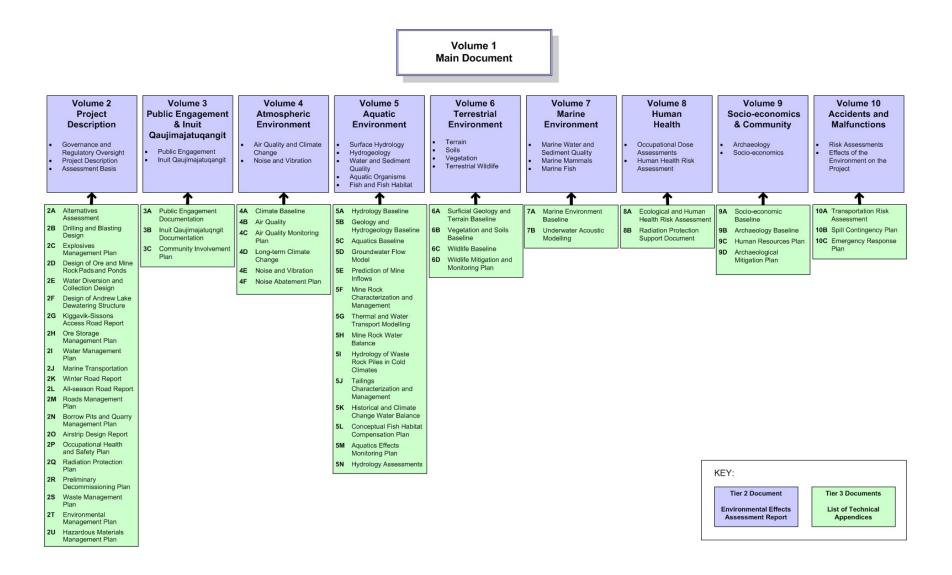


# **Kiggavik Project Environmental Impact Statement**

Tier 2 Volume 7

**Marine Environment** 


#### **FOREWORD**

The enclosed document forms part of the Kiggavik Project Environmental Impact Statement (EIS) submission. The submission has been prepared for the Nunavut Impact Review Board by AREVA Resources Canada Inc to fulfill the requirements of the "Guidelines for the Preparation of an Environmental Impact Statement for AREVA Resources Canada Inc's Kiggavik Project (NIRB File No. 09MN003)".

The EIS submission consists of a number of documents, as shown in the attached road map. These documents have been categorized into tiers, as follows:

- <u>Tier 1</u> document (Volume 1) provides a plain language summary of the Environmental Impact Statement.
- <u>Tier 2</u> documents (Volumes 2 to 10) contain technical information and provide the details of the assessments of potential Project environmental effects for each environmental compartment.
- The Tier 2 documents each have a number of technical appendices, which comprise the <u>Tier 3</u> supporting documents. These include the environmental baseline reports, design reports, modelling reports and details of other studies undertaken to support the assessments of environmental effects.

#### ROAD MAP TO THE ENVIRONMENTAL IMPACT STATEMENT





#### **AUTHORSHIP**

Sections 1 and 2 and 3 volume are authored by AREVA, Section 3 by Pat Vonk and Sections 4 to 10 by Janine Beckett, M.Sc., R.P. Bio and Michelle Marcotte, M.Sc., R.P.Bio, both of Stantec Consulting.





#### **EXECUTIVE SUMMARY FOR VOLUME 7**

As per the guidelines issued by the Nunavut Impact Review Board (NIRB 2011), AREVA Resources Canada Ltd. has prepared this Environmental Impact Statement (EIS) to assess the potential environmental effects of marine transportation associated with the Kiggavik Project (the Project). The two primary components considered in the marine assessment are the proposed dock facility near Baker Lake, and vessel operations in Nunavut waters. This includes routine activities associated with construction, operation and closure of the proposed dock facility in Baker Lake, and marine transport of supplies to support the construction, operation and closure of the Project.

#### **Scope of the Assessment**

The NIRB developed the scope of assessment for the Project based on input from Inuit, government, and other interested stakeholders. Marine issues identified through this consultation, as well as engagement activities undertaken directly by AREVA, include underwater noise, physical presence and movement of vessels, bilge and ballast water, accidental spills, and effects of climate change on the Project. Regulatory considerations pertaining to the marine assessment include the *Fisheries Act* (protects fish and fish habitat), the *Species at Risk Act* (SARA, protects species of conservation concern), the *Nunavut Wildlife Act* (manages wildlife in Nunavut), and the *Nunavut Land Claims Agreement* (land use planning and natural resource management).

Routine operations of marine transportation (including construction and closure) are not expected to affect marine birds, benthic invertebrates, marine vegetation, sediment quality or water quality. Marine birds are present in the local and regional assessment areas (LAA and RAA), and use the marine environment for part or all of their life cycle. However, the physical presence, movement and noise of marine vessels are not expected to affect bird health, behaviour or habitat, given the short duration of vessel operations (open-water season) and the low frequency of transiting vessels. Marine vessel operations have the potential to interact with benthic invertebrates, marine vegetation, sediment quality and water quality (i.e., vessel wake, release of contaminants in bilge and ballast water, and introduction of invasive species in ballast water). However, the magnitude of the effects are expected to be low due to the nature and extent of these interactions and implementation of mitigation measures (e,g., operating protocols, best management practices).

Marine mammals and marine fish are valued environmental components (VECs) for the assessment because they have the potential to be affected by Project activities, and are of cultural and ecological importance in the Hudson Bay region. Inuit Qaujimajatuqangit (IQ) played a fundamental role in the selection of VECs, and identification of potential Project effects for the marine assessment. Key concerns included the sensitivity of marine wildlife to marine vessel traffic in the region, and the importance of year-round harvesting of marine mammal and fish species to provide food and clothing for local communities.



The assessment of potential effects of marine transportation activities on marine mammals and marine fish focuses on change in mortality risk due to vessel collisions, and change in behaviour due to sensory disturbance and vessel movement. The dock facility is not assessed in detail for its effect on the selected VECs because it is located within a freshwater environment (i.e., Baker Lake) and there is no potential for interactions to occur with marine mammals, marine vegetation or marine species at risk. Interactions with anadromous and freshwater fish, benthic invertebrates, sediment quality and water quality could occur during construction and closure, but the interactions will be temporary and localized with appropriate mitigation measures in place. Interaction with aquatic species and their habitat will be minimal during operation since the dock facility is a floating-barge type dock with minimal in-water works, which will be removed each winter. While there is potential for interactions between birds and the physical structure of the dock facility, the magnitude of the effect is expected to be low and therefore not of consequence to bird populations in the area.

#### Spatial and Temporal Boundaries

The marine assessment is spatially bound by three assessment areas: the Project footprint, the local assessment area (LAA), and the regional assessment area (RAA). The Project footprint is defined as the shipping route used by Project-related vessels transiting from the entrance to Chesterfield Inlet from Hudson Bay, through Chesterfield Narrows to the dock site on the north shore of Baker Lake. The LAA is defined as marine waters of Chesterfield Inlet and the adjacent coastal and offshore regions at the mouth of Chesterfield Inlet (including the portion of the shipping route where marine vessels will be transiting to and from the main shipping routes in Hudson Bay). The RAA encompasses the shipping route in Hudson Bay between Churchill and Chesterfield Inlet, and the shipping route through Hudson Strait to the extent of Nunavut territorial waters. It encompasses the zone where vessels are likely to have a measureable effect on the marine environment, and have the potential to act cumulatively with marine activities of other projects. The zone of influence is based on the area where marine animals would sense and respond to sounds from vessel activities, as determined by underwater acoustic modeling.

The temporal boundaries for the assessment are defined based on the timing and duration of potential effects of marine vessel traffic. The assessment covers the construction, operation and closure phases of the Project during which marine activities and transportation will occur (openwater season). A conservative estimate of 25 years is used to define the temporal extent of Project activities.

#### **Existing Marine Environment**

Nine species of marine mammal occur in the RAA. Of these species, three are considered common (beluga whale, ringed seal and polar bear) and six are considered rare or uncommon (bowhead whale, narwhal, bearded and harp seals, walrus and killer whale). The beluga whale and polar bear are designated as special concern by the Committee on the Status of Endangered Wildlife in Canada (COSEWIC), while the ringed seal is designated as not at risk.



Beluga whales are an important cultural and ecological species in Nunavut. An estimated 57,300 belugas occur in Western Hudson Bay. They are generally hunted along the coast in the summer and are harvested up to 35 km offshore. After spring ice breakup in mid to late June, western Hudson Bay belugas concentrate in the Churchill, Nelson and Seal River estuaries, where they increase in abundance until late July. Along western Hudson Bay, belugas spend summers in shallow coastal areas. Migration northward along the coast of Hudson Bay occurs in late August or early September.

Ringed seals are abundant throughout Nunavut waters and occur year-round along the coast. In spring, the highest densities of breeding adults occur on stable, landfast ice in areas with good snow cover, whereas non-breeders tend to be found at the floe edge or in the moving pack ice. Their ability to maintain breathing holes in ice enables them to occupy areas of Nunavut that are inaccessible to other marine mammals during the colder seasons.

Polar bears from two of the thirteen Canadian sub-populations occur in the LAA and RAA; the Western Hudson Bay and Foxe Basin sub-populations. During the open-water season, polar bears spend several months along the western coastline of Hudson Bay from Southampton Island to Churchill. The Western Hudson Bay sub-population congregates on coastal capes and headlands between Cape Churchill and Arviat. The Foxe Basin sub-population concentrates on the west and northeast coasts of Southampton Island and along the coast of Wager Bay (north of Chesterfield Inlet) during the ice-free season when shipping activities are expected. In the fall, there is a gradual northward movement of the Western Hudson Bay polar bears along the south coast of Hudson Bay.

A variety of marine fish use the sand and boulder benthic habitats around the mouth of Chesterfield Inlet, including Arctic cod, Arctic sculpin, Arctic char, fourhorn sculpin, banded gunnel, and whitefish. Arctic char typically migrate into Chesterfield Inlet in the first weeks of July when the ice has cleared. Greenland halibut is an abundant offshore marine fish species in Hudson Bay. Arctic cod are also abundant. They are found mainly in the upper part of the water column over deep water, and are often associated with drifting pack ice where they spawn in winter.

There are no SARA listed fish species or species designated by COSEWIC as species of concern in Chesterfield Inlet and surrounding area. Arctic char, fourhorn sculpin and whitefish are listed under the International Union for the Conservation of Nature (IUCN) red list as species of least concern.

#### **Environmental Effects Assessment for Marine Mammals**

Key issues for marine mammals identified by IQ, government and other stakeholders relate predominantly to marine vessel traffic and its potential to physically harm, disrupt, and/or displace the animals from summer habitat in Hudson Bay and Chesterfield Inlet. Project activities and potential effects on marine mammals are assessed with respect to the common species in the area; ringed seal and beluga whale. Polar bears are present on land during the open-water shipping season and are therefore not assessed.



#### Change in Mortality Risk

A variety of Project-related vessels (including fuel tankers, geared general cargo ships, container ships and articulated tugs with barges) will be active during the construction, operation and closure phases of the Project. There is the potential for slow moving whales to be struck by large (larger than 80 m) and fast moving (faster than 14 knots) vessels. The beluga whale is a highly mobile and fast swimming animal, and will likely avoid being in the direct path of a moving vessel whenever possible. However, mother-calf pairs spend a great deal of time resting and socializing near the surface (as is the case near Churchill) and may be unresponsive to approaching vessels. Seals are highly maneuverable and can effectively modify their swimming behaviour to avoid slow-moving vessels.

Mitigation measures will be employed to reduce the risk of Project-related vessel-mammal strikes. These include establishing speed restrictions on vessels transiting the assessment area, use of best operating practices (i.e., avoidance of unnecessary acceleration, maintenance of a constant course), and the use of onboard marine mammal observers (MMOs) to monitor marine activity.

The open-water shipping season occurs for only 2 to 3 months per year, and commonly used shipping routes in Hudson Bay have a low density of vessel traffic. Consequently, marine mammals are not currently at high risk of mortality due to ship strikes. Given the expected frequency and number of vessel transits each year (7 to 31 transits) to the dock facility and the proposed mitigation, increased mortality risk to marine mammals due to Project-related vessel strikes is expected to be low.

Potential residual environmental effects to marine mammal populations are expected to be site specific, sporadic and low in magnitude. In the case where a lethal or severe vessel strike occurs, the effect is potentially fatal (i.e., irreversible), but environmental effects on marine mammal populations are expected to be reversible through natural recruitment. Although increased mortality risk due to Project-related vessel strikes will continue until the closure of the Project, the long-term viability of marine mammal populations in the RAA are unlikely to be affected, even in the unlikely event where one or several animals are lost over the life of the Project. With implementation of mitigation measures, the potential environmental effect of an increase in mortality risk of marine mammals due to vessel strikes is determined to be not significant.

Onboard monitors will record all incidents of vessel strikes with marine mammals, near-misses, and marine mammal sightings. In the absence of monitors, incidents shall be recorded by the maritime crew. Ship logs will record speed reductions in important areas.



#### Change in Behaviour

A change in behaviour such as a startle or alarm response, avoidance or auditory masking is of concern due to the potential to harm, disrupt and/or displace marine mammals from their habitat, which in turn could increase energy expenditure and reduce foraging efficiency and fecundity.

Acoustic modeling was completed for Project-related vessels and compared with species-specific audiograms to assess the environmental effects of underwater noise on marine mammals. Four scenarios are modelled along the shipping route: near Chesterfield Inlet, Whale Cove, Rankin Inlet, and Arviat. Results from the modeling were compared with species audiograms and assessed according to standard behavioural response criterion. Known audiograms were used for the beluga whale and for harbour seal (as a proxy in the absence of ringed seal data). In the absence of ambient underwater noise data, estimates based on previous models of natural ocean noise are used in the assessment.

Acoustic modeling of the four scenarios indicate that beluga whales and ringed seals will be exposed to less than half the required level of sound required to elicit a behavioural response. With implementation of mitigation measures (speed restrictions, use of onboard MMOs, best practice regarding operation), noise levels generated by marine traffic are not expected to cause changes in behaviour of beluga whales and ringed seals. Change in behaviour due to underwater noise is considered to be not significant based on available information with respect to background noise levels, the frequency and number of marine vessel trips required to support the Project, and the predicted low magnitude of underwater noise generated by Project-related vessels.

Onboard monitors will record all mammal sightings. In the absence of monitors, sightings shall be recorded by the maritime crew. Incidents such as herding of animals shall be recorded along with mitigation measures (e.g., halting the ship). Ship logs will record speed reductions in important areas.

#### **Environmental Effects Assessment for Marine Fish**

Key issues for marine fish identified by IQ, government and other stakeholders relate predominantly to marine vessel traffic and its potential to physically harm, disrupt, and/or displace the animals from habitat in Hudson Bay and Chesterfield Inlet. A key concern identified by IQ relates to the potential disruption of marine fishing, particularly Arctic char, which occurs at fish camps along Chesterfield Inlet. Project effects on marine fish are assessed for Arctic char due to its importance to the community and availability of acoustic data.

## Change in Behaviour

Underwater noise from marine vessels has the potential to cause a startle response, alarm response, avoidance or a lack of response due to auditory masking, and change behaviour and migration patterns. This could reduce foraging efficiency and fecundity, and increase energy expenditure. As with marine mammals, acoustic modeling was completed for Project-related



vessels along the shipping route. Results of the modeling were compared with the Arctic char audiogram and assessed according to scientifically based behavioural response criterion.

Underwater noise may be detectable to fish and cause a behavioural response when they are in within 500 m of the vessel. This is expected to occur at regular intervals throughout the openwater season. With the implementation of mitigation measures (speed restrictions, avoidance of unnecessary acceleration, and use of designated shipping routes), underwater noise disturbance will be low in magnitude, site specific, and reversible. Any changes in behaviour due to underwater noise will be brief and spatially limited, and are not expected to have an effect on fish populations in the RAA. Changes in behaviour due to underwater noise are predicted to be not significant.

#### **Summary of Environmental Effects**

Given the frequency of vessel transits, and the low intensity of sensory disturbance that is expected, all environmental effects on the marine environment and marine wildlife populations are expected to be low and considered to be not significant. Marine transportation activities associated with the Project are not expected to contribute to cumulative environmental effects on marine mammal or marine fish populations in the RAA.

### **Effects of Climate Change on the Project**

Climate change may cause the open-water season to be extended. This would increase the window of opportunity for marine vessels to transport fuel and goods to the Baker Lake dock facility, which would reduce the net frequency of transiting vessels in the RAA, and in turn reduce the frequency of exposure of marine mammals and marine fish to transiting vessels.



# **TABLE OF CONTENTS**

| SEC | CTION                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <u>PAGE</u>                                                                                      |
|-----|--------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|
| 1   | INTR                     | ODUCTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1-1                                                                                              |
|     | 1.1<br>1.2<br>1.3        | BACKGROUND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1-2                                                                                              |
| 2   | PRO                      | JECT OVERVIEW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2-1                                                                                              |
|     | 2.1<br>2.2               | PROJECT FACT SHEETASSESSMENT BASIS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                  |
| 3   | ASS                      | ESSMENT APPROACH AND METHODS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3-1                                                                                              |
|     | 3.1<br>3.2               | INTRODUCTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3-3<br>3-4<br>3-5<br>3-6<br>3-6<br>3-7<br>3-7<br>3-8<br>3-8<br>3-9<br>3-9<br>3-9<br>3-10<br>3-10 |
|     | 3.4<br>3.5<br>3.6<br>3.7 | ASSESSMENT OF CUMULATIVE ENVIRONMENTAL EFFECTS  3.4.1 Screening for Potential Cumulative Effects  3.4.2 Project Inclusion List  3.4.3 Description of Cumulative Environmental Effects  3.4.4 Mitigation of Cumulative Environmental Effects  3.4.5 Residual Cumulative Environmental Effects Assessment  3.4.6 Significance of Residual Cumulative Environmental Effects  3.4.7 Monitoring of Cumulative Environmental Effects  SUMMARY OF RESIDUAL ENVIRONMENTAL EFFECTS  ASSESSMENT OF TRANSBOUNDARY EFFECTS  SUMMARY OF MITIGATION | 3-12<br>3-12<br>3-13<br>3-14<br>3-15<br>3-16<br>3-16<br>3-17                                     |
|     | 3.8                      | SUMMARY OF MONITORING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3-17                                                                                             |



| 4   | SCOF  | PE OF THE ASSESSMENT FOR THE MARINE ENVIRONMENT                           | 4-1         |
|-----|-------|---------------------------------------------------------------------------|-------------|
| 4.1 | ISSUE | S AND CONCERNS IDENTIFIED DURING INUIT, GOVERNMENT AND EHOLDER ENGAGEMENT | <u>Λ</u> _1 |
|     | 4.2   | REGULATORY SETTING                                                        |             |
|     | 7.2   | 4.2.1 Arctic Waters Pollution Prevention Act                              |             |
|     |       | 4.2.2 Fisheries Act                                                       |             |
|     |       | 4.2.3 Species at Risk Act                                                 |             |
|     |       | 4.2.4 Nunavut Wildlife Act                                                |             |
|     |       | 4.2.5 Nunavut Land Claims Agreement Act                                   |             |
|     | 4.3   | PROJECT-ENVIRONMENT INTERACTIONS                                          |             |
|     |       | 4.3.1 Project-Environment Interactions                                    |             |
|     |       | 4.3.1.1 Project Activities with No Interaction with VECs                  |             |
|     |       | 4.3.1.2 Project Activities with Non-Substantial Interaction               |             |
|     |       | with VECs                                                                 | 4-11        |
|     |       | 4.3.2 Potential Project Environmental Effects                             |             |
|     | 4.4   | VALUED COMPONENTS, INDICATORS AND MEASURABLE                              |             |
|     |       | PARAMETERS                                                                | 4-15        |
|     |       | 4.4.1 Marine Mammals                                                      |             |
|     |       | 4.4.2 Marine Fish                                                         |             |
|     | 4.5   | SPATIAL BOUNDARIES                                                        |             |
|     | -     | 4.5.1 Project Footprint                                                   |             |
|     |       | 4.5.2 Local Assessment Area                                               |             |
|     |       | 4.5.3 Regional Assessment Area                                            |             |
|     | 4.6   | TEMPORAL BOUNDARIES                                                       |             |
|     | 4.7   | ENVIRONMENTAL EFFECTS CRITERIA                                            |             |
|     | 4.8   | STANDARDS OR THRESHOLDS FOR DETERMINING SIGNIFICANCE                      |             |
|     | 4.9   | INFLUENCE OF INUIT AND STAKEHOLDER ENGAGEMENT ON THE                      |             |
|     |       | ASSESSMENT                                                                | 4-20        |
|     | 4.10  | INFLUENCE OF INUIT QAUJIMAJATUQANGIT ON THE                               |             |
|     |       | ASSESSMENT                                                                | 4-20        |
|     |       |                                                                           |             |
| 5   | SUMI  | MARY OF EXISTING MARINE ENVIRONMENT                                       | 5-1         |
|     | 5.1   | MARINE MAMMALS                                                            | 5-1         |
|     | 5.2   | MARINE FISH                                                               |             |
|     |       |                                                                           |             |
| 6   | ENVI  | RONMENTAL EFFECTS ASSESSMENT FOR MARINE MAMMALS.                          | 6-1         |
|     | 6.1   | SCOPE OF THE ASSESSMENT FOR MARINE MAMMALS                                | 6-1         |
|     |       | 6.1.1 Key Issues for Marine Mammals                                       |             |
|     |       | 6.1.2 Standards or Thresholds for Determining Significance                |             |
|     | 6.2   | ENVIRONMENTAL EFFECTS ASSESSMENT FOR MARINE                               |             |
|     |       | MAMMALS                                                                   | 6-4         |
|     |       | 6.2.1 Assessment of Change in Mortality Risk                              |             |
|     |       | 6.2.1.1 Baseline Conditions for Change in Mortality Risk                  |             |
|     |       | 6.2.1.2 Effect Mechanism and Linkages for Change in                       |             |
|     |       | Mortality Risk                                                            | 6-4         |
|     |       | 6.2.1.3 Mitigation Measures and Project Design for Change                 |             |
|     |       | in Mortality Risk                                                         | 6-5         |
|     |       | 6.2.1.4 Residual Environmental Effects for Change in                      |             |
|     |       | Mortality Risk                                                            | 6-6         |
|     |       | Willtally 1\15k                                                           | 0 0         |
|     |       | 6.2.1.5 Determination of Significance for Change in Mortality             |             |



|   |                   |                                                                                    | 6.2.1.6                                                                                                                                     | Compliance and Environmental Monitoring for Change in Mortality Risk                  | 6-7                             |
|---|-------------------|------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|---------------------------------|
|   |                   | 6.2.2                                                                              | Assessme                                                                                                                                    | nt of Change in Behaviour                                                             |                                 |
|   |                   | 0.2.2                                                                              | 6.2.2.1                                                                                                                                     | Analytical Methods for Change in Behaviour                                            |                                 |
|   |                   |                                                                                    | 6.2.2.2                                                                                                                                     | Baseline Conditions for Change in Behaviour                                           |                                 |
|   |                   |                                                                                    | 6.2.2.3                                                                                                                                     | Effect Mechanism and Linkages for Change in Behaviour                                 |                                 |
|   |                   |                                                                                    | 6.2.2.4                                                                                                                                     | Mitigation Measures and Project Design for Change in Behaviour                        |                                 |
|   |                   |                                                                                    | 6.2.2.5                                                                                                                                     | Residual Environmental Effects for Change in Behaviour                                |                                 |
|   |                   |                                                                                    | 6.2.2.6                                                                                                                                     | Determination of Significance for Change in Behaviour                                 |                                 |
|   |                   |                                                                                    | 6.2.2.7                                                                                                                                     | Compliance and Environmental Monitoring for Change in Behaviour                       |                                 |
|   | 6.3               |                                                                                    |                                                                                                                                             | VIRONMENTAL EFFECTS ANALYSIS FOR MARINE                                               |                                 |
|   |                   | 6.3.1                                                                              |                                                                                                                                             | for Cumulative Environmental Effects                                                  |                                 |
|   | 6.4               | SUMM                                                                               | ARY OF RE                                                                                                                                   | SIDUAL ENVIRONMENTAL EFFECTS ON MARINE                                                |                                 |
|   |                   | 6.4.1                                                                              |                                                                                                                                             | ects                                                                                  |                                 |
|   |                   | 6.4.2                                                                              | Cumulative                                                                                                                                  | e Environmental Effects                                                               | 6-21                            |
|   |                   | 6.4.3                                                                              |                                                                                                                                             | Climate Change on the Project                                                         |                                 |
|   | 6.5               |                                                                                    |                                                                                                                                             | ATION MEASURES FOR MARINE MAMMALS                                                     |                                 |
|   | 0.0               | 6.5.1                                                                              |                                                                                                                                             | by AREVA and Others                                                                   |                                 |
|   | 6.6               | COMP                                                                               | LIANCE AN                                                                                                                                   | D ENVIRONMENTAL MONITORING FOR MARINE                                                 |                                 |
|   |                   |                                                                                    |                                                                                                                                             |                                                                                       |                                 |
| 7 | ENVI              |                                                                                    |                                                                                                                                             | ECTS ASSESSMENT FOR MARINE FISH                                                       |                                 |
| 7 | <b>ENVIF</b> 7.1  | SCOPI                                                                              | E OF THE A                                                                                                                                  | SSESSMENT FOR MARINE FISH                                                             | 7-1                             |
| 7 |                   | SCOPI<br>7.1.1                                                                     | E OF THE A<br>Key Issues                                                                                                                    | SSESSMENT FOR MARINE FISHs for Marine Fish                                            | 7-1<br>7-1                      |
| 7 | 7.1               | SCOPI<br>7.1.1<br>7.1.2                                                            | E OF THE A<br>Key Issues<br>Standards                                                                                                       | SSESSMENT FOR MARINE FISHs for Marine Fishor Thresholds for Determining Significance  | 7-1<br>7-1<br>7-3               |
| 7 |                   | SCOPI<br>7.1.1<br>7.1.2                                                            | E OF THE A<br>Key Issues<br>Standards<br>ONMENTAL                                                                                           | ASSESSMENT FOR MARINE FISHs for Marine Fishor Thresholds for Determining Significance | 7-1<br>7-1<br>7-3               |
| 7 | 7.1               | SCOPI<br>7.1.1<br>7.1.2<br>ENVIR                                                   | E OF THE A<br>Key Issues<br>Standards<br>ONMENTAL<br>Assessme                                                                               | ASSESSMENT FOR MARINE FISHor Marine Fishor Thresholds for Determining Significance    | 7-1<br>7-1<br>7-3<br>7-3        |
| 7 | 7.1               | SCOPI<br>7.1.1<br>7.1.2<br>ENVIR                                                   | E OF THE A<br>Key Issues<br>Standards<br>ONMENTAL<br>Assessme<br>7.2.1.1                                                                    | SSESSMENT FOR MARINE FISHor Marine Fishor Thresholds for Determining Significance     | 7-1<br>7-1<br>7-3<br>7-3<br>7-3 |
| 7 | 7.1               | SCOPI<br>7.1.1<br>7.1.2<br>ENVIR                                                   | E OF THE A<br>Key Issues<br>Standards<br>ONMENTAL<br>Assessme                                                                               | ASSESSMENT FOR MARINE FISH                                                            | 7-1<br>7-1<br>7-3<br>7-3<br>7-3 |
| 7 | 7.1               | SCOPI<br>7.1.1<br>7.1.2<br>ENVIR                                                   | E OF THE A<br>Key Issues<br>Standards<br>ONMENTAL<br>Assessme<br>7.2.1.1<br>7.2.1.2                                                         | ASSESSMENT FOR MARINE FISH                                                            | 7-17-37-37-37-3                 |
| 7 | 7.1               | SCOPI<br>7.1.1<br>7.1.2<br>ENVIR                                                   | E OF THE A<br>Key Issues<br>Standards<br>ONMENTAL<br>Assessmer<br>7.2.1.1<br>7.2.1.2<br>7.2.1.3                                             | ASSESSMENT FOR MARINE FISH                                                            | 7-17-37-37-37-47-8              |
| 7 | 7.1               | SCOPI<br>7.1.1<br>7.1.2<br>ENVIR                                                   | E OF THE A<br>Key Issues<br>Standards<br>ONMENTAL<br>Assessmer<br>7.2.1.1<br>7.2.1.2<br>7.2.1.3                                             | ASSESSMENT FOR MARINE FISH                                                            | 7-17-37-37-37-47-8              |
| 7 | 7.1               | SCOPI<br>7.1.1<br>7.1.2<br>ENVIR                                                   | E OF THE A<br>Key Issues<br>Standards<br>ONMENTAL<br>Assessmer<br>7.2.1.1<br>7.2.1.2<br>7.2.1.3<br>7.2.1.4<br>7.2.1.5                       | ASSESSMENT FOR MARINE FISH                                                            | 7-17-37-37-37-47-87-8           |
| 7 | 7.1               | SCOPI<br>7.1.1<br>7.1.2<br>ENVIR<br>7.2.1                                          | E OF THE A Key Issues Standards ONMENTAL Assessmer 7.2.1.1 7.2.1.2 7.2.1.3 7.2.1.4 7.2.1.5 7.2.1.6 7.2.1.7 LATIVE ENV                       | ASSESSMENT FOR MARINE FISH                                                            | 7-17-37-37-37-47-87-8           |
| 7 | 7.1               | SCOPI<br>7.1.1<br>7.1.2<br>ENVIR<br>7.2.1                                          | E OF THE A Key Issues Standards ONMENTAL Assessmer 7.2.1.1 7.2.1.2 7.2.1.3 7.2.1.4 7.2.1.5 7.2.1.6 7.2.1.7 LATIVE ENV                       | ASSESSMENT FOR MARINE FISH                                                            | 7-17-37-37-37-47-87-87-8        |
| 7 | 7.1               | SCOPI<br>7.1.1<br>7.1.2<br>ENVIR<br>7.2.1<br>CUMU<br>FISH<br>7.3.1<br>SUMM         | E OF THE A Key Issues Standards ONMENTAL Assessmer 7.2.1.1 7.2.1.2 7.2.1.3 7.2.1.4 7.2.1.5 7.2.1.6 7.2.1.7 LATIVE ENV                       | ASSESSMENT FOR MARINE FISH                                                            | 7-17-37-37-37-47-87-87-87-9     |
| 7 | 7.1<br>7.2<br>7.3 | SCOPI<br>7.1.1<br>7.1.2<br>ENVIR<br>7.2.1<br>CUMU<br>FISH<br>7.3.1<br>SUMM<br>FISH | E OF THE A Key Issues Standards ONMENTAL Assessmer 7.2.1.1 7.2.1.2 7.2.1.3 7.2.1.4 7.2.1.5 7.2.1.6 7.2.1.7 LATIVE ENV                       | ASSESSMENT FOR MARINE FISH                                                            | 7-17-37-37-37-47-87-87-87-9     |
| 7 | 7.1<br>7.2<br>7.3 | SCOPI<br>7.1.1<br>7.1.2<br>ENVIR<br>7.2.1<br>CUMU<br>FISH<br>7.3.1<br>SUMM         | E OF THE A Key Issues Standards ONMENTAL Assessmel 7.2.1.1 7.2.1.2 7.2.1.3 7.2.1.4 7.2.1.5 7.2.1.6 7.2.1.7  LATIVE ENV Screening IARY OF RE | ASSESSMENT FOR MARINE FISH                                                            | 7-17-37-37-37-47-87-87-87-97-9  |



|       | 7.5<br>7.6          | GENERAL MITIGATION MEASURES FOR MARINE FISH<br>COMPLIANCE AND ENVIRONMENTAL MONITORING FOR MARINE<br>FISH |      |
|-------|---------------------|-----------------------------------------------------------------------------------------------------------|------|
| 8     |                     | MARY OF RESIDUAL ENVIRONMENTAL EFFECTS ON THE INE ENVIRONMENT                                             | 8-1  |
| 8.1   | PROJI<br>8.2<br>8.3 | ECT EFFECTSCUMULATIVE ENVIRONMENTAL EFFECTSEFFECTS OF CLIMATE CHANGE ON THE PROJECT                       | 8-1  |
| 9     |                     | MARY OF TRANSBOUNDARY EFFECTS FOR THE MARINE RONMENT                                                      | 9-1  |
| 10    |                     | MARY OF MITIGATION MEASURES FOR THE MARINE RONMENT                                                        | 10-1 |
| 11    | SUM                 | MARY OF MONITORING FOR THE MARINE ENVIRONMENT                                                             | 11-1 |
| 12    | REF                 | ERENCES                                                                                                   | 12-1 |
|       | 12.1<br>12.2        | LITERATURE CITEDINTERNET SITES                                                                            |      |
|       |                     | LIST OF TABLES                                                                                            |      |
| Table | 2.2-1               | Project Assessment Basis                                                                                  | 2-2  |
|       | 4.3-1               | Identification of Project-Environment Interactions                                                        |      |
|       | 4.3-2               | Species at Risk on Schedule 1 of SARA                                                                     |      |
|       | 4.4-1<br>4.4-2      | Measurable Parameters for Marine Mammals  Measurable Parameters for Marine Fish                           |      |
|       | 5.1-1               | Conservation Status of Marine Mammals Present in the RAA                                                  |      |
| Table | 5.2-1               | Conservation Status of Marine Fish Present in Western Hudson Bay,<br>Chesterfield Inlet, and Baker Lake   | 5-4  |
|       | 6.1-1               | Potential Environmental Effects on Marine Mammals                                                         |      |
|       | 6.2-1               | Frequency of Underwater Sounds Heard by Beluga Whales                                                     |      |
|       | 6.2-2<br>6.2-3      | Underwater Noise Levels and Radii of Beluga Whale Hearing                                                 |      |
|       | 6.4-1               | Summary of Project Residual Environmental Effects: Marine Mammals                                         |      |
| Table | 7.1-1               | Potential Environmental Effects on Marine Fish                                                            | 7-1  |
|       | 7.2-1               | Underwater Noise Levels and Radii of Arctic Char Hearing                                                  |      |
| Table | 7.5-1               | Summary of Project Residual Environmental Effects: Marine Fish                                            | 7-10 |



#### **LIST OF FIGURES**

| Figure 1.1-1 | Location of Kiggavik Project in Nunavut                                  | 1-3  |
|--------------|--------------------------------------------------------------------------|------|
| Figure 4.5-1 | Spatial Boundaries for the Assessment of the Marine Environment          |      |
| Figure 6.2-1 | Locations of the Four Acoustic Modelling Scenarios along the Proposed    |      |
| · ·          | Tug and Barge Route                                                      | 6-9  |
| Figure 6.2-2 | Beluga whale audiogram-weighted sound pressure level (computed           |      |
| · ·          | frequency band: 40 Hz - 31.5 kHz) contours for tug and barge scenarios   | 6-15 |
| Figure 7.2-1 | Arctic char audiogram-weighted sound pressure level (computed            |      |
| J            | frequency band: 31.5 Hz - 400 kHz) contours for tug and barge scenarios. | 7-7  |





#### **GLOSSARY**

**Assessment Glossary** 

Adaptive environmental management

A process for improving environmental management policies and practices through a structured, iterative process of decision making in the face of uncertainty, with an aim to reducing uncertainty over time via system monitoring.

