APPENDIX B

- 1 Norwest Labs QC Reports for Aug 4 and Sept 22, 2004
- 2 INAC (Taiga Environmental Laboratory) 925-14 Analysis, July 14, 2004
- 3 Norwest Labs Ltd. Analytical and QC Reports 2005
- 4 2005 Bioassay Results and QC Data

EP Laboratories Ecotoxicology Laboratory **Environment Canada** 5320 122 Street Edmonton, Alberta T6H 3S5

Report of Toxicity Testing Using Rainbow Trout

Lupin Mines, NT

Received: June 30, 2005

Anne Wilson **Environment Canada** EPB / Northern Division Suite 301 5204 - 50th (Franklin) Avenue Yellowknife, Northwest Territories X1A 1F2

File Number: 4390-9 Report Number: 01746 Sample Number: 05-00612

July 27, 2005

Authorization:

Garth Elliott

Head, Ecotoxicology Laboratory

RECEIVED

JUL 2 9 2005

ENVIRON - CANADA YELLOWKNIFE

ABSTRACT

Set Name: Lupin Mines, NT

Report Number: 01746 Sample Number: 05-00612

Client: Anne Wilson

On June 30, 2005, EP Laboratories received 1 sample submitted by Anne Wilson, Environment Canada, EPB / Northern Division. The sample was analyzed for the following parameters:

To examine the test material to determine its toxicity to Rainbow Trout.

Deviation from "MUST" requirements: None.

Sample Not Frozen. Receipt Temp. =10.6°C

This document may not be reproduced in any manner, except in full, without the prior written approval of the EP Laboratories, Prairie & Northern Region.

Access to the laboratory testing area is controlled. More than one authorized analyst may have access to the sample(s).

For further information please contact: Garth Elliott, Head, Ecotoxicology Laboratory, at (780) 435-7242.

Client: Anne Wilson Set Name: Lupin Mines, NT

Report Number: 01746 Sample Number: 05-00612

SAMPLE INFORMATION:

LAB SAMPLE NO. 05-00612

RESULT: No Mortality at 100% Concentration.

SAMPLE COLLECTED BY: Mike Tansey

June 29, 2005 09:00 h DATE/TIME SAMPLED:

June 30, 2005 10:45 h DATE/TIME RECEIVED:

liquid SAMPLE TYPE:

SAMPLE POINT: Pond 2, Station 102.

Grab **SAMPLING METHOD:**

6 x10L White Plastic Buckets. ~60L Total Volume. SAMPLE CONTAINER:

TRANSPORTATION

Arrived Via Courier. INFORMATION:

STORAGE INFORMATION: B048 Locked Walkin Cooler

Set Name: Lupin Mines, NT

Report Number: 01746 Sample Number: 05-00612

Client: Anne Wilson

TEST CONDITIONS:

SPECIES: Oncorhynchus mykiss

FISH PER TEST VESSEL: 10

TEST VESSEL: 76 L Aquarium

TEST VOLUME (L): 56

SAMPLE DEPTH (cm): 31

PHOTO PERIOD: 16h Light, 8h Dark

DILUTION WATER: Treated Edmonton City Water

Fish Not Fed ~24 h Prior to Test

No sample pH adjustment required. All Tests Initiated Are Reported.

Aeration Continuous Throughout Test at: 6.5 ± 1.0 ml/min/L Measured with a flow meter.

PHYSICOCHEMICAL CONDITIONS:

SAMPLE APPEARANCE: Clear and Colourless.

<u>INITIAL PHYSICOCHEMICAL CONDITIONS:</u> Just Prior to Setup

INITIAL	TEMPERATURE (° C)	DISSOLVED OXYGEN (% saturation)	CONDUCTIVITY (µmhos/cm)	pН
100% SAMPLE	15.0	105	750	6.0

PREAERATION: (Oil-Free Compressed) at a Rate of 6.5 ± 1.0 ml/min/L for 120 minutes.

Set Name: Lupin Mines, NT

Report Number: 01746 Sample Number: 05-00612

TEST PHYSICOCHEMICAL CONDITIONS:

TEST CONCENTRATIONS	TEMPERATURE		OXY	SOLVED XYGEN CONDUCTIVITY mg/L) (µmhos/cm)		pН		LUX				
	0 h	24 h	48 h	72 h	96 h	0 h	96 h	0 h	96 h	0 h	96 h	0 h
CONTROL	14.5	15.2	15.4	15.4	15.4	9.3	9.0	429	435	8.2	8.3	220
100%	15.0	15.0	14.9	14.9	14.8	9.4	9.1	749	764	6.4	7.0	145

TEST DATA:

TEST START DATE/TIME: June 30, 2005 15:20 h

		CUMULATIVE MORTALITY/SUBLETHAL EFFECT									
TEST CONCENTRATIONS	24 h	48 h	72 h	96 h	% MORTALITY						
CONTROL	0	0	0	0	0.0						
100%	0	0	0	0	0.0						

Client: Anne Wilson

Set Name: Lupin Mines, NT

Report Number: 01746 Sample Number: 05-00612

Client: Anne Wilson

TROUT LENGTHS AND WEIGHTS Single Concentration

	CONTROL	CONTROL	100%	100%	
	LENGTH (cm)	WEIGHT (g)	LENGTH (cm)	WEIGHT (g)	
1	4.5	0.95	4.3	0.77	
2	4.8	1.11	4.8	1.15	
3	4.9	1.16	5.0	1.18	
4	5.4	1.65	5.2	1.43	
5	5.4	1.76	5.4	1.63	
6	5.4	1.55	5.3	1.54	
7	5.5	1.78	5.4	1.59	
8	5.5	1.85	5.7	1.76	
9	5.7	1.99	5.7	1.88	
10	6.1	2.38	6.3	2.26	
AVERAGE	5.3	1.62	5.3	1.52	
STD DEV	0.5	0.44	0.5	0.42	
RANGE	4.5 - 6.1	0.95 - 2.38	4.3 - 6.3	0.77 - 2.26	
VOL (L)		56		56	
TOT WT (g)		16.2		15.2	
LOADING DENSITY (g/L)		0.3		0.3	

QUALITY CONTROL RESULTS

Set Name: Lupin Mines, NT

Report Number: 01746 Sample Number: 05-00612

Client: Anne Wilson

TEST ORGANISM: Oncorhynchus mykiss Rainbow Trout Fingerlings

Source: Sun Valley Trout Farm

Lot#: SVTF042705

Tank#: 7

Arrival Date: April 27, 2005

Mortality of Trout Stock 7 Days Prior to Test: 1.8% Acclimation for \geq 2 Weeks at Temp: 15°C ± 2°C

Approximate No. Of Trout Acclimated: 295

Flow of Water Through Tank (L/g of trout per day): 4.5

Litres in Tank per 10g of Trout: 6.3

CONFORMANCE: Control Mortality within Acceptable Limits.

Less Than 2% Fish Stock Mortality in 7 Days Prior to Test.

Method "Must" Requirements Followed.

QUALITY CONTROL: Reference Toxicant

Reference Toxicant: Phenol Reference Toxicant Test # 05-0005-T

Date of Test: June 06, 2005 Reference Toxicant Analyst: L.M., N.K.

 LC_{50} -96 h = 9.71 ppm 95% Confidence Limits: 8.64-10.9 ppm

HISTORIC GEOMETRIC MEAN:

 LC_{50} -96 h = 11.1 ppm Warning Limits(2SD): 9.04-13.5 ppm

CONFORMANCE: Control Mortality within Acceptable Limits.

Reference Toxicant within Warning Limits.

Less Than 2% Fish Stock Mortality in the 7 days Prior to Test.

Method "Must" Requirements followed.

TEST ANALYST(S): Wendy Antoniolli Initial:

Lisa Mitchelmore Initial: M

Jody Klassen Initial:

GLOSSARY

Set Name: Lupin Mines, NT

Report Number: 01746 Sample Number: 05-00612 Client: Anne Wilson

°C - degree(s) Celsius

CL - control limits

cm - centimetre(s)

cnt - count of number of colonies

d - day(s)

DO - dissolved oxygen (concentration)

EC₅₀ - median effective concentration

g - gram(s)

h - hour(s)

H₂0 - water

IC₅₀ - 50% inhibiting concentration

LC₅₀ - median lethal concentration

L - litre(s)

mg - milligram(s)

min - minute(s)

mL - millilitre(s)

mm - millimetre(s)

mS - millisiemens

NaCl - sodium chloride

N/A - non applicable

OAS - Osmotic Adjustment Solution

ppm - parts per million

TNTC - too numerous to count

μg - microgram

μmhos - micromhos

μL - microlitre

> - greater than

< - less than

≥ - greater than or equal to

 \leq - less than or equal to

 \pm - plus or minus

REFERENCES

Set Name: Lupin Mines, NT

Report Number: 01746 Sample Number: 05-00612

Client: Anne Wilson

EP Laboratories SOP# 810.0 Revision 5, for Trout Testing in Compliance with 2nd edition, December 2000: Reference Method for Determining Acute Lethality of Effluents to Rainbow Trout, December 2000, EPS 1/RM/13. Single Concentration Procedure.

EP Laboratories Ecotoxicology Laboratory Environment Canada 5320 122 Street Edmonton, Alberta T6H 3S5

Report of Toxicity Testing

Using Daphnia magna

Lupin Mines, NT

Received: June 30, 2005

Anne Wilson
Environment Canada
EPB / Northern Division
Suite 301
5204 - 50th (Franklin) Avenue
Yellowknife, Northwest Territories
X1A 1E2

File Number: 4390-9 Report Number: 01747 Sample Number: 05-00613

July 27, 2005

Authorization:

Garth Elliott

Head, Ecotoxicology Laboratory

RECEIVED

JUL 2 9 2005

ENVIRON - CANADA YELLOWKNIFE

ABSTRACT

Set Name: Lupin Mines, NT Client: Anne Wilson

Report Number: 01747 Sample Number: 05-00613

On June 30, 2005, EP Laboratories received 1 sample submitted by Anne Wilson, Environment Canada, EPB / Northern Division. The sample was analyzed for the following parameters:

To examine the test material to determine its toxicity to Daphnia magna

There were no deviations from "MUST" requirements for this test.

Sample Not Frozen. Receipt Temp. =10.6°C

This document may not be reproduced in any manner, except in full, without the prior written approval of the EP Laboratories, Prairie & Northern Region.

Access to the laboratory testing area is controlled. More than one authorized analyst may have access to the sample(s).

For further information please contact: Garth Elliott, Head, Ecotoxicology Laboratory, at (780) 435-7242.

Client: Anne Wilson Set Name: Lupin Mines, NT

Report Number: 01747 Sample Number: 05-00613

SAMPLE INFORMATION:

LAB SAMPLE NO. 05-00613

RESULT:

96.7 % Mortality at 100 % Concentration.

SAMPLE COLLECTED BY: Mike Tansey

DATE/TIME SAMPLED:

June 29, 2005 09:00 h

DATE/TIME RECEIVED:

June 30, 2005 10:45 h

SAMPLE TYPE:

liquid

SAMPLE POINT:

Pond 2, Station 102.

SAMPLING METHOD:

Grab

SAMPLE CONTAINER:

6 x 10L White Plastic Buckets. ~60L Total Volume.

TRANSPORTATION

INFORMATION:

Sample arrived via courier.

STORAGE INFORMATION: B048 Locked Walkin Cooler

STATISTICS:

N/A

Client: Anne Wilson Set Name: Lupin Mines, NT

Sample Number: 05-00613 Report Number: 01747

TEST CONDITIONS:

SPECIES: Daphnia magna <= 24 h old

DAPHNIA PER TEST VESSEL: 10

TEST VESSEL: 200 mL plastic container

TEST VOLUME (mL): 150

PHOTO PERIOD: 16h Light, 8h Dark

LUX: 760

DILUTION WATER: Treated Edmonton City Water

No sample pH adjustment required. All Tests Initiated Are Reported.

PHYSICOCHEMICAL CONDITIONS:

SAMPLE APPEARANCE: Clear and colourless.

INITIAL PHYSICOCHEMICAL CONDITIONS: Just Prior to Setup

INITIAL	TEMPERATURE (° C)	DISSOLVED OXYGEN (%saturation)	CONDUCTIVITY (µmhos/cm)	pН	Hardness (mg/L as CaCO3)
100 % SAMPLE	20.0	101	753	6.1	198

PREAERATION: (Oil-Free Compressed) at a Rate of 25-50 ml/min/L for 15 minutes.

