results reflect the higher productivity of shallow-water habitats (e.g., higher water temperatures and greater light penetration). Taxonomic composition and abundance was indicative of a short growing season and a homogenous substrate mainly composed of fine sediments.

In terms of taxonomic composition, the benthic macroinvertebrate communities in the three study lakes were dominated by a few taxa: chironomids, oligochaetes, nematodes, and ostracods. The majority of nematodes were found in the littoral zone. The sphaeriids (fingernail clams) of Contwoyto Lake were only identified in samples collected from the profundal zone, while sphaeriids were common to both the littoral and profundal zones of Lakes D4 and D5. Contwoyto Lake had greater densities of benthic macroinvertebrates, in both the littoral and profundal zones, than did Lakes D4 and D5, suggesting that Contwoyto Lake was more productive.

5.5 FISH

5.5.1 Species Composition and Abundance

The 1996 aquatic studies fish sampling program was designed to provide information on species composition and abundance in the Tailings Impoundment/Docking Facility Zone. As for the other zones in the study area, sampling was conducted during spring, summer, and fall in a variety of habitats using several inventory techniques. In lakes, these techniques included gillnetting, angling, and the use of gee traps. In streams, fish were inventoried using backpack electrofishing. The following section provides summary information for fish communities in selected lakes and streams in the Tailings Impoundment/Docking Facility Zone of the Jericho study area. All raw data are presented in Appendices F1 to F5.

5.5.1.1 Lakes

During the 1996 fisheries program, three lakes were sampled in the Tailings Impoundment/DockingFacility Zone (Figure 5.5.1). These were Lake D4, Lake D5, and a small bay of Contwoyto Lake.

In total, 204 fish representing two species were recorded from sampled lakes in the Tailings Impoundment/Docking Facility Zone (Table 5.5.1); these were lake trout (114) and Arctic char (90).

Lake trout and Arctic char were recorded in each of the three sampled lakes, but the relative importance of these species was not constant (Table 5.5.2). In Lake D4, Arctic char and lake trout were equally represented (53% and 47%, respectively). In Lake D5, Arctic char was the predominant species in the sample (69%). In contrast, lake trout clearly dominated the sample in Contwoyto Lake (93%).

The gill net catch data were used to assess the relative abundance of fish species in the sampled lakes. These data were used for comparison purposes because they were based on a standardized sampling effort and the majority of fish were captured using this technique (194 of 204 fish).

The relative abundance (catch-per-unit-effort or CPUE) values generated for fish captured in each lake (Figure 5.5.2) were consistent with the percent composition information. Highest CPUE values were recorded in Lakes D4 and D5 during summer (11 fish/100 $\text{m}^2 \cdot 12 \text{ h}$). Catch rates were much lower in Contwoyto Lake (5 fish/100 $\text{m}^2 \cdot 12 \text{ h}$ during summer). The relative abundance of fish species also varied among seasons; catch rates during summer were higher. CPUE values recorded for lake trout were greater than 3 fish/100 $\text{m}^2 \cdot 12 \text{ h}$ in summer compared to less than 2 fish/100 $\text{m}^2 \cdot 12 \text{ h}$ during fall. The same pattern was evident for Arctic char. Catch rates during summer were greater than 7 fish/100 $\text{m}^2 \cdot 12 \text{ h}$ in Lakes D4 and D5, but they did not exceed 5 fish/100 $\text{m}^2 \cdot 12 \text{ h}$ in either lake during fall.

Abundance indices for each species also differed among lakes. For Arctic char, catch rates were highest in Lakes D4 and D5 (9 and 8 fish/ $100 \text{ m}^2 \cdot 12 \text{ h}$ in summer, respectively). CPUE values for lake trout did not exceed 5 fish/ $100 \text{ m}^2 \cdot 12 \text{ h}$ in any of the sampled waterbodies.

5.5.1.2 Streams

Of the 12 streams inventoried within the Tailings Impoundment/Docking Facility Zone, 7 contained fish (Figure 5.5.1). These streams were situated in three areas: Lake D4 (2), Lake D5 (2), Contwoyto Lake (3).

In general, limited numbers of fish were encountered in streams within the Tailings Impoundment/DockingFacility Zone. In total, 52 fish representing three species were enumerated (Table 5.5.3). These were slimy sculpin, which dominated the sample (35), lake trout (8), and Arctic char (9). The number of fish recorded varied depending on

sampling area (Table 5.5.4). Most fish were recorded from streams in the Lake D4 and Lake D5 areas (21 and 20, respectively). Fewer fish were encountered in Contwoyto Lake streams (11).

The importance of each species varied between areas (Table 5.5.4). Slimy sculpin dominated numerically in all areas (ranged from 60% to 76% of the sample). However, Arctic char was the only other species recorded in Lake D4 area streams, and lake trout was the only other species encountered in Contwoyto Lake area streams. In Lake D5 area streams, lake trout and Arctic char were equally represented.

The number of fish recorded in individual streams also differed (Figure 5.5.3). In the Lake D4 area, Stream D2 contained many more fish than Stream D1 (20 versus 1). Streams D4 and D6 in the Lake D5 area exhibited a similar pattern; more fish were recorded in Stream D6 than D4 (18 versus 2). Streams in the Contwoyto Lake area also contained few fish. Most were recorded in Stream E1 (7); fewer than three fish were encountered in each of Streams B1 and F1.

5.5.2 Biological Characteristics

An important component of the 1996 fisheries program was to describe the biological characteristics of fish species recorded in the Tailings Impoundment/Docking Facility Zone. Characteristics described in this section include: length-frequency distributions, length-weight regressions, mean condition factors, age-at-maturity, mean length-atage, and mean weight-at-age. Because much of this information was collected from fish that succumbed during sampling, and mortality rates were generally low, sample sizes are small. Unless otherwise stated, data from all sampling sessions and sampling methods have been combined for the analyses. Raw data used for these analyses are presented in Appendix F5.

5.5.2.1 Lake trout

Lake trout ranged in fork length from 96 to 684 mm (Figure 5.5.4). Lake trout captured from Contwoyto Lake exhibited a bimodal distribution with modal peaks occurring at 160 and 480 mm. Lake trout in the other two sampled waterbodies (Lakes D4 and D5) exhibited a similar range in size, although the majority of fish were smaller (<380 mm fork length). The length-frequency distribution for the Lake D4 sample also was bimodal; peaks occurred at 240 and 320 mm.

Length-weight regression equations and mean condition factors for lake trout sampled from each lake during summer are presented in Table 5.5.5.

Age-at-length and age-at-weight information for samples of lake trout captured from each lake during summer is provided in Table 5.5.6. Fish in this sample ranged in age from 1 to 36 years. Caution should be used when interpreting this information. The samples used for ageing were small $(n \le 31)$ and there was variation inherent to

this type of data (subarctic fish populations typically exhibit a great range in age for fish of a given length [Johnson 1972]). As such, this information provides only a representative cross-section of these populations and should not be interpreted as an accurate description of growth rates. As such, it should not be used for comparison of growth curves among different fish populations.

Limited data were available to assess age-at-maturity for lake trout. Information collected from Lake D4 suggested that these fish became sexually mature at 12 years of age. The smallest sexually mature lake trout encountered in Lake D4 was a ripe male 352 mm in fork length. In Lake D5, the smallest sexually mature lake trout was a ripe female with a fork length of 333 mm. The minimum fork length of sexually mature lake trout appeared to be greater in Contwoyto Lake. A gravid male 495 mm in length was recorded from this waterbody. Nonfecund lake trout were also recorded in each of the sampled lakes (i.e., mature fish that did not spawn that year). The percentage of nonfecund individuals in samples that could be assessed for sexual maturity were 78% (Contwoyto Lake; n=18) and 38% (Lake D4; n=18). Sample sizes were insufficient to assess the percentage of nonfecund mature lake trout in Lake D5.

5.5.2.2 Arctic char

The fork length of Arctic char sampled from waterbodies ranged from 54 to 416 mm (Figure 5.5.5). Length-frequency distributions of fish sampled from Lakes D4 and D5 were similar; fish between 280 and 420 mm in length dominated both samples. Few Arctic char less than 280 mm fork length were encountered in either waterbody.

Length-weight regression equations and mean condition factors for Arctic char sampled from lakes during summer are presented in Table 5.5.7.

Age-at-length and age-at-weight information for samples of Arctic Char captured from Lakes D4 and D5 during summer and fall are provided in Table 5.5.8. Fish in these samples ranged in age from 5 to 12 years. Caution should be used when interpreting this information. The samples used for ageing were small ($n \le 8$) and there was variation inherent to this type of data (subarctic fish populations typically exhibit a great range in age for fish of a given length [Johnson 1972]). As such, this information provides only a representative cross-section of these populations and should not be interpreted as an accurate description of growth rates. As such, it should not be used for comparison of growth curves among different fish populations.

Limited age-at-maturity data were available for sampled Arctic char. Data from Lake D4 suggested that fish became sexually mature at 10 years of age (ripe male 380 mm fork length), while in Lake D5, Arctic char became sexually mature by age 8 (ripe male 332 mm fork length). Nonfecund Arctic char were not recorded in sampled lakes during the study. This finding was not typical when compared to other Arctic char populations in the study area (see Sections 3.5.2 and 4.5.2). Small sample sizes may explain this discrepancy.

5.5.3 Feeding Habits

Stomach contents of Arctic char and lake trout were analysed to assess feeding habits (all seasons combined). Data were collected from fish that succumbed during capture or that were sacrificed for tissue samples. The information is presented as frequency of occurrence and percent composition of food items by volume. The raw data used for these analyses can be found in Appendix F5.

5.5.3.1 Lake trout

The diet of lake trout in all three lakes was dominated by zooplankton (Figure 5.5.6). In Lakes D4 and D5, the diet consisted almost exclusively of zooplankton. In Contwoyto Lake, the diet was more varied; foods consumed were zooplankton, fish, trichopterans, and chironomids. Zooplankton was the most important foot item (46% occurrence and 48% composition by volume); chironomids and fish were next in importance (12 to 17% occurrence and 16 to 19% composition by volume, respectively).

5.5.3.2 Arctic char

Similar to findings for lake trout, the diet of Arctic char consisted primarily of zooplankton (Figure 5.5.7). This food item exceeded 75% occurrence and 50% composition by volume in samples from each of the three sampled lakes. In Contwoyto Lake, chironomids were equal in importance to zooplankton (based on a sample of 1 stomach). Chironomids were also an important food item in Lake D5 (38% occurrence and 43% composition by volume). In Lake D4, trichopterans and pelecypods were most important (10 to 20% occurrence and 9 to 17% composition by volume).

5.5.4 Fish Movements

Streams in the Tailings Impoundment/Docking Facility Zone are small and have dispersed channels, therefore there is no potential for fish to undertake movements between waterbodies.

5.5.5 Population Estimates

During the 1996 field program, attempts were made to estimate the size of fish populations inhabiting Lakes D4 and D5, two waterbodies that could potentially be affected by development of a tailings impoundment. Because lake trout and Arctic char were the most numerous fish encountered and they were easily captured by the sampling techniques employed, these species were targeted for population estimates. Fish in good physical condition were marked with a numbered Floy tag during summer and fall sampling. It was hoped that a sufficient number of the fish would be subsequently recaptured to generate useful population estimates.

Effort was expended to capture and mark as many fish as possible during the summer session (27 July to 4 August), as well as the early part of the fall session (3 September). During the marking sessions, 18 lake trout and 17 Arctic char were marked and released in Lake D4, while 7 lake trout and 23 Arctic char were marked and

R.L. & L. ENVIRONMENTAL SERVICES LTD.

Page 165

released in Lake D5 (Table 5.5.9). On 9 September, crews returned to both lakes to obtain the recapture cohort

required to generate the population estimates.

Given the small size of the two lakes (surface areas of Lake D4 and D5 are 16 ha and 9 ha, respectively), the

number of marked fish released into these systems was sufficient to ensure an adequate recapture rate of tagged

fish (one exception was lake trout in Lake D5 where only seven fish were marked). Recapture rates for marked

Arctic char were 23% in Lake D4 and 22% in Lake D5. However, no marked lake trout were recaptured in either

lake; this was likely due to the low number of fish encountered during the recapture session.

Population estimates for Arctic char in each lake were 51 fish ±36 fish (Lake D4) and 32 fish ±13 fish (Lake D5).

These values correspond to the relative sizes of these lakes; Lake D4 has twice the surface area of Lake D5. Both

estimates have wide 95% confidence intervals, which is an indication of low precision (Seber 1982). This problem

is an artifact of two factors: a limited number of marked fish were recaptured and the total number of fish

collected during the recapture session was low (12 Arctic char in Lake D4 and 7 Arctic char in Lake D5). If

attempts are made to generate estimates for fish populations in the future, more sampling effort should be

expended to allow development of more precise population estimates.

5.5.6 Resource and Potential Harvest

Based on available information, waterbodies in the Tailings Impoundment/Docking Facility Zone were not used

extensively for commercial or domestic fisheries. Nor was there recreational use of Lakes D4 and D5. Contwoyto

Lake is used extensively for recreational angling during the open water period. Personnel from the Echo Bay

Mines Ltd. Lupin Mine routinely harvest fish from Contwoyto Lake and are known to angle in the north arm of

the lake (David Hohnstein, Echo Bay Mines Ltd. pers. comm.). In fact, a lake trout tagged during the present

study was harvested by an angler from the Lupin mine in the vicinity of the proposed docking facility.

The small sizes of Lakes D4 and D5 and their low productivity, make sport fish populations susceptible to over

harvest. To estimate the annual sport fish harvest a waterbody can support, an equation that employs a lake's

surface area, was developed by Evans et al. (1990) for Northern Ontario. This equation has been recommended

to calculate potential annual harvest of lake trout in inland lakes (Oliver et al. 1991) and is as follows:

 $\log_{10} H$ 0.60 0.72 $\log_{10} A$

Where:

H = potential annual harvest of lake trout (kg).

A = surface area (ha) of lake (lake surface areas based on 1:50 000 scale N.T.S. maps).

Using this formula, the potential annual harvest of lake trout from each of the small lakes was calculated. The potential harvest for Lakes D4 and D5 were 29 kg and 18 kg, respectively (Table 5.5.10). This information

number of environmental differences between subarctic lakes and waterbodies in northern Ontario. Lower nutrient levels, a colder water temperature regime, and a shorter open water period in the subarctic region would significantly lower the potential harvest available in these subarctic lakes compared to those in northern Ontario. The potential harvest of lake trout in the small bay of Contwoyto Lake could not be estimated, but given the size of this waterbody, the potential annual harvest is large.

5.5.7 Summary

Sampled lakes in the Tailings Impoundment/Docking Facility Zone supported populations of lake trout and Arctic char. Two separate systems were represented in this zone: a small bay of Contwoyto Lake and two small headwater lakes that drain into Contwoyto Lake (Lakes D4 and D5). Based on abundance indices (catch rates using standardized gill net sets), overall fish densities during summer were highest in Lakes D4 and D5 (11 fish/ $100 \,\mathrm{m}^2 \cdot 12 \,\mathrm{h}$ in summer). CPUE values recorded in Contwoyto Lake did not exceed 5 fish/ $100 \,\mathrm{m}^2 \cdot 12 \,\mathrm{h}$. Arctic char was the numerically dominant fish in Lake D5; lake trout dominated in Contwoyto Lake. In Lake D4, lake trout and Arctic char were equally represented.

Few fish were encountered in sampled streams. Lake trout, Arctic char, and slimy sculpin were the only species recorded. The low numbers of fish was due to the very poor habitat available in these streams.

The biological characteristics of fish populations indicated that they were slow growing, late maturing, and dominated by older age-classes. Lake dwelling species (lake trout and Arctic char) tended to exhibit bimodal length-frequency distributions and were dominated by larger older fish. To some extent, this reflected the sampling methodology employed (smaller size-classes were not effectively sampled using gill nets), however, these data are typical of subarctic fish populations residing in cold, oligotrophic waterbodies. It has been suggested that these characteristics are indicative of unexploited fish populations in a state of equilibrium with their environment (Johnson 1976).

The feeding habits of fish were related to the most abundant food item available. Zooplankton was the dominant food item identified in lake trout and Arctic char stomachs in all sampled waterbodies. Fish and chironomids were also important food groups consumed by lake trout in Contwoyto Lake. Chironomids were the predominant food of Arctic char in Lake D5 and Contwoyto Lake.

The physical characteristics of streams in the Tailings Impoundment/Docking Facility Zone, such as insufficient water depth, intermittent water flow, and ill-defined channels prevented any movements of fish between waterbodies.

Based on available information, waterbodies in the Tailings Impoundment/Docking Facility Zone were not used extensively for commercial and domestic fisheries. Recreational angling was observed on Contwoyto Lake near

the proposed docking facility. The biological characteristics of fish populations in these waterbodies (i.e., slow growing and late maturing), the small size of some of these lakes (Lakes D4 and D5), and their low productivity, make their sport fish populations susceptible to over harvest.

5.6 HABITAT AND HABITAT USE

This study component was designed to describe aquatic habitat in lakes and streams in the Tailings Impoundment/Docking Facility Zone and to assess its value to fish communities. This section provides information; raw data are presented in Appendices G1 and G2.

5.6.1 Lakes

The shoreline habitat characteristics of three waterbodies were surveyed. These included complete assessments of Lake D4 and Lake D5, and a survey of the small bay of Contwoyto Lake (Figure 5.6.1). Surveys were designed to provide a general assessment of the shoreline characteristics of each lake and to identify high quality habitats. These high quality habitats included: sheltered shallow-water areas containing aquatic macrophytes (submergent and emergent vegetation) suitable for fish rearing and submerged cobble-boulder areas suitable for spawning by lake trout, Arctic char, and round whitefish.

Shorelines in all three lakes were dominated by cobble-boulder substrates (range from 64% to 100%) (Table 5.6.1). The only other shoreline type recorded during the surveys was bedrock; this accounted for 36% of the Lake D4 shoreline. No fine substrates were encountered in any of the lakes. In Contwoyto Lake and Lake D4, a large percentage of the shorelines (>56%) exhibited moderate to high slopes. The shoreline of Lake D5 was characterized as having a low slope (70%).

Potential spawning and rearing habitats were identified during the shoreline habitat surveys. Spawning habitat required by lake dwelling species such as lake trout, Arctic char, and round whitefish is characterized by the presence of clean gravel to boulder-sized substrate in areas sufficiently deep to avoid freezing (Scott and Crossman 1973). Areas with these characteristics were widely distributed in all surveyed waterbodies. A number of sites that provided high quality spawning habitat (i.e., contained an abundance of clean substrates, exhibited moderate slopes to deep water, and were positioned on the windward side of the lake which promotes water movement) are illustrated in Figure 5.6.1. Fisheries surveys during fall did not locate concentrations of spawning fish at any of these sites, therefore, their use as spawning areas was not confirmed.

High quality rearing habitat suitable for lake dwelling fish species is characterized by shallow-water zones exhibiting low slopes and fine substrates that support the growth of aquatic macrophytes (Randall et al. 1996). These features provide shelter (i.e., protection from predators and source of food) to younger age-classes of lake

trout, Arctic char, and round whitefish. In addition, they provide habitat for forage fish species such as slimy sculpin.

Shoreline areas exhibiting these characteristics were severely limited in all surveyed waterbodies. Shallow-water areas with low slopes and fine substrates were not present and aquatic macrophytes were restricted to a few protected shoreline margins. Aquatic macrophytes consisted of emergent species (*Carex* spp.) and aquatic grasses (*Glyceria* spp.); no submergent species were recorded during the habitat surveys. Only one high quality rearing area was identified; this area was located in Lake D4 (Figure 5.6.1).

5.6.2 Streams

Investigations of streams in the Tailings Impoundment/Docking Facility Zone were undertaken during spring and summer. During spring, a reconnaissance level survey was conducted to identify streams that provided some habitat for fish communities and to assess their potential as spawning habitat (i.e., use by spring spawning Arctic grayling). Surveys during summer were used to provide a more detailed description of stream characteristics and to assess their overall potential as fish habitat.

In total, 12 watercourses were examined during the 1996 sampling program (Figure 5.6.2). Of these, five contained no fish during spring sampling and were ephemeral (contained water only during the snow melt period or during rainfall events). These streams were deemed to have no value to fish communities, and therefore, did not receive more extensive investigation. The seven streams that had some potential as fish habitat were located in three general areas: Contwoyto Lake (3), Lake D4 (2), and Lake D5 (2). All of these systems were small and the majority exhibited intermittent flow during the summer sampling period.

5.6.2.1 Contwoyto Lake Streams

Stream B1

Stream B1 is a small watercourse that drains a headwater lake situated immediately north of the Docking Facility bay. This stream exhibits a very high slope (7%) and is dominated by cobble substrates (Table 5.6.2). Due to these characteristics, much of the channel is a barrier to fish passage; all fish were encountered in the lowermost 20 m of the stream. The low numbers of lake trout and slimy sculpin encountered in this system (Table 5.6.3) indicates that its value as fish habitat is severely limited (Table 5.6.4).

Streams E1 and F1

Streams E1 and F1 are very small, ephemeral watercourses located along the southern shore of the Docking Facility bay of Contwoyto Lake. The high slopes (>6%) and dispersed channels of these streams severely limit their value to fish. The few fish that were present were restricted to the lowermost 20 m.

5.6.2.2 Lake D4 Streams

Stream D1

Stream D1 is the outlet system to Lake D4 that drains into Contwoyto Lake. This watercourse contains no defined stream channel. Substrates are dominated by boulders and much of the water flow is subsurface. As such, this stream contains no useful fish habitat. The single Arctic char encountered during the fisheries survey was captured at the confluence of Stream D1 and Contwoyto Lake.

Stream D2

Stream D2 is the connecting watercourse between Lakes D4 and D5. It has an ill-defined channel over much of its length; RUN habitat and boulder substrates dominated (77%). Although small, water flow was maintained in this stream during the summer period. It did provide habitat to fish originating from Lake D4 or Lake D5. However, these characteristics severely limits movement of fish between these two waterbodies.

Slimy sculpin and Arctic char were recorded in this stream. These fish were confined to the outlet area of Lake D4 and the inlet area of Lake D5.

5.6.2.3 Lake D5 Streams

Stream D4

This tributary is a small watercourse that drains the terrain at the west end Lake D5. It exhibits a well-defined channel dominated by RUN habitat and sand substrates. A prominent feature of this stream is a cascade at its confluence with Lake D5. This feature is a barrier to fish passage during low flow and severely limits its value as fish habitat. Two juvenile Arctic char were encountered in this stream during the spring survey.

Stream D6

Stream D6 drains a series of small headwater lakes situated to the southeast of Lake D5. Although this stream maintained water flow during the summer period, much of its channel is ill-defined and is dispersed through boulder fields. Approximately 300 m upstream of its confluence with Lake D5, its flow is subsurface. A such, all fish habitat is restricted to the lowermost section of stream. Three species of fish were encountered in this stream (Arctic char, lake trout, and slimy sculpin); none were abundant.

5.6.3 Summary

The shoreline areas of lakes in the Tailings Impoundment/Docking Facility Zone were uniformly dominated by large substrates consisting of cobbles and boulders. These shoreline characteristics provide an abundance of potential spawning areas for species such as lake trout. Although not confirmed as a spawning area, a shoal situated in the proposed docking facility bay exhibited characteristics of a high quality lake trout spawning area.

In contrast to the abundance of potential spawning sites, a paucity of aquatic macrophytes in these lakes severely limited the availability of lake shore rearing habitat.

Habitat surveys were undertaken in 12 streams. In general they provided little habitat for fish populations originating from study area lakes. The primary reasons for low quality fish habitat in these streams were their small size, intermittent flow during the summer, and poorly defined channels. Good quality fish habitat was not identified in any of the surveyed streams.

5.7 BACKGROUND METAL CONCENTRATIONS IN FISH TISSUE

In 1996, a monitoring program was initiated in the Tailings Impoundment/Docking Facility Zone to document background metal concentrations in kidney, liver, and muscle tissues of fish (lake trout and round whitefish). Samples were collected from two lakes: Contwoyto Lake, which is situated downstream of the proposed tailings area and a Control Lake, which was outside the influence of any potential development (i.e., 6 km west of the Jericho Diamond Project).

In total, 21 lake trout were sampled for tissue analysis from each of Contwoyto Lake and Control Lake (Table 5.7.1); no round whitefish were collected from Contwoyto Lake. The size range of fish collected for tissue samples is also provided in Table 5.7.1. The concentrations of 26 metal elements were analysed. Liver and muscle, but not kidney tissue samples were analysed; kidney tissue samples have been stored (frozen at -17°C) pending future analyses. Results of the analyses for all elements are presented in Appendices H2 and H3. For analytical purposes, values below the detection limits were coded as one half the detection limit.

The average concentrations of some of the potentially toxic metals (aluminum, arsenic, cadmium, mercury, lead, nickel, copper, and zinc) in the tissues of study area fish are presented in Table 5.7.2. The results are discussed separately for each of the metals.

5.7.1 Aluminum

The availability of aluminum to aquatic organisms has been correlated with the pH of the aquatic environment (Holtze and Hutchinson 1989); however, it is unclear at what pH threshold, or at what concentration, aluminum becomes toxic to fish. Aluminum can be acutely toxic at high exposure levels, but it does not bioaccumulate in aquatic organisms (Neville 1985).

Detectable concentrations of aluminum (>1 μ g/g) were recorded in 100% of the lake trout liver samples from both lakes (Table 5.7.2). For muscle tissue, however, aluminum concentrations exceeded the detection limit only once (3 μ g/g in Contwoyto Lake). Mean aluminum levels in liver tissue samples were similar (16 μ g/g and 20 μ g/g

from each of Contwoyto and Control Lakes, respectively). The maximum recorded aluminum concentration was $47 \mu g/g$ (Control Lake).

5.7.2 Arsenic

Arsenic is more common in the earth's crust than mercury or cadmium, and it is more toxic to plants than to animals (Demayo et al. 1979). It does not appear to biomagnify through different trophic levels, and demersal species are more likely to accumulate arsenic than pelagic fish (Demayo et al. 1979). Arsenic concentrates mainly in the liver and is a cumulative toxin (Falk et al. 1973).

Detectable concentrations of arsenic (>0.05 μ g/g) were recorded in all lake trout liver samples, but only 64% of lake trout muscle samples. Mean concentrations of arsenic in liver tissue samples were higher in Contwoyto Lake (4.89 μ g/g and 1.76 μ g/g in Contwoyto Lake and Control Lake, respectively). Arsenic levels in muscle tissue samples were lower than those in livers; mean concentrations were 0.14 μ g/g in the Contwoyto Lake sample and 0.07 μ g/g in the Control Lake sample. The maximum arsenic concentration was recorded from a liver tissue sample collected in Contwoyto Lake (11.80 μ g/g).

The high mean arsenic concentration recorded in Contwoyto Lake was representative of the sample and was not caused by a single extreme value that could have biassed the mean of the sample. The reason for the high value relative to the Control Lake sample is unclear. There was a significant difference between lakes in the size of lake trout collected for tissue analyses (P=0.001, one-tailed t-test [Sokal and Rohlf 1981]). Contwoyto Lake fish were larger than Control Lake fish (490 mm versus 427 mm), therefore, the effects of bioaccumulation may explain the difference. The larger, and presumably older, fish may contain higher concentrations of arsenic. Regardless of the reason for the high mean arsenic value for lake trout collected from Contwoyto Lake, future monitoring programs should take this into account.

5.7.3 Cadmium

Cadmium does not bioaccumulate in the food web (Reeder et al. 1979a). The rate of cadmium uptake is generally faster in hard waters, although cadmium toxicity decreases in hard water (Reeder et al. 1979a).

Detectable concentrations of cadmium (greater than 0.05 μ g/g) were recorded in all lake trout liver samples, but were not detected in any of lake trout muscle samples. Mean cadmium levels in liver samples were similar among lakes (2.03 μ g/g and 2.65 μ g/g from Contwoyto and Control Lakes, respectively). The maximum recorded cadmium concentration in lake trout liver samples was 6.17 μ g/g (Contwoyto Lake).

5.7.4 Copper

In contrast to the nonessential trace metals (e.g., arsenic, cadmium, mercury, lead), copper is important for biochemical functions; however, excess amounts of copper are toxic to freshwater fish (Förstner and Wittman 1979). The toxicity of copper varies with the species of fish and with ambient water characteristics (e.g., pH and alkalinity). Copper is not considered to be a cumulative systematic poison as most of it is excreted from the body (Falk et al. 1973). The main areas of the body where it concentrates are the liver, muscle, and brain tissues (Demayo and Taylor 1981).

Detectable concentrations of copper (>0.05 μ g/g) were recorded in all of lake trout liver and muscle samples. Mean copper levels in liver tissue samples were highest from Control Lake (89.76 μ g/g versus 42.36 μ g/g), and mean copper levels in lake trout muscle tissues were also highest in Control Lake (0.78 μ g/g versus 0.68 μ g/g). The maximum recorded copper concentrations in lake trout tissue were 232.00 μ g/g (liver sample from Control Lake) and 3.78 μ g/g (muscle sample from Control Lake).

5.7.5 Lead

Lead tends to deposit in bone as a cumulative toxin (Falk et al. 1973). It is more toxic in soft water than in hard water (Demayo et al. 1980).

Lead concentrations in the lake trout tissue samples were low. Detectable concentrations of lead (>0.05 μ g/g) were recorded in 69% of lake trout liver samples and in 24% of the muscle samples. Mean lead levels in liver samples were 0.37 μ g/g in Contwoyto Lake and 0.07 μ g/g in Control Lake. The mean lead level in the Control Lake muscle sample was 0.10 μ g/g; detectable concentrations of lead were not recorded in the Contwoyto Lake muscle tissue sample. The maximum recorded lead concentration in lake trout tissue was 0.86 μ g/g (liver sample from Contwoyto Lake).

5.7.6 Mercury

Mercury in fish tissue is most commonly present in the form of methyl mercury. Because there are several types of mercury potentially present in the environment, total mercury is the form recommended for setting guidelines (Reeder et al. 1979b). The maximum allowable level of mercury in muscle tissue of fish sold in Canada for human consumption is $0.5 \mu g/g$ (wet weight), which is comparable to approximately $2.5 \mu g/g$ when expressed on a "dry weight" basis (assuming 80% moisture content).

Mercury concentrations were above the detection limit (>0.005 μ g/g) in all lake trout tissue samples. The mean mercury levels in lake trout liver tissues were 1.610 μ g/g in Contwoyto Lake and 0.501 μ g/g in Control Lake. Mean mercury values in muscle tissue samples were similar (0.909 μ g/g in Contwoyto Lake and 0.925 μ g/g in Control Lake). None of the 42 lake trout muscle samples had mercury levels equal to or higher than allowed for

human consumption (2.5 μ g/g). The maximum mercury concentrations documented in individual fish were 4.750 μ g/g in a Contwoyto Lake liver sample and 2.140 μ g/g in a Control Lake muscle sample.

5.7.7 Nickel

The toxicity of nickel rises with decreasing water hardness and increasing acidity (CCREM 1987); it also increases when nickel is present with copper, which is likely a result of synergism (Taylor et al. 1979). Nickel has the greatest effect on the early life stages of fish, including fertilized eggs, but it does not biomagnify in the food web (Taylor et al. 1979). Hutchinson et al. (1975) reported that nickel concentrations were highest in plants and lowest in predators situated in the upper levels of the food chain.

The level of nickel in lake trout tissues generally was low. Detectable concentrations of nickel (>0.1 μ g/g) were recorded in only 29% of liver samples and 12% of the muscle samples, and levels were at or near detection limits in both Contwoyto Lake and Control Lake samples. Maximum nickel concentrations in lake trout tissues were 8.6 μ g/g (liver sample from Contwoyto Lake), and 0.4 μ g/g (muscle sample from Control Lake).

5.7.8 Zinc

Zinc primarily affects gill epithelial tissues. In excessive amounts, it can cause immediate mortality or it can induce delayed mortality by stressing the animal (Falk et al. 1973). However, zinc is essential for plant and animal health. The toxicity of zinc rises with increasing pH and decreasing water hardness. Zinc concentrations are usually greater in omnivorous than in piscivorus species, and greater in benthic invertebrates than in fish (CCREM 1987).

Zinc concentrations in lake trout tissues were similar among the study lakes. Mean levels in the liver tissues were 155.43 μ g/g in Contwoyto Lake and 151.57 μ g/g in Control Lake samples; mean levels in the muscle tissues were 11.89 μ g/g and 12.15 μ g/g, respectively. Maximum recorded zinc concentrations in lake trout tissues were 232.00 μ g/g (liver sample from Contwoyto Lake), and 15.30 μ g/g (muscle sample from Contwoyto Lake).

SECTION 5 - TABLES

Table 5.1.1 Morphometric characteristics^a of surveyed lakes within the Borrow Extraction Zone, Jericho study area, 1996.

Lake	Surface Area (ha)	Lake Volume (m)	Mean Depth (m)	Maximum Depth (m)	Shoreline Length (m)	Shoreline Development Ratio
Lake D4	15.58	1.070 x 10 ⁶	6.9	20	2700	1.93
Lake D5	8.55	2.250 x 10 ⁵	2.7	12	1700	1.67
Contwoyto Lake	67.45	n/a	n/a	20	n/a	n/a

^aMorphometric characteristics (with the exception of shoreline length) provided by Canamera Geological Ltd. n/a Not applicable.

Table 5.2.1 Phytoplankton biovolume in sampled lakes during summer and fall within the Tailings Impoundment/Docking Facility Zone, Jericho study area, 1996.

	La	ke D4	(Site PL5)		Lal	ke D5	(Site PL6)		Contwe	oyto L	ake (Site PL	7)
Taxonomic Group	Summe	Summer		Fall		Summer			Summe	er	Fall	
14.10.10.11.10 G10.1P	Biovolume (μm³/m³)	%	Biovolume (μm³/m³)	%	Biovolume (μm³/m³)	%	Biovolume (μm³/m³)	%	Biovolume (μm ³ /m ³)	%	Biovolume (μm³/m³)	%
Bacillariophyta (diatoms)	105 794	27.1	104 512	31.3	5263	2.7	111 931	46.4	48 188	7.6	45 017	14.4
Cryptophyta (cryptomonads)	31 354	8.0	30 466	9.1	13 226	6.8	35 552	14.7	23 375	3.7	13 234	4.2
Chrysophyta (golden-brown algae)	98 208	25.2	151 950	45.5	119 295	61.6	76 241	31.6	189 393	29.9	126 824	40.6
Pyrrophyta (dinoflagellates)	68 890	17.7	3799	1.1	24 514	12.6	5359	2.2	56 781	9.0	62 365	20.0
Euglenophyta (euglenoid)									9949	1.6		
Chlorophyta (green algae)	48 203	12.4	32 047	9.6	25 293	13.1	11 523	4.8	303 252	47.8	34 239	11.0
Cyanophyta (cyanobacteria)	37 273	9.6	11 116	3.3	6199	3.2	740	0.3	2929	0.5	30 558	9.8
Total Biovolume	389 722	100	333 890	100	193 790	100	241 346	100	633 867	100	312 237	100

Table 5.2.2 Zooplankton biomass in sampled lakes during summer and fall within the Tailings Impoundment/Docking Facility Zone, Jericho study area, 1996.

	La	Lake D4 (Site PL5)					Lake D5 (Site PL6)				Contwoyto Lake (Site PL7)			
Taxonomic	Summer		Fall		Summer		Fall		Summer		Fall			
Group	Biomass (μg/m³)	%	Biomass (μg/m³)	%	Biomass (μg/m³)	%	Biomass (μg/m³)	%	Biomass (μg/m³)	%	Biomass (μg/m³)	%		
Copepoda Calanoida	47 980	74.2	28 851	74.7	42 105	80.5	85 802	49.3	18 805	35.1	34 602	15.7		
Cyclopoida	8501	13.2	1077	2.8	3503	6.7	63 434	36.4	27 552	51.4	120 754	54.7		
Cladocera	5699	8.8	8124	21.0	1810	3.5	24 665	14.2	7094	13.2	64 824	29.4		
Rotifera	2450	3.8	548	1.4	4863	9.3	179	0.1	145	0.3	616	0.3		
Total Biomass	64 630	100	38 600	100	52 281	100	174 080	100	53 595	100	220 796	100		

Table 5.4.1 Mean density^a (±1 standard error) of benthic macroinvertebrates in the littoral and profundal zones^b of selected lakes within the Tailings Impoundment/Docking Facility Zone, Jericho study area, 1996.

	Lak	e D5	Lake	e D4	Contwoy	to Lake
Taxonomic Group	Littoral	Profundal	Littoral	Profundal	Littoral	Profundal
	(Site L6)	(Site P6)	(Site L5)	(Site P5)	(Site L7)	(Site P7)
ANNELIDA						
OLIGOCHAETA	739 (396)	130 (91)	928 (705)	29 (29)	4290 (3895)	188 (110)
ARTHROPODA						
HYDRACHNIDIA	101 (63)	43 (25)	406 (147)	29 (29)	72 (72)	130 (75)
CRUSTACEA						
COPEPODA						
Harpacticoida	87 (66)		43 (25)	275 (195)		
OSTRACODA	5217 (2091)	203 (102)	2058 (1238)	1739 (1449)	464 (464)	145 (92)
INSECTA						
DIPTERA						
Chironomidae ^c	3405 (1218)	1131 (656)	8275 (3675)	1594 (658)	4985 (3797)	2811 (2006)
Chironomini	362 (198)	899 (584)	768 (750)	667 (282)		14 (14)
Diamesinae	159 (119)					
Orthocladiinae	2290 (635)	58 (43)	5609 (2139)	174 (87)	4362 (3387)	2609 (1909)
Tanypodinae	275 (124)	174 (29)	1014 (590)	72 (14)	43 (43)	58 (40)
Tanytarsini	319 (142)		884 (196)	681 (275)	580 (367)	130 (43)
TRICHOPTERA						
Limnephilidae						
Gresnia	43 (43)		58 (38)	14 (14)	58 (58)	
MICROTURBELLARIA			188 (95)	72 (72)		
MOLLUSCA						
PELECYPODA						
Sphaeriidae	130 (53)	449 (354)	435 (348)	391 (165)		232 (124)
NEMATODA	159 (52)	14 (14)	1145 (722)	87 (66)	5000 (1501)	667 (153)
Total No. Benthic Taxa/m²	21 (3)	10 (1)	16 (4)	13 (1)	11 (2)	14 (3)
Total No. of Benthic Invertebrates/m ²	9957 (3246)	2000 (617)	13 638 (1309)	4333 (1230)	15 435 (8276)	4391 (1931)

^aMean density (No./m²) value and standard error generated using three replicate samples.

Table 5.5.1 Overall species composition of fish sampled from lakes within the Tailings Impoundment/DockingFacility Zone lakes, Jericho study area, 1996 (all sampling methods and periods combined).

	Species	Total				
Common Name	Scientific Name	Number	Percent			
Arctic char	Salvelinus alpinus (Linnaeus)	90	44.1			
Lake trout	Salvelinus namaycush (Walbaum)	114	55.9			
All Species Combined		204	100.0			

^bFor definition of littoral and profundal zones see Section 2.2.5.

^cSum of all subfamilies and tribes.

Table 5.5.2 Species composition of fish sampled from lakes within the Tailings Impoundment/Docking Facility Zone, Jericho study area, 1996 (all sampling methods and periods combined).

G :	Lak	e D4	Lal	ke D5	Contwoyto Lake		
Species	No.	%	No.	%	No.	%	
Arctic char	42	53.2	44	68.8	4	6.6	
Lake trout	37	46.8	20	31.2	57	93.4	
Total	79	100.0	64	100.0	61	100.0	

Table 5.5.3 Overall species composition of fish sampled from streams within the Tailings Impoundment/Docking Facility Zone, Jericho study area, 1996 (all sampling methods and periods combined).

	Species	To	tal
Common Name	Scientific Name	Number	Percent
Arctic char	Salvelinus alpinus (Linnaeus)	9	17.3
Lake trout	Salvelinus namaycush (Walbaum)	8	15.4
Slimy sculpin	Cottus cognatus Richardson	35	67.3
All Species Combined		52	100

Table 5.5.4 Species composition of fish sampled from streams in three areas within the Tailings Impoundment/Docking Facility Zone, Jericho study area, 1996 (all sampling methods and periods combined).

g :	Lak	se D4	Lal	ce D5	Contwoyto Lake		
Species	No.	%	No.	%	No.	%	
Arctic char	5	23.8	4	20.0			
Lake trout			4	20.0	4	36.4	
Slimy sculpin	16	76.2	12	60.0	7	63.6	
Total	21	100.0	20	100.0	11	100.0	

Table 5.5.5 Length-weight regression equations for lake trout sampled during summer from lakes within the Tailings Impoundment/Docking Facility Zone, Jericho study area, 1996.

7.1.	Length-weight Relationship	Condition Factor (+SE)	Sample	
Lake	Regression Equation ^a	r ² Value	Condition Factor (±5E)	Size
Lake D4	Weight = 7.161 * 10 ⁻⁶ * Fork Length ^{3.064}	0.922	1.062 ± 0.052	30
Lake D5	Weight = $2.056 * 10^{-5} * Fork Length^{2.863}$	0.989	0.945 ± 0.020	13
Contwoyto Lake	Weight = $4.864 * 10^{-6} * Fork Length^{3.132}$	0.99	1.051 ± 0.026	50

^aWeight in g; fork length in mm.

Table 5.5.6 Age-length relationships for lake trout within the Tailings Impoundment/Docking Facility Zone, Jericho study area, 1996.

		L	ake D4 ^a				Lal	ke D5 ^b				Conty	voyto La	ake ^b	\Box
Age		(Length mm)	Wei	ight (g)	n	l ,	Length mm)	Wei	ight (g)	n		Length mm)	w	eight (g)	n
	Mean	Range	Mean	Range		Mean	Range	Mean	Range		Mean	Range	Mean	Range	Ш
0															
1											96				1
2						121	116 - 129	19	16 - 22	3	108		10		1
3						265		185		1					
4											168		40		1
5											162		45		1
6	232		125		1						184	175 - 193	60	55 - 70	3
7	218		95		1	235		110		1					
8	243		135		1	249		135		1	236		120		1
9	274		185		1	288		220		1					Ш
10						187				1	219		115		1
11						314		300		1					Ш
12	331		360		1	229				1					П
13	346	320 - 372	413		2										
14	365		465		1					Ш	405	374 - 436		560 - 1060	2
15	375		470		1						366	337 - 395	618	435 - 800	2
16	357		495		1						456	427 - 484	1030	850 - 1210	2
17	420		745		1						475	454 - 495	1225	1040 - 1500	4
18											436		770		1
19											461		1100		1
20						446		725	725 - 725	1	568	461 - 684	1998	960 - 3150	4
21											495		1350		1
22															
23															
24	450		845		1						519	510 - 528	1475	1400 - 1550	2
25															1 1
26											1				
27															
28															
29					Ш										Ш
30															
31															
32											490		1400		1
33											569	525 - 612	2130	1900 - 2360	2
34														100.000	Ш
35															
36	522		1560		1										

^aAges generated using fish sampled during summer and fall. ^bAges generated using fish sampled during summer.

Table 5.5.7 Length-weight regression equations for Arctic char sampled during summer from two lakes within the Tailings Impoundment/Docking Facility Zone, Jericho study area, 1996.

Laka	Length-weight Relationship	Condition Factor (+SE)	Sample		
Lake	Regression Equation ^a	r ² Value	Condition Pactor (±312)	Size	
Lake D4	Weight = 5.081 * 10 ⁻⁶ * Fork Length ^{3.101}	0.926	0.925 ± 0.017	25	
Lake D5	Weight = 2.999 * 10 ⁻⁴ * Fork Length ^{2.409}	0.901	0.962 ± 0.023	24	

^aWeight in g; fork length in mm.

Table 5.5.8 Age-length relationships for Arctic char within the Tailings Impoundment/Docking Facility Zone, Jericho study area, 1996.

]	Lake D4 ^a				ı	Lake D5 ^a			
Age	Fork Le	Fork Length (mm)		Weight (g)		Fork Le	ngth (mm)	Weight (g)			
	Mean	Range	Mean	Range	n	Mean	Range	Mean	Range	n	
0											
1											
2											
3											
4											
5	283		225		1	288		255		1	
6						266		240		1	
7											
8	305	300 - 310	267	253 - 280	2	341	332 - 350			2	
9	393	386 - 400	545	500 - 590	2						
10	355	315 - 385	486	280 - 672	3	328		385		1	
11											
12						388	368 - 407	550	380 - 720	2	
13											
14											

^aAges generated using fish sampled during summer and fall.

Table 5.5.9 Number of lake trout and Arctic char marked and recaptured in Lake D4 and Lake D5 within the Tailings Impoundment/Docking Facility Zone, Jericho study area, 1996.

Darameter	Lak	e D4	Lake D5		
Parameter	Lake trout	Arctic char	Lake trout	Arctic char	
Number of Fish Marked	18	17	7	23	
Number of Recaptured Fish with Marks	0	4	0	5	
Total Number of Fish Recaptured	2	12	0	7	
Population Estimate ^a (± 95% C.I.)	-	51±36	-	32±13	

^aPopulation estimate based on Peterson's Single Census Model (see Section 2.2.8); 95% Confidence Intervals = 2 x standard error.

Table 5.5.10 Surface areas and potential annual harvests of lake trout populations in lakes within the Borrow Extraction Zone, Jericho study area, 1996.

Lake	Surface Area (ha) ^a	Potential Harvest of Lake Trout (kg/yr) ^b
Lake D4	15.6	28.8
Lake D5	8.2	18.1

^aLake surface area provided by Canamera Geological Ltd.

Table 5.6.1 Summary of lakeshore habitat characteristics recorded for sampled waterbodies within the Tailings Impoundment/Docking Facility Zone, Jericho study area, 1996.

]	Habitat Zone ^a		Contwoyto Lake ^b		Lake D4		5
Slope	Substrate	Length (m)	%	Length (m)	%	Length (m)	%
Low	Fines						
	Cobble-Boulder	219	16.8	366	44.4	1253	69.7
	Bedrock						
Moderate	Fines						
	Cobble-Boulder	704	53.8	165	20	544	30.3
	Bedrock						
High	Fines						
	Cobble-Boulder	384	29.4				
	Bedrock			293	35.6		
	Total	1308	100	823	100	1797	100

^aFor definition of habitat zones see Appendix A1.

^bBased on Evan's formula for harvest.

^bSurvey restricted to proposed Docking Facility bay.

Summary of habitat characteristics^a of inventoried streams within the Tailings Impoundment/Docking Facility Zone, Jericho study area, 1996. Table 5.6.2

	Ι"	П			Г	_		
	Bed							
Substrate Type (%)	Bo	10	80	70	100	77	12	09
rate T	<u> </u>	08	15			15	1	5
Subst	ÿ	10	S			4	7	2
	Si/Sa			30		4	80	30
	Riffle/ Dispersed Si/Sa Gr		100	100	100	7		55
	1	80				∞	7	
Habitat Type (%)	Cascade					14	7	10
Habita	Flat							
	Run					73	62	35
	Pool	20					L	
уре (%)	Indistinct		100	100	100	80		20
Bank Type (%)	Distinct Indistinct	100				20	100	20
Type (%)	Multiple		100	100	100	7		70
Channel T	Single	100				93	100	30
Stol	(%)	7.0	0.9	12.0	3.0	4.0	4.0	2.5
Dischange	(m ³ /s)	0.146°	0.001°	0.001^{c}	N/D ^q	0.042	0.011	0.011
Average Wetted	Width (m)	1.0	1.0	1.0	15.0	1.5	0.1	1.2
Surveyed	(m)	50	20	20	200	70	09	280
Ct. room	- St. Call.	B1	EI	FI	DI	D2	D4	9Q
OOA V		Contwoyto L.			Lake D4		Lake D5	

 $^a\mathrm{For}$ classification system see Appendix A. $^b\mathrm{Discharge}$ measured during summer. $^c\mathrm{Discharge}$ measured during late spring immediately after snow melt. $^d\mathrm{N/D}=\mathrm{no}$ data.

Table 5.6.3 Number of fish recorded in sampled streams according to age-class within the Tailings Impoundment/Docking Facility Zone, Jericho study area, 1996 (all sampling methods and periods combined).

	77.13.4	Sanda		Age-C	lass ^a	
Area	Tributary	Species	Young-of-the-year	Juvenile	Adult	Combined
Contwoyto Lake	B1	Lake trout Slimy sculpin		2		21
	E1	Slimy sculpin				6
	F1	Lake trout		2		2
Lake D4	D1	Arctic char		1		1
	D2	Arctic char	1	3		4
		Slimy sculpin				16
Lake D5	D4	Arctic char		2		2
	D6	Arctic char		2		2
		Lake trout		4		4
		Slimy sculpin				12

^aAge-class designations based on size differences of fish for each species.

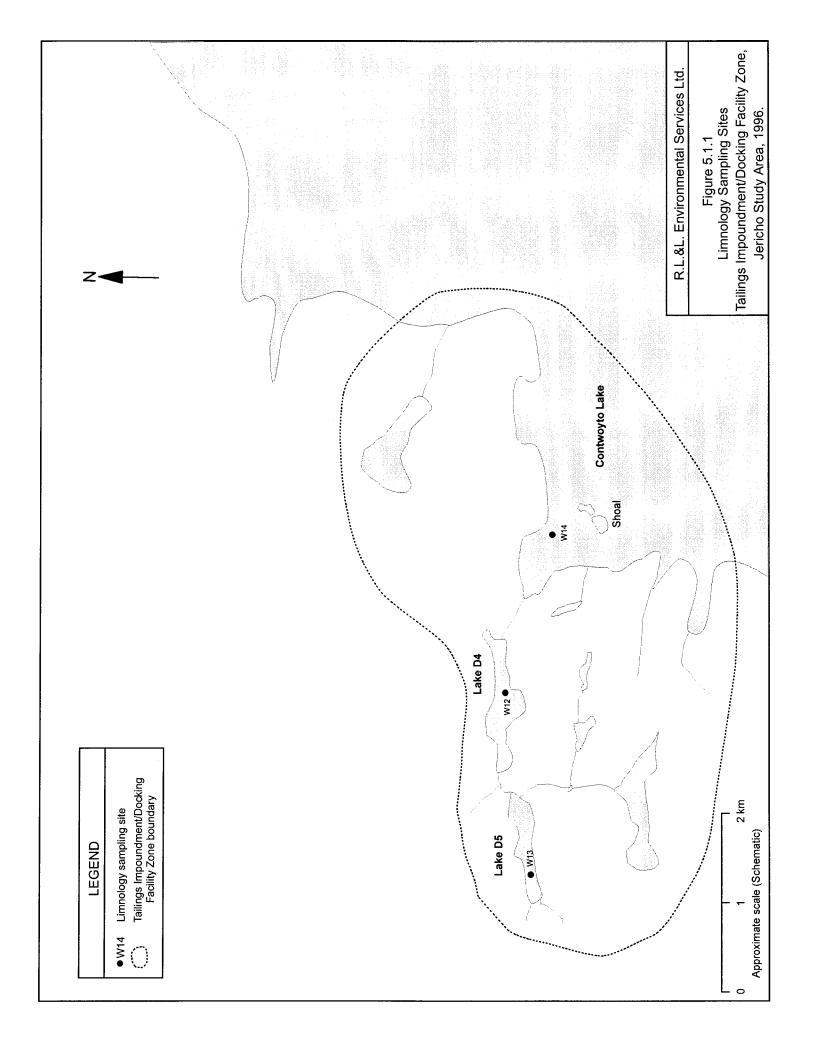
Table 5.6.4 Fish habitat quality ratings for sampled streams within the Tailings Impoundment/Docking Facility Zone, Jericho study area, 1996.

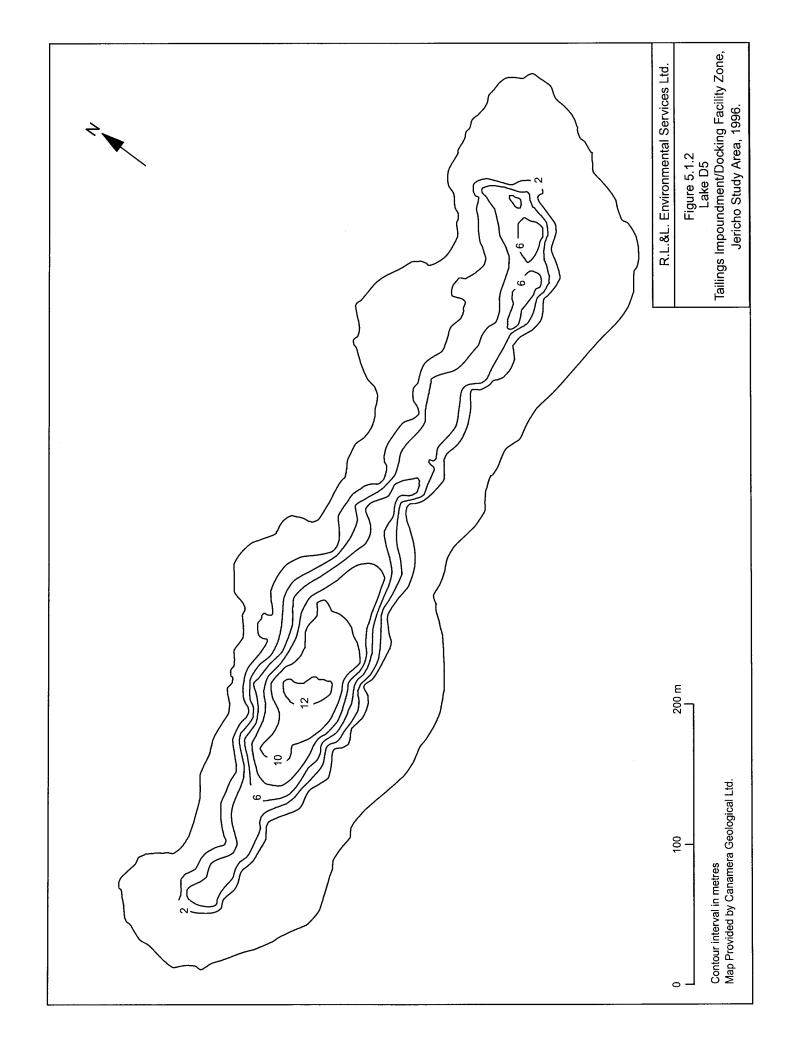
		Rating of Habitat Quality ^a				
Area	Stream	Spawning	Rearing	Feeding		
Contwoyto Lake	B1	Nil	Low	Nil		
	E1	Nil	Low	Nil		
	F1	Nil	Low	Nil		
Lake D4	D1	Nil	Nil	Nil		
	D2	Low	Low	Nil		
Lake D5	D4	Nil	Low	Nil		
	D6	Nil	Low	Nil		

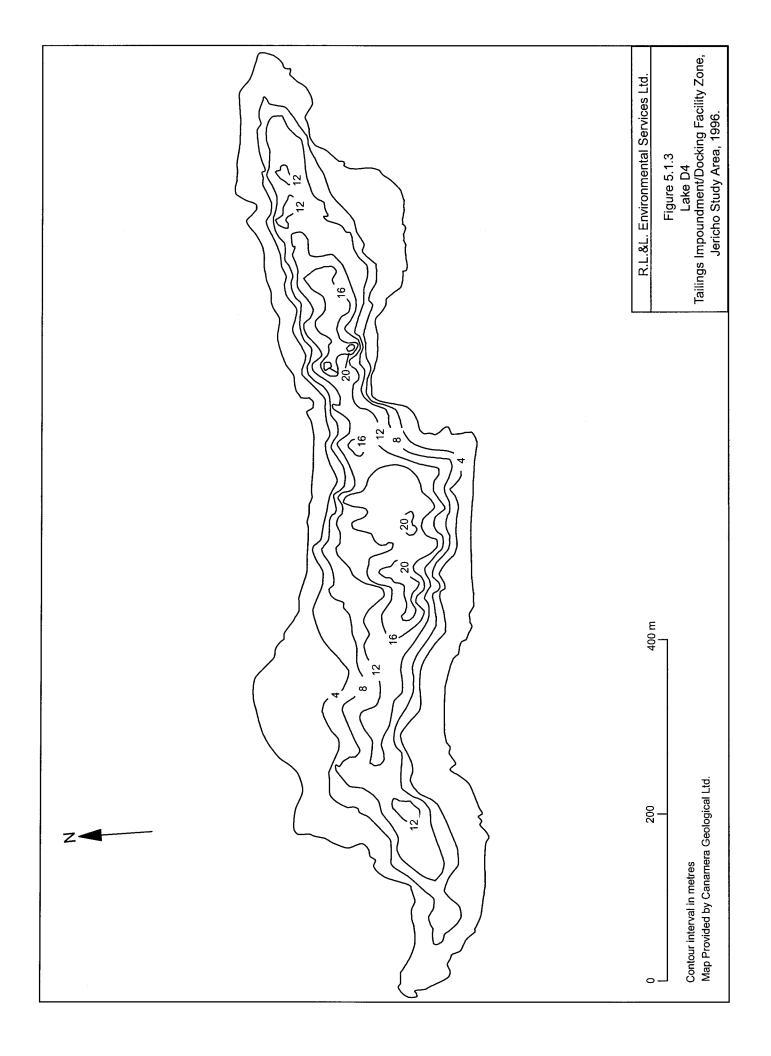
^aRating of habitat quality based on qualitative assessment of stream habitat and fish numbers recorded during survey.

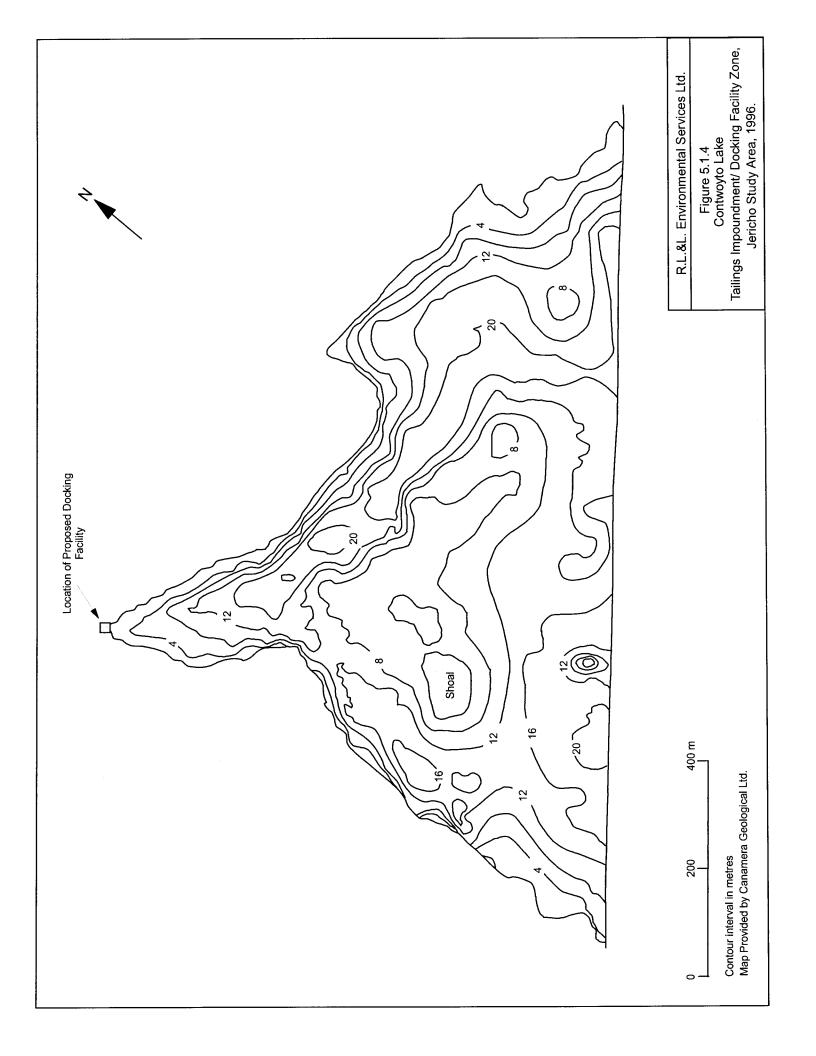
Table 5.7.1 Number, mean length, and size range of fish collected for kidney, liver, and muscle tissue analyses within the Tailings Impoundment/Docking Facility Zone, Jericho study area, 1996.

Lake	G1-	Fork Length (mm)					
	Sample Size	Mean	Standard Deviation	Minimum	Maximum		
Contwoyto Lake	21	490	76.9	330	684		
Control Lake	21	427	25.7	400	486		


Mean concentrations of metals in lake trout tissue samples within the Tailings Table 5.7.2 Impoundment/Docking Facility Zone, Jericho study area, 1996.


					Metal Co	ncentrations	(μg/g of dr	y weight)		
Lake	Tissue	e Parameter	Al (1) ^c	As (0.05)	Cd (0.05)	Cu (0.05)	Pb (0.05)	Hg (0.005)	Ni (0.1)	Zn (0.05)
Contwoyto	Liver	n < D.L.ª	0	0	0	0	0	0	18	0
	n=21	Mean (μg/g)	16	4.89	2.03	42.36	0.37	1.610	0.6	155.43
		Sd ^b (µg/g)	13	2.72	1.09	17.83	0.20	1.132	1.9	29.27
		Min. (μg/g)	5	1.72	1.11	20.20	0.12	0.483	0.1	118.00
		Max . (μg/g)	45	11.80	6.17	78.00	0.86	4.750	8.6	232.00
	Muscle	n < D.L.ª	20	0	21	0	21	0	17	0
	n=21	Mean (μg/g)	1	0.14	0.03	0.68	0.03	0.909	0.1	11.89
		Sd ^b (μg/g)	1	0.08	0	0.38	0	0.498	0.1	1.67
		Min. (μg/g)	1	0.07	0.03	0.38	0.03	0.299	0.1	8.93
		Max . (μ g / g)	3	0.41	0.03	2.18	0.03	2.070	0.3	15.30
Control	Liver	n < D.L.ª	0	0	0	0	13	0	12	0
	n=21	Mean (μg/g)	20	1.76	2.65	89.76	0.07	0.501	0.1	151.57
		Sd ^b (μg/g)	12	1.68	1.24	56.72	0.10	0.572	0.1	28.99
		Min. (μg/g)	5	0.31	1.26	4.34	0.03	0.070	0.1	99.00
		Max. (μg/g)	47	7.50	6.16	232.00	0.41	2.120	0.6	211.00
	Muscle	n < D.L.ª	21	15	21	0	11	0	20	0
	n = 21	Mean (μg/g)	1	0.07	0.03	0.78	0.10	0.925	0.1	12.15
		Sd ^b (μg/g)	0	0.10	0	1.78	0.08	0.341	0.1	1.66
		Min. (μg/g)	1	0.03	0.03	2.78	0.03	0.528	0.1	8.45
		Max. (μg/g)	1	0.48	0.03	3.78	0.24	2.140	0.4	15.00


^aNumber of samples below detection limit. ^bStandard deviation.


^cDetection limit.

SECTION 5 - FIGURES

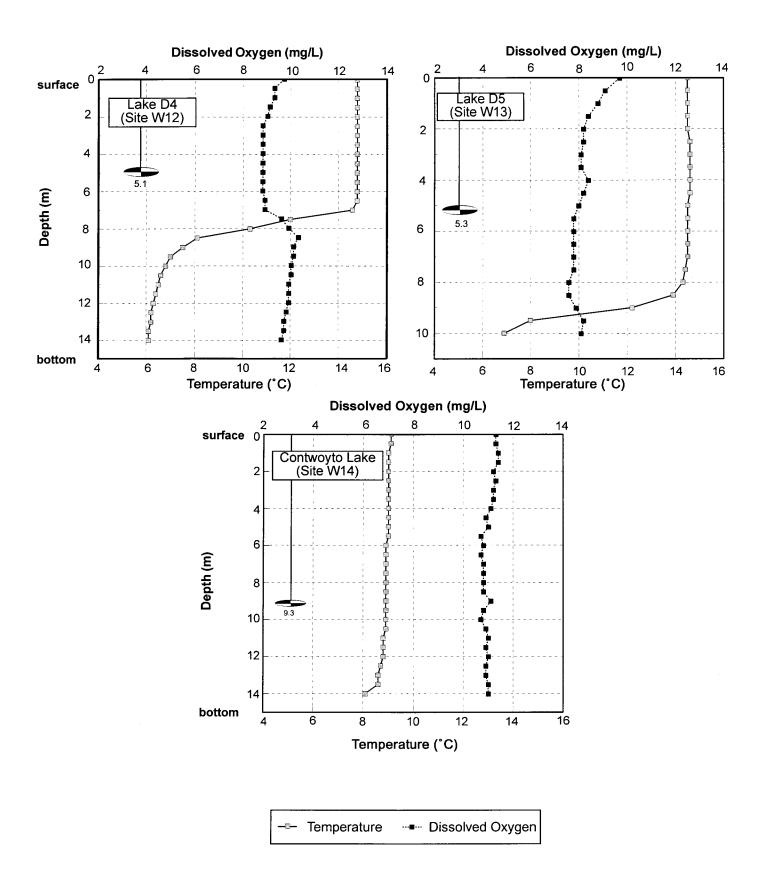
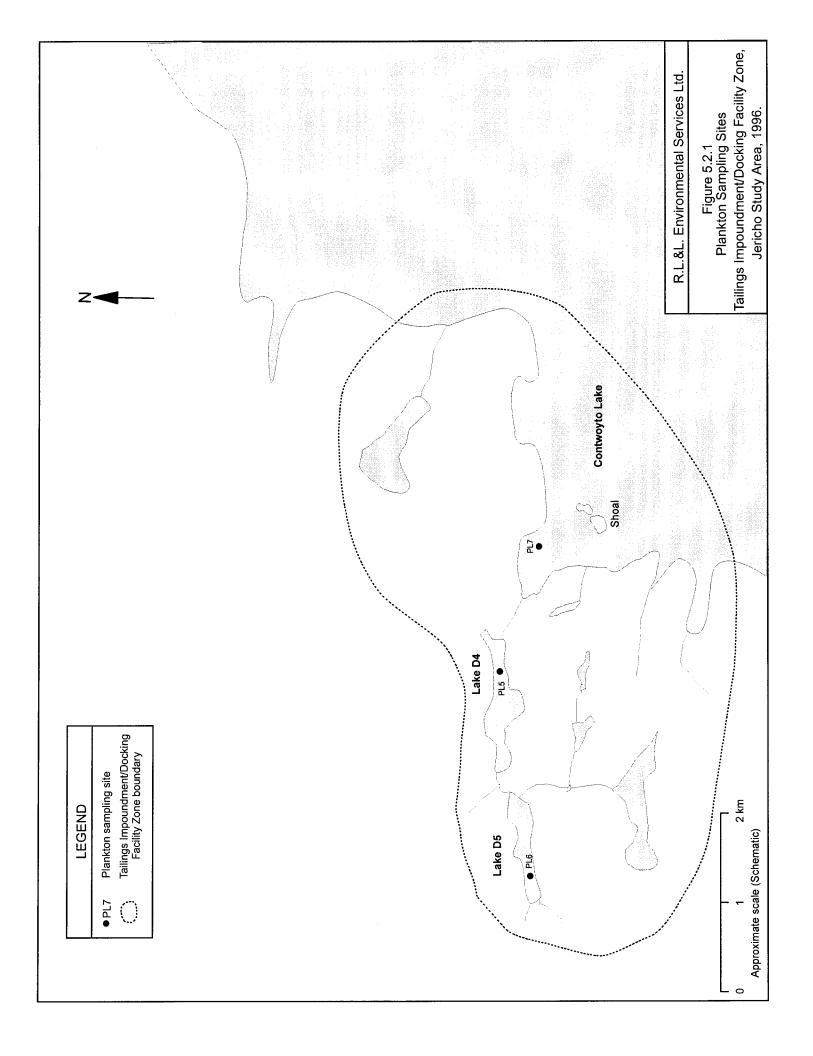



Figure 5.1.5 Dissolved oxygen and temperature profiles, and Secchi depths in lakes within the Tailings Impoundment/Docking Facility Zone, Jericho study area, 3 August 1996.

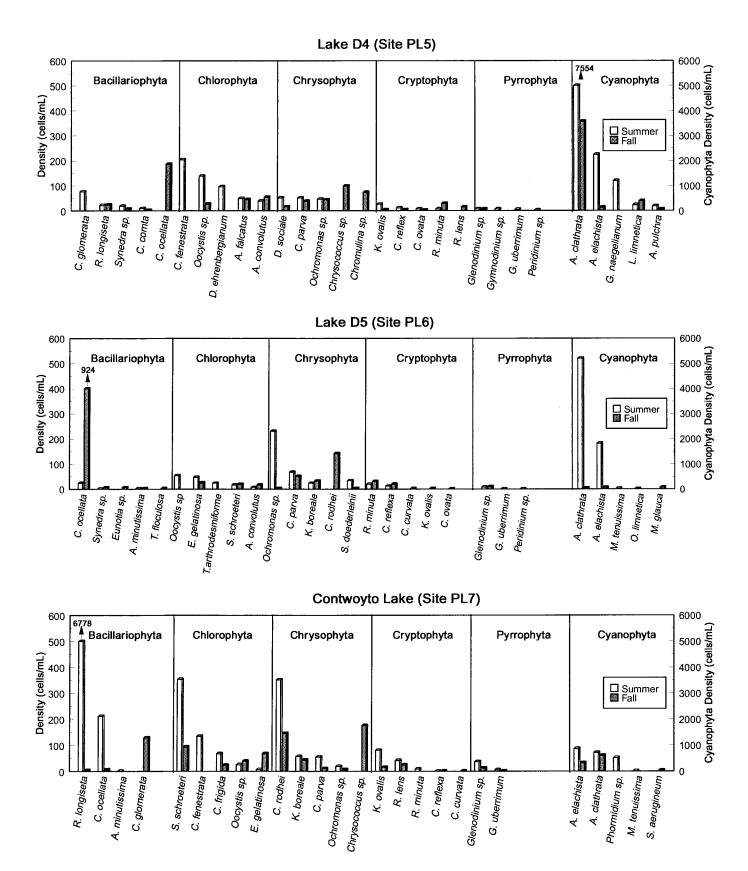


Figure 5.2.2 Density of major phytoplankton species in each of six taxonomic groups during summer and fall in lakes within the Tailings Impoundment/Docking Facility Zone, Jericho study area, 1996 (note difference in scale for Cyanophyta).

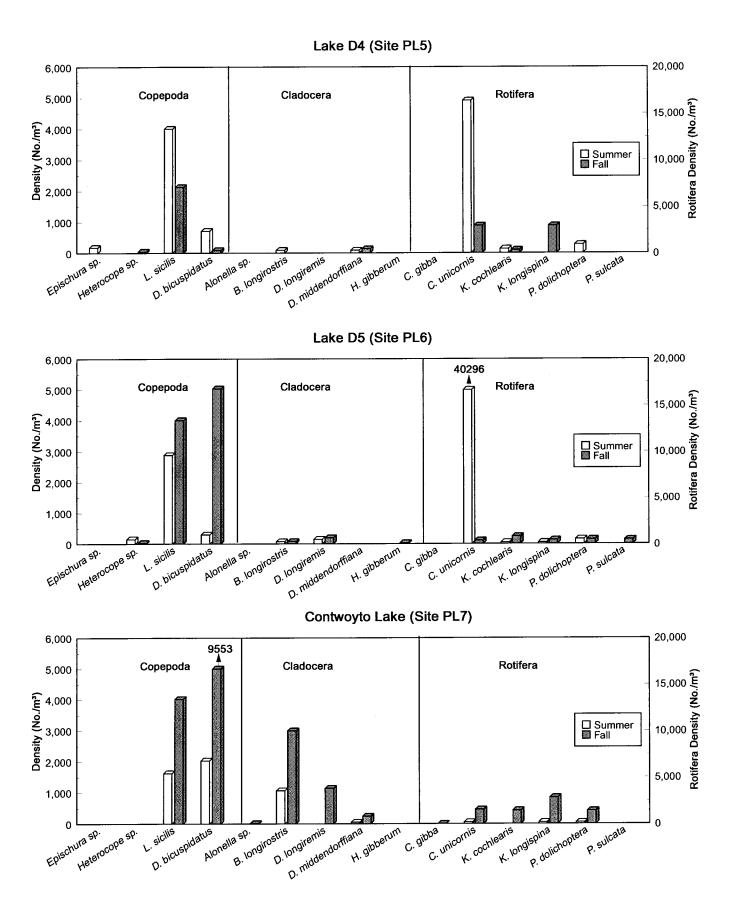
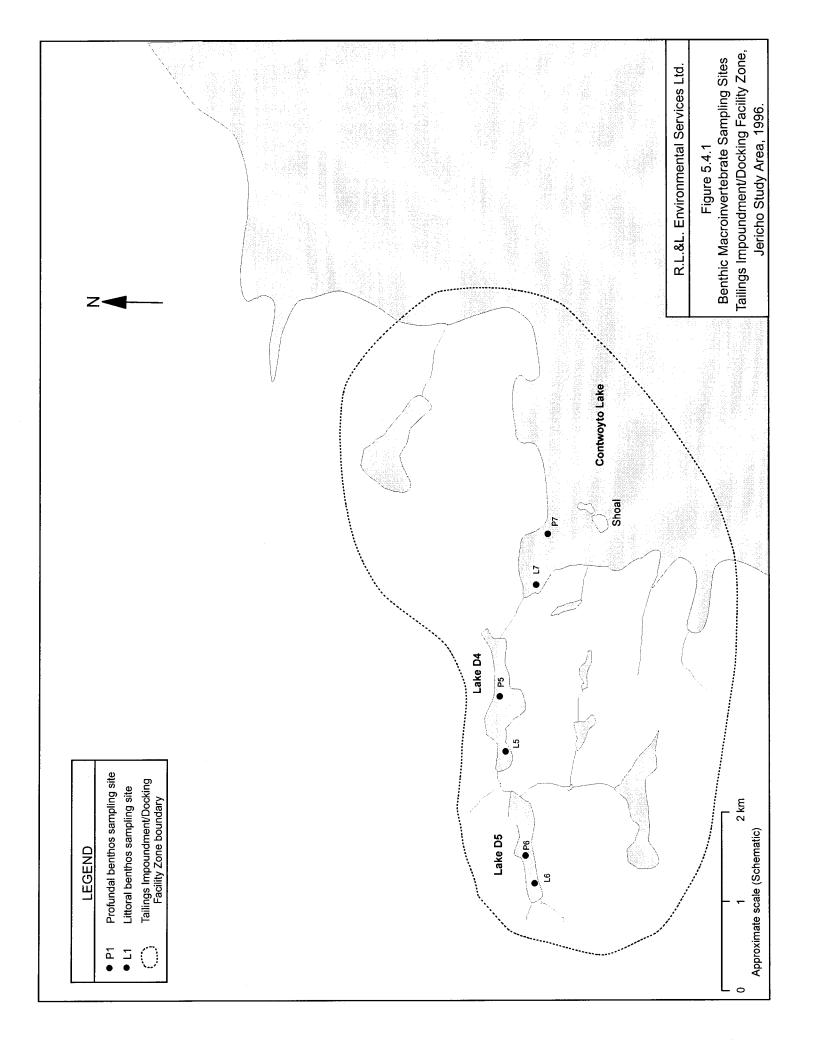
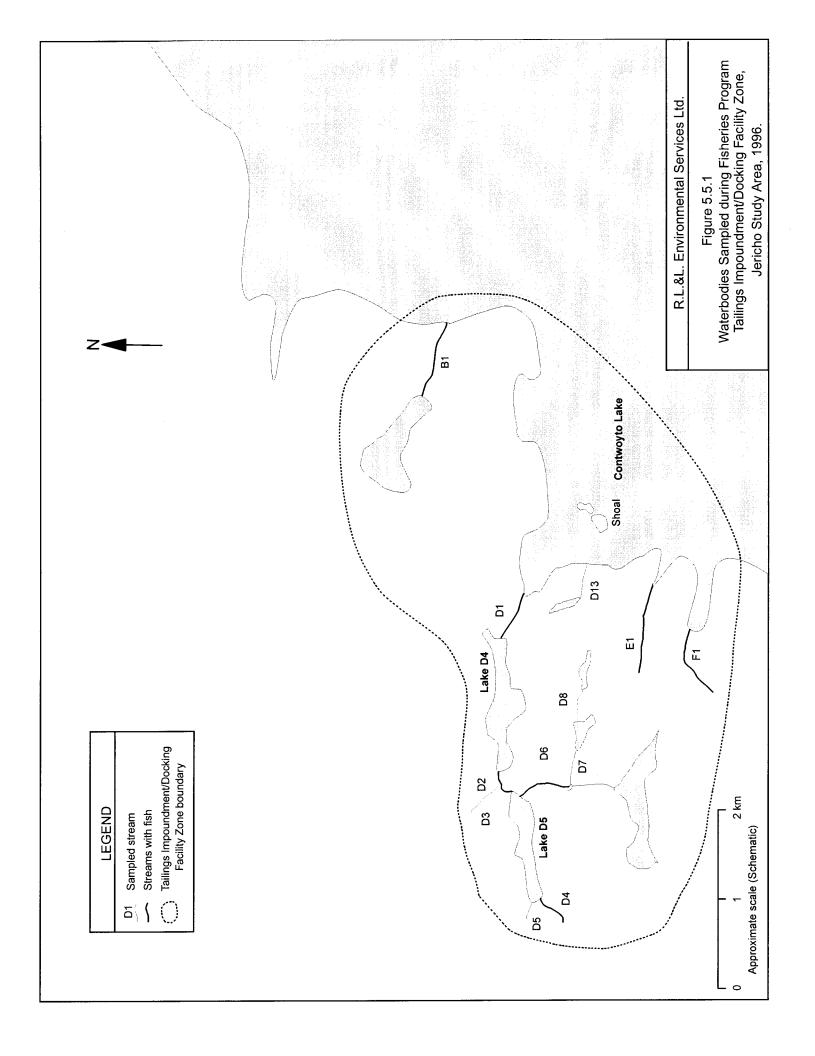
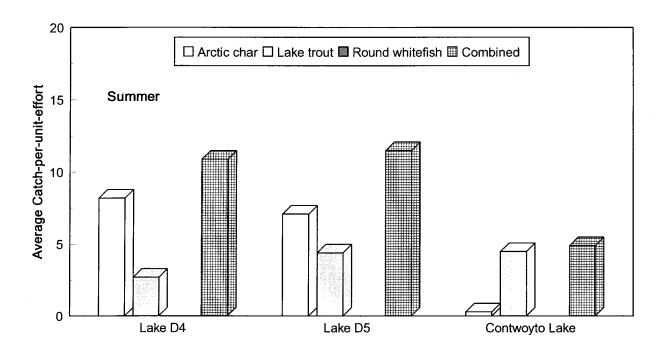





Figure 5.2.3 Density of major zooplankton species in each of three taxonomic groups during summer and fall in lakes within the Tailings Impoundment/Docking Facility Zone, Jericho study area, 1996 (note difference in scale for Rotifera).

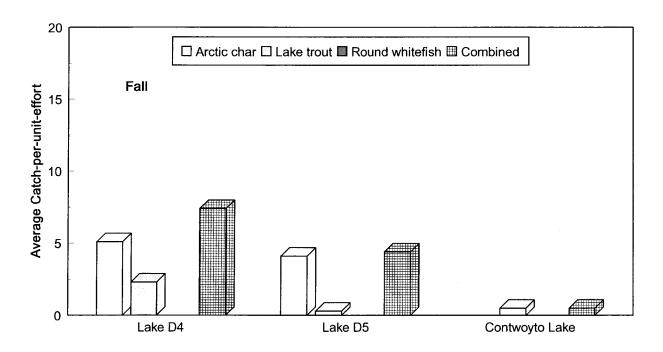


Figure 5.5.2 Average catch-per-unit-effort values (fish/100 m² ·12h) for fish captured during gill net sampling in lakes during summer and fall within the Tailings Impoundment/Docking Facility Zone, Jericho study area, 1996.

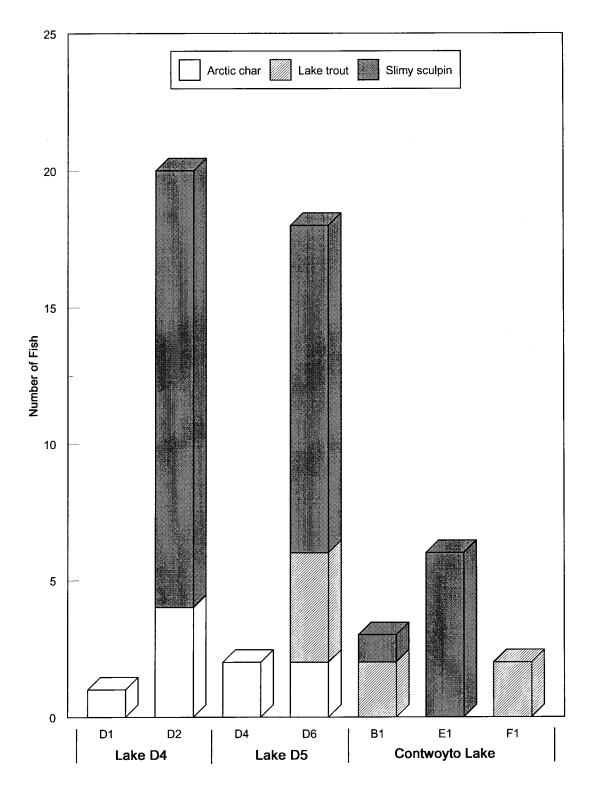
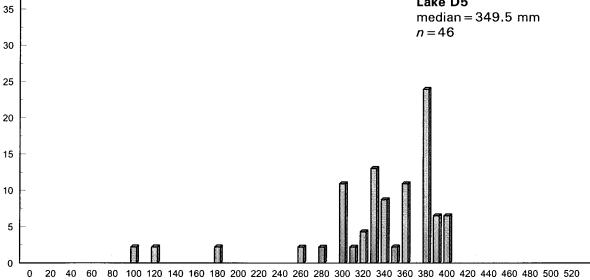
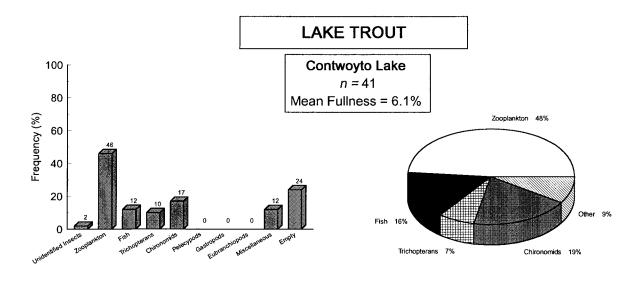
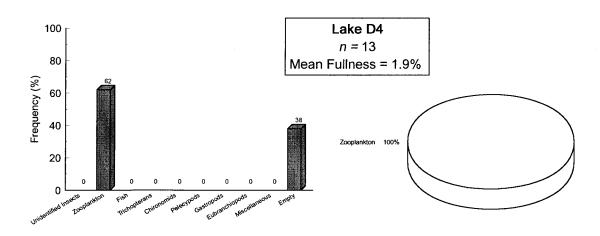



Figure 5.5.3 Comparison of fish numbers recorded in streams within three areas of the Tailings Impoundment/Docking Facility Zone, Jericho study area, 1996 (all methods and sampling periods combined).

Figure 5.5.4 Length-frequency distribution of lake trout in areas within the Tailings Impoundment/Docking Facility Zone, Jericho study area, 1996 (data for all seasons, sampling methods, lakes and streams combined)(note difference in scales between Lakes D4, D5, and Contwoyto Lake).


Fork Length (mm)


40

Fork Length (mm)

Figure 5.5.5 Length-frequency distribution of Arctic char in areas within the Tailings Impoundment/Docking Facility Zone, Jericho study area, 1996 (data for all seasons, sampling methods, lakes and streams combined).

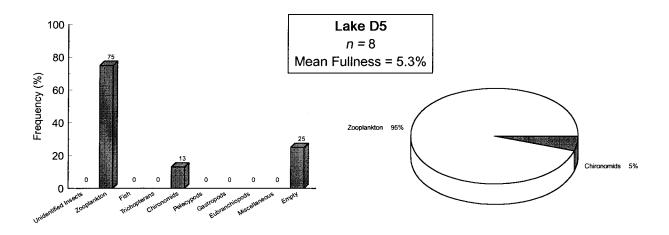
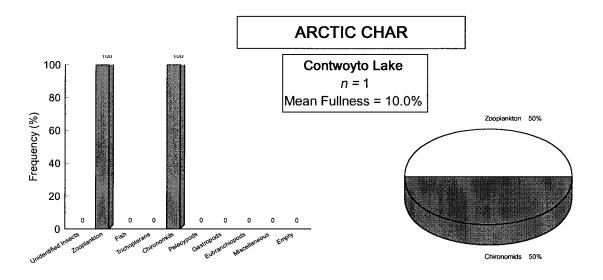
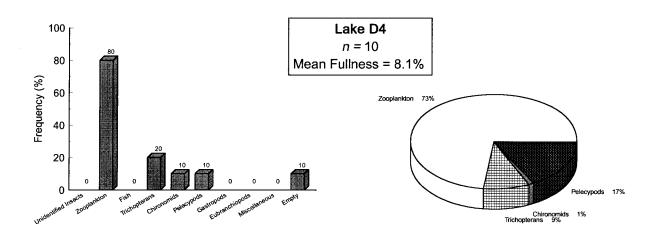




Figure 5.5.6 Frequency of occurrence (bars) and percent composition (pies) of food items encountered in stomachs of lake trout captured from lakes in the Tailings Impoundment/Docking Facility Zone, Jericho study area, 1996 (all seasons combined).