Administrative boundary

Specific aspects of provincial, territorial and federal regulatory requirements, standards, objectives or guidelines, and regional planning initiatives that may be used to establish spatial boundaries for assessing the environmental effects of a project on a Valued Component.

Base Case

The current status of the measurable parameters for the environmental effects at baseline (i.e., prior to the proposed project). Baseline includes all past and present projects and activities in the regional assessment area that may result in similar environmental effects to the project environmental effect. Existing projects include those that have received environmental approval and are in some form of planning, construction and/or commissioning.

Best management practice

A process of developing, following and adapting a standard way of maintaining quality that exceeds mandatory legislated standards, which can be based on self-assessment or used as a benchmark.

Compliance monitoring

Monitoring that is undertaken to ensure that proposed project design features, mitigation measures, environmental protection measures, or benefit agreements are being implemented as proposed and in accordance with regulatory requirements.

Cumulative environmental effects

The effect on the biophysical or socio-economic environment that results from the incremental effect of a project action when added to other past, present, and reasonably foreseeable future actions.

**Ecosystem** 

Relating to the complex of a natural community of living organisms and its environment functioning as an ecological unit in nature.

Environmental effect

Broadly refers to the response (positive or negative) of the biophysical or human system or a component of these systems to disturbance.

Effect linkage

The mechanism through which a project component or activity could result in an environmental effect on a Valued Component.

Environmental management

An activity undertaken with the explicit goal of maintaining and improving the state of an environmental resource affected by human activities. It focuses on the management of the interaction and impact of human societies on the environment.

Far Future Case

The status of the measurable parameters for the environmental effect because of the Future Case, in combination with possible far future developments in the region of the proposed project.



Follow-up environmental monitoring

Biophysical and socio-economic monitoring undertaken to:

- a) verify predictions of environmental effects;
- b) determine the effectiveness of mitigation measures, environmental protection measures or benefits agreements in order to modify or implement new measures where required;
- c) support the implementation of adaptive management measures to address previously unanticipated adverse environmental effects; and
- d) support environmental management systems used to manage the environmental effects of projects.

Future Case

The status of the measurable parameters for the environmental effect because of the Project Case, in combination with all reasonable foreseeable projects, activities and actions. Reasonably foreseeable projects are defined as future projects, activities and actions that will occur with certainty, including projects that are in some form of regulatory approval or have made a public announcement to seek regulatory approval.

Geographic Extent

The geographic area within which an environmental effect of a defined magnitude occurs (e.g., site specific, local, regional, territorial, national)

Key Indicators (KIs)

Species, species groups, resources or ecosystem functions that represent components of the broader Valued Components. For practical reasons, KIs are often selected where sufficient information is available to assess potential project residual environmental effects and cumulative effects.

Local Assessment Area (LAA)

The maximum area within which project-related environmental effects can be predicted or measured with a reasonable degree of accuracy and confidence. The LAA includes the Project Footprint and any adjacent areas where project-related environmental effects may be reasonably expected to occur.

Magnitude

The amount of change in a measurable parameter or variable relative to the baseline case

Measurable parameters

Parameters used to quantitatively or qualitatively measure a project environmental effect or cumulative environmental effect on a Valued Component (VC) or Key Indicator (KI). The degree of change in a measurable parameter is used to characterize project-related and cumulative environmental effects, and evaluate the significance of these effects.

Mitigation

Measures or strategies employed to minimize or avoid project environmental effects or cumulative effects, including project design features, project policies, specialized mitigation, environmental protection measures and protocols, social or community programs, benefits agreements, and compensation (e.g., habitat compensation, habitat replacement or financial compensation).



Precautionary approach or

principle

Where there are threats of serious or irreversible damage, lack of full scientific certainty must not be used as a reason for postponing cost-

effective measures to prevent environmental degradation.

Project Case

The status of the measurable parameters for the environmental effect with the proposed project in place, over and above the Base Case. This is usually assessed using the peak environmental effect of the project or maximum active footprint for the project.

Project-Environment

interaction

A term used to describe the way in which a project action or activity acts on an environmental component spatially and temporally to cause

an environmental effect.

Project inclusion list

A list of all past, present and reasonable foreseeable projects, activities and actions that overlap spatially and temporally with residual environmental effects of a proposed project. This list is used to identify those specific projects, activities or actions that should be considered in assessing potential cumulative environmental effects on a Valued

Component.

Project footprint

The most immediate area of the project, including the area of direct physical disturbance.

Reasonably foreseeable future development

Projects or activities that are currently under regulatory review or that will be submitted for regulatory review in the near future, as determined by the existence of a proposed project description, letter of intent, or any regulatory application filed with an authorizing agency.

Regional Assessment Area (RAA)

The area within which cumulative environmental effects on a Valued Component may potentially occur. It is also the area where, depending on conditions (e.g., seasonal conditions, habitat use, more intermittent and dispersed project activities), environmental effects of the proposed project may be more wide reaching.

Residual Effects

Predicted environmental effects that are likely to remain after mitigation measures have been applied.

Reversibility

The ability of a measurable parameters for a Valued Component to recover from an environmental effect.

Scoping

A process that focuses study and analysis on those environmentproject interactions with the greatest potential to result in environmental effects. This process aims to identify those components of the biophysical and/or socio-economic environment that may be affected by

a proposed project and for which there is public concern.

Significant Environmental

Effect

A substantial, irrevocable effect or substantial damage to the environment that cannot be avoided or remedied through mitigation measures



Spatial boundary The probable geographic extent over which project activities are likely

to cause an environmental effect (i.e., zone of influence) on a Valued

Component.

Sustainability Sustainability is an economic, social and environmental concept that

involves meeting the needs of the present without compromising the

ability of future generations to meet their own needs

Technical boundary

Limitations in scientific and social information, data analyses and data

interpretation that may be used to establish spatial boundaries for assessing environmental effects of a project on a Valued Component.

Temporal boundary The period of time during which project activities are likely to affect a

Valued Component or Key Indicator. Temporal boundaries typically include major phases of the project but may, in some cases, be refined to a specific period of time to reflect seasonal variations of life cycle requirements or long-term population cycles for some biological Valued

Components, or forecasted trends for socio-economic Value

Components.

Transboundary effect Any effect, not exclusively of a global nature, within an area under the

jurisdiction of a Party caused by a proposed activity, the physical origin of which is situated wholly or in part within the area under the

jurisdiction of another Party.

Valued Environmental Components (VECs)

Those aspects of the environment considered to be of vital importance

to a particular region or community, including:

a) resources that are either legally, politically, publicly or professionally recognized as important, such as parks, land selections, and

historical sites;

b) resources that have ecological importance; and

c) resources that have social importance.

Valued Components (VC) The term is used to refer collectively to VECs and VSECs. They are

selected for assessment based on regulatory issues and guidelines, consultation with Inuit, regulators, government agencies and stakeholders, field studies, and professional judgment of the

environmental assessment team.

Valued Socio-Economic Components (VSECs)

Those aspects of the socio-economic environment considered to be of

vital importance to a particular region or community, including components relating to the local economy, health, demographics, traditional way of life, cultural well-being, social life, archaeological resources, existing services and infrastructure, and community and

local government organizations.



# **Discipline-specific Glossary**

Acoustic modeling An estimate of the area of influence of a sound source based

on underwater sound levels, bathymetry of the sea floor, and

sound speed profiles.

Acoustic Signature A term used to describe the noise emissions of a sound

source.

Aerial Survey A dedicated survey using aircraft to determine the distribution

of marine mammals.

Agile Able to move and change directions quickly and easily.

Air bladder An air-filled organ in fish that is used to maintain buoyancy.

Also known as a swim bladder.

Ambient Underwater

Noise

Baseline background noise before the input of anthropogenic

sound. The primary source in the marine environment is

surface agitation (wind and waves).

Amplitude The maximum height of a wave, measured from the position of

equilibrium.

Anadromous Fish species that migrate up rivers from the sea to spawn in

freshwater.

Audiogram A curve of hearing threshold as a function of frequency that

describes the hearing sensitivity of an animal over its normal

hearing range.

Audiogram Weighted

Noise Level

The noise level resulting from applying an animal's audiogram

to sound pressure levels to determine the sound level relative

to the animal's hearing threshold (units dB re HT).

Auditory Masking When the perception of one sound (e.g., marine mammal

vocalization) is inhibited by the presence of another sound.

Baleen Whale Whales that use plates of keratin in the mouth for straining

plankton and small fishes from the water.

Ballast Water Water that is held in tanks and cargo holds of ships to increase

stability and maneuverability during transit.

Bathymetry The measurement of depth of the ocean.

Benthic Occurring at the bottom of the seafloor. E.g., benthic

organisms live on or in the seafloor.

Benthopelagic Fish that live and feed on or near the bottom, as well as in

midwater and near the surface of the sea.



Bilge Water Water that accumulates from seawater that may seep or flow

into the vessel from various points in the structure.

Biota Animal and plant organisms in a particular region or habitat

(i.e. marine biota).

Brackish Water that is somewhat salty, such as that in estuaries.

Calving To give birth to a calf (i.e., when the beluga produces its

offspring)

Cape A point or extension of land protruding into the water.

Committee on the Status of Endangered Wildlife in

Canada

This committee uses the best available information on wildlife species (including scientific, community, Aboriginal Traditional

Knowledge) to assess whether that species is at risk of

extinction or extirpation in Canada.

Demersal Living at or close to the bottom of the sea.

Echolocation A process of locating objects or orienting using reflected

sound.

Endangered A wildlife species facing imminent extirpation or extinction.

Energy Expenditure Amount of energy used during an activity.

Engagement Activities Community engagement is the process of establishing the

interaction between the local community and the company or research group. Often involves collaboration, review, or

approval from formal leadership.

Estuary The tidally influenced area of the mouth of a river.

Extinct A wildlife species that no longer has any remaining living

individuals.

Extirpated A wildlife species that no longer exists in the wild in a region

(e.g. Canada), but exists elsewhere.

Fecundity A measure of fertility, the ability to produce offspring. The

number of offspring an organism can produce in its lifetime.

Floe Edge Where the edge of a mass or sheet of ice meets the water.

Foraging Efficiency The ratio of energy gained over energy spent while foraging.

Frequency The number of cycles per unit time. In sound, the number of

waves per unit time. Measured in hertz (Hz).

Gregarious Tending to live and occur in social groups.

Head land A narrow piece of land protruding from the coast into the sea.



Hearing Threshold The minimum sound level that an organism can hear with no

other sound present.

International Union for the

Conservation of Nature

A global environmental network which supports scientific

research and influences policy, laws, and best practice in more

than 160 countries worldwide.

Invasive Species A species that is non-native to the ecosystem under

consideration and whose introduction is likely to cause harm.

Invertebrate An animal which lacks a backbone (e.g., sea star, urchin,

shrimp)

Knot A maritime unit of velocity measurement, equal to 1 nautical

mile or 1.852 km/h.

Land Use Planning A method of regulating land use which considers the

environment, social, traditional, and economic aspects

Landfast Ice Sea ice that has frozen to the coast or sea floor. This ice does

not move with currents or wind.

Land locked Surrounded by land with no navigable route to the sea.

Marine Mammal Mammals that are dependent on marine habitats during part or

all of their life cycle (i.e., baleen whales, toothed whales, seals,

walrus, and polar bears)

Migrate The act of an organism moving from one region to another

periodically for feeding or breeding.

Mitigation Measures Methods employed to reduce, offset, or eliminate adverse

effects of an activity on the environment.

Natural Recruitment The natural increase in a population as offspring grow and

new individuals arrive.

Nearshore The zone of the sea extending from the low water line beyond

the surf zone and influenced by nearshore currents, including

the littoral zone.

Odontocete Group of whales that have teeth as opposed to baleen.

Offshore The zone of the sea typically extending beyond the nearshore

zone and littoral zone.

Open-water Leads A transient area of open water in the sea that originates

through a combination of oceanic and atmospheric stresses,

such as tides, which pull the ice floes apart.

Open-water Season Time when the shipping routes are ice-free (beginning of

August to the end of September).



Otolith A small calcareous bone in the inner ear of fish which is

involved in sensing orientation and movement.

Pack Ice Large pieces of ice that have been driven together to form a

nearly continuous mass over an expansive area.

Pelagic Living in the mid and upper layers of the open sea.

Pinniped A group of marine mammals that includes seals, sea lions, and

walrus.

Population Integrity A population which is a balanced, integrated, and adaptive

community which is functional compared with other

populations in similar habitat in the region.

Probability The likelihood that something will occur.

Propeller Wash The current of water that is created by the propeller.

Proxy A thing that is used to represent, or act in place of, another.

Qualitative Relating to or measuring something by its quality, or

descriptive characteristics, rather than its quantity.

Quantitative Relating to or measuring something by its quantity (ie.

Numerical values).

Salmonid A fish belonging to the salmon family.

Shoreline Erosion Wearing away of the coastal land by wave action, tidal

currents or wave currents.

Sound Pressure Level The decibel ratio of sound pressure to some reference

pressure, expressed in units of dB re 1µPa in ocean acoustics. Unless otherwise stated, SPL refers to the root mean square

(rms) sound pressure.

Sound Propagation The movement of sound, or pressure waves, through a media

such as air or water.

Source Level The sound pressure level that would be measured at 1 meter

distance from a point-like source that radiates the same total amount of sound power as an actual source. Source levels are

expressed in units of dB re 1 µPa at 1 m.

Spawn Reproductive period of fish; release of eggs and sperm.

Special Concern A wildlife species that may become threatened or endangered

because of a combination of biological characteristics and

The relationship between noise frequency and an animal's

identified threats.

Species Specific

Audiogram hearing threshold.



Substrate The surface or material layer on which an organism lives,

grows, or feeds.

Taxonomic Group A scientific grouping and naming of organisms. A system of

classification in which a taxonomic group is one unit.

Thermocline The point in the sea at which the temperature gradient

changes rapidly.

Threatened A wildlife species that is likely to become endangered if

nothing is done to reverse the factors leading to its extirpation

or extinction.

Threshold A point of beginning, the boundary beyond which a different

state will occur.

Vessel Wake Occurs when vessel movement creates secondary waves (i.e.,

free surface waves that propagate out from the vessel).





# **ACRONYMS**

| ATB          | Articulated Tug with Barge                           |
|--------------|------------------------------------------------------|
| COSEWICCommi | ittee on the Status of Endangered Wildlife in Canada |
| EIS          | Environmental Impact Statement                       |
| HT           | Hearing Threshold                                    |
| IUCN         | International Union on the Conservation of Nature    |
| IQ           | Inuit Qaujimajatuqangit                              |
| LAA          | Local Assessment Area                                |
| MMO          | Marine Mammal Observer                               |
| NEB          | National Energy Board                                |
| NIRB         | Nunavut Impact Review Board                          |
| NLCA         | Nunavut Land Claims Agreement                        |
| NMFS         | National Marine Fisheries Service                    |
| NPC          | Nunavut Planning Commission                          |
| NSA          | Nunavut Settlement Area                              |
| Pa           | pascal                                               |
| PTS          |                                                      |
| RAA          | Regional Assessment Area                             |
| rms          | root mean square                                     |
| SARA         | Species at Risk Act                                  |
| SPL          | Sound Pressure Level                                 |
| TTS          | Temporary Threshold Shift                            |
| VEC          | Valued Environmental Component                       |





### 1 INTRODUCTION

#### 1.1 BACKGROUND

The Kiggavik Project (Project) is a proposed uranium ore mining and milling operation located in the Kivalliq region of Nunavut approximately 80 km west of the community of Baker Lake (Figure 1.1-1). The Project is operated by AREVA Resources Canada Inc. (AREVA), in joint venture partnership with JCU (Canada) Exploration Co., Ltd. and Daewoo International Corp.

Within the Kiggavik Project there are two general site areas referred to herein as the Kiggavik site and the Sissons site. The two sites are located approximately 17 km apart. Three uranium ore deposits will be mined at the Kiggavik site: East Zone, Centre Zone and Main Zone. A uranium mill, related facilities, main accommodations, and landing strip will also be located at the Kiggavik site. The Sissons site has two uranium ore deposits to be mined: Andrew Lake and End Grid. Open pit mining will be used to extract the ore from the three Kiggavik deposits as well as the Andrew Lake deposit. Mining of End Grid ore will require underground methods.

All ore extracted from the mine sites will be processed through the Kiggavik mill. Mined out pits at the Kiggavik site will sequentially be used as tailings management facilities (TMFs) with East Zone being the initial TMF. The uranium product will be packaged and transported via aircraft to southern transportation networks. Initially, mill reagents, fuel and other supplies will be transported by barge to Baker Lake and then by truck to the mine site over a winter access road. An all-season road between Baker Lake and the Kiggavik Site is carried as a secondary option proposed as a contingency in case the winter road cannot adequately support the Project over its life-span.

Decommissioning of the Project will include demolition of site facilities, clean up and reclamation of any disturbed areas, closure of the TMFs and reclamation of mine rock piles to promote vegetative growth and to provide wildlife access.

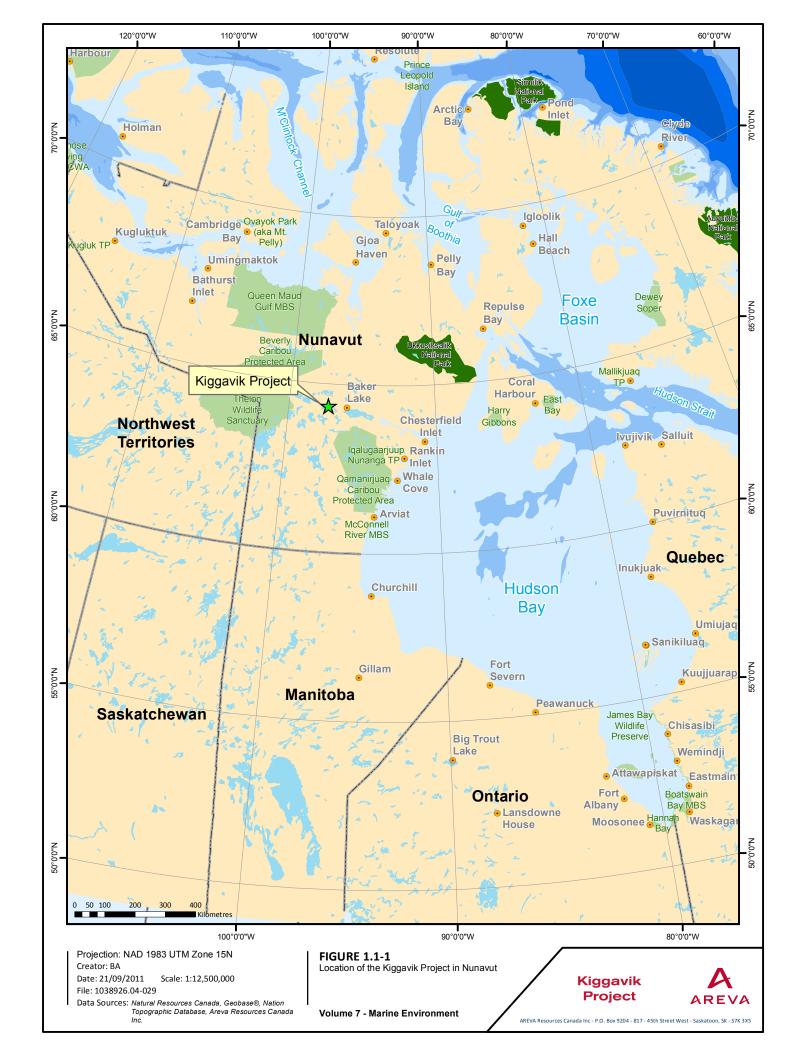
The Kiggavik Project is subject to the environmental review and related licensing and permitting processes established by the Nunavut Land Claims Agreement (NLCA) (NIRB 2011), and to the licensing requirements of the Canadian Nuclear Safety Commission (CNSC). The Minister of Indian and Northern Affairs Canada referred the Kiggavik Project to the Nunavut Impact Review Board (NIRB) for a Review under Part 5 of Article 12 of the NLCA in March of 2010. Pursuant to Section 12.5.2 of the Nunavut Land Claims Agreement (NLCA):



"When a project proposal has been referred to NIRB by the Minister for review, NIRB shall, upon soliciting any advice it considers appropriate, issue guidelines to the Proponent for the preparation of an impact statement. It is the responsibility of the Proponent to prepare an impact statement in accordance with any guidelines issued by NIRB..." (NIRB 2011)

The final NIRB "Guidelines for the Preparation of an Environmental Impact Statement for AREVA Resources Canada Inc's Kiggavik Project (NIRB File No. 09MN003)" (NIRB 2011) were issued in May of 2011.

# 1.2 NUNAVUT IMPACT REVIEW BOARD GUIDELINES FOR THE ENVIRONMENTAL IMPACT STATEMENT


This volume is intended to address Section 6.6 of the NIRB "Guidelines for the Preparation of an Environmental Impact Statement for AREVA Resources Canada Inc's Kiggavik Project (NIRB File No. 09MN003)" (NIRB 2011), whereby:

"The Proponent shall describe the Project components and all activities associated with each in a systematic way. The description shall encompass all phases of development in sufficient detail to allow the Proponent to predict potential adverse environmental effects and address public concerns about the Project; from site preparation through to construction, operations, maintenance, any potential modifications and/or expansions that may be required during the operations phase based on exploration results, temporary closure (care & maintenance), final closure (decommission & reclamation), and post closure activities. The description must include an approximate timeline for each Project component and all activities associated with each component, if applicable. The description should also include changes that would occur in the vicinity as a consequence of mining the uranium deposit."

Specifically, this volume addresses the above Section of NIRB to the discussion of anticipated environmental effects of the Project on the marine environment.

#### 1.3 PURPOSE AND SCOPE OF VOLUME 7

The EIS has been prepared in fulfillment of the requirements of the NIRB Guidelines, as applied to the marine environment.







# 2 PROJECT OVERVIEW

# 2.1 PROJECT FACT SHEET

| Location Resources     | <ul> <li>Kivalliq Region of Nunavut, approximately 80 km west of Baker Lake.</li> <li>The Project includes two sites: Kiggavik and Sissons (collectively called the Kiggavik Project).</li> <li>The Kiggavik site is located at approximately 64°26'36.14"N and 97°38'16.27"W.</li> <li>The Sissons site is located approximately 17 km southwest of Kiggavik at 64°20'17.61"N and 97°53'14.03"W.</li> <li>The Kiggavik and Sissons sites are composed of 37 mineral leases, covering 45,639 acres.</li> <li>The total quantity of resources is currently estimated at approximately 51,000 tonnes uranium (133 million lbs U3O8) at an average grade of 0.46% uranium.</li> </ul> |
|------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Life of Mine           | <ul> <li>Approximately 12 years of operation, based on studies to date. It is anticipated that preoperational construction will require 3 years while remaining post-operational decommissioning activities will require 5 years.</li> <li>Under favourable market conditions, construction of the Project could begin as early as 2017.</li> </ul>                                                                                                                                                                                                                                                                                                                                |
| Mining                 | <ul> <li>There are five individual mines proposed for the Project: East Zone, Center Zone and Main Zone at the Kiggavik site; End Grid and Andrew Lake at the Sissons site.</li> <li>The three Kiggavik deposits and the Andrew Lake deposit will be mined by truck-shovel open pit, while End Grid will be an underground mine.</li> </ul>                                                                                                                                                                                                                                                                                                                                        |
| Mine Rock              | <ul> <li>Mine rock will be segregated into material suitable for use in construction (Type 1), non-acid generating (Type 2), and potentially problematic material (Type 3).</li> <li>Type 2 and Type 3 rock will be managed in surface stockpiles during operation.</li> <li>Upon completion of mining, Type 3 mine rock will be backfilled into mined-out pits.</li> </ul>                                                                                                                                                                                                                                                                                                        |
| Mill                   | <ul> <li>The ore will be processed in a mill at the Kiggavik site to produce approximately 3,800 tonnes<br/>uranium (9.9 million lbs U3O8) per year as a uranium concentrate, commonly referred to as<br/>yellowcake.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Tailings               | <ul> <li>The mill tailings will be managed at in-pit tailings management facilities constructed using the mined-out East Zone, Centre Zone and Main Zone open pits at the Kiggavik site.</li> <li>Administrative and action levels will be used to control and optimize tailings preparation performance for key parameters.</li> </ul>                                                                                                                                                                                                                                                                                                                                            |
| Water<br>Management    | <ul> <li>A purpose-built-pit will be constructed at the Kiggavik site to optimize water management, storage, and recycling.</li> <li>All mill effluent, tailings reclaim, and site drainage will be treated prior to discharge to meet the Metals Mining Effluent Regulations and site-specific derived effluent release targets.</li> <li>Administrative and action levels will be used to control and optimize water treatment plant performance for key elements.</li> </ul>                                                                                                                                                                                                    |
| Site<br>Infrastructure | <ul> <li>Power will be supplied by on-site diesel generators.</li> <li>The operation will be fly-in/fly-out on a 7 to 14 day schedule with on-site employees housed in a permanent accommodations complex.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Access                 | <ul> <li>Access to the site will be provided by either a winter or all-season road between Baker Lake and Kiggavik. Supplies will be shipped to a dock facility at Baker Lake during the summer barge season and trucked to Kiggavik via the road.</li> <li>An airstrip will be constructed and operated at site for transportation of personnel and yellowcake.</li> </ul>                                                                                                                                                                                                                                                                                                        |



| Environment | Site-specific environmental studies have been on-going since 2007                                                                                                                                                                                                                                                    |
|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|             | Public engagement and collection of Inuit Qaujimajatuqangit has been on-going since 2006; this information is integrated into the environmental effects assessment reports                                                                                                                                           |
|             | <ul> <li>AREVA's approach has been to integrate environmental assessment and decommissioning<br/>requirements into the Project design cycle to enhance mitigation of effects by design and to<br/>support the development of management, mitigation, and contingency plans to protect the<br/>environment</li> </ul> |
| Benefits    | AREVA is negotiating an Inuit Impact Benefit Agreement with the Kivalliq Inuit Association                                                                                                                                                                                                                           |
|             | The total taxes and royalties to be paid on the Kiggavik project would be approximately \$1 billion, payable to Nunavut Tunngavik Inc., Government of Nunavut, and Government of Canada.                                                                                                                             |
|             | The Project is expected to employ up to 750 people during construction and 400-600 people during operation.                                                                                                                                                                                                          |

#### 2.2 ASSESSMENT BASIS

The purpose of the assessment basis section is to define how the expected average design parameters detailed in the Project Description (Volume 2) have been bounded to ensure the effects assessments are adequately conservative.

The assessment basis is summarized in Table 2.2-1. For biophysical and some socio-economic effects, the range value with the greatest potential to result in an adverse effect is used. In the case of socio-economic benefits, the range value resulting in the lowest benefit is used.

