

Result Summary

Client: TAH102 Reference: 06-1055-01-TRS

Contents

Client: Tahera Diamond Corporation; operation Yellowknife

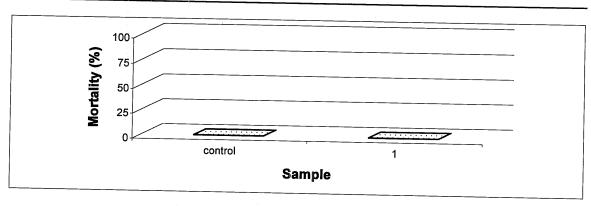
Sample: PKCTOX01

Collection: collected on 2006/05/30 at not given by CW Receipt: received on 2006/05/31 at 1410 by L. Lamantange

Containers: received 1 x 20 L pail at 18 °C, in good condition with no

seals and no initials

Description: type: water, collection method: grab


Test: started on 2006/06/01; ended on 2006/06/05

Result Summary......1
Test Conditions.....2
Test Data.....3
Comments/Statistics..5
QA/QC..........6

Form: F060 v 3.0

Result:

Sample	Client Code	Mortality (%)	Comment	
control 1	lab control PKCTOX01	0	not toxic as tested	

Test Conditions

Client: TAH102

Reference: 06-1055-01-TRS

Form: F060 v 3.0

Method: Biological Test Method: Reference Method for Determining Acute Lethality of

Effluents to Rainbow Trout, 1990. Environment Canada, EPS 1/RM/13.

(amended 1996 and 2000)

Test type: Trout 96-h Static Acute Test (HQ 4.4.4.1)

Species: Oncorhynchus mykiss

Organism source: Ackenberry Trout Farms (Batch 20060529TR)

Acclimation: 3 days

Stock mortality: 0.6% (seven days preceeding testing)

Sample initial chemistry: pH: 7.5; EC: 176 (µS/cm); DO: 7.6 (mg/L); temperature: 18 °C

hardness (mg CaC03/L): 35; colour: colourless; odour: odourless

Sample holding time: 2 days (must be ≤ 5)

Sample storage: 4 ± 2°C in darkness

Test vessel: The test was conducted in 22 L plastic pails with polyethylene liners

Test volume: 19 Litres

Sample pre-treatment: All test solutions and controls were pre-aerated for 30 minutes

Dissolved oxygen in full strength sample was 8.8 mg/L after pre-aeration The sample was not filtered or pH adjusted prior to or during testing

Loading density: 0.21 g/Litre (must be ≤ 0.5 g/Litre)

Control water: Dechlorinated City of Calgary water acclimated to test conditions

Test concentrations: Undiluted sample plus a negative control

Test replicates: One replicate per treatment; 10 fish per replicate

Feeding: Fish are not fed 24 hours before test initiation and no feeding during test Measurements: pH, conductivity, dissolved oxygen and temperature measured daily

Aeration: All treatments aerated at 6.5 (±1 mL/min/L)

Lighting: Overhead full spectrum fluorescent lights; 100-500 lux at surface

Photoperiod: 16h light:8h dark

Test temperature: 15 ± 1°C

Endpoint: Mortality, % mortality at 96-h

Test validity: The control had 100% survival (must ≥ 90%)

Reference toxicant: 96-h test with Phenol (C₆H₅0H) initiated June 5, 2006; current results

(96-h LC50 and 95% confidence limits) = 12.3 (10.4-14.4) mg/L Phenol

Note: Outlined sections are protocol deviations explained on the comment page; v/v, volume per volume

Test Data

Client: TAH102

Reference: 06-1055-01-TRS

Form: F060 v 3.0

Test Log:

Date	Day	Time	Technician	Comment/Observation
2006/06/01	0	1100	B. Denny/M. Luong/A. Vogstad	test fish loaded at 1100 h
2006/06/02	1	1545	B. Denny/M. Luong	all test fish appear normal
2006/06/03	2	1300		all test fish appear normal
2006/06/04	3	1200	B. Denny/C.A. Martens	all test fish appear normal
2006/06/05	4	1200	S. Ford/M. Luong	all test fish appear normal

