

Environmental Division

Certificate of Analysis

OZ MINERALS CANADA RESOURCES INC.

Report Date: 10-SEP-09 11:24 (MT)

Version: FINAL

ATTN: ANDREW MITCHELL 200 - 1159 ALLOY DRIVE

THUNDER BAY ON P7B 6M8

Lab Work Order #: L806858 Date Received: 18-AUG-09

Project P.O. #: 09-00623

Job Reference:

Legal Site Desc:

CofC Numbers: 08-011425

Other Information:

Comments:

MAUREEN OLINEK Senior Account Manager

THIS REPORT SHALL NOT BE REPRODUCED EXCEPT IN FULL WITHOUT THE WRITTEN AUTHORITY OF THE LABORATORY. ALL SAMPLES WILL BE DISPOSED OF AFTER 30 DAYS FOLLOWING ANALYSIS. PLEASE CONTACT THE LAB IF YOU REQUIRE ADDITIONAL SAMPLE STORAGE TIME.

ALS LABORATORY GROUP ANALYTICAL REPORT

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L806858-1 LUP-10							
Sampled By: AM on 17-AUG-09 @ 11:54							
Matrix: WATER							
Total Metals - CCME							
Mercury (Hg) - Total							
Mercury (Hg)-Total	<0.00010		0.00010	mg/L		19-AUG-09	R912827
Total Metals in Water by ICPMS (Low)				Ü			
Aluminum (AI)-Total	0.044		0.010	mg/L		21-AUG-09	R914206
Antimony (Sb)-Total	<0.00040		0.00040	mg/L		21-AUG-09	R914206
Arsenic (As)-Total	0.00422		0.00040	mg/L		21-AUG-09	R914206
Barium (Ba)-Total	0.0146		0.0030	mg/L		21-AUG-09	R914206
Beryllium (Be)-Total	<0.0010		0.0010	mg/L		21-AUG-09	R914206
Boron (B)-Total	0.088		0.050	mg/L		21-AUG-09	R914206
Cadmium (Cd)-Total	0.000260		0.000050	mg/L		21-AUG-09	R914206
Chromium (Cr)-Total	<0.0050		0.0050	mg/L		21-AUG-09	R914206
Cobalt (Co)-Total	0.0396		0.0020	mg/L		21-AUG-09	R914206
Copper (Cu)-Total	0.0026		0.0010	mg/L		21-AUG-09	R914206
Lead (Pb)-Total	<0.00010		0.00010	mg/L		21-AUG-09	R914206
Lithium (Li)-Total Molybdenum (Mo)-Total	0.031		0.010	mg/L		21-AUG-09 21-AUG-09	R914206
Nickel (Ni)-Total	<0.0050 0.0780		0.0050 0.0020	mg/L mg/L		21-AUG-09 21-AUG-09	R914206 R914206
Selenium (Se)-Total	<0.0020	DLM	0.0020	mg/L		21-AUG-09 21-AUG-09	R914206
Silver (Ag)-Total	<0.0020	DLIVI	0.0020	mg/L		21-AUG-09 21-AUG-09	R914206
Thallium (TI)-Total	<0.00010		0.00010	mg/L		21-AUG-09	R914206
Tin (Sn)-Total	<0.050		0.050	mg/L		21-AUG-09	R914206
Titanium (Ti)-Total	<0.0010		0.0010	mg/L		21-AUG-09	R914206
Uranium (U)-Total	<0.00010		0.00010	mg/L		21-AUG-09	R914206
Vanadium (V)-Total	<0.0010		0.0010	mg/L		21-AUG-09	R914206
Zinc (Zn)-Total	0.244		0.0040	mg/L		21-AUG-09	R914206
Total Metals in Water by ICPOES (Low)							
Calcium (Ca)-Total	69.8		0.50	mg/L		21-AUG-09	R917946
Iron (Fe)-Total	0.090		0.010	mg/L		21-AUG-09	R917946
Magnesium (Mg)-Total	7.38		0.10	mg/L		21-AUG-09	R917946
Manganese (Mn)-Total	0.822		0.0020	mg/L		21-AUG-09	R917946
Potassium (K)-Total	5.79		0.10	mg/L		21-AUG-09	R917946
Sodium (Na)-Total	68.7		1.0	mg/L		21-AUG-09	R917946
Miscellaneous Parameters				p.		40 4110 55	
Alkalinity, Total (as CaCO3)	5.3		5.0	mg/L		18-AUG-09	R911889
Ammonia-N	0.476		0.050	mg/L		19-AUG-09	R912448
Cyanide, Total	<0.0020		0.0020	mg/L	19-AUG-09	19-AUG-09	R912617
Daphnia Magna	See Attached					20-AUG-09	R939351
Hardness (as CaCO3)	205			mg/L		24-AUG-09	
Special Request	See Attached					19-AUG-09	R939351
Special Request	See Attached					20-AUG-09	R938901
Total Suspended Solids	<3.0		3.0	mg/L		19-AUG-09	R912700
Trout Bioassay	See Attached					24-AUG-09	R920583
рН	6.82		0.10	рН		18-AUG-09	R911889
NO2, NO3, & (NO2+NO3) in Water							
Nitrate as N by IC							
Nitrate (as N)	4.15		0.050	mg/L		18-AUG-09	R911887
Nitrate+Nitrite							
Nitrate and Nitrite as N	4.15		0.071	mg/L		19-AUG-09	
Nitrite as N by IC	0.050		0.050	m c:/l		40 4110 00	D044007
Nitrite (as N)	<0.050		0.050	mg/L		18-AUG-09	R911887

^{*} Refer to Referenced Information for Qualifiers (if any) and Methodology.

ALS LABORATORY GROUP ANALYTICAL REPORT

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L806858-2 LUP-10D (DUPLICATE)							
Sampled By: AM on 17-AUG-09 @ 11:54							
Matrix: WATER							
Total Metals - CCME							
Mercury (Hg) - Total							
Mercury (Hg)-Total	<0.00010		0.00010	mg/L		19-AUG-09	R912827
Total Metals in Water by ICPMS (Low)				J			
Aluminum (AI)-Total	0.041		0.010	mg/L		21-AUG-09	R914206
Antimony (Sb)-Total	<0.00040		0.00040	mg/L		21-AUG-09	R914206
Arsenic (As)-Total	0.00413		0.00040	mg/L		21-AUG-09	R914206
Barium (Ba)-Total	0.0147		0.0030	mg/L		21-AUG-09	R914206
Beryllium (Be)-Total	<0.0010		0.0010	mg/L		21-AUG-09	R914206
Boron (B)-Total	0.084		0.050	mg/L		21-AUG-09	R914206
Cadmium (Cd)-Total	0.000295		0.000050	mg/L		21-AUG-09	R914206
Chromium (Cr)-Total	<0.0050		0.0050	mg/L		21-AUG-09	R914206
Cobalt (Co)-Total	0.0406		0.0020	mg/L		21-AUG-09	R914206
Copper (Cu)-Total	0.0028		0.0010	mg/L		21-AUG-09	R914206
Lead (Pb)-Total	<0.00010		0.00010	mg/L		21-AUG-09	R914206
Lithium (Li)-Total Molybdenum (Mo)-Total	0.031		0.010	mg/L		21-AUG-09 21-AUG-09	R914206
Nickel (Ni)-Total	<0.0050 0.0793		0.0050	mg/L		21-AUG-09 21-AUG-09	R914206 R914206
Selenium (Se)-Total	<0.0793	DLM	0.0020 0.0020	mg/L mg/L		21-AUG-09 21-AUG-09	R914206 R914206
Silver (Ag)-Total	<0.0020	DLIVI	0.0020	mg/L		21-AUG-09 21-AUG-09	R914206
Thallium (TI)-Total	<0.00010		0.00010	mg/L		21-AUG-09	R914206
Tin (Sn)-Total	<0.050		0.050	mg/L		21-AUG-09	R914206
Titanium (Ti)-Total	<0.0010		0.0010	mg/L		21-AUG-09	R914206
Uranium (U)-Total	<0.00010		0.00010	mg/L		21-AUG-09	R914206
Vanadium (V)-Total	<0.0010		0.0010	mg/L		21-AUG-09	R914206
Zinc (Zn)-Total	0.253		0.0040	mg/L		21-AUG-09	R914206
Total Metals in Water by ICPOES (Low)							
Calcium (Ca)-Total	0.92		0.50	mg/L		19-AUG-09	R912805
Iron (Fe)-Total	0.010		0.010	mg/L		19-AUG-09	R912805
Magnesium (Mg)-Total	0.48		0.10	mg/L		19-AUG-09	R912805
Manganese (Mn)-Total	0.0025		0.0020	mg/L		19-AUG-09	R912805
Potassium (K)-Total	0.41		0.10	mg/L		19-AUG-09	R912805
Sodium (Na)-Total	<1.0		1.0	mg/L		19-AUG-09	R912805
Miscellaneous Parameters						40 4110 55	
Alkalinity, Total (as CaCO3)	<5.0		5.0	mg/L		18-AUG-09	R911889
Ammonia-N	0.475		0.050	mg/L		19-AUG-09	R912448
Cyanide, Total	<0.0020		0.0020	mg/L	19-AUG-09	19-AUG-09	R912617
Hardness (as CaCO3)	4.3			mg/L		20-AUG-09	
Total Suspended Solids	<3.0		3.0	mg/L		19-AUG-09	R912700
рН	6.84		0.10	рН		18-AUG-09	R911889
NO2, NO3, & (NO2+NO3) in Water							
Nitrate as N by IC			0.5==			40 4110 55	D04:05=
Nitrate (as N)	4.13		0.050	mg/L		18-AUG-09	R911887
Nitrate+Nitrite Nitrate and Nitrite as N	4.13		0.071	mg/L		19-AUG-09	
Nitrite as N by IC				J			
Nitrite (as N)	<0.050		0.050	mg/L		18-AUG-09	R911887

^{*} Refer to Referenced Information for Qualifiers (if any) and Methodology.

Reference Information

Sample Parameter Qualifier Key:

Qualifier	Description
DLM	Detection Limit Adjustment For Sample Matrix Effects

Test Method References:

ALS Test Code	Matrix	Test Description	Method Reference**
ALK-TOT-ED	Water	Alkalinity, Total	APHA 2320 B-Auto-Pot. Titration
CN-TOT-WT	Water	Cyanide, Total	APHA 4500CN C E-STRONG ACID DIST COLORIM
ETL-HARDNESS-TOT-ED	Water	Hardness (from Total Ca and Mg)	APHA 2340 B-Calculation
HG-T-CVAA-ED	Water	Mercury (Hg) - Total	EPA 245.7 / EPA 245.1
MET-T-L-ICP-ED	Water	Total Metals in Water by ICPOES (Low)	APHA 3120 B-ICP-OES
MET-T-L-MS-ED	Water	Total Metals in Water by ICPMS (Low)	SW 846 - 6020-ICPMS
NH4-ED	Water	Ammonia-N	APHA4500NH3F Colorimetry
NO2+NO3-CALC-ED	Water	Nitrate+Nitrite	CALCULATION
NO2-IC-ED	Water	Nitrite as N by IC	APHA 4110 B-ION CHROMATOGRAPHY
NO3-IC-ED	Water	Nitrate as N by IC	APHA 4110 B-ION CHROMATOGRAPHY
PH-ED	Water	рН	APHA 4500 H-Electrode
SOLIDS-TOTSUS-ED	Water	Total Suspended Solids	APHA 2540 D-Gravimetric
SPECIAL REQUEST-HQ	Misc.	Special Request HydroQual	SEE SUBLET LAB RESULTS
SPECIAL REQUEST-SR	Misc.	Special Request SRC	SEE SUBLET LAB RESULTS

^{**} ALS test methods may incorporate modifications from specified reference methods to improve performance.

The last two letters of the above test code(s) indicate the laboratory that performed analytical analysis for that test. Refer to the list below:

Laboratory Definition Code	Laboratory Location
WT	ALS LABORATORY GROUP - WATERLOO, ONTARIO, CANADA
SR	Saskatchewan Research Council - Saskatoon, Saskatchewan, Can
ED	ALS LABORATORY GROUP - EDMONTON, ALBERTA, CANADA
HQ	HydroQual Laboratories Ltd Calgary, Alberta, Canada

Chain of Custody Numbers:

08-011425

GLOSSARY OF REPORT TERMS

Surrogates are compounds that are similar in behaviour to target analyte(s), but that do not normally occur in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery. In reports that display the D.L. column, laboratory objectives for surrogates are listed there.

mg/kg - milligrams per kilogram based on dry weight of sample

mk/kg wwt - milligrams per kilogram based on wet weight of sample

mg/kg lwt - milligrams per kilogram based on lipid-adjusted weight

mg/L - unit of concentration based on volume, parts per million.

< - Less than.

D.L. - The reporting limit.

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory. UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

Result Summary

Client: ALS Laboratory Group; operation Edmonton

Sample: L806858-1 LUP-10

Collection: collected on 2009/08/17 at not given by AM Receipt: received on 2009/08/19 at 0910 by L. Henson

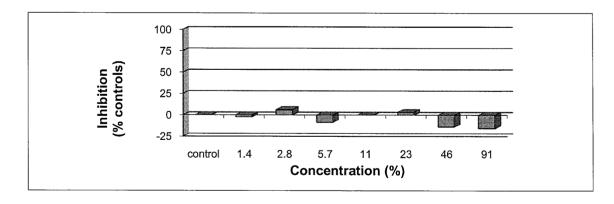
Containers: received 6 x 20L pails at 19 °C, in good condition with no

seals and no initials

Description: type: water, collection method: not given

Test: started on 2009/08/19; ended on 2009/08/22

Client: ALS106


Reference: 09-1501-01-AGD

Contents

Result Summary	.1
Test Conditions	.2
Test Data	.4
Comments/Statistics.	.5
QA/QC	.6

Result: **Endpoint** Value Confidence Limits (95%) Method Calculated (72-hour) lower upper Chronic: IC25 >91% % could not be calculated IC50 (growth) >91% % could not be calculated

Notes: ICx, concentrations inhibiting growth by 'x' percent relative to controls; CV, coefficient of variation (%); SD, standard deviation

The test data and results are authorized and verified correct.

E. Blais, B.Sc., Technical Lead

S. Krishnappa, B.Sc., Quality Coordinator

Form: F060 v 3.2

Test Conditions

Client: ALS106

Reference: 09-1501-01-AGD

Method: Biological Test Method: Growth Inhibition Test Using a Freshwater Alga Pseudokirchneriella subcapitata (formerly Selenastrum capricornutum). Environment Canada, EPS 1/RM/25, 2nd Edition, March 2007

Test type: Algal Growth Inhibition Test (HQ 4.4.2.7)

Species: Pseudokirchneriella subcapitata (formerly Selenastrum capricornutum and

Raphidocelis subcapitata)

Organism source: In-house culture (original source: UTCC 37; strain: LB37)

Culture age: The test was started with 5 day old, exponentially growing cells determined with

an algal growth curve. This culture was initiated on 2009/06/05. Algal cultures are regrown every 2 months from slants made from a new culture purchased annually.

Culture observations: No unusual appearance or treatment of the algae was noted prior to or during the

conduct of the test.

Sample initial chemistry: pH: 8.0; EC: 777 (µS/cm); DO: 7.5 (mg/L); temperature: 17 °C

hardness (mg CaC03/L): 165; colour: colourless; odour: odourless

Sample holding time: 2 days (must be \leq 3 days)

Sample storage: 4 ± 2°C in darkness

Test concentrations: 7 effluent concentrations (1.4, 2.8, 5.7, 11, 23, 46 and 91% (v/v) plus a

negative control)

Test vessel: The test was conducted in 96 well microplates. Three replicate plates were

run (a. b and c).