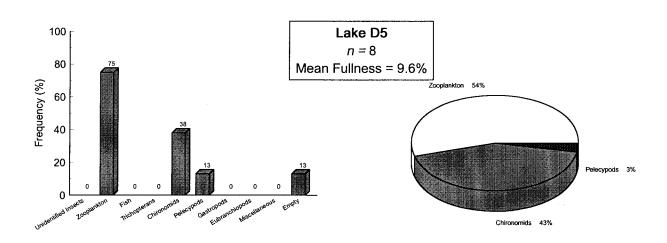
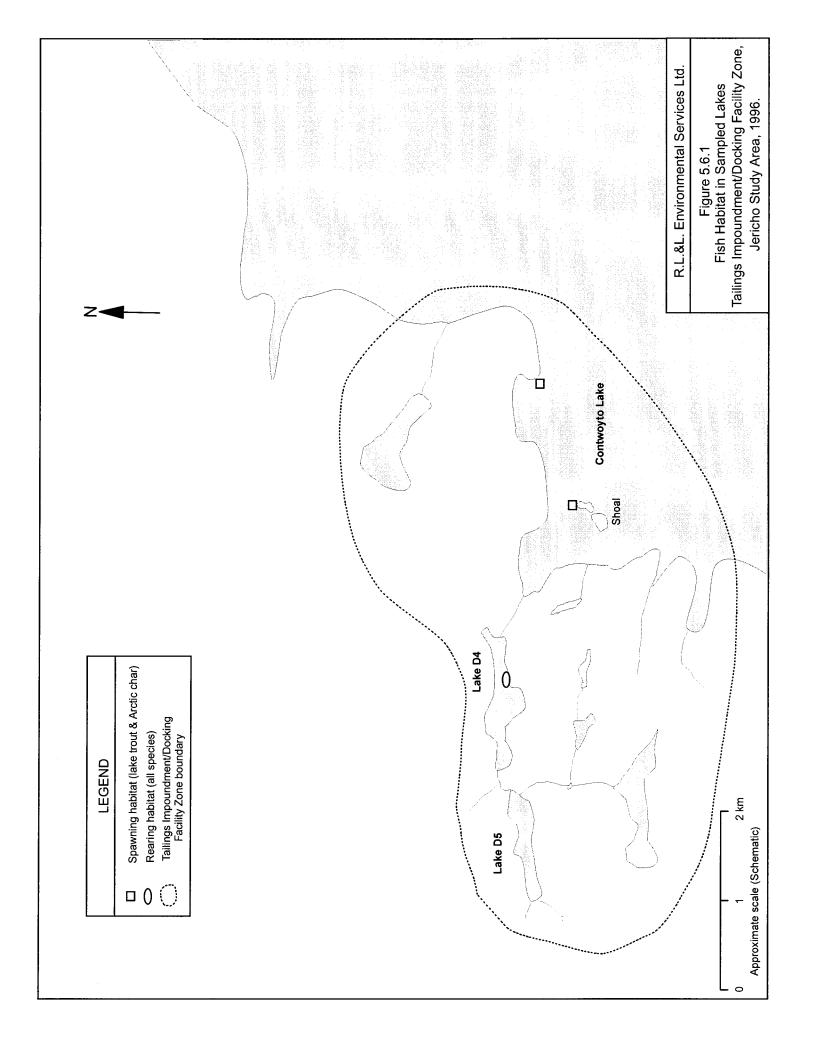
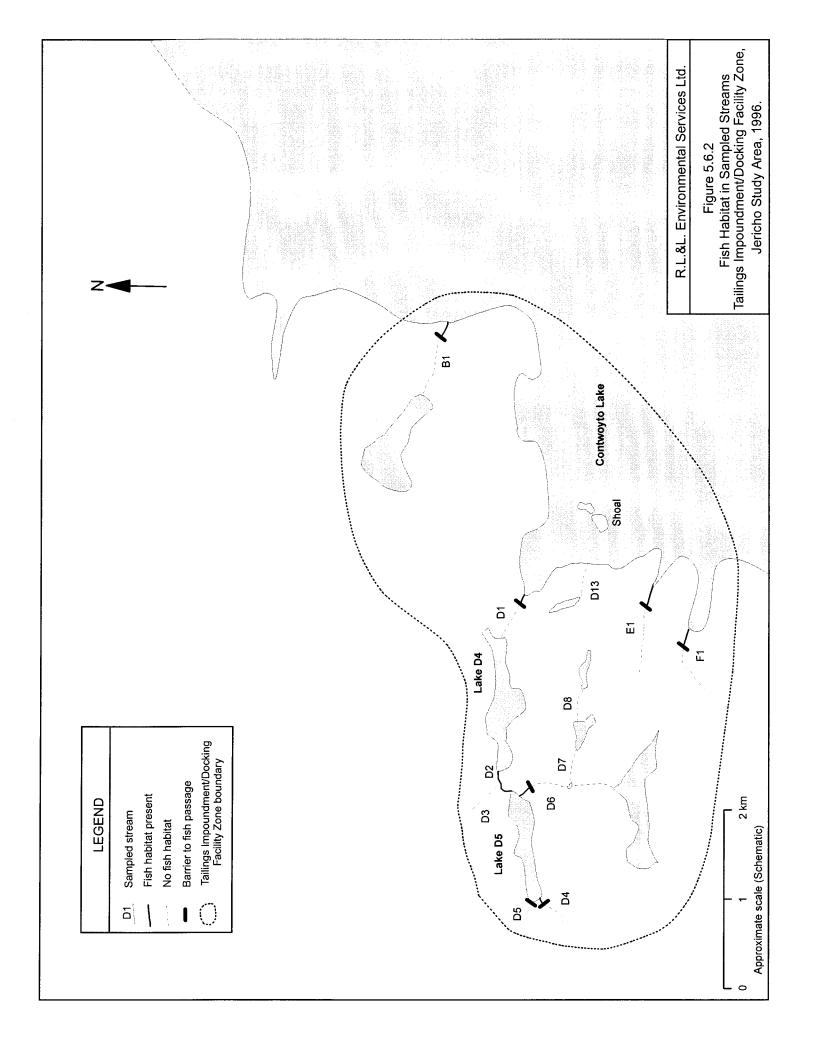




Figure 5.5.7 Frequency of occurrence (bars) and percent composition (pies) of food items encountered in stomachs of Arctic char captured from lakes in the Tailings Impoundment/Docking Facility Zone, Jericho study area, 1996 (all seasons combined).

6.0 PRELIMINARY STREAM CROSSING SURVEY

Option Two of the Jericho Diamond Project Development Plan includes a transportation scenario that would require an all-weather road. Once established, the road would be used for year-round transportation of ore extracted at Carat Lake to the Lupin Mine processing facility, which is situated approximately 50 km south of the extraction site. The proposed route is located immediately west of Contwoyto Lake and traverses several watersheds, all of which drain into this large waterbody. Development of the all-weather road would require numerous stream crossings, each of which has the potential to impact fish habitat.

To address this concern, a preliminary stream crossing survey was undertaken to collect baseline information on fish populations and fish habitat in streams along the proposed route. These data would be used to assist in finalizing the road alignment and to determine which stream crossings required further investigation. This section provides a summary of this assessment. All raw data are presented in Appendix I1.

6.1 STREAM CROSSINGS SURVEYED

A reconnaissance of all streams along the proposed route was undertaken in spring (17 and 21 June); this entailed a visual assessment of fish habitat at all stream crossings. Activities included an evaluation of stream characteristics and identification of potential spawning areas used by species such as Arctic grayling. Streams were also surveyed in late summer (5 to 6 August) during the base water flow period. Investigations at this time included synoptic level sampling of fish populations and measurement of habitat characteristics at stream crossings identified as having the potential to support fish.

During the survey, 36 watercourses were identified along the proposed route (Table 6.1.1 and Figure 6.1.1). These systems were distributed along the entire route, but the majority were situated north of Concession Lake (91% of sample). Only a portion of these watercourses drained directly into Contwoyto Lake. Of the 36 watercourses identified, 15 (41%) were tributaries to Contwoyto Lake. These particular tributaries were situated in three general areas located along sections of the proposed route that approached the western shoreline of Contwoyto Lake.

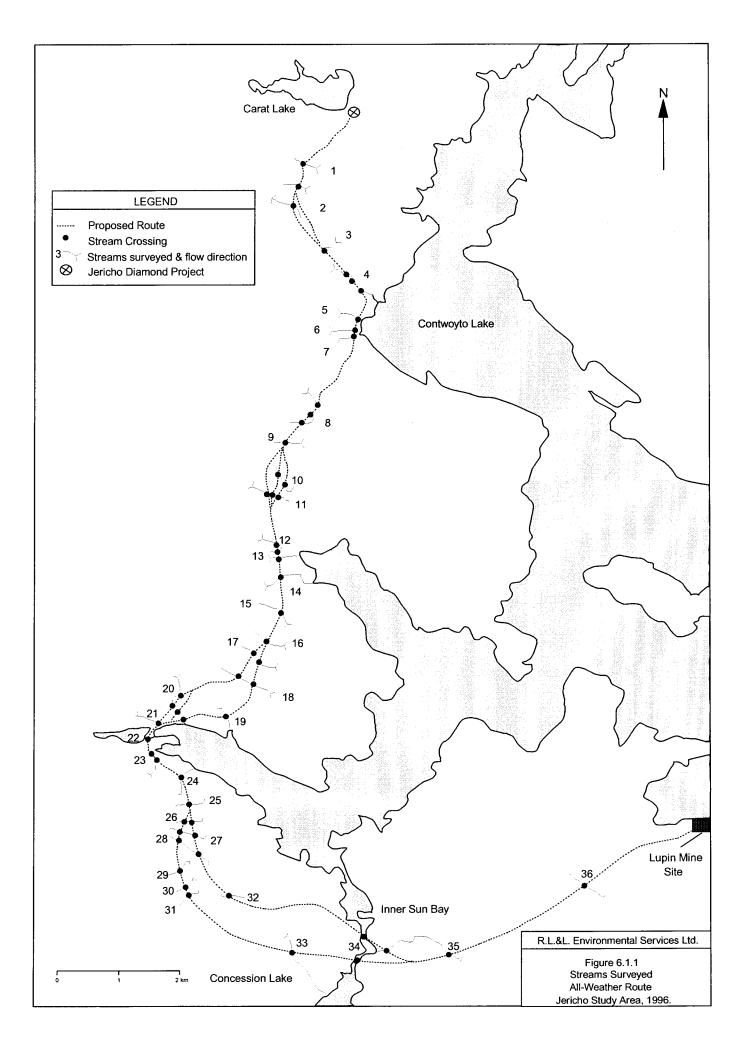

In total, 56 crossings were assessed during the survey. Multiple crossings of the same channel were common; this occurred at 13 locations along the route and represented 61% of the total (34 of 56 crossings). It should be noted that these multiple crossings were related to alternate route selections and not the actual number of required crossings. It is assumed that once the final route selection has been made, the number of required crossings will be 36 (number of watercourses) or fewer.

Table 6.1.1 Summary information for surveyed streams along the proposed all-weather route between the Jericho Diamond Project and the Lupin Mine Site, Jericho study area, 1996.

Stream	UTM Coordinates	Number of Crossings	Crossing	Defined Channel ^a
1	12W 0477200 7318150	1	1A	√
2	12W 0476850 7317425	1	1	
3	12W 0476650 7316850	1	2	
4	12W 0479300 7313500	4	3, 4*, 5, and 6	✓
5	12W 0479038 7312595	1	7*	✓
6	12W 0478986 7312223	1	8*	✓
7	12W 0479000 7312150	1	9	
8	12W 0478250 7308850	3	10, 11, 12	
9	12W 0476600 7307950	1	13	
10	12W 0476550 7306425	2	14, 15	
11	12W 0476248 7306075	3	16, 17, 18*	✓
12	12W 0476356 7304157	2	19, 20*	✓
13	12W 0476521 7303988	1	21*	✓
14	12W 0476519 7303191	1	22*	✓
15	12W 0476750 7301875	1	23	✓
16	12W 0476163 7300746	1	24*	✓
17	12W 0475825 7300500	2	25, 26	
18	12W 0475275 7299700	2	27, 28	
19	12W 0474875 7298225	1	29	
20	12W 0472925 7298100	4	30, 31, 32, 33	
21	12W 0472400 7298000	1	34	
22	12W 0472000 7297525	1	35*	✓
23	12W 0472249 7296722	2	36, 37*	✓
24	12W 0473300 7296075	1	38	
25	12W 0473525 7295075	1	39	
26	12W 0473733 7294625	2	40, 41*	✓
27	12W 0473375 7294275	2	42, 43	
28	12W 0473375 7294175	2	44, 45	
29	12W 0473150 7293025	1	46	
30	12W 0473450 7292400	1	47	
31	12W 0473600 7292150	1	48	
32	12W 0474900 7292025	1	49	
33	12W 0477350 7290000	1	51	✓
34	12W 0479747 7290617	2	50*, 52	✓
35	12W 0480417 7289943	2	53*, 54*	√
36	12W 0487500 7292500	1	55	

^aWatercourse exhibiting surface water flow within a confined channel.

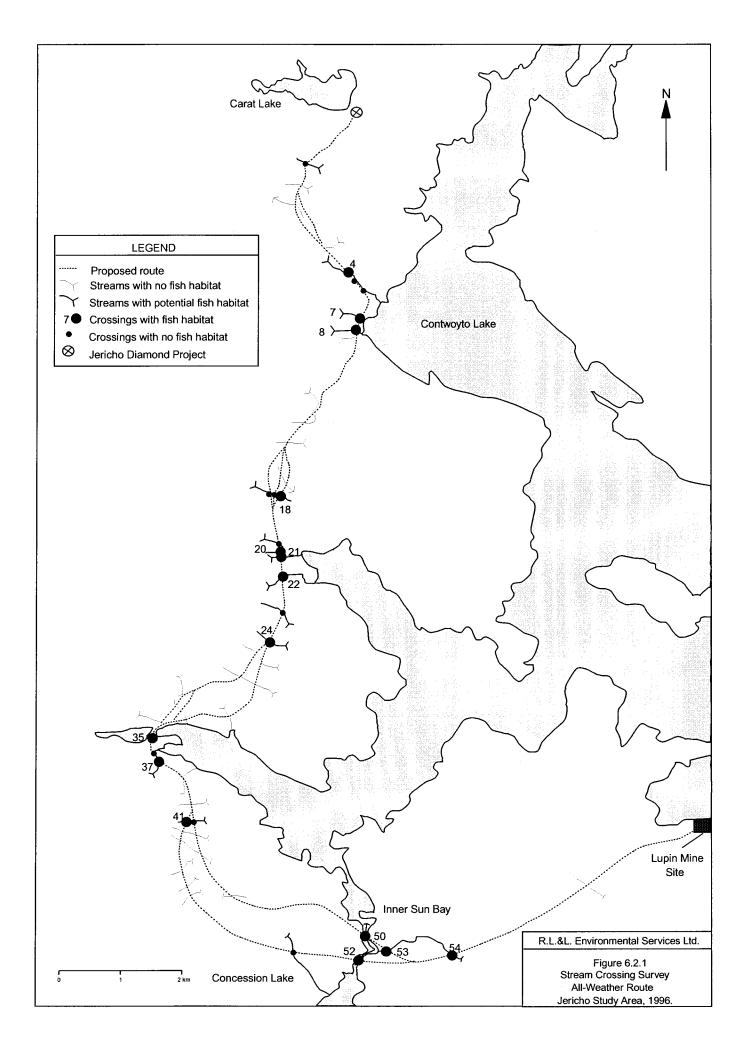
^{*}Denotes presence of fish habitat.

6.2 STREAM CROSSINGS CONTAINING FISH HABITAT

Of the 36 watercourses identified, 20 or 56% of the sample, had no potential to support fish (Figure 6.2.1). These watercourses were ephemeral systems with dispersed channels that contained water only the during spring snowmelt period or during high rainfall events. The remaining streams (16) contained a defined channel and surface water flow at the time of sampling, and therefore, had the potential to support fish.

The 16 streams that had the potential to support fish were crossed by the proposed route at 25 locations. However, not all of these crossings contained fish habitat. Of the 25 crossings surveyed 11, or 44% of the sample were deemed unsuitable for fish. Reasons for this were varied, but included the presence of barriers to fish passage and/or poor habitat characteristics. As such, 14 crossings associated with 13 streams traversed fish habitat, and therefore, warranted further investigation.

Crossings 4, 7 and 8


Crossings 4, 7, and 8 each traversed separate tributaries that entered directly into the northwestern bay of Contwoyto Lake. Habitat characteristics measured at these crossings indicated that all were small systems (discharge $<0.5 \text{ m}^3/\text{s}$) with well-defined channels, moderate slopes ($\ge 2.5\%$), and a preponderance of RUN or FLAT habitats (Table 6.2.1). Stream substrates at Crossing 4 were dominated by cobbles (51%) and boulders (27%). At crossings 7 and 8, sands and gravels were more abundant (>75%). Fish were encountered at these crossings (Table 6.2.2). Arctic char and slimy sculpin were recorded at each site, while Arctic grayling occurred only at Crossing 4 and ninespine stickleback were observed only at Crossing 7. The habitat characteristics at these crossings suggested that the streams provided good to high quality spawning and/or rearing habitat for the species encountered (Table 6.2.3).

Crossing 18

Crossing 18 traversed a stream that entered a small lake situated approximately 100 m downstream of the proposed crossing. The habitat characteristics at this crossing indicated that this watercourse was small (width=2.2 m and discharge=0.01 m³/s). It exhibited a well-defined channel, a low slope (1%), a preponderance of RUN habitat (70%), and sand substrate (42%). Slimy sculpin was the only species encountered at this crossing. The stream at this crossing exhibited good potential as spawning habitat and provided high quality rearing habitat; however, the absence of fish in this stream suggests that other factors were limiting fish abundance.

Crossings 20 and 21

Crossings 20 and 21 traversed two separate streams within 200 m of a small, deep lake. Crossing 20 was associated with the inlet stream, while Crossing 21 traversed the outlet stream which then flowed directly into Contwoyto Lake. Habitat characteristics measured at these crossings indicated that they were small (discharge $< 0.05 \text{ m}^3/\text{s}$) with well-defined channels, low to moderate slopes ($\le 3\%$), and a preponderance of RUN habitats ($\ge 90\%$). Stream substrates at both crossings were dominated by cobbles and boulders (> 70%), although gravel substrates were also present.

Summary of habitat characteristics^a of stream crossings containing fish habitat along the proposed all-weather route between the Jericho Diamond Project and the Lupin Mine Site, Jericho study area, 1996. Table 6.2.1

	_	_														
(%)	Bo	27		16	26	36	30	42	29		10	14	9/		49	36
Substrate Type (%)	ပိ	51		9	9	46	41	13			56	22	16		15	39
bstrate	Gr	13	36	23	27	9	21	18	15		46	14	∞		10	24
nS	Si/Sa	6	2	55	45	12	∞	27	99		18	49			26	
	Riffle/ Rapid	10				10					10					10
(%) ^a	Cascade	20														
Habitat Type (%) ^a	Flat		29	10	30				40		20	99				
Ha	Run	70	27	8	70	8	100	100	09		70	40	100		100	8
	Pool		7													
Bank Type (%)	Indistinct	20		10	10		10		20						70	20
Bank T	Distinct	80	100	8	96	100	06	100	80		100	100	100		30	20
Channel Type (%)	Multiple				04							10				
Channel	Single	100	100	100	99	100	100	100	100		100	8	100		100	100
	(%)	3.0	3.0	2.5	1.0	2.0	3.0	1.0	1.0		2.0	1.0	1.5		1.5	2.0
Discharge	(m ³ /s)	0.030	0.011	0.023	0.014	0.044	0.039	N/Dc	0.008		0.035	0.001	N/D		0.315	0.450
Average		0.13	0.40	0.19	0.15	0.18	0.17	0.14	0.15		0.23	0.11	0.31		0.33	0.44
Average Wetted	Width (m)	1.4	5.0	1.5	2.2	1.2	2.1	31.4	1.0	N/D	2.1	6.0	61.4	N/D	3.2	2.1
Crossino		4	7	∞	18	20	21	22	24	35	37	41	50	52	53	54
Stream		4	S	9	=	12	13	4	16	22	23	56	34		35	

^{*}For classification system see Appendix A. *Poischarge measured during summer base flow period $^{\rm c}N/D = {\rm no}$ data

Number of fish recorded at surveyed stream crossings according to age-class along the proposed Table 6.2.2 all-weather route between the Jericho Diamond Project and the Lupin Mine Site, Jericho study area, 1996.

			Age-Class ^a							
Stream	Crossing	Species	Young-of-the-year	Juvenile	Adult	Combined				
4	4	Arctic char		7		7				
		Arctic grayling		1		1				
		Slimy sculpin				1				
5	7	Arctic char	2	2		4				
		Ninespine stickleback				2				
		Slimy sculpin				3				
6	8	Arctic char	5	11		16				
		Slimy sculpin	ļ. ļ			1				
11	18	Slimy sculpin				16				
12	20	Arctic char		10		10				
		Lake trout		1		1				
		Ninespine stickleback				2				
		Slimy sculpin				6				
13	21	Slimy sculpin				24				
14	22	Lake trout		4		4				
		Slimy sculpin				3				
16	24	Arctic grayling	10			10				
		Slimy sculpin				17				
22	35	N/D ^b								
23	37	Arctic grayling		9		9				
		Lake trout		1		1				
		Slimy sculpin				5				
26	41	Burbot	1	1		2				
		Slimy sculpin				1				
34	50	Arctic grayling		1		1				
		Ninespine stickleback				1				
		Round whitefish		1		1				
	52	N/D								
35	53	Arctic grayling	9	9		18				
		Ninespine stickleback				1				
	54	No fish recorded				0				

 $^{^{\}rm a}$ Age-class designations based on size differences of fish for each species. $^{\rm b}$ No data.

Table 6.2.3 Fish habitat quality ratings for sampled streams along the proposed all-weather route between the Jericho Diamond Project and the Lupin Mine Site, Jericho study area, 1996.

G.	G .	Rating of Habitat Quality ^a								
Stream	Crossing	Spawning	Rearing	Feeding	Movement					
4	4	Moderate	High	Nil	Nil					
5	7	Moderate	Moderate	Low	Nil					
6	8	High	High	Low	Low					
11	18	Moderate	High	Low	Nil					
12	20	Moderate	High	Low	Low					
13	21	Moderate	High	Low	Low					
14	22	Low	Moderate	Low	Low					
16	24	Moderate	Moderate	Nil	Nil					
22	35	Nil	Nil	Nil	Low					
23	37	High	High	Moderate	Low					
26	41	High	High	Nil	Nil					
34	50	Low	Moderate	Low	Moderate					
	52	Low	Moderate	Low	Moderate					
35	53	High	High	High	High					
	54	High	High	Moderate	Low					

^a Rating of habitat quality based on qualitative assessment of fish habitat.

Arctic char, lake trout, ninespine stickleback, and slimy sculpin were recorded at Crossing 20. In contrast, slimy sculpin was the only species recorded at Crossing 21, even though the channel at this site exhibited good habitat characteristics. The proximity of these sites to a lake suggests that viable fish populations exist in this waterbody. The habitat characteristics at both crossings indicate that the streams provided good quality spawning and high quality rearing habitat for the species encountered.

Crossing 22

Crossing 22 traversed a wide channel that was the principal connection between a series of lakes and Contwoyto Lake. The physical characteristics of this channel suggested that large volumes of water occur during freshet conditions (width=31.4 m), however discharge at the time of sampling was too low to measure. The channel at the crossing exhibited a low slope (1%) and a preponderance of boulder substrates (42%). RUN habitat dominated at the time of sampling, although it is likely that this system would be characterized by RAPID habitat during higher water flows. Given the size of this watercourse, few fish were encountered at the crossing (4 lake trout and 3 slimy sculpin). The habitat characteristics at Crossing 22 suggests that the stream provides some habitat. It is most likely used as a movement corridor for fish originating from Contwoyto Lake.

Crossing 24

Crossing 24 traversed a stream that entered a small deep lake approximately 50 m downstream. The habitat characteristics at this crossing indicated that this watercourse was small (width=1.0 m and discharge=0.01 m³/s). It exhibited a well-defined channel, a low slope (1%), a preponderance of RUN habitat (60%), and sand substrate (56%). Arctic grayling and slimy sculpin were encountered at this crossing. Arctic grayling eggs were also located in this stream during the spring survey. The presence of Arctic grayling young-of-the-year fish and eggs, and the habitat characteristics of the stream indicates that it provides spawning and rearing habitat for this species.

Crossing 35

Crossing 35 traversed a short (200 m), wide stream channel that connected Contwoyto Lake to a waterbody situated immediately to the west. The habitat characteristics of this channel suggested that a large volume of water occurs during freshet conditions, however it was dry at the time of sampling. As such, it provided no fish habitat. Given the size of this channel, and the fact that it was the only connection between the two lakes indicated that it was likely an important movement corridor for fish during high flow periods. However, it contained no useful fish habitat during low flows.

Crossing 37

Crossing 37 traversed a stream that drained directly into Contwoyto Lake. Habitat characteristics measured at this crossing indicated that the stream was small (width=2.1 m and discharge=0.04 m³/s), had a well-defined channel, a low slope (2%), and a preponderance of RUN habitat (70%). Stream substrates at the crossings were dominated by gravels (46%) and cobbles (26%). Arctic grayling, lake trout, and slimy sculpin were recorded at Crossing 37. The proximity of this site to Contwoyto Lake suggested that it may provide habitat for fish originating from this waterbody. The habitat characteristics of this stream indicated that it provided high quality spawning and rearing habitat for Arctic grayling.

Crossing 41

Crossing 41 traversed a tributary that drained into a lake situated approximately 100 m downstream. At the crossing, this watercourse was very small (width=0.9 m and discharge <0.01 m³/s). It exhibited a well-defined channel, a low slope (1%), a preponderance of FLAT habitat (60%), and sand substrate (49%). Burbot and slimy sculpin were the only species encountered at this crossing. There was good potential as spawning and rearing habitat; however, the absence of numerous fish in this stream suggested that other factors were limiting fish abundance.

Crossings 50 and 52

Crossings 50 and 52 both traversed the wide channel that connects Concession Lake to Inner Sun Bay of Contwoyto Lake. The channel at both crossings exhibited similar habitat characteristics, therefore, only Crossing 50 was sampled. The habitat characteristics of this channel indicated that a large volume of water occurs

during freshet conditions (width=61.4 m), however, discharge at the time of sampling was not measured. The channel exhibited a low slope (1.5%) and a preponderance of boulder substrates (76%). RUN habitat dominated (100%), although it is likely that this system would be characterized by RAPID habitat during higher water flows. Low numbers of Arctic grayling, ninespine stickleback, and round whitefish were encountered at the crossing. The habitat characteristics at Crossings 50 and 52 suggested that the channel provided some fish habitat. It may be used for spawning and rearing by some species, however, it is most likely a corridor for fish moving between Concession and Contwoyto Lakes.

Crossings 53 and 54

Crossings 53 and 54 traversed a stream that entered the channel connecting Concession Lake to Contwoyto Lake. At the time of sampling, this system received discharge from the tailings facility at the Lupin Mine Site, therefore, discharges were higher than expected for a stream of this size (width = 2.1 m and discharge = 0.45 m³/s at Crossing 54). Habitat characteristics measured at both crossings indicated that the stream had a well-defined channel, exhibited a low slope (≤2%), and a preponderance of RUN habitats (≥90%). Stream substrates were dominated by sands (26%) and boulders (49%) at Crossing 53 and gravels (24%), cobbles (39%), and boulders (36%) at Crossing 54. Despite having similar habitat characteristics, fish were encountered only at Crossing 53; Arctic grayling and ninespine stickle were recorded at this site. The habitat characteristics of this stream at both crossings, suggested that it provided high quality spawning and rearing habitat for species such as Arctic grayling. It is likely that the stream at Crossing 53 was also used for feeding purposes by adult fish and as a movement corridor by all age classes.

7.0 SUMMARY DISCUSSION

This section summaries the findings of the 1996 aquatic studies program in the Jericho study area. When appropriate these results are compared to data recorded in 1995 and to information from other aquatic baseline studies in the vicinity of the Jericho Diamond Project.

7.1 LIMNOLOGY

7.1.1 Temperature

During summer 1996 several of the study lakes exhibited thermal stratification (i.e., had a thermocline, which is a region of vertical depth where there is a rapid change in temperature; Wetzel 1983). The presence and location of the thermoclines was not constant.

In the Mine Operation Zone, the deeper basins (>15.5 m) of Carat Lake and Jericho Lake had thermoclines between 10.5 and 15.0 m depth, while lakes and basins that were 11 m or less in depth exhibited isothermal conditions. In the Borrow Extraction Zone, lakes deeper than 10 m in depth had thermoclines (Lakes O1 and O3). In the Tailings Impoundment/Docking Facility Zone, the smaller lakes (Lakes D4 and D5) exhibited thermal stratification (beginning at 8 m depth), while the bay (14 m deep at sampling site) in the much larger Contwoyto Lake exhibited isothermal conditions.

These data suggest that deeper waterbodies throughout the Jericho study area stratify during the summer, and therefore, can be classified as dimictic (thoroughly mix twice a year). The shallower basins that do not stratify can be classified as monomictic (continuous mixing). Lake size, location, exposure to wind, and depth are all factors that affect the presence and depth of thermoclines (Wetzel 1983).

Surface water temperatures (i.e., 0 to 10 m depth) recorded for most lakes in the summer were between 13 and 15°C. Contwoyto Lake had surface water temperatures of only 9°C. The large size of Contwoyto Lake relative to the other study lakes is likely the reason for this lower temperature; the large volume of water required more time and thermal energy to warm. In the fall, surface water temperatures in all of the study lakes ranged from 4 to 8°C.

Carat and Jericho Lakes were the only waterbodies in the Jericho study area that were monitored in 1995 (R.L. & L. Environmental Services Ltd. 1995). In summer 1995, deep water sites of Carat Lake (Site W1-2) and Jericho Lake (Site W2) had thermoclines; however, they were located at greater depths. In addition, water temperatures above the thermoclines were 4 to 5°C warmer in 1996 than in 1995. Differences in the depth of the thermoclines and water temperatures were probably related to differences in general weather conditions (i.e., the summer of 1996 was hotter and dryer).

Water temperature profiles were similar to those of other subarctic lakes in the vicinity of the Jericho study area. This includes profiles measured in four lakes located in the Izok Project area, which is located 75 km southwest of the Jericho study area (R.L. & L. Environmental Services Ltd. 1993) and profiles from five lakes located 50 km south of the Jericho study area (Ranch Lake Project area) (R.L. & L. Environmental Services Ltd. 1996). Moore (1978b) recorded water temperatures of Contwoyto Lake in July and August 1975 and found that surface water temperatures were 10 to 11 °C at near shore locations and 7 °C at distances greater than 0.5 km from shore. Moore also stated that Contwoyto Lake had a well-defined stratification. In the present study, the monitoring site on Contwoyto Lake (Tailings Impoundment/Docking Facility Zone) was isothermal at approximately 11 °C, which was consistent with the near shore surface water temperatures recorded by Moore (1978b).

7.1.2 Dissolved Oxygen

Maximum dissolved oxygen concentrations during summer 1996 were similar among most lakes in the three zones (8.5 to 10.0 mg/L). The only exception was Contwoyto Lake which had the highest dissolved oxygen concentration (11.4 mg/L). This difference was due principally to lower water temperatures, which allow higher saturation levels.

It should be noted that in summer, dissolved oxygen concentrations below the water surface of most lakes (all except Contwoyto Lake) failed to meet the dissolved oxygen criteria established by the Canadian Water Quality Guidelines for the protection of aquatic life (CCME 1996). Dissolved oxygen concentrations were below the Canadian Water Quality Guidelines for the protection of cold-water biota early life stages (9.5 mg/L). These low levels were atypical given the characteristics of study area lakes (i.e., nutrient poor systems with low biological oxygen demand). The most viable explanation for the lower than expected oxygen levels was equipment malfunction, a source of error that was identified following the field sampling period. Such as, the oxygen levels documented in the study area lakes during summer should be viewed with caution.

Carat and Jericho Lakes were monitored for dissolved oxygen in 1995. In summer, both lakes were well oxygenated; the lowest concentration was 10.6 mg/L. Anoxic conditions (zero oxygen levels) were not recorded. These findings indicated that these lakes had a low biological oxygen demand in 1995.

In fall, dissolved oxygen concentrations in the surface waters of all the Jericho study area lakes were above all Canadian Water Quality Guidelines for the protection of aquatic life (10.1 to 11.6 mg/L).

Dissolved oxygen profiles were similar to those of other subarctic lakes in the vicinity of the Jericho study area. These include profiles measured in four lakes located in the Izok Project area, which is located 75 km southwest of the Jericho study area and profiles from five lakes located 50 km south of the Jericho study area (Ranch Lake Project area). Summer dissolved oxygen concentrations were above or near the Canadian Water Quality Guideline criteria of 9.5 mg/L for the protection of cold-water biota early life stages (CCME 1996) (9.0 to 9.5 mg/L). In

fall, dissolved oxygen concentrations were greater than 10.0 mg/L in all of the above lakes. Monitoring of deepwater basins (i.e., up to 30 m) did not identify anoxic conditions in either study.

7.1.3 Transparency

The water transparency levels recorded in all waterbodies except Contwoyto Lake, indicated that euphotic zone depths were 10.0 to 11.5 m in summer and 6 to 8 m in fall. Contwoyto Lake transparency was unique among the study area lakes; euphotic zone depths were 18.6 m and 8.0 m in summer and fall, respectively. The amount of light penetration is dependent upon suspended materials (e.g., sediments) and biological productivity (e.g., density phytoplankton). In summer, phytoplankton densities in Contwoyto Lake were much lower than in the other lakes, suggesting that the presence of phytoplankton in the water column accounted for difference in transparency.

In summer 1995, euphotic zone depths in Carat and Jericho Lakes ranged from 10 to 14.2 m; in fall, the euphotic zone was approximately 13.0 m. Although higher water transparency was observed during the summer of 1995 than in 1996, differences were not extreme. The transparencies in both years were indicative of low suspended materials (i.e., sediments and other allochthonous materials) and low biological productivity (i.e., low density and biovolumes of phytoplankton in the water column).

Transparency readings were obtained in summer and fall from lakes in the Izok Project area and the Ranch Lake Project area. The euphotic zone depths of these studies ranged from 12 to 18 m in both summer and fall. The lower transparency levels in the Jericho study area lakes may be due to natural variability among years and locations. Phytoplankton densities in the present study were comparable to other nearby studies, suggesting that factors other than phytoplankton density (i.e., sediments and other allochthonous materials) may account for reduced light penetration among the Jericho study lakes in 1996.

7.2 PLANKTON

7.2.1 Phytoplankton

The phytoplankton community was similar in lakes among the three zones. They were indicative of oligotrophic conditions (Wetzel 1983). In general, golden-brown algae (Chrysophyta) and diatoms (Bacillariophyta) had the greatest biovolumes. Certain species of cyanobacteria (Cyanophyta) and diatoms had the greatest densities. However, there was some variation in this pattern between summer and fall. The variations in the phytoplankton communities were likely due to site specific differences in the morphology and physical-chemical properties of the lakes, as well as timing of natural changes in the community structure.

Contwoyto Lake samples contained low cyanobacteria densities in summer and fall, as did Lake D5 in the fall. Cyanobacteria were replaced by diatom and/or green algae species in these study lakes. These observations suggest that within the Jericho study area, Contwoyto Lake and Lake D5 may have different water quality and physical

characteristics that influence the phytoplankton community. For example, Contwoyto Lake is a much larger lake and tends to have cooler water temperatures.

In 1995, R.L. & L. Environmental Services Ltd. (1995) sampled Carat and Jericho Lakes within the Mine Operation Zone. Similar results were observed between 1995 and the present investigation. The phytoplankton assemblage was indicative of oligotrophic waterbodies (Wetzel 1983), with golden-brown algae contributing most to the biovolume and cyanobacteria having the greatest densities. The 1995 data also showed similar patterns in seasonal changes; total phytoplankton densities were much greater in the fall and the same taxa accounted for the difference.

The cyanobacteria Aphanothece clathrata and Aphanocapsa elachista were reported to be the most abundant phytoplankton species among other subarctic lakes in the Izok Project area (R.L. & L. Environmental Services Ltd. 1993) and the Project 5034 area (R.L. & L. Environmental Services Ltd. 1996a). A. clathrata and A. elachista were identified as the most abundant phytoplankton species. Similar results were obtained for golden-brown algae; this taxonomic group accounted for most of the phytoplankton biovolume in the majority of lakes. Both studies recorded densities of golden-brown algae below 1000 cells/ml, far less than the tens to hundreds of thousands reported for cyanobacteria.

Phytoplankton densities ranged from 1539 to 15 800 cells/ml in lakes in the Izok Project area. In the Project 5034 area total phytoplankton densities ranged between 9275 and 23 983 cells/ml among four study lakes. Total phytoplankton densities in the present study ranged from 1711 to 18 103 cells/ml, well within the range reported by the other investigations. These observations suggest that lakes of the Jericho study area had similar phytoplankton communities and nutrient characteristics as other, subarctic lakes.

Beak (1977) sampled phytoplankton from lakes in the Izok Project area in late June 1976 and found the phytoplankton communities were also dominated by golden-brown algae and cryptomonads (Cryptophyta). Beak (1977) noted that the species composition and biomass of phytoplankton were typical of ultra-oligotrophic lakes (very low nutrient levels and low biological productivity), and were similar to other lakes at or near the tree line in nonpermafrost areas of Canada.

7.2.2 Zooplankton

The zooplankton community in lakes in the Mine Operation and the Borrow Extraction Zones were similar. In general, water fleas (Cladocera) accounted for the majority of the community biomass. Within this group, *Holopedium gibberum* was the most important species. Other taxonomic groups (calanoid or cyclopoid copepods; *Leptodiaptomus sicilis* and *Dicyclops bicuspidatus*, respectively) also accounted for a considerable amount of the zooplankton biomass in some lakes. The wheel animals (Rotifera) *Conochilus unicornis*, *Keratella cochlearis*, and

Kellicottia longispina tended to be the most numerous zooplankton species, but accounted for a low proportion of the community biomass.

The zooplankton community of the lakes within the Tailings Impoundment/Docking Facility Zone differed from those in the other two zones. In general, copepods (i.e., *L. sicilis* and *D. bicuspidatus*) dominated zooplankton biomass. The wheel animals *C. unicornis*, *K. cochlearis*, and *K. longispina*, tended to be the most numerous species, which is consistent with lakes in the Mine Operation and Borrow Extraction Zones.

Species abundance varied between summer and fall, which suggested a successional change in the zooplankton community; however, the same species tended to dominate the community in each season. These changes and differences in the zooplankton community between some lakes is likely due to natural variation, as well as different water quality and morphology of the lakes.

The zooplankton communities of Carat and Jericho Lakes within the Mine Operation Zone were sampled in 1995 (R.L. & L. Environmental Services Ltd. 1995). Changes in zooplankton biomass during 1995 were similar to those in the present investigation. In summer, water fleas dominated the community biomass in Carat Lake, while zooplankton biomass at Jericho Lake was co-dominated by cyclopoid copepods and water fleas. In fall, Carat Lake samples were dominated by cyclopoid copepods, while the Jericho Lake sample was dominated by water fleas.

Zooplankton densities in Carat and Jericho Lakes varied considerably between 1995 and 1996. For example, fall copepod densities were much lower than summer densities; a trend that was opposite to what was recorded in 1996. Except for the water flea *H. gibberum*, different species dominated the 1995 and 1996 samples. The wheel animal community also varied considerably between the two study years. It is not known why zooplankton densities varied. It is possible that warmer water temperatures in 1996 enhanced zooplankton production or altered the successional processes.

Water fleas accounted for the majority of the zooplankton biomass in other subarctic lakes. The most important rotifers were *K. cochlearis* and *K. longispina*, while the copepods *L. sicilis* and *Cyclops scutifer* were numerically dominant in lakes in the Izok Project area (R.L. & L. Environmental Services Ltd. 1993). With the exception of *C. scutifer*, these species were among the most abundant taxa in the Project 5034 area lakes examined by R.L. & L. Environmental Services Ltd. (1996a). Other studies have described the zooplankton communities of the subarctic as having low densities of water fleas and copepods, while wheel animals are the most abundant (e.g., Moore 1978a, 1978b).

7.3 PERIPHYTON

Periphyton was sampled from streams within the Mine Operation Zone and the Borrow Extraction Zone of the Jericho study area. The periphytic algal community in each stream was unique. The most abundant periphytic algae in the Mine Operation Zone (Streams C1 and C15, and Jericho River) were the cyanobacteria (Cyanophyta) Lyngbya limnetica and Gomphosphaerianaegelianum. Among the diatoms (Bacillariophyta), Tabellaria flocculosa, Gomphonema gracile, and Achnanthes minutissima had moderate to high densities. The most abundant periphytic algae in the Borrow Extraction Zone (Stream O18) were the cyanobacterium Microcystis flos-aquae and the diatom T. flocculosa. M. flos-aquae was not identified as a dominant species in any of the other sites. Differences in micro-habitat (e.g., depth, flow velocity, substrate composition) may account for the variability in the periphyton communities among the sampled streams.

The overall mean density of periphytic algae in the Borrow Extraction Zone stream (623 886±206 406 cells/cm²) was low compared to the streams in the Mine Operation Zone (lowest overall density was 702 689 cells/cm²). Differences in cell densities can be attributed to differences in species composition (i.e., the number of cells per unit mass or volume of a species will depend on its cell size).

Chlorophyll a and ash-free-dry-mass(AFDM) estimates collected from streams of the Mine Operation Zone and the Borrow Extraction Zone were comparable; they were low and indicative of oligotrophic nutrient conditions. The amount of chlorophyll a and AFDM (indicators of live algae and periphyton biomass, respectively) is controlled primarily by light quality and quantity, water velocity, and nutrient concentrations (Horner and Welch 1981).

The most abundant periphytic algae identified in streams within the Mine Operation Zone during the current study were also present in samples collected in 1995 (R.L. & L. Environmental Services Ltd. 1995). The overall mean densities of periphytic algae recorded for streams within the Mine Operation Zone in 1996 ranged from 702 689 to 1 553 862 cells/cm². These values were higher than those reported in 1995 (693 895 to 867 573 cells/cm²). Chlorophyll a concentrations were similar between the two study years and ranged from 0.007 to 1.44 μ g/cm². AFDM was not measured in 1995. These results could reflect natural temporal variations and/or variations in the micro-habitats at a given site.

Periphytic algal communities in other subarctic systems were also dominated by diatoms (Roeder et al. 1975; Moore 1978a, 1978b). These studies found that *T. flocculosa* and *A. minutissima* were the dominant periphytic algal species. Moore (1978b) also described the filamentous green algae (Chlorophyta) *Zygnema* and *Mougeotia* spp. as occasionally occurring in large numbers. These taxa were identified in samples collected from the Jericho study area, but they were not abundant. In the Project 5034 area, R.L. & L. Environmental Services Ltd. (1996a) identified the cyanobacteria *Lyngbya nordgaardii* and *Anacystis montana*, as well as the green algae *Zygnema* sp.

as the most abundant algae within the periphytic community; the most abundant diatoms were *T. flocculosa* and *A. minutissima*. The present study had various species of cyanobacteria that dominated the periphytic algal communities, while *T. flocculosa* and *A. minutissima* were the predominant diatom species.

Moore (1978a) reported total densities of periphytic algae of approximately 700 000 to 2 100 000 cells/cm² in two streams located in the Izok Project area. Total periphytic algal densities found during the present study were lower (623 000 to 1 554 000 cells/cm²). Possible reasons for this difference could be variation in the timing of sample collections, selection of different stream habitats, the amount of nutrient availability, and laboratory processing (e.g., Moore 1978a identified and counted colonies of cyanobacteria and not individual cells; J.W. Moore, pers. comm.).

Periphytic chlorophyll a concentration of 0.265 μ g/cm² measured by R.L. & L. Environmental Services Ltd (1996a) at a single stream located in the Project 5034 area was similar to those recorded during the present study; chlorophyll a concentrations were (0.007 to 1.29 μ g/cm²).

7.4 BENTHIC MACROINVERTEBRATES

7.4.1 Lakes

Overall, mean densities and mean number of taxonomic groups of benthic macroinvertebrates were greater in the littoral zones than in the profundal zones among sampled lakes in the Jericho study area. This reflects the higher productivity of shallow-water habitats because of higher water temperatures and greater light penetration. Anoxia of the profundal zone was not recorded during the 1996 open water season (Section 7.1) and probably was not a factor in benthic macroinvertebrate production. The benthic macroinvertebrate community structure was indicative of a short growing season and a homogenous substrate dominated by fine sediments.

The benthic macroinvertebrate communities of lakes within the three study area zones generally were similar. Dominant taxa exhibiting the highest densities were chironomids (midges), oligochaetes (aquatic earthworms), and nematodes (roundworms). Although the number of benthic macroinvertebrates tended to be much greater in the littoral zone than in the profundal zone in most lakes, there were some exceptions. For example, sphaeriids (fingernail clams) in the lakes of the Mine Operation Zone and Contwoyto Lake of the Tailings Impoundment/Docking Facility Zone were more abundant in the profundal zone than in the littoral zone. Some taxa were not evenly distributed among the study lakes. Ostracods (seed shrimps) were absent from Carat Lake samples, as were sphaeriids in the littoral zones of Carat and Contwoyto Lakes. Variations in physical characteristics among the sites, as well as natural variability, may account for these differences.

Carat and Jericho Lakes were sampled for benthic macroinvertebrates in 1995 (R.L. & L. Environmental Services Ltd. 1995). Similar to this investigation, chironomids, oligochaetes, and nematodes accounted for the majority of

the invertebrate community and the littoral zone supported higher densities of invertebrates than the profundal zone. Some differences did occur between the two years. Ostracods were present in Carat Lake in 1995 as were sphaeriids. Differences in sampling locations may explain these changes. For example, the littoral zone samples collected in 1995 were from depths that varied from 1.5 to 4.0 m and the 1996 littoral zone samples were collected from depths that ranged from 1.0 to 1.6 m. Water depth is a factor that affects the distribution of benthic macroinvertebrates (Hynes 1970; Wetzel 1983).

Densities of benthic macroinvertebrates were comparable between the two study years. Mean total number of macroinvertebrates in the littoral zones ranged from 1452 to 22 387/m² in 1995 and from 3319 to 15 435/m² in 1996. In the profundal zones, 1995 mean total densities ranged from 178 to 2002/m², while 1996 densities ranged from 275 to 5696/m².

Beak (1977) sampled the benthic macroinvertebrate communities in the littoral and profundal habitats of a lake located approximately 75 km southwest of the Jericho study area (Izok Lake) in the Izok Project area. The benthic macroinvertebrate community in the littoral zone was dominated by oligochaetes, chironomids, and nematodes; whereas, in the profundal zone it was dominated by chironomids and sphaeriids. Moore (1978a) also sampled this waterbody, as well as two other lakes in the immediate vicinity (Itchen and Iznogoudh Lakes), and found that chironomids, sphaeriids, and oligochaetes dominated the benthic macroinvertebrate community. Moore (1978b) examined the littoral benthos of several lakes, including Contwoyto Lake, in the vicinity of the Lupin Gold Mine and found that the macroinvertebrate community was dominated by chironomids and sphaeriids. Moore (1978b) found the total abundance ranged from 140 to 4900/m².

7.4.2 Streams

The benthic macroinvertebrate community within streams of the Jericho study area were dominated by nematodes, oligochaetes, and chironomids. There were some notable differences among zones in the stream benthic macroinvertebrate community structure. Stream O18 of the Borrow Extraction Zone had a mean total number of invertebrates that was much greater (over 5000/m²) than the three streams of the Mine Extraction Zone (maximum of just over 2000/m²). Densities of stoneflies and seed shrimps were also greater in Stream O18 of the Borrow Extraction Zone than in the streams of the Mine Operation Zone. Variations in physical characteristics among the sampling sites and natural variability may account for these differences.

In 1995, R.L. & L. Environmental Services (1995) sampled two streams in the Mine Operation Zone of the Jericho study area. One of the two streams (Stream C1) was sampled in the present study. In 1995, the streams were dominated by oligochaetes, water mites, chironomids, tipulids (crane flies), and stoneflies. Although water mites and tipulids were not identified as numerically dominant taxa in 1996, these taxa were abundant in the 1995 samples. Stoneflies were also found in two of the three study streams in 1996, but at much lower densities than in 1995. Finally, the number of taxa identified and mean total densities were much greater in 1996 than in 1995.

Natural variability in the data, as well as differences in physical characteristics of each site (e.g., flow velocities and substrate) may account for differences observed between the two study years.

The results of the benthic macroinvertebrate sampling program in streams within the Jericho study area were comparable to other investigations. Beak (1977) sampled the benthic macroinvertebrate community in a stream located approximately 75 km southwest of the Jericho study area. Chironomids and stoneflies dominated this community, which is similar to the findings of 1995 (R.L. & L. Environmental Services Ltd. 1995). R.L. & L. Environmental Services Ltd. (1996a) sampled one stream located about 150 km south of the present study area and found that this stream was dominated by chironomids, nematodes, oligochaetes, and sphaeriids. Except for sphaeriids, the benthic communities were similar to those of the present study. However, R.L. & L. Environmental Services Ltd. (1996a) recorded a mean total density of over 16 000/m², which was much greater than the maximum density in the present study (approximately 5000/m²).

The benthic macroinvertebrate communities in the streams within the Jericho study area were representative of subarctic systems. The species composition and low densities reported by the present study and by other investigations are indicative of oligotrophic systems (i.e., low productivity and short growing seasons: Hynes 1970; Resh and Rosenberg 1984; Rosenberg and Resh 1993).

7.5 FISH

7.5.1 Species Composition and Abundance

Fish communities were investigated in lakes and streams within three zones of the Jericho study area: the Mine Operation Zone, the Borrow Extraction Zone, and the Tailings Impoundment/Docking Facility Zone. These fish communities varied depending on the zone and the waterbody sampled within a particular zone. These differences were documented by assessing changes in species composition and relative abundance.

Five species of fish were recorded in five lakes in the Mine Operation Zone. They included lake trout, Arctic char, round whitefish, burbot, and slimy sculpin. Lake trout was the numerically dominant species in all lakes (Table 7.5.1). Round whitefish and Arctic char were also present, although they were much less numerous than lake trout. Round whitefish was the second most abundant species recorded in Carat Lake and Interbasins One and Two, while Arctic char was the subdominant species in Jericho Lake. In contrast, only lake trout were encountered in Lake C1. All other species recorded in lakes within the Mine Operation Zone (burbot and slimy sculpin) were present in very low numbers. Based on abundance indices generated using standardized gill net sets, overall fish densities were highest in Carat Lake, Interbasin Two and Jericho Lake (10 fish/100 $m^2 \cdot 12 h$), and lowest in Lake C1 and Interbasin Two (5 fish/100 $m^2 \cdot 12 h$).

Seven species of fish were recorded in five lakes within the Borrow Extraction Zone. They included lake trout, Arctic char, round whitefish, burbot, Arctic grayling, ninespine stickleback, and slimy sculpin. Of these species, only lake trout, Arctic char and round whitefish were numerous, however, the abundance of a particular species varied depending on the waterbody. Lake trout dominated fish communities in Lakes O3 and O5. Arctic char was numerically dominant in Lake O1. In Lakes O2 and O4, round whitefish was the most numerous fish. All other species (Arctic grayling, burbot and slimy sculpin) were sparsely distributed. Overall fish densities were highest in Lake O1(11 fish/100 $m^2 \cdot 12 h$), followed by lower densities in Lake O5 (7 fish/100 $m^2 \cdot 12 h$), and other waterbodies (<7 fish/100 $m^2 \cdot 12 h$).

Table 7.5.1 Occurrence (O) of fish species in sampled lakes in the Jericho study area (includes data for 1995 and 1996 where applicable).

Species	Mine Operation Zone						Borrow Extraction Zone						Tailings/Docking Zone		
	Lake C1	Carat Lake	Interbasin One	Interbasin Two	Jericho Lake	Lake O1	Lake O2	Lake O3	Lake O4	Lake O5	Lake D4	Lake D5	Contwoyto Lake ^a		
Arctic char	0	0	0		•	•	•	0	•	0	•	•	0		
Arctic grayling								0		0					
Burbot					0			0							
Lake trout	●p	•	•	•	•	•	•	•	•	•	•	0	•		
Ninespine stickleback							0	0	0	0					
Round whitefish		0	0	0	•	0	•	0	•	0					
Slimy sculpin			0	0		0	0								

^aRepresents species recorded in sampled area and not within main body of the lake.

The three sampled lakes in the Tailings Impoundment/Docking Facility Zone supported simpler species assemblages than lakes in the other zones; only lake trout and Arctic char were present. Lake trout was the dominant species in Contwoyto Lake, while Arctic char predominated in Lake D5, and both species were equally important in Lake D4. Overall fish densities were highest in Lake D4 (11 fish/100 $m^2 \cdot 12$ h), followed by Lake D5 (7 fish/100 $m^2 \cdot 12$ h) and Contwoyto Lake (5 fish/100 $m^2 \cdot 12$ h).

Seven species of fish were recorded in sampled streams in the Jericho study area (Table 7.5.2). Arctic grayling, Arctic char, ninespine stickleback, and slimy sculpin were the dominant species, followed by lower numbers of lake trout, round whitefish, and burbot. Most fish recorded in streams (all except ninespine stickleback and slimy sculpin) represented younger age classes that utilized the watercourses for rearing purposes. Fish numbers were generally low in streams, although notable exceptions occurred.

In the Carat Lake area of the Mine Operation Zone, Stream C1 supported a diverse assemblage of species and it contained the highest number of Arctic char recorded in the Mine Operation Zone. Likewise, Stream C6 supported

^bDark circle represents numerically dominant species.

the highest density of Arctic grayling in the zone. In the Jericho River area, Arctic grayling numbers were high in both the upper and lower sections of the main river, as well as in Streams O1, O24, and O25. One species, ninespine stickleback, was also numerous in the Mine Operation Zone, but its distribution was restricted to the Jericho River and its tributaries.

Table 7.5.2 Occurrence (o) of fish species in sampled streams in the Jericho study area.

Species	Min	e Operation	Zone		Borrow	Extracti	Tailings/Docking Zone				
	Carat Lake	Interbasin One	Jericho River	Lake O1	Lake O2	Lake O3	Lake O4	Lake O5	Lake D4	Lake D5	Contwoyto Lake
Arctic char	• a	0	0	•	0	•	0	0	0	0	
Arctic grayling	•	•	•	0	•	0	•	•			
Burbot	0	0	0	0	0	0	0	0			
Lake trout	0	0	0	0	0					0	0
Ninespine stickleback			•	0	0	0	•	•	•		
Round whitefish	0		0	0	0		0				
Slimy sculpin	•	•	0	•	•	•	•	•	•	•	•

^aDark circle represents numerically dominant species.

Arctic grayling, Arctic char, and slimy sculpin tended to be the most widespread and numerous species in Borrow Extraction Zone streams. Fish numbers were highest in Stream O18 in the Lake O1 area, Stream O5 in the Lake O6 area, and Stream O5 in the Lake O5 area. The highest number of Arctic char were recorded in Stream O18, while Arctic grayling were most numerous in Streams O6 and O5.

Few fish were recorded in streams in the Tailings Impoundment/Docking Facility Zone. Lake trout, Arctic char, and slimy sculpin were the only species recorded.

The fish communities documented in lakes and streams in each of the study area zones varied in their species composition and relative abundance, but some general patterns were apparent from the data. Firstly, the fish community in each lake consisted of only a few species. Secondly, these simple fish communities were dominated by one species; usually lake trout or Arctic char. Thirdly, the number of species encountered in a waterbody was related to lake size; smaller lakes contained fewer species (one notable exception was the results for the very large Contwoyto Lake where only two species were recorded). And fourthly, some fish species were present in low numbers or were entirely absent from study area lakes, but were abundant in streams associated with these lakes. These included Arctic grayling, burbot, ninespine stickleback, and slimy sculpin. Because most study area streams freeze to the bottom, fish utilized these watercourses only during the open water period. Therefore, the presence of these species in sampled streams indicated that viable populations existed in study area lakes, even though fish were not encountered during lake sampling.

The fish community that develops in a particular waterbody is dependant on historical opportunities to migrate (McPhail and Lindsey 1970). For example, Arctic char and lake trout populations are present in Lakes D4 and D5, despite the absence of a movement corridor between these waterbodies and Contwoyto Lake. Historically a corridor was present which enabled fish to move into these lakes. Habitat conditions were favourable and viable fish populations developed. The distribution of ninespine stickleback provides another example for opportunities for migration into waterbodies. This species is abundant in the Jericho study area, but its distribution is restricted to that part of the drainage situated downstream of a 15 m high cascade on the Jericho River. These data suggest that this cascade is a barrier to ninespine stickleback and the species has been excluded from habitat that is available upstream of the cascade.

The fish community that develops in a particular waterbody is also dependant on environmental conditions (Johnson 1975). In most sampled waterbodies in the Jericho study area, lake trout was numerically dominant. This is not surprising because this species is well adapted to cold oligotrophic systems (Scott and Crossman 1973). However, in some waterbodies (e.g., Lake O1 of the Borrow Extraction Zone) Arctic char is the dominant species. The reason for this may be related to the existence of high quality rearing habitat in the main tributary to Lake O1 (Stream O18). Younger age-classes of Arctic char can rear in this system without being subjected to high rates of predation from lake trout in the lake environment. The presence of this habitat may have enabled Arctic char to maintain relatively high fish numbers, despite the presence of lake trout.

This rational also applies to Arctic grayling, which not only rears in streams, but also requires protected areas such as stream channels to spawn. A paucity of this habitat type may limit or prevent Arctic grayling from becoming established in a particular drainage. This may explain the paucity of Arctic grayling in the Carat Lake area of the Mine Operation Zone, and its abundance farther downstream in the Jericho River area.

The fish communities documented in the Jericho study area were similar to fish communities recorded in other subarctic locations (Table 7.5.3). The species assemblage identified in waterbodies within the Ranch Lake Project area and in the Contwoyto Lake drainage of the Lupin Project area (both situated approximately 50 km south) were identical to the species assemblage in the Jericho Diamond Project area. The only exception was the presence of cisco (*Coregonus artedii*) in the Lupin Project area. A similar species assemblage was also identified in several lakes within the Izok Project area (located approximately 75 km southwest) and the NWT Diamond Project area (located 300 km southeast). Five of the species recorded in the Jericho study area were also present in the Izok Project and NWT Diamond Project areas. Arctic char was absent from waterbodies at these sites and one species, the longnose sucker (*Catostomus catostomus*), was not recorded during the current study. These findings suggest that the fish communities identified in the Jericho study area were typical of subarctic systems.

Table 7.5.3 Comparison of fish species assemblages identified in subarctic watersheds in the immediate vicinity of the Jericho Diamond Project.

Species	Jericho Diamond Project ^a	Ranch Lake Project ^b	Izok Project ^c	Lupin Project ^d	NWT Diamonds Project ^e
Arctic char	0	0		0	
Arctic grayling	0	0	0	0	0
Burbot	0	О	0	0	0
Longnose sucker			0		0
Lake cisco				0	
Lake trout	0	0	0	0	0
Ninespine stickleback	0	0		0	
Round whitefish	0	0	0	0	0
Slimy sculpin	0	0	0	0	0

^aResults from the current study and 1995 (R.L. & L. Environmental Services Ltd. (1995).

7.5.2 Biological Characteristics

Fish populations in the three zones of the Jericho study area exhibited similar biological characteristics. Length-frequency distributions for lake populations typically were bimodal with larger individuals dominating the sample. Lake trout and Arctic char captured in most lakes regularly exceeded 420 mm in fork length and round whitefish were usually greater than 320 mm in fork length. Sampled fish were slow growing and exhibited large variations in length at a given age. Fish populations in the Jericho study area also matured at a late age. Lake trout and Arctic char did not usually mature until they reached 12 years of age, while round whitefish matured at age 8. Arctic char and lake trout also exhibited evidence of alternate year spawning (i.e., nonfecund individuals); between 15% and 30% of mature fish that were examined would not have spawned in 1996.

These biological characteristics are typical of unexploited fish populations residing in subarctic oligotrophic lakes that have low primary productivity (Johnson 1976). The bimodal length-frequency distribution observed for fish populations in this study area are representative of state of equilibrium between the biomass of the population and lake productivity (Johnson 1976). In unexploited fish populations, fish lengths cluster around the modal points regardless of age. This characteristic explains the wide variation in length at a given age that was observed in the data. Slow growth, late sexual maturity, and alternate year spawning are also characteristics of fish populations that are limited by low primary productivity. Energy is required by a fish for growth, sexual maturation, and gonad development (Roff 1983). If lake productivity is low, as it is in waterbodies in the Jericho study area, fish growth and development will also be low.

^bR.L. & L. Environmental Services Ltd. (1996).

^cR.L. & L. Environmental Services Ltd. (1993).

^dReid Crowther & Partners Ltd. and R.L. & L. Environmental Services Ltd. (1984).

^eBHP Diamonds Inc.(1995).

The biological characteristics of fish populations residing in the Jericho study area were similar to those in other subarctic waterbodies. For example, bimodal length-frequency distributions were a prevalent characteristic of fish populations in the Ranch Lake Project area, and the Izok Lake Project area (Figure 7.5.1). Fish in these areas also exhibited a large variation in length-at-age, were late maturing, and slow growing; all characteristics that were comparable to the fish populations in the Jericho study area.

7.5.3 Feeding Habits

Feeding habits of fish in all three zones of the Jericho study area were dependant on food availability. The most prevalent food groups consumed by all fish species in each zone were zooplankton and chironomids. Other items consumed were fish, trichopterans, molluscs, and eubranchiopods. The feeding habits of fish were also dependant on a species specific food preference. Lake trout and Arctic char from the larger waterbodies (Carat, Jericho and Contwoyto Lakes) consumed fish as part of their diet. Trichopterans, which are benthic macroinvertebrates, accounted for a large proportion of food items consumed by round whitefish.

The feeding habits described are typical for the species examined (Scott and Crossman, 1973). Fish in the Jericho study area were opportunistic feeders and took advantage of whatever food items were readily available. Zooplankton, which consist of small crustaceans that reside in the water column, were sufficiently abundant to be an important food. This was true even for species that were not specialized to feed on zooplankton; large-bodied lake trout that are piscivorus (fish eaters) and round whitefish, which is a species that normally feeds on benthic macroinvertebrates.

These results are comparable to findings for fish populations residing in other subarctic lakes. In the Ranch Lake Project area benthic invertebrates (chironomids) and zooplankton were the predominant food items consumed by many species. In the Izok Project area, zooplankton was also important in the diet of fish. Other food items consumed by fish in the Izok Project area included molluscs (round whitefish) and fish (lake trout).

7.6 HABITAT AND HABITAT USE

7.6.1 Lakes

Waterbodies within the three sampling zones were evaluated to assess their value as habitat for fish populations. This involved surveys of lake shoreline and stream channel characteristics and attempts to document fish use of these areas.

Figure 7.5.1 Comparison of length-frequency distributions of lake trout in waterbodies from several locations in the Arctic.

Fork Length (mm)

Shoreline habitat characteristics of lakes in each zone were different. Lakes in the Mine Operation Zone tended to be dominated by cobble-boulder substrates; an exception to this were shorelines of the two Interbasin lakes, which contained an abundance of fine substrates (principally sand). These lake characteristics provided an abundance of potential spawning areas for species such as lake trout, Arctic char, and round whitefish. Several high quality spawning sites were identified and the presence of high concentrations of lake trout at one of these sites (north-east corner of Carat Lake) confirmed that it was used for this purpose. The same shoreline characteristics that provided an abundance of spawning habitat also limited the availability of rearing habitat. The absence of fine substrates along much of the shorelines precluded the development of aquatic macrophytes, features that provide rearing habitat for smaller fish.

In contrast to the Mine Operation Zone lakes, shoreline areas of waterbodies in the Borrow Extraction Zone were dominated by fine substrates consisting of sands and gravels. These shoreline characteristics also provided an abundance of potential spawning areas. A paucity of aquatic macrophytes in these lakes severely limited the availability of lake shore rearing habitat.

The shoreline areas of lakes in the Tailings Impoundment/Docking Facility Zone were dominated by large substrates consisting of cobbles and boulders; bedrock areas were also identified in some of these lakes (Lake D4 and Contwoyto Lake). Although not confirmed by concentrations of spawning fish, a shoal situated in the proposed docking facility bay exhibited characteristics of a high quality lake trout spawning site. In contrast to the abundance of potential spawning sites in these lakes, the availability of rearing habitat was severely limited.

The characteristics of surveyed lakes in the Jericho study area provided the necessary habitat to support self-sustaining fish populations. Deep-water areas were available as overwintering habitat. Spawning habitat characterized by clean gravel to boulder-sized substrates was widely distributed in areas sufficiently deep enough to avoid freezing. These features are required by lake spawning species such as lake trout (DeRoche 1969), Arctic char (Johnson 1980), and round whitefish (Scott and Crossman 1973). In contrast to the availability of potential spawning areas, rearing habitat was limited in distribution and abundance. Despite the paucity of rearing habitat in subarctic lakes, there is a sufficient amount to maintain fish populations.

To enhance growth and reduce mortality, young-of-the year and juvenile fish require rearing areas that provide an abundance of food and protection from predation. In many lake environments, zones containing dense stands of submerged aquatic macrophytes meet these requirements (Randall et al. 1996). Food resources, such as benthic invertebrates, are more abundant (Cyr and Downing 1988) and the risk of predation is reduced (Barnett and Schneider 1974). Low nutrient levels, exposure to wind, and rock substrates are factors that limit macrophyte growth; all are common characteristics of cold oligotrophic subarctic lakes.

The absence of aquatic macrophytes forces smaller fish to forage in unprotected areas (e.g., open water zones containing zooplankton), which increases predation risk. Conversely, smaller fish are restricted to near shore areas containing larger substrates that provide protection from predation, but that contain a paucity of food. Some species (Arctic grayling and Arctic char) reduce this problem by utilizing streams as rearing habitat.

The habitat characteristics of lakes in the Jericho study area were similar to those in other drainages. In the Ranch Lake Project area, lakes provided an abundance of spawning habitat, but rearing areas were severely limited (R.L. & L. Environmental Services Ltd. 1996). Similar findings were documented in the Izok Project area (R.L. & L. Environmental Services Ltd. 1993) and the Lupin Project area (Reid Crowther & Partner and R.L. & L. Environmental Services Ltd. 1984).

7.6.2 Streams

Streams in the Jericho study area generally are small, ephemeral watercourses dominated by ill-defined channels and large substrates. Those that maintain water flow during the entire summer period freeze to the bottom during winter. As a consequence of these characteristics, fish utilized the habitat provided by these systems on an opportunistic basis and use was generally restricted to the lower sections. Spawning, rearing, and feeding habitats were present in varying amounts and were used by fish originating from study area lakes. Fish species that were frequently recorded in surveyed streams (and the habitat used) included Arctic grayling (spawning and rearing), Arctic char (rearing), ninespine stickleback (feeding), and slimy sculpin (feeding). Other species, such as lake trout and round whitefish, were not abundant in streams because these lake dwelling fish do not typically use small stream habitats (Scott and Crossman 1973).

In total, 27 streams were surveyed in the Mine Operation Zone, however, few contained good quality habitat. During the current study, Stream C1 in the Carat Lake area was used extensively by Arctic char for rearing, as did Arctic grayling in 1995. Stream C6, also in the Carat Lake area, provided good quality spawning and rearing habit for Arctic grayling. One larger system in the Interbasin area (Stream C15), was used for rearing and/or feeding purposes by Arctic grayling and lake trout.

The Jericho River (both upper and lower sections) contained good habitat. The Jericho River is the largest stream in the Mine Operation Zone. Its large size, well-defined channel, and abundance of smaller substrates creates a diverse assemblage of habitats (spawning, rearing, feeding) for Arctic grayling. Deep-water areas in the upper Jericho River may also provide overwintering habitat for fish. A significant feature of the Jericho River was the presence of a cascade area approximately 15 m in height that was located near the outlet of Jericho Lake. Although not an absolute barrier, this area created a significant impediment to fish passage between the Jericho River system and lakes situated farther upstream. Tributary streams associated with the Jericho River were small, but several provided good quality spawning and rearing habitat for Arctic grayling. Tributaries exhibiting these characteristics were Streams O1, O8, O24, O25, and O27.

Habitat surveys were undertaken in 17 streams within the Borrow Extraction Zone; in general they provided limited habitat for fish. The primary reasons were their small size and intermittent flow during the summer. Some streams did provide good quality habitat. One watercourse in the Lake O1 area (Stream O18) provided high quality spawning habitat for Arctic grayling and rearing habitat for Arctic char. Stream O6, which was the drainage system for Lake O4, was one of the larger watercourses in the Borrow Extraction Zone. It contained good quality spawning and rearing habitat, as well as feeding habitat for adult Arctic grayling. Similarly, Stream O5 in the Lake O5 area provided good quality spawning and rearing habitat.

Habitat surveys of 12 streams within the Tailings Impoundment/Docking Facility Zone documented the absence of fish habitat. The primary reasons for severely limited fish habitat in these streams were their small size, intermittent flow during the summer, poorly defined channels, and steep slopes.

The characteristics of surveyed streams in the Jericho study area are typical of inland watercourses above the tree line. Craig and McCart (1974) in their investigation of watercourses in the Beaufort Sea drainages categorize these systems as Tundra Streams. They are characterized as small meandering systems that freeze completely during winter. Discharge peaks during the snow melt period and then fluctuates depending on the magnitude and frequency of rainfall events. Water levels can recede during dry periods to the point where water flow ceases.

Fish utilize these streams during the open water period, but originate from deep-water lakes or rivers that provide overwintering habitat. The most common fish species in their study area were Arctic grayling, Arctic char, round whitefish, ninespine stickleback, and slimy sculpin. Of these species, only round whitefish was not abundant in Jericho study area streams.

Arctic grayling was the most widely distributed species in the study area of Craig and McCart (1974). Adult Arctic grayling enter the Tundra Streams to spawn shortly after flooding. Fish prefer smaller gravel substrates for egg deposition, however, a variety of substrates can be used (Scott and Crossman 1973). Once spawning has been completed, the majority of the adult fish leave the streams. Movement of adult fish into the streams is frequently accompanied by an upstream movement of juvenile fish. These individuals, along with young-of-the-year fish, remain in the stream to rear throughout the summer. Arctic char were not as abundant as Arctic grayling in Tundra Streams. Use by this species was restricted to early summer upstream movements of juvenile fish for rearing purposes.

The habitat characteristics of streams in the Jericho study area were similar to those in other drainages. In the Ranch Lake Project area, most streams were small and were utilized on an opportunistic basis by fish originating in study area lakes (R.L. & L. Environmental Services Ltd. 1996). Similar findings were documented in the Izok Project area (R.L. & L. Environmental Services Ltd. 1993) and the Lupin Project area (Reid Crowther & Partner and R.L. & L. Environmental Services Ltd. 1984).

8.0 LITERATURE CITED

- Ahlstrom, EH 1943. A revision of the rotatorian genus *Keratella* with descriptions of three new species and five new varieties. Bull. Amer. Mus. Nat. Hist. 80(12): 411-57.
- American Public Health Association. 1993. Standard Methods for the Examination of Water and Wastewater. 18th ed. American Public Health Association, American Water Works Association and Water Pollution Control Federation, Washington, D.C. 1134 p.
- Barnett, B.S., and R.W. Schneider. 1974. Fish populations in dense submersed plant communities. Hyacinth Control J. 12: 12-14.
- Baumann, D.W., A.R. Gaufin, and R.F. Sardick. 1977. The stoneflies (Plecoptera) of the Rocky Mountains. Memoirs Am. Entomol. Soc. No. 31. 208 p.
- Beak Consultants Ltd. 1977. Initial environmental evaluation and pre-operational survey in the area of the Izok Lake deposits. Rep. Prep for Texasgulf Incorporated: 53 p.
- Bird, D.F. and Y.T.-Prairie. 1985. Practical guidelines for the use of zooplankton length-weight regression equations. J. Plank. Res. 7: 955-960.
- BHP Diamonds Inc. 1995. Fisheries and Aquatic Life, 1995 Baseline Study Update. Report prepared by BHP Diamonds Inc., Yellowknife, NWT. 86 p. +9 app.
- Bottrell, H.H., A. Duncan, Z.M. Gliwicz, E. Grygierczyk, A. Herzig, A. Hillbricht-Illakowska, H. Kurasawa, Larson, and P. & T. Weglenska. 1976. A review of some problems in zooplankton production studies. Contribution from the Plankton Ecology Group (EBP).
- Brandlova, J., Z. Brandl, and C.H. Fernando. 1972. The Cladocera of Ontario with remarks on some species and distribution. Can. J. Zool. 50(11): 1373-403.
- Brinkhurst, R.O. 1986. Guide to the freshwater aquatic microdrile oligochaetes of North America. Can. Spec. Publ. Fish. Aquat. Sci. 84: 259 p.
- Brooks, J.L. 1957. The systematics of North American Daphnia. Mem. Connecticut Acad. Arts Sci. 13: 1-180.
- Canadian Councils of Ministers of the Environment (CCME). 1996. Canadian Water Quality Guidelines Prepared by the Task Force on Water Quality Guidelines of the Canadian Council of Ministers of the Environment. Water Quality Objectives Division, Water Quality Branch, Inland Waters Directorate, Environment Canada, Ottawa, Ontario. 365 p. + 21 app.
- Canadian Council of Resource and Environment Ministers (CCREM). 1987. Canadian water quality guidelines. Prepared by Task Force on Water Quality Guidelines.
- Charlton, S.E.D., M. Hickman, and C.G. Jenkerson. 1981. Longitudinal physiochemical and algal surveys of rivers flowing through the oil sands region of northeastern Alberta, Canada. Nova Hedwigia 35: 465-522.
- Clifford, H.F. 1991. Aquatic invertebrates of Alberta. University of Alberta. Press, Edmonton. 538 p.
- Cook, E.F. 1956. The Nearctic Chaoborinae (Diptera: Culicidae). Bull. Minn. Agric. Exp. Sta. 218: 102 p.

- Craig, P.C., and P.J. McCart. 1974. Classification of stream types in Beaufort Sea drainages between Prudhoe Bay, Alaska and the Mackenzie Delta. Prepared by Aquatic Environments Ltd. 38 p.
- Cyr, H., and J.A. Downing. 1988. Empirical relationships of phytomacrofaunal abundance to plant biomass and macrophyte bed characteristics. Can. J. Fish. Aquat. Sci. 45: 976-984.
- Demayo, A., M.C. Taylor, and S.W. Reeder. 1979. Guidelines for surface water quality. Arsenic. Environment Canada, Inland Waters Directorate, Water Quality Branch, Ottawa, Ontario. 12 p.
- Demayo, A., M.C. Taylor, and S.W. Reeder. 1980. Guidelines for surface water quality. Lead. Environment Canada, Inland Waters Directorate, Water Quality Branch, Ottawa, Ontario. 36 p.
- Demayo, A., and M.C. Taylor. 1981. Guidelines for surface water quality. Copper. Environment Canada, Inland Waters Directorate, Water Quality Branch, Ottawa, Ontario. 54 p.
- DeRoche, S.E. 1969. Observations on the spawning habits and early life of lake trout. Prog. Fish. Cult. 31: 109-113.
- Downing, J.A. 1984. A manual on methods for the assessment of secondary productivity in fresh waters. Blackwell Scientific Publications. 501 p.
- Edmondson, W.T. 1959. Freshwater biology. 2nd edition John Wiley and Sons, New York, New York. 1248 p.
- Evans, D.O., J. Brisbane, J.M. Casselman, K.E. Coleman, C.A. Lewis, P.G. Sly, D.L. Wales, and C.C. Willox. 1990. Anthropogenic stressors and diagnosis of their effects on lake trout populations in Ontario lakes. Lake Trout Synthesis; Response to Stress Working Group. Ont. Min. Nat. Resour. 115 p.
- Environment Canada. 1973. Inventory of Canadian Freshwater Lakes. Inland Waters Directorate, Water Resources Branch. Ottawa. 34 p.
- Falk, M.R., M.D. Miller, and S.J.M. Kostuik. 1973. Biological effects of mining wastes in the Northwest Territories. Fisheries and Marine Service, Technical Report CEN/T-73-10: 29 p.
- Flössner, D. 1972. Krebstiere, Crustacea: Kiemen und Blattfüsser, Brachiopoda, Fischäuse, Brachiura. Die Tierwelt Deutschlands. 60. Teil. Gustav Fischer Verlag, Jena. 501 p.
- Forstner, U., and G.T.W. Wittman. 1979. Metal pollution in the aquatic environment. Springer-Verlag, New York. 486 p.
- Green, J. 1977. Sampling rotifers. Arch. Hydrobiol. Bieh. Ergebn. Limnol. 8: 9-12.
- Hickman, M., S.E.D. Charlton, and C.G. Jenkerson. 1982. A comparative study of benthic algal primary productivity in the AOSERP study area. Prepared for the Alberta Oil Sands Environmental Resources Program by the Department of Botany, University of Alberta and Department of Plant Sciences., University of Western Ontario. AOSERP Report 128. 139 p.
- Horner, R.R., and E.B. Welch. 1981. Stream periphyton development in relation to current velocity and nutrients. Canadian Journal of Fisheries and Aquatic Sciences 38: 449-457.
- Hutchinson, T.C., A. Fedorenko, J. Fitchko, A. Kuja, J. VanLoon, and J. Lichwa. 1975. Movement and compartmentation of nickel and copper in an aquatic ecosystem. p. 565-585. *In:* Nriagu, J. (ed.). Environmental Biogeochemistry. Vol. 2. Ann Arbor Science Publication, Ann Arbor, Michigan.
- Hynes, H.B.N. 1950. The food of freshwater sticklebacks (*Gasterosteus aculeatus* and *Pygosteus pungitius*) with a review of methods used in studies of the foods of fisheries. J. Animal Ecol. 19(1): 36-58.

- Hynes. H.B.N. 1970. The ecology of running water. University of Toronto Press, Toronto, Ontario. 555 p.
- Jessop, B.M. 1972. Aging round whitefish (*Prosopium cylindraceum*) of the Leaf River, Ungava, Quebec, by otoliths. J. Fish. Res. Board Can. 29: 452-454.
- Johnson, L. 1972. Keller Lake: characteristics of a culturally unstressed salmonid community. J. Fish. Res. Board Can. 29: 731-740.
- Johnson, L. 1975. Distribution of fish species in Great Bear Lake with reference to zooplankton, benthic invertebrates and ecological conditions. J. Fish. Res. Board Can. 32: 1959-2005.
- Johnson, L. 1976. Ecology of Arctic populations of lake trout, *Salvelinus namaycush*, lake whitefish, *Coregonus clupeaformis*, Arctic char, *Salvelinus alpinus*, and associated species in unexploited lakes of the Canadian Northwest Territories. J. of the Fish. Res. Board of Can. 33: 2459-2488.
- Johnson, L. 1980. The Arctic charr, Salvelinus alpinus. In E.K. Balon [ed.] Charrs; Salmonid Fishes of the Genus Salvelinus. Dr. W. Junk, The Hague.
- Kennedy, W. A. 1949. Some observations on the coregonine fish of Great Bear Lake, Northwest Territories. Bull. Fish. Res. Board Can. 82: 1-10.
- Kiefer, F. 1978. Zur Kenntnis des Diacyclops tames (S.A. Forces, 1882) (Copepoda, Cyclopoida). Crustaceana 34(2): 214-16.
- Koste, W. 1978. Rotatoria. Die Rädertiere Mitteleuropas. Ein Bestimmungswerk, begrunder von Max Voigt. Überordnung Monogononta. Gebrüder Bortraeger, Berlin, Stuttgart. Vol. I: 673 p. Vol. II: 469 p.
- Lock, M.A., R.R. Wallace, J.W. Costerton, R.M. Ventullo, and S.E. Charlton. 1984. River epilithon: Towards a structural-functional model. Oikos 42:10-22.
- Lund, J.W.G., C. Kipping, and E.D. LeCren. 1958. The inverted microscope method of estimating algal numbers and the statistical basis of estimation of counting Hydrobiologia 11:143-70.
- Mackay, W.C. 1989. Northern Lakes and Rivers. Boreal Institute for Northern Studies, University of Alberta, Edmonton. Occasional Publication No. 22.
- Mackay, W.C., G.R. Ash, and H.J. Norris. (editors). 1990. Fish ageing methods for Alberta. R.L. & L. Environmental Services Ltd. in assoc. with Alberta Fish and Wildlife Division and University of Alberta, Edmonton. 113 p.
- McPhail, J.D., and C.C. Lindsey. 1970. Freshwater fishes in northwestern Canada and Alaska. Bull. Fish. Res. Board Can. 173: 381p.
- Merritt, R.W., and K.W. Cummins. editors. 1984. An introduction to the aquatic insects of North America. 2nd edition. Kendall/Hunt Publishing Company, Dubuque, Iowa, U.S.A. 722 p.
- Moore, J.W. 1978a. Biological and water quality surveys at potential mines in the Northwest Territories: IV. The Texasgulf copper-zinc property, Itchen Lake. Environment Canada, Environmental Protection Service. MS Report NW-78-8: 23 p.
- Moore, J.W. 1978b. Biological and water quality surveys at potential mines in the Northwest Territories. Part II. INCO Gold Property, Contwoyto Lake. Prepared by Environmental Protection Service, Northwest Region, Manuscript Report NW-78-6. 39 p.

- Moss, B. 1967a. A spectrophotometric method for the estimation of percentage degradation of chlorophyll a to phaeopohytin in extracts of algae. Limnology and Oceanography 12: 335-340.
- Moss, B. 1967b. A note on the estimation of Chlorophyll *a* in freshwater algal communities. Limnology and Oceanography 12: 340-342.
- Neville, C.M. 1985. Physiological response of juvenile rainbow trout, *Salmon gairdneri*, to acid and aluminum prediction of field responses from laboratory data. Canadian Journal of Fisheries and Aquatic Sciences. 42: 2004-2019.
- Oliver, C.H., R.L. Desjardine, C.I. Goddard, M.J. Powell, H.J. Rietveld, and P.D. Waring. 1991. Lake trout in Ontario: Management strategies. Lake Trout Synthesis Management Strategies Working Group. Ont. Min. Nat. Resour. 90 p.
- Pennak, R.W. 1978. Freshwater invertebrates of the United States. 2nd edition John Wiley and Sons, Toronto, Ontario. 803 p.
- Prescott, G.W. 1970. Algae of the Western Great Lakes area. Wm. C. Brown Co. Publ., Dubuque, Iowa. 977 p.
- Randall, R.G., C.K. Minns, V.W. Cairns, and J.E. Moore. 1996. The relationship between an index of fish production and submerged macrophytes and other habitat features at three littoral areas in the Great Lakes. Can. J. Fish. Aquat. Sci. 53(Suppl. 1): 35-44.
- Reeder, S.W., A. Demayo, and M.C. Taylor. 1979a. Guidelines for surface water quality. Cadmium. Environment Canada, Inland Waters Directorate, Water Quality Branch, Ottawa, Ontario. 19 p.
- Reeder, S.W., A. Demayo, and M.C. Taylor. 1979b. Guidelines for surface water quality. Mercury. Environment Canada, Inland Waters Directorate, Water Quality Branch, Ottawa, Ontario. 15 p.
- Reid Crowther & Partners Ltd., and R.L. & L. Environmental Services Ltd. 1984. Echo Bay Mines Ltd. Lupin Project, 1983 status report for monitoring the aquatic environment. Report Prepared for Echo Bay Mines Ltd. 93 p. + app.
- Resh, V.H., and D.M. Rosenberg. Editors. 1984. The ecology of aquatic insects. Praeger Publishers, New York, New York. 625 p.
- Ricker, W.E. 1975. Computation and interpretation of biological statistics of fish populations. Fish. Res. Board Can., Bull. 191:382 p.
- R.L. & L. Environmental Services Ltd. 1993. Izok Lake Project, 1993 Aquatic Studies. Report Prepared for Minnova Inc. R.L. & L. Report No. 371F: 227 p. + app.
- R.L. & L. Environmental Services Ltd. 1995. Jericho Diamond Project Aquatic Studies 1995. Report Prepared for Canamera Geological Ltd. R.L. & L. Report No. 462BF: 122 p. + 10 app.
- R.L. & L. Environmental Services Ltd. 1996. Ranch Lake Project Aquatic Studies 1995. Report Prepared for Canamera Geological Ltd. R.L. & L. Report No. 462AF: 163 p. + 10 app.
- R.L. & L. Environmental Services Ltd. 1996a. Project 5034 Aquatic Studies Program (1996). Report Prepared for Canamera Geological Ltd. R.L. & L. Report No. 502D: 93 p. + 8 app.
- Roeder, D.R., G.H. Crum, D.M. Rosenberg, and N.B. Snow. 1975. Effects of Norman Wells crude oil on periphyton in selected lakes and rivers in the Northwest Territories. Fisheries and Marine Service Research and Development Directorate Technical Report No. 552. 31 p.

- Roff, D.A. 1983. An allocation model of growth and reproduction in fish. Can. J. Fish. Aquat. Sci. 40: 1395-1404.
- Rosenberg, D.M., and V.H. Resh. Editors. 1993. Freshwater biomonitoring and benthic macroinvertebrates. Routledge, Chapman & Hall, Inc., New York, New York. 488 p.
- Ruttner-Kolisko, A. 1974. Plankton rotifers: Biology and taxonomy. Die Binnengewasser, Vol. 26/1, Supplement. 146 p.
- Saether, O.A. 1970. Nearctic and Palaearctic *Chaoborus* (Diptera: Chaoboridae). Fisheries Research Board of Canada Bulletin 174:1-57 p.
- Scott, W.G., and E.J. Crossman. 1973. Freshwater fishes of Canada. Fisheries Research Board of Canada Bulletin 184: 966 p.
- Seber, G.A.F. 1982. The Estimation of Animal Abundance. Hofner Press. New York, Y.T. 506 pp.
- Smirnov, N.N. 1971. Fauna of the U.S.S.R. Crustacea: Chydoridae. Vol 1, No. 2. Akad. Nauk. SSSR, New Series No. 101 (Translated from Russian). Israel Program for Scientific Translations, Jerusalem. 644 p.
- Smith, G.M. 1950. The freshwater algae of the United States. 2nd ed. McGraw Hill Book Company. New York, New York. 719 p.
- Stemberger, R.S., and J.J. Gilbert. 1987. Planktonic rotifer defences. In W.C. Kerfoot and A. Sih (editions) Predation: Direct and Indirect Impacts on Aquatic Communities. University Press of New England. Hanover, NH. 227-239 p.
- Taft, C.E., and C.W. Taft. 1971. The algae of Western Lake Erie. Bull. Ohio Biol. Surv. 4: 1-189.
- Taylor, M.C., A. Demayo, and S.W. Reeder. 1979. Nickel. Environment Canada, Inland Waters Directorate, Water Quality Branch, Ottawa, Ontario.
- Thompson, R.B. 1959. Food of squawfish, *Ptychocheilus oregonensis* (Richardson) of the Columbia River. U.S. Dep. of Int., Fish, Wildl. Serv. Fish. Bull. 158(60): 43-58.
- Webber, C.I. 1971. A guide to the common diatoms of water pollution surveillance system stations. U.S. Environmental Protection Agency, National Environmental Research Centre Analytical Quality Control Laboratory, Cincinnati, Ohio.
- Wiederholm, T. 1983. Chironomidae of the Holarctic Region. Keys and diagnosis. Part II. Larvae. Entomologica Scadinavica Supplement No. 18.
- Wetzel, R.G. 1983. Limnology. 2nd Ed., Saunders College Publishing. Toronto. 767 p.
- Wiggins, G.B. 1977. Larvae of the North American caddisfly genera (Trichoptera). University of Toronto Press, Toronto, Canada. 401 p.
- Zippin, C. 1958. The removal method of population estimation. Journal of Wildlife Management 22(1):89-90.

APPENDIX A METHODOLOGY

APPENDIX A

STREAM HABITAT CLASSIFICATION SYSTEM

Provides a qualitative assessment of the physical characteristics of a stream and its potential as fish habitat.

- <u>Riffle</u> Portion of channel with increased velocity relative to Run and Pool habitat types; broken water surface due to effects of submerged or exposed bed materials; shallow (less than 25 cm). Limited value as habitat for larger juveniles and adults (i.e., feeding), but may be used extensively by young-of-the-year and small juveniles.
 - RF Typical riffle habitat type; provides limited cover for all life stages.
 - RF/BG Riffle habitat type with abundance of large cobble and boulder substrates. Limited cover for juveniles and adults; but, may be used extensively by young-of-the-year fish.
- <u>Rapids</u> (RA) Portion of channel with highest velocity relative to other habitat types. Deep (>25 cm); often formed by channel constriction. Substrate extremely coarse; dominated by large cobble and boulder substrates. Habitat provided for juveniles and adults in pocket eddies associated with substrate.
- <u>Run</u> Portion of channel characterized by moderate to high current velocity relative to Pool and Flat habitats; water surface largely unbroken. Potentially high habitat value for all life stages. Can be differentiated into five types based on depth and cover.
 - R1 Maximum depth exceeding 1.5 m; average depth 1.0 m. High cover at all flow conditions. Highest quality habitat for larger juveniles and adults; limited value for young-of-the-year-fish.
 - R2/BG Maximum depth reaching 1.0 m and generally exceeding 0.75 m; presence of large cobble or boulder substrates in channel. High cover at all flows. Moderate to high quality habitat for larger juveniles and adults.
 - R2 Maximum depth reaching 1.0 m and generally exceeding 0.75 m. High cover during most flows, but not during base flows. Moderate quality habitat for juveniles and adults; limited value for young-of-the-year-fish.
 - R3/BG Maximum depth of 0.75 m, but averaging < 0.50 m; presence of large cobble or boulder substrates in channel. Moderate cover at all flows. Moderate quality habitat for juveniles and adults; but, the value to young-of-the-year-fish is potentially high.
 - R3 Maximum depth of 0.75 m, but averaging < 0.50 m. Low cover at all flows. Lowest quality habitat for juveniles and adults; but, the value to young-of-the-year-fish is potentially high.
- <u>Flat</u> (FL) Area of channel characterized by low current velocities (relative to RF and Run cover types); near-laminar (i.e., non-turbulent) flow. Depositional area dominated sand/silt substrates. Differentiated from Pool habitat type by high channel uniformity and lack of direct association with riffle/run complex. Potential habitat value for all life stages is moderate to high. Can be differentiated into five types based on depth and cover.
 - F1 Maximum depth exceeding 1.5 m; average depth 1.0 m or greater. High cover at all flows. Highest quality habitat for larger juveniles and adults; limited value for young-of-the-year-fish.

- F2/BG Maximum depth reaching 1.0 m and generally exceeding 0.75 m; presence of large cobble or boulder substrates in channel. High cover at all flows. Moderate to high quality habitat for larger juveniles and adults.
- F2 Maximum depth exceeding 1.0 m; generally exceeding 0.75 m. High cover during most flows, but not during base flows. Moderate quality habitat for juveniles and adults; limited value for young-of-the-year-fish.
- F3/BG Maximum depth of 0.75 m, but averaging < 0.50 m; presence of large cobble or boulder substrates in channel. Moderate cover at all flows. Moderate quality habitat for juveniles and adults; but, the value to young-of-the-year-fish is potentially high.
- F3 Maximum depth of 0.75 m, averaging less than 0.50 m. Low cover at all flows. Lowest quality habitat for juveniles and adults; but, the value to young-of-the-year-fish is potentially high.
- <u>Pool</u> Discrete portion of channel featuring increased depth and reduced velocity (downstream oriented) relative to Riffle and Run habitat types. Normally featuring Riffle/Run associations. Principal habitat value for all life stages is cover. When in close association with Riffle/Run habitats, value can be very high. Can be differentiated into three types based on depth.
 - P1 Maximum depth exceeding 1.5 m; average depth 1.0 m or greater; high cover at all flow conditions. Often intergrades with deep-slow type of R1. Highest quality habitat for larger juveniles and adults; limited value for young-of-the-year-fish.
 - P2 Maximum depth reaching or exceeding 1.0 m, generally exceeding 0.75 m. High cover at all but base flows. Moderate quality habitat for juveniles and adults; limited value for young-of-the-year-fish.
 - P3 Maximum depth of 0.75 m, averaging <0.50 m. Low instream cover; includes small pocket eddies. Lowest quality habitat for all life stages.

<u>Dispersed</u> (DIS) - Portion of stream exhibiting no defined channel. Water depth rarely exceeding 0.25 m and often dispersed over boulder fields. Very limited value as fish habitat.

<u>Habitat Features</u> - Includes the following instream features:

Chutes (CH) - Area of channel constriction; generally resulting in channel deepening and increased velocity. Associated habitat types are Pool, Run, and Rapid.

Ledges (LG) - Areas of bedrock intrusion into the channel; often creates Chutes and Pool habitat.

Falls (FAL) - Area of channel exhibiting rapid vertical decent over boulder and bedrock. Often a barrier to fish passage.

Cascade (CAS) - Area of channel exhibiting rapid decent over boulder and bedrock, but, with no well defined vertical decent (i.e., falls). Often a barrier to fish passage.

Outlet/Inlet (Out) - Confluence of stream and lake; can be the outlet or inlet.

Channel Type - Includes the following categories:

Single (C1) - Entire water flow of stream through one active channel.

Multiple (C2) - Water flow of stream through more than one active channel.

Dispersed (C3) - No defined channel.

Bank Type - Includes the following categories:

Well-defined (D1) - Well-defined boundary at water-bank interface of active stream channel. Ill-defined (D2) - Poorly defined boundary at water-bank interface of active stream channel.

LAKE SHORELINE HABITAT CLASSIFICATION SYSTEM

Provides a qualitative assessment of the physical characteristics of the littoral zone (zone of visible light penetration to bottom) and its potential as critical fish habitat (spawning and rearing).

<u>Slope</u> - The slope of the visible portion of the lake bottom adjacent to the shoreline. The lower the slope, the greater the amount of shallow water (littoral zone) available for use by smaller juveniles and young-of-the-year fish. Visual estimation of slope using three categories.

Low - 0 to 10% Moderate - 11 to 30% High - > 30%

<u>Substrate</u> - The dominant substrate in the visible portion of the lake bottom adjacent to the shoreline. The presence of rock (cobbles, boulders) indicates potential as a spawning habitat; presence of fines (organics, clay, silt, sand, gravel) indicates the potential as rearing habitat (enhances growth of macrophytes); presence of bedrock indicates limited value as fish habitat. Visual estimation of the percent cover by each substrate size and then grouping into three categories based on the following criteria:

Fines - >40% of bottom consists of organics, clays, silts, or gravel substrates.

Rock - >60% of bottom consists of cobbles or boulders.

Bedrock - > 40% of bottom consists of bedrock.

SUBSTRATE CLASSIFICATION SYSTEM

Modified Wentworth classification for substrate particle sizes

CLASSIFICATION	PARTICLE SIZE RANGE (mm)
Bedrock	-
Boulder	>256
Cobble	32 - 256
Gravel	1 - 32
Sand	0.0625 - 0.2-1
Silt	0.0039-0.0625
Clay	< 0.0039
Organics	-

APPENDIX B LIMNOLOGY

Appendix B1 Temperature and dissolved oxygen profile data from sampled lakes, Jericho study area, 1996.

		Carat	rat Lake			•	Jericho Lake			Interbasin One	
	Site W1-1			Site W1-2			Site W2			Site W5	
	04-Aug-96			04-Aug-96			04-Aug-96			04-Aug-96	
Depth	Dissolved	Temp.	Depth	Dissolved	Temp.	Depth	Dissolved	Temp.	Depth	Dissolved	Temp.
Œ	Oxygen	ဉ့်	(E)	Oxygen	(၁)	Œ)	Oxygen	ູດ	E	Oxygen	(ွ
	(mg/L)			(mg/L)			(mg/L)			(mg/L)	
0.0	10.0	13.5	0:0	6.9	13.8	0.0	2.6	14.1	0:0	8.4	13.6
0.0	9.5	13.6	1.0	6.7	13.9	1.0	9.6	14.2	1.0	9.9	13.7
2.0	8.7	13.8	2.0	6.8	14.0	2.0	0.6	14.2	2.0	5.4	13.9
3.0	8.2	13.8	3.0	6.2	14.0	3.0	0.6	14.2	3.0	4.7	13.9
4.0	7.6	13.9	4.0	0.9	14.0	4.0	8.8	14.3	4.0	4.9	13.9
5.0	7.1	13.9	5.0	5.7	14.0	5.0	8.3	14.3	2.0	4.6	13.9
6.0	9.9	13.9	0.9	5.5	14.0	0.9	8.0	14.2	0.9	4.7	13.9
7.0	6.3	13.9	7.0	5.3	14.0	7.0	7.5	14.2	7.0	4.6	13.8
8.0	6.1	13.9	8.0	5.1	14.0	8.0	7.0	13.9	8.0	4.7	13.8
0.6	7.7	13.9	9.0	5.2	14.1	0.6	9.9	14.2	0.6	4.5	13.6
9.5	7.0	13.9	10.0	5.1	14.0	10.0	7.6	14.1	10.0	4.4	13.5
10.0	pottom		11.0	5.6	11.9	10.5	7.5	8.7	10.5	5.7	13.3
			11.5	5.8	10.5	11.0	7.5	7.8	11.0	bottom	
			12.0	0.9	6.6	1.5	7.5	7.0	Secchi Disk R	Secchi Disk Reading (m) = 5.1	
			12.5	6.2	9.4	12.0	7.5	6.6	UTM Coording	UTM Coordinates = 12W 0478742 7323185	742 7323185
			13.0	6.4	8.8	12.5	7.5	6.2	pH = 6.91		
			13.5	6.7	8.4	13.0	9.6	5.6	Conductivity (µS) = 15	uS) = 15	
			14.0	6.9	7.7	13.5	0.6	5.5		:	
			14.5	6.9	7.5	14.0	8.8	4.2			
			15.0	6.9	7.3	14.5	8.5	5.3			
			15.5	6.9	7.2	15.0	8.0	5.2			
			16.0	6.9	7.0	15.5	pottom				
			16.5	8.9	8.8	Secchi Disk R	Secchi Disk Reading (m) = 5.3				
			17.0	6.9	6.7	UTM Coordin	UTM Coordinates = 12W 0477343 7323673	343 7323673			
			17.5	6.9	6.5	pH = 6.95					
			18.0	6.9	6.4	Conductivity (µS) = 10	µS) = 10				
			18.5	0.7	6.3						
			19.0	0.7	6.2						
			19.5	0.7	6.1						
			20:0	2.0	6.1						
			20.5	2.0	0.0						
			21.0	0.7	0.9						
			21.5	2.0	5.9						
			22.0	7.0	5.9						
			22.5	0.7	5.8						
			23.0	7.0	5.7						
			23.5	0.7	5.7						
			24.0	pottom							
Secchi Disk	Secchi Disk Reading (m) = 5.5		Secchi Disk Re	Secchi Disk Reading (m) = 5.3							
UTM Coordir	UTM Coordinates = 12W 0476300 7320852		UTM Coordina	UTM Coordinates = 12W 0477900 7320598	900 7320598						
pH = 6.69			pH = 6.45								

Secchi Disk Reading (m) = 5.3 UTM Coordinates = 12W 0478138 7321869 pH = nd¹ Conductivity (µS) = nd

0.0 11.0 22.0 33.0 55.0 6.0 7.0 7.0 9.0 10.0

Site W6
04-Aug-96
01-Aug-96
Dissolved
Oxygen
(mg/L)
9.7

Depth (m)

1 nd = no data.

neq
=
.~
ന
$\boldsymbol{\mathcal{A}}$

	Lake C1	
	Site W4	
	03-Aug-96	
Depth	Dissolved	Temp.
(E)	Oxygen	်
!	(mg/L)	
0.0	6.6	14.2
1.0	9.7	14.1
2.0	9.5	14.0
3.0	9.4	13.9
4.0	9.3	13.8
9.0	9.3	13.5
0.9	6.3	13.1
7.0	9.5	9.7
8.0	9.6	7.5
8.5	9.6	7.4
9.0	pottom	
ecchi Disk R	Secchi Disk Reading (m) = 5.2	2
UTM Coordinates	ites = 12W 0477524	7524 7319381
pH = 7.57		
Conductivity (uS) = 16.4	1S = 16.4	

			Temp.	ဉ့်		14.5	14.7	14.8	14.9	15.0	15.0	15.1	15.1	15.1	15.1	15.1	15.1	15.1	15.1	15.1	15.1	15.1	15.1	15.1	15.1	15.1	13.0	10.4	9.5	8.7			0480048 7318619
Lake 01	Site W7	03-Aug-96	Dissolved	Oxygen	(mg/L)	9.7	9.3	9.1	8.5	9.8	8.4	8.2	8.1	7.9	7.6	7.4	7.2	7.3	7.2	7.0	6.9	6.7	9.9	9.9	9.9	9.9	8.9	7.0	6.8	9.9	pottom	Reading (m) = 5.	s = 12W
			Depth	Ē		0.0	0.5	1.0	2.	2.0	2.5	3.0	3.5	4.0	4.5	5.0	5.5	0.9	6.5	7.0	7.5	8.0	8.5	0.6	9.5	10.0	10.5	11.0	11.5	12.0	12.5	Secchi Disk Re	UTM Coordinate

pH = 7.18 Conductivity (µS) = 13.7

	Lake 02		
	Site W8		-
	04-Aug-96	:	
Depth	Dissolved	Temp.	Depth
Œ	Oxygen	ပ္)	(E)
	(mg/L)		
0.0	9.6	13.7	0.0
1.0	9.2	13.9	1.0
2.0	8.9	14.0	2.0
3.0	83	14.1	3.0
4.0	8.2	14.1	4.0
5.0	7.9	14.1	9.0
0.9	8.1	14.1	0.9
7.0	8.3	14.1	7.0
8.0	8.4	14.1	8.0
9.0	8.2	14.1	0.6
9.6	pottom		10.0
Secchi Disk F	Secchi Disk Reading (m) = 5.6		11.0
UTM Coordin	JTM Coordinates = 12W 0479216 7322841	216 7322841	11.3
pH = 7.38			Secchi Disk Read
Conductivity (µS) = 13.5	µS) = 13.5	z	UTM Coordinates
			PH = 7.30

	Lake 03	
	Site W9	
	03-Aug-96	
Depth	Dissolved	Temp.
(E)	Oxygen	(၁)
	(mg/L)	:
0.0	8.6	14.5
0.1	9.5	14.4
2.0	9.5	14.4
3.0	9.5	14.3
4.0	4.6	14.2
5.0	9.5	14.1
0.9	9.5	13.9
7.0	9.5	13.0
8.0	6.6	10.3
0.6	10.0	8.2
10.0	2.6	6.7
11.0	9.1	5.6
11.3	pottom	
Secchi Disk Reading (m) =	eading $(m) = 5.5$	
UTM Coordinates	ates = 12W 0479762	762 7322571
pH = 7.30		
Conductivity (µS) =	uS) = 16.4	
	'n	

a)
_
$\overline{}$
()
_
_
മ
×
~
Ě
ě
Šen
ben
ppen

Lake D4

Secchi Uisk Reading (m) = 5.2 UTM Coordinates = 12W 0479806 7324051 pH = 7.32
П
Conductivity (µS) = 12.5

			Temp.	ဉ့်		13.3	13.4	13.5	13.5	13.5	13.6	13.6	13.6	13.6	13.4			12W 0479806 7324051		
Lake 05	Site W11	04-Aug-96	Dissolved	Oxygen	(mg/L)	9.7	9.6	9.5	6.3	9.5	9.5	9.4	9.5	9.5	9.2	pottom	ading (m) = 5.2	11		(S) = 12.5
			Depth	ω		0.0	0.5	1.0	1.5	2.0	2.5	3.0	3.5	4.0	4.5	5.0	Secchi Disk Reading (m) =	UTM Coordinates	pH = 7.32	Conductivity (µS) = 12.5

		Site W12	
		03-Aug-96	
ο.	Depth	Dissolved	Temp.
	Œ	Oxygen	(ွ)
		(mg/L)	
· ·	0.0	9.7	14.8
4	0.5	6.3	14.8
	0.1	6.3	14.8
	1.5	9.1	14.8
150	2.0	0.6	14.8
	2.5	8.8	14.8
ω.	3.0	8.8	14.8
_G	3.5	8.8	14.8
	4.0	8.8	14.8
₹	5.4	8.8	14.8
	5.0	8.8	14.8
	5.5	8.8	14.8
24051	0.9	8.8	14.8
<u></u>	6.5	6.8	14.8
	7.0	6.8	14.6
:	7.5	9.6	12.0
	8.0	6.6	10.3
	8.5	10.3	1.8
	0.6	10.1	7.5
	9.5	10.1	7.0
	10.0	10.0	8.9
	10.5	10.0	9.9
	11.0	6.6	6.5
	11.5	6.6	6.4
	12.0	6.6	6.3
	12.5	8.6	6.2
	13.0	9.7	6.2
	13.5	9.7	6.1
	14.0	9.6	6.1
	14.5	bottom	
	Secchi Disk Reading (m)	eading (m) = 5.1	
	UTM Coordinates	ites = 12W 0478	2W 0478714 7319095
	pH = 5.56		
	Conductivity (µS)	O1 = (Sr	

8619 11.0 12.0 13.0 14.0 16.0 17.0	2.0 1.5 1.6 1.7 2.0 2.0 1.1.4 2.0 1.1.2 3.0 1.1.2 4.0 1.1.2 4.0 1.1.1 4.5 1.1.2 4.0 1.1.1 4.5 1.1.0 1.0	0.5 11.3 1.0 11.4 1.5 11.4 2.0 11.2 2.5 11.3 3.0 11.2 3.5 11.2 4.0 11.1 4.5 10.9 5.5 10.7 6.0 6.5 10.8 8.0 10.8 8.0 10.8 8.0 10.8 8.0 10.8 8.0 10.8 8.0 10.8 11.0 11.1 9.5 10.9 11.0 11.0 11.0 11.0 12.5 10.9 13.0 10.9 14.0 0.5 11.3 1.0 11.4 1.5 11.4 2.0 11.2 2.5 11.3 3.0 11.2 4.0 11.1 4.5 10.9 5.5 10.7 6.0 10.8 8.0 10.8 8.0 10.8 8.0 10.8 8.0 10.8 8.0 10.8 8.0 10.8 8.0 10.8 11.1 10.0 11.1 9.5 10.9 11.0 11.0 11.0 11.0 1	Site W13 03-Aug-96 Dissolved Temp. Oxygen (°C)	
1.5 2.0 2.5 3.0 1.1.2 3.5 1.1.2 4.0 1.1.1 4.0 1.1.2 1.1.2 1.1.2 1.1.3 1.1.2 1.1.3 1.1.3 1.1.0 1.0	1.5 11.4 2.0 2.5 11.3 3.0 11.2 3.5 11.3 3.0 11.2 4.0 11.1 4.5 11.0 5.5 11.0 5.5 10.8 8.0 10.8 8.5 10.8 8.5 10.8 8.5 10.8 8.5 10.8 8.5 10.8 10.8 8.5 10.0 11.1 0.0 11.5 10.0 11.0 11.0 11.	1.5 11.4 2.0 11.2 2.5 11.3 3.0 11.2 3.5 11.2 4.0 11.1 4.5 10.9 5.5 10.7 6.0 10.8 6.5 10.7 7.0 10.8 8.0 10.8 8.0 10.8 8.0 10.8 8.0 10.8 8.0 10.8 10.0 11.1 9.5 10.9 11.0 11.0 11.5 10.9 13.6 10.9 13.6 10.9 14.0 bottom Secchi Disk Reading (m) = 9.3 UTM Coordinates = 12W 0481757	2.0 11.4 2.0 11.2 2.5 11.3 3.0 11.2 3.5 11.2 4.0 11.1 4.5 10.9 5.5 10.9 6.0 10.8 6.5 10.7 7.0 10.8 8.0 10.8 8.0 10.8 8.0 10.8 8.0 10.8 8.0 10.8 11.0 11.1 9.5 10.9 11.0 11.0 11.5 10.9 13.0 10.9 13.0 10.9 13.5 11.0 14.0 bottom Secchi Disk Reading (m) = 9.3 UTM Coordinates = 12VV 0481757 Dead. Activity (ACC) = 16.3 Coordinates = 12VV 0481757 Dead. Activity (ACC) = 16.3 Coordinates = 12VV 0481757 Dead. Activity (ACC) = 16.3 Coordinates = 12VV 0481757 Dead. Activity (ACC) = 16.3	5 4 5 4 5 5
2.5 3.0 4.0 4.5 5.0 5.0 5.5 6.0 6.5 6.5 6.5 6.5 6.0 6.5 10.0 7.0 10.8 8.5 10.0 10.8 8.5 10.0 10.8 8.5 10.0 10.8 8.5 10.0 10.8 8.5 10.0 10.8 10.0 10	2.5 11.3 3.0 11.12 3.0 11.2 3.0 11.2 4.0 4.5 11.12 11.	2.5 11.3 3.0 11.2 3.5 11.2 4.0 11.1 4.5 10.9 5.5 10.9 6.0 10.8 6.5 10.7 7.0 10.8 8.0 10.8 8.0 10.8 8.0 10.8 8.0 10.8 10.0 11.1 9.5 10.9 11.0 11.0 11.5 10.9 13.0 10.9 14.0 bottom Secchi Disk Reading (m) = 9.3 UTM Coordinates = 12W 0481757	2.5 11.3 3.0 11.2 3.6 11.2 4.0 11.1 4.5 10.9 5.6 10.8 6.5 10.7 7.0 10.8 8.0 10.8 8.0 10.8 8.0 10.8 8.0 10.8 10.0 11.1 9.5 10.9 11.0 11.0 11.5 10.9 13.0 10.9 13.5 11.0 14.0 bottom Secchi Disk Reading (m) = 9.3 UTM Coordinates = 12W 0481757 December 2.5 11.0 14.0 bottom Secchi Disk Reading (m) = 9.3 UTM Coordinates = 12W 0481757 December 2.5 10.9 14.0 bottom Secchi Disk Reading (m) = 9.3 UTM Coordinates = 12W 0481757 December 2.5 11.0 14.0 bottom	14.5 14.5
4.5 5.0 5.0 5.0 6.0 6.5 7.0 7.0 7.0 7.0 10.0 8.5 10.0 10.0 10.0 11.0	4.5 10.9 11.1 4.5 10.9 10.9 10.9 10.9 10.9 10.9 10.9 10.9	4.5 10.9 4.5 10.9 5.6 10.0 5.5 10.7 6.0 10.8 6.5 10.7 7.0 10.8 8.0 10.8 8.0 10.8 8.0 10.8 8.0 10.8 10.0 11.1 9.5 10.9 11.0 11.0 11.5 10.9 13.5 10.9 13.6 11.0 14.0 bottom Secchi Disk Reading (m) = 9.3 UTM Coordinates = 12W 0481757	4.5 10.9 4.5 10.9 5.0 11.1 6.0 10.8 6.5 10.7 7.0 10.8 8.5 10.8 8.6 10.8 8.5 10.8 8.5 10.8 8.5 10.8 10.0 11.1 10.0 11.1 11.5 10.9 13.0 10.9 13.5 11.0 14.0 bottom Secchi Disk Reading (m) = 9.3 UTM Coordinates = 12W 0481757 Department of the coo	6. 4. 6
5.5 5.0 6.5 6.5 7.0 7.5 7.5 8.0 10.8 8.5 10.8 8.5 10.8 8.5 10.8 11.1 10.0 11.0	5.5 10.8 6.5 10.7 6.0 10.8 6.5 10.8 7.5 10.8 8.5 10.8 8.5 10.8 9.5 10.8 10.0 11.1 10.5 10.9 11.0 11.0 12.5 10.9 13.5 11.0 14.0 11.0 14.0 11.0 14.0 11.0 14.0 11.0	5.0 10.3 5.0 10.7 6.0 10.8 6.5 10.7 7.0 10.8 8.0 10.8 8.0 10.8 8.5 10.8 8.5 10.8 9.0 11.1 9.5 10.9 11.0 11.0 12.5 10.9 13.0 10.9 14.0 bottom Secchi Disk Reading (m) = 9.3 UTM Coordinates = 12W 0481757	5.5 10.3 5.6 10.7 6.0 10.8 6.5 10.7 7.0 10.8 8.0 10.8 8.0 10.8 8.5 10.8 9.5 10.8 10.0 11.1 10.0 11.0 11.5 10.9 12.0 11.0 14.0 bottom Secchi Disk Reading (m) = 9.3 UTM Coordinates = 12W 0481757 phr = 5.3 Coordinates = 12W 0481757	6.41
5.5 6.0 6.5 7.0 7.5 7.0 7.5 8.0 10.8 8.5 10.8 8.5 10.8 10.0 11.0 11.0 11.0 12.5 13.0 14.0 11.0	5.5 10.7 6.6 10.8 6.5 10.8 7.5 10.8 8.0 10.8 8.5 10.8 9.0 11.1 10.5 10.9 11.0 11.0 12.0 11.0 13.5 11.0 14.0 11.0 14.0 11.0 14.0 11.0 14.0 11.0 14.0 11.0 14.0 11.0	5.5 10.7 6.0 10.8 6.5 10.7 7.0 10.8 8.5 10.8 8.5 10.8 8.5 10.8 9.0 11.1 9.5 10.8 10.0 10.7 10.0 10.7 11.0 11.0 11.0 11.0 12.0 11.0 13.5 10.9 13.6 10.9 14.0 10.9	5.5 10.7 6.0 10.8 6.5 10.7 7.0 10.8 8.5 10.8 8.5 10.8 8.5 10.8 9.0 11.1 9.5 10.8 10.0 10.7 10.5 10.9 11.0 11.0 12.5 10.9 13.0 10.9 13.0 10.9 14.0 11.0 14.0 10.9 13.0 10.9 14.0 11.0 14.0 10.9 14.0 10.9	1 4 5 75
6.5 7.0 7.5 8.0 8.0 10.8 8.5 10.8 9.5 10.0 11.1 10.5 11.0 11.0 11.0 11.0 12.0 13.0 14.0 17.0 1	6.5 10.7 7.0 10.8 8.0 10.8 8.5 10.8 8.5 10.8 9.0 11.1 9.5 10.9 11.0 11.0 11.5 10.9 12.0 11.0 12.0 11.0 13.0 10.9 13.0 10.9 14.0 11.0 14.0 11.0 14.0 11.0 14.0 11.0 14.0 11.0 14.0 11.0 14.0 10.9	6.5 10.7 7.0 10.8 7.5 10.8 8.0 10.8 8.5 10.8 9.0 11.1 9.5 10.8 10.0 10.7 10.5 10.9 11.0 11.0 12.5 10.9 13.0 10.9 14.0 bottom Secchi Disk Reading (m) = 9.3 UTM Coordinates = 12W 0481757	6.5 10.7 7.0 10.8 8.0 10.8 8.0 10.8 8.5 10.8 9.5 10.8 10.0 11.1 10.5 10.9 11.0 11.0 11.5 10.9 13.6 10.9 13.6 10.9 14.0 10.0 14	14.5 7 7
7.5 8.0 8.5 9.0 10.0 10.0 11.0 11.0 11.0 11.0 12.5 13.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0	7.5 10.8 8.0 10.8 8.5 10.8 9.0 11.1 9.5 10.8 10.0 10.7 10.5 10.9 11.0 11.0 12.5 10.9 13.5 11.0 14.0 11.0 14.0 11.0	7.5 10.8 8.0 10.8 8.5 10.8 9.0 11.1 9.5 10.8 10.0 10.7 10.5 10.9 11.0 11.0 11.5 10.9 12.5 10.9 13.5 11.0 14.0 bottom Secchi Disk Reading (m) = 9.3 UTM Coordinates = 12W 0481757	7.5 10.8 8.0 10.8 8.5 10.8 8.5 10.8 9.0 11.1 9.5 10.8 10.0 10.7 10.5 10.9 11.0 11.0 12.5 10.9 13.0 10.9 13.0 10.9 13.0 10.9 14.0 11.0 14.0 bottom Seccil Disk Reading (m) = 9.3 UTM Coordinates = 12W 0481757 pH = 5.53 Coordinates = 12W 0481757 pH = 5.53	14.5
8.5 9.0 10.0 10.0 10.0 11.0 11.0 11.0 11.0 12.5 13.0 14.0 17	8.5 9.0 11.1 9.5 10.0 10.0 11.0 11.0 11.0 12.5 13.0 13.0 14.0 15.5 16.9 17.0 17.	8.5 10.8 9.0 11.1 9.5 10.8 10.0 10.7 10.5 10.9 11.0 11.0 11.5 10.9 12.6 10.9 13.6 11.0 14.0 bottom Secchi Disk Reading (m) = 9.3 UTM Coordinates = 12W 0481757	8.5 10.8 9.0 11.1 9.5 10.8 10.0 10.7 10.5 10.9 11.0 11.0 11.5 10.9 12.0 11.0 12.5 10.9 13.0 10.9 13.0 10.9 13.0 10.9 14.0 11.0 14.0 bottom Secchi Disk Reading (m) = 9.3 UTM Coordinates = 12W 0481757 per excellence of the second of the sec	4 4
9.0 9.5 10.0 10.0 10.5 10.0 11.0 11.0 12.0 13.0 14.0 17	9.0 11.1 10.8 10.8 10.8 10.8 10.8 10.8 10	9.0 11.1 9.5 10.8 10.0 10.7 10.5 10.9 11.0 11.0 12.0 11.0 12.5 10.9 13.0 10.9 13.0 10.9 14.0 11.0 14.0 bottom Secchi Disk Reading (m) = 9.3 UTM Coordinates = 12W 0481757	9.0 11.1 9.5 10.8 10.0 10.7 10.5 10.9 11.0 11.0 12.5 10.9 13.0 10.9 13.0 10.9 13.0 10.9 13.0 10.9 14.0 10.9 14.0 11.0 14.0 11.0 14.0 200tom	e e
10.0 10.5 11.0 11.0 11.5 11.0 12.5 13.0 14.0 17.0 17.0 17.0 17.0 17.0 17.0 17.0 17	10.0 10.7 10.5 10.9 11.0 11.0 11.5 10.9 12.5 10.9 13.0 11.0 14.0 11.0 14.0 bottom	10.0 10.7 10.5 10.9 11.0 11.0 11.5 10.9 12.6 10.9 13.0 10.9 13.5 11.0 14.0 bottom Secchi Disk Reading (m) = 9.3 UTM Coordinates = 12W 0481757	10.0 10.7 10.5 10.9 11.0 11.0 11.5 10.9 12.0 11.0 12.0 10.9 13.0 10.9 13.5 11.0 14.0 10.9 14.0 10.9	22 82
11.0 11.5 12.0 12.0 13.0 13.0 14.0 11.0	11.0 11.0 11.5 10.9 12.5 10.9 13.0 10.9 13.0 11.0 14.0 11.0 14.0 bottom	11.0 11.0 11.5 10.9 12.6 10.9 13.0 10.9 13.0 10.9 14.0 11.0 14.2 bottom Secchi Disk Reading (m) = 9.3 UTM Coordinates = 12W 0481757	11.0 11.0 11.5 10.9 12.0 11.0 12.5 10.9 13.0 10.9 13.5 11.0 14.0 bottom Secchi Disk Reading (m) = 9.3 UTM Coordinates = 12W 0481757 pH = 5.3 Coordinates = 12W 0481757	9.
11.5 10.9 12.5 10.9 13.0 10.9 13.5 11.0 14.0 14.0 14.0 14.0 14.0 14.0 14.0	11.5 10.9 12.0 11.0 12.5 10.9 13.0 10.9 13.5 11.0 14.0 bottom	11.5 10.9 12.0 11.0 12.5 10.9 13.0 10.9 13.5 11.0 14.0 bottom Secchi Disk Reading (m) = 9.3 UTM Coordinates = 12W 0481757	11.5 10.9 12.0 11.0 12.5 10.9 13.0 10.9 13.5 11.0 14.0 11.0 14.2 bottom Secchi Disk Reading (m) = 9.3 UTM Coordinates = 12V 0481757 pH = 5.53	!
12.5 13.0 13.5 11.0 14.0	12.5 10.9 13.0 10.9 13.5 11.0 14.0 11.0 14.0 bottom	12.5 10.9 13.0 10.9 13.5 11.0 14.0 11.0 14.2 bottom Secchi Disk Reading (m) = 9.3 UTM Coordinates = 12W 0481757	12.5 10.9 13.0 10.9 13.5 11.0 14.0 11.0 14.2 bottom Secchi Disk Reading (m) = 9.3 UTM Coordinates = 12W 0481757 pH = 5.53	က်
0.11 0.11 0.00	6	11.0 11.0 bottom sk Reading (m) = 9.3 cdinates = 12W 0481757	11.0 11.0 11.0 bottom sk Reading (m) = 9.3 dinates = 12W 0481757	
11.0	6	11.0 bottom sk Reading (m) = 9.3 cdinates = 12W 0481757	11.0 bottom sk Reading (m) = 9.3 dinates = 12W 0481757	
	- 1	bottom sk Reading (m) = 9.3 dinates = 12W 0481757	bottom sk Reading (m) = 9.3 dinates = 12W 0481757	

Φ
Q
$\overline{\alpha}$
~
ក
х
$^{\circ}$
-
à
×
ᇙ
~
m
~
×
-
٧,

	Carat Lake			Carat Lake			Jericho Lake			Interbasin One			Interbasin Two	_		Lake 01	
	Site W1-1			Site W1-2			Site W2		-100	Site W5			Site W6			Site W7	
	04-Sep-96			04-Sep-96			04-Sep-96			04-Sep-96			05-Sep-96			96-deS-90	
Depth	Dissolved	Temp.	Depth	Dissolved	Temp.	Depth	Dissolved	Temp.	Depth	Dissolved	Temp.	Depth	Dissolved	Temp.	Depth	Dissolved	Temp.
Œ	Oxygen	<u>ဂ</u> ်	(m)	Oxygen	ဉ့်	Œ	Oxygen	<u>ဂ်</u>	Ξ	Oxygen	<u>(</u>)	Ξ	Oxygen	<u>(</u> ၁	Ξ	Oxygen	(ွ)
	(mg/L)			(mg/L)			(mg/L)			(mg/L)			(mg/L)			(mg/L)	
0.0	0.0 11.4 7.0		0.0	0.0	7.0	0.0	10.7	8.0	0.0	11.6	8.0	0.0	0.0 11.2	0.9	0.0		5.0
Secchi Disk F	Secchi Disk Reading (m) = 3.5		Secchi Disk R	Secchi Disk Reading (m) = 3.5		Secchi Disk R	Secchi Disk Reading (m) = 4.0		Secchi Disk	Secchi Disk Reading (m) = 4.0		Secchi Disk F	Secchi Disk Reading (m) = nd		Secchi Disk F	Secchi Disk Reading (m) = 3.5	5
UTM Coordin	ates = 12W 0476	3775 7320780	UTM Coordin.	JTM Coordinates = 12W 0476775 7320780 UTM Coordinates = 12W 0478017 7320765 UTM Coordinates = 12W 04787539 7323695 UTM Coordinates = 12W 0478775 7323185 UTM Coordinates = 12W 0478759 UTM Coordinates = 12W 0478773 73211	017 7320765	UTM Coording	ites = 12W 0477.	539 7323695	UTM Coordin	1ates = 12W 0478	3742 7323185	UTM Coordin	rates = 12W 0478	8250 732194¢	S UTM Coordin	ates = 12W 047	8773 73211
pH = 6.44			pH = 6.47			pH = 6.41			pH = 6.38			pH = 6.94			pH =7.04		
Conductivity (uS) = 20	(uS) = 20		Conductivity (uS) = 13	uS) = 13		Conductivity (u.S) = 15	(S) = 15	_	Conductivity (US) = 13	(1.5) = 13		Conductivity (11S) = 20	(1.5) = 20		Conductivity (IIS) = 13	(1.5) = 13	

15	13	96.		(°C)		0.9	n) = 3.0	:3571 UTM Coordinates = 12W 0480131 7324808 UTM Coordinates = 12W 0480171 7319102 UTM Coordinates = 12W 0478713 731868		
Lake D5	Site W	deS-60			l/gm)	10.9	Secchi Disk Reading (m) = 3.0	dinates = 12		Conductivity (µS) = 15
			Depth	Ē		0.0	Secchi Dis	2 UTM Coor	pH = 6.86	Conductiv
			Temp.	ဉ်		m		0171 731910		
Lake D4	Site W12	03-Sep-96	Dissolved	Oxygen	(mg/L)	10.3	Secchi Disk Reading (m) = 3.8	nates = 12W 048		$(\mu S) = 21$
			Depth	Ξ		0.0	Secchi Disk I	UTM Coordir	pH = 7.94	Conductivity (µS) = 21
				ပ်		1	i	131 7324808		
Lake 05	Site W11	96-deS-80	Dissolved	(m) Oxygen	(mg/L)	10.3	Reading (m) = 4.5	rates = 12W 0480		$(\mu S) = 25$
			Depth	Ξ		0.0	Secchi Disk F	UTM Coordin	pH = 6.25	Conductivity (µS) = 25
			Temp.			5.0		8 732		
Lake 04	Site W10	08-Sep-96	Dissolved	Oxygen	(mg/L)	10.2	k Reading (m) = 5.0	inates = 12W 0479918 732;		$(\mu S) = 22$
			Depth	Œ		0.0	Secchi Disk F		pH = 6.79	Conductivity (
			Temp.	(၃)		0.9		JTM Coordinates = 12W 0479218 7322662 UTM Coordinates = 12W 0479762 7322571 UTM Coord		
Lake 03	Site W9	07-Sep-96	Dissolved	Oxygen	(mg/L)	0.0 10.3	Secchi Disk Reading (m) = 4.8	nates = 12W 04;		$(\mu S) = 23$
			Depth	Œ		0.0	Secchi Disk F	UTM Coordin	pH = 6.89	Conductivity (µS) = 23
			Temp.	ပ္ပ		5.0		9218 7322662		
Lake 02	Site W8	07-Sep-96	Depth Dissolved	Oxygen	(mg/L)	0.0 10.1	Secchi Disk Reading (m) = 4.0	ates = 12W 047		rs) = 33
			Depth	Œ		0.0	Secchi Disk R	UTM Coording	pH = 6.57	Conductivity (µS) = 33

Contwoyto Lake Site W14 66-Sep-96 Depth Dissolved Temp. (m) Oxygen (°C) (mg/L) Coordin Disk Reading (m) = 4.0 Secchi Disk Reading (m) = 4.0 DITM Coordinates = 12W 0481757 7318682 PH = 6.23	Site W14 Site W14 06-Sep-96 Dissolved Oxygen (mg/L) 11.3 eading (m) = 4.0	Temp. (°C) 6.0 0.0 1757 7318682
Conductivity (µS) = 13	5) = 13	

APPENDIX C PLANKTON

Appendix C1 Summary of phytoplankton and zooplankton collection data from sampled lakes during summer and fall, Jericho study area, 1996.

	200				Zooplankton	cton						Phytoplankton		
Lake	Site Date	ıte	MID	No. of	Area	Secchi Disk	Hanl	Aperture	Volume	Date	MTD	Secchi Disk	Q	Haul
	y		Coordinates	Replicates	Sampled	Depth	Depth	Area	Filtered		Coordinates	Depth	Hauls	Depth
					(m²)	(E)	(m)	(m²)	(m)			Œ		(E)
Carat Lake PL1-1	1-1 30-Jul-96		12W 0477900	က	0.014	5.6	9.01	0.13	0.378	24-Jul-96	12W 0478105	7	5	14.0
			7320598								7320814			
	04-Sep-96		12W 0476775	ო	0.014	3.5	10.5	0.13	0.441	04-Sep-96	12W 0476775	3.5	2	7.0
			7320780								7320780			
Carat Lake PL1-2	1-2 30-Jul-96		12W 0476300	ო	0.014	5.5	7.01	0.13	0.294	24-Jul-96	12W 0476636	7	S	14.0
			7320852								7320804			man and the first
	04-Sep-96		12W 0478017	က	0.014	3.5	10.5	0.13	0.441	04-Sep-96	12W 0478017	3.5	S	7.0
			7320765								7320765			
Jericho Lake PL2	.2 30-Jul-96		12W 0477614	ဇ	0.014	5.4	11.0	0.13	0.462	22-Jul-96	12W 0477614	4.5	ა	0.6
			7323497								7323497			
	04-Sep-96		12W 0477539	က	0.014	4.0	12.0	0.13	0.504	04-Sep-96	12W 0477539	4	တ	8.0
			7323695					and the second second		an oraș parave.	7323695			
Lake 01 PL4	.4 31-Jul-96		12W 0478773	က	0.014	0.9	8.01	0.13	0.336	31-Jul-96	12W 0478773	ဖ	Ŋ	8.51
			7311793					de se SPP est de la			7321179			
	96-deS-90		12W 0478773	က	0.014	3.5	10.5	0.13	0.441	96-Sep-96	12W 0478773	3.5	S	7.0
			7321179		_						7321179			
Lake D4 PL5	-5 03-Aug-96		12W 0478714	ო	0.014	5.1	10.0	0.13	0.420	27-Jul-96	12W 0480051	ø	5	12.0
			7319095	or - manufacture							7319032			
	03-Sep-96		12W 0480171	က	0.014	3.8	16.0	0.13	0.672	03-Sep-96	12W 0480171	3.8	5	8.0
			7319102	To the or other the							7319102			
Lake D5 PL6	.6 31-Jul-96		12W 0480048	က	0.014	5.7	9.51	0.13	0.399	26-Jul-96	12W 0478758	5.8	2	11.01
			7318619	W							7318735			
	96-deS-60		12W 0478713	ო	0.014	3.0	0.6	0.13	0.378	09-Sep-96	12W 0478713	m	5	0.9
			7318683							alaska as a da Ye	7318683			
Contwoyto Lake PL7	-7 03-Aug-96		12W 0481757	က	0.014	6.3	13.01	0.13	0.546	28-Jul-96	12W 0481757	10	2	15.01
			7318682							Longitures and	7318682			
	96-deS-90		12W 0481757	ღ	0.014	0.6	13.01	0.13	0.546	96-deS-90	12W 0481757	o	2	13.01
			7318682								7318682			a Alexander

¹ Haul depths 1.0 m off bottom. ² nd = no data.

Appendix C2 Density and biovolume of phytoplankton collected from sampled during summer and fall, Jericho study area, 1996.

Taxonomic Group	Site PL1-1	-	ake	+	Jericho Lake	Lake LC		Lake LD4		- 1	ontwoyto .			t Lake	-	Jericho Lake		Lake LO1	Lake	70	Lake		ntwoyto
ĺ			Site Dt	-	Cita DI 2	id office		Oito Di E			. 10 -4:0		lz	4	ŀ					1		- 1	
	Summer	တ	Summer Fall	1 1	Summer Fall	Summer Fall	1	Summer Fall	Summer Fall	- 1 - 1	Summer Fall	SE	Summer Fall	Fall Summer Fall	+	Summer Fall	Sum	Site PL4	Summer	Site PL5	Site PL6 Summer Fall	- 1	Summer Fall
BACILLARIOPHYTA (Diatoms)									ļ	1			-li				1	4				1	.il
Achnanthes detha					α.		۵.				-					۵		۵					
Achnenthes flexella Achnenthes lanceolete				۵.	۵	۵	۵.			0		. <u>a</u>			 a	. Δ.		۵.					
Achnanthes minutissima	ı	٠.	24	a.	2 P	. 2	<u>.</u>	5 P	6		8	-1001	ď	5,222	Δ.	461 P	- 8	a.	27.5	Q.		2.026	3
Acniantnes minutissima v.cryptocepala Amphora ovalis	. a.					۵.		<u>م</u>	a. a.	<u> </u>		a a					α	<u>α</u>	۵	۵.	0.0		<u>a</u>
Amphore sp. Anomosoneis sobsernohore v cuntherii		۵		_				ć			-	a .	(-		
Asterionella formosa		۰					•	7					a.a		a.			1,204		980			
Cocconeis pediculus	۵				ı	۵											۵.						
Cocconers placeman v. augypia Cocconers sp.	۵				ı.			0.				۰ م				Δ.							
Coscinodiscus denarius								۵.												<u>.</u> a			
Cyclotella conta	۵ ۵	5 c	٠.	a 3	8 + t	۲.	2 !	5	۵	۵.	4	2 6,81	,819 40,051	<u>a</u>	a.	1,149 34,097		13,621	36,800	8,980	۵	۵.	<u>ئ</u>
yclotella meneghiniana	-	L						ø		<u> </u>				3,349	14,359		2		22,882				14,261
Cyclotella ocellate	37	258	<u>a</u>	37	38		0	P 186	54	924	212 7	7 11,292	92 44,206	۵	15,389	P 15,398		3.841	۵	28 741	4 162 10	100 532 40	P 40 847 2724
Cymbelle lunete						c						or reco				<u>.</u>						-	
Cymbelle sp.	۵	_							۵	1			۵.		 a.	a.	۵.	۵	۵.		,	۵.	۵.
Diploneis marginestriata						۵		•									۵			r	1		
Diploneis sp.						ı				d .												<u> </u>	
Eurotia arcus v.bidans						·		٥		a.			a.				a					۵.	
Eunotia glacialis		۵.						_		۵	-	0	۵										
Eunotia naegelii				۵.			<u>a</u>				-	. a.			۵			۵					
Eunotia perpusita Eunotia serra v diadema								c				<u> </u>	ı										
Eunotia sp.		_	۵		a		12			7			a .		0	0		40 657		o	•		
Fregilerie arcus														L 	L	L		000		L	-	26	
Fragilana brevistrata Fracilana piopala								,				<u> </u>											
Fragilaria sp.	۵			_	<u> </u>	<u>a</u>	_	L aL								۵			<u> </u>				
Frustulia momboides v. amphipleuroides							_												. a			_	
Gomphonema angustatum		.			•		· · ·	Δ.		<u> </u>		70 pri 44	۵		<u>a</u>		_	a.		a		۵.	
Gomphonema gracile		۵	a	<u>n</u>	. а.	۵	<u> </u>	<u>a</u>	a.	<u>n</u>	a.		۵	ď	<u> </u>	. 0.	۵.	۵	۵		Δ.		Δ.
Gomphonema oiivaceum		0		_	n			<u> </u>		<u>a</u> .			ſ			۵	_		۵			<u> </u>	
Gamphoneme sp.	۵	-								L	ì.							ъ.				 a.	۵
Gyrosigma sp.										۵.							_					۰	
Melosira islandica Melosira italica	۵	4	. a.				_	a. a.		۵.	<u>.</u>	_ 	34 701	a.a	۵ ۵	a. a		٥	۵. ۵	۵. ۵		<u></u>	a . c
Melosira sp.					<u>a</u>	۵										<u>а</u> .	۵.			L			L
Metosira varians Navicula cryotocephala				_	<u>م</u>		۵	۵								ء م	_						
Navicula pupula						<u>D</u> .	_	٠.							L	L		L	۵.	1			
Navicula radiosa Navicula trinunctata	۵				0. 0							-				ь.		•		-			
Navicula viridula	-			_						 L	•	, 				<u>.</u>		D.	۵.	۵.			2,331
Nedium sp. Nitzschie amphibia										م د	•											۵.	
Nitzschia angustata									~	. a	۵.											<u> </u>	۵
Nitzschia filiformis					۵. (a.						Δ.						. a.	
Nitschie obtuse				· ·	1.	۵					-		م د			۵.							
Nitzschia palea							a .	۵	۵.	<u> </u>		<u> </u>	_		2			۵		Δ.	۵	α.	
Nitzschia sigmoidea	۵		a	_		c				<u>.</u>	í											α,	
Pinnularia brauniiv. amphicephala	-		-	۵.			۵.	_			L				م	ı	<u> </u>	۵	a.		<u>.</u>		۵
Pinnularie microstauron					•	-												. а.					
Rhizosolenia fongiseta				a	υā	a.	- 6	72 24		۵.	7.28					д. 13.26	<u>م</u>		٦ .	3		۵.	ا ۵
Stauroneis anceps	۵				2		a. 			۵		a.			 L	8,5		α.	33,028	LZ0.7¢		 	11,289
Stauroneis phoenicenteron						a.						- 757 6					۵.						
Surirella sp.					0.						<u>a</u>					0		c					ı.
Synedra acus																		L					
Synedra sp.	4	e,	so.	17	21 12	F	13	19 8	-	7	ď	1,779	79 1,462	2,448	7,592 4	1,553 4,879	3 2,128	4,386	12,107	3,142	377 3	3,345	۵
ibeliaria fenestrata							_				•	_			Δ			0					
beliaria floculosa	a.		2	49	9	e.	13	4	۵.	n	۵.	a.	۵	3,376	9	6,057 5,987	5,987 P		۵.	5,768	19,586 P 5,768 P 4,438 P	438	. a

						•	Density No.	/IIIIL.)												Piovolume (µm'/m'	-				
		ırat L	ake		Jericho Lake	ake	Lake LO	-	Lake LD4		Lake LD5	Contwo	Contwoyto Lake		Carat Lake	ake		Jericho Lake	-	ke LO1	Lake LD4	4	Lake LD5		Contwoyto Lake
Taxonomic Group	7	_	Site PL1-2		Site PL2	.2	Site PL4	_	Site PL5		Site PL6	is	Site PL7	Site PL1-1	7-7-	Site PL1-2	-5	Site PL2	ű	Site PL4	Site PL5	ž	Site PL6	9	Site PL7
The second secon	Summer	Fall Si	Summer		ummer		Summer	Fall Sum	Summer Fall	Sun	ner Fall	Summer	r Fall	Summer	Fall	Summer		Summer Fall	3	er Fall	Summer		Summer	_	Summer Fall
CYANOPHYTA (Cyanobacteria)																									
Anabaene sp		a v reries	8	a		113	4		Δ		۵					1 351		6 103	184			٥	387		
Aphanizomenon flos-aquae			1 2			 !	!			۰, ۵	-					3 477	. 15		-		۵	_	ğ a		
Aphanocapsa efechista	1,177	909			689	-		017 2,238		-		998	329	4,037	1,986			1,254 3,546			5,998	2.430	2.789		519 812
Aphanocapsa puichra						-	646		99 28	-	۵				1.884						2.245	759	i	۰	
Aphanothece clathrata	5,623	4,187		5,488		6,519 11		-		9 5,200		719	609	3,430	5,031		3,402 3,	186 4,368	8 6,407		4,155	2,340	2.756		733 335
Chroococcus limneticus				200		181			•			۵.			a.				_		۵				۵
Chroccoccus turgidus				۵		_		9							۵		_			431					
Dactylococcopsis linearis		۵.	۵,		۵	۵.	45	9 18	6			8			۵	۵		4	1.471	375	2 163	180			128
Gomphosphaena aponina								<u> </u>													i				
Gomphosphaeria lacustris				227		961		<u> </u>	161						1.453	2	2.589	2.43	_	۵.		1.379			
Gomphosphaeria naegelianum		Δ.	68			54	65	4	9				۵	8,073	۵		-	519 289			20.929	_		. 494	Δ.
Lyngbya limnetica			307	385	64				232 385	۵.	8			1,609	9.045		1 1 1			_	1.783	2 283	۵.	372	
Merismopedia glauca			23	_	143			88		_	73			138	1.078					362	م	847		223	
Mensmopedia tenuissima	1,177			615		323	200			34		24	۵	3		327 2		P 1.475	368			:	150		36 P
Microcystis flos-aquae		۵.		۵.				<u>a</u>							۵		_			0.					
Oscillatona limnetica	48	a.		_		24			34	23				645	۵			453				631	142		
Oscillatoria sp.		_				۵.												۵						-	
Phormidium sp.								_	a	۵.		515									۵		a	4,	515
Pseudanabaena sp.				-			. •	22	F											788		267			
Rediocystis geminute	37		۵			-	<u> </u>		۵			۵.		383		4			۵.						۵
Stigonema aerugineum				<u>_</u>		۵.		<u> </u>		_			4				0.	Δ.		۵					29 411
	8,980 7,676 3,846	7,676		8038	3,847 19,126	×	16,262 15	5,705 11.4	424 4,518	8 7.088	3 248	2.126	878	18.346	2047	10,753 15	15.533	25,257 26,975	5 25.479	18.080	37.273	11 116	6,199	740	2929 30558
Total Algal Density per Sample (No./mL)	9,848	9,105	4,351	10,483	4,336	-	٦	655 12,458	1	3 7,750	1,711	10,437	1,971						_		_			-	
Total Algal Biovolum per Sample (µm³/m³)												_		288,919	444,248 2	259,619 598	595,793 216	216,837 730,798	98 657,236	6 900,255	389,722	333,890	193,790 2-	241,346 633	633,867 312,237
lotal Number of Taxa per Sample (no./ml.)	2	22	9	-	9	25	4	2	73	ž	ď	3	5		-		_								

Appendix C3 Density and biomass of zooplankton collected from sampled lakes during summer and fall, Jericho study area, 1996.

																					10. 10. 10. 10. 10. 10. 10. 10. 10. 10.						
		Carat Lake	Lake		Jericho Lake	Lake	Lake LO1	7	Lake LD4		Lake LD5	Conty	Contwoyto Lake	•	Ca	Carat Lake		Jeric	Jericho Lake	ב	Lake LO1	Lak	Lake LD4	Lake	Lake LD5	Contwoyto Lake	o Lake
Taxonomic Group	Site PL1-1	1-1-1	Site PL1-2	1-2	Site PL2	2	Site PL4	4	Site PL5	_	Site PL6	S	Site PL7		Site PL1-1	35	Site PL1-2	Š	Site PL2	Š	Site PL4	ű	Site PL5	Site	Site PL6	Site PL7	7.7
-	Summer	_	Summer	Fall St	Summer	Fall Su	Summer	Fall Su	Summer Fal	II Summer	mer Fall	Summer	er Fall	Summer	Fall	Summer	Fall	Summer	Fall	Summer	r Fall	Summer	Fall	Summer	Fail	Summer	Fall
CALANOIDA					-	ļ	-			_																	
Epischura sp.	_								178												_	2,752					
Heterocope sp.	243	52			-			-					-	22,122	2,236	-	_		4,405				4,845	15,821	3,333	• • • •	
Leptodiaptomus sicilis	1,456	527	609	1,320	2	1,603	1,337 6,	6,698 4,	4,003 2,125	25 2,878	-	1,625	_	11,560		7,551	16,360	•	12,943	15,109	75,687	45,228	24,006	26,284	81,746	18,149	32,473
Calanoid copepodid	5				55						171	-	280	231				210				_			650	386	2,129
Calanoid naupiti	_	61		е		-					342	-	- 3		-	-	13	-	-	- 2		_		A	7.	900000000000000000000000000000000000000	20.000
Fotal Calanoida	1,780	613	. 685	1,337	276	1,644	1,494 6,821	**	4,181 2,170	70 3,026	8 4,555	5 1,727	4,581	33,913	6,436	15,715	***	1,995	17,348	31,970	88,901	47,980	28,851	42,106	85,803	18,535	34,602
CYCLOPOIDA																											
Acanthocyclops vernalis							157																				
Dicyclops bicuspidatus	1,760	1,631	152	3,832	166	82		658 7	712 90	295	5,037	7 2,031	9,553	20,788	-	1,800	47,389	_	1,017		8,132	8,473	1,077	3,487	62,298	27,423	118,149
Cyclopoid copepodid		184		258	166						3,793	3 102	3,826		233		327	210							489	128	489
Cyclopold nauplii		13,595	-	14,064		•	_		306	172	5,255	2	11,478	_	1,674		2,593								647		2,116
Fotal Cyclopoida	1,780	15,410	162	18,154	332	8	157	658 1,	1,018 90	467	14,085	15 2,133	24,857	20,788	21,179	1,800	50,309	2,261	1,017		8,132	8,473	1,077	3,487	63,434	27,551	120,754
CLADOCERA																											
Alonella sp.					•								17														26
Bosmina longírostris		_							68	74	78	1,066	-				_					371		30,	324	4,052	37,881
Daphnia longiremis	121							82	_				1,145	1,235			-							1,502	2,057	-	12,247
Daphnia middendorffiana			92	4	55	-	157		136	9		- 21	244			4,563		3,311			2,462	5,329	8,124			3,042	14,599
Holopedium gibberum	1,335		2,437	23			-				<u>ب</u>			1,107,736	g	1,746,875		-	88,358						22,284	-	
Total Cladocera	1,456		2,513		ĸ	<u>.</u> 82	472	123	178 13	138 222	311	1,117	4,403	1,108,971		1,751,438	38 21,430	3,311	88,358	234,919	3 7,386	5,700	8,124	1,809	24,665	7,094	64,824
ROTIFERA																											
Asplanchnopus sp.					68				-																		
Cephalobdella gibba			_		_	_				_			24														4
Conochilus unicornis	26,824	1,396	3,136		1,336		16,444	_	16,391 2,938	4			1,535	3,001	123	361	304	149	123	1,840	_	1,834	260	4,508	8	<u> </u>	36
Kellicottia longispina		4,042		3,035		267						169	2,827		360	23	270		24		2,639		562		£ 1	=	727
Keratella cochlearis		8,745	099	7,003	8		926	1,362	460 32	326 172	808		1,438		722		278	m		g 	112	9	27	9	29		118
Keratella quadrata													5														
Lecane luna			-	28													138										
Philodina sp.		882									3			****	2							_			7		
Polyarthra dolichoptera	735		495	320	890		926		919	517		169	1,413	480		323	8	8		902		900		337	37	9	99
Pompholyx suicate	CONSTRUCTION OF STREET	-	- 8	- 5	- 4			-*	-	- 7	- 8	- 8			-8	-	- 3		- 2	-	-8	- 32		400	- 4		0,0
Total Rotifera	XX)		4,291	13,889 ;			18,296 30,979	331						=	4		-4		1	::II	₩	+	Per		8	OF.	010
Total Density and Blomass	32 535 31,088	31 088	7.641	33 473	3.745	3 500	70.419 38.581	*	23.147 8.598	98 44.872	72 21.623	23 5.484	41 127	7 11 167 153	3 28 893	3 1 769,650	996 96	8 300	106.870	269.367	107,170	64,603	38 601	52 264	174 081	53.320	220,796

APPENDIX D PERIPHYTON

				Replicate	Area	Volume Sample	Volume Filtered	Volume Preserved	Chlorophyll a	Mean	AFDM	Mean
Stream	Site	Location	Date	ò	Sampled	Diluted to	For Chlorophyll a	For Periphyton	Concentration	Concentration Chlorophyll a mg/cm²	mg/cm ²	AFDM
2	2	12W 0478109	1 Aug 96	-	2	100	10 10	15	0.786	1.289±0.432	61.79	34.56±13.68
		7319979)	7	2	100	9	15	0.933		20.32	
Larger Title				m	2	100	æ	15	2.150		21.58	
C15	B2	12W 0478057	4 Aug 96	-	2	100	7	15	0.000	0.007±0.006	9.37	28.29±15.983
		7321511		2	2	100	80	15	0.019		15.43	
				က	5	100	თ	15	0.003		90.09	
018	B3	12W 0479225	1 Aug 96	-	5	100	10	15	0.201	0.512±0.351	33.43	23.59±6.650
		7322407		2	2	100	9	15	1.213		26.42	
				ო	5	100	9	15	0.122		10.92	
Jericho River	8	12W 0480404	1 Aug 96	-	5	100	10	15	0.596	0.739±0.355	10.83	24.09±9.970
		7325194		7	5	100	10	15	0.209		43.62	
				ო	5	100	9	15	1.414		17.83	

Appendix D2 Density of periphyton in streams in summer, Jericho study area, 1996.

New 1 New 2 New 3 New 3 <th< th=""><th>up Rep. 1 Rep. 2 Rep. 2 dubia 95347 20734 ora vguntherii P P ohala P P media P P nodis P P phus 3564 P phus P P phus P P phus P P</th><th>Rep. 3 P 17463 1554 1554 P</th><th>Mean 872</th><th></th><th>-1</th><th>3p. 2 Re</th><th>p. 3 Mear</th><th></th><th>Rep. 1</th><th>H</th><th></th><th>Mean</th><th>SE</th><th>Rep. 1</th><th>Rep. 2</th><th>_</th><th>Mean</th><th>SE</th></th<>	up Rep. 1 Rep. 2 Rep. 2 dubia 95347 20734 ora vguntherii P P ohala P P media P P nodis P P phus 3564 P phus P P phus P P phus P P	Rep. 3 P 17463 1554 1554 P	Mean 872		-1	3p. 2 Re	p. 3 Mear		Rep. 1	H		Mean	SE	Rep. 1	Rep. 2	_	Mean	SE
the continue of the continue o	dubia 95347 20734 ora v.guntherii P P P P P P P P P P P P P P P P P P	P 17463 1554 1554 P	872	206					α.	۵.				Í				
Fig. 18. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	1752 864 1752 864 95347 20734 143687 43195 2628 10937 P P P P P P P P P P P P P P P P P P P	17463 1554 1554 P	872	206							<u>a</u>			۵.	<u>a</u>	<u> </u>	_	
The control of the co	95347 20734 P P P P P P P P P P P P P P P P P P P	17463 1554 1554 P		~ .					۵	۵.	۵.			. 🕰	471	9216	3229	2997
1 1 1 1 1 1 1 1 1 1	95347 20134 143667 43195 2628 10937 P P P P P P 29785 P P 29785 P P 3504 P P 3504 P P 7883 P P P	7,403 1554 1554 P												:				
The control of the co	3456 143687 43195 2628 10937 P P P P P P P P P P P P P P P P P P P	1554 P								-	12562 P	14311 1805	3051 1805	24943		94900 P	81261	29380
1	3456 143687 43195 2628 10937 P P 29785 P P P 3504 12095			518	<u> </u>						914 P	305	305	<u>a</u>		۵.		
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	3456 143687 43195 2628 10937 P P 29785 P P P 29785 P P P 3504 12095									<u>a</u> (. (164			55	22
1 1 1 1 1 1 1 1 1 1	3456 P P 143687 43195 2628 10937 P P P P P P S183 P S183 P P S183 P P P P P P P P P P P P P P P P P P P								ı —	<u> </u>	1							
1,000 1,00	3504 12095	7557	07.07	G				100	í					۵				
Part Part	P P 143687 43195 2628 10937 P P P P P P P P P P P P P P P P P P P	400	0/91	n n n	- c	****		35/	<u> </u>	<u> </u>	<u>.</u>			1556	<u> </u>	<u></u> а	519	519
1	P P 143687 43195 2628 10937 P P P P P P P P P P P P P P P P P P P													۵				
Part Part	P	1997	1 5 5 5	155					<u>a</u> o		27.44		3	(6
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	P P P P P P P P P P P P P P P P P P P	<u> </u>	200	9					L	ı a	14/7	9.14 4.	41	 L Q	2824 P	1393 P	1606	838
1,156 1,156 1,267 1,156 1,267 1,268 1,269 1	143687 43195 2628 10937 P P P 29785 P P 29785 P P 3504 P P				a.			654	۵.					1147	941	3238	1775	734
14.00 1.00	143687 43195 2628 10937 P P P 29785 P 29785 P 3504 P 3504 P 3504 P	۵.				<u>а</u>	223		۵	۵	Δ.			<u>. </u>	۵			
House	143687 43195 2628 10937 P P P 29785 P 29785 P 3504 P 3504 P 3508 P	۵.								۵.	<u>a</u>			<u> </u>	1883		628	628
1, 10, 10, 10, 10, 10, 10, 10, 10, 10,	2628 10937 P P P P P P P P P P P P P P P P P P P	24575							29454	73281	10963	21233	5435		₾			
Marine Paris Par	3504 P P 29785 P P 5183 P P P P P P P P P P P P P P P P P P P	5050							460	5803	<u>a</u>	2088	1862	328	1459	498	762	352
intermedia	3504 P 29785 P 5183 P 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	. a							3221	۵ ۵	914 4	305	305	627 P	۵. ۵	<u> </u>	508	508
Secondary P P P P P P P P P	3504 P 29785 P 5183 P P 5183	. م			۵.				- d	_ a_		<u> </u>	5	328	_		109	109
1,500, 1,500,	3504 P 29785 P 5183 P 5183														_	<u>a</u>		
1,000 1,00	3504 P 29785 P 5183 P 5183																	
3504 P 1243	3504 P 29785 P 5183 P 5183																	
### 159766 P 1564 10446 9680 4557 10765 6823 1947 690 2576 1827 1698 646 655 34046 ### 29786 P 1564 10446 9680 4557 1978 6823 1947 690 2576 1827 1698 646 655 34046 ### 3504 12096 17083 19897 3988 P P P P P P P P P P P P P P P P P P	29785 P 5183 P 5183 P P P P P P P P P P P P P P P P P P P	2431						327	3221	1803	1827	2284	469	<u>.</u> .	۵	α.		
29785 P 1554 10446 9680 5428 4557 10766 6623 1947 650 2576 1827 1698 548 655 34046	29765 P 5183 P 5183 P P P P P P P P P P P P P P P P P P P		<u> </u>						۵	<u>_</u>	<u>.</u>		3	•	•	-		
Part Part	5183 3504 12095	1554			_				069	2576	1827	1698	548	655	34046	24873	19858	0966
Paris Pari	3604 12095	6215	3799					74						. a	6289	۵.	2196	2196
igomphus 3564 12095 17093 10097 100	3504 12095									-	(۵.	۵.		
Part Part	3504 PP									774	ı	258	258	Δ.		a		
Paris Pari	3804 P				ļ									<u>a</u>				
12095 17093 17093 17095 17093 17095 1709	3504 12095 P	<u> </u>			n.					۵.				<u>a</u>	۵.	۵.		
SSO4 12095 17083 10897 3968 P P P P P P P P P	3504 12095								, -					328	941	8220	3163	2535
Total Section 1975 1976 1976 1976 1976 1976 1976 1976 1976	۵.	7093		3968	α. α		<u> </u>				۵.				۵.	۵.		
Part Part	a .	2		8	-		. a.		۵	۵				۵.		۵		
Tools Besser Besser Base Besser Besse Besser Besser Besser Besser Besser Besser Besser Besser Besser Besser Besser Besser Besser Besser Besser Besser Besser Besser Besse Besser Besse Besser Besse Besser Besser Besser Besser Besser Besser Besser Besser Besser Besser Besser Besser Besser Besser Besser Besser Besser Besser Be	L				<u>а</u> . с		<u>a</u> .				(۵.	Q. (۵.		į
mphicephala The properties of the control of the c		L							Τ.		1. O.					4/33	15/8	15/8
mphicephala The part of the p						. a.					•							
mphicephala P P P T T P P P P T P <th< td=""><td>ייינג פרויים פולויינים</td><td></td><td></td><td></td><td><u>a</u></td><td>۵.</td><td></td><td></td><td>۵.</td><td><u>a</u> (</td><td>2627</td><td>928</td><td>876</td><td></td><td>۵</td><td>498</td><td>166</td><td>166</td></th<>	ייינג פרויים פולויינים				<u>a</u>	۵.			۵.	<u>a</u> (2627	928	876		۵	498	166	166
on P T	Tri escrit es									<u> </u>	L							
On P P P 37 37 P P P P P P P P P P P P P P	Pinnularia brauniiv. amphicephala				<u> </u>													
P P P 37 37 P P P P P P P P P P P P P P	Finnularia daccylus Pinnularia microstauron													Δ.	۵	Ω		
P P P P P P P P P P P P P P P P P P P	a.				112			37						٥.	. a.	-		
P P P P P P P P P P P P P P P P P P P	Stauroneis acuta Stauroneis ancens		•		Δ	a . a			٥	٥				0		0		
P P P P P P P P P P P P P P P P P P P	Stauroneis sp.				<u> </u>				L 	L				L 0L		r		
705 3108 3371 2026 2050 4922 980 2651 1177 6520 17865 14773 13053 3386 1065 7530 P P P P P P P P P P P P P P P P P P P					۵.		<u>а</u>		J.F. 780		and all Makes							
P P P P P P P P P P P P P P P P P P P	7002	3108							6520	17865	14773	13053	3386	1065	7530	P 2825	3807	1930
12/8280 2963/8 246288 263649 9336 110319 2/708 16668 18232 5080 63071 227826 130073 140323 47836 28302 42358	Д С										۵							
565.492 357.842 473.66 474.77 565.76 445.69 475.69 475.79 6841.66 446.79 476.70 476.79 476.79 476.79 476.79 476.79 476.70 476.70 476.70 476.70	1/0Sa 278280	- 4	263649 467147	9336 1 58576 4	10319 27		668 18232	5080 3 6810 6	63071 416760	227826	130073	140323	47836		42358	31758	34139	4229

Opinic Group Rep. 1 Rep. 2 Rep. 3 Mean SE Rep. 1 Rep. 2 Rep. 1 Rep. 2 Rep. 1 Rep. 2 Rep. 3 Rep. 3<				Stream TC1	7			ัก	Stream TC15	۔۔ا			Stre	Stream TO18				Je	Jericho River	_	
State Stat	Taxonomic Group	Rep. 1		Rep. 3	Mean	SE		Rep. 2		Mean		\vdash	2		lean	SER	Rep. 1 R	Rep. 2 F	Rep. 3	Mean	SE
p. of controls 670 0 P. 1554 3448 2896 729 P. 243 249 199 199 199 1954 3448 289 729 9 243 249 199 199 199 199 190 <td>CHLOROPHYTA (Green Algae)</td> <td></td> <td>•</td> <td></td> <td></td> <td>-</td> <td></td> <td></td>	CHLOROPHYTA (Green Algae)															•			-		
The continual	Ankistrodesmus falcatus	8760	Д.	1554	3438	2699	۵.	729	<u>.</u>	243	243					304	<u> </u>	<u> </u>		•	
Particular Par	Bulbochaete sp.	Δ.	3456	21/69	3742	2247	5666	<u>a</u>		889	889	_				580			<u> </u>		
1,122 1,722 1,723 1,524 1,576 5,75 5,	Closterium sp.	<u>a</u>		-															<u>a</u>		
1722 1728 1544 1678 675 946 6652 980 2663 1966 2301 774 P P P P P P P P P P P P P P P P P P	Coeloastrum printzii		<u>a</u>					1458	۵.	486	486							۵.	<u>n</u>		
Particular Par	Cosmanum bioculatum	1752	1728	1554	1678	62	446	6562	086 086	2663	1956	2301	774			676 1	1311		2491	1581	467
Continue	Cosmarium capitulum		1728		9/9	9/9	<u> </u>	-					<u> </u>								
Deficient P 1728 3108 1612 899 112 729 P 200 227 4 P P P 1464 1610 P P P P P P P P P P P P P P P P P P P	Cosmarium holmiense	2628	۵.	۵.	876	876															
the distinct series and the state of the sta	Cosmarium sp.	۵.	۵.				112			37	37	۵.						941		284	292
Part Part	Cosmanum undulatum		1728	3108	1612	868	112	729		280	227	460						941	498	289	183
Intervalue	Cylindrocystis sp.	62216	43273	32243	45911	8752	608	1094	980	961	83	920		_			164	1883	1494	1180	520
triangle P T728 523 P <	Elakatothrix qelatinosa								980	327	327	***				152		941		314	314
metatum paralle paralle <t< td=""><td>Euastrum bidentatum</td><td>_</td><td>1728</td><td>388</td><td>705</td><td>523</td><td>۵.</td><td>Δ.</td><td></td><td></td><td></td><td>۵.</td><td>-</td><td></td><td>_</td><td></td><td>164</td><td></td><td>1494</td><td>998</td><td>386</td></t<>	Euastrum bidentatum	_	1728	388	705	523	۵.	Δ.				۵.	-		_		164		1494	998	386
maintant p<	Euastrum dubium												774	- 1		258					
Honordaenium	Euastrum gemmatum								-			۵									
p. p. p. p. p. p. p. p. p. p. p. p. p. p	Golenkinka radiata						۵.	۵	α.												
150677 12381 12381 13281 13885 1988 1982 2428 P 1463 744 4601 1161 1181 1188	Gonatozvaon monotaenium	Δ.	Δ.	۵.													۵.				
p. matricelled 150677 50971 2336 7468 4128 25156 42136 23367 10983 5522 25531 14618 acuminatus 7008 1728 11037 1545 1004 10208 1961 4391 2922 2301 10058 2741 acuminatus 7008 12 2336 2336 1004 10208 1961 4391 2922 2301 10058 2741 quadricauda 7008 12 2336 2336 112 1215 486 486 486 2741 10058 2741 30chalum P P 2336 2333 112 P 486 486 486 467 467 467 30chalum P 2334 234 234 234 237 774 468 30chalum P 2334 234 234 234 234 234 234 234 234 234 234 <td>Morabotiaso</td> <td>26281</td> <td>11231</td> <td>2331</td> <td>13281</td> <td>6989</td> <td>1962</td> <td>2428</td> <td>۵</td> <td>1463</td> <td>744</td> <td></td> <td></td> <td></td> <td></td> <td>2309</td> <td></td> <td>۵.</td> <td>832</td> <td>277</td> <td>277</td>	Morabotiaso	26281	11231	2331	13281	6989	1962	2428	۵	1463	744					2309		۵.	832	277	277
150677 15087 15087 15088 14985 18869 4128 25156 42196 23807 10993 5522 25533 14618 2000 2336 11037 1545 1004 10208 1961 4391 2922 2301 10058 2741 2336 2336 2336 2336 4868 486 486 486 486 486 4870 2000 2336	Oedocopium so			}		}	1	 }		}	:					_	1024			341	341
right Figure of the control of the contro	Opposition airas	150577	50071	23308	74085	38670	4128				20003	_		_		5785 5785	_	12237 1	10960	7732	3884
State Stat	Occupies softania	3	-	0000	2	3	2				3	_		_		3				3	5
ecomis post of colored in	Octobris solitaria	0200	40067	10001	14001	1545	7007	- 000	- 1061	4304	2000					2546	2430	0440	2007	6170	21.40
Particular Par	Considerants spiration	20/0	200	0000	202	2	<u> </u>	0070	<u> </u>	- 000	7767						_		t 0	7	2
Particular Par	Scenedesmus acuminatus	4000			9000	3000	c		-				0	_				-	- 60	799	664
Schrodenia P P R R R R R R R R R R R R R R R R R	Copposition and additional	3			2007	2007	_	۵					-				•		3	5	3
schroeleri P	Schrodone sn							1458		486	486										
112 P P P P P P P P P	Ophoerocyctis schooleri			-				3646		1215	15.15	3869		_		1290	ď	57419	Δ.	19140	19140
112 P 37 37 77 4568 457 112 P 3204 2393 112 P 3204 2393 112 P 3204 2393 112 P 3204 2393 112 P P P P P T T T T T	Statistium bordeaum	۵	_			_		5		217	2	3				3		2	-	2	2
Particularium Particulariu	Stariastrim so	-	-									_	_		152	152		۵.	Δ.		
Parameter Para	Charractrum aniculatum					_									 !		328	2353	498	1060	649
Particular Par	Stautastrum aprovinguit	C				_	5			37	27		٥					3	200	9 9	185
Particular Par	Ciantasitum Diagram	7007	4720	c	7000	0000	71.	-		5	õ					1777	16.4		2	2 00	200
P P P P P P P P P P P P P P P P P P P	Staurastrum nexacerum	60	9 -	_	9204	7333											<u> </u>	<u>.</u>	_	3	267
Paradoxum Para	Staurastrum opirculare		L											<u> </u>				-			
Participation Participatio	Staurastrum paradoxum v panum					_	-	<u>a</u>	_			460	۵		153	153		1883	498	794	563
P P 9323 3108 3108 335 P 324 220 110 P P P P P P P P P	Staurodesmus triangularis					_	۵	. а	. a			115	. 🗅		38	88	328	_	_	109	109
Iden-Brown Algae) P P 166489 66531 11686 53468 47361 37505 13029 23540 69481 37002 Iden-Brown Algae) P P 1729 2917 P 1549 847 8398 774 1827 Indina v protuberans 31537 62201 43384 45707 8928 1729 2917 P 1549 847 8398 774 1827 sp. Inspinatum P 1458 980 813 429 774 1827 sp. Incompanyone P 1458 980 813 429 774 1774 sp. Incompanyone P 1458 980 570 294 1841 774 sack-rienini P 14954 9190 1897 4375 74 74 914 sack-rienini P 1485 1737 17043 18314 914	Zvaonema so	۵	_	9323	3108	3108	335	. a.	324	220	110		۵.			_	_				
Inden-Brown Algae) P	Total Chlorophyta	27596E		95563	166489	45531	11686	- 22	100 100 100 100 100 100 100 100 100 100	86	80	-			-	10484 6	6760	90834	28230	41941	25220
sigle P <td>CHRYSOPHYTA (Golden-Brown Algae)</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td><u>sc. </u></td> <td></td> <td><u>.</u></td> <td>ž</td> <td>-</td> <td></td> <td>-</td> <td></td> <td></td> <td>-</td> <td></td> <td>-</td> <td></td> <td></td>	CHRYSOPHYTA (Golden-Brown Algae)							<u>sc. </u>		<u>.</u>	ž	-		-			-		-		
rigens 31537 62201 43384 45707 8928 1729 2917 P 1549 847 8398 774 1827 idle rispinatum p 1458 980 813 429 774 1827 sp. D. D. on angulosum p 145 980 813 429 774 1774 non angulosum p 145 980 813 429 774 774 non angulosum p 1429 980 813 429 774 774 atospore p 14954 9190 1897 4375 77 74 1841 774 atospore 64076 6011 4662 41661 41954 9190 1897 4375 7376 11043 3144 9144	Dinobryon sociale		۵.																		
ularia v protuberans 31537 62201 43384 45707 8928 1729 2917 P 1549 847 8398 774 1827 iale trispinalum P 1458 980 813 429 774 1827 sp. 1176 3922 3922 3922 774 774 on angulosum P 14954 9190 189 570 294 1841 774 atospore 5435 6910 1895 435 74 74 74 atospore 64376 6914 69150 1890 437 11043 18314 914	Dinobryon divergens												_			305					
trispinatum sp. trispinatum sp. ton angulosum sp	Dinobryon sertularia v.protuberans	31537	62201	43384	45707	8928	1729	2917	_	1549	847	8338	_				(0	5648	2389	3484	1082
trispinatum P 1458 980 813 429 774 sp. sp. 1176 392 392 774 sp. pon angulosum P 142 4493 P 743 1379 ion angulosum P P 223 70 294 1841 774 sederleinii 33289 6911 4662 14954 9190 1897 4375 P 74 74 74 statospore 64036 6914 662 14954 9190 1897 4375 P 2091 1204 1104 914 Assase Foots Foots 6667 14864 9190 1887 4375 P 2091 1204 1104 914 Assase Foots Foots 14864 9190 1887 4375 914 914 914	Dinobryon sociale							<u>a</u>									<u> </u>				
sp. 11766 3922 3922 o. non angulosum p 112 4193 P 1415 1379 1379 non angulosum p 72 980 570 294 1841 774 non-derleinii 33289 6911 4662 14954 9190 1897 4375 P 74 74 11043 18314 914 atospore Adaze Kentst Radze 11425 11435 3146 914	Isthmochloron trispinatum						۵.		980	813	459		774		258	258		<u>a</u>			
D. D. D. T/2 4193 P 1435 1379 ion anguiosum P P 729 980 570 294 1841 774 ecderibrini 223 223 74 74 74 74 174 914 autospore 6901 4662 14954 9190 1897 4375 P 2091 1267 11043 18314 914 64376 64376 64376 6617 4662 14954 9190 1377 13776 14463 13314 914	Mischococcus sp.								11766	3922	3922										
ion angulosum P 774 1841 774 774 1841 174 223 223 223 223 1841 174 24 1841 174 24 1841 174 24 1841 174 24 1841 174 24 24 1841 174 24 24 24 24 24 24 24 24 24 24 24 24 24	Ophiocytium sp.						112	4193	۵.	1435	1379								۵.	_	
## PASSES 6911 4662 14954 9190 1897 4375 74 74 74 74 74 74 74	Pseudokephyrion angulosum			<u>a</u>				129	980	929	294	1841	774	_	872	534	491	941	498	643	149
atospore 33289 6911 4662 14954 9190 1897 4375 P 2091 1267 11043 18314 914 814 814 814 814 814 814 814 814 814 8	Stichogloea doederleinii						223			74											
64808 66440 48046 6645 7656 3655 3655 3655	Unidentified statospore	33289	6911	4662	14954	9190	1897			2091	_	-				5045	1147	2353	3238	2246	909
	Total Chrysophyta	64826	69112	48046	60661	6428	3961	\dashv	13726	10453					4				6125	6374	1417

Appendix D2 Concluded.

			Stream TC1				S	Stream TC15	15			Str	Stream TO18				Je	Jericho River		
Taxonomic Group	Rep. 1	Rep. 2	Rep. 3	Mean	SE	Rep. 1	Rep. 2	Rep. 3	Mean	SE	Rep. 1	Rep. 2 R	Rep. 3	Mean	SE	Rep. 1	Rep. 2	Rep. 3	Mean	SE
CRYPTOPHYTA (Cryptomonads)							1			┞		li-	1		1	╫	-∦-	ļ		
Cryptomonas ovata								980	327	327								Δ.		
Cryptomonas reflexa			_																	
Total Cryptophyta								086	327	327							-			
CYANOPHYTA (Cyanobacteria)											-									
Agmenellum thermale		<u>a</u>	۵.			892	2911	3922	2575	891		<u>د</u>	7309	2436	2436					
Anabaena sp.																				
Anacystis montana										-						37517	06365	_	47961	31146
Anacystis thermalis	T2012																52712	30886	37095	7863
Aphanizomenon flos-aquae	***										4141				** : *)
Aphanocapsa elachista	,		<u>a</u>			9817	266869		92229	87366		1299	е В	30433 3	30433			_		= 27.2
Aphanothece clathrata							26979		8993	8993	,,	30949				5406		8967	4791	2607
Chroococcus dispersus	29785	12095	15539	19140	5415	3681	11666	27453	14267	6984	۵		_				263562		23965	81358
Chroococcus turgidus	3504	Δ.	۵	1168	1168	<u>a</u>	2917		972	972	·-		10964		183	819	·	۵.	2469	2073
Dactylococcopsis sp.											_		_		547		_		1993	1993
Gomphosphaeria lacustris		13823		4608	4608		Δ.				_	1606			698					
Gomphosphaeria naegelianum	56066	<u>a</u>		18689	18689	<u>a</u>	"	305910	111692	97473					_	125821 8	849982 3		28221	217399
Lyngbya limnetica	967139	584003	825105	792082	111828			10785	25469		43253 1;	123022 7		57861 3	_		_	82197	0267	21778
Microcystis flos-aquae						۵	115935		38645	38645				_	161402				70022	60334
Nostoc commune		<u>a</u>			-					a and hide	4	42555			4185					
Oscillatoria sp.		_	26416	8805	8805	a.		11766	36491	30796	<u>a</u>					<u>a</u>	_	. a		2.2.0
Phormidium sp.						10140	90415	189233	96296	51792				_	26207					
Pseudanabaena sp.		22462	a.	7487	7487	10264		50915	46642	19885	2301	-					82610		114607	35476
Scytonema figuratum	21205		a.	2002	7068	2009		6863	2957	2037	-	30949 2	2741 1	11230	9891	_		26403	8801	8801
Stigonema mamillosum	<u>a</u>		۵			<u>a</u>														
Total Cyanophyta	1077699	1077699 632383	867060	859047	128614	36803	788935 (606847	477528	226545 4	49695 4	433286 62	621508 36	368163 16	168249 2	277035 17	1733852 6	626688 8	879192	439089
EUGLENOPHY I A (Green Flagellates)																				
Trachelomonas sp.							<u>a</u>	980	327	327										-!
Total Euglenophyta								980	327	327				e Total State						
PYRROPHYTA (Dinoflagellates)																				:
Gymnodinium uberrimum													_					war		
Peridinium sp.							_	_					_					۵.		
Unidentified cyst			1554	518	518		_	980	327	327		- 10 14-								
Total Pyrrophyta				518	518			980	327	327							- 55		4	
Algal Density per Sample (No. cells/cm²)	1983983	983983 1192275 1485329		1553862	231101	96816	1127816	883436	702689	311042 2	211277 8	818995 84	841386 62	623886 20	206406 3	47292 20	347292 2056609 843795	-	1082565	507674
Total Number of Taxa per Sample	49	49	53	90				90					- 10		2.0.2	8	P.			_

APPENDIX EBENTHIC MACROINVERTEBRATES

Appendix E1 Summary of lake benthic macroinvertebrate data collected from sampled lakes during summer, Jericho study area, 1996.

			UTM	Sample	Substrate
Lake	Date	Site	Coordinates	Depth (m)	Composition
Carat	24 July 96	P1-1	12W 0478105	16.0	silt
			7320814		
	23 July 96	L1-1	12W 0478662	1.0	sand
			7320899		
Carat	24 July 96	P1-2	12W 0476636	19.5	silt
			7320804		
	24 July 96	L1-2	12W 0476494	1.3	silt/gravel
	1		7320546		
Jericho	22 July 96	P2	12W 0477519	15.5	silt
			7323600		
	22 July 96	L2	12W 0479087	1.6	sand/silt
			7323575		
LO1	31 July 96	P4	12W 0478773	9.5	silt
			73211793		
	31 July 96	L4	nd¹	4.5	sand/silt
			•		1
LD4	27 July 96	P5	12W 0480051	16.0	silt
			7319032		
	27 July 96	L5	12W 0479594	0.5	silt/gravel
			7318962	i	: i
LD5	26 July 96	P6	12W 0478758	12.0	silt
			7318735		
	26 July 96	L6	12W 0478809	1.5	silt
	:		7318684		
Contwoyto	28 July 96	P7	12W 0481757	16.0	silt
	:		7318682		
	28 July 96	L7	12W 0481676	0.4	silt/sand/organic matter
			7318549		

¹ nd = no data

Appendix E2. Macroinvertebrates collected from littoral and profundal zones of lakes during summer, Jericho study area, 1996.

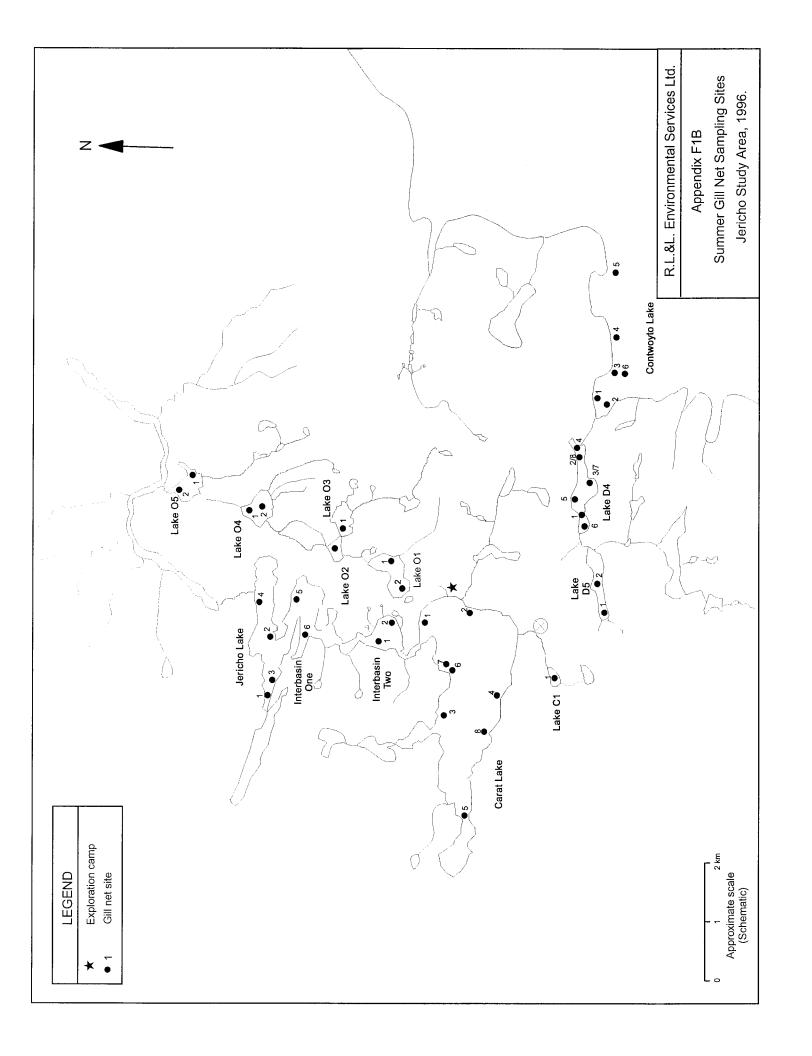
		Site L1-	Cara	t Lake	Site P1-			Site L1		at Lake	Site P1	-2		Site L2		o Lake	Site P2		7	Site L	Lak	e 01	Site P4	
Taxonomic Group	ļ <u>.</u>	Replicat	te		Replicat	te		Replica	te		Replica	ite	+	Replica	te	+	Replicat	le	T	Replica	te	ļ.,	Replicat	te
COELENTERATA Hydridae <i>Hydra</i>	1 1	2	3	1	2	3	1	2	3	<u> 1</u>	. 2	3	1	2	3	1	2	<u> </u>	1	2	3	1	2	3
ANNELIDA OLIGOCHAETA Enchytraeidae Lumbriculidae Naididae Tubificidae	3	19	9			1	5	1 33	2 2 40 2				4	3	2 2 1	1	1 5		4	1	2		1	1
ARTHROPODA HYDRACARINA		1		1					1				4	2	3	1			1			!	1	
CRUSTACEA AMPHIPODA Gammaridae <i>Gammarus</i>																				5				
CLADOCERA Chydoridae Daphnidae Daphnia Holodedidae Holopedilum Sididae Diaphanosoma	43				1	2	2						4	5 3	5 4			2						
COPEPODA Calanoida Cyclopoida Harpacticoida	16 8 4	5	4 1 66	2	5 2	5	5 6 6	1	1 1 6		4	35 8 1	2 8	8 11 22	7 6	2 2	1	2 1	1	16 3	6		2	3
OSTRACODA Species a Species b							i						4 . 4	14 2	2	8	1		. 2	1 5	1 2	i	1	3 4
INSECTA COLLEMBOLA Isotomidae Isotomurus															-				: - : :		-			
DIPTERA Chironomidae Chironomini Chironomus Corynocera Cryptochironomus Dicrotendipes Microtendipes			2						1			1	5	3			4	2	24	1	42			
Phaenospectra Polypedilum Diamesinae Pseudodiamnesa Orthocladiinae Abiskomyia Corynoneura Eukiefferiella Heterotrissocladius Orthocladius/Cricotopus Paracladius	16	1	1 2	7	3	14	1	1	5	2 2 4	1		10 14 1	7 16	4 68 4	1 5	19 4 2	2	1	62	1 1 1 1		1	4
Parakiefferiella Psectrocladius Zalutschia Tanypodinae			16				9		6	1			46	31	7	1			4	4				
Ablabesmyia Procladius Tanytarsini Paratanytarsus Rheotanytarsus Chironomidae Pupae Ceratopogonidae Simuliidae		13 1	1	1		2		7	29 3	1	1		2 6 73 9	36 69 4 12	24 37 12	2	11	1	7	1 13 15	17	39	6 32	10 27
TRICHOPTERA Limnephilidae <i>Grensia</i> Brachycentridae <i>Brachycentrus</i>									1					1					1					
MICROTURBELLARIA Tricladida			1						1				1	1	4					1				
MOLLUSCA PELECYPODA Sphaeriidae Sphaerium Pisidium				9		3				2							4		23 1	41	17 6	2	9 4	7 6
NEMATODA Fotal Number of Animals Fotal Number of Taxa	24 114 7	7 53 7	33 139 12	21 5	2 14 6	1 32 9	61 95 8	14 58 6	113 214 14	12 5	9	45 4	77 279 19	48 390 21	40 237 18	65 10	70 11	49 6	92 12	73 244 15	2 80 14	48 3	62 10	1 66 10

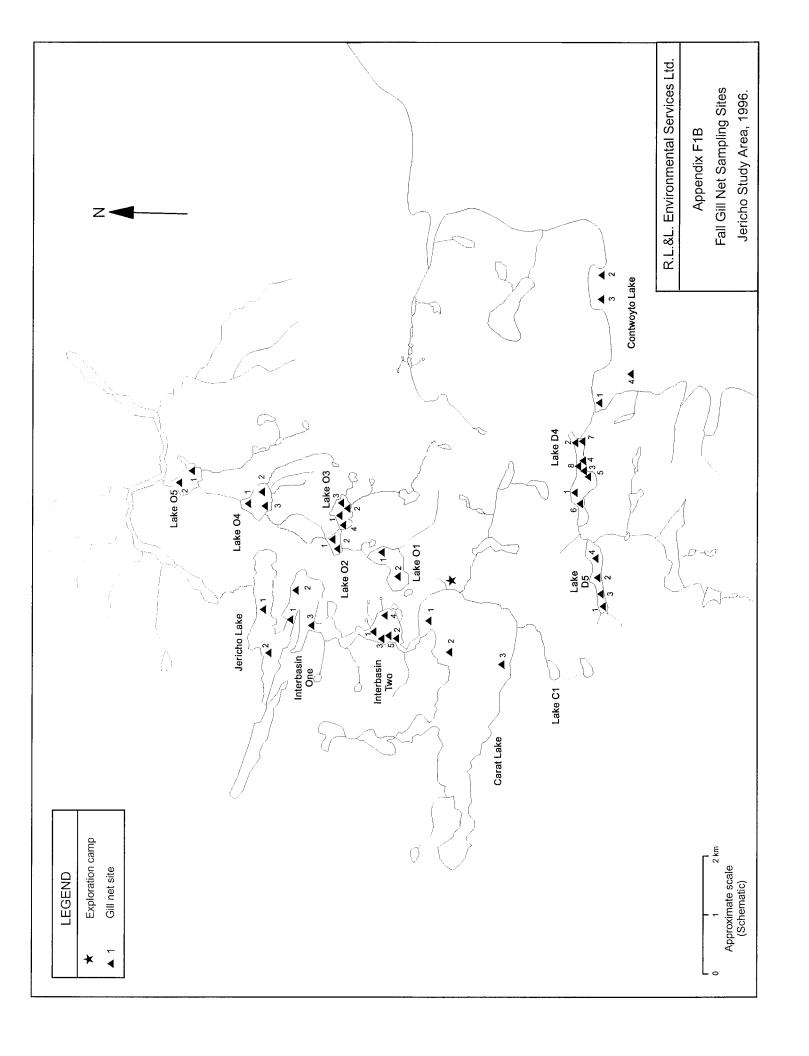
	3	Site L5			Site P5			Site L6		-	Site P6			Site L7			e Site P7	
Taxonomic Group		Replicate			Replicate			Replicat	e		Replicat		F	teplicati		F	Replicate	
SEL CATEDATA	1	2	3	1	2	3	1	2	3	1_	2	3	1	2	3	1	2	-
DELENTERATA Hydridae	li li			:			i											
Hydra	i						ļ										5	
										:								
NELIDA	- 1																	
OLIGOCHAETA							ĺ						40	•			•	
Enchytraeidae	8						2	1	2				48	8	4	6	5	
Lumbriculidae	4	7	29				3 5		3				8 208					
Naididae Tubificidae		4	16	2			25	5	9	. 7		2	8		12	1		
Tubincidae		4	10				23	3	9	i '		-			12	'		
THROPODA													!					
HYDRACARINA	16	7	5	2			5		2	2		1			5	6	3	
													i			ĺ		
USTACEA				į												ì		
AMPHIPODA										i			İ					
Gammaridae	'									i								
Gammarus							ļ			i			İ			i		
CLADOCERA																ĺ		
Chydoridae		1	17				9		1	!			İ	1		!	2	
Daphnidae		•	• •				"		•				i				-	
Daphnia				1						į			ļ			2	1	
Holodedidae							1						İ			:		
Holopedium					8		i						1			i		
Sididae													į			į		
Diaphanosoma							i			1			1			ļ		
										1						!		
COPEPODA				124	32	-			-	مدا		•					2	
Calanoida			4	2	72	7	21	55 10	7	10	68 29	3		1	8 4	3 27	3 8	
Cyclopoida Hamacticoida	64	2	2	1 4	12	15	137 5	19	24 1	6	29				4	21	0	
Harpacticoida		2	1	4		13	٥		1									
OSTRACODA							1						1			l		
Species a	: 72	1	33	12	105	1	93	27	33	1	6	3	32			2		
Species b		9	27	1		i	120	28	59	3	1	-	i			5	3	
		-		ı '						i			l					
ECTA	ï.									İ			ļ					
COLLEMBOLA	1						i			İ								
Isotomidae							İ						i					
Isotomurus	1			į	2		1											
DIDTEDA							İ			İ								
DIPTERA													İ	4		i	1	
Chironomidae		11		1		2	!	1					i	1		i	'	
Chironomini Chironomus		11	2	i		2	9		3				i					
Corynocera	1		-			-	"		3				i					
Cryptochironomus		2	1				3	4	2	İ			İ			1		
Dicrotendipes		-		1					-	!								
Microtendipes					2					ļ								
Phaenospectra			37	11	7	21			4	12	3	47				ĺ		
Polypedilum	5					1				İ			1					
Diamesinae	ľ						9	2										
Pseudodiamesa	1						i			İ								
Orthocladiinae													i			_		
Abiskomyia									4.4				04			2		
Corynoneura Eukiefferiella		35					1 11		11 1				91 32	4	5 19	2	4	
Eukiefferiella Heterotrissociadius	72	35 131	89	6		6	29	30	1 38	į		2	32	4	27	8	21	
Orthocladius/Cricotopus	12	131	18			J	6	50	50			-	35	1	6	8		
Paracladius Paracladius	- 1						1		1	1		1	55	•	-	16		
Parakiefferiella	1		28				1		•	l '			19		19	91	6	
Psectrocladius			14				13	5	11				43					
Zalutschia	1			i			1			ļ								
Tanypodinae	;						i			!								
Ablabesmyia	16	3			_		_	1	_	١	1					_		
Procladius	32	2	17	. 2	2	1	9	1	8	4	4	3			3	2	1	
Tanytarsini		22	10		20	7	14	•	7						20	2	5	
Paratanytarsus	24	23	12	12	28	1	11	2	1	İ			11		29	-	3	
Chironomidae Pupae		4	3	2	1	1	2	3	1	1		1	8	1	28	3	5	
Ceratopogonidae	i i	-	,	-	•	,		J	•	, '			"	•		-	-	
Simuliidae	É																	
TRICHOPTERA	3		į										İ					
Limnephilidae	ľ,																	
Grensia	4	1	3		1				3	:					4			
Brachycentridae																		
Brachycentrus	- 1													1				
	i i	_	_															
ROTURBELLARIA		6	7	_		2				!								
Tricladida				3												1		
LUCOA																		
LUSCA													!			l		
PELECYPODA Sphaeriidae							1				13					İ		
Sphaerium Sphaerium	24	2	2	8	3	16	1		3	- 5	13	12				2	11	
Spnaerium Pisidium	24	2	2	,	3	10	2	2	1			1				-	• •	
, 10.0.0			-				-	-	•			•						
*ATODA		57	22	1	5		6	2	3			1	184	83	78	22	14	
MATODA																	98	

Appendix E3 Summary of benthic macroinvertebrate data collected from streams, Jericho study area, 1996.

Stream	Site	UTM Coordinates	Date	Replicate No.	Water Depth (cm)	Water Velocity (m/sec)	Substrate Composition
C1	B1	12W 0478109	1 Aug 96	1	4	0.15	gravel/silt
		7319979		2	4	0.04	gravel/silt
				3	6	0.08	gravel/silt
C15	B2	12W 0478057	4 Aug 96	1 .	11	0	gravel/sand
		7321511		2	15	0	gravel/sand
				3	13	0	gravel/sand
O18	В3	12W 0479225	1 Aug 96	1	5	0.03	gravel/sand
		7322407		2	7	0.06	gravel/sand
				3	5	0.08	gravel/sand
Jericho River	B4	12W 0480404	1 Aug 96	1	18	0.02	gravel/silt
		7325194		2	23	0.06	gravel/silt
				3	19	0.03	gravel/silt

Appendix E4. Macroinvertebrates collected from streams during summer, Jericho study area, 1996.


Taxonomic Group	Stre	am C1, S Replicat		Stre	am C15, S Replicate		Stre	am O18, Si Replicate		Jerich	no River, S Replicate	
razonomie Group	1	2	3	1	2	3	1	2	3	1	2	3
COELENTERATA										Ī		
Hydridae				33	32	71	28	8	14	2		2
Hydra				33	32	/ 1	20	0	14	-		2
ANNELIDA												
OLIGOCHAETA				_	•			40				
Enchytraeidae Lumbriculidae	1		1	2	3 2	2 1	96	18 9	4 5	5 7	1	1 2
Naididae	20	16	122	54	23	75	73	41	81	25	8	5
Tubificidae	:			2	1	1	12	2	12	7	1	
ARTHROPODA HYDRACARINA	:		9				5	9	1	14	5	2
CRUSTACEA												
CLADOCERA							į			48		
Bosminidae Chydoridae				4	1		22	20	18	98	3	4
Daphnidae	i											
Daphnia	İ					1	4	16		2		1
Holodedidae										40		
Holopedium	1									40		
CONCHOSTRACA	İ									40		
COPEPODA	÷											
COPEPODA Calanoida	. 1				2	2				162	1	3
Cyclopoida	1		16	4	3	4	2	8	6	16	4	3
Harpacticoida	2		8	2	2	4	4	4	4	8		
OCTRACORA												
OSTRACODA Species a				3	3	11	92	188	66	30	13	10
Species a Species b	-			J	J	• 1	52	100	55	2	.5	,5
INSECTA	İ											
COLEOPTERA												
Dytiscidae										3	2	1
Oreodytes										"	-	•
DIPTERA			1									
Chironomidae						1						
Chironomini										2	•	2
Chironomus										4 11	2	2
Dicrotendipes Phaenospectra							10	10		5		3
Diamesinae				5				•		!	9	
Orthocladiinae										2		
Abiskomyia		3	8		_		:			3		
Corynoneura			4	9	6	16 2	23 4	16 12	30	2	1 9	1 2
Eukiefferiella Heterotrissocladius			1	2	5	2	9	5	20		3	2
Orthocladius/Cricotopus					Ū		6	1		5		1
Psectrocladius	3					9	2		4		8	1
Zalutschia						1	2					
Tanypodinae				1	1		8	42	27	20	10	3
<i>Ablabesmyia</i> Tanytarsini				1	1		0	42	21	20	10	3
Paratanytarsus				3			28	20	14	5	8	18
Empididae							İ					
Clinocera			2	_			_	5				
Hemerodromia	7	3	9	2			2	2	1			1
Simuliidae Tipulidae	′	3	9			2	3	2	'	ļ.		,
Dicranota				4	4	6	1	4				
Tipula				7	5	14	39	43	23	3	2	3
Chironomidae Pupae				1		1	2		2			
DI ECORTERA								4		8		
PLECOPTERA Perlodidae								4		!		
Cultus	j			1	2	1				:		
Nemouridae							52	32	5			2
Nemoura							12	1			2	1
TRICHORTERA						4				:		
TRICHOPTERA Limnephilidae						1				i		
Grensia				1			9	16	11			
MICROTURBELLARIA Tricladida	į			1		1	12	8				
MOLLUSCA												
GASTROPODA												
Valvatidae <i>Valvata</i>										1		
	1	61	283	21	11	29	114	28	16	12	10	9
NEMATODA	27	01										
NEMATODA	27	01	200	21						'-	,,,	
TARDIGRADA				1		2						
	27 61 7	83	460 10		106 17		686 28	572	364 20	592 29	99 19	81 23

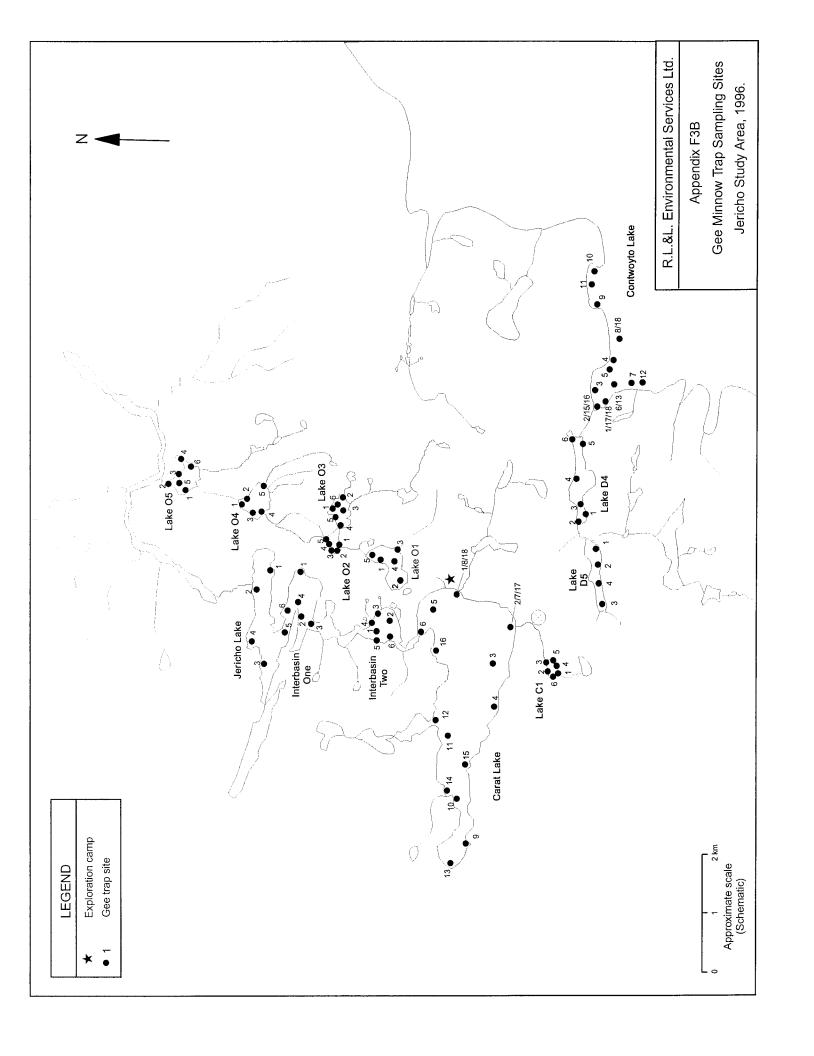

APPENDIX F

Lake	Site	Pull	UTM		Set	Pull	ed	Dept		Sub	strate	Set	Water
		1 434 - 377	Coordinates	Date	Time	Date	Time	Nearshore	Offshore	Nearshore	Offshore	Туре	Temperature (°C)
Carat	1	1	12W 0478260 7321275	23-Jul-96	17:50	24-Jul-96	13:40	3.0	7.5	sand	sand	Bottom	14
	2	1	12W 0478484 7320625	23-Jul-96	18:10	24-Jul-96	12:12	3.0	4.0	boulder	boulder	Bottom	14
	3	1	12W 0476897 7321155	24-Jul-96	14:15	25-Jul-96	10:15	3.0	5.0	boulder	silt	Bottom	14
	4	1	12W 0477517 7320334	24-Jul-96	16:30	25-Jul-96	11:00	3.0	12.0	boulder/silt	silt	Bottom	14
	5	1	12W 0476087 7320899	25-Jul-96	20:15	26-Jul-96	09:10	3.0	15.0	boulder	boulder	Bottom	13
	6	1	12W 0477790 7320972	25-Jul-96	19:50	26-Jul-96	11:00	2.0	8.0	boulder	silt	Bottom	13
	7	1	12W 0476710 7320828	29-Jul-96	11:10	29-Jul-96	13:40	1.8	4.0	boulder	boulder	Bottom	
	. 7	2	12W 0476710 7320828	29-Jul-96	13:40	29-Jul-96	16:17	1.8	4.0	boulder	boulder	Bottom	
	7	3	12W 0476710 7320828	29-Jul-96	16:17	29-Jul-96	20:45	1.8	4.0	boulder	boulder	Bottom	
	8	1	nd¹	29-Jul-96	11:36	30-Jul-96	10:30	6.0	11.0			Surface	
	1	1	12W 0478260 7321275	4-Sep-96	09:30	4-Sep-96	11:00	3.0	9.0	boulder	silt	Bottom	7
	1	2	12W 0478260 7321275	4-Sep-96	11:30	4-Sep-96	14:15	3.0	9.0	boulder	silt	Bottom	7
	1	3	12W 0478260 7321275	4-Sep-96	14:30	4-Sep-96	17:45	3.0	9.0	boulder	silt	Bottom	7
	2	1	12W 0477790 7320972	4-Sep-96	09:45	4-Sep-96	12:30	2.5	7.0	silt/sand	silt/sand	Bottom	7
	3	1	12W 0477304 7320461	4-Sep-96	14:00	4-Sep-96	17:00	2.5	16.0	boulder	silt	Bottom	7
Jericho	1	1	12W 0477299 7323693	22-Jul-96	11:57	22-Jul-96	18:00	2.5	12.0	cobble	silt	Bottom	15
!	1	2	12W 0477299 7323693	22-Jul-96	18:00	23-Jul-96	09:15	2.5	12.0	cobble	silt	Bottom	16
	2	1	12W 0478395 7323682	22-Jul-96	12:35	22-Jul-96	17:00	2.0	9.0	silt	silt	Bottom	15
	2	2	12W 0478395 7323682	22-Jul-96	17:00	23-Jul-96	12:30	2.0	9.0	silt	silt	Bottom	16
	3	1	12W 0477526 7323706	30-Jul-96	14:30	30-Jul-96	18:50	7.0	17.0	silt	silt	Bottom	
	4	1	12W 0478335 7323725	30-Jul-96	14:45	31-Jul-96	09:33	5.0	9.0	boulder	silt	Surface	16
	5	1	12W 0478722 7323215	31-Jul-96	10:45	31-Jul-96	13:00	6.5	10.0	sand/boulder	sand	Bottom	,,,
	5	2	12W 0478722 7323215	31-Jul-96	13:15	31-Jul-96	18:45	6.5	10.0	sand/boulder	sand	Bottom	
	5	3	12W 0478722 7323215	31-Jul-96	19:00	1-Aug-96	10:00	6.5	10.0	sand/boulder			
	6	1	12W 0478722 7323213	31-Jul-96	09:58	31-Jul-96	18:00	6.0		1	sand	Bottom	
	6	2	12W 0478150 7323158			1			6.4	sand	sand	Bottom	
İ	1	. 1		31-Jul-96	18:15	1-Aug-96	09:35	6.0	6.4	sand	sand	Bottom	
			12W 0478336 7323756	4-Sep-96	09:35	4-Sep-96	11:35	5.7	5.3	boulder	silt/sand	Bottom :	8
	1 1	2	12W 0478336 7323756	4-Sep-96	11:40	4-Sep-96	14:30	5.7	5.3	boulder	silt/sand	Bottom	
			12W 0478336 7323756	4-Sep-96	14:40	4-Sep-96	17:40	5.7	5.3	boulder	sand	Bottom	_
	2	1	12W 0477572 7323762	4-Sep-96	10:20	4-Sep-96	12:25	3.0	20.2	boulder	silt	Bottom	8
	2	2	12W 0477572 7323762	4-Sep-96	12:30	4-Sep-96	14:50	3.0	20.2	boulder	silt	Bottom	
nterbasin :	1	1	12W 0478307 7323214	5-Sep-96	09:30	5-\$ep-96	11:30	3.0	3.5	boulder/sand	sand/boulder	Bottom	
One	1	2	12W 0478307 7323214	5-Sep-96	11:35	5-Sep-96	14:10	3.0	3.5	boulder/sand	sand/boulder	Bottom	
	1	3	12W 0478307 7323214	5-Sep-96	14:15	5-Sep-96	17:00	3.0	3.5	boulder/sand	sand/boulder	Bottom	
i	2	1	12W 0478228 7323050	5-Sep-96	10:10	5-Sep-96	12:40	2.0	2.5	boulder	boulder/sand	Bottom	
	2	2	12W 0478228 7323150	5-Sep-96	12:45	5-Sep-96	14:45	2.0	2.5	boulder	boulder/sand	Bottom	
	3	1	12W 0478778 7323165	5-Sep-96	15:15	5-Sep-96	17:15	3.0	13.3	boulder	silt	Bottom	
nterbasin	1	1	12W 0478049 7322031	31-Jul-96	16:00	01-Aug-96	09:30	2.0	4.0	sand	sand	Bottom	17
Two	2	1	12W 0478252 7321992	31-Jul-96	16:30	1-Aug-96	09:50	4.0	11.5	sand	sand	Bottom	
	1	1	12W 0478188 7322143	5-Sep-96	09:50	5-Sep-96	11:30	2.0	8.0	boulder	silt	Bottom	6
	2	1	12W 0478250 7321946	5-Sep-96	10:15	5-Sep-96	12:00	2.0	9.0	silt	silt	Bottom	6
	3	1	12W 0478090 7322128	5-Sep-96	11:45	5-Sep-96	14:30	3.0	3.0	silt	silt/sand	Bottom	6
	3	2	12W 0478090 7322128	5-Sep-96	14:30	5-Sep-96	17:20	3.0	3.0	silt	silt/sand	Bottom	6
!	4	1	12W 0478117 7321620	5-Sep-96	12:15	5-Sep-96	14:45	3.0	6.0	silt/sand	silt/sand	Bottom	6
i	5	1	12W 0478064 7321946	5-Sep-96	15:00	5-Sep-96	17:40	3.0	3.0	silt	! silt	Bottom	6
C1	1	1	12W 0477551 7319422	3-Aug-96	11:54	4-Aug-96	09:22	2.0	9.0	boulder	silt	Bottom	14
ontwoyto	1	1	12W 0481569 7318804	28-Jul-96	15:10	29-Jul-96	10:45	4.0	12.0	silt/boulder	silt	Bottom	7
	2	1	12W 0481645 7318698	28-Jul-96	15:20	29-Jul-96	10:12	4.0	12.0	silt	silt	Bottom	7
	3	1	12W 0481855 7318671	29-Jul-96	11:12	30-Jul-96	10:16	14.0	8.0			Surface	6
1	4	1	12W 0482284 7318769	29-Jul-96	11:36	30-Jul-96	09:43	2.0	14.0	boulders	silt	Bottom	6
	5	1	12W 0482589 7318821	30-Jul-96	10:00	31-Jul-96	09:30	3.0	6.0	silt	silt	Bottom	_
	6 .	. 1	12W 0481895 7318544	30-Jul-96	10:40	31-Jul-96	10:15	4.0	5.0	boulder	boulder	Bottom	
	1	1	12W 0481549 7318801	6-Sep-96	09:35	6-Sep-96	11:30	3.0	9.0	boulder	boulder	Bottom	6
1	1	2	12W 0481549 7318801	6-Sep-96	11:35	6-Sep-96	14:00	3.0	9.0	boulder	boulder	Bottom	6
	2	1	12W 0482480 7318807	6-Sep-96	09:50	6-Sep-96	11:45	2.5	15.0	silt/sand/cobble		Bottom	6
	3	1	12W 0482247 7318925	6-Sep-96	12:00	6-Sep-96	14:43	4.0	12.0	boulder	silt	Bottom	6
:	3	2	12W 0482247 7318925	6-Sep-96	14:45	6-Sep-96	17:00	4.0	12.0	boulder	silt	Bottom	6
İ	4	1	12W 0482247 7318327	6-Sep-96	14:43	6-Sep-96	17:30	6.0	12.0	boulder	boulder	Bottom	6
D4	1	1	12W 0481819 7318327 12W 0479736 7318997	27-Jul-96	14:55	28-Jul-96	09:48	7.4		-			
J-7	2	1	12W 0479736 7318997 12W 0480510 7319152			1			12.0	silt	silt	Surface	16 16
1	1		12W 0480510 7319152 12W 0480113 7319091	27-Jul-96	15:20	28-Jul-96	11:20	11.0	9.0	silt	silt	Bottom	16
	3	1		4-Aug-96	14:38	4-Aug-96	16:30	3.0	3.0	boulder	. 100	Bottom	
	4	1	12W 0480509 7319067	4-Aug-96	15:10	4-Aug-96	17:10	3.0	10.0	boulder	silt	Bottom	
i	5	1	12W 0479695 7319212	4-Aug-96	17:00	4-Aug-96	18:30	4.0	10.0	silt 	silt	Bottom	
1	6	1	nd¹	4-Aug-96	17:40	4-Aug-96	18:20	5.0	11.0	silt	silt	Bottom	
İ	7	1	12W 0480076 7319047	6-Aug-96	09:30	6-Aug-96	17:10	6.5	18.6	boulders	silt	Bottom	
ļ	8	1	12W 0480395 7319211	6-Aug-96	09:50	6-Aug-96	17:10	7.1	12.7	boulders	silt	Bottom	
	1	1	12W 0479695 7319212	3-Sep-96	11:00	3-Sep-96	13:12	3.0	10.5	boulder	boulder	Bottom	8
	1	2	12W 0479695 7319212	3-Sep-96	13:13	3-Sep-96	15:30	3.0	10.5	boulder	boulder	Bottom	8
	1	3	12W 0479695 7319212	3-Sep-96	15:10	3-Sep-96	17:10	3.0	10.5	boulder	boulder	Bottom	
i	2	1	12W 0480562 7319254	3-Sep-96	11:25	3-Sep-96	13:38	4.5	10.0	boulder	silt	Bottom	8
	2	2	12W 0480562 7319254	3-Sep-96	13:40	3-Sep-96	15:00	4.5	10.0	boulder	silt	Bottom	
	3	1	12W 0480264 7319091	3-Sep-96	15:45	3-Sep-96	17:20	8.3	4.5			Bottom	
- !	4	1	12W 0480425 7319142	9-Sep-96	09:16	9-Sep-96	11:23	3.0	10.8	boulder/sand	silt	Bottom	
	4	2	12W 0480425 7319142	9-Sep-96	11:25	9-Sep-96	12:30	3.0	10.8	boulder/sand	silt	Bottom	
	5	1 :	12W 0480201 7319150	9-Sep-96	09:30	9-Sep-96	11:33	3.0	13.8	boulder	silt	Bottom	
	5	2	12W 0480201 7319150	9-Sep-96	11:35	9-Sep-96	12:53	3.0	13.8	boulder	silt	Bottom	
	5	3	12W 0480201 7319150	9-Sep-96	12:55	9-Sep-96			i				
		1		•			16:40	3.0	13.8	boulder boulder/silt	silt	Bottom	
	6		12W 0479639 7318918	9-Sep-96	10:10	9-Sep-96	11:40	2.0	14.7	boulder/silt	silt	Bottom	
	6	2	12W 0479639 7318918	9-Sep-96	11:43	9-Sep-96	14:00	2.0	14.7	boulder/silt	silt	Bottom	
1	7	1	nd¹	9-Sep-96	12:40	9-Sep-96	16:40	2.5	12.0	boulder	silt	Bottom	
	8	1	12W 0480161 7219093	9-Sep-96	14:20	9-Sep-96	17:30	16.0	1.5			Bottom	

Lake	Site	Pull	UTM		Set	Pull			th (m)	•	strate	Set	Water
	<u> </u>		Coordinates	Date	Time	Date	Time	Nearshore		Nearshore	Offshore	Type	Temperature (°C
D5	1	1	12W 0478735 7318677	26-Jul-96	16:10	27-Jul-96	09:15	3.0	10.0	boulder	silt	Bottom	14
	2	1	12W 0478884 7318819	26-Jul-96	16:20	27-Jul-96	10:00	7.0	7.0	silt	silt	Bottom	14
	1	1	12W 0478735 7318677	4-Aug-96	11:00	4-Aug-96	16:00	3.0	10.0	boulder	silt	Bottom	:
	2	1	12W 0478884 7318819	4-Aug-96	11:30	4-Aug-96	16:30	7.0	7.0	silt	silt	Bottom	ļ
	1	1	12W 0478713 7318683	3-Sep-96	10:56	3-Sep-96	13:30	11.0	3.0	silt	silt	Bottom	5
	1	2	12W 0478713 7318683	3-Sep-96	13:35	3-Sep-96	15:30	11.0	3.0	silt	silt	Bottom	
	1	3	12W 0478713 7318683	3-Sep-96	15:35	3-Sep-96	17:00	11.0	3.0	silt	silt	Bottom	
	2	1	12W 0479011 7318814	3-Sep-96	11:00	3-Sep-96	14:00	7.0	5.0	silt	silt	Bottom	5
	3	1	12W 0478713 7318683	3-Sep-96	14:20	3-Sep-96	16:00	1.0	7.5	boulder	silt	Bottom	
	3	2	12W 0478713 7318683	3-Sep-96	16:05	3-Sep-96	17:30	1.0	7.5	boulder	silt	Bottom	
	1	1	12W 0478735 7318677	9-Sep-96	09:25	9-Sep-96	11:30	4.5	11.0	boulder	silt	Bottom	6
	1	2	12W 0478735 7318677	9-Sep-96	11:35	9-Sep-96	13:30	4.5	11.0	boulder	silt	Bottom	6
	2	1	12W 0479011 7318814	9-Sep-96	09:35	9-Sep-96	11:40	4.5	5.0	silt	silt	Bottom	6
	2	2	12W 0479011 7318814	9-Sep-96	11:45	9-Sep-96	13:50	4.5	5.0	silt	silt	Bottom	6
	2	3	12W 0479011 7318814	9-Sep-96	13:55	9-Sep-96	15:30	4.5	5.0	silt	silt	Bottom	6
	2	4	12W 0479011 7318814	9-Sep-96	15:35	9-Sep-96	17:00	4.5	5.0	silt	silt	Bottom	6
	3	1	nd¹	9-Sep-96	10:00	9-Sep-96	11:50	1.5	9.3	boulder	silt	Bottom	6
	3	2	nd¹	9-Sep-96	11:55	9-Sep-96	13:40	1.5	9.3	boulder	silt	Bottom	6
	3	3	nd¹	9-Sep-96	13:45	9-Sep-96	15:45	1.5	9.3	boulder	silt	Bottom	6
	3	4	nd¹	9-Sep-96	15:50	9-Sep-96	17:20	1.5	9.3	boulder	silt	Bottom	6
	4	1	nd¹	9-Sep-96	14:20	9-Sep-96	15:55	2.5	4.0	boulder/silt	silt	Bottom	J
	4	2	nd¹	9-Sep-96	16:00	9-Sep-96	17:40	2.5	4.0	boulder/silt	silt	Bottom	
01	1	1	12W 0479059 7321833	3-Aug-96	11:19	9-3ep-96 4-Aug-96	09:50	5.0	8.0	sand/silt	sand/silt	Bottom	
٠,	2	1		_		4-Aug-96 4-Aug-96	I	1	1			1	
		1	12W 0478844 7321785	3-Aug-96	11:30	-	11:50	5.0	13.0	sand/silt	silt	Bottom	
	1		12W 0479051 7321977	6-Sep-96	09:16	6-Sep-96	11:25	2.0	4.0	boulder/silt	silt	Bottom	5
	1	2	12W 0479051 7321977	6-Sep-96	11:30	6-Sep-96	13:45	2.0	4.0	boulder/silt	silt	Bottom	5
	1	3	12W 0479051 7321977	6-Sep-96	13:50	6-Sep-96	16:50	2.0	4.0	boulder/silt	silt	Bottom	5
	2	1	12W 0478890 7321833	6-Sep-96	09:40	6-Sep-96	12:00	9.0	3.0	silt	boulder/sand	Bottom	5
	2	2	12W 0478890 7321833	6-Sep-96	12:05	6-Sep-96	14:15	9.0	3.0	silt	boulder/sand	Bottom	5
	_ 2	3	12W 0478890 7321833	6-Sep-96	14:20	6-Sep-96	17:30	9.0	3.0	silt	boulder/sand	Bottom	5
02	1	1	12W 0479301 7322790	2-Aug-96	12:46	3-Aug-96	09:14	5.7	6.8	sand	sand	Bottom	
	1 1	1	12W 0479307 7322817	7-Sep-96	09:30	7-Sep-96	11:30	1.0	2.5	silt	silt	Bottom	5
	1 ;	2	12W 0479307 7322817	7-Sep-96	11:30	7-Sep-96	13:30	1.0	2.5	silt	silt	Bottom	5
	1	3	12W 0479307 7322817	7-Sep-96	13:30	7-Sep-96	15:30	1.0	2.5	silt	silt	Bottom	5
	1	4	12W 0479307 7322817	7-Sep-96	15:30	7-Sep-96	17:00	1.0	2.5	silt	silt	Bottom	5
	2	1	12W 0479218 7322662	7-Sep-96	09:40	7-Sep-96	11:45	2.0	6.5	silt	silt	Bottom	5
	2	2	12W 0479218 7322662	7-Sep-96	11:50	7-Sep-96	13:50	2.0	6.5	silt	silt	Bottom	5
	2	3	12W 0479218 7322662	7-Sep-96	13:50	7-Sep-96	15:50	2.0	6.5	silt	silt	Bottom	5
	2	4	12W 0479218 7322662	7-Sep-96	15:50	7-Sep-96	17:10	2.0	6.5	silt	silt	Bottom	5
О3	1	1	12W 0479586 7322601	2-Aug-96	13:00	3-Aug-96	10:00	2.0	5.0	boulder	sand	Bottom	16
	1	1	12W 0479608 7322491	7-Sep-96	09:20	7-Sep-96	11:25	1.7	4.8	cobble/boulder	silt	Bottom	6
	1	2	12W 0479608 7322491	7-Sep-96	11:30	7-Sep-96	13:30	1.7	4.8	cobble/boulder	silt	Bottom	6
	1	3	12W 0479608 7322491	7-Sep-96	13:35	7-Sep-96	17:15	1.7	4.8	cobble/boulder	silt	Bottom	6
	2	1 1	12W 0479653 7322503	7-Sep-96	09:40	7-Sep-96	11:40	2.0	4.8	silt/cobble	silt	Bottom	6
	3	1	12W 0479772 7322681	7-Sep-96	12:15	7-Sep-96	13:45	2.0	5.0	boulder	silt	Bottom	6
	4	1	12W 0479608 7322491	7-Sep-96	14:15	7-Sep-96	17:40	2.0	4.0	cobble/silt	silt	Bottom	6
04	1	1	12W 0479733 7324101	1-Aug-96	11:50	2-Aug-96	09:20	6.0	8.5	sand	sand	Bottom	······
-	2	1	12W 0479751 7323853	1-Aug-96	11:50	2-Aug-96	10:30	3.1	6.0	sand	sand	Bottom	
	1	1	12W 0479592 7323311	8-Sep-96	09:27	8-Sep-96	11:15	3.0	3.0	silt/sand	silt/sand	Bottom	5
	1	2	12W 0479592 7323311 12W 0479592 7323311	6-Sep-96	11:20	8-Sep-96		3.0	3.0	į į	silt/sand	!!!	5 5
	1	3	12W 0479592 7323311 12W 0479592 7323311	•	!		14:15			silt/sand		Bottom	5 5
	,	1	12W 0479592 7323311 12W 0479779 7323810	8-Sep-96	14:20	8-Sep-96	17:10	3.0	3.0	silt/sand	silt/sand	Bottom	5
	2			8-Sep-96	09:37	8-Sep-96	11:30	3.0	3.0	silt/sand	silt/sand	Bottom	5
	2	2	12W 0479779 7323810	8-Sep-96	11:35	8-Sep-96	14:30	3.0	3.0	silt/sand	silt/sand	Bottom	5
OF	3	1	12W 0479918 7323571	8-Sep-96	15:05	8-Sep-96	17:30	2.5	5.0	silt/sand	silt/sand	Bottom	5
O 5	1 1	1	12W 0480183 7324800	1-Aug-96	13:15	2-Aug-96	10:00	2.0	6.5	sand	sand	Bottom	16
	2	1	12W 0480033 7324790	1-Aug-96	13:25	2-Aug-96	10:30	2.0	4.6	sand/boulder	sand	Bottom	16
	1	1	12W 0480244 7324847	8-Sep-96	09:30	8-Sep-96	11:30	2.0	4.5	silt	silt	Bottom	4
	1	2	12W 0480244 7324847	8-Sep-96	11:30	8-Sep-96	14:50	2.0	4.5	silt	silt	Bottom	4
	1	3	12W 0480244 7324847	8-Sep-96	14:50	8-Sep-96	16:50	2.0	4.5	silt	silt	Bottom	4
	2	1	12W 0480140 7324958	8-Sep-96	09:40	8-Sep-96	11:40	2.0	4.8	boulder	silt	Bottom	4
	2	2	12W 0480140 7324958	8-Sep-96	11:40	8-Sep-96	15:00	2.0	4.8	boulder	silt	Bottom	4
	2	3	12W 0480140 7324958	8-Sep-96	15:00	8-Sep-96	17:00	2.0	4.8	boulder	silt	Bottom	4
Control	1	1	12W 0466974 7321082	4-Aug-96	18:00	5-Aug-96	10:15	2.0	6.0	boulder	silt	Bottom	
	2	1	12W 0467306 7321019	4-Aug-96	18:30	5-Aug-96	11:30	3.0	8.0	boulder	silt	Bottom	
	1	2	12W 0466974 7321082	5-Aug-96	10:15	5-Aug-96	15:40	2.0	6.0	boulder	silt	Bottom	
	1	3	12W 0466974 7321082	5-Aug-96	15:40	5-Aug-96	17:15	2.0	6.0	boulder	silt	Bottom	
	2	2	12W 0467306 7321019	5-Aug-96	11:30	5-Aug-96	15:55	3.0	8.0	boulder	silt	Bottom	
	2	3	12W 0467306 7321019	5-Aug-96	15:55	5-Aug-96	17:35	3.0	8.0	boulder	silt	Bottom	
	3	1	12W 0467541 7320893	5-Aug-96	12:45	5-Aug-96	16:05	3.5	5.0	boulder	silt	Bottom	
	3	2		-		- 1		!					
			12W 0467541 7320893	5-Aug-96	16:05	6-Aug-96	09:00	3.5	5.0	boulder	silt	Bottom	
	4	1	12W 0467255 7321129	5-Aug-96	13:10	5-Aug-96	15:45	5.0	14.0	sand	silt	Bottom	
	4	2	12W 0467255 7321129	5-Aug-96	15:45	6-Aug-96	09:45	5.0	14.0	sand	silt	Bottom	
	3	3	12W 0467541 7320893	6-Aug-96	09:00	6-Aug-96	16:25	3.5	5.0	boulder	silt	Bottom	
	4		12W 0467255 7321129	6-Aug-96	09:45	6-Aug-96	16:40	5.0	14.0	sand	silt	Bottom	

¹ nd = no data.

Appendix F2 Number of fish captured by gill net sampling and catch-per-unit effort values during the summer and fall, Jericho study area, 1996.


Session	Lake	Site	Set Type	Time (h)	Effort (100m²/12h)	Number	CPUE'	Arctic C Number	CPUE	Number	Trout CPUE	Number		Scu Number	
Summer	Carat	1	Bottom	19.8	3.6	3	0.8	1		8	2.2	3	0.8		
		2	Bottom	18.0	3.3	2	0.6			10	3.0	2	0.6 2.2		ļ
		3	Bottom	20.0	3.6	1	0.3			3 12	0.8 3.6	8	2.2		ļ
		4 5	Bottom Bottom	18.5 12.9	3.4 2.4	2	0.8			11	4.7				
		6	Bottom	15.2	2.8	3	1.1			15	5.4	7	2.5		ļ
		7	Bottom	9,6	1.7	1	0.6			2	1.1	7	4.0		į
		8	Surface	22.9	4.2	4	1.0			11	2.6	-			
		Total	B-11	136.9	25.0	16	0.6	-		72 12	2.9 3.4	27	1.1	ļ	-
	Contwoyto	1 2	Bottom Bottom	19.6 18.9	3.6 3.4	1	0.3			5	1.5			1	
		3	Surface	23.1	4.2	i	0.2			5	1.2		1	1	
		4	Bottom	22.1	4.0	•		ĺ		12	3.0		1		
		5	Bottom	23.5	4.3					14	3.3		į		
		6	Bottom	23.6	4.3	2	0.5			6	1.4		i		
		Total		130.7	23.8	4	0.2			54	2.3	-	0.0	ļ	
	Interbasin One	5	Bottom	22.8	4.1		0.2	ļ		11 5	2.7 1.2	1	0.2		
		6 Total	Bottom	23.4 46.1	4.3 8.4	1	0.2 0,1			16	1.9	2	0.2	!	
	Interbasin Two	1	Bottom	17.5	3.2	<u> </u>		ļ		13	4.1	3	0.9	i	
	III.CIDUUIII III	2	Bottom	17.3	3.2	1				15	4.7		i	į	
		Total		34.8	6.4	i				28	4.4	3	0.5	<u> </u>	
	Jericho	1	Bottom	21.3	3.9	22	5.7	İ		10	2.6		!	i	
		2	Bottom	23.9	4.4	6	1.4 1.3			24	5.5 3.8				
		3 4	Bottom Surface	4.3 18.8	0.8 3.4	i '	1.3			, ,	3.0				
		Total	Guilace	68.3	12.5	29	2.3			37	3.0			1	
-	LC1	1	Bottom	21.5	3.9	 		1		11	2.8	T	1		T
		Total		21.5	3.9					11	2.8	1			
	LD4	1	Surface	18.9	3.4	8	2.3			13	3.8			1	
		2	Bottom	20.0	3.6	4	1.1			8	2.2			-	
		3	Bottom	1.9 2.0	0.3 0.4	1 8	2.9 21.9			1	2.7		1		
		5	Bottom Bottom	1.5	0.4	"	21.9			'	2.,				
		6	Bottom	0.7	0.1	1					-				
		7	Bottom	7.7	1.4	1	0.7			3	2.1		[İ	
		8	Bottom	7.3	1.3	5	3.7								
	<u>-</u> -	Total	- 	59.9	10.9	27	2.5	 		25	2.3			 	-
T	LD5	1	Bottom	22.1	4.0	10	2.5			11	2.7 1.7	-			
		2 Total	Bottom	22.7 44.8	4.1 8.2	19 29	4.6 3.6	1		18	2.2	-			
-	EO1	10tai	Bottom	22.5	4.1	18	4.4			2	0.5	+		1	0.2
		2	Bottom	24.3	4.4	21	4.7			4	0.9				
		Total		46.8	8.5	39	4.6	i		6	0.7			1	0.1
	LO2	1	Bottom	20.5	3.7					1	0.3	4	1.1		
		Total		20.5	3.7			-	0.3	1 7	0.3	1	0.3		<u> </u>
	LO3	1 Total	Bottom	21.0 21.0	3.8 3.8	1	0.3 0.3	1	0.3 0.3	7	1.8 1.8	1	0.3		
	LO4	Total 1	Bottom	21.5	3.9	7	1.8	 '	0.3	1	0.3	+- -	0.3	 	
	204	2	Bottom	22.7	4.1	i	0.2			4	1.0	4	1.0		
		Total		44.2	8.1	8	1.0			5	0.6	5	0,6	-	
	LO5	1	Bottom	20.8	3.8			5	1.3	11	2.9	1	0.3	İ	
		_2	Bottom	21.1	3.8	1	0.3	2	0.5	6	1.6	2	0.5		
		Total		41.8	7.6	3	0.1 2.2	7	0.9	17 48	2.2 35.1	3	2.9	-	
Fall	Carat	1 2	Bottom Bottom	7.5 2.7	1.4 0.5	1	2.0			2	4.0	1	2.5		
		3	Bottom	3.0	0.5	'				2	3.7				
		Total		13.2	2.4	4	1.7			52	21.5	4	1.7		}
	Contwoyto	1	Bottom	4.3	0.8	1									T
		2	Bottom	1.9	0.3										
		3	Bottom	5.0	0.9					1	1.1				
		4 Total	Bottom	3.2 14.4	0.6 2.6					1	0.4				
	Interbasin One	1	Bottom	7.3	1.3	7	5.2			3	2.2	2	1.5		
	interbasin One	2	Bottom	4.5	0.8	1	1.2			2	2.4	4	4.9		İ
		3	Bottom	2.0	0.4										
		Total		13.8	2.5	8	3.2			5	2.0	6	2.4		
	Interbasin Two	1	Bottom	1.7	0.3										1
		2	Bottom	1.8	0.3			1		1	1.0	1			
		3	Bottom Bottom	5.6	1.0					1	1.0	1			1
		4 5	Bottom	2.5 2.7	0.5 0.5							1			
		Total	-200111	14.2	2.6					1	0.4		L		<u></u>
	Jericho	1	Bottom	7.8	1.4	1	0.7			6	4.2				
		2	Bottom	4.4	0.8	8	10.0			4	5.0	1			
	151	Total	D-4:	12.2	2.2	9	4.0	ļ		10	4.5	+		-	
	LD4	1 2	Bottom Bottom	6.5 3.5	1.2 0.6	2	1.7			1	0.8 1.6				
		3	Bottom	1.6	0.6	1	3.5	1		1	3.5	1			1
		4	Bottom	3.2	0.6	4	6.9			i	1.7	1			
		5	Bottom	7.2	1.3	5	3.8				1	1			
		6	Bottom	3.8	0.7	_									
		7	Bottom	4.0	0.7	2	2.7	1		,					1
}		8 Total	Bottom	3.2	0.6	1 15	1.7 2.5			1 5	1.7 0.8	1			
	LD5	Total 1	Bottom	32.9 9.9	6.0 1.8	15 11	6.1	+		1	0.6	+	-	 	
İ	200	2	Bottom	10.2	1.9	4	2.2			'		1			ĺ
ļ		3	Bottom	10.2	1.9	1									
		4	Bottom	3.2	0.6	1						1			1
		Total		33.5	6.1	15	2.5	ļ		1	0.2	+	6.7		1
	LO1	1	Bottom	7.4	1.3	15	11.1			2 12	1.5 8.6	1	0.7		1
		2 Total	Bottom	7.7 15.1	1.4 2.7	12 27	8.6 9.8			14	5.1	1	0.4		İ
	LO2	Total 1	Bottom	15.1 7.5	1.4	1	0.7	-		14	J. 1	+ '-	0.4	+	
	LUZ	2	Bottom	7.4	1.4	3	2.2		İ	2	1.5	3	2.2		1
		Total	Dodom	14.9	2.7	4	1.5		1	2	0.7	3	1.1		
	LO3	1	Bottom	7.7	1.4	4	2.8			4	2.8	T-		1	
1		2	Bottom	2.0	0.4	1				1	2.7				
1		3	Bottom	1.5	0.3		1			1	3.7				
		4	Bottom	3.4	0.6							1			
		Total		14.7	2.7	4	1.5	-		6	2.2	+	F 4		-
	LO4	1	Bottom	7.6	1.4	1				1	0.7	7	5.1		
		2	Bottom	4.8	0.9					2	2.3	2	2.3		
		3 Total	Bottom	2.4 14.8	0.4 2.7					3	1.1	9	3.3		
	LO5	10tai	Bottom	7.3	1.3			2	1.5	3	2.2	T			-
		2	Bottom	7.3	1.3	1	0.7			5	3.7	2	1.5		
		Total		14.7	2.7	1	0.4	2	0.7	8	3.0	2	0.7	1	

¹ CPUE denotes catch-per-unit-effort (number of fish per 100m²·12h).

Lake	Site	UTM	Trap		et	Pul		Depth
		Coordinates	Type	Date	Time	Date	Time	(m)
Carat	1	12W 0478627 7320880	Normal	23-Jul-96	15:44	24-Jul-96	11:20	0.5
	2	12W 0478166 7319977	Normal	23-Jul-96	15:50	24-Jul-96	11:24	1.0
	3	12W 0477565 7320271	Giant	23-Jul-96	16:00	24-Jul-96	11:35	8.5
	4	12W 0476977 7320295	Normal	23-Jul-96	16:10	24-Jul-96	11:31	1.0
	5	12W 0478314 7321178	Giant	23-Jul-96	16:20	24-Jul-96	11:44	9.0
į	6	12W 0478099 7321397	Normal	23-Jul-96	16:50	24-Jul-96	11:40	1.0
	7	12W 0478166 7319977	Normal	24-Jul-96	14:45	25-Jul-96	09:50	0.5
	8	12W 0478627 7320880	Normal	24-Jul-96	14:50	25-Jul-96	09:30	0.5
	9	12W 0475284 7320817	Normal	24-Jul-96	15:05	25-Jul-96	08:43	0.5
	10	12W 0475988 7321036	Normal	24-Jul-96	15:10	25-Jul-96	08:48	0.5
ļ	11	12W 0476349 7320909	Giant	24-Jul-96	15:25	25-Jul-96	09:10	10.0
	12		Giant	24-Jul-96	15:36	25-Jul-96	09:15	15.0
		12W 0476944 7321031		25-Jul-96	08:45	26-Jul-96	08:30	0.8
	13	12W 0475084 7320656	Normal			1	08:40	0.5
	14	12W 0476045 7321062	Normal	25-Jul-96	09:01	26-Jul-96	!	
	15	12W 0476025 7320798	Giant	25-Jul-96	09:10	26-Jul-96	08:50	8.0
	16	12W 0477894 7321170	Giant	25-Jul-96	09:20	26-Jul-96	11:30	12.0
	17	12W 0478166 7319977	Normal	25-Jul-96	09:40	26-Jul-96	12:05	0.4
	18	12W 0478627 7320880	Normal	25-Jul-96	09:45	26-Jul-96	11:50	0.3
Jericho	1	nd¹	Normal	22-Jul-96	13:35	31-Jul-96	09:15	1.5
	2	12W 0478798 7323877	Normal	22-Jul-96	13:40	23-Jul-96	11:24	1.5
	3	12W 0477614 7323497	Giant	22-Jul-96	13:50	23-Jul-96	11:10	15.0
!	4	12W 0477910 7323835	Normal	22-Jul-96	14:00	23-Jul-96	11:18	1.8
	5	12W 0478252 7323410	Normal	22-Jul-96	14:05	23-Jul-96	13:40	1.5
	6	12W 0478342 7323371	Giant	22-Jul-96	14:10	23-Jul-96	13:45	9.2
Interbasin One	<u>_</u>	12W 0478931 7323081	Normal	31-Jul-96	08:50	1-Aug-96	08:45	1.0
interbasiii one	2	12W 0478418 7323163	Normal	31-Jul-96	10:08	1-Aug-96	08:50	0.8
	3	12W 0478334 7323732	Giant	31-Jul-96	12:20	1-Aug-96	09:20	6.0
	4		Giant	31-Jul-96	12:45	1-Aug-96	09:15	10.0
		12W 0478722 7323215					08:45	5.2
Interbasin Two	1	12W 0478131 7322147	Giant	31-Jul-96	15:19	1-Aug-96		
	2	12W 0478292 7321978	Giant	31-Jul-96	15:30	1-Aug-96	08:50	6.8
	3	12W 0478136 7322172	Normal	31-Jul-96	15:31	1-Aug-96	09:00	2.0
	4	12W 0478235 7322041	Normal	31-Jul-96	15:38	1-Aug-96	08:55	1.0
	5	12W 0478049 7322031	Normal	31-Jul-96	15:31	1-Aug-96	09:01	1.5
	6	12W 0478099 7321785	Normal	31-Jul-96	15:44	1-Aug-96	09:05	1.5
C1	1	12W 0477479 7319335	Normal	3-Aug-96	11:00	4-Aug-96	08:34	0.6
	2	12W 0477602 7319438	Normal	3-Aug-96	11:02	4-Aug - 96	08:36	1.0
	3	12W 0477664 7319467	Normal	3-Aug-96	11:05	4-Aug-96	08:40	0.5
 	4	12W 0477593 7319364	Normal	3-Aug-96	11:07	4-Aug-96	08:45	0.4
	5	12W 0477593 7319364	Giant	3-Aug-96	11:09	4-Aug-96	08:47	6.0
	6	12W 0477500 7319403	Giant	3-Aug-96	11:13	4-Aug-96	08:49	5.5
01	1	12W 0479016 7321875	Normal	3-Aug-96	10:30	4-Aug-96	09:16	0.8
- • .	2	12W 0478706 7321763	Giant	3-Aug-96	10:40	4-Aug-96	09:18	9.0
1	3	12W 0478958 7321724	Normal	3-Aug-96	10:45	4-Aug-96	09:20	0.4
	4	12W 0479992 7321781	Giant	3-Aug-96	10:50	4-Aug-96	09:21	8.0
		1		3-Aug-96 3-Aug-96			09:21	0.5
	5	12W 0479126 7322217	Normal		10:56	4-Aug-96		
02	1	12W 0479225 7322624	Normal	2-Aug-96	12:56	3-Aug-96	08:48	0.8
	2	12W 0479246 7322684	Giant	2-Aug-96	12:58	3-Aug-96	08:38	4.5
	3	12W 0479181 7322766	Normal	2-Aug-96	13:01	3-Aug-96	08:49	0.7
	4	12W 0479277 7322781	Giant	2-Aug-96	13:04	3-Aug-96	08:50	6.2
	5	12W 0479356 7322797	Normal	2-Aug-96	13:12	3-Aug-96	08:52	0.6
O3	1	12W 0479694 7322767	Normal	2-Aug-96	12:16	3-Aug-96	08:35	1.0
:	2	12W 0479893 7322600	Normal	2-Aug-96	12:20	3-Aug-96	08:30	1.0
	3	12W 0479688 7322591	Normal	2-Aug-96	12:25	3-Aug-96	08:40	0.5
	4	12W 0479486 7322592	Normal	2-Aug-96	12:30	3-Aug-96	08:43	0.5
	5	12W 0479636 7322654	Giant	2-Aug-96	12:30	3-Aug-96	08:45	4.0
	6	12W 0479775 7322583	Giant	2-Aug-96	12:35	3-Aug-96	08:48	14.0
		12W 0479733 7324101	Giant	1-Aug-96	12:10	2-Aug-96	11:45	8.5
04	1				12.10	- 1090		٠.٠
04	1					•	ļ.	
O4	1 2	12W 0479773 7324012	Giant	1-Aug-96	12:15	2-Aug-96	11:50	8.0
O4	1 2 3 4					•	ļ.	

Lake	Site	UTM	Trap	s	et	Pul	led	Depth
	:	Coordinates	Type	Date	Time	Date	Time	(m)
O5	1	12W 0479903 7324840	Normal	1-Aug-96	12:34	2-Aug-96	09:00	1.2
	2	12W 0480039 7325097	Normal	1-Aug-96	12:38	2-Aug-96	09:07	0.8
	3	12W 0480202 7324976	Normal	1-Aug-96	12:40	2-Aug-96	09:11	1.0
	4	12W 0480323 7324864	Normal	1-Aug-96	12:44	2-Aug-96	09:15	0.5
1	5	12W 0480128 7324864	Giant	1-Aug-96	12:50	2-Aug-96	09:17	6.0
	6	12W 0480211 7324801	Giant	1-Aug-96	12:52	2-Aug-96	09:20	3.0
D4	1	12W 0479853 7319148	Normal	27-Jul-96	12:57	28-Jul-96	08:41	1.0
	2	12W 0480485 7319186	Normal	27-Jul-96	13:04	28-Jul-96	08:47	0.3
1. 1. 11.	3	12W 0480297 7319537	Giant	27-Jul-96	13:15	28-Jul-96	08:51	10.0
	4	12W 0480136 7319010	Normal	27-Jul-96	13:19	28-Jul-96	09:01	0.5
ŀ	5	12W 0479609 7319018	Giant	27-Jul-96	13:25	28-Jul-96	09:30	11.0
	6	12W 0479594 7318962	Normal	27-Jul-96	13:30	28-Jul-96	09:28	0.8
D5	1	12W 0479150 7318796	Normal	26-Jul-96	14:30	27-Jul-96	08:35	1.0
1	2	12W 0479057 7318761	Normal	26-Jul-96	14:36	27-Jul-96	08:40	0.5
	3	12W 0478545 7318669	Normal	26-Jul-96	14:40	27-Jul-96	08:42	0.5
	4	12W 0478712 7318725	Giant	26-Jul-96	14:45	27-Jul-96	08:45	8.0
!!	5	12W 0478793 7318814	Normal	26-Jul-96	14:50	27-Jul-96	08:47	0.8
	6	12W 0478909 7318817	Giant	26-Jul-96	14:55	27-Jul-96	08:50	4.0
Contwoyto	1	12W 0481676 7318549	Normal	28-Jul-96	13:05	29-Jul-96	08:43	0.3
	2	12W 0481547 7318875	Normal	28-Jul-96	13:14	29-Jul-96	08:52	2.0
li S	3	12W 0481690 7318863	Normal	28-Jul-96	13:18	29-Jul-96	08:52	1.0
	4	12W 0481895 7318750	Normal	28-Jul-96	13:22	29-Jul-96	08:54	1.0
	5	12W 0481870 7318767	Giant	28-Jul-96	13:25	29-Jul-96	08:56	12.0
	6	12W 0481728 7318669	Giant	28-Jul-96	13:36	29-Jul-96	08:59	12.0
	7	12W 0481719 7318414	Giant	29-Jul-96	09:27	30-Jul-96	11:17	10.0
	8	12W 0482241 7318888	Giant	29-Jul-96	09:34	30-Jul-96	11:35	9.0
l'	9	12W 0482214 7318968	Normal	29-Jul-96	09:36	30-Jul-96	11:28	0.8
	10	12W 0482607 7319000	Normal	29-Jul-96	09:41	30-Jul-96	11:25	1.0
	11	12W 0482362 7318989	Normal	29-Jul-96	09:47	30-Jul-96	11:30	1.0
	12	12W 0481695 7318610	Normal	29-Jul-96	09:51	30-Jul-96	11:15	1.2
	13	12W 0481719 7318414	Giant	30-Jul-96	11:36	31-Jul-96	08:32	9.0
İ	14	12W 0482241 7318888	Giant	30-Jul-96	11:41	31-Jul-96	08:40	9.0
	15	12W 0481547 7318875	Normal	30-Jul-96	11:45	31-Jul-96	08:45	1.5
	16	12W 0481547 7318875	Normal	30-Jul-96	11:46	31-Jul-96	08:47	1.5
	17	12W 0481676 7318549	Normal	30-Jul-96	11:48	31-Jul-96	08:49	2.0
	18	12W 0481676 7318549	Normal	30-Jul-96	11:50	31-Jul-96	08:50	2.0

¹ nd = no data

Appendix F4 Angling effort in sampled lakes during summer and fall, Jericho study area, 1996.

Lake	Date	Start	Finish	Effort	Lake
			<u> </u>	(h)	trout
Lake D4	06-Aug-96	10:14	10:30	0.3	1
	06-Aug-96	10:14	10:30	0.3	
	06-Aug-96	10:46	11:34	0.9	
	06-Aug-96	10:46	11:34	0.9	
	06-Aug-96	13:08	14:24	1.3	1
	06-Aug-96	13:08	14:24	1.3	
	06-Aug-96	15:20	16:50	1.5	1
	06-Aug-96	15:20	16:50	1.5	1
	Sum			8.0	4
Lake D5	27-Jul-96	11:15	12:00	0.8	
	27-Jul-96	11:15	12:00	0.8	
	04-Aug-96	12:15	13:00	0.8	
	04-Aug-96	12:15	13:00	0.8	
	04-Aug-96	14:00	16:00	2.0	
	Sum			5.2	0
Interbasin One	05-Sep-96	15:30	16:30	1.0	
	Sum			1.0	0
nterbasin Two	05-Sep-96	14:00	15:00	1.0	
	Sum			1.0	0
Lake O2	07-Sep-96	13:40	15:10	1.5	
	07-Sep-96	13:40	15:10	1.5	
	Sum			3.0	0
Lake O3	07-Sep-96	14:30	16:30	2.0	1
	Sum			2.0	1
Lake D4	03-Sep-96	14:00	14:50	0.9	
	03-Sep-96	15:45	16:50	0.9	
	Sum			1.8	2
Lake D5	03-Sep-96	15:00	15:30	0.5	1
	03-Sep-96	15:00	15:30	0.5	-
	03-Sep-96	16:30	17:00	0.5	
	03-Sep-96	16:30	17:00	0.5	
	03-Sep-96	13:00	15:30	2.5	
	Sum	13.00	15.50	4.5	3

Appendix F5 R.L. & L. ENVIRONMENTAL SERVICES LTD. FISH SPECIES ABBREVIATIONS

ABBR.	COMMON NAME	SCIENTIFIC NAME	ABBR.	COMMON NAME	SCIENTIFIC NAME
CTTR	Cutthroat trout	Oncorhynchus clarki	BURB	Burbot	Lota lota
BLTR	Bull trout	Salvelinus malma	SLSC	Slimy sculpin	Cottus cognatus
LKTR	Lake trout	Salvelinus namaycush	SPSC	Spoonhead sculpin	Cottus ricei
ARCH	Arctic char	Salvelinus alpinus	PRSC	Prickly sculpin	Cottus asper
ARGR	Arctic grayling	Thymallus arcticus	SHSC	Shorthead sculpin	Cottus confusus
MNWH	Mountain whitefish	Prosopium williamsoni	PSSC	Pacific staghorn sculpin	Leptocottus armatus
RNWH	Round whitefish	Prosopium cylindraceum	MTSC	Mottled sculpin	Cottus bairdi
PGWH	Pygmy whitefish	Prosopium coulteri	TRSC	Torrent sculpin	Cottus rhotheus
LKWH	Lake whitefish	Coregonus clupeaformis	BRST	Brook stickleback	Culaea inconstans
BRWH	Broad whitefish	Coregonus nasus	NNST	Ninespine stickleback	Pungitius pungitius
CISC	Ciscoe	Coregonus artedii	THST	Threespine stickleback	Gasterosteus aculeatus
INCO	Inconnu	Stenodus leucichthys	RDSH	Redside shiner	Richardsonius balteatus
PINK	Pink salmon	Oncorhynchus gorbuscha	NRSQ	Northern squawfish	Ptychocheilus oregonensis
CHUM	Chum salmon	Oncorhynchus keta	PRDC	Pearl dace	Semotilus margarita
соно	Coho salmon	Oncorhynchus kisutch	PEAM	Peamouth	Mylocheilus caurinus
SOCK	Sockeye salmon	Oncorhynchus nerka	FLCH	Flathead chub	Platygobid gracilis
KOKA	Kokanee	Oncorhynchus nerka	LKCH	Lake chub	Couesius plumbeus
CHIN	Chinook salmon	Oncorhynchus tshawytscha	LNDC	Longnose dace	Rhinichthys cataractae
LNSC	Longnose sucker	Catostomus catostomus	FNDC	Finescale dace	Pfrille neogaeus
WHSC	White sucker	Catostomus commersoni	NRDC	Northern redbelly dace	Chrosomus eos
LRSC	Largescale sucker	Catostomus macrocheilus	LPDC	Leopard dace	Rhinichthys falcatus
BRSC	Bridgelip sucker	Catostomus columbianus	EMSH	Emerald shiner	Notropis atherinoides
MNSC	Mountain sucker	Catostomus platyrhynchus	SPSH	Spottail shiner	Notropis hudsonius
CARP	Carp	Cyprinus carpio	FTMN	Fathead minnow	Pimephales promelas
CHIS	Chiselmouth	Acrocheilus alutaceus	TRPR	Trout-perch	Percopsis omiscomaycus
SMBS	Smallmouth bass	Micropterus dolomievi	IWDR	Iowa darter	Etheostoma exile
LKST	Lake sturgeon	Acipenser fulvescens	STFL	Starry flounder	Platichthys stellatus
WHST	White sturgeon	Acipenser transmontanus	LNSM	Longfin smelt	Spirinchus thaleichthys
GOLD	Goldeye	Hiodon alosdides	EUAL	Eualchon	Thaleichthys pacificus
NRPK	Northern pike	Esox lucius	PCLM	Pacific lamprey	Entosphenus tridentatus
WBLM	Western brook lamprey	Lampetra richardsoni	ARLM	Arctic lamprey	Lampetra japonica
LSCS	Least cisco	Coregonus sardinella	ARCS	Arctic cisco	Coregonus autumnalis

SEX AND MATURITY DESCRIPTIONS

M	<u>F</u>	CLASS	DESCRIPTION	CODE	AGEING !
		Immature A	Sex indeterminable due to small gonad size.	SC	Scales
				TO	Otoliths Scales and
01	11	Immature B	Small gonad size; fish has never spawned and will	SO	
			not spawn during the coming spawning season.	FR SF	Fin ray Scales and
				Sr	Scales and
02	12	Maturity questionable	Small gonad size; it cannot be determined if fish	CODE	CAPTURE
			is immature or if it will spawn during the coming	FD	Found dead
			spawning season.	SL	Set line
03			B.C. 11 1	DN	Dip net
03	13	Developing A	Definite gonad development; fish has never	GN	Gill net
			spawned before but will spawn during the coming	ES	Electroshoo
			season.	EF	Electrofish
04	14	Davidonina D	Definite gonad development; the fish has spawned	BS	Beach seine
04	14	Developing B	before and will spawn during the coming season.	OB	Observed -
			before and win spawn during the conting season.	TU	Trap - fish
05	15	Developing C	Definite gonad development; the fish has spawned	TD	Trap - fish
0.5	13	Developing C	before but will not spawn during the coming spawning	AL	Angling (U
			season, i.e., alternate year spawners.	AF	Angling (U
			souson, nor, attenue you spanners.	AB	Angling (U
06	16	Developing D	Used to indicate definite gonad development when the	CR	Creel - sam
		Developing D	classification into categories "developing A,B, or C cannot	CF	Commercia
			be determined, or when such a breakdown is unsuitable or	GE	Small Gee
			unnecessary.	GT	Large Gee
07	17	Gravid/fully developed	Sexual organs fill ventral cavity testes white, drops of milt	CODE	TAG COD
07	17	Graviu/runy developed	fall with pressure; eggs completely round, some already	$\overline{Y, W, R}$	Color code
			translucent.	F	Fin clip: 1:
			Tansiacon.		4=R. Pelv
08	18	Ripe	Roe or milt are extruded by slight pressure on the belly.		
		_		CODE	CAPTURE
09	19	Spent	Spawning completed; resorption of residual ovarian tissue	0	First captur
			is not yet complete.	1	First captur
10	20	E I	Condition of the second decrease define managing and	2	Recapture,
10	20	External	Sex determined by external characteristics; maturity and	3	Recapture,
			sex not verified by gonad examination.		
99	99	Adult/Juvenile	Based on fish size; sex not determined.	CODE	STOMACI
,,	//	/ tddid ad vetille	based on tish size, sex not determined.	ZOO	Zooplankto
				CHI	Chirnomide

OTHER CODES

CODE	AGEING METHODS	CODE	AGEING METHODS
SC	Scales	CL	Cleithra
OT	Otoliths	CS	Cleithra and scales
SO	Scales and otoliths	VE	Vertebrae
FR	Fin ray	OB	Other bones
SF	Scales and fin rays	LF	Length-frequency
CODE	CAPTURE METHODS		
FD	Found dead		
SL	Set line		
DN	Dip net		
GN	Gill net		
ES	Electroshocker - Boat shock	er	
EF	Electrofisher - backpack sho	cker	
BS	Beach seine		
OB	Observed - not captured		
TU	Trap - fish moving upstream	1	
TD	Trap - fish moving downstre		
AL	Angling (Using lures)	am	
AF	Angling (Using flies)		
AB	Angling (Using bait)		
CR	Creel - sampled from a fishe	rman's cre	el.
CF	Commercial fisherman's cat		
GE	Small Gee trap	CII	
GT	Large Gee trap		
O1	Large Gee trap		
CODE	TAG CODE		
Y, W, R	Color code for tag (i.e., Yel		
	Color code for tag (i.e., Yel Fin clip: 1=Adipose, 2=R.	Pectoral,	B=L. Pectoral,
Y, W, R	Color code for tag (i.e., Yel	Pectoral,	B=L. Pectoral,
Y, W, R	Color code for tag (i.e., Yel Fin clip: 1=Adipose, 2=R.	Pectoral,	B=L. Pectoral,
Y, W, R	Color code for tag (i.e., Yel Fin clip: 1=Adipose, 2=R.	Pectoral,	B=L. Pectoral,
Y, W, R F	Color code for tag (i.e., Yel Fin clip: 1=Adipose, 2=R. 4=R. Pelvic, 5=L. Pelvic, CAPTURE CODE	Pectoral,	B=L. Pectoral,
Y, W, R F	Color code for tag (i.e., Yel Fin clip: 1=Adipose, 2=R. 4=R. Pelvic, 5=L. Pelvic, CAPTURE CODE First capture, released	Pectoral,	B=L. Pectoral,
Y, W, R F CODE 0	Color code for tag (i.e., Yel Fin clip: 1=Adipose, 2=R. 4=R. Pelvic, 5=L. Pelvic, CAPTURE CODE First capture, released First capture, sacrificed	Pectoral,	B=L. Pectoral,
Y, W, R F CODE 0 1	Color code for tag (i.e., Yel Fin clip: 1=Adipose, 2=R. 4=R. Pelvic, 5=L. Pelvic, CAPTURE CODE First capture, released	Pectoral,	B=L. Pectoral,
Y, W, R F CODE 0 1 2 3	Color code for tag (i.e., Yel Fin clip: 1=Adipose, 2=R. 4=R. Pelvic, 5=L. Pelvic, CAPTURE CODE First capture, released First capture, sacrificed Recapture, released Recapture, sacrificed	Pectoral, 6=Dorsal,	B=L. Pectoral,
CODE CODE CODE CODE	Color code for tag (i.e., Yel Fin clip: 1=Adipose, 2=R. 4=R. Pelvic, 5=L. Pelvic, CAPTURE CODE First capture, released First capture, sacrificed Recapture, released Recapture, sacrificed STOMACH CONTENT C	Pectoral, 6=Dorsal,	B=L. Pectoral,
CODE 2000	Color code for tag (i.e., Yel Fin clip: 1=Adipose, 2=R. 4=R. Pelvic, 5=L. Pelvic, CAPTURE CODE First capture, released First capture, sacrificed Recapture, released Recapture, sacrificed STOMACH CONTENT C Zooplankton	Pectoral, 6=Dorsal,	B=L. Pectoral,
CODE 0 1 2 3 CODE ZOO CHI	Color code for tag (i.e., Yel Fin clip: 1=Adipose, 2=R. 4=R. Pelvic, 5=L. Pelvic, CAPTURE CODE First capture, released First capture, sacrificed Recapture, released Recapture, sacrificed STOMACH CONTENT Cooplankton Chirnomids	Pectoral, 6=Dorsal,	B=L. Pectoral,
CODE 0 1 2 3 CODE ZOO CHI TRI	Color code for tag (i.e., Yel Fin clip: 1=Adipose, 2=R. 4=R. Pelvic, 5=L. Pelvic, CAPTURE CODE First capture, released First capture, sacrificed Recapture, released Recapture, sacrificed STOMACH CONTENT C Zooplankton Chirmomids Trichopterans	Pectoral, 6=Dorsal,	B=L. Pectoral,
CODE CODE CODE CODE CODE CODE CODE CODE	Color code for tag (i.e., Yel Fin clip: 1=Adipose, 2=R. 4=R. Pelvic, 5=L. Pelvic, 5=L. Pelvic, 5=L. Pelvic, 5=L. Selvic, 5=L. Pelvic, 5	Pectoral, 6=Dorsal,	B=L. Pectoral,
CODE CODE CODE CODE CODE CODE CODE CODE	Color code for tag (i.e., Yel Fin clip: 1=Adipose, 2=R. 4=R. Pelvic, 5=L. Pelvic, CAPTURE CODE First capture, released First capture, sacrificed Recapture, released Recapture, sacrificed STOMACH CONTENT C Zooplankton Chirnomids Trichopterans Fish Dipterans	Pectoral, 6=Dorsal,	B=L. Pectoral,
CODE 0 1 2 3 CODE ZOO CHI TRI FIS DIP COL	Color code for tag (i.e., Yel Fin clip: 1=Adipose, 2=R. 4=R. Pelvic, 5=L. Pelvic, CAPTURE CODE First capture, released First capture, sacrificed Recapture, sacrificed Recapture, sacrificed STOMACH CONTENT C Zooplankton Chirnomids Trichopterans Fish Dipterans Coleopterans	Pectoral, 6=Dorsal,	B=L. Pectoral,
CODE CODE CODE CODE CODE CODE CODE CODE	Color code for tag (i.e., Yel Fin clip: 1=Adipose, 2=R. 4=R. Pelvic, 5=L. Pelvic, 5=L. Pelvic, 5=L. Pelvic, 5=L. Selvic, 5=L. Pelvic, 5	Pectoral, 6=Dorsal,	B=L. Pectoral,
CODE 0 1 2 3 CODE ZOO CHI TRI FIS DIP COL	Color code for tag (i.e., Yel Fin clip: 1=Adipose, 2=R. 4=R. Pelvic, 5=L. Pelvic, CAPTURE CODE First capture, released First capture, sacrificed Recapture, sacrificed Recapture, sacrificed STOMACH CONTENT C Zooplankton Chirnomids Trichopterans Fish Dipterans Coleopterans	Pectoral, 6=Dorsal,	B=L. Pectoral,
CODE 0 1 2 3 CODE TRI FIS DIP COL PEL	Color code for tag (i.e., Yel Fin clip: 1=Adipose, 2=R. 4=R. Pelvic, 5=L. Pelvic, 5=L. Pelvic, 5=L. Pelvic, 5=L. Selvic, 5=L. Pelvic, 5	Pectoral, 6=Dorsal,	B=L. Pectoral,
CODE 0 1 2 3 CODE TRI TRI DIP COL PEL BRA	Color code for tag (i.e., Yel Fin clip: 1=Adipose, 2=R. 4=R. Pelvic, 5=L. Pelvic, CAPTURE CODE First capture, released First capture, sacrificed Recapture, seleased Recapture, sacrificed STOMACH CONTENT C Zooplankton Chirnomids Trichopterans Fish Dipterans Coleopterans Pelecypods Brachiopods	Pectoral, 6=Dorsal,	B=L. Pectoral,
CODE 0 1 2 3 CODE TRI FIS DIP COL PEL BRA INS	Color code for tag (i.e., Yel Fin clip: 1=Adipose, 2=R. 4=R. Pelvic, 5=L. Pelvic, CAPTURE CODE First capture, released First capture, sacrificed Recapture, released Recapture, sacrificed STOMACH CONTENT Color	Pectoral, 6=Dorsal,	B=L. Pectoral,
CODE 0 1 2 3 CODE TRI FIS DIP COL PEL BRA ROD	Color code for tag (i.e., Yel Fin clip: 1=Adipose, 2=R. 4=R. Pelvic, 5=L. Pelvic, CAPTURE CODE First capture, released First capture, sacrificed Recapture, released Recapture, sacrificed STOMACH CONTENT C Zooplankton Chirmomids Trichopterans Fish Dipterans Coleopterans Pelecypods Brachiopods Insects Rodent	Pectoral, 6=Dorsal,	B=L. Pectoral,

Append					•	•					•	•		_				011				
Period	Crew	Sample No.	e Species	Fork Len. (mm)	Weight (g)	t Sex	Age	Age Meth.	Capt. Meth.	Mesh Size	No.	Day	Mo Y	r Zo	one	Local	Loc.	Site	Capt. Code	Comments	Tissue No.	Stomach Contents
1	Α	1	ARGR	126	20	0		SC	EF	0	0	12	6 9		JEL	LO3	TO16	1	0			
1	A A	2	ARCH ARGR	560 120	1950 18	0		FR SC	EF EF	0	0	12 13	6 9		JEL JEL	LO1 LO1	TO18 TO19	1	0			
1	A	3 4	ARCH	78	4	0		SC	EF	0	0	14	6 9			CARAT	TC02	1	0			
1	Α	5	ARCH	51	0	0	0	SC	EF	0	0	14	6 9	S MI	INE	CARAT	TC02	1	1			
1	A A	6 7	SLSC SLSC	64 46	2 0	0			EF EF	0	0	14 14	6 9			CARAT	TC02 TC02	1	0			
1	Â	8	ARCH	52	o	o	0	SC	EF	0	o	14	6 9			CARAT	TC02	1	0			
1	Α	9	SLSC	41	0	0			EF	0	0	14	6 9			CARAT	TC02	1	1			
1	A A	10 11	ARGR ARGR	118 112	16 16	0	1	SC SC	EF EF	0	0	15 15	6 9		JEL	LO5 LO5	TO14 TO05	1	0			
1	Α	12	ARGR	137	20	0		SC	EF	0	0	15	6 9	3 FL	JEL	LO5	TO05	1	0			
1	A A	13 14	ARCH ARGR	212 109	94 14	0		SC SC	EF EF	0	0	15 15	6 9		JEL	LO5 LO5	TO14 TO14	1	0			
i	Â	15	ARCH	46	0	ő		30	EF	Ö	0	16	6 9		INE	INTER	TC10	i	0			
1	A	16	BURB	102	6	0			EF	0	0		6 9		NE	INTER	TC12	1	0			
1	A A	17 18	SLSC SLSC	91 45	8 0	0			EF EF	0	0	16 16	6 9		INE INE	INTER	TC12 TC12	1	0			
1	A	19	SLSC	48	0	ő			EF	0	0	16	6 9		INE	INTER	TC12	1	ō			
1	A	20 21	SLSC	55 125	0	0		sc	EF	0	0	16	6 9		INE	INTER	TC13	1	0			
1	A A	22	ARGR NNST	125 45	8	0		30	EF EF	0	0	16 16	6 96		JEL JEL	LO2 LO2	TO22 TO22	1	0			
1	Α	23	ARGR	126	20	0			EF	0	0	16	6 9		JEL	LO2	TO22	1	2	SCALES TAKEN PREV.		
1	A A	24 25	SLSC SLSC	62 20	0	0			EF EF	0	0	16 16	6 96		JEL JEL	LO2 LO4	TO22 TO10	1	0			
i	Ä	26	ARCH	91	10	ō		SC	EF	ō	ŏ	16	6 9	6 FU	JEL	LO4	TO12	1	ő			
1	A	27	SLSC	49	0	0			EF	0	0	16	6 96			LO4 LO4	TO12	1	0			
1	A A	28 29	BURB ARGR	129 106	14 8	0		SC	EF EF	0	0	16 16	6 96		JEL	LO4	TO12 TO12	1	0			
1	Α	30	BURB	168	32	0			EF	0	0	17	6 96	5 MI	NE	RIVER	TO01	1	0			
1 1	A A	31 32	ARGR ARGR	119 135	20 24	0	1 2	SC SC	EF EF	0	0	17 17	6 96		NE NE	RIVER	TO01 TO01	1	0			
i	Ä	33	ARGR	124	22	ŏ	2	SC	EF	ő	ŏ	17	6 96			RIVER	TO01	1	ő			
1	A A	34 35	ARGR ARGR	119 58	16 0	0	1	SC	EF EF	0	0	17 17	6 96			RIVER RIVER	TO01 TO01	1	0			
1	A	35 36	ARGR	110	16	0	1	sc	EF	0	0	17	6 96		NE	RIVER	TO01	1	0			
1	Α	37	ARGR	131	22	0	2	SC	EF	0	0	17	6 96	5 MI	NE	RIVER	TO01	1	0			
1 1	A A	38 39	ARGR ARGR	121 123	18 16	0	2 1	SC SC	EF EF	0	0	17 17	6 96		NE NE	RIVER RIVER	TO01 TO02	1	0			
1	Α	40	ARGR	125	14	0	2	SC	EF	0	ŏ	17	6 96	6 MI	NE	RIVER	TO02	1	ō			
1	A A	41 42	ARGR ARGR	168 258	48 202	0	2 4	SC SC	EF EF	0	0 2906	17 17	6 96			RIVER RIVER	TO03 TO04	1	0	SMALL TAG		
i	Â	43	ARGR	171	54	Ö	3	SC	EF	0	0	17	6 96			RIVER	TO04	1	o	SWALL TAG		
1	A	44	ARGR	170	56	0	2	SC	EF	0	0	17	6 96			RIVER	TO04	1	0			
1	A A	45 46	ARGR ARGR	181 125	58 20	0	3	SC SC	EF EF	0	0	17 17	6 96			RIVER RIVER	TO04 TO04	1	0			
1	Α	47	ARCH	48	0	0	_		EF	0	0	18	6 96	MII	NE	CARAT	TC01	1	0			
1	A A	48 49	ARCH ARCH	52 52	0	0			EF EF	0	0	18 18	6 96			CARAT	TC01 TC01	1	0			
i	A	50	ARCH	56	ŏ	ŏ			EF	Ô	ŏ		6 96				TC01	1	Ö			
1	A	51	ARCH	53	0	0			EF	0	0		6 96				TC01	1	0			
1	A A	52 53	ARCH ARCH	52 54	0	0			EF EF	0	0		6 96				TC01 TC01	1	0			
1	Α	54	ARCH	48	0	0			EF	0	0	18	6 96	MI	NE	CARAT	TC01	1	0			
1	A A	55 56	ARCH ARCH	54 53	0	0			EF EF	0	0	18 18	6 96			CARAT	TC01 TC01	1	0			
i	A	57	ARCH	52	ō	0			EF	ō	Ö	18	6 96	MI	NE	CARAT	TC01	1	0			
1	A A	58 59	ARCH ARCH	61 49	0	0			EF EF	0	0		6 96			CARAT	TC01 TC01	1	0			
i	Ä	60	ARCH	48	0	Ö			ĒF	0	ő		6 96				TC01	1	Ö			
1	A	61	ARCH	52	0	0			EF	0	0		6 96			CARAT	TC01	1	0			
1	A A	62 63	ARCH RNWH	50 53	0	0			EF EF	0	0		6 96			CARAT	TC01 TC01	1	0 1			
1	Α	64	SLSC	44	0	0			EF	0	0	18	6 96	MI	NE	CARAT	TC01	1	0			
1	A A	65 66	RNWH RNWH	102 84	10 4	0		SC	EF EF	0	0		6 96			CARAT	TC01 TC01	1	0			
1	Α	67	RNWH	108	10	ō	2	SC	ĒF	ō	ō		6 96				TC01	1	ŏ			
1	A A	68 69	RNWH RNWH	86 74	6	0	1	SC SC	EF EF	0	0	18 18	6 96			CARAT CARAT	TC01	1	0			
i	Ä	70	ARCH	45	0	ŏ	•	30	EF	Ö	ő		6 96				TC01	1	Ö			
1	A	71	ARCH	47	0	0			EF	0	0		6 96				TC01	1	0			
1	A	72 73	ARCH ARCH	49 50	0	0			EF EF	0	0		6 96				TC01 TC01	1	0			
1	Α	74	ARCH	53	0	0			EF	0	0		6 96				TC01	1	0			
1	A A	75 76	ARCH ARCH	51 54	0	0			EF EF	0 0	0 0		6 96			CARAT CARAT		1	0			
1	Α	77	ARCH	48	0	0			EF	0	0	18	6 96	Mil	NE	CARAT	TC01	1	0			
1	A A	78 79	ARCH RNWH	98 88	14 6	0	1	SC SC	EF EF	0	0		6 96				TC01 TC01	1 1	0			
1	Α	80	ARCH	53	0	0	•		EF	0	0	18	6 96	MI	NE	CARAT	TC01	i	0			
1	A A	81 82	ARCH ARCH	55 57	0	0			EF EF	0	0		6 96				TC01 TC01	1	0			
i	Ä	83	ARCH	46	o	0			EF	0	0	18	6 96	Mil	NE	CARAT	TC01	1	0			
1	A	84	ARCH	59 48	0	0			EF	0	0		6 96			CARAT		1	0			
1	A A	85 86	ARCH ARCH	48 87	0	0			EF EF	0	0		6 96			CARAT		1	0			
1	Α	87	ARCH	68	0	0			EF	0	0	18	6 96	MIN	NE	CARAT	TC01	1	0			
1	A A	88 89	ARCH RNWH	62 86	0	0			EF EF	0	0		6 96			CARAT CARAT		1	0			
i	Α	90	SLSC	74	0	0			EF	0	0	18	6 96	TA	AIL C	CONTW	TB01	1	0			
1	A A	91 94	LKTR ARCH	175 75	54 4	0		SC	EF EF	0	0		6 96			CONTW		1	0	LAKE OUTLET		
i	A	109	LKTR	75 204	90	0		FR	EF				6 96			LD4 CONTW	TD01 TF01	1	0	ETINE OUTLET		
1	Α	110	LKTR	214	106	0		FR	EF	0	2780	19	6 96	TA	NL (CONTW	TF01	1	0			
1	A A	111 112	SLSC SLSC	28 74	0 0	0			EF EF	0 0	0		6 96 6 96			CONTW		1	0			
1	Α	113	SLSC	70	0	0			EF	0	0	19	6 96	TA	ML (CONTW	TE01	1	0			
1	A A	114 115	SLSC SLSC	30 32	0	0			EF EF	0	0		6 96 6 96			CONTW		1 1	0			
i	Α	116	SLSC	80	o	0			EF	0	0	19	6 96	TA		CONTW	TE01	1	0			
1	A	117	LKTR	116	16	0	2	SC	EF	0	0		6 96				TD06	1		LAKE OUTLET		
1	A A	118 119	LKTR LKTR	129 119	22 20	0	2	SC SC	EF EF	0 0	0		6 96 6 96				TD06 TD06	1	0			
1	Α	120	SLSC	70	0	0			EF	0	0	19	6 96	MIN	NE (CARAT	TC01	1	0			
1	A A	121 122	RNWH RNWH	113 115	0	0	2	SC SC	EF EF	0	0		6 96 6 96				TO18 TO18	1 1	0			
1	Α	123	RNWH	125	0	0	2	SC	EF	0	0	20	6 96	FUI	EL	LO1	TO18	1	Ð			
1	A A	124 125	RNWH ARCH	111 97	0	0	2	SC SC	EF EF	0	0		6 96 6 96				TO18 TO18	1	0			
į	Â	126	ARCH	72	Ö	ŏ		SC	EF	Ö	0		6 96				TO18	1	o			