Chemis	try:							
Sample	control	1					T	T
Day				pH (units)				
0	7.6	7.3						
1	7.9	7.5						
2	7.9	7.6						
3 [7.9	7.5					 	
4	7.9	7.6		T				
0 [416	150	Cor	nductivity (µS	6/cm)			
1	407	156	<u> </u>					
2	410	147	 					
3		149						
4	416	149		ļ.,				
4 L	419	150	Ĺ					
			Disso	lved Oxygen	(ma/L)			
0 [8.7	8.8			T T		<u> </u>	
1	8.5	8.5						
2	8.4	8.4		1		 		
3	8.5	8.6						
4	8.4	8.4					<u> </u>	
			Te	emperature (°C)			
0	15	16	:	Γ ,		T		
1	15	15				 		
2	15	15				 	· .	
3	15	15						
4	14	14						

Test Data

Client: TAH102

Reference: 06-1055-01-TRS

Form: F060 v 3.0

Number Alive:

All VC.							
control	1						T T
10	10						
10	10						
10	10						
10	10						
10	10						
			Mortality (%))			
0	0		T				
	10 10 10 10	control 1 10 10 10 10 10 10 10 10	control 1 10 10 10 10 10 10 10 10	control 1 10 10 10 10 10 10 10 10 10 10 10 10 10 10	control 1 10 10 10 10 10 10 10 10 10 10	control 1 10 10 10 10 10 10 10 10 10 10 10 10 10 10	control 1 10 10 10 10 10 10 10 10 10 10 10 10 10 10

Biology Summary Tables:

Control	Length	Weight
Fish	(cm)	(g)
1	3.7	0.4
2	2.9	0.3
3	4.1	0.7
4	3.5	0.4
5	3.3	0.3
6	3.5	0.2
7	3.7	0.5
8	3.4	0.4
9	3.8	0.5
10	3.7	0.4

average	3.6	0.4
sd	0.3	0.1
cv(%)	9.1	34.2

Notes: nd, not done; na, not applicable; sd, standard deviation; cv(%), coefficient of variation

Sample	Group Weight (g)
control	4.0
1	4.1

Comments/Statistics

Client: TAH102

Reference: 06-1055-01-TRS

Form: F060 v 3.0

Test Result Comments:

None

Data Analysis:

None

Protocol Deviations:

Test fish were held less than 14 days prior to testing

Quality Assurance Information

Test Method: Trout 96h Static Acute Test. (LC50, five or more treatments plus a control)

HydroQual Test Method Manual, section: 4.4.4.1

Reference: Biological Test Method: Reference Method for Determining Acute Lethality of

Effluents to Rainbow Trout, 1990. Environment Canada, EPS 1/RM/13.

including May 1996 and December 2000 amendments.

Test Organism:

test species: Oncorhyncus mykiss culture source: Ackenberry Trout Farms

temperature (°C): 15 ± 1 dissolved oxygen: saturated stock mortality (last 7d): 0.3%

batch number: 20060529TR

Test Design:

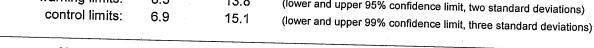
vol. of test vessel (L): 22 test volume depth: >15 cm

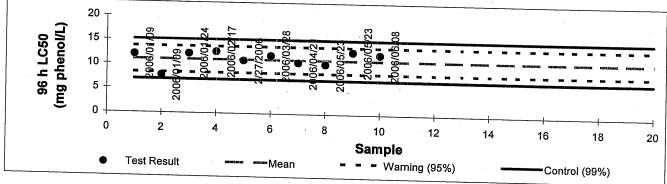
replicates per treatment: 1 fingerlings per replicate: 10 loading (g fish/L): <0.5 temperature (°C): 15 + 1

photoperiod: 16h light: 8h dark light level (water surface): 100-500 lux

control/dilution water: dechlorinated tap water

Warning Chart: mortality LC50 at 96 hours


toxicant: Phenol (C₆H₅OH)