Test replicates: Three replicate microplates were run. Per plate there were 5 replicate wells

per concentration and 10 replicate wells per control.

Test volume: 220 µL final volume in each well with 200 µL of sample:

10µL of enrichment medium and 10µL of algal inoculum.

Inoculum: The initial cell density of the inoculum was 9910 (cells/mL), it was prepared

less than ≤2-3 hours before test initiation.

Control/dilution water: Made up with deionized City of Calgary water spiked with nutrients as per

EPS 1/RM/25 (made by adding 1mL of each of the 5 stock solutions

to 10mL of DRO).

Sample Filtration: 100 mL filtered through a 0.45 µm pore diameter membrane.

Sample treatment: Sample spiked with nutrients as per EPS 1/RM/25; no other chemicals added.

Measurements: Final cell densities were determined from the absorbance at 430 nm calibrated

against cell counts. The conversion factor for absorbance to cells per millilitre

was 14322 with a coefficient of variation of 21 %.

Aeration: Not required

pH Adjustment: Not required

Lighting: The plates were incubated under continuous light:

3700 lux

(cool white fluorescent bulbs)

51.8 µmol/(m²•S)

Form: F060 v 3.2

Test temperature: 24 ± 2°C

Form: F060 v 3.2

Test Conditions

Client: ALS106

Reference: 09-1501-01-AGD

Endpoint: Growth, 72-h IC25 (with 95% confidence limits)

Test endpoint was bracketed by at least 1 test concentration

(except for <1.4% or >91 %)

No outliers were observed within the data set.

Test validity: Control growth was a 19 fold increase over the inoculum.

The cv of the standard control wells was 10 %. (must be \geq 16 fold increase with a cv of \leq 20%)

Statistics: See Data Analysis section.

Mann-Kendall Trend analysis (p>0.05) indicates there was no volatility in the sample.

Reference toxicant: 72-h test with Zinc (ZnSO₄*7H2O) initiated August 11, 2009;

(must be within 14 days of the test initiation)

current results: (72-h IC25 and 95% confidence limits) = 1.38 (1.23-1.49) $\log (\mu g Zn^{2+}/L)$ The reference toxicant test was performed under the same conditions as those

used during this test.

Test Data

Client: ALS106

Reference: 09-1501-01-AGD

Test Log:

Date	Day	Technician	Time	Rotated	Temperature (°C)
2009/08/19	0	J. Amyotte/S. Ehman	1420	no	23
2009/08/20	1	N. Lavoie	0815	yes	23
2009/08/21	2	J. Amyotte	0815	yes	23
2009/08/22	3	S. Ehman	1105	no	24

Absorbance and Direct Cell Data:

Concentration	Absorbance	Direct Cell
(%)	(430 nm)	Counts(/0.5 mL)
ctl	0.01	2350
11	0.01	2550
91	0.02	1917

pH Measurements:

Concentration	Initial Value
control	6.5
91%	6.5

Concentration	Final Mean	% CV
control (well D6)	6.5	0
control (well D7)	6.5	0

Average Absorbance Control Data:

Column Well	2b	2c	2e	2f	2g
Absorbance (430 nm)	0.01	0.01	0.01	0.01	0.01
Column Well	11b	11c	11e	11f	11g
Absorbance (430 nm)	0.01	0.02	0.01	0.01	0.01

Standard Control Wells:

Average	199
SD	20
CV%	10

Form: F060 v 3.2

Test Results at 72 hours:

Concentration (%)	: ,	. We	ell Repli		, 1	Average	SD	cv	Percent Controls	Inhibition (%)	Stimulation (%)
	а	b	С	d	е						
control	174	200	205	198	181	191	13	7	100	0	0
1.4	193	231	183	183	188	196	20	10	102	-2	2
2.8	174	183	198	169	174	179	11	6	94	6	-6
5.7	217	241	231	169	181	208	31	15	108	-8	8
11	221	217	221	164	136	192	40	21	100	0	0
23	207	202	212	150	155	185	30	16	97	3	-3
46	241	226	245	193	183	218	28	13	114	-14	14
91	202	224	241	224	214	221	14	6	115	-15	15

Form: F060 v 3.2

Comments/Statistics

Client: ALS106	
Reference: 09-1	501-01-AGD

		INGIGIENCE. 03-1301-01-AOD
Test Result Comments: None		
Data Analysis: Endpoints for growth inhibition	and stimulation could not be calculated. Signif	ïcant effects did not occur.

Protocol Deviations:

None

Warning Chart Algae

Test Method: 72 hours Algal Growth Inhibition Test (IC25, five or more treatments plus a control)

HvdroQual Test Method Manual, section: 4.4.2.7

Reference: Biological Test Method: Growth Inhibition Test Using the Freshwater Alga

Selenastrum capricornutum, 2007. Environment Canada, EPS 1/RM/25.

Test Organism:

test species: Pseudokirchneriella subcapitata

culture: 20090804AG

original source/strain: UTCC 37 / LB37

culture vessels: 2L Erlenmeyer flask water source: deionized water

growth medium: nutrient solution

cultivation method: batch as per test conditions

culture condition at start

of test: normal culture age: 3-7 days

growth phase: exponentially growing

Test Design:

test type: static toxicant: zinc

test vessel: 96 well flat bottom microplate

test volume (µL): 220 no. of replicate plates: 3 no. of replicate wells / treatment per plate (control, sample): 10, 5

mean temperature (°C): 24 ± 2°C

photoperiod: continuous light light level: 4200 lux ± 5%

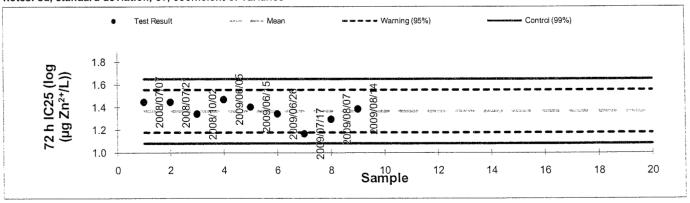
contol/dilution water: deionized water and

nutrients: prepared as per EPS1/RM/25

Current Test

toxicant Zinc (ZnSO₄*7H₂O)

started on 2009/08/11 ended on 2009/08/14


Result (IC25 @ 72h) Confidence Limits (95%)

1.38 lower log (µg Zn2⁺/L); geometric mean

1.49 1.23 upper

		Historical '	vaiues		
mean	1.37	sd	0.09	cv(%):	7
	lower	upper			
warning limits (±2 sd)	1.18	1.56	(95% coi	nfidence limits)	
control limits (±3 sd)	1.08	1.65	(99% coi	nfidence limits)	

notes: sd, standard deviation; cv, coefficient of variance

na; could not be calculated

Qualty Assurance Unit:

Authorized by S. Krishnappa, B.Sc., Quality Assurance Coordinator The test data and results are verified correct.

Our liability is limited to the cost of the test requested on the sample as received. No liability in whole or in part is assumed for the collection, handling or transport of the sample, application or interpretation of the test data or results in part or in whole.

Result Summary

Reference: 09-1501-01-CDD

Client: ALS106

Client: ALS Laboratory Group; operation Edmonton

Contents

Sample: L806858-1

LUP-10

Collection: collected on 2009/08/17 at not given by AM **Receipt:** received on 2009/08/19 at 0910 by L. Henson

Containers: received 6 x 20L pails at 19 °C, in good condition with no

seals and no initials

Description: type: water, collection method: not given


Test: started on 2009/08/19; ended on 2009/08/25

Result Summary	.1
Test Conditions	
Test Data	.4
Comments/Statistics.	8.
QA/QC	.9

Result:

_	Endpoint (6-day)	Value	Confidence lower	Limits (95%) upper	Units	Method Calculated					
Acute:	LC25	12	3.5	17	%	Log-Normal					
(survival)	LC50	18	9.2	26	%	Log-Normal					
Chronic:	IC25	2.8	1.8	4.7	%	Linear Interpolation					
(fecundity)	IC50	5.5	2.8	8.2	%	Linear Interpolation					

Notes: LCx & ICx, concentrations lethal or inhibitory to 'x' percent of the test population; fecundity, reproduction as the number of young produced

The test data and results are authorized and verified correct.

E. Blais, B.Sc., Technical Lead

S. Krishnappa, B.Sc., Quality Coordinator

Form: F060 v 3.2

Test Conditions

Client: ALS106

Reference: 09-1501-01-CDD

Form: F060 v 3.2

Method: Biological Test method: Test of Reproduction and Survival Using the Cladoceran *Ceriodaphnia dubia*, 2007. Environment Canada, EPS 1/RM/21.

Test type: Ceriodaphnia 6-day Survival and Reproduction Static Renewal Test (HQ 4.4.3.2)

Species: Ceriodaphnia dubia

Age: <24 hours old; all from same brood source within 12 hours of the same age.

Organism source: in-house cultures; cultures from a single brood organism to provide test organisms.

Culture health: Culture mortality was 12% (must be ≤ 20%).

7-d prior to test initiation: No ephippia were noted in the cultures at any time.

Average young produced per adult in the first three broods was 22 (must be ≥ 15) Number of young produced by each brood organism in the last complete brood

before use was 10 (must be \geq 8).

Organism observations: No unusual behavior, appearance or treatment of test organisms was noted prior

to or during the test. All first-generation mortality was recorded on the day it was

observed.

Sample initial chemistry: pH: 8.0; EC: 777 (µS/cm); DO: 7.5 (mg/L); temperature: 17 °C

hardness (mg CaC03/L): 165; colour: colourless; odour: odourless

Sample holding time: 2 days (must be ≤ 3 days); The test was conducted with three subsamples,

samples a, b, and c were for days 0 to 2, 3 to 5, and 6 to 8.

Sample storage: 4 ± 2°C in darkness

Test vessel: The tests were conducted in 30 mL plastic vessels (2 cm depth).

Test volume: 15 mL of solution (1 cm depth); replenished daily.

Control/dilution water: The control and dilution water was a mixture of moderately hard reconstituted

water and Bow River Water (50:50). Chemicals added to dilution water: 0.96 g NaHCO3, 0.60 g CaSO4, 0.60 g MgSO4, 0.04 g KCl per 20L.

Test concentrations: 7 effluent concentrations (1.6, 3.1, 6.3, 13, 25, 50, 100% (v/v)

plus a negative control)

Test replicates: One neonate <24 hours old was loaded per test vessel;

10 replicates/concentration

Feeding: The test organisms were fed daily a mixture of fermented trout chow, yeast,

alfalfa powder, and the green alga Pseudokirchneriella subcapitata (formerly

Selenastrum capricornutum and Raphidocelis subcapitata).

Food expiration date: 2009/08/30; 2009/09/13

Measurements: pH, conductivity, dissolved oxygen and temperature were measured daily.

Sample pre-treatment: The sample was not aerated, filtered or pH adjusted prior or during testing.

The dissolved oxygen concentration (mg/L) was: 6.8

The sample pH was: 7.6

Lighting: Overhead full spectrum fluorescent lights; 100-600 lux at surface

Photoperiod: 16h light:8h dark

Test temperature: 25 ± 1°C

Test Conditions

Client: ALS106

Reference: 09-1501-01-CDD

Form: F060 v 3.2

Endpoints: Survival, 6-d LC50 (with 95% confidence limits)

Reproduction, 6-d IC25 (with 95% confidence limits)

Test endpoints were bracketed by at least 1 test concentration

(except for <1.6% or >100 %)

No outliers were observed within the data set.

Test completion: 70% of the control organisms had ≥ 3 broods on day 6 (must be ≥ 60% within

8 days) Any neonates produced after third brood were not included in the

mean young per adult calculation.

Test validity: The control had 90% survival (must ≥ 80%)

Number of young produced by each surviving control adult within the first three

broods was 15 (must be \geq 15).

Reference toxicant: 6-d test with NaCl initiated on August 15, 2009;

(must be within 14 days of test initiation)

current results: (6-d LC50 and 95% confidence limits) =

3.39 (3.31-3.47) log (mg/L NaCl)

current results: (6-d IC50 and 95% confidence limits) =

2.75 (2.63-2.86) log (mg/L NaCl)

The reference toxicant test was performed under the same conditions as those used

during this test.

Test Data

Client: ALS106

Reference: 09-1501-01-CDD

Form: F060 v 3.2

Test Log:

Date	Day	Time	Technicians	Tempe	erature (°C)
	Day	Time	1 echilicians	Control	Sample
2009/08/19	0	1045	H. Stewart	24	25
2009/08/20	1	0920	N. Lavoie	25	25
2009/08/21	2	0925	J. Amyotte	25	25
2009/08/22	3	1130	N. Lavoie	25	25
2009/08/23	4	1020	N. Lavoie	25	25
2009/08/24	5	1035	N. Lavoie	25	25
2009/08/25	6	0845	E. Vinish	na	na

Chemistry Summary Tables:

New Solutions									Old Solutions							
Conc. % ctl	1.6	3.1	6.3	13	25	50	100		ctl	1.6	3.1	6.3	13	25	50	100

Average Values

рН	8.1	8.1	8.1	8.1	8.1	8.0	8.0	7.7	8.1	8.1	8.1	8.0	8.0	8.0	7.8	7.5
cond.	395	385	392	407	433	482	566	755	445	429	429	439	491	552	619	824
DO	7.3	7.2	7.0	7.1	7.1	7.0	6.9	7.2	7.4	7.1	7.0	7.0	6.9	6.9	7.3	7.4
temp.	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25

Coefficients	of Variation	10/1
Coemcients	oi vanaiion	1701

рН	2	2	2	2	2	2	2	2	ı	2	2	2	2	2	2	2	3
cond.	7	10	9	10	8	7	8	9		6	4	4	4	6	11	6	2
DO	7	6	6	6	6	6	5	7		4	4	4	5	5	5	6	6
temp.	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0

Client: ALS106

Form: F060 v 3.2

Test Data													Reference: 09-1501-01-CDD					
Biology	(numl	ber of	voun	a pro	duced	l):												
Day	1	2	3	4	5	6	7	8]	1	2	3	4	5	6	7	8	
Replicate	<u> </u>			(Contro	ıl								13%				
1	0	0	0	4	7	9			1	0	0	0	2	0	2			
2	0	0	0	3	9	10				0	0	0	0	2	2			
3	0	0	3	2	6	-			1	0	0	2	0	2	0			
4	0	0	3	0	8	11				0	0	0	0	0	0			
5	0	0	0	0	0	0			1	0	0	0	0	0	0			
6	0	0	0	4	8	10				0	0	0	0	0	Χ			
7	0	0	Х	Х	Χ	Χ				0	0	0	0	0	Х			
8	0	0	0	0	0	6				0	0	0	2	0	4			
9	0	0	0	3	6	9				0	0	0	0	2	0			
10	0	0	0	2	2	8]	0	0	0	2	2	0			
					1.6%									25%				
1	0	0	0	2	6	0			1	0	0	0	0	0	0			
2	0	0	4	6	0	10				0	X	X	X	X	X			
3	0	0	4	6	0	11				0	0	0	0	0	0			
4	0	0	2	0	6	0				0	0	X	X	X	X			
5	0	0	0	3	6	8				0	X	X	X	X	X			
6	0	0	0	4	7	8				0	0	0	0	0	2			
7	0	0	0	2	7	9			1	0	Х	Х	X	Х	Х			
8	0	0	0	2	6	0				0	X	Χ	X	Х	Х			
9	0	0	2	0	4	12				0	0	Х	Х	Χ	Х			
10	0	0	3	0	7	0				0	0	0	0	Х	Х			
					3.1%									E00/				
1	0	0	0	3	3.1%	0		· · · · · ·	1	0	Х	Х	X	50% X	Х			
2	0	0	0	3	7	9				0	X	$\frac{\lambda}{X}$	X	X	$\frac{\lambda}{X}$		\vdash	
3	0	0	0	3	5	9			1	0	X	$\frac{\lambda}{X}$	X	X	$\frac{\hat{x}}{x}$			
4	0	0	4	4	0	10			1	0	0	0	0	X	X		\vdash	
5	0	0	0	0	3	0			1	0	X	X	X	X	X			
6	0	X	X	X	X	X			1	0	0	X	X	X	X			
7	0	0	0	3	6	0		<u> </u>	1	0	0	X	X	X	X		\square	
8	0	0	0	0	2	4			1	0	Х	Х	X	X	X			
9	0	0	0	5	7	0			1	0	0	Х	X	X	Х			
10	0	0	0	0	0	6				0	0	Х	Х	Х	Х			

Notes: #, young produced; 0, no young; X, dead; bold #, number of young the test organism had the day it died; —, young produced after third brood

Form: F060 v 3.2

							Test	Dat	a					: ALS ence:		01-01	-CDD
Biology	Biology (number of young produced):																
Day	1	2	3	4	5	6	7	8		1	2	3	4	5	6	7	8
Replicate					6.3%									100%			
1	0	0	0	3	2	0				0	0	Χ	Х	Х	Χ		
2	0	0	2	0	5	3				0	0	0	Χ	Х	X		
3	0	0	0	0	6	6				0	0	Х	Χ	Χ	Χ		
4	0	0	0	0	5	0				0	0	Χ	Χ	Χ	Χ		
5	0	0	0	2	2	0				0	0	Х	Χ	Х	Χ		
6	0	0	0	2	2	2				0	Χ	Х	Χ	Х	Χ		
7	0	0	0	Χ	Χ	Χ				0	0	Χ	Х	Χ	Χ		
8	0	0	0	0	4	0				0	0	Χ	Х	Χ	Х		
9	0	0	0	0	6	0				0	0	0	0	0	Χ		
10	0	0	0	0	6	3				0	0	Χ	Χ	Χ	Χ		

Notes: #, young produced; 0, no young; X, dead; bold #, number of young the test organism had the day it died; -, young produced after third brood

Biology	Biology Summary Tables:																
Conc. %	ctl	1.6	3.1	6.3	13	25	50	100		ctl	1.6	3.1	6.3	13	25	50	100
_									_								
Day				r of O					Day			Daily		Prod	uction		
0	10	10	10	10	10	10	10	10	0	0	0	0	0	0	0	0	0
1	10	10	9	10	10	6	5	9	1	0	0	0	0	0	0	0	0
2	9	10	9	10	10	4	1	2	2	0	0	0	0	0	0	0	0
3	9	10	9	9	10	4	1	1	3	6	15	4	2	2	0	0	0
4	9	10	9	9	10	3	0	1	4	18	25	21	7	6	0	0	0
5	9	10	9	9	8	3	0	0	5	46	49	34	38	8	0	0	0
6	9	10	9	8	7	3	0	0	6	63	58	38	14	8	2	0	0
7									7				-				
8									8								
			Perd	cent M	ortalit	y (%)			Total	133	147	97	61	24	2	0	0
mean	_10	0	10	20	30	70	100	100									
										Yo	ung P	er Adı	ılt (wit	hin firs	st three	e broc	ods)
Replicate	_	Total \	oung/	Produ	iced b	y Eac	h Adu	lt	mean	13	15	10	6	2	0	0	0
1	20	8	7	5	4	0	0	0	sd	8.87	5.48	6.57	3.45	2.27	0.63	0	0
2	22	20	19	10	4	0	0	0	cv(%)	66.7	37.3	67.7	56.5	94.6	316	na	na
3	11	21	17	12	4	0	0	0									<u></u>
4	22	8	18	5	0	0	0	0		You	ung Pr	oduct	ion as	a Per	cent o	f Con	trols
5	0	17	3	4	0	0	0	0		100		73	46	18	2	0	0
6	22	19	0	6	0	2	0	0			•						
7	0	18	9	0	0	0	0	0									
8	6	8	6	4	6	0	0	0									
۵	10	10	12	6	2	_	_										

10

10

4

Test Data

Client: ALS106

Reference: 09-1501-01-CDD

Form: F060 v 3.2

Chemi	stry:
-------	-------

New Solutions	Chemist	ry:			Now	Solutio	nne						O14 €	alutia	20		
Day PH (units)	Conc. %	oti	16	2.1				50	100	O#I	16	2.1				<u> </u>	100
8.4 8.3 8.3 8.3 8.3 8.2 8.1 7.6	COHC. 76	Cu	1.0	3.1	0.3	13	25	30	100	Cu	1.0	3.1	0.3	13	25	50	100
1	Day				pł	d (unit	s)						рł	d (unit	s)		
8.0 8.0 8.0 8.0 8.0 8.0 7.9 7.8 7.6 8.2 8.2 8.2 8.1 7.8 8.0 8.0 8.0 8.0 8.0 8.0 8.0 7.9 7.9 7.9 7.8 7.6 8.2 8.2 8.2 8.1 7.8 8.0 8.0 8.0 8.0 8.0 8.0 7.9 7.9 7.9 7.7 7.2 7.9 8.0 8.0 8.0 8.0 8.0 7.9 7.9 6 8.3 8.3 8.3 8.2 8.2 8.2 8.1 7.8 8.0 8.0 8.0 8.0 8.0 8.0 7.9 7.9 7.7 7.2 7.9 8.0 8.0 8.0 8.0 8.0 7.9 7.9 7.9 7.7 7.2 7.9 8.0 8.0 8.0 8.0 8.0 8.0 7.9 7.9 7.9 7.7 7.2 7.9 8.0 8.0 8.0 8.0 8.0 7.9 7.9 7.9 7.9 7.7 7.2 7.9 8.0 8.0 8.0 8.0 8.0 7.9 7.9 7.9 7.9 7.7 7.2 7.9 8.0 8.0 8.0 8.0 7.9 7.9 7.9 7.9 7.9 7.6 8.2 8.2 8.2 8.2 8.2 8.2 8.2 8.2 8.2 8.2	0	8.4	8.3	8.3	8.3	8.3	8.2	8.1	7.6								
8.3 8.3 8.2 8.2 8.2 8.2 8.1 7.8 4 8.0 8.0 8.0 8.0 7.9 7.9 - 7.5 7.9 8.0 8.0 8.0 8.0 7.9 7.9 - 7.5 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	1	8.1	8.1	8.1	8.1	8.1	8.0	8.0	7.8	8.1	8.1	8.1	8.0	8.0	7.9	7.7	7.5
4 8.0 8.0 8.0 8.0 8.0 7.9 7.9 7.9 - 7.5 7.9 8.0 8.0 8.0 8.0 7.9 7.9 7.5 7.9 8.0 8.0 8.0 8.0 7.9 6 8	2	8.0	8.0	8.0	8.0	8.0	7.9	7.8	7.6	8.0	8.0	8.0	7.9	7.9	7.9	7.8	7.6
5	3	8.3	8.3		8.2			8.1	7.8	8.2	8.2	8.2	8.2	8.2	8.2	8.1	7.8
6	4		8.0	8.0	8.0	7.9	7.9	-	7.5	7.8	7.9	7.9	7.9	7.9	7.9	7.7	7.2
Temperature (°C) Conductivity (µS/cm) C	5	7.9	8.0	8.0	8.0	8.0	7.9	-	-	7.9	8.0	8.0	8.0	7.9	7.9	•	7.6
Conductivity (µS/cm) Conductivity (µS/cm) Conductivity (µS/cm)										8.3	8.3	8.3	8.2	8.2	8.2	-	-
Conductivity (µS/cm) 0 392 394 398 434 438 487 590 781 1 383 396 402 415 437 492 589 780 2 444 414 420 425 425 454 500 591 780 3 382 311 321 330 368 415 495 637 4 406 413 419 432 462 499 - 797 5 362 381 390 404 438 499 77 8																	
0 392 394 398 434 438 487 590 781 1 383 396 402 415 437 492 589 780 2 444 414 420 425 454 500 591 780 382 311 321 330 368 415 495 637 406 413 419 432 462 499 - 797 5 362 381 390 404 438 499 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	8																
1 383 396 402 415 437 492 589 780 2 444 414 420 425 454 500 591 780 3 382 311 321 330 368 415 495 637 4 406 413 419 432 462 499 - 797 5 362 381 390 404 438 499 7	_ [•					<u>C</u>	onduc	ctivity ((μS/cn	n)	
2	. 1								_								
3 382 311 321 330 368 415 495 637 400 402 449 431 634 830 406 413 419 432 462 499 - 797 362 381 390 404 438 499 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6																	
4 406 413 419 432 462 499 - 797 362 381 390 404 438 499 Dissolved Oxygen (mg/L) Dissolved Oxygen (mg/L) 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.8 8.0 7.5 7.4 7.4 7.4 7.4 7.4 7.4 7.4 7.0 6.9 6.8 6.7 6.8 6.7 6.8 6.7 7.1 7.0 6.7 7.0 7.0 7.0 7.0 7.0 7.6 7.6 7.6 7.6 7.6 7.6 7.5 7.5 Temperature (°C) Temperature (°C) 25 25 25 25 25 25 25 25 25 25 25 25 25 2																	
5 362 381 390 404 438 499 - - 470 451 444 454 514 592 - 826 Dissolved Oxygen (mg/L) Dissolved Oxygen (mg/L) Dissolved Oxygen (mg/L) 6.5 6.6 6.6 6.5 6.5 6.6 6.6 6.5 6.6 6.5 6.6 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>495</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								495									
6								-	797							562	
7 8		362	381	390	404	438	499	-	-							-	826
B Dissolved Oxygen (mg/L) Dissolved Oxygen (mg/L) 0 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.8 1 8.0 7.5 7.4 7.4 7.4 7.4 7.4 7.4 2 7.0 6.9 6.8 6.7 6.8 6.7 6.8 6.7 4 7.1 7.0 6.7 7.0 7.1 7.1 - 7.9 5 7.6 7.6 7.6 7.6 7.6 7.5 - - 7 8	,									481	435	428	447	518	580	-	
Dissolved Oxygen (mg/L)	,																
0 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.8 1 8.0 7.5 7.4 7.4 7.4 7.4 7.4 7.4 7.4 7.4 7.4 7.4	8							// \					L	<u> </u>	L.,		
1 8.0 7.5 7.4 7.4 7.4 7.4 7.4 7.4 7.4 7.4 7.4 7.5 7.2 7.2 7.1 7.1 7.1 7.1 7.1 7.1 7.0 6.9 6.9 6.8 6.7 6.8 6.7 6.8 6.7 7.5 7.5 7.5 7.2 7.1 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.1 7.1 7.1 7.1 7.1 7.1 7.1 7.1 7.1 7.1	ا ہ		0.5									Dis	solved	Oxyg	jen (m	g/L)	r1
2											7.0	7.0	7.0	7.4	7.4	7.	7.4
3 7.5 7.5 7.2 7.1 7.0																	
4 7.1 7.0 6.7 7.0 7.1 7.1 - 7.9 7.4 7.0 6.9 6.9 6.9 6.9 7.7 8.0 6 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.7 7.5 7.4 7.4 7.4 7.4 7.4 7.4 7.4 7.4 7.4 7.4 7.4 7.5 7.4 7.4 7.4 7.4 7.4 7.4 7.4 7.4 7.4 7.4 7.3 7.3 - 7.7 8 1																	
5 7.6 7.6 7.6 7.6 7.6 7.5 - <			-					7.0								 	
6	1			_				-	7.9								
7 8	,	1.0	7.0	7.0	7.0	7.0	7.5	-	-								
8	1		<u> </u>							1.5	7.4	1.2	7.1	7.1	7.1	<u> </u>	-
Temperature (°C) Column										-							
0 25	0		l		L Temn	eratur	e (°C)		L	L		L	Temr	eratu	n (°C)	\	
1 25 <t< td=""><td>o I</td><td>25</td><td>25</td><td>25</td><td></td><td></td><td></td><td>25</td><td>25</td><td></td><td></td><td></td><td>Citip</td><td>Joraidi</td><td></td><td><u>'</u></td><td></td></t<>	o I	25	25	25				25	25				Citip	Joraidi		<u>'</u>	
2 25 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>25</td><td>25</td><td>25</td><td>25</td><td>25</td><td>25</td><td>25</td><td>25</td></t<>										25	25	25	25	25	25	25	25
3 25 <t< td=""><td>'</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>_</td><td></td></t<>	'															_	
4 25 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>																	
5 25 25 25 25 25 - - 25 25 25 25 25 25 - 25 6 7 0			_													 	
6 25 25 25 25 25				_												 	
7				_ <u>-</u> -						-							-
										_ <u>_</u> _	├ ¯		 _	<u> </u>	<u> </u>		
	8																\vdash

Comments/Statistics

Client: ALS106

Reference: 09-1501-01-CDD

Form: F060 v 3.2

Test Result Comments:

None

Data Analysis:

Endpoints for mortality were calculated using a linear regression model (Log-Normal Probit) with CETIS v. 1.7.0 rev Q.

Regression analysis was attempted on the data, but the assumptions of normality and equal variance were not met. Therefore, endpoints for reproduction were calculated using a Linear Interpolation model using CETIS v. 1.7.0 rev Q.

Protocol Deviations:

None

Ceriodaphnia Test Report

Quality Assurance Information

Culture history for adults used in the test for reference 09-1501:

Number of young produced per brood adult:

(Note: The third brood per adult may be on the day the test is set)

	row/replicate	C1	C3	C5	D3	D4	E2	E4	C2			
	p											
	number of young									:		
	number of adults											
		C1	C3	C5	D3	D4	E2	E4	C2			
	number of young	<u> </u>		00					- 02			
	number of adults											
		0.4	•									
	number of young	C1	C3	C5	D3	D4	E2	E4	C2	T		1
	number of adults											
	Trainibor of addito	· · · ·								l l		
		C1	C3	C 5	D3	D4	E2	E4	C2			
	number of young	8	4	8	7	6	6	2	5			
	number of adults	_1	1	1	1	1	1	1	1			
		C1	C3	C5	D3	D4	E2	E4	C2			
	number of young	10	3	4	8	10	11	9	8			
	number of adults	1	1	1	1	1	1	1	1			
	number of young	C1 8	C3	C5 10	D3	D4 13	E2	E4	C2	1		
	number of adults	1	1	10	7	1	8 1	9	2			
	Transcr or addits				'	1	<u> </u>	1	1			
		C1	C 3	C5	D3	D4	E2	E4	C2			
DAY USED	number of young	8	8	9	9	10	12	9	15			
2009/08/19	number of adults	1	1	1	1	1	1	1	1			
		C1	C3	C 5	D3	D4	E2	E4	C2			
totals	number of young	26	16	22	22	29	25	20	15			Т
(# of young in firs												
3 broods)				· · · · · · · · · · · · · · · · · · ·		4	1			!!		
Number of young	produced per organ	nism ii	n the la	st broo	d befor	e use				10		
Mean number of	surviving young per	adult	over th	a firet t	hraa hr	oode				22	l	
Wican number of s	sai vivilig young per	adult	0 4 GI (II	C III SE L	ince bi	oous						
Culture mortality	over the last seven	days								12		
											-	

Warning Chart Ceriodaphnia

Test Method: Ceriodaphnia Survival and Reproduction Test (6 treatments plus a control)

HydroQual Test Method Manual, section: 4.4.3.2

Reference: Biological Test Method: Test of Reproduction and Survival Using the

Cladoceran Ceriodaphnia dubia, 2007. Environment Canada, EPS 1/RM/21

Test Organism:

test species: Ceriodaphnia dubia

culture source: in-house

original culture source: Environment Canada

ephippia in stock culture: none

food type: YAT:Algae

frequency of feeding: daily

age of test organisms: <24 hours

culture mortality 7 days prior: 0

culture fecundity 7 days prior

within the first three broods: 22

young produced in previous brood: 9

culture condition prior to test initiation: normal

culture water: 50:50 water

Test Design:

test type: static renewal

toxicant: sodium chloride (NaCl)

test vessel: 30 mL plastic cup

test volume (mL): 15

replicates per treatment: 10

organisms per replicate: 1

feeding: daily

temperature (°C): 24-26

photoperiod: 16 hours light: 8 hours dark

light level (surface): 100-600 lux

hardness adjustment: no

*Note: there are 2 subcultures within this culture source, separated by one week in age. The test is set with organisms from one subculture. The number of young a culture has is monitored daily. If young are not used that day, they are discarded, therefore organisms in tests are <24h.

Control/Dilution Water:

source: equal volumes of Bow River water and

moderately hard reconstituted water (50:50 water)

pH (units): 8.2

conductance (uS/cm): 370

dissolved oxygen (mg/L): 7.3

NH₄' (mg/L): <0.1

hardness (mg CaCO₃/L): 127

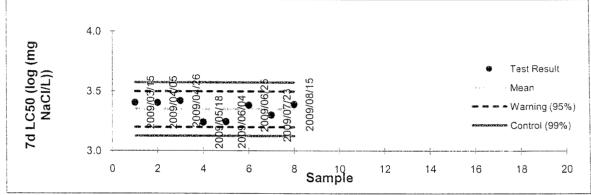
alkalinity (mg CaCO₃/L): 128

total residual chlorine (mg/L): <0.01

Note: moderately hard reconstituted water prepared as per EPS 1/RM/21

Comments: There were no protocol-deviations during the conduct of this test.

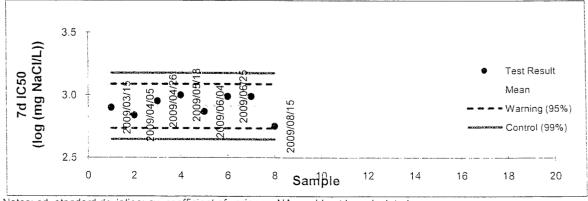
Quality Assurance Unit:


Authorized by S. Krishnappa, B.Sc., Quality Assurance Coordinator

The test data and results are verified correct.

Warning Chart Ceriodaphnia

		Mort	ality			
Current Test						
toxicant	Sodium chl	oride (NaCl)			
started on :	2009/08/15	ended on	2009/08/21			
Result (6d LC50):	3.39	log (mg Na	aCl/L); geom	etric mean		
Confidence Limits (95%)	lower	3.31	upper	3.47		
Historical Values						
mean	3.35	sd	0.07	cv(%):	2	
	lower	upper				
warning limits (±2 sd)	3.20	3.50	(95% confi	dence limits)		
control limits (±3 sd)	3.12	3.57	(99% confi	dence limits)		



Current Test Reproduction

toxicant Sodium chloride (NaCl)

started on 2009/08/15 ended on 2009/08/21

	000.00					
Result (6d IC50):	2.75	log (mg Na	aCl/L); geom	etric mean		
Confidence Limits (95%)	lower	2.63	upper	2.86		
Historical Values						
mean	2.91	sd	0.09	cv(%):	3	
	lower	upper				
warning limits (±2 sd)	2.73	3.09	(95% confi	dence limits)		
control limits (±3 sd)	2.65	3.18	(99% confi	dence limits)		

Notes: sd. standard deviation; cv, coefficient of variance; NA, could not be calculated

Our liability is limited to the cost of the test requested on the sample as received. No liability in whole or in part is assumed for the collection, handling or transport of the sample, application or interpretation of the test data or results in part or in whole.

Ceriodaphnia Test Report

Quality Assurance Information

Culture history for adults used in the test for reference QA186:

Number of young produced per brood adult:

(Note: The third brood per adult may be on the day the test is set)

	row/replicate	A5	B2	C2	СЗ	D3	D4	D5	E2	E4		
				-							1	
	number of young number of adults											
	number of addits										<u> </u>	
		A5	В2	C2	C3	D3	D4	D5	E2	E4		
	number of young											
	number of adults										<u> </u>	
		A5	B2	C2	C3	D3	D4	D5	E2	E4		
	number of young	710		<u> </u>			<u> </u>	00			T	Т
	number of adults											
	Facility of the second	A5	B2	C2	C3	D3	D4	D5	E2	E4		
	number of young	6	7	4	4	7	6	3	6	2		
	number of adults	1	1	1	1	1	1	1	1	11		
		A5	B2	C2	C3	D3	D4	D5	E2	E4		
	number of young	5	7	11	3	8	10	10	11	9		
	number of adults	1	1	1	1	1	1	1	1	1		
			20	•	•							
	number of young	A5 7	B2 9	C2 8	C3	D3	D4 13	D5 8	E2	E4 9	T	
	number of adults	1	1	1	1	1	1	1	1	1		
	Transor or addito		<u> </u>	<u> </u>	L	1'	1	1	<u> </u>	L	<u> </u>	
		A5	В2	C2	C3	D3	D4	D5	E2	E4		
DAY USED	number of young	9	9	8	8	10	10	8	10	11		
2009/08/15	number of adults	1	1	1 1	1 1	1	1	1	1	1	<u> </u>	
		A5	B2	C2	СЗ	D3	D4	D5	E2	E4		
totals	number of young	18	23	1 23	1 16	22	7 29	T 21	1 25	T 20	1	
(# of young in firs												
3 broods)	<u> </u>							1		- L.		
Number of young	g produced per orga	nism i	n the la	ast broc	d befo	re use				9		
Mean number of	surviving young per	adult	over th	ne first f	three b	roods				22	7	
	0, 0,00		••	= .						L		
Culture mortality	over the last seven	days								0		

Result Summary

Client: ALS106
Reference: 09-1

Reference: 09-1501-01-FMD

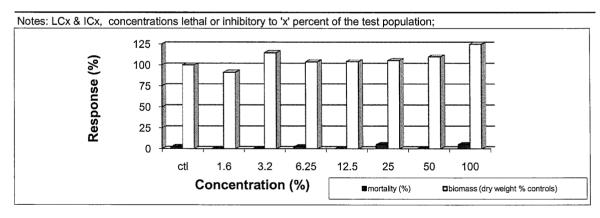
Client: ALS Laboratory Group; operation Edmonton

Contents

Sample: L806858-1 LUP-10 Result Summary......1
Test Conditions......2

Collection: collected on 2009/08/17 at not given by AM Receipt: received on 2009/08/19 at 0910 by L. Henson Containers: received 6 x 20L pails at 19 °C, in good condition

Test Data......4 Comments/Statistics..7 QA/QC.....8


with no seals and no initials

Description: type: water, collection method: not given

Test: started on 2009/08/20; ended on 2009/08/27

Result:

_	Endpoint (7-day)	Value	Confidence Limits (95%) lower upper	Units	Method Calculated
Acute:	LC25	>100		%	could not be calculated
(survival)	LC50	>100		%	could not be calculated
Chronic:	IC25	>100		%	could not be calculated
(growth)	IC50	>100		%	could not be calculated

The test data and results are authorized and verified correct.

E. Blais, B.Sc., Technical Lead

S. Krishnappa, B.Sc., Quality Coordinator

Form: F060 v 3.2

Test Conditions

Client: ALS106

Reference: 09-1501-01-FMD

Form: F060 v 3.2

Method: Biological Test Method: Test of Larval Growth and Survival Using Fathead

minnows, 1992. Environment Canada, EPS 1/RM/22. (amended September 2008)

Test type: Fathead Minnow 7-d Survival and Growth Static Renewal Test (HQ 4.4.4.6)

Species: Pimephales promelas

Age: ≤ 24 hour post hatch

Organism source: Aquatox Inc., Hot Springs, Arkansas (Batch 20090820FM) **Culture conditions:** temperature, 25 °C; dissolved oxygen, 95-100 % saturation

Shipped: 2009/08/19

Breeding Stock Mortality: < 1 % during the week prior to test initiation

Organisms upon receipt: mortality, < 1 %; temperature, 24°C: dissolved oxygen, 9.6 mg/L

No acclimation was necessary. Test organisms maintained at $25 \pm 1^{\circ}$ C until loaded The EC guidance document on the importation of test organisms (1999) has been followed. Test organisms were received in good condition, with inflated swim

bladders and normal feeding behaviour.

Organism observation: No unusual behaviour or appearance or treatment of test

organisms was noted prior to shipping, upon arrival, preceding or during the test.

Normal feeding behaviour was noted during the test.

Sample initial chemistry: pH: 8.0; EC: 777 (µS/cm); DO: 7.5 (mg/L); temperature: 17 °C

hardness (mg CaC03/L): 165; colour: colourless; odour: odourless

Sample holding time: 3 days (must be ≤3 days); The test was conducted with

three subsamples; samples a, b, and c were for days 0 to 2, 3 to 5, and 6 to 8.

Sample storage: 4 ± 2°C in darkness

Test vessel: Tests were conducted in 500 mL plastic vessels

Test volume: 250 mL of solution (depth of 6.5 cm), replenished daily

Control/dilution water: The control and dilution water was dechlorinated City of Calgary water acclimated

to the test conditions; no chemicals were added to the dilution/control water

Test concentrations: 7 effluent concentrations (1.6, 3.2, 6.3, 13, 25, 50, 100% (v/v)

plus a negative control)

Test replicates: Ten fish ≤ 24 hours old were loaded per test vessel; 4 replicates/conc.

Feeding: The test organisms were fed twice daily newly-hatched brine shrimp nauplii

The fish are not fed during the final 12 hours of the test

Measurements: pH, conductivity, dissolved oxygen and temperature were measured daily

Sample pre-treatment: The sample was not aerated, filtered or pH adjusted prior or during testing

The dissolved oxygen concentration (mg/L) was: 7.5

The sample pH was: 7.8

Lighting: Overhead full spectrum fluorescent lights; 100-500 lux at surface

Photoperiod: 16h light:8h dark

Test temperature: 25 ± 1°C

Client: ALS106

Reference: 09-1501-01-FMD

Form: F060 v 3.2

Test Conditions

Endpoint: Survival, 7-d LC50 (with 95% confidence limits)

Biomass, 7-d IC25 (with 95% confidence limits)

Test endpoints were bracketed by at least 1 test concentration

(except for <1.6% or >100 %)

No outliers were observed within the data set

Test validity: Control had 97% survival (must ≥ 80%)

Control had 0% abnormal behaviour (must < 20%), e.g. atypical swimming, loss of

equilibrium

The average dry weight of the control fish was 0.42 (must ≥ 0.25 mg)

Reference toxicant: 7-d test with NaCl initiated August 20, 2009;

current results: (7-d LC50 and 95% confidence limits) = 2.81 (2.73-2.88) log (mg/L NaCl) current results: (7-d IC25 and 95% confidence limits) = 2.34 (2.00-2.59) log (mg/L NaCl)

The reference toxicant test was performed under the same

conditions as those used during this test.

Test Data

Client: ALS106

Reference: 09-1501-01-FMD

Form: F060 v 3.2

Test Log:

Date	Day	Time	Technicians	Temperature Be	fore Use(°C)
Date	Day	Time	rechnicians	Control	Sample
2009/08/20	0	1450	N. Lavoie/S. Ehman	25	24
2009/08/21	1	1215	N. Lavoie	25	25
2009/08/22	2	1135	D. Lalonde	25	25
2009/08/23	3	1115	S. Ehman	25	25
2009/08/24	4	1410	N. Lavoie	25	25
2009/08/25	5	1530	E. Vinish	25	25
2009/08/26	6	1010	S. Ehman	25	25
2009/08/27	7	1305	T. Kloschinsky	na	na

Daily Swimming Behavior:

Daily CWII	mining Denie	4 V I O I .						
Day	ctl	1.6	3.2	6.3	12.5	25	50	100
0	normal	normal	normal	normal	normal	normal	normal	normal
1	normal	normal	normal	normal	normal	normal	normal	normal
2	normal	normal	normal	normal	normal	normal	normal	normal
3	normal	normal	normal	normal	normal	normal	normal	normal
4	normal	normal	normal	normal	normal	normal	normal	normal
5	normal	normal	normal	normal	normal	normal	normal	normal
6	normal	normal	normal	normal	normal	normal	normal	normal
7	normal	normal	normal	normal	normal	normal	normal	normal

Chemistry	Chemistry Summary Tables:															
			New :	Solutio	ons						Old S	olution	าร			
Conc. (%)	ctl	1.6	3.2	6.25	12.5	25	50	100	ctl	1.6	3.2	6.25	12.5	25	50	100
							A	verage	<u>Value</u>	es						
рН	8.2	8.2	8.2	8.2	8.2	8.2	8.2	7.9	8.0	8.0	8.0	8.0	7.9	7.9	7.8	7.5
cond.	342	352	359	371	400	455	554	771	351	359	370	387	421	467	584	786
DO	7.7	7.6	7.5	7.4	7.4	7.4	7.5	7.6	7.0	6.9	6.7	6.6	6.5	6.6	6.6	6.6
temp	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25
						С	oeffici	ents o	f Varia	tion (9	%)					
pН	3	3	3	3	3	2	2	2	2	2	2	2	2	2	2	3
cond.	4	3	3	3	3	4	2	1	4	1	2	2	3	3	3	1
DO	6	4	3	3	3	3	3	4	6	8	6	5	5	6	6	5
temp	2	2	2	2	2	2	2	2	0	0	0	0	0	0	0	0

Test Data

Client: ALS106

Reference: 09-1501-01-FMD

Form: F060 v 3.2

Biology (n	Biology (number alive):															
Conc. (%)	ctl	1.6	3.2	6.25	12.5	25	50	100	ctl	1.6	3.2	6.25	12.5	25	50	100
								-								
Replicate				Day 1								Day 5				
а	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	9
b	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
C	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	9
d	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
				Day 2								Day 6				
а	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	9
b	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
C	10	10	10	10	10	10	10	9	10	10	10	10	10	9	10	9
d	10	10	10	10	10	10	10	10	10	10	10	10	10	9	10	10
								التنب					. •	Ū		
				Day 3								Day 7	•			
а	10	10	10	10	10	10	10	10	9	10	10	10	10	10	10	9
b	10	10	10	10	10	10	10	10	10	10	10	9	10	10	10	10
С	10	10	10	10	10	10	10	9	10	10	10	10	10	9	10	9
d	10	10	10	10	10	10	10	10	_10	10	10	10	10	9	10	10
				Day 4								. D	A/ - !1-	4- /		
	10	10	10	Day 4	10	10	10		4.07				Weigh			E 40
a	10 10	10	10	10			10	9		3.91		4.38		4.92	3.88	5.13
b		10		10	10	10	10	10	4.55	3.78	4.71	4.23	4.41	4.57	4.54	4.53
c d	10 10	10	10 10	10 10	10 10	10 10	10 10	9	3.49	3.76	4.65	3.38		4.00	4.60	5.74
ŭ	10	10	10	10	10	10	10	10	4.60	4.78	5.00	4.39	4.12	4.13	4.63	6.92
Biology Su	ımma	ry Tal	oles:													