Client: Anne Wilson Set Name: Lupin Mines, NT

Sample Number: 05-00613 Report Number: 01747

TEST PHYSICOCHEMICAL CONDITIONS:

TEST	TEMPERATURE (°C)		OXY	OLVED GEN g/L)		CTIVITY os/cm)	p	pH HARDNESS (mg/L as CaCO3	
CONCENTRATIONS	0 h	48 h	0 h	48 h	0 h	48 h	0 h	48 h	0 h
CONTROL A	20.4	21.5	8.4	7.6	426	423	8.2	8.1	143
CONTROL B	20.3	21.8	8.4	7.7	427	424	8.3	8.3	143
CONTROL C	20.3	21.8	8.4	7.7	427	424	8.3	8.3	143
100% A	20.1	21.6	8.3	7.6	746	745	7.1	6.4	198
100% B	20.5	21.6	8.3	7.7	753	751	6.6	6.6	198
100% C	20.1	21.7	8.3	7.7	752	752	6.6	6.7	198

TEST DATA:

TEST START DATE/TIME: June 30, 2005 15:25 h

	C	CUMULATIVE MORTALITY/SUBLETHAL EFFECT							
TEST CONCENTRATION	24 h # observed/immobile	48 h # observed/immobile/dead	% IMMOBILE	% MORTALITY					
CONTROL A	10/0	10/0/0	0.0	0.0					
CONTROL B	10/0	10/0/0	0.0	0.0					
CONTROL C	10/0	10/0/0	0.0	0.0					
100% A	10/8	10/9/9	90.0	90.0					
100% B	10/10	10/10/10	100	100.0					
100% C	10/10	10/10/10	100	100.0					

Overall Results

Mean % Immobilized = 29/30 = 96.7 %

Mean % Dead = 29/30 = 96.7 %

QUALITY CONTROL RESULTS

Set Name: Lupin Mines, NT Client: Anne Wilson

Report Number: 01747 Sample Number: 05-00613

TEST ORGANISM: Daphnia magna <= 24 h old

Stock neonates used for Testing: J Neonates - June 3, 2005

Most Recent Estimate of Time to First Brood: 7.3 days

Average Neonates per Brood: 28.5

Frequency of ephippia from Adults of Neonates: None

Mortality in Brood Stock 7 days prior to test: 1.2%

Any special handling during test: Checked under microscope to confirm mortality.

CONFORMANCE: Control Mortality within Acceptable Limits.

Ephippia must not be Present in the Culture.

Less Than 25% of Brood Stock Mortality in the 7 days prior to a Test.

Method "Must" Requirements Followed.

OUALITY CONTROL: Reference Toxicant

Reference Toxicant: Sodium Chloride Reference Toxicant Test # 05-0008-D

Date of Test: June 28, 2005 Reference Toxicant Analyst: C.L.H, L.M.

 LC_{so} -48 h = 5,920 ppm 95% Confidence Limits: 5,640 ppm - 6,210 ppm

HISTORIC GEOMETRIC MEAN:

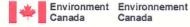
 LC_{50} -48 h = 6,000 ppm Warning Limits(2SD): 5,560 ppm - 6,480 ppm

CONFORMANCE: Control Mortality within Acceptable Limits.

Ephippia must not be Present in the Culture.

Less Than 25% of Brood Stock Mortality in the 7 days prior to a Test.

Method "Must" Requirements Followed.


TEST ANALYST(S):

Jody Klassen

Initial:

Christi Horne

Y - 1/2 - 1

GLOSSARY

Set Name: Lupin Mines, NT

Report Number: 01747 Sample Number: 05-00613

Client: Anne Wilson

°C - degree(s) Celsius

CL - control limits

cm - centimetre(s)

cnt - count of number of colonies

d - day(s)

DO - dissolved oxygen (concentration)

EC₅₀ - median effective concentration

g - gram(s)

h - hour(s)

 H_20 - water

IC₅₀ - 50% inhibiting concentration

LC50 - median lethal concentration

L - litre(s)

mg - milligram(s)

min - minute(s)

mL - millilitre(s)

mm - millimetre(s)

mS - millisiemens

NaCl - sodium chloride

N/A - non applicable

OAS - Osmotic Adjustment Solution

ppm - parts per million

TNTC - too numerous to count

μg - microgram

μmhos - micromhos

μL - microlitre

> - greater than

< - less than

≥ - greater than or equal to

 \leq - less than or equal to

 \pm - plus or minus

REFERENCES

Set Name: Lupin Mines, NT

Report Number: 01747 Sample Number: 05-00613 Client: Anne Wilson

EP Laboratories SOP# 820.0 Revision 4, for Daphnia magna Testing in Compliance with 2nd edition, December 2000: Reference Method for Determining Acute Lethality of Effluents to Daphnia magna, December 2000, EPS 1/RM/14. Single Concentration Procedure.

Client: NOR239 Sample: 20051122

Client

Client: Norwest Labs Operation: Edmonton

Address: 7217 Roper Road

City: Edmonton Prov./State: Alberta
Country: Canada Postal/ZIP Code: T6B 3J4

Billing: Lot # 398418 Contact: Linda LeGroix/ Darlene Lintott

Tel: 780-438-5522 Fax: 780-438-0396

Sample

type: water method: grab

collected: 2005/07/27 at not given by not given

shipped: 2005/07/27 by First Air/Air Canada

received: 2005/07/29 at 1100 by L.Fantin signed-in: 2005/07/29 at 1100 by L.Fantin

container: 12 x 10L containers - containers composited and split for testing

seals present: no initials on seals no sample condition good

storage: 4 ± 2°C in darkness initial temperature (°C) 23

Samples are disposed following Supporting Work Instruction 4.3.1.4.3

Physical and Chemical Measurements at Sample Receipt

. Ilyoloai alla	Oliolilloai iii	04041011011011011011011011011
lab code	-1	
client code	398418	

water/effluent/pore water

water/emuent/	ore water
рН	7.1
EC (uS/cm)	868
DO (mg/L)	7.3
temp (°C)	22
alkalinity	not done
hardness	157
NH4 (mg/L)	not done
TRC (mg/L)	not done
colour	clear
odour	odourless

soil/sediment

moisture (%)	na	
sand:silt:clay	na	
TOC (%)	na	

Test Log

type	TR-S	DA-S	LM-D	AG-D	CD-D	FM-D	
number	20053127	20053126	20053129	20053130	20053128	20053131	
started	2005/07/29	2005/07/29	2005/07/30	2005/07/29	2005/07/29	2005/07/29	
ended	2005/08/02	2005/07/31	2005/08/06	2005/08/01	2005/08/05	2005/08/05	
reported	2005/08/15	2005/08/15	2005/08/15	2005/08/15	2005/08/15	2005/08/15	
faxed	2005/08/03	2005/08/01	na	na	na	na	

Notes: D, definitive; S, single treatment; EC, electrical conductivity; DO, dissolved oxygen; TRC, total residual chlorine;

TOC, total organic carbon; na, not applicable

#3, 6125 12th Street SE, Calgary, Alberta Canada T2H 2K1 Tel (403) 253-7121 / Fax (403) 252-9363 www.hydroqual.ca

Test Report

Client: NOR239 | Sample: 20051122 Test: 20053126

Method Daphnia 48h Static Acute Test (undiluted sample plus a control) (HQ 4.4.3.1)

Reference: Biological Test Method: Reference Method for Determining Acute Lethality of Effluents

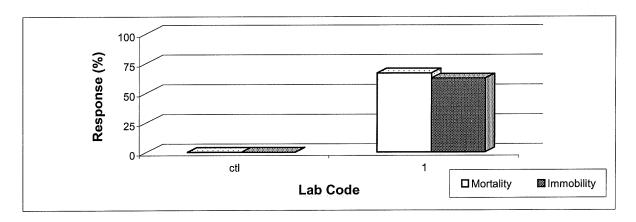
to Daphnia magna, 1990. Environ. Can., EPS 1/RM/14. (amended 1996 and 2000)

Client: Norwest Labs Operation: Edmonton

Sample:

description: 398418, location 925-10

collected: 2005/07/27 not given by not given at 1100 L.Fantin received: 2005/07/29 at by


Test:

started: 2005/07/29 at 1300 by L. Fantin ended: 2005/07/31 at 1050 by K. de Windt bν G. Diaz reported: 2005/08/15

Result:

Lab	Client	Client		<u></u>	lm	Comment		
Code	Code	mean	sd	cv(%)	mean	sd	cv(%)	
ctl	lab control	0	0	0	0	0	0	
1	398418	67	15	23	62	21	33	toxic as tested

Notes: sd, sample standard deviation; cv, coefficient of variance Mortality is calculated as percent of total daphnids per treatment at test initiation Immobility is calculated as percent of live daphnids on day 2

Test Data			Client:	NOR239	Sample:	20051122	Test:	20053126	
Davi	Times		Tachnician			Comment/O	hoonyation		
Day	Time	T	Technician		IT D				
0	1300		L. Fantin			<i>nia</i> appear n			
1	1300		K. de Wind		Test Daph				
2	1050		K. de Wind	•	Lest <i>Daph</i>	<i>nia</i> appear n	ormal.		
								1	
	lab code		ctl			1			
	replicate	а	b	С	а	b	С		
	day			pH ((units)			_	
	0	8.4	8.4	8.4	7.3	7.3	7.3		
	2	8.4	8.5	8.5	7.3	7.3	7.4		
	'							-	
				EC (uS/cm)		_		
	0	423	423	423	902	902	902		
	2	417	401	398	880	891	886		
	,								
				DO ((mg/L)			_	
	0	8.1	8.1	8.1	7.9	7.9	7.9		
	2	7.8	7.9	7.8	7.6	7.7	7.7		
	'							•	
				Temper	ature (°C)				
	0	19	19	19	21	21	21		
	2	19	20	20	20	20	20		
	'							•	
				Numb	er Alive				
		(F, floating	; I, immobile	; B, stuck o	n bubble; D	, caught in d	ebris)		
	1	10	10	10	10(3I)	10(1D,5l)	12(11)		
	2	10	10	10	2(21)	3 (21)	5(11)		

Notes: EC, electrical conductivity; DO, dissolved oxygen; nd, not done; na, not applicable

c	a	m	m	e	nts	
v	v			•		

Organism: <24 h old Daphnia magna; in-house culture; mortality 7 days before test (%):

26

Culture's time to first brood (d):

9 Brood size (neonates per brood):

Adjustments prior to testing: pH: none

hardness (mg CaCO3/L):

none

The duration of pre-aeration, at a rate of 37.5 ± 12.5 mL/min·L⁻¹, was (min):

0

The hardness of the lab dilution water was (mg CaCO₃/L):

The test was conducted in 385 mL plastic vessels containing 150 mL of test solution and ten daphnids (loading density of 15 mL per daphnid or neonate).

One of the 100% test vessels was loaded with 12 neonates.

The test data and results are verified correct.

Authorized by K.Steele, B.Sc., Quality Assurance Officer

Our liability is limited to the cost of the test requested on the sample as received. No liability in whole or in part is assumued for the collection, handling or transport of the sample, application or interpretation of the test data or results in part or in whole.

13

Client: NOR239 | Sample: 20051122 | Test: 20053127

Method Trout 96h Static Acute Test (undiluted sample plus a control) (HQ 4.4.4.1)
Reference: Biological Test method: Reference Method for Determining Acute Lethality of Effluents to Rainbow Trout, 1990. Environ. Can., EPS 1/RM/13.