Current Test: started on 2006/06/05 ended on 2006/06/08

result (96 h LC50): 12.3 (10.4-14.4) mg phenol/L (95% confidence limits are in brackets)

 Historical:
 mean:
 11.0
 std.dev:
 1.4
 cv(%):
 12

 warning limits:
 8.3
 13.8
 (lower and upper 95% confidence limit, two standard deviations)

Qualty Assurance Unit:

Result Summary

Client: TAH102

Client: Tahera Diamond Corporation; operation

Reference: 06-1055-01-DAS

Yellowknife

Contents

Sample: PKCTOX01

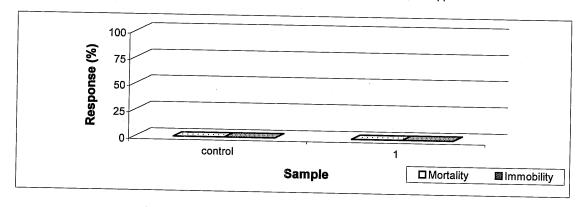
Result Summary.....1
Test Conditions.....2
Test Data.....4

Collection: collected on 2006/05/30 at not given by CW Receipt: received on 2006/05/31 at 1410 by L. Lamantange Containers: received 1 x 20 L pail at 18 °C, in good condition

Comments/Statistics..5 QA/QC.....6

Form: F060 v 3.0

with no seals and no initials


Description: type: water, collection method: grab

Test: started on 2006/06/01; ended on 2006/06/03

Result:

Sample	Client Code	Ave Mortality (%)	erage Immobility (%)	Comment	
control	lab control PKCTOX01	0	0	not toxic as tested	

Notes: sd, sample standard deviation; cv, coefficient of variation; nd, not done; na, not applicable

Test Conditions

Client: TAH102

Reference: 06-1055-01-DAS

Form: F060 v 3.0

Method: Biological Test method: Reference Method for Determining Acute Lethality of

Effluents to Daphnia magna, 1990. Environ. Can., EPS 1/RM/14.

(amended 1996 and 2000)

Test type: Daphnia 48-h Static Acute Test (HQ 4.4.3.1)

Species: Daphnia magna

Age: < 24 hours old

Organism source: in-house culture

Stock mortality: 0%

Culture brood data: 10 days to first brood

25 neonates per average brood

Sample initial chemistry: pH: 7.5; EC: 176 (µS/cm); DO: 7.6 (mg/L); temperature: 18 °C

hardness (mg CaC03/L): 35; colour: colourless; odour: odourless

Sample holding time: 2 days (must be ≤ 5) Sample storage: 4 ± 2 °C in darkness

Test vessel: 385 mL plastic vessels

Test volume: 150 mL

Sample pre-treatment: The sample was not filtered or pH adjusted prior to or during testing

The sample was pre-aerated for 0 minutes (rate of $37.5 \pm 12.5 \text{ mL/min.L}^{-1}$) The hardness of the sample was not adjusted (mg CaCO₃/L) prior to or during

testing

Loading density: One daphnid/15 mL (must ≤ 1 organism/15 mL)

Control water: Dechlorinated City of Calgary water acclimated to test conditions

The hardness of the control/dilution water was 158 mg CaCO₃/L

Test concentrations: Undiluted sample plus a negative control

Test replicates: Three replicates per treatment, 10 daphnids per replicate

Feeding: None Aeration: None

Measurements: pH, conductivity, dissolved oxygen and temperature at test initiation and

termination

Lighting: Overhead full spectrum fluorescent lights; 400-800 lux at surface

Photoperiod: 16h light:8h dark

Test temperature: 20 ± 2°C

Note: Outlined sections are protocol deviations explained on the comment page

Test Conditions

Client: TAH102

Reference: 06-1055-01-DAS

Form: F060 v 3.0

Endpoint: Mortality, % mortality at 48-h

Immobility, % immobility at 48-h

Test validity: The control had 100% survival (must ≥ 90%)