Appenal			eSpecies		Weight	-		Age	Capt.				Mo Yr	Zone	Local	Loc.	Site	Capt.	Comme	nts	Tissue	Stomach Contents
1	Α	No. 128		Len. (mm) 145		0	2	Meth. SC	Meth. EF	Size 0	No.		6 96		LO1	TO18	1	Code 0			No.	
1	A	129 130	ARCH ARGR	75 130	0	0		SC SC	EF EF	0	0 0		6 96 6 96		L01 L01	TO18 TO18	1	0				
1 1	A	131 132	ARGR ARGR	132 119	0	0		SC SC	EF EF	0	0	20	6 96 6 96	FUEL	LO1 LO1	TO18 TO18	1	0				
1	A A	133 134	ARGR ARCH	119 70	0	0		SC SC	EF EF	0	0		6 96 6 96		LO1 LO1	TO18 TO18	1	0				
1	A	135 136	RNWH ARCH	116 66	0	0	2	SC SC	EF EF	0	0	20 20	6 96 6 96		LO1 LO1	TO18 TO18	1	0				
1	A A	137 138	ARCH SLSC	117 85	o o	0	-	SC	EF EF	0	0	20 20	6 96 6 96	FUEL	LO1 LO1	TO18 TO18	1	0				
1	A A	139 140	SLSC ARCH	69 75	o o	0			EF EF	0	0	20 20	6 96	FUEL	LO1 LO1	TO18 TO18	1	0				
1	A	141 142	ARCH ARCH	66 71	0	0			EF EF	0	0	20 20	6 96	FUEL	LO1	TO18 TO18	1	0				
1	Α	143 144	ARCH LKTR	48 170	0	0			EF EF	0	0	20 20	6 96	FUEL	LO1	TO18 TC02	1	0	CAUGHT BY HA	ND		
1	A	145 146	ARCH	75 126	0 10	0	2	SC SC	EF EF	0	0	20 21	6 96	FUEL	LO1 LO4	TO18 TO06	1	0				
1	A	147	ARCH	119 57	10 10	0	2	SC	EF EF	0	0	21	6 96	FUEL	LO4 LO4	TO06	1	0				
1	A	148 149 150	SLSC SLSC ARGR	49 120	0 14	0		sc	EF EF	0	0	21	6 96	FUEL	LO4 LO5	TO06 TO05	1	0				
1	A	151	ARGR ARGR	111 136	16 24	0		SC SC	EF EF	0	0	21	6 96	FUEL	LO5 LO5	TO05 TO05	1	0				
1	A A A	152 153 154	ARGR ARGR	122 121	18 28	0		SC SC	EF EF	0	0	21	6 96	FUEL	LO5 LO5	TO05 TO05	1	0				
1	Α	155	ARGR ARGR	122 133	16 22	0		SC	EF EF	0	0	21	6 96	FUEL	LO5 LO5	TO05 TO05	1	0				
1 1 1	A A A	156 157 158	ARGR ARGR	124 113	20 10	0		SC SC	EF EF	0	0	21	6 96	FUEL	LO5 LO5	TO05 TO05	1	0				
į	A	159 160	ARGR ARGR	125 166	16 50	0		SC SC	EF EF	0	0	21	6 96	FUEL	LO5 LO5	TO05 TO05	1	0				
1	Â	161 162	ARGR ARGR	135 126	20 20	0		SC SC	EF EF	0	0	21 21	6 96	FUEL	LO5 LO5	TO05 TO05	1	0				
1	A	163 164	ARGR ARGR	136 178	28 84	0		SC SC	EF EF	0	0	21 21	6 96	FUEL	LO5 LO5	TO05 TO05	1	0				
1	A	165 166	SLSC	70 62	0	0		00	EF EF	0	0	24 24	6 96	MINE	RIVER	TO08	1	0				
1	A	167 168	ARGR ARGR	58 121	0 12	0	2	sc	EF EF	0	0	24 24	6 96	MINE		TO08	1	0				
1	A A	169 170	ARGR ARGR	117 120	12 8	0	2	SC SC	EF EF	0	0	24 24	6 96	MINE	CARAT	TC06	1	0				
1	A A	171 172	ARGR ARGR	114 95	10 6	0	2	SC SC	EF EF	0	0	24 24	6 96	MINE	CARAT	TC06	1	0				
1	A A	173 174	SLSC	59 137	0 20	0	2	SC	EF EF	0	0	24 24	6 96	MINE	CARAT	TC06	1	0				
1	A	175 176	ARGR ARGR	133 146	28 38	0	2	SC SC	EF EF	0	0	24 24	6 96	MINE	CARAT	TC06	1	0				
1	A A	177 178	ARGR ARGR	123 122	22 16	0	2	SC SC	EF EF	0	0	24 24	6 96	MINE	CARAT	TC06	1	0 0				
1	A A	179 180	ARGR SLSC	133 83	28 4	0	2	SC	EF EF	0 0	0	24 24	6 96				1	0				
1 1	A A	181 182	SLSC SLSC	63 56	0	0			EF EF	0	0	24 24	6 96	FUEL		TO19	1	0				
1	A	183 184	ARCH ARCH	66 73	0	0			EF EF	0	0	24 24	6 96		LO1 LO1	TO19 TO19	1	0				
1	A	185 186	ARCH ARCH	75 72	0	0 0			EF EF	0	0	24 24	6 96		LO1 LO1	TO19 TO19	1	0				
1 1	A A	187 188	ARCH ARCH	73 66	0	0			EF EF	0	0	24 24	6 96	FUEL	LO1 LO1	TO19 TO19	1	0				
1 1	A	189 190	SLSC SLSC	42 0	0	0			EF EF	0	0	24 12	6 96	FUEL	LO1 LO3	TO19 TO21	1 1	0	OBSERVED			
1 1	A	191 192	LKTR ARGR	0	0	0 0			EF EF	0	0	14 15	6 96	FUEL	LO5	TC02 TO05	1	0	OBSERVED OBSERVED			
1 1	A A	193 194	ARGR LKTR	0 0	0	0 0			EF SN	0	0	15 16	6 96	MINE	MINE	TO05 TC15	1	0	OBSERVED OBSERVED			
1 1	A A	195 196	LKTR LKTR	0	0	0 0			SN EF	0	0	16 18	6 96	TAIL	CONTY		1	0	OBSERVED OBSERVED			
1 1	A A	200 201	ARGR LKTR	0	0	0 0			EF EF	0	0	20 20	6 96	FUEL		TO18 TO18	1	0	OBSERVED OBSERVED			
1	A	202 203	ARGR ARGR	0	0	0			EF EF	0	0	20 20	6 96	FUEL	LO1	TO18 TO18	1	0 0 0	OBSERVED OBSERVED OBSERVED			
1	A	204 205	ARGR ARGR	0	0	0			EF EF	0	0	20 20	6 96	FUEL	LO1	TO18	1 1 1	0	OBSERVED OBSERVED			
1	A	206 207	ARGR ARGR	0	0	0			EF EF	0	0 0 0	20 20 20	6 96 6 96 6 96	FUEL		TO18 TO18 TO18	1	0	OBSERVED OBSERVED			
1	A	208 209	ARGR	0	0	0			EF SN EF	0 0 0	0	21 21	6 96	MINE	RIVER			0	OBSERVED JU OBSERVED	VENILE		
1	A	210 211	SLSC	0	0 0 0	0			EF EF	0	0	21	6 96	FUEL	LO4	TO06 TO05	1	0	OBSERVED OBSERVED			
1	A	212	ARGR ARGR	0	0	0 0 0			EF EF	0	0	21	6 96	FUEL	LO5	TO05 TO05	1	0	OBSERVED OBSERVED			
1	A	214	ARGR ARGR	0	0	0			EF	0	0	21	6 96	FUEL	LO5	TO05 TO05	1	0	OBSERVED OBSERVED			
1 1 1	A A A	216 217 218	ARGR ARGR ARGR	0 0 0	0 0 0	0 0 0			EF EF EF	0 0 0	0	21	6 96	FUEL	LO5	TO05 TO05	1	0	OBSERVED OBSERVED			
1	Α	219	ARGR	0	0	0			EF EF	0	0	16 16	6 96	FUEL	LO2	TO22	1	0	OBSERVED OBSERVED			
1 1	A A	220 221 222	ARGR ARGR	0 0 0	0	0			EF EF	0	0	16 16	6 96	FUEL	LO2 LO2	TO22 TO22	1	0	OBSERVED OBSERVED			
1	A A A	222 223 224	ARGR ARGR ARGR	0	0	0			EF EF	0	0	16 16	6 96	FUEL	LO2	TO22 TO22	1	0	OBSERVED OBSERVED			
1	A A A	224 225 226	ARGR ARGR	0	0	0			EF EF	0	0	16 17	6 96	FUEL	LO2	TO22	1	0	OBSERVED OBSERVED			
1	A A	227 228	LKTR LKTR	0	0	0			EF EF	0	0	18 18	6 96	MINE	CARAT	TC01	i 1	0	OBSERVED OBSERVED			
1	A A	229 230	SLSC	0	0	0			EF EF	0	0	18 18	6 96	MINE	CARAT	TC01	1	0	OBSERVED OBSERVED			
1	A	231 232	LKTR LKTR	0	0	0			EF EF	0	0	18 18	6 96	MINE	CARAT	TC01	1	0	OBSERVED OBSERVED			
1	A A	233 234	LKTR	0	0	0			EF EF	0	0	18 18	6 96	MINE	CARAT	TC01	1	0	OBSERVED OBSERVED			
1	A	235 237	LKTR ARGR	0	0	0			EF EF	0	0	18 24	6 96	MINE	CARAT	TC01 TO08	1	0	OBSERVED OBSERVED			
1	A A	238 239	ARGR ARGR	0	0	0 0			EF EF	0	0	24 24	6 96	MINE	RIVER	TO08	1	0	OBSERVED OBSERVED			
1	A	240 241	ARGR ARGR	0	0 0	0 0			EF EF	0	0	24 24	6 96	MINE	RIVER	1008	1	0	OBSERVED OBSERVED			
1	Α	242	ARGR	0	0	0			EF	0	0	24	6 96	5 MINE	CARAT	r TC06	1	0	OBSERVED			

	. Jenono Diamono				o
Period Crew 1	Sample Species	Weight Sex Age 1) (9) (9) (9) (9) (9) (9) (9) (9) (9) (9	Age Capt. Mesh Meth. Meth. Size EF 0 EF	Tag Day Mo	08ZOO02CHI 10ZOO 10ZOO
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	308 ARCH 416 309 ARCH 407 310 ARCH 560 311 ARCH 560 311 ARCH 519 312 LKTR 602 313 LKTR 602 314 ARCH 583 315 ARCH 390 316 ARCH 229 318 LKTR 178 319 ARCH 264 320 LKTR 170 321 ARCH 195 322 LKTR 170 323 ARCH 265 324 LKTR 170 323 ARCH 265 324 LKTR 160 327 LKTR 202 328 LKTR 160 329 ARCH 293 330 ARCH 293 331 ARCH 289 331 ARCH 289 331 ARCH 269 332 LKTR 374 333 LKTR 655 334 ARCH 639 335 LKTR 504 336 LKTR 504 336 LKTR 504 337 ARCH 443 337 ARCH 443 338 LKTR 458 340 ARCH 529 341 LKTR 458	792 1 838 17 1092 12 1400 0 1470 0 2026 2 1900 0 650 0 0 0 125 1 55 1 155 1 66 1 95 1 180 1 68 1 90 1 180 1 85 1 90 1 275 11 280 11 280 11 275 11 280 11 275 11 280 11 275 11 280 11 275 11 280 12 2000 2 1400 12 2000 2 1400 12 1220 0 900 0 1220 1 1100 1 1100 1 1104 12 2050 2	OT GN 64 OT GN 89 FR GN 64 OT GN 89 FR GN 64 OT GN 89 FR GN 64 OT GN 38 OT GN 64 OT GN 64 OT GN 64 OT GN 64 OT GN 64 OT GN 69 OT GN 69 OT GN 69 OT GN 89	O 22 7 96 MINE MINE JERIC 1 1 1 1 1 1 1 1 1	0 10ZOO 0 0 0 4ZOO1CHI 05ZOO 01FIS 10ZOO 15ZOO 3ZOOZDIP 01ZOO 15SCU 15SCU 0 00 10ZOO 0 10ZOO 0 05ZOO 0 05ZOO 0 05ZOO 0 05ZOO 0 05ZOO
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	342 LKTR 510 343 LKTR 358 344 LKTR 270 345 LKTR 280 347 LKTR 280 347 LKTR 237 348 LKTR 238 349 LKTR 171 350 ARCH 210 351 LKTR 229 352 LKTR 229 352 LKTR 198 354 LKTR 174 356 ARCH 228 357 LKTR 208 358 LKTR 228 357 LKTR 228 358 LKTR 228 359 LKTR 228 359 LKTR 245 360 ARCH 203 361 LKTR 196 362 LKTR 187 363 BURB 120 364 ARCH 520	500 11 0 11 0 1 0 1 0 1 0 11 0 11 0 11 0	OT GN 89 OT GN 38	0 23 7 96 MINE MINE JERIC 2 1 0 23 7 96 MINE MINE JERIC 2 1	10ZOO 0 4ZOO1CHI 0 0 01ZOO 05ZOO 3INS1ZOO1PEL 0 05ZOO 0 10ZOO 5ZOO5FIS 05ZOO 10ZOO 05ZOO 05ZOO
2 A A A 2 A A A 2 A A A 2 A A A 2 A A A 2 A A A 2 A A A 2 A A A 2 A A A 2 A A A 2 A A A 2 A A A 2 A A A 2 A A A 2 A A A 2 A A A 2 A A A 2 A A A 2 A A A 2 A A A A 2 A	365 LKTR 85 366 LKTR 98 367 LKTR 98 368 ARCH 562 369 ARCH 314 370 LKTR 263 371 LKTR 263 371 LKTR 195 373 ARCH 466 374 LKTR 331 375 LKTR 320 376 LKTR 230 377 LKTR 356	5 99 1 50 99 10 99 1420 10 335 1 6 200 11 80 11 1175 17 10 370 11 105 99 105 1	FR GN 69 OT GN 19 OT GN 19 SF GN 19 SF GN 19 OT GN 38 OT GN 38 OT GN 38 OT GN 38 OT GN 38 OT GN 38 OT GN 38 OT GN 38 OT GN 38 OT GN 38 OT GN 38	0 24 7 96 MINE MINE CARAT 2 1 0 24 7 96 MINE MINE CARAT 2 1 0 24 7 96 MINE MINE CARAT 2 1 499 24 7 96 MINE MINE CARAT 1 0 KYPE 0 24 7 96 MINE MINE CARAT 1 1 0 24 7 96 MINE MINE CARAT 1 1 0 24 7 96 MINE MINE CARAT 1 1 0 24 7 96 MINE MINE CARAT 1 1 0 24 7 96 MINE MINE CARAT 1 1 0 24 7 96 MINE MINE CARAT 1 1 0 24 7 96 MINE MINE CARAT 1 1 0 24 7 96 MINE MINE CARAT 1 1 0 24 7 96 MINE MINE CARAT 1 1 0 24 7 96 MINE MINE CARAT 2 1 0 24 7 96 MINE MINE CARAT 2 1 0 24 7 96 MINE MINE CARAT 2 1 0 24 7 96 MINE MINE CARAT 2 1 0 24 7 96 MINE MINE CARAT 2 1	10ZOO 10ZOO 05ZOO 01ZOO 01ZOO 11ZOO04FIS 10FIS 0 4ZOO1CHI 01CHI 0 0 5COL5FIS

пррепа															_				_		_	
Period	Crew	Sample No.	eSpecies	Fork Len. (mm)	Weight (g)	Sex	Age	Age Meth.	Capt. Meth.	Mesh Size	Tag No.	Day	Мо	Yr	Zone	Local	Loc.	Site	Capt. Code	Comments	Tissue No.	Stomach Contents
2	Α	378	LKTR	475	1200	12	25	OT	GN	64	0			96	MINE		CARAT	1	1		501-99	4Z001CHI
2	A A	379 380	LKTR LKTR	520 410	1500 780	12 1	22 14	OT OT	GN GN	64 64	0	24 24		96 96	MINE	MINE	CARAT	1	1			05ZOO 05ZOO
2	Ä	381	LKTR	481	1425	12	22	OT	GN	38	ō	24		96	MINE	MINE	CARAT	2	1			3ZOO2CHI
2	A	382	RNWH	407	1260	7	29	OT	GN	38	0	24		96	MINE	MINE	CARAT	2	1		501-92	
2	A A	383 384	LKTR LKTR	428 580	940 2300	12 7	11 26	OT OT	GN GN	89 64	0	24 24		96 96	MINE	MINE	CARAT	1 2	1		501-77	4ZOO1CHI 0
2	Α	385	LKTR	420	950	12	14	OT	GN	89	0	24	7	96	MINE	MINE	CARAT	2	1		501-94	4ZOO1CHI
2 2	A A	386 387	LKTR RNWH	439 424	900 940	1 7	13 10	OT OT	GN GN	38 64	0	24 25		96 96	MINE	MINE	CARAT	1 3	1		501-85 501-95	
2	Ä	388	RNWH	469	1200	17	25	OT	GN	64	Ö	25		96	MINE	MINE	CARAT	3	1		501-35	
2	Α	389	RNWH	465	1130	7	23	OT	GN	89	0	25		96	MINE	MINE	CARAT	3	1		501-67	
2 2	A A	390 391	RNWH	485 421	1500 950	7 7	22 15	OT OT	GN GN	89 89	0	25 25		96 96	MINE	MINE	CARAT CARAT	3	1			10TRI05CHI 4ZOO1DIP
2	Ä	392	RNWH	475	1310	7	21	OT	GN	114	Õ	25		96	MINE	MINE	CARAT	3	1			2CHI8TRI
2	A	393	RNWH	455	1050	7	16	OT	GN	114	0	25		96	MINE	MINE	CARAT	3	1			3FIS2TRI
2 2	A A	394 395	RNWH LKTR	464 546	1150 1960	17 7	13 24	OT OT	GN GN	114 38	0	25 25		96 96	MINE		CARAT	3 4	1		501-71	6PEL4ZOO 10PEL
2	Α	396	LKTR	490	1280	7	22	OT	GN	38	0	25	7	96	MINE		CARAT	4	1		501-80	3ZOO1COL1PEL
2 2	A A	397 398	LKTR LKTR	488 619	1350 2550	7 17	25 25	OT OT	GN GN	38 38	0	25 25		96 96	MINE	MINE	CARAT	4 4	1		501-86 501-74	01TRI03Z0001DIP
2	Ä	399	LKTR	488	1200	7	29	OT	GN	38	ő	25		96	MINE	MINE	CARAT	4	1			3ZOO2PEL
2	A	400 401	LKTR LKTR	443 482	1100	12 7	22	OT OT	GN	64 89	0	25		96 96	MINE	MINE	CARAT	4	1		501-68	01ZOO 18TRI02PEL
2 2	A A	401	LKTR	465	1290 1160	7	22 20	OT	GN GN	89	0	25 25		96	MINE		CARAT	4	1			2ZOO2PEL1CHI
2	Α	403	LKTR	485	1480	7	16	OT	GN	89	0	25	7	96	MINE	MINE	CARAT	4	1		501-81	01COL
2	A A	404 405	LKTR LKTR	488 506	1350 1500	7 17	21 22	OT OT	GN GN	114 114	0	25 25		96 96	MINE		CARAT	4	1		501-78	0 05ZOO
2	A	406	ARCH	623	2550	7	11	OT	GN	64	ŏ	25	7	96	MINE	MINE	CARAT	4	1		00170	10PEL05FIS
2	A	407	LKTR	181	60	99		OT OT	GN	38	0	25		96	MINE	MINE	CARAT	4 3	1 1			0
2	A A	408 409	LKTR LKTR	226 206	110 95	99 99		OT	GN GN	38 38	0	25 25		96 96	MINE	MINE	CARAT	3	1			0
2	Α	410	ARCH	98	0	0		SC	EF	0	0			96		CARAT		1	0			
2 2	A A	411 412	ARCH ARCH	70 37	0	0	1 0	SC SC	EF EF	0	0			96 96	MINE	CARAT		1	0			
2	A	413	ARCH	44	Õ	ŏ	ŏ	SC	EF.	ō	ŏ	25	7	96	MINE	CARAT	TC01	1	Ö			
2	A	414	ARCH	41	0	0			EF	0	0	25 25		96 06	MINE	CARAT		1	0			
2	A A	415 416	ARCH ARCH	37 34	0	0			EF EF	0	0	25		96 96	MINE	CARAT		1	0			
2	Α	417	ARCH	43	0	0			EF	0	0	25	7	96	MINE	CARAT	TC01	1	0			
2 2	A A	418 419	ARCH ARCH	64 83	0 5	0	1	SC	EF EF	0	0	25 25		96 96	MINE	CARAT CARAT	TC01 TC01	1	0			
2	A	420	ARCH	43	0	0	0	SC	EF	0	0	25	7	96	MINE	CARAT	TC01	1	ō			
2	A	421 422	ARCH SLSC	38 78	0	0	0	SC	EF EF	0	0			96 96	MINE	CARAT	TC01 TC01	1	0 1			
2	Â	423	SLSC	64	0	0			EF	0	0			96	MINE	CARAT	TC01	i	1			
2	Α	424	LKTR	616	2075	0		FR	GN	38	230	26		96	MINE	MINE	CARAT	5	2			
2 2	A A	425 426	ARCH LKTR	555 360	1075 500	10 0		SF SF	GN GN	89 64	0	26 26		96 96	MINE		CARAT	5 5	0			
2	A	427	ARCH	565	2000	7	11	OT	GN	38	0	26	7	96	MINE	MINE	CARAT	5	1			0
2 2	A A	428 429	LKTR ARCH	201 403	85 800	1 0		OT SF	GN GN	38 89	0 366			96 96	MINE		CARAT	5 6	1			3ZOO2DIP
2	Â	430	LKTR	497	1500	17		SF	GN	38	367			96	MINE		CARAT	6	0			
2	A	431	LKTR	415	900	0		SF	GN	38	0			96	MINE		CARAT	6	0			
2	A	432 433	LKTR LKTR	323 411	305 725	0		SF SF	GN GN	64 89	0	26 26		96 96	MINE		CARAT	6 6	0			
2	Α	434	LKTR	362	480	11		OT	GN	38	0	26	7	96	MINE	MINE	CARAT	6	1			05ZOO
2	A A	435 436	LKTR LKTR	280 402	255 320	11		OT OT	GN GN	38 38	0	26 26		96 96	MINE		CARAT	6 6	1			10DIP 10ZOO
2	Â	437	ARCH	225	115	99	3	OT	GN	38	ō			96	MINE		CARAT	6	1			0
2	A	438	LKTR	209	85	11		OT	GN	38	0			96	MINE		CARAT	6	1			05ZOO
2 2	A A	439 440	LKTR LKTR	173 192	45 65	99 0		OT OT	GN GN	38 38	0			96 96	MINE		CARAT	6 6	1	ROTTEN		01200
2	A	441	LKTR	170	55	99		OT	GN	38	0			96	MINE		CARAT	6	1			0
2 2	A A	442 443	ARCH LKTR	460 365	1120 435	7 12	12	OT OT	GN GN	64 64	0	26 26		96 96	MINE		CARAT	6 6	1			05ZOO 0
2	Α	444	LKTR	323	335	99		OT	GN	64	ō	26			MINE		CARAT	6	1			10ZOO
2 2	A A	445 446	LKTR LKTR	176 182	50 55	99 99		OT OT	GN GN	38 38	0	26 26		96 96	MINE	MINE	CARAT	5 5	1			0 05ZOO
2	Ā	447	LKTR	163	25	99		OT	GN	38	ő	26		96	MINE		CARAT	5	i			05ZOO
2	A A	448 449	LKTR	174	40	99		OT	GN	38	0	26			MINE		CARAT	5	1			01FIS
2 2	A	450	LKTR LKTR	166 182	50 45	99 99		OT OT	GN GN	38 38	0	26 26			MINE		CARAT	5 5	1			05ZOO 0
2	A	451	RNWH	428	1060	17		OT	GN	64	0	26		96	MINE	MINE	CARAT	6	1			0
2 2	A A	452 453	RNWH	396 358	690 600	7 17	12 8	OT OT	GN GN	64 64	0	26 26		96 96	MINE		CARAT	6 6	1		501-93 501-90	
2	Α	454	RNWH	375	650	17		OT	GN	64	0	26	7	96	MINE	MINE	CARAT	6	1			15TRI
2 2	A A	455 456	RNWH	316 462	400 1300	17 17	7 16	OT OT	GN GN	64 89	0				MINE		CARAT	6 6	1		501-88	10TRI
2	A		RNWH	445	1160	17	15	OT	GN	114	Ö	26	7 !	96	MINE	MINE	CARAT	6	i			5FIS10TRI
2 2	A	458 459	LKTR ARCH	455 342	1350 385	12 0		OT SF	GN GN	114 64	0 2908	26 27		96 96	MINE	MINE TAIL	CARAT LD05	6 1	1 0			01FIS
2	A	460	ARCH	307	290	0		FR	GN	64	369	27		96 96	TAIL	TAIL	LD05	1	Ö			
2	Α	461	LKTR	385	560	0		FR	GN	38		27		96	TAIL	TAIL	LD05	1	0			
2 2	A A	462 463	LKTR ARCH	252 350	165 0	0 1	8	SF OT	GN GN	38 89	370 0	27 27		96 96	TAIL TAIL	TAIL TAIL	LD05 LD05	1	0 1			05ZOO
2	Α	464	LKTR	288	220	11	9	OT	GN	38	0	27	7 9	96	TAIL	TAIL	LD05	1	1			15ZOO
2 2	A A	465 466	LKTR LKTR	265 187	185 0	1 11	3 10	OT OT	GN GN	38 38	0	27 27		96 96	TAIL	TAIL TAIL	LD05 LD05	1	1 1			10ZOO 01ZOO
2	Â	467	LKTR	235	110	1	7	OT	GN	64	ő	27		96	TAIL	TAIL	LD05	i	1			0
2	A	468	LKTR	446	725	1	20	10	GN	64	0	27		96	TAIL	TAIL	LD05	1	1			3ZOO2CHI
2 2	A A	469 470	LKTR LKTR	229 203	0 90	11 0	12	OT SC	GN GN	64 38	0	27 27		96 96	TAIL TAIL	TAIL TAIL	LD05 LD05	1	1 0			10ZOO
2	Α	471	ARCH	368	465	0		SF	GN	38	0	27	7 9	96	TAIL	TAIL	LD05	1	0			
2 2	A A	472 473	LKTR ARCH	385 401	520 585	0		SF SF	GN GN	64 64	495 494	27 27		96 96	TAIL	TAIL TAIL	LD05 LD05	2	0			
2	A		ARCH	401 389	530	0		SF	GN	64	494 371	27		96 96	TAIL	TAIL TAIL	LD05 LD05	2	0			
2	Α	475	ARCH	333	350	0		SF	GN	64	497	27	7 9	96	TAIL	TAIL	LD05	2	0			
2 2	A A	476 477	ARCH ARCH	306 306	300 275	0		SF SF	GN GN	64 38	0	27 27		96 96	TAIL TAIL	TAIL TAIL	LD05 LD05	2 2	0			
2	A	477	LKTR	361	445	Ö		SF	GN	38	498	27	7 9	96	TAIL	TAIL	LD05	2	0			
2	A	479	LKTR	247	145	0		SC	GN	38	493	27	7 9	96	TAIL	TAIL	LD05	2	0			
2 2	A A	480 481	LKTR ARCH	323 365	320 0	0		SF SF	GN GN	38 19	0	27 27		96 96	TAIL TAIL	TAIL TAIL	LD05 LD05	2 2	0			
2	Α	482	ARCH	332	0	17	8	OT	GN	38	0	27	7 9	96	TAIL	TAIL	LD05	2	1			15ZOO
2 2	A A		ARCH ARCH	288 266	255 240	11 1	5 6	OT OT	GN GN	38 38	0	27 27		96 96	TAIL	TAIL TAIL	LD05 LD05	2	1			10ZOO 0
2	Α	485	LKTR	249	135	11	8	OT	GN	38	0	27	7 9	96	TAIL	TAIL	LD05	2	1			0
2 2	A A	486 487	LKTR ARCH	314 113	300 0	11 0	11 1	OT SC	GN EF	64 0	0	27 27		96 96	TAIL MINE	TAIL CARAT	LD05 TC01	2	1 0			01ZOO
2	A		ARCH	113	0	0	3	SC	EF	0	0					CARAT		5	0			

Appendix F5													٧-	70	101	1.5-	Cit-	Cont		Comments	Tionus	Stomach Contents
Period Crew A A A A A A A A A A A A A A A A A A A	Sample S No. 489 1491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 511 512 513 514 515 516 517 518 519 520 521 522 523 534 535 524 525 526 527 528 530 531 532 533 534 535 536 537 538 539 530 531 532 533 534 535 536 537 538 539 530 531 532 533 534 535 536 537 538 539 530 531 532 533 534 535 536 537 538 539 530 531 532 533 534 535 536 537 538 539 530 531 532 533 534 535 536 537 538 539 530 531 532 533 534 535 536 537 538 539 530 531 532 533 534 535 536 537 538 539 530 531 532 533 534 535 536 537 538 539 530 531 532 533 534 535 536 537 538 539 530 531 532 533 534 535 536 537 538 539 530 531 532 533 534 535 536 537 538 539 530 531 532 533 534 535 536 537 538 539 539 530 531 532 533 534 535 536 537 538 539 539 530 531 532 533 534 535 536 537 538 539 530 531 532 533 534 535 536 537 538 539 530 531 532 533 534 535 536 537 538 539 530 531 532 533 534 535 536 537 538 539 539 530 531 532 533 534 535 535 536 537 538 539 539 530 530 530 530 530 530 530 530 530 530	SOLUTION OF THE PROPERTY OF TH	Fork Len. (mm) 48 76 68 76 305 3251 8409 342 3398 363 364 365 364 365 364 365 364 365 366 366 366 366 366 366 366 366 366	Weight We	Sex 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	10 24 36 8 17 16 15 9 12 9 14 13 8 9 8 5 6 7 2 1 1 1 0 0 0 0 0 0 0 0	Age Meth. SCCSFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF	######################################	Mesh 89 0 0 0 3 3 8 8 3 8 8 6 4 4 6 4 4 6 4 6 4 8 9 8 8 9 0 8 8 6 4 6 4 6 4 6 4 6 4 6 4 6 4 6 4 6 4	Tago 0 0 0 487 483 4894 4894 4894 4894 4894 4894 4894	Day 277 278 288 288 288 288 288 288 288 288	7,77,77,77,77,77,77,77,77,77,77,77,77,7	999999999999999999999999999999999999	MINE MINE MINE MINE MINE MINE MINE MINE	DOCK DOCK DOCK DOCK DOCK DOCK DOCK DOCK	CONTW	2 2 1 1 1 2 1	Capt: Code 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	11111111111111111111111111111111111111	Comments	501-11 501-16 501-17 501-09 501-20	05ZOO 01ZOO 05FIS 06ZOO04CHI 0 10LKT05EGG
2 A 2 A 2 A 2 A 2 A 2 A 2 A	579 580 581 582 583 584 585 585 586 591 592 593 594 595 596 597 595 596 597 598 598 599 597 598	LKTR LKTR LKTR LKTR LKTR LKTR LKTR	174 490 481 454 612 436 484	40 1400 1240 1120 2360 1060 1210	99 17 2 2 12 12 12	17 17 33 14 16	TO TO TO TO TO	GN GN GN GN GN GN	38 64 64 64 64 64 64	0 0 0 0 0	29 29 29 29 29 29 29	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	96 96 96 96 96 96 96 96 96 96 96 96 96 9	TAIL TAIL TAIL TAIL TAIL TAIL TAIL TAIL	DOCK DOCK DOCK DOCK DOCK DOCK DOCK DOCK	CONTW CONTW CONTW CONTW CONTW CONTW CONTW CONTW CONTW CONTW CONTW CONTW CONTW CONTW CONTW CONTW	2 1 1 1 1 2 1 1 2	1 1 1 1 1 1			501-21 501-11 501-16 501-17 501-09 501-20	0 05ZOO 01ZOO 05FIS 06ZOO04CHI 0

Append	ix F5.	Jerio	cho Dia	mond P	roject	Aqu	atic S	Studie	s Fish	Data	(19	96)											
Period	Crew		eSpecies		Weight	Sex	Age		Capt.	Mesh			Мо	Yr	Zone	Local	Loc.	Site	Capt.	Comme	nts	Tissue	Stomach Contents
2	Α	No. 600	SLSC	Len. (mm) 49	0	0		Meth.	Meth. EF	Size 0	No.	29	7	96	MINE	CARAT		1	Code 0			No.	
2 2	A A	601 602	SLSC ARCH	37 85	0	0			EF EF	0	0	29 29	7 7	96 96	MINE	CARAT CARAT		1	0				
2	Α	603	LKTR	381	505	Ô			GN	64	87	30	7	96	TAIL	DOCK	CONTW	3	0				
2 2	A A	604 605	LKTR LKTR	337 175	435 55	11 99	15 6	OT OT	GN GN	38 38	0	30 30	7 7	96 96	TAIL TAIL		CONTW	3	1				0 10ZOO
2	Α	606	LKTR	193	70	99	6	OT	GN	19	0	30	7	96	TAIL		CONTW	4	1				10200
2 2	A	607 608	LKTR LKTR	184 187	55 60	99 99	6	OT OT	GN GN	19 19	0	30 30	7 7	96 96	TAIL TAIL		CONTW	4	1				10ZOO 05ZOO
2 2	A A	609 610	LKTR LKTR	236 219	120 115	1 11	8 10	OT OT	GN GN	19 19	0	30 30	7 7	96 96	TAIL TAIL		CONTW	4	1 1				03ZOO02CHI 0
2	Ä	611	LKTR	168	45	99	10	OT	GN	19	0	30	7	96	TAIL	DOCK	CONTW	4	i				10CHI
2 2	A A	612 613	LKTR LKTR	195 162	70 45	99 99	5	OT OT	GN GN	19 19	0	30 30	7 7	96 96	TAIL TAIL		CONTW	4	1				15CHI 05ZOO
2	Α	614	LKTR	108	10	99	2	OT	GN	19	0	30	7	96	TAIL	DOCK	CONTW	4	1				05ZOO
2	A	615 616	LKTR ARCH	112 525	10 1410	99 1	12	OT OT	GN GN	19 114	0	30 30	7 7	96 96	TAIL TAIL		CONTW	4 3	1 1				0 05ZOO05CHI
2 2	A	617 618	LKTR LKTR	495 495	1500 1350	1 7	17 21	OT OT	GN GN	19 64	0	30 30	7	96 96	TAIL TAIL		CONTW	3	1				10ROD 10ZOO
2	Α	619	LKTR	684	3150	12	20	OT	GN	114	0	30	7	96	TAIL	DOCK	CONTW	4	1			501-10	05FIS(2CIS+3UNI)
2	A	620 622	LKTR RNWH	510 455	1400 1100	1 2	24 23	OT OT	GN GN	114 64	0	30 29	7 7	96 96	TAIL MINE		CONTW	4 7	1 1			501-07 501-66	0 05CHI15TRI
2	A A	623 624	RNWH ARGR	442 163	1000 42	17 0	2	OT SC	GN EF	114 0	0	29 30		96 96	MINE	MINE CARAT	CARAT TC06	7	1 0				07TRI03CHI
2	Α	625	ARGR	159	42	0	2	SC	EF	0	0	30	7	96	MINE	CARAT	TC06	1	0				
2 2	A A	626 627	ARGR BURB	102 142	8 0	0	1	SC	EF EF	0	0	30 30		96 96	MINE	CARAT	TC06 TC06	1	0 0				
2 2	A	628 629	SLSC ARGR	62 53	0	0			EF EF	0	0	30		96	MINE	CARAT CARAT	TC06	1	0				
2	A	630	ARGR	48	0	0			EF	0	0	30 30	7	96 96	MINE	CARAT	TC06 TC06	i	0 0				
2 2	A A	631 632	SLSC ARGR	73 45	0	0			EF EF	0	0	30 30		96 96	MINE	CARAT	TC06 TC06	1	0 0				
2	A	633	ARGR	46	0	0			EF	0	0	30	7	96	MINE	CARAT	TC06	1	0				
2 2	A A	634 635	ARGR ARGR	47 36	0	0			EF EF	0	0	30 30	7	96 96	MINE	CARAT CARAT	TC06 TC06	1	0 0				
2 2	A A	636 637	ARGR ARGR	49 40	0	0			EF EF	0	0	30 30		96 96	MINE	CARAT CARAT	TC06 TC06	1	0 0				
2	Α	638	ARGR	46	0	0			EF	0	0	30	7	96	MINE	CARAT	TC06	1	0				
2 2	A A	639 640	ARGR ARGR	44 52	0	0			EF EF	0	0	30 30		96 96	MINE	CARAT	TC06 TC06	1	0				
2 2	A A	641 642	ARGR ARGR	46 44	0	0			EF EF	0	0	30 30		96 96	MINE	CARAT CARAT	TC06	1	0				
2	Α	643	ARGR	38	0	0			EF	0	0	30	7	96	MINE	CARAT	TC06 TC06	i	0				
2 2	A A	644 645	ARGR ARGR	37 89	0	0			EF EF	0	0	30 30		96 96	MINE	CARAT	TC06 TC06	1	0 0				
2	Α	646	ARGR	37	0	0			EF	0	0	30	7	96	MINE	CARAT	TC06	1	0				
2 2	A A	647 648	ARGR ARGR	37 45	0 0	0			EF EF	0	0	30 30		96 96	MINE	CARAT CARAT	TC06 TC06	1	0				
2 2	A A	649 650	SLSC ARGR	76 44	0	0			EF EF	0	0	30 30		96 96	MINE	CARAT	TC06 TC06	1	0				
2	Α	651	ARGR	44	0	0			EF	0	0	30	7	96	MINE	CARAT	TC06	1	Ö				
2 2	A A	652 653	SLSC SLSC	69 69	0 0	0			EF EF	0	0	30 30		96 96		CARAT	TC06 TC06	1	0 0				
2 2	A A	654 655	ARGR SLSC	45 81	0	0			EF EF	0	0	30 30		96 96	MINE	CARAT	TC06 TC06	1	0				
2	Α	656	SLSC	78	0	0			EF	0	0	30	7	96	MINE	CARAT	TC06	i	0				
2 2	A A	657 658	SLSC ARGR	84 41	0	0			EF EF	0	0	30 30		96 96	MINE	CARAT	TC06 TC06	1	0				
2 2	A A	659 660	ARGR ARGR	56 52	0	0			EF EF	0	0	30 30		96 96		CARAT CARAT	TC06 TC06	1 1	0 0				
2	Â	661	ARGR	41	0	0			EF	0	Ö	30	7	96	MINE	CARAT	TC06	1	0				
2 2	A A	662 663	ARGR ARGR	46 48	0	0			EF EF	0	0	30 30		96 96	MINE	CARAT	TC06 TC06	1	0 0				
2 2	A	664	ARGR ARGR	48 40	0	0			EF	0	0	30	7	96	MINE	CARAT	TC06	1	0				
2	A	665 666	ARGR	45	0	0			EF EF	0 0	0	30 30		96 96	MINE	CARAT	TC06 TC06	1	0				
2	A A	667 668	ARGR ARGR	52 39	0	0			EF EF	0	0	30 30		96 96	MINE	CARAT	TC06 TC06	1	0				
2 2	A A	669 670	ARGR ARGR	40 43	0	0			EF EF	0	0	30 30	7	96	MINE	CARAT CARAT	TC06	1	0				
2	Α	671	ARGR	44	0	0			EF	Ō	0	30	7	96	MINE	CARAT	TC06	1	ō				
2 2	A A	672 673	ARGR ARGR	39 45	0	0			EF EF	0	0	30 30				CARAT		1	0				
2	A A	674 675	SLSC BURB	34 37	0	0			EF EF	0	0	30 30		96	MINE	CARAT	TC06	1	0				
2	Α	676	BURB	36	0	0			EF	0	0	30	7	96	MINE	CARAT	TC06	1	ō				
2 2	A A	677 678	BURB BURB	35 34	0	0			EF EF	0	0					CARAT		1	0 0				
2 2	A A	679 680	BURB BURB	39 41	0	0			EF EF	0	0					CARAT		1	0				
2	Α	681	SLSC	36	0	0			EF	0	0	30	7	96	MINE	CARAT	TC06	1	Ō				
2 2	A A	682 683	BURB BURB	37 29	0	0			EF EF	0	0					CARAT	TC06 TC06	1	0				
2 2	A A	684 685	BURB BURB	32 29	0 0	0			EF EF	0	0					CARAT CARAT		1	0				
2	Α	686	ARGR	129	8	0	2	SC	EF	0	0	30	7	96	MINE	CARAT	TC06	2	o				
2 2	A A	687 688	SLSC SLSC	98 81	0	0			EF EF	0 0	0	30 30				CARAT		2 2	0				
2 2	Α	689	SLSC	86 83	0	0			EF	0	0	30	7	96	MINE	CARAT	TC06	2	0				
2	A A	690 691	SLSC SLSC	81	0	0			EF EF	0	0	30				CARAT CARAT	TC06 TC06	2	0				
2 2	A A	692 693	SLSC ARGR	81 48	0	0			EF EF	0	0					CARAT		2	0				
2	Α	694	ARGR	49	0	0			EF	0	0	30	7	96	MINE	CARAT	TC06	2	Ō				
2 2	A A		ARGR ARGR	35 54	0	0			EF EF	0 0	0					CARAT		2	0				
2 2	A A	697	ARGR ARGR	52 53	0	0			EF EF	0	0	30	7	96	MINE	CARAT		2	0				
2	Α	699	ARGR	44	Ō	0			EF	0	0	30	7	96	MINE	CARAT	TC06	2	ō				
2 2	A A		ARGR ARGR	42 42	0	0			EF EF	0	0					CARAT		2	0 0				
2 2	Α	702	ARGR ARGR	42 43	0	0			EF	0	0	30	7	96	MINE	CARAT	TC06	2	0				
2	A A	704	ARGR	48	0	0			EF EF	0	0	30	7	96	MINE	CARAT	TC06	2	Ö				
2 2	A A		ARGR ARGR	56 54	0 0	0			EF EF	0	0					CARAT	TC06 TC06	2	0 0				
2	A A	707	ARGR ARGR	42 47	0	0			EF EF	0	0	30	7	96	MINE	CARAT	TC06	2 2	0				
2	Α	709	ARGR	42	Ō	Ō			EF	0	0	30	7	96	MINE	CARAT	TC06	2	0				
2 2	A A		ARGR ARGR	47 44	0	0			EF EF	0	0					CARAT		2	0 0				
												-			-								

Append	IX F5.	Jerio	cuo Dia	ımona F					s Fish	Data	(19)	96)								
Period	Crew	Sample No.	eSpecies	Fork Len. (mm)	Weigh	t Sex	Age	Age Meth.	Capt. Meth.	Mesh Size	Tag No.	Day	Mo `	'r Zor	e Loca	l Loc.	Site	Capt.	Tissue No.	Stomach Contents
2	Α	712	ARGR	40	(g) 0	0		weur.	EF	0	0	30	7 9	6 MIN	E CARA	T TC06	2	0	140.	
2	A	713 714	BURB	36	0	0			EF	0	0	30	7 9				2	0		
2 2	A A	715	BURB ARGR	43 29	0	0	0	SC	EF EF	0	0	30 30	7 9				2	0 0		
2	Α	716	ARGR	48	0	0	0	SC	EF	0	0	30	7 9	6 MIN	E CARA	T TC06	2	0		
2	A	717 718	ARGR ARGR	43 145	0	0	0	SC	EF EF	0	0	30 30	7 9				2	0		
2	Α	719	ARGR	117	0	0			EF	0	0	30	7 9		E CARA	T TC06	3	0		
2 2	A A	720 721	SLSC	72 77	0	0			EF EF	0	0	30 30	7 9				3	0		
2	Α	722	ARGR	40	Ō	0			EF	0	0	30	7 9	6 MIN	E CARA	T TC06	3	Ō		
2 2	A	723 724	ARGR ARGR	48 54	0	0			EF EF	0	0	30 30	7 9				3	0 0		
2	Α	725	ARGR	57	0	ō			EF	0	0	30	7 9	6 MIN	E CARA	T TC06	3	0		
2 2	A A	726 727	ARGR ARGR	42 41	0	0			EF EF	0	0	30 30	7 9				3	0		
2	Α	728	ARGR	42	ō	ō			EF	Ö	ō	30	7 9	6 MIN	E CARA	T TC06	3	ō		
2 2	A A	729 730	LKTR LKTR	460 242	775 110	0			GT GN	0 38	89 0	31 31	7 9			CONTY		0		
2	Ä	731	LKTR	301	335	0			GN	38	ŏ	31	7 9	6 TAI	DOC	CONTV	/ 5	ŏ		
2 2	A A	732 733	LKTR LKTR	9 6 100	0 0	0	1	SC SC	GN GN	19 19	0	31 31	7 9 7 9			CONTV		0		
2	Α	734	LKTR	101	0	0		-	GN	19	ō	31	7 9	6 TAI	DOC	CONTV	/ 5	ō		
2 2	A	735 736	ARCH ARCH	509 517	1515 1650	0			GN GN	114 114	90 91	31 31	7 9 7 9			CONTY		0		
2	Ä	737	LKTR	517	1310	12	20	OT	GN	38	0	31	7 9	5 TAI	DOC	CONTV	/ 5	1	501-06	
2 2	A	738 739	LKTR LKTR	427 528	850 1550	1 7	16 24	OT OT	GN GN	64 89	0	31 31	7 9 7 9			CONTY		1	501-05 501-03	01ZOO 01COL01INS03CHI
2	Α	740	LKTR	436	770	1	18	OT	GN	89	0	31	7 9	6 TAI	DOC	CONTV	/ 5	1	501-12	15FIS
2	A A	741 742	LKTR LKTR	188 461	65 960	11 12	20	OT OT	GN GN	38 89	0	31 31	7 9 7 9			CONTY		1	501-01	01TRI 05FIS03CHI02ZOO
2	Α	743	LKTR	179	70	7		OT	GN	38	0	31	7 9	6 TAI	DOC	CONTV	5	1	••••	0
2 2	A A	744 745	LKTR LKTR	374 461	560 1100	12 12	14 19	OT OT	GN GN	10 64	0	31 31	7 9 7 9			CONTV		1	501-19	01COL14ZOO 05ZOO
2	Α	746	LKTR	525	1900	7	33	OT	GN	38	0	31	7 9	6 TAI	. DOC	CONTY	6	1	501-18	10CHI
2 2	A A	748 749	LKTR LKTR	168 469	40 1040	11 1	4 17	OT OT	GN GN	38 89	0	31 31	7 9 7 9			CONTV		1	501-15	05TRI 0
2	Α	750	LKTR	330	360	0		•	GN	64	0	31	7 9	5 TAI	DOC	CONTY	6	1	501-13	
2 2	A A	751 752	LKTR LKTR	211 506	100 1460	0			GN GN	38 38	0	1	8 9				2	0		
2	Α	753	LKTR	516	1450	12		OT	GN	64	0	1	8 9	6 MIN	MINE	INTE2	2	1		10ZOO
2 2	A A	754 755	LKTR LKTR	495 483	1550 1290	0			GN GN	64 114	0	1	8 9				2	0		
2	Α	756	LKTR	498	1375	0			GN	114	0	1	8 9	5 MIN	E MINE	INTE2	2	Ö		
2	A A	757 758	LKTR LKTR	511 516	1535 1535	12 12		OT OT	GN GN	114 114	0	1	8 9 8 9				2	1		01ZOO 09ZOO01PEL
2	Α	759	LKTR	521	1620	7		OT	GN	114	0	1	8 9	6 MIN	MINE	INTE2	2	1		10ZOO
2 2	A A	760 761	LKTR LKTR	515 286	1565 200	7 11		OT OT	GN GN	89 38	0	1	8 9				2	1 1		0
2	Α	762	LKTR	259	175	11		OT	GN	38	0	1	8 9	MIN	MINE	INTE2	2	1		05ZOO
2 2	A A	763 764	LKTR LKTR	244 196	140 70	99 99		OT OT	GN GN	38 38	0	1	8 9				2	1		15ZOO 15ZOO
2	A	765	LKTR	193	75	99		OT	GN	38	0	1	8 9	MIN 6	MINE	INTE2	2	1		0
2 2	A	766 767	LKTR LKTR	109 165	15 55	99 99		SC OT	GN GN	19 38	0	1	8 9				1	1		0 01ZOO
2	Α	768	LKTR	236	130	99		OT	GN	38	0	1	8 9	MIN 6	MINE	INTE2	1	1		01ZOO
2 2	A A	769 770	LKTR LKTR	234 198	140 90	1 11		OT OT	GN GN	38 38	0	1	8 9				1	1		0 10ZOO
2	Α	771	LKTR	228	115	99		OT	GN	38	0	1	8 9	MIN 3	MINE	INTE2	1	1		0
2	A A	772 773	LKTR LKTR	209 160	90 45	99 11		OT OT	GN GN	38 38	0	1	8 9 8 9				1	1		0 01ZOO
2	Α	774	LKTR	163	60	99		OT	GN	38	0	1	8 9	MIN 6	E MINE	INTE2	1	1		10ZOO
2 2	A	775 776	LKTR RNWH	203 196	100 90	11 99		OT OT	GN GN	38 38	0	1	8 9				1	1		01ZOO 05TRI
2	A	777	RNWH	167	55	99		OT	GN	38	0	1	8 9	MIN 3	MINE	INTE2	1	1		05ZOO
2 2	A A	778 779	RNWH	188 375	70 530	0 11		SC OT	GN GN	38 38	0	1	8 9				1	1		05ZOO 05ZOO
2 2	A	780 781	ŁKTR LKTR	591 469	2060 1340	2 17		OT OT	GN GN	89 89	0	1	8 9				1	1		0 04LKTR01ZOO
2	A A	782	NNST	54	0	0		O1	GE	0	0	1	8 9				1	1 0		04LK1K01Z00
2 2	A A	783 784	NNST NNST	52 53	0	0			GE GE	0	0	2	8 9				3	0		
2	Â	785	NNST	62	Ö	0			GE	Ö	ō	2	8 9				3	ő		
2 2	A A	786 787	NNST NNST	51 51	0	0			GE GE	0	0	2	8 9				3 4	0		
2	Ä	788	NNST	56	Ö	0			GE	0	0	2	8 9		FUEL	LO05	4	Ō		
2 2	A A	789 790	NNST NNST	58 59	0	0			GE GE	0	0	2	8 9				4	0		
2	A	791	NNST	49	0	0			GE	0	0	2	8 9	FUE	. FUEL	LO05	4	0		
2 2	A A	792 793	NNST NNST	59 37	0	0			GE GE	0	0	2	8 9				4	0		
2	Α	794	LKTR	566	2020	0			GN	64	92	2	8 9	FUE	. FUEL	LO05	1	0		
2 2	A A	795 796	ARGR LKTR	400 517	905 2560	20 0	7	SC	GN GN	64 89	93 0	2	8 9				1	0		
2	A	797	LKTR	511	1385	0			GN	140	0	2	8 9	FUE	. FUEL	LO05	1	ō		
2 2	A A	798 799	LKTR LKTR	349 426	555 890	0	10	OT	GN GN	140 64	0	2 2	8 9			LO05	1	0 1		02NNST13BRA
2	Α	800	ARGR	169	65	11	2	SC	GN	38	0	2	8 9	FUE	. FUEL	LO05	1	1		10ZOO05CHI
2 2	A A	801 802	LKTR LKTR	411 377	855 675	12 1	8	OT OT	GN GN	64 64	0	2	8 90				2	1		15ZOO 08BRA01PEL06ZOO
2	Α	803	LKTR	430	850	1	12	OT	GN	38	0	2	8 9	FUE	. FUEL	LO05	2	1		20BRA
2 2	A A	804 805	LKTR ARCH	283 434	280 995	11 12	9	OT OT	GN GN	38 38	0		8 96				2	1		10BRA 04ZOO01BRA
2	Α	806	LKTR	247	190	11	6	OT	GN	38	0	2	8 96	FUE	. FUEL	LO05	2	1		04Z0001CHI
2	A A	807 808	ARGR LKTR	247 435	195 975	11 12	3 9	SC OT	GN GN	38 89	0	2	8 96				2	1		08ZOO02COL 03ZOO02BRA
2	Α	809	RNWH	432	1120	7		OT	GN	89	0	2	8 96	FUE	. FUEL	LO05	2	1		10ZOO
2 2	A A	810 811	RNWH ARGR	505 385	1650 820	17 7	22 7	OT SC	GN GN	89 89	0		8 96				2	1 1		10TRI 10ZOO
2	Α	812	ARGR	327	395	7	4	SC	GN	38	0	2	8 96	FUE	. FUEL	LO05	1	1		14ZOO01COL
2 2	A A	813 814	LKTR LKTR	442 332	960 465	1	12 8	OT OT	GN GN	38 64	0		8 96 8 96			LO05 LO05	1	1		0 10BRA
2	Α	815	LKTR	442	1020	1	-	OT	GN	64	0	2	8 96	FUE	. FUEL	LO05	1	1		05BRA
2 2	A A	816 817	LKTR LKTR	455 408	1070 805	1 11	8	OT OT	GN GN	89 89	0		8 96			LO05 LO05	1	1 1		05FIS 05BRA
2	Α	818	ARGR	404	900	17	6	SC	GN	89	0	2	8 96	FUE	. FUEL	LO05	1	1		20BRA
2 2	A A	819 820	SLSC	80 55	0	0			EF EF	0 0	0		8 96			TO06 TO06	1	0 0		
2	Α	821 822	SLSC SLSC	81 79	0	0			EF	0	0	2	8 96	FUE	. LO4	TO06 TO06	1	0		
2	A A	822 823	NNST	79 57	0	0			EF EF	0	0		8 96 8 96			TO06	1	0		

No	Append													. Ma	y 7a	l occi	10-	C:+-	Cont	0	nante	Tiperia	Stomoch Contact
2 A 80 5066 A 76 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			No.		Len. (mm)			Age		Meth.	Size	No.							Code	Comr	nents		Stomach Contents
2	_																						
2 A 898 855C 48 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	-	Α	826	BURB	46	-	-			EF	0	0	2	8 9	6 FUEL	LO4	TO06	- :	0				
2 A SS 0,000 38 0 0 0	_					_	-											1					
2 A 88 MSG 98 S 98 O 0						_	_					0											
2 A 838 MST 54 S 90 0 0				NNST			-			EF					6 FUEL	LO4	TO06	- 1					
2 A 84 MSI 65 40 0 0 0																							
2 A 8 58 58.50 44 0 0 0 0 0 5 0 0 0 0 0 0 0 0 0 0 0	2	Α	834	NNST	59	0	0			EF	0	0	2	8 9	6 FUEL	LO4	TO06	- 1	0				
2 A 839 MATE 33 0 0 0	_																						
2 A 889 A868	2	Α	837	NNST	31	0	0			EF	0	0	2	8 9	6 FUEL	LO4	TO06		0				
2 A 549 ARCH 55 0 0 0 0 5 0 FF 0 0 2 2 5 6 FF 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0									SC									1					
2 A 844 ARGM 51 0 0 0 0 SC FF 0 0 0 2 8 Ref 0 0 0 1 8 Ref 0 0 0 2 8 Ref 0 0 0 2 8 Ref 0 0 0 2 8 Ref 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0																		1					
2 A 844 ARGS	2	Α	842	ARGR	51	Ō	0	0	SC	EF	0	0	2	8 9	5 FUEL	LO4	TO06	1	ō				
2 A 843 ASGM 50 0 0 0 FF 0 0 0 2 8 8 FF 0 1 0 0 2 8 8 FF 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0						-												1	-				
2 A 847 ARCH 45 0 0 0 0 0 S EF 0 0 0 2 2 8 66 FUEL LOA 1006 1 0 0 2 A 869 BUREL 37 0 0 0 2 8 6F P 0 0 0 2 2 8 66 FUEL LOA 1006 1 0 0 2 A 869 BUREL 37 0 0 0 0 2 8 6F P 0 0 0 2 2 8 66 FUEL LOA 1006 1 0 0 2 A 869 BUREL 37 0 0 0 0 2 S C FF 0 0 0 2 2 8 66 FUEL LOA 1006 1 0 0 2 A 869 BUREL 37 0 0 0 0 2 S C FF 0 0 0 2 2 8 66 FUEL LOA 1006 1 0 0 2 A 869 BUREL 37 0 0 0 0 2 S C FF 0 0 0 2 2 8 66 FUEL LOA 1006 2 0 0 2 A 869 ARCH 10 19 0 0 1 S C FF 0 0 0 2 2 8 66 FUEL LOA 1006 2 0 0 2 A 869 ARCH 10 19 0 0 1 S C FF 0 0 0 2 2 8 66 FUEL LOA 1006 2 0 0 2 A 869 ARCH 10 19 0 0 1 S C FF 0 0 0 2 2 8 66 FUEL LOA 1006 2 0 0 2 A 869 ARCH 10 19 0 0 1 S C FF 0 0 0 2 2 8 66 FUEL LOA 1006 2 0 0 2 A 869 ARCH 10 19 0 0 0 2 S C FF 0 0 0 2 2 8 66 FUEL LOA 1006 2 0 0 2 A 869 ARCH 10 19 0 0 0 S C FF 0 0 0 2 2 8 66 FUEL LOA 1006 2 0 0 2 A 869 ARCH 10 10 1 0 0 S C FF 0 0 0 2 2 8 66 FUEL LOA 1006 2 0 0 2 A 869 ARCH 10 13 0 0 0 0 S C FF 0 0 0 2 2 8 66 FUEL LOA 1006 2 0 0 2 A 869 ARCH 10 13 0 0 0 0 S C FF 0 0 0 2 2 8 66 FUEL LOA 1006 2 0 0 2 A 869 ARCH 10 13 0 0 0 0 S C FF 0 0 0 2 2 8 66 FUEL LOA 1006 2 0 0 2 A 869 ARCH 10 13 0 0 0 0 S C FF 0 0 0 2 2 8 66 FUEL LOA 1006 2 0 0 2 A 869 ARCH 10 13 0 0 0 0 S C FF 0 0 0 2 2 8 66 FUEL LOA 1006 2 0 0 2 A 869 ARCH 10 13 0 0 0 0 S C FF 0 0 0 2 2 8 66 FUEL LOA 1006 2 0 0 2 A 869 ARCH 10 13 0 0 0 0 S C FF 0 0 0 2 2 8 66 FUEL LOA 1006 2 0 0 2 A 869 ARCH 10 13 0 0 0 0 S C FF 0 0 0 0 2 8 66 FUEL LOA 1006 2 0 0 2 A 869 ARCH 10 13 0 0 0 0 0 S C FF 0 0 0 0 2 8 66 FUEL LOA 1006 2 0 0 2 A 869 ARCH 10 13 0 0 0 0 0 S C FF 0 0 0 0 2 8 66 FUEL LOA 1006 2 0 0 2 A 869 ARCH 10 13 0 0 0 0 0 S C FF 0 0 0 0 2 8 66 FUEL LOA 1006 2 0 0 2 A 869 ARCH 10 10 0 0 0 0 S C FF 0 0 0 0 2 8 66 FUEL LOA 1006 2 0 0 2 A 869 ARCH 10 10 0 0 0 0 S C FF 0 0 0 0 0 0 S C FF 0 0 0 0 0 0 S C FF 0 0 0 0 0 0 S C FF 0 0 0 0 0 0 S C FF 0 0 0 0 0 0 S C FF 0 0 0 0 0 0 S C FF 0 0 0 0 0 0 S C FF 0 0 0 0 0 0 S C FF 0 0 0 0 0 0 S C FF 0 0 0 0 0 0 S C FF 0 0 0 0 0 0 S C FF 0 0 0 0 0 0 S C FF 0 0 0 0 0 S C FF 0 0 0 0 0 0 S C FF 0 0 0 0 0 S C FF 0 0 0 0 0 S C FF	2	Α	845	ARGR	50	_	0	-		EF	0	0	2	8 9	5 FUEL	LO4	TO06		0				
2 A 849 ASSIS 100 0 0 2 S C FF 0 0 2 2 8 8 F FF 1 0 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0						-		0	SC														
2 A 880 BURBS 37 0 0 0								2	90									1					
2 A 862 ARSR 192 0 0 2 SC FF 0 0 2 2 8 86 FM2. LOA 1006 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2	Α	850	BURB	37	0	0	2	50	EF	0	0	2	8 9	FUEL	LO4	TO06	1	Ō				
2 A 863 ARSA 146									sc			-											
2 A 855 ARGA 103 00 0 1 SC EF 0 0 2 8 86 FUEL LOT 1006 3 0 0 2 A 856 ARGA 103 10 8 0 0 5 SC EF 0 0 2 8 86 FUEL LOT 1006 3 0 0 2 A 856 ARGA 103 10 8 0 0 5 SC EF 0 0 0 2 8 86 FUEL LOT 1006 3 0 0 3 A 856 ARGA 103 10 8 0 0 5 SC EF 0 0 0 2 8 86 FUEL LOT 1006 3 0 0 3 A 856 ARGA 103 10 8 0 0 0 5 SC EF 0 0 0 2 8 86 FUEL LOT 1006 3 0 0 3 A 856 ARGA 103 10 8 0 0 0 0 0 2 8 86 FUEL LOT 1006 3 0 0 3 A 856 ARGA 103 10 8 0 0 0 0 0 2 8 86 FUEL LOT 1006 3 0 0 3 A 856 ARGA 103 10 8 0 0 0 0 0 2 8 86 FUEL LOT 1006 3 0 0 3 A 856 ARGA 103 10 8 0 0 0 0 0 2 8 86 FUEL LOT 1006 3 0 0 3 A 856 ARGA 103 10 0 0 0 0 0 0 2 8 8 86 FUEL LOT 1006 3 0 0 3 A 856 ARGA 103 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2	Α	853	ARGR	146	26	0	2	SC	EF	0	0	2	8 9	5 FUEL	LO4	TO06	3	0				
2 A 857 ANGR 194 14 0 SC EF 0 0 2 2 8 9 FUEL LOS 1006 3 0 2 A 860 ANGR 194 14 0 SC EF 0 0 2 2 8 9 FUEL LOS 1006 3 0 2 A 860 ANGR 194 19 1 0 1 0 SC EF 0 0 2 2 8 9 FUEL LOS 1006 3 0 2 A 860 ANGR 194 19 1 0 1 0 SC EF 0 0 2 2 8 9 FUEL LOS 1006 3 0 2 A 861 ANGR 194 19 1 0 1 0 SC EF 0 0 2 2 8 9 FUEL LOS 1006 3 0 2 A 861 ANGR 194 19 1 0 1 0 SC EF 0 0 2 2 8 9 FUEL LOS 1006 3 0 2 A 861 ANGR 194 19 1 0 1 0 SC EF 0 0 2 2 8 9 FUEL LOS 1006 3 0 2 A 861 ANGR 194 19 1 0 1 0 SC EF 0 0 2 2 8 9 FUEL LOS 1006 3 0 2 A 862 ANGR 194 19 1 0 1 0 SC EF 0 0 2 2 8 9 FUEL LOS 1006 3 0 2 A 862 ANGR 194 19 1 0 1 0 SC EF 0 0 0 2 2 8 9 FUEL LOS 1006 3 0 2 A 863 ANGR 194 19 1 0 1 0 SC EF 0 0 0 2 2 8 9 FUEL LOS 1006 4 1 0 2 A 864 ANGR 194 19 1 0 0 0 SC EF 0 0 0 2 2 8 9 FUEL LOS 1006 4 1 0 2 A 865 ANGR 194 19 1 0 0 0 0 SC EF 0 0 0 2 2 8 9 FUEL LOS 1006 1 0 0 SC EF 0 0 0 2 2 8 9 FUEL LOS 1006 1 1 0 0 SC EF 0 0 0 2 2 8 9 FUEL LOS 1006 1 1 0 0 SC EF 0 0 0 2 2 8 9 FUEL LOS 1006 1 1 0 0 SC EF 0 0 0 2 2 8 9 FUEL LOS 1006 1 1 0 0 SC EF 0 0 0 2 2 8 9 FUEL LOS 1006 1 1 0 0 SC EF 0 0 0 2 2 8 9 FUEL LOS 1006 1 1 0 SC EF 0 0 0 2 8 9 FUEL LOS 1006 1 1 0 SC EF 0 0 0 2 8 9 FUEL LOS 1006 1 1 0 SC EF 0 0 0 2 8 9 FUEL LOS 1006 1 1 0 SC EF 0 0 0 2 8 9 FUEL LOS 1006 1 1 0 SC EF 0 0 0 2 8 9 FUEL LOS 1006 1 1 1 0 SC EF 0				ARGR			0	1	SC	EF			2	8 9	5 FUEL	LO4	TO06						
2 A 858 ARCH 11 18 0 0 SC FF 0 0 2 2 8 96 FULL LOG TOOM 3 0 0 0 0 0 1 0 1 0 0 0 1 0 1 0 0 0 1 0 1 0 0 0 1 0 1 0 0 0 1 0 1 0 0 0 1 0 1 0 0 0 1 0 1 0 0 0 1 0 1 0 0 0 1 0 1 0 0 1 0 0 1 0 1 0 0 0 1 0 1 0 0 1 0 1 0 0 1 0 1 0 0 1 0 1 0 0 1 0 1 0 0 1 0 1 0 0 1 0 1 0 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 0 1 0								1			-												
2 A 880 SLSC 65 0 0 0	2	Α	858	ARCH	91	8	0			ĘF	0	0	2	8 9	FUEL	LO4	TO06	3	0				
2 A 881 ANST S2 00 0 0 0 EF 00 0 2 8 86 PUBL LOA 1006 3 0 0 0 0 1									SC		-							-	-				
2 A 883 BURB 40 0 0 0 2 SF 90 00 2 8 8 95 FUEL LO\$ 1006 4 0 0 0 1 2 SF 96 FUEL LO\$ 1006 4 0 0 0 0 1 SF 97 SF			861	NNST						EF			2	8 9	FUEL	LO4	TO06						
2 A 866 ARG 113 0 0 SC EF 0 0 0 2 8 8 96 FUEL LOS TOOM 4 0 0 0 C C C C C C C C C C C C C C C C			863	BURB	40		0			EF		-			FUEL	LO4	TO06						
2 A 866 SLSC 59 0 0 0								2										4					
2 A 888 SLSC 45 0 0 0	2	Α	866	SLSC	59	0	0		-	EF	0	0	2	8 96	FUEL	LO5	TO06A	1	0				
2 A 870 SLSC 45 0 0 0												-						- :					
2 A 871 BURB 47 0 0 0											-	-											
2 A 873 ARGR 105 10 0 1 SC EF 0 0 2 8 86 FUEL LOS TOOSA 1 0 0 2 A 874 ARGR 83 0 0 0 0 SC EF 0 0 2 8 86 FUEL LOS TOOSA 1 0 0 2 A 876 ARGR 84 0 0 0 0 SC EF 0 0 2 8 86 FUEL LOS TOOSA 1 0 0 2 A 877 ARGR 85 2 0 0 0 0 SC EF 0 0 2 8 86 FUEL LOS TOOSA 1 0 0 2 A 878 ARGR 85 2 0 0 0 SC EF 0 0 2 8 86 FUEL LOS TOOSA 1 0 0 2 A 878 ARGR 85 2 0 0 0 SC EF 0 0 2 8 86 FUEL LOS TOOSA 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2	Α	871	BURB	47	0	0			EF	0	0	2	8 96	5 FUEL	LO5	TO06A	1	0				
2 A 874 ARGR 53 0 0 0 SC EF 0 0 2 8 86 FUEL LOS TOGGÁ 1 0 0	_							1			-	-						1	_				
2 A 876 ARGR 54 0 0 0 SC EF 0 0 2 8 89 FUEL LOS 7006A 1 0 0 2 A 877 NNST 58 0 0 0									SC	EF			2	8 96	5 FUEL	LO5	TO06A	1					
2 A 878 NNST 54 0 0 0 GE 0 0 3 8 96 FUEL FUEL LOSS 3 0 0 2 A 880 LKTR 583 2475 0 0 0 99	2	A	876	ARGR	54	0	0			ĘΕ	0	0	2	8 96	FUEL	LO5	TO06A		ō				
2 A 879 BURB 33 0 0 0 GE 0 0 3 8 96 FUEL FUEL LO33 3 0 0 2 A 881 KARGR 98 0 99 0 T GN 140 0 3 8 96 FUEL FUEL LO33 1 1 0 2 A 882 RAWH 98 0 99 0 T GN 190 0 3 8 96 FUEL FUEL LO33 1 1 1 05200 2 A 884 KARGR 98 10 99 0 T GN 190 0 3 8 96 FUEL FUEL LO33 1 1 1 05200 2 A 884 KARGR 198 195 11 OT GN 38 0 1 3 8 96 FUEL FUEL LO33 1 1 1 05200 2 A 885 KARGR 198 195 11 OT GN 38 0 1 3 8 96 FUEL FUEL LO33 1 1 1 05200 2 A 884 KARGR 100 45 99 5 OT GN 38 0 1 3 8 96 FUEL FUEL LO33 1 1 1 0 C 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1											-	-						-	-				
2 A 881 ARGR 98 0 99 OT GN 19 0 3 8 96 FUEL FUEL LO03 1 1 1 05200 2 A 882 RWH 97 0 99 GN 19 0 3 8 96 FUEL FUEL LO03 1 1 1 05200 2 A 883 ARCH 384 G45 11 OT GN 19 0 3 8 96 FUEL FUEL LO03 1 1 1 05200 2 A 885 LKTR 160 45 99 5 OT GN 38 0 3 8 96 FUEL FUEL LO03 1 1 1 05200 2 A 886 LKTR 160 45 99 5 OT GN 38 0 3 8 96 FUEL FUEL LO03 1 1 1 05200 2 A 886 LKTR 490 1550 7 10 OT GN 84 0 3 8 96 FUEL FUEL LO03 1 1 1 05200 2 A 886 LKTR 490 1550 7 10 OT GN 84 0 3 8 96 FUEL FUEL LO03 1 1 1 07180 2 A 886 LKTR 490 1550 7 10 OT GN 84 0 3 8 96 FUEL FUEL LO03 1 1 1 07180 2 A 886 LKTR 490 1550 7 10 OT GN 84 0 3 8 96 FUEL FUEL LO03 1 1 1 07180 2 A 880 LKTR 490 1550 7 10 OT GN 84 0 3 8 96 FUEL FUEL LO03 1 1 1 07180 2 A 880 LKTR 490 1550 7 10 OT GN 84 0 3 8 96 FUEL FUEL LO03 1 1 1 07180 2 A 880 LKTR 490 1550 7 10 OT GN 84 0 3 8 96 FUEL FUEL LO03 1 1 1 07180 2 A 880 LKTR 490 1550 7 10 OT GN 84 0 3 8 96 FUEL FUEL LO03 1 1 1 07180 2 A 880 LKTR 490 1550 7 10 OT GN 84 0 3 8 96 FUEL FUEL LO03 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2	Α	879	BURB	33	0	0			GE			3	8 96	FUEL	FUEL	LO03						
2 A 883 ARCH 384 645 11 OT GN 19 0 3 8 96 FUEL FUEL LOGS 1 1 1 15200 2 A 885 LKTR 218 195 11 OT GN 38 0 3 8 96 FUEL FUEL LOGS 1 1 1 05200 2 A 885 LKTR 217 125 99 5 OT GN 38 0 3 8 96 FUEL FUEL LOGS 1 1 1 05200 2 A 885 LKTR 470 160 45 99 5 OT GN 38 0 3 8 96 FUEL FUEL LOGS 1 1 1 05200 2 A 886 LKTR 470 1465 2 90 OT GN 68 0 3 8 96 FUEL FUEL LOGS 1 1 1 05200 2 A 887 LKTR 470 1465 2 90 OT GN 68 0 3 8 96 FUEL FUEL LOGS 1 1 1 05200 2 A 889 LKTR 470 1465 2 90 OT GN 68 0 0 3 8 96 FUEL FUEL LOGS 1 1 1 05200 2 A 880 LKTR 470 1465 2 90 OT GN 68 0 0 3 8 96 FUEL FUEL LOGS 1 1 1 05200 2 A 880 LKTR 470 17 38 OT GN 68 0 0 3 8 96 FUEL FUEL FUEL LOGS 1 1 1 05200 2 A 880 LKTR 622 3160 17 38 OT GN 68 0 0 3 8 96 FUEL FUEL FUEL LOGS 1 1 1 05200 2 A 880 LKTR 622 3160 17 38 OT GN 68 0 0 3 8 96 FUEL FUEL FUEL FUEL FUEL LOGS 1 1 1 05200 2 A 880 LKTR 131 10 0 0 0 EF 0 0 0 3 8 96 FUEL FUEL FUEL FUEL FUEL FUEL FUEL FUEL			881	ARGR	98				ОТ			-			FUEL	FUEL	LO03						
2 A 884 LYTR 218 195 11 OT GN 38 0 3 8 96 FUEL FUEL LOGS 1 1 1 OSZOO 22 A 885 LYTR 160 45 99 5 OT GN 38 0 3 8 96 FUEL FUEL LOGS 1 1 1 SBUR 2 A 886 LYTR 48 1410 2 9 OT GN 38 0 3 8 96 FUEL FUEL LOGS 1 1 1 SBUR 2 A 886 LYTR 498 1410 2 9 OT GN 68 0 3 8 96 FUEL FUEL LOGS 1 1 1 OTRIWW 2 A 886 LYTR 490 1650 7 10 OT GN 68 0 3 8 96 FUEL FUEL LOGS 1 1 1 OTRIWW 2 A 887 LYTR 490 1650 7 10 OT GN 68 0 3 8 96 FUEL FUEL LOGS 1 1 1 OTRIWW 2 A 888 LYTR 490 1650 7 10 OT GN 68 0 3 8 96 FUEL FUEL LOGS 1 1 1 OTRIWW 2 A 889 LYTR 490 1650 7 10 OT GN 68 0 0 3 8 96 FUEL FUEL LOGS 1 1 1 OTRIWW 2 A 891 LYTR 490 1650 7 10 OT GN 68 0 0 3 8 96 FUEL FUEL LOGS 1 1 1 OTRIWW 2 A 891 LYTR 490 1650 7 10 OT GN 68 0 0 3 8 96 FUEL FUEL LOGS 1 1 1 OTRIWW 2 A 891 LYTR 490 1650 7 10 OT GN 68 0 0 3 8 96 FUEL FUEL LOGS 1 1 1 OTRIWW 2 A 891 LYTR 490 1650 7 10 OT GN 68 0 0 3 8 96 FUEL FUEL LOGS 1 1 1 OTRIWW 2 A 891 LYTR 490 1650 0 0 OT GN 68 0 0 0 OT GN 68 0 0 0 OT GN 68 0 0 OT GN 68 0 OT									ОТ			-						1					
2 A 886 LKTR 480 45 99 5 OT GN 38 0 7 3 8 96 FUEL FUEL LOO3 1 1 1 15BUR 2 A 886 LKTR 478 1410 2 9 0 15 GN 68 9	2	Α	884	LKTR	218	195	11		OT	GN	38	0	3	8 96	FUEL.	FUEL	LO03	1	1				
2 A 887 KIR 478 1410 2 9 OT GN 64 0 3 8 96 FUEL FUEL LOO3 1 1 1 0 0 1												-						1	:				0 15BUR
2 A 889 ARCH 10 0 0 0 EF 0 0 3 8 96 FUEL LO1 TO18 1 0 0 208UR 2 A 891 ARCH 101 0 0 0 EF 0 0 3 8 96 FUEL LO1 TO18 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0										GN		-			FUEL	FUEL	LO03	1	1				01RNW
2 A 891 ARCH 101 0 0 EF 0 0 3 8 896 FUEL LO1 TO18 1 0 2 A 893 ARCH 89 0 0 EF 0 0 0 3 8 896 FUEL LO1 TO18 1 0 2 A 893 ARCH 89 0 0 EF 0 0 0 3 8 896 FUEL LO1 TO18 1 0 2 A 895 ARCH 89 0 0 0 EF 0 0 0 3 8 896 FUEL LO1 TO18 1 0 2 A 896 ARCH 87 0 0 0 EF 0 0 0 3 8 896 FUEL LO1 TO18 1 0 2 A 897 ARCH 46 0 0 EF 0 0 0 3 8 896 FUEL LO1 TO18 1 0 2 A 898 ARCH 46 0 0 EF 0 0 0 3 8 896 FUEL LO1 TO18 1 0 2 A 899 ARCH 45 0 0 EF 0 0 0 3 8 896 FUEL LO1 TO18 1 0 2 A 899 ARCH 46 0 0 EF 0 0 0 3 8 896 FUEL LO1 TO18 1 0 2 A 899 ARCH 48 0 0 EF 0 0 0 3 8 896 FUEL LO1 TO18 1 0 2 A 899 ARCH 48 0 0 EF 0 0 0 3 8 896 FUEL LO1 TO18 1 0 2 A 899 ARCH 48 0 0 EF 0 0 0 3 8 896 FUEL LO1 TO18 1 0 2 A 900 ARCH 87 0 0 EF 0 0 0 3 8 896 FUEL LO1 TO18 1 0 2 A 901 ARCH 87 0 0 EF 0 0 0 3 8 896 FUEL LO1 TO18 1 0 2 A 901 ARCH 87 0 0 EF 0 0 0 3 8 896 FUEL LO1 TO18 1 0 2 A 902 ARCH 87 0 0 EF 0 0 0 3 8 896 FUEL LO1 TO18 1 0 2 A 903 ARCH 46 0 0 EF 0 0 3 8 896 FUEL LO1 TO18 1 0 RUN1 2 A 903 ARCH 46 0 0 EF 0 0 3 8 896 FUEL LO1 TO18 1 0 RUN1 2 A 903 ARCH 46 0 0 EF 0 0 3 8 896 FUEL LO1 TO18 1 0 RUN1 2 A 905 ARCH 53 0 0 EF 0 0 3 8 896 FUEL LO1 TO18 1 0 RUN1 2 A 906 ARCH 87 0 O EF 0 0 3 8 896 FUEL LO1 TO18 1 0 RUN1 2 A 906 ARCH 45 0 0 EF 0 0 3 8 896 FUEL LO1 TO18 1 0 RUN1 2 A 906 ARCH 45 0 0 EF 0 0 3 8 896 FUEL LO1 TO18 1 0 RUN1 2 A 906 ARCH 45 0 0 EF 0 0 3 8 896 FUEL LO1 TO18 1 0 RUN1 2 A 906 ARCH 45 0 0 EF 0 0 3 8 896 FUEL LO1 TO18 1 0 RUN1 2 A 906 ARCH 48 0 0 EF 0 0 3 8 896 FUEL LO1 TO18 1 0 RUN1 2 A 906 ARCH 48 0 0 EF 0 0 3 8 896 FUEL LO1 TO18 1 0 RUN1 2 A 906 ARCH 48 0 0 EF 0 0 3 8 896 FUEL LO1 TO18 1 0 RUN1 2 A 906 ARCH 48 0 0 EF 0 0 3 8 896 FUEL LO1 TO18 1 0 RUN1 2 A 906 ARCH 48 0 0 EF 0 0 3 8 896 FUEL LO1 TO18 1 0 RUN1 2 A 906 ARCH 48 0 0 EF 0 0 3 8 896 FUEL LO1 TO18 1 0 RUN1 2 A 906 ARCH 48 0 0 EF 0 0 3 8 896 FUEL LO1 TO18 1 0 RUN1 2 A 906 ARCH 48 0 0 EF 0 0 3 8 896 FUEL LO1 TO18 1 0 RUN1 2 A 906 ARCH 48 0 0 EF 0 0 3 8 896 FUEL LO1 TO18 1 0 RUN1 2 A 906 ARCH 48 0 0 EF 0 0 3 8 896 FUEL LO1 TO18 1 0 RUN1 2 A 908 ARCH 48 0 0 EF 0 0 0 3 8 896 FUEL LO1 TO18 1 0 RUN1 2	2		889	LKTR	622	3160	17			GN	140		3	8 96	FUEL	FUEL	LO03	i	1				-
2 A 893 ARCH 89 0 0 0 EF 0 0 0 3 8 96 FUEL LO1 TO18 1 0 0 2 4 894 ARCH 87 0 0 0 EF 0 0 0 3 8 96 FUEL LO1 TO18 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	-											-						1 1	•				
2 A 895 ARCH 87 0 0 0 EF 0 0 3 8 96 FUEL LC1 TO18 1 0 2 A 895 ARCH 59 0 0 0 EF 0 0 3 8 96 FUEL LC1 TO18 1 0 2 A 896 ARCH 46 0 0 0 EF 0 0 3 8 96 FUEL LC1 TO18 1 0 2 A 897 ARCH 45 0 0 0 EF 0 0 3 8 96 FUEL LC1 TO18 1 0 2 A 898 ARCH 54 0 0 0 EF 0 0 3 8 96 FUEL LC1 TO18 1 0 2 A 899 ARCH 55 0 0 0 EF 0 0 3 8 96 FUEL LC1 TO18 1 0 2 A 900 ARCH 87 0 0 0 EF 0 0 3 8 96 FUEL LC1 TO18 1 0 2 A 901 ARCH 52 0 0 0 EF 0 0 3 8 96 FUEL LC1 TO18 1 0 2 A 901 ARCH 53 0 0 EF 0 0 3 8 96 FUEL LC1 TO18 1 0 RUN1 2 A 903 ARCH 45 0 0 0 EF 0 0 3 8 96 FUEL LC1 TO18 1 0 RUN1 2 A 904 ARCH 45 0 0 0 EF 0 0 3 8 96 FUEL LC1 TO18 1 0 RUN1 2 A 905 ARCH 46 0 0 0 EF 0 0 3 8 96 FUEL LC1 TO18 1 0 RUN1 2 A 905 ARCH 45 0 0 0 EF 0 0 3 8 96 FUEL LC1 TO18 1 0 RUN1 2 A 905 ARCH 55 0 0 0 EF 0 0 3 8 96 FUEL LC1 TO18 1 0 RUN1 2 A 905 ARCH 56 0 0 EF 0 0 3 8 96 FUEL LC1 TO18 1 0 RUN1 2 A 905 ARCH 56 0 0 EF 0 0 3 8 96 FUEL LC1 TO18 1 0 RUN1 2 A 905 ARCH 56 0 0 EF 0 0 3 8 96 FUEL LC1 TO18 1 0 RUN1 2 A 905 ARCH 56 0 0 EF 0 0 3 8 96 FUEL LC1 TO18 1 0 RUN1 2 A 905 ARCH 56 0 0 EF 0 0 3 8 96 FUEL LC1 TO18 1 0 RUN1 2 A 905 ARCH 56 0 0 EF 0 0 3 8 96 FUEL LC1 TO18 1 0 RUN1 2 A 907 ARCH 44 0 0 0 EF 0 0 3 8 96 FUEL LC1 TO18 1 0 RUN1 2 A 907 ARCH 48 0 0 0 EF 0 0 3 8 96 FUEL LC1 TO18 1 0 RUN1 2 A 908 ARCH 35 0 0 EF 0 0 3 8 96 FUEL LC1 TO18 1 0 RUN1 2 A 907 ARCH 44 0 0 0 EF 0 0 3 8 96 FUEL LC1 TO18 1 0 RUN1 2 A 908 ARCH 35 0 0 0 EF 0 0 3 8 96 FUEL LC1 TO18 1 0 RUN1 2 A 909 ARCH 48 0 0 0 EF 0 0 3 8 96 FUEL LC1 TO18 1 0 RUN1 2 A 910 ARCH 48 0 0 0 EF 0 0 3 8 96 FUEL LC1 TO18 1 0 RUN1 2 A 910 ARCH 48 0 0 0 EF 0 0 3 8 96 FUEL LC1 TO18 1 0 RUN1 2 A 910 ARCH 48 0 0 0 EF 0 0 3 8 96 FUEL LC1 TO18 1 0 RUN1 2 A 910 ARCH 48 0 0 0 EF 0 0 3 8 96 FUEL LC1 TO18 1 0 RUN1 2 A 911 ARCH 52 0 0 0 EF 0 0 3 8 96 FUEL LC1 TO18 1 0 RUN1 2 A 912 ARCH 43 0 0 0 EF 0 0 3 8 96 FUEL LC1 TO18 1 0 RUN1 2 A 913 ARCH 45 0 0 0 EF 0 0 3 8 96 FUEL LC1 TO18 1 0 RUN1 2 A 914 ARCH 39 0 0 0 EF 0 0 3 8 96 FUEL LC1 TO18 1 0 RUN1 2 A 915 ARCH 44 0 0 0 EF 0 0 3 8 96 FUEL LC1 TO18 1 0 RUN1 2 A 916 ARCH 45 0 0 0 EF 0 0 3 8 96 F	2		892	ARCH	89		0			EF			3	8 96	FUEL	LO1	TO18		0				
2 A 896 ARCH 46 0 0 EF 0 0 3 8 96 FUEL LO1 TO18 1 0 0 0 0 EF 0 0 3 8 96 FUEL LO1 TO18 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2	Α	894	ARCH	87	0	0			EF	Ō	0	3	8 96	FUEL	LO1	TO18	1	0				
2 A 897 ARCH 45 0 0 0 EF 0 0 3 8 8 96 FUEL LO1 TO18 1 0 0 0 2 4 898 ARCH 54 0 0 0 EF 0 0 3 8 8 96 FUEL LO1 TO18 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0																			-				
2 A 899 ARCH 48 0 0 0 EF 0 0 3 8 96 FUEL LO1 TO18 1 0 C LO1 ARCH 87 0 0 0 EF 0 0 3 8 96 FUEL LO1 TO18 1 0 C LO1 TO18 1 1 C LO1	2	Α	897	ARCH	45	0	0			EF	0	0	3	8 96	FUEL	LO1	TO18	1					
2 A 901 ARCH 52 0 0 0 EF 0 0 0 3 8 96 FUEL LO1 TO18 1 0 RUN1 2 A 903 ARCH 46 0 0 0 EF 0 0 0 3 8 96 FUEL LO1 TO18 1 0 RUN1 2 A 904 ARCH 45 0 0 0 EF 0 0 0 3 8 96 FUEL LO1 TO18 1 0 RUN1 2 A 905 ARCH 56 0 0 0 EF 0 0 3 8 96 FUEL LO1 TO18 1 0 RUN1 2 A 906 ARCH 48 0 0 0 EF 0 0 0 3 8 96 FUEL LO1 TO18 1 0 RUN1 2 A 907 ARCH 44 0 0 0 EF 0 0 0 3 8 96 FUEL LO1 TO18 1 0 RUN1 2 A 908 ARCH 35 0 0 0 EF 0 0 0 3 8 96 FUEL LO1 TO18 1 0 RUN1 2 A 909 ARCH 55 0 0 0 EF 0 0 0 3 8 96 FUEL LO1 TO18 1 0 RUN1 2 A 909 ARCH 55 0 0 0 EF 0 0 0 3 8 96 FUEL LO1 TO18 1 0 RUN1 2 A 909 ARCH 53 0 0 EF 0 0 3 8 96 FUEL LO1 TO18 1 0 RUN1 2 A 910 ARCH 48 0 0 0 EF 0 0 3 8 96 FUEL LO1 TO18 1 0 RUN1 2 A 911 ARCH 52 0 0 0 EF 0 0 3 8 96 FUEL LO1 TO18 1 0 RUN1 2 A 912 ARCH 48 0 0 0 EF 0 0 3 8 96 FUEL LO1 TO18 1 0 RUN1 2 A 913 ARCH 48 0 0 EF 0 0 3 8 96 FUEL LO1 TO18 1 0 RUN1 2 A 914 ARCH 52 0 0 EF 0 0 3 8 96 FUEL LO1 TO18 1 0 RUN1 2 A 915 ARCH 43 0 0 EF 0 0 3 8 96 FUEL LO1 TO18 1 0 RUN1 2 A 916 ARCH 43 0 0 EF 0 0 3 8 96 FUEL LO1 TO18 1 0 RUN1 2 A 917 ARCH 43 0 0 EF 0 0 3 8 96 FUEL LO1 TO18 1 0 RUN1 2 A 918 ARCH 49 0 0 EF 0 0 3 8 96 FUEL LO1 TO18 1 0 RUN1 2 A 916 ARCH 38 0 0 EF 0 0 3 8 96 FUEL LO1 TO18 1 0 RUN1 2 A 917 ARCH 38 0 0 EF 0 0 3 8 96 FUEL LO1 TO18 1 0 RUN1 2 A 918 ARCH 49 0 0 EF 0 0 3 8 96 FUEL LO1 TO18 1 0 RUN1 2 A 918 ARCH 49 0 0 EF 0 0 3 8 96 FUEL LO1 TO18 1 0 RUN1 2 A 918 ARCH 49 0 0 EF 0 0 3 8 96 FUEL LO1 TO18 1 0 RUN1 2 A 918 ARCH 49 0 0 EF 0 0 3 8 96 FUEL LO1 TO18 1 0 RUN1 2 A 918 ARCH 40 0 EF 0 0 3 8 96 FUEL LO1 TO18 1 0 RUN1 2 A 920 ARCH 47 0 0 EF 0 0 3 8 96 FUEL LO1 TO18 1 0 RUN1 2 A 921 ARCH 40 0 0 EF 0 0 3 8 96 FUEL LO1 TO18 1 0 RUN1 2 A 922 ARCH 53 0 0 EF 0 0 3 8 96 FUEL LO1 TO18 1 0 RUN1 2 A 923 SLSC 79 0 0 EF 0 0 3 8 96 FUEL LO1 TO18 1 0 RUN1 2 A 924 SLSC 73 0 0 EF 0 0 3 8 96 FUEL LO1 TO18 1 0 RUN1 2 A 925 SLSC 68 0 0 EF 0 0 3 8 96 FUEL LO1 TO18 1 0 RUN1			899	ARCH												LO1	TO18		_				
2 A 902 ARCH 53 0 0 0 EF 0 0 3 8 96 FUEL LO1 TO18 1 0 RUN1 2 A 904 ARCH 45 0 0 0 EF 0 0 3 8 96 FUEL LO1 TO18 1 0 RUN1 2 A 905 ARCH 45 0 0 0 EF 0 0 3 8 96 FUEL LO1 TO18 1 0 RUN1 2 A 905 ARCH 48 0 0 EF 0 0 3 8 96 FUEL LO1 TO18 1 0 RUN1 2 A 906 ARCH 48 0 0 EF 0 0 3 8 96 FUEL LO1 TO18 1 0 RUN1 2 A 907 ARCH 44 0 0 0 EF 0 0 3 8 96 FUEL LO1 TO18 1 0 RUN1 2 A 909 ARCH 53 0 0 EF 0 0 3 8 96 FUEL LO1 TO18 1 0 RUN1 2 A 909 ARCH 53 0 0 EF 0 0 3 8 96 FUEL LO1 TO18 1 0 RUN1 2 A 911 ARCH 52 0 0 EF 0 0 3 8 96 FUEL LO1 TO18 1 0 RUN1 2 A 912 ARCH 43 0 0 EF 0 0 3 8 96 FUEL LO1 TO18 1 0 RUN1 2 A 913 ARCH 42 0 0 EF 0 0 3 8 96 FUEL LO1 TO18 1 0 RUN1 2 A 914 ARCH 39 0 0 EF 0 0 3 8 96 FUEL LO1 TO18 1 0 RUN1 2 A 915 ARCH 49 0 0 EF 0 0 3 8 96 FUEL LO1 TO18 1 0 RUN1 2 A 916 ARCH 49 0 0 EF 0 0 3 8 96 FUEL LO1 TO18 1 0 RUN1 2 A 916 ARCH 49 0 0 EF 0 0 3 8 96 FUEL LO1 TO18 1 0 RUN1 2 A 916 ARCH 49 0 0 EF 0 0 3 8 96 FUEL LO1 TO18 1 0 RUN1 2 A 916 ARCH 49 0 0 EF 0 0 3 8 96 FUEL LO1 TO18 1 0 RUN1 2 A 916 ARCH 49 0 0 EF 0 0 3 8 96 FUEL LO1 TO18 1 0 RUN1 2 A 917 ARCH 49 0 0 EF 0 0 3 8 96 FUEL LO1 TO18 1 0 RUN1 2 A 918 ARCH 49 0 0 EF 0 0 3 8 96 FUEL LO1 TO18 1 0 RUN1 2 A 918 ARCH 49 0 0 EF 0 0 3 8 96 FUEL LO1 TO18 1 0 RUN1 2 A 918 ARCH 49 0 0 EF 0 0 3 8 96 FUEL LO1 TO18 1 0 RUN1 2 A 918 ARCH 49 0 0 EF 0 0 3 8 96 FUEL LO1 TO18 1 0 RUN1 2 A 918 ARCH 49 0 0 EF 0 0 3 8 96 FUEL LO1 TO18 1 0 RUN1 2 A 918 ARCH 49 0 0 EF 0 0 3 8 96 FUEL LO1 TO18 1 0 RUN1 2 A 918 ARCH 69 0 0 EF 0 0 3 8 96 FUEL LO1 TO18 1 0 RUN1 2 A 920 ARCH 47 0 0 EF 0 0 3 8 96 FUEL LO1 TO18 1 0 RUN1 2 A 921 ARCH 47 0 0 EF 0 0 3 8 96 FUEL LO1 TO18 1 0 RUN1 2 A 922 ARCH 53 0 0 EF 0 0 3 8 96 FUEL LO1 TO18 1 0 RUN1 2 A 923 SLSC 79 0 0 EF 0 0 3 8 96 FUEL LO1 TO18 1 0 RUN1 2 A 924 SLSC 73 0 0 EF 0 0 3 8 96 FUEL LO1 TO18 1 0 RUN1 2 A 925 SLSC 68 0 0 EF 0 0 3 8 96 FUEL LO1 TO18 1 0 RUN1 2 A 926 SLSC 68 0 0 EF 0 0 3 8 96 FUEL LO1 TO18 1 0 RUN1																				RUN 1			
2 A 904 ARCH 45 0 0 0 EF 0 0 0 3 8 96 FUEL LO1 TO18 1 0 RUN 1 2 A 905 ARCH 48 0 0 0 EF 0 0 0 3 8 96 FUEL LO1 TO18 1 0 RUN 1 2 A 907 ARCH 48 0 0 0 EF 0 0 0 3 8 96 FUEL LO1 TO18 1 0 RUN 1 2 A 907 ARCH 44 0 0 0 EF 0 0 0 3 8 96 FUEL LO1 TO18 1 0 RUN 1 2 A 908 ARCH 35 0 0 0 EF 0 0 0 3 8 96 FUEL LO1 TO18 1 0 RUN 1 2 A 909 ARCH 53 0 0 0 EF 0 0 0 3 8 96 FUEL LO1 TO18 1 0 RUN 1 2 A 910 ARCH 48 0 0 EF 0 0 0 3 8 96 FUEL LO1 TO18 1 0 RUN 1 2 A 911 ARCH 52 0 0 0 EF 0 0 0 3 8 96 FUEL LO1 TO18 1 0 RUN 1 2 A 912 ARCH 43 0 0 EF 0 0 0 3 8 96 FUEL LO1 TO18 1 0 RUN 1 2 A 913 ARCH 42 0 0 EF 0 0 0 3 8 96 FUEL LO1 TO18 1 0 RUN 1 2 A 914 ARCH 39 0 0 EF 0 0 3 8 96 FUEL LO1 TO18 1 0 RUN 1 2 A 915 ARCH 49 0 0 EF 0 0 3 8 96 FUEL LO1 TO18 1 0 RUN 1 2 A 916 ARCH 38 0 0 EF 0 0 3 8 96 FUEL LO1 TO18 1 0 RUN 1 2 A 917 ARCH 38 0 0 EF 0 0 3 8 96 FUEL LO1 TO18 1 0 RUN 1 2 A 918 ARCH 49 0 0 EF 0 0 3 8 96 FUEL LO1 TO18 1 0 RUN 1 2 A 918 ARCH 49 0 0 EF 0 0 3 8 96 FUEL LO1 TO18 1 0 RUN 1 2 A 918 ARCH 49 0 0 EF 0 0 3 8 96 FUEL LO1 TO18 1 0 RUN 1 2 A 918 ARCH 49 0 0 EF 0 0 3 8 96 FUEL LO1 TO18 1 0 RUN 1 2 A 918 ARCH 49 0 0 EF 0 0 3 8 96 FUEL LO1 TO18 1 0 RUN 1 2 A 918 ARCH 49 0 0 EF 0 0 3 8 96 FUEL LO1 TO18 1 0 RUN 1 2 A 918 ARCH 49 0 0 EF 0 0 3 8 96 FUEL LO1 TO18 1 0 RUN 1 2 A 918 ARCH 49 0 0 EF 0 0 3 8 96 FUEL LO1 TO18 1 0 RUN 1 2 A 918 ARCH 53 0 0 EF 0 0 3 8 96 FUEL LO1 TO18 1 0 RUN 1 2 A 918 ARCH 53 0 0 EF 0 0 3 8 96 FUEL LO1 TO18 1 0 RUN 1 2 A 920 ARCH 47 0 0 EF 0 0 3 8 96 FUEL LO1 TO18 1 0 RUN 1 2 A 921 ARCH 53 0 0 EF 0 0 3 8 96 FUEL LO1 TO18 1 0 RUN 1 2 A 922 ARCH 53 0 0 EF 0 0 3 8 96 FUEL LO1 TO18 1 0 RUN 1 2 A 923 SLSC 79 0 0 EF 0 0 3 8 96 FUEL LO1 TO18 1 0 RUN 1 2 A 925 SLSC 68 0 0 0 EF 0 0 3 8 96 FUEL LO1 TO18 1 0 RUN 1 2 A 926 SLSC 68 0 0 0 EF 0 0 3 8 96 FUEL LO1 TO18 1 0 RUN 1	2	Α	902	ARCH	53	0	0			EF	0	0	3	8 96	FUEL	LO1	TO18	1	0	RUN 1			
2 A 906 ARCH 48 0 0 0 EF 0 0 3 8 96 FUEL LO1 TO18 1 0 RUN1 2 A 907 ARCH 44 0 0 0 EF 0 0 3 8 96 FUEL LO1 TO18 1 0 RUN1 2 A 908 ARCH 35 0 0 EF 0 0 3 8 96 FUEL LO1 TO18 1 0 RUN1 2 A 909 ARCH 53 0 0 EF 0 0 3 8 96 FUEL LO1 TO18 1 0 RUN1 2 A 910 ARCH 48 0 0 EF 0 0 3 8 96 FUEL LO1 TO18 1 0 RUN1 2 A 911 ARCH 52 0 0 EF 0 0 3 8 96 FUEL LO1 TO18 1 0 RUN1 2 A 911 ARCH 52 0 0 EF 0 0 3 8 96 FUEL LO1 TO18 1 0 RUN1 2 A 912 ARCH 43 0 0 EF 0 0 3 8 96 FUEL LO1 TO18 1 0 RUN1 2 A 913 ARCH 42 0 0 EF 0 0 3 8 96 FUEL LO1 TO18 1 0 RUN1 2 A 914 ARCH 39 0 0 EF 0 0 3 8 96 FUEL LO1 TO18 1 0 RUN1 2 A 915 ARCH 49 0 0 EF 0 0 3 8 96 FUEL LO1 TO18 1 0 RUN1 2 A 916 ARCH 38 0 0 EF 0 0 3 8 96 FUEL LO1 TO18 1 0 RUN1 2 A 917 ARCH 38 0 0 EF 0 0 3 8 96 FUEL LO1 TO18 1 0 RUN1 2 A 918 ARCH 89 0 0 EF 0 0 3 8 96 FUEL LO1 TO18 1 0 RUN1 2 A 919 ARCH 46 0 0 EF 0 0 3 8 96 FUEL LO1 TO18 1 0 RUN1 2 A 918 ARCH 49 0 0 EF 0 0 3 8 96 FUEL LO1 TO18 1 0 RUN1 2 A 918 ARCH 49 0 0 EF 0 0 3 8 96 FUEL LO1 TO18 1 0 RUN1 2 A 918 ARCH 40 0 0 EF 0 0 3 8 96 FUEL LO1 TO18 1 0 RUN1 2 A 918 ARCH 40 0 0 EF 0 0 3 8 96 FUEL LO1 TO18 1 0 RUN1 2 A 918 ARCH 53 0 0 EF 0 0 3 8 96 FUEL LO1 TO18 1 0 RUN1 2 A 920 ARCH 47 0 0 EF 0 0 3 8 96 FUEL LO1 TO18 1 0 RUN1 2 A 921 ARCH 44 0 0 EF 0 0 3 8 96 FUEL LO1 TO18 1 0 RUN1 2 A 922 ARCH 53 0 0 EF 0 0 3 8 96 FUEL LO1 TO18 1 0 RUN1 2 A 923 SLSC 79 0 0 EF 0 0 3 8 96 FUEL LO1 TO18 1 0 RUN1 2 A 924 SLSC 73 0 0 EF 0 0 3 8 96 FUEL LO1 TO18 1 0 RUN1 2 A 925 SLSC 68 0 0 EF 0 0 3 8 96 FUEL LO1 TO18 1 0 RUN1 2 A 926 SLSC 68 0 0 EF 0 0 3 8 96 FUEL LO1 TO18 1 0 RUN1 2 A 926 SLSC 68 0 0 EF 0 0 3 8 96 FUEL LO1 TO18 1 0 RUN1																							
2 A 907 ARCH 44 0 0 0 EF 0 0 3 8 96 FUEL LO1 TO18 1 0 RUN1 2 A 908 ARCH 53 0 0 EF 0 0 3 8 96 FUEL LO1 TO18 1 0 RUN1 2 A 910 ARCH 48 0 0 EF 0 0 3 8 96 FUEL LO1 TO18 1 0 RUN1 2 A 911 ARCH 52 0 0 EF 0 0 3 8 96 FUEL LO1 TO18 1 0 RUN1 2 A 912 ARCH 43 0 0 EF 0 0 3 8 96 FUEL LO1 TO18 1 0 RUN1 2 A 913 ARCH 42 0 0 EF 0 0 3 8 96 FUEL LO1 TO18 1 0 RUN1 2 A 914 ARCH 42 0 0 EF 0 0 3 8 96 FUEL LO1 TO18 1 0 RUN1 2 A 915 ARCH 49 0 0 EF 0 0 3 8 96 FUEL LO1 TO18 1 0 RUN1 2 A 916 ARCH 38 0 0 EF 0 0 3 8 96 FUEL LO1 TO18 1 0 RUN1 2 A 917 ARCH 38 0 0 EF 0 0 3 8 96 FUEL LO1 TO18 1 0 RUN1 2 A 918 ARCH 49 0 0 EF 0 0 3 8 96 FUEL LO1 TO18 1 0 RUN1 2 A 917 ARCH 38 0 0 EF 0 0 3 8 96 FUEL LO1 TO18 1 0 RUN1 2 A 918 ARCH 89 0 0 EF 0 0 3 8 96 FUEL LO1 TO18 1 0 RUN1 2 A 918 ARCH 89 0 0 EF 0 0 3 8 96 FUEL LO1 TO18 1 0 RUN1 2 A 918 ARCH 46 0 0 EF 0 0 3 8 96 FUEL LO1 TO18 1 0 RUN1 2 A 918 ARCH 46 0 0 EF 0 0 3 8 96 FUEL LO1 TO18 1 0 RUN1 2 A 920 ARCH 47 0 0 EF 0 0 3 8 96 FUEL LO1 TO18 1 0 RUN1 2 A 921 ARCH 44 0 0 EF 0 0 3 8 96 FUEL LO1 TO18 1 0 RUN1 2 A 922 ARCH 53 0 0 EF 0 0 3 8 96 FUEL LO1 TO18 1 0 RUN1 2 A 923 SLSC 79 0 0 EF 0 0 3 8 96 FUEL LO1 TO18 1 0 RUN1 2 A 924 SLSC 73 0 0 EF 0 0 3 8 96 FUEL LO1 TO18 1 0 RUN1 2 A 925 SLSC 68 0 0 0 EF 0 0 3 8 96 FUEL LO1 TO18 1 0 RUN1 2 A 926 SLSC 68 0 0 0 EF 0 0 3 8 96 FUEL LO1 TO18 1 0 RUN1 2 A 926 SLSC 68 0 0 0 EF 0 0 3 8 96 FUEL LO1 TO18 1 0 RUN1																							
2 A 909 ARCH 53 0 0 EF 0 0 3 8 96 FUEL LO1 TO18 1 0 RUN1 2 A 911 ARCH 52 0 0 EF 0 0 3 8 96 FUEL LO1 TO18 1 0 RUN1 2 A 912 ARCH 43 0 0 EF 0 0 3 8 96 FUEL LO1 TO18 1 0 RUN1 2 A 913 ARCH 42 0 0 EF 0 0 3 8 96 FUEL LO1 TO18 1 0 RUN1 2 A 914 ARCH 39 0 0 EF 0 0 3 8 96 FUEL LO1 TO18 1 0 RUN1 2 A 915 ARCH 49 0 0 EF 0 0 3 8 96 FUEL LO1 TO18 1 0 RUN1 2 A 916 ARCH 38 0 0 EF 0 0 3 8 96 FUEL LO1 TO18 1 0 RUN1 2 A 917 ARCH 49 0 0 EF 0 0 3 8 96 FUEL LO1 TO18 1 0 RUN1 2 A 918 ARCH 89 0 0 EF 0 0 3 8 96 FUEL LO1 TO18 1 0 RUN1 2 A 918 ARCH 89 0 0 EF 0 0 3 8 96 FUEL LO1 TO18 1 0 RUN1 2 A 918 ARCH 40 0 0 EF 0 0 3 8 96 FUEL LO1 TO18 1 0 RUN1 2 A 918 ARCH 89 0 0 EF 0 0 3 8 96 FUEL LO1 TO18 1 0 RUN1 2 A 920 ARCH 47 0 0 EF 0 0 3 8 96 FUEL LO1 TO18 1 0 RUN1 2 A 921 ARCH 44 0 0 EF 0 0 3 8 96 FUEL LO1 TO18 1 0 RUN1 2 A 922 ARCH 53 0 0 EF 0 0 3 8 96 FUEL LO1 TO18 1 0 RUN1 2 A 923 SLSC 79 0 0 EF 0 0 3 8 96 FUEL LO1 TO18 1 0 RUN1 2 A 924 SLSC 73 0 0 EF 0 0 3 8 96 FUEL LO1 TO18 1 0 RUN1 2 A 925 SLSC 68 0 0 EF 0 0 3 8 96 FUEL LO1 TO18 1 0 RUN1 2 A 926 SLSC 63 0 0 EF 0 0 3 8 96 FUEL LO1 TO18 1 0 RUN1 2 A 927 SLSC 82 0 0 EF 0 0 3 8 96 FUEL LO1 TO18 1 0 RUN1	2	Α	907	ARCH	44	0	0			EF	0	0	3	8 96	FUEL	LO1	TO18	1	0	RUN 1			
2 A 910 ARCH 48 0 0 0 EF 0 0 3 8 96 FUEL LO1 TO18 1 0 RUN1 2 A 911 ARCH 52 0 0 0 EF 0 0 3 8 96 FUEL LO1 TO18 1 0 RUN1 2 A 912 ARCH 43 0 0 EF 0 0 3 8 96 FUEL LO1 TO18 1 0 RUN1 2 A 913 ARCH 42 0 0 0 EF 0 0 3 8 96 FUEL LO1 TO18 1 0 RUN1 2 A 914 ARCH 39 0 0 EF 0 0 3 8 96 FUEL LO1 TO18 1 0 RUN1 2 A 915 ARCH 49 0 0 EF 0 0 3 8 96 FUEL LO1 TO18 1 0 RUN1 2 A 916 ARCH 38 0 0 EF 0 0 3 8 96 FUEL LO1 TO18 1 0 RUN1 2 A 917 ARCH 38 0 0 EF 0 0 3 8 96 FUEL LO1 TO18 1 0 RUN1 2 A 918 ARCH 89 0 0 EF 0 0 3 8 96 FUEL LO1 TO18 1 0 RUN1 2 A 918 ARCH 89 0 0 EF 0 0 3 8 96 FUEL LO1 TO18 1 0 RUN1 2 A 919 ARCH 46 0 0 EF 0 0 3 8 96 FUEL LO1 TO18 1 0 RUN1 2 A 920 ARCH 47 0 0 EF 0 0 3 8 96 FUEL LO1 TO18 1 0 RUN1 2 A 920 ARCH 47 0 0 EF 0 0 3 8 96 FUEL LO1 TO18 1 0 RUN1 2 A 921 ARCH 53 0 0 EF 0 0 3 8 96 FUEL LO1 TO18 1 0 RUN1 2 A 922 ARCH 53 0 0 EF 0 0 3 8 96 FUEL LO1 TO18 1 0 RUN1 2 A 923 SLSC 79 0 0 EF 0 0 3 8 96 FUEL LO1 TO18 1 0 RUN1 2 A 924 SLSC 73 0 0 EF 0 0 3 8 96 FUEL LO1 TO18 1 0 RUN1 2 A 925 SLSC 68 0 0 EF 0 0 3 8 96 FUEL LO1 TO18 1 0 RUN1 2 A 926 SLSC 63 0 0 EF 0 0 3 8 96 FUEL LO1 TO18 1 0 RUN1 2 A 926 SLSC 68 0 0 0 EF 0 0 3 8 96 FUEL LO1 TO18 1 0 RUN1 2 A 926 SLSC 68 0 0 0 EF 0 0 3 8 96 FUEL LO1 TO18 1 0 RUN1																							
2 A 912 ARCH 43 0 0 0 EF 0 0 3 8 96 FUEL LO1 TO18 1 0 RUN1 2 A 913 ARCH 42 0 0 0 EF 0 0 3 8 96 FUEL LO1 TO18 1 0 RUN1 2 A 914 ARCH 39 0 0 EF 0 0 3 8 96 FUEL LO1 TO18 1 0 RUN1 2 A 915 ARCH 49 0 0 EF 0 0 3 8 96 FUEL LO1 TO18 1 0 RUN1 2 A 916 ARCH 38 0 0 EF 0 0 3 8 96 FUEL LO1 TO18 1 0 RUN1 2 A 917 ARCH 38 0 0 EF 0 0 3 8 96 FUEL LO1 TO18 1 0 RUN1 2 A 918 ARCH 89 0 0 EF 0 0 3 8 96 FUEL LO1 TO18 1 0 RUN1 2 A 918 ARCH 89 0 0 EF 0 0 3 8 96 FUEL LO1 TO18 1 0 RUN1 2 A 919 ARCH 46 0 0 EF 0 0 3 8 96 FUEL LO1 TO18 1 0 RUN1 2 A 920 ARCH 47 0 0 EF 0 0 3 8 96 FUEL LO1 TO18 1 0 RUN1 2 A 921 ARCH 44 0 0 EF 0 0 3 8 96 FUEL LO1 TO18 1 0 RUN1 2 A 922 ARCH 53 0 0 EF 0 0 3 8 96 FUEL LO1 TO18 1 0 RUN1 2 A 923 SLSC 79 0 0 EF 0 0 3 8 96 FUEL LO1 TO18 1 0 RUN1 2 A 924 SLSC 73 0 0 EF 0 0 3 8 96 FUEL LO1 TO18 1 0 RUN1 2 A 925 SLSC 68 0 0 0 EF 0 0 3 8 96 FUEL LO1 TO18 1 0 RUN1 2 A 926 SLSC 63 0 0 EF 0 0 3 8 96 FUEL LO1 TO18 1 0 RUN1 2 A 927 SLSC 82 0 0 EF 0 TO 3 8 96 FUEL LO1 TO18 1 0 RUN1	2			ARCH	48							0	3	8 96	FUEL	LO1	TO18			RUN 1			
2 A 914 ARCH 39 0 0 EF 0 0 3 8 96 FUEL LO1 TO18 1 0 RUN1 2 A 915 ARCH 49 0 0 EF 0 0 3 8 96 FUEL LO1 TO18 1 0 RUN1 2 A 916 ARCH 38 0 0 EF 0 0 3 8 96 FUEL LO1 TO18 1 0 RUN1 2 A 917 ARCH 89 0 0 EF 0 0 3 8 96 FUEL LO1 TO18 1 0 RUN1 2 A 918 ARCH 89 0 0 EF 0 0 3 8 96 FUEL LO1 TO18 1 0 RUN1 2 A 919 ARCH 46 0 0 EF 0 0 3 8 96 FUEL LO1 TO18 1 0 RUN1 2 A 920 ARCH 47 0 0 EF 0 0 3 8 96 FUEL LO1 TO18 1 0 RUN1 2 A 921 ARCH 44 0 0 EF 0 0 3 8 96 FUEL LO1 TO18 1 0 RUN1 2 A 922 ARCH 53 0 0 EF 0 0 3 8 96 FUEL LO1 TO18 1 0 RUN1 2 A 923 SLSC 79 0 0 EF 0 0 3 8 96 FUEL LO1 TO18 1 0 RUN1 2 A 924 SLSC 73 0 0 EF 0 0 3 8 96 FUEL LO1 TO18 1 0 RUN1 2 A 925 SLSC 68 0 0 EF 0 0 3 8 96 FUEL LO1 TO18 1 0 RUN1 2 A 926 SLSC 68 0 0 EF 0 0 3 8 96 FUEL LO1 TO18 1 0 RUN1 2 A 927 SLSC 82 0 0 EF 0 0 3 8 96 FUEL LO1 TO18 1 0 RUN1	2	Α	912	ARCH	43	0	0			EF	0	0	3	8 96	FUEL	LO1	TO18	1	0	RUN 1			
2 A 915 ARCH 49 0 0 0																							
2 A 917 ARCH 88 0 0 EF 0 0 3 8 96 FUEL LO1 TO18 1 0 RUN1 2 A 918 ARCH 89 0 0 EF 0 0 3 8 96 FUEL LO1 TO18 1 0 RUN1 2 A 919 ARCH 46 0 0 EF 0 0 3 8 96 FUEL LO1 TO18 1 0 RUN1 2 A 920 ARCH 47 0 0 EF 0 0 3 8 96 FUEL LO1 TO18 1 0 RUN1 2 A 921 ARCH 44 0 0 EF 0 0 3 8 96 FUEL LO1 TO18 1 0 RUN1 2 A 922 ARCH 53 0 0 EF 0 0 3 8 96 FUEL LO1 TO18 1 0 RUN1 2 A 923 SLSC 79 0 0 EF 0 0 3 8 96 FUEL LO1 TO18 1 0 RUN1 2 A 924 SLSC 73 0 0 EF 0 0 3 8 96 FUEL LO1 TO18 1 0 RUN1 2 A 925 SLSC 68 0 0 EF 0 0 3 8 96 FUEL LO1 TO18 1 0 RUN1 2 A 926 SLSC 68 0 0 EF 0 0 3 8 96 FUEL LO1 TO18 1 0 RUN1 2 A 927 SLSC 82 0 0 EF 0 0 3 8 96 FUEL LO1 TO18 1 0 RUN1	2	Α	915	ARCH	49	0	0			EF	0	0	3	8 96	FUEL	LO1	TO18	1	0	RUN 1			
2 A 918 ARCH 89 0 0 0 EF 0 0 3 8 96 FUEL LO1 TO18 1 0 RUN1 2 A 919 ARCH 46 0 0 EF 0 0 3 8 96 FUEL LO1 TO18 1 0 RUN1 2 A 920 ARCH 47 0 0 EF 0 0 3 8 96 FUEL LO1 TO18 1 0 RUN1 2 A 921 ARCH 44 0 0 EF 0 0 3 8 96 FUEL LO1 TO18 1 0 RUN1 2 A 922 ARCH 53 0 0 EF 0 0 3 8 96 FUEL LO1 TO18 1 0 RUN1 2 A 923 SLSC 79 0 0 EF 0 0 3 8 96 FUEL LO1 TO18 1 0 RUN1 2 A 924 SLSC 73 0 0 EF 0 0 3 8 96 FUEL LO1 TO18 1 0 RUN1 2 A 925 SLSC 68 0 0 EF 0 0 3 8 96 FUEL LO1 TO18 1 0 RUN1 2 A 926 SLSC 63 0 0 EF 0 0 3 8 96 FUEL LO1 TO18 1 0 RUN1 2 A 927 SLSC 82 0 0 EF 0 0 3 8 96 FUEL LO1 TO18 1 0 RUN1 2 A 927 SLSC 82 0 0 EF 0 0 3 8 96 FUEL LO1 TO18 1 0 RUN1																							
2 A 920 ARCH 47 0 0 0 EF 0 0 3 8 96 FUEL LO1 TO18 1 0 RUN1 2 A 921 ARCH 53 0 0 EF 0 0 3 8 96 FUEL LO1 TO18 1 0 RUN1 2 A 922 ARCH 53 0 0 EF 0 0 3 8 96 FUEL LO1 TO18 1 0 RUN1 2 A 923 SLSC 79 0 0 EF 0 0 3 8 96 FUEL LO1 TO18 1 0 RUN1 2 A 924 SLSC 73 0 0 EF 0 0 3 8 96 FUEL LO1 TO18 1 0 RUN1 2 A 925 SLSC 68 0 0 EF 0 0 3 8 96 FUEL LO1 TO18 1 0 RUN1 2 A 926 SLSC 63 0 0 EF 0 0 3 8 96 FUEL LO1 TO18 1 0 RUN1 2 A 927 SLSC 82 0 0 EF 0 0 3 8 96 FUEL LO1 TO18 1 0 RUN1 2 A 928 SLSC 63 0 0 EF 0 0 3 8 96 FUEL LO1 TO18 1 0 RUN1	2	Α	918	ARCH	89	0	0			EF	0	0	3	8 96	FUEL	LO1	TO18		0	RUN 1			
2 A 922 ARCH 53 0 0 EF 0 0 3 8 96 FUEL LO1 TO18 1 0 RUN1 2 A 923 SLSC 79 0 0 EF 0 0 3 8 96 FUEL LO1 TO18 1 0 RUN1 2 A 924 SLSC 73 0 0 EF 0 0 3 8 96 FUEL LO1 TO18 1 0 RUN1 2 A 925 SLSC 68 0 0 EF 0 0 3 8 96 FUEL LO1 TO18 1 0 RUN1 2 A 926 SLSC 63 0 0 EF 0 0 3 8 96 FUEL LO1 TO18 1 0 RUN1 2 A 927 SLSC 82 0 0 EF 0 0 3 8 96 FUEL LO1 TO18 1 0 RUN1 2 A 927 SLSC 82 0 0 EF 0 0 3 8 96 FUEL LO1 TO18 1 0 RUN1	2	Α	920	ARCH	47	0	0			EF	0	0	3	8 96	FUEL	LO1	TO18	1	0	RUN 1			
2 A 923 SLSC 79 0 0 EF 0 0 3 8 96 FUEL LO1 TO18 1 0 RUN 1 2 A 924 SLSC 73 0 0 EF 0 0 3 8 96 FUEL LO1 TO18 1 0 RUN 1 2 A 925 SLSC 68 0 0 EF 0 0 3 8 96 FUEL LO1 TO18 1 0 RUN 1 2 A 926 SLSC 63 0 0 EF 0 0 3 8 96 FUEL LO1 TO18 1 0 RUN 1 2 A 927 SLSC 82 0 0 EF 0 0 3 8 96 FUEL LO1 TO18 1 0 RUN 1						-																	
2 A 925 SLSC 68 0 0 EF 0 0 3 8 96 FUEL LO1 TO18 1 0 RUN1 2 A 926 SLSC 63 0 0 EF 0 0 3 8 96 FUEL LO1 TO18 1 0 RUN1 2 A 927 SLSC 82 0 0 EF 0 0 3 8 96 FUEL LO1 TO18 1 0 RUN1	2	Α	923	SLSC	79	0	0			EF	0	0	3	8 96	FUEL	LO1	TO18	1	0	RUN 1			
2 A 926 SLSC 63 0 0 EF 0 0 3 8 96 FUEL LO1 TO18 1 0 RUN1 2 A 927 SLSC 82 0 0 EF 0 0 3 8 96 FUEL LO1 TO18 1 0 RUN1						_																	
	2	Α	926	SLSC	63	Ō	0			EF	0	0	3	8 96	FUEL	LO1	TO18	1	ō	RUN 1			
2 A 928 SLSC 56 0 0 EF 0 0 3 8 96 FUEL LO1 TO18 1 0 RUN1	2	Α	928	SLSC	56	ō	Ó			EF	0	0	3	8 96	FUEL	LO1	TO18	1	0	RUN 1			
2 A 929 ARCH 83 0 0 EF 0 0 3 8 96 FUEL LO1 TO18 1 0 RUN1 2 A 930 SLSC 49 0 0 EF 0 0 3 8 96 FUEL LO1 TO18 1 0 RUN1						_	-																
2 A 931 SLSC 69 0 0 EF 0 0 3 8 96 FUEL LO1 TO18 1 0 RUN 1	2	Α	931	SLSC	69	0	Ō			EF	0	0	3	8 96	FUEL	LO1	TO18	1	0	RUN 1			
2 A 933 SLSC 72 0 0 EF 0 0 3 8 96 FUEL LO1 TO18 1 0 RUN1	2	Α	933	SLSC	72	0	0			EF	0	0	3	8 96	FUEL	LO1	TO18	1	0	RUN 1			
2 A 934 ARCH 48 0 0 EF 0 0 3 8 96 FUEL LO1 TO18 1 0 RUN 2	2	Α	934	ARCH	48	0	0			EF	0	0	3	8 96	FUEL	LO1	TO18	1	0	KUN 2			

Append	ix F5.	Jerio	tho Diai	mond P	roject	Aqu	atic S	Studie	s Fish	Data	(199	16)											
Period	Crew	Sample No.	Species ا	Fork Len. (mm)	Weight	Sex	Age	Age Meth.	Capt. Meth.	Mesh Size	Tag No.	Day	Мо	Yr	Zone	Local	Loc.	Site	Capt. Code		Comments	Tissue No.	Stomach Contents
2	A	935	ARCH	53	0	0			EF	0	0	3			FUEL FUEL	LO1 LO1	TO18 TO18	1 1	0	RUN 2 RUN 2			
2 2	A A	936 937	ARCH ARCH	52 47	0 0	0			EF EF	0	0	3	8	96	FUEL	LO1	TO18	1	0	RUN 2			
2 2	A A	938 939	ARCH ARCH	52 49	0	0			EF EF	0	0	3	8		FUEL FUEL	LO1 LO1	TO18 TO18	1	0	RUN 2 RUN 2			
2	Α	940	ARCH	46 47	0	0			EF EF	0	0	3	8	96	FUEL FUEL	LO1 LO1	TO18 TO18	1	0	RUN 2 RUN 2			
2	A A	941 942	ARCH ARCH	47 45	0	0			EF	0	0	3	8	96	FUEL	LO1	TO18	1	0	RUN 2			
2 2	A	943 944	ARCH NNST	34 53	0	0			EF EF	0	0	3	8		FUEL FUEL	LO1 LO1	TO18 TO18	1	0	RUN 2 RUN 2			
2	A	945	SLSC SLSC	65	0	0			EF EF	0	0	3	8 8		FUEL FUEL	LO1 LO1	TO18 TO18	1	0	RUN 2 RUN 2			
2	A	946 947	SLSC	78 67	Õ	0			EF	0	0	3	8	96	FUEL	LO1	TO18	1	0	RUN 2			
2 2	A A	948 949	SLSC SLSC	65 64	0	0			EF EF	0	0	3	8		FUEL FUEL	L01 L01	TO18 TO18	1 1	0	RUN 2 RUN 2			
2	Α	950 951	SLSC ARCH	32 53	0	0			EF EF	0	0	3 3	8 8		FUEL FUEL	LO1 LO1	TO18 TO18	1	0	RUN 2 RUN 3			
2	A	952	ARCH	48	0	0			EF	0	0	3	8	96	FUEL	LO1	TO18	1	Ö	RUN 3			
2 2	A A	953 954	ARCH ARCH	50 93	0	0			EF EF	0	0	3	8		FUEL FUEL	LO1 LO1	TO18 TO18	1	0	RUN 3 RUN 3			
2 2	A A	955 956	SLSC SLSC	66 73	0	0			EF EF	0	0	3 3	8 8		FUEL FUEL	LO1 LO1	TO18 TO18	1	0	RUN 3 RUN 3			
2	Α	957	SLSC	77	0	0			EF	0	0	3	8	96	FUEL	LO1	TO18	1	0	RUN 3 RUN 3			
2 2	A A	958 959	SLSC LKTR	59 192	0 65	0			EF GE	0	0	3 4		96	FUEL MINE	LO1 MINE	TO18 LC01	5	0	KUN 3			
2 2	A A	960 961	LKTR LKTR	182 176	45 55	0			GN GN	38 38	0	4	8		MINE	MINE	LC01 LC01	1 1	0				
2	Α	962	LKTR	208	90	Ō			GN	38	0	4	8	96	MINE	MINE	LC01 LC01	1 1	0				
2	A	963 964	LKTR LKTR	192 177	65 55	0			GN GN	38 38	0	4	8	96	MINE	MINE	LC01	1	0				
2 2	A A	965 966	LKTR LKTR	191 193	70 60	0			GN GN	38 19	0	4	8		MINE	MINE	LC01 LC01	1 1	0				
2	A	967 968	LKTR LKTR	192 210	65 75	7 1	7 9	OT OT	GN GN	38 38	0	4	8		MINE	MINE	LC01 LC01	1 1	1				0
2	Α	969 970	LKTR	429 200	940 75	7	19 8	OT OT	GN GN	38 38	0	4	8	96	MINE	MINE	LC01 LC01	1	1				01FIS 01ZOO
2 2	A	971	LKTR ARCH	348	345	12 0	0	O1	GN	38	479	4	8	96	TAIL	TAIL	LD05	1	0				VILOO
2 2	A A	972 973	ARCH ARCH	336 333	0 320	0			GN GN	38 38	478 95	4	8	96 96	TAIL TAIL	TAIL TAIL	LD05 LD05	1	0				
2	A	974 975	ARCH ARCH	347 385	400 0	0			GN GN	38 38	96 0	4		96 96	TAIL TAIL	TAIL TAIL	LD05 LD05	1	0				
2	A	976 977	ARCH ARCH	328 320	385 330	17 0	10	OT	GN GN	89 38	0 97	4		96 96	TAIL TAIL	TAIL TAIL	LD05 LD05	1 2	1 0				13CHI02ZOO
2	Α	978	ARCH	385	590	10			GN	38	98	4	8	96	TAIL	TAIL	LD05	2	0				
2 2	A	979 980	ARCH ARCH	314 396	280 520	0 10			GN GN	64 64	99 100	4 4	8	96 96	TAIL TAIL	TAIL TAIL	LD05 LD05	2	0				
2 2	A A	981 982	ARCH ARCH	386 334	530 395	10 0			GN GN	64 64	88 94	4	8	96 96	TAIL TAIL	TAIL TAIL	LD05 LD05	2 2	0				
2	A A	983 984	ARCH ARCH	409 304	680 290	10 0			GN GN	64 64	426 450	4	8	96 96	TAIL TAIL	TAIL TAIL	LD05 LD05	2	0				
2 2	Α	985 986	ARCH ARCH	365 368	390 380	17 0	12	от	GN GN	64 64	0	4	8	96 96	TAIL TAIL	TAIL TAIL	LD05 LD05	2 2	1 1				15CHI05ZOO 05ZOO05CHI
2	A	987	LKTR	0	0	0	12	01	GN	38	0	4	8	96	TAIL	TAIL	LD05	1	0	RND			000000000000000000000000000000000000000
2	A	988 989	LKTR RNWH	0 438	0 890	0 7	21	от	GN GN	64 89	0	4 5	8 8			TAIL CONTR		2 1	0 1	RND			10BRA
2 2	A A	990 991	RNWH LKTR	428 473	910 965	7 7	18 18	OT OT	GN GN	89 89	0	5 5	8			CONTR		1 1	1 1				01BRA 05BRA
2	A	992 993	LKTR RNWH	466 375	1000 610	17 7	18 9	OT OT	GN GN	38 64	0	5 5	8 8	96 (CONTR	CONTR	CONTR	1	1			501-52 501-26	
2	Α	994	LKTR	424	740	12	17	OT	GN	64	0	5	8	96 (CONTR	CONTR	CONTR	1	1			501-42	10ZOO 05BRA10ZOO
2 2	A A	995 996	RNWH RNWH	409 423	740 830	17 7	10 15	OT OT	GN GN	64 64	0	5 5	8 8	96 (CONTR	CONTR CONTR	CONTR	1	1			501-34	05ZOO
2	A A	997 998	LKTR LKTR	404 303	649 240	12 12	11	OT OT	GN GN	64 38	0	5 5	8			CONTR		1	1 1			501-37	04BRA06ZOO
2 2	A	999 1000	LKTR LKTR	343 295	390 240	12 1		OT OT	GN GN	38 38	0	5 5	8			CONTR		1	1 1				05ZOO 15ZOO
2	Α	1001	RNWH	261	170	7		OT OT	GN GN	38 38	0	5	8	96 (CONTR	CONTR	CONTR	1	1 1				05ZOO 05ZOO
2 2	A A	1002 1003	LKTR LKTR	257 221	150 55	1		OT	GN	38	0	5	8	96 (CONTR	CONTR	CONTR	1	1				0
2 2	A A	1004 1005	LKTR LKTR	210 203	50 45	99 99		OT OT	GN GN	38 38	0	5 5	8 8			CONTR		1	1				05FIS 0
2 2	A A	1006 1007	RNWH LKTR	346 327	440 310	7 1	9	OT OT	GN GN	38 38	0	5 5	8			CONTR		1	1			501-40	01ZOO 05ZOO
2	Α	1008	LKTR LKTR	309 423	210 775	1 7	20	OT OT	GN GN	38 38	0	5	8	96 (CONTR	CONTR		1 2	1			501-28	10200
2	A A	1009 1010	LKTR	410	740	7	19	OT	GN	38	0	5	8	96 (CONTR	CONTR	CONTR	2	1			501-43	
2 2	A A	1011 1012	LKTR LKTR	408 359	715 380	12 1	16	OT OT	GN GN	64 38	0	5 5	8 8	96 (CONTR	CONTR	CONTR CONTR	2 2	1 1			501-44	0
2 2	A A	1013 1014	LKTR LKTR	371 282	530 195	12 1		OT OT	GN GN	38 38	0	5 5	8				CONTR	2	1 1				15ZOO 10ZOO
2 2	A A	1015 1016	RNWH LKTR	440 268	855 165	7 11	20	TO TO	GN GN	64 38	0	5 5	8				CONTR	2	1			501-36	2ZOO01TRI01INS1CHI 20ZOO
2	Α	1017	RNWH	400	790	17	11	OT OT	GN	64 64	0	5	8	96 (CONTR	CONTR	CONTR	2	1 1			501-27 501-50	10PEL02ZOO03BRA
2	A	1019	RNWH LKTR	321 433	380 930	17 17	8 14	OT	GN GN	64	0	5	8	96 (CONTR	CONTR	CONTR	2	1			501-51	10ZOO
2 2	A A	1020 1021	LKTR LKTR	423 410	855 780	7 17	19 20	OT OT	GN GN	64 64	0	5 5	8 8	96 (CONTR	CONTR	CONTR CONTR	2	1 1				05ZOO
2 2	A	1022 1023	LKTR LKTR	408 428	710 930	12 7	12 23	OT OT	GN GN	89 89	0	5 5	8 8				CONTR CONTR	3	1			501-29 501-33	0 10ZOO
2	Α	1024	LKTR	413 458	750 980	, 7 0	14	OT	GN GN	64 114	0	5	8	96 (CONTR	CONTR	CONTR	2	1				10ZOO
2	A		ARCH RNWH	335	460	17	7	OT	GN	64	0	5	8	96 (CONTR	CONTR	CONTR	2	1			501-32	
2 2	A A	1027 1028	LKTR LKTR	366 344	470 465	11 12		OT OT	GN GN	38 38	0	5 5	8 8	96 (CONTR	CONTR	CONTR CONTR	2	1 0				01ZOO 10ZOO
2 2	A A	1029 1030	LKTR LKTR	363 263	460 185	1 99		OT OT	GN GN	38 38	0	5 5	8				CONTR CONTR	2 4	1 1				05ZOO 01ZOO
2 2	A	1031	LKTR LKTR	486 392	1420 495	7 7	19	OT OT	GN GN	64 64	o o	5	8	96 (CONTR	CONTR	CONTR	1	1			501-35	
2	A	1033	ARCH	455	745	1		OT	GN	64	0	5	8	96 (CONTR	CONTR	CONTR	4	1				05ZOO
2 2	A A		ARCH RNWH	466 0	840 0	7 0		ОТ	GN GN	64 19	0	5	8	96 (CONTR	CONTR	CONTR	1	0	RND			01ZOO
2 2	A A	1036 1037	RNWH LKTR	113 180	10 65	0			GN GN	19 64	0	5 5	8				CONTR CONTR	1	0				
2 2	A A	1038	LKTR LKTR	795 376	0 530	0			GN GN	38 38	334 0	5	8	96 (CONTR	CONTR	CONTR CONTR	1 2	2 0	RECAF	PTURE,RELEASED		
2	Α	1040	LKTR	420	795	7	18	ОТ	GN	140	0	6	8	96 (CONTR	CONTR	CONTR	4	1				15ZOO 05ZOO
2	A		LKTR RNWH	400 395	770 745	12 7	19 11	OT OT	GN GN	89 64	ō	6 6	8	96 (CONTR	CONTR	CONTR	3	1			501-30	05ZOO
2 2	A A	1043 1044	LKTR LKTR	426 431	830 865	12 7	21 19	OT OT	GN GN	64 89	0	6	8	96 (CONTR	CONTR	CONTR	3	1			501-64	04FIS01CHI15ZOO 10ZOO
2	Α	1045	LKTR	473	1040	1	18	ОТ	GN	89	0	6	8	96 (CONTR	CONTR	CONTR	4	1			507-60	10ZOO

Appena	IX FO.	Jencho Dia	iiiionu r	rojec	ı Aqu	auc s	studies	5 [15]]	Dala	(199	(0)									
Period	Crew	Sample Species No.	Fork Len. (mm)	Weigh) (g)	t Sex	Age	Age Meth.	Capt. Meth.	Mesh Size	Tag No.	Day	Мо	Yr	Zone Local	Loc.		Capt. Code	Comments	Tissue No.	Stomach Contents
2	A A	1046 LKTR 1047 LKTR	402 406	755 745	7 7	16 13	OT OT	GN GN	89 38	0	6 6	8 8		CONTR CONTR C		4 4	1			10ZOO 10ZOO
2	Ä	1048 RNWH	423	930	7	13	OT	GN	38	0	6	8		CONTR CONTR C		4	i			03CHI04TRI03ZOO
2	A	1049 RNWH	430	980	7	17	OT	GN	38	0	6	8		CONTR CONTR C		4	1		501-48	
2 2	A A	1050 RNWH 1051 RNWH	431 336	910 490	7 7	15 7	OT OT	GN GN	38 38	0	6 6	8		CONTR CONTR C		4	1			18ZOO02CHI 03ZOO02UNI
2	A	1052 RNWH	336	445	7	7	OT	GN	38	0	6	8	96	CONTR CONTR C	CONTR	4	1		501-58	05UNI
2 2	A	1053 RNWH 1054 RNWH	441 332	1030 430	17 17	23 7	OT OT	GN GN	38 38	0	6 6	8	96 96	CONTR CONTR C		4	1		501-53 501-54	01 FRI 02CHI01PEL02ZOO
2	Ä	1055 LKTR	392	720	2	,	OT	GN	38	ő	6	8	96			4	i		301-01	05ZOO
2 2	A	1056 LKTR 1057 LKTR	234 314	110 340	99 1		OT OT	GN GN	38 38	0	6 6	8		CONTR CONTR C		4	1			01UNI 10ZOO
2	Â	1058 LKTR	398	740	2		OT	GN	64	ō	6	8		CONTR CONTR C		4	i			02PEL05BRA13ZOO
2	A A	1059 LKTR 1060 LKTR	410 389	805 630	17 12		OT OT	GN GN	64 64	0	6 6	8 8		CONTR CONTR C		4 4	1			01PEL14ZOO 10ZOO
2	Ä	1061 LKTR	411	870	17		OT	GN	64	Ö	6	8		CONTR CONTR C		4	i			05PEL15ZOO
2	A A	1062 LKTR 1063 BURB	316 230	350 90	11 0		OT	GN GN	64 64	0	6 6	8	96 96			4 3	1			02BRA03ZOO
2	Ä	1064 ARCH	466	1050	7		ОТ	GN	114	o	6	8		CONTR CONTR C		3	1			05ZOO
2	A A	1065 ARCH 1066 LKTR	446 295	815 280	12 11		OT OT	GN GN	89 38	0	6 6	8 8		CONTR CONTR C		3	1			05200 10Z00
2	A	1067 RNWH	440	900	7	19	OT	GN	64	0	6	8	96	CONTR CONTR C	CONTR	3	1		501-55	05TRI
2 2	A A	1068 RNWH 1069 RNWH	413 414	820 835	7 7	14	OT OT	GN GN	64 64	0	6	8 8		CONTR CONTR C		3 3	1		501-57	05ZOO 05TRI05ZOO
2	Α	1070 LKTR	439	815	12		OT	GN	64	327	6	8	96	CONTR CONTR C	CONTR	3	3			10ZOO
2	A A	1071 LKTR 1072 LKTR	414 421	800 810	12 7		OT OT	GN GN	89 89	0	6 6	8		CONTR CONTR C		3	1			15ZOO 03BRA12ZOO
2	Α	1073 LKTR	433	820	2		OT	GN	89	0	6	8	96	CONTR CONTR C	CONTR	4	1			12FIS08ROD
2 2	A A	1074 ARCH 1075 LKTR	465 397	1075 465	0			GN GN	114 64	0	6 6	8		CONTR CONTR C		3 4	0			
2	Α	1076 LKTR	236	125	0			GN	38	0	6	8	96	CONTR CONTR C	CONTR	4	0	DND		
2 2	A	1077 LKTR 1078 LKTR	0	0	0			GN GN	64 38	0	6 6	8 8		CONTR CONTR C		3 3	0	RND RND		
2	A	1079 ARCH	0	0	0			GN	19	0	6	8	96	CONTR CONTR C		4	0	RND		
2 2	A A	1080 LKTR 1081 RNWH	0	0 0	0			GN GN	64 19	0	6 23	8 7	96	MINE MINE		4 1	0	RND RND		
2	A	1082 RNWH	0	0	0			GN	19	0	23	7	96		CARAT	1	0	RND		
2 2	A A	1083 RNWH 1084 RNWH	0 0	0	0			GN GN	19 19	0	23 23	7 7	96 96		CARAT CARAT	2	0	RND RND		
2	A	1085 RNWH	0	0	0			GN	19	0	24	7	96 96		CARAT LO05	3 1	0	RND RND		
2 2	A	1086 RNWH 1087 LKTR	0 0	0	0			GN GN	19 38	0	1	8	96		LO05	1	0	RND		
2	A A	1088 ARGR 1089 LKTR	0	0	0			GN GN	64 19	0	1 26	8 7	96 96		LO05 CARAT	1 6	0	RND RND		
2	A	1090 LKTR	0	0	0			GN	38	0	26	7	96		CARAT	5	0	RND		
2	A	1091 LKTR 1092 LKTR	0	0	0			GN GN	38 19	0	26 31	7 7	96 96	MINE MINE (CARAT	5 5	0	RND RND		
2	A A	1093 LKTR	ő	0	0			GN	38	o	4	8	96	TAIL TAIL	LD05	1	ŏ	RND		
2 2	A A	1094 LKTR 1095 SLSC	177 108	56 0	0			EF EF	0	0	5 5	8			TX22 TX22	1	0			
2	Ä	1096 SLSC	94	0	Ö			EF	0	0	5	8	96	CROSS CROSS	TX22	1	0			
2 2	A	1097 SLSC 1098 LKTR	103 0	0	0			EF EF	0	0	5 5	8			TX22 TX22	1 1	0	OBSERVED		
2	Α	1099 LKTR	0	0	Ö			EF	0	0	6	8	96	CROSS CROSS	TX22	1	0	OBSERVED		
2 2	A A	1100 LKTR 1101 ARGR	0 162	0 50	0	2	SC	EF EF	0	0	5 5	8			TX22 TX37	1	0	OBSERVED		
2	A	1102 ARGR	119	26	0	1	SC	EF	0	0	5	8	96	CROSS CROSS	TX37	1	0			
2 2	A A	1103 ARGR 1104 ARGR	114 115	24 16	0	1	SC SC	EF EF	0	0	5 5	8 8			TX37 TX37	1	0			
2	A	1105 SLSC	82	8	0			EF	0	0	5	8	96	CROSS CROSS	TX37	1	0			
2 2	A	1106 SLSC 1107 LKTR	77 122	6 22	0			EF EF	0	0	5 5	8 8			TX37 TX37	1	0			
2	A	1108 SLSC	52	0	0			EF EF	0	0	5	8 8			TX37 TX37	1	0	OBSERVED		
2 2	A A	1109 ARGR 1110 ARGR	0 0	ő	Ö			EF	ő	ő	5 5	8			TX37	1	ŏ	OBSERVED		
2	A A	1111 ARGR 1112 ARGR	0	0	0			EF EF	0	0	5 5	8 8		CROSS CROSS	TX37	1	0	OBSERVED OBSERVED		
2	Â	1113 ARGR	Ö	Ö	Ö			EF	ŏ	ō	5	8	96	CROSS CROSS	TX37	1	ō	OBSERVED		
2 2	A A	1114 SLSC 1115 SLSC	0	0	0			EF EF	0	0	5 5	8 8			TX37 TX37	1	0	OBSERVED OBSERVED		
2	Α	1116 ARCH	76	6	0			EF	0	0	5	8	96	CROSS CROSS	TX07	2	0			
2 2	A A	1117 ARCH 1118 ARCH	61 74	0	0			EF EF	0	0	5 5	8 8		CROSS CROSS CROSS CROSS		2 2	0			
2	A	1119 ARCH	64	0	0			EF	0	0	5	8			TX07	2	0			
2 2	A A	1120 NNST 1121 SLSC	21 44	0	0			EF EF	0 0	0	5 5	8 8			TX07 TX07	2 2	0			
2 2	A A	1122 SLSC 1123 SLSC	69 50	10 0	0			EF EF	0	0	5 5	8 8			TX07 TX07	2	0			
2	Â	1124 NNST	0	0	0			EF	0	0	5	8	96	CROSS CROSS	TX07	2	0	OBSERVED		
2 2	A A	1125 ARCH 1126 ARCH	75 61	0 10	0			EF EF	0	0	5 5	8		CROSS CROSS	TX08 TX08	1	0			
2	Α	1127 ARCH	85	6	0			EF	0	0	5	8	96	CROSS CROSS	80XT	1	0			
2 2	A A	1128 ARCH 1129 ARCH	90 74	10 8	0			EF EF	0	0	5 5	8 8		CROSS CROSS CROSS CROSS		1	0			
2	Α	1130 ARCH	70	4	ō			EF	0	0	5	8	96	CROSS CROSS	TX08	1	0			
2	A A	1131 ARCH 1132 ARCH	95 74	12 10	0			EF EF	0	0	5 5	8 8			TX08 TX08	1	0			
2	Α	1133 ARCH	76	6	0			EF	0	0	5	8		CROSS CROSS	TX08	1	0			
2 2	A A	1134 SLSC 1135 ARCH	59 75	4 4	0			EF EF	0	0	5 5	8			TX08 TX08	1	0			
2	Α	1136 ARCH	83	6	0			EF	0	0	5	8	96	CROSS CROSS	TX08	1	0			
2 2	A A	1137 ARCH 1138 ARCH	65 65	2 0	0			EF EF	0	0	5 5	8 8			TX08 TX08	1	0			
2	Α	1139 ARCH	65	0	0			EF	0	0	5	8	96	CROSS CROSS	TX08	1	0			
2	A A	1140 ARCH 1141 ARCH	75 63	0 0	0			EF EF	0 0	0	5 5	8 8	96	CROSS CROSS		1	1			
2	Α	1142 SLSC	57 69	0 4	0			EF EF	0	0	5	8	96	CROSS CROSS	TX18	1	0			
2 2	A A	1143 SLSC 1144 SLSC	69 54	0	0			EF	0	0	5 5	8 8	96	CROSS CROSS	TX18	1	0			
2	Α	1145 SLSC	57 79	2	0			EF	0	0	5	8	96	CROSS CROSS CROSS CROSS	TX18	1	0			
2 2	A A	1146 SLSC 1147 SLSC	79 84	4 4	0			EF EF	0	0	5 5	8 8	96	CROSS CROSS	TX18	1	0			
2 2	A A	1148 SLSC 1149 SLSC	65 56	0	0			EF EF	0	0	5 5	8			TX18 TX18	1	0			
2	Α	1150 SLSC	78	6	0			EF	0	0	5	8	96	CROSS CROSS	TX18	1	0			
2 2	A A	1151 SLSC 1152 SLSC	57 62	0	0			EF EF	0	0	5 5	8			TX18 TX18	1 1	0			
2	Α	1153 SLSC	64	0	0			£F	0	0	5	8	96	CROSS CROSS	TX18	1	0	ODCEDI/ED		
2 2	A A	1154 SLSC 1155 SLSC	0 0	0	0			EF EF	0 0	0	5 5	8 8			TX18 TX18	1 1	0	OBSERVED OBSERVED		
2	A	1156 SLSC	Ö	ō	Ö			EF	0	Ō	5	8			TX18	1	0	OBSERVED		

Appena		Jericho						Studies													_	
Period	Crew	Sample Spe No.		ork \ (mm)	Weight (g)	Sex	Age	Age Meth.	Capt. Meth.	Mesh Size	Tag No.	Day	Мо	Yr	Zone	Local	Loc.	Site	Capt. Code		Tissue No.	Stomach Contents
2 2	A	1157 SL:			0	0			EF EF	0	0	5 5	8 8		CROSS		TX18 TX21	1 1	0	OBSERVED		
2	Â	1159 SL	SC 8		6	Ō			EF	0	0	5	8	96	CROSS	CROSS	TX21	1	0			
2	A A	1160 SL:			8 4	0			EF EF	0	0	5 5	8		CROSS CROSS		TX21 TX21	1	0			
2	Â	1162 SL	SC 7	8	6	0			EF	0	0	5	8	96	CROSS	CROSS	TX21	1	0			
2 2	A A	1163 SL:			6 6	0			EF EF	0	0	5 5	8 8		CROSS		TX21 TX21	1	0			
2	Α	1165 SL:	SC 7	5	4	0			EF	0	0	5	8		CROSS		TX21 TX21	1	0			
2 2	A A	1166 SLS 1167 SLS			4 6	0			EF EF	0	0	5 5	8 8		CROSS CROSS		TX21	i	0			
2	A	1168 SL:			0	0			EF EF	0	0	5 5	8 8		CROSS	CROSS	TX21 TX21	1	0			
2	A	1170 SL	SC 50	6	0	Ö			EF	0	0	5	8	96	CROSS	CROSS	TX21	1	0			
2 2	A A	1171 SLS 1172 SLS			0	0			EF EF	0	0	5 5	8 8				TX21 TX21	1	0			
2	Α	1173 SL	SC 4	1	0	0			EF EF	0 0	0	5 5	8 8		CROSS CROSS		TX21 TX21	1	0	OBSERVED		
2 2	A	1174 SLS 1175 SLS	SC 0)	0	0			EF	0	0	5	8	96	CROSS	CROSS	TX21	1	0	OBSERVED		
2 2	A A	1176 SLS			0	0			EF EF	0	0	5 5	8 8			CROSS	TX21 TX21	1	0	OBSERVED OBSERVED		
2	Ą	1178 SLS	SC 0		0	0			EF EF	0	0	5 5	8 8		CROSS CROSS		TX21 TX21	1	0	OBSERVED OBSERVED		
2 2	A	1179 SLS 1180 SLS			0	0			EF	0	0	5	8	96	CROSS	CROSS	TX21	1	0	OBSERVED		
2 2	A A	1181 SLS			0 340	0			EF EF	0	0	5 5	8 8		CROSS CROSS		TX21 TX20	1	0	OBSERVED		
2	A	1183 ARG			22 66	0			EF EF	0	0	5 5	8 8		CROSS		TX20 TX20	1	0			
2 2	A A	1185 ARG	CH 13	7	36	ō			EF	0	0	5	8	96	CROSS	CROSS	TX20	1	0			
2 2	A A	1186 ARG			24 20	0			EF EF	0	0	5 5	8 8				TX20 TX20	1	0			
2	Α	1188 ARG	CH 79	9	4 6	0			EF EF	0	0	5 5	8 8				TX20 TX20	1	0			
2 2	A	1189 ARG	SC 77	7	4	Ō			EF	0	0	5	8	96	CROSS	CROSS	TX20	į	0			
2 2	A A	1191 SLS 1192 SLS			12 4	0			EF EF	0	0	5 5	8		CROSS		TX20 TX20	1	0			
2	Α	1193 SLS	SC 55	5	ò	0			EF	0	0	5	8	96	CROSS	CROSS CROSS	TX20 TX20	1	0			
2 2	A A	1194 SLS 1195 NN			0	0			EF EF	0 0	0	5 5	8 8		CROSS		TX20	1	ō			
2 2	A A	1196 ARG			0	0			EF EF	0	0	5 5	8 8		CROSS		TX20 TX20	1	0	OBSERVED OBSERVED		
2	Α	1198 ARG	CH 0		Ō	0			EF	0	0	5	8	96	CROSS	CROSS	TX20	1	0	OBSERVED		
2 2	A A	1199 NN: 1200 SLS			0	0			EF EF	0	0	5 5	8 8		CROSS CROSS		TX20 TX20	1	0	OBSERVED OBSERVED		
2 2	A	1201 ARG			0	0			EF EF	0	0	6 6	8 8		CROSS		TX53 TX53	1	0			
2	Â	1203 ARG	GR 11	2	ō	ō			EF	0	0	6	8	96	CROSS	CROSS	TX53	1	0			
2 2	A A	1204 ARG			0	0			EF EF	0 0	0	6 6	8 8				TX53 TX53	1	0			
2 2	A	1206 ARG			0	0			EF EF	0	0	6 6	8 8				TX53 TX53	1	0			
2	A	1208 NN	ST 42	2	0	0			EF	0	0	6	8	96	CROSS	CROSS	TX53	1	0	OBSERVED		
2 2	A A	1209 ARG			0	0			EF EF	0	0	6 6	8 8	96		CROSS	TX53 TX53	i	0	OBSERVED OBSERVED		
2 2	A A	1211 ARG			0	0			EF EF	0	0	6 6	8 8			CROSS	TX53 TX53	1	0	OBSERVED OBSERVED		
2	Α	1213 RNV	NH 98	3	ō	ō			EF	0	0	6	8	96	CROSS	CROSS	TX50	1	0	00000000		
2 2	A	1214 ARC 1215 NNS			0	0			EF EF	0	0	6 6	8 8	96	CROSS CROSS	CROSS	TX50 TX50	1	0			
2 2	A A	1217 SLS 1218 BUF			0	0			EF EF	0	0	6 6	8 8		CROSS CROSS		TX41 TX41	1	0			
2	Α	1219 BUF	RB 0		0	0		00	EF	0	0	6	8	96	CROSS	CROSS	TX41	1	0	OBSERVED		
2 2	A	1220 ARC 1221 ARC			0 0	0	0	SC	EF EF	0	0	6 6	8 8	96	CROSS CROSS	CROSS	TX24 TX24	1	0			
2 2	A A	1222 SLS 1223 SLS			4	0			EF EF	0	0	6 6	8 8			CROSS	TX24 TX24	1	0			
2	Α	1224 SLS	SC 60)	ō	0			EF	0	0	6	8	96		CROSS		1	0			
2 2	A	1225 SLS 1226 ARG	GR 54	;	0	0			EF EF	0	ŏ	6	8	96	CROSS	CROSS	TX24	1	ō			
2	A A	1227 ARC 1228 SLS			0	0			EF EF	0	0	6 6	8 8		CROSS	CROSS	TX24 TX24	1	0			
2	A	1229 ARC 1230 ARC	GR 0		0	0			EF EF	0	0	6 6	8 8			CROSS	TX24 TX24	1	0 0	OBSERVED OBSERVED		
2	Α	1231 ARG	SR 0		0	0			EF	0	0	6	8	96	CROSS	CROSS	TX24	1	0	OBSERVED		
2 2	A A	1232 ARG			0	0			EF EF	0	0	6 6	8			CROSS	TX24 TX24	1 1	0 0	OBSERVED OBSERVED		
2	A A	1234 ARG 1235 SLS			0	0			EF EF	0	0	6 6	8			CROSS	TX24 TX24	1	0	OBSERVED OBSERVED		
2	Α	1236 SLS	SC 0		0	0			EF	0	0	6	8	96	CROSS	CROSS	TX24	1	0	OBSERVED OBSERVED		
2 2	A A	1237 SLS 1238 SLS			0 0	0			EF EF	0 0	0	6 6	8 8	96	CROSS	CROSS	TX24 TX24	1	0	OBSERVED		
2 2	A A	1239 SLS 1240 SLS			0	0			EF EF	0	0	6 6	8					1 1	0	OBSERVED OBSERVED		
2	Α	1241 SLS	SC 0		0	0			EF	Ō	0	6	8	96	CROSS	CROSS	TX24	1	0	OBSERVED OBSERVED		
2 2	A A	1242 SLS 1243 SLS			0	0			EF EF	0	0	6 6	8	96	CROSS	CROSS CROSS	TX24	1	0	OBSERVED		
2 2	A A	1244 SLS 1245 SLS			0	0			EF EF	0	0	6 6	8			CROSS	TX24 TX24	1	0	OBSERVED OBSERVED		
2	Α	1246 SLS	SC 0		0	0			EF	0	0	6	8	96	CROSS	CROSS	TX24 TC01	1	0	OBSERVED		
2 2	A A	1247 LKT 1248 SLS			0	0 0			EF E F	0	0	25 29		96 96	MINE	CARAT	TC04	i	Ō	OBSERVED OBSERVED		
2	A	1249 SLS 1250 SLS	SC 0		0	0			EF EF	0	0			96 96		CARAT	TC04 TC04	1	0	OBSERVED OBSERVED		
2	Α	1251 SLS	SC 0		0	0			EF	0	0	29	7	96	MINE	CARAT	TC04	1	Ŏ	OBSERVED		
2 2	A A	1252 SLS 1253 SLS			0	0			EF EF	0	0	29 29	7	96 96	MINE	CARAT CARAT	TC04 TC04	1	0 0	OBSERVED OBSERVED		
2 2	A A	1254 SLS 1255 SLS	SC 0		0	0			EF EF	0	0			96 96		CARAT	TC04 TC04	1	0	OBSERVED OBSERVED		
2	Α	1256 SLS	SC 0		0	Ō			EF	0	0	29	7	96	MINE	CARAT	TC04	1	0	OBSERVED		
2 2	A A	1257 SLS 1258 SLS			0	0			EF EF	0	0			96 96		CARAT	TC04	1	0	OBSERVED OBSERVED		
2	Α	1259 SLS 1260 SLS	SC 0		0	0			EF EF	0	0	29 29	7	96 96	MINE		TC04 TC04	1 1	0	OBSERVED OBSERVED		
2	A A	1261 LKT	R 0		0	0			EF	ō	0	29	7	96	MINE	CARAT	TC04	1	0	OBSERVED		
2 2	A A	1262 LKT 1263 LKT			0	0			EF EF	0	0	29	7	96 96	MINE	CARAT CARAT	TC04 TC04	1 1	0	OBSERVED OBSERVED		
2 2		1264 LKT 1265 LKT	R 0		0	0			EF EF	0 0	0			96 96		CARAT	TC04 TC04	1 1	0	OBSERVED OBSERVED		
2	Α	1266 ARG	GR 0		0	Ō			ĘF	0	0	2	8	96	FUEL	LO5	TO06A TO06A	1	0	OBSERVED OBSERVED		
2 2	A	1267 ARG 1268 ARG			0	0			EF EF	0	0	2		96 96	FUEL		TO06A	1	0	OBSERVED		

Append					•	-					•										
Period	Crew	Sample No.	Species	Fork Len. (mm)	Weight (g)	Sex .	Age Age Meth.	Capt. Meth.	Mesh Size	Tag No.	Day	Мо	Yr	Zone	Local	Loc.	Site	Capt. Code	Comments	Tissue No.	Stomach Contents
2	Α	1269	ARGR	0	0	0		EF	0	0	2		96	FUEL	LO5	TO06A	1	0	OBSERVED	-	
2 2	A A	1270 1271	ARGR ARGR	0	0	0		EF EF	0	0	2		96 96	FUEL FUEL	LO5 LO5	TO06A TO06A	1	0	OBSERVED OBSERVED		
2	Ä	1272	ARGR	Ö	ő	ő		EF	ŏ	ŏ	2		96	FUEL	LO5	TO06A	1	0	OBSERVED		
2 2	A A	1273 1274	ARGR	0	0	0		EF EF	0	0	2		96 96	FUEL FUEL	LO5 LO5	TO06A TO06A	1	0	OBSERVED OBSERVED		
2	A	1275	ARGR NNST	0	o	0		EF	0	Ö	2		96	FUEL	LO5	TO06A	1	0	OBSERVED		
2	Α	1276	NNST	0	0	0		EF	0	0	2		96	FUÉL	LO5	TO06A	1	0	OBSERVED		
2 2	A A	1277 1278	NNST NNST	0	0	0		EF EF	0	0	2		96 96	FUEL FUEL	LO5 LO5	TO06A TO06A	1	0	OBSERVED OBSERVED		
2	Α	1279	NNST	ō	0	0		EF	0	0	2	8	96	FUEL	LO5	TO06A	1	0	OBSERVED		
2 2	A A	1280 1281	NNST NNST	0	0	0		EF EF	0	0	2		96 96	FUEL FUEL	LO5 LO5	TO06A TO06A	1	0	OBSERVED OBSERVED		
2	A	1282	NNST	0	ő	0		EF	0	0	2	8	96	FUEL	LO5	TO06A	1	0	OBSERVED		
2 2	A A	1283 1284	NNST NNST	0 0	0	0		EF EF	0	0	2		96 96	FUEL FUEL	LO5 LO5	TO06A TO06A	1	0	OBSERVED OBSERVED		
2	A	1285	NNST	0	0	0		EF	Ö	0	2		96	FUEL	LO5	TO06A	1	0	OBSERVED		
2	A	1286	NNST	0	0	0		EF EF	0	0	2		96 96	FUEL FUEL	LO5 LO5	TO06A TO06A	1	0	OBSERVED		
2	A	1287 1288	NNST NNST	0	0	0		EF	0	0	2		96	FUEL	LO5	TO06A	i	0	OBSERVED OBSERVED		
2	A	1289	NNST	0	0	0		EF	0	0	2		96	FUEL	LO5	TO06A	1	0	OBSERVED		
2 2	A A	1290 1291	NNST NNST	0	0	o		EF EF	0	0	2		96 96	FUEL FUEL	LO5 LO5	TO06A TO06A	1	0	OBSERVED OBSERVED		
2	Α	1292	NNST	0	0	0		EF	0	0	2		96	FUEL	LO5	TO06A	1	0	OBSERVED		
2	A A	1293 1294	NNST NNST	0	0	0		EF EF	0	0	2		96 96	FUEL FUEL	LO5 LO5	TO06A TO06A	1	0	OBSERVED OBSERVED		
2	Α	1295	NNST	0	0	0		EF	0	0	2	8	96	FUEL	LO5	TO06A	1	0	OBSERVED		
2	A A	1296 1297	NNST NNST	0	0	0		EF EF	0	0	2		96 96	FUEL FUEL	LO5 LO5	TO06A TO06A	1	0	OBSERVED OBSERVED		
2	Α	1298	SLSC	0	0	0		EF	0	0	2	8	96	FUEL	LO5	TO06A	1	0	OBSERVED		
2	A A	1299 1300	SLSC SLSC	0	0	0		EF EF	0	0	2		96 96	FUEL FUEL	LO5 LO5	TO06A TO06A	1	0 0	OBSERVED OBSERVED		
2	Α	1301	SLSC	0	0	0		EF	0	0	2	8		FUEL	LO5	TO06A	1	0	OBSERVED		
2	A	1302 1303	SLSC	0	0	0		EF EF	0	0	2			FUEL FUEL	LO5 LO5	TO06A TO06A	1	0	OBSERVED OBSERVED		
2	Α	1304	SLSC	0	Ō	Ō		EF	0	0	2	8	96	FUEL.	LO5	TO06A	1	0	OBSERVED		
2	A	1305 1306	SLSC	0	0	0		EF EF	0	0	2		96 96	FUEL FUEL	LO5 LO5	TO06A TO06A	1	0	OBSERVED OBSERVED		
2	Α	1307	SLSC	Ō	0	0		EF	0	0	2	8	96	FUEL	LO5	TO06A	1	0	OBSERVED		
2	A A	1308 1309	SLSC	0	0	0		EF EF	0	0	2			FUEL FUEL	LO5 LO5	TO06A TO06A	1	0	OBSERVED OBSERVED		
2	Α	1310	SLSC	0	0	0		EF	0	0	2	8	96	FUEL	LO5	TO06A	1	0	OBSERVED		
2	A A	1311 1312	SLSC SLSC	0	0	0		EF EF	0	0	2		96 96	FUEL FUEL	LO5 LO5	TO06A TO06A	1	0	OBSERVED OBSERVED		
2	Α	1313	SLSC	0	0	0		EF	0	0	2	8	96	FUEL	LO5	TO06A	1	0	OBSERVED		
2	A A	1314 1315	SLSC ARGR	0	0	0		EF EF	0	0	2		96 96	FUEL	LO5 LO4	TO06A TO06	1	0	OBSERVED OBSERVED		
2	Α	1316	ARGR	0	Ō	0		EF	0	0	2	8	96	FUEL	LO4	TO06	1	0	OBSERVED		
2 2	A A		NNST NNST	0 0	0	0		EF EF	0	0	2			FUEL FUEL	LO4 LO4	TO06 TO06	1	0	OBSERVED OBSERVED		
2	Α	1319	NNST	0	0	0		EF	0	0	2	8	96	FUEL	LO4	TO06	1	0	OBSERVED		
2 2	A A		NNST NNST	0 0	0	0		EF EF	0	0	2			FUEL	LO4 LO4	TO06 TO06	1	0	OBSERVED OBSERVED		
2	A		NNST	0	0	0		EF	0	0	2			FUEL	LO4	TO06	1	0	OBSERVED		
2 2	A A		NNST NNST	0	0	0		EF EF	0	0	2		96 96	FUEL FUEL	LO4 LO4	TO06 TO06	1	0	OBSERVED OBSERVED		
2	A		NNST	0	0	0		EF EF	0	0	2		96 96	FUEL	LO4 LO4	TO06	1	0	OBSERVED OBSERVED		
2 2	A A		NNST NNST	0	0	0		EF	0	0	2			FUEL FUEL	LO4	TO06 TO06	i	0	OBSERVED		
2	A		NNST NNST	0	0	0		EF EF	0	0	2			FUEL FUEL	LO4 LO4	TO06 TO06	1	0	OBSERVED OBSERVED		
2 2	A A		NNST	0	0	0		EF	0	0	2			FUEL	LO4	TO06	i	0	OBSERVED		
2 2	A A		NNST NNST	0 0	0	0		EF EF	0	0	2			FUEL FUEL	LO4 LO4	TO06 TO06	1	0	OBSERVED OBSERVED		
2	Ä		NNST	ő	ŏ	Ö		EF	Ö	ō	2	8	96	FUEL	LO4	TO06	1	0	OBSERVED		
2	A A		NNST NNST	0	0	0		EF EF	0	0	2			FUEL FUEL	LO4 LO4	TO06 TO06	1	0	OBSERVED OBSERVED		
2	Α	1336	ARGR	ō	ō	ŏ		EF	Ō	0	2	8	96	FUEL	LO4	TO06	1	0	OBSERVED		
2 2	A A		ARGR ARGR	0	0	0		EF EF	0	0	2			FUEL FUEL	LO4 LO4	TO06 TO06	1	0	OBSERVED OBSERVED		
2	Α	1339	ARGR	0	ō	0		EF	0	0	2	8	96	FUEL.	LO4	TO06	1	0	OBSERVED		
2 2	A A		ARGR ARGR	0	0	0		EF EF	0 0	0	2			FUEL FUEL	LO4 LO4	TO06 TO06	1 1	0	OBSERVED OBSERVED		
2	A	1342	ARGR	0	0	0		EF	0	0	2	8	96	FUEL	LO4	TO06	1	0	OBSERVED		
2 2	A A		ARGR ARGR	0	0	0		EF EF	0	0	2			FUEL	LO4 LO4	TO06 TO06	1	0	OBSERVED OBSERVED		
2	Α		ARGR	0	0	0		EF	0	0				FUEL	LO4	TO06	1	0	OBSERVED		
2	A A		ARGR ARGR	0 0	0	0		EF EF	0	0	2			FUEL FUEL	LO4 LO4	TO06 TO06	1	0	OBSERVED OBSERVED		
2	A		ARGR	0	0	0		EF	0	0	2			FUEL	LO4	TO06	1	0	OBSERVED		
2 2	A A		ARGR ARGR	0 0	0	0		EF EF	0	0	2			FUEL FUEL	LO4 LO4	TO06 TO06	1 1	0	OBSERVED OBSERVED		
2	A		ARGR	0	0	0		EF EF	0	0	2			FUEL FUEL	LO4 LO4	TO06 TO06	1	0	OBSERVED OBSERVED		
2	A A		ARGR ARGR	0	0	0		EF	0	0				FUEL	LO4	TO06	i	Ô	OBSERVED		
2	A		ARGR NNST	0	0	0		EF EF	0	0				FUEL FUEL	LO4 LO4	TO06 TO06	1	0	OBSERVED OBSERVED		
2	A A		NNST	0	0	0		EF	0	0				FUEL	LO4	TO06	1	Ô	OBSERVED		
2	A A		NNST NNST	0	0	0		EF EF	0	0				FUEL FUEL	LO4 LO4	TO06 TO06	1 1	0	OBSERVED OBSERVED		
2	Ä		NNST	0	0	0		EF	0	Ö		8	96	FUEL	LO4	TO06	i	0	OBSERVED		
2	A A		NNST NNST	0	0	0		EF EF	0	0				FUEL FUEL	LO4 LO4	TO06 TO06	1 1	0	OBSERVED OBSERVED		
2	Α	1362	NNST	0	0	0		EF	0	0	2	8	96	FUEL	LO4	TO06	1	0	OBSERVED		
2 2	A A		NNST NNST	0 0	0	0		EF EF	0 0	0				FUEL FUEL	LO4 LO4	TO06 TO06	1	0	OBSERVED OBSERVED		
2	Α	1365	NNST	0	0	0		EF	0	0	2	8	96	FUEL	LO4	TO06	1	0	OBSERVED		
2 2	A A		NNST NNST	0	0	0		EF EF	0	0				FUEL FUEL	LO4 LO4	TO06	1 1	0	OBSERVED OBSERVED		
2	Α	1368	NNST	0	0	0		EF	Ō	0	2	8	96	FUEL	LO4	TO06	1	0	OBSERVED		
2 2	A A		NNST NNST	0 0	0	0 0		EF EF	0	0				FUEL FUEL	LO4 LO4	TO06 TO06	1	0	OBSERVED OBSERVED		
2	Α	1371	NNST	ō	0	0		EF	0	Ō	2	8	96	FUEL	LO4	TO06	1	0	OBSERVED		
2 2	A A		NNST NNST	0 0	0	0		EF EF	0 0	0				FUEL FUEL	LO4 LO4	TO06 TO06	1	0	OBSERVED OBSERVED		
2 2	Α	1374	NNST ARGR	0	0	0		EF EF	0	0	2	8	96	FUEL FUEL	LO4 LO4	TO06 TO06	1 3	0	OBSERVED OBSERVED		
2	Α	1376	ARGR	ō	0	0		EF	ō	ō	2	8	96	FUEL	LO4	TO06	3	0	OBSERVED		
2 2	A A		SLSC SLSC	0	0	0		EF EF	0	0				FUEL FUEL	LO4 LO4	TO06 TO06	3	0	OBSERVED OBSERVED		
2	A		SLSC	ŏ	ŏ	ő		EF	ŏ	ŏ				FUEL	LO4	TO06	3	ō	OBSERVED		

Period			eSpecies				Age /			Mesh	Tag	Day	Mo	Yr	Zone	Local	Loc.	Site	Capt.	Comments	Tissue	Stomach Contents
2	Α	No. 1380	ı	Len. (mm) 0		0		leth.		Size 0	No.	2	8		FUEL	LO4	TO06	3	Code 0	OBSERVED	No.	
2 2	A A	1381 1382	SLSC	116 187	14 78	0			EF EF	0	0	5 5	7	96	CROSS	CROSS	TX04 TX04	1 1	0			
2	Α	1383	ARCH	129	28	0			EF	0	0	5	7	96	CROSS	CROSS	TX04	1	0			
2	A	1384 1385	ARCH ARCH	109 134	18 32	0			EF EF	0	0	5 5	7 7	96	CROSS	CROSS CROSS	TX04 TX04	1	0			
2 2	A	1386 1387	ARGR ARCH	99 119	12 20	0			EF EF	0	0	5 5	7 7			CROSS CROSS	TX04 TX04	1	0			
2	A	1388 1389	ARCH ARCH	106 97	16 14	0			EF EF	0	0	5 5	7 7			CROSS	TX04 TX04	1	0			
2	Α	1390 1391	ARGR	0	0	0			SN	0	0	3	8	96 96	MINE MINE	INTER	TC15 TC15	1	0			
2 2	A A	1392	ARGR ARGR	ō	0	0			SN	0	0	3	8	96	MINE	INTER	TC15	1	Ō			
2 2	A	1393 1394	SLSC SLSC	0	0	0 0			SN SN	0	0	3	8 8	96 96	MINE	MINE	TC15 TC15	1	0 0			
2 2	A	1395 1396	SLSC ARGR	0	0	0			SN SN	0	0	3	8 8	96 96	MINE	MINE	TC15 TC15	2	0			
2 2	A A	1397 1398	ARGR ARGR	0	0	0			SN SN	0	0	3	8	96 96	MINE	INTER	TC15 TC15	2	0			
2	Α	1399	ARGR	0	0	0			SN	0	0	3	8	96	MINE	INTER	TC15	2	0			
2 2	A	1400 1401	ARGR ARGR	0	0	0 0			SN SN	0	0	3	8 8	96 96	MINE	INTER INTER	TC15 TC15	2 2	0			
2 2	A A	1402 1403	ARGR LKTR	0	0	0			SN SN	0	0	3	8 8	96 96	MINE	INTER	TC15 TC15	2 1	0			
2 2	A A	1404 1405	LKTR LKTR	0	0	0			SN SN	0	0	3	8 8	96 96	MINE	RIVER RIVER	TO07A TO07A	1	0	CASCADE CASCADE		
2	A A	1406 1407	LKTR LKTR	0	0	0			SN SN	0	0	3	8 8	96 96	MINE	RIVER	TO07A TO07A	1	0	CASCADE CASCADE		
2 2	A A	1408 1409	LKTR ARCH	0	0	0			SN	0	0	3	8	96 96	MINE	RIVER	TO07A TO07A	1	0	CASCADE CASCADE		
2	Α	1410	ARGR	0	0	10			SN	0	0	3	8	96	MINE	RIVER	TO07A	1	0	CASCADE		
2 2	A	1411 1412	ARGR ARGR	0	0	20 20			SN	0	0	3	8	96 96	MINE	RIVER RIVER	TO07A	1	0	CASCADE CASCADE		
2 2	A A	1413 1414	LKTR SLSC	0 0	0 0	0			OB OB	0	0	3	8 8	96 96	MINE	RIVER RIVER		1	0	CASCADE CASCADE		
2 2	A A	1415 1416	ARGR ARGR	0	0	0			OB OB	0	0	3	8 8	96 96	MINE	RIVER RIVER		1	0	CASCADE CASCADE		
2 2	A A	1417 1418	ARGR ARGR	0	0	0			SN SN	0	0	3	8	96 96	MINE		TO07A TO07A	2 2	0	RABG1 RABG1		
2 2	A A	1419	ARGR ARGR	0	0	0			SN SN	0	0	3	8	96 96	MINE	RIVER	TO07A TO07A	2 2	0	RABG1 RABG1		
2	Α	1421	ARGR	0	0	0			SN	0	0	3	8	96	MINE	RIVER	TO07A	2	0	RABG1		
2	A	1422 1423	ARGR ARGR	0	0	0			SN	0	0	3	8	96 96	MINE	RIVER RIVER	TO07A	2	0	RABG1 RABG1		
2 2	A A	1424 1425	ARGR ARGR	0 0	0 0	0 0			SN SN	0	0	3	8 8	96 96	MINE MINE	RIVER RIVER		2 2	0	RABG1 RABG1		
2 2	A	1426 1427	ARGR ARGR	0	0	0			SN SN	0	0	3	8 8	96 96	MINE		TO07A TO07A	2	0	RABG1 RABG1		
2 2	A A	1428 1429	ARGR ARGR	0	0	0			SN SN	0	0	3	8 8	96 96	MINE	RIVER RIVER	TO07A	2	0	RABG1 RABG1		
2	A A	1430 1431	ARGR ARGR	0 0	0	0 10			SN SN	0	0	3	8	96 96	MINE	RIVER	TO07A	2	0	RABG1 RABG1		
2	Α	1432	ARGR	0	0	10			SN	0	0	3	8	96	MINE	RIVER	TO07A	2	0	RABG1		
2	A	1433 1434	LKTR ARGR	0	0	0			SN	0	0	3	8	96 96	MINE		TO07A	2	0	RABG1 RABG1		
2 2	A	1435 1436	ARGR ARGR	0	0	0			SN SN	0	0	3	8 8	96 96	MINE	RIVER	TO07A TO07A	2 2	0	RABG1 RABG1		
2 2	A A	1437 1438	ARGR ARGR	0	0 0	0			SN SN	0 0	0	3	8 8	96 96	MINE	RIVER RIVER	TO07A TO07A	2	0	RABG1 RABG1		
2	A A		LKTR ARGR	0	0	0			SN SN	0	0	3	8 8	96 96	MINE	RIVER RIVER	TO07A TO07A	2	0	RABG1 RABG2		
2 2	A A	1441 1442	ARGR ARGR	0	0	0			SN SN	0	0	3	8 8	96 96	MINE		TO07A TO07A	3 3	0	RABG2 RABG2		
2 2	A A		ARGR ARGR	0	0	0			SN SN	0	0	3	8	96 96	MINE		TO07A TO07A	3	0	RABG2 RABG2		
2	Α	1445	ARGR ARGR	0	0	0			SN SN	0	0	3	8	96	MINE	RIVER	TO07A	3	0	RABG2 RABG2		
2	A	1446 1447	ARGR	0	ō	0			SN	0	0	3	8	96 96		RIVER		3	0	RABG2		
2	A	1449	ARGR ARGR	0	0	0			SN	0	0	3	8	96 96	MINE	RIVER RIVER	TO07A	3 3	0	RABG2 RABG2		
2 2	A A		ARGR ARGR	0 0	0	0			SN SN	0	0	3 3	8 8	96 96	MINE	RIVER		3	0 0	RABG2 RABG2		
2 2	A A	1452 1453	ARGR RNWH	0 0	0	0			SN SN	0	0	3	8	96 96	MINE	RIVER RIVER	TO07A TO07A	3	0 0	RABG2 RABG2		
2 2	A A		RNWH RNWH	0	0	0			SN SN	0	0	3	8	96 96	MINE	RIVER RIVER		3	0	RABG2 RABG2		
2 2	A A	1456	RNWH RNWH	0	0	0			SN	0	0	3	8	96 96	MINE	RIVER RIVER	TO07A	3	0	RABG2 RABG2		
2 2	A A	1458	RNWH RNWH	0	0	0			SN	0	0	3	8	96 96	MINE	RIVER	TO07A	3	0	RABG2 RABG2		
2	Α	1460	ARGR	0	0	0			SN	0	0	3	8	96	MINE	RIVER	TO07B	5	0	RABG4		
2	A	1462	ARGR ARGR	0	0	0			SN	0	0	3	8	96 96	MINE	RIVER	TO07B	5	0	RABG4 RABG4		
2 2	A A	1464	ARGR ARGR	0 0	0	0			SN SN	0 0	0	3 3	8	96 96		RIVER RIVER	TO07B	5 5	0	RABG4 RABG4		
2 2	A A		ARGR ARGR	0 0	0 0	0			SN SN	0	0	3	8 8	96 96		RIVER		5 5	0	RABG4 RABG4		
2 2	A		ARGR ARGR	0	0	0			SN SN	0	0	3	8 8	96 96	MINE	RIVER RIVER		5 5	0	RABG4 RABG4		
2 2	A A	1469	ARGR ARGR	0	0	0			SN SN	0	0	3	8 8	96 96	MINE	RIVER RIVER	TO07B	5 5	0	RABG4 RABG4		
2 2	A A		ARGR	0	0	0			SN SN	0	0	3	8	96 96	MINE	RIVER	TO07B	5 5	0	RABG4 RABG4		
2	Α	1473	ARGR	0	Ó	Ö			SN	0	0	3	8	96	MINE	RIVER	TO07B	5	0	RABG4		
2	A	1475	ARGR ARGR	0	0	0			SN SN	0	0	3	8	96 96	MINE	RIVER	TO07B	5	0	RABG4 RABG4		
2 2	A A	1477	ARGR ARGR	0 0	0	0			SN SN	0	0	3 3	8	96 96	MINE	RIVER RIVER	TO07B	5 5	0	RABG4 RABG4		
2 2	A A		ARGR ARGR	0 0	0	0			SN SN	0	0	3		96 96	MINE	RIVER RIVER		5 5	0	RABG4 RABG4		
2 2	A A	1480	ARGR ARGR	0	0	0			SN	0	0	3	8	96 96	MINE	RIVER RIVER	TO07B	5 5	0	RABG4 RABG4		
2 2	A A	1482	ARGR ARGR	0	o o	0			SN SN	0	0	3	8	96 96		RIVER RIVER	TO07B	5 5	0	RABG4 RABG4		
2 2	A A	1484	ARGR RNWH	0	0	0			SN SN	0	0	3	8	96 96	MINE	RIVER	TO07B	5	0	RABG4 RABG4		
2	Α	1486	ARGR	0	0	0			SN	0	0	3	8	96 96	MINE MINE MINE	RIVER	TO07B	5	0	RABG4 RABG4		
2 2	A A	1488	ARGR ARGR	Ō	0	0			SN	0	0	3	8	96	MINE	RIVER	TO07B	5 5	0	RABG4		
2	A A		ARGR ARGR	0	0	0			SN SN	0	0	3			MINE	RIVER RIVER		5 5	0	RABG4 RABG4		

Append					-																		
Period 2	A	No.		Fork Len. (mm) 0		ī Sex	Age	Age Meth.	Capt. Meth. SN	Mesh Size 0	No 0			96	MINE	Local RIVER	Loc. TO07B	Site 5	Capt. Code 0	RABG4	Comments	Tissue No.	Stomach Contents
2 2	A	1492 1493	ARGR ARGR	0	0	0			SN SN	0	0	3	8	96 96	MINE		TO07B	5 5	0	RABG4 RABG4			
2 2	A A	1494 1495	ARGR ARGR	0	0	0			SN SN	0	0	3		96 96	MINE		TO07B	5 4	0	RABG4 RABG3			
2 2	A A	1496 1497	ARGR ARGR	0	0	0			SN SN	0	0	3	8	96 96	MINE	RIVER	TO07B TO07B	4	0	RABG3 RABG3			
2	A	1498 1499	ARGR ARGR	0	0	0			SN	0	0	3	8	96 96	MINE	RIVER	TO07B TO07B	4	0	RABG3 RABG3			
2 2	A A	1500 1501	ARGR ARGR	0	0	0			SN	0	0	3	8	96 96	MINE	RIVER	TO07B TO07B	4 4	0	RABG3 RABG3			
2	A	1502 1503	ARGR ARGR	0	0	0			SN	0	0	3	8	96 96	MINE	RIVER	TO07B TO07B	4	0	RABG3 RABG3			
2	A A	1504 1505	ARGR RNWH	0	0	20 0			SN SN	0	0	3	8	96 96	MINE	RIVER	TO07B TO07B	4	0	RABG3 RABG3			
2 2	A A	1506 1507	ARGR ARGR	0	0	0			SN SN	0	0	3	8	96 96	MINE	RIVER	TO07B TO07B	4	0	RABG3 RABG3			
2 2	A A	1508 1509	ARGR ARGR	0 0	0	0			SN SN	0	0	3	8	96 96	MINE	RIVER	TO07B TO07B	4	0	RABG3 RABG3			
2	A A	1510 1511	ARGR ARGR	0	0	0			SN SN	0	0	3	8	96 96	MINE MINE	RIVER	TO07B TO07B	4	0	RABG3 RABG3			
2 2	A A	1512 1513	ARGR ARGR	0	0	0			SN SN	0 0	0	3	8	96 96	MINE	RIVER	TO07B TO07B	4 4	0	RABG3 RABG3			
2 2	A A	1514 1515	ARGR ARGR	0	0	0			SN SN	0	0	3		96 96	MINE	RIVER	TO07B TO07B	4 4	0	RABG3 RABG3			
2 2	A A	1516 1517	SLSC LKTR	0	0	0			EF OB	0	0	27 28	7	96 96	TAIL	CARAT TAIL	TC01 LD04	3 1	0	OBSER'	/ED		
2	A	1518 1519	LKTR LKTR	0	0	0			OB OB	0	0	28 28	7	96 96	TAIL TAIL		LD04 CONTW	1	0	OBSER'	/ED		
2	A A	1520 1521	SLSC	0	0	0			EF EF	0	0	30 30	7	96 96	MINE	CARAT CARAT		1	0	OBSER'	/ED		
2	A	1522 1523	SLSC	0	0	0			EF EF	0	0	30 30	7	96 96	MINE	CARAT	TC06	1	0	OBSER	/ED		
2 2	A	1524 1525	SLSC	0	0	0		60	EF EF	0	0	30 30	7		MINE	CARAT	TC06	1	0	OBSER			
2 2 2	B B	1 2	ARCH	89 53	8 0	0	1	SO	EF EF	0	0	29 29	7	96	FUEL	LO1	TO18 TO18	2	0				
2 2	B B B	3 4 5	ARCH ARCH ARCH	48 43 48	0 0	0 0 0			EF EF EF	0 0 0	0	29 29 29	7	96 96 96	FUEL FUEL FUEL	LO1 LO1 LO1	TO18 TO18 TO18	2 2 2	0 0 0				
2 2	B B	6 7	ARCH ARCH	54 97	0 10	0	1	SC	EF EF	0	0	29 29	7	96	FUEL FUEL	LO1 LO1	TO18 TO18	2 2	0				
2 2	B B	8 9	ARCH ARCH	86 41	6	Ŏ O	•	00	EF EF	0	0	29 29	7	96	FUEL FUEL	LO1 LO1	TO18 TO18	2	0				
2 2	B B	10	ARGR ARGR	116 157	18 40	0	2	SC SC	EF EF	0	0	29 29	7	96	FUEL	LO3 LO3	TO21 TO21	1	0				
2 2	B B	12 13	ARGR SLSC	107 64	8	0		SC	EF EF	0 0	0	29 29	7	96	FUEL FUEL	LO3 LO3	TO21 TO21	1	0				
2 2	B B	14 15	SLSC SLSC	80 63	0	0			EF EF	0	0	29 29		96	FUEL FUEL	LO3 LO3	TO21 TO21	1 1	0				
2	B B	16 17	SLSC SLSC	67 68	0	0			EF EF	0	0	29 29	7	96	FUEL FUEL	LO3 LO3	TO21 TO21	1 1	0				
2	В	18 19	SLSC	41 79	0	0			EF EF	0	0	29 29	7	96	FUEL FUEL	LO3	TO21 TO21	1	0				
2	B B	20 21	SLSC	83 57	0	0			EF EF	0	0	29 29	7	96	FUEL	LO3	TO21 TO21	1	0				
2 2	B B B	23	NNST NNST NNST	48 51 50	0 0 0	0			EF EF	0 0 0	0	29 29 29	7	96	FUEL FUEL	LO3	TO21 TO21	1	0 0 0				
2 2 2	B B	25	NNST NNST	47 51	0	0 0 0			EF EF	0	0	29 29 29	7	96	FUEL FUEL FUEL	LO3 LO3	TO21 TO21 TO21	1 1 1	0				
2 2	B B	27	NNST ARCH	27 99	0 10	0			EF EF	0	0	29 29	7	96	FUEL FUEL	LO3 LO3	TO21 TO17	1	0				
2 2	B B	29	ARCH ARCH	102 107	10 12	0			EF EF	0	0	29 29	7	96	FUEL FUEL	LO3 LO3	TO17 TO17	i 1	0				
2 2	B B	31	ARCH ARCH	93 94	8 8	0			EF EF	0	0	29 29	7	96	FUEL FUEL	LO3 LO3	TO17 TO17	1	0				
2	B B	33	ARCH ARCH	105 90	14 8	0 0			EF EF	0	0	29 29	7	96	FUEL FUEL	LO3 LO3	TO17 TO17	1	0				
2 2	8 8	36	ARCH ARCH	46 48	0	0			EF EF	0 0	0	29 29	7	96	FUEL FUEL	LO3	TO17 TO17	1	0				
2	B B	38	ARCH ARCH	46 45	0	0			EF EF	0	0	29 29	7	96	FUEL	LO3	TO17 TO17	1	0				
2	B B	40	ARCH ARCH	42 57	0	0			EF EF	0	0	29 29	7	96	FUEL	LO3	TO17 TO17	1	0				
2 2 2	8 8 8	42	ARCH SLSC	46 93	0 0 0	0			EF EF EF	0	0	29 29	7	96	FUEL	LO3	TO17 TO17	1	0 0 0				
2 2	B B	44	SLSC NNST NNST	66 53 72	0	0 0 0			EF EF	0 0 0	0 0 0	29 29 29	7	96	FUEL FUEL FUEL	LO3 LO3 LO3	TO17 TO17 TO17	1 1 1	0				
2 2	B B	46	ARCH ARCH	48 45	0	0			EF EF	0	0	29 29	7	96	FUEL FUEL	LO3	TO16 TO16	1	0				
2 2	B B	48	SLSC ARCH	77 91	0 10	0			EF EF	0	0	29 29	7	96	FUEL FUEL	LO3 LO4	TO16 TO10	1	0				
2 2	B B	50	ARCH SLSC	104 37	10 0	0 0			EF EF	0 0	0	29	7	96	FUEL FUEL	LO4 LO4	TO10 TO10	1 1	0				
2 2	B B	53	SLSC ARCH	58 54	0 0	0			EF EF	0	0	29	7 :	96	FUEL FUEL	LO4 LO4	TO10 TO10	1	0				
2 2	B B	55	BURB BURB	37 43	0 0	0			EF EF	0 0	0	29	7 9	96	FUEL FUEL	LO4 LO4	TO10 TO10	1	0				
2 2	B B	57	BURB BURB	46 36	0	0			EF EF	0 0	0	29	7 9	96	FUEL FUEL	LO4 LO4	TO10 TO10	1	0				
2 2	B B	59	ARCH ARCH	49 48	0	0			EF EF	0	0	29	7 9	96	FUEL FUEL	LO4 LO4	TO12 TO12	102 102	0				
2 2	B B	61	ARCH	50 44	0	0			EF EF	0	0	29	7 9	96	FUEL	LO4 LO4	TO12 TO12	102 102	0				
2 2 2	B B	63	ARCH ARCH	50 50	0	0			EF EF	0	0	29	7 9	96	FUEL FUEL	LO4 LO4	TO12 TO12	102 102	0				
2 2 2	B B B	65	ARCH ARCH	48 53	0	0			EF EF	0	0	29	7 9	96	FUEL FUEL	LO4 LO4	TO12 TO12	102 102	0				
2 2 2	B B	67	ARCH ARCH SLSC	44 48 62	0 0 0	0 0 0			EF EF	0 0 0	0	29	7 9	96	FUEL FUEL FUEL	LO4 LO4 LO4	TO12 TO12 TO12	102 102 102	0 0 0				
2 2	B B	69	SLSC SLSC SLSC	60 62	0	0			EF EF	0	0	29	7 9	96	FUEL FUEL	LO4 LO4 LO4	TO12 TO12 TO12	102 102 102	0				
2 2	8 B	71	SLSC SLSC	73 60	0	0			EF EF	0	0	29	7 9	96	FUEL	LO4 LO4	TO12 TO12	102 102 102	0				
2	B B	73 74	SLSC SLSC	77 78	0	0			EF EF	0	0	29	7 9	96	FUEL FUEL	LO4 LO4	TO12 TO12	102 102	0				
2 2	B B	75	SLSC SLSC	68 62	0	0			EF EF	0	0	29	7 9	96	FUEL FUEL	LO4 LO4	TO12 TO12	102 102	0				

Append	IX 1 U.	00.10			. 0,00.			Juano				-,											
Period	Crew		Species	Fork	Weight	t Sex	Age		Capt.		Tag No.	Day	Mo '	r Z	one	Local	Loc.	Site	Capt. Code	Co	omments	Tissue No.	Stomach Contents
2	В	No. 77	SLSC	Len. (mm) 61) (g) 0	0		Meth.	Meth. EF	Size 0	0	29	7 9	6 FI	UEL	LO4	TO12	102	0			140.	
2	8	78	SLSC	55	0	0			EF	0	0	29			UEL	LO4	TO12	102	0				
2	В	79 80	SLSC	68 47	0	0			EF EF	0	0	29 29			UEL	LO4 LO4	TO12 TO12	102 102	0				
2 2	В В	81	NNST	44	ő	0			EF	ő	ő	29			UEL	LO4	TO12	102	Ö				
2	В	82	NNST	38	0	0			EF	0	0	29			UEL	LO4	TO12	102	0				
2 2	B B	83 84	NNST ARCH	47 44	0	0			EF EF	0	0	29 29			UEL	LO4 LO4	TO12 TO12	102 102	0				
2	В	85	ARCH	48	Ö	Ö			EF	ŏ	ő	29	7 9	6 F	UEL	LO4	TO12	102	Ö				
2	В	86	ARCH	47	0	0			EF	0	0	29			UEL	LO4	TO12	102	0				
2 2	B B	87 88	BURB BURB	149 128	0	0			EF EF	0	0	29 29			UEL	LO4 LO4	TO12 TO12	102 102	0				
2	В	89	ARGR	176	68	0	2	SC	EF	0	0	29	7 9	6 F	UEL	LO2	TO09	2	0				
2	В	90	LKTR	187	80	0			EF	0	0	29 29			UEL UEL	LO2 LO2	TO09 TO09	2	0				
2 2	B B	91 92	SLSC	82 81	0	0			EF EF	0	Ö	29			UEL	LO2	TO09	2	Ö				
2	В	93	ARGR	162	50	0		SC	EF	0	0	29			UEL	LO2	TO09	3	0				
. 2	В	94	ARGR ARGR	145 87	30 8	0	1	SC SC	EF EF	0	0	29 29			UEL	LO2 LO2	TO09 TO09	3 3	0				
2 2	B B	95 96	ARGR	97	10	Ö	1	SC	EF	0	ő	29			UEL	LO2	TO22	4	0				
2	В	97	RNWH	111	12	0	1	SC	EF	0	0	29			UEL	LO2	TO22	4	0				
2 2	8 8	98 99	BURB ARGR	125 177	10 68	0	2	sc	EF EF	0	0	29 29			UEL	LO2 LO2	TO22 TO22	4 5	0				
2	В	100	ARGR	167	54	ŏ	2	SC	EF	ō	0	29	7 9	6 F	UEL	LO2	TO22	5	Ō				
2	В	101	ARGR	188	72	0	2	SC	EF	0	0	29 29			UEL	LO2 LO2	TO22 TO22	5 5	0				
2 2	В 8	102 103	ARGR ARGR	183 175	62 68	0	2	SC SC	EF EF	0	Ö	29			UEL	LO2	TO22	5	Ö				
2	B	104	ARGR	142	32	0	2	SC	EF	0	0	29	7 9	6 F	UEL	LO2	TO22	5	0				
2 2	B B	105 106	ARGR ARGR	107 103	12 10	0		SC	EF EF	0	0	29 29			UEL	LO2 LO2	TO22 TO22	5 5	0				
2	В	107	NNST	22	0	ō			EF	ő	ő	30			INE	RIVER	TO01	1	Ö				
2	В	108	BURB	42	0	0			EF	0	0	30			IINE	RIVER	TO01	1	0				
2 2	B B	109 110	NNST NNST	22 41	0	0			EF EF	0	0	30 30				RIVER	TO01 TO01	1	0				
2	В	111	BURB	28	ŏ	ŏ			ĒF	ŏ	ŏ	30			IINE	RIVER	TO01	1	Ō				
2	В	112	BURB	34	0	0			EF	0	0	30				RIVER	TO01	1	0				
2 2	B B	113 114	BURB	48 44	0	0			EF EF	0	0	30 30				RIVER	TO01 TO01	1	0				
2	В	115	BURB	26	0	0			EF	0	0	30	7 9	6 M	IINE	RIVER	TO01	1	0				
2 2	B B	116 117	BURB ARGR	40 47	0	0			EF EF	0	0	30 30			IINE IINE	RIVER	TO01 TO01	1 2	0				
2	В	118	BURB	45	0	ő			EF	ő	ő	30				RIVER	TO01	2	Ö				
2	В	119	BURB	45	0	0			EF	0	0	30				RIVER	TO01	2	0				
2 2	B B	120 121	BURB ARGR	40 172	0 60	0	2	sc	EF EF	0	0	30 30				RIVER	TO01 TO04	2 1	0				
2	В	122	ARGR	43	0	ŏ	ō	SC	EF	ŏ	ŏ	30			IINE	RIVER	TO04	1	ō				
2	В	123	ARGR	101	14	0	1	SC	EF	0	0	30			IINE	RIVER RIVER	TO04 TO04	1	0				
2 2	B B	124 125	ARCH ARCH	106 116	10 18	0		SC	EF EF	0	0	30 30			IINE	RIVER	TO04	1	Ö				
2	В	126	ARCH	104	6	0			EF	0	0	30			IINE	RIVER	TO03	1	0				
2 2	B B	127 128	ARCH LKTR	99 509	12 1400	0 12		ОТ	EF GN	0 89	0	30 31			IINE IINE	RIVER	TO03 INTE1	1 5	0				05PEL
2	В	129	LKTR	339	1040	11		OT	GN	64	ő	31			IINE	MINE	INTE1	5	1				10ZOO
2	В	130	LKTR	495	1350	12		OT	GN	64	0	31			IINE	MINE	INTE1	5	1				05ZOO 01FIS
2	B B	131 132	LKTR RNWH	437 502	1000 1425	11 7		OT OT	GN GN	64 38	0	31 31			IINE IINE	MINE	INTE1	5 6	i				20TRI
2	В	133	LKTR	343	0	99		OT	GN	64	220	31	7 9	6 M	IINE	MINE	INTE1	5	0				
2	В	134	LKTR	344	400	11 99		OT OT	GN GN	64 114	0	31 31			IINE IINE	MINE	INTE1	6 5	1				10ZOO
2 2	B B	135 136	LKTR LKTR	240 425	130 750	11		OT	GN	89	Ö	31			IINE	MINE	INTE1	6	i				0
2	В	137	LKTR	337	375	1		OT	GN	64	0	31			INE	MINE	INTE1	6	1				10ZOO
2 2	B B	138 139	ARCH LKTR	466 248	990 146	2 99		OT OT	GN GN	64 38	0	1			IINE	MINE	INTE1	6 5	1				05ZOO 05ZOO
2	В	140	LKTR	189	50	99		OT	GN	38	ő	i			INE	MINE	INTE1	5	1				01ZOO
2	В	141	LKTR	207	70	99		OT	GN	38	0	1			INE	MINE	INTE1	5	1				15ZOO 0
2	B B	142 143	LKTR RNWH	176 498	48 1392	99 7		OT OT	GN GN	38 89	0	1			IINE	MINE	INTE1	5 5	1				15TRI
2	В	144	LKTR	0	0	99		•	GN	140	Ō	1	8 9	6 M	IINE	MINE	INTE1	5		RND			
2	В	145	SLSC	64	0	0			EF EF	0	0	1			TAIL TAIL	LD5 LD5	TD06 TD06	1	0				
2 2	B B	146 147	SLSC	73 33	0	0			EF	0	Ö	1			TAIL	LD5	TD06	i	0				
2	В	148	SLSC	36	0	0			EF	0	0	1			AIL	LD5	TD06	1	0				
2 2	B B	149 150	LKTR ARCH	136 106	30 14	0			EF EF	0	0	1			TAIL TAIL	LD5 LD5	TD06 TD06	1	0				
2	В	151	ARCH	182	48	Ö			EF	ō	0	1	8 9	6 T	TAIL	LD5	TD04	1	0				
2	В	152	ARCH	136 327	18 338	0		ОТ	EF GN	0 64	0	1			INE	LD5 MINE	TD04 INTE1	1 6	0				
2 2	B B	153 154	LKTR LKTR	543	1524	ő		Oi	GN	64	218	1			INE	MINE	INTE1	6	ó				
2	В	155	LKTR	545	2650	0			GN	64	217	2			UEL	FUEL	LO04	1	0				
2 2	B B	156 157	ARCH RNWH	569 513	1648 1580	0 17	15	от	GN GN	38 89	215 0	2			UEL	FUEL FUEL	LO04 LO04	1	0 1				02INS08TRI
2	В	158	ARCH	620	2365	7	13	OT	GN	89	ŏ	2			UEL	FUEL	LO04	1	1				0
2	В	159	ARCH	601	2430	11		OT	GN	64	0	2			UEL	FUEL	LO04	1	1				15BRA 0
2 2	В В	160 161	ARCH ARCH	551 599	1430 2335	1		OT OT	GN GN	64 64	0	2			UEL	FUEL FUEL	LO04 LO04	1	1				0
2	В	162	ARCH	494	1425	17		OT	GN	64	0	2	8 9	6 F	UEL	FUEL	LO04	1	1				0
2	В	163	ARCH	393	585	12		ОТ	GN GN	64 140	0 214	2			UEL	FUEL FUEL	LO04 LO04	1 2	1 0				0
2 2	B B	164 165	LKTR ARCH	575 565	2430 1850	0			GN	64	212				UEL	FUEL	LO04	2	0				
2	В	166	LKTR	174	52	0			GN	38	0	2	8 9		UEL	FUEL	LO04	2	0				
2	В	167	RNWH	187	72 52	11 99	3	OT OT	GN GN	38 38	0	2			UEL	FUEL	LO04 LO04	2	1				05ZOO05TRI 15TRI05INS
2 2	B B	168 169	RNWH LKTR	188 598	52 2610	99 7	3 26	OT	GN	38 89	0	2			UEL	FUEL	LO04	2	1				05BUR05BRA
2	В	170	LKTR	497	1484	11		OT	GN	89	Ō	2	8 9	6 F	UEL	FUEL	LO04	2	1				0
2	В	171	RNWH	471	1330	17	10	OT OT	GN	114 114	0	2			UEL	FUEL FUEL	LO04 LO04	2	1				10TRI 15TRI
2 2	B B	172 173	RNWH NNST	476 52	1240 0	7 0	11	UI	GN GE	114 0	0	2			UEL	FUEL	LO04	3	0				
2	В	174	NNST	38	0	0			GE	0	0	3	8 9	6 F	UEL	FUEL	LO02	1	0				
2	В	175	SLSC	55 51	0	0			GE	0	0	3			UEL	FUEL	LO02 LO02	3 5	0				
2 2	B B	176 177	NNST NNST	51 52	0	0			GE GE	0	0	3			UEL	FUEL FUEL	LO02	5	0				
2	В	178	RNWH	486	1340	17	23	ОТ	GN	64	0	3	8 9	6 F	UEL	FUEL	LO02	1	1				14PEL01TRI
2	В	179 180	LKTR RNWH	452 104	1188 10	12 99	10 1	OT OT	GN GN	64 19	0	3			UEL	FUEL FUEL	LO02 LO02	1	1				10STI 20TRI
2 2	B B	180 181	RNWH	104	10	99	1	OT	GN	19	0	3			UEL	FUEL	LO02	1	i				20ZOO
2	В	182	RNWH	105	10	99	1	ŎΤ	GN	19	0	3	8 9	6 F	UEL	FUEL	LO02	1	1				15ZOO
2	B B	183 184	LKTR LKTR	334 336	396 362	0			AL GN	0 64	449 447	6 6			TAIL TAIL	TAIL TAIL	LD04 LD04	1 7	0				
2 2	В	185	ARCH	293	250	1			GN	38	0	6	8 9	6 T	TAIL	TAIL	LD04	8	1				20PEL
2	В	186	ARCH	0	0	Ó			GN	64	Ō	6			ΓAIL	TAIL	LD04	8	0	RND			

Period Crew Surgeous Sports Period Per
2 8 189 ARCH 208 255 0 GN GN 64 445 6 8 96 761 TALL 1004 8 0 0 2 8 199 ARCH 208 255 0 O GN 64 444 6 8 8 96 TALL 761 LDG4 8 0 C C C C C C C C C C C C C C C C C C
2 B 258 NNST 0 0 0 0 EF 0 0 29 7 96 FUEL LO4 TO12 1 0 OBSERVED 2 B 258 NNST 0 0 0 0 EF 0 0 29 7 96 FUEL LO4 TO12 1 0 OBSERVED 2 B 260 NNST 0 0 0 0 EF 0 0 29 7 96 FUEL LO4 TO12 1 0 OBSERVED 2 B 261 NNST 0 0 0 0 EF 0 0 29 7 96 FUEL LO4 TO12 1 0 OBSERVED 2 B 262 BURB 0 0 0 0 EF 0 0 29 7 96 FUEL LO4 TO12 1 0 OBSERVED 2 B 263 BURB 0 0 0 0 EF 0 0 29 7 96 FUEL LO4 TO12 1 0 OBSERVED 2 B 264 BURB 0 0 0 0 EF 0 0 29 7 96 FUEL LO4 TO12 1 0 OBSERVED 2 B 265 BURB 0 0 0 0 EF 0 0 29 7 96 FUEL LO4 TO12 1 0 OBSERVED 2 B 266 BURB 0 0 0 0 EF 0 0 29 7 96 FUEL LO4 TO12 1 0 OBSERVED 2 B 266 BURB 0 0 0 0 EF 0 0 29 7 96 FUEL LO4 TO12 1 0 OBSERVED 2 B 266 BURB 0 0 0 0 EF 0 0 29 7 96 FUEL LO4 TO12 1 0 OBSERVED 2 B 267 ARGR 0 0 0 EF 0 0 29 7 96 FUEL LO4 TO12 1 0 OBSERVED 2 B 268 ARCH 0 0 0 EF 0 0 29 7 96 FUEL LO2 TO19 3 0 OBSERVED 2 B 268 ARCH 0 0 0 EF 0 0 29 7 96 FUEL LO2 TO19 3 0 OBSERVED 2 B 268 ARCH 0 0 0 EF 0 0 29 7 96 FUEL LO2 TO19 3 0 OBSERVED 2 B 269 SLSC 0 0 0 0 EF 0 0 29 7 96 FUEL LO2 TO19 3 0 OBSERVED 2 B 269 SLSC 0 0 0 0 EF 0 0 29 7 96 FUEL LO2 TO19 3 0 OBSERVED 2 B 270 SLSC 0 0 0 0 EF 0 0 29 7 96 FUEL LO2 TO19 3 0 OBSERVED 2 B 271 SLSC 0 0 0 0 EF 0 0 29 7 96 FUEL LO2 TO19 3 0 OBSERVED 2 B 272 SLSC 0 0 0 0 EF 0 0 29 7 96 FUEL LO2 TO19 3 0 OBSERVED 2 B 273 SLSC 0 0 0 0 EF 0 0 29 7 96 FUEL LO2 TO19 3 0 OBSERVED 2 B 274 SLSC 0 0 0 0 EF 0 0 29 7 96 FUEL LO2 TO19 3 0 OBSERVED 2 B 275 SLSC 0 0 0 0 EF 0 0 29 7 96 FUEL LO2 TO19 3 0 OBSERVED 2 B 276 ARGR 0 0 0 0 EF 0 0 29 7 96 FUEL LO2 TO19 3 0 OBSERVED 2 B 277 SLSC 0 0 0 0 EF 0 0 29 7 96 FUEL LO2 TO19 3 0 OBSERVED 2 B 278 SLSC 0 0 0 0 EF 0 0 29 7 96 FUEL LO2 TO19 3 0 OBSERVED 2 B 278 SLSC 0 0 0 0 EF 0 0 29 7 96 FUEL LO2 TO19 3 0 OBSERVED 2 B 278 SLSC 0 0 0 0 EF 0 0 29 7 96 FUEL LO2 TO19 3 0 OBSERVED 2 B 278 SLSC 0 0 0 0 EF 0 0 29 7 96 FUEL LO2 TO22 5 0 OBSERVED 2 B 278 SLSC 0 0 0 0 EF 0 0 29 7 96 FUEL LO2 TO22 5 0 OBSERVED 2 B 288 SLSC 0 0 0 0 EF 0 0 29 7 96 FUEL LO2 TO22 5 0 OBSERVED 2 B 288 SLSC 0 0 0 0 EF 0 0 29 7 96 FUEL LO2 TO22 5 0 OBSERVED 2 B 288 SLSC 0 0 0 0 EF 0 0 29 7 96 FU

Appendi	х гэ.	Jeno	no Dia	mona Pi	rojeci	Aqua	tic Studie	5 FISH	Data										_	_	
Period	Crew	Sample No.	Species	Fork Len. (mm)	Weight (g)	Sex	Age Age Meth.	Capt. Meth.	Mesh Size	Tag [No.	ay I	∕lo ∖	/r :	Zone	Local	Loc.	Site	Capt. Code	Comments	Tissue No.	Stomach Contents
2	В	301	SLSC	0	0	0		EF	0	0 2				FUEL	LO2	TO22	5	0	OBSERVED		
2 2	B B	302 303	SLSC	0	0	0 0		EF EF	0					FUEL FUEL	LO2 LO2	TO22 TO22	5 5	0	OBSERVED OBSERVED		
2	В	304	SLSC SLSC	0	0	0		EF	Ö			79		FUEL	LO2	TO22	5	ő	OBSERVED		
2	В	305	SLSC	0	0	0		EF	0			7 9		FUEL	LO2	TO22	5	0	OBSERVED		
2	B B	306 307	SLSC SLSC	0	0	0 0		EF EF	0			79 79		FUEL FUEL	LO2 LO2	TO22 TO22	5 5	0	OBSERVED OBSERVED		
2	В	308	SLSC	ő	ŏ	ő		EF	0	0 2	29	7 9	6 F	FUEL	LO2	TO22	5	0	OBSERVED		
2	В	309	ARGR	0	0	0		EF EF	0			79 79		FUEL FUEL	LO2 LO2	TO22 TO22	6 6	0	OBSERVED OBSERVED		
2 2	B B	310 311	ARGR ARGR	0	0	0		EF	0					FUEL	LO2	TO22	6	ő	OBSERVED		
2	В	312	ARGR	0	0	0		EF	0					FUEL	LO2	TO22	6	0	OBSERVED		
2 2	B B	313 314	SLSC SLSC	0	0	0 0		EF EF	0					FUEL FUEL	LO2 LO2	TO22 TO22	6 6	0	OBSERVED OBSERVED		
2	В	315	SLSC	ō	ŏ	ō		EF	ō	0 2	29	79	6 F	FUEL	LO2	TO22	6	0	OBSERVED		
2	B B	316 317	SLSC SLSC	0	0	0		EF EF	0			79 79		FUEL FUEL	LO2 LO2	TO22 TO22	6 6	0	OBSERVED OBSERVED		
2	В	318	SLSC	0	0	0		EF	0			79		FUEL	LO2	TO22	6	Ö	OBSERVED		
2	В	319	SLSC	0	0	0		EF	0					FUEL	LO2	TO22 TO22	6 6	0	OBSERVED OBSERVED		
2	B B	320 321	SLSC SLSC	0	0	0 0		EF EF	0			79 79		FUEL FUEL	LO2 LO2	TO22	6	0	OBSERVED		
2	В	322	SLSC	0	0	0		EF	0			7 9		FUEL	LO2	TO22	6	0	OBSERVED		
2	B B	323 324	SLSC SLSC	0	0	0		EF EF	0			79 79		FUEL FUEL	LO2 LO2	TO22 TO22	6 6	0	OBSERVED OBSERVED		
2	В	325	SLSC	0	0	Ō		EF	0	0 2	29	79	6 F	FUEL	LO2	TO22	6	0	OBSERVED		
2 2	B B	326 327	SLSC NNST	0	0	0		EF EF	0			79 79		FUEL MINE	LO2 RIVER	TO22 TO01	6 1	0	OBSERVED OBSERVED		
2	В	328	NNST	ő	ō	0		EF	ŏ	-	-			MINE	RIVER	TO01	i	0	OBSERVED		
2	В	329	NNST	0	0	0		EF EF	0			79 79		MINE	RIVER	TO01 TO01	1 1	0	OB\$ERVED OB\$ERVED		
2	B B	330 331	NNST NNST	0	0	0		EF	0					MINE	RIVER	TO01	i	ő	OBSERVED		
2	В	332	NNST	0	0	0		EF	0			7 9		MINE	RIVER	TO01	1	0	OBSERVED		
2	B B	333 334	NNST NNST	0	0	0		EF EF	0			79 79		MINE	RIVER	TO01 TO01	1	0	OBSERVED OBSERVED		
2	В	335	NNST	ő	ō	0		EF	Ō	ŏ :	30	7 9	6 1	MINE	RIVER	TO01	1	0	OBSERVED		
2	B B	336 337	NNST NNST	0	0	0		EF EF	0			79 79		MINE	RIVER	TO01 TO01	1	0	OBSERVED OBSERVED		
2	В	338	NNST	ő	0	Ö		EF	ő			79	6 1	MINE	RIVER	TO01	1	ő	OBSERVED		
2	В	339	NNST	0	0	0		EF	0					MINE	RIVER RIVER	TO01 TO01	1	0	OBSERVED OBSERVED		
2	B B	340 341	NNST NNST	0 0	0	0		EF EF	0			79		MINE	RIVER	TO01	1	0	OBSERVED		
2	В	342	NNST	0	0	0		EF	0			7 9		MINE	RIVER	TO01	1	0	OBSERVED		
2	B B	343 344	NNST NNST	0	0	0		EF EF	0			79 79		MINE MINE	RIVER	TO01 TO01	1 1	0	OBSERVED OBSERVED		
2	В	345	NNST	Ō	0	0		EF	Ō			79	6 1	MINE	RIVER	TO01	1	0	OBSERVED		
2 2	B B	346 347	NNST NNST	0	0	0		EF EF	0			79 79		MINE	RIVER	TO01 TO01	1	0	OBSERVED OBSERVED		
2	В	348	NNST	ō	Ö	Ö		EF	0	0 3	30	79	6 1	MINE	RIVER	TO01	1	0	OBSERVED		
2	B B	349 350	NNST NNST	0	0	0		EF EF	0			79 79		MINE	RIVER RIVER	TO01 TO01	1	0	OBSERVED OBSERVED		
2	В	351	NNST	Ö	Ö	0		EF	ő			7 9	6 1	MINE	RIVER	TO01	i	0	OBSERVED		
2	В	352	NNST	0	0	0		EF EF	0			79 79		MINE	RIVER	TO01 TO01	1	0	OBSERVED OBSERVED		
2	B B	353 354	NNST NNST	0	Ö	0		EF	ő					MINE	RIVER	TO01	i	ő	OBSERVED		
2	В	355	NNST	0	0	0		EF EF	0			79 79		MINE	RIVER	TO01 TO01	1 1	0	OBSERVED OBSERVED		
2	B B	356 357	NNST NNST	0	0	0		EF	0			79		MINE	RIVER	TO01	1	0	OBSERVED		
2	В	358	NNST	0	0	0		EF	0					MINE	RIVER	TO01	1	0	OBSERVED OBSERVED		
2	B B	359 360	NNST NNST	0	0	0		EF EF	0			79 79		MINE	RIVER	TO01 TO01	1	0	OBSERVED		
2	В	361	NNST	0	0	0		EF	0			7 9		MINE	RIVER	TO01	1	0	OBSERVED		
2	B B	362 363	NNST NNST	0	0	0		EF EF	0					MINE	RIVER	TO01 TO01	1	0	OBSERVED OBSERVED		
2	В	364	BURB	0	0	0		EF	0			79	6 1	MINE	RIVER	TO01	1	0	OBSERVED		
2	B B	365 366	BURB BURB	0	0	0		EF EF	0		-	79 79		MINE	RIVER	TO01 TO01	1	0	OBSERVED OBSERVED		
2	В	367	BURB	0	0	0		EF	Ó	0 3	30	7 9	6 1	MINE	RIVER	TO01	1	0	OBSERVED		
2	B B	368 369	BURB BURB	0	0	0		EF EF	0					MINE	RIVER	TO01 TO01	1	0	OBSERVED OBSERVED		
2	В	370	BURB	0	Ō	0		EF	Ō	0 3	30	7 9	6 1	MINE	RIVER	TO01	1	0	OBSERVED		
2 2	B B	371 372	BURB BURB	0	0	0		EF EF	0					MINE	RIVER	TO01 TO01	1 1	0	OBSERVED OBSERVED		
2	В	373	BURB	Ö	0	0		EF	0	0 3	30	79	6 1	MINE	RIVER	TO01	1	Ō	OBSERVED		
2 2	B B	374 375	NNST NNST	0	0	0		EF EF	0			79 79		MINE	RIVER	TO01 TO01	2	0	OBSERVED OBSERVED		
2	В	376	NNST	Ö	ŏ	Ô		EF	ŏ		-	79		MINE	RIVER	TO01	2	0	OBSERVED		
2	B B	377 378	NNST NNST	0	0	0		EF EF	0			79 79		MINE	RIVER	TO01 TO01	2	0	OBSERVED OBSERVED		
2	В	379	NNST	Ö	0	ő		EF	0	0 3	30	7 9	6 1	MINE	RIVER	TO01	2	0	OBSERVED		
2	В	380	NNST	0	0	0		EF EF	0			79 79		MINE	RIVER	TO01 TO01	2	0	OBSERVED OBSERVED		
2 2	B B	381 382	NNST NNST	0	0	0		EF	Ö			79		MINE	RIVER	TO01	2	Õ	OBSERVED		
2	В	383	NNST	0	0	0		EF	0			7 9		MINE	RIVER	TO01 TO01	2	0	OBSERVED		
2 2	B B	384 385	NNST NNST	0	0	0		EF EF	0			79 79		MINE MINE	RIVER	TO01	2	0	OBSERVED OBSERVED		
2	В	386	NNST	0	0	0		EF	0			79	6 1	MINE	RIVER	TO01	2	0	OBSERVED		
2 2	B B	387 388	NNST NNST	0 0	0	0		EF EF	0			79 79		MINE	RIVER	TO01 TO01	2	0	OBSERVED OBSERVED		
2	В	389	NNST	ŏ	0	0		EF	0	0 3	30	79	6 1	MINE	RIVER	TO01	2	0	OBSERVED		
2 2	B B	390 391	NNST NNST	0 0	0	0		EF EF	0			79 79		MINE	RIVER	TO01 TO01	2	0	OBSERVED OBSERVED		
2	В	392	NNST	ő	0	0		EF	0			79		MINE	RIVER	TO01	2	ő	OBSERVED		
2	В	393	NNST	0	0	0		EF EF	0			79 79		MINE MINE	RIVER	TO01 TO01	2	0	OBSERVED OBSERVED		
2 2	B B	394 395	NNST NNST	0	0	0		EF	0			79		MINE	RIVER	TO01	2	0	OBSERVED		
2	В	396	NNST	0	0	0		EF	0	0 3	30	7 9	6 1	MINE	RIVER	TO01	2	0	OBSERVED		
2 2	B B	397 398	NNST NNST	0	0	0		EF EF	0 0			79 79		MINE	RIVER	TO01 TO01	2	0	OBSERVED OBSERVED		
2	В	399	NNST	0	0	0		EF	0	0 3	80	7 9	6 1	MINE	RIVER	TO01	2	0	OBSERVED		
2 2	B B	400 401	NNST NNST	0 0	0	0		EF EF	0			79 79		MINE	RIVER	TO01 TO01	2	0	OBSERVED OBSERVED		
2	В	402	NNST	0	0	0		EF	0	0 3	10	7 9	6 1	MINE	RIVER	TO01	2	0	OBSERVED		
2 2	B B	403 404	NNST NNST	0	0	0 0		EF EF	0			79 79		MINE	RIVER	TO01 TO01	2	0	OBSERVED OBSERVED		
2	В	405	NNST	0	0	0		EF	0	0 3	30	7 9	6 1	MINE	RIVER	TO01	2	0	OBSERVED		
2	B B	406 407	NNST NNST	0	0	0		EF EF	0			79 79		MINE	RIVER	TO01 TO01	2	0	OBSERVED OBSERVED		
2 2	В	407	ARCH	0	0	0		EF	0	0 3	30	7 9	6 1	MINE	RIVER	TO01	2	Ō	OBSERVED		
2 2	B B	409 410	SLSC BURB	0	0	0		EF EF	0			79 79		MINE	RIVER	TO01 TO01	2	0	OBSERVED OBSERVED		
2	В	411	BURB	ő	Ö	ő		EF	Ö			, 7 9		MINE	RIVER	TO01	2	ō	OBSERVED		

Sample-Species Fork Weight Sex Age	No	No.
	en. (mm) (q)	en (mm) (g)
Meth. Meth. Size No.	Meth. Meth. Size No. C	Meth. Meth. Size No.
Meth. Meth. Size No.	Meth. Meth. Size No.	Meth
Meth. Meth. Size No. Fig. No. Fig. No. Fig. No. Fig. No. Fig. No. Fig. No. Fig. No. Fig. No. Fig. No.	Meth. Meth. Size No. EF 0 0 30 7 96 MINE RIVER TOO1 2 EF 0 0 30 7 96 MINE RIVER TOO1 2 EF 0 0 30 7 96 MINE RIVER TOO1 2 EF 0 0 30 7 96 MINE RIVER TOO1 2 EF 0 0 30 7 96 MINE RIVER TOO1 2 EF 0 0 30 7 96 MINE RIVER TOO1 2 EF 0 0 30 7 96 MINE RIVER TOO1 2 EF 0 0 30 7 96 MINE RIVER TOO1 2 EF 0 0 30 7 96 MINE RIVER TOO1 2 EF 0 0 30 7 96 MINE RIVER TOO2 1 EF 0 0 20 7 96 MINE RIVER TOO2 1 EF 0 0 20 7 96 MINE RIVER TOO2 1 EF 0 0 20 7 96 MINE RIVER TOO2 1 EF 0 0 20 7 96 MINE RIVER TOO2 1 EF 0 0 20 7 96 MINE RIVER TOO2 1 EF 0 0 20 7 96 MINE RIVER TOO2 1 EF 0 0 20 7 96 MINE RIVER TOO2 1 EF 0 0 20 7 96 FUEL LO1 TO18 2 EF 0 0 20 7 96 FUEL LO1 TO18 2 EF 0 0 20 7 96 FUEL LO1 TO18 2 EF 0 0 20 7 96 FUEL LO1 TO18 2 EF 0 0 20 7 96 FUEL LO1 TO18 2 EF 0 0 20 7 96 FUEL LO1 TO18 2 EF 0 0 20 7 96 FUEL LO1 TO18 2 EF 0 0 2 8 96 TAIL LD5 TD06 2 EF 0 0 2 8 96 TAIL LD5 TD06 2 EF 0 0 2 8 96 TAIL LD5 TD06 2 EF 0 0 2 8 96 TAIL LD5 TD06 2 EF 0 0 2 8 96 TAIL LD5 TD06 2 EF 0 0 2 8 96 TAIL LD4 TD02 1 CE 0 0 0 2 8 96 TAIL LD4 TD02 1 CE 0 0 0 2 8 96 TAIL LD4 TD02 1 CE 0 0 0 2 8 96 TAIL LD4 TD02 1 CE 0 0 0 2 8 96 TAIL LD4 TD02 1 CE 0 0 0 2 8 9	Meth. Size No.
Size	1. Size No. 0 0 30 7 96 MINE RIVER TOO1 2 2 0 0 0 30 7 96 MINE RIVER TOO1 2 2 0 0 0 30 7 96 MINE RIVER TOO1 2 2 0 0 0 30 7 96 MINE RIVER TOO1 2 2 0 0 0 30 7 96 MINE RIVER TOO1 2 2 0 0 0 30 7 96 MINE RIVER TOO1 2 2 0 0 0 30 7 96 MINE RIVER TOO1 2 2 0 0 0 30 7 96 MINE RIVER TOO1 2 1 0 0 0 30 7 96 MINE RIVER TOO2 1 1 0 0 0 29 7 96 MINE RIVER TOO2 1 1 0 0 0 29 7 96 MINE RIVER TOO2 1 0 0 0 29 7 96 FUEL LO1 TO18 2 0 0 0 29 7 96 FUEL LO1 TO18 2 0 0 0 29 7 96 FUEL LO1 TO18 2 0 0 0 29 7 96 FUEL LO1 TO18 2 0 0 0 29 7 96 FUEL LO1 TO18 2 0 0 0 29 7 96 FUEL LO1 TO18 2 0 0 0 29 7 96 FUEL LO1 TO18 2 0 0 0 29 7 96 FUEL LO1 TO18 2 0 0 0 29 7 96 FUEL LO1 TO18 2 0 0 0 29 7 96 FUEL LO1 TO18 2 0 0 0 29 7 96 FUEL LO1 TO18 2 0 0 0 29 8 96 TAIL LD5 TDO6 2 0 0 0 2 8 96 TAIL LD5 TDO6 2 0 0 0 2 8 96 TAIL LD5 TDO6 2 0 0 0 2 8 96 TAIL LD4 TD02 1 0 0 0 2 8 96 TAIL LD4 TD02 1 0 0 0 2 8 96 TAIL LD4 TD02 1 0 0 0 2 8 96 TAIL LD4 TD02 1 0 0 0 2 8 96 TAIL LD4 TD02 1 0 0 0 2 8 96 TAIL LD4 TD02 1 0 0 0 2 8 96 TAI	Size No. Code C
No. No.	No.	No. No.
7 96 MINE RIVER TOO1 7 96 MINE RIVER TOO1 7 96 MINE RIVER TOO1 7 96 MINE RIVER TOO1 7 96 MINE RIVER TOO1 7 96 MINE RIVER TOO1 7 96 MINE RIVER TOO2 7 96 FUEL LO1 TO18 7 96 FUEL LO1 TO18 7 96 FUEL LO1 TO18 7 96 FUEL LO1 TO18 7 96 FUEL LO1 TO18 7 96 FUEL LO1 TO18 7 96 FUEL LO1 TO18 8 96 TAIL LD5 TOO6 8 96 TAIL LD5 TOO6 8 96 TAIL LD5 TOO6 8 96 TAIL LD5 TOO6 8 96 TAIL LD5 TOO6 8 96 TAIL LD5 TOO6 8 96 TAIL LD5 TOO6 8 96 TAIL LD5 TOO6 8 96 TAIL LD5 TOO6 8 96 TAIL LD5 TOO6 8 96 TAIL LD5 TOO6 8 96 TAIL LD5 TOO6 8 96 TAIL LD5 TOO6 8 96 TAIL LD5 TOO6 8 96 TAIL LD5 TOO6 8 96 TAIL LD4 TOO2 8 96	7 96 MINE RIVER TOO1 2 7 96 MINE RIVER TOO1 2 7 96 MINE RIVER TOO1 2 7 96 MINE RIVER TOO1 2 7 96 MINE RIVER TOO1 2 7 96 MINE RIVER TOO1 2 7 96 MINE RIVER TOO2 1 7 96 FUEL LO1 TO18 2 7 9	7 96 MINE RIVER TOO1
MINE RIVER TOO1 MINE RIVER TOO1 MINE RIVER TOO1 MINE RIVER TOO1 MINE RIVER TOO1 MINE RIVER TOO1 MINE RIVER TOO2 MINE RIVER TOO	MINE RIVER TOO1 2 MINE RIVER TOO1 2 MINE RIVER TOO1 2 MINE RIVER TOO1 2 MINE RIVER TOO1 2 MINE RIVER TOO1 2 MINE RIVER TOO1 2 MINE RIVER TOO1 2 MINE RIVER TOO2 1 MINE RIVER TOO2 2 MINE RIVER TOO2 1 MINE MINE CARAT 7 MINE MINE CARAT 7 MINE MINE CARAT 7 MINE MINE CARAT 7 MINE MINE CARAT 7 MINE MINE CARAT 7 MINE MINE CARAT 7 MINE MINE CARAT 7 MINE MINE CARAT 7 MINE MINE CARAT 7 MINE MINE CARAT 7 MINE MINE CARAT 7 MINE MINE CARAT 7 MINE MINE CARAT 7 MINE MINE CARAT 7 MINE MINE CARAT 7 MINE MINE CARAT 7 MINE MINE CARAT 7	MINE RIVER TO01 2 0 OBSERVED MINE RIVER TO01 2 0 OBSERVED MINE RIVER TO01 2 0 OBSERVED MINE RIVER TO01 2 0 OBSERVED MINE RIVER TO01 2 0 OBSERVED MINE RIVER TO01 2 0 OBSERVED MINE RIVER TO01 2 0 OBSERVED MINE RIVER TO02 1 0 OBSERVED MINE R
RIVER TO01 RIVER TO01 RIVER TO01 RIVER TO01 RIVER TO01 RIVER TO01 RIVER TO02	RIVER TOO1 2 2 RIVER TOO1 2 2 RIVER TOO1 2 2 RIVER TOO1 2 2 RIVER TOO1 2 2 RIVER TOO1 2 2 RIVER TOO1 2 2 RIVER TOO1 2 2 RIVER TOO2 1 RIVER TOO3 1 RIVER TOO2 1 RIVER TOO3 1 RI	RIVER TOO1 2 0 OBSERVED RIVER TOO1 2 0 OBSERVED RIVER TOO1 2 0 OBSERVED RIVER TOO1 2 0 OBSERVED RIVER TOO1 2 0 OBSERVED RIVER TOO1 2 0 OBSERVED RIVER TOO1 2 0 OBSERVED RIVER TOO2 1 0 OBSERVED RIVER TOO3 1 0 OBSERVED RIVER TOO3 0 0 OBSERVED RIVER TOO4 0 OBSERVED RIVER TOO4 0 OBSERVED RIVER TOO6 2 0 OBSERVED RIVER TOO6
TO01 TO01 TO01 TO01 TO01 TO01 TO01 TO01	TO01 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Code
	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Code 2
CC CC CC CC		
Mo.	No. DBSERVED D	

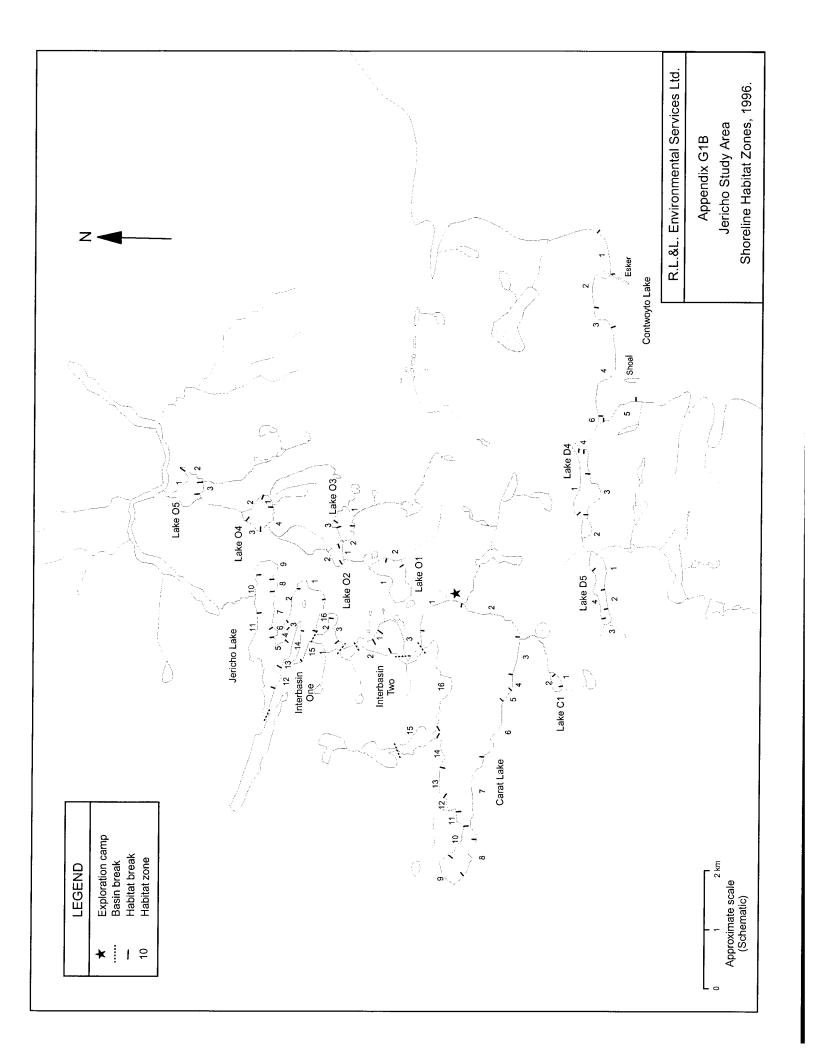
Append	ix F 5.	Jerio	cho Dia	mond P	roject	Aqu	atic S	Studie	s Fish	Data	(199	96)										
Period	Crew		eSpecies	Fork Len. (mm)	Weight	Sex	Age	Age Meth.	Capt. Meth.	Mesh Size	Tag No.	Day	Мо	Yr	Zone	Local	Loc.	Site	Capt.	Comments	Tissue No.	Stomach Contents
2	С	No. 50	ARCH	575	1288	2		OT	GN	89	0	4			FUEL	FUEL	LO01	1	1			0
2	C	51 52	LKTR ARCH	567 528	1930 1250	0 12	9	ОТ	GN GN	38 89	210	4			FUEL FUEL	FUEL FUEL	LO01 LO01	2	0			0
2	С	53	ARCH	376	555	11	7	OT	GN	89	0	4	8	96	FUEL	FUEL	LO01	2	1			0
2 2	C	54 55	ARCH ARCH	451 446	996 865	11 99		OT OT	GN GN	89 89	0	4			FUEL FUEL	FUEL FUEL	LO01 LO01	2 2	1			0
2	С	56	ARCH	522	1412	2	44	OT	GN	89	0	4			FUEL	FUEL	LO01	2	1			0
2 2	C C	57 58	LKTR ARCH	447 486	950 1074	7 99	11	OT OT	GN GN	89 89	0	4		96 96	FUEL FUEL	FUEL FUEL	LO01 LO01	2	1			0
2	C	59 60	ARCH ARCH	613 556	1984 1236	7 17	12	OT OT	GN GN	114 114	0	4			FUEL FUEL	FUEL	LO01 LO01	2 2	1			0
2 2	С	61	ARCH	522	1262	17	11	OT	GN	114	0	4	8	96	FUEL	FUEL	LO01	2	1			0
2 2	C	62 63	ARCH ARCH	563 342	1322 400	17 99	12 8	OT OT	GN GN	114 64	0	4			FUEL FUEL	FUEL FUEL	LO01 LO01	2 2	1			0 07ZOO03PEL
2	С	64	ARCH	502	1130	11	9	OT	GN	64	0	4	8	96	FUEL	FUEL	LO01	2	1	PARASITES		0
2 2	C C	65 66	ARCH ARCH	396 374	424 562	99 99	7	TO TO	GN GN	64 64	0	4		96 96	FUEL FUEL	FUEL FUEL	LO01 LO01	2 2	1			05ZOO05BRA
2 2	C	67 68	ARCH ARCH	373 229	520 126	99 99	6	OT OT	GN GN	64 38	0	4			FUEL FUEL	FUEL FUEL	LO01 LO01	2 2	1 1			0 15ZOO
2	С	69	ARCH	257	180	99	4	OT	GN	38	0	4	8	96	FUEL	FUEL	LO01	2	1			15ZOO 10ZOO
2 2	C C	70 71	ARCH ARCH	197 176	78 56	99 99	4	OT OT	GN GN	38 38	0	4			FUEL FUEL	FUEL FUEL	LO01 LO01	2 2	1			15ZOO
2 2	C	72 73	ARCH ARCH	0	0	0			GN GN	38 38	0	4			FUEL	FUEL FUEL	LO01 LO01	1	0	RND RND		
2	С	74	ARCH	345	365	0			GN	64	209	4	8	96	TAIL	TAIL	LD04	3	0			
2 2	C	75 76	ARCH ARCH	326 378	304 534	0			GN GN	64 64	208 207	4		96 96	TAIL TAIL	TAIL TAIL	LD04 LD04	4	0			
2 2	C	77 78	ARCH ARCH	334 347	362 364	0			GN GN	64 64	206 205	4		96 96	TAIL	TAIL TAIL	LD04 LD04	4	0			
2	С	79	ARCH	347	366	0			GN	64	204	4	8	96	TAIL	TAIL	LD04	4	0			
2 2	C C	80 81	ARCH ARCH	416 334	642 0	0			GN GN	38 38	203 202	4		96 96	TAIL TAIL	TAIL TAIL	LD04 LD04	4	0			
2 2	C	82	ARCH LKTR	315 486	280 1196	99 0	10	OT	GN GN	38 64	0 201	4		96 96	TAIL TAIL	TAIL TAIL	LD04 LD04	4	1 0			15ZOO
2	C	83 84	ARGR	48	0	0			EF	0	0	1	8	96	MINE	RIVER	TO23	1	0	ALSOSHOCKEDLUBOFJ.R		
2 2	C C	85 86	ARGR ARGR	47 54	0	0			EF EF	0	0	1			MINE	RIVER RIVER	TO23 TO24	1 1	0			
2	С	87	ARGR	51	0	0			EF EF	0	0	1	8	96	MINE	RIVER RIVER	TO24 TO24	1 1	0			
2 2	C C	88 89	ARGR ARGR	47 49	0	0			EF	0	0	1	8	96	MINE	RIVER	TO24	1	0			
2 2	C C	90 91	ARGR ARGR	54 49	0	0			EF EF	0	0	1			MINE	RIVER	TO24 TO24	1	0			
2	С	92	ARGR	51	0	0			EF	õ	0	1	8	96	MINE	RIVER	TO24	1	0			
2 2	C C	93 94	ARGR ARGR	50 448	0	0			EF EF	0 0	0	1			MINE	RIVER RIVER	TO24 TO24	1	0			
2 2	C	95 96	ARGR ARGR	55 45	0	0			EF EF	0	0	1			MINE	RIVER RIVER	TO24 TO24	1	0			
2	С	97	ARGR	55	0	0			EF	0	0	1	8	96	MINE	RIVER	TO24	i	0			
2 2	C C	98 99	ARGR ARGR	53 48	0	0			EF EF	0 0	0	1			MINE	RIVER RIVER	TO24 TO24	1	0			
2 2	C	100 101	ARGR ARGR	49 49	0	0			EF EF	0	0	1			MINE	RIVER RIVER	TO24 TO24	1	0			
2	C	102	ARGR	56	0	Ō			EF	ō	0	1	8	96	MINE	RIVER	TO24	1	0			
2 2	C C	103 104	ARGR ARGR	49 57	0	0			EF EF	0 0	0	1			MINE	RIVER RIVER	TO24 TO24	1	0			
2	C	105	ARGR ARGR	43	0	0 0			EF EF	0	0	1			MINE	RIVER RIVER	TO24 TO24	1	0	OBSERVED		
2 2	С	106 107	ARGR	0	0	0			EF	0	0	1	8	96	MINE	RIVER	TO24	1	0	OBSERVED		
2 2	C C	108 109	ARGR ARGR	0	0	0			EF EF	0	0	1			MINE	RIVER RIVER	TO24 TO24	1 1	0	OBSERVED OBSERVED		
2	С	110	ARGR	0	0 0	0			EF EF	0	0	1			MINE	RIVER RIVER	TO24 TO24	1	0	OBSERVED OBSERVED		
2 2	C	111 112	ARGR ARGR	0 0	0	0			EF	0	0	1	8	96	MINE	RIVER	TO24	1	0	OBSERVED		
2 2	C C	113 114	ARGR ARGR	0	0	0			EF EF	0	0	1			MINE	RIVER RIVER	TO24 TO24	1	0	OBSERVED OBSERVED		
2	C	115	ARGR	0	0	0			EF EF	0	0	1		96 96	MINE	RIVER RIVER	TO24 TO24	1	0	OBSERVED OBSERVED		
2	Ċ	116	ARGR ARGR	o	o	o			EF	o	Ô	1	8	96	MINE	RIVER	TO24	1	ő	OBSERVED		
2 2	C C	118 119	ARGR ARGR	0 98	0 10	0		SC	EF EF	0	0	1			MINE	RIVER RIVER	TO24 TO25	1	0	OBSERVED		
2 2	C C	120 121	ARGR ARGR	47 40	0	0			EF EF	0	0	1			MINE		TO25 TO25	1	0			
2	С	122	ARGR	44	0	0			EF	0	0	1	8	96	MINE	RIVER	TO25	1	0			
2 2	C C	123 124	ARGR ARGR	45 47	0	0			EF EF	0	0	1			MINE	RIVER RIVER	TO25 TO25	1 1	0			
2 2	C C	125 126	ARGR ARGR	45 43	0	0			EF EF	0	0	1			MINE	RIVER RIVER	TO25 TO25	1	0			
2	С	127	ARGR	42	0	0			EF	0	0	1	8	96	MINE	RIVER	TO25	1	0			
2 2	C C	128 129	ARGR ARGR	44 48	0	0			EF EF	0	0	1			MINE		TO25 TO25	1 1	0			
2 2	C	130 131	ARGR ARGR	45 43	0	0			EF EF	0	0	1			MINE	RIVER RIVER	TO25 TO25	1	0			
2	С	132	ARGR	43	0	0			ÉF	0	0	1	8	96	MINE	RIVER	TO25	1	0			
2 2	C	133 134	ARGR NNST	49 64	0	0			EF EF	0 0	0	1			MINE	RIVER RIVER	TO25 TO25	1 1	0			
2 2	С	135 136	NNST NNST	63 55	0	0			EF EF	0	0	1			MINE	RIVER RIVER		1	0			
2	C	137	NNST	59	0	Ō			EF	0	0	1	8	96	MINE	RIVER	TO25	1	0			
2 2	C	138 139	NNST NNST	36 33	0 0	0			EF EF	0 0	0	1			MINE	RIVER RIVER		1	0			
2	C	140	NNST	29	0	0			EF EF	0	0	1	8	96	MINE MINE	RIVER RIVER	TO25 TO25	1	0			
2	C C	141 142	NNST ARGR	36 49	0 0	0			EF	0	0	1	8	96	MINE	RIVER	TO25	3	0			
2 2	C	143 144	ARGR ARGR	49 51	0	0 0			EF EF	0	0	1			MINE	RIVER	TO25 TO25	3 3	0			
2	С	145	ARGR	54	0	ō			EF	0	0	1	8	96	MINE	RIVER	TO25 TO25	3	0			
2	C	146 147	ARGR ARGR	43 52	0	0			EF EF	0	0	1	8	96	MINE	RIVER	TO25	3	0			
2 2	C	148 149	ARGR ARGR	45 53	0	0			EF EF	0	0	1	8	96	MINE	RIVER	TO25 TO25	3 3	0			
2	С	150	ARGR	52	0	0			EF	0	0	1	8	96	MINE	RIVER	TO25	3	0			
2 2	C C	151 152	ARGR ARGR	56 49	0	0			EF EF	0	0	1			MINE MINE	RIVER RIVER		3 3	0			
2 2	Č C	153 154	ARGR ARGR	51 52	0	0			EF EF	0	0	1	8	96	MINE	RIVER RIVER	TO25	3 3	0			
2	С	155	ARGR	54	0	0			EF	0	0	1	8	96	MINE	RIVER	TO25	3	0			
2	C	156 157	ARGR ARGR	45 44	0	0			EF EF	0	0	1 1	8	96	MINE	RIVER	TO25 TO25	3	0			
2	C C	158 159	ARGR ARGR	52 41	0	0			EF EF	0	0	1 1			MINE	RIVER	TO25 TO25	3	0			
2	č	160	ARGR	43	ŏ	ŏ			EF	ő	ŏ	1			MINE	RIVER		3	ō			

Period			eSpecies			t Sex Ag				-		Mo Y	Zone	Local	Loc.	Site	Capt.	Comments	Tissue	Stomach Contents
2	C C	No. 161 162	ARGR ARGR	Len. (mm) 59 52) (g) 0 0	0	Meth.	Meth. EF EF	Size 0 0	No. 0 0	1	8 96 8 96		RIVER RIVER	TO25 TO25	3 3	Code 0 0		No.	
2 2	CC	163 164	ARGR ARGR	49 53	0	0		EF EF	0	0	1	8 96	MINE	RIVER RIVER	TO25 TO25	3	0			
2	C	165 166	ARGR ARGR	44 46	0	0		EF EF	0	0	1	8 96	MINE	RIVER	TO25 TO25	3	0	00050150		
2 2 2	C C	167 168 169	NNST NNST NNST	0 0 0	0 0 0	0 0 0		EF EF EF	0 0 0	0 0 0	1 1 1	8 96 8 96 8 96	MINE	RIVER RIVER RIVER	TO25 TO25 TO25	3 3 3	0 0 0	OBSERVED OBSERVED OBSERVED		
2 2	C	170 171	NNST NNST	0	0	0		EF EF	0	0	1	8 96 8 96	MINE	RIVER	TO25 TO25	3	0	OBSERVED OBSERVED		
2 2	C C	172 173	ARGR ARGR	102 47	10 0	0 0	SC	EF EF	0 0	0	1	8 96 8 96	MINE	RIVER RIVER	TO26 TO26	1	0			
2 2 2	C C	174 175 176	ARGR ARGR ARGR	48 47 49	0 0 0	0 0 0		EF EF EF	0 0 0	0 0 0	1 1 1	8 96 8 96 8 96	MINE	RIVER RIVER RIVER	TO26 TO26 TO26	1 1 1	0 0 0			
2 2	C	177 178	NNST NNST	37 52	0	0		EF EF	0	0	1	8 96	MINE	RIVER	TO26 TO26	1	0			
2	C	179 180	NNST	63 57	0	0		EF EF	0	0	1	8 96	MINE	RIVER	TO26	1	0			
2 2 2	C C	181 182 183	NNST ARGR ARGR	60 54 50	0 0 0	0 0 0		EF EF EF	0 0 0	0 0 0	1 1 1	8 96 8 96 8 96	MINE	RIVER RIVER RIVER	TO26 TO26 TO26	1 1 1	0 0 0			
2 2	C	184 185	ARGR ARGR	48 52	0	0		EF EF	0	0	1	8 96 8 96	MINE MINE	RIVER RIVER	TO26 TO26	1	0			
2 2 2	C C	186 187 188	ARGR ARGR ARGR	49 52 47	0 0 0	0 0 0		EF EF EF	0 0 0	0 0 0	1 1 1	8 96 8 96 8 96	MINE	RIVER RIVER RIVER	TO26 TO26 TO26	1 1 1	0 0 0			
2 2	C	189 190	ARGR ARGR NNST	44 29	0	0		EF EF	0	0	1	8 96	MINE	RIVER	TO26 TO26	1	0			
2	C	191 192	ARGR	0	0	0		EF EF	0	0	1	8 96	MINE	RIVER	TO26 TO26	1	0	OBSERVED OBSERVED		
2 2 2	C C	193 194 195	NNST NNST NNST	0 0 0	0 0 0	0 0 0		EF EF EF	0 0 0	0 0 0	1 1 1	8 96 8 96 8 96	MINE	RIVER RIVER RIVER	TO26 TO26 TO26	1 1 1	0 0 0	OBSERVED OBSERVED OBSERVED		
2 2	C C	196 197	NNST NNST	0	0	0		EF EF	0	0	1	8 96 8 96	MINE MINE	RIVER RIVER	TO26 TO26	1	0	OBSERVED OBSERVED		
2 2 2	C C	198 199 200	NNST NNST NNST	0 0 0	0 0 0	0 0 0		EF EF	0 0 0	0 0 0		8 96 8 96 8 96	MINE	RIVER RIVER RIVER	TO26 TO26 TO26	1 1 1	0 0 0	OBSERVED OBSERVED OBSERVED		
2 2	C	201 202	NNST NNST	0	0	0		EF EF	0	0	1 1	8 96	MINE	RIVER RIVER	TO26 TO26	i 1	0	OBSERVED OBSERVED		
2 2	C	203 204	NNST NNST	0	0	0		EF EF	0	0	1	8 96 8 96	MINE	RIVER	TO26 TO26 TO26	1	0	OBSERVED OBSERVED		
2 2 2	C C	205 206 207	NNST NNST NNST	0 0 0	0 0 0	0 0 0		EF EF EF	0 0 0	0 0 0	1 1 1	8 96 8 96 8 96	MINE	RIVER RIVER RIVER	TO26 TO26	1 1 1	0 0 0	OBSERVED OBSERVED OBSERVED		
2	C	208 209	NNST	0	0	0		EF EF	0	0	1	8 96 8 96	MINE	RIVER	TO26 TO26	1	0	OBSERVED OBSERVED		
2 2 2	C C	210 211 212	NNST ARGR ARGR	0 44 54	0 0 0	0 0 0		EF EF	0 0 0	0 0 0	1	8 96 8 96 8 96	MINE	RIVER RIVER RIVER	TO26 TO27 TO27	1 1 1	0 0 0	OBSERVED		
2	C	213 214	NNST SLSC	57 40	0	0		EF EF	0	0	1	8 96 8 96	MINE MINE	RIVER RIVER	TO27 TO27	1	0			
2 2 2	000	215 216 217	SLSC BURB ARGR	42 288 104	0 168 10	0 0 0	SC	EF EF EF	0 0 0	0 0 0		8 96 8 96 8 96	FUEL	LO5 LO5	TO27 TO05 TO05	1 1 1	0 0 0			
2	C	218 219	ARGR ARGR	48 36	0	0 0	20	EF EF	0	0	1	8 96 8 96	FUEL FUEL	LO5 LO5	TO05 TO05	1	0			
2 2 2	C C	220 221 222	ARGR ARGR ARGR	55 61 48	0 0 0	0 0 0		EF EF EF	0 0 0	0 0 0	1	8 96 8 96 8 96	FUEL	LO5 LO5 LO5	TO05 TO05 TO05	1 1 1	0 0 0			
2	c c	223 224	ARCH ARGR	62 51	0	0		EF EF	0	0	1	8 96 8 96	FUEL	LO5 LO5	TO05 TO05	i 1	0			
2 2 2	CCC	225 226 227	ARGR ARGR ARGR	53 52 49	0 0 0	0 0 0		EF EF	0 0 0	0 0 0	1	8 96 8 96 8 96	FUEL	LO5 LO5 LO5	TO05 TO05 TO05	1 1 1	0 0 0			
2	C	228 229	ARGR NNST	50 53	0	0		EF EF	0	0	1	8 96 8 96	FUEL FUEL	LO5 LO5	TO05 TO05	1	0			
2	CCC	230 231	NNST NNST	46 55	0 0 0	0		EF EF	0 0 0	0 0 0	1	8 96 8 96	FUEL	LO5 LO5 LO5	TO05 TO05 TO05	1 1 1	0 0 0			
2 2 2	C	232 233 234	NNST SLSC SLSC	49 64 81	0	0 0 0		EF EF EF	0	0	1	8 96 8 96 8 96	FUEL	LO5 LO5	TO05 TO05	1	0			
2 2	C	235 236	SLSC	58 39	0	0		EF	0	0	1	8 96 8 96	FUEL	LO5 LO5	TO05 TO05	1	0			
2 2 2	000	237 238 239	BURB BURB BURB	40 38 32	0 0 0	0 0 0		EF EF EF	0 0 0	0	1	8 96 8 96 8 96	FUEL FUEL FUEL	LO5 LO5 LO5	TO05 TO05 TO05	1 1 1	0 0 0			
2	C C	240 241	BURB ARGR	41 155	0 40	0 0	SC	EF EF	0	0	1	8 96 8 96	FUEL FUEL	LO5 LO5	TO05 TO05	1 2	0			
2 2 2	000	242 243 244	ARGR ARGR ARGR	107 113 100	12 16 8	0 0 0	SC SC SC	EF EF EF	0 0 0	Õ	1	8 96 8 96 8 96	FUEL FUEL FUEL	LO5 LO5 LO5	TO05 TO05 TO05	3 3 4	0 0 0			
2 2	C C	245 246	SLSC SLSC	84 85	0	0 0		EF EF	0	0	1	8 96 8 96	FUEL FUEL	LO5 LO5	TO05 TO05	3	0 0			
2 2 2	C C	247 248 249	SLSC SLSC SLSC	87 94 73	0 0 0	0 0 0		EF EF EF	0 0 0	0	1	8 96 8 96 8 96	FUEL FUEL FUEL	LO5 LO5 LO5	TO05 TO05 TO05	3 4 4	0 0 0			
2 2	C	250 251	SLSC NNST	63 0	0	0		EF EF	0	0	1	8 96 8 96	FUEL FUEL	LO5 LO5	TO05 TO05	4	0	OBSERVED		
2 2	C	252 253	NNST NNST	0	0	0		EF EF	0	0	1	8 96 8 96	FUEL	LO5 LO5	TO05 TO05	1	0	OBSERVED OBSERVED		
2 2 2	C C C	254 255 256	NNST NNST ARGR	0 0 0	0 0 0	0 0 0		EF EF EF	0 0 0	0	1	8 96 8 96 8 96	FUEL FUEL	LO5 LO5 LO5	TO05 TO05 TO05	1 1 1	0 0 0	OBSERVED OBSERVED OBSERVED		
2	C C	257 258	ARGR ARGR	0 0	0	0 0		EF EF	0	0	1	8 96 8 96	FUEL FUEL	LO5 LO5	TO05 TO05	3 4	0	OBSERVED OBSERVED		
2 2 2	C C	259 260 261	ARGR ARGR ARGR	0 0 0	0 0 0	0 0 0		EF EF EF	0 0 0	0	1	8 96 8 96 8 96	FUEL FUEL FUEL	LO5 LO5 LO2	TO05 TO05 TO09	4 4 1	0 0 0	OBSERVED OBSERVED		
2	C C	262 263	ARGR ARGR	0	0 0	0		EF EF	0	0	3 3	8 96 8 96	FUEL FUEL	LO2 LO2	TO09 TO09	1	0	OBSERVED OBSERVED		
2 2 2	C C	264 265 266	ARGR ARCH ARCH	0 73 46	0 0 0	0 0 0		EF EF	0 0 0	0	6	8 96 8 96 8 96	FUEL MINE MINE		TO09 TC02A TC02A	1 1 1	0 0 0	OBSERVED		
2 2	C	267 268	ARCH ARCH	47 45	0	0		EF EF	0	0	6 6	8 96 8 96	MINE	CARAT CARAT	TC02A TC02A	1	0			
2 2 2	C		ARCH ARCH ARCH	48 48 51	0 0 0	0 0 0		EF EF	0 0 0	0	6	8 96 8 96	MINE MINE MINE	CARAT CARAT CARAT	TC02A	1 1 1	0 0 0			
2	С	271	AKUH	อา	U	U		EF	U	U	o	8 96	MINE	CAKAI	1CUZA	1	U			

Period		Sample Species		•			Age	Capt.		Tan I) Jav	Mo Yr	Zone	Local	Loc.	Site	Capt.	Comments	Tissue	Stomach Contents
2	С	No. 272 ARCH	Len. (mm)		0	, ,90	Meth.	Meth. EF	Size 0	No.		8 96	MINE	CARAT		1	Code	Sommerne.	No.	
2 2	č	273 ARCH 274 SLSC	47 58	0	0			EF EF	0	0	6	8 96 8 96	MINE	CARAT CARAT	TC02A	1	0			
2	С	275 SLSC	56	0	0			EF	ŏ	Õ	6	8 96	MINE	CARAT	TC02A	į	0			
2	C C	276 ARCH 277 ARCH	48 77	0	0			EF EF	0	0	6	8 96 8 96	MINE	CARAT CARAT	TC02	1	0			
2 2	C C	278 ARCH 279 ARCH	78 90	0	0			EF EF	0	0		8 96 8 96	MINE	CARAT CARAT	TC02 TC02	1 1	0			
2 2	C	280 ARCH 281 ARCH	83 71	0	0			EF EF	0	0		8 96 8 96	MINE	CARAT CARAT	TC02 TC02	1	0			
2 2	Ċ C	282 ARCH 284 SLSC	0	0	0			EF EF	0	Ō	6	8 96 8 96	MINE	CARAT	TC02	1	0	OBSERVED OBSERVED		
2	С	285 ARCH	0	0	0			GN	0	0	30	7 96	MINE	MINE	CARAT	2	0	RND		
3	A	2001 ARCH 2002 LKTR	388 333	550 400	0 18			GN GN	64 64	4427	3	9 96 9 96	TAIL	TAIL	LD05 LD05	1	0			
3 3	A A	2003 ARCH 2004 ARCH	349 407	440 720	0 9	12	от	GN GN	64 64	426	3	9 96 9 96	TAIL TAIL	TAIL TAIL	LD05 LD05	1	0 3			05PEL
3 3	A A	2005 ARCH 2006 ARCH	335 0	430 0	0 8			GN GN	64 89			9 96 9 96	TAIL TAIL	TAIL TAIL	LD05 LD05	2 1	0 2			
3	A A	2007 ARCH 2008 ARCH	390 388	0 515	8 0			GN GN	89 64			9 96 9 96	TAIL TAIL	TAIL TAIL	LD05 LD05	1	0			
3	A	2009 ARCH 2010 LKTR	381 482	530 1385	8			GN AL	89 0	4433	3	9 96 9 96	TAIL	TAIL TAIL	LD05 LD05	1	0			
3	A A	2011 ARCH 2012 LKTR	394 352	680 486	8			GN GN	64 64	488	3	9 96 9 96	TAIL TAIL	TAIL TAIL	LD04 LD04	1	2	01LTPELVICLIP		
3	Α	2013 ARCH	401	520	8			GN	64	4877	3	9 96	TAIL	TAIL	LD04	1	0			
3	A	2014 LKTR 2015 LKTR	345 329	426 340	0			GN GN	64 64	4879	3	9 96 9 96	TAIL	TAIL	LD04 LD04	3	0			
3 3	A A	2016 ARCH 2017 LKTR	395 465	576 1090	8 9			GN GN	38 64	4434	4	9 96 9 96	TAIL MINE	TAIL MINE	LD04 CARAT	3 1	0			
3 3	A A	2018 LKTR 2019 LKTR	482 465	1280 1290	8 8			GN GN	64 64			9 96 9 96	MINE	MINE	CARAT	1 1	0			
3 3	A A	2020 LKTR 2021 LKTR	480 482	1225 1190	9			GN GN	64 64			9 96 9 96	MINE		CARAT	1 1	0			
3	A A	2022 LKTR 2023 LKTR	498 478	1275 1215	9 9			GN GN	64 64	4440	4	9 96 9 96	MINE	MINE	CARAT CARAT	1	0			
3	A A	2024 LKTR 2025 LKTR	511 449	1545 1100	9			GN GN	38 38	4442	4	9 96 9 96	MINE	MINE	CARAT	1	0			
3	Α	2026 LKTR	510	1375	9			GN	38	4444	4	9 96	MINE	MINE	CARAT	1	0			
3	A	2027 LKTR 2028 LKTR	448 473	1000 1225	9			GN GN	38 38	4446	4	9 96 9 96	MINE		CARAT	1	0			
3 3	A A	2029 LKTR 2030 LKTR	318 465	390 1185	0 9			GN GN	38 38	0	4	9 96 9 96	MINE	MINE	CARAT CARAT	1	0	NOTAGGIVEN		
3 3	A A	2031 LKTR 2032 LKTR	434 403	1025 705	9 11		OT OT	GN GN	38 38			9 96 9 96	MINE	MINE	CARAT	1 1	1 1			05ZOO 0
3	A A	2033 LKTR 2034 ARCH	315 515	350 1340	0			GN GN	64 19			9 96 9 96	MINE		CARAT	2	0			
3	A A	2035 LKTR 2036 LKTR	776 960	4600 14000	9 10			GN GN	64 114			9 96 9 96	MINE	MINE	CARAT	2 1	0			
3	A A	2037 LKTR 2038 LKTR	450 474	995 1220	19 9			GN GN	38 38		4	9 96 9 96	MINE	MINE	CARAT	1	0			
3	A A	2039 LKTR 2040 LKTR	510 486	1575 1385	9			GN GN	38 38	23	4	9 96 9 96	MINE	MINE	CARAT	1	2			
3	A	2041 ARCH 2042 ARCH	531 500	1670 1280	20 0			GN GN	19 38	4579	4	9 96 9 96	MINE	MINE	CARAT	1 1	0	SEX20?		
3	Α	2043 LKTR	438	995	9			GN	64	4581	4	9 96	MINE	MINE	CARAT	1	0			
3	A A	2044 LKTR 2045 LKTR	481 481	1320 1315	0 8			GN GN	64 64	4583	4	9 96 9 96	MINE		CARAT	1	0			
3 3	A A	2046 LKTR 2047 LKTR	472 474	1260 1235	9 9			GN GN	64 64	4585	4	9 96 9 96	MINE	MINE	CARAT CARAT	1	0			
3 3	A A	2048 LKTR 2049 LKTR	458 480	1175 1315	9 8		ОТ	GN GN	64 64	0	4	9 96 9 96	MINE	MINE	CARAT CARAT	1	0 1			10ZOO
3 3	A A	2050 LKTR 2051 LKTR	475 468	1135 1220	8 9		OT OT	GN GN	64 89			9 96 9 96	MINE MINE		CARAT	1 1	1 1			05EGG 05EGG
3 3	A A	2052 RNWH 2053 RNWH	461 473	1375 1380	17 8	17 24	OT OT	GN GN	38 64			9 96 9 96	MINE	MINE	CARAT	1 1	1			05ZOO05EGG 05EGG
3 3	A A	2054 RNWH 2055 LKTR	340 535	490 1635	8	6	ОТ	GN GN	89 89	0		9 96 9 96	MINE	MINE	CARAT	1 3	1 0		501105	10CHI
3	A A	2056 LKTR 2057 LKTR	460 466	1210 1135	9			GN GN	38 38			9 96 9 96	MINE		CARAT	1	0			
3	A	2058 ARCH 2059 LKTR	418 475	1000 1290	0			GN GN	38 38	4589	4	9 96 9 96	MINE	MINE	CARAT CARAT	1	0			
3	A A	2060 LKTR 2061 LKTR	504 505	1385 1255	9			GN GN	38 89	4591	4	9 96 9 96	MINE	MINE	CARAT	1	0			
3	Α	2062 LKTR 2063 LKTR	462 470	1125	9			GN GN	114 64	4593	4	9 96 9 96	MINE		CARAT	1	0			
3	A A	2064 LKTR	464	1155 1235	9			GN	64	4595	4	9 96	MINE	MINE	CARAT	1	0			
3	A	2065 LKTR 2066 LKTR	450 457	1145 1250	9			GN GN	38 64		4	9 96 9 96	MINE	MINE	CARAT	1	0			
3	A	2067 LKTR 2068 LKTR	493 572	1035 1765	9			GN GN	64		4 !	9 96 9 96	MINE	MINE	CARAT	1	0			
3 3	A A	2069 LKTR 2070 LKTR	459 480	1150 1195	9 9		ОТ	GN GN	64 64	0	4 !	9 96 9 96	MINE	MINE	CARAT CARAT	1	0 1			0
3 3	A A	2071 LKTR 2072 LKTR	470 472	1210 1280	8 9		OT OT	GN GN	64 64			9 96 9 96	MINE		CARAT CARAT	1 1	1 1			03EGG02CHI 10ZOO
3	A A	2073 LKTR 2074 LKTR	480 502	1235 1265	8 8		OT OT	GN GN	64 64			9 96 9 96	MINE		CARAT	1	1 1			02EGG03ZOO 05ZOO
3		2075 RNWH 2076 LKTR	455 485	1375 1440	8 0	15	ОТ	GN GN	89 64			9 96 9 96	MINE	MINE	CARAT INTE2	1	1 0		501106	20ZOO
3	Α	2077 LKTR 2078 ARCH	494 549	1496 1830	0 8			GN GN		4881	1 :	9 96 9 96	MINE	MINE	JERIC JERIC	1 2	0			
3	Α	2079 ARCH 2080 ARCH	548 346	1414 468	0			GN GN	89	4882 4883	1 9	9 96 9 96	MINE		JERIC JERIC	2	0			
3	Α	2081 ARCH 2082 LKTR	331	386	0			GN GN	38	4884	1 9	9 96	MINE	MINE	JERIC	2	0			
3	Α	2083 LKTR	514 485	1542 1434	9			GN	64	4885 4 4886 4	1 9	9 96 9 96	MINE	MINE	JERIC JERIC	1	Ö			
3	Α	2084 LKTR 2085 LKTR	472 700	1324 3000	9			GN GN	89	4887 4 4889 4	\$ 9	9 96 9 96	MINE	MINE	JERIC JERIC	1 2	0			
3 3	Α	2086 LKTR 2087 ARCH	432 526	770 1547	0			GN GN	38	4888 4 4890 4	, ,	9 96 9 96	MINE	MINE	JERIC JERIC	2 2		NOCOLOR-SPAWNING		
3		2088 ARCH 2089 LKTR	579 503	2070 1330	8			GN GN		4891 4 4892 4	1 9	9 96	MINE	MINE	JERIC JERIC	2	0			
3	Α	2090 LKTR 2091 ARCH	664 535	3000 1774	9 18		от	GN GN		4893 4	, ,		MINE	MINE	JERIC JERIC	2	0			05ZOO
3	Α	2092 ARCH 2093 LKTR	0 495	0	0			GN GN	38	0 4	: 9	9 96	MINE	MINE	JERIC JERIC	2		RND		
3	Α	2093 LKTR 2094 LKTR 2095 ARCH	478 504	1374 1542	9			GN GN	64	4895 4 4896 4	١ (9 96	MINE	MINE	JERIC JERIC JERIC	1	0			
3 3	Α	2095 ARCH 2096 RNWH 2097 LKTR	458 316	1160 390	0			GN GN	89	4898 5 4898 5	5 9	9 96	MINE	MINE	INTE1	1	0			
3		2097 LKTR 2098 ARCH	581	1918	9			GN	64	364 5		9 96	MINE		INTE1	1	2			

Append					-	-					-			_						_	
Period	Crew	Sample No.	Species	Fork Len. (mm		t Sex	Age	Age Meth.	Capt. Meth.	Mesh Size	Tag D No.	ay M	o Yr	Zone	Local	Loc.	Site	Capt. Code	Comments	Tissue No.	Stornach Contents
3	Α	2099	ARCH	518	1606	2		OT	GN	64		5 9		MINE	MINE	INTE1	1	1			20ZOO
3 3	A A	2100 2101	RNWH RNWH	211 218	94 112	0			GN GN	38 38		59 59		MINE	MINE	INTE1	2	0			
3	Α	2102	RNWH	179	72	0			GN	38	0	5 9	96	MINE	MINE	INTE1	2	0			
3 3	A A	2103 2104	LKTR ARCH	351 595	566 2060	0 8			GN GN	64 64		59 59		MINE	MINE	INTE1	2	0			
3	Â	2105	RNWH	213	92	11		OT	GN	38		5 9		MINE	MINE	INTE1	2	1			20ZOO
3 3	A	2106 2107	ARCH ARCH	605 615	2800 2500	8 8			GN GN	38 64		59 59		MINE	MINE	INTE1	1	0			
3	A A	2108	ARCH	581	2600	8			GN	114		5 9		MINE	MINE	INTE1	1	0			
3	A	2109	ARCH	0	0	0			GN	64		59 59		MINE	MINE	INTE1	1	2 0	CAUGHTDAYBEFORE RND		
3 3	A A	2110 2111	ARCH LKTR	0 521	1474	0			GN GN	64 64		59 59		MINE	MINE	INTE1	2	0	KNU		
3	Α	2112	LKTR	530	1368	9			GN	64		5 9		MINE	MINE	INTE1	1	0			
3 3	A	2113 2114	LKTR RNWH	501 70	1290 0	19 0			GN GN	64 19		59 59		MINE	MINE	INTE1	1	0			
3	Α	2115	RNWH	375	612	0			GN	64	4908	69	96	FUEL	FUEL	LO01	1	0			
3	A A	2116 2117	LKTR ARCH	568 514	2052 1460	0 20			GN GN	38 114		69 69		FUEL FUEL	FUEL FUEL	LO01 LO01	1	0			
3	Α	2118	ARCH	563	1988	9			GN	89	4911	69	96	FUEL	FUEL	LO01	1	Ō			
3 3	A	2119 2120	ARCH ARCH	488 479	1342 1146	9 20			GN GN	89 64		69 69		FUEL FUEL	FUEL FUEL	LO01 LO01	1	0			
3	Ä	2121	LKTR	590	2364	9			GN	64	4914	69	96	FUEL	FUEL	LO01	2	ŏ			
3 3	A A	2122 2123	ARCH LKTR	489 615	1032 2544	0 20			GN GN	64 114		69 69		FUEL FUEL	FUEL FUEL	LO01 LO01	2	0			
3	Â	2124	LKTR	472	1872	9			GN	89		6 9		FUEL	FUEL	LO01	2	ŏ			
3 3	A A	2125 2126	ARCH LKTR	487 531	1290 2024	20 9			GN GN	114 89		69 69		FUEL FUEL	FUEL FUEL	LO01 LO01	2	0			
3	Ä	2127	LKTR	544	1904	9			GN	64		5 9		FUEL	FUEL	LO01	2	Ö			
3 3	A	2128	ARCH LKTR	514 548	1422 1726	9 10			GN GN	64 38		69 69		FUEL FUEL	FUEL FUEL	LO01 LO01	2	0			
3	Ä	2129 2130	ARCH	494	1168	0			GN	89		69		FUEL	FUEL	LO01	2	Ö			
3	A	2131	ARCH ARCH	395 478	714	9			GN GN	64 114	4924 (4925 (FUEL FUEL	FUEL FUEL	LO01 LO01	2 1	0			
3 3	A	2132 2133	ARCH	386	1916 576	0			GN	89		69		FUEL	FUEL	LO01	1	0			
3	Α	2134	ARCH	327	358	0			GN	64		6 9		FUEL	FUEL	LO01	1	0			
3 3	A A	2135 2136	ARCH ARCH	385 445	580 912	0	8	ОТ	GN GN	64 64		69 69		FUEL FUEL	FUEL FUEL	LO01 LO01	1	1			18ANT02CHI
3	A	2137	ARCH	502	1404	0			GN	114		9		FUEL	FUEL	LO01	2	0			
3 3	A A	2138 2139	ARCH ARCH	490 435	1106 1416	0			GN GN	38 38	4930 (4931 (59 59	96 96	FUEL	FUEL FUEL	LO01 LO01	2 2	0			
3	A	2140	LKTR	463	1260	9			GN	89	4932		96	FUEL	FUEL	LO01	2	0			
3 3	A A	2141 2142	LKTR ARCH	581 574	2172 1912	9			GN GN	114 64	4933	5 9 5 9	96 96	FUEL FUEL	FUEL FUEL	LO01 LO01	2	0 0			
3	Α	2143	LKTR	568	1782	19			GN	89		5 9	96	FUEL	FUEL	LO01	2	0			
3 3	A A	2144 2145	ARCH LKTR	564 516	2054 1868	9 19			GN GN	64 64	4935 6 4936 6	6 9 6 9	96 96	FUEL FUEL	FUEL	LO01 LO01	2	0 0			
3	A	2146	ARCH	533	1494	0			GN	64	4937		96	FUEL	FUEL	LO01	2	0			
3 3	A A	2147 2148	ARCH LKTR	542 609	1634 2905	9 9			GN GN	64 64	4938 6 4939 6		96 96	FUEL FUEL	FUEL FUEL	LO01 LO01	2	0			
3	A	2149	LKTR	594	2326	0	36	ОТ	GN	114 114		9	96	FUEL	FUEL FUEL	LO01 LO01	2	1 0			0
3 3	A	2150 2151	ARCH ARCH	605 594	3100 2406	9 9			GN GN	89	4940 6 4941 6	6 9 6 9	96 96	FUEL FUEL	FUEL	LO01	1	0			
3 3	A	2152	ARCH ARCH	568	1788	9 9			GN GN	114 64	4942 6 4943 6	-	96 96	FUEL FUEL	FUEL FUEL	LO01 LO01	1	0			
3	A	2153 2154	ARCH	502 390	1484 584	0			GN	64	4943 6			FUEL	FUEL	LO01	i	0			
3 3	A		ARCH	343	440	0			GN GN	64 38	4945 6 4946 6		96 96	FUEL FUEL	FUEL FUEL	LO01 LO01	1	0			
3	A	2156 2157	LKTR ARCH	326 453	368 1042	0			GN	38	4946 6 4950 7		96	FUEL	FUEL	LO02	i	Ö			
3	A		RNWH	382 381	774	0			GN	64 64	4947	79 79	96 96	FUEL FUEL	FUEL FUEL	LO02 LO02	2	0			
3 3	A		RNWH RNWH	388	628 784	0 18	8	ОТ	GN GN	64	0 7		96	FUEL	FUEL	LO02	2	1			
3 3	A A		ARCH ARCH	505 455	1322 1020	10 0			GN GN	114 89	4948 7 4949 7		96 96	FUEL FUEL	FUEL FUEL	LO02 LO02	2	0			
3	Ä	2163	LKTR	420	872	1		ОТ	GN	38	0 7		96	FUEL	FUEL	LO02	2	1			14STI06TRI
3 3	A A		LKTR ARCH	442 457	1040 1120	0			GN GN	64 64	4951 7 4952 7		96 96	FUEL FUEL	FUEL FUEL	LO02 LO02	2	0			
3	Â	2166	LKTR	620	3000	19			GN	64	4602	7 9	96	FUEL	FUEL	LO03	2	ō			
3 3	A A		ARCH ARCH	454 428	950 805	0			GN GN	38 38	4603 7 4604 7		96 96	FUEL FUEL	FUEL FUEL	LO03	1	0			
3	Â	2169	ARCH	497	1235	ŏ			GN	38	4605	9	96	FUEL	FUEL	LO03	i	0			
3 3	A A	2170 2171	ARCH LKTR	255 307	175 345	0			GN GN	38 64	0 7 4606 7		96 96	FUEL FUEL	FUEL FUEL	LO03 LO03	1 3	0			
3	Ä	2172	LKTR	570	2750	9			GN	19	4608 7	9	96	FUEL	FUEL	LO03	1	Õ			
3 3	A A		LKTR LKTR	557 560	3000 2150	9			GN GN	64 64	4609 7 4610 7		96 96	FUEL FUEL	FUEL FUEL	LO03 LO03	1	0			
3	Α	2175	LKTR	935	9000	9			GN	64	4611 7	9	96	FUEL	FUEL	LO03	1	0			
3 3	A A		LKTR RNWH	516 445	2250 1230	19 0			AL GN	0 89	4607 7		96 96	FUEL FUEL	FUEL FUEL	LO03 LO04	1	0			
3	Α	2178	RNWH	481	1480	0			GN	114	0 8	9	96	FUEL	FUEL	LO04	1	Ō			
3 3	A A		RNWH RNWH	466 98	1465 10	0			GN GN	64 19	0 8		96 96	FUEL FUEL	FUEL FUEL	LO04 LO04	1	0			
3	Α	2181	RNWH	459	1560	0			GN	89	0 8	9	96	FUEL	FUEL	LO04	2	0			
3 3	A A		RNWH	485 589	1810 2415	9			GN GN	114 38	0 8 4612 8		96 96	FUEL FUEL	FUEL FUEL	LO04 LO04	2 2	0			
3	Α	2184	LKTR	564	2500	9			GN	38	217 8	9	96	FUEL	FUEL	LO04	2	2			
3	A A		RNWH LKTR	424 607	1080 2500	0			GN GN	89 38	0 8 4613 8		96 96	FUEL FUEL	FUEL FUEL	LO04 LO04	1	0			
3	Α	2187	ARGR	426	1024	10			GN	38	4957 8	9	96	FUEL	FUEL	LO05	i	0			
3 3	A A		LKTR LKTR	511 511	1444 1532	8 0			GN GN	38 38	4953 8 4954 8		96 96	FUEL FUEL	FUEL FUEL	LO05 LO05	1	0			
3	Α	2190	ARGR	330	490	20			GN	64	4958 8	9	96	FUEL	FUEL	LO05	1	Ö			470710455
3 3	A A		LKTR LKTR	446 566	966 1692	12 20		ОТ	GN GN	89 140	0 8 4956 8		96 96	FUEL FUEL	FUEL FUEL	LO05 LO05	1 2	1 0			17STI01PEL1BRA1TRI
3	Α	2193	ARCH	538	1734	2		OT	GN	64	0 8	9	96	FUEL	FUÉL	LO05	2	1			10ZOO10TRI
3 3	A A		RNWH RNWH	288 271	286 224	0 1	4	ОТ	GN GN	64 64	0 8		96 96	FUEL FUEL	FUEL FUEL	LO05 LO05	2 2	0			05ZOO
3	Α	2196	LKTR	505	1492	9	7	01	GN	38	4955 8	9	96	FUEL	FUEL	LO05	2	0			
3 3	A A		LKTR LKTR	502 493	1384 1492	18 0			GN GN	114 89	4959 8 4960 8		96 96	FUEL FUEL	FUEL FUEL	LO05 LO05	2 2	0			
3	A	2199	LKTR	439	948	0			GN	38	4961 8	9	96	FUEL	FUEL	LO05	2	0			
3	A A		ARCH ARCH	386 387	565 530	8 8			GN GN	89 15	88 9 371 9		96 96	TAIL TAIL	TAIL TAIL	LD05 LD05	2 1	2			
3	Α	2202	ARCH	365	505	18			GN	89	4614 9	9	96	TAIL	TAIL	LD05	1	0			
3 3	A A		ARCH ARCH	385 382	570 515	8 8			GN GN	89 89	98 9 4433 9		96 96	TAIL TAIL	TAIL TAIL	LD05 LD05	1	2			
3	Α	2205	ARCH	391	455	8			GN	64	4430 9	9	96	TAIL	TAIL	LD05	2	2			
3 3	A A		ARCH LKTR	302 361	180 504	0			GN GN	38 38	4615 9 4962 9		96 96	TAIL TAIL	TAIL TAIL	LD05 LD04	2 4	0			
3	Α	2208	ARCH	334	352	0			GN	38	4963 9	9	96	TAIL	TAIL	LD04	4	Ō			0
3	Α	2209	ARCH	385	672	8	10	ОТ	GN	64	488 9	9	96	TAIL	TAIL	LD04	4	3			0

Appendix F5. Jericho Diamond Project Aquatic Studies Fish Data (1996)


Period	Crew	Sample	Species	Fork	Weight	Sex	Age	Age	Capt.	Mesh	Tag	Day	Мо	Yr	Zone	Local	Loc.	Site	Capt	Comments	Tissue	Stomach Contents
		No.	•	Len. (mm)	(g)			Meth.	Meth.	Size	No.								Code		No.	
3	Α	2210	ARCH	314	342	0			GN	64	4964	9	9	96	TAIL	TAIL	LD04	4	0			
3	Α	2211	ARCH	379	590	19			GN	64	4965	9	9	96	TAIL	TAIL	LD04	4	0			
3	Α	2212	ARCH	375	574	0			GN	64	486	9	9	96	TAIL	TAIL	LD04	5	2			
3	Α	2213	ARCH	385	630	8			GN	64	484	9	9	96	TAIL	TAIL	LD04	5	2			
3	Α	2214	ARCH	391	592	8			GN	64	4880	9	9	96	TAIL	TAIL	LD04	5	2			
3	Α	2215	ARCH	392	594	0			GN	64	4966	9	9	96	TAIL	TAIL	LD04	5	0			
3	Α	2216	ARCH	409	724	8			GN	38	4967	9	9	96	TAIL	TAIL	LD04	5	0			
3	Α	2217	ARCH	394	638	8			GN	64	4968	9	9	96	TAIL	TAIL	LD04	7	0			
3	Α	2218	ARCH	399	694	8			GN	64	4969	9	9	96	TAIL	TAIL	LD04	7	0			
3	Α	2219	ARCH	369	530	20			GN	64	4970	9	9	96	TAIL	TAIL	LD04	8	0			
3	Α	2220	LKTR	372	500	11	13	OT	GN	114	0	9	9	96	TAIL	TAIL	LD04	8	1			
3	Α	2221	LKTR	581	1950	0			GN	0	4601	6	9	96	TAIL	DOCK	CONTW	3	0			
3	Α	2222	RNWH	0	0	0			GN	64	0	8	9	96	FUEL	FUEL	LO04	1	0	RND		
3	Α	2223	RNWH	0	0	0			GN	64	0	8	9	96	FUEL	FUEL	LO04	1	0	RND		
3	Α	2224	LKTR	0	0	0			GN	38	0	8	9	96	MINE	MINE	CARAT	3	0	RND		

APPENDIX G FISH HABITAT

Appendix G1A Lake habitat characteristics for waterbodies sampled in the Jericho study area, 1996.

Lake	Date	Zone	Shoreline		ne Habitat 1	ype (%)		C:4		strate Type Gravel	(%) Cobble	Boulder	Redrock	Slope ¹	Shoreline Ve Emergent	
	and the second		Length (m)	Grass		Bedrock	OM	Silt	Sand 90	Gravei	Copple	10	Deninck	1 1	Emergent	Jasinerye
Carat	29-Jul-96	1	914		100	1	i i		30		10	60		1	i	
	1	2	988	10	90	!	i		10	5	10	70		1		
		3	219	90	10					3	20	70		1		
	į i	4	101		30	70			10	1	20	70		1		
		5	82	95	5				10		20	70		1	1	
		6	411	10	40	50			10		20			. 4	i .	
		7	1216	20	70	10	1			10	30	60		. 1	1	
		8	302	95	5		1			1	15	85		: 1	. !	
		9	293	20	65	15					5	95		2	1	
		10	274	70	30	1					20	80		1	1	
	i	11	128	10	60	30			30		20	50		, 1		
		12	192	60	30	10					30	70		. 1		
	!	13	238		60	40			20		20	60		3	: '	
		14	183	5	50	45			20		20	60		2		
		15	1234	60	40						20	80		1		
		16	1765	25	70	5					20	80		2		
	04 1.1.00	5	146	50	- 50	+ · • - +		50			20	30		1	30	
Jericho	31-Jul-96		96	80	20			•••	30		20	- 50		1	80	!
		6		5	20	75		10	. 00			90		3		
		7	265			13		10	35		15	50	:	1	60	
		8	82	75	25				85		10	5		i		
		9	283	100	4-				00		10	90	10	: 1		
		10	1006	5	15	. 80			20	1	10	, 50	70	3	1	1
		11	1948	20	40	40	-		20	!		20	, 0	2	40	1
		12	110	30	60	10			75		5	20		1		ļ
nterbasin	31-Jul-96	1	274	85	10	5			95			5			:	i
One	1	2	274	5	20	75	-	10				90		3	40	
		3	96	60	40				30	1	20	50		. 1	40	
		4	96	5	20	75	i	10	:			90		3		
		13	439	80	20				80	5		15		† 1		
		14	320	25	75	į l			30			70		1	35	
		15	229	35	50	15			25			65	10	. 1	1	
	1	16	279	70	15	15			50			50	1	1	20	
	04-Aug-96	17	280	100			1		20			80		. 2		İ
	04-Aug-96		205	40	60		i		20			80		2	20	1
		18	325	100	. 00	1	1		100	1				2		!
	<u> </u>	19				 			100				T	2	T	÷
nterbasin	01-Aug-96	1	165	100	20		i		100	1		100		1	İ	
Two		2	942	80	20	į	i		100					1		i
		3	905	100	-		1		45	25		30		. 1	30	
	04-Aug-96	4	1100	95	5				+ 45	1. 23		100		· i	80	t
C1	03-Aug-96	1	137	80	20						:	100		2	:	!
		2	247		70	30			<u> </u>		10	5	-	1 -	-	
01	-	1	1161	95	5	i !	:		30	50	10				i	
		2	265	95	5	ļ!	<u>i</u>		80	5	10	5	i		+	:
O2	02-Aug-96	1	229	100		!			75	5	20		1			1
-	. 5	2	238	100		I			75	5	10	5		3	.:	
O3	02-Aug-96	1	279	100					100			1		1		
		2	293	80	20	1			30	1		70		2	İ	
	!	3	46		50	50			i			50	50	3		
04	02-Aug-96	1	220	100					95			5		1		1
O ¬	J	2	150	100					95	i		5		: 2	1	
		3	110	100	i				95		:	5		3		1
	i	Δ	40	100			1		85	1	10	5	:	1		
	1	5	180	100	!				95	i	5	5	i	3		
		6	190	100	ļ.				70	10		20	!	2		1
	04 4	4		100	+				100		 			1		T
O5	01-Aug-96	_	1079	100	100	İ						100		2	1	
	1	2	201		100	1	1			:		100		2		
		3	96			ļ. ——·			+			÷	100	3	:	
D4	05-Aug-96	1	293	00	100							100		1	30	
		2	91	80	20				1		ļ	100		2		
		3	165		100	10				İ	1	100		1	10	
	_	4	274	20	70	10				<u> </u>		100			20	+
D5	05-Aug-96	1	942	90	10					:					; 20	1
	1	2	379		100							100		2	10	
		. 3	311	20	80				!			100		1	10	
	1	4	165		100							100	1	2		
Contwoyto	30-Jul-96	1 -	238		80	20	Ţ					100		2		
		. 2	219		100				60	1	20	80		, 1	1	
		3	183		80	20						100		2		
		9	100		1	100				1		100		3		
		4	384									100		2		

¹ See Appendix A for definitions.

9
6
1996
a. 1996
œ
ĕ
Ä
10
4
ž
#
~
2
ਹ
-:⊏
മ
ഉ
#
_
-=
Ś
<u>₹</u>
>
5
ซ
_
₽
ď
ሧ
75
=
2
·⋶
_
σ
Ö
ஐ
⋾
က္က
nea
ĕ
_
s1 meas
ű
÷
.9
ā
₹
×
Ξ
100
ᇴ
-
ā
5
ਰ
Ĭ
었
х G2 н
.×
ਰ
Ë
8
ā
~

, "	u 0							5							9 0	!					·	ი				
2	2 ₽	90 90	09	6 5 5 7	15 25	;	2 5	77 65	3 <u>5</u> 8	70	6 }	ς c α c	5 60 40 60	5 c c t	10 5 35	6 2	75	8 2 8	2	'n	2 5	0	9 9	50 5	5 8 8	g
(%)	3 &	42	စ္က ဓ္က	50		:	5	ਨ ਸ	, <u>t</u>	æ	4	5 6 6 6	2 2 2 2		55 5 15	33	£ 0 0	5 6 %	ς γ	80	\$ 0 6	20 St	ეგა	ςς.		·
Substrate Type (%)	5 ₽	က	5 5	6 t	30	ı	ည	4 n	າ ທ		ι	ი <u>ნ</u> ი ჯ	5 to to	, ıc	25 10	45	3 30 2	á	2	0	788	22 9 2	ر 15 کا	2	ωĸ	n
Subs	5				25	<u>\$</u> 6				გიკ	. 52 2	o 84	28 8	, и	3 3 3 3 3 3 3	100 2	90 9	5 4 5	92	ကက်	59 04	r 09				5
Į,	5	8 8	9		5 50	ş	2	ĸ		45	25.5	9 S	20 10 15	98.5	20 30			۶	2		10	8	8 8	90	2 45	2
ě	5	2		69	25 15 10			4 5 5	2	54	8 8 4	u:	5		35			ư	, 001	96	5	02	S	75		ć
SIO	3					5 5	100	7 55	<u>5</u> <u>6</u>	9															99	
CAS	ii.		,	2				1 ი ი	,		ţ	2 v	40		7											
Habitat Type (%) FLAT RF/RA	8	€ !	35	100	လက	ç	2	œ		2		20	20	25	5 7 2 2 2 2 9	23	100	10 30		06	20	10 2	. 0	10		
Habitat FLAT	:	5 5	65	O B	51 50	ç	8			70		30	30	100 65	40 79 30 30	100	10	20	20 22	100	5 to 5	228	30	6 6	6	2
Ş		ဂ		20	80 20	ä	8	35 33	1	25	8222	55 4 9	5 4 8	5	55 7 45	75	90	S 3 5	. 25 85 50 85	100	58 8	8648	G 8	50 85	06 8	8 6
i	20,			30	e			'n		Φ	5 25 25	· · · · · · · · · · · · · · · · · · ·	20 :		ъ ъ	~		30	, 1	9	£ £ £	2 P		2	5 5	2 2
Bank Type (%) D1 D2		2 6	Ì	<u>3</u>	30			3 & Ş	66						50	82			10			90 90		5		100
	1	3 5	 8	09			3 8	5 v		£ 8	555	555	555	555	5 8 5 5	5 5 5	555	555	8 5	555	555	3 S 4 5	555		9 19	
_ 33									100	_														5	<u> </u>	
rype (%) 2				n	- 0	00	0		8	5			8 09	S	7						20	20				
Channel Type (%)	0,	3 5	•	268		\$ \$	· 克·		-	-	0.0.0		0	00-	00	000		000	000	200	0 - 0	0 0		0.0		Ş
Channel Type (%) pe C1 C2 C3	ļ	100	100		85 15 100 100	100		10 100		000		8666	20 100	100 95 95	100 93 95	555	555	5 5 5	56	888	0 8 5	3 6 5	955	 9 9 9 9	5 5	
Slope		•	•							-			100	100	1 100 2 93 2 95		555	100	100		1 80	1 1 50 50 50 50 50 50 50 50 50 50 50 50 50	366	100		
ļ		•	100	3 2					ω (000	4 4				224	7	0.35 100 0.20 100 0.20 100		7 -	~~~	··		0.30		0.30 100	06:0
Average Depth (m) Slope		0.10	100	9.0	1 100		- 67	0.05 4 93	0.10	0.10 1 100	0.00	0.70 0.80 0.50	0.60	0.70 0.80 0.20	224	1.00 0.50	0.35 0.20 0.20	0.0 0.0 0.40	0.05	0.05	0.15 2 0.25 1	0.05	08.0	0.20		
Average Average Width (m) Depth (m) Slope	1.00 7	0.10	0.15	0.50	0.50 0.80 0.15 0.05 0.05 0.05	0.40	15.00	0.50 0.05 1.00 0.05	4.50 0.10 6.10 6.10 6.10 6.10 6.10 6.10 6.1	7.50 0.10 12 100	1.50 0.10 0.40 0.10 0.40 0.10 0.20 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	1.30 0.60 0.80 0.30 0.30	0.50 0.60 0.30 0.60 0.40 0.40	3.50 0.70 2.00 0.80 1.00 0.20	0.50	1.70 2 7.00 1.00 5 5.00 0.50	1.50 0.35 1.80 0.20 0.50 0.20	1.00 0.30 1.50 0.50 2.00 0.40	0.40 0.05 2 0.90 0.09 1	0.40 0.05 0.05 0.05 0.05 0.05	0.50 0.15 2 0.45 0.25 1 0.80 0.10	5.00 0.05	0.60 0.80	0.50 0.40 1.10 0.20	1.00 0.30	2 00
Average Average Average Length (m) Width (m) Depth (m) Slope	50 1.00 7	0.00	2.00 0.15	300 0.50 0.50 0.50 3 80	550 0.050 0.15 1 100 85 75 8.00 0.05 1 100	50 0.30 150 35 00 1100	500 15.00	80 0.50 0.05 1.00 1.00 0.05	150 4.50 0.10 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	350 7.50 0.10 12 100 500 500 500 11 100	300 1.50 0.10 75 0.40 0.10 4 100 0.40 0.20 4	100 1.30 0.70 60 0.60 0.80 40 0.30 0.50	200 0.50 0.60 100 0.30 0.60 100 0.40 0.40	100 3.50 0.70 150 2.00 0.80 75 1.00 0.20	256 1.00 0.40 300 2.00 0.50 1 1715 37.90 2 2500 35.00 2	224 1.70 2 60 7.00 1.00 5 50 5.00 0.50	80 1.50 0.35 300 1.80 0.20 325 0.50 0.20	200 1.00 0.30 300 1.50 0.50 75 2.00 0.40	100 0.40 0.05 2 100 0.09 0.08 1	30 0.50 0.05 1	120 0.50 0.15 2 300 0.45 0.25 1 150 0.80 0.10	150 0.50 0.05 1 1 325 0.50 0.05 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	50 0.60 0.80 30 0.70 0.80	320 0.50 0.40 45 1.10 0.20	300 1.00 0.30	200
Average Average Average Length (m) Width (m) Depth (m) Slope	50 1.00 7	0.00	2.00 0.15	300 0.50 0.50 0.50 3 80	0.50 0.80 0.15 0.05 0.05 0.05	50 0.30 150 35 00 1100	500 15.00	80 0.50 0.05 1.00 1.00 0.05	150 4.50 0.10 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	350 7.50 0.10 12 100 500 500 500 11 100	300 1.50 0.10 75 0.40 0.10 4 100 0.40 0.20 4	100 1.30 0.70 60 0.60 0.80 40 0.30 0.50	200 0.50 0.60 100 0.30 0.60 100 0.40 0.40	100 3.50 0.70 150 2.00 0.80 75 1.00 0.20	1.00 0.40 2.00 0.50 1 37.90 2 35.00 2	224 1.70 2 60 7.00 1.00 5 50 5.00 0.50	80 1.50 0.35 300 1.80 0.20 325 0.50 0.20	200 1.00 0.30 300 1.50 0.50 75 2.00 0.40	100 0.40 0.05 2 100 0.09 0.08 1	30 0.50 0.05 1	0.50 0.15 2 0.45 0.25 1 0.80 0.10	150 0.50 0.05 1 1 325 0.50 0.05 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.60 0.80	320 0.50 0.40 45 1.10 0.20	300 1.00 0.30	200 2 200
Average Average Average Length (m) Width (m) Depth (m) Slope	50 1.00 7	0.00	2.00 0.15	300 0.50 0.50 0.50 3 80	550 0.050 0.15 1 100 85 75 8.00 0.05 1 100	50 0.30 150 35 00 1100	500 15.00	80 0.50 0.05 1.00 1.00 0.05	150 4.50 0.10 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	350 7.50 0.10 12 100 500 500 500 11 100	300 1.50 0.10 75 0.40 0.10 4 100 0.40 0.20 4	100 1.30 0.70 60 0.60 0.80 40 0.30 0.50	200 0.50 0.60 100 0.30 0.60 100 0.40 0.40	100 3.50 0.70 150 2.00 0.80 75 1.00 0.20	256 1.00 0.40 300 2.00 0.50 1 1715 37.90 2 2500 35.00 2	224 1.70 2 60 7.00 1.00 5 50 5.00 0.50	80 1.50 0.35 300 1.80 0.20 325 0.50 0.20	200 1.00 0.30 300 1.50 0.50 75 2.00 0.40	100 0.40 0.05 2 100 0.09 0.08 1	30 0.50 0.05 1	120 0.50 0.15 2 300 0.45 0.25 1 150 0.80 0.10	150 0.50 0.05 1 1 325 0.50 0.05 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	50 0.60 0.80 30 0.70 0.80	320 0.50 0.40 45 1.10 0.20	300 1.00 0.30	200

Appendix G3 Locations of waterbodies investigated in the Jericho study area, 1996.

		18/otaubadu	LITM Coordinates
Zone Mine Operations	Area Lakes	Waterbody Carat Lake	12W 0477600 7320700
Willie Operations	Lakes	Jericho Lake	12W 0477650 7323600
		Interbasin One	12W 0478742 7323185
		Interbasin Two	12W 0478138 7321869
1		Lake C1	12W 0477524 7319381
		Control Lake	12W 0467150 7321150
	Streams	Stream C1	12W 0478200 7319800
		Stream C2	12W 0478650 7327750 12W 0478744 7321068
		Stream C2A Stream C4	12W 0475744 7321008
		Stream C6	12W 0476675 7322250
		Stream C8	12W 0475300 7320550
		Stream C9	12W 0474600 7319050
		Stream C10	12W 0477850 7321700
		Stream C11	12W 0478300 7321675
		Stream C12	12W 0478400 7321975
		Stream C13	12W 0478250 7322050
:		Stream C14	12W 0478150 7322150 12W 0479900 7325650
		Stream C15	12W 0479900 7325650
		Stream O1 Stream O2	12W 0479400 7325400
:		Stream O3	12W 0479100 7325400
		Stream O4	12W 0478450 7325150
		Stream O5	12W 0480200 7324650
		Stream O7A	12W 0478700 7324000
:		Stream O7B	12W 0481250 7329500
!		Stream O23	12W 0484125 7325000
		Stream O24	12W 0483705 7331466
		Stream O25 Stream O26	12W 0481269 7331006 12W 0481055 7327881
!		Stream O27	12W 0481033 7327001
Borrow Extraction	Lakes	Lake O1	12W 0480048 7318619
20,1011 2,41001011		Lake O2	12W 0479216 7322841
		Lake O3	12W 0479762 7322571
		Lake O4	12W 0479806 7324051
		Lake O5	12W 0479806 7324051
	Streams	Stream O5	12W 0480200 7324650
		Stream 06 Stream 06A	12W 0479975 7324675 12W 0479975 7325150
		Stream O9	12W 0479643 7323425
		Stream O10	12W 0479965 7323599
		Stream O11	12W 0479999 7323620
		Stream O12	12W 0480076 7323619
		Stream O13	12W 0480575 7323175
		Stream O14	12W 0480600 7323450
		Stream O15	12W 0480200 7324625
		Stream O16 Stream O17	12W 0479931 7322594 12W 0479818 7322428
		Stream O18	12W 0479010 7322420
: -		Stream O19	12W 0479125 7321625
		Stream O20	12W 0479950 7321525
		Stream O21	12W 0479451 7322677
<u></u>		Stream O22	12W 0479325 7322800
Tailings Impoundment	Lakes	Lake D4	12W 478714 7319095
Docking Facility		Lake D5	12W 480048 7318619
: 	01	Contwoyto Lake	12W 481757 7318682
	Streams	Stream B1	12W 482900 7319550 12W 481525 7318900
		Stream D1 Stream D2	12W 481525 7318900 12W 479200 7319075
		Stream D3	12W 479350 7320075
		Stream D4	12W 478556 7318626
		Stream D5	12W 478525 7318750
		Stream D6	12W 479230 7318796
		Stream D7	12W 479125 7318150
:		Stream D8	12W 479550 7318000
		Stream D13	12W 481500 7317600
		Stream E1	12W 480975 7317250
<u></u>		Stream F1	12W 480450 7316525

	1

APPENDIX H

METALS

																																																		** ** .			
Zn 0.05	19.60	14.20	12.90	14.30	14.60	16.60	12.70	14.00	14.30	13.50	15.80	13.00	12.70	15.60	14.50	14.60	13.60	15.40	6 6	13.40	14.30	15.00	12.20	17.50	15.30	12.20	14.60	141.00	187.00	192.00	132.00	177.00	200.00	155.00	171.00	163.00	160.00	134.00	159.00	148.00	60.20	85.10	93.10	87.40 87.80	81.50	75.10	111.00 92.80	91.30 95.30	77.30	94.30	06.99	79.60	04.70
> 0	v (· v ·	v v	v v	v	v v	۷ ۱	v v	v	vv	v	v v	v	v v	v	v v	v	۷ '	, v	v	v ı	, v	v	v	v v	v	V	0.7	1,2	0.7	v v	v	v v	۷ د	} v	v 6	v	v v	۷ ۱	v	vv	٧ ٧	0.6	v v	v	0.7	v v	v v	v v	9.0	, v	v v	v:
Ti 0.15	9.9	· v 6	5 V	v 030	g v	v v	v 5	 5 5 8	v	> 0	v	v	09.0	v v	0.30	v \	v	v 8	S v		v \$	2 v	v	v	v 0.80	v	080	1.70	9.4	0.50	2.30	3.10	1.00	۷ د	2.70	2 90	2.60	10.90	1.30	8 8	9. 4.	2.00	1.60	1.60	1.50	2.10	1.80	 1.50	1.80	9.4.6	3		
Sn 0.1	v v	· v ·	v v	v v	v	v v	٧١	v	v	v v	v	v v	v	v v	v	v \	v	٧.	, v	v	v 1	/ v	v	v	v v	v	v	v	۷ 5	2.5	v v	v	v F	٥ ٧	; v ;	6 v	v	۰ <u>۲</u>	v 1	· v ;	5 v	٧ ٧	· v	۰ ۲.0	٧	0.1	0.7 V	1.0 V	v v	, A .	, v	v v	v
Sr 0.01	0.24	0.22	0.24	0.69	0.51	0.27	0.22	0.68	1.43	0.19	0.18	0.74	0.23	0.23	0.19	2.41	0.25	0.35	2.49	0.30	0.36	2.14	0.71	0.64	0.31	0.37	0.38	0.72	10.1	1.47	0.90	2.86	1.35	0.94	0.49	0.56	0.49	5.85	0.34	0.69	0.64	0.88	0.82	0.93	0.54	96.0	2.11	2.04	0.99	1.83	0.22	0.23	2
Na 0.5	130.0	460.0	29.0	'62.0	120.0	0.80	320.0	0.020	080.0	730.0	710.0	200.0 530.0	363.0	030.0	220.0	20.080.0	530.0	730.0	560.0	190.0	390.0	160.0	960.0	430.0	190.0	0.866	590.0	7590.0	3700.0	3500.0	1100.0	1600.0	2200.0	7590.0	210.0	570.0	2	5610.0 0600.0	5760.0		4180.0	620.0	3380.0	660.0	1510.0	430.0	320.0	990.0	1360.0	0.066	420.0	200.0	20.0
Ag 0.01								•	53	3 5	-,			26.29			20.	20.7	, <u>e</u>	1 90.0	5.03	88	1.02	1.03	× 60		4 4		18.0	7.6 1:	0.10	7 22	75 1	7 48.0	13	1.44	2.82	0.42 6 1.21 1		18.	•	v v	3.03	> 6 3.12	•	5 v	Λ Λ 41 4	^ ^	v v	20.0	. v	v v i	10.0
1 : i	0 0			00	0		00		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	17900.0	0.00	0.000	0.00	0.00	0.00	18800.0	0.000	0.000	15800.0	2200.0	0.000	8800.0	0.00	9180.0	0.00	0.00	0.000	0.000	0.000	0.00	0.002	0.00		0		11300.0 15100.0		0 -		000	14100.0	2
7 Y C		000	0	00	0	9 0	0.0	0	0	- 0	ο.							0 0	0	_	0 0	0	0 21	0		0	00	0				0 0		00							- 0	00		00	_		0.0	00	0 ~	, E 5	200		
PO4 PO4 0.5	1140	1010	1140	1140	1150	11500	11200	10100	11800.	10800	11500.	9510)689	109001	10500	1300	11200	12500	13500	977(1170	12700.	1200	1260	12400.	1070	102	148	1940	17200	11400	22000	20100	13600	1370	1890	11400	23400.0	1380	1560	1010	15700	1480	13400	6780.0	1270	13700	14800	13900.	16200	2070	1510	13800
limits in ita Ao Ni 1 0.1	5 V	V (/ V	v v	v	v v	٧ ٧	/ V	٧ ١	9.0	0.7	, ,	v 8	7.0	0.2	v 2	٧	V 1	/ V	٧	v v	′ ∨	٧	۷ '	v v	٧		0.2	٧ ١	, v	v 6	V 1	V	v v	· v	v 7	Ξ	3.2	٧ ١	1.2		۰ °	0.2	vv	1.0	e v	0.2	v v	4.0		/ V '	v 2	1
Mo Mo 0.1	v v	· v ·	′ v	v v	v	v v	v v	′ v	v 1	· ·	v ·	, v	v ·	v v	v :	v v	· v	v v	, ,	v	· ·	· ·	٧	۷ ،	v v	۷ .	۷ G	0.1	6.0	5.4	0.7	0.0	0.7	0.6	7.1	9.0	= :	0.4	8.0	4.1	0.0	0.7	6.0	3 1.8	0.8	9.0	6.0 0	0.5	2 0.7	7.0 7	9.00	6 0.5	2
Ag Hg	1 550	1.100	1.250	2.100	0.750	0.750	1.00	0.850	1.150	1.250	1.400	0.900	0.400	0.7u 0.950	1.200	0.800	0.50(0.750	0.70	0.726	0.45	0.50	0.500	0.30	0.35(0.30(3 17(3.07	3.76	3.63	4.26(0 2.25	1.56	2.35	3.80	3.85	3.93	3 0.24 0 4.76(0 3.26	3.24	1.17	0 1.33	0 1.72	7 0.53 0 1.21(9 0.25	1.29	0 1.07	0 0.55	0 0.70	0 0.76	0.85	3 0.65 3 0.40	,
weight bas			, 0	0.33	0	9 0	0 0	0	0.71	0	0 0	50	0 0	0 0.29	0	0.40	0 0.29	0.48	1.10	0 0.51	0.40	101	0	0.61	o o													_														6.68	
on dry w Mg 0.05	1340.0	1240.01	1350.0	1390.0	1360.0	1360.0	1480.0	1150.0	1320.0	1260.0	1340.0	1150.0	1020.0	1300.0	1260.0	1330.0	1300.0	1390.0	1460.0	1300.0	1290.0	1470.0	1380.0	1550.0	1510.0	გ	1300.0	645.00	1040.0	833.00		1090.0		773.00	639.00	923.00	528.00	1540.0	660.00	840.0	498.00	870.00	722.0	795.00	486.00	640.0	908.0	750.01	652.0	840.00	857.0	560.00	000
in ug/g Pb 0.05	v	v v	, ,	v v	v	, v	v v	, v	٧ ١	, v	۷ ۱	/ v	v	v v	ν,	v	v	v	, A	v	v	· •	٧	۷ '	v v	v	v 0	٧	v v	r v i	5 5 7	v 1	, v	v v	· v ·	v 90	90.0	o.19	۷ ۱	· v :	Z v	v v	v	v v	ν '	v v	90.0 v	v v	v v	· v v	/ V 1	0.19	<i>i</i> .
trations Fe	3 8	12 =	12		12	~ თ	œα	5	2 5	29 2	၉ ေ	o (2	56	2 2	20	9 F	80	5 5	<u> </u>	56	4 %	12	4	20	e 1 5	10	16	5890	8500	7310	3130	3610	3650	2820	8370	9330	9010	2060	5280	8310	807	499 529	1080	783 558	1180	1190	1450 614	642 474	461	444	\$ 88 5	275	3
Concer Cu 0.05	0.94	1.53	0.74	0.87	1.19	0.83	0.93	0.90	0.87	1.04	1.10	0.93	1.25	0.87	0.79	66.0	0.92	1.05	0.97	1.15	5 5	1,23	0.87	1.17	0.87	0.91	11.4	6.69	2,00	118	34.9	38.3	93.2	105	139	133	136	24.2	131	83.6	4.97	5.81	8.71	10.5	8.02	7.79	9.25	8.40 8.48	7.17	9.40	4.85	7.63	3
Metal Co 0.5	v v	0.1 V	0.1	۰ 5	٧	, v	5. v	1.0	2. ,	, v	2. /	, <u>F</u>	۷ ۱	v v	0.1	<u>.</u>	0.1	5.0	0.1	٧ ;	0. v	v	0.1	0.1	o.1	v	v 9	0.5	1.7	55	0.9	9.0	0.7	4.0	9.0	0.0	0.7	1.1				0.5		0.5	0.3	0.4	0.0 4.4	0.5	4.0	0.7	4 v 7	0.3	4
Cr 0.5	v v	vv	· v	v v	v	, v	v v	v	v (, v	٧ ،	/ v	۷ ۱	v v	v	v v	٧	v v	٠,	v	v v	v	v	۰ ۷	v v	٧	v 60	9.0	0. 6	0.8	9.0	4.5	0.8	0.0	9.0	v 8	0.7	۸ ن	0.5	9.0	vv	۰ ۲	0.8	v v	v 6	0.7	0.8	v 9.0	v v	. v c	; - ;	4. ^	1
ca Ca	303 643	359	310	517 438	416	325	335	625	1250	283	312	380	282	335 261	316	879	277	394	1570	202	4 6 50 60 60 60 60 60 60 60 60 60 60 60 60 60	1210	481	470	7 7 7 7 8 7 7 8 7 8 7 9 9 9 9 9 9 9 9 9 9 9	277	1100	396	822	795	547	890	687	519 376	348	387	412	800	341	450	297	415	428	354 321	172	443	896 896	347	363 549	613	387	34 49	7
Cd 0.05	0.07	v v	v	v v	v	/ v	v v	v	v v	, v	v v	, v	0.13	/ v	۷ ۱	, v	v	v	· •	٧ ٠	vv	v	v	۷ ۱	, v	٧	v 1	3.82	5.99	4.24	0.80	1.51	2.14	3.38	4.13	4.53	4.52	5.32	3.96	2.60	0.47	0.76	0.96	0.13 2.06	0.72	0.97	1.46	1.44 0.26	0.29	0.31	0.57	0.09	2
B 0.5	· ·	v v	· v	8. v	v '	/ v	9. 0	v	v v	, v	9.0	, v	٧ ٧	, v	1.2	, v	v	vv	1.4	٧ ،	vv	6.0	1.2	v v	, v	٧	v	٧	v v	· • ;	c. v	0.7	/ v	v v	٧,	v v	2.2	5.2	٧ ١	v	v v	v v	v	v v	v 5	7 v :	ž V	v v	v v	vv	Έ;	0.8	2
Be 0.05					0		v v	v	v v	0.07	0.10	/ V	v 0	>	٧ ١	, 11		5 6		v 8	⊋	v	0.10	v 5			v	٧	v 6	} v	v v	٧ ٧	/ v	v v	٧.	v v	٧	v v	v \	· v	v v	v v	v	v v	v '	, v	v v	v v	v v	vv	' ' '	v v ·	,
Ba 0.01	0.08	o 05	0.0	0.04	0.04	0.03	v v	0.05	0.10	0.02	0.0	0.02	0.03	0.01	v 8	0.14	0.01	0.03	0.30	0.04	0.00	0.27	0.06	0.05	0.0	0.01	0.0		0.50	0.19	0.14	0.09	0.03	0.19 v	v 8	0.03	0.10	0.05	0.07	0.02	0.13	v v	v	0.13	0.08	0.23	0.52	0.40	0.15	ه د 10	0.05	0.03	,
As 0.05	7.0	0.07	· v	o.21	0.10	0.09	0.07	v	0.09	v	v 19	e v	0.40	⊋ v	0.15	- 5	v	0 14	٧	0.18	0.13	0.08	0.40	0.23	0.12	٧	0.14	0.81	0.55	v	0.30	0.32	2 v	0.37	0.56	0.95	0.79	0.74 4 ^	0.54	0.51	9 9 9	^ A	0.23	0.52	0.44	0.41	0.33	0.24	0.20	0.35	0.27	0.27 v v	2
Sb 7.0	, v	v v	٧	v v	٧ ١	, v	v v	v	v v	v	v v	٠.	v v	, v	v (, v	v	vv	v	٧ ،	v v	v	٧ ،	٧١	/ v	v	v v	v	v v	v	v v	٧ ١	/ v	v v	v	v v	v	v v	٧ ١	· v ·	v v	v v	v	v v	٧,	, v	v v	v v	v v	v v	· v ·	v v '	
₹ 0	, v	v v	v	v v	۷ ۱	v	v v	v	v	· v	v v	٧	v	, v	٧ ١	, v	v ·	v v	7	v ·	· ·	· ·	v :	v \	/ v	v	y 53	5 5	2 %	64 6	7 =	Ξ,	. E	æ £	27	- 22	23	s 1	37	8 9	2 12	5 =	8	3 0	۲,	2 ~ !	. e	9 79	4 0	4 =	: 10 1	N V '	,
Moisture H²O (%)	78.3	76.8	78.3	77.2	78.6	75.8	9.77	79.3	80.9	79.1	74.0	76.7	78.3	79.4	80.6	75.4	75.3	74.6	9.97	76.8	76.3	76.8	78.2	8.47	77.1	74.9	78.6	78.8	89.2	87.0	83.3	88.2	79.8	79.8	79.6	79.3	6	87.5	81.5	80.7	80.3	77.8	80.5	80.7	78.3	87.4	78.5	81.9	75.9	79.8	75.1	77.8	i.
Tissue Type								_			scle	Inscle	Muscle	scle	scle												Muscle								Liver	_		Ner Ner	i ve	, se	ē ē		ver	ve ve	ver	Ne ve	ver ver	ie ver	Je Ver	, ser	, ver	Liver	
								₹:	žŽ	Σ	ŽŽ	Σ	Ž	Ž	Ž	Ž	ž	Ž	Š	ž	Ž	Ž	Ž	Σž	M	M	رَ ﴿		J =		5 5	35	<u>ا</u> د د	= 5		د د		3 S	3 1	· '= :	<u>د</u> د	3 É		ت د	5					- I		3 3 3	-
Fork Length (mm)	475	520 410	481	428 580	420	451	546	490	488 619	488	443	482	465	488	506	532	477	424	469	465	475	455	464	396	462	445	510	475	520 410	481	280	420	451	546 490	488	488	,	443 482	465	88 8	484	532	407	424 469	465	475	492 464	396	358 462	445	461	340	}
ii aa il		K K						LKTR	X X	LKTR	LKTR	Ŗ	R F X	KTR	LKTR	NWH	NWH	I MAN	NWH	RNWH	SNAH S	NWH	RNWH	I MAIN	4NWH	RNWH	LKTR	LKTR	X X	E E	KTR R	LKTR	XX	XX XX	X S	X X		X X	LKTR F	LKTR.	RNWH	RNWH	RNWH	RNWH	RNWH	RNWH	RNWH	RNWH	RNWH	RNWH	RNWH	R N N I	1
و م م		379							398					404													-							_												392						2054	
S Su																																																					1
Laboratory Label	501-99A	501-97I. 501-100I	501-848	501-87A	501-941	501-83	187-196 01-79M E	501-80	501-74N	501-69	01-69M L 501-68N	501-73	501-75	501-78	501-70	501-101	501-98	501-95A	501-76	501-671	501-631	501-72	501-711	501-93	501-88	501-91	501-56	501-99	501-100	501-84	501-87	501-94	501-83	501-79	501-86	501-69	301-69L [501-73	501-75	501-78	501-102	501-10	501-92	501-95	501-67	501-82	501-71	501-71L 1 501-93	501-90	501-91	501 10.	501 105	3

0.00	12.1	13.6	12.4	13.1	12.80	10.10	12.00	12.10	15.90	13.80	15.70	14.90	13.00	13.40	10.60	14.90	13.70	13.10	14.00	12.70	13.10	11.60	12.00	12.80	16.60	14.20	11.90	14 20	15.00	120.00	160.00	128.00	7 189.00	9 155.00	211.00	150.00	118.00	169.0	171.0	123.0	166.0	132.0	151.0	130.0	92.30	100.0	159.0	96.60	91.80	369.70	98.20	788.7	95.60	74.07	68.70	74.90	82.90
5 0.6	<i>,</i> ,	v v	v v	v v	v v	v v		, v	v v	۷,	, v	V 1	, ,	~ `	20	00:	8 8	v	, ,	, v	30	9	٧ ،	v v	٧	٧	•		•	22	200	200	0 0 0 0	8	20	90	90	22	8 9	€ C	8 9	5 5	2.5	88	86	9:	9 2	8 8	88	8 8		86	8 8	6.5	88	96	5 5
0.1 0.15	v v :		0.70	vv	0.30	0.30		, v	v v	٧,	/ v	٧,	, _v	v 1	, ,	»	, v	v	v v	; , v	ö ,	ò v v	v 1	<i>,</i> ,	v	v	v v	· v	v	۸ ۸ 4. ر	i m v	٠ ×	ri si	ν,	v v	۸ 4	v v	. 6	4.	۸ ۸ ن دج	٠ ،	, v	v v	, v	^ ^ 4. v	· 69 ·	oi ~	ν.	^ ^ 4: 00	V 1	۸ ک <u>م</u>	v v	, v	v v	, v	۷,	v v
- [0.26			74	17	52 52	22.5	32.7	25 28	5.6	5 2	12	2 2	44.5	75	287	202	62	2 5	3 4	62	89 8	86.6	3 4	0.5	.64	38	4.2	.50	35.55	58	5.3	43	88	8 2	54	24. R	33	14.	38	.54	48	5.73	35	36	16.	1,12	980	.58	99.	25	77	.89	8.3	.63	1.13	53
	926.0 0.							925.0 0.		0.0		250.0 2.	0.0	0.0	280.0	0.0	904.0	10.0	0.00	0.00	1080.0 5	0.7	0.00	0 0 0	3.0	50.0	1000	1330.0	5.0 0	5850.0 0	10.0	0.07	0.00	0.0009	3080.0	1130.0 0	5920.0 1	90.06	90.0	90.0	50.0	70.0	0.08	6020.0	0.09	40.0	20.0	30.0	20.0	3430.0	0.00	70.0	90.0	40.0		160.0	4580.0
ľ							96	92.	101	141		-	-	. ,		•		•		136	, 0,	4 5	20,5	, v	× 77	113	, ,	7 25		25 58:		57 5370							49 39	07 46	96 54	45 49	56 60	_	2 2 3 4	90	17 34 34	48	88 88 84	20.29		02 62	8 8 8	98 39	2 4	02 51	
- 1	0.00 0.00 0.00						0.0	0.0	0.0		0.0									000	0.0	0.0	0.0		0.0	0.0	0 0	0.0	_	c	0	0.	- ~	0	0 -	-	0 0	٠.	0.00	11700.0	0.00	0.00	0 0	, - .	000	0.00	0.00	0.00	0 0	0 0	0	00	0	0,0	0.00	12500.0 0.	0.00
	19000.0																													11000.0		0 12200																									
	9620	8880	9250	9090	6900	6530	9080	8270	8280	9200	8990	9790	9660	10600	6920	12400	9480	10100	12500	1100(9720	8490	9380	1040	8990	1060	9440	10201	9940	1390	1320	1250	1300	1450	1400	1740	9750	1410	1250	726(7800	7710	7460	8300	1190	1310	2590	1300	2010	1220	1200	956(984	667	923(866	771
0.1	÷ v	vv	v v	v v	v v	vv	٧ '	/ v	vv	۷ ۱	/ v	۷ ۱	, v	٧ ٧	· v	v	v	v	v v	, v	v	v	v	v v	v	v	v	v	٧	0.6	٧	V	0.3	0.1	v v	v	v v	v	٧ '	vv	v 6	0.1	4.4	0.5	0.5	٧	v v	0.2	0.3 v	0.5	· v	0. 0	6.0	F. 7	, v	0.1	0.5
0.1	v v ·	vv	v v	v v	v v	v v	v ·	, v	v v -	v 1	, v	٧ <i>١</i>	/ V	v 1	v	v ·	v	٧	v v	, v	۷ .	v 1	v	v v	٧	v ·	v v	· v	٧	0.0	0.7	0.6	3 6	5.	4.0	3 0.5	4.0	0.0	0.7	0.7	0.7	10.0	0.0	0.7	0.0	7 0.7	0 1.0	9.0	0.8	0.6	3 0.6	0 07	0.10	0.00	0.5	0.4	0.6
0.005	1.120	0.528	0.759	0.792	0.966	0.626	0.660	0.726	1.020	0.957	2.210	1.220	00	00	. 0	0	0		0 0	0	0 0	0.177	0.231	0.297	0.231	0.231	0.462	0.429	0.330	0.310	0.190	0.070	0.260	0.180	1.50	0.166	1.400	0.120	0.160	0.460	0.260	0.340	0 0	0.200	00	0	0.65(·	0.09	0.07(0.48	0.10	0	00	00		0
٥١٥	0.54	50	0.20	0.38	0.25	0.43	0.70	0	50	0 0	0.38	0 0	ó	0.49	0	2	- 4	4-2	<i td="" ←<=""><td>0</td><td>2,0</td><td>0.32</td><td>0.38</td><td>0.49</td><td>0 0.62</td><td>0 1.51</td><td>0 0.41</td><td>0.41</td><td>0 0.54</td><td>15.1</td><td>4.80</td><td>7.00</td><td>8.04</td><td>12.9</td><td>- 4</td><td>0 18.2</td><td>23.0</td><td>13.7</td><td>6.16</td><td>7.76</td><td>4.33</td><td></td><td>4</td><td>-</td><td>7.86</td><td>7</td><td>0 25.7</td><td>٠,</td><td>0 9.74</td><td>0 14.0</td><td>3 8.80</td><td>6.75</td><td>) L</td><td>7.08</td><td>- 10</td><td>∓ u</td><td>5.18</td></i>	0	2,0	0.32	0.38	0.49	0 0.62	0 1.51	0 0.41	0.41	0 0.54	15.1	4.80	7.00	8.04	12.9	- 4	0 18.2	23.0	13.7	6.16	7.76	4.33		4	-	7.86	7	0 25.7	٠,	0 9.74	0 14.0	3 8.80	6.75) L	7.08	- 10	∓ u	5.18
	1300.00					996.00	1160.00	1130.00	1240.00	1290.00	1260.00	1250.00	1270.00	1360.00	1030.00	1810.00	1340.00	1420.00	1550.00	1510.0	1260.00	1220 00	1200.0	1360.0	1190.0	1370.0	1750.0	1290.0	1240.0	543.00	721.00	624.00	754.00	809.00	741 0	1050.0	588.00	615.00	650.00	469.00	512.00	616.00	444.00	502.00	731.00	649.00	1040.0	999	1110.0	738.00	679.00	577.01	546.0	506 00	626.0	492.0	545 0
3 6	0.24	51.0 V	0.16	0.22	v v	v v	0.12	, v	vv	v 1	/ v	41.0	0.22	0.26	ş v	v	v	0.14	v .	0.24	v	v 5	0.22	0.26	0.16	0.20	0.24	0.20	0.22	v v	v	v :	0.07	v	× 2	v	0.07	g v	v	v v	v	0.06	0.06	, v	v 0	0.08	0.19	٧	0.20	v 6	0.11	v v	· v	v \	/ V	v	v v
1	₹ ¢					5 5	4 6	5 4	9, 9	₽ 9	5 4	9 9	2 5	4 t	1 4	5 6	3 5	12	æ #	2 22	æ ;	<u>,</u>	4 0	5 5	54	2 5	17	4	22	3140	2950	2010	980	2790	1410	1780	803	3340	2030	4820	1770	5820	7780	2440	1400 918	546	1720	463	2250 617							394	
25	0.93	1.06	0.75	0.86	0.74	0.44	0.86	13.	0.58	0.71	0.58	0.60	0.84	1.17	0.68	0.95	0.68	1.15	0.91	0.93	0.70	0.70	0.86	1.28	1.30	1.06	0 0	1.19	1.06	107	97.0	56.3	188	46.5	10.3	92	4.34	85.3	232	717	128	44.8	49.5	76.4	6.00	7.60	10.2	10.5	7.50	9.99	7.50	7.78	8.72	7.48	6.46	7.15	7.60
3 5	± v •	v v	v v	v v	v v	v v	v	, v	v v	v 1	v	٧ ،	/ v	v v	· v	٧.	/ v	٧	vv	v	v	v v	٧ ٧	, v	٧	v	v v	v	٧	1.49	0.43	0.27	101	0.63	0.22	0.42	1,00	0.47	0.54	0.46	0.31	0.46	0.60	0.63	0.48	0.66	0.49	0.59	0.48	0.39	0.39	0.44	0.50	0.52	0.23	0.59	0.23
	/ v ·	v v	v v	v v	۷ د	vv	v 1	, v	v v	٧ ،	v	٧ ،	/ v	v	· v	9.0	, v	v	v	v	v	v v	v٧	v v	3.6	v	vv	v	5.6	6.0 V	0.7	0.8	3.0	1.7	1.7	9.0	4.2	0.7	1.1	9.0	0.5	5.7	1.0	1.3	0.8	1.7	1.24	Ö.	2.1	2.5	5	0.8	5 60	2.1	0.7	1.0	vv
25	494	531	452	1580 927	308	337	1040	484	527 677	505	486	1690	486	523	258	1860	3360	296	1880	509	2590	34/	454	518	999	1330	540	534	545	232	453	524	352	643	189	583	920	233	297	313	315	326	367	262	375	582	599	308	354 612	276	355	239	407	480	289	391	5 5
S	/ V ·	v v	vv	v v	v v	v v	٧ ١	· v	v v	v (v	v	, v	٧ ،	· v	٧ ،	, v	٧	vv	٧	v	۷ ۱	v v	v v	v	v	v v	v	٧	1.78	3.00	1.66	3.55	1.97	1.26	2.09	6.16	8.	1.66	3.34	3.48	2.52	2.48	1.88	1.27	0.39	1.64	0.23	0.66	0.31	0.57	0.58	0.52	0.21	0.97	0.20	1.78
60	/ v ·	vv	vv	v v	v v	vv	V 1	v	vv	٧ (v	٧ ،	· v	v	v	Ξ,	, v	v	7.7	v	v	٧١	v v	, v	0.7	9.0	v v	v	٧	vv	٧	v	S v	v	v	v	v v	, v	v	v v	٧ ١	/ v	٧ ١	, v	v v	٧	v 1	v	v v	v °	1 0	vv	v	v v	· v	v v	v v
3	/ v ·	v v	vv	v v	v v	vv	v 1	v	vv	v (v	v v	· v	v v	v	٧,	, v	٧	v v	v	٧.	v١	٧ ٧	, ,	٧	v	v v	v	٧	vv	٧	۷ ۱	v v	v	v 8	٧	9.19	, v	v	v v	v '	, v	٧ ١	, v	۰ ر 14	٧	v 0	v	v v	v v	v	vv	v	v \	′ v	v v	v v
500	0.03	0.02	0.02	0.10	0.02	0.03	0.04	0.0	0.04	٧ ،	0.02	0.10	v	0.02	0.02	0.22	0.53	0.18	0.28	90.0	0.57	20.0	90.0	0.0	0.10	0.26	0.00	0.02	0.04	0.03	0.05	0.04	0 0	0.0	0.03	0.07	0.47	0.0	0.02	0.03	0.04	0.06	0.10	0.0	0.0 4.0	0.02	0.08	0.10	0.07	0.17	0.02	0.0	0.09	0.18	0.08	0.13	0.0
200	0.15	v v	vv	v v	vv	vv	V 1	v	0.12	0.12	0.18	4 5		v	v	0.07	, v	v	vv	v	٧.	٧ ١	vv	/ V	٧	٧ '	v v	٧	V	1.28	0.46	0.75	2.68	1.08	13	0.51	7.50	0.40	1.08	0.68	0.55	1.14	0.69	0.31	1.89	7.10	7.05 4.67	0.27	1.32 8.25	0.26	3.94	0.45	0.33	1.78	0.62	0.39	0.51
5	/ v 1	v v	vv	v v	vv	vv	٧ ٧	v	vv	v v	v	v	· v	v	٧	۷ ۱	, v	٧	v v	· •	٧.	۷ ۱	vv	/ v	v	v	v v	v	٧	vv	٧	٠.	- v	٧	v	v	v	′ ∨	٧ '	v v	٧ ،	/ V	۷ ۱	/ V	v v	٧	vv	٧	v v	٧ ١	· v	vv	v	٧ ٧	, v	VV	v v
0,	/ V Y	vv	v v	v v	v v	v v	v 1	v	v	v v	v	vv	v	v v	v	v 1	/ v	٧	v v	· v	· ·	v \	v v	, v	v	v	v v	· v	v ;	2 5	23	5	47	54	S 02	46	2 5	3 5	5 5	5 15	5 5	3 5	53	ω	დ ჯ	2	ω ç	m !		40	о ч о		- w	ന്	. 6	ი Ի	~ 60
(%)	79.7	74.7	7.77	77.9	76.9	73.8	74.2	· ·	76.1	77.0	79.6	75.9	75.1	75.9	74.6	73.2	25.0	74.5	71.9	75.3	73.1	13.7	78.2	76.8	74.2	74.9	7.4.7	75.0	74.7	75.0	77.2	76.9	79.6	79.7	79.0 78.8	79.2	73.6	75.9	74.5	78.4	80.3	77.5	76.8	78.1	78.5	79.1	77.7	992	79.1	74.9	77.6	77.5	78.6	76.9	75.6	76.0	4.7
Type	Muscle	Muscle	Muscle	Muscle	Muscle	Muscle	Muscle	Muscle	Muscle	Muscle	Muscle	Muscle	Muscle	Muscle	Muscle	Muscle	Muscle	Muscle	Muscle	Muscle	Muscle	Muscle	Muscle	Muscle	Muscle	Muscle	Muscle	Muscle	Muscle	Liver	Liver	Liver	Live Live	Liver	Liver	Liver	Liver	i ve	Liver	Liver	Liver	Liver	Liver	Liver	Liver	Liver	Liver	Liver	Liver	Liver	Liver	Liver	Liver	Liver	Liver	Liver	Liver
Length (mm)	466	404	423	408 433	423	408	413		400	431	. i	473	406	438	428	375	423	346	440	321	335	382	629	431	336	336	332	440	413	473	424	\$ 5	410	408	433	410	8 6	413	486	420	400	431	473	406	438	375	423	346	440	321	382	423		336		332	440
KTD	X X S	X X	X X	KTR TR	X X	LKTR R	LKTR 072		Z Z Z Z	X X		XX	LKTR	ZNAT T	RNWH	RNWH	RNWH	RNWH	E ENWE	RNWH	RNWH	N N N	I WAI	RNWH	RNWH	RNWH	T ANNOT	RNW	RNWH	X X	LKTR	LKTR	LKTR	LKTR	KTR	LKTR	KZ R	KTR	LKTR	KTR	LKTR	Z Z Z Z	TXT.	KTR	RNWH	RNWH	RNWH	RNN	R N N N N N	RNWH	RNWH	RNWE	RNWH	RNWH	RNWH	RNWH	YNANA N
Number	992	984	1010	1011	1020	1022	1024		1040	1043		1045 1046	1047	586	066	993	966	1006	7101	1018	1026	250	1048	1050	1051	1052	1053	1067	1068	991	984	997	1010	1011	1019	1021	1022	1024	1031		1041		1045	1047	696		982		1015							1054	
_ 2		 E E :	Σ Σ	ΣΣ	ŞΣ	501-29M 501-33M	<u> </u>	J. :	 ∑ ∑	 S 3	≥:	2.2	≥ 2	<u>م</u> ج ج	×	 X		×	5 5	Σ	≅:	E	Ξ.		¥	W.	Z Z	W _S	Μ.	5 8	12	7 8	4 K	₩:	 ≓ æ		ಕ್ಷ	-	25	<u></u>	ᆏ	4 #			ਲੂ ।		 F 8	님	귤	 d =	길	<u> </u>	널	g =	1 2	501-54L 501-551	P. P.

Appendix H3 Metal concentrations in liver and muscle tissue samples collected from Contwoyto Lake, Jericho study area, 1996.

Decision Sample Species Fork Hisse High All Sh	7 t 5 t 2 t 2 t 2 t 2 t 2 t 2 t 2 t 2 t 2	Pb Mg	9 Mn 5 0.05	Hg	Wo	Ē	1		i	1	ć	i		
KTR 450 Muscle 70 71 0.71 0.75 0.71 0.75 0.7	10 0	05 0.00	5 0.05	1000							<u></u>	=	>	Zu
UKTR 490 Muscle 78.5 0.18 0.01 4.00 0.18 0.01 4.00 0.18 0.01 4.00 0.18 0.01 4.00 0.01 4.00 0.01 4.00 0.00 0.01	5 5	4440	,	0.005	0.1	0.1		_		_	0.1	0.15	0.5	0.05
Muscle 810	12	2	00 0.42	1.070	v	į,	1	0.0		Ľ	v	0.30	v	3.50
LKTR 481 Muscle 77.4		< 1040.	.00 0.37	1.630	v	v				_	v	0.30	ν	09.0
LKTR 481 Muscle 77.9 0.01 <td>51</td> <td>< 1040.</td> <td>.00 0.51</td> <td>0.857</td> <td>v</td> <td>, ~ v</td> <td></td> <td></td> <td></td> <td>_</td> <td>v</td> <td>0.10</td> <td>v</td> <td>2.80</td>	51	< 1040.	.00 0.51	0.857	v	, ~ v				_	v	0.10	v	2.80
LKTR 454 Muscle 758	12	< 1070.		1.500	v	٧		> 0.0	1070.0	_	0.1	0.10	v	2.20
LKTR 612 Mulsele 79 6 0.01 0.01 0.01 0.02 0.03 <	13	< 1110.		0.626	v	۷,		> 0.0	1200.0	_	v	0.20	v	2.50
LKTR 612 Muscle 746 30	4	< 1190.		0.598	v	у, У		v 0:0	1200.0	_	v	0.30	v	2.20
LKTR 436 Muscle 77.7	7	< 1310.		1.890	v	v		> 0.0	1240.0	_	v	0.50	٧	2.20
LKTR 484 Muscle 77.7 00 00 <td>16</td> <td>< 1370.</td> <td></td> <td>0.299</td> <td>v</td> <td>٠, د</td> <td></td> <td>> 0.0</td> <td>1320.0</td> <td>_</td> <td>v</td> <td>0.30</td> <td>v</td> <td>4.60</td>	16	< 1370.		0.299	v	٠, د		> 0.0	1320.0	_	v	0.30	v	4.60
LKTR 608 Muscle 76.3 c 0.09 0.01 c 177.0 c 0.07 LKTR 395 Muscle 76.6 c 0.01 0.03 c c 246.0 c 0.07 0.07 c 0.07 c 0.07 c 0.07 c 0.07 c 0.07 c 0.07 c 0.07 c 0.07 c 0.07 c c 246.0 c 0.07 c c 240.0 c c 240.0 c c 0.07 c c 240.0 c c 0.07 c c 240.0 c c 0.07 c c 0.07 c c 240.0 c c 0.07 c c 0.07 c c 0.07 c c 0.07 c c 0.07 c c 0.07 c c 0.07 c c 0.07 <	=	< 1270.		0.762	v	v		> 00	928.0	_	v	0.20	v	2.20
LKTR Abuscle c 0.10 0.01 c 207.0 c 0.07 Construction c 207.0 c 0.07 Construction<	Ф	< 859.0		1.240	v	۷		v 0.0	1390 C	_	v	010	v	9 23
LYTR 395 Muscle 766	-	926 >		1 100	v	v		v 00	1140		· v	5 6	٧	2 6
LKTR 495 Muscle 79.8 0.11 0.02 289.0 LKTR 684 Muscle 75.8 0.12 289.0 <td>5</td> <td>1340</td> <td></td> <td>0.408</td> <td>٠,٧</td> <td>٠,</td> <td></td> <td>, ,</td> <td>2620</td> <td></td> <td>′ \</td> <td>2 6</td> <td>, ,</td> <td>200</td>	5	1340		0.408	٠,٧	٠,		, ,	2620		′ \	2 6	, ,	200
LKTR 495 Muscle 75.8 c 0.12 0.12 c 100.0 c c 100.0 c c 100.0 c c 100.0 c c 100.0 c c 100.0 c c 100.0 c c 100.0 c c 100.0 c c 100.0 c c 100.0 c c 100.0 c c 100.0 c c 100.0 <td>; =====================================</td> <td>< 1210</td> <td></td> <td>0.816</td> <td>· v</td> <td>, , ,</td> <td></td> <td></td> <td></td> <td>_</td> <td>, v</td> <td>5 6</td> <td>, ,</td> <td>0.40</td>	; =====================================	< 1210		0.816	· v	, , ,				_	, v	5 6	, ,	0.40
LKTR 664 Muscle 75.8 c 0.01 c 197.0 c 0.07 LKTR 510 Muscle 78.1 c 0.13 0.02 c c 383.0 c c 117.0 c 0.09 c c 282.0 c c 117.0 c c 282.0 c c 282.0 c c 282.0 c c 282.0 c c 282.0 c c 0.09 0.05 c c 282.0 c c 0.09 0.05 c c 282.0 c c 0.09 c c 427.0 c c 0.09 c c 427.0 c c 0.09 c c 427.0 c c 0.09 c c 427.0 c c 0.09 c c 427.0 c c 0.09 c c 427.0 c c <td< td=""><td>; F</td><td>< 1240</td><td></td><td>0.952</td><td>· v</td><td></td><td></td><td></td><td></td><td></td><td>/ \</td><td>5 6</td><td>, ·</td><td>5.40</td></td<>	; F	< 1240		0.952	· v						/ \	5 6	, ·	5.40
LYTR 510 Muscle 79.1 0.13 0.02	Ξ.	0.070		200.0	· v	, v					, ,	2 6	, ·	8 8
LKTR 517 Muscle 78.5 0.15 0.04	o o	1340		0.843	′ ∨	, v					, v	04.0	v 1	200
LKTR 427 Muscle 75.9 0.14 0.05 2.4 721.0 0.6 0.09 0.03 235.0	α	1000		900	٠,	′ \					, ;	0.0	, .	200
LKTR 528 Muscle 75.9 0.09 0.03 295.0	٠ د	1930		0.367	, ,	, ,					- - -	00	۰,	0 0
LKTR 436 Muscle 77.2 0.05 427.0 <th< td=""><td>2 σ</td><td>1170</td><td></td><td>0.00</td><td>/ \</td><td>2 0</td><td>_</td><td></td><td></td><td></td><td>, ·</td><td>0.00</td><td>, ,</td><td>0.30</td></th<>	2 σ	1170		0.00	/ \	2 0	_				, ·	0.00	, ,	0.30
LKTR 461 Muscle 77.2 0.22 0.06 657.0	α	1130		0.00	٠.	3 1					/ \	2 0	, ,	54.7
LKTR 461 Muscle 77.4 0.12 0.03	, c	1480		0.000	′ ∨	′ ∨	_			_	٠ ١	0 0	, ·	2 6
LKTR 925 Muscle 81.1 0.15 0.02 267.0	, , –	> 918		0.503	· v	· v					′ \	2 6	, ·	200
LKTR 499 Muscle 77.2 0.00 <td>25</td> <td>1080</td> <td></td> <td>1.630</td> <td>v</td> <td>v</td> <td></td> <td></td> <td></td> <td>_</td> <td>, v</td> <td>, v</td> <td>/ V</td> <td>. 02</td>	25	1080		1.630	v	v				_	, v	, v	/ V	. 02
LKTR 330 Muscle 78.5 0.18 0.06	6	> 983.		0.544	v	v					v	0.20	v	0.70
LKTR 490 Liver 792 6.0 < 2.11 0.03 < 143 514.0 0.7 0.54 LKTR 4431 Liver 794 5.0 < 10.4	13	< 1340.		0.476	v	v				_	ν	0.30	v	3 30
LKIK 481 Liver 784 5.05 < 0.14 < 1.26 400 11 0.54 LKTR 454 Liver 84.7 9.0 < 4.53	_	İ	1	1.200	0.5	v	_				v	4.10	v	18.00
LKTR 494 Liver 11.0 < 3.96 0.09 < 2.02 600.0 13.058 LKTR 6612 Liver 81.7 91.0 < 7.50	_			2.580	9.0	٧	_			_	٧	5.50	v	41.00
LKTR 612 Liver 847 910 < 4.53 0.11 62.1 < 6.24 65.4 LKTR 4496 Liver 80.4 410 < 7.25	_			1.330	6.0	v	_			_	v	5.30	v	27.00
LKTR 456 1004 760 004 < 760 005 760 007 770 160 079 770 770 270 003 0.12 113 570 13 0.68 170 0.79 710 0.70 <t< td=""><td>_</td><td></td><td></td><td>1.320</td><td>8.0</td><td>٧</td><td>_</td><td></td><td></td><td>_</td><td>v</td><td>00.9</td><td>v</td><td>78.00</td></t<>	_			1.320	8.0	٧	_			_	v	00.9	v	78.00
LKTR 495 Liver 80.4 11.0 < 7.25 0.04 < 1.35 517.0 18 0.68 LKTR 496 Liver 83.7 11.0 < 2.75	_			2.600	0.7	v	_		_	_	v	6.40	v	62.00
LKTR 698 Liver 73.7 7.0 < 2.70 0.03 5.12 < 1.13 57.0 13 506 14 507 60 60 60 60 70	_			0.483	0.7	v	_			_	٧	5.70	v	32.00
LKTR 355 Liver 81.3 80 < 4.74 0.00				1.030	0.7	٧ .	_			_	v	4.30	v	63.00
LKTR 495 LIVER 80.2 × 4.74 0.07 0.05 × 2.19 363.0 18 0.54 LKTR 495 LIVER 80.2 × 2.77 0.01 × 2.55 543.0 17 0.04 LKTR 894 LIVER 80.2 × 2.07 0.01 × 2.55 543.0 10 0.64 LKTR 804 LIVER 80.2 × 80 × 1.76 0.03 0.09 × 2.72 412.0 × 0.72 LKTR 510 LIVER 78.1 6.0 × 7.85 0.09 × 2.72 412.0 × 0.72 LKTR 427 LIVER 80.7 15.0 × 11.8 0.06 × 11.1 18 545.0 13 0.49 LKTR 427 LIVER 80.7 15.0 × 11.8 0.06 × 0.06 0.17 3 618.0 2.1 0.86 LKTR 436 LIVER 80.4 10.0 × 17.8 0.05 × 0.17 1.0 0.86 LKTR 436 LIVER 84.5 10.0 × 17.8 0.05 × 0.17 1.0 0.86 LKTR 451 LIVER 84.6 11.0 × 5.55 0.07 × 159 42.0 15 0.87 LKTR 528 LIVER 84.6 11.0 × 5.55 0.07 × 159 42.0 15 0.87 LKTR 528 LIVER 84.6 11.0 × 5.55 0.07 × 159 42.0 13 0.87 LKTR 528 LIVER 84.9 12.0 × 3.88 0.01 × 119 426.0 19 0.41			•	1.700	4.0	, <u> </u>	_			_	v	520	v :	24.00
LKTR 455 Liver 81.2 47.2 2.24 0.04 2.24 1.05 1.04 1.0	1520 0	0.27 926.00	00 8.48	0.950	8 6	v ·	16600 10800.0	0.0 0.55	5 6660.0	0 1.28	v	0.4	9.0	164.00
LKTR 684 Liver 83.7 8.0 2.96 0.01 0.6 1.11 535.0 0.9 1.35 0.9 1.35 0.9 1.35 0.9 1.35 0.9 1.35 0.9 1.35 0.9 1.35 0.9 1.35 0.9 1.35 0.9 1.35 0.9 1.35 0.9 1.35 0.9 1.35 0.9 1.35 0.1 0.7 0.7 0.0 0.7 1.1 1.8 5.45 0.1 0.4 <td></td> <td></td> <td></td> <td>1 500</td> <td>0 0</td> <td>٠ ٢</td> <td></td> <td></td> <td></td> <td></td> <td>v \</td> <td>2.5 0.5 0.5</td> <td>v \</td> <td>94.00</td>				1 500	0 0	٠ ٢					v \	2.5 0.5 0.5	v \	94.00
LKTR 510 Liver 80.2 38.0 < 1.76 0.03 0.09 < 2.72 412.0 < 0.72 LKTR 517 Liver 78.1 6.0 < 786	_			4 330	9 6	i ^					٠.	8 6	, ,	11.00
LKTR 517 Liver 78.1 6.0 < 785 0.03 < 1.1 178 545.0 1.3 0.49 LKTR 427 Liver 80.7 15.0 < 11.8	_			2.080	8.0	v					v	3.00	2.0	39.00
LKTR 427 Liver 80.7 5.0 < 7.60 0.06 0.17 1.1 181 572.0 1.4 0.41 LKTR 528 Liver 82.7 15.0 < 11.8				1.170	0.7	^	_				v	5.50	v	32 00
LKTR 427 Liver 80.7 15.0 < 11.8 0.06 < 0.6 17.3 618.0 2.1 0.08 LKTR 432 Liver 82.2 8.0 < 1.72				1.220	8.0	٧	_			_	v	6.50	v	43.00
LKTR 528 Liver 82.2 8.0 < 1.72 0.05 < 259 421.0 6.5 0.75 LKTR 436 Liver 78.8 5.0 < 443	_			0.633	8.0	v	_			_	٧	9.20	v	47.00
LKTR 436 Liver 78.8 5.0 < 4.43 0.02 0.07 < 169 472.0 1.1 0.48 LKTR 461 Liver 18.6 11.0 < 5.55	_			1.680	0.1	8.6	_			_	v	4.00	٧	52.00
LKTR 461 Liver 84.6 11.0 < 5.55 0.07 < < 1.59 714.0 13 0.87 LKTR 461 Liver 76.7 6.0 < 3.68 0.01 < < 1.19 426.0 0.9 0.41 LKTR 52.5 Liver 84.9 12.40 < 6.30 0.11 < < 6.17 22.40.0 14 1.32	_			1.230	0.7	٠ ر	_			_	v	5.70	v	55.00
LKTR 461 Liver 76.7 6.0 < 3.68 0.01 < < 1.19 426.0 0.9 0.41 LKTR 525 Liver 84.9 24.0 < 6.30 0.11 < < 6.17 2240.0 1.4 1.32	_			1.170	6.0	٧	_			_	v	6.40	v	72.00
LKTR 525	_			0.967	9.0	v	_			_	v	3.40	٧	21.00
	_			4.750	1 .8	1.6	_			_	v	7.90	1.0	32.00
Liver 80.1 8.0 < 8.20 0.04 < < 1.57 439.0 1.4 0.69	2050 0	.15 752.		0.850	7.0	,- v	_			_	٧	6.00	v	55.00
LKTR 330 Liver 76.0 17.0 < 7.55 0.05 < < 1.48 790.0 1.8 0.38	901	.24 817.		0.600	9.0	v	_			_	v	6.70	v	31.00

Note: < = below detection limit; LKTR = Lake trout; RNWH = Round whitefish

APPENDIX ISTREAM CROSSING DATA

Appendix I1 Locations of streams investigated along the proposed all-weather route, Jericho study area, 1996.

Stream Crossing	UTM Coordinates	Stream Crossing	UTM Coordinates
1A	12W 0477200 7318150	29	12W 0474875 7298225
1	12W 0476850 7317425	30	12W 0472925 7298100
2	12W 0476650 7316850	31	12W 0472850 7298175
3	12W 0477875 7315050	32	12W 0472950 7298550
4	12W 0479180 7313556	33	12W 0472850 7298425
5	12W 0479200 7313700	34	12W 0472400 7298000
6	12W 0479300 7313500	35	12W 0472000 7297525
7	12W 0479038 7312595	36	12W 0472150 7297025
8	12W 0478986 7312223	37	12W 0472249 7296722
9	12W 0479000 7312150	38	12W 0473300 7296075
10	12W 0478750 7309550	39	12W 0473525 7295075
11	12W 0478550 7309275	40	12W 0473650 7294625
12	12W 0478250 7308850	41	12W 0473733 7294625
13	12W 0476600 7307950	42	12W 0473375 7294275
14	12W 0476550 7306425	43	12W 0473700 7294150
15	12W 0476550 7306650	44	12W 0473375 7294175
16	12W 0476075 7306100	45	12W 0473900 7293500
17	12W 0476150 7306100	46	12W 0473150 7293025
18	12W 0476248 7306075	47	12W 0473450 7292400
19	12W 0476425 7304500	48	12W 0473600 7292150
20	12W 0476356 7304157	49	12W 0474900 7292025
21	12W 0476521 7303988	49A	12W 0475025 7291850
22	12W 0476519 7303191	50	12W 0479747 7290617
23	12W 0476750 7301875	51	12W 0477350 7290000
24	12W 0476163 7300746	52	12W 0479425 7289725
25	12W 0475925 7300250	53	12W 0480417 7289943
26	12W 0475825 7300500	54	12W 0482678 7290004
27	12W 0475275 7299700	55	12W 0487500 7292500
28	12W 0475725 7299400		