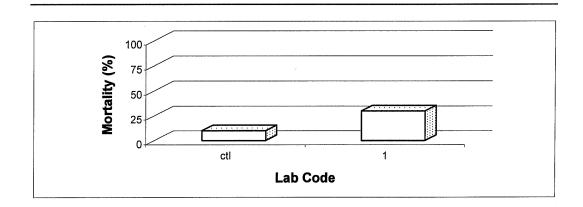
(amended 1996 and 2000)

Client: Norwest Labs Operation: Edmonton

Sample:

description: 398418, location 925-10

collected: 2005/07/27 at not given by not given received: 2005/07/29 at 1100 by L.Fantin


Test:

started: 2005/07/29 at 1600 by L.Fantin/A.Corbett ended: 2005/08/02 at 1600 by L.Fantin/A.Corbett

reported: 2005/08/15 by G. Diaz

Result:

Lab Code	Client Code	Mortality (%)	Comment	
ctl 1	lab control 398418	10 30	not toxic as tested	

Test Data			Client:	NOR239	Sample:	20051122	Test:	20053127
			<u> </u>					
Day	Time		Technician		T	Comment/C		n
0	1600		antin/A.Cor			aded at 1600		
1	1330		Steele/M.Lu			appear norr		
2	1030		e Windt/M.L			appear norr		
3	1415		Steele/M.Lu			appear norr		
4	1600	L.F	antin/A.Cor	bett	all test fish	appear norr	naı	
Preaera	ation (6.5 ml	L/min/L)	0.5	1.0	1.5	2 (h)		
	DO (mg/L)	,	8.5					
lab code	ctl	1						
day				pH (units)				
0	8.0	6.8						
1	8.4	7.0						
.2	8.4	7.4						Ţ
3	8.4	7.1						
4	8.3	7.3						
•				EC (uS/cm)			
0	415	938						
1	395	877						
2	391	882						
:3	401	885						
4	380	884						
				DO (mg/L)				
0	8.5	8.5						
1	8.3	8.4						
2	8.4	8.2						
3	8.4	8.6						<u> </u>
4	8.5	8.7	То	<u>l</u> mperature (°C\	LL]
0	16	16	16	liiperature (()			
1	16	16						
-	16	16						
2 3	16	16						
4	16	16						
' I				Number Ali	ve	1.		
0	10	10						
1	10	8						
2	10	8						
2 3	10	7						
4	9	7						
			[Mortality (%)			
	10	30						

Test Data			Client:	NOR239	Sample:	20051122	Test:	20053127
Control Fish	Length (cm)	Weight (g)	Lab Code	Group Weight (g)		Ammonium initial	(mg NH₄˙ final	-N/L)
1	3.1	0.2	ctl	2.7		0.2	0.6]
2	3.6	0.3	1	2.8		2.5	2.7	
2	3.5	0.4						
4	3.2	0.2						
5	3.2	0.2						
6	3.2	0.2						
7	3.4	0.3						
8	3.3	0.2						
9	3.2	0.2						
10	3.6	0.3						
average sd cv(%)	3.3 0.2 5.5	0.3 0.1 22.7						

Test Information

Organism: Oncorhynchus mykiss from Trout Lodge Inc.

Age and condition: The fish were held 14 days before testing (batch 20050714TR).

Conditions

The test volume was: 20 (L)

The test was conducted in 22 L plastic pails with polyethylene liners.

One replicate per treatment.

Ten fish per replicate with a loading density of: 0.1 (g/L)

Stock mortality 7 days prior to testing: 0.1 (%) All treatments aerated at: 6.5 (±1 mL/min/L)

The sample was not pH adjusted.

Comments

none

The test data and results are verified correct.

Authorized by K.Steele, B.Sc., Quality Assurance Officer

Our liability is limited to the cost of the test requested on the sample as received. No liability in whole or in part is assumued for the collection, handling or transport of the sample, application or interpretation of the test data or results in part or in whole.

Client: NOF	239 Sample	e: 20051122	Test:	20053128
-------------	------------	-------------	-------	----------

Method: Ceriodaphnia Survival and Reproduction Test (five treatments plus a control) (HQ 4.4.3.2)

reference: Biological Test Method: Test of Reproduction and Survival Using the Cladoceran

Ceriodaphnia dubia, 1992. Environ.Can., EPS 1/RM/21. (amended November, 1997)

Client: Norwest Labs Operation: Edmonton

Sample:

description: 398418, location 925-10

collected: 2005/07/27 not given at not given by received: 2005/07/29 1100 L.Fantin at by

Test:

started: 2005/07/29 at 1200 B. Denny by ended: 2005/08/05 1200 B. Denny at by reported: 2005/08/15 G.Diaz by

Result:

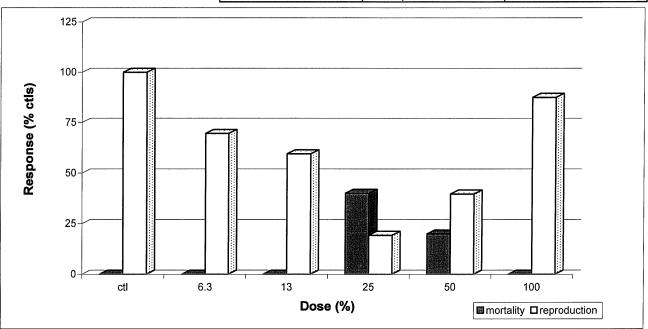
	Endpoint	Value	Confidence Limits	Units	Method Calculated
Acute:	LC25	>100		%	estimated
(mortality)	LC50	>100		%	estimated
	NOEC	100		%	estimated
	LOEC	> 100		%	estimated
	MSD	could not be	calculated	ceriodaphnid	
Chronic:	IC25	>100		%	estimated
(fecundity)	IC50	>100		%	estimated
	NOEC	100		%	estimated
	LOEC	>100		%	estimated
	MSD	could not be	calculated	young	

Notes: LCx & ICx, concentrations lethal or inhibitory to 'x' percent of the test population; NOEC & LOEC, no and lowest observed effect concentrations; fecundity, reproduction as the number of young produced

Comments: The test results are plotted on page 2 of the report.

No unusual behaviour, appearance, or treatment of the test organisms was noted prior to or during the conduct of the test. All test organisms came from a brood source that are all the same age.

The numbers in bold print under the "Biology (#, young produced . . .) section refers to


the number of young the test organism had the day it died.

Our liability is limited to the cost of the test requested. No liability is assumed for the

application and or interpretation of the test results.

Test Design

Organism: Ceriodaphnia dubia

Source: in-house cultures

Age: <24 h; released within 12 h

The number of young produced by each brood organism in the last complete brood before use was No ephippia were noted in the cultures 7 days before test initiation. Culture mortality wa 0%

during this period and the mean number of surviving young per adult was

The dilution water was a mixture of moderately hard reconstituted water and Bow River Water (50:50).

Chemicals added to dilution water: 0.96 g NaHCO₃, 0.60 g CaSO₄, 0.60 g MgSO₄, 0.04 g KCl per 20L

The tests were conducted in 30 mL plastic vessels containing 15 mL of solution (2cm depth).

The test organisms were fed daily a mixture of fermented trout chow, yeast, alfalfa powder, and the green alga Raphidocelis subcapitata. food expiration: 2005/07/30, 2005/08/14

Sample Information

The test was conducted with three subsamples. Samples a, b, and c were for days 0 to 2, 3 to 4, and 5 to 7. The sample was not aerated, filtered or pH adjusted prior to testing or during testing.

7.0 The dissolved oxygen concentration (mg/L) was 7.1 The sample pH was

Test Log				
Date	Day	Time	Technicians	Comments
2005/07/29	0	1200	B. Denny	Test Ceriodaphnia appear normal.
2005/07/30	1	1230	K. de Windt	Test Ceriodaphnia appear normal.
2005/07/31	2	0915	K. de Windt	Test Ceriodaphnia appear normal.
2005/08/01	3	1130	K. de Windt	Test Ceriodaphnia appear normal.
2005/08/02	4	1145	B. Denny	Test Ceriodaphnia appear normal.
2005/08/03	5	1045	B. Denny	Test Ceriodaphnia appear normal.
2005/08/04	6	1115	B. Denny	Test Ceriodaphnia appear normal.
2005/08/05	7	1200	B. Denny	Test Ceriodaphnia appear normal.
			-	

Test Data						Client	: NOR2			ample:	20051	122	Test	20053	3128
							Ch	emi	stry						
D (0/)	البہ ا			Solution		1 400	1	7	-11	I 0 0		olution		1 400	
Dose (%)	ctl	6.3	13	25	50	100	1	J	ctl	6.3	13	25	50	100	
uay	j		r	H (unit	·e)						r	H (unit	łe)		
0	8.3	8.3	8.3	8.2	8.0	7.0	T	1	<u> </u>	1	<u> </u>	T	T	T	1
1	8.5	8.5	8.5	8.4	8.2	7.5	<u> </u>		8.4	8.4	8.3	8.2	8.1	7.4	
2	8.4	8.4	8.3	8.3	8.1	7.7		1	8.3	8.3	8.3	8.2	8.1	7.7	
3	8.4	8.4	8.3	8.2	8.1	7.1		1	8.3	8.2	8.2	8.2	8.1	7.4	
4	8.4	8.4	8.3	8.3	8.1	7.3		1	8.2	8.3	8.2	8.2	8.1	7.5	
5	8.3	8.3	8.3	8.2	8.0	7.2		1	8.3	8.2	8.2	8.2	8.1	7.3	
6	8.3	8.3	8.3	8.2	8.0	7.3			8.3	8.2	8.2	8.2	8.1	7.4	
7									8.3	8.2	8.2	8.2	8.0	7.5	
8															
			conduc	ctance	(uS/cm)		-			conduc	ctance	(uS/cm)	
0	378	397	429	497	628	877]							
1	367	381	408	476	605	840			375	438	443	499	631	890	
2	371	385	415	480	613	858			368	415	432	494	634	886	
3	365	384	416	477	597	857			370	401	439	500	640	887	
4	353	379	410	479	603	851			364	393	423	489	635	885	
5	364	397	420	491	620	863			380	418	448	512	652	892	
6	382	407	430	496	630	880			377	412	435	508	655	900	
7									380	410	432	506	646	880	
8		l	<u> </u>	<u> </u>	L.,					L		<u> </u>	L	<u></u>	
o 1	7.4		ssolve						·	di	ssolve	d oxyge	en (mg/	(L)	
0	7.1 6.8	7.1	7.1	7.1	7.1	7.1			C E	0.0	C.F.	6.4	6.6	6.5	
1	7.1	6.9 7.1	7.0 7.1	7.0 7.1	7.1 7.1	7.1 7.1			6.5 6.7	6.6 6.7	6.5 6.7	6.4 6.7	6.6	6.5	
2	7.1	7.1	7.1	7.1	7.1	7.1			6.9	6.9	6.9	7.0	6.8 7.0	6.8 7.0	
4	7.0	7.0	7.0	7.0	7.0	7.4			6.4	6.4	6.4	6.6	6.7	6.8	
5	7.3	7.3	7.3	7.3	7.3	7.3			6.9	6.9	6.9	6.9	6.9	6.9	
6	7.4	7.3	7.3	7.3	7.3	7.3			6.9	6.9	6.9	6.9	6.9	6.9	
7	•••	7.0	7.0	7.0	7.0	1.0			6.8	6.8	6.8	6.8	6.8	6.8	
8									0.0	0.0	0.0	0.0	0.0	0.0	
- 1			temp	erature	(°C)						temp	erature	(°C)		
0	25	25	25	25	25	25					10,,,,,	0.0.0.	, <u>, , , , , , , , , , , , , , , , , , </u>		
1	25	25	25	25	25	25		İ	25	25	25	25	25	25	
2	25	25	25	25	25	25			25	25	25	25	25	25	
3	25	25	25	25	25	25		Ì	25	25	25	25	25	25	
4	25	25	25	25	25	25		İ	25	25	25	25	25	25	
5	25	25	25	25	25	25		ľ	25	25	25	25	25	25	
6	25	25	25	25	25	25		Ī	25	25	25	25	25	25	
7									24	24	24	24	24	24	
[Г							

8

Test Data				1		Client	: NOR2	39	S	ample:	20051	122	Test:	20053	128
				Biolo	gy (#.		produc								
Dose (%)	ctl	6.3	13	25	50	100			ctl	6.3	13	25	50	100	
replicate		<u> </u>		day 1				ı	L,			day 5			
1	0	0	0	0	0	0			6	6	0			0	
2	0	0	0	0	0	0			7	6	6		2	5	
2 3	0	0	0	0	0	0			6	0	5	0	3	6	
4	0	0	0	0	0	0			0	0	6		3	7	
5	0	0	0	0	0	0			7	5	0	0	0	6	
6	0	0	0	0	0	0			0	0	0	0	2	0	
7	0	0	0	0	0	0			7	5	0	0	2	6	
8	0	0	0	0	0	0			6	5	6	3	0	0	
9	0	0	0	0	0	0			7	0	5		0	5	
10	0	0	0	0	0	0			0	6	0	0		6	
				day 2								day 6			
1 [0	0	0		0	0			0	7	4			6	
2	0	0	0		0	0			0	0	0		5	7	
2 3	0	0	0	0	0	0			8	6	8	4	6	0	
4 [0	0	0	0	0	0			8	7	7		5	8	
5	0	0	0	0	0	0			10	0	0	0	3	8	
6	0	0	0	0	0	0			6	6	6	4	0	6	
7	0	0	0	0	0	0			8	0	5	0	0	0	
8	0	0	0	0	0	0			9	0	0	0	0	0	
9	0	0	0	0	0	0			0	6	0		0	7	
10	0	0	0	0	0	0			7	0	0	3		0	
				day 3								day 7		,	
1	0	0	0			0			9	0	6			9	
2	0	0	0		0	0			9	8	8		0	9	
3	0	0	0	0	0	0			10	8	0	0	8	10	
4	0	0	0		0	1			9	9	0		9	0	
5	0	0	0	0	0	0			0	10	0	5	9	10	
6	0	0	0	0	0	0			8	0	8	6	6	9	
7	0	0	0	0	0	0			10	7	0	4	5	8	
8	0	0	0	0	0	0			9	8	8	5	6	9	
9	0	0	0		0	0			9	0	9		8	10	
10 [0	0	0	0	0	0			0	9	9	6		10	
				day 4					,			day 8			
1 [4	2	0			2									
2	4	3	2		0	0		ļ							
3	3	3	3	0	0	2									
4	3	3	3		0	0									
5 6 7	3	2	2	0	0	0									
6	3	0	0	0	0	2									
7	4	2	3	0	0	0		ļ							
8 9	3	2	2	0	0	3									
	2	3	2		0	2		ļ							
10 [3	0	0	0		2		Ĺ							

Summary	Tables	S				Client	NOR2	39	Sample: 20051122				Test: 20053128		
,		-			L		· · · · · · · ·								
Biology															
Dose (%)	ctl	6.3	13	25	50	100			ctl	6.3	13	25	50	100	
day															
				ortality	(%)						aily Yo	ung Pr	oduction	on	
0	0	0	0	0	0	0			0	0	0	0	0	0	
1	0	0	0	0	0	0			0	0	0	0	0	0	
2	0	0	0	20	0	0			0	0	0	0	0	0	
3	0	0	0	40	10	0			0	0	0	0	0	1	
4	0	0	0	40	20	0			32	20	17	0	0	13	
5	0	0	0	40	20	0			46	33	28	3	12	41	
6	0	0	0	40	20	0			56	32	30	11	19	42	
7	0	0	0	40	20	0			73	59	48	26	51	84	
8															
totals	0	0	0	40	20	0			207	144	123	40	82	181	
										a١		young	per ad		
replicate	T	otal Yo		oduce	d by Ea	ch Adu	ılt		21	14	12	4	8	18	
1	19	15	10	0	0	17				ng pro			ercent	of cont	rols
2	20	17	16	0	7	21			100	70	59	19	40	87	
3	27	17	16	4	17	18									
4	20	19	16	0	17	16									
5	20	17	2	5	12	24									
6	17	6	14	10	8	17									
7	29	14	8	4	7	14									
.8	27	15	16	8	6	12									
9	18	9	16	0	8	24									
10	10	15	q	9	0	18	1								

Chemistry

	New Solutions									Old Solutions					
Dose (%)	ctl	6.25	12.5	25	50	100			ctl	6.25	12.5	25	50	100	
							Avera	ige V	/alues						
pН	8.4	8.4	8.3	8.3	8.1	7.3			8.3	8.3	8.2	8.2	8.1	7.5	
EC	369	390	418	485	614	861			373	412	436	501	642	889	
DO	7.1	7.1	7.2	7.1	7.2	7.2			6.7	6.7	6.7	6.8	6.8	6.8	
temp	25	25	25	25	25	25			25	25	25	25	25	25	
·							Varia	ance	(%)						
рН	1	1	1	1	1	3			1	1	1	0	0	2	
EC	3	3	2	2	2	2			2	3	2	2	1	1	
DO	3	2	2	2	2	2			3	3	3	3	2	2	
temp	0	0	0	0	0	0			2	2	2	2	2	2	
•												^			

The test data and results are verified correct.

Authorized by K.Steele, B.Sc., Quality Assurance Officer

Our liability is limited to the cost of the test requested on the sample as received. No liability in whole or in part is assumued for the collection, handling or transport of the sample, application or interpretation of the test data or results in part or in whole.

Client: NOR239 Sample: 20051122 Test: 20053129

Method Lemna 7d Static Acute Test (five treatments plus a control) (HQ 4.4.2.3) Reference: Biological Test Method: Test for Measuring the Inhibition of Growth Using the Freshwater Macrophyte, Lemna minor, 1999. Environment Canada,

EPS 1/RM/37.

Client: Norwest Labs Operation: Edmonton

Sample:

description: 398418, location 925-10

collected: 2005/07/27 not given at not given by received: 2005/07/29 at 1100 by L.Fantin

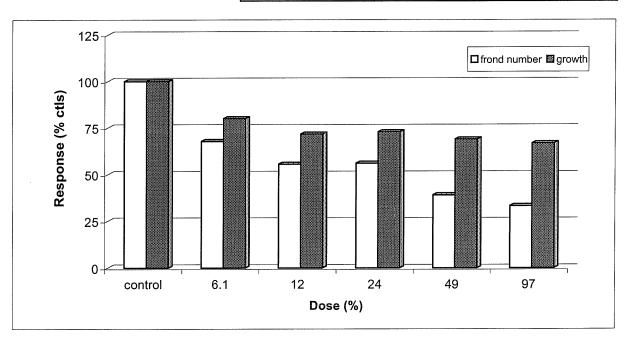
Test:

started: 2005/07/30 1330 bγ K. de Windt at ended: 2005/08/06 1130 by B. Denny at reported: 2005/08/15 G. Diaz by

Result:

_	Endpoint	Value	Confidence	e Limits	Units	Method Calculated
Chronic: (frond #)	IC25 IC50 NOEC LOEC MSD	<6.1 24 <6.1 6.1 4.6	could not be o	calculated	% % % fronds	Linear Interpolation Linear Interpolation Dunnett's Dunnett's Dunnett's
Chronic: (biomass)	IC25 IC50 NOEC LOEC MSD	10 >97 6.1 12 could not l	3.5 be calculated	71	% % % mg	Linear Interpolation Linear Interpolation estimated estimated estimated

Notes: ICx, concentrations lethal or inhibitory to 'x' percent of the test population; NOEC & LOEC, no and lowest observed effect concentrations; MSD, minimum significant difference


Comments:

No unusual behaviour or appearance or treatment of test organisms was noted prior to testing or during testing. There was not growth stimulation observed during the test. Only three replicates were weighted in the 49% concentration.

Our liability is limited to the cost of the test requested. No liability is assumed for the application and or interpretation of the test results.

Test Information

Organism: The test organism was Lemna minor from in-house cultures. It was originally obtained from the University of Toronto Culture Collection (492). The fronds were acclimated in test media for 24 h prior to test initiation. The test culture was axenic prior to testing.

The fronds are

9 days old at test initiation.

The mean increase in frond number of culture over last 7 days:

25

fold increase:

8

Test Design: The test was a static test conducted in 200 mL polyethylene plastic containers with clear lids. The test volume was 150 mL. There were four replicates per treatment. The test was initiated with two 3 frond daughter plants per replicate.

Test Media: The test media was deionized water spiked with nutrients (Environment Canada EPS 1/RM/37, 1999). No other chemicals were added to the test media. The media aerated for two hours and pH adjusted to 8.3±0.1 with 6N HCl or NaOH. The test media was not filtered. The control and dilution water was test media.

Temperature (°C

Date	Day	Time	Technicians	Rotate	Control	24%	97%
2005/07/30	0	1330	K. de Windt	na	25	25	25
2005/07/31	1	0850	M. Luong	yes	25	25	25
2005/08/01	2	0900	M. Luong	yes	25	25	25
2005/08/02	3	0900	C.A. Martens	yes	25	25	25
2005/08/03	4	0800	C.A. Martens	yes	25	25	25
2005/08/04	5	0830	C.A. Martens	yes	25	25	25
2005/08/05	6	0820	C.A. Martens	yes	25	25	25
2005/08/06	7	1130	B. Denny	na	24	24	24

Proof Number Control 6.1 12 24 49 97	Test Data			Client:	NOR239	Sample:	20051122	Test:	20053129
Teplicate									
Frond Number day 0 a 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	Biology								
Frond Number day 0 a 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6		replicate			1 40		1 40	l 07	,
day 0			control	6.1	12	24	49	97	
Description	Frond Numb	per							
C 6 6 6 6 6 6 6 6 6	day 0								
day 7		b							
day 7 a 51 34 31 26 25 16 b 54 36 27 31 16 19 c 48 30 28 29 20 16 d 6 6 6 6 6 6 6 6 6 7 19 8 29 29 20 17 17 17 17 18 3 29 29 20 17 17 18 3 2 29 29 20 17 19 8 2 2 4 1 1 2 2 4 1 1 2 2 4 1 1 2 2 4 1 1 2 2 2 4 1 1 2 2 2 4 1 1 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 <th></th> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
D		d	6	6	6	6	6	6	
D						/			
c 48 30 28 29 20 16 d 52 39 28 29 19 17 average 51 35 29 29 20 17 sd 3 4 2 2 4 1 cv 5 11 6 7 19 8 % ctls 100 68 56 56 39 33 Dry Weights (mg) day 7 a	day 7								
d 52 39 28 29 19 17		b							
average 51 35 29 29 20 17									
sd 3 4 2 2 4 1 cv 5 11 6 7 19 8 % ctls 100 68 56 56 39 33 Dry Weights (mg) day 7 a 3.8 2.8 3.2 2.9 not done 3.0 b 4.2 3.5 2.6 2.7 2.6 2.3 c 3.9 2.9 3.2 3.4 3.1 2.6 d 4.1 3.7 2.6 2.8 2.6 2.9 average 4.0 3.2 2.9 2.9 2.8 2.7 sd 0.2 0.4 0.3 0.3 0.3 0.3 cv 5 13 11 11 12 11 %ctls 100 80 72 73 69 67 Chemistry day 0 ### B.4 ###		d	52	39	28	29	19	17	
sd 3 4 2 2 4 1 cv 5 11 6 7 19 8 % ctls 100 68 56 56 39 33 Dry Weights (mg) day 7 a 3.8 2.8 3.2 2.9 not done 3.0 b 4.2 3.5 2.6 2.7 2.6 2.3 c 3.9 2.9 3.2 3.4 3.1 2.6 d 4.1 3.7 2.6 2.8 2.6 2.9 average 4.0 3.2 2.9 2.9 2.8 2.7 sd 0.2 0.4 0.3 0.3 0.3 0.3 cv 5 13 11 11 12 11 %ctls 100 80 72 73 69 67 Chemistry day 0 ### B.4 ###									.,
cv 5 11 6 7 19 8 % ctls 100 68 56 56 39 33 Dry Weights (mg) day 7 a 3.8 2.8 3.2 2.9 not done 3.0 b 4.2 3.5 2.6 2.7 2.6 2.3 c 3.9 2.9 3.2 3.4 3.1 2.6 d 4.1 3.7 2.6 2.8 2.6 2.9 average 4.0 3.2 2.9 2.9 2.8 2.7 sd 0.2 0.4 0.3 0.3 0.3 0.3 cv 5 13 11 11 12 11 %ctls 100 80 72 73 69 67 Chemistry day 0 day 0 pH 8.2 8.1 8.1 8.1 8.2 8.2 DO 7.3 7.2 7.3 <t< td=""><th></th><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>									
Materials Mate		sd					<u> </u>		
Dry Weights (mg) day 7 a 3.8 2.8 3.2 2.9 not done 3.0 b 4.2 3.5 2.6 2.7 2.6 2.3 c 3.9 2.9 3.2 3.4 3.1 2.6 d 4.1 3.7 2.6 2.8 2.6 2.9 average 4.0 3.2 2.9 2.9 2.8 2.7 sd 0.2 0.4 0.3 0.3 0.3 0.3 cv 5 13 11 11 12 11 %ctls 100 80 72 73 69 67 Chemistry day 0 pH 8.2 8.1 8.1 8.1 8.2 8.2 EC 951 908 945 10.5 1209 1556 DO 7.3 7.2 7.3 7.3 7.3 7.3 temp 23 23 23 23 23 23 day 7 pH 8.4 8.8 8.8 9.0 8.9 8.8 EC 915 931 965 1076 1340 1624 DO 7.3 8.3 8.2 9 8.4 8.3									
day 7 a 3.8 2.8 3.2 2.9 not done 3.0 b 4.2 3.5 2.6 2.7 2.6 2.3 c 3.9 2.9 3.2 3.4 3.1 2.6 d 4.1 3.7 2.6 2.8 2.6 2.9 average 4.0 3.2 2.9 2.9 2.8 2.7 sd 0.2 0.4 0.3 0.3 0.3 0.3 cv 5 13 11 11 12 11 %ctls 100 80 72 73 69 67 Chemistry day 0 DH 8.2 8.1 8.1 8.1 8.2 8.2 DO 7.3 7.2 7.3 7.3 7.3 7.3 temp 23 23 23 23 23 23 day 7 PH 8.4 8.8 8.8 9.0 8.9 8.8 <		% ctls	100	68	56	56	39	33	
day 7 a 3.8 2.8 3.2 2.9 not done 3.0 b 4.2 3.5 2.6 2.7 2.6 2.3 c 3.9 2.9 3.2 3.4 3.1 2.6 d 4.1 3.7 2.6 2.8 2.6 2.9 average 4.0 3.2 2.9 2.9 2.8 2.7 sd 0.2 0.4 0.3 0.3 0.3 0.3 cv 5 13 11 11 12 11 %ctls 100 80 72 73 69 67 Chemistry day 0 DH 8.2 8.1 8.1 8.1 8.2 8.2 DO 7.3 7.2 7.3 7.3 7.3 7.3 temp 23 23 23 23 23 23 day 7 PH 8.4 8.8 8.8 9.0 8.9 8.8 <	Dry Weights	(mg)							
b 4.2 3.5 2.6 2.7 2.6 2.3			3.8	2.8	3.2	2.9	not done	3.0	
c 3.9 2.9 3.2 3.4 3.1 2.6 d 4.1 3.7 2.6 2.8 2.6 2.9 average 4.0 3.2 2.9 2.9 2.8 2.7 sd 0.2 0.4 0.3 0.3 0.3 0.3 cv 5 13 11 11 12 11 %ctls 100 80 72 73 69 67 Chemistry day 0 pH 8.2 8.1 8.1 8.2 8.2 EC 951 908 945 10.5 1209 1556 DO 7.3 7.2 7.3 7.3 7.3 7.3 temp 23 23 23 23 23 23 day 7 pH 8.4 8.8 8.8 9.0 8.9 8.8 EC 915 931 965 1076	,				2.6			2.3	
d 4.1 3.7 2.6 2.8 2.6 2.9		С	3.9	2.9	3.2	3.4	3.1	2.6	
sd 0.2 0.4 0.3 0.3 0.3 0.3 cv 5 13 11 11 12 11 %ctls 100 80 72 73 69 67 Chemistry day 0 pH 8.2 8.1 8.1 8.2 8.2 EC 951 908 945 10.5 1209 1556 DO 7.3 7.2 7.3 7.3 7.3 7.3 temp 23 23 23 23 23 23 day 7 pH 8.4 8.8 8.8 9.0 8.9 8.8 EC 915 931 965 1076 1340 1624 DO 7.3 8.3 8.2 9 8.4 8.3		d	4.1		2.6		2.6		
sd 0.2 0.4 0.3 0.3 0.3 0.3 cv 5 13 11 11 12 11 %ctls 100 80 72 73 69 67 Chemistry day 0 pH 8.2 8.1 8.1 8.2 8.2 EC 951 908 945 10.5 1209 1556 DO 7.3 7.2 7.3 7.3 7.3 7.3 temp 23 23 23 23 23 23 day 7 pH 8.4 8.8 8.8 9.0 8.9 8.8 EC 915 931 965 1076 1340 1624 DO 7.3 8.3 8.2 9 8.4 8.3	'								
sd 0.2 0.4 0.3 0.3 0.3 0.3 cv 5 13 11 11 12 11 %ctls 100 80 72 73 69 67 Chemistry day 0 pH 8.2 8.1 8.1 8.1 8.2 8.2 EC 951 908 945 10.5 1209 1556 DO 7.3 7.2 7.3 7.3 7.3 7.3 temp 23 23 23 23 23 23 day 7 pH 8.4 8.8 8.8 9.0 8.9 8.8 EC 915 931 965 1076 1340 1624 DO 7.3 8.3 8.2 9 8.4 8.3		average	4.0	3.2	2.9	2.9	2.8	2.7	
%ctls 100 80 72 73 69 67 Chemistry day 0 pH 8.2 8.1 8.1 8.1 8.2 8.2 EC 951 908 945 10.5 1209 1556 DO 7.3 7.2 7.3 7.3 7.3 7.3 temp 23 23 23 23 23 23 day 7 pH 8.4 8.8 8.8 9.0 8.9 8.8 EC 915 931 965 1076 1340 1624 DO 7.3 8.3 8.2 9 8.4 8.3			0.2	0.4	0.3	0.3	0.3	0.3	
Chemistry day 0		cv	5	13	11	11	12	11	
day 0 pH 8.2 8.1 8.1 8.2 8.2 EC 951 908 945 10.5 1209 1556 DO 7.3 7.2 7.3 7.3 7.3 7.3 temp 23 23 23 23 23 23 day 7 PH 8.4 8.8 8.8 9.0 8.9 8.8 EC 915 931 965 1076 1340 1624 DO 7.3 8.3 8.2 9 8.4 8.3		%ctls	100	80	72	73	69	67	
day 0 pH 8.2 8.1 8.1 8.2 8.2 EC 951 908 945 10.5 1209 1556 DO 7.3 7.2 7.3 7.3 7.3 7.3 temp 23 23 23 23 23 23 day 7 PH 8.4 8.8 8.8 9.0 8.9 8.8 EC 915 931 965 1076 1340 1624 DO 7.3 8.3 8.2 9 8.4 8.3	Chemietre								
EC 951 908 945 10.5 1209 1556 DO 7.3 7.2 7.3 7.3 7.3 7.3 temp 23 23 23 23 23 23 day 7 PH 8.4 8.8 8.8 9.0 8.9 8.8 EC 915 931 965 1076 1340 1624 DO 7.3 8.3 8.2 9 8.4 8.3		n⊔ I	<u> </u>	Q 1	9.1	Q 1	92	<u> </u>	
DO 7.3 7.2 7.3 7.3 7.3 7.3 temp 23 23 23 23 23 23 day 7 pH 8.4 8.8 8.8 9.0 8.9 8.8 EC 915 931 965 1076 1340 1624 DO 7.3 8.3 8.2 9 8.4 8.3	uay u	FC							
temp 23 23 23 23 23 23 23 23 23 23 23 23 23			73	7.2	73		7.3		
day 7 PH 8.4 8.8 8.8 9.0 8.9 8.8 EC 915 931 965 1076 1340 1624 DO 7.3 8.3 8.2 9 8.4 8.3									
EC 915 931 965 1076 1340 1624 DO 7.3 8.3 8.2 9 8.4 8.3		remb	23	۷	۷۵	۷.	۷.5	۷3	
EC 915 931 965 1076 1340 1624 DO 7.3 8.3 8.2 9 8.4 8.3	day 7	рН	8.4	8.8	8.8	9.0	8.9	8.8	
DO 7.3 8.3 8.2 9 8.4 8.3	·		915			1076			
					8.2		8.4		
		temp	24	24	24	24	24	24	

Notes:

pH, units; EC, electrical conductance (uS/cm); DO, dissolved oxygen (mg/L); temp, temperature (°C);

sd, standard deviation; cv, coefficient of variance; %ctls, percent of controls

#3, 6125 12th Street SE, Calgary, Alberta Canada T2H 2K1 Tel (403) 253-7121 / Fax (403) 252-9363 www.hydroqual.ca

Test Report

Test Data	Client:	NOR239	Sample:	20051122	Test:	20053129

Comments	s (day 7)
Dose	
control	light green, long roots
6.1	light green, long roots
12	light green, medium roots, slight gib, slight chl
24	light green, medium roots,slight chl
49	light green, short roots, slight chl
97	light green, short roots, slight chl

Notes:

chl, chlorotic; nec, necrotic; asf, abnormally sized fronds; gib, gibbosity; cd, colony destroyed;

rd, roots destroyed; lb, loss of bouyancy

Comments

The effluent was spiked with nutrients (Environment Canada EPS 1/RM/37, 1999).

The sample was not pH adjusted or filtered prior to testing.

The sample was pre-aerated for at least 20 minutes with oil free filtered compressed air from a 1 mL glass pipette attached to an air pump at a rate of 2-3 bubbles per second.

Date of effluent preparation:

2005/07/30

The light levels (lux) were measured at the sample surface, at three locations on the testing bench, during testing:

left:

4465

center:

4750 right:

4465

The mean number of fronds in the controls have increased t

fold.

The test data and results are verified correct.

Authorized by K.Steele, B.Sc., Quality Assurance Officer

Our liability is limited to the cost of the test requested on the sample as received. No liability in whole or in part is assumued for the collection, handling or transport of the sample, application or interpretation of the test data or results in part or in whole.

	Client: NOR23	Sample:	20051122	Test:	20053130
--	---------------	---------	----------	-------	----------

Method: 72h Algal Growth Inhibition Test (HQ 4.4.2.7)

reference: Biological Test Method: Growth Inhibition Test Using the Freshwater Alga Selenastrum

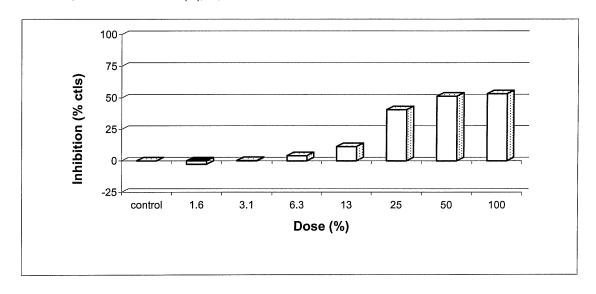
capricornutum, 1992. Environment Canada, EPS 1/RM/25. (ammended November 1997)

Client: Norwest Labs Operation: Edmonton

Sample:

description: 398418, location 925-10

collected: 2005/07/27 at not given by not given received: 2005/07/29 at 1100 by L.Fantin


Test:

started: 2005/07/29 at 1430 by K. de Windt ended: 2005/08/01 at 1315 by K. de Windt reported: 2005/08/15 by G. Diaz

Result:

Endpoint	Value	Confidence	Confidence Limits		Method Calculated
IC25 IC50 NOEC LOEC	17 44 13 25	15 35	19 53	% % % %	Linear Interpolation Linear Interpolation estimated estimated

Notes: ICx, concentrations inhibiting growth by 'x' percent relative to controls; NOEC & LOEC, no and lowest observed effect concentrations; MSD, minimum significant difference; cv, coefficient of variance (%); sd, standard deviation

#3, 6125 12th Street SE, Calgary, Alberta Canada T2H 2K1 Tel (403) 253-7121 / Fax (403) 252-9363 www.hydroqual.ca

Test Report

Test Data Client: NOR239 | Sample: 20051122 | Test: 20053130

Sample Pretreatment:

pH adjustment not required preaeration not required

turbidity 100 mL filtered through a 0.45um membrane filter

other sample spiked with nutrients as required by the method; no other chemicals added

Final Cell Densities (x10³ / mL)

Dose		Plate	*****	Average	sd	CV	Percent	Inhibition
(%)	а	b	С			(%)	Controls	(%)
control	461	438	427	442	17	4	100	0
1.6	479	450	434	454	23	5	103	-3
3.1	466	435	421	441	23	5	100	0
6.3	430	424	418	424	6	1	96	4
13	410	384	383	392	15	4	89	11
25	266	270	253	263	9	3	59	41
50	215	210	220	215	5	2	49	51
100	201	213	205	206	6	3	47	53

Note: The final cell densities for the controls are an average of 10 replicate well reading per plate. The final cell densities for each dose is an average of 5 replicate well readings per plate.

Comments

The test was conducted in 96 well microplates. Three replicate plates were run (a, b and c). On each plate 220 uL of sample was plated in 5 replicate wells per dose and 10 replicate wells per control.

The test species was Raphidocelis subcapitata (formerly Selenastrum capricornutum).

The test was started with 7 day old, exponentially growing cells from in-house cultures.

The plates were incubated under continuous light (4,000 lux).

İ				Dose	Absorbance	Counts
Inoculum	(cells/mL)	Daily Tem	perature	(%)	(430nm)	(/0.5mL)
		0	25	ctl-a	0.14	6850
а	10400	1	25	12.5-a	0.12	5700
b	10600	2	25	100-a	0.06	1100
С	11000	3	25	ctl-b	0.13	5550
mean	10667	mean	25	12.5-b	0.11	4750
cv (%)	3	cv (%)	0	100-b	0.06	1300
				ctl-c	0.13	5100
control pH:	initial	100% pH: ir	nitial	12.5-c	0.11	4750
	final			100-с	0.06	1350

Final cell densities were determined from the absorbance at 430 nm calibrated against cell counts.

The conversion factor for absorbance to cells per millilitre was 3398 with a cv of 34 % Control growth was a 41 fold increase over the inoculum with a cv of 4 %

No significant stimulatory or inhibitory trends were detected by Mann-Kendall Trend analysis (p=0.05).

The test data and results are verified correct.

Authorized by K.Steele, B.Sc., Quality Assurance Officer

Our liability is limited to the cost of the test requested on the sample as received. No liability in whole or in part is assumued for the collection, handling or transport of the sample, application or interpretation of the test data or results in part or in whole.

Client:	NOR239	Sample:	20051122	Test:	20053131

Method: 7 d Fathead Minnow Survival and Growth Test (five treatments plus a control) (HQ 4.4.4.6)

reference: Biological Test Method: Test of Larval Growth and Survival Using Fathead Minnow,

1992. Environment Canada, EPS 1/RM/22. (ammended 1997)

Client: Norwest Labs Operation: Edmonton

Sample:

description: 398418, location 925-10

collected: 2005/07/27 not given not given received: 2005/07/29 1100 L.Fantin at

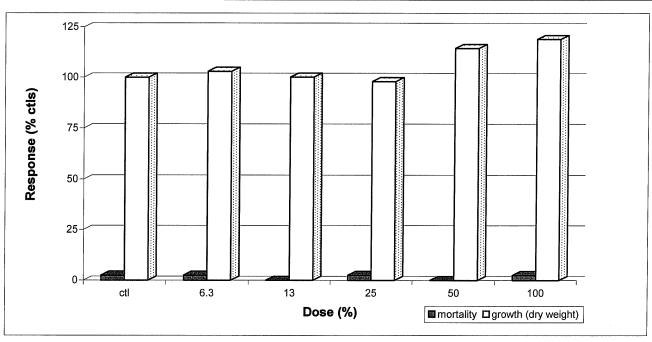
Test:

started: 2005/07/29 1330 A. Corbett at ended: 2005/08/05 1350 L. Fantin at by G. Diaz reported: 2005/08/15 by

Result:

	Endpoint	Value	Confidence Limits	Units	Method Calculated
Acute:	LC25	>100		%	estimated
(mortality)	LC50	>100		%	estimated
	NOEC	100		%	estimated
	LOEC	>100		%	estimated
	MSD	could not b	e calculated	fish	
Chronic:	IC25	>100		%	estimated
(growth)	IC50	>100		%	estimated
	NOEC	100		%	estimated
	LOEC	>100		%	estimated
	MSD	could not b	e calculated	mg	

Notes: LCx & ICx, concentrations lethal or inhibitory to 'x' percent of the test population; NOEC & LOEC, no and lowest observed effect concentrations


Comments: The EC guidance document on the importation of test organisms (1999) has been followed. No unusual behaviour or appearance or treatment of test organisms was noted prior to shipping, upon arrival or preceding the test. Test organisms were received in good condition, with inflated swim bladders. No acclimation of test organisms was required. The mortality of the test organisms was <2%upon arrival, and before test initiation.

> Our liability is limited to the cost of the test requested. No liability is assumed for the application and or interpretation of the test results.

Test Report

Test Design

Organism: Pimephales promelas

Source: Aquatox Inc.

Age: < 24 hour post hatch

7.2

Breeding stock mortality was less than five percent during the week prior to test initiation.

The tests were conducted in 500 mL plastic vessels with 250 mL volumes (depth of 6.5 cm).

The sample was diluted with dechlorinated City of Calgary water acclimated to the test conditions.

Sample Information

The test was conducted with three samples. Samples a, b, and c were for days 0 to 2, 3 to 4, and 5 to 7.

The sample was not preaerated, filtered or pH adjusted prior to testing or during testing.

The dissolved oxygen concentration (mg/L) was 7.8 The sample pH was

Test Log

Date	Day	Time	Technicians	Comments
2005/07/29	0	1330	A. Corbett	Test organisms appear normal.
2005/07/30	1	1200	M. Luong	Test organisms appear normal.
2005/07/31	2	1230	M. Luong	Test organisms appear normal.
2005/08/01	3	1200	M. Luong	Test organisms appear normal.
2005/08/02	4	1350	A.Corbett	Test organisms appear normal.
2005/08/03	5	1330	A. Corbett	Test organisms appear normal.
2005/08/04	6	1400	L. Fantin	Test organisms appear normal.
2005/08/05	7	1350	L. Fantin	Test organisms appear normal.

The test data and results are verified correct.

Authorized by K.Steele, B.Sc., Quality Assurance Officer

Our liability is limited to the cost of the test requested on the sample as received. No liability in whole or in part is assumued for the collection, handling or transport of the sample, application or interpretation of the test data or results in part or in whole.

Test Report

Test Data						Client	: NOR2	239	S	ample:	2005	1122	Test	20053	3131
							Ch	nemi	stry						
				Solution				,		,		olution			,
dose (%)	ctl	6.3	13	25	50	100		j	cti	6.3	13	25	50	100	<u></u>
day			r	.∐ /unit	·c/							نمال الم	·a\		
0	8.3	8.3	8.2	H (unit 8.2	8.1	7.2	T	1			<u> </u>	oH (uni T	T	T	1
1	8.4	8.3	8.3	8.2	8.1	7.4	 	1	8.4	8.4	8.4	8.3	8.3	7.6	
2	8.3	8.3	8.3	8.2	8.1	7.3		┨	8.2	8.2	8.1	8.1	8.0	7.2	
3	8.3	8.3	8.3	8.2	8.1	7.3		1	8.2	8.2	8.1	8.1	7.9	7.3	
4	8.3	8.3	8.3	8.2	8.1	7.2	<u> </u>	1	8.2	8.1	8.1	8.1	8.0	7.3	
5	8.3	8.3	8.3	8.2	8.1	7.3		1	8.2	8.1	8.1	8.0	8.0	7.4	
6	8.4	8.4	8.4	8.3	8.2	7.6		1	8.1	8.0	7.9	7.8	7.6	7.6	
7								1	8.2	8.1	8.1	8.1	7.9	7.7	
8								1							
•			conduc	tance ((uS/cm)		_			conduc	ctance	uS/cm)	
0	444	458	490	547	673	921									
1	409	421	455	520	634	870			398	408	429	483	593	845	
2	468	439	458	521	631	863			432	427	444	495	616	884	
3	400	417	450	505	623	852			410	415	462	515	601	887	
4	420	418	440	500	626	850			412	432	460	516	600	880	
5	418	418	423	500	620	852			420	455	480	486	550	910	
6	432	446	479	538	667	896			433	473	507	572	520	722	
7									457	465	501	555	693	934	
8 [L		<u> </u>	L							<u> </u>	<u> </u>	<u> </u>	
ο Γ	7.0		ssolve					1 1		di	ssolve	d oxyge	en (mg/	L)	
0	7.6	7.6	7.6 7.7	7.6 7.7	7.7	7.8			7.0	7.0	7.0	7.4	7.5	7.5	
1	7.6 7.6	7.7 7.6	7.7	7.7	7.7 7.7	7.7 7.7			7.3	7.3	7.3 6.7	7.4	7.5	7.5	
2 3	7.4	7.6	7.5	7.7	7.6	7.7			6.8 6.8	6.8 6.8	6.8	6.8 6.8	6.8 6.8	6.8 6.8	
4	7.4	7.4	7.4	7.4	7.4	7.4			6.9	6.6	6.6	6.7	6.7	6.9	
5	7.4	7.3	7.3	7.3	7.6	7.3		ł	6.8	6.8	6.8	6.7	6.4	6.5	
6	7.3	7.4	7.3	7.4	7.4	7.4		}	6.2	6.1	6.1	6.0	6.4	6.1	
7	7.0	,	7.0	71	7	7.4		ŀ	6.6	6.7	6.7	6.7	6.7	6.8	
8												0.7	0.7	0.0	
			temp	erature	(°C)						temp	erature	(°C)		
0 [25	25	25	25	25	25			I						
1 [25	25	25	25	25	25		ľ	25	25	25	25	25	25	
2	25	25	25	25	25	25		ſ	25	25	25	25	25	25	
3 [25	25	25	25	25	25			25	25	25	25	25	25	
4	25	25	25	25	25	25			25	25	25	25	25	25	
5	25	25	25	25	25	25			25	25	25	25	25	25	
6	25	25	25	25	25	25			25	25	25	25	25	25	
7									25	25	25	25	25	25	-
8 <u>[</u>															

Test Report

Test Data						Client	: NOR2	239	S	ample:	20051	122	Test:	20053	3131
						Di	ology	/num	ber ali	ivo)					
dose (%)	ctl	6.3	13	25	50	100	logy	(11411)]	ctl	6.3	13	25	50	100	
replicate		0.0	10	day 1		1.00		J		1 0.0	1 10	day 5	1 00	1 100	I
а	10	10	10	10	10	10	T	7	10	10	10	10	10	10	
b	10	10	10	10	10	10		1	10	9	9	10	10	10	
С	10	10	10	10	10	10		1	10	10	10	10	10	9	
d	10	10	10	10	10	10		1	9	10	10	10	10	10	
	I			day 2				_				day 6		1	L
а	10	10	10	10	10	10]	10	10	10	10	10	10	
b	10	10	10	10	10	10		1	10	9	10	9	10	10	
С	10	10	10	10	10	9			10	10	10	10	10	9	
d	9	10	10	10	10	10		1	9	10	10	10	10	10	
				day 3				_				day 7			
а	10	10	10	10	10	10			10	10	10	10	10	10	
b	10	9	10	10	10	10			10	9	10	9	10	10	
С	10	10	10	10	10	9			10	10	10	10	10	9	
d	9	10	10	10	10	10]	9	10	10	10	10	10	
1				day 4		·	,	1 1				eights			
a	10	10	10	10	10	10			5.8	6.1	5.3	6.4	7.2	7.4	
b	10	9	10	10	10	10	ļ		5.6	5.6	6.1	5.3	7.1	8.1	
C	10	10	10	10	10	9			6.0	5.8	6.3	5.5	6.0	5.1	
d	9	10	10	10	10	10]	5.4	6.0	5.8	5.2	6.5	6.8	
Summary	Tables	;	Mo	rtality (%)					Gr	owth D	ata (mo	a per fis	sh)	
a	0	0	0	0	0	0			0.6	0.6	0.5	0.6	0.7	0.7	
b	0	10	0	10	0	0			0.6	0.6	0.6	0.6	0.7	0.8	
С	0	0	0	0	0	10			0.6	0.6	0.6	0.6	0.6	0.6	
d	10	0	0	0	0	0			0.6	0.6	0.6	0.5	0.6	0.7	l
mean	3	3	0	3	0	3			0.6	0.6	0.6	0.6	0.7	0.7	
sd	5	5	0	5	0	5			0.0	0.0	0.0	0.1	0.1	0.1	
cv(%)	200	200	0	200	0	200			3	3	7	9	9	14	
												Percen	t of Co	ntrols	
									100	103	100	98	114	119	
Chemistry	•														
da = = (0/)	-41			olutions		400		Г	-41 [lutions		400	 1
dose (%)	ctl	6.3	13	25	50	100	Avera	- L	ctl	6.3	13	25	50	100	
рН	8.3	8.3	8.3	8.2	8.1	7.3	Avera	ige v [8.2	8.2	8.1	8.1	8.0	7.4	
EC	427	431	456	519	639	7.3 872			6.2 423	6.2 439	6. i 469	517	596	866	
DO	7.5	7.5	7.5	7.5	7.6	7.6			423 6.8	439 6.7	6.7	6.7	6.8	6.8	
temp	7.5 25	7.5 25	7.5 25	7.5 25	25	25			25	25	6.7 25	25	25	0.6 25	
Cilip [20			 Vari:	L ance					۷	20	
рН [1	0	1	0	0	2	7 311		1	2	2	2	3	3	
EC	5	4	5	4	3	3			5	6	6	7	9	8	
DO	2	2	2	2	2	3			5	5	5	6	5	6	1
temp	0	0	0	0	0	0			Ō	0	0	0	0	0	
· · · · · L								L				-	-		

Test Method: Daphnia Static Acute Test (LC50, five or more treatments plus a control)

HydroQual Test Method Manual, section: 4.4.3.1

Reference: Biological Test Method: Reference Method for Determining the Acute Lethality of

Effluents to Daphnia magna, 1990. Environment Canada, EPS 1/RM/14.

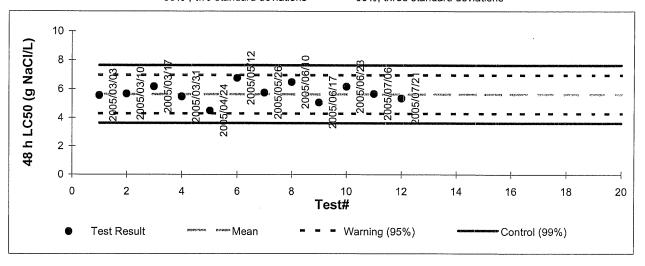
including May 1996 and December 2000 ammendments.

Test Or	ganism	Test Design					
test species	Daphnia magna	vol. of test vessel (mL)	500				
culture source	in-house	toxicant	sodium chloride				
original culture source	Environment Canada	test volume (mL)	150				
days to first brood	9	replicates per treatment	1				
mean brood size	26	neonates per replicate	10				
ephippia in stock culture	no	volume per neonate (mL)	15				
age of test organisms	<24 hours old	samples preaerated	no				
culture mortality (%)	6.7	hardness adjustment	no				
		temperature (°C)	20				
		photoperiod	16h light:8h dark				
		light level (water surface)	400-800 lux				
		control/dilution water	dechlorinated				
Quality Assurance Unit: The test data and result are v	erified correct.	K. Steele 2005	tap water				

The test data and result are verified correct.

Authorized by K. Steele

Warning Chart (mortality LC50 at 48 h)


Toxicant: Sodium Chloride (NaCl)

Current Test: started: 2005/07/19 ended: 2005/07/21

Result (48 h LC50): 5.4 (4.9-5.8) g NaCl/L 95% confidence limits are in brackets

Historical Mean: 5.6 std. dev: 0.7 cv (%): 12
Chart Limits: warning: 4.3 7.0 control: 3.6 7.6

95%, two standard deviations 99%, three standard deviations

Test Method:

Trout 96h Static Acute Test. (LC50, five or more treatments plus a control)

HydroQual Test Method Manual, section: 4.4.4.1

Reference:

Biological Test Method: Reference Method for Determining Acute Lethality of

Effluents to Rainbow Trout, 1990. Environment Canada, EPS 1/RM/13.

including May 1996 and December 2000 amendments.

Test Organi	sm
-------------	----

Test Design

test species	Oncorhyncus mykiss	vol. of test vessel (L)	22
culture source	Rainbow Springs Trout Farms	test volume depth	>15 cm
temperature (°C)	15 ± 1	replicates per treatment	1
dissolved oxygen	saturated	fingerlings per replicate	10
stock mortality (last 7d)	<2%	loading (g fish/L)	< 0.5
batch number	20050714TR	temperature (°C)	15 ± 1
		photoperiod	16h light: 8h dark
		light level (water surface)	100-500 lux
		control/dilution water	dechlorinated
		A	tap water

Qualty Assurance Unit:

The test data and result are verified correct.

Warning Chart (mortality LC50 at 96 h)

Toxicant:

Phenol (C₆H₅OH)

Current Test:

2005/08/08 ended: started:

2005/08/12

Result (96 h LC50):

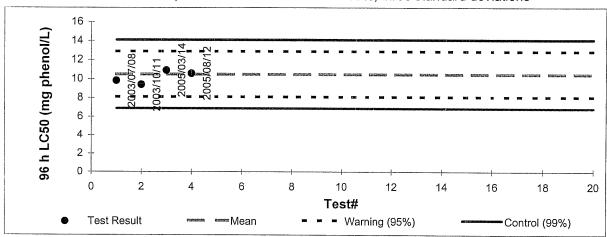
10.6 (8.0-16.0) mg/L 95% confidence limits are in brackets

Historical Mean:

10.5 warning:

std.dev: 1.2 CV(%):

11 6.9


Chart Limits:

8.1

12.9 control: 14.1

95%, two standard deviations

99%, three standard deviations

Test Method: Ceriodaphnia Survival and Reproduction Test (5 treatments plus a control)

HydroQual Test Method Manual, section: 4.4.3.2

Reference: Biological Test Method: Test of Reproduction and Survival Using the

Cladoceran Ceriodaphnia dubia, 1992. Environment Canada, EPS 1/RM/21

including November, 1997 amendments.

Test Organism

Test Design

test species culture source	<i>Ceriodaphnia dubia</i> in-house	test type toxicant	static renewal sodium chloride (NaCl)
original culture source	Environment Canada	test vessel	30 mL plastic cup
ephippia in stock culture	none	test volume (mL)	15
mortality in culture	2	replicates per treatme	n t 10
culture fecundity	18(mean young/adult)	organisms per replicat	e 1
young produced in		feeding	daily
previous brood	7	temperature (°C)	24-26
food type	YAT:Algae	photoperiod 1	6 hours light: 8 hours dark
frequency of feeding	daily	light level (surface)	100-600 lux
condition prior to test		hardness adjustment	no
initiation	normal		
age of test organisms	<24 hours		

^{*}note: there are 2 subcultures within this culture source, separated by one week in age.

Control/Dilution Water

Source	equal volumes of Bow River water and
	moderately hard reconstituted water (50:50)
pH (units)	8.1
conductance (uS/cm)	352
dissolved oxygen (mg/L)	7.1
NH ₄ ⁺ (mg/L)	<0.1
hardness (mg CaCO ₃ /L)	120
alkalinity (mg CaCO ₃ /L)	119
total residual chlorine (mg	g/L) <0.01

moderately hard reconstituted water prepared as per EPS 1/RM/21

Quality Assurance Unit:

The test data and results are verified correct.

Authorized by: K. Steele

2005/07/25

The test is set with organisms from one subculture. The number of young a culture has is monitored daily.

If young are not used that day, they are discarded, therefore organisms in tests are <24h.

Ceriodaphnia dubia Warning Chart (Mortality: LC50 at 7 days)

Toxicant:

Sodium Chloride (NaCl)

Current Test:

started:

2005/07/15 ended:

2005/07/21

Result (7 d LC50): **Historical Mean:**

2.0 2.3 (0.8-2.5)std dev:

g NaCI/L 95% confidence limits are in brackets 0.3

CV (%):

14

Chart Limits:

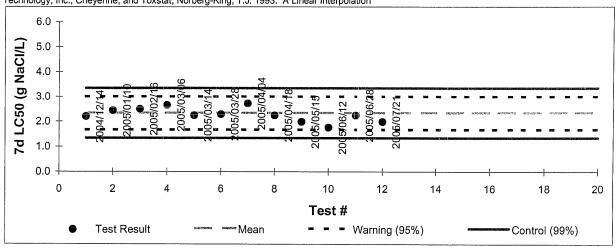
warning:

1.7

3.0

control:

1.3


3.3

95%, two standard deviations

99%, three standard deviations

Statistical analysis perfomed by ICPIN, West, Inc. and D. D. Gulley, 1994. Toxstat 3.4. Western Eco-Systems

Technology, Inc., Cheyenne, and Toxstat, Norberg-King, T.J. 1993. A Linear Interpolation

Ceriodaphnia dubia Warning Chart (Reproduction: IC50 at 7 days)

Toxicant:

Sodium Chloride (NaCI)

Current Test:

started:

2005/07/15 ended:

2005/07/21

Result (7d IC50): **Historical Mean:**

0.7 0.9

(0.4-0.8)std dev:

0.5

g NaCl/L 95% confidence limits are in brackets 0.2

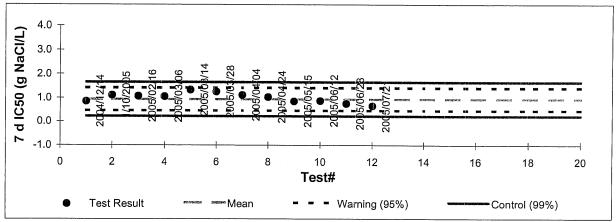
CV (%):

Chart Limits:

warning:

1.4

control:


0.2

1.7

26

95%, two standard deviations

99%, three standard deviations

#3, 6125 12th Street SE Calgary, Alberta Canada T2H 2K1 Tel (403) 253-7121 Fax (403) 252-9363 www.hydroqual.ca

Reference Toxicant Ceriodaphnia Culture Log

Adults	7 d ago day used												
live	42 41	1	2	3	4	5	6	7	8	9	10	11	12
		'	4-	Ü	7	Ü	U	,	U	J	10	' '	12
day prior	row/replicate	A2	A4	B1	B2	C2							
to use	1		T			·	·						
7	number of young												
	number of adults				<u> </u>	<u> </u>	<u> </u>						
		A2	A4	B1	B2	C2							
6	number of young												
	number of adults		<u> </u>	<u></u>	ļ	<u> </u>		i					
		A2	A4	B1	B2	C2							
5	number of young				T								
	number of adults												
		۸۵	Λ.4	D4	DO	CO							
4	number of young	A2 8	A4 7	B1 10	B2 12	C2 0	1						
	number of adults	2	2	2	2	2							
L					<u> </u>	·	<u> </u>	1			I		
	1	A2	A4	B1	B2	C2							
3	number of young	0 2	0 2	0 2	0 2	8							
	number of adults				2	2							
		A2	A4	B1	B2	C2							
2	number of young	12	14	12	18	12							
	number of adults	2	2	2	2	2							
		A2	A4	B1	B2	C2							
DAY USED	number of young	16	14	12	12	12							
	number of adults	2	2	2	2	2						1	
												<u>.</u>	
totals	T I	A2 18	A4 17.5	B1 17	B2 21	C2 16					т		
lotais		10	17.5	17	21	10							
	1]		<u> </u>			l	L				
number of y	oung produced pe	r orgar	nism in	the las	t brood	before	use			7			
	an af armitute		- 1 -11						г				
mean numb	per of surviving you	ıng per	adult o	ver the	last se	even da	ıys		L	18			
culture mortality over the last seven days													
22.1.0.0	inity of or the label		y0						L				

less than 24 h organisms were used in the test with the reference toxicant

water type was equal mixture of moderately hard reconstituted water and Bow River Water (50:50)

Form: F2000019 v 2.2

Ceriodaphnia Culture Log

Adults	7 d ago	day used								S	ample 2	200511	22
live	42	42	#2 1	2	#3 3	4	5	6	7	8	9	10	11
day prior	r	ow/replicate	D1	E1	A1	B1	B2						
to use	,			T	T	T	1						
7	number o												
			D1	E1	A1	В1	B2						
6	number o												
			D1	E1	A1	B1	B2						
5	number o												
			D1	E1	A1	B1	B2						
4	number o												
			D1	E1	A1	В1	B2						
3	number o	· · · · · · · · · · · · · · · · · · ·	12 2	8 2	10 2	0 2	0 2						
			D1	E1	A1	B1	B2						
2	number o		12	8	12	13	12						
	number o	of adults	2	2	2	2	2		<u> </u>				
			D1	E1	A1	B1	B2						
DAY USED	number o	of young	13	14	14	12	13						
2005/07/29	number o	of adults	2	2	2	2	2						
			D1	E1	۸1	В1	B2						
totals			19	15	A1 18	13	13						
number of y	oung pr	oduced pe	er organ	ism in t	he last	brood l	before	use		[7		
mean numb	er of su	rviving you	ing per	adult o	ver the	last se	ven day	/S		[15		
culture mor	tality ove	er the last s	seven d	ays							0		

water type was equal mixture of moderately hard reconstitued water and Bow River Water (50:50)

less than 24 h organisms were used in the test on the sample

Test Method: 7 days Lemna Minor Survival and Growth Test (five treatments plus a control)

HydroQual Test Method Manual, section: 4.4.2.3

Reference: Biological Test Method: Test for Measuring the Inhibition of Growth Using the

Freshwater Macrophyte, Lemna minor, 1999. Environment Canada, EPS 1/RM/37.

Test Organism

Test Design

test species	Lemna minor	test type	static
culture source	in-house	toxicant	potassium chloride
original source	UTCC - 492	water source	deionized reverse osmosis
culture vessels	250 mL Erlenmeyer flask		water with nutrients
water source	deionized water		as per EPS 1/RM/37
growth medium	Hoagland's E+ medium	test vessel	8 oz polystyrene cups
cultivation method	as per test conditons	test volume (ml)	150
temp of breeding aquai	ria 25 ± 2°C	test cover	clear plastic lids
organism age	7-10 days old acclimated to	replicates per treatment	4
	test media for 18 to 24 hours	organisms per replicate	two 3 frond plants
mean increase in frond	# 32	temperature (°C)	25 ± 2°C
(fold increase)	11	photoperiod	24 hours light
		light level (surface)	4, 500 ± 300 lux
		light source	cool white fluorescent
		hardness adjustment	no

Control/Dilution Water

water source

deionized reverse osmosis water and nutirents as per EPS 1/RM/37

Quality Assurance Unit:

The test data and result are verified correct.

Authorized by: K Stoole

Lemna minor Warning Chart (Growth: frond number IC25 at 7 days)

Toxicant:

potassium chloride (KCI)

Current Test:

started:

2005/07/22 ended:

Result (7d IC25):

2.2

(1.5-3.0)

g KCI/L

95% confidence limits are in brackets

24

Historical Mean:

2.5

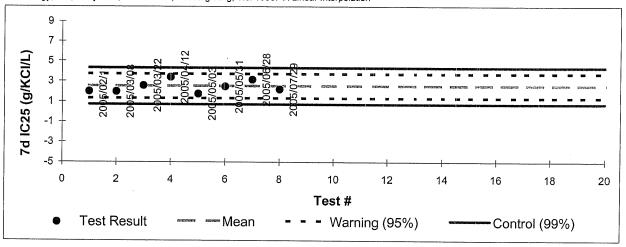
std dev: 0.6

CV (%):

Chart Limits: warning: 1.3

control:

2005/07/29


4.3

95%, two standard deviations

3.7 0.7 99%, three standard deviations

Statistical analysis perfored by ICPIN, West, Inc. and D. D. Gulley, 1994. Toxstat 3.4. Western Eco-Systems

Technology, Inc., Cheyenne, and Toxstat, Norberg-King, T.J. 1993. A Linear Interpolation

Lemna minor Warning Chart (Growth: biomass IC25 at 7 days)

Toxicant:

potassium chloride (KCI)

Current Test:

started:

2005/07/22 ended:

2005/07/29

Result (7d IC25):

5.0

(0.7-15.1)

g KCI/L 95% confidence limits are in brackets

1.5

Historical Mean:

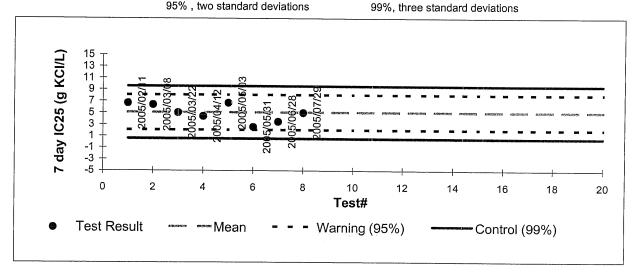
5.1

std dev:

CV (%):

30

Chart Limits:


warning:

2.0 8.1 control:

0.5

95%, two standard deviations

9.6

Test Method:

72 hours Algal Growth Inhibition Test (IC50, five or more treatments plus a control)

HydroQual Test Method Manual, section: 4.4.2.7

Reference:

Biological Test Method: Growth Inhibition Test Using the Freshwater Alga Selenastrum capricornutum, 1992. Environment Canada, EPS 1/RM/25, with Nov., 1997 amendments

Tes	st Organism	Test Design					
test species	Raphidocelis subcapitata	test type	static				
(formerly)	Selenastrum capricornutum	toxicant	zinc				
	(strain LB37)	test vessel	96 well flat bottom microplate				
original source	ATCC	test volume (uL)	220				
culture vessels	2L Erlenmeyer flask	no. of replicates	3				
water source	deionized water	no. of replicate we	lls/treatment (per plate) 5				
growth medium	nutrient solution	control	10				
cultivation method	batch as per test conditions	mean temperature	(°C) 24 ± 2°C				
culture condition at st	art of test normal	photoperiod	continuous light				
culture age	4-7 days	light level	4000 lux <u>+</u> 10%				
		contol/dilution wat	ter deionized water and				
Qualty Assurance Unit		/ / / nutri	ents (prepared as per EPS1/RM/25)				
The test data and result	are verified correct.	K. Atreelo	2005/08/11				

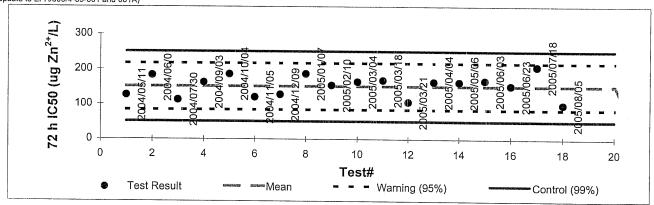
Algae Warning Chart (growth IC50 at 72 hours)

Authorized by: K. Steele

Toxicant: Zinc (ZnSO₄*7H₂O)

Current Test: started: 2005/08/02 ended: 2005/08/05

Result (72 h IC50): 99 (85-108)


ug Zn²⁺/L 95% confidence limits are in brackets **Historical Mean:** 151

std.dev: 33 CV(%): 22 **Chart Limits:** 84 218

warning: control: 51 251 95%, two standard deviations 99%, three standard deviations

Statistical analysis performed by ICPIN, West, Inc. and D. D. Gulley, 1994. Toxstat 3.4. Western Eco-Systems Technology, Inc., Cheyenne, and Toxstat, Norberg-King, T.J. 1993. A Linear Interpolation. Method for Sublethal Toxicity: The Inhibition Concentration Approach (Ver. 2.0). National Effluent Toxicity Assessment Centre Technical Report 03-93.

(update to EPA/600/4-89-001 and 001A)

Test Method:

7 days Fathead minnow Survival and Growth Test (five treatments plus a control)

HydroQual Test Method Manual, section: 4.4.4.6

Reference:

Biological Test Method: Test of Larval Growth and Survival Using Fathead

Minnow, 1992. Environment Canada, EPS 1/RM/22, with Nov. 1997

amendments.

Test Organism

Test Design

test species culture source temp of breeding aquaria food type frequency of feeding breeding colony mortality	daily	test type toxicant test vessel volume of test vessel test volume (ml) depth of test solution	static renewal sodium chloride polypropelyene cups, 11x9 cm 450 250 >3 cm
age of test organisms condition prior to test initiation	<24 hours	replicates per treatment organisms per replicate feeding	4 replicates
batch number Control/Dilution Water	20050729FM	temperature (°C) photoperiod light level (surface)	24-26 16 hours light: 8 hours dark 100-500 lux

source dechlorinated City of Calgary tap water no chemicals were added to the dilution water pH (units) 7.2 conductance (uS/cm) 391 dissolved oxygen (mg/L) 7.3 NH_4^+ (mg/L) < 0.1 hardness (mg CaCO₃/L) 157 alkalinity (mg CaCO₃/L)

120

< 0.01

Quality Assurance Unit:

total residual chlorine (mg/L)

The test data and results are verified correct

Fathead minnow Warning Chart (Mortality: LC50 at 7 days)

Toxicant:

Sodium Chloride (NaCl)

Current Test: Result (7 d LC50):

started: 2005/07/29 ended:

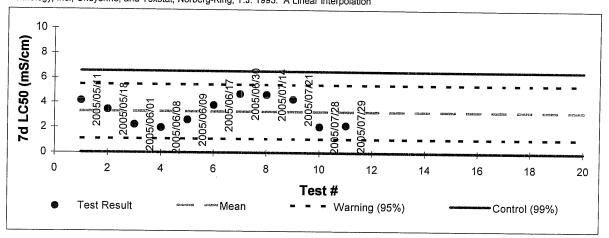
2.2 (2.0-2.5)3.3 std dev:

2005/08/05 mS/cm 95% confidence limits are in brackets

Historical Mean: Chart Limits:

warning:

1.1 1.1 5.5


CV (%): control:

33 0.0 6.6

95%, two standard deviations

99%, three standard deviations

Statistical analysis performed by ICPIN, West, Inc. and D. D. Gulley, 1994. Toxstat 3.4. Western Eco-Systems Technology, Inc., Cheyenne, and Toxstat, Norberg-King, T.J. 1993. A Linear Interpolation

Fathead minnow Warning Chart (Growth: IC25 at 7 days)

Toxicant:

Sodium Chloride (NaCI)

Current Test: Result (7d IC25): started: 1.4

2005/07/29 ended: (0.3-3.2)

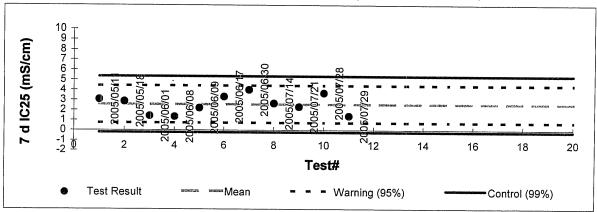
mS/cm

2005/08/05

95% confidence limits are in brackets 36

Historical Mean: Chart Limits:

2.6 warning: std dev: 0.7


0.9 4.4

CV (%): control: -0.2

5.4

95%, two standard deviations

99%, three standard deviations

AQUATOX, INC.

100 Springwood Drive #15 Hot Springs, Arkansas 71913 (501) 767-9120

TEST ORGANISM HISTORY

DATE SHIPPED 7-28-05 Hydrogual
SPECIES Pringshales from (1)
QUANTITY SHIPPED 1,000 +
AGE/LIFE STAGE LIGHT STAGE
BROODSTOCK SOURCE Andreson Mans, Ar
CULTURE WATER
ALKALINITY (Mg/l as CaCO ₃)
HARDNESS (Mg/l as CaCO ₃)/Salinity (ppt) = 160
FEEDINGATTIMITE
COMMENTS
pH:79, Ec: 478, Do: 8.1, Temp: 23.2
Alk: 151, Hard: 137
PACKAGED BY
BILL HALL PHINTERS 3171

#3, 6125 12th Street SE Calgary, Alberta Canada T2H 2K1 Tel (403) 253-7121 Fax (403) 252-9353 www.hydroqual.ca

Test Summary

Client: North	S[LABS_	Client#:	NOK 3	<u> </u>	Contact	ladene Lindott	
Sample #: 2005 [82		Fax#: <u>780-488-0896</u>			6 Date:	Date: <u>2005/08/05</u>	
Date Collected: 2005/	<i>57,</i> 9.7	ate Rec'd:	<u> 2005/0</u>	7/89	_		
	HydroQual Cont	act: Ingrid	Carleton-D	lodds or Ki	m Şteele		
·	Sample		-	e Mortality	% 96 hrs	Endpoint/Commen	
	Strength %	24 hrs	48 hrs	72 hrs	30 (115		
Description: Lottle 398418	Control	٥	0	0	10%	none	
Method: TR (5)	<i> 00' .</i>	20%	20%	30%	30%		
Test#: 20053187							
Tester: AC							
Started: <u>2605/07/29</u>				·			
Ended: 2005/00/02							
	Sample Strength ⁹	6 24 hrs	Cumulativ 48 hrs	e Mortality 72 hrs	% 96 hrs	Endpoint/Commer	
Description:	Control						
Method:							
Test#:							
Tester:							
Started:							
Ended:]	

The document(s) included in this transmission are intended only for the recipient(s) named above and contain privileged and confidential information. Any unauthorized disclosure, dissemination or copying of this transmission is strictly prohibited. If you have received this transmission in error, please immediately notify us by telephone and destroy the transmission. Thank you.

Contact: DARLENE LINTOTT

Client: NORWEST

#3, 6125 12th Street SE Calgary, Alberta Canada T2H 2K1 Tel (403) 253-7121 Fax (403) 252-9363 www.hydroqual.ca

Test Summary

Sample #: 30051	155	Fax#	780-1	128-039	16 Date:_	2005/08/ Nj
Date Collected: 2005/0	3/27 0	ate Rec'd:	<u> 2005</u>	h=/29	-	
Нус	iroQual Conta	act: Ingrid	Carleton-D	odds or Kln	n Steele	
·						
	Sample Strength %		Cumulative 48 hrs	Mortality 9	% 96 hrs	Endpoint/Comments
	eachtean 70	<u> </u>	+0 1#4	121113	301113	
Description: 10+#398418	Control	0	0			
Method: DACS)	100%	0	70%			
Test #: <u>20053126</u>	,					
Tester: LF						
Started: <u>2005/07/29</u>						
Ended: 2005/07/31						
	Sample		و العداد العداد	. ka-u-lu		
	Strength %	24 hrs	48 hrs	Mortality 9	% 96 hrs	Endpoint/Comments
			,			
Description:	Control					
Method:						
Test #;			·			
Tester;						
Started:						
Ended:						

The document(s) included in this transmission are intended only for the recipient(s) named above and contain privileged and confidential information. Any unauthorized disclosure, dissemination or copying of this transmission is strictly prohibited. If you have received this transmission in error, please immediately notify us by telephone and destroy the transmission. Thank you.