Table 2.2-1 Project Assessment Basis

| Project                      |                                         |                        | Parameter / Assumption Values    |                              |
|------------------------------|-----------------------------------------|------------------------|----------------------------------|------------------------------|
| Activities/Physical<br>Works | Parameter                               | Units                  | Base Case<br>(PD)                | Assessment Case              |
| Overall                      | Production Rate                         | Tonnes U<br>per year   | 3,200 – 3,800                    | 3,200 - 4,000                |
|                              | Mill Feed Rate                          | Kilotonnes<br>per year | 69 – 946                         | Senes max                    |
|                              | Project Operating Life                  | Years                  | 14                               | 25                           |
|                              | Project Footprint                       | ha                     | 938                              | 1,021                        |
| Milling                      | Flowsheet                               | N/A                    | No SX                            | SX<br>Possibly<br>calciner   |
|                              | Final Product                           | N/A                    | Non-calcined                     | Calcined and non-calcined    |
| Tailings                     | Containment volume                      | Mm <sup>3</sup>        | 28.4                             | 30.0                         |
| Management                   | Total tailings volume (un-consolidated) | Mm3                    | 21                               | 30.0                         |
|                              | Design                                  |                        | Natural<br>surround, no<br>drain | Various design contingencies |



Table 2.2-1 Project Assessment Basis (cont'd)

| Project                       |                                                                |                     | Parameter / Ass   | sumption Values                                                |
|-------------------------------|----------------------------------------------------------------|---------------------|-------------------|----------------------------------------------------------------|
| Activities/Physical<br>Works  | Parameter                                                      | Units               | Base Case<br>(PD) | Assessment Case                                                |
| Water Management              | Freshwater requirements – no permeate or site drainage recycle | m <sup>3</sup> /day | 7,910             | 8,000                                                          |
|                               | Freshwater requirements – permeate and site drainage recycle   | m <sup>3</sup> /day | 2,000             | 8,000                                                          |
|                               | Freshwater requirements - Sissons                              | m <sup>3</sup> /day | 500               | 600                                                            |
|                               | Treated effluent discharge at base quality – Kiggavik          | m <sup>3</sup> /day | 2,707             | 3,000                                                          |
|                               | Treated effluent discharge – Sissons                           | m <sup>3</sup> /day | 1,700             | 1,700                                                          |
| Power Generation              | Kiggavik peak load                                             | MW                  | 12.5              | 12.5 – 16.6                                                    |
|                               | Sissons peak load                                              | MW                  | 4.1               | 0 – 4.1                                                        |
| Logistics &<br>Transportation | Number of barge trips – 5000t & 270 containers                 | Barge trips / year  | 9 - 31            | 31                                                             |
|                               | Number of barge trips – 7500t & 370 containers                 | Barge trips / year  | 7 - 22            | 22                                                             |
|                               | Number of truck trips – 50,000L & 48t                          | Truck trips / year  | 328 - 3233        | 3300                                                           |
|                               | Number of truck trips – 76,000L & 60t                          | Truck trips / year  | 243 - 2405        | 2500                                                           |
|                               | Number of yellowcake flights                                   | Flights / year      | 310 - 350         | 355                                                            |
|                               | Road Route                                                     | N/A                 | Winter road S     | Winter road S Winter road N All-season road N with cable ferry |
|                               | Dock location                                                  |                     | Site 1            | Sites 1, 2,3,4                                                 |
| Decommissioning               | Period                                                         | Years               | 10                | 10                                                             |





### 3 ASSESSMENT APPROACH AND METHODS

#### 3.1 INTRODUCTION

This section describes the methods used in the assessment of environmental and socioeconomic effects associated with the Kiggavik Project. The methods meet the applicable regulatory requirements while focusing the assessment on the matters of greatest environmental, social, cultural, economic and scientific importance. The methodological approach also recognizes the iterative nature of project-level environmental assessment, considering the integration of engineering design and mitigation and monitoring programs into comprehensive environmental management planning for the life of the Project.

The environmental effects assessment method is based on a structured approach that:

- considers the factors that are required under Nunavut Land Claim Agreement,
- focuses on issues of greatest concern,
- affords consideration of all territorial and federal regulatory requirements for the assessment of environmental effects.
- considers issues raised by the Inuit, regulators, government agencies and public stakeholders, and
- integrates Project design and programs for mitigation and monitoring into a comprehensive environmental planning.

The environmental assessment focuses on specific environmental components called Valued Environmental Components (VECs) or Valued Socio-economic Components (VSECs) that are of particular value or interest to Inuit, regulators, government agencies and stakeholders. The term Valued Components (VCs) refers collectively to VECs and VSECs. Valued Components are selected based on regulatory issues and guidelines, consultation with Inuit, regulators, government agencies and stakeholders, field studies, and professional judgment of the study team. Where a VC has various sub-components that may interact in different manners with the Project, the environmental assessment may consider the environmental effects on individual Key Indicators (KIs).

The term "environmental effect" is used throughout the Application and broadly refers to the response of the biophysical or human system or a component of these systems to a disturbance from a Project action or activity or other regional actions (i.e., projects and activities).



The environmental assessment methods address Project-related and cumulative environmental effects. Project-related environmental effects are changes to the biophysical or socio-economic environment that are caused by the Project or activity arising solely because of the proposed principal works and activities, as defined by the Scope of the Project. This includes consideration of the environmental effects of malfunctions or accidents that may occur in connection with the Project. Cumulative environmental effects are changes to the biophysical or socio-economic environment that are caused by an action of the Project in combination with other past, present and future projects and activities.

In this assessment, Project-related environmental effects and cumulative environmental effects are assessed sequentially. The mechanisms through which a Project-specific environmental effect may occur are discussed first, taking into account Project design measures and mitigation that help to reduce or avoid environmental effects. The residual environmental effect is then characterized taking into account planned mitigation. At a minimum, all Project environmental effects are characterized using specific criteria (e.g., magnitude, geographic extent, duration) that are defined for each VC.

A cumulative environmental effects screening is then conducted to determine if there is potential for the Project residual environmental effect to act in a cumulative manner with similar environmental effects from other projects and activities. If there is potential for the Kiggavik Project to contribute to cumulative environmental effects, the environmental effect is assessed to determine if it has the potential to shift a component of the natural or socio-economic environment to an unacceptable state.

The environmental effects assessment approach used in this assessment involves the following steps:

- **Scoping**: Scoping of the overall assessment, which includes: issues identification; selection of VCs (and KIs, if required); description of measurable parameters; description of temporal, spatial, administrative and technical boundaries; definition of the parameters that will be used to characterize the Project-related environmental effects and cumulative environmental effects; and identification of the standards or thresholds that will be used to determine the significance of environmental effects.
- Assessment of Project-related environmental effects: The assessment of Project-related environmental effects, which includes: description of the mechanism(s) by which an environmental effect will occur; mitigation and environmental protection measures to reduce or eliminate the environmental effect; and evaluation and characterization of the residual environmental effects (i.e., environmental effects remaining after application of mitigation measures) of the Project on the biophysical and socio-economic environment for each development phase.



- Evaluation of cumulative environmental effects: The evaluation of cumulative
  environmental effects, which involves two tasks: screening for potential cumulative
  environmental effects and, if there is potential for cumulative environmental effects,
  assessment of cumulative environmental effects. Where an assessment of potential
  cumulative environmental effects is required, the residual cumulative environmental
  effects of the Project are evaluated in combination with other past, present and future
  projects and activities.
- Determination of significance: The significance of Project-related and cumulative residual environmental effects is determined using standards or thresholds that are defined for each VC.
- Monitoring: Several different types of monitoring may be required to confirm compliance with mitigation measures or Project design features, address uncertainties or verify environmental effects predictions and/or assess the effectiveness of mitigation measures.
- Summary: The last step of the assessment of environmental effects on a VC is the
  development of summaries on Project and cumulative environmental effects
  (including combined Project environmental effects and combined cumulative
  environmental effects), mitigation measures and Project design features, and
  monitoring.

#### 3.2 SCOPE OF THE ASSESSMENT

# 3.2.1 Valued Components, Indicators and Measurable Parameters

Valued Components are defined as broad components of the biophysical and socio-economic environments, which if altered by the Project, would be of concern to regulators, Inuit, resource managers, scientists, and public stakeholders.

VECs for the biophysical environment typically represent major components or aspects of the physical and biological environment that might be altered by the Project, and are widely recognized as important for ecological reasons.

Criteria for selection of VCs include:

- Do they represent a broad environmental, ecological or human environment component that may be altered by the Project?
- Are they vulnerable to the environmental effects of the Project and other activities in the region?



- Have they been identified as important issues of concerns of Inuit or stakeholders, or in other assessments in the region?
- Were they identified by the Nunavut Impact Review Board (NIRB), Inuit organizations or departments within the territorial or federal government?

Key indicators (KIs) are species, species groups, resources or ecosystem functions that represent components of the broader VCs. They are selected using the same criteria as described above for VCs. For practical reasons, KIs are often selected where sufficient information is available to assess the potential Project residual environmental effects and cumulative environmental effects.

For each VC or KI, one or more measurable parameters are selected to quantitatively or qualitatively measure the Project environmental effects and cumulative environmental effects. Measurable parameters provide the means of determining the level or amount of change to a VC or KI. The degree of change in the measurable parameter is used to characterize project-related and cumulative environmental effects, and evaluate the significance of these effects. Thresholds or standards are identified for each measurable parameter, where possible, to assist in determining significance of the residual environmental effect.

## 3.2.2 Key Issues

Issues identification focuses the assessment on matters of greatest importance related to the Project, and assists in determining which factors and the scope of those factors that will be considered in the assessment.

Issues and concern about the possible biophysical or socio-economic effects of the Project have been identified from a variety of sources, including:

- the regulatory requirements applicable to the Project,
- discussions with technical experts from various territorial and federal government agencies,
- input from Inuit and public stakeholders during engagement activities in relation to the Project,
- existing regional information and documentation regarding environmental components found near the Project,
- baseline and assessment studies conducted in the area of the Project, and
- professional judgment of the assessment team, based on experience with similar projects elsewhere and other mining project and activities in Nunavut.

Key Project-related issues are summarized in the scoping section for each discipline considered in the assessment.



# 3.2.3 Project – Environment Interactions and Environmental Effects

Key Project-related activities that are likely to result in environmental effects are considered for each VC. A matrix of Project activities and environmental components is provided in the scoping section for each discipline to identify where interactions are likely to occur based on the spatial and temporal overlap between Project activities and the VC. Each interaction is ranked according to the potential for an activity to cause an environmental effect. The interactions are ranked according to the following:

- If there is no interaction or no potential for substantive interaction between a Project
  activity and the VC to cause a potential environmental effect, an assessment of that
  environmental effect is not required. These interactions are categorized as 0, and are
  not considered further in the EA. The environmental effects of these activities are
  thus, by definition, rated not significant.
- If there is likely to be a potential interaction between a Project activity and a VC but not likely to be substantive in light of planned mitigation, the interaction is categorized as 1. Such interactions are well understood and are subject to prescribed mitigation or codified practices. These interactions are subject to a less detailed environmental effects assessment and are rated as not significant. Justification is provided and the mitigation is described for such categorizations. Such interactions can be mitigated with a high degree of certainty with proven technology and practices.
- If a potential interaction between a Project activity and a VC could result in more substantive environmental effects despite the planned mitigation, if there is less certainty regarding the effectiveness of mitigation, or if there is high concern from regulatory agencies, Inuit or stakeholders, the interaction is categorized as 2. These potential interactions are subject to a more detailed analysis and consideration in the environmental assessment in order to predict, mitigate and evaluate the potential environmental effects.

The ranking takes a precautionary approach, whereby interactions with a meaningful degree of uncertainty are assigned a rank of 2 to ensure that a detailed analysis of the potential environmental effect is undertaken.

Justification for ranking the Project-environmental interactions considered for each VC is provided in the scoping section for each discipline.



#### 3.2.4 Assessment Boundaries

Boundaries of the assessment are defined for each VC to allow for a meaningful analysis of the significance of environmental effects. The assessment boundaries are described in terms of temporal, spatial and administrative and technical boundaries.

### 3.2.4.1 Spatial Boundaries

Spatial boundaries are established for assessing the potential Project-related environmental effects and cumulative environmental effects on each VC. The primary consideration in establishing these boundaries is the probable geographical extent of the environmental effects (i.e., the zone of influence) on the VC.

Spatial boundaries represent the geographic extent of the VC, as they pertain to potential Project-environment interactions. Spatial boundaries are selected for each VC to reflect the geographic extent over which Project activities will or are likely to occur, and as such, they may be different from one VC to another depending on the characteristics of the VC. For this assessment, the spatial boundaries are referred to as 'assessment areas' to differentiate the areas from the local and regional study areas referred to in many baseline studies.

Three assessment areas are defined for each VC.

The **Project Footprint** is the most immediate area of the Project. The Project Footprint includes the area of direct physical disturbance associated with the construction or operation of the Project.

The **Local Assessment Area** (LAA) is the maximum area within which Project-related environmental effects can be predicted or measured with a reasonable degree of accuracy and confidence. The LAA includes the Project Footprint and any adjacent areas where Project-related environmental effects may be reasonably expected to occur.

The **Regional Assessment Area** (RAA) is a broader area within which cumulative environmental effects on the VC may potentially occur. This will depend on physical and biological conditions (e.g., air sheds, watersheds, seasonal range of movements, population unit), and the type and location of other past, present or reasonably foreseeable projects or activities. For the socio-economic environment, the RAA may be much broader (planning areas, regions, territories etc.) based on the potential geographic extent over which socio-economic effects are likely to occur. It is also the area where, depending on conditions (e.g., seasonal conditions, habitat use, more intermittent and dispersed Project activities), Project environmental effects may be more wide reaching.



## 3.2.4.2 Temporal Boundaries

The temporal boundaries for the assessment are defined based on the timing and duration of Project activities and the nature of the interactions with each VC. Temporal boundaries encompass those periods during which the VCs and KIs are likely to be affected by Project activities.

For the Kiggavik Project, temporal boundaries include the following Project phases.

- construction
- operations
- final closure
- post closure

The operations phase includes consideration of maintenance, planned exploration and temporary closure (care & maintenance) of the Project. The final closure phase considers decommissioning and reclamation, and post-closure phase includes management of restored sites.

In some cases, temporal boundaries are refined to a specific period of time beyond simply limiting them to a specific phase of the Project. This is carried out as necessary within each environmental effects analysis section. Temporal boundaries for the assessment may reflect seasonal variations or life cycle requirements of biological VCs, long-term population cycles for some biological VECs, or forecasted trends for socio-economic VSECs.

#### 3.2.4.3 Administrative and Technical Boundaries

Administrative and technical boundaries are identified and justified for each VC or KI, as appropriate. Administrative boundaries include specific aspects of provincial, territorial and federal regulatory requirements, standards, objectives, or guidelines, as well as regional planning initiatives that are relevant to the assessment of the Project's environmental effects on the VC. Administrative boundaries may be selected to establish spatial boundaries.

Technical boundaries reflect technical limitations in evaluating potential environmental effects of the Project, and may include limitations in scientific and social information, data analyses, and data interpretation.



#### 3.2.5 Environmental Effects Criteria

Where possible, the following characteristics are described quantitatively for each VC to assist in the assessment of residual environmental effects. Where these residual environmental effects cannot be defined quantitatively, they are described using qualitative terms. If qualitative descriptions are used, definitions are provided for each VC or KI, as appropriate, in the scoping section of the environmental assessment for that VC or KI.

- **Direction:** the ultimate long-term trend of the environmental effect (e.g., positive, neutral or adverse)
- *Magnitude:* the amount of change in a measurable parameter or variable relative to the baseline case (i.e., low, moderate, high)
- **Geographical Extent:** the geographic area within which an environmental effect of a defined magnitude occurs (site-specific, local, regional, territorial, national, international)
- **Frequency:** the number of times during the Project or a specific Project phase that an environmental effect may occur (i.e., once, sporadically, regular, continuous)
- **Duration:** this is typically defined in terms of the period of time that is required until the VC returns to its baseline condition or the environmental effect can no longer be measured or otherwise perceived (i.e., short term, medium term, long term, permanent)
- **Reversibility:** the likelihood that a measurable parameter for the VC will recover from an environmental effect (i.e., reversible, irreversible)
- **Ecological or socio-economic context:** the general characteristics of the area in which the Kiggavik Project is located (i.e., undisturbed, disturbed, urban setting)

## 3.2.6 Standards or Thresholds for Determining Significance

Where possible, threshold criteria or standards for determining the significance of environmental effects are defined for each VC or KI to represent that limit beyond which a residual environmental effect would be considered significant. In some cases, standards or thresholds are also defined for specific environmental effects on a VC or KI.

Standards are recognized federal and territorial regulatory requirements or industry objectives that are applicable to the VC, and that reflect the limits of an acceptable state for that component. Where standards, guidelines or regulatory requirements do not specifically exist, thresholds are defined for the measurable parameters for an environmental effect on a VC based on resource management objectives, community standards, scientific literature, or ecological processes (e.g., desired states for fish or wildlife habitats or populations).



Potential changes in a measurable parameter or VC resulting from residual Project or cumulative environmental effects are evaluated against these standards or thresholds. Environmental effects are rated as either *significant* or *not significant*.

## 3.2.7 Influence of Engagement on the Assessment

Engagement undertaken to date with regulators, Inuit and public stakeholders in relation to the Project is described in Volume 3. Issues raised during these engagement activities and Inuit Qaujimajatuqangit (IQ) sessions were documented, and were reviewed for consideration in each discipline-specific assessment, including scoping of baseline data collection, selection of VC and KIs, use of TEK and IQ in the environmental effects assessment, mitigation and monitoring.

#### 3.3 ASSESSMENT OF PROJECT ENVIRONMENTAL EFFECTS

## 3.3.1 Existing Conditions

The existing conditions for each VC are described according to the status and characteristics of the VC within its defined spatial and temporal assessment boundaries. This is based on a variety of sources, including:

- information from past research conducted in the region;
- Inuit Qaujimajatuqangit (IQ); and
- knowledge gained from the collection of baseline data through literature review, qualitative and quantitative analyses, and field programs carried out as part of the environmental assessment.

In general, the description of existing conditions is limited to information directly relevant to the potential VC interactions with the Project to support the environmental effects analysis.

## 3.3.2 Project Effect Linkages

The mechanisms or linkages through which the Project components and activities could result in an environmental effect on a VC, and the spatial and temporal extent of this interaction is described based on the existing conditions of the VC. Because the assessment focuses on residual environmental effects, effects prior to mitigation are not characterized or quantified and the significance of the effect is not determined.



## 3.3.3 Mitigation Measures and Project Design

Where Project activities are likely to cause an environmental effect on a VC, mitigation measures are identified to minimize or avoid environmental effects of the Project. This includes measures or strategies that are technically and economically feasible and that would reduce the extent, duration or magnitude of the environmental effect.

Mitigation includes Project design features to change the spatial or temporal aspect of the Project, specialized mitigation, environmental protection measures and protocols, and compensation (habitat compensation, replacement or financial compensation).

Where mitigation is identified, a brief discussion of how the measure(s) will help to minimize the residual environmental effect on the VC is provided. Where possible, this includes a description of how effective the measure is expected to be in minimizing the change in the measurable parameters for the environmental effect.

## 3.3.4 Residual Project Effects Assessment

Taking into account the mitigation and expected effectiveness of the measure(s), the residual environmental effects of the Project are described according to their probable magnitude, geographic scope, duration, frequency, reversibility and ecological context, where appropriate. The residual effect is characterized in the context of the existing condition for the measureable parameter(s) and how it is likely to change as a result of the Project environmental effect. For some residual environmental effects, the change in the measurable parameter is described relative to each Project phase.

Where possible, the magnitude, geographic extent and duration of the residual environmental effect are quantified. If a residual effect cannot be quantified, qualitative terms are used to describe the attributes of the effect.

## 3.3.5 Significance of Residual Project Environmental Effects

Significance of a residual Project environmental effect is determined based on standards or thresholds that are specific to the VEC, KI and/or the measurable parameters used to assess the environmental effect. Determination of whether a residual environmental effect is considered to be significant or not significant is based on a comparison of the predicted change in the VC or measurable parameter to the defined threshold or standard. This includes an indication of the likelihood that a residual environmental effect on a VC will occur based on probability of occurrence (i.e., based on past experience) and level of scientific uncertainty.



Determination of significance also includes a discussion of the confidence of the prediction with respect to:

- the characterization of environmental effects, and
- the success of Project design features, mitigation measures, and environmental protection measures in effectively reducing the environmental effect.

Prediction confidence for the environmental effect and the success of mitigation measures is ranked as low, moderate or high.

## 3.3.6 Monitoring of Residual Project Environmental Effects

Based on analysis of the residual Project environmental effect, it may be necessary to conduct a monitoring program. Monitoring is recommended in cases where there is a need to address Project-related issues of public concern, test the accuracy of the assessment predictions, verify the success of the mitigation measures, or gain additional scientific knowledge related to prediction of the Project environmental effect.

Two types of monitoring are considered: compliance and follow-up environmental monitoring.

Compliance monitoring is undertaken to confirm that Project design features, mitigation measures, environmental protection measures, or benefit agreements are being effectively implemented.

Biophysical and socio-economic monitoring programs are used to:

- verify predictions of environmental effects;
- determine the effectiveness of mitigation measures, environmental protection measures or benefits agreements in order to modify or implement new measures where required;
- support the implementation of adaptive management measures to address previously unanticipated adverse environmental effects; and
- support environmental management systems used to manage the environmental effects of projects.

Where a monitoring program for a specific VC or KI is identified, the following aspects of the program are defined:

- parameters to be measured,
- methods and equipment to be used,



- location and timing of surveys, and
- how the results of the monitoring will be applied, including consideration of an adaptive management approach.

# 3.4 ASSESSMENT OF CUMULATIVE ENVIRONMENTAL EFFECTS

## 3.4.1 Screening for Potential Cumulative Effects

Cumulative environmental effects are only assessed if the following criteria are met for the residual Project effect under consideration:

- The Project will result in a measurable, demonstrable or reasonably-expected residual environmental effect on a component of the biophysical or socio-economic environment,
- The Project-specific residual environmental effect on the component will likely act in a cumulative fashion with the environmental effects of other past or future projects or activities that are likely to occur (i.e., Is there overlap of environmental effects?), and
- There is a reasonable expectation that the Project's contribution to cumulative environmental effects will be substantive, measurable or discernible such as that it will affect the viability or sustainability of the resource.

If, based on these criteria, there is potential for cumulative environmental effects, the effect is assessed further to determine if it is likely to shift the component to an unacceptable state. Where there is no potential for the environmental effect of the Project to spatially or temporally overlap with similar effects of other project and activities, justification for not carrying these environmental effects forward to the assessment of cumulative environmental effects is provided.

## 3.4.2 Project Inclusion List

The project inclusion list includes all past, present and reasonable foreseeable projects, activities and actions in the region of the Kiggavik Project. Only projects and activities that overlap with the Project residual environmental effects both spatially and temporally are considered in the assessment of potential cumulative environmental effects.

The specific projects, activities and action considered for each environmental effect are described in the assessment for the VC or KI.



## 3.4.3 Description of Cumulative Environmental Effects

The first step in the assessment of cumulative environmental effects involves describing the environmental effect, the mechanisms by which the Project environmental effect may interact cumulatively with other projects and activities in the RAA (from the Project Inclusion List), and the geographic and temporal scope of the cumulative environmental effect.

For this assessment, cumulative environmental effects are described for four cases.

- Base Case: the current status of the measurable parameters for the environmental
  effects at baseline (i.e., prior to the Project). Baseline includes all past and present
  projects and activities in the RAA that may result in similar environmental effects to
  the Project environmental effect, including ongoing mineral exploration. Existing
  projects include projects that have received environmental approval and are in some
  form of planning, construction and/or commissioning.
- Project Case: the status of the measurable parameters for the environmental effect with the Project in place, over and above the Base Case. This is usually assessed using the peak environmental effect of the Project or maximum active footprint for the Project.
- Future Case: the status of the measurable parameters for the environmental effect because of the Project Case, in combination with all reasonable foreseeable projects, activities and actions. Reasonably foreseeable projects are defined as future projects, activities and actions that will occur with certainty, including projects that are in some form of regulatory approval or have made a public announcement to seek regulatory approval.

For this assessment, future projects include proposed mines that are currently under NIRB review:

- Meadowbank
- Doris North 1
- Doris North 2
- Meliadine
- Mary River
- Hackett River
- Back River
- Hackett River
- High Lake



The combination of the Project Case with the Future Case allows determination of the Project's contribution to cumulative effects of all past, present and reasonablyforeseeable projects and activities.

• Far Future Case: the status of the measurable parameters for the environmental effect because of the Future Case, in combination with possible far future developments in the Kiggavik region.

It is recognized that exploration activities will continue in the vicinity of the Kiggavik Project, and that there is the potential for additional resources to be discovered during the life of the Project. To address such a possibility, a potential far future development scenario is considered. This scenario assumes additional deposits within a 200 km radius of the Kiggavik site, and the development of a non-uranium operation located within the Kiggavik RSA. The Meadowbank gold operation is used as the model for this. It assumes additional resources are found in the Meadowbank area, and that operation of Meadowbank continues. The following projects and activities are included in the development scenario.

| Component     | Locations                                                            |
|---------------|----------------------------------------------------------------------|
| Uranium mines | 3 mines within 200 km of Kiggavik                                    |
| Uranium mills | Kiggavik mill                                                        |
| Gold mines    | 1 mine within Kiggavik RSA<br>Meadowbank region                      |
| Gold mills    | Meadowbank region<br>Additional mill within Kiggavik RSA             |
| Access Roads  | Meadowbank region<br>Additional mill within Kiggavik RSA             |
| Exploration   | Induced exploration near the access road(s) and in the Kiggavik area |

Due to the lack of information regarding the specific details of potential future developments (i.e., footprint of projects and activities), the assessment of cumulative environmental effects under this Case is by definition qualitative and is limited to a description of how these projects, activities and actions could affect the magnitude, duration and extent of cumulative environmental effects.

# 3.4.4 Mitigation of Cumulative Environmental Effects

Mitigation measures that would reduce the Project's environmental effects are described for cumulative environmental effects, with emphasis on measures that should limit the interaction of environmental effects of the Project with similar environmental effects from other projects. Three types of mitigation measures are considered, where appropriate:

measures that can be implemented solely by AREVA,



- measures that can be implemented by AREVA, in cooperation with other project proponents, government, Aboriginal organizations and/or public stakeholders, and
- measures that can be implemented independently by other project proponents, government, Aboriginal Organizations and/or public stakeholders.

For the latter two types of mitigation, the degree to which AREVA can or cannot influence the implementation of these measures is noted.

Mitigation measures that could assist in reducing potential cumulative environmental effects are identified for each environmental effect, including a discussion of how these measures may potentially modify the characteristics of an environmental effect.

#### 3.4.5 Residual Cumulative Environmental Effects Assessment

Residual cumulative environmental effects are described, taking into account how the mitigation will change the environmental effect. Where possible, cumulative environmental effects are characterized quantitatively or qualitatively in terms of the direction, magnitude, duration, geographic extent, frequency and reversibility. This includes characterization of:

- the total residual cumulative environmental effects based on the Future Case (i.e., the environmental effects of all past, present and reasonably foreseeable project and activities), in combination with the environmental effects of the Project, and
- the contribution of the Project to the total residual cumulative effects (i.e., how much of the total residual cumulative effects can be attributed to the Project).

## 3.4.6 Significance of Residual Cumulative Environmental Effects

The significance of cumulative environmental effects is determined using standards or thresholds that are specific to the VC, KI and/or measurable parameters used to assess the Project environmental effect. Determinations of significance are made for:

- the significance of the total residual cumulative environmental effect, and
- the significance of the contribution of the Project to the total residual cumulative environmental effect.

The determination of residual cumulative environmental effects includes a discussion of the confidence of the prediction based on scientific certainty relative to:

- quantifying or estimating the environmental effect (i.e., quality and/or quantity of data, understanding of the effects mechanisms), and
- the effectiveness of the proposed mitigation measures.



As for residual Project environmental effects, prediction confidence for the cumulative environmental effect and the success of mitigation measures is ranked as low, moderate or high.

## 3.4.7 Monitoring of Cumulative Environmental Effects

Based on the evaluation of residual cumulative environmental effects, it may be necessary to conduct monitoring programs. Monitoring programs are designed to:

- confirm the effectiveness of a broad range of approved mitigation techniques,
- determine whether different or an increased level of mitigation is required to achieve the mitigation or reclamation goals, and
- identify and address any cumulative effects that occur but were not predicted.

Two types of monitoring are considered:

- Compliance Monitoring: to confirm that Project design features, mitigation measures, environmental protection measures, or benefit agreements are being effectively implemented.
- Biophysical or Socio-economic Monitoring: to confirm the environmental effect prediction and/or effectiveness of a Project design feature, mitigation measure, environmental protection measure, or benefit agreement.

#### 3.5 SUMMARY OF RESIDUAL ENVIRONMENTAL EFFECTS

Residual Project and cumulative environmental effects are briefly summarized for each VC. This includes a discussion of the overall combined environmental effect of the Project on the VC and its significance, as well as a discussion of the overall combined effect of all cumulative effects on the VC and its significance. For biophysical VECs, this relates to the sustainability of the resource or populations being considered. For socio-economic VSECs, this relates to the ability of the community, the Kivalliq region and/or Nunavut to adapt to or manage the environmental effect. A discussion of the Project's contribution to the combined cumulative effect is also provided.

In addition, this summary section presents an assessment of the effects of climate change on residual Project and cumulative effects. Where possible, the effects are described quantitatively, and include a description of how likely climate changes in the region will likely influence Project and cumulative residual effects.



#### 3.6 ASSESSMENT OF TRANSBOUNDARY EFFECTS

As required by the NIRB EIS Guidelines, the assessment includes consideration of transboundary effects, where residual environmental effects are likely to extend beyond the Nunavut into federal waters and/or other provincial or territorial jurisdictions. As this is based largely on the cumulative effects assessment, the transboundary effects are characterized qualitatively or semi-quantitatively.

#### 3.7 SUMMARY OF MITIGATION

A detailed description of the mitigation measures proposed to minimize or avoid project-related and cumulative effects on VCs is provided based on the scoping and effects analyses. This includes:

- relevant Project design features to reduce environmental effects,
- Project policies (e.g., Inuit hiring policy),
- specialized mitigation measures to minimize environmental effects on VECs,
- social or community programs to minimize environmental effects on VSECs,
- Environmental Protection plans,
- broader agreements (e.g., benefits agreements), and
- compensation.

#### 3.8 SUMMARY OF MONITORING

Monitoring programs to address uncertainties associated with the environmental effects predictions and environmental design features and mitigation proposed for residual Project effects and cumulative effects are described in detail. This includes all compliance monitoring and environmental monitoring that may be applied during the life of the Project, and that will form the:

- Compliance Monitoring Program Framework,
- Environmental Monitoring Program Framework,
- Socio-Economic Monitoring Program Framework,
- Post-Project Analysis Program Framework, and
- Follow-up Monitoring Programs.





# 4 SCOPE OF THE ASSESSMENT FOR THE MARINE ENVIRONMENT

This section describes the scope of the environmental effects assessment for the marine environment.

Project activities associated with the construction, operation and decommissioning of the Kiggavik Project have the potential to result in environmental effects on the marine environment. Routine vessel operations within the NSA, and routine activities associated with construction, operation, and decommissioning of the proposed dock facility are considered. Marine transportation activities outside of the NSA are not considered within the scope of the assessment. Accidents and malfunctions (including accidental releases) at the terminal or during vessel transit are addressed in Volume 10.

# 4.1 ISSUES AND CONCERNS IDENTIFIED DURING INUIT, GOVERNMENT AND STAKEHOLDER ENGAGEMENT

The NIRB EIS Guidelines for the Project (Nunavut Impact Review Board 2011) incorporated advice from the public and interested parties on the proposed scope of assessment for the marine environment, including identification of Valued Environmental Components (VECs) and issues that should be considered in the EIS. Specifically, the guidelines require an analysis of the potential environmental effects of shipping activities on marine wildlife and marine habitat, as well as an assessment of how the Project may contribute to regional cumulative environmental effects of marine transportation activities in Hudson Bay.

Public engagement was used to help identify and select Valued Ecosystem Components (VECs). AREVA determined it was important to examine and understand which VECs are important to Inuit stakeholders. In order to gain a better understanding of the value associated with specific VECs, AREVA conducted a number of public engagement programs. In 2009 and 2010, AREVA undertook community meetings throughout the Kivalliq region to introduce AREVA and project team members, provide information on the proposed Kiggavik Project, provide information on AREVA's Saskatchewan experience, encourage public input and participation, and learn more about important values and concerns to help identify valued ecosystem and socioeconomic components for the environmental assessment.



The following are Project-specific issues and concerns regarding the marine environment that were identified during Inuit, government, and stakeholder engagement:

- underwater noise associated with marine vessel movement, and its environmental effects on marine wildlife
- physical presence and movement of marine vessels and effects on marine wildlife health (accidental injuries and mortality from ship strikes) and shoreline habitat (due to propeller wash, wake)
- potential environmental effects of bilge and ballast water, changes in sediment transport and accidental spills on coastal and marine habitat and marine wildlife
- potential effects of climate change and sea level change on Project components

### 4.2 REGULATORY SETTING

#### 4.2.1 Arctic Waters Pollution Prevention Act

The Arctic Waters Pollution Prevention Act states that "no person or ship shall deposit or permit the deposit of waste of any type in the Arctic waters". Under the Act, the Arctic Waters Pollution Prevention Regulations and the Arctic Shipping Pollution Prevention Regulations aim to prevent the pollution of Canadian Arctic Waters by regulating the operations and management of shipproduced wastes while sailing in Arctic coastal waters under Canadian jurisdiction. The Act and regulations include requirements for qualified ice navigators on board, sewage deposit and oil deposit mishaps, vessel construction requirements, and the deposit of waste by ships in Arctic waters.

#### 4.2.2 Fisheries Act

Fisheries and Oceans Canada (DFO) regulates activities that might affect fish or fish habitat, which are protected under the *Fisheries Act*. Under Section 2 of this Act, 'fish' includes fish and shellfish, any parts of fish or shellfish, crustaceans, other marine animals; and the eggs, sperm, spawn, larvae, spat, and juvenile stages of fish, shellfish, crustaceans, and marine animals. By this definition, marine mammals are considered as 'fish'. Section 35 of the Act prohibits harmful alteration, disruption or destruction (HADD) of fish habitat, and Section 36 prohibits deposits of any substances considered deleterious to fish. Section 35 is administered by DFO, while Section 36 is administered by Environment Canada. Fish habitat is also protected by the DFO Policy for the Management of Fish Habitat, which applies to all activities in or near water that threaten the productive capacity of fish habitat. This policy aims to achieve a no net loss of the productive capacity of fish habitat and a net gain in productive capacity of habitat. The Marine Mammal Regulations (1993), under the *Fisheries Act*, apply to the management and control of fishing for marine mammals in Canadian waters. The regulations state that, for industrial projects, no person shall disturb a marine mammal except when fishing for marine mammals under the authority of those regulations.



## 4.2.3 Species at Risk Act

The Species at Risk Act (SARA) provides legal protection of wildlife species and the conservation of biological diversity. It is a federal commitment to prevent wildlife species at risk from becoming extinct and to implement the necessary actions for their recovery. Under the Committee on the Status of Endangered Wildlife in Canada (COSEWIC), species are ranked according to conservation concern (i.e., extinct, extirpated, endangered, threatened, special concern, not at risk or data deficient). Schedule 1 of SARA is the official list of wildlife species at risk in Canada; it contains species that are extirpated, endangered, threatened, and of special concern.

### 4.2.4 Nunavut Wildlife Act

The *Nunavut Wildlife Act* is territorial legislation, under the Nunavut Land Claims Agreement, established for the management of wildlife and habitat in Nunavut, including the conservation, protection and recovery of species at risk. The Act applies to all terrestrial and aquatic wildlife and their habitat. It does not cover fish, as defined in Section 2 of the *Fisheries Act* (see section 4.2.1). The Department of Environment Wildlife Management division has a legislated mandate for the management of terrestrial species in Nunavut and is responsible for fulfilling Government of Nunavut responsibilities under federal legislation, and national and international agreements and conventions.

Although the polar bear is generally considered a marine mammal because it is dependent on the marine environment for survival, it also uses terrestrial habitats for some life stages and is therefore protected and managed under this Act.

## 4.2.5 Nunavut Land Claims Agreement Act

The Nunavut Land Claims Agreement (NLCA) is a 1993 land claims agreement between the Inuit of the Nunavut Settlement Area (NSA) and the Government of Canada, which allowed for the creation of a new territory and the Government of Nunavut. Under the terms of the agreement, jurisdiction over some territorial matters was transferred to the new government including wildlife management, land use planning, and natural resource management.

The Nunavut Planning Commission (NPC) was established under the NLCA, and is responsible for land use planning in the NSA. "Land" use in this context also includes the management of coastal and offshore marine and wildlife resources. The provisions of the NLCA include respecting wildlife, habitat, and the rights of Inuit in relation to wildlife and habitat. The NPC has developed the *Keewatin Regional Land Use Plan*<sup>1</sup>, which encompasses the LAA and RAA for

<sup>&</sup>lt;sup>1</sup> Kivalliq became the official name in 1999 when Nunavut became a territory. It existed as Keewatin Region, Northwest Territories and the name has been phased out in Nunavut.



the marine assessment (Nunavut Planning Commission 2000). Objectives under this land use plan of relevance to the marine assessment include:

- Residents should know what others are doing- or are planning to do in the area used by their community, inside and outside of municipal boundaries.
- Residents should have major input into the regulation and management of these activities.
- Non-renewable resource development should have environmental effects that are not significant on the environment, wildlife or wildlife habitat.
- The continued development of appropriate land, air and marine transportation for the safe, accessible and reliable movement of people and goods, to serve the social, economic and political needs of the Keewatin people.

Under the NLCA, the NPC has the authority and responsibility to review any project proposal within the region and confirm that it conforms to this plan and to make a determination accordingly. The land use plan encourages the use of Inuit monitors on board any ship travelling through the region, and improved communications to reduce interference with people and wildlife. Appendix J of the land use plan outlines marine transportation corridor guidelines to be used in the assessment of a new transportation corridor (Nunavut Planning Commission 2000).

### 4.3 PROJECT-ENVIRONMENT INTERACTIONS

## 4.3.1 Project-Environment Interactions

Interactions are expected to occur between the marine environment and construction, operations and decommissioning activities of the Project. These are ranked according to the potential for an activity to interact with one or more components of the marine environment (Table 4.3-1). The components of the marine environment considered include marine wildlife (marine mammals, marine fish, marine birds, marine benthic invertebrates, marine Species at Risk) and biophysical features of the marine environment (sediment and water quality, and marine vegetation).



 Table 4.3-1
 Identification of Project-Environment Interactions

| Project<br>Component     | Project Activities/Physical Works                                                                      | Marine<br>Mammals | Fish | Birds | Benthic<br>Invertebrates | Marine<br>Vegetation | Sediment<br>Quality | Water<br>Quality | Species<br>at Risk |
|--------------------------|--------------------------------------------------------------------------------------------------------|-------------------|------|-------|--------------------------|----------------------|---------------------|------------------|--------------------|
| Construction             |                                                                                                        |                   |      |       |                          |                      |                     |                  |                    |
| Economic<br>Activities   | Construction workforce management;<br>Contracts and taxes; Advance training of<br>operations workforce | 0                 | 0    | 0     | 0                        | 0                    | 0                   | 0                | 0                  |
| In-Water<br>Construction | Construct freshwater diversions and site drainage containment systems (dykes, berms, collection ponds) | 0                 | 0    | 0     | 0                        | 0                    | 0                   | 0                | 0                  |
|                          | Construct in-water/shoreline structures                                                                | 0                 | 1    | 1     | 1                        | 0                    | 1                   | 1                | 0                  |
|                          | Water transfers and discharge                                                                          | 0                 | 0    | 0     | 0                        | 0                    | 0                   | 0                | 0                  |
|                          | Freshwater withdrawal                                                                                  | 0                 | 0    | 0     | 0                        | 0                    | 0                   | 0                | 0                  |
| On-Land<br>Construction  | Site clearing and pad construction (blasting, earth moving, loading, hauling, dumping, crushing)       | 0                 | 0    | 0     | 0                        | 0                    | 0                   | 0                | 0                  |
|                          | Road and Airstrip Construction                                                                         | 0                 | 0    | 0     | 0                        | 0                    | 0                   | 0                | 0                  |
|                          | Aggregate Sourcing                                                                                     | 0                 | 0    | 0     | 0                        | 0                    | 0                   | 0                | 0                  |
|                          | Construct foundations                                                                                  | 0                 | 0    | 0     | 0                        | 0                    | 0                   | 0                | 0                  |
|                          | Construct buildings                                                                                    | 0                 | 0    | 0     | 0                        | 0                    | 0                   | 0                | 0                  |
|                          | Install equipment                                                                                      | 0                 | 0    | 0     | 0                        | 0                    | 0                   | 0                | 0                  |
|                          | Install and commission fuel tanks                                                                      | 0                 | 0    | 0     | 0                        | 0                    | 0                   | 0                | 0                  |
|                          | Mill dry commissioning (water only)                                                                    | 0                 | 0    | 0     | 0                        | 0                    | 0                   | 0                | 0                  |
| Supporting<br>Activities | Transport fuel and construction materials (transfers, barging)                                         | 2                 | 2    | 1     | 1                        | 1                    | 1                   | 1                | 1                  |
|                          | Air transport of personnel and supplies                                                                | 0                 | 0    | 0     | 0                        | 0                    | 0                   | 0                | 0                  |



Table 4.3-1 Identification of Project-Environmental Interactions (cont'd)

| Project<br>Component   | Project Activities/Physical Works                        | Marine<br>Mammals | Fish | Birds | Benthic<br>Invertebrates | Marine<br>Vegetation | Sediment<br>Quality | Water<br>Quality | Species at Risk |
|------------------------|----------------------------------------------------------|-------------------|------|-------|--------------------------|----------------------|---------------------|------------------|-----------------|
| Construction (cor      | nt'd)                                                    |                   |      |       |                          |                      |                     |                  |                 |
| Supporting             | Hazardous materials storage and use                      | 0                 | 0    | 0     | 0                        | 0                    | 0                   | 0                | 0               |
| Activities (cont'd)    | Explosives storage and use                               | 0                 | 0    | 0     | 0                        | 0                    | 0                   | 0                | 0               |
|                        | Waste incineration and disposal                          | 0                 | 0    | 0     | 0                        | 0                    | 0                   | 0                | 0               |
|                        | Industrial machinery operation                           | 0                 | 0    | 0     | 0                        | 0                    | 0                   | 0                | 0               |
|                        | Power generation                                         | 0                 | 0    | 0     | 0                        | 0                    | 0                   | 0                | 0               |
| Operation              |                                                          |                   |      |       |                          |                      |                     |                  |                 |
| Economic<br>Activities | Workforce management; Employment;<br>Contracts and taxes | 0                 | 0    | 0     | 0                        | 0                    | 0                   | 0                | 0               |
| Mining                 | Mining ore (blasting, loading, hauling)                  | 0                 | 0    | 0     | 0                        | 0                    | 0                   | 0                | 0               |
|                        | Ore stockpiling                                          | 0                 | 0    | 0     | 0                        | 0                    | 0                   | 0                | 0               |
|                        | Mining special waste (blasting, loading, hauling)        | 0                 | 0    | 0     | 0                        | 0                    | 0                   | 0                | 0               |
|                        | Special waste stockpiling                                | 0                 | 0    | 0     | 0                        | 0                    | 0                   | 0                | 0               |
|                        | Mining clean waste (blasting, loading, hauling)          | 0                 | 0    | 0     | 0                        | 0                    | 0                   | 0                | 0               |
|                        | Clean rock stockpiling                                   | 0                 | 0    | 0     | 0                        | 0                    | 0                   | 0                | 0               |
|                        | Mine dewatering                                          | 0                 | 0    | 0     | 0                        | 0                    | 0                   | 0                | 0               |
|                        | Underground ventilation                                  | 0                 | 0    | 0     | 0                        | 0                    | 0                   | 0                | 0               |
|                        | Backfill production and underground placement            | 0                 | 0    | 0     | 0                        | 0                    | 0                   | 0                | 0               |
| Milling                | Transfer ore to mill                                     | 0                 | 0    | 0     | 0                        | 0                    | 0                   | 0                | 0               |
|                        | Crushing and grinding                                    | 0                 | 0    | 0     | 0                        | 0                    | 0                   | 0                | 0               |
|                        | Leaching and U recovery                                  | 0                 | 0    | 0     | 0                        | 0                    | 0                   | 0                | 0               |



Table 4.3-1 Identification of Project-Environmental Interactions (cont'd)

| Project<br>Component | Project Activities/Physical Works                     | Marine<br>Mammals | Fish | Birds | Benthic<br>Invertebrates | Marine<br>Vegetation | Sediment<br>Quality | Water<br>Quality | Species at Risk |
|----------------------|-------------------------------------------------------|-------------------|------|-------|--------------------------|----------------------|---------------------|------------------|-----------------|
| Operation (cont'     | d)                                                    |                   |      |       |                          |                      |                     |                  |                 |
| Milling (cont'd)     | U purification                                        | 0                 | 0    | 0     | 0                        | 0                    | 0                   | 0                | 0               |
|                      | Yellowcake drying and packaging                       | 0                 | 0    | 0     | 0                        | 0                    | 0                   | 0                | 0               |
|                      | Tailings neutralization                               | 0                 | 0    | 0     | 0                        | 0                    | 0                   | 0                | 0               |
|                      | Reagents preparation and use                          | 0                 | 0    | 0     | 0                        | 0                    | 0                   | 0                | 0               |
| Tailings             | Pumping and placement of tailings slurry              | 0                 | 0    | 0     | 0                        | 0                    | 0                   | 0                | 0               |
| Management           | Consolidation of tailings                             | 0                 | 0    | 0     | 0                        | 0                    | 0                   | 0                | 0               |
|                      | Pumping of TMF supernatant                            | 0                 | 0    | 0     | 0                        | 0                    | 0                   | 0                | 0               |
| Water                | Create and maintain water levels                      | 0                 | 0    | 0     | 0                        | 0                    | 0                   | 0                | 0               |
| Management           | Freshwater withdrawal                                 | 0                 | 0    | 0     | 0                        | 0                    | 0                   | 0                | 0               |
|                      | Potable water treatment                               | 0                 | 0    | 0     | 0                        | 0                    | 0                   | 0                | 0               |
|                      | Collection of site and stockpile drainage             | 0                 | 0    | 0     | 0                        | 0                    | 0                   | 0                | 0               |
|                      | Water and sewage treatment                            | 0                 | 0    | 0     | 0                        | 0                    | 0                   | 0                | 0               |
|                      | Discharge of treated effluents (including grey water) | 0                 | 0    | 0     | 0                        | 0                    | 0                   | 0                | 0               |
| Waste                | Disposal of industrial waste                          | 0                 | 0    | 0     | 0                        | 0                    | 0                   | 0                | 0               |
| Management           | Management of hazardous waste                         | 0                 | 0    | 0     | 0                        | 0                    | 0                   | 0                | 0               |
|                      | Management of radiologically contaminated waste       | 0                 | 0    | 0     | 0                        | 0                    | 0                   | 0                | 0               |
|                      | Disposal of domestic waste                            | 0                 | 0    | 0     | 0                        | 0                    | 0                   | 0                | 0               |
|                      | Incineration and handling of burnables                | 0                 | 0    | 0     | 0                        | 0                    | 0                   | 0                | 0               |
|                      | Disposal of sewage sludge                             | 0                 | 0    | 0     | 0                        | 0                    | 0                   | 0                | 0               |



Table 4.3-1 Identification of Project-Environmental Interactions (cont'd)

| Project<br>Component | Project Activities/Physical Works                                                                                                           | Marine<br>Mammals | Fish | Birds | Benthic<br>Invertebrates | Marine<br>Vegetation | Sediment<br>Quality | Water<br>Quality | Species<br>at Risk |
|----------------------|---------------------------------------------------------------------------------------------------------------------------------------------|-------------------|------|-------|--------------------------|----------------------|---------------------|------------------|--------------------|
| Operation (cont'd    | )                                                                                                                                           |                   |      |       |                          |                      |                     |                  |                    |
| General Services     | Generation of power                                                                                                                         | 0                 | 0    | 0     | 0                        | 0                    | 0                   | 0                | 0                  |
|                      | Operate accommodations complex                                                                                                              | 0                 | 0    | 0     | 0                        | 0                    | 0                   | 0                | 0                  |
|                      | Recreational activities                                                                                                                     | 0                 | 0    | 0     | 0                        | 0                    | 0                   | 0                | 0                  |
|                      | Maintain vehicles and equipment                                                                                                             | 0                 | 0    | 0     | 0                        | 0                    | 0                   | 0                | 0                  |
|                      | Maintain infrastructure                                                                                                                     | 0                 | 0    | 0     | 0                        | 0                    | 0                   | 0                | 0                  |
|                      | Operate airstrip                                                                                                                            | 0                 | 0    | 0     | 0                        | 0                    | 0                   | 0                | 0                  |
|                      | Hazardous materials storage and handling (reagents, fuel and hydrocarbons)                                                                  | 0                 | 0    | 0     | 0                        | 0                    | 0                   | 0                | 0                  |
|                      | Explosives storage and handling                                                                                                             | 0                 | 0    | 0     | 0                        | 0                    | 0                   | 0                | 0                  |
| Transportation       | Marine Transportation: loading barges, barging, off-loading (fuel, reagents and supplies), Baker Lake and Churchill/Chesterfield, back-haul | 2                 | 2    | 1     | 1                        | 1                    | 1                   | 1                | 1                  |
|                      | Truck transportation                                                                                                                        | 0                 | 0    | 0     | 0                        | 0                    | 0                   | 0                | 0                  |
|                      | General traffic (Project-related)                                                                                                           | 0                 | 0    | 0     | 0                        | 0                    | 0                   | 0                | 0                  |
|                      | Controlled public traffic                                                                                                                   | 0                 | 0    | 0     | 0                        | 0                    | 0                   | 0                | 0                  |
|                      | Air transportation of personnel, goods and supplies                                                                                         | 0                 | 0    | 0     | 0                        | 0                    | 0                   | 0                | 0                  |
|                      | Air transportation of yellowcake                                                                                                            | 0                 | 0    | 0     | 0                        | 0                    | 0                   | 0                | 0                  |
|                      | General air transportation support                                                                                                          | 0                 | 0    | 0     | 0                        | 0                    | 0                   | 0                | 0                  |
| Ongoing              | Aerial surveys                                                                                                                              | 0                 | 0    | 0     | 0                        | 0                    | 0                   | 0                | 0                  |
| Exploration          | Ground surveys                                                                                                                              | 0                 | 0    | 0     | 0                        | 0                    | 0                   | 0                | 0                  |
|                      | Drilling                                                                                                                                    | 0                 | 0    | 0     | 0                        | 0                    | 0                   | 0                | 0                  |



Table 4.3-1 Identification of Project-Environmental Interactions (cont'd)

| Project<br>Component        | Project Activities/Physical Works                                                 | Marine<br>Mammals | Fish | Birds | Benthic<br>Invertebrates | Marine<br>Vegetation | Sediment<br>Quality | Water<br>Quality | Species at Risk |
|-----------------------------|-----------------------------------------------------------------------------------|-------------------|------|-------|--------------------------|----------------------|---------------------|------------------|-----------------|
| Final Closure               |                                                                                   |                   |      |       |                          |                      |                     |                  |                 |
| Economic<br>Activities      | Decommissioning Workforce management;<br>Employment; Contracts and taxes          | 0                 | 0    | 0     | 0                        | 0                    | 0                   | 0                | 0               |
| General                     | Hazardous materials storage                                                       | 0                 | 0    | 0     | 0                        | 0                    | 0                   | 0                | 0               |
|                             | Industrial machinery operation                                                    | 0                 | 0    | 0     | 0                        | 0                    | 0                   | 0                | 0               |
|                             | Ongoing withdrawal, treatment and release of water, including domestic wastewater | 0                 | 0    | 0     | 0                        | 0                    | 0                   | 0                | 0               |
| In-water<br>Decommissioning | Remove freshwater diversions; re-establish natural drainage                       | 0                 | 0    | 0     | 0                        | 0                    | 0                   | 0                | 0               |
|                             | Remove surface drainage containment                                               | 0                 | 0    | 0     | 0                        | 0                    | 0                   | 0                | 0               |
|                             | Remove in-water/shoreline structures                                              | 0                 | 1    | 1     | 1                        | 0                    | 1                   | 1                | 0               |
|                             | Water transfers and discharge                                                     | 0                 | 0    | 0     | 0                        | 0                    | 0                   | 0                | 0               |
|                             | Construct fish habitat as per FHCP                                                | 0                 | 0    | 0     | 0                        | 0                    | 0                   | 0                | 0               |
| On-land<br>Decommissioning  | Remove site pads (blasting, earth moving, loading, hauling, dumping)              | 0                 | 0    | 0     | 0                        | 0                    | 0                   | 0                | 0               |
|                             | Backfilling                                                                       | 0                 | 0    | 0     | 0                        | 0                    | 0                   | 0                | 0               |
|                             | Contouring                                                                        | 0                 | 0    | 0     | 0                        | 0                    | 0                   | 0                | 0               |
|                             | Covering                                                                          | 0                 | 0    | 0     | 0                        | 0                    | 0                   | 0                | 0               |
|                             | Revegetation                                                                      | 0                 | 0    | 0     | 0                        | 0                    | 0                   | 0                | 0               |
|                             | Remove foundations                                                                | 0                 | 0    | 0     | 0                        | 0                    | 0                   | 0                | 0               |
|                             | Remove buildings                                                                  | 0                 | 0    | 0     | 0                        | 0                    | 0                   | 0                | 0               |
|                             | Remove equipment                                                                  | 0                 | 0    | 0     | 0                        | 0                    | 0                   | 0                | 0               |
|                             | Remove fuel tanks                                                                 | 0                 | 0    | 0     | 0                        | 0                    | 0                   | 0                | 0               |



Table 4.3-1 Identification of Project-Environmental Interactions (cont'd)

| Project<br>Component                                        | Project Activities/Physical Works                                                                                                           | Marine<br>Mammals | Fish | Birds | Benthic<br>Invertebrates | Marine<br>Vegetation | Sediment<br>Quality | Water<br>Quality | Species<br>at Risk |
|-------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|-------------------|------|-------|--------------------------|----------------------|---------------------|------------------|--------------------|
| Operation (cont'd<br>On-land<br>Decommissioning<br>(cont'd) | Marine Transportation: loading barges, barging, off-loading (fuel, reagents and supplies), Baker Lake and Churchill/Chesterfield, back-haul | 2                 | 2    | 1     | 1                        | 1                    | 1                   | 1                | 1                  |
| Post Closure                                                |                                                                                                                                             |                   |      |       | _                        |                      |                     |                  |                    |
| General                                                     | Management of restored site                                                                                                                 | 0                 | 0    | 0     | 0                        | 0                    | 0                   | 0                | 0                  |

#### NOTES:

<sup>0 =</sup> If there is no interaction or no potential for substantive interaction between a Project activity and the VEC to cause a potential environmental effect, an assessment of that environmental effect is not required. These interactions are categorized as 0, and are not considered further in the EA. The environmental effects of these activities are thus, by definition, rated not significant.

<sup>1 =</sup> If there is likely to be a potential interaction between a Project activity and a VEC but not likely to be substantive in light of planned mitigation, the interaction is categorized as 1. Such interactions are well understood and are subject to prescribed mitigation or codified practices. These interactions are subject to a less detailed environmental effects assessment and are rated as not significant. Justification is provided and the proposed mitigation is described for such categorizations. Such interactions can be mitigated with a high degree of certainty with proven technology and practices.

<sup>• 2 =</sup> If a potential interaction between a Project activity and a VEC could result in more substantive environmental effects despite the planned mitigation, if there is less certainty regarding the effectiveness of mitigation, or if there is high concern from regulatory agencies, Inuit or stakeholders, the interaction is categorized as 2. These potential interactions are subject to a more detailed analysis and consideration in the environmental assessment in order to predict, mitigate and evaluate the potential environmental effects



Justification for ranking interactions as a '0' or '1' is provided below. Those interactions designated as '2' (potential for adverse environmental effect even with mitigation) are addressed in detail in subsequent sections of the marine assessment.

### 4.3.1.1 Project Activities with No Interaction with VECs

The construction, operation and decommissioning of the dock facility and the mine will not interact with marine mammals, marine vegetation, or marine species at risk since the dock will be located within Baker Lake (freshwater habitat). These interactions are therefore scored a '0' in Table 4.3-1.

While the movement of all vessels to and from the dock facility will result in the release of air emissions associated with the combustion of bunker or diesel oil, no environmental effects of concern on the marine environment are expected given low vessel frequency, the low volume of emissions, and the mobile nature of the emission sources. This effect is not addressed further in the assessment. Details regarding the effect of air emissions on the atmospheric environment are provided in Volume 4.

# 4.3.1.2 Project Activities with Non-Substantial Interaction with VECs

The preferred location of the proposed dock is approximately 5 km east of the community of Baker Lake on the northern shoreline of the lake. Two other dock facility options are located farther east of Site 1 (the preferred option). All three potential dock facilities contain similar fish habitat along the shoreline, and potential environmental effects on fish and fish habitat are not expected to vary substantially from site to site. Project interactions with fish, benthic invertebrates, sediment quality and water quality are expected to occur only during construction and decommissioning. With implementation of appropriate and standard mitigation measures, environmental effects will be temporary and localized.

Project interactions will be minimal during operations since the dock facility is a floating spud-barge type dock with minimal in-water works that may be removed each winter or left in place over the winter. Although there is potential for interactions between birds and the physical structure of the dock, the magnitude of the environmental effect is expected to be low and, therefore, not of consequence to bird populations in the area. Residual environmental effects of the dock facility on freshwater fish, bird, benthic invertebrates, sediment and water quality are not expected to occur, and therefore are not considered further in the assessment.

Routine operations of marine transportation (including construction and decommissioning related activities) associated with the Project are not expected to substantially affect marine birds, benthic invertebrates, marine vegetation, sediment quality, water quality, or species at risk.



Marine birds use the marine environment for part or all of their life cycle, and there is the potential for the physical presence, movement and noise of marine vessels to adversely affect bird health, behaviour and their habitat. However, given their seasonal occurrence, and the timing and extent of marine vessel traffic, substantial environmental effects on marine birds and their habitat are not expected to occur. Therefore, Project-environment interactions are all ranked as 1 and not considered further in this assessment. Specific mechanisms through which marine transportation could affect marine bird populations and their habitat have been summarized for a similar Arctic environment, the Beaufort Sea (Environment Canada 2006; Dickson and Gilchrist 2002). These potential environmental effects pathways and the rationale for not assessing them further in the assessment are discussed below.

- Development activity in key offshore habitat (open-water leads): vessel transit
  through open leads may result in long-term loss of critical foraging habitat for
  migrating marine birds. Marine transportation associated with the Kiggavik Project
  will occur in the open-water season, and therefore will not interact with marine birds
  using open water leads.
- Development activities in key coastal habitat. The existing Churchill terminal will be used for the Project, and therefore no new infrastructure will be constructed along the Hudson Bay or Chesterfield Inlet coast. Therefore, environmental effects on availability of key coastal habitat are not expected to occur.
- Disturbance: sensory disturbance from development activities, such as operation of marine vessels, may result in temporary displacement of birds from important habitat. Marine shipping associated with the Project will be infrequent (maximum of 31 barge deliveries to Baker Lake over 60 days of the open-water season). Routine operation of marine vessels will be in compliance with standard management practice (e.g., Canada Shipping Act), and is not expected to affect marine bird populations.

Transportation associated with all phases of the Project has the potential to interact with benthic invertebrates, marine vegetation, sediment quality, and water quality. Interactions may include vessel wake, release of contaminants in bilge and ballast water, and introduction of invasive species in ballast water.

Vessel wake occurs when vessel movements create secondary waves (i.e., free surface waves that propagate out from the vessel). This could result in increased wave activity along the shoreline and cause shoreline erosion, which could in turn affect benthic invertebrates, marine vegetation, and sediment quality. Given that vessels will be moving slowly within Chesterfield Inlet (see mitigations, Section 6.6), secondary wave heights will likely be less than 20-30 cm at 500-1000 m from the vessel (Moffatt and Nichol 2010). These wave heights are within the normal variation experienced during tidal cycles and storms within the inlet. Further, habitat along the shoreline of Chesterfield Inlet is generally composed of bedrock and boulder or cobble beaches, which is not highly susceptible to erosion. Various sizes of dry cargo ships, tugs, barges and tankers have been studied and proposed for the Kiggavik Project ranging from Articulating tug barge configurations to 1000 TEU container ships and ice class 30,000DWT fuel



tankers (Technical Appendix 2J). Marine vessels in Hudson Bay and Hudson Strait will use designated shipping routes in deep open water, and waves generated by these vessels are expected be within the range of naturally occurring waves. As a result, environmental effects of vessel wake on benthic invertebrates, marine vegetation, and sediment quality, are not assessed further.

Accidental release of contaminants and pathogens in bilge and ballast water could result in physiological stress or mortality of marine biota, or the introduction of invasive species that could compete with or harm native marine biota. However, operating protocols and best practices should prevent such discharges from Project vessels. All foreign ships entering Canadian waters are committed by Canadian law to the Ballast Water Control and Management Regulations of the Canada Shipping Act 2001, designed to prevent foreign ballast water and sediments from being released in Canada's Exclusive Economic Zone. The regulations include mandatory exchange of foreign ballast water at least 200 nautical miles from shore and in water depths greater than 2000 m. The intake of ballast water (should it be required) will be conducted in deep water at the mouth of Chesterfield Inlet and will follow the NEB guidelines and the Canada Shipping Act. Ballast water will be separated to avoid contamination. If no contamination is suspected, ballast water may be discharged without treatment or monitoring. If contamination is suspected, the water will be sampled in accordance with Standard Methods for the Examination of Water and Wastewater. Bilge water accumulates from seawater that may seep or flow into the vessel from various points in the structure, and may become contaminated with oil and other substances from machinery. Bilge water that is discharged will be treated such that the residual oil concentration does not exceed 15 mg/L. If the bilge and ballast water guidelines are followed correctly, little to no interaction with marine biota, sediment quality, or water quality is expected. Therefore, this effect is not considered further in the marine assessment.

#### Species at Risk

SARA listed species whose range may overlap with the spatial boundaries of the Project are shown in Table 4.3-2. Three species of marine fish (the Northern, Atlantic, and spotted wolfish) are listed on Schedule 1 of SARA; however, Hudson Strait is designated as 'probable' range. There is insufficient information on the distribution, habitat use and abundance of these wolffish populations in the RAA to consider these species specifically in the assessment. It is, therefore, assumed that environmental effects would be similar to those described in Section 8. Two listed marine bird species potentially occur in Hudson Strait: the Harlequin duck and Peregrine falcon. The distribution range of the Peregrine falcon has a northern limit of the southern coast of the Hudson Strait and has a low likelihood of occurring in the Strait. While the range of the Harlequin duck includes the northern coast of the Hudson Strait, it is the northern edge of their distribution range. Due to very limited spatial overlap with the Project and the fact that routine activities associated with marine transportation are unlikely to affect bird health, behaviour or habitat (Section 4.3.1.2), species at risk are not considered further in the assessment.



Table 4.3-2 Species at Risk on Schedule 1 of SARA

| Common Name       | Scientific Name           | COSEWIC Status  | SARA Status                 |
|-------------------|---------------------------|-----------------|-----------------------------|
| Northern Wolffish | Anarhichas denticulatus   | Threatened      | Threatened, Schedule 1      |
| Atlantic Wolffish | Anarhichas lupus          | Special Concern | Special Concern, Schedule 1 |
| Spotted Wolffish  | Anarhichas minor          | Threatened      | Threatened, Schedule 1      |
| Harlequin Duck    | Histrionicus histrionicus | Special Concern | Special Concern, Schedule 1 |
| Peregrine Falcon  | Falco peregrinus anatum   | Non-active      | Threatened, Schedule 1      |

## 4.3.2 Potential Project Environmental Effects

Based on the issues and concerns identified in consultation with government representatives, Inuit communities and stakeholders (Section 4.1), professional experience of the assessment team and screening results of the interaction matrix, consideration has been given to the following Project activities and disturbances that could result in adverse environmental effects on marine mammals and marine fish.

- Underwater noise: marine vessels will generate underwater noise that could result
  in sensory disturbance to marine animals. Animals affected by underwater noise may
  temporarily move away from suitable habitat (habitat abandonment), resulting in a
  change in behaviour for that species.
- Vessel movements and collisions: physical presence and movements of the
  various vessels associated with the Project (e.g., tug and barge, container vessels)
  could deter animals from the shipping route, resulting in energetic stress and altered
  movement patterns. Animals such as whales, seals and walrus could also be
  physically injured or die as a result of collisions with marine vessels.

In summary, the marine assessment for the Project addresses the following potential environmental effects of marine transportation activities on marine mammals and marine fish.

- change in mortality risk due to vessel collisions
- change in behaviour due to sensory disturbance and vessel movement

Specific issues for each of the selected Valued Environmental Components (VECs) for the Marine Environment are described in the scope of assessment for each VEC.



# 4.4 VALUED COMPONENTS, INDICATORS AND MEASURABLE PARAMETERS

Valued Environmental Components (VECs) are broad components defined for the marine environment that, if altered by the Project, would be of concern to regulators, Inuit, resource managers, scientists, and the general public. VECs for the marine environment are chosen to represent major components or aspects of the physical and biological environment that may be altered by the Project, and are widely recognized as important for ecological reasons.

Selection of marine VECs is based on the following criteria.

- Do they represent a broad environmental, ecological or human environment component that may be affected by the Project?
- Are they vulnerable to the environmental effects of the Project and other activities in the region?
- Have they been identified as important issues or concerns during Inuit, government and stakeholder engagement, or in other assessments in the region?

Based on the main groups of marine organisms identified in the area, the criteria listed above, and the expected Project-environment interactions identified in Table 4.3-1, two VECs are identified for the marine assessment.

- marine mammals
- marine fish

### 4.4.1 Marine Mammals

For the purposes of this assessment, marine mammal refers to mammals that are dependent on marine habitats during part or all their life cycle. This broad group includes baleen whales (e.g., bowhead whales), toothed whales (e.g., beluga whales), seals (e.g., ringed seal), and polar bears.

Potential environmental effects of marine transportation on marine mammals include behavioural change due to underwater noise from vessels, and change in mortality risk from injury due to ship strikes.

Environmental effects on marine mammals are assessed by determining the total duration of exposure to noise levels due to marine transportation during the open-water season (i.e., the percentage of time that underwater noise will occur), and by determining the predicted sound pressure levels from the vessels and potential for communication masking.



Table 4.4-1 lists the measurable parameters used to assess environmental effects on marine mammals and the rationale for their selection.

Table 4.4-1 Measurable Parameters for Marine Mammals

| Environmental Effect        | Measurable Parameter(s)                                                                                                                 | Rationale for Selection                                                                    |
|-----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|
| Change in mortality<br>risk | number of vessel strikes                                                                                                                | potential to affect marine mammal<br>populations due to vessel strikes                     |
|                             |                                                                                                                                         | community, government, stakeholder engagement                                              |
|                             |                                                                                                                                         | regulatory drivers                                                                         |
|                             |                                                                                                                                         | <ul> <li>professional judgment</li> </ul>                                                  |
| Change in behaviour         | change in distribution and abundance of populations     underwater sound levels                                                         | potential to affect marine mammal<br>populations through acoustic<br>disturbance           |
|                             | <ul> <li>mammal noise exposure criteria</li> <li>total duration of exposure to noise<br/>levels due to marine transportation</li> </ul> | <ul><li>community, government, stakeholder engagement</li><li>regulatory drivers</li></ul> |
|                             | ·                                                                                                                                       | <ul> <li>professional judgment</li> </ul>                                                  |

#### 4.4.2 Marine Fish

The coast of Hudson Bay and Chesterfield Inlet are used by a variety of marine fish species for feeding, spawning and rearing, and as a migratory route.

Potential environmental effects of marine transportation on marine fish include changes in behaviour due to acoustic disturbance. The underwater noise from vessels can potentially disturb or displace marine fish from their preferred habitat.

Environmental effects on marine fish are assessed by determining the total duration of exposure to noise levels due to shipping during the open water season (i.e., the percentage of time that underwater noise will occur) and by determining the predicted sound pressure levels from the vessels.

Table 4.4-2 lists the measurable parameters used to assess environmental effects on marine fish and the rationale for their selection.

Table 4.4-2 Measurable Parameters for Marine Fish

| Environmental Effect | Measurable Parameter(s)                                                                                                                                              | Rationale for Selection                                                                                                                                                                                        |
|----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Changes in behaviour | <ul> <li>underwater sound levels</li> <li>fish noise exposure criteria</li> <li>total duration of exposure to<br/>noise levels due to marine<br/>shipping</li> </ul> | <ul> <li>potential to affect marine fish populations through acoustic disturbance</li> <li>community, government, stakeholder engagement</li> <li>regulatory drivers</li> <li>professional judgment</li> </ul> |



### 4.5 SPATIAL BOUNDARIES

## 4.5.1 Project Footprint

The Project footprint for the marine assessment is defined as the shipping route used by the vessels transiting from the entrance to Chesterfield Inlet from Hudson Bay, through Chesterfield Narrows to the dock facility on the north shore of Baker Lake.

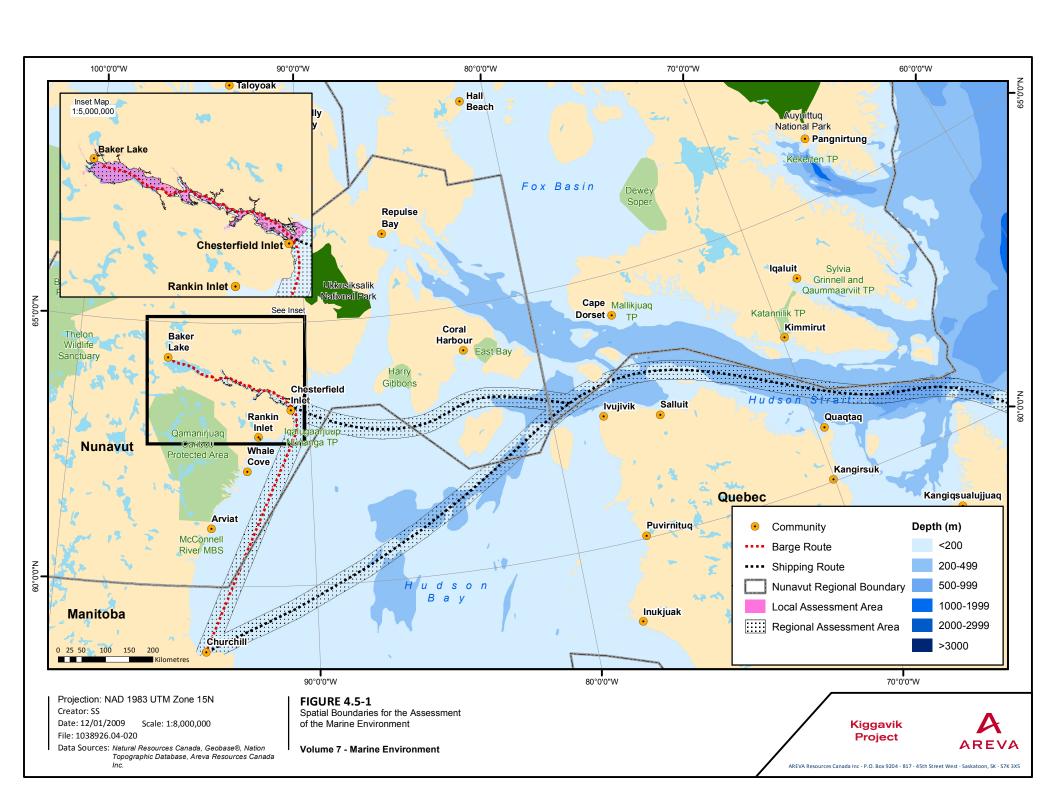
### 4.5.2 Local Assessment Area

The local assessment area (LAA) is defined as marine waters of Chesterfield Inlet and the adjacent coastal and offshore regions at the mouth of Chesterfield Inlet where measureable environmental effects from Project-related marine vessel traffic are most likely to occur. This area includes portions of the shipping route where marine vessels will be transiting to and from the main shipping routes in Hudson Bay (see Figure 4.5-1).

## 4.5.3 Regional Assessment Area

The regional assessment area (RAA) of the Project extends beyond the Local Assessment Area to encompass the shipping route in Hudson Bay between Churchill and Chesterfield Inlet, and the shipping route through Hudson Bay and Hudson Strait to the extent of Nunavut Territorial waters (Figure 4.5-1). The RAA encompasses the zone where Project vessels are likely to have a measureable effect on the marine environment, and have the potential to act cumulatively with marine activities of other projects. The boundaries of the RAA were developed using a 20 km buffer around the proposed shipping and barge routes. This buffer represents the conservative zone of influence, which is based on the maximum area where marine animals could sense and respond to sounds from vessel activities, as determined by underwater acoustic modeling (Li et al. 2011). It also encompasses the considerably smaller zone of influence that is associated with the potential for vessel strikes on marine mammals.

### 4.6 TEMPORAL BOUNDARIES


The temporal boundaries for the marine assessment are defined based on the timing and duration of potential environmental effects of marine transportation associated with the Project. The assessment covers the period of all major Project phases including construction, operation and final closure during which marine activities and transportation will occur. While the expected life of the Project is influenced by available ore reserves and the production rate, the operational life of the Project is estimated to be 13 years given current resources. However, as there are up to 25 years of tailings storage capacity in the TMFs, the assessment assumes 25 years of operations. While the number, frequency and timing of vessel movements may differ among these Project phases, the types of environmental effects that may arise as a result of vessel movements are similar. Marine transportation activities will only occur during the open-water season (beginning of August to end of September), and therefore the marine assessment only addresses environmental effects that may occur during this time.



### 4.7 ENVIRONMENTAL EFFECTS CRITERIA

Characterizing Project environmental effects on marine wildlife populations in quantitative terms is difficult due to complex ecological interactions in the marine environment (i.e., unpredictable population cycles and predator-prey dynamics) and challenges associated with obtaining accurate population estimates. While quantitative criteria such as noise thresholds have been developed for marine mammals (Section 6.1.2), most residual environmental effects on the marine environment have been described qualitatively according to the criteria below.

- Direction: the ultimate long-term trend of the environmental effect (i.e., positive means enhancement of population; neutral means maintains population; or adverse means detrimental effect to population)
- Magnitude: the degree of change in a variable relative to baseline case. (low means
  effect is within the range of natural variance or less than reference criteria; moderate
  means the environmental effect is at or slightly above the range of natural variation
  or reference criteria; high means the environmental effect exceeds the upper limit of
  natural variation or reference criteria)
- **Geographical extent:** the geographic area within which an environmental effect of a defined magnitude occurs. Where possible this is quantified (e.g., km²) but otherwise qualitative terms are used (site-specific, local, regional, territorial, national, international).
- **Frequency:** the number of times during the Project that an environmental effect may occur (i.e., once, sporadically, regular, continuous)
- **Duration:** the period of time that is required until the VEC returns to its baseline condition or the environmental effect can no longer be measured or otherwise perceived (i.e., short term means hours to days; medium term means months; long term means years or permanent)
- Reversibility: the likelihood that a measurable parameter for the VEC would recover from an environmental effect. Reversible means that the VEC would be able to recover from the environmental effect to a state similar to that existing before the Project. Depending on the environmental effect considered, reversibility may be assessed on both an individual (immediate) and population (long-term) level. Irreversible means that the VEC would be unable to recover from the environmental effect.
- **Ecological context:** the general characteristics of the area in which the Project is located (i.e., undisturbed, disturbed, urban setting).





# 4.8 STANDARDS OR THRESHOLDS FOR DETERMINING SIGNIFICANCE

Under the NIRB Guidelines (Nunavut Impact Review Board 2011), the environmental assessment must include a determination of the significance of environmental effects. Where possible, threshold criteria are identified for each VEC, above which a residual environmental effect would be considered significant.

# 4.9 INFLUENCE OF INUIT AND STAKEHOLDER ENGAGEMENT ON THE ASSESSMENT

Inuit and stakeholder engagement over the past five years has consistently identified marine mammals as a VEC, based on their ecological and cultural importance in the Hudson Bay region. In particular, concerns were raised about the potential for marine vessel traffic associated with the Project to affect marine mammal presence and distribution, which would affect traditional harvesting activities. Further detail is provided in Section 6.1.1. In response to these concerns, baseline surveys provided information on marine mammal species presence and distribution in western Hudson Bay during late summer and early fall period when marine transportation activities are anticipated to interact with the beluga whale migration. These data support the assessment of marine vessel disturbance on the behaviour and mortality risk of marine mammal species present in the area, with particular consideration given to beluga whales and ringed seals.

# 4.10 INFLUENCE OF INUIT QAUJIMAJATUQANGIT ON THE ASSESSMENT

Inuit Qaujimajatuqangit (IQ) has been fundamental in selection of VECs for the marine assessment, and identification of potential environmental effects. Specifically, it has highlighted concern regarding the sensitivity of marine wildlife to marine vessel traffic in the region, and the importance of year-round harvesting of marine mammal and fish species in providing food and clothing for local communities (CHE (Coral Harbour Elders) 2009). IQ indicates that there is general concern about how increased marine vessel traffic may affect the distribution of marine wildlife populations (McDonald et al. 1997; Cl04 (Chesterfield Inlet Interview 04) 2009; Cl05 (Chesterfield Inlet Interview 05) 2009; Cl08 (Chesterfield Inlet Interview 08) 2009; RIJ (Rankin Inlet Hunters and Elders) 2011) (Elder interviews). These issues and concerns have been considered in scoping of the marine assessment. Additional information on how IQ influenced the assessment of the Marine Environment is provided in Section 6.1.1 and Section 7.1.1.



## 5 SUMMARY OF EXISTING MARINE ENVIRONMENT

### 5.1 MARINE MAMMALS

Aerial surveys and a literature review determined the state of the existing marine environment. Surveys for marine mammals were conducted in 2008 and 2009 over eleven days and resulted in over 10,900 km transect data). Beluga whales, seals, and walrus were spotted in the open water and polar bears were spotted on the coast. Bowhead whales, killer whales, and narwhals were not spotted at any time during the surveys, which suggests they are a rare occurrence in the area. This assumption is confirmed by both IQ and the literature, which supports evidence for preferred habitat north of the study area. IQ and the literature support the results of the survey by confirming the abundance and presence of ringed and harp seals, and belugas in the area (although belugas tended to be present along the near shore coast). While walrus were observed during the surveys, they were spotted close to Churchill and not near Chesterfield Inlet. Walrus likelihood to be farther north of Chesterfield Inlet was confirmed by both IQ and the literature.

Nine species of marine mammal occur in the RAA (Table 5.1-1). Of these species, three are considered common (beluga whale, ringed seal and polar bear) and six are considered less common or rare (bowhead whale, narwhal, bearded and harp seals, walrus and killer whale). A brief overview of the conservation status of these nine marine mammal species within the LAA and RAA is provided in Table 5.1-1.

Table 5.1-1 Conservation Status of Marine Mammals Present in the RAA

| Species                                         | Scientific Name       | Species at Risk<br>Act (SARA)<br>Schedule | Committee on the Status of<br>Endangered Species in<br>Canada (COSEWIC) Status |
|-------------------------------------------------|-----------------------|-------------------------------------------|--------------------------------------------------------------------------------|
| Beluga whale (Western<br>Hudson Bay population) | Delphinapterus leucas | Not Listed                                | Special Concern                                                                |
| Ringed seal                                     | Phoca hispida         | Not Listed                                | Not at risk                                                                    |
| Polar Bear                                      | Ursus maritimus       | Not Listed                                | Special Concern                                                                |
| Bowhead Whale                                   | Balaena mysticetus    | Not Listed                                | Special Concern                                                                |
| Bearded Seal                                    | Erignathus barbatus   | Not Listed                                | Data Deficient                                                                 |
| Harp Seal                                       | Phoca groenlandica    | Not Listed                                | Not Listed                                                                     |
| Walrus                                          | Odobenus rosmarus     | Not Listed                                | Special Concern                                                                |
| Narwhal                                         | Monodon monoceros     | Not Listed                                | Special Concern                                                                |
| Killer Whale                                    | Orcinus orca          | Not Listed                                | Special Concern                                                                |



### **Beluga Whale**

Beluga whales are an important cultural and ecological species in Nunavut (Fisheries and Oceans Canada (DFO 2000). Members of the Aqigiq Hunters and Trappers Organization (HTO) and the Chesterfield Inlet Council relate that beluga whales are the most abundant and culturally important marine mammal species in the Chesterfield Inlet area. An estimated 57,300 belugas occur in Western Hudson Bay (Richard 2005). Belugas are generally hunted along the coast in the summer and are harvested up to 35 km offshore (Riewe 1992). Over the five-year period from 1996 to 2001, the total annual mean number of belugas taken through hunting was 1,339 for all of Nunavut, while annual rates of belugas harvested from the community of Chesterfield Inlet ranged from three (2001) to 31 (1996) (Priest and Usher 2004).

After spring ice breakup in mid to late June, western Hudson Bay belugas concentrate in the Churchill, Nelson and Seal River estuaries, where they increase in abundance until late July (Richard et al. 1990). Along western Hudson Bay, belugas spend summers in shallow coastal areas (Martin et al. 2001). Migration northward along the coast of Hudson Bay occurs in late August or early September (COSEWIC 2004). Satellite tag data show the population moving towards wintering habitat in Hudson Strait; however, the routes taken between summering and wintering habitats are not well known. Belugas have been observed travelling north within the eastern portion of Chesterfield Inlet during the fall migration. Although few records of belugas in the western portion of Chesterfield Inlet exist, the Baker Lake Hunters and Trappers Organization have recorded the migration of five animals through Chesterfield Inlet into Baker Lake (Hunters and Trappers Association of Nunavut 1992).

### Ringed Seal

The ringed seal is a year-round resident in Hudson Bay, and is the most common and abundant seal species (Stewart and Lockhart 2005). Based on historic aerial surveys of Hudson Bay between Churchill and Chesterfield Inlet, there were approximately 455,000 ringed seals in the Bay (Smith 1975). More recently, aerial systematic strip transect surveys extending from the Nelson River estuary to Rankin Inlet estimated 38,340 ringed seals in 1994 and 140,880 ringed seals in 1995 (Lunn et al. 1997). Estimates from aerial surveys are conservative because they are based on the number of seals hauled out on the ice and were not corrected for seals that were submerged. The total population of the area may be twice as large (Stirling and Øritsland 1995).

In spring, the highest densities of breeding adults occur on stable, landfast ice in areas with good snow cover, whereas non-breeders tend to be found at the floe edge or in the moving pack ice (Stewart and Lockhart 2005). Their ability to maintain breathing holes in ice enables them to occupy areas of Nunavut that are inaccessible to other marine mammals during the colder seasons.



#### **Polar Bear**

Polar bears from two of the thirteen Canadian sub-populations occur in the LAA and RAA: the Western Hudson Bay and Foxe Basin sub-populations. During the open-water season, polar bears spend several months along the western coastline of Hudson Bay from Southampton Island to Churchill (COSEWIC 2008). The Western Hudson Bay sub-population tends to congregate on coastal capes and headlands between Cape Churchill and Arviat (Stirling et al. 1999). The Foxe Basin sub-population concentrates on the west and northeast coasts of Southampton Island and along the coast of Wager Bay (north of Chesterfield Inlet) during the ice-free season when shipping activities are expected. In the fall, there is a gradual northward movement of the Western Hudson Bay polar bears along the south coast of Hudson Bay, as they gather to await the formation of new sea ice in November. Some bears tagged in the Churchill region move northward along the Kivalliq Coast as far as Chesterfield Inlet (Stirling et al. 1999). IQ data suggest that polar bear numbers are increasing in the Chesterfield Inlet area; however, the most recent estimate of the Western Hudson Bay sub-population indicates that overall abundance has declined from 1,294 in 1987 to 935 in 2004 (COSEWIC 2008).

### 5.2 MARINE FISH

Eleven species of fish have been recorded in Baker Lake including Arctic grayling, burbot (*Lota lota*), cisco, lake trout, ninespine stickleback (*Pungitius pungitius*), round whitefish, slimy sculpin (*Cottus cognatus*), Arctic char, fourhorn sculpin (*Myoxocephalus quadricornis*), lake whitefish, and longnose sucker (*Catostomus catostomus*). No Arctic char spawning areas were identified in Baker Lake and very few juvenile fish were captured in baseline surveys, suggesting that spawning does not occur at any of the proposed dock facility locations.

There are no SARA listed fish species or species designated by COSEWIC as species of concern in Chesterfield Inlet and surrounding area. Arctic char, fourhorn sculpin and whitefish are listed under IUCN (International Union for the Conservation of Nature)<sup>2</sup> red list as a species of least concern. A brief overview of conservation status and distribution of common marine fish species within the LAA and RAA is provided in Table 5.2-1.

<sup>&</sup>lt;sup>2</sup> The IUCN is an international conservation network. The IUCN red list is a classification system to identify species of conservation concern at a global level.



Table 5.2-1 Conservation Status of Marine Fish Present in Western Hudson Bay, Chesterfield Inlet, and Baker Lake

| Common Name                         | Scientific Name                                                | Likely Found                                        | Habitat Type                                                         | Status                                       |
|-------------------------------------|----------------------------------------------------------------|-----------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------|
| Arctic cod                          | Boreogadus saida                                               | Mouth of Chesterfield<br>Inlet; Hudson Bay<br>Coast | Demersal; anadromous;<br>brackish; marine; 0–1383 m                  | Not listed                                   |
| Arctic sculpin                      | Myoxocephalus<br>scorpioides                                   | Mouth of Chesterfield<br>Inlet; Hudson Bay<br>Coast | Demersal; brackish; marine;<br>0–275 m; rocky bottoms<br>among algae | Not listed                                   |
| Arctic char                         | Salvelinus alpinus                                             | Chersterfield Inlet;<br>Hudson Bay; Baker<br>Lake   | Benthopelagic; anadromous; brackish; marine; 30–70 m                 | IUCN Red List<br>(Least Concern)             |
| Fourhorn<br>sculpin: marine<br>form | Triglopsis<br>quadricornis or<br>Myoxocephalus<br>quadricornis | Chersterfield Inlet;<br>Hudson Bay;                 | Marine; 0–100 m                                                      | IUCN Red List<br>(Least Concern)             |
| Banded gunnel                       | Pholis fasciata                                                | Chersterfield Inlet;<br>Hudson Bay;                 | Demersal; marine; 0–94 m                                             | Not listed                                   |
| Whitefish                           | Coregonus nasus                                                | Chersterfield Inlet;<br>Hudson Bay                  | Demersal; anadromous; brackish; marine                               | IUCN Red List<br>(Least Concern)             |
| Arctic grayling                     | Thymallus arcticus                                             | Baker Lake                                          | Freshwater; benthopelagic; 30 m –unknown                             | IUCN Red List<br>(Least Concern)             |
| Burbot                              | Lota lota                                                      | Baker Lake                                          | Freshwater; brackish; 1-700 m                                        | IUCN Red List<br>(Least Concern)             |
| Cisco                               | Coregonus artedi                                               | Baker Lake                                          | Marine; freshwater; brackish;<br>50 m – unknown                      | IUCN Red List<br>(Low Risk/Least<br>Concern) |
| Lake trout                          | Salvelinus<br>namaycush                                        | Baker Lake                                          | Freshwater                                                           | Not Listed                                   |
| Ninespine<br>stickleback            | Pungitius<br>pungitius                                         | Baker Lake                                          | Marine; freshwater; brackish; 70–77 m                                | IUCN Red List<br>(Least Concern)             |
| Round whitefish                     | Prosopium cylindraceum                                         | Baker Lake                                          | Freshwater; brackish; unknown –37 m                                  | Not Listed                                   |
| Slimy sculpin                       | Cottus cognatus                                                | Baker Lake                                          | Freshwater; brackish; 6–128 m                                        | Not listed                                   |
| Fourhorn<br>sculpin                 | Myoxocephalus quadricornis                                     | Baker Lake                                          | Marine; freshwater; brackish; 0–100 m                                | IUCN Red List<br>(Least Concern)             |
| Lake whitefish                      | Coregonus<br>clupeaformis                                      | Baker Lake                                          | Marine; freshwater; brackish; 18–128 m                               | Not listed                                   |
| Longnose<br>sucker                  | Catostomus catostomus                                          | Baker Lake                                          | Freshwater; brackish;<br>unknown –180 m                              | Not listed                                   |



Very little is known throughout most of the Arctic regarding fish species occurrence and distribution, but at least 49 species of fish occur in the marine ecosystem of Hudson Bay (Stewart and Lockhart 2005). The absence of commercially exploitable resources in Hudson Bay as well as physical limitations (such as a short ice-free season) has likely restricted research efforts on fish populations in the region (Stewart and Lockhart 2005). IQ has been limited mostly to observations from shallow nearshore waters and stomach contents of harvested fish, leaving the offshore marine fish resources are virtually unknown (Stewart and Lockhart 2005). Although the commercial fisheries are limited, subsistence harvest for a variety of species, such as Arctic char, can be substantial (Stewart and Lockhart 2005).

Several fish species of Baker Lake and Chesterfield Inlet play important roles in the ecological, economic and cultural health of the local communities. Arctic cod (*Boreogadus saida*), Arctic sculpin (*Myoxocephalus scorpioides*), Arctic char (*Salvelinus alpines*), fourhorn sculpin (*Myoxcephalus quadricornis*), banded gunnel (*Pholis fasciata*), and whitefish (*Coregonus nasus*) use sand and boulder benthic habitats around the mouth of Chesterfield Inlet. Arctic char typically migrate into Chesterfield Inlet in the first weeks of July when the ice has cleared. (Nunami Jacques Whitford Limited 2008). Capelin (*Mallotus villosus*) and starry flounder (*Platichthys stellatus*) are abundant nearshore species in Hudson Bay. Starry flounder occasionally enter river mouths where they are believed to spawn during the winter months (Percy et al. 1985). Capelin spawn inshore during the summer months (Scott and Scott 1988). Fourhorn sculpin is abundant in shallow waters (below 45 m) throughout Nunavut and are often associated with brackish waters of river mouths (Coad and Reist 2004).

Greenland halibut (*Reinhardtius hippoglossoides*) is an abundant offshore marine fish species in Hudson Bay (Coad and Reist 2004). Arctic cod are also very abundant. They are found mainly in the upper part of the water column over deep water, and are often associated with drifting pack ice where they spawn in winter (Bradstreet et al. 1986).

#### **Arctic Char**

Arctic char are the most abundant and dominant salmonid species throughout the Arctic; however they are not found much farther south than 60°N due to competition from other species (Mercier et al. 1994). They can be both anadromous and landlocked. The anadromous char migrate out to Hudson Bay for summer feeding during ice break-up from mid-June to early July, and migrate back upstream from mid-August to mid-September to spend the winter in fresh water (Stewart and Lockhart 2005). They spawn in late August to early October, preferring gravel substrate with sufficiently deep water to prevent the eggs from freezing and sufficient current to keep them clean (Stewart and Lockhart 2005). After spawning, they will overwinter in the lake and migrate to the ocean to feed the following spring. While they are in the Bay during the summer they are known to feed on other marine fish including capelin (*Mallotus villosus*), sand lance (*Ammodytes americanus*), Arctic cod (*Boreogadus saida*) and Greenland cod (*Gadus ogac*) (Johnson 1989). In the Kivalliq region, they are harvested from the Thlewiaza River north to Daly Bay and into Chesterfield Inlet (Stewart and Lockhart 2005).





# 6 ENVIRONMENTAL EFFECTS ASSESSMENT FOR MARINE MAMMALS

### 6.1 SCOPE OF THE ASSESSMENT FOR MARINE MAMMALS

Three taxonomic groups of marine mammals are present within the LAA and RAA during the open-water season: whales (e.g., belugas from the Western Hudson Bay population), seals (e.g., ringed), and polar bears. While various other marine mammal species are known to occur in the area (e.g., bowhead whale, walrus, killer whale, harp seal, narwhal), these species are considered less common in the LAA and RAA and interactions with the Project will be less frequent.

Marine transportation is not expected to result in environmental effects on polar bears since shipping and barging will only occur during the open-water season, and will not overlap with the seasonal habitat of the bears. Polar bears are forced onto land in the Hudson Bay region for several months during the open-water season to wait for new ice to form and, therefore, will not interact with marine transportation associated with the Project.

Environmental effects are assessed with respect to the most common marine mammal species in the area during the open-water season; ringed seal and beluga whale (Table 6.1-1). These two species are used as indicators for assessing Project effects on marine mammals.

Table 6.1-1 Potential Environmental Effects on Marine Mammals

|                                                                                                                                             | Potential Enviro            | nmental Effects        |
|---------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|------------------------|
| Project Activities/Physical Works                                                                                                           | Change in<br>Mortality Risk | Change in<br>Behaviour |
| Construction                                                                                                                                | <b>V</b>                    | V                      |
| Transport fuel and construction materials (transfers, barging)                                                                              |                             |                        |
| Operations                                                                                                                                  | <b>√</b>                    | V                      |
| Marine transportation: loading barges, barging, off-loading (fuel, reagents and supplies), Baker Lake and Churchill/Chesterfield, back-haul |                             |                        |
| Final Closure                                                                                                                               | <b>√</b>                    | V                      |
| Marine transportation: fuel and construction materials (transfers, barging)                                                                 |                             |                        |
| NOTE:                                                                                                                                       |                             |                        |
| See definitions of rankings in section 4.3.1                                                                                                |                             |                        |



## 6.1.1 Key Issues for Marine Mammals

Key issues for marine mammals relate predominantly to marine vessel traffic and its potential to physically harm, disrupt, and/or displace the animals from summer habitat in Hudson Bay and Chesterfield Inlet. IQ indicates key concerns related to the Project and includes the potential for disruption of marine mammal harvesting, in particular beluga whale and ringed seal. Supporting IQ information is summarized below:

### Vessel presence and noise

- Seals are affected by noise from marine transportation and increased barge traffic in Chesterfield Inlet (Cl04 2009; Cl05 2009).
- Beluga used to come into Chesterfield Inlet in August, but only occasionally now since there is too much noise from boat motors (Elder interviews).
- The amount of barge traffic has increased over the last two years, and this has also negatively affected the beluga whale population (CI04 2009; CI08 2009).
- Beluga whale appear to have declined in the area (McDonald et al. 1997: 47).
- A resident of Repulse Bay noted that the noise of ships is affecting the animals, and that beluga whales do not come in anymore (McDonald et al. 1997: 47).
- There are fewer beluga whales or other sea mammals near the community when there are ships close by, and beluga whales are trying to get away from the ships (McDonald et al. 1997: 55).
- There are few harp seals around this year (2010), especially near Chesterfield. This is attributed to the shipping going on in the area (RIJ 2011).
- Belugas travel along both the coast and in more open water, so any shipping will disturb beluga migration (RIJ 2011).
- Information provided by Inuit Qaujimajatuqangit indicated that beluga whale enter Chesterfield Inlet during their northern migration (CI01 2009; CI03 2009).

### Marine mammal hunting

- Hunters travel to Repulse Bay for whale hunting (RBJ 2011; RIJ 2011).
- Killer whales are not hunted because people fear them (RBJ 2011).
- Beluga are hunted year round (CHJ 2011).
- Walrus hunting occurs during winter months at the ice flow edge (CHJ 2011).
- Store-bought clothes are not warm enough, depend on animal products for food and clothes (CHE 2009).



- There are two herds of beluga whale near Chesterfield Inlet: one comes north from Churchill and arrives at Chesterfield Inlet around August or September, the other herd comes south from Foxe Basin in the early summer (Cl01 2009; Cl03 2009).
- During focus groups, hunters noted there were lots of polar bear around and that the scientists have not done a good job of counting them. The scientists do the counts in July, when there are few polar bear around. In October and November, there are so many polar bear around Arviat that patrols are needed to protect people. Because they are not allowed to hunt polar bear, guiding activity has declined and the few tourists that do come hunt caribou. The hunters believe that collaring polar bear affects the bear's ability to hunt and changes it nature. The animals can learn to live with disturbances from vehicles and boats, but are harmed by the methods biologists use to count and track animals (ARHT 2009).

## 6.1.2 Standards or Thresholds for Determining Significance

The significance of biophysical effects can often be quantitatively determined based on standards and/or other quantitative methods. However, in the absence of this, the significance of environmental effects must be determined qualitatively on the basis of professional judgment. Determination of whether a Project residual effect on marine mammals is considered to be significant or not is based on whether an effect adversely affects the long-term viability of a population or delays its recovery (e.g., due to a substantial increase in mortality risk, change in abundance and distribution). A residual environmental effect is considered to be not significant if the environmental effect causes a change in condition of an individual or group of marine mammals (or their habitat) that is within the range of natural variability, or does not affect the integrity of a population in a measurable way.

The National Marine Fisheries Service (NMFS) has developed a conservative behavioural response criterion of 120 dB $_{\rm RMS}$  re 1 Pa for all marine mammals in the presence of continuous sound sources, such as noise from vessels (Federal Register 2005). This criterion, combined with known audiograms, is used to predict the area of habitat that may result in behavioural change for marine mammals from Project-related marine transport noise.

Change in mortality risk is considered significant if the number of marine mammals struck by vessels affects the long-term viability of a population or delays its recovery.



# 6.2 ENVIRONMENTAL EFFECTS ASSESSMENT FOR MARINE MAMMALS

## 6.2.1 Assessment of Change in Mortality Risk

Marine shipping in the Project area may increase the risk of direct mortality or injury to marine mammals from ship strikes. Most marine mammals are fast swimming, agile and have sensitive underwater hearing, enabling them to avoid approaching vessels. In particular, toothed whales and pinnipeds are highly maneuverable and are rarely struck by vessels (Laist et al. 2001; Jensen and Silber 2003). There are very few documented cases of seal mortality as a result of vessel strikes (Richardson et al. 1995a). Of all records, baleen whales are the most commonly struck because they are relatively large, slow-moving whales and perhaps unable to exhibit a rapid avoidance response to approaching vessels (Laist et al. 2001; Jensen and Silber 2003).

## 6.2.1.1 Baseline Conditions for Change in Mortality Risk

Marine transportation remains the primary method for delivery of goods in the north, even though the window of opportunity for shipping during the open-water season extends for 2-3 months (60 days of shipping is used as a reasonable estimate). Relative to other major marine transportation corridors in Canada, commonly used shipping routes in the RAA are subject to a much lower density of vessel traffic and, consequently, marine mammal populations are not currently at high risk of mortality due to ship strikes.

# 6.2.1.2 Effect Mechanism and Linkages for Change in Mortality Risk

A variety of Project-related vessels will be active within the RAA and LAA during the construction, operation and decommissioning of the Project. Ocean-going vessels include fuel tankers, geared general cargo ships, container ships and articulated tugs with barges (ATB). ATBs will be used to transport dry cargo and fuel from the transshipment point at Helicopter Island (in Chesterfield Inlet) to the dock facility. They will also be used to transport goods and fuel from the Port of Churchill to the Baker Lake storage facility, or to transport fuel and dry goods from southern ports to the Baker Lake storage facility. ATBs will travel north from Churchill and then navigate through Chesterfield Inlet to Baker Lake. Ocean-going vessels such as fuel tankers, geared cargo ships and containerships will transit through Hudson Strait to the Port of Churchill or Helicopter Island where they will transfer cargo to ATBs for delivery to Baker Lake. All vessels in the marine environment have the potential to strike a marine mammal.

Vessel strikes may result in either injury or direct mortality. Most injuries are the result of two mechanisms; either blunt force trauma from collision with the bow of the vessel or from lacerations from contact with the propellers. Depending on the severity of the strike and the injuries inflicted, the mammal may or may not recover. The potential exists for ship strikes with slow moving whales when ships are 80 m and longer and are travelling at 14 knots or faster (Laist et al. 2001). Recent research shows that vessel speed is positively correlated with the



probability of a vessel strike (Kite-Powell et al. 2007; Vanderlaan and Taggart 2007). Mathematical models from current vessel-strike probability research support the reduced probability of a vessel strike with reduced speeds. At a speed of 10 knots, the models predicted a 30% chance of a vessel strike when the whale is directly in the vessel path (Kite-Powell et al. 2007; Vanderlaan and Taggart 2007). Serious or lethal strikes to whales are infrequent at vessel speeds of less than 14 knots, and are rare at speeds of less than 10 knots (Laist et al. 2001).

Marine mammals that spend a considerable amount of time at or near the surface are at increased risk of vessel strikes. They are physically in the way of approaching vessels and research has shown that sound levels are lower near the surface, potentially explaining why baleen whales are often unresponsive to approaching vessels (Richardson et al. 1995b). Acoustic modeling around the hull of a ship also shows that sound levels may be lower ahead of a vessel, compared to the sides and behind (Terhune and Verboom 1999).

The beluga whale is a highly mobile and fast swimming animal, and has a much lower probability than baleen whales of being struck by a vessel in transit. Beluga whales will likely avoid vessels whenever possible. However, mother-calf pairs spend a great deal of time resting and socializing near the surface (as is the case near Churchill) and may be unresponsive to approaching vessels. Pinnipeds are highly maneuverable and there are very few documented cases of seal mortality as a result of vessel strikes (Richardson et al. 1995a). Seals can effectively modify their swimming behaviour to avoid slow-moving (less than 14 knots) vessels.

# 6.2.1.3 Mitigation Measures and Project Design for Change in Mortality Risk

A variety of strategies will be employed to reduce the potential of a Project related vessel-mammal strike occurring. Mitigation measures apply to all Project-related vessel types operating within the confined waters of Chesterfield Inlet, or operating in marine mammal habitat in the RAA that is deemed to be sensitive for migration, calving or feeding. Recommended vessel speeds are based on information cited above regarding the correlation between vessel speed and likelihood of vessel strikes on mammals (Kite-Powell et al. 2007; Laist et al. 2001; Vanderlaan and Taggart 2007). Marine mammal observers (MMO) will be present onboard tugs and vessels to monitor marine activities when transiting through the LAA. Mitigation measures to reduce the likelihood of vessel strikes are summarized as follows.

- The area surrounding Churchill is important beluga whale habitat, and there are known concentrations of animals in this area during the open-water shipping season.
   To reduce chances of a vessel strike, vessels will travel at a maximum speed of 8 to 10 knots when transiting this area at all times during the open-water season, unless otherwise required for safe navigation.
- Along established shipping routes in western Hudson Bay and Hudson Strait, vessel speeds will not exceed 13 knots, unless otherwise required for safe navigation.



- Vessels will avoid unnecessary acceleration and maintain a constant course, whenever possible.
- Upon the advice of the onboard MMO, vessels will halt if marine mammals appear to be herded by an approaching vessel within Chesterfield Inlet, unless conditions are unsafe to do so.

# 6.2.1.4 Residual Environmental Effects for Change in Mortality Risk

Over the life of the Project, between 7 and 31 vessel transits are expected to be required annually to deliver fuel and dry cargo to the dock facility. Vessels will only be travelling during the open-water season (August through September). Given the duration of marine vessel operations and the frequency of transiting vessels, there is potential that a vessel-mammal strike could occur over the life of the Project. With the proposed mitigation in place, vessel strikes will be rare and would be more likely to result in non-lethal incisions from propellers and non-lethal blunt force trauma, except in the case of strikes involving calves and young animals, where injuries may be more severe.

Potential residual environmental effects from increased mortality risk to marine mammals populations are expected to be low in magnitude, site specific (along the shipping route), long term, sporadic (restricted to the open-water season when vessels are transiting), and low in frequency. Larger, faster vessels have the potential to strike whales with greater force, causing greater physical injury and trauma (as discussed in section 6.2.1.2). However, with implementation of the above mitigation measures, the probability of a lethal or severe vessel strike is expected to be low. The effect of a vessel strike on a marine mammal is potentially fatal (i.e., irreversible), but environmental effects on marine mammal populations are expected to be reversible through natural recruitment. Increased mortality risk due to Project-related vessel strikes will continue until the termination of the Project.

## 6.2.1.5 Determination of Significance for Change in Mortality Risk

The probability of a lethal or severe vessel strike is considered to be low at speeds of less than 14 knots. Increased mortality risk to marine mammals due to Project-related vessel strikes are considered to be low. Because of this, the long-term viability of marine mammal populations in the RAA are unlikely to be affected, even in the unlikely event where one or several animals are lost over the lifetime of the Project. With implementation of mitigation measures, the potential environmental effect of an increase in mortality risk of marine mammals due to vessel strikes is determined to be not significant.



# 6.2.1.6 Compliance and Environmental Monitoring for Change in Mortality Risk

Onboard monitors shall record all incidents of vessel strikes with marine mammals, nearmisses, and marine mammal sightings. In the absence of monitors, incidents shall be recorded by the maritime crew. Ship logs will record speed reductions in important areas.

## 6.2.2 Assessment of Change in Behaviour

The assessment of change in marine mammal behaviour due to underwater noise is based on Project-specific modeling of sound propagation associated with marine transportation during operation and decommissioning of the Project. The discussion includes available behavioural change criteria, and known marine mammal responses to vessels. Key potential environmental effects resulting from the Kiggavik Project relate to underwater noise and its potential to disrupt and/or displace marine mammals from their preferred habitat.

Marine mammals that are common in the LAA and RAA are tolerant to some level of underwater noise from existing vessel traffic and natural acoustic sources. Marine mammal reactions to sensory disturbance may range from subtle to obvious behavioural changes (e.g., from no effect or a small change in respiration rate to avoidance and change of travel route).

## 6.2.2.1 Analytical Methods for Change in Behaviour

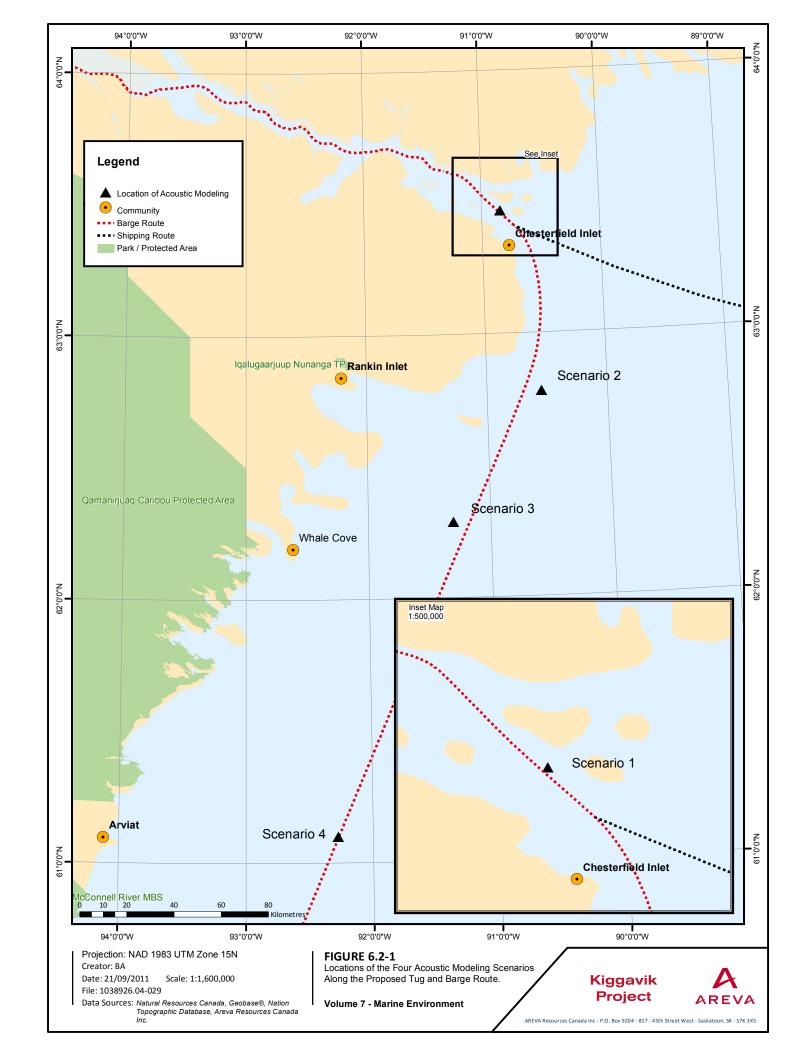
The National Marine Fisheries Service (NMFS) developed a behavioural response criterion to continuous sound for marine mammals of 120 dB<sub>RMS</sub> (Federal Register 2005). Specifically, if the noise is received by the animal at 120 dB or more, it is likely to induce a behavioural change.

Acoustic modelling undertaken for the Project predicts the level of underwater noise that could be generated by marine vessels associated with the Project. Modelling scenarios simulated the articulated tug and barge (ATB) transiting with two barges at 13 knots (based on the consideration that vessels will generally be operating at a maximum speed less than 13 knots). Four locations are modelled along the planned tug and barge transportation route, which correspond to the closest approach to each of the four local communities in Western Hudson Bay. Scenario one modelled the ATB transiting in Chesterfield Inlet (inside the LAA) and scenarios two to four modelled three locations in the RAA (Rankin Inlet, Whale Cove, and Arviat) (Li et al. 2011). Results from acoustic modelling of sound source levels are analysed against species-specific audiograms and the results compared against known behavioural response criterion to determine how Project-related underwater noise may affect marine mammals. Results from the Western Hudson Bay modeling locations are used as a proxy for the rest of the shipping route in the RSA. The zone of influence for audibility and behaviour thresholds for fish and marine mammals may show some spatial variability due to site specific parameters such as bathymetry and sea floor characteristics that influence sound propagation. However, the frequency and magnitude of the underwater sound produced will be similar along



the shipping route within the RSA and potential effects within species groups are expected to be consistent.

The interpretation and propagation of sound in the marine environment is dependent on physical oceanographic features such as the thermal conditions of the water, the depth of the thermocline, and the structure of the seabed and sea surface. For example, soft sediments absorb noise easily, whereas hard bedrock reflects noise. Noise transmission is dependent on the type of noise (i.e., the frequency). Lower frequencies travel great distances through sea water with little absorption, whereas higher frequencies decrease in amplitude with distance.


Ambient noise was not measured in the LAA or RAA. No published data or information was located regarding underwater ambient noise levels in Hudson Bay. For modelling purposes, underwater ambient noise levels are estimated based on empirical models of ocean noise based on the surface agitation component for sea state 1 conditions (Li et al. 2011). The zones of audibility for each species are considered to be the region where the audiogram-weighted noise levels exceeded these estimated noise levels (Li et al. 2011).

To assess potential changes in behaviour, the acoustic modelling defines a quantified spatial area where underwater sound will be transmitted and audible to beluga whales and ringed seals. Details on the acoustic modelling are presented in the Marine Acoustics Technical Data Report (Li et al. 2011). Modelling locations were selected based on proximity of the planned transportation route to each community. The acoustic signature is modelled for the ATB at the following four locations along the transit route (Figure 6.2-1):

- Scenario 1: ATB transiting in Chesterfield Inlet
- Scenario 2: ATB transiting off Rankin Inlet
- Scenario 3: ATB transiting off Whale Cove
- Scenario 4: ATB transiting off Arviat

## 6.2.2.2 Baseline Conditions for Change in Behaviour

Numerous physical, biological and anthropomorphic sources of noise exist in the marine environment that contribute to ambient noise levels. Physical sources of ambient noise include wind and rainfall, ocean waves, natural seismic activity under the seabed, thermal, and icebergs (ice cracking and collisions). Biological sources may include the movement and sounds of other animals. Anthropogenic sounds are the result of ship machinery, propellers, water flow around the hull, and discharges of water from a ship.





## 6.2.2.3 Effect Mechanism and Linkages for Change in Behaviour

The presence of marine vessels has the potential to cause a startle response, alarm response, avoidance or auditory masking, which could result in a change in behaviour and migration patterns. In addition, underwater vessel noise has the potential to harm, disrupt and/or displace marine mammals from their habitat, which in turn could reduce foraging efficiency and fecundity, and increase energy expenditure. The majority of underwater noise from vessels is generated by the propeller; however, the flow in pumps and piping, hull roughness and hull protrusions, main engines, generators and other machinery can contribute to the noise level (Mitson 1995). The operational aspects of speed control also play an important role in the level of noise; a constant speed maintains an even level of noise output, whereas rapid changes in velocity generate greater noise outputs (Mitson 1995). The vessel speed and amount of load carried or towed are important factors in determining the noise signature. Tugs and barges transiting through the LAA and RAA at 13 knots would contribute low frequency underwater sounds (10 Hz to 31.5 kHz) to the marine environment.

Changes in behaviour resulting from vessel-related noise can include changes in swim direction, swim speed, dive duration, surfacing duration, respiration (blow rate), movement towards or away from noise, or changes in acoustic behaviour (i.e., vocalization frequency). The degree of effect depends on how the animal interprets the sound received and its sensitivity, which varies with noise frequency. A species' audiogram is the relationship between noise frequency and an animal's hearing threshold. If a noise is at a frequency that the animal cannot hear well (i.e., where the hearing threshold is high), it is unlikely to affect the animal's behaviour. Noise levels decrease with distance from the source due to propagation loss. A noise is no longer audible if the noise drops either below the animal's audiogram or below the ambient noise levels. A change in behaviour may not occur simply because a sound is audible.

Increases in noise levels with similar frequencies to those used by marine mammals can result in the masking of these sounds or a decrease in the distances over which they can be detected. Masking, in turn, may inhibit a whale's ability to communicate with conspecifics, forage, detect predators and navigate. Masking is a very complex and poorly understood process. An anthropogenic sound source will mask the effective communication or echolocation distance of a marine mammal only if it overlaps the sound signal in time and frequency. If little or no overlap occurs between the sound and the frequencies used, communication and echolocation are not expected to be disrupted or masked (Abgrall et al. 2008).

## **Beluga Whales**

Chesterfield Inlet is a narrow passage, which is extremely shallow in sections. There is potential for animals to be herded within the narrow confines as the vessels are travelling westward or cause reverse migration of belugas out of the Inlet during the eastward return of the vessels. During migration, beluga whales tend to remain within 20–30 km of the shore. In Hudson Bay, there is potential to shift beluga migration if the noise disturbance is within this area.



Beluga whales are widely recognized as highly gregarious animals, traveling in large, dense herds during migration or occurring in concentrations in estuaries in midsummer (Finley et al. 1987). Belugas have extremely acute hearing within the mid frequency range, between 32–108 kHz (Klishin et al. 2000; Southall et al. 2007). They communicate vocally and have well-developed echolocation (Harwood and Smith 2002). Echolocation uses sound to detect prey for foraging and orient themselves in the marine environment (Mooney 2008). They use forward-projecting pulsed sounds of high intensity, spaced so an echo from the target is received before the next pulse is emitted (Au 1993). Echolocation clicks have the highest source levels of any recorded marine mammal sounds. While foraging, beluga whales have been known to remain in acoustic contact over distances of 300 to 500 m (Bel'kovich and Sh'ekotov 1992). It is plausible that exposure to underwater noise may disrupt social behaviour, including activities such as mating, cooperative feeding, play, aggressive interactions and communication.

No frequency-specific studies on beluga whales in Hudson Bay were identified during the literature review. Therefore, for the purpose of this assessment, it is assumed that beluga whales in this region have similar acoustic signatures to those studied in captivity. Studies examining captive whales suggest that their hearing is most sensitive between 32–108 kHz (Klishin et al. 2000) but extends as low as 0.04–0.075 kHz, although their sensitivity at these low frequencies is considered poor (Richardson et al. 1995a).

Odontocete sounds are classified into three general categories: tonal whistles; pulsed sounds of very short duration used in echolocation; and less distinct pulsed sounds such as cries, grunts and barks (see Table 6.2-1 below) (Richardson et al. 1995a). Belugas are one of several odontocete species that produce whistle vocalizations, a characteristic of extremely social species. Echolocation frequencies are typically within the 40–60 kHz range; however, with higher ambient noise levels or more distant targets, they emit stronger pulses at 100–120 kHz (Richardson et al. 1995a).

Table 6.2-1 Frequency of Underwater Sounds Heard by Beluga Whales

| Signal Type                    | Frequency Range<br>(kHz) | Dominant Frequency<br>(kHz) |
|--------------------------------|--------------------------|-----------------------------|
| Whistles                       | 0.26–20                  | 2–5.9                       |
| Pulsed Tones                   | 0.4–12                   | 1–8                         |
| Other Vocalizations            | 0.5–16                   | 4.2–8.3                     |
| Echolocation                   | 40–60, 100–120           | _                           |
| SOURCE: Richardson et al. 1995 |                          |                             |

### Seals

Generally, seal vocalizations are believed to be associated with mother-pup interactions, territoriality and mating (Richardson et al. 1995a). Underwater audiograms indicate that phocid seals are most sensitive to noise between 760 Hz and 60 kHz (Terhune and Ronald 1975). There are no reported ringed seal calls associated directly with the reproductive season, but call



frequencies do change with the seasons (Richardson et al. 1995a). Ringed seal vocalizations range between 0.4–16 kHz, with the majority of frequencies below 5 kHz (Stirling et al. 1983; Richardson et al. 1995a). The hearing threshold of ringed seals is between 60 and 85 dB re 1 $\mu$ Pa (Terhune and Ronald 1975). Source levels of ringed seal calls are between 95–130 dB re 1 $\mu$ Pa (Richardson et al. 1995a), and those of bearded seals can reach 178 dB re 1 $\mu$ Pa (Richardson et al. 1995a). It is a reasonable assumption that if these animals are vocalizing at these frequencies, then those frequencies constitute their minimum hearing range.

## 6.2.2.3.1 Behavioural Response Criteria

The National Marine Fisheries Service (NMFS) compiled data on underwater noise and marine mammal hearing and behavioural responses, and developed a conservative behavioural response criterion of 120 dB<sub>RMS</sub> re 1  $\mu$ Pa for all marine mammals in the presence of continuous underwater sound sources (Federal Register 2005). This general criterion is applicable to all marine mammals, and is used to predict the area of behavioural change.

A study by Lesage et al. (1999) measured the vocal behaviour of beluga whales in the St. Lawrence in the absence and presence of a ferry and a small motorboat. It concluded that belugas are able to change the volume and spectral characteristics of signals they emit in response to noise disturbance. The whales emitted calls repetitively, changed the types of calls used, and shifted the mean call frequency during noise exposure. Similarly, dolphins have been shown to echolocate louder and change the frequency spectrum of emitted clicks in the presence of noise (Au 1993). It is unknown whether the animals manage to communicate the same information during noise exposure or whether calls heard are simply "alarm calls" (Erbe and Farmer 2000).

## 6.2.2.3.2 Hearing Threshold Shifts

The ability to detect predators/prey could be impaired if a beluga whale is suffering either temporary or permanent reductions in auditory sensitivity. When Permanent Threshold Shift ("PTS") occurs, there is physical trauma to the sound receptors in the ear, which can result in total or partial deafness or in an animal not being able to hear sounds of certain frequencies (Abgrall et al. 2008). Underwater noise from marine shipping is not a source of strong, pulsed noise and therefore unlikely to cause PTS.

Temporary Threshold Shift ("TTS") is the mildest form of hearing impairment that can occur during exposure to a strong sound. While experiencing TTS, the hearing threshold rises and a sound must be stronger to be heard (Abgrall et al. 2008). Under experimental conditions, sublethal, temporary elevations in hearing thresholds (TTS) have sometimes been observed in captive marine mammals exposed to pulsed sounds. Pulsed sounds, such as those from seismic have been known to cause mild TTS (Finneran et al. 2002). It is generally accepted that temporary hearing loss in marine mammals may occur when exposed to sounds equal to or greater than 180 dB  $_{\rm RMS}$  re  $1\mu Pa^2s$  for prolonged periods (Abgrall et al. 2008). The noise generated by marine shipping is well below this range and therefore unlikely to cause a hearing threshold shift (PTS or TTS). This effect will not be considered further in the assessment.



## 6.2.2.3.3 Transit through Hudson Bay

Tugs and barges will be transiting from Churchill to the mouth of Chesterfield Inlet through Hudson Bay. They will be operating during the ice-free season (approximately 60 days during August and September). There will be a maximum of 31 ATB trips to the entrance of Chesterfield Inlet each open-water season. Each tug will bring two barges from Churchill to the mouth of Chesterfield Inlet. Audiogram weighted results for beluga whale are presented in Figure 6.2-2.

#### **Arviat**

When the ATB is transiting off Arviat, a beluga whale will begin to hear the vessel-based noise 19.2 km from the source. The sound pressure level (SPL) will be just above 0 dB re HT (hearing threshold of beluga) at this distance. At half that distance (9.6 km), the beluga whale will hear 10 dB. At 461 m from the transiting vessel, the beluga whale will hear 60 dB of sound. The ringed seal will hear the noise at 20 dB re HT (hearing threshold of ringed seal) from a distance of 28.8 km. At 141 m from the transiting vessel, the ringed seal will hear 60 dB of sound.

Based on the NMFS behaviour response criterion of 120 dB, it is highly unlikely that noise levels from an ATB transiting off Arviat will induce a behavioural change in beluga whale or ringed seal (Tables 6.2-1 and 6.2-2).

#### Whale Cove

When the ATB is transiting off Whale Cove, a beluga whale will begin to hear the vessel-based noise 18.1 km from the source. The SPL will be just above 0 dB re HT (beluga) at this distance. At half that distance (9.0 km), the beluga whale will hear 10 dB. At 424 m from the transiting vessel, the beluga whale will hear 60 dB of sound. The ringed seal will hear the noise at 20 dB re HT (ringed seal) from 27.5 km distance. At 141 m from the transiting vessel, the ringed seal will hear 60 dB of sound.

Based on the NMFS behaviour response criterion of 120 dB, it is highly unlikely that noise levels from a ATB transiting off Whale Cove will induce a behavioural change in beluga whale or ringed seal (Tables 6.2-1 and 6.2-2).

#### Rankin Inlet

When the ATB is transiting off Rankin Inlet, a beluga whale will begin to hear the vessel-based noise 18.7 km from the source. The SPL will be just above 0 dB re HT (beluga) at this distance. At about half that distance (7.7 km), the beluga whale will hear 10 dB. At 320 m from the transiting vessel, the beluga whale will hear 60 dB of sound. The ringed seal will hear the noise at 20 dB re HT (ringed seal) from 31.5 km distance. At 141 m from the transiting vessel, the ringed seal will hear 60 dB of sound.



Based on the NMFS behaviour response criterion of 120 dB, it is highly unlikely that the noise levels from an ATB transiting off Rankin Inlet will induce a behavioural change in beluga whale or ringed seal (Tables 6.2-1 and 6.2-2).

## 6.2.2.3.4 Transit through Chesterfield Inlet

One barge per tug will transit from the mouth of Chesterfield Inlet to the dock facility. Due to physical restrictions of Chesterfield Narrows (tidal height and strength of tidal currents), a conservative estimate of two cargo barges/vessels will transit per high tide, for a total of 46 transits through Chesterfield Narrows.

The following assumptions are made regarding transiting restrictions:

- The open-water season is assumed to be 60 days; however, annual variation in seaice regimes may result in the open-water season being longer or shorter.
- Navigation through Chesterfield Narrows is assumed to be at high tide slack water only
- Navigation through Chesterfield Narrows is assumed to occur during daylight hours only
- A total of 92 high tides corresponding with daylight hours occur in the assumed 60day open-water window.
- An average of seven days will be lost per season due to foul weather (high winds and other issues that limit visibility); 14 high tide slack tides are assumed to be lost due to weather
- A total of 78 high tides are available to transit Chesterfield Narrows each open-water season.
- A total of 23 deliveries will be made to the dock facility each year.

#### Chesterfield Inlet

When the ATB is transiting through Chesterfield Inlet, a beluga whale will begin to hear the vessel-based noise 9.0 km from the source. The SPL will be just above 0 dB re HT (beluga) at this distance. At 5.7 km away, the beluga whale will hear 10 dB. At 364 m from the transiting vessel, the beluga whale will hear 60 dB of sound. The ringed seal will hear the noise at 20 dB re HT (ringed seal) from 11.2 km distance. At 141 m from the transiting vessel, the ringed seal will hear 60 dB of sound.

Based on the NMFS behaviour response criterion of 120 dB, it is highly unlikely that the noise levels from a ATB transiting Chesterfield Inlet will induce a behavioural change in beluga whale or ringed seal (Tables 6.2-1 and 6.2-2).

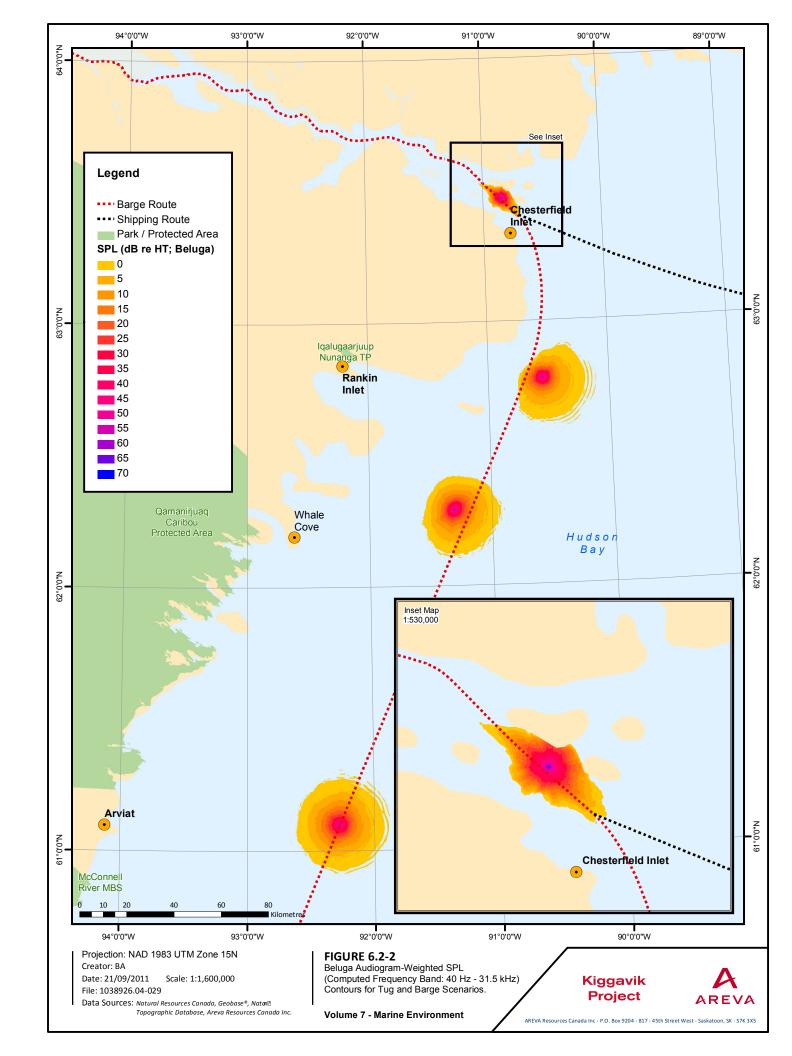





Table 6.2-2 Underwater Noise Levels and Radii of Beluga Whale Hearing

| Sound Pressure<br>Level<br>(dB re HT) | Scenario 1:<br>Chesterfield Inlet<br>R95%<br>(km) <sup>1</sup> | Scenario 2:<br>Off Rankin Inlet<br>R95%<br>(km) <sup>1</sup> | Scenario 3:<br>Off Whale Cove<br>R95%<br>(km) <sup>1</sup> | Scenario 4:<br>Off Arviat<br>R95%<br>(km) <sup>1</sup> |  |
|---------------------------------------|----------------------------------------------------------------|--------------------------------------------------------------|------------------------------------------------------------|--------------------------------------------------------|--|
| 0                                     | 9.0                                                            | 18.7                                                         | 18.1                                                       | 19.2                                                   |  |
| 10                                    | 5.7                                                            | 7.6                                                          | 9.0                                                        | 9.9                                                    |  |
| 20                                    | 3.8                                                            | 4.7                                                          | 5.3                                                        | 5.8                                                    |  |
| 30                                    | 2.6                                                            | 3.0                                                          | 3.3                                                        | 3.4                                                    |  |
| 40                                    | 1.5                                                            | 1.7                                                          | 1.8                                                        | 1.8                                                    |  |
| 50                                    | 0.7                                                            | 0.8                                                          | 0.7                                                        | 0.7                                                    |  |
| 60                                    | 0.4                                                            | 0.3                                                          | 0.4                                                        | 0.5                                                    |  |
| ≥70                                   | <0.1                                                           | <0.1                                                         | <0.1                                                       | <0.1                                                   |  |

### NOTE:

Table 6.2-3 Underwater Noise Levels and Radii of Ringed Seal Hearing

| SPL<br>(dB re HT) | Scenario 1:<br>Chesterfield Inlet<br>R95%<br>(km) <sup>1</sup> | Scenario 2:<br>Off Rankin Inlet<br>R95%<br>(km) <sup>1</sup> | Scenario 3:<br>Off Whale Cove<br>R95%<br>(km) <sup>1</sup> | Scenario 4:<br>Off Arviat<br>R95%<br>(km) <sup>1</sup> |
|-------------------|----------------------------------------------------------------|--------------------------------------------------------------|------------------------------------------------------------|--------------------------------------------------------|
| 20                | 11.2                                                           | 31.5                                                         | 27.5                                                       | 28.8                                                   |
| 30                | 7.0                                                            | 14.4                                                         | 13.3                                                       | 13.3                                                   |
| 40                | 3.0                                                            | 4.2                                                          | 3.9                                                        | 4.0                                                    |
| 50                | 0.7                                                            | 0.9                                                          | 0.8                                                        | 0.8                                                    |
| 60                | 0.1                                                            | 0.1                                                          | 0.1                                                        | 0.1                                                    |
| ≥70               | <0.1                                                           | <0.1                                                         | <0.1                                                       | <0.1                                                   |

#### NOTE:

# 6.2.2.4 Mitigation Measures and Project Design for Change in Behaviour

The following mitigation measures will be employed to reduce the potential for behavioural changes such as avoidance of underwater noise and changes in migration routes or herding due to vessel presence.

 Marine mammal observers (MMO) will be onboard vessels travelling through the LAA.

<sup>&</sup>lt;sup>1</sup> The 95<sup>th</sup> percentile radius is the radius of the circle that encompasses 95% of the grid points whose value is equal or greater than the threshold value. Measured in square kilometers.

<sup>&</sup>lt;sup>1</sup> The 95<sup>th</sup> percentile radius is the radius of the circle that encompasses 95% of the grid points whose value is equal or greater than the threshold value. Measured in square kilometers.



- In consultation with the MMO, standard operating protocols will be implemented by the vessel captain when individual or groupings of marine mammals are observed within specific radii of the vessel.
- Vessels will avoid unnecessary acceleration and maintain a constant course, whenever possible
- Propellers will be maintained to reduce unnecessary noise
- Vessels will travel at a maximum speed of less than 13 knots unless otherwise required for safe navigation.
- Vessels will use specific vessel transit routes to limit acoustical inputs to similar and predictable areas during marine transportation, unless otherwise required for safe navigation.
- Upon the advice of the onboard MMO, vessels will halt if marine mammals appear to be herded by an approaching vessel, unless conditions are unsafe to do so.

## 6.2.2.5 Residual Environmental Effects for Change in Behaviour

Results of the acoustic modelling indicate that beluga whales and ringed seals will be exposed to less than 70 dB re HT from ATB transiting between Hudson Bay and Chesterfield Inlet, which is almost half of the required level of sound required to elicit a behavioural response in marine mammals. With implementation of the above mitigation measures, noise levels generated by marine traffic are not expected to cause changes in behaviour of beluga whales and ringed seals. No change in behaviour is predicted from project-related underwater noise; therefore, residual environmental effects for change in behaviour are not predicted to occur.

## 6.2.2.6 Determination of Significance for Change in Behaviour

Both the likelihood and severity of biological effects on marine mammals that could result from marine transportation are likely to vary with local environmental conditions (e.g., ice coverage, bottom topography, sea state), as well as the condition of the animals (e.g., breeding state, nutritional state). However, based on available information with respect to background noise levels, the frequency and number of marine vessel trips required to support the Project and the predicted magnitude of underwater noise generated by Project-related vessels, any change in behaviour of beluga whales and ringed seals due to noise disturbance is not expected to affect the long-term viability of these population and, therefore, is considered to be not significant.

# 6.2.2.7 Compliance and Environmental Monitoring for Change in Behaviour

Onboard monitors shall record all mammal sightings. In the absence of monitors, sightings shall be recorded by the maritime crew. Incidents such as herding of animals shall be recorded along with mitigation measures (i.e., halting the ship). Ship logs will record speed reductions in important areas.



# 6.3 CUMULATIVE ENVIRONMENTAL EFFECTS ANALYSIS FOR MARINE MAMMALS

Project activities are not expected to result in residual environmental effects for change in behaviour of marine mammals. Therefore, Project activities are not expected to contribute to cumulative environmental effects on change in behaviour of marine mammals.

Project-related marine transportation will contribute to increased vessel presence in Hudson Bay and Chesterfield Inlet. Although the likelihood of vessel-marine mammal strikes is low, operation of the ATB has the potential to cause non-lethal injury and trauma and possibly mortality of individuals. The Project effect could act cumulatively with other vessels operating in the RAA at present and in the foreseeable future.

## 6.3.1 Screening for Cumulative Environmental Effects

As described in Section 6.2.1, increased mortality risk in marine mammals as a result of Project-related marine transportation will be sufficiently low to reasonably conclude that its contribution to the cumulative environmental effects with other existing and future projects will not affect the viability of marine mammal populations. As a result, the cumulative effect of increased mortality risk due to marine transportation is not considered further in this assessment.

# 6.4 SUMMARY OF RESIDUAL ENVIRONMENTAL EFFECTS ON MARINE MAMMALS

## 6.4.1 Project Effects

Potential environmental effects on marine mammals associated with the Kiggavik Project relate primarily to the presence of marine shipping vessels and associated underwater noise. Given the availability of accepted mitigation measures and best practices (e.g., vessel speed restrictions and avoidance of sensitive habitat by vessels), meaningful or measurable environmental effects on marine mammal populations are not likely to occur (Table 6.4-1).



Table 6.4-1 Summary of Project Residual Environmental Effects: Marine Mammals

|                                                |                                         | т                                         |            | Resid     | lual Envir        | onmenta    | l Effects | Characte      | eristics                 |              |            | ס                     |                                                                                |
|------------------------------------------------|-----------------------------------------|-------------------------------------------|------------|-----------|-------------------|------------|-----------|---------------|--------------------------|--------------|------------|-----------------------|--------------------------------------------------------------------------------|
| Project Phase                                  | Mitigation/<br>Compensation<br>Measures | Residual<br>Environmental Effect<br>(Y/N) | Direction  | Magnitude | Geographic Extent | Duration   | Frequency | Reversibility | Environmental<br>Context | Significance | Likelihood | Prediction Confidence | Recommended<br>Follow-up and<br>Monitoring                                     |
| Change in Mortality: Pro                       | ject-related shipping ha                | s the pote                                | ntial to c | ause shi  | p strikes         | to marin   | e mamma   | ıls           |                          |              |            |                       |                                                                                |
| Construction:                                  | See section 6.2.1.4 for a complete list | Y                                         | Α          | L         | S                 | ST         | R         | R             | U                        | N            | L          | Н                     | MMOs on board<br>vessels in the                                                |
| Operation:                                     | See section 6.2.1.4 for a complete list | Y                                         | А          | L         | S                 | ST         | R         | R             | U                        |              |            |                       | <ul> <li>LAA</li> <li>Record all incidents of vessel-mammal strikes</li> </ul> |
| Final Closure: Decommissioning and Abandonment | See section 6.2.1.4 for a complete list | Y                                         | A          | L         | S                 | ST         | R         | R             | U                        |              |            |                       |                                                                                |
| Residual environmental effects for all phases  |                                         | Y                                         | Α          | L         | S                 | ST         | R         | R             | U                        |              |            |                       |                                                                                |
| Change in Behaviour: Pr                        | oject-related underwate                 | r noise du                                | ie to ship | ping has  | the pote          | ntial to c | hange be  | haviour       | of marine                | mammal       | s          |                       |                                                                                |
| Construction                                   | See section 6.2.2.4 for a complete list | N                                         | -          | -         | -                 | -          | -         | -             | -                        | N            | L          | Н                     | MMOs on board vessels in the LAA                                               |
| Operation:                                     | See section 6.2.2.4 for a complete list | N                                         | =          | =         | =                 | -          | =         | =             | -                        |              |            |                       |                                                                                |
| Final Closure:<br>Decommissioning              | See section 6.2.2.4 for a complete list | N                                         | -          | -         | -                 | -          | -         | -             | -                        |              |            |                       |                                                                                |
| Residual environmental effects for all phases  |                                         | N                                         |            | -         | -                 | -          | =         | -             | -                        |              |            |                       |                                                                                |



### Table 6.4-1 Summary of Project Residual Environmental Effects: Marine Mammals (cont'd)

KEY

#### Direction:

P Positive

A Adverse

#### Magnitude:

Use quantitative measure; or

- L Low: effect is within the range of natural variance or less than reference criteria
- M Moderate: effect is at or slightly above the range of natural variation or reference criteria
- H High: effect exceeds upper limit of natural variation or reference criteria

#### Geographic Extent:

Use quantitative measure; or

- S Site-specific: effect is limited to the Project footprint
- L Local: effect is limited to the Local Assessment Area (LAA)
- R Regional: effect is limited to the Regional Assessment Area (RAA)

#### Duration:

Use quantitative measure; or

ST Short term: Hours to days

MT Medium term: Months

- LT Long term: Years
- P Permanent: permanent

#### Frequency:

Use quantitative measure; or

- O Occurs once.
- S Occurs sporadically at irregular intervals.
- R Occurs on a regular basis and at regular intervals.
- C Continuous.

#### Reversibility:

- R Reversible
- I Irreversible

#### Environmental Context:

- U Undisturbed: Area relatively or not adversely affected by human activity
- D Developed: Area has been substantially previously disturbed by human development or human development is still present

N/A Not Applicable

#### Significance:

- S Significant
- N Not Significant

#### Prediction Confidence:

Based on scientific information and statistical analysis, professional judgment and effectiveness of mitigation

- Low level of confidence
- M Moderate level of confidence
- H High level of confidence

#### Likelihood:

Based on professional judgment

- L Low probability of occurrence
- M Medium probability of occurrence
- H High probability of occurrence

#### **Cumulative Effects**

- Y Potential for effect to interact with other past, present or foreseeable projects or activities in RSA
- N Effect will not or is not likely to interact with other past, present or foreseeable projects or activities in RSA



### 6.4.2 Cumulative Environmental Effects

Marine transportation associated with the Project is not expected to contribute to cumulative environmental effects on marine mammal populations in the RAA.

## 6.4.3 Effects of Climate Change on the Project

Climate change is expected to result in warming temperatures, a corresponding increase in sea levels from increased melting of snow and ice (IPCC 2007). With increased melting, it is reasonable to anticipate a longer open-water season along the shipping route in the RAA over the long term. The expected number of vessels required for the Project are determined based on what is needed to supply construction, operation and decommissioning activities of the proposed mine. This frequency is not expected to increase over the life of the Project. If the open-water season were extended, this would increase the window of opportunity for vessels to transport fuel and goods to the dock facility, which could reduce the net frequency of transiting vessels in the RAA and, in turn, would reduce the frequency of exposure of marine mammals to transiting vessels.

# 6.5 GENERAL MITIGATION MEASURES FOR MARINE MAMMALS

As described in Section 6.2.1.4 and Section 6.2.2.4, marine mammal observers (MMO) will be present onboard tugs and vessels to monitor marine activities when transiting through the LAA.

Mitigation measures to reduce the likelihood of vessel strikes are summarized as follows:

- The area surrounding Churchill is important beluga whale habitat, and there are known concentrations of animals in this area during the open-water shipping season.
   To reduce chances of a vessel strike, vessels will travel at a maximum speed of 8 to 10 knots when transiting this area at all times during the open-water season, unless otherwise required for safe navigation.
- Vessel speeds will not exceed 13 knots along established shipping routes in western Hudson Bay and Hudson Strait,
- Vessels will avoid unnecessary acceleration and maintain a constant course, whenever possible.
- Upon the advice of the onboard MMO, vessels will halt if marine mammals appear to be herded by an approaching vessel within Chesterfield Inlet, unless conditions are unsafe to halt.



Mitigation measures will be applied to reduce behavioural changes such as avoidance of underwater noise and changes in migration routes or herding due to vessel presence. The following mitigation measures will be applied:

- operating protocols to be implemented by the vessel captain in consultation with the marine mammal monitors when individual or groupings of marine mammals are observed within specific radii of the vessel
- avoidance of unnecessary acceleration and maintenance of propellers
- vessel speed restrictions of less than 13 knots in the RAA, unless otherwise required for safe navigation
- using specific vessel transit routes, taking into account navigational safety, so that acoustical inputs are limited to similar and predictable areas during marine transportation
- maintaining a constant course whenever possible
- halting of vessels if marine mammals appear to be being inadvertently herded by an approaching vessel, and it is navigationally safe to do so

## 6.5.1 Mitigation by AREVA and Others

AREVA is prepared to cooperate with other future project operators, participating Inuit communities in the NSA (Baker Lake, Repulse Bay, Coral Harbour, Chesterfield Inlet, Arviat, Whale Cove and Rankin Inlet), government and other stakeholders to reduce environmental effects of vessel presence and increased mortality risk due to vessel strikes on marine mammals.

# 6.6 COMPLIANCE AND ENVIRONMENTAL MONITORING FOR MARINE MAMMALS

Marine mammal observers (MMO) will be present onboard tugs and vessels to monitor marine activities when transiting through the LAA. Upon the advice of the onboard MMO, vessels will halt if marine mammals appear to be herded by an approaching vessel within Chesterfield Inlet, unless conditions are unsafe to halt. Onboard monitors shall record all incidents of vessel strikes with marine mammals, near-misses, and marine mammal sightings. In the absence of monitors, incidents shall be recorded by the maritime crew. Ship logs will record speed reductions in important marine mammal areas.



# 7 ENVIRONMENTAL EFFECTS ASSESSMENT FOR MARINE FISH

### 7.1 SCOPE OF THE ASSESSMENT FOR MARINE FISH

Marine fish contribute to overall ecosystem health in the RAA and provide social, cultural and economic benefits to the coastal communities. In particular, Arctic cod (*Boreogadus saida*), Arctic sculpin (*Myoxocephalus scorpioides*), Arctic char (*Salvelinus alpines*), fourhorn sculpin (*Triglopsis quadricornis*), banded gunnel (*Pholis fasciata*), and whitefish (*Coregonus nasus*) are important to the communities and the ecosystem in the Project assessment area. Potential environmental effects of the Project on fish populations are identified in Table 7.1-1.

Table 7.1-1 Potential Environmental Effects on Marine Fish

|                                                                                                                                             | Potential Environmental Effects |
|---------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|
| Project Activities/Physical Works                                                                                                           | Change in Behaviour             |
| Construction:                                                                                                                               | √                               |
| Transport fuel and construction materials (transfers, barging)                                                                              |                                 |
| Operations:                                                                                                                                 | $\checkmark$                    |
| Marine transportation: loading barges, barging, off-loading (fuel, reagents and supplies), Baker Lake and Churchill/Chesterfield, back-haul |                                 |
| Final Closure:                                                                                                                              | √                               |
| Decommissioning                                                                                                                             |                                 |
| Marine transportation: fuel and construction materials (transfers, barging)                                                                 |                                 |
| NOTE:                                                                                                                                       |                                 |
| See definitions of rankings in section 4.3.1                                                                                                |                                 |
| Check marks indicate potential effects ranked as 2 in Table 3.3-1                                                                           |                                 |

## 7.1.1 Key Issues for Marine Fish

Key issues concerning Project-related marine transportation on marine fish relate predominantly to underwater noise and its potential to physically harm, disrupt, and/or displace fish from habitat in Hudson Bay and Chesterfield Inlet.

IQ comments support these key issues and extend to include concerns regarding disruption of marine fishing, which occurs at fish camps along Chesterfield Inlet. Arctic char are an important species, both commercially and traditionally.



### Traditional fishing camps:

- Fishing continues to occur along Chesterfield Inlet, on the lakes in and around the community, and at family cabins located in the larger area (Elder interviews).
- One of the Elders said there are not many fish anymore, and she hardly gets enough for her own use. Others said that they no longer make much money selling fish to the fish processing plant (WCE 2009).
- Arctic char run from the middle to the end of August, and spawn later in October, after the ice forms (BL01 2008; ARVJ 2011).
- Arctic char used to be fished heavily year-round near the community of Repulse Bay, and were also caught in the rivers adjacent to Ross Bay (Riewe 1992:219).
- People from Rankin Inlet have fished as far north as Barbour Bay and Chesterfield Inlet (Riewe 1992:173).
- The downstream migrations of Arctic char would occur in May or June and one Elder reported that he would fish Arctic char in the spring in the lakes around Chesterfield (Riewe 1992:174; Cl02 2009).
- The coastal areas and the inland area north of Chesterfield Inlet is an important fishing area for both Baker Lake and Chesterfield Inlet residents. In particular, fishing would occur on the Connery and Lorillard rivers during the spring and fall Arctic char runs, and summer gill netting would occur along the coast (Riewe 1992:173).
- During the winter months along the coastal area, fishing supplemented trapping and caribou hunting. After the spring break-up of ice, the shore area is heavily fished for Arctic char and trout (Riewe 1992:173).
- During the summer, residents fished with nets in salt water, especially in Rankin Inlet (Freeman 1976: 105).
- Coastal fishing south of Rankin is also conducted, but the offshore fishing is heavier for Arctic char and trout after the ice break-up (Riewe 1992:173).

### Commercial fishing:

- Some commercial fishing occurs. The Hunters and Trappers Organization (HTO) hired locals to fish for arctic char for the Rankin fish plant (RBH 2011).
- Arctic char are often sold to the fish processing plant in Rankin Inlet, and hunters said this is one of the few ways to earn an income (CIHT 2009).

While is it possible that individual fish might be physically injured or die as a result of collisions with Project-related vessels, it is expected that almost all fish will move away from an approaching vessel in response to the physical presence and noise from the vessel; therefore, this interaction is not considered further in this assessment.



The assessment of environmental effects on marine fish focuses on the potential change in behaviour due to sensory disturbance.

Arctic Char is used as the indicator species for assessing the environmental effects of underwater noise (Li et al. 2011) due the availability of appropriate hearing data. Results from acoustic modeling are presumed to apply broadly to fish species that use habitat in the RAA.

## 7.1.2 Standards or Thresholds for Determining Significance

An environmental effect on marine fish is considered to be significant if it alters habitat within the RAA either physically, chemically or biologically, in quality or extent, in such a way as to cause a change or decline in the ecological function of that habitat, or a change or decline in the distribution or abundance of a fish population that is dependent upon that habitat, such that natural recruitment will not re-establish the population to its original level within one generation.

An environmental effect is considered not significant if it affects a population or specific group of individuals in a localized area over a short period of time (one generation) in a manner similar to natural variation and that has no measurable effect on the integrity of the population as a whole.

# 7.2 ENVIRONMENTAL EFFECTS ASSESSMENT FOR MARINE FISH

Project-related shipping has the potential to affect marine fish from underwater noise associated with vessel movement.

# 7.2.1 Assessment of Changes in Behaviour due to Marine Shipping

Key environmental effects on marine fish relate to underwater noise from marine vessels transporting fuel and goods to the dock facility. Noise disturbance could change behaviour and cause fish to temporarily move away from suitable habitat (displacement) or change their natural movements (diversion from a migratory path).

## 7.2.1.1 Analytical Methods for Changes in Behaviour

The potential change in behaviour of a fish from vessel-related noise depends on how the animal interprets the sound received. An animal's sensitivity varies with frequency. A species' audiogram is the relationship between frequency and an animal's hearing threshold. If a noise is at a frequency which the animal cannot hear well (i.e., where the hearing threshold is high), it is unlikely to affect the animal's behaviour. Noise levels decrease with distance from the source due to propagation loss. A noise is no longer audible if the noise drops either below the animal's audiogram or below the ambient noise levels. A change in behaviour may not occur simply



because a sound is audible. Changes in behaviour resulting from a 'disturbance' include changes in swim direction, swim speed, or movement towards or away from noise.

Acoustic modelling (for the Project) predicts the underwater noise signature of 4500 BHP, twinscrew, ice-class tugs for transporting barges. Because barge thrusters are not expected to be used while transiting, barges are not expected to contribute substantially to underwater noise. Modelling scenarios simulated the articulated tug and barge (ATB) transiting with two barges at 13 knots. These scenarios are used as a conservative proxy for other Project-related vessels that will be operating along the Hudson Strait route.

Four locations are modelled along the planned tug and barge transportation route, which correspond to the closest approach to each of the four local communities. Scenario one modelled the ATB transiting in Chesterfield Inlet (inside the LAA) and scenarios two to four modelled three locations in the RAA (Rankin Inlet, Whale Cove, and Arviat) (Li et al. 2011). Results of this modelling are presented in Section 7.2.1.3.

## 7.2.1.2 Baseline Conditions for Changes in Behaviour

Arctic char are the most abundant and dominant salmonid species throughout the Arctic. The anadromous char migrate out to Hudson Bay for summer feeding during the ice break-up from mid-June to early July, and migrate back upstream from mid-August to mid-September to spend the winter in fresh water (Stewart and Lockhart 2005). They spawn in late August to early October, and prefer gravel substrate with sufficiently deep water to prevent the eggs from freezing and sufficient current to keep them clean (Stewart and Lockhart 2005). Broad whitefish (Coregonus nasus) belongs to the second largest group of anadromous fish in the Arctic, the coregonids (Mercier et al. 1994). They are known to occur in the Chesterfield Inlet area (FishBase 2011). Migration to spawning grounds in freshwater typically occurs in late July to early August (FishBase 2011). Project-related marine transportation will overlap spatially and temporally with habitat utilized by fish populations in the RAA.

A description of the baseline conditions for the underwater ambient noise is presented in Section 6.2.2.1.

## 7.2.1.3 Effect Mechanism and Linkages for Changes in Behaviour

Underwater noise from marine vessels has the potential to cause a startle response, alarm response, avoidance or a lack of response due to auditory masking, and change behaviour and migration patterns. Underwater noise has the potential to harm, disrupt, and/or displace marine fish from their habitat, which in turn could reduce foraging efficiency and fecundity, and increase energy expenditure. Tugs and barges transiting through the LAA and RAA will contribute low frequency underwater sounds (conservatively 10-31.5 kHz) to the marine environment (see Section 7.2.1.3.1).



Research supports the fact that fish can detect noise from ships at long distances when ambient noise is low but are unlikely to move away until the noise is relatively high (i.e., when the distance is a few hundred meters) (Mitson 1995). The ability of fish to detect sound varies with species and is dependent on a number of factors, including the presence of an air bladder, structure of the internal hearing system, size of the otoliths, distance from the sound source and depth of water. Fish do not "hear" as mammals hear. Sound is interpreted by the otoliths of the inner ear, which respond to the kinetic components of the sound wave rather than the sound pressure (Mitson 1995). For fish species with a swim bladder, the organ sends the sound waves to the otolith. Because the bladder increases with the size of the fish, it has been suggested that sensitivity to sound may increase in proportion to the size of the fish (Mitson 1995). If this is the case, vessel-generated noise may cause a size-dependent reaction amongst fish.

Hearing thresholds for arctic species of fish are largely unknown. Sound pressure can cause behavioural, physiological, or mortality changes. Changes in fish behaviour, physiological effects and fatalities have the potential individually, or in combination, to cause a change in fish populations or communities. Behavioural changes have the potential to disrupt migration patterns, disrupt spawning events or cause movement away from valuable food sources, particularly if these changes occur over a critical period of time when fish have only a short window of opportunity to complete an activity.

Knowledge about the behavioural responses of fish to underwater sound are poorly understood (Popper and Hastings 2009). The intensity of the response of a fish to vessel noise depends on the species, its physiological conditions and its environment. Pelagic fish may dive deeper, while benthic fish may move laterally away from the noise source. Arctic char, which are benthopelagic have a greater flexibility for movement in a three dimensions and may move deeper and laterally. Most research has investigated the responses of captive fish to high intensity sounds from seismic air guns and pile driving (Popper et al. 2005; Popper et al. 2006). Research has shown that the intensity of a fish's response is reduced with increased swimming depth of the fish and decreased speed of the vessel (Mitson 1995). A review of available literature on fish reaction to vessel noise supports fish behavioural responses to vessels when their hearing threshold is exceeded by 30 dB or more (Mitson 1995). While this criterion is used in the current assessment, there are uncertainties in the available research. The findings were from fish trawlers and reactions recorded on different fish species. They noted the vessel cause a reaction between 100 to 200 m and up to 400 m for noisier vessels (Mitson 1995). While localized behavioural responses may be observed, the geographic extent over which these responses occur and how individual or population-level fitness is affected have not been quantified.

## 7.2.1.3.1 Transit through Hudson Bay and Chesterfield Inlet

For details on transit routes through Hudson Bay and Chesterfield Inlet, refer to Section 6.2.2.3.4 and 6.2.2.3.5, respectively. The sections below describe the general modelling results of the audiogram-weighted SPL for arctic char. Detailed results of the modelling are presented in Table 7.2-1 and in the Marine Acoustics Technical Data Report (Li et al. 2011). Audiogram-weighted results for Arctic char are presented in Figure 7.2-1.



#### **Arviat**

When the ATB is transiting adjacent to Arviat, an Arctic char will begin to hear the vessel-based noise 15.3 km from the source. The sound pressure level (SPL) will be just above 0 dB re HT (hearing threshold of Arctic char) at this distance. At 5.7 km, the Arctic char will hear 10 dB. At 158 m from the transiting vessel, the Arctic char's hearing threshold will be exceeded by 40 dB of sound. Based on the model, the behavioural change threshold of 30 dB will be met when the fish is within 492 m of the noise source—this corresponds to a circular area of 77 ha (where 1 hectare (ha) =  $1 \times 10^4$  m<sup>2</sup>).

### **Whale Cove**

When the ATB is transiting adjacent to Whale Cove, an Arctic char will begin to hear the vessel-based noise 14.6 km from the source. The SPL will be just above 0 dB re HT (Arctic char) at this distance. At 5.6 km, the Arctic char will hear 10 dB. Based on the model, the behavioural change threshold of 30 dB will be met when the fish is 474 m radius from the noise source. At 150 m from the transiting vessel, the hearing threshold of Arctic char will be exceeded by 40 dB of sound; 150 m corresponds to a circular area of 74 ha.

#### Rankin Inlet

When the ATB is transiting off Rankin Inlet, an Arctic char will begin to hear the vessel-based noise 18.1 km from the source. The SPL will be just above 0 dB re HT (Arctic char) at this distance. At 5.7 km, Arctic char hear 10 dB. The behavioural change threshold of 30 dB will be met when the fish is 500 m from the noise source. At 180 m radius from the transiting vessel, the hearing threshold of Arctic char will be exceeded by 40 dB of sound; 180 m corresponds to a circular area of 81 ha.

#### **Chesterfield Inlet**

When the ATB is transiting through Chesterfield Inlet, an Arctic char will begin to hear the vessel-based noise 10.3 km from the source. The SPL will be just above 0 dB re HT (Arctic char) at this distance. At 4.6 km, the Arctic char hear 10 dB. The behavioural change threshold of 30 dB will be met when the fish is within a 500 m radius from the noise source. At 158 m from the transiting vessel, the hearing threshold of Arctic char will be exceeded by 40 dB of sound; 158 m corresponds to a circular are of 67 ha.

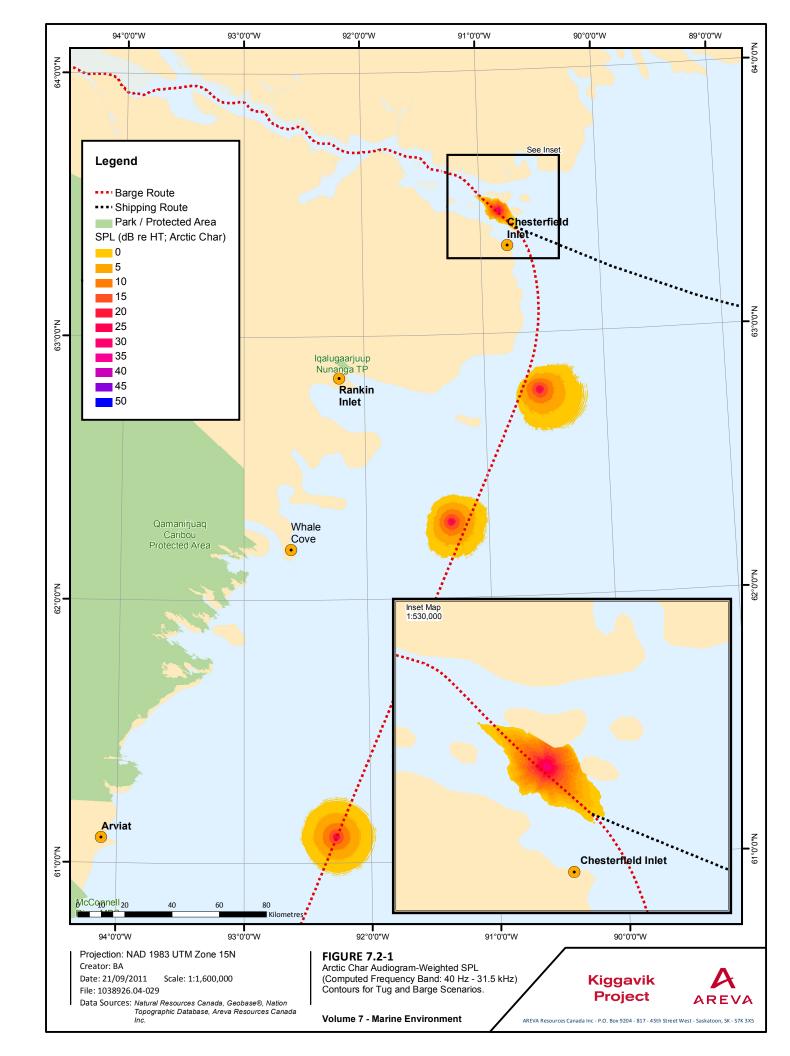





Table 7.2-1 Underwater Noise Levels and Radii of Arctic Char Hearing

| Sound Pressure<br>Levels<br>(dB re HT) | Scenario 1:<br>Chesterfield Inlet<br>R95%<br>(km) <sup>1</sup> | Scenario 2:<br>Off Rankin Inlet<br>R95%<br>(km) <sup>1</sup> | Scenario 3:<br>Off Whale Cove<br>R95%<br>(km) <sup>1</sup> | Scenario 4:<br>Off Arviat<br>R95%<br>(km) <sup>1</sup> |  |  |
|----------------------------------------|----------------------------------------------------------------|--------------------------------------------------------------|------------------------------------------------------------|--------------------------------------------------------|--|--|
| 0                                      | 10.3                                                           | 18.1                                                         | 14.6                                                       | 15.3                                                   |  |  |
| 10                                     | 4.6                                                            | 5.7                                                          | 5.6                                                        | 5.7                                                    |  |  |
| 20                                     | 1.6                                                            | 1.7                                                          | 1.7                                                        | 1.6                                                    |  |  |
| 30                                     | 0.5                                                            | 0.5                                                          | 0.5                                                        | 0.5                                                    |  |  |
| 40                                     | 0.2                                                            | 0.2                                                          | 0.2                                                        | 0.2                                                    |  |  |
| ≥50                                    | 0                                                              | 0                                                            | 0                                                          | 0                                                      |  |  |

#### NOTE:

# 7.2.1.4 Mitigation Measures and Project Design for Changes in Behaviour

Mitigation measures to reduce changes in behaviour of marine fish due to underwater noise will be similar to those implemented to reduce environmental effects of underwater noise on marine mammals, such as speed restrictions, avoidance of unnecessary acceleration, and use of designated shipping routes (see Section 6.2.2.4 for details).

## 7.2.1.5 Residual Environmental Effects for Changes in Behaviour

Although underwater noise may be detectable to fish in the immediate vicinity of the vessel and is expected to occur at regular intervals throughout the open-water season, underwater noise disturbance will be low in magnitude, site specific, and reversible. Any changes in behaviour due to underwater noise will be brief and spatially limited, and are not expected to have an effect on fish populations in the RAA.

## 7.2.1.6 Determination of Significance for Changes in Behaviour

Changes in behaviour due to underwater noise from Project-related marine transportation are predicted to be not significant.

# 7.2.1.7 Compliance and Environmental Monitoring for Changes in Behaviour

No environmental monitoring is recommended for marine fish.

<sup>&</sup>lt;sup>1</sup> The 95<sup>th</sup> percentile radius is the radius of the circle that encompasses 95% of the grid points whose value is equal or greater than the threshold value. Measured in square kilometers.



# 7.3 CUMULATIVE ENVIRONMENTAL EFFECTS ANALYSIS FOR MARINE FISH

Project-related marine transportation will contribute to increased vessel presence and underwater noise in Hudson Bay and Chesterfield Inlet. The presence of marine vessels and noise disturbances have the potential to act cumulatively with underwater noise and physical presence of other vessels operating in the LAA and RAA at present and in the foreseeable future.

## 7.3.1 Screening for Cumulative Environmental Effects

Because all vessels operating within the RAA have the potential to result in behavioural change in fish due to sensory disturbance, vessel traffic associated with the Project may act cumulatively with existing and future vessel traffic in the RAA. However, as described in Section 7.2.1, the residual environmental effect of change in behaviour will be sufficiently low to reasonably conclude that the contribution of marine transportation to the cumulative environmental effects of other existing and future projects will not affect the viability of marine fish populations. As a result, cumulative environmental effects of change in behaviour due to marine transportation are not considered further in this assessment.

# 7.4 SUMMARY OF RESIDUAL ENVIRONMENTAL EFFECTS ON MARINE FISH

Potential environmental effects of the Kiggavik Project on marine fish relate to sensory disturbance caused by underwater noise of marine vessels. Given the localized nature of the effect, the low magnitude of the effect and the availability of accepted mitigation measures and best practices (e.g., vessel speed restrictions and avoidance of sensitive habitat by vessels), environmental effects on marine fish are expected to be not significant (Table 7.5-1).



Table 7.5-1 Summary of Project Residual Environmental Effects: Marine Fish

|                                                                                                                                | Mitigation/<br>Compensation<br>Measures | Resi                                   |           | Residual Environmental Effects<br>Characteristics |                   |          |           |               |                          | Pre          |            |                       |                                            |
|--------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|----------------------------------------|-----------|---------------------------------------------------|-------------------|----------|-----------|---------------|--------------------------|--------------|------------|-----------------------|--------------------------------------------|
| Project Phase                                                                                                                  |                                         | Residual Environmental<br>Effect (Y/N) | Direction | Magnitude                                         | Geographic Extent | Duration | Frequency | Reversibility | Environmental<br>Context | Significance | Likelihood | Prediction Confidence | Recommended<br>Follow-up and<br>Monitoring |
| Change in Behaviour: Project-related underwater noise due to shipping has the potential to change the behaviour of marine fish |                                         |                                        |           |                                                   |                   |          |           |               |                          |              |            |                       |                                            |
| Construction:                                                                                                                  | See section 6.2.2.4 for a complete list | Y                                      | А         | L                                                 | S                 | ST       | R         | R             | U                        | N            | L          | Н                     | None                                       |
| Operation:                                                                                                                     | See section 6.2.2.4 for a complete list | Y                                      | А         | L                                                 | S                 | ST       | R         | R             | U                        |              |            |                       |                                            |
| Final Closure:<br>Decommissioning                                                                                              | See section 6.2.2.4 for a complete list | Y                                      | А         | L                                                 | S                 | ST       | R         | R             | U                        |              |            |                       |                                            |
| Residual environmental effects for all phases                                                                                  |                                         | Y                                      | A         | L                                                 | S                 | ST       | R         | R             | U                        |              |            |                       |                                            |



### Table 7.5-1 Summary of Project Residual Environmental Effects: Marine Fish (cont'd)

**KEY** 

#### Direction:

P Positive

A Adverse

#### Magnitude:

Use quantitative measure; or

- L Low: effect is within the range of natural variance or less than reference criteria
- M Moderate: effect is at or slightly above the range of natural variation or reference criteria
- H High: effect exceeds upper limit of natural variation or reference criteria

#### Geographic Extent:

Use quantitative measure; or

- S Site-specific: effect is limited to the Project footprint
- L Local: effect is limited to the Local Assessment Area (LAA)
- R Regional: effect is limited to the Regional Assessment Area (RAA)

#### Duration:

Use quantitative measure; or

ST Short term: Hours to days

MT Medium term: Months

LT Long term: Years

P Permanent: permanent

#### Frequency:

Use quantitative measure; or

- O Occurs once.
- S Occurs sporadically at irregular intervals.
- R Occurs on a regular basis and at regular intervals.
- C Continuous.

#### Reversibility:

- R Reversible
- I Irreversible

#### **Environmental Context:**

- U Undisturbed: Area relatively or not adversely affected by human activity
- D Developed: Area has been substantially previously disturbed by human development or human development is still present

N/A Not Applicable

#### Significance:

- S Significant
- N Not Significant

#### Prediction Confidence:

Based on scientific information and statistical analysis, professional judgment and effectiveness of mitigation

- Low level of confidence
- M Moderate level of confidence
- H High level of confidence

#### Likelihood:

Based on professional judgment

- L Low probability of occurrence
- M Medium probability of occurrence
- H High probability of occurrence

#### **Cumulative Effects**

- Y Potential for effect to interact with other past, present or foreseeable projects or activities in RSA
- N Effect will not or is not likely to interact with other past, present or foreseeable projects or activities in RSA



## 7.4.1 Project Residual Environmental Effects

Environmental effects on marine fish resulting from marine transportation activities are limited to change in behaviour due to underwater noise. Although acoustic modelling determined that underwater noise from transiting vessels will be audible to marine fish and may elicit a behavioural reaction, the short-term nature of the response and the low magnitude of the environmental effect will not result in any long-term or irreversible changes to the distribution or abundance of fish populations in the RAA. Environmental effects on marine fish from Project activities associated with marine transportation are expected to be not significant.

### 7.4.2 Residual Cumulative Environmental Effects

Marine transportation associated with the Project is not expected to contribute to cumulative environmental effects on marine fish in the RAA.

## 7.4.3 Effects of Climate Change on the Project

Climate change is expected to result in a longer open-water season along the shipping route in the RAA over the long term. If the open-water season is extended due to warming weather, this would increase the window of opportunity for vessels to transport fuel and goods to the dock facility, which could reduce the net frequency of transiting vessels in the RAA and, in turn, reduce the frequency of exposure of marine fish to transiting vessels.

### 7.5 GENERAL MITIGATION MEASURES FOR MARINE FISH

- Mitigation measures for change in behaviour of marine fish due to underwater noise will be similar to those implemented to reduce environmental effects of underwater noise on marine mammals. Vessels will avoid unnecessary acceleration and maintain a constant course, whenever possible
- Propellers will be maintained to reduce unnecessary noise
- Vessels will travel at a maximum speed of less than 13 knots unless otherwise required for safe navigation.
- Vessels will use specific vessel transit routes to limit acoustical inputs to similar and predictable areas during marine transportation, unless otherwise required for safe navigation.

# 7.6 COMPLIANCE AND ENVIRONMENTAL MONITORING FOR MARINE FISH

There are no monitoring programs recommended for marine fish.



# 8 SUMMARY OF RESIDUAL ENVIRONMENTAL EFFECTS ON THE MARINE ENVIRONMENT

### 8.1 PROJECT EFFECTS

Environmental effects on the marine environment and marine wildlife populations resulting from marine transportation are expected to be low. Given the low frequency of vessel transits in the RAA and the low intensity of sensory disturbance that is expected, environmental effects on the marine environment are predicted to be not significant.

### 8.2 CUMULATIVE ENVIRONMENTAL EFFECTS

Marine transportation activities associated with the Project are not expected to contribute to cumulative environmental effects on the marine mammals or marine fish populations.

### 8.3 EFFECTS OF CLIMATE CHANGE ON THE PROJECT

If the open-water season is extended due to climate change, this would increase the window of opportunity for vessels to transport fuel and goods to the dock facility, which could reduce the net frequency of transiting vessels in the RAA and, in turn, reduce the frequency of exposure of marine mammals and marine fish to transiting vessels.





# 9 SUMMARY OF TRANSBOUNDARY EFFECTS FOR THE MARINE ENVIRONMENT

The RAA encompasses the shipping route in Hudson Bay between Churchill and Chesterfield Inlet, and the shipping route through Hudson Strait to the extent of Nunavut Territorial waters, and therefore overlaps with marine waters under territorial (Nunavut), and Federal jurisdiction. As summarized in Section 8, the presence of barges and ocean-going vessels may result in some Project residual effects on marine mammals due to mammal-vessel strikes. Further, underwater noise from marine vessel activities may cause residual effects on marine fish due to underwater noise. However, these effects are not expected to result in significant adverse effects on marine populations or their habitat that occurs in adjacent transboundary waters of Hudson Bay and Hudson Strait.





# 10 SUMMARY OF MITIGATION MEASURES FOR THE MARINE ENVIRONMENT

Mitigation measures to reduce the likelihood of environmental effects on the marine environment and marine wildlife resulting from marine transportation activities include:

- Limiting vessel speeds in sensitive areas and confined navigation routes.
- Using best practices regarding operation (avoid unnecessary acceleration, maintain a constant course, proper maintenance of propellers)
- Using specific vessel transit routes, taking into account navigational safety, so that acoustical inputs are limited to similar and predictable areas during marine transportation
- Presence of MMO on board vessels travelling through Chesterfield Inlet to monitor for marine mammals during transit and implement mitigation procedures to prevent inadvertent modification of animal behaviour or movement
- Upon the advice of the onboard MMO, vessels will halt if marine mammals appear to be herded by an approaching vessel within Chesterfield Inlet, unless conditions are unsafe to halt.





# 11 SUMMARY OF MONITORING FOR THE MARINE ENVIRONMENT

Marine mammal observers (MMO) will be present onboard tugs and vessels to monitor marine activities when transiting through the LAA. Upon the advice of the onboard MMO, vessels will halt if marine mammals appear to be herded by an approaching vessel within Chesterfield Inlet, unless conditions are unsafe to halt. Onboard monitors shall record all incidents of vessel strikes with marine mammals, near-misses, and marine mammal sightings. In the absence of monitors, incidents shall be recorded by the maritime crew. Ship logs will record speed reductions in important marine mammal areas.





## 12 REFERENCES

### 12.1 LITERATURE CITED

- Abgrall, P., V.D. Moulton and W.J. Richardson. 2008. Updated review of scientific information on impacts of seismic survey sound on marine mammals, 2004-present. *LGL Rep. SA973-1. Rep. from LGL Limited, St. John's, NL and King City, ON, for Department of Fisheries and Oceans, Habitat Science Branch, Ottawa, ON:*27P. + appendices.
- ARHT. 2009. Summary of IQ focus group conducted by Linda Havers and Susan Ross with seven HTO members. March 30, 2009; in Appendix II: Inuit Qaujimajatuqangit Baseline, Attachment E. Arviat Hunters and Trappers Organization, Arviat.
- ARVJ. 2011. Summary of community review meeting conducted by Mitchell Goodjohn with five HTO members and two Elders. February 18, 2011; in Appendix II: Inuit Qaujimajatuqangit Baseline, Attachment E. Arviat Hunters and Elders, Arviat.
- Au, W.W.L. 1993. The Sonar of Dolphins. Springer-Verlag. New York.
- Bel'kovich, V.M. and M.N. Sh'ekotov. 1992. Individual signals of belugas associated with hunting behaviour in the white sea. In J. Thomas, R. A. Kastelein & A. Y. Supin (Eds.), *Marine Mammal Sensory Systems*. Plenum, New York. 439-449.
- BL01. 2008. Summary of individual Elder IQ interview conducted by Hattie Mannik in Baker Lake, in Appendix II: Inuit Qaujimajatuqangit Baseline, Attachment B. Baker Lake Interview 01, Baker Lake.
- Bradstreet, M.S.W., K.J. Finley, A.D. Sekerak, W.B. Griffiths, C.R. Evans, M.F. Fabijan and H.E. Stallard. 1986. Aspects of the feeding biology of Arctic cod (*Boreogadus saida*) and its importance in arctic marine food chains. Canadian Technical Report of Fisheries and Aquatic Sciences No. 1491. 193 pp.
- CHE. 2009. Summary of IQ focus group conducted by Linda Havers and Mitchell Goodjohn with five Elders. May 14, 2009; in Appendix II: Inuit Qaujimajatuqangit Baseline, Attachment H. Coral Harbour Elders, Coral Harbour.
- CHE (Coral Harbour Elders). 2009. Summary of IQ focus group conducted by Linda Havers and Mitchell Goodjohn with five Elders. May 14, 2009; in Appendix II: Inuit Qaujimajatuqangit Baseline, Attachment H.



- CHJ. 2011. Summary of community review meeting conducted by Barry McCallum and Pamela Bennett with five representatives of the Coral Harbour HTO and three Elders. February 17, 2011; in Appendix II: Inuit Qaujimajatuqangit Baseline, Attachment H. Coral Harbour Hunters and Elders, Coral Harbour.
- Cl01. 2009. Summary of IQ interview conducted by Mitchell Goodjohn with a family of three hunters. May 6, 2009; in Appendix II: Inuit Qaujimajatuqangit Baseline, Attachment C. Chesterfied Inlet interview 01, Chesterfield Inlet.
- Clo2. 2009. Summary of IQ interview conducted by Mitchell Goodjohn with an individual Elder.
  May 6, 2009; in Appendix II: Inuit Qaujimajatuqangit Baseline, Attachment C.
  Chesterfield Inlet Interview 02, Chesterfield Inlet.
- Clos. 2009. Summary of IQ interview conducted by Mitchell Goodjohn with two Elders. May 6, 2009; in Appendix II: Inuit Qaujimajatuqangit Baseline, Attachment C. Chesterfield Inlet Interview 03, Chesterfield Inlet.
- Cl04. 2009. Summary of IQ interview conducted by Mitchell Goodjohn with individual Elder. May 6, 2009; in Appendix II: Inuit Qaujimajatuqangit Baseline, Attachment C. Chesterfield Inlet Interview 04, Chesterfield Inlet.
- CI04 (Chesterfield Inlet Interview 04). 2009. Summary of IQ interview conducted by Mitchell Goodjohn with individual Elder. May 6, 2009; in Appendix II: Inuit Qaujimajatuqangit Baseline, Attachment C.
- Cl05. 2009. Summary of IQ interview conducted by Mitchell Goodjohn with individual Elder. May 6, 2009; in Appendix II: Inuit Qaujimajatuqangit Baseline, Attachment C. Chesterfield Inlet Interview 05, Chesterfield Inlet.
- Cl05 (Chesterfield Inlet Interview 05). 2009. Summary of IQ interview conducted by Mitchell Goodjohn with individual Elder. May 6, 2009; in Appendix II: Inuit Qaujimajatuqangit Baseline, Attachment C.
- Cl08. 2009. Summary of IQ interview conducted by Mitchell Goodjohn with individual Elder. May 7, 2009; in Appendix II: Inuit Qaujimajatuqangit Baseline, Attachment C. Chesterfield Inlet Interview 08, Chesterfield Inlet.
- Cl08 (Chesterfield Inlet Interview 08). 2009. Summary of IQ interview conducted by Mitchell Goodjohn with individual Elder. May 7, 2009; in Appendix II: Inuit Qaujimajatuqangit Baseline, Attachment C.



- CIHT. 2009. Summary of IQ focus group conducted by Mitchell Goodjohn and Linda Havers with hunters. May 7, 2009; in Appendix II: Inuit Qaujimajatuqangit Baseline, Attachment C. Chesterfield Hunters and Trappers, Chesterfield Inlet.
- Coad, B.W. and J.D. Reist. 2004. Annotated List of the Arctic Marine Fishes of Canada. Canadian Manuscript Report of Fisheries and Aquatic Sciences 2674: iv + 112 pp.
- COSEWIC. 2004. Assessment and update status report on the beluga whale, *Delphinapterus leucas*, in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa, ON. ix + 70 pp.
- COSEWIC. 2008. COSEWIC assessment and update status report on the polar bear *Ursus maritimus* in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa, ON. vii + 75 pp.
- DFO. 2000. Eastern Beaufort Sea Beluga. Science Stock Status Report E5-38. Department of Fisheries and Oceans
- Dickson, D.L. and H.G. Gilchrist. 2002. Status of marine birds of the southeastern Beaufort Sea. *Arctic* 55:46-58.
- Environment Canada. 2006. Mackenzie Gas Project Environmental Assessment Review. Written Submission. Joint Review Panel General Hearing, Theme 2: Physical Environment Land, Water and Air; Topic 5: Marine Environments, Marine Habitat, Marine Mammals and Marine Birds (September 13-14, 2006). Polar Bears and Marine Birds JRP Document J-EC-00089
- Erbe, C. and D.M. Farmer. 2000. Zones of impact around icebreakers affecting beluga whales in the Beaufort Sea. *Journal of Accoustical Society of America* 108(3):1332-1340.
- Federal Register. 2005. Doc. 05-525; Endangered Fish and Wildlife; Notice of Intent to Prepare an Environmental Impact Statement. United States of America. National Marine Fisheries Service, National Oceanic Atmospheric Administration & Commerce.
- Finley, K.J., J.P. Hickie and R.A. Davis. 1987. Status of the Beluga, *Delphinapterus leucas*, in the Beaufort Sea. *The Cananadian Field-Naturalist* 101(2):271-278.
- Finneran, J.J., C.E. Schlund, R. Dear, D.A. Carder and S.H. Ridgway. 2002. Temporary shift in masked hearing thresholds in odontocetes after exposure to single underwater impulses from a seismic watergun. *Journal of the Acoustical Society of America* 111:929-940.



- Freeman, M.M.R. 1976. Inuit Land Use and Occupancy Project, Volume 1. INA Publication No. QS 8054-011-EE-A1. Thorn Press Limited.
- Harwood, L.A. and T.G. Smith. 2002. Whales of the Inuvialuit settlement region in Canada's Western Arctic: an overview and outlook. *Arctic* 55:77-93.
- Hunters and Trappers Association of Nunavut. 1992. *Poison Fire, Sacred Earth: Testimones, Lectures, Conclusions The World Uranium Hearing* Paper presented at the The World Uranium Hearing Salzburg
- IPCC. 2007. Climate Change 2007: Synthesis Report. An Assessment of the Intergovernmental Panel on Climate Change. International Panel on Climate Change. Valencia, Spain. 73 pp.
- Jensen, A.S. and G.K. Silber. 2003. *Large Whale Ship Strike Database*. U.S. Department of Commerce. NOAA Technical Memorandum. NMFS-ORP. 37 pp.
- Johnson, L. 1989. The anadromous Arctic charr, Salvelinus alpinus, of Nauyuk Lake, N.W.T., Canada. Proceedings of the International Symposium on Charrs and Masu Salmon Paper presented at the Proceedings of the International Symposium on Charrs and Masu Salmon, Editorial Office, Kyoto, Japan. 201-227.
- Kite-Powell, H.L., A. Knowlton and M. Brown. 2007. Modeling the effect of vessel speed on Right Whale ship strike risk. NA04NMF47202394. National Oceanic and Atmospheric Administration and National Marine Fisheries Service. 8 pp.
- Klishin, V.O., V.V. Popov and A.Y. Supin. 2000. Hearing capabilities of a beluga whale, Delphinapterus leucas. Aquatic Mammals 26.3:212–228.
- Laist, D.W., A.R. Knowlton, J.G. Mead, A.A. Collett and M. Podesta. 2001. Collisions between ships and whales. *Marine Mammal Science* 17:35-75.
- Lesage, V., C. Barrette, M.C.S. Kingsley and B. Sjare. 1999. The Effect of Vessel Noise on the Vocal Behaviour of Belugas in the St. Lawrence River Estuary, Canada. *Marine Mammal Science* 15(1):65-84.
- Li, Z., A. MacGillivray and J. Wladichuk. 2011. Underwater Acoustic Modelling of Tug and Barge Noise for Estimating Effects on Marine Animals. Version 1.0. Technical report prepared for AREVA Resources Canada by JASCO Applied Sciences



- Lunn, N.J., I. Stirling and S.N. Nowicki. 1997. Distribution and abundance of ringed (*Phoca hispida*) and bearded seals (*Erignathus barbatus*) in western Hudson Bay. *Canadian Journal of Fisheries & Aquatic Sciences* 54:914-921.
- Martin, A.R., P. Hall and P. Richard. 2001. Dive behaviour of belugas (*Delphinapterus leucas*) in the shallow waters of Western Hudson Bay. *Arctic* 54(3):276-283.
- McDonald, M., L. Arragutainaq and Z. Novalinga. 1997. *Voices from the Bay: Traditional Ecological Knowledge of Inuit and Cree in the Hudson Bay Bioregion*. Canadian Arctic Resources Committee, Environmental Committee of Municipality of Sanikiluaq. Ottawa
- Mercier, F., F. Rennie, D. Harvey and C.A. Lewis. 1994. Arctic Marine Workshop Proceedings. F. Institute. Park Establishment Branch, National Parks Directorate, Parks Canada Department of Canadian Heritage. Winnipeg, Manitoba. vii + 50p pp.
- Mitson, R.B. 1995. Underwater noise of research vessels: Review and Reccomendations. International Council for the Exploration of the Sea. Copenhagen, Denmark
- Moffatt and Nichol. 2010. Tanker Wake Study. Volume 8B: Environmental and Socio-Economic Assessment (ESA) Marine Transportation. Stantec
- Mooney, T.A., P.E. Nachtigall, M. Castellote, K.A. Taylor, A.F. Pacini and J. Esteban. 2008. Hearing pathways and directional sensitivity of the beluga whale, *Delphinapterus leucas*. *Journal of Experimental Marine Biology and Ecology* 362:108-116.
- Nunami Jacques Whitford Limited. 2008. Nearshore Fish and Fish Habitat Assessment Related to Marine Terminal Structure Developments. Prepared for Government of Nunavut Transportation, Policy and Planning Department of Economic Development and Transportation.
- Nunavut Impact Review Board. 2011. Guidelines for the preparation of an Environmental Impact Statement for AREVA Resources Canada Inc.'s Kiggavik Project (NIRB File no. 09MN003). Cambridge Bay, Nunavut.
- Nunavut Planning Commission. 2000. Keewatin Land Use Plan.
- Percy, R., B. Smiley and T. Mullen. 1985. Fishes, invertebrates and marine plants: The Beaufort Sea and the search for oil. Department of Fisheries and Oceans, Beaufort Sea Project. Sidney, BC
- Popper, A.N., T.J. Carlson, A.D. Hawkins, B.L. Southall and R.L. Gentry. 2006. Interim criteria for injury of fish exposed to pile driving operations: A white paper.



- Popper, A.N. and M.C. Hastings. 2009. The effects of human-generated sound on fish. *Integrative Zoology* 4(1):43-52.
- Popper, A.N., M.E. Smith, P.A. Cott, B.W. Hanna, A.O. MacGillivray, M.E. Austin and D.A. Mann. 2005. Effects of exposure to seismic airgun use on hearing of three fish species. *Journal of Accoustical Society of America* 117(6):3958-3971.
- Priest, H. and P.J. Usher. 2004. The Nunavut Wildlife Harvest Study. Final Report. Nunavut Wildlife Management Board. 822 pp.
- RBH. 2011. Summary of community review meeting conducted by Mitchell Goodjohn with two hunters. February 11, 2011; in Appendix II: Inuit Qaujimajatuqangit Baseline, Attachment G. Repulse Bay Hunters, Repulse Bay.
- RBJ. 2011. Summary of community review meeting conducted by Mitchell Goodjohn with five representatives of the Repulse Bay HTO and six Elders. In Appendix II: Inuit Qaujimajatuqangit Baseline, Attachment G. Repulse Bay Hunters and Elders, Repulse Bay.
- Richard, P.R. 2005. An estimate of the Western Hudson Bay beluga population size in 2004. Report No. 017. Canadian Science Advisory Secretariat, Fisheries and Oceans Canada
- Richard, P.R., J.R. Orr and D.G. Barber. 1990. The distribution and abundance of belugas, Delphinaterus leucas, in the eastern Canadian subarctic waters: a review and update. In T. G. Smith, D. J. St. Aubin & J. R. Geraci (Eds.), Advances in research on the beluga whale, Delphinaterus leucas. Canadaian Bulletin of Fisheries and Aquatic Sciences. Vol. 224, 23-38.
- Richardson, J., C.R. Greene Jr, C. Malme and D. Thomson. 1995a. *Marine Mammals and Noise*. Academic Press. San Diego.
- Richardson, W.J., C.R. Greene, Jr., J.S. Hanna, W.R. Koski, G.W. Miller, N.J. Patenaude, M.A. Smultea, R. Blaylock, R. Elliot and B. Wursig. 1995b. Acoustic effects of oil production activities on bowhead and white whales visible during spring migration near Pt. Barrow, Alaska 1991 and 1994 phases: sound propagation and whale responses to playbacks of icebreaker noise. Prepared by LGL Limited. and Greeneridge Sciences Inc. for the U.S. Minerals Management Service. Herndon, VA
- Riewe, R. (Ed.). 1992. *Nunavut Atlas*. Edmonton, Alberta. Canadian Circumpolar Institute and the Tungavik Federation of Nunavut.



- RIJ. 2011. Summary of community review meeting conducted by Mitchell Goodjohn with Elders and representatives of the Rankin Inlet HTO. February 14, 2011. Rankin Inlet Hunters and Elders, Rankin Inlet.
- RIJ (Rankin Inlet Hunters and Elders). 2011. Summary of community review meeting conducted by Mitchell Goodjohn with Elders and representatives of the Rankin Inlet HTO. February 14, 2011.
- Scott, W.B. and M.G. Scott. 1988. *Atlantic fishes of Canada*. Vol. 730. University of Toronto Press and Ministy of Fisheries and Oceans.
- Smith, T.G. 1975. Ringed seals in James Bay and Hudson Bay: population estimates and catch statistics. *Arctic* 28:170-182.
- Southall, B.L., A.E. Bowles, W.T. Ellison, J.J. Finneran, R.L. Gentry, C.R. Greene, D. Kastak, D.R. Ketten, J.H. Miller, P.E. Nachtigall, W.J. Richardson, J.A. Thomas and P.L. Tyack. 2007. Special Issue: Marine mammal noise exposure criteria. *Aquatic Mammals* 33(4).
- Stewart, D.B. and W.L. Lockhart. 2005. An overview of the Hudson Bay marine ecosystem. Canadian Technical Report of Fisheries & Aquatic Sciences 2586:vi + 487.
- Stirling, I., W. Calvert and H. Cleator. 1983. Underwater vocalizations as a tool for studying the distribution and relative abundance of wintering pinnipeds in the high Arctic. *Arctic* 36(3):262-274.
- Stirling, I., N.J. Lunn and J. Iacozza. 1999. Long-term trends in the ecology of polar bears in western Hudson Bay in relation to climatic change. *Arctic* 52:294-306.
- Stirling, I. and N.A. Øritsland. 1995. Relationships between estimates of ringed seal (*Phoca hispida*) and polar bear (*Ursus maritimus*) populations in the Canadian Arctic. *Canadian Journal of Fisheries and Aquatic Sciences* 52:2594-2612.
- Terhune, J.M. and K. Ronald. 1975. Underwater hearing sensitivity of two ringed seals (*Pusa hispida*). *Canadian Journal of Zoology* 53:227-231.
- Terhune, J.M. and W.C. Verboom. 1999. Right whales and ship noise. *Marine Mammal Science* 15(1):256-258.
- Vanderlaan, A.S.M. and C.T. Taggart. 2007. Vessel collisions with whales the probability of lethal injury based on vessel speed. *Society for Marine Mammology* 23(1):144-156.



WCE. 2009. Summary of IQ focus group conducted by Linda Havers and Susan Ross with four Elders. April 9, 2009; in Appendix II: Inuit Qaujimajatuqangit Baseline, Attachment F. Whale Cove Elders, Whale Cove.

## 12.2 INTERNET SITES

FishBase. 2011. Coregonus nasus (Pallas, 1776). Broad whitefish. Available at: http://www.fishbase.org/Summary/SpeciesSummary.php?ID=2674&AT=broad+whitefish. Accessed: July 15, 2011.