			Мо	rtality	(%)			Biomass Data (mg per fish)								
а	10	0	0	0	0	0	0	10	0.41	0.39	0.32	0.44	0.46	0.49	0.39	0.51
b	0	0	0	10	0	0	0	0	0.46	0.38	0.47	0.42	0.44	0.46	0.45	0.45
С	0	0	0	0	0	10	0	10	0.35	0.38	0.46	0.34	0.43	0.40	0.46	0.57
d	0	0	0	0	0	10	0	0	0.46	0.48	0.50	0.44	0.41	0.41	0.46	0.69
mean	3	0	0	3	0	5	0	5	0.42	0.38	0.48	0.43	0.44	0.44	0.46	0.56
sd	5	0	0	5	0	6	0	6	0.1	0.0	0.1	0.0	0.0	0.0	0.0	0.1
cv(%)	200	na	na	200	na	115	na	115	12	13	17	11	5	10	8	18

Average Dry Weight of Surviving Control Fish:	0.42	Bi	omas	s as a	Perce	ent of (Contro	ols	
		100	91	115	104	104	105	110	134

Test Data

Client: ALS106

Reference: 09-1501-01-FMD

Form: F060 v 3.2

Chemis	stry:
--------	-------

Chemistry	:															
			New	Solutio	ons						Old S	olutio	าร			
Conc. (%)	ctl	1.6	3	6.25	12.5	25	50	100	ctl	1.6	3	6.25	12.5	25	50	100
Day				H (unit							pl	H (unit	s)			
0	8.2	8.3	8.3	8.3	8.3	8.2	8.2	7.8								
1	8.0	8.1	8.1	8.1	8.1	8.1	8.0	7.8	7.8	7.9	7.9	7.9	7.8	7.8	7.7	7.5
2	8.5	8.6	8.6	8.6	8.6	8.5	8.5	8.1	8.3	8.3	8.2	8.2	8.2	8.2	8.1	7.9
3	7.8	7.9	8.0	8.0	8.0	8.0	8.0	7.7	7.8	8.0	7.9	7.8	8.0	7.8	7.7	7.5
4	8.1	8.1	8.1	8.1	8.1	8.1	8.0	7.8	7.9	7.9	7.9	7.9	7.9	7.8	7.7	7.4
5	8.3	8.4	8.4	8.4	8.4	8.3	8.3	8.0	8.1	8.0	8.1	8.1	8.0	7.9	7.8	7.6
6	8.2	8.2	8.2	8.2	8.2	8.1	8.1	7.8	8.0	7.9	7.9	7.9	7.8	7.8	7.6	7.3
7									7.8	7.9	7.9	7.9	7.9	7.8	7.7	7.5
8																
					µS/cn					<u>C</u>	onduc	tivity (μS/cn	1)		
0	335	338	342	356	386	440	549	768								
1	349	351	355	362	382	425	534	768	349	357	369	387	421	465	594	798
2	334	353	364	380	409	464	552	771	343	354	363	378	397	442	567	786
3	338	353	361	372	401	476	552	773	332	356	361	380	408	457	557	777
4	330	345	352	358	401	455	553	764	363	358	369	387	437	489	603	784
5	369	368	372	387	412	464	570	775	367	367	380	396	436	478	588	785
6	339	355	365	379	406	460	566	775	363	366	373	388	429	473	582	779
7									340	358	375	392	420	462	595	793
8				_												
					en (m					Diss	solved	Oxyg	en (m	g/L)		
0	7.7	7.7	7.7	7.6	7.6	7.6	7.7	7.5								
1	7.2	7.4	7.2	7.2	7.2	7.2	7.2	7.2	6.3	6.3	6.3	6.3	6.3	6.3	6.3	6.5
2	7.6	7.5	7.4	7.3	7.3	7.3	7.3	7.5	7.2	6.8	6.8	6.6	6.4	6.4	6.7	6.6
3	8.4	8.2	7.4	7.8	7.8	7.6	7.8	8.2	7.5	8.0	7.4	7.2	6.9	7.2	7.2	7.0
4	8.0	7.9	7.8	7.7	7.7	7.7	7.6	7.7	7.4	7.2	7.0	7.0	6.9	7.0	6.9	7.0
5	7.2	7.4	7.3	7.2	7.2	7.2	7.2	7.5	6.6	6.5	6.4	6.3	6.2	6.3	6.1	6.1
6	7.5	7.4	7.4	7.3	7.3	7.3	7.4	7.6	6.7	6.5	6.3	6.3	6.3	6.3	6.3	6.2
7									7.1	6.9	6.7	6.6	6.7	6.6	6.6	6.5
8					(00)							L	(0.0)			
0		0.4		eratur			0.4				Lemp	eratur	e (°C)	l		
0	24	24	24	24	24	24	24	24								
1	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25
2	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25
3	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25
4	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25
5	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25
6	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25
7									25	25	25	25	25	25	25	25
8																

Comments/Statistics

Client: ALS106

Reference: 09-1501-01-FMD

Form: F060 v 3.2

Test Result Comments:

The biomass data for replicates 1.6%D, 3.2%A, 6.3%C and 50%A were determined to be outliers using the Grubbs test (1969). These replicates were excluded from the calculations for mean biomass per fish.

Data Analysis:

Endpoints for mortality could not be calculated. No effect occurred.

Endpoints for biomass could not be calculated. No effect occurred.

Protocol Deviations:

None

Warning Chart Fathead minnow

Test Method: 7 days Fathead minnow Survival and Growth Test (five treatments plus a control)

HydroQual Test Method Manual, section: 4.4.4.6

Reference: Biological Test Method: Test of Larval Growth and Survival Using Fathead

minnows, 1992. Environment Canada, EPS 1/RM/22. (amended September 2008)

Test Organism:

test species: Pimephales promelas

culture source: Aquatox Inc.

(Arkansas, USA)

temp of breeding aquaria: 23 - 26 °C

food type: frozen brine shrimp

frequency of feeding: daily

breeding colony mortality: <1% (last 7 days)

age of test organisms: <24 hours

condition prior to test initiation: normal

batch number: 20090820FM

Test Design:

test type: static renewal toxicant: sodium chloride

test vessel: polypropelyene

cups, 11x9 cm

volume of test vessel: 450

test volume (ml): 250 depth of test solution: >3 cm

replicates per treatment: 4 replicates

organisms per replicate: 10

feeding: twice daily

temperature (°C): 24-26

photoperiod: 16 hours light: 8 hours dark

light level (surface): 100-500 lux

Control/Dilution Water:

source: dechlorinated City of Calgary tap water

no chemicals were added to the dilution water

pH (units): 7.1

conductance (µS/cm): 381

dissolved oxygen (mg/L): 7.4

 $NH_{4}^{+}(ma/L)$: <0.1

hardness (mg CaCO₃/L): 161

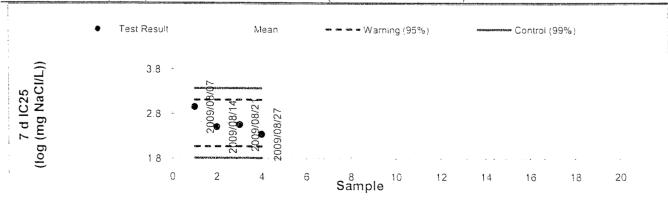
alkalinity (mg CaCO₃/L): 162

total residual chlorine (mg/L): <0.01

Comments: None.

Quality Assurance Unit:

Authorized by S. Krishnappa, B.Sc., Quality Assurance Coordinator


The test data and results are verified correct.

Warning Chart Fathead minnow

		ΛΛ	ortality			
			rent Test			
toxicant	Sodium Chlo					
	2009/08/20	ended on	2009/08/27			
Result (7 d LC50):	2 81	log (mg NaCl	/L); geometric m	nean		
Confidence Limits (95%)	lower	2.73	upper	2.88		
		Histor	ical Values			
mean	3.00	sd	0.27	cv(%):	9	
	lower	upper				
warning limits (±2 sd)	2.45	3.54	(95% confiden	ice limits)		
control limits (±3 sd)	2.18	3.82	(99% confider	ice limits)		
• Tes	r Resuit	Mean	∞ ∞ ∞ ∘ Warni	ng (95%)	enzerosemen Control (99°)	D. }
/L))	10	s 4 data i di cianta a transistica attrasistica attrasist				
. 00 E	35 - 5	4 <u>-</u>				
S Z	30 - 👸	/08/2 08/2 18/2				
17 🔾	25	2009/08/2 2009/08/2 2009/08/2				
(log	2.0	Same and a second				
=	0	5	Sample 10		15	20
		Bio	mass			
started on	2009/08/20	ended on	2009/08/27			
Result (7 d IC25):	2.34	log (mg NaCl	I/L); geometric r	nean		
Confidence Limits (95%)	lower	2.00	upper	2.59		

Historical Values mean 2.59 0.26 cv(%): sd 10 lower upper warning limits (±2 sd) 2.07 3.11 (95% confidence limits) control limits (±3 sd) 1.81 3.37 (99% confidence limits)

notes: sd. standard deviation; cv. coefficient of variance; N/A, could not be calculated

Result Summary

Client: ALS106

Reference: 09-1501-01-LMD

Client: ALS Laboratory Group; operation Edmonton

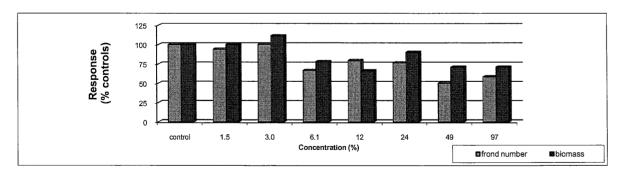
Contents

Sample: L806858-1 LUP-10

Collection: collected on 2009/08/17 at not given by AM Receipt: received on 2009/08/19 at 0910 by L. Henson Containers: received 6 x 20L pails at 19 °C, in good condition

with no seals and no initials

Description: type: water, collection method: not given


Test: started on 2009/08/19; ended on 2009/08/26

Result Summary	.1
Test Conditions	.2
Test Data	.4
Comments/Statistics.	.6
QA/QC	.7

Result:

	Endpoint (7-day)	Value	Confidence I lower	imits (95%) upper	Units	Method Calculated
Chronic:	IC25	6.0	3.2	46	%	Linear Interpolation
(frond number)	IC50	>97	na	na	%	Linear Interpolation
Chronic:	IC25	25	na	na	%	Linear Interpolation
(biomass)	IC50	>97	na	na	%	Linear Interpolation

Notes: ICx, concentrations lethal or inhibitory to 'x' percent of the test population;

The test data and results are authorized and verified correct.

E. Blais, B.Sc., Technical Lead

S. Krishnappa, B.Sc., Quality Coordinato

Form: F060 v 3.2

Test Conditions

Client: ALS106

Reference: 09-1501-01-LMD

Form: F060 v 3.2

Method: Biological Test Method: Test for Measuring the Inhibition of Growth Using

the Freshwater Macrophyte, Lemna minor. Environment Canada,

EPS 1/RM/37 2nd Edition, January 2007

Test type: Lemna 7-d Inhibition of Growth Static Test (HQ 4.4.2.3)

Species: Lemna minor

Organism source: in-house culture, ≥ 3 weeks in age (original source: UTCC 492, clone 7730)

Culture health: The fronds were acclimated in test media for 24 hours prior to test initiation.

The test culture was axenic prior to testing.

There was a 9 fold increase in frond number of culture over last 7 days.

Test loaded with 3 frond daughter plants, all with light green fronds and short roots.

Culture age: The test was started with 9 day old fronds.

Culture media: modified Hoagland's E+ medium

Organism observation: No unusual behaviour, appearance or treatment of test organisms was noted prior to

or during the test.

Sample initial chemistry: pH: 8.0; EC: 777 (µS/cm); DO: 7.5 (mg/L); temperature: 17 °C

hardness (mg CaC03/L): 165; colour: colourless; odour: odourless

Sample holding time: 2 days (must be \leq 3 days); The test was conducted with three subsamples,

samples a, b, and c were for days 0 to 2, 3 to 4, and 5 to 7.

Sample storage: 4 ± 2°C in darkness

Test vessel: The test was a static test conducted in 200 mL polyethylene plastic

containers with clear lids.

Test volume: The test volume was 150 mL, depth of \geq 4 cm

Test concentrations: 7 effluent concentrations (1.5, 3.0, 6.1, 12.1, 24, 49, 97% (v/v) plus a negative control)

Test replicates: There were four replicates per treatment with two 3 frond daughter plants

per replicate; replicates are rotated daily.

Control/dilution water: Test media (modified APHA medium) made up with deionized City of Calgary water

water spiked with nutrients as per Environment Canada EPS 1/RM/37, 2007. made by adding 60 mL of each of the three stock solutions to 5.82 L of DRO

The media aerated for 2 hours and was pH adjusted to 8.3±0.1 with 6N HCl or NaOH.

The test media was not filtered.

Elutriate preparation: 2009/08/19

Sample pre-treatment: 1455 mL of sample spiked with 15 mL of each of the three APHA stock solutions,

no other chemicals added. The sample was not pH adjusted or filtered prior to testing.

Aeration: The sample was pre-aerated for 20 minutes at a rate of 100 bubbles/minute with

oil free filtered compressed air from a 1 mL glass pipette attached to an air pump.

Test Conditions

Client: ALS106

Reference: 09-1501-01-LMD

Form: F060 v 3.2

Lighting: The cups were incubated under continuous full-spectrum light. The light levels

were measured at the sample surface, at three locations on the testing bench,

during testing: left: $4520 \text{ lux} \approx 72 \text{ } \mu\text{mol/m}^2 \cdot \text{S}$

centre: 5240 lux \approx 84 μ mol/m²•S

right: 4560 lux \approx 73 μ mol/m²•S

Measurements:

pH, conductivity, dissolved oxygen and temperature at test initiation and termination;

temperature in the control, low, middle and high concentrations are recorded daily.

Test temperature: 25 ± 2°C

Endpoint: Growth (based on increase in frond number), 7-d IC25 (with 95% confidence limits)

Growth (based on dry weight), 7-d IC25 (with 95% confidence limits) Test endpoints were bracketed by at least 1 test concentration.

(except for <1.6% or >97 %)

No outliers were observed within the data set

Test validity: The mean number of fronds in the controls have increased 10 times

(must be ≥ 8 time increase). The average number attained at test termination

was 57 (must be ≥48 fronds per test vessel).

Reference toxicant: 7-d test with Potassium Chloride (KCI) initiated August 25, 2009;

current results:

(Frond Number; 7-d IC25 and 95% confidence limits) = 3.37 (3.27-3.45) log(mg KCI/L)

current results:

(Biomass; 7-d IC25 and 95% confidence limits) = 3.53 (3.27-3.66) log (mg KCl/L)

The reference toxicant test was performed under the same conditions as those used

during this test.

Form: F060 v 3.2

Test Data

Client: ALS106

Reference: 09-1501-01-LMD

Test Log:

Date	Day	Time	Technicians	Rotate	Temperature (°C)					
Date	Бау	111116	recifficians	Notate	Control	3.0%	24%	97%		
2009/08/19	0	1130	E. Vinish/T. Kloschinsky	no	24	24	24	24		
2009/08/20	1	0820	N. Lavoie	yes	25	25	24	23		
2009/08/21	2	0815	J. Amyotte	yes	23	23	24	24		
2009/08/22	3	0915	S. Ehman	yes	24	23	23	23		
2009/08/23	4	0910	S. Ehman	yes	23	23	23	23		
2009/08/24	5	0915	H. Stewart	yes	24	23	24	25		
2009/08/25	6	0820	H. Stewart	yes	26	24	24	26		
2009/08/26	7	1210	E. Vinish/H. Stewart	no	24	24	24	24		

Chemistry:									
Conc.(%)	control	1.5	3.0	6.1	12	24	49	97	
				Day 0					
pН	8.2	8.3	8.3	8.2	8.2	8.2	8.1	8.0	
cond.	921	908	913	938	984	1069	1232	1594	
DO	6.8	6.7	6.7	6.7	6.7	6.7	6.7	6.7	
temp.	24	24	24	24	24	24	24	24	
·						•			
				Day 7					
pН	8.5	8.6	8.7	8.8	8.8	8.9	8.8	8.7	
cond.	1295	1115	1093	1072	1159	1360	1573	1937	
DO	7.6	7.6	8.7	9.6	9.6	9.5	9.5	8.6	
temp.	24	24	24	24	24	24	24	24	

Notes: pH, units; cond., conductivity (µS/cm); DO, dissolved oxygen (mg/L); temp., temperature (°C)

Frond Appearance:

Concentration (%)	Day 0	Day 7
control	green, short roots, healthy	green, long roots, healthy
1.5	green, short roots, healthy	green, long roots, healthy, some algae
3.0	green, short roots, healthy	green, long roots, healthy, some algae
6.1	green, short roots, healthy	yellow, long roots, algae
12.1	green, short roots, healthy	yellow, long roots, algae
24	green, short roots, healthy	yellow, medium roots
49	green, short roots, healthy	yellow, medium roots, some chlorosis
97	green, short roots, healthy	yellow, medium roots, some chlorosis

Notes: chl, chlorotic; nec, necrotic; asf, abnormally sized fronds; gib, gibbosity; cd, colony destroyed; rd, roots destroyed; lb, loss of bouyancy

Form: F060 v 3.2

	Tant Data						Client: ALS106	
			Test Data				Reference: 09-1501-01-LMI	
Frond numb								
Conc.(%)	control	1.5	3.0	6.1	12.1	24	49	97
.								
Replicate				Day 0				
a	6	6	6	6	6	6	6	6
b	6	6	6	6	6	6	6	6
C	6	6	6	6	6	6	6	6
d	6	6	6	6	6	6	6	6
				Day 7				
а	61	62	55	37	49	48	31	35
b	68	61	57	42	53	40	34	30
С	51	43	63	42	43	43	28	44
d	49	51	55	40	42	50	34	35
ncrease in F	Frond Num	her:						
Conc.(%)	control	1.5	3.0	6.1	12.1	24	49	97
33.13.(73)	00.14.0.		<u> </u>		1 12.1		1 10 1	
Replicate								
а	55	56	49	31	43	42	25	29
b	62	55	51	36	47	34	28	24
С	45	37	57	36	37	37	22	38
d	43	45	49	34	36	44	28	29
1								
average	51	48	52	34	41	39	26	30
sd	9	9	4	2	5	5	3	6
cv	17	19	7	7	13	12	11	19
% ctls	100	94	100	67	80	77	50	59
% stim	0	-6	0	-33	-20	-23	-50	-41
otal Dry We	eiahts (ma)) <u>:</u>						
Conc.(%)	control	1.5	3.0	6.1	12.1	24	49	97
Replicate			-		Dav 7			
a	5.0	4.4	4.6	3.2	3.6	4.1	2.9	3.1
b	4.3	5.1	4.9	3.4	3.3	3.6	3.3	2.6
C	3.9	3.3	5.2	3.3	2.0	3.7	2.4	3.7
d	3.9	4.3	4.4	3.5	2.5	4.1	3.6	2.9
u	0.0	4.0	7.7	0.0	<u> </u>	7.1	3.0	2.9
,					Day 7			
average	4.3	4.3	4.8	3.4	2.8	3.9	3.0	3.1
sd	0.5	0.8	0.3	0.1	0.8	0.2	0.5	0.5
cv	11	18	7	4	27	6	18	15
%ctls	100	100	111	78	66	90	71	71
% stim	0	0	11	-22	-34	-10	-29	-29

Notes: cv, coefficient of variation; %ctls, percent of controls; sd, standard deviation, % stim, percent stimulation

Our liability is limited to the cost of the test requested. The test results only relate to the sample as received. No liability in whole or in part is assumed for the collection, handling or transport of the sample, application or interpretation of the test data or results.

Lemna minor Test Report

Comments/Statistics

Client: ALS106

Reference: 09-1501-01-LMD

Form: F060 v 3.2

Test Result Comments:

None

Data Analysis:

Regression analysis was attempted on the data, but the assumptions of normality and equal variance were not met. Therefore, endpoints for frond number and biomass were calculated using a Linear Interpolation model using CETIS v. 1.7.0 rev Q.

Protocol Deviations:

None

Warning Chart Lemna

Test Method: 7 days Lemna minor Survival and Growth Test (five treatments plus a control)

HydroQual Test Method Manual, section: 4.4.2.3

Reference: Biological Test Method: Test for Measuring the Inhibition of Growth Using the

Freshwater Macrophyte, Lemna minor, 2007. Environment Canada, EPS 1/RM/37.

Test Organism:

test species: Lemna minor culture source: in-house

original culture source: UTCC - 492 (clone 7730)

culture vessels: 250 mL Erlenmeyer flask

water source: deionized water

growth medium: Hoagland's E+ medium

cultivation method: as per test conditions

temp of breeding aquaria: 25 ± 2°C

organism age: 7-10 days old acclimated to

test media for 18 to 24 hours

mean increase in frond #:

fold increase: 37

Test Design:

test type: static

toxicant: potassium chloride

water source: deionized reverse osmosis

water with nutrients as per EPS 1/RM/37

test vessel: 200mL polyethylene cups

test volume (ml): 150

test cover: clear plastic lids

replicates per treatment: 4

organisms per replicate: two 3 frond plants

temperature (°C): 25 ± 2°C photoperiod: 24 hours light light level (surface): 4, 500 ± 300 lux

light source: cool white fluorescent

hardness adjustment: no

Control/Dilution Water:

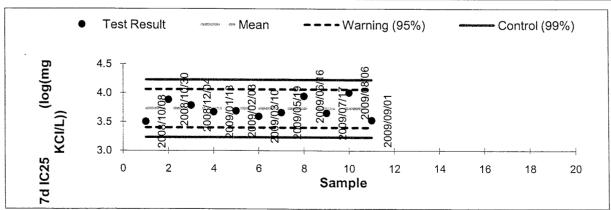
water source: City of Calgary tap water; deionized reverse osmosis water

and nutrients as per EPS 1/RM/37

Comments: None.

Quality Assurance Unit:

Authorized by S. Krishnappa, B.Sc., Quality Assurance Coordinator
The test data and results are verified correct.


Warning Chart Lemna

Frond Number **Current Test** toxicant Potassium Chloride (KCI) started on 2009/08/25 ended on 2009/09/01 Result (7 d IC25): 3.37 log (mg KCI/L); geometric mean Confidence Limits (95%) lower 3.27 upper 3.45 **Historical Values** 3.25 0.23 cv(%): mean sd 7 lower upper warning limits (±2 sd) 2.79 (95% confidence limits) 3.72 control limits (±3 sd) (99% confidence limits) 2.55 3.96 Test Result ™ Mean -- Warning (95%) - Control (99%) 4.5 4.0 3.5 3.0 2.5 2.0 0 2 4 6 12 14 16 18 20 Sample

Biomass Current Test

toxicant Potassium Chloride (KCI)

started on 2	2009/08/25	ended on	2009/09/01			
Result (7 d IC25):	3.53	log (mg KCl	L); geometric	mean		
Confidence Limits (95%)	lower	3.27	upper	3.66		
Historical Values						
mean	3.73	sd	0.17	cv(%):	4	
	lower	upper				
warning limits (±2 sd)	3.40	4.06	(95% confide	nce limits)		
control limits (±3 sd)	3.23	4.23	(99% confide	nce limits)		

notes: sd, standard deviation; cv, coefficient of variance; NA, could not be calculated

Our liability is limited to the cost of the test requested on the sample as received. No liability in whole or in part is assumed for the collection, handling or transport of the sample, application or interpretation of the test data or results in part or in whole.

Result Summary

Client: ALS106

Reference: 09-1501-01-TRD

Client: ALS Laboratory Group; operation Edmonton

Contents

Sample: L806858-1

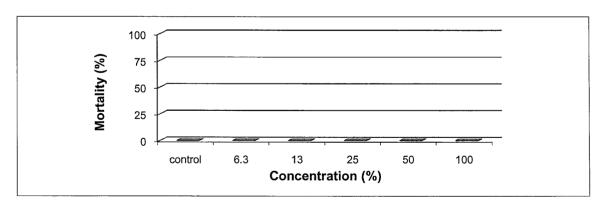
LUP-10

Collection: collected on 2009/08/17 at not given by AM **Receipt:** received on 2009/08/19 at 0910 by L. Henson

Containers: received 6 x 20L pails at 19 °C, in good condition with no

seals and no initials

Description: type: water, collection method: not given


Test: started on 2009/08/20; ended on 2009/08/24

Result Summary1 Test Conditions2 Test Data3 Comments/Statistics5 QA/QC6

Result:

_	Endpoint (96-hour)	Value (%)	Confidence Limits (95%) lower upper	Method Calculated
Acute: (mortality)	LC50 LC25	>100 >100		could not be calculated could not be calculated

Notes: LC25 & LC50, concentrations lethal to 25% and 50% of the test population

The test data and results are authorized and verified correct.

E. Blais, B.Sc., Technical Lead

S. Krishnappa, B.Sc., Quality Coordinator

Form: F060 v 3.2

Test Conditions

Client: ALS106

Reference: 09-1501-01-TRD

Form: F060 v 3.2

Method: Biological Test Method: Reference Method for Determining Acute Lethality of

Effluents to Rainbow Trout, 2000. Environment Canada, EPS 1/RM/13.

Second Edition (amended May 2007).

Test type: Trout 96-h Static Acute Test (HQ 4.4.4.1)

Species: Oncorhynchus mykiss

Organism source: Sun Valley Trout Farms (Batch 20090716TR)

Acclimation: 35 days (must be ≥2 weeks)

Stock mortality: 0.96% (seven days preceeding testing)

Sample initial chemistry: pH: 8.0; EC: 777 (µS/cm); DO: 7.5 (mg/L); temperature; 17 °C

hardness (mg CaC03/L): 165; colour: colourless; odour: odourless

Sample holding time: 3 days (must be ≤ 5 days)

Sample storage: 4 ± 2°C in darkness

Test vessel: The test was conducted in 22 L plastic pails with polyethylene liners

Test volume: 20 Litres (depth of solution in each test vessel ≥15cm)

Sample pre-treatment: All test solutions and controls were pre-aerated for 30 minutes at 6.5 ±1 mL/min/L

Dissolved oxygen in 100 % sample was 8.1 mg/L after pre-aeration The sample was not filtered or pH adjusted prior to or during testing

Loading density: 0.252 g/Litre (must be $\leq 0.5 \text{ g/Litre}$)

Control/dilution water: Dechlorinated City of Calgary water acclimated to test conditions

Test concentrations: 5 effluent concentrations (6.3, 12.5, 25, 50, 100% (v/v) plus a negative control)

Test replicates: One replicate per treatment; 10 fish per replicate

Feeding: Fish are not fed 24 hours before test initiation and no feeding during test

Measurements: pH, conductivity, dissolved oxygen and temperature measured daily

Aeration: All treatments aerated at 6.5 ±1 mL/min/L by oil-free compressed air

passed through airline tubes connected to disposable air stones

Lighting: Overhead full spectrum fluorescent lights; 100-500 lux at surface

Photoperiod: 16h light:8h dark

Test temperature: 15 ± 1°C

Endpoint: Mortality, 96-h LC50 (with 95% confidence limits)

Test validity: The control had 100% survival (must ≥ 90%)

Reference toxicant: 96-h test with Phenol (C₆H₅0H) initiated August 6, 2009; current results

(96-h LC50 and 95% confidence limits) = 0.92 (0.79-1.01) log (mg/L Phenol)

Note: Outlined sections are protocol deviations explained on the comment page; v/v, volume per volume

Test Data

Client: ALS106

Reference: 09-1501-01-TRD

Form: F060 v 3.2

Test Log:

Date	Day	Time	Technician	Comment/Observation
2009/08/20	0	1215	N. Lavoie/S. Ehman	test fish loaded at 1215 h
2009/08/21	1	1030	J. Amyotte/N. Lavoie	all test fish appear normal
2009/08/22	2	1045	D. Lalonde/S. Ehman	all test fish appear normal
2009/08/23	3	1045	D. Lalonde/N. Lavoie	all test fish appear normal
2009/08/24	4	1005	E. Vinish/H. Stewart	all test fish appear normal

\sim		
ľh	 110+	M /:
Ch		1 V .

Chemistry									
Conc. (%)	control	6.3	13	25	50	100			
Day pH (units)									
0 [8.0	8.1	7.9	8.0	8.1	7.8	T T		
1	8.0	7.9	7.8	7.8	7.7	7.2			
2	8.3	8.2	8.2	8.2	8.0	7.9			
3	8.1	8.1	8.1	8.0	7.9	7.7			
4	7.9	7.8	7.8	7.8	7.6	7.3			
_						,	'		
_				ductivity (µS					
0 [410	420	439	492	600	804			
1 [390	420	442	492	599	809			
2	397	418	432	480	593	796			
3 [400	415	419	482	594	793			
4	378	409	426	483	589	799			
			Dissal		/ /I \				
о г	0.0	0.4		ved Oxygen					
0	8.0	8.1	8.1	8.1	8.1	8.1			
1	8.2	8.2	8.2	8.3	8.2	8.3			
2	8.3	8.3	8.4	8.4	8.8	8.6			
3	9.1	9.1	9.3	9.4	9.4	9.4			
4	9.0	9.0	8.9	8.9	8.9	8.9			
	Temperature (°C)								
0	15	15	15	15	15	15	I		
1	15	15	15						
				15 15	15	15			
2	15	15	15	15	15	15			
3	15	15	15	15	15	15			
4	15	14	15	15	15	15			

Test Data

Client: ALS106

Reference: 09-1501-01-TRD

Form: F060 v 3.2

Number Alive:

Conc. (%)	control	6.3	13	25	50	100	
		······				•	
Day							
0	10	10	10	10	10	10	
1	10	10	10	10	10	10	
2	10	10	10	10	10	10	
3	10	10	10	10	10	10	
4	10	10	10	10	10	10	
			1				
				Mortality (%)			
4	0	0	0	0	0	0	

Biology Summary Tables:

Control	Length	Wet
Fish	(cm)	Weight(g)
1	3.4	0.5
2	3.5	0.4
3	3.7	0.6
4	3.9	0.6
5	3.4	0.6
6	3.9	0.5
7	3.2	0.2
8	3.1	0.3
9	4.5	0.9
10	3.5	0.4

Conc. (%)	Group Wet
Conc. (%)	Weight (g)
control	5.0
6.3	4.0
13	3.8
25	3.8
50	4.0
100	3.4

 average
 3.6
 0.5

 sd
 0.4
 0.2

 cv(%)
 11.3
 36.9

Notes: nd, not done; na, not applicable; sd, standard deviation; cv(%), coefficient of variation

Comments/Statistics

Client: ALS106

Reference: 09-1501-01-TRD

Form: F060 v 3.2

Test Result Comments:

None

Data Analysis:

Endpoints for mortality could not be calculated. No effect occurred.

Protocol Deviations:

None

Warning Chart Trout

Test Method: Trout 96h Static Acute Test. (LC50, five or more treatments plus a control)

HydroQual Test Method Manual, section: 4.4.4.1

Reference: Biological Test Method: Reference Method for Determining Acute Lethality of

Effluents to Rainbow Trout, 1990. Environment Canada, EPS 1/RM/13.

including May 1996 and December 2000 amendments.

Test Organism:

test species: Oncorhyncus mykiss

culture source: Sun Valley

temperature (°C): 15 ± 1

dissolved oxygen: saturated

stock mortality (last 7d): 0.00%

Result (LC50 @ 96h)

batch number: 20090716TR

Test Design:

vol. of test vessel (L): 22

test volume depth: >15 cm

replicates per treatment: 1

fingerlings per replicate: 10

rlings per replicate: 10

loading (g fish/L): <0.5

temperature (°C): 15 + 1

photoperiod: 16h light: 8h dark

light level (water surface): 100-500 lux

1.01

control/dilution water: dechlorinated tap water

11

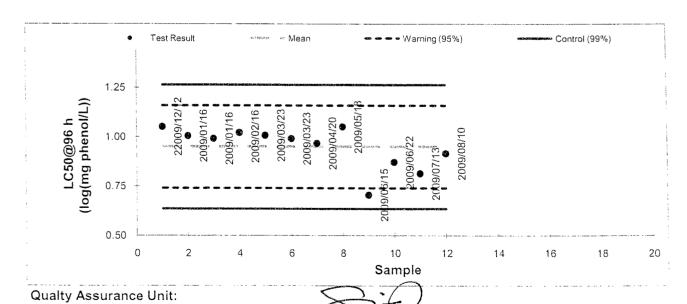
Current Test

toxicant phenol (C₆H₅OH)

started on 2009/08/06 ended on 50 @ 96h) 0.92 log (mg pher

ended on 2009/08/10

log (mg phenol/L); geometric mean


Confidence Limits (95%) lower 0.79 upper

Historical Values
mean 0.95 sd 0.10 cv(%):

lower upper

warning limits (±2 sd) 0.74 1.16 (95% confidence limits) control limits (±3 sd) 0.63 1.26 (99% confidence limits)

notes: sd, standard deviation; cv, coefficient of variance

Authorized by S. Krishnappa, B.Sc., Quality Assurance Coordinator
The test data and results are verified correct.

Our liability is limited to the cost of the test requested on the sample as received. No liability in whole or in part is assumed for the collection, handling or transport of the sample, application or interpretation of the test data or results in part or in whole.

Result Summary

Client: ALS106 Reference: 09-1501-01-TRD

Client: ALS Laboratory Group; operation Edmonton

ce. 09-1301-01-11\c

Sample: L806858-1

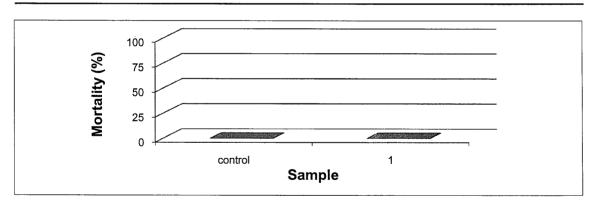
LUP-10

Collection: collected on 2009/08/17 at not given by AM **Receipt:** received on 2009/08/19 at 0910 by L. Henson

Containers: received 6 x 20L pails at 19 °C, in good condition with

no seals and no initials

Description: type: water, collection method: not given


Test: started on 2009/08/19; ended on 2009/08/23

Contents

Result Summary......1
Test Conditions......2
Test Data......3
Comments/Statistics..5
QA/QC.......6

Result:

Sample	Client Code	Mortality (%)	Comment	
control 1	lab control L806858-1	0 0	not toxic as tested	

The test data and results are authorized and verified correct.

E. Blais, B.Sc., Technical Lead

S. Krishnappa, B.Sc., Quality Coordinator

Form: F060 v 3.2

Test Conditions

Client: ALS106

Reference: 09-1501-01-TRD

Form: F060 v 3.2

Method: Biological Test Method: Reference Method for Determining Acute Lethality of

Effluents to Rainbow Trout, 2000. Environment Canada, EPS 1/RM/13.

Second Edition (amended 2007).

Test type: Trout 96-h Static Acute Test (HQ 4.4.4.1)

Species: Oncorhynchus mykiss

Organism source: Sun Valley Trout Farms (Batch 20090716TR)

Acclimation: 34 days (must be \geq 2 weeks)

Stock mortality: 1.40% (seven days preceeding testing)

Sample initial chemistry: pH: 8.0; EC: 777 (µS/cm); DO: 7.5 (mg/L); temperature: 17 °C

hardness (mg CaC03/L): 165; colour: colourless; odour: odourless

Sample holding time: 2 days (must be ≤ 5 days)

Sample storage: 4 ± 2°C in darkness

Test vessel: The test was conducted in 22 L plastic pails with polyethylene liners

Test volume: 20 Litres (depth of solution in each test vessel ≥15cm)

Sample pre-treatment: All test solutions and controls were pre-aerated for 30 minutes at 6.5 ±1 mL/min/L

Dissolved oxygen in full strength sample was 7.8 mg/L after pre-aeration. The sample was not filtered or pH adjusted prior to or during testing

Loading density: 0.197 g/Litre (must be $\leq 0.5 \text{ g/Litre}$)

Control water: Dechlorinated City of Calgary water acclimated to test conditions

Test concentrations: Undiluted sample plus a negative control

Test replicates: One replicate per treatment: 10 fish per replicate

Feeding: Fish are not fed 24 hours before test initiation and no feeding during test

Measurements: pH, conductivity, dissolved oxygen and temperature measured daily

Aeration: All treatments aerated at 6.5 ±1 mL/min/L by oil-free compressed air

passed through airline tubes connected to disposable air stones

Lighting: Overhead full spectrum fluorescent lights; 100-500 lux at surface

Photoperiod: 16h light:8h dark

Test temperature: 15 ± 1°C

Endpoint: Mortality, % mortality at 96-h

Test validity: The control had 100% survival (must ≥ 90%)

Reference toxicant: 96-h test with Phenol (C₆H₅0H) initiated August 6, 2009; current results

(96-h LC50 and 95% confidence limits) = 0.92 (0.79-1.01) log (mg/L Phenol)

Note: Outlined sections are protocol deviations explained on the comment page; v/v, volume per volume

Test Data

Client: ALS106

Reference: 09-1501-01-TRD

Form: F060 v 3.2

Test Log:

Date	Day	Time	Technician	Comment/Observation
2009/08/19	0	1030	N. Lavoie/E. Vinish	test fish loaded at 1030 h
2009/08/20	1	1215	S. Ehman/N. Lavoie	all test fish appear normal
2009/08/21	2	1030	J. Amyotte/N. Lavoie	all test fish appear normal
2009/08/22	3	1045	D. Lalonde/S. Ehman	all test fish appear normal
2009/08/23	4	1050	D. Lalonde/N. Lavoie	all test fish appear normal

Chemist	ry:							
Sample	control	1						
Day _				pH (units)				
0 [7.9	7.8						,
1 [8.3	7.6						
2	7.9	6.9						
3	8.1	7.8						
4	7.9	7.7						
_			Con	ductivity (µS	/cm)		.,	
0	338	798						
1 _	338	801						
2	340	812		:				
3	398	780						
4	370	775						
_			Dissol	ved Oxygen	(mg/L)			
0	7.8	7.8						
1 [8.0	8.1						
2	8.3	8.4						
3	8.4	8.4						
4 [8.6	8.7						
Temperature (°C)								
0 [16	16						
1	15	15						
2	15	15						
3	15	15						

15

15

Test Data

Client: ALS106

Reference: 09-1501-01-TRD

Form: F060 v 3.2

Number Alive:

Number A										
Sample	control	1								
_										
Day _										
0	10	10								
1 [10	10								
2	10	10								
3	10	10								
4	10	10								
_										
Mortality (%)										
4	0	0								

Biology Summary Tables:

Control	Length	Wet
Fish	(cm)	Weight(g)
1	3.2	0.4
2	3.5	0.4
3	3.2	0.3
4	3.3	0.3
5	3.4	0.3
6	3.7	0.4
7	4.5	0.8
8	3.7	0.4
9	3.5	0.3
10	3.3	0.3

_		
average	3.5	0.4
sd	0.4	0.2
cv(%)	10.9	38.7

Notes: nd, not done; na, not applicable; sd, standard deviation; cv(%), coefficient of variation

Sample	Group Wet Weight (g)
control	3.9
1	3.8

Comments/Statistics

Clier	nt:	ΑL	.S1	06

Reference: 09-1501-01-TRD

Form: F060 v 3.2

Test Result Comments:

None

Data Analysis:

None

Protocol Deviations:

None

Warning Chart Trout

Test Method: Trout 96h Static Acute Test. (LC50, five or more treatments plus a control)

HydroQual Test Method Manual, section: 4.4.4.1

Reference: Biological Test Method: Reference Method for Determining Acute Lethality of

Effluents to Rainbow Trout, 1990. Environment Canada, EPS 1/RM/13.

including May 1996 and December 2000 amendments.

Test Organism:

test species: Oncorhyncus mykiss

culture source: Sun Valley

temperature (°C): 15 ± 1

dissolved oxygen: saturated

stock mortality (last 7d): 0.00%

batch number: 20090716TR

Test Design:

vol. of test vessel (L): 22

test volume depth: >15 cm

replicates per treatment: 1

fingerlings per replicate: 10

loading (g fish/L): <0.5

temperature (°C): 15 ± 1

photoperiod: 16h light: 8h dark

light level (water surface): 100-500 lux

control/dilution water: dechlorinated tap water

11

Current Test

toxicant phenol (C₆H₅OH)

0.95

lower

started on 2009/08/06

ended on

2009/08/10

Result (LC50 @ 96h) Confidence Limits (95%) lower

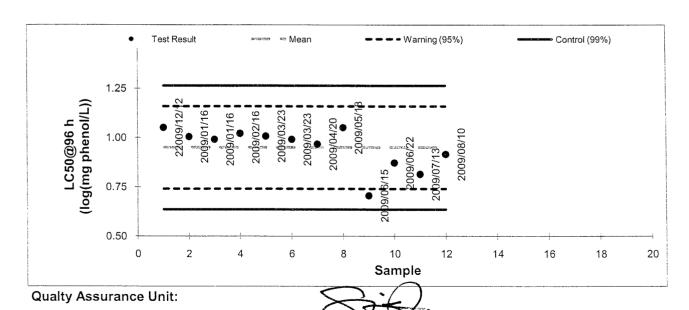
warning limits (±2 sd)

control limits (±3 sd)

0.92

log (mg phenol/L); geometric mean 0.79 upper 1.01

mean


Historical Values

sd 0.10 cv(%):

upper

0.74 1.16 0.63 1.26 (95% confidence limits) (99% confidence limits)

notes: sd, standard deviation; cv. coefficient of variance

Authorized by S. Krishnappa, B.Sc., Quality Assurance Coordinator The test data and results are verified correct.

Our liability is limited to the cost of the test requested on the sample as received. No liability in whole or in part is assumed for the collection, handling or transport of the sample, application or interpretation of the test data or results in part or in whole.

Result Summary

Client: ALS106

Reference: 09-1501-01-DAD

Client: ALS Laboratory Group; operation Edmonton

Contents

Sample: L806858-1 LUP-10

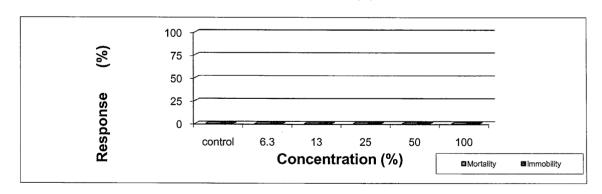
)

Collection: collected on 2009/08/17 at not given by AM **Receipt:** received on 2009/08/19 at 0910 by L. Henson

Containers: received 6 x 20L pails at 19 °C, in good condition with no

seals and no initials

Description: type: water, collection method: not given


Test: started on 2009/08/20 : ended on 2009/08/22

Result Summary.....1
Test Conditions.....2
Test Data.....4
Comments/Statistics..5
QA/QC.....6

Result:

_	Endpoint (48-hour)	Value (%)	Confidence Limits (95%) lower upper	Method Calculated
Acute: (mortality)	LC50 LC25	>100 >100		could not be calculated could not be calculated
Acute: (immobility)	EC50 EC25	>100 >100		could not be calculated could not be calculated

Notes: LC25 & LC50, concentrations lethal to 25% and 50% of the test population

The test data and results are authorized and verified correct.

E. Blais, B.Sc., Technical Lead

S. Krishnappa, B.Sc., Quality Coordinator

Form: F060 v 3.2

Test Conditions

Client: ALS106

Reference: 09-1501-01-DAD

Form: F060 v 3.2

Method: Biological Test method: Reference Method for Determining Acute Lethality of

Effluents to Daphnia magna, 2000, Environ, Can., EPS 1/RM/14.

Second Edition.

Test type: Daphnia 48-h Static Acute Test (HQ 4.4.3.1)

Species: Daphnia magna

Age: < 24 hours old

Organism source: in-house culture

Stock mortality: 7%

Culture brood data: 10 days to first brood

23 neonates per average brood

Sample initial chemistry: pH: 8.0; EC: 777 (µS/cm); DO: 7.5 (mg/L); temperature: 17 °C

hardness (mg CaC03/L): 165; colour: colourless; odour: odourless

Sample holding time: 3 days (must be \leq 5 days)

Sample storage: 4 ± 2°C in darkness

Test vessel: 385 mL plastic vessels

Test volume: 150 mL

Sample pre-treatment: The sample was not filtered or pH adjusted prior to or during testing

The sample was pre-aerated for 0 minutes (rate of $37.5 \pm 12.5 \text{ mL/min.L}^{-1}$)
The hardness of the sample was not adjusted (mg CaCO₃/L) prior to or during

testing

Loading density: One daphnid/15 mL (must ≤ 1 organism/15 mL)

Control/dilution water: Dechlorinated City of Calgary water acclimated to test conditions

The hardness of the control/dilution water was 128 mg CaCO₂/L

Test concentrations: 5 effluent concentrations (6.3, 12.5, 25, 50, 100% (v/v) plus a negative control)

Test replicates: One replicate per treatment, 10 daphnids per replicate

Feeding: None Aeration: None

Measurements: pH, conductivity, dissolved oxygen and temperature at test initiation and

termination

Lighting: Cool white fluorescent lights; 400-800 lux at surface

Photoperiod: 16h light:8h dark

Test temperature: 20 ± 2°C

Note: Outlined sections are protocol deviations explained on the comment page

Test Conditions

Client: ALS106

Reference: 09-1501-01-DAD

Form: F060 v 3.2

Endpoint: Mortality, 48-h LC50 (95% confidence limits)

Immobility, 48-h EC50 (95% confidence limits)

Test validity: The control had 100% survival (must ≥ 90%)

Control had 0 percent (%) abnormal behaviour (must ≤ 10%, immobility)

Reference toxicant: 48-h test with NaCl initiated August 18, 2009; current results

(48-h LC50 and 95% confidence limits) = 0.76 (0.72-0.80) log (g/L NaCl)

Note: Outlined sections are protocol deviations explained on the comment page

Test Data

Client: ALS106

Reference: 09-1501-01-DAD

Form: F060 v 3.2

Log

1001 209.				
Date	Day	Time	Technician	Comment/Observation
2009/08/20	0	1120	E. Vinish/S. Ehman	test Daphnia appear normal
2009/08/21	1	0930	T. Kloschinsky	test Daphnia appear normal
2009/08/22	2	0900	N. Lavoie	test Daphnia appear normal

~	he	m	ie	4	n	,	
•	пе	"	15	L		,	

Conc. (%)	control	6.3	13	25	50	100	
Day				pH (units)			
0	8.2	8.2	8.2	8.2	8.2	7.7	
2	8.2	8.4	8.5	8.5	8.4	8.1	
			Cor	nductivity (µS	/cm)		
0	370	403	431	485	588	788	
2	390	409	438	489	593	810	
·							
			Dissol	ved Oxygen	(mg/L)		
0	7.6	7.7	7.6	7.6	7.6	7.6	
2	8.0	7.9	7.8	7.8	7.8	7.7	
'						-	
			Τe	emperature ('	°C)		
0	18	18	18	18	18	18	
2	18	18	12	18	18	1.0	

Biology:

Conc. (%)

control

6.3

13

Day	Number Alive and Behavior (behavior is in brackets)									
1	10	10	10	10	10	10				
2	10	10	10	10	10	10				

50

100

Notes: F, floating; I, immobile; B, stuck on bubble; D, caught in debris; nd, not done; na, not applicable;

25

					Mo	ortality (%)						
2		0	0	0	0	0	0					
						-						
	Immobility (%)											
2		0	0	0	0	0	0					

Comments/Statistics

Client: ALS106

Reference: 09-1501-01-DAD

Form: F060 v 3.2

Test Result Comments:

None

Data Analysis:

Endpoints for mortality could not be calculated. No effect occurred.

Endpoints for immobility could not be calculated. No effect occurred.

Protocol Deviations:

None

Quality Assurance Information

Test Method: Daphnia Static Acute Test (LC50, five or more treatments plus a control)

HydroQual Test Method Manual, section: 4.4.3.1

Reference: Biological Test Method: Reference Method for Determining the Acute Lethality of

Effluents to Daphnia magna, 1990. Environment Canada, EPS 1/RM/14.

including May 1996 and December 2000 ammendments.

Test Organism:

Test Design:

test species: Daphnia magna

vol. of test vessel (mL): 500

culture source: in-house original culture source: Environment Canada toxicant: sodium chloride

days to first brood: 10

replicates per treatment: 1

test volume (mL): 150

mean brood size: 23 ephippia in stock culture: no neonates per replicate: 10

age of test organisms: <24 hours old

volume per neonate (mL): 15 samples preaerated: no

hardness adjustment: no temperature (°C): 20

culture mortality (%): 0%

photoperiod: 16h light:8h dark

light level (water surface): 400-800 lux

control/dilution water: dechlorinated tap water

Current Test

toxicant Sodium Chloride (NaCl) 0.76

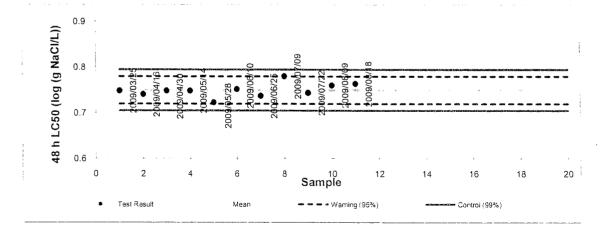
started on 2009/08/18 ended on 2009/08/20

Result (LC50 @ 48h)

log (g NaCl/L); geometric mean

Confidence Limits (95%) lower

0.72 upper 0.80 Historical Values 0.01


mean 0.75 sd lower upper cv(%): 2

warning limits (±2 sd) 0.72 0.78 control limits (±3 sd) 0.70 0.79

(95% confidence limits) (99% confidence limits)

notes: sd, standard deviation; cv, coefficient of variance

Comments: None

Quality Assurance Unit:

Quality Assurance Coordinator Authorized by S. Krishnappa, B.Sc.

The test data and results are verified correct.

Client: ALS106

Contents

Result Summary.....1

Test Conditions......2
Test Data.....4

Comments/Statistics..5

QA/QC.....6

Result Summary

Reference: 09-1501-01-DAD

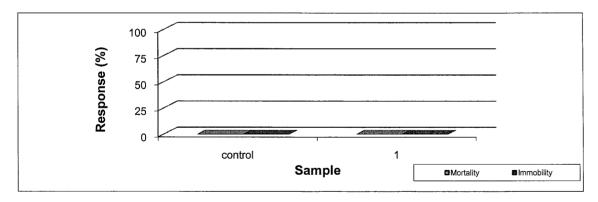
Client: ALS Laboratory Group; operation Edmonton

Sample: L806858-1

LUP-10

Collection: collected on 2009/08/17 at not given by AM Receipt: received on 2009/08/19 at 0910 by L. Henson

Containers: received 6 x 20L pails at 19 °C, in good


condition with no seals and no initials **Description:** type: water, collection method: not given

Test: started on 2009/08/19; ended on 2009/08/21

Result:

Sample	Client	Ave	rage	Comment
	Code	Mortality (%)	Immobility (%)	
control	lab control	0	0	
1	L806858-1	0	0	not toxic as tested

Notes: sd, sample standard deviation; cv, coefficient of variation; nd, not done; na, not applicable;

The test data and results are authorized and verified correct.

E. Blais, B.Sc., Technical Lead

S. Krishnappa, B.Sc., Quality Coordinator

Form: F060 v 3.2

Test Conditions

Client: ALS106

Reference: 09-1501-01-DAD

Form: F060 v 3.2

Method: Biological Test method: Reference Method for Determining Acute Lethality of

Effluents to Daphnia magna, 2000, Environ, Can., EPS 1/RM/14.

Second Edition.

Test type: Daphnia 48-h Static Acute Test (HQ 4.4.3.1)

Species: *Daphnia magna* **Age**: < 24 hours old

Organism source: in-house culture

Stock mortality: 0%

Culture brood data: 10 days to first brood

23 neonates per average brood

Sample initial chemistry: pH: 8.0; EC: 777 (µS/cm); DO: 7.5 (mg/L); temperature: 17 °C

hardness (mg CaC03/L): 165; colour: colourless; odour: odourless

Sample holding time: 2 days (must be ≤ 5 days)

Sample storage: 4 ± 2°C in darkness

Test vessel: 385 mL plastic vessels

Test volume: 150 mL

Sample pre-treatment: The sample was not filtered or pH adjusted prior to or during testing

The sample was pre-aerated for 0 minutes (rate of $37.5 \pm 12.5 \text{ mL/min.L}^{-1}$) The hardness of the sample was not adjusted (mg CaCO₃/L) prior to or during

testino

Loading density: One daphnid/15 mL (must ≤ 1 organism/15 mL)

Control water: Dechlorinated City of Calgary water acclimated to test conditions

The hardness of the control/dilution water was 128 mg CaCO₂/L

Test concentrations: Undiluted sample plus a negative control

Test replicates: Three replicates per treatment, 10 daphnids per replicate

Feeding: None Aeration: None

Measurements: pH, conductivity, dissolved oxygen and temperature at test initiation and

termination

Lighting: Cool white fluorescent lights; 400-800 lux at surface

Photoperiod: 16h light:8h dark

Test temperature: 20 ± 2°C

Note: Outlined sections are protocol deviations explained on the comment page

Test Conditions

Client: ALS106

Reference: 09-1501-01-DAD

Form: F060 v 3.2

Endpoint: Mortality, % mortality at 48-h

Immobility, % immobility at 48-h

Test validity: The control had 100% survival (must ≥ 90%)

Control had 0% abnormal behaviour (must ≤ 10%), e.g. immobility

Reference toxicant: 48-h test with NaCl initiated August 18, 2009; current results

(48-h LC50 and 95% confidence limits) = 0.76 (0.72-0.80) log (g/L NaCl)

Note: Outlined sections are protocol deviations explained on the comment page

Test	Data
-------------	-------------

Client: ALS106

Reference: 09-1501-01-DAD

Form: F060 v 3.2

Test Loc	3
----------	---

1001 = 09.				
Date	Day	Time	Technician	Comment/Observation
2009/08/19	0	1000	J. Amyotte	test <i>Daphnia</i> appear normal
2009/08/20	1	0915	S. Ehman	test Daphnia appear normal
2009/08/21	2	0920	T. Kloschinsky	test Daphnia appear normal

C	he	m	ie	+	n	,	•
•	110				١,	,	

Chemistry.						
Sample	control			1		
replicate	а	b	С	а	b	С
						-
Day			pH (ι	units)		
0	8.3	8.3	8.3	8.3	8.4	8.4
2	7.7	7.8	7.8	7.6	7.4	7.2
			Conductivi	ity (µS/cm)		
0	358	361	361	776	798	797
2	367	369	373	771	799	802
•						
	Dissolved Oxygen (mg/L)					
0	7.5	7.3	7.3	7.5	7.5	7.5
2	7.8	7.6	7.6	7.6	7.6	7.6
	Temperature (°C)					
0	18	18	19	19	19	19
2	20	20	20	20	20	20

Biology:

				· · · · · · · · · · · · · · · · · · ·		
Sample	control			1 1		
replicate	а	b	С	а	b	С

Day	Number Alive and Behavior (behavior is in brackets)						
1	10	10 (3F)	10	10	10	10	
2	10	10	10	10	10	10	

Notes: F, floating;	I, immobile; B,	stuck on l	bubble; D	, caught in debris
---------------------	-----------------	------------	-----------	--------------------

			Mortal	ity (%)		
2	0	0	0	0	0	0
			Immob	ility (%)		
2	0	0	0	0	0	0

Comments/Statistics

Client:	ΑL	_S1	06
---------	----	-----	----

Reference: 09-1501-01-DAD

Form: F060 v 3.2

Test Result Comments:

None

Data Analysis:

None

Protocol Deviations:

None

Quality Assurance Information

Test Method: Daphnia Static Acute Test (LC50, five or more treatments plus a control)

HydroQual Test Method Manual, section: 4 4.3.1

Reference: Biological Test Method: Reference Method for Determining the Acute Lethality of

Effluents to Daphnia magna, 1990 Environment Canada, EPS 1/RM/14.

including May 1996 and December 2000 ammendments.

Test Organism:

test species. Daphnia magna

culture source: in-house

original culture source: Environment Canada

days to first brood: 10

mean brood size: 23

ephippia in stock culture: no

age of test organisms: <24 hours old

culture mortality (%): 0%

Test Design:

vol. of test vessel (mL): 500

toxicant: sodium chloride

test volume (mL): 150

replicates per treatment: 1

neonates per replicate. 10

volume per neonate (mL). 15

samples preaerated: no

hardness adjustment: no

temperature (°C): 20

photoperiod. 16h light:8h dark

light level (water surface). 400-800 lux

control/dilution water: dechlorinated tap water

Current Test

toxicant Sodium Chloride (NaCl)

started on 2009/08/18 ended on 2009/08/20

Result (LC50 @ 48h) Confidence Limits (95%)

warning limits (±2 sd)

0.76 lower log (g NaCI/L); geometric mean 0.72 upper 0.80

Historical Values 0.75 sd

lower

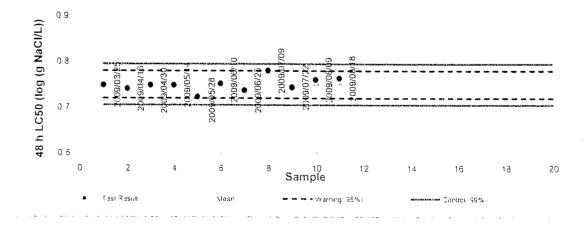
upper

0.72

0.78

(95% confidence limits)

0.01


cv(%):

control limits (±3 sd) 0.70 0.79 (99% confidence limits)

notes: sd, standard deviation; cv, coefficient of variance

mean

Comments: None

Quality Assurance Unit:

Authorized by S. Quality Assurance Coordinator

The test data and results are verified correct

SRC ANALYTICAL

Sep 09, 2009

422 Downey Road Saskatoon, Saskatchewan, Canada S7N 4N1 (306) 933-6932 or 1-800-240-8808 Fax: (306) 933-7922

Client PO#:

L806858

Date Received: Aug 20, 2009

ALS 9936-67th Avenue Edmonton, Alberta T6E 0P5 Attn: ALSED Reporting

Page 1 of 1

Sample # 36366 Date Sampled: Aug 17, 2009 Sample Matrix: **WATER**

Description: L806858-1 LUP-10

Analyte Units Result DL

Radio Chemistry

Radium-226 Bq/L 0.008 0.005

ALS Laboratory Group

ANALYTICAL CHEMISTRY & TESTING SERVICES **Environmental Division**

Chain of Custody / Analytical Request Form Canada Toll Free: 1 800 668 9878 www.alsglobal.com

L806858

coc# **08-**011425

Page / of

Number of Containers If Yes attach SIF For Emergency < 1 Day, ASAP or Weekend - Contact ALS Observations: Yes / No? SHIPMENT VERIFICATION (lab use only) Service Requested: (rush - subject to availability) Emergency (1 Business Day) - 100% Surcharge (Indicate Filtered or Preserved, F/P 1) Priority (2-3 Business Days) - 50% Surcharge Analysis Request By the use of this form the user acknowledges and agrees with the Terms and Conditions as specified on the back page of the white - report copy. Date & Time: ン 7 7 Regular (Default) Failure to complete all portions of this form may delay analysis. Please fill in this form LEGIBLY. Verified by: 7 Sample Type Temperature: SPAR. SHAR. SPASS PASS SAR SAR TANGE OF THE PARTY GOOAB 1-RAR SPAR SPAR 32 22 23 Special Instructions / Regulations / Hazardous Details SHIPMENT RECEPTION (lab use only) 5,00p 100 P. 5120P 8 :00p 3,300 4,620 1549 11,549 4,26P 400,7 9:21 Time Other: Digital Sampler: Report Format / Distribution Client / Project Information: 18-Aug-81 ALS Contact: OLIVER, 20 A P C S 10 FU CAUGOS GAUG-92138818AUG Excel 6 Ple 6-Sour Contract Legal Site Description: Date Q21388 17AUS Date: Select: PDF V 85 to Standard: PO / AFE: Quote #: Email 1: Email 2: A12 6321295 7211705 Job #: 46 671391 Received by: (This description will appear on the report) DUPLICATE ZESOURCES INC Sample Identification Date & Time: Yes No ? PEWMITCHER SHIPMENT RELEASE (clent use) Fax: Fax: 0 28-10 01 -dn-Same as Report? Lab Work Order # (lab use only) 1.1P [] Released by: nvoice To: Sample Report to: Company: Company Address: Address Contact: Contact Phone: Phone:

GENF 18.00 Front

WHITE - REPORT COPY, PINK - FILE COPY, YELLOW - CLIENT COPY

REFER TO BACK PAGE FOR ALS LOCATIONS AND SAMPLING INFORMATION