JERICHO DIAMOND PROJECT AQUATIC STUDIES PROGRAM (1999)

Prepared for

TAHERA CORPORATION

1408 Crown Street North Vancouver, British Columbia V7J 1G5

Prepared by

R.L. & L. ENVIRONMENTAL SERVICES LTD.

17312 - 106 Avenue Edmonton, Alberta T5S 1H9 Phone: (780) 483-3499

March 2000

ACKNOWLEDGEMENTS

The authors would like to thank Mr. Bruce Ott, Environmental Manager of Tahera Corporation for providing

information and guidance during the study. The assistance provided by Mr. Mike Johnson is also gratefully

acknowledged. Special thanks go to Michelle Tanguay and Heather Murdock of Tahera Corporation for their hard,

conscientious work during the field programs.

Timely assistance provided by Mr. Scott Wytrychowski of Kitikmeot Geosciences Ltd. is also appreciated.

Jeff Maurice (Scientific Licences for Department of Fisheries and Oceans) provided the necessary collection permit

required to complete this project.

Phytoplankton, chlorophyll a, and stream periphyton samples were identified by David Beliveau of Bio-Aquatics

Research and Consulting Ltd. and zooplankton samples were identified by Mariola Jankowicz of the University of

Alberta.

Detailed quantification of stream characteristics was undertaken by Mike Miles and Shane Moore of M. Miles and

Associates Ltd. Their hard work and diligence allowed accurate assessments of stream conditions. Sincere thanks

goes to both individuals for their efforts in the field and office. We also appreciate the use of photographs provided

by M. Miles and Associates Ltd.

The following R.L. & L. Environmental Services Ltd. personnel participated in this program:

Richard Pattenden

- Project Manager and Principal Author

Alison Little

- Fisheries Biologist, Field Crew Leader and coauthor

Chantal Pattenden

- Biological Technician and Field Crew Leader

Gordon Latham

- Biological Technician

Rob Stack

- Biological Technician

Mike Braeuer

- Biological Technician

EXECUTIVE SUMMARY

The Jericho Diamond Project was initiated by Tahera Corporation in 1995 based on the discovery of a kimberlite pipe situated 420 km northeast of Yellowknife in the Northwest Territories (Nunavut Territory as of April 1, 1999). In anticipation of possible development of this deposit, Tahera has completed several years of baseline environmental inventories in the area. R.L. & L. Environmental Services Ltd. was contracted to complete the aquatic biota component of these baseline inventories.

The 1999 aquatic studies program had four major objectives. The first was to undertake synoptic surveys to characterize waterbodies not previously sampled. The second was to complete detailed surveys of waterbodies that may be removed from production by the proposed development. The third objective was to initiate an environmental effects monitoring program to collect predevelopment baseline data. The fourth and final objective of the 1999 program was to collect data to assist in the development of compensation strategies for potential residual effects caused by the project. This document is a comprehensive data report that summarizes the information collected in 1999 for Objectives 1 and 2.

Synoptic Surveys

Synoptic surveys were completed on five lakes (Carat Lake, Lakes C1, C2, C3, and D10) and five streams (Streams C1, C2, C2A, C3, and C19) in the Jericho Study Area.

Carat Lake is the largest waterbody (271 ha) in the Jericho Study Area. It consists of three basins and exhibits an irregular shoreline. There is one major inlet tributary that enters Carat Lake at its extreme western end (from Lake C3) and one outlet stream (to Jericho Lake) at its northeast end. There are several small ephemeral tributaries, including Stream C1, which enter Carat Lake at the southeast corner. Carat Lake is deep; the mean depth of this waterbody is 10.1 m and the maximum recorded depth is 32 m.

Lake C3 (103 ha), which was the second largest waterbody surveyed, has a central basin associated with an elongated bay that extends to the west. This waterbody receives major inputs from streams that enter at its southern and the northwestern corners. Several intermittent streams flow into Lake C3, including Stream C3, which drains Lake D10. A preliminary bathymetric survey indicated that the main basin consists of two smaller sub-basins; the southern area exhibits a maximum depth of 14 m, while the northern area is 15 m deep.

Lakes C2 (1 ha) and C1 (3.5 ha) are small waterbodies situated in the headwater area of Stream C1 immediately west of the Jericho Diamond Project. There are no well-defined inlet or outlet streams to either lake, however, the outlet to Lake C1 appears to be the primary water source for Stream C1. Bathymetric assessments indicate that each lake

consists of a single basin; Lake C2 is very shallow (maximum depth of 2 m), while Lake C1 is much deeper (maximum depth of 12 m). Given these characteristics, it is likely that Lake C2 freezes to the bottom during winter.

Lake D10 is located to the south of Carat Lake and to the east of Lake C3. This waterbody has no defined inlet stream, but drains to the west, via Stream C3. This small waterbody (9 ha) is elongated along an east-west axis and has three basins. Because Lake D10 is relatively shallow (maximum depth of 8.0 m and mean depth of 1.9 m), only a small percentage of the lake is not subjected to freezing.

During early summer (19 to 27 July), temperature profiles of Lakes C2, C3 and D10 indicated uniform mixing (i.e., isothermal conditions). However, Lake C1 likely stratifies during the open water period.

All surveyed streams were small and it is suspected that they freeze to the bottom during winter. The average channel width was <1.7 m, the average maximum depth was <0.29 m, and water flows were 0.007 m³/s or less at all sampled sites. Barriers to fish passage were present in all systems. Stream C1 contains the most distinct barrier; a 5.3 m high rock wall located 815 m upstream from Carat Lake. A variety of channel types were documented including single and multiple braids, as well as dispersed flow (i.e., lack of well-defined stream banks). Substrates consist primarily of two types: very fine and coarse materials (i.e., silt/sands and cobble/boulders).

Stream water temperatures closely tracked air temperatures. Continuous monitoring in Stream C1 indicated that water temperatures warmed rapidly in spring and by late June reached a maximum of 12.3°C. Water temperatures then fluctuated between 5 and 10°C during the rest of the open-water period.

In general, concentrations of water quality constituents were low in sampled lakes and streams. This was true for turbidity($\leq 1.10\,\text{NTU}$), total alkalinity ($\leq 13\,\text{mg/L}$), and total dissolved solids ($\leq 20\,\text{mg/L}$). Stream and lake pH values were between 6.5 and 7.5. Total phosphorus concentrations ranged from 0.002 to 0.007 mg/L and showed no spatial pattern. The TKN concentrations in lakes tended to have slightly higher values (range of 0.17 to 0.48 mg/L) compared to streams (range of <0.05 to 0.29 mg/L). Nitrite/nitrate-N concentrations were generally low at most sites; they ranged from <0.006 to 0.072 mg/L. The only exception occurred at Stream C1, where nitrite/nitrate-N concentrations were 1.200 and 0.350 mg/L. Total carbon concentrations ranged from 4.0 to 8.7 mg/L.

Components of the nonvertebrate community that were sampled during the synoptic survey included periphyton, phytoplankton, zooplankton, and benthic macroinvertebrates. The periphyton and phytoplankton assemblages in surveyed waterbodies were simple and indicative of oligotrophic systems. Periphyton chlorophyll a concentrations were $\leq 5.5 \,\mu\text{g/cm}^2$ at all sites and AFDM values, although more variable, were also low ($\leq 63.9 \,\text{mg/cm}^2$). Similarly, phytoplankton chlorophyll a, biovolume, and density values were all low.

Zooplankton exhibited some variation between lakes in terms of community biomass and density, but values were low. In general, cladocera (water fleas) was the dominant taxonomic group in terms of biomass. Within this group, *Holopedium gibberum* was the most important species. Rotifers, particularly *Conochilus unicornis*, *Kellicottia longispina*, and *Keratella cochlearis*, were the most abundant zooplankton species. Due to their small size, rotifers did not contribute a large amount to zooplankton biomass.

Benthic macroinvertebrate groups encountered in surveyed lakes included copepods, chironomids, hydracarinas, nematodes, oligochaetes, ostracods, pelecypods, and turbellarians. This taxonomic composition was indicative of a homogenous substrate dominated by fine sediments in lake environments. Both the profundal and littoral benthic macroinvertebrate communities were dominated by a few taxa; copepods and chironomids were numerically abundant. In general, densities and numbers of taxonomic groups were greater in the littoral zones than in the profundal zones.

Most sampled lakes in the Jericho Study Area supported populations of lake trout, round whitefish, and Arctic char. Lake trout was the predominant species with Arctic char and round whitefish being less numerous. Notable exceptions were Lake C2, which contained no fish, and Lake D10 which supported only one fish species: slimy sculpin. Lake C1 also supported a simple fish community consisting of lake trout and slimy sculpin. Several fish species were encountered in sampled streams (Arctic char, lake trout, slimy sculpin, and burbot), but fish numbers were very low.

The biological characteristics of fish populations in the study area indicated that they were slow growing, late maturing, and dominated by older age-classes. Lake trout, Arctic char, and round whitefish tended to exhibit bimodal length-frequency distributions. Their feeding habits were related to species-specific feeding habits and the most abundant food item available. Zooplankton was the dominant food group identified in fish stomachs, although trichopterans and fish were also consumed. Although round whitefish consumed a variety of food items, zooplankton was also the dominant food group. Other food items consumed by this species included oligochaetes, trichopterans, gastropods, and pelecypods.

Limited recapture data for tagged fish made it difficult to assess movement patterns of fish. However, characteristics of the watercourses connecting the major waterbodies in the study area suggested that large numbers of fish do not undertake extensive movements within the drainage.

Lake trout and Arctic char in prespawning and spawning condition were recorded in both Carat Lake and Lake C3 during fall. Because few of these fish were spawning females, it is difficult confirm whether sampled sites were in fact used as spawning areas.

The amount and quality of fish habitat available to fish differed between inventoried waterbodies. The shoreline areas of lakes were dominated by low slope areas and by cobble-boulder substrates, which are characteristics that provide an abundance of potential spawning areas for lake trout, Arctic char, and round whitefish. The same shoreline characteristics that provided an abundance of spawning habitat also contained rearing habitat for fish. But, there was a paucity of aquatic macrophytes, a feature that enhances the quality of rearing habitat along shoreline areas.

Surveyed streams provided limited habitat for fish populations originating from study area lakes. The primary reasons were their small size, ephemeral water flow, and poorly defined channels.

Detailed Surveys

The detailed surveys completed in the Jericho Study Area were designed to collect scientifically defensible data from waterbodies that may be removed from production by the proposed development. The specific tasks to be completed for each waterbody included estimates of fish density, quantification of fish habitat, and assessment of the trophic status.

Fish catch rates in most waterbodies targeted for detailed assessment were too low to warrant an estimate of fish density. These included Lakes C1, C2 and D10 and Streams C3 and C19. Stream C1 did support a sufficient number of fish to allow an estimate of fish abundance.

Inventories conducted in 1995, 1996, spring 1998, and 1999 all documented the occurrence of fish in Stream C1. Species recorded included Arctic char, Arctic grayling, burbot, lake trout, round whitefish, and slimy sculpin. Young-of-the-year and smaller juvenile fish consistently dominated the fish community in Stream C1; no adults were ever recorded. Although a large portion of Stream C1 was inventoried each year, fish were recorded only in the lowermost 100 m section of the stream.

A density estimate was generated for fish residing in the lowermost section of Stream C1. Densities ranged from 5 ± 2 fish/100 m for burbot to 54 fish/100 m for slimy sculpin. Arctic char was the dominant char species $(30 \pm 4 \text{ fish/100 m})$, followed by a lower number of lake trout $(15 \pm 12 \text{ fish/100 m})$. These data suggest that several fish species use Stream C1 during the open water period. The numbers of fish recorded varied between years, but the estimates of abundance generated in 1999 suggested that densities could exceed 15 fish/100 m.

Several waterbodies targeted for detailed habitat assessments had limited or no value as fish habitat (Lakes C2 and D10, and Streams C3 and C19). The remaining waterbodies (Lake C1 and Stream C1) contained habitat that was sufficient to support fish. Due to the small size of Lake C1 and its simple physical characteristics detailed habitat surveys were not undertaken in this waterbody.

Stream C1 is a complex system that has been modified by exploration activity in the Jericho Diamond Project Area. It contains 10 reaches, which exhibit variable physical characteristics. High gradient reaches contained narrow channels and flowing water; the low gradient reaches exhibited dispersed areas of ponded water with trace flows. Reach 9 is a barrier to fish passage; it consists of a 5.3 m rock wall. Substrate types in most reaches were dominated by cobble and boulder substrates, with gravel substrates being widely distributed but much less abundant. High gradient reaches were dominated by RIFFLE and/or RUN type habitats, while low gradient reaches were primarily FLAT and DISPERSED type habitats. Although there was a larger area of potential fish habitat upstream of the impoundment, the downstream sections had a higher habitat complexity.

Oligotrophic waterbodies are characterized by low nutrient levels, which hampers primary production. These characteristics in turn, limit the productive potential of fish communities that reside in these waterbodies. The trophic status of selected waterbodies was characterized by examining nutrient levels, biomass indices of primary producers (chlorophyll *a*), and an assessment of the potential for fish production.

Nutrient concentrations were very low in all surveyed waterbodies and these values were consistent with results of previous work in the Jericho Study Area. Variation in chlorophyll a concentrations and the absence of a clear temporal pattern, made it difficult to identify a single value as being representative of peak production for either phytoplankton or periphyton. However, the data did indicate that primary productivity was very low. Chlorophyll a concentrations documented during this study were at the lower spectrum of primary production in freshwater systems.

The potential fish production was found to be severely limited in the waterbodies examined. Fish yield ranged from 0.24 kg/ha in Lake C2 to 0.86 kg/ha in Lake C1. Due to the extreme environmental conditions experienced by fish residing in these lakes (i.e., colder water temperature regimes and short open water periods), the potential yield in these waterbodies is likely much lower. Based on this information, one can conclude that the surveyed waterbodies exhibit a very low trophic status and can be considered oligotrophic.

TABLE OF CONTENTS

Page #
ACKNOWLEDGEMENTS
1.0.12.10 (1.2.22.0.22.11.11.11.11.11.11.11.11.11.11.11.11.
EXECUTIVE SUMMARY iii
LIST OF TABLES xiii
LIST OF FIGURESxv
1.0 INTRODUCTION
1.1 BACKGROUND
1.2 STUDY PURPOSE AND OBJECTIVES
1.3 STUDY AREA
1.4 TIMING AND LOGISTICS OF SAMPLING
1.1 Thanks That Looks fless of Stain Lines
2.0 METHODOLOGY
2.1 FIELD SAMPLING
2.1.1 Physical Environment
2.1.1.1 Lake Morphometry
2.1.1.2 Limnology and Water Quality
2.1.1.3 Stream Discharge
2.1.2 Nonvertebrates
2.1.2.1 Periphyton
2.1.2.2 Phytoplankton
2.1.2.3 Zooplankton
2.1.2.4 Benthic Macroinvertebrates
2.1.3 Fish
2.1.3.1 Backpack Electrofishing
2.1.3.2 Gill Netting
2.1.3.3 Fyke Net
2.1.3.4 Minnow Traps
2.1.3.5 Density Estimates
2.1.3.6 Biological Characteristics
2.1.4 Fish Habitat
2.1.4.1 Lakes
2.1.4.2 Streams
2.2 OFFICE ANALYSES
2.2.1 Physical Environment
2.2.1.1 Lake Morphometry
2.2.1.2 Water Quality
2.2.1.3 Stream Discharge
2.2.2 Nonvertebrates
2.2.2.1 Periphyton
2.2.2.2 Phytoplankton
2.2.2.3 Zooplankton
2.2.2.4 Benthic Macroinvertebrates
2.2.3 Fish
2.2.3.1 Ageing
2.2.3.2 Calculations
2.2.4 Fish Habitat
3.0 SYNOPTIC SURVEYS

4.	4.3.1 Nutrient Concentrations 4.3.2 Primary Production
4.	
	3 TROPHIC STATUS
	4.2.3 Summary
	4.2.2 Habitat Types in Stream C1
	4.2.1 Physical Characteristics of Stream C1
4.	2 FISH HABITAT
	1 FISH DENSITY
	TAILED SURVEYS
	3.4.3 Summary
	3.4.2.3 Stream C19
	3.4.2.2 Stream C3
	3.4.2.1 Streams C2 and C2A
	3.4.2 Streams
	3.4.1 Lakes
3.	4 HABITAT AND HABITAT USE
	3.3.6 Summary
	3.3.5 Fall Spawning
	3.3.4 Fish Movements
	3.3.3 Feeding Habits
	3.3.2.3 Round whitefish
	3.3.2.2 Arctic char
	3.3.2.1 Lake trout
	3.3.2 Biological Characteristics
	3.3.1.2 Streams
	3.3.1.1 Lakes
	3.3.1 Species Composition and Abundance
3.	3 FISH
_	3.2.4.2 Summary
	3.2.4.1 Community Structure
	3.2.4 Benthic Macroinvertebrates
	3.2.3.3 Summary
	•
	3.2.3.1 Biolitass 3.2.3.2 Density
	3.2.3.1 Biomass
	3.2.3 Zooplankton
	3.2.2.3 Summary
	3.2.2.2 Community Structure
	3.2.2.1 Biomass and Density
	3.2.1 Phytoplankton
	3.2.1.3 Summary
	3.2.1.2 Community Structure
	3.2.1.1 Biomass and Density
٥.	3.2.1 Periphyton
3	2 NONVERTEBRATES
	3.1.4 Water Quality
	3.1.3 Stream Characteristics
	3.1.1 Lake Morphology 3.1.2 Lake Limnology

PLATES APPENDIX A APPENDIX B APPENDIX C APPENDIX D APPENDIX E	METHODOLOGY PHYSICAL CHARACTERISTICS NONVERTEBRATES FISH DETAILED SURVEY DATA

LIST OF TABLES

	Page #
Table 1.1	Waterbodies investigated and tasks completed during the aquatic studies program in the Jericho Study Area, 1999
Table 2.1	Water chemistry constituents and their detection limits, Jericho Study Area, 1999
Table 2.2	Length-weight regression equations used to calculate zooplankton weights
Table 3.1	Morphometric characteristics of surveyed lakes in the Jericho Study Area, 1999
Table 3.2	Depth characteristics of surveyed lakes in the Jericho Study Area, 1999
Table 3.3	Summary of physical characteristics of inventoried streams during summer in the Jericho Study Area, 1999
Table 3.4	Biovolume, density, number of taxa, and chlorophyll <i>a</i> values for phytoplankton samples in lakes of the Jericho Study Area, 1999
Table 3.5	Biomass, density, and number of taxa values for zooplankton samples in lakes of the Jericho Study Area, 1999
Table 3.6	Density of benthic macroinvertebrates groups in samples collected at littoral and profundal zones of selected lakes in the Jericho Study Area, 1999
Table 3.7	Species composition of fish sampled from lakes in the Jericho Study Area, 1999
Table 3.8	Species composition of fish sampled from streams in the Jericho Study Area, 1999 56
Table 3.9	Length-weight regression equations and mean condition factors for lake trout sampled during summer and fall from lakes in the Jericho Study Area, 1999
Table 3.10	Age-length relationships for lake trout, Arctic char, and round whitefish sampled from selected waterbodies within the Jericho Study Area, 1999
Table 3.11	Length-weight regression equations and mean condition factors for Arctic char sampled during summer and fall from lakes within the Jericho Study Area, 1999
Table 3.12	Length-weight regression equations and mean condition factors for round whitefish sampled during summer and fall from lakes within the Jericho Study Area, 1999
Table 3.13	Number of fish encountered and catch-per-unit-effort values during fall spawning surveys in the Jericho Study Area, 1999
Table 3.14	Summary of lakeshore habitat characteristics recorded for sampled waterbodies within the Jericho Study Area, 1999
Table 3.15	Summary of habitat types identified during summer in inventoried streams in the Jericho Study Area, 1999
Table 3.16	Fish habitat quality ratings for sampled streams within the Jericho Study Area, 1999 71

Table 4.1	Waterbodies investigated and tasks completed during detailed surveys in the Jericho Study Area, 1999
Table 4.2	Number of fish recorded in Stream C1 according to age-class, Jericho Study Area, 1995, 1996, spring 1998, and 1999
Table 4.3	Summary of stream characteristics in reaches of Stream C1 in the Jericho Study Area, 1999.
Table 4.4	Summary of habitat types in reaches of Stream C1 in the Jericho Study Area,1999
Table 4.5	Comparison of discharge in two channels of Stream C1 during spring in the Jericho Study Area, 1999
Table 4.6	Summary of chlorophyll <i>a</i> concentrations of phytoplankton and periphyton samples collected three times from selected waterbodies in the Jericho Study Area, 1999 87

LIST OF FIGURES

	Page #
Figure 1.1	Location of Jericho Study Area, 1999
Figure 1.2	Waterbodies sampled in the Jericho Study Area, 1999
Figure 3.1	Sampled Waterbodies, Jericho Study Area, 1999
Figure 3.2	Waterbodies sampled for bathymetry in the Jericho Study Area, 1999
Figure 3.3	Bathymetric map of Carat Lake, Jericho Study Area, 1999
Figure 3.4	Preliminary bathymetric map of Lake C3, Jericho Study Area, 1999
Figure 3.5	Bathymetric map of Lake C1, Jericho Study Area, 1999
Figure 3.6	Bathymetric map of Lake C2, Jericho Study Area, 1999
Figure 3.7	Bathymetric map of Lake D10, Jericho Study Area, 1999
Figure 3.8	Limnology Sample Sites, Jericho Study Area, 1999
Figure 3.9	Dissolved oxygen and temperature profiles, and transparency of lakes in the Jericho Study Area, 19 to 27 July 1999
Figure 3.10	Daily water temperatures in Stream C1 from June to September 1999
Figure 3.11	Water Quality Sample Sites, Jericho Study Area, 1999
Figure 3.12	Concentrations of selected water quality constituents in samples collected from lakes and streams in the Jericho Study Area, 1999
Figure 3.13	Nonvertebrate Sample Sites, Jericho Study Area, 1999
Figure 3.14	Density, number of taxa, chlorophyll <i>a</i> and AFDM values for periphyton samples in lakes and streams of the Jericho Study Area, 1999
Figure 3.15	Percent density for major taxonomic periphyton groups in lakes and streams of the Jericho Study Area, 1999
Figure 3.16	Percent biovolume and density of major taxonomic phytoplankton groups in lakes of the Jericho Study Area, 1999
Figure 3.17	Percent biomass and density for major taxonomic zooplankton groups in lakes of the Jericho Study Area, 1999
Figure 3.18	Percent density of major benthic macroinvertebrate taxonomic groups at littoral and profundal sites in selected lakes of the Jericho Study Area, 1999
Figure 3.19	Average catch-per-unit-effort values for fish captured during gill net sampling in lakes during summer and fall within the Jericho Study Area, 1999

Figure 3.20	Relative abundance of fish encountered in streams during synoptic surveys using backpack electrofishing, Jericho Study Area, 1999
Figure 3.21	Length-frequency distribution of lake trout, Arctic char, and round whitefish in Carat Lake, Jericho Study Area, 1999
Figure 3.22	Length-frequency distribution of lake trout, Arctic char, and round whitefish in Lake C3, Jericho Study Area, 1999
Figure 3.23	Percent frequency of occurrence of food items encountered in stomachs of lake trout, Arctic char and round whitefish captured from lakes in the Jericho Study Area, 1999 64
Figure 3.24	Fall gill net sites sampling sites in the Jericho Study Area, 1999
Figure 4.1	Waterbodies that recieved detailed surveys in the Jericho Study Area, 1999
Figure 4.2	Estimates of fish density in Stream C1 in August 1999, Jericho Study Area
Figure 4.3	Stream C1, Jericho Study Area, 1999
Figure 4.4	Gradient profile of Stream C1, Jericho Study Area, 1999
Figure 4.5	Nutrient concentrations in selected waterbodies in the Jericho Study Area, 1999

1.0 INTRODUCTION

1.1 BACKGROUND

The Jericho Diamond Project was initiated by Tahera Corporation (formerly Lytton Minerals Ltd.) in 1995 based on the discovery of a kimberlite pipe adjacent to the southern shore of an unnamed lake (locally known as Carat Lake).

In anticipation of the possible development of this deposit, Tahera Corporation completed baseline inventory programs in 1995 and 1996. This involved collection of data on meteorological conditions, water quality, hydrology, wildlife, and aquatic biota. R.L. & L. Environmental Services Ltd. was contracted to complete the aquatic biota component of the baseline inventory programs, which focused on the aquatic community within the Carat Lake drainage in the immediate vicinity of the deposit. The information from the aquatic inventories were presented in two reports entitled "Jericho Diamond Project Aquatic Studies, 1995 and 1996" (RL&L 1995, 1997).

As part of the ongoing baseline inventory program for the Jericho Diamond Project, R.L. & L. Environmental Services Ltd. initiated field investigations in spring 1998 to address data gaps associated with existing baseline information. However, after the initial spring inventory, the 1998 program was terminated. In 1999, the aquatic studies program was reinitiated and R.L. & L. Environmental Services Ltd. was contracted to undertake additional field investigations.

1.2 STUDY PURPOSE AND OBJECTIVES

The purpose of the aquatic studies program was to collect information in preparation of an environmental impact assessment. There were four major study objectives, each of which had its own specific objectives as follows:

- 1) Complete synoptic surveys to collect descriptive data from waterbodies not previously sampled:
 - to describe the physical characteristics (morphology and water quality) of waterbodies;
 - to describe the abundance, distribution and biological characteristics of nonvertebrate communities (benthic macroinvertebrates, zooplankton, phytoplankton, and periphyton);
 - to describe the seasonal abundance, distribution, and biological characteristics of fish species in the study area, as well as the habitat used by these fish; and,
 - to assess the importance of waterbodies that may be impacted by development to fish populations residing within, immediately downstream or upstream of the development.

- 2) Complete detailed surveys to collect scientifically defensible data from waterbodies (lakes and streams) that may be removed from production by the proposed development:
 - to develop density estimates for fish;
 - to quantify the amount of fish habitat; and,
 - to quantify the trophic status of these waterbodies.
- 3) Initiate an environmental effects monitoring program designed to collect scientifically defensible predevelopment baseline data for selected components of the aquatic biota (and abiota) from waterbodies immediately downstream of potential contaminant sources and from control sites not impacted by development as follows:
 - background levels of sedimentation;
 - species composition, density, and productivity of periphyton;
 - species composition and density of benthic macroinvertebrates; and,
 - background concentrations of metals in tissues of fish.
- 4) Collect scientifically defensible data that can be used as a basis for compensation as follows:
 - physical characteristics of high quality fish habitat to be used as a template for habitat enhancement; and,
 - nutrient status of selected waterbodies to ascertain the potential for nutrient enrichment.

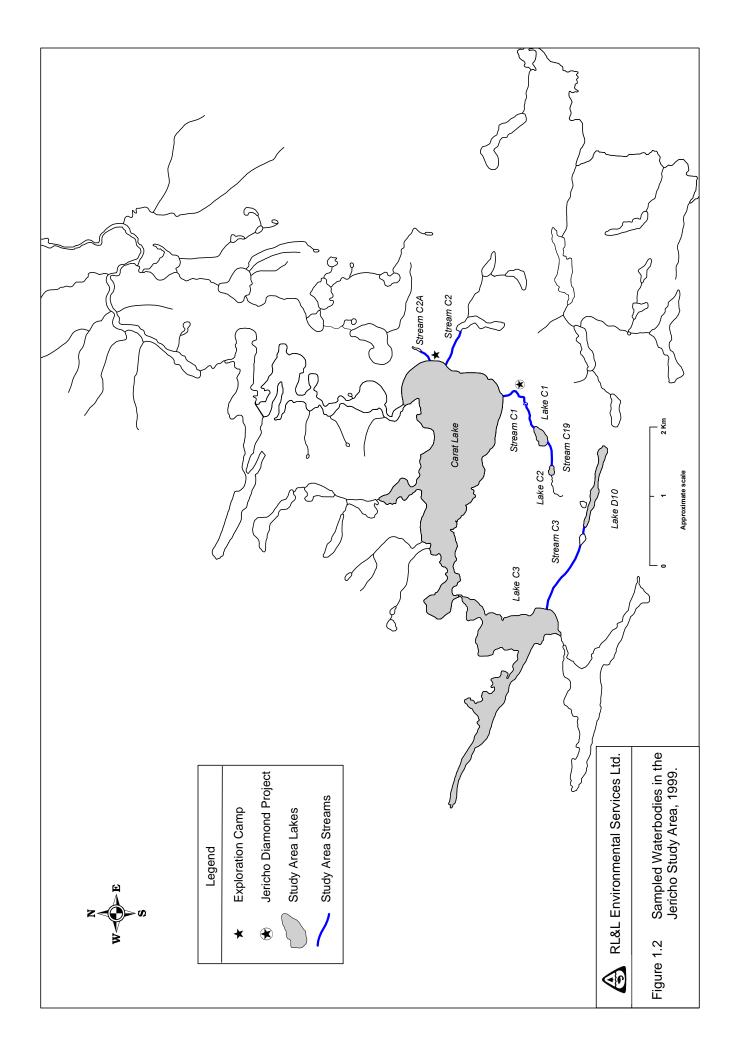
This document is a comprehensive data report that summarizes the baseline information collected in 1999 (Objectives 1 and 2) with selected comparisons to previous work (e.g., 1998 investigations). Information pertaining to the monitoring and compensation programs (Objectives 3 and 4) will be submitted as a separate addendum to this report.

1.3 STUDY AREA

The study area is located approximately 420 km northeast of Yellowknife in the general vicinity of Echo Bay Mines Ltd. Lupin production facility. The Jericho study site is situated 50 km north of Lupin (66° 00' N, 111° 29') (Figure 1.1).

The study area (referred to as Jericho Study Area) encompasses lakes and streams in the immediate vicinity of the Jericho Diamond Project Site (Figure 1.2 and Table 1.1). Waterbodies selected for investigation in 1999 and the study tasks in each waterbody, were based on three criteria:

- the potential for adverse effects from the development;
- the relative importance of the waterbody to the aquatic biological system, and:
- work not previously undertaken on a particular waterbody.


Table 1.1 Waterbodies investigated and tasks completed during the aquatic studies program in the Jericho Study Area, 1999.

		Waterbody ^a							
Category	Task	Carat Lake	Lake C1	Lake C2	Lake C3	Lake D10	Stream C1	Stream C3	Stream C19
Synoptic	Lake Characteristics								
Survey	Morphology	ps ^b	✓	✓	✓	✓			
	Limnology	ps	✓	✓	✓	✓			
	Stream Characteristics								
	Structure and Discharge						1	✓	✓
	Temperature						1	✓	✓
	Water Quality	ps	✓	✓	✓	✓	1	✓	✓
	Nonvertebrates								
	Zooplankton	ps	✓	✓	ps	✓			
	Phytoplankton	ps	✓	✓	ps	✓			
	Periphyton	1	✓	✓	✓	✓	1	✓	✓
	Benthic Macroinvertebrates	ps	✓	✓	✓	✓			
	Fish								
	Species Composition and Abundance	1	✓	✓	✓	✓	1	✓	✓
	Biological Characteristics/Feeding Habits	1	✓	✓	✓	✓	1	✓	✓
	Movements	1	✓	✓	✓	✓	1	✓	✓
	Habitat Characteristics	✓	✓	✓	✓	✓	1	✓	✓
Detailed	Fish Abundance		✓	✓		✓	✓	✓	✓
Survey	Fish Habitat Characteristics		✓	✓		✓	1	✓	✓
	Trophic Status								
	Nutrient Level		✓	✓		✓	1	✓	✓
	Phytoplankton Standing Crop		✓	✓		✓			
	Periphyton Standing Crop		✓	✓		✓	1	✓	✓

^a Unless otherwise specified, the survey included tributaries associated with the waterbody.

b Previously sampled.

1.4 TIMING AND LOGISTICS OF SAMPLING

The 1999 field program was conducted on a seasonal basis (spring, summer, and fall). The spring session, which was conducted between 8 and 15 June, was designed to determine fish use of streams for spawning and rearing, and to establish sampling sites for the summer and fall sessions.

The summer field period commenced on 13 July and was completed on 3 August, and involved several sampling components. Tributary investigations included collection of fish and habitat data from streams and lakes, as well as collection of periphyton and water quality samples from selected locations. Lake work involved collection of limnological data, and samples of phytoplankton, zooplankton, periphyton, and benthic macroinvertebrates. Fish species distribution and abundance were investigated and a tagging program was undertaken in an attempt to assess fish movements between waterbodies and to develop density estimates for selected species in some waterbodies.

The fall session (31 August-7 September) involved documentation of fish distribution and abundance in lakes, as well as identification of potential spawning areas.

Access to the site was by fixed-wing aircraft from Yellowknife. Accommodations were at the Tahera Corporation exploration camp located on the east shore of Carat Lake or at the Lupin Mine owned by Echo Bay Mines Ltd. Transportation of personnel and equipment to sampling sites was provided by helicopter.

2.0 METHODOLOGY

2.1 FIELD SAMPLING

2.1.1 Physical Environment

2.1.1.1 Lake Morphometry

Bathymetric surveys of selected lakes were conducted in summer 1999. The surveys were carried out using a Lowrance (Model X16) echo sounder, which provided a graphic output of depth measurements. The resulting depth database was merged with the digital location data generated from transect locations identified on the digitized maps.

2.1.1.2 Limnology and Water Quality

To document the limnology and general water quality characteristics of waterbodies in the study area, water chemistry, water temperature (°C) and dissolved oxygen concentrations (mg/L) were measured at selected locations. At lake sites, a H20 Hydrolab with a Surveyor3 Data Logger was used to record vertical profiles of water temperature, oxygen, pH, conductivity, and turbidity. Oxygen and temperature were also measured in selected waterbodies using an Oxyguard Handy Beta dissolved oxygen-temperature meter. Water transparency was measured to the nearest 0.1 m using a standard Secchi disk (20 cm diameter). Additional parameters measured at the water surface included conductivity (Oakton TDS Testr meter) and pH (Oakton pHTestr 2 meter). Due to cold water temperatures the pH meter malfunctioned, therefore, the pH data collected for that period were discarded.

Water temperature was continuously monitored from one stream (Stream C1) during the open water period (mid-June to mid-September). This provided a database of seasonal changes and daily temperature fluctuations. An Onset Optic StowAway TempTM thermograph was deployed to electronically record water temperatures at 30 minute intervals.

Water samples were collected during summer at selected waterbodies to document existing water quality characteristics. Stream water samples were collected from approximately 0.1 m below the water surface (surface grab). Lake water samples were collected at established sites using a prewashed 4 L Van Dorn bottle submerged to a depth of 1 m. Polyethylene gloves were worn during water collection to prevent contamination of the samples. Appropriate premeasured preservatives were added to the samples (if needed) and the samples were placed on ice and shipped to Enviro-Test Laboratories in Edmonton for analyses within 48 hrs of collection.

As part of the quality assurance / quality control (QA/QC) program, a water sample was split (i.e., collected from the same site but labelled as different sites) and submitted to the lab as a blind control. In addition, a sample consisting of distilled water was submitted for analyses. These QA/QC procedures were designed to document possible contamination of the samples from the bottles or the laboratory process.

2.1.1.3 Stream Discharge

Stream discharge was measured at selected stream locations to characterize the seasonal variation in the availability and quality of fish habitat. Velocity was recorded with a direct-readout meter (Swoffer Model 2100); readings were taken along a tag line positioned perpendicular to the flow. Water depth and mean column velocities (at 0.6 depth) were measured at vertical stations located along the cross-section, each of which encompassed no more than 10% of the water flow (Buchanan and Somers 1969).

In addition to the measurements of discharge conducted by the study team, continuous monitoring of discharge and water levels at key sites in the Jericho Study Area were carried out by Tahera Corporation, and M. Miles and Associates Ltd.

2.1.2 Nonvertebrates

2.1.2.1 Periphyton

The periphyton communities in lakes and streams were sampled during summer to assess the algal community composition, and to measure chlorophyll *a* and ash-free dry mass (AFDM). To ascertain productivity levels of selected waterbodies, additional chlorophyll *a* and ash-free dry mass (AFDM) samples were collected from selected locations (total of three at each site) throughout the open water period.

Each sample consisted of a composite of five scrapings following the methods described in Charlton et al. (1981) and Hickman et al. (1982). Each scraping (4 cm²) was collected from a stone, selected at random, from the lake or stream bottom. Samples used for algal identification and enumeration were placed in individually labelled 20 mL dark containers and preserved with 5% acid-Lugol's solution. Shortly after collection, two drops of 100% formalin were added to each of these samples to prevent growth of bacteria and fungi. Samples destined for chlorophyll *a* analysis were filtered (5 mL) onto Whatman GF/C filter paper, covered with anhydrous MgCO₃, and frozen. Samples for AFDM were subsampled in the laboratory, from the acid-Lugol's preserved samples.

2.1.2.2 Phytoplankton

Phytoplankton were collected from lakes once during summer to characterize the community (species composition and chlorophyll *a*). Samples were collected from the euphotic zone, which is equal to the depth of 1% light penetration (approximately two times the Secchi depth). A sample consisted of a composite of five discrete vertical collections within this zone, which were made using a weighted plastic tube. In lakes that were shallower than two times the Secchi depth, phytoplankton hauls encompassed the entire water column to 1 m above the lake bottom (to avoid contamination of the sample with sediment). Samples were placed in labelled 500 mL containers, preserved with 5% acid-Lugol's solution, and stored in the dark. Three drops of 100% formalin were added to each sample to prevent growth of bacteria and fungi during storage. Prior to preservation, samples destined for chlorophyll *a* analysis were filtered (5 mL) onto Whatman GF/C filter paper, covered with anhydrous MgCO₃, and frozen. Samples for AFDM were subsampled in the laboratory, from the acid-Lugol's preserved samples. Equipment was thoroughly

rinsed before and after sampling at each site to prevent contamination. To ascertain productivity levels of selected lakes, additional chlorophyll *a* samples were collected from selected locations (total of three at each site) throughout the open water period.

2.1.2.3 Zooplankton

To characterize the zooplankton community in study area lakes, zooplankton samples also were collected from lakes once during summer. Each sample consisted of a composite of five vertical hauls, each of which were taken from a depth that was equal to the euphotic zone (approximately two times the Secchi depth). In lakes that were shallower than three times the Secchi depth, zooplankton hauls encompassed the entire water column to 1 m above the lake bottom (to avoid contamination of the sample with sediment). Zooplankton collections were made with a Wisconsin plankton net constructed with Nitex® mesh (net mouth diameter 130 mm; 0.064 x 0.064 mm mesh). To prevent predation by cyclopoid copepods, each sample was immediately preserved in 5% formalin and stored in labelled 500 mL polyethylene bottles. Equipment was thoroughly rinsed before and after sampling at each site to prevent contamination.

2.1.2.4 Benthic Macroinvertebrates

Benthic macroinvertebrates were sampled once from sites located in littoral (< 5.0 m depth) and profundal (> 5.0 m depth) zones of selected lakes during summer. The samples were used to characterize the nonvertebrate community in each of these zones. An Ekman grab sampler (aperture area equal to 0.023 m²) was used to collect a composite of three grabs for each sample. Samples were then sieved through a 0.243 mm mesh net to remove excess sediments, placed in labelled polyethylene sample bags, and preserved in 10% formalin.

2.1.3 Fish

Fish sampling focussed on determining species composition, relative abundance, and seasonal use of lakes and streams. In addition, captured fish of selected species not required for other aspects of the program (fish tissues) were tagged using individually numbered Floy anchor tags in an attempt to ascertain movement patterns and to develop density estimates. The type of sampling technique employed was dependent on the habitats sampled and size-classes of fish targeted.

2.1.3.1 Backpack Electrofishing

Shallow-water habitats in streams and lake margins were sampled during spring and summer using a Smith-Root Type XII high output backpack electrofisher. The electrofisher operator waded along the banks and sampled in the vicinity of suspected fish holding areas (undercut banks, boulder cover, etc.). The netter, who was positioned immediately downstream, collected the stunned fish and placed them in a holding bucket. Recorded information at each sampled site included UTM coordinates, date and time of day, water temperature and conductivity, distance sampled (m), sampling effort (s), electrofisher settings, and the number and species of fish captured or observed.

2.1.3.2 Gill Netting

Variable-mesh standard gill net sets were employed to sample deep-water habitats in lakes during the summer and fall field sessions. Each standard gill net set was comprised of 15.2×1.8 m panels of 2.5, 3.8, 6.4, 8.9, 11.4, and 14.0 cm mesh sizes (stretched measure). These sets were used to sample a wide range of fish size-classes and to allow comparison of catch rates. Set times were kept short (less than 2 h) to minimize capture mortality; occasionally overnight sets were employed to collect fish for tissue samples (see Section 3.3.1).

During summer, a variety of habitats were sampled. During fall, sampling sites were chosen based on their potential as spawning habitat for lake trout, Arctic char, and round whitefish. Pertinent data recorded at each gill net site included set/pull time, set location/orientation, water depth, and substrate type.

2.1.3.3 Fyke Net

A modified Arctic fyke net was utilized to sample near-shore areas of Carat Lake near the outlet of Stream C1. The fyke net consisted of two trap nets (to determine direction of movements), two 15 m wings, and a 30 m lead to shore. The traps were 3.7 m long and 0.9 m wide, contained two throats (15 × 25 cm each), and were constructed of 1.27 cm dark grey knotless nylon mesh. Wings and lead were constructed of 2.54 cm dark grey knotless nylon and were 1.7 m deep. The fyke net was held in place by metal stakes driven into the lake bottom. The fyke net was checked daily and the following information was recorded: water temperature, set duration, the number and species of fish captured in the eastbound and westbound trap compartments.

2.1.3.4 Minnow Traps

To capture smaller size-classes of fish in habitats not effectively sampled by gillnetting, standard minnow traps (gee type) baited with cat food were used in rocky shoreline areas. Dimensions of standard gee traps were 0.4 m length x 0.2 m diameter with an aperture of 0.02 m. Data recorded at each site included set/pull time, location/orientation, water depth, and substrate type.

2.1.3.5 Density Estimates

An estimate of population size was generated for fish using the lowermost reach of Stream C1. A multi-pass removal-depletion method described by Zippin (1958) was utilized to develop the estimate. Sampling methodology involved placement of block nets (0.5 cm mesh; stretched measure) across the channel at upstream and downstream ends of the site to prevent fish movement into or out of the area. A backpack electrofisher was then used to thoroughly sample the enclosed area. The multi-pass removal-depletion method requires a minimum of three removal runs to generate an accurate density estimate. Each removal run consisted of an upstream pass through the enclosed area. Captured fish were placed in a holding tank located at the downstream end of the enclosed section. All fish were identified, enumerated and measured prior to their release downstream of the lower block net.

2.1.3.6 Biological Characteristics

All captured fish were identified to species. Data recorded for each fish included fork length (to the nearest 1 mm), weight (to the nearest 5 g), sex, and maturity. An appropriate ageing structure was also collected (Mackay et al. 1990) from a representative sample of captured fish. Data were recorded on standardized record sheets to facilitate data analyses in the laboratory.

To determine feeding habits, stomach contents of fish that succumbed during sampling were analysed in the field using the method described by Thompson (1959), which is a modification of the numerical method used by Hynes (1950). Each stomach was examined and evaluated for fullness, and allotted a designated number of fullness points (i.e., 20 points for a full stomach and 0 points for an empty stomach). After points were allocated for the degree of fullness, the stomach was opened and the points allotted to individual food categories based on their volume. To account for the presence of empty stomachs, values of zero were incorporated into the analysis.

2.1.4 Fish Habitat

2.1.4.1 Lakes

The shoreline habitat characteristics of major lakes in the study area were described using a standardized habitat classification system developed by R.L. & L. Environmental Services Ltd. (Appendix A1). The classification system categorized shoreline habitat into discrete habitat types based on two variables: slope and substrate type. Lake habitat assessments were accomplished by circumnavigating each lake by boat. In addition to categorizing lake shoreline into habitat types, important features such as high quality rearing and spawning areas were identified based on visual assessments by qualified field personnel.

2.1.4.2 Streams

The physical habitat available to fish in study area streams was examined during spring and summer to ascertain their importance to fish (habitat quality). Surveys were undertaken using a variety of methods. The physical habitat provided by streams was described using a classification system specifically developed for this purpose by R.L. & L. Environmental Services Ltd. (Appendix A2). The classification system categorizes stream habitat into discrete habitat types (e.g., Run, Pool, Riffle). Once the stream was described using this system, several parameters were quantified. Cross-sectional transects within the stream channel were used to measure water depth, water velocity, substrate type, instream cover and stream width. Velocity was measured using a Swoffer Model 2100 digital flow meter and water depths were measured using a calibrated wading rod. Substrate characteristics were recorded according to the modified Wentworth Classification System (Appendix A3).

A detailed habitat survey was conducted on Stream C1 to quantify habitat characteristics, including its longitudinal profile, unique features, physical characteristics, and the area (m²) of habitat types. The stream was surveyed using a Nikon DTM 5 total station in conjunction with a DR2 datalogger (± 30 mm). A survey grid was based on three benchmarks and two control points. One person operated the survey instrument, while a second person traversed

the stream with a survey rod and prism. The banks of the channel were surveyed at approximately 2 m intervals, while the channel thalweg was surveyed at 2 to 3 m intervals. Unique features such as stream reaches, the berm, fish barriers etc. were identified.

2.2 OFFICE ANALYSES

2.2.1 Physical Environment

2.2.1.1 Lake Morphometry

Morphometric characteristics of the study area lakes (surface area, shoreline length, island area, and perimeter) were calculated from digitized maps (generated from 1:50,000 scale N.T.S maps) using the MapInfoTM software package. Lake area calculations were obtained by using the MapInfoTM software package. Shoreline development indices were calculated using the following formula (from Wetzel 1983):

Shoreline Development =
$$\frac{\text{Shoreline Length}}{2\sqrt{\text{(pi \cdot Surface Area)}}}$$

To generate bathymetric maps, the depth database generated during the field survey was merged with the digital location data generated from transect locations identified on digitized maps. These x, y, z data were then analysed by Vertical MapperTM software, which generated isobaths at 0.5 m contour intervals. The only exception to this procedure was for Lake D10. Tahera Corporation completed the field survey and provided a digital copy of the data for analyses. The computer-generated isobaths were then visually assessed and corrected in cases where the shallow water contours did not closely agree with the conditions identified in the field. Lake area calculations were obtained by using the MapInfoTM software package. Lake volumes were calculated using the following formula (Wetzel 1983):

$$Volume = \frac{h}{3} \left(a_1 + a_2 + \sqrt{a_1 \cdot a_2} \right)$$

where h is the vertical depth of each stratum, a_1 is the area of the upper surface, and a_2 is the area of the lower surface of the stratum whose volume is to be determined.

2.2.1.2 Water Quality

The water chemistry constituents measured in the Jericho Study Area and their detection limits are listed in Table 2.1.

Table 2.1 Water chemistry constituents and their detection limits, Jericho Study Area, 1999.

Constituent	Unit	Detection Limit	Constituent	Unit	Detection Limit
Conductivity	μS/cm	0.2	Total Dissolved Solids	mg/L	1
Total Alkalinity	mg/L	1	Total Hardness	mg/L	1
Carbonate (CO ₃)	mg/L	1	Hydroxide	mg/L	1
Calcium	mg/L	0.05	Total Kjeldahl-N	mg/L	0.05
Bicarbonate	mg/L	1	Ammonia-N	mg/L	0.005
Magnesium	mg/L	0.01	Total Phosphorus	mg/L	0.001
Potassium	mg/L	0.01	Dissolved Phosphorus	mg/L	0.001
Sodium	mg/L	0.1	Ortho-Phosphorus	mg/L	0.001
Chloride	mg/L	0.05	Total Carbon	mg/L	0.5
Sulphate	mg/L	0.05	Total Organic Carbon	mg/L	0.5
Reactive Silica	mg/L	0.003	Total Inorganic Carbon	mg/L	0.5
Turbidity	NTU	0.1	Cation/Anion Balance	%	1
Total Suspended Solids	mg/L	3			

2.2.1.3 Stream Discharge

Stream discharge (m³/s) was determined using the mid-section method utilized by the United States Geological Survey at gauging stations to calibrate the stage-discharge relationship. This method is described in detail in Buchanan and Somers (1969).

2.2.2 Nonvertebrates

2.2.2.1 Periphyton

In the laboratory, the periphytic algal samples were processed as outlined in Lund et al. (1958). Samples were first mixed and then subjected to serial dilutions (generally 0 to 1000 fold dilutions depending on algal and organic debris in the original sample). Subsequently, 1 to 10 mL subsamples were dispensed into sedimentation chambers. After a 12 h settling period, the basal area of each chamber was scanned qualitatively with an inverted LietzTM microscope to identify the best dilution factor for subsequent quantitative analyses and to obtain a comprehensive species list. Once the appropriate dilution factor was established, taxonomic groups within the sample were identified and enumerated.

Taxonomic keys of Smith (1950), Prescott (1970), and Webber (1971) were used for species identification. Counts were made at a magnification of approximately 450× along horizontal transects across the diameter of the chamber; a minimum of 200 algal units were examined. Species that were encountered, but not enumerated during routine transect counts, were recorded as present.

To identify and enumerate diatoms, subsamples were treated with a mixture of concentrated sulphuric acid, potassium dichromate, and hydrogen peroxide followed by repeated washes in distilled water. The cleaned frustules were then dried on cover glasses and mounted in StoraxTM.

Chlorophyll *a* analysis was conducted on all five replicates using the spectrophotometric-acetone extraction method described by Moss (1967a, 1967b). The AFDM subsamples were removed from the five replicate acid-Lugol's preserved samples and filtered onto pre-washed and pre-weighed WhatmanTM GF/C filters. They were subsequently dried (at 105°C for 24 h) and weighed. The dried samples were then ashed in a muffle furnace (at 550°C for 1 h) and cooled in a desiccator. The difference between dry mass and ash mass is ash-free dry mass (APHA 1992).

2.2.2.2 Phytoplankton

Prior to analyses, the phytoplankton samples were gently inverted, and 10 to 100 mL subsamples were dispensed into sedimentation chambers (Lund et al. 1958). After a 24 h sedimentation period, samples were processed. To obtain a comprehensive species list, the entire basal area of the chamber was scanned qualitatively with an inverted microscope (WildTM M-40). Taxonomic keys used for identification included Prescott (1970), Taft and Taft (1971), and Webber (1971).

Once a comprehensive species list was established, cell density was assessed. To calculate cell density (cells/mL), individual cells were enumerated within a specified area of the sedimentation chamber. This was accomplished by counting the number of cells along horizontal transects placed across the specified area. To calculate the cell density of each species in the sample, the number of cells within the specified area was extrapolated to the subsample, and then to the entire sample.

Cell biovolume (µm³/m³) was calculated by first measuring the physical dimensions (length, width, and depth) of 10 to 30 cells of each species in the sample. Estimates of cell biovolume were then generated by multiplying the mean dimension of cells of a particular species by the number of cells enumerated for that species. The mean cell biovolume estimate for the subsample was then extrapolated to the entire sample. Species that were encountered during the qualitative assessment, but not enumerated (i.e., very low numbers or located outside the enumeration transects) were recorded as present.

For diatom identification and enumeration, a separate subsample was concentrated, dried onto a coverslip, ashed in a muffle furnace to remove organic matter, and mounted in StoraxTM.

2.2.2.3 Zooplankton

Zooplankton counts were conducted using a dissecting stereo-microscope (WildTM-5); identifications were made using a compound microscope equipped with a phase-contrast condenser (WildTM-20). Taxonomic keys used for crustacean plankton were Brooks, Wilson, and Yeatman (in Edmondson 1959), supplemented by the keys of Brooks (1957), Smirnov (1971), Brandlova et al. (1972), Flössner (1972), and Kiefer (1978). The taxonomic key used for identification of rotifers was the Voigt revision by Koste (1978), supplemented by keys of Ahlstrom (1943) and Ruttner-Kolisko (1974). Chaoboridae were identified using the keys of Cook (1956) and Saether (1970). Specimens were identified to the lowest taxonomic level possible.

Enumeration of zooplankton involved different techniques that were dependent on taxonomic group. Cladocerans and copepods (all stages) were enumerated either from three 15 mL subsamples or from the entire sample using a dissecting microscope at 12× to 50× magnification. For cladocerans and copepods, subsampling was performed (using an automatic pipette) on samples that contained large numbers of specimens. All samples were subsampled (using an automatic pipette) for rotifer enumeration; however, each subsample was allowed to settle for 24 h before processing. An inverted microscope (100× or 200× magnification) was used to enumerate rotifers by counting either six fields (one field = 0.02625 cm²) or the entire counting chamber (4.907 cm²). Subsamples were continually removed from the original sample until approximately 200 mature or identifiable rotifer organisms were processed. Once numbers of organisms within each sample were established, these values were converted to densities per cubic metre. This was accomplished by dividing the number of organisms encountered in a sample by the total volume filtered (i.e., net mouth area × depth of haul × number of hauls).

The biomass of major taxonomic groups within each sample was also determined. To calculate biomass, lengths were measured from the first 30 individuals observed in a sample. Lengths of larger zooplankton were measured directly with a microscope connected to a calibrated Sigma ScanTM digitizing tablet. Smaller zooplankton, such as rotifers, were measured using an eyepiece graticule and corrected for magnification. Using length measurements from individual organisms, weights were calculated from published length-weight regression equations (Table 2.2). For each sample, a mean individual weight was calculated by averaging the estimated weights generated from the length-weight regression equation (it is important to average weights and not lengths; Bird and Prairie 1985). Biomass for each taxonomic group was calculated by multiplying the number enumerated for that sample by the mean individual weight.

Table 2.2 Length-weight regression equations used to calculate zooplankton weights.

Organism	Equation	Reference	
Copepods (N1-Adult)	$lnW(\mu g) = 1.9526 + 2.399 \cdot lnL(mm)$	Bottrell et al. (1976)	
Daphnia spp.	$lnW(\mu g) = 1.6 + 2.84 \cdot lnL(mm)$	Bottrell et al. (1976)	
Bosmina and Eubosmina spp.	$lnW(\mu g) = 3.0896 + 3.0395 \cdot lnL(mm)$	Bottrell et al. (1976)	
Chydorus sphaericus	$lnW(\mu g) = 4.543 + 3.636 \cdot lnL(mm)$	Downing and Rigler (1984)	
Holopedium spp.	$lnW(\mu g) = 6.4957 + 3.190 \cdot lnL(mm)$	Downing and Rigler (1984)	
Rotifers	$lnW(\mu g) = -10.3815 + 1.574 \cdot lnL(\mu m)$	Stemberger and Gilbert (1987)	

2.2.2.4 Benthic Macroinvertebrates

In the laboratory, samples were first processed to remove all extraneous substrate and organic matter. Individual samples were washed to remove the preservative and repeatedly elutriated to remove excess silt, sand, and gravel (i.e., inorganic materials). This procedure was continued until nonvertebrates were no longer observed in the elutriated water. The sample was then subsampled using the method described in Wrona et al. 1982; only one third of the sample was used to enumerate the macroinvertebrates.

Using a dissecting microscope (6 to 42× magnification), nonvertebrates were then sorted by major taxonomic group and identified to the lowest practical taxonomic level (genus or species where possible). More difficult groups, such as nematodes, were identified to a higher taxonomic level. Keys used for identification included Wiggins (1977), Merritt and Cummins (1984), and Clifford (1991). As part of the quality assurance / quality control (QA/QC) program, discarded sample material (material thrown out after being examined and sorted for macroinvertebrates) was thoroughly checked by an independent individual.

2.2.3 Fish

2.2.3.1 Ageing

Fish ageing followed the protocol outlined in Mackay et al. (1990). Otoliths were used to age lake trout, Arctic char, and round whitefish. Otoliths, which had been stored dry in labelled envelopes, were first lightly ground and polished with emery cloth (400 grit) to allow sufficient light transmission. Then a binocular dissecting microscope, equipped with a transmitted light source, was used to obtain an age from each structure. Each structure was aged by two independent readers. When discrepancies in the assigned age occurred, the two readers conferred to arrive at a consensus. A third independent reader conducted a random check of selected structures to ensure quality control.

2.2.3.2 Calculations

Relative abundance of fish was calculated in terms of catch-per-unit-effort (CPUE) based on the number of captured fish per unit of effort that was dependent on the sampling method. For backpack electrofishing, the units of effort included minutes of sampling time. For gill nets, catch rates were assessed by using a net-unit approach (i.e., 100 m²)

surface area of net fished for the equivalent of a 12-hour period constitutes one net-unit of effort). Catch-per-uniteffort (CPUE) was expressed as the number of fish (by species) per net-unit.

Length-weight relationships were characterized based on the least squares regression formula using SPSS for Windows (Version 7.0). Condition factors were calculated using Fulton's Condition Factor, K according to Cone (1989) as follows:

Fulton's Condition Factor =
$$W/L^3 \cdot 10^n$$

where $W = weight$,
 $L = fork \ length$, and
 $n = 4$

To facilitate data recording and presentation of the results, all captured fish species were assigned a four-letter code in accordance with Mackay et al. (1990). The common and scientific names of all fish species mentioned in this report, as well as their corresponding coded abbreviations, are presented in Table 2.3.

Table 2.3 Common and scientific names of fish species (and coded abbreviations) recorded in the Jericho Study Area, 1999.

Common Name Scientific Name		Code ^a
Arctic char	Salvelinus alpinus (Linnaeus)	ARCH
Lake trout	Salvelinus namaycush (Walbaum)	LKTR
Arctic grayling	Thymallus arcticus (Pallas)	ARGR
Round whitefish	Prosopium cylindraceum (Pallas)	RNWH
Burbot	Lota lota (Linnaeus)	BURB
Slimy sculpin	Cottus cognatus Richardson	SLSC
Ninespine stickleback	Pungitius pungitius (Linnaeus)	NNST

a According to Mackay et al. (1990).

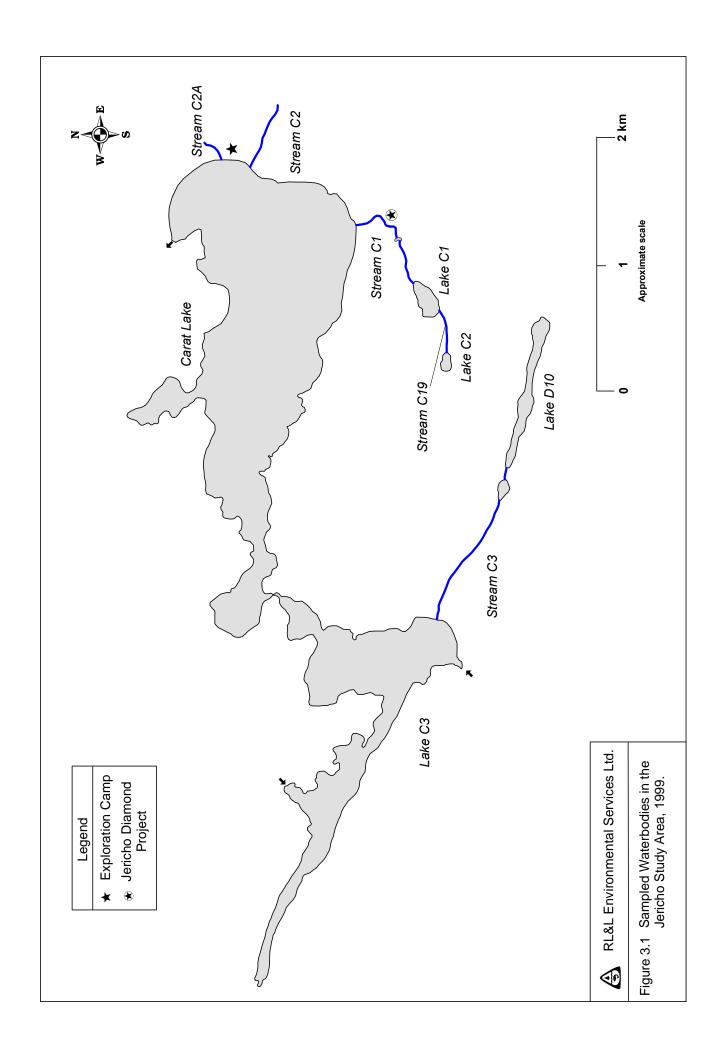
2.2.4 Fish Habitat

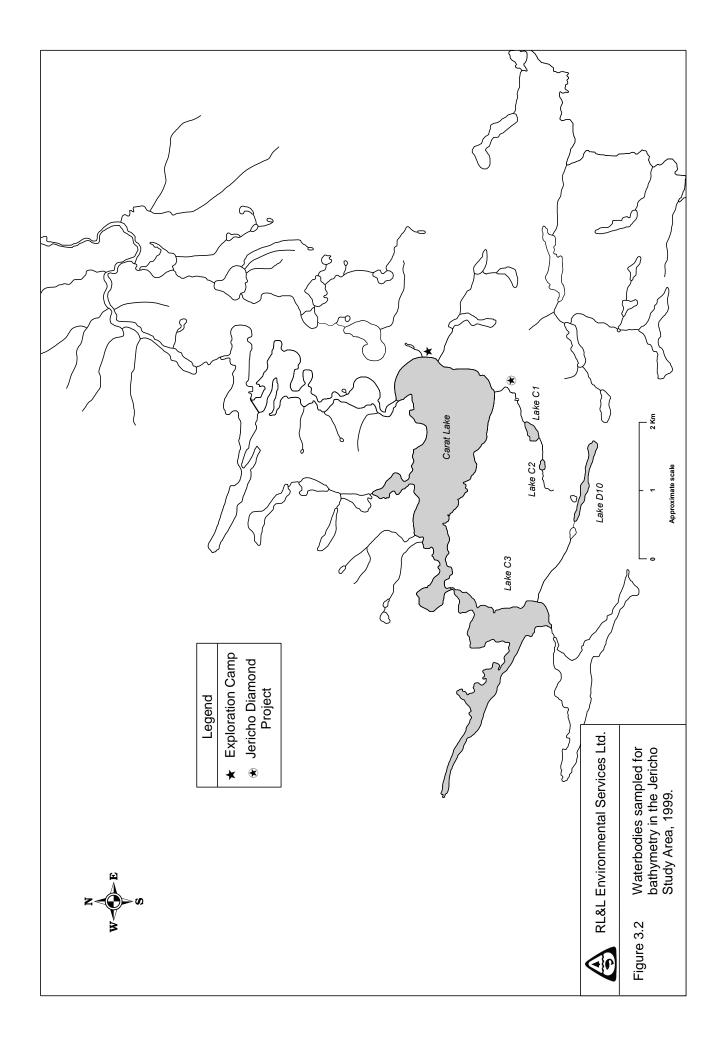
Data collected during the detailed survey of Stream C1 were downloaded into the software program TraversePC. This program was used to reduce raw data and prepare site plans and profiles. The site plans were then imported into CorelDraw and overlain onto scanned images of airphotos. This detailed map was then used to record stream habitat types in the field, which were then imported into the MapInfoTM software package to calculate the area (m²) of habitat types identified.

3.0 SYNOPTIC SURVEYS

The primary waterbodies sampled during the 1999 synoptic survey program included five lakes (Carat Lake, Lakes C1, C2, C3, and D10) and three streams (Streams C1, C3, and C19) (Table 1.1 and Figure 1.2). These waterbodies were chosen based on the potential for adverse effects from the development, their relative importance to the aquatic biological community, and work previously undertaken on the waterbody. In addition to these primary systems, synoptic level fisheries and habitat investigations were carried out on two ephemeral streams draining into Carat Lake (Streams C2 and C2A) (Figure 3.1). This work was completed to provide a more complete assessment of the fish community in the vicinity of the development.

To be consistent with previous studies, site designations and labelling correspond to those established in 1995, 1996, and 1998. Appendix B, Table B1 provides geodetic data for all sampled sites referenced in this report.


Although this document summarizes data for the 1999 program, pertinent information collected during previous investigations have also been presented. Summary information for waterbodies that are not included in this document can be accessed in the aquatic studies reports from 1995 (RL&L 1995) and 1996 (RL&L 1997).


The results of the 1999 program have been presented in the following sections based on the component investigated. All raw data used to generate these summaries are presented in appendices and have been referenced when appropriate.

3.1 PHYSICAL CHARACTERISTICS

3.1.1 Lake Morphology

Morphological characteristics of four lakes were determined during the 1999 program (Figure 3.2). Survey information for Lakes C1, C2 and C3 were collected by R.L. & L. Environmental Services Ltd. staff, while data for Lake D10 were obtained and a map developed by Tahera Corporation personnel. Data for Lake C3 should be viewed as preliminary because the elongated basin situated to the west and the shallow basin to the north were not included in the present survey. For comparative purposes, morphological data were also generated for Carat Lake based on a bathymetric map developed in 1996 by Canamera Geological Ltd (unpublished data). Bathymetric survey data collected by R. L. & L. Environmental Services Ltd. are presented in Appendix B, Table B2.

Lakes in the Jericho Study Area exhibited variable characteristics (Table 3.1). Carat Lake, which is the largest waterbody in the Jericho Study Area (271 ha), consists of three basins. The largest basin comprises the central portion of the lake, while two smaller basins are situated to the west (Figure 3.3). Carat Lake exhibits an irregular shoreline, which results in a relatively high shoreline development ratio (2.1). There is one major inlet tributary that enters at the extreme western end (from Lake C3), while one outlet stream (to Jericho Lake) exits to the northeast. Several small ephemeral streams enter Carat Lake along its eastern, northern, and southern shores; Stream C1 is situated at the southeast corner (Figure 3.2).

Table 3.1 Morphometric characteristics of surveyed lakes in the Jericho Study Area, 1999.

Lake	Total Volume (m ³)			Shoreline Development Ratio	
Carat Lake ^a	27 203 110	270.5	12 270	2.1	
Lake C1	126 980	3.5	779	1.2	
Lake C2	6807	1.0	386	1.1	
Lake C3	2 584 978°	102.5°	10 830°	3.0°	
Lake D10 ^d	168 608	9.0	2571	2.4	

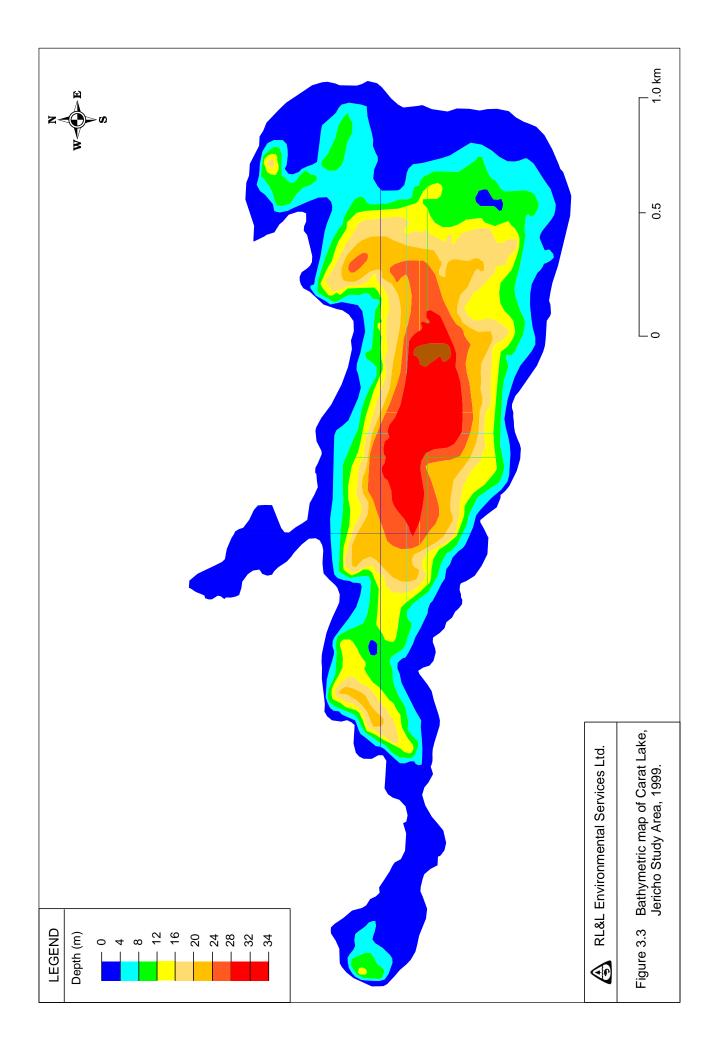
Information calculated from bathymetric map generated by Canamera Geological Ltd. (unpublished data).

Carat Lake is deep with a mean depth of 10.1 m and a maximum recorded depth of 32 m (Table 3.2). As such, a large percentage of this waterbody, in terms of area and volume, is > 2.0 m deep (95% and 98%, respectively) and is not subjected to freezing.

Table 3.2 Depth characteristics of surveyed lakes in the Jericho Study Area, 1999.

Lake	Mean Depth (m)	Maximum Depth (m)	Percent Surface Area >2 m Depth	Percent Volume >2 m Depth
Carat Lake ^a	10.1	32	95.0	98.4
Lake C1	3.6	12	48.7	62.1
Lake C2	0.7	2	0.0	0.0
Lake C3 ^b	4.8	15	62.8	67.0
Lake D10 ^c	1.9	8	11.0	29.3

Information calculated from bathymetric map generated by Canamera Geological Ltd. (unpublished data).

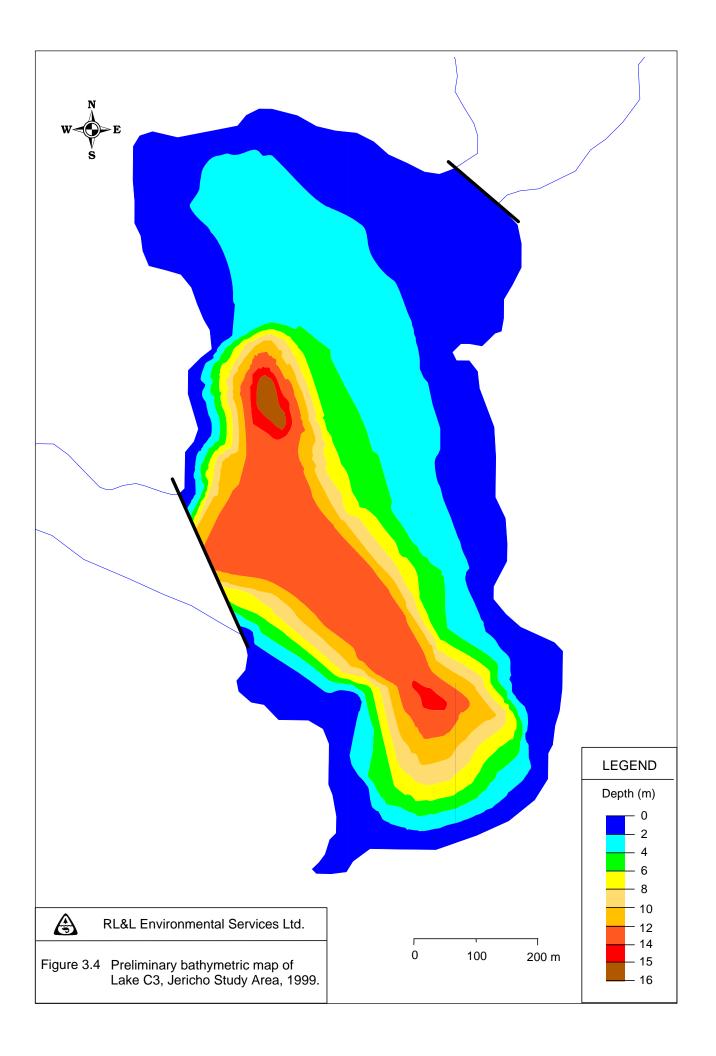

Applies only to the sampled portion of the lake; see Figure 3.6.

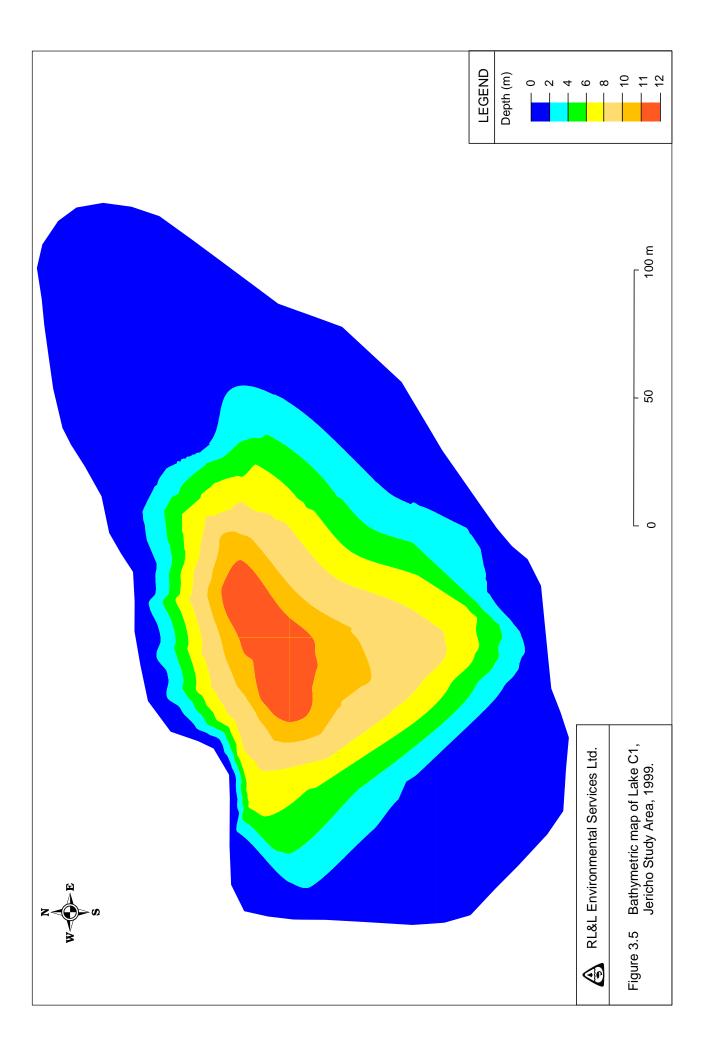
^c Applies to entire lake; see Figure 3.2.

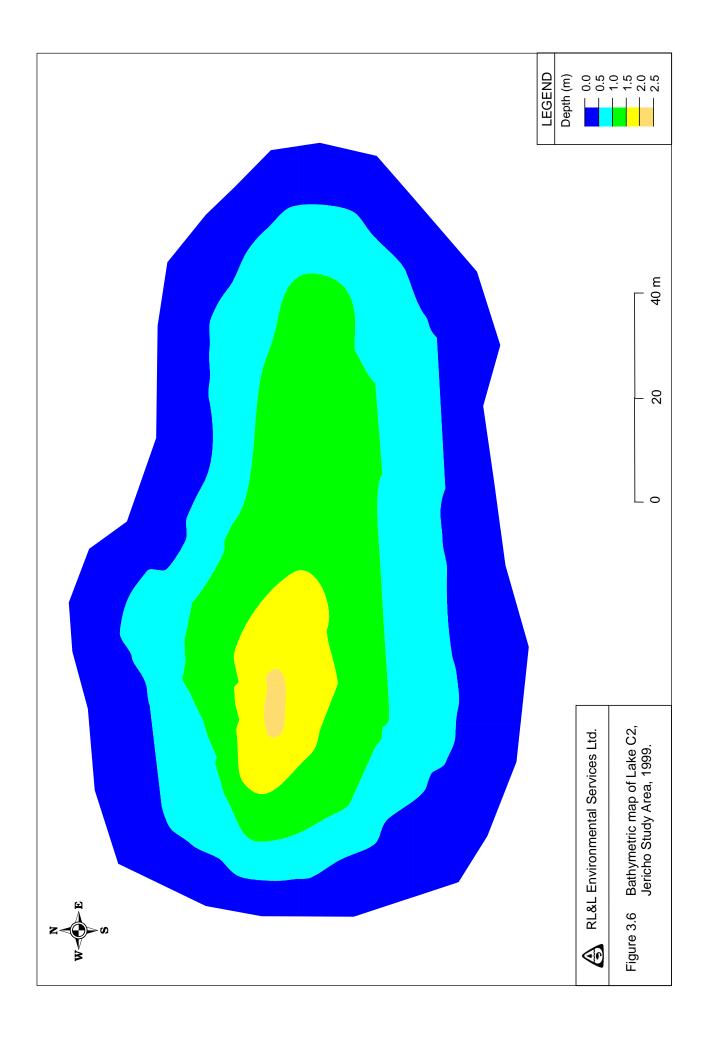
Bathymetric survey and map developed by Tahera Corporation.

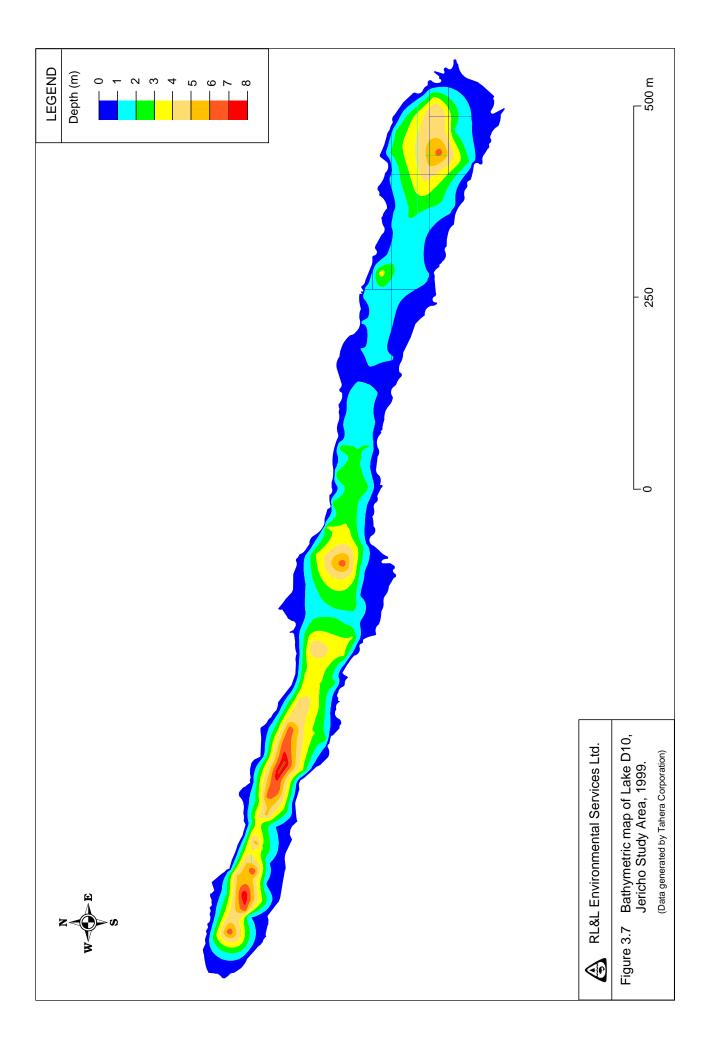
Applies only to the sampled portion of the lake; see Figure 3.6.

Bathymetric survey and map developed by Tahera Corporation.


Lake C3, with a surface area of 103 ha, is the second largest waterbody surveyed in the Jericho Study Area. This lake is situated immediately upstream and to the southwest of Carat Lake and is connected to this waterbody by a narrow, shallow, channel. It has a central basin associated with an elongated bay that extends to the west. Lake C3 receives the majority of its inflow from inlet streams that enter at the southern and northwestern corners of the lake. Several intermittent streams also flow into Lake C3; the largest of these is Stream C3, which drains Lake D10.

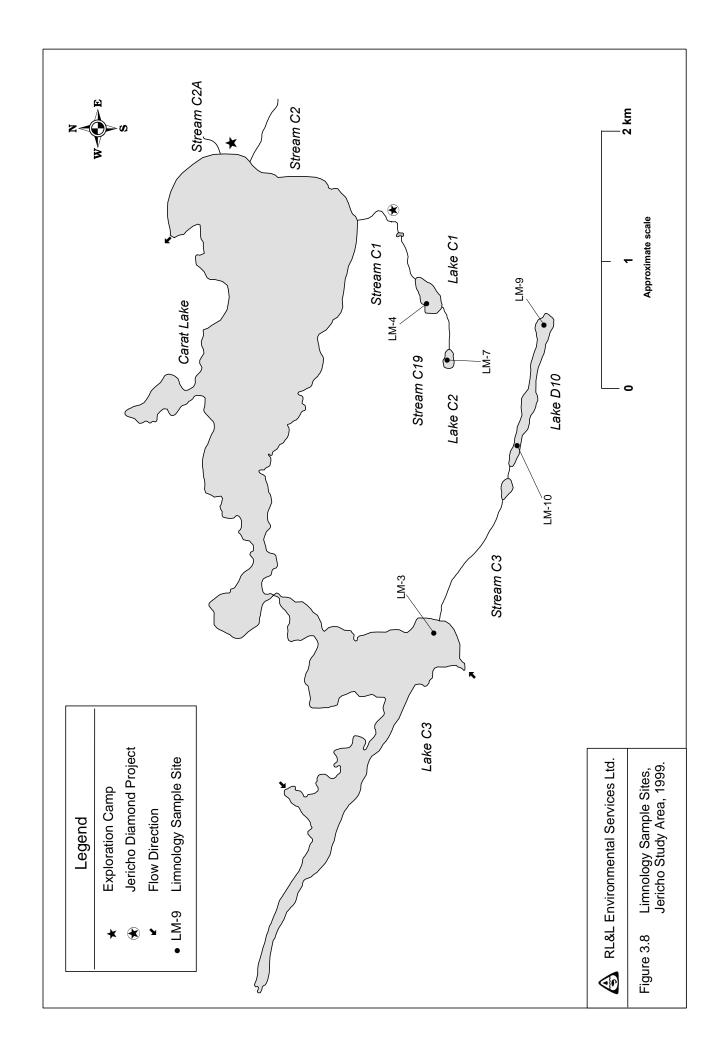

A preliminary bathymetric survey that included only the main basin of Lake C3, was conducted in 1999 (Figure 3.4). The main basin is comprised of two smaller sub-basins; the southern area exhibits a maximum depth of 14 m, while the northern area is 15 m deep. The irregular shoreline of Lake C3 results in a high shoreline development ratio (3.0).

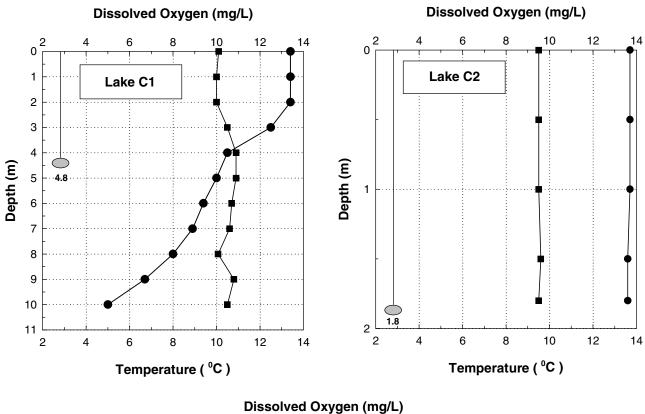

The smallest surveyed waterbodies in the Jericho Study Area are Lakes C2 (1 ha) and C1 (3.5 ha). These lakes differ dramatically in their physical characteristics from Carat Lake and Lake C3. Both exhibit simple basin morphologies consisting of a single basin (Figures 3.5 and 3.6). Lake C2 is very shallow (maximum depth of 2 m), while Lake C1 is much deeper (maximum depth of 12 m). Lake C2 likely freezes to the bottom in its entirety, whereas most of Lake C1 does not freeze to the bottom (49% by area and 62% by volume).


These two waterbodies are situated in the headwater area of Stream C1 immediately west of the Jericho Diamond Project. There are no well-defined inlet or outlet streams to either lake. In general, the inlet areas are situated at the western end of each lake, while the outlets are situated to the east. The outlet to Lake C1, appears to be the primary water source for Stream C1.

Lake D10 is located to the south of Carat Lake and to the east of Lake C3. This waterbody has no defined inlet stream, but drains to the west, via Stream C3, into Lake C3. This small waterbody (9 ha) is elongated along an east-west axis and has three basins (Figure 3.7). The two eastern basins do not exceed 6 m in depth and are separated by a shallow-water area <1.0 m deep. The western basin is slightly deeper exhibiting a maximum depth of 8 m. Lake D10 is relatively shallow (mean depth of 1.9 m). As such, only a small percentage of the lake is not subjected to freezing (11% of area and 29% of volume).

3.1.2 Lake Limnology


Temperature and dissolved oxygen sites were located on four lakes in the Jericho Study Area in July 1999 (Figure 3.8). Dissolved oxygen-temperature profiles and water transparency readings were determined at each of these sites (Figure 3.9; Appendix B, Table B3).


During early summer (19 to 27 July), the temperature profiles of some waterbodies (Lakes C2, C3 and D10) indicated uniform mixing (i.e., isothermal). In contrast, water temperatures in Lake C1 exhibited a gradual and consistent decrease from surface to bottom (13 to 5°C). This indicates that this waterbody will stratify during the open water period. These results are consistent with findings made by RL&L in 1996. Stratification of Lake C1 is possible because it is deep relative to its size (maximum depth of 12 m and surface area of 3.5 ha) and it is partially sheltered from wind action by a high shoreline at its western end.

The results for Lake C3 indicated that it was isothermal at the time of sampling, but these data should be viewed as preliminary for two reasons. The 1999 limnology site may have been in water that was too shallow to identify stratification (8 m) and the survey may have been undertaken too early in the year. Studies in 1995 and 1996 indicated that deeper waterbodies such as Carat Lake stratify and a thermocline develops between 10 and 14 m by late summer. The maximum depth of Lake C3 is 15 m (Section 3.1.1). It should be noted that work completed in 1995 on Lake C3 did not identify a thermocline at a site that was 13 m in depth; therefore, additional surveys are required to establish whether Lake C3 remains isothermal during the entire open water period.

Dissolved oxygen concentrations were near saturation at all sites; values were approximately 10.0 mg/L at the lake surface and did not decrease significantly lower down in the water column. As such, anoxic conditions did not occur at the time of sampling in any of the study area lakes.

Water transparencies did not vary greatly between sites. Secchi depths ranged between 4.8 and 5.9 m. In Lakes C2 and D10 secchi depths extended to the bottom (1.8 and 8.0 m, respectively). Based on Secchi depth readings, the euphotic zones (depth to 1% light penetration where algae can exist = $2 \times$ Secchi depth) were approximately 10 m at most sites.

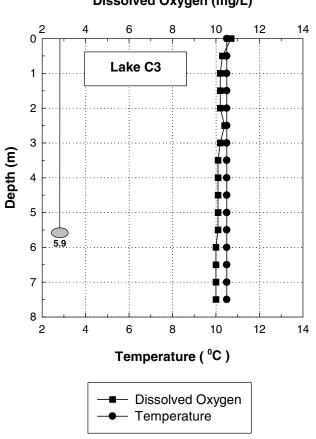
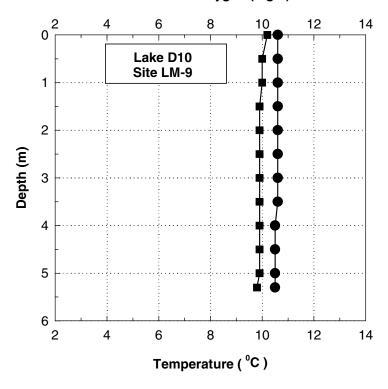



Figure 3.9 Dissolved oxygen and temperature profiles, and transparency of lakes in the Jericho Study Area, 19 to 27 July 1999.

Dissolved Oxygen (mg/L)

Dissolved Oxygen (mg/L)

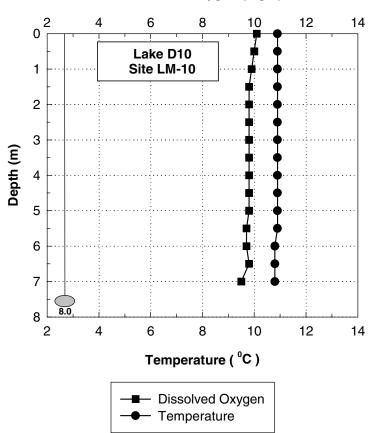


Figure 3.9 concluded.

3.1.3 Stream Characteristics

Physical characteristics of streams (length, gradient, discharge, and temperature) were assessed during the spring and summer field program. This section provides summary information; all raw data are provided in Appendix B, Table B4.

Stream C3 is a small system that drains Lake D10 into Lake C3, while Stream C1 drains Lake C1 into Carat Lake. Stream C19 is also small; it connects Lake C2 to Lake C1. Streams C2 and C2A drain into Carat Lake in the vicinity of the exploration camp. Streams C2, C2A, C3 and C19 exhibited ephemeral flow during the 1999 open water period. These streams freeze to the bottom during winter.

The length of streams surveyed ranged between 100 and 912 m (Table 3.3). All were small, having average channel widths of 0.5 to 1.6 m and average maximum depths of less than 0.29 m and low discharge (0.007 m³/s or less at all sampled sites). The gradients of these streams ranged between 20 and 60 m/km. Stream C19 has the highest overall gradient (60 m/km), which traverses a steep slope immediately upstream of its entry point with Lake C1. Due to their small size, all surveyed streams contained barriers to fish passage. The largest obstructions were the steep slope on Stream C19, and a 5.3 m high rock wall on Stream C1 located 815 m upstream of Carat Lake.

Table 3.3 Summary of physical characteristics of inventoried streams during summer in the Jericho Study Area, 1999.

	Surveyed Length	Average Width	Average	Discharge	(m/km)	Channel Type (%)		Bank Type (%)		Substrate Type (%)				
Stream	(m)	(m)	Depth (m)	(m ³ /s)		Single	Multiple	Distinct	Indistinct	Si/Sa	Gr	Co	Во	Be
C1 ^a	454	1.6	0.28	0.004	20	22	78	22	78	7	17	50	27	
C2 ^a	300	0.5	0.18	0.001	50		100		100		40	50	10	
C2A ^a	100	0.5	0.17	0.001	25	80	20	60	40	69	10	14	7	
C3 ^b	912	0.6	0.18	0.007	30	42	58	50	50	41	20	20	19	
C19 ^b	345	0.4	0.28	0.003	60	50	50	10	90	85			15	

Characteristics measured during previous inventories (RL&L 1995, 1997).

The surveyed streams contain a variety of channel types including single and multiple braids, as well as dispersed flow (i.e., lack of well-defined stream banks). They generally exhibit more than one channel type and often two or three types are present in the same system. Substrates in most of the surveyed streams consist primarily (>50%) of two types: very fine and coarse materials (i.e., silt/sands and cobble/boulders). In contrast, gravels contribute a much smaller percentage (between 10 and 40%).

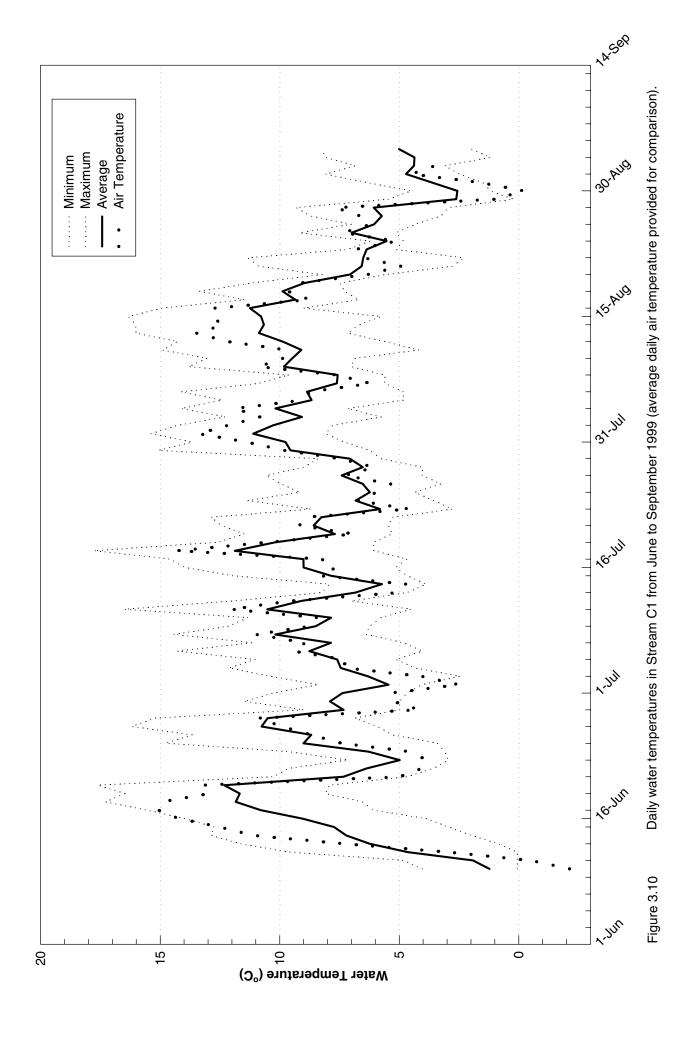
Characteristics measured during summer 1999.

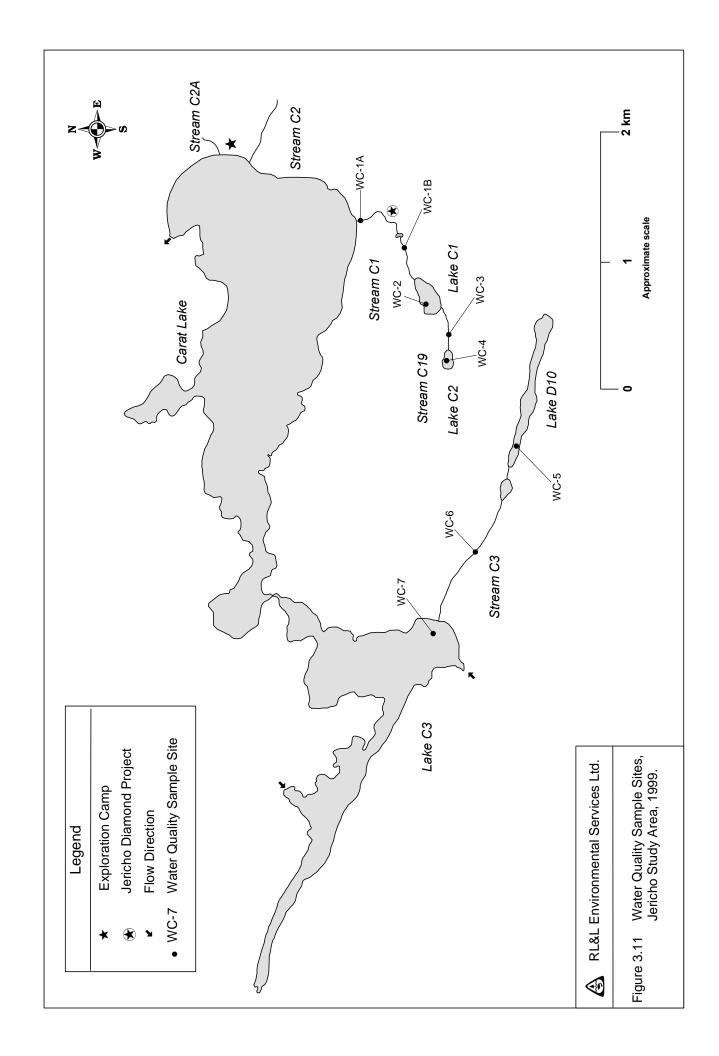
Stream water temperatures closely tracked air temperatures during the 1999 open-water period. This relationship was illustrated at Stream C1, where water temperature was continuously monitored from June 10 to 4 September (Figure 3.10). The daily water temperature in Stream C1 warmed rapidly in spring and by late June reached its maximum daily temperature (12.3°C) on 20 June. Water temperatures fluctuated between 5 and 10°C during the remainder of the open-water period corresponding very closely with fluctuations in air temperature. The close relationship between air and water temperature likely reflected the low discharge of Stream C1 and is considered to be representative of other small streams in the study area.

3.1.4 Water Quality

The water quality assessment of most waterbodies in the Jericho Study Area is based on data collected in July 1999; however, sampling of Stream C1 was also completed in September 1999. Sites were established on four lakes and three streams (Figure 3.11). Two sample sites were established, on Stream C1 to ascertain whether water chemistry differed between areas on this system. The first (WC-1A) was located downstream of the Jericho Diamond Project, while the second (WC-1B) was situated upstream of the project area.

This section provides a description of water quality in the study area based on selected physical and chemical constituents. Where applicable, the water quality constituents were assessed according to their compliance to the guidelines for the protection of aquatic life (Canadian Water Quality Guidelines or CWQG; CCME 1999) and drinking water (Guidelines for Canadian Drinking Water Quality or GCDWQ; Health and Welfare Canada 1993). The water quality raw data (field splits and field blanks for QA/QC) are provided in Appendix B, Table B5; the QA/QC results indicated that the precision and accuracy of water quality determinations were within acceptable levels (Shaw et al. 1994; Noton and Saffran 1995).


Turbidity and Suspended Solids


In July, turbidity was extremely low at both lake and stream sites (Figure 3.12). Values ranged from 0.28 to 1.10 NTU, which is within the GCDWQ of 2 NTU for clear water. This constituent showed no spatial pattern with respect to the area sampled. Total suspended solids (TSS) were below detection limits at all sites.

Alkalinity, pH, and Total Dissolved Solids

Total alkalinity values were low at all sites. Streams tended to have slightly higher values (range of 6 to 13 mg/L) compared to lakes (range of 4 to 11 mg/L). Although there are no formal water quality guidelines for total alkalinity, levels ranging from 30 to 500 mg/L are generally acceptable for drinking water (McNeely et al. 1979). Alkalinity refers to the neutralizing capacity of water; therefore, the low total alkalinity levels suggest that waterbodies in the Jericho Study Area have a poor buffering capacity against acids.

Stream and lake pH ranged from 6.5 to 7.5. These values were within the CWQG and the GCDWQ of 6.5-9.5 and 6.5-8.5, respectively.

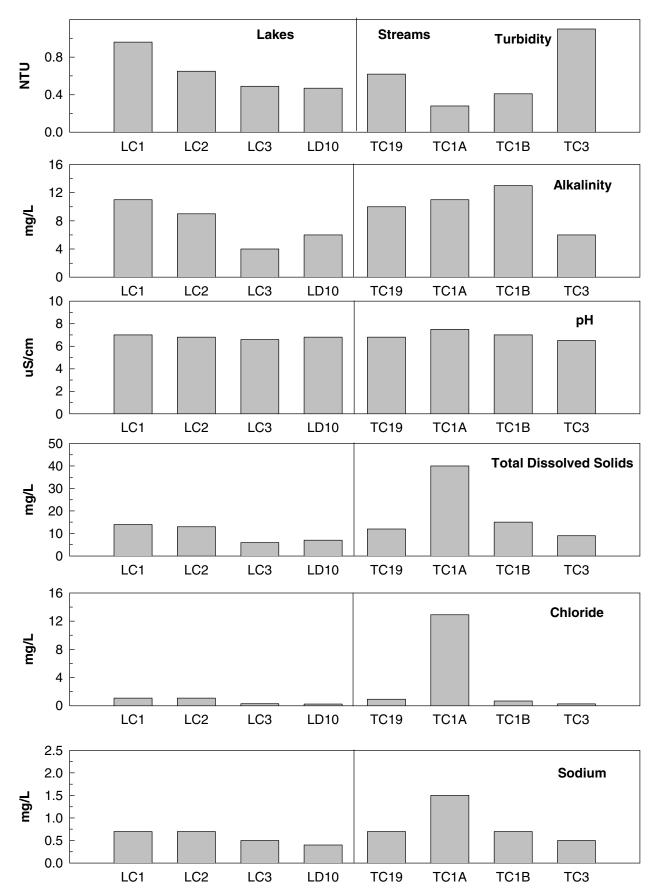
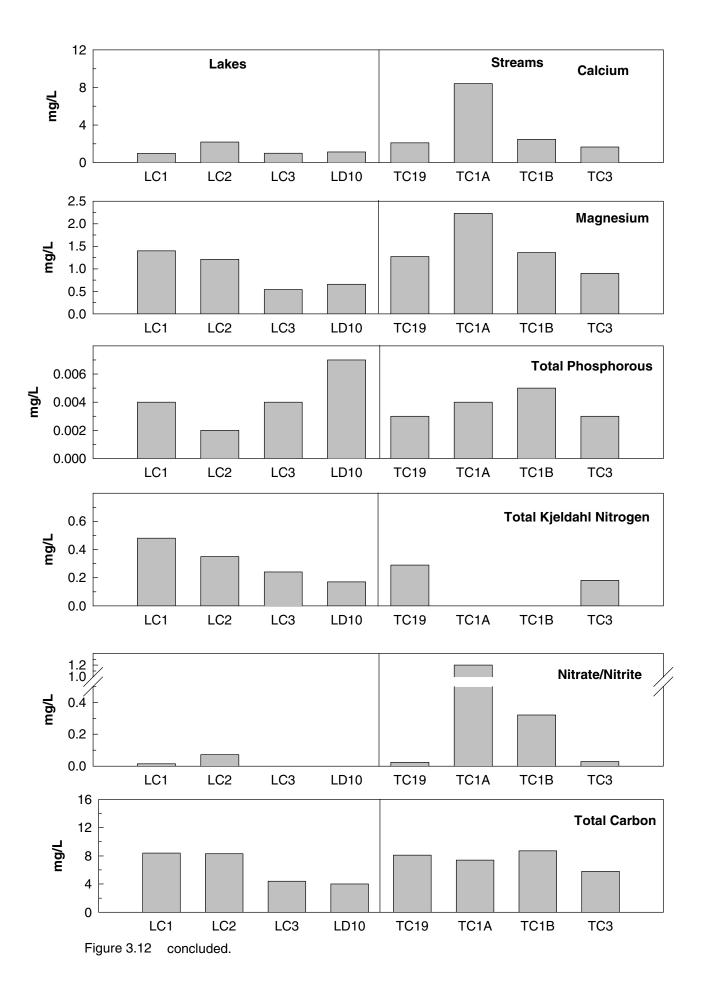



Figure 3.12 Concentrations of selected water quality constituents in samples collected from lakes and streams in the Jericho Study Area, 1999.

Concentrations of total dissolved solids (TDS) were generally low at most sites (<20 mg/L). TDS was highest at Site WC-1A of Stream C1 (40 mg/L); this contrasts with 15 mg/L at Site WC-1B of the same system. There are no TDS guidelines for the protection of aquatic life; however, the GCDWQ is 500 mg/L for drinking water. Concentrations of TDS in water generally depend on geochemical weathering of rocks and soil, and the influence of anthropogenic sources (McNeely et al. 1979; Shaw et al. 1994). It is possible that prior exploration activity immediately upstream of Site WC-1A may have influenced the water chemistry of the sample collected from Stream C1.

Major Ions and Total Hardness

The major ions consist of Cl⁻, Na⁺, Ca⁺⁺, Mg⁺⁺, K⁺, HCO₃⁻, and SO₄⁻. As a group, the major ions were generally low at all lake sites and most stream sites. The concentrations of major ions at all sites were in compliance with the GCDWQ. They state that concentrations of sodium, chloride, and sulphate should not exceed 200, 250, and 500 mg/L, respectively.

As indicated by the elevated TDS value at Site WC-1A of Stream C1, concentrations of some ions (chloride, sodium, calcium and magnesium) were higher than at other sites, including WC-1B of Stream C1. Although elevated, these concentrations should be viewed as low.

Phosphorus

Total phosphorus concentrations in lakes and streams in the Jericho Study Area were very low. They ranged from 0.002 to 0.007 mg/L and showed no spatial pattern. Total dissolved phosphorus concentrations (the phosphorus form available for primary production) constituted the dominant portion of all forms of phosphorus analysed. Because phosphorus is a nutrient that limits primary productivity in freshwater ecosystems, these results indicate that waterbodies in the Jericho Study Area are extremely nutrient poor. No CWQG or GCDWQ exist for phosphorus, although 0.10 mg/L is considered a maximum desirable concentration for streams (McNeely et al. 1979).

Nitrogen

In aquatic systems, nitrogen occurs as organic and inorganic (dissolved, nitrite, nitrate, ammonium, and ammonia compounds). Total Kjeldahl nitrogen (TKN) is the sum of organic and ammonia nitrogen fractions, while total nitrogen is the sum of TKN and nitrite/nitrate-nitrogen.

The TKN concentrations in lakes and streams of the Jericho Study Area were low. Lakes tended to have slightly higher values (range of 0.17 to 0.48 mg/L) compared to streams (range of <0.05 to 0.29 mg/L). The highest TKN concentration was recorded from the water sample collected in Lake C1 (0.48 mg/L). Concentrations of TKN in waterbodies that are not influenced by excessive organic inputs, typically range from 0.1 to 0.5 mg/L (McNeely et al. 1979).

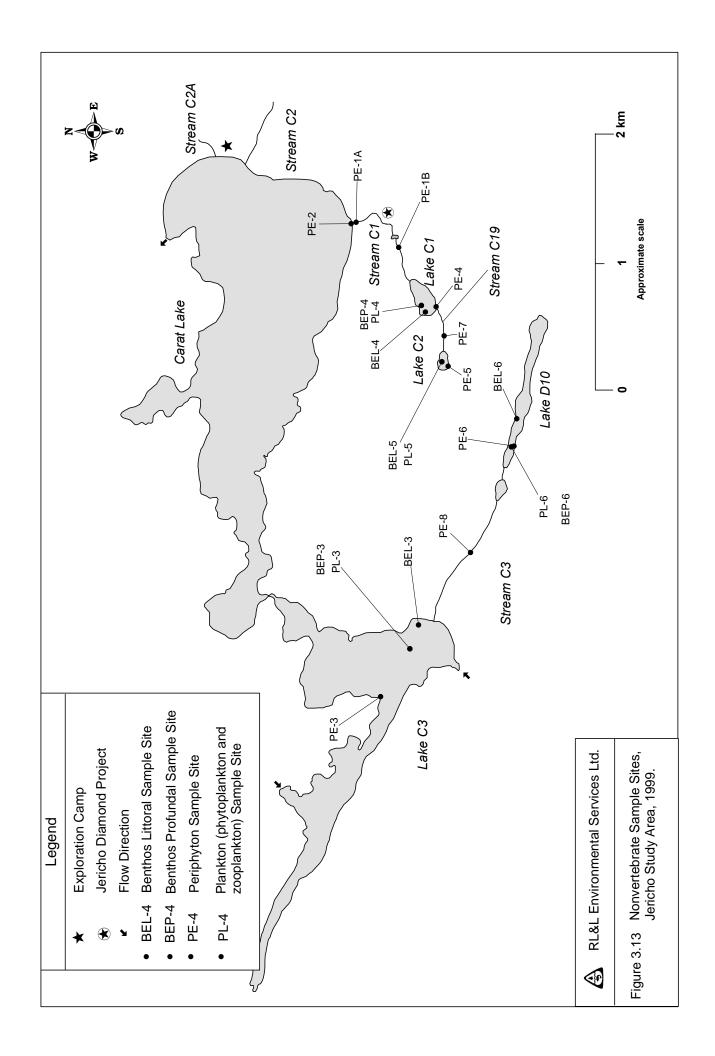
Nitrite/nitrate-N concentrations were generally low at most sites; they ranged from <0.006 to 0.072 mg/L. Such low values indicated that total nitrogen concentrations consisted mainly of organic forms. The only exceptions occurred at Stream C1, where nitrite/nitrate-N concentrations were higher (1.200 and 0.350 mg/L in WC-1A and WC-1B, respectively). It is possible that prior exploration activity immediately upstream of Site WC-1A may have influenced the water chemistry of the sample collected from Stream C1. There are no CWQG or GCDWQ for TKN. Ammonia and nitrate concentrations at all sites were within the CWQG of 1.37 and 10 mg/L, respectively.

Carbon

In aquatic systems, total organic carbon content can vary from 1 to 30 mg/L with higher levels generally being the result of anthropogenic inputs (McNeely et al. 1979). Total carbon concentrations were low at all sites; they ranged from 4.0 to 8.7 mg/L and showed no spatial pattern. There are no CWQG or GCDWQ available for carbon.

3.2 NONVERTEBRATES

This section provides summary results for periphyton, phytoplankton, zooplankton, and benthic macroinvertebrate communities in selected streams and lakes of the Jericho Study Area. Specific sampling locations are depicted in Figure 3.13; georeferenced site locations are listed in Appendix C, Table C1.


3.2.1 Periphyton

Periphyton refers to the community of algae, bacteria, fungi, and their secretions that grow on substrates in freshwater systems (Lock et al. 1984). Periphyton provides food and habitat resources for benthic invertebrates and herbivorous fish, especially in flowing waters (Warren et al. 1964; Hynes 1970; Horner and Welch 1981; Lock et al. 1984; Merritt and Cummins 1984). Although periphyton in temperate zone lakes generally account for a small amount of the systems primary productivity (i.e., phytoplankton is the major source), it has been documented that Arctic lakes can derive a large proportion (15 to 80%) of their energy inputs from benthic sources (Welch and Kalff 1974; Welch et al. 1988; Welch et al.1989). For these reasons, periphyton communities were sampled in both streams and lakes of the Jericho Study Area.

The periphyton sampling program was conducted in July 1999. Composite samples were collected from five lake and four stream sites. Summary results of chlorophyll *a* concentration (a measure of the amount of live algae), ash-free-dry-mass (AFDM) concentration (an estimate of the total organic content of periphyton), and the periphyton algal community are presented. Detailed data are provided in Appendix C, Tables C2 and C3.

3.2.1.1 Biomass and Density

Chlorophyll a is an important photosynthesizing pigment of plants and its concentration is a measure of the amount of living tissue. Chlorophyll a concentrations ranged from 0.0 μ g/cm² in Lake C3 to 5.3 μ g/cm² in Stream C3 (Figure 3.14). The absence of chlorophyll a production in Lake C3 was an artifact of sampling (inappropriate

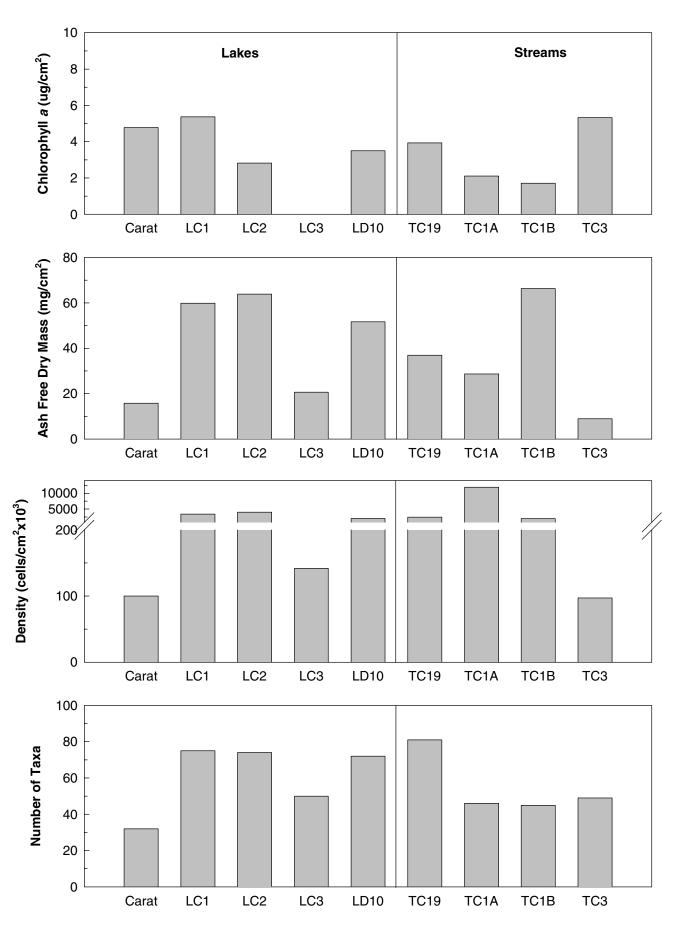


Figure 3.14 Density, number of taxa, chlorophyll *a* and AFDM values for periphyton samples in lakes and streams of the Jericho Study Area, 1999.

substrate chosen) and was not indicative of conditions in this waterbody. In general, concentrations tended to be higher in lakes than streams, but no clear pattern was evident. AFDM values were variable and ranged from 8.9 (Stream C3) to 63.9 mg/cm² (Lake C2). Lake sites tended to have higher values than stream sites. Despite differences in water quality at Sites PE-1A and PE-1B of Stream C1 relative to other sites, no dramatic differences in biomass of periphyton were recorded.

Periphyton density was extremely variable at both lake and stream sites. Values ranged from $9.7 \times 10^4 \text{ cells/cm}^2$ at Stream C3 to $1192.8 \times 10^4 \text{ cells/cm}^2$ at Site PE-1A of Stream C1.

3.2.1.2 Community Structure

In total, 162 periphytic algal species were identified (Appendix C, Table C3); the number of species at sampled sites ranged from 32 (Carat Lake) to 81 (Stream C19). Taxonomic counts tended to be higher and more variable at lake sites compared to stream sites.

The periphytic algal community was dominated by four taxonomic divisions: Bacillariophyta (diatoms), Chlorophyta (green algae), Chrysophyta (golden-brown algae), and Cyanophyta (cyanobacteria). These four divisions accounted for more than 99% of the total number of algal cells counted in each of the periphyton samples (Appendix C, Table C2). Of these four groups, cyanobacteria and diatoms predominated (Figure 3.15). The overall numerical dominance of these two groups reflected their colonial nature and small cell size exhibited by most species. The relative importance of these four groups was consistent between individual sites, although cyanobacteria tended to account for a higher percentage of the sample in streams compared to lakes.

In terms of frequency of occurrence, diatoms were well represented in both lake and stream sites by *Achnanthes minutissima* and *Tabellaria flocculosa*. The most frequently encountered green algae species included *Oocystis lacustris* and *Oocystis elliptica*. *Dinobryon sertularia* (lakes) and *Stichogloea doederleinii* (streams) were the dominant golden-brown algae, while *Schizothrix calcicola* was the most widely distributed cyanobacteria species.

3.2.1.3 Summary

Chlorophyll *a* values were low at all sites as were AFDM concentrations. In streams, the amount of chlorophyll *a* and AFDM found in periphytic communities is controlled primarily by light quality and quantity, water velocity, and nutrient concentrations (Horner and Welch 1981). Moderate current velocities (20 to 100 cm/s) and increasing phosphorus concentrations (to 50 µg/L total phosphorus) promote periphytic growth. The locations sampled in the present study were not shaded by riparian vegetation, exhibited current velocities within the range reported by Horner and Welch (1981), and were not exposed to a known toxic substance. Therefore, the low chlorophyll *a* and AFDM concentrations were likely due to low nutrient levels. Total phosphorus concentrations, the nutrient that most often limits algal growth (Wetzel 1983) were very low at all sites (see Section 3.1.4). Phosphorus limitation in Arctic streams has been reported to have dramatic effects on overall productivity (Peterson et al. 1983, 1985, and 1986).

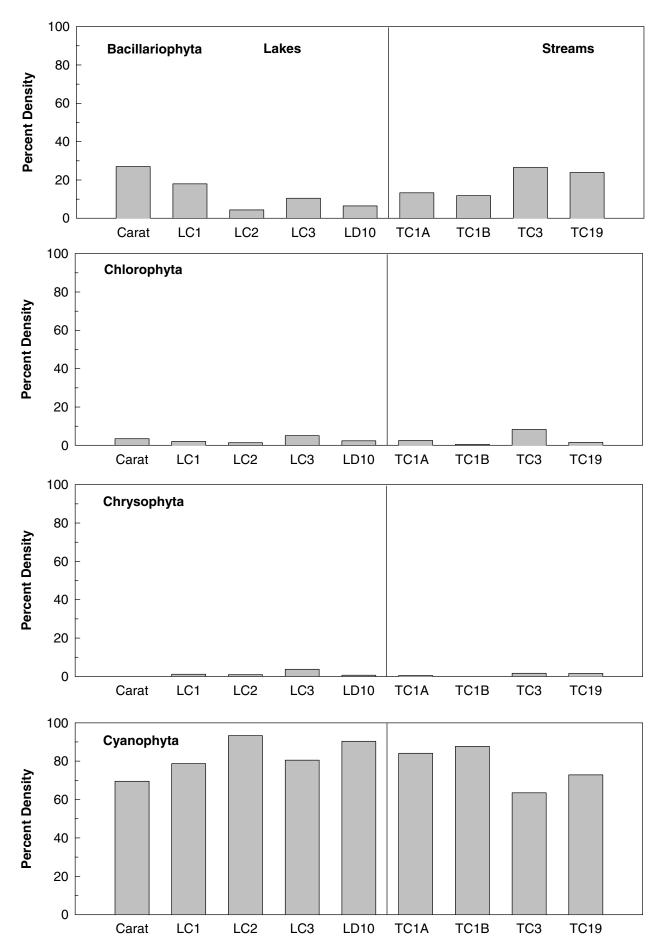


Figure 3.15 Percent density for major taxonomic periphyton groups in lakes and streams of the Jericho Study Area, 1999.

Lake periphyton biomass is also adversely affected by nutrient deficiencies (Kalff and Welch 1974; Welch and Kalff 1974; Bergmann and Welch 1990). In general, the periphytic biomass indices documented in the lakes of the Jericho Study Area were low, which is characteristic of oligotrophic conditions.

3.2.2 Phytoplankton

To provide baseline information on the phytoplankton community, samples were collected from lakes in the Jericho Study Area during July 1999. Sites were established on Lakes C1, C2, C3, and D10 (Figure 3.13). Relevant data are summarized in the following sections; all data are presented in Appendix C, Tables C3 and C4.

Phytoplankton are microscopic free-floating algae (Smith 1950). Summary results of phytoplankton biovolume $(\mu m^3/mL)$ and density (No. cells/mL) are both presented in this section because density alone does not provide an accurate assessment of a taxon's importance. For example, taxa that are extremely numerous may have a low biovolume due to the small size of individual organisms. Conversely, taxa that have large biovolumes (due to the large size of individual organisms) may not be numerically abundant. These large bodied groups can contribute significantly to lake productivity. As such, they can influence the abundance of herbivores that feed on them (generally zooplankton) and can modify nutrient availability for competing plants or algae.

3.2.2.1 Biomass and Density

Chlorophyll *a* concentrations ranged from less than 0.4 mg/m^3 to 2.3 mg/m^3 (Table 3.4). The biovolumes of all algae varied between sites as did the density of cells. Biovolume was greatest in Lake C1 (2064 $\mu\text{m}^3\text{x}10^3/\text{mL}$) and lowest in Lake D10 (245 $\mu\text{m}^3\text{x}10^3/\text{mL}$). Similar results were recorded for density: Lake C1 had the highest (9120 cells/mL), where as Lake D10 had the lowest (932 cells/mL).

Table 3.4 Biovolume, density, number of taxa, and chlorophyll *a* values for phytoplankton samples in lakes of the Jericho Study Area, 1999.

G. A	Site								
Category	Lake C1	Lake C2	Lake C3	Lake D10					
Biovolume (μm ³ x10 ³ /mL)	2064.4	394.9	1409.3	245.8					
Chlorophyll a (mg/m³)	2.3	0.4	0.9	1.1					
Density (cells/mL)	9120	1007	3318	932					
Taxa	51	51	62	57					

3.2.2.2 Community Structure

In total, 124 species of algae were identified in the samples collected in the Jericho Study Area (Appendix C, Table C4). The number of species identified at each site was consistent (range from 51 to 62). In terms of community structure, the majority (99% of biovolume) belonged to five taxonomic groups.

The importance of each major taxonomic group varied between lakes and no spatial pattern was apparent (Figure 3.16). Chrysophyta (golden-brown algae) exhibited the greatest importance in terms of percent biovolume in Lakes C1 and C3, while Chlorophyta (green algae) was most important in Lake D10, and Bacillariophyta (diatoms) dominated in Lake C2. In terms of percent density, Cyanophyta (cyanobacteria) were most important in Lakes C1 and C2. Percent density results for Lakes D10 and C3 were similar to that for biovolume.

In terms of frequency of occurrence, diatoms were well represented at sites by the species *Cyclotella glomerata*. The most frequently encountered green algae species were *Oocystis lacustris*, while cryptomonads were represented by *Cryptomonas reflexa* and *Rhodomonas minuta*. *Chrysophyta rodhei* was the dominant golden-brown algae and *Aphanocapsa elachista* was the most widely distributed cyanobacteria species.

3.2.2.3 Summary

The phytoplankton assemblages in the lakes of the Jericho Study Area were indicative of oligotrophic waterbodies (using criteria presented in Wetzel 1983). Chlorophyll *a*, biovolume and density values were all low. In general, golden-brown algae (Chrysophyta) had the greatest biovolumes and cyanobacteria (Cyanophyta) had the greatest densities. It should be noted that samples were collected in early summer (July). Because phytoplankton communities exhibit seasonal variation, in terms of biomass and community composition, it is likely that the results would vary between seasons.

3.2.3 Zooplankton

Zooplankton samples were collected at the four lake sites used to collect phytoplankton (Figure 3.13). Summary information is presented in this section; detailed data are presented in Appendix C, Table C5.

Zooplankton communities are composed of microscopic animals that live in the water column (Pennak 1978; Wetzel 1983). Summary results of zooplankton biomass (µg/m³; dry weight) and density (No./m³) are both presented in this section because density alone does not provide an accurate assessment of a taxon's importance. Taxa that are extremely numerous may have a low biomass because of the small size of individual organisms. Conversely, taxa that have large biomass (due to large size of individual organisms) may not be numerically abundant. Zooplankton groups can contribute to lake productivity by influencing the abundance of predators that feed on them (generally other zooplankton and fish) and modifying phytoplankton communities through grazing.

3.2.3.1 Biomass

The estimates of total zooplankton biomass in lakes of the Jericho Study Area were low (Table 3.5). Overall, Lake C1 exhibited the highest biomass (217 554 μ g/m³), while the biomass of zooplankton was lowest at Lake D10 (71 254 μ g/m³).

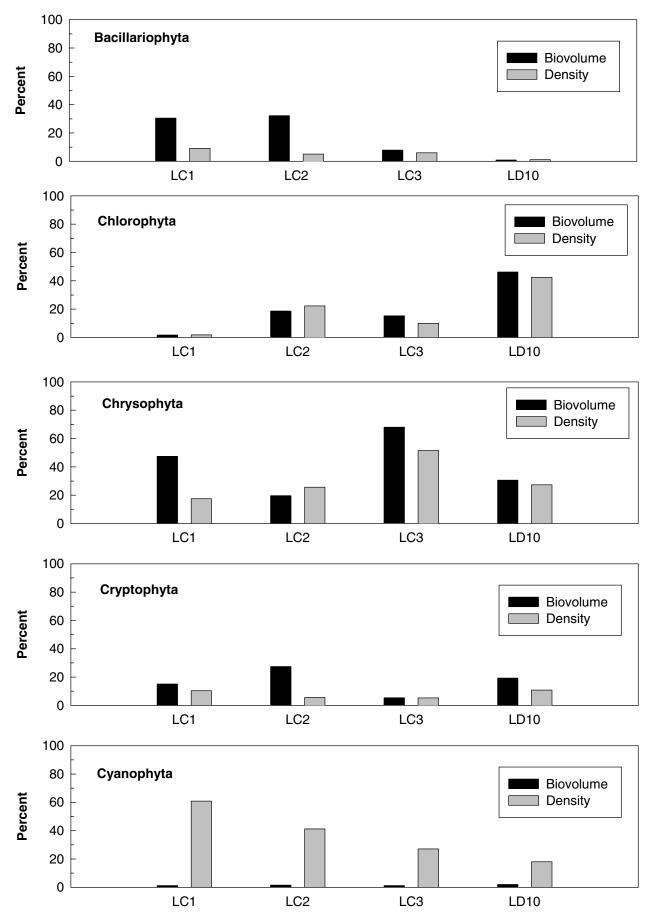


Figure 3.16 Percent biovolume and density of major taxonomic phytoplankton groups in lakes of the Jericho Study Area, 1999.

Cladocera contributed the most (range 52 to 86%) to zooplankton biomass (Figure 3.17). In general, calanoid copepods were second in importance in terms of biomass (range from 6 to 32%), followed by cyclopoid copepods (range from 1 to 16%). *Holopedium gibberum* was the most important cladoceran species, while *Leptodiaptomus sicilis*, was the dominant calanoid copepod species (Appendix C, Table C6). The dominant species in the cyclopoid copepod group was *Diacyclops bicuspidatus*.

Table 3.5 Biomass, density, and number of taxa values for zooplankton samples in lakes of the Jericho Study Area, 1999.

0.4	Site								
Category	Lake C1	Lake C2	Lake C3	Lake D10					
Density (number/m ³)	66 340.3	7175.6	33 461.7	72 271.7					
Biomass (μg/m ³)	217 554.5	170 896.4	141 877.1	71 254.0					
Taxa	13	11	15	13					

3.2.3.2 Density

Zooplankton densities ranged from 7176 to 72 272 organisms/m³ (Lake C2 and Lake D10, respectively). Overall, rotifers and cyclopoid copepods contributed the most toward total zooplankton density; water fleas were not abundant. As a group, the rotifers *Conochilus unicornis*, *Kellicottia longispina*, and *Keratella cochlearis* accounted for the largest portion (81%) of the total zooplankton abundance in sampled lakes in the Jericho Study Area. The presence of large numbers of copepod nauplii explains the high densities recorded in some lakes (C1 and D10).

3.2.3.3 Summary

Zooplankton in the Jericho Study Area exhibited some variation in community biomass and density. Cladocera (water fleas) was the dominant taxonomic group in terms of biomass. Within this group, *Holopedium gibberum* was the most important species. Other taxonomic groups accounted for limited amounts of zooplankton biomass at some sites. Rotifers, particularly *Conochilus unicornis*, *Kellicottia longispina*, and *Keratella cochlearis*, were the most abundant zooplankton species at most sites. Due to their small size, rotifers did not have a large contribution to the community biomass.

3.2.4 Benthic Macroinvertebrates

Benthic (bottom-dwelling) macroinvertebrates are an important link in aquatic food webs. Most are herbivorous, detrivorous, or filter feeders and derive much of their energy from aquatic plants and algae or organic materials. Some species are predactious, generally feeding upon other nonvertebrates. Many fish species, including early life history stages of piscivorus species, feed on benthic macroinvertebrates.

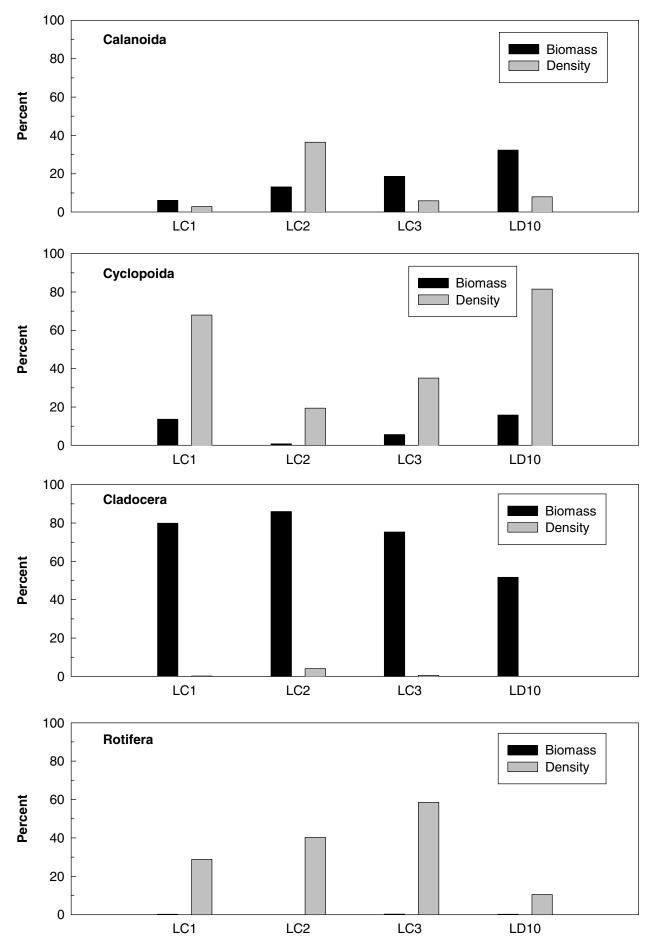


Figure 3.17 Percent biomass and density for major taxonomic zooplankton groups in lakes of the Jericho Study Area, 1999.

The 1999 program was designed to collect baseline information for benthic macroinvertebrate communities in selected waterbodies of the Jericho Study Area. Previous experience in the area indicated that most streams were ephemeral (intermittent flow during open water period) and logistically difficult to sample (large substrates), which limited their potential as sample areas. Therefore, benthic macroinvertebrate sampling was restricted to lakes. Collections were stratified into littoral and profundal zones to account for variation in community structure. The littoral zone (<5.0 m depth) receives larger amounts of light relative to the profundal zone (>5.0 m depth), and therefore, is potentially more productive. Sites were established on each of Lakes C1, C3 and D10. Because of its shallow depth, a profundal samplewas not collected in Lake C2. Due to faulty preservation procedures, the littoral sample for Lake C2 could not be analysed, therefore, results are not available for this waterbody. Summary information are presented in Table 3.6 and Figure 3.18; all raw data are summarized in Appendix C, Table C6.

3.2.4.1 Community Structure

The number of taxa at littoral sites ranged from 8 to 18, with higher values occurring in Lakes C3 and D10 (Table 3.6). The total number of benthic macroinvertebrates at littoral sites ranged from 8129 organisms/m² in Lake C1 to 13 259 organism/m² in Lake C3. Benthic copepods were the dominant taxa numerically at all littoral sites. Calanoid, cyclopoid and harpacticoid copepods as a group accounted for between 21 and 83% of the sample. Chironomidae larvae were the second most abundant taxa in the littoral benthic community. Lake D10 had the highest chironomid density, (5174 organisms/m²), while Lakes C3 and C1 densities were lower (3826 and 1044 organisms/m² respectively). Other less numerous taxa in the littoral zone included hydracarina, nematodes, oligochaetes, ostracods, pelecypods, and turbellarians.

At profundal sites, the number of taxa ranged from 9 to 14, with the highest number occurring in Lake D10. The total number of benthic macroinvertebrates at profundal sites was more variable. Densities ranged from 1868 organisms/m² in Lake C3 to 22 433 organisms/m² in Lake C1. As for littoral sites, benthic copepods were the dominant taxa numerically. This was particularly true in Lake C1. Calanoid, cyclopoid and harpacticoid copepods as a group accounted for between 8 and 95% of the sample. Chironomidae larvae were the second most abundant taxa in the profundal benthic community. Lake D10 had the highest chironomid density (5609 organisms/m²), while Lakes C3 and C1 densities were lower (739 and 869 organisms/m² respectively).

With the exception of the high number of copepods at the profundal site in Lake C1, total densities of benthic macroinvertebrates were generally higher in the littoral zone than in the profundal zone. This was also true for the number of taxonomic groups. If the copepod fraction of the sample is excluded from the analyses, the relative importance of each of the major taxonomic groups within each lake was relatively constant (Figure 3.18). In all three waterbodies, chironomid larvae accounted for the largest percentage of the sample in both the littoral and profundal zones. Pelecypods tended to be second in importance in terms of density. In Lake C1, this was true only in the littoral zone; this group was absent from the profundal sample. In Lake C3, oligochaetes were an important taxanomic group in both littoral and profundal sites. In Lake D10, other taxonomic groups were also well represented including hydracarina, nematodes and turbellarians.

Table 3.6 Density of benthic macroinvertebrates groups in samples collected at littoral and profundal zones^a of selected lakes in the Jericho Study Area, 1999.

The second of the second	Lal	ce C1	Lal	ce C3	Lak	e D10
Taxonomic Group	Littoral	Profundal	Littoral	Profundal	Littoral	Profundal
<u>PLATYHELMINTHES</u>						
TURBELLARIA						
MICROTURBELLARIA					435	
Mesostoma				43		217
<u>NEMATODA</u>			43	87	435	304
<u>MOLLUSCA</u>						
PELECYPODA	260		2043	522	651	1217
ANNELIDA						
OLIGOCHAETA						
Naididae			87	43	304	
Tubificidae			1652	87	43	43
Lumbriculidae			43			
Enchytraeidae					130	
<u>ARTHROPODA</u>						
ARACHNIDA						
Hydracarina		43	87			43
Lebertiidae					130	43
CRUSTACEA						
COPEPODA						
CALANOIDA	3739	17 522	3348	304	1261	261
CYCLOPOIDA	3043	3696	2130		478	435
HARPATICOIDA					43	
OSTRACODA	43	217		43	435	217
MALACOSTRACA						
AMPHIPODA						
Gammaridae		43				
INSECTA						
COLLEMBOLA		43				
DIPTERA						
Chironomidae	1044	869	3826	739	5174	5609
TRICHOPTERA						
Limnephilidae					87	
Total No. Taxa/m ^{2 b}	8	9	15	9	18	14
Total No. Organisms/m ²	8129	22 433	13 259	1868	9606	8389
No. Organisms/m ² (Copepoda excluded)	1347	1215	7781	1564	7824	7693

For definition of littoral and profundal zones, see Section 2.1.2.4.

Based on number of taxa identified; see Appendix C, Table C6.

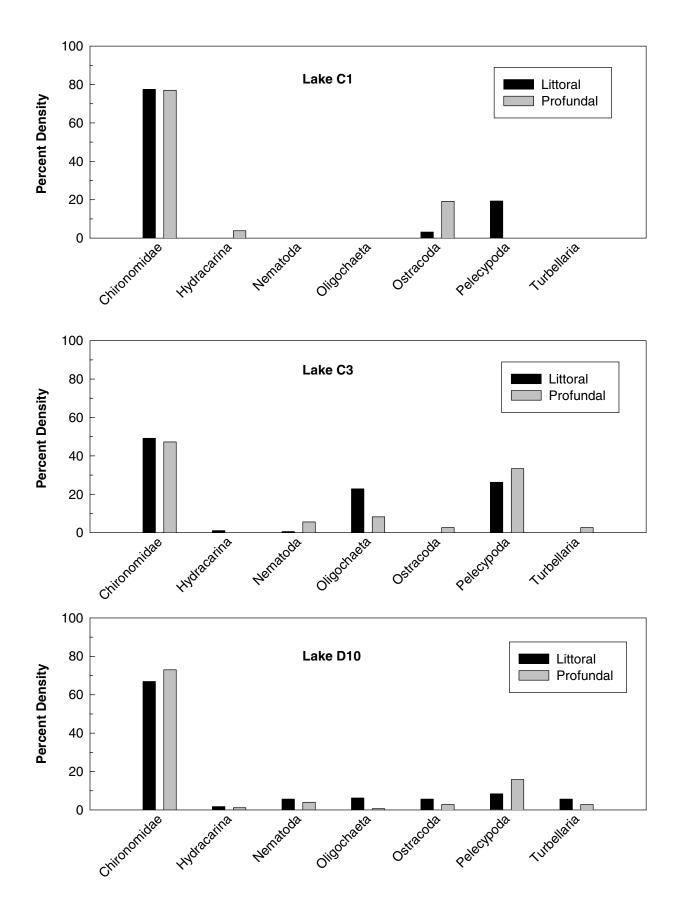


Figure 3.18 Percent density of major benthic macroinvertebrate taxonomic groups at littoral and profundal sites in selected lakes of the Jericho Study Area, 1999 (Copepods excluded from summary).

3.2.4.2 Summary

In general, densities and number of taxonomic groups of benthic macroinvertebrates were greater in the littoral zones than in the profundal zones of sampled lakes in the Jericho Study Area. This likely reflects the higher productivity of shallow-water habitats because of higher water temperatures and greater light penetration. Taxonomic groups encountered included copepods, chironomids, hydracarinas, nematodes, oligochaetes, ostracods, pelecypods, and turbellarians. This taxonomic composition was indicative of a homogenous substrate dominated by fine sediments in lake environments. In terms of taxonomic composition, the benthic macroinvertebrate communities were dominated by a few taxa: copepods and chironomids were numerically abundant.

3.3 FISH

The 1999 fish sampling program was designed to provide information on fish communities in selected waterbodies of the Jericho Study Area. Sampling was conducted during spring, summer, and fall in a variety of habitats using several inventory techniques. In lakes, these techniques included gillnetting, backpack electrofishing, minnow traps, and use of an Arctic fyke net. In streams, fish were inventoried using backpack electrofishing. The following section provides summary information for fish communities in selected lakes and streams. All raw data are presented in Appendix D, Tables D1 to D8.

3.3.1 Species Composition and Abundance

3.3.1.1 Lakes

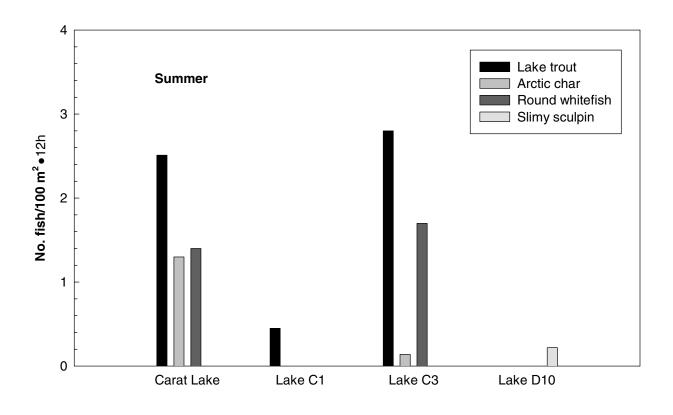
During the 1999 fisheries program, five lakes were sampled in the Jericho Study Area (Carat Lake, Lakes C1, C2, C3, and D10). Fish were not recorded in Lake C2. This is a small (1.0 ha), shallow (maximum depth of 2.0 m) waterbody situated in the headwaters of Stream C1. As such, Lake C2 provides little potential as habitat for fish residing in the Jericho Study Area. Incidental observations during the field program documented high densities of the Branchiopoda, Anostraca (fairy shrimp). The presence of fairy shrimp in a waterbody is usually a good indication that predatory fish are absent from the system (Clifford 1991).

In total, 328 fish representing five species were recorded in the remaining four lakes (Table 3.7). Lake trout (147) was the numerically dominant species, followed by round whitefish (93), slimy sculpin (48), Arctic char (39), and burbot (1). The relative importance of a particular species within each lake was not constant. In Lake C1, lake trout and slimy sculpin were the only species encountered. In Carat Lake, lake trout dominated the sample (49%), but species such as round whitefish (31%) and Arctic char (15%) were also present. The species composition and relative importance of fish sampled in Lake C3 was similar to that of Carat Lake. Lake trout dominated the sample (53%), followed by lower numbers of round whitefish (36%) and Arctic char (10%). Despite a significant amount of sampling effort (62.1 h gillnetting; 541 sec backpack electrofishing; 101 h gee trapping) in Lake D10, only 23 slimy sculpins were recorded. Fairy shrimp were also observed in this waterbody.

To assess the relative abundance of fish in each of the sampled lakes, gill net catch data were summarized. These data were used for comparative purposes because they were based on a standardized sampling effort in all study area lakes and the majority of fish were captured using this technique (176 of 328 fish).

In summer, a variety of habitats and locations were sampled to assess fish distribution patterns. During summer, the relative abundance (catch-per-unit-effort or CPUE) of fish captured in each lake varied (Figure 3.19). In Carat Lake, lake trout were most abundant (2.5 fish/100 m² · 12 h), followed by Arctic char and round whitefish (1.3 and 1.4 fish/100 m² · 12 h, respectively). Catch rates for lake trout and round whitefish were higher in Lake C3 than in Carat Lake (2.8 and 1.7 fish/100 m² · 12 h, respectively), but the catch rate for Arctic char was much lower (0.1 fish/100 m² · 12 h). The higher catch rates for lake trout and round whitefish recorded in Lake C3 were likely a reflection of differences in sampling techniques rather than differences in fish abundance between lakes. In Lake C3, gill nets were set overnight, whereas in Carat Lake they were set and run only during the day. Gillnetting efficiency is generally higher during darkness, therefore, CPUE values for fish in Lake C3 are biassed upward. Despite this difference in sampling, the results for Lake C3 suggest that Arctic char are not abundant in this waterbody (high sampling efficiency resulted in low numbers of captured fish).

Table 3.7 Species composition of fish sampled from lakes in the Jericho Study Area, 1999 (all sampling methods and periods combined).


Species	Carat Lake		Lake C1		Lake C3		Lake D10		Total	
	Number	Percent	Number	Percent	Number	Percent	Number	Percent	Number	Percent
Arctic char	30	15.4			9	9.7			39	11.9
Burbot	1	0.5							1	0.3
Lake trout	95	48.7	3	17.6	49	52.7			147	44.8
Round whitefish	60	30.8			33	35.5			93	28.4
Slimy sculpin	9	4.6	14	82.4	2	2.2	23	100.0	48	14.6
Total	195	100.0	17	100.0	93	100.0	23	100.0	328	100.0

Results for Lake C1 indicated that fish are not abundant in this waterbody; the average catch rate for lake trout was only $0.4 \text{ fish/}100 \text{ m}^2 \cdot 12 \text{ h}$. The CPUE value for captured fish in Lake D10 was even lower. The only species encountered was slimy sculpin and the catch rate was $0.2 \text{ fish/}100 \text{ m}^2 \cdot 12 \text{ h}$. Because the gill nets used during the field program were not designed to capture fish the size of slimy sculpin (<150 mm length), the low CPUE value was not indicative of the abundance of slimy sculpin in Lake D10. A limited amount of sampling for this species using backpack electrofishing resulted in catch rates of 2.4 fish/min.

In fall, sampling was restricted to Carat Lake and Lake C3 in an attempt to identify concentrations of spawning fish. Gill net catch rates were variable, with CPUE values tending to be lower in Carat Lake and higher in Lake C3. Lake trout was the dominant species present in both lakes (Figure 3.19).

3.3.1.2 Streams

During the 1999 fisheries program, five streams were sampled in the Jericho Study Area (Streams C1, C2, C2A, C3, and C19). Fish were not recorded in Stream C19. This system is small (length of 350 m), exhibits ephemeral flow (no discharge during summer), and contains a barrier to fish passage, therefore, this waterbody provides little potential as habitat for fish residing in the Jericho Study Area.

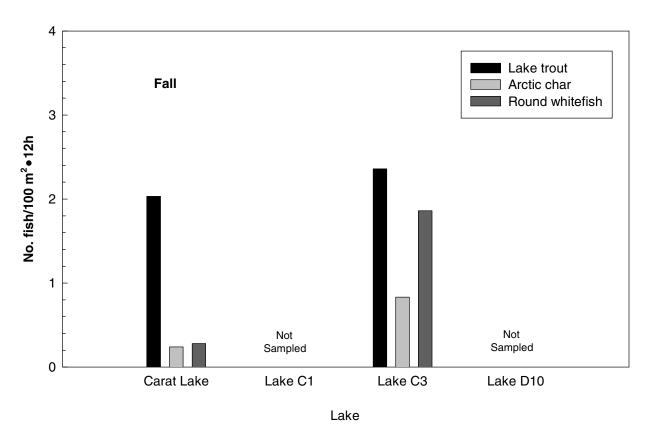
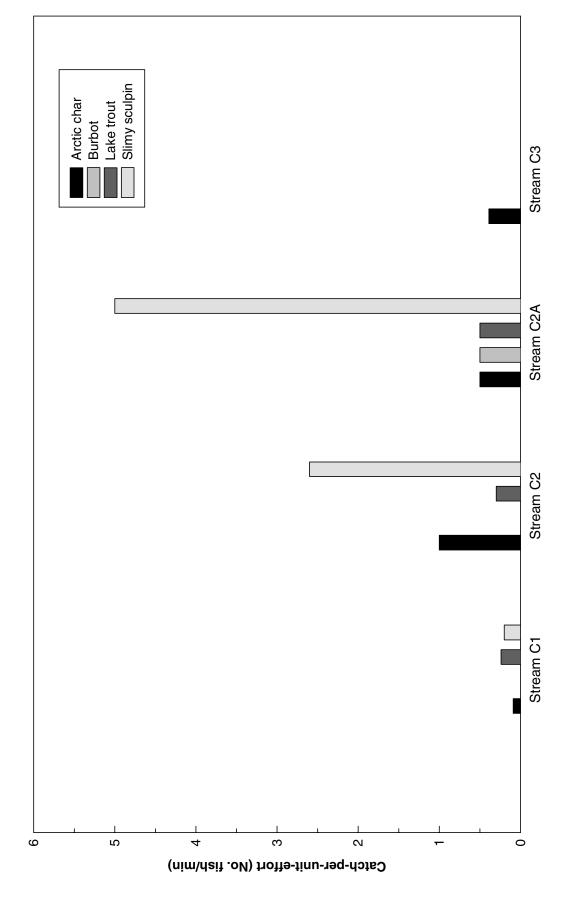


Figure 3.19 Average catch-per-unit-effort values (fish/100 m²•12h) for fish captured during gill net sampling in lakes during summer and fall within the Jericho Study Area, 1999.

In total, 138 fish representing four species were enumerated during the synoptic and detailed surveys (Table 3.8). Slimy sculpin dominated the sample (62), followed by Arctic char (42), lake trout (28), and burbot (6). The number of species encountered varied depending on sample area. Four species and the highest number of fish (96) were recorded in Stream C1. Four species of fish were encountered in Stream C2A, but fish numbers were much lower (12). Three species of fish were recorded in Stream C2, while only one species (Arctic char) was recorded in Stream C3.

Table 3.8 Species composition of fish sampled from streams in the Jericho Study Area, 1999 (all sampling methods and periods combined).


Species	Stream C1		Stream C2		Stream C2A		Stream C3		Total	
	Number	Percent	Number	Percent	Number	Percent	Number	Percent	Number	Percent
Arctic char	31	32.3	7	25.9	1	8.3	3	100.0	42	30.4
Burbot	5	5.2			1	8.3			6	4.3
Lake trout	25	26.0	2	7.4	1	8.3			28	20.3
Slimy sculpin	35	36.5	18	66.7	9	75.0			62	44.9
Total	96	100.0	27	100.0	12	100.0	3	100.0	138	100

On a percentage basis, the relative contribution of each species differed among streams. In Stream C1, Arctic char (32%), lake trout (26%), and slimy sculpin (37%) were similarly represented. Burbot were also present, but represented only a small percentage of the sample (5%). In Streams C2 and C2A, slimy sculpin dominated (>66%). In Stream C3, only three individuals of one species, Arctic char, were recorded.

Based on backpack electrofishing data during the synoptic survey only, the relative abundance of fish were low in all sampled streams (Figure 3.20). Rates did not exceed 2 fish/min of sampling for most species. Exceptions were CPUE values for slimy sculpin of 2.6 and 5.0 fish/min in Streams C2 and C2A, respectively. These results were not unexpected. All sampled streams were small systems that were used on an opportunistic basis by lake resident populations.

3.3.2 Biological Characteristics

An objective of the 1999 fisheries program was to describe the biological characteristics of fish species encountered in the Jericho Study Area. Characteristics described in this section include the following: length-frequency distributions, length-weight relationships, condition factors, age-at-maturity, length-at-age, and weight-at-age. Because much of this information was collected from fish that succumbed during sampling, and mortality rates were low, sample sizes available for analyses were small. Unless otherwise stated, data from all sampling sessions and sampling methods have been combined to maximize sample sizes. Raw data are presented in Appendix D, Table D7.

Relative abundance (no. fish/min) of fish encountered in streams during synoptic surveys using backpack electrofishing, Jericho Study Area, 1999 (all seasons combined). Figure 3.20

3.3.2.1 Lake trout

In Carat Lake, captured lake trout ranged in fork length from 35 to 989 mm; however, few individuals were encountered that were greater than 500 mm in length (Appendix D, Table D7). Based on combined data for all fish sampling techniques (gill net and fyke net were the primary methods), the length-frequency distribution of lake trout in Carat Lake exhibited a bimodal distribution with smaller fish predominating (Figure 3.21). The bimodal grouping occurred between 20 and 200 mm and between 400 and 500 mm.

In Lake C3, lake trout generally exhibited the same length characteristics as in Carat Lake, but smaller-sized individuals (i.e., <150 mm) were absent from the sample (Figure 3.22). This was due to the primary method used, gill netting, which selectively captured larger individuals than the fyke net used in Carat Lake. Fish ranged in length from 176 to 835 mm. Similar to results for Carat Lake, lake trout in Lake C3 also exhibited a bimodal distribution.

Length data were also collected from lake trout captured in Lake C1; however, the sample (n=2) was too small to establish an accurate assessment of the length-frequency distribution. Lengths of lake trout in this small waterbody ranged between 210 and 305 mm (Appendix D7).

Length-weight regression equations and mean condition factors for lake trout sampled from lakes in the Jericho Study Area are presented in Table 3.9.

Table 3.9 Length-weight regression equations and mean condition factors for lake trout sampled during summer and fall from lakes in the Jericho Study Area, 1999.

Y also	Length-weight Relationship	Condition Factor	Sample	
Lake	Regression Equation ^a	r ² Value	Condition Factor	Size
Carat Lake	Weight = $4.5 \cdot 10^{-6}$ Fork Length ^{3.143}	0.994	1.04	52
Lake C3	Weight = $2.8^{\circ} \cdot 10^{-5}$ Fork Length ^{2.826}	0.938	1.02	48

Weight in grams; fork length in millimetres.

Age-at-length and age-at-weight information for lake trout captured in the Jericho Study Area (all samples combined) are provided in Table 3.10. Fish ranged in age from 1 to 35 years; however, caution should be used when interpreting this information. The sample used for ageing was small (n=26) and there was variation inherent to this type of data. Subarctic fish populations typically exhibit a great range in age for fish of a given length (Johnson 1972). This information provides only a representative cross-section of the population and should not be interpreted as an accurate description of growth rate, nor should it be used for comparison of growth curves among different fish populations.

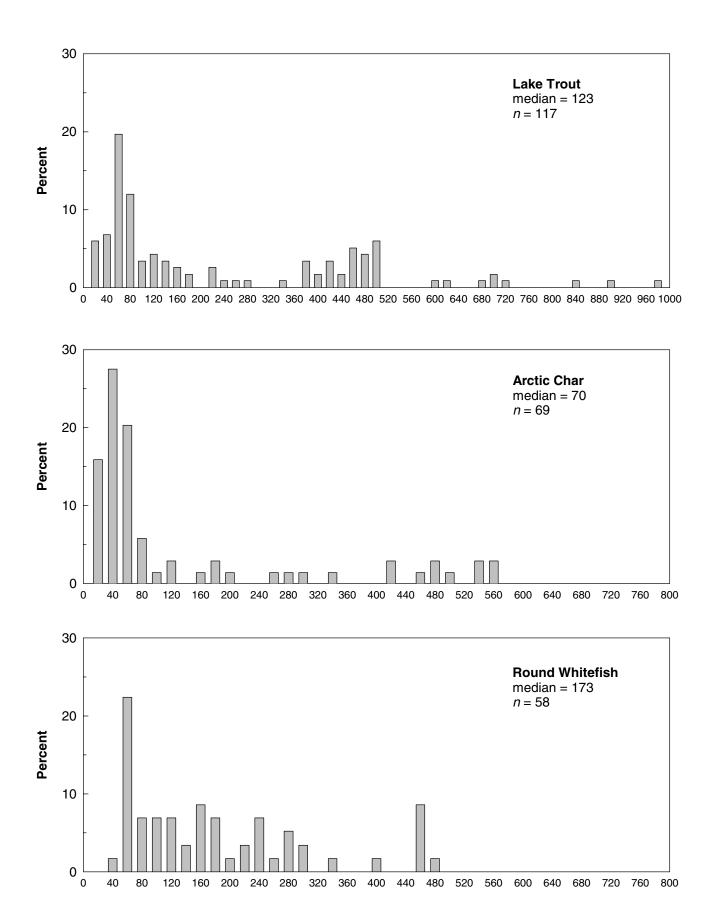


Figure 3.21 Length-frequency distribution of lake trout, Arctic char, and round whitefish in Carat Lake, Jericho Study Area, 1999 (all seasons and methods combined).

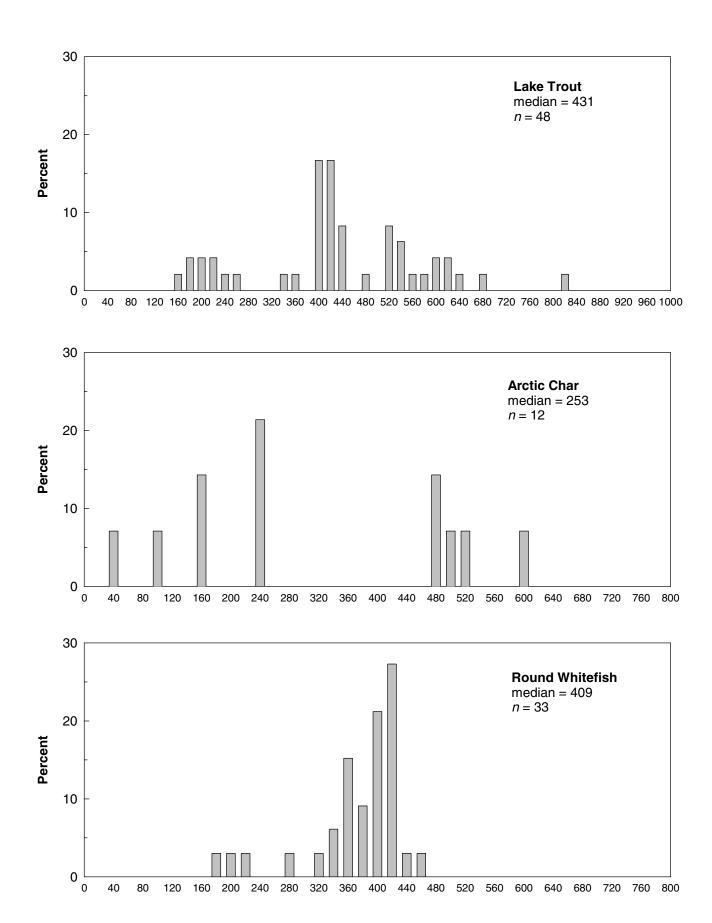


Figure 3.22 Length-frequency distribution of lake trout, Arctic char, and round whitefish in Lake C3, Jericho Study Area, 1999 (all seasons and methods combined).

Limited data were available to assess age-at-maturity for lake trout in the Jericho Study Area. Lake trout appear to become sexually mature at approximately 11 years of age. The smallest sexually mature individual encountered had a fork length of 401 mm. This fish was a gravid female captured from Lake C3. Nonfecund lake trout were identified during the present study (i.e., mature fish that did not spawn that year). The percentage of nonfecund individuals in the sample was 34% (n=35).

Table 3.10 Age-length relationships^a for lake trout, Arctic char, and round whitefish sampled from selected waterbodies within the Jericho Study Area, 1999.

	Lake trout				Arc	tic cha	r		Round whitefish						
Age		Length nm)	We	eight (g)	n		Length mm)	Wei	ight (g)	n		Length mm)	Wei	ght (g)	n
	Mean	Range	Mean	Range		Mean	Range	Mean	Range		Mean	Range	Mean	Range	
1	89	68-137	20		4	72				1	80	78-82			3
2											112	106-118	5		2
3						258	250-265	185	175-195	2	214		70		1
4	188	176-203	68	60-85	3	271	242-299	188	110-265	2	262	239-285	193	145-240	2
5	224		100		1	283	256-310	313	140-485	2					
6	239	236-241	140	130-150	2						354		550		1
7	275		225		1						362		515		1
8											400		760		1
9											401	385-424	775	655-885	3
11	403	401-405	589	565-612	2						389		725		1
12	404		798		1										
13											416		855		1
14	459	431-486	1419	892-1945	2						418		800		1
15	532		1345		1										
17	446		860		1										
18	491	456-525	1180	1000-1360	2						432		1075		1
19											445		1010		1
22	589	540-637	1985	1345-2625	2										
23	538		1605		1										
24											429		850		1
27	738		4500		1										
29	692				1										
35	835		3000		1										

^a Ages generated using fish sampled during all seasons and waterbodies.

3.3.2.2 Arctic char

In Carat Lake, captured Arctic char ranged in fork length from 36 to 578 mm (Figure 3.21; Appendix D, Table D7). Based on combined data for all fish sampling techniques (gill net and fyke net were the primary methods), the length-frequency distribution of Arctic char in Carat Lake exhibited a bimodal distribution with smaller fish predominating. The bimodal grouping occurred between 20 and 200 mm and between 400 and 560 mm. In Lake C3, only a small number of Arctic char were captured (n=12); thus, patterns in size distribution were not evident (Figure 3.22). Fish in the sample from Lake C3 ranged in length from 41 to 604 mm.

Length-weight regression equations and mean condition factors for Arctic char sampled from lakes within the Jericho Study Area are presented in Table 3.11. The results are typical of unexploited subarctic lake populations.

Table 3.11 Length-weight regression equations and mean condition factors for Arctic char sampled during summer and fall from lakes within the Jericho Study Area, 1999.

	Length-weight Relationship	G 1111 T	Sample	
Lake	Regression Equation ^a	Regression Equation ^a r ² Value Condition		Size
Carat Lake	Weight = 2.1 · 10 ⁻⁵ · Fork Length ^{2.887}	0.98	1.09	18
Lake C3	Weight = $3.1 \cdot 10^{-6}$ · Fork Length ^{3.191}	0.989	0.99	8

Weight in grams; fork length in millimetres.

Age-at-length and age-at-weight information for Arctic char are presented in Table 3.10. Fish in this small sample (n=7) ranged in age from 1 to 5 years. No age-at-maturity data for Arctic char were available from the 1999 sample. Data previously collected in the Jericho Study Area suggested that fish became sexually mature at 10 years of age, and alternate year spawners were present (RL&L 1997).

3.3.2.3 Round whitefish

In Carat Lake, sampled round whitefish ranged in fork length from 59 to 491 mm; however, few individuals were greater than 300 mm in length (Figure 3.21; Appendix D, Table D7). In Lake C3, larger fish dominated the sample (Figure 3.22). This was due to the primary sampling technique used (gill nets). Fork lengths ranged from 194 to 464 mm.

Length-weight regression equations and mean condition factors for round whitefish sampled from lakes in the Jericho Study Area are presented in Table 3.12.

Table 3.12 Length-weight regression equations and mean condition factors for round whitefish sampled during summer and fall from lakes within the Jericho Study Area, 1999.

Lake	Length-weight Relationship	C	Sample	
Lake	Regression Equation ^a	r ² Value	Value Condition Factor	
Carat Lake	Weight = $3.0 \cdot 10^{-6}$ Fork Length ^{3.218}	0.944	1.02	41
Lake C3	Weight = $6.5 \cdot 10^{-7}$ Fork Length ^{3.479}	0.975	1.1	32

Weight in grams; fork length in millimetres.

Round whitefish ranged in age from 1 to 24 years (Table 3.10). Past investigations (e.g., Kennedy 1949; Mackay 1989) of subarctic round whitefish populations have not documented the existence of fish 15 years of age and older. However, several individuals in the Jericho Study Area sample did exceed this age. This discrepancy can be explained by the use of different ageing structures; these studies employed scales, whereas the present study utilized otoliths. It is now commonly accepted that otoliths allow a more accurate assessment of fish age than scales, particularly for older fish (Jessop 1972; Mackay et al. 1990).

Limited data were available to assess the age-at-maturity for round whitefish captured in the Jericho Study Area during 1999. These data suggest that fish became sexually mature at eight years of age. The smallest sexually mature round whitefish encountered during the study was 365 mm in fork length. This fish was a gravid female captured from Lake C3. Nonfecund round whitefish were not recorded during the 1999 study.

3.3.3 Feeding Habits

Stomach contents of three species (lake trout, Arctic char, and round whitefish) were analysed to assess feeding habits (all seasons combined). Data were collected from fish that succumbed during capture or that were sacrificed for collection of tissue samples. The information is presented as frequency of occurrence and percent composition of food items by volume. The raw data used for these analyses can be found in Appendix D, Table D8.

The diet of lake trout consisted principally of zooplankton (50% occurrence) (Figure 3.23). Other food items consumed were fish (25%), trichopterans (16%), pelecypods (7%), and dipterans (1%). The diet of Arctic char was dominated by zooplankton (91% occurrence). Other food items consumed included ephemeropterans and trichopterans. Round whitefish consumed a variety of food items, which included oligochaetes, gastropods, pelecypods, zooplankton, and trichopterans. The dominant food consumed was zooplankton (64% occurrence). Other food items did not exceed 18% occurrence.

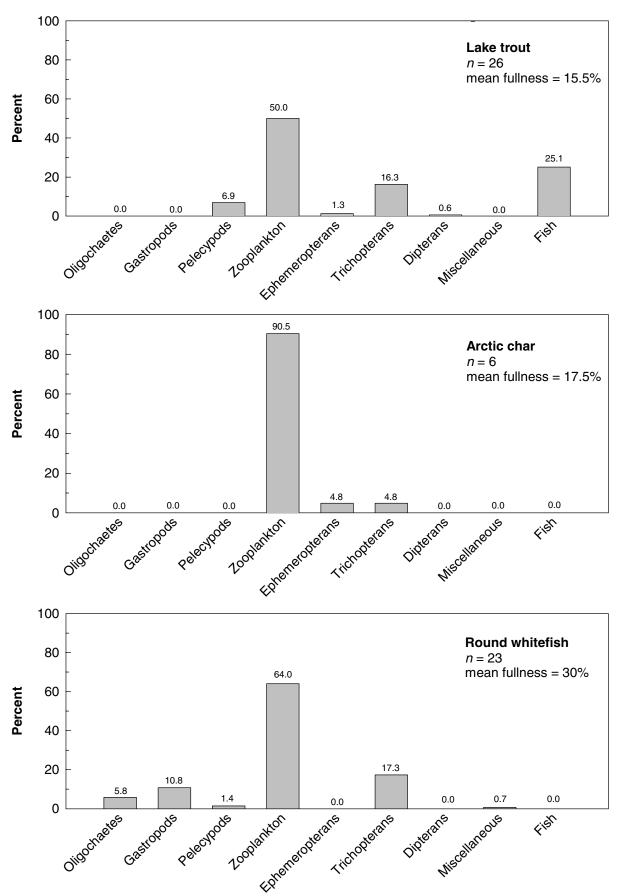


Figure 3.23 Percent frequency of occurrence of food items encountered in stomachs of lake trout, Arctic char and round whitefish captured from lakes in the Jericho Study Area, 1999.

3.3.4 Fish Movements

The Jericho Study Area contains several lakes that are interconnected by larger streams with discharges >0.5 m³/s during the open water period (Tahera Corporation, unpubl. data). As such, the potential exists for fish to undertake movements between waterbodies. To assess fish movement patterns, a tagging program was initiated in 1995 and continued during the present study. Lake trout and Arctic char in good physical condition were tagged and released. Round whitefish were not included in this study component because captured individuals of this species generally were in poor physical condition. The 1999 program sampled two waterbodies that had the potential to contain tagged fish: Carat Lake and Lake C3.

During the present study, 43 lake trout and 12 Arctic char were tagged and released in Carat Lake. Only one marked fish was recaptured in Carat Lake. This lake trout, which was marked in summer 1999, was subsequently recaptured near the original release site. In Lake C3, 21 lake trout and 5 Arctic char were tagged and released during the present study; none of these fish were recaptured. Two lake trout originally marked in Lake C3 in 1995 were recaptured in Lake C3 in 1999.

These limited results make it difficult to assess movement patterns of fish in the Jericho Study Area; however, characteristics of the watercourse connecting Carat Lake to Lake C3 suggest that there is limited potential for movement between waterbodies. The connection is shallow and is dominated by large boulder substrates. These characteristics would hamper, but not prevent, movement of large adult fish between these two lakes during all but high flow periods.

3.3.5 Fall Spawning

Gill net sampling was undertaken during fall in an attempt to identify sites used for spawning by lake trout and Arctic char. Sampling was conducted in Carat Lake and Lake C3. On Carat Lake, sampling was concentrated near the mouth of Stream C1. On Lake C3, sampling was widely distributed within the southern basin where Stream C3 enters the lake (Figure 3.24).

In total, 19 fish were captured in Carat Lake during the fall (Table 3.13; Appendix D, Table D9); these included lake trout (15), Arctic char (3), and round whitefish (1). Most fish were captured in the net set directly in front of the mouth of Stream C1 (14 of 19 fish). One gravid male Arctic char in prespawning condition and five ripe male lake trout in spawning condition were among the captured fish. An additional two ripe male lake trout were captured at a rocky shoal immediately east of the mouth of Stream C1. No gravid or ripe females were captured in Carat Lake. Overall, the catch-per-unit-effort was 3.91 fish/100 m²·12 h.

In Lake C3, 30 fish were captured during the fall spawning survey (Table 3.13; Appendix D, Table D9); these included lake trout, round whitefish, and Arctic char. Of the 16 captured lake trout, 3 were in prespawning condition and 8 were in spawning condition. Of the five Arctic char recorded, 1 was a prespawner, while 4 were ripe fish.

Gravid females of lake trout and Arctic char were also present (2 and 1, respectively). Only one of the nine round whitefish captured was gravid. Overall, the catch-per-unit-effort was 6.21 fish/100 m² · 12 h.

3.3.6 Summary

Most sampled lakes in the Jericho Study Area supported populations of lake trout, round whitefish, and Arctic char. Lake trout was the predominant species with Arctic char and round whitefish being less numerous. Notable exceptions were Lake C2, which contained no fish, and Lake D10 which supported only one fish species (slimy sculpin). Lake C1 also contained a very simple fish community consisting of lake trout and slimy sculpin.

Several fish species were encountered in sampled streams. Arctic char, lake trout, and slimy sculpin were the most numerous, followed by much lower numbers of burbot at some sites. Overall, fish abundance was very low.

The biological characteristics of fish populations in the Jericho Study Area indicated that the individuals were slow growing, late maturing, and the population was dominated by older age-classes. Lake trout, Arctic char, and round whitefish tended to exhibit bimodal length-frequency distributions.

The feeding habits of fish in the Jericho Study Area were related to species-specific feeding habits and the most abundant food item available. Zooplankton was the dominant food group identified in fish stomachs, although other items were consumed. Although round whitefish consumed a variety of food items, zooplankton was also the dominant food group. Other food items consumed by this species included oligochaetes, trichopterans, gastropods, and pelecypods.

Limited recapture data for tagged fish made it difficult to assess movement patterns of fish; however, characteristics of the watercourse between Carat Lake and Lake C3 indicated that large numbers of fish likely do not undertake movements between these two waterbodies.

Lake trout and Arctic char in prespawning and spawning condition were present in both Carat Lake and Lake C3, with most of the captured fish being males. No spawning females were captured in Carat Lake; however, gravid female lake trout and Arctic char were encountered in Lake C3. The presence of fish in spawning condition suggests that spawning sites were present in the vicinity of the sampling locations. The low numbers of females in spawning condition, however, suggests that sampling was undertaken prior to the peak spawning period.

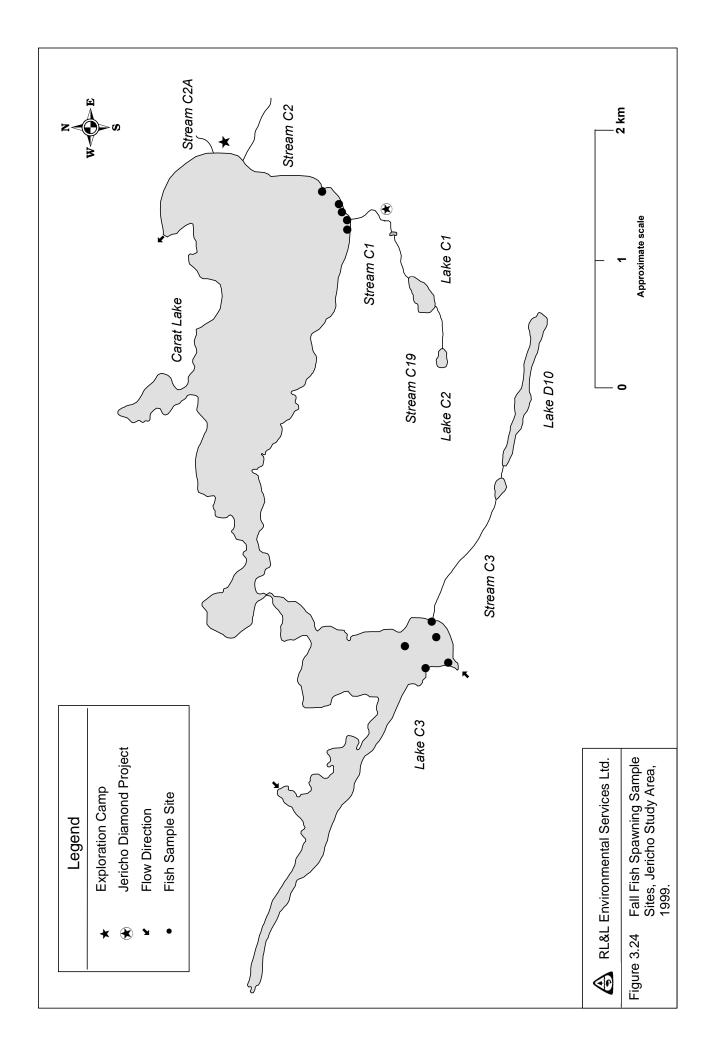


Table 3.13 Number of fish encountered and catch-per-unit-effort values during fall spawning surveys in the Jericho Study Area, 1999.

Waterbody	Sample Time (h)	Species	Sexual Maturity	Count	CPUE (fish/100 m²·12 h)
Carat Lake	26.2	Lake trout	Ripe	7	1.44
			Nonspawner	8	1.64
		Arctic char	Gravid	1	0.21
			Nonspawner	2	0.41
		Round whitefish	Nonspawner	1	0.21
		Total		19	3.91
Lake C3	26	Arctic char	Gravid	1	0.21
			Ripe	4	0.83
		Lake trout	Gravid	3	0.62
			Ripe	8	1.66
			Nonspawner	5	1.04
		Round whitefish	Gravid	1	0.21
			Nonspawner	8	1.66
		Total	_	30	6.21

3.4 HABITAT AND HABITAT USE

This study component was designed to describe aquatic habitat in lakes and streams in the Jericho Study Area and to assess its value to fish. The 1999 program was a continuation of work undertaken in 1995 and 1996 (RL&L 1995, 1997). This section provides information for waterbodies not previously investigated. Raw data collected during the present study are provided in Appendix E, Tables E3 and E4.

3.4.1 Lakes

The shoreline habitat characteristics of Lakes C1, C2, C3, and D10 were inventoried. Surveys were designed to provide a general assessment of the shoreline characteristics of each lake and to identify critical habitats that were potentially important to fish (high quality spawning and rearing sites).

Surveys indicated that the shorelines of all lakes were dominated by zones exhibiting low slopes (Table 3.14). The percent length of lake shorelines with low slopes ranged from 63% (Lake D10) to 94% (Lake C2). Moderate sloped areas were less prominent; percentages ranged from 7% (Lake C2) to 28% (Lake C1). High shoreline slope areas were present in two of the surveyed lakes. In Lake D10, this zone accounted for 21% of the shoreline. In Lake C3, it was much less evident (6%). The high percentage of low slope zones in these lakes suggests that the availability of shallow-water areas that can be used by small fish for rearing and feeding are not limited.

Much of the shoreline habitat in all surveyed lakes consisted of rock substrates. Cobble-boulder substrates were the predominant type in most zones (>74%). Only in the moderate slope zones of Lakes C1 and C2 did bedrock exceed cobble-boulder substrate (70% versus 15% by length). Shoreline areas dominated by fine substrates (silts and sands) were not abundant. This substrate group did not exceed 15% in any lake zone and it was restricted to the low slope areas. These data also suggest that the availability of cobble-boulder substrates that can be used by smaller fish for rearing are not limited.

Spawning habitats required by lake dwelling species, such as lake trout, Arctic char, and round whitefish, are characterized by the presence of clean gravel to boulder-sized substrate in areas sufficiently deep to avoid freezing (Scott and Crossman 1973). Areas with these characteristics were widely distributed in all surveyed waterbodies, which suggests that high quality spawning habitat was not limited in any of the surveyed lakes.

In contrast, shoreline surveys documented a paucity of high quality rearing habitat in all lakes. High quality rearing habitat suitable for lake dwelling fish species is characterized by shallow-water zones exhibiting low slopes and fine substrates that support growth of aquatic macrophytes (Randall et al. 1996). Although areas supporting dense growths of aquatic macrophytes are not a common feature in subarctic lakes, when they occur, they provide important shelter (i.e., protection from predators and source of food) for younger age-classes of fish. In addition, they provide habitat for forage fish species. Shallow water areas with fine substrates were present, but, submergent aquatic macrophytes were not identified in any lake. Emergent species including sedges (*Carex* spp.) and aquatic grasses (*Glyceria* spp.) were present only in one waterbody (Lake D10), but these were restricted to the lake margins. As such, areas exhibiting high quality rearing habitat were severely limited in all surveyed lakes.

3.4.2 Streams

Investigations of streams were undertaken during spring and summer. During spring, a reconnaissance level survey was conducted to identify streams that provided some habitat for fish communities and to assess their potential as spawning habitat (i.e., use by spring spawning Arctic grayling). Surveys during summer were used to provide a more detailed description of stream characteristics and to assess their overall potential as fish habitat. Streams chosen for investigation included Streams C2, C2A, C3, and C19. All these streams are very small, ephemeral watercourses that have limited value to fish; however, because there is the potential to be affected by the Jericho Diamond Project, surveys were undertaken on each system. Stream C1 was also investigated in 1999, but this waterbody received a more intensive assessment and the results are presented elsewhere (Section 4.2).

3.4.2.1 Streams C2 and C2A

Streams C2 and C2A are located on the east shore of Carat Lake in the immediate vicinity of the exploration camp (Figure 3.2) and both drain shallow ponds. These streams exhibit minimal flow during dry periods and freeze to the bottom during winter. Due to their small size, barriers to fish passage exist on both streams within 100 m of their confluence with Carat Lake. Fish habitat in Stream C2 was dominated by RIFFLE habitat (Table 3.15). In Stream C2A, POOL and RUN habitats were prevalent.

Table 3.14 Summary of lakeshore habitat characteristics recorded for sampled waterbodies within the Jericho Study Area, 1999.

Habita	at Zone ^a	Lak	e C1	Lak	e C2	Lak	e C3	Lake	D10
Slope	Substrate	Length (m)	Percent						
Low	Fines	80	14.3	54	15	209	2.6	107	6.6
	Cobble-Boulder	423	75.7	268	74.3	7598	94.5	1450	89.2
	Bedrock	56	10	39	10.7	233	2.9	68	4.2
	Overall Total	559	71.8	361	93.5	8040	74.2	1625	63.2
Moderate	Fines	11	5	4	16				
	Cobble-Boulder	55	25	4	16	1992	93.3	345	83.3
	Bedrock	154	70	17	68	143	6.7	69	16.7
	Overall Total	220	28.2	25	6.5	2135	19.7	414	16.1
High	Fines								
	Cobble-Boulder					491	75	531	100
	Bedrock					164	25		
	Overall Total	0	0	0	0	655	6.1	531	20.7

^a For definition of habitat zones see Appendix A.

Table 3.15 Summary of habitat types identified during summer in inventoried streams in the Jericho Study Area, 1999.

		Surveyed			Habitat T	Type (%) ^c		
Stream	Reach	Length (m)	Pool	Run	Riffle	Flat	Dispersed	Boulder Garden
C2 ^a	1	100			100			
C2A ^a	1	100	30	70				
C3 ^b	1	110			90		10	
	2	215	10	10	80			
	3	113					100	
	4	198					50	50
	5	276						100
	6	200				50	50	
C19 ^b	1	35		10				90
	2	146					75	25

a Characteristics measured during previous inventories (RL&L 1995, 1997).

Fish were present in both streams during the 1999 sampling program, but were restricted to the lowermost 50 m section. In Stream C2, young-of-the year and juvenile Arctic char (7) were recorded, as well as juvenile lake trout (2) and slimy sculpin (35). Lower numbers of fish were captured in Stream C2A (one each of juvenile Arctic char, burbot, and lake trout, and nine slimy sculpin). Although fish were present, the small size of the streams severely limited their value as fish habitat (Table 3.16).

Characteristics measured during summer 1999.

For definitions of habitat types see Appendix A

Table 3.16 Fish habitat quality ratings for sampled streams within the Jericho Study Area, 1999.

C4	San atau	Rating of Habitat Quality						
Stream	Species	Spawning	Rearing	Adult Feeding				
Stream C2	Arctic char	Nil	Low	Nil				
Stream C2	Lake trout	Nil	Low	Nil				
G. G2.4	Arctic char	Nil	Low	Nil				
Stream C2A	Lake trout	Nil	Low	Nil				
Stream C3	Arctic char	Nil	Low	Nil				
Stream C3	Lake trout	Nil	Low	Nil				
Ct C10	Arctic char	Nil	Nil	Nil				
Stream C19	Lake trout	Nil	Nil	Nil				

3.4.2.2 Stream C3

Stream C3 is located at the west end of Lake D10 and flows in a westerly direction; it connects Lake D10 to Lake C3. The stream exhibits subsurface flow in several locations and it freezes to the bottom during winter. Due its small size, a barrier to fish passage (dispersed flow) exists within 300 m of its confluence with Lake C3. Stream C3 can be divided into six distinct reaches based on habitat type; however, useable fish habitat is restricted to Reaches 1 and 2. Reach 1 is dominated by RIFFLE habitat, while Reach 2 contains POOL, RUN, and RIFFLE habitats.

Fish were present in Stream C3, but were restricted to the two lowermost reaches. Recorded fish included three juvenile Arctic char. Although fish were present, its small size severely limited its value as fish habitat.

3.4.2.3 Stream C19

Stream C19 connects Lake C1 to Lake C2. This system has no potential as fish habitat. This is due to its small size, and the presence of an impassible fish barrier at its lower end (i.e., within 30 m of lake). As a consequence, Stream C19 received a habitat quality rating of nil for all categories (Table 3.16).

3.4.3 Summary

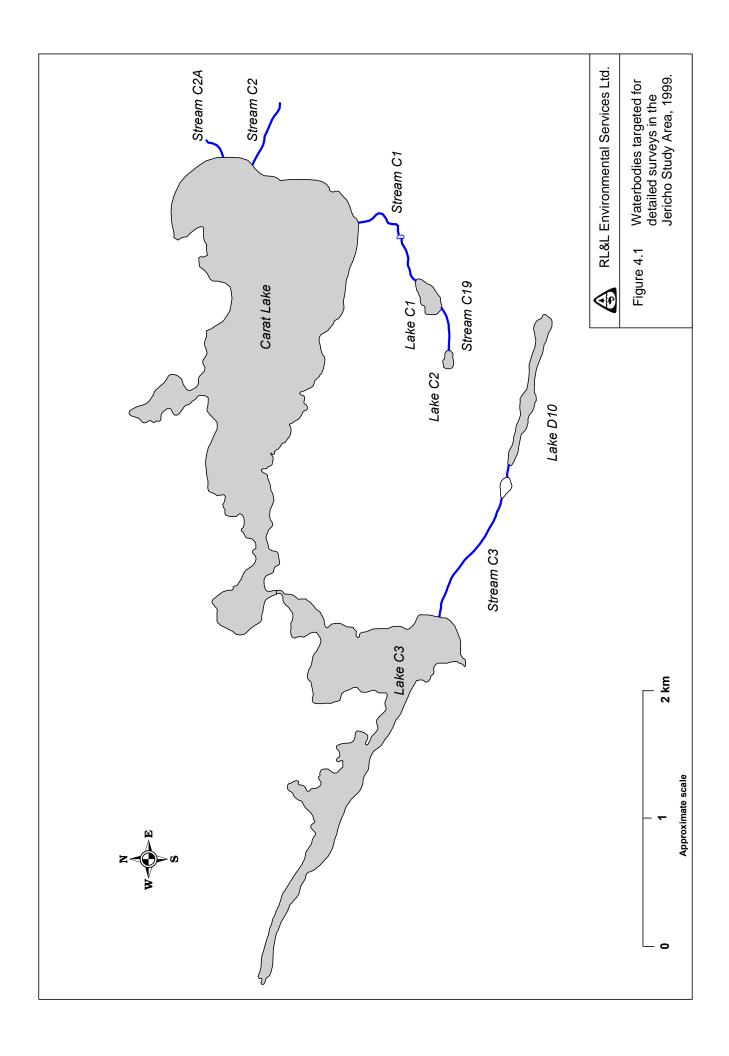
The shoreline areas of surveyed lakes were dominated by low slope areas and by cobble-boulder substrates. These shoreline characteristics provided an abundance of potential spawning areas for species such as lake trout, Arctic char, and round whitefish. Therefore, spawning areas were not limited in any of the surveyed lakes. The same shoreline characteristics that provided an abundance of spawning habitat also provided some rearing habitat for fish. Although rearing habitat was available, no high quality areas were identified.

Surveyed streams provided limited habitat for fish populations originating from study area lakes. The primary reasons for low quality fish habitat were small size and poorly defined channels that contained barriers to fish passage.

4.0 DETAILED SURVEYS

The detailed surveys completed in the Jericho Study Area were designed to collect scientifically defensible data from waterbodies that may be removed from production by the proposed development (including those waterbodies proposed for the stand-alone project option, which is not the preferred option; Tahera 1999). The specific tasks to be completed for each waterbody included estimates of fish density, quantification of fish habitat, and assessment of the trophic status (Table 4.1). The aquatic biological components chosen as a basis for detailed surveys were deemed to be important to the aquatic community and provided the best opportunity to meet the study objectives.

Table 4.1 Waterbodies investigated and tasks completed during detailed surveys in the Jericho Study Area, 1999.


	Waterbody							
Task	Lake C1	Lake C2	Lake D10	Stream C1	Stream C3	Stream C19		
Fish Density	✓	✓	✓	1	✓	✓		
Habitat Characteristics	✓	✓	✓	✓	✓	✓		
Trophic Status								
Nutrient Level	✓	✓	✓	✓	✓	✓		
Standing Crop	✓	✓	✓	✓	✓	✓		

Lakes potentially impacted under the present development plans include Lakes C1 and C2 (proximity to project zone) and Lake D10 (proposed tailings storage site). Streams that may be impacted include Stream C1 (diversion around the project) and Streams C19 and C3 (proximity to the project) (Figure 4.1). This section provides summary results for the detailed surveys; all raw data are presented in Appendix E, Tables E1 to E5.

4.1 FISH DENSITY

Fish densities in selected lakes and streams were to be quantified using two methods. These included the Petersen mark-recapture technique in lakes (Ricker 1975) and the depletion-removal technique in streams (VanDeventer and Platts 1983). Both techniques require that a sufficient number of fish are captured so that an accurate estimate of fish density can be generated.

During the present study, low numbers of fish were captured in most waterbodies targeted for detailed assessment, which precluded development of accurate estimates. Lakes where insufficient fish were captured included Lakes C1, C2 and D10. Based on the results of the 1999 program, it is appropriate to conclude that there are too few or no fish in these lakes to warrant an estimate of abundance. Lake C2 supports no fish, while Lake D10 contains only slimy sculpin. Data from this study and from previous work in 1996 (RL&L 1997) documented resident lake trout and slimy sculpin populations in Lake C1. In total, 12 lake trout were recorded in 1996, while 2 were captured in 1999. Catch rates, however, were too low to warrant an attempt to generate an estimate of fish density in this lake.

Similar results were recorded for two of the streams identified for detailed survey. Only three Arctic char were recorded in Stream C3 and no fish were present in Stream C19. Due to their small size and the presence of numerous barriers to fish passage (see Section 3.4.2), both streams are severely limited in their potential to support fish. As such, estimates of fish density in these systems were not generated.

Stream C1 did support fish (Table 4.2). Inventories completed in 1995, 1996, spring 1998, and 1999 all documented the occurrence of fish in this stream. Species recorded included Arctic char, Arctic grayling, burbot, lake trout, round whitefish, and slimy sculpin. Although six species of fish were recorded in Stream C1 during these surveys, the highest number during any one year was four (1995 and 1999). Some species were infrequently encountered. Arctic grayling were recorded in this system only in 1995 and round whitefish were observed in 1996. Other species, which included Arctic char, lake trout, burbot, and slimy sculpin, were recorded during most years. The fish that used Stream C1 were consistently dominated by young-of-the-year and small juvenile fish; no adults were ever recorded in Stream C1.

The numbers of fish recorded in Stream C1 in a given year ranged from 10 to 24, but it should be noted that these values are closely related to the amount of sampling effort expended (e.g., sampling effort in 1999 was greater than previous years); therefore, it is difficult to ascertain the absolute numbers of fish in the stream. To provide an accurate estimate of fish density in Stream C1, the depletion-removal technique was employed to calculate the number of fish per 100 m of stream (Figure 4.2). The estimate was generated for fish residing in the lowermost 93 m of Stream C1 because this was the only section of stream where fish were recorded during the 1999 sampling program.

Four species of fish were present in the lower section of Stream C1 during the detailed survey with densities ranging from 5 ± 2 fish/100 m for burbot to 54 fish/100 m for slimy sculpin. Arctic char was the dominant char species $(30 \pm 4 \text{ fish/100 m})$ followed by a lower number of lake trout $15 \pm 12 \text{ fish/100 m}$.

These data suggest that several fish species use Stream C1 during the open water period. The numbers of fish recorded varied between years, but estimates of abundance generated in 1999 suggested that densities could exceed 15 fish/100 m.

During each survey year, a large portion of Stream C1 was sampled for fish. These inventories extended from the confluence with Carat Lake to the headwater area near Lake C1. During every survey, fish were recorded only in the lowermost 100 m of the stream. The reason for this restricted distribution is unclear, but it may be related to the habitat characteristics of Stream C1.

4.2 FISH HABITAT

Quantification of fish habitat during the 1999 aquatic studies program first required synoptic surveys of waterbodies to establish their potential value as fish habitat. This involved fish sampling and inventory level assessment of physical characteristics and habitat types. Results of the synoptic surveys indicated that several waterbodies had limited or no potential as fish habitat (see Section 3.4), which was substantiated by the absence or low numbers of fish (see Section 3.3). Waterbodies with limited or no potential as fish habitat included Lakes C2 and D10, and Streams C3 and C19. The remaining waterbodies (Lake C1 and Stream C1) contained habitat that was sufficient to support fish populations. Lake C1 contains only small resident populations of lake trout and of slimy sculpin. These populations are isolated from others in the Carat Lake watershed, due to a barrier on Stream C1 (see following section). As such, these fish populations are self-sustaining and do not rely on stock replenishment from Carat Lake. Due to its small size, simple physical characteristics, and isolation from the remainder of the Carat Lake watershed, detailed habitat surveys of Lake C1 were not undertaken. General characteristics of the lake are summarized in Section 3.1.

Based on these findings, detailed surveys of fish habitat were restricted to Stream C1. The following section provides summary data that describes the characteristics of the stream, including its longitudinal profile, unique features, physical characteristics, and quantification of habitat types.

4.2.1 Physical Characteristics of Stream C1

Stream C1 originates as the outlet to Lake C1 and flows a distance of 1031 m before draining into Carat Lake (Figure 4.3; Plate 4.1). Stream C1 is a complex system that has been modified by exploration activity in the Jericho Diamond Project Area. Its major features include a natural barrier to fish passage (5.3 m in height) that is located 815 m upstream from Carat Lake (Plate 4.2) and a large impounded area (351 m from confluence) that was formed by a berm constructed during the winter of 1995-96 (Plate 4.3). This berm was built to contain drilling fluids that were produced during exploration activity (Canamera Geological Ltd., unpublished data). The impoundment inundated a portion of the existing channel and diverted part of the stream discharge to the west (Plate 4.4). This diverted water flows over the tundra and rejoins Stream C1 near its confluence with Carat Lake.

Stream C1 can be differentiated into 10 reaches based on changes in gradient and physical characteristics (Figures 4.3 and 4.4, and Table 4.3). Reach 10 (closest to Lake C1) is the longest reach (200 m), whereas Reach 9 is the shortest (16 m). Reaches 1, 2, 7, and part of 5 exhibit relatively high gradients (2.7 to 7.1 m/100 m). Reach 9 exhibits the highest gradient, with an elevation gain of 5.3 m over a distance of 16 m (33.1 m/100 m). This section is impassible to fish. Reaches 3, 4, 6, 8, and 10 have very low gradients (\leq 5 m/100 m) and are generally dominated by areas of ponded water. The physical characteristics of each reach are influenced by these major features.

Table 4.2 Number of fish recorded in Stream C1 according to age-class, Jericho Study Area, 1995, 1996, spring 1998, and 1999.

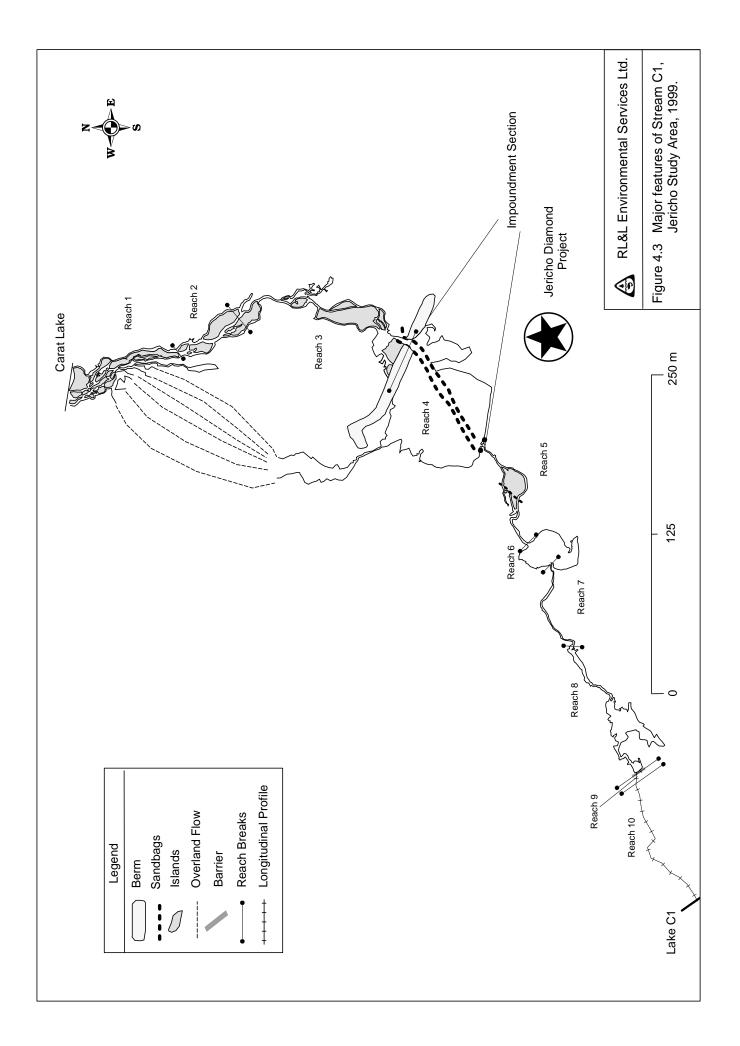
***			Age-Cl	lass	
Year	Species	Young-of-the-year	Juvenile	Adult	Combined
1995	Arctic char				
	Arctic grayling		39		39
	Burbot		1		1
	Lake trout		2		2
	Round whitefish				
	Slimy sculpin				23
	Total		42		65
1996	Arctic char	41	7		48
	Arctic grayling				
	Burbot				
	Lake trout		9		9
	Round whitefish		8		8
	Slimy sculpin				9
	Total	41	24		74
1998	Arctic char	11	2		13
	Arctic grayling				
	Burbot		1		1
	Lake trout				
	Round whitefish				
	Slimy sculpin				10
	Total	11	3		24
1999 ^a	Arctic char	27	4		31
	Arctic grayling				
	Burbot		5		5
	Lake trout	15	10		25
	Round whitefish				
	Slimy sculpin				39
	Total	42	19		100

^a Fish numbers generally high due to more intensive sampling effort.

Estimates of fish density in Stream C1 in August 1999, Jericho Study Area. Figure 4.2

Reaches with higher gradients exhibited narrower widths and had flowing water; the low gradient reaches exhibited dispersed areas of ponded water with trace flow. The majority of the reaches had well-defined channel embankments; the only exception was the impoundment (Reach 4). Substrate types in most reaches were dominated by cobble and boulder substrates. Exceptions were Reaches 4 and 6, which contained a preponderance of organic substrates. Gravel substrates were not abundant in Stream C1, but were widely distributed. Silt and sand substrates were rarely encountered; however, they were most evident in Reaches 5 and 8. Anecdotal information during field surveys indicated that the sand recorded in Reach 5 originated from sand bags that had been placed in this stream section (Figure 4.3).

4.2.2 Habitat Types in Stream C1


Habitat types present in Reaches 1 to 8 were quantified to assess their importance to fish. The work was restricted to these reaches because they represented the section of Stream C1 that was accessible to fish populations originating from Carat Lake.

The habitat types present were dictated by the physical features of each reach (Table 4.4). In general, RIFFLE and/or RUN type habitats dominated. In high gradient sections, their combined values exceeded 75% in terms of surface area and frequency of occurrence. In lower gradient reaches, FLAT and DISPERSED habitat types were more prevalent. This was particularly evident in Reach 8.

In terms of the area of habitat that was potentially available to fish, the impounded area (Reach 4) contained the greatest amount (5842 m²). All other reaches contained less than 1000 m². The combined area of habitat available to fish below the impounded section in July 1999 was 1117 m² (Reaches 1 to 3), compared to 2126 m² upstream of the impoundment (Reaches 5 to 8). Habitat complexity (frequency of occurrence) was highest in Reach 1 (31 habitat units). Overall, habitat complexity was higher downstream compared to upstream of the impounded area (62 versus 17 habitat units, respectively).

These data indicated that potential fish habitat was available to fish in Reaches 1 to 8. The area of habitat above the impoundment was twice that of the downstream section, although, Reaches 1 to 3 were more complex than sections farther upstream.

Construction of a berm across the drainage path of Stream C1 resulted in the formation of an impounded area upstream of the berm and diversion of part of the stream flow to the west. The impoundment inundated an unknown amount of existing fish habitat, but the inundated area was still suitable for fish use. In contrast, the diversion of stream flow may have reduced the amount of fish habitat in the original stream channel downstream from the point of diversion.

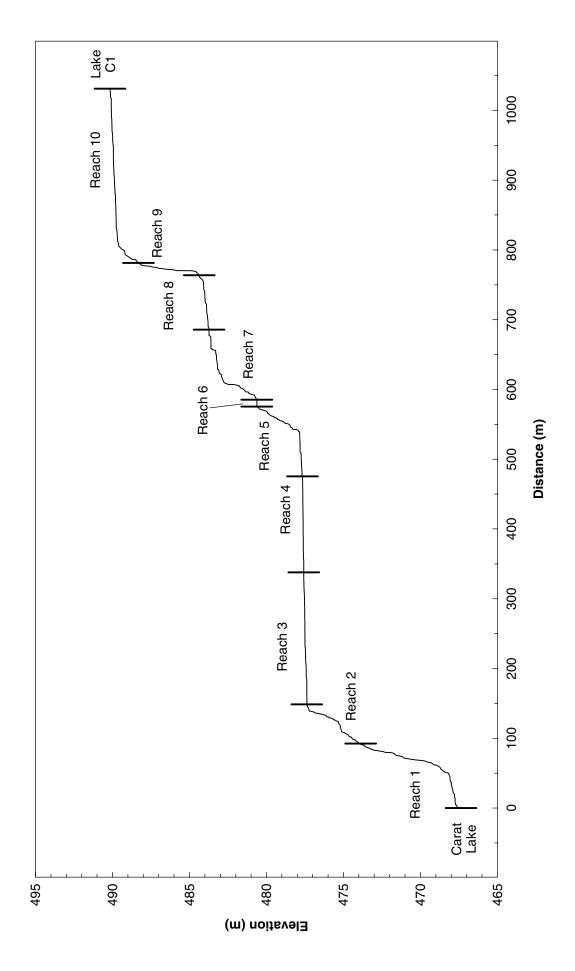


Figure 4.4 Gradient profile for Stream C1, Jericho Study Area, 1999.

Summary of stream characteristics in reaches of Stream C1 in the Jericho Study Area, 1999.

Table 4.3

Frad	ient	Length	Gradient Length Sample	Mean Wetted	Mean Depth (m)	pth (m)	Mean		Mean Percent Channel Type	ınt pe	Mean Percent Bank Type	ercent Fype		sqnS	Substrate Type ^a (%)	pe ^a (%)		
(m/km)		(m)	Size	Width (m)	Average	Max	(m ³ /s)	Single	Single Multiple Dispersed Defined	Dispersed	Defined	III- Defined	Om	Si/Sa	Si/Sa Gr/Pe Co		Во	Be
7.1		92	6	1.25	0.08	0.15	0.1		68	11	100		2	1	5	99	27	
5.0		70	5	2.03	0.08	0.11	0.13		100		100				5	42	53	
0.1		177	6	1.15	0.08	0.12	0.09		100		68	11	6		6	71	11	
0.2		134	9		0.28													
2.7		102	6	0.84	0.08	0.11	0.16	100			100			8	10	47	36	
0.1		24	1			0.67							100					
3.8		82	5	1.04	0.13	0.16	0.28	100			100		16	2	12	36	34	
0.5		134	9	4.57	0.18	0.24	60.0		29	33	29	33	2	27	12	5	48	8
33.1		16	usp															
0.2	6)	200	su															

See Appendix A3 for definitions. Not sampled.

Table 4.4 Summary of habitat types (area and occurrence) in reaches of Stream C1 in the Jericho Study Area,1999.

Reach	G	Covera	ge (m ²)	Freque	ency
Keacn	Group	Area	Percent	Number	Percent
1	Flat	43	12.1	4	12.9
	Pool	2	0.6	1	3.2
	Riffle	173	48.9	14	45.2
	Run	136	38.4	12	38.7
	Subtotal	354	100	31	100
2	Flat	4	2	1	11.1
	Pool				
	Riffle	154	76.2	6	66.7
	Run	44	21.8	2	22.2
	Subtotal	202	100	9	100
3	Dispersed	305	54.4	1	4.5
	Flat				
	Pool				
	Riffle	169	30.1	11	50
	Run	87	15.5	10	45.5
	Subtotal	561	100	22	100
4	Impounded	5842	100	1	100
5	Flat				
	Pool	17	12	1	20
	Riffle	107	75.4	3	60
	Run	18	12.7	1	20
	Subtotal	142	100	5	100
6	Pond	971	100	1	100
7	Flat				
	Pool	4	4.5	1	20
	Riffle	76	85.4	3	60
	Run	9	10.1	1	20
	Subtotal	89	100	5	100
8	Boulder Garden	113	12.2	1	16.7
	Dispersed	676	73.2	1	16.7
	Flat	93	10.1	2	33.3
	Pool	0	0	0	0
	Riffle	42	4.5	2	33.3
	Run	0	0	0	0
	Subtotal	924	100	6	100

To ascertain whether this diversion affected fish habitat availability, discharge in the original stream channel was compared to that in the diverted channel (Table 4.5). During June 1999, the proportion of water diverted away from the original channel was substantial. Based on five measurements, the average discharge in the original channel was 0.012 m³/s compared to 0.062 m³/s in the diversion. This represented a difference of 0.050 m³/s or a reduction in flow of 67%. It should be noted that these values are not precise estimates of stream discharge in each channel, but instead, should be used to ascertain the relative differences in discharge.

Table 4.5 Comparison of discharge in two channels of Stream C1 during spring in the Jericho Study Area, 1999.

Dete	Discharg	ge (m ³ /s)	Difference			
Date	Original Channel	Diversion	Discharge (m ³ /s)	Percent		
June 4	0.007	0.037	-0.030	-68.2		
June 5	0.01	0.056	-0.046	-69.7		
June 7	0.011	0.059	-0.048	-68.6		
June 9	0.018	0.085	-0.067	-65.0		
June 14	0.015	0.073	-0.058	-65.9		
Average	0.012	0.062	-0.050	-67.1		

Based on these findings, it can be assumed that the amount of fish habitat provided by Stream C1 has been reduced by the diversion of water away from the original channel. Due to the lack of data collected prior to construction of the berm, it is not possible to quantify the magnitude of this reduction.

4.2.3 Summary

Stream C1 is a complex system that has been modified by exploration activity in the Jericho Diamond Project Area. It contains 10 reaches, which exhibit variable physical characteristics. Reaches with high gradients (2.7 to 7.1 m/100 m) exhibited narrower widths with flowing water; the low gradient reaches exhibited dispersed areas of ponded water with trace flows. Reach 9 is a barrier to fish passage; it exhibits an elevation gain of 5.3 m over a distance of 16 m (33.1 m/100 m). Substrate types in most reaches were dominated by cobble and boulder substrates, except in the ponded areas; gravel substrate was widely distributed, but were not abundant. High gradient sections were typically RIFFLE and/or RUN type habitats, whereas low gradient sections were primarily FLAT and DISPERSED type habitats. Although there was a larger area of potential fish habitat upstream of the impoundment, the downstream sections had a higher habitat complexity. The presence of the berm across Stream C1 has reduced stream flows in the original channel by approximately 67%.

4.3 TROPHIC STATUS

In general, waterbodies in the subarctic are considered to be oligotrophic. Oligotrophic waterbodies are characterized by a low rate of primary production due to low nutrient levels. These characteristics in turn, limit the productive potential of fish communities that reside in these waterbodies. The following section summarizes information that categorizes the trophic status of selected waterbodies in the Jericho Study Area. Parameters investigated included nutrient levels, biomass indices of primary producers, and an assessment of the potential for fish production.

4.3.1 Nutrient Concentrations

At most sites, water samples for nutrient analyses were collected on 26 July 1999. The only exception occurred at the two sites on Stream C1, which were collected on 6 September 1999. Nutrient concentrations were low in all

surveyed waterbodies (Figure 4.5). Values for inorganic carbon did not exceed 2.3 mg/L and total carbon ranged between 4.0 and 8.7 mg/L. There was no substantial difference in carbon concentrations among lakes and streams, nor between Sites A and B on Stream C1. Similarly, water samples contained low concentrations of nitrogen constituents; ammonia values ranged from <0.005 to 0.025 mg/L, while total Kjeldahl nitrogen did not exceed 0.48 mg/L.

Phosphorous concentrations were close to analytical detection limits. Total phosphorous concentrations at most sites was ≤ 0.005 mg/L. Only Lake D10 exhibited a higher concentration (0.007 mg/L). Dissolved phosphorous concentrations ranged between 0.002 and 0.004 mg/L.

Nutrient concentrations in surveyed waterbodies during the present study were consistent with results of previous work in the Jericho Study Area (RL&L 1995); concentrations of all nutrients were very low. Studies that have investigated the relationship between nutrient levels (mainly phosphorous) and primary production in subarctic waterbodies, indicate that concentrations documented during this study are limiting (Ostrofsky and Rigler 1987; Shortreed and Stockner 1986; Welch et al.1989) and are indicative of a low trophic status.

4.3.2 Primary Production

Biomass (chlorophyll *a*) of phytoplankton and periphyton can be used as an indicator of primary production. Samples of phytoplankton and periphyton were collected three times during the open water period in an attempt to measure the full range of algal biomass during the open water period.

Chlorophyll a concentrations from samples collected from each waterbody varied between sampling periods (Table 4.6). For phytoplankton, the greatest difference between samples occurred in Lake C1 (1.47 mg/m³); however, a much wider range of values was apparent for periphyton. In lakes, the greatest range was 8.41 μ g/cm² (Lake C2) and at stream sites it was 7.99 μ g/cm² (Stream C1B). This variation and the absence of a clear temporal pattern in chlorophyll a concentrations makes it difficult to identify a single value as being representative of peak biomass production for either phytoplankton or periphyton communities.

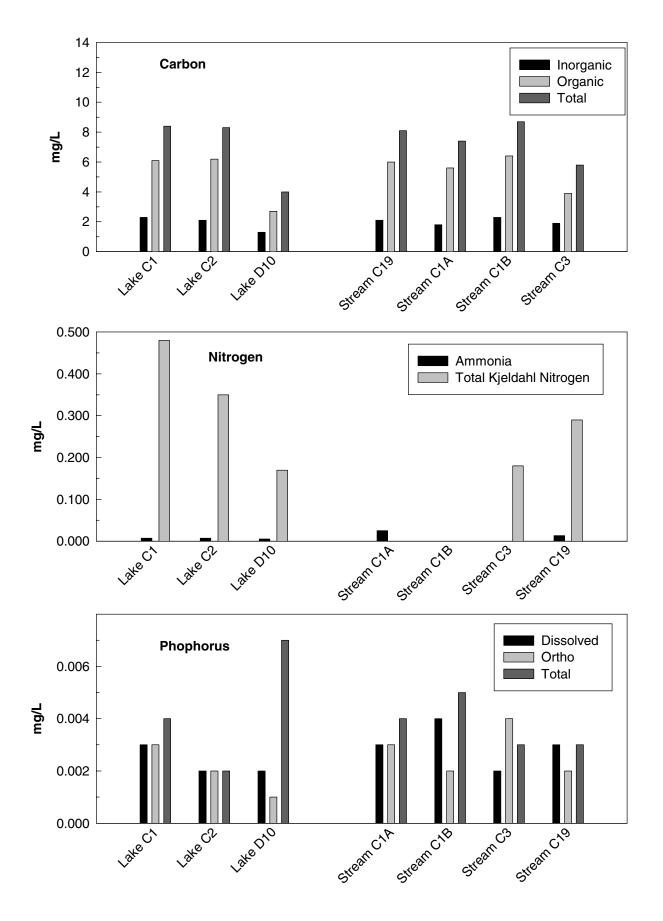


Figure 4.5 Nutrient concentrations in selected waterbodies in the Jericho Study Area, 1999.

Table 4.6 Summary of chlorophyll *a* concentrations of phytoplankton (mg/m³) and periphyton (μg/cm²) samples collected three times^a from selected waterbodies in the Jericho Study Area, 1999.

Cwann	W. A. L. I		Phytop	lankton		Periphyton			
Group	Waterbody	Early	Mid	Late	Range	Early	Mid	Late	Range
Lakes	Lake C1	2.30	1.22	0.83	1.47	2.49	5.37	5.14	2.88
	Lake C2	0.35	0.50	0.11	0.39	7.64	2.82	11.23	8.41
	Lake D10	1.09	0.27	0.00	1.09	1.64	3.50	1.50	2.00
Streams	Stream C1A	ns ^b	ns	ns		ns	2.11	6.10	3.99
	Stream C1B	ns	ns	ns		9.70	1.71	2.47	7.99
	Stream C3	ns	ns	ns		6.48	5.33	2.04	4.44
	Stream C19	ns	ns	ns		3.47	3.93	5.15	1.22

^a Early (19 July); mid (30 to 31 July); late (25 to 26 August).

The data provide an indication of the potential production that can be achieved by each community. A comparison of chlorophyll a concentrations recorded during the present study to other investigations suggested that primary productivity was very low in these lakes. Ostrofsky and Rigler (1987) documented that mean chlorophyll a concentrations for phytoplankton in 49 subarctic lakes varied between 1.5 and 26.8 mg/m 3 . In four oligotrophic lakes in the high Arctic, Welch et al. (1989) recorded values of 1.0 to 2.9 mg/m 3 .

Chlorophyll a concentrations recorded for the periphyton community during this study also reflected oligotrophic conditions. Values of 1.2 to 21.9 mg/m³ in the Kuparuk River, Alaska were deemed to be indications of limited primary production (Peterson et al.1986). In a nutrient poor coastal stream in British Columbia, chlorophyll a concentrations averaged 4.7 mg/m³ and never exceeded 10.0 mg/m³ (Perrin et al. 1987).

Recent work completed by Morin et al. (1999), which investigated periphyton production in streams and phytoplankton production in lakes, suggests that the chlorophyll *a* concentrations documented during this study were at the lower spectrum of primary production in freshwater systems.

4.3.3 Fish Production

The results presented for nutrient concentrations and primary production clearly documented the low trophic status of surveyed waterbodies. As such, the potential for fish production in these waterbodies would also be low and given their small size, annual biomass production would be minimal. Although the present study documented no or low numbers of fish in Lakes C1, C2, and D10, it would be useful to provide an estimate of their potential productive capacity. A biomass estimate was derived using a formula developed for north temperate climatic regions by Hanson and Leggett (1982), which is based on a relationship between total phosphorous and mean lake depth.

Not sampled.

Annual Fish Yield (kg/ha) = 0.071 TP + 0.165 Z - 1.164

Where TP = total phosphorous (mg/L)

Z = mean water depth (m)

Using this formula, the potential annual fish yield (kg/ha) would range from a low of 0.24 kg/ha in Lake C2 to 0.86 kg/ha in Lake C1; in Lake D10 the value would be 0.79 kg/ha. This information indicates that potential fish production was severely limited in these waterbodies. It should also be noted that these values may be biassed upward due to a number of environmental differences between subarctic lakes and north temperate waterbodies. Lower nutrient levels, a colder water temperature regime, and a shorter open water period would significantly lower the potential yield in these lakes compared to those in north temperate areas.

4.3.4 Summary

Nutrient concentrations were low in all surveyed waterbodies and these values were consistent with results of previous work in the Jericho Study Area (RL&L 1995). Chlorophyll *a* results from phytoplankton and periphyton indicated that primary production was also low. Based on these results, the lakes in the Jericho Study Area exhibit an oligotrophic status.

Variation in chlorophyll *a* concentrations and the absence of a clear temporal pattern made it difficult to identify a single value as being representative of peak production for either phytoplankton or periphyton. However, the data indicate that primary productivity was very low. Chlorophyll *a* concentrations documented during this study were at the lower spectrum of primary production in freshwater systems, which is indicative of oligotrophic conditions.

The potential fish production was found to be severely limited in the waterbodies surveyed. Potential annual fish yield (biomass) ranged from 0.24 kg/ha in Lake C2 to 0.86 kg/ha in Lake C1. Due to the extreme environmental conditions experienced by fish residing in subarctic lakes (i.e., colder water temperature regimes and short open water periods), the potential yield in these waterbodies is likely much lower.

5.0 LITERATURE CITED

- Ahlstrom, E.H. 1943. A revision of the rotatorian genus *Keratella* with descriptions of three new species and five new varieties. Bulletin of the American Museum of Natural History 80 (12): 411-57.
- American Public Health Association. 1992. Standard methods for the examination of water and wastewater. 18th edition. American Public Health Association, American Water Works Association and Water Pollution Control Federation, Washington, D.C. 1134 p.
- Bergman, M.A., and H.E. Welch. 1990. Nitrogen fixation by epilithic periphyton in small arctic lakes in response to experimental nitrogen and phosphorus fertilization. Canadian Journal of Fisheries and Aquatic Sciences 47: 1545-1550.
- Bird, D.F., and Y.T.-Prairie. 1985. Practical guidelines for the use of zooplankton length-weight regression equations. Journal of Plankton Research 7: 955-960.
- Bottrell, H.H., A. Duncan, Z.M. Gliwicz, E. Grygierczyk, A. Herzig, A. Hillbricht-Illakowska, H. Kurasawa, Larson, and P. & T. Weglenska. 1976. A review of some problems in zooplankton production studies. Contribution from the Plankton Ecology Group (EBP).
- Brandlova, J., Z. Brandl, and C.H. Fernando. 1972. The Cladocera of Ontario with remarks on some species and distribution. Canadian Journal of Zoology 50 (11): 1373-403.
- Brooks, J.L. 1957. The systematics of North American Daphnia. Memoirs of Connecticut Academy of Arts and Sciences 13: 1-180.
- Buchanan, T.J., and W.P. Somers. 1969. Discharge measurements a gaging stations. (excerpt from Techniques of water-resources investigations of the United States Geological Survey, Chapter A8, Book 3, Applications of Hydraulics). *In* Hydrological Survey Techniques Textbook.
- Canadian Councils of Ministers of the Environment (CCME). 1999. Canadian Water Quality Guidelines Prepared by the Task Force on Water Quality Guidelines of the Canadian Council of Ministers of the Environment. Water Quality Objectives Division, Water Quality Branch, Inland Waters Directorate, Environment Canada, Ottawa, Ontario. 365 p. + 21 app.
- Carlander, K.D. 1969. Handbook of freshwater fishery biology. Volume One. The Iowa State University Press, Ames, Iowa. 752 p.
- Charlton, S.E.D., M. Hickman, and C.G. Jenkerson. 1981. Longitudinal physiochemical and algal surveys of rivers flowing through the oil sands region of northeastern Alberta, Canada. Nova Hedwigia 35: 465-522.
- Clifford, H.F. 1991. Aquatic invertebrates of Alberta. University of Alberta. Press, Edmonton. 538 p.
- Cone, R. S. 1989. The need to reconsider fthe use of condition indices in fishery science. Transactions of the American Fisheries Society. 118: 510-514.
- Cook, E.F. 1956. The Nearctic Chaoborinae (Diptera: Culicidae). Bulletin of the Minnesota Agricultural Experimental Station 218: 102 p.
- Downing, J.A., and F.A. Rigler. 1984. A manual on methods for the assessment of secondary productivity in fresh waters. 2nd edition. Blackwell Scientific Publications, Boston, Massachusetts. 495 p.
- Edmondson, W.T. 1959. Freshwater biology. 2nd edition John Wiley and Sons, New York, New York. 1248 p.

- Flössner, D. 1972. Krebstiere, Crustacea: Kiemen und Blattfüsser, Brachiopoda, Fischäuse, Brachiura. Die Tierwelt Deutschlands. 60. Teil. Gustav Fischer Verlag, Jena. 501 p.
- Hanson, J.M., and W.C. Leggett. 1982. Empirical prediction of fish biomass and yield. Canadian Journal of Fisheries and Aquatic Sciences 39: 257-263.
- Health and Welfare Canada. 1993. Guidelines for Canadian drinking water quality. 5th edition. Ministry of National Health and Welfare. 24 p.
- Hickman, M., S.E.D. Charlton, and C.G. Jenkerson. 1982. A comparative study of benthic algal primary productivity in the AOSERP study area. Prepared for the Alberta Oil Sands Environmental Research Program by the Department of Botany, University of Alberta and Department of Plant Sciences., University of Western Ontario. AOSERP Report 128. 139 p.
- Horner, R.R., and E.B. Welch. 1981. Stream periphyton development in relation to current velocity and nutrients. Canadian Journal of Fisheries and Aquatic Sciences 38: 449-457.
- Hynes, H.B.N. 1950. The food of freshwater sticklebacks (*Gasterosteus aculeatus* and *Pygosteus pungitius*) with a review of methods used in studies of the foods of fisheries. Journal of Animal Ecology 19 (1): 36-58.
- Hynes, H.B.N. 1970. The ecology of running water. University of Toronto Press, Toronto, Ontario. 555 p.
- Jessop, B.M. 1972. Aging round whitefish (*Prosopium cylindraceum*) of the Leaf River, Ungava, Quebec, by otoliths. Journal of the Fisheries Research Board of Canada 29: 452-454.
- Johnson, L. 1972. Keller Lake: Characteristics of a culturally unstressed salmonid community. Journal of the Fisheries Research Board of Canada 29: 731-740.
- Kalff, J., and H.E. Welch. 1974. Phytoplankton production in Char Lake, a natural polar lake, and in Meretta Lake, a polluted polar lake, Cornwallis Island, Northwest Territories. Journal of the Fisheries Research Board of Canada 31: 621-636.
- Kennedy, W. A. 1949. Some observations on the coregonine fish of Great Bear Lake, Northwest Territories. Bulletin of the Fisheries Research Board of Canada 82: 1-10.
- Kiefer, F. 1978. Zur Kenntnis des Diacyclops tames (S.A. Forces, 1882) (Copepoda, Cyclopoida). Crustaceana 34 (2): 214-16.
- Koste, W. 1978. Rotatoria. Die Rädertiere Mitteleuropas. Ein Bestimmungswerk, begrunder von Max Voigt. Überordnung Monogononta. Gebrüder Bortraeger, Berlin, Stuttgart. Volume I: 673 p. Volume II: 469 p.
- Lock, M.A., R.R. Wallace, J.W. Costerton, R.M. Ventullo, and S.E. Charlton. 1984. River epilithon: Towards a structural-functional model. Oikos 42:10-22.
- Lund, J.W.G., C. Kipping, and E.D. LeCren. 1958. The inverted microscope method of estimating algal numbers and the statistical basis of estimation of counting. Hydrobiologia 11:143-70.
- Mackay, W.C. 1989. Northern lakes and rivers. Boreal Institute for Northern Studies, University of Alberta, Edmonton. Occasional Publication No. 22.
- Mackay, W.C., G.R. Ash, and H.J. Norris (editors). 1990. Fish ageing methods for Alberta. R.L. & L. Environmental Services Ltd. in Association with Alberta Fish and Wildlife Division and University of Alberta, Edmonton. 113 p.
- McNeely, R.N., V.P. Neimanis, and L. Dwyer. 1979. Water quality source book, a guide to water quality parameters. Inland Waters Directorate, Water Quality Branch, Ottawa. 88 p.

- Merritt, R.W., and K.W. Cummins (editors). 1984. An introduction to the aquatic insects of North America. 2nd edition. Kendall/Hunt Publishing Company, Dubuque, Iowa, U.S.A. 722 p.
- Morin, A., W. Lamoureux, and J. Busnarda. 1999. Empirical models predicting primary production from chlorophyll *a* and water temperature for stream periphyton and lake and ocean phytoplankton. Journal of the North American Benthological Society 18: 299-307.
- Moss, B. 1967a. A spectrophotometric method for the estimation of percentage degradation of chlorophyll *a* to phaeopohytin in extracts of algae. Limnology and Oceanography 12: 335-340.
- Moss, B. 1967b. A note on the estimation of Chlorophyll *a* in freshwater algal communities. Limnology and Oceanography 12: 340-342.
- Noton, L.R., and K.A. Saffran. 1995. Water quality in the Athabasca River system. Alberta Environmental Protection. 102 p. + 4 app.
- Ostrofsky, M.L., and F.H. Rigler. 1987. Chlorophyll phosphorus relationships for subarctic lakes in western Canada. Canadian Journal of Fisheries and Aquatic Sciences 44: 775-781.
- Pennak, R.W. 1978. Freshwater invertebrates of the United States. 2nd edition John Wiley and Sons, Toronto, Ontario. 803 p.
- Perrin, C.J., M. L. Bothwell, and P.A. Slaney. 1987. Experimental enrichment of a coastal stream in British Columbia: effects of organic and inorganic additions on autotrophic periphyton production. Canadian Journal of Fisheries and Aquatic Sciences 44: 1247-1256.
- Peterson, B.J., J.E. Hobbie, and T.L. Corliss. 1983. A continuous-flow periphyton bioassay: tests of nutrient limitation in a tundra stream. Limnology and Oceanography 28: 583-591.
- Peterson, B.J., J.E. Hobbie, A. Hershey, M. Lock, T. Ford, R. Vestal, M. Hullar, R. Ventullo, and G. Volk. 1985. Transformation of a tundra stream from heterotrophy to autotrophy by addition of phosphorus. Science 229: 1383-1386.
- Peterson, B. J., J.E. Hobbie, and T. L. Corliss. 1986. Carbon flow in a tundra stream ecosystem. Canadian Journal of Fisheries and Aquatic Sciences 43: 1259-1270.
- Prescott, G.W. 1970. Algae of the Western Great Lakes area. Wm. C. Brown Co. Publublishers, Dubuque, Iowa. 977 p.
- Randall, R.G., C.K. Minns, V.W. Cairns, and J.E. Moore. 1996. The relationship between an index of fish production and submerged macrophytes and other habitat features at three littoral areas in the Great Lakes. Canadian Journal of Fisheries and Aquatic Sciences 53 (Suppl. 1): 35-44.
- Ricker, W.E. 1975. Computation and interpretation of biological statistics of fish populations. Fisheries Research Board of Canada Bulletin 191:382 p.
- R.L. & L. Environmental Services Ltd. 1995. Jericho Diamond Project aquatic studies program (1995). Report Prepared for Canamera Geological Ltd. R.L. & L. Report No. 462BF: 122 p. + 10 app.
- R.L. & L. Environmental Services Ltd. 1997. Jericho Diamond Project aquatic studies program (1996). Report Prepared for Canamera Geological Ltd. R.L. & L. Report No. 501F: 239 p. + 9 app.
- Ruttner-Kolisko, A. 1974. Plankton rotifers: Biology and taxonomy. Die Binnengewasser, Volume 26/1, Supplement. 146 p.

- Saether, O.A. 1970. Nearctic and Palaearctic *Chaoborus* (Diptera: Chaoboridae). Fisheries Research Board of Canada Bulletin 174: 57 p.
- Scott, W.G., and E.J. Crossman. 1973. Freshwater fishes of Canada. Fisheries Research Board of Canada Bulletin 184: 966 p.
- Shaw, R.N., P.A. Mitchell, and A.M. Anderson. 1984. Water quality of the North Saskatchewan River in Alberta. Alberta Environmental Protection. 252 p. + 10 app.
- Shortreed, K.S., and J.G. Stockner. 1986. Trophic status of 19 subarctic lakes in the Yukon Territory. Canadian Journal of Fisheries and Aquatic Sciences 43: 797-805.
- Smirnov, N.N. 1971. Fauna of the U.S.S.R. Crustacea: Chydoridae. Volume 1, No. 2. Akad. Nauk. SSSR, New Series No. 101 (Translated from Russian). Israel Program for Scientific Translations, Jerusalem. 644 p.
- Smith, G.M. 1950. The freshwater algae of the United States. 2nd ed. McGraw Hill Book Company. New York, New York. 719 p.
- Stemberger, R.S., and J.J. Gilbert. 1987. Planktonic rotifer defences. *In* W.C. Kerfoot and A. Sih (editors) Predation: Direct and Indirect Impacts on Aquatic Communities. University Press of New England. Hanover, NH. 227-239 p.
- Taft, C.E., and C.W. Taft. 1971. The algae of Western Lake Erie. Bulletin Ohio Biological Surveys 4: 1-189.
- Tahera Corporation. 1999. Jericho Diamond Project Proposal. 145 p. + 14 app.
- Thompson, R.B. 1959. Food of squawfish, *Ptychocheilus oregonensis* (Richardson) of the Columbia River. U.S. Department of Interior, Fish & Wildlife Service Fisheries Bulletin 158(60): 43-58.
- Warren, C.E., J.H. Wales, G.E. Davis, and P. Doudoroff. 1964. Trout production in an experimental stream enriched with sucrose. Journal of Wildlife Management 28: 617-660.
- Webber, C.I. 1971. A guide to the common diatoms of water pollution surveillance system stations. U.S. Environmental Protection Agency, National Environmental Research Centre Analytical Quality Control Laboratory, Cincinnati, Ohio.
- Welch, H.E. and J.Kalff. 1974 Benthic photosynthesis and respiration in Char Lake. Journal of the Fisheries Research Board of Canada 31: 609-620.
- Welch, H.E., J.K. Jorgenson, and M.F. Curtis. 1988. Emergence of Chironomidae (Diptera) in fertilized and natural lakes at Saqvaqjuac, N.W.T. Canadian Journal of Fisheries and Aquatic Sciences 45: 731-737.
- Welch, H.E., J.A. Legault, and H.J. Kling. 1989. Phytoplankton, nutrients, and primary production in fertilized and natural lakes at Saqvaqjuac, N.W.T. Canadian Journal of Fisheries and Aquatic Sciences 46: 90-107.
- Wetzel, R.G. 1983. Limnology. 2nd Ed., Saunders College Publishing. Toronto. 767 p.
- Wiggins, G.B. 1977. Larvae of the North American caddisfly genera (Trichoptera). University of Toronto Press, Toronto, Canada. 401 p.
- Wrona, F.J., J.M. Culp, and R.W. Davies. 1982. Macroinvertebrate subsampling: A simplified apparatus and approach. Canadian Journal of Fisheries and Aquatic Sciences 39: 1051-1054.
- Zippin, C. 1958. The removal method of population estimation. Journal of Wildlife Management 22(1):89-90.

the North A	S., and W.S. Platts. merican Wildlife a	and Natural Resear	rch Conference 4	8: 349-354.	i sticams. Transa	actions (

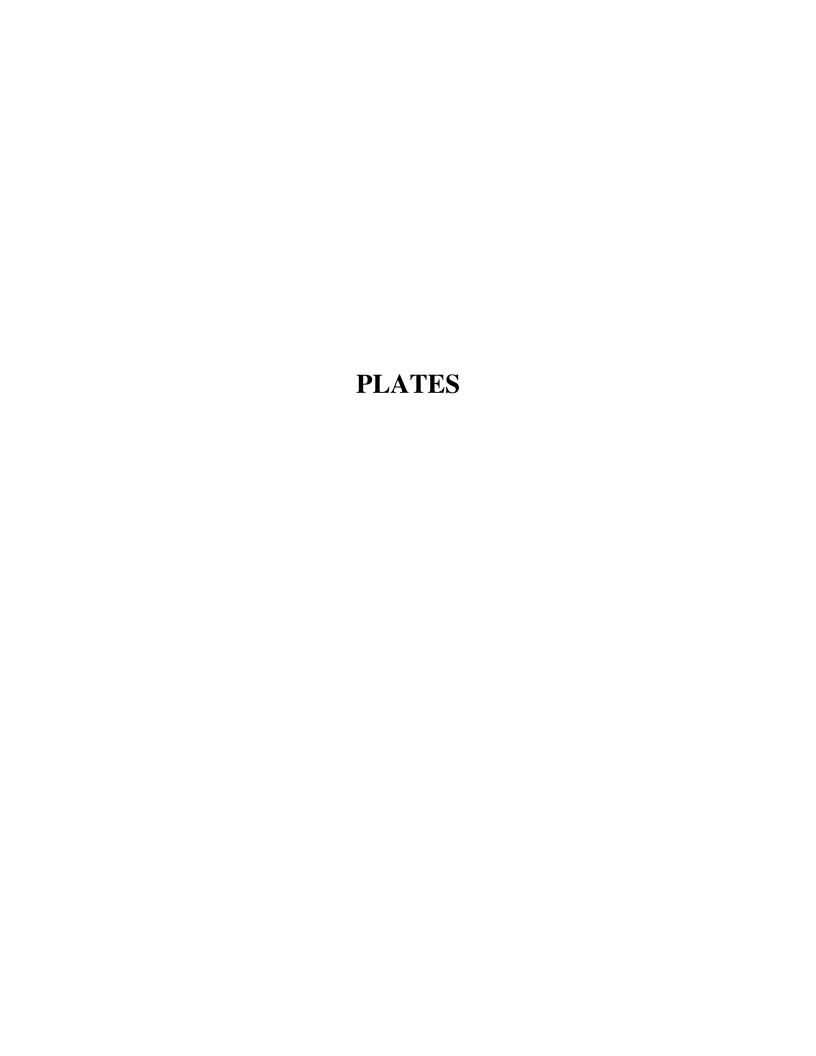


Plate 1 Stream C1 as it enters Carat Lake in the Jericho Study Area, August 1999.

Plate 2 Barrier to fish passage on Stream C1 in the Jericho Study Area, August 1999.

Plate 3 Man-made berm and impounded area on Stream C1 in the Jericho Study Area, August 1999.

Plate 4 New channel formed by berm on Stream C1 in the Jericho Study Area, August 1999 (Jower left-hand corner).

APPENDIX A METHODOLOGY

APPENDIX A

STREAM HABITAT CLASSIFICATION SYSTEM

Provides a qualitative assessment of the physical characteristics of a stream and its potential as fish habitat.

- <u>Riffle</u> Portion of channel with increased velocity relative to Run and Pool habitat types; broken water surface due to effects of submerged or exposed bed materials; shallow (less than 25 cm). Limited value as habitat for larger juveniles and adults (i.e., feeding), but may be used extensively by young-of-the-year and small juveniles.
 - RF Typical riffle habitat type; provides limited cover for all life stages.
 - RF/BG Riffle habitat type with abundance of large cobble and boulder substrates. Limited cover for juveniles and adults; but, may be used extensively by young-of-the-year fish.
- <u>Rapids</u> (RA) Portion of channel with highest velocity relative to other habitat types. Deep (>25 cm); often formed by channel constriction. Substrate extremely coarse; dominated by large cobble and boulder substrates. Habitat provided for juveniles and adults in pocket eddies associated with substrate.
- <u>Run</u> Portion of channel characterized by moderate to high current velocity relative to Pool and Flat habitats; water surface largely unbroken. Potentially high habitat value for all life stages. Can be differentiated into five types based on depth and cover.
 - R1 Maximum depth exceeding 1.5 m; average depth 1.0 m. High cover at all flow conditions. Highest quality habitat for larger juveniles and adults; limited value for young-of-the-year-fish.
 - R2/BG Maximum depth reaching 1.0 m and generally exceeding 0.75 m; presence of large cobble or boulder substrates in channel. High cover at all flows. Moderate to high quality habitat for larger juveniles and adults.
 - R2 Maximum depth reaching 1.0 m and generally exceeding 0.75 m. High cover during most flows, but not during base flows. Moderate quality habitat for juveniles and adults; limited value for young-of-the-year-fish.
 - R3/BG Maximum depth of 0.75 m, but averaging < 0.50 m; presence of large cobble or boulder substrates in channel. Moderate cover at all flows. Moderate quality habitat for juveniles and adults; but, the value to young-of-the-year-fish is potentially high.
 - R3 Maximum depth of 0.75 m, but averaging < 0.50 m. Low cover at all flows. Lowest quality habitat for juveniles and adults; but, the value to young-of-the-year-fish is potentially high.
- <u>Flat</u> Area of channel characterized by low current velocities (relative to RF and Run cover types); near-laminar (i.e., non-turbulent) flow. Depositional area dominated sand/silt substrates. Differentiated from Pool habitat type by high channel uniformity and lack of direct association with riffle/run complex. Potential habitat value for all life stages is moderate to high. Can be differentiated into five types based on depth and cover.
 - F1 Maximum depth exceeding 1.5 m; average depth 1.0 m or greater. High cover at all flows. Highest quality habitat for larger juveniles and adults; limited value for young-of-the-year-fish.

- F2/BG Maximum depth reaching 1.0 m and generally exceeding 0.75 m; presence of large cobble or boulder substrates in channel. High cover at all flows. Moderate to high quality habitat for larger juveniles and adults.
- F2 Maximum depth exceeding 1.0 m; generally exceeding 0.75 m. High cover during most flows, but not during base flows. Moderate quality habitat for juveniles and adults; limited value for young-of-the-year-fish.
- F3/BG Maximum depth of 0.75 m, but averaging < 0.50 m; presence of large cobble or boulder substrates in channel. Moderate cover at all flows. Moderate quality habitat for juveniles and adults; but, the value to young-of-the-year-fish is potentially high.
- F3 Maximum depth of 0.75 m, averaging less than 0.50 m. Low cover at all flows. Lowest quality habitat for juveniles and adults; but, the value to young-of-the-year-fish is potentially high.
- <u>Pool</u> Discrete portion of channel featuring increased depth and reduced velocity (downstream oriented) relative to Riffle and Run habitat types. Normally featuring Riffle/Run associations. Principal habitat value for all life stages is cover. When in close association with Riffle/Run habitats, value can be very high. Can be differentiated into three types based on depth.
 - P1 Maximum depth exceeding 1.5 m; average depth 1.0 m or greater; high cover at all flow conditions. Often intergrades with deep-slow type of R1. Highest quality habitat for larger juveniles and adults; limited value for young-of-the-year-fish.
 - P2 Maximum depth reaching or exceeding 1.0 m, generally exceeding 0.75 m. High cover at all but base flows. Moderate quality habitat for juveniles and adults; limited value for young-of-the-year-fish.
 - P3 Maximum depth of 0.75 m, averaging < 0.50 m. Low instream cover; includes small pocket eddies. Lowest quality habitat for all life stages.
- <u>Dispersed</u> (DIS) Portion of stream exhibiting no defined channel. Water depth rarely exceeding 0.25 m and often dispersed over boulder fields. Very limited value as fish habitat.

Habitat Features - Includes the following instream features:

Chutes (CH) - Area of channel constriction; generally resulting in channel deepening and increased velocity. Associated habitat types are Pool, Run, and Rapid.

Ledges (LG) - Areas of bedrock intrusion into the channel; often creates Chutes and Pool habitat.

Falls (FAL) - Area of channel exhibiting rapid vertical decent over boulder and bedrock. Often a barrier to fish passage.

Cascade (CAS) - Area of channel exhibiting rapid decent over boulder and bedrock, but, with no well defined vertical decent (i.e., falls). Often a barrier to fish passage.

Outlet/Inlet (Out) - Confluence of stream and lake; can be the outlet or inlet.

<u>Channel Type</u> - Includes the following categories:

Single (C1) - Entire water flow of stream through one active channel.

Multiple (C2) - Water flow of stream through more than one active channel.

Dispersed (C3) - No defined channel.

Bank Type - Includes the following categories:

Well-defined (D1) - Well-defined boundary at water-bank interface of active stream channel. Ill-defined (D2) - Poorly defined boundary at water-bank interface of active stream channel.

LAKE SHORELINE HABITAT CLASSIFICATION SYSTEM

Provides a qualitative assessment of the physical characteristics of the littoral zone (zone of visible light penetration to bottom) and its potential as critical fish habitat (spawning and rearing).

<u>Slope</u> - The slope of the visible portion of the lake bottom adjacent to the shoreline. The lower the slope, the greater the amount of shallow water (littoral zone) available for use by smaller juveniles and young-of-the-year fish. Visual estimation of slope using three categories.

Low - 0 to 10% Moderate - 11 to 30% High - > 30%

<u>Substrate</u> - The dominant substrate in the visible portion of the lake bottom adjacent to the shoreline. The presence of rock (cobbles, boulders) indicates potential as a spawning habitat; presence of fines (organics, clay, silt, sand, gravel) indicates the potential as rearing habitat (enhances growth of macrophytes); presence of bedrock indicates limited value as fish habitat. Visual estimation of the percent cover by each substrate size and then grouping into three categories based on the following criteria:

Fines - >40% of bottom consists of organics, clays, silts, or gravel substrates.

Rock - >60% of bottom consists of cobbles or boulders.

Bedrock - > 40% of bottom consists of bedrock.

SUBSTRATE CLASSIFICATION SYSTEM

Modified Wentworth classification for substrate particle sizes

CLASSIFICATION	PARTICLE SIZE RANGE (mm)
Bedrock	-
Boulder	>256
Cobble	32 - 256
Gravel	1 - 32
Sand	0.0625 - 0.2-1
Silt	0.0039-0.0625
Clay	< 0.0039
Organics	-

APPENDIX B PHYSICAL CHARACTERISTICS

Appendix B Table B1. Information for sites sampled in the Jericho Study Area, 1999.

Waterbody	Site Label	Map Label	Site Type	Zone	Easting	Northing
Carat Lake						
	ANLCA01		Angling	12W	477810	7320100
	ANLCA02		Angling	12W	478180	7320540
	EFLCA01		Backpack electrofishing	12W	478640	7320800
	EFLCA02		Backpack electrofishing	12W	478200	7319970
	FNLCA01		Fyke Net	12W	478301	7320040
	GNLCA01		Gill Net	12W	478403	7320174
	GNLCA02		Gill Net	12W	477283	7320299
	GNLCA03		Gill Net	12W	478182	7319981
	GNLCA04		Gill Net	12W	478307	7320044
	GNLCA05		Gill Net	12W	478242	7320020
	GNLCA06		Gill Net	12W	478109	7319979
	LMLCA01		Limnology	12W	476573	7320848
	LMLCA02		Limnology	12W	478165	7320941
	PELCA01		Periphyton	12W	478180	7319964
Control Lake						
	HYLCN01		Hydrolab	12W	474012	7318792
Lake C1						
	ANLC0101		Angling	12W	477510	7319430
	BELLC0101	BEL-4	Benthos	12W	477495	7319389
	BEPLC0101	BEP-4	Benthos	12W	477545	7319421
	EFLC0101		Backpack electrofishing	12W	477730	7319500
	EFLC0102		Backpack electrofishing	12W	477590	7319320
	GNLC0101		Gill Net	12W	477676	7319490
	GNLC0102		Gill Net	12W	477678	7319475
	GTLC0101		Gee Trap	12W	477547	7319316
	GTLC0102		Gee Trap	12W	477480	7319415
	GTLC0103		Gee Trap	12W	477693	7319500
	GTLC0104		Gee Trap	12W	477701	7319443
	LMLC0101	LM-4	Limnology	12W	477545	7319421
	PELC0101	PE-4	Periphyton	12W	477536	7319307
	PHLC0101	PL-4	Phytoplankton	12W	477545	7319421
	WCLC0101	WC-2	Water Chemistry	12W	477545	7319421
	ZOLC0101	PL-4	Zooplankton	12W	477545	7319421
Lake C2						
	BELLC0201	BEL-5	Benthos	12W	477110	7319262
	EFLC0201		Backpack electrofishing	12W	477180	7319230
	GNLC0201		Gill Net	12W	477172	7319267
	GNLC0202		Gill Net	12W	477171	7319233
	GTLC0201		Gee Trap	12W	477084	7319216
	GTLC0202		Gee Trap	12W	477052	7319266
	GTLC0203		Gee Trap	12W	477107	7319291

Appendix B Table B1. Information for sites sampled in the Jericho Study Area, 1999.

Waterbody	Site Label	Map Label	Site Type	Zone	Easting	Northing
Lake C2						
	GTLC0204		Gee Trap	12W	477181	7319261
	LMLC0201	LM-7	Limnology	12W	477110	7319262
	PELC0201	PE-5	Periphyton	12W	477074	7319213
	PHLC0201	PL-5	Phytoplankton	12W	477110	7319262
	WCLC0201	WC-4	Water Chemistry	12W	477110	7319262
	ZOLC0201	PL-5	Zooplankton	12W	477110	7319262
Lake C3						
	ANLC0301		Angling	12W	473710	7320050
	ANLC0302		Angling	12W	474560	7319820
	ANLC0303		Angling	12W	474520	7319640
	ANLC0304		Angling	12W	474540	7319750
	ANLC0305		Angling	12W	474790	7319320
	ANLC0306		Angling	12W	474520	7319640
	ANLC0307		Angling	12W	474520	7319640
	ANLC0308		Angling	12W	474520	7319640
	BELLC0301	BEL-3	Benthos	12W	475070	7319443
	BEPLC0301	BEP-3	Benthos	12W	474885	7319510
	EFLC0301		Backpack electrofishing	12W	475100	7319330
	GNLC0301		Gill Net	12W	474571	7319971
	GNLC0302		Gill Net	12W	474623	7319505
	GNLC0303		Gill Net	12W	474870	7319933
	GNLC0304		Gill Net	12W	474872	7319760
	GNLC0305		Gill Net	12W	474887	7319542
	GNLC0306		Gill Net	12W	474899	7319546
	GNLC0307		Gill Net	12W	474969	7319294
	GNLC0308		Gill Net	12W	474772	7319203
	GNLC0309		Gill Net	12W	475088	7319330
	GNLC0310		Gill Net	12W	474729	7319375
	GTLC0301		Gee Trap	12W	474607	7319423
	GTLC0302		Gee Trap	12W	474753	7319168
	GTLC0303		Gee Trap	12W	474438	7320277
	GTLC0304		Gee Trap	12W	474459	7320112
	HYLC0301	LM-3	Hydrolab	12W	475002	7319365
	HYLC0302		Hydrolab	12W	474677	7320182
	PELC0301	PE-3	Periphyton	12W	474514	7319737
	PHLC0301	PL-3	Phytoplankton	12W	474885	7319510
	WCLC0301	WC-7	Water Chemistry	12W	475002	7319365
	ZOLC0301	PL-3	Zooplankton	12W	474885	7319510
Lake D10						
	BELLD1001	BEL-6	Benthos	12W	476667	7318681
	BEPLD1001	BEP-6	Benthos	12W	476450	7318723

Appendix B Table B1. Information for sites sampled in the Jericho Study Area, 1999.

Waterbody	Site Label	Map Label	Site Type	Zone	Easting	Northing
Lake D10						
	EFLD1001		Backpack electrofishing	12W	476310	7318750
	GNLD1001		Gill Net	12W	477350	7318465
	GNLD1002		Gill Net	12W	476698	7318616
	GNLD1003		Gill Net	12W	476406	7318714
	GNLD1004		Gill Net	12W	476674	7318678
	GNLD1005		Gill Net	12W	476713	7318681
	GTLD1001		Gee Trap	12W	476307	7318781
	GTLD1002		Gee Trap	12W	476386	7318717
	GTLD1003		Gee Trap	12W	476719	7318602
	GTLD1004		Gee Trap	12W	477439	7318517
	HYLD1001	LM-9	Hydrolab	12W	477379	7318517
	HYLD1002	LM-10	Hydrolab	12W	476450	7318723
	LMLD1001		Limnology	12W	476450	7318723
	PELD1001	PE-6	Periphyton	12W	476456	7318702
	PHLD1001	PL-6	Phytoplankton	12W	476450	7318723
	WCLD1001	WC-5	Water Chemistry	12W	476450	7318723
	ZOLD1001	PL-6	Zooplankton	12W	476450	7318723
Lake O1						
	BELLO0101		Benthos	12W	479118	7321708
	BEPLO0101		Benthos	12W	479054	7321802
	LMLO0101		Limnology	12W	479054	7321802
	LMLO0102		Limnology	12W	478774	7321721
	PELO0101		Periphyton	12W	479181	7321769
	PHLO0101		Phytoplankton	12W	479054	7321802
	ZOLO0101		Zooplankton	12W	479054	7321802
Stream C1						
	EFTC0101		Backpack electrofishing	12W	478187	7319976
	EFTC0102		Backpack electrofishing	12W	478215	7319891
	EFTC0103		Backpack electrofishing	12W	478243	7319852
	EFTC0105		Backpack electrofishing	12W	478143	7319669
	EFTC0106		Backpack electrofishing	12W	478083	7319626
	EFTC0107		Backpack electrofishing	12W	478067	7319607
	PETC01A01	PE-1A	Periphyton	12W	478191	7319927
	PETC01B01	PE-1B	Periphyton	12W	477995	7319597
	POPTC0101		Population Estimate	12W	478187	7319976
	SHTC0101		Stream Habitat	12W	478187	7319976
	SHTC0102		Stream Habitat	12W	478215	7319891
	SHTC0103		Stream Habitat	12W	478243	7319852
	SHTC0103A		Stream Habitat	12W	478136	7319752
	SHTC0104		Stream Habitat	12W	478222	7319726
	SHTC0105		Stream Habitat	12W	478143	7319669

Appendix B Table B1. Information for sites sampled in the Jericho Study Area, 1999.

Waterbody	Site Label	Map Label	Site Type	Zone	Easting	Northing
Stream C1						
	SHTC0106		Stream Habitat	12W	478083	7319626
	SHTC0107		Stream Habitat	12W	478067	7319607
	SHTC0108		Stream Habitat	12W	478002	7319591
	SHTC0109		Stream Habitat	12W	477885	7319540
	SHTC0110		Stream Habitat	12W	477879	7319540
	Tahera 0301		Discharge (Monitoring)	12W	477970	7319580
	WCTC01A01	WC-1A	Water Chemistry	12W	478191	7319927
	WCTC01B01	WC-1B	Water Chemistry	12W	478190	7319930
	WCTC01B02		Water Chemistry	12W	478190	7319930
	WTTC0101		Water Temperature	12W	478194	7319910
Stream C19						
	EFTC1901		Backpack electrofishing	12W	477519	7319307
	PETC1901	PE-7	Periphyton	12W	477310	7319244
	SHTC1901		Stream Habitat	12W	477519	7319307
	SHTC1901A		Stream Habitat	12W	477519	7319307
	SHTC1902		Stream Habitat	12W	477418	7319254
	WCTC1901	WC-3	Water Chemistry	12W	477310	7319244
Stream C2						
	EFTC0201		Backpack electrofishing	12W	478637	7320785
	SHTC0201		Stream Habitat	12W	478637	7320785
	WCTC0201		Water chemistry	12W	478637	7320785
Stream C20						
	SHTC2001		Stream Habitat	12W	477040	7319260
	SHTC2002		Stream Habitat	12W	477020	7319250
	SHTC2003		Stream Habitat	12W	476980	7319250
Stream C2A						
	EFTC02A01		Backpack electrofishing	12W	478701	7321014
	SHTC02A01		Stream Habitat	12W	478701	7321014
Stream C3						
	EFTC0301		Backpack electrofishing	12W	475101	7319323
	EFTC0302		Backpack electrofishing	12W	475214	7319307
	EFTC0303		Backpack electrofishing	12W	475414	7319225
	EFTC0304		Backpack electrofishing	12W	475507	7319154
	PETC0301	PE-8	Periphyton	12W	475631	7319040
	SHTC0301		Stream Habitat	12W	475101	7319323
	SHTC0302		Stream Habitat	12W	475214	7319307
	SHTC0303		Stream Habitat	12W	475414	7319225
	SHTC0304		Stream Habitat	12W	475507	7319154
	SHTC0305		Stream Habitat	12W	475650	7319020
	SHTC0306		Stream Habitat	12W	475896	7318878
	WCTC0301	WC-6	Water Chemistry	12W	475631	7319040

Appendix B Table B1. Information for sites sampled in the Jericho Study Area, 1999.

Waterbody	Site Label	Map Label	Site Type	Zone	Easting	Northing
Stream D2						
	EFTD0201		Backpack electrofishing	12W	479517	7319015
	SHTD0201		Stream Habitat	12W	479517	7319015

Appendix B Table B2. Data used to generate bathymetric isobaths in lakes of the Jericho Study Area, 1999.

Waterbody	Transect	Depth (m)	Zone	Easting	Northi
Lake C1					
	1	0.0	12W	477472	731934
	1	1.0	12W	477511	731936
	1	1.5	12W	477519	731937
	1	2.0	12W	477520	731937
	1	2.5	12W	477521	731937
	1	3.0	12W	477522	731937
	1	3.5	12W	477522	731937
	1	4.5	12W	477523	731937
	1	5.0	12W	477524	731937
	1	5.5	12W	477524	731937
	1	6.0	12W	477525	731937
	1	6.5	12W	477527	731937
	1	7.0	12W	477527	731937
	1	7.5	12W	477531	731937
	1	8.0	12W	477544	731938
	1	8.5	12W	477547	731938
	1	9.0	12W	477551	731938
	1	9.5	12W	477555	731939
	1	10.0	12W	477558	731939
	1	10.5	12W	477562	731939
	1	10.5	12W	477599	731941
	1	10.0	12W	477616	731942
	1	9.5	12W	477620	731942
	1	9.0	12W	477624	731943
	1	8.5	12W	477626	731943
	1	8.0	12W	477629	731943
	1	7.5	12W	477631	731943
	1	7.0	12W	477633	731943
	1	6.5	12W	477636	731943
	1	6.0	12W	477638	731944
	1	5.5	12W	477642	731944
	1	5.0	12W	477644	731944
	1	4.5	12W	477645	731944
	1	4.0	12W	477647	731944
	1	3.5	12W	477648	731944
	1	3.0	12W	477649	731944
	1	2.5	12W	477649	731944
	1	2.0	12W	477651	731944
		1.5			
	1	1.0	12W	477654	731944

Appendix B Table B2. Data used to generate bathymetric isobaths in lakes of the Jericho Study Area, 1999.

Waterbody	Transect	Depth (m)	Zone	Easting	Northi
Lake C1					
	1	0.0	12W	477742	731950
	2	0.0	12W	477634	731948
	2	1.0	12W	477642	731947
	2	1.0	12W	477646	731946
	2	1.5	12W	477647	731946
	2	1.5	12W	477651	731945
	2	1.0	12W	477662	731943
	2	1.0	12W	477663	731943
	2	1.5	12W	477677	731941
	2	1.5	12W	477680	731940
	2	1.0	12W	477683	731940
	2	0.0	12W	477694	731938
	3	0.0	12W	477530	731943
	3	1.0	12W	477533	731943
	3	1.5	12W	477539	731942
	3	2.0	12W	477540	731942
	3	2.5	12W	477541	731942
	3	3.0	12W	477541	731942
	3	3.5	12W	477541	731942
	3	4.0	12W	477542	731941
	3	4.5	12W	477543	731941
	3	6.0	12W	477544	731941
	3	6.5	12W	477545	731941
	3	7.0	12W	477546	731941
	3	7.5	12W	477547	731941
	3	8.0	12W	477548	731941
	3	8.5	12W	477549	731940
	3	9.0	12W	477550	731940
	3	9.5	12W	477552	731940
	3	10.0	12W	477553	731940
	3	10.5	12W	477555	731939
	3	11.0	12W	477557	731939
	3	11.5	12W	477561	731938
	3	11.0	12W	477565	731938
	3	10.5	12W 12W	477567	731938
	3	10.0	12W	477581	731935
	3	9.5	12W 12W	477583	731935
		9.0			
	3		12W	477584	731935
	3	8.5	12W	477586	731935

Appendix B Table B2. Data used to generate bathymetric isobaths in lakes of the Jericho Study Area, 1999.

Waterbody	Transect	Depth (m)	Zone	Easting	Northi
Lake C1					
	3	7.5	12W	477588	731934
	3	7.0	12W	477589	731934
	3	6.5	12W	477590	731934
	3	6.0	12W	477591	731934
	3	5.5	12W	477591	731934
	3	4.5	12W	477592	731934
	3	4.0	12W	477593	731934
	3	3.5	12W	477593	731933
	3	3.0	12W	477594	731933
	3	2.5	12W	477595	731933
	3	2.0	12W	477596	731933
	3	1.5	12W	477597	731933
	3	1.0	12W	477598	731933
	3	0.0	12W	477607	731931
	4	0.0	12W	477571	731947
	4	2.0	12W	477577	731946
	4	3.0	12W	477578	731945
	4	3.5	12W	477580	731945
	4	4.0	12W	477582	731945
	4	4.5	12W	477587	731944
	4	4.5	12W	477601	731942
	4	4.0	12W	477608	731941
	4	3.5	12W	477609	731941
	4	3.0	12W	477610	731941
	4	2.5	12W	477611	731941
	4	2.0	12W	477612	731941
	4	1.5	12W	477614	731940
	4	1.0	12W	477644	731936
	4	0.0	12W	477653	731935
	5	0.0	12W	477470	731942
	5	1.0	12W	477515	731942
	5	7.0	12W	477527	731942
	5	7.5	12W	477531	731942
	5	8.0	12W	477535	731942
	5	8.5	12W 12W	477548	731942
	5	9.0	12W 12W	477559	731943
	5	9.5	12W 12W	477562	731943
		10.0			
	5		12W	477568	731943
	5	10.5 11.0	12W	477573	731943

Appendix B Table B2. Data used to generate bathymetric isobaths in lakes of the Jericho Study Area, 1999.

Waterbody	Transect	Depth (m)	Zone	Easting	Northing
Lake C1					
	5	11.0	12W	477619	7319441
	5	10.5	12W	477626	7319442
	5	10.0	12W	477637	7319444
	5	9.5	12W	477645	7319445
	5	9.0	12W	477648	7319445
	5	8.5	12W	477652	7319446
	5	8.0	12W	477656	7319446
	5	7.5	12W	477659	7319447
	5	7.0	12W	477663	7319447
	5	6.5	12W	477667	7319448
	5	6.0	12W	477670	7319448
	5	5.5	12W	477674	7319449
	5	5.0	12W	477676	7319449
	5	1.5	12W	477687	7319450
	5	1.0	12W	477709	7319453
	5	0.0	12W	477739	7319458
Lake C2					
	1	0.0	12W	477045	7319262
	1	1.0	12W	477081	7319258
	1	1.5	12W	477093	7319256
	1	1.5	12W	477109	7319255
	1	1.5	12W	477116	7319254
	1	1.5	12W	477123	7319253
	1	1.0	12W	477165	7319249
	1	0.0	12W	477190	7319247
	2	0.0	12W	477153	7319247
		1.0	12W	477149	7319259
	2 2	1.0	12W	477146	7319239
	2	1.0	12W	477144	7319240
	2	0.0	12W	477143	7319223
	3	0.0	12W 12W	477109	7319216
		1.0			
	3	1.5	12W	477092	7319264
	3	1.5	12W	477091	7319262
	3	1.0	12W	477090	7319261
	3		12W	477087	7319256
	3	0.0	12W	477065	7319215
	4	0.0	12W	477073	7319212
	4	1.0	12W	477115	7319237
	4	1.0	12W	477118	7319239
	4	1.0	12W	477125	7319243

Appendix B Table B2. Data used to generate bathymetric isobaths in lakes of the Jericho Study Area, 1999.

Waterbody	Transect	Depth (m)	Zone	Easting	Northi
Lake C2					
	4	1.0	12W	477127	731924
	4	1.0	12W	477142	731925
	4	1.0	12W	477146	731925
	4	1.0	12W	477151	731925
	4	0.0	12W	477174	73192
	5	0.0	12W	477055	73192
	5	0.5	12W	477078	73192
	5	1.0	12W	477096	731920
	5	2.0	12W	477106	731925
	5	1.5	12W	477119	731924
	5	1.0	12W	477133	731924
	5	0.0	12W	477167	731922
	6	0.0	12W	477097	73192
	6	1.0	12W	477083	73192
	6	1.0	12W	477081	73192
	6	1.0	12W	477078	731924
	6	1.5	12W	477075	731925
	6	2.0	12W	477071	73192
	6	1.5	12W	477069	731920
	6	1.0	12W	477068	731920
	6	1.0	12W	477067	731920
	6	0.0	12W	477056	731928
Lake C3					
	1	0.0	12W	474733	731934
	1	2.0	12W	474759	73194
	1	2.5	12W	474759	731942
	1	3.0	12W	474759	731942
	1	3.5	12W	474760	73194
	1	4.0	12W	474761	731943
	1	4.5	12W	474762	73194
	1	5.0	12W	474764	73194
	1	5.5	12W	474765	73194
	1	6.0	12W	474766	73194
	1	6.5	12W	474766	73194
	1	7.0	12W	474768	731945
	1	7.5	12W	474768	731945
	1	8.0	12W	474770	731945
	1	8.5	12W	474771	731946
	1	9.0	12W	474772	73194
	1	9.5	12W	474773	731946

Appendix B Table B2. Data used to generate bathymetric isobaths in lakes of the Jericho Study Area, 1999.

Waterbody	Transect	Depth (m)	Zone	Easting	Northi
Lake C3					
	1	10.0	12W	474774	731947
	1	10.5	12W	474776	731947
	1	11.0	12W	474778	731948
	1	11.0	12W	474783	731950
	1	10.5	12W	474786	731950
	1	10.0	12W	474793	731952
	1	9.5	12W	474797	731954
	1	9.0	12W	474798	73195
	1	8.5	12W	474799	73195
	1	8.0	12W	474801	73195
	1	7.5	12W	474801	73195
	1	7.0	12W	474803	73195
	1	6.0	12W	474804	731950
	1	6.5	12W	474805	731950
	1	5.5	12W	474806	731950
	1	5.0	12W	474808	73195
	1	4.5	12W	474808	73195
	1	4.0	12W	474810	731958
	1	3.5	12W	474812	731958
	1	3.0	12W	474816	731959
	1	2.5	12W	474817	731960
	1	2.0	12W	474820	73196
	1	1.5	12W	474826	731962
	1	1.5	12W	474851	731970
	1	2.0	12W	474873	73197
	1	2.5	12W	474873	73197
	1	3.0	12W	474877	731978
	1	3.5	12W	474886	73198
	1	3.0	12W	474903	731986
	1	3.0	12W	474936	73199
	1	2.5	12W	474942	731998
	1	2.0	12W	474943	73199
	1	1.5	12W	474981	732009
	1	0.0	12W	475016	73202
	2	0.0	12W 12W	474780	732020
	2	1.5	12W 12W	474815	73203
	2	1.5	12W 12W	474813	251513
		1.5			
	2		12W	474824	732010
	2	2.0	12W	474888	73199

Appendix B Table B2. Data used to generate bathymetric isobaths in lakes of the Jericho Study Area, 1999.

Waterbody	Transect	Depth (m)	Zone	Easting	Northi
Lake C3					
	2	2.5	12W	474893	731992
	2	2.5	12W	474894	731992
	2	2.0	12W	474896	731991
	2	1.5	12W	474939	731977
	2	1.5	12W	474987	731960
	2	1.5	12W	474999	731956
	2	1.5	12W	475003	731954
	2	1.5	12W	475005	731954
	2	1.5	12W	475011	731952
	2	1.5	12W	475017	731950
	2	1.5	12W	475023	731948
	2	2.0	12W	475025	731947
	2	2.0	12W	475036	731943
	2	1.5	12W	475037	731943
	2	1.5	12W	475043	731941
	2	0.0	12W	475088	731926
	3	0.0	12W	475101	731932
	3	1.5	12W	475074	731933
	3	1.5	12W	475070	731934
	3	1.5	12W	475060	731934
	3	2.0	12W	475059	731934
	3	3.0	12W	475057	731934
	3	3.5	12W	475057	731934
	3	4.0	12W	475057	731934
	3	4.5	12W	475056	731934
	3	5.0	12W	475051	731935
	3	5.5	12W	475048	731935
	3	6.0	12W	475043	731935
	3	6.5	12W	475042	731935
	3	7.0	12W	475035	731936
	3	7.5	12W	475031	731936
	3	8.0	12W	475028	731936
	3	8.5	12W	475024	731936
	3	9.0	12W	475020	731937
	3	9.5	12W 12W	475015	731937
	3	10.0	12W 12W	475010	731937
	3	10.5	12W 12W	475007	731937
		11.0			
	3		12W	474981	731939
	3	11.5	12W	474971	731939

Appendix B Table B2. Data used to generate bathymetric isobaths in lakes of the Jericho Study Area, 1999.

Waterbody	Transect	Depth (m)	Zone	Easting	Northi
Lake C3					
	3	12.5	12W	474910	731943
	3	12.0	12W	474882	731945
	3	11.5	12W	474873	731945
	3	11.0	12W	474868	731945
	3	10.5	12W	474863	731946
	3	10.0	12W	474859	731946
	3	9.5	12W	474854	731946
	3	9.0	12W	474851	731946
	3	8.5	12W	474848	731947
	3	8.0	12W	474846	731947
	3	7.5	12W	474842	731947
	3	7.0	12W	474840	731947
	3	6.5	12W	474837	731947
	3	6.0	12W	474835	731947
	3	5.0	12W	474832	731947
	3	5.5	12W	474832	731947
	3	4.5	12W	474826	731948
	3	4.0	12W	474824	731948
	3	3.5	12W	474820	731948
	3	3.0	12W	474817	731948
	3	2.0	12W	474815	731948
	3	2.0	12W	474773	731951
	3	2.0	12W	474756	731952
	3	2.0	12W	474749	731952
	3	2.5	12W	474746	731952
	3	3.0	12W	474732	731953
	3	3.5	12W	474706	731955
	3	3.5	12W	474682	731956
	3	3.5	12W	474618	731960
	3	4.0	12W	474604	731961
	3	4.5	12W	474587	731962
	3	5.0	12W	474584	731962
	3	5.5	12W	474576	731962
	3	6.0	12W	474568	731963
	3	6.5	12W 12W	474560	731963
	3	7.0	12W 12W	474554	731964
	3	7.5	12W 12W	474543	731964
		7.0			
	3		12W	474535	731965
	3	6.5	12W	474529	731965

Appendix B Table B2. Data used to generate bathymetric isobaths in lakes of the Jericho Study Area, 1999.

Waterbody	Transect	Depth (m)	Zone	Easting	Northi
Lake C3					
	3	5.5	12W	474520	731966
	3	5.0	12W	474513	731966
	3	4.5	12W	474509	731966
	3	4.0	12W	474504	731967
	3	3.5	12W	474499	731967
	3	3.5	12W	474491	731967
	3	3.0	12W	474454	731970
	3	2.5	12W	474451	731970
	3	2.5	12W	474443	731970
	3	0.0	12W	474323	731977
	4	0.0	12W	474330	731963
	4	1.5	12W	474379	731966
	4	2.0	12W	474403	731967
	4	2.5	12W	474405	731967
	4	3.0	12W	474407	731967
	4	4.0	12W	474410	731967
	4	5.0	12W	474412	731968
	4	5.5	12W	474414	731968
	4	6.0	12W	474416	731968
	4	6.5	12W	474419	731968
	4	7.5	12W	474421	731968
	4	8.0	12W	474423	731968
	4	8.5	12W	474425	731968
	4	9.0	12W	474430	731969
	4	9.5	12W	474432	731969
	4	10.0	12W	474434	731969
	4	10.5	12W	474439	731969
	4	11.0	12W	474441	731969
	4	11.5	12W	474447	731969
	4	12.0	12W	474456	731970
	4	12.5	12W	474483	731971
	4	13.0	12W	474494	731972
	4	13.5	12W	474505	731973
	4	13.5	12W	474559	731975
	4	13.0	12W 12W	474567	731976
	4	12.5	12W 12W	474576	731976
	4	12.0	12W 12W	474583	731970
		11.5			
	4	11.0	12W	474587	731977
	4	10.5	12W	474594	731977

Appendix B Table B2. Data used to generate bathymetric isobaths in lakes of the Jericho Study Area, 1999.

Waterbody	Transect	Depth (m)	Zone	Easting	Northi
Lake C3					
	4	10.0	12W	474603	731978
	4	9.5	12W	474607	731978
	4	9.0	12W	474610	731978
	4	8.5	12W	474616	731978
	4	8.0	12W	474621	731979
	4	7.5	12W	474627	731979
	4	7.0	12W	474634	731979
	4	6.5	12W	474638	731980
	4	6.0	12W	474647	731980
	4	5.5	12W	474654	731980
	4	5.0	12W	474663	731981
	4	4.5	12W	474676	731982
	4	4.5	12W	474701	731983
	4	4.5	12W	474730	731984
	4	4.0	12W	474743	731985
	4	3.5	12W	474752	731986
	4	3.0	12W	474836	731990
	4	3.0	12W	474854	731991
	4	2.0	12W	474856	731991
	4	1.5	12W	474870	731992
	4	1.5	12W	474876	731992
	4	1.0	12W	474898	731993
	4	0.0	12W	474998	731999
	5	0.0	12W	474497	732030
	5	1.5	12W	474532	732028
	5	1.5	12W	474535	732027
	5	1.5	12W	474540	732027
	5	2.0	12W	474545	732027
	5	2.5	12W	474564	732025
	5	3.0	12W	474584	732024
	5	3.5	12W	474603	732022
	5	3.5	12W	474629	732020
	5	3.0	12W	474665	732017
	5	3.0	12W	474750	732017
	5	3.0	12W 12W	474784	732008
	5	2.0	12W 12W	474873	732003
	5	1.5			
		1.5	12W	474888	732000
	5		12W	474903	731999
	5	1.0	12W	474919	731997

Appendix B Table B2. Data used to generate bathymetric isobaths in lakes of the Jericho Study Area, 1999.

Waterbody	Transect	Depth (m)	Zone	Easting	Northi
Lake C3					
	6	0.0	12W	474551	731997
	6	2.0	12W	474566	731997
	6	2.5	12W	474568	731997
	6	3.0	12W	474571	731997
	6	3.5	12W	474574	731997
	6	4.0	12W	474582	731997
	6	4.5	12W	474584	731997
	6	5.0	12W	474587	731997
	6	5.5	12W	474590	731997
	6	6.0	12W	474595	731997
	6	6.5	12W	474597	731997
	6	7.0	12W	474600	731997
	6	7.5	12W	474603	731997
	6	8.0	12W	474605	731997
	6	8.5	12W	474608	731997
	6	9.0	12W	474613	731997
	6	9.5	12W	474616	731997
	6	10.0	12W	474621	731997
	6	10.5	12W	474627	731997
	6	11.0	12W	474629	731997
	6	11.0	12W	474645	731997
	6	10.5	12W	474650	731997
	6	10.0	12W	474656	731997
	6	9.5	12W	474661	731997
	6	9.0	12W	474669	731997
	6	8.5	12W	474674	731997
	6	8.0	12W	474677	731997
	6	7.5	12W	474679	731997
	6	7.0	12W	474682	731997
	6	6.5	12W	474687	731997
	6	6.0	12W	474690	731996
	6	5.5	12W	474695	731996
	6	5.0	12W	474706	731996
	6	4.5	12W	474732	731996
	6	4.0	12W	474743	731996
	6	3.5	12W	474767	731996
	6	3.0	12W	474856	731996
	6	2.0	12W	474885	731996
		0.0			
	6 7	0.0	12W	474940	731996

Appendix B Table B2. Data used to generate bathymetric isobaths in lakes of the Jericho Study Area, 1999.

Waterbody	Transect	Depth (m)	Zone	Easting	Northin
Lake C3					
	7	1.0	12W	474557	731997
	7	1.5	12W	474563	731997
	7	2.0	12W	474581	731998
	7	2.5	12W	474593	731999
	7	3.0	12W	474596	731999
	7	3.5	12W	474613	732000
	7	3.5	12W	474651	732002
	7	3.0	12W	474657	732002
	7	3.0	12W	474661	732002
	7	3.0	12W	474743	732006
	7	2.5	12W	474779	732008
	7	2.0	12W	474781	732008
	7	1.5	12W	474817	732010
	7	0.0	12W	475016	732020
	8	0.0	12W	474551	731997
	8	2.0	12W	474559	731996
	8	2.5	12W	474561	731996
	8	3.0	12W	474563	731996
	8	3.5	12W	474565	731996
	8	4.0	12W	474567	731995
	8	4.5	12W	474569	731995
	8	5.0	12W	474571	731995
	8	5.5	12W	474575	731995
	8	6.0	12W	474577	731994
	8	6.5	12W	474579	731994
	8	7.0	12W	474581	731994
	8	7.5	12W	474583	731994
	8	8.0	12W	474585	731994
	8	8.5	12W	474589	731993
	8	9.0	12W	474591	731993
	8	10.0	12W	474593	731993
	8	10.5	12W	474595	731993
	8	11.0	12W	474597	731993
	8	11.5	12W	474601	731992
	8	12.0	12W	474605	731992
	8	12.5	12W	474607	731992
	8	13.0	12W	474609	731991
	8	13.5	12W	474611	731991
	8	14.0	12W	474617	731991
	U	14.5	12W 12W	7/101/	131771

Appendix B Table B2. Data used to generate bathymetric isobaths in lakes of the Jericho Study Area, 1999.

Waterbody	Transect	Depth (m)	Zone	Easting	Northin
Lake C3					
	8	15.0	12W	474625	731990
	8	15.0	12W	474669	731986
	8	14.5	12W	474675	731985
	8	14.0	12W	474681	731985
	8	13.5	12W	474687	731984
	8	13.0	12W	474691	731984
	8	12.5	12W	474697	731983
	8	12.0	12W	474701	731983
	8	11.5	12W	474705	731983
	8	11.0	12W	474711	731982
	8	10.5	12W	474715	731982
	8	10.0	12W	474719	731981
	8	9.5	12W	474723	731981
	8	9.0	12W	474727	731981
	8	8.5	12W	474731	731980
	8	8.0	12W	474733	731980
	8	7.5	12W	474737	731980
	8	7.0	12W	474745	731979
	8	6.5	12W	474752	731978
	8	6.0	12W	474762	731977
	8	5.5	12W	474784	731975
	8	5.0	12W	474804	731973
	8	4.5	12W	474830	731971
	8	4.0	12W	474844	731970
	8	3.5	12W	474882	731966
	8	3.0	12W	474922	731962
	8	2.5	12W	474952	731960
	8	2.5	12W	474956	731959
	8	2.0	12W	474962	731959
	8	1.5	12W	475054	731950
	8	0.0	12W	475117	731944
	9	0.0	12W	475101	731932
	9	2.0	12W	475063	731931
	9	2.5	12W	475060	731931
	9	3.0	12W	475056	731931
	9	3.5	12W	475054	731931
	9	4.0	12W	475046	731931
	9	4.5	12W	475032	731930
	9	5.0	12W	475017	731930
	9	5.5	12W	475004	731930

Appendix B Table B2. Data used to generate bathymetric isobaths in lakes of the Jericho Study Area, 1999.

Waterbody	Transect	Depth (m)	Zone	Easting	Northi
Lake C3					
	9	6.0	12W	474992	731929
	9	6.5	12W	474985	731929
	9	7.0	12W	474977	731929
	9	7.5	12W	474972	731929
	9	8.0	12W	474961	731929
	9	8.5	12W	474944	731928
	9	9.0	12W	474933	731928
	9	9.5	12W	474897	731927
	9	9.0	12W	474893	731927
	9	8.5	12W	474884	731927
	9	8.0	12W	474877	731927
	9	7.5	12W	474867	731926
	9	7.0	12W	474854	731926
	9	6.5	12W	474850	731926
	9	6.0	12W	474845	731926
	9	5.5	12W	474832	731926
	9	5.0	12W	474824	731925
	9	4.0	12W	474815	731925
	9	3.0	12W	474809	731925
	9	2.5	12W	474808	731925
	9	2.0	12W	474806	731925
	9	1.5	12W	474802	731925
	9	0.0	12W	474747	731924
	10	0.0	12W	474603	731950
	10	2.0	12W	474584	731954
	10	2.0	12W	474582	731954
	10	2.0	12W	474579	731955
	10	2.5	12W	474578	731955
	10	3.0	12W	474577	731955
	10	4.0	12W	474576	731955
	10	4.5	12W	474574	731956
	10	5.0	12W	474573	731956
	10	5.5	12W	474571	731956
	10	6.0	12W	474570	731957
	10	6.5	12W	474568	731957
	10	7.0	12W	474567	731957
	10	7.5	12W	474566	731958
	10	8.0	12W	474565	731958
	10	8.5	12W	474564	731958
	10	9.0	12W	474563	731958

Appendix B Table B2. Data used to generate bathymetric isobaths in lakes of the Jericho Study Area, 1999.

Waterbody	Transect	Depth (m)	Zone	Easting	Northin
Lake C3					
	10	9.5	12W	474562	731958
	10	10.0	12W	474561	731959
	10	10.5	12W	474560	731959
	10	11.0	12W	474558	731959
	10	11.5	12W	474557	731959
	10	12.0	12W	474552	731961
	10	11.5	12W	474552	731961
	10	11.0	12W	474548	731962
	10	10.5	12W	474547	731962
	10	10.0	12W	474546	731962
	10	9.5	12W	474544	731962
	10	9.0	12W	474543	731963
	10	8.5	12W	474542	731963
	10	8.0	12W	474541	731963
	10	7.5	12W	474539	731963
	10	7.5	12W	474529	731966
	10	8.0	12W	474528	731966
	10	8.5	12W	474525	731966
	10	8.0	12W	474522	731967
	10	7.5	12W	474521	731967
	10	7.0	12W	474520	731967
	10	6.5	12W	474519	731968
	10	6.0	12W	474518	731968
	10	5.5	12W	474517	731968
	10	5.0	12W	474516	731968
	10	4.5	12W	474516	731968
	10	4.0	12W	474514	731969
	10	3.5	12W	474513	731969
	10	2.5	12W	474512	731969
	10	2.0	12W	474511	731969
	10	2.0	12W	474508	731970
	10	0.0	12W	474497	731973
	11	11.0	12W	475094	731928
	11	11.0	12W	474967	731935
	11	11.5	12W	474956	731936
	11	12.0	12W	474949	731936
	11	12.5	12W	474947	731937
	11	13.0	12W	474940	731937
	11	13.5	12W	474934	731937
	11	14.0	12W	474927	731938

Appendix B Table B2. Data used to generate bathymetric isobaths in lakes of the Jericho Study Area, 1999.

Waterbody	Transect	Depth (m)	Zone	Easting	Northi
Lake C3					
	11	14.5	12W	474922	731938
	11	14.5	12W	474898	731939
	11	14.0	12W	474889	731940
	11	13.5	12W	474877	731940
	11	13.0	12W	474862	731941
	11	12.5	12W	474819	731944
	11	12.0	12W	474808	731944
	11	11.5	12W	474790	731945
	11	11.0	12W	474761	731947
	11	10.5	12W	474759	731947
	11	10.0	12W	474754	731947
	11	9.5	12W	474725	731949
	11	9.5	12W	474721	731949
	11	9.0	12W	474705	731950
	11	8.5	12W	474691	731951
	11	8.0	12W	474678	731952
	11	7.5	12W	474658	731953
	11	7.0	12W	474649	731953
	11	6.5	12W	474644	731953
	11	6.0	12W	474640	731954
	11	5.5	12W	474635	731954
	11	5.0	12W	474633	731954
	11	4.0	12W	474631	731954
	11	3.5	12W	474629	731954
	11	3.0	12W	474626	731954
	11	2.0	12W	474624	731955
	11	1.5	12W	474613	731955
	11	1.5	12W	474568	731958
	11	2.0	12W	474564	731958
	11	2.0	12W	474541	731959
	11	1.5	12W	474537	731960
	11	1.0	12W	474521	731960
	11	1.0	12W	474458	731964
	11	1.5	12W	474407	731967
	11	1.5	12W	474400	731967
	11	1.5	12W	474393	731968
	11	1.5	12W	474375	731969
	11	1.5	12W	474362	731969
		2.0			
	11 11	2.5	12W 12W	474355 474353	731970

Appendix B Table B2. Data used to generate bathymetric isobaths in lakes of the Jericho Study Area, 1999.

Waterbody	Transect	Depth (m)	Zone	Easting	Northin
Lake C3					
	11	3.0	12W	474351	731970
	11	3.5	12W	474346	731970
	11	4.0	12W	474342	731970
	11	4.5	12W	474333	731971
	11	5.0	12W	474319	731972
	11	5.0	12W	474294	731973
	11	4.5	12W	474265	731975
	11	4.0	12W	474263	731975
	11	3.5	12W	474261	731975
	11	3.0	12W	474256	731975
	11	2.5	12W	474247	731976
	11	2.0	12W	474236	731976
	11	2.0	12W	474158	731981
	11	2.5	12W	474155	731981
	11	3.0	12W	474153	731981
	11	3.5	12W	474146	731981
	11	4.0	12W	474140	731982
	11	4.5	12W	474138	731982
	11	5.0	12W	474135	731982
	11	5.5	12W	474131	731982
	11	6.0	12W	474129	731982
	11	6.5	12W	474126	731982
	11	7.0	12W	474099	731984
	11	7.5	12W	474090	731984
	11	8.0	12W	474081	731985
	11	8.0	12W	474070	731986
	11	7.5	12W	474025	731988
	11	7.5	12W	474003	731989
	11	8.0	12W	473998	731990
	11	8.0	12W	473996	731990
	11	8.5	12W	473983	731990
	11	9.0	12W	473956	731992
	11	8.5	12W	473942	731993
	11	8.0	12W	473940	731993
	11	7.5	12W	473933	731993
	11	7.0	12W	473931	731993
	11	6.5	12W	473927	731994
	11	6.0	12W	473918	731994
	11	5.0	12W	473909	731995
	11	4.5	12W	473871	731997

Appendix B Table B2. Data used to generate bathymetric isobaths in lakes of the Jericho Study Area, 1999.

Waterbody	Transect	Depth (m)	Zone	Easting	Northi
Lake C3					
	11	4.0	12W	473889	731996
	11	3.5	12W	473884	731996
	11	3.0	12W	473877	731996
	11	3.0	12W	473857	731997
	11	3.5	12W	473853	731998
	11	4.0	12W	473848	731998
	11	4.5	12W	473844	731998
	11	5.0	12W	473839	731998
	11	5.0	12W	473821	731999
	11	4.0	12W	473817	732000
	11	3.5	12W	473815	732000
	11	3.0	12W	473810	732000
	11	2.5	12W	473808	732000
	11	2.0	12W	473801	732001
	11	2.0	12W	473772	732002
	11	2.5	12W	473770	732002
	11	3.0	12W	473768	732002
	11	3.5	12W	473765	732003
	11	4.0	12W	473763	732003
	11	5.0	12W	473761	732003
	11	5.0	12W	473756	732003
	11	4.5	12W	473752	732003
	11	4.0	12W	473747	732004
	11	4.0	12W	473727	732005
	11	4.5	12W	473725	732005
	11	5.0	12W	473709	732006
	11	4.5	12W	473678	732007
	11	4.5	12W	473644	732009
	11	5.0	12W	473631	732010
	11	5.5	12W	473617	732011
	11	6.0	12W	473597	732012
	11	6.5	12W	473586	732013
	11	7.0	12W	473579	732013
	11	7.5	12W	473570	732013
	11	8.0	12W 12W	473561	732013
	11	8.5	12W 12W	473557	732014
	11	9.0	12W 12W	473550	732012
	11	9.5			
		10.0	12W	473537	732015
	11	10.0	12W	473523	732016

Appendix B Table B2. Data used to generate bathymetric isobaths in lakes of the Jericho Study Area, 1999.

Waterbody	Transect	Depth (m)	Zone	Easting	Northing
Lake C3					
	11	11.0	12W	473478	7320191
	11	11.5	12W	473429	7320218
	11	11.5	12W	473404	7320232
	11	11.5	12W	473380	7320246
	11	11.5	12W	473317	7320281
	11	11.0	12W	473303	7320288
	11	10.5	12W	473265	7320310
	11	10.0	12W	473250	7320318
	11	9.5	12W	473238	7320325
	11	9.0	12W	473227	7320331
	11	8.5	12W	473214	7320338
	11	8.0	12W	473202	7320345
	11	8.0	12W	473196	7320348
	11	8.5	12W	473169	7320364
	11	8.5	12W	473131	7320385
	11	8.0	12W	473113	7320395
	11	7.5	12W	473084	7320411
	11	7.0	12W	473072	7320417
	11	6.5	12W	473068	7320420
	11	6.0	12W	473066	7320421
	11	5.5	12W	473046	7320432
	11	5.5	12W	473037	7320437
	11	5.5	12W	473023	7320445
	11	5.0	12W	473019	7320447
	11	4.5	12W	473016	7320449
	11	3.5	12W	473014	7320450
	11	3.0	12W	473012	7320451
	11	2.0	12W	473007	7320454
	11	1.5	12W	473003	7320456
	11	1.5	12W	472864	7320534
	11	2.0	12W	472862	7320535
	11	3.0	12W	472859	7320536
	11	3.5	12W	472857	7320538
	11	4.0	12W	472855	7320539
	11	4.5	12W	472848	7320543
	11	5.0	12W	472837	7320549
	11	5.5	12W	472828	7320554
	11	6.0	12W	472819	7320559
	11	6.5	12W	472810	7320564
		6.0	1 & YY	7/2010	1320304

Appendix B Table B2. Data used to generate bathymetric isobaths in lakes of the Jericho Study Area, 1999.

Waterbody	Transect	Depth (m)	Zone	Easting	Northing
Lake C3					
	11	5.5	12W	472759	7320593
	11	5.0	12W	472756	7320594
	11	4.5	12W	472754	7320595
	11	3.5	12W	472752	7320596
	11	3.0	12W	472747	7320599
	11	2.0	12W	472743	7320601
	11	1.5	12W	472725	7320612
	11	0.0	12W	472652	7320653
	12	0.0	12W	472721	7320631
	12	1.0	12W	472547	7320650
	12	1.5	12W	472503	7320655
	12	2.0	12W	472469	7320658
	12	2.0	12W	472460	7320659
	12	1.5	12W	472445	7320661
	12	2.0	12W	472421	7320664
	12	2.5	12W	472417	7320664
	12	2.5	12W	472399	7320666
	12	2.0	12W	472382	7320668
	13	0.0	12W	472382	7320716
	13	1.5	12W	472443	7320670
	13	2.0	12W	472446	7320668
	13	2.5	12W	472447	7320667
	13	3.0	12W	472449	7320666
	13	3.5	12W	472452	7320664
	13	4.0	12W	472457	7320660
	13	4.0	12W	472461	7320657
	13	3.5	12W	472463	7320656
	13	3.0	12W	472464	7320655
	13	2.5	12W	472466	7320654
	13	2.0	12W	472467	7320652
	13	1.5	12W	472474	7320647
	13	0.0	12W	472511	7320621
	14	0.0			7320621
		1.5	12W	472500	
	14	2.0	12W	472563	7320626
	14	2.5	12W	472564	7320626
	14		12W	472565	7320626
	14	3.0	12W	472567	7320627
	14	3.5	12W	472568	7320627
	14	3.0	12W	472575	7320627
	14	2.5	12W	472579	7320627

Appendix B Table B2. Data used to generate bathymetric isobaths in lakes of the Jericho Study Area, 1999.

Waterbody	Transect	Depth (m)	Zone	Easting	Northin
Lake C3					
	14	2.0	12W	472583	732062
	14	1.5	12W	472587	732062
	14	1.5	12W	472588	732062
	14	1.5	12W	472593	732062
	14	0.0	12W	472700	732063
	15	0.0	12W	472684	732064
	15	1.5	12W	472694	732063
	15	2.0	12W	472699	732062
	15	2.5	12W	472699	732062
	15	3.0	12W	472700	732062
	15	3.5	12W	472700	732062
	15	4.0	12W	472701	732062
	15	4.5	12W	472701	732062
	15	5.0	12W	472702	732062
	15	5.5	12W	472702	732062
	15	6.0	12W	472703	732062
	15	6.5	12W	472705	732061
	15	3.5	12W	472708	732061
	15	6.5	12W	472710	732061
	15	6.0	12W	472713	732060
	15	5.5	12W	472715	732060
	15	5.0	12W	472719	732060
	15	4.5	12W	472722	732059
	15	4.0	12W	472727	732059
	15	3.5	12W	472732	732058
	15	3.0	12W	472738	732058
	15	2.5	12W	472739	732057
	15	2.0	12W	472740	732057
	15	1.5	12W	472741	732057
	15	0.0	12W	472797	732051
	16	0.0	12W	472738	732054
	16	1.5	12W	472796	732052
	16	1.5	12W	472809	732052
	16	2.0	12W	472850	732050
	16	2.5	12W	472853	732050
	16	3.0	12W	472860	732050
	16	3.5	12W	472863	732050
	16	4.0	12W	472870	732050
	16	4.5	12W	472880	732049
	16	5.0	12W	472887	732049

Appendix B Table B2. Data used to generate bathymetric isobaths in lakes of the Jericho Study Area, 1999.

Waterbody	Transect	Depth (m)	Zone	Easting	Northi
Lake C3					
	16	6.0	12W	472894	732049
	16	6.5	12W	472904	732048
	16	7.0	12W	472917	732048
	16	7.5	12W	472931	732048
	16	8.0	12W	472945	73204
	16	8.5	12W	472955	73204
	16	9.0	12W	472962	73204
	16	9.5	12W	472972	73204
	16	10.0	12W	472978	73204
	16	10.5	12W	472999	73204
	16	10.5	12W	473036	73204
	16	10.0	12W	473050	732043
	16	9.5	12W	473063	732043
	16	9.0	12W	473073	732043
	16	8.5	12W	473084	732042
	16	8.0	12W	473087	732042
	16	7.5	12W	473090	732042
	16	6.5	12W	473097	73204
	16	5.5	12W	473100	732042
	16	4.5	12W	473104	732042
	16	3.5	12W	473107	73204
	16	2.5	12W	473111	73204
	16	1.5	12W	473114	73204
	16	1.0	12W	473117	73204
	16	0.0	12W	473162	732040
	17	0.0	12W	473081	73204:
	17	1.5	12W	473150	732039
	17	2.0	12W	473153	732039
	17	2.5	12W	473154	732039
	17	3.5	12W	473156	732039
	17	4.0	12W	473158	73203
	17	4.5	12W	473159	73203
	17	5.5	12W	473161	73203
	17	6.5	12W	473162	73203
	17	7.5	12W	473164	73203
	17	8.0	12W	473164	732038
	17	9.0	12W	473167	732038
	17	10.0	12W 12W	473172	73203
		10.5			
	17	11.0	12W	473174	73203

Appendix B Table B2. Data used to generate bathymetric isobaths in lakes of the Jericho Study Area, 1999.

Waterbody	Transect	Depth (m)	Zone	Easting	Northi
Lake C3					
	17	11.0	12W	473279	732028
	17	10.5	12W	473288	732027
	17	10.0	12W	473293	732026
	17	9.5	12W	473296	732026
	17	9.0	12W	473299	732026
	17	8.5	12W	473303	732026
	17	8.0	12W	473304	732025
	17	7.5	12W	473307	732025
	17	6.5	12W	473309	732025
	17	6.0	12W	473311	732025
	17	5.5	12W	473314	732025
	17	4.5	12W	473317	732024
	17	3.5	12W	473319	732024
	17	3.0	12W	473320	732024
	17	2.5	12W	473322	732024
	17	2.0	12W	473323	732024
	17	1.5	12W	473326	732024
	17	0.0	12W	473479	732010
	18	0.0	12W	473265	732017
	18	1.0	12W	473359	732014
	18	1.5	12W	473462	732012
	18	2.0	12W	473573	732009
	18	2.5	12W	473585	732009
	18	3.0	12W	473589	732009
	18	4.0	12W	473597	732009
	18	4.5	12W	473610	732008
	18	5.0	12W	473618	732008
	18	5.5	12W	473634	732008
	18	6.0	12W	473651	732007
	18	6.5	12W	473667	732007
	18	7.0	12W	473684	732006
	18	7.5	12W	473708	732006
	18	8.0	12W	473733	732005
	18	8.5	12W	473746	732005
	18	9.0	12W	473770	732004
	18	9.5	12W	473799	732004
	18	9.5	12W	473836	732003
	18	9.0	12W	473853	732002
	18	8.5	12W	473865	732002
	18	8.0	12W 12W	473873	732002

Appendix B Table B2. Data used to generate bathymetric isobaths in lakes of the Jericho Study Area, 1999.

Waterbody	Transect	Depth (m)	Zone	Easting	Northin
Lake C3					
	18	7.5	12W	473881	732002
	18	7.0	12W	473898	732001
	18	6.5	12W	473902	732001
	18	6.0	12W	473914	732001
	18	5.5	12W	473918	732001
	18	5.0	12W	473923	732001
	18	4.5	12W	473927	732000
	18	3.5	12W	473931	732000
	18	3.0	12W	473935	732000
	18	2.5	12W	473943	732000
	18	2.0	12W	473947	732000
	18	1.5	12W	473968	731999
	18	0.0	12W	474206	731994
	19	0.0	12W	473176	732039
	19	1.5	12W	473340	732029
	19	1.5	12W	473367	732027
	19	1.5	12W	473393	732026
	19	2.0	12W	473516	732018
	19	2.5	12W	473525	732018
	19	3.0	12W	473529	732017
	19	4.0	12W	473534	732017
	19	5.0	12W	473569	732015
	19	5.5	12W	473600	732013
	19	5.0	12W	473643	732010
	19	4.5	12W	473657	732010
	19	4.0	12W	473665	732009
	19	3.5	12W	473674	732009
	19	3.0	12W	473687	732008
	19	2.5	12W	473709	732006
	19	2.0	12W	473723	732006
	19	1.5	12W	473749	732004
	19	1.5	12W	473788	732002
	19	1.5	12W	473810	732000
	19	1.5	12W	474417	731963
	19	2.5	12W	474421	731963
	19	3.5	12W	474426	731963
	19	4.5	12W	474430	731963
	19	5.5	12W	474434	731962
	19	6.0	12W	474439	731962
	19	6.0	12W	474456	731961

Appendix B Table B2. Data used to generate bathymetric isobaths in lakes of the Jericho Study Area, 1999.

Waterbody	Transect	Depth (m)	Zone	Easting	Northi
Lake C3					
	19	5.5	12W	474461	731961
	19	5.0	12W	474469	731960
	19	5.0	12W	474505	731958
	19	5.5	12W	474513	731957
	19	6.0	12W	474500	731958
	19	6.5	12W	474531	731956
	19	7.0	12W	474562	731954
	19	6.0	12W	474575	731954
	19	5.5	12W	474584	731953
	19	4.5	12W	474593	731953
	19	4.0	12W	474601	731952
	19	3.0	12W	474623	731951
	19	2.5	12W	474636	731950
	19	2.0	12W	474645	731949
	19	1.5	12W	474672	731948
	19	1.5	12W	474751	731943
	19	2.0	12W	474777	731941
	19	3.0	12W	474790	731941
	19	3.5	12W	474795	731940
	19	4.0	12W	474803	731940
	19	5.0	12W	474821	731939
	19	5.5	12W	474825	731938
	19	6.0	12W	474852	731937
	19	5.5	12W	474856	731937
	19	4.5	12W	474861	731936
	19	4.0	12W	474865	731936
	19	3.5	12W	474869	731936
	19	3.0	12W	474878	731935
	19	0.0	12W	475074	731923
	20	0.0	12W	474721	731935
	20	1.5	12W	474779	731940
	20	2.0	12W	474781	731940
	20	1.5	12W	474787	731940
	20	2.0	12W	474789	731940
	20	3.0	12W	474791	731941
	20	3.5	12W	474793	731941
	20	4.0	12W	474795	731941
	20	4.5	12W	474797	731941
	20	5.5	12W	474801	731941
	20	5.5	12W	474803	731941

Appendix B Table B2. Data used to generate bathymetric isobaths in lakes of the Jericho Study Area, 1999.

Waterbody	Transect	Depth (m)	Zone	Easting	Northin
Lake C3					
	20	6.0	12W	474805	7319420
	20	6.5	12W	474806	731942
	20	7.5	12W	474808	731942
	20	8.5	12W	474812	731942
	20	9.0	12W	474814	731942
	20	10.0	12W	474816	731942
	20	10.5	12W	474818	731943
	20	11.0	12W	474822	731943
	20	12.0	12W	474826	731943
	20	12.5	12W	474830	731943
	20	13.0	12W	474834	731944
	20	13.6	12W	474841	731944
	20	14.0	12W	474849	731945
	20	14.0	12W	474865	731946
	20	13.5	12W	474872	731947
	20	13.0	12W	474880	731947
	20	12.0	12W	474890	731948
	20	10.5	12W	474896	731948
	20	10.0	12W	474901	731949
	20	9.0	12W	474907	731949
	20	8.0	12W	474911	731949
	20	7.5	12W	474913	731950
	20	6.5	12W	474915	731950
	20	6.0	12W	474917	731950
	20	5.0	12W	474921	731950
	20	4.5	12W	474923	731950
	20	4.0	12W	474925	731950
	20	3.0	12W	474926	731951
	20	2.5	12W	474973	731954
	20	2.0	12W	474979	731955
	20	0.0	12W	475007	731957
	19	2.5	12W	474818	731939
	19	2.0	12W	474843	731937
	12	1.5	12W	472375	732066
	12	1.0	12W	472365	732067
	12	0.0	12W	472271	732068

Appendix B Table B3. Temperature and dissolved oxygen profile data from sampled lakes of the Jericho Study Area, 1999.

Waterbody	Site Label	Map Label	Date	Method	Secchi (m)	Depth Sampled (m)	DO (mg/L)	Temp (C)
Lake C1	LMLC0101	LM-4						
			7/19/1999	OxyGuard	4.18			
						0.0	10.10	13.40
						1.0	10.00	13.40
						2.0	10.00	13.40
						3.0	10.50	12.50
						4.0	10.90	10.50
						5.0	10.90	10.00
						6.0	10.70	9.40
						7.0	10.60	8.90
						8.0	10.70	8.00
						9.0	10.80	6.70
						10.0	9.60	5.00
Lake C2	LMLC0201	LM-7						
			7/19/1999	OxyGuard	1.80			
						0.0	10.00	13.70
						0.5	10.00	13.70
						1.0	10.00	13.70
						1.5	10.00	13.60
						1.8	10.00	13.60
Lake C3	HYLC0302							
			7/21/1999	H20 Hydrolab				
						1.2	10.75	10.69
						1.5	10.42	10.54
						1.6	10.34	10.69
						2.1	10.31	10.54
						2.1	10.28	10.69
						2.6	10.20	10.69
						2.6	10.24	10.54
						2.8	10.16	10.69
						3.1	10.21	10.53
						3.6	10.71	10.54
						4.1	10.25	10.54
						4.6	10.19	10.54
						4.9	10.17	10.53
						5.6 6.1	10.14 10.12	10.53 10.54
						6.6	10.12	10.54
						7.2	10.11	10.54
						7.6	10.10	10.54
						8.2	10.10	10.54
						x ')	10 00	

Appendix B Table B3. Temperature and dissolved oxygen profile data from sampled lakes of the Jericho Study Area, 1999.

Waterbody	Site Label	Map Label	Date	Method	Secchi (m)	Depth Sampled (m)	DO (mg/L)	Temp (C)
Lake D10	LMLD1001							
			7/19/1999	OxyGuard	8.00			
						0.0	10.00	12.80
						0.5	9.90	12.9
						1.0	10.00	12.6
						1.5	9.90	12.7
						2.0	10.00	12.7
						2.5	10.00	12.8
						3.0	10.00	12.8
						3.5	9.90	12.8
						4.0	10.00	12.8
						4.5	10.00	12.8
						5.0	10.00	12.8
						5.5	10.00	12.8
						6.0	10.00	12.8
						6.5	10.00	12.4
						7.0	10.20	12.2
						7.5	10.10	12.0
			7/21/1999	H20 Hydrolab				
						1.1	10.36	10.6
						1.1	10.45	10.9
						1.6	10.10	10.9
						1.6	10.13	10.6
						2.1	10.04	10.6
						2.1	9.94	10.9
						2.6	10.00	10.6
						2.6	9.89	10.9
						3.1	9.85	10.9
						3.1	9.97	10.6
						3.6	9.81	10.9
						3.6	9.96	10.6
						4.1	9.94	10.5
						4.1	9.82	10.9
						4.6	9.92	10.6
						5.1	9.92	10.5
						5.1	9.80	10.9
						5.6	9.92	10.5
						5.7	9.82	10.9
						6.1	9.91	10.5
						6.1	9.77	10.9
						6.4	9.92	10.5
						6.6	9.78	10.9
						7.1	9.80	10.8
						7.6	9.76	10.8
						8.1	9.58	10.8

Jericho Diamond Project Baseline Aquatic Studies Program (1999)

|--|

Waterbody	Reach	Date	Slope	Length	Wetted	Max. Depth	Channel	Bank		S	Substrate Type ¹ (%)	e Type	1(%)		
			(₀)	(m)	Width (m)	(m)	Type	Type	МО	IS	SA (GR	CO 1	ВО	BE
Stream C19															
	1	7/31/1999		119.6											
	14	6/10/1999	12	198.7											
	2	6/10/1999	1	26.4											
					6.5	0.23	Dispersed	III-defined	82					15	
					11.4	0.14	Dispersed	III-defined	95					5	
					12.9	0.18	Dispersed	III-defined	75				S	20	
					17.3	0.24	Dispersed	III-defined	80				5	15	
Stream C3															
	1	7/29/1999	2	110											
					0.45	0.11	Multiple	Defined	50				50		
					0.7	0.15	Multiple	III-defined	20			80			
					8.0	0.04	Multiple	III-defined				25	25	50	
					6.0	90.0	Multiple	III-defined			50	20	09		
					1	90.0	Multiple	Defined	80		10	10			
					1	0.1	Multiple	III-defined	20					80	
					1	0.07	Multiple	III-defined	09		30	10			
	2	7/29/1999	4	215											
					0.25	0.18	Single	Defined					50	50	
					0.3	0.05	Single	Defined	100						
					0.55	0.17	Single	Defined				10	20	70	
					9.0		Single	Defined				06		10	

Jericho Diamond Project Baseline Aquatic Studies Program (1999)

Waterbody	Reach	Date	Slope	Length	Wetted	Max. Depth	Channel	Bank		-	Substrate Type ¹ (%)	te Type	; (%)		
,			(₀)	(m)	Width (m)	(m)	Type	Type	OM	SI	SA	GR	00	B0	BE
Stream C3															
	2	7/29/1999	4	215											
					9.0	0.13	Single	Defined				80	10	10	
					0.65	0.09	Double	Defined				50		50	
					0.65	0.07	Single	Ill-defined	80			20			
					8.0	0.07	Single	Defined				09	40		
	3	7/28/1999	2	113											
					0.32	0.22	Double	Defined			- 1	100			
					3.5	60.0	Dispersed	Ill-defined	100						
					4	0.19	Dispersed	Ill-defined	100						
					9	0.21	Dispersed	III-defined	100						
					7.5	0.09	Dispersed	III-defined	100						
	4	7/31/1999	3	198											
					0.4	0.22	Single	III-defined	20			50			
					0.5	0.11	Single	Defined			10		30	99	
					0.5	0	Double	Defined	100						
					0.75		Single	Defined						100	
					8.0	0.21	Multiple	III-defined	06					10	
					1.5	0.22	Single	III-defined	20				20		
	S	7/31/1999	κ	276											
		000111011	-	9											
	٥	1131/1999	-	139											
					9	0.24	Dispersed	Defined	09					40	
					11	0.17	Dispersed	III-defined	40					09	

Appendix B Table B4. Channel characteristics measured during stream surveys in the Jericho Study Area, 1999.

RL&L Environmental Services Ltd.

	BE					
	OM SI SA GR CO BO BE			10		20
, 1(%)	00					
Substrate Type ¹ (%)	GR					
Substra	$\mathbf{S}\mathbf{A}$					
	\mathbf{SI}					
	OM			06	100	80
Bank	Type			III-defined	Ill-defined	III-defined
Channel	Type			Dispersed	Dispersed	Dispersed
Max. Depth	(m)			0.14	0.2	0.26
Wetted	Width (m) (m)			12	13	15
Length	(m)		139			
Slope	(0)		-			
Date			7/31/1999			
Reach			9			
Waterbody Reach		Stream C3				

¹ See Appendix A for definitions

Appendix B Table B5. Results for constituents analyzed in water samples collected from waterbodies in the Jericho Study Area, 1999.

Waterbody	Site Label	Map Label	Date	Analytical Test	Valu	e
Lake C1	WCLC0101	WC-2				
			7/26/1999			
			7720/1777			_
				Alkalinity, Total (T Alk)	11.000	
				Ammonia-N	0.007	C
				Balance	102.000	%
				Bicarbonate (HCO3)	13.000	mg/L
				Calcium (Ca)	2.600	-
				Carbonate (CO3) Chloride (Cl)	0.500	mg/L
				Conductance (EC)	1.090 32.300	_
				Hardness	12.000	mg/L
				Hydroxide in Water	0.500	mg/L
				Magnesium (Mg)	1.400	
				Nitrate/Nitrite-N	0.015	
				Nitrate-N	0.013	
				Orthophosphate	0.003	mg/L
				pH in Water	7.000	
				Phosphorus, Dissolved	0.003	
				Phosphorus, Total	0.003	
				Potassium (K)	0.310	mg/L
				Silica, Reactive (as Si)	0.689	mg/L
				Sodium (Na)	0.700	mg/L
				Sulfate (SO4)	1.610	
				TDS (Calculated)	14.000	mg/L
				Total Carbon	8.400	mg/L
				Total Inorganic Carbon	2.300	-
				Total Kjeldahl Nitrogen		mg/L
				Total Organic Carbon	6.100	mg/L
				Total Suspended Solids	1.500	
				Turbidity	0.960	NTU
Lake C2	WCLC0201	WC-4				
			7/26/1999			
			., 20, 1777	Alkalinity Total (T Alk)	0.000	mg/L
				Alkalinity, Total (T Alk) Ammonia-N	0.007	
				Ammonia-N Balance	101.000	mg/L %
				Bicarbonate (HCO3)	11.000	
				Calcium (Ca)	2.190	-
				Carbonate (CO3)	0.500	
				Chloride (Cl)		mg/L
				Cinoriae (Ci)	1.000	mg/L
					_	

Appendix B Table B5. Results for constituents analyzed in water samples collected from waterbodies in the Jericho Study Area, 1999.

Waterbody	Site Label	Map Label	Date	Analytical Test	Valu	e
Lake C2	WCLC0201	WC-4				
			7/26/1999			
				Conductance (EC)	27.600	uS/cm
				Hardness	10.000	mg/L
				Hydroxide in Water	0.500	_
				Magnesium (Mg)	1.210	-
				Nitrate/Nitrite-N	0.072	mg/L
				Nitrate-N		mg/L
				Orthophosphate		mg/L
				pH in Water	6.800	pН
				Phosphorus, Dissolved	0.002	mg/L
				Phosphorus, Total	0.002	mg/L
				Potassium (K)	0.240	mg/L
				Silica, Reactive (as Si)	1.210	mg/L
				Sodium (Na)	0.700	mg/L
				Sulfate (SO4)	1.370	mg/L
				TDS (Calculated)	13.000	mg/L
				Total Carbon	8.300	mg/L
				Total Inorganic Carbon	2.100	mg/L
				Total Kjeldahl Nitrogen	0.350	mg/L
				Total Organic Carbon	6.200	mg/L
				Total Suspended Solids	1.500	mg/L
				Turbidity	0.650	NTU
Lake C3	WCLC0301	WC-7				
			7/26/1999			
				Alkalinity, Total (T Alk)	4.000	mg/L
				Ammonia-N		mg/L
				Balance	105.000	%
				Bicarbonate (HCO3)	5.000	mg/L
				Calcium (Ca)	1.000	mg/L
				Carbonate (CO3)	0.500	mg/L
				Chloride (Cl)	0.280	mg/L
				Conductance (EC)	15.500	uS/cm
				Hardness	5.000	mg/L
				Hydroxide in Water	0.500	mg/L
				Magnesium (Mg)	0.540	mg/L
				Nitrate/Nitrite-N	0.003	mg/L
				Nitrate-N	0.003	mg/L
				Orthophosphate	0.001	mg/L

Appendix B Table B5. Results for constituents analyzed in water samples collected from waterbodies in the Jericho Study Area, 1999.

Waterbody	Site Label	Map Label	Date	Analytical Test	Valu	e
Lake C3	WCLC0301	WC-7				
			7/26/1999			
				pH in Water	6.600	pН
				Phosphorus, Dissolved	0.003	_
				Phosphorus, Total	0.004	
				Potassium (K)	0.340	
				Silica, Reactive (as Si)	0.261	mg/L
				Sodium (Na)	0.500	mg/L
				Sulfate (SO4)	1.390	mg/L
				TDS (Calculated)	6.000	mg/L
				Total Carbon	4.400	mg/L
				Total Inorganic Carbon	1.100	mg/L
				Total Kjeldahl Nitrogen	0.240	mg/L
				Total Organic Carbon	3.300	mg/L
				Total Suspended Solids	1.500	mg/L
				Turbidity	0.490	NTU
Lake D10	WCLD1001	WC-5				
			7/26/1999			
				Alkalinity, Total (T Alk)	6.000	mg/L
				Ammonia-N	0.005	mg/L
				Balance	95.000	%
				Bicarbonate (HCO3)	7.000	mg/L
				Calcium (Ca)	1.140	mg/L
				Carbonate (CO3)	0.500	mg/L
				Chloride (Cl)	0.240	mg/L
				Conductance (EC)	16.800	uS/cm
				Hardness	6.000	mg/L
				Hydroxide in Water	0.500	mg/L
				Magnesium (Mg)	0.660	mg/L
				Nitrate/Nitrite-N	0.003	mg/L
				Nitrate-N	0.003	mg/L
				Orthophosphate	0.001	mg/L
				pH in Water	6.800	pH
				Phosphorus, Dissolved	0.002	mg/L
				Phosphorus, Total	0.007	mg/L
				Potassium (K)	0.250	mg/L
				Silica, Reactive (as Si)	0.204	mg/L
				Sodium (Na)	0.400	mg/L
				Sulfate (SO4)	0.990	mg/L

Appendix B Table B5. Results for constituents analyzed in water samples collected from waterbodies in the Jericho Study Area, 1999.

Waterbody	Site Label	Map Label	Date	Analytical Test	Valu	e
Lake D10	WCLD1001	WC-5				
			7/26/1999			
				TDS (Calculated)	7.000	mg/L
				Total Carbon	4.000	mg/L
				Total Inorganic Carbon	1.300	mg/L
				Total Kjeldahl Nitrogen	0.170	mg/L
				Total Organic Carbon	2.700	mg/L
				Total Suspended Solids	1.500	mg/L
				Turbidity	0.470	
Stream C1	WCTC01A01	WC-1A		Turbianty	0.170	1110
	01 2011101	0 111				
			7/26/1999			
				Alkalinity, Total (T Alk)	8.000	mg/L
				Ammonia-N	0.006	mg/L
				Balance	104.000	%
				Bicarbonate (HCO3)	9.000	mg/L
				Calcium (Ca)	7.930	mg/L
				Carbonate (CO3)	0.500	mg/L
				Chloride (Cl)	12.600	mg/L
				Conductance (EC)	82.300	uS/cm
				Hardness	28.000	mg/L
				Hydroxide in Water	0.500	mg/L
				Magnesium (Mg)	2.030	mg/L
				Nitrate/Nitrite-N	0.925	mg/L
				Nitrate-N	0.921	mg/L
				Orthophosphate	0.003	mg/L
				pH in Water	6.700	pН
				Phosphorus, Dissolved	0.003	mg/L
				Phosphorus, Total	0.003	mg/L
				Potassium (K)	0.530	mg/L
				Silica, Reactive (as Si)	1.880	mg/L
				Sodium (Na)	1.300	mg/L
				Sulfate (SO4)	1.990	mg/L
				TDS (Calculated)	35.000	mg/L
				Total Carbon	7.300	mg/L
				Total Inorganic Carbon	2.000	mg/L
				Total Kjeldahl Nitrogen	0.350	mg/L
				Total Organic Carbon	5.300	mg/L
				Total Suspended Solids	1.500	mg/L
				Turbidity	0.730	NTU

Appendix B Table B5. Results for constituents analyzed in water samples collected from waterbodies in the Jericho Study Area, 1999.

Waterbody	Site Label	Map Label	Date	Analytical Test	Valu	e
Stream C1	WCTC01A01	WC-1A				
			7/26/1999			
			1,20,1999	A11 11 1 TO 1 (TO A11)	11.000	77
				Alkalinity, Total (T Alk)	11.000	_
				Ammonia-N Balance	97.000	mg/L %
				Bicarbonate (HCO3)	13.000	
				Calcium (Ca)	8.410	
				Carbonate (CO3)	0.500	
				Chloride (Cl)	12.900	
				Conductance (EC)		uS/cm
				Hardness		
				Hydroxide in Water		mg/L
				Magnesium (Mg)		mg/L
				Nitrate/Nitrite-N		mg/L
				Nitrate-N	1.200	mg/L
				Orthophosphate	0.003	
				pH in Water	7.500	pH
				Phosphorus, Dissolved		mg/L
				Phosphorus, Total		mg/L
				Potassium (K)		mg/L
				Silica, Reactive (as Si)		mg/L
				Sodium (Na)	1.500	mg/L
				Sulfate (SO4)	2.040	mg/L
				TDS (Calculated)	40.000	mg/L
				Total Carbon	7.400	mg/L
				Total Inorganic Carbon		mg/L
				Total Kjeldahl Nitrogen		mg/L
				Total Organic Carbon	5.600	
				Total Suspended Solids		
				Turbidity	0.280	
			9/6/1999	•		
				Alkalinity, Total (T Alk)	13.000	mg/L
				Ammonia-N		mg/L
				Balance	88.000	%
				Bicarbonate (HCO3)	16.000	mg/L
				Calcium (Ca)	2.480	mg/L
				Carbonate (CO3)	0.500	mg/L
				Chloride (Cl)		mg/L
				Conductance (EC)	31.400	

Appendix B Table B5. Results for constituents analyzed in water samples collected from waterbodies in the Jericho Study Area, 1999.

Waterbody	Site Label	Map Label	Date	Analytical Test	Valu	e
Stream C1	WCTC01A01	WC-1A				
			9/6/1999			
				Hardness	12.000	mg/L
				Hydroxide in Water	0.500	mg/L
				Magnesium (Mg)	1.360	mg/L
				Nitrate/Nitrite-N	0.320	mg/L
				Nitrate-N	0.030	mg/L
				Orthophosphate	0.002	mg/L
				pH in Water	7.000	pН
				Phosphorus, Dissolved	0.004	mg/L
				Phosphorus, Total	0.005	mg/L
				Potassium (K)	0.240	mg/L
				Silica, Reactive (as Si)	2.300	mg/L
				Sodium (Na)	0.700	mg/L
				Sulfate (SO4)	1.280	mg/L
				TDS (Calculated)	15.000	mg/L
				Total Carbon	8.700	mg/L
				Total Inorganic Carbon	2.300	mg/L
				Total Kjeldahl Nitrogen	0.025	mg/L
				Total Organic Carbon	6.400	mg/L
				Total Suspended Solids	1.500	mg/L
				Turbidity	0.410	NTU
Stream C19	WCTC1901	WC-3				
			7/26/1999			
				Alkalinity, Total (T Alk)	10.000	mg/L
				Ammonia-N	0.013	mg/L
				Balance	100.000	%
				Bicarbonate (HCO3)	12.000	mg/L
				Calcium (Ca)	2.100	mg/L
				Carbonate (CO3)	0.500	mg/L
				Chloride (Cl)	0.920	mg/L
				Conductance (EC)	27.800	uS/cm
				Hardness	10.000	mg/L
				Hydroxide in Water	0.500	mg/L
				Magnesium (Mg)	1.270	mg/L
				Nitrate/Nitrite-N	0.023	mg/L
				Nitrate-N	0.021	mg/L
				Orthophosphate		mg/L
				pH in Water	6.800	

Appendix B Table B5. Results for constituents analyzed in water samples collected from waterbodies in the Jericho Study Area, 1999.

Waterbody	Site Label	Map Label	Date	Analytical Test	Valu	e
Stream C19	WCTC1901	WC-3				
			7/26/1999			
				Phosphorus, Dissolved	0.003	mg/L
				Phosphorus, Total		mg/L
				Potassium (K)	0.250	mg/L
				Silica, Reactive (as Si)	1.210	mg/L
				Sodium (Na)	0.700	mg/L
				Sulfate (SO4)	1.040	mg/L
				TDS (Calculated)	12.000	mg/L
				Total Carbon	8.100	mg/L
				Total Inorganic Carbon	2.100	mg/L
				Total Kjeldahl Nitrogen	0.290	mg/L
				Total Organic Carbon	6.000	mg/L
				Total Suspended Solids	1.500	mg/L
				Turbidity	0.620	NTU
Stream C3	WCTC0301	WC-6				
			7/26/1999			
				Alkalinity, Total (T Alk)	6 000	mg/L
				Ammonia-N		mg/L
				Balance	105.000	-
				Bicarbonate (HCO3)		mg/L
				Calcium (Ca)		mg/L
				Carbonate (CO3)	0.500	mg/L
				Chloride (Cl)	0.250	mg/L
				Conductance (EC)	22.400	uS/cm
				Hardness	8.000	mg/L
				Hydroxide in Water	0.500	mg/L
				Magnesium (Mg)	0.900	mg/L
				Nitrate/Nitrite-N	0.028	mg/L
				Nitrate-N	0.026	mg/L
				Orthophosphate	0.004	mg/L
				pH in Water	6.500	pH
				Phosphorus, Dissolved	0.002	mg/L
				Phosphorus, Total	0.003	mg/L
				Potassium (K)	0.270	mg/L
				Silica, Reactive (as Si)	0.851	mg/L
				Sodium (Na)	0.500	mg/L
				Sulfate (SO4)	1.810	mg/L
				TDS (Calculated)	9.000	mg/L

Appendix B Table B5. Results for constituents analyzed in water samples collected from waterbodies in the Jericho Study Area, 1999.

Waterbody	Site Label	Map Label	Date	Analytical Test	Value
Stream C3	WCTC0301	WC-6			
			7/26/1999		
				Total Carbon	5.800 mg/L
				Total Inorganic Carbon	1.900 mg/L
				Total Kjeldahl Nitrogen	0.180 mg/L
				Total Organic Carbon	3.900 mg/L
				Total Suspended Solids	1.500 mg/L
				Turbidity	1.100 NTU

APPENDIX C NONVERTEBRATES

Appendix C Table C1. Periphyton sample parameters, chlorophyll *a* and ash free dry mass (AFDM) data collected from waterbodies in the Jericho Study Area, 1999.

Waterbody	Site Label	Map Label	Date	Area	Composite	Volume Filtered (mL)	Chlorophyll a (mg/m ²)	AFDM (mg/m ²)
Lake C1								
	PELC0101	PE-4	19-Jul-99	20.0	5	5	2.49	27.33
	PELC0101	PE-4	30-Jul-99	20.0	5	5	5.37	59.84
	PELC0101	PE-4	26-Aug-99	20.0	5	5	5.14	25.66
Lake C2								
	PELC0201	PE-5	19-Jul-99	20.0	5	5	7.64	72.83
	PELC0201	PE-5	30-Jul-99	20.0	5	5	2.82	63.91
	PELC0201	PE-5	26-Aug-99	20.0	5	5	11.23	34.19
Lake C3								
	PELC0301	PE-3	24-Jul-99	20.0	5	5	0.00	20.68
Lake D10								
	PELD1001	PE-6	19-Jul-99	20.0	5	5	1.64	15.30
	PELD1001	PE-6	30-Jul-99	20.0	5	5	3.50	51.66
	PELD1001	PE-6	26-Aug-99	20.0	5	5	1.50	21.78
Stream C1								
	PETC01A01	PE-1A	27-Jul-99	20.0	5	5	3.94	152.68
	PETC01A01	PE-1A	30-Jul-99	20.0	5	5	2.11	28.68
	PETC01A01	PE-1A	26-Aug-99	20.0	5	5	6.10	21.89
	PETC01B01	PE-1B	19-Jul-99	20.0	5	5	9.70	22.28
	PETC01B01	PE-1B	30-Jul-99	20.0	5	5	1.71	66.33
	PETC01B01	PE-1B	26-Aug-99	20.0	5	5	2.47	79.50
Stream C19								
	PETC1901	PE-7	19-Jul-99	20.0	5	5	3.47	37.00
	PETC1901	PE-7	30-Jul-99	20.0	5	5	3.93	36.90
	PETC1901	PE-7	26-Aug-99	20.0	5	5	5.15	33.27
Stream C3								
	PETC0301	PE-8	19-Jul-99	20.0	5	5	6.48	20.12
	PETC0301	PE-8	30-Jul-99	20.0	5	5	5.33	8.93
	PETC0301	PE-8	26-Aug-99	20.0	5	5	2.04	16.10

Appendix C Table C2. Periphyton species and density data collected from waterbodies in the Jericho Study Area, 1999.

	Area,					
Waterbody	Site	Map Label	Taxonomi	Taxa	Density (cells/cm ²)	Presence
C . I 1	Label	Labei	Group		(cens/cm)	
Carat Lake	PELCA01					
		B	ACILLARIOP			
				Achnanthes flexella	14	
				Achnanthes minutissima	2092	
				Cymbella minuta	138	
				Cymbella sp.	0	P
				Diatoma elongatum	0	P
				Eunotia glacialis	14	
				Eunotia praerupta	171	
				Frustulia vulgaris	28	
				Gomphonema gracile	194	
				Nitzschia filiformis	14	
				Synedra sp. b	277	
				Synedra ulna	0	P
				Tabellaria fenestrata	0	P
				Tabellaria flocculosa	526	
		C	HLOROPHYT	'A		
				Closterium sp.	0	P
				Cosmarium biculatum	41	
				Cosmarium laeve	14	
				Cosmarium sp. a	0	P
				Cylindrocystis brebissonii	14	
				Elakatothrix sp.	0	P
				Gloeocystis schroeteri	124	
				Hyalotheca sp.	0	P
				Mougeotia sp. a	0	P
				Oocystis lacustris	222	
				Sphaerozosma granulatum.	28	
		C	HRYSOPHYT	A		
				Chrysosphaerella rodhei	0	P
				Pseudokephyrion angulosum	0	P
		C	RYPTOPHYT	A		
				Cryptomonas ovata	0	P
		C.	YANOPHYTA	1		
				Anabaena sp.	0	P
				Aphanocapsa elachista v. planctonica	0	P

Appendix C Table C2. Periphyton species and density data collected from waterbodies in the Jericho Study Area, 1999.

	Area,	.,,,,				
Waterbody	Site Label	Map Label	Taxonom Group	ic Taxa	Density (cells/cm ²)	Presenc
Carat Lake	PELCA01					
		C.	YANOPHYT	Δ		
		C	77111011111	Desmonema wrangelii	968	
				Schizothrix calcicola	7952	
Lake C1	PELC0101	PE-4			.,,-	
			A CILL A DIOI	MINTE A		
		В	ACILLARIOF	Achnanthes flexella	3303	
				Achnanthes minutissima	136661	
				Achnanthes minutissima v.cryptocephala	1859	
				Caloneis ventricosa	9297	
				Cyclotella ocellata	0	P
				Cymbella cuspidata	0	P
				Cymbella gracilis	4332	г
				Eunotia maior	0	P
				Eunotia praerupta	20453	r
				Eunotia praerupta v. bidens	0	P
				Eunotia triodon	1101	г
				Frustulia vulgaris	16585	
				Gomphonema gracile	31609	
				Hantzschia amphioxys	0	P
				Navicula sp.	0	P
				Nedium sp.	0	P
				Nitzschia angustata	0	P
				Nitzschia sp. a	1859	1
				Pinnularia sp. a	0	P
				Stephanodiscus astraea	0	P
				Synedra sp. b	60744	1
				Tabellaria fenestrata	0	P
				Tabellaria flocculosa	320103	1
		C	HLOROPHY'		220103	
		C.		Actinotaenium sp.	1101	P
				Ankistrodesmus falcatus	0	P
				Botryococcus sp.	0	P
				Bulbochaete sp.	1859	
				Chlamydomonas sp.	0	P
				Coeloastrum printzii	0	P

Appendix C Table C2. Periphyton species and density data collected from waterbodies in the Jericho Study Area, 1999.

Site	Map	Taxonomi	C Tave	Density	Presenc
Label	Label	Group	Taxa	(cells/cm ²)	
PELC0101	PE-4				
	C	HLOROPHYT.	A		
				0	P
				0	P
			Cosmarium holmiense v. intermedium	0	P
			Cosmarium impressulum v.suborthogonum	0	P
			Cosmarium phaseolus v. phaseolus	0	P
			Cosmarium rectangulum	0	P
			Cosmarium speciosum	0	P
				7894	
			Euastrum ansatum	0	P
			Euastrum denticulatum	0	P
			Euastrum dubium v. maius	0	P
			Euastrum elegans	0	P
			Euastrum pectinatum	0	P
			Geminella interrupta	0	P
			Gloeocystis schroeteri	3719	
			Hyalotheca sp.	8807	
			Mougeotia sp. a	11621	
			Mougeotia sp. b	0	P
			Netrium sp.	0	P
			Oocystis lacustris	33468	
			Pediastrum boryanum v. ellesmerense	0	P
			Scenedesmus acuminatus	3719	
			Sphaerozosma granulatum.	0	P
			Staurastrum paradoxum	0	P
		ı	Staurastrum punctulatum	0	P
			Staurastrum sp. a	0	P
			Staurastrum sp. b	0	P
			Zygnema sp.	0	P
	C	HRYSOPHYT	A		
			Dinobryon sertularia v.protuberans	39046	
			Kephyrion boreale	0	P
			Pseudokephyrion angulosum	1859	
	C	YANOPHYTA			
		Label PELCO101 PE-4 C	PELCO101 PE-4 CHLOROPHYT CHRYSOPHYT	Taxa Label Label Group PELCO101 PE-4 CHLOROPHYTA Cosmarium capitulum v. groenlandicum Cosmarium granulatum Cosmarium impressulum v.suborthogonum Cosmarium phaseolus v. phaseolus Cosmarium rectangulum Cosmarium speciosum Cylindrocystis brebissonii Euastrum ansatum Euastrum denticulatum Euastrum denticulatum Euastrum elegans Euastrum pectinatum Geminella interrupta Gloeocystis schroeteri Hyalotheca sp. Mougeotia sp. a Mougeotia sp. b Netrium sp. Oocystis lacustris Pediastrum boryanum v. ellesmerense Scenedesmus acuminatus Sphaerozosma granulatum. Staurastrum paradoxum Staurastrum punctulatum Staurastrum sp. a Staurastrum sp. a Staurastrum sp. b Zygnema sp. CHRYSOPHYTA Dinobryon sertularia v.protuberans Kephyrion boreale Pseudokephyrion angulosum	Label Label Group (cells/cm) PELC0101 PE4 CHLOROPHYTA CHIOROPHYTA CHIOROPHYTA Cosmarium capitulum v. groenlandicum 0 Cosmarium granulatum 0 Cosmarium impressulum v. suborthogonum 0 Cosmarium phaseolus v. phaseolus 0 Cosmarium paseolus v. phaseolus 0 Cosmarium speciosum 0 Cultura speciosum 0 Ceuastrum degans 0 Ceuastrum degans 0 Ceuastrum petinatum 0 Ceuastrum petinatum 0 Ceuastrum petinatum

Appendix C Table C2. Periphyton species and density data collected from waterbodies in the Jericho Study Area, 1999.

	Site	Map	Taxonomi	e.	Density	Presenc
Waterbody	Label	Label	Group	Taxa	(cells/cm ²)	rresenc
Lake C1	PELC0101	PE-4	Group		(cens, em)	
Luke C1	TEECOTOT					
		C	YANOPHYTA		0	n
				Anacystis cyanea	0	P
				Anacystis dimidiata	3719	
				Anacystis montana	92967	
				Aphanocapsa elachista v. planctonica	184074	
				Dactylococcopsis linearis	3719	
				Desmonema wrangelii	59499	
				Gomphosphaeria naegelianum	145321	
				Nostoc commune	16514	
				Oscillatoria sp.	0	P
				Oscillatoria tenuis	0	P
				Schizothrix calcicola	1922549	
				Scopulonema minus	172918	
Lake C2	PELC0201	PE-5				
		В.	ACILLARIOP	HYTA		
				Achnanthes flexella	2559	
				Achnanthes minutissima	92697	
				Caloneis ventricosa	3719	
				Cymbella cuspidata	0	P
				Cymbella gracilis	0	P
				Cymbella minuta	0	P
				Cymbella sp.	0	P
				Eunotia glacialis	0	P
				Eunotia praerupta	0	P
				Eunotia praerupta v. bidens	0	P
				Eunotia triodon	0	P
				Frustulia vulgaris	0	P
				Gomphonema gracile	40292	
				Nedium incurvum	0	P
				Nedium sp.	0	P
				Nitzschia sp. a	16734	
				Opephora martyi	0	P
				Stauroneis anceps	0	P
				Synedra sp. b	12086	
				Tabellaria fenestrata	0	P

Appendix C Table C2. Periphyton species and density data collected from waterbodies in the Jericho Study Area, 1999.

	Area, 1	1999.				
Waterbody	Site Label	Map Label	Taxonomi Group	c Taxa	Density (cells/cm ²)	Presenc
Lake C2	PELC0201	PE-5				
Eure C2	1220201					
		В	ACILLARIOP		7017	
		C	HLOROPHYT	Tabellaria flocculosa	7817	
		C		Actinotaenium sp.	9297	
				Ankistrodesmus falcatus	0	P
				Ankistrodesmus falcatus v. spiralis	0	P
				Arthrodesmus triangularis	0	P
				Botryococcus sp.	0	P
				-	0	
				Bulbochaete sp.	0	P
				Closterium sp. Coeloastrum printzii	0	P P
				-		
				Cosmarium capitulum v. groenlandicum	0	P P
				Cosmarium granulatum		Р
				Cosmarium humile v. lacustre	350	
				Cosmarium norimbergense	1859	
				Cosmarium phaseolus v. phaseolus	0	P
				Cosmarium subgranatum	350	
				Cylindrocystis brebissonii	1750	
				Elakatothrix sp.	0	P
				Euastrum denticulatum	350	
				Euastrum dubium v. maius	0	P
				Euastrum elegans	0	P
				Gloeocystis schroeteri	7437	
				Gonatozygon brebissonii	0	P
				Hyalotheca sp.	0	P
				Mougeotia sp. a	0	P
				Mougeotia sp. b	930	
				Oocystis elliptica	9297	
				Oocystis lacustris	11156	
				Oocystis pusilla	8367	
				Scenedesmus incrassatulus	700	
				Sphaerozosma granulatum.	1400	
				Staurastrum sp. a	350	
				Staurastrum sp. b	0	P
				Staurastrum sp. c	0	P

Appendix C Table C2. Periphyton species and density data collected from waterbodies in the Jericho Study Area, 1999.

Waterbody	Site	Map	Taxonomi	ic Taxa	Density	Presenc
waterbody	Label	Label	Group	Taxa	(cells/cm ²)	
Lake C2	PELC0201	PE-5				
		C	HLOROPHYT	'A		
				Staurastrum tetracerum	1859	
				Teilingia granulata	700	
		C	HRYSOPHYT			
				Dinobryon sertularia v.protuberans	20655	
				Kephyrion boreale	1859	
				Stichogloea doederleinii	13945	
		C	YANOPHYTA	l.		
				Agmenellum quadruplicatum	9297	
				Anabaena sp.	24856	
				Anacystis cyanea	0	P
				Anacystis montana	123646	
				Aphanocapsa elachista v. planctonica	840418	
				Dactylococcopsis linearis	0	P
				Dichothrix gypsophila	20655	
				Gomphosphaeria naegelianum	59499	
				Lyngbya contorta	0	P
				Microcoleus vaginatus	15754	
				Nostoc commune	184074	
				Oscillatoria tenuis	2101	
				Schizothrix calcicola	2413413	
				Scopulonema minus	26031	
		P	YRROPHYTA			
				Gymnodinium sp.	0	P
				Peridinium sp.	350	
Lake C3	PELC0301	PE-3				
		В	ACILLARIOP	НҮТА		
				Achnanthes minutissima	978	
				Cymbella sp.	217	
				Eunotia glacialis	219	
				Eunotia praerupta	0	P
				Eunotia praerupta v. bidens	0	P
				Frustulia vulgaris	0	P
				Gomphonema gracile	380	
				Melosira sp.	0	P

Appendix C Table C2. Periphyton species and density data collected from waterbodies in the Jericho Study Area, 1999.

	G*4	3.5	TD:		D "	D.
Waterbody	Site Label	Map Label	Taxonomi Group	Taxa	Density (cells/cm ²)	Presence
I 1 C2			Group		(cens/cm)	
Lake C3	PELC0301	PE-3				
		В	ACILLARIOP:			
				Nitzschia sigmoidea	109	
				Nitzschia sp. a	217	
				Pinnularia sp. a	0	P
				Stephanodiscus astraea	0	P
				Synedra sp. b	887	
				Tabellaria fenestrata	0	P
				Tabellaria flocculosa	11817	
		C	HLOROPHYT	'A		
				Bulbochaete sp.	652	
				Characium sp.	0	P
				Closterium sp.	0	P
				Coeloastrum printzii	109	
				Cosmarium holmiense v. intermedium	0	P
				Cosmarium sp. a	0	P
				Cosmarium speciosum	0	P
				Cosmarium subcrenulatum	0	P
				Desmidium sp.	0	P
				Euastrum elegans	0	P
				Gloeocystis schroeteri	325	
				Gonatozygon brebissonii	0	P
				Mougeotia sp. a	109	
				Oocystis lacustris	6085	
				Oocystis solitaria	0	P
				Sphaerozosma granulatum.	0	P
				Staurastrum punctulatum	0	P
				Staurastrum sp. a	0	P
				Staurastrum varians	0	P
		C	HRYSOPHYT	A		
				Dinobryon sertularia v.protuberans	4944	
				Ishtmochloron trispinatum	217	
				Pseudokephyrion angulosum	217	
		C	RYPTOPHYT.	A		
				Cryptomonas ovata	0	P

Appendix C Table C2. Periphyton species and density data collected from waterbodies in the Jericho Study Area, 1999.

Waterbody	Site Label	Map Label	Taxonomi Group	C Taxa	Density (cells/cm ²)	Presence
Lake C3	PELC0301	PE-3				
		С	YANOPHYTA			
				Anabaena planctonica	0	P
				Anabaena sp.	3912	
				Anacystis cyanea	0	P
				Anacystis dimidiata	217	
				Anacystis montana	2934	
				Aphanocapsa elachista v. planctonica	2199	
				Desmonema wrangelii	49115	
				Nostoc commune	652	
				Schizothrix calcicola	19559	
				Scopulonema minus	34120	
				Stigonema mamillosum	1304	
		P	YRROPHYTA			
				Peridinium sp.	217	
Lake D10	PELD1001	PE-6				
		В	ACILLARIOP	НҮТА		
				Achnanthes flexella	0	P
				Achnanthes minutissima	39421	
				Amphora ovalis	0	P
				Caloneis ventricosa	2145	
				Cymbella cuspidata	0	P
				Cymbella gracilis	1073	
				Cymbella minuta	0	P
				Cymbella naviculiformis	0	P
				Cymbella sp.	0	P
				Eunotia maior	0	P
				Eunotia praerupta	540	
				Eunotia praerupta v. bidens	0	P
				Fragilaria sp.	0	P
				Frustulia vulgaris	1073	
				Gomphonema angustatum	0	P
				Gomphonema gracile	19308	
				Gomphonema sp.	0	P
				Nitzschia amphibia	0	P
				Nitzschia filiformis	1877	

Appendix C Table C2. Periphyton species and density data collected from waterbodies in the Jericho Study Area, 1999.

Waterbody	Site Label	Map Label	Taxonomi Group	c Taxa	Density (cells/cm ²)	Presenc
Lake D10	PELD1001	PE-6				
		В	ACILLARIOP:	НҮТА		
				Nitzschia sp. a	18236	
				Nitzschia sp. b	6436	
				Stauroneis phoenicenteron	0	P
				Tabellaria fenestrata	540	
				Tabellaria flocculosa	38215	
		C	HLOROPHYT	A		
				Actinotaenium sp.	0	P
				Ankistrodesmus falcatus	0	P
				Arthrodesmus triangularis	0	P
				Botryococcus sp.	0	P
				Bulbochaete sp.	0	P
				Coeloastrum printzii	0	P
				Cosmarium biculatum	0	P
				Cosmarium granulatum	0	P
				Cosmarium humile v. lacustre	0	P
				Cosmarium norimbergense	1073	
				Cosmarium phaseolus v. phaseolus	0	P
				Cosmarium rectangulare	0	P
				Cosmarium rectangulum	0	P
				Cosmarium subcrenulatum	0	P
				Crucigenia rectangularis	0	P
				Cylindrocystis brebissonii	2145	
				Euastrum dubium v. maius	0	P
				Euastrum elegans	0	P
				Gloeocystis schroeteri	270	
				Hyalotheca sp.	0	P
				Mougeotia sp. a	1080	
				Mougeotia sp. b	1619	
				Oocystis elliptica	1080	
				Oocystis lacustris	27890	
				Pandorina morum	0	P
				Sphaerozosma granulatum.	12872	
				Staurastrum borgeanum	0	P

Appendix C Table C2. Periphyton species and density data collected from waterbodies in the Jericho Study Area, 1999.

	Alea, I		Т	·-	Do 102	Donas
Waterbody	Site Label	Map Label	Taxonom Group	Taxa	Density (cells/cm ²)	Presence
L-1 D10		PE-6	Group		(cens/cm)	
Lake D10	PELD1001					
		C	HLOROPHYT			
				Staurastrum punctulatum	0	P
				Staurastrum sp. a	0	P
				Staurastrum sp. b	0	P
				Staurastrum sp. c	0	P
				Trochiscia granulata	0	P
		С	HRYSOPHYT			
				Dinobryon sertularia v.protuberans	13409	
				Ishtmochloron trispinatum	0	P
				Ophiocytium sp.	0	P
		C	YANOPHYTA			
				Anabaena lapponica	66936	
				Anacystis cyanea	48583	
				Anacystis montana	19433	
				Aphanocapsa elachista v. planctonica	231701	
				Dichothrix gypsophila	22672	
				Gomphosphaeria naegelianum	0	P
				Nostoc commune	15654	
				Schizothrix calcicola	1387062	
				Scopulonema minus	2145	
				Stigonema mamillosum	8637	
		P	YRROPHYTA			
				Gymnodinium uberrimum	540	
				Peridinium sp.	0	P
Stream C1	PETC01A01	PE-1A				
		В	ACILLARIOP	НҮТА		
				Achnanthes flexella	5697	
				Achnanthes minutissima	1249131	
				Caloneis ventricosa	0	P
				Cyclotella ocellata	0	P
				Eunotia maior	540	
				Eunotia praerupta	6511	
				Frustulia vulgaris	0	P
				Gomphonema gracile	8139	
				Melosira sp.	19534	
				-		

Appendix C Table C2. Periphyton species and density data collected from waterbodies in the Jericho Study Area, 1999.

	Area, 1	.999.				
Waterbody	Site Label	Map Label	Taxonomi Group	ic Taxa	Density (cells/cm ²)	Presen
Stream C1	PETC01A01	PE-1A				
		В	ACILLARIOP	НҮТА		
				Navicula pupula	0	P
				Navicula radiosa	0	P
				Nitzschia sp. a	71426	
				Pinnularia sp. a	0	P
				Synedra sp. b	71426	
				Synedra ulna	0	P
				Tabellaria fenestrata	0	P
				Tabellaria flocculosa	149228	
		C	HLOROPHYT	^A		
				Actinotaenium sp.	0	P
				Characium sp.	0	P
				Closterium sp.	0	P
				Cosmarium granulatum	0	P
				Cosmarium holmiense v. intermedium	0	P
				Cosmarium phaseolus v. phaseolus	0	P
				Cosmarium rectangulare	0	P
				Cosmarium rectangulum	0	P
				Cosmarium subcrenulatum	540	
				Cylindrocystis brebissonii	3061	
				Euastrum ansatum	0	P
				Gloeocystis schroeteri	0	P
				Hyalotheca sp.	22789	
				Mougeotia sp. a	14370	
				Oocystis elliptica	10204	
				Oocystis lacustris	255091	
				Scenedesmus incrassatulus	0	P
				Sphaerozosma granulatum.	0	P
				Staurastrum borgeanum	0	P
				Staurastrum sp. a	0	P
		C	HRYSOPHYT	A		
				Stichogloea doederleinii	10204	
		C	YANOPHYTA	A		
				Anacystis cyanea	159526	
				Anacystis dimidiata	29419	

Appendix C Table C2. Periphyton species and density data collected from waterbodies in the Jericho Study Area, 1999.

	Area, 1	.,,,,				
Waterbody	Site Label	Map Label	Taxonomi Group	ic Taxa	Density (cells/cm ²)	Presence
Stream C1	PETC01A01	PE-1A				
		C	YANOPHYTA	1		
				Aphanocapsa elachista v. planctonica	744867	
				Desmonema wrangelii	91227	
				Pseudanabaena sp.	112240	
				Schizothrix calcicola	8719021	
				Scopulonema minus	173462	
				Stigonema mamillosum	540	
		В	ACILLARIOP:	НҮТА		
				Achnanthes flexella	0	P
				Achnanthes minutissima	134698	
				Caloneis ventricosa	0	P
				Cyclotella ocellata	0	P
				Cymbella cuspidata	0	P
				Cymbella gracilis	0	P
				Cymbella minuta	2041	
				Eunotia arcus	0	P
				Eunotia maior	0	P
				Eunotia praerupta	4416	
				Eunotia praerupta v. bidens	0	P
				Frustulia vulgaris	3826	
				Melosira sp.	48978	
				Navicula sp.	3061	
				Nitzschia sp. a	6122	
				Nitzschia sp. b	7143	
				Pinnularia borealis	0	P
				Pinnularia sp. a	0	P
				Stauroneis phoenicenteron	0	P
				Stephanodiscus astraea	0	P
				Synedra sp a	3061	
				Synedra sp. b	8673	
				Tabellaria fenestrata	0	P
				Tabellaria flocculosa	10540	
		C	HLOROPHYT	'A		
				Actinotaenium sp.	339	
				Cosmarium sp. a	0	P

Appendix C Table C2. Periphyton species and density data collected from waterbodies in the Jericho Study Area, 1999.

Waterbody	Site	Map	Taxonomi	ic Taxa	Density	Presenc
waterbody	Label	Label	Group	Taxa	(cells/cm ²)	
Stream C1	PETC01A01	PE-1A				
		C	HLOROPHYT	'A		
				Euastrum dubium v. maius	0	P
				Gloeocystis schroeteri	4081	
				Mougeotia sp. a	255	
				Oocystis elliptica	5612	
				Oocystis lacustris	0	P
				Scenedesmus incrassatulus	0	P
				Staurastrum gladiosum	0	P
				Staurastrum sp. a	678	
		C	YANOPHYTA			
				Anabaena sp.	0	P
				Anacystis cyanea	0	P
				Anacystis dimidiata	10714	
				Anacystis montana	440798	
				Aphanocapsa elachista	129586	
				Coelosphaerium kuetzingianum	249989	
				Dichothrix gypsophila	272438	
				Gomphosphaeria naegelianum	16326	
				Microcoleus vaginatus	152034	
				Schizothrix calcicola	434676	
				Scopulonema minus	24489	
Stream C19	PETC1901	PE-7				
		В	ACILLARIOP	НҮТА		
				Achnanthes flexella	501	
				Achnanthes minutissima	240784	
				Cymbella gracilis	4648	
				Cymbella sp.	501	
				Eunotia glacialis	10226	
				Eunotia maior	501	
				Eunotia peruviana	0	P
				Eunotia praerupta	6192	
				Eunotia praerupta v. bidens	1859	
				Eunotia triodon	0	P
				Fragilaria sp.	0	P

Appendix C Table C2. Periphyton species and density data collected from waterbodies in the Jericho Study Area, 1999.

	Area, 1	1999.				
Waterbody	Site Label	Map Label	Taxonomi Group	c Taxa	Density (cells/cm ²)	Presenc
Stream C19	PETC1901	PE-7	Stoup		(COLIDI CILL)	
Sucum C17	12101701		A CHI L A DIOD	****		
		В	ACILLARIOP		11022	
				Melosira sp.		
				Meridion circulare	501	D
				Nedium incurvum	0	P
				Nedium sp.	0	P
				Nitzschia sp. a	52061	
				Nitzschia sp. b	15023	
				Pinnularia sp. a	0	P
				Pinnularia sp. b	0	P
				Stauroneis phoenicenteron	0	P
				Surirella sp.	0	P
				Synedra sp a	0	P
				Synedra sp. b	78092	
				Tabellaria fenestrata	837	
				Tabellaria flocculosa	132794	
		C	HLOROPHYT	A		
				Actinotaenium sp.	0	P
				Bulbochaete sp.	1503	
				Closterium sp.	0	P
				Coeloastrum printzii	0	P
				Cosmarium capitulum v. groenlandicum	1859	
				Cosmarium granulatum	0	P
				Cosmarium holmiense v. intermedium	0	P
				Cosmarium norimbergense	0	P
				Cosmarium phaseolus v. phaseolus	0	P
				Cosmarium speciosum	0	P
				Cosmarium subcrenulatum	501	
				Crucigenia rectangularis	0	P
				Cylindrocystis brebissonii	1754	1
				Desmidium sp.	0	P
				Euastrum ansatum	0	Р
				Euastrum bidentatum	0	P
				Euastrum denticulatum	0	P
				Euastrum dubium v. maius	0	P
				Euastrum elegans	0	P

Appendix C Table C2. Periphyton species and density data collected from waterbodies in the Jericho Study Area, 1999.

	C''	3.7	m ·		D 11	D
Waterbody	Site	Map	Taxonomi	c Taxa	Density	Presenc
	Label	Label	Group		(cells/cm ²)	
Stream C19	PETC1901	PE-7				
		C	HLOROPHYT	A		
				Geminella interrupta	0	P
				Gloeocystis schroeteri	1859	
				Hyalotheca sp.	0	P
				Mougeotia sp. a	0	P
				Mougeotia sp. b	1859	
				Oocystis elliptica	501	
				Oocystis lacustris	19523	
				Oonephris obesa	0	P
				Pediastrum boryanum v. ellesmerense	0	P
				Penium sp.	0	P
				Scenedesmus incrassatulus	3507	
				Sphaerozosma granulatum.	3507	
				Staurastrum borgeanum	0	P
				Staurastrum gladiosum	0	P
				Staurastrum pachyrhynchum	0	P
				Staurastrum punctulatum	0	P
				Staurastrum sp. a	501	
				Staurastrum sp. b	0	P
				Xanthicium armatum	0	P
				Zygnema sp.	2004	
		C	HRYSOPHYT.	A		
				Dinobryon sertularia v.protuberans	0	P
				Pseudokephyrion angulosum	501	
				Stichogloea doederleinii	38432	
		C	YANOPHYTA			
				Anabaena sp.	0	P
				Anacystis cyanea	55112	
				Anacystis montana	74373	
				Aphanocapsa elachista v. planctonica	217542	
				Aphanothece clathrata	89248	
				Dactylococcopsis linearis	2004	
				Desmonema wrangelii	0	P
				Dichothrix gypsophila	61124	
				· · · ·		

Appendix C Table C2. Periphyton species and density data collected from waterbodies in the Jericho Study Area, 1999.

Area, 1999.						
Waterbody	Site Label	Map Label	Taxonom Group	ic Taxa	Density (cells/cm ²)	Presence
Stream C19	PETC1901	PE-7				
		C	YANOPHYT	A		
				Nostoc commune	0	P
				Oscillatoria tenuis	0	P
				Schizothrix calcicola	585690	
				Scopulonema minus	42765	
Stream C3	PETC0301	PE-8				
		В	ACILLARIO	РНҮТА		
				Achnanthes minutissima	11825	
				Caloneis ventricosa	0	P
				Cymbella gracilis	409	
				Cymbella sp.	0	P
				Eunotia glacialis	446	
				Eunotia maior	0	P
				Eunotia praerupta	1032	
				Eunotia praerupta v. bidens	0	P
				Eunotia triodon	112	
				Fragilaria sp.	0	P
				Frustulia vulgaris	298	
				Gomphonema sp.	112	
				Melosira sp.	0	P
				Navicula sp.	0	P
				Nitzschia sp. a	0	P
				Pinnularia sp. a	0	P
				Synedra sp a	3559	
				Tabellaria fenestrata	0	P
				Tabellaria flocculosa	7865	
		C	HLOROPHY	ΓΑ		
				Actinotaenium sp.	0	P
				Ankistrodesmus falcatus	0	P
				Characium sp.	0	P
				Cosmarium humile v. lacustre	0	P
				Cosmarium phaseolus v. phaseolus	112	
				Cosmarium reniforme	0	P
				Cosmarium septentrionale	0	P
				Cosmarium speciosum	56	

Appendix C Table C2. Periphyton species and density data collected from waterbodies in the Jericho Study Area, 1999.

Waterbody	Site	Map	Taxonomi	ic Taxa	Density	Presence
	Label	Label	Group		(cells/cm ²)	
Stream C3	PETC0301	PE-8				
		C	CHLOROPHYT	'A		
				Cosmarium subcrenulatum	0	P
				Cylindrocystis brebissonii	0	P
				Geminella interrupta	0	P
				Gloeocystis schroeteri	1116	
				Oocystis elliptica	6749	
				Oocystis solitaria	0	P
				Sphaerozosma granulatum.	0	P
				Staurastrum pachyrhynchum	0	P
				Staurastrum sp. a	0	P
				Trochiscia granulata	0	P
				Xanthidium antilopaeum	0	P
		C	CHRYSOPHYT	A		
				Dinobryon sertularia v.protuberans	0	P
				Kephyrion sp.	0	P
				Stichogloea doederleinii	1673	
		C	CYANOPHYTA	L		
				Anacystis dimidiata	0	P
				Anacystis montana	669	
				Aphanocapsa elachista v. planctonica	669	
				Desmonema wrangelii	36257	
				Oscillatoria tenuis	2120	
				Schizothrix calcicola	20415	
				Scopulonema minus	1450	

Appendix C Table C3. Phytoplankton sample parameters and chlorophylla data collected from lakes in the Jericho Study Area, 1999.

Waterbody	Site Label	Map Label	Date	Secchi Depth (m)	Depth Sampled (m)	Composite	Volume Filtered for Chlorophyll a Analysis (mL)	Chlorophyll a (mg/m²)
Lake C1								
	PHLC0101							
		PL-4	19-Jul-99	4.20	8.40	5	300	2.30
		PL-4	30-Jul-99	4.20	11.00	5	300	1.22
		PL-4	25-Aug-99	4.35	10.00	5	300	0.83
Lake C2								
	PHLC0201							
		PL-5	19-Jul-99	1.80	1.50	50	300	0.35
		PL-5	30-Jul-99	2.00	1.50	20	300	0.50
		PL-5	25-Aug-99	2.20	1.50	20	300	0.11
Lake C3								
	PHLC0301							
		PL-3	24-Jul-99	5.90	12.00	5	300	0.89
Lake D10								
	PHLD1001							
		PL-6	19-Jul-99	8.00	7.50	5	300	1.09
		PL-6	31-Jul-99	8.60	5.90	5	300	0.27
		PL-6	26-Aug-99	6.50	5.50	S	300	0.00

Appendix C Table C4. Phytoplankton species, density, and biovolume data collected from lakes in the Jericho Study Area, 1999.

Waterbody	Site	Map	Taxonomic	Taxa	Density	Biovolume	Presence
	Label	Label	Group		(cells/mL)	(um^3x10^3/mL)	
Lake C1	PHLC0101	PL-4					
			BACILLARIO	РНҮТА			
				Achnanthes minutissima	10	2.751	
				Cyclotella glomerata	494	23.458	
				Cyclotella ocellata	224	190.010	
				Cymbella sp.	0	0.000	P
				Eunotia praerupta	0	0.000	P
				Eunotia sp.	0	0.000	P
				Frustulia vulgaris	0	0.000	P
				Melosira sp.	0	0.000	P
				Meridion circulare	0	0.000	P
				Nitzschia angustata	0	0.000	P
				Nitzschia sp. b	13	0.240	
				Stephanodiscus astraea	79	407.475	
				Synedra sp.	15	6.826	
				Tabellaria floculosa	0	0.000	P
			CHLOROPHYT	TA .			
				Ankistrodesmus falcatus	10	0.603	
				Closterium sp. a	0	0.000	P
				Crucigenia quadrata	0	0.000	P
				Elakatothrix gelatinosa	52	2.884	
				Euastrum elegans	0	0.000	P
				Gloeocystis schroeteri	0	0.000	P
				Kirchneriella sp.	7	0.096	
				Oocystis lacustris	81	25.351	
				Sphaerozosma granulatum	10	5.414	
			CHRYSOPHYT	^C A			
				Bitrichia longispina	0	0.000	P
				Chrysochromulina parva	494	17.054	
				Chrysosphaerella rodhei	354	296.415	
				Chrysostephanosphaera globulifera	7	3.153	
				Dinobryon sertularia	47	55.111	
				Dinobryon sertularia v.protuberans	57	117.996	
				Dinobryon sociale	90	112.699	
				Dinobryon tabellariae	0	0.000	P
				Ishtmochloron trispinatum	0	0.000	P
				Kephyrion boreale	403	282.822	
				Mallomonas sp.	23	38.615	
				Ochromonas sp. a	34	8.866	
				Ochromonas stellaris	10	23.537	
				Stichogloea doederleinii	74	23.958	
			CRYPTOPHYT	'A			
				Cryptomonas ovata	3	12.126	
				Cryptomonas reflexa	66	96.181	

Appendix C Table C4. Phytoplankton species, density, and biovolume data collected from lakes in the Jericho Study Area, 1999.

Waterbody	Site Label	Map Label	Taxonomic Group	Taxa	Density (cells/mL)	Biovolume (um ³ x10 ³ /mL)	Presence
Lake C1	PHLC0101	PL-4					
			CRYPTOPHYT	A			
				Rhodomonas minuta	874	203.952	
			CYANOPHYTA	Λ			
				Anabaena sp.	0	0.000	P
				Anacystis montana	0	0.000	P
				Aphanocapsa elachista	5249	20.276	
				Aphanocapsa elachista v. planctoni	296	5.462	
				Lyngbya limnetica	0	0.000	P
			EUGLENOPHY				
				Trachelomonas sp.	4	3.937	
			PYRROPHYTA	_			
				Glenodinium sp.	40	77.111	
				Gymnodinium sp.	0	0.000	P
				Gymnodinium uberrimum	0	0.000	P
				Peridinium aciculiferum	0	0.000	P
				Peridinium cinctum	0	0.000	P
Lake C2	PHLC0201	PL-5					
			DACH LADIOD	ALIX/TP A			
			BACILLARIOP				_
				Achnanthes flexella	0	0.000	P
				Achnanthes minutissima	30	8.892	
				Caloneis ventricosa	0	0.000	P
				Cyclotella glomerata	5	0.349	ъ.
				Cymbella minuta	0	0.000	P
				Eunotia bidentula	0	0.000	P
				Eunotia exigua	0	0.000	P
				Eunotia praerupta	5	76.607 0.000	P
				Melosira sp.		0.676	Р
				Meridion circulare	1 0		P
				Nitzschia sp. a Stephanodiscus astraea	4	0.000 18.362	Г
				Synedra sp.	2	16.834	
				Tabellaria fenestrata	0	0.000	P
				Tabellaria floculosa	5	5.934	•
			CHLOROPHYT		-		
			3	Ankistrodesmus falcatus v. spiralis	14	1.204	
				Chlamydomonas sp. a	0	0.000	P
				Closterium sp. a	0	0.000	P
				Cosmarium phaseolus v. phaseolus	0	0.000	P
				Crucigenia quadrata	37	1.012	
				Crucigenia rectangularis	0	0.000	P
				Cylindrocystis sp.	0	0.000	P
				Euastrum elegans	0	0.000	P
				Oocystis elliptica	113	25.126	

Appendix C Table C4. Phytoplankton species, density, and biovolume data collected from lakes in the Jericho Study Area, 1999.

Waterbody	Site Label	Map Label	Taxonomic Group	Taxa	Density (cells/mL)	Biovolume (um x10 ³ /mL)	Presence
Lake C2	PHLC0201	PL-5					
			CHLOROPHYT	`A			
				Oocystis lacustris	11	30.039	
				Scenedesmus incrassatulus	7	0.805	
				Sphaerocystis schroeteri	41	14.122	
				Sphaerozosma granulatum	2	0.960	
				Staurastrum sp. a	0	0.000	P
				Staurastrum sp. b	0	0.000	P
			CHRYSOPHYT	'A			
				Bitrichia longispina	7	7.000	
				Chrysococcus sp.	30	2.669	
				Chrysosphaerella rodhei	205	50.209	
				Dinobryon sertularia v.protuberans		14.344	
				Kephyrion sp.	2	0.660	
				Mallomonas sp.	0	0.000	P
				Ochromonas sp. a	4	3.038	
			CRYPTOPHYT				
				Cryptomonas ovata	2	35.282	
				Cryptomonas reflexa	51	72.582	
				Katablepharis ovalis	0	0.000	P
			CYANOPHYTA	Rhodomonas minuta	2	0.505	
			CTANOPHTTE		22	0.147	
				Agmenellum quadriplicatum	32	0.147	
				Aphanocapsa elachista v. planctoni	46 0	0.321 0.000	P
				Aphanothece clathrata Dactylococcopsis linearis	0	0.000	P P
				Dichotrix gypsophila	21	2.828	1
				Gomphosphaeria naegelianum	120	1.049	
				Lyngbya limnetica	44	0.218	
				Oscillatoria limnetica	152	1.282	
			EUGLENOPHY				
				Trachelomonas sp.	2	1.848	
			PYRROPHYTA	•	2	1.010	
				Glenodinium sp.	0	0.000	P
L -1 C2	DIII C0201	DI 2		Stelle dulliant spr	v	0.000	•
Lake C3	PHLC0301	rL-3					
			BACILLARIOP	HYTA			
				Achnanthes minutissima	21	5.552	
				Cyclotella glomerata	60	7.643	
				Cyclotella ocellata	7	5.414	
				Eunotia praerupta	0	0.000	P
				Frustulia vulgaris	0	0.000	P
				Gomphonema sp.	0	0.000	P
				Melosira sp.	7	1.551	

Appendix C Table C4. Phytoplankton species, density, and biovolume data collected from lakes in the Jericho Study Area, 1999.

Waterbody	Site Label	Map Label	Taxonomic Group	Taxa	Density (cells/mL)	Biovolume (um x10 ³ /mL)	Presence
Lake C3	PHLC0301	PL-3					
			BACILLARIOP	PHYTA			
				Nitzschia sp. a	0	0.000	P
				Rhizosolenia longiseta	43	41.304	
				Stephanodiscus astraea	0	0.000	P
				Synedra sp.	29	11.497	
				Tabellaria fenestrata	0	0.000	P
				Tabellaria floculosa	36	40.039	
			CHLOROPHYT	^C A			
				Ankistrodesmus falcatus v. spiralis	0	0.000	P
				Arthrodesmus triangularis	4	6.000	
				Chlamydomonas sp. a	8	8.000	
				Chlamydomonas sp. b	0	0.000	P
				Coeloastrum microporum	142	25.000	
				Cosmarium phaseolus v. phaseolus	4	9.000	
				Cosmarium subcrenatum	38	98.000	
				Crucigenia quadrata	0	0.000	P
				Elakatothrix gelatinosa	12	1.000	
				Gloeocystis schroeteri	75 25	58.000 8.000	
				Oocystis lacustris	4	2.000	
				Sphaerozosma granulatum Staurastrum sp. a	0	0.000	P
				Staurastrum sp. b	0	0.000	P
				Tetraedron arthrodesmiforme	18	0.036	1
			CHRYSOPHYT		10	0.020	
				Bitrichia longispina	4	0.490	
				Chromulina sp.	4	1.361	
				Chrysochromulina parva	28	0.981	
				Chrysoikos skujai	7	2.128	
				Chrysosphaerella rodhei	1061	327.939	
				Chrysostephanosphaera globulifera	4	2.755	
				Dinobryon sertularia	71	74.610	
				Dinobryon sertularia v.protuberans	57	104.455	
				Dinobryon sociale	74	95.852	
				Dinobryon tabellariae	0	0.000	P
				Kephyrion boreale	323	271.565	
				Kephyrion sp.	11	3.646	
				Mallomonas sp.	7	9.313	
				Ochromonas sp. a	4	0.938	
				Ochromonas sp. b	4	0.916	
				Ochromonas stellaris	14	50.989	
			CDVPTCPTT	Stichogloea doederleinii	39	10.045	
			CRYPTOPHYT		_	22.5	
				Cryptomonas curvata	7	32.653	

Appendix C Table C4. Phytoplankton species, density, and biovolume data collected from lakes in the Jericho Study Area, 1999.

Waterbody	Site Label	Map Label	Taxonomic Group	Taxa	Density (cells/mL)	Biovolume (um x10 ³ /mL)	Presenc
Lake C3	PHLC0301	PL-3					
			CRYPTOPHYT	'A			
				Cryptomonas ovata	0	0.000	P
				Cryptomonas reflexa	17	18.872	
				Katablepharis ovalis	96	12.793	
				Rhodomonas minuta	53	11.270	
			CYANOPHYTA	A			
				Anabaena sp.	64	1.285	
				Anacystis montana	0	0.000	P
				Aphanocapsa elachista	348	2.153	
				Aphanothece clathrata	231	0.249	
				Dactylococcopsis linearis	0	0.000	P
				Dichotrix gypsophila	25	9.295	
				Gomphosphaeria naegelianum	0	0.000	P
				Lyngbya limnetica	228	2.328	
				Pseudanabaena sp.	0	0.000	P
			PYRROPHYTA	L Comment			
				Glenodinium sp.	0	0.000	P
				Gymnodinium uberrimum	4	32.427	
				Peridinium aciculiferum	0	0.000	P
Lake D10	PHLD1001	PL-6					
			BACILLARIOP	PHYTA			
				Achnanthes minutissima	5	1.270	
				Cyclotella glomerata	4	0.234	
				Cymbella minuta	0	0.000	P
				Cymbella sp.	0	0.000	P
				Diatoma elongatum	0	0.000	P
				Eunotia arcus	2	0.988	
				Eunotia praerupta	0	0.000	P
				Melosira sp.	0	0.000	P
				Meridion circulare	0	0.000	P
				Navicula pupula	0	0.000	P
				Navicula sp.	0	0.000	P
				Nitzschia sp. a	0	0.000	P
				Pinnularia sp.	0	0.000	P
				Stauroneis phoenicenteron	0	0.000	P
				Synedra sp.	0	0.000	P
				Synedra ulna	0	0.000	P
				Tabellaria fenestrata	0	0.000	P
			CHLOROPHYT	Tabellaria floculosa SA	0	0.000	P
			CILOROTIII	Ankistrodesmus convolutus	4	0.074	
				AIRKISH OUESHIUS CORVOLUIUS	+	0.074	
				Arthrodesmus triangularis	0	0.000	P

Appendix C Table C4. Phytoplankton species, density, and biovolume data collected from lakes in the Jericho Study Area, 1999.

Waterbody	Site Label	Map Label	Taxonomic Group	Taxa	Density (cells/mL)	Biovolume (um ³ x10 ³ /mL)	Presence
Lake D10	PHLD1001	PL-6					
			CHLOROPHYT	r A			
				Bulbochaete sp.	0	0.000	P
				Characium sp.	46	20.073	
				Chlamydomonas sp. a	13	0.908	
				Chlamydomonas sp. b	2	0.115	
				Cosmarium subcrenatum	2	4.000	
				Crucigenia quadrata	68	2.070	
				Crucigenia rectangularis	71	28.485	
				Cylindrocystis sp.	0	0.000	P
				Elakatothrix gelatinosa	0	0.000	P
				Euastrum elegans	0	0.000	P
				Gloeocystis schroeteri	0	0.000	P
				Kirchneriella sp.	18	0.253	
				Oocystis elliptica	25	5.129	
				Oocystis lacustris	2	3.902	
				Scenedesmus incrassatulus	0	0.000	P
				Schroederia setigera	10	4.260	
				Sphaerocystis schroeteri	133	44.530	
				Tetraedron arthrodesmiforme	2	0.036	
			CHRYSOPHYT	°A			
				Bitrichia longispina	0	0.000	P
				Chrysococcus sp.	37	3.041	
				Chrysosphaerella rodhei	208	59.205	
				Dinobryon sertularia v.protuberans	4	6.273	
				Dinobryon sociale	0	0.000	P
				Mallomonas sp.	5	7.034	
			CRYPTOPHYT	'A			
				Cryptomonas reflexa	16	28.711	
				Katablepharis ovalis	18	2.764	
				Rhodomonas minuta	67	16.057	
			CYANOPHYTA	A			
				Anacystis dimidiata	0	0.000	P
				Aphanocapsa elachista v. planctoni		1.932	
				Aphanothece clathrata	25	0.087	
				Dichotrix gypsophila	11	1.421	
				Lyngbya limnetica	0	0.000	P
				Pseudanabaena sp.	0	0.000	P
				Scopulina minus	7	1.325	
			EUGLENOPHY				
				Trachelomonas sp.	0	0.000	P
			PYRROPHYTA	_	-		
				Glenodinium sp.	2	1.641	

RL&L Environmental Services Ltd. Appendix C Table C5. Zooplankton sample parameters, density, and biomass data collected from lakes in summer in the Jericho Study Area, 1999.

Waterbody	Site Label	Map Label	Sampling Date	Composite	Depth (m)	Secchi Depth (m)	Taxonomic Group	Taxa	Density (No./m³)	Biomass (ug/m³)
Lake C1	ZOLC0101	PL-4								
			22-Jul-99	'n	10.50	4.70				
							Calanoida			
								Calanoid copepodid	269	772
								Leptodiaptomus sicilis	1639	12735
							Cladocera			
								Bosmina longirostris	6	53
								Holopedium gibberum	161	173747
							Cyclopoida			
							•	Cyclopoid copepodid	27	99
								Cyclopoid nauplii	41966	1388
								Diacyclops bicuspidatus	3134	28275
							Rotifera			
								Conochillus unicornis	1947	37
								Kellicotia longispina	5842	158
								Keratella cochlearis	3559	70
								Keratella quadrata	3156	58
								Polyarthra delichoptera	2216	61
								Syncheata pectinata	2417	135
Lake C2	ZOLC0201	PL-5								
			21-Jul-99	S	1.30	1.80	Calanoida			
								Calanoid copepodid	63	181
								Heterocope sp.	42	2845

RL&L Environmental Services Ltd. Appendix C Table C5. Zooplankton sample parameters, density, and biomass data collected from lakes in summer in the Jericho Study Area, 1999.

Biomass (ug/m³)		19458	10933	136081	156	40	1139	43	7	13			1692	11	16847	7922		179	343
Density (No./m³)		2504	168	126	63	1201	126	2162	240	480			589	101	249	1019		30	53
Taxa		Leptodiaptomus sicilis	Daphnia middendorfiana	Holopedium gibberum	Cyclopoid copepodid	Cyclopoid nauplii	Diacyclops bicuspidatus	Keratella cochlearis	Monostyla lunaris	Polyarthra delichoptera			Calanoid copepodid	Calanoid nauplii	Heterocope sp.	Leptodiaptomus sicilis		Bosmina longirostris	Daphnia longiremis
Taxonomic Group		Calanoida	Cladocera		Cyclopoida			Rotifera				Colomoido	Calanolda				Cladocera		
Secchi Depth (m)												5.90							
Depth (m)												12.00							
Composite												٧.							
Sampling Date												24-Jul-99							
Map Label	PL-5										PL-3								
Site Label	ZOLC0201										ZOLC0301								
Waterbody	Lake C2										Lake C3								

RL&L Environmental Services Ltd. Appendix C Table C5. Zooplankton sample parameters, density, and biomass data collected from lakes in summer in the Jericho Study Area, 1999.

Waterbody	Site Label	Map Label	Sampling Date	Composite	Depth (m)	Secchi Depth (m)	Taxonomic Group	Taxa	Density (No./m³)	Biomass (ug/m³)
Lake C3	ZOLC0301	PL-3								
							Cladocera			
								Daphnia middendorfiana	∞	490
								Holopedium gibberum	86	105806
							Cyclopoida		131	,
								Cyclopoid copepodid	151	372
								Cyclopoid nauplii	10777	356
								Diacyclops bicuspidatus	823	7425
							Rotifera			
								Conochillus unicornis	10626	201
								Kellicotia longispina	7504	203
								Keratella cochlearis	1259	25
								Polyarthra delichoptera	176	S
Lake D10	ZOLD1001	PL-6								
			23-Jul-99	5	7.50	8.00	:			
							Calanoida	Calanoid copepodid	1812	5206
								Calanoid nauplii	2206	242
								Heterocope sp.	89	4624
								Leptodiaptomus sicilis	1664	12931
							Cladocera	Holopedium gibberum	34	36855
							Cyclopoida	Cyclonoid cononodid	998	2135
								cyclopous copepous		
		;								

RL&L Environmental Services Ltd. Appendix C Table C5. Zooplankton sample parameters, density, and biomass data collected from lakes in summer in the Jericho Study Area, 1999.

Waterbody	Site Label	Map Label	Sampling Date	Composite	Depth (m)	Secchi Depth (m)	Taxonomic Group	Taxa	Density (No./m³)	Biomass (ug/m³)	
Lake D10	ZOLD1001	PL-6									
							Cyclopoida				
								Cyclopoid nauplii	57226	1893	
								Diacyclops bicuspidatus	798	7197	
							Rotifera				
								Conochillus unicornis	3554	<i>L</i> 9	
								Kellicotia longispina	2206	09	
								Keratella cochlearis	245	S	
								Keratella quadrata	613	111	
								Polyarthra delichoptera	086	27	

Appendix C

Waterbody	Site	Map Label	Date	Тахопо	Taxonomic Group		Depth (m)	Area (m²)	Total Number	Density (No/m²)
Lake C1	BELLC0101	BEL-4	22-Jul-99							
				Copepoda						
				Calanoida						
							5.00		98	3739
				Cyclopida						
							5.00		70	3043
				Diptera Chironomidae						
				Tanypodinae			5.00		18	783
				Orthocladiinae/Diamesinae	Diamesinae		5.00		9	261
				Mollusca						
				Pelecypoda						
				Sphaeriidae			5.00		1	43
				Sphaeriidae	S	Sphaerium	5.00		8	130
				Sphaeriidae	P	Pisidium	5.00		2	87
				Ostracoda						
							5.00		1	43
				Amphipoda Gammaridae						
					9	Gammarus	11.00		1	43
				Collembola						
							11.00		1	43
				Copepoda Calanoida			11 00		403	7527
							00.11		20+	1/2/1

						RL&L Environmental Services Ltd.	onmental	Services Ltd.
Appendix C	Table C6. Be of]	Benthic macroinvertebrate sample para of lakes in the Jericho Study Area, 1999.	nvertebrate ericho Study	Appendix C Table C6. Benthic macroinvertebrate sample parameters, species, and density data collected from littoral and profundal zones of lakes in the Jericho Study Area, 1999.	om littoral and	l profundal	zones	
Waterbody	Site	Map Label	Date	Taxonomic Group	Depth (m)	Area (m²) N	Total Number	Density (No/m²)
Lake C1	BELLC0101	BEL-4	22-Jul-99					
				Copepoda				
				Cyclopida				
					11.00		82	3696
				Diptera				
				Chironomidae				
				Orthocladiinae/Diamesinae	11.00		3	130
				Tanypodinae	11.00		9	261
				Tanytarsini	11.00		11	478
				Hydronorino				
				пуптасаппа				
					11.00		1	43
				Ostracoda				
							Ų	
					11.00		n	717
Lake C3	BELLC0301	BEL-3	24-Jul-99					
				Copepoda				
				Calanoida				
					4.50		77	3348
				Cyclopida				
					4.50		49	2130
				Diptera				
				Chironomidae				
				Orthocladiinae/Diamesinae	4.50		18	783
				Chironomini	4.50		13	565
				Tanytarsini	4.50		23	1000
				Tanypodinae	4.50		28	1217
				Chironomidae pupae				

RL&L Environmental Services Ltd. Appendix C Table

Waterbody
Lake C3

of l	of lakes in the Jericho Study Area, 1999.	ericho Study	rable co. Dentino macroniver tentrate sample parameters, species, and uensity data concered from intorial and produinal zones of lakes in the Jericho Study Area, 1999.		u protunua	zones	
Site	Map Label	Date	Taxonomic Group	Depth (m)	Area (m²)	Total Number	Density (No/m²)
BELLC0301	BEL-3	24-Jul-99	Diptera Chironomidae pupae	4 50		9	261
			Hydracarina				
				4.50		2	87
			Mollusca Pelecypoda Sphaeriidae Sphaerium	4.50		1	43
			Sphaeriidae Pisidium	4.50		8	130
			Sphaeriidae	4.50		43	1870
			Nematoda				
				4.50		1	43
			Oligochaeta Lumbriculidae				
				4.50		-	43
			Naididae	4.50		2	87
			Tubificidae	4.50		38	1652
			Copepoda Calanoida	13.60		7	304
			Diptera Chironomidae Tanytarsini	13.60		9	261

RL&L Environmental Services Ltd.

Waterbody	Site	Map Label	Date	Taxonomic Group	Depth (m)	Area (m²)	Total Number	Density (No/m²)
Lake C3	BELLC0301	BEL-3	24-Jul-99					
				Diptera				
				Chironomidae				
				Orthocladiinae/Diamesinae	13.60		11	478
				Microturbellaria				
				Mesostoma	13.60		-	43
				;			1	!
				Mollusca Delecuncia				
				Sphaeriidae	13.60		12	522
				Nematoda				
					13.60		2	87
				Oligochaeta				
				Naididae				
					13.60		-	43
				Tubificidae				
					13.60		7	87
				Ostracoda				
					13.60		1	43
Lake D10	BELLD1001	BEL-6	23-Jul-99					
				Copepoda				
				Calanoida	2.00		29	1261
				Cyclopida				
					2.00		11	478
				Harpacticoida				!
					2.00		-	43

Waterbody	Site	Map Label	Date	Taxonomic Group		Depth (m)	Area (m²)	Total Number	Density (No/m²)
Lake D10	BELLD1001	BEL-6	23-Jul-99						
				Diptera					
				Chironomidae					
				Orthocladiinae/Diamesinae		2.00		70	3043
				Tanypodinae		2.00		14	609
				Tanytarsini		2.00		25	1087
				Chironomidae pupae		2 00		01	435
						7.00		01	<u>,</u>
				Hydracarina Lebertiidae					
				7	Lebertia	2.00		3	130
				Microturbellaria					
						2.00		10	435
				Mollusca					
				Pelecypoda					
				Sphaeriidae		2.00		6	391
				Sphaeriidae S _I	Sphaerium	2.00		1	43
				Sphaeriidae <i>P</i>	Pisidium	2.00		5	217
				Nematoda					
						2.00		10	435
				Oligochaeta					
				Enchytraeidae		,		,	
						2.00		E	130
				Naididae		•		ı	6
								_	71.17

Appen

	Site	Map Label	Date	Taxonomic Group	Depth (m)	Area (m²)	Total Number	Density (No/m²)
Lake D10	BELLD1001	BEL-6	23-Jul-99					
				Oligochaeta Tukificidae				
					2.00		-	43
				Ostracoda				
					2.00		10	435
				Trichoptera I imnembilidae				
				Grensia	2.00		2	87
				Copepoda Calanoida				
					8.00		9	261
				Cyclopida	8.00		10	435
				Dintera				
				Chironomidae				
				Chironomini	8.00		35	1522
				Orthocladiinae/Diamesinae	8.00		46	2000
				Tanypodinae	8.00		25	1087
				Tanytarsini	8.00		22	957
				Chironomidae pupae	c c			Ç
				Hydroxogina	8.00		-	2 4
				nyttäeattia				
					8.00		-	43
				Lebertiidae Lebertia	% 00.8		-	43

Appendix C Table C6. Benthic macroinvertebrate sample parameters, species, and density data collected from littoral and profundal zones

Waterbody	Site	Map Label	Date	Taxonomic Group	Depth (m)	Area (m²)	Total Number	Density (No/m²)
Lake D10	BELLD1001	BEL-6	23-Jul-99					
				Microturbellaria				
				Mesostoma				
					8.00		'n	217
				Mollusca				
				Pelecypoda				
				Sphaeriidae	8.00		28	1217
				Nematoda				
					8.00		7	304
				Oligochaeta				
				Tubificidae	8.00		1	43
				Ostracoda				
					8.00		3	217

APPENDIX D FISH

Appendix D Table D1. Fish species encountered in sampled waterbodies in the Jericho Study Area, 1999.

Family	Common Name	Scientific Name	Code
Cottidae			
	Slimy sculpin	Cottus cognatus	SLSC
Gadidae			
	Burbot	Lota lota	BURB
Gasterosteidae			
	Ninespine stickleback	Pungitius pungitius	NNST
Salmonidae			
	Arctic char	Salvelinus alpinus	ARCH
	Arctic grayling	Thymallus arcticus	ARGR
	Lake trout	Salvelinus namaycush	LKTR
	Round whitefish	Prosopium cylindraceum	RNWH

Appendix D Table D2. Gill net sampling effort in lakes in the Jericho Study Area, 1999.

Waterbody	Site Label	Set Date	t Time	Pull Date Time	ıe	Set Orientation	Minimum Depth (m)	Maximum Depth (m)	Dominant Substrate	Depth Position	Water Temperature (C)
Carat Lake											
	GNLCA01										
		27-Jul-99	10:55	27-Jul-99	12:05	Perpendicular	2	3	Boulder	Bottom	10
		27-Jul-99	12:05	27-Jul-99	14:10	Perpendicular	2	8	Boulder	Bottom	10
		27-Jul-99	14:10	27-Jul-99	15:45	Perpendicular	2	8	Boulder	Bottom	10
		27-Jul-99	15:45	27-Jul-99	17:32	Perpendicular	2	8	Boulder	Bottom	10
		01-Sep-99	11:36	01-Sep-9	13:12	Perpendicular	1.5	4	Boulder	Bottom	∞
		01-Sep-99	13:12	01-Sep-9	14:09	Perpendicular	1.5	4	Boulder	Bottom	∞
		01-Sep-99	14:09	01-Sep-9	14:42	Perpendicular	1.5	4	Boulder	Bottom	∞
		01-Sep-99	14:42	01-Sep-9	15:35	Perpendicular	1.5	4	Boulder	Bottom	∞
	GNLCA02										
		27-Jul-99	11:15	27-Jul-99	12:20	Perpendicular	2	4	Boulder	Bottom	10
		27-Jul-99	12:20	27-Jul-99	14:35	Perpendicular	2	4	Boulder	Bottom	10
		27-Jul-99	14:35	27-Jul-99	16:10	Perpendicular	2	4	Boulder	Bottom	10
		27-Jul-99	16:10	27-Jul-99	17:55	Perpendicular	2	4	Boulder	Bottom	10
	GNLCA03										
		01-Sep-99	9:02	01-Sep-9	9:53	Perpendicular	1.5	7	Cobble	Bottom	8.5
		01-Sep-99	9:53	01-Sep-9	10:57	Perpendicular	1.5	7	Cobble	Bottom	8.5
		01-Sep-99	10:57	01-Sep-9	11:48	Perpendicular	1.5	7	Cobble	Bottom	8.5
		01-Sep-99	11:48	01-Sep-9	13:57	Perpendicular	1.5	7	Cobble	Bottom	8.5
		01-Sep-99	13:57	01-Sep-9	14:54	Perpendicular	1.5	7	Cobble	Bottom	8.5
		01-Sep-99	14:54	01-Sep-9	16:00	Perpendicular	1.5	7	Cobble	Bottom	8.5
		04-Sep-99	9:14	04-Sep-9	10:24	Perpendicular	1.5	7	Cobble	Bottom	6

Jericho Diamond Project Baseline Aquatic Studies Program (1999)

Appendix D Table D2. Gill net sampling effort in lakes in the Jericho Study Area, 1999.

Waterhody	Site	Set		Pull		Set	Minimum	Maximum	Dominant	Depth	Water
	Label	Date	Time	Date Time	ne	Orientation	Depth (m)	Depth (m)	Substrate	Position	Temperature (C)
Carat Lake											
	GNLCA03										
		04-Sep-99	10:24	04-Sep-9	12:00	Perpendicular	1.5	7	Cobble	Bottom	6
		04-Sep-99	12:00	04-Sep-9	13:48	Perpendicular	1.5	7	Cobble	Bottom	6
		04-Sep-99	13:48	04-Sep-9	15:05	Perpendicular	1.5	7	Cobble	Bottom	6
		04-Sep-99	15:05	04-Sep-9	15:56	Perpendicular	1.5	7	Cobble	Bottom	6
	GNLCA04										
		01-Sep-99	9:18	01-Sep-9	10:18	Perpendicular	2	7	Sand	Bottom	8.5
		01-Sep-99	10:18	01-Sep-9	11:14	Perpendicular	2	7	Sand	Bottom	8.5
	GNLCA05										
		04-Sep-99	9:27	04-Sep-9	10:43	Perpendicular	1.5	7	Sand	Bottom	6
		04-Sep-99	10:43	04-Sep-9	12:15	Perpendicular	1.5	7	Sand	Bottom	6
	GNLCA06										
		04-Sep-99	12:28	04-Sep-9	14:06	Perpendicular	1.5	∞	Sand	Bottom	6
		04-Sep-99	14:06	04-Sep-9	15:18	Perpendicular	1.5	∞	Sand	Bottom	6
		04-Sep-99	15:18	04-Sep-9	16:19	Perpendicular	1.5	~	Sand	Bottom	6
Lake C1											
	GNLC0101										
		22-Jul-99	10:56	22-Jul-99	12:25	Perpendicular	1.5	\$	Boulder	Bottom	10
		22-Jul-99	12:25	22-Jul-99	14:45	Perpendicular	1.5	5	Boulder	Bottom	10
		22-Jul-99	14:45	22-Jul-99	16:30	Perpendicular	1.5	5	Boulder	Bottom	10
		02-Aug-9	8:41	02-Aug-9	9:55	Perpendicular	2	9	Boulder	Bottom	13
Jericho Diam	ond Project L	Jericho Diamond Project Baseline Aquatic Studies Program	tic Studies	Program (1999)	(66						Page 2 of 7

Appendix D Table D2. Gill net sampling effort in lakes in the Jericho Study Area, 1999.

Waterbody	Site Label	Set Date	t Time	Pull Date Time	ne	Set Orientation	Minimum Depth (m)	Maximum Depth (m)	Dominant Substrate	Depth Position	Water Temperature (C)
Lake C1											
	GNLC0101										
		02-Aug-9	9:55	02-Aug-9	11:02	Perpendicular	2	9	Boulder	Bottom	13
		02-Aug-9	11:02	02-Aug-9	12:32	Perpendicular	2	9	Boulder	Bottom	13
		02-Aug-9	12:32	02-Aug-9	13:39	Perpendicular	2	9	Boulder	Bottom	13
		02-Aug-9	13:39	02-Aug-9	15:03	Perpendicular	2	9	Boulder	Bottom	13
		02-Aug-9	15:03	02-Aug-9	15:45	Perpendicular	2	9	Boulder	Bottom	13
	GNLC0102										
		22-Jul-99	11:15	22-Jul-99	12:45	Perpendicular	1.5	5.5	Boulder	Bottom	10
		22-Jul-99	12:45	22-Jul-99	14:35	Perpendicular	1.5	5.5	Boulder	Bottom	10
		22-Jul-99	14:35	22-Jul-99	16:15	Perpendicular	1.5	5.5	Boulder	Bottom	10
		02-Aug-9	8:59	02-Aug-9	10:06	Perpendicular	2	∞	Boulder	Bottom	13
		02-Aug-9	10:06	02-Aug-9	11:09	Perpendicular	2	∞	Boulder	Bottom	13
		02-Aug-9	11:09	02-Aug-9	12:40	Perpendicular	2	∞	Boulder	Bottom	13
		02-Aug-9	12:40	02-Aug-9	13:49	Perpendicular	2	∞	Boulder	Bottom	13
		02-Aug-9	13:49	02-Aug-9	15:09	Perpendicular	2	∞	Boulder	Bottom	13
		02-Aug-9	15:09	02-Aug-9	16:00	Perpendicular	2	∞	Boulder	Bottom	13
Lake C2											
	GNLC0201										
		21-Jul-99	15:45	22-Jul-99	9:45	Perpendicular	0.4	1.8	Cobble/Boulder	Bottom	10
	GNLC0202										
		21-Jul-99	16:10	22-Jul-99	9:30	Perpendicular	0.3	1.8	Cobble/Boulder	Bottom	10

Page 3 of 7

Jericho Diamond Project Baseline Aquatic Studies Program (1999)

Appendix D Table D2. Gill net sampling effort in lakes in the Jericho Study Area, 1999.

Waterbody	Site Label	Set Date	st Time	Pull Date Time	ne	Set Orientation	Minimum Depth (m)	Maximum Depth (m)	Dominant Substrate	Depth Position	Water Temperature (C)
Lake C3											
	GNLC0301										
		24-Jul-99	11:30	24-Jul-99	15:45	Perpendicular	2	9	Boulder	Bottom	10
		24-Jul-99	15:45	24-Jul-99	16:30	Perpendicular	2	9	Boulder	Bottom	10
		24-Jul-99	16:30	25-Jul-99	9:10	Perpendicular	2	9	Boulder	Bottom	10
		25-Jul-99	9:10	25-Jul-99	11:40	Perpendicular	2	9	Boulder	Bottom	10
	GNLC0302										
		24-Jul-99	11:45	24-Jul-99	15:30	Perpendicular	2	9	Boulder	Bottom	10
		24-Jul-99	15:30	24-Jul-99	16:15	Perpendicular	2	9	Boulder	Bottom	10
		24-Jul-99	16:15	25-Jul-99	11:27	Perpendicular	2	9	Boulder	Bottom	10
	GNLC0303										
		28-Jul-99	9:26	28-Jul-99	11:15	Parrallel	3	S	Silt	Bottom	10
		28-Jul-99	11:15	28-Jul-99	13:10	Parrallel	3	5	Silt	Bottom	10
		28-Jul-99	13:10	28-Jul-99	14:50	Parrallel	3	5	Silt	Bottom	10
		28-Jul-99	14:50	28-Jul-99	16:20	Parrallel	3	5	Silt	Bottom	10
	GNLC0304										
		28-Jul-99	9:40	28-Jul-99	11:30	Parrallel	2.5	8	Boulder	Bottom	10
		28-Jul-99	11:30	28-Jul-99	12:05	Parrallel	2.5	5	Boulder	Bottom	10
	GNLC0305										
		28-Jul-99	12:15	28-Jul-99	13:31	Parrallel	3	6	Boulder	Bottom	10
		28-Jul-99	13:31	28-Jul-99	15:27	Parrallel	ю	6	Boulder	Bottom	10
		28-Jul-99	15:27	28-Jul-99	16:37	Parrallel	က	6	Boulder	Bottom	10

Appendix D Table D2. Gill net sampling effort in lakes in the Jericho Study Area, 1999.

Waterbody	Site Label	Set Date	Time	Pull Date Time	ne	Set Orientation	Minimum Depth (m)	Maximum Depth (m)	Dominant Substrate	Depth Position	Water Temperature (C)
Lake C3											
	GNLC0306										
		03-Sep-99	8:32	03-Sep-9	9:30	Parrallel	2	12	Boulder	Bottom	9
		03-Sep-99	9:30	03-Sep-9	10:40	Parrallel	2	12	Boulder	Bottom	9
		03-Sep-99	10:40	03-Sep-9	12:05	Parrallel	2	12	Boulder	Bottom	9
		03-Sep-99	12:05	03-Sep-9	13:15	Parrallel	2	12	Boulder	Bottom	9
		03-Sep-99	13:15	03-Sep-9	14:42	Parrallel	2	12	Boulder	Bottom	9
		03-Sep-99	14:42	03-Sep-9	15:39	Parrallel	2	12	Boulder	Bottom	9
		03-Sep-99	15:39	03-Sep-9	16:05	Parrallel	2	12	Boulder	Bottom	9
	GNLC0307										
		03-Sep-99	00:6	03-Sep-9	9:45	Parrallel	7	7	Cobble/Boulder	Bottom	9
		03-Sep-99	9:45	03-Sep-9	10:52	Parrallel	7	7	Cobble/Boulder	Bottom	9
	GNLC0308										
		03-Sep-99	11:30	03-Sep-9	11:42	Diagonal	2	2.5	Cobble/Boulder	Bottom	9
		03-Sep-99	11:42	03-Sep-9	13:00	Diagonal	2	2.5	Cobble/Boulder	Bottom	9
		03-Sep-99	13:00	03-Sep-9	14:30	Diagonal	2	2.5	Cobble/Boulder	Bottom	9
		03-Sep-99	14:30	03-Sep-9	15:30	Diagonal	2	2.5	Cobble/Boulder	Bottom	9
	GNLC0309										
		04-Sep-99	8:45	04-Sep-9	10:10	Perpendicular	1.5	9	Silt/Sand	Bottom	7
		04-Sep-99	10:10	04-Sep-9	11:45	Perpendicular	1.5	9	Silt/Sand	Bottom	7
		04-Sep-99	11:45	04-Sep-9	13:35	Perpendicular	1.5	9	Silt/Sand	Bottom	7
		04-Sep-99	13:35	04-Sep-9	15:00	Perpendicular	1.5	9	Silt/Sand	Bottom	7

Appendix D Table D2. Gill net sampling effort in lakes in the Jericho Study Area, 1999.

Waterbody	Site Label	Set Date	t Time	Pull Date Time	ne	Set Orientation	Minimum Depth (m)	Maximum Depth (m)	Dominant Substrate	Depth Position	Water Temperature (C)
Lake C3											
	GNLC0310	_									
		04-Sep-99	9:10	04-Sep-9	10:30	Parrallel	1.5	9	Boulder	Bottom	7
		04-Sep-99	10:30	04-Sep-9	12:00	Parrallel	1.5	9	Boulder	Bottom	7
		04-Sep-99	12:00	04-Sep-9	13:50	Parrallel	1.5	9	Boulder	Bottom	7
		04-Sep-99	13:50	04-Sep-9	15:30	Parrallel	1.5	9	Boulder	Bottom	7
Lake D10											
	GNLD1001										
		22-Jul-99	13:45	22-Jul-99	15:50	Perpendicular	7	4	Boulder	Bottom	13
		22-Jul-99	15:50	22-Jul-99	16:30	Perpendicular	2	4	Boulder	Bottom	13
		22-Jul-99	16:30	23-Jul-99	11:55	Perpendicular	2	4	Boulder	Bottom	13
		23-Jul-99	11:55	23-Jul-99	16:45	Perpendicular	2	4	Boulder	Bottom	13
	GNLD1002										
		22-Jul-99	14:15	22-Jul-99	15:45	Diagonal	2	7	Boulder	Bottom	13
		22-Jul-99	15:45	22-Jul-99	16:45	Diagonal	2	7	Boulder	Bottom	13
		22-Jul-99	16:45	23-Jul-99	11:15	Diagonal	2	7	Boulder	Bottom	13
	GNLD1003										
		23-Jul-99	11:30	23-Jul-99	16:00	Diagonal	2	S	Boulder	Bottom	11
	GNLD1004										
		31-Jul-99	11:53	31-Jul-99	15:00	Parrallel	1.5	6	Silt/Sand/Boulder	Bottom	12
		31-Jul-99	15:00	31-Jul-99	16:40	Parrallel	1.5	6	Silt/Sand/Boulder	Bottom	12

Appendix D Table D2. Gill net sampling effort in lakes in the Jericho Study Area, 1999.

Waterbody	Site Label	Set Date Time	Time	Pull Date Time		Set Orientation	Minimum Depth (m)	Maximum Depth (m)	Dominant Substrate	Depth Position	Water Temperature (C)
Lake D10											
	GNLD1005										
		31-Jul-99 12:05	12:05	31-Jul-99	15:20	Parrallel	3.5	6.2	Silt/Sand	Bottom	12
		31-Jul-99	15:20	31-Jul-99 16:55	16:55	Parrallel	3.5	6.2	Silt/Sand	Bottom	12

Appendix D Table D3. Numbers recorded and catch-per-unit-effort values (CPUE) for fish captured at gill net sites in lakes in the Jericho Study Area, 1999.

Season	Waterbody	Site Fi	shSampling	Time	Effort	Arc	tic Char	Lak	e Trout	Round	Whitefish	Sc	ulpin
		Label	ID	(h)	(100m ² •12h)	No.	CPUE	No.	CPUE	No.	CPUE	No.	CPUE
Summer													
	Carat Lake												
		GNLCA01	40	1.17	0.22	1	4.61						
		GNLCA01	41	2.08	0.39					1	2.58		
		GNLCA01	42	1.58	0.29			1	3.40				
		GNLCA01	43	1.78	0.33					1	3.02		
		GNLCA02	44	1.08	0.20					1	4.97		
		GNLCA02	45	2.25	0.42	3	7.18	1	2.39				
		GNLCA02	46	1.58	0.29			2	6.80	1	3.40		
		GNLCA02	47	1.75	0.33			3	9.23	1	3.08		
	Lake C1												
		GNLC0101	2	1.48	0.28								
		GNLC0101	3	2.33	0.43								
		GNLC0101	4	1.75	0.33								
		GNLC0101	8	1.23	0.23								
		GNLC0101	9	1.12	0.21								
		GNLC0101	10	1.50	0.28								
		GNLC0101	11	1.12	0.21								
		GNLC0101	12	1.40	0.26								
		GNLC0101	13	0.70	0.13								
		GNLC0102	5	1.50	0.28								
		GNLC0102	6	1.83	0.34								
		GNLC0102	7	1.67	0.31								
		GNLC0102	14	1.12	0.21								
		GNLC0102	15	1.05	0.20								
		GNLC0102	16	1.52	0.28			2	7.10				
		GNLC0102	17	1.15	0.21								
		GNLC0102	18	1.33	0.25								
		GNLC0102	19	0.85	0.16								

Appendix D Table D3. Numbers recorded and catch-per-unit-effort values (CPUE) for fish captured at gill net sites in lakes in the Jericho Study Area, 1999.

Season	Waterbody	Site Fis	shSampling	Time	Effort	Arc	tic Char	Lak	e Trout	Round	Whitefish	Sci	ulpin
		Label	ID	(h)	(100m ² •12h)	No.	CPUE	No.	CPUE	No.	CPUE	No.	CPUE
Summer													
	Lake C2												
		GNLC0201	20	18.00	3.34								
		GNLC0202	21	17.33	3.22								
	Lake C3												
		GNLC0301	22	4.25	0.79			2	2.53	1	1.27		
		GNLC0301	23	0.75	0.14					1	7.18		
		GNLC0301	24	16.67	3.10			10	3.23	10	3.23		
		GNLC0301	25	2.50	0.46					1	2.15		
		GNLC0302	26	3.75	0.70			1	1.44				
		GNLC0302	27	0.75	0.14								
		GNLC0302	28	19.20	3.57	3	0.84	11	3.08	7	1.96		
		GNLC0303	29	1.82	0.34			1	2.96				
		GNLC0303	30	1.92	0.36			1	2.81	1	2.81		
		GNLC0303	31	1.67	0.31			3	9.69	1	3.23		
		GNLC0303	32	1.50	0.28								
		GNLC0304	35	1.83	0.34			1	2.94				
		GNLC0304	36	0.58	0.11								
		GNLC0305	37	1.27	0.24			1	4.25				
		GNLC0305	38	1.93	0.36			1	2.78	2	5.57		
		GNLC0305	39	1.17	0.22								
	Lake D10												
		CM D1001	40	2.00	0.20								
		GNLD1001	48	2.08	0.39								
		GNLD1001	49	0.67	0.12								
		GNLD1001	50	19.42	3.61								
		GNLD1001	51	4.83	0.90								

Appendix D Table D3. Numbers recorded and catch-per-unit-effort values (CPUE) for fish captured at gill net sites in lakes in the Jericho Study Area, 1999.

Season	Waterbody	Site Fisl Label	hSampling ID	Time (h)	Effort (100m ² •12h)	Arctic C	har PUE	Lake No.	Trout CPUE	Round No.	Whitefish CPUE		lpin CPUE
Summer													
	Lake D10												
		GNLD1002	52	1.50	0.28								
		GNLD1002	53	1.00	0.19								
		GNLD1002	54	18.50	3.44								
		GNLD1003	55	4.50	0.84								
		GNLD1004	56	3.12	0.58								
		GNLD1004	57	1.67	0.31								
		GNLD1005	58	3.25	0.60							1	1.66
		GNLD1005	59	1.58	0.29								
Fall													
	Carat Lake												
		GNLCA01	142	1.60	0.30			3	10.09				
		GNLCA01	143	0.95	0.18			1	5.67				
		GNLCA01	219	0.55	0.10								
		GNLCA01	221	0.88	0.16								
		GNLCA03	144	0.85	0.16	1 6	5.33	2	12.66				
		GNLCA03	145	1.07	0.20			2	10.09				
		GNLCA03	146	0.85	0.16								
		GNLCA03	147	2.15	0.40			2	5.01				
		GNLCA03	148	0.95	0.18								
		GNLCA03	149	1.10	0.20			1	4.89				
		GNLCA03	150	1.17	0.22			1	4.61				
		GNLCA03	151	1.60	0.30	1 3	3.36	1	3.36				
		GNLCA03	152	1.80	0.33			1	2.99				
		GNLCA03	153	1.28	0.24	1 4	1.19	1	4.19				
		GNLCA03	154	0.85	0.16			1	6.33				

Appendix D Table D3. Numbers recorded and catch-per-unit-effort values (CPUE) for fish captured at gill net sites in lakes in the Jericho Study Area, 1999.

Season	Waterbody	Site Fis	shSampling	Time	Effort	Arct	ic Char	Lak	e Trout	Round	Whitefish	Sculpin
		Label	ID	(h)	(100m ² •12h)	No.	CPUE	No.	CPUE	No.	CPUE	No. CPUE
Fall												
	Carat Lake											
		GNLCA04	155	1.00	0.19							
		GNLCA04	156	0.93	0.17							
		GNLCA05	157	1.27	0.24							
		GNLCA05	159	1.53	0.28							
		GNLCA06	161	1.63	0.30					1	3.30	
		GNLCA06	164	1.20	0.22							
		GNLCA06	166	1.02	0.19							
	Lake C3											
		GNLC0306	167	0.97	0.18			1	5.57			
		GNLC0306	168	1.17	0.22							
		GNLC0306	169	1.42	0.26			1	3.80	1	3.80	
		GNLC0306	171	1.17	0.22			2	9.23	1	4.61	
		GNLC0306	177	1.45	0.27			1	3.71			
		GNLC0306	179	0.95	0.18	1	5.67	2	11.33			
		GNLC0306	180	0.43	0.08					1	12.42	
		GNLC0307	181	0.75	0.14							
		GNLC0307	182	1.12	0.21					1	4.82	
		CNI C0200	102	0.20	0.04			1	26.01			
		GNLC0308	183	0.20	0.04 0.24			1	26.91			
		GNLC0308 GNLC0308	184 185	1.30 1.50	0.24							
		GNLC0308	186	1.00	0.19							
		31420300	100	1.00	0.17							
		GNLC0309	187	1.42	0.26	1	3.80					
		GNLC0309	188	1.58	0.29	1	3.40	1	3.40	1	3.40	
		GNLC0309	189	1.83	0.34			1	2.94	1	2.94	
		GNLC0309	190	1.42	0.26	2	7.60					

Appendix D Table D3. Numbers recorded and catch-per-unit-effort values (CPUE) for fish captured at gill net sites in lakes in the Jericho Study Area, 1999.

Season	Waterbody	Site	FishSampling	Time	Effort	Arct	ic Char	Lake	Trout	Round	Whitefish	Sc	ulpin
		Label	ID	(h)	(100m ² •12h)	No.	CPUE	No.	CPUE	No.	CPUE	No.	CPUE
Fall													
	Lake C3												
		GNLC03	10 191	1.33	0.25			4	16.15				
		GNLC03	10 192	1.50	0.28			1	3.59	2	7.18		
		GNLC03	10 193	1.83	0.34								
		GNLC03	10 194	1.67	0.31			1	3.23	1	3.23		

Appendix D Table D4. Minnow trap sampling effort in lakes in the Jericho Study Area, 1999.

Waterbody	Site Label	Set	i	Pul	1	Depth (m)	Water
		Date	Time	Date	Time	- · F · · · · · · · · ·	Temperature (C)
Lake C1							
	GTLC0101	22-Jul-99	11:23	22-Jul-99	15:52	0.50	10.0
	GTLC0102	22-Jul-99	11:26	22-Jul-99	15:54	0.50	10.0
	GTLC0103	22-Jul-99	11:29	22-Jul-99	15:56	0.50	10.0
	GTLC0104	22-Jul-99	11:30	22-Jul-99	15:58	0.50	10.0
Lake C2							
	GTLC0201	21-Jul-99	15:59	22-Jul-99	8:47	0.40	10.0
	GTLC0202	21-Jul-99	16:01	22-Jul-99	8:50	0.40	10.0
	GTLC0203	21-Jul-99	16:03	22-Jul-99	9:10	0.40	10.0
	GTLC0204	21-Jul-99	16:05	22-Jul-99	9:20	0.40	10.0
Lake C3							
	GTLC0301	24-Jul-99	11:45	25-Jul-99	11:50	0.35	10.0
	GTLC0302	24-Jul-99	11:55	25-Jul-99	11:57	0.35	10.0
	GTLC0303	24-Jul-99	12:02	25-Jul-99	12:03	0.35	10.0
	GTLC0304	24-Jul-99	12:05	25-Jul-99	12:08	0.35	10.0
Lake D10							
	GTLD1001	22-Jul-99	15:00	23-Jul-99	16:02	1.00	13.0
	GTLD1002	22-Jul-99	15:00	23-Jul-99	16:04	1.00	13.0
	GTLD1003	22-Jul-99	15:00	23-Jul-99	16:07	1.00	13.0
	GTLD1004	22-Jul-99	15:00	23-Jul-99	16:50	1.00	13.0

^a No fish captured using this method.

RL&L Environmental Services Ltd.

Appendix D Table D5. Fyke net sampling effort in Carat Lake during summer, Jericho Study Area, 1999.

Waterbody	Site	Sample	Set		Pull	l	Soak	Species	No.
	Label	Direction	Date	Time	Date	Time	Time (h)	Species	Caugh
arat Lake	FNLCA01								
		East	21-Jul-99	12:00	22-Jul-99	9:10	21.17		
								Lake trout	1
		West	21-Jul-99	12:00	22-Jul-99	9:22	21.37		
								Arctic char	1
								Lake trout	12
								Round whitefish	2
		East	22-Jul-99	9:10	24-Jul-99	15:00	53.83		
								Arctic char	1
								Lake trout	2
		East	24-Jul-99	15:00	25-Jul-99	14:53	23.88		
								Lake trout	1
		West	24-Jul-99	15:00	25-Jul-99	14:53	23.88		
								Arctic char	5
								Lake trout	8
		East	25-Jul-99	14:53	26-Jul-99	15:40	24.78		
								Lake trout	9
								Round whitefish	1
								Arctic char	1
		West	25-Jul-99	14:53	26-Jul-99	15:10	24.28		
								Lake trout	7
								Round whitefish	3
								Arctic char	1
		East	26-Jul-99	15:40	27-Jul-99	12:00	20.33		
								Arctic char	2
								Lake trout	1
		_						Round whitefish	1
		East	27-Jul-99	12:00	28-Jul-99	17:35	29.58		_
								Lake trout	5
		***	27.1.00	12.00	20 7 1 00	17.05	20.50	Round whitefish	1
		West	27-Jul-99	12:00	28-Jul-99	17:35	29.58	D 1 11 61 7	
								Round whitefish	6
								Arctic char	1
		East	28-Jul-99	17:35	29-Jul-99	11:50	18.25	Lake trout	1
				17:33		11.20	10.73		

RL&L Environmental Services Ltd.

Appendix D Table D5. Fyke net sampling effort in Carat Lake during summer, Jericho Study Area, 1999.

Waterbody	Site	Sample	Set		Pull		Soak	Consider.	No.
	Label	Direction	Date	Time	Date	Time	Time (h)	Species	Caught
								Round whitefish	2
								Lake trout	2
		West	28-Jul-99	17:35	29-Jul-99	11:40	18.08		
								Lake trout	2
								Round whitefish	1
		West	29-Jul-99	11:40	30-Jul-99	9:20	21.67		
								Arctic char	1
								Lake trout	3
								Round whitefish	3
		East	29-Jul-99	11:50	30-Jul-99	8:55	21.08		
								Lake trout	3
								Round whitefish	1
		East	30-Jul-99	8:55	31-Jul-99	8:30	23.58		
								Lake trout	3
								Round whitefish	6
								Arctic char	1
		West	30-Jul-99	9:20	31-Jul-99	9:01	23.68		
								Lake trout	1
								Round whitefish	7
								Arctic char	1
		East	31-Jul-99	8:30	01-Aug-99	17:40	33.17		
								Lake trout	1
								Round whitefish	9
		West	31-Jul-99	9:01	01-Aug-99	17:55	32.90		
								Arctic char	3
								Lake trout	2
								Round whitefish	1
		East	01-Aug-99	17:40	02-Aug-99	8:15	14.58		
								Round whitefish	5
		West	01-Aug-99	17:55	02-Aug-99	8:15	14.33		
								Round whitefish	2
								Lake trout	1

Appendix D Table D6. Number of fish recorded and catch-per-unit-effort (CPUE) values during backpack electrofishing in waterbodies in the Jericho Study Area, 1999.

Waterbody	Reach	Date	Effort	Species	Captured	Observed	CPUE
			(min)				(No. fish/min)
Carat Lake							
		6/14/1999	9.15				
				Arctic char	1		0.11
				Burbot	1		0.11
				Lake trout	2		0.22
				Round whitefish	1		0.11
				Slimy sculpin	1		0.11
		7/27/1999	6.82				
				Arctic char	2		0.29
				Lake trout	1		0.15
				Slimy sculpin	5	1	0.88
Lake C1							
		7/31/1999	5.52				
				Lake trout		1	0.18
				Slimy sculpin	7	1	1.45
Lake C2							
		7/31/1999	7.52				
				No Fish			
Lake C3							
		7/29/1999	2.50				
				Arctic char	1	2	0.78
				Slimy sculpin	2		0.52
Lake D10							
		6/14/1999	3.87				
				Slimy sculpin	3		0.78
		7/31/1999	5.15				
				Slimy sculpin	13	1	2.72
Stream C1							
	1	6/9/1999	9.97				
				No Fish			
	1	6/14/1999	7.78				
				Arctic char	1		0.13
				Slimy sculpin	5		0.64

Appendix D Table D6. Number of fish recorded and catch-per-unit-effort (CPUE) values during backpack electrofishing in waterbodies in the Jericho Study Area, 1999.

Waterbody	Reach	Date	Effort (min)	Species	Captured	Observed	CPUE (No. fish/min)
Stream C1							
	1	7/23/1999	4.12				
				Arctic char	3		0.73
				Lake trout	11		2.67
				Slimy sculpin	3	1	0.97
	2	6/9/1999	3.08				
				No Fish			
	2	7/23/1999	2.78				
				No Fish			
	2	8/2/1999	2.28				
				No Fish			
	3	6/10/1999	3.08				
				No Fish			
	3	7/23/1999	5.80				
				No Fish			
	5	7/23/1999	2.47				
				No Fish			
	6	7/23/1999	1.82				
				No Fish			
	7	7/28/1999	2.52				
				No Fish			
Stream C19							
	1	7/31/1999	2.08	N. E. I			
G. G.				No Fish			
Stream C2	1	7/27/1000	6.92				
	1	7/27/1999	6.82	Arctic char	7		1.03
				Lake trout	2		0.29
C. C2.1				Slimy sculpin	18		2.64
Stream C2A	1	7/27/1000	2.00				
	1	7/27/1999	2.00	Arctic char	1		0.50
					1		0.50
				Burbot			
				Lake trout	1		0.50

Appendix D Table D6. Number of fish recorded and catch-per-unit-effort (CPUE) values during backpack electrofishing in waterbodies in the Jericho Study Area, 1999.

Waterbody	Reach	Date	Effort	Species	Captured	Observed	CPUE
			(min)				(No. fish/min)
Stream C2A							
	1	7/27/1999	2.00				
				Slimy sculpin	9	1	5.00
Stream C3							
	1	7/29/1999	2.50				
				No Fish			
	2	7/29/1999	4.90				
				Arctic char	2		0.41
	3	7/29/1999	1.45				
				Arctic char	1		0.69
	4	7/29/1999	4.03				
				No Fish			
Stream D2							
	1	7/23/1999	6.45				
				Arctic char	1	1	0.31
				Slimy sculpin		1	0.16

Waterbody	Site Label	Date	Species	Fork Length (mm)	Weight (g)	Sexual Maturity Code	Age	Age Structure	Capture Code	Tag No.
Carat Lake										
	EFLCA01									
		14-Jun-99								
			Arctic char	67					0	
			Burbot	85					0	
			Lake trout	62					0	
			Lake trout	64					0	
			Round whitefish	59					0	
			Slimy sculpin	57					0	
		27-Jul-99								
			Arctic char	131					0	
			Arctic char	63					0	
			Lake trout	71					0	
			Slimy sculpin	65					0	
			Slimy sculpin	39					0	
			Slimy sculpin	57					0	
			Slimy sculpin	36					0	
			Slimy sculpin	48					0	
	FNLCA01									
		21-Jul-99								
			Arctic char	122					0	
			Lake trout	75					0	
			Lake trout	468	1140				0	3601
			Lake trout	74					0	
			Lake trout	85					0	
			Lake trout	118	15				0	
			Lake trout	137					0	
			Lake trout	74					0	
			Lake trout	74					0	
			Lake trout	75					0	
			Lake trout	117					0	
			Lake trout	155					0	
			Lake trout	80					0	
			Lake trout	123	10				0	
			Round whitefish	74					0	
			Round whitefish	118	5			Scale	0	
		22-Jul-99								
			Arctic char	75					0	
			Lake trout	148					0	
			Lake trout	233					0	3305
		24-Jul-99		<u>.</u> .						
			Arctic char	74					1	

Waterbody	Site Label	Date	Species	Fork Length (mm)	Weight (g)	Sexual Maturity Code	Age	Age Structure	Capture Code	Tag No.
Carat Lake										
	FNLCA01									
		24-Jul-99								
			Arctic char	421	815				0	3312
			Arctic char	106	20				0	
			Arctic char	78					1	
			Arctic char	70					1	
			Lake trout	510	1455				0	3310
			Lake trout	255	190				0	3313
			Lake trout	438	925				0	3311
			Lake trout	96	10				0	
			Lake trout	738	4500		27	Otolith	1	
			Lake trout	842					0	3308
			Lake trout	232	125				0	3317
			Lake trout	175	70				0	
			Lake trout	69					1	
		25-Jul-99								
			Arctic char	179					0	
			Arctic char	555	1260				0	3328
			Lake trout	108	10				0	
			Lake trout	137	20		1	Otolith	1	
			Lake trout	81			1	Otolith	1	
			Lake trout	68			1	Otolith	1	
			Lake trout	490	1480				0	3329
			Lake trout	140	25				0	
			Lake trout	81					1	
			Lake trout	503	1740				0	3330
			Lake trout						1	
			Lake trout	434					0	3319
			Lake trout	444					0	3327
			Lake trout	425					0	3325
			Lake trout	382					0	3324
			Lake trout	419					0	3320
			Lake trout	142					0	
			Lake trout	121					0	
			Round whitefish	79	55			C1.	0	
			Round whitefish	204	55			Scale	0	
			Round whitefish	82	25			Cools	1	
		26-Jul-99	Round whitefish	178	25			Scale	0	
		20-Jui-99	Arctic char	578	1730				0	3334
			Arctic char	188	65				0	JJJ4
			AICUC CHAI	100	05				U	

Waterbody	Site Label	Date	Species	Fork Length (mm)	Weight (g)	Sexual Maturity Code	Age	Age Structure	Capture Code	Tag No.
Carat Lake										
	FNLCA01									
		26-Jul-99								
			Lake trout	716					0	3333
			Round whitefish	113	15			Scale	0	
		27-Jul-99								
			Arctic char	496	1105				0	3504
			Lake trout	81					0	
			Lake trout	80	5				0	
			Lake trout	83	5				0	
			Lake trout	84	5				0	
			Lake trout	482	1260				0	3503
			Lake trout	84					0	
			Round whitefish	464	1260				0	3549
			Round whitefish	78					0	
			Round whitefish	118	5		2	Scale	0	
			Round whitefish	81			1	Scale	0	
			Round whitefish	223	105				0	3501
			Round whitefish	253	155				0	3502
			Round whitefish	82			1	Scale	0	
		28-Jul-99								
			Arctic char	72		99	1	Otolith	1	
			Arctic char	435	960				0	3604
			Lake trout	220	110				0	3605
			Lake trout	419	770				0	3348
			Lake trout	421	800				0	3349
			Lake trout	387	565				0	3603
			Round whitefish	243	130			Scale	0	
			Round whitefish	301	250			Scale	0	
			Round whitefish	106	5		2	Scale	0	
		29-Jul-99								
			Arctic char	500	1395				0	3352
			Lake trout	293	200				0	3353
			Lake trout	182	40				0	
			Lake trout	118	20				0	
			Round whitefish	130	50			Scale	0	
			Round whitefish	300	200				0	3354
			Round whitefish	125	25				0	
		29-Jul-99								
			Lake trout	355	490				0	3551
			Lake trout	92					0	
			Lake trout	69		99	1	Otolith	1	

Waterbody	Site Label	Date	Species	Fork Length (mm)	Weight (g)	Sexual Maturity Code	Age	Age Structure	Capture Code	Tag No.
Carat Lake										
	FNLCA01									
		29-Jul-99								
			Round whitefish	190	95			Scale	0	
		30-Jul-99								
			Arctic char	65					0	
			Lake trout	485	1350				0	3606
			Lake trout	165	50				0	
			Lake trout	77					0	
			Round whitefish	190	60				0	
			Round whitefish	175	45			Scale	0	
			Round whitefish	263	160			Scale	0	
			Round whitefish	175	50			Scale	0	
			Round whitefish	173	55			Scale	0	
			Round whitefish	74					0	
		30-Jul-99								
			Arctic char	554	1750				0	3607
			Lake trout	384	715				0	3608
			Round whitefish	294	240			Scale	0	
			Round whitefish	346	505			Scale	0	
			Round whitefish	120				Scale	0	
			Round whitefish	250	150			Scale	0	
			Round whitefish	81				Otolith	1	
			Round whitefish	78			1	Otolith	1	
			Round whitefish	251	110			Scale	0	
		31-Jul-99								
			Lake trout	265	205				0	3570
			Round whitefish	190	80				0	
			Round whitefish	290	230				0	3568
			Round whitefish	230	140				0	3569
			Round whitefish	140	45				0	
			Round whitefish	76					0	
			Round whitefish	74					0	
			Round whitefish	74					0	
			Round whitefish	78					0	
			Round whitefish	172	80				0	
		31-Jul-99								
			Arctic char	180	45				0	
			Arctic char	90				Scale	0	
			Arctic char	205	85				0	3571
			Lake trout	162	30				0	
			Lake trout	85				Scale	0	

Waterbody	Site Label	Date	Species	Fork Length (mm)	Weight (g)	Sexual Maturity Code	Age	Age Structure	Capture Code	Tag No.
Carat Lake										
	FNLCA01									
		31-Jul-99								
			Round whitefish	146	20				0	
		01-Aug-99)							
			Round whitefish	77	5				0	
			Round whitefish	73	5				0	
			Round whitefish	136	20				0	
			Round whitefish	191	65				0	
			Round whitefish	283	240				0	3572
		01-Aug-99)							
			Lake trout	138	20				0	
			Round whitefish	79					0	
			Round whitefish	68					0	
	GNLCA01									
		27-Jul-99								
			Arctic char	351	475				0	3331
		27-Jul-99								
			Round whitefish	491	1320			Scale	0	
		27-Jul-99								
			Lake trout	510	1130				0	3336
		27-Jul-99								
			Round whitefish	410	905			Scale	0	3339
		01-Sep-99								
			Lake trout	463	1205				0	3578
			Lake trout	451	1085	8			0	3579
			Lake trout	470	1250	8			0	3580
		01-Sep-99								
			Lake trout	608	2185				0	3583
	GNLCA02	25.1.00								
		27-Jul-99		160	1207				0	2222
		27 1 1 00	Round whitefish	460	1295			Scale	0	3332
		27-Jul-99		265	105		2	0, 1,1		
			Arctic char	265	195	1	3	Otolith	1	
			Arctic char	299	265	11	4	Otolith	1	
			Arctic char	310	485	1	5	Otolith	1	2225
		27-Jul-99	Lake trout	694					0	3335
		∠1-Ju1-99	Lake trout	500	1/115				0	2220
			Lake trout Lake trout	500 716	1415				2	3338
			Round whitefish	716 470	1200			Santa		3333
		27-Jul-99		470	1200			Scale	0	3337
		∠1-ju1-99								

Waterbody	Site Label	Date	Species	Fork Length (mm)	Weight (g)	Sexual Maturity Code	Age	Age Structure	Capture Code	Tag No.
Carat Lake										
	GNLCA02									
		27-Jul-99								
			Lake trout	197	70				0	
			Lake trout	485	1275				0	3340
			Round whitefish	460	1205			Scale	0	3341
	GNLCA03									
		01-Sep-99		550	21.60	_				2556
			Arctic char	573	2160	7			0	3576
			Lake trout	519	1405				0	3574
		01-Sep-99	Lake trout	505	1350				0	3575
		01-Sep-99	Lake trout	630	2370				0	3577
		01-Sep-99		030	2370				U	3311
		01 Sep >>	Lake trout	989	1E+04				0	3581
			Lake trout	910	9250	8			0	3582
		01-Sep-99)							
			Lake trout	391	730				0	3584
		04-Sep-99)							
			Lake trout	510	1305				0	
		04-Sep-99)							
			Arctic char	496	1400				0	3700
			Lake trout	477	1200	8			0	3699
		04-Sep-99								
			Lake trout	489	1350	8			0	3698
		04-Sep-99								
			Arctic char	465	1200				0	3695
		04.6	Lake trout	478	1300	8			0	3696
		04-Sep-99	Lake trout	471	1160	8			0	3694
	GNLCA06		Lake trout	4/1	1100	8			U	3094
	GILCAGO	04-Sep-99)							
		0 1 Sep >>	Round whitefish	474	1375				0	3697
Lake C1										
Lake C1	EFLC0101									
	Erecoror	31-Jul-99								
			Slimy sculpin	34					0	
			Slimy sculpin	32					0	
			Slimy sculpin	46					0	
			Slimy sculpin	36					0	
			Slimy sculpin	57					0	
			Slimy sculpin	42					0	
1 · 1 · D· · · 1	Desired D. J		Cr. P. D. (7)	000)						6 615

Waterbody	Site Label	Date	Species	Fork Length (mm)	Weight (g)	Sexual Maturity Code	Age	Age Structure	Capture Code	Tag No.
Lake C1										
	EFLC0101									
		31-Jul-99								
			Slimy sculpin	63					0	
	GNLC0102									
		02-Aug-99)							
			Lake trout	210	205			Scale	0	3610
			Lake trout	305	325			Scale	0	3609
Lake C3										
	ANLC0303									
		03-Sep-99	ı							
			Lake trout	601	2155	97			0	3592
	EFLC0301									
		29-Jul-99								
			Arctic char	41					1	
			Slimy sculpin	77					0	
			Slimy sculpin	41					0	
	GNLC0301									
		24-Jul-99								
			Lake trout	446	860	1	17	Otolith	1	
			Lake trout	532	1345	11	15	Otolith	1	
			Round whitefish	433	1030	7		Otolith	1	
		24-Jul-99								
			Round whitefish	385	655	17	9	Otolith	1	
		24-Jul-99								
			Lake trout	456	1000	17	18	Otolith	1	
			Lake trout	203	85	99	4	Otolith	1	
			Lake trout	204	105	99		Otolith	1	
			Lake trout	637	2625	16	22	Otolith	3	474
			Lake trout	176	60	99	4	Otolith	1	
			Lake trout	241	150	1	6	Otolith	1	
			Lake trout	540	1345	16	22	Otolith	1	
			Lake trout	236	130	99	6	Otolith	1	
			Lake trout	224	100	99	5	Otolith	1	
			Lake trout	525	1360	1	18	Otolith	1	
			Round whitefish	409	710	17		Otolith	1	
			Round whitefish	354	550	16	6	Otolith	1	
			Round whitefish	285	240	11	4	Otolith	1	
			Round whitefish	400	760	17	8	Otolith	1	
			Round whitefish	393	785	17	9	Otolith	1	
			Round whitefish	416	855	7	13	Otolith	1	
			Round whitefish	430	835	17		Otolith	1	7 - 615

Waterbody	Site Label	Date	Species	Fork Length (mm)	Weight (g)	Sexual Maturity Code	Age	Age Structure	Capture Code	Tag No.
Lake C3										
	GNLC0301									
		24-Jul-99								
			Round whitefish	426	895	7		Otolith	1	
			Round whitefish	416	810	7		Otolith	1	
			Round whitefish	432	1075	7	18	Otolith	1	
		25-Jul-99								
			Round whitefish	365	585				0	3306
	GNLC0302									
		24-Jul-99								
			Lake trout	486	1945	11	14	Otolith	1	
		24-Jul-99								
			Arctic char	256	140	99	5	Otolith	1	
			Arctic char	250	175	99	3	Otolith	1	
			Arctic char	242	110	99	4	Otolith	1	
			Lake trout	538	1605	6	23	Otolith	1	
			Lake trout	405	612	16	11	Otolith	1	
			Lake trout	431	892	16	14	Otolith	1	
			Lake trout	835	3000	6	35	Otolith	3	236
			Lake trout	692	750	7	29	Otolith	1	
			Lake trout	645	2900	6			1	
			Lake trout	275	225	99	7	Otolith	1	
			Lake trout	185	60	99	4	Otolith	1	
			Lake trout	527	1186	1		Otolith	1	
			Lake trout	186	45	99		Otolith	1	
			Lake trout	404	798	17	12	Otolith	1	
			Round whitefish	389	725	7	11	Otolith	1	
			Round whitefish	424	985	17		Otolith	1	
			Round whitefish	365	625	17			1	
			Round whitefish	423	910	7			1	
			Round whitefish	424	885	17	9	Otolith	1	
			Round whitefish	239	145	1	4	Otolith	1	
			Round whitefish	362	515	6	7	Otolith	1	
	GNLC0303									
		28-Jul-99								
			Lake trout	401	565	17	11	Otolith	1	
		28-Jul-99								
			Lake trout	430	825			Scale	0	3343
			Round whitefish	464	860			Scale	0	
		28-Jul-99								
			Lake trout	597	2085				0	3346
			Lake trout	355	405				0	3344

Waterbody	Site Label	Date	Species	Fork Length (mm)	Weight (g)	Sexual Maturity Code	Age	Age Structure	Capture Code	Tag No.
Lake C3										
	GNLC0303									
		28-Jul-99								
			Lake trout	566	1960				0	3345
			Round whitefish	445	1010	7	19	Otolith	1	
	GNLC0304									
		28-Jul-99								
			Lake trout	545	1605				0	3342
	GNLC0305									
		28-Jul-99		400						22.45
			Lake trout	400	715	0.0		0.11.1	0	3347
			Round whitefish	214	70	99	3	Otolith	1	
	GNLC0306		Round whitefish	418	800	17	14	Otolith	1	
	GNECOSOO	03-Sep-99								
		05 5c p >>	Lake trout	443	870	8			0	3591
		03-Sep-99								
		•	Lake trout	376	550				0	
			Round whitefish	335	435			Scale	0	
		03-Sep-99								
			Lake trout	439	940	17			0	3595
			Lake trout	424	885	7		Scale	0	3594
			Round whitefish	378	620			Scale	0	
		03-Sep-99								
			Lake trout	403	820				0	3596
		03-Sep-99								
			Arctic char	506	1510	8			0	3599
			Lake trout	410	835	8			0	3598
			Lake trout	423	715				0	3597
		03-Sep-99		260					0	
	GNLC0307		Round whitefish	360					0	
	GNLC0307	03-Sep-99								
		03-3cp-39	Round whitefish	410	920			Scale	0	
	GNLC0308		Round Willerigh	110	720			Seuie	Ü	
	21.20000	03-Sep-99								
		1	Lake trout	608	2140	8			0	3593
	GNLC0309									
		04-Sep-99								
			Arctic char	489	1100	8			0	3600
		04-Sep-99								
			Arctic char	487	1125	8			0	3616

Waterbody	Site Label	Date	Species	Fork Length (mm)	Weight (g)	Sexual Maturity Code	Age	Age Structure	Capture Code	Tag No.
Lake C3										
	GNLC0309									
		04-Sep-99)							
			Lake trout	402	715	8			0	3615
			Round whitefish	436	880			Scale	0	
		04-Sep-99)							
			Lake trout	635	2795	6		Otolith	1	
			Round whitefish	429	850	7	24	Otolith	1	
		04-Sep-99)							
			Arctic char	530	1730	17			0	3618
			Arctic char	607	2175	8			0	3619
	GNLC0310									
		04-Sep-99								
			Lake trout	405	840	8			0	3613
			Lake trout	424	980	8			0	3614
			Lake trout	433	955	8			0	3612
			Lake trout	430	945	8			0	3611
		04-Sep-99								
			Lake trout	540	1230				0	3617
			Round whitefish	419	915			G 1	0	
		0.4.500	Round whitefish	194	50			Scale	0	
		04-Sep-99		440	000	17			0	2620
			Lake trout	440	900	17		C1-	0	3620
			Round whitefish	356	520			Scale	0	
Lake D10										
	EFLD1001									
		14-Jun-99								
			Slimy sculpin	84					0	
			Slimy sculpin	102					0	
		21 1 1 00	Slimy sculpin	60					0	
		31-Jul-99		27					0	
			Slimy sculpin	27					0	
			Slimy sculpin Slimy sculpin						1	
			Slimy sculpin	41					1	
			Slimy sculpin	38					0	
			Slimy sculpin	51					0	
			Slimy sculpin	52					0	
			Slimy sculpin	38					0	
			Slimy sculpin	47					0	
			Slimy sculpin	41					0	
			Slimy sculpin	56					0	
			Sinny scurpin	50					U	

Waterbody	Site Label	Date	Species	Fork Length (mm)	Weight (g)	Sexual Maturity Code	Age	Age Structure	Captur Code	e Tag No.
Lake D10										
	EFLD1001									
		31-Jul-99								
			Slimy sculpin	69					0	
			Slimy sculpin	46					0	
	GNLD1005									
		31-Jul-99								
			Slimy sculpin	78					0	
Stream C1										
	EFTC0101									
		14-Jun-99	1							
			Arctic char	66					0	
			Slimy sculpin	74					0	
			Slimy sculpin	73					0	
			Slimy sculpin	54					0	
			Slimy sculpin	63					0	
			Slimy sculpin	71					0	
		23-Jul-99								
			Arctic char	38					0	
			Arctic char	41					0	
			Arctic char	41					0	
			Lake trout	39					0	
			Lake trout	41					0	
			Lake trout	42					0	
			Lake trout	38					0	
			Lake trout	41					0	
			Lake trout	37					0	
			Lake trout	35					0	
			Lake trout	39					0	
			Lake trout	38					0	
			Lake trout	40					0	
			Lake trout	43					0	
			Slimy sculpin	58					0	
			Slimy sculpin	58					0	
			Slimy sculpin	52					0	
	POPTC0101									
		02-Aug-99								
			Arctic char	42					0	
			Arctic char	46					0	
			Arctic char	44					0	
			Arctic char	38					0	
7 17 mi	n		Arctic char	43					0	

Waterbody	Site Label	Date	Species	Fork Length (mm)	Weight (g)	Sexual Maturity Code	Age	Age Structure	Capture Code	Tag No.
Stream C1										
	POPTC0101									
		02-Aug-99								
			Arctic char	43					0	
			Arctic char	47					0	
			Arctic char	52					0	
			Arctic char	37					0	
			Arctic char	47					0	
			Arctic char	55					0	
			Arctic char	45					0	
			Arctic char	41					0	
			Arctic char	48					0	
			Arctic char	38					0	
			Arctic char	39					0	
			Arctic char	78					0	
			Arctic char	49					0	
			Arctic char	38					0	
			Arctic char	37					0	
			Arctic char	45					0	
			Arctic char	37					0	
			Arctic char	39					0	
			Arctic char	44					0	
			Arctic char	81					0	
			Arctic char	42					0	
			Arctic char	90					0	
			Burbot	98					0	
			Burbot	132					0	
			Burbot	105					0	
			Burbot	86					0	
			Burbot	95 75					0	
			Lake trout Lake trout	75 67					0	
			Lake trout	68					0	
			Lake trout	63					0	
			Lake trout	67					0	
			Lake trout	64					0	
			Lake trout	36					0	
			Lake trout	95					0	
			Lake trout	40					0	
			Lake trout	47					0	
			Lake trout	72					0	
			Lake trout	66					0	
									-	

Waterbody	Site Label	Date	Species	Fork Length (mm)	Weight (g)	Sexual Maturity Code	Age	Age Structure	Capture Code	Tag No.
Stream C1										
	POPTC0101									
		02-Aug-99)							
			Lake trout	58					0	
			Lake trout	68					0	
			Slimy sculpin	47					0	
			Slimy sculpin	49					0	
			Slimy sculpin	52					0	
			Slimy sculpin	66					0	
			Slimy sculpin	39					0	
			Slimy sculpin	73					0	
			Slimy sculpin	48					0	
			Slimy sculpin	70					0	
			Slimy sculpin	70					0	
			Slimy sculpin	67					0	
			Slimy sculpin	57					0	
			Slimy sculpin	39					0	
			Slimy sculpin	48					0	
			Slimy sculpin	50					0	
			Slimy sculpin	63					0	
			Slimy sculpin	55					0	
			Slimy sculpin	68					0	
			Slimy sculpin	53					0	
			Slimy sculpin	52					0	
			Slimy sculpin	37					0	
			Slimy sculpin	38					0	
			Slimy sculpin	56					0	
			Slimy sculpin	54					0	
			Slimy sculpin	52					0	
			Slimy sculpin	52					0	
			Slimy sculpin	72					0	
			Slimy sculpin	60					0	
Stream C2										
	EFTC0201									
		27-Jul-99								
			Arctic char	36					0	
			Arctic char	83					0	
			Arctic char	77					0	
			Arctic char	78					0	
			Arctic char	79					0	
			Arctic char	37					0	
			Arctic char	42					0	

Waterbody	Site Label	Date	Species	Fork Length (mm)	Weight (g)	Sexual Maturity Code	Age	Age Structure	Capture Code	Tag No.
Stream C2										
	EFTC0201									
		27-Jul-99								
			Lake trout	72					0	
			Lake trout	96					0	
			Slimy sculpin	37					0	
			Slimy sculpin	57					0	
			Slimy sculpin	56					0	
			Slimy sculpin	63					0	
			Slimy sculpin	51					0	
			Slimy sculpin	47					0	
			Slimy sculpin	63					0	
			Slimy sculpin	56					0	
			Slimy sculpin	52					0	
			Slimy sculpin	64					0	
			Slimy sculpin	58					0	
			Slimy sculpin	47					0	
			Slimy sculpin	58					0	
			Slimy sculpin	73					0	
			Slimy sculpin	62					0	
			Slimy sculpin	81					0	
			Slimy sculpin	67					0	
			Slimy sculpin	67					0	
Stream C2A										
	EFTC02A01									
		27-Jul-99								
			Arctic char	78					0	
			Burbot	107					0	
			Lake trout	71					0	
			Slimy sculpin	54					0	
			Slimy sculpin	68					0	
			Slimy sculpin	61					0	
			Slimy sculpin	53					0	
			Slimy sculpin	55					0	
			Slimy sculpin	48					0	
			Slimy sculpin	47					0	
			Slimy sculpin	51					0	
			Slimy sculpin	54					0	
Stream C3										

Waterbody	Site Label	Date	Species	Fork Length (mm)	Weight (g)	Sexual Maturity Code	Age	Age Structure	Capture Code	Tag No.
Stream C3										
	EFTC0302									
		29-Jul-99								
			Arctic char	104	10				0	
			Arctic char	178	65				0	
	EFTC0303									
		29-Jul-99								
			Arctic char	167	55				0	
Stream D2										
	EFTD0201									
		23-Jul-99								
			Arctic char	88					0	
			Lake trout	85					0	
			Slimy sculpin	47					0	
			Slimy sculpin	65					0	
			Slimy sculpin	62					0	
			Slimy sculpin	74					0	
			Slimy sculpin	59					0	

Waterbody	Date	Sampling Method	Species	Fork Length (mm)	Weight (g)	Stomach Fullness	Food Item	Food Item Value
Carat Lake								
	27-Jul-99	Gill Net						
			Arctic char	265	195	10		
							Zooplankton	10
			Arctic char	299	265	5		
			Arctic char	310	485	5	Zooplankton	5
			Arctic chai	310	403	3	Ephemeroptera	1
							Trichoptera larvae	1
Lake C3							Zooplankton	3
	24-Jul-99	Gill Net						
	24-Jul-99	Om Net	Arctic char	242	110	0		
			Arctic chai	242	110	Ü	Empty	0
			Arctic char	250	175	1	1 7	
							Zooplankton	1
			Arctic char	256	140	0		
			Lake trout	176	60	5	Empty	0
			Lake frout	170	00	3	Zooplankton	5
			Lake trout	185	60	0	•	
							Empty	0
			Lake trout	186	45	0		
			Lake trout	203	85	5	Empty	0
			Lake trout	203	03	3	Zooplankton	5
			Lake trout	204	105	0	•	
							Empty	0
			Lake trout	224	100	1		
			Lake trout	236	130	1	Zooplankton	1
			Lake trout	250	130	1	Zooplankton	1
			Lake trout	241	150	1	-	
							Zooplankton	1
			Lake trout	275	225	5	7 1 1	~
			Lake trout	404	798	15	Zooplankton	5
			Lake tiout	-101	770	1.5	Zooplankton	10
							Trichoptera larvae	5
			Lake trout	405	612	5		

Waterbody	Date	Sampling Method	Species	Fork Length (mm)	Weight (g)	Stomach Fullness		ood Item Value
Lake C3								
	24-Jul-99	Gill Net						
			Lake trout	405	612	5		
							Mollusc	1
							Sculpin spp.	4
			Lake trout	431	892	10		
							Zooplankton	10
			Lake trout	446	860	0	_	
			Lalsa tuant	156	1000	5	Empty	0
			Lake trout	456	1000	5	Sculpin spp.	5
			Lake trout	486	1945	0	Sculpin spp.	3
			Luke trout	100	15.15	Ü	Empty	0
			Lake trout	525	1360	1	1 7	
							Mollusc	0
							Diptera larvae (general)	0
			Lake trout	527	1186	10		
							Mollusc Fish (general)	4 6
			Lake trout	532	1345	5	rish (general)	Ü
			Luke trout	332	13.13	3	Trichoptera larvae	3
							Zooplankton	2
			Lake trout	538	1605	5		
							Char	5
			Lake trout	540	1345	5		
							Trichoptera larvae	5
			Lake trout	637	2625	0	Emates	0
			Lake trout	645	2900	0	Empty	0
			Lake front	043	2,000	Ü	Empty	0
			Lake trout	692	750	0	Zimpty	Ü
							Empty	0
			Lake trout	835	3000	0		
							Empty	0
			Round whitefish	239	145	5		
							Trichoptera larvae	5
			Round whitefish	285	240	10		
			_				Zooplankton	10
			Round whitefish	354	550	1	****	
							Unidentified Remains	1

	Waterbody	Date	Sampling Method	Species	Fork Length (mm)	Weight (g)	Stomach Fullness	Food Item	Food Item Value
Round whitefish 362 515 5 Zooplankton 5	Lake C3								
Round whitefish 365 625 10		24-Jul-99	Gill Net						
Round whitefish 365 625 10				Round whitefish	362	515	5		
Round whitefish August August Round whitefish August A								Zooplankton	5
Round whitefish Round whit				Round whitefish	365	625	10		
Round whitefish 385 655 5 Zooplankton 3 Zooplankton 5 Zooplankton									3
Round whitefish 385 655 5 Zooplankton 5									
Round whitefish 389 725 0 Empty 0				D 1 11 61	205	655	~	Zooplankton	4
Round whitefish 389 725 0 Empty 0				Round whitefish	385	655	5	7 1 1	~
Round whitefish 393 785 5 Trichoptera larvae 2 2 2 2 2 2 2 2 2				D 1 11 61	200	725	0	Zooplankton	5
Round whitefish 393 785 5 Trichoptera larvae 2 2 2 2 2 2 2 2 2				Round whitefish	389	725	0	Б	0
Round whitefish 400 760 1				D 1 11 61	202	705	~	Empty	0
Round whitefish 400 760 1				Round whitefish	393	785	5	m:1 . 1	2
Round whitefish 400 760 1 Trichoptera larvae 1 Round whitefish 409 710 1 Trichoptera larvae 1 Round whitefish 416 810 5 Oligochaetes 5 Gastropods 2 Zooplankton 8 Round whitefish 423 910 10 Zooplankton 5 Empty 0 Round whitefish 424 885 5 Zooplankton 5 Empty 0 Round whitefish 426 895 15 Zooplankton 5 Trichoptera larvae 10 Round whitefish 430 835 10 Zooplankton 9 Round whitefish 432 1075 5 Zooplankton 9 Gastropods 1 Zooplankton 5 Zooplankton 9 Gastropods 1 Zooplankton 5 Zooplankton 9 Gastropods 1 Zooplankton 5 Zooplankton 9 Gastropods 1 Zooplankton 5 Zooplankton 6 Gastropods 1 Zooplankton 9 Zooplankton 9 Gastropods 1 Zooplankton 1 Zooplankton 1 Zooplankt									
Round whitefish 409 710 1				Round whitefish	400	760	1	Zoopiankton	3
Round whitefish 409 710 1 Trichoptera larvae 1				rtound winterisii	100	700	1	Trichoptera larvae	1
Round whitefish A16 Round whitefish A16 Round whitefish A16 Round whitefish A16 Round whitefish A23 B10 Round whitefish A24 Round whitefish A25 B10 Round whitefish A26 Round whitefish A27 Round whitefish A30 Round whitefish				Round whitefish	409	710	1	Titonoptera iai vae	•
Round whitefish				Tround William	.02	,10	•	Trichoptera larvae	1
Round whitefish 423 910 10 Zooplankton				Round whitefish	416	810	5	Titonoptera iai vae	•
Round whitefish 423 910 10 Zooplankton 10 Zooplankton 10 Zooplankton 10 Zooplankton 10 Zooplankton 10 Zooplankton 5 Empty 0 Zooplankton 5 Trichoptera larvae 10 Zooplankton 5 Empty 0 Zooplankton 5 Empty 0 Empty 0 Empty 0 Empty				Tround William	.10	010		Oligochaetes	5
Round whitefish 423 910 10 Zooplankton 10 Zooplankton 10 Zooplankton 10 Zooplankton 10 Zooplankton 5 Zooplankton 5 Empty 0 20 20 20 20 20 20 20									
Round whitefish 424 885 5 Zooplankton 5 Empty 0								Zooplankton	8
Round whitefish 424 885 5 Zooplankton 5 Empty 0				Round whitefish	423	910	10		
Round whitefish 426 895 15 Zooplankton 5 Empty 0								Zooplankton	10
Round whitefish 426 895 15 Zooplankton 5 Trichoptera larvae 10				Round whitefish	424	885	5		
Round whitefish 426 895 15 Zooplankton 5 Trichoptera larvae 10									
Round whitefish 430 835 10 Gastropods 1 Zooplankton 5 Trichoptera larvae 10 Gastropods 1 Zooplankton 9 Zooplankton 5 Zooplankton 5 Zooplankton 5 Zooplankton 5 Zooplankton 5 Zooplankton 9 Gastropods 1 Zooplankton 9 Gastropods 1 Zooplankton 9 Gastropods 1 Zooplankton 9 Gastropods 1 Zooplankton 9 Gastropods 1 Zooplankton 9 Gastropods 1 Zooplankton 9 Gastropods 1 Zooplankton 9 Gastropods 1 Zooplankton 9 Gastropods 1 Zooplankton 9 Gastropods 1 Zooplankton 9 Gastropods 1 Zooplankton 9 Gastropods 1 Zooplankton 9 Gastropods 1 Zooplankton 9 Gastropods 1 Zooplankton 9 Gastropods 1 Zooplankton 9 Gastropods 1 Zooplankton 9 Gastropods 1 Zooplankton 9 Gastropods 1 Zooplankton 9 Gastropods 1 Zooplankton 9 Gastropods 1 Zooplankton 9 Gastropods 1 Zooplankton 9 Cooplankton 9 Cooplankton 9 Cooplankton 9 Cooplankton 9 Cooplankton 9 Cooplankton 9								Empty	0
Round whitefish 430 835 10				Round whitefish	426	895	15		
Round whitefish 430 835 10 Gastropods 1 Zooplankton 9									
Round whitefish 432 1075 5 Zooplankton 5				Round whitefish	430	835	10	Thenopiera farvae	10
Round whitefish 432 1075 5 Zooplankton 5				Round winterisii	430	033	10	Gastropods	1
Round whitefish 433 1030 10 Zooplankton 9 Gastropods 1 28-Jul-99 Gill Net Lake trout 401 565 1									
Round whitefish 433 1030 10 Zooplankton 9 Gastropods 1 28-Jul-99 Gill Net Lake trout 401 565 1				Round whitefish	432	1075	5		
Zooplankton 9 Gastropods 1 28-Jul-99 Gill Net Lake trout 401 565 1								Zooplankton	5
Zooplankton 9 Gastropods 1 28-Jul-99 Gill Net Lake trout 401 565 1				Round whitefish	433	1030	10		
Gastropods 1 28-Jul-99 Gill Net Lake trout 401 565 1								Zooplankton	9
Lake trout 401 565 1									1
		28-Jul-99	Gill Net						
Ephemeroptera 1				Lake trout	401	565	1		
								Ephemeroptera	1

Waterbody	Date	Sampling Method	Species	Fork Length (mm)	Weight (g)	Stomach Fullness	Food Item	Food Item Value
Lake C3								
	28-Jul-99	Gill Net						
			Round whitefish	214	70	1		
							Zooplankton	1
			Round whitefish	418	800	5		
							Zooplankton	3
							Mollusc	2
			Round whitefish	445	1010	10		
							Zooplankton	5
							Trichoptera larvae	5
	04-Sep-99	Gill Net						
			Lake trout	635	2795	0		
							Empty	0
			Round whitefish	429	850	10		
							Gastropods	8
							Zooplankton	2

Appendix D Table D9. Numbers recorded and catch-per-unit-effort values (CPUE) for fish captured during spawning surveys in waterbodies of the Jericho Study Area, 1999.

	•		-		• • •		
Waterbody	Site Label	Site Soak Time (h)	Effort	Species	Sexual Maturity	Count	CPUE
Carat Lake							
	GNLCA01	3.98	0.74				
				Lake trout	Unknown	2	2.70
				Lake trout	Ripe	2	2.70
	GNLCA03	13.67	2.54				
				Arctic char	Gravid	1	0.39
				Arctic char	Unknown	2	0.79
				Lake trout	Ripe	5	1.97
				Lake trout	Unknown	6	2.36
	GNLCA04	1.93					
				No Fish			
	GNLCA05	2.80					
				No Fish			
	GNLCA06	3.85	0.72				
				Round whitefish	Unknown	1	1.40
Lake C3							
	GNLC0306	7.55	1.40				
				Arctic char	Ripe	1	0.71
				Lake trout	Unknown	3	2.14
				Lake trout	Gravid	1	0.71
				Lake trout	Ripe	2	1.43
				Lake trout	Gravid	1	0.71
				Round whitefish	Unknown	3	2.14
	GNLC0307	1.87	0.35				
				Round whitefish	Unknown	1	2.88
	GNLC0308	4.00	0.74	Tround William	C.III.IIO W.II	-	2.00
	GNECOSOO	1.00	0.71	Lake trout	Ripe	1	1.35
	GNLC0309	6.25	1.16	Lake front	Кірс	1	1.55
	GNECOSO	0.23	1.10	Arctic char	Ripe	3	2.58
				Arctic char	Gravid	1	0.86
				Lake trout	Mature	1	0.86
				Lake trout	Ripe	1	0.86
				Round whitefish	Gravid	1	0.86
	CNII (20210	6.22	1.10	Round whitefish	Unknown	1	0.86
	GNLC0310	6.33	1.18	Laka travt	Dina	4	2.40
				Lake trout	Ripe	4	3.40
				Lake trout	Gravid	1	0.85
				Lake trout	Unknown	1	0.85
				Round whitefish	Unknown	3	2.55

APPENDIX E DETAILED SURVEY DATA

Appendix E Table E1. Number of fish recorded during backpack electrofishing using the removal-depletion method in Reach 1 of Stream C1, Jericho Study Area, 1999.

Waterbody	Reach	Date	Pass No.	Effort (min)	Species	Captured	Observed
Stream C1							
	1	8/2/1999					
			1	7.45			
					Arctic char	16	
					Burbot	3	
					Lake trout	7	
					Slimy sculpin	10	1
			2	5.97			
					Arctic char	9	
					Burbot	1	
					Lake trout	3	
					Slimy sculpin	10	1
			3	7.18			
					Arctic char	2	
					Burbot	1	
					Lake trout	4	
					Slimy sculpin	7	

Appendix E Table E2. Population estimate results for fish recorded in Stream C1, Jericho Study Area, 1999.

Species	Number Captured	Non-standar Estimate	rdized SE	95% Lower	CI Upper	Distance Sampled (m)	3	95% Lower	_
Arctic Char	27	28	2	27	32	92	30	29	4
Burbot	5	5	1	5	7	92	5	5	2
Lake Trout	14	17	5	14	28	92	18	15	12
Slimy Sculpin	27	50	32	27	115	92	54	54	54

Appendix E Table E3. Shoreline lake habitat characteristics of waterbodies in the Jericho Study Area, 1999.

Waterbody	Data	Zone	Shoreline	Subsurface		Subs	Substrate Type (%)	lype ((%)		Shoreline Habitat Types (%)	Shoreline Vegetation (%)
Hater boar	Date	7007	Length (m)	Slope	OM SI	$\mathbf{S}\mathbf{A}$	GR	00	ВО	BE	Grass Boulder Bedrock	Grass Sedge Macrophyte
Carat Lake												
	7/31/1999											
		1	188.6	Low			25	25	50			100
		2	139.7	Low			25	25	50		10	06
		3	147.5	High				100	_		08	
		4	162.8	Moderate				50	50		70	
		5	114.6	Low					100		10	06
		9	142.4	Low				50	50		5	95
		7	124.0	Low			30	30	40		5	95
		8	7.86	Low				50	50		5	95
		6	9.86	Low			35	35	30			100
		10	83.9	Low	10	10	35	35	10		5	95
		11	107.3	Low	10	10	35	35	10		100	5
		12	101.6	Low			35	35	30		100	
		13	76.1	Low	10	10	20	20	40		08	20
		14	50.7	Low						100	100	
		15	261.5	Low					100		100	
		16	94.8	Low			30	30	40		08	20
		17	64.1	High						100	100	
		18	184.5	Low	15	15	15	50	5		100	S

Appendix E Table E3. Shoreline lake habitat characteristics of waterbodies in the Jericho Study Area, 1999.

in mark words	Date	Zone	Shoreline	Subsurface		Subst	rate T	Substrate Type (%)	_		Shorelin	e Habitat	Shoreline Habitat Types (%)	Shoreline Vegetation (%)
			Length (m)	Slope	OM	SI SA	GR	00	B 0	BE	Grass	Boulder	Bedrock	Grass Sedge Macrophyte
Lake C1														
	7/23/1999													
		1	220.2	Moderate		5		S	20	70		40	09	
		2	36.2	Low		10		40	50			100		
		ю	16.7	Low	'n	15		S	75		100			15
		4	237.5	Low					100		5	95		
		5	116.2	Low		09			40		95	S		09
		9	33.2	Low		5			85	10	5	82	10	5
		7	74.9	Low					40	09			100	
		∞	43.6	Low		5		S	06		10	06		10
Lake C2														
	7/23/1999													
		1	50.4	Low		5			95		50	20		
		2	39.7	Low	•	70			30		95	S		99
		ю	58.2	Low		10			06		20	80		5
		4	28.7	Low					100		10	06		
		S	30.8	Low		10			06		100			10
		9	24.9	Moderate		10	5	15		70			100	
		7	32.8	Low					100			100		
		∞	120.3	Low		10			15	75	5	15	08	
Lake C3														
	7/24/1999													
		-	171.9	Moderate					100			100		

Jericho Diamond Project Baseline Aquatic Studies Program (1999)

F Table E3 Арре

Length (m) 7/24/1999 2 261.0 3 48.8 4 164.2 5 28.1 6 59.9 7 119.3 8 183.5 9 31.6 10 98.4 11 25.7 12 411.8 13 57.1 14 41.6 15 396.3 16 55.9 17 412.5 18 35.0 19 75.7 20 39.2	Waterhody	Date	Zone	Shoreline	Subsurface		Substrate Type (%)	Type (%)		Shorelir	Shoreline Habitat Types (%)	7pes (%)	Shoreline Vegetation (%)
1724/1999 2 261.0 Low 50 50 100 3 48.8 Low 50 50 100 4 164.2 Low 100 50 50 5 28.1 Low 100 100 8 183.5 Low 100 100 10 98.4 Low 100 100 11 25.7 Low 100 100 12 411.8 Low 100 100 13 57.1 Low 100 100 14 41.6 Low 100 100 15 396.3 Low 100 100 16 55.9 Low 100 100 17 41.5 Low 100 100 18 35.0 Low 100 100 19 75.7 Low 100 100 20 39.2 Low 100 100 21 11.1 Low 100 100 22 39.2 Low 100 100 23 11.1 Low 100 100 24 11.1 Low 100 100 25 39.2 Low 100 100 26 39.2 Low 100 100 27 11.1 Low 100 100 28 30.2 Low 100 100 29 31.5 Low 100 100 30 30.2 Low 100 100 30 30.2 Low 100 100	arci roug	Date	707	Length (m)	Slope		SA	00		Grass		3edrock	Grass Sedge Macrophyte
2 261.0 Low 50 100 100 3 48.8 Low 50 50 100 100 4 164.2 Low 100 50 50 100 5 28.1 Low 100 50 50 8 119.3 Low 100 50 50 9 31.6 Low 100 50 50 10 98.4 Low 100 50 50 11 25.7 Low 100 50 50 12 41.8 Low 100 100 100 13 57.1 Low 100 100 100 16 55.9 Low 100 100 100 16 55.9 Low 100 100 100 18 35.0 Low 100 100 100 20 39.2 Low 100 100 100	Lake C3												
261.0 Low 50 100 100 48.8 Low 50 100 100 164.2 Low 100 50 100 38.1 Low 100 100 100 119.3 Low 100 20 100 183.5 Low 100 20 20 183.6 Low 100 20 20 411.8 Low 100 20 20 411.8 Low 100 100 20 411.8 Low 100 100 20 411.8 Low 100 100 20 411.5 Low 100 100 20 412.5 Low 100 100 100 35.0 Low<		7/24/1999											
48.8 Low 50 100 164.2 Low 100 100 28.1 Low 100 50 100 19.3 Low 100 100 100 119.3 Low 100 50 100 31.6 Low 100 50 50 41.18 Low 100 7 100 41.18 Low 100 7 100 41.18 Low 100 100 7 100 41.18 Low 100 100 7 100 41.18 Low 100 100 7 100 41.25 Low 100 100 100 100 412.5 Low 100 100 100 100 35.0 Low 100 100 100 100 412.5 Low 100 100 100 100 35.0 Low 100 </td <td></td> <td></td> <td>6</td> <td>261.0</td> <td>Low</td> <td></td> <td></td> <td>100</td> <td></td> <td></td> <td>100</td> <td></td> <td></td>			6	261.0	Low			100			100		
164.2 Low 100 50 50 28.1 Low 100 50 50 119.3 Low 100 100 100 183.5 Low 100 50 50 31.6 Low 100 50 50 411.8 Low 100 100 100 411.8 Low 100 100 100 396.3 Low 100 100 100 412.5 Low 100 100 100 412.5 Low 100 100 100 395.0 Low 100 100 100 412.5 Low 100 100 100 412.5 Low 100 100 100 395.0 Low 100 100 100 412.1 Low 100 100 100 412.1 Low 100 100 100 412.5 Low 100 100 100 412.5 Low 100			В	48.8	Low	5(•	50		100			
28.1 Low 50 50 50 59.9 Low 100 100 100 119.3 Low 100 50 50 183.5 Low 100 50 50 98.4 Low 100 7 100 411.8 Low 100 7 100 57.1 Low 100 100 7 100 411.6 Low 100 100 100 100 100 55.9 Low 100 100 100 100 100 100 412.5 Low Low 100 100 100 100 100 75.7 Low Low 100 100 100 100 100 139.2 Low Low 100			4	164.2	Low			100	_		100		
59.9 Low 100 100 119.3 Low 100 50 100 131.6 Low 100 50 50 100 98.4 Low 100 7 100			S	28.1	Low			100		50	50		
119.3 Low 100 100 183.5 Low 100 50 50 31.6 Low 100 100 100 25.7 Low 100 100 100 41.18 Low 100 100 100 396.3 Low 100 100 100 412.5 Low 100 100 100 35.0 Low 100 100 <td< td=""><td></td><td></td><td>9</td><td>59.9</td><td>Low</td><td></td><td></td><td>100</td><td></td><td></td><td>100</td><td></td><td></td></td<>			9	59.9	Low			100			100		
1835 Low 100 50 50 31.6 Low 100 100 100 98.4 Low 100 100 100 411.8 Low 100 100 100 35.1 Low 100 100 100 41.5 Low 100 100 100 412.5 Low 100 100 100 35.0 Low 100 100 100 35.0 Low 100 100 100 35.0 Low 100 100 100 112.1 Low 100 100 100 112.1 Low 100 100 100			7	119.3	Low			100	_		100		
31.6 Low 100 50 50 98.4 Low 100 100 100 25.7 Low 100 100 100 411.8 Low 100 100 100 396.3 Low 100 100 100 412.5 Low 100 100 100 35.0 Low 100 100 100 412.5 Low 100 100 100 35.0 Low 100 100 100 412.1 Low 100 100 100 412.1 Low 100 100 100			∞	183.5	Low			100	_			100	
984 Low 100 100 25.7 Low 100 100 411.8 Low 100 100 57.1 Low 100 100 396.3 Low 100 100 412.5 Low 100 100 35.0 Low 100 100 35.0 Low 100 100 39.2 Low 100 100 112.1 Low 100 100			6	31.6	Low			100	_	50	50		
411.8 Low 100 100 57.1 Low 100 100 41.6 Low 100 100 396.3 Low 100 100 412.5 Low 100 100 35.0 Low 100 100 35.1 Low 100 100 35.2 Low 100 100 39.2 Low 100 100 112.1 Low 100 100			10	98.4	Low			100	_		100		
411.8 Low 100 100 57.1 Low 100 100 41.6 Low 100 100 35.9 Low 100 100 412.5 Low 100 100 35.0 Low 100 100 35.7 Low 100 100 35.2 Low 100 100 112.1 Low 100 100			111	25.7	Low			100				100	
57.1 Low 100 100 41.6 Low 100 100 396.3 Low 100 100 412.5 Low 100 100 35.0 Low 100 100 75.7 Low 100 100 39.2 Low 100 100 112.1 Low 100 100			12	411.8	Low			100	_		100		
41.6 Low 100 100 396.3 Low 100 100 412.5 Low 100 100 35.0 Low 100 100 75.7 Low 100 100 39.2 Low 100 100 112.1 Low 100 100			13	57.1	Low			100				100	
396.3 Low 100 100 55.9 Low 100 100 412.5 Low 100 100 75.7 Low 100 100 39.2 Low 100 100 112.1 Low 100 100			14	41.6	Low			100	_	100			
55.9 Low 100 100 412.5 Low 100 100 35.0 Low 100 100 35.2 Low 100 100 112.1 Low 100 100			15	396.3	Low			100			100		
412.5 Low 100 100 35.0 Low 100 100 39.2 Low 100 100 112.1 Low 100 100			16	55.9	Low			100	_	100			
35.0 Low 100 100 75.7 Low 100 100 39.2 Low 100 100 112.1 Low 100 100			17	412.5	Low			100			100		
75.7 Low 100 39.2 Low 100 112.1 Low 100			18	35.0	Low			100		100			
39.2 Low 100 100 100 112.1 Low 100			19	75.7	Low			100			100		
112.1 Low 100			20	39.2	Low			100		100			
			21	112.1	Low			100	_		100		

Appendix E Table E3. Shoreline lake habitat characteristics of waterbodies in the Jericho Study Area 1999

Waterhody	Date	Zone	Shoreline	Subsurface	•	Substrate Type (%)	Type (%			Shorelir	Shoreline Habitat Types (%)	(%) sad	Shoreline Vegetation (%)
Tarcinous		707	Length (m)	Slope	IS WO	SA GR	00 ~	ВО	BE	Grass	Boulder F	Bedrock	Grass Sedge Macrophyte
Lake C3													
	7/24/1999												
		22	355.0	Low				100		50	50		
	7/28/1999												
		23	188.4	Moderate			50	50			100		100
		24	256.9	Low				100		100			100
		25	132.6	Moderate			50	50		100			100
		26	150.8	Low			50	50		100			100
		27	145.8	Low				100			100		
		28	199.1	Moderate			50	50			75	25	
		29	255.8	Low				100			100		100
	9/4/1999 1												
		30	538.8	High			50	50			100		
		31	406.9	Low			40	09		100			100
		32	106.9	Low		20	40	40			100		
		33	385.6	Moderate			40	09		80	20		
		34	113.8	High				50	50		100		
		35	86.1	Low			40	09		50	50		
		36	93.1	Low		20	30	50		100			
		37	290.3	Moderate			20	50	30			100	
		38	531.6	Low			50	30	20			100	
		39	344.0	Low			50	50		100			100

Wotorbody	Doto	Zono	Chorolino	Cubenifoco	Sabs	strate [Substrate Type (%)	~		Shoreli	ne Habitat	Shoreline Habitat Types (%)	Shoreline Vegetation (%)
rate bour	Date	Zone	Length (m)	Slope	OM SI SA	GR	00	ВО	BE	Grass	Boulder	Boulder Bedrock	Grass Sedge Macrophyte
Lake C3													
	9/4/1999 1												
		40	407.3	Low			50	50		06	10		
		41	145.7	Low			40	09			20	08	
		42	146.9	Low			09	40		100			
		43	132.5	Moderate			20	50	30			100	
		44	84.9	Low			09	40		70	30		
		45	106.6	Low			50	50		100			
		46	102.4	Low			50	30	20			100	
		47	285.9	Moderate			50	50			10	06	
		48	341.9	Moderate			50	50		50	20		
		49	238.7	Low			50	30	20	30	20		
		50	311.4	Low	10	10	40	40			100		
		51	232.6	Low			30	40	30			100	
		52	271.8	Low			50	50		50	20		
		53	358.5	Low			50	50				100	
		54	233.1	Low			30	35	35			100	
Lake D10													
	7/23/1999												
		1	8.89	Low	20			80		80	20		
		2	63.7	Low				100			10	06	
		3	237.3	Moderate				100			100		

										A	RL&L Environmental Services Ltd.
Appendix E	Table E3. S	Shoreline	lake habitat c	haracteristics	Appendix E Table E3. Shoreline lake habitat characteristics of waterbodies in the Jericho Study Area, 1999.	le Jericho Sta	udy Area,	.6661			
Waterbody	Date	Zone	Shoreline Length (m)	Subsurface Slope	Substrate OM SI SA G	Substrate Type (%) SA GR CO BO	BE	Shoreline	Shoreline Habitat Types (%) Grass Boulder Bedrock	es (%) drock	Shoreline Vegetation (%) Grass Sedge Macrophyte
Lake D10											
	7/23/1999										
		4	315.9	Low		100			, 7	100	
		'n	25.1	High		100			, 7	100	
		9	220.2	Low		100			100		
		7	254.6	High		100			. 7	100	
		∞	38.6	Moderate		100			100		
		6	76.0	High		100			, 7	100	
		10	49.6	Low		100			100		
		11	20.0	Low	30	70		70	30		10
		12	186.0	Low		100			100		
		13	32.0	Low	30	70		100			10
		14	175.0	High		100			. 7	100	
		15	9.77	Low		100			100		
		16	147.5	Low		100		50	50		
		17	381.1	Low		50	50			100	
		18	138.3	Moderate		50	50		100		
		19	63.4	Low		100			100		

Appendix E Table E4. Stream habitat types recorded during stream surveys in the Jericho Study Area, 1999.

		Surveyed			Habitat T	Types (%)		
Waterbody	Reach	Length (m)	Pool	Run	Riffle	Flat	Dispersed	Boulder
Stream C19								
	1	35						
	2	146					75	25
Stream C3								
	1	110			90		10	
	2	215	10	10	80			
	3	113					100	
	4	198						
	5	276						
	6	139				50	50	

Defined Defined Defined Defined Defined Defined Defined Defined Defined Bank Type Multiple Dispersed Multiple Multiple Multiple Multiple Multiple Multiple Multiple Channel Type 0.12 0.14 0.01 0.03 0.01 0.22 0.4 0 75 0 Water Velocity 0.05 0.08 0.35 0.01 0.03 0.12 0.21 0.21 0.1 50 0.005 0.005 0.01 0.18 0.01 0.08 0.16 0.14 0.08 25 Appendix E Table E5. Habitat characteristics Stream C1 in the Jericho Study Area, 1999 Max. Depth 0.28 0.16 0.26 0.07 0.2 0.1 0.1 0.1 0.1 0.13 0.08 0.06 0.11 0.07 0.09 0.05 0.09 75 Water Depth 0.08 0.11 0.15 0.17 0.11 0.08 0.05 0.08 0.03 50 0.07 0.05 0.11 0.24 0.05 0.06 0.02 0.05 0.04 25 Wetted Width 1.03 1.86 0.88 0.96 1.61 1.09 1.5 0.84 1.5 Habitat Type RFBG Riffle Riffle Riffle Pool Run Flat RFHabitat UnitID 10 9 6 Sampling Date 7/23/1999 7/23/1999 7/23/1999 7/23/1999 7/23/1999 7/23/1999 7/23/1999 7/23/1999 Reach Waterbody Stream C1

BE

10

70

2

2

10

20

80

25

65

2

2

9

40

20

75

2

20

70

10

10

80

10

60 20

40

70

10

40 70 60

50 25 40

Defined Defined Defined

Multiple Multiple

0.22

0.02 0.26 0.19

0.29 0.13 0.2

0.09

0.09

0.04

1.94

Riffle

12

7/23/1999

Multiple

0.09

0.0

1.36

0.1

0.07

0.09

5

SA GR CO BO

S

OM

Substrate Type (%)

Jericho Diamond Project Baseline Aquatic Studies Program (1999)

Neutrology Reach Simpling Habitat Characteristics Stream C.1 in the Jercino Study Mair Papial Main Habitat Wetled National Hab																RL&L Environmental Services Ltd.	ronme	ntal S.	ervice	s Ltd.
Part Sampling Hobitat Width Mart Papt Mart Mater Papt Mart Mater	ppendix E Ta	able E	5. Habitat cl	haracter	istics Strea		he Jeri	cho Si	tudy A	rea, 1999.										
2 7/23/1999 12 Riffle	Waterbody	Reach	Sampling Date	Habitat UnitID	Habitat Type	Wetted Width	Wai	ter Dept	th .75	Max. Depth	Wate	er Velo	city .75	Channel Type	Bank Type	∑	trate T A GR	rype (%) BO	
7223/1999 12 Riffle	Stream C1																			
7/23/1999 13 Riffle 1.34 0.11 0.13 0.13 0.03 0.03 0.03 Multiple Defined Portined 5 40 7/23/1999 13 Riffle 2.25 0.08 0.03 0.12 0.03 <td></td> <td>2</td> <td></td>		2																		
1.24 0.11 0.11 0.13 0.13 0.03 0.0 0.0 0.03 0.04 0.0 0.03 0.04 0.0 0.03 0.04 0.0 0.03 0.04 0.0 0.03 0.04 0.0 0.03 0.04 0.0 0.03 0.04 0.0 0.03 0.04 0.0 0.03 0.04 0.0 0.03 0.04 0.0 0.04 0.0 0.0 0.04 0.0 0.0 0.0			7/23/1999	12	Riffle															
3.33 0.03 0.1 0.12 0.12 0.03 0.03 0.01 0.12 0.02 0.03 Multiple Defined Defined Permed 7 7/23/1999 14 Riffle 1.54 0.03 0.03 0.02 0.02 0.03 0.04 0.02 0.03 0.04 0.02 0.03 0.04 0.05 0.06 0.05 0.06 0.06 0.07 0.06 0.07 0.06 0.07 0.06 0.07 0.06 0.07 0.06 0.07 0.06 0.07 0.06 0.07 <t< td=""><td></td><td></td><td></td><td></td><td></td><td>1.34</td><td>0.11</td><td>0.11</td><td>0.13</td><td>0.13</td><td>0.08</td><td>0</td><td>0.03</td><td>Multiple</td><td>Defined</td><td></td><td>5</td><td>40</td><td>55</td><td></td></t<>						1.34	0.11	0.11	0.13	0.13	0.08	0	0.03	Multiple	Defined		5	40	55	
7/23/1999 13 Riffle 2.25 0.08 0.05 0.09 0.15 0.00 0.15 0.00 0.15 0.00 0.26 0.03 0.03 0.04 0.05 0.03 0.03 0.04 0.05 0.09 0.26 0.03 0.03 0.04 0.05 0.09 0.05 0.03 0.03 0.04 0.04 0.05 0.03 0.03 0.04 0.04 0.05 0.03 0.03 0.04 0.04 0.05 0.03 0.03 0.04 0.04 0.05 0.03 0.03 0.04 0.04 0.05 0.03 0.03 0.04 0.04 0.05 0.03 0.03 0.04 0.04 0.05 0.03 0.03 0.04 0.04 0.05 0.03 0.03 0.04 0.04 0.05 0.04 0.01 0.04 0.01 0.04 0.01 0.04 0.01 0.04 0.01 0.04 0.01 0.04 0.01 0.04 0.01 0.04						3.53	0.03		0.12	0.12	0.27	0.03	0.08	Multiple	Defined		S	55	40	
7123/1999 13 Ritifle 2.25 0.08 0.05 0.03 0.13 0.005 0.13 0.03 0.13 0.005 0.13 0.005 0.13 0.005 0.13 0.005 0.13 0.005 0.13 0.005 <td></td> <td>3</td> <td></td>		3																		
7/23/1999 14 Riffle 0.08 0.08 0.08 0.09 0.02 0.13 0.005 0.09 0.26 0.05 0.09 0.26 0.05 0.09 0.02 0.09 0.02 0.09 0.02 0.09 0.02 0.09 0.02 0.09 0.00			7/23/1999	13	Riffle															
7/23/1999 154 0.01 0.05 0.09 0.26 0.08 0.08 Multiple Defined Defined 20 75 7/23/1999 16 Riffle 0.01 0.02 0.09 0.02 0.09 0.09 0.01 0.00 0.09 0.00						2.25	0.08		0.05	0.08	0.02	0.13		Multiple	Defined		15		15	
1.54 0.01 0.05 0.06 0.09 0.26 0.05 0.08 0.05 0.06 0.09 0.26 0.05 0.08 0.01 0.05 0.09 0.05 0.09 0.00 0.			7/23/1999	41	Riffle															
7/23/1999 16 Riffle 0.1 0.2 0.12 0.22 0.22 0.05 0.05 0.05 0.07 Multiple Defined Perined 5 55 7/23/1999 18 Riffle 0.01 0.02 0.08 0.02 0.09 0.00 0.01 0.05 0.03 0.03 0.09 Double Defined Perined 5 9 7/23/1999 19 Hat 0.09 0.04 0.01 0.05 0.03 0.03 0.09 Double Defined Perined 5 9 7/23/1999 19 Hat 0.04 0.09 0.11 0.06 0.27 0.005 Double Defined 5 9 7/23/1999 19 Hat 0.04 0.09 0.01 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00						1.54	0.01		90.0	0.09	0.26	0.05	0.08	Multiple	Defined		20		5	
1/23/1999 18 Riffle			7/23/1999	16	Riffle															
7/23/1999 18 Riffle 0.71 0.05 0.08 0.005 0.08 0.005 0.08 0.005 0.08 0.005 0.08 0.005 0.08 0.005 0.09 0.11 0.01 0.05 0.01 0.05 0.01 0.05 0.01 0.02 0.01 0.05 0.01 0.05 0.01 0.05 0.01 0.05 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.01 0.00 0.01						1.07	0.1		0.12	0.22	0	0.005		Multiple	Defined		5	55	40	
1.			7/23/1999	18	Riffle															
6.94 0.08 0.1 0.06 0.01 0.02 0.08 0.1 0.05 0.08 0.1 0.05 0.09 0.11 0.00 0.27 0.005 0.09 0.01 0.00 0.11 0.00 0.27 0.005 0.03 0.03 0.03 0.03 0.03 0.03 0.0						0.71	0.05		0.02	80.0	0.005	0.05		Double	Defined		15		10	
10.00 0.05 0.06 0.05 0.06 0.11 0.005 0.03 0.05 Double Defined 5 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9						0.94	0.08		90.0	0.11	0.21	0.05	0.08	Multiple	Defined			95	5	
1.04 0.04 0.11 0.11 0.12 0.05 0.03 0.05 0.05 0.05 0.05 0.05 0.05						0.97	90.0	0.05	90.0	0.11	90.0	0.27	0.005	Double	Defined		5	90	5	
1.04						1	0.04	0.09	0.11	0.11	0.005	0.03	0.05	Double	Defined		10		S	
7/23/1999 19 Flat 0.84 0.11 0.18 0.2 0.0 0.005 0.03 0.03 Multiple III-defined 85 10 6/6/1999 137 Pond 0.25 0.25 0.25 0.05 0.03 0.03 0.03 0.03 0.03 0.03 0.0						1.04	0.02		0.04	0.12	0.18	0.19	0.28	Multiple	Defined		15		S	
6/6/1999 137 Pond 0.11 0.18 0.2 0.2 0.00 0.005 0.03 0.03 Multiple III-defined 85 10 0.25 0.25 0.005 0.005 0.005 0.003 0.			7/23/1999	19	Flat															
6/6/1999 137 Pond						0.84	0.11	0.18	0.2	0.2	0.005	0.03			III-defined	85		10	S	
137 Pond		4																		
0.27			6/6/1999	137	Pond															
0.25										0.27										
										0.25										

Jericho Diamond Project Baseline Aquatic Studies Program (1999)

ppendix E Table E5. Habitat characteristics Stream C1	ible E	5. Habitat ch	naracteri	stics Strea		he Jeric	ho Stu	ıdy Ara	in the Jericho Study Area, 1999.				ı	ı	RL&L Environmental Services Ltd.	vironme	ental S.	rvices	s Ltd.
Waterbody	Reach	Sampling Date	Habitat UnitID	Habitat Type	Wetted Width	Wate	Water Depth 5 .50 .7	h .75	Max. Depth	Water .25	Water Velocity	ty .75	Channel Type	Bank Type	Sul Si	Substrate Type (%)	Type (% R CO	%) BO	BE
Stream C1																			
	4																		
		6/6/1999	137	Pond															
									0.31										
									0.34										
									0.35										
									0.18										
	5																		
		7/23/1999	20	Riffle															
					0.5	0.04	0.06 0.	60.0	0.1	0.4	0.47	0.2	Single	Defined			30	70	
					1.05	0.06	0.09 0	0.1	0.1	0.12	0.04	0.17	Single	Defined		10 10) 50	30	
		7/23/1999	21	Run															
					0.75	0.01	0.08 0.	60.0	0.11	0.22	0.18	0.1	Single	Defined		20 25	5 45	10	
					8.0	0.08	0.07 0.	0.05	80.0	0.24 (0.005	0.11	Single	Defined		20 20) 50	10	
		7/23/1999	22	Riffle															
					0.95	0.15	0.17 0.	0.03	0.21	0.005	0.23 (0.04	Single	Defined		10 10) 40	40	
					0.8	0.13	0.17 0.	0.03	0.08	0.08	0.15 (0.29	Single	Defined		10	40	50	
					0.45	0.05	0.1 0.	0.08	0.11	0.08	0.19	90.0	Single	Defined			20	80	
					6.0	0.05	0.03 0.	0.04	0.07	0.09	0.25 (0.23	Single	Defined		10	02 (20	
		7/23/1999	26	Riffle															
					1.35	0.1	0.1 0.	0.14	0.16	0.15	0.13 (0.15	Single	Defined		15	5 75	10	
	9			-															
		6/10/1999	106	Pond	40.8				790						100				
					0.01			_							001				

Jericho Diamond Project Baseline Aquatic Studies Program (1999)

Appendix E Table E5. Habitat characteristics Stream C1	Table E	5. Habitat c	haracter	istics Stre		the Jeri	cho St	udy Ar	in the Jericho Study Area, 1999.						RL&L	RL&L Environmental Services Ltd.	nmen	al Ser	vices
Waterbody	Reach	Sampling Date	Habitat UnitID	Habitat Type	Wetted Width	Wat	Water Depth 5 .50 .7	h .75	Max. Depth	Wate	Water Velocity 25 .50 .7.	ity .75	Channel Type	Bank Type	S WO	Substrate Type (%)	ate Ty GR	7pe (% CO	%) BO BE
Stream C1	1							_	-				_		_				
	7	7/28/1999	54	Riffle															
					1.82	0.05	0.06	90:0	0.07	0.18	0.45	0.2	Single	Defined		10	25	55	10
					0.67	0.08	0.17	0.14	0.17	0.15	0.54	0.22	Single	Defined	10		10	70	10
		7/28/1999	55	Riffle															
					0.91	0.14	0.16	0.16	0.18	0.28	0.32	0.29	Single	Defined			10	20	70
					1.06	0.1	0.111	0.07	0.13	0.36	0.18	0.16	Single	Defined	S		10	20	65
		7/28/1999	57	Run															
					0.73	0.23	0.22 (0.13	0.23	0.3	0.33	0.27	Single	Defined	65		5	15	15
	∞																		
		8/2/1999	58	Flat															
					2.3	0.4	0.45 (0.36	0.45	0	0.005	0	Single	Defined	70	_			30
		8/2/1999	59	Riffle															
					1.7	0.03	0.04	0.12	0.12	0.23	0.16	0.05	Single	Defined					100
		8/2/1999	09	Flat															
					1.25	0.18	0.27	0.21	0.31	0.005	0.03	0.03	Single	Defined	06	_			10
		8/2/1999	61	Riffle															
					1.15	0.04	0.06	0.05	0.1	0.26	0.33	0.34	Single	Defined		10	70	10	
		8/2/1999	62	Disperse															
					12.6	0.36	0.42	0.16	0.42	0	0	0	Dispersed	Dispersed Ill-defined	10				06
		8/2/1999	63	Garden															
					8.4	0.05	0.04	0.02	90.0	0.12	0.1	0	Subsurface	Subsurface III-defined				20	60 20
													_		-				