Control had 0% abnormal behaviour (must < 10%), e.g. immobility

Reference toxicant: 48-h test with NaCl initiated May 30, 2006; current results

(48-h LC50 and 95% confidence limits) = 6.4 (5.7-7.5) g/L NaCl

Note: Outlined sections are protocol deviations explained on the comment page

Test Data

Client: TAH102

Reference: 06-1055-01-DAS

Form: F060 v 3.0

Test Log:

Date	Day	Time	Technician	Comment/Observation
2006/06/01	0	1600	B. Denny	test <i>Daphnia</i> appear normal
2006/06/02	1	1040	B.Denny	test Daphnia appear normal
2006/06/03	2	1430	B.Denny	test Daphnia appear normal

Chemistry:

Sample	control		1			
replicate	а	b	С	а	b	С
Day			11.7			
Day			pH (I	units)		

Day	pH (units)						
0	7.9	7.9	7.9	7.5	7.5	7.5	
2	7.9	7.9	7.9	7.6	7.5	7.5	

			Conductiv	ity (µS/cm)		
L	431	431	431	178	178	178
	405	401	401	180	154	152
<u></u>		<u> </u>				١,

_		i i	Dissolved Ox	xygen (mg/L))	
0	8.1	8.1	8.1	7.8	7.8	7.8
2	8.0	7.9	7.9	7.8	7.8	7.8

			Tempera	ature (°C)		
0	18	18	18	20	20	20
2	20	20	20	20	20	20

Biology:

2

Sample	control			1		
replicate	а	b	С	а	b	С

Day	N	umber Alive	e and Behavio	r (behavior	is in bracket	s)
1	10	10	10	10	10	10
2	10	10	10 (1F)	10	10	10
	Notes: F, floati	ng; I, immobil	e; B, stuck on bub	ble; D, caugh	t in debris	

	-	Morta	lity (%)	
0	0	0	0	1

		<u> </u>	Immob	ility (%)		
2	0	0	0	Ó	0	0
					<u> </u>	

Comments/Statistics

Client:	TAH1	02
---------	------	----

Reference: 06-1055-01-DAS

Form: F060 v 3.0

Test Result Comments:

None

Data Analysis:

None

Protocol Deviations:

None

Daphnia **Test Report**

Quality Assurance Information

Test Method: Daphnia Static Acute Test (LC50, five or more treatments plus a control)

HydroQual Test Method Manual, section: 4.4.3.1

Reference: Biological Test Method: Reference Method for Determining the Acute Lethality of

Effluents to Daphnia magna, 1990. Environment Canada, EPS 1/RM/14.

including May 1996 and December 2000 ammendments.

Test Organism:

test species: Daphnia magna

culture source: in-house

original culture source: Environment Canada

days to first brood: 10

mean brood size: 25 ephippia in stock culture: no

age of test organisms: <24 hours old

culture mortality (%): 0

Test Design:

vol. of test vessel (mL): 500

toxicant: sodium chloride

test volume (mL): 150

replicates per treatment: 1

neonates per replicate: 10

volume per neonate (mL): 15

samples preaerated: no hardness adjustment: no

temperature (°C): 20

photoperiod: 16h light:8h dark

light level (water surface): 400-800 lux

control/dilution water: dechlorinated tap water

Warning Chart: mortality LC50 at 48 hours

toxicant: Sodium Chloride (NaCl)

Current Test: started on 2006/05/30 ended on 2006/06/01

result (48 h LC50): 6.4 (5.7-7.5)

Historical: mean:

5.6

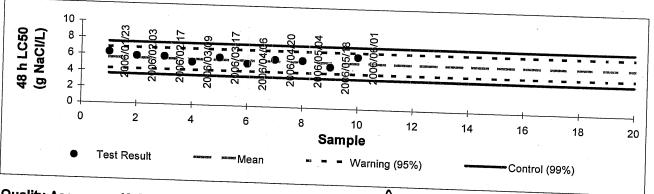
g NaCI/L (95% confidence limits are in brackets)

std. dev:

0.6 cv (%): 12

warning limits:

4.3


6.9

control limits:

7.6

3.7

(lower and upper 95% confidence limit, two standard deviations) (lower and upper 99% confidence limit, three standard deviations)

Quality Assurance